FT-ICR massenspektrometrische Untersuchungen: Gasphasen-Reaktivität ionisierter Halogenalkene gegenüber Nukleophilen

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Fakultät für Chemie der Universität Bielefeld

> vorgelegt von Michael Büchner

Bielefeld 2000

F ür A ndrea und Sarah

1. Berichterstatter:

2. Berichterstatter:

Prof. em. Dr. H.-Fr. Grützmacher Prof. Dr. W. Schoeller

Tag der Abgabe: Tag der mündlichen Prüfung: 19. September 2000
 27. Oktober 2000

Die vorliegende Arbeit wurde in der Zeit von Mai 1996 bis September 2000 unter der Leitung von Herrn Prof. em. Dr. H.-Fr. Grützmacher an der Fakultät für Chemie der Universität Bielefeld durchgeführt.

Meinem akademischen Lehrer Herrn **Prof. em. Dr. H.-Fr. Grützmacher** danke ich herzlich für die Überlassung des Themas, die zahlreichen hilfreichen Diskussionen und Denkanstöße sowie das Interesse, das er dieser Arbeit stets entgegen gebracht hat.

Herrn M. Terrey danke ich für die technische Hilfe bei dem Umgang mit den Massenspektrometern. Herrn Dr. U. Neuert danke ich für die Lösung von EDV-Problemen. Herrn G. Lipinski und Herrn P. Meester danke ich für die Aufnahmen der NMR-Spektren.

Bei Herrn Prof. Dr. H. Zipse von der Ludwig-Maximilian Universität München bedanke ich mich sehr herzlich für die freundliche Aufnahme während meines Gastaufenthaltes sowie der gemeinsamen Durchführung zahlreicher quantenchemischen Berechnungen.

Allen Mitarbeitern der Arbeitsgruppe Organische Chemie I danke ich für die gute Zusammenarbeit und die freundliche Arbeitsatmosphäre. Überdies gilt mein Dank Herrn Priv.-Doz. Dr. D. Kuck für seine ständige Diskussionsbereitschaft.

Meinen Eltern danke ich, die mir das Studium ermöglicht haben.

"Atter og fram, der er lige langt; ud og ind, det er lige trangt." *H. Ibsen: Peer Gynt, 2. Akt*

"Vorwärts und rückwärts ist gleich weit, außen oder innen ist gleich nah."

Inhaltsverzeichnis

1.	Einleitung				
	1.1	Zielsetzung und Arbeitsplanung	3		
2.	Gru	ndlagen zu massenspektrometrischen Untersuchungen von	6		
	Ion/Molekül-Reaktionen				
	2.1	Unimolekulare Zerfallsprozesse	6		
	2.2	Bimolekulare Ion/Molekül-Reaktionen	10		
	2.3	Grundlagen der FT-ICR-Massenspektrometrie	16		
	2.4	Grundlagen zur Auswertung der Kinetiken von Ion/Molekül-Reaktionen	24		
	2.5	Gasphasentitrationen	29		
3.	Gru	ndlagen theoretischer Methoden zur Berechnung von Molekülen	31		
	3.1	Einleitung	31		
	3.2	Dichtefunktional-Theorie	32		
	3.3	Berechnung der Bildungsenthalpien aus ab initio Rechnungen	35		
4.	Reaktionen von 2-Halogenpropen-, 2-Halogen-3,3,3-trifluorpropen- und				
	Brombuten-Radikalkationen mit Ammoniak				
	4.1	Einleitung	38		
	4.2	Abschätzung der Reaktionsenthalpien der Reaktionen von 2-Halogen-			
		propen- und 2-Halogen-3,3,3-trifluorpropen-Radikalkationen mit	39		
		Ammoniak			
	4.3	Reaktionen von 2-Halogenpropen-Radikalkationen mit Ammoniak	42		
	4.4	Reaktionen von 2-Halogen-3,3,3-trifluorpropen-Radikalkationen			
		mit Ammoniak	52		
	4.5	Berechnung der Reaktionsenthalpien der Reaktionen von 2-Halogen-	58		
		propen- und 2-Halogen-3,3,3-trifluorpropen-Radikalkationen mit NH ₃			
	4.6	Reaktionen von Brombuten-Radikalkationen mit Ammoniak	67		

5.	Reaktionen von Bromalken-Radikalkationen mit aliphatischen Aminen				
	5.1	Einleitung	78		
	5.2	Reaktionen von 2-Bromalken-Radikalkationen mit Methylamin	80		
	5.3	Reaktionen von 2-Bromalken-Radikalkationen mit Ethylamin	89		
	5.4	Reaktionen von 2-Bromalken-Radikalkationen mit Dimethylamin	95		
	5.5	Zusammenfassende Diskussion	98		
6.	Reaktionen von 2-Halogenpropen-, 2-Halogen-3,3,3-trifluorpropen- und				
	Brombuten-Radikalkationen mit aliphatischen Alkoholen				
	6.1	Einleitung	99		
	6.2	Reaktionen von 2-Halogenpropen-Radikalkationen mit aliphatischen			
		Alkoholen	103		
	6.3	Reaktionen von 2-Halogen-3,3,3-trifluorpropen-Radikalkationen mit			
		aliphatischen Alkoholen	114		
	6.4	Berechnung der Reaktionsenthalpien der Reaktionen von 2-Halogen-			
		propen und 2-Halogen-3,3,3-trifluorpropen-Radikalkationen mit	119		
		Methanol			
	6.5	Reaktionen von Brombuten-Radikalkationen mit Methanol	131		
7.	Reaktionen von 2-Chlorethen- und 2-Brompropen-Radikalkationen mit Methylmercaptan		139		
8.	Reaktionen von Halogenethen- und 2-Halogenpropen-Radikalkationen mit <i>tert</i> Butylmethylether und Trimethylsilylmethylether				
	8.1	Einleitung	143		
	8.2	Reaktionen der Halogenethen- und 2-Halogenpropen -Radikalkationen	144		
		mit <i>tert</i> Butylmethylether			
	8.3	Reaktionen der Halogenethen- und 2-Halogenpropen -Radikalkationen	149		
		mit Trimethylsilylmethylether			

9.	Untersuchung von Ion/Molekül-Reaktionen von Ionen aus <i>tert</i> Butylmethylether und Trimethylsilylmethylether		
		9.2	Massenspektren und MIKE-Spektren von MTBE und MTSE
	9.3	Reaktionen von (CH ₃) ₂ C ⁺ -OCH ₃ und (CH ₃) ₂ Si ⁺ -OCH ₃	161
	9.4	Reaktionen von protoniertem MTBE und MTSE	170
	9.5	Zusammenfassende Diskussion	179
10.	Zusa	mmenfassung	180
11.	Experimenteller Teil		183
	11.1	Massenspektrometrie	183
	11.2	MIKE-Massenspektrometrie	183
	11.3	CA-Massenspektrometrie	183
	11.4	FT-ICR-Massenspektrometrie	184
	11.5	Ab initio Berechnungen	186
	11.6	Synthesevorschriften	187
12.	Anhang		188
	12.1	Isodesmische Reaktionen zur Abschätzung der Reaktionsenthalpien der	188
		Reaktionen von 1^{+} , 2^{+} , 3^{+} , 4^{+} und 5^{+} mit NH ₃ oder CH ₃ OH	
	12.2	Ab initio Rechnungen der Reaktionen von 1^{+} , 2^{+} , 4^{+} , 5^{+} , 7^{+} , 8^{+}	195
		und 9^{+} mit NH ₃ bzw. CH ₃ OH	
	12.3	Isodesmische Reaktionen zur Abschätzung der Reaktionsenthalpien der	279
		Reaktionen von 1^{+} , 2^{+} , 4^{+} , 5^{+} , 7^{+} , 8^{+} und 9^{+} mit CH ₃ NH ₂ , C ₂ H ₅ NH ₂ ,	
		(CH ₃) ₂ NH ₂ , CH ₃ OH, C ₂ H ₅ OH oder CH ₃ SH	
	12.4	Isodesmische Reaktionen zur Abschätzung vertikaler Ionisierungs-	284
		energien	

13. Literaturverzeichnis

288

1. Einleitung

Radikalkationen sind wichtige Intermediate bei zahlreichen chemischen und biologischen Prozessen^[1-10] Beispiele hierfür sind die Photosynthese^[1], Polymerreaktionen^[11], die Chemie im interstellaren Raum^[12] und organische Synthesen wie beispielsweise durch Elektronentransfer induzierte anti-Markownikow-Additionen^[13], Radikalkationen Diels-Alder Reaktionen^[9] und nukleophile Substitutionsreaktionen^[14]. Radikalkationen lassen sich radio-chemisch^[15], elektrochemisch^[16], photochemisch^[17] oder chemisch erzeugen.

Organische Radikalkationen besitzen aufgrund ihres ungepaarten Elektrons im allgemeinen eine hohe Reaktivität, so daß sie in Lösung eine geringe Lebensdauer aufweisen und selten direkt isoliert werden können.^[18] Daher sind zahlreiche spektroskopische und spektrometrische Methoden entwickelt und angewendet worden, um strukturelle Eigenschaften von Radikalkationen in der Gasphase und kondensierter Phase abzuleiten.^[19]

Organische Radikalanionen weisen ebenfalls ein ungepaartes Elektron auf und sind folglich sehr reaktiv. Auch diese Spezies weisen eine geringe Lebensdauer auf. Alkylhalogen-Radikalanionen dissoziieren beispielsweise leicht in das entsprechende Alkyl-Radikal und das Halogen-Anion.^[20] Weiterhin sind Radikalanionen gute Oxidationsmittel und reagieren leicht durch Deprotonierung mit geeigneten Substraten.

Charakteristische unimolekulare Reaktionen organischer Radikalkationen sind beispielsweise Fragmentierungen, cis-/trans-Isomerisierungen, Umlagerungen und Cycloreversionen. Beispiele für bimolekulare Reaktionen sind Dimerisierungen, "spin labeling", nukleophile Anlagerungen, Disproportionierungsreaktionen, Elektronentransfer, Atom- bzw. Gruppentransferreaktionen und Kopplungen. Eine gute Übersicht mit zahlreichen Beispielen befindet sich in einem Übersichtsartikel von Roth.^[19] Ein weiterer Aspekt der Reaktivität von Radikalkationen sind Einelektronentransfer-Prozesse bei der Donor-Akzeptor Photochemie.^[20-23]

Eine bedeutende Rolle in der Chemie nehmen nukleophile Substitutionsreaktionen an sp^2 hybridisierten Kohlenstoff-Atomen ein und sind Gegenstand intensiver Forschung.^[24] Ohne aktivierende Substituenten verhalten sich Halogenalkene gegenüber einem nukleophilen Angriff wenig reaktiv. Die Abspaltung eines Halogens entsprechend eines S_N1 -Reaktionsmechanismus^[25], wobei intermediär ein vinylisches Carbenium-Ion entsteht, ist sehr langsam^[26-28]. Das liegt darin begründet, daß Vinyl-Kationen eine geringe Bildungstendenz aufweisen, denn sie sind thermodynamisch wenig stabil.^[29] Besitzen Halogenalkene eine Nachbargruppe^[25], die das Alkenyl-Kation stabilisiert oder gute Abgangsgruppen wie beispielsweise ein Sulfonylsubstituent^[28], so lassen sich Alkenyl-Kationen in Lösung glatt erzeugen. Der zweite mögliche Weg einer nukleophilen Substitution ist eine einstufige Reaktion analog zum klassischen S_N2-Mechanismus^[30]. Dieser Reaktionsmechanismus erfordert jedoch im allgemeinen eine hohe Aktivierungsbarriere.^[31,32] Der dritte und grundsätzlich andere Weg ist ein zweistufiger Reaktionsverlauf über das ionsierte Halogenalken nach einem Addition-/Eliminierungs-Mechanismus (A_d-E).

Insbesondere ungesättigte organische Radikalkationen weisen eine hohe Reaktivität gegenüber elektronenreichen Donor-Molekülen auf. Dabei entstehen zahlreiche Produkte nicht nur durch Substitution, sondern auch durch Addition und/oder Fragmentierungsreaktionen.^[33] Aufgrund der geringen Lebensdauer von organischen Radikalkationen in der kondensierten Phase ist es experimentell schwierig, Informationen über Einzelheiten des Reaktionsmechanismus zu bekommen. Dabei ist insbesondere von Interesse, welche strukturellen Faktoren die bimolekulare Geschwindigkeitskonstante bestimmen. Dagegen lassen sich reaktive Radikalkationen in der Gasphase leicht mit geeigneten massenspektrometrischen Methoden untersuchen, wobei viele Details des Reaktionsmechanismus aus der Untersuchung der Ion-/Molekül Reaktionen in der Gasphase gewonnen werden können. Ein wesentlicher Aspekt dabei ist, daß es in der verdünnten Gasphase keine Lösungsmitteleffekte bei der Ion/Molekül-Reaktionen gibt.^[34-35]

Unimolekulare Fragmentierungen von Radikalkationen in der Gasphase lassen sich im Massenspektrometer glatt untersuchen.^[34-35] Eine gute Methode zur Untersuchung von bimolekularen Reaktionen in der Gasphase ist die Fourier-Transformations-Ionencyclotron-resonanz-(FT-ICR)-Massenspektrometrie.^[36-40] Bei dieser Methode können aber im allgemeinen keine Addukte detektiert werden, sondern lediglich Produkte von Folge-prozessen, die als Monitorreaktion dienen. Solche Addukte reagieren daher entweder unimolekular zurück zu den Edukten oder dissoziieren schnell zu den Produkten.

Mit Hilfe der FT-ICR-Massenspektrometrie wurde bereits eine umfangreiche Studie von Gasphasenreaktionen ionisierter mono- und dihalogenierter Aromaten mit Ammoniak und aliphatischen Aminen durchgeführt.^[41-43] Weitere Studien der Ion/Molekül-Reaktionen wurden an Mono- und Dihalogenethen-Radikalkationen mit Ammoniak, aliphatischen Aminen und aliphatischen Alkoholen als neutrale Reaktionspartner durchgeführt.^[44-50]

2

1.1 Zielsetzung und Arbeitsplanung

Für die Substitution eines Halogen-Atoms in den Radikalkationen von Halogenarenen und Halogenethenen durch das Nukleophil ergibt sich, daß diese Reaktion über einen Additions-Eliminierungsmechanismus verläuft. Dabei ist im Fall der Aren-Radikalkationen der erste Additionsschritt der geschwindigkeitsbestimmende Schritt. Dieses kann man mit dem "configuration mixing" Model für polare organische Reaktionen von Shaik und Pross erklären.^[51-53] Weitere Studien ergaben jedoch, daß der Mechanismus der aromatischen nukleophilen Substitution komplizierter ist und Umlagerungsschritte zwischen Addition und Eliminierung beinhaltet. Im Gegensatz zu den Reaktionen der Radikalkationen von halogenierten Aromaten wird für die Substitution von olefinischen Radikalkationen bezüglich der Addition des Nukleophils gezeigt, daß dieses nicht der geschwindigkeitsbestimmende Schritt ist.^[44,45,46,47,49,50]

Bei der Addition des Nukleophils an die ionisierte Doppelbindung, die unsymmetrisch substituiert ist, sind zwei Additionsprodukte möglich. Die Addition erfolgt dabei bezüglich des Halogensubstituenten entweder am β -Kohlenstoffatom unter Bildung eines stabilen α -Halogenkohlenstoff-Atoms oder am α -Kohlenstoff-Atom unter Bildung eines instabileren β -Halogenkohlenstoff-Radikals. In Analogie zur bekannten Markownikow-Regel für die Addition an die C-C-Doppelbindung werden im folgenden diese Addukte als Markownikow-und anti-Markownikow-Addukt bezeichnet (Schema 1.1). Beide Additionsprodukte sind β -distonische Ionen. Nur bei dem anti-Markownikow-Addukt kann aber eine Dissoziation der Halogen-Kohlenstoffbindung stattfinden, wobei das positiv geladene Endprodukt der Substitutionsreaktion entsteht.

X = -Cl; -Br; -I

Schema 1.1: Additions-Eliminierungs-Mechanismus

Das anti-Markownikow-Addukt kann aus einer Umlagerung aus dem Markownikow-Addukt entstehen. Diese Umlagerung erfordert nach den Berechnungen eine Energiebarriere, die für die Effektivität der Gesamtreaktion von Bedeutung sein könnte.^[45,47] Eine andere Möglichkeit der Umwandlung vom Markownikow-Addukt und anti-Markownikow-Addukt ist die Rückdissoziation in die Edukte und erneute Addition mit anderer Regiochemie.

Bei der Addition des Nukleophils zum Markownikow-Addukt entsteht ein hoch angeregtes β distonisches Ion. Die Überschußenergie im Addukt-Ion führt entweder zur Rückdissoziation oder zur Weiterreaktion und kann der Grund für mehrere Reaktionswege der ungesättigten organischen Radikalkationen mit elektronenreichen Reaktanden sein.

Eine der konkurrierenden Reaktionen kann die Deprotonierung der Halogenalken-Radikalkationen durch das basische Nukleophil sein. Für starke Basen wie Ammoniak und aliphatische Amine wurde gezeigt, daß die Deprotonierung von Halogenalken-Radikalkationen exotherm ist.^[45,47,50] Dennoch kann sie nicht immer erfolgreich mit der entropisch anspruchsvolleren Substitution konkurrieren. Deshalb ist es für ein Verständnis der Reaktionen von ungesättigten Radikalkationen wichtig, dieses Reaktionsverhalten an weiteren Beispielen zu studieren.

Bei der Reaktion der Halogenethen-Radikalkationen mit aliphatischen Alkoholen wie Methanol oder Ethanol findet formal eine Hydridübertragung vom Alkohol auf das Alken-Radikalkation als eine weitere Konkurrenzreaktion zur Substitution statt. Die Hydrid-Abspaltung erfolgt vom α -C-Atom des Alkohols, wobei ein O-protonierter Aldehyd und ein Chlorethyl-Radikal entsteht.^[45] Auch hier ist es von Interesse, weitere Beispiele für dieses Reaktionsverhalten zu untersuchen.

außerordentlichen Aufgrund der bisher beobachteten Reaktionsunterschiede der Halogenethen-Radikalkationen mit N- und O-Nukleophilen sind weitere experimentelle Ergebnisse notwendig. Insbesondere die Regioselektivität der Addition von Nukleophilen sowie die Konkurrenz zwischen Substitution und Deprotonierung durch basische Nukleophile oder Hydridtransfer gilt es sorgfältig zu prüfen. Daher wurden die vorangegangenen Untersuchungen von Ion/Molekül-Reaktionen der Halogenethene auf die Untersuchungen der Reaktionssysteme 2-Halogenpropen- und 2-Halogen-3,3,3-trifluorpropen-Radikalkation mit den neutralen Reaktionspartnern Methanol, Ethanol, aliphatische Amine, Methylmercaptan und die beiden sterisch anspruchsvollen Ether tert.-Butylmethylether und Trimethylsilylmethylether ausgedehnt. Weiterhin wurde die Reaktivität von Radikalkationen der Brombutene, 2-Brombut-2-en, 1-Brombut-2-en und 4-Brombut-1-en gegenüber den neutralen Partnern Ammoniak, aliphatische Amine und aliphatische Alkohole untersucht.

Ergänzend zum Verständnis des Reaktionsmechanismus sollen detaillierte quantenchemische Studien am System 2-Chlorpropen-Radikalkation und den Nukleophilen Ammoniak und Methanol durchgeführt werden, die auch Aufschluß über reaktive Zwischenstufen geben können. Weiterhin sollen auch die Reaktionsenergieprofile von ionisiertem 2-Brompropen, 2-Chlor-3,3,3-trifluorpropen und 2-Brom-3,3,3-trifluorpropen mit Ammoniak bzw. Methanol und 2-Brombut-2-en, 1-Brombut-2-en und 4-Brombut-1-en mit Ammoniak berechnet werden.

2. Grundlagen zu massenspektrometrischen Untersuchungen von Ion/Molekül-Reaktionen

2.1 Unimolekulare Zerfallsprozesse

Die Chemie von geladenen Teilchen in der Gasphase läßt sich gut mit Hilfe der Massenspektrometrie untersuchen. Da der Druck in einem Massenspektrometer in der Regel sehr gering ist ($\sim 10^{-7}$ mbar), erfolgen praktisch alle Prozesse zwischen zwei Stößen eines Ions. Die einzige Möglichkeit zum Verlust von Energie aus dem Molekül ist dann die Abgabe von Strahlung. Die Geschwindigkeitskonstante der spontanen Emission hängt ausschließlich von der Anzahl der Freiheitsgrade und der inneren Energie ab. Diese Geschwindigkeitskonstante massenspektrometrischen Bedingungen gegenüber der unimolekularen ist unter Fragmentierung oder dem Zerfall metastabiler Ionen für die meisten Fälle gering $(10^{-4} - 10^{-7} s)$ und kann daher in der Regel vernachlässigt werden. Die zerfallenden Ionen verhalten sich daher adiabatisch.

Ein großer Anteil der inneren Energie stammt aus dem Ionisierungsprozeß durch Elektronenionisierung (EI) bzw. Chemische Ionisierung (CI) oder aber durch Stoß der im Massenspektrometer beschleunigten Ionen mit einem Inertgas (Collision induced activation). Aufgrund der Überschußenergie werden Folgeprozesse ermöglicht. Pionierarbeiten zur theoretische Beschreibung unimolekularer Reaktionen sind von Lindemann und Hinshelwood durchgeführt worden.^[54] Bei dem dabei entwickelten Modell wird angenommen, daß ein Molekül oder Ion A durch Stoß mit einem Molekül B über einen angeregten Zustand A* (Gleichung 2.1a) in einen aktiviertem Komplex A[≠] überführt wird. Der aktivierte Komplex A[≠] reagiert anschließend unimolekular zum Produkt P (Schema 2.1b). Bei diesem Modell handelt es sich genau genommen nicht um einen unimolekularen Prozeß, sondern um einen zweistufigen Mechanismus, der einen bimolekularen Aktivierungsprozeß und eine unimolekulare chemische Reaktion beinhaltet.

A
$$\rightarrow$$
A*(Schema 2.1a)A* \rightarrow A^{\neq} \rightarrow P(Schema 2.1b)

Dieses Modell ist mehrfach weiterentwickelt worden. Die RRKM-Theorie^[55,56] von Rice, Ramsberger, Kassen und Marcus wurde für neutrale Teilchen entwickelt, während die QuasiEquilibrium-Theorie (QET)^[57-61] für ionische Teilchen hergeleitet wurde. Die QET und die RRKM-Theorie sind Spezialfälle der moderneren Phase-Space-Theorie.^[62-66] Diese Theorien basieren alle auf ähnlichen Konzepten, verwenden jedoch unterschiedliche Wege zur Herleitung der unimolekularen Geschwindigkeitskonstanten eines solchen unimolekularen Zerfalls. In Abbildung 2.1 ist das Modell eines Reaktionsenergieprofils für den unimolekularen Zerfall dargestellt.

Reaktionsordinate ξ

Abbildung 2.1: Modell eines Reaktionsenergieprofil für den unimolekularen Zerfall eines Ions

Modernere Theorien zur Berechnung der unimolekularen Geschwindigkeitskonstanten basieren oftmals auf Annahmen der QET. Daher wird die QET hier näher erläutert. Die QET geht von drei grundlegenden Annahmen aus. 1.) Die Anregungsenergie E eines gebildeten Ions A wird statistisch gleichmäßig über alle inneren Freiheitsgrade des Ions verteilt. 2.) Ein unimolekularer Zerfall eines angeregten Ions A* zum Produkt P erfolgt über einen aktivierten Komplex A^{\neq} (Schema 2.1a und 2.1b). 3.) Im Vergleich zur Anregung des Ions (~10⁻¹⁶ s) ist der Zerfall des angeregten Ions langsam (~10⁻¹⁴ s). Dieses bedeutet, daß viele Schwingungen im Ion erfolgen können, bevor Bindungsbruch stattfindet. Die unimolekulare Geschwindig-

keitskonstante ist aus diesem Grund unabhängig von der Bildungsmethode des angeregten Ions und somit unabhängig von der Herkunft der Anregungsenergie.

In der verdünnten Gasphase eines Massenspektrometers sind die Ionen adiabatische Systeme. Daher stellt sich ein Quasi-Gleichgewicht zwischen dem aktivierten und dem angeregten Komplex aufgrund der Verteilung der Überschußenergie auf alle Freiheitsgrade ein. Die unimolekulare Geschwindigkeitskonstante hängt dann von der Anregungsenergie E ab. In Gleichung 2.1 ist diese Abhängigkeit der unimolekularen Geschwindigkeitskonstante von der inneren Energie E, der Aktivierungsenergie E_o, der Zustandssumme des aktivierten Komplexes $Q^{\neq}_{(E-E_o)}$, der Zustandsdichte im angeregten Ion mit der inneren Energie ($\rho_{(E)}$) und dem Symmetriefaktor des Übergangszustandes gegeben.

$$k_{(E)} = \frac{\boldsymbol{s}}{h} \cdot \frac{\boldsymbol{Q}^{\boldsymbol{z}}(\boldsymbol{E}-\boldsymbol{E}_{0})}{\boldsymbol{r}_{(E)}}$$
(2.1)

- h = Planksches Wirkungsquantum = $6,626176 \cdot 10^{-23} \text{ J} \cdot \text{s}^{[67]}$
- σ = Symmetriefaktor des Übergangszustandes
- E = Innere Anregungsenergie des Ions
- E_o = Aktivierungsenergie des Zerfalls
- $E-E_0$ = Überschußenergie des aktivierten Komplexes
- $Q^{\neq}_{(E-E_{\alpha})}$ = Zustandssumme des aktivierten Komplexes

$$\rho_{(E)}$$
 = Zustandsdichte im angeregten Ion mit der inneren Energie E

Für die unimolekulare Geschwindigkeitskonstante $k_{(E)}$ gilt dann $k_{(E)} = 0$, wenn die innere Anregungsenergie E des Ions kleiner ist als die Aktivierungsenergie E_0 . Für den Fall $E = E_0$ ist die unimolekulare Geschwindigkeitskonstante $k_{(E)}$ der minimalste Wert ($k_{(min.)}$). Der Übergangszustand A^{\neq} ist in diesem Fall im Grundzustand, wobei $Q^{\neq}_{(E-E_0)} = 1$ ist. Die Gleichung (2.1) vereinfacht sich dann zur Gleichung (2.2):

$$\mathbf{k}_{\min} = \frac{\boldsymbol{s}}{\mathbf{h}} \cdot \frac{1}{\boldsymbol{r}_{(E)}}$$
(2.2)

Für eine exaktere Berechnung der unimolekularen Geschwindigkeitskonstanten werden Angaben zur Konfiguration und Konformation des Molekül-Ions und des Übergangszustands benötigt. Diese erhält man aus den Frequenzen der verschiedenen Rotationszustände, Schwingungszustände, dem Symmetriefakor und der Aktivierungsenergie. Weiterhin ist die Zustandsdichtefunktion von Bedeutung. Die statistische Thermodynamik liefert eine einfache Näherung, wobei die Anzahl der Schwingungszustände des Systems mit der inneren Energie E von N identischen Oszillatoren eingeht. Man erhält aus Gleichung (2.1) demnach die vereinfachte Gleichung (2.3):

$$\mathbf{k}_{(\mathrm{E})} = \mathbf{n} \cdot \left(\frac{(\mathrm{E} - \mathrm{E}_{\mathrm{o}})}{\mathrm{E}}\right)^{(\mathrm{N}-1)}$$
(2.3)

v = Frequenzfaktor

N = Anzahl der Schwingungszustände

Nach dieser Beziehung ist die unimolekulare Geschwindigkeitskonstante $k_{(E)}$ abhängig von der Anregungsenergie E und den Schwingungseigenschaften eines Moleküls. Der Frequenz-faktor v ist ein Maß dafür, ob ein fester oder ein lockerer Übergangszustand vorliegt.^[68]

Die QET ist die Grundlage der Phase-Space-Theorie^[62-66]. Bei der QET wird die Erhaltung des Drehimpulses bei einer Ion/Molekül-Reaktion nicht vollständig berücksichtigt. Bei einer bimolekularen Reaktion nimmt man an, daß zunächst die einzelnen Teilchen umeinander und anschließend der Ion/Molekül-Komplex als Ganzes rotiert. Ein System aus N Teilchen kann durch einen 6N-dimensionalen Phasenraum dargestellt werden, der aus 3N Orts- und 3N Impulskoordinaten eines angeregten Teilchens zusammengesetzt ist. Anhand der Phase-Space-Theorie wird ein unimolekularer Zerfall durch eine zufällige Bewegung (random walk) auf einer Äquipotentialfläche im Phasenraum beschrieben. Mit einer gewissen Wahrscheinlichkeit führt diese zufällige Bewegung das Reaktionssystem in Bereiche des Phasenraums, die dem Übergangszustand entsprechen. Der Übergangszustand nimmt im Phasenraum immer einen kleinen Bereich ein, so daß eine geringere Wahrscheinlichkeit besteht, über den betreffenden Reaktionskanal weiterzureagieren. Diese Stelle im Phasenraum wird auch anschaulich als Flaschenhals (*bottle neck*) bezeichnet.

2.2 Bimolekulare Ion/Molekül-Reaktionen

Bei der Mehrzahl von bimolekularen Reaktionen finden zwei wesentliche Prozesse statt. Zunächst wird ein langlebiger Stoßkomplex aus beiden Stoßpartnern formiert. Die Reaktion beider Stoßpartner kann anschließend im Stoßkomplex erfolgen. Beide Prozesse können als voneinander unabhängig behandelt werden. Der Impuls und der Drehimpuls müssen jedoch immer erhalten bleiben.^[69,70] Im Gegensatz zu den unimolekularen Reaktionen stammt die Überschußenergie bei bimolekularen Reaktionen thermischer Teilchen aus elektrostatischen Kräften bei der Bildung des Stoßkomplexes. Diese Energie steht als innere Energie für Folgereaktionen zur Verfügung. Als Folgeprozesse kann der Stoßkomplex entweder zu den Edukten zurückdissoziieren oder zu den Produkten weiterreagieren.

Für die Berechnung der bimolekularen Geschwindigkeitskonstanten sind mehrere Modelle entwickelt worden. Einige Beispiele dafür sind die Langevin-Theorie^[62-66,69-71], die "Locked-Dipole"-Näherung^[72,73], die Average-Dipole-Orientation-Theorie^[74], eine Theorie zur klassischen Berechnung von Trajektorien^[75] und quantenmechanische Berechnungen.^[76]

Bei der Langevin-Theorie werden als Anziehungskräfte zwischen den Ionen und den neutralen Partnern ausschließlich Ion-induzierte Dipol-Wechselwirkungen berücksichtigt. Für Moleküle mit einem permanenten Dipolmoment ist diese Theorie daher nicht geeignet. Ion/Dipol-Wechselwirkungen werden jedoch in die "Locked-Dipole"-Näherung einbezogen.^[72,73] Man macht bei dieser Näherung jedoch die Annahme, daß sich der Dipol stationär zum Ion ausrichtet. Dieses Modell ergibt allgemein zu hohe berechnete Stoßgeschwindigkeitskonstanten. Die ADO-Theorie^[74] ist eine Weiterentwicklung der Langevin-Theorie und der "Locked-Dipole"-Näherung. Bei dieser Theorie wird das Molekül als starrer linearer Rotator und das Ion als Punktladung betrachtet. Für diese Theorie wird das Wechselwirkungspotential V_(r) für die Anziehung zwischen Ion- und Dipol-Molekül durch Gleichung (2.4) beschrieben.^[77]

$$\mathbf{V}_{(\mathbf{r})} = \frac{\boldsymbol{a} \cdot \mathbf{q}^2}{2 \cdot \mathbf{r}^4} - \frac{\boldsymbol{m}_{\mathbf{b}} \cdot \mathbf{q}}{\mathbf{r}^2} \cdot \cos \boldsymbol{q} + \frac{\boldsymbol{m} \cdot \mathbf{v}^2 \cdot \mathbf{b}^2}{2 \cdot \mathbf{r}^2}$$
(2.4)

r = Abstand zwischen Molekül und Ion

q = Ladung des Ions

 α = mittlere Polarisierbarkeit des Moleküls

 μ_D = Dipolmoment des Moleküls

θ	=	Winkel zwischen Dipolachse und Verbindungslinie des
		Massenschwerpunktes von Ion und Molekül
μ	=	reduzierte Masse des Systems

- v = mittlere Stoßgeschwindigkeit
- b = Stoßparameter

Der letzte Term in dieser Gleichung (2.4) beschreibt eine Zentrifugalkraft, die aus der Rotation der Teilchen umeinander resultiert. Su und Bowers haben mit Hilfe dieser Theorie eine empirische Gleichung zur Berechnung der Stoßgeschwindigkeitskonstanten entwickelt.^[77]

$$\mathbf{k}_{ado} = \frac{2 \cdot \mathbf{p} \cdot q}{\sqrt{\mathbf{m}}} \cdot \left(\sqrt{\mathbf{a}} + \mathbf{c} \cdot \mathbf{m}_{\mathrm{D}} \cdot \sqrt{\frac{2}{\mathbf{p} \cdot \mathbf{k}_{\mathrm{B}} \cdot \mathrm{T}}} \right)$$
(2.5)

 k_B = Boltzmann-Konstante = 1,38066221 · 10⁻²³ · J · K · 1^[67] c = *dipole locking* Konstante

Die in Gleichung (2.5) verwendete Konstante c wird als *dipole locking Konstante* bezeichnet. Bei einer Temperatur von 298 K kann c durch folgendes Polynom angenähert werden.^[77,78]

c = 0,093 + 1,069 · x - 1,825 · x² + 1,742 · x³ - 0,828 · x⁴ + 0,152 · x⁵; mit x =
$$\left(\frac{\mathbf{m}_{D}}{\sqrt{\mathbf{a}}}\right)$$

Da die berechneten Stoßgeschwindigkeitskonstanten mit Hilfe der ADO-Theorie oftmals um bis zu 20 % zu niedrig berechnet werden^[79], wurde diese Theorie weiterentwickelt. Beispiel dafür sind die AADO-Theorie^[80], die Perturbed Rotational State Näherung^[81], das Statistical Adiabatic Channel Modell^[82] und weitere verschiedene Übergangszustandstheorien.^[83] Eine weitere wichtige Weiterentwicklung ist die klassische Berechnung von Trajektorien der Reaktionspartner.^[75] Dafür haben Su und Chesnavich eine empirische Beziehung entwickelt, mit der sich der Quotient K_{cpt} aus der Geschwindigkeitskonstanten k_{cpt} und der Langevin-Geschwindigkeitskonstanten k_L berechnen läßt:^[84]

$$K_{cpt} = \frac{k_{cpt}}{k_{L}} = \begin{cases} 0,4767 \cdot x + 0,6200 & ; \text{ für } x \ge 2\\ \frac{(x+0,509)^{2}}{10,526} + 0,9754 & ; \text{ für } x \le 2 \end{cases}$$

$$x = \sqrt{\frac{m_{D}}{2 \cdot a \cdot k_{B} \cdot T}}$$

$$(2.6)$$

Die Stoßgeschwindigkeitskonstanten k_{cpt} erhält man durch einfaches Multiplizieren des Quotienten K_{cpt} mit der Langevin-Geschwindigkeitskonstanten k_L . k_L erhält man, wenn man in Gleichung (2.5) c = 0 setzt. Für den Fall, daß ein Molekül kein permanentes Dipolmoment aufweist gilt: $k_L = k_{ado} = k_{cpt}$

Experimentell bestimmte Reaktionsgeschwindigkeiskonstanten bimolekularer Reaktionen sind oftmals kleiner als die berechneten Stoßgeschwindigkeitskonstanten, k_{StoB} . Dieses wird durch die Effektivität einer Reaktion beschrieben. Die Effektivität ist definiert als Quotient aus experimentell bestimmter bimolekularer Reaktionsgeschwindigkeitskonstanten $k_{Reaktion}$ und theoretisch berechneter bimolekularer Reaktionsgeschwindigkeitskonstanten k_{StoB} .

Eff. (%) =
$$\frac{k_{\text{Reaktion}}}{k_{\text{Stoß}}} \cdot 100\%$$
 (2.7)

Der Einfluß kinetischer Energie der Ionen bei Reaktionen von Radikalkationen mit dem neutralen Stoßpartnern ist ein besonderes Problem. Dabei beobachtet man häufig eine Abnahme der experimentell ermittelten bimolekularen Geschwindigkeitskonstanten mit steigender kinetischer Energie. Dieser Befund kann nach Su und Chesnavich theoretisch verstanden werden.^[85]

Reaktionen, bei denen jeder Stoß von Ion und Neutralem zur Reaktion führt, weisen eine Effektivität von 100 % auf. Solche Reaktionen werden als stoßkontrolliert bezeichnet.

Die Ursache für kleinere Effektivitäten als 100 % trotz exothermer Reaktion kann durch das Braumansche *multiple well* Reaktionsenergieprofil-Modell beschrieben werden.^[86-88] In Abbildung 2.2 ist das Reaktionsenergieprofil einer exothermen bimolekularen Reaktion mit "negativer" Temperaturabhängigkeit und geringer Effektivität gezeigt. Die interne Energiebarriere $\Delta E'_{0}$ stellt die Aktivierungsbarriere einer chemischen Reaktion dar. Dieses ist

eine Folge der kritischen Konfiguration während der Bindungsumgruppierung. Die Edukte A und B⁺ können eine Anregungsenergie E^{*} besitzen, wie zum Beispiel thermische Energie. Aus den Edukten A und B⁺ bildet sich der Stoßkomplex *AB⁺. Dieser Komplex ist durch elektrostatische Aktivierung hoch angeregt. Da jedoch die innere Energie nicht abgegeben werden kann (abgeschlossenes System), bestehen außer der Energieabstrahlung nur zwei Möglichkeiten für Folgeprozesse: Die Rückdissoziation zu den Edukten oder die Weiterreaktion zum Produktkomplex *CD⁺:

Abbildung 2.2: "multiple-well"-Potentialkurve einer Ionen-Molekül-Reaktion

Nach der Theorie unimolekularer Reaktionen kann die Rückreaktion trotz exothermer Vorwärtsreaktionen dominieren, da die Zustandsdichte des aktivierten Komplexes in Vorwärtsrichtung kleiner ist als für die Rückreaktion. Dieses ist ein entropischer Effekt. Demnach sinkt die Effektivität einer Ion/Molekül-Reaktion mit steigender Aktivierungsenergie E* der Reaktanden. Dieses erklärt die negative Temperaturabhängigkeit der experimentell bestimmten Geschwindigkeitskonstanten $k_{Reaktion}$.

Bei Annahme eines stationären Zustandes ist die Geschwindigkeitskonstante durch folgenden Ausdruck gegeben (2.8):

$$\frac{k_1 \cdot k_2 \cdot k_3}{(k_{-1} + k_2) \cdot k_3 + k_{-2} \cdot k_{-1}}$$
(2.8)

Bei exothermen Reaktionen zerfällt jeder Komplex $[CD]^*$ der Produkte zu den freien Produkten $*C+D^+$, so daß k₃ stets sehr viel größer ist als k₋₂, denn an dieser Stelle verläuft die Reaktion über einen "lockeren" Übergangszustand mit hoher Zustandsdichte. Gleichung (2.8) vereinfacht sich dann zu (2.9):

$$\frac{k_1 \cdot k_2}{(k_{-1} + k_2)} \quad (k_3 \gg k_2) \tag{2.9}$$

Eine Rückreaktion von dem Produktkomplex CD^+ kann nur für thermoneutrale Reaktionen wahrscheinlicher werden, da die Energie der dissoziierten Produkte $C + D^+$ genauso hoch ist wie die der Edukte $A + B^+$.

Ein Spezialfall für bimolekulare Reaktionen sind Elektronentransferreaktionen. Elektronentransferreaktionen in der Gasphase wurden bereits seit langer Zeit intensiv untersucht. Die ersten Untersuchungen konzentrierten sich auf kleine Moleküle als Reaktionspartner. Dabei wird die Reaktion hauptsächlich durch Franck-Condon-Faktoren und Energiedefekten bestimmt.^[89-96] Bei thermischer Energie des Reaktionssystems wird die Resonanz-Bedingung^[90,94,95] allgemein wichtig, da die durch die Franck-Condon-Faktoren bestimmte Verteilung der Übergangswahrscheinlichkeiten aufgrund der Wechselwirkung der sich langsam bewegenden Teilchen sicherlich gestört ist.^[97-100] Durch die Wechselwirkung wird eine Polarisation und Deformation der neutralen Moleküle bewirkt.^[92,101,102] Die lange Lebensdauer des Kollisionskomplexes erlaubt den Reaktionspartnern, zahlreiche Geometrien einzunehmen, so daß Franck-Condon-Faktoren bei kleiner Stoßenergie für den Elektronentransfer eine geringe Bedeutung haben.^[103-107] Elektronentransferreaktionen mit günstigen Franck-Condon-Faktoren und geringen Energiedefekten erfolgen allgemein schnell. Für den Fall, daß die Effektivität einer Elektronentransferreaktionen deutlich größer als 100 % ist, erfolgt diese häufig nach einem Elektronensprungmechanismus über weite Entfernungen (long distance electron jump). Ein solcher Elektronensprungmechanismus wurde jedoch lediglich für wenige Reaktionssysteme nachgewiesen, wobei gewöhnlich kleine Kationen und kleine neutrale Moleküle beteiligt sind.

Während die meisten exothermen Elektronentransferreaktionen in der Gasphase stoßkontrolliert erfolgen, gibt es Beispiele, bei denen hohe Aktivierungsbarrieren die Reaktion signifikant verlangsamen.^[110-116] Hohe Aktivierungsbarrieren kommen durch große Geometrieänderungen der Partner beim Elektronentransfer zustande.

Die in dieser Arbeit beobachteten Elektronentransferreaktionen (Kapitel 5, 7 und 8) weisen eine Effektivität von ≤ 109 % auf und stimmen somit gut mit veröffentlichten Ergebnissen überein.^[108,109] Da die Spin-Multiplizität der hier untersuchten radikalkationischen Reaktionssysteme erhalten bleibt und die Effektivität des Elektronentransfers glatt mit der Exothermizität steigt, kann angenommen werden, daß eine "double-well" Potentialenergiefläche ein gutes Modell für die Beschreibung solcher Elektronentransferreaktionen ist. Da die Gleichgewichtsgeometrie des neutralen Moleküls und seines Radikalkations sich unterscheiden, entsteht die Energiebarriere durch die Deformation der Reaktand-Moleküle bei der Bildung des Übergangsszustandes. Eine Verlangsamung des Elektronentransfers aufgrund großer Geometrieänderungen wurde mehrfach nachgewiesen.^[110-116] Die Energiebarriere eines Elektronentransfers ist häufig im Rahmen der Marcus-Theorie und dem Modell der Gekreuzten Potentialflächen untersucht worden.^[117-120] Anhand dieser Theorie konnte gezeigt werden, daß die Barriere in einer adiabatische Elektronentransferreaktion bei Abwesenheit von elektronischen Kopplungen etwa ein Viertel von der vertikalen Störungsenergie der Teilchen beträgt.^[121] Für eine genauere Interpretation der Elektronentransferreaktionen sind RRKM-Rechnungen^[55,56] und theoretische Rechnungen entlang des Reaktionspfades nötig.

2.3 Grundlagen der FT-ICR-Massenspektrometrie

Die Entwicklung der Fourier-Transformations-Ionencyclotronresonanz (FT-ICR)-Massenspektrometrie^[126-126] begann in den sechziger Jahren^[141,140] und erlangte durch Einführung der Fourier-Technik durch Comisarow und Marshall^[129-132] den Durchbruch. Aufgrund der Fourier-Methode wird im Vergleich zu konventionellen Massenspektrometern ein wesentlich verbessertes Signal-Rausch-Verhältnis (S/N) erreicht. Weiterhin erhält man ein extrem hohes Massenauflösungsvermögen von bis zu 10⁸ und eine hohe Nachweisempfindlichkeit. Die FT-ICR-Massenspektrometrie ist eine ausgezeichnete Methode zur Untersuchung von Ion-/Molekül-Reaktionen, weil Massenspektren mit großem Massenbereich innerhalb von Millisekunden aufgenommen werden können. In Abbildung 2.3 ist der schematische Aufbau eines FT-ICR-Massenspektrometers dargestellt.

Abbildung 2.3: Schematischer Aufbau eines FT-ICR-Spektrometers

Die Erzeugung der Ionen kann intern innerhalb der FT-ICR-Zelle oder extern in einer gesonderten Ionenquelle erfolgen. Für die interne Ionisierung werden von der Glühkathode, die sich in der FT-ICR-Zelle befindet, Elektronen erzeugt und parallel der Feldlinien der Magnetfeldes in Richtung Zellenmitte gepulst. Dort ionisieren die Elektronen das Gas in der FT-ICR-Zelle durch Elektronenionisierung (EI).^[133] Prinzipiell besteht auch die Möglichkeit der chemischen Ionisierung (CI).^[134,135] Der Nachteil der internen Ionisierung ist, daß der Druck in der FT-ICR-Zelle vergleichsweise hoch sein muß, was zu einer schlechteren Nachweisempfindlichkeit und einem geringeren Auflösungsvermögen führt. Weiterhin besteht die Möglichkeit von unerwünschten Ion/Molekül-Reaktionen, da die durch EI erzeugten Ionen nicht nur mit dem neutralen Reaktionspartner reagieren, sondern auch mit den neutralen Molekülen. Alternativ kann die Ionisierung extern außerhalb des Magnetfeldes durch EI oder CI in einer entsprechenden externen Ionenquelle erfolgen. Mit Hilfe einer Transferoptik werden die Ionen in die FT-ICR-Zelle geleitet.^[136] Dabei kann schon ein Anteil von unerwünschten Ionen diskriminiert werden. Ein entsprechender hoher Druck in der FT-ICR-Zelle ist nicht nötig. Diese Art der Ionisierung eignet sich daher besonders gut zur Untersuchung von Ion/Molekül-Reaktionen.

In einem homogenen magnetischen Feld führt ein Ion eine Kreisbewegung mit konstanter Winkelgeschwindigkeit senkrecht zu den Feldlinien des Magnetfeldes aus.^[137] Die durch die Kreisbewegung hervorgerufene Zentrifugalkraft steht im Gleichgewicht mit der Lorentzkraft (Abbildung 2.4).

Abbildung 2.4: Kreisbewegung eines Ions in xy-Richtung. Die Lorentzkraft steht senkrecht (z-Achse) zur Bewegungsrichtung des Ions

Daraus ergibt sich Gleichung (2.10).

$$\vec{F} = m \cdot \vec{d v} = q \cdot \vec{E} + q \cdot \vec{v} \times \vec{B}$$
 (2.10)

q = Ladung [C] m = Masse [kg] v = Geschwindigkeit der Ionen [m \cdot s⁻¹] E = Feldstärke [kg \cdot m s⁻² \cdot C⁻¹] Diese Differentialgleichung läßt sich unter Vernachlässigung des elektrischen Feldes leicht lösen. Man erhält die Fundamentalgleichung der FT-ICR-Spektrometrie:

$$\boldsymbol{n}_{\rm c} = \frac{\mathbf{q} \cdot \mathbf{B}_{\rm o}}{\mathrm{m}} = \frac{\boldsymbol{w}_{\rm c}}{2 \cdot \boldsymbol{p}}$$
(2.11)

 v_c = Cyclotronfrequenz

 $\omega_c = 2\pi v_c = Cyclotronkreisfrequenz$

Aus dieser Gleichung wird ersichtlich, daß alle Ionen mit gleichem Verhältnis von Masse zu Ladung dieselbe Cyclotronfrequenz v_c aufweisen.

Radiofrequenzen lassen sich sehr genau bestimmen. Daher ist das theoretische Auflösungsvermögen bei der FT-ICR-Spektrometrie sehr groß. Differenziert man Gleichung (2.11) nach der Masse m, so erhält man mit Hilfe von (2.12b) einen Zusammenhang zwischen der Frequenz, der Masse m und dem Massenauflösungsvermögen $A^{[138]}$:

$$A = \frac{d\boldsymbol{n}}{dm} = -\frac{q \cdot B_o}{m^2} = -\frac{\boldsymbol{w}_c}{2 \cdot \boldsymbol{p} \cdot m}$$
(2.12a)

$$\frac{\mathbf{n}}{\Delta \mathbf{n}} = \frac{-m}{\Delta \mathbf{m}} = \frac{\mathbf{W}_c}{\Delta \mathbf{W}}$$
(2.12b)

In xy-Richtung ist die mittlere Translationsenergie gegeben durch:^[139]

$$E_{\rm kin} = \frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{w}_c \cdot \mathbf{r}^2 = \frac{q^2 \cdot B_o^2 \cdot r^2}{2 \cdot m}$$
(2.13)

Man erhält die Näherungsgleichung (2.16) nach Einsetzen von Gleichung (2.14) und Näherungsgleichung (2.15) in Gleichung (2.13) und anschließender Umformung:

$$\mathbf{E}_{\mathrm{kin}} = \frac{1}{2} \cdot m \cdot \left\langle v_{xy}^{2} \right\rangle \tag{2.14}$$

$$\boldsymbol{n}_{xy}^2 \cong \mathbf{k}_{\mathrm{B}} \cdot T \tag{2.15}$$

$$\mathbf{r} \cong \frac{1}{q \cdot B_o} \cdot \sqrt{\frac{m \cdot k_B \cdot T}{2}}$$
(2.16)

Die Ionen kreisen inkohärent parallel zu den Magnetfeldlinien (z-Achse). Durch einen Radiofrequenzpuls (RF-Puls) werden die Ionen räumlich zu einem Ionenpaket vereinigt. Dieses Ionenpaket bewegt sich anschließend kohärent in Phase auf einem höheren Bahnradius. Für eine zylindrische Zelle gilt nach einem RF-Puls für den Bahnradius Gleichung (2.17):

$$\mathbf{r} := \frac{4 \cdot \mathbf{V}_{\mathbf{p}-\mathbf{p}} \cdot t}{\mathbf{p} \cdot B_o \cdot \mathbf{d}}$$
(2.17)

r'=Radius der erreichten Kreisbahn [m]t=Anregungszeit [s] B_o =magnetische Flußdichte [T]d=Durchmesser der Meßzelle [m] V_{p-p} =Amplitude des Anregungspulses [V]

Aus Gleichung (2.16) und (2.12) läßt sich die maximale Anregungsdauer t_{max} (2.18) und die maximale kinetische Energie E_{max} (2.19) der Ionen berechnen:

$$\mathbf{t}_{\max} = \frac{\mathbf{p} \cdot \mathbf{d} \cdot \mathbf{B}_{o}}{4 \cdot \mathbf{V}_{p-p}} \cdot \left(\mathbf{r}_{(t)} - \mathbf{r}_{(t=0)} \right)$$
(2.18)

$$E_{\max} = \frac{q^2 \cdot B_o}{2 \cdot m} \cdot \left(r_{(t=0)} + \frac{4 \cdot V_{p-p} \cdot t_{\max}}{\boldsymbol{p} \cdot B_o \cdot d} \right)^2$$
(2.19)

r(t) = Radius der erreichten Kreisbahn zur Zeit t r(t=0) = Radius der erreichten Kreisbahn zur Zeit t=0 Zusätzlich zur Kreisbewegung der Ionen um die z-Achse oszillieren die Ionen auch entlang der z-Richtung, was zum Verlust von Ionen führen kann. Mit Hilfe eines elektrischen Potentials von +1 bis +2 Volt an zwei Elektroden (*trapping plates*) kann dieses vermieden werden. Die *trapping plates* sind um jeweils den halben Durchmesser vom Mittelpunkt der FT-ICR-Zelle in z-Richtung angeordnet.

Eine dritte Bewegung der Ionen resultiert von der massenunabhängigen Präzession der Ionen entlang eines Weges mit konstantem elektrischen Potential.^[137] Diese wird auch als Magnetron-Bewegung bezeichnet und kann jedoch allgemein vernachlässigt werden.

Das kohärent kreisende Ionenpaket induziert an den Empfängerplatten einen Spiegelstrom, der anschließend in eine Spannung umgewandelt wird. Die dabei erzeugte Spannung wird verstärkt, digitalisiert und ist proportional zur Anzahl der Ionen. Man erhält deshalb ein zeitabhängiges Signal (time domain), da die kohärente Bewegung des Ionenpaketes durch Hilfe des Restgases abklingt. Man bezeichnet dieses Signal auch als Transienten. Der Transient f(t) ist die Summe aller Cyclotronfrequenzen (2.20).

$$f(t) \sim \sum_{i=1}^{M} N_i \cdot \left(-\frac{t}{t_i}\right) \cdot \cos(\mathbf{v}_i \cdot t + \mathbf{j}_i)$$
(2.20)

- N_i = Anzahl der Ionen zur Zeit t = 0
- M = M verschiedene m/q -Werte
- ω_i = Cyclotronfrequenz der Ionen
- φ_i = Phase der Ionen
- $\tau_i = D$ ämpfungsfaktor

Mit Hilfe der Fouriertransformation^[137] wird das zeitabhängige Signal in das Frequenzspektrum^[137] umgewandelt. Das Massenspektrum erhält man, indem man die erhaltenen Frequenzen mit Gleichung (2.11) in m/q-Werte umrechnet.

Entscheidende Qualitätsmerkmale in der Massenspektrometrie sind Nachweisempfindlichkeit und Auflösungsvermögen. Bei konventionellen Massenspektrometern hängen beide Größen umgekehrt proportional voneinander ab. Beispielsweise läßt sich durch Verringerung der Spaltbreite des Ionenquellenspalts das Auflösungsvermögen vergrößern, während die Nachweisempfindlichkeit verringert wird. Bei der FT-ICR-Spektrometrie können beide Größen durch Verlängerung der Aufnahmezeit des Spektrums erhöht werden. Die maximal mögliche Aufnahmezeit ist aber umgekehrt proportional zum Druck in der FT-ICR-Zelle, da die Relaxationszeit des Signals abnimmt. Ein Grenzfall ist der des geringsten Drucks (zero pressure limit) in der FT-ICR-Zelle, wo keine Stöße während der Aufnahmezeit erfolgen. Für diesen Fall ist das theoretische Auflösungsvermögen A_{theo} gegeben durch Gleichung (2.21) ^[140].

$$A_{\text{theo}} = \frac{M}{\Delta M} \cdot 0,192 \cdot \frac{q \cdot B \cdot t}{M}$$
(2.21)

Das Auflösungsvermögen wird durch die Halbwertsbreite (Breite bei 50 % der Höhe des Signals) definiert. Gleichung (2.22) beschreibt die Abhängigkeit der Anzahl der Datenpunkte N von der Aufnahmezeit t.

$$f_s = \frac{N}{t} = 2 \cdot f_{max}$$
(2.22)

Dabei ist f_s die Zahl der pro Zeiteinheit aufgenommenen Datenpunkte N und f_{max} die zur kleinsten Masse M_{min} zugehörige Frequenz im Spektrum f_s . Nach dem Nyquist-Theorem^[137] muß f_s doppelt so groß sein wie f_{max} , um alle Frequenzen nach der Fouriertransformation richtig zu erhalten. Gleichung (2.23) ergibt damit einen Zusammenhang zwischen dem theoretischen Auflösungsvermögen, der Anzahl der Datenpunkte N, der Masse M und der kleinsten Masse M_{min} :

$$A_{\text{theo}} = \frac{M}{\Delta M} = 0, 414 \cdot \frac{N \cdot M_{\min}}{M}$$
(2.23)

Aus dem Nyquist-Theorem ergibt sich für hohe Aufnahmefrequenzen (bis zu 20 MHz) unterhalb der oberen Massengrenze eine starke Begrenzung der maximalen Aufnahmezeit durch die maximale Datengröße (bis zu 128k). Dieses trifft besonders bei hohen magnetischen Flußdichten zu, bei denen die Aufnahmezeit oftmals im Bereich von Millisekunden liegt. Das Problem umgeht man durch den Hochauflösungsmodus, bei dem lediglich kleine Massenfenster benutzt werden. Das Spektrum wird dabei mit einer festen "mixer-Frequenz" v_{mix} überlagert.^[137] Erhalten werden die Frequenzen $v^* = v_{mix} + v$ und $v^- = v_{mix} + v$. Anschließend werden die beiden Frequenzen $v_{mix} + v$ herausgefiltert, so daß lediglich v^- übrigbleibt. Dieses Verfahren bewirkt, daß die niedrigeren Frequenzen dann mit einer geringeren Aufnahmefrequenz aufgenommen werden können. Damit sind Aufnahmezeiten von mehreren Sekunden möglich. Die einzige Limitierung ist lediglich die Relaxationszeit des Signals, die von der Höhe des FT-ICR-Zellendrucks abhängig ist.^[141] Folglich ist das theoretische Auflösungsvermögen A_{theo} direkt proportional zur Relaxationszeit τ des Signals:

$$A_{\text{theo}} = \frac{M}{\Delta M} \cdot 0,289 \cdot \frac{q \cdot B \cdot t}{M}$$
(2.24)

Standard-Ionen-trapping-Zellen haben einen höheren trapping-Verlust an Ionen entlang der z-Achse der Zelle, der schwer vorherzusagen und zu vermeiden ist. Insbesondere bei komplexeren Breitband-Anregungen macht sich dieser Effekt bemerkbar. Dieser trapping-Verlust ist bei der Infinity-ZelleTM geringer.^[142]

Die wesentliche Eigenschaft einer Infinity-ZelleTM ist die Wirkungsweise einer scheinbar unendlich langen (infiniten) Zelle mit homogenen elektrischen trapping-Feld bei der Anregung. Die Zelle selbst hat jedoch finite Dimensionen. Eine Infinity-ZelleTM bewirkt eine wesentliche Verbesserung bei der Untersuchung von Ion/Molekül-Reaktionen. Eine Infinity-Zelle^{TM^[142]} hat gegenüber einer Standard-Ionen-trapping-Zelle mehrere Vorteile. Einerseits erhält man ein besseres Signal-Rausch-Verhältnis und zuverlässigere relative Signal-Intensitäten. Andererseits wird das theoretische Auflösungsvermögen der Ionen-Selektion in Multi-Tandem-Massenspektrometrie-Experimenten erhöht.

Die Ionen lassen sich aus der FT-ICR-Zelle entfernen, wenn der Cyclotronradius den Radius der Zelle überschreitet (2.17). Die Ionen werden soweit angeregt, daß sie an die Zellenwand gelangen und dort entladen werden. Die Anregung der Ionen kann in dem für diese Arbeit verwendeten Spektrospin Bruker CMS 47X FT-ICR Spektrometer auf zwei Arten erfolgen. Durch einen rechteckigen RF-Puls einer festen Frequenz kann eine selektive Anregung der Ionen mit gleichem m/z-Verhältnis erfolgen. Diese Anregung ist die sogenannte *single shot ejection*. Ionen können aber auch über einen breiten Massenbereich angeregt werden (*frequency sweep ejection*).^[143] Auf diese Weise ist es möglich, gezielt Ionen zu isolieren, indem unerwünschte Ionen durch *single shot ejection* und *frequency sweep ejection* aus der
Zelle entfernt werden. Dabei ist aber eine sorgfältige Wahl der Anregungsparameter wichtig, so daß keine zusätzliche kinetische Anregung der selektierten Ionen erfolgt.

Ein FT-ICR-Experiment kann mit Hilfe von Programmroutinen automatisiert werden. Alle Arbeitsschritte in dieser Programmroutine werden durch kurze *delay-Zeiten* unterbrochen. Durch eine Umkehrung der Potentiale der trapping-Platten am Anfang jeden Experiments werden alle Ionen in der FT-ICR-Zelle entfernt (quench puls). Anschließend werden die Ionen nach der externen Ionisierung in die Zelle fokussiert. Die Selektion der Ionen erfolgt mit der Breitband-Anregung und Anregungen mit fester Frequenz. Am Ende des Experimentes werden die Ionen angeregt und detektiert. Die variable Reaktionszeit befindet sich zwischen den Anregungen mit fester Frequenz und der Anregung vor der Detektion. Die Messungen werden zur Verbesserung des Signal-Rausch-Verhältnisses (S/N) mehrfach wiederholt und die Transienten addiert. Dabei verbessert sich das S/N-Verhältnis proportionial zur Quadratwurzel der Anzahl der aufgenommen Spektren.^[137] Die Anzahl der aufzunehmenden Spektren ist jedoch durch die Zeit begrenzt, die der Probe zur Ionisierung zur Verfügung steht. Es läßt sich aber der Fall ausnutzen, daß der Ionennachweis nicht destruktiv erfolgt. Somit lassen sich prinzipiell diesselben Ionen mehrfach in der FT-ICR-Zelle messen.

Der dynamische Bereich eines FT-ICR-Spektrometers ist durch das digitale Auflösungsvermögen des Analog/Digitalkonverters (ADC) limitiert. Für den Breitbandmodus wird ein schneller ADC verwendet, der eine digitale Auflösung von etwa 500 hat. Signale mit geringer Intensität werden daher neben Signalen mit hoher Intensität nicht mehr detektiert. Werden die Signale mit hoher Intensität entfernt, können Signale mit geringer Intensität dennoch detektiert werden. Im Hochauflösungsmodus wird dagegen ein langsamer ADC verwendet, der eine digitale Auflösung von etwa 4000 hat.

Zusätzlich besteht bei Überschußenergie der Ionen die Möglichkeit, daß andere Reaktionswege eröffnet werden, die ansonsten endotherm sind. Um diese überschüssige kinetische Energie abzuführen, werden die Ionen durch Stöße mit einem Inertgas (Stoßdesaktivierung) wie beispielsweise Argon thermalisiert. Zu diesem Zweck wird das Inertgas aus einem Vorratsgefäß in die FT-ICR-Zelle gepulst. Diese Sequenz wird nach den Anregungen einzelner Ionen mit fester Frequenz in die Automationsroutine eingefügt. Nach der Desaktivierung ist wiederum eine Entfernung einzelner Ionen durch RF-Pulse mit fester Frequenz erforderlich, um zwischenzeitlich gebildete Reaktionsprodukte zu entfernen.

2.4 Grundlagen zur Auswertung der Kinetiken von Ion/Molekül-Reaktionen

Für die Berechnung der bimolekularen Geschwindigkeitskonstanten k_{bi} nach dem Braumanschen Modell^[86-88] gilt als Näherung:

$$k_{bi} \approx \frac{k_1 \cdot k_2}{(k_{-1} + k_2)}$$
 (2.9)

 $k_1 = Stoßgeschwindigkeitskonstante$

 k_{-1} = Geschwindigkeitskonstante der Rückdissoziation

 k_2 = Geschwindigkeitskonstante des chemischen Prozesse

Mit Hilfe der Theorie nach Su und Chesmavich läßt sich k_1 berechnen.^[84] Die Effektivität Eff.(%) einer Reaktion berechnet sich wie folgt (2.7):

$$\frac{\mathbf{k}_{bi}}{\mathbf{k}_1} \cdot 100 = \text{Eff.}[\%]$$
(2.7)

Setzt man Gleichung (2.9) in Gleichung (2.7) ein, so erhält man für die Effektivität:

Eff.
$$[\%] = \frac{k_{bi}}{k_1} \cdot 100 = \frac{1}{k_1} \cdot \frac{k_1 \cdot k_2}{k_{-1} + k_2} \cdot 100 = \frac{k_2}{k_{-1} + k_2} \cdot 100$$
 (2.25)

Die Lebensdauer des Stoßkomplexes ist durch k_{-1} begrenzt. Bei einer stoßkontrollierten Reaktion ist $k_2 \gg k_{-1}$, woraus eine Effektivität von 100 % resultiert. Je kleiner k_2 im Vergleich zu k_{-1} wird, desto geringer wird die Effektivität. Sind k_2 und k_{-1} gleich groß, so beträgt die Effektivität 50 %.

Die Geschwindigkeitskonstante der Rückdissoziation k₋₁ hängt unter anderen von der Überschußenergie des Stoßkomplexes ab. Diese stammt aus der attraktiven Wechselwirkung zwischen einem Ion und dem neutralen Stoßpartner, die im wesentlichen durch dessen Dipolmoment und der Polarisierbarkeit bestimmt wird. Erfolgt die chemische Umwandlung innerhalb eines langlebigen Stoßkomplexes, so wird die Reaktion ebenfalls durch die überschüssige Anregungsenergie des Komplexes vorangetrieben. Zur Bestimmung der bimolekularen Geschwindigkeitskonstanten k_{bi} einer Reaktion im FT-ICR-Spektrometer wird die zeitliche Abnahme der relativen Konzentration des Ions [A⁺] verfolgt. Für die Reaktion A⁺ + Nu \rightarrow B⁺ + M läßt sich folgendes Reaktionsgeschwindigkeitsgesetz aufstellen:

$$-\frac{\mathbf{d}[\mathbf{A}^+]}{\mathbf{d}t} = \mathbf{k}_{\mathbf{b}\mathbf{i}} \cdot [\mathbf{N}\mathbf{u}] \cdot [\mathbf{A}^+]$$
(2.26)

Die zeitliche Änderung der relativen Konzentration wird in der FT-ICR-Spektrometrie durch relative Intensitätsmessungen bestimmt. Dazu wird die Summe der Intensitäten aller Ionen zu den verschiedenen Reaktionszeiten für jede einzelne Messung auf 100 % normiert. Dabei muß gewährleistet sein, daß es keinen massenabhängigen Verlust von Ionen aus der FT-ICR-Zelle (trapping-Verlust) gibt.

Da die Konzentration des Nukleophils [Nu] in des Gasphase der FT-ICR-Zelle sehr viel größer ist als die Konzentration der Ionen und weiterhin die Konzentration von [Nu] nahezu konstant ist, liegt ein Reaktionsgeschwindigkeitsgesetz pseudo-erster Ordnung vor. Die bimolekulare Geschwindigkeitskonstante k_{bi} und die Konzentration des Nukleophils [Nu] kann nun zu einer Geschwindigkeitskonstanten k_{exp} zusammengefaßt werden:

$$-\frac{d[A^+]}{dt} = k_{bi} \cdot [Nu] \cdot [A^+] = k_{exp} \cdot [A^+]$$
(2.27a)

(mit
$$k_{exp} = k_{bi} \cdot [Nu]$$
) (2.27b)

Mit der Bedingung $I_{(t)} \sim [A]_{(t)}$ ist die Lösung des Differentials (2.27b):

$$\ln\left(\frac{I_{o}}{I_{t}}\right) = k_{exp} \cdot t$$
(2.28a)

$$\Leftrightarrow I_{t} = I_{o} \cdot \exp(-k_{exp} \cdot t)$$
(2.28b)

 I_0 = Intensität der normierten Ionen zur Zeit t = 0

 I_t = Intensität der normierten Ionen zur Zeit t

Die experimentelle Geschwindigkeitskonstante pseudo-erster Ordnung k_{exp} erhält man durch Anpassung des Verlaufs der normierten Intensitäten I_t gegen die Reaktionszeit t an die Funktion (2.28a). Die bimolekulare Geschwindigkeitskonstante k_{bi} erhält man durch Einsetzen der Konzentration [Nu] aus der Teilchendichte (N/V) über die Druckmessung und das ideale Gasgesetz (2.29).

$$[Nu] = \left(\frac{N}{V}\right) = \frac{P}{k_B \cdot T}$$
(2.29)

$$k_{B}$$
 = Boltzmann-Konstante = 1,38066221 · 10⁻²³ · J · K⁻¹^[67]
T = absolute Temperatur (= 300 K)^[42]
P = Druck

Für die bimolekulare Geschwindigkeitskonstante k_{bi} gilt nach Einsetzen von [Nu] (2.27b) in k_{exp} (2.29) nach Umformung:

$$k_{bi} = \frac{k_{exp}}{[Nu]} = \frac{k_{exp} \cdot k_B \cdot T}{P}$$
(2.30)

Für den Fall, daß ein Reaktand A kompetitiv zu den Produkten P_1 mit der Geschwindigkeitskonstanten k_1 und zu P_2 mit der Geschwindigkeitskonstanten k_2 nach erster Ordnung reagiert (Schema 2.2), gelten die Differentialgleichungen (2.31).^[139,144]

Schema 2.2: Zwei parallele Reaktionen erster Ordnung

$$-\frac{d [A]}{dt} = -(k_1 + k_2) \cdot [A]$$

$$-\frac{d [P_1]}{dt} = k_1 \cdot [A]$$

$$-\frac{d [P_2]}{dt} = k_2 \cdot [A]$$
(2.31)

Zum Zeitpunkt t=0 ist die Anfangskonzentration $[A] = [A]_{(0)}$. Daher ist zur Zeit t die Summe der Konzentrationen von A, P₁ und P₂ gleich A₍₀₎ (2.32).

$$[A]_{(0)} = [A] + [P_1] + [P_2]$$
(2.32)

mit $[P_1]_{(0)} + [P_2]_{(0)} = 0$

Durch Integration von (2.31) erhält man die Reaktionsgeschwindigkeits-Zeit-Gesetze:

$$[P_1] = \frac{k_1}{(k_1 + k_2)} \cdot [A]_0 \cdot (1 - (e^{-(k_1 + k_2)t})$$
(2.33a)

$$[P_2] = \frac{k_2}{(k_1 + k_2)} \cdot [A]_0 \cdot (1 - (e^{-(k_1 + k_2)t})$$
(2.33b)

Aus (2.33a) und (2.33b) ergibt sich das Verzweigungsverhältnis der Produkte (2.34), das zu jedem Zeitpunkt t gleich dem Verhältnis der Geschwindigkeitskonstanten ist.

$$\frac{P_1}{P_2} = \frac{k_1}{k_2}$$
(2.34)

Als nächstes werden Reaktionen betrachtet, bei denen der Reaktand A zum Zwischenprodukt B mit der Geschwindigkeitskonstante k_1 und B konsekutiv zum Produkt P mit der Geschwindigkeitskonstante k_2 jeweils nach einem Reaktionsgeschwindigkeitsgesetz erster Ordnung reagiert (Schema 2.3):

Schema 2.3: Zwei konsekutive Reaktion

Für den Fall, bei dem die Reaktionsgeschwindigkeitskonstanten k_1 und k_2 annähernd gleich sind, lauten die Reaktionsgeschwindigkeits-Zeit-Gesetze:

$$\frac{d [A]}{dt} = -k_1 \cdot [A]$$

$$\frac{d [B]}{dt} = k_1 \cdot [A] - k_2 \cdot [B]$$

$$\frac{d [P]}{dt} = k_2 \cdot [B]$$
(2.35)

Die Lösungen der Differentialgleichungen (2.35) sind:

$$[A] = [A]_{0}(e^{-k_{1} \cdot t})$$
(2.36a)

$$[B] = \frac{k_1}{(k_2 - k_1)} \cdot [A]_0 \cdot (e^{-(k_1 \cdot t)} - e^{-(k_2 \cdot t)})$$
(2.36b)

$$[P] = [A]_{o} \cdot \left[1 - \left(\frac{1}{(k_{2} - k_{1})} \cdot \left(k_{2} \cdot e^{-(k_{1} \cdot t)} - k_{1} e^{-(k_{2} \cdot t)} \right) \right) \right]$$
(2.36c)

2.5 Gasphasentitrationen

Zur Unterscheidung von isomeren Produkten, die durch eine Ion/Molekül-Reaktion entstehen, ist die Gasphasentitration^[145] eine geeignete Methode. Die Gasphasentitration ist ein spezielles bracketing-Verfahren zur semi-quantitativen Bestimmung des Isomerengemisches aufgrund der unterschiedlichen Protonenaffinität der Komponenten. Die Protonenaffinität PA einer Base N ist für die nachstehende Reaktion folgendermaßen definiert (2.37):

$$N + H^+ \rightarrow NH^+$$
: $PA = -\Delta H_r$ (2.37)

Im einfachsten Fall besteht das Isomerengemisch aus zwei Komponenten N_1H^+ und N_2H^+ mit deutlicher Differenz der Protonenaffinität der entsprechenden konjugierten Base. Bei der Gasphasentitration setzt man das Isomerengemisch mit Referenzbasen B_i bekannter Protonenaffinitäten um. Unter der Voraussetzung, daß die Protonenaffinität einer Komponente größer ist als die der Referenzbase, so wird lediglich die andere Komponente durch die Referenzbase deprotoniert. Durch die Umsetzungen dieses Isomerengemischs mit einem Satz von Referenzbasen B_i kann die Protonenaffinität der jeweiligen Komponente und deren relative Intensität bestimmt werden. Vorraussetzung dafür ist, daß die Differenz der Protonenaffinitäten der konjugierten Base groß ist und das ein signifikanter Effektivitätssprung von der endothermen zur exothermen Protonentransferreaktion erfolgt.

Reagiert lediglich eine Komponente mit der Referenzbase B_i , so läßt sich die Auftragung der Intensitäts-Zeit-Werte an Gleichung (2.28b) anpassen (C = Konstante).

$$\mathbf{I}_{t} = \mathbf{I}_{0} \cdot \exp(-\mathbf{k}_{\exp} \cdot \mathbf{t}) + \mathbf{C}$$
(2.28b)

Reagieren dagegen beide Komponenten mit der Referenzbase B_i mit unterschiedlicher Reaktionsgeschwindigkeit k_1 und k_2 , so erfolgt die Anpassung der Intensitäts-Zeit-Werte dann durch folgende zwei Exponentialfunktionen:

$$I_{t} = I_{(N_{1}H^{+})_{0}} \cdot \exp(-k_{1} \cdot t) + I_{(N_{2}H^{+})_{0}} \cdot \exp(-k_{2} \cdot t)$$
(2.38)

Dabei sind $I_{(N_1H^+)_0}$ und $I_{(N_2H^+)_0}$ die relativen Intensitäten der jeweiligen Komponente zur Zeit t = 0.

Isomere Gemische von Ionen können durch basenkatalysierte Isomerisierung entstehen. Detailliert wurde diese Isomerisierung von Bohme experimentell und theoretisch untersucht, der ein kinetisches Modell für intramolekularen Protonentransport eines Molekül-Basenpaares [ABH⁺···M] vorstellte.^[146] Das Molekül AB enthält mindestens zwei basische Atome A und B, an denen die Protonierung erfolgen kann. Ist die Protonierung reversibel, so kann Isomerisierung von ABH⁺ zu BAH⁺ erfolgen (Schema 2.4). Dabei wird das protonierte Molekül ABH⁺ durch die Base M nukleophil angegriffen, wobei ein langlebiger Ion/Molekül-Komplex ABH⁺···M entsteht. Dieser hat aufgrund der Ion-Dipol- und Ion-Dipol induzierten Kräfte genug Überschußenergie, um entweder zurück zu den Edukten zu zerfallen oder weiter zu dem Komplex [AB···⁺HM] zu reagieren. Der Komplex [AB···⁺HM] reagiert unter Protonentransfer zu dem Komplex [BAH⁺···M], der anschließend in die Produkte BAH⁺ und M dissoziiert. Bohme bezeichnete den basenkatalysierten Transport des Protons von der Base A nach B als *shuttle*-Mechanismus.^[146,147] Mit dieser Isomerisierung kann die Deprotonierung von ABH⁺ konkurrieren, indem der Komplex [AB···⁺HM] zu AB und ⁺HM dissoziiert.

$$ABH^{+} + M = \left[ABH^{+} - M = AB - -+ HM = BA - -+ HM\right] = BAH^{+} + M$$

$$\left| AB + + HM \right|$$

Schema 2.4: Mechanismus der basenkatalysierten Isomerisierung

3. Grundlagen theoretischer Methoden zur Berechnung von Molekülen

3.1 Einleitung

Ion/Molekül-Reaktionen in der verdünnten Gasphase erfolgen in isolierten Kollisionskomplexen der Reaktanden ohne Energieaustausch mit der Umgebung oder durch Emission von Strahlung. Die Kollisionskomplexe sind elektrostatisch durch Ion-/Dipol und Ion-/induzierte Dipol-Wechselwirkungen aktiviert. Diese Überschußenergie kann nun zu chemischen Umwandlungen innerhalb des Kollisionskomplexes führen. Als Folge der Abwesenheit von zusätzlicher thermischer Überschußenergie werden nur endotherme oder thermoneutrale Reaktionen beobachtet. Die experimentelle Geschwindigkeitskonstante der chemischen Reaktionen steht in keinem Zusammenhang mit internen Energie- oder Aktivierungsbarrieren. Experimentell ist eine Bestimmung der potentiellen Energie des Übergangszustands und der Bereich um den Übergangszustand nicht möglich. Daher ist es sinnvoll, die potentielle Energie eines molekularen Systems mit quantenchemischen Verfahren zu berechnen.^[148] Zur quantitativen Charakterisierung einer Reaktion sind die Enthalpien der Minima der Edukte und Produkte (Gleichgewichtsgeometrien), mögliche Zwischenprodukte (lokale Minima) und Übergangszustände (energetisch tiefste Sattelpunkte der Potentialfläche zwischen den Minima) entlang des Reaktionspfades der jeweiligen Ion/Molekül-Reaktion theoretisch zu berechnen. Dadurch ergibt sich eine zusätzliche Diskussionsgrundlage der experimentellen Ergebnisse.

Die Berechnung der Gleichgewichtsgeometrien stellt im allgemeinen keine Schwierigkeiten dar, da es leistungsfähige Minimierungsmethoden gibt. Dagegen ist das Auffinden der Reaktionswege nicht einfach. Häufig verwendete Optimierungsverfahren und numerische Methoden zur Berechnung von Minima und Sattelpunkten sind in der Literatur ausführlich beschrieben worden^[149-152], die auch mit Schwierigkeiten verbunden sind.^[153-154] In Kapitel 3.2 wird die in dieser Arbeit verwendeten Dichte-Funktional-Theorie-Methode BHandHLYP zur Berechnung der Molekülenergie kurz erläutert. Anschließend wird in Kapitel 3.3 auf die Berechnung der Bildungsenthalpie eingegangen.

3.2 Dichtefunktional-Theorie^[155]

Die Dichtefunktional-Theorie, DFT, wurde von quantenmechanischen Methoden hergeleitet, insbesondere vom Thomas-Fermi-Dirac-Modell und von Slaters grundlegenden Arbeiten. Die DFT-Näherung basiert auf der Strategie, daß die Elektronenkorrelationen durch allgemeine Funktionale der Elektronendichte ρ modelliert werden.

Die DFT verdankt ihren modernen Ursprung dem Hohenberg-Kohn-Theorem, das die Existenz eines eindeutigen Funktionals zeigt, welches exakt die Grundzustandsenergie und die Dichte bestimmt. Dieses Funktional sieht aber nicht die Form von diesem Funktional vor. Das Näherungs-Funktional, welches bei üblichen DFT-Methoden verwendet wird, teilt nach

Kohn und Sham die elektronische Energie in mehrere Terme auf:

$$E = E^{T} + E^{V} + E^{J} + E^{XC}$$
(3.1)

Dabei ist E^{T} der Term der kinetischen Energie, verursacht durch die Bewegung der Elektronen. E^{V} beinhaltet Terme der Potentialenergie und der Kern-Elektronen-Anziehungskraft. E^{J} ist der Term der Elektron-Elektron-Abstoßung und E^{XC} ist der Austausch-Korrelation-Term, der den restlichen Teil der Elektron-Elektron-Wechselwirkung berücksichtigt. Alle Terme außer der Kern-Kern-Abstoßung sind Funktionen von ρ . E^{J} wird wie folgt ausgedrückt:

$$E^{J} = \frac{1}{2} \cdot \iint \mathbf{r}(\vec{r}_{1}) \left(\Delta r_{12}\right)^{-1} \mathbf{r}(\vec{r}_{2}) \, d\vec{r}_{1} \, d\vec{r}_{2}$$
(3.2)

Der Ausdruck $E^{T} + E^{V} + E^{J}$ entspricht der klassischen Energie der Ladungsverteilung ρ . Der Austausch-Korrelation-Term E^{XC} begründet die restlichen Terme der Energie E die von der Antisymmetrie der quantenmechanischen Wellenfunktion und dynamischen Korrelationen in der Bewegung von einzelnen Elektronen stammt.

Hohenberg und Kohn haben gezeigt, daß E^{XC} vollständig durch die Elektronendichte ρ bestimmt wird. E^{XC} wird gewöhnlich durch Integrale genähert, die die Spindichten und möglicherweise auch deren Gradienten einbeziehen:

$$\mathbf{E}^{\mathrm{XC}}(\mathbf{r}) = \int f(\mathbf{r}_{\mathbf{a}}(\vec{r}), \mathbf{r}_{\mathbf{b}}(\vec{r}), \nabla \mathbf{r}_{\mathbf{a}}(\vec{r}), \nabla \mathbf{r}_{\mathbf{b}}(\vec{r})) \,\mathrm{d}^{3}\vec{r}$$
(3.3)

 ρ_{α} bezieht sich auf die Spindichte des Elektrons α , ρ_{β} bezieht sich auf die Spindichte des Elektrons β und ρ ist die Gesamt-Elektronendichte ($\rho_{\alpha} + \rho_{\beta}$).

E^{XC} wird oftmals aufgeteilt in Austausch- und Korrelations-Anteile, jedoch entsprechen sie tatsächlich den gleichen (parallelen) und gemischten (antiparallelen) Spin-Wechselwirkungen:

$$E^{XC}(\rho) = E^{X}(\rho) + E^{C}(\rho)$$
 (3.4)

Alle drei Terme sind Funktionale der Elektronendichte. E^X wird als Austausch-Funktional und E^C wird als Korrelations-Funktional bezeichnet. Beide Komponenten können in lokale und Gradienten-korrigierte Funktionale aufgeteilt werden, wobei lokale Funktionale ausschließlich von der Elektronendichte und Gradienten-korrigierte Funktionale von der Elektronendichte und dessen Gradienten $\nabla \rho$ abhängen. Das lokale Austausch-Funktional wird in der lokalen Spindichte Approximation (LSDA) immer wie folgt ausgedrückt:

$$E_{LDA}^{X} = -\frac{3}{2} \cdot \left(\frac{3}{4p}\right)^{1/3} \cdot \int r^{4/3} d^{3} \vec{r}$$
(3.5)

Dabei ist ρ eine Funktion von \vec{r} . Diese Form wurde entwickelt, um die Austausch-Energie eines einheitlichen Elektronengases zu beschreiben, weist aber Schwächen bei der Beschreibung von molekularen Systemen auf.

Becke formulierte das folgende Gradienten-korrigierte Austausch-Funktional, welches auf dem LDA-Austausch-Funktional basiert und heutzutage im umfangreichen Gebrauch ist:

$$E_{Becke88}^{X} = E_{LDA}^{X} - g \int \frac{r^{4/3} x^{2}}{(1 + 6 x \sinh^{-1} x)} d^{3} \vec{r}$$
(3.6)

mit
$$\mathbf{x} = \rho^{-4/3} |\nabla \rho|$$

 γ ist ein Parameter, um die bekannten Austausch-Energien der inerten Gas-Atome anzupassen. Becke definierte dessen Wert als 0,0042 Hartrees. Aus Gleichung 3.6 wird ersichtlich, daß Beckes Funktional als eine Korrektur zum LDA-Austausch-Funktional definiert ist, das viele Defizite des LDA-Funktionals behebt Korrelations-Funktionale sind ebenfalls entsprechend lokal oder Gradienten-korrigiert definiert. So ist beispielsweise die Formulierung für den lokalen Teil des Korrelations-Funktionals von Perdew und Wang folgendermaßen:

$$E^{C} = \int \boldsymbol{r} \boldsymbol{e}_{C} \left(r_{S} \left(\boldsymbol{r}(\vec{r}) \right), \boldsymbol{z} \right) d^{3} \vec{r}$$

$$r_{S} = \left[\frac{3}{4\boldsymbol{p}\boldsymbol{r}} \right]^{\frac{1}{3}}$$

$$\boldsymbol{z} = \frac{(\boldsymbol{r}_{\boldsymbol{a}} - \boldsymbol{r}_{\boldsymbol{b}})}{(\boldsymbol{r}_{\boldsymbol{a}} + \boldsymbol{r}_{\boldsymbol{b}})}$$
(3.7)

$$\boldsymbol{e}_{C}(r_{S}, \boldsymbol{z}) = \boldsymbol{e}_{C}(\boldsymbol{r}, 0) + a_{C}(r_{S}) \frac{f(\boldsymbol{z})}{f''(0)} (1 - \boldsymbol{z}^{4}) + [\boldsymbol{e}_{C}(\boldsymbol{r}, 1) - \boldsymbol{e}_{C}(\boldsymbol{r}, 0)] f(\boldsymbol{z}) \boldsymbol{z}^{4}$$

$$f(\mathbf{z}) = \frac{\left[(1 + \mathbf{z})^{4/3} + (1 - \mathbf{z})^{4/3} - 2 \right]}{\left(2^{4/3} - 2 \right)}$$

r_S wird als Dichte-Parameter bezeichnet. ζ ist die relative Spinpolarisation, wobei ζ = 0 dem gleichen Anteil an α- und β-Dichten entspricht. ζ = 1 entspricht der ausschließlichen Dichte von α, während ζ = -1 der ausschließlichen Dichte von β entspricht. Der allgemeine Ausdruck für ε_C ist abhängig von r_S und ζ. Dessen letzter Term erfüllt eine Interpretation für gemischte Spinbedingungen. Die folgende Funktion G wird benötigt, um die Werte von ε_C(r_S,0), ε_C(r_S,1) und a_C(r_S) zu berechnen:

$$G(\mathbf{r}_{S}, \mathbf{A}, \boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}, \boldsymbol{b}_{4}, \mathbf{P}) = -2\mathbf{A}(1 + \boldsymbol{a}_{1}\mathbf{r}_{S})\ln\left(1 + \frac{1}{2A(\boldsymbol{b}_{1}\mathbf{r}_{S}^{0,5} + \boldsymbol{b}_{2}\mathbf{r}_{S} + \boldsymbol{b}_{3}\mathbf{r}_{S}^{1,5} + \boldsymbol{b}_{4}\mathbf{r}_{S}^{P+1})}\right)$$

In letzterer Gleichung sind alle Argumente außer r_S durch Perdew und Wang gewählte Parameter, um genaue Berechnungen vom einheitlichen Elektronengas wiederzugeben.

Analog, wie zuvor beschrieben für die Austausch-Funktionale, können lokale Korrelations-Funktionale auch durch Gradienten-Korrektur verbessert werden.

Reine DFT-Methoden sind so definiert, daß ein Austausch-Funktional mit einem Korrelations-Funktional gepaart ist. Zum Beispiel wird das bekannte BLYP-Funktional durch das Gradienten-korrigierte Austausch Funktional von Becke mit dem Gradienten-korrigierten Korrelations Funktional von Lee, Yang und Parr gepaart.

Die in dieser Arbeit verwendete Methode BHandHLYP beruht auf der Grundidee, die Hartree-Fock-Austausch-Energie hinsichtlich der Abschätzung der Austausch-Energie von der Slater-Determinante einzubeziehen, die durch Kohn-Sham-Orbitale erhalten werden. Für die Austausch-Korrelation-Energie gilt:

$$E_{BHandHLYP}^{XC} = \frac{1}{2}E_{HF}^{X} + \frac{1}{2}E_{LDA}^{X} + \frac{1}{2}\Delta E_{Becke88}^{X} + \frac{1}{2}E_{LYP}^{c}$$
(3.8)

$$E_{HF}^{\Lambda}$$
 = Hartree - Fock - Austausch - Funktional
 E_{LDA}^{X} = Lokales Spindichte - Funktional
 $\Delta E_{Becke88}^{X}$ = Becke88 - Austausch - Funktional - Korrektur^[156]
 E_{LYP}^{c} = Autausch - Korrelations - Funktional nach Lee, Yang und Parr^[157,158]

3.3 Berechnung der Bildungsenthalpien aus ab initio Rechnungen

v

Um eine Molekülgeometrie als lokales Minimum oder Übergangszustand zu charakterisieren, wird eine Normalschwingungsanalyse auf dem Hartree-Fock- bzw. DFT-Niveau durchgeführt. Dazu wird die potentielle Energie des Moleküls, welches aus N Atomen besteht, nach seinen massengewichteten kartesischen Ortskoordinaten abgeleitet:

$$\mathbf{E} = \mathbf{T} + \mathbf{V} = \frac{1}{2} \sum_{i=1}^{3N} \dot{q}_i^2 + \mathbf{V}_{eq} + \frac{1}{2} \sum_{i=1}^{3N} \sum_{j=1}^{3N} \left(\frac{d^2 V}{dq_i dq_j} \right)_{eq} q_i q_j \quad (3.9)$$

 V_{eq} ist die potentielle Energie bei der Gleichgewichtskonfiguration der Kernpositionen. Die Kraftkonstanten jeder einzelnen Normalschwingung erhält man aus dem letzten Term von Gleichung (3.11).

$$f_{ij} = \left(\frac{d^2 V}{dq_i dq_j}\right)_{eq}$$
(3.10)

$$\ddot{q}_{j} = -\sum_{i=1}^{3N} f_{ij} q_{i}$$
(3.11)

Die Gleichung 3.10 wird auch als analytische zweite Ableitung bezeichnet und läßt sich leicht lösen.^[159] Die Schwingungsfrequenzen lassen sich aus dieser Lösung leicht berechnen. Mit diesem Ansatz erhält man auch die drei Translations- und die zwei bis drei Rotationsfreiheitsgrade, die Oszillatoren ohne rücktreibende Kraft beschreiben. Alle Normalschwingungen sind unabhängig voneinander, da sich alle Kerne bei einer Normalschwingung in Phasenkohärenz bewegen.

Eine Minimumstruktur weist ausschließlich reale Schwingungsfrequenzen auf. Für Übergangszustände gibt es dagegen eine imaginäre Schwingung in der Reaktionsordinate und ansonsten nur reelle Schwingungsfrequenzen. Bei den Hartree-Fock-Methoden werden die Schwingungsfrequenzen im Vergleich zu den experimentellen Werten um 10 % zu hoch berechnet^[160] und müssen für die Berechnung thermodynamischer Größen entsprechend korrigiert werden. Die mit der DFT-Methode berechneten Schwingungsfrequenzen liegen hingegen oftmals nahe an den experimentellen Werten.

Um die absolute Enthalpie eines Moleküls bei der Temperatur T zu berechnen, werden zur potentiellen Energie E_{pot} noch die energetischen Beiträge der Rotation, Translation, Vibration und ein Term $R \cdot T$ addiert:

$$H^{(T)} = E_{pot.} + U_{rot.} + U_{tr.} + U_{vib.}^{(T)} + R'T = E_{pot.} + E^{(T)} + R'T$$
(3.12)
mit $E^{(T)} = U_{rot.} + U_{tr.} + U_{vib.}^{(T)}$

Diese Beiträge erhält man aus ihren Zustandssummen mit Hilfe der statistischen Thermodynamik.^[161] Der Schwingungsenergiebeitrag bei der Temperatur T setzt sich aus der Nullpunktsschwingungsenergie, $U_{vib.}^{(0K)}$ (3.13a), und dem Schwingungsenergiebeitrag von 0 K bis T, $U_{vib.}^{(0K-298K)}$ (3.13b), zusammen.

$$U_{\text{vib.}}^{(0 \text{ K})} = \text{Nullpunktsschwingungsernergie} = R \cdot \sum_{j=1}^{3N-6} \frac{q_{nj}}{2}$$
(3.13a)

$$U_{\text{vib.}}^{(0 \text{ K-298K})} = R \cdot \sum_{j=1}^{3N-6} \frac{q_{nj}}{\left(e\left(\frac{q_{nj}}{T}\right) - 1\right)}$$
(3.13b)

mit $\boldsymbol{q}_{\boldsymbol{n}\boldsymbol{j}} = \frac{h \cdot \boldsymbol{n}}{k} = \frac{h \cdot c \cdot \boldsymbol{n}}{k} [K^{-1}]$

$$R = Gaskonstante = 8,31441 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}^{[67]}$$

$$c = \text{Lichtgeschwindigkeit (im Vakuum)} = 2,99792 \cdot 10^8 \text{ m}^{[67]}$$

$$h = \text{Planksches Wirkungsquantum} = 6,62618 \cdot 10^{-34} \text{ J} \cdot \text{s}^{[67]}$$

$$k = \text{Boltzmann-Konstante} = 1,38066 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}^{[67]}$$

Bei "hohen" Temperaturen T, wie beispielsweise bei T=298 K, gilt^[161]:

$$U_{\text{tr.}} = \frac{3}{2} \cdot R \cdot T \quad (\text{T}=298 \text{ K})$$
$$U_{\text{rot.}} = \frac{3}{2} \cdot R \cdot T \quad (\text{nichtlineare Moleküle})$$
$$\text{wenn } T \gg \frac{h^2}{8 \cdot p \cdot I \cdot k}; \text{ I} = \text{Trägheitsmoment})$$
$$U_{\text{rot.}} = \text{R} \cdot T \quad (\text{für lineare Moleküle})$$

Durch Einsetzen dieser Terme von $U_{vib.}$ $U_{tr.}$ und $U_{rot.}$ in Gleichung (3.12) erhält man für nichtlineare Moleküle:

$$\mathbf{H}^{(\mathrm{T})} = \mathbf{E}_{\mathrm{pot.}} + 4 \cdot \mathbf{R} \cdot \mathbf{T} + \mathbf{R} \cdot \sum_{j=1}^{3N-6} \frac{\mathbf{q}_{nj}}{2} + \mathbf{R} \cdot \sum_{j=1}^{3N-6} \frac{\mathbf{q}_{nj}}{\left(e\left(\frac{\mathbf{q}_{nj}}{T}\right) - 1\right)}$$
(3.14)

4. Reaktionen von 2-Halogenpropen-, 2-Halogen-3,3,3-trifluorpropenund Brombuten-Radikalkationen mit Ammoniak

4.1 Einleitung

In diesem Kapitel werden die Reaktionen von ionisiertem 2-Chlorpropen (1^{+}), 2-Brompropen (2^{+}), 2-Iodpropen (3^{+}), 2-Chlor-3,3,3-trifluorpropen (4^{+}), 2-Brom-3,3,3-trifluorpropen (5^{+}), 3,3,3-Trifluor-2-iodpropen (6^{+}), 2-Brombut-2-en (7^{+}), 1-Brombut-2-en (8^{+}) und 1-Brombut-4-en (9^{+}) mit Ammoniak im FT-ICR diskutiert. Bereits früher untersucht wurden die Umsetzungen von 2-Chlorpropen-, 2-Brompropen-, 2-Chlor-3,3,3-trifluorpropen-, 2-Brom-3,3,3-trifluorpropen-Radikalkationen mit NH₃.^[50] Diese Ergebnisse werden aber noch einmal aufgegriffen, um ein vollständigeres Gesamtbild der Reaktivität der Halogenalken-Radikalkationen zu erhalten.

Die radikalkationischen Reaktionssysteme weisen im Falle der 2-Halogenpropene eine elektronenschiebende Methylgruppe auf. Im Gegensatz dazu besitzen die 2-Halogen-3,3,3-trifluorpropene eine stark elektronenziehende Trifluormethylgruppe. Diese beiden gegensätzlichen Effekte sollten von erheblicher Relevanz für die Reaktivität gegenüber Ammoniak sein. Insbesondere die Stabilität von Intermediaten wird durch diese Effekte erheblich beeinflußt. Die Reaktivität der Brombuten-Radialkationen ist dagegen von großem Interesse, da es sich hier um vinylisch, allylisch oder homoallylisch gebundene Brom-Atome handelt. Dabei stellt sich die Frage, ob diese Reaktionssysteme ebenfalls nach einem Additions-Eliminierungsmechanismus unter Halogen-Substitution reagieren und ob andere Prozesse erfolgen können.

Um Hinweise zur Struktur des Substitutionsproduktes $C_3H_8N^+$ im Fall des 2-Brompropen-Radikalkations/NH₃ zu erhalten, wurden Gasphasentitrationen^[145] mit aliphatischen Aminen unterschiedlicher Protonenaffinität durchgeführt. Mit Hilfe dieser Technik ist es möglich, Produktgemische aufgrund der unterschiedlichen bimolekularen Reaktionsgeschwindigkeit der jeweiligen Protonenaustauschreaktion mit der Referenzbase zu analysieren.

Zum Verständnis der Reaktivität der 2-Halogenpropen- und 2-Halogen-3,3,3-trifluorpropen-Radikalkationen gegenüber Ammoniak wurden die Reaktionsenthalpien und Differenzen der Bildungsenthalpien mittels isodesmischer Reaktionen abgeschätzt. Nach der Beschreibung der experimentellen Ergebnisse dieser Reaktionssysteme wird die Reaktivität von 2-Halogenpropen- und 2-Halogen-3,3,3-trifluorpropen-Radikalkationen gegenüber Ammoniak unter Berücksichtigung von quantenchemischen Berechnungen auf dem Niveau BHandHLYP/6-31g(d) diskutiert.

4.2 Abschätzung der Reaktionsenthalpien der Reaktionen von 2-Halogenpropen- und 2-Halogen-3,3,3-trifluorpropen-Radikalkationen mit Ammoniak

Für die Reaktion von $1^{+}-3^{+}$ mit NH₃ werden aufgrund der Abschätzung der Thermochemie (Kapitel 12.1) zwei Reaktionen erwartet.^[50] Zum einen sollte ein Protonentransfer von 1^{+} , 2^{+} oder 3^{+} auf NH₃ wegen der aciden Methylgruppe exotherm sein und daher als intensiver Prozeß erfolgen. Zum anderen kann die Substitution des Halogen-Atoms durch NH₃ stattfinden. Die beiden erwarteten Reaktionswege sind in Schema 4.1 abgebildet.

Schema 4.1: Erwartete Reaktionen bei der Umsetzung von 1^{+} - 3^{+} mit NH₃

Für die Reaktion der ionisierten 2-Halogen-3,3,3-trifluorpropene $4^{+} - 6^{+}$ mit NH₃ wird lediglich eine Substitution des Halogen-Atoms durch NH₃ erwartet (Schema 4.2). Für den Protonentransfer des jeweiligen 2-Halogen-3,3,3-trifluorpropen-Radikalkations stehen nur vinylische H-Atome zur Verfügung. Mit NH₃ ist der Protonentransfer energetisch sehr ungünstig.

Schema 4.2: Erwartete Reaktionen bei der Umsetzung von 4⁺⁺ - 6⁺⁺ mit NH₃

Für die Abschätzung der Reaktionsenthalpien entlang des Reaktionsenergieprofils mit Hilfe von isodesmischen Reaktionen wurden einige experimentelle und berechnete Bildungsenthalpien verwendet.^[162,163] Die Bildungsenthalpien ΔH_f von Chlorethen und Bromethen sind mit guter Genauigkeit bekannt.^[162] Weiterhin wurde mit Hilfe von *ab initio* Methoden das Reaktionsenergieprofil der Reaktion der Chlorethen bzw. Bromethen-Radikalkationen mit NH₃ auf dem Niveau (U)MP4(SDTQ)/D95**//(U)HF/D95** berechnet.^[45,47] Ebenso veröffentlicht sind die Bildungsenthalpien von einigen C2-, C3- und C4-Radikalen und Radikalkationen.^[162,163] Die Bildungsenthalpien dieser Verbindungen sind in Tabelle 12.1 (Kapitel 12.1) aufgeführt und können für die Abschätzung des Reaktionsenergieprofils von 1^{+} , 2^{+} , 3^{+} und 4^{+} mit NH₃ mit Hilfe von isodesmischen Reaktionen verwendet werden. Bezugspunkt zur Berechnung der Bildungsenthalpien von 1^{+} und 2^{+} sind die gut bekannten Bildungsenthalpien vom Chlorethen-Radikalkation ($\Delta H_f = 999 \text{ kJ/mol}^{[162]}$) und vom Bromethen-Radikalkation ($\Delta H_f = 1027 \text{ kJ/mol}^{[162]}$). Um die Zuverlässigkeit der Abschätzung der Bildungsenthalpien zu prüfen, wurden in einigen Fällen die Bildungsenthalpien mit zwei isodesmischen Reaktionen berechnet. Der Fehler ist dabei kleiner als 10 kJ/mol und liegt im Rahmen der experimentell bestimmten Werte. Die isodesmischen Reaktionen, die hier zur Berechnung der Bildungsenthalpien verwendet wurden, sind in Schema 12.1-12.10 (Kapitel 12.1) abgebildet. Die auf diese Weise erhaltenen Bildungsenthalpien ΔH_f der Reaktanden, der relevanten Intermediate und Produkte der Reaktion von 1⁺- 4⁺ sowie der Reaktionsenthalpien ΔH_r mit NH₃ sind in Tabelle 4.1 aufgelistet.

Die Substitutionsreaktion ist für alle 2-Halogenpropen-Radikalkationen deutlich exotherm. Parallel zur Substitutionsreaktion kann der Protonentransfer von den 2-Halogenpropen-Radikalkationen 1^{+} - 3^{+} auf NH₃ erfolgen, der ebenfalls deutlich exotherm ist.

Die Exothermizität der Substitutionsreaktion des Halogen-Atoms durch NH_3 nimmt in der Reihe der 2-Halogenpropen-Radikalkationen 1^{+} , 2^{+} und 3^{+} zu.

	ΔH _f [kJ/mol]	Reaktion	ΔH _r [kJ/mol]
2-Chlorpropen ⁺ (1^+)	912		
NH ₃	-46 ^[162]		
β-distonisches Addukt-Ion (Markownikow) 1a(NH ₃)	713	Addition Markownikow	-153
β-distonisches Addukt-Ion (anti-Markownikow) 1b(NH 3)	755	Addition anti-Markownikow	-111
2'-Propenylammonium-Kation	678		
Chlor-Atom	121 ^[162]	Substitution	-67
2-Chlorallyl-Radikal	114		
Ammonium-Kation NH ₄ ⁺	630 ^[162]	Deprotonierung	-122
2-Brompropen ⁺⁺ (2 ⁺⁺)	939		
NH ₃	-46[162]		
β-distonisches Addukt-Ion (Markownikow) 2a(NH ₃)	755	Addition Markownikow	-138
2-Propenylammonium-Kation	678		
Brom-Atom	$112^{[162]}$	Substitution	-94
2-Bromallyl-Radikal	166		
Ammonium-Kation NH_4^+	632 ^[162]	Deprotonierung	-97
2-Iodpropen ⁺⁺ (3 ⁺⁺)	940		
NH ₃	-46		
distonisches Addukt-Ion (Markownikow)	804	Addition Markownikow	-90
2'-Propenylammonium-Kation	678		
Iod-Atom	107[162]	Substitution	-95
2-Iodallyl-Radikal	221		
Ammoniumkation NH ₄ ⁺	630 ^[162]	Deprotonierung	-43
2-Chlor-3,3,3-trifluorpropen (4 ⁺)	375		
NH ₃	$-46^{[162]}$		
β-distonisches Addukt-Ion (Markownikow)	75	Addition- Markownikow	-254
β-distonisches Addukt-Ion (anti-Markownikow)	132	Addition anti-Markownikow	-197
2'-(3,3,3-Trifluorpropenyl)-	44		171
ammonium-Kation Chlor-Atom	121 ^[162]	Substitution	-164

Tabelle 4.1: Bildungsenthalpien ΔH_f und Reaktionsenthalpien ΔH_r der Reaktanden, relevante Intermediate und Produkte der Reaktion von $1^{+}-4^{+}$ mit NH₃

4.3 Reaktionen von 2-Halogenpropen-Radikalkationen mit Ammoniak

Für die Reaktionen des ionisierten 2-Chlorpropens (1^{+}), 2-Brompropens (2^{+}) und 2-Iodpropens (3^{+}) mit NH₃ wird anhand der isodesmischen Reaktionen erwartet, daß der Protonentransfer auf NH₃ exothermer ist als bei den entsprechenden ionisierten Halogenethenen, da die 2-Halogenpropen-Radikalkationen eine vergleichsweise acide Methylgruppe aufweisen. Zusätzlich stabilisiert der Halogensubstituent X das dabei gebildete 2-Halogenallyl-Radikal. Man erwartet daher, daß der Protonentransfer der Hauptprozeß ist. Reaktionen wie die Substitutionsreaktion, die einen "Flaschenhals" entsprechend des QET-Modells.^[57-70] aufgrund einer erheblichen Aktivierungsbarriere und entropischer Effekte aufweisen, sollten demnach von geringerer Intensität sein.

In Abbildung 4.1 - 4.3 sind die Intensitäts-Zeit-Verläufe der Reaktion von 1^{+} 3^{+} mit NH₃ dargestellt. Alle drei Kurvenverläufe zeigen, daß die Reaktion nach pseudo-erster Ordnung erfolgt. In Tabelle 4.2 sind die bimolekularen Geschwindigkeitskonstanten (k_{bi}), die berechneten Stoßgeschwindigkeitskonstanten (k_{cpt}) und die Effektivitäten (Eff %) der Reaktion von 1^{+} - 3^{+} mit NH₃ aufgeführt. Das Intensitätsverhältnis von Substitution/Deprotonierung und die Effektivität des jeweiligen Einzelprozesses sind in Tabelle 4.3 aufgelistet.

Abbildung 4.1: Intensitäts-Zeit-Verlauf der Reaktion von 1^{·+} mit NH₃

Abbildung 4.2: Intensitäts-Zeit-Verlauf der Reaktion von $2^{\cdot+}$ mit NH₃

Abbildung 4.3: Intensitäts-Zeit-Verlauf der Reaktion von $\mathbf{3}^{\cdot+}$ mit NH₃

Edukt	k _{bi}	k _{cpt}	Eff.%
	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	
1.+	17,8	21,2	84
2 ^{·+}	15,7	20,4	77
3 ^{.+}	7,5	20,3	37

Tabelle 4.2: Bimolekulare Geschwindigkeitskonstanten k_{bi} , berechnete Stoßgeschwindigkeitskonstanten k_{cpt} und Effektivitäten (Eff %) der Reaktion von $\mathbf{1}^{+}$ - $\mathbf{3}^{+}$ mit NH₃

Edukt	Verzweigungsverhältnis	Eff.%	
	Substitution:Deprotonierung	Substitution/Deprotonierung	
1.+	58:42	49/35	
2 ^{·+}	56:44	43/34	
3 ^{•+}	35:31:34*	13/11/13*	

*Protonengebundenes Homodimer von NH₃: H₃N--H⁺--NH₃ (m/z 35)

Tabelle 4.3: Intensitätsverhältnis von Substitution/Deprotonierung und Effektivität des jeweiligen Einzelprozesses der Reaktion von 1⁺- 3⁺ mit NH₃

Die Effektivitäten der Gesamtreaktionen von 1^{+} und 2^{+} mit NH₃ sind beide sehr groß und können als nahezu stoßkontrolliert bezeichnet werden. Dagegen ist die Effektivität der Gesamtreaktion von 3^{+} mit NH₃ deutlich kleiner. Hier führt nur etwa jeder dritte Stoß zur Reaktion. In allen Fällen konkurriert die Substitution des Halogen-Atoms durch NH₃ mit dem Protonentransfer vom ionisierten 2-Halogenpropen auf NH₃. Als Substitutionsprodukt wird ein positiv geladenes Ion C₃H₈N⁺, m/z 58, gebildet. Bei der Protonentransferreaktion entstehen ein Ammonium-Ion, m/z 18, und ein 2-Halogenallyl-Radikal. Bei der Reaktion von 1^{+} bzw. 2^{+} mit NH₃ ist die Substitutionsreaktion der Hauptprozeß, obwohl der Protonentransfer von 1^{+} bzw. 2^{+} auf NH₃ deutlich exotherm ist. Betrachtet man nur die Substitutionsreaktion, so beträgt die Effektivität dieses Prozesses im Fall des Molekül-Ions von 2-Chlorpropen 49 % und im Fall des Molekül-Ions von 2-Brompropen 43 %. Somit ist das Intensitätsverhältnis von Substitution/Deprotonierung bei der Reaktion von 1^{+} bzw. 2^{+} mit

 NH_3 nahezu identisch. Für die entsprechende Reaktion der Halogenethen-Radikalkationen mit NH_3 beträgt die Effektivität der Substitution für das ionisierte Chlorethen 42 % und für das ionisierte Bromethen 25 %. Die Gesamtreaktion von 1^{'+} bzw. 2^{'+} mit NH_3 ist im Gegensatz zu den Halogenethen-Radikalkationen aber nahezu stoßkontrolliert, weil die Protonentransferreaktion einen hohen Anteil zur Effektivität der Gesamtreaktion beiträgt. Offensichtlich liegen ähnliche Verhältnisse der Exothermizität der Addition des NH_3 an 1^{'+} bzw. 2^{'+} und der Protonentransferreaktion vor.

Auch das 2-Iodpropen-Radikalkation 3^{++} reagiert mit NH₃ vollständig. Dabei entstehen kompetitiv drei Produkte mit etwa gleicher relativer Intensität. Der Hauptprozeß mit einer relativen Intensität von 35 % ist der Protonentransfer zum NH₃, wobei NH₄⁺⁺ und das 2-Iodallyl-Radikal entstehen. Parallel dazu erfolgt mit einer Intensität von 31 % die Bildung des protonenverbrückten Homodimers von NH₃ (H₃N--H⁺--NH₃), m/z 35. Der dritte Prozeß mit einer Intensität von 34 % ist die Substitutionsreaktion, wobei das positiv geladene Ion C₃H₈N⁺, m/z 58, gebildet wird. Insgesamt ist die Reaktion von 3^{++} mit NH₃ signifikant langsamer als von 1^{++} oder 2^{++} , denn die Effektivität der Gesamtreaktion beträgt nur 37. Das Intensitätsverhältnis von Substitution/Deprotonierung/protonengebundenes Homodimer (Tabelle 4.2) ist 35:31:34. Für die Substitutionsreaktion als Einzelprozeß beträgt die Effektivität somit nur 13 %. Dieser Abfall der Effektivität der Substitutionsreaktion mit sinkender Bindungsstärke der C-X-Bindung der ionisierten Halogenalkene (X= -Cl, -Br; -I) wurde schon bei früheren Untersuchungen beobachtet.^[45,47]

Da die entropisch anspruchsvolle Substitutionsreaktion der 2-Chlor- und 2-Brompropen-Radikalkationen im Gegensatz zur entropisch weniger anspruchsvollen Protonentransferreaktion der Hauptprozeß ist, kann der Reaktionsmechanismus am bestem mit dem Additions-Eliminierungsmechanismus beschrieben werden, wenn für den ersten Additionsschritt des NH₃ an die ionisierte Doppelbindung keine Aktivierungsbarriere vorhanden ist. Nach der Addition des NH₃ unter Bildung des Markownikow-Addukts (Schema 4.3) erfolgt vermutlich eine Umlagerung zum anti-Markownikow-Addukt (Schema 4.3), aus dem die Eliminierung des Halogen-Atoms erst erfolgen kann. Dieses wurde für den Fall der Radikalkationen durch *ab initio* Rechnungen des Reaktionsenergieprofils von Halogenalken-Radikalkationen und NH₃ und der Addition von neutralem Ethen an Ethen-Radikalkationen gezeigt.^[45,47,164]

Die Bildung des protonengebundenen Homodimers von NH_3 ($H_3N-H^+-NH_3$) durch eine exotherme Protonentransferreaktion mit NH_3 ist nicht leicht durch einen einfachen Protonentransfermechanismus zu erklären. Für einen Protonentransfer eines Radikalkations auf eine Base wird allgemein angenommen, daß als Übergangszustand ein protonenverbrückter Komplex der Base und des Radikalkations gebildet wird. Wenn die Protonentransferreaktion exotherm ist, ist die Reaktion schnell oder sogar stoßkontrolliert.^[165] Die Reaktionsprodukte übernehmen dann die Überschußenergie des Protonentransfers als Anregungsenergie. Der Protonentransfer des Halogenalken-Radikalkations auf NH₃ kann alternativ über einen Additions-Eliminierungsmechanismus erfolgen.^[166] Beide möglichen Reaktionsmechanismen der Protonentransferreaktion sind in Schema 4.3 abgebildet.

Schema 4.3: Mögliche Reaktionsmechanismen der Protonenaustauschreaktion

Der Stoßkomplex kann anstatt über einen "lockeren" protonenverbrückten Komplex über das Markownikow-Addukt bzw. anti-Markownikow-Addukt unter Protonentransfer reagieren. Dieser Weg kann dann an Bedeutung gewinnen, wenn die Weiterreaktion durch die Substitution langsam ist. Dieses trifft für die Reaktion von 3^{+} mit NH₃ zu. Entweder findet nun Rückdissoziation des Addukt-Ions zum Kollisionskomplex statt oder es erfolgen andere Weiterreaktionen, wie zum Beispiel der Protonentransfer. Da die Protononierungsreaktion für alle hier untersuchten ionisierten 2-Halogenpropene (1^{+} - 3^{+}) mit NH₃ exotherm ist, sollte dieser Prozeß schnell oder sogar stoßkontrolliert verlaufen. Dieser Fall trifft für die Reaktion von 1^{+} und 2^{+} mit NH₃ zu. Für die Reaktion von 3^{+} mit NH₃ ist die Gesamtreaktion signifikant langsamer. Wie bereits vorher erwähnt, führt nur jeder dritte Stoß zur Reaktion. Außerdem entsteht auch das protonengebundene Dimer des Ammoniaks, N₂H₇⁺. Eine Erklärung dafür ist, daß der Protonentransfer nicht unabhängig von der Substitutionsreaktion vorläuft. Beide Prozesse erfolgen vielmehr über eines der β -distonischen Addukt-Ionen von

NH₃ und Halogenalken-Radialkation (Schema 4.3). Allerdings erfolgt der Protonentransfer aus dem Markownikow-Addukt durch eine 1,3-Eliminierung und aus dem anti-Markownikow-Addukt durch eine 1,2-Eliminierung. Energetisch bevorzugt ist wahrscheinlich die Reaktion über die 1,2-Eliminierung. Für einen Protonentransfer über einen Additions-Eliminierungsmechanismus wird erwartet, daß eine Energiebarriere vom β-distonischen Addukt-Ion zu einem Übergangszustand der Protonenverschiebung überwunden werden muß, bevor Abspaltung von NH₄⁺ erfolgt. Die dazu erforderliche Überschußenergie stammt aus der Addition des NH₃ an das ionisierte Halogenalken. Da aber die Addition von NH₃ an das 2-Iodpropen-Radikalkation nicht so exotherm ist wie bei 1^{·+} bzw. 2^{·+}, ist das Addukt-Ion **3a(NH₃)** bzw. **3b(NH₃)** energetisch weniger angeregt. Daher sind sowohl die Substitutionsals auch die Protonentransferreaktionen signifikant langsamer. Ein weiteres Molekül NH₃ könnte beteiligt sein, um die Energiebarriere zu überwinden. Dieser mögliche Reaktionsmechanismus könnte die Bildung des protonengebundenen Homodimers von NH₃, m/z 35, erklären, das mit relativ hoher Intensität entsteht.

Um Informationen über die Struktur des bei der Reaktion von ionisiertem 2-Halogenpropen mit NH₃ entstandenen Substitutionsprodukts $C_3H_8N^+$, m/z 58, zu erhalten, wurden Gasphasentitrationsexperimente durchgeführt.^[145] Mit Hilfe dieser Experimente kann die Protonenaffinität (PA) des neutralen Vorläufers dieses Produkt-Ions (konjugierte Base) abgeschätzt werden. In vorherigen Studien konnte bereits für das Substitutionsprodukt aus der Reaktion des Halogenethen-Radikalkations mit NH₃ gezeigt werden, daß als primäres Substitutionsprodukt ausschließlich das Vinylammmonium-Ion entsteht.^[45,47] Dieses kann jedoch unter dem Einfluß einer Base schnell zum Aldimmonium-Ion umlagern.^[45,47] Die Tautomerisierung kann aber nicht durch eine 1,3-sigmatrope Umlagerung des Protons erfolgen, da diese eine hohe Energiebarriere erfordert.^[154] Mit Hilfe der Base, die in der FT-ICR-Zelle vorhanden ist, kann das Substitutionsprodukt jedoch nach einem basenkatalysierten "*shuttle*"-Mechanismus tautomerisieren, wenn dabei vor der Protonentransferreaktion das energetisch stabilere Immonium-Ion entsteht.^[146,147] Eine solche Umlagerung wird auch hier erwartet. In Schema 4.4 ist der basenkatalysierte "*shuttle*"-Mechanismus für die Tautomerisierung vom Vinylammonium-Ion in das Aldimmonium-Ion abgebildet.

Schema 4.4: Basenkatalysierter *"shuttle"* Mechanismus" der Tautomerisierung vom Vinylammonium-Ion in das Aldimmonium-Ion (R = -H; -CH₃)

Die Umsetzungen des Substitutionsprodukts mit Referenzbasen, deren Protonenaffinitäten zwischen der Protonenaffinität der konjugierten Base vom Aldimmonium-Ion und vom Vinylammonium-Ion liegen, ergeben bimodale Reaktionsverläufe. Sollte sich das primäre Substitutionsprodukt aus der Reaktion der 2-Halogenpropen-Radikalkationen und NH₃ analog verhalten, wird das 2'-Propenylammonium-Ion als primäres Substitutionsprodukt gebildet. Dieses kann dann ebenfalls nach einem basenkatalysierten *"shuttle"-Mechanismus während* der Protonenaustauschreaktion in das 2'-Propylimmonium-Ion tautomerisieren. In den Abbildungen 4.4 und 4.5 sind die Umsetzungen des primären Substitutionsprodukts mit Ethylamin (PA = 912 kJ/mol^[162]) und Dimethylamin (PA = 929 kJ/mol^[162]) als Referenzbase dargestellt.

Abbildung 4.4: Intensitäts-Zeit-Verlauf der Reaktion von C₃H₈N⁺ mit Ethylamin

Beide hier gezeigten Beispiele der Gasphasen-Titrationen zeigen bimodale Reaktionsverläufe. Das heißt, es liegen zwei Isomere vor, die während der Protonierungsreaktion von protonierter Spezies und Base mit unterschiedlicher Reaktionsgeschwindigkeit reagieren. Eines der beiden Isomere wird signifikant schneller deprotoniert als das andere. Dieses wird am Beispiel der Umsetzung des primären Substitutionsprodukts mit Ethylamin besonders deutlich, da hier nur eine Spezies deprotoniert wird, während die andere Spezies nahezu unreaktiv ist.

Abbildung 4.5: Intensitäts-Zeit-Verlauf der Reaktion von C₃H₈N⁺ mit Dimethylamin

Um die jeweilige Protonenaffinität der entsprechenden konjugierten Base beider isomerer Spezies einzugrenzen, wurden zusätzlich als Referenzbasen Ammoniak (PA=854 kJ/mol^[162]), Methylamin (PA=899 kJ/mol^[162]) und Diethylamin (PA=952 kJ/mol^[162]) verwendet. Eine Protonierungsreaktion des primären Substitutionsprodukts mit NH₃ bzw. Methylamin ist nicht zu beobachten, wohingegen Diethylamin zur schnellen und vollständigen Deprotonierung führt. Deswegen müssen die Protonenaffinitäten der konjugierten Basen beider Produkt-Ionen $C_3H_8N^+$ zwischen den Werten 899 kJ/mol und 952 kJ/mol liegen.

Mit Hilfe von semiempirischen Rechnungen auf dem Niveau $AM1^{[167,168]}$ wurde die Protonenaffinität (PA) der konjugierten Base beider möglicher Isomere abgeschätzt. Dabei wird für das 2'-Propenylamin eine Protonenaffinität von 881 kJ/mol und für das 2'-Propanimin eine Protonenaffinität von 923 kJ/mol (PA_{Lit.} = 932 kJ/mol^[162]) erhalten. Der Wert der berechneten Gasphasenbasizität, GBP, von Propylamin (GBP_{calc.} = 901 kJ/mol^[169]) ist um 17 kJ/mol geringer als der literaturbekannte Wert (PA_{Lit.} = 884 kJ/mol^[162]). Unter der Annahme, daß die Protonenaffinität von 2'-Propenylamin die gleiche Abweichung aufweist, erhält man für 2'-Propenylamin eine korrigierte berechnete Protonenaffinität von 898 kJ/mol. Mit Hilfe der kinetischen Daten kann die Protonenaffinität der konjugierten Base des entsprechenden Isomeren eingegrenzt werden. Für die konjugierte Base des Isomers mit der geringeren Protonenaffinität erhält man mit 899 kJ/mol < $PA(C_3H_7N(I)) < 912$ kJ/mol eine Protonenaffinität von (906 ± 7) kJ/mol. Dieser experimentell ermittelte Wert stimmt zufriedenstellend mit der korrigierten berechneten Protonenaffinität von 2'-Propenylamin ($PA_{korr.} = 898$ kJ/mol) überein. Für die konjugierte Base des Isomers mit der höheren Protonenaffinität erhält man mit 930 kJ/mol < $PA(C_3H_7N(II)) < 952$ kJ/mol eine Protonenaffinität von (941 ± 11) kJ/mol. Dieser experimentell ermittelte Wert stimmt protonenaffinität von 2'-Propylimin ($PA_{Lit.} = 932$ kJ/mol^[162]) überein.

Dieses Ergebnis verhält sich ganz analog wie das aus der Untersuchung des Substitutionsprodukts der Umsetzung der Halogenethen-Radikalkationen mit NH₃ und bestätigt, daß beide Substitutionsreaktionen identische Reaktionsmechanismen aufweisen.^[45,47] Dabei werden homologe Produkte gebildet.^[45,47] Bemerkenswert ist, daß die Substitutionsreaktion effektiv daher stoßkontrollierten Deprotonierungsreaktion mit der exothermen und der Radikalkationen der 2-Halogenpropene $(1^{+} - 3^{+})$ mit NH₃ konkurrieren kann. Die Addition von NH₃ an die ionisierte Doppelbindung des Halogenalkens führt zu zwei isomeren βdistonischen Addukt-Ionen, dem Markownikow- und dem anti-Markownikow-Addukt. Diese beiden isomeren β-distonischen Addukt-Ionen können durch eine 1,2-Umlagerung der ⁺NH₃-Einheit ineinander überführt werden. Bevorzugt bei der Addition des NH₃ wird das Markownikow-Addukt, was energetisch stabiler ist als das anti-Markownikow-Addukt. Die Überschußenergie treibt die Weiterreaktion voran. Die Halogenabspaltung erfolgt abschließend von dem energetisch geringfügig instabileren anti-Markownikow-Addukt.

4.4 Reaktionen von 2-Halogen-3,3,3-trifluorpropen-Radikalkationen mit Ammoniak

Für die Reaktionen der ionisierten 2-Halogen-3,3,3-trifluorpropen 2-Chlor-3,3,3-trifluorpropenpropen- (4^{+}), 2-Brom-3,3,3-trifluorpropen- (5^{+}) und 3,3,3-Trifluorpropen-2-iodpropen-Radikalkationen (6^{+}) mit NH₃ wird erwartet, daß die Substitution des Halogen-Atoms durch NH₃ der Hauptprozeß ist, da eine acide CH₃-Gruppe wie im Falle der 2-Halogenpropen-Radikalkationen fehlt. In Tabelle 4.4 sind die bimolekularen Geschwindigkeitskonstanten (k_{bi}), berechneten Stoßgeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %) der Reaktion von 4^{+} - 6^{+} mit NH₃ aufgeführt. Die Intensitäts-Zeit-Verläufe der Reaktion von 4^{+} - 6^{+} mit NH₃ sind in Abbildung 4.6 - 4.8 dargestellt.

Edukt	k _{bi}	k _{cpt}	Eff.
	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	%
4.+	17,9	20,3	88
5 ⁺	17,4	20,0	87
6 [•] +	10,7	19,8	54

Tabelle 4.4: Bimolekulare Geschwindigkeitskonstanten k_{bi} , berechnete Stoßgeschwindigkeitskonstanten k_{cpt} und Effektivitäten (Eff %) der Reaktion von **4**⁺-**6**⁺ mit NH₃

Anhand der Intensitäts-Zeit-Verläufe verläuft die Reaktion von 4^{+} , 5^{+} bzw. 6^{+} mit NH₃ nach pseudo-erster Ordnung. Die Gesamtreaktion erfolgt von 4^{+} /NH₃ und 5^{+} /NH₃ mit 87 % bzw. 88 % Effektivität praktisch stoßkontrolliert, was aufgrund der hohen Exothermizitäten bei der Bildung der β -distonischen Addukt-Ionen auch zu erwarten ist. Die hohe Überschußenergie der β -distonischen Addukt-Ionen treibt die Reaktion voran. Dagegen führt bei der Reaktion von 6^{+} mit NH₃ nur etwa jeder zweite Stoß zur Reaktion.

Obwohl angenommen wurde, daß der Protonentransfer von $4^{+}-6^{+}$ auf NH₃ nicht der Hauptprozeß ist, ist NH₄⁺, m/z 18, nach langen Reaktionszeiten das Hauptprodukt. Allerdings zeigt der sigmoidale Verlauf der Intensitätskurven von NH₄⁺, daß zumindest der größere Anteil von NH₄⁺ nicht als primäres Produkt kompetitiv zu den anderen Prozessen, sondern konsekutiv durch Protonentransfer von C₃H₅F₃N⁺, m/z 112, auf NH₃ entsteht (Abbildung 4.6 - 4.8).

Abbildung 4.6: Intensitäts-Zeit-Verlauf der Reaktion von 4^{·+} mit NH₃

Abbildung 4.7: Intensitäts-Zeit-Verlauf der Reaktion von $\mathbf{5}^{+}$ mit NH₃

Abbildung 4.8: Intensitäts-Zeit-Verlauf der Reaktion von 6⁺⁺ mit NH₃

Zum direkten Nachweis dieser Reaktion wurde das Substitutionsprodukt $C_3H_5F_3N^+$, m/z 112, in einem zusätzlichen Experiment isoliert und mit NH₃ umgesetzt. Der Reaktionsverlauf dieser Reaktion ist in Abbildung 4.9 dargestellt. $C_3H_5F_3N^+$ reagiert mit NH₃ schnell und vollständig durch Protonentransfer zu NH₄⁺ ab. Die Protonenaffinität der konjugierten Base des Substitutionsprodukts, $C_3H_5F_3N^+$, ist offensichtlich signifikant kleiner als die des Substitutionsprodukts $C_3H_8N^+$ der 2-Halogenpropene, bei denen keine Reaktion des Substitutionsprodukts mit NH₃ erfolgte. Dieses ist sicherlich der elektronenziehenden CF₃-Gruppe zuzuschreiben. Der Effekt der CF₃-Gruppe mit ihrer stark elektronenziehenden Eigenschaft ist gut dokumentiert für entsprechende Ether, Amine und Carbonylverbindungen und bewirkt eine Absenkung der Protonenaffinität um 50 - 100 kJ/mol im Vergleich zu entsprechenden CH₃-Verbindungen.^[162,163]

Trotz vollständiger Deprotonierung des Substitutionsprodukts $C_3H_5F_3N^+$ durch NH₃ wird eine bimodale Reaktion beobachtet (Abbildung 4.9). Die mit AM1 berechneten Protonenaffinitäten der konjugierten Basen der beiden Isomeren 2'-(3,3,3-Trifluorpropenyl)ammonium-Ion (PA = 817 kJ/mol) und 2-(3,3,3-Trifluorpropyl)-immonium-Ion (PA = 833 kJ/mol) liegen beide deutlich unter der Protonenaffinität von NH₃ (PA = $854 \text{ kJ/mol}^{[162]}$), so daß demnach der schnelle Protonentransfer vom Substitutionsprodukts verständlich wird.

Abbildung 4.9: Intensitäts-Zeit-Verlauf der Reaktion von C₃H₅F₃N⁺ mit NH₃

Wie bei $C_3H_8N^+$ kann ein basenkatalysierter *"shuttle*"-Mechanismus eine Isomerisierung vom 2'-(3,3,3-Trifluorpropenyl)-ammonium-Ion zum 2-(3,3,3-Trifluorpropyl)-immonium-Ion bewirken, bevor die Protonierungsreaktion erfolgt.^[146,147] Entprechende Gasphasentitrationen wie bei dem 2'-Propenylammonium-Ion wurden nicht durchgeführt, da bei einer Erzeugung von $C_3H_5F_3N^+$ unter CI(NH₃)-Bedingungen das NH₃, das aus der Ionenquelle zur Erzeugung von $C_3H_5F_3N^+$ vorhanden ist, in die FT-ICR Zelle diffundiert und dort mit $C_3H_5F_3N^+$ unter Deprotonierung reagiert. Dieses stört die Umsetzung mit anderen Referenzbasen erheblich. Das Ion m/z 95, welches bei der Reaktion von **4**⁺⁺ mit NH₃ beobachtet wird, hat die Elementzusammensetzung $C_3H_2F_3^+$. Dieses Ion entsteht durch eine Chlorabspaltung aus **4**⁺⁺. Es handelt sich hierbei sehr wahrscheinlich um einen Fehler bei der Isolierung der Ionen **4**⁺⁺ in

Neben der Substitutionsreaktion und Bildung von NH_4^+ werden noch andere Reaktionsprodukte bei der Umsetzung von **4**⁺- **6**⁺ mit NH_3 beobachtet. Bei den Umsetzungen aller ionisierten 2-Halogen-3,3,3-trifluorpropene entsteht kompetitiv mit mäßiger Intensität ein Ion m/z 92 mit der Elementzusammensetzung C₃H₄F₂N⁺.

Im System 3,3,3-Trifluor-2-iodpropen-Radikalkation $6^{+}/NH_3$ werden noch weitere Produkte mit m/z 219, m/z 199 und m/z 196 beobachtet, die ebenfalls kompetitiv zur Substitution gebildet werden. Die Elementzusammensetzungen dieser Produkt-Ionen wurde durch Massenhochauflösung (FT-ICR-Auflösungsvermögen R = 300000) für m/z 219 zu C₃H₄F₂NI⁺⁺, für m/z 199 zu C₃H₃FNI⁺⁺ und für m/z 196 zu CF₃I⁺⁺ bestimmt.

Formal entspricht die Bildung von $C_3H_4F_2N^+$ (m/z 92) einer HF-Abspaltung aus dem Substitutionsprodukt $C_3H_5F_3N^+$ (m/z 112). Bei Analyse des Intensitäts-Zeit-Verlaufs von m/z 92 beobachtet man jedoch keinen sigmoidalen Anstieg. Das Ion m/z 92 entsteht daher kompetitiv zu m/z 112 und die HF-Abspaltung wird nicht durch einen erneuten Angriff des NH3 an das Substitutionsprodukt bewirkt. Offensichtlich ist die Addition von NH₃ an die ionisierte Doppelbindung der 2-Halogen-3,3,3-trifluorpropene so exotherm, daß die Überschußenergie in diesem β -distonischen Ion nicht nur die Abspaltung des Halogensubstituenten X (X= -Cl, -Br und -I) induziert, sondern zusätzlich noch zum Verlust von HF führt. Die Abspaltung von HF aus ionisierten fluorhaltigen Verbindungen wird durch die thermodynamische Stabilität von HF vorangetrieben und ist in der Massenspektrometrie gut bekannt.^[170-176] Die Strukturen dieser beiden Ionen wurden nicht weiter untersucht. Wahrscheinlich verläuft der Reaktionsmechanismus über eine 1,4-Eliminierung von HF aus dem Markownikow-Addukt, wobei ein ionisiertes 3-Amino-1,1-difluor-2-iodprop-1-en entsteht (Schema 4.5). Die Bildung eines hochangeregten Addukts erklärt auch die Bildung zusätzlicher Produkt-Ionen im Fall des Iod-Derivats 6⁺⁺. Auch hier ist die Addition des NH_3 an 6⁺⁺ zum Markownikow-Addukt immer noch so exotherm, daß statt der Iod-Abspaltung eine einfache und sogar doppelte HF-Abspaltung ermöglicht wird, wobei als ionische Produkte C₃H₄F₂NI⁺ (m/z 219) und $C_3H_3FNI^{+}$ (m/z 199) entstehen.

Schema 4.5: Möglicher Mechanismus zur Bildung von $C_3H_4F_2NI^+$ (m/z 219)

Dabei ist es möglich, daß im Markownikow-Addukt **6a**(**NH**₃) ein Fluor-Atom der CF₃-Gruppe mit einem Wasserstoff-Atom der NH₃⁺-Gruppe in Wechselwirkung steht. Einzelheiten der Bildung der Radikalkationen C₃H₄F₂NI⁺⁺ (m/z 219) und C₃H₃FNI⁺⁺ (m/z 199) bei der Reaktion von **6**⁺⁺ und NH₃ sind noch weitgehend unverstanden. Gleichermaßen werden analoge Ionen C₃H₄F₂NX⁺⁺ bzw. C₃H₃FNX⁺⁺ (X = -Cl, -Br) bei der Reaktion von **4**⁺⁺ oder **5**⁺⁺ mit NH₃ nicht gebildet, obwohl die Addition des NH₃ an **4**⁺⁺ bzw. **5**⁺⁺ unter Bildung des βdistonischen Addukt-Ions viel exothermer ist als bei **6**⁺⁺. Anmerkend sei hier erwähnt, daß die Reaktion von **4**⁺⁺ oder **5**⁺⁺ stoßkontrolliert erfolgt. Die Lebensdauer der Addukt-Ionen ist daher sehr kurz, so daß die HF-Eliminierung wegen der Überwindung von Energiebarrieren auftretender Übergangszustände nicht gut konkurrieren kann.

Ebenfalls völlig unerwartet bei der Reaktion von 6^{++} und NH₃ ist die Bildung des Ions m/z 196, das kompetitiv zu den Ionen m/z 92, m/z 112, m/z 199 und m/z 219 entsteht. Die Elementzusammensetzung entspricht CF₃I⁺⁺. Analoge Ionen CF₃Cl⁺⁺ oder CF₃Br⁺⁺ wurden bei der Reaktion von 4^{++} bzw. 5^{++} mit NH₃ nicht beobachtet. Nach welchem Reaktionsmechanismus die Bildung dieses Ions erfolgt, ist völlig unklar. Mit Sicherheit muß im chemisch aktivierten Markownikow-Addukt oder anti-Markownikow-Addukt eine Umlagerung erfolgen. Möglicherweise gibt es in diesem Ion zusätzlich eine F₂C⁻⁻F⁻⁻I-Wechselwirkung, die für die Bildung dieser Ionen von Bedeutung sein könnte.

Der Bildungmechanismus der Ionen m/z 92, m/z 199, m/z 219 und m/z 196 ist weitgehend unklar. Jedoch kann die Entstehung dieser Ionen bei der Reaktion von 4^{+} , 5^{+} bzw. 6^{+} mit NH₃ sicherlich der hohen Überschußenergie im chemisch angeregten Markownikow-Addukt oder anti-Markownikow-Addukt zugeschrieben werden, wie anhand der Abschätzung der Thermochemie von 4^{+} /NH₃ mit Hilfe von isodesmischen Reaktionen vorhergesagt wurde (Tabelle 4.1). Eine weitere Vermutung ist, daß die einzelnen Prozesse durch Bildung der βdistonischen Intermediate von 4^{+} , 5^{+} bzw. 6^{+} mit NH₃ sowohl thermodynamisch als auch dynamisch gesteuert werden.

Durch die Exothermizität des Additionsschritts unter Bildung der β -distonischen Addukt-Ionen wird auch die Reaktionsgeschwindigkeit der Gesamtreaktion der ionisierten 2-Halogenpropene beeinflußt. Daher steigt auch die Effektivität der Gesamtreaktion mit NH₃ von den ionisierten 2-Halogenpropenen zu den 2-Halogen-3,3,3-trifluorpropenen an, was im Einklang mit der Abschätzung der Thermochemie mit Hilfe von isodesmischen Reaktionen steht (Tabelle 4.1). Die vorhandene Überschußenergie in den chemisch angeregten Addukt-Ionen treibt die Folgereaktionen voran. Mit demselben Argument kann man auch die sinkende Effektivität der Substitutionsreaktion in der Reihe des Halogensubstituenten (X) Chlor, Brom und Iod der 2-Halogenpropen-Radikalkationen begründen. Auch hier hängt die Reaktionsgeschwindigkeit mit NH_3 wieder von der Überschußenergie in den chemisch aktivierten β -distonischen Addukt-Ionen ab.

4.5 Berechnung der Reaktionsenthalpien der Reaktionen von 2-Halogenpropen- und 2-Halogen-3,3,3-trifluorpropen-Radikalkationen mit NH₃

Zum besseren Verständnis der Reaktionen von 1^{+} , 2^{+} , 4^{+} und 5^{+} mit NH₃ und deren Reaktionsmechanismen wurden die Reaktionsenergieprofile mit Hilfe von ab initio Rechnungen auf dem Niveau BHandHLYP/6-31+G(d) bei 298 K nach Gleichung (3.14) berechnet. Dazu wurden die relativen Bildungsenthalpien aus den potentiellen Energien der Edukte, Produkte und relevanten Intermediaten des jeweiligen Reaktionssystems entlang der Reaktionskoordinate berechnet. Zur weiteren Kontrolle wurden für die dabei erhaltenen Geometrien je nach Rechenaufwand der jeweiligen Struktur Einzelpunktrechnungen auf dem Niveau BHandHLYP/6-311+G(2d,p)//BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVDZ/ /BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVTZ//BHandHLYP/6-31+G(d), CCSD(T)/cc-pVDZ//BHandHLYP/6-31+G(d) CCSD(T)/6-311+G(2d,p)/ und /BHandHLYP/6-31+G(d) durchgeführt (Kapitel 12.2). Die erhaltenen Geometrien, die potentiellen Energien, der Energiebeitrag bei 298 K, die kleinste Schwingungsfrequenz und der S²-Wert sind im Anhang abgebildet oder tabelliert (Kapitel 12.2) Als relativer Bezugspunkt Differenzen zur Berechnung der Reaktionsenthalpien und der Bildungsenthalpien wurde die Summe der Enthalpien des jeweiligen Halogenalken-Radikalkations und NH₃ verwendet.

In Schema 4.6 ist das Reaktionsenergieprofil von 1^{++} mit NH₃ abgebildet. Der nukleophile Angriff des NH₃ erfolgt bevorzugt am C1-Atom des 2-Chlorpropen-Radikalkations (1^{++}). Dabei entsteht das Markownikow-Addukt **1a**(**NH**₃), welches ein β -distonisches Ion ist. Dieses ist das globale Minimum entlang des Reaktionsenergieprofils. Die Differenz der Bildungsenthalpien für die Addition beträgt -174 kJ/mol. Ein weiteres Potentialminimum ist das anti-Markownikow-Addukt **1b**(**NH**₃), welches ebenfalls ein β -distonisches Ion ist. Die Differenz
der Bildungsenthalpien von **1b(NH₃)** beträgt -142 kJ/mol und liegt somit um 28 kJ/mol höher als von **1a(NH₃)**. Diese Energiedifferenz ist praktisch identisch mit den *ab initio* Rechnungen für das Reaktionssystem $C_2H_3Cl^{+}/NH_3$, für das die entsprechende Energiedifferenz + 30 kJ/mol beträgt.^[45,47]

Lediglich **1b**(**NH**₃) kann endotherm ein Chlor-Atom abspalten, wobei als ionisches Substitutionsprodukt das 2'-Propenylammonium-Ion entsteht. Auch hier entspricht die Reaktionsenthalpie für die Eliminierung des Chlorsubstituenten aus **1b**(**NH**₃) mit 53 kJ/mol wieder nahezu dem entsprechenden Wert des Reaktionssystems Chlorethen-Radikal/NH₃ mit 52 kJ/mol.^[45,47] Der Gesamtprozeß der Substitutionsreaktion ist mit -89 kJ/mol jedoch trotzdem um 27 kJ/mol weniger exotherm als bei dem Reaktionssystem C₂H₃Cl^{·+}/NH₃.^[45,47] Offenbar wird **1**^{·+} durch die elektronenschiebende CH₃-Gruppe im Vergleich zum Chlorethen-Radikalkation signifikant stabilisiert. Daß die Effektivität der Gesamtreaktion bei **1**^{·+}/NH₃ trotzdem erheblich schneller ist, läßt sich darauf zurückführen, daß die Substitution des Halogen-Atoms durch NH₃ nicht der einzige Prozeß ist. Anhand der experimentellen Befunde konkurriert der Protonentransfer mit der Substitutionsreaktion erfolgreich, was nach den Ergebnissen der *ab initio* Rechnungen gut verständlich ist. Der Protonentransfer von **1**^{·+} auf NH₃, ist mit Δ H_r = -87 kJ/mol ähnlich exotherm wie die Substitutionsreaktion. Das energetisch günstigste neutrale Produkt ist dabei das 2-Chlorallyl-Radikal.

Übergangszustände für die Addition des NH_3 an 1^{+} zum Markownikow-Addukt $1a(NH_3)$ und anti-Markownikow-Addukt $1b(NH_3)$ wurden nicht gefunden. Entweder gibt es dafür keine Übergangszustände oder die Energiebarriere ist zumindest sehr gering. Allgemein wurde anhand von theoretischen Untersuchungen gefunden, daß die Addition elektronenreicher Reaktanden an ionisierte Alkene ohne oder lediglich mit geringer Energiebarriere erfolgt.^[164] Dieses entspricht den experimentellen Beobachtungen, da die Substitutionsreaktion der Hauptprozeß ist und der exotherme Protonentransfer mit der entropisch anspruchsvolleren Substitutionsreaktion konkurriert.

Ein Übergangszustand für die 1,2-Umlagerung der NH_3 -Gruppe von $1a(NH_3)$ nach $1b(NH_3)$ wurde nicht gefunden. Ein Übergangszustand, der in diesem System gefunden wurde $(1c(NH_3))$, erwies sich definitiv nicht als ein Übergangszustand der Umlagerung. Für das Reaktionsenergieprofil hat dieser Zustand aber keine Relevanz. Die Addition ist zwar regioselektiv, wobei $1a(NH_3)$ bevorzugt gebildet wird. Dieses reagiert jedoch trotz energetischer Anregung nicht durch Abspaltung eines Chlor-Atoms weiter, sondern reagiert allenfalls durch H-Wanderung und Dissoziation in NH₄⁺ und das 2-Chlorallyl-Radikal oder durch Dissoziation zurück zum elektrostatischen Komplex. Anschließend ist dann erneute Addition unter Bildung des anti-Markownikow-Addukts **1b**(NH₃) und dessen Weiterreaktion wie die Substitutions- oder Protonentransferreaktion möglich. Die Substitutionsreaktion erfolgt daher durch direkte Bildung des anti-Markownikow-Addukts **1b**(NH₃) und nicht durch vorherige 1,2-Umlagerung der NH₃-Gruppe aus dem Markownikow-Addukt **1a**(NH₃).

Schema 4.6: Reaktionsenergieprofil der Reaktion von 1^{+} mit NH₃

Eine direkte Bildung des 2-Propenylimmonium-Ions, welches ein Tautomeres zum primären Substitutionsprodukt 2'-Propenylammonium-Ion ist, ist eher unwahrscheinlich. Dieses erfordert entsprechende H-Wanderungen in den Addukt-Ionen **1a**(**NH**₃) bzw. **1b**(**NH**₃). Nach der H-Umlagerung über **1d**(**NH**₃) entsteht das Radikalkation **1f**(**NH**₃) und über **1e**(**NH**₃) das Radikalkation **1g**(**NH**₃) (Schema 4.7). Das 2'-Propylimmonium-Ion kann aus **1f**(**NH**₃) durch Chlorabspaltung entstehen. Die Reaktionsenthalpie für die Bildung von **1f**(**NH**₃) beträgt -132 kJ/mol und die für die Bildung des 2'-Propylimmonium-Ions -190 kJ/mol. Aus **1g**(**NH**₃) ist eine Chlorabspaltung energetisch ungünstig, da allenfalls ein cyclisches Produkt gebildet werden kann. Da jedoch die Bildung des Übergangszustands **1d**(**NH**₃) mit +19 kJ/mol endotherm und die des Übergangszustands $1e(NH_3)$ mit -2 kJ/mol nur schwach exotherm ist, kann man annehmen, daß primär die Bildung vom 2'-Propylimmonium-Ion nicht erfolgt, sondern die Tautomerisierung nur nach einem basen-katalysierten *"shuttle*"-Mechanismus möglich ist.^[146,147]

Schema 4.7: Mögliche Übergangszustände und Umlagerungsprodukte der Wasserstoffwanderungen in **1a**(**NH**₃) bzw. **1b**(**NH**₃)

Die Reaktionsenthalpie der Substitutionsreaktion mit NH₃ ist bei 2^{·+} mit -110 kJ/mol signifikant exothermer als bei 1^{·+} (Δ H_r = -89 kJ/mol). Das globale Potentialminimum entlang des Reaktionsenergieprofils der Reaktion von 2^{·+} mit NH₃ (Schema 4.8) ist wiederum das Markownikow-Addukt 2a(NH₃). Für 2a(NH₃) beträgt die Differenz der Bildungsenthalpien -172 kJ/mol. Ein weiteres Potentialminimum ist das anti-Markownikow-Addukt 2b(NH₃), dessen Bildung eine entsprechende Differenz der Bildungsenthalpien von -143 kJ/mol aufweist.

Bemerkenswert ist, daß die Addition von NH_3 an 1^{+} und 2^{+} zu $1a(NH_3)$ und $2a(NH_3)$ bzw. $1b(NH_3)$ und $2b(NH_3)$ praktisch gleich exotherm ist. Auch die Differenzen der Bildungsenthalpien zur Bildung des anti-Markownikow-Addukts aus ionisiertem Chlorethen und Bromethen mit NH₃ (Δ H_r = -168 kJ/mol bzw. Δ H_r = -164 kJ/mol)^[45,47] sind nahezu identisch. Dagegen unterscheidet sich die Differenz der Reaktionsenthalpien der Addition von NH₃ an das Chlorethen- (Δ H^{298K} = -198 kJ/mol) und Bromethen-Radikalkation unter Bildung des Markownikow-Addukts (Δ H^{298K} = -184 kJ/mol) um 14 kJ/mol.^[45,47] Aufgrund der Ergebnisse für die Berechnung des Reaktionsenergieprofils für das Chlorderivat 1⁺⁺ wurde auf eine Berechnung eines möglichen Übergangszustands für die 1,2-NH₃-Verschiebung bei der Umwandlung von **2a**(NH₃) nach **2b**(NH₃) verzichtet. Diese Umwandlung ist durch Rück-dissoziation von **2a**(NH₃) und erneuter Addition zu **2b**(NH₃) leicht möglich. Nach dem Postulat, daß die Reaktionsgeschwindigkeit durch die Anregungsenergie des Markownikow-Addukts oder anti-Markownikow-Addukts maßgebend bestimmt wird, kann anhand der theoretischen Untersuchungen der experimentellen Befunde erklärt werden, daß die Effektivitäten der Substitutionsreaktion von 1⁺⁺ und 2⁺⁺ mit NH₃ praktisch gleich sind (Tabelle 4.3).

Schema 4.8: Reaktionsenergieprofil der Reaktion von 2^{°+} mit NH₃

Als weitere Reaktion ist auch der Protonentransfer von 2^{+} auf NH₃ mit Δ H_r = -77 kJ/mol exotherm, wenn das energetisch günstigste neutrale Deprotonierungsprodukt 2-Bromallyl-Radikal entsteht. Dieser Prozeß konkurriert nach den experimentellen Ergebnissen mit der Substitutionsreaktion. Als alternatives neutrales Deprotonierungsprodukt ist auch das 2-Brompropenyl-Radikal möglich. Dessen Reaktionsenthalpie ist mit Δ H_r = -28 kJ/mol zwar exotherm, dieser Prozeß ist jedoch energetisch deutlich ungünstiger und kann daher möglicherweise mit der Bildung des 2-Bromallyl-Radikals nicht konkurrieren. Der Protonentransfer bei 2^{+} /NH₃ ist um 10 kJ/mol weniger exotherm als bei bei 1^{+} /NH₃. Experimentell kann man jedoch keinen Unterschied des Intensitätsverhältnisses von Substitution/Protonentransfer beobachten, da die Verhältnisse mit 56:44 bei 1^{+} /NH₃ und 58:42 bei 2^{+} /NH₃ nahezu gleich sind. Da die Gesamtreaktion beider Reaktionssysteme stoßkontrolliert verläuft, können auch keine signifikanten Unterschied der Effektivitäten beobachtet werden. Die Ergebnisse der Analyse der Reaktionsenergieprofile für 1^{++} und 2^{++} /NH₃ mit Hilfe von *ab initio* Berechnungen stimmen somit mit den experimentellen Befunden überein.

Das Reaktionsenergieprofil von **4**⁺⁺ mit NH₃ ist in Schema 4.9 abgebildet. Ebenso wie bei den bisher beschriebenen Reaktionsenergieprofilen der Reaktionssysteme 2-Halogenpropen-Radikalkationen/NH₃ erfolgt der nukleophile Angriff am C1-Atom. Dabei wird das Markownikow-Addukt **4a**(NH₃) gebildet. Dieses β -distonische Ion entspricht dem globalen Minimum des Reaktionsenergieprofils. Die Differenz der Bildungsenthalpien für die Addition beträgt -240 kJ/mol und ist um 66 kJ/mol exothermer als bei **1a**(NH₃). Auch die Bildung des anti-Markownikow-Addukts **4b**(NH₃) ist mit Δ H_r = -200 kJ/mol sehr exotherm und um 58 kJ/mol exothermer als bei **1b**(NH₃). Die Differenz der Bildungsenthalpien von **4a**(NH₃) und **4b**(NH₃) beträgt 40 kJ/mol. Sie liegt in dem erwarteten Bereich. Die Anregungsenergie der Addukt-Ionen **4a**(NH₃) und **4b**(NH₃) ist viel größer als bei den entsprechenden Addukt-Ionen von **1**⁺⁺ und **2**⁺⁺ mit NH₃.

Die Bildung des Substitutionsproduktes $C_3H_5F_3N^+$ ist mit $\Delta H_r = -149$ kJ/mol exotherm und damit sogar um 60 kJ/mol exothermer als bei $1^{+}/NH_3$. Der Grund hierfür ist die geringere Stabilität des Edukts 2-Chlor-3,3,3-trifluorpropen-Radikalkation.

Ein Protonentransfer von 4^{+} auf NH₃ ist aufgrund der CF₃-Gruppe nur unter Bildung des 2-Chlor-3,3,3-trifluorpropenyl-Radikals möglich und mit $\Delta H_r = -72$ kJ/mol exotherm. Dieser Prozeß ist aber deutlich weniger exotherm als die Substitutionsreaktion. Experimentell beobachtet man bei der Reaktion von 4^{+} mit NH₃ die Bildung von NH₄⁺. Nachweislich entsteht dieses Ion jedoch konsekutiv aus dem Substitutionsprodukt $C_3H_5F_3N^+$ und NH_3 . Nach den *ab initio* Rechnungen ist diese Deprotonierungsreaktion exotherm.

Aufgrund des besonders hohen Anteils an Überschußenergie der Addukt-Ionen **4a**(**NH**₃) und **4b**(**NH**₃) läßt sich auch die Bildung des Ions $C_3H_4F_2N^+$, m/z 92, erklären. Dieses Ion entsteht kompetitiv zum Substitutionsprodukt $C_3H_5F_3N^+$ (m/z 112), vermutlich ebenfalls aus den energetisch stark angeregten Addukt-Ionen **4a**(**NH**₃) bzw. **4b**(**NH**₃), wobei eine Abspaltung von HF die Substitution begleitet. Der Reaktionsmechanimus für die Bildung dieses Produkts ist nicht genau bekannt. Detaillierte Studien zum Bildungsmechanismus erfordern umfangreiche Untersuchungen zur Struktur von $C_3H_4F_2N^+$ zum Beispiel experimentell durch Ion/Molekül-Reaktionen und theoretisch durch *ab initio* Rechnungen aller möglichen Isomeren und Übergangszustände von $C_3H_4F_2N^+$, die hier nicht durchgeführt wurden.

Schema 4.9: Reaktionsenergieprofil der Reaktion von 4^{°+} mit NH₃

Allerdings entstehen bei der Reaktion von ionisiertem 3,3,3-Trifluor-2-iodpropen 6^{+} mit NH₃ als weitere Produkte auch die Ionen m/z 219 und m/z 199 durch Abspaltung von HF. Man kann vermuten, daß es eine Wechselwirkung eines Wasserstoff-Atoms der positiv geladenen ⁺NH₃-Gruppe mit einem Fluor-Atom der CF₃-Gruppe gibt, die eine einfache oder sogar auch doppelte HF-Abspaltung aus dem Markownikow-Addukt **6a**(NH₃) bzw. anti-Markownikow-Addukt, **6b**(NH₃), ermöglicht. Eine HF-Abspaltung ist allgemein thermodynamisch günstig.^[170-176] Die Bildung von m/z 92 wird bei allen Umsetzungen der ionisierten 2-Halogen-3,3,3-trifluorpropene mit NH₃ beobachtet. Möglicherweise gibt es auch bei **4a**(NH₃) bzw. **4b**(NH₃) eine entsprechende H⁻⁻F-Wechselwirkung, die die HF-Eliminierung neben der Halogenabspaltung begünstigt.

Das Reaktionsenergieprofil des Reaktionssystems von $5^{+}/NH_3$ entspricht der des Reaktionssystems $4^{+}/NH_3$. In Schema 4.10 Ist das Reaktionsenergieprofil der Reaktion von 5^{+} mit NH₃ abgebildet.

Bei 5⁻⁺/NH₃ ist die Bildung des Substitutionsprodukts mit $\Delta H_r = -158$ kJ/mol um 9 kJ/mol geringfügig exothermer als bei 4⁻⁺/NH₃. Das Markownikow-Addukt **5a**(NH₃) ist wie bei den anderen hier untersuchten Reaktionssystemen Halogenpropen-Radikalkation/NH₃ das globale Minimum entlang des Reaktionsenergieprofils. Die Differenz der Bildungsenthalpien für die Addition ist mit $\Delta H^{298K} = -228$ kJ/mol wieder sehr hoch. Die Exothermizität der Bildung von **5a**(NH₃) ist jedoch wie erwartet um 12 kJ/mol geringer als bei **4a**(NH₃). Auch die Bildung des anti-Markownikow-Addukts **5b**(NH₃) ist mit $\Delta H_r = -192$ kJ/mol sehr exotherm. Die Exothermizität dieses Reaktionsschrittes ist um 8 kJ/mol geringer als bei **4b**(NH₃). Die Vermutung, daß die Exothermizität des Additionsschrittes von Brom nach Chlor als Halogensubstituent (X) fällt, kann somit nur in geringem Ausmaß bestätigt werden. Dagegen steigt die Exothermizität des Gesamtprozesses der Substitution von Chlor nach Brom als Halogensubstituent (X). Auch der Protonentransfer ist mit $\Delta H_r = -55$ kJ/mol exotherm. Die Bildung von NH₄⁺ ist daher sowohl auf diesen Prozeß als auch auf einen Protonentransfer des primären Substitutionsprodukts auf NH₃ zurückzuführen.

Die relativen Bildungsenthalpien der beiden isomeren β -distonischen Addukt-Ionen sind um 54 kJ/mol für **5a**(**NH**₃) bzw. 50 kJ/mol für **5b**(**NH**₃) höher als die der entsprechenden β -distonischen Addukt-Ionen des Reaktionssystems 2^{·+}/NH₃. Dieses ist wieder auf die im Ver-

gleich zum 2-Brompropen-Radikalkation, 2^{+} , geringere Stabilität vom 2-Brom-3,3,3-trifluorpropen-Radikalkation, 5^{+} , zurückzuführen.

Schema 4.10: Reaktionsenergieprofil der Reaktion von 5⁺⁺ mit NH₃

Die theoretischen Untersuchungen zur Thermochemie der Reaktion von 1^{+} , 2^{+} , 4^{+} und 5^{+} mit NH₃ durch *ab initio* Rechnungen auf dem Niveau BHandHLYP/6-31+G(d) bestätigen insgesamt die experimentellen Beobachtungen gut.

Die mit BHandHLYP erhaltenen Geometrien wurden Einzelpunktrechnungen auf dem Niveau BHandHLYP/6-311+G(2d,p)//BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVDZ//BHandHLYP/6-31+G(d), CCSD(T)/cc-pVDZ//BHandHLYP/6-31+G(d) und CCSD(T)/6-311+G(2d,p)//BHandHLYP/6-31+G(d) unterzogen.

Die berechneten Reaktionsenthalpien für die Substitutions- und Deprotonierungsreaktion sowie die Differenzen der Bildungsenthalpien des Markownikow-Addukts und des anti-Markownikow-Addukts von NH₃ an die Halogenalken-Radikalkationen 1^{+} , 2^{+} , 4^{+} bzw. 5^{+} sind bei Rechnungen auf dem Niveau BHandHLYP/6-311+G(2d,p)//BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVDZ//BHandHLYP/6-31+G(d) und BHandHLYP/aug-cc-

pVTZ//BHandHLYP/6-31+G(d) praktisch identisch oder zumindest sehr ähnlich, während die auf dem Niveau CCSD(T)/6-311+G(2d,p)//BHandHLYP/6-31+G(d) berechneten Reaktionsenthalpien und Differenzen der Bildungsenthalpien geringfügig größer sind als bei den zuvor genannten Methoden. Dagegen weichen die auf dem Niveau CCSD(T)/cc-pVDZ/ /BHandHLYP/6-31+G(d) berechneten Reaktionsenthalpien und Differenzen der Bildungsenthalpien meistens signifikant von den Werten ab, die mit den übrigen Methoden berechnet wurden. Offensichtlich haben diffuse Basissatzfunktionen auf die berechneten Bildungsenthalpien einen signifikanten Einfluß. Da im Basissatz cc-pVDZ diffuse Basissatzfunktionen nicht enthalten sind, ist diese Methode für den vorliegenden Fall nicht gut geeignet. Die zuverlässigsten Ergebnisse liefert sehr wahrscheinlich die Methode CCSD(T)/6-311+G(2d,p)//BHandHLYP/6-31+G(d).

Die Einzelpunktrechnungen bestätigen die Aussagen über die Reaktionsenergieprofile, die mit der Methode BHandHLYP/6-31+G(d) erhalten wurden. Die berechneten Reaktionsenthalpien und Differenzen der Bildungsenthalpien sind jetzt meistens etwas größer.

4.6 Reaktionen von Brombuten-Radikalkationen mit Ammoniak

In diesem Kapitel werden die Reaktionen von ionisiertem (*E*)-2-Brombut-2-en ((*E*)-7⁺), (*Z*)-2-Brombut-2-en ((*Z*)-7⁺), (*E*)-1-Brombut-2-en ((*E*)-8⁺), (*Z*)-1-Brombut-2-en ((*Z*)-8⁺) und 4-Brombut-1-en (9⁺) mit NH₃ diskutiert. Die Reaktionen dieser Brombuten-Radikalkationen mit NH₃ sind deshalb von Interesse, da es sich hierbei um vinylisch, allylisch bzw. homoallylisch gebundene Brom-Atome handelt (Schema 4.11).

Schema 4.11: Strukturen von (*E*)-7⁺, (*Z*)-7⁺, (*E*)-8⁺, (*Z*)-8⁺ und 4-Brombut-1-en 9⁺

Für die Reaktion des Radikalkations von 2-Brombut-2-en ((E)-7⁺ und (Z)-7⁺) mit vinylisch gebundenem Bromsubstituent wird ein Reaktionsverhalten gegenüber NH₃ erwartet, daß weitgehend dem des Radikalkations von Bromethen und 2-Brompropen 2⁺ entspricht.^[45,47,50]

Aufgrund des zusätzlichen CH₃-Substituenten wird neben der Substitution des Brom-Atoms durch NH₃ verstärkt ein Protonentransfer auf NH₃ erwartet. Signifikante Unterschiede der Reaktivitäten des (*E*)-Isomeren, (*E*)- 7^{++} , und des (*Z*)-Isomeren, (*Z*)- 7^{++} , gegenüber NH₃ werden dagegen nicht erwartet, wenn die Addition des NH₃ an die ionisierte Doppelbindung der entscheidende Schritt der Reaktion ist.

Das 1-Brombut-2-en-Radikalkation $\mathbf{8}^{+}$ weist ein allylisch gebundenes Brom-Atom auf. Auch hier wird der Protonentransfer auf NH₃ erwartet. Interessant bei diesem Reaktionssystem ist, ob eine Substitution des Brom-Atoms erfolgt und ob es weitere Hinweise auf Einzelheiten des Reaktionsmechanismus der Substitutionsreaktion gibt.

Das 4-Brombut-1-en-Radikalkation **9**⁺⁺ weist ein homoallylisch gebundenes Brom-Atom auf. Neben der Substitutionsreaktion und dem Protonentransfer können möglicherweise andere Prozesse stattfinden. Insbesondere wenn ein energetisch angeregtes Markownikow-Addukt oder anti-Markownikow-Addukt gebildet wird, kann neben der Substitutionsreaktion auch Fragmentierung erfolgen. Auch für diesen Fall können interessante Hinweise zum Additions-Eliminierungsmechanismus erwartet werden.

Von besonderem Interesse ist bei allen diesen Reaktionssystemen der Nachweis für die Allgemeingültigkeit des Additions-Eliminierungsmechanismus und der Konkurrenz der Substitutionsreaktion mit der Protonentransferreaktion. Möglicherweise gibt es weitere Hinweise, ob der Protonentransfer ebenfalls über einen Additions-Eliminierungsmechanismus mit zusätzlichen Umlagerungsschritten erfolgt, wie dieses bereits in den vorherigen Kapiteln vermutet wurde.

In Abbildung 4.10 - 4.12 sind die Intensitäts-Zeit-Verläufe der Reaktion von $7^{+}-9^{+}$ mit NH₃ dargestellt. Alle drei Kurvenverläufe zeigen, daß die Reaktionen nach pseudo-erster Ordnung erfolgen. In Tabelle 4.5 sind die bimolekularen Geschwindigkeitskonstanten (k_{bi}), die berechneten Stoßgeschwindigkeitskonstanten (k_{cpt}) und die Effektivitäten (Eff %) der Reaktion von $7^{+}-9^{+}$ mit NH₃ aufgeführt. Das Intensitätsverhältnis von Substitution/Deprotonierung und die Effektivität des jeweiligen Einzelprozesses sind in Tabelle 4.6 aufgelistet.

Edukt	$k_{bi} [10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	$k_{cpt} [10^{-10} cm^3 mol^{-1} s^{-1}]$	Eff.%
7 [.] +	12,4	20,3	61
8 ⁺	17,3	20,3	81
9 [.] +	13,1	20,3	65

Tabelle 4.5: Effektivitäten (Eff %), bimolekulare Geschwindigkeitskonstanten k_{bi} und berechnete Stoßgeschwindigkeitskonstanten k_{cpt} der Reaktion von **7**⁺- **9**⁺ mit NH₃

Edukt	Verzweigungsverhältnis	Eff.%
	Substitution/Deprotonierung	Substitution/Deprotonierung
7`+	27/73	16/45
8 [•] +	81/19	72/16
9 [.] +	2/12	1/8

Tabelle 4.6: Intensitätsverhältnis von Substitution/Deprotonierung und Effektivität des jeweiligen Einzelprozesses der Reaktion von **7**⁺⁺, **8**⁺⁺ und **9**⁺⁺ mit NH₃

Abbildung 4.10: Intensitäts-Zeit-Verlauf der Reaktion von (Z)-7^{·+} mit NH₃

Abbildung 4.11: Intensitäts-Zeit-Verlauf der Reaktion von 8'+ mit NH₃

Abbildung 4.12: Intensitäts-Zeit-Verlauf der Reaktion von 9^{°+} mit NH₃

Bei der Umsetzung von ionisiertem (E)-2-Brombut-2-en (E)-7⁺⁺ oder (Z)-2-Brombut-2-en (Z)-7⁺⁺ mit NH₃ entstehen zwei ionische Reaktionsprodukte (Abbildung 4.10). Am Ende der Reaktion wird das Ion m/z 72 mit einer Intensität von 27 % und das Ion m/z 18 mit einer Intensität von 73 % gebildet. Signifikante Unterschiede der Reaktivität der beiden isomeren Radikalkationen (E)-7⁺⁺ und (Z)-7⁺⁺ mit NH₃ wurden nicht beobachtet. Die Effektivität der Gesamtreaktion beträgt jeweils 61 %. Die Reaktion verläuft daher schnell, aber nicht stoßkontrolliert.

Das Ion m/z 72 hat die Elementzusammensetzung $C_4H_{10}N^+$ und entspricht dem erwarteten ionischen Produkt der Substitution des Brom-Atoms von 7^{+} durch NH₃. Das Ion m/z 18 entspricht NH₄⁺ und entsteht durch Protonentransfer von **7**⁺ auf NH₃. Somit ist das Verhalten von 7⁺ bei der Reaktion mit NH₃ ähnlich wie das der Reaktion von 2⁺ mit NH₃. Bemerkenswert ist hier, daß das Intensitätsverhältnis von Substitution/Deprotonierung etwa 3:7 beträgt. Das entsprechende Intensitätsverhältnis bei $1^{+}/NH_3$ war 6:4. Die Protonentransferreaktion ist mit -41 kJ/mol und die Substitutionsreaktion ist mit -78 kJ/mol nach den Berechnungen mit BHandHLYP/6-31g(d) jeweils deutlich exotherm (Kapitel 12.2). Die Erwartung, daß der Protonentransfer bei 7⁺/NH₃ wegen des größeren Anteils acider Wasserstoff-Atome verstärkt erfolgt, bestätigt sich hier. Dieser Prozeß dominiert deutlich gegenüber der entropisch Substitutionsreaktion. anspruchsvolleren Die Prozesse der Substitution und der Protonentransferrreaktion sind in Schema 4.12 abgebildet.

Schema 4.12: Substitutions- und Protonenaustauschreaktion von 7⁺⁺ mit NH₃

Für das Reaktionssystem $7^{+}/NH_3$ kann angenommen werden, daß der Additionsschritt unter Bildung des energetisch angeregten Markownikow-Addukts $7a(NH_3)$ bzw. des anti-Markownikow-Addukts $7b(NH_3)$ ebenso wie bei $2^{+}/NH_3$ exotherm ist. Daher sind die β distonischen Ionen $7a(NH_3)$ bzw $7b(NH_3)$ energetisch angeregt.

Wie bei der Reaktion der anderen ionisierten Bromalken-Radikalkationen mit NH_3 wurden auch bei der Reaktion von ionisiertem 1-Brombut-2-en **8**⁺ mit NH_3 zwei Produkte beobachtet (Abbildung 4.11).

Hauptprodukt ist ein Ion mit m/z 72, was am Ende der Reaktion eine Intensität von 81 % aufweist. Die Elementzusammensetzung entspricht $C_4H_{10}N^+$. Damit entspricht dieses Produkt-Ion der Substitution des Brom-Atoms durch NH₃. Als zweites Produkt entsteht NH₄⁺, m/z 18, welches am Ende der Reaktion eine Intensität von 19 % aufweist. Die Gesamtreaktion verläuft mit einer Effektivität von 85 % nahezu stoßkontrolliert. Besonders auffällig ist, daß das Intensitätsverhältnis des Substitutions-/Deprotonierungsprodukts etwa 4:1 beträgt (Tabelle 4.6).

Die Protonentransferreaktion ist unabhängig von der Struktur des gebildeten Radikals exotherm (Kapitel 12.2).

Für den Mechanismus der Substitution des allylisch gebundenen Brom-Atoms von $8'^+$ durch NH₃ gibt es zwei mögliche Reaktionsmechanismen. Die eine Möglichkeit ist ein Reaktionsverlauf über einen S_N2-Mechanismus, während die andere Möglichkeit über das Markownikow-Addukt **8a(NH₃)** oder das anti-Markownikow-Addukt **8b(NH₃)** nach NH₃-Verschiebung oder Isomerisierung durch H-Wanderung nach dem bereits postulierten Additions-Eliminierungsmechanismus erfolgt (Schema 4.13). Die Substitutionsreaktion ist unabhängig von der Struktur der entstehenden Produkte exotherm (Kapitel 12.2). Die Bildung des cyclischen Substitutionsprodukts aus **8b(NH₃)** ist weniger exotherm und erfordert möglicherweise eine Energiebarriere.^[177,178]

Ein Reaktionsverlauf über den S_N^2 -Mechanismus erfordert wahrscheinlich aufgrund des dabei gebildeten pentavalenten Übergangszustands eine hohe Energiebarriere.^[31,32] Da aber die Gesamtreaktion nahezu stoßkontrolliert verläuft und die Substitutionsreaktion mit 85 % relativer Intensität der Hauptprozeß ist, ist der Additions-Eliminierungsmechanismus wahrscheinlicher. Dabei ist die Addition wie bei den verwandten Reaktionssystemen sicherlich barrierelos oder weist eine geringe Energiebarriere auf. Allerdings ist im Falle des Additions-Eliminierungsmechanismus die Addition von NH₃ an die ionisierte Doppelbindung nicht so regioselektiv wie bei der Reaktion der Radikalkationen der vinylischen Halogenalkene mit NH₃, da die Bildungsenthalpien von **8a(NH₃)** und **8b(NH₃)** wahrscheinlich nicht sehr differieren. Daher können die beiden Addukte **8a(NH₃)** und **8b(NH₃)** schnell abreagieren.

Schema 4.13: Möglicher Reaktionsmechanismus zur Bildung von $C_4H_{10}N^+$ (m/z 72) aus der Reaktion von $8^{\cdot +}$ mit NH₃

Hauptprodukt bei der Reaktion von 4-Brombut-1-en 9^{+} mit NH₃ ist ein Ion m/z 58, das am Ende der Reaktion eine relative Intensität von 48 % hat (Abbildung 4.12). Die Elementzusammensetzung entspricht C₃H₈N⁺. Das zweitintensivste Produkt ist das Ion m/z 44 mit einer relativen Intensität von 33 % am Ende der Reaktion und einer Elementzusammensetzung von C₂H₆N⁺. Der Protonentransfer von 9^{+} auf NH₃ unter Bildung von NH₄⁺, m/z 18, findet lediglich mit einer relativen Intensität von 12 % am Ende der Reaktion statt. Als weitere Produkte mit geringer Intensität werden die Ionen m/z 45 und m/z 72 mit einer relativen Intensität von 5 % bzw. von 2 % gebildet. Die Elementzusammensetzung des Ions m/z 72 entspricht dem Substitutionsprodukt C₄H₁₀N⁺, die des Ions m/z 45 entspricht C₂H₇N⁺⁺. Die Effektivität der Gesamtreaktion beträgt 65 %. Damit ist die Gesamtreaktion ebenso schnell wie bei 7^{++} , jedoch langsamer als bei 8^{++} .

Die Bildung der Ionen $C_3H_8N^+$, m/z 58, und $C_2H_6N^+$, m/z 44, läßt sich zwanglos durch den Additions-Eliminierungsmechanismus erklären (Schema 4.14). Nach der Addition des NH₃ an die ionisierte Doppelbindung des **9**⁺⁺ werden das Markownikow-Addukt **9a(NH₃)** bzw. das anti-Markownikow-Addukt **9b(NH₃)** gebildet. Die Regioselektivität ist hier wahrscheinlich noch geringer als bei dem Reaktionssystem **8**⁺⁺/NH₃, da das Brom-Atom homoallylisch gebunden ist. Daher erfolgt praktisch eine Bildung der β-distonischen Addukt-Ionen **9a(NH₃)** bzw. **9b(NH₃)** zu gleichen Anteilen. Das Ion $C_3H_8N^+$, m/z 58, wird aus dem Markownikow-Addukt **9a(NH₃)** gebildet, während das Ion $C_2H_6N^+$, m/z 44, aus dem anti-Markownikow-Addukt **9b(NH₃)** entsteht. Beide Prozesse können im erweiterten Sinne als Substitution aufgefaßt werden, wobei die Abgangsgruppe entweder $C_2H_4Br^-$ oder CH_2Br^- ist. Die Reaktionsenthalpie ist mit -70 kJ/mol bzw. -58 kJ/mol (BHandHLYP/6-31+G(d)) berechnet worden (Kapitel 12.2).

Der Protonentransfer von 9^{+} auf NH₃ unter Bildung von NH₄⁺ ist überraschenderweise lediglich eine Nebenreaktion. Obwohl dieser Prozeß nach den Berechnungen auf dem Niveau BHandHLYP/6-31+G(d) mit -123 kJ/mol sehr exotherm ist, kann er dennoch nicht gut mit den Fragmentierungsreaktionen unter Bildung der Ionen m/z 58 und m/z 44 konkurrieren. Offenbar ist die Bildung der Addukte **9a(NH₃)** bzw. **9b(NH₃)** erheblich exotherm und treibt die Weiterreaktion voran, wobei bevorzugt die Produkt-Ionen C₃H₈N⁺ (m/z 58) und C₂H₆N⁺ (m/z 44) entstehen.

Schema 4.14: Bildung der Ionen $C_{3}H_{8}N^{+}$ (m/z 58), $C_{2}H_{6}N^{+}$ (m/z 44) und $C_{2}H_{7}N^{+}$ (m/z 45)

Der Bildungsmechanismus des Ions $C_2H_7N^{+}$ (m/z 45) ist zunächst unklar. Dieses Produkt entspricht einer C_2H_3Br -Abspaltung aus dem energetisch angeregten Addukt **9a(NH₃)** bzw. **9b(NH₃)**. Durch eine 1,3-H-Verschiebung oder doppelte 1,2-H-Verschiebung in dem Addukt-Ion **9a(NH₃)** kann die Bildung von m/z 45 durch Fragmentierung zu 'CH₂-CH₂-NH₃⁺ erfolgen (Schema 4.14) und ist mit -60 kJ/mol berechnet worden (Kapitel 12.2). Die Substitutionsreaktion unter Bildung von $C_4H_{10}N^+$ (m/z 72) findet nur mit sehr geringer Intensität statt. Die Bildung dieses Ions kann aus **9a(NH₃)** durch 1,2-H-Verschiebung oder aus **9b(NH₃)** durch 1,3-H-Verschiebung oder doppelte 1,2-H-Verschiebung vor der Brom-Abspaltung erfolgen (Schema 4.15). Möglich sind aber auch Bildungswege ohne entsprechende H-Verschiebungen, wobei cyclische Produkte entstehen (Schema 4.15). Diese Reaktion ist unabhängig von der Struktur des entstehenden Produkts sehr exotherm (Kapitel 12.2), kann aber dennoch nicht mit den anderen Prozessen konkurrieren.

Schema 4.15: Bildung von $C_4H_{10}N^+$ (m/z 72)

5. Reaktionen von Bromalken-Radikalkationen mit aliphatischen Aminen

5.1 Einleitung

In diesem Kapitel werden die Reaktionen von ionisiertem 2-Brompropen (2^{+}), 2-Brom-3,3,3trifluorpropen (5^{+}), 2-Brombut-2-en (7^{+}), 1-Brombut-2-en (8^{+}) und 4-Brombut-1-en (9^{+}) mit Methylamin, Ethylamin und Dimethylamin im FT-ICR vorgestellt und diskutiert.

Als Reaktionen der Bromalken-Radikalkationen mit den aliphatischen Aminen werden Ladungsaustauschreaktion, Protonentransferreaktion und Substitution des Brom-Atoms durch das Amin erwartet. Als weitere Reaktion ist eine Hydridübertragung vom neutralen Amin auf das Bromalken-Radikalkation möglich, da dieser Prozeß bei den Reaktionen der Halogenethen-Radikalkationen mit aliphatischen Aminen erfolgte.^[41,45,46]

Zum Verständnis der Reaktivität der Brompropen-Radikalkationen, 2^{+} und 5^{+} , und der Brombuten-Radikalkationen, 7^{+} - 9^{+} , gegenüber Ammoniak wurden die Reaktionsenthalpien mittels isodesmischen Reaktionen abgeschätzt (Kapitel 12.3).

Die Ladungsaustauschreaktion kann aufgrund der im Vergleich zu Ammoniak geringeren vertikalen Ionisierungsenergie des Amins ein intensiver Prozeß werden, da die Ionisierungsenergie der untersuchten Bromalkene allgemein höher ist. In Tabelle 5.1a sind die vertikalen Ionisierungsenergien der hier verwendeten aliphatischen Amine Methylamin, Ethylamin und Dimethylamin und in Tabelle 5.1b die von 2-Brompropen (2), 2-Brom-3,3,3-trifluorpropen (5), 2-Brombut-2-en (7), 1-Brombut-2-en (8) und 4-Brombut-1-en (9^{'+}) aufgeführt. Die Werte der vertikalen Ionisierungsenergien wurden aus der NIST-Datenbank entnommen^[162] oder mit Hilfe von isodesmischen Reaktionen abgeschätzt (Anhang 12.4).

Amin	Methylamin	Ethylamin	Dimethylamin
Vertikale Ionisierungsenergie [eV]	9,62	9,50	8,92

Tabelle 5.1a: Vertikale Ionisierungsenergien hier verwendeter aliphatischer Amine

Amin	2	5*	(E) -7 *	(Z)-7*	(E) -8 *	(Z)-8*	9
Vertikale Ionisierungsenergie [eV]	9,58	10,6	9,0	8,9	9,4	9,5	9,9

Tabelle 5.1b: Vertikale Ionisierungsenergien der Bromalkene 2, 5, 7, 8, 9 (* abgeschätzt mit Hilfe von isodesmischen Reaktionen)

Ebenso kann ein Protonentransfer auf das Amin ein intensiver Prozeß sein, da die Protonenaffinitäten der hier verwendeten Amine höher sind als die von NH₃ und bei der Reaktion der Bromalken-Radikalkationen mit NH₃ der Protonentransfer bereits ein intensiver Prozeß war. In Tabelle 5.2 sind die Protonenaffinitäten der hier verwendeten aliphatischen Amine sowie NH₃ aufgeführt. Alle Werte der Protonenaffinitäten wurden ebenfalls aus der NIST-Datenbank entnommen.^[162]

Amin	Methylamin	Ethylamin	Dimethylamin	NH ₃
Protonenaffinität [kJ/mol]	899,0	912,0	929,5	853,6

Tabelle 5.2: Protonenaffinitäten hier verwendeter aliphatischer Amine sowie NH₃

Wegen der Konkurrenz von Ladungsaustausch und Protonentransfer kann die Substitutionsreaktion dagegen nur mit mäßiger oder geringer Intensität erfolgen. Von Interesse ist das Intensitätsverhältnis von Substitution/Deprotonierung/Umladung der Bromalken-Radikalkationen bei den hier verwendeten Aminen und ein Vergleich mit den Reaktionssystemen Bromalken-Radikalkationen/NH₃.

5.2 Reaktionen von Bromalken-Radikalkationen mit Methylamin

Der jeweilige Intensitäts-Zeit-Verlauf der Molekül-Ionen von 2-Brompropen 2^{+} , 2-Brom-3,3,3-trifluorpropen 5^{+} , 2-Brombut-2-en 7^{+} , 1-Brombut-2-en 8^{+} und 4-Brombut-1-en 9^{+} mit CH₃NH₂ ist in Abbildung 5.1-5.5 dargestellt. Alle Intensitäts-Zeit-Verläufe zeigen, daß die Reaktion nach pseudo-erster Ordnung erfolgt. In Tabelle 5.3 sind die bimolekularen Geschwindigkeitskonstanten (k_{bi}), berechneten Stoßeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %) der Reaktion von 2^{+} , 5^{+} , 7^{+} , 8^{+} und 9^{+} mit CH₃NH₂ aufgeführt. Für alle hier untersuchten Bromalken-Radikalkationen erfolgt die Reaktion mit CH₃NH₂ stoßkontrolliert.

Abbildung 5.1: Intensitäts-Zeit-Verlauf von 2^{·+} mit CH₃NH₂

Abbildung 5.2: Intensitäts-Zeit-Verlauf von $\mathbf{5}^{+}$ mit CH₃NH₂

Abbildung 5.3: Intensitäts-Zeit-Verlauf von (E)-7⁺ mit CH₃NH₂

Abbildung 5.4: Intensitäts-Zeit-Verlauf von $8^{\cdot+}$ mit Methylamin

Abbildung 5.5: Intensitäts-Zeit-Verlauf von 9^{·+} mit Methylamin

Edukt	k _{bi}	k _{cpt}	Eff.%
	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	
2 ^{·+}	17,5	16,0	109
5 ⁺	15,4	15,5	99
7`+	16,4	15,8	103
8 [•] +	16,9	15,8	107
9 [.] +	14,1	15,8	89

Tabelle 5.3: Bimolekulare Geschwindigkeitskonstanten (k_{bi}), berechnete Stoßgeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %) von 2^{·+}, 5^{·+}, 7^{·+}, 8^{·+}, 9^{·+}/CH₃NH₂

Bei der Umsetzung von $2^{\cdot+}$ mit CH₃NH₂ entsteht als Hauptprodukt protoniertes Methylamin CH₃NH₃⁺, m/z 32, welches am Ende der Reaktion eine Intensität von 80 % besitzt. Weitere Reaktionsprodukte sind das Methylamin-Radikalkation CH₃NH₂^{·+}, m/z 31, CH₄N⁺,m/z 30, und $C_4H_{10}N^+$, m/z 72. Das Produkt-Ion $C_4H_{10}N^+$, m/z 72, entspricht der Substitution des Brom-Atoms durch CH₃NH₂ und weist eine Intensität von 20 % am Ende der Reaktion auf. Das Ion CH₃NH₃⁺, m/z 32, wird wahrscheinlich auf drei verschiedenen Reaktionswegen gebildet. Der erste Reaktionsweg erfolgt über Protonentransfer von 2^{+} auf CH₃NH₂. Als neutrales Produkt entsteht dann das 2-Bromallyl-Radikal. Der analoge Prozeß ist bereits bei der Umsetzung von 2^{+} mit NH₃ beobachtet worden. Der zweite Reaktionsweg führt über das Umladungsprodukt CH₃NH₂⁺, m/z 31 aus der Reaktion von **2**⁺ mit CH₃NH₂. Das Molekül-Ion des Methylamins CH₃NH₂⁺ reagiert konsekutiv durch Protonenübertragung auf CH₃NH₂ zu $CH_3NH_3^+$.^[179] Als dritte Möglichkeit findet zunächst eine Hydridübertragungsreaktion von CH₃NH₂ auf 2^{·+} statt, wobei als ionisches Produkt CH₂=NH₂⁺, m/z 30, und als neutrales Produkt ein 2-Brompropyl-Radikal gebildet wird. CH₂=NH₂⁺ reagiert konsekutiv mit CH₃NH₂ zu $CH_3NH_3^{+}$ ^[179,180] Die drei Reaktionswege zur Bildung von $CH_3NH_3^{+}$ sind in Schema 5.1 abgebildet. Aufgrund der Bildung von CH₃NH₃⁺ durch mehrere Reaktionen ist die Bestimmung der Intensitätsverhältnisse des jeweiligen Bildungsprozesses erschwert. Die Ladungstransferreaktion ist mit Hilfe der vertikalen Ionisierungsenergie für 2 und CH₃NH₂ mit +4 kJ/mol als geringfügig endotherm berechnet worden (Tabellen 5.1a und

 CH_3NH_2 mit +4 kJ/mol als geringfügig endotherm berechnet worden (Tabellen 5.1a und 5.1b), der Protonentransfer ist mit -122 kJ/mol und die Hydridübertragungsreaktion ist mit -80 kJ/mol als exotherm abgeschätzt worden.

Die Substitutionsreaktion hat aber mit 20 % Intensität einen mäßig hohen Anteil an der Gesamtreaktion. Diese Reaktion ist nach der Abschätzung der Reaktionsenthalpie mit -159 kJ/mol (Kapitel 12.3) exotherm. Die Substitutionsreaktion kann als entropisch anspruchsvollerer Prozeß gut mit den vorher genannten Reaktionen konkurrieren. Für den Mechanismus der Substitutionsreaktion dieses Reaktionssystems kann man wieder annehmen, daß ein Additions-Eliminierungs-Mechanismus verliegt. Da exotherme Protonentransferreaktionen allgemein barrierelos oder lediglich mit geringer Energiebarriere erfolgen^[165], kann wie bei 2^{+} /NH₃ wieder angenommen werden, daß auch hier die Substitutionsreaktion ohne große Energiebarriere erfolgt.

Schema 5.1: Bildungswege von CH₃NH₃⁺ (m/z 32)

Die Effektivität der Gesamtreaktion von ionisiertem 2-Brom-3,3,3-trifluorpropen 5^{++} mit CH₃NH₂ beträgt 99 %. Damit erfolgt diese Umsetzung stoßkontrolliert. Einziges Produkt-Ion am Ende der Reaktion von 5^{++} mit CH₃NH₂ ist protoniertes Methylamin CH₃NH₃⁺⁺, m/z 32 (Abbildung 5.2). Dieses Ion entsteht konsekutiv aus ionisiertem Methylamin CH₃NH₂⁺⁺, m/z 31, welches das einzige Primärprodukt ist. Weder die Protonentransferreaktion noch die Substitutionsreaktion von 5^{++} mit CH₃NH₂ finden statt. Die Protonentransferreaktion wurde hier nicht erwartet, da 5^{++} nicht so acide ist wie beispielsweise 2^{++} und als Deprotonierungsprodukt das energetisch ungünstige 2-Brom-3,3,3-trifluorpropenylradikal entstehen müßte. Da die abgeschätzte vertikale Ionisierungsenergie von 5 (Tabelle 5.1a) bedeutend größer ist als von Methylamin (Tabelle 5.1b), findet nur die Ladungsaustauschreaktion unter Bildung der Methylamin-Radikalkationen statt. Die Weiterreaktion mit neutralem Methylamin unter Protonentransfer ist gut bekannt.^[179,180]

Bemerkenswert ist, daß die Substitutionsreaktion nicht zu beobachten ist, obwohl sie als sehr exotherm abgeschätzt worden ist (Kapitel 12.3). Zu erwarten wäre, daß die Bildung des Markownikow-Addukts bzw. des anti-Markownikow-Addukts aus 5^{++} sicherlich exothermer ist, als entsprechend bei 2^{++} /CH₃NH₂. Auch die Protonentransferreaktion und die Hydrid-transferreaktion sind als sehr exotherm abgeschätzt worden (Kapitel 12.3). Ein exothermer Ladungsaustausch ist hier offensichtlich so effektiv, daß die Substitutionsreaktion mit dieser Reaktion nicht konkurrieren kann.

Die Gesamtreaktion von (*E*)-2-Brombut-2-en (*E*)-7⁺ mit Methylamin erfolgt mit einer Effektivität von 103 % und ist daher stoßkontrolliert. Das Reaktionsverhalten von (*E*)-7⁺ und (*Z*)-7⁺ mit CH₃NH₂ ist praktisch identisch und kann daher zusammen diskutiert werden. Hauptreaktion mit ca. 70 % relativer Intensität ist der Protonentransfer von 7⁺ auf CH₃NH₂, wobei protoniertes Methylamin CH₃NH₃⁺, m/z 32, entsteht (Abbildung 5.3). Die Deprotonierung kann entweder am C1- oder am C4-Atom erfolgen (Schema 5.2), da beides allylische Positionen sind. Das Produkt-Ion CH₄N⁺, m/z 30, einer Hydridabstraktion von CH₃NH₂ auf 7⁺⁺ wird nicht nachgewiesen und ist daher in diesem Reaktionssystem kein Vorläufer des protonierten Methylamins. Die Substitution des Brom-Atoms durch CH₃NH₂ ist mit ca. 30 % relativer Intensität noch ein intensiver Prozeß. Dabei entsteht das positiv geladene Substitutionsprodukt C₅H₁₂N⁺, m/z 86. Diese Reaktion ist in Schema 5.3 abgebildet.

Schema 5.2: Protonentransferreaktion von 7⁺⁺ mit CH₃NH₂

Schema 5.3: Substitutionsreaktion von 7⁺ mit CH₃NH₂

Das Intensitätsverhältnis von Substitution/Protonenaustauschreaktion beträgt 3:7, was praktisch dem Verhältnis des Reaktionssystems $7'^+$ /NH₃ entspricht. Obwohl der Protonentransfer von $7'^+$ auf CH₃NH₂ um 45 kJ/mol exothermer ist als bei NH₃, ändert sich das Intensitätsverhältnis von Substitutions-/Protonentransferreaktion nicht signifikant. Dieses kann nur bedeuten, daß entweder die Substitutionsreaktion auch entsprechend effektiver wird oder aber für den Protonentransfer ein ähnlicher Reaktionsmechanismus wie für die Substitutionsreaktion vorliegt. Dieses wird durch die Abschätzung der Reaktionsenthalpien mit Hilfe von isodesmischen Reaktionen bestätigt (Kapitel 12.3). Die Substitutionsreaktion ist mit -127 kJ/mol und die Protonentransferreaktion ist mit -88 kJ/mol als jeweils sehr exotherm abgeschätzt worden.

Bereits für die Reaktionen der 2-Halogenpropen-Radikalkationen mit NH₃ wurde postuliert, daß die Bildung der β -distonischen Addukt-Ionen exotherm und ohne größere Energiebarriere erfolgt. Dies gilt offenbar allgemein für die Reaktion von Alken-Radikalkationen mit Nukleophilen. Der Reaktionsmechanismus des Protonentransfers kann daher statt durch direkten Transfer im Kollisionskomplex auch wie die Substitutionsreaktion nach dem Additions-Eliminierungsmechanismus ablaufen, wobei der Transfer des Protons als Umlagerung distonischer Ionen erfolgt. Eine solche Umlagerung kann in dem energetisch angeregten Markownikow-Addukt **7a(CH₃NH₂)** oder anti-Markownikow-Addukt **7b(CH₃NH₂)** erfolgen (Schema 5.4). Aus den Addukt-Ionen **7a(CH₃NH₂)** bzw. **7b(CH₃NH₂)** entsteht jeweils nach Abspaltung von CH₃NH₂⁺ ein "vinylisches" oder ein "allylisches" Radikal. Die Bildung des allylischen Radikals ist hier sehr wahrscheinlich energetisch weitaus günstiger als die des vinylischen Bromalkenyl-Radikals. Die Triebkraft für das Vorantreiben der Substitutions- und der Protonentransferreaktion ist die Exothermizität der β -distonischen Adukt-Ionen **7a**(CH₃NH₂) bzw. **7b**(CH₃NH₂).

Schema 5.4: Möglicher Reaktionsmechanismus des Protonentransfers von 7⁺⁺ auf CH₃NH₂ nach einem Additions-Eliminierungsmechanismus

Hauptprodukt am Ende der Reaktion des Radikalkations von 1-Brombut-2-en 8^{++} mit Methylamin ist protoniertes Methylamin CH₃NH₃⁺ (Abbildung 5.4). Dieses ionische Produkt entsteht durch Protonentransfer von 8^{++} auf Methylamin und andererseits konsekutiv durch Protonentransfer des Ions m/z 86 auf Methylamin, was anhand des Anstiegs der relativen Intensität von CH₃NH₃⁺ und m/z 86 deutlich wird. Der Anstieg von CH₃NH₃⁺ setzt sich aus exponentiellen und sigmoidalen Anteilen zusammen, während der Anstieg von m/z 86 ausschließlich sigmoidal ist. Die Elementzusammensetzung des Ions m/z 86 entspricht C₅H₁₂N⁺, und es wird durch Substitution des Brom-Atoms durch Methylamin gebildet. Die Gesamtreaktion verläuft mit einer Effektivität von 107 % stoßkontrolliert.

Das Verzweigungsverhältnis von Substitution/Deprotonierung beträgt etwa 1:1. Das entsprechende Verhältnis beträgt dagegen bei der Reaktion von 8^{++} mit NH₃ nur 1:4. Damit ist der Protonentransfer im Vergleich zum Reaktionssystem 8^{++} /NH₃ intensiver. Die Reaktionsenthalpie für den Protonentransfer von 8^{++} auf CH₃NH₂ ist mit -107 kJ/mol als sehr exotherm abgeschätzt worden (Kapitel 12.3). Die Substitutionsreaktion kann analog zum

Reaktionssystem $8''/NH_3$ zu mehreren Strukturen führen und ist mit -150 kJ/mol bis -130 kJ/mol als ebenfalls sehr exotherm abgeschätzt worden. Mit diesen Abschätzungen allein kann die intensive Protonentransferreaktion nicht erklärt werden.

Der Ladungstausch von 8^{+} auf CH₃NH₂ ist sehr endotherm (Tabelle 5.1a und 5.1b) und erklärt das Fehlen dieses Prozesses. Dagegen ist der Hydridtransfer von CH₃NH₂ auf 8^{+} mit -47 kJ/mol als exotherm abgeschätzt worden (Kapitel 12.3), wird aber experimentell nicht beobachtet. Offenbar findet dieser Prozeß nach einen Additions/Eliminierungs-Mechachanismus statt, wie dieses bei der Substitutionsreaktion der Fall ist, wobei zusätzlich eine 1,4-H-Verschiebung mit einer hohen Energiebarriere erfolgen muß. Dieses wurde durch theoretische Rechnungen an dem Reaktionssystem von CH₃NH₂⁺/C₂H₃Cl gezeigt^[45] und bekräftigt diese Annahme.

Die Gesamtreaktion des Radikalkations von 4-Brombut-1-en 9^{+} mit Methylamin ist mit 89 % nahezu stoßkontrolliert (Abbildung 5.5). Hauptprodukt am Ende der Reaktion von 9^{+} mit Methylamin ist protoniertes Methylamin CH₃NH₃⁺, m/z 32. Mit geringer Intensität werden die Ionen m/z 86, C₅H₁₂N⁺ (I_{rel} = 2 %), m/z 72, C₄H₁₀N⁺ (I_{rel} = 5 %), und m/z 58, C₃H₈N⁺ (I_{rel} = 3 %), gebildet.

Der Protonentransfer und der Hydridtransfer sind jeweils als sehr exotherm abgeschätzt worden (Kapitel 12.3). Der Ladungstausch ist als exotherm berechnet worden (Tabellen 5.1a und 5.1b). Protoniertes Methylamin entsteht daher offenbar nach dem in Abbildung 5.5 gezeigten Reaktionsverlauf auf dreierlei Wegen, die schon bei 2^{+} / CH₃NH₂ diskutiert worden sind. Die Substitutionsreaktion kann analog zum Reaktionssystem 9^{+} /NH₃ zu mehreren Strukturen führen und ist mit -207 kJ/mol bis -179 kJ/mol als ebenfalls sehr exotherm abgeschätzt worden (Kapitel 12.3). Diese Reaktion kann jedoch nicht gut mit den anderen Reaktionen konkurrieren. Als weitere Reaktionsprodukte entstehen die Ionen C₄H₁₀N⁺, m/z 72, und C₃H₈N⁺, m/z 58. Diese Ionen werden offensichtlich analog wie bei der Reaktion mit NH₃ durch Fragmentierung der beiden energetisch angeregten β-distonischen Addukt-Ionen gebildet. Diese beiden Prozesse sind mit -118 kJ/mol bzw. -107 kJ/mol als sehr exotherm abgeschätzt worden und können auch als Substitutionsreaktion aufgefaßt werden, wobei aber die Abgangsgruppe entweder C₂H₄Br⁻ bzw. CH₂Br⁻ ist. Die analogen Reaktionen führten beim Reaktionssystem $9^{+}/NH_3$ zu den Hauptprodukten.

5.3 Reaktionen von Bromalken-Radikalkationen mit Ethylamin

Der jeweilige Intensitäts-Zeit-Verlauf der Molekül-Ionen von 2-Brompropen 2^{+} , 2-Brom-3,3,3-trifluorpropen 5^{+} , 2-Brombut-2-en 7^{+} , 1-Brombut-2-en 8^{+} und 4-Brombut-1-en 9^{+} mit Ethylamin ist in Abbildung 5.6-5.10 dargestellt. Alle drei Intensitäts-Zeit-Verläufe zeigen, daß die Reaktion nach pseudo-erster Ordnung erfolgt. In Tabelle 5.4 sind die bimolekularen Geschwindigkeitskonstanten (k_{bi}), die berechneten Stoßeschwindigkeitskonstanten (k_{cpt}) und die Effektivitäten (Eff %) der Reaktionen von 2^{+} , 5^{+} , 7^{+} , 8^{+} und 9^{+} mit Ethylamin aufgeführt. Für alle hier untersuchten Bromalken-Radikalkationen erfolgt die Reaktion mit CH₃CH₂NH₂ stoßkontrolliert.

Abbildung 5.6: Intensitäts-Zeit-Verlauf von 2^{+} mit Ethylamin

Abbildung 5.7: Intensitäts-Zeit-Verlauf von 5⁺⁺ mit Ethylamin

Abbildung 5.8: Intensitäts-Zeit-Verlauf von 7^{·+} mit Ethylamin

Abbildung 5.9: Intensitäts-Zeit-Verlauf von $8^{\cdot+}$ mit Ethylamin

Abbildung 5.10: Intensitäts-Zeit-Verlauf von $9^{\cdot+}$ mit Ethylamin

Edukt	k _{bi}	k _{cpt}	Eff.%
	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	
2 ^{·+}	13,6	14,5	94
5 ⁺	14,0	13.9	101
7 [.] +	13,5	14,3	94
8 [•] +	15,1	14,3	105
9 [.] +	15,4	14,3	108

Tabelle 5.4: Bimolekulare Geschwindigkeitskonstanten (k_{bi}), berechnete Stoßgeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %) von 2^{·+}, 5^{·+}, 7^{·+}, 8^{·+}, 9^{·+}/CH₃CH₂NH₂

Die Effektivität der Gesamtreaktion von ionisiertem 2-Brompropen, 2^{+} , mit Ethylamin beträgt 94 %. Daher verläuft die Reaktion stoßkontrolliert. Hauptprodukt am Ende der Reaktion ist C₂H₅NH₃⁺, m/z 46, (Abbildung 5.6) welches analog der Reaktion von 2^{+} mit CH₃NH₂ auf drei Wegen entstehen kann.

Aufgrund der aciden Methylgruppe von 2^{+} wird ein Protonentransfer mit C₂H₅NH₂ ermöglicht. Dabei entsteht auf direktem Weg $C_2H_5NH_3^+$, m/z 46. Bereits bei der Reaktion von 2^{+} mit CH₃NH₂ war dieser Prozeß sehr intensiv und erfolgt hier noch intensiver. Eine weitere Möglichkeit zur Bildung von $C_2H_5NH_3^+$ erfolgt über das Ethylamin-Radikalkation $C_2H_5NH_2^{+}$, m/z 45, welches durch exotherme Ladungstransferreaktion von 2⁺ mit $C_2H_5NH_2$ generiert wird. Das Molekül-Ion von Ethylamin, das bei der Reaktion auch nachgewiesen werden kann, reagiert konsekutiv mit neutralem Ethylamin durch Protonentransfer, wobei als ionisches Produkt C₂H₅NH₃⁺, m/z 46, entsteht.^[179,180] Der dritte Reaktionsweg zur Bildung von $C_2H_5NH_3^+$ erfolgt ebenfalls über zwei Schritte. Durch eine Hydridübertragungsreaktion von C₂H₅NH₂ auf 2^{+} entsteht ein Acetaldimmonium-Ion H₃C-CH₂=NH₂⁺, m/z 44, neben einem 2-Brompropyl-Radikal. Während der Reaktion wird das Ion m/z 44 ebenfalls mit signifikanter Intensität beobachtet. Das Acetaldimmonium-Ion reagiert nachfolgend mit C₂H₅NH₂ durch Protonentransfer zum C₂H₅NH₃⁺, m/z 46.^[179] Alle drei Bildungswege sind exotherm, was anhand der Abschätzung der Reaktionsenthalpien für den Protonentransfer und Hydridtransfer (Kapitel 12.3) und Berechnung der Reaktionsenthalpien des Ladungstausches (Tabelle 5.1a und 5.1b) gezeigt wurde.

Die Substitution des Brom-Atoms durch $C_2H_5NH_2$ findet lediglich untergeordnet mit einer Intensität von etwa 4 % statt. Obwohl diese Reaktion sehr exotherm ist, kann sie nicht gut mit den anderen Prozessen konkurrieren.

Die Gesamtreaktion der Radikalkationen von 2-Brom-3,3,3-trifluorpropen 5^{++} mit C₂H₅NH₂ verläuft mit einer Effektivität von 101 % und ist damit stoßkontrolliert. Das Hauptprodukt ist protoniertes Ethylamin C₂H₅NH₃⁺, m/z 46, am Ende der Reaktion (Abbildung 5.7). Dieses ist jedoch ein Sekundärprodukt, welches konsekutiv aus ionisiertem Ethylamin, m/z 45, und neutralem Ethylamin durch Protonentransferreaktion entsteht. Ionisiertes Ethylamin, C₂H₅NH₂⁻⁺, wird durch die stark exotherme Ladungstransferreaktion von 5^{++} mit C₂H₅NH₂ generiert (Tabelle 5.1a und 5.1b). Eine Nebenreaktion mit geringer Intensität ist die Bildung des Ions C₂H₆N⁺, m/z 44. Diese Reaktion entspricht der Hydridübertragung von C₂H₅NH₂ auf 5^{++} und ist mit -226 kJ/mol als sehr exotherm abgeschätzt worden (Kapitel 12.3). Konsekutiv reagiert C₂H₆N⁺ mit C₂H₅NH₂ durch Protonentransferreaktion, wobei C₂H₅NH₃⁺ (m/z 46) als ionisches Produkt entsteht. ^[179] Der "direkte" Protonentransfer von 5^{++} auf C₂H₅NH₂ ist mit -121 kJ/mol abgeschätzt worden (Kapitel 12.3) und findet hier wahrscheinlich mit sehr geringer Intensität statt, da die Ladungstransferreaktion und die Hydridtransferreaktion sehr viel exothermer sind und daher dominieren. Der Protonentransfer ist deshalb so ungünstig, weil 5^{++} nicht so acide ist wie 2^{++} mit der bedeutend acideren Methylgruppe.

Eine weitere bemerkenswerte Nebenreaktion ist die Bildung des Ions m/z 30, welches kompetitiv zum Ion m/z 45 entsteht. Die Elementzusammensetzung dieses Ions entspricht CH_4N^+ , welches durch den stark exothermen Ladungstransfer von 5^{++} auf $C_2H_5NH_2$ chemisch sehr aktiviert ist. Dieses führt zur Methylabspaltung aus $C_2H_5NH_2^{++}$. Die Substitutionsreaktion ist hier nicht mehr zu beobachten, da dieser Prozeß nicht mit der stark exothermen Ladungstransferreaktion konkurrieren kann.

Weitere Umsetzungen von 5^{+} mit anderen aliphatischen Aminen wie beispielsweise Dimethylamin sind daher nicht von Interesse, da die Ladungstransferreaktion noch exothermer wird.

Die Gesamtreaktion von ionisiertem 2-Brombut-2-en $7'^+$ mit C₂H₅NH₂ ist mit 94 % nahezu stoßkontrolliert. Auch hier ist wie bei $7'^+$ /CH₃NH₂ der Protonentransfer unter Bildung von C₂H₅NH₃⁺, m/z 46, mit 70 % relativer Intensität die Hauptreaktion (Abbildung 5.8). Diese Reaktion ist mit -101 kJ/mol als sehr exotherm abgeschätzt worden (Kapitel 12.3). Die

Substitutionsreaktion ist mit 30 % relativer Intensität ein intensiver Prozeß. Als ionisches Substitutionsprodukt wird dabei $C_6H_{14}N^+$, m/z 100, gebildet. Diese Reaktion ist mit -144 kJ/mol als sehr exotherm abgeschätzt worden (Kapitel 12.3). Das Intensitätsverhältnis von Substitution/Deprotonierung beträgt 3:7 und ist damit ähnlich wie für $7^{+}/CH_3NH_2$. Dieses ist unerwartet, da der Protonentransfer entsprechend der PA-Differenz um 13 kJ/mol exothermer ist als bei $7^{+}/CH_3NH_2^{[162]}$ und daher verstärkt ablaufen sollte. Die Reaktion von 7^{+} mit Ethylamin bekräftigt daher die Vermutung, daß der Reaktionsmechanismus für den Protonentransfer nach einem Additions-Eliminierungs-Mechanismus erfolgen kann.

Mit sehr geringer Intensität (3 %) findet die Hydridübertragungsreaktion unter Bildung von $C_2H_4NH_2^{+}$, m/z 44, statt und ist mit -65 kJ/mol als exotherm abgeschätzt worden (Kapitel 12.3). Dieses Kation reagiert schnell mit einem weiteren Molekül Ethylamin konsekutiv zu $C_2H_5NH_3^+$, m/z 46. Die Ladungstransferreaktion von 7⁺ auf CH₃NH₂ ist nicht zu beobachten, die anhand der vertikalen Ionisierungsenergien von 7 und CH₃NH₂ deutlich endotherm ist (Tabelle 5.1a und 5.1b).

Die Gesamtreaktion der Radikalkationen von 1-Brombut-2-en 8^{+} mit Ethylamin verläuft mit einer Effektivität von 105 % stoßkontrolliert. Die Umsetzung von 8^{+} mit Ethylamin ergibt mit etwa 65 % relativer Intensität Protonentransfer unter Bildung von protoniertem Ethylamin $C_2H_5NH_3^+$, m/z 46, und mit etwa 30 % Intensität die Substitutionsreaktion unter Bildung von $C_6H_{14}N^+$, m/z 100 (Abbildung 5.9). Die Hydridübertragungsreaktion ist mit einer Intensität von etwa 5 % eine Nebenreaktion. Als ionisches Produkt entsteht dabei $C_2H_6N^+$, m/z 44, das konsekutiv mit Ethylamin durch Protonentransferreaktion zu $C_2H_5NH_3^+$, m/z 46, reagiert. Die Reaktion von 8^{++} gegenüber Ethylamin gleicht daher der entsprechenden Reaktion von 7^{++} . Die Substitutionsreaktion, die Protonentransferreaktion und die Hydridtransferreaktion sind alle deutlich exotherm (Kapitel 12.3). Anhand der vertikalen Ionisierungsenergien (Tabelle 5.1a und 5.1b) ist die Ladungstransferreaktion von 8^{++} auf CH₃NH₂ thermoneutral und ist experimentell auch nicht zu beobachten.

Die Effektivität der Gesamtreaktion von ionisiertem 4-Brombut-1-en $9'^+$ mit Ethylamin beträgt 108 %. Damit verläuft die Reaktion ebenfalls stoßkontrolliert. Hauptprodukt am Ende der Reaktion ist protoniertes Ethylamin C₂H₅NH₃⁺, m/z 46 (Abbildung 5.10). Dieses entsteht auf den bereits bekannten drei Reaktionswegen. Die erste Möglichkeit ist der "direkte" Protonentransfer. Die weiteren Bildungsprozesse sind die Ladungstransferreaktion und die
Hydridübertragungsreaktion mit jeweils konsekutiver Reaktion mit Ethylamin unter Protonentransferreaktion. Die Zwischenprodukte dieser letzten beiden Bildungsrouten des protonierten Ethylamins, das Molekül-Ion $C_2H_5NH_2^{+}$, m/z 45, und das Ion $C_2H_6N^+$, m/z 44, können dabei mit deutlicher Intensität nachgewiesen werden und diese Prozesse sind als exotherm abgeschätzt worden (Kapitel 12.3).

Die Substitutionsreaktion und die analoge Fragmentierung wie bei 9^{+} /Ammoniak bzw. 9^{+} /Methylamin wurden hier nicht beobachtet, obwohl diese Prozesse als exotherm abgeschätzt wurden (Kapitel 12.3).

5.4 Reaktionen von Bromalkenen-Radikalkationen mit Dimethylamin

Der jeweilige Intensitäts-Zeit-Verlauf der Molekül-Ionen von 2-Brombut-2-en 7^{+} , 1-Brombut-2-en 8^{+} und 4-Brombut-1-en 9^{+} mit Dimethylamin ist in Abbildung 5.11-5.13 dargestellt. Alle drei Kurvenverläufe zeigen, daß die Reaktion nach pseudo-erster Ordnung erfolgt. In Tabelle 5.5 sind die bimolekularen Geschwindigkeitskonstanten (k_{bi}), berechneten Stoßgeschwindigkeitskonstanten (k_{cpt}) und die Effektivitäten (Eff %) der Reaktion von 7^{+} , 8^{+} , 9^{+} mit Dimethylamin aufgeführt. Für alle hier untersuchten Bromalken-Radikalkationen erfolgt die Reaktion mit (CH₃)₂NH₂ praktisch stoßkontrolliert.

Edukt	k _{bi}	k _{cpt}	Eff.%
	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	
7 ^{.+}	11,4	13,2	86
8 [•] +	12,1	13,2	92
9 [.] +	11,7	13,2	88

Tabelle 5.5: Bimolekulare Geschwindigkeitskonstanten (k_{bi}), berechnete Stoßgeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %) von **7**⁺⁺, **8**⁺⁺, **9**⁺⁺/(CH₃)₂NH₂

Abbildung 5.11: Intensitäts-Zeit-Verlauf von 7^{+} mit Dimethylamin

Abbildung 5.12: Intensitäts-Zeit-Verlauf von 8^{·+} mit Dimethylamin

Abbildung 5.13: Intensitäts-Zeit-Verlauf von 9^{·+} mit Dimethylamin

Die Gesamtreaktion von 7^{°+} mit Dimethylamin ist mit 86 % praktisch stoßkontrolliert. Bei der Reaktion von 7^{°+} mit Dimethylamin findet primär ausschließlich Ladungstransferreaktion unter Bildung von ionisiertem Dimethylamin, m/z 45, statt (Abbildung 5.11). Dieses reagiert konsekutiv mit weiterem Dimethylamin durch Protonentransfer zu protoniertem Dimethylamin, m/z 46, das am Ende der Reaktion das einzige Produkt-Ion ist.^[179,180] Dieser Befund ist verständlich, da die Ladungstransferreaktion auf Dimethylamin um 56 kJ/mol bzw. 68 kJ/mol deutlich exothermer ist als die von Ethylamin oder Methylamin (Tabelle 5.1a und 5.1b).

Hauptprodukt am Ende der Reaktion von ionisiertem 1-Brombut-2-en 8^{++} mit Dimethylamin ist ebenfalls protoniertes Dimethylamin, m/z 46 (Abbildung 5.12). Dieses entsteht konsekutiv aus dem Molekül-Ion von Dimethylamin, m/z 45. Das ionisierte Dimethylamin entsteht wieder durch exotherme Ladungsaustauschreaktion von 8^{++} mit Dimethylamin (Tabelle 5.1a und 5.1b) als überwiegender Primärprozeß. Die Substitutionsreaktion unter Bildung von C₆H₁₄N⁺, m/z 100, erfolgt lediglich mit einer sehr geringen Intensität von 2 %, obwohl sie als sehr exotherm abgeschätzt wurde (Kapitel 12.3). Bei der Reaktion von 9^{+} mit Dimethylamin erfolgt primär ausschließlich Ladungstransfer, wobei ionisiertes Ethylamin, m/z 45, generiert wird (Abbildung 5.13). Diese Reaktion ist sehr exotherm (Tabelle 5.1a und 5.1b). Das Molekül-Ion von Dimethylamin reagiert konsekutiv zu protoniertem Dimethylamin, m/z 46, weiter. Die Effektivität der Gesamtreaktion beträgt 88 %. Damit verläuft die Reaktion praktisch stoßkontrolliert. Weitere Reaktionen wie die Substitution, Hydridübertragung oder Abspaltungen von CH₂Br⁻ bzw. C₂H₄Br⁻ wie bei 9^{+} /NH₃ bzw. 9^{+} /CH₃NH₂ wurden hier nicht beobachtet, obwohl sie alle als sehr exotherm abgeschätzt wurden (Kapitel 12.3).

5.5 Zusammenfassende Diskussion

Für den exothermen Protonentransfer wird in der Reihe Ammoniak, Methylamin, Ethylamin und Dimethylamin erwartet, daß die Protonentransferreaktion aufgrund der steigenden Protonenaffinitäten intensiver wird. Dieses wird auch experimentell beobachtet. Möglicherweise findet aber der Protonentransfer nicht direkt im Kollisionskomplex statt, sondern erfolgt wie die Substitutionsreaktion über einen Additions-/Eliminierungs-Mechanismus. In diesem Fall sind dann die Substitutionsreaktion und Protonentransferreaktion ausgehend vom Addukt-Ion kompetitive Prozesse. Beide Prozesse werden durch die Exothermizität in den Addukt-Ionen vorangetrieben und sind allenfalls abhängig von möglichen Energiebarrieren des Übergangszustands der jeweiligen Reaktion.

Die Hydridtransferreaktion wird in der Reihe Methylamin, Ethylamin und Dimethylamin exothermer und sollte demnach intensiver werden. Experimentell wird dieses aber nicht beobachtet. Offenbar erfolgt die Hydridtransferreaktion ebenfalls über einen Additions-/Eliminierungs-Mechanismus. In einem der Addukt-Ionen muß dann eine Umlagerung erfolgen, die möglicherweise eine hohe Energiebarriere erfordert. Dieses Energiebarriere konnte durch *ab initio* Rechnungen des Reaktionssystems $1'^+/CH_3OH$ im folgenden Kapitel 6 und des Reaktionssystems CH_3NH_2''/C_2H_3Cl gezeigt werden. Die Abschätzung der Reaktionsentalpien der Ladungstransferreaktionen mit Hilfe der vertikalen Ionisierungsenergien erklären die beobachteten Ergebnisse gut. Aufgrund der Theorie der Elektronentransferreaktion in der Gasphase (Kapitel 2.2) müßten jedoch die adiabatischen Ionisierungsenergien verwendet werden. Der Unterschied der vertikalen und der adiabatischen Ionisierungsenergien von Aminen ist mit etwa 0,7 eV^[162] jedoch besonders hoch. Daher kann angenommen werden, daß die Elektronentransferreaktion vom Halogenalken-Radikalkationen auf das Amin eine hohe Energiebarriere von etwa 15-20 kJ/mol aufweist (Kapitel 2.2).

6. Reaktionen von 2-Halogenpropen-, 2-Halogen-3,3,3-trifluorpropenund Brombuten-Radikalkationen mit aliphatischen Alkoholen

6.1 Einleitung

In diesem Kapitel werden die Reaktionen der Radikalkationen von 2-Chlorpropen (1⁺), 2-Brompropen (2^{+}) , 2-Chlor-3,3,3-trifluorpropen (4^{+}) , 2-Brom-3,3,3-trifluorpropen (5^{+}) , 3,3,3-Trifluor-2-iodpropen (6^{+}), 2-Brombut-2-en (7^{+}), 1-Brombut-2-en (8^{+}) und 1-Brombut-4-en (9⁺) mit den aliphatischen Alkoholen Methanol bzw. Ethanol im FT-ICR-Massenspektrometer diskutiert. Hierbei interessiert vor allem wieder, welchen Einfluß die Substituenten $R = -CH_3$ bzw. $-CF_3$ auf die Substitutionsreaktion haben und ob andere Reaktionen ermöglicht werden. Bei der Reaktion von ionisiertem Ethen mit Methanol erfolgt hauptsächlich Protonentransfer vom Ethen-Radikalkation auf das Methanol und mit geringerer Intensität Hydridübertragung von der CH3-Gruppe des Methanols auf das Ethen-Radikalkation.^[181-184] Diese Prozesse finden auch bei den Reaktionen von ionisierten Halogenethenen mit Methanol statt.^[180,184-186] Die Substitutionsreaktion ist im Falle der Umsetzung der Chlorethen-Radikalkationen mit Methanol lediglich eine Nebenreaktion, während diese für die Reaktion des Bromethen-Radikalkations mit Methanol der dominierende Prozeß ist. Ein Protonentransfer dagegen wird nicht beobachtet. Die Hydridtransferreaktion ist der primäre Hauptprozeß bei der Umsetzung des Radikalkations von Chlorethen mit Methanol.^[45] Dieser Prozeß ist dagegen für die Umsetzung des ionisierten Bromethens mit Methanol lediglich eine Nebenreaktion. Das beim Hydridtransfer generierte protonierte Formaldehyd reagiert konsekutiv mit Methanol zunächst zu protoniertem Methanol. welches wiederum mit Methanol protoniertem Dimethylether zu weiterreagiert.^[180,184-186] Die Effektivität der Gesamtreaktion beträgt hier für das Reaktionssystem H₂C=CHCl^{+/}/CH₃OH 36 % und für H₂C=CHBr^{+/}/CH₃OH 18 %.^[45,184] Die erheblich unterschiedliche Reaktivität des Chlorethen-Radikalkations und des Bromethen-Radikalkations gegenüber Methanol läßt sich gut mit der Berechnung der Reaktionsenthalpien erklären.^[45,184] Die direkte Protonentransferreaktion ist für beide ionisierten Halogenethene endotherm, während die Substitutionsreaktion für beide ionisierten Halogenethene exotherm ist. Die Reaktionsenthalpie der Substitutionsreaktion beträgt für das Reaktionssystem H₂C=CHCl⁺/CH₃OH -19 kJ/mol und für H₂C=CHBr⁺/CH₃OH -46 kJ/mol.^[45,184] Dieser Unterschied der Reaktionsenthalpien ist eine mögliche Erklärung für die unterschiedliche Intensität der Substitutionsreaktion. Die Hydridtransferreaktion ist für das Reaktionssystem $H_2C=CHCl^{+}/CH_3OH$ mit -8 kJ/mol bereits deutlich exotherm und für $H_2C=CHBr^{+}/CH_3OH$ mit +15 kJ/mol geringfügig endotherm.^[45,184] Diese Berechnungen bestätigen daher die experimentellen Beobachtungen der Reaktion der Halogenethen-Radikalkationen mit CH₃OH.

Aufgrund des besonderen Einflusses auf die Thermochemie im Fall der Reaktion der Halogenethen-Radikalkationen mit CH₃OH wird eine Abschätzung der Bildungsenthalpien der Reaktion von 1^{+} und 2^{+} mit CH₃OH mit Hilfe von isodesmischen Reaktionen durchgeführt (Kapitel 12.3). Mit diesen Werten wurden die Reaktionsenthalpien für die verschiedenen Reaktionswege berechnet (Tabelle 6.1)

Produkte	Reaktion	X = Cl	X = Br
Х Н + H ₃ C-ОН	Edukte	0	0
$H \sim 0$ H_3C H + X	Substitution	+ 30	- 6
$X \xrightarrow{H} CH_3$ $H_3C H$	Markownikow- Addukt	- 54	-
H_{2} H_{3} H_{3	anti-Markownikow- Addukt	- 26	-
$X \qquad H + H_3C - OH_2$	Deprotonierung	- 22	+ 3
$X H H + H_2C = OH H_3C H$	Hydridtransfer	+ 40	+ 62
$X \xrightarrow{H} H + H_2C = OH$ $H_3C H + H_2C = OH$	Hydridtransfer	+ 50	+ 72

Tabelle 6.1: Abgeschätzte Reaktionsenthalpien [kJ/mol] der Reaktionen 1^{·+} bzw. 2^{·+} mit CH₃OH

Das Reaktionsenergieprofil der Reaktion von 1^{+} mit CH₃OH, welches mit Hilfe von isodesmischen Reaktionen abgeschätzt wurde, ist in Schema 6.1 abgebildet.

Schema 6.1: Reaktionsenergieprofil der Reaktion von 1^{+} mit CH₃OH

Die Substitutionsreaktion von 1^{+} mit CH₃OH ist mit +30 kJ/mol insgesamt endotherm. Daher wird erwartet, daß dieser Prozeß nicht oder sehr langsam erfolgt. Die Bildung der β distonischen Addukt-Ionen von 1^{+} mit CH₃OH ist allerdings für beide isomeren Addukte exotherm. Da der Substitutionsprozeß endotherm ist, findet statt dessen Rückreaktion zum elektrostatischen Komplex oder Weiterreaktion durch andere Prozesse wie beispielsweise Hydridabstraktion oder Fragmentierung statt. Die Hydridübertragungsreaktion ist je nach Struktur des entstehenden Chlorpropyl-Radikals mit +40 kJ/mol bzw. +50 kJ/mol wie die Substitutionsreaktion ebenfalls endotherm und kann nicht eintreten. Dagegen ist die Deprotonierungsreaktion mit - 22 kJ/mol exotherm und kann als einzige Reaktion erwartet werden. Dieser Prozeß erfolgt dann aber sehr langsam. Als Produkte werden dabei das protonierte Methanol $CH_3OH_2^+$ und das 2-Chlorallyl-Radikal gebildet.

Für die Reaktion von 2^{+} mit CH₃OH ergibt die Abschätzung der Reaktionsenthalpien, daß die Substitutionsreaktion der einzige exotherme Prozeß mit einer Reaktionsenthalpie von -6 kJ/mol ist. Die Hydridübertragungsreaktion von CH₃OH auf 2^{+} ist mit +69 kJ/mol sehr endotherm und findet sicherlich nicht statt. Die Protonentransferreaktion ist mit + 11 kJ/mol ebenfalls endotherm und wird nicht erwartet.

Ein Ladungsaustausch des Bromalken-Radikalkations mit Ethanol kann nicht erfolgen, da die Ionisierungsenergie von Methanol mit 10,84 eV^[162] und von Ethanol mit 10,48 eV^[162] höher ist, als die der Brombutene (Tabelle 5.1b).

Für ein vertieftes Verständnis wurden für die Reaktion von 1⁺⁺, 2⁺⁺, 4⁺⁺ und 5⁺⁺ mit CH₃OH *ab initio* Rechnungen auf dem Niveau BHandHLYP/6-31+G(d) durchgeführt. Zur weiteren Kontrolle wurden die dabei erhaltenen Geometrien je nach Rechenaufwand der jeweiligen Struktur Einzelpunktrechnungen auf dem Niveau BHandHLYP/6-311+G(2d,p)/ /BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVDZ//BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVTZ//BHandHLYP/6-31+G(d), CCSD(T)/cc-pVDZ/ /BHandHLYP/6-31+G(d) und CCSD(T)/6-311+G(2d,p)//BHandHLYP/6-31+G(d) unterzogen (Kapitel 12.2). Dieses wird jedoch nach Beschreibung der experimentellen Befunde diskutiert.

Bei der Reaktion der Brombutene 7^{+} 9^{+} mit CH₃OH werden gleichfalls die Protonentransferreaktion, die Hydridtransferreaktion und die Substitutionsreaktion erwartet. Zum besseren Verständnis der Reaktionen von 7^{+} 9^{+} mit CH₃OH wurden die Reaktionsenthalpien für diese Prozesse mit BHandHLYP/6-31+G(d) berechnet oder mit Hilfe von isodesmischen Reaktionen abgeschätzt (Kapitel 12.3). Dies wird gleichfalls an späterer Stelle diskutiert.

6.2 Reaktionen von 2-Halogenpropen-Radikalkationen mit aliphatischen Alkoholen

Bei der Umsetzung von 1^{+} mit CH₃OH erfolgen drei Reaktionen. Der Intensitäts-Zeit-Verlauf von 1^{+} mit CH₃OH ist in Abbildung 6.1 dargestellt. Die Effektivität der Gesamtreaktion ist mit 0,09 % sehr gering. Nur etwa jeder tausendste Stoß von 1^{+} mit CH₃OH führt demnach zur Reaktion. Daher sind alle hier beobachteten Prozesse wahrscheinlich allenfalls geringfügig exotherm oder sogar endotherm, wie dieses bei der Abschätzung der Reaktionsenthalpien auch festgestellt wurde.

Abbildung 6.1: Intensitäts-Zeit-Verlauf der Reaktion von 1⁺ mit CH₃OH

Die Substitution des Chlor-Atoms von 1^{+} durch CH₃OH findet nur mit einer relativen Intensität von 4 % statt. Dabei wird als ionisches Produkt C₄H₉O⁺ (m/z 73) gebildet. Hauptprodukt mit einer relativen Intensität von 75 % am Ende der Reaktion ist jedoch ein Ion m/z 47. Die Elementzusammensetzung dieses Ions ist C₂H₇O⁺, was protoniertem Dimethylether entspricht. Das zweitintensivste Produkt-Ion mit einer relativen Intensität von 35 % ist m/z 72, welches einer Elementzusammensetzung von C₄H₈O⁺⁺ entspricht. Die drei Prozesse bei der Umsetzung von 1⁺⁺ mit CH₃OH sind in Schema 6.2 abgebildet.

Schema 6.2: Reaktionen bei der Umsetzung von 1^{·+} mit CH₃OH

Die Substitutionsreaktion erfolgt auch hier sehr wahrscheinlich nach einem Additions-Eliminierungsmechanismus unter Bildung des Markownikow-Addukts $1a(CH_3OH)$ als das stabilste Intermediat. Dieses kann möglicherweise in das anti-Markownikow-Addukt $1b(CH_3OH)$ durch eine 1,2-Verschiebung von CH₃OH umlagern, denn die Abspaltung des Chlor-Atoms ist energetisch nur aus $1b(CH_3OH)$ günstig.^[41,50] Da die abschließende Abspaltung des Chlor-Atoms endotherm ist, besitzt die Substitutionsreaktion nur eine Effektivität von 0,005 %.

Als zur Substitutionsreaktion konkurrierende Reaktion erfolgt eine Eliminierung von HCl aus dem Addukt-Ion. Dabei entsteht $C_4H_8O^{+}$, m/z 72, als ionisches Produkt. Die Reaktion findet sehr wahrscheinlich ebenfalls über das β -distonische Addukt-Ion **1b(CH_3OH)** statt. Entsprechende Abspaltungen sind bei den Umsetzungen von **1**⁺ - **3**⁺ mit NH₃ (Kapitel 4) und Aminen (Kapitel 5) aber nicht beobachtet worden, dagegen finden ähnliche HCl-Eliminierungen auch bei der Reaktion von ionisierten Chloranisolen mit Aminen^[41] sowie von 1,1-Dichlorethen mit CH₃OH^[45,184] statt. Der Reaktionsmechanismus zur Bildung von C₄H₈O⁺⁺ kann durch eine 1,2-HCl-Eliminierung aus **1b(CH_3OH)** oder durch eine 1,2-Cl-Wanderung in **1b(CH_3OH)** mit abschließender 1,3-Eliminierung von HCl erklärt werden

104

(Schema 6.3). Es sind aber noch weitere Reaktionsmechanismen der HCl-Eliminierung möglich. Anhand der hier vorgeschlagenen Reaktionsmechanismen entsteht als Produkt ionisiertes 2-Methoxypropen, und dieser Prozeß ist mit einer berechneten Reaktionsenthalpie von -145 kJ/mol energetisch sehr exotherm (Kapitel 12.2). Eine 1,2-Wanderung eines Chlor-Atoms ist für das Chlorethyl-Radikal nachgewiesen worden, wobei die Energiebarriere hierfür allerdings hoch ist.^[187] Eine ebenfalls hohe Energiebarriere ist für die HCl-Eliminierung aus $C_2H_5Cl^{++}$ berechnet worden.^[188] Ähnliche hohe Energiebarrieren werden daher auch für die HCl-Eliminierung aus **1b(CH₃OH)** erwartet. Dies würde erklären, daß dieser Prozeß sehr langsam ist, obwohl er sehr exotherm ist.

Schema 6.3: Mögliche Reaktionsmechanismen zur Bildung von C₄H₈O^{·+}, m/z 72

Die denkbare Hydridübertragungsreaktion unter Bildung von protoniertem Methanal $CH_2=OH^+$, m/z 31, wird nicht beobachtet. Die Abschätzung der Reaktionsenthalpien mit Hilfe von isodesmischen Reaktionen ergibt für den Hydridtransfer, daß dieser Prozeß deutlich endotherm ist und nicht eintreten kann.

Der protonierte Dimethylether $C_2H_7O^+$ (m/z 47) entsteht konsekutiv aus protoniertem Methanol $CH_3OH_2^+$, m/z 33, durch Kondensation mit Methanol unter Wasserabspaltung. Diese Kondensation ist in der Literatur bereits untersucht worden.^[180,184-186] Protoniertes Methanol $CH_3OH_2^+$ wird nicht detektiert, weil es aufgrund der schnellen Weiterreaktion mit neutralem Methanol keine größere stationäre Konzentration erreicht. Der Reaktionsweg zur Bildung von $C_2H_7O^+$ (m/z 47) ist in Schema 6.4 dargestellt.

Schema 6.4: Reaktionsweg zur Bildung von $C_2H_7O^+$ (m/z 47)

Um diesen Reaktionsweg zu verifizieren, wurde die Reaktion von ionisiertem Propen mit CH₃OH untersucht. Der Intensitäts-Zeit-Verlauf ist in Abbildung 6.2 dargestellt. Als einzigen Primärprozeß beobachtet man die Bildung von protoniertem Methanol (m/z 33). Dieses Ion reagiert ebenfalls konsekutiv mit neutralem Methanol zu protoniertem Dimethylether (m/z 47), das einziges Produkt am Ende der Reaktion ist. Die Effektivität der Gesamtreaktion beträgt hierbei jedoch 72 %. Daher ist diese Reaktion im Vergleich zu 1⁻⁺/CH₃OH um den Faktor 800 schneller. Das stabilste neutrale Produkt ist das Allyl-Radikal. Die Abschätzung der Reaktionsenthalpie mit Hilfe experimenteller Bildungsenthalpien^[162] ergibt, daß dieser Prozeß mit -20 kJ/mol exotherm ist (Kapitel 12.1). Dieser Befund erklärt gut, warum der Protonentransfer glatt verläuft. Die Reaktionsenthalpie des Hydridtransfers vom Methanol auf das ionisierte Propen ist dagegen mit = +33 kJ/mol für das Isopropyl-Radikal und +43 kJ/mol für das n-Propyl-Radikal abgeschätzt worden. Diese Werte entsprechen etwa denen des analogen Systems 1⁻⁺/CH₃OH (Tabelle 6.1), bei dem ebenfalls kein Hydridtransfer erfolgte.

Abbildung 6.2: Intensitäts-Zeit-Verlauf von ionisiertem Propen mit CH₃OH

Um experimentelle Hinweise auf die reversible Bildung eines Addukts aus 1⁺⁺ und CH₃OH zu erhalten, wurde die Reaktion mit CD₃OH durchgeführt. Die Umsetzung von 1⁺⁺ mit CD₃OH ergibt ein komplexes Bild in Bezug auf die Anzahl der Produkte. Daher wurde selektiv die Umsetzung des 2-³⁷Chlorpropen-Radikalkations (³⁷1⁺⁺) mit CD₃OH untersucht. Der Intensitäts-Zeit-Verlauf der Reaktion von 1⁺⁺ mit CD₃OH ist in Abbildung 6.3 dargestellt. Das Hauptprodukt am Ende der Reaktion ist wie erwartet protonierter Di-(trideuteromethyl)ether C₂HD₆O⁺ (m/z 53). Dieser entsteht konsekutiv aus CD₃OH₂⁺⁺ (m/z 36), das durch Protonentransferreaktion von ³⁷1⁺⁺ auf CD₃OH gebildet wird (Schema 6.5). Das Ion CD₃OH₂⁺⁺ wird nicht detektiert, weil es aufgrund der schnellen Weiterreaktion mit CD₃OH nicht in stationärer Konzentration gebildet wird. Dieses Reaktionsabfolge ist analog zur Reaktion von 1⁺⁺ mit CH₃OH. Weder ein Hydrid- bzw. Deuteridtransfer ist hier zu beobachten.

Ein Anteil von ³⁷1⁺⁺ reagiert mit CD₃OH durch H/D-Austausch, wobei das einfach deuterierte 2-³⁷Chlorpropen-Radikalkation $C_3H_4D^{37}Cl^{++}$ und durch erneuten H/D-Austausch das zweifach deuterierte H/D-³⁷Chlorpropen-Radikalkation $C_3H_3D_2^{-37}Cl^{++}$ entsteht.

Als Substitutionsprodukt wird $C_4H_6D_3O^+$, m/z 76, und als Eliminierungsprodukt $C_4H_5D_3O^{++}$, m/z 75, bzw. $C_4H_6D_2O^{++}$, m/z 74, erwartet. Mit geringer Intensität entsteht jedoch nur ein Ion m/z 77, das einer Elementzusammensetzung von $C_4H_5D_4O^+$ entspricht.

Abbildung 6.3: Intensitäts-Zeit-Verlauf der Reaktion von ${}^{37}1^{++}$ mit CD₃OH

Die Bildung der Ionen C₃H₄D³⁷Cl⁺, m/z 79, und C₃H₃D₂³⁷Cl⁺, m/z 80, kann nur über das Markownikow-Addukt **1a(CD₃OH)** und eventuell über das anti-Markownikow-Addukt **1b(CD₃OH)** unter Beteiligung von 1,4- und 1,5-H/D-Wanderungen erfolgen (Schema 6.5). Die Entstehung von C₄H₅D₄O⁺, m/z 77, läßt sich aber nur durch 1,4-H/D-Wanderungen in **1a(CD₃OH)** erklären, welches zu einem zu **1a(CD₃OH)** isomeren Addukt-Ion führt. Dieses dissoziiert in das ß-distonische Ion C₃H₄D³⁷Cl und CHD₂OH und addiert erneut CD₃OH. Anschließend erfolgt Substitution des Chlor-Atoms unter Bildung von C₄H₅D₄O⁺, m/z 77 (Schema 6.5). Die Bildung von m/z 77 ist ein alternativer Weg der Substitutionsreaktion, der auch bei **1**⁺⁺ mit CH₃OH eintreten kann, da diese Reaktion sehr langsam ist.

Schema 6.5: Reaktionsmechanismen der Deprotonierungsreaktion, des H/D-Austauschs und der Bildung von m/z 77 bei der Reaktion von ${}^{37}1^{\cdot+}$ mit CD₃OH

Die Addition ist exotherm und ermöglicht Isomerisierungen durch Deuterium- und Wasserstoff-Umlagerungen und anschließender Rückdissoziation. Diese sind möglich, da die Weiterreaktion sehr langsam ist. Der H/D-Austausch zwischen den Reaktanden ist offensichtlich geringfügig exotherm, die Substitutionsreaktion ist dagegen thermoneutral oder sogar endotherm und kann daher nicht gut konkurrieren. Diese Reaktionsmechanismen werden in Kapitel 6.4 diskutiert.

Eine HCl/DCl-Eliminierung analog zum Reaktionssystem 1^{+} /CH₃OH wurde nicht beobachtet. Dabei wird als Produkt-Ion C₄H₅D₃O⁺⁺, m/z 75, bzw. C₄H₆D₂O⁺⁺, m/z 74, erwartet. Bei der Reaktion von 1^{++} mit CH₃OH wurden zwei Reaktionsmechanismen vorgeschlagen (Schema 6.3), die beide vom Addukt-Ion **1b**(CD₃OH) ausgehen. Dabei erfolgt entweder direkte 1,2-HCl-Eliminierung oder eine 1,2-Chlorverschiebung mit abschließender 1,3-HCl-Eliminierung unter Bildung des 2-Methoxypropen-Radikalkations. Beide Reaktionsmechanismen erfordern hohe Energiebarrieren^[187,188] und erklären die sehr geringe Effektivität dieses Prozesses. Da bei dem Reaktionssystem 1^{+} /CD₃OH dieser Prozeß überhaupt nicht beobachtet wurde, liegt vermutlich ein H/D-Isotopeneffekt vor.

Bei der Reaktion von 2⁺ mit Methanol findet im Gegensatz zur Reaktion von 1⁺ mit CH₃OH die Substitution des Brom-Atoms durch das CH₃OH als einziger Prozeß statt. Dabei wird das Produkt-Ion C₄H₉O⁺ (m/z 73) gebildet. Die Effektivität der Gesamtreaktion ist mit 0,8 % immer noch sehr gering, jedoch signifikant höher als bei dem Reaktionssystem $1^{+}/CH_{3}OH$. Der Intensitäts-Zeit-Verlauf der Reaktion von 2^{+} mit CH₃OH ist in Abbildung 6.4 dargestellt. Anhand der Abschätzung der Reaktionsenthalpien mit Hilfe von isodesmischen Reaktionen (Kapitel 12.3) ist die Substitutionsreaktion des Halogen-Atoms durch CH₃OH bei 2⁺ exothermer als bei 1⁺. Dagegen ist die Hydridübertragungsreaktion und die Protonentransferreaktion bei 1^{+} exothermer als bei 2^{+} . Das Reaktionsverhalten von 1^{+} und 2^{+} gegenüber CH₃OH stimmt somit gut mit den Abschätzungen der jeweiligen Reaktionsenthalpien überein. Der Intensitäts-Zeit-Verlauf der Reaktion von ⁸¹2^{·+} mit CD₃OH ist in Abbildung 6.5 dargestellt. Die Umsetzung des 2-⁸¹Brompropen-Radikalkations ⁸¹2^{·+} mit CD₃OH ergibt keine erheblichen Unterschiede zur entsprechenden Umsetzung von 2^{+} mit CH₃OH. Hauptprozeß mit einer relativen Intensität von 95 % ist die Substitutionsreaktion unter Bildung von $C_4H_6D_3O^+$, m/z 76. Ein H/D-Austausch wie bei ${}^{37}1^{+}/CD_3OH$ findet hier nicht statt, da dieser offensichtlich nicht mit der exothermen Substitutionsreaktion konkurrieren kann.

Abbildung 6.4: Intensitäts-Zeit-Verlauf der Reaktion von $2^{\cdot+}$ mit CH₃OH

Abbildung 6.5: Intensitäts-Zeit-Verlauf der Reaktion von ${}^{81}2^{\cdot+}$ mit CD₃OH

Der Intensitäts-Zeit-Verlauf der Reaktion von 1^{++} mit C₂H₅OH ist in Abbildung 6.6 dargestellt. Die Effektivität der Gesamtreaktion beträgt 41 %. Bei der Umsetzung von 1^{++} mit Ethanol findet primär nur die Hydridübertragungsreaktion von C₂H₅OH auf 1^{++} statt, wobei protoniertes Ethanal H₄C₂=OH⁺, m/z 45, entsteht. Dieses wird auch als reaktives Zwischenprodukt nachgewiesen und reagiert mit C₂H₅OH durch Protonenübertragungsreaktion zu protoniertem Ethanol C₂H₅OH₂⁺⁺ (m/z 47). Protoniertes Ethanol reagiert wiederum konsekutiv mit Ethanol durch Kondensation zum Ion C₄H₁₁O⁺, m/z 75, das protoniertem Diethylether entspricht. Da die Effektivität der Gesamtreaktion 41 % beträgt, ist diese Reaktion sehr viel schneller als bei 1^{++} /CH₃OH, was darauf hinweist, daß die Hydridtransferreaktion von C₂H₅OH auf 1^{++} viel exothermer ist. Dagegen wird erwartet, daß die Substitutionsreaktion immer noch endotherm ist und hier auch nicht beobachtet wird.

Abbildung 6.6: Intensitäts-Zeit-Verlauf der Reaktion von 1^{·+} mit C₂H₅OH

Der Intensitäts-Zeit-Verlauf der Reaktion von 2^{+} mit C₂H₅OH ist in Abbildung 6.7 dargestellt. Die Effektivität der Gesamtreaktion beträgt 37 %. Damit führt etwa jeder dritte Stoß von 2^{+} mit C₂H₅OH zur Reaktion. Der primäre Hauptprozeß bei der Reaktion von 2^{+} mit C₂H₅OH ist die Hydridübertragungsreaktion unter Bildung von H₄C₂=OH⁺, m/z 45. Dieses Ion reagiert konsekutiv weiter durch Protonentransfer auf C₂H₅OH unter Bildung von C₂H₅OH₂⁺, m/z 47. Dieses Ion kondensiert anschließend mit C₂H₅OH unter Abspaltung von H₂O zu C₄H₁₁O⁺, m/z 75. Die Substitutionsreaktion findet nur mit sehr geringer Intensität statt (I_{rel} = 3 %), wobei C₅H₁₁O⁺, m/z 87, generiert wird.

Weitere Prozesse sind die Bildung der Ionen m/z 73 ($I_{rel.} = 5$ %) und m/z 69 ($I_{rel.} = 10$ %). Die Elementzusammensetzung von m/z 73 entspricht $C_5H_9O^+$ und von m/z 69 $C_5H_9^+$. Der Bildungsmechanismus beider Kationen ist unklar. Nicht ganz auszuschließen ist jedoch, daß es sich bei diesen beiden Ionen um Artefakte handelt, die durch eine Verunreinigung im Ethanol in der FT-ICR-Zelle hervorgerufen werden kann.

Abbildung 6.7: Intensitäts-Zeit-Verlauf der Reaktion von 2^{·+} mit C₂H₅OH

6.3 Reaktionen von 2-Halogen-3,3,3-trifluorpropen-Radikalkationen mit aliphatischen Alkoholen

Bei der Reaktion der Radikalkationen von 2-Chlor-3,3,3-trifluorpropen, 4^{++} , mit Methanol entstehen als Hauptprodukt ein chlorhaltiges Ion m/z 112 bzw. m/z 114 mit einer relativen Intensität von zusammen 55 %. Parallel dazu entsteht ein Ion m/z 31, welches konsekutiv zu m/z 33 und nachfolgend zu m/z 47 reagiert. Die Summe der relativen Intensitäten der Ionen m/z 31, m/z 33, m/z 47 betragen 45 %. Die Effektivität der Gesamtreaktion ist 50 %. Damit führt etwa jeder zweite Stoß von 4^{++} mit CH₃OH zur Reaktion. Die Substitutionsreaktion, bei der das Produkt-Ion C₄H₆F₃O⁺, m/z 127, entsteht, ist hier nicht zu beobachten.

Die Elementzusammensetzungen der Ionen m/z 112 bzw. m/z 114 entsprechen $C_3H_3F_2^{35}CI^{++}$ bzw. $C_3H_3F_2^{37}CI^{++}$. Formal entspricht die Bildung dieser Ionen dem Verlust von HF und CH₂O aus dem Markownikow-Addukt, **4a(CH₃OH)**, oder anti-Markownikow-Addukt, **4b(CH₃OH)**. Zu erwarten ist, daß die Bildung von **4a(CH₃OH)** und **4b(CH₃OH)** sehr exotherm ist und diese β-distonischen Ionen energetisch sehr hoch angeregt sind, da die Bildung der analogen Addukte mit NH₃ erheblich exotherm ist (Kapitel 4.5). Mit dieser Überschußenergie können nun die Folgerreaktionen vorangetrieben werden. Ein möglicher Reaktionsmechanismus dafür ist in Schema 6.6 dargestellt und beinhaltet eine Wasserstoffverschiebung von der CH₃-Gruppe der Methanoleinheit des **4a(CH₃OH)** oder **4b(CH₃OH)** auf die Radikalstelle des jeweiligen β-distonischen Ions. Durch Wechselwirkung eines Fluor-Atoms der CF₃-Gruppe und eines Wasserstoff-Atoms des [°]CH₂-OH-Substituenten wird eine HF- und CH₂O- Abspaltung ermöglicht. Die Struktur des dabei gebildeten C₃H₃F₂CI⁺⁺ entspricht dann ionisiertem 2-Chlor-1,1-difluor-prop-1-en oder 1-Chlor-2,2-difluorcyclopropan. Da die Bildung von HF und CH₂O thermodynamisch günstig ist, ist auch der Prozeß zur Bildung von C₂H₂F₂CI⁺⁺ HE und CH₂O exotherm Über mögliche Energiebarrieren lassen

Bildung von $C_3H_3F_2Cl^{+}$, HF und CH_2O exotherm. Über mögliche Energiebarrieren lassen sich bei dem vorgeschlagenen Reaktionsmechanismus jedoch ohne aufwendige Berechnungen keine Aussagen machen. Da die Gesamtreaktion vergleichsweise schnell und die Bildung von $C_3H_3F_2Cl^{+}$ der Hauptprozeß ist, können mögliche Energiebarrieren allerdings keinen großen Einfluß haben.

Schema 6.6: Vorgeschlagener Mechanismus zur Bildung von C₃H₃F₂Cl⁺⁺

Die Hydridübertragung verläuft wahrscheinlich über die Addukte **4a**(CH₃OH) oder **4b**(CH₃OH) (Schema 6.6). Anstatt eines Verlustes von HF und CH₂O nach der Wasserstoffwanderung wird protoniertes Methanal abgespalten. Dieser Gesamtprozeß ist für das anti-Markownikow-Addukt, **4b**(CH₃OH), thermodynamisch leicht begünstigt. Eine Bestätigung für den hier vorgeschlagenen Reaktionsmechanismus für die HF/CH₂O-Abspaltung und der Hydridübertragungsreaktion ergibt sich auch aus der Umsetzung von **4**⁺⁺ mit CD₃OH. Als Produkte entstehen hierbei D₂C=OH₂⁺ (m/z 33) und C₃H₃F₂Cl⁺⁺ (m/z 113 bzw. m/z 115). Das Deuterium-Atom stammt daher eindeutig vom α -C-Atom des CD₃OH. Der Intensitäts-Zeit-Verlauf der Reaktion von ionisiertem 2-Brom-3,3,3-trifluorpropen 5^{++} mit CH₃OH ist in Abbildung 6.8 dargestellt. Die Effektivität der Gesamtreaktion beträgt 44 %. Damit führt ebenfalls etwa jeder zweite Stoß von 5^{++} mit CH₃OH zur Reaktion.

Abbildung 6.8: Intensitäts-Zeit-Verlauf der Reaktion von 5^{·+} mit CH₃OH

Hauptprozeß ist die Bildung der Ionen m/z 156 und m/z 158 mit den jeweiligen Elementzusammensetzungen $C_3H_3F_2^{79}Br^{+}$ bzw. $C_3H_3F_2^{81}Br^{+}$ mit einer relativen Intensität von insgesamt 80 %. Diese entstehen offensichtlich analog wie bei der Reaktion von 4⁺ mit CH₃OH durch Addition mit nachfolgender HF- und CH₂O-Abspaltung aus dem hier ebenfalls energetisch hoch angeregten Markownikow-Addukt **5a**(CH₃OH) oder **5b**(CH₃OH) nach einem Additions-/Eliminierungsmechanismus mit einer H-Wanderung.

Der zweitintensivste Prozeß ist die Hydridtransferreaktion von CH₃OH auf 5⁺⁺, wobei H₂C=OH⁺, m/z 31, entsteht. Dieses reagiert konsekutiv wie üblich mit Methanol durch Protonentransferreaktion zu CH₃OH₂⁺⁺ (m/z 33) und anschließend durch Kondensation mit Methanol unter Wasserabspaltung zu C₂H₇O⁺⁺ (m/z 47) weiter.^[45,184-186] Die Summe der relativen Intensitäten von m/z 31, m/z 33 und m/z 47 beträgt 15 %. Die einfache Substitution

des Brom-Atoms durch CH₃OH unter Bildung von C₄H₆F₃O⁺, m/z 127, findet lediglich mit einer relativen Intensität von 5 % statt. Offensichtlich kann die Substitutionsreaktion nicht mit der Bildung von C₃H₃F₂Br^{·+} konkurrieren. Bei der Reaktion des ionisierten Bromethens mit CH₃OH war die Substitutionsreaktion mit einer relativen Intensität von 75 % der dominierende Prozeß, während der Anteil der Hydridübertragungsreaktion und dessen Folgeprozesse lediglich einen Anteil von 25 % aufwies.

Die Reaktion von ionisiertem 3,3,3-Trifluor-2-iodpropen 6^{+} mit CH₃OH ergibt ein ähnliches Reaktionsverhalten wie bei den anderen 2-Halogen-3,3,3-trifluorpropen-Radikalkationen 4^{+} und 5^{+} . Der Intensitäts-Zeit-Verlauf der Reaktion von 6^{+} mit CH₃OH ist in Abbildung 6.9 dargestellt. Die Effektivität der Gesamtreaktion beträgt jedoch nur 0,6 %. Damit verläuft die Reaktion anders als bei Radikalkationen 4^{+} und 5^{+} sehr langsam.

Abbildung 6.9: Intensitäts-Zeit-Verlauf der Reaktion von 6^{·+} mit CH₃OH

Hauptprozeß ist wiederum die Bildung von $C_3H_3F_2I^+$, m/z 204, mit einer relativen Intensität von 68 %. Auch hier verläuft diese Reaktion über einen Additions-/Eliminierungs-

mechanismus. Dabei wird zunächst das Markownikow-Addukt **6a**(**CH**₃**OH**) bzw. **6b**(**CH**₃**OH**) gebildet. Nach einer H-Wanderung erfolgt Abspaltung von HF und CH₂O nach dem Mechanismus, der bereits bei der Reaktions von 4^{+} mit CH₃OH beschrieben wurde. Eine weitere Reaktion mit einer relativen Intensität von 13 % ist die Bildung eines Ions m/z 127, das dem Substitutionsprodukt C₄H₆F₃O⁺ entspricht.

Die Hydridübertragungsreaktion unter Bildung des protonierten Methanals, m/z 31, und dessen konsekutiven Folgeprodukte (m/z 33 bzw. m/z 47) findet nur noch mit einer relativen Intensität von 1 % statt. Nachgewiesen ist lediglich das zweite Konsekutivprodukt $C_2H_7O^+$, m/z 47. Die Vorläufer-Ionen (m/z 31 bzw. m/z 33) reagieren offenbar unter diesen Bedingungen so schnell weiter, daß ihre relativen Intensitäten unterhalb der Nachweisgrenze des FT-ICR sind.

Als weiteres Produkt beobachtet man ein Ion m/z 216 mit einer relativen Intensität von 12 % am Ende der Reaktion. Die Elementzusammensetzung entspricht C₄H₆FOI⁺⁺. Die Bildung dieses Ions korrespondiert formal zu einer doppelten Fluor-Atom-Abspaltung oder zum Verlust eines F₂-Moleküls aus dem Markownikow-Addukt **6a**(CH₃OH) bzw. anti-Markownikow-Addukt **6b**(CH₃OH). Eine einfache Abspaltung eines Fluor-Atoms sowie entsprechende Reaktionen unter Bildung des Ions C₄H₆FOX⁺⁺ (X = -Cl; -Br) wurden nicht beobachtet. Unklar ist, wie die Reaktion abläuft. Beide β-distonischen Addukt-Ionen **6a**(CH₃OH) und **6b**(CH₃OH) sind energetisch hoch angeregt. Die doppelte Abspaltung von Fluor wird wahrscheinlich durch die Überschußenergie in den Addukt-Ionen **6a**(CH₃OH) bzw. **6b**(CH₃OH) vorangetrieben, ist jedoch eine thermodynamisch ungünstige Reaktion. Dieser Prozeß verläuft parallel zur Substitutionsreaktion und ist nahezu genauso intensiv. Offensichtlich finden in den Addukt-Ionen mehrere Umlagerungen statt, bevor C₄H₆FOI⁺⁺ entsteht.

Ein weiteres Produkt-Ion ist das Ion m/z 246, daß mit einer relativen Intensität von 6 % am Ende der Reaktion gebildet wird. Dieses Ion entsteht kompetitiv zu m/z 216, m/z 127 und m/z 204. Die Elementzusammensetzung dieses Ions entspricht $C_5H_8FO_2I^{+}$. Die Entstehung und die Struktur dieses Ions sind unklar.

6.4 Berechnung der Reaktionsenthalpien der Reaktionen von 2-Halogenpropen- und 2-Halogen-3,3,3-trifluorpropen-Radikalkationen mit Methanol

Zum besseren Verständnis der Reaktionen von ionisiertem 2-Chlorpropen, 1⁺, 2-Brompropen, 2^{+} , 2-Chlor-3,3,3-trifluorpropen, 4^{+} , und 2-Brom-3,3,3-trifluorpropen, 5^{+} , mit CH₃OH wurden die jeweiligen Reaktionenergieprofile mit Hilfe von ab initio Rechnungen auf dem Niveau BHandHLYP/6-31+G(d) erstellt. Dazu wurden die Bildungsenthalpien der Edukte, Produkte und relevanten Intermediate berechnet. Zur weiteren Kontrolle wurden die dabei erhaltenen Geometrien je nach Rechenaufwand der jeweiligen Struktur Einzelpunkt-BHandHLYP/6-311+G(2d,p)//BHandHLYP/6-31+G(d), rechnungen auf dem Niveau BHandHLYP/aug-cc-pVDZ//BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVTZ/ /BHandHLYP/6-31+G(d),CCSD(T)/cc-pVDZ//BHandHLYP/6-31+G(d) und CCSD(T)/6-311+G(2d,p)//BHandHLYP/6-31+G(d)unterzogen (Kapitel 12.2). Das Reaktionssystem von $1^{+}/CH_{3}OH$ wurde eingehend untersucht, indem verschiedene mögliche Übergangszustände berücksichtigt wurden. Die mit BHandHLYP/6-31+G(d) erhaltenen die potentiellen Energien, die Nullpunktsschwingungsenergien, Geometrien. die Energiebeiträge bei 298 K, die kleinsten Schwingungsfrequenzen und die S²-Werte sind ebenfalls im Anhang (Kapitel 12.2) aufgeführt. Die Berechnung der Bildungsenthalpien H^{298K} erfolgt nach Gleichung (3.14). Als relativer Bezugspunkt zur Berechnung der Reaktionsenthalpie bzw. der Differenzen der Bildungsenthalpien wurde die Summe der Enthalpien des jeweiligen Halogenalken-Radikalkations und CH₃OH verwendet.

Die auf diese Weise berechneten Reaktionsenergieprofile von 1^{++} mit CH₃OH sind in Abbildung 6.10-6.12 dargestellt. Das globale Potentialminimum entlang des Reaktionsenergieprofils (Abbildung 6.10) ist das Markownikow-Addukt **1a(CH₃OH)**. Dieses entsteht durch nukleophilen Angriff des CH₃OH auf das C1-Atom von 1^{++} . Ein weiteres Potentialminimum ist das anti-Markownikow-Addukt **1b(CH₃OH)**, das durch nukleophilen Angriff des CH₃OH auf das C2-Atom von 1^{++} gebildet wird. Beide Addukte sind β-distonische Ionen. Die Differenz der Bildungsenthalpien für die Bildung von **1a(CH₃OH)** beträgt -81 kJ/mol, die von **1b(CH₃OH)** beträgt -51 kJ/mol und liegt damit um 30 kJ/mol höher. Diese Differenz ist etwas größer als die entsprechende Differenz von 19 kJ/mol der beiden isomeren Addukt-Ionen bei der Reaktion von ionisiertem Chlorethen mit CH₃OH.^[45,184] Dagegen ist die Differenz der Bildungsenthalpien für die Bildung der beiden Addukt-Ionen **1a(NH₃)** und **1b(NH₃)** von 28 kJ/mol nahezu identisch mit der von **1a(CH₃OH)** und **1b(CH₃OH)**. Dieser Vergleich bestätigt die Regioselektivität bei der Addition von CH₃OH an 1^{++} , wobei energetisch das Markownikow-Addukt bevorzugt wird. Der Methylsubstituent hat einen signifikanten Einfluß auf die Differenz der Bildungsenthalpien des Markownikow- und des anti-Markownikow-Addukts von $1''/NH_3$ bzw. $1''/CH_3OH$.

Ein Übergangszustand für eine 1,2-Verschiebung des CH₃OH zwischen **1a**(**CH₃OH**) und **1b**(**CH₃OH**) wie bei dem Reaktionssystem H₂C=CHCl^{·+}/CH₃OH^[45,184] wurde nicht gefunden. Dagegen wurde ein scheinbarer Übergangszustand für die Addition von CH₃OH an **1**^{·+} nach anti-Markownikow gefunden (**1bTS**(**CH₃OH**)). Die Differenz der Bildungsenthalpien beträgt hierfür -52 kJ/mol. Dieser Wert entspricht praktisch der Differenz der Bildungsenthalpien zur Bildung von **1b**(**CH₃OH**). Dieses bedeutet, daß diese Addition von CH₃OH an **1**^{·+} wie bei den übrigen Reaktionssystemen barrierelos erfolgt. Dieses Resultat steht im Einklang mit dem Postulat, daß die Addition von Nukleophilen an ionisierte Alkene allgemein ohne Energiebarriere erfolgt.^[164]

Abbildung 6.10: Reaktionsenergieprofil der Substitutionsreaktion und der Deprotonierungsreaktion von 1^{·+} mit CH₃OH

Energetisch günstig ist die Abspaltung des Chlor-Atoms nur aus der ipso-Position des anti-Markownikow-Addukts, **1b**(**CH**₃**OH**).^[41,45,184] Sie ist wahrscheinlich ebenfalls barrierelos. Dabei entsteht das positiv geladene Substitutionsprodukt. Der Gesamtprozeß ist jedoch nach den Berechnungen mit + 10 kJ/mol endotherm und sollte demnach nicht oder allenfalls sehr langsam erfolgen. Die Protonentransferreaktion von 1^{++} auf CH₃OH ist endotherm. Die Reaktionsenthalpie hierfür beträgt + 24 kJ/mol und ist damit sogar um 14 kJ/mol höher als die der Substitutionsreaktion. Beide Prozesse finden experimentell sehr langsam statt (Abbildung 6.1). Diese endothermen Prozesse können beobachtet werden, weil ein Anteil der Edukte entsprechend der Maxwell-Boltzmann-Verteilung eine höhere kinetische Energie aufweist, die für die Überwindung der Reaktionsenthalpie gebraucht wird.

Obwohl die Protonentransferreaktion endothermer ist als die Substitutionsreaktion, ist diese Reaktion experimentell der Hauptprozeß. Ähnliche Befunde ergeben sich bei der Reaktion von ionisiertem Chlorethen mit CH₃OH.^[45,184] Hier ist zwar die Hydridtransferreaktion mit -6 kJ/mol geringfügig exotherm, ist aber um 13 kJ/mol endothermer als die Substitutionsreaktion und trotzdem der primäre Hauptprozeß. Möglicherweise ergibt die Berechnung des 2-Chlorallyl-Radikals auf dem Niveau BHandHLYP/6-31+G(d) eine zu hohe Bildungsenthalpie, denn die Abschätzung mit Hilfe von isodesmischen Reaktionen (Tabelle 6.1) ergibt eine Reaktionsenthalpie von -4 kJ/mol. Damit wäre dieser Prozeß geringfügig exotherm, und die abgeschätzte Reaktionsenthalpie erklärt das tatsächliche Reaktionsverhalten. Bei der Reaktion von $1'^+$ mit CH₃OH findet die Protonentransferreaktion vermutlich nicht über einen entropisch anspruchsvollen Additions-/Eliminierungsmechanismus statt, sondern als direkter Protonentransfer aus der aciden Methylgruppe. Daraus folgt, daß es keine Energiebarrieren gibt, die die Protonentransferreaktion erschweren.

Die Bildung von O-methyliertem Aceton als Substitutionsprodukt von $1'^+$ ergibt eine Reaktionsenthalpie von -134 kJ/mol. Dieser Reaktionsverlauf ist damit um 144 kJ/mol energetisch günstiger als die in Abbildung 6.10 diskutierte Bildung des O-protonierten Propenylethers. Sie erfordert jedoch eine zusätzliche 1,3-H-Wanderung in einem der β -distonischen Addukt-Ionen. Das hierfür berechnete Reaktionsenergieprofil ist in Abbildung 6.11 dargestellt.

Ein Bildungsweg ausgehend vom 1b(CH₃OH) über den Übergangszustand 1d(CH₃OH) ergibt 1e(CH₃OH). 1e(CH₃OH) liefert nach Abspaltung des Chlor-Atoms O-methyliertes Aceton. Die Differenz der Bildungsenthalpien des Übergangszustands 1d(CH₃OH) beträgt +67 kJ/mol und die von 1e(CH₃OH) -67 kJ/mol. Da die Bildung von 1e(CH₃OH) eine so

hohe Aktivierungsbarriere erfordert, kann die Substitutionsreaktion von 1^{+} mit CH₃OH unter Bildung des O-methylierten Acetons ausgeschlossen werden.

Abbildung 6.11: Reaktionsenergieprofil zur Bildung von O-methyliertem Aceton

Die Reaktionsenthalpie der Hydridtransferreaktion wird mit +42 kJ/mol für das 2-Chlor-2propyl-Radikal bzw. +65 kJ/mol für das 2-Chlor-1-propyl-Radikal sehr endotherm berechnet, sie wird experimentell auch nicht beobachtet. Im Gegensatz dazu ist dieser Prozeß bei der Reaktion von ionisiertem Chlorethen mit CH₃OH mit -6 kJ/mol insgesamt geringfügig exotherm.^[45,184] Offenbar wird 1⁺⁺ durch die elektronenschiebende CH₃-Gruppe im Vergleich zum Chlorethen-Radikalkation signifikant stabilisiert.

Für die Umlagerung des Addukt-Ions $1a(CH_3OH)$ in $1g(CH_3OH)$ wurde ein Übergangszustand, $1f(CH_3OH)$, gefunden (Abbildung 6.12a). $1g(CH_3OH)$ ergibt nach Abspaltung von $H_2C=OH^+$ das 2-Chlor-1-propyl-Radikal. Die Differenz der Bildungsenthalpien des Übergangszustands $1f(CH_3OH)$ beträgt +62 kJ/mol und die von $1g(CH_3OH)$ -29 kJ/mol. Auch dieser Reaktionsweg kann daher ausgeschlossen werden.

Der Übergangszustand für die Umlagerung des Addukt-Ions **1b**(CH₃OH) zu **1i**(CH₃OH) konnte auf dem UHF/6-31+G(d), nicht jedoch auf dem BHandHLYP/6-31+G(d) Niveau lokalsiert werden. Die auf dem Niveau UHF/6-31+G(d) erhaltene relative Enthalpie von

1h(**CH**₃**OH**) ist um 29 kJ/mol kleiner als die von **1d**(**CH**₃**OH**). Dieser Differenzbetrag wird von der mit BHandHLYP/6-31g(d) berechneten relativen Enthalpie von **1d**(**CH**₃**OH**) abgezogen. Man erhält für **1h**(**CH**₃**OH**) eine abgeschätzte Differenz der Bildungsenthalpie von +33 kJ/mol. Die relative Bildungsenthalpie von **1i**(**CH**₃**OH**) beträgt -32 kJ/mol. **1i**(**CH**₃**OH**) ergibt nach Abspaltung von H₂C=OH⁺ das 2-Chlor-2-propyl-Radikal (Abbildung 6.12b). Diese Reaktion kann wegen der Energiebarriere ausgeschlossen werden.

Diese Energiebarrieren, verursacht durch $1d(CH_3OH)$ oder $1h(CH_3OH)$, schließen auch den vorgeschlagenen Mechanismus für den H/D-Austausch (Schema 6.5) und die Bildung des Ions C₄H₅D₄O⁺ aus. Die Reaktionsenthalpie für das vorgeschlagene Substitutionsprodukt, O-protoniertes 3-Methoxprop-1-en, ist mit +4 kJ/mol berechnet worden und damit sogar um +6 kJ/mol energetisch günstiger als das Substitutionsprodukt, entstanden durch Chlorabspaltung aus **1b(CH_3OH)**. Der Mechanismus für den H/D-Austausch und die Bildung des Ions C₄H₅D₄O⁺ bleiben daher unklar.

Abbildung 6.12a: Reaktionsenergieprofil der Hydridübertragung von CH₃OH auf **1**⁺⁺ über **1a**(**CH₃OH**)

Abbildung 6.12b: Reaktionsenergieprofil der Hydridübertragung von CH₃OH auf **1**⁺über **1b(CH₃OH)** (* abgeschätzter Wert; siehe Text)

Das Reaktionsenergieprofil der Reaktion von 2^{+} mit CH₃OH ist in Abbildung 6.13 dargestellt. Globales Potentialminimum entlang des Reaktionsenergieprofils ist das Markownikow-Addukt **2a**(CH₃OH). Die entsprechende Differenz der Bildungsenthalpien beträgt -79 kJ/mol. Ein weiteres energetisch niedriges Potentialminimum ist das anti-Markownikow-Addukt **2b**(CH₃OH), das eine entsprechende Differenz der Bildungsenthalpien von -50 kJ/mol aufweist. Die nukleophile Addition des CH₃OH ist nach diesen Berechnungen regioselektiv, wobei die Bildung von **2a**(CH₃OH) bevorzugt ist. Die Differenz der Bildungsenthalpien von **2a**(CH₃OH) bzw. **2b**(CH₃OH) entspricht praktisch der von **1a**(CH₃OH) bzw. **1b**(CH₃OH), wie dieses bereits für das Reaktionssystem von **1**⁺ bzw. **2**⁺ mit NH₃ beobachtet wurde. Die Substitutionsreaktion erfolgt aus dem Addukt-Ion **2b**(CH₃OH), welches wie bei dem Reaktionssystem **1**^{+/}/CH₃OH durch direkte Addition und nicht durch Umlagerung von **2a**(CH₃OH) gebildet werden muß.

Abbildung 6.13: Reaktionsenergieprofil von 2^{·+} mit CH₃OH

Die Hydridübertragungsreaktion ist dagegen endotherm mit einer Reaktionsenthalpie von +53 kJ/mol bzw. +65 kJ/mol je nach Struktur des entstehenden Radikals. Die Protonentransferreaktion unter Bildung des 2-Bromallyl-Radikals und protonierten Methanol wird mit +34 kJ/mol als ebenfalls endotherm berechnet und ist um 10 kJ/mol endothermer als bei der entsprechenden Reaktion von 1^{++} mit CH₃OH. Die Reaktionsenthalpie der Substitutionsreaktion ist bei 2^{++} /CH₃OH mit -12 kJ/mol signifikant exothermer als bei 1^{++} /CH₃OH und wird experimentell als einziger, jedoch langsamer Prozeß beobachtet.

Diese theoretischen Berechnungen stehen somit im Einklang mit den experimentellen Beobachtungen bei 2^{+} /CH₃OH. Weiterhin geben die berechneten Reaktionsenergieprofile auch die experimentell gefundenen Unterschiede bei der Reaktion von 1^{+} oder 2^{+} mit CH₃OH wieder.

Das Reaktionsenergieprofil von 4^{+} mit CH₃OH ist in Abbildung 6.14 dargestellt. Das globale Potentialminimum entlang des Reaktionsenergieprofils ist nach den Berechnungen wieder das Markownikow-Addukt **4a**(CH₃OH). Die Differenz der Bildungsenthalpien für seine Bildung beträgt -141 kJ/mol und ist damit um 60 kJ/mol erheblich negativer als bei **1a**(CH₃OH). Diese Differenz ist nahezu identisch mit der entsprechenden Differenz von **1a**(NH₃) **und 4a**(NH₃). Die Differenz der Bildungsenthalpien des Markownikow-Addukts **4a**(CH₃OH) und anti-Markownikow-Addukts **4b**(CH₃OH) beträgt 38 kJ/mol, wobei die Bildung des Markownikow-Addukts energetisch bevorzugt ist. Dieser Unterschied weist wieder auf eine Regioselektivität der Addition hin. Der Einfluß der stark elektronenziehenden Trifluormethylgruppe bewirkt offensichtlich eine Destabilisierung von 4^{+} und damit eine signifikant größere Exothermizität bei der Bildung von **4a**(CH₃OH) und **4b**(CH₃OH).

Abbildung 6.14: Reaktionsenergieprofil von 4⁺⁺ mit CH₃OH

Der Protonentransfer wird mit +39 kJ/mol als sehr endotherm berechnet. Dieses ist verständlich, da das Proton von einer vinylischen Position abgelöst werden muß und kein Allyl-Radikal entstehen kann. Dagegen ergibt sich die Hydridaustauschreaktion unabhängig von der Struktur des dabei entstehenden Radikals als erheblich exotherm (Abbildung 6.14). Die Substitutionsreaktion wird ebenfalls mit -40 kJ/mol als exotherm berechnet. Nicht

berechnet wurde die Reaktionsenthalpie der Bildung von $C_3H_3F_2Cl^{+}$, HF und CH₂O, da der genaue Bildungsweg und die Struktur von $C_3H_3F_2Cl^{+}$ nicht bekannt sind.

Auch bei der Reaktion von 4⁺⁺ mit CH₃OH werden die experimentellen Ergebnisse durch die theoretischen Berechnungen größtenteils bestätigt. Die Protonentransferreaktion wird als endothermer Prozeß experimentell nicht beobachtet. Dagegen ist die Hydridtransferreaktion sehr exotherm und wird bei der Reaktion von 4^{·+} mit CH₃OH auch als intensiver Prozeß beobachtet. Die exotherme Substitutionsreaktion wird jedoch überaschend experimentell nicht beobachtet, sondern als Hauptreaktion die Bildung von C₃H₃F₂Cl⁺. Auch hier stellt sich wieder die Frage, ob dieser Prozeß und die Hydridübertragungsreaktion aus den energetisch hoch angeregten β-distonischen Addukt-Ionen 4a(CH₃OH) bzw. 4b(CH₃OH) erfolgen. Ein möglicher Reaktionsmechanismus dafür wurde bereits in Kapitel 6.3 diskutiert. Dabei findet eine Wasserstoffverschiebung vom CH₃OH-Substituenten des 4a(CH₃OH) auf die Radikalstelle dieses β-distonischen Ions statt. Mit Hilfe der Überschußenergie in diesem Addukt-Ion 4a(CH₃OH) können nun Folgerreaktionen vorangetrieben werden, wie beispielsweise die kombinierte Abspaltung von HF und CH₂O. Die Struktur des dabei gebildeten C₃H₃F₂Cl⁺ entspräche demnach ionisiertem 2-Chlor-1,1-difluorprop-1-en. Da die Bildung von HF und CH₂O energetisch günstig ist, ist der Gesamtprozeß der Bildung von $C_3H_3F_2CI^{+}$ sehr exotherm. Eventuelle Energiebarrieren können keinen hohen Einfluß haben, da dieser Prozeß schnell erfolgt.

Auch bei 5⁻⁺/CH₃OH bestätigen die theoretischen Berechnungen im wesentlichen die experimentellen Ergebnisse. Das Reaktionsenergieprofil der Reaktion von 5⁻⁺ mit CH₃OH ist in Abbildung 6.15 dargestellt. Globales Potentialminimum entlang des Reaktionsenergieprofils ist die Bildung des Markownikow-Addukts **5a**(CH₃OH) mit einer Differenz der Bildungsenthalpien von -128 kJ/mol. Die CH₃OH-Addition ist damit um 49 kJ/mol exothermer als bei der Bildung von **2a**(CH₃OH). Ein ebenfalls energetisch niedrig liegendes Potentialminimum ist das anti-Markownikow-Addukt **5b**(CH₃OH). Die Differenz der Bildungsenthalpien von **5b**(CH₃OH) beträgt -93 kJ/mol. Die Differenz der Bildungsenthalpien von **5b**(CH₃OH) beträgt 35 kJ/mol und entspricht somit etwa den entsprechenden Differenzen von **4a**(CH₃OH) und **4b**(CH₃OH), **2a**(CH₃OH) und **2b**(CH₃OH) sowie **5a**(NH₃) und **5b**(NH₃).

Abbildung 6.15: Reaktionsenergieprofil von 5^{·+} mit CH₃OH

Die Protonenübertragungsreaktion bei der Reaktion von 5^{++} mit CH₃OH ergibt sich nach den Berechnungen mit +56 kJ/mol als noch endothermer als bei der entsprechenden Reaktion von 4^{++} . Sie wird experimentell auch nicht beobachtet. Die Hydridübertragungsreaktion ist dagegen unabhängig von der Struktur des entstehenden Radikals exotherm, wenn auch geringer als bei 4^{++} /CH₃OH. Dabei werden protoniertes Methanal und entweder das 2-Brom-1,1,1-trifluor-3-propyl-Radikal ($\Delta H_r = -29$ kJ/mol) oder das 2-Brom-1,1,1-trifluor-2-propyl-Radikal ($\Delta H_r = -39$ kJ/mol) gebildet. Dieser Prozeß kann bei der Reaktion von 5^{++} mit CH₃OH experimentell beobachtet werden, ist jedoch nicht so intensiv wie bei der Reaktion von 4^{++} mit CH₃OH.

Ebenfalls als exotherm wird die Substitutionsreaktion berechnet, mit einer Reaktionsenthalpie von -49 kJ/mol. Das ist geringfügig mehr als bei dem Reaktionssystem $4^{+}/CH_3OH$. Dieser Prozeß wurde mit geringer Intensität beobachtet, kann aber nur mäßig mit der Bildung von $C_3H_3F_2Br^{+}$ konkurrieren, der noch vorherrschender ist als bei $4^{+}/CH_3OH$. Die Reaktionsenthalpie der Bildung von $C_3H_3F_2Br^{+}$, HF und CH_2O wurde nicht berechnet, da der genaue Bildungsweg und die Struktur von $C_3H_3F_2Br^{+}$ nicht bekannt sind.

Die mit BHandHLYP erhaltenen Geometrien wurden Einzelpunktrechnungen auf dem Niveau BHandHLYP/6-311+G(2d,p)//BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVDZ//BHandHLYP/6-31+G(d), CCSD(T)/cc-pVDZ//BHandHLYP/6-31+G(d) und CCSD(T)/6-311+G(2d,p)//BHandHLYP/6-31+G(d) unterzogen.

Die berechneten Reaktionsenthalpien für die Substitutions-, Hydridtransferund Deprotonierungsreaktion sowie die Differenzen der Bildungsenthalpien des Markownikow-Addukts und des anti-Markownikow-Addukts von CH₃OH an die Halogenalken-Radikalkationen 1⁺⁺, 2⁺⁺, 4⁺⁺ bzw. 5⁺⁺ sind bei Rechnungen auf dem Niveau BHandHLYP/6-311+G(2d,p)//BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVDZ//BHandHLYP/6-31+G(d) und BHandHLYP/aug-cc-pVTZ//BHandHLYP/6-31+G(d) praktisch identisch oder zumindest sehr ähnlich, während die auf dem Niveau CCSD(T)/6-311+G(2d,p)/ /BHandHLYP/6-31+G(d)berechneten Reaktionsenthalpien und Differenzen der Bildungsenthalpien geringfügig größer sind als bei den zuvor genannten Methoden. Dagegen weichen die auf dem Niveau CCSD(T)/cc-pVDZ//BHandHLYP/6-31+G(d) berechneten Reaktionsenthalpien und Differenzen der Bildungsenthalpien meistens signifikant von den Werten ab, die mit den übrigen Methoden berechnet wurden. Offensichtlich haben diffuse Basissatzfunktionen auf die berechnete Bildungsenthalpie einen erheblichen Einfluß. Da im Basissatz cc-pVDZ diffuse Basissatzfunktionen nicht enthalten sind, ist diese Methode für den vorliegenden Fall nicht gut geeignet. Die zuverlässigsten Ergebnisse liefert sehr wahrscheinlich die Methode CCSD(T)/6-311+G(2d,p)//BHandHLYP/6-31+G(d).

Die Einzelpunktrechnungen verstärken die Aussagen über die Reaktionsenergieprofile, die mit der Methode BHandHLYP/6-31+G(d) erhalten wurden. Die berechneten Reaktionsenthalpien und Differenzen der Bildungsenthalpien sind jetzt meistens etwas größer, so daß die Reaktionsenthalpien der Substitutions- und Hydridtransferreaktion sowie die Deprotonierungsreaktion jeweils noch endothermer werden.

Anhand der zuvor beschriebenen *ab initio* Berechnungen (BHandHLYP/6-31+G(d)) der Reaktionsenthalpien der Substitutions-, Hydridtransfer- und Protonentransferreaktion für die Umsetzungen von 1^{+} bzw. 2^{+} mit CH₃OH wird eine Abschätzung der Reaktionsenthalpien für die Reaktionen von 1^{+} und 2^{+} mit C₂H₅OH mit Hilfe von isodesmischen Reaktionen durchgeführt (Kapitel 12.3). Die Ergebnisse sind in Tabelle 6.2 aufgeführt.

Produkte	Reaktion	X = Cl	X = Br
$ \begin{array}{c} X \\ H_{3}C \\ H \\ H_{5}C_{2} \\ OH \end{array} $	Edukte	0	0
$H_{-O} \stackrel{C_2H_5}{\longrightarrow} H + X'$	Substitution	-5	-27
$X \qquad H \\ H_2 C \qquad H \\ + H_5 C_2 \qquad OH_2$	Deprotonierung	+2	+12
$X H H H_{3}C H$ $+ H_{4}C_{2} = OH$	Hydridtransfer	-34	-23
$ \begin{array}{c} H \\ X \\ H_{3}C \\ H_{3}C \\ H \\ H_{4}C_{2} \end{array} \begin{array}{c} H \\ H_{4}C_{2} \end{array} $	Hydridtransfer	-11	-11

Tabelle 6.2: Abgeschätzte Reaktionsenthalpien [kJ/mol] für die Reaktionen von 1^{+} und 2^{+} mit C₂H₅OH mit Hilfe von isodesmischen Reaktionen

Die experimentellen Befunde für die Reaktionssysteme von $1^{+}/C_2H_5OH$ und $2^{+}/C_2H_5OH$ stimmen mit diesen Abschätzungen der Reaktionsenthalpien gut überein. Der Protonentransfer von 1^{+} bzw. 2^{+} auf C_2H_5OH ist endotherm. Weiterhin ist die Hydridtransferreaktion bei $1^{+}/C_2H_5OH$ exothermer als bei $2^{+}/C_2H_5OH$, während die Substitutionsreaktion von $2^{+}/C_2H_5OH$ exothermer ist als bei $1^{+}/C_2H_5OH$. In der Tat ist die Hydridtransferreaktion bei $1^{+}/C_2H_5OH$ der einzige Primärprozeß und die Substitutionsreaktion findet nicht statt, während die Substitutionsreaktion bei dem Reaktionssystem $2^{+}/C_2H_5OH$ mit geringer relativer Intensität gefunden wurde.
6.5 Reaktionen von Brombuten-Radikalkationen mit Methanol

Bei der Reaktion des trans- und cis-Isomeren vom 2-Brombut-2-en-Radikalkation, 7^{+} , mit CH₃OH wurde selbst bei sehr hohem Partialdruck von Methanol in der FT-ICR-Zelle keine Reaktion beobachtet. Die Berechnungen der Reaktionsenthalpien auf dem Niveau BHandHLYP/6-31+G(d) für die Hydridtransfer- und die Protonentransferreaktion und die Abschätzungen mit Hilfe von isodesmischen Reaktionen ergeben, daß alle diese Prozesse unabhängig von den jeweiligen Isomeren endotherm sind (Kapitel 12.2 und 12.3).

Im Gegensatz zur Reaktion von $7'^+$ mit CH₃OH finden bei der Umsetzung vom 1-Brombut-2en-Radikalkation, $8'^+$, mit CH₃OH zwei Prozesse statt. Der eine Prozeß ist die Bildung des Ions m/z 87 mit einer relativen Intensität von 75 %. Kompetitiv erfolgt die Bildung des Ions m/z 86 % mit einer relativen Intensität von 25 %. Der Intensitäts-Zeit-Verlauf der Reaktion von $8'^+$ mit CH₃OH ist in Abbildung 6.16 dargestellt. Die Effektivität der Gesamtreaktion beträgt 24 %. Damit führt etwa jeder vierte Stoß von $8'^+$ mit CH₃OH zur Reaktion.

Abbildung 6.16: Intensitäts-Zeit-Verlauf der Reaktion von 8^{·+} mit CH₃OH

Das Ion mit m/z 87 entspricht einer Elementzusammensetzung von $C_5H_{11}O^+$ und entsteht durch Substitution des Brom-Atoms durch CH_3OH . Das Ion m/z 86 entspricht einer Elementzusammensetzung von $C_5H_{10}O^{+}$. Dieses Ion wird durch HBr-Abspaltung aus dem Markownikow-Addukt **8a(CH_3OH)** bzw. anti-Markownikow-Addukt **8b(CH_3OH)** generiert. Die beiden Reaktionen von **8**⁺⁺ mit CH₃OH sind in Schema 6.7 aufgeführt.

Schema 6.7: Reaktionen von 8^{+} mit CH₃OH

Ebenfalls zwei Prozesse erfolgen bei der Reaktion vom 4-Brombut-1-en-Radikalkation, 9^{+} , mit CH₃OH. Der Intensitäts-Zeit-Verlauf der Reaktion von 9^{+} mit CH₃OH ist in Abbildung 6.17 dargestellt. Wie bei der Reaktion von 8^{+} mit CH₃OH werden auch bei 9^{+} /CH₃OH die Ionen m/z 87 und m/z 86 gebildet, die der Elementzusammensetzung C₅H₁₁O⁺ bzw. C₅H₁₀O⁺⁺ entsprechen. Das Verhältnis der relativen Intensitäten von m/z 87 : m/z 86 beträgt hier allerdings 54:46. Die Effektivität der Gesamtreaktion beträgt 13 %. Damit führt nur noch etwa jeder achte Stoß von 9^{++} mit CH₃OH zur Reaktion. Die Bildung von m/z 87 ist ebenfalls auf eine Substitution des Brom-Atoms durch CH₃OH zurückzuführen. Das Ion m/z 86 wird wieder durch HBr-Abspaltung aus dem Markownikow-Addukt **9a(CH₃OH)** bzw. anti-Markownikow-Addukt **9b(CH₃OH)** generiert. Die beiden Reaktionen von 9^{++} mit CH₃OH

Abbildung 6.17: Intensitäts-Zeit-Verlauf der Reaktion von 9^{·+} mit CH₃OH

Schema 6.8: Reaktionen von 9^{·+} mit CH₃OH

Der Reaktionsmechanismus der Substitution des Brom-Atoms von 8^{++} durch CH₃OH läßt sich gut über einen Additions-/Eliminierungsmechanismus formulieren. Energetisch begünstigt bei der Addition von CH₃OH an 8^{++} ist sicherlich wieder das Markownikow-Addukt **8a(CH₃OH)**, da dieses bei allen hier durchgeführten *ab initio* Rechnungen gefunden wurde. Im vorliegenden Fall kann die Abspaltung des Brom-Atoms auch aus dem energetisch geringfügig günstigeren Addukt-Ion **8a(CH₃OH)** erfolgen (Schema 6.9), während dieses für die C2und C3-Monohalogenalken-Radikalkationen nur aus den jeweiligen anti-Markownikow-Addukten möglich ist. Als Substitutionsprodukt ist O-protonierter 3-Methylprop-1-enyl-3methylether oder O-protonierter 2-Methylcyclopropylmethylether möglich (Schema 6.9). Die Reaktionsenthalpie des O-protonierten 3-Methylprop-1-enyl-3-methylethers ist mit +1 kJ/mol als praktisch thermoneutral abgeschätzt worden (Kapitel 12.3). Die Reaktionsenthalpie des Oprotonierter 2-Methylcyclopropylmethylether ist mit +36 kJ/mol abgeschätzt worden (Kapitel 12.3).

Die Hydridtransferreaktion und die Deprotonierungsreaktion wurde unabhängig von der Struktur der entstehenden Radikale und der Isomere der Edukte als endotherm abgeschätzt. (Kapitel 12.3).

Die Bildung des Ions m/z 86 erfolgt durch HBr-Eliminierung aus dem Markownikow-Addukt **8a(CH₃OH)** bzw. anti-Markownikow-Addukt **8b(CH₃OH)** (Schema 6.10). Obwohl HX-Eliminierungen (X = Cl; -Br) aus Radikalkationen allgemein exotherm sind, erfordern sie oftmals eine hohe Energiebarriere.^[187,188] Daher kann dieser Prozeß nicht effektiv mit der Substitutionsreaktion konkurrieren.

Schema 6.9: Reaktionsmechanismus der Substitution von 8^{+} und CH₃OH

Schema 6.10: Möglicher Reaktionsmechanismus der HBr-Eliminierung von 8^{·+} und CH₃OH

Der Reaktionsmechanismus der Substitution des Brom-Atoms von 9^{+} durch CH₃OH läßt sich gleichfalls durch einen Additions-/Eliminierungsmechanismus beschreiben. Die Regioselektivität der Addition ist hier sicher nicht so ausgeprägt wie bei den anderen Halogenalken-Radikalkationen. Für die Bildung des Ions m/z 87, welches aus der Reaktion von 9^{+} mit CH₃OH gebildet wird, sind vier isomere Substitutionsprodukte möglich. Aus dem Addukt-Ion **9a(CH₃OH)** wird dabei O-protoniertes Ethoxycyclopropan und aus dem Addukt-Ion **9b(CH₃OH)** wird O-protoniertes Methoxycyclobutan generiert (Schema 6.11). Beide Reaktionen sind mit -28 kJ/mol bzw. -44 kJ/mol als exotherm abgeschätzt worden.

Schema 6.11: Reaktionsmechanismus der Substitutionsreaktion von 9^{·+} und CH₃OH

Möglich ist aber auch, daß H-Wanderungen in den jeweiligen β -distonischen Addukt-Ionen von **9**⁺ mit CH₃OH erfolgen, wie dieses bereits in Kapitel 4.6 (Schema 4.15) bei **9**⁺ /NH₃ diskutiert wurde. Bei der Reaktion von **9**⁺ und CH₃OH kann analog eine 1,2-H-Wanderung im Addukt-Ion **9a**(CH₃OH) letztendlich zur Bildung von O-protonierten 4-Methoxybut-1-en führen. Dieser Prozeß ist mit -42 kJ/mol als exotherm abgeschätzt worden und ist damit

praktisch genauso exotherm, wie die Bildung des O-protoniertes Methoxycyclobutans. Bemerkenswert ist aber, daß trotzdem die Substitutionsreaktion im Reaktionssystem $9''/CH_3OH$ mit einer Effektivität von 7 % signifikant langsamer ist als bei $8''/CH_3OH$, welches eine Effektivität der Substitutionsreaktion von 18 % aufweist. Offensichtlich ist der Grund dafür die H-Wanderungen in den distonischen Addukt-Ionen.

Die Hydridtransferreaktion ist unabhängig von der Struktur der entstehenden Radikale und der jeweiligen Isomere der Edukte als endotherm abgeschätzt worden (Kapitel 12.3), während die Deprotonierungsreaktion mit -11 kJ/mol exotherm ist (Kapitel 12.3). Letzter Prozeß wird experimentell aber nicht beobachtet.

Die Bildung des Ions m/z 86 erfolgt wieder durch HBr-Eliminierung aus dem Markownikow-Addukt **9a(CH₃OH)** bzw. anti-Markownikow-Addukt **9b(CH₃OH)** (Schema 6.12). Die Energiebarriere bei diesen HBr-Eliminierungen ist offensichtlich ähnlich hoch, da diese beiden Prozesse jeweils eine Effektivität der Eliminierungsreaktion von 6% aufweisen.

Schema 6.12: Möglicher Reaktionsmechanismus der HBr-Eliminierung von 9^{·+} und CH₃OH

7. Reaktionen von 2-Chlorethen- und 2-Brompropen-Radikalkationen mit Methylmercaptan

In diesem Kapitel werden die Reaktionen von ionisiertem Chlorethen und 2-Brompropen (2^{+}) mit CH₃SH vorgestellt und diskutiert. Die Ionisierungsenergie vom Methylmercaptan (IE = 9,44 eV^[162]) ist signifikant kleiner als die von Chlorethen (IE = 10,20 eV^[162]) und von **2** (IE 9,58 eV^[162]). Aus diesen Werten läßt sich die Reaktionsenthalpie für die Umladungsreaktion berechnen (Tabelle 7.1). Mit Hilfe von isodesmischen Reaktionen sind die Reaktionsenthalpien für die Substitutions-, die Hydridtransfer- und für die Protonentransferreaktion abgeschätzt (Tabelle 7.1) worden. Die isodesmischen Reaktionen werden im Anhang (Kapitel 12.3) erläutert.

	Umladungs- reaktion	Substitutions- reaktion	Hydridtransfer- reaktion	Protonentrans- ferreaktion	
Chlorethen- Radikalkation	-73	-89	+3	+32	
2 ^{·+}	-14	-82	+62	+15	

Tabelle 7.1: Reaktionsenthalpien für die Umladungsreaktion und abgeschätzte Reaktionsenthalpien (für die Substitutions- Hydridtransfer- und Protonentransferreaktion von ionisiertem Chlorethen bzw. 2⁺und CH₃SH

Die Substitutionsreaktion ist nach dieser Abschätzung der Reaktionsenthalpie bei Chlorethen-Radikalkation/CH₃SH mit -89 kJ/mol und bei 2^{+} /CH₃SH mit -82 kJ/mol erheblich exotherm. Auch die Umladungsreaktion von Chlorethen-Radikalkation/CH₃SH ist jedoch sehr exotherm ($\Delta H_r = -73$ kJ/mol), während diese bei 2^{+} /CH₃SH mit $\Delta H_r = -14$ kJ/mol erheblich weniger exotherm ist. Die Protonentransfer- und die Hydridtransferreaktion sind für Chlorethen-Radikalkation/CH₃SH bzw. 2^{+} /CH₃SH jeweils sehr endotherm und werden daher nicht erwartet. Von besonderem Interesse an diesen Reaktionssystemen ist daher die Konkurrenz der Substitutions- und Umladungsreaktion.

Die Intensitäts-Zeit-Verläufe der Reaktionen des Radikalkations von Chlorethen und von 2^{+} mit CH₃SH sind in Abbildung 7.1 - 7.2 dargestellt. In Tabelle 7.2 sind die bimolekularen Geschwindigkeitskonstanten (k_{bi}), berechneten Stoßgeschwindigkeitskonstanten (k_{cpt}) und die Effektivitäten (Eff %), der Reaktion von ionisiertem Chlorethen und 2^{+} mit CH₃SH aufgeführt.

Edukt	k _{bi} [10 ⁻¹⁰ ·cm ³ ·mol ⁻¹ ·s ⁻¹]	k _{cpt} [10 ⁻¹⁰ ·cm ³ ·mol ⁻¹ ·s ⁻¹]	Eff.[%]
Chlorethen-Radikalkation	13,4	16,0	84
2 ⁺⁺	9,1	14,2	64

Tabelle 7.2: Bimolekulare Geschwindigkeitskonstanten (k_{bi}), berechnete Stoßgeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %) der Reaktion von ionisiertem Chlorethen und **2**⁺ mit CH₃SH

Bei der Reaktion der Radikalkationen von Chlorethen mit Methylmercaptan entsteht als primäres Hauptprodukt ausschließlich das Umladungsprodukt CH_3SH^{+} , m/z 48. Dieses reagiert konsekutiv mit neutralem Methylmercaptan zu $CH_3SH_2^{+}$, m/z 49, welches das einzige Produkt am Ende der Reaktion ist. Diese Reaktionsabfolge des CH_3SH^{+} ist gut bekannt.^[189] Die Effektivität der Gesamtreaktion beträgt 84 % (Tabelle 7.2). Damit ist diese Reaktion praktisch stoßkontrolliert.

Hauptprodukt aus der Umsetzung von 2^{+} mit CH₃SH mit einer relativen Intensität von 70 % ist dagegen das Ion C₄H₉S⁺, m/z 89. Dieses entspricht der Substitution des Brom-Atoms durch CH₃SH. Als primäres Nebenprodukt entsteht mit einer Intensität von 30 % wieder das Umladungsprodukt CH₃SH⁺, m/z 48. Dieses reagiert wie beim Reaktionssystem Chlorethen-Radikalkation/CH₃SH konsekutiv mit neutralem Methylmercaptan zu CH₃SH₂⁺, m/z 49. Die

Effektivität der Gesamtreaktion ist 64 % (Tabelle 7.2). Damit ist diese Reaktion zwar effektiv, aber signifikant langsamer als bei dem Reaktionssystem Chlorethen-Radikalkation/CH₃SH. Die Protonentransfer- und die Hydridtransferreaktion sind nicht zu beobachten.

Die experimentellen Beobachtungen der Umsetzungen von Chlorethen- und von 2^{+} mit CH₃SH stimmen gut mit den Abschätzungen der Reaktionsenthalpien (Tabelle 7.1) überein. Bemerkenswert ist, daß bei der Umsetzung der Chlorethen-Radikalkationen mit CH₃SH ausschließlich die Umladungsreaktion erfolgt, obwohl hier die Substitution sogar geringfügig exothermer als bei 2^{+} ist. Man kann annehmen, daß die Substitutionsreaktion der Halogenalken-Radikalkationen mit CH₃SH wie bei der Reaktion mit Aminen und Alkoholen nach einem Additions-/Eliminierungsmechanismus erfolgt. Dabei ist die Bildung der jeweiligen Markownikow-Addukte bzw. anti-Markownikow-Addukte vom Chlorethen-Radikalkation mit CH₃SH ebenso wie die von 2^{+} mit CH₃SH sicherlich sehr exotherm. Die Substitutionsreaktion im Reaktionssystem $2^{+}/CH_3$ SH ist im Gegensatz zu C₂H₃Cl⁺/CH₃SH deshalb der Hauptprozeß, da die Umladungsreaktion nicht mehr sehr exotherm ist (Tabelle 7.1) und eine geringe Energiebarriere aufweist Kapitel 2.2. Daraus läßt sich schließen, daß die Substitutionsreaktion ohne große Energiebarrieren erfolgen muß, wie dieses bereits in den vorherigen Kapiteln 4-6 gezeigt werden konnte.

Bei dem Reaktionssystem C₂H₃Cl⁺/CH₃SH ist die Ladungstransferreaktion sehr exotherm. Obwohl hier die Substitutionsreaktion sogar geringfügig exothermer ist als die Ladungstransferreaktion, kann sie nicht mit der Umladung konkurrieren. Da die vertikale Störungsenergie bei der Ladungstransferreaktion sehr klein ist, wird daher lediglich eine geringe Energiebarriere für die Ladungstransferreaktion erwartet (Kapitel 2.2). Offensichtlich ist die Umladungsreaktion im Gegensatz zur Substitutionsreaktion entropisch kaum anspruchsvoll, so daß die Substitutionsreaktion nicht konkurrieren kann.

Auf die Untersuchungen der Reaktionen der Halogenalken-Radikalkationen von Bromethen und Chlorpropen (1^{+}) wurde verzichtet, da hier analog die Umladungs- und die Substitutionsreaktion zu erwarten sind und keine neuen Befunde liefern.

Abbildung 7.1: Intensitäts-Zeit-Verlauf der Reaktion von ionisisiertem Chlorethen mit CH₃SH

Abbildung 7.2: Intensitäts-Zeit-Verlauf von $2^{\cdot+}$ mit CH₃SH

8. Reaktionen von Halogenethen- und 2-Halogenpropen-Radikalkationen mit *tert*.-Butylmethylether und Trimethylsilylmethylether

8.1 Einleitung

Zu weiteren Untersuchungen der Reaktivität der Radikalkationen der Halogenalkene Chlorethen, Bromethen, 2-Chlorpropen (1^{+}) und 2-Brompropen (2^{+}) gegenüber O-Nukleophilen wurden die Ether *tert.*-Butylmethylether (MTBE) und Trimethylsilylmethylether (MTSE) als Reaktanden verwendet. Wie bei den entsprechenden Reaktionssystemen Halogenalken-Radikalkation/CH₃OH bzw. Halogenalken-Radikalkation/C₂H₅OH werden die Protonentransferreaktion und die Hydridtransferreaktion neben der Substitutionsreaktion erwartet. Die Abschätzungen der Reaktionsenthalpien des Protonentransfers vom ionisiertem Chlorethen, Bromethen, von 1^{++} und 2^{++} auf MTBE bzw. MTSE ergeben, daß dieser Prozeß für alle hier untersuchten ionisierten Halogenalkene deutlich exotherm ist (Tabelle 8.1). Im Anhang (Kapitel 12.3) wird die Abschätzung der Reaktionsenthalpien mit Hilfe von isodesmischen Reaktionen erläutert.

	$C_2H_3Cl^{+}$	$C_2H_3Br^{\cdot+}$	1.+	2.+
MTBE	-29	-13	-75	-65
MTSE	-34	-18	-80	-70

Tabelle 8.1: Abgeschätzte Reaktionsenthalpien des Protonentransfers vom Chlorethen-Radikalkation, Bromethen-Radikalkation, von 1^{+} und 2^{+} auf MTBE bzw. MTSE

Die Ladungstransferreaktion ist ebenfalls für fast alle ionisierten Halogenalkene Chlorethen (IE = 10,20 eV^[162]), Bromethen (IE = 9,89 eV^[162]), **1**⁺⁺ (IE = 9,89 eV (abgeschätzter Wert: Kapitel 12.4)) und **2**⁺⁺ (IE = 9,58 eV^[162]) exotherm (Tabelle 8.2) und kann möglicherweise dominieren, da die vertikale Ionisierungsenergie vom *tert*.-Butylmethylether mit 9.41-9,48 $eV^{[162]}$ und vom Trimethylsilylmethylether mit 9.61 $eV^{[162]}$ geringer ist. Lediglich **2**⁺⁺ weist eine um +3 kJ/mol höhere Ionisierungsenergie als der Trimethylsilylmethylether auf, so daß die Ladungstransferreaktion in diesem System geringfügig endotherm ist (Tabelle 8.2).

	$C_2H_3Cl^{+}$	$C_2H_3Br^{\cdot+}$	1.+	2`+
MTBE	-72	-42	-42	-13
MTSE	-57	-27	-27	+3

Tabelle 8.2: Reaktionsenthalpien der Ladungsaustauschreaktion von Chlorethen-Radikalkation, Bromethen-Radikalkation, 1^{+} und 2^{+} mit MTBE bzw. MTSE

Die Reaktionsenthalpie der Substitutionsreaktion konnte nicht mit Hilfe von isodesmischen Reaktionen abgeschätzt werden, da es hierzu nur unzureichend Daten gibt.

8.2 Reaktionen der Halogenethen- und 2-Halogenpropen-Radikalkationen mit *tert.*-Butylmethylether

Der jeweilige Intensitäts-Zeit-Verlauf des Radikalkations von Chlorethen und Bromethen sowie von 1^{+} und 2^{+} mit *tert.*-Butylmethylether (MTBE) ist in Abbildung 8.1 - 8.4 dargestellt. In Tabelle 8.3 sind die bimolekularen Geschwindigkeitskonstanten (k_{bi}), berechnete Stoßgeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %)der Reaktion von ionisiertem Chlorethen und Bromethen sowie von 1^{+} und 2^{+} mit mit *tert.*-Butylmethylether aufgeführt.

Edukt	k _{bi}	k _{cpt}	Eff.%
	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	
Chlorethen-Radikalkation	11,1	16,2	69
Bromethen-Radikalkation	9,7	14,2	68
1.+	10,7	15,4	70
2^{+}	9,2	13,8	67

Tabelle 8.3: Bimolekulare Geschwindigkeitskonstanten (k_{bi}), berechnete Stoßgeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %) von Chlorethen-Radikalkation, Bromethen-Radikalkation, **1**⁺⁺ und **2**⁺⁺ mit MTBE Die Reaktionen der Radikalkationen von Chlorethen, Bromethen, 1^{+} und 2^{+} mit *tert.*-Butylmethylether, MTBE, sind gut zu verstehen. Das Hauptprodukt bei der Reaktion aller hier untersuchten Halogenalken-Radikalkationen mit MTBE ist das Ion m/z 73 mit der Elementzusammensetzung $C_4H_9O^+$. Dieses Ion ist durch Verlust einer Methylgruppe aus ioniertem MTBE zu erklären. Weiterhin erfolgt die Bildung von protoniertem MTBE, m/z 89, mit mittlerer Intensität. Ein Prozeß mit geringer Intensität ist die Bildung des tert.-Butyl-Kations $C_4H_9^+$, m/z 57. Bemerkenswert ist, daß diese drei Ionen auch im EI- und CI(Isobutan)-Massenspektrum von MTBE auftreten (siehe Abbildung 9.1 und 9.3 im Kapitel 9). Die Bildung dieser Ionen sind kompetitive Prozesse, ausgehend vom ionisierten MTBE, das durch eine Umladungsreaktion der jeweiligen ionisierten Halogenalken-Radikalkationen mit MTBE entsteht. Das Radikalkation von MTBE, C5H12O⁺, wird jedoch nicht beobachtet, da es aufgrund der schnellen Weiterreaktion wie Protonentransfer auf neutrales MTBE zu protoniertem MTBE, m/z 89, oder Fragmentierungen sofort abreagiert und dadurch nicht ausreichend intensiv gebildet wird, um detektiert zu werden. Analoge Reaktionen wurden auch bei der Reaktion der Radikalkationen von Aminen (Kapitel 5) und Methylmercaptan (Kapitel 7) beobachtet. Die Umladungsreaktion der jeweiligen Halogenalken-Radikalkationen mit MTBE ist energetisch möglich (Tabelle 8.2). Das Ion m/z 89 kann auch direkt durch Deprotonierung aus den Halogenalken-Radikalkationen und neutralem MTBE entstehen. Auch dieser Prozeß ist für alle Halogenalken-Radikalkationen exotherm (Tabelle 8.1). In Schema 8.1 sind die Reaktionen der hier untersuchten Halogenalken-Radikalkationen mit MTBE dargestellt. Die Substitutionsreaktion oder dessen mögliche Folgeprodukte werden dagegen nicht beobachtet. Ebenfalls nicht beobachtet wird der Hydridtransfer vom MTBE auf das jeweilige Halogenalken-Radikalkation. Beide Prozesse können offensichtlich nicht mit dem exothermen Protonentransfer und der exothermen Umladungsreaktion und dessen Folge-

reaktionen konkurrieren.

Die Bildung der Ionen $C_6H_{17}O_2^+$, m/z 121, und $C_{10}H_{25}O_2^+$, m/z 177, erfolgt wahrscheinlich durch Folgereaktionen des Ions m/z 89 mit neutralem MTBE unter Bildung von protonengebundenen Homodimeren oder Heterodimeren.

Eine detaillierte Studie der Ionen m/z 73 und 89 und deren Reaktionen gegenüber ausgewählten Nukleophilen erfolgt in Kapitel 9.

Schema 8.1: Prozesse bei der Reaktion von ionisiertem Chlorethen, ionisiertem Bromethen, 1⁺⁺ und 2⁺⁺ mit MTBE

Abbildung 8.1: Intensitäts-Zeit-Verlauf der Reaktion von ionisiertem Chlorethen mit MTBE

Abbildung 8.2: Intensitäts-Zeit-Verlauf der Reaktion von ionisiertem Bromethen mit MTBE

Abbildung 8.3: Intensitäts-Zeit-Verlauf der Reaktion von 1⁺⁺ mit MTBE

Abbildung 8.4: Intensitäts-Zeit-Verlauf der Reaktion von $2^{\cdot+}$ mit MTBE

8.3 Reaktionen der Halogenethen- und 2-Halogenpropen-Radikalkationen mit Trimethylsilylmethylether

Der jeweilige Intensitäts-Zeit-Verlauf des Radikalkations von Chlorethen und Bromethen sowie von 1^{+} und 2^{+} mit Trimethylsilylmethylether (MTSE) ist in Abbildung 8.5 - 8.8 dargestellt. In Tabelle 8.4 sind die bimolekularen Geschwindigkeitskonstanten (k_{bi}), berechneten Stoßgeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %) der Reaktion von ionisiertem Chlorethen und Bromethen sowie von 1^{++} und 2^{++} mit Trimethylsilylmethylether aufgeführt.

Edukt	k _{bi}	k _{cpt}	Eff.%
	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	$[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	
Chlorethen-Radikalkation	12,1	16,2	75
Bromethen-Radikalkation	10,9	13,9	79
1.+	9,7	15,2	64
2 ^{·+}	9,2	13,5	68

Tabelle 8.4: Bimolekulare Geschwindigkeitskonstanten (k_{bi}), berechnete Stoßgeschwindigkeitskonstanten (k_{cpt}) und Effektivitäten (Eff %) von ionisiertem Chlorethen, ionisiertem Bromethen, 1^{+} und 2^{+} mit MTSE

Auch die Reaktionen des ionisierten Chlorethens, Bromethens, von 1^{++} und 2^{++} mit Trimethylsilylmethylether, MTSE, sind einfach zu verstehen. Das Hauptprodukt am Ende der Reaktion von Chlorethen- bzw. Bromethen-Radikalkationen ist das Ion m/z 193, $C_7H_{21}O_2Si_2^+$. Wie in Kapitel 9.3 gezeigt wird, entsteht dieses Ion aus dem Ion m/z 89, $C_3H_9OSi^+$, das im EI-Massenspektrum von MTSE das Hauptsignal liefert. Das Ion m/z 89 entsteht wiederum aus m/z 104, $C_4H_{12}OSi^{++}$, welches durch exotherme Umladungsreaktion aus dem Halogenethen-Radikalkation mit MTSE entsteht (Tabelle 8.2). Ein weiteres Produkt mit mäßiger Intensität ist protonierter MTSE, m/z 105. Dieses Ion entsteht sowohl durch exotherme "direkte" Deprotonierung des Halogenethen-Radikalkations von MTSE als auch durch Protonentransfer des MTSE-Radikalkations auf neutrales MTSE. Das zweitintensivste Produkt am Ende der Reaktion ist das Ion m/z 177, $C_7H_{21}OSi_2^+$, welches konsekutiv aus m/z 105 entsteht, wie ebenfalls in Kapitel 9 gezeigt. Dieselben Reaktionabfolgen werden bei der Reaktion von 1^{++}

Ionen von denen aus den Reaktionen der Halogenethen-Radikal-kationen mit MTSE. Zusätzlich werden mit geringer Intensität die Ionen m/z 103 und m/z 251 beobachtet. Das Ion m/z 103, $C_4H_{11}OS_2^+$, wird durch Hydridtransfer vom MTSE auf das 2-Halogenpropen-Radikalkation gebildet. Anschließend kann dieses Ion durch Protonentransferreaktion auf neutralen MTSE protonierten MTSE bilden. Dieser Prozeß ist analog wie bei den Reaktionen der Halogenalken-Radikalkationen mit Aminen (Kapitel 5) oder Alkoholen (Kapitel 6). Dieses ist offenbar ein Hinweis auf die Addition von MTSE an 1^{++} bzw 2^{++} .

ionisiertem Bromethen, $\mathbf{1}^{\cdot+}$ und $\mathbf{2}^{\cdot+}$ mit MTSE

Das Ion m/z 251 entsteht vermutlich aus Bis-(trimethyl)silylether, welches als Verunreinigung im MTSE nachgewiesen worden ist, und dem Ion m/z 89. Weiterhin entsteht bei der Reaktion von 2^{+} mit MTSE ein Ion mit m/z 209/211. Die Addition von $(CH_3)_2Si^+OCH_3$ und 2^{+} unter Bildung von m/z 209/211 wäre nicht ungewöhnlich, da analoge Additions-Produkte bei der Reaktion des Trimethylsilicenium-Ions mit methylsubstituierten Alkenen bereits von Li und Stone nachgewiesen wurden, wobei die Addition analog zu Markownikow die energetisch stabilste Struktur liefert.^[190] Dieses würde die Bildung von $(CH_3)_2Si^+OCH_3$ erfordern, die prinzipiell aus dem ionisierten MTSE leicht erfolgt. Da die Umladungsreaktion von **2**⁺⁺ mit MTSE aber als nahezu thermoneutral abgeschätzt worden ist (Tabelle 8.2), erfolgt möglicherweise im Stoßkomplex aus **2**⁺⁺ und MTSE eine Umladung mit anschließender Methylabspaltung, die aus der Trimethylsilyl-Einheit energetisch günstig ist. Dabei entsteht ein Komplex aus (CH₃)₂Si⁺OCH₃ und **2**, der anschließend zum Additions-Produkt führt (Schema 8.3). Die Substitutionsreaktion wird bei der Reaktion aller hier untersuchten Halogenalken-Radikalkationen und insbesondere bei **2**⁺⁺ mit MTSE nicht beobachtet. Eine detaillierte Studie der Ionen m/z 89 und 105 und deren Reaktionen gegenüber ausgewählten Nukleophilen erfolgt in Kapitel 9.

Schema 8.3: Vermuteter Bildungsweg von m/z 209/211 aus der Reaktion von 2^{·+} mit MTSE

Abbildung 8.5: Intensitäts-Zeit-Verlauf der Reaktion von ionisiertem Chlorethen mit MTSE

Abbildung 8.6: Intensitäts-Zeit-Verlauf der Reaktion von ionisiertem Bromethen mit MTSE

Abbildung 8.7: Intensitäts-Zeit-Verlauf der Reaktion von 1^{+} mit MTSE

Abbildung 8.8: Intensitäts-Zeit-Verlauf der Reaktion von $2^{\cdot+}$ mit MTSE

9. Untersuchung von Ion/Molekül-Reaktionen von Ionen aus *tert.*-Butylmethylether und Trimethylsilylmethylether

9.1 Einleitung

Tert.-Butyl-Derivate sind interessante Modellsubstanzen zur Aufklärung von organischen Reaktionsmechanismen. Dieses liegt an dem sterischen Effekt der räumlich anspruchsvollen *tert.*-Butyl-Gruppe und im besonderen an der Fähigkeit, stabile *tert.*-Butyl-Kationen während des Verlaufs von polaren Reaktionen auszubilden. Daher sind *tert.*-Butyl Derivate mit einer nukleophilen Abgangsgruppe Prototypen für S_N1-Reaktionen.^[191] Ein weitverbreitetes Phänomen in der organischen Massenspektrometrie ist die intensive Bildung von *tert.*-Butyl-Kationen durch Elektronenionisierung (EI) oder chemische Ionisierung (CI). Besonderes Interesse hat jedoch die intermediäre Bildung von Ion/Neutral-Komplexen (INC) des *tert.*-Butyl-Kationen oder protonierter organischer Moleküle hervorgerufen. Beispielsweise ist die Bildung vom INC des *tert.*-Butyl-Kations mit den Aromatenmolekülen aus protonierten *tert.*-Butylaromaten gut nachgewiesen worden.^[192-194] Für protoniertes *tert.*-Butyl-Kation mit H₂O bzw. *tert.*-Butylaromaten vorgeschlagen worden.^[195-197]

In Kapitel 8. wurden *tert.*-Butylmethylether (MTBE, **10**) und Trimethylsilylmethylether (MTSE, **11**) als neutrale Reaktionspartner für Halogenalken-Radikalkationen diskutiert. Hauptreaktionen für diese Reaktionssysteme ist die Ladungstransferreaktion und der Protonentransfer vom Halogenalken-Radikalkation auf MTBE bzw. MTSE, wobei das Molekül-Ion und das "quasi-Molekül-Ion" von MTBE bzw. MTSE entsteht. Diese Ionen reagieren nachfolgend mit neutralem MTBE bzw. MTSE zu Sekundär-Produkten. Daher ist eine separate Untersuchung der Ion/Molekül-Reaktion von relevanten Ionen von Interesse, die in den EI- und CI-Massenspektren von MTBE bzw. MTSE beobachtet wurden. MTBE wird industriell intensiv genutzt.^[198] Daher ist eine Untersuchung der Ion/Molekül-Reaktionen von den Ionen, die aus MTBE stammen, auch im Zusammenhang mit Umweltproblemen von Interesse.

Das Trimethylsilyl-Kation ist in der Gasphase ebenfalls stabil.^[199] Daher könnte für das Molekül-Ion von MTSE **11**⁺ bzw. protoniertes MTSE **11H**⁺ eine Bildungstendenz des INC unter Beteiligung des Trimethylsilyl-Kations möglich sein.

In diesem Kapitel werden die Ion/Molekül-Reaktionen von $(CH_3)_2C^+$ -OCH₃ (**10a**) und $(CH_3)_2Si^+$ -OCH₃ (**11a**), welche die Hauptfragment-Ionen im EI-Spektrum von *tert.*-Butylmethylether (MTBE, **10**) bzw. Trimethylsilylmethylether (MTSE, **11**) sind, sowie protoniertem MTBE (**10H**⁺) und protoniertem MTSE (**11H**⁺) mit MTBE, MTSE, Aceton und Ammoniak diskutiert. Zum besseren Verständnis der Struktur und Stabilität der Ionen **10a**, **11a**, **10H**⁺ und **11H**⁺ und deren Addukte mit NH₃, H₂O und Aceton wurden *ab initio* Rechnungen auf dem Niveau RHF/6-31g(d) durchgeführt.

9.2 Massenspektren und MIKE-Spektren von MTBE und MTSE

Die EI- und CI Massenspektren von MTBE und MTSE sind in den Abbildungen 9.1-9.4 dargestellt. Wie erwartet sind die Intensitäten der Molekül-Ionen in den EI-Massenspektren beider Ether außerordentlich gering. Wird der Partialdruck von MTBE und MTSE zur Erhöhung des jeweiligen Molekül-Ions in der Ionenquelle erhöht, beobachtet man lediglich "Selbst-CI" unter Bildung des protoniertem MTBE (**10H**⁺) oder MTSE (**11H**⁺) und einigen sekundären Folgeprodukten. Folglich wurden die bimolekularen Reaktionen der Radikal-Kationen **10**⁺⁺ und **11**⁺⁺ nicht weiter untersucht. Die Aufnahme "reiner" CI-Massenspektren von MTBE oder MTSE erweist sich als ziemlich schwierig, da unter allen Bedingungen mehr oder minder intensive Signale auftreten, die durch Fragment-Ionen aus EI-Bedingungen stammen können.

Das Hauptfragment-Ion in den EI-Massenspektren von MTBE und MTSE entsteht durch Verlust einer Methylgruppe, wobei als Ion $(CH_3)_2C^+$ -OCH₃, **10a** (m/z 73), bzw $(CH_3)_2Si^+$ -OCH₃, **11a** (m/z 89), entsteht. Die Folgefragmentierung dieser beiden Ionen, **10a** bzw. **11a**, wurde durch deren MIKE-Spektren untersucht (Tabelle 9.1).

Das Ion **10a** fragmentiert hauptsächlich unter Verlust von $H_2C=O$, wobei $C_3H_7^+$, m/z 43, entsteht. Zusätzlich werden noch die Ionen m/z 41, m/z 45 und m/z 55 beobachtet. Das Ion m/z 41 entspricht einer Abspaltung von CH₃OH aus **10a**. Dagegen entspricht die Entstehung von m/z 45 einer Abspaltung von C₂H₄ und m/z 55 einer Eliminierung von H₂O aus **10a**. Diese beiden Reaktionen erfordern eine Umlagerung des Vorläufer-Ions **10a** und zeigen möglicherweise eine Mischung des Ions m/z 73 aus Ionen mit unterschiedlicher Struktur an.

Abspaltung	10a	11a	$10H^+$	$11H^+$
- CH ₄	7	-	-	40
- H ₂ O	34	-	-	-
- C ₂ H ₄	23	9	-	-
- CH ₂ =O	100	100	-	-
- CH ₃ OH	17	-	100	100

Der Verlust von H₂O weist auf solche Ionen hin, die eine freie Hydroxygruppe besitzen und beispielsweise durch Abspaltung von der O-Methylgruppe aus 10^{+} entstehen.

Tabelle 9.1: MIKE-Spektren der Ionen, entstanden aus MTBE (10a, 10H⁺) und MTSE (11a; 11H⁺)

Zur Aufklärung dieser Fragmentierung wurde das EI- und CI(Isobutan)-Massenspektrum von *tert.*-Butyltrideuteromethylether, **10-d₃**, (MTBE-d₃) aufgenommen (Abbildung 9.5a und 9.5b). Hierbei ist anstatt des Ions m/z 73 im Falle von MTBE ausschließlich das Ion m/z 76 zu beobachten. Dieses bestätigt die spezifische Abspaltung einer Methylgruppe von der *tert.*-Butylgruppe. Daher kann ausgeschlossen werden, daß **10a** im EI-Massenspektrum von MTBE eine Mischung aus Isomeren ist, die durch Abspaltung einer Methylgruppe aus unterschiedlichen Positionen von **10**⁺⁺ stammt. Das EI-MIKE-Spektrum von **10a-d₃**, m/z 76, weist ein intensives Signal bei m/z 44 und ein geringer intensives Signal bei m/z 41 auf. Diese beiden Ionen entsprechen dem Verlust von D₂C=O und CD₃OH. Im Gegensatz zum intensiven H/D-Austausch beim protonierten MTBE findet bei **10a-d₃** vor den Fragmentierungen daher kein H/D-Austausch statt. Weiterhin kann gefolgert werden, daß **10a-d₃** die Struktur (CH₃)₂C⁺-OCD₃ aufweist. Der Verlust von Wasser und C₂H₄ aus **10a** findet auch bei der Fragmentierung von **10a-d₃** statt, wobei entsprechend H₂O, HDO und etwas D₂O eliminiert bzw. C₂H₄ und C₂H₂D₂ abgespalten werden. Die intensive Verteilungen in jeder

Gruppe dieser Signale entsprechen bei weitem nicht dem statistischen H/D-Austausch zwischen den Methylgruppen von $10a-d_3$, jedoch sind alle drei Methylgruppen sicher an diesen Fragmentierungen beteiligt.

Das Hauptsignal im MIKE-Spektrum vom Ion **11a**, $(CH_3)_2Si^+$ -OCH₃, m/z 89, stammt von dem Ion m/z 59, welches einem Verlust von H₂C=O aus **11a** entspricht. Wieder ist ein schwaches Signal bei m/z 61 zu beobachten, welches auf eine Abspaltung von C₂H₄ zurückzuführen ist. Auch hier muß eine Wechselwirkung beider Methylgruppen am Si-Atom vorliegen. Ein entsprechender Verlust von H₂O vom Vorläufer-Ion **11a** wird hier nicht beobachtet.

Das CI(Isobutan)-Massenspektrum und die unimolekularen Zerfälle von protoniertem MTBE, **10H**⁺, m/z 89, sind bereits untersucht worden.^[196] Ein intensives Signal im CI-Massenspektrum ist **10H**⁺. Dieses Ion fragmentiert ausschließlich zu dem Ion (CH₃)₃C⁺, m/z 57, welches das intensivste Signal ist. Protonierter MTSE, **11H**⁺, m/z 105, ist das Hauptsignal im CI(Isobutan)-Massenspektrum von MTSE. Wie bereits oben erwähnt beobachtet man jedoch auch ein Signal für das Ion (CH₃)₂Si⁺-OCH₃, m/z 89, welches das zweitintensivste Signal ist. Dieses Ion ist möglicherweise auf EI-Fragmentierung zurückzuführen. Im MIKE-Spektrum von **11H**⁺ wird neben dem intensivsten Signal von (CH₃)₃Si⁺, m/z 73, mit moderater Intensität ein "flat topped peak" von m/z 89 beobachtet, welches durch Verlust von CH₄ aus dem Vorläufer-Ion **11H**⁺ entsteht. Ein Anteil der Fragmentierung von protoniertem MTSE stammen. Entsprechende Fragmentierungen sind weder im MIKE-Spektrum noch im CA Massenspektrum von **11H**⁺ zu beobachten.

Die kurze Diskussion der EI- und CI-Massenspektren von MTBE und MTSE zeigt, daß die bimolekulare Gasphasenchemie dieser Ether primär aus den Reaktionen der EI-Fragment-Ionen **10a**, (CH₃)₂C⁺-OCH₃, m/z 73, von MTBE und **11a**, (CH₃)₂Si⁺-OCH₃, m/z 89, von MTSE, den protonierten Ethern **10H**⁺, m/z 89, und **11H**⁺, m/z 105, sowie den CI-Fragment-Ionen von **10H**⁺, (CH₃)₃C⁺, m/z 57, und **11H**⁺, (CH₃)₃Si⁺, m/z 73, hervorgeht. Die beiden zuletzt genannten Ionen sind in der CI-Massenspektrometrie gut bekannt und entstehen aus den Reaktandgasen Isobutan^[200] und Tetramethylsilan.^[201] Daher wird auf eine weitere Untersuchung dieser Ionen im folgenden verzichtet. Die Ergebnisse der Ion/Molekül-Reaktionen der anderen vier Haupt-Ionen im EI- und CI-Massenspektrum von MTBE und MTSE mit ausgewählten organischen Molekülen mit Hilfe der FT-ICR-Massenspektrometrie werden in 9.3 und 9.4 diskutiert.

Abbildung 9.1: EI-Massenspektrum von MTBE, 10

Abbildung 9.2: EI-Massenspektrum von MTSE, 11

Abbildung 9.3: CI(Isobutan)-Massenspektrum von MTBE, 10

Abbildung 9.4: CI(Isobutan)-Massenspektrum von MTSE, 11

Abbildung 9.5a: CI(Isobutan)-Massenspektrum von MTBE-d₃, **10-d₃**

Abbildung 9.5b: CI(Isobutan)-Massenspektrum von MTBE-d₃, 11-d₃

9.3 Reaktionen von (CH₃)₂C⁺-OCH₃ und (CH₃)₂Si⁺-OCH₃

Von den Ionen **10a**, (CH₃)₂C⁺-OCH₃, und **11a**, (CH₃)₂Si⁺-OCH₃, wird erwartet, daß sie in der verdünnten Gasphase stabil sind. Insbesondere **10a** wird aufgrund eines Resonanzeffektes des Methoxysubstituenten stabilisiert.^[202] Dieses Ion kann im Prinzip als ein durch ein Methyl-Kation am O-Atom kationisiertes Aceton oder als ein C-protonierter 2-Isopropenylmethylether aufgefaßt werden. Der Resonanzeffekt bewirkt, daß **10a** als sehr schwaches Elektrophil reagiert. Als Reaktionen werden Adduktbildung mit N-Basen oder Übertragung eines Protons oder eines Methyl-Kations auf geeignete Basen erwartet. Für das Silicenium-Ion **11a** wird eine solche Resonanzstabilisierung durch die Methoxygruppe nicht erwartet^[199,203], da eine Si-C- und Si-O-Doppelbindung energetisch ungünstig ist. Daher wird weder Protonentransfer noch Übertragung eines Methyl-Kations erwartet. Lediglich die typische Additionsreaktion dieses Elektrophils sollte deshalb eintreten.

Bestätigt werden diese Erwartungen durch die Reaktionen der Ionen 10a und 11a mit den entsprechenden Ethermolekülen MTBE und MTSE, mit Aceton und mit Ammoniak. Die bimolekularen Geschwindigkeitskonstanten, kbi und Effektivitäten Eff.[%], der Reaktionen der Ionen $(CH_3)_2C^+$ -OCH₃, **10a**, $(CH_3)_2Si^+$ -OCH₃, **11a**, protoniertes MTBE, **11H**⁺, und protoniertes MTSE, 11H⁺, mit MTBE bzw. MTSE, mit CH₃COCH₃ und mit NH₃ sind in Tabelle 9.2 aufgeführt. Der einzige Prozeß bei der Reaktion von 10a mit MTBE ist ein sehr langsamer Protonentransfer von 10a auf MTBE unter Bildung von protoniertem MTBE, 10H⁺, welches nachfolgend mit neutralem MTBE zum protonengebundenen Homodimeren von MTBE, m/z 177, assoziiert (Abbildung 9.6). Die Protonenaffinität (PA) von MTBE (PA $= 841,6 \text{ kJ/mol}^{[162]}$ ist signifikant geringer als die vom 2-Isopropenylmethylether (PA = 894,9 kJ/mol).^[162] Ebenfalls die Methyl-Kationen-Affinität (MCA) sollte deutlich geringer sein als die von Aceton. Beide Prozesse sind daher endotherm und deshalb langsam. Die Bildung eines Addukts ist nicht zu beobachten. Gleichermaßen ist bei der Reaktion von 10a mit Aceton (PA = 812 kJ/mol)^[162] ein langsamer Protonentransfer von **10a** auf Aceton unter Bildung von protoniertem Aceton, m/z 59, die bei weitem dominierende Reaktion (Abbildung 9.7). Nachfolgend reagiert das protonierte Aceton mit neutralem Aceton zum protonengebundenen Homodimer von Aceton, m/z 117. Die Bildung von protonengebundenen Homodimeren einer Base wird oftmals bei einem endothermen Protonentransfer beobachtet. Das Ion m/z 147 wird lediglich nach langen Reaktionszeiten mit geringer Intensität beobachtet. Ein Transfer eines Methyl-Kations von **10a** auf Aceton kann ausgeschlossen werden, was anhand der Reaktion von **10a-d**₃, (CH₃)₂C⁺-OCD₃, auf Aceton überprüft wurde. Dieser Prozeß wäre

	10	a	11	la	10]	\mathbf{H}^+	11]	H+
Reaktand	k _{bi} ^{a)}	Eff ^{b)} .	k _{bi} ^{a)}	Eff. ^{b)}	k _{bi} ^{a)}	Eff. ^{b)}	k _{bi} ^{a)}	Eff. ^{b)}
MTBE/MTSE	0,020	0,13	8,53	60	5,05	35	5,69	40
CH ₃ COCH ₃	0,020	0,08	7,88	32	12,1	48	13,4	56
NH ₃	<<0,002	<<0,01	1,51	7,2	7,46	36	11,1	54
^{a)} $[10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}]$				^{b)} [%]				

thermoneutral, wird jedoch experimentell nicht beobachtet.

Tabelle 9.2: Bimolekulare Geschwindigkeitskonstanten k_{bi}, und Effektivitäten Eff.[%] der Reaktion der Ionen (CH₃)₂C⁺-OCH₃, **10a**, (CH₃)₂Si⁺-OCH₃, **11a**, protoniertes MTBE, **10H**⁺, und protoniertes MTSE, **11H**⁺, mit MTBE bzw. MTSE, mit CH₃COCH₃ und mit NH₃

Bei der Reaktion von **10a** mit Ammoniak wird überhaupt keine Reaktion und insbesondere keine Adduktbildung oder ein Protonentransfer beobachtet, selbst nach sehr langen Reaktionszeiten nicht. Dieses ist überraschend, da NH₃ (PA = 853,6 kJ/mol)^[162] basischer ist als MTBE und Aceton. Offensichtlich findet lediglich schnelle Adduktbildung und Rückdissoziation zu **10a** und NH₃ statt. Zusammenfassend kann für **10a** gefolgert werden, daß es entweder ein schwaches Elektrophil ist oder die Addukte aufgrund fehlender Stabilisierung durch Stöße oder durch Strahlung im FT-ICR-Massenspekrometer zurück zu den Edukten reagieren.

Dagegen reagiert **11a**, $(CH_3)_2Si^+$ -OCH₃, leicht unter Bildung eines Addukt-Ions mit MTSE, m/z 193 (Abbildung 9.8), eines Addukt-Ions mit Aceton, m/z 147, (Abbildung 9.9) und eines Addukt-Ions mit NH₃, m/z 106, (Abbildung 9.10) als einziges Produkt-Ion. Offenbar ist **11a**, $(CH_3)_2Si^+$ -OCH₃, nicht nur ein besseres Elektrophil als **10a**, $(CH_3)_2C^+$ -OCH₃, sondern auch die Addukt-Ionen aus **11a** und Nukleophilen werden effektiver durch Emission von Strahlung oder durch Stöße stabilisiert.

Abbildung 9.6: Intensitäts-Zeit-Verlauf der Reaktion von 10a mit MTBE

Abbildung 9.7: Intensitäts-Zeit-Verlauf der Reaktion von 10a mit Aceton

Abbildung 9.8: Intensitäts-Zeit-Verlauf der Reaktion von 11a mit MTSE

Abbildung 9.9: Intensitäts-Zeit-Verlauf der Reaktion von 11a mit Aceton

Abbildung 9.10: Intensitäts-Zeit-Verlauf der Reaktion von 11a mit NH₃

Um die Unterschiede der Reaktivitäten der Ionen 10a, (CH₃)₂C⁺-OCH₃, 11a, (CH₃)₂Si⁺-OCH₃, sowie deren Analogen $(CH_3)_3C^+$ bzw. $(CH_3)_3Si^+$ zu veranschaulichen, wurden die Strukturen und Stabilitäten dieser Ionen und deren Addukte mit H₂O, (CH₃)₂O und NH₃ als Nukleophile durch semiempirische (PM3) und ab initio (RHF/6-31g(d)) Methoden charakterisiert. Die Ergebnisse (Tabelle 9.3) zeigen deutlich die unterschiedliche Elektrophilie dieser Ionen auf. Die Bildung der Addukte vom tert.-Butyl-Kation und H2O wurde bereits untersucht.^[196,197] Detailliert untersucht wurden auch die Reaktionen von einfachen protonierten Alkoholen mit H₂O mit Hilfe der FT-ICR-Massenspektrometrie und ab initio Methoden.^[204] Für das protonierte tert.-Butanol konnte gezeigt werden, daß es zwei stabile Strukturen gibt, wovon die eine Struktur kovalent gebunden ist (C-O-Bindungslänge: 147 pm) und die andere ein Komplex des tert.-Butyl-Kations mit H₂O ist (C-O-Bindungslänge: 285 pm). Dieser Komplex wird auch als α-Komplex bezeichnet. Auf eine erneute Berechnung aller stabilen Strukturen in dem System ((CH_3)₃C⁺-OH₂/(CH_3)₃C⁺;OH₂) wurde in dieser Arbeit deswegen verzichtet. Im Fall des protonierten MTBE ergeben die theoretischen Berechnungen, daß die kovalent gebundene Spezies eine C-O-Bindungslänge von 163.0 pm

(PM3) bzw. 166,5 pm (RHF/6-31g(d)) aufweist (Tabelle 9.3). Obwohl mit diesen Methoden die berechneten Bindungslängen größer sind als die von Berthomieu und Audier^[197] berechneten Bindungslängen, weist die tert.-Butylgruppe in dieser Struktur eine deutliche pyramidale Struktur auf, was eine kovalente Bindung zum O-Atom anzeigt. Die beiden mit Hilfe der semiempirischen Methode PM3 und der ab initio Methode RHF/6-31g(d) berechneten Strukturen des Addukts von $(CH_3)_2O$ zu $(CH_3)_3C^+$ unterscheiden sich sehr. Die mit PM3 berechnete Struktur weist eine planare tert.-Butylgruppe auf mit einer C-O-Bindungslänge von 302,4 pm vom zentralen C-Atom zum Ether-O-Atom. Daher entspricht diese Struktur einem INC des tert.-Butyl-Kations zum Dimethylether. Audier, Berthomieu und Morton konnten zeigen, daß die sterische Überladung in einem Oxonium-Ion zur Dissoziation in einen INC führt.^[196] Die mit RHF/6-31g(d) berechnete Struktur entspricht dagegen einem Oxonium-Ion mit kovalenter C-O-Bindung. Die C-O-Bindungen zur tert.-Butylgruppe und zur Methylgruppe unterscheiden sich deutlich. Die C-O-Bindungslängen zu den Methylgruppen betragen 145,7 pm und sind signifikant kürzer als die C-O-Bindungslänge zur tert.-Butylgruppe mit 158,1 pm. C-O-Bindungslängen über 158 pm wurden bereits für einige tert.-Butyloxonium-Ionen berechnet.^[196] Da die C-O-Bindungslänge der tert.-Butylgruppe im Ether-Addukt signifikant kürzer ist als im Addukt mit Wasser, muß das Ether-O-Atom eine größere Nukleophilie aufweisen. Das Addukt von (CH₃)₃C⁺ und NH₃ hat eine berechnete C-N-Bindungslänge von 154,2 pm (PM3) bzw. 154,4 pm (RHF/6-31g(d). Diese Werte weichen nur geringfügig von der üblichen C-N-Bindungslänge in aliphatischen Ammonium-Ionen ab.

In allen diesen Addukt-Ionen des *tert.*-Butyl-Kations ist die Bindung zwischen dem zentralen C-Atom der *tert.*-Butylgruppe und dem Hetero-Atom des Nukleophils deutlich kovalent, was durch die im Vergleich zum planaren *tert.*-Butyl-Kation pyramidale Struktur am zentralen C-Atom bekräftigt wird. Im Gegensatz dazu bleibt die planare Geometrie eines freien Carbenium-Ions in dem Ion **10a** in allen Addukten mit O-Nukleophilen erhalten. Innerhalb der Zuverlässigkeit der Rechnungen differieren die Bindungslängen und -winkel in der (CH₃)₂C⁺- OCH₃-Gruppe der Addukte nicht signifikant vom freien Carbenium-Ion **10a**. Weiterhin ist H₂O oder (CH₃)₂O mit einer Bindungslänge von 264 pm (H₂O) bzw. 268 pm ((CH₃)₂O) schwach gebunden, was im Einklang mit der publizierten Bindungslänge vom stabilen INC aus *tert.*-Butyl-Kation und H₂O mit 285 pm steht.^[196,197] Daher können diese Addukte besser als ein durch H₂O bzw. (CH₃)₂O solvatisiertes Ion (CH₃)₂C⁺-OCH₃ charakterisiert werden.
Dieses Ergebnis ist deshalb nicht überraschend, da die Struktur der kovalent gebundenen Addukte als Hemiketal oder Ketal aufgefaßt werden können. Über diese Spezies ist bekannt, daß sie in Lösung labil sind. Lediglich das Addukt des bedeutend stärkeren Nukleophils NH_3 weist eine deutlich pyramidale Struktur am zentralen C-Atom von **10a** auf, was eine kovalente Bindung anzeigt. Die C-N-Bindungslänge dieses Addukt ist mit 157,1 pm geringfügig länger als die berechnete für das Addukt (CH₃)₃C⁺/NH₃ und liegt im üblichen Bereich der C-N-Bindungslängen von Alkylammonium-Ionen.

Nimmt man die Pyramidalisierung am zentralen Si-Atom als Kriterium, so stellen alle Silyl-Kationen (CH₃)₃Si⁺ und **11a**, (CH₃)₂Si⁺-OCH₃, mit H₂O, (CH₃)₂O und NH₃ kovalente gebundene Strukuren mit einem tetravalenten Si-Atom dar. Im Fall der Addukte von 11a und den O-Nukleophilen differieren die beiden Si-O Bindungslängen mit 160 pm für die Si-O-Bindung zur Methoxygruppe und 190,9 pm (H₂O) oder 184,2 pm ((CH₃)₂O) für die Si-O-Bindung zum addierten Nukleophil. Zu bemerken ist ferner, daß die C-O-Bindung zum Ether-O-Atom im Addukt zu den Silicenium-Ionen die kürzere Bindung ist. Weiterhin werden für die entsprechenden Addukte von (CH₃)₃Si⁺ meistens identische Bindungslängen berechnet. Dieses weist darauf hin, daß die Methoxygruppe von 11a keinen großen Einfluß auf die Elektrophilie hat. Anhand dieser theoretischen Ergebnisse wird erwartet, daß 11a, (CH₃)₂Si⁺-OCH₃, ebenso wie (CH₃)₃Si⁺ mit einer Vielzahl von Nukleophilen Addukte ausbilden wird, während 10a eine viel geringere Fähigkeit zur Adduktbildung besitzt als selbst (CH₃)₃C⁺. Mit stärker basischeren Nukleophilen reagiert es schließlich durch Protonentransfer. Dieses wird durch die Experimente bestätigt. Bemerkenswert ist, daß bei dem Reaktionssystem 10a/NH₃ überhaupt keine Reaktion zu beobachten ist, obwohl die ab initio Rechnungen ein stabiles, kovalent gebundenes Addukt vorhersagen und 11a glatt ein Addukt bildet. Eine mögliche Erklärung dafür ist, daß das sich annähernde NH₃-Molekül zur reversiblem Adduktbildung führt, ohne daß die Möglichkeit zum Protonenaustausch besteht. Dagegen werden die O-Nukleophile in einem lockeren INC gebunden, die vor der Dissoziation ein Proton aufnehmen können.

Ion	d(E-A) ^{a) b)} [pm]	d(E-C) ^{a)} [pm] ^{b)}	CEA ^{a) b)} [°]	DE _{stab} (exp) [kJ/mol]	DE _{stab} (calc) [kJ/mol]
(CH ₃) ₃ C ⁺	-	147.5	-	324.8	283
$+ H_2O$	166.5	150.8	101.5	-	-
$+(CH_{3})_{2}O$	158.1	152.9	106.9/93.6	-	-
+ NH ₃	154.4	151.9	106.3	-	-
10a	-	148.9	-	429.3	393
$+ H_2O$	263.7	148.8	88.1/96.68	-	-
+ (CH ₃) ₂ O	268.0	148.5	89.6/96.0	-	-
+ NH ₃	157.1	152.0	106.4	-	-
$(CH_3)_3Si^+$	-	184.7	-	-	95
$+ H_2O$	191.0	185.9	99.4	-	-
+ (CH ₃) ₂ O	185.1	186.4	103.8	-	-
+ NH ₃	186.5	194.4	102.9	-	-
11a	-	184.2	-	-	117
$+ H_2O$	190.9	185	99	-	-
+ (CH ₃) ₂ O	184.2	185	104	-	-
$+ NH_3$	191.5	185.7	95	-	-

^{a)} E = Zentrales C-Atom der Carbenium-Ionen und zentrales Si-Atom der Silicenium-Ionen $^{b)} <math>A = O-Atom von H_2O$, (CH₃)₂O oder N von NH₃

Tabelle 9.3: Strukturparameter und Stabilisierungsenergien DE_{stab} , vom *tert*.-Butylcarbenium-Ion, **10a**, und Trimethylsilicenium-Ion, **11a**, sowie deren Addukte mit H₂O, (CH₃)₂O und NH₃ Mit Hilfe der isodesmischen Reaktionen (1) und (2) kann die Stabilisierungsenergie E_{stab} der Carbenium- und der Silicenium-Ionen durch Berechnung der Differenzen der Bildungsenthalpien der entsprechenden Liganden analysiert werden.

(1)
$$R_2R'C^+$$
 + H-CH₃ \rightarrow $R_2R'C-H$ + ⁺CH₃ (R = CH₃; R' = CH₃ oder OCH₃)
(2) $R_2R'Si^+$ + H-SiH₃ \rightarrow $R_2R'Si-H$ + ⁺SiH₃ (R = CH₃; R' = CH₃ oder OCH₃)

Im Falle der Carbenium-Ionen können die experimentellen Bildungenthalpien^[162] und die mit RHF/6-31g(d) berechneten Enthalpien zur Berechnung von Estab verwendet werden, da die Bildungswärme der relevanten Spezies mit Ausnahme von $\Delta H_f(10a)$ explizit tabelliert^[162] sind. $\Delta H_f(10a)$ kann mit Hilfe von PA(2-Propenylmethylether) berechnet werden. Für die Silicenium-Ionen, die an der isodesmischen Reaktion (2) beteiligt sind, gibt es experimentelle Werte nur für die Silane und die entsprechenden Silicenium-Ionen. Für die Si-O-Spezies gibt es keinerlei experimentelle Werte, so daß nur die mit der ab initio Methode RHF/6-31g(d) erhaltenen Werte zur Berechnung von Estab verwendet werden können. Die Ergebnisse sind in Tabelle 9.3 aufgeführt. Für das Carbenium-Ion $(CH_3)_3C^+$ erhält man die erwartete große Stabilisierungsenergie des tert.-Butyl-Kations, die von 10a noch erheblich übertroffen wird. Hierbei wird deutlich, daß mit RHF/6-31g(d) der Stabilisierungseffekt der Methoxygruppe erheblich unterschätzt wird, während der experimentelle Wert von 105 kJ/mol für die Differenz in Estab von beiden Carbenium-Ionen mit dieser ab initio Methode korrekt reproduziert wird. Im Fall des Silicenium-Ions (CH₃)₃Si⁺ weicht der mit RHF/6-31g(d) berechnte Estab-Wert gravierend vom experimentellen Wert ab. Offensichtlich ist der Basissatz RHF/6-31g(d) nicht hinreichend gut genug, um die absoluten Energien der Silicenium-Ionen zuverlässig zu berechnen. Dennoch ist eindeutig, daß die Stabilisierungseffekte der Methylgruppen für die Trimethylsilicenium-Ionen wie erwartet sehr gering ist.^[162] Der zusätzliche Stabilisierungseffekt der Methoxygruppe von **11a** ist ebenfalls sehr gering. Unter der Annahme, daß die Berechnung mit RHF/6-31g(d) die relativen Stabilitäten korrekt wiedergibt, ist Estab infolge der Methoxysubstituenten von 11a um 22 kJ/mol größer. Dieses stimmt gut mit den experimentellen Beobachtungen überein, denn die Reaktivität der Silicenium-Ionen differiert nicht sehr gegenüber Nukleophilen, während dieses für die Carbenium-Ionen $(CH_3)_2C^+$ und **10a** gegensätzlich ist.

9.4 Reaktionen von protoniertem MTBE und MTSE

Protoniertes MTBE, $10H^+$, und MTSE, $11H^+$, wurden ebenfalls mit den entsprechenden Ethern MTBE bzw. MTSE, Aceton und NH₃ umgesetzt. Die bimolekulare Geschwindigkeitskonstanten k_{bi}, und Effektivitäten Eff.[%] der Reaktion von $10H^+$ und $11H^+$, mit MTBE bzw. MTSE, mit CH₃COCH₃, und mit NH₃ sind in Tabelle 9.2 aufgeführt. Die Intensitäts-Zeit-Verläufe der Reaktion von $10H^+$ bzw. $11H^+$ mit MTBE, MTSE und Aceton sind in den Abbildungen 9.11-9.16 dargestellt.

Die Reaktionen des protonierten Silylethers **11H**⁺ mit diesen Reaktanden sind übersichtlich. Im Falle der Umsetzung mit MTSE (Abbildung 9.11) und Aceton (Abbildung 9.12) als neutrale Reaktionspartner ist die einzige Reaktion der Transfer eines Trimethylsilyl-Kations auf das Nukleophil, wobei als Produkt-Ionen [(CH₃)₃Si]₂O⁺-CH₃], m/z 177, und [(CH₃)₃Si]O⁺=C(CH₃)₂], m/z 131, entstehen. In beiden Fällen ist der Transfer des Trimethylsilyl-Kations effektiv, und eine Konkurrenz durch den Transfer der O-Methylgruppe von **11H**⁺ wird nicht beobachtet. Die Übertragung einer Silylgruppe durch silylierende Reagenzien ist eine gut bekannte Reaktion in Lösung, so daß die entsprechende Reaktion in der Gasphase unspektakulär ist. Von den hier untersuchten neutralen Reaktionspartnern ist lediglich NH₃ eine stärkere Base (PA = 853,6 kJ/mol^[162]) als MTSE (PA = 847,0 kJ/mol^[162]). Daher wird der Protonentransfer als schnelle und exotherme Reaktion von **11H**⁺ mit NH₃ erwartet, die der vorherrschende Prozeß sein sollte. Die Bildung des Ions NH₄⁺ ist tatsächlich der Hauptprozeß bei der Reaktion von **11H**⁺ mit NH₃, jedoch kann überraschenderweise der Transfer des Trimethylsilyl-Kations effektiv konkurrieren. Das Verzweigungsverhältnis von [[NH₄⁺]/[(CH₃)₃Si-NH₃⁺] bei dieser Reaktion beträgt 1,2 (Abbildung 9.13)

Die Umsetzungen des protonierten MTBE, **10H**⁺, mit neutralem MTBE, Aceton und NH₃ zeigen eine größere Vielfalt an Reaktionen (Abbildungen 9.14 bis 9.16). Wieder wird eine hohe Effektivität der Gesamtreaktion aller drei hier untersuchten Reaktionen beobachtet. Bei der Reaktion von **10H**⁺ mit MTBE wird am Ende der Reaktion als Hauptprodukt mit einer Intensität von 70 % das Ion m/z 177 beobachtet. Dieses Ion entspricht dem protonengebundenen Homodimeren von MTBE [(CH₃)₃C-O(CH₃)…H⁺…(H₃C)O-C(CH₃)₃]. Dieses Ion ist jedoch ein Sekundärprodukt, was am sigmoidalen Intensitäts-Zeit-Verlauf von m/z 177 zu erkennen ist (Abbildung 9.14), und es entsteht aus dem Ion m/z 121. Das Ion m/z 121 entspricht dem protonengebundenen Heterodimeren [CH₃O(H)…H⁺…(H₃C)O-C(CH₃)₃] aus Methanol und MTBE. Die Reaktion wird daher durch die Eliminierung von C₄H₈ und

Aufnahme von protonierten Methanol durch das angreifende Molekül von MTBE eingeleitet. Nachfolgend findet ein schneller Ligandenaustausch des Methanols durch ein Molekül MTBE statt, das in der FT-ICR-Zelle im Überschuß vorhanden ist (Schema 9.1). Als weitere Prozesse mit geringer Intensität werden die Bildung der Ionen m/z 57, $C_4H_9^+$, und m/z 73 beobachtet. Beide Ionen werden vermutlich aufgrund vom angeregte **10H**⁺ gebildet, das sich noch in der FT-ICR-Zelle befindet.

Schema 9.1: Reaktionen von **10H**⁺ mit MTBE

Die Reaktionen von protoniertem MTBE, **10H**⁺, mit Aceton sind in Schema 9.2 zusammengefaßt.

Schema 9.2: Reaktionen von **10H**⁺ mit Aceton

Als primäre Produkte werden die Ionen m/z 59, m/z 91 und m/z 115 gebildet, die protoniertem Aceton, dem protonengebundenen Heterodimer $[CH_3O(H) \cdots H^+ \cdots O=C(CH_3)_2]$ aus Methanol und Aceton sowie dem Additionsprodukt von *tert*.-Butyl-Kation und Aceton entsprechen. Insbesondere im protonengebundenen Heterodimer $[CH_3O(H) \cdots H^+ \cdots O=C(CH_3)_2]$ findet eine schnelle Ligandenaustauschreaktion mit Aceton statt, welches sich im Überschuß in der FT-ICR-Zelle befindet, wobei als sekundäres Produkt das protonengebundene Homodimer $[(CH_3)_2C=O\cdots H^+ \cdots O=C(CH_3)_2]$, m/z 117, des Acetons entsteht. Anhand des Intensitäts-Zeit-Verlaufs kann man jedoch nicht entscheiden, ob das Addukt-Ion m/z 115 ebenfalls einen Ligandenaustausch durchführt, wobei C₄H₈ gegen Aceton ersetzt wird und wiederum das protonengebundene Homodimer des Acetons, $[(CH_3)_2C=O\cdots H^+ \cdots O=C(CH_3)_2]$ (m/z 117) entsteht. Um diesen Folgeprozeß zu untersuchen, wurde das Ion m/z 115 in einem zusätzlichen Experiment aus **10H**⁺ und Aceton in der FT-ICR-Zelle nach einer ausreichenden Reaktionszeit erzeugt und isoliert. Eine Reaktion mit Aceton fand nur sehr langsam mit einer % wobei das protonengebundene Homodimer Effektivität von < 0.5statt, [(CH₃)₂C=O···H⁺···O=C(CH₃)₂], m/z 117, von Aceton entsteht. Dieses Ergebnis ist deshalb so bedeutungsvoll, weil das Primärprodukt m/z 115 entweder dem O-tert.-butylierten Aceton, $[(CH_3)_3C^+O=C(CH_3)_2],$ oder dem protonengebundenen Heterodimer [C₄H₈···H⁺···O=C(CH₃)₂] aus Isobuten und Aceton entspricht. Für die letztere Spezies wird aber eine schnelle Ligandenaustauschreaktion erwartet, so wie dieses der Fall für die anderen protonengebundenen Heterodimeren ist. Ein gesondertes Experiment, indem protoniertes Aceton mit Isobuten umgesetzt wurde, führte zu keiner Reaktion. Diese Ergebnisse weisen auf eine Struktur des Ions m/z 115 hin, die dem O-tert.-butylierten Aceton, [(CH₃)₃C-⁺O=C(CH₃)₂] entspricht. NH₃ (PA = 853,6 kJ/mol)^[162] ist bedeutend basischer als MTBE (PA = 841,6 kJ/mol)^[162], so daß eine schnelle exotherme Protonenübertragungsreaktion für die Reaktion von $10H^+$ mit NH₃ erwartet wird. Tatsächlich wird auch NH₄⁺ als Hauptprodukt beobachtet, jedoch kann anhand des Intensität-Zeit-Verlaufs die Bildung des Ions m/z 50 als signifikanter Prozeß effektiv konkurrieren. Dieses Produkt-Ion reagiert konsekutiv durch Ligandenaustausch zum protonengebundenen Homodimer $[NH_3 \cdots H^+ \cdots H_3N]$, m/z 35, von NH₃. Daher entspricht das primäre Produkt offensichtlich dem protonengebundenen Heterodimer $[CH_3O(H) \cdots H^+ \cdots H_3N]$ von Methanol und Ammoniak. Alle drei hier untersuchten Nukleophile induzieren die Eliminierung von Isobuten vom protonierten Ether 10H⁺, wobei Methanol in einem protonengebundenen Heterodimer gebunden wird. Dieser Reaktionsweg kann mit dem exothermen Protonentransfer konkurrieren, was besonders am Beispiel der Reaktion von **10H**⁺ mit NH₃ deutlich wird.

Audier, Berthomieu und Morton haben die Strukturen von protoniertem MTBE, $10H^+$, detailiert durch MIKE-Spektrometrie und *ab initio* Rechnungen auf dem Niveau 3-21g(d) untersucht.^[196] Der Anreiz zu dieser Studie mit spezifisch deuterierten Derivaten von $10H^+$ waren Beobachtungen eines ausgedehnten H/D-Austausches aller neun H/D-Atome der *tert.*-Butylgruppe und den zusätzlichen H/D-Atomen am O-Atom, bevor Fragmentierung des metastabilen $10H^+$ erfolgt. Ihre detailierte Analyse dieses Austausches ergab, daß zwei Spezies von $10H^+$ durch die chemische Ionisierung von MTBE entstehen, wobei ein kleiner Anteil zu einem *tert.*-Butyl-Kation ohne H/D-Austausch zerfällt, der größere Anteil tauscht jedoch zufällig H/D-Atome aus. Aufgrund dieser Beobachtung wurde gefolgert, daß die metastabilen Ionen $10H^+$ ein System von sich ineinander umwandelnde Strukturen darstellen

(Schema 9.3): Protoniertes MTBE $10H^+$, ein als α -Komplex bezeichneter INC [(CH₃)₃C⁺···(H)OCH₃] eines *tert*.-Butyl-Kation mit Methanol und ein als β -Komplex bezeichneter INC [(CH₃)₂C=CH₂···H⁺···(H)OCH₃], der einem protonengebundenen Heterodimeren aus Isobuten und Methanol entspricht. Dieses konnte durch *ab initio* Rechnungen bestätigt werden, wobei der α -Komplex jedoch keine stabile Spezies ist, während die kovalente Struktur **10H**⁺ die stabilste Struktur ist und der β -Komplex mit 70 kJ/mol stabiler ist als das Energieniveau der Dissoziationsprodukte (CH₃)₂C=CH₂ und CH₃O⁺H₂.^[196]

Schema 9.3: Umwandelnde Strukturen der metastabilen Ionen von 10H⁺

Wenn man diese Ergebnisse zur Interpretation der hier untersuchten Ion/Molekül-Reaktionen verwendet, muß man bedenken, daß metastabile Ionen in einem Ionenstrahl-Massenspektrometer einen bestimmten Anteil an Überschußenergie besitzen, eben gerade genug, um im Reaktionszeitfenster von Mikrosekunden zu fragmentieren. Dagegen wird für die Ionen in der FT-ICR-Zelle angenommen, daß sie "kühl" sind mit einer thermischen Energie, die der Temperatur der FT-ICR-Zellenwand entspricht. Daher wird für das System sich ineinander umwandelnder Strukturen ausgehend von 10H⁺, angenommen, daß die energetisch günstigste kovalente Struktur des O-protonierten MTBE, **10H**⁺, in der FT-ICR-Zelle die vorherrschende Spezies ist. Während einer Ion/Molekül-Reaktion in der verdünnten Gasphase des FT-ICR-Massenspektrometers werden die Ionen jedoch elektrostatisch durch Ion/Dipol und Ioninduzierte Wechselwirkungen innerhalb des Komplexes aktiviert. Dieses bewirkt in der Tat eine schnelle Umwandlung zwischen den isomeren Strukturen des reagierenden Ions. Die Reaktionen die INC können daher mühelos durch Reaktion des [(CH₃)₂C=CH₂···H⁺···(H)OCH₃] (β -Komplex) erklärt werden. Der β -Komplex wird entweder bereits aus der externen Ionenquelle als stabile Spezies in die FT-ICR-Zelle transferiert oder entsteht von **10H**⁺ durch elektrostatische Aktivierung innerhalb des Kollisionskomplexes. Dieser β -Komplex ist ein protonengebundenes Heterodimer, von denen bekannt ist, daß sie unter schnellem und exothermem Ligandenaustausch reagieren. Von beiden Komponenten im β -Komplex [(CH₃)₂C=CH₂···H⁺···(H)OCH₃ ist Isobuten (802,1 kJ/mol^[162]) basischer als Methanol (754,3 kJ/mol^[162]). Dennoch wird während der Ligandenaustauschreaktion mit MTBE Isobuten zuerst ausgetauscht, da das polare Methanol der bessere Partner in einem protonengebundenen Komplex ist. Formal ist dieser Reaktionsschritt eine Eliminierungsreaktion, wobei aber nicht leicht zu verstehen ist, daß bei einem solchen klassischen E2-Eliminierungsmechanismus von O-protoniertem MTBE ausschließlich das protonengebundene Heterodimer der angreifenden Base und Methanol als Abgangsgruppe ergeben soll. Dieser würde eine syn-Eliminierung und eine entsprechende Orientierung der angreifenden Base an das sterisch anspruchsvolle MTBE erfordern. Im zweiten Reaktionsschritt bewirkt der Reaktand, der im hohen Überschuß vorliegt, eines Austausch des Methanol-Liganden des anfänglich gebildeten protonengebundenen Heterodimers. Die analoge Reaktionsabfolge erfolgt auch mit NH₃ als Reaktand, jedoch findet in diesem Fall eine vollständige Zersetzung des β-Komplexes durch Protonenaufnahme des basischeren NH₃ als Hauptprozeß statt. Auf den ersten Blick scheint die Reaktion mit Aceton eine Ausnahme darzustellen, da die Substitution von Isobuten durch Ligandenaustausch scheinbar mit dem Ligandenaustausch von Methanol konkurriert, wobei das Produkt-Ion m/z 115 entsteht. Dieses Ion ist aber kein protonengebundenes Heterodimer, sondern ein Oxonium-Ion, welches durch tert.-Butylierung am Carbonyl-O-Atom entsteht. Dieses Produkt-Ion könnte nach einem S_N2_B-Reaktionsmechanismus entstehen, jedoch erscheint die Effektivität dieser Reaktion bei dem Angriff von der *tert.*-Butylgruppe aufgrund der sterischen Hinderung zu hoch. Ein alternativer Reaktionsmechanismus für die Reaktion von protoniertem tert.-Butanol mit H₂O wurde von Uggerud et al. vorgeschlagen. Dabei greift das H₂O als Nukleophil von vorne das protonierte tert.-Butanol an, entsprechend einem Reaktionsmechanismus nach S_N2_F.^[204] Die Protonenaffinitäten von Isobuten und Aceton sind nicht sehr verschieden. In bezug auf die schnelle Umwandung zwischen **10H**⁺ und seinen INC-Isomeren, dem α -Komplex und β -Komplex^[196], muß berücksichtigt werden, daß während der Begegnung des β-Komplexes mit Aceton das Proton zuerst durch das Aceton-Molekül aufgenommen und anschließend an das Isobuten zurückgegeben wird. Das daraus resultierende tert.-Butyl-Kation wird durch O-Alkylierung durch das Aceton mittels eines S_N1-Mechanismus eingefangen. Ähnliche Reaktionsmechanismen wurden von Cacace et al. während der tert.-Butylierung von Benzol nachgewiesen, die auch als "Crafts-Friedel"-Alkylierung bezeichnet werden.^[205,206]

Abbildung 9.11: Intensitäts-Zeit-Verlauf der Reaktion von 11H⁺ mit MTSE

Abbildung 9.12: Intensitäts-Zeit-Verlauf der Reaktion von 11H⁺ mit Aceton

Abbildung 9.13: Intensitäts-Zeit-Verlauf der Reaktion von 11H⁺ mit NH₃

Abbildung 9.14: Intensitäts-Zeit-Verlauf der Reaktion von **10H**⁺ mit MTBE

Abbildung 9.15: Intensitäts-Zeit-Verlauf der Reaktion von **10H**⁺ mit Aceton

Abbildung 9.16: Intensitäts-Zeit-Verlauf der Reaktion von 10H⁺ mit NH₃

9.5 Zusammenfassende Diskussion

Die Ergebnisse der Untersuchungen der charakteristischen Ion/Molekül-Reaktionen der Ionen im EI- und CI(Isobutan)-Massenspektrum von MTBE und MTSE sind ein deutliches Beispiel für die unterschiedliche Reaktivität von Carbenium-Ionen und Silicenium-Ionen. Im Falle der Fragment-Ionen (CH_3)₂E⁺-OCH₃ (**10a**: E = C; **11a**: E = Si) ist das Dimethylmethoxycarbenium-Ion **10a** sehr stabil und weniger reaktiv gegenüber Nukleophilen als das *tert.*-Butyl-Kation. Im Grunde erfolgt keine elektrophile Reaktion des Carbenium-Ions **10a**. Lediglich eine langsame Deprotonierung von **10a** wird beobachtet und kann für Basen stärker als 2-Propenylether, welches die konjugierte Base von **10a** ist, effektiver werden. Dagegen ist die Gasphasen-Reaktivität und Stabilität des Trimethylsilicenium-Ions und des Dimethylmethoxysilicenium-Ions **11a** nicht sehr verschieden. Beide Ionen bilden in der verdünnten Gasphase des FT-ICR-Massenspektrometers besonders leicht stabile Addukte mit Nukleophilen. Offensichtlich ist die Stabilisierung der Addukte durch Strahlung unter diesen Bedingungen effektiv. Da 2-Silapropylmethylether wegen der energetisch ungünstigen Si-C-Doppelbindung keine stabile Spezies ist, wird eine Deprotonierung weder erwartet noch beobachtet.

Gleichermaßen spiegeln die Ion/Molekül-Reaktionen der protonierten Ether von MTBE, 10H⁺, und MTSE, 11H⁺, die unterschiedliche Chemie der Hauptgruppenelemente der ersten und zweiten Reihe des Periodensystems wieder. 11H⁺ ist ein starkes Silylierungsreagenz, was besonders an der Reaktion mit NH₃ deutlich wird. NH₃ ist zwar um 7 kJ/mol basischer als MTSE, dennoch ist das Verzweigungsverhältnis von Protonentransfer und Silvlierungsreaktion 1,2. Die Ergebnisse beantworten nicht die Frage, ob der schnelle Silylgruppentransfer zustande kommt, weil $11H^+$ einem stabilen α -Komplex entspricht, bestehend aus einem Trimethylsilicenium-Ion und Methanol, oder ob hypervalente Si-Derivate mit einer trigonalen bipyramidalen Struktur kein Übergangszustand der Silylierungsreaktion sind, sondern eine stabile Spezies.^[207] Dieses würde eine $S_N 2_B$ Reaktion mit Rückseitenangriff begünstigen. Einführende ab initio Rechnungen (RHF/6-31g(d)) ergaben keinen Hinweis auf einen stabilen α-Komplex. Die Ergebnisse der Untersuchung der Ion/Molekül-Reaktionen von protoniertem MTBE, **10H**⁺, bestätigen den Vorschlag^[196,197], daß **10H**⁺ leicht in einen stabilen β -Komplex überführt wird, der aus protoniertem Isobuten und Methanol besteht. Mit dieser Struktur kann die Eliminierung von Isobuten durch schnelle Ligandenaustauschreaktion erfolgen, die keine zusätzliche Aktivierungsbarriere erfordert. Ein entsprechender β-Komplex ist für protoniertes MTSE, **11H**⁺, energetisch nicht möglich, weil dieses die Bildung des instabilen Silaisobutens erfordern würde.

10. Zusammenfassung

In dieser Arbeit wurden die Reaktionen von 2-Halogenpropen-, 2-Halogen-3,3,3-trifluorpropen- und Brombuten-Radikalkationen mit Ammoniak, Methylamin, Ethylamin, Dimethylamin, Methanol, Ethanol, Methylmercaptan, tert.-Butylmethylether und Trimethylsilylether als N-, O- und S-Nukleophile untersucht. Für jedes Reaktionssystem wurden kinetische Messungen unter Verwendung eines FT-ICR-Massenspektrometers durchgeführt. Aus diesen Messungen wurden die bimolekularen Geschwindigkeitskonstanten bestimmt, die zur Ermittlung der Effektivität der Reaktion verwendet wurden. Detaillierte quantenchemische Untersuchungen auf dem Niveau BHandHLYP/6-31g(d) an dem Reaktionssystem 2-Chlorpropen-Radikalkation/NH₃ und 2-Chlorpropen-Radikalkation/CH₃OH dienten dem Verständnis des Reaktionsmechanismus und insbesondere von reaktiven Zwischenstufen. Für die Reaktionen des ionisierten 2-Brompropens, 2-Chlor-3,3,3-trifluorpropens, 2-Brom-3,3,3-trifluorpropens, 2-Brombut-2-ens, 1-Brombut-2-ens und 4-Brombut-1-ens mit Ammoniak und Methanol war es möglich, die Reaktionsenergieprofile auf dem Niveau BHandHLYP/6-31g(d) zu berechnen. Weiterhin konnten aus diesen Daten die Reaktionsenthalpien der Reaktionen der 2-Halogenpropen-, 2-Halogen-3,3,3-trifluorpropen- und Brombuten-Radikalkationen mit anderen Nukleophilen wie Methylamin, Ethylamin, Dimethylamin, Ethanol, Methylmercaptan sowie der Reaktionssysteme 2-Brombut-2-en-Radikalkation/CH₃OH, 1-Brombut-2-en-Radikalkation/CH₃OH und 4-Brombut-1-en-Radikalkation/CH₃OH unter Verwendung von isodesmischen Reaktionen ermittelt werden.

Die *ab initio* Rechnungen auf dem Niveau BHandHLYP erklären die Reaktionen der 2-Halogenpropen- und 2-Halogen-3,3,3-trifluorpropen-Radikalkationen in der Regel gut. Aus diesen Ergebnissen können die Reaktionsenthalpien für andere Reaktionssysteme unter Verwendung von isodesmischen Reaktionen leicht abgeschätzt werden. Wieder einmal zeigt sich, daß dieses Verfahren gut zur Beurteilung der Reaktionsenergieprofile geeignet ist, so daß eine zeitaufwendige Berechnung mit *ab initio*-Methoden eingespart werden kann.

Der zumeist intensivste Prozeß bei den Umsetzungen der hier untersuchten Halogenalkene mit Ammoniak ist die Substitution des Halogen-Atoms durch Ammoniak. Die Struktur des Ions aus der Reaktion der 2-Halogenpropene entspricht einem 2'-Propenylammonium-Ion, was anhand von Gasphasentitrationen des Substitutionsprodukts von 2-Brompropen mit NH₃ gefolgert wurde. Die Substitutionsprodukte können durch Basen deprotoniert werden. Dazu konkurrierend findet Tautomerisierung durch Basenkatalyse über einen "*shuttle"*- Mechanismus zum Alkylimmonium-Ion statt. Dieses Ergebnis steht im Einklang mit analogen Ergebnissen aus den Untersuchungen des Vinylammonium-Ions.

Der Mechanismus der Substitutionsreaktionen läßt sich glatt mit einem Additions-/Eliminierungsmechanismus erklären. Dabei erfolgt die Addition des N- oder O-Nukleophils an die ionisierte Doppelbindung des Halogenalkens regioselektiv und erfordert keine oder allenfalls eine geringe Energiebarriere. Energetisch bevorzugt ist die Addition nach Markownikow, die sehr exotherm und schnell ist. Auch die Addition nach anti-Markownikow ist exotherm und schnell. Die Abspaltung des Halogen-Atoms als letzten Reaktionsschritt ist nur bei dem anti-Markownikow-Addukt möglich. Eine Umwandlung des Markownikow-Addukts in das anti-Markownikow-Addukt findet entweder über eine 1,2-Verschiebung des Nukleophils oder durch Dissoziation zurück zum Stoßkomplex und erneute Addition mit anderer Regiochemie unter Ausbildung des anti-Markownikow-Addukts statt. Aufgrund der Exothermizität der Addition sind die beiden β -distonischen Addukte energetisch hoch angeregt. Diese Überschußenergie treibt die Weiterreaktionen voran.

Neben der Substitutionsreaktion sind Protonentransfer vom ionisierten Halogenalken auf das Nukleophil, Hydridtransfer vom Nukleophil auf das ionisierte Halogenalken oder Ladungstransfer vom Nukleophil auf das Halogenalken-Radikalkation häufig beobachtete Prozesse. Die Substitutionsreaktion kann stets mit der Protonentransfer-, Hydridtransfer- und geringfügig exothermer Ladungstransferreaktion konkurrieren. Die Protonentransfer- und Hydridtransferreaktion erfolgen wahrscheinlich ebenfalls nach einem Additions-/Eliminierungsmechanismus. In diesem Fall sind dann die Substitutions-, Protonentransfer- und Hydridtransferreaktion kompetitive Prozesse, ausgehend von einem der Addukt-Ionen, und werden durch deren Exothermizität vorangetrieben. Für die Hydridtransferreaktion sind Wasserstoff-Wanderungen erforderlich, für die nach den theoretischen Berechnungen hohe Energiebarrieren überwunden werden müssen.

Die energetisch hoch angeregten Addukt-Ionen können aber auch alternative Fragmentierungsreaktionen eingehen, was besonders bei den Umsetzungen des 4-Brombut-1-en-Radikalkations deutlich wird, das ein homoallylisch gebundenes Brom-Atom besitzt.

Die experimentellen und theoretischen Ergebnisse zeigen, daß für die Reaktionen von Radikalkationen der Halogenalkene mit Nukleophilen ein Additions-/Eliminierungsmechanismus von erheblicher Bedeutung für die Reaktivität ist. Zur Aufklärung der Bildung einiger Ionen, die während der Reaktion von ionisierten Halogenethenen und 2-Halogenpropenen mit *tert*.-Butylmethylether und Trimethylsilylether entstehen, wurden Ion/Molekül-Reaktionen von Ionen aus *tert*.-Butylmethylether und Trimethylsilylether mit den Nukleophilen *tert*.-Butylmethylether, Trimethylsilylether, Aceton und Ammoniak studiert.

Die Resultate der Untersuchungen der charakteristischen Ion/Molekül-Reaktionen der Ionen im EI- und CI(Isobutan)-Massenspektrum von *tert.*-Butylmethylether und Trimethylsilylether sind ein klares Beispiel für die unterschiedliche Reaktivität von Carbenium-Ionen und Silicenium-Ionen. Im Falle der Fragment-Ionen (CH₃)₂C⁺-OCH₃ und (CH₃)₂Si⁺-OCH₃ ist das Dimethylmethoxycarbenium-Ion sehr stabil und wenig reaktiv gegenüber Nukleophilen. Das Dimethylmethoxysilicenium-Ion bildet dagegen in der verdünnten Gasphase besonders leicht stabile Addukte mit Nukleophilen. Die Deprotonierung dieser Spezies ist wegen der Ausbildung einer Si-C-Doppelbindung ungünstig.

Gleichermaßen reflektieren die Ion/Molekül-Reaktionen des protonierten *tert.*-Butylmethylethers und Trimethylsilylethers die unterschiedliche Chemie der Hauptgruppenelemente der ersten und zweiten Reihe des Periodensystems. Protonierter Trimethylsilylether ist ein starkes Silylierungsreagenz. Mechanistische Details konnten hierfür nicht geklärt werden und erfordern daher eine gesonderte Untersuchung. Protonierter *tert.*-Butylmethylether wird wahrscheinlich leicht in einen stabilen β -Komplex überführt, der aus protoniertem Isobuten und Methanol besteht. Mit dieser Struktur kann leicht die Eliminierung von Isobuten durch eine schnelle Ligandenaustauschreaktion erfolgen. Ein entsprechender β -Komplex ist aber für protonierten Trimethylsilylether energetisch nicht möglich, weil dieser die Bildung des instabilen Silaisobutens erfordern würde.

11. Experimenteller Teil

11.1 Massenspektrometrie

Alle EI- und CI-Massenspektren wurden mit einem doppelt fokussierenden Massenspektrometer des Typs Micromass VG Autospec aufgenommen. Die Beschleunigungsspannung betrug für die EI-Messungen 8 kV und für die CI-Messungen kV. Alle hier untersuchten Verbindungen wurden über den Hochtemperatureinlaß (160 °C) in die Ionenquelle (140 °C - 200 °C) zugeführt und mit einer Elektronenenergie von 70 eV ionisiert. Als CI-Gas wurde Isobutan bei einem Druck von 10^{-4} mbar verwendet.

11.2 MIKE-Massenspektrometrie

Alle EI- und CI-MIKE-Spektren wurden ebenfalls mit einem doppelt fokussierenden Massenspektrometer des Typs Micromass VG Autospec aufgenommen. Die Probenzuführung erfolgte wie bereit im Massenspektrometrieteil beschrieben. Die EI- und CI-Bedingungen sind vergleichbar mit den Bedingungen zur Aufnahme der Massenspektren.

Das Vorläufer-Ion wurde durch den Magneten selektiert und in den 3. feldfreien Raum (3.FFR) fokussiert. Durch Variation der Ablenkspannung des elektrostatischen Analysators wurden die Signale des Vorläufer-Ions und der Fragment-Ionen, die im 3. FFR gebildet wurden, detektiert. Das Signal/Rausch-Verhältnis wurde durch Akkumulation von 20-100 Einzelspektren verbessert.

Zur Bestimmung der Verteilungsfunktion der freigesetzten kinetischen Energie (KERD) wurde das META-Programm von Szilàgi und Vékey verwendet.^[208] Dazu wurde die Energiehälfte des Fragment-Ionensignals mit der geringeren Energie mit Hilfe der "averaging-averaging" Funktion von Origin 5.0^[209] geglättet, ohne die Ursprungsform des Signals zu verändern. Mit Hilfe dieser Daten und einem Parametersatz für das Micromass VG Autospec wurde die Berechnung der KERD-Kurve durchgeführt.

11.3 CA-Massenspektrometrie

Auch die Aufnahmen der EI-CA- und CI-CA-MIKE-Massenspektren erfolgten in einem doppelt fokussierenden Massenspektrometer des Typs Micromass VG Autospec. Die Probenzuführung erfolgte wie bereit im Massenspektrometrieteil beschreiben. Die EI- und CI-Bedi7ngungen sind vergleichbar mit den Bedingungen zur Aufnahme der Massenspektren. Die kollisionsinduzierten Fragmentierungen wurden zwischen dem Magneten und dem 2. Elektrostatischen Analysator (3. FFR) beobachtet. Für die Kollisionsaktivierung (CA) des Vorläufer-Ions wurde Argon in die Kollisionszelle eingelassen, bis die Intensität des Primär-Ionenstrahls auf die Hälfte verringert war (Argon Druck $\approx 10^{-6}$ mbar).

11.4 FT-ICR-Massenspektrometrie

Alle FT-ICR-Experimente wurden in einem Spektrospin Bruker CMS 47X FT-ICR Spektrometer durchgeführt.^[210] Dieses ist mit einer InfinityTM-Zelle^[142] von 6 cm Länge, mit einem supraleitenden Magneten (Flußdichte = 4,7 Tesla) und mit einem 24bit 128kWord Aspect 3000 Computer ausgestattet. Das Vakuumsystem bestand aus drei Turbomolekularpumpen (zwei mit je 330 l's⁻¹ und eine mit 300 l's⁻¹). Die Auswertung der Meßdaten erfolgte mit der Bruker Spektrospin ICR-Software Version I89 oder mit Bruker XMASS(TM) 4.0.1^[211] für IRIX 5.3. Die Probenzufuhr in die Ionenquelle erfolgte von einem Vorratsgefäß mit Feindosier-Nadelventil über eine Schubstange mit Gaseinlaßvorrichtung. Der Druck im Ionenquellenraum betrug etwa 5^{-10⁻⁷} bis etwa 1^{-10⁻⁶} mbar.

Kinetische Experimente

Die Ionen wurden entweder durch EI-Ionisierung mit einer Elektronenenergie von 20-30 eV oder durch CI-Ionisierung mit einer Elektronenenergie von 30-40 eV und Isobutan als CI-Gas in einer entsprechenden externen Ionenquelle^[212] erzeugt. Die entstandenen Ionen wurden zuerst mit Hilfe einer Ionenoptik^[136] beschleunigt (Beschleunigungsspannung = 3 kV), anschließend abgebremst und in die FT-ICR-Zelle fokussiert.

Vor jeder Messung wurde die kinetische Energie der Ionen durch Stöße mit Argon, welches durch einen Argon-Druckpuls in die FT-ICR-Zelle eingelassen wurde, abgeführt. Dazu öffnete man ein piezoelektrisches Ventil (MV-112 der Firma Maxtex Inc.), das sich zwischen der Meßzelle und dem Vorratsgefäß für Argon befindet. Der Druck in dem Vorratsgefäß betrug 10-13 mbar. Nach dem Argon Druckpuls wurde nach 0,6 - 3 sec. das eingeströmte Argon und eventuell entstandene neutrale Reaktionsprodukte abgepumpt. Die Selektion der Ionen erfolgte in der FT-ICR Zelle durch Breitband-Anregung (broad band ejection) und Pulsen mit fester Frequenz (single shot ejection). Die Amplitude der Breitband-Anregung entsprach einer Spannung von $V_{p-p} = 89$ V. Alle Frequenzen wurden in Schrittweiten von 7,8 kHz mit einer jeweiligen Pulsdauer von 80 µs eingestrahlt. Nach der Reaktionszeit wurden alle Ionen in der FT-ICR- Zelle durch eine Breitband-Anregung mit einer Amplitude von $V_{p-p} = 89$ V mit einer

Schrittweite der Frequenzen von 7,8 kHz detektiert. Das Potential der trapping-Platten betrug $(1,0 \pm 0,1)$ V und die der Sender- und Empfänger-Platten $(0,0 \pm 0,1)$ V.

Für die Aufnahme der jeweiligen FT-ICR-Spektren wurden Automationsroutinen verwendet. Für jede Reaktion wurden 10-30 FT-ICR-Spektren mit je 32k aufgenommen. Jedes Spektrum entsprach dabei einer bestimmten Reaktionszeit. Zur Verbesserung des Signal-Rausch-Verhältnisses wurden für jedes Spektrum 8-16 Einzelspektren akkumuliert. Die Signal-Intensitäten wurden durch Gauss-Multiplikation und Fourier-Transformation und "Magnitude Multiplikation" des "time domain"-Signals erhalten. Die Signal-Intensitäten des auf diese Weise erhaltenen Spektrums wurden auf die Summe der Intensitäten der nachgewiesen Ionen jedes Spektrums normiert.

Die Geschwindigkeitskonstante pseudo-erster Ordnung ($k_{exp.}$) erhält man durch Anpassung der normierten Intensitäten I_(t) gegenüber der Reaktionszeit t an die Funktion (2.28b). Dazu wurde das Programm Microcal Origin 5.0^[209] verwendet, welches für die Anpassung den Levenberg-Marquardt-Algorithmus^[213,214] verwendet.

Mit Kenntnis der Teilchendichte (N/V) des Neutralgases kann man die bimolekulare Geschwindigkeitskonstante k_{bi} berechnen. Hierzu benötigt man die Temperatur in der FT-ICR-Zelle, die bei interner Ionisierung 318 K^[41] und bei externer Ionisierung 298 K^[41] beträgt.

Die Druckmessung erfolgte mit einem Ionisationsmanometer oberhalb der FT-ICR-Zelle. Dieses ist auf Stickstoff geeicht. Da die Druckanzeige substanzabhängig ist, wurde das Ionisationsmanometer nach Bartmess und Georgiadis kalibriert.^[215] Dazu wurde für folgende Reaktion die Reaktionsgeschwindigkeitskonstante k_{bi} von $k_{bi} = 2,1^{\cdot}10^{-9}$ cm⁻³·s⁻¹·Molekül⁻¹ verwendet:^[216] NH₃^{·+} + NH₃ \rightarrow NH₄⁺ + NH₂[·]. Der Wert der chemischen Sensitivität des neutralen Gas in der FT-ICR-Zelle wird empirisch aus der Polarisierbarkeit berechnet.^[208] Die Polarisierbarkeit wird nach der Methode von Miller und Savchik berechnet.^[217]

Die Effektivität einer Reaktion ist gegeben durch k_{bi}/k_{col} . Die theoretische Geschwindigkeitskonstante k_{col} wurde nach der Methode von Su und Chesnavich^[84] berechnet.

Alternativ können Ionen auch aus Ion/Molekül-Reaktionen in der FT-ICR-Zelle erzeugt werden. Zusätzlich wird eine Abfolge von Argon-Druckpuls nach der Primärreaktion (Reaktionszeit 1 - 5 s), Abpumpen des Argons (0,8 - 3 s) und nachfolgender Selektion der Ionen durch Pulse mit fester Frequenz vor der Sekundärreaktion verwendet.

Gasphasentitrationen

Alle Gasphasentitrations-Experimente wurden in einem Spektrospin Bruker CMS 47X FT-ICR Spektrometer^[210] durchgeführt. Dazu wurde das 2'-Propenylammonium-Ion ("primäres Substitutions-Produkt") aus 2-Brompropen und Ammoniak in der externen CI-Quelle erzeugt. Die Produkt-Ionen wurden in die FT-ICR-Zelle fokussiert und selektiert, analog wie bei den kinetischen Experimenten beschrieben. Das "primäre Substitions-Produkt" wurde anschließend mit der Base in der FT-ICR-Zelle umgesetzt. Dabei fand als einzige Reaktion ausschließlich Protonenübertragung vom 2'-Propenylammonium-Ion auf die Base statt. Die Bestimmung der Effektivitäten der Reaktion erfolgte wie bereits bei den kinetischen Experimenten erläutert. Auf eine Stoßdesaktivierung der Ionen mit Hilfe von Argon-Druckstößen wurde deshalb gezielt verzichtet, da ansonsten ein fehlerhaftes Verhältnis von möglichen Isomeren aufgrund unkontrollierbarer Reaktionen in dieser Zeit beobachtet werden könnte. Es wurden aliphatische Amine mit Protonenaffinitäten zwischen 854 kJ/mol und 998 kJ/mol verwendet. Alle Werte der Protonenaffinitäten wurden aus der NIST-Datenbank entnommen^[162].

11.5 Ab initio Berechnungen

Die in dieser Arbeit durchgeführten Molekül-Orbital-Berechnungen zum Erstellen der Reaktionsenergieprofile von 1^{+} , 2^{+} , 4^{+} , 5^{+} , 7^{+} , 8^{+} , 9^{+} mit NH₃ bzw. CH₃OH wurden mit dem GAUSSIAN 98-Programm^[218] auf einem SPP 2200/S-16 Großrechner der Firma Hewlett Packard durchgeführt.

Die Geometrien wurden zunächst auf dem Hartree-Fock-Niveau mit dem Basissatz 6-31+G(d) ^[219-223] durch die Gradientenmethode^[224-226] optimiert. Alle Verbindungen mit geschlossener Schale wie Neutralteilchen und Kationen wurden mit der *restricted* Hartree Fock-Methode (RHF)^[227] und alle offenschaligen Verbindungen wie Radikalkationen und Radikale mit der *unrestricted* Hartree Fock-Methode (UHF)^[227-229] berechnet. Zur Kontrolle der optimierten stationären Punkte als Gleichgewichtsgeometrien (Minima) oder als Übergangszustandsgeometrien (Sattelpunkte) wurden harmonische Schwingungsfrequenzen berechnet. Dabei weisen die Gleichgewichtsgeometrien nur reelle Frequenzen und die Übergangszustandsgeometrien ausschließlich eine imaginäre und ansonsten nur reelle harmonische Frequenzen auf. Die auf diese Weise optimierten Strukturen wurden daraufhin auf dem Niveau

BHandHLYP^[156-158]/6-31+G(d) durch die Gradientenmethode^[224-226] optimiert und mit denen verglichen, die auf dem Niveau (U)HF/6-31+G(d) berechnet wurden. Auch hier wurden alle</sup>

Strukturen analog wie bei der Hartree-Fock-Methode durch die Berechnung der harmonischen Schwingungsfrequenzen überprüft. Diese stimmten mit denen der Hartree-Fock Rechnungen bis auf den Faktor 0,9^[146] hinreichend gut überein. Die jeweiligen potentiellen Energien, Nullpunktsschwingungsenergien, die Energiebeiträge bei 298 K, die S²-Werte und die niedrigsten Schwingsungsfrequenzen sind in Kapitel 12.2 aufgeführt. Die jeweiligen Geometrien sind ebenfalls in Kapitel 12.2 gezeigt.

Alle Übergangsstrukturen wurden weiterhin durch *internal reaction path* Rechnungen^[230-231] auf dem Niveau UHF/6-31+G(d) bzw. BHandHLYP/G-31+G(d) überprüft. Dabei erhält man entsprechend zwei Gleichgewichtsgeometrien, die analog wie zuvor optimiert und durch die Berechnung der harmonischen Schwingungsfrequenzen kontrolliert wurden. Die dabei erhaltenen Gleichgewichtsgeometrien sind gleichzeitig mögliche Intermediate entlang des Reaktionsenergieprofils.

Zur weiteren Kontrolle wurden für die wichtigsten Gleichgewichtsgeometrien je nach Rechenaufwand der jeweiligen Struktur Einzelpunktrechnungen auf dem Niveau BHandHLYP/6-311+G(2d,p)//BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVDZ/ /BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVTZ//BHandHLYP/6-31+G(d), CCSD(T)/cc-pVDZ//BHandHLYP/6-31+G(d) und CCSD(T)/6-311+G(2d,p)/ /BHandHLYP/6-31+G(d) durchgeführt (Kapitel 12.2).^[232-239] Die jeweilige potentiellen Energien sind in Kapitel 12.2 aufgeführt.

11.6 Synthesevorschriften

Alle Synthesen der hier verwendeten Verbindungen, die nicht käuflich erworben wurden, sind bereits publiziert worden.^[50]

12. Anhang

12.1 Isodesmische Reaktionen zur Abschätzung der Reaktionsenthalpien der Reaktionen von 1⁺⁺, 2⁺⁺, 3⁺⁺, 4⁺⁺ und 5⁺⁺ mit NH₃ oder CH₃OH^[50]

Die experimentellen Bildungsenthalpien, ΔH_f , die zur Berechnung der Reaktionsenthalpien und Differenzen der Bildungsenthalpien der Reaktion von 1⁻⁺, 2⁻⁺, 3⁻⁺, 4⁻⁺ und 5⁻⁺ mit NH₃ mit Hilfe von isodesmischen Reaktionen gebraucht werden, sind in Tabelle 12.1 aufgeführt. Die Bildungsenthalpien von Bromethen und Chlorethen sind bekannt. Für Iodethen ist dagegen lediglich die Ionisierungsenergie tabelliert. Die Bildungsenthalpie von Iodethen wird daher mit der Inkrement-Methode nach Benson^[240] erhalten. Mit diesen beiden Werten kann man schließlich die Bildungsenthalpie vom ionisierten Iodethen berechnen. Im NIST-Webook^[162] gibt es zwei Werte der Bildungswärme von 2-Chlorpropen. Für die weiteren Berechnungen wurde $\Delta H_f = -24,7$ kJ/mol ausgewählt, da dieser Wert am bestem mit dem nach Benson^[240] abgeschätzten Wert übereinstimmt. Für 2-Brompropen und 2-Iodpropen gibt es keine experimentell bestimmten Bildungsenthalpien, so daß die Bildungsenthalpie nach Benson^[240] abgeschätzt wurden. Für die Berechnung der Bildungsenthalpien der 2-Halogenpropen-Radikalkationen wurden die beiden isodesmischen Reaktionen 1 und 2 (Schema 12.1 und 12.2) verwendet, wobei ein Halogen-Substituent und entweder ein H-Atom oder eine CH₃-Gruppe ihre Positionen tauschen.

Schema 12.1: Isodesmische Reaktion 1 (X = -Cl; -Br; -I)

Schema 12.2: Isodesmische Reaktion 2 (X = -Cl; -Br; -I)

Verbindung	$\Delta H_{f} [kJ/mol]^{a}$ Neutral	Ionisierungs- energie [eV] ^a	$\Delta H_{f} [kJ/mol]$ Radikalkation ^b
Chlorethen	35 ± 1	9,99	999
Bromethen	79 ± 2	9,82	1027
Iodethen	129 ^c	9,32	1028
2-Chlorpropen	-24,7		
2-Brompropen	27 ^c		
2-Iodpropen	82 ^c		
Ethen	$53\pm0,5$	10,51	1067
Propen	$20{,}4\pm0{,}5$	$9,73 \pm 0,01$	959
Isobuten	-18 ± 1	$9{,}22\pm0{,}02$	872
3,3,3-Trifluorpropen	-614 ± 7	$10{,}95\pm0{,}1$	443
Ethyl-Radikal	119 ± 2		
n-Propyl-Radikal	100 ± 2		
Isopropyl-Radikal	90 ± 2		
Isobutyl-Radikal	70 ± 2		
tertButyl-Radikal	48 ± 3		
2,2,2-Trifluorethyl- Radikal	-519		
3,3,3-Trifluorpropyl- Radikal	-523 ^d	$EA = 0.34 \pm 0.20$	-556 ± 15 (Anion)
Allyl-Radikal	171 ± 3		
Methallyl-Radikal	121 ± 2		

Tabelle 12.1: Für isodesmische Reaktionen verwendete experimentelle Bildungsenthalpien^a

^a Aus NIST^[162,163] (wenn nicht anders angegeben)

 $^{\rm b}$ Berechnet mit der Bildungswärme, $\Delta H_{\rm f}$, des Neutralen und der Ionisierungsenergie

- ^c Berechnet durch die Inkrement-Methode von S. W. Benson^[240]
- ^d Berechnet mit der Elektronenaffinität^[162]

Die Bildungsenthalpie des Markownikow- und des anti-Markownikow-Addukts, welches durch die Addition des NH₃ and die ionisierte Doppelbindung des Halogenalken-Radikalkations entsteht, wurde durch die isodesmischen Reaktionen 3 - 6 berechnet. Dabei werden diese distonischen Ionen als substituierte Alkyl-Radikale angesehen.

Schema 12.3: Isodesmische Reaktion 3 (X = -Cl; -Br; -I)

Schema 12.4: Isodesmische Reaktion 4 (X = -Cl; -Br; -I)

Schema 12.5: Isodesmische Reaktion 5 (X = -Cl; -Br; -I)

Schema 12.6: Isodesmische Reaktion 6 (X = -Cl; -Br; -I)

Da die Bildungsenthalpien von den Addukt-Ionen, entstanden aus dem Iodethen-Radikalkation und NH₃ nicht verfügbar sind, wurde ein zweiter Satz von isodesmischen Reaktionen verwendet, in der die Addukt-Ionen mit den Radikalkationen der 2-Halogenpropene umgesetzt werden. Die Bildungsenthalpien von dem Substitutionsprodukt, 2'-Propenylammonium-Ion, wurde von seinem Homologen, dem Vinylammonium-Ion, mit Hilfe der isodesmischen Reaktionen 7 und 8 abgeschätzt.

Schema 12.7: Isodesmische Reaktion 7

Schema 12.8: Isodesmische Reaktion 8

Die Bildungsenthalpien der 2-Halogenallyl-Radikale wurde mit Hilfe der isodesmischen Reaktionen 9 und 10 abgeschätzt.

Schema 12.9: Isodesmische Reaktion 9 (X = -Cl; -Br; -I)

Schema 12.10: Isodesmische Reaktion 10 (X = -Cl; -Br; -I)

Die Bildungsenthalpien der entsprechenden Trifluorverbindungen wurden durch analoge isodesmische Reaktionen abgeschätzt, die von 2-Chlorpropen und 3,3,3-Trifluorpropen und deren Radikalkationen, 2,2,2-Trifluorethyl- und Trifluorpropyl-Radikalkation ausgehen.

Die Reaktionsenthalpien und relative Bildungsenthalpien der Reaktionen der 1^{+} , 2^{+} mit CH₃OH wurden analog abgeschätzt. Dazu wurden die für die isodesmischen Reaktionen 1 und 2 sowie 8 - 18 benutzten experimentellen Bildungsenthalpien aus Tabelle 12.1 und Tabelle 12.2 verwendet:

Schema 12.11: Isodesmische Reaktion 11 (X = -Cl; -Br)

Schema 12.12: Isodesmische Reaktion 12 (X = -Cl; -Br)

Schema 12.13: Isodesmische Reaktion 13 (X = -Cl; -Br)

Schema 12.14: Isodesmische Reaktion 14 (X = -Cl; -Br)

Schema 12.15: Isodesmische Reaktion 15

Schema 12.16: Isodesmische Reaktion 16

Schema 12.17: Isodesmische Reaktion 17 (X = -Cl; -Br)

Schema 12.18: Isodesmische Reaktion 18 (X = -Cl; -Br)

Die Ergebnisse der Reaktionsenthalpien und relative Bildungsenthalpien sind in Tabelle 12.3 aufgeführt.

Verbindung	ΔH _f [kJ/mol] ^a Neutral	Protonenaffinität PA [kJ/mol	ΔH _f [kJ/mol] Protonierte Spezies ^b
$H_3C-O^+H-CH=CH_2^{c}$			$658^{[45,184]}$
CH ₃ OH	- 201	754	575
H ₂ C=O	- 116	713	701
2-Chlorpropan	- 145	-	-
2-Brompropan	- 96	-	-
Propan	- 105	-	-

Tabelle 12.2: Für isodesmische Reaktionen verwendete experimentelle Bildungsenthalpien^a

^a Aus dem NIST-Webbook^[162]; ^b Berechnet mit der Bildungsenthalpie des Neutralen, der Bildungsenthalpie des Protons und der Protonenaffinität; ^c aus *ab initio* Berechnung^[45,184]

Verbindung	ΔH _f [kJ/mol]
β-distonisches Addukt-Ion (Markownikow) 1a(CH₃OH)	+ 654
β-distonisches Addukt-Ion (anti-Markownikow) 1b(CH₃OH)	+ 685
$H \sim 0 H$ $H_{3}C$ H	+ 620
2-Chlorallyl-Radikal	+ 114
H $H_{3}C$ H	+ 50
H $HCIH_{3}C H$	+ 60
2-Bromallyl-Radikal	+ 166
$H_{3}C$ H	+ 99
$ \begin{array}{ccc} H & H \\ Br & & \\ H_3C & H \end{array} $	+ 109

Tabelle 12.3: Abgeschätzte Bildungsenthalpien ΔH_f der Reaktanden, relevante Intermediate und Produkte der Reaktion von $\mathbf{1}^{+}$ - $\mathbf{2}^{+}$ mit CH₃OH

12.2 *Ab initio* Rechnungen der Reaktionen von 1⁺⁺, 2⁺⁺, 4⁺⁺, 5⁺⁺, 7⁺⁺, 8⁺⁺ und 9⁺⁺ mit NH₃ bzw. CH₃OH

Die relevanten Strukturen, Z-Matrices, potentiellen Energien, Nullpunktsschwingungsenergien, Energiebeiträge bei 298 K, E^{298} , $(E^{298} = U_{rot.} + U_{tr.} + U_{vib.}^{(298)};$ Gleichung 3.12) und die S²-Werte der *ab initio* Rechnungen auf dem Niveau BHandHLYP/6-31+G(d) bei der Reaktion von 1⁺⁺, 2⁺⁺, 4⁺⁺, 5⁺⁺, 7⁺⁺, 8⁺⁺ und 9⁺⁺ mit NH₃ bzw. CH₃OH werden an dieser Stelle aufgeführt.

Einige Strukturen von 1⁺⁺, 2⁺⁺, 4⁺⁺ und 5⁺⁺, die auf dem Niveau BHandHLYP/6-31+G(d) erhalten wurden, wurden Einzelpunktrechnungen auf dem Niveau BHandHLYP/6-311+G(2d,p)//BHandHLYP/6-31+G(d), BHandHLYP/6-31+G(d), BHandHLYP/6-31+G(d), BHandHLYP/aug-cc-pVDZ//BHandHLYP/6-31+G(d), BHandHLYP/6-31+G(d), Unterzogen. Die potentiellen Energien aus diesen Einzelpunktrechnungen werden hier ebenfalls aufgeführt.

E(UB+HF-LYP) = -2688.546803 hartrees ZPE = 187,85 kJ/mol E^{298K} = 201.84 kJ/mol $\widetilde{n}_1 = 58.9862 \text{ cm}^{-1}$ $\langle S^2 \rangle = 0.7500$

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2691.02868603

<u>Ammoniak</u>	Z-Matrix:	
(Dateiname: nh31f)	n h 1 hn2	
Ladung = 0; Spin-Multiplizität = 1 E(RB+HF-LYP) = -56.50863802 hartrees	h 1 hn3 2 hnh3 h 1 hn4 2 hnh4 3 d	ih4
ZPE = 94,04 kJ/mol $E^{298K} = 101.60 \text{ kJ/mol}$ $\widetilde{n_1} = 1155.45 \text{ cm}^{-1}$ $ = 0$	Variablen der Z-Matrix:hn21.008603hn31.008603hnh3106.592hn41.008603hnh4106.592dib4113.556	

1 ccc3

1 brcc4

2 hcc5

2 hcc6

2 hcc7

2 hcc8

2 hcc9

1.396458 1.476623

123.907

1.816821

117.045

180.000

1.077485

121.516

180.000

1.078976

119,744

180.000

1.083699 111.477

0.000

1.090002

109.902

121.600

1.090002

109.902

-121.600

dih9

3 dih4

3 dih5

5 dih6

1 dih7

7 dih8

7 dih9

> <u>Methanol</u> (Dateiname: ch3oh_21f)

Z-Matrix: 0 1 co2 С 1 ho3 2 hoc3 h 2 hc4 1 hco4 3 dih4 h h 2 hc5 1 hco5 4 dih5 4 dih6 h 2 hc6 1 hco6 Variablen der Z-Matrix: 1.403519 co2 0.956315 ho3 108.540 hoc3 1.089024 hc4 107.001 hco4 dih4 180.000 hc5 1.089024 hco5 112.413 dih5 118.554 hc6 1.089024 hco6 112.413 dih6 -118.554 ZPE = 140,42 kJ/mol $E^{298K} = 149.11 \text{ kJ/mol}$ $\widetilde{n}_{1} = 346.4685 \text{ cm}^{-1}$ $\langle S^2 \rangle = 0$

Ladung = 0; Spin-Multiplizität = 1 E(RB+HF-LYP) = -115.6455375 hartrees

BHandHLYP/6-311+G(2d,p): BHandHLYP/aug-cc-pVDZ: BHandHLYP/aug-cc-pVTZ: CCSD(T)/cc-pVDZ: CCSD(T)/6-311+G(2d,p): E(RB+HF-LYP) [hartrees] = -115.695741991 E(RB+HF-LYP) [hartrees] = -115.672234710 E(RB+HF-LYP) [hartrees] = -115.705009945 E(CCSD(T)) [hartrees] = -115.41958346 E(CCSD(T)) [hartrees] = -115.50082083

$\tilde{n}_{1} = 170.5690 \text{ cm}^{-1}$ $ = 0$ <u>Z-Matrix:</u>	hnc14 dih14 hn15 hnc15 dih15	111.405 120.426 1.020268 111.404 239.606
xxxx1 xxxx2c1 cxx32 cxxx3xx2 xxx41 xxxxx43 dih4c1 cxx52 cxxx54 dih5h3 hc61 hcxx62 dih6h3 hc71 hcxx72 dih7n5 nc81 ncxx82 dih8c5 cc91 ccxx92 dih9h9 hc105 hcc101 dih10h9 hc115 hcc111 dih11h9 hc125 hcc121 dih12h8 hn135 hnc131 dih13h8 hn145 hnc151 dih15		
BHandHLYP/6-311+G(2d,p):E(RB+HF-LYP) [hartreBHandHLYP/aug-cc-pVDZ:E(RB+HF-LYP) [hartreBHandHLYP/aug-cc-pVTZ:CCSD(T)/cc-pVDZ:CCSD(T)/cc-pVDZ:E(CCSD(T)) [hartreCCSD(T)/6-311+G(2d,p):E(CCSD(T)) [hartre	ees] = - ^ ees] = - ^ ees] = - ^ ees] = - ^ ees] = - ^	173.557412017 173.523095772 173.571291643 173.12926033 173.22812071
(Dateiname:ch2_nh3_im1f)	Variable xxxx2	<u>n der Z-Matrix:</u> 2.000000 0.741013
HID	cxxxx3	90.000
	xxxx4 xxxxxx4	0.741013
	dih4	180.000
HUE	cxx5	0.741013
	cxxxx5	90.000
	dih5	0.000
	heyy6	1.088201
	dih6	-175.390
	hc7	1.083881
0,71	hcxx7	112.947
OKI	dih7	-53.548
	nc8	1.285531
	ncxx8	119.950
Hell Hol	dih8	53.530
	CC9	1.482029
	dih9	233 527
	hc10	1.088205
H21	hcc10	109.139
HO?	dih10	58.136
	hc11	1.088211
Ladung = 0: Spin-Multiplizität = 1	hcc11	109.136
F(RB+HF-IYP) = -1735366899 hartrees	dih11	-58.180
ZPF = 300.49 k.l/mol	hc12	1.083884
$E^{298K} = 315.04 \text{ k} \text{ l/mol}$	hcc12	112.951
$\tilde{r} = 0.03.04 \text{ Ko/mol}$	an12	-180.020
$\mathbf{n}_{1} = 34.2793$ Cm	hnc13	121.823

$\langle S^2 \rangle = 0$ Z-Matrix: xx xx 1 xxx2 c 1 cxx3 2 cxxx3 xx 2 xxx4 1 xxxx4 3 dih4 c 1 cxx5 2 cxxx5 4 dih5 h 3 hc6 1 hcxx6 2 dih6 h 3 hc7 1 hcxx7 2 dih7 n 5 nc8 1 ncxx8 2 dih8 c 5 cc9 1 ccxx9 2 dih9 h 9 hc10 5 hcc10 1 dih10 h 9 hc11 5 hcc11 1 dih11 h 9 hc12 5 hcc12 1 dih12 h 8 hn13 5 hnc13 1 dih13 h 8 hn14 5 hnc14 1 dih14 h 3 hc15 1 hcxx15 2 dih15	dih13 -0.009 hn14 1.00888 hnc14 121.82 dih14 180.011 hc15 1.08820 hcxx15 109.13 dih15 68.291	31 3 1 36 35
BHandHLYP/6-311+G(2d,p): BHandHLYP/aug-cc-pVDZ: BHandHLYP/aug-cc-pVTZ: CCSD(T)/c-9VDZ: CCSD(T)/6-311+G(2d,p): (Dateiname: ch2_cl	E(RB+HF-LYP) [hartrees] = -173.59 E(RB+HF-LYP) [hartrees] = -173.60 E(CCSD(T)) [hartrees] = -173.155 E(CCSD(T)) [hartrees] = -173.25 h3oh_enol1f) $\frac{2-Matrix:}{c}$ c 1 cc2 c 2 cc3 1 h 3 hc4 2 h 1 hc5 2 h 1 hc6 2 h 1 hc7 2 o 2 oc8 1 h 8 ho9 2 c 8 co10 2 h 10 hc11 8 h 10 hc12 8 h 10 hc13 8 h 3 hc14 2 $\frac{Variablen der Z-M}{cc2}$ 1.4801 cc3 1.3109 cc3 1.3109 cc3 1.33.06 hc4 1.0781 hcc4 1.23.66 dih4 180.29 hc5 1.0874 hcc5 112.16 dih5 240.77 hc6 1.0840 hc7 1.0866 hc7 1.0866 hc7 110.88 dih7 119.36 oc8 1.1074 dih8 182.32 ho9 0.9680	1769181 7687261 5775268 963383 784519 ccc3 hcc4 1 dih4 hcc5 3 dih5 hcc6 3 dih6 hcc7 3 dih7 occ8 3 dih8 hoc9 1 dih9 coc10 1 dih10 3 hco11 2 dih11 3 hco12 2 dih12 3 hco13 2 dih13 1 hcc14 1 dih14 <u>Matrix:</u> 04 55 97 32 99 97 34 51 10 154 25 14 69 95 55 54 48 26 94

Ladung = 1; Spin-Multiplizität E(RB+HF-LYP) = -232.59595 ZPE = 340,97 kJ/mol E^{298K} = 358.98 kJ/mol \tilde{n}_1 = 48.39 cm ⁻¹ <S ² > = 0	= 1 35 hartrees	hoc9 dih9 co10 coc10 dih10 hc11 hc011 dih11 hc12 hc012 dih12 hc13 hc013 dih13 hc14 hcc14 dih14	111.759 143.314 1.481202 118.936 276.893 1.080095 105.769 175.256 1.080958 2 108.427 296.797 1.078467 3 105.643 57.316 1.076253 4 119.141 -0.159	
BHandHLYP/6-311+G(2d,p): BHandHLYP/aug-cc-pVDZ: BHandHLYP/aug-cc-pVTZ: CCSD(T)/cc-pVDZ: CCSD(T)/6-311+G(2d,p):	E(RB+HF-LYP) [I E(RB+HF-LYP) [I E(RB+HF-LYP) [I E(CCSD(T)) [I E(CCSD(T)) [I	hartrees] = hartrees] = hartrees] = hartrees] = hartrees] =	-232.671538 -232.6252860 -232.690886 -232.106509 -232.2444684	564 018 512 79 48
(Dateiname met	nylacet1f)	<u>Z-Mat</u> c	rix:	
	lylucetil)	c 1 c	xc2	
	0(6)	h 31 h 11 h 11 h 11 h 11 h 11 h 2 c c 8 c h 91 h 91 h 91 h 31 h 31 Variat cc2 cc3 ccc3 hc4 hc4 hcc4	hc4 2 hcc4 hc5 2 hcc5 hc6 2 hcc7 hc7 2 hcc7 hc8 1 occ8 hc9 2 coc9 hc10 8 hco10 hc12 8 hco12 hc13 2 hcc13 hc14 2 hcc14 blen der Z-Matrix: 1.471468 1.478025 121.838 1.089908 110.051	1 dih4 3 dih5 3 dih6 3 dih7 3 dih8 1 dih9 2 dih10 2 dih11 2 dih12 1 dih13 1 dih14
H(13) H(13) H(13)		dih4 hc5 hcc5 dih5 hc6 hcc6 dih6 hc7 hcc7 dih7 oc8 occ8 dih8 co9	121.334 1.090314 108.810 302.276 1.090297 108.821 417.582 1.081996 111.751 179.937 1.256431 116.029 180.009 1.456251	

Ladung = 0; Spin-Multiplizität E(RB+HF-LYP) = -232.65061 ZPE = 339,38 (kJ/mol E^{298K} = 357.95 kJ/mol \tilde{n}_1 = 16.20 cm ⁻¹ <S ² > = 0	= 1 56 hartrees	coc9 dih9 hc10 hc010 dih10 hc11 hc011 dih11 hc12 hc012 dih12 hc13 hcc13 dih13 hcc14 hcc14 dih14	124.124 180.006 1.078401 104.465 180.153 1.082001 109.011 298.991 1.082014 108.992 61.328 1.081914 111.171 0.157 1.089986 110.009 -120.963
BHandHLYP/6-311+G(2d.p):	E(RB+HF-LYP)	[hartrees] =	-232.720376191
BHandHLYP/aug-cc-pVDZ:	É(RB+HF-I YP)	[hartrees] =	-232 673389721
BHandHI VD/aug cc pVTZ:		[hartroos] –	-232 738721/0/
$CCSD(T)/ac \pi VDZ$		[hartrood] –	-232.730721494
CCSD(1)/cc-pvDZ:	E(CCSD(T))	[nantrees] =	-232.15316131
CCSD(T)/6-311+G(2d,p):	E(CCSD(T))	[nartrees] =	-232.28992190
		<u>Variab</u>	len der Z-Matrix:
(Dateiname:prot_a	llylether1f)	cc2	1.326675
		cc3	1.475976
H(12)		ccc3	121.619
M		oc4	1.521933
		0004	107.312
		dih4	110.386
H(13) Q(5)		c05	1.468510
		COCD	118.811
1Km	-	ullis bac	104.302
H(19) O(4)	(H(1))	lico	1.077248
		dihe	121.209
		unio ha7	1 / 0.333
		hcc7	1.079551
		dih7	-0.19/
H(9)		hc8	1 078661
C(3)	200	hcc8	121.327
		dih8	0.381
	C(2)	hc9	1.081738
HCTD)		hcc9	114.708
		dih9	223.097
		hc10	1.083062
	Q(1)	hcc10	114.038
		dih10	-6.694
	21	ho11	0.969457
	H(7)	hoc11	110.253
		dih11	317.652
Ladung = 0; Spin-Multiplizität	= 1	hc12	1.080277
E(RB+HF-LYP) = -232.59815	53 hartrees	hcol2	106.251
ZPE = 345.05 kJ/mol		dih12	185./58
$E^{298K} - 358.39 \text{ k l/mol}$		hc13	1.079823
$\tilde{r} = 0.00.03 \text{ k}_0/1101$		hcol3	105./12
$n_1 = 02.04$ Cm		um13 hal4	117.074
		11014	1.002200
hco14 109.224 dih14 -121.404			
--			
E(RB+HF-LYP) [hartrees] = -232.673532477 E(RB+HF-LYP) [hartrees] = -232.627631908 E(RB+HF-LYP) [hartrees] = -232.692642811 E(CCSD(T)) [hartrees] = -232.10777252 E(CCSD(T)) [hartrees] = -232.24485012			
$\frac{\text{m-Ion}}{2 \text{ m-Ion}} = 139,89 \text{ kJ/mol}$ $E^{298K} = 142.85 \text{ kJ/mol}$ $\widetilde{n}_{1} = 1641,82 \text{ cm}^{-1}$ $S^{2} = 0$			
Z-Matrix: n h 1 hn2 h 1 hn3 2 hnh3 h 1 hn3 2 hnh4 3 dih4 1 hn4 2 hnh4 3 dih4 h 1 hn5 2 hnh5 3 dih5 Variablen der Z-Matrix: hn2 1.019997 hn3 1.019997 hnh3 109.471 hn4 109.471 dih4 120.000 hn5 1.019997 hnh5 109.471 dih4 120.000 hn5 1.20.000			

Ladung = 1; Spin-Multiplizität = 1 E(RB+HF-LYP) = -56.85460168 hartrees

E(UB+HF-LYP) = -2688.231966 hartrees ZPE = 153,52 kJ/mol E^{298K} = 165.7 kJ/mol $\tilde{n}_1 = 343.63 \text{ cm}^{-1}$ $<S^2 > = 0,7508$

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2690.71889809

Name	<u>Z-Matrix:</u>
(Dateiname:cp1depr_21f)	c c 1 cc2
	c $2 cc3$ $1 ccc3$ c $2 cc4$ $1 clcc4$ $3 dih4$ h $1 hc5$ $2 hcc5$ $3 dih5$ h $3 hc6$ $2 hcc6$ $1 dih6$ h $3 hc7$ $2 hcc7$ $6 dih7$ h $3 hc8$ $2 hcc8$ $6 dih8$ Variablen der Z-Matrix: cc2 1.298359 cc3 1.492002 ccc3 127.464 clc4 1.778102 clcc4 118.712 dih4 180.000 hc5 1.070750 hcc5 139.612 dih5 180.000 hc6 1.084893 hcc6 109.902 dih6 0.000 hc7 1.087058 hcc7 110.504 dib7 120.377
Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -576.7291991 hartrees ZPE = 157,23 kJ/mol E^{298K} = 169.85 kJ/mol $\tilde{n_1}$ = 206.50 cm ⁻¹ <S ² > = 0,7502	hc8 1.087058 hcc8 110.504 dih8 -120.377
BHandHLYP/6-311+G(2d,p): $E(UB+HF-LYP)$ [hartreBHandHLYP/aug-cc-pVDZ: $E(UB+HF-LYP)$ [hartreBHandHLYP/aug-cc-pVTZ: $E(UB+HF-LYP)$ [hartreCCSD(T)/cc-pVDZ: $E(CCSD(T))$ [hartreCCSD(T)/6-311+G(2d,p): $E(CCSD(T))$ [hartre	es] = -576.794455535 es] = -576.767139578 es] = -576.811830280 es] = -575.93719186 es] = -576.03395256
<u>Name</u> (Dateiname:bp1depr_21f)	$ \frac{Z-Matrix:}{c} c 1 cc2 c 2 cc3 1 ccc3 br 2 brc4 1 brcc4 3 dih4 b 1 bc5 2 bcc5 3 dib5 $
Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2688,193188 hartrees ZPE = 155,14 kJ/mol E^{298K} = 169.85 kJ/mol $\tilde{n_1}$ =210.33 cm ⁻¹ <S ² > = 0,7502	h 3 hc6 2 hcc6 1 dih6 h 3 hc7 2 hcc7 6 dih7 h 3 hc8 2 hcc8 6 dih8 <u>Variablen der Z-Matrix:</u> cc2 1.296199 cc3 1.496974 ccc3 128.323 brc4 1.925555 brcc4 118.156 dih4 180.000 hc5 1.071923 hcc5 138.552 dih5 0.000 hc6 1.086031

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2690.67984089

O-protoniertes Formaldehyd (Dateiname: ch2oh2_11)	ZPE = 110,90 kJ/mol $E^{298K} = 118.62 \text{ kJ/mol}$ $\tilde{\pi} = 1047,222 \text{ cm}^{-1}$
	$\begin{array}{l} \textbf{n}_{l} = 1047,323 \ \text{cm}^{2} \\ < S^{2} > = 0 \\ \hline \\ \hline \\ \frac{Z-Matrix:}{0} \\ c \ 1 \ co2 \\ h \ 1 \ ho3 \ 2 \ hoc3 \\ h \ 2 \ hc4 \ 1 \ hco4 \\ h \ 2 \ hc5 \ 1 \ hco5 \\ \hline \\ \hline \\ \frac{Variablen \ der \ Z-Matrix:}{co2} \ 1.238378 \\ ho3 \ 0.976500 \\ hoc3 \ 116.768 \\ hc4 \ 1.083362 \\ hco4 \ 121.889 \\ dih4 \ 0.000 \\ hc5 \ 1.083362 \\ hco5 \ 115.896 \\ dih5 \ 180.000 \end{array}$

3 dih4

4 dih5

Ladung = 1; Spin-Multiplizität = 1 E(RB+HF-LYP) = -114.718878 hartrees

BHandHLYP/6-311+G(2d,p):	E(RB+HF-LYP) [hartrees] =	-114.761528148
BHandHLYP/aug-cc-pVDZ:	E(RB+HF-LYP) [hartrees] =	-114.739243654
BHandHLYP/aug-cc-pVTZ:	E(RB+HF-LYP) [hartrees] =	-114.771136340
CCSD(T)/cc-pVDZ:	E(CCSD(T)) [hartrees] =	-114.50740444
CCSD(T)/6-311+G(2d,p):	E(CCSD(T)) [hartrees] =	-114.57185815

207

Name	<u>Z-Matrix:</u>	
(Dateiname: cp1pr_11)	C c 1.cc2	
	c 1 cc2 c 2 cc3 1 ccc3 cl 2 clc4 1 clcc4 3 dih4 h 1 hc5 2 hcc5 3 dih5 h 1 hc6 2 hcc6 5 dih6 h 3 hc7 2 hcc7 1 dih7 h 3 hc8 2 hcc8 7 dih8 h 3 hc9 2 hcc9 7 dih9 h 1 hc10 2 hcc10 5 dih1 Variablen der Z-Matrix: cc2 1.486049 cc3 1.486030 ccc3 122.576 clc4 1.741480 clcc4 115.744 dih4 151.675 hc5 1.086263 hcc5 111.411 dih5 161.424 hc6 1.093853 hcc6 111.802 dih6 120.237 hc7 1.086268 hcc7 111.411 dib7 198 589	0
Ladung =0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -577.9887956 hartrees ZPE = 220,40 kJ/mol $E^{^{298K}}$ = 235.16 kJ/mol $\widetilde{n}_{_{1}}$ = 161.80 cm ⁻¹ <S ² > = 0,7500	hc81.087528hc81.087528hcc8109.876dih8120.368hc91.093852hcc9111.801dih9-120.236hc101.087538hcc10109.878dih10-120.368	
BHandHLYP/6-311+G(2d,p):E(UB+HF-LYP) [hartreeBHandHLYP/aug-cc-pVDZ:E(UB+HF-LYP) [hartreeBHandHLYP/aug-cc-pVTZ:E(UB+HF-LYP) [hartreeCCSD(T)/cc-pVDZ:E(CCSD(T)) [hartreeCCSD(T)/6-311+G(2d,p):E(CCSD(T)) [hartree	ees] = -578.053386333 ees] = -578.024076546 ees] = -578.071001043 ees] = -577.18565558 ees] = -577.28467959	
<u>Name</u> (Dateiname: bp1pr_11)	<u>Z-Matrix:</u> c c 1 cc2	
Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2689.453983 hartrees ZPE = 218,98 kJ/mol E^{298K} = 234.12 kJ/mol \tilde{n}_{1} = 166.78 cm ⁻¹ <s<sup>2> = 0,7500</s<sup>	c 2 cc3 1 ccc3 br 2 brc4 1 brcc4 3 dih4 h 1 hc5 2 hcc5 3 dih5 h 1 hc6 2 hcc6 5 dih6 h 3 hc7 2 hcc7 1 dih7 h 3 hc8 2 hcc8 7 dih8 h 3 hc9 2 hcc9 7 dih9 h 1 hc10 2 hcc10 5 dih1	0

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2691.93973180

$E^{298K} = 233.45 \text{ kJ/mol}$ $\widetilde{n}_1 = 239.5924 \text{ cm}^{-1}$ $\langle S^2 \rangle = 0,7500$		hc10 hcc10 dih10	1.082633 111.331 -127.118	
BHandHLYP/6-311+G(2d,p): BHandHLYP/aug-cc-pVDZ: BHandHLYP/aug-cc-pVTZ: CCSD(T)/cc-pVDZ: CCSD(T)/6-311+G(2d,p):	E(UB+HF-LYP) [hartre E(UB+HF-LYP) [hartre E(UB+HF-LYP) [hartre E(CCSD(T)) [hartre E(CCSD(T)) [hartre	es] = -57 es] = -57 es] = -57 es] = -57 es] = -57 es] = -57	78.04512984 78.01651291 78.06226116 77.17694414 77.27684907	2 1 0
bateiname: bp $ \frac{Mame}{(Dateiname: bp)} $ $ \frac{Mame}{(Dateiname: bp)} $	t = 2 782 hartrees	$\begin{array}{c} \underline{Z} - \underline{Matrix:} \\ c \\ c \\ 2 \\ c \\ 2 \\ c \\ 2 \\ c \\ 3 \\ c \\ c \\ 3 \\ c \\ c \\ c \\ c \\ c$	1 ccc3 4 1 brcc4 2 hcc5 2 hcc6 2 hcc7 2 hcc8 2 hcc9 0 1 hcc10 der Z-Matrix: 1.449986 1.510755 115.916 2.060876 106.720 119.081 1.077239 119.887 328.379 1.076036 120.547 193.580 1.085799 110.775 54.008 1.085799 110.775 54.008 1.084264 111.224 120.692 1.088903 109.239 119.380 1.080723 112.764	3 dih4 3 dih5 5 dih6 1 dih7 7 dih8 7 dih9 3 dih10

 $BHandHLYP/6-311+G(2d,p): \quad \mathsf{E(UB+HF-LYP) [hartrees] = -2691.93583853}$

Z-Matri	<u>x:</u>		
:			
c 1 cc	2		
c 2 cc	3	1 ccc3	
o 2 oc	4	3 occ4	1 dih4
c 4 co	5	2 coc5	3 dih5
h 1 hc	6	2 hcc6	4 dih6
h 1 hc	7	2 hcc7	4 dih7
h 3 hc	8	2 hcc8	1 dih8
h 3 hc	9	2 hcc9	1 dih9
h 3 hc	10	2 hcc10	1 dih10
h 5 hc	11	4 hco11	2 dih11
h 5 hc	12	4 hco12	2 dih12
h 5 hc	13	4 hco13	2 dih13
Variable	en der	Z-Matrix:	
cc2	1.41	1328	
cc3	1.481	1183	
ecc3	123.	352	
pc4	1.27	7513	
bcc4	122.	315	
lih4	-180.	000	
:05	1.448	8552	
coc5	123.	294	
lih5	0.0	00	
106	1.070	5916	
1000	119.	4/6	
11110 207	1.074	5500	
107	1.073	5590 560	
1007	120.	309 000	
1111 / 208	1 00.	000	
	110	73/1 783	
libe	120	203	
	1 080	032 9372	
	110	787 787	
lih9	-120	202 824	
nc10	1 08	1929	
1010	111	.092	
lih10	0.0	04	
nc11	1.07	8563	
nco11	104	.701	
lih11	180	.003	
nc12	1.08	2873	
nco12	109	.124	
lih12	-61.	037	
nc13	1.08	2873	
nco13	109	.124	

CCSD(T)/cc-pVDZ:

211

Ladung = 1; Spin-Multiplizität = 2 E(UB+HF-LYP) = -231.920331 hartrees ZPE = 300,71 kJ/mol $E^{298K} = 318.54$ kJ/mol $\tilde{n}_1 = 78.049$ cm⁻¹ $<S^2 > = 0,7500$

Z-Matrix	<u>c:</u>		
0			
$c 1 co_2$	<u>/</u>	1 2	
c 2 c c c	5	1 cco3	1 11 4
$n 3 nc^2$	+ -	2 hcc4	1 din4
h 3 hc:)	2 hcc5	1 dih5
c 2 ccc) 7	1 cco6	3 dih6
n 6 nc	/	2 ncc /	1 din /
h 6 hc	5	2 hcc8	1 dih8
	1	2 ncc9	1 0109
	11	2 COC10	3 din 10
h 10 hc	11	1 hco11	2 din 1 1
	12	1 ncol 2	2 01012
n I no.	13	2 noc13	3 din 13
variable	$\frac{n}{1} \frac{del}{5}$	<u>C-Matrix:</u>	
co2	1.50	0220	
ccs	1.30	19330	
6605 ho4	1 07		
nc4 haa4	1.07	0/09	
dih 4	110	606	
ho5	1.07	.000	
hee5	122	7232	
dih5	360	755	
cc6	1 47	.735 19270	
ccof	112	210	
dih6	180	058	
hc7	1.08	34488	
hcc7	108	595	
dih7	179	.326	
hc8	1.08	88681	
hcc8	111	.739	
dih8	298	.106	
hc9	1.08	37425	
hcc9	111	.684	
dih9	59.	888	
co10	1.4	23272	
coc10	11	9.318	
dih10	105	5.229	
hc11	1.0	73827	
hco11	11	2.541	
dih11	173	3.860	
hc12	1.0	72634	
hco12	11	1.498	
dih12	320).759	
ho13	0.9	70653	
hoc13	11	3.183	
dih13	242	2.186	

BHandHLYP/6-311+G(2d,p): E(RB+HF-LYP) [hartrees] = -2574.70237709

3 hnc15

3 hnc16

h 13 hn15

h 13 hn16

1 dih15

1 dih16

Variablen	der Z-Matrix:
xxxx2	2.000000
cxx3	0.742260
сххххЗ	90.000
xxxx4	0.742260
xxxxxx4	90.000
dih4	180.000
cxx5	0.742260
cxxxx5	90.000
dih5	0.000
hc6	1.083221
hcxx6	111.360
dih6	-134.989
hc7	1.088443
hcxx7	113.405
dih7	101.394
clc8	1.724537
clcxx8	114.672
dih8	-41.456
cc9	1.483281
ccxx9	123.049
dih9	160.330
hc10	1.091679
hcc10	111.413
dih10	85.597
hc11	1.086506
hcc11	110.655
dih11	-34.635
hc12	1.085894
hcc12	110.606
dih12	-155.109
nc13	1.517666
ncxx13	110.038
dih13	-16.403
hn14	1.018136
hnc14	112.154
dih14	175.822
hn15	1.020486
hnc15	109.716
dih15	55.555
hn16	1.018355
nnc16	111.179
dih16	-62.804

BHandHLYP/6-311+G(2d,p):	E(UB+HF-LYP) [hartrees] = -633.745386781
BHandHLYP/aug-cc-pVDZ:	E(UB+HF-LYP) [hartrees] = -633.707945479
BHandHLYP/aug-cc-pVTZ:	E(UB+HF-LYP) [hartrees] = -633.768037348

Variablen	der Z-Matrix:
xxxx2	2.000000
cxx3	0.743047
сххххЗ	90.000
xxxx4	0.743047
xxxxxx4	90.000
dih4	180.000
cxx5	0.743047
cxxxx5	90.000
dih5	0.000
hc6	1.084067
hcxx6	111.403
dih6	-160.994
hc7	1.088568
hcxx7	113.327
dih7	75.583
brc8	1.882764
brcxx8	114.441
dih8	-12.540
cc9	1.483240
ccxx9	122.494
dih9	191.985
hc10	1.091754
hcc10	111.477
dih10	82.547
hc11	1.087291
hcc11	110.630
dih11	-37.617
hc12	1.085552
hcc12	110.668
dih12	-158.040
nc13	1.513383
ncxx13	109.883
dih13	-42.316
hn14	1.017779
hnc14	112.406
dih14	173.084
hn15	1.022544
hnc15	108.932
dih15	52.555
hn16	1.018138
hnc16	111.206
dih16	-65.232

BHandHLYP/6-311+G(2d,p):	E(UB+HF-LYP) [hartrees] =	-2747.63252916
--------------------------	---------------------------	----------------

BHandHLYP/aug-cc-pVDZ:	E(UB+HF-LYP) [ha
BHandHLYP/aug-cc-pVTZ:	E(UB+HF-LYP) [ha

rtrees] = -633.694467914 rtrees] = -633.753265966

<u>Variabler</u>	n der Z-Matrix:
cc2	1.459435
hc3	1.075243
hcc3	118.551
hc4	1.077603
hcc4	120.974
dih4	196.080
brc5	1.989897
brcc5	109.416
dih5	93.033
cc6	1.512106
ccc6	115.843
dih6	328.448
hc7	1.083937
hcc7	108.926
dih7	59.684
hc8	1.088182
hcc8	110.423
dih8	301.074
hc9	1.085307
hcc9	111.696
dih9	178.696
nc10	1.521149
ncc10	109.500
dih10	204.567
hn11	1.019082
hnc11	110.587
dih11	185.044
hn12	1.020368
hnc12	111.087
dih12	64.261
hn13	1.018797
hnc13	110.847
dih13	303.667

E(UB+HF-LYP) = -2745.115726 hartrees ZPE = 303,13 kJ/mol $E^{298K} = 320.98$ kJ/mol $\tilde{n}_1 = 247.83 \text{ cm}^{-1}$ $\langle S^2 \rangle = 0,7501$

Z-Matrix:

C			
С	1 cc2		
h	1 hc3	2 hcc3	
h	1 hc4	2 hcc4	3 dih4
br	2 brc5	1 brcc5	3 dih5
С	2 cc6	1 ccc6	3 dih6
h	6 hc7	2 hcc7	1 dih7
h	6 hc8	2 hcc8	1 dih8
h	6 hc9	2 hcc9	1 dih9
n	2 nc10	1 ncc10	3 dih10
h	10 hn11	2 hnc11	1 dih11
h	10 hn12	2 hnc12	1 dih12
h	10 hn13	2 hnc13	1 dih13

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2747.62008145

- E(UB+HF-LYP) [hartrees] = -692.812575776 BHandHLYP/aug-cc-pVTZ:
 - E(UB+HF-LYP) [hartrees] = -692.890197256

Ladung = 1; Spin-Multiplizität = 2
E(UB+HF-LYP) = -2804.227625 hartrees
ZPE = 344,43 kJ/mol
$E^{298K} = 367.09 \text{ kJ/mol}$
$\tilde{n}_1 = 58.70 \text{ cm}^{-1}$
$\langle S^2 \rangle = 0,7500$

Br(1)

Z-Matrix:

C[12

br			
С	1 cbr2		
С	2 cc3	1 ccbr3	
h	3 hc4	2 hcc4	1 dih4
h	3 hc5	2 hcc5	1 dih5
0	3 oc6	2 occ6	1 dih6
С	6 co7	3 coc7	2 dih7
h	7 hc8	6 hco8	3 dih8
h	7 hc9	6 hco9	3 dih9
h	7 hc10	6 hco10	3 dih10
h	6 ho11	3 hoc11	2 dih11
С	2 cc12	1 ccbr12	3 dih12
h	12 hc13	2 hcc13	1 dih13
h	12 hc14	2 hcc14	1 dih14
h	12 hc15	2 hcc15	1 dih15

Variablen	der Z-Matrix:
cbr2	1.875513
cc3	1.459863
ccbr3	113.973
hc4	1.083997
hcc4	114.369
dih4	52.409
hc5	1.081000
hcc5	113.676
dih5	183.009
oc6	1.541184
occ6	108.191
dih6	296.967
co7	1.468117
coc7	118.042
dih7	170.185
hc8	1.080404
hco8	106.136
dih8	178.662
hc9	1.082409
hco9	109.315
dih9	299.904
hc10	1.079804
hco10	105.907
dih10	60.777
ho11	0.974245
hoc11	107.867
dih11	41.534
cc12	1.482058
ccbr12	119.080
dih12	190.651
hc13	1.086030
hcc13	110.796
dih13	185.674
nc14	1.086993
NCC14	110.566
	305.980
	008000
	64 014
un 15	04.914

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2806.74934080

0(7)

1.076020

1.458720

120.562

1.500496

117.168

191.797

1.076348

119.803

-176.624

1.758117

112.338

-35.036

1.618134

108.319

0.969475 109.782

74.704

-86.107

1.083086

111.042

1.085821

110.816

1.086037

108.066

1.465757

121.023

1.080885

105.847

175.962

1.081287

109.807

1.078909

106.347

58.524

-62.910

47.121

66.865

-51.178

-173.885

BHandHLYP/6-311+G(2d,p):	E(UB+HF-LYP) [hartrees] = -692.848036395
BHandHLYP/aug-cc-pVDZ:	E(UB+HF-LYP) [hartrees] = -692.799362907
BHandHLYP/aug-cc-pVTZ:	E(UB+HF-LYP) [hartrees] = -692.875651008

ch2	1.076448
cc3	1.454516
cch3	120.743
cc4	1.501360
ccc4	117.597
dih4	175.922
hc5	1.076096
hch5	119.295
dih5	-168.642
brc6	1.951450
brcc6	110.533
dih6	-54.329
oc7	1.561338
occ7	109.623
dih7	55.035
ho8	0.970555
hoc8	110.265
dih8	-90.992
hc9	1.082950
hcc9	111.017
dih9	-176.862
hc10	1.086802
hcc10	110.786
dih10	-54.464
hc11	1.085417
hcc11	108.331
dih11	63.828
co12	1.470351
coc12	121.247
dih12	45.373
hc13	1.080568
hco13	105.468
dih13	172.864
hc14	1.080559
hco14	109.625
dih14	-65.931
hc15	1.078828
hco15	106.173
dih15	55.332

Variablen der Z-Matrix:

<u>Z-Matrix:</u> h

С	1 ch2		
С	2 cc3	1 cch3	
С	3 cc4	2 ccc4	1 dih4
h	2 hc5	1 hch5	3 dih5
br	3 brc6	2 brcc6	1 dih6
0	3 oc7	2 occ7	1 dih7
h	7 ho8	3 hoc8	2 dih8
h	4 hc9	3 hcc9	2 dih9
h	4 hc10	3 hcc10	2 dih10
h	4 hc11	3 hcc11	2 dih11
С	7 co12	3 coc12	2 dih12
h	12 hc13	7 hco13	3 dih13
h	12 hc14	7 hco14	3 dih14
h	12 hc15	7 hco15	3 dih15

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2806.73545562

Variable	en der Z-Matrix:
cc2	1.516377
cc3	1.508684
ccc3	116.587
clc4	1.762038
clcc4	112.402
dih4	133.814
nc5	1.508940
ncc5	111.965
dih5	123.591
псб	1.082267
ncc6	118.052
lih6	-141.325
nc7	1.081657
ncc7	118.184
lih7	11.695
nn8	1.016338
nnc8	117.026
dih8	104.600
nn9	1.016166
nnc9	118.047
dih9	-113.450
nc10	1.359250
ncc10	82.823
dih10	114.153
nc11	1.087726
ncc11	110.573
dih11	48.259
nc12	1.085004
ncc12	110.813
dih12	169.964
nc13	1.084764
ncc13	109.172
dih13	-70.741

<u>Z-Matrix:</u>

<S²> = 0,7501

C			
с	1 cc2		
с	2 cc3	1 ccc3	
cl	2 clc4	3 clcc4	1 dih4
n	2 nc5	3 ncc5	4 dih5
h	1 hc6	2 hcc6	4 dih6
h	1 hc7	2 hcc7	4 dih7
h	5 hn8	2 hnc8	1 dih8
h	5 hn9	2 hnc9	1 dih9
h	1 hc10	2 hcc10	4 dih10
h	3 hc11	2 hcc11	1 dih11
h	3 hc12	2 hcc12	1 dih12
h	3 hc13	2 hcc13	1 dih13

с			
с	1 cc2		
n	2 nc3	1 ncc3	
с	2 cc4	3 ccn4	1 dih4
cl	2 clc5	3 clcn5	4 dih5
h	1 hc6	2 hcc6	4 dih6
h	1 hc7	2 hcc7	4 dih7
h	3 hn8	2 hnc8	1 dih8
h	3 hn9	2 hnc9	1 dih9
h	1 hc10	2 hcc10	4 dih10
h	4 hc11	2 hcc11	1 dih11
h	4 hc12	2 hcc12	1 dih12
h	4 hc13	2 hcc13	1 dih13

cc3	112.344
c4	1.508931
cn4	112.306
ih4	132.729
lc5	1.852000
lcn5	94.030
ih5	113.646
c6	1.084068
ссб	109.222
ih6	59.889
c7	1.085437
cc7	112.010
ih7	179.960
n8	1.014304
nc8	120.850
ih8	30.123
n9	1.014294
nc9	120.877
ih9	-162.784
c10	1.086862
cc10	109.140
ih10	-58.547
c11	1.086913
cc11	109.133
ih11	59.612
c12	1.085377
cc12	112.000
ih12	181.096
c13	1.084083
cc13	109.248

1.501899

1.522441

119.645

1.484833

93.076 -108.096

1.722153

115.951

103.407

1.082245

113.981

6.361

1.081117

115.565

135.962

1.012504

118.816

113.012

1.012800

117.527 -104.647

1.334662

83.173

-1.478

1.085908

110.972 -170.009

1.083246

111.247

-47.849

1.090437

108.258

71.311

с	2 cc3	1 ccc3	
n	3 nc4	2 ncc4	1 dih4
cl	2 clc5	3 clcc5	4 dih5
h	3 hc6	2 hcc6	1 dih6
h	3 hc7	2 hcc7	1 dih7
h	4 hn8	3 hnc8	2 dih8
h	4 hn9	3 hnc9	2 dih9
h	2 hc10	3 hcc10	4 dih10
h	1 hc11	2 hcc11	5 dih11
h	1 hc12	2 hcc12	5 dih12
h	1 hc13	2 hcc13	5 dih13

Ladung = 1; Spin-Multiplizität = 2 E(UB+HF-LYP) = -633.6393302 hartrees ZPE = 301,57 kJ/mol $E^{298K} = 318.66$ kJ/mol $\tilde{n}_1 = 137.09$ cm⁻¹ $<S^2 > = 0,7501$

с			
с	1 cc2		
с	2 cc3	1 ccc3	
n	3 nc4	2 ncc4	1 dih4
cl	2 clc5	3 clcc5	4 dih5
h	3 hc6	2 hcc6	1 dih6
h	3 hc7	2 hcc7	1 dih7
h	4 hn8	3 hnc8	2 dih8
h	4 hn9	3 hnc9	2 dih9
h	2 hc10	3 hcc10	4 dih10
h	1 hc11	2 hcc11	5 dih11
h	1 hc12	2 hcc12	5 dih12
h	1 hc13	2 hcc13	5 dih13

Variable	en der Z-Matrix:
cc2	1.514035
cc3	1.534277
ccc3	110.804
nc4	1.425490
ncc4	112.807
dih4	-188.077
clc5	1.795368
clcc5	108.356
dih5	49.316
hc6	1.086198
hcc6	112.665
dih6	-64.039
hc7	1.100903
hcc7	108.944
dih7	55.205
hn8	1.015251
hnc8	122.559
dih8	151.744
hn9	1.020184
hnc9	119.140
dih9	-32.652
hc10	1.083865
hcc10	109.193
dih10	-65.717
hc11	1.087625
hcc11	109.996
dih11	-179.342
hc12	1.083901
hcc12	109.735
dih12	-60.608
hc13	1.085702
hcc13	111.372
dih13	59.535

Ladung = 1; Spin-Multiplizität = 2 E(UB+HF-LYP) = -692.7439209 hartrees ZPE = 336,50 kJ/mol $E^{298K} = 358.05$ kJ/mol $\tilde{n}_1 = -190.64$ cm⁻¹ $\langle S^2 \rangle = 0,7500$

с			
0	1 oc2		
с	2 co3	1 coc3	
с	3 cc4	2 cco4	1 dih4
с	3 cc5	2 cco5	1 dih5
cl	3 clc6	2 clco6	1 dih6
h	4 hc7	3 hcc7	5 dih7
h	4 hc8	3 hcc8	5 dih8
h	1 hc9	2 hco9	3 dih9
h	1 hc10	2 hco10	3 dih10
h	1 hc11	2 hco11	3 dih11
h	2 ho12	3 hoc12	5 dih12
h	5 hc13	3 hcc13	6 dih13
h	5 hc14	3 hcc14	6 dih14
h	5 hc15	3 hcc15	6 dih15

Variable	en der Z-Matrix:
oc2	1.448001
co3	1.835610
coc3	122.521
cc4	1.433280
cco4	103.972
dih4	47.809
cc5	1.491041
cco5	99.295
dih5	-76.374
clc6	1.724601
clco6	98.377
dih6	166.258
hc7	1.075934
hcc7	120.865
dih7	-162.735
hc8	1.076999
hcc8	119.483
dih8	18.133
hc9	1.082972
hco9	110.744
dih9	-65.053
hc10	1.080181
hco10	106.682
dih10	56.211
hc11	1.082582
hco11	107.289
dih11	173.617
ho12	0.966234
hoc12	108.624
dih12	151.927
hc13	1.084874
hcc13	110.933
dih13	172.472
hc14	1.088435
hcc14	107.623
dih14	-69.557
hc15	1.082722
hcc15	111.136
dih15	49.204

<u>1e(CH₃OH)</u>

Ladung = 1; Spin-Multiplizität = 2 E(UB+HF-LYP) = -692.7502306 hartrees ZPE = 338,42 kJ/mol $E^{298K} = 359.42$ kJ/mol $\tilde{n}_1 = 56.95$ cm⁻¹ <S²> = 0,7500

С			
с	1 cc2		
с	2 cc3	1 ccc3	
cl	2 clc4	3 clcc4	1 dih4
0	2 oc5	3 occ5	4 dih5
с	5 co6	2 coc6	3 dih6
h	1 hc7	2 hcc7	4 dih7
h	1 hc8	2 hcc8	4 dih8
h	6 hc9	5 hco9	2 dih9
h	1 hc10	2 hcc10	4 dih10
h	3 hc11	2 hcc11	1 dih11
h	3 hc12	2 hcc12	1 dih12
h	3 hc13	2 hcc13	1 dih13
h	6 hc14	5 hco14	2 dih14
h	6 hc15	5 hco15	2 dih15

	Variab	len	der	Z-N	Matrix
--	--------	-----	-----	-----	--------

cc2	1.545458
cc3	1.544940
ccc3	111.540
clc4	1.757139
clcc4	111.544
dih4	125.448
oc5	1.409107
occ5	104.567
dih5	122.120
c06	1.417003
coc6	125.268
dih6	-121.147
hc7	1.084533
hcc7	106.745
dih7	-62.642
hc8	1.083491
hcc8	110.520
dih8	56.380
hc9	1.090757
hco9	107.973
dih9	-58.796
hc10	1.083572
hcc10	109.668
dih10	178.293
hc11	1.083598
hcc11	109.690
dih11	56.166
hc12	1.083524
hcc12	110.540
dih12	178.086
hc13	1.084546
hcc13	106.753
dih13	-62.891
hc14	1.090512
hco14	108.063
dih14	57.733
hc15	1.078724
hco15	106.280
dih15	-180.444

Ladung = 1; Spin-Multiplizität = 2 E(UB+HF-LYP) = -692.6984935 hartrees ZPE = 334,20 kJ/mol $E^{298K} = 352.81$ kJ/mol $\widetilde{n_1} = -1998.99$ cm⁻¹ $<S^2 > = 0,7501$

C			
0	1 oc2		
с	2 co3	1 coc3	
с	3 cc4	2 cco4	1 dih4
с	4 cc5	3 ccc5	2 dih5
cl	4 clc6	3 clcc6	2 dih6
h	3 hc7	4 hcc7	6 dih7
h	3 hc8	4 hcc8	6 dih8
h	1 hc9	2 hco9	3 dih9
h	1 hc10	2 hco10	3 dih10
h	4 hc11	3 hcc11	2 dih11
h	2 ho12	3 hoc12	4 dih12
h	5 hc13	4 hcc13	6 dih13
h	5 hc14	4 hcc14	6 dih14
h	5 hc15	4 hcc15	6 dih15

<u>Variable</u>	en der Z-Matrix:
oc2	1.461421
co3	1.521043
coc3	108.860
cc4	1.501655
cco4	103.315
dih4	-34.632
cc5	1.499870
ccc5	118.145
dih5	146.517
clc6	1.762279
clcc6	110.912
dih6	-77.855
hc7	1.081016
hcc7	117.382
dih7	38.288
hc8	1.081623
hcc8	113.300
dih8	170.892
hc9	1.076427
hco9	111.275
dih9	135.727
hc10	1.076905
hco10	108.841
dih10	-91.354
hc11	1.291227
hcc11	93.841
dih11	28.685
ho12	0.970173
hoc12	111.071
dih12	89.004
hc13	1.086647
hcc13	110.429
dih13	174.058
hc14	1.088414
hcc14	110.699
dih14	-65.536
hc15	1.084311
hcc15	110.239
dih15	53.767

	-303.00 KJ
$\widetilde{\boldsymbol{n}}_1$	= 84.97 cm ⁻¹

 $<S^{2}> = 0,7500$

1 oc2		
2 co3	1 coc3	
3 cc4	2 cco4	1 dih4
4 cc5	3 ccc5	2 dih5
4 clc6	3 clcc6	2 dih6
3 hc7	4 hcc7	6 dih7
3 hc8	4 hcc8	6 dih8
1 hc9	2 hco9	3 dih9
1 hc10	2 hco10	3 dih10
4 hc11	3 hcc11	2 dih11
2 ho12	3 hoc12	4 dih12
5 hc13	4 hcc13	6 dih13
5 hc14	4 hcc14	6 dih14
5 hc15	4 hcc15	6 dih15
	1 oc2 2 co3 3 cc4 4 cc5 4 clc6 3 hc7 3 hc8 1 hc9 1 hc10 4 hc11 2 ho12 5 hc13 5 hc14 5 hc15	$\begin{array}{cccccc} 1 \ \text{oc2} \\ 2 \ \text{co3} & 1 \ \text{coc3} \\ 3 \ \text{cc4} & 2 \ \text{cco4} \\ 4 \ \text{cc5} & 3 \ \text{ccc5} \\ 4 \ \text{clc6} & 3 \ \text{clcc6} \\ 3 \ \text{hc7} & 4 \ \text{hcc7} \\ 3 \ \text{hc8} & 4 \ \text{hcc8} \\ 1 \ \text{hc9} & 2 \ \text{hco9} \\ 1 \ \text{hc10} & 2 \ \text{hco10} \\ 4 \ \text{hc11} & 3 \ \text{hcc11} \\ 2 \ \text{ho12} & 3 \ \text{hcc12} \\ 5 \ \text{hc13} & 4 \ \text{hcc13} \\ 5 \ \text{hc14} & 4 \ \text{hcc15} \\ \end{array}$

Variable	n der Z-Matrix:
oc2	1.419371
co3	1.498896
coc3	120.105
cc4	1.510640
cco4	109.987
dih4	-85.966
cc5	1.515030
ccc5	110.902
dih5	187.074
clc6	1.807681
clcc6	107.039
dih6	-51.205
hc7	1.081216
hcc7	113.255
dih7	64.073
hc8	1.081581
hcc8	113.338
dih8	191.842
hc9	1.073541
hco9	112.456
dih9	162.484
hc10	1.073159
hco10	112.190
dih10	-51.156
hc11	1.083944
hcc11	110.501
dih11	63.355
ho12	0.982087
hoc12	107.977
dih12	45.550
hc13	1.087638
hcc13	109.850
dih13	178.891
hc14	1.085436
hcc14	111.458
dih14	-60.034
hc15	1.083921
hcc15	109.781
dih15	60.223

C			
с	1 cc2		
с	2 cc3	1 ccc3	
cl	2 clc4	3 clcc4	1 dih4
0	2 oc5	3 occ5	1 dih5
с	5 co6	2 coc6	3 dih6
h	1 hc7	2 hcc7	4 dih7
h	1 hc8	2 hcc8	4 dih8
h	1 hc9	2 hcc9	4 dih9
h	6 hc10	5 hco10	2 dih10
h	6 hc11	5 hco11	2 dih11
h	5 ho12	2 hoc12	4 dih12
h	3 hc13	2 hcc13	4 dih13
h	3 hc14	2 hcc14	4 dih14
h	3 hc15	2 hcc15	4 dih15

C			
с	1 cc2		
с	2 cc3	1 ccc3	
cl	2 clc4	3 clcc4	1 dih4
0	2 oc5	3 occ5	1 dih5
с	5 co6	2 coc6	3 dih6
h	1 hc7	2 hcc7	4 dih7
h	1 hc8	2 hcc8	4 dih8
h	1 hc9	2 hcc9	4 dih9
h	6 hc10	5 hco10	2 dih10
h	6 hc11	5 hco11	2 dih11
h	5 ho12	2 hoc12	4 dih12
h	3 hc13	2 hcc13	4 dih13
h	3 hc14	2 hcc14	4 dih14
h	3 hc15	2 hcc15	4 dih15

Variablen der Z-Matrix:		
cc2	1.502203	
cc3	1.503885	
ccc3	115.845	
clc4	1.758097	
clcc4	112.290	
dih4	-131.719	
oc5	1.563646	
occ5	103.439	
dih5	114.549	
соб	1.417967	
сосб	121.941	
dih6	-179.069	
hc7	1.085426	
hcc7	107.748	
dih7	66.923	
hc8	1.085256	
hcc8	110.060	
dih8	185.423	
hc9	1.083781	
hcc9	112.215	
dih9	-51.808	
hc10	1.072529	
hco10	115.596	
dih10	-33.026	
hc11	1.072055	
hco11	112.908	
dih11	167.266	
ho12	0.972666	
hoc12	111.639	
dih12	-76.373	
hc13	1.085602	
hcc13	110.289	
dih13	174.648	
hc14	1.085250	
hcc14	108.135	
dih14	-66.771	
hc15	1.086575	
hcc15	111.986	
dih15	51.353	

2-Chlor-3,3,3-trifluorpropen-Radikalkation, 4 ⁺	<u>Z-Matrix</u> c
(Dateiname: cttp4f)	$ \begin{array}{c} c & 1 \ cc2 \\ c & 2 \ cc3 & 1 \ ccc3 \\ cl & 2 \ clc4 & 1 \ clcc4 & 3 \ dih4 \\ h & 1 \ hc5 & 2 \ hcc5 & 3 \ dih5 \\ h & 1 \ hc6 & 2 \ hcc6 & 5 \ dih6 \\ f & 3 \ fc7 & 2 \ fcc7 & 1 \ dih7 \\ f & 3 \ fc8 & 2 \ fcc8 & 7 \ dih8 \\ f & 3 \ fc9 & 2 \ fcc9 & 7 \ dih9 \\ \hline \hline Variablen \ der \ Z-Matrix: \\ cc2 & 1.393385 \\ cc3 & 1.538980 \\ ccc3 & 121.874 \\ clc4 & 1.642675 \\ clcc4 & 120.974 \\ dih4 & 179.995 \\ hc5 & 1.078990 \\ hcc5 & 120.821 \\ dih5 & 180.001 \\ hc6 & 1.079064 \\ hcc6 & 119.641 \\ dih6 & 180.006 \\ fc7 & 1.314692 \\ fcc7 & 108.851 \\ dih7 & -0.051 \\ \end{array} $
Ladung = 1; Spin-Multiplizität = 2 E(UB+HF-LYP) = -874.6604479 hartrees ZPE = 129,97 kJ/mol $E^{^{298K}}$ = 146.61 kJ/mol $\tilde{n_1}$ = 21.40 cm ⁻¹ <S ² > = 0,7500	fc81.310805fcc8108.557dih8119.967fc91.310781fcc9108.565dih9-119.972
BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartree BHandHLYP/aug-cc-pVDZ: E(UB+HF-LYP) [hartree BHandHLYP/aug-cc-pVTZ: E(UB+HF-LYP) [hartree	es] = -874.822729001 es] = -874.735989517 es] = -874.863590012
2-Brom-3,3,3-trifluorpropen-Radikalkation, 5 ⁺⁺	Z-Matrix:
(Dateiname: btfp4f)	$\begin{array}{c} \hline c \\ c & 1 \ cc2 \\ c & 2 \ cc3 \\ br & 2 \ brc4 \\ b & 1 \ brc5 \\ c & 2 \ brc5 \\ cc3 \\ cc3$
Ladung = 1; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2986.134969 hartrees ZPE = 128,69 kJ/mol $E^{298K} = 146.62 kJ/mol$ $\tilde{n_i} = 36.73 cm^{-1}$ $ = 0,7500$	$\begin{array}{cccccccc} n & 1 & nc5 & 2 & ncc5 & 5 & dih5 \\ h & 1 & hc6 & 2 & hcc6 & 5 & dih6 \\ f & 3 & fc7 & 2 & fcc7 & 1 & dih7 \\ f & 3 & fc8 & 2 & fcc8 & 7 & dih8 \\ f & 3 & fc9 & 2 & fcc9 & 7 & dih9 \\ \hline \hline Variablen & der & Z-Matrix: \\ cc2 & 1.379773 \\ cc3 & 1.532022 \\ ccc3 & 122.690 \\ brc4 & 1.795991 \\ brcc4 & 120.781 \\ dih4 & 180.000 \\ hc5 & 1.078267 \\ hcc5 & 121.334 \\ dih5 & 180.000 \\ hc6 & 1.079341 \\ \end{array}$

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2988.71593298

Variable	n der Z-Matrix:
xxxx2	2.000000
cxx3	0.656165
cxxxx3	90.000
xxxx4	0.656165
xxxxxx4	90.000
dih4	180.000
cxx5	0.656165
cxxxx5	90.000
dih5	0.000
hc6	1.076764
hcxx6	119.314
dih6	-91.377
hc7	1.078248
hcxx7	123.255
dih7	88.628
nc8	1.474453
ncxx8	122.463
dih8	-88.620
cc9	1.500917
ccxx9	127.261
dih9	91.364
fc10	1.332023
fcc10	108.975
dih10	121.745
fc11	1.306595
fcc11	111.645
dih11	0.016
fc12	1.332032
fcc12	108.973

ZPE = 24 $E^{298K} = 26$	3,90 kJ/m 62.22 kJ/r	nol nol
$n_1 = 67.1$	/ cm	
$< S^{2} > = 0$		
7-Matrix:		
XX		
xx 1 xxxx2		
c 1 cxx3	2 cxxxx3	
xx 2 xxxx4	1 xxxxxx	x4 3 dih4
c 1 cxx5	2 cxxxx5	4 dih5
h 3 hc6	1 hcxx6	2 dih6
h 3 hc7	1 hcxx7	2 dih7
n 5 nc8	1 ncxx8	2 dih8
c 5 cc9	1 ccxx9	2 dih9
f 9 fc10	5 fcc10	1 dih10
f 9 fc11	5 fcc11	1 dih11
f 9 fc12	5 fcc12	1 dih12
h 8 hn13	5 hnc13	1 dih13
h 8 hn14	5 hnc14	1 dih14
h 8 hn15	5 hnc15	1 dih15

BHandHLYP/6-311+G(2d,p):	
BHandHLYP/aug-cc-pVDZ:	
BHandHLYP/aug-cc-pVTZ:	

E(RB+HF-LYP) [hartrees] =	-471.263177157
E(RB+HF-LYP) [hartrees] =	-471.171136566
E(RB+HF-LYP) [hartrees] =	-471.298945618

dih12

hn13

hnc13

dih13

hn14

hnc14

dih14

hn15

hnc15

dih15

-121.711

1.018629

112.003

-0.012

1.022564

110.880

120.633

1.022562

110.881

239.343

Variablen der Z-Matrix: xxxx2 2.000000 0.735841 cxx3 cxxxx3 90.000 xxxx4 0.735841 xxxxxx4 90.000 dih4 180.000 0.735841 cxx5 cxxxx5 90.000 dih5 0.000 1.089386 hc6 108.728 hcxx6 dih6 -121.390 hc7 1.083320 hcxx7 112.551 dih7 0.692 1.274247 nc8 ncxx8 124.410 dih8 -0.704 cc9 1.532234 118.717 ccxx9 dih9 179.322 1.312893 fc10 108.290 fcc10 dih10 59.820 fc11 1.312883 fcc11 108.306 dih11 -59.858 fc12 1.319998 fcc12 110.134 dih12 -180.027 hn13 1.011331

<i>ñ</i> ₁ <\$	= 55.59 S ² > = 0) cm ⁻¹	
<u>Z-</u>	Matrix:		
XX			
xх	1 xxxx2		
с	1 cxx3	2 cxxxx3	
xx	2 xxxx4	1 xxxxxx	4 3 dih4
c	1 cxx5	2 cxxxx5	4 dih5
h	3 hc6	1 hcxx6	2 dih6
h	3 hc7	1 hcxx7	2 dih7
n	5 nc8	1 ncxx8	2 dih8
с	5 cc9	1 ccxx9	2 dih9
f	9 fc10	5 fcc10	1 dih10
f	9 fc11	5 fcc11	1 dih11
f	9 fc12	5 fcc12	1 dih12
h	8 hn13	5 hnc13	1 dih13
h	8 hn14	5 hnc14	1 dih14

hnc13	121.881
dih13	0.011
hn14	1.012999
hnc14	120.930
dih14	179.983
hc15	1.089410
hcxx15	108.723
dih15	122.764

BHandHLYP/6-311+G(2d,p):
BHandHLYP/aug-cc-pVDZ:
BHandHLYP/aug-cc-pVTZ:

1 hcxx15

2 dih15

h 3 hc15

E(RB+HF-LYP) [hartrees] =	-471.281922363
E(RB+HF-LYP) [hartrees] =	-471.189953436
E(RB+HF-LYP) [hartrees] =	-173.605775268

Variablen der Z-Matrix:			
cc2	1.480104		
cc3	1.310955		
ccc3	133.097		
hc4	1.078132		
hcc4	123.699		
dih4	180.297		
hc5	1.087434		
hcc5	112.161		
dih5	240.770		
hc6	1.084054		
hcc6	108.725		
dih6	359.804		
hc7	1.086669		
hcc7	110.895		
dih7	119.365		
oc8	1.480154		
occ8	110.748		
dih8	182.326		
ho9	0.968041		
hoc9	111.759		
dih9	143.314		
co10	1.481202		
coc10	118.936		
dih10	276.893		
hc11	1.080095		
hco11	105.769		
dih11	175.256		
hc12	1.080958		
hco12	108.427		
dih12	296.797		
hc13	1.078467		
hco13	105.643		

E(RB+HF-LYP) = -530.1978143 hartreesdih1357.316ZPE = 279,23 kJ/molhc141.076253 E^{298K} = 301.85 kJ/molhc14119.141 \tilde{n}_1 = 60.02 cm⁻¹dih14-0.159

C			
с	1 cc2		
с	2 cc3	1 ccc3	
h	3 hc4	2 hcc4	1 dih4
h	1 hc5	2 hcc5	3 dih5
h	1 hc6	2 hcc6	3 dih6
h	1 hc7	2 hcc7	3 dih7
0	2 oc8	1 occ8	3 dih8
h	8 ho9	2 hoc9	1 dih9
с	8 co10	2 coc10	1 dih10
h	10 hc11	8 hco11	2 dih11
h	10 hc12	8 hco12	2 dih12
h	10 hc13	8 hco13	2 dih13
h	3 hc14	2 hcc14	1 dih14

BHandHLYP/6-311+G(2d,p):	E(RB+HF-LYP) [hartrees] = -530.373202818
BHandHLYP/aug-cc-pVDZ:	E(RB+HF-LYP) [hartrees] = -530.268816714
BHandHLYP/aug-cc-pVTZ:	E(RB+HF-LYP) [hartrees] = -530.414321467

ariablen der Z-Matrix:				
c2	1.502593			
c3	1.309131			
cc3	129.346			
c4	1.077834			
cc4	123.160			
ih4	180.094			
c5	1.330303			
cc5	109.527			
ih5	237.609			
:6	1.313061			
206	109.659			
ih6	357.810			
c7	1.320349			
cc7	110.212			
ih7	118.995			
c8	1.442022			
cc8	109.476			
ih8	180.609			
о9	0.968954			
oc9	114.281			
ih9	122.549			
o10	1.495332			
oc10	120.529			
ih10	266.211			
c11	1.079844			
co11	105.137			
ih11	168.651			
c12	1.080287			
co12	107.905			
ih12	289.901			
c13	1.078016			

hco13 104.597 Ladung = 1; Spin-Multiplizität = 1 dih13 50.554 E(RB+HF-LYP) = -530.2341597 hartrees hc14 1.076988 ZPE = 278,16 kJ/mol hcc14 118.861 E^{298K} = 301.49 kJ/mol dih14 -0.497 $\widetilde{n}_{1} = 24.36 \text{ cm}^{-1}$ $\langle S^2 \rangle = 0$ Z-Matrix: С c 1 cc2 c 2 cc3 1 ccc3 2 hcc41 dih4 h 3 hc4f 1 fc5 2 fcc5 3 dih5 f 1 fc6 2 fcc6 3 dih6 f 1 fc7 2 fcc7 3 dih7 o 2 oc8 1 occ8 3 dih8 2 hoc91 dih9 h 8 ho9 2 coc10 с 8 co10 1 dih10 h 10 hc11 8 hco11 2 dih11 h 10 hc12 8 hco12 2 dih12 h 10 hc13 8 hco13 2 dih13 h 3 hc14 2 hcc14 1 dih14 BHandHLYP/6-311+G(2d,p): E(RB+HF-LYP) [hartrees] = -530.404030382 BHandHLYP/aug-cc-pVDZ: E(RB+HF-LYP) [hartrees] = -530.298918052 BHandHLYP/aug-cc-pVTZ: E(RB+HF-LYP) [hartrees] = -530.444481600 Z-Matrix: с (Dateiname: ctfp2depr_21f) c 1 cc2 c 2 cc3 1 ccc3 cl 2 clc4 1 clcc4 3 dih4 CI(4) h 1 hc5 2 hcc 53 dih5 3 fc6 2 fcc6 1 dih6 f 6 dih7 f 3 fc7 2 fcc7 6 dih8 f 3 fc8 2 fcc8 Variablen der Z-Matrix: cc2 1.299254 cc3 1.506738 C(2) ccc3 123.028 clc4 1.735687 clcc4 122.752 dih4 180.000 hc5 1.070697 hcc5 138.188 C(3) dih5 0.000 fc6 1.329162 fcc6 110.278 dih6 0.000 fc7 1.326468 fcc7 111.331 dih7 119.904 Ladung = 0; Spin-Multiplizität = 2 fc8 1.326468 E(UB+HF-LYP) = -874.3446142 hartrees fcc8 111.331 dih8 -119.904 ZPE = 95,93 (kJ/mol $E^{298K} = 112.88$ kJ/mol $\widetilde{n}_1 = 60.06 \text{ cm}^{-1}$ $\langle S^2 \rangle = 0,7502$

238

Z-Matrix: 1 cc2 с 2 cc3 1 ccc3 с br 2 brc4 1 brcc4 3 dih4 3 dih5 1 hc5 2 hcc 5h 1 dih6 f 3 fc6 2 fcc6 f 3 fc7 2 fcc7 6 dih7 6 dih8 f 3 fc8 2 fcc8 Variablen der Z-Matrix: 1.295423 cc21.503765 cc3 124.142 ccc3 brc4 1.894933 brcc4 121.971 dih4 180.000 1.070962 hc5 hcc5 139.004 dih5 0.000 fc6 1.329664 fcc6 110.476 dih6 0.000 fc7 1.326791 fcc7 111.273 dih7 119.981 fc8 1.326791

111.273

-119.981

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2985.81234 hartrees ZPE = 94,17 kJ/mol $E^{298K} = 111.71 \text{ kJ/mol}$ $\tilde{n}_1 = 60.31 \text{ cm}^{-1}$ $< S^2 > = 0.7502$

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2988.40001202

	Z-Matrix:	
(Dateiname: ctfp1pr 11f)	с	
(2 we we we repipe 1)	c 1 cc2	
	c 2 cc3 1 ccc3	
	cl 2 clc4 1 clcc4	3 dih4
	h 1 hc5 2 hcc5	3 dih5
Ladung = 0: Spin-Multiplizität = 2	h 1 hc6 2 hcc6	5 dih6
F(IJB+HF-IYP) = -875 6109026 hartrees	f 3 fc7 2 fcc7	1 dih7
ZPE = 150.00 (k l/mol)	f 3 fc8 2 fcc8	7 dih8
$\Sigma \Gamma L = 139,90$ (K3/110)	f 3 fc9 2 fcc9	7 dih9
E = 1/9.2 kJ/mol	h 1 hc10 2 hcc10	5 dih10
$\tilde{n}_1 = 38.14 \text{ cm}^{-1}$	Variablen der Z-Matrix	<u>x:</u>
$\langle S^2 \rangle = 0.7500$	cc2 1.483032	
	cc3 1.490190	
	ccc3 121.523	

BHandHLYP/6-311+G(2d,p): BHandHLYP/aug-cc-pVDZ: BHandHLYP/aug-cc-pVTZ: E(UB+HF-LYP) [hartrees] = -875.778576710 E(UB+HF-LYP) [hartrees] = -875.691146695 E(UB+HF-LYP) [hartrees] = -875.818053869

dih9

-120.742

(Dateiname: btfp1pr_11f)

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) =-2987.077036 hartrees ZPE = 158,35 kJ/mol

	<u>Z</u> -	Matri	<u>x:</u>				
	с						
	с	1 cc^2	2				
	с	$2 cc^2$	3	1 ccc3			
	br	2 brown	c4	1 brcc	4	3 dih4	
	h	1 hc	5	2 hcc5		3 dih5	
	h	1 hc	6	2 hcc6		5 dih6	
	f	3 fc7		2 fcc7	1	l dih7	
	f	3 fc8		2 fcc8	7	7 dih8	
	f	3 fc9		2 fcc9	-	7 dih9	
	h	1 hc	10	2 hcc1	0	5 dih10	
)	Va	ariable	en de	er Z-Matı	ix:		
	cc	2	1.4	83096			
	cc.	3	1.4	89017			
	cc	c3	12	1.139			
	bro	c4	1.8	65814			
	bro	cc4	11	8.577			
	dił	n4	154	4.192			
	hc	5	1.0	85372			
	hc	c5	11	0.482			
	dił	n5	15	8.139			
	hc	6	1.0	91869			
	hc	c6	11	1.259			
	dił	16	11	9.551			
	fc	7	1.32	26476			
	fcc	:7	112	2.457			
	dił	า7	200	0.736			
	fc8	3	1.3	33935			
	fcc	:8	11(0.072			
	dił	18	120	0.389			
	fc	9	1.3	37261			
	fcc	:9	11	1.898			

240

$E^{298K} = 178.12 \text{ kJ/mol}$	
$\widetilde{n}_1 = 36.68 \text{ cm}^{-1}$	
$\langle S^2 \rangle = 0,7500$	

hc10	1.085358
hcc10	110.216
dih10	-120.481

BHandHI VD / $6.311 + G(2d n)$	E(IIB_HE_IVP) [bartroos] -	-2080 66/8880/
DH allu HL $I P/0-311+O(2u,p)$:	E(OD+DF-LF) [natures] =	-2909.00400094

Z-Matriz	<u>x:</u>		
c			
c 1 cc2	2		
c 2 cc?	3	1 ccc3	
cl 2 clc	:4	1 clcc4	3 dih4
h 1 hc	5	2 hcc5	3 dih5
h 1 hc	6	2 hcc6	5 dih6
f 3 fc7		2 fcc7	1 dih7
f 3 fc8	•	2 fcc8	7 dih8
f 3 fc9)	2 fcc9	7 dih9
h 2 hc	10	1 hcc10	3 dih10
Variable	en der	Z-Matrix:	
cc2	1.46	7481	
cc3	1.51	7287	
ccc3	112	.578	
clc4	1.82	5072	
clcc4	110	.329	
dih4	121	.438	
hc5	1.07	5337	
hcc5	119	.814	
dih5	321	.208	
hc6	1.07	4509	
hcc6	119	.631	
dih6	193	.350	
fc7	1.32	7166	
fcc7	111.	.977	
dih7	56.	761	
fc8	1.32	4568	
fcc8	112.	.014	
dih8	121	.922	
fc9	1.33	2675	
fcc9	108.	.875	
dih9	-119	.077	
hc10	1.08	82129	
hcc10	112	2.367	
dih10	-121	1.640	

BHandHLYP/6-311+G(2d,p):	E(UB+HF-LYP) [hartrees] =	-875.770435340
BHandHLYP/aug-cc-pVDZ:	E(UB+HF-LYP) [hartrees] =	-875.683774566
BHandHLYP/aug-cc-pVTZ:	E(UB+HF-LYP) [hartrees] =	-875.809451253

Z-Matri	<u>x:</u>		
с			
c 1 cc	2		
c 2 cc.	3	1 ccc3	
br 2 br	c4	1 brcc4	3 dih4
h 1 hc	5	2 hcc5	3 dih5
h 1 hc	6	2 hcc6	5 dih6
f 3 fc7	1	2 fcc7	1 dih7
f 3 fc8	;	2 fcc8	7 dih8
f 3 fc9)	2 fcc9	7 dih9
h 2 hc	10	1 hcc10	3 dih10
Variable	en de	er Z-Matrix	<u>:</u>
cc2	1.4	54413	
cc3	1.5	13805	
ccc3	11	3.631	
brc4	2.0)09837	
brcc4	10	9.012	
dih4	11	9.897	
hc5	1.0	075374	
hcc5	11	9.872	
dih5	32	3.711	
hc6	1.0	074539	
hcc6	11	9.725	
dih6	19	3.355	
fc7	1.3	27306	
fcc7	11	1.914	
dih7	55	5.543	
fc8	1.3	25019	
fcc8	11	2.121	
dih8	12	1.992	
fc9	1.3	33760	
tcc9	10	8.982	
dih9	-11	9.012	
hc10	1.	080418	
ncc10	1	13.696	
d1h10	-12	25.079	

BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartrees] = -2989.66046406

	Variable	<u>n der Z-Matrix:</u>
(Dateiname: cf2cl_nh3_a1f)	xxxx2	2.000000
(Dutemanie: erzer_mis_urr)	cxx3	0.741859
	cxxxx3	90.000
	xxxx4	0.741859
CHEL	xxxxxx4	90.000
C1(5)	dih4	180.000
	cxx5	0.741859
	cxxxx5	90.000
	dih5	0.000
	hc6	1.085837
	hevy6	111 525
F(9)	dih6	-246 894
C(2)	hc7	1 081025
	howy7	1101925
	dik7	112.123
C(6)	uiii /	-10.14/
F(7)	CIC8	1.080438
Q(1)	cicxx8	121.242
A Hotel	dihð	21.496
	cc9	1.498672
FIB) HI3	ccxx9	117.999
N(10)	dih9	207.731
	fc10	1.320534
HIJ	fcc10	111.703
H	dih10	74.484
	fc11	1.357029
Ladung = 1; Spin-Multiplizität = 2	fcc11	107.057
F(UB+HF-IYP) = -9312685939 hartrees	dih11	-41.927
7PE = 240.76 k l/mol	fc12	1.307159
L = 243,70 NJ/1101 = 298K 070 A = 1.1/	fcc12	112.930
$E^{} = 2/2.15 \text{ kJ/mol}$	dih12	-161.354
$\tilde{n}_1 = 17.20 \text{ cm}^{-1}$	nc13	1.522552
$-S^{2} = 0.7500$	ncxx13	110.449
	dih13	-129.670
	hn14	1.019051
<u>∠-Matrix:</u>	hnc14	111 808
XX	dih 14	184 401
xx 1 xxxx2	hn15	1 018538
c 1 cxx3 2 cxxxx3	hno15	111 522
xx 2 xxxx4 1 xxxxxx4 3 dih4	dih15	111.322 63 547
c 1 cxx5 2 cxxxx5 4 dih5	u_{111}	03.347 1.020216
h 3 hc6 1 hcxx6 2 dih6	11110 here16	1.020210
h 3 hc7 1 hcxx7 2 dih7	nnc16	109.303
cl 5 clc8 1 clcxx8 2 dih8	d1h16	-33.336
c 5 cc9 1 ccxx9 2 dih9		
f 9 fc10 5 fcc10 1 dih10		
f 9 fc11 5 fcc11 1 dih11		
f 9 fc12 5 fcc12 1 dih12		
n 3 nc13 1 ncxx13 2 dih13		
h 13 hn14 3 hnc14 1 dih14		
h 13 hn 15 3 hn c 15 1 dih 15		
h 13 hn 16 3 hn c 16 1 dih 16		
	1	
BHandHLYP/6-311+G(2d,p): E(UB+HF-LYP) [hartree	es] = -{	331.453505497
BHandHLYP/aug-cc-pVDZ: E(UB+HF-LYP) [hartree	es] = -9	931.357578485
BHandHLYP/aug-cc-pVTZ: E(UB+HF-LYP) [hartree	es] = -9	931.497898779
	1	

Variable	n der Z-Matrix:
xxxx2	2.000000
cxx3	0.741177
cxxxx3	90.000
xxxx4	0.741177
xxxxxx4	90.000
dih4	180.000
cxx5	0.741177
cxxxx5	90.000
dih5	0.000
hc6	1.084154
hcxx6	111.349
dih6	-238.160
hc7	1.082609
hcxx7	112.293
dih7	-1.948
brc8	1.840900
brcxx8	118.416
dih8	46.840
cc9	1.498034
ccxx9	116.772
dih9	201.155
fc10	1.322643
fcc10	110.075
dih10	58.213
fc11	1.357382
fcc11	107.911
dih11	-57.702
fc12	1.305193
fcc12	113.511
dih12	-177.840
nc13	1.523507
ncxx13	109.521
dih13	-120.478
hn14	1.018645
hnc14	112.293
dih14	181.007
hn15	1.019611
hnc15	110.261
dih15	60.260
hn16	1.020325
hnc16	109.804
dih16	-58.005

BHandHLYP/6-311+G(2d,p):

E(UB+HF-LYP) [hartrees] = -3045.34186238

cc2	1.469795
hc3	1.075243
hcc3	118.819
hc4	1.076936
hcc4	119.804
dih4	196.305
clc5	1.781964
clcc5	112.172
dih5	95.390
ссб	1.540771
сссб	112.791
dih6	330.137
fc7	1.304201
fcc7	110.853
dih7	60.202
fc8	1.329882
fcc8	107.561
dih8	299.889
fc9	1.323116
fcc9	109.825
dih9	182.655
nc10	1.515757
ncc10	110.528
dih10	213.008
hn11	1.021819
hnc11	110.564
dih11	180.323
hn12	1.021589
hnc12	110.444
dih12	60.240
hn13	1.019549
hnc13	110.701
dih13	299.847

Variablen der Z-Matrix:

BHandHLYP/6-311+G(2d,p):	E(UB+HF-LYP) [hartrees] = -931.43515249
BHandHLYP/aug-cc-pVDZ:	E(UB+HF-LYP) [hartrees] = -931.34034214
BHandHLYP/aug-cc-pVTZ:	E(UB+HF-LYP) [hartrees] = -931.47920784

E(UB+HF-LYP) [hartrees] = -3045.32477491

E(UB+HF-LYP) [hartrees] = -3104.45584068

248

180.065
1.075462
120.552
-170.582
1.755567
113.387
-51.396
1.527358
108.755
62.343
0.972930
110.338
-168.290
1.324209
109.292
-168.330
1.326271
108.834
-50.224
1.306078
110.362
70.028
1.489522
123.022
54.527
1.079723
104.572
198.447
1.078580
105.579
-43.771
1.079133
108.834
77.092

1.075848

1.459441

119.028

1.539433

114.617

BHandHLYP/6-311+G(2d,p):	E(UB+HF-LYP) [hartrees] = -990.549792698
BHandHLYP/aug-cc-pVDZ:	E(UB+HF-LYP) [hartrees] = -990.442917529
BHandHLYP/aug-cc-pVTZ:	E(UB+HF-LYP) [hartrees] = -990.599169878

	<u>Variable</u>	en der Z-Matrix:
(Dateiname: cf2br_ch3oh_h11f)	ch2	1.076037
(Datemane: erzor_enson_orri)	cc3	1.457374
\frown	cch3	118.908
F(10)	cc4	1.536402
F(11)	ccc4	114.037
	dih4	168.321
F(9) C(4)	hc5	1.075350
	hch5	120.417
	dih5	194.214
HS	brc6	1.925467
	brcc6	111.682
	dih6	295.522
C(3) C(2)	oc7	1.513227
0(7)	occ7	106.452
C(12)	dih7	51.452
	ho8	0.972248
	hoc8	108.969
Br(5)	dih8	50.321
-	fc9	1.318968
	fcc9	111.372
	dih9	176.961
Ladung = 1; Spin-Multiplizität = 2	fc10	1.331534
F(UB+HF-IYP) = -3101.817647 hartrees	fcc10	107.485
7PE - 275.99 k l/mol	dih10	295.316
Γ^{298K} 202.42 k l/mol	fc11	1.308610
E = 303.12 kJ/mol	fcc11	109.930
$n_1 = 62.89 \text{ cm}^{-1}$	dih11	54.774
$\langle S^2 \rangle = 0.7500$	co12	1.494917
	coc12	125.003
7-Matrix:	dih12	186.777
h	hc13	1.079591
c 1 ch2	hco13	104.179
c 2 cc3 = 1 ccb3	dih13	164.371
c 3 cc4 2 ccc4 1 dib4	hc14	1.078976
h $2 \text{ he}5$ 1 heh 5 3 dih 5	hco14	108.530
$hr_2 href = 2 href = 1 dih6$	dih14	285.525
0.3 oc 7 2 $0 oc 7$ 1 dih7	hc15	1.077238
h $7 \text{ ho}8$ $3 \text{ ho}c8$ $2 \text{ dih}8$	hco15	105.450
f 4 fc9 3 fcc9 2 dih9	dih15	46.548
f 4 fc10 3 fcc10 2 dih10		
f 4 fc11 3 fcc11 2 dih11		
c 7 co12 3 coc12 2 dih12		
h $12 \text{ hc} 13 = 7 \text{ hc} 013 = 3 \text{ dih} 13$		
h $12 hc14$ 7 hc014 3 dih14		
h 12 hc15 7 hco15 3 dih15		

BHandHLYP/6-311+G(2d,p):

E(UB+HF-LYP) [hartrees] = -3104.43718586

C			
с	1 cc2		
с	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
br	2 brc5	1 brcc5	3 dih5
h	1 hc6	2 hcc6	3 dih6
h	4 hc7	3 hcc7	2 dih7
h	4 hc8	3 hcc8	2 dih8
h	4 hc9	3 hcc9	2 dih9
h	3 hc10	2 hcc10	1 dih10
h	1 hc11	2 hcc11	3 dih11
h	1 hc12	2 hcc12	3 dih12

Variable	n der Z-Matrix:
cc2	1.479630
cc3	1.403224
ccc3	122.752
cc4	1.462596
ccc4	128.251
dih4	180.010
brc5	1.823441
brcc5	117.708
dih5	180.008
hc6	1.089600
hcc6	109.958
dih6	238.407
hc7	1.093191
hcc7	108.725
dih7	236.655
hc8	1.081281
hcc8	114.321
dih8	-0.102
hc9	1.093281
hcc9	108.700
dih9	123.091
hc10	1.081710
hcc10	114.718
dih10	360.005
hc11	1.083991
hcc11	111.666
dih11	359.961
hc12	1.089616
hcc12	109.952
dih12	121.505

Z-Matrix:

 $\langle S^2 \rangle = 0,7500$

с			
с	1 cc2		
с	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
br	2 brc5	1 brcc5	3 dih5
h	1 hc6	2 hcc6	3 dih6
h	4 hc7	3 hcc7	2 dih7
h	4 hc8	3 hcc8	2 dih8
h	4 hc9	3 hcc9	2 dih9
h	3 hc10	2 hcc10	1 dih10
h	1 hc11	2 hcc11	3 dih11
h	1 hc12	2 hcc12	3 dih12

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2727.524229 hartrees ZPE = 230,65 kJ/mol $E^{298K} = 247.52$ kJ/mol $\tilde{n}_1 = 42.32$ cm⁻¹ $<S^2 > = 0,7508$

C			
с	1 cc2		
с	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
br	2 brc5	1 brcc5	3 dih5
h	1 hc6	2 hcc6	3 dih6
h	4 hc7	3 hcc7	2 dih7
h	4 hc8	3 hcc8	2 dih8
h	4 hc9	3 hcc9	2 dih9
h	3 hc10	2 hcc10	1 dih10
h	1 hc11	2 hcc11	3 dih11

Variable	n der Z-Matrix:
cc2	1.372641
cc3	1.381846
ccc3	128.340
cc4	1.490658
ccc4	125.063
dih4	360.006
brc5	1.920215
brcc5	116.028
dih5	179.984
hc6	1.073768
hcc6	121.583
dih6	180.019
hc7	1.089792
hcc7	110.525
dih7	121.069
hc8	1.089752
hcc8	110.515
dih8	238.997
hc9	1.084208
hcc9	113.134
dih9	0.030
hc10	1.076796
hcc10	117.910
dih10	180.003
hc11	1.076085
hcc11	120.502
dih11	0.032

с		
с	1 cc2	
с	2 cc3	1 ccc3
с	3 cc4	2 ccc4
br	2 brc5	1 brcc5

2 hcc6

3 hcc7

2 hcc8

2 hcc9

2 hcc10

3 hcc11

h 1 hc6

h 4 hc7

h 3 hc8

h 1 hc9

h 1 hc10

h 4 hc11

1 dih4

3 dih5

3 dih6

2 dih7

1 dih8

3 dih9

3 dih10

2 dih11

2	5	4
_	~	

C			
c	1 cc2		
с	2 cc3	1 ccc3	
c	3 cc4	2 ccc4	1 dih4
br	2 brc5	1 bree5	3 dih5
h	4 hc6	3 hcc6	2 dih6
h	4 hc7	3 hcc7	2 dih7
h	3 hc8	2 hcc8	1 dih8
h	1 hc9	2 hcc9	3 dih9
h	1 hc10	2 hcc10	3 dih10
h	4 hc11	3 hcc11	2 dih11

cc3	1.382180
ccc3	125.332
cc4	1.372931
ccc4	127.898
dih4	179.973
brc5	1.895575
brcc5	114.586
dih5	179.967
hc6	1.088748
hcc6	111.223
dih6	120.445
hc7	1.075753
hcc7	120.578
dih7	180.000
hc8	1.075755
hcc8	121.487
dih8	0.001
hc9	1.081867
hcc9	114.278
dih9	-0.024
hc10	1.088741
hcc10	111.223
dih10	239.713
hc11	1.086864
hcc11	110.307
dih11	0.080

Variablen der Z-Matrix:

1.487047

Z-Matrix:

 $\langle S^2 \rangle = 0,7508$

с			
с	1 cc2		
с	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
br	2 brc5	1 brcc5	3 dih5
h	1 hc6	2 hcc6	3 dih6
h	4 hc7	3 hcc7	2 dih7
h	4 hc8	3 hcc8	2 dih8
h	3 hc9	2 hcc9	1 dih9
h	1 hc10	2 hcc10	3 dih10
h	1 hc11	2 hcc11	3 dih11

Ladung = 1; Spin-Multiplizität = 1 E(RB+HF-LYP) = -212.7960845 hartrees ZPE = 381,87 kJ/mol E^{298K} = 399.86 kJ/mol \widetilde{n}_1 = 139.44 cm⁻¹ <S²> = 0

1 cc2		
2 cc3	1 ccc3	
3 cc4	2 ccc4	1 dih4
2 nc5	1 ncc5	3 dih5
1 hc6	2 hcc6	3 dih6
4 hc7	3 hcc7	2 dih7
4 hc8	3 hcc8	2 dih8
4 hc9	3 hcc9	2 dih9
3 hc10	2 hcc10	1 dih10
1 hc11	2 hcc11	3 dih11
1 hc12	2 hcc12	3 dih12
5 hn13	2 hnc13	1 dih13
5 hn14	2 hnc14	1 dih14
5 hn15	2 hnc15	1 dih15
	1 cc2 2 cc3 3 cc4 2 nc5 1 hc6 4 hc7 4 hc8 4 hc9 3 hc10 1 hc11 1 hc12 5 hn13 5 hn14	$\begin{array}{cccccc} 1 \ cc2 \\ 2 \ cc3 \\ 3 \ cc4 \\ 2 \ cc4 \\ 3 \ cc5 \\ 4 \ cc7 \\ 4 \ cc8 \\ 4 \ cc9 \\ 3 \ cc9 \\ 3 \ cc9 \\ 3 \ cc9 \\ 3 \ cc10 \\ 1 \ cc11 \\ 2 \ cc10 \\ 1 \ cc11 \\ 2 \ cc11 \\ 1 \ cc12 \\ 2 \ cc12 \\ 5 \ cc12 \\ 5 \ cc13 \\ 5 \ cc13 \\ 5 \ cc14 \\ 5 \ cc15 \\ 2 \ cc15 \\ cc15$

Variable	n der Z-Matrix:
cc2	1.490278
cc3	1.322149
ccc3	131.592
cc4	1.490292
ccc4	126.488
dih4	-0.009
nc5	1.494099
ncc5	111.784
dih5	179.987
hc6	1.089425
hcc6	111.607
dih6	119.578
hc7	1.087531
hcc7	109.704
dih7	121.357
hc8	1.087538
hcc8	109.704
dih8	238.690
hc9	1.082713
hcc9	113.220
dih9	0.024
hc10	1.082880
hcc10	118.582
dih10	179.992
hc11	1.089426
hcc11	111.609
dih11	240.516
hc12	1.081742
hcc12	110.413
dih12	0.050
hn13	1.017816
hnc13	111.857
dih13	180.027
hn14	1.020102
hnc14	111.502
d1h14	300.408
nn15	1.020099
hnc15	111.501
aih15	59.647

Ladung = 1; Spin-Multiplizität = 1 E(RB+HF-LYP) = 399.86 hartrees ZPE = 381,74 kJ/mol E^{298K} = 399.86 kJ/mol \tilde{n}_1 = 139.0256 cm⁻¹ <S²> = 0

с			
с	1 cc2		
c	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
n	2 nc5	1 ncc5	3 dih5
h	1 hc6	2 hcc6	3 dih6
h	4 hc7	3 hcc7	2 dih7
h	4 hc8	3 hcc8	2 dih8
h	4 hc9	3 hcc9	2 dih9
h	3 hc10	2 hcc10	1 dih10
h	1 hc11	2 hcc11	3 dih11
h	1 hc12	2 hcc12	3 dih12
h	5 hn13	2 hnc13	1 dih13
h	5 hn14	2 hnc14	1 dih14
h	5 hn15	2 hnc15	1 dih15

Variable	n der Z-Matrix:
cc2	1.490802
cc3	1.321529
ccc3	128.563
cc4	1.492032
ccc4	130.283
dih4	180.007
nc5	1.490314
ncc5	112.244
dih5	180.016
hc6	1.089488
hcc6	111.875
dih6	119.335
hc7	1.087317
hcc7	109.725
dih7	121.400
hc8	1.087313
hcc8	109.725
dih8	238.614
hc9	1.088035
hcc9	115.421
dih9	0.006
hc10	1.079372
hcc10	114.597
dih10	0.011
hc11	1.089489
hcc11	111.874
dih11	240.580
hc12	1.083467
hcc12	109.670
dih12	-0.042
hn13	1.016812
hnc13	111.899
dih13	179.961
hn14	1.019791
hnc14	111.344
dih14	300.401
hn15	1.019790
hnc15	111.344
dih15	59.522

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2728.74184 hartrees ZPE = 297,49 kJ/mol E^{298K} = 315.91 kJ/mol \widetilde{n}_1 = 70.64 cm⁻¹ <S²> = 0,7500

с			
c	1 cc2		
с	2 cc3	1 ccc3	
c	3 cc4	$2 \operatorname{ccc4}$	1 dih4
br	2 brc5	1 brcc5	3 dih5
h	1 hc6	2 hcc6	3 dih6
h	4 hc7	3 hcc7	2 dih7
h	4 hc8	3 hcc8	2 dih8
h	4 hc9	3 hcc9	2 dih9
h	3 hc10	2 hcc10	1 dih10
h	1 hc11	2 hcc11	3 dih11
h	1 hc12	2 hcc12	3 dih12
h	10 hh13	3 hhc13	2 dih13

Variable	en der Z-Matrix:
cc2	1.486489
cc3	1.492312
ccc3	122.383
cc4	1.524550
ccc4	114.951
dih4	154.760
brc5	1.901962
brcc5	114.765
dih5	209.650
hc6	1.085998
hcc6	111.427
dih6	197.430
hc7	1.086843
hcc7	110.412
dih7	180.477
hc8	1.086852
hcc8	110.912
dih8	300.489
hc9	1.085436
hcc9	110.977
dih9	60.498
hc10	1.090086
hcc10	107.083
dih10	32.860
hc11	1.088282
hcc11	109.979
dih11	317.917
hc12	1.093590
hcc12	111.730
dih12	77.336
hh13	1.745728
hhc13	37.062
dih13	243.002

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2728.744215 hartrees ZPE = 295,67 kJ/mol $E^{298K} = 314.4$ kJ/mol $\tilde{n}_1 = 97.34$ cm⁻¹ <S²> = 0,7500

С			
с	1 cc2		
с	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
br	2 brc5	1 bree5	3 dih5
h	1 hc6	2 hcc6	3 dih6
h	4 hc7	3 hcc7	2 dih7
h	4 hc8	3 hcc8	2 dih8
h	4 hc9	3 hcc9	2 dih9
h	3 hc10	2 hcc10	1 dih10
h	1 hc11	2 hcc11	3 dih11
h	1 hc12	2 hcc12	3 dih12
h	2 hc13	1 hcc13	3 dih13

Variablen der Z-Matrix:		
cc2	1.509796	
cc3	1.448554	
ccc3	116.306	
cc4	1.484797	
ccc4	122.149	
dih4	166.173	
brc5	2.076147	
brcc5	106.733	
dih5	240.793	
hc6	1.084176	
hcc6	111.188	
dih6	174.709	
hc7	1.086691	
hcc7	111.466	
dih7	201.402	
hc8	1.088219	
hcc8	111.604	
dih8	322.866	
hc9	1.092957	
hcc9	110.652	
dih9	81.873	
hc10	1.079799	
hcc10	117.226	
dih10	-29.795	
hc11	1.089015	
hcc11	109.296	
dih11	294.629	
hc12	1.085711	
hcc12	110.802	
dih12	54.085	
hc13	1.081688	
hcc13	112.643	
dih13	132.285	

h 3 hc5

h 2 hc6

br 1 brc7

h 1 hc8

h 1 hc9

h 4 hc10

h 4 hc11

h 4 hc12

2 hcc 5

1 hcc6

2 brcc7

2 hcc8

2 hcc9

3 hcc10

3 hcc11

3 hcc12

1 dih5

3 dih6

3 dih7

3 dih8

3 dih9

2 dih10

2 dih11

2 dih12

Variable	n der Z-Matrix:
cc2	1.462543
cc3	1.390032
ccc3	122.889
cc4	1.466219
ccc4	124.408
dih4	181.230
hc5	1.081910
hcc5	117.775
dih5	0.760
hc6	1.079687
hcc6	117.715
dih6	177.813
brc7	1.983718
brcc7	91.481
dih7	270.220
hc8	1.079330
hcc8	116.930
dih8	21.026
hc9	1.078453
hcc9	116.041
dih9	159.582
hc10	1.093476
hcc10	109.034
dih10	237.973
hc11	1.083360
hcc11	113.493
dih11	0.374
hc12	1.091962
hcc12	109.590
dih12	123.510

Ladung = 1; Spin-Multiplizität = 2	
E(UB+HF-LYP) = -2727.84773 hartrees	
ZPE = 268,46 kJ/mol	
E ^{298K} = 284.96 kJ/mol	
$\tilde{n}_1 = 91.16 \text{ cm}^{-1}$	
$\langle S^2 \rangle = 0,7500$	

Variablen der Z-Matrix:		
cc2	1.463029	
cc3	1.393946	
ccc3	124.839	
cc4	1.467901	
ccc4	127.032	
dih4	363.411	
hc5	1.080589	
hcc5	116.014	
dih5	184.112	
hc6	1.079020	
hcc6	116.889	
dih6	178.155	
brc7	1.980826	
brcc7	91.601	
dih7	270.651	
hc8	1.078097	
hcc8	117.598	
dih8	22.256	
hc9	1.078479	
hcc9	115.348	
dih9	160.202	
hc10	1.093249	
hcc10	108.747	
dih10	242.772	
hc11	1.082056	
hcc11	114.639	
dih11	365.871	
hc12	1.091047	
hcc12	109.066	
dih12	128.649	

С			
с	1 cc2		
c	2 cc3	1 ccc3	
c	3 cc4	2 ccc4	1 dih4
h	3 hc5	2 hcc5	1 dih5
h	2 hc6	1 hcc6	3 dih6
br	1 brc7	2 brcc7	3 dih7
h	1 hc8	2 hcc8	3 dih8
h	1 hc9	2 hcc9	3 dih9
h	4 hc10	3 hcc10	2 dih10
h	4 hc11	3 hcc11	2 dih11
h	4 hc12	3 hcc12	2 dih12

Variablen der Z-Matrix:			
cc2	1.379050		
cc3	1.376191		
ccc3	123.790		
cc4	1.490031		
ccc4	124.091		
dih4	180.000		
hc5	1.080791		
hcc5	118.644		
dih5	-0.009		
hc6	1.080152		
hcc6	117.617		
dih6	179.990		
brc7	1.876379		
brcc7	121.792		
dih7	180.000		
hc8	1.074187		
hcc8	123.885		
dih8	360.020		
hc9	1.090343		
hcc9	111.313		
dih9	120.541		
hc10	1.086595		
hcc10	111.458		

<u>Z-M</u>	atrix:		
с			
c 1	cc2		
c 2	cc3	1 ccc3	
c 3	cc4	2 ccc4	1 dih4
h 3	hc5	2 hcc5	1 dih5
h 2	hc6	1 hcc6	3 dih6
br 1	brc7	2 brcc7	3 dih7
h 1	hc8	2 hcc8	3 dih8
h 4	hc9	3 hcc9	2 dih9
h 4	hc10	3 hcc10	2 dih10
h 4	hc11	3 hcc11	2 dih11

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2727.52522 hartrees ZPE = 234,55 kJ/mol $E^{298K} = 250.34$ kJ/mol $\widetilde{n_1} = 54.91$ cm⁻¹ <S²> = 0,7509

Z-Matrix:

•			
с	1 cc2		
с	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
h	3 hc5	2 hcc5	1 dih5
h	2 hc6	1 hcc6	3 dih6
br	1 brc7	2 brcc7	3 dih7
h	1 hc8	2 hcc8	3 dih8
h	1 hc9	2 hcc9	3 dih9
h	4 hc10	3 hcc10	2 dih10
h	4 hc11	3 hcc11	2 dih11

dih10	-0.067
hc11	1.090322
hcc11	111.315
dih11	239.319

1.469025 1.391159 ccc3 124.199 1.371059 125.839 ccc4dih4 356.329 1.080278 hcc5 116.494 dih5 177.256 hc6 1.077749 hcc6 116.983 dih6 182.916 brc7 2.002043111.757 brcc7 dih7 84.043 hc81.079404 hcc8 112.867 dih8 200.643 1.079796 hcc9 113.697 dih9 -33.005 hc10 1.076955 hcc10 122.101 dih10 -2.560 hc11 1.076295 120.984 hcc11 dih11 179.473

с			
с	1 cc2		
c	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
h	3 hc5	2 hcc5	1 dih5
h	2 hc6	1 hcc6	3 dih6
br	1 brc7	2 brcc7	3 dih7
h	1 hc8	2 hcc8	3 dih8
h	4 hc9	3 hcc9	2 dih9
h	4 hc10	3 hcc10	2 dih10
h	4 hc11	3 hcc11	2 dih11

nco	1.072307
hcc8	125.065
dih8	0.006
hc9	1.089996
hcc9	110.810
dih9	239.021
hc10	1.084891
hcc10	112.960
dih10	-0.043
hc11	1.090004
hcc11	110.811
dih11	120.893

Variablen der Z-Matrix:			
cc2	1.323184		
cc3	1.493529		
ccc3	122.986		
cc4	1.515926		
ccc4	114.640		
dih4	229.599		
hc5	1.084764		
hcc5	110.604		
dih5	356.181		
hc6	1.081683		
hcc6	120.535		
dih6	182.568		
hc7	1.077096		
hcc7	121.245		
dih7	178.209		
hc8	1.079545		
hcc8	122.251		
dih8	359.452		
hc9	1.087275		
hcc9	112.107		
dih9	181.601		
hc10	1.087710		
hcc10	111.516		

Ladung = 1: Spin-Multiplizität = 1			ăt = 1	dih10	304.200
F(RB+HF-IYP) = -2127943024 hartrees			024 hartrees	hc11	1.084757
7DE - 38	ZDE = 294.00 k/mal			hcc11	108.622
ZFL = 30				dih11	62.610
E = 40	J1.07 KJ/r	noi		nc12	1.537888
$\widetilde{n}_1 = 105.0$	61 cm⁻'			ncc12	107.751
$< S^{2} > = 0$				dih12	109.362
				hn13	1.018119
7 Matrix				hnc13	111.975
Z-Matrix:				dih13	182.657
c				hn14	1.017641
$c = 1 cc_2$	1			hnc14	110.740
c 2 cc3	1 ccc3	1 11 4		dih14	303.710
c 3 c c 4	$2 \operatorname{ccc4}$	1 din4		hn15	1.018066
h 3 hcs	2 ncc5	1 din 5		hnc15	110.797
h 2 hc6	1 hcc6	3 dih6		dih15	62.657
h l hc/	2 hcc7	$3 d_{1h}/$			
h 1 hc8	2 hcc8	3 dih8			
h 4 hc9	3 hcc9	2 dih9			
h 4 hc 10	3 hcc10	2 dih10			
h 4 hc11	3 hcc11	2 dih11			
n 3 nc12	2 ncc12	1 dih12			
h 12 hn13	3 hnc13	2 dih13			
h 12 hn14	3 hnc14	2 dih14			

	ncc3	112.212
	cc4	1.522378
	ccc4	113.806
-	dih4	180.004
His	hc5	1.091949
2	hcc5	108.827
	dih5	302.401
	hn6	1.018001
	hnc6	111.959
HS	dih6	179.998
	hn7	1.020098
	hnc7	111.327
	dih7	300.455
	hc8	1.084369
	hcc8	109.476
	dih8	180.002
	hc9	1.085848
	hcc9	111.401
	dih9	299.115
	hc10	1.085848
	hcc10	111.401
	dih10	60.889
	hn11	1.020099
	hnc11	111.327
	dih11	59.542
	cc12	1.315503
	ccc12	130.629
	dih12	179.997
	hc13	1.078483
	hcc13	123.411
	dih13	180.001

hc14

1.075269

ZPE = 383,55 kJ/mol
$\widetilde{n}_1 = 103.11 \text{ cm}^{-1}$
$< S^{2} > = 0$

Z-Matrix:

h 12 hn15

3 hnc15

4/3T

С			
с	1 cc2		
n	2 nc3	1 ncc3	
c	1 cc4	2 ccc4	3 dih4
h	1 hc5	2 hcc5	3 dih5

h	3 hn6	2 hnc6	1 dih6
h	3 hn7	2 hnc7	1 dih7
h	4 hc8	1 hcc8	2 dih8
h	4 hc9	1 hcc9	2 dih9
h	4 hc10	1 hcc10	2 dih10
h	3 hn11	2 hnc11	1 dih11
с	2 cc12	1 ccc12	3 dih12
h	12 hc13	2 hcc13	1 dih13
h	12 hc14	2 hcc14	1 dih14
h	1 hc15	2 hcc15	3 dih15

hcc14	119.937
dih14	0.001
hc15	1.091949
hcc15	108.827
dih15	57.607
hc15 hcc15 dih15	1.091949 108.827 57.607

	v unuone	<u> </u>
(Dateiname: 2me1amcn1f)	cc2	1.4
(Dutemanie: Zhieraniepii)	cc3	1.4
HTD	ccc3	6
M	nc4	1.4
	ncc4	1
HX21	dih4	10
	cc5	1.:
05	ccc5	12
H(a) (2) (412	dih5	24
	hc6	1.
HIT	hcc6	12
	dih6	25
	hc7	1.
	hcc7	1
	dih7	10
0(3)	hc8	1.
H(15)	hcc8	1
	dih8	10
	hn9	1.
	hnc9	1
(19)	dih9	31
N(4)	hn10	1
	hnc10	1
Atta	dih10	7
HID	hc11	1.
	hcc11	1
Ladung – 1: Spin-Multiplizität – 1	dih11	2
$E(IIP \cup IE \cup VD) = 212.7909220$ hortroop	hc12	1
E(0D+HF-LFF) = -212.7000329 Halliees	hcc12	1
ZPE = 386,95 KJ/mol	dih12	1
$E^{2001} = 402.77 \text{ kJ/mol}$	hc13	1.
$\widetilde{n_1} = 162.82 \text{ cm}^{-1}$	hcc13	1
$-S^{2} = 0$	dih13	2
	hn14	I
7 Matrix	hnc14	1
<u>Z-Matrix:</u>	d1h14	1
C 1 2	hc15	1
	hcc15	1
$\begin{array}{c} c & 1 & cc. \\ c & 2 & cc. \\ c & 1 & c$	dih15	2
n 3 nc4 1 ncc4 2 din4 2 2 a 5 1 a 5 2 din4		
$c \perp c c c \perp 1 \ c c c \perp 2 \ d c c \perp 2 \ d c c \perp 2 \ d \ d c \perp 2 $		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\frac{11}{100} \frac{100}{2000} = \frac{100}{2000} \frac{100}{200} = \frac{100}{200} = \frac{100}{200} = \frac{100}{2000} = \frac{100}{2000} = \frac{100}{2000} = \frac{100}{2000} = \frac{100}{2000} = \frac{100}{2000} = 10$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccc} 11 & 4 & 11110 \\ \hline & 5 & hol11 \\ \hline & 5 & hol11 \\ \hline & 2 & hoo11 \\ \hline & 1 & dth11 \\ \hline \end{array}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
n = 5 nc12 = 2 ncc12 = 1 din12		

	Variablen der Z -Matrix:			
		1 /08/8/		
	cc3	1.491654		
	ccc3	60 112		
	nc4	1 488124		
	ncc4	118 314		
	dih4	109 294		
	cc5	1 508861		
	ccc5	120 942		
	dih5	247 443		
)	hc6	1.077113		
	hcc6	120.252		
	dih6	254.136		
	hc7	1.080429		
	hcc7	117.038		
	dih7	108.532		
	hc8	1.079041		
	hcc8	116.146		
	dih8	102.315		
	hn9	1.017573		
	hnc9	111.489		
	dih9	318.966		
	hn10	1.018666		
	hnc10	111.497		
	dih10	79.092		
	hc11	1.090232		
	hcc11	113.196		
	dih11	29.670		
	hc12	1.086767		
	hcc12	111.702		
	dih12	152.749		
	hc13	1.085482		
	hcc13	109.353		
	dih13	271.790		
	hn14	1.018783		
	hnc14	111.397		
	$d_{1h} l_{4}$	199.506		
	hc15	1.076105		
	hcc15	120.708		
	d1h15	249.834		

267

h	5 hc13	2 hcc13	1 dih13
h	4 hn14	3 hnc14	1 dih14
h	3 hc15	1 hcc15	2 dih15

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2728.739568 hartrees ZPE = 297,49 kJ/mol E^{298K} = 315.75 kJ/mol \tilde{n}_1 = 45.95 cm⁻¹ <S²> = 0,7501

C			
с	1 cc2		
с	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
h	3 hc5	2 hcc5	1 dih5
h	2 hc6	1 hcc6	3 dih6
br	1 brc7	2 brcc7	3 dih7
h	1 hc8	2 hcc8	3 dih8
h	1 hc9	2 hcc9	3 dih9
h	4 hc10	3 hcc10	2 dih10
h	4 hc11	3 hcc11	2 dih11
h	4 hc12	3 hcc12	2 dih12
h	3 hc13	2 hcc13	1 dih13

Variable	n der Z-Matrix:
cc2	1.447082
cc3	1.487925
ccc3	121.753
cc4	1.523465
ccc4	113.434
dih4	163.578
hc5	1.094902
hcc5	108.497
dih5	-74.519
hc6	1.079870
hcc6	117.749
dih6	196.933
brc7	2.050152
brcc7	110.045
dih7	77.118
hc8	1.079000
hcc8	114.796
dih8	192.193
hc9	1.080386
hcc9	114.478
dih9	-36.970
hc10	1.086573
hcc10	110.976
dih10	178.445
hc11	1.087359
hcc11	111.198
dih11	298.667
hc12	1.087918
hcc12	110.997
dih12	58.669
hc13	1.090875
hcc13	109.551
dih13	40.023

Variablen der Z-Matrix:			
cc2	1.524247		
cc3	1.491454		
ccc3	111.153		
cc4	1.487444		
ccc4	122.059		
dih4	275.226		
hc5	1.079528		
hcc5	118.058		
dih5	81.540		
hc6	1.087857		
hcc6	108.474		
dih6	122.045		
brc7	1.963531		
brcc7	111.381		
dih7	179.912		
hc8	1.081281		
hcc8	112.128		
dih8	297.962		

\widetilde{n}	= 55.1	5 cm ⁻¹		hc9	1.081266
ا مر	$2^{2} - 0$	7500		hcc9	112.240
<0	5 > = 0,	7500		dih9	61.874
_				hc10	1.087553
<u>Z-</u>	Matrix:			hcc10	111.479
с				dih10	201.940
с	1 cc2			hc11	1.089027
с	2 cc3	$1 \operatorname{ccc} 3$		hcc11	111.361
с	3 cc4	$2 \operatorname{ccc} 4$	1 dih4	dih11	322.746
h	3 hc5	2 hcc5	1 dih5	hc12	1.095373
h	2 hc6	1 hcc6	3 dih6	hcc12	112.388
br	1 brc7	2 brcc7	3 dih7	dih12	82.397
h	1 hc8	2 hcc8	3 dih8	hh13	1.751293
h	1 hc9	2 hcc9	3 dih9	hhc13	36.436
h	4 hc10	3 hcc10	2 dih10	dih13	117.047
h	4 hc11	3 hcc11	2 dih11		
h	4 hc12	3 hcc12	2 dih12		
h	6 hh13	2 hhc13	1 dih13		

Ladung = 1; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2727.822453 hartrees ZPE = 264,07 kJ/mol E^{298K} = 281.59 kJ/mol \widetilde{n}_{1} = 76.29 cm⁻¹ <S²> = 0,7500

<u>Z-Matrix:</u> h

11			
с	1 ch2		
с	2 cc3	1 cch3	
с	3 cc4	2 ccc4	1 dih4
с	4 cc5	3 ccc5	2 dih5
h	2 hc6	1 hch6	3 dih6
br	2 brc7	1 brch7	3 dih7
h	3 hc8	2 hcc8	1 dih8
h	3 hc9	2 hcc9	1 dih9
h	5 hc10	4 hcc10	3 dih10
h	5 hc11	4 hcc11	3 dih11
h	4 hc12	3 hcc12	2 dih12

Variablen der Z-Matrix:			
ch2	1.080170		
cc3	1.531381		
cch3	109.640		
cc4	1.457580		
ccc4	115.283		
dih4	187.736		
cc5	1.404743		
ccc5	123.999		
dih5	206.155		
hc6	1.081364		
hch6	109.617		
dih6	122.804		
brc7	1.936101		
brch7	107.331		
dih7	238.924		
hc8	1.104155		
hcc8	107.290		
dih8	302.964		
hc9	1.089655		
hcc9	112.060		
dih9	58.356		
hc10	1.078804		
hcc10	120.628		
dih10	189.078		
hc11	1.079621		
hcc11	121.160		
dih11	369.094		
hc12	1.083083		
hcc12	117.569		
dih12	28.480		

Z-I	Matrix:		
h			
с	1 ch2		
с	2 cc3	1 cch3	
с	3 cc4	2 ccc4	1 dih4
с	4 cc5	3 ccc5	2 dih5
h	2 hc6	1 hch6	3 dih6
br	2 brc7	1 brch7	3 dih7
h	3 hc8	2 hcc8	1 dih8
h	5 hc9	4 hcc9	3 dih9
h	5 hc10	4 hcc10	3 dih10
h	4 hc11	3 hcc11	2 dih11

Variablen der Z-Matrix:			
ch2	1.080375		
cc3	1.465816		
cch3	113.636		
cc4	1.385839		
ccc4	123.270		
dih4	141.098		
cc5	1.372755		
ccc5	124.483		
dih5	179.439		
hc6	1.080401		
hch6	110.548		
dih6	128.703		
brc7	2.004491		
brch7	102.996		
dih7	239.716		
hc8	1.079302		
hcc8	117.334		
dih8	-41.674		
hc9	1.076102		
hcc9	121.489		
dih9	179.320		
hc10	1.077995		
hcc10	121.188		
dih10	359.274		
hc11	1.081830		
hcc11	117.463		
dih11	-1.063		

hc9

1.079330

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2727.498829 hartrees

ZPE = 233,45 kJ/mol
$E^{298K} = 250.11 \text{ kJ/mol}$
$\widetilde{n}_1 = 64.53 \text{ cm}^{-1}$
$\langle S^2 \rangle = 0,7500$

Z-Matrix:

c c 1 cc2 h 2 hc3 h 1 hc4

 $h \quad 1 \ hc5$

1 hcc3 2 hcc4

 $2 \, hcc5$

3 dih4 3 dih5

с			
c	1 cc2		
c	2 cc3	1 ccc3	
c	3 cc4	2 ccc4	1 dih4
h	1 hc5	2 hcc5	3 dih5
br	1 brc6	2 brcc6	3 dih6
h	2 hc7	1 hcc7	3 dih7
h	4 hc8	3 hcc8	2 dih8
h	4 hc9	3 hcc9	2 dih9
h	3 hc10	2 hcc10	1 dih10
h	2 hc11	1 hcc11	3 dih11

hcc9	121.680
dih9	-0.354
hc10	1.081380
hcc10	115.894
dih10	60.778
hc11	1.087950
hcc11	109.706
dih11	237.466

(Dateiname: 1b4buv1f)
Ladung = 1; Spin-Multiplizität = 1 E(RB+HF-LYP) = -212.7905053 hartrees ZPE = 387,25 kJ/mol $E^{298K} = 403.46 kJ/mol$ $\widetilde{n}_1 = 124.23 \text{ cm}^{-1}$ $< S^2 > = 0$
Z-Matrix:

Variable	n der Z-Matrix:
cc2	1.326509
hc3	1.079432
hcc3	118.730
hc4	1.081247
hcc4	123.430
dih4	183.257
hc5	1.076918
hcc5	120.921
dih5	-0.248
cc6	1.507590
сссб	126.315
dih6	178.764
hc7	1.089141
hcc7	109.702
dih7	150.448
hc8	1.089353
hcc8	110.086
dih8	265.940
cc9	1.517363
ccc9	114.435
dih9	26.971
hc10	1.082769
hcc10	112.410
dih10	175.841
hc11	1.082776
hcc11	112.623
dih11	299.287
nc12	1.510678
ncc12	109.182
dih12	57.046
hn13	1.016917
hnc13	112.771
dih13	188.834
hn14	1.023357
hnc14	108.382
dih14	309.442
hn15	1.017458
hnc15	111.484
dih15	67.484

с	2 cc6	1 ccc6	3 dih6
h	6 hc7	2 hcc7	1 dih7
h	6 hc8	2 hcc8	1 dih8
с	6 cc9	2 ccc9	1 dih9
h	9 hc10	6 hcc10	2 dih10
h	9 hc11	6 hcc11	2 dih11
n	9 nc12	6 ncc12	2 dih12
h	12 hn13	9 hnc13	6 dih13
h	12 hn14	9 hnc14	6 dih14
h	12 hn15	9 hnc15	6 dih15

Ladung = 1; Spin-Multiplizität = 1 E(RB+HF-LYP) = -212.7904733 hartrees ZPE = 390,97 kJ/mol E^{298K} = 405.29 kJ/mol \widetilde{n}_1 = 160.93 cm⁻¹ <S²> = 0

<u>Z-Matrix:</u> c

C			
с	1 cc2		
с	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
n	4 nc5	1 ncc5	2 dih5
h	5 hn6	4 hnc6	1 dih6
h	5 hn7	4 hnc7	1 dih7
h	5 hn8	4 hnc8	1 dih8
h	3 hc9	2 hcc9	1 dih9
h	3 hc10	2 hcc10	1 dih10
h	2 hc11	1 hcc11	4 dih11

Variablen der Z-Matrix:		
cc2	1.545849	
cc3	1.545857	
ccc3	88.956	
cc4	1.530122	
ccc4	86.894	
dih4	19.914	
nc5	1.512638	
ncc5	116.924	
dih5	140.720	
hn6	1.018483	
hnc6	111.674	
dih6	187.707	
hn7	1.017893	
hnc7	110.816	
dih7	-52.566	
hn8	1.018484	
hnc8	111.673	
dih8	67.161	
hc9	1.083495	
hcc9	118.896	
dih9	139.566	
hc10	1.088065	
hcc10	111.185	
dih10	267.514	
hc11	1.083933	
hcc11	112.055	
dih11	93.523	
hc12	1.082155	
hcc12	116.800	
dih12	220.345	
hc13	1.083495	
hcc13	117.295	
dih13	141.230	
hc14	1.088064	
hcc14	111.993	
dih14	268.512	
hc15	1.083349	
hcc15	113.455	
dih15	264.358	

h	2 hc12	1 hcc12	4 dih12
h	1 hc13	4 hcc13	3 dih13
h	1 hc14	4 hcc14	3 dih14
h	4 hc15	1 hcc15	2 dih15
h	4 hc15	1 hcc15	2 di

(Dateiname: c2h5ncyclopropyl1f)

Ladung = 1; Spin-Multiplizität = 1 E(RB+HF-LYP) = -212.785043 hartrees ZPE = 389,42 kJ/mol $E^{298K} = 404.73 \text{ kJ/mol}$ $\tilde{n}_1 = 122.87 \text{ cm}^{-1}$ $<S^2 > = 0$

C			
с	1 cc2		
с	2 cc3	1 ccc3	
с	3 cc4	2 ccc4	1 dih4
n	4 nc5	3 ncc5	2 dih5
h	5 hn6	4 hnc6	3 dih6
h	5 hn7	4 hnc7	3 dih7
h	5 hn8	4 hnc8	3 dih8
h	4 hc9	3 hcc9	2 dih9
h	4 hc10	3 hcc10	2 dih10
h	3 hc11	2 hcc11	1 dih11
h	2 hc12	1 hcc12	3 dih12
h	2 hc13	1 hcc13	3 dih13
h	1 hc14	2 hcc14	3 dih14
h	1 hc15	2 hcc15	3 dih15

Variablen der Z-Matrix:		
cc2	1.488531	
cc3	1.501430	
ccc3	60.647	
cc4	1.491369	
ccc4	118.845	
dih4	109.219	
nc5	1.522217	
ncc5	109.597	
dih5	213.654	
hn6	1.017893	
hnc6	112.698	
dih6	176.517	
hn7	1.017624	
hnc7	111.003	
dih7	297.374	
hn8	1.018155	
hnc8	109.967	
dih8	55.607	
hc9	1.084028	
hcc9	112.394	
dih9	330.991	
hc10	1.084259	
hcc10	113.435	
dih10	95.364	
hc11	1.080316	
hcc11	116.139	
dih11	252.567	
hc12	1.078069	
hcc12	118.054	
dih12	108.229	
hc13	1.076441	
hcc13	118.698	
dih13	253.436	
hc14	1.077044	
hcc14	118.724	
dih14	107.071	
hc15	1.080274	
hcc15	117.374	
dih15	251.056	

(Dateiname: 1br4bup11f)	ch
(H)	ccl
	cc4
	cco
Q(3)	dih
CHUI CHUI	cc.
C(2) His	cco
	dih
Br(7) (4) (5)	hc
	hcl
	dih
1982	bro
	bro

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2728.73463 hartrees ZPE = 295,79 kJ/mol $E^{298K} = 314.29$ kJ/mol $\tilde{n}_1 = 62.09$ cm⁻¹ <S²> = 0,7500

Z-Matrix:

h			
с	1 ch2		
с	2 cc3	1 cch3	
с	3 cc4	2 ccc4	1 dih4
с	4 cc5	3 ccc5	2 dih5
h	2 hc6	1 hch6	3 dih6
br	2 brc7	1 brch7	3 dih7
h	3 hc8	2 hcc8	1 dih8
h	3 hc9	2 hcc9	1 dih9
h	5 hc10	4 hcc10	3 dih10
h	5 hc11	4 hcc11	3 dih11
h	4 hc12	3 hcc12	2 dih12
h	5 hc13	4 hcc13	3 dih13

	Variable	n der Z-Matrix:
	ch2	1.080972
	cc3	1.515150
	cch3	112.075
	cc4	1.488888
	ccc4	114.428
	dih4	177.088
	cc5	1.486280
1	ccc5	120.650
	dih5	195.448
	hc6	1.081315
	hch6	109.824
	dih6	125.320
	brc7	1.963041
	brch7	105.145
	dih7	238.128
	hc8	1.095188
	hcc8	108.579
	dih8	301.727
	hc9	1.093720
	hcc9	107.094
	dih9	55.325
	hc10	1.086797
	hcc10	111.596
	dih10	167.007
	hc11	1.095522
	hcc11	111.912
	dih11	286.831
	hc12	1.078306
	hcc12	117.731
	d1h12	33.430
	hc13	1.090105
	hcc13	111.605
	d1h13	46.038

(Dateiname: 1br4bup21f)

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2728.729137 hartrees ZPE = 295,24 kJ/mol E^{298K} = 313.55 kJ/mol \tilde{n}_1 = 85.15 cm⁻¹

Variablen der Z-Matrix:						
ch2	1.081067					
cc3	1.512921					
cch3	112.138					
cc4	1.525705					
ccc4	114.240					
dih4	176.629					
cc5	1.486335					
ccc5	112.899					
dih5	179.932					
hc6	1.082202					
hch6	109.487					
dih6	125.419					
brc7	1.964670					
brch7	104.960					
dih7	237.873					
hc8	1.088286					
hcc8	109.317					
dih8	300.235					
hc9	1.091090					
hcc9	107.033					
$ = 0,7500$						
-------------	---------	---------	---------	--	--	--
<u>Z-</u>	Matrix:					
h						
с	1 ch2					
c	2 cc3	1 cch3				
с	3 cc4	2 ccc4	1 dih4			
с	4 cc5	3 ccc5	2 dih5			
h	2 hc6	1 hch6	3 dih6			
br	2 brc7	1 brch7	3 dih7			
h	3 hc8	2 hcc8	1 dih8			
h	3 hc9	2 hcc9	1 dih9			
h	5 hc10	4 hcc10	3 dih10			
h	5 hc11	4 hcc11	3 dih11			
h	4 hc12	3 hcc12	2 dih12			
h	4 hc13	3 hcc13	2 dih13			

dih9	55.484
hc10	1.076680
hcc10	120.790
dih10	157.468
hc11	1.078023
hcc11	120.492
dih11	324.814
hc12	1.091158
hcc12	109.469
dih12	-57.288
hc13	1.094423
hcc13	108.310
dih13	57.288

H(4)	Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = - 2610.861777 hartrees ZPE = 60,91 kJ/mol E^{298K} = 69.91 kJ/mol \tilde{n}_{1} = 298.14 cm ⁻¹ <s<sup>2> = 0,7500 <u>Z-Matrix:</u></s<sup>					
	br 1 brc	2				
	h 1 hc3	3	2 hcbr3			
	h 1 hc4	ŀ	2 hcbr4	3 dih4		
	Variable	n der	Z-Matrix:			
H(3)	brc2	1.85	5634			
	hc3	1.072	2181			
	hcbr3	117	.255			
	hc4	1.072	2181			
	hcbr4	117	.255			
	dih4	196.	024			
	Variable	n der	Z-Matrix:			
	hn2	1.01	8468			
	hn3	1.01	8203			
	hnh3	108	.140			
	hn4	1.01	8022			
	hnh4	107	.613			
	dih4	115.	306			
	cn5	1.52	5512			
	cnh5	112.	309			
\frown	dino haf	231.	903 2102			
H(6)	hon6	2.72.	506			
NY	dih6	124	.590 454			
	ch7	1 079	9454			
n	chc7	64 9	934			
	dih7	452.	960			
	hc8	1.07	7078			
	hch8	116.	532			
HIB	dih8	178.	606			
	cc9	1.323	3729			

(Dateiname: ch2br1f)

ء ا	aduna =	1 Spin-	Multiplizität = 1	cch9	122.281
F(RB+HF	-I YP) =	-173 4989491 hartrees	dih9	-0.120
	PE = 30	18 22 k 1/i	hc10	1.080557	
	298K 24	hcc10	120.536		
⊏ ~	= 34	21.00 KJ/	moi	dih10	177.809
\boldsymbol{n}_1	= 120.	40 cm '		hc11	1.084724
<8	$S^2 > = 0$			hcn11	105.515
-				dih11	301.467
7-1	Matrix.			hc12	1.083107
<u>n</u>	viatrix.			hcn12	106.007
h	1 hn2			dih12	57.324
h	1 hn2	2 hnh3			
h	1 hn4	2 hnh4	3 dih4		

(Dateiname: o	c2h4br1f)
H(3) C(1) H(4) Br(2)	C(5) H(6)

c 1 cn5

h 5 hc6

c 6 ch7

h 7 hc8

c 7 cc9

h 9 hc10 h 5 hc11

h 5 hc12

2 cnh5

1 hcn6

5 chc7

6 hch8

6 cch9

7 hcc10

1 hcn11

1 hcn12

3 dih5

2 dih6

1 dih7

5 dih8

5 dih9

6 dih10

2 dih11

2 dih12

Z-Matri	<u>x:</u>		
c			
br 1 br	c2		
h 1 hc	3 21	hcbr3	
h 1 hc	4 21	hcbr4	3 dih4
c 1 cc	5 20	ccbr5	3 dih5
h 5 hc	6 11	hcc6	2 dih6
h 5 hc	7 11	hcc7	2 dih7
Variable	en der Z-	Matrix:	
brc2	2.0348	84	
hc3	1.0794	38	
hcbr3	102.71	13	
hc4	1.0794	33	
hcbr4	102.70)6	
dih4	115.54	2	
cc5	1.44810	03	
ccbr5	109.85	50	
dih5	237.76	5	
hc6	1.0762	35	
hcc6	120.30	17	
dih6	276.94	3	
hc7	1.0762	34	
hcc7	120.30	2	
dih7	83.090)	

Ladung = 0; Spin-Multiplizität = 2 E(UB+HF-LYP) = -2650.156825 hartrees ZPE = 141,18 kJ/mol E^{298K} = 152.45 kJ/mol \widetilde{n}_1 = 271.05 cm⁻¹ <S²> = 0,7501

iviatii	<u>^.</u>		
h			
c 1 ch	2		
h 2 hc	3	1 hch3	
c 2 cc4	4	1 cch4	3 dih4
n 4 nc	5	2 ncc5	1 dih5
h 4 hc	6	2 hcc6	1 dih6
h 4 hc	7	2 hcc7	1 dih7
h 5 hn	8	4 hnc8	2 dih8
h 5 hn	9	4 hnc9	2 dih9
h 5 hn	10	4 hnc10	2 dih10
Variabl	en de	r Z-Matrix:	
ch2	1.07	5890	
nc3	1.07	5900	
nch3	118	8.880	
cc4	1.47	7048	
cch4	120	.521	
lih4	176	.622	
105	1.53	6874	
ncc5	110	.823	
lih5	91.	780	
166	1.08	33801	
ncc6	112	.923	
lih6	209	.436	
nc7	1.08	33785	
ncc7	112	.926	
lih7	-25.	883	
nn8	1.01	8932	
nnc8	111	.793	
lih8	179	.961	
nn9	1.01	7950	
nnc9	111	.015	
lih9	300	.406	
nn10	1.0	17949	
nnc10	11	1.014	
lih10	59	.516	

12.3 Isodesmische Reaktionen zur Abschätzung der Reaktionsenthalpien der Reaktionen von 1⁺⁺, 2⁺⁺, 4⁺⁺, 5⁺⁺, 7⁺⁺, 8⁺⁺ und 9⁺⁺ mit CH₃NH₂, C₂H₅NH₂, (CH₃)₂NH₂, CH₃OH, C₂H₅OH oder CH₃SH

Die Abschätzung der Reaktionsenthalpien, ΔH_r , der Substitutions-, Hydridtransfer- und Protonentransferreaktion bei der Umsetzung der Radikalkationen von 2-Chlorpropen, **1**⁺⁺, 2-Brompropen, **2**⁺⁺, 2-Chlor-3,3,3-trifluorpropen, **4**⁺⁺, 2-Brom-3,3,3-trifluorpropen, **5**⁺⁺, 2-Brombut-2-en, **7**⁺⁺, 1-Brombut-2-en, **8**⁺⁺, 4-Brombut-1-en, **9**⁺⁺ mit CH₃NH₂, C₂H₅NH₂, (CH₃)₂NH₂, CH₃OH, C₂H₅OH, CH₃SH, *tert*.-Butylmethylether und Trimethylsilylether erfolgt über relative Reaktionsenthalpien, $\Delta\Delta H_r$. Als Referenz wird die Reaktionsenthalpie bei der entsprechenden Reaktion mit NH₃ oder CH₃OH verwendet, die mit Hilfe von *ab initio* Rechnungen berechnet wurde (Kapitel 12.2). Für die Substitutionsreaktion wird zusätzlich die isodesmische Reaktion III benötigt, da für die Bildungsenthalpie des Substitutionsprodukts keine geeigneten Werten zur Verfügung stehen.

(Reaktion I)	D_1	+	С	\rightarrow	\mathbf{B}_1	+	А
(Reaktion II)	D_2	+	С	\rightarrow	B_2	+	A
(Isodesmische Reaktion III)	D_1	+	E_2	\rightarrow	D_2	+	E_1

Für die Isodesmische Reaktion III gilt:

$$\Delta H_{f}(D_{1}) + \Delta H_{f}(E_{2}) = \Delta H_{f}(D_{2}) + \Delta H_{f}(E_{1})$$

$$\Leftrightarrow \Delta H_{f}(E_{2}) - \Delta H_{f}(E_{1}) = \Delta H_{f}(D_{2}) - \Delta H_{f}(D_{1})$$
(12.1)

Für die Differenz der Reaktionsenthalpien der Reaktion II und I gilt nach Einsetzen von (12.1) in (12.2b) für $\Delta\Delta H_r$:

$$\Delta \Delta H_r = \Delta H_r(II) - \Delta H_r(I) \iff \Delta H_r(I) = \Delta H_r(II) + \Delta \Delta H_r$$
(12.2a)

$$= \Delta H_f(C) + \Delta H_f(D_2) - \Delta H_f(B_2) - \Delta H_f(A) - [\Delta H_f(C) + \Delta H_f(D_1) - \Delta H_f(B_1) - \Delta H_f(A)]$$
(12.2b)

$$= \Delta H_f(C) + \Delta H_f(D_2) - \Delta H_f(B_2) - \Delta H_f(A) - \Delta H_f(C) - \Delta H_f(D_1) + \Delta H_f(B_1) + \Delta H_f(A)$$

$$= \Delta H_f(D_2) - \Delta H_f(D_1) + \Delta H_f(B_1) - \Delta H_f(B_2)$$
(12.2c)

$$\Leftrightarrow \Delta \Delta H_r = \Delta H_f(E_2) - \Delta H_f(E_1) + \Delta H_f(B_1) - \Delta H_f(B_2)$$
(12.3)

Für die Abschätzung der relativen Reaktionsenthalpien, $\Delta\Delta H_r$, wurden die Bildungsenthalpien, ΔH_f , und die Protonenaffinitäten, PA, einiger ausgewählter Verbindungen benötigt, die in Tabelle 12.4 aufgeführt sind. Die Bildungsenthalpien der entsprechenden protonierten Spezies wurden aus ΔH_f des Neutralen, der PA und mit $\Delta H_f(H^+)$ berechnet. Alle Daten wurden aus dem NIST-Webbook entnommen.^[162]

Die jeweilige Protonentransferreaktion vereinfacht sich (12.2c) folgendermaßen:

$$\Delta \Delta H_r = PA(B_1) - PA(B_2) \tag{12.4}$$

Die einfache Beziehung (12.4) wird zur Abschätzung der Reaktionsenthalpie der Protonentransferreaktion verwendet.

Bei der Hydridtransferreaktion kann als Referenzreaktion nicht die entsprechende Reaktion mit NH₃ verwendet werden, sondern die mit CH₃OH. Die Abschätzung der Reaktionsenthalpie erfolgt nach (12.2c).

Für die Substitutionsreaktion wird zusätzlich die isodesmische Reaktion III benötigt. Die Abschätzung erfolgt nach (12.3), wobei als E_i (i = 1; 2) das "methylierte" Nukleophil, (CH₃- B_i^+), verwendet wird.

Verbindung	$\Delta \mathrm{H_{f}}\left[\mathrm{kJ/mol}\right]^{[162]}$	PA [kJ/mol] ^[162]	$\Delta H_{\rm f}$ [kJ/mol]
	Neutrales		Protonierte Spezies
NH ₃	- 46	854	631
CH ₃ NH ₂	- 23	899	607
$C_2H_5NH_2$	- 47	912	570
(CH ₃) ₂ NH	- 20	930	581
CH ₃ OH	- 201	754	575
C ₂ H ₅ OH	- 235	776	518
CH ₃ SH	- 23	773	734
(CH ₃) ₃ C-O-CH ₃	- 283	842	405
(CH ₃) ₃ Si-O-CH ₃	- 469	847	214
C ₂ H ₅ -N-CH ₃	-46	942	542
(CH ₃) ₃ N	24	949	605
CH ₃ -O-CH ₃	-184	792	554
C ₂ H ₅ -O-CH ₃	-216	809	505
CH ₃ -S-CH ₃	-38	831	662
H ₂ C=NH	69	853	746
H ₂ C-CH=NH	44	885	689
H ₂ C=N-CH ₃	24	885	669
H ₂ C=O	-116	713	701
H ₂ C-CH=O	-171	769	591
H ₂ C=S	118	760	888
H^+	-	-	1530

Tabelle 12.4: Bildungsenthalpien, ΔH_f , Protonenaffinitäten, PA, und Bildungsenthalpien, ΔH_f , der entsprechenden protonierten Spezies einiger ausgewählter Verbindungen (Werte sind gerundet) Die abgeschätzten Differenzen der Reaktionsenthalpien, $\Delta\Delta H_r$, der Substitutions-, Hydridtransfer- und Protonentransferreaktion von 1⁺⁺, 2⁺⁺, 4⁺⁺, 5⁺⁺, 7⁺⁺, 8⁺⁺, und 9⁺⁺ mit CH₃NH₂, C₂H₅NH₂, (CH₃)₂NH₂, CH₃OH, C₂H₅OH, CH₃SH, *tert*.-Butylmethylether und Trimethylsilylether sind in Tabelle 12.5 aufgeführt. Die abgeschätzten $\Delta\Delta H_r$ -Werte sind unabhängig vom Halogenalken-Radikalkation als Edukt.

	$\Delta\Delta H_r$ [kJ/mol]	$\Delta\Delta H_r [kJ/mol]$	$\Delta\Delta H_r [kJ/mol]$
Reaktion mit:	Substitutions-	Hydridtransfer-	Protonentransfer-
	reaktion	reaktion	reaktion
CH ₃ NH ₂	- 49 ^a	- 133 ^b	- 45 ^a
$C_2H_5NH_2$	- 66 ^a	- 166 ^b	- 58 ^a
$(CH_3)_2NH_2$	- 29 ^a	- 214 ^b	- 76 ^a
CH ₃ OH	$+ 102^{a}$	-	$+ 100^{a}$
C ₂ H ₅ OH	- 15 ^b	- 76 ^b	- 22 ^b
CH ₃ SH	- 70 ^b	+ 9 ^b	- 19 ^b
tertButylmethylether	-	-	+ 12 ^a
Trimethylsilylether	-	-	$+7^{a}$

^a $\Delta\Delta H_r$ bezogen auf die entsprechende Reaktion mit NH₃

 $^{b}\Delta\Delta H_{r}$ bezogen auf die entsprechende Reaktion mit CH₃OH

Tabelle 12.5: Abgeschätzte Differenzen der Reaktionsenthalpien, $\Delta\Delta H_r$, der Substitutions- Hydridtransfer- und Protonentransferreaktion Die Reaktionsenthalpien der Substitutions- und Protonentransferreaktion der Radikalkationen von 2-Chlorpropen, 1^{+} und 2-Brompropen, 2^{+} , mit CH₃OH wurden auf diese Weise abgeschätzt und mit den durch *ab initio* Rechnungen berechneten Werte aus Kapitel 12.2 verglichen, um sicherzugehen, daß diese Abschätzung für diese Reaktionssysteme geeignet ist. Die abgeschätzten Reaktionsenthalpien für die Substitutions- und Protonentransferreaktion von 1^{+} oder 2^{+} mit CH₃OH sind in den Tabellen 12.6a und 12.6b aufgeführt und stimmen gut mit den berechneten Werten (Kapitel 6.4) überein. Daher kann dieses Verfahren auf die übrigen Reaktionssysteme angewendet werden.

Reaktionssystem	ΔH _r [kJ/mol] (abgeschätzt)	ΔH _r [kJ/mol] (berechnet)
Substitutionsreaktion	+ 13	+24
Protonentransferreaktion	+ 13	+ 10

Tabelle 12.6a: Abgeschätzte Reaktionsenthalpien für die Substitutionsund Protonentransferreaktion von 1^{+} mit CH₃OH

Reaktionssystem	ΔH _r [kJ/mol] (abgeschätzt)	ΔH _r [kJ/mol] (berechnet)
Substitutionsreaktion	- 8	- 12
Protonentransferreaktion	+ 23	+ 34

Tabelle 12.6b: Abgeschätzte Reaktionsenthalpien für die Substitutionsund Protonentransferreaktion von 2^{+} mit CH₃OH

12.4 Isodesmische Reaktionen zur Abschätzung der vertikalen Ionisierungsenergien

Für die Abschätzung der vertikalen Ionisierungsenergien von 3,3,3-Trifluor-2-brompropen, **5**, 2-Brombut-2-en, **7**, und 1-Brombut-2-en, **8**, und 2-Chlorpropen, **1**, mit Hilfe von isodesmischen Reaktionen wurden die vertikalen Ionisierungsenergien von den in Tabelle 12.7 aufgeführten Verbindungen verwendet. Die Daten wurden aus dem NIST-Webbok entnommen.^[162] Da für die meisten Verbindungen mehrere Werte aufgeführt sind, wurden für die hier durchgeführten Abschätzungen die gemittelten vertikalen Ionisierungsenergien von verwendet.

Zur Prüfung, ob vertikale Ionisierungsenergien, IE_v, mit Hilfe von isodesmischen Reaktionen abgeschätzt werden können, wurde die vertikale Ionisierungsenergie von 1-Brom-but-4-en durch die isodesmischen Reaktionen 19 und 20 mit 9,84 eV bzw. 9,98 eV abgeschätzt. Mittelt man bei Werte, so erhält man eine vertikale Ionisierungsenergie von (9,91 ± 0,07) eV, die praktisch gleich groß wie die experimentell bestimmte vertikale Ionisierungsenergie von **5** mit 9,9 eV^[162] ist. Somit ist die Abschätzung der vertikalen Ionisierungsenergie mit Hilfe von isodesmischen Reaktionen eine geeignete Methode, wobei der Fehler kleiner als 0,1 eV ist.

Schema 12.19: Isodesmische Reaktion 19

Schema 12.20: Isodesmische Reaktion 20

Die vertikale Ionisierungsenergie von 3,3,3-Trifluor-2-brompropen wurde mit Hilfe der isodesmischen Reaktion 21 mit 10,62 eV abgeschätzt. Obwohl die vertikale Ionisierungsenergie von 3,3,3-Trifluorpropen selbst ein abgeschätzter Wert ist, erklärt die abgeschätzte vertikale Ionisierungsenergie von **5** die hier durchgeführten Experimente gut.

Schema 12.21: Isodesmische Reaktion 21

Die Abschätzung der vertikalen Ionisierungsenergie von (E)- und (Z)-2-Brombut-2-en, (E)-7 und (Z)-7, erfolgte mit den isodesmischen Reaktionen 22 und 23. Für (E)-7 ergibt sich eine vertikale Ionisierungsenergie von 9,00 eV und 8,98 eV (gemittelt 8,99 eV) und für (Z)-7 eine vertikale Ionisierungsenergie von 8,95 eV und 8,93 eV (gemittelt 8,94 eV). Die durch die beiden isodesmischen Reaktionen erhaltenen Werte weichen nur um 0,02 eV ab, daher ist der Fehler klein.

Schema 12.22: Isodesmische Reaktion 22

Schema 12.23: Isodesmische Reaktion 23

Die Abschätzung der vertikalen Ionisierungsenergie von (E)- und (Z)-1-Brombut-2-en, (E)-8 und (Z)-8, erfolgte mit den isodesmischen Reaktionen 24 und 25. Für (E)-8 ergibt sich eine vertikale Ionisierungsenergie von 9,41 eV und 9,43 eV (gemittelt 9,42 eV) und für (Z)-8 eine vertikale Ionisierungsenergie von 9,46 eV und 9,48 eV (gemittelt 9,47 eV). Die durch die beiden isodesmischen Reaktionen erhaltenen Werte weichen nur um 0,02 eV ab, so daß der Fehler sehr klein ist.

Schema 12.24: Isodesmische Reaktion 24

Schema 12.25: Isodesmische Reaktion 25

Die Abschätzung der vertikalen Ionisierungsenergie von 2-Chlorpropen, **1**, erfolgte mit der isodesmischen Reaktionen 26. Man erhält eine vertikalen Ionisierungsenergie von 9,89 eV

Schema 12.26: Isodesmische Reaktion 26

Verbindung	Vertikale Ionisierungsenergie ^[162]	Bemerkung
	$IE_v [eV]$	
	10,50	
H ₃ C	9,91	
H ₃ C	9,42	gemittelt
H ₃ C		
H ₃ C	9,83	gemittelt
H ₃ C CH ₃	9,28	gemittelt
CH ₃	9,33	gemittelt
H ₃ C		
H ₃ C	9,61	gemittelt
H ₃ C	8,68	
H ₃ C CH ₃		
F ₃ C	10,95 (abgeschätzt)	
CI	10,2	gemittelt
Br	9,89	gemittelt
Br H ₃ C	9,58	
BrH ₂ C	10,06	

Tabelle 12.7 : Vertikale Ionisierungsenergien IE_v ausgewählter Verbindungen für die isodesmischen Reaktionen 19 - 26

13. Literaturverzeichnis

- [1] R. E. Blankenship, W. W. Parson, Ann. Rev. Biochem. 1978, 47, 635.
- [2] E. T. Kaiser, L. Kevan, *Radical Cations*, Interscience, New York, **1968**.
- R. A. Forrester, K. Ishizu, G. Kothe, S.F. Nelson, H. Ohya-Nishiguchi, K. Watanabe,
 W. Wilker, *Organic Cation Radicals and Polyradicals*, Landolt Börnstein,
 Numerical Data and Functional Relationsships in Science and Technology,
 Volume IX, Part d2, Springer Verlag Berlin, Heidelberg, New York, 1980.
- [4] T. Shida, *Electronic Absorption Spectra of Radical Cations*, Elsevier Verlag, **1988**.
- [5] O. Hammerich, V. D. Parker, Adv. Phys. Org. Chem. 1984, 20, 55.
- [6] T. Shida, E. Haselbach, T. Bally, Acc. Chem. Res. **1984**, 17, 180.
- [7] S. F. Nelsen, Acc. Chem. Res. 1987, 20, 269.
- [8] H. D. Roth, Acc. Chem. Res. 1987, 20, 343.
- [9] N. Bauld, D. J. Beldville, B. Hairirchian, K. T. Lorentz, R. A. Pabon, D. W. Reynolds, D. D. Wirth, H.-S. Chiou, B. K. Marsh, Acc. Chem. Res. 1987, 20, 371.
- [10] H. D. Roth, M. L. Schilling, C. C. Wamser, J. Am. Chem. Soc. 1994, 106, 5023.
- [11] S. Green, Rev. Phys. Chem. 1981, 32, 103.
- [12] F. Wudl, Acc. Chem. Res. 1984, 17, 224.
- [13] A. J. Maroulis, Y. Shigemitsu, D. R. Arnold, J. Am. Chem. Soc. 1978, 100, 535.
- [14] N. Kornblum, Angew. Chem. Int. Ed. 1975. 17, 180.
- [15] G. C. Cahlwun, B.Schuster, J. Am. Chem. Soc. 1984, 106, 6870.
- [16] J. Mloch, E. Steckhahn, *Tetrahedron Letters* **1987**, 28, 1081.
- [17] S. L. Mattes, S. Farid, Acc. Chem. Res. 1982, 15, 80.
- [18] H. D. Roth, *Tetrahedron* **1986**, *42*, 6097.
- [19] H. D. Roth, *Topics in Current Chemistry*, Bd. 163, Springer Verlag, Berlin, Heidelberg, New York, *Structure and Reactivity of Organic Radical Cations*, 1992.
- [20] J.-M. Savéant, Adv. Phys. Org. Chem. 1990, 26, 1-130.
- [21] J. K. Kochi, Angew. Chem. 1988, 100, 1331.

- [22] M. Chanon M. L. Tobe, Angew. Chem. 1982, 94, 27.
- [23] R. A. Marcus, Discuss. Faraday Soc. 1960, 29, 21.
- [24] J. Marsh, Advanced organic Chemistry, 3. Aufl., Wiley, New York 1985.
- [25] M. Hanak, Angew. Chem. 1978, 90, 346.
- [26] Z. Rapport, Adv. Phys. Org. Chem. 1969, 7, 1.
- [27] G. Modena, Acc. Chem. Res. 1971, 4, 73.
- [28] L. R. Subramin, M. Hanak, Chem. Ber. 1972, 105, 1465.
- [29] J. D. Roberts, W. C. Chambers, J. Am. Chem. Soc. 1951, 73, 5034.
- [30] C.K. Ingold, *Structure and Mechanism Organic Chemistry*, Cornell University Press, Ithaca, New York, **1955**.
- [31] S. L. Craig, J. I. Brauman, J. Am. Chem. Soc. 1999, 121, 6690-6699.
- [32] E. Uggerud, J. Chem. Soc. Perkin Trans. 2, 1999, 1459-1463.
- [33] H.-Fr. Grützmacher, H. Kuschel, Org. Mass Spectrom. 1970, 3, 605.
- [34] E. Illenberger, J. Momigny, *Gaseous Molecular Ions*, *Topics in Physical Chemistry*, Band 2, Steinkopff Verlag Darmstadt, Springer Verlag New York **1992**.
- [35] H. Budzikiewicz, *Massenspektrometrie*, VCH, Weinheim, New York, Basel, Cambridge **1992**.
- [36] M. B. Comisarow, Adv. Mass Spectrom. 1980, 8, 1698.
- [37] A.G. Marshall, Acc. Chem. Res. 1985, 18, 316.
- [38] N. M. M. Nibbering, Nachr. Chem. Tech. Lab. 1984, 32, 1044.
- [39] N. M. M. Nibbering, Adv. Mass Spectrom. 1985, 10, 417.
- [40] D. A. Laude, Jr., C.L. Joklmann, R.S. Brown, D. A. Weil, C. L. Wiliams, *Mass Spectrom. Rev* 1986, 5, 107.
- [41] D. Thölmann, *Dissertation*, **1992**, Universität Bielefeld.
- [42] D. Thölmann, H.-Fr. Grützmacher, Int. J. Mass Spectrom. Ion Processes 1992, 117, 415-440.
- [43] D. Thölmann, H.-Fr. Grützmacher, Chem. Phys. Lett. 1989, 163, 225-229.
- [44] D. Thölmann, H.-Fr. Grützmacher, J. Am. Chem. Soc. 1991, 113, 3281-3287.

- [45] A. Nixdorf, *Dissertation*, **1997**, Universität Bielefeld.
- [46] D. Thölmann, D. Flottmann, H.-Fr. Grützmacher, Chem. Ber. 1991, 124, 2349-2356.
- [47] A. Nixdorf, H.-Fr. Grützmacher, J. Am. Chem. Soc. 1991, 119, 6544-6551.
- [48] A. Nixdorf, H.-Fr. Grützmacher, Eur. Mass. Spectrom. 1999, 5, 93-100.
- [49] A. Nixdorf, H.-Fr. Grützmacher, Int. J. Mass Spectrom. 2000, 195/196, 533-544.
- [50] M. Büchner, H.-Fr. Grützmacher, Chem. Eur. J. 1998, 4, 1799-1809.
- [51] S. S. Shaik, J. Am. Chem. Soc. 1981, 103, 3692.
- [52] A. Pross, S. S. Shaik, Acc. Chem. Res. 1983, 16, 363.
- [53] A. Pross, J. Am. Chem. Soc. 1982, 104, 1192.
- [54] C. N. Hinshelwood, *The kinetic of chemical charge in gasous systems*, 3. Aufl., Clarendon Press, Oxford, **1933**.
- [55] R. A. Marcus, O. K. Rice, J. Phys. Colloid Chem. 1951, 894.
- [56] R. A. Marcus, A. H. Zewaii, J. Phys. Chem. 1986, 90, 3467.
- [57] H. B. Rosenstock, M. B. Wallenstein, A. L Wahrhaftig, H. Eyring, Prod. Nat. Acad. Sci. U.S.A 1952, 38, 667.
- [58] H. B. Rosenstock, M. Kraus, *Mass Spectrometry of Organic Ions*, (F.W. McLafferty, Ed.), Academic Press, New York, **1963**.
- [59] H. B. Rosenstock, M. Kraus, Advances in Mass Spectrometry, Pergamon Press, Oxford, Vol. 2, 1963, 251.
- [60] H. B. Rosenstock, M. Kraus, Advances in Mass Spectrometry, The Institute of Petroleum, London, Vol. 4, 1968, 523.
- [61] K. Levsen, *Fundamental Aspects of Organic Chemistry*, Verlag Chemie, Weinheim **1978**.
- [62] W. J. Chesnavich, M. T. Bowers, J. Am. Chem. Soc. 1976, 98, 8301.
- [63] W. J. Chesnavich, M. T. Bowers, J. Phys. Chem. 1977, 66, 2306.
- [64] W. J. Chesnavich, M. T. Bowers, J. Am. Chem. Soc. 1977, 99, 1705.
- [65] C. L. Lifshitz, Adv. Mass Spectrom., Heyden, London, 1977, 7A, 3.
- [66] L. Bass, W. J. Chesnavich, M. T. Bowers, J. Am. Chem. Soc. 1979, 101, 5493.

- [67] G. H. Findenegg, *Statistische Thermodynamik*, Dr. Dietrich Steinkopff Verlag, Darmstadt **1985**.
- [68] R. G. Cooks, J. H. Beynon, R. M. Caprioli, G. R. Lester, *Metastable Ions*, Elsevier Scientific Publishing Company, Amsterdam, London, New York, 1978.
- [69] W. J. Chesnavich, M. T. Bowers, J. Am. Chem. Soc. 1976, 98, 8301.
- [70] R. Wolfgang, Acc. Chem. Res. 1970, 3, 48.
- [71] G. Gioumousis, D. P. Stevenson, J. Phys. Chem. 1958, 29, 294.
- [72] T.F. Maran, W. H Hamill, J. Phys. Chem. 1963, 39, 1413.
- [73] S. K. Gupta, E. G. Jones, A. G. Harrison, J. J. Myher, Can. J. Chem. 1967, 54, 3107.
- [74] T. Su, M. T. Bowers, J. Phys. Chem. 1973, 58, 3027.
- [75] J. V. Dungan, J. L. Magee, J. Chem. Phys. 1967, 47, 3103.
- [76] T. Su, M. T. Bowers, J. Chem. Phys. 1982, 76, 5183-5185.
- [77] T. Su, M. T. Bowers, Int. J. Mass Spectrom. Ion. Phys. 1973, 12, 347.
- [78] D. Thölmann, H.-Fr. Grützmacher, Chem. Ber. 1991, 124, 2349-2356.
- [79] T. Su, M.T. Bowers, *Gas Phase Ion Chemistry*, (M. T. Bowers, Ed.), Vol. 1, Academic Press, London, **1979**.
- [80] T. Su, E. C. F. Su, M. T. Bowers, J. Chem. Phys. 1978, 69, 3243.
- [81] K. Sakimoto, Chem. Phys. 1981, 63, 419.
- [82] J. Tröe, Chem. Phys. Lett. 1985, 122, 425.
- [83] R. A. Barker, D. P. Ridge, J. Chem. Phys. 1976, 64, 4411.
- [84] W. J. Chesnavich, T. Su, M. T. Bowers, J. Chem. Phys. 1980, 72, 2641.
- [85] T. Su, J. Chem. Phys. 1985, 82, 2164.
- [86] W. E. Farneth, J. J. Braumann, J. Am. Chem. Soc. 1976, 98, 7891.
- [87] J. M. Jasinski, J. J. Braumann, J. Am. Chem. Soc. 1980, 102, 2906.
- [88] M. J. Pellerie J. J. Braumann, J. Am. Chem. Soc. 1980. 102, 5993.
- [89] J. B. Leudenslager, W. T. Huntress Jr., M. T. Bowers, J. Am. Chem. Soc. 1974, 61, 4600.

- [90] V. G. Anicich, J. B. Leudenslager, W. T. Huntress Jr., J. H. Futrell, J. Chem. Phys. 1977, 67, 4340.
- [91] G. H. Bearman, H. H. Harris, J. J. Leventhal, J. Chem. Phys. 1977, 66, 4111.
- [92] M. Chau, M. T. Bowers, Chem. Phys. Letters 1976, 44, 490.
- [93] M. R. Flannery, P. C. Cosby, J. Chem. Phys. 1973, 59, 5494.
- [94] T. F. Moran, M. R. Flannery, P. C. Cosby, J. Chem. Phys. 1973, 61, 1261.
- [95] A. F. Hedrick, T. F. Moran, K. J. McCann, M. R. Flannery, J. Chem. Phys. 1977, 66, 24.
- [96] C.-Y. Lee, A. E. DePristo, J. Chem. Phys. 1984, 81, 3512.
- [97] R. Marx, *Ionic Processes in the Gas Phase*, Reidel, Boston, 1984, 67.
- [98] R. Marx, *Kinetics of Ion-Molecule Reactions*, Plenum, New York, **1978**, 103.
- [99] T. R. Govers, M. Gerard, R. Marx, Chem. Phys. 1977, 23, 411.
- [100] M. J. Lipeles, Chem. Phys. 1969, 11, 1252.
- [101] P. Ausloos, J. R. Eyler, S. G. Lias, Chem. Phys. Letters 1975, 30, 21.
- [102] M. R. McMillan, M. A. Coplan, J. Chem. Phys. 1979, 71, 3063.
- [103] I. Gauglhofer, L. Kevan, Chem. Phys. Letters 1972, 16, 492.
- [104] A. Jówko, M. Forys, B. Ö. Jonsson, Int. J. Mass. Spectrom. Ion. Phys. 1979, 29, 249.
- [105] R. Marx, G. Mauclaire, R. Derai, Int. J. Mass. Spectrom. Ion. Phys. 1983, 47, 155.
- [106] G. Mauclaire, R. Marx, R. Derai, Chem. Phys. Letters 1982, 86, 275.
- [107] R. Derai, S. Fenistein, M. Gerard-Ain, T. R. Govers, R. Marx, G. Mauclaire, C. Z. Profous, C. Sourisseau, *Chem. Phys.* **1979**, 44, 65.
- [108] C. C. Han, J. L. Wilbur, J. I. Brauman, J. Am. Chem. Soc. 1992, 114, 887-893.
- [109] E. P. Grimsrud, G. Caldwell, S. Chowdhury, P. Kebarle, J. Am. Chem. Soc. **1985**, 107, 4627.
- [110] D. E. Richardson, J. Phys. Chem. 1986, 90, 3697.
- [111] J. Eyler, D. E. Richardson, J. Am. Chem. Soc. 1985, 107, 6130.
- [112] D. K. Phelps, J. R. Gord, B. S. Freiser, M. J. Weaver, J. Phys. Chem. 1991, 95, 4338.
- [113] E. P. Grimsrud, S. Chowdhury, P. Kebarle, J. Chem. Phys. 1985, 83, 1059.

- [114] P. S. Drzaic, J. I. Brauman, J. Am. Chem. Soc. 1982, 104, 13.
- [115] S. F. Nelsen, D. T. Rumack, M. Meot-Ner, J. Am. Chem. Soc. 1987, 109, 1373.
- [116] D. E. Richardson, C. Christ, P. Sharpe, J. R. Eyler, J. Am. Chem. Soc. 1987, 109, 3894.
- [117] W. J. Albery, Annu. Rev. Phys. Chem. 1980, 31, 227.
- [118] N. Sutin, Inorg. Chem. 1982, 30, 441.
- [119] N. Sutin, Acc. Chem. Res. 1982, 15, 275.
- [120] N. Sutin, B. S. Brunschwig, *Mechanistic Aspects of Inorganic Reactions*, ACS Symposium Series, American Chemical Society, Washington DC, **1982**, 105.
- [121] R. Cannon, *Electron Transfer Reaction*, Butterworth, London, 1980.
- [122] M. B. Comisarow, Adv. Mass Spectrom. 1980, 8, 1698.
- [123] A.G. Marshall, Acc. Chem. Res. 1985, 18, 316.
- [124] N. M. M. Nibbering, Nachr. Chem. Tech. Lab. 1984, 32, 1044.
- [125] N. M. M. Nibbering, Adv. Mass Spectrom. 1985, 10, 417.
- [126] D. A. Laude, Jr., C.L. Joklmann, R.S. Brown, D. A. Weil, C. L. Wiliams, *Mass Spectrom. Rev* 1986, 5, 107.
- [127] L. R. Anders, J. L. Beauchamp, R. C. Bunbar, J. D. Baldeschwieler, J. Chem. Phys. 1966, 43, 1062.
- [128] T. A. Lehmann, M. M. Bursey, *Ion Cyclotron Resonance Spectrometry*, Wiley Interscience, New York, **1976**.
- [129] 91:M. B. Comisarow, A.G. Marshall, Chem. Phys. Lett. 1974, 25, 282.
- [130] M. G. Comisarow, A.G. Marshall, Chem. Phys. Lett. 1974, 26, 489.
- [131] M. G. Comisarow, A.G. Marshall, Can. J. Chem. 1974, 52, 1997.
- [132] M. G. Comisarow, A.G. Marshall, Chem. Phys. Lett. 1974, 62, 193.
- [133] H. Budzikiewicz, Angew. Chem. 1981, 93, 635.
- [134] S. Ghaderi, P. S. Kulkarni, E. B. Ledford, C. L. Wilkins, Anal. Chem. 1981, 53, 2726.
- [135] C. L. Johlmann, D. A. Laude, R. S. Brown, C. L. Wilkins, Anal. Chem. 1985, 57, 426.
- [136] P. Kofel, Dissertation 1987, Universität Bremen.

- [137] A. G. Marshall, F. R. Verdun, *Fourier transform spectroscopy in NMR, optical and mass Spectrometry* Elsevier Amsterdam, **1990**.
- [138] M. B. Comisarow, A. G. Marshall, J. Chem. Phys. 1976, 64, 110.
- [139] P. W. Atkins, *Physikalische Chemie*, 1. Deutsche Auflage, VCH, Weinheim, 1988.
- [140] M. Wang, A. G. Marshall, Anal. Chem. 1988, 60, 341.
- [141] A. G. Marshall, M. B. Comisarow, J. Chem. Phys. 1979, 71, 4434.
- [142] P. Caravatti, M. Allemann, Org. Mass Spectrom. 1991, 26, 514-518.
- [143] A. G. Marshall, D. C. Roe, J. Chem. Phys. 1980, 73, 1581.
- [144] R, Schmid, V. N. Sapunov, Non-Formal Kinetics, Verlag Chemie, Weinheim. 1982.
- [145] H-H. Büker, *Dissertation*, **1992**, Universität Bielefeld, 51.
- [146] D. K. Bohme, Int. J. Mass Spectrom. Ion Processes 1992, 115, 95-110.
- [147] A. J. Chalk, L. Radom, J. Am. Chem. Soc. 1997, 119, 7573-7578.
- [148] J. Simons, J. Phys. Chem. 1991, 95, 1017.
- [149] C. Gonzales, H. B. Schlegel, J. Chem. Phys 1989, 90, 2154.
- [150] T. H. Dunning, J. Phys. Chem. 1986, 90, 344.
- [151] J. Baker, J. Comp. Chem. 1986, 7, 385.
- [152] H. B. Schlegel, J. Comp. Chem. 1982, 3, 214.
- [153] R. W. Kunz, *Molecular Modelling für Anwender*, Teubner Studienbücher, Chemie Stuttgart, **1991**.
- [154] K. Müller, Angew. Chem. 1980, 92, 1.
- [155] J. B. Foresman, A. Frisch, *Exploring Chemistry with Electronic Structure Methods*, Gaussian Inc., Pittsburgh, PA, **1996**, 272-277.
- [156] A. D. Becke, *Phys. Rev.* **1988** A 38, 3098.
- [157] C. Lee, W. Yang, R. G. Parr, *Phys. Rev B* 1988, 37, 785.
- [158] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200.
- [159] E. B. Wilson, J. C. Decius, P. C. Cross, *Molecular Vibrations*, McGraw-Hill, New York, 1955.

- [160] W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab initio Molecular Orbital Theory, John Wiley, & Sons, Inc., 1986.
- [161] D. A. McQuarrie, *Statistical Mechanics*, Harper and Row, New York, 1976.
- [162] NIST Chemistry Webbook, Nist Standard Reference Database February 2000, No. 69, Release (http://webbook.nist.gov/chemistry).
- [163] *NIST Positive Ion Energetics Database*, Vers. 1.1, National Institute of Standards and Technology, Gaithersburg (USA), **1989**.
- [164] H. Zipse, J. Am. Chem. Soc. 1995, 117, 11798-11806.
- [165] G. Bouchoux, J. Y. Salpin, D. Leblanc, Int. J. Mass Spectrom. Proc. 1996, 153, 37-48.
- [166] V. D. Parker, Y. T. Chao, G. Zheng, J. Am. Chem. Soc. 1997, 119, 11390-11394.
- [167] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.
- [168] M. J. S. Dewar, K. M. Dieter, J. Am. Chem. Soc. 1986, 108, 8075-8086.
- [169] D. M. Myton R. J. O'Brien, Anal. Chem. 1991, 63, 1201-1205.
- [170] A. D. Allen, T. T. Tidwell, Advances in Carbocation Chemistry, Volume 1, JAI Press Inc., 1989, 1-44.
- [171] S. Tajima, S. Tobita, M. Mitani, K. Akuzawa, H. Sewada, M. Nakayama, *Org. Mass. Spec.* **1991**, *26*, 1023.
- [172] S. Tajima, M. Iizuka, S. Tobita, M. Mitani, H. Sewada, T. Matssumoto, Int. J. Mass Spec. Ion Proc. 1993, 109, 55.
- [173] J. Hrušák, D. Schröder, T. Weiske, H. Schwarz, J. Am. Chem. Soc 1993, 115, 2015.
- [174] M. Carbini, L. Conte, G. Gambaretto, S. Catinella, P. Traldi, Org. Mass. Spec. 1992, 27, 1248.
- [175] S. Tajima, T. Shirai, S. Tobita, N. M. M. Nibbering, Org. Mass. Spec. 1993, 28, 473.
- [176] D. Schröder, I. Oref, J. Hrušák, T. Weiske, E. Nikitin, W. Zummack, H. Schwarz, J. Phys. Chem. A 1999, 103, 4609-4620.
- [177] T. M. Sack, D. L. Miller, M. L. Gross, J. Am. Chem. Soc. 1985, 107, 6795-6800.
- [178] Y. Wang, J. M. Tanko, J. Am. Chem. Soc. 1997, 119, 8201-8208.
- [179] E. G. Jones, A. G. Harrison, Can. J. Chem. 1967, 45, 3119-3128.

- [180] T. B. McMahon, J. L. Beauchamp, J. Phys. Chem. 1977, 81, 593-598.
- [181] D. J. McAdoo, G. Zhao, M. S. Ahmed, C. E. Hudson, C. S. Giam, Org. Mass Spectrom. 1994, 29, 428.
- [182] J. R. Cao, M. George, J. L. Holmes, Org. Mass Spectrom. 1991, 26, 481.
- [183] D. J. McAdoo, G. Zhao, M. S. Ahmed, C. E. Hudson, C. S. Giam, Int. J. Mass Spectrom. Ion Proc. 1990, 100, 579.
- [184] A. Nixdorf, H.-Fr. Grützmacher, Chem. Eur. J. in Druck.
- [185] Y. Ikezoe, S. Matsuoka, M. Takebe, A. Viggiano, *Gas phase ion-molecule reaction rate constants through 1986*, Maruzen, Tokio **1987**.
- [186] R. Thomas, J. Barrassin, A. Barassin, Int. J. Mass Spectrom Ion Phys. 1981, 41, 95.
- [187] T. Clark, M. C. R. Symons, J. Chem. Soc, Chem. Commun. 1986, 96-98.
- [188] J. C. Morrow, T. Baer, J. Phys. Chem. 1988, 92, 6567-6571.
- [189] G. P. Nagy, J. C. J. Tynne G. A. Harrison, Can. J. Chem. 1968, 46, 3609.
- [190] X. Li, J. A. Stone, J. Am. Chem. Soc. 1989, 111, 5586-5592.
- [191] T. H. Lowry, K. S. Richardson, *Mechanism and Theory in Organic Chemistry*, 3rd Ed., Harper and Row, New York, **1987**.
- [192] C. Matthias, D. Kuck, Org. Mass Spectrom. 1993, 28, 1073.
- [193] C. Matthias, K. Weniger and D. Kuck, Eur. Mass Spectrom. 1995, 1, 445.
- [194] K. Weniger, M. Jost and H.-F. Grützmacher, Eur. Mass Spectrom. 1999, 5, 101.
- [195] Z. Karpas and M. Meot-Ner, J. Phys. Chem. 1989, 93, 1859.
- [196] H.-E. Audier, D. Berthomieu and T.H. Morton, J. Org. Chem. 1995 60, 7198.
- [197] D. Berthomieu, H.-E. Audier, Eur. Mass Spectrom. 1997, 3, 19.
- [198] Zahlreiche Informationen und Literaturhinweise finden sich auf der Internetseite vom National Water-Quality Assessment (NAWQA) Program der U.S. Geological Survey (USGS): http://sd.water.usgs.gov/nawqa/vocns/, 2000.
- [199] Y. Apeloig, *The chemistry of organic silicon compounds*, Part 1 (Eds. S. Patai and Z. Rappoport), Wiley & Sons, Chichester, Chap. 2, **1989**.
- [200] A. G. Harrison, *Chemical Ionization Mass Spectrometry*, CRC Press, Boca Raton, Fl., **1992**.

- [201] J. A. Stone, Mass Spectrom. Rev. 1997, 16, 25.
- [202] H. Grützmacher, C. M.Marchand, Coord. Chem. Rev. 1997, 163, 287.
- [203] G. Frenking, S. Fau, C. M. Marchand, H. Grützmacher, J. Am. Chem. Soc. 1997, 119, 6648.
- [204] E. Uggerud, L. Bache-Andreassen, Chem. Eur. J. 1999, 5, 1917.
- [205] M. Aschi, M. Attina, F. Cacace, Angew.Chem./Angew.Chem.Int.Ed.Engl. 1995, 34, 1589.
- [206] M. Aschi, M. Attina, and F. Cacace, J. Am. Chem. Soc. 1995, 117, 12832.
- [207] G. Sini, G. Ohanessian, P. C. Hiberty and S. S. Shaik, J. Am. Chem. Soc. 1990, 112, 1407.
- [208] Z. Szilàgy and K. Vékey, Eur. Mass. Spectrom., 1995, 1, 507.
- [209] Microcal Origin 5.0, Microcal Software Inc., Northampton MA 01060 USA, 1997.
- [210] M. Allemann, H. Kellerhals and K. P. Wanczek, Int. J. Mass Spectrom. Ion Phys. 1983, 46, 139-142.
- [211] XMASS(TM) 4.0.1, Bruker Daltonics, Bruker Spectrospin AG, Bruker Analytische Messtechnik GmbH, 1997.
- [212] P. Kofel, M. Allemann, H. Kellerhals, K. P. Wanczek, Int. J. Mass Spectrom. Ion Processes 1985, 65, 97-103.
- [213] K. Levenberg, Quart, Appl. Math. 1944, 2, 164.
- [214] D. Marquardt, SIAM J. Appl. Math. 1963, 11, 431.
- [215] J. E. Bartmess and R. M. Georgiadis, Vaccuum, 1983, 33, 149.
- [216] V. G. Anicich, J. Phys. Chem. Ref. Data 1993, 22 [No. 6], 1506.
- [217] K. J. Miller and J. A. Savchik, J. Am. Chem. Soc. 1979, 101, 7206-7213.
- [218] Gaussian 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez,

M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

- [219] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
- [220] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- [221] P. C. Hariharan, J. A. Pople, Mol. Phys. 1974, 27, 209.
- [222] M. S. Gordon, Chem. Phys. Lett. 1980, 76, 163.
- [223] P. C. Hariharan, J. A. Pople, *Theo. Chim. Acta.* 1973, 28, 213.
- [224] H. B. Schlegel, J. Comp. Chem. 1982, 3, 214.
- [225] H. B. Schlegel, New Theoretical Concepts for Understanding Organic Reactions, Ed. J. Bertran, Kluwer Academic, The Netherlands, 1989, 33.
- [226] H. B. Schlegel, *Modern Electronic Structure Theory*, Ed. D. R. Yarkony (World Scientific Publishing, Singapore, **1995**.
- [227] C. C. J. Roothan, Rev. Mod. Phys. 1951, 23, 69.
- [228] J. A. Pople, R. K. Nesbet, J. Chem. Phys. 1954, 22, 571.
- [229] R. McWeeny, G. Dierksen, J. Chem. Phys. 1968, 49, 4852.
- [230] C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
- [231] C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
- [232] R. C. Binning Jr., L. A. Curtiss, J. Comp. Chem. 1990, 11, 1206.
- [233] L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, N. E. Davis, R. C. Binning Jr., L. Radom, J. Chem. Phys. 1995, 103, 6104.
- [234] M. P. McGrath, L. Radom, J. Chem. Phys. 1991, 94, 511.
- [235] D. E. Woon, T. H. Dunning Jr., J. Chem. Phys. 1993, 98, 1358.
- [236] R. A. Kendall, T. H. Dunning Jr., R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
- [237] T. H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007.
- [238] K. A. Peterson, D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 1994, 100, 7410.
- [239] A. Wilson, T. van Mourik, T. H. Dunning Jr., *J. Mol. Struct. (Theochem)* **1997**, *388*, 339.
- [240] S.W. Benson, *Thermochemical Kinetics : Methods for the Estimation of Thermochemical Data and Rate Parameters*, Wiley, New York, **1976**.