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am 12. November 2004 verteidigt und genehmigt.

Gutachter:
Prof. Dr. Gerhard Sagerer, Universität Bielefeld
Prof. Dr. Oliver Kohlbacher, Universität Tübingen
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Abstract

Protein docking is important for understanding the biological functions of proteins. Simu-
lating the interaction between proteins can give insights to the mechanisms behind these
functions. In many docking systems proteins are modelled as rigid bodies but in nature pro-
teins behave differently. Especially during, docking proteins change their conformation to
fit together optimally. In order to enhance docking results the flexibility of amino acid side
chains has to be incorporated.
Within the scope of this thesis, a classification approach to discriminate flexible and rigid
side chains is described. In order to model the flexibility, features are calculated and a sup-
port vector machine is trained. A classification of side chains can be done at high accuracy.
The gained flexibility information is evaluated using the docking system ElMaR. Using the
flexibility information shows improvements for most of the used test cases compared to
docking them without using any information about the flexibility of the structures.

Another problem in the field of protein docking is the discrimination of true and false dock-
ing predictions. In this work, the improvement of scoring docking hypotheses is addressed.
Here, a relevance feedback approach is proposed to enhance the scoring of the ElMaR
docking system. For different test cases the weighting scheme could be improved so that
true and false docking predictions could be discriminated at higher accuracy. An adaptation
of these weights to a larger set of test cases belonging to the same enzyme class shows
improvements, too.

Zusammenfassung

Für das Verständnis von biologischen Funktionen können Proteindockingverfahren ange-
wandt werden. Die Simulation der Interaktion von Proteinen ermöglicht einen Einblick in
die Mechanismen dieser Funktionen. Viele Dockingansätze modellieren Proteine als feste
Körper. Proteine sind jedoch flexibel. Besonders während des Dockens verändert sich ihre
Konformation um eine höhere Passgenauigkeit zu erzielen. Um die Ergebnisse von Docking-
vorhersagen zu verbessern, muss diese Flexibilität modelliert werden.
In dieser Dissertation wird ein Klassifikationsansatz beschrieben, um flexible und starre
Seitenketten von Aminosäuren zu unterscheiden. Merkmale werden berechnet, um die
Flexibilität zu modellieren. Als Klassifikator wird eine Support Vector Machine eingesetzt.
Es lassen sich gute Klassifikationsergebnisse erzielen. Die Klassifikationsergebnisse wur-
den zudem im Dockingsystem ElMaR evaluiert. Im Vergleich zum Docking ohne Flexi-
bilitätsinformationen werden für fast alle Testfälle Verbesserungen erzielt.

Ein anderes Problem im Bereich Proteindocking ist die Unterscheidung von richtigen und
falschen Vorhersagen. In dieser Arbeit soll die Bewertung von Dockinghypothesen des El-
MaR Systems verbessert werden. Der hier vorgestellte Ansatz beruht auf Relevance Feed-
back. Für verschiedene Testfälle kann das Gewichtungsschema verbessert werden, so dass
eine bessere Bewertung möglich ist. Eine Adaptierung der modifizierten Gewichte auf
Testfälle der selben Enzymklasse zeigt ebenfalls Verbesserungen in der Bewertung.
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Chapter 1
Introduction

Motivation

In the beginning of the 21st century molecular biology has become an emerging field in
science. Increasing economic impact on molecular genetics, biochemistry, medicine, and
pharmaceutics have driven the research in these fields fast forward. New methods from
bioinformatics provide powerful tools so that sequencing whole genomes can be done in
an industrial size and manner (Venter et al., 2001) nowadays. The number of sequenced
genomes rises fast resulting in a huge amount of data to be analysed.

Thus, the post genomic area becomes more and more emerging. In order to understand or
even to simulate whole cells the interaction between the genome, the proteome, and the
metabolome has to be analysed (Thornton, 2003; Lengauer et al., 1999).

Therefore, Proteins play an important role as they are involved in many biological systems,
e.g. cell stability, immune defence, catalysis, signal transduction, or DNA transcription. The
function and the mechanism of proteins are the main keys to describe the metabolic net-
work(s) of a cell at least. The function of proteins can be determined by the analysis of
gene expressions (Martı́nez-Cruz et al., 2003; Greenbaum et al., 2003) or sequence compar-
ison (Ward, 2001), whereas the mechanism behind a protein’s function can only be solved
by analysing the protein’s structure.

The information gained from this analysis can be applied to different fields of life sciences,
e.g. drug targeting or design. Knowing the mechanism and the structure of a protein,
specific drugs can be built which are more competitive to the ligand in nature and bind
optimally to the protein.

Another question in drug design is to built a molecule that precisely binds to the chosen tar-
get so that cross reactions will be minimised. Protein docking can help solving this problem.
Simulating the binding of two molecules can give information about the docking process.
Screening a large library of structures in a 1:N docking scenario enables drug targeting and
shows up potentially side reactions of the examined molecule. In order to receive good
results the modelling of the docking algorithm is important. First algorithms in the field
describe a protein as a rigid body. But the rigid body assumption does not hold as proteins
change their conformation, especially during docking. Therefore, the flexibility of proteins
has to be taken into account to improve the results.

1



2 Chapter 1 Introduction

Protein Docking

Protein docking describes the binding of a molecule to a protein. There are two types of
protein docking: protein–ligand docking and protein–protein docking. In protein–ligand
docking, the ligand is usually a small organic molecule or a short peptide. An example for a
protein ligand docking system is FlexX (Rarey, 1996). Protein–protein docking is the binding
of two proteins. In this thesis only protein–protein docking is considered.

Protein–protein docking can be divided into two groups of applications: the bound and the
unbound docking. In the case of bound docking a known protein complex is taken and then
split into its parts. These components are then re-docked using a docking algorithm. This
kind of docking is favourable for testing purposes (e.g. see Ackermann et al., 1998). The
more challenging task is unbound docking in which two proteins with native conformations
are docked.

In the beginning, proteins have been modelled as rigid bodies. The main assumption was
the key–lock principle (Fischer, 1894). Fischer stated that the enzyme specificity is based on
geometric complementarity of the enzyme’s binding site and the ligand. So that they fit like
a key and lock. First algorithms strictly used this assumption (c.F. Connolly, 1983b).

In 1958, Koshland (Koshland, 1958) discovered that proteins do not behave like a key and
a lock during docking but perform small conformational changes, called “induced fit”.

Besides six degrees of freedom (3 through translation and 3 through rotation) of the rigid
molecule a vast number of additional variabilities of a protein structure arises. In addition
to side chain changes, also movements of larger parts (domains) of a protein have been
reported (Gerstein et al., 1994). Searching the whole conformational space is infeasible and
therefore new search strategies have been deployed (Ewing et al., 2001; Ackermann et al.,
1998; Walls & Sternberg, 1992; Lenhof, 1997). Scoring functions using additional physico–
chemical features have been developed to rank the solutions provided by the algorithms.
But most of these algorithms neglect the flexibility of proteins and so fail to predict good
docking constellations. In order to enhance these approaches it is necessary to incorporate
flexibility information.

Therefore, the goal of this thesis is to analyse the flexibility of side chains and to model this
flexibility in order to improve rigid body docking algorithms.

Flexibility Approach

The approach described in this work models the flexibility of amino acid side chains in order
to incorporate this information into rigid body docking algorithms. Amino acids are classified
as “flexible” or “non–flexible” based on energy criteria. Besides these, also other features
like the solvent accessible surface area are used. The flexibility is calculated on unbound
proteins and is independent of the ligand. It is described by numbers, representing the
two classes: 0 for “non–flexible” and 1 for “flexible” residues. A docking algorithm can use
this information to flexibilise it’s scoring scheme. The flexibility information is calculated
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independently from the docking algorithm and therefore does not influence the running
time of the algorithm. In order to classify the residues, a threshold based classifier is used,
initially. Furthermore, a support vector machine is trained to incorporate more features
specific to residue flexibility.

The results of the flexibility predictions are evaluated on a test set of protein complexes
and their unbound partners which are automatically derived from the Brookhaven Protein
Database (Pdb) (Bhat et al., 2001). With respect to the threshold based approach Receiver
Operating Characteristic (ROC) analysis is used for evaluation. The support vector machine
is evaluated by a 10–fold cross validation.

In a second evaluation procedure the flexibility information is incorporated in the docking
system ElMaR (Neumann et al., 2002). ElMaR is an extension to the algorithm proposed
by Ackermann (Ackermann et al., 1998). Docking experiments are conducted to estimate
the impact of the flexibility information on the results of the docking algorithm.

Scoring Docking Hypotheses

The results produced by a docking algorithm (called docking hypotheses) have to be scored
in order to evaluate the accuracy of the algorithm and to discriminate good from bad pre-
dictions of a protein complex.

While the problem of searching the high dimensional conformational space to create dock-
ing hypotheses has been solved by various methods, the scoring of them is still not satis-
fying, especially the discrimination between false positive and true hypotheses as stated by
Halperin and coworkers (Halperin et al., 2002):

“Although some algorithms are able to rank correct solutions within the top hundred
or even within the top ten places for some predictive docking cases, for most com-
plexes the highest ranked structures are still false positives, i.e., solutions with a high
RMSD from the complex, a high score, and a low rank.”1

A second goal of this thesis is to show a different approach to overcome the scoring prob-
lem. In order to discriminate false positive from true docking hypotheses an approach is
presented that uses expert knowledge without modelling it explicitly in the scoring of the
docking algorithm. Therefore relevance feedback techniques are adapted from Query–by–
Content retrieval systems (QbC).

Structure of the Thesis

Following this introduction, chapter 2 introduces the biochemistry and structure of pro-
teins. Furthermore, amino acids, the building blocks of a protein are described, including

1The RMSD is the root mean square deviation. Here, it is calculated between a hypothesis and a grounded
truth, a known complex (see section 7.3.2).



4 Chapter 1 Introduction

a description of calculating the side chain torsion angles. In chapter 3 different kinds of
flexibility within proteins are outlined and recent approaches to side chain flexibility are
described. This chapter closes with a discussion of the presented approaches. In the next
chapter the ElMaR docking system is introduced. The results of the flexibility classification
are evaluated within this docking system. Therefore, the principles of the docking algorithm
and the interface for incorporating flexibility information are described. After that, energy
based approaches to side chain flexibility are presented. Besides a threshold based classi-
fier, the utilisation of a support vector machine is outlined. In order to train the classifier,
features describing the residues have to be extracted. These features are outlined as well.

A second goal of this thesis is to enhance the scoring of ElMaR. In chapter 6 an approach
using relevance feedback to estimate better parameters for the scoring function of ElMaR
is shown. Subsequently, in chapter 7 the results of the different approaches are presented.
The thesis closes with a conclusion and an outlook to further work is given.



Chapter 2
Biochemistry and Structure of Proteins - A Short
Introduction

In this chapter a brief introduction to the structure and the biochemistry of proteins is
given. First the structure of the smallest parts of a protein, the amino acids, is described
(see section 2.1). Then, the structure of a protein is outlined. The last section of this
chapter describes the forces within and between different proteins which are responsible
for flexibility and the interaction of proteins during docking.

2.1 Amino Acids

The structure of an amino acid can be divided into two components: the backbone and
the side chain. The first part is similar in all amino acids containing two functional groups:
the amino group (NH2) and the carboxyl group (COOH). They are connected via a carbon
atom (Cα). The second part, the side chain (R), defines the specificity of the amino acid (see
Fig. 2.1).

Cα

R

HOOC

H

NH2

Figure 2.1: Structure of an amino acid, R denotes the side chain.

In nature, there exist twenty different types1 of amino acids (see Appendix C). According to
the structure of the side chain, the amino acid can be grouped into apolar, polar, uncharged,
or charged side chains (see Stryer, 1996, p. 46).

The geometry of the side chain is determined by the torsion angles of the bonds mediating
the atoms of the side chains. The number of torsion angles of a side chain ranges from zero

1Besides these, two other amino acids have been found, selenocystein and pyrrolysine. Both are based on
standard amino acids (serine and lysine) which are enzymatically modified while attached to a tRNA (Atkins
& Gesteland, 2002). Since these two residues are very special, they are not considered in this work.
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6 Chapter 2 Biochemistry and Structure of Proteins

for Glycine (GLY) to four in case of Arginine (ARG) and Lysine (LYS). The torsion angles are
calculated using the coordinates of four surrounding carbon atoms (of the side chain) to set
up two planes (see Fig. 2.2). The planes are set up using the vectors ~v1,~v2 and ~v2,~v3. The
angle between the intersecting planes defines the torsion angle (χ). It is equivalent to the
angle of the intersecting normals ~a and~b of the planes:

χ = arccos
〈~a,~b〉
‖~a‖‖~b‖

(2.1)

Because the arccosfunction is only defined on the interval [−1,1] and takes values from 0
to π, the sign has to be calculated to decide whether a torsion angle lies within the range
[−π,0] or [0,π]. The sign (s) of the torsion angle can be determined by:

s= sgn(cosx) =
〈~v2,(~a×~b)〉
‖~v2‖‖(~a×~b)‖

(2.2)

Here, cosx describes the orientation of the normals to each other. A positive value states
a parallel orientation of the normals and the sign of χ is positive. A negative value thus
determines a negative sign for χ.
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ATOM 1

ATOM 2

ATOM 3
ATOM 4

.

χ

χ
����

��

��
����

����

Figure 2.2: Calculation of the torsion angles. The thick, solid line represents the bonds, atom 1
to 4 the carbon atoms of the side chain. The dashed lines are drawn to visualise the planes.

Their subscripts are enumerated according to their position in the side chain, e.g. the first
torsion angle χ1 describes the rotation of the bond between the Cα and the first side chain
carbon atom, called Cβ (see Fig. 2.3).

In the case of Glycine (see Fig. C.8) the side chain is comprised of only one hydrogen atom
and therefore a calculation of a torsion angle cannot be performed. Alanine (ALA) has no
torsion angles because its side chain consists only of a methyl group (CH3). Again like for
Glycine the number of carbon atoms for calculating a torsion angle is not sufficient (see
Fig. C.1). The side chain of Proline (PRO) is special because it is bound to the backbone
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Figure 2.3: Naming of the torsion angles. Here, also the backbone torsion angles φ and ψ are
shown.

forming a loop (see Fig. C.15). Due to these special properties, these three amino acids are
not considered in the flexibility predictions presented here.

If an amino acid is solvated, it becomes a zwitterion which means that the carboxyl group
looses a hydrogen atom to the solvent whereas the amino group receives an extra hydrogen.
This results in a doubly charged molecule, carrying a positive and a negative charge at the
same time. In this state, two amino acids can perform a reaction emitting a water molecule
to the solvent, forming a dipeptide. The bond between the two amino acids is called peptide
bond. It is planar and inflexible and therefore influences the three-dimensional structure of
a protein.

If other amino acids successively bind to the dipeptide, a polypeptide chain is created. If
this chain is longer than 35 amino acids it is called a protein. Shorter chains are referred to
as peptides.

Figure 2.4: Reaction of two amino acids forming a dipeptide.
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2.2 Proteins

Proteins are built up from amino acids which are also referred to, in this context, as residues.
Like amino acids, a protein chain has an amino group at one end, the so called N-terminus
and a carboxylic group on the other, the C-terminus. The backbone of a protein is defined by
the repeated sequence of the atoms N (of the amino group), Cα, and the C of the carboxylic
group. In figure 2.5 the backbone is highlighted by the coloured ball and stick model. The
tube in shiny blue illustrates the peptide chain.

Figure 2.5: Backbone of a protein. The backbone carbon atoms are coloured in green and the
nitrogen is coloured in blue. The red balls represent oxygen atoms.

The main characteristic of a protein is its well-defined three-dimensional structure which
specifies the function. The backbone, C-terminus, and N-terminus form the primary struc-
ture of a protein. Besides the primary structure, there exist other important structural ele-
ments of a protein. The secondary structure consists of folded parts of the primary structure.
There are two main types: the α–helix (see Fig. 2.6) and the β pleated sheet (see Fig. 2.7).
They can occur on different sections of the primary structure depending on the sequence of
the amino acids.

An α–helix has a regular and tight rod like structure. The inner part of the rod is formed
by the backbone atoms of the polypeptide chain. The side chains of the residues extend to
the outside, away from the backbone. An α–helix is stabilised by hydrogen bonds between
the amino (NH) and the carbonyl group (CO) of the backbone atoms (see Fig. 2.6). The CO
group of each residue is connected to the NH group of the fourth successor of the amino acid
sequence. The connection between two residues of an α–helix is defined by a rise of 1.5Å
and a rotation of 100◦. Therefore a turn of an α–helix consists of 3.6 residues. Its rotational
direction is clockwise (right–handed) for most proteins. Besides this regular α–helix, there
exist other special types like 310–helix or π–helix.
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Figure 2.6: Scheme of an α–helix. On the left side a schematic figure, on the right the residues
are added for convenience. The thick red lines indicate the stabilising hydrogen bonds.

In contrast to an α–helix, a β (pleated) sheet (also called β–strand) is long and planar, and the
polypeptide chain is almost fully extended. The distance between adjacent residues is about
3.5Å and a β–sheet is stabilised by hydrogen bonds between NH and CO groups in different
strands (see Fig. 2.7). Adjacent chains of a β–sheet can run in parallel and anti-parallel
direction.

A super secondary structure or motif is a certain arrangement of two or more adjacent sec-
ondary structure elements. Examples are the helix–turn–helix, helix–loop–helix, or the hair-
pin β motif. Brandon and Tooze (Brandon & Tooze, 1999) give a detailed description of all
common motifs found in proteins.

Several motifs can be combined forming a domain. Domains are compact globular structures
of a protein that usually carry a certain function. Proteins can have more than one domain,
each with a different function. These proteins are also called multi–domain proteins. Pro-
tein structures can be classified according to their domain and motif structures. There are
three main groups: α domains, β domains, and α/β domains. Databases like SCOP (Murzin
et al., 1995) or Cath (Orengo et al., 1997) classify proteins into families according to this
nomenclature.

The totally folded three-dimensional structure, including all secondary structure elements
and domains is called tertiary structure (see Fig. 2.8(a)). The term tertiary structure is there-
fore a “container” describing the whole three-dimensional fold of the polypeptide chain.
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Figure 2.7: Antiparallel β–sheet. On the left side a schematic figure, on the right the residues
are added for convenience. The thick red lines indicate the stabilising hydrogen bonds.

(a) Tertiary structure of a pro-
tein. Here, Trypsin (taken from
Pdb code 1TAB) is shown.

(b) Quaternary structure of a protein.
Here, Deoxyhemoglobin A (Pdb code
1A00), involved in oxygen transport is
visualised. This protein is built up of
four chains.

Figure 2.8: Tertiary (left) and quaternary structure (right) of proteins.
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Sometimes, a protein does not only consist of one polypeptide chain but is build up from
many subunits (polypeptide chains). Together, the different parts enable a certain biological
function. The three-dimensional formation of these chains is called quaternary structure (see
Fig. 2.8(b)).

2.3 Inter- and Intramolecular Forces

Besides the structure of a protein, the forces within and between proteins are important.
Intramolecular forces determine the stability of a structure whereas intermolecular forces
determine the interactions between structures. Both types of forces influence the flexibility
of a structure. In this chapter these two types of forces are described. Here, only an overview
is given. In detail discussion of the different forces and their modelling is described by
Goodman (Goodman, 1998) or Leach (Leach, 1996).

2.3.1 Bonded Interactions

Bonded interactions are of intra-atomic type. They are determined by the mediating bonds
of two atoms. There are three different types, the bond stretching, angle bending, and
torsional variations (rotation of a bond). Figure 2.9 illustrates the three types. These intra-

(a) bond stretching

θ

(b) angle bending

φ

(c) torsion of a bond

Figure 2.9: Three types of bonded interactions in a molecule.
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atomic forces do not occur alone but in combination, e.g. stretch–torsion or stretch–bend
as well as stretch–stretch in case of three connected atoms. The bond stretching energy can
be simply described by the Hook’s law:

Estretch= Kstretch
i j (r i j − req

i j )2 (2.3)

where i, j are the corresponding atoms of the bond. Kstretch
i j is the bond stretching constant

specific for the bond i, j, and r i j is the current distance between i and j or the bond length,
req
i j is the equilibrium bond length. Similar to this, the angle bending can be described as a

harmonic potential, here using the angle θ:

Ebending= Kbending(θ−θeq)2 (2.4)

The torsion energy depends on the angle φ. This energy can be modelled by a cosine function

Etorsion =
Vn

2
[1+cos(nφ− γ)] (2.5)

where Vn gives a qualitative indication of relative barriers to the rotation. Here, n is the multi-
plicity, giving the number of minimum points in the function as the bond is rotated through
360◦ and γ is the phase factor determining where the torsion angle passes its minimum
value. For details about the parameters refer to Leach (Leach, 1996) or Goodman (Good-
man, 1998).

2.3.2 Non–bonded Interactions

Besides the intra–atomic forces, there are also non–bonded interactions: electrostatic and
van der Waals. As the term non-bonded indicates, these interactions are not bound to
bonds but to the interactions between atoms or molecules.

Electrostatic interactions occur between charges. Atoms consist of two charged elementary
particles, the protons and the electrons. Protons are positively charged whereas electrons
carry a negative charge. Atoms with a different number of protons and electrons are called
ions bearing a positive or negative net charge. But also atoms with an equal amount of
protons and electrons may have a charge distribution that lead to regions of positive or
negative charges, so called partial charges. The interaction of these charges can be calculated
by the Coulomb’s law:

EES=
1

4πε0

q1q2

r
(2.6)

EES is the energy resulting of the charges q1,q2 (e.g. of two atoms) having a distance of r.
The constant factor ε0 describes the permittive vacuum. An electrostatic interaction can be
attractive (+-) or repulsive (- -), according to the signs of q1 and q2. The force of this energy
is given by the gradient of the energy:

~FES=−∇EES

=− 1
4πε0

q1q2

r3 ~r
(2.7)
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Figure 2.10: Lennard–Jones potential, the van der Waals energy is distance dependant.

The van der Waals interaction describes non–bonded interactions consisting of an attrac-
tive and a repulsive part. On bases of induced dipole – dipole effects charges fluctuate to
neighbouring atoms leading to an attractive electrostatic interaction. Simultaneously, a re-
pulsive force occurs resulting from the pauli exclusion principle due to unfavourable energies
of overlapping or inter-penetrating electron clouds of the two approaching molecules. The
interplay of these two forces leads to an intermolecular potential function, called Lennard–
Jones potential.

As shown in figure 2.10 the van der Waals energy is nearly zero for great distances of two
atoms or molecules. At intermediate distance the energy is negative resulting in an attrac-
tive force whereas for short distances the energy is exponentially high resulting in a strong
repulsion. The most common description of this potential is given by

EvdW =
A

r12 −
B
r6 (2.8)

where A and B depend on the atoms involved and r is the distance between them.
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Chapter 3
Flexibility within Proteins

In the following chapter, the flexibility within proteins is described. Already in 1958,
Koshland (Koshland, 1958) analysed the specificity of enzymes. On different examples he
showed that the “key and lock principle” does not explain all enzyme reactions. Thus, he
proposed conformational changes occurring during the enzyme reaction, enabling an in-
teraction with the substrate. He also stated that this change is induced by the substrate.
Further analyses of protein structures revealed two types of flexibility: domain movements
and side chain flexibility.

Although the main focus in this thesis is side chain flexibility, a brief introduction to domain
movements is given in section 3.1. Side chain flexibility is described in section 3.2. Here, an
overview of recent research work on side chain flexibility is included, additionally. Knowl-
edge about side chain flexibility is worthwhile because it can be used to enhance rigid body
docking algorithm, resulting in more precise predictions of complex structures. An overview
about docking systems modelling flexibility is outlined in section 3.3. A discussion of the
different approaches closes this chapter.

3.1 Domain Movements

Domain flexibility is the movement of larger parts of a protein, e.g. motifs or even domains
(see section 2.2). In contrast to side chain flexibility these movements include a conforma-
tional change not only within single residues, the backbone is influenced as well. Domain
movements typically occur at a hinge point, allowing the structure on the left and on the
right of this point to move (see Fig. 3.1). Exemplarily, in case of T4 lysozyme (Faber &
Matthews, 1990), in the catabolite gene activator protein (Weber & Steitz, 1987) as well
as on binding flexible ligands (Urzhumtsev et al., 1997) and antigen–antibody binding (Rini
et al., 1990) domain movements have been reported. Gerstein and colleagues (Gerstein
et al., 1994) have analysed and classified domain movements into two groups, shear and
hinge bending. Recently, Echols and coworkers (Echols et al., 2003) set up a database called
“Molecular Movements Database” collecting domain movements. These are classified ac-
cording to their type of motion (shear or hinge) and according to their domain type using
Cath (Orengo et al., 1999). Docking algorithms modelling domain movements are proposed
by different researchers (Sandak et al., 1998; McCammon et al., 1976; Mao & McCammon,

15
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Figure 3.1: Domain movement of T4 lysozyme mutants at a hinge point (taken from Molecular
Movements Database (Echols et al., 2003)). In this figure,several steps from an animation
of the hinge move are superimposed. The starting conformation is given in blue, the final
conformation is coloured red, intermediate steps are shadowed in grey. The left part remains
rigid whereas the right part changes differently.

1984; Colonna-Cesari et al., 1986). Sandak for instance, uses a General Hough Transforma-
tion to simulate the domain movements. In a preprocessing step so called hinge points have
to be defined as reference points. At each hinge point full three-dimensional rotation of
the parts attached to the hinge is allowed. Docking hypotheses are then scored by a voting
scheme.

3.2 Side Chain Flexibility

Side chain flexibility in contrast to domain flexibility is bound to local changes within the
conformation of the residues. It usually occurs on the surface and around the active site of
the protein.

Conformational changes within residues can only occur at the torsion angles of the side
chain and at the backbone angles φ and ψ (see Fig. 2.3, page 7). Since a rotation of a
torsion angle around 360◦ is (theoretically) possible, the angle space is discretised into so
called rotamers. According to IUPAC (IUPAC-IUB Commission on Biochemical Nomenclature
(CBN), 1967), the rotamers are defined by the ranges as given in table 3.1.

The first row of table 3.1 shows the angle ranges based on the hybridisation of the carbon
atom connected to the rotated bond. Here, it has a sp3 hybridisation which means that
atoms connect via bonds to this carbon atom are placed at the corners of a tetrahedron. This
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Figure 3.2: Side chain flexibility on the example of a bovine trypsin inhibitor (1BPI). The origi-
nal structure (blue) is superimposed onto the corresponding part (red) bound to a beta-trypsin
(2PTC). Differences in the side chain conformation can be observed in front (LYS 15) and on
the right (ARG 17).

hybridisation occurs for the χ1 torsion angle of all residues, the χ2 of Arginine, Glutamine,
Glutamic acid, Isoleucine, Leucine, Lysine and Methionine as well as on the χ3 of Methionine
and the χ3 and χ4 of Arginine and Lysine. The second row of table 3.1 defines rotamers
based on a sp2 hybridisation of the torsion angles which corresponds to planar structures of
adjacent bonds of the carbon atom. This hybridisation can be found in branched side chains
like Asparagine, Aspartic acid, or Glutamine and Glutamic acid. The last row of table 3.1
describes rotamers of side chains with ring systems (e.g. PHE). Here, a planar structure of
the bonds and atoms connected to the Cβ carbon atom is also present. Due to these steric
features of the side chains’ ring system, only two rotamers can be observed (see Koch,
2003).

First research work analysing residue conformation was carried out by Janin and Wodak (Janin
& Wodak, 1978). They compared the distribution of torsion angles of a small set of 19 pro-
tein structures from Pdb to energy landscapes received by simple energy calculations on a

hybridisation g− t g+

sp3 0–120◦ 120–240◦ 240–360◦

sp2 30–90◦ 330–360◦,0–30◦ 270–330◦

sp2 30–150◦ 330–360◦,0–30◦

Table 3.1: Definition of the rotamer ranges. In the first row, rotamers according to IUPAC
nomenclature are shown, the second and third row show additional rotamer definitions ac-
cording to Dunbrack and Karplus (Dunbrack & Karplus, 1993).
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tri-peptide ALA-X-ALA where X is the residue in question. The used energy function con-
sisted of two terms, a torsion angle potential and the van der Waals potential.

The results from the energy calculation on the residue conformation correlate with the dis-
tributions of the torsion angles, e.g. a high frequent torsion angle value corresponds to a
low energy value, whereas rotamer boundaries correlate to high energy bounds. The distri-
bution of the χ1 torsion angle is tri modal for all residues, favouring the g+ rotamer, whereas
the distribution for the χ2 angle showed different characteristics for the different side chains
(e.g. branched, aromatic, etc).

From the distributions of torsion angles probabilities for a certain conformation can be de-
rived. This information is compiled into so called rotamer libraries. Several different rotamer
libraries have been set up (Bower et al., 1997; Lovell et al., 2000; Ponder & Richards,
1987; Tuffery et al., 1997). The libraries differ in the amount of used data (usually unbound
structures), the method used to calculate the probabilities (e.g. Dunbrack and Bower uses
Bayesian statistics and some hyper distributions to fit the probabilities, whereas Tuffery et
al. describe their rotamers from cluster analysis) and whether the backbone torsion angles
are included or not. In the first case the libraries are called backbone dependent, in the latter
backbone independent. They are mainly applied in folding task or used for conformational
sampling (Althaus et al., 2002).

Rotamer libraries have been extended by Schrauber and coworkers (Schrauber et al., 1993).
They analysed the rotamericity of side chains to improve the rotamer library of Ponder and
Richards (Ponder & Richards, 1987). A torsion angle is considered as rotameric if it does not
differ more than 20◦ from the mean of the rotamer.

Koch (Koch, 2003) instead compiled a rotamer library especially for the protein–protein
docking. In contrast to the other rotamer libraries the protein structure data is divided into
complexes and unbound structures. The probabilities for the side chain conformations are
calculated using a so called language model, a statistical approach used within the field of
speech recognition, enabling precise estimates of rotamer probabilities for higher torsion
angles (χ3 and χ4). On the basis of these distributions flexibility information is derived by
comparing bound and unbound structures.

Most approaches to side chain flexibility are based on comparison of bound and unbound
protein structures. Hubbard and Thornton (Hubbard et al., 1991) analysed the conforma-
tional changes of proteolytic sites and compared them to serine proteinase inhibitors in
bound state. They used a least–squares algorithm to superimpose the structures. Parameters
like main-chain torsion angles, accessibility, mobility, and protrusion indices have been cal-
culated. Hubbard et al. stated that for cleavage of these structures by the serine proteinase
the proteolytic sites have to alter their conformation radically. Betts and Sternberg (Betts &
Sternberg, 1999) compared complex and unbound structures also by super-imposition.

Zhao and colleagues (Zhao et al., 2001) analysed side chain flexibility within unbound pro-
tein structures. Therefore they paired homologous proteins and compared their torsion
angles. Side chain flexibility was evaluated by plotting the distribution of torsion angles as
histogram and plotting the torsion angles of each pair and residues. The histogram shows
the already known distributions described by Bower and his colleague Dunbrack (Bower
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et al., 1997) or Janin (Janin & Wodak, 1978). The plotting of the paired residues shows
differences of the residues torsion angles (points off the diagonal) within the paired pro-
teins. Significant levels are set up for each amino acid type to reflect its environments and
structure.

Najmanovich and coworkers (Najmanovich et al., 2000) analysed changes on receptor pro-
teins upon ligand binding. On a test set of bound and unbound protein structures they
investigated the flexibility of side chains of residues in the active site. Najmanovich stated
that only few residues within the binding pocket change their conformation upon binding
but within these large and polar residues (e.g. LYS, ARG) tend to be more flexible than other
amino acid types.

Beside methods comparing protein structures (either unbound or bound structures) the in-
fluence of the environment to side chain flexibility is analysed. McGregor and cowork-
ers (Mc Gregor et al., 1987) examined the influence of the secondary structure to side chain
conformations. They stated that within the fixed and well ordered structures of helices or
β–sheets the distribution of side chain torsion angles changes significantly towards one ro-
tamer in favour. The first torsion angle (χ1) is influenced most due to its short distance to
the backbone but also higher torsion angles (χ2,χ3,χ4) are influenced.

Koch (Koch, 2003) analysed within her Phd thesis also the influence of the secondary struc-
ture to side chain flexibility. In contrast to the work of McGregor, she also included amino
acids at the end of a helix or sheet. On comparing three cases of residue environments Koch
stated that the more restricted the environment is, the less flexible the residues are.

Statistics on amino acid conformations are also required in the field of structure prediction.
In the field of homology modelling preferences of rotamer combinations are helpful to build
valid models. Ogata and Umeyana (Ogata & Umeyana, 1998) analysed the influence of envi-
ronmental residues to torsion angles within homologous proteins. Side chain conformations
are modelled using principle components calculated on residues atoms.

Wilson and coworkers (Wilson et al., 1993) used an energy based rotamer search to find an
optimal rotamer combination while modelling homologous proteins. Beside force field cal-
culations including a solvation term the conformational searching is started from a rotamer
library providing side chain conformations. Side chains in different conformations (according
to the rotamer library) are placed around a center residue which is chosen at random. Then
iteratively for this environment the globally best combination of side chain conformations is
searched using the force field as score function.

Leach and Lemon (Leach & Lemon, 1998) proposed an algorithm to search the conforma-
tional space of protein side chains using the Dead End Elimination theorem (DEE) and A∗

search. The DEE is used to identify the global minimum energy conformation (GMEC) of side
chain rotamers, eliminating those conformations not contributing to the GMEC. A∗ search
is a method for finding a “least cost” path in a tree or a graph from the root node to a goal
node. It has two components, the one calculates the cost getting from the root to the actual
node, the other uses heuristics to estimate the cost to reach the goal node from the actual
position. The costs of a path are calculated using DEE.
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3.3 Protein Docking using Flexibility Information

Protein docking is usually separated into protein–ligand docking and protein–protein dock-
ing. The difference between the two directions is determined by the size of the molecule
docked to a specific protein. In protein–ligand docking usually small molecules are used
whereas protein–protein docking deals with the docking of two proteins.

In both cases flexibility can not be neglected. Small ligands can change their conformations
as well, especially if they are peptides.

3.3.1 Flexibility Information used in Protein–Ligand Docking

In protein–ligand docking flexibility is often only allowed for the ligand and the receptor
is kept rigid. In FlexX (Rarey, 1996) ligand flexibility is handled e.g. by a fragment based
method. Here, the fragments of the ligand are fitted incrementally into the receptor site.
The fitting is done by pose clustering (Rarey et al., 1996).

Claussen and colleagues (Claussen et al., 2001) have proposed an approach also modelling
receptor flexibility, called FlexE. FlexE docks flexible ligands into an ensemble of receptor
structures which represents the flexibility of the receptor. All structures of an ensemble are
superimposed. Then, side chain conformations and backbone parts are clustered to create a
“united protein description”. After that, an incompatibility graph is applied to exclude parts
that can not occur simultaneously.

Within the DOCK system Ewing and coworkers (Ewing et al., 2001) provide an approach
called “anchor and grow”. Here, similar to FlexX the ligand is divided into segments based
on rotatable bonds (the anchors) and rigid segments. At first the anchors are docked and
good hypotheses are searched. Then the conformations are extended by adding additional
segments. A pruning step avoids the exponential growth of the search step.

AutoDock (Morris et al., 1996) is also a protein–ligand docking program using conforma-
tional searching with a grid based energy evaluation on bases of the Amber force field (Cor-
nell et al., 1995; Weiner et al., 1984).

The GOLD program (Jones et al., 1997) uses a genetic algorithm approach for docking flexi-
ble ligands into a rigid active site of a protein. The flexibility information of the ligand and
the protein is coded into a binary string to simulate genetic mutations. Here each rotatable
bond is used. Its variability is allowed from -180◦ to 180◦ with a step-size of 1.4◦. The
algorithm performs quite well but there are some limitations. For each docking run the size
and the position of the active site have to be determined. As genetic algorithms produce
solutions on random “mutations” the results may vary from one experiment to the other.
Therefore several experiments have to be done in order to verify the results. This is rather
time consuming.

A completely different approach is proposed by Nagata and coworkers (Nagata et al., 2002).
They apply a force feedback mechanism to explore the molecular potential field of proteins
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and ligands. The potentials are calculated by GRID potential energies and a force feedback
joystick is used to move (dock) a ligand to a given protein. The electrostatic force is returned
to the force feedback device to guide the user moving the ligand in real time. The system
also prevents collisions so that the molecules do not stick together.

3.3.2 Flexibility Information incorporated in Protein–Protein Docking

First protein–protein docking algorithms (Ackermann et al., 1998; Lenhof, 1997; Walls &
Sternberg, 1992) in the field have been based on the rigid body assumption, ie. modelling
the proteins as rigid bodies. Ackermann uses a voxel representation to model the proteins.
On bases of a surface segmentation according to physico–chemical features (charge, hy-
drophobicity) into regions a cross correlation on complementary parts (convex/convex or
concave/concave) is done to generate docking hypotheses. The original work of Ackermann
is extended by a soft volume model (Neumann et al., 2002) to enable flexibility (see also
section 4.2).

Lenhof (Lenhof, 1995) represents the protein surface by triangles (set up from surface
points). Docking hypotheses are generated by geometric hashing, searching for similar tri-
angles and their transformations. The number of transformations is reduced using a local
complementarity criterion. This criterion is extended by additional fitness functions mod-
elling physico–chemical features (Lenhof, 1997).

The algorithm of Lenhof was extended by Althaus and coworkers (Althaus et al., 2002) to
semi flexible docking. Flexibility is handled by a combinatorial approach using a multi-
greedy and a branch–&–cut algorithm to search a minimum energy conformation among
possible side chain conformations. This approach is called “side chain de-mangling”. Based
on the rotamer library of Dunbrack the residues are decomposed into two distinct sets, one
holds residues having rotamers and belonging to the binding site, the other one holds the
rest of the residues. The optimal combinations of rotamers yielding the lowest total energy
is then obtained by multi greedy or branch–&–cut search. Additionally the search space
is reduced using the DEE theorem (cf. Leach & Lemon, 1998). The resulting side chain
conformations are then minimised using the Amber force field. Finally the free energy of
binding is determined to evaluate the docking hypothesis.

Kohlbacher (Kohlbacher et al., 2001) proposed an alternative docking approach using nu-
clear magnetic resonance spectroscopy (NMR) to avoid time consuming calculations of the
free energy of binding. In order to score a predicted complex, 1H–NMR spectra of the
complex and the hypothesis are compared. The NMR spectrum of a docking hypothesis
is received by calculating the chemical shifts for each proton of the protein complex. The
spectrum of the reference complex was calculated from Pdb structures.

Other approaches apply so called soft shells. Here, a region of the protein surface is marked
as “soft”, allowing steric clashes within this area. Jiang (Jiang et al., 2002) for instance
use varying sizes of their voxel representation of the surface and a cut off criterion for vol-
ume overlaps. The best parameters are estimated by statistical analysis of docking runs.
Fernández–Reccio and coworkers (Fernández-Recio et al., 2002) utilise grid–based potential
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functions to make the surface of the unbound proteins soft. The potentials are refined by
extensive Monte–Carlo simulation.

Sandak and coworkers (Sandak et al., 1998; Verbitsky et al., 1999) focused on domain
movements (see section 3.1) and used a General Hough Transform to simulate the domain
movements. In their approach proteins are represented by the 3D coordinates of the back-
bone carbon atoms (Cα). The algorithm is divided into a preprocessing step and a recog-
nition step. In the preprocessing a hinge point is chosen so that it divides the set of Cα
atoms into a pair of ordered sets. The hinge is used to define a reference frame. A so called
frame–invariant is defined to describe invariant features of the protein shapes. For each
frame-invariant a transformation between its coordinate frame and the reference frame is
calculated and stored with the frame–invariant (called R–Table). In the recognition phase
the frame invariants of the target protein are matched to the one of the model protein
(which is pre-processed) to find candidate transformations of the protein parts. Candidates
are scored by votes which are increased if they already exist in the R–Table.

Lorber and colleagues (Lorber et al., 2002) propose an algorithm that uses multiple residue
conformations and substitutions to model the flexibility during docking. The basic assump-
tion here is that each side chain conformation is independent of each other and the whole
protein conformation is additive. Therefore in a preprocessing step multiple low energy
conformations for each flexible residue (selected among all residues of the protein) are cal-
culated. This ensemble of pre-generated conformations is then processed into a hierarchical
data structure and an optimisation of this structure is performed to speed up the docking
procedure later. Beside the identification of similar conformations of residues within the
ensemble, the atoms of a side chain are ordered by their position in the chain to prune
immediately steric clashes. During docking (using the program DOCK) first the rigid parts
(backbone, buried residues) of the protein are positioned and then the side chain conforma-
tions are explored until one meets the docking requirements. After that the remaining side
chain conformations are investigated and those clashing are pruned. The whole conforma-
tion of the ligand is then set up out of the best side chain conformations.

3.4 Discussion

In the sections 3.2 and 3.3 approaches to model side chain flexibility and the application of
side chain flexibility to protein–protein docking have been described. Side chain flexibility
is important in all areas where proteins are involved, e.g. protein structure prediction or
protein interactions.

There are in principle two major directions for modelling side chain flexibility. On the one
hand the flexibility of a side chain is modelled by the distribution of torsion angles (e.g.
rotamer libraries) and probabilities of changing a rotamer. On the other hand side chain
flexibility is handled as a combinatorial problem of placing the side chain with an optimal
conformation (e.g. side chain de-mangling, conformational searching).
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Rotamer libraries are an appropriate method for describing favourite conformations of side
chains and therefore can be used as basis for further investigations. But the flexibility in-
formation itself can not be extracted from these libraries, a structure comparison is needed
(cf. Koch, 2003).

Conformational searching and side chain placement aim to predict a structure or docking
constellation and therefore often use rotamer libraries to reduce the amount of possible
solutions. The flexibility is not modelled explicitly (cf. Althaus et al., 2002) as a placement
is only valid within the current situation and not in general.

Besides this, the modelling of the docking algorithm also plays an important role in how
the flexibility information has to be calculated. Algorithms based on a voxel representation
(like ElMaR) underlie an abstraction from the atomic model. A benefit of this is a gain in
speed. But side chain flexibility is calculated on the torsion angles and therefore cannot be
efficiently modelled into this representation directly. An application of a “soft shell” tries to
handle the flexibility but it is to coarse.

Algorithms operating close to the atomic model instead can use placement techniques for
the calculation of docking hypotheses. This results in more precise predictions but the
conformational searching is more time intensive than the voxel representation. So there is a
tradeoff between accuracy of the results and the computational speed of the algorithm.

Using NMR techniques to score and predict docking hypotheses (Kohlbacher, 2000) one
could avoid modelling the flexibility as it is included within the spectra by default. But then,
the shift predictions have to be modelled efficiently. Also, a distance or score between the
reference spectrum of the known complex and the hypothesis has to be defined. Another
unsolved problem of this approach is the lack of publicly available experimental data.

The only way to handle large amounts of data like in a 1:N protein–protein docking scenario
is to set up a hierarchy of algorithms to filter the large search space efficiently. Flexibility
information has to be added to each level depending on the used algorithms. Besides this
the scoring of possible hypotheses is very important, too. Filtering out a large number of
false predictions and keeping only the best hypotheses at the beginning of such a cascade
will save time. This time can then be spend on the selected hypotheses.

The ElMaR system (Neumann, 2003) is designed as such a part or module of a cascade. It is
very fast. In this thesis a classification approach is described to provide flexibility information
to the ElMaR system in a way so that the run time is not affected much but the results
improve. In contrast to other algorithms (e.g. Hubbard et al., 1991; Betts & Sternberg,
1999) this approach is based on unbound proteins alone. A flexibility prediction is made on
the basis of features characterising the residues. The classification has to be done only once
as the protein structure information will not change.

Further the scoring of the ElMaR system will be improved by introducing relevance feedback
to re-order the list of hypotheses. Using feedback, special requirements to the data can be
easily incorporated without modifying or redesigning the scoring function. A comparison
of docking hypotheses can be done on basis of the feature geometry, hydrophobicity and
charge (which can be visualised to the structure) within an ElMaR result set.
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The results of this level of a cascade of docking algorithms can be scheduled to further
modules with a more complex modelling of the docking process or more time consuming
scoring function (e.g. energy based scoring).



Chapter 4
Protein–Protein Docking using
the ElMaR System

The main goal of this thesis is to set up a classifier to discriminate residue side chains ac-
cording to their flexibility. In order to test the accuracy of this approach the results of the
classification are incorporated into the docking system ElMaR.

ElMaR is a protein–protein docking system using an algorithm based on a soft volume model
to dock proteins. In section 4.1 an outline of the docking system is given. ElMaR can handle
local flexibility information to improve its predictions of protein complexes. In section 4.2
the incorporation of the flexibility information is shown.

4.1 Docking System ElMaR

The ElMaR docking system (Neumann, 2003) is a further development of the algorithm pro-
posed by Ackermann and coworkers (Ackermann et al., 1998). In this approach the three-
dimensional structure of a protein is discretised into a voxel1 representation (see Fig. 4.1).
From this voxel representation the surface is segmented into a set of concave or convex
regions. In order to include physico–chemical properties, the protein’s hydrophobicity and
charge values of the residues are mapped onto the surface. A match between compatible
regions (convex/concave or concave/concave) provides initial docking hypotheses. These
are then refined by a cross correlation of the features attached to the surface which score
the hypotheses. The algorithm is very fast as this correlation is handled by a fast Fourier
transformation. The docking of two proteins can be done in less than 20 minutes2.

The work of Ackermann focused on bound docking, using a small set of 34 protein complex
structures. A docking was performed by breaking the complexes into their parts and then
re-docking them again. This approach has been extended by the work of Neumann (Neu-
mann, 2003) introducing a soft volume model and applying unbound protein docking to the
algorithm. An interface for flexibility information has also been provided and the algorithm
has been enhanced by technical aspects like parallel execution of the docking modules (see

1A voxel is a three-dimensional pixel.
2Run times have been estimated on a Compaq Alpha 500 Personal Workstation.
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(a) Surface, representation as voxel (b) Contact region, representation as voxel

Figure 4.1: Voxel representation of a beta-trypsin complex (2PTC). The structure is visualised
using the visualisation tool ViWish (Klein et al., 1996).

Figure 4.2) to increase the speed of the algorithm and therefore be able to process a large
amount of data (see Neumann, 2003, chapter 5 for details).

Final Docking Final Docking Final Docking Final Docking 

Validator

Flexibility Server
Docking Scheduler

Docking Scheduler

Feature Server Feature Server

Segment ServerSegment Server

Quick DockingQuick DockingQuick DockingQuick DockingQuick Docking

Voxel Server

PDB Server

Voxel Server

Figure 4.2: Integration of flexibility information into the ElMaR docking system. The flexibility
information is included into the “FinalDocking” module. Courtesy of Neumann (Neumann,
2003).
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4.2 Incorporating Flexibility into the Docking System ElMaR

The ElMaR docking system uses flexibility information, especially information on local changes
of the protein’s conformation to set up a soft volume model. The soft volume model tries
to make the rigid modelling of structures more flexible. The flexibility of amino acid side
chains can be described e.g. by rotamer statistics (Koch, 2003) or like in this thesis by a
classification approach (see chapter 5).

In order to keep the speed of the ElMaR docking system the flexibility information has to
be accessed fast. Because of this the calculation of flexibility information is done indepen-
dently from ElMaR and can be selected as the runtime requirements allow (see Fig. 4.3).
If a docking run should be finished in short time, no or flexibility derived from rotamer
changes should be included. If more precise results should be calculated, energy based
flexibility information can be included. Additionally, the docking algorithm can use several
sources of flexibility information simultaneously, like statistically derived data and energy
based data (Zöllner et al., 2002; Neumann et al., 2002). Therefore the classification results
are stored in a relational database, providing the data on demand to the docking system (see
Fig. 4.2). Appropriate index structures on the relations in the database speed up requests.

Within the “FinalDocking” module of El-

Backbone independent Rotamer changes

Backb. dependent Rotamer changes

Energy Calculation

R
un

tim
e

Figure 4.3: Hierarchy of flexibility information
according to run time purposes.ElMaR can in-
clude different types of flexibility sources like
rotamer statistics or energy based flexibility.

MaR the classification result of the amino
acid side chain is mapped to the correspond-
ing surface regions. It is used to reduce
or increase the geometric complementarity
factor, a weight to score steric clashes. A
steric clash occurs if the matched regions
are not complementary, e.g. convex/convex
regions are paired. In this case the flexibility
information can be used to decide whether
this steric clash may occur during docking
in a natural environment or not. It will oc-
cur if both regions are inflexible which means the corresponding residues are classified as
not flexible. This docking hypothesis is then assigned a lower score. If the amino acids of
these regions are classified as flexible a steric clash would probably not occur. Thus, this
docking hypothesis receives a higher score.

In ElMaR, the external flexibility information p is scaled to form the elasticity weight EL
(see Eq. 4.1). EL is designed in such a way that the convolution of flexible voxel results in a
lower score whereas the convolution of rigid marked voxel contribute a higher penalty score
to the geometry term of the scoring function.

EL =
(

1− ω
2

)
+ω

(
1− p−min(p)

max(p)−min(p)

)
(4.1)

The flexibility p is scaled by 1± ω
2 so that the distribution of the flexibility has an average of

one. ω denotes the scaling factor and can be chosen arbitrary. Exemplarily, a value of 0.5
scales the flexibility values p∈ [0,1] between 0.75 and 1.25. Before scaling p is normalised
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using the minimum and maximum of all flexibility values of the proteins in question (see
Eq. 4.1). If no flexibility information is available, p is set zero.

In equation 4.2, (P1•P2)(i, j,k) represents the convolution of the surface of protein P1 at grid
position (i,j,k) with all surfaces of protein P2 at positions (i‘,j‘,k‘). Matching surface points
contribute to the score whereas steric overlaps are penalised by the parameter −q 3.

(P1•P2)(i, j,k) = ∑
i‘ , j ‘ ,k‘

P1(i, j,k)∗P2(i + i‘ , j + j ‘ ,k+k‘)∗EL(i‘ , j ‘ ,k‘) (4.2)

with

P1(i, j,k) =

{
1 , (i, j,k) ∈ Protein 1
0 else

P2(i, j,k) =


1 ,(i, j,k) ∈ Surface Protein 2
−q ,(i, j,k) ∈ Interior Protein 2
0 else

Besides the geometry scoring, also the hydrophobicity (H) and the charge (Q) values of the
surfaces are correlated (see Neumann, 2003, section 5.1.4 for details) and the three scores
are combined into an overall score:

C = (1−α)(1−β)∗ (P1•P2)+α(1−β)∗ (H1•H2)−β∗ (Q1•Q2) (4.3)

geo−
metry

electro−
statics

hydro−
phobicity

β=0.5

α=0.2
Figure 4.4: Parameter space of the α and β
weight. Courtesy of Neumann, 2003.

In order to combine the different features
into the scoring function two weights α and
β are used. The weights can take values
between zero and one. Each combination
of the weights influences the impact of the
three features to the overall score of a dock-
ing hypothesis. This can be visualised by
the triangle shown in Figure 4.4. On each
edge of the triangle one features is anno-
tated. Each combination of α and β is a
point within the triangle. Exemplarily, in
case of α = 0 and β = 0 only the geome-
try component is included into the scoring.
For α = 0 and β = 1 only the electrostatics
(charge) and for α = 1 and β = 1 only the
hydrophobicity is taken into account. Any
other combination of α,β ∈ [0,1] results in partial contributions of the three features to the
overall score of a hypothesis.

3Value estimated empirically, see Ackermann et al., 1998. In the original work q is denoted as p, here it is
renamed to q as p has been used for the flexibility information.



Chapter 5
Predicting Side Chain Flexibility

In this chapter two approaches for predicting side chain flexibility are presented. Both ap-
proaches use features derived from scoring side chain conformations by molecular mechanics
force fields. At first, an introduction to molecular mechanics force fields is given, focusing
on the Amber force field which has been utilised in this work. Then the two classification
approaches are outlined as well as the features used for training them.

5.1 Molecular Mechanics Force Fields

In section 2.3.1 and 2.3.2 different types of interactions within (bonded) or between mole-
cules (non–bonded) have been described. In this section force fields are introduced. Molec-
ular mechanics force fields combine all the different interaction types resulting in a single
energy value describing the state of the molecule they are applied to.

Force fields are used in different tasks, e.g. structure prediction (Ulrich et al., 1997; Pillardy
et al., 2001), folding of proteins (Lazaridis & Karplus, 2001), or simulating biomolecules
within molecular dynamics simulation (Stone et al., 2001; Tapia & Velazquez, 1997; Zuegg
& Gready, 2000). They are also applied for scoring conformations, as within docking algo-
rithms (Althaus et al., 2002; Halperin et al., 2002; Kohlbacher, 2000; Lenhof, 1997), or even
in sequence analysis to set up amino acid similarity matrices (Dosztanyi & Torda, 2001).

There exist different types of force fields which differ in the number of interactions taken into
account and the way how these interactions are modelled. The Amber (Cornell et al., 1995;
Weiner et al., 1986) and the CHARMM (Brooks et al., 1983) force field for example model
bending and stretching interactions by a harmonic potential whereas the MM2/MM3 force
field (Allinger, 1977; Lii & Allinger, 1991) describes these interactions by the Morse Potential,
a more accurate but complex function. The GROMOS force field (Scott et al., 1999) uses
additional terms called non physical. Most of these are for restraining interactions. A short
overview of different force fields is given by Norrby and coworkers (Norrby et al., 1996) who
compared several of them.

In this thesis the Amber force field is used. Besides that the BALL library (Kohlbacher, 2000)
which has been chosen for handling the protein structures provides already an implemen-
tation of this force field, the Amber force field has been applied in several research works

29
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before (Althaus et al., 2002; Leach & Lemon, 1998; Wilson et al., 1993). It consist of sim-
ple energy potentials (see Eq. 5.1) so that an energy score can be computed fast. Another
aspect for choosing this force field is that it has well established parameters resulting in a
good approximation of the total energy of a given structure.

Amber Force Field

The Amber force field was developed by Weiner and colleagues (Weiner et al., 1984) in
1984 and refined by Cornell and coworkers (Cornell et al., 1995). It consists of five en-
ergy potentials: bending energy, stretching energy, torsion energy, electrostatic and van der
Waals energy (see also sections 2.3.1, 2.3.2). The total energy is calculated by summing up
all partial contributions. In equation 5.1 all non-bonded interactions are included in the last
term like proposed by Cornell et al.:

Etotal = ∑
i j∈bonds

Kstretch
i j (r i j − req

i j )2

+ ∑
i j∈angles

Kbending
i j (θi j −θeq

i j )
2

+ ∑
dihedrals

Vn

2
[1+cos(nφ− γ)]

+ ∑
i< j

[
Ai j

R12
i j

−
Bi j

R6
i j

+
qiq j

εRi j

]
(5.1)

Besides the possibility of fast calculations, the parameters used are the most important parts
of a force field. Exemplarily, the stretching energy term requires at least two parameters,
the normal bond length (req

i j ) and the bond stretching constant (Kstretching
i j ) for each type of

bond. The type of a bond depends on the order of binding (single, double or triple) and the
appendant atoms. The chemical (e.g. partial charge, chirality, hybridisation) and physical
features (e.g. size, mass) of the atoms influence the bond, too. Therefore, Weiner introduced
so called atom types describing the atom’s features. This results in at least 70 parameters1

for describing the bond stretch.

In addition, to the parameters for the stretching, bending, and torsional variations, the non-
bonded potentials need an estimate about the charge distribution within the molecule to
calculate the repulsion or attraction forces. Each atom has a radius assigned, called van der
Waals radius, which describes the equilibrium between the repulsion and attraction force of
the atom. There are two models for representing these radii, the united and the all atom
model. The difference between the two is the handling of the non–polar hydrogens. In the
united atom model the hydrogens are merged to the adjacent carbon atom resulting in an
larger van der Waals radii whereas in the second model all atoms are taken into account.
The pros and cons of the two models are described by Kini and Evans (Kini & Evans, 1992)
who compared protein structures minimised by both methods. The all atom model yields

1This number has been estimated according to the 1996 Amber parameter set.
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better results due to the more precise van der Waals radii and the more detailed modelling
of the protein. But a larger set of parameters is needed using this model. The version of the
Amber force field implemented in the BALL library uses the all atom model. In this work,
the force field is configured with the standard parameter set that comes along with the BALL
Library2 (Aubertin et al., 2002).

5.2 Classification of the Flexibility of Side Chains

In the following, both classification methods developed for the discrimination of flexible
and non flexible residues are described. In the first approach (see section 5.2.3) a threshold
based system is outlined. There, an energy based criterion is used to separate the classes
of flexible and non–flexible residues. In the second approach (see section 5.2.4), a support
vector machine is trained. The set of features derived form energy calculations is extended
by other aspects influencing the flexibility of side chains (e.g. solvent accessible surface
area).

The flexibility of side chains can be detected by comparing unbound protein structures to
sequence identical complexes. If the differences between the torsion angles are that large so
that a change of a rotamer of the torsion angle may occur, the side chain might be flexible.
Since the docking process cannot be observed by comparing only two structures, in most
approaches a statistical analysis is performed in order to support a single observation. Often
the used data is also separated into different categories, like buried or exposed (e.g. based
on the solvent accessible surface area (SAS) value of the residue) or due to its membership
in a secondary structure (see Mc Gregor et al., 1987; Schrauber et al., 1993).

Recently, Koch (Koch, 2003) analysed statistically the flexibility of residues side chains by
comparing unbound and complex structures. She reported that flexibility of the torsion
angles grows if they are more far away from the backbone. Each residue can be positioned
on a flexibility scale where ARG, SER, LYS and GLN are the most flexible residues (according
to the probability of rotamer changes) whereas PHE, TYR, TRP and CYS are the most rigid
amino acids. Within each residue and torsion angle the direction of change tends to the
most favourable rotamer. Exemplarily, in the case of ARG 33% of all side chains change their
rotamer. Out of these 66% move to the third rotamer, 37% to the second and only 17% to
the first rotamer.

Although these overall tendencies can help e.g. in reducing the conformational search space,
they neglect specialities in the local conformations of proteins. Predicting the flexibility of
each residue of a protein can be used for modelling the flexibility more precisely. The classi-
fication approaches presented here predict the flexibility on the unbound protein structures.
There are two main advantages to other methods investigating or calculating flexibility. On

2Using non bonded cutoff of 200Å, van der Waals cutoff of 150Å, van der Waals cut-on of 130Å, electrostatic
cutoff of 150Å, electrostatic cut-on of 130Å, electrostatic scaling factor for 1-4 interaction of 2.0, Vdw
scaling factor for 1-4 interaction of 2.0 and a distance dependent dielectric constant of 1.0 (standard values
that come with the BALL library), all calculations are done without solvent molecules.
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the one hand structure comparison methods depend on at least two structures that have
to be refined, a protein complex and an unbound protein structure that matches one of
the chains of the complex. Here, only a single protein structure is used, the unbound one.
On the other hand all calculations only have to be done once as the refined structures will
not change3. Compared to approaches that place side chains during docking the calculated
flexibility can be used for all test case scenarios the analysed unbound protein structures are
involved in.

5.2.1 Synthetic Conformations

In order to predict the flexibility of the residue’s side chain, features have to be calcu-
lated that are characteristic for the residue in question and also give information about the
residue’s flexibility.

A side chain’s conformation and the information about its surrounding can be used as a
feature to classify its flexibility. Energy based scores like the total energy of a force field
describe the conformation of a residue. It implicitly includes neighbourhood informations
via the non–bonded interaction potentials (see section 2.3.2 and Eq. 5.1), too.

The conformation of a side chain is defined by the torsion angles χ. Since the torsion angles
can take values from 0◦ to 360◦ and some residues (ARG, LYS) have up to four χ angles a
large number of conformations are possible for a single residue’s side chain.

An isolated investigation of side chain conformations has been performed by Lorber and
coworkers (Lorber et al., 2002). They assumed that the whole protein conformation is addi-
tive, and that single side chain conformations can be handled independently. Torgasin (Tor-
gasin, 2003) analysed in a first approach the influence of changing the side chain confor-
mation of a residue to the surrounding by molecular dynamics simulation. She tested the
influence on residues within 4, 6 and 8Å around the modified amino acid. The influence of
a changed conformation onto the surrounding gets less the larger the diameter is chosen.
The influence depends not only on the changes performed (e.g. change in the torsion angle)
but also on the type of the amino acid and the neighbouring residues. Generally, in the
experiments run by Torgasin conformational changes are compensated quickly (within the
first 5 to 10 ps) by the surrounding. In some cases the residues have been rearranged re-
sulting in low energy values but also not optimal solutions have been carried out. A general
pattern describing or modelling rearrangement effects can not be found easily since at first a
description of a neighbourhood group and methods for comparing these have to be defined
in order to carry out statistical investigations. In case of a flexibility classification influences
between neighbouring residues can be neglected because the question is whether a residue
changes or not. Residue side chains itself perform concerted movements4, here one torsion
angle is modified at a time and the rest of the side chain and the surrounding conformation

3In case an already solved structure is deprecated, the energy calculations have to be repeated for the new
structure.

4Concerted movements means that more than one torsion angle changed its rotamer when comparing the
complex and unbound structure.
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Figure 5.1: Energy landscape of an ARG residue for χ1. Here a sampling rate of 5◦ is used to
create synthetic conformations. The surrounding conformation is kept rigid. Below the x-axis
the rotamer boundaries are shown.

is kept rigid because it is unclear whether these movements occur at the same time or after
each other. In case of a classification whether a residue’s side chain is flexible or not the
aspect of interaction of torsion angles within a side chain has no impact on the classification.
This can be handled by combining the flexibility predictions for the different torsion angles.

In order to get an energy landscape of different conformations of the side chain the torsion
angles are rotated by 360◦, sampling in 5◦ steps. Because these conformations are based on
sampling, they are called synthetic conformations.

Figure 5.1 reflects the surrounding of the Arginine (ARG) side chain. During the rotation of
the χ1 torsion angle around 360◦ steric hindrance by neighbouring groups cause high energy
values according to the definitions of the non–bonded potentials (see Fig. 2.10). In figure 5.1
it can be observed that within the first (0-120◦) or the second (120-240◦) rotamer energy
minima and maxima alternate often due to steric restrictions. One can assume that within
these two rotamers the flexibility of the side chain (here the χ1 torsion angle) is reduced.
Sparse contacts or an optimal arrangement reduce the total energy as shown in the third
rotamer of figure 5.1.

Another example is shown in figure 5.2. Here, the 3D structures of an ARG residue with
different conformations of the χ1 torsion angle are superimposed (red: 330◦, green: 160◦,
yellow: 70◦). In figure 5.2(a) on the left of the residue no neighbouring groups are located
so that the side chain can be placed there without problems. On the other side instead,
other groups of the protein are located so that moving the side chain freely is not possible.
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(a) Left from the highlighted ARG struc-
tures (see red arrow) no surrounding
structures causes any steric hindrance
whereas on the other side (see the
other red arrow) the ARG is near to
neighbouring residues.

(b) Here, the same conformation is
shown as on the left, but the structure
is rotated by 180◦. On the left of the
highlighted residue, one can clearly see
groups from the surrounding restricting
the flexibility whereas on the right, no
other groups are near to the marked
residue.

Figure 5.2: 3D Structure of ARG 145, 1ACB chain E in three different conformations. The
yellow structure has a χ1 of 70◦, the green structure of 160◦ and the red structure of 330◦. In
blue the E chain of 1ACB is given. The size of the balls representing the atoms depends on the
atoms’ van der Waals radii.

Figure 5.2(b) shows the similar constellation just from another point of view (the protein is
rotated by 180◦). Here, it is obvious that the yellow coloured residue is in contact with a
surrounding residue. Because here the van der Waals radii are used for visualising the atoms,
the conclusion can be drawn that there is an increase in the non-bonded energy potential
for the given conformation of the residue.

Looking at the distribution of the energy minima (see Fig. 5.3(a)) of all Arginine in the data
set, a tri–modal distribution can be observed. Here, a histogram of the synthetic conforma-
tions yielding the global energy minimum is calculated for each residue and torsion angle in
the data set (cf. Zöllner, 2001; Koch et al., 2001). In figure 5.3(a) a density distribution is
fitted on the histogram.

This distribution of the energies correlates with the distributions of statistical approaches
(see Koch et al., 2002). In figure 5.3(b) the distributions of the statistical approach of Koch
et al. and the energy distribution calculated in this thesis are plotted. The peeks within both
distributions lie within the centers of the rotamers whereas at the rotamer boundaries the
amount of observed conformations are more sparse.
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(a) Distribution of energy minima of χ1 for all ARG
of the test set.
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(b) Torsion angle distribution for χ1 of ARG. In red
the distribution from the rotamer library is shown,
in blue the distribution of the energy minima per
degree (cf. Koch et al., 2002).

Figure 5.3: Comparison of energetically and statistical rotamer distributions. On the left the
distribution of energy minima for χ1 and ARG is given. On the right, this distribution is
superimposed to the statistically derived distribution of the same data.

Within the distribution of the energy minima, the third rotamer is preferred most whereas
the first rotamer is the most unfavourable one. Comparing this observation to the energy
landscape of the synthetic conformations in figure 5.1, parallels can be found. As outlined
before, the third rotamer shows a broad energy minimum, a region with less steric hindrance
for placing a side chain. Within the other rotamers, a placement of the side chain is more
unlikely. This is also reflected in the overall distribution and shows that all residues follow
the general tendencies given by the rotamer distributions but also, that the energy landscape
differs due to the local settings of the residue.

Thus, the conclusion is that the energy landscape, based on the synthetic conformations,
holds information about conformations that can possibly be taken by a side chain. Extracting
features that represent this information can be used for predicting a side chain’s flexibility.

5.2.2 Features for the Flexibility Classification

In this section the features selected for the classification of the flexibility of amino acid side
chains are presented. At first energy based features derived from the energy landscape are
outlined. Then, additional parameters influencing the flexibility are described.
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Figure 5.4: Box-plot of the energy landscape for all ARG,χ1. The red marked boxes represent
the residues labelled flexible, the green boxes represent the non–flexible residues. The energy
values on the y–axis are given as logarithms.

Energy based features

The energy landscape describes the surrounding of the residue in question. In order to get
an overview of the data covered by the test set a box-plot is drawn for each amino acid type.
From a box-plot one can easily derive the range of energy scores of a given conformation
within the data set. In figure 5.4 the total amount of labelled data for ARG is divided into
the two classes flexible (red) and non flexible (green). For each conformation (each value of
χ1 during rotation) the energy scores of all examples are represented by a box-plot. The red
and green boxes present the range of the energy scores of 50% of the data. The whiskers
mark 90% of the data whereas single points above or under the boxes/whiskers represent
outliers. Inspecting the energy landscapes (formed by the box-plots) of the χ1 torsion
angle of figure 5.4, there are differences between the two classes, especially within the first
(g−) and the second rotamer (t). Extracting the median curve for both classes (see Fig. 5.6)
also shows that within the third rotamer (g+) the curves align, reflecting that this rotamer
is preferred energetically. Looking at the plot of TRP (see Fig. 5.5), the differences between
the flexible and non flexible residues are even more obvious. Similar observations can be
made for the other residues and torsion angles (cf. App. B.1). From the energy landscape
different features can be extracted which are described in the following.

A feature to discriminate flexible from non–flexible residues can be the difference in energy
between the original conformation (the one given in the Pdb file) and the minimum energy
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Figure 5.5: Box-plot of the energy landscape for all TRP,χ1. The red marked boxes represent
the residues labelled flexible, the green boxes represent the non–flexible residues. The energy
values on the y–axis are given as logarithms.

conformation received from the synthetic conformations. In case of protein–protein docking
conformational changes are forced by the approaching protein. During the docking process
the energy level of the side chains rises in case of steric contacts, enabling a side chain to pass
energy boundaries. In this approach, the assumption is made that a conformation is taken
which contributes most to an overall lower energy level of the complex than its unbound
parts. This assumption is supported by the fact that most changes of the conformation of a
side chain directs to the energetically favourable rotamers (see Koch et al., 2002). Thus, this
feature has been implemented in the threshold based classifier (see section 5.2.3) as well as
it is taken as one component of the feature vector used with the SVM.

Besides the energy difference, the energy landscape itself characterises a residue. Thus, the
whole energy landscape could be used as a feature, too. But looking at Fig. 5.7 one can
see that the base energy level of each residue differs. One reason for this is the different
sizes of the proteins. So features are needed, that are independent from the size of the
protein. Also, the feature vector would contain at least 72 components to be trained. A
dimension reduction is necessary. The energy landscape of each residue is similar to a signal
e.g. from a speech recording. In signal processing, often a linear transformation is taken for
a decomposition of the input signal in order to compress and/or to extract features out of
it. This is usually done by a Fourier transformation (see Eq. 5.2).

F(k) =
M−1

∑
m=0

f (m)e
−ik2πm

M (5.2)
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Figure 5.6: Means extracted from Fig. 5.4. The red curve represents a flexible residue, the
green curve represents the non–flexible residue. The energy values on the y–axis are given as
logarithms.

A Fourier transformation decomposes the input signal (here the energy landscape) into a set
of sinus and cosine functions and coefficients (F(k)). The coefficients describe the contri-
bution of the base (sinus and cosine) functions to the original signal. Applying filters, the
signal can be de-noised and important or characteristic parts become visible.

For instance, by cutting off those coefficients representing high frequencies the input signal
is smoothed (see Fig. 5.11). A disadvantage of the Fourier transformation is that e.g. filtering
high frequencies (by setting some coefficients to zero) effects the whole signal because the
corresponding base function spans along the defined ranges (Bäni, 2002). In some cases the
base function does not contain any local information and therefore the local information
is distributed over several coefficients. So, it is difficult to choose coefficients that can be
removed from the signal.

Another problem of the Fourier transformation is the handling of discontinuous parts of
the signal. A popular example is the representation of a rectangular signal by the Fourier
transformation. The signal itself can be decomposed by sinus and cosine functions but
problems occur reconstructing the discontinuous parts, namely occurring at the corners of
the rectangular signal. Here, the so called Gibbs effect can be observed, the reconstructed
signal overshoots at the corner. This is usually a hint that the used base functions do not
fit to the signal. A way to avoid this is to choose a different method to decompose the
signals, like the wavelet transformation. A wavelet transformation (see Eq. 5.3) is also a
linear transformation.

f = ∑
k

ckψk (5.3)
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Figure 5.7: Distribution of the base energies of the proteins in the test set. On the x-axis the
total energy is given in logarithmic scale.
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Figure 5.8: Haar Wavelet. Mother wavelet for m=
n = 0.

But compared to the Fourier transfor-
mation, its base functions have to fulfil
several criteria, like a good localisation
in time (the basis function only differs
from zero on a small range of the signal)
as well as in frequency space and they
have to form an orthonormal system.
The simplest wavelet is the so-called
Haar–Wavelet (see Fig. 5.8). Other
base wavelets, also named mother–
wavelets, have been calculated e.g. by
Daubechies (see Fig.5.9).

ψ(t) :=


1 if 0≤ t ≤ 1

2

−1 if 1
2 ≤ t ≤ 1

0 otherwise

(5.4)

As a starting point the function given in equation 5.4 is used. From this the Haar wavelet
(see Fig. 5.8) can be constructed using the parameters m and n:

ψm,n(t) = 2−
m
2 ψ(2−mt−n) m,n∈ Z (5.5)

The parameters are used to scale (m) and translate (n) the mother wavelet along the axis.
For m = n = 0 one obtains the initial wavelet again. The approximation of a function by
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the Haar Wavelet looks like a staircase. According to the chosen parameters the steps
can be more or less detailed. Exemplarily, one could define a approximation function Tm f
with a size of the staircases of 2m. Changing the value of m, this function can be more or
less detailed (e.g. more detailed if m is small). Thus, a more detailed function Tm−1 f can
be defined, too. Because both approximations operate on the same range there exists a
relation between the approximations; the difference between the detailed (Tm−1 f ) and the
less detailed approximation (Tm f ) is a linear combination of Haar Wavelets:

Tm−1 f −Tm f = ∑
n

νm,nψm,n (5.6)

In equation 5.6, νm,n denotes a so called wavelet coefficient.
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Figure 5.9: Plot of a Daubechies 6 mother wavelet.

Furthermore, a detailed approxi-
mation (Tm0 f ) can be modelled by
the sum of less detailed approxi-
mations (Tm1 f ) and a linear combi-
nation of wavelets:

f = Tm0 f =
m1

∑
m=m0+1

∑
n∈Z

νm,nψm,n

(5.7)
Wavelet transformations have been
applied in different fields of sci-
ence and several approaches have
driven the development of the
wavelet transformation further. A
theory that combines the different

developments in wavelet theory is called multi-resolution analysis (Mallat, 1989). The multi-
resolution analysis (MSA) can be compared to a microscope which can be used to look at
a function at a resolution and position of your choice. Thus, a scaling function (ϕ) is used
which is like a short impulse. In order to represent a function f within the scale of 2m, an
approximation can be reached by a linear combination of 2m stretched and by n2m shifted
versions of ϕ:

f ≈ ∑
n∈Z

um,nϕm,n

with ϕm,n(t) = 2−
m
2 ϕ(2−mt−n)

(5.8)

One can show that the calculation of the best coefficients for um,n can be realised easily if
ϕm,n forms a orthonormal family for each scale (each m) (c.f. Bäni, 2002, chapter 1). For
equation 5.8 the parameters can be calculated as follows:

um,n = 〈ϕm,n, f 〉=
∞Z

−∞

ϕm,n(t) f (t)dt (5.9)

Following this calculation, um,n can be compared to a weighted mean of f of the environment
of the position n2m. The smaller m is, the smaller the environment and therefore the more
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detailed are the coefficients um,n proportional to the sampling points of f . Let Am f be the
best approximation of f within the scale of 2m then the following equation is true:

Am f = ∑
n∈Z

〈ϕm,n, f 〉ϕm,n (5.10)

Also, let Vm be the set of functions f which can be calculated exactly by the scale 2m then
Am f is the projection of f onto Vm. The function ϕ is contained within V0. Further the
different approximations should be connected via

· · · ⊂V1 ⊂V0 ⊂V−1 ⊂V−2 ⊂ . . . (5.11)

which means that if f can be represented by 2m (Vm) it has to be represented also by the
more detailed scale 2p (Vp) if p< m. From the multi resolution analysis and its scaling function
wavelets can be constructed. As mentioned above wavelets have an orthonormal basis. The
scaling function ϕ itself forms no such basis but it can extended to become an orthonormal
basis. Baeni describes an approach to extend the set V0 to an orthonormal basis in V−1:

ϕ = ∑
k∈Z

hk−2nϕ−1,k (5.12)

The new system should be constructed by translating one single function ψ:

ψ = ∑
k∈Z

gkϕ−1,k (5.13)

The coefficients gk have be chosen so that they extend V0 to an orthonormal basis. At the
end of this calculation (c.f. Bäni, 2002) the already known equation of the wavelet function
results:

f = ∑
m∈Z

∑
n∈Z

νm,nψm,n (5.14)

Here, a wavelet function has been constructed from the MSA. Furthermore there is a re-
lation between the approximation function as defined in equation 5.10 and the wavelet of
equation 5.14:

Am−1 f =Am f + ∑
n∈Z

νm,nψm,n

Am0 f =Am1 f +
m1

∑
m=m0+1

∑
n∈Z

νm,nψm,n
(5.15)

This means that within each scale (resolution) the function f can be represented by the
approximation function Am f and the detail function Dm f :

Dm f = ∑
n∈Z

νm,nψm,n

with νm,n = 〈ψm,n, f 〉
(5.16)
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(b) Wavelet decomposition using a Daubechies
filter of order 6. Here, the coefficients are plot-
ted for each resolution level. The input signal is
padded by zeros to reach a length of the next
power of two (128 inputs).

Figure 5.10: Multi resolution analysis. On the left a scheme of the hierarchies, on the right a
plot of the wavelet coefficients after the decomposition of the energy landscape of ARG 20,
1BPI is depicted.

In figure 5.10 the resolution hierarchy is shown as a scheme (left) and exemplarily for an
energy landscape of the data set (here, the coefficients after the wavelet decomposition
are shown). An application of the wavelet transformation is the removal of noise within
the signal. This is done to enhance further analysis. Noise within a signal is removed by
thresholding the wavelet coefficients. Thresholding means to remove coefficients by setting
their values to zero. Because of the good localisation properties of wavelets a threshold-
ing of the coefficients only has an impact on a small part of the signal. The reconstruction
from the thresholded coefficients often results in a good approximation of the original sig-
nal. Figure 5.11 shows the reconstruction of an energy landscape after thresholding. In
figure 5.11(a) the energy landscape is transformed by a Fourier transformation. Then the last
two coefficients are set to zero. Afterwards the signal is reconstructed by applying the in-
verse Fourier transformation. In case of figure 5.11(b) a wavelet transformation is performed.
Here, a Daubechies filter is used. Compared to the Haar Wavelet, these filters are superior
because of an improved scaling function. These scaling functions have a better location in
time/frequency. Daubechies filters differ in their so-called order (see Bäni, 2002). In case of
order 1 one would receive back the Haar MSA. In this work for most residues a Daubechies
filter of order 6 is chosen (cf. Fig. 5.9). But in some cases (ARG χ3/χ4, GLN χ1, and TRP χ1)
better results are reached using a filter of order 4.

After the decomposition, a thresholding is performed on the fourth level of the resolution
pyramid using the soft threshold method (see Eq. 5.17). Figure 5.12 shows the thresholded
coefficients of the wavelet decomposition of the energy landscape of Arginine 20, 1BPI.
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(a) FFT, thresholding by setting last 2 of 72 coeffi-
cients to zero (red).
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(b) Wavelet transformation, soft thresholding on
level 4 (red).

Figure 5.11: Comparison of Fourier and Wavelet transformation. Here, the results of the re-
construction after thresholding are shown.

Comparing this figure to figure 5.10(b) one can observe that several coefficients have been
eliminated.
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Figure 5.12: Plot of thresholded wavelet coefficients of
ARG 20, 1BPI. Here, a soft thresholding and the “univer-
sal method” are applied. All coefficients from level 3 to
6 are thresholded.

There are different methods to
eliminate coefficients from a sig-
nal. Generally, a threshold τ is
used to decide whether a coeffi-
cient is kept or removed. In this
context, hard thresholding means
that if a coefficient ck does not ex-
ceed the threshold τ its value is set
to zero. Otherwise it is kept within
the set of coefficients. Soft thresh-
olding in contrast also removes the
coefficient if the threshold is not
exceeded but reduces the value of
the coefficients if it is larger than τ
(see Eq. 5.17), too.

c̃k :=

{
0, if |ck| ≤ τ,
sign(ck)(|ck|− τ), else

(5.17)
The threshold τ has to be estimated on the set of coefficients. In this work the threshold
value is determined by the “universal method” of Donoho (Donoho, 1995):

τ = K
√

2ln(N)σ (5.18)
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The threshold τ is estimated on basis of the number of coefficients5 N and is weighted by
the coefficients’ standard deviation. K is a constant of order 1 (see Bäni, 2002).

Exposure to Solvent

The solvent accessible surface area (SAS) describes the surface area, here of a residue, that is
exposed to the solvent (Lee & Richards, 1971). The degree of exposure to the solvent is used
to decide whether a residue is buried in the core of the protein or exposed and lies on the
surface of the protein. The SAS can be calculated by moving a “water probe” (a sphere with
radius of 1.4Å, see Fig. 5.13) over the protein surface calculating the contact area (Connolly,
1983a).

In the literature, amino acids are analysed in context of the SAS (Pacios, 2001; Cyrus, 1976).
The degree of exposure to the solvent of a residue correlates with its flexibility. The more
exposed the residues are, the more flexible they are (cf. Koch, 2003; Schrauber et al., 1993).
Surface residues underlie fewer steric restrictions and tend to be more flexible.

Here, the SAS is calculated for each residue for the conformation given by the original Pdb
file. In order to be able to compare the SAS values between the different amino acid types,
the SAS is normalised using the maximal SAS value of the specific residue type:

relSAS(aa) =
SAS(aa)

max
aa

(SAS)
(5.19)

Figure 5.13: Scheme of calculating the SAS
after the algorithm of Connolly (Connolly,
1983a). A probe representing the solvent is
“rolled” over the surface to measure the con-
tact area.

Exemplarily, in figure 5.14 the relative SAS is visualised by colouring the residues according
to their SAS values. The more the residues are shaded in red, the more exposed they are.

5The number of coefficients depends on the resolution level of the MSA.
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Figure 5.14: A trypsin (2PTC) coloured by the relative SAS of the residues. The more red the
atoms are coloured, the higher the SAS.

Original Conformation

As an additional feature, the original conformation can be taken. From the distribution of
the torsion angles the most favourable rotamer for each residue can be derived. Favourable
rotamers fall together with an energy minimum (cf. Koch et al., 2002) whereas non–favourable
rotamers tend to have an higher energy level. The direction of change of a rotamer is corre-
lated with the starting rotamer (Koch, 2003) which means that a side chain prefers to change
towards the optimal, energetically favourable rotamer. Thus, the original conformation can
be used as a feature. Because the classifier is trained for each torsion separately, only the
value of the corresponding torsion angle is included. Also, the rotamer distribution is im-
plicitly fed to the classifier since the classifier is trained by a labelled data set of reasonable
size.

B-value of Side Chain Atoms

The B-value or temperature factor is used in crystallography as a measure for the accuracy
of the atom positions calculated from the electron density plots. A low B-value indicates a
low variance in the atom position. High values instead assume greater fluctuations. On the
one hand these fluctuations due to the refinement method (crystallography) but also, on the
other hand due to the flexibility of the residue. Karplus and Schulz (Karplus & Schulz, 1985)
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used the B-value as a measure of chain flexibility of protein backbones. In this approach the
side chain carbon atoms are taken to form a feature to predict flexibility. In order to receive
an average B-value (BAA), for each side chain the sum of the carbon atom’s temperature
factors (B) is normalised by the number of carbon atoms:

BAA =
1

Ncarbon

Ncarbon

∑
i=1

Bi (5.20)

Secondary Structure

The secondary structure of a protein (e.g. an α–helix, see section 2.2) influences the side
chain conformation of residues (cf. Koch, 2003; Mc Gregor et al., 1987). So, the information
whether a certain residue belongs to a secondary structure element can support the classi-
fication of the side chain flexibility. In the database used for annotating meta information
of the proteins (see section D.1) the output of the program dssp (Kabsch & Sander, 1983)
is stored. Dssp calculates for a given protein structure (Pdb format) all secondary structure
elements and labels them by letters (e.g. an α helix is labelled as H). In order to combine this
information with the numerical values of the other features the membership of the residue
in a secondary structure is denoted by 1, otherwise 0. Here, the different types of secondary
structure elements are neglected.

5.2.3 Threshold Based Classification

In order to predict the flexibility of a residue, in a first approach the difference in the total
energy of the original (Ebase) and the minimum synthetic conformation (Emin) is used (see
Eq. 5.21). The amount of this energy difference expresses how much energy can be gained
if the side chain conformation takes the minimum energy conformation within the certain
torsion angle space. If the difference in total energy is large it suggests that a rotamer change
is possible whereas only small changes in the energies relate to no rotamer changes.

In order to classify the flexibility of residue’s side chains a threshold is defined for discrimi-
nating between flexible and rigid residues:

Pf lex(aa) =

{
1 if norm(Ebase−Emin)≥ S,

0 otherwise
(5.21)

In equation 5.21 the residue aa is classified as flexible (1) if its energy difference exceeds a
certain threshold S. It is defined as not flexible (0) if the threshold is not reached.

The energy difference is normalised to define threshold values (S) between 0 and 1. Be-
cause the energy values differ from protein to protein due to the size of the protein6, here,

6The Amber force field potentials sum up the energy contributions of each residue pair, see Eq.5.1.
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(a) χ1 torsion angle.
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(b) χ2 torsion angle.

Figure 5.15: Box-plots of the distribution of energy differences for χ1 and χ2 for each residue.
The whisker of white marked boxes is calculated by 0.5∗ (Q3−Q1), the red ones by 1.5∗ (Q3−
Q1) and by 3∗ (Q3−Q1) in case of the blue marked boxes.

the normalisation is handled by the distribution of the energy differences using box-plot
statistics.

In figure 5.15 the distributions of the energy differences for each residue and χ1 and χ2

is shown. The upper border of the boxes (also called upper hinge) represents 75% of all
examples in the data set. The upper whiskers extend this amount up to 90%. The value of
the upper whisker is taken for normalisation. The whiskers itself are calculated by scaling the
distance of the quantiles (Q1, lower hinge and Q3, upper hinge) of the box-plot controlling
the extend of the whiskers and the amount of data included. In figure 5.15 three different
values for the extension of the whiskers are shown to demonstrate the changes of a whisker.
For the classification the optimal normalisation factor is determined for each residue and
torsion angle using Receiver Operating Characteristic (ROC) analysis plots. ROC analysis will
be explained in section 7.3.2.

The optimal threshold is then estimated on the used data set by sampling the interval [0,1].
This is done for each residue and torsion angle. The classification results as well as the
optimal threshold are then estimated using ROC, too.

5.2.4 Classification of Residues using Support Vector Machines

The results of the threshold based prediction of the flexibility (see section 7.2.1) show that
using a simple linear classifier works quite well for the χ1 torsion angle but for the higher
torsion angles the classification performance is low. In order to improve the classification
performance on the one hand additional features have to be selected. On the other hand
a method superior to linear classification has to be chosen, like a support vector machine
(SVM). Before outlining the enhanced classifier, a short introduction to support vector ma-
chines is given.
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Introduction to Support Vector Machines

In 1992, support vector machines have been introduced by Vapnik and co-workers (Boser
et al., 1992). In the field of bioinformatics in several applications SVMs are used, e.g. for
classifying monomer and dimer structures of proteins (Neumann, 2003; Zhang et al., 2003)
or homology modelling of proteins (see Christianini & Shawe-Taylor, 2000, chapter 8). The
following introduction (including the figures) is based on the book of Cristianini and Shawe-
Taylor (Christianini & Shawe-Taylor, 2000).

Support vector machines try to learn a separating hyperplane so that it optimally dis-
criminates two classes7. The hyperplane is tuned that way during learning so that the
SVM’s generalisation error is minimised, meaning that this method finds a optimal solu-
tion and that it does not end up in a local minima. Besides this, the computational effort
is very low so that usually support vector machines can handle large datasets efficiently.
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Figure 5.16: Scheme of linear classification for two di-
mensions. The separating hyperplane is given by (~w,~b), x
and o denote examples from the two classes.

SVMs are based on linear classi-
fication machines. In linear clas-
sification a binary decision is per-
formed by a real valued function
f : X ⊆ Rn → R. The input ~x =
(x1, . . . ,xn) is assigned a positive
class if f (~x) > 0 and a negative class
otherwise. In this case f is a lin-
ear function and for~x∈ X it can be
written as:

f (~(x)) = 〈~w,~x〉+~b (5.22)

Thus, f (~x) defines a hyperplane
(see Fig. 5.16) with parameters ~w
(the direction perpendicular to the
hyperplane) and ~b (position vec-
tor). Support vector machines are
trained by a labelled data set (of size M). The SVM divides the input samples into two
classes. The training set can be written as {(~xi ,yi)} i = 1, . . . ,M with yi ∈ {−1,1}.

Often the classification performed this way is difficult, since an optimal hyperplane can not
be found. The idea within the theory of support vector machines is to transform the original
input space into a higher dimensional space (see Fig. 5.17). Usually, a high dimensional
space is sparse. Mapping the input space into a higher dimensional space thus makes it
easier to find separating hyperplanes. In order to map the data, so–called kernel functions
are searched so that the hyperplane optimally discriminates two classes. Imagine that φ is a
non–linear function that maps the input ~x∈Rn to a higher dimensional space RN, and there
the input is linearly separable. Thus, the function separating the input can be written as:

f (~x) = ~wφ(~x)+~b (5.23)
7SVMs can be extended to separate n–classes, as each n–class problem can be defined as (n-1) two class

problems. Here only the two class case is referred.
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Figure 5.17: Scheme of mapping input space to feature space using Kernel function φ.

This equation can be reformulated resulting in the Perceptron Learning rule:

f (~x) =
N

∑
i=1

αiyi〈φ(~xi)φ(~x)〉+~b (5.24)

In equation 5.24, the inner product 〈φ(~x)φ(~x)〉 is calculated. Here, kernel functions can be
applied. Their inner product of the original input (K(~x,~x)) is equal to the inner product
in feature space. Using this kernel trick it is possible to build a classifier with an implicit
mapping into feature space:

f (~x) =
N

∑
i=1

αiyiK(~xi ,~x)+~b (5.25)

Kernel functions have important properties, e.g. a new kernel function can be constructed
from other kernels. The properties of kernel functions are discussed in detail in chapter 3 of
Cristianini’s book. In practice, usually a special transformation function (φ) to build a kernel
is not searched but already known kernels are taken. A second feature of a SVM is that
the classifier can be trained very good, so that the generalisation error is reduced at the
same time. This is reached by optimising the distance between the margin of the function
separating the classes (functional margin) and the input examples. The functional margin γ̃i

of the training example (~xi ,yi) is defined as

γ̃i = yi(~wT~xi +b)⇒ γ̃i > 0 (5.26)

if ~xi is classified correctly. The functional margin can be transformed into the geometric
margin (γi) by using the normalised weight vector ||~w||:

γi =
γ̃i

||~w||
(5.27)

In case of the hard margin classifier, the margin is then defined as the minimum over all
examples I in the training set:

γ = min
1≤i≤I

γi (5.28)
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Figure 5.18 shows the margin for an exemplarily training set. The generalisation error is
high if the training set is not compact. But also, the larger the training set is, the smaller
the generalisation error. Furthermore, the greater the distance of the input samples to the
margin γ is, the smaller is the generalisation error, too.

In order to optimise the SVM a discriminating function is searched that maximises the mar-
gin. In case of the hard margin classifier, γ is given by γ = γ̃

||~w|| a maximisation of γ is the same
as minimising ||~w|| for a fixed γ̃. Setting γ̃ = 1 the optimisation problem can be formulated as

~wT~w→minimise

with subject to yi(~wT~xi +b)≥ 1 1, . . . ,N
(5.29)

and can be solved by using Lagrange multipliers and the Karush–Kuhn–Tucker–Theorem
(KKT).
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Figure 5.18: Margin for an example training set.

Solving the equations above results in:

α∗
i [yi(~w∗xi +b∗)−1] = 0 i = 1, . . . ,N

(5.30)
Equation 5.30 implies that only those
inputs x contribute to the solution for
which the functional margin is one.
These data points lie closest to the sep-
arating hyperplane. Their correspond-
ing α∗

i are non-zero. All other param-
eters α∗

j , i 6= j, i, j ∈ N are zero and the
corresponding input vectors are not in-
volved. Therefore, the contributing in-
puts are called support vectors. The
optimal hyperplane for separating the
classes is then given by:

f (x,α∗,b∗) =
N

∑
i=1

yiα∗
i (xix)+b∗

= ∑
sv

yiα∗
i (xix)+b∗

(5.31)

Here, α∗,b∗ are the Lagrange multipliers used for the optimisation and sv represents the set
of support vectors. In figure 5.19 a maximal margin (bold line) is shown that optimally
separates the two classes (x,o). The highlighted examples in the plot mark the support
vectors.

Classifying Residue Flexibility using SVMs

After having outlined the principles of support vector machines in this section the applica-
tion of a SVM as a classifier is described. In this thesis a support vector machine is used
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Figure 5.19: Scheme of a maximal margin.
The maximal margin hyperplane (bold) sep-
arates the input (x,o) optimally. The bold
marked inputs (x,o) denote the support vec-
tors setting up the margin hyperplane.

to classify amino acid side chains as flexible or non–flexible. Because every amino acid
side chain has specific properties (e.g. charge, polarity, size and number of torsion angles)
for each torsion angle and side chain a SVM is trained. In section 5.2.2, several residue
specific features have been outlined. From these a feature vector has to be created. In
order to choose those features that represent the side chains best a data driven approach
is applied. Here, principle component analysis (PCA) is used to select appropriate fea-
tures and to reduce the dimension of the feature vector at the same time. A reduction of
the dimensionality of the feature vector can increase the classification power of the SVM.
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Figure 5.20: Spectrum of the eigenvalues of all features
for ARG and χ1. Here, only the first 10 (of 21) eigenval-
ues are shown.

In PCA the aim is to produce a
set of uncorrelated variables rep-
resenting the original information.
Therefore, the input data ({~x} ∈
RM) is rotated to the principle axis
using a orthogonal linear transfor-
mation. For dimension reduction,
then the first n principle compo-
nents are selected.

The selection of principle compo-
nents can be guided by analysing
the spectrum of the eigenvalues
(see Fig. 5.20). A hint for cutting
off the first n components can be
obtained by comparing the differ-
ences in variance starting from left
to right. In figure 5.20 the vari-
ance within the first four components is obviously greater than in the rest of the coeffi-
cients. Thus, selecting the first four coefficients is reasonable. Another possibility is to take
the first two or only the first component because of the differences in the variances. In case
of different possibilities, here the SVM is trained with different numbers of principle com-
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Figure 5.21: Plot of the total classification accuracy of classifying LYS and SER for different
numbers of principle components, used as features.

ponents. The combination which achieves the highest classification accuracy is then taken.
Figure 5.21 shows the classification accuracy for different numbers of principle components
of Lysine and Serine. In both cases, the eigenvalue spectrum supports several possible cut–
offs (see Fig. 5.22(a) and 5.22(b)).
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Figure 5.22: Eigenvalue spectra for LYS and SER of the features. Here, only the first ten
eigenvalues are plotted.

Initially, for all residues the feature vector consists of the following components (cf. sec-
tion 5.2.2 and Fig. 5.23): a set of wavelet coefficients, the energy difference, the original
conformation of the residue, the secondary structure information as well as the solvent ac-
cessible surface area value and the temperature factor. The order of the components within
the feature vector is not important because the feature vector is processed by the PCA and
transformed into lower dimensional space. The features get merged via the transformation
into the lower dimensions and a mapping is impossible.
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Figure 5.23: Initial feature vector before the
PCA is applied. The number of the wavelet co-
efficients depends on the level of the MSA they
are taken from. The order of the components
within the feature vector is arbitrary because
the vector is processed further by a PCA.

For the first torsion angle (χ1), the first three
to five principle components are chosen ac-
cording to the analysis of the eigenvalue
spectra. The concrete numbers for each
residue and torsion angle are given in ta-
ble 5.1. The eigenvalue spectra for each
residue and torsion angle are shown in ap-
pendix B.4.

The resulting low dimensional feature vec-
tors are then used to classify the residues’
side chain as flexible or non–flexible using
the support vector machine. Here, the sup-
port vector machine implemented in the R–
package (Ihaka & Gentleman, 1996; Dim-
itriadou et al., 2004) is trained. Because
the number of examples for training of some
residues is small, the SVM is trained using a
leave-one out cross test. Within each training iteration the input material is divided ran-
domly in a small test and a larger training set. The SVM is then presented the training set
and afterwards it is evaluated by the test set. Here, a 10–fold cross evaluation is chosen.

residue No. of principle components
χ1 χ2 χ3 χ4

ARG 3 4 5 3
ASN 4 5 – –
ASP 4 6 – –
CYS 3 – – –
GLN 3 4 4 –
GLU 3 5 4 –
HIS 3 3 – –
ILE 3 5 – –
LEU 5 5 – –
LYS 5 4 3 3
MET 3 6 5 –
PHE 5 5 – –
SER 5 – – –
THR 4 – – –
TRP 4 6 – –
TYR 5 5 – –
VAL 5 – – –

Table 5.1: Number of the first n principle components selected for each residue and torsion
angle. The principle components are taken as features to train the SVM.
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5.2.5 Calculating an Overall Flexibility for Amino Acid Side Chains

In the previous sections two approaches to predict side chain flexibility have been outlined.
In both approaches the flexibility has been predicted independently for each single torsion
angle. This has been done to avoid infeasible sampling of conformations if all residues
torsion angles would have been included at once. In this section a combination of the single
torsion angles is described. So, a whole amino acid side chain can be scored according to
its flexibility.

Since up to now, the torsion angles were handled independently. A simple method to
combine them is to sum up the single contributions:

Pf lex(aa) =
1
N

N

∑
i

Pf lex(aa)i (5.32)

Here, N denotes the total number of torsion angles, Pf lex(aa)i the predicted flexibility of
the residue aa and torsion angle χi. Because Pf lex(aa)i is either 0 or 1, the overall flexibility
Pf lex(aa) takes values between 0 and 1.

Another way to combine the single flexibility predictions is to weight each prediction by the
distance of the torsion angle from the backbone. The higher torsion angles tend to be more
flexible (see Koch, 2003) than the lower ones. Thus, the distance can be incorporated to
avoid a bias towards the higher torsion angles:

Pf lex(aa) =
N

∑
i

1
di

Pf lex(aa)i

with di =
√

(C(χi)−Cα)2

(5.33)

Here, di is the distance of the carbon atom (see Tab. 5.2) associated with the torsion angle
χi from the Cα carbon atom of the backbone.

torsion angle carbon side chain atom
χ1 Cβ
χ2 Cγ
χ3 Cδ
χ4 Cε

Table 5.2: Mapping of torsion angles to the corresponding carbon side chain atoms as used for
weighting the flexibility by distances (cf. Fig. 2.3).

The flexibility Pf lex(aa) can then be incorporated into the docking system ElMaR (see sec-
tion 4.2) in order to improve the docking results.



Chapter 6
Enhancement of the ElMaR Scoring Function

In the previous chapters, the enhancement of rigid body docking algorithms by flexibility
predictions has been described. In the following a second step to enhance protein docking
is outlined. Here, the scoring of docking hypotheses is addressed.

Generally, not only for the ElMaR system, the ranking of docking hypotheses is still not
solved today. The main problem is to distinguish between correct and false positive solutions
(see Halperin et al., 2002). An optimal set of weights for the individual components can
vary between different query proteins. During development those weights can be modified
explicitly, but knowledge about the implementation details, especially about the scoring
function is needed.

In this chapter a method is proposed to enhance the docking system ElMaR. This approach
(Intelligent Protein Hypothesis Explorer, IPHEx) addresses the weighting scheme used in
ElMaR, trying to adapt better weights by using relevance feedback techniques.

Following this introduction, the scoring scheme of ElMaR is outlined. Different methods
for optimising weights used for scoring are discussed and the aim of the IPHEx system is
given. In section 6.2 the principles of Query–by-Content (QbC) systems are presented and
their application to protein docking is shown.

6.1 Ranking Docking Hypotheses using ElMaR

As already outlined in section 4.1 the ElMaR docking system uses the features geometry
(P), hydrophobicity (H), and charge (Q) to score the hypotheses proposed by the docking
algorithm. In order to combine these features to an overall score two weights (α,β) are used:

C = (1−α)(1−β)∗ (P1•P2)+α(1−β)∗ (H1•H2)−β∗ (Q1•Q2) (6.1)

The cost function (C) reflects the ranking of a hypothesis of a complex1. For testing the algo-
rithm the root mean square deviation (RMSD) to a known crystallised complex is calculated
as standard of truth. Plotting estimate against RMSD gives an overview about the docking
algorithms performance (see Fig. 6.1). Ackermann and coworkers (Ackermann et al., 1998)

1Hypotheses with large costs are assigned a low rank whereas hypotheses with low costs receive high ranks.
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(a) Docking of 1AQ7 and 1BPI.
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(b) Docking of 1CHG and 1HPT.
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(c) Docking of 1BRA and 4PTI.
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(d) Docking of 2PTN and 5PTI.

Figure 6.1: Results of an ElMaR docking run for different test cases. Here, the parameters are
chosen as α = 0.5 and β = 0.2. Each point in the graphics represents one docking hypothesis.
On the x-axis the estimate of the costs is plotted against the RMSD on the y-axis.2

estimated the parameters α and β by sampling. For the test set used in their work best
results have been achieved for α = 0.5 and β = 0.2. Since the parameters are established for
bound docking, they do not necessarily fit for unbound docking. Thus, the weights should
be adapted.

Comparing the results of unbound docking shown in figure 6.1, in most cases, besides good
hypotheses, also hypotheses with large RMSD values are placed on low ranks by the scoring
function (especially in the case of Fig. 6.1(a)). In fact the parameters established on the
whole test set do not fit for all test cases. A better approach might be to establish separate
sets of parameters for certain subsets of the test set, e.g. protein families or proteins that
have similar reaction schemes. Another example of a wrong assignment of ranks is given
in figure 6.2. Here, the two docking hypotheses (blue/green) are superimposed to the
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Figure 6.2: Ranking of hypotheses by the ElMaR scoring function. In yellow and red the
conformation of the complex 2PTC is shown. In green the best ranked hypothesis is given.
It’s RMSD is 33Å. In blue a similar hypothesis with the same RMSD (33Å) is shown. This
hypothesis has been assigned a rank of 37.

reference complex 2PTC (yellow/red). The green coloured hypothesis has an RMSD of 33Å.
Although it has been assigned the first rank, the blue coloured hypothesis is similar in its
transformation and structural error (RMSD of 33Å). In this case ElMaR ranks the hypothesis
on position 37.

In the literature, several approaches solve the parameter estimation by formulating an op-
timisation problem. Rosen and coworkers (Rosen et al., 2000) e.g. propose the ENPOP
algorithm that tries to find globally optimal parameters minimising energy landscapes of the
problem under investigation. An iterative approach is proposed by Zien and colleagues (Zien
et al., 2000), where two steps are performed: first the original application is run (here fold
classification of sequences using the program 123D) to produce hypotheses and afterwards
a calibration of the data is performed using an external “standard of truth”. The calibration
method is based on the assumption that good solutions according to the classification score
better than bad ones. Two methods called VIM and CIM are formulated that optimise the
weights so that an optimal solution to a system of inequalities is found.

Comeau and coworkers (Comeau et al., 2004) proposed a clustering approach applied to
a rigid body docking based on a fast Fourier transformation approach like ElMaR. Before
clustering the active sites of the docking hypotheses, an energy filter (using electrostatic and
desolvation potentials) is applied to cut down the number of possible solutions. Clustering is
then performed on bases of pairwise RMSD calculations within the active site. Therefore, the
receptor is held fix and for each ligand, all residues within 10Å from its receptor are picked.
The RMSD is then calculated between the residue sets of the ligand of each hypothesis. This
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approach returns in 31 out of 48 test cases at least one near native structure with an average
RMSD of 5Å. The processing of one complex takes up 4 hours on a 1.3GHz 16 CPU IBM
pSeries690 server.

In contrast to the approaches mentioned before, the IPHEx system uses relevance feed-
back techniques adapted from Query-by-Content (QbC) systems (cf. Salton & McGill, 1983;
Rui et al., 1998), especially from the INDI (Intelligent Navigation in Digital Image databases)
system (Kämpfe et al., 2002; Bauckhage et al., 2003) which is rooted in information retrieval
and was transduced to the field of image databases. Providing an easy to use interface hiding
a potentially complex scoring function from the user, a set of hypotheses can be evaluated
and scored easily. The 3D visualisation of the docking hypotheses enables the human expert
to inspect and compare a hypothesis to other ones or to a known (homologue) complex.
The hypotheses are scored from highly relevant to highly non-relevant. The comparison and
inspection of a hypothesis is not restricted to the positioning (the geometric complementar-
ity) of the docked proteins. Other features like hydrophobicity and charge can be mapped
onto the three–dimensional structures providing additional criteria to score the hypotheses.

After scoring a set of hypotheses, the system modifies the weights within the scoring func-
tion according to the feedback. In contrast to optimisation methods this approach also
works if no “standard of truth” is available (unknown reference complex). In this case, e.g.
one hypothesis out of the predicted ones has to be chosen3.

Besides this, the approach formulated here can be used to navigate through a large set of
docking results searching for hypotheses fulfilling certain criteria (defined by the user). Here,
query by content retrieval can also be used. Criteria describing hypotheses to be searched
for can be easily defined by picking a hypothesis as a query object. Similarity search can
then be applied to find corresponding hypotheses within the set of docking results.

One goal of this work is the improvement of the scoring function and to find good weights
(α,β). In a bootstrapping approach, the result of a feedback session is mapped onto all
docked test sets in the database that have the same enzyme number assigned. Here, the idea
is that proteins possessing the same enzyme number perform the same chemical reaction
and thus, also the same biological function. This idea is derived from the definition of the
enzyme numbers (c.f. NC-IUBMB, 1992). The enzyme numbers group proteins into classes
according to their reaction scheme. Because of this, the docking mechanism of each enzyme
class might be similar and the weights can be simply adapted.

6.2 Adapting QbC Techniques for Scoring Docking Hypotheses

In this section an approach to relevance feedback is described that enhances the scoring
of the ElMaR docking system. At first a brief overview on Query–by–Content systems and
their application to the scoring of docking hypotheses is given. Then the IPHEx system is

3Of course additional knowledge about the docking test case is needed, e.g. the location of the active sites of
the docking partners.
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outlined. Finally the adaptation of the weights which are used for the scoring of docking
hypotheses is described.

6.2.1 Query-by-Contents Systems and Protein Docking

In Query-by-Contents systems retrieval is based on similarity search, i.e. the system has to
find similar items to a given query item. Relevance feedback is taken to tune the similarity
measurement towards the response of the user. The system provides an intelligent interface
hiding the individual components of the similarity function. The user gives feedback navi-
gating through the result set one at a time and ranking them from highly relevant to highly
non-relevant. Examples for such systems are MARS (Rui et al., 1998) or INDI (Kämpfe et al.,
2002). Those systems are applied in the field of image retrieval systems.

IPHEx re-ranks docking hypotheses generated by the ElMaR system based on relevance
feedback. In order to describe the method first a docking hypothesis has to be defined
formally. A docking hypothesis is a tuple of the transformation M = (~t,~r), containing a
translation~t = (t1, t2, t3)T and a rotation vector ~r = (r1, r2, r3)T , and the feature components
geometry, charge and hydrophobicity (P,H,Q). Looking at the scoring function of ElMaR
(see Eq. 6.1), the features can be interpreted as a similarity measure between docking hy-
potheses. The weights α,β control the influence of the three features. The user’s feedback
can be taken to tune the weights of the scoring function.

In QbC–Systems the distance between each feature is calculated and combined into an
overall distance measure between two objects. In Figure 6.3, a scheme of the application
of QbC techniques to the protein docking is given. On top of the figure, different docking
hypotheses calculated using ElMaR are shown. For each hypothesis, a set of the three fea-
tures (P,H,Q) is determined by the docking system. On bottom of the graphic the reference
structure (here a known complex of the data set) is shown. For this complex, the mentioned
features are calculated using ElMaR, too. In this case a “faked” hypothesis with a translation
of~t =~0 and a rotation of ~r =~0 is presented to the “Final Docking” module of ElMaR (see
section 4.1) to score the complex. The distance di between the reference structure and the
hypothesis is calculated as follows:

∆(P1•P2) = (P1•P2)complex− (P1•P2)hypothesisi (6.2)

∆(H1•H2) = (H1•H2)complex− (H1•H2)hypothesisi (6.3)

∆(Q1•Q2) = (Q1•Q2)complex− (Q1•Q2)hypothesisi (6.4)

In a QbC-system each of these distances is combined via a corresponding weight to an over-
all score. The scoring of ElMaR (see 6.1) can be reformulated similar for a single hypothesis
i as:

C = w1∗∆(P1•P2)+w2∗∆(H1•H2)−w3∗∆(Q1•Q2) (6.5)

In equation 6.5 the weights ~w= (w1,w2,w3)T regulate the contribution of the features to the
overall score C. In order to map these weights to the original weights α and β, the following
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Figure 6.3: Scheme of using QbC techniques for scoring hypotheses generated by ElMaR. The
distance di between a hypothesis i and the reference complex is calculated from the features
(P,H,Q) and is combined via weights to a score (see Eq. 6.5).

equations are set up:

w1 = (1−α)(1−β) w2 = α(1−β) w3 = β (6.6)

An additional condition has to be introduced to solve these equations :

∑
i

wi = 1 (6.7)

Thus, α and β can then be expressed as follows:

α =
w2

1−w3
β = w3 (6.8)

In order to take care of equation 6.7 the weights w1, w2 and w3 are normalised and the
weight w1 is incorporated indirectly.
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6.2.2 The IPHEx System

After having outlined the similarity calculations used within IPHEx, the next step is to explain
how relevance feedback can be applied to the system, and how the adaption of the weights
is realised.

(a) 3D visualisation of the enzyme (1CHG) coloured
red, and the inhibitor (1HPT) blue, a potential
docking solution is coloured in green. This is an
example how docking hypotheses are presented
to the user by the IPHEx system.

(b) User interface for the navigation through the
set of docking hypotheses and for giving feedback.
On top, buttons for navigation (left) and feedback
(right) are localised, below the navigation panel
the development of adapted weights is shown in
a plotting widget.

Figure 6.4: IPHEx system. On the left, the super-imposition of a true complex and a hypothesis
which is presented to the user, is shown. On the right, the navigation and feedback panel is
given.

The IPHEx system consists of two modules, the visualisation component ViWish (Klein et al.,
1996) (see Fig. 6.4(a)) for presenting the docking hypotheses to the user and a feedback
module (see Fig. 6.4(b)) to navigate within the set of hypotheses and to give feedback. The
docking constellation visualised by the ViWish can be coloured according to the biochemi-
cal features, aiding the user’s interpretation. The navigation panel in the second module lets
the user navigate through the set of hypotheses and rank the hypotheses from highly non–
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relevant to highly relevant (−−,−,0,+,++). Here, highly relevant means that the given hy-
pothesis is similar to the reference structure, e.g. the known complex. Highly non-relevant
hypotheses are those differing from the given reference, respectively. Below the navigation
and feedback panel the development of the adapted weights is plotted for each iteration of
feedback.

DB of
Docking

Adaptation

Feedback
&

Set of 

Hypotheses

User System

Visual Inspection Adapted Scores

Hypotheses

Figure 6.5: IPHEx system. Left: comparison and feedback by the user. Right: adaptation
performed by the system.

Figure 6.5 gives an overview of the running IPHEx system. The ElMaR docking system
generates a set of 700 hypotheses per docking test case. These hypotheses are stored
within a relational database. Because a user can not rank the total number of hypotheses
initially a subset, here 20 out of the 700 hypotheses, is chosen randomly. This set is ordered
according to the distance between the hypotheses and the reference complex (see Eq. 6.5).
Afterwards it is presented to the user. The user inspects the set of hypotheses and gives
feedback according to the similarity to the reference structure. After having scored the
set of hypotheses an adaptation of the weights is performed by the system resulting in an
updated set of hypotheses.

6.2.3 Adapting Weights of the Scoring Function using QbC Techniques

The adaptation of the weights ~w = (w1,w2,w3)T is controlled by the user’s relevance feed-
back. In section 6.2.1 the similarity between a docking hypothesis and the reference struc-
ture is defined by the distance of the features hydrophobicity (H), geometry (P) and charge
(Q). In order to adapt the weights the user’s feedback and the similarity of the hypotheses
have to be combined.

During an iteration the user ranks the list of hypotheses HL by providing scores S from
highly non-relevant to highly relevant. After each scoring iteration the feature weights wi

are updated using the following equation:

w′
i = wi + ε ∑

m∈HL

S(HHL
m )F(R(HHL

m ,HLi)) (6.9)

Updating the weight wi is done by adding up the feedback of all scored hypotheses. In order
to reflect the user’s feedback first the rank of a hypothesis within the ordered feature list HLi,
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i ∈ {1,2,3} (denoted as R(HHL
m ,HLi)) is determined4. Each feature list consists of the ordered

hypotheses according to their distance to the reference structure (see Eq. 6.2, 6.3, and 6.4).
A low rank within a feature list implies that this feature supports the hypothesis, a high rank
does not. For combining the rank R(HHL

m ,HLi) with the feedback S(HHL
m ) ∈ {−3,−1,0,1,3}5
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Figure 6.6: Function F, on the x–axis the rank is plotted, the feedback of a hypothesis with a
low rank is propagated stronger than the feedback of a hypothesis with a higher rank.

of the hypothesis HHL
m the function F is used. It weights the feedback reflecting the support

of the feature using the rank of HHL
m within each feature list. Thus, the value of the product

of F and S represents the value, the weight wi is changed for the hypothesis HHL
m .

The functionality of F can be described as follows: If a hypothesis HHL
m has been scored as

relevant by the user and its rank within the feature list HLi is low than the according weight
wi is increased because the function F propagates the score to the weight. An increase
of the weight assumes that the corresponding feature is important for the docking process
of the test case. Similar, if HHL

m has been assigned a low score the corresponding weight
is decreased as its assigned feature should not contribute further to the scoring. In case
of a hypothesis with a high rank in the feature list the assumption is that the feature is not
relevant. Therefore, its score should not contribute to a change of the corresponding weight
and the function F returns a value near to zero. So, the function F is designed monotonic
and decreasing (see Fig. 6.6).

Finally, the sum over the feedback scores is weighted by the learning rate parameter ε to
lessen the impact of the feedback to the weight. At the end of a session the modified

4The index i of the feature list HLi corresponds to the index of the weight wi .
5Numerical representation of the feedback from highly non–relevant (-3) to highly relevant (3). The values are

chosen arbitrary.
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weights are stored within a database for re-use or to score other complexes in the same
family.



Chapter 7
Results

In this chapter the results of this study are presented. At first the data on which all experi-
ments have been carried out is described. In section 7.2 the performance of the classifiers
is evaluated. The threshold based method is tested using Receiver Operation Characteristic
(ROC) analysis (see section 7.2.1). The results and the accuracy of the SVM classifier are
outlined in section 7.2.3. A second evaluation procedure is described in section 7.3. Here,
the gained flexibility information is incorporated and tested in the docking system ElMaR.

A second goal of this thesis is to improve the scoring of the ElMaR system. The results of
this approach, using a relevance feedback method (IPHEx), are presented in section 7.4. This
chapter summarises with a discussion.

7.1 Data Set

Several approaches have been proposed in this work: flexibility prediction, evaluation of
flexibility information within the docking system ElMaR, and improvement of scoring by
relevance feedback. Thus, to train and evaluate these approaches three dimensional struc-
tures of proteins are required. Publically available protein structures are provided by the
Brookhaven Protein Database – Pdb (Bhat et al., 2001). This database consists of nearly
25.000 structures (cf. Research Collaboratory for Structural Bioinformatics (RCSB), 2003)
mostly refined by crystallography and fewer by NMR spectroscopy or homology modelling.
The number of deposit structures is steadily growing (see Fig. 7.1). Therefore, automatic
methods have been developed to fetch new Pdb-releases and to update all information
calculated on the protein structures (see section 7.1.1).

Besides this, the data set used in this work has to fulfil several criteria. The classification is
done on unbound protein structures. So, at first the Pdb structures have to be classified into
complex and unbound proteins. Thus, test cases (consisting of a complex and two unbound
proteins) for the protein–protein docking can be derived automatically without additional
calculations.

Since most Pdb structures are refined by crystallography, the resolution should be as high as
possible to guarantee precise atom coordinates. Furthermore, these protein models lack of
hydrogens due to the refinement method. Since the hydrogens are important for the energy

65
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Figure 7.1: Growth of Pdb (Research Collaboratory for Structural Bioinformatics (RCSB), 2003).
The exponential growth of protein structures is obvious. In green the total number of structures
available is depicted. The red bars represent the deposited structures per year.

evaluation, they have to be added. Additionally, all structures are checked for completeness
(no missing atoms) and valid bonds.

In order to evaluate the classification a labelled test set is needed. Using the structure
comparison methods of Koch (Koch, 2003), each residue and torsion angle of the data set is
labelled. Here, automatically generated test cases are used for comparison of complex and
unbound structures.

7.1.1 Automatic Test Set Generation

In order to use Pdb structures, a lot of preparation has to be done. Therefore, an automation
of this procedure is helpful. Here, a modular and pipelined system has been set up. It can
process new structures by applying certain defined criteria to the structures. The system is
divided into two parts. In figure 7.2 the first part calculating test cases for protein–protein
docking is shown. Some of the modules (cf. blue boxes) have to be run every time an update
of the test cases is scheduled, e.g. due to an update of the Pdb. The init first module has to
be run once while installing and setting up the system for the first time. All other modules
can be run incrementally or in batch mode (processing all entries sequentially). In case of
an incremental update, new entries can be distributed to other CPUs to increase speed.
The system is back ended by a database system (MySQL 4.1) for storing and serving data
to the pipeline. A control framework is attached to the pipelined system. It watches the
processing of the modules and checks the dependencies between them. If one criteria fails,
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Figure 7.2: First part of the automatic processing of Pdb structure for flexibility investigation
and docking. The blue and red shaded boxes represent modules working incrementally, whereas
the blue outlined boxes have to be run every time. The boxes filled with the pattern can be run
in both modes.

the structure is omitted from the final test set. The control framework is realised using the
Java build-tool ANT (Loughran, 2002).

The mirrorPDB module compares the locally stored version of the Pdb to the one hosted
by the official server. New entries are copied to the local repository of protein structures.
This is done using the perl tool mirror (McLoughlin, 2003). Then, a list of new structures
is compiled. The module list of new pdbs generates a job file for each entry so that the
calculations can be distributed to multiple computers.

In a next step (pdb2mysql), either in batch mode or incrementally, meta information from
the Pdb files is extracted and stored within a relational database similar to 3DInsight (An
et al., 1998). The extracted information, e.g. the number of chains, is used to search
for protein complexes and their unbound sequence identical parts. The search for protein
complexes is based on three different heuristics (cf. Neumann, 2003). On the one hand,
classified complexes from the Pdb at a glance (Pearlstein & FitzGerald, 1996) are taken (cf.
Pdb at a glance testcases in Fig. 7.2). On the other hand, protein structures are defined as
complexes if they consist of two chains and if there exist proteins within the Pdb that are
sequence identical to one part of the complex (cf. 2chain testcases module). This pair of
single chained proteins have not be sequence identical to each other. As a third method,
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certain naming conventions are considered: Entries with the chain identifiers A, B and I are
usually an enzyme (consisting of the chains A and B) and its inhibitor (chain I). Some other
name conventions can be found, like chain identifiers L and H for antibodies. The search
process can be formulated as a SQL query and is executed on the database (cf. Neumann,
2003, chapter 4). The intersection of the result sets of the three methods forms an initial
test set.

In order to compare docking results, test sets (Chen & Weng, 2002; Halperin et al., 2002;
Norrel et al., 1999; Betts & Sternberg, 1999) also published are incorporated. According to
certain quality criteria (e.g. resolution of the structure or chain length) individual subsets
can be created for further processing. Since most protein–protein docking test cases are
hand picked by each researcher the automatic test set generation is provided as a web
service (Zöllner et al., 2004) called agt-sdp (Automatic Generated Test-Set Database for
Protein–Protein Docking) to access and select data sets easily.

Based on these test cases further preparation of the Pdb structures may be run. This is
also done automatically. Figure 7.3 gives an overview of this second part. At first, the
structures are checked for completeness and verified (e.g. correct bond lengths). This is
done to ensure that the energy calculations will be correct. Missing atoms or wrong bond
length will influence the total energy. Since hydrogen atoms cannot be detected in the
refraction pattern during crystallography, these atoms are not included within the original
Pdb structure file. They have to be added to complete the structure (see section D.1).

Rotamerlibrary & statistical Energy based Classification

Evaluation by IPHEx

of PDB Structure

PDB Structure Check
add Hydrogens to Model

flexibility Information

Protein−Protein Docking

further processing 

Additional Metainformation

Figure 7.3: Second part of the automatic processing of Pdb structure for flexibility investigation
and docking. The docking module was implemented by Neumann (Neumann, 2003), whereas
the module of the rotamer library was developed by Koch (Koch, 2003).
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For the structure comparison and the evaluation of the flexibility, several additional informa-
tion, e.g. secondary structure or solvent accessible surface area (SAS) of the structure have
to be collected. For details about the different tools which have been summarised within
the module additional Meta-information see appendix D.1.

In the next step, flexibility information (e.g. using rotamer statistics (Koch, 2003) or the
classification approach (cf. chapter 5)) is calculated on the protein structure which is then
provided to the docking algorithm. The results of the docking are handed over to further
evaluation modules. In a first step docking hypotheses can be re–ranked using the IPHEx
module (see section 6.2).

7.1.2 Description of the Data Set

In this section the data set used in this study is described. Initially, 24475 Pdb structures
(mirror of 2nd February, 2004) have been registered within our database. Out of these a test
set of 77 complexes and 88863 test cases has been automatically derived. Table 7.1 shows
the initial numbers found by each method and the results of the intersection of these. For

raw test cases final test cases
Method # Complexes # Test cases # Complexes # Test cases

Complex2Unbound 57 88803 49 87531
Unbound2Complex 487 175036 28 1272

from literature 75 197 75 197

Table 7.1: Intersection of the individual sets found by each method. Besides the intersection
several quality criteria have been applied for the final set.

the data set the resolution of each structure should be between 0.1 and 2.5Å to pick good
structures and to reject structures refined by modelling techniques or NMR. The minimum
chain length should be more or equal than 30 residues to avoid peptides. For flexibility
classification all protein structures have to pass the Pdb structure check module.
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Figure 7.4: Histogram of residues per amino acid type. The total amount of residues is 44345
from 232 protein structures, not counted ALA, GLY and PRO.
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Figure 7.5: Histogram of labelled data set used for the prediction. The red bars visualise the
number of residues changing their rotamer, the green marked bars represent the number of
non–flexible residues.

The final data set used for the classification tasks contains 232 unbound proteins and 44345
residues. Each residue in this data set is labelled whether it changes a rotamer or not (see
section D.1). Figure 7.4 shows the number of residues for each amino acid type whereas
figure 7.5 gives the histogram of the two classes for each residue type and torsion angle.

The unbound protein structures are from the different enzyme classes (NC-IUBMB, 1992) as
shown in table 7.2. In the last line of the table the number of all proteins are summarised
which have no EC number assigned1.

Unequal class sizes can influence the result of a classifier2. The number of flexible residues
is usually lower than the number of rigid residues due to the packing of the protein. Most
amino acids reside within the core of the protein. This can be observed in the data used as

1Either these proteins are no enzymes, e.g. 1G7H is involved in gene regulation or those proteins have no yet
an EC number assigned.

2The classification can be biased towards the bigger class.
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EC number Description counts
1.1.1.1 Alcohol dehydrogenase. 2

2.1.2.2 Phosphoribosylglycinamide formyltransferase. 1
2.4.2.9 Uracil phosphoribosyltransferase. 1
2.6.1.1 Aspartate transaminase. 10

3.1.27.5 Pancreatic ribonuclease. 10
3.2.1.17 Lysozyme. 65
3.2.1.91 Cellulose 1,4-beta-cellobiosidase. 1
3.4.21.1 Chymotrypsin. 4
3.4.21.4 Trypsin. 37

3.4.21.62 Subtilisin. 1
3.4.23.16 HIV-1 retropepsin. 19
3.4.24.17 Stromelysin 1. 7

5.2.1.8 Peptidylprolyl isomerase. 16
6.3.2.19 Ubiquitin–protein ligase. 1
6.3.4.4 Adenylosuccinate synthase. 7

– – 61

Table 7.2: Data set of unbound proteins used for classification of residue flexibility, grouped by
EC number. In the last line, all proteins without no EC number assigned and which are used
for the flexibility classification are listed.

shown in figure 7.5. In order to avoid this the number of examples is reduced so that each
class (flexible, non–flexible) has an equal size.

For testing the flexibility information within the docking system ElMaR, test cases have to
be compiled. Out of the 88863 test cases (see table 7.1) derived from Pdb and for the
232 unbound proteins used for the flexibility calculations, a set of 17023 examples has
been extracted from the database. Although, the ElMaR system is designed for speed,
the calculation of all test cases will last nearly a full year3. Thus, a subset of 245 test
cases matching 18 different complex structures has been chosen finally according to the
crystallographic resolution of the structures. A detailed list of the used structures is given in
table A.3. Table 7.3 gives the number of test cases per complex.

Complex 1A
2W

1A
7X

1A
D

E

1A
D

I

1A
FK

1A
FL

1A
FU

1A
O

6

1A
PN

1A
R

G

1A
SM

1A
SN

1B
2K

1B
M

0

1C
G

I

1L
Y

S

1T
PA

2P
TC

counts 7 6 1 1 9 6 10 2 13 8 4 4 113 1 2 54 2 3

Table 7.3: Test Cases grouped by their reference complex.

A bias towards the complex 1B2K and 1LYS due to the fact that the test cases are chosen
according to the unbound proteins used for the flexibility predictions. The largest group
of unbound proteins are Lysozymes. The complexes 1B2K and 1LYS and also their unbound
parts belong to this class. Thus, these proteins are more frequent within the set of test cases.

3Here, a docking run is averaged by 20 minutes, see (Neumann, 2003).
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7.2 Classification Results

In the last section, the data used for classifying the flexibility and performing docking ex-
periments have been outlined. In the following, the results of the different approaches are
presented.

7.2.1 Evaluating Threshold based Classifier by ROC Statistics

The first classification approach is based on a threshold to discriminate flexible and non–
flexible residues (see section 5.2.3). In order to evaluate this approach, here Receiver Oper-
ating Characteristics (ROC) analysis is chosen. ROC is a straight forward method to analyse
the performance of various kinds of applications. Before evaluating the classification, a brief
introduction to ROC is given. Then, the performance of the classification system is evalu-
ated. Here, ROC analysis is also used to search for good thresholds to classify the flexibility.

Introduction to Receiver Operating Characteristics

Receiver Operating Characteristic analysis is a method originating from the field of “Signal
Detection Theory” (Egan, 1975) and was developed for the analysis of radar images. The
main objective in signal detection theory is to decide whether there is a certain information
within a signal (like a spot on a radar image) or just noise. Because of this, ROC analysis can
be used as a method to test a decision system’s accuracy. Beside the traditional field of signal
detection theory ROC analysis has been applied to the field of medicine and health care,
especially in radiology to measure the accuracy of diagnostic systems (Swets, 1988; van Erkel
& Pattynama, 1998) and has been recently applied in the field of machine learning (Bradley,
1997), data mining (Drummond & Holte, 2000) and bioinformatics (Bilban et al., 2002).

In ROC analysis the basic idea is to calculate the probability that a residue is flexible under
the consideration given a certain feature (here energy difference greater a certain threshold).
The selection of a threshold influences the performance, e.g. here the number of correctly
predicted residue side chains (see Fig. 7.6). Moving the threshold causes an increase in
false positive examples or false negative examples according to the direction the threshold
is moved.

Predicted
PRC(aa) = 0 PRC(aa) = 1

not flexible true negative (TN) false positive (FP)

Tr
ue

flexible false negative (FN) true positive (TP)

Table 7.4: Scheme for confusion matrix applied to flexibility prediction.

The result of a prediction given a certain threshold can be evaluated by a 2×2 table, also
called confusion matrix (see Tab. 7.4). Here, the four fields of this table are defined as follows:
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Selection criterium

not flexible

Result of Prediction

TP

FP
FN

TN

flexible 

Figure 7.6: Scheme of a threshold based prediction. Here, the possible distributions of a pre-
diction result given a certain threshold (selection criteria) is shown. The examples left of the
threshold (marked by the vertical line) are not flexible examples whereas the examples on the
right are flexible. Moving the threshold to the left or right influences the number of correctly
and wrong classified examples.

• TP, number of residues which have been predicted as flexible and which are flexible.

• FN, number of residues which have been predicted as not flexible, but are flexible.

• FP, number of residues which have been predicted as flexible, but are not flexible.

• TN, number of residues which have been predicted as not flexible and are not flexible.

A disadvantage of these tables is that the performance cannot be seen easily from the num-
bers. Even more, one is interested in the specificity and sensitivity of the method. The
specificity here is the proportion of residues which are not flexible and which are not pre-
dicted as flexible. The sensitivity is defined as the proportion of residues which are flexible
and also have been classified as flexible. These values can be calculated using the following
equations:

Sensitivity =
TP

TP+FN
Specificity =

TP
TP+TN

(7.1)

In medical statistics the word “specificity” is often used in a different sense, meaning the
chance of correctly predicting a negative example (Baldi & Brunak, 2001). It is also called
selectivity or false alarm rate (see Eq. 7.2).

Selectivity =
TN

FP+TN
(7.2)

The performance of a method depends on the tradeoff between sensitivity and specificity,
e.g. how many false positives and false negative can be allowed. In order to visualise the
numbers, a so called ROC curve can be drawn, plotting the sensitivity (or hit rate) against
false positive rate. An example of such a curve is shown in figure 7.7.
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ROC curves give an overview about the performance of the system depending on the thresh-
old. The position and form of the curve is an indicator how well the prediction system works.
A diagonal in the plots (see Fig. 7.7) marks the chance line, indicating that the prediction
is random. Curves above the diagonal represent good prediction results. The prediction
is better the nearer the ROC curve is to the left and upper boundary of the plot. A curve
below the diagonal indicates that the predictions failed.

A performance measure independent of the threshold can be derived directly from this
curve, using the area (AROC) under the ROC curve (Bradley, 1997).

AROC=
Z 1

0
ROC (7.3)

This criterion can be used to decide which method is best on a given problem (like here,
different normalisation factors, see Fig. 7.7).

Another question arising from this analysis is which threshold is optimal so that the classifier
performs best. In ROC analysis theory, the best threshold corresponds to the point on the
ROC curve that is closest to the upper left corner of the plot (see Eq. 7.4). On the one hand
one could assign costs to the classification results and then perform a maximum likelihood
optimisation (Metz & Pan, 1999; Drummond & Holte, 2000) to estimate this point. But
therefore, corresponding costs have to be estimated or defined (Foster & Fawcett, 1997).
Here, simply the distance of each point (~xi) to the upper left corner (~c) is evaluated, since a
cost function is difficult to estimate.

T = min
i

(
√

(~c−~xi)2 (7.4)

7.2.2 Results of the Threshold based Classification

The protein data described in section 7.1.2 has been applied to the threshold based classifier.
At first an optimal normalisation factor has been searched by testing six different scaling
factors for the whiskers. The optimal normalisation factor (Nf) is picked by comparing the
area under the ROC curves. Table 7.5 summarises the results for the χ1 angle.

For most of the residues best results for χ1 are reached using a normalisation factor of
0.5∗ (Q3−Q1). Here, (Q3−Q1) denotes the inter–quantile distance of the box-plots (see
section 5.2.3). For CYS and MET residues the optimal normalisation factor is 6∗ (Q3−Q1).
For the other torsion angles (χ2−4) the largest ROC areas are received by a normalisation
factor of 0.5∗ (Q3−Q1) (see also Tab. B.1, B.2, B.3, and B.4).

Figure 7.7 shows the ROC curves of ARG (χ1), TRP (χ2), MET (χ3) and ARG (χ4). For each
plot 1-specificity is plotted against the sensitivity. The curves are coloured according to
their normalisation factor used within the classification. The diagonals drawn within the
plot represent the “chance line” meaning classifying a residue by random. The different
normalisation factors do not affect the prediction results much except for Q4. The Q4 nor-
malisation factor extends the whiskers to the outmost point including all energy differences
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AS
χ1 χ2 χ3 χ4

AROC Nf AROC Nf AROC Nf AROC Nf
ARG 0.74 0.5∗∆Q 0.63 0.5∗∆Q 0.64 0.5∗∆Q 0.61 0.5∗∆Q
ASN 0.69 0.5∗∆Q 0.62 0.5∗∆Q – –
ASP 0.64 0.5∗∆Q 0.51 0.5∗∆Q – –
CYS 0.75 6∗∆Q – – –
GLN 0.72 0.5∗∆Q 0.69 0.5∗∆Q 0.55 0.5∗∆Q –
GLU 0.60 0.5∗∆Q 0.55 0.5∗∆Q 0.54 0.5∗∆Q –
HIS 0.74 0.5∗∆Q 0.75 0.5∗∆Q – –
ILE 0.62 0.5∗∆Q 0.65 0.5∗∆Q – –
LEU 0.65 0.5∗∆Q 0.64 0.5∗∆Q – –
LYS 0.66 0.5∗∆Q 0.55 0.5∗∆Q 0.51 0.5∗∆Q 0.49 0.5∗∆Q
MET 0.63 6∗∆Q 0.51 0.5∗∆Q 0.76 0.5∗∆Q –
PHE 0.67 0.5∗∆Q 0.58 0.5∗∆Q – –
SER 0.54 0.5∗∆Q – – –
THR 0.70 0.5∗∆Q – – –
TRP 0.88 0.5∗∆Q 0.72 0.5∗∆Q – –
TYR 0.59 1.5∗∆Q 0.63 0.5∗∆Q – –
VAL 0.71 0.5∗∆Q – – –

Table 7.5: ROC areas and normalisation factor for all torsion angles, ∆Q = Q3−Q1. Dashes
indicate that the corresponding torsion angle does not exist within the residue type.

and therefore the maximum difference is used for the normalisation. Because this value
is extremely huge in comparison to the average energy difference, most of the values are
nearly zero resulting in a random prediction.

Based on the normalisation factor the optimal threshold is calculated. Thus, the correspond-
ing classification results are taken and the distance of each point within the ROC curve to
the upper left corner is determined (see Eq. 7.4). Because each value in the ROC plots is
linked to a certain threshold, the optimal threshold can be estimated easily. Table 7.6 shows
the thresholds for all amino acids and torsion angles. Using these thresholds, all residues
in the test set are classified. The result is stored in the relational database for serving this
flexibility information to the docking system ElMaR.

Figure 7.8 on page 78 shows the three-dimensional structures of the trypsin 1AQ7. Here,
the residues are coloured according to their flexibility prediction based upon the thresh-
old method. The green coloured atoms are correctly predicted whereas the red coloured
residues are wrongly predicted. Each sub-figure shows the coloured protein structure for
each torsion angle.

Comparing the four figures, it is obvious that the number of coloured residues drops for the
higher torsion angles. The reason for this is that only a few residues have long side chains
and possess a χ3 or χ4 torsion angle. In case of the first torsion angle (Fig. 7.8(a)) a lot of
misclassifications occurred (many red coloured atoms) whereas for the higher torsion angles
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amino acid threshold
χ1 χ2 χ3 χ4

ARG 0.2 0.2 0.2 0.2
ASN 0.3 0.3 - -
ASP 0.3 0.3 - -
CYS 0.8 - - -
GLN 0.4 0.4 0.4 -
GLU 0.3 0.3 0.3 -
HIS 0.2 0.2 - -
ILE 0.2 0.2 - -
LEU 0.2 0.2 - -
LYS 0.2 0.2 0.2 0.2
MET 0.1 0.1 0.1 -
PHE 0.3 0.3 - -
SER 0.3 - - -
THR 0.2 - - -
TRP 0.2 0.2 - -
TYR 0.1 0.1 - -
VAL 0.2 - - -

Table 7.6: Thresholds used for the classification of residue flexibility using the energy difference
as feature.

the amount of wrongly classified residues is nearly equal to the number of correct classified
residues (cf. Fig. 7.8(c) or 7.8(d)). According to the visual inspection, best results are reached
for the χ2 torsion angle (see Fig. 7.8(b)).

A further evaluation of the threshold based prediction of amino acid side chain flexibility is
carried out by incorporating these results into the docking system ElMaR (see section 4.2).
The results of the docking evaluation are given in section 7.3.
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Figure 7.7: ROC curves for different residues and torsion angles. The different colours mark the
normalisation factors used. On the x-axis 1-specificity, on the y-axis the sensitivity is plotted.
The diagonal line marks the “chance line”.
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(a) 1AQ7 coloured for predictions of χ1 (b) 1AQ7 coloured for predictions of χ2

(c) 1AQ7 coloured for predictions of χ3 (d) 1AQ7 coloured for predictions of χ4

Figure 7.8: The protein structure of a trypsin (1AQ7) is coloured according to the threshold based
flexibility prediction. Here, the structure is coloured in green in case of a true prediction and
red in case of a false prediction. Gray coloured atoms are residues not considered like ALA, GLY
or PRO and in case of the higher torsion angles (χ2−4) those residues that do not possess these
torsion angles. In blue, a docked trypsin inhibitor (1BPI) is shown.
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7.2.3 Classification Results using the Support Vector Machine

In this section the results of the classification of the flexibility of residues’ side chains using
a support vector machine are presented. Several features were calculated on the energy
landscape of each torsion angle (see chapter 5) and combined to single feature vectors for
the classification. Here, a support vector machine of the free statistics package R (Ihaka &
Gentleman, 1996; Dimitriadou et al., 2004) is used. The R package providing the support
vector machine uses the libsvm (Chang & Lin, 2001) internally.

The classes of flexible and non–flexible residues are not balanced (the non–flexible residues
outnumber the flexible ones) as shown in figure 7.5 on page 70. These proportions result
from the folding of a protein burying most residues within the core and placing only fewer
residues on the protein surface. The residues on the surface tend to be more flexible as
steric restricts are less than within the core.

The SVM is biased to the larger class. During the generalisation, when training a SVM the
classification is tuned towards reducing the number of misclassified examples of the larger
class. Thus, the class containing the non flexible residues, neglecting classification faults is
optimised. Therefore, equal sized classes of non–flexible and flexible residues have been
chosen.

residue χ1 χ2 χ3 χ4

ARG 77.1% 70.6% 64.5% 66.6%
ASN 73.3% 63.3% - -
ASP 70.8% 70.2% - -
CYS 89.2% - - -
GLN 78.8% 74.9% 65.1% -
GLU 68.4% 70.1% 63.1% -
HIS 75.3% 69.7% - -
ILE 75.0% 69.1% - -
LEU 76.8% 63.4% - -
LYS 70.0% 75.6% 80.8% 69.2%
MET 82.8% 79.3% 75.3% -
PHE 83.0% 66.4% - -
SER 68.4% - - -
THR 64.2% - - -
TRP 85.7% 75.7% - -
TYR 81.0% 62.1% - -
VAL 68.1% - - -

average 75.8% 59.8% 69.8% 67.9%

Table 7.7: Overall accuracy for classification of the different torsion angles as flexible or non–
flexible. Here, a radial basis function kernel and a 10–fold cross evaluation are used.
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A 10–fold cross evaluation is performed to measure the classification accuracy and to avoid
over-fitting. Besides the total accuracy normally printed out, the libsvm source code has
been modified to print out the classification of the examples used within the testing of each
validation step (see Tab. 7.8) to get a more detailed view of the classification process. The R
package provides different kernel functions4. Here, radial basis functions are chosen as they
perform well in most applications.

(a) 1AQ7 coloured for predictions of χ1 (b) 1AQ7 coloured for predictions of χ2

Figure 7.9: Visualisation of SVM based flexibility predictions for χ1 and χ2. Correct predictions
are coloured in green, false predictions are shown in red and gray coloured atoms represent
residues not considered in the flexibility predictions like ALA, GLY and PRO.

Table 7.7 summarises the classification results. Here, for each amino acid type and torsion
angle the total accuracy is shown. In table 7.8 detailed results for the flexibility classification
of χ1 of arginine are presented. The numbers of true positives, false positives, false negatives
and true negatives are the average over the ten validation runs. The results of the other
amino acids and torsion angles are given in appendix B.5.

In summary, the flexibility of a residue for the χ1 torsion angle can be predicted with a
classification accuracy of nearly 75%. For the second torsion angle (χ2) the accuracy of
classifying the side chain flexibility is 60% whereas for the other torsion angles average
classification rates of 68% and 67% are reached.

Inspecting the results given in table 7.8 one can see that flexible and non–flexible residues
can be successfully predicted at same percentages. Only in few cases (e.g. for PHE, see

4Besides, radial basis functions, also polynomial, sigmoidal and linear functions are provided.
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Predicted
not flexible flexible

not flexible 78.9% (15) 21.1% ( 4)

Tr
ue

flexible 23.3% ( 7) 76.7% (23)

Table 7.8: Classification of the flexibility of χ1 for ARG. Here, the average classification rate for
all examples of the test sets randomly chosen within the 10–fold cross evaluation, is shown. A
total accuracy of 77.1% is reached (see Tab. 7.8).

Tab. B.5(l)) one class can be predicted better than the other one. These observations are
also valid for the higher torsion angles.

Similar to the evaluation of the threshold based predictions the classification results are
visualised by colouring a protein’s structure according to true or false predictions. In fig-
ure 7.9 the protein 1AQ7 is used. The sub-figures show the classification results for the χ1

and χ2 torsion angle. In figure 7.9(a) the averaged good results classifying the flexibility for
the first torsion angles are visible. Most residues have been classified correctly indicated by
the green colour whereas only few amino acids are assigned a wrong class. Inspecting the
figure 7.9(b), the increase of false predictions is obvious. This observation corresponds to
the results given in table 7.7 for the second torsion angle.

7.3 Docking Results using Flexibility Information

In order to test the flexibility approach in a docking scenario, in this section the flexibility
information calculated is provided to the docking system ElMaR (see section 4.2) . First, the
experimental setup is described, then the methods for evaluating and comparing the dock-
ing results are outlined (see section 7.3.2). Finally, the results for incorporating flexibility
information into the docking system are shown.

7.3.1 Docking Experiments

In order to investigate how much impact the new flexibility information has onto the re-
sulting docking hypotheses two docking experiments were set up. In the first experiment a
docking without flexibility information is performed using the generated test sets (see sec-
tion 7.1.2). The resulting docking hypotheses are stored in a relational database to compare
them later to the results of the second experiment. In the second experiment flexibility
information is provided to the ElMaR system. In order to compare the performance of the
two flexibility approaches the information gained is presented independently to the system.
Then, the docking is carried out on the same data as used in the first experiment. The dock-
ing hypotheses are stored in the database for further evaluation. For testing the influence of
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the scaling factor, two values are chosen: ω = 0.5 and ω = 1.0. Each of the outlined docking
experiments are run with both scaling factors.

7.3.2 Evaluating and Comparing Docking Hypotheses

For testing docking algorithms, the hypotheses predicted by ElMaR are compared to a
known complex5 with identical sequence. A well known measure to compare two structures
is the so called root mean square deviation (RMSD):

RMSD=
1
N

N

∑
i

√
(ai −bi)2 (7.5)

The RMSD value gives the euclidian distance (in Å) between two structures a and b. A
small value indicates a good similarity whereas a large value shows significant differences
between them. In equation 7.5, N is the number of Cα atoms. ai and bi denote the atoms of
the two structures to be compared. In order to calculate the RMSD the two structures are
superimposed.

Besides the RMSD, the ranking of docking hypotheses is of interest, too. Halperin and
coworkers (Halperin et al., 2002) defined a set of different measures including rank and
RMSD, called DRUF (Docking Results Unified Format). Here, the N10, N50 and N100
measures are chosen because these scores reflect the quality of predictions of a complex
from two unbound proteins. The measures are defined as follows:

N10: Number of hypotheses within the first 10 ranks with an RMSD ≤ 3Å.

N50: Number of hypotheses within the first 50 ranks with an RMSD ≤ 4Å.

N100: Number of hypotheses within the first 100 ranks with an RMSD ≤ 5Å.

By the definition of these measures, changes within the result set a test case processed in
the different experiments is very simple. Since all results are stored in the database, the
calculation of the NX scores can be realised through SQL queries (see Fig. 7.10).

select Entry, count(*) from Hypothesis
where rmsd<[3|4|5] and rank<[10|50|100] group by Entry;

Figure 7.10: SQL query for the N10, N50, N100 measure of the DRUF Protocol.

Other measures defined within DRUF are:
5Known complex means a crystallographically refined complex structure, deposited in the Pdb.
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• RMSD of the hypothesis at Rank #1

• Rank of the first solution with RMSD <5Å

• Rank of best RMSD hypothesis

A disadvantage of these scores is that the flexibility of a side chain is not taken into account.
The different side chain conformations of multiple hypotheses cannot be compared by the
Cα RMSD. Furthermore, the DRUF protocol only focuses on the top ranked hypotheses. A
measure that summarises the performance of a docking run over the whole set of hypotheses
would be desirable. Neumann (Neumann, 2003) proposed the IPI (Integrated Performance
Indicator). The IPI summarises the performance by a weighted sum of the scores of all
hypotheses:

IPI = ∑
i

Rankmax−Ranki

Rankmax︸ ︷︷ ︸
Rank weighting

· max(10Å−RMSDi ,0)
10Å︸ ︷︷ ︸

RMSD weighting

+

{
pa i f RMSDi

scorei
> RMSDmax

scoremax

pb else
(7.6)

The score of a hypothesis i is the product of the normalised rank and the weighted RMSD.
Additionally, an error term is added whether the hypothesis has an RMSD above or below
the diagonal. The IPI is the sum of all hypotheses of the test case. Figure 7.11 visualises the
components of the IPI measure.

Cost

R
M

S
D
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(c) Exclusion of false posi-
tives by the error term (last
term of equation 7.6).

Figure 7.11: The components of the integrated performance indicator. Hypotheses that fall into
the green area contribute to a good score. Courtesy of Neumann (Neumann, 2003).

The IPI can give an overall score of the whole set of hypotheses. For a detailed analysis
within parts of the result sets other methods have to be used. Besides the IPI, the minimal
RMSD within the first 10, 50 and 100 ranks is considered. Here, changes within the best
hypotheses can also be observed for test cases that are hard to predict (e.g. 1A2W).

Besides methods calculating scores that express the accuracy of the docking experiments,
visualisation techniques can be used for qualitative analysis of docking experiments. There-
fore, the rank or the costs are plotted against the RMSD. In this thesis several docking
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experiments for one test case are conducted and have to be compared. Simply, the results
of different experiments can be drawn into one plot. Since the number of hypotheses pre-
dicted by ElMaR is large (700 hypotheses per test case), these plots become rather complex.
In order to avoid this a different method for comparing and visualising the differences be-
tween the docking runs is used. The whole plotting area is sampled into rectangles. Here,
a rectangle of size of 10× 1.5 is used. The size of the rectangle is abutted from the N10
measure. A width of “10 ranks” and a height of “1.5Å” yields good results. On the one
hand, the rectangle is not too small, e.g. several hypotheses are covered. On the other
hand, the rectangle is not too large, so that a fine sampling is possible, visualising changes
in detail. Within each rectangle the number of hypotheses of each experiment placed here
are counted. By calculating the difference (∆Cx,y) between these numbers, changes can be
easily observed:

∆Cx,y = CB
x,y−CA

x,y (7.7)

Here, CB
x,y denotes the number of hypotheses of an experiment using flexibility information

within the rectangle at position x,y. CA
x,y represents the number of hypotheses for the same

docking experiment and the same rectangle but without using flexibility information. A posi-
tive difference means that the number of docking hypotheses placed within the rectangle
increased whereas a negative value shows a decrease, respectively.

Furthermore, the differences can be visualised by applying different colours for positive
and negative differences and plotting the rectangles. The quantities of the changes can be
expressed by the lightness of the colours. Light colours indicate few changes whereas dark
shades represent many changes6.
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Figure 7.12: Visualisation of changes between the docking of 1BEL and 1RAT.

6In case of no changes due to equal numbers of hypotheses or if no hypotheses are placed within that regions
of the plot, the rectangles are coloured white.
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Figure 7.12 visualises the application of this method to the results of the docking of 1BEL
and 1RAT. Here, the docking with flexibility information is compared to a docking without
flexibility. The differently coloured rectangles show the changes within the set of hypothe-
ses. Green coloured parts show an increase, red coloured boxes a decrease in the number
newly placed hypotheses.

7.3.3 Results for the Docking Experiments

In the last section the experiments carried out for testing the flexibility predictions within
the docking and the methods for evaluating the docking results have been outlined. In the
following the results of the experiments are shown. In all experiments carried out unbound
3D structures of proteins from the Pdb are used. In order to evaluate the results of the
docking runs test cases have been compiled as described in section 7.1.1. Table A.3 in the
appendix shows a detailed list of unbound proteins and complex pairs.

During docking, the ElMaR system for could not process some test cases. Usually the
calculation and prediction of hypotheses takes about 20 minutes for a single test case (cf.
Neumann, 2003). Here, for some test cases the calculations takes several days which was
surprising. Due to this the docking run was aborted, since the calculation did not seem to
come to an end. This error is non deterministic, since it has been observed occurring on all
levels of the docking system (cf. Fig. 4.2) and with different test cases. Even test cases that
e.g. have been successfully calculated for the χ1 flexibility could not be calculated for the
overall flexibility and vice versa. Thus, the number of test cases within the different docking
experiments differ.

The evaluation of docking results is complex, since different evaluation methods focuses
differently on the results. The analysis of the minimal RMSD, i.e. only returns the RMSD
of the best predictions. The amount of good hypotheses that has been predicted is not
reflected. Therefore, the N10, N50, and N100 scores of the DRUF protocol can be used.
Furthermore, the IPI measure calculates a score including all hypotheses of a docked test
case. Thus, an analysis of the results using these measures is reasonable.

The flexibility of a residue’s side chain is predicted for each torsion angle separately. It is
also combined via a weighted sum (see section 5.2.5) to a score of the whole side chain. At
first the influence of the docking is tested using only the flexibility classification for the first
torsion angle χ1. It has been chosen because the first torsion angle is the most restricted one
and because all residues have at least this torsion angle. So, the influence of the flexibility
is distributed over the whole protein and does not only effect few residues in case a higher
torsion angle is chosen (e.g. only ARG and LYS residues consist of a large side chain covering
the χ4 torsion angle). In a second step the overall flexibility score is tested within the
docking. In the following, at first the results for the docking incorporating the threshold
based flexibility predictions are presented. Then, the results of the experiments using the
SVM based flexibility predictions are shown.
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Test of the Threshold based Flexibility Predictions

In this work the flexibility of a residue’s side chain is predicted by two approaches. Here,
the results of incorporating the flexibility information of the threshold based approach are
evaluated.

Threshold based Flexibility of χ1

At first, the results for the χ1 torsion angle are outlined. The evaluation is performed on 81
test cases matching 14 different reference complexes. The number of test cases per complex
is given in table 7.9.

Complex test cases
1A2W 3
1ADI 1
1AFK 3
1AFL 3
1AFU 5
1AO6 1
1APN 8
1ARG 2
1ASM 3
1ASN 2
1B2K 41
1CGI 2
1TPA 2
2PTC 3

Table 7.9: Number of test cases per reference complex used for docking experiments. These
proteins are taken for evaluating the threshold based flexibility predictions of χ1.

The figures 7.13, 7.14 and 7.15 show the distribution of the minimal RMSD reached within
the top 100, 50 and 10 ranks, respectively. Each box-plot represents the hypotheses yield-
ing the minimal RMSD for the given reference complex. For half of the complexes an im-
provement can be observed if flexibility information is applied. Further five examples show
improvements in the minimal RMSD for at least one of the two docking experiments carried
out. Only in two cases no improvements can be reached. For 1AFK no better RMSD than for
the docking without flexibility can be achieved whereas for 1ADI the predicted hypotheses
within the different docking experiments have the same RMSD. For some single test cases
the flexibility predictions fail and no good hypotheses are predicted (e.g. 1APN, ω = 1.0 or
1ASM, ω = 0.5) but on average better results are achieved.

The length of the box (also called inter-quantile distance) represents the deviation within
the data represented by the box-plot. Since each box-plot summarises several test cases
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Figure 7.13: Box-plots of all test cases grouped by the reference complex. Here, the flexibility
information is estimated by the threshold based classifier for χ1. Each box-plot represents the
minimal RMSD within the top 100 ranked hypotheses (Rank≤100). The white boxes represent
the docking results without flexibility, the red for docking results with flexibility (ω = 0.5) and
the green for ω = 1.0.

for the same reference complex, the deviation gives a hint for the behaviour of the scoring
function. Large deviations assume that for similar test cases7 no similar scores are assigned.
These test cases cannot be predicted easily by ElMaR. Instead of this, in case of a small
deviation the conclusion can be drawn that the scoring function assigns similar scores for
similar test cases. Here, the test cases can be predicted at a higher accuracy.

Comparing the three figures, for some examples the deviation of the minimal RMSD is small
(e.g. 1ADI, 1AFL, 1CGI, 1TPA, and 2PTC). For these test cases the deviation within all three
docking experiments is similar and good predictions are reached. In case of 1ADI, 1CGI,
1TPA, and 2PTC in 90% of the test cases the best hypothesis has an RMSD less than 5Å and
is ranked within the top ten ranks (see Fig. 7.15). In case of 1ASN the deviation within the
results of the docking without flexibility is high. But for the experiments using flexibility it is
very small. Here, the flexibility information yields very good results for all test cases. In case
of 1ASM on average for all test cases the best hypothesis is placed within the top ten ranks
and has an RMSD of 5Å or less. But in case of the docking experiments using flexibility
information and a scaling factor of ω = 0.5 the deviation of the hypotheses with minimal
RMSD is high within the first 10 and 50 ranks (cf. Fig. 7.15, 7.14). Here, the assumption can
be drawn that for few test cases the scoring function failed. A hypothesis with a large RMSD
value has been assigned a high rank wrongly. This observation can be supported comparing
all three figures. In case of the top 100 ranked hypotheses with minimal RMSD the dis-

7The similarity of the test cases due to fact that each test case is defined via the sequence identity between the
unbound proteins and its corresponding complex parts (see section 7.1.1). Since several unbound proteins
match the same complex part, these test cases are similar.
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Figure 7.14: Box-plots of
all test cases grouped
by the reference complex.
Here, the same informa-
tion is shown as in fig-
ure 7.13 but for all hy-
potheses with Rank ≤ 50.
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Figure 7.15: Box-plots of
all test cases grouped
by the reference complex.
Here, the same informa-
tion is shown as in fig-
ure 7.13 but for all hy-
potheses with Rank ≤ 10.

tribution of the RMSD is smaller than for the other groupings. Therefore, the hypotheses
counted within the top 100 ranks differs from the ones included in the figures 7.14 and 7.15
for the “outlier test cases”.

Besides the minimal RMSD also the IPI measure is applied to the data. The IPI measures the
overall performance including all hypotheses predicted for a test case. Large values indicate
a good performance whereas small values show a low performance in predicting correct
docking solutions (see section 7.3.2).

The evaluation of the docking results by the IPI measure (see Fig. 7.16) confirms the ob-
servation made before. Inspecting figure 7.16 one can see that for example the overall
performance for the test cases of 1A2W is worse (IPI value near zero) for all three docking
experiments. But for the flexible docking using a ω = 0.5 a slightly better performance is
measured (due to the better ranked hypotheses). For other test cases the docking perfor-
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Figure 7.16: IPI evaluation of the docking using the threshold based flexibility classification for
χ1. In green and red the results of the docking with flexibility and in white the results using no
flexibility are depicted.

mance is more obvious. Exemplarily, in case of 2PTC the minimal RMSD distribution of the
test cases is better for the docking without flexibility. This is reflected by the IPI evaluation,
too. But also the improvements are measured (cf. Fig. 7.16). In case of 1ASM and 1ASN the
docking with flexibility outperforms the results reached using no flexibility.

In table 7.10 the evaluation of the docking results by the N10/50/100 measure of the DRUF
protocol is shown. Since for some test cases (e.g. 1A2W) no near native hypotheses have
been predicted at all, these are not listed within the table. For all other docking examples
the initial numbers and changes calculated according to the three DRUF measures for each
docking experiment are given. Dashes denote those test cases where no changes in the
number of hypotheses between the experiments occurred.

Generally, for 47% of the test cases no changes can be estimated using the N10 measure.
The number of improvements is equal to the number of test cases showing no better results.
For the N50 in nearly half of all examples improvements can be observed whereas 35% of
the test cases do not show any improvements. Similar observations can be made for the
N100 evaluation. Inspecting table 7.10 in detail, for some docking examples the flexibility
predictions fail and no improvements can be reached. Most of these changes due to false
scored hypotheses place within the top ranks. Good hypotheses are then moved to higher
ranks. Exemplarily, for the test case 2PTC(1AUJ/1BPI) 1 hypothesis is lost within the N10,
5 within the N50 and 4 within the N100. Looking at the set of hypotheses in the first case
(N10), the hypothesis is shifted from rank 10 to rank 12. Similar changes are observed for
the other hypotheses. An explanation of these changes is given in the discussion of the
results (cf. section 7.5). In three of four test cases similar to the reference complex 1APN and
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Test Case N10 N50 N100
ω = 0.5 ω = 1.0 ω = 0.5 ω = 1.0 ω = 0.5 ω = 1.0

1ADI(1QF4/1QF5) – 8-1 – – 29+1 –
1APN(1C57/1DQ1) – – 9-9 9-9 17-17 17-17
1APN(1C57/1DQ5) – – – – 2-2 2-2
1APN(1CON/1DQ1) – 0+5 3-3 3 +7 8-8 8+4
1APN(1CON/1QNY) 6-6 6 -6 31-31 31-31 39-35 39-35
1ARG(1ARS/1ASA) 0+8 0+10 18+16 18+2 22+45 22+7
1ARG(1CQ7/1CQ8) – – – – – 10-1

1ASM(1AMQ/1CQ8) 0+6 0+10 8+8 8+23 13+12 13+38
1ASM(1ASA/1ASE) – 0+10 1+27 1+49 2+40 2+98
1ASN(1ASE/1CQ8) – – – – – –
1CGI(1CHG/1HPT) 1+1 1 -1 13+1 13 -1 38+2 38-17
1CGI(1GCD/1HPT) – – 19+2 19 +2 – –
1TPA(1AUJ/1BPI) – – 2+1 2-1 8+1 8 +11
1TPA(1BJU/1BPI) – – 4+2 4 +5 13+2 13+5
2PTC(1AQ7/1BPI) – – 20-2 20-1 54-2 54 -21
2PTC(1AUJ/1BPI) 3-3 3-1 30-30 30-5 67-65 67-4
2PTC(1BJU/1BPI) – 8 -2 – 38-2 70-1 70-1

Table 7.10: Evaluation of docking results by DRUF protocol. The initial numbers for N10, N50
and N100 are compared to the results of the docking using flexibility information. The changes
are given in bold numbers, dashes denote no changes. Here, the threshold based flexibility
information for χ1 is incorporated.

for the test case 2PTC(1AUJ/1BPI) nearly no hypotheses are placed within the top 100 ranks.
These changes are not influenced by the docking but due to calculation errors generating the
hypotheses (see section 7.5). But for five examples the flexibility information can improve
the results very much. An increase up to 98 hypotheses (in case of 1ASM(1ASA/1ASE)) for the
N100 is reached. For the test case 1ASM(1AMQ/1CQ8) within the top 10 ranks the number of
hypotheses with an RMSD less than 3Å rises from 0 to 6 (ω = 0.5) and 0 to 10 for ω = 1.0,
respectively.

For the other test cases the results differ. On the one hand improvements within the N50
and N100 ranges are reached but no improvements for N10 (e.g. 1TPA(1AUJ/1BPI)) are
yielded. On the other hand there are improvements e.g. for the docking experiment using
a scaling factor of ω = 0.5 but a decrease of hypotheses for the other flexibility docking
experiment. Exemplarily, the test case 1CGI(1CHG/1HPT) yields improvements for N100
(ω = 0.5) but a loss of 17 hypotheses for a scaling factor of ω = 1.0.

Summarising the results the threshold based flexibility prediction improves the docking re-
sults. Although, for some test cases no improvements are reached (e.g. 1AFK) or top ranked
hypotheses are lost (e.g. 2PTC) for most residues better results are yielded incorporating the
flexibility information. Besides placing in nearly half of test cases the best hypotheses (≤ 5Å)
within the top 10 ranks, also the overall performance of the docking is improved as proved
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by the IPI evaluation. The prediction of test cases that are hard to predict for ElMaR (e.g.
1A2W) is improved, too.

Threshold based Flexibility Scores for the whole Side Chain

Since the flexibility is derived independently, for each torsion angle in a second docking run
the combination of the single flexibilities is tested. In table 7.11 the test cases used for this
experiment are given. Similar to the previous experiment, here in figure 7.17, 7.18 and 7.19

Complex test cases
1A2W 3
1AFK 2
1AFU 3
1APN 2
1B2K 17
1CGI 3
1LYS 9
1TPA 2
2PTC 2

Table 7.11: Number of test cases per reference complex used for docking runs incorporating the
threshold based overall flexibility prediction.

the minimal RMSD reached are visualised by box-plots. For this experiment improvements
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Figure 7.17: Box-plots of
all test cases grouped
by the reference com-
plex. Here, the flexibili-
ty information is calcu-
lated from all torsion an-
gles. The single flexibili-
ties are estimated by
the threshold based clas-
sifier. Each box-plot
(white: without flexibili-
ty, red: flexibility (ω =
0.5), green: flexibility
(ω = 1.0)) represents the
minimal RMSD within
the top 100 ranked hy-
potheses (Rank≤100).

can be observed, too. In case of 1LYS, 1TPA or 1A2W for each rank criterion better results are
achieved using flexibility information. But the number of test cases with no improvements or
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even worser results increase for the top ranked hypotheses (Rank ≤ 10). In case of 2PTC for
example no good results can be achieved at all if the combined flexibility is used. Extreme
differences between the results of 1APN can be observed. Here, for a flexibility scaling factor
of ω = 0.5 very good results are reached. The predicted hypotheses yield a RMSD below
10Å. In contrast to this result the minimal RMSD reached using an ω = 1.0 is between 50
and 60Å.
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Figure 7.18: Box-plots of
all test cases grouped
by the reference com-
plex.Here, the same in-
formation is shown as in
figure 7.17 but for all hy-
potheses with Rank ≤ 50.
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Figure 7.19: Box-plots of
all test cases grouped
by the reference complex.
Here, the same informa-
tion is shown as in fig-
ure 7.17 but for all hy-
potheses with Rank ≤ 10.

For 1LYS and 1B2K the top ten ranked hypotheses have high RMSD ranks. The best hypothe-
ses for these test cases have a rank between 50 and 100. Although the best hypotheses have
been assigned to high ranks, the flexibility information on average can improve the results.

As for the results using only the flexibility information of the first torsion angle, the deviation
of the RMSD within the test cases for a complex varies. Comparing the three figures, an
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Test Case N10 N50 N100
ω = 0.5 ω = 1.0 ω = 0.5 ω = 1.0 ω = 0.5 ω = 1.0

1CGI(1CHG/1HPT) – 1 -1 – 13-7 – 38-22
1CGI(1GCD/1HPT) – – – – – –
1LYS(1AKI/1LZ9) – – – – – 2 -2
1TPA(1AUJ/1BPI) – – 2+1 2+2 8+1 8+2
1TPA(1BJU/1BPI) – – 4+2 4+5 13+2 13+5
2PTC(1AQ7/1BPI) – – 20-20 20-20 54-53 54-54
2PTC(1AUJ/1BPI) 3-3 3-3 30-30 30-30 67-65 67 -65

Table 7.12: Evaluation of docking results by DRUF protocol. The initial numbers for N10, N50
and N100 are compared to the results of the docking using flexibility information. The changes
are given in bold numbers, dashes denote no changes. Here, the threshold based flexibility
information for the whole side chain is incorporated.

increase of the deviation in RMSD can be observed for the top ten ranked hypotheses (see
Fig. 7.19) underlying that only few good hypotheses have been assigned to such ranks.

This observation is supported by the evaluation of this docking using the N10, N50 and
N100 measure (see Tab. 7.12). In only two of nine test cases having hypotheses ranked
within the top 100 improvements can be observed (1TPA(1AUJ/1BPI) and 1TPA(1AQ7/1BPI)).
For all other test cases similar results to the docking without flexibility are reached focusing
on hypotheses within the top 100 ranks and a RMSD below 5Å. Since the results of 2PTC
are similar to the ones for the docking using the flexibility predictions of χ1, the conclusion
can be drawn that the ElMaR system failed, too.

The IPI plot (see Fig. 7.20) shows that overall good results are reached for 2PTC and 1CGI
compared to the other complexes but the flexibility predictions cannot improve the re-
sults. Although, for 2PTC the hypotheses are not comparable due to the same reasons as for
the χ1 predictions, within the IPI plot these results score overall well. The test case 1APN
showed great differences between the minimal RMSD values using the different scaling fac-
tors. Inspecting the IPI scores, the conclusion can be drawn that in case of ω = 1.0 no good
hypotheses can be ranked on low ranks but on average a good performance is reached. Gen-
erally, the previous observations are reflected by this plot. Good results using the flexibility
information are not only reached for the top ranked hypotheses but also for the whole set
(e.g. 1LYS or 1AFU).

In summary the threshold based flexibility prediction of the whole side chain can improve
the docking predictions of the ElMaR system. Especially for the test cases of the reference
complexes 1ASN, 1ASM, 1ARG, 1TPA, and 1CGI similar or even better results compared to
the docking without flexibility is reached. For 1A2W and 1B2K no good hypotheses can be
predicted at all but using the flexibility information on average an improvement of 5 to 10Å
is yielded.
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Figure 7.20: IPI evaluation of flexible docking. Here, the overall flexibility information calcu-
lated by the threshold based prediction for the side chains is used. The differently coloured
box-plots (white: no flexibility, red: ω = 0.5, green:ω = 1.0) represent the IPI scores of the test
cases grouped by their reference complex.

Test of the SVM based Flexibility Predictions

In this section, the results of the incorporation of flexibility information predicted by the
support vector machine (SVM) into ElMaR are shown. At first the results for the flexibility
prediction of the first torsion angle (χ1) are presented.

Support Vector Machine based Flexibility Predictions for χ1

As for the threshold based predictions the test cases are grouped by their reference structure.
In table 7.13 the number of test cases for each reference complex used for evaluating the
flexibility is shown.

In figure 7.21, 7.22 and 7.23 the minimal RMSD of all test cases belonging to the same com-
plex are plotted as box-plots. For each docking run separate box-plots are drawn. Like in the
previous section, the white coloured boxes depict the results without incorporating flexibil-
ity. The green and red coloured box-plots represent the minimal RMSD of the hypotheses
with flexibility information provided to the docking algorithm.

For most docking test cases improvements are reached if flexibility information is used (see
1A2W, 1AFK, 1ASN, 1TPA, and 2PTC). Hypotheses with low RMSD values are ranked within the
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Complex test cases
1A2W 1
1A7X 3
1AFK 1
1AFU 3
1APN 1
1ASN 1
1B2K 51
1CGI 3
1LYS 30
1TPA 1
2PTC 3

Table 7.13: Number of test cases per reference complex taken for evaluating the SVM based
flexibility prediction of χ1.

1A2W 1A7X 1AFK 1AFU 1APN 1ASN 1B2K 1CGI 1LYS 1TPA 2PTC

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

R
M

SD
[Å
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Figure 7.21: Box-plots of
all test cases grouped
by the reference com-
plex. Each box-plot
represents the minimal
RMSD within the top
100 ranked hypotheses
(Rank≤100). The white
boxes represent the dock-
ing results without flex-
ibility, the red stand for
docking results with flex-
ibility and scaling of ω =
0.5 and the green for an
ω = 1.0.

top 100. Only in case of 1A7X and 1AFU the flexibility information does not lead to improve-
ments. For the other test cases no predictions of near native hypotheses8 are reached.

Inspecting figures 7.21, 7.22 and 7.23 one can see that for most of the 11 groups9 im-
provements are achieved. In four of these even good hypotheses (RMSD ≤ 5Å) lie within
the top 10 ranked solutions (see 1ASN, 1CGI, 1TPA and 2PTC). In case of the test case
1ASN(1ARS/1ART) the best solution is assigned to a rank within the top 10 solutions. The
RMSD for this test case is 0.75Å (for both scaling factors) whereas the RMSD of the best
solution of the docking run without flexibility is 4.34Å.

8Hypotheses with low RMSD score are called near native, thus they are very similar to the solved structure of
the complex.

9Here, the test cases belonging to one reference complex are referred as a group.
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Figure 7.22: Box-plots of
all test cases grouped
by the reference complex.
Here, the same informa-
tion is shown as in fig-
ure 7.21 but for all hy-
potheses with Rank ≤ 50.
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Figure 7.23: Box-plots of
all test cases grouped
by the reference complex.
Here, the same informa-
tion is shown as in fig-
ure 7.21 but for all hy-
potheses with Rank ≤ 10.

Comparing the minimal structural error of the top 50 scored hypotheses with the minimal
RMSD of the hypotheses within the top 10 ranks one can see that for some cases (1B2K,
1A7X) improvements are achieved using flexibility information although the solutions are
not scored that high. Especially, for the examples of the complex 1A7X within the docking
experiments using flexibility information no good hypotheses are placed into the top 10
ranks but within the top 50. Only in 2 of 11 cases (1AFU, 1APN) no improvements could be
achieved, compared to the docking without flexibility.

Besides the minimal RMSD, the docking results have been evaluated by the IPI measure,
too. In figure 7.24 a box-plot of the test cases for each reference complex is drawn, showing
the IPI scores.

The results of the IPI evaluation correlate with the observations described above. Exemplar-
ily, for 1A2W no good hypotheses were predicted. The IPI value is low. But improvements
are obtained for the test cases using the flexibility information (cf. Fig. 7.23, see lower min-
imal RMSD values), too. These improvements are also reflected by the higher IPI scores
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Figure 7.24: IPI evaluation of docking experiments. In red and green the results of the SVM
based flexibility prediction used within the docking are given whereas the white coloured box-
plots represent a docking run without flexibility.

of the docking results using flexibility (see red and green box-plots of 1A2W in Fig. 7.24).
Test cases that can be predicted very good received high scores (e.g. 2PTC and 1CGI). Com-
paring these results to the minimal RMSD evaluation, the observation could be made that
hypotheses with a lower or equal RMSD value compared to a docking without flexibility are
yielded but in general the flexibility predictions do not reach that high IPI scores. A detailed
analysis of the top ranked hypotheses is given by the DRUF evaluation in the following.

In table 7.14, the docking experiments were evaluated by the N10, N50 and N100 measure.
For most test cases no changes within the number of the top 10, 50 or 100 ranks can be
observed. Only in two cases (1A7X(1FKB/1FKF) and 2PTC(1AQ7/1BPI)), a large number of
good hypotheses that have been ranked within the top 100 by ElMaR without flexibility
information is lost when using the flexibility prediction and a scaling factor of ω = 0.5. In
five other cases only few hypotheses are shifted to higher ranks but remain within the top
100 (e.g. see 1Ax7(1FKF/1FKJ)). Very good results are reached for 1ASN(1ARS/1ART). Using
the SVM based flexibility predictions 8 hypotheses with an RMSD of 3Å or less are ranked
within the top 10, further 3 (4) hypotheses are placed within the top 50 and for ω = 0.5
another 6 hypotheses have been assigned to ranks within the top 100. Improvements are
also yielded for three other test cases (the remaining two test cases for the complex 1A7X
and 1TPA(1BJU/1BPI)) with an increase of up to 14 good hypotheses.

Two test cases, 1A2W(1BEL/1RAT) and 1TPA(1BJU/1BPI) have been chosen for a more de-
tailed analysis of the changes within the resulting set of hypotheses. These two test cases
are interesting because for 1A2W no near native hypotheses could be predicted but obvious
changes have been observed comparing the box-plots of the minimal RMSD scores. In case
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Test Case N10 N50 N100
ω = 0.5 ω = 1.0 ω = 0.5 ω = 1.0 ω = 0.5 ω = 1.0

1A7X(1FKB/1FKF) 1-1 – 9-6 – 28-9 –
1A7X(1FKB/1FKJ) – – 0+4 0+4 2+14 –
1A7X(1FKF/1FKJ) – – 1-1 – 2+6 –
1ASN(1ARS/1ART) 0+8 0+8 0+11 0+12 1+18 –
1CGI(1CHG/1HPT) – – – – – –
1CGI(1GCD/1HPT) – – – – – –
1LYS(193L/1LSC) – – – – 3-3 –
1LYS(1AKI/1HSX) – – – – 1-1 –
1TPA(1BJU/1BPI) – – 4+2 – 13+2 –
2PTC(1AQ7/1BPI) – – 20-1 – 54-20 –
2PTC(1AUJ/1BPI) – – 30-2 – 67-1 –
2PTC(1BJU/1BPI) – – – – 70-1 –

Table 7.14: Evaluation of docking results by DRUF protocol. The initial numbers for N10,
N50 and N100 are compared to the results of the docking using flexibility information. The
changes are given in bold numbers, dashes denote no changes. Here, the SVM based flexibility
information for χ1 is incorporated.

of 1TPA very good results have been predicted but on average the docking results using
flexibility information are only slightly better then without flexibility comparing the minimal
RMSD scores.

In figure 7.25 and B.10 the results of docking the unbound proteins 1BEL and 1RAT are
shown. As reference for calculating the RMSD, the complex 1A2W is taken. The unbound
proteins are sequence identical to the chains of the protein. The results of the docking runs
incorporating flexibility are compared to the results of the docking run without flexibility
information.

In both figures, three different views onto the information are given. The top left figures
(7.25(a) and B.10(a)) show the super-imposition of the results. Each point in the plots
represents one hypothesis. The red coloured points depict hypotheses predicted without
flexibility whereas the green coloured dots represent hypotheses predicted using flexibility
information. Here, the estimated costs10 are plotted against the RMSD. Beside this plot on
the right, the outer hulls calculated from the sets of hypotheses are drawn. Below the two
plots the differences between the docking results compared within rectangular areas (cf.
section 7.3.2) are visualised. Green coloured rectangles depict an increase in the number of
hypotheses located within this region whereas rectangles in red denote a decrease in the
number of hypotheses.

For the test case 1A2W(1BEL/1RAT) the best scored hypothesis has a RMSD of 35Å (22Å
using flexibility). The hypothesis with the minimal RMSD, a score of 100 (140 using flexi-

10ElMaR assigns high scores for good hypotheses and low scores for bad hypotheses. Here, max(costs)− costs
are plotted so that a low RMSD correlates with low costs, respectively.
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(a) Comparison plot of the docking results. Here,
the flexibility is scaled by ω = 0.5.
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(b) Plot of the outer hulls (red: without flexibility,
green: flexibility, ω = 0.5).
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(c) Changes between docking with and with-
out flexibility (green: increase in number of hy-
potheses, red: decrease in number of hypothe-
ses, white: no or equal changes).

Figure 7.25: Visualisation of the docking results of 1BEL/1RAT. In this experiment only the
flexibility information of the first torsion angle χ1 is used. In figure 7.25(a) each point in the
plot represents one docking hypothesis (red: without flexibility, green: with flexibility). Here,
the estimated costs are plotted against the RMSD. The outer hulls fitted around the points
representing the hypotheses are shown in figure 7.25(b). Below these two figures, the changes
within a rectangular area of size 10×1.5 are plotted.

bility) has been assigned. Although the results of this docking experiment are not optimal
with respect to the RMSD, some aspects are worth to be mentioned. In both cases that
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incorporated flexibility the best ranked hypothesis has a lower RMSD as the one from the
experiment without flexibility. Obviously, false positives (hypotheses located in the upper
left area of the plot) are moved towards lower ranks (here higher costs, respectively) whereas
hypotheses with a RMSD of about 20Å were scored better (see Fig. 7.25(c)). Inspecting fig-
ure 7.25(b) one can see that the whole set of hypotheses is moved towards the x-axis and is
slightly rotated. Comparing figure 7.25(c) and 7.25(b) the intersections of the convex hulls
correspond to the coloured areas in the rectangle plot. For instance, the intersections of
the hulls that lie outside the green coloured polygon are similar to the red shaded areas
whereas the intersecting regions that lie within this polygon correspond to the blue shaded
parts in figure 7.25(c). The same observations can be made inspecting figure B.10 given in
the appendix.

In the second example, the docking of 1BJU and 1BPI is analysed in more detail. In all
experiments a lot of hypotheses with an RMSD equal or less than 5Å are ranked top. Since,
the changes using a flexibility scaling factor of ω = 0.5 do not differ much from those using
a ω = 1.0 (see Fig. 7.26 and B.11), in the following the results using ω = 0.5 are outlined (the
corresponding figure for ω = 1.0 is given in App. B.6). Similar to the previous example, here,
the super-imposition of the docking hypotheses, the outer hulls, and the differences plot
are given, too.

From the standard evaluation methods (IPI, DRUF, minimal RMSD) applied before one
would expect no significantly changes between the docking experiments using flexible and
the reference experiment. In fact, within the top scored hypotheses only small changes can
be observed (i.e. see the light colours in Fig. 7.26(c)). But the important differences occur
for the false positive hypotheses. In figure 7.26 ane even better in the plot of the outer
hull (see Fig. 7.26(b)) hypotheses are shifted towards higher ranks. In nearly all cases these
hypotheses are assigned ranks around 100 or above. Thus, in this case a final results list is
free of hypotheses with high RMSD scores.

Another interesting aspect is that the result set forms cluster. There exists three different
clusters of hypotheses. Their hypotheses are scored by costs of 100 or below. Two cluster
hold the false positive hypotheses whereas the other one covers the best predictions ob-
tained by the ElMaR. The rest of hypotheses form a stripe covering hypotheses with RMSD
between 5 and 50Å and costs between 150 and 300. Since the results of the two docking
experiments are very similar, the conclusion can be drawn that the hypotheses within the
clusters are very similar and thus are scored similar.

Comparing the docking without flexibility and the docking with flexibility and a scaling
factor of 1.0 of this test case, the same observation can be made. In appendix B.6 the
corresponding plots are given. The only difference is that the false positives within the two
clusters are shifted more towards higher ranks. Several hypotheses within the stripe are
assigned similar scores as reflected by the changes plot (cf. Fig. B.11). Thus, the conclusion
can be drawn that the scoring improved since more similar hypotheses are scored equally.

In summary, the SVM based flexibility for the first torsion angles improves the results of
the docking. Compared to the docking of the threshold based flexibility fewer errors are
propagated and the scoring function is only misled in few cases. The detailed analysis for
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(a) Comparison plot of the docking results. Here,
the flexibility is scaled by ω = 0.5.
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(b) Plot of the outer hulls (red: without flexibility,
green: flexibility, ω = 0.5).
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(c) Plot of the changes between the two experi-
ments (green: increase in number of hypotheses,
red: decrease in number of hypotheses, white: no
or equal changes).

Figure 7.26: Visualisation of the docking results of 1BJU/1BPI. Each point in the plots represents
one docking hypothesis. Here, the estimated costs are plotted against the RMSD. In red the
results without incorporating flexibility are shown. The green coloured points are hypotheses
from docking with flexibility information. In this experiment only the flexibility information of
the first torsion angle χ1 is used.

1A2W and 1TPA proves that the flexibility information can improve the scoring of ElMaR.
False positive hypotheses are assigned to higher ranks or costs, respectively.
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Flexibility Scores for the whole Side Chain using the SVM

As for the threshold based predictions, here also docking runs have been scheduled using
an overall flexibility prediction of the whole side chain. In the following the results of these
experiments are outlined.

Complex test cases
1A2W 4
1A7X 4
1ADE 1
1ADI 1
1AFK 8
1AFL 6
1AFU 8
1AO6 1
1APN 7
1ARG 7
1ASM 2
1ASN 1
1B2K 24
1BM0 1
1CGI 2
1LYS 9
1TPA 2
2PTC 2

Table 7.15: Number of test cases per reference complex used for the evaluation of the overall
flexibility score of the side chain predicted by the SVM.

Inspecting the box-plots of the minimal RMSD values reached, for nearly half of the groups
(1A2W, 1A7X, 1AFK, 1AFL, 1ARG, 1ASM, 1ASN, 1B2K, and 1TPA) improvements and for most
other examples equal results are reached. Only for the test cases of 1LYS no better ranked
hypotheses are yielded at all. Comparing the two different scaling factors large variations
between the results can be observed (see 1ASN in figure 7.27 or 1BM0 in figure 7.29).

Furthermore, the deviation of the RMSD values of the hypotheses within the first 10, 50
and 100 ranks is larger for the flexibility docking than compared to the docking only using
the flexibility predictions of the first torsion angle (see Fig. 7.21, 7.22 and 7.23). Thus, the
conclusion can be drawn that the additional flexibility information has a different impact
on the scoring of ElMaR then only using the flexibility predictions of χ1. Here, the scoring
function ranks the similar test cases differently. Exemplarily, for 1A2W a small variance is
reached using a scaling factor of ω = 1.0 whereas for the other flexibility experiment a larger
variance can be observed. In case of 1A7X the difference in variance is just switched.

This observation can be supported by evaluating the results using the N10, N50 and N100
measure of the DRUF protocol. In table 7.16 on page 105 the detailed numbers of the test
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Figure 7.27: Box-plots of all test cases grouped by the reference complex. Each box-plot re-
presents the minimal RMSD within the top 100 ranked hypotheses (Rank≤100). The white
boxes represent the docking results without flexibility, the red boxes stand for docking results
with flexibility and scaling of ω = 0.5, the green for an ω = 1.0. Here, the overall flexibility
information gained through the SVM based predictions is used.

cases having hypotheses assigned within the top 100 ranks are listed. Like in the evalua-
tion described before here, the initial numbers (of the docking without flexibility) and the
changes are given (in bold). The dashes denote no changes between docking with and with-
out flexibility. The complex situation described above is reflected within the results of this
evaluation method, too. Only for two test cases (1APN(1CON/1QNY) and 1APN(DQ1/1QNY))
no improvements have been reached at all. For those test cases no hypotheses have been
ranked within the top 100 ranks using flexibility information.

For most other hypotheses different results between the two scaling factors used with the
flexibility are obtained. Exemplarily, in case of 1ADE(1CIB/1QF5) for ω = 0.5 equal numbers
of hypotheses are reached for N10, N50 and N100 whereas for the other scaling factor
(ω = 1.0) no hypotheses are ranked within the top 10, 50 or 100, respectively. Another
contrary example is the test case 1APN(1CON/1DQ0). Here, for the N50 on the one hand a
loss of 6 hypotheses is counted whereas on the other hand, for ω = 1.0, the same number
of new hypotheses is gained. These differences in the results due to the fact, that the
classification accuracy for the higher torsion angles is lower (see section 7.2.3). Thus, more
errors are propagated to the docking misleading the scoring function. Additionally, the
scaling factors used have an different impact on the flexibility information (cf. section 7.5).

But improvements can be observed, too. In some cases there is an increase of up to 52
good hypotheses (see 1ARG(1ARS/1CQ7)). Docking the proteins 1ASA and 1ASE yields im-
provements for all three scores. Within the N10 4 (2) new hypotheses are counted. Here,
the docking using no flexibility assigned no hypotheses to the top 10 ranks.

Inspecting the IPI plot, one can observe that the differences between the two scaling fac-
tors is reflected by several groups (1BM0, 1APN, or 1AFU. Low prediction performances are
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Figure 7.28: Box-plots of
all test cases grouped
by the reference complex.
Here, the same informa-
tion is shown as in fig-
ure 7.27 but for all hy-
potheses with Rank ≤ 50.
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Figure 7.29: Box-plots of
all test cases grouped
by the reference complex.
Here, the same informa-
tion is shown as in fig-
ure 7.27 but for all hy-
potheses with Rank ≤ 10.

depicted by low IPI scores whereas good predictions are scored high. In three cases no im-
provements are reached (1ADI, 1CGI and 2PTC). Although the performance predicting good
hypotheses is lower for 2PTC and 1CGI when applying flexibility information, in both cases
these results outperform the other groups. For nearly half of the groups improvements are
yielded using the flexibility. In theses cases the two scaling factors have an equal influ-
ence to the scoring function. For most other test cases for one of the two scaling factors
improvements are reached.

The docking of 1ARG(1AMR/1ASE) shows different results for the two scaling factors (see
Tab. 7.16). In figure 7.31 and 7.32 a detailed view on the docking results is given. Here,
the same evaluation was performed like for the test cases docked using the SVM based
flexibility predictions for χ1 (cf. Fig. 7.16). In figure 7.31 one can see that the hypotheses
are moved towards the lower left corner (see Fig. 7.31(a)). Some hypotheses have been
placed on high ranks yielding even better RMSD scores than docking without flexibility
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Test Case N10 N50 N100
ω = 0.5 ω = 1.0 ω = 0.5 ω = 1.0 ω = 0.5 ω = 1.0

1A7X(1FKF/1FKJ) – – 1-1 – 2-2 –
1A7X(1FKG/1FKJ) – – 1-1 – 2-2 2+1
1ADE(1CIB/1QF5) – 10-10 – 31-31 – 36-36
1ADI(1QF4/1QF5) – – – – 29+1 –
1APN(1C57/1CON) – 0+2 4-4 4+4 10-10 10-2
1APN(1CON/1DQ0) 1-1 1+3 6-6 6+6 20-20 20+3
1APN(1CON/1QNY) 6-6 6-6 31-31 31-31 39-39 39-39
1APN(1DQ1/1QNY) 8-8 8-8 25-25 25-25 34-32 34-34
1ARG(1AMQ/1AMR) 6-4 6+4 33-16 33-8 56-18 56-30
1ARG(1AMR/1ART) 1-1 – – 2+2 8+2 8+7
1ARG(1AMR/1ASE) 0+9 0+1 14+10 14-9 24+8 24-12
1ARG(1AMR/1CQ8) 8+1 8-7 12+15 12-7 18+24 18-1
1ARG(1ARS/1CQ7) 1+7 – 14+21 14-8 18+52 18-8
1ARG(1ASE/1CQ8) 6-6 6-6 12-9 12-9 18-8 18-8
1ARG(1CQ7/1CQ8) – – – 5-1 – 10-1
1ASM(1ART/1ASE) 1-1 – 27-18 27-12 42-15 42-18
1ASM(1ASA/1ASE) 0+4 0+2 1+15 1+10 2+27 2+26
1CGI(1CHG/1HPT) 1-1 – 13-4 13-1 38-19 38 -2
1CGI(1GCD/1HPT) – – – 19-1 – 34-1
1LYS(193L/1LSC) – – – – 3-3 3-3
1TPA(1AUJ/1BPI) – – 2+1 2+2 8+1 8+2
1TPA(1BJU/1BPI) – – 4+2 4+5 13+2 13+4
2PTC(1AQ7/1BPI) – – 20-20 20-7 54-53 54-2
2PTC(1BJU/1BPI) – 8-2 – 38-2 70-1 70-1

Table 7.16: Evaluation of docking results by DRUF protocol. The initial numbers for N10,
N50 and N100 are compared to the results of the docking using flexibility information. The
changes are given in bold numbers, dashes denote no changes. Here, the SVM based flexibility
information for the whole side chain is incorporated.

(see Fig. 7.31(b)). This is also verified inspecting the changes depicted in figure 7.31(c).
But also high ranked hypotheses are moved to lower ranks. The most obvious changes
due to the flexible docking effect hypotheses ranked on lower ranks (Rank ≥ 400). For the
flexible docking these hypotheses are assigned to a small range of ranks then the hypotheses
predicted without flexibility. False positive hypotheses with an RMSD of around 20Å are
assigned to lower ranks but also a lot of hypotheses with higher RMSD score are ranked
higher. Since the estimated cost are high for these hypotheses they do not interfere with
the top ranked hypotheses. Selecting hypotheses with costs up to 100 from this test case
one would obtain hypotheses with RMSD values below 10 or even 5Å.

For the results using a scaling factor of 1.0 (see Fig. 7.32) a different observation could be
made. Here, most hypotheses are moved towards the right border of the plot as shown in
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Figure 7.30: IPI evaluation of flexible docking. Here, the overall flexibility information cal-
culated by the SVM based prediction for the side chains is used. The differently coloured
box-plots (white: no flexibility, red: ω = 0.5, green:ω = 1.0) represent the IPI scores of the test
cases grouped by their reference complex.

figure 7.32(b). Also, near native hypotheses11 are yielded. They are assigned to low ranks
but compared to the docking without flexibility, the RMSD values are larger (cf. Fig. 7.32(a)).
Inspecting the plot of changes (see Fig. 7.32(c)) this becomes obviously. Most of the newly
placed hypotheses depicted by the green rectangles are positioned above the red coloured
boxes of the hypotheses resulting from the docking without flexibility. The only exception
is the best ranked hypothesis. Here, an improvement can be observed. The best ranked
prediction yielded docking the test case 1ARG(1AMR/1ASE) without flexibility information
has a RMSD of 2.56Å. For the docking with enabled flexibility a RMSD of 1.4Å and 0.8Å
(ω = 1.0) is reached. This is also reflected by the DRUF evaluation (see Tab. 7.16). Within
the top 10 ranked hypotheses an increase in the number of hypothesis by 1 is counted. For
the other two measures, the number of hypotheses decreased by 9 and 12 respectively.

Comparing the two figures, most differences in the scoring effect hypotheses on low ranks.
In figure 7.31 a large number of false positive hypotheses are scored better then for the
docking without flexibility. For the scaling factor 1.0 these number is reduced. Only few
hypotheses with a RMSD around 50Å remain hypotheses with wrong scores assigned.

11Hypotheses with a low RMSD score.
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(a) Comparison plot of the docking results. Here,
the flexibility is scaled by ω = 0.5
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(b) Plot of the outer hulls of the docking results.
Here, the flexibility is scaled by ω = 0.5
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(c) Changes plot of the docking results. Here, the
flexibility is scaled by ω = 0.5

Figure 7.31: Visualisation of the docking results of 1AMR and 1ASE. In this experiment the com-
bined flexibility predicted by the SVM is used. It is scaled by ω = 0.5. On the top left the costs
are plotted against the RMSD. On the right, the outer hulls calculated on the hypotheses are
shown. Below the two plots, the changes within rectangular grids is given. In red, docking re-
sults without using flexibility information and in green the results using flexibility are coloured.
For figure 7.31(c) red and green fields represent the changes (see section 7.3.2)
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(a) Comparison plot of the docking results. Here,
the flexibility is scaled by ω = 1.0
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(b) Plot of the outer hulls for the docking results.
Here, the flexibility is scaled by ω = 1.0
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[Å

]

(c) Changes plot of the docking results. Here, the
flexibility is scaled by ω = 1.0

Figure 7.32: Visualisation of the docking results of 1AMR and 1ASE. In this experiment the com-
bined flexibility predicted by the SVM is used. It is scaled by ω = 1.0. On the top left the costs
are plotted against the RMSD. On the right, the outer hulls calculated on the hypotheses are
shown. Below the two plots, the changes within rectangular grids is given. In red, docking re-
sults without using flexibility information and in green the results using flexibility are coloured.
For figure 7.32(c) red and green fields represent the changes (see section 7.3.2).
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Summarising the results, the overall based flexibility predictions obtained using the SVM
improves the docking results. Because the flexibility of higher torsion angles is harder to
predict, the docking results show a lower performance as for the χ1 predictions. But good
results are reached, too. The results of the DRUF evaluation as well the example shown in
detail prove that in most cases hypotheses with low RMSD could be assigned to high ranks.
False positive hypotheses are reduced using this flexibility.

Comparing all four tested flexibility predictions, the SVM based approach yields better re-
sults. This is due to the higher prediction accuracies obtained by the SVM. The combination
of the flexibility prediction for the different torsion angles do not perform that good as in-
corporating only the flexibility information of χ1. In summary, the results prove that the
flexibility approach is reasonable and that the ElMaR docking system can be improved.

7.4 Results from Relevance Feedback

In this section the results of re-ranking docking hypotheses using the IPHEx system are
presented. In order to test the approach several experiments have been conducted.

Neumann (Neumann, 2003) run several docking experiments on a large set of test cases.
The test cases have been automatically derived from Pdb (see section 7.1.1). The resulting
docking hypotheses are stored within our database of docking results. Because of the large
number of already docked test cases, these results are taken for evaluating the IPHEx system.
From this set different test cases are chosen randomly to be processed by IPHEx.
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(a) Docking 1CHG (chymotrypsinogen) and 1HPT
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(b) Docking 2PTN (trypsin) and 6PTI (inhibitor).

Figure 7.33: Evaluation of feedback session (red: original docking hypotheses, green: re-ranked
by user) for two examples. Plot of estimated costs against RMSD.

A typical feedback session can be described as follows: A sequence of 20 docking hypothe-
ses (ordered by similarity measure of the features) from the result set of a docking test case
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(b) Weight development for 2PTN/6PTI.

Figure 7.34: Development of weights during feedback session. Here, the adaptation of the
weights α and β for two feedback sessions is given.

is presented to the user. During the evaluation these hypotheses are superimposed to the
3D structure of the known complex (see Fig. 6.4(a) on page 61). The number of hypotheses
to be scored is chosen according to usability aspects but can be adjusted by a command-
line parameter (see section D.3). Scoring only 20 of 700 hypotheses results in a very short
iteration cycle. Therefore, changes within the ranking of the docking hypotheses can be
done in a short time (e.g. few iterations). Having finished these 20 hypotheses a weight
adaptation step is performed, re-ordering the whole list of hypotheses. These steps can be
repeated. Usually after few iteration a steady state is reached which means that there are no
more changes within the weights. The feedback session should be terminated since further
scoring of the hypotheses will not yield better results. Since the number of iterations differs
from test case to test case here the maximum number of feedback iterations is limited to
five iterations arbitrarily. The learning rate ε (see Eq.6.9 on page 62) is set to 0.01 for all
experiments.

In order to evaluate the results after processing the hypotheses with IPHEx parts of the
evaluation methods described in section 7.3.2 are taken. For a quick overview, the cost
estimates (see Eq. 6.1) of the original and re-ranked hypotheses are plotted against the
RMSD (see Fig. 7.33). In order to evaluate the improvements of the modified weights α
and β, parts of the DRUF protocol (Halperin et al., 2002) are used. In order to express
changes during docking the differences in the N10, N50 and N100 values (see Tab. 7.17) are
calculated. Additionally the results are evaluated using the IPI measure.

First results show that weights modified by relevance feedback improve the cost function
and thus the ranking of docking hypotheses. As an example, figure 7.33(a) shows the initial
distribution of docking hypotheses (red) and the distribution of the same hypotheses after
a feedback session of 5 iterations (green) for the unbound proteins 1CHG and 1HPT. As refer-
ence for comparison, the structure of the homologue complex 1CGI is used. It can be seen
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that good hypotheses (low RMSD) are re-ranked towards lower ranks whereas bad hypothe-
ses are assigned to higher ranks. Another example is shown in figure 7.33(b). Hypotheses
with a lower RMSD are scored better using the modified weights and originally bad hy-
potheses (RMSD at around 30Å) are negatively scored. Figure 7.34 shows the development
of the weights during the feedback. Here, the number of iterations is larger than five, to
illustrate the stable state usually reached after five iterations of feedback.

Inspecting figure 7.33(b), the initial best hypothesis has an RMSD of around 40Å, whereas
after re-ranking the best hypothesis has an RMSD of 3.6Å. This change is also reflected
by the DRUF measurement (see table 7.17, 2PTC(2PTN/6PTI)). In two cases hypotheses are
re-ranked wrongly (1ASN(1AMQ/1AMR), 3ENR(1NLS/1SCS)).

Test Case N10 N50 N100
1ASN(1AMQ/1AMR) 2+1 15-2 29+3
1DYJ(1DRH/7DFR) – – –
1TPA(1BJV/6PTI) 1+1 7+2 20+6
1TPA(1C5R/4PTI) – 8+6 26+2
1TPA(1C2D/4PTI) – 5+5 17+3
1TPA(1C2J/4PTI) – 4+3 29-8
1LZS(1JSF/1REZ) – – –
2PTC(1AQ7/1BPI) – 17+9 30+16
2PTC(1QB9/4PTI) 0+3 14+2 23+6
2PTC(2PTN/6PTI) – 5+1 –
2TGP(2TNL/4PTI) 6+3 23+15 46+27
3ENR(1NLS/1SCS) – 1+1 4 -1
8RSA(1EOW/1RAT) 0+1 3+2 10+1

Table 7.17: Feedback results: initial numbers and absolute changes (bold). A dash denotes no
change.

In table 7.17 the results of the experiments are shown. For most test cases an improve-
ment of the ranking is achieved using the relevance feedback approach. In half of the
test cases good hypotheses are re-ranked into the top 10 ranks (e.g 2TGP(2TNL/4PTI) or
2PTC(1QB9/4PTI)). In the other cases no hypotheses are placed in the N10, but within the
less restrictive groups N50 and N100 (see 1TPA(1C2D/4PTI) or 2PTC(1AQ7/1BPI)).

Comparing the results of the evaluation by the DRUF protocol to the IPI scores (see Tab. 7.18),
one can see that for most test cases no improvements are yielded but the same IPI score
is reached. Although on average no improvements can be observed using the IPI measure,
for four test cases higher scores are reached while re-ranking the hypotheses. In case of
1DYJ(1DRH/7DFR) during re-ranking the number of hypotheses within the N10, N50, and
N100 range keeps constant but inspecting the overall set of hypotheses a slight increase of
the IPI value is measured. Exemplarily, for 2PTC(1QB9/4PTI) a large number of hypotheses
have been ranked additionally within the top 100 by the relevance feedback approach. This
increase is reflected within the IPI scores. Here, the IPI value is raised from initially 21.7 to
44.4.
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Test Case IPI
initial re-ranked

1ASN(1AMQ/1AMR) 41.4 40.9
1DYJ(1DRH/7DFR) 9.6 10.2
1TPA(1BJV/6PTI) 77.8 81.5
1TPA(1C5R/4PTI) 55.1 49.7
1TPA(1C2D/4PTI) 53.8 48.0
1TPA(1C2J/4PTI) 63.4 63.4
1LZS(1JSF/1REZ) 26.9 24.2
2PTC(1AQ7/1BPI) 33.0 37.3
2PTC(1QB9/4PTI) 21.7 44.4
2PTC(2PTN/6PTI) 95.7 92.4
2TGP(2TNL/4PTI) 72.7 72.5
3ENR(1NLS/1SCS) 27.5 25.5
8RSA(1EOW/1RAT) 20.9 19.8

Table 7.18: Evaluation of feedback results by IPI measure.

One application of the IPHEx system is to find good parameters for each protein class.
Therefore, the modified weights are mapped to all proteins having the same EC number as
the test case used within IPHEx. Since Neumann performed a large number of docking runs,
several enzyme classes can be covered. But in most cases only one reference complex exists
for a class. In order to have test cases for different complexes within one enzyme class only
those are chosen that have at least three reference complex structures.

EC Class reference complex examples overall improvement α β
1.5.1.3 1DYJ 836 – 0.47 0.21
2.6.1.1 1ASN 140 40% 0.53 0.22

3.1.27.5 8RSA 165 15% 0.47 0.21
3.2.1.17 1LZS 34 – 0.41 0.23
3.4.21.4 2PTC 442 12.5% 0.4 0.41

Table 7.19: Improvements per EC class after re-ranking using IPHEx. Here, the percentage of
the overall improvement is given. The weights α and β given in the last two columns have been
applied to all examples in the corresponding enzyme class. Dashes denote no improvements.

In table 7.19 the results of mapping the improved weights of the feedback sessions to all
test cases of the corresponding enzyme classes, are shown. Here, the overall improvement
summarised over the N10, N50 and N100 counts is given. In three of the five tested enzyme
classes improvements could be observed. In case of the class 2.6.1.1, 40% of the test cases
show improvements within the first 100 ranks. In case of the other two enzyme classes
improvements between 10 and 15% can be reached.
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7.5 Discussion

In the previous sections the results of the different experiments have been outlined. In the
following they will be discussed. At first, the two classifiers for predicting the side chain
flexibility are compared. Then, the docking experiments and the results of the IPHEx system
are discussed.

7.5.1 Classification of Side Chain Flexibility

The flexibility of a side chain has been classified by two approaches, one based on a thresh-
old criterium and the other using support vector machines. Comparing both approaches
they have in common that the classification accuracy decreases in case of the higher tor-
sion angles whereas for the first torsion angle best results are achieved. The threshold based
classifier performs worse than the SVM. A reason for this is that only one feature (energy dif-
ference) is used. In case of the support vector machine the combination of several features
ensures a more robust classification.

Inspecting the different residues one can observe that some residues can be classified easier
than others. In case of the threshold based classifier, the worst classification results for the χ1

are received for SER, TYR, and GLU whereas CYS, TRP, and ARG perform best. Exemplarily,
for SER an explanation for the low prediction accuracy can be found when inspecting the
energy landscape (see Fig B.1(m)). For SER, the energy landscapes for each class do not differ
significantly. Thus, distinguishing flexible and non–flexible Serine residues is difficult.

For the higher torsion angles the classification power drops near the chance line (ROC area
of 0.5). Here, best results are achieved for MET (χ2,χ3), TRP (χ2) and HIS (χ2). All other
residues cannot be predicted that good. A reason for this weak classification within the
higher torsion angles is due to that the overall flexibility increases (cf. Koch, 2003). For the
higher torsion angles steric hindrance is reduced because of a greater distance to the back-
bone. Here, influences of neighbouring groups are reduced allowing more flexibility. Of
course this influences the energy landscape calculated. Since there are fewer steric clashes
or interactions with the surrounding, the energy landscape is more flat and the difference
between the base energy and the energy minimum is smaller, thus resulting in less discrimi-
nation power of the feature.

The same effects can be observed for the SVM based approach. Here, the classification ac-
curacy is also reduced within the higher torsion angles. Generally, the average accuracy for
each torsion angle is better than for the threshold based method. In contrast to the thresh-
old based method the average classification rate does not decrease steadily (see Tab. 7.7)
but drops for χ2 and then increases again for χ3.

Looking at the single residues’ results, for χ2 one can observe that the branched residues
ASN and LEU as well as TYR and PHE, both possessing a ring system within their side chain,
perform worst. In case of LEU, PHE and TYR the second torsion angle is located at a branch
position. In all cases the branch is symmetric. Because of the symmetry a correct labelling
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Figure 7.35: Mean energy landscape of PHE for χ2. In red the means of the total energy of
flexible labelled residues, in green of rigid residues are given.

during crystallography is hard and sometimes the Cγ (needed for the correct calculation of
χ2, see section 2.1) is assigned wrongly. This can effect the labelling of the data set, if such a
side chain of unbound protein and a corresponding complex are resolved differently because
of wrong labelling of the carbon atoms. Either, the side chain may be assigned as flexible
(if the atom labels differ) and in fact it is not flexible, or the side chain’s carbon atoms
are labelled similar although this is wrong. In this case a flexible residue is assigned rigid.
Thus, the features calculated on these wrongly labelled data may falsify the training of the
classifiers.

Another aspect resulting from the symmetry of the branched side chain is that the rotamer
distribution is bimodal and thus, the distribution of the energy landscapes, too (cf. Koch
et al., 2002; Zöllner et al., 2002). The difference between the energy landscape of a flexible
and a rigid side chain (see Fig. 7.35) is less than e.g. for the first torsion angle (cf. Fig.B.1(l))
because large parts of the energy landscape are similar due to the reduced number of ro-
tamers. In case of branched side chains or residues with a ring system only two of three
rotamers can be assigned for χ2.

For the χ3 and χ4 torsion angle a reduction in the classification accuracy can be observed
for all residues. Here again, a reason for this may be a smaller difference in the energy
landscapes between the classes because of less steric restrictions of the environment. For
χ3 the classification accuracy of LYS and MET is obviously higher than for the other residues
(ARG, GLN, GLU). The three residues GLU, GLN and MET possess three torsion angles. In
case of GLU and GLN at the end positions of the side chains a functional group is located
(CONH2 in case of GLN and COOH for GLU, see Fig. C.6 and C.7) whereas for MET a sulfur
atom is located at the Cδ position of the side chain. Attached to this side chain a CH3 group
marks the end of the side chain (see Fig. C.13). The sulfur atom compared to a carbon atom
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is slightly bigger and has a sp2 hybridisation. This means that the torsion angle between the
Cγ, the sulfur atom and the methyl group usually is planar and about 120◦. In case of GLU or
GLN the functional groups are attached by an angle of 109◦, the standard tetrahedral angle.
So, a rotation of the end groups of the side chains is different to that of MET. For MET the
assumption can be made that changing the χ3 torsion angle differs more from flexible to
rigid residues than for the other two residues.

The highest torsion angle – χ4 – is only occupied by two residues: ARG and LYS. The clas-
sification results for both residues do not differ much because their side chains are rather
similar. Both side chains are four carbon atoms long and carry a charge at the end. The
only difference is the end group. LYS has a NH2 at the end whereas ARG consist of a more
complex functional group (cf. Fig. C.2). Since these groups are far away from the backbone,
steric restrictions only occur, if direct neighbours also possess large side chains or the residue
is buried, respectively.

Although some residues and torsion angles cannot be predicted that good, most residues
can be classified at high accuracy, especially utilising the support vector machine classifiers.
Here, a classification with up to 90% (CYS, χ1) accuracy is yielded. On average a classification
accuracy of 70% is reached. Comparing the two classification approaches improvements can
be observed for the SVM based approach. Providing additional features characterising the
specific residue more precise a better discrimination of flexible and non-flexible residues is
achieved. Furthermore, the feature vectors enable the support vector machine to find good
a hyperplane for separating the two classes. Inspecting the distribution of the examples in
the test set used for evaluating the SVM, the observation can be made that the examples are
distributed equally between the classes, e.g. the number of false positive and false negative
are equally as well as the true positives and the true negatives (cf. App. B.5).

Summarising this section, the flexibility of side chains can be predicted using the methods
proposed in this work. The higher torsion angles are harder to predict, since the energy
landscapes for these torsion angles have less discrimination power. This can be observed for
both classifiers. Best results are reached for the first torsion angle (χ1). Steric restrictions
of the backbone ensure separable energy landscapes. The additional features used within
the SVM make the classification more robust. Thus, the SVM based approach should be
preferred when classifying the flexibility of residue side chains.

7.5.2 Protein–Protein Docking using Flexibility Information

Before discussing the results of the flexibility evaluation within the docking system ElMaR,
some general aspects of ElMaR should be pointed out. The ElMaR docking algorithm is
designed for speed. Docking results can be received within minutes. This is reached by an
abstraction from the protein model as outlined in section 4.1. Although ElMaR reaches on
average good results and docking hypotheses can be scored on high ranks, sometimes no
good predictions can be made (e.g. see results of 1A2W). Besides this, the abstraction from
the protein structures has also an influence if flexibility information (especially, if modelled
like in this work) is incorporated. Since the protein’s 3D structure is sampled into discrete
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Figure 7.36: Comparison of test case 2PTC(1AUJ/1BPI). Here, the results of docking the test
case with flexibility (green) and without flexibility (red) is shown. For the flexibility information
the threshold based predictions for χ1 are taken.

voxels, they do not always cover a single residue but several or only a part of a side chain. So,
the flexibility information is smoothed over the area of the voxel. On the one hand this can
be helpful if the contact side of the proteins in question is large. In this case, the flexibility
is distributed across the whole contact side allowing similar scores for steric clashes within
this area. But on the other hand, this also allows flexibility where it occurs only at a few
points or in a small area (e.g. in case of an enzyme that has a specific selection of its target)
in reality. In this case false hypotheses may be predicted.

Furthermore, the ElMaR system is a research system which means that it cannot be used in
production environment, yet. Neumann just finished his work when the experiments of this
thesis have been started. As already outlined in section 7.3.3, the different modules do not
run stable. Thus, the resulting set of processed test cases is reduced and differs between the
experiments. Fixing these instabilities would have to be done so that an evaluation of larger
sets of test cases will be possible without problems.

Besides this, another error occurred running this system. For some test cases (e.g.
2PTC(1AUJ/1BPI)), no good results are obtained. Inspecting table 7.10, one can see that
within the experiments using the scaling factor ω = 0.5 all hypotheses are lost for all three
evaluation measures. In order to explain these losses, at first the incorporation of the flex-
ibility is outlined. Docking a test case is done in three steps. A fast compilation of initial
hypotheses is done first by matching the surfaces of the unbound proteins. Then, the search
space of the hypotheses is explored by rolling the one protein over the other around the
initial hypotheses. From these, a subset according to correlation of the features is done. At
this point no flexibility is used at all. In the next step, flexibility information is introduced,
re-scoring the selected subset from the previous step. Thus, the flexibility information only
has an impact on the scoring function, not on the translation or rotation of the proteins to
set up a hypotheses.
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In order to analyses these negative changes mentioned above, the set of hypotheses of the
initial reference experiment (without flexibility) is compared to the set of hypotheses using
the flexibility. Both experiments were conducted on the same input data. The comparison is
done in order to find out where the hypotheses are moved (e.g. to higher ranks), since the
flexibility only has an impact onto the scoring of the hypotheses. Therefore, the translation
and rotation vector are compared. Surprisingly, no matching hypotheses are found. Thus,
the assumption is that two different sets of hypotheses have been compared by the DRUF
protocol. Furthermore, this error is produced by the ElMaR system, since the flexibility
information has no impact on the exploration of docking hypotheses. Figure 7.36 shows the
super-imposition of the to result sets. The differences between the hypotheses in the lower
left corner of plot are obvious.

Same observations could be made for the other test cases loosing hypotheses. Since other
docking runs perform well (e.g. the same experiment but using a scaling factor of ω = 1.0)
this error may due to some rounding errors during generating the hypotheses. Here, a more
detailed analysis of the error would have to be performed. The conclusion that can be drawn
is, that these results should be neglected in the evaluation of the flexibility.

Figure 7.37: False positive hypothesis from the docking of 2PTC(1AUJ/1BPI). Here, the proteins
are coloured according to the correct (green) and false (red) predictions of the flexibility. The
residues not involved within the flexibility predictions are coloured in beige for the enzyme
(1AUJ) and in pink for the inhibitor (1PBI) in order to visualise the different structures. The
marked areas depict regions where errors occurred. The blue structure represents the true
docking constellation. The hypotheses has been moved from rank 114 to 10. The geometry
score dropped from 76 to 74 using the additional flexibility.
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A different aspect that should be kept in mind is that the flexibility information is based on
a prediction. Although the classification accuracy of the side chains is quite good, also some
residues are classified wrongly. By including such flexibility information there will be a risk
to increase the number of false hypotheses.

Analysing the impact of the flexibility information is rather complex, since the flexibility
predictions for each residue differ. The contact sides of the hypotheses also differ because
of the translation and rotation of the proteins. Here, two examples are shown to explain a
false ranking of hypotheses.

The changes of hypotheses are analysed by comparing the experiments conducted. In most
cases it can be observed that good hypotheses are shifted towards higher ranks because
false positive hypotheses are moved from higher ranks to lower ones. Exemplarily, in figure
7.37 and 7.38 two docking hypotheses are visualised. They are taken from the test case
2PTC(1AUJ/1BPI). The docking was performed using a scaling factor of ω = 1.0 for the flex-
ibility and the threshold based flexibility for χ1 is used. In both figures the proteins are
coloured by the true and false flexibility predictions. In green correct predictions are shown
whereas false prediction are coloured in red. In order to distinguish the enzyme (1AUJ) from
the inhibitor (1BPI) the residues not classified are coloured in beige and pink. In blue the
correct solution is given.

In figure 7.37 several wrong predicted residues have a contact to the surface of the inhibitor
(see yellow marked parts). Since this hypothesis has been shifted towards lower ranks, the
wrongly predicted flexibility mislead the scoring function. Here, the geometry score of the
hypothesis which includes the flexibility drops from 76 to 74. Thus, the overall score is
reduced and the hypothesis is assigned to a lower rank (rank 11).

Inspecting the second example, only small changes within the geometric scoring are ob-
served. Here, false predictions are covered by the correct ones (see Fig. 7.38). The good
scoring is not changed much. Thus, most impact on changing the rank of this hypothesis –
it is moved from rank 10 to 12 – dues to the newly placed hypothesis shown in figure 7.37.

Although, there exists a risk to incorporate errors made by the classification approach, the
obtained flexibility information can be used to enhance the soft volume model of ElMaR as
the results proof.

For an overall estimate of the results, two directions to analyse the results can be made:
comparing the results between different complexes and evaluating the results within the
group of test cases belonging to the same reference complex.

Inspecting the evaluation of the flexibility information incorporated into ElMaR, one can
see that in most cases improvements are reached. Besides this, placing the near native so-
lutions12 within low ranks also hypotheses with high RMSD which have been assigned low
ranks within docking without flexibility are assigned higher ranks in case flexibility informa-
tion is present.

12Hypotheses with low RMSD score.
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Figure 7.38: False positive hypothesis from the docking of 2PTC(1AUJ/1BPI). Here, the pro-
teins are coloured according to the correct (green) and false (red) predictions of the flexibility.
The residues not involved within the flexibility predictions are coloured in beige for the enzyme
(1AUJ) and in pink for the inhibitor in order to visualise the different structures. The marked
area depict regions where errors occurred.The blue structure represent the true docking con-
stellation. The hypotheses has been moved from rank 10 to 12. The geometry score differs by
0.002.

For most reference complexes more than one unbound test case was available so that the
influence of the flexibility is not bound to a single example. This gives the opportunity to
analyse the behaviour of the scoring function. Since box-plots are used to summarise the
results of the different test cases, the size of the box (covering 75% of the data) gives a hint,
how the different test cases are scored. In most cases (e.g. 1LYS, 1A2W) the variance within
the samples for the flexible docking is smaller then for the docking without flexibility. This
observation is also supported inspecting the plots of the detailed analysis for the test cases
1A2W(1RAT/1BEL) and 1TPA(1AUJ/1BPI). Here, the hypotheses predicted using the flexibility
information cluster more often then for a docking without flexibility (cf. Fig. 7.25 or 7.26).
Thus, the conclusion can be drawn that the flexibility information not only improves the
results but also supports the scoring of ElMaR.
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Comparing the results using the differently predicted flexibility information better results are
reached applying the SVM based approach because of the higher accuracy predicting flexible
residues correctly and thus, errors incorporated by false prediction like shown in figure 7.37
are reduced. Furthermore, similar results compared to the docking without flexibility are
reached for those test cases, that did not perform that good when using the threshold
based predictions. But also for the threshold based predictions good results are reached (cf.
docking of 1ASM(1ASA/1ASE)). Differences are found comparing the docking using the χ1

predictions to the experiment incorporating the overall flexibility. For both flexibility scores
one can observe that the docking applying the overall side chain flexibility performs little
weaker then the docking incorporating the flexibility predictions for χ1. A reason is that the
lower prediction accuracy of the higher torsion angles. As already outlined in section 7.5.1 a
flexibility prediction of the higher torsion angles is more difficult. Therefore, the prediction
error can increase when combining all the torsion angles to an overall score.

Since two different scaling factors are tested within the docking, these have to be compared,
too. For the docking experiment using the predictions for the χ1, only minor differences in
the results are observed applying the different scaling factors. Only in case of the experiment
run with the SVM based overall flexibility score, the different factors influence the results.
Here, for a ω = 1.0 a better performance is reached than for ω = 0.5. This is due to the fact
that the flexibility information for the whole side chain takes values from 0 to 1 because
of the sum over the different parts (see section 5.2.5). In case of the χ1 flexibility a binary
decision is taken (either 0 or 1). Here, the flexibility values lie on the borders of the scaled
range. Thus, the distribution of the flexibility scores is similar for all scaling factors, just the
its value differs due to the scaling. But in case of the overall flexibility, the different scores
are distributed over different ranges and therefore, have a greater impact on the scoring
function. In order to analyse the impact of this scaling factor in detail, experiments would
have to be performed.

In summary one can state that the flexibility information has an impact on the docking and
that it improves the predictive power of the ElMaR system. Using the flexibility predictions
of the first torsion angle, best results can be obtained. The SVM based flexibility predictions
are more accurate. Thus, incorporating this information should be considered.

7.5.3 Enhancing ElMaR Scoring by Relevance Feedback

The second approach presented in this thesis tries to enhance the scoring function of the El-
MaR docking system. Here, a relevance feedback based approach is proposed. The modified
weights are adapted to the corresponding enzyme classes to test whether improvements can
be reached for the other test cases.

Although the feedback approach has been tested on a limited set of test cases, clear trends
can be observed. Within the top 100 ranks for most test cases an increase in good hypothe-
ses is yielded. The relevance feedback approach can be used for improving the weighting
scheme of ElMaR.
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These changes are only reflected in few cases using the IPI scores (e.g. 1TPA(1BJV/6PTI)).
This is not surprising, since the IPI score summarises over the whole set of hypotheses. But
using the relevance feedback, the adapted weights are applied to all these hypotheses in
order to re-calculate the list of hypotheses (HL) which is presented to the user in the next
iteration for giving feedback. This usually results in a change of the costs and rank for all
hypotheses (cf. Zöllner et al., 2003). So, the IPI measure verifies that the feedback approach
can be used to improve the scoring function. Specific hypotheses, e.g. good predictions are
scored more correct whereas the other hypotheses remain unchanged. If differences can be
observed comparing the IPI score these are a hint for important changes within the scoring
of these hypotheses. Exemplarily, for the test case 2PTC(1QB9/4PTI) an increase of the IPI
scores correlates to an increase in the N10 of 30%. Here, the IPI score increases by nearly
50%.

In case of the adaptation of the modified weights for few enzyme classes no improvements
can be reached. But for most classes tested here, improvements in the ranking of hypotheses
are yielded. Best results have been reached for the enzyme class 2.6.1.1 (Aspartate amino
transferase). No improvements within the adaptation can have different reasons. On the
one hand the N10, N50, and N100 scores of the DRUF protocol only focus on the top
ranked hypotheses. Changes e.g. in the range above the 5Å are not taken into account.
Thus, the IPI score would have to be applied to the results of this adaptation, too. But
also the adapted weights may only have an impact on the test case, the feedback has been
assigned to. For other test cases within the same enzyme class the changes do not have
an effect. For instance, good feedback results have been obtained for the test cases of the
complexes 1TPA, 2PTC and 2TGP but an adaptation of the weights onto the all test cases of
corresponding enzyme class (3.4.21.4) only shows small improvements.

Up to now the concept of this approach has been proven. But of course, the results of this
method depends on the feedback given by the user. Therefore, experiments would have to
be scheduled (see section 8.2) to estimate, how the results of IPHEx change with respect to
the feedback of different users.
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Chapter 8
Conclusions & Outlook

The post genomic era will become more and more important in the next years. The analysis
of the underlying mechanisms of interactions, e.g. of proteins within a metabolic system is
required to interpret the huge amount of genomic data produced. The correct modelling
of the docking mechanisms of proteins will be essential, since proteins are involved at all
metabolic levels, from DNA transcription to immune defence or signalling.

This chapter summarises the thesis, and gives an outlook to further research in this field.

8.1 Summary

In this thesis two different approaches to enhance protein–protein docking have been out-
lined. On the one hand the modelling of flexibility information has been addressed to sim-
ulate conformational changes during docking (“induced fit”). On the other hand an another
important part of a docking system, the scoring of predictions is addressed. Here, especially
the scoring of the ElMaR docking system is improved.

Flexibility Approach

The flexibility of amino acid side chains enables proteins to change their conformations dur-
ing docking in order to recognise a possible target and to initiate a biological function (e.g.
enzymatic reaction). In this work, the flexibility of side chains is modelled by a classification
approach. Features from different sources (among others energy calculations) are combined
to discriminate residue side chains. A classification is performed on unbound protein struc-
tures because the flexibility information is then reusable and not bound to a certain test
case.

Energy based features are calculated by scoring synthetic conformations applying the Am-
ber force field. The synthetic conformations are received rotating the torsion angles of the
residue’s side chain. Besides the energy difference also the solvent accessible surface area,
the original conformation, secondary structure information as well as the temperature factor
of the side chain are used. Environmental information is gathered from the energy land-
scape resulting from the synthetic conformation. This signal is decomposed by a wavelet
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transformation in order to receive a set of coefficients that are characteristic for flexible or
non–flexible side chains.

In the first approach, the energy difference between the original conformation and the
optimal conformation estimated by the rotation of a torsion angle is taken to discriminate
flexible from non–flexible residues. A threshold estimated on a training set is used for
classification.

Several features are combined to predict the flexibility of side chains in the second approach.
For the classification a support vector machine was chosen. The selection of features is
guided by a principle component analysis: the different features are combined to a single
feature vector and the principle component analysis is applied. Then according to the eigen-
value spectrum a set of principle components are selected (for each residue type) and the
support vector machine is trained.

The two methods were trained on a set of 232 unbound proteins. The threshold based ap-
proach was evaluated using Receiver Operating Characteristic analysis. It has been also used
for estimating the threshold. In case of the SVM, a 10–fold cross evaluation is performed.
Furthermore, the results of both approaches are tested within the docking system ElMaR.

Both approaches can be used to classify the flexibility of amino acid side chains. Comparing
the two methods the SVM reaches better results than the threshold method. It yields on
average an accuracy between 60 and 75% for the different torsion angles and residues. The
docking results verify that these predictions can improve the protein–protein docking. In
most cases the docking results were improved if flexibility information was presented to the
algorithm.

Scoring of Docking Hypotheses

A second goal of this thesis was to improve the scoring of docking hypotheses. Here, an
approach using QbC techniques, especially user based relevance feedback is proposed. Hu-
mans still have superior capabilities in discriminating patterns then machines. In this ap-
proach a subset of hypotheses is presented to the human expert who ranks them by their
relevance (here difference) compared to the known complex. The IPHEx system then adapts
the weights of the scoring function and re-ranks the list of hypotheses. By repeating this
procedure several times, an improvement of the weights is reached resulting in a better
ranking of the hypotheses. A benefit of this method is that no docking experiments have to
be carried out since the adaptation and re-ranking is only applied to the scoring function.
Additionally the docking results have been stored within a database. Therefore re-scoring
hypotheses can be run by querying the database.

Up to now, ElMaR uses a fixed set of weights for scoring the hypotheses. One application
of IPHEx is to adapt these weights for protein classes, e.g. proteins performing a similar
reaction. Here, the weights from a feedback session are applied to proteins possessing the
same EC number as the test case that has been re-ranked. The changes within the ranking
are then evaluated.
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The results of this approach show that improvements can be made when applying relevance
feedback. Also the adaptation works for most enzyme classes within the data set.

In summary, the goals of this thesis – predicting the flexibility of amino acid side chains in
order to improve the ElMaR protein–protein docking and improving the scoring of hypothe-
ses by relevance feedback – are reached. The results have proven that both approaches are
reasonable and that the obtained information improves the docking results.

8.2 Outlook

In this thesis, several techniques have been proposed to enhance the protein–protein dock-
ing but there is still room for extensions and further work. Large amounts of genomic data
and even more data derived from this information have to be analysed and interpreted in the
next years. In the field of protein docking high throughput methods are needed to process
these amounts of data. The ElMaR system can be used for docking a large number of test
cases fast. It discriminates good from bad predictions to some extend and the search space
is reduced. The methods provided here improve the capabilities of ElMaR. In the following,
further research topics related to this work are outlined.

Automatic Test Case Generation

Since the number of solved structures grows exponentially, protein docking algorithms can
be tested and verified by larger data sets than in the past. But compiling test sets by hand
will be infeasible when using large amounts of data. Thus, automatic methods have to be de-
veloped in order to generate new test cases. In this work, an approach has been developed
to derive test cases automatically (Zöllner et al., 2004). This approach can be extended
by including other data sources containing information on possible test cases. Databases
like BRENDA (Schomburg, 2003) or KEGG (Kanehisa & Goto, 2000) contain information
about reactions and pathway where proteins are involved. Linking these information to the
database driven approach, new test cases may be derived.

Flexibility Predictions

The prediction or calculation of flexible regions within the protein structure is essential for
predicting near native hypotheses of a complex. In this thesis, the flexibility of residue
side chains was modelled using a wavelet decomposition of an energy landscape. Here,
Daubechies filters were taken and thresholding was applied to reduce the number of wavelet
coefficients.

Recently, Cosic and coworkers (Trad et al., 2002) applied wavelet decomposition for com-
paring protein sequences. They showed that features characterising a protein class can be
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identified within the decomposed input signals. They even assigned certain features to spe-
cific detail levels of the decomposition. Thus, further analysis of the energy landscapes and
wavelet filters may result in improved features that will lead to a more robust discrimination
of flexible and non–flexible side chains.

Another direction of further investigation is to estimate the influence of the torsion side
chain angles on each other. Knowledge about the interaction of the torsion angles can help
while combining predictions of single torsion angles. Here, molecular dynamics simulation
can be applied for simulating e.g. rearrangements of side chains from unfavourable confor-
mations (cf. Torgasin, 2003). By analysing rotamer changes over the time maybe specific
patterns can be extracted describing the internal movements of the side chain.

Also the influence of rotamer changes on the neighbouring groups can increase the predic-
tion accuracy of side chain flexibility. If a model or rules can be extracted from interaction
patterns of small groups of residues, the derived information can be incorporated (e.g. as
feature) into the flexibility classification. First attempts towards this have been made by Tor-
gasin (Torgasin, 2003). For a robust analysis at first a residue neighbourhood and measures
for comparing several of them have to be defined.

Scoring of Hypotheses

The improvement of the scoring step of a docking system is very important because an
imprecise discrimination of the docking hypotheses may result in pruning good hypotheses
from the result set while propagating bad hypotheses to further processing steps. At the
end no good hypotheses could be predicted although the system is capable to predict good
hypotheses.

Energy based scoring methods are the most precise methods to describe molecules. In the
field of protein–protein docking energy scoring function are used by several approaches (see
section 3.3) but they are computationally expensive and very slow.

Implementing these scores in post processing modules has several advantages. On the one
hand the speed of a docking system (like ElMaR) is not reduced. On the other hand only
the best results have to be evaluated by this module reducing time requirements. Running
several modules parallel one could apply different energy based scoring functions at once.
Besides scoring the hypotheses by the Amber force field, also the free energy on binding
could be estimated. It can be easily calculated using atomic contact energies (ACE, cf.
Zhang et al., 1997).

Neumann (Neumann, 2003) applied the scoring function of ElMaR to monomer and dimer
structures in order to discriminate them. In his approach a monomer is identified as a
false prediction whereas a dimer structure is taken as a correct prediction of a complex. In
the classification approach hydrophobicity, charge and geometry are taken and a SVM is
trained. Good results were reached on a test set provided by Ponstingl (Ponstingl et al.,
2000). This approach has been extended by using energy scores based on the Amber force
field and ACE energies as additional features reaching similar results. The idea here is to
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change the point of view: if monomer and dimer structures can be separated by the scoring
function of ElMaR, also the hypotheses should be discriminated by this approach. So, time
consuming scoring of docking hypotheses by energy based methods may be replaced by a
classification approach. Since, support vector machines are utilised, the classification will be
very fast even for large amounts of hypotheses. The time consuming energy calculations will
be moved towards the training of the classifier. This can be performed offline.

Intelligent Navigation in Large Data Sets

The IPHEx system on the one hand provides methods for improving the scoring of ElMaR.
The adaptation of weights is based on the similarity search between a reference structure
and a set of hypotheses. Since the system uses the relevance feedback of human experts, the
feedback is dependent of the user. In order to integrate more user independent feedback
the IPHEx system can be extended to a multi user system. Therefore, appropriate methods
for fusing the (possibly contrary) feedback of different users have to be developed.

Up to now, the similarity search within IPHEx is only used for re-scoring hypotheses. This
search capability can be extended in order to search similar docking hypotheses across large
data sets. This can be helpful in drug targeting and development. Today drug targets are
identified by screening large libraries of structures. Attempts are made to simulate screening
tasks (e.g. 1:N docking) by computers. These libraries can be queried easily by the similarity
approach. By customising or extending the set of features (e.g. certain composition of the
docking site) specific queries can be performed. Results can be investigated and refined
similar to the scoring approach presented here. This can help in cutting down expensive
wet lab experiments.
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Appendix A
Test Sets

In this section the protein data used for the flexibility approaches and the docking experi-
ments is shown. All data is taken from the Pdb (Bhat et al., 2001).

A.1 Unbound Protein Data Set

The data set given in the following tables has been used for training and evaluating the flex-
ibility classification approaches. Beside the Pdb identification code of the protein also the
Swissprot identifier (Bairoch & Apweiler, 2000), the enzyme class1, and a short description
are given.

Protein Swissprot Name EC number Description
132L LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
193L LYC CHICK 3.2.1.17 HYDROLASE (O-GLYCOSYL)
194L LYC CHICK 3.2.1.17 HYDROLASE (O-GLYCOSYL)
1A3C PYRR BACSU 2.4.2.9 TRANSCRIPTION REGULATION
1AFU RNP BOVIN 3.1.27.5 HYDROLASE
1AJX POL HV1B1 3.4.23.16 ASPARTYL PROTEASE
1AKC AATM CHICK 2.6.1.1 TRANSFERASE(AMINOTRANSFERASE)
1AKI LYC CHICK 3.2.1.17 HYDROLASE

1AMQ AAT ECOLI 2.6.1.1 TRANSFERASE(AMINOTRANSFERASE)
1AMR AAT ECOLI 2.6.1.1 TRANSFERASE(AMINOTRANSFERASE)
1AQ7 TRY1 BOVIN 3.4.21.4 SERINE PROTEASE
1AQP RNP BOVIN 3.1.27.5 HYDROLASE (PHOSPHORIC DIESTER)
1ARS AAT ECOLI 2.6.1.1 TRANSFERASE(AMINOTRANSFERASE)
1ART AAT ECOLI 2.6.1.1 TRANSFERASE(AMINOTRANSFERASE)
1ASA AAT ECOLI 2.6.1.1 AMINOTRANSFERASE
1ASE AAT ECOLI 2.6.1.1 AMINOTRANSFERASE
1AUJ TRY1 BOVIN 3.4.21.4 HYDROLASE
1AZF LYC CHICK 3.2.1.17 HYDROLASE

continued on the next page

1In case the protein structure is an enzyme, for other protein classes, e.g. antibodies no enzyme numbers are
assigned.
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Protein Swissprot Name EC number Description
1B0D LYC CHICK 3.2.1.17 HYDROLASE
1B2L ADH DROLE 1.1.1.1 OXIDOREDUCTASE
1BEL RNP BOVIN 3.1.27.5 HYDROLASE
1BGI LYC CHICK 3.2.1.17 HYDROLASE
1BHZ LYC CHICK 3.2.1.17 HYDROLASE
1BJU TRY1 BOVIN 3.4.21.4 SERINE PROTEASE
1BVX LYC CHICK 3.2.1.17 HYDROLASE
1BWI LYC CHICK 3.2.1.17 HYDROLASE
1BWJ LYC CHICK 3.2.1.17 HYDROLASE
1C2D TRY1 BOVIN 3.4.21.4 HYDROLASE/HYDROLASE INHIBITOR
1C2E TRY1 BOVIN 3.4.21.4 HYDROLASE/HYDROLASE INHIBITOR
1C3I MM03 HUMAN 3.4.24.17 HYDROLASE
1CE5 TRY1 BOVIN 3.4.21.4 HYDROLASE
1CG0 PURA ECOLI 6.3.4.4 LIGASE
1CGJ CTRA BOVIN 3.4.21.1 SERINE PROTEASE/INHIBITOR COMPLEX
1CHG CTRA BOVIN 3.4.21.1 HYDROLASE ZYMOGEN (SERINE PROTEINASE)
1CIB PURA ECOLI 6.3.4.4 LIGASE
1CQ6 AAT ECOLI 2.6.1.1 TRANSFERASE
1CQ7 AAT ECOLI 2.6.1.1 TRANSFERASE
1CQ8 AAT ECOLI 2.6.1.1 TRANSFERASE
1CQR MM03 HUMAN 3.4.24.17 HYDROLASE
1CSE SUBT BACLI 3.4.21.62 COMPLEX(SERINE PROTEINASE-INHIBITOR)
1D6O FKB1 HUMAN 5.2.1.8 ISOMERASE
1D6R TRY1 BOVIN 3.4.21.4 HYDROLASE
1D7H FKB1 HUMAN 5.2.1.8 ISOMERASE
1D7I FKB1 HUMAN 5.2.1.8 ISOMERASE
1D7X MM03 HUMAN 3.4.24.17 HYDROLASE
1D8F MM03 HUMAN 3.4.24.17 HYDROLASE
1D8M MM03 HUMAN 3.4.24.17 HYDROLASE
1DFJ RNP BOVIN 3.1.27.5 COMPLEX (ENDONUCLEASE/INHIBITOR)
1DIF POL HV1BR 3.4.23.16 ASPARTIC PROTEINASE

1DPW LYC CHICK 3.2.1.17 HYDROLASE
1DPX LYC CHICK 3.2.1.17 HYDROLASE
1DY4 GUX1 TRIRE 3.2.1.91 HYDROLASE(O-GLYCOSYL)
1E8L LYC CHICK 3.2.1.17 HYDROLASE

1EOW RNP BOVIN 3.1.27.5 HYDROLASE
1EX3 CTRA BOVIN 3.4.21.1 HYDROLASE
1F0V RNP BOVIN 3.1.27.5 HYDROLASE/DNA
1F0W LYC CHICK 3.2.1.17 HYDROLASE

continued on the next page
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Protein Swissprot Name EC number Description
1F10 LYC CHICK 3.2.1.17 HYDROLASE
1F2S TRY1 BOVIN 3.4.21.4 HYDROLASE/HYDROLASE INHIBITOR
1FAP FKB1 HUMAN 5.2.1.8 COMPLEX (ISOMERASE/KINASE)
1FDL LYC CHICK 3.2.1.17 COMPLEX (ANTIBODY-ANTIGEN)
1FKB FKB1 HUMAN 5.2.1.8 ISOMERASE
1FKD FKB1 HUMAN 5.2.1.8 CIS-TRANS ISOMERASE
1FKF FKB1 HUMAN 5.2.1.8 ISOMERASE
1FKG FKB1 HUMAN 5.2.1.8 CIS-TRANS ISOMERASE
1FKH FKB1 HUMAN 5.2.1.8 CIS-TRANS ISOMERASE
1FKJ FKB1 HUMAN 5.2.1.8 ROTAMASE
1FKR FKB1 HUMAN 5.2.1.8 CIS-TRANS ISOMERASE
1FKS FKB1 HUMAN 5.2.1.8 CIS-TRANS ISOMERASE
1FKT FKB1 HUMAN 5.2.1.8 CIS-TRANS ISOMERASE
1FQX POL HV1BR 3.4.23.16 HYDROLASE
1FXT UBC1 YEAST 6.3.2.19 LIGASE
1G05 MM03 HUMAN 3.4.24.17 HYDROLASE
1G2K POL HV1B5 3.4.23.16 HYDROLASE
1G35 POL HV1PV 3.4.23.16 HYDROLASE
1G36 TRY1 BOVIN 3.4.21.4 HYDROLASE
1G49 MM03 HUMAN 3.4.24.17 HYDROLASE
1G7H LYC CHICK 3.2.1.17 HYDROLASE INHIBITOR/HYDROLASE
1G7I LYC CHICK 3.2.1.17 HYDROLASE INHIBITOR/HYDROLASE
1G7J LYC CHICK 3.2.1.17 HYDROLASE INHIBITOR/HYDROLASE
1G7L LYC CHICK 3.2.1.17 HYDROLASE INHIBITOR/HYDROLASE
1G7M LYC CHICK 3.2.1.17 HYDROLASE INHIBITOR/HYDROLASE
1G9I TRY1 BOVIN 3.4.21.4 HYDROLASE/HYDROLASE INHIBITOR
1GBT TRY1 BOVIN 3.4.21.4 HYDROLASE(SERINE PROTEINASE)
1GCD CTRA BOVIN 3.4.21.1 HYDROLASE(SERINE PROTEINASE)
1GHL LYC PHACO 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1GIN PURA ECOLI 6.3.4.4 LIGASE
1GNO POL HV1B1 3.4.23.16 HYDROLASE (ACID PROTEASE)
1GRC PUR3 ECOLI 2.1.2.2 TRANSFERASE(FORMYL)
1HBV POL HV1B1 3.4.23.16 HYDROLASE (ACID PROTEASE)
1HEL LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1HEU ADHE HORSE 1.1.1.1 OXIDOREDUCTASE
1HEW LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1HF4 LYC CHICK 3.2.1.17 HYDROLASE
1HIH POL HV1B1 3.4.23.16 HYDROLASE (ASPARTIC PROTEINASE)
1HOS POL HV1B1 3.4.23.16 HYDROLASE(ACID PROTEINASE)
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Protein Swissprot Name EC number Description
1HPS POL HV1B1 3.4.23.16 HYDROLASE(ACID PROTEINASE)
1HPV POL HV1B5 3.4.23.16 HYDROLASE (ACID PROTEINASE)
1HPX POL HV1BR 3.4.23.16 HYDROLASE (ACID PROTEASE)
1HSG POL HV1BR 3.4.23.16 HYDROLASE (ACID PROTEINASE)
1HSW LYC CHICK 3.2.1.17 HYDROLASE
1HSX LYC CHICK 3.2.1.17 HYDROLASE
1HTE POL HV1B1 3.4.23.16 HYDROLASE(ACID PROTEINASE)
1HTF POL HV1B1 3.4.23.16 HYDROLASE(ACID PROTEINASE)
1HVI POL HV1B1 3.4.23.16 HYDROLASE(ACID PROTEASE)
1HVJ POL HV1B1 3.4.23.16 HYDROLASE(ACID PROTEASE)
1HVK POL HV1B1 3.4.23.16 HYDROLASE(ACID PROTEASE)
1HVL POL HV1B1 3.4.23.16 HYDROLASE(ACID PROTEASE)
1IC4 LYC CHICK 3.2.1.17 PROTEIN BINDING/HYDROLASE
1IC5 LYC CHICK 3.2.1.17 PROTEIN BINDING/HYDROLASE
1IC7 LYC CHICK 3.2.1.17 PROTEIN BINDING/HYDROLASE
1JA2 LYC CHICK 3.2.1.17 HYDROLASE
1JA4 LYC CHICK 3.2.1.17 HYDROLASE
1JA6 LYC CHICK 3.2.1.17 HYDROLASE
1JA7 LYC CHICK 3.2.1.17 HYDROLASE
1JIR TRY1 BOVIN 3.4.21.4 HYDROLASE
1JIS LYC CHICK 3.2.1.17 HYDROLASE
1JIT LYC CHICK 3.2.1.17 HYDROLASE
1JIY LYC CHICK 3.2.1.17 HYDROLASE
1JJ0 LYC CHICK 3.2.1.17 HYDROLASE
1JJ1 LYC CHICK 3.2.1.17 HYDROLASE
1JJ3 LYC CHICK 3.2.1.17 HYDROLASE
1JPO LYC CHICK 3.2.1.17 HYDROLASE
1JRS TRY1 BOVIN 3.4.21.4 HYDROLASE (SERINE PROTEASE)
1JRT TRY1 BOVIN 3.4.21.4 HYDROLASE (SERINE PROTEASE)
1JUY PURA ECOLI 6.3.4.4 LIGASE
1K1I TRY1 BOVIN 3.4.21.4 HYDROLASE
1K1J TRY1 BOVIN 3.4.21.4 HYDROLASE
1K1L TRY1 BOVIN 3.4.21.4 HYDROLASE
1K1M TRY1 BOVIN 3.4.21.4 HYDROLASE
1K1N TRY1 BOVIN 3.4.21.4 HYDROLASE
1K1O TRY1 BOVIN 3.4.21.4 HYDROLASE
1K1P TRY1 BOVIN 3.4.21.4 HYDROLASE
1KIP LYC CHICK 3.2.1.17 COMPLEX (IMMUNOGLOBULIN/HYDROLASE)
1KIQ LYC CHICK 3.2.1.17 COMPLEX (IMMUNOGLOBULIN/HYDROLASE)
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Protein Swissprot Name EC number Description
1KIR LYC CHICK 3.2.1.17 COMPLEX (IMMUNOGLOBULIN/HYDROLASE)
1KSZ PURA ECOLI 6.3.4.4 LIGASE
1LCN LYC CHICK 3.2.1.17 HYDROLASE
1LKR LYC HUMAN 3.2.1.17 HYDROLASE
1LMA LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1LPI LYC CHICK 3.2.1.17 HYDROLASE
1LSA LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1LSB LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1LSC LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1LSD LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1LSE LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1LSF LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1LYZ LYC CHICK 3.2.1.17 HYDROLASE (O-GLYCOSYL)
1LZ8 LYC CHICK 3.2.1.17 HYDROLASE
1LZ9 LYC CHICK 3.2.1.17 HYDROLASE
1LZB LYC CHICK 3.2.1.17 HYDROLASE (O-GLYCOSYL)
1LZC LYC CHICK 3.2.1.17 HYDROLASE (O-GLYCOSYL)
1LZH LYC CHICK 3.2.1.17 HYDROLASE (O-GLYCOSYL)
1LZT LYC CHICK 3.2.1.17 HYDROLASE(O-GLYCOSYL)
1MAY TRY1 BOVIN 3.4.21.4 HYDROLASE (SERINE PROTEASE)
1MEL LYC CHICK 3.2.1.17 COMPLEX (ANTIBODY/ANTIGEN)
1MTS TRY1 BOVIN 3.4.21.4 SERINE PROTEINASE
1MTU TRY1 BOVIN 3.4.21.4 SERINE PROTEASE
1MTV TRY1 BOVIN 3.4.21.4 SERINE PROTEASE
1MTW TRY1 BOVIN 3.4.21.4 SERINE PROTEASE
1NSG FKB1 HUMAN 5.2.1.8 COMPLEX (ISOMERASE/KINASE)
1PPE TRY1 BOVIN 3.4.21.4 HYDROLASE(SERINE PROTEINASE)
1PPH TRY1 BOVIN 3.4.21.4 HYDROLASE(SERINE PROTEINASE)
1QA0 TRY1 BOVIN 3.4.21.4 HYDROLASE
1QB1 TRY1 BOVIN 3.4.21.4 HYDROLASE
1QB6 TRY1 BOVIN 3.4.21.4 HYDROLASE
1QB9 TRY1 BOVIN 3.4.21.4 HYDROLASE
1QBN TRY1 BOVIN 3.4.21.4 HYDROLASE
1QBO TRY1 BOVIN 3.4.21.4 HYDROLASE
1QCP TRY1 BOVIN 3.4.21.4 HYDROLASE
1QF4 PURA ECOLI 6.3.4.4 LIGASE
1QF5 PURA ECOLI 6.3.4.4 LIGASE
1QIO LYC CHICK 3.2.1.17 HYDROLASE
1QL7 TRY1 BOVIN 3.4.21.4 SERINE PROTEASE
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Protein Swissprot Name EC number Description
1QL8 TRY1 BOVIN 3.4.21.4 SERINE PROTEASE
1QPF FKB1 HUMAN 5.2.1.8 ISOMERASE
1QPL FKB1 HUMAN 5.2.1.8 ISOMERASE
1QTK LYC CHICK 3.2.1.17 HYDROLASE
1RAT RNP BOVIN 3.1.27.5 HYDROLASE (NUCLEIC ACID,RNA)
1RBB RNP BOVIN 3.1.27.5 HYDROLASE (NUCLEIC ACID, RNA)
1RBN RNP BOVIN 3.1.27.5 HYDROLASE(NUCLEIC ACID,RNA)
1RHA RNP BOVIN 3.1.27.5 HYDROLASE (NUCLEIC ACID,RNA)

Table A.1: Test set of unbound proteins used for energy based classification of residue flexibility

Protein Swissprot Name Description
1A2P RNBR BACAM RIBONUCLEASE
1AAP A4 HUMAN PROTEINASE INHIBITOR (TRYPSIN)
1AH6 HS82 YEAST CHAPERONE
1AVU ITRA SOYBN SERINE PROTEASE INHIBITOR
1B0C BPT1 BOVIN HYDROLASE INHIBITOR
1B8L PRVB CYPCA CALCIUM BINDING PROTEIN
1BGD CSF3 CANFA CYTOKINE
1BI0 DTXR CORDI REPRESSOR
1BI1 DTXR CORDI REPRESSOR
1BPI BPT1 BOVIN PROTEINASE INHIBITOR (TRYPSIN)
1C57 CONA CANEN SUGAR BINDING PROTEIN
1C6R CYC6 SCEOB ELECTRON TRANSPORT
1C76 SAK STAAM HYDROLASE
1C78 SAK STAAM HYDROLASE
1C79 SAK STAAM HYDROLASE
1CJP CONA CANEN LECTIN
1COF COFI YEAST ACTIN-BINDING PROTEIN
1CON CONA CANEN LECTIN(AGGLUTININ)
1CSE ICIC HIRME COMPLEX(SERINE PROTEINASE-INHIBITOR)
1D0D BPT1 BOVIN BLOOD CLOTTING INHIBITOR
1D3Z UBIQ HUMAN HYDROLASE
1D6R IBB1 SOYBN HYDROLASE
1DFJ RINI PIG COMPLEX (ENDONUCLEASE/INHIBITOR)
1DPR DTXR CORDI TRANSCRIPTION REGULATION
1DQ0 CONA CANEN SUGAR BINDING PROTEIN
1DQ1 CONA CANEN SUGAR BINDING PROTEIN
1DQ5 CONA CANEN SUGAR BINDING PROTEIN
1E65 AZUR PSEAE ELECTRON TRANSPORT(COPPER BINDING)
1E67 AZUR PSEAE ELECTRON TRANSPORT(COPPER BINDING)
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Protein Swissprot Name Description
1E7F ALBU HUMAN PLASMA PROTEIN
1F2S ITR2 MOMCH HYDROLASE/HYDROLASE INHIBITOR
1F9J UBIQ HUMAN CHAPERONE
1FAP FRAP HUMAN COMPLEX (ISOMERASE/KINASE)
1FXT UBIQ HUMAN LIGASE
1G6J UBIQ HUMAN GENE REGULATION, CELL CYCLE
1G7H HV44 MOUSE HYDROLASE INHIBITOR/HYDROLASE
1G7I HV44 MOUSE HYDROLASE INHIBITOR/HYDROLASE
1G7J HV44 MOUSE HYDROLASE INHIBITOR/HYDROLASE

1G7M HV44 MOUSE HYDROLASE INHIBITOR/HYDROLASE
1G9I IBB PHAAU HYDROLASE/HYDROLASE INHIBITOR
1GIC CONA CANEN LECTIN
1HA2 ALBU HUMAN SERUM PROTEIN
1HPT IPK1 HUMAN SERINE PROTEASE INHIBITOR
1I3H CONA CANEN SUGAR BINDING PROTEIN
1JW6 CONA CANEN SUGAR BINDING PROTEIN
1JZE AZUR PSEAE ELECTRON TRANSPORT
1JZF AZUR PSEAE ELECTRON TRANSPORT
1JZG AZUR PSEAE ELECTRON TRANSPORT
1JZH AZUR PSEAE ELECTRON TRANSPORT
1JZI AZUR PSEAE ELECTRON TRANSPORT

1KPA HNT1 HUMAN PROTEIN KINASE C INTERACTING PROTEIN
1KPB HNT1 HUMAN PROTEIN KINASE C INTERACTING PROTEIN
1KPC HNT1 HUMAN PROTEIN KINASE C INTERACTING PROTEIN
1KPE HNT1 HUMAN PROTEIN KINASE INHIBITOR
1KPF HNT1 HUMAN PROTEIN KINASE INHIBITOR
1NLS CONA CANEN AGGLUTININ
1NSG FRAP HUMAN COMPLEX (ISOMERASE/KINASE)
1PPE ITR1 CUCMA HYDROLASE(SERINE PROTEINASE)
1QGL CONA CANEN LECTIN (AGGLUTININ)
1QNY CONA CANEN LECTIN
1QPV COFI YEAST ACTIN-BINDING PROTEIN

Table A.2: Test set of unbound proteins used for energy based classification of residue flexibility
(proteins with no EC number assigned).

A.2 Test Cases used for Docking Experiments

Here, the test cases are listed used for the evaluation of the flexibility information and for the
enhancements of ElMaR. These test cases have been derived automatically by the methods
described in section 7.1.1.
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Complex Unbound 1 Unbound 2 EC number of Complex
1A2W 1BEL 1RAT 3.1.27.5
1A2W 1AQP 1RAT 3.1.27.5
1A2W 1BEL 1RBN 3.1.27.5
1A2W 1BEL 1RHA 3.1.27.5
1A2W 1EOW 1RHA 3.1.27.5
1A2W 1RBN 1RHA 3.1.27.5
1A2W 1RAT 1RBN 3.1.27.5
1A7X 1FKB 1FKF 5.2.1.8
1A7X 1FKB 1FKJ 5.2.1.8
1A7X 1FKF 1FKJ 5.2.1.8
1A7X 1FKB 1FKG 5.2.1.8
1A7X 1FKG 1FKJ 5.2.1.8
1A7X 1FKH 1FKJ 5.2.1.8
1ADE 1CIB 1QF5 6.3.4.4
1ADI 1QF4 1QF5 6.3.4.4
1AFK 1BEL 1RAT 3.1.27.5
1AFK 1AQP 1BEL 3.1.27.5
1AFK 1BEL 1RHA 3.1.27.5
1AFK 1BEL 1RBN 3.1.27.5
1AFK 1BEL 1EOW 3.1.27.5
1AFK 1AQP 1RAT 3.1.27.5
1AFK 1EOW 1RAT 3.1.27.5
1AFK 1RBN 1RHA 3.1.27.5
1AFK 1RAT 1RHA 3.1.27.5
1AFL 1BEL 1RBN 3.1.27.5
1AFL 1AQP 1RHA 3.1.27.5
1AFL 1AQP 1BEL 3.1.27.5
1AFL 1AQP 1EOW 3.1.27.5
1AFL 1EOW 1RHA 3.1.27.5
1AFL 1RBN 1RHA 3.1.27.5
1AFU 1BEL 1RAT 3.1.27.5
1AFU 1BEL 1RHA 3.1.27.5
1AFU 1AQP 1EOW 3.1.27.5
1AFU 1BEL 1EOW 3.1.27.5
1AFU 1AQP 1RAT 3.1.27.5
1AFU 1AQP 1RHA 3.1.27.5
1AFU 1AQP 1BEL 3.1.27.5
1AFU 1EOW 1RHA 3.1.27.5
1AFU 1EOW 1RAT 3.1.27.5
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Complex Unbound 1 Unbound 2 EC number of Complex
1AFU 1RAT 1RHA 3.1.27.5
1AO6 1E7F 1HA2
1APN 1C57 1DQ1
1APN 1C57 1DQ5
1APN 1C57 1CON
1APN 1DQ0 1NLS
1APN 1CON 1DQ1
1APN 1CON 1QNY
1APN 1I3H 1NLS
1APN 1DQ5 1I3H
1APN 1DQ0 1DQ1
1APN 1I3H 1QNY
1APN 1CON 1DQ0
1APN 1DQ1 1QNY
1APN 1NLS 1QNY
1ARG 1ARS 1ASA 2.6.1.1
1ARG 1AMQ 1AMR 2.6.1.1
1ARG 1AMR 1ART 2.6.1.1
1ARG 1AMR 1CQ8 2.6.1.1
1ARG 1AMR 1ASE 2.6.1.1
1ARG 1ARS 1CQ7 2.6.1.1
1ARG 1CQ7 1CQ8 2.6.1.1
1ARG 1ASE 1CQ8 2.6.1.1
1ASM 1AMQ 1AMR 2.6.1.1
1ASM 1AMQ 1CQ8 2.6.1.1
1ASM 1ASA 1ASE 2.6.1.1
1ASM 1ART 1ASE 2.6.1.1
1ASN 1AMR 1CQ8 2.6.1.1
1ASN 1ARS 1ART 2.6.1.1
1ASN 1ASA 1CQ8 2.6.1.1
1ASN 1ASE 1CQ8 2.6.1.1
1B2K 132L 193L 3.2.1.17
1B2K 132L 1B0D 3.2.1.17
1B2K 132L 1DPX 3.2.1.17
1B2K 132L 1LSE 3.2.1.17
1B2K 193L 1AKI 3.2.1.17
1B2K 193L 1B0D 3.2.1.17
1B2K 193L 1DPW 3.2.1.17
1B2K 193L 1HSX 3.2.1.17
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Complex Unbound 1 Unbound 2 EC number of Complex
1B2K 193L 1JJ0 3.2.1.17
1B2K 193L 1LSD 3.2.1.17
1B2K 193L 1LZ9 3.2.1.17
1B2K 193L 1LZB 3.2.1.17
1B2K 194L 1AZF 3.2.1.17
1B2K 194L 1JIY 3.2.1.17
1B2K 194L 1LSE 3.2.1.17
1B2K 1AKI 1B0D 3.2.1.17
1B2K 1AKI 1BVX 3.2.1.17
1B2K 1AKI 1F10 3.2.1.17
1B2K 1AZF 1BVX 3.2.1.17
1B2K 1AZF 1BWJ 3.2.1.17
1B2K 1AZF 1JJ0 3.2.1.17
1B2K 1AZF 1QIO 3.2.1.17
1B2K 1B0D 1BVX 3.2.1.17
1B2K 1B0D 1BWJ 3.2.1.17
1B2K 1B0D 1DPX 3.2.1.17
1B2K 1B0D 1F0W 3.2.1.17
1B2K 1B0D 1HEL 3.2.1.17
1B2K 1B0D 1LZ9 3.2.1.17
1B2K 1B0D 1LZC 3.2.1.17
1B2K 193L 1BVX 3.2.1.17
1B2K 193L 1HEL 3.2.1.17
1B2K 193L 1JIT 3.2.1.17
1B2K 193L 1JJ1 3.2.1.17
1B2K 193L 1LSA 3.2.1.17
1B2K 193L 1QTK 3.2.1.17
1B2K 194L 1BWI 3.2.1.17
1B2K 193L 1JIY 3.2.1.17
1B2K 194L 1F0W 3.2.1.17
1B2K 194L 1BWJ 3.2.1.17
1B2K 194L 1HSX 3.2.1.17
1B2K 194L 1JIT 3.2.1.17
1B2K 194L 1LPI 3.2.1.17
1B2K 194L 1HEL 3.2.1.17
1B2K 194L 1LZ8 3.2.1.17
1B2K 194L 1QIO 3.2.1.17
1B2K 1AKI 1JIT 3.2.1.17
1B2K 1AKI 1LSD 3.2.1.17
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Complex Unbound 1 Unbound 2 EC number of Complex
1B2K 1AKI 1LSF 3.2.1.17
1B2K 1AZF 1DPX 3.2.1.17
1B2K 1AZF 1DPW 3.2.1.17
1B2K 1AZF 1HEL 3.2.1.17
1B2K 1AZF 1JIS 3.2.1.17
1B2K 1AZF 1LPI 3.2.1.17
1B2K 1AZF 1LSD 3.2.1.17
1B2K 1AZF 1LZT 3.2.1.17
1B2K 1AZF 1QTK 3.2.1.17
1B2K 1B0D 1BGI 3.2.1.17
1B2K 1B0D 1DPW 3.2.1.17
1B2K 1B0D 1LPI 3.2.1.17
1B2K 193L 1F10 3.2.1.17
1B2K 193L 1LPI 3.2.1.17
1B2K 193L 1LSF 3.2.1.17
1B2K 193L 1QIO 3.2.1.17
1B2K 194L 1BVX 3.2.1.17
1B2K 194L 1JJ1 3.2.1.17
1B2K 1AKI 1JJ0 3.2.1.17
1B2K 1AKI 1LYZ 3.2.1.17
1B2K 1AKI 1LPI 3.2.1.17
1B2K 193L 1BWI 3.2.1.17
1B2K 193L 1JIS 3.2.1.17
1B2K 193L 1JPO 3.2.1.17
1B2K 193L 1LSE 3.2.1.17
1B2K 194L 1HSW 3.2.1.17
1B2K 194L 1LYZ 3.2.1.17
1B2K 194L 1LZB 3.2.1.17
1B2K 1AKI 1BWI 3.2.1.17
1B2K 1AKI 1LZT 3.2.1.17
1B2K 1AKI 1LZC 3.2.1.17
1B2K 132L 1AZF 3.2.1.17
1B2K 132L 1HEL 3.2.1.17
1B2K 132L 1HEW 3.2.1.17
1B2K 132L 1LSA 3.2.1.17
1B2K 132L 1BGI 3.2.1.17
1B2K 132L 1LZB 3.2.1.17
1B2K 132L 1QTK 3.2.1.17
1B2K 132L 1LSD 3.2.1.17

continued on the next page
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Complex Unbound 1 Unbound 2 EC number of Complex
1B2K 193L 1LYZ 3.2.1.17
1B2K 194L 1BGI 3.2.1.17
1B2K 1BGI 1BWI 3.2.1.17
1B2K 1BVX 1BWI 3.2.1.17
1B2K 1BWI 1LSE 3.2.1.17
1B2K 1BWJ 1LZ8 3.2.1.17
1B2K 1DPW 1LSB 3.2.1.17
1B2K 1DPX 1JIY 3.2.1.17
1B2K 1DPX 1LMA 3.2.1.17
1B2K 1F10 1LSF 3.2.1.17
1B2K 1F10 1LZ9 3.2.1.17
1B2K 1F10 1LZC 3.2.1.17
1B2K 1F10 1QIO 3.2.1.17
1B2K 1DPW 1DPX 3.2.1.17
1B2K 1DPW 1LZ9 3.2.1.17
1B2K 1HEL 1LZ9 3.2.1.17
1B2K 1HEL 1QIO 3.2.1.17
1B2K 1HEW 1LSA 3.2.1.17
1B2K 1HEW 1LSE 3.2.1.17
1B2K 1HEW 1LZ8 3.2.1.17
1B2K 1HEW 1LZB 3.2.1.17
1B2K 1LSA 1LSD 3.2.1.17
1B2K 1LSC 1LZ9 3.2.1.17
1B2K 1LSD 1LSE 3.2.1.17
1B2K 1LSD 1LZ9 3.2.1.17
1B2K 1LSF 1LZC 3.2.1.17
1B2K 1LZ8 1LZC 3.2.1.17
1BM0 1E7F 1HA2
1CGI 1CHG 1HPT 3.4.21.1
1CGI 1GCD 1HPT 3.4.21.1
1LYS 132L 1LZ9 3.2.1.17
1LYS 132L 1LZC 3.2.1.17
1LYS 193L 1LMA 3.2.1.17
1LYS 193L 1LSC 3.2.1.17
1LYS 193L 1LZ9 3.2.1.17
1LYS 194L 1BVX 3.2.1.17
1LYS 194L 1LSB 3.2.1.17
1LYS 194L 1LSE 3.2.1.17
1LYS 1AKI 1HSX 3.2.1.17

continued on the next page
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Complex Unbound 1 Unbound 2 EC number of Complex
1LYS 1B0D 1LSD 3.2.1.17
1LYS 193L 1B0D 3.2.1.17
1LYS 193L 1BWI 3.2.1.17
1LYS 193L 194L 3.2.1.17
1LYS 193L 1JIY 3.2.1.17
1LYS 193L 1LZB 3.2.1.17
1LYS 193L 1QIO 3.2.1.17
1LYS 194L 1JJ1 3.2.1.17
1LYS 194L 1JIY 3.2.1.17
1LYS 194L 1QTK 3.2.1.17
1LYS 194L 1LSF 3.2.1.17
1LYS 1AKI 1BWJ 3.2.1.17
1LYS 1AKI 1F0W 3.2.1.17
1LYS 1AKI 1HEW 3.2.1.17
1LYS 1AKI 1F10 3.2.1.17
1LYS 1AKI 1LZ9 3.2.1.17
1LYS 193L 1AKI 3.2.1.17
1LYS 132L 1JIT 3.2.1.17
1LYS 132L 1LSE 3.2.1.17
1LYS 193L 1F10 3.2.1.17
1LYS 193L 1JIS 3.2.1.17
1LYS 193L 1JJ1 3.2.1.17
1LYS 193L 1LPI 3.2.1.17
1LYS 1BGI 1JJ0 3.2.1.17
1LYS 1BGI 1LSF 3.2.1.17
1LYS 1BVX 1BWI 3.2.1.17
1LYS 1BVX 1HEL 3.2.1.17
1LYS 1BVX 1JJ0 3.2.1.17
1LYS 1BWI 1LMA 3.2.1.17
1LYS 1BWI 1LSF 3.2.1.17
1LYS 1BWI 1LZ9 3.2.1.17
1LYS 1BWJ 1JIS 3.2.1.17
1LYS 1BWJ 1LSB 3.2.1.17
1LYS 1DPX 1HEW 3.2.1.17
1LYS 1DPX 1LSB 3.2.1.17
1LYS 1DPX 1LZ9 3.2.1.17
1LYS 1HEL 1HEW 3.2.1.17
1LYS 1HEL 1LZC 3.2.1.17
1LYS 1HEW 1LSA 3.2.1.17

continued on the next page
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Complex Unbound 1 Unbound 2 EC number of Complex
1LYS 1LSC 1QIO 3.2.1.17
1LYS 1LSD 1LZC 3.2.1.17
1LYS 1LSF 1LZC 3.2.1.17
1LYS 1LZ8 1LZT 3.2.1.17
1LYS 1LZC 1QIO 3.2.1.17
1LYS 1LZB 1QTK 3.2.1.17
1TPA 1BJU 1BPI 3.4.21.4
1TPA 1AUJ 1BPI 3.4.21.4
2ptc 1AQ7 1BPI 3.4.21.4
2ptc 1AUJ 1BPI 3.4.21.4
2ptc 1BJU 1BPI 3.4.21.4

Table A.3: Test set of unbound proteins used for energy based classification of residue flexibility.
Besides the Pdb identifier of the complex and the two unbound partners, here also the enzyme
number of the complex is given.For some test cases no enzyme number has been assigned or
the proteins are no enzymes. Thus, for these no enzyme number is listed in the table.
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B.1 Boxplots of Energy Landscapes

In this section box-plots drawn of the energy landscapes of all residues in the data set for χ1

are shown. In red the flexible labelled residues, in green rigid residues are given.
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Figure B.1: Box-plots of energy landscapes of χ1.
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Figure B.1: Box-plots of energy landscapes of χ1.
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Figure B.1: Box-plots of energy landscapes of χ1.
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B.2 Tables of the Normalisation Factor Analysis

In this section the results of the analysis of different normalisation factors (see section 5.2.3)
is given. In the following ∆Q is defined as the inter-quantile distance ∆Q = Q3−Q1. The red
highlighted numbers represent the optimal normalisation factor of an amino acid.

AS ROC Area
0.5∗∆Q 1.2∗∆Q 1.5∗∆Q 3∗∆Q 6∗∆Q Q4

ARG 0.74 0.72 0.72 0.70 0.67 0.5
ASN 0.69 0.68 0.67 0.64 0.64 0.5
ASP 0.64 0.62 0.61 0.58 0.57 0.5
CYS 0.70 0.70 0.70 0.71 0.75 0.5
GLN 0.72 0.69 0.69 0.66 0.65 0.5
GLU 0.60 0.57 0.59 0.55 0.56 0.5
HIS 0.74 0.73 0.69 0.66 0.65 0.5
ILE 0.62 0.62 0.62 0.62 0.61 0.5
LEU 0.65 0.64 0.62 0.62 0.61 0.5
LYS 0.66 0.64 0.63 0.60 0.59 0.5
MET 0.63 0.60 0.61 0.61 0.63 0.5
PHE 0.67 0.64 0.64 0.62 0.62 0.5
SER 0.54 0.50 0.49 0.47 0.47 0.5
THR 0.70 0.68 0.68 0.65 0.63 0.5
TRP 0.88 0.63 0.63 0.63 0.63 0.5
TYR 0.57 0.58 0.59 0.55 0.55 0.5
VAL 0.71 0.71 0.70 0.68 0.67 0.5

Table B.1: ROC area of different amino acids for χ1 and for different normalisation factors.
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AS ROC Area
0.5∗∆Q 1.2∗∆Q 1.5∗∆Q 3∗∆Q 6∗∆Q Q4

ARG 0.63 0.60 0.58 0.56 0.54 0.5
ASN 0.62 0.58 0.56 0.53 0.53 0.5
ASP 0.51 0.48 0.48 0.47 0.47 0.5
GLN 0.69 0.65 0.64 0.61 0.60 0.5
GLU 0.55 0.53 0.52 0.52 0.51 0.5
HIS 0.75 0.72 0.73 0.69 0.67 0.5
ILE 0.65 0.65 0.64 0.64 0.65 0.5
LEU 0.64 0.62 0.61 0.60 0.59 0.5
LYS 0.55 0.52 0.51 0.50 0.49 0.5
MET 0.51 0.49 0.49 0.48 0.46 0.5
PHE 0.58 0.57 0.56 0.56 0.54 0.5
TRP 0.72 0.70 0.69 0.69 0.68 0.5
TYR 0.63 0.62 0.62 0.61 0.61 0.5

Table B.2: ROC area of different amino acids for χ2 and for different normalisation factors.

AS ROC Area
0.5∗∆Q 1.2∗∆Q 1.5∗∆Q 3∗∆Q 6∗∆Q Q4

ARG 0.64 0.62 0.61 0.57 0.57 0.5
GLN 0.55 0.52 0.51 0.49 0.50 0.5
GLU 0.54 0.51 0.50 0.49 0.48 0.5
LYS 0.51 0.50 0.48 0.47 0.46 0.5
MET 0.76 0.76 0.76 0.75 0.73 0.5

Table B.3: ROC area of different amino acids for χ3 and for different normalisation factors.

AS ROC Area
0.5∗∆Q 1.2∗∆Q 1.5∗∆Q 3∗∆Q 6∗∆Q Q4

ARG 0.61 0.57 0.55 0.53 0.51 0.5
LYS 0.49 0.48 0.47 0.47 0.47 0.5

Table B.4: ROC area of different amino acids for χ4 and for different normalisation factors.
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B.3 ROC–Plots

In this section the ROC curves of the different amino acids are given using the energy dif-
ference for classifying the flexibility. For each curve the 1-specificity is plotted against the
sensitivity (see also section 7.2.1). The diagonal represents the chance line.

B.3.1 ROC curves for χ1
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Figure B.2: ROC curves for all residues and χ1.
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Figure B.2: ROC curves for all residues and χ1.
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Figure B.2: ROC curves for all residues and χ1.
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Figure B.2: ROC curves for all residues and χ1.

B.3.2 ROC curves for χ2
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Figure B.3: ROC curves for all residues and χ2.
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Figure B.3: ROC curves for all residues and χ2.
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Figure B.3: ROC curves for all residues and χ2.
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B.3.3 ROC curves for χ3 and χ4
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Figure B.4: ROC curves for all residues and χ3.
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Figure B.5: ROC curves for all residues and χ4.
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B.4 PCA Plots of Features

In this section, the different eigenvalue spectra of each residue type and torsion angle are
given. As input, the features extracted from the energy landscapes as well as the other
features like e.g. the SAS (cf. section 5.2.2) are taken.

B.4.1 Principle Component Analysis for χ1
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Figure B.6: PCA Eigenvalue spectra for χ1.
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Figure B.6: (cont.) PCA Eigenvalue spectra for χ1.
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Figure B.6: (cont.) PCA Eigenvalue spectra for χ1.
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Figure B.6: (cont.) PCA Eigenvalue spectra for χ1.
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B.4.2 Principle Component Analysis for χ2

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

ARG

V
ar

ia
nc

es

0.
00

0.
05

0.
10

0.
15

0.
20

(a) ARG

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

ASN

V
ar

ia
nc

es

0.
00

0.
05

0.
10

0.
15

0.
20

(b) ASN

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

ASP

V
ar

ia
nc

es

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(c) ASP

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

GLN
V

ar
ia

nc
es

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

(d) GLN

Figure B.7: PCA Eigenvalue spectra for χ2.
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Figure B.7: (cont.) PCA Eigenvalue spectra for χ2.
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Figure B.7: (cont.) PCA Eigenvalue spectra for χ2.
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B.4.3 Principle Component Analysis for χ3 and χ4
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Figure B.8: PCA Eigenvalue spectra for χ3.
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Figure B.8: (cont.) PCA Eigenvalue spectra for χ3.
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Figure B.9: PCA Eigenvalue spectra for χ4.
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B.5 Tables of Classification Results using a SVM

Here, the results from the flexibility classification using a support vector machine (SVM) for
the different amino acids and torsion angles are shown. Besides a 10–fold cross evaluation
the SVM has been configured to use radial basis functions. For each amino acid and torsion
angle a confusion matrix is compiled, showing the percentages of classifying a data example
as true positive (flexible), true false (not flexible) and as false positive or false negative. In
brackets the absolute numbers are given.

B.5.1 Results for χ1

Predicted
not flexible flexible

not flexible 78.9% (15) 21.1% (4)

Tr
ue

flexible 23.3% (7) 76.7% (23)

(a) Classification of χ1 for ARG. A total accuracy of
77.1% is reached.

Predicted
not flexible flexible

not flexible 71.4% (35) 28.6% (14)

Tr
ue

flexible 27.1% (13) 72.9% (35)

(b) Classification of χ1 for ASN. A total accuracy of
73.3% is reached.

Predicted
not flexible flexible

not flexible 66.2% (47) 33.8% (24)

Tr
ue

flexible 30.3% (20) 69.7% (46)

(c) Classification of χ1 for ASN. A total accuracy of
70.8% is reached.

Predicted
not flexible flexible

not flexible 100.0% (2) 0.0% (0)

Tr
ue

flexible 20.0% (1) 80.0% (4)

(d) Classification of χ1 for CYS. A total accuracy of
89% is reached.

Predicted
not flexible flexible

not flexible 73.6% (39) 26.4% (14)

Tr
ue

flexible 17.9% (7) 82.1% (32)

(e) Classification of χ1 for GLN. A total accuracy of
78.8% is reached.

Predicted
not flexible flexible

not flexible 66.7% (54) 33.3% (27)

Tr
ue

flexible 30.1% (22) 69.9% (51)

(f) Classification of χ1 for GLU. A total accuracy of
68.4% is reached.

Table B.5: Classification results for ARG, ASN, ASP, CYS, GLN and GLU for χ1.
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Predicted
not flexible flexible

not flexible 66.7% (4) 33.3% (2)

Tr
ue

flexible 25.0% (2) 75.0% (6)

(g) Classification of χ1 for HIS. A total accuracy of
75.3% is reached.

Predicted
not flexible flexible

not flexible 76.3% (45) 23.7% (14)

Tr
ue

flexible 26.9% (18) 73.1% (49)

(h) Classification of χ1 for ILE. A total accuracy of
75% is reached.

Predicted
not flexible flexible

not flexible 78.3% (36) 21.7% (10)

Tr
ue

flexible 25.0% (13) 75.0% (39)

(i) Classification of χ1 for LEU. A total accuracy of
76.8% is reached.

Predicted
not flexible flexible

not flexible 64.0% (48) 36.0% (27)

Tr
ue

flexible 28.2% (22) 71.8% (56)

(j) Classification of χ1 for LYS. A total accuracy of
70% is reached.

Predicted
not flexible flexible

not flexible 80.0% (12) 20.0% (3)

Tr
ue

flexible 17.6% (3) 82.4% (14)

(k) Classification of χ1 for MET. A total accuracy of
82.5% is reached.

Predicted
not flexible flexible

not flexible 66.7% (2) 33.3% (1)

Tr
ue

flexible 20.0% (1) 80.0% (4)

(l) Classification of χ1 for PHE. A total accuracy of
78.8% is reached.

Predicted
not flexible flexible

not flexible 60.5% (69) 39.5% (45)

Tr
ue

flexible 27.5% (25) 72.5% (66)

(m) Classification of χ1 for SER. A total accuracy of
68.4% is reached.

Predicted
not flexible flexible

not flexible 63.8% (44) 36.2% (25)

Tr
ue

flexible 39.2% (40) 60.8% (62)

(n) Classification of χ1 for THR. A total accuracy of
64.2% is reached.

Predicted
not flexible flexible

not flexible 66.7% (2) 33.3% (1)

Tr
ue

flexible 20.0% (1) 80.0% (4)

(o) Classification of χ1 for TRP. A total accuracy of
85,7% is reached.

Predicted
not flexible flexible

not flexible 75.0% (3) 25.0% (1)

Tr
ue

flexible 0.0% (0) 100.0% (3)

(p) Classification of χ1 for TYR. A total accuracy of
81% is reached.

Predicted
not flexible flexible

not flexible 67.1% (47) 32.9% (23)

Tr
ue

flexible 38.1% (32) 61.9% (52)

(q) Classification of χ1 for VAL. A total accuracy of
68.1% is reached.

Table B.5: Classification results for HIS, ILE, LEU, LYS, MET, PHE, SER, THR, TRP, TYR and VAL
for χ1.
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B.5.2 Results for χ2

Predicted
not flexible flexible

not flexible 69.0% (40) 31.0% (18)

Tr
ue

flexible 33.3% (23) 66.7% (46)

(a) Classification of χ2 for ARG. A total accuracy of
70.6% is reached.

Predicted
not flexible flexible

not flexible 60.7% (74) 39.3% (48)

Tr
ue

flexible 34.1% (29) 65.9% (56)

(b) Classification of χ2 for ASN. A total accuracy of
63.3% is reached.

Predicted
not flexible flexible

not flexible 67.6% (46) 32.4% (22)

Tr
ue

flexible 28.8% (15) 71.2% (37)

(c) Classification of χ2 for ASP. A total accuracy of
70.2% is reached.

Predicted
not flexible flexible

not flexible 74.5% (41) 25.5% (14)

Tr
ue

flexible 25.5% (14) 74.5% (41)

(d) Classification of χ2 for GLN. A total accuracy of
74.9% is reached.

Predicted
not flexible flexible

not flexible 71.7% (38) 28.3% (15)

Tr
ue

flexible 35.1% (26) 64.9% (48)

(e) Classification of χ2 for GLU. A total accuracy of
70.1% is reached.

Predicted
not flexible flexible

not flexible 69.7% (23) 30.3% (10)

Tr
ue

flexible 27.6% (8) 72.4% (21)

(f) Classification of χ2 for HIS. A total accuracy of
69.2% is reached.

Predicted
not flexible flexible

not flexible 76.0% (38) 24.0% (12)

Tr
ue

flexible 35.2% (32) 64.8% (59)

(g) Classification of χ2 for ILE. A total accuracy of
69.7% is reached.

Predicted
not flexible flexible

not flexible 62.4% (68) 37.6% (41)

Tr
ue

flexible 40.5% (53) 59.5% (78)

(h) Classification of χ2 for LEU. A total accuracy of
63.4% is reached.

Predicted
not flexible flexible

not flexible 81.8% (54) 18.2% (12)

Tr
ue

flexible 31.5% (34) 68.5% (74)

(i) Classification of χ2 for LYS. A total accuracy of
75.6% is reached.

Predicted
not flexible flexible

not flexible 84.6% (11) 15.4% (2)

Tr
ue

flexible 21.4% (3) 78.6% (11)

(j) Classification of χ2 for MET. A total accuracy of
79.3% is reached.

Table B.6: Classification results for ARG, ASN, ASP, GLN, GLU and χ2.
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Predicted
not flexible flexible

not flexible 74.1% (20) 25.9% (7)

Tr
ue

flexible 40.3% (25) 59.7% (37)

(k) Classification of χ2 for PHE. A total accuracy of
66.4% is reached.

Predicted
not flexible flexible

not flexible 81.8% (9) 18.2% (2)

Tr
ue

flexible 29.4% (5) 70.6% (12)

(l) Classification of χ2 for TRP. A total accuracy of
75.7% is reached.

Predicted
not flexible flexible

not flexible 59.6% (28) 40.4% (19)

Tr
ue

flexible 37.2% (16) 62.8% (27)

(m) Classification of χ2 for TYR. A total accuracy of
62.1% is reached.

Table B.6: (cont.) Classification results for PHE, TRP and TYR and χ2.

B.5.3 Results for χ3 and χ4

Predicted
not flexible flexible

not flexible 66.7% (42) 33.3% (21)

Tr
ue

flexible 37.8% (34) 62.2% (56)

(a) Classification of χ3 for ARG. A total accuracy of
64.5% is reached.

Predicted
not flexible flexible

not flexible 60.8% (59) 39.2% (38)

Tr
ue

flexible 33.3% (21) 66.7% (42)

(b) Classification of χ3 for GLN. A total accuracy of
65.1% is reached.

Predicted
not flexible flexible

not flexible 65.6% (40) 34.4% (21)

Tr
ue

flexible 37.7% (29) 62.3% (48)

(c) Classification of χ3 for GLU. A total accuracy of
63.1% is reached.

Predicted
not flexible flexible

not flexible 83.3% (50) 16.7% (10)

Tr
ue

flexible 24.7% (19) 75.3% (58)

(d) Classification of χ3 for LYS. A total accuracy of
80.8% is reached.

Predicted
not flexible flexible

not flexible 77.8% (21) 22.2% (6)

Tr
ue

flexible 28.6% (10) 71.4% (25)

(e) Classification of χ3 for MET. A total accuracy of
75.3% is reached.

Table B.7: Classification results for ARG, GLN, GLU, LYS and MET for the χ3 torsion angle.
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Predicted
not flexible flexible

not flexible 70.7% (41) 29.3% (17)

Tr
ue

flexible 38.7% (43) 61.3% (68)

(a) Classification of χ4 for ARG. A total accuracy of
66.6% is reached.

Predicted
not flexible flexible

not flexible 72.0% (54) 28.0% (21)

Tr
ue

flexible 35.3% (41) 64.7% (75)

(b) Classification of χ4 for LYS. A total accuracy of
69.2% is reached.

Table B.8: Classification results for ARG and LYS for χ4.
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B.6 Comparision Plots of Docking Test Cases

In this section, the plots of the detailed analysis for the test cases 1A2W(1BEL/1RAT) and
1TPA(1BJU/1BPI) are given. In both cases, the SVM based flexibility prediction for the first
torsion angle and a scaling factor of 1.0 is used.
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(a) Comparison plot of the docking results. Here,
the flexibility is scaled by ω = 1.0
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(b) Plot of the outer hulls (red: without flexibility,
green: flexibility, ω = 1.0).
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(c) Changes between docking with and with-
out flexibility (green: increase in number of hy-
potheses, red: decrease in number of hypothe-
ses, white: no or equal changes).

Figure B.10: Visualisation of the docking results of 1BEL/1RAT. Here, the same experiment is
visualised like described in figure 7.25 but a scaling factor of ω = 1.0 is used for the flexibility.
On the top left the hypotheses are superimposed whereas on the top right the outer hulls are
shown. Below these figures, the changes within the rectangular area of size 10×1.5 are plotted.
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(a) Comparison plot of the docking results. Here,
the flexibility is scaled by ω = 1.0
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[Å

]

(b) Plot of the outer hulls. Here, the flexibility is
scaled by ω = 1.0
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(c) Changes plot of the docking results. Here, the
flexibility is scaled by ω = 1.0

Figure B.11: Visualisation of the docking results of 1BJU/1BPI. Each point in the plots represents
one docking hypothesis. Here, the estimated costs are plotted against the RMSD. In red the
results without incorporating flexibility are shown. The green coloured points are hypotheses
from docking with flexibility information. In this experiment only the flexibility information of
the first torsion angle χ1 is used. The marked parts of the plot show changes effected by the
flexibility incorporated.
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Appendix C
Amino Acids

In this part the common twenty amino acids are described. For each amino acid the structure
formula and a 3D picture are given. The caption of each figure contains the name, three-
and one letter code as well as the chemical features of the side chain.
The structure formula of the amino acids are drawn using the tool BKChem (Kosata, 2003).
The 3D pictures are created on basis of Pdb files (New York University Scientific Visualization
Center, 2003) and are visualised using VMD (Humphrey et al., 1996).
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Figure C.1: Alanine (ALA, A), apolar.
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Figure C.2: Arginine (ARG, R), charged.
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Figure C.3: Asparagine (ASN, N), uncharged, polar.
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Figure C.4: Aspartic acid (ASP, D), charged.
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Figure C.5: Cystein (CYS, C), uncharged, polar.
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Figure C.6: Glutamine (GLN, Q), uncharged, polar.
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Figure C.7: Glutamic acid (GLU, E), charged.
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Figure C.8: Glycine (GLY, G), apolar.
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Figure C.9: Histidine (HIS, H), charged.
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Figure C.10: Isoleucine (ILE, I), apolar.
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Figure C.11: Leucine (LEU, L), apolar.
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Figure C.12: Lysine (LYS, K), charged.
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Figure C.13: Methionine (MET, M), apolar.
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Figure C.14: Phenylalanine (PHE, F), apolar.
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Figure C.15: Proline (PRO, P), apolar.
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Figure C.16: Serine (SER, S), uncharged, polar.
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Figure C.17: Threonine (THR, T), uncharged, polar.
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Figure C.18: Tyrosine (TYR, Y), uncharged, polar.
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Figure C.19: Tryptophan (TRP, W), apolar.
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Figure C.20: Valin (VAL, V), apolar.



Appendix D
Systems

D.1 Automatic Test Set Generation

In this section the tools and applications used within the automatic processing line for the
protein structures are described (see also Fig. 7.2 and 7.3). First the control structure of the
system is outlined then the different programs are presented briefly.

D.1.1 Control Structures for Automatic Test Set Generation

The whole pipelined system is controlled by the java build-tool ANT (Loughran, 2002). The
ANT tool is similar to the gnu tool “make”. It runs along a so called build file processing
targets defined within the file. Dependencies are defined to set the order of processing the
targets. The build file is an XML file using a set of special tags for describing the targets,
dependencies, etc. As one aim of this processing line is to be able to re-run parts of it to
incrementally update information, the ANT build file is compiled from an instruction file
using an XSLT style sheet (see Fig. D.2). Figure D.3 shows part of the style sheet used for
setting up the build-file. Figure D.1 shows an example instruction file whereas in figure D.4
the resulting build-file is presented.

The transformations is performed as follows: The XSLT processor (here saxon (Kay, 2001)
is used) is given the style sheet and the XML instruction file as input. The transformation

<?xml version="1.0"?>
<dataset>

<overview>
<entry>initial</entry>

</overview>
</dataset>

Figure D.1: XML instruction file used for generating an ANT build file.
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XSLT Processor

XSL Stylesheet

XML Document

Output document

Figure D.2: Scheme of XSLT transformation: The source XML document is transformed by an
XSLT processor using the given style sheet. The processor outputs a new document usually
containing a rearranged selection of the source document. The output must not be necessarily
an XML document.

processor then selects and rearranges the input according to the style sheet. The rearranged
and selected data is then printed to the output document, here the ANT build file. For a
detailed description about XSLT transformations see Kay (Kay, 2001).

The ANT build file (see Fig. D.4) contains a base set of tags. Every ANT build file is a
“project” and therefore the root node of the build file is the tag <project>. Within the
<target> ... </target> element a build instruction can be described. In the opening tag
additional attributes can be defined. The most important ones are “name”, “depends” and
“unless”. Whereas the “name” attribute enables to name the target the other two attributes
are used to control the processing order of the targets. The “depends”–attribute holds de-
pendencies within the target, e.g. the target test cases depends on pdb2mysql. The “unless”
attribute controls the execution of a target. The target “pdb2mysql” will be executed unless
a parameter called pdb2mysql is set.

The body of the target holds certain instruction what should happen if the target is executed.
Here, the instruction <exec> is used to call the different modules of the pipeline system.
The attribute “failonerror” handles possible errors. If it is set true, the build process will stop
immediately if an error occurs. Arguments can be passed to a script called within the “exec”
element by using the <arg value=” “> construct.

D.1.2 Module descriptions

In this section the different programs used within the modules are described. Within the
system a large number of tools and programs are used implemented in different program-
ming and script languages like C++ (Stroustrup, 1998), perl (Wall et al., 2002) or bash shell
scripts. The programs or tools are grouped into modules. Every module is wrapped by a
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<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="dataset">
<xsl:variable name="id">

<xsl:value-of select="//overview/entry"/>
</xsl:variable>
<project name="{$id}" default="init">
<description>

processing <xsl:value-of select="//overview/entry"/>
</description>

<target name="pdb2mysql"
unless="pdb2mysql" description="run pdb2mysql">

<exec executable="/vol/elmar/src/pspl/pspl/run_pdb2mysql.pl"
failonerror="true">

<arg value="{$id}"/>
</exec>

</target>

<target name="testcase"
depends="pdb2mysql"
description="testcases are build every time new">

<exec executable="/vol/elmar/src/pspl/pspl/run_insert_twochain_testcases.pl"
failonerror="true">

<arg value="{$id}"/>
</exec>
<exec executable="/vol/elmar/src/pspl/pspl/run_pdbataglance.sh"

failonerror="true" >
<arg value="{$id}"/>

</exec>
</target>

Figure D.3: Part of the XSLT style sheet used to compile a build file for ANT. Here, the style
sheet for the test set generation is shown.
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<target name="jointc" depends="testcase">
<exec executable="/vol/elmar/src/pspl/pspl/run_pubtc.sh"

failonerror="true"/>
<exec executable="/vol/elmar/src/pspl/pspl/run_intersecttestcase.pl"

failonerror="true"/>
</target>

<target name="init" depends="jointc"/>

<target name="init_first">
<exec executable="/vol/elmar/src/pspl/pspl/run_mirror.sh"

failonerror="true"/>
<exec executable="/vol/elmar/src/pspl/pspl/run_pdb2mysqlfirst.pl"

failonerror="true"/>
<exec executable="/vol/elmar/src/pspl/pspl/run_pdbataglance.sh"

failonerror="true"/>
<exec executable="/vol/elmar/src/pspl/pspl/run_insert_twochain_testcases.pl"

failonerror="true"/>
<exec executable="/vol/elmar/src/pspl/pspl/run_intersecttestcase.pl"

failonerror="true"/>
<exec executable="/vol/elmar/src/pspl/pspl/run_pubtc.sh"

failonerror="true"/>
</target>

</project>
</xsl:template>
</xsl:stylesheet>

Figure D.3: (cont.) Part of the XSLT style sheet used to compile a build file for ANT. Here, the
style sheet for the test set generation is shown.
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<?xml version="1.0" encoding="utf-8"?>
<project name="initial" default="init">

<description>
processing initial

</description>
<target name="pdb2mysql"

unless="pdb2mysql"
description="run pdb2mysql">

<exec executable="/vol/elmar/src/pspl/pspl/run_pdb2mysql.pl"
failonerror="true">

<arg value="initail"/>
</exec>

</target>
<target name="testcase"

depends="pdb2mysql"
description="testcases are build every time new">

<exec executable=
"/vol/elmar/src/pspl/pspl/run_insert_twochain_testcases.pl"
failonerror="true">

<arg value="initail"/>
</exec>
<exec executable="/vol/elmar/src/pspl/pspl/run_pdbataglance.sh"

failonerror="true">
<arg value="initail"/>

</exec>
</target>
<target name="jointc"

depends="testcase">
<exec executable="/vol/elmar/src/pspl/pspl/run_pubtc.sh"

failonerror="true"/>
<exec executable="/vol/elmar/src/pspl/pspl/run_intersecttestcase.pl"

failonerror="true"/>
</target>
<target name="init"

depends="jointc"/>
<target name="init_first">
<exec executable="/vol/elmar/src/pspl/pspl/run_mirror.sh"

failonerror="true"/>
<exec executable="/vol/elmar/src/pspl/pspl/run_pdb2mysqlfirst.pl"

failonerror="true"/>
<exec executable="/vol/elmar/src/pspl/pspl/run_pdbataglance.sh"

failonerror="true"/>
<exec executable=

"/vol/elmar/src/pspl/pspl/run_insert_twochain_testcases.pl"
failonerror="true"/>

<exec executable="/vol/elmar/src/pspl/pspl/run_intersecttestcase.pl"
failonerror="true"/>

<exec executable="/vol/elmar/src/pspl/pspl/run_pubtc.sh"
failonerror="true"/>

</target>
</project>

Figure D.4: ANT build file automatic test set generation. It can be run as a batch job or
incrementally to update only new Pdb structures.
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perl script to control the execution and to fetch additional information and data from the
database. Another benefit of wrapping the modules is that they can be tested easily. These
scripts are named by the prefix “run ” (see Fig. D.4) and is given usually the 4 letter identifier
(Pdb Id) as argument. The first part of the automated pipeline system has been described in
section 7.1.1. It contains the following scripts for processing the Pdb and compiling the test
cases:

mirror Perl tool mirror (McLoughlin, 2003) is used to update the local Pdb repository
against the master database (Pdb).

pdb2mysql Extracts meta information from the Pdb file and stores it in the database (e.g.
number of chains, resolution, residue identifiers, etc.).

The second part of the pipeline contains seven modules, the “Pdb Structure Check”, the
“Additional Metainformation”, two modules for calculating the flexibility: the rotamer li-
brary, the docking system and the evaluation module “IPHEx”. The “Pdb Structure Check”
module is used to validate the Pdb structures and to add hydrogen atoms to the protein
models. It contains therefore the following tools:

pdbchecker The pdbchecker tests the integrity of the given protein structure. This tool is
implemented using the C++ library BALL (Kohlbacher, 2000).

addHydrogens Part of the “structure check” module. It is used to add hydrogens to the pro-
tein structure. In a first step hydrogen atoms are placed roughly using the add hydrogens
method from the BALL library. In a second step the model is optimised by geometric
minimisation using the Amber force field and a steepest gradient minimiser.

dssp The dssp (Kabsch & Sander, 1983) program is used to calculate secondary structure
elements of a given protein structure.

The second element in the pipeline is the “Additional Metainformation” module. It con-
tains different applications to calculate information needed within the other modules like
secondary structure or SAS:

sequence alignment This tool is used to calculate an alignment between the residue num-
bers given in the sequence section of the Pdb file and the atoms section. In some cases
these entries are not synchronised and therefore structure comparisons (e.g. needed
for the statistical analysis) on residue level are difficult.

SAS Here, the solvent accessible surface area is calculated. It is used to discriminate be-
tween residue on the surface and in the core of the protein.

Contact site In this tool three different methods are used to identify the contact site of a
protein complex. The first method uses distance calculations between the chains of a
protein complex. The second method bases on overlapping voxels as calculated within
the docking algorithm ElMaR. The third method refines the results of the first method
and analyses atom–atom contacts.



D.2 Implementation of the Incorporation of Flexibility Information into ElMaR 187

In order to calculate flexibility information two separate modules are set up. The first module
calculates flexibility information on basis of statistical analysis of protein structures. The
algorithm used here is described in the thesis of Koch (Koch, 2003). The second module
uses a classification approach to receive flexibility information of the residues. The methods
applied here are described in chapter 5.

Adjacent to the flexibility calculations the docking system ElMaR can be utilised. It is
outlined briefly in chapter 4. The system has been developed by S.Neumann. A more
detailed description of the docking algorithm and the different parts of the system are given
in his thesis (Neumann, 2003).

The last module of the pipeline is the IPHEx system. IPHEx is used to enhance the scor-
ing of the ElMaR system. In chapter 6 an approach to search for improved weights used
within the ElMaR scoring function is described. Furthermore, in the section D.3 additional
informations about IPHEx are given.

D.2 Implementation of the Incorporation of Flexibility
Information into ElMaR

In this section, the technical realisation of the incorporation of the flexibility information
into ElMaR is outlined. As mentioned in section 7.1.1, the whole pipeline for processing
the proteins to derive flexibility information is back ended by a database. All flexibility
predictions are stored there, too. Thus, the flexibility information can be queried easily from
the database. In ElMaR within the “Final Docking”module, two queries are run to fetch the
required information. The queries are given in figure D.5.

select IFNULL(chi1, 0) from flexibility
where Res_Id = %3q:Res_Id
AND Entry = %1q:Entry
AND Chain_Id = %2q:Chain_Id

select IFNULL(%0:func(IFNULL(chi1, 0)),%1:defaultvalue) from flexibility
where Entry = %2q:Entry

Figure D.5: SQL queries used for incorporating the flexibility predictions into ElMaR.

The first query fetches the flexibility information. If no information is present (represented by
the NULL value in the corresponding field) for a specific residue, the assumption is made that
it is not flexible. In this case ElMaR treads the residue like a rigid body docking algorithm as
fall-back. The second query is used for the normalisation and scaling of the flexibility values.
Both queries are placed within a configuration file, so that a change of the flexibility source
can be adapted without recompiling the ElMaR system.
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D.3 IPHEx

In this section the usage of the IPHEx system and the technical details will be outlined. As
already mentioned in section 6.2, the IPHEx system consists of two parts: the visualisation of
the protein structures using the ViWish (Klein et al., 1996) and a navigation panel including
the adaptation of the weights. As a back end IPHEx uses a database to receive hypotheses
and to store adapted weights. The database is also used for mapping weights onto protein
classes (e.g. grouped by enzyme numbers) as the protein class information is also stored
there.

In principle the two parts of IPHEx must not run on the same computer but the user inter-
faces should be run on the same display. This is because IPHEx uses TCL/Tk commands for
communication between the two modules. Controlling the visualisation is therefore quite
easy. For instance, translation or rotating a hypothesis can be done simply by passing the
translation or rotation vector via the TCL interpreter (see Fig. D.6). The navigation module

Tcl_VarEval(interp, "send viwish ","pdb",
protein id," 2", " translate ", transvec, NULL)

Figure D.6: Communication between the IPHEx modules via TCL script. Here, the translation
vector transvec is send to the protein named “protein id”. The string translate is a build in
command of ViWish.

contains on the one hand an interface for navigating through the set of hypotheses and
to give feedback. Here, also the adapted weights are plotted for each feedback iteration.
In case of navigating backwards, the already given feedback is highlighted by changing the
colour of the corresponding button. This enables the user to remember scores and possibly
re-score the actual hypothesis1.

On the other hand the adaption of weights is placed within this module. The adaption is
performed as already described in section 6.2. A set of parameters control the adaptation
of the weights. By default these are set as given in table D.1. Three other parameters

Parameter default value command line option
learning rate 0.01 -l < value>

gradient of F function 0.25 -g < value>

number of hypotheses to be scored 20 -h < value>

Table D.1: Parameters and default values of IPHEx

control the behaviour of IPHEx. For testing one can choose that at the end of session,

1Please note that this is only possible within a feedback iteration. After having adapted the weights, the
internal feedback list is reseted.
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iphexgui <PDB Id of Protein 1> <Chain Id of Protein 1> <PDB Id of Protein 2>
<Chain Id of Protein 2> <commandline>
-l <learning rate>
-g <Gradient>
-h <number of hypotheses>
-? help
-s single session mode, do not write weights to database
-e do evaluation
-u <user>

Figure D.7: Command line options for IPHEx.

the modified weights should not be stored within the database (-s). Also an evaluation
of changes between the original set of hypotheses and the re-ranked after the feedback
session can be turned on and off (-e). This parameter also controls the mapping of the
actually changed weights onto the whole set of hypotheses belonging to the same enzyme
family as the test set currently under investigation. The whole command line is given in
figure D.7. At the moment IPHEx does not support feedback from different users at the
same time. The -u switch creates within the output directory a new subdirectory where
the results of the actual session can be saved. So several user can score the same set of
hypotheses simultaneously within interfering each other.

Besides the command line options, the IPHEx system is additionally set up by a configuration
file. Here, global settings like the database host to choose or a save path for the results can
be defined. Also, all queries used for interacting with the data base backend are listed here,
enabling quick changes without re–compiling the sources (e.g. in case database tables are
renamed or moved).
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höhe”, Bielefeld, Germany

03/1997–06/1998 part time job as medical orderly at Ev. Altenpfleegzentrum
Ernst–Barlach–Haus, Bielefeld

02/1998–12/2000 Student helper, conceptual design & organisation of lecture
“Orientierungsschwerpunkte Informatik”

07/1998–12/2000 Student helper within Research Focus 360, project A1

since 07/2001 Research Assitant at Bielefeld University, Germany

Teaching Experience

2002 Seminar “Structure and dynamic of proteins”

2002 Lab Course “Applied computer science and proteins”

2003 accompanying Tutorial of lecture “Pattern Analysis”

Language Knowledge

German native
French fair
English fluently

Journal Publications
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[2] Frank Zöllner, Steffen Neumann, Franz Kummert, and Gerhard Sagerer.
Database driven test case generation for protein-protein docking. Bioinfor-
matics, 2004. to appear.

Conference Contributions
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[1] F. Zöllner. Bewertung der Flexibilität von Aminosäureseitenketten in Pro-
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Bränden, C. & Tapia, O. (1986) Interdomain motion in liver alcohol dehydrogenase. struc-
tural and energetic analysis of the hinge bending mode. J. Biol. Chem, 261, 15273–
15280.

[Comeau et al., 2004] Comeau, S. R., Gatchell, D. W., Vajda, S. & Camacho, C. J. (2004)
ClusPro: an automated docking and discrimination method for prediction of protein com-
plexes. Bioinformatics, 20 (1), 45–50.



Bibliography 201

[Connolly, 1983a] Connolly, M. L. (1983a) Solvent–accessible surfaces of proteins and nu-
cleic acids. Science, 221, 709.

[Connolly, 1983b] Connolly, M. L. (1983b) Analytical molecular surface calculation. Journal
of Applied Chrystallography, 16, 548–558.

[Cornell et al., 1995] Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M. J.,
Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. & Kollman, P. A. (1995) A
second generation force field for the simulation of proteins, nucleic acids, and organic
molecules. Journal of the American Chemical Society, 117 (19), 5179–5197.

[Cyrus, 1976] Cyrus, C. (1976) The nature of the accessible and buried surfaces in proteins.
Journal of Molecular Biology, 105, 1–14.

[Dimitriadou et al., 2004] Dimitriadou, E., Hornik, K., Leisch, Friedrichand Meyer, D. &
Weingessel, A. (2004) e1071: Misc Functions of the Department of Statistics (e1071).
TU Wien. http://cran.at.r-project.org/src/contrib/Descriptions/e1071.html.

[Donoho, 1995] Donoho, D. L. (1995) De–noising via soft thresholding. IEEE Transaction
on Information Theory, 41 (3), 613–627.

[Dosztanyi & Torda, 2001] Dosztanyi, Z. & Torda, A. E. (2001) Amino acid similarity matri-
ces based on force fields. Bioinformatics, 17 (8), 686–699.

[Drummond & Holte, 2000] Drummond, C. & Holte, R. C. (2000) Explicitly representing
excepted cost: an alternative to roc representation. In International Conference on Knowl-
edge Discovery and Data Mining. Paper No. 331.

[Dunbrack & Karplus, 1993] Dunbrack, R. L. & Karplus, M. J. (1993) Backbone-dependent
rotamer library for proteins. application to side-chain prediction. Journal of Molecular
Biology, 230, 543–574.

[Echols et al., 2003] Echols, N., Milburn, D. & Gerstein, M. (2003) MolMolvDB: analysis
and visualisation of conformational change and structural flexibility. Nucleic Acids Re-
search, 31 (1), 478–482.

[Egan, 1975] Egan, J. P. (1975) Signal detection theory and ROC analysis. Academic Pr., New
York.

[Ewing et al., 2001] Ewing, T. J. A., Makino, S., Skillman, A. G. & Kuntz, I. D. (2001) Dock
4.0: search strategies for automated molecular docking of flexible molecular databases.
Journal of Computer Aided Molecular Design, 15, 411–428.

[Faber & Matthews, 1990] Faber, H. & Matthews, B. (1990) A mutant t4 lysozyme displays
five different crystal conformations. Nature, 348, 263–266.

[Fernández-Recio et al., 2002] Fernández-Recio, J., Totrov, M. & Abagyan, R. (2002) Soft
protein-protein docking in internal coordinates. Protein Science, 11 (2), 280–291.



202 Bibliography

[Fischer, 1894] Fischer, E. (1894) Einfluss der Konfiguration auf die Wirkung der Enzyme. In
Berichte der deutschen chemischen Gesellschaft vol. 27,. pp. 2985–2993.

[Foster & Fawcett, 1997] Foster, P. & Fawcett, T. (1997) Analysis and visualization of classi-
fier performance: comparison under imprecise class and cost distributions. In Proceedings
of the Third International Conference on Knowledge Discovery and Data Mining pp. 43–48
AAAI Press, Menlo Park,CA.

[Gerstein et al., 1994] Gerstein, M., Lesk, A. & Chothia, C. (1994) Structural mechanisms
for domain movements in proteins. Biochemistry, 33, 6739–7649.

[Goodman, 1998] Goodman, J. M. (1998) Chemical Applications of Molecular Modelling.
The Royal Society of Chemistry. Chapter 2, Introduction to Force Fields.

[Greenbaum et al., 2003] Greenbaum, D., Jansen, R. & Gerstein, M. (2003) Analysis of
mRNA expression and protein abundance data: an approach for the comparison of the
enrichment of features in the cellular population of proteins and transcripts. Bioinformat-
ics, 18 (4), 585–596.

[Halperin et al., 2002] Halperin, I., Ma, B., Wolfson, H. & Nussinov, R. (2002) Principles of
docking: an overview of search algorithms and a guide to scoring functions. Proteins:
Structure, Function, and Genetics, 47 (4), 409–443.

[Hubbard et al., 1991] Hubbard, S. J., Campell, S. & Thornton, J. M. (1991) Molecular
recognition conformational analysis of limited proteolytic sites and serine proteinase pro-
tein inhibitors. Journal of Molecular Biology, 220, 507–530.

[Humphrey et al., 1996] Humphrey, W., Dalke, A. & Schulten, K. (1996) Vmd - visual
molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

[Ihaka & Gentleman, 1996] Ihaka, R. & Gentleman, R. (1996) R: a language for data analysis
and graphics. Journal of Computational and Graphical Statistics, 5 (3), 299–314.

[IUPAC-IUB Commission on Biochemical Nomenclature (CBN), 1967] IUPAC-IUB Commis-
sion on Biochemical Nomenclature (CBN) (1967). Abbreviations and symbols for the
description of the conformation of polypeptide chains. http://www.chem.qmw.ac.uk/
iupac/misc/noGreek/ppep1.html. Link 11.12.2001.

[Janin & Wodak, 1978] Janin, J. & Wodak, S. (1978) Conformation of amino acid side-chains
in proteins. Journal of Molecular Biology, 125, 357–386.

[Jiang et al., 2002] Jiang, F., Lin, W. & Rao, Z. (2002) Softdock: understanding of molecular
recognition through a systematic docking study. PROTEIN ENGINEERING -OXFORD-, 15
(4), 257–264.

[Jones et al., 1997] Jones, G., Willet, P., Glen, R. C., Leach, A. R. & Taylor, R. (1997) Devel-
opment and validation of a genetic algorithm for flexible docking. Journal of Molecular
Biology, 267 (3), 727–748.



Bibliography 203

[Kabsch & Sander, 1983] Kabsch, W. & Sander, C. (1983) Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geometrical features. Biopoly-
mers, 22, 2577–2637.
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[Zöllner, 2001] Zöllner, F. (2001). Bewertung der Flexibilität von Aminosäureseitenketten
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