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1. Introduction

Building Distributed Virtual Environment (DVE) applications is a com-
plex task. Many different technologies and algorithms from various areas of
computer science need to be combined to build an application. Real-time
3D graphics, data acquisition and network communication are all active re-
search areas that contribute basic technology to the development of DVE
applications.

Developers and researchers typically spend a lot of time and effort to
implement well known concepts from these areas. Specialized frameworks
help application developers and researchers to focus on the development
and implementation of application specific functionality by factoring aspects
common to all DVE applications into a consistent and reusable foundation
of concepts, APIs and services.

This thesis documents research performed during the development of
the Avocado framework for distributed virtual environment applications
at IMK VE1, where it serves as the central platform for all DVE related
research projects. In this context, possible approaches to the design of a
general DVE framework have been investigated and the resulting reference
implementation is presented. Special attention is given to the seamless inte-
gration of distributed application semantics into the standard, stand-alone
VE object and event model. Further, the limiting constraints of large-scale
DVE applications are discussed and a multi-resolution approach to scalabil-
ity is presented.

Some of the concepts and results presented in this work have previously
been published elsewhere (see [20, 71, 43, 29, 44, 72, 47, 74, 31, 66, 28, 73]
in the bibliography).

1.1 Motivation

To motivate the development of a new DVE framework a general overview
of the area of VE systems is given. To understand the complexity that is
introduced into a VE system by adding distribution support, it is necessary
to introduce all relevant approaches that have been taken in the past and

1 Virtual Environments group of the Institute for Media Communication at the late
GMD (German National Research Center for Information Technology). IMK VE is now
part of the Fraunhofer-Gesellschaft.
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to discuss their shortcomings. Finally, the importance of scalability in DVE
applications is underlined.

1.1.1 Virtual environments

The terms Virtual Environment and Virtual Reality are often used synony-
mously to describe a computer-generated, artificial ’environment’ or ’reality’
that is presented to a user. A virtual environment tries to evoke a strong
sense of reality in the user. This is achieved by the generation of artificial
input to the users visual, acoustic and haptic senses.

By interfacing some of the users articulations in the real world back
into the virtual environment, the user can consciously interact with the
environment. Typically, interfaces to direct-manipulation devices are used,
but nowadays more advanced interaction techniques like speech and gesture
recognition have become a major research interest.

The generation of high-quality visual feedback from the virtual environ-
ment is often considered the most important aspect in generating a high
degree of immersion. The desire to increase the degree of immersion led
to the development of sophisticated image generators and display devices.
Beginning with low-resolution monoscopic CRT displays used in early flight
simulators and image generators that where capable of rendering only a few
hundred polygons per second, the development progressed toward todays
high-resolution stereoscopic display systems like the CAVE[16] and readily
available graphic cards that render a hundred million polygons per second.

Depending on the kind of application, a virtual environment software
needs to drive such diverse display devices as head-mounted displays (HMD),
see-through HMDs for augmented reality, active stereo projection systems
with LCD shutter glasses, passive stereo projection systems using polariza-
tion for image separation or various multi-screen projection systems. The
picture in figure 1.1 shows the construction principle of a CAVE2 multi-
screen display.

Parallel to the development of new display devices, image generators
and input devices, various toolkits and application frameworks are devel-
oped. They provide a basic software infrastructure for the development of
VE applications. The main goal of these efforts is the maximization of soft-
ware reuse in order to minimize the necessary development resources for
application development. Designed for different application domains, the
only common nominator of most toolkits and frameworks is a scene-graph
based object model. The provided API, the supported hardware and op-
erating systems and the set of supported display and input devices vary
greatly.

2 The CAVE is both a recursive acronym (Cave Automatic Virtual Environment) and a
reference to ”The Simile of the Cave” found in Plato’s Republic, in which the philosopher
explores the ideas of perception, reality, and illusion.
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Fig. 1.1: A typical four-sided CAVE setup. The wall images are back-
projected onto translucent screens, while the floor image is pro-
jected from above (picture courtesy of RMH[62]).

A closer evaluation of representative toolkits and frameworks (see sec-
tion 2.1) reveals that, while each system has - depending on the application
domain - promising and sometimes widely adopted solutions to specific sets
of problems, none has all the necessary properties to serve as a basis for a
general purpose DVE framework. A common trade-off is that between an
elaborate object and event model and API and, on the other hand, render-
ing performance. Systems that emphasize developer friendly APIs tend to
neglect support for performance optimizations, while systems optimized for
performance often provide underdeveloped APIs and object models.

This thesis argues that the design of a framework for DVE application
development must be based on well known and well understood design con-
cepts from stand-alone VE toolkits and frameworks in order to be accepted
by developers and to increase productivity. At the same time, maximum
performance is a major requirement for the generation of interactive appli-
cations, and must not compromised by the design of the framework APIs.

Therefore, the most successful design concepts are culled from existing
stand-alone VE frameworks, and are combined into the basic system design
for the Avocado framework.
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1.1.2 Distributed virtual environments

The possibility to immerse a single user into a virtual environment, creates
the desire to simultaneously share the environment with multiple users, and
allow them to not only interact with the environment but also with each
other.

First attempts to provide such an environment where made by attaching
two sets of displays and input devices to one stand-alone VE system. This
effectively allows to generate two independent views into one environment.
The drawback of this approach is twofold. The two persons using the system
are forced to be located in close spacial proximity since the connections
between a machine and the display and input devices are subject to limiting
length restrictions. Therefore, the two people sharing a VE on such a system
needed to be at least in the same building, if not in the same room.

The obvious solution to overcome this drawback is the use of two or
more stand-alone systems that can communicate over a standard network
connection in such a way that all connected systems have access to the data
necessary to generate the distributed but consistent impression of one virtual
environment that is shared between multiple users. The use of a standard
network connection removes most restrictions on the relative spatial location
of the users, while the use of one dedicated system per view eliminates the
need to divide computing resources between views.

The generation of two views into an environment on one system is
straight forward because there is one database that describes the environ-
ment according to a stand-alone object model, and it is the same for both
views. Changes made to the database by either user are immediately visible
to the other user because both view are generated from the same database.
A centralized database is possible because the database access bandwidth
available for the processes to render the views is only limited by the mem-
ory access bandwidth of the underlying hardware. In a networked setup the
initial state of the environment as well as all subsequent changes to the envi-
ronment need to be communicated to all connected systems to enable them
to generate a consistent view of the environment for each participating user.
A centralized approach is no longer possible, because network bandwidth is
typically smaller than memory bandwidth by several orders of magnitude.
A distributed object and event model is needed to describe the state of the
networked distributed environment.

The first distributed object models in the context of DVE are extremely
simple and cumbersome to work with because they place severe constraints
on system configuration and setup possibilities and on the set of possible
database operations in order to minimize the complexity of the networking
code and to achieve a minimal level of consistency. The basic constraint
is that no objects can be added to or removed from the environment and
only specific object attributes can be changed at runtime. All processes
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are required to load a copy of the environment database at startup and are
only allowed to change specifically marked object attributes. These changes
get communicated to the other processes where they are applied to the
local copy of the database. Assuming that communication only starts after
all processes have initially loaded the database, and the set of processes
is static, there is a good chance that a consistent state can be maintained
on the distributed database copies. The resulting system is static and the
operations available to the application developer are very limited. On the
other hand, this allows the extension of stand-alone VE systems to working
distributed VE systems.

In contrast, dynamic systems should not impose any constraints on the
set of operations possible on objects in a distributed environment compared
to a stand-alone environment. Further, well defined consistency assertions
must be given even in the presence of dynamically joining and leaving pro-
cesses. Processes should not be required to bring their own copy of the
environment database, but should be updated to the current state after
joining the environment (A glossary of the DVE terminology used in this
thesis is offered in table 1.1).

Network topology is another important area in DVE design. Basically
two different approaches exist, centralized and distributed.

Centralized: A central server process maintains the environment database,
while client processes connect to the server to obtain the information
about the environment. Client processes do not directly communicate
with each other.

Distributed: A distributed system does not rely on a central server, but con-
sists of a set of identical peer processes that communicate with each
other to exchange the necessary information about the environment.
No central server is needed.

While a centralized system can more easily guarantee the provision of
consistent environment views to the users, a distributed system is more
reliable because there is no single point of failure. Many systems follow the
centralized approach because it is less complex and is easier to implement.
However, recent developments in the area of group communication provide
foundations to build server-less distributed systems that are consistent and
reliable.

These problem descriptions illustrate that in order to build a frame-
work that unobtrusively and transparently supports the development of dis-
tributed VE applications, a number of issues need careful consideration:

• Design of a distributed object and event model (DOM)

• Developer APIs
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Term Meaning
User A not necessarily human user whom a view of the

environment is presented to. For example, autonomous
agents that populate an environment also qualify as
’users’.

View A view of the environment is generated under the
control of one process on one machine.

Process A process runs on one machine and handles the
computational resources used to generate a view for
one user. A process can be either client, server or peer.

Client A client process can not live without a server. It
communicates only with server processes.

Server A server process feeds one or more. Sometimes, server
processes communicate with each other.

Peer A peer process does not need a server. All peers are
created equal and communicate directly with other
peer processes.

System System, as in VE or DVE system, means the whole
software setup, (like operating system). Can be meant
to include the hardware as well.

Object Objects populate the environment. The state of an
object is completely described by its attributes.

Environment The environment is entirely build from objects. A view
of the environment is presented to the user.

Tab. 1.1: Each of these terms is used with any number of different meanings
throughout all of computer science. However, in the context of this
work they convey the stated meaning.

• Network topology

• Network transport

• DOM implementation

This thesis documents the development of a general design for a dynamic
DVE framework that extends well known and established object models and
APIs into the domain of distributed applications.

1.1.3 Large-scale distributed virtual environments

Scaling properties of DVE systems are best described along two dimensions:
The number of users that participate in a DVE, and the size of the envi-
ronment. The size of an environment can be measured in terms of extend,
total number of geometric primitives or primitive density.

Increasing the number of users or processes in a DVE can lead to ex-
haustion of available network bandwidth due to the quadratic increase in
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network traffic. In a DVE that uses one-to-one network connections, when-
ever an object is changed by one of N processes, update messages are sent
to the other N − 1 processes. Assuming that all processes change objects at
the same rate this generates O(N2) update messages per simulation step.
In a setup running at a simulation frequency of 30 Hz with an average of
only 5 object changes per process and simulation step with an assumed 128
bytes per update message, a maximum of only 7-8 users can be supported
by a 10 Mbit Ethernet in theory. In practice this number is reduced by half
due to network protocol overhead. This simple approach does not scale well
with an increasing number of users in the system. Many DVE applications
exist that require far more than 7-8 user to interact at interactive rates in a
distributed environment.

Increasing the size of the environment by adding complex objects even-
tually overloads the image generators, which have an upper limit on the
number of polygons they are able to render. Increasing the number of poly-
gons that have to be rendered for each frame at the same time reduces the
number of frames rendered per second. Frame rates below 30 frames per
second are generally not acceptable for an interactive VE application. Also,
environment size can lead to memory problems if a client has to maintain a
complete copy of the entire environment database.

Examples for DVE applications that require large environment databases
include, for example, whole earth visualization projects, where a virtual
globe with arbitrary zooming capabilities is presented to the user and
database sizes easily exceed several gigabytes.

This thesis argues that scalability with respect to number of users and
environment size is a key issue that needs to be addressed by a general pur-
pose DVE framework. The design of a novel scalability solution is developed
and discussed.

1.2 Overview of this work

The main part of this thesis is structured in 6 chapters.
Chapter 2 gives an overview of related work in the field and introduces

relevant technologies. Section 2.1 describes relevant stand-alone VE frame-
works and toolkits in greater detail. Section 2.2 discusses general distributed
virtual environment systems, while section 2.3 describes large-scale DVE
systems and the different approaches to scalability they propose. Finally,
section 2.5 presents a comparative feature analysis of the discussed systems
and prepares the ground for chapter 3.

Chapter 3 is the first of the four central chapters of this work. Based
on the results from the previous chapter, 3.1 defines a set of requirements
for the design of a general DVE framework. These requirements guide the
development of the general architecture in section 3.2. Finally, section 3.3
provides a comprehensive summary of the proposed design.
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Chapter 4 describes the non-distributed aspects of the Avocado frame-
work. Based on the general design formulated in the proceeding chapter,
section 4.1 defines the details of the object and event model for Avocado
and describes the basic implementation strategies. Section 4.2 develops
the display device abstraction that is subsequently used to model all dis-
play devices relevant to DVE applications. Along the same lines, section
4.3 presents an abstraction for tool-based direct-manipulation interaction in
DVE applications.

Chapter 5 describes the distribution mechanisms used in Avocado. Sec-
tion 5.1 takes the stand-alone object model from chapter 4 and extends it
into a dynamic, distributed object model that forms the basis for distri-
bution support. The implementation details in section 5.1 show how the
distribution mechanism are integrated into the stand-alone infrastructure.
To illustrate the validity of the approach to provide familiar APIs to appli-
cation programmers, sections 5.4 and 5.5 provide an introduction into DVE
development with Avocado.

Scalability in large-scale DVE applications is the third focal point of
this thesis and the main theme of chapter 6. In section 6.2 the scalability
properties of traditional approaches are analyzed and discussed. Section 6.3
describes how visibility based optimization techniques are traditionally used
to accelerate rendering engines in computer graphics, and is followed by
section 6.4 where similar techniques are proposed to improve scalability in
large-scale DVE applications. Section 6.5 covers the implementation of this
approach in terms of the distributed object model presented in chapter 5.
Section 6.6 finally discusses the scalability properties of this new approach.

Chapter 7 concludes this thesis. Section 7.1 summarizes the results. In
order to demonstrate the validity of the concepts presented in this work,
section 7.2 documents a number of applications and research projects that
where successfully built on top of Avocado. Finally section 7.3 proposes
some directions for further research in the area of DVE frameworks.



2. Related work

The technological field covered by DVE systems is broad. To establish the
proper context for this work, several technologies and research systems must
be introduced. Their presentation is structured in four categories:

VE systems: Non-distributed VE systems and standards have been in devel-
opment for many years now. They have been widely adopted through-
out research and industry and represent the technological foundation
for all VE related research.

Distributed VE systems: Existing DVE research systems implement many
different approaches to distributed application development. Their
strengths and weaknesses provide valuable input for the design of a new
framework. At the same time, they provide the background against
which new systems must be evaluated.

Large-scale distributed VE systems: Several research prototypes attack the
problem of scalability from different angles. Their relevant charac-
teristics are outlined to subsequently allow a comparative evaluation
of the new approach to scalability presented in this thesis.

Clustered rendering systems: Distributed render clusters can be considered as
”close cousins” to general DVE systems. Although they serve a differ-
ent purpose, their technological background is similar. This close con-
nection is underlined by the fact that the DVE framework presented
in this work is also actively being used as the basis for a distributed
render cluster implementation.

This chapter describes and analyzes relevant related work from the four
areas. A general strategy of this work is to extract successful concepts from
existing systems and at the same time avoid their mistakes. In the context
of this strategy, this chapter provides important input for the formulation
of the architectural design concepts in chapter 3.

2.1 Non-distributed VE systems and standards

Many toolkits for the development of stand-alone VE applications exist to-
day. They provide the programmer with a high-level interface to represent
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complex geometry in a scene graph and to render that scene graph. The
programmer is shielded from the details of dealing with low-level graphics
and system APIs, and can concentrate on the development of the application
logic.

Two popular and widely used toolkits are OpenGL Performer and Open-
Inventor from Silicon Graphics (SGI). Both are introduced in detail because
of their great influence on the design of Avocado. Performer is a basic
building block of Avocado and is used to manage the scene graph and
perform efficient rendering on high-end, multi-processor hardware. At the
same time, many features originally introduced by OpenInventor have been
adopted in the design of Avocado.

While OpenGL Performer and OpenInventor are proprietary systems,
it has been understood early on that open standards for file formats and
APIs are essential for a broad adoption of VE technologies and applica-
tions in research, development and entertainment. Therefore, two succes-
sive standardization initiatives will be described in some detail. The Web3D
Consortium has coordinated the development of the VRML97 International
Standard and is currently working on the X3D specification. VRML (Vir-
tual Reality Modeling Language) specifies a file format and object model for
the description of virtual environments. X3D adds extensibility via XML
and a standard API to the underlying object model with language bindings
for the Java programing language and the ECMAScript language.

Finally, the VR Juggler system is representative for a slightly different
approach where the application itself is responsible for the representation
and rendering of geometry and application data. The VE system provides
merrily services for VE specific device IO.

2.1.1 OpenGL Performer

OpenGL Performer[64] is a commercial toolkit for visual simulation and 3D
graphics applications that is in widespread use in the real-time simulation
industry.

Existing general purpose rendering libraries like OpenGL[59] or XGL[57]
provide only a very low-level, direct interface to the hard- and software
rendering capabilities of the underlying graphics subsystem. As graphics
workstation push rapidly into areas that have traditionally been the exclu-
sive province of special purpose image generators, it becomes increasingly
difficult and tedious for graphics programmers to squeeze the last bit of
performance out of a particular machine. Performer addresses this problem
by providing a software layer called libpr above the low-level graphics API
OpenGL, that efficiently manages geometry and state information. Per-
formers second approach to boost rendering performance is the utilization
of multiprocessing for pipelined rendering.
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Efficient rendering

The first prerequisite for high performance rendering is the efficient represen-
tation of geometry. Performer provides the pfGeoSet primitive to represent
geometry. pfGeoSets utilize application-supplied arrays for attributes such
as vertex coordinates, colors and texture coordinates.

On high-end graphics machines, care must be taken to ensure that data
transfer between processor and graphics subsystem is efficiently organized,
otherwise the application will starve the graphics hardware, which results
in sub-optimal rendering performance. pfGeoSets provide specialized ren-
dering routines, one for every conceivable combination of attribute arrays,
attribute bindings and primitive types. Each routine is comprised of a spe-
cific, tightly optimized rendering loop for that particular combination. In
this way, Performer can provide optimal rendering performance for a large
variety of geometry representations.

Graphics state commands do not modify the frame buffer, but instead
configure the graphics hardware with a particular mode (e.g. shading model)
or attribute (e.g. texture) that modifies the appearance of rendered geome-
try. Efficient management of graphics state is required for optimal graphics
performance. Performers provides state management that helps the pro-
grammer to avoid redundant mode changes while rendering the geometry.

Performers libpr layer provides specialized graphics primitives and
graphics state management, that allows for efficient utilization of available
graphics hardware without special considerations and in depth knowledge
on the side of the application developer.

Database hierarchy and traversal

Above the libpr layer Performer positions a higher-level library, libpf,
which adds a database hierarchy and automatic multiprocessing capabilities
to libpr.

The Performer scene graph is a directed acyclic graph of nodes. The
geometric information is located in the leaf nodes, while the internal nodes
provide concepts like grouping, transformation, sequencing, level-of-detail
and morphing.

Most database processing is accomplished thorough traversal operations
on the scene graph. Typically, an applications updates the scene graph
and viewing parameters for the next frame and then initiates one or more
traversals to generate the next frames image. The libpf layer features an
object-oriented API and is implemented as a C++ library.

During traversal of the scene graph, transformations contained in pfSCS
and pfDCS nodes are accumulated on a transformation stack and applied
to the geometry before rendering. Thus, following the concept of nested
transformations [12], each subtree defines its own local coordinate system.
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Additionally the scene graph defines a bounding volume hierarchy. Each
node has a bounding sphere that encloses the node as well as any children it
may have. These bounding volumes are automatically recomputed whenever
the extent of the geometry or the scene graph topology is changed. The
bounding volume hierarchy allows the efficient acceleration of intersection
and culling traversals.

After the application has modified the scene graph for the next frame,
three basic types of traversal can be applied:

Intersection Traversal (ISECT): The ISECT traversal processes line-segment
based intersection requests for simple collision-detection and terrain-
following. This traversal makes use of the bounding volume hierarchy
to accelerate hit testing.

Culling Traversal (CULL): The CULL traversal rejects geometry outside the
viewing frustum, computes level-of-detail switches (pfLOD) and sorts
geometry by graphics state.

Drawing Traversal (DRAW): The DRAW traversal sends geometry and
graphics commands via the low-level graphics API (OpenGL) to the
graphics hardware.

The CULL and DRAW traversals are completely automatic. They are
triggered when the application gives the command to render the next frame.
Depending on the position of the view point and the current viewing direc-
tion, view-frustum-culling can reject the majority of the geometry in a scene,
and thus substantially reduce the amount of data send to the graphics sub-
system.

The CULL traversal converts the culled and sorted scene graph in to an
efficient display list which eventually contains the entire frame, and hands it
over to the DRAW traversal. The DRAW traversal traverses the display list
generated by the CULL traversal and does nothing else but issue graphics
command to the rendering hardware. Because of the preprocessing already
performed, this can be done very fast and efficiently.

Multiprocessing

Performer uses a coarse grained, pipelined, multiprocessing scheme which is
targeted at workstations with few processors (tens), as opposed to massively
parallel machines with thousands of processors. The partitioning of work is
based on processing stages. One stage is a discrete section of a processing
pipeline dedicated to do a specific type of work. Performers basic units of
work are the different scene-graph traversals, ISECT, CULL and DRAW.
Consequently, the different multiprocessing stages are build around the dif-
ferent traversal operations. Together with an additional Application Stage



2.1. Non-distributed VE systems and standards 13

(APP) they form two kinds of processing pipeline, the rendering pipeline
and the intersection pipeline.

The rendering pipeline consists of three stages, the APP, CULL and
DRAW stage. The APP stage performs application specific manipulations
of the scene graph and passes the resulting scene graph to the CULL stage.
Here a CULL traversal is performed that generates the culled and sorted
display list which is sent to the DRAW stage. Here a DRAW traversal is
performed that sends the data to the graphics hardware. Performer imple-
ments multiprocessing by assigning each stage to a separate processor for
execution.

Performers pipelined multiprocessing scheme trades throughput versus
latency. A fully multi-processed rendering pipeline imposes an additional
rendering latency of three frames on the application. On the other hand the
throughput is also roughly threefold.

Summary

Performer is a programming toolkit for building high performance, multi-
processed graphics applications. It extracts maximum performance from
multiprocessor graphics workstations by using:

• Geometric data structures optimized for rendering.

• Efficient reduction of graphics mode changes during rendering.

• Pipelined multiprocessing for parallel scene-graph traversals.

• Efficient view frustum culling.

All these specific optimization approaches are well hidden from the applica-
tion programmer. He normally does not need to concern himself with the
details of either of these mechanisms.

2.1.2 OpenInventor

OpenInventor[68, 83, 84] is a 3D graphics toolkit with a strong focus on
interaction support and extensibility. It’s scene graph structure and file
format was chosen as the basis for the VRML1.0[6] standard, the predecessor
of the VRML97 and X3D standards.

OpenInventor is an object-oriented toolkit aimed at developers of in-
teractive 3D graphics applications. OpenInventors main goal is to simplify
the task of writing 3D graphics applications that use direct manipulation
techniques. OpenInventor supports development of interactive 3D graphics
application by providing an extensible set of 3D objects that support direct
manipulations of 3D objects, allowing the user to interact with the objects
in the same window as they are displayed. This approach is common in 2D
applications, but was rarely used in 3D applications before.
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The remainder of this section will briefly introduce the OpenInventor
scene graph, the 3D event model and the concept of manipulators.

Scene graph - nodes and actions

Like Performer, the OpenInventor scene graph is a directed acyclic graph
of nodes. Nodes are containers that store object specific information in
public accessible sub-objects called fields. Each node class defines a number
of fields, each with a specific value type associated with it. Field objects
provide a consistent mechanism for editing, querying, reading and writing
instance data within nodes. The collection of fields completely describes the
objects state.

The scene graph can be traversed by action objects, to perform specific
operations like rendering or bounding box calculation. An application per-
forms an operation on a scene graph by applying the appropriate action to
the root node of the graph.

The exact interaction between a particular action and a particular node
is determined by lookup in a two-dimensional virtual function table. This
double dispatch[32] ensures easy extensibility in both directions. New nodes
can define a new interaction with every existing action they desire to do
so, while new actions can selectively specify new interactions with existing
nodes. The lookup of the appropriate interaction is based on the class type
of the node and the action object involved.

When applying an action to an inner node, the standard behavior is
to visit the children of the group node left to right, and apply the action
successively. This results in a depth first traversal of the sub-tree rooted at
the original node.

3D event model

Inventor uses a simple approach to distribute user events to manipulators
and other smart nodes. Window system specific events are generated in
response to some user action involving the mouse or the keyboard. A special
event handling action is used to distribute the events to the 3D scene. This
action takes the 2D event and performs a normal traversal of the scene
graph. Any node interested in such an event may process the event and
indicate that it has handled it. Each node class can define its own behavior
to the event handling action. The event handling traversal is stopped as
soon as a node is found to handle the event.

Manipulators

The event model described above is used to integrate manipulators and
other interactive nodes into the application. The general concept behind a
manipulator is best described by looking at an example (Figure 2.1).
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Fig. 2.1: Event model example showing a trackball manipulator applied to
a cube shape (Figure from [68]).

The trackball manipulator places an invisible, but still pickable, sphere
around the object it is meant to manipulate. The sphere is used to detect
user interaction requests through the event model described above, and to
translate mouse motion into rotational changes to the object. The trackball
manipulator is implemented as a specialized separator node that registers
an event handling function with the event handling action, and creates a
banded sphere geometry around all of its children. The sphere is used as
the handle for the interaction, while the children comprise the object that
is manipulated by the trackball.

When the trackball node is encountered during a event handling traver-
sal, it first checks whether the event is a left-mouse-down event. In that case
it asks the event handling action for the object directly under the cursor.
If this object is the trackball object, the event handling is grabbed. All
further mouse-movement events will be delivered directly to the trackball
node and there be translated into rotational movements for the manipulated
object. A left-mouse-up event will terminate the event grab, and thus the
manipulation of the object.

The trackball manipulator is a typical example for a simple manipulator,
of which a variety of types are predefined in the toolkit. Inventor also
supports the construction of more complex compound manipulators from
simple ones, that are able to perform more complex interaction tasks.
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Engines and field connections

The Inventor scene-graph represents a fixed, static geometry that changes
only in response to user interactions by way of manipulators. To increase
the expressiveness of the scene-graph Inventor introduces the concept of
engines. Engines allow the application developer to encapsulate geometry
as well as behavior into the scene-graph. Inventor engines are objects similar
to nodes. The entire state of an engine object is expressed in terms of fields.
Engines have an evaluation function that is executed whenever one of the
fields changes. Thus, engines can be given a behavior in response to field
changes. In addition to the standard fields, engines have special output fields
that may be modified from within the evaluation function.

Engines are ‘wired’ into the scene-graph using connections between fields.
These field connections copy the value of their source field to their destina-
tion field whenever the value of the source field is changed. A destination
field can have exactly one source field, but a source field can have any num-
ber of destination fields. This way, engines and nodes can be wired into
data-flow networks that allow the developer to model complex, animated
behavior into the otherwise static scene-graph. They are first class mem-
bers of the Inventor object zoo, and can be written to and read from file
along with the node objects.

Summary

OpenInventor is a programming toolkit that makes it easy for developers
to build rich 3D applications with direct interaction. This is achieved by
providing a simple and flexible 3D event model that translates from 2D
window-system events to 3D events that are delivered to objects. Based on
this event model special manipulator objects are introduced, that translate
the events into object manipulations. All objects are organized in a scene
graph that can be traversed by action objects to perform specific functions.
Through the use of engines and field connections objects with an active
behavior can be represented in the scene graph.

2.1.3 VRML97

VRML97[78] is an international ISO/ISEC standard that describes the Vir-
tual Reality Modeling Language, a file format for describing interactive 3D
objects and worlds. Being primarily a file format definition, it does not
qualify as a complete VE system, but because the underlying object and
event model base on interesting concepts, VRML97 has considerably influ-
enced the design of contemporary VE systems. The standard document
ISO/ISEC 14772 describes the scope of the language as follows:

”ISO/ISEC 14772, the Virtual Reality Modeling Language
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(VRML), defines a file format that integrates 3D graphics and
multimedia. Conceptually, each VRML file is a 3D time-based
space that contains graphic and aural objects that can be dy-
namically modified through a variety of mechanisms. This part
of ISO/ISEC 14772 defines a primary set of objects and mecha-
nisms that encourage composition, encapsulation, and extension.

The semantics of VRML describe an abstract functional be-
havior of time-based, interactive 3D, multimedia information.
ISO/ISEC 14772 does not define physical devices or any other
implementation-dependent concepts (e.g., screen resolution and
input devices). ISO/ISEC 14772 is intended for a wide variety
of devices and applications, and provides wide latitude in inter-
pretation and implementation of the functionality. For example,
ISO/ISEC 14772 does not assume the existence of a mouse or
2D display device.”

VRML97 is the direct successor of VRML 1.0 and as such draws heavily
from the object model and file format defined by the OpenInventor toolkit.
The objects that describe a world are organized into a scene graph. The
OpenInventor field connection mechanism is adapted in form of event routes,
which are a slight variation on field connections as they do not directly
connect object fields, but can be drawn only between special event-in and
event-out fields.

Another characteristic of VRML is that it is intended to be used in a
distributed environment such as the World Wide Web. There are various
objects and mechanisms built into the language that support multiple dis-
tributed files, including:

• in-lining of other VRML files;

• hyperlinking to other files;

• definition of an external application interface (EAI);

The EAI[82] specification defines a programming interface that is meant
to be implemented by VRML97 conforming browsers in order to allow ex-
ternal applications to access objects in a VRML world. This would, for
example, allow a VRML and HTML compliant browser to build HTML
user interfaces that manipulate object in a 3D VRML scene.

2.1.4 X3D

The X3D[79] is the direct successor to the VRML97 standard and as such
tries to be backward compatible by only extending but not modifying
VRML97. The X3D Final Working Draft Specification describes the im-
provements over VRML97 as follows:
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”Extensible 3D (X3D) is a software standard for defining in-
teractive web- and broadcast-based 3D content integrated with
multimedia. X3D is intended for use on a variety of hardware
devices and in a broad range of application areas such as en-
gineering and scientific visualization, multimedia presentations,
entertainment and educational titles, web pages, and shared vir-
tual worlds. X3D is also intended to be a universal interchange
format for integrated 3D graphics and multimedia. X3D is the
successor to the Virtual Reality Modeling Language (VRML),
the original ISO standard for web-based 3D graphics (ISO/ISEC
14772-1:1997). X3D improves upon VRML with new features,
advanced application programmer interfaces, additional data en-
coding formats, stricter conformance, and a componentized ar-
chitecture that allows for a modular approach to supporting the
standard.”

In particular, X3D significantly extends the VRML standard in two di-
rections. First, it separates the definition of the data encoding from the ob-
ject model and provides a space efficient binary format and an XML based
file format to complement the VRML97 file format. Second, in addition
to the VRML97 JavaScript interface, X3D provides several other language
bindings, most notably a binding to the Java programming language, and a
mechanism that allows integration with component architectures like COM
and CORBA.

2.1.5 VR Juggler

VR Juggler[7, 8] is an open source VR software development environment
initiated at Iowa State University.

VR Juggler is an VR application framework built around a modular
micro-kernel. The kernel provides basic services for the implementation of
manager objects that are the basic building blocks of the VR Juggler system.
Three different classes of manager objects exist:

Internal managers: handle external device input, display configuration and
user interface presentation. Specific handlers are implemented for each
new I/O device or GUI toolkit that is added to the system.

External managers: handle rendering of the application state. Two imple-
mentations of a draw manager are provided, an OpenGL draw man-
ager and an OpenGL Performer draw manager. The draw managers do
not attempt to present a common programming interface abstraction
for the supported rendering systems. Instead, an application must be
targeted specifically at one of the available draw managers.
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Application mangers: encapsulate the application specific functionality. An
application manager depends on the available internal and external
managers to implement the desired application functionality.

VR Juggler is a framework that explicitly does not depend on a specific
rendering engine, but allows and requires applications to bring their own.
This includes all aspects of data representation. For example, no scene graph
API is provided.

2.2 Distributed VE systems

The non-distributed VE systems, that have been presented in the previ-
ous section, provide the technological background for the development of
distributed VE systems. Their functionality, object models and APIs are
familiar to framework and application developers alike, and are the starting
point for the design of DVE frameworks and toolkits. This section presents
several of the attempts to offer toolkits for distributed VE application devel-
opment that have been made in recent years. The discussed systems provide
various degrees of support for network based communication between the
distributed processes that form an application. The discussion is focused on
the distributed object models and APIs, and the network transport that is
used.

2.2.1 RB2

VPL’s RB2[11] system was probably the first and, in terms of market share
in the early nineties, the most successful VR software ever. RB2 has support
for two-user virtual reality applications, where two identical RB2 systems are
linked together via a dedicated modem connection. Database duplication is
not automatic and both systems must run identical copies of the database.
Object attributes that are to be exchanged between the two systems have
to be explicitly connected with a communication port using RB2’s unique
visual programming language BodyElectric. Because only two processes can
communicate with each other at a time, the communication is point-to-point.

2.2.2 MR

The MR Toolkit[65] uses a simple shared memory model to allow communi-
cation between different processes. Specific memory locations can be marked
as shared, and data written into these locations will be transmitted to other
processes. A receiver has to explicitly receive the data and apply it to it’s
local database. All communication is point-to-point.
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2.2.3 DIVE

DIVE’s[14] distribution mechanism is based on ISIS, a fault-tolerant com-
munication system from Cornell University. DIVE supports multi-user ap-
plications by replicating all objects in the scene graph. Objects have a
standard form which comprises a simple geometry plus an optional event-
driven finite state machine for behavior. More complex behavior is achieved
by manipulating the objects using specifically written C code.

When a program joins a world it receives a complete copy of the cur-
rent world state (all of the objects in the world) via TCP/IP. Changes to
the world are propagated by update messages, which are reliably commu-
nicated to all processes in the world using the ISIS group communication
toolkit. There is also a fixed set of events which includes collision, input
and interaction events, plus a limited number of simple user events. These
events are all broadcast to the entire world, and each process interprets them
independently.

Distribution is not transparent to the application developer. DIVE ap-
plications that manipulate objects in distributed environments must use a
special set of operators to do so. Because DIVE uses a group communication
system, it is one of the first distributed VE systems without a central server
that can give some consistency guarantees.

2.2.4 Repo-3D

Repo-3D[56] is the central component of COTERIE, a research platform for
distributed augmented reality systems. It uses a replicated, shared scene
graph to support distributed applications.

An interesting aspect of Repo-3D is that it is based on the Network Ob-
jects package of Modula-3 and Obliq, an interpreted language for distributed
object-oriented computation. As a result, the replication and distribution
abilities are part of the programming language and not part of the system.

The scene graph is built from network distributed Obliq objects.
Changes to objects attributes are transparently distributed to other pro-
cesses. To overcome distribution induced latency problems in interactive
situations, Repo-3D allows local modifications on replicated objects that
are not distributed. The local changes are accumulated and can later be
transmitted to repair global consistency.

2.2.5 MASSIVE

MASSIVE[35, 36] is a distributed, multi-user VR system with a focus on
scalability and heterogeneity. Distribution is based on a shared database
approach that involves independent computational client processes commu-
nicating over typed peer-to-peer connections using UDP/IP. It is targeted
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at virtual conferencing applications using not only graphical representations
of participants but also text and live audio.

Scalability is achieved by introducing a spatial model of interaction be-
tween objects. Each object in a virtual world has an aura that defines the
spatial extent to which interaction with other objects is possible. Interac-
tion, and thus communication, between two objects is enabled only if their
auras collide. An aura manager detects aura collisions and opens a peer-
to-peer communications connection between the respective client processes.
Modifications of object attributes are not communicated to all other objects,
but only to those objects for which aura collisions exist.

Objects define several different interfaces with communication capabil-
ities such as text, graphics or audio. Communication can only occur if
compatible interfaces exist. This allows for heterogeneous combinations of
clients that can communicate with the same object using the appropriate
interfaces.

The combination of aura collisions and interface matching to qualify
objects for communication is referred to as spatial trading.

2.3 Research prototypes for scalable DVE systems

The systems described in the previous section are designed to handle only
moderately sized environments and a small number of users. However, many
distributed VE applications require support for considerably larger environ-
ments with hundreds or even thousands of participating users. As described
in section 1.1.3, the increase of environment size and number of users leads
to a super-proportional increase of resource requirements. This section re-
views systems that support the development of such large-scale multi-user
virtual environments, and analyze their approaches to the inherent scalabil-
ity problems.

2.3.1 SPLINE

SPLINE[5, 81] assembles a large virtual environment from disjunct spatial
areas, so called locales. A locale is a bounded area of space that defines its
own local coordinate system. Locales are completely independent from each
other, there is no single global coordinate system. A relationship or link
from one locale to another can be defined by specifying a coordinate system
transformation that transforms between the two local coordinate systems.
Each object in a virtual environment belongs to exactly one locale. Locales
often correspond to distinct regions of a virtual environment, such as a
room, a corridor or a vehicle. A complete virtual environment is composed
by linking together a number of locales.

Spline is an inherently distributed system, that supports a large number
of concurrent clients in a virtual environment. Each locale is associated with
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a distinct set of multicast groups. All communication relevant to a locale
takes place only in the associated multicast groups. Each locale is hosted
by a server process that maintains the entire state of the objects contained
in the locale, including their graphical representation.

By policy, a client that renders a view of a virtual environment has to
take into account all objects that belong to its current locale and all ob-
jects that belong to topologically neighboring locales. To achieve that, the
client joins the corresponding multicast groups and receives the current state
(mostly graphical object description) that is needed to render the environ-
ment. When changing position, the client process detects if it crosses the
border of its current locale and readjusts its current set of relevant locales by
leaving or joining the corresponding multicast groups. This simple aware-
ness management policy ensures that a client only ”sees” those locales that
are in its immediate vicinity, even if it moves within the environment.

The concept of locales potentially allows for very large distributed virtual
environments because it effectively localizes communication between client
and server processes.

2.3.2 CVE (MASSIVE-2)

CVE[33, 34] is the successor to MASSIVE. CVE tries to improve scalability
with respect to the number of participating clients by introducing multicast
communication to the spatial model of interaction used in MASSIVE.

CVE divides a virtual world into several different regions that have a
defined spatial extent and associates a different multicast group with each
region. Each object in a world belongs to exactly one region and can only
be communicated with through the associated multicast group. A client
visiting a virtual world defines a focus object that describes the region of
space that the client would like to interact with. The client then joins all
multicast groups belonging to regions that intersect with its focus object,
and receives the geometric descriptions of all objects that are contained in
those regions. Subsequent changes to object attributes are communicated
to all interested clients using the appropriate multicast group.

Multicast groups can be explicitly represented by group objects. This al-
lows the creation of multicast group hierarchies by recursively placing group
objects into higher-level multicast groups. CVE proposes to use this to
model object abstraction. In such a scenario a group object would be an ab-
stract, simpler and more coarse representation of all the objects that might
be contained in its sub-groups. A client can decide which level of abstraction
of an object or region of world space it wants to interact with, by joining
the appropriate multicast groups.
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2.3.3 HIVEK (MASSIVE-3)

HIVEK[60] is the successor to CVE described in the previous section. It
abandons the recursive multicast group approach that has been used in CVE
to model abstraction and help scalability in favor of locales as introduced in
the SPLINE system (see section 2.3.1).

HIVEK extends the concept of locales as introduced in SPLINE in two
notable ways, dynamic locale selection policies and support for abstractions.
SPLINE defines the set of relevant locales for a client to be the locale hosting
the client plus all direct topological neighbors. HIVEK introduces the pos-
sibility to dynamically choose between different location selection policies
that can make use of awareness and cost/benefit criteria.

N Step Selection: This is a generalization of the nearest neighbor criterion
used in SPLINE where N = 1. Allowing different values for N can be
used to adapt to the resources available on a client’s machine. Clients
on more powerful machines can increase N to fully utilize their re-
sources, while less well equipped clients can concentrate their resources
on the immediate vicinity.

N Nearest Selection: To prevent the possible explosion in the number of lo-
cales for lager N using the N step policy, the N nearest selection
criterion can be used to put an upper limit on the number of locales.

N Most Aware, and Cost/Benefit Selection: This policy further improves re-
source utilization by weighting each locale according to its awareness
and cost/benefit values relative to the clients hosting locale.

In addition to dynamic locale selection HIVEK proposes to use abstrac-
tions of locales to improve utilization of client resources. Abstractions in
this case would be less detailed geometric representations of locales that
need less network resources to transmit and less client resources to render.

2.3.4 RING

The RING[30] system uses a client-server design to implement large-scale
multi-user VEs. The approach is specialized to densely occluded environ-
ments and is based on the work by Teller[70] to precompute line-of-sight
visibility information for the shared environment.

Each client manages exactly one entity that can be freely navigated
through the scene database and renders images from the viewpoint defined
by the entity position and orientation. The entities have a geometric rep-
resentation and are potentially visible to the other clients. Clients do not
communicate the position of their entity directly to other clients, but com-
municate only with a server. Several servers can be located across a WAN as
shown in figure 2.2 (left). Each client communicates with exactly one server,
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Fig. 2.2: RING client processes communicate with each other over a network
of servers.

and entity update information generated by a client has to be processed by
at least one server before it is delivered to other clients. The servers use the
precomputed visibility information to decide which entities are visible to
which other entities in the densely occluded environment as shown in figure
2.2 (right). This entity-to-entity visibility information is then used to filter
the entity update messages between clients. Thus, clients will receive update
messages only for entities that are visible to them. Because the environment
is assumed to be densely occluded, this will result in a considerable reduc-
tion in overall update message traffic. By using dead-reckoning to predict
entity movement, RING is able to further reduce message traffic. However,
the approach has several restrictions that prevent it from being applied to
a more general domain of VE applications.

• The only information that is dynamically shared between the clients is
entity position and orientation. This is difficult to apply to application
areas other than avatar based multi-user chat environments.

• Because the precomputed line-of-sight visibility information is static
by nature, no modifications can be made to the environment at run-
time, except entity movement. Every other modifications to the envi-
ronment, in particular modifications to the geometry, requires recom-
putation of the visibility information.

• The servers do not communicate geometric information between the
clients. Thus, each client needs to obtain a copy of the entire virtual
environment before it can participate. This introduces a whole bunch
of problems with database duplication. Besides guaranteeing that all
clients obtain exactly the same version of the environment, all servers
have to have access to the corresponding precomputed visibility in-
formation. Every small modification to the environment requires this
information to be redistributed to all servers and clients.
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Entity Unjoined Cell Joined Cell

Fig. 2.3: NPSNET defines an area of interest.

• Servers have to be placed at strategic points to allow efficient opera-
tion of the system over a wide area network. Messages can only be
efficiently culled, if the server connection topology closely matches the
wide area network topology,

2.3.5 NPSNET

NPSNET[55, 53, 54] is a descendant of SIMNET, probably one of the first
and best known large-scale VE systems. NPSNET and SIMNET both sup-
port the DIS protocol. The primary goal of both systems is the support
of multi-user battlefield simulations. While SIMNET uses broadcasting to
send messages between clients, NPSNET has recently introduced an exten-
sion that uses IP multicast groups to localize communication and cut down
on message traffic.

The NPSNET multicast extension defines a static, hexagonal spatial
partitioning of the battlefield area (see figure 2.3). Each hexagonal cell is
associated with a different multicast group address. The entities that move
around on the battlefield employ an area of interest manager (AOIM) that
determines which multicast groups the entity process needs to join. The
decision is based on the position of the entity and the radius of the area of
interest. As a result an entity process only joins multicast groups that are
associated with cells that are in close proximity to the entity position, and
receives state update PDUs (protocol data units) only for those entities that
are within its area of interest.

Similar to RING, the DIS protocol used by NPSNET is mainly used to
communicate positional entity information between a large number of users.
No geometric information is transmitted. Thus, all participating processes
need to obtain a copy of all geometry contained in the scene before the
simulation is started. This causes the same class of problems that RING
has with geometry distribution.
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Input
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Fig. 2.4: The processing pipeline of a typical VE application: Data is gath-
ered from input devices and is applied to the application state.
Then, the application state is translated into graphics primitives
that are transfered to the renderer. The renderer produces an im-
age, the pixels of which are sent to the display.

2.4 Clustered rendering systems

Despite recent advances in accelerator technology, many graphics applica-
tions will not run at acceptable display update rates. Some application
domains can be relied on to produce large datasets that defy visualization
using even the most advanced and expensive graphics workstations avail-
able. For example, crash simulation applications produce geometric datasets
containing several million polygons each at frame rates that easily lead to vi-
sualization requirements of several hundred million polygons per second. At
the same time multi-display output devices like the Responsive Workbench
or the CAVE require the simultaneous generation of up to 12 independent
output signals.

Traditionally both demands have been met by using expensive graphics
supercomputers like that SGI line of SMP machines, that are equipped with
multiple processors and graphics subsystems. The advent of commodity PC
configurations that provide graphics power comparable or even superior to
a single InfiniteReality pipe at a fraction of the cost, has sparked the desire
to build networked rendering cluster using readily available and affordable
PC graphics workstations.

Parallel graphics system are usually classified according to the point in
the processing pipeline (see figure 2.4) at which data is redistributed to
multiple subsystems. The diagram shows a data processing pipeline that
is typical of VE applications. Data flows from the input devices through
several processing steps to the output display device. A common approach
to parallelization is to duplicate a section of the pipeline and to locate those
duplicated processing steps on multiple machines in a cluster, thus increasing
throughput for that section of the pipeline.

Figure 2.5a shows a straight forward approach taken by some VE systems
to provide simple cluster rendering capabilities. Data from the input devices
is gathered on a single cluster node and broadcast to the network. Multiple
cluster nodes each run the application and renderer to produce different
output images. They receive the input data, apply it to the application
state and render the output images in parallel. A good example for this
approach is Net Juggler which is described in more detail in section 2.4.2.



2.4. Clustered rendering systems 27

I

A

R

D

Network

I

A

R

D

NetworkA

R

D

A

R

D

A

R

D

A

R

D

A

I

A

R

D

Network

R

D

R

D

I

A

R

D

Network

Network

R RR RR

a) b) c) d)

D

Fig. 2.5: Parallel graphics systems can be classified according to the point in
the processing pipeline at which data is redistributed to multiple
subsystems: a) distributed input data, b) replicated application
state, c) parallel renderers, d) parallel renderers with image com-
position.

Consistency requires that all nodes start computation with the same initial
application state, and that all application copies in the cluster react in the
same way to the distributed input data. To allow for non-uniform cluster
configurations, the display stages are often synchronized using swap-locking
on the frame buffers and gen-locked video signals.

While this approach is simple to implement, it is only applicable to fully
deterministic applications. A more flexible approach is shown in figure 2.5b.
Here, the application state is replicated and distributed instead of the raw
device input data. One master node in the cluster gathers the input data and
applies it to the application state which is then replicated to several identical
rendering nodes. The rendering nodes generate the graphics primitives from
the replicated application state in parallel. Because the rendering nodes do
not modify the received application state, no consistency problems arise.
This approach works very well if the changes to the application state can
be described and transmitted incrementally. Applications that render large
time varying data sets, for example, are likely to saturate the network with
the state replication messages.

If application state replication is not possible or not desirable, the mas-
ter application node in the cluster can directly produce the graphics prim-
itives and send them over the network to a set of independent rendering
nodes as shown in figure 2.5c. By supplying a standard rendering API like
OpenGL for the generation of the graphics primitives, parallelization of ex-
isting OpenGL applications can be achieved easily.

All three approaches described above have in common that each render-
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ing node in the cluster drives a separate image output device. Such clusters
can effectively be used to parallelize multi display applications such as the
CAVE, the Responsive Workbench or tiled mega-displays. To allow the par-
allelization of single display applications using a render cluster, an image
composition network that combines the rendered images from the cluster
nodes into one image can be inserted between the render nodes and the
display node as shown in figure 2.5d.

2.4.1 WireGL

An example of such a system is WireGL[42, 41, 13] that provides a par-
allel OpenGL interface to a render cluster built from inexpensive graphics
workstations. Multiple application nodes can share the task of graphics
primitive generation and concurrently feed the render cluster, while the op-
tional use of an image composition network allows the generation of any
number of display images from the output images of the clustered render
nodes. WireGL has recently been transformed into an Open Source project
named Chromium.

2.4.2 Net Juggler

Net Juggler[3] is based on the VR Juggler system described earlier in this
chapter. It enables VR Juggler applications to run on a homogeneous PC
render cluster that drives multi-screen displays like the CAVE or the Re-
sponsive Workbench.

Each rendering node in the cluster runs an identical copy of the VR Jug-
gler application, and renders a different view of the application environment
onto one of the output displays. All data input devices are managed by
a dedicated cluster node that permanently reads the latest input data and
broadcasts it to all render nodes in the cluster. This makes Net Juggler a
concrete implementation of the cluster architecture described in figure 2.5a.
The VR Juggler device managers on the render nodes are modified to not
read their input directly from the devices but to receive it from the device
input node in the cluster. Care is taken to assure that the single VR Juggler
application does not need any knowledge about the fact that it is running
in a cluster. This way, porting of existing VR Juggler applications to Net
Juggler is particularly easy.

Because the rendering of different views will most probably require dif-
fering amounts of time on each render node, synchronization of the display
output across all render nodes is performed. However, cross-display consis-
tency entirely depends on the assumption that all render nodes will update
their local copy of the application state identically, based on the received
input data. Because VR Juggler holds the application responsible for the
maintenance of the distributed application state, no implicit state sharing
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between application copies is possible. If communication other than dissem-
ination of input device data is required, the application has to implement
the necessary mechanisms.

The transport layer is built around the MPI[18] (Message Passing Inter-
face) standard implementation MPICH[37].

2.5 Summary and discussion of related work

The analysis of the VE and DVE systems provides valuable input for the
development of the forthcoming DVE framework architecture. To enhance
accessibility, the features of the systems are summarized and structured in
three tables. Table 2.1 gives a comparative summary of the related stand-
alone VE systems presented in section 2.1, while tables 2.2 and 2.3 provides a
similar overview for the distributed systems from section 2.2 and the scalable
distributed systems from section 2.3 respectively.

With regard to existing VE systems and especially DVE systems, a num-
ber of observations can be made:

• The scene graph is the widely accepted object model for VE toolkits
and frameworks. It presents itself as the obvious foundation for the
development of a DVE object model.

• Only few attempts have been made to establish a distributed shared
scene graph as the object model for distributed virtual environment
development. Existing systems suffer from serious problems. DIVE,
for example, lacks a consistent API for the distributed scene graph,
while Repo3D does not offer any provisions toward performance opti-
mization.

• Many different event models have been used to deliver and handle
events in VE applications. Traditional event dispatch methods derived
from mechanism found in WIMP1-style user interfaces, do not apply
well to the closely coupled communication needs in VE applications.

• So far, no distributed event model has been described that interfaces
and integrates well with the field connection or event route approach
used in stand-alone VE applications.

• Many DVE systems offer shared state abstractions to the application
developer. However, using these facilities often requires significant ef-
fort. Commonly, only parts of the application state, such as transfor-
mation matrices which describe object positions, are shared between
the distributed processes. Sometimes, explicit specification of com-
munication endpoints for shared object attributes is necessary. The

1 WIMP: Windows, Icons, Menu, Pointer
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resulting problem of duplicate databases, ensuring that all processes
work on consistent copies of the shared database, seriously limits the
a systems applicability.

• While specialized scalability solutions exist in certain application areas
or as research prototypes, none of the general purpose DVE frame-
works addresses system scalability. Most existing approaches are
closely tied to specific application domains and are not applicable out-
side their respective domain.

• The importance of rapid prototyping, and in particular script lan-
guage bindings to access the object model, is undervalued in current
systems. DIVE, for example, provides a partial binding to the script-
ing language TCL. Only a limited subset of the object model API is
available and the scripting language can only be used to specify event
handler responses.

• The general acceptance of a framework or a toolkit largely depends
on the ability of the system to utilize existing resources and enable
the development of applications with competitive performance char-
acteristics. Although Inventor, for example, offers superior APIs and
interfaces, few projects use it as a basis for immersive VE applica-
tions, because is lacks explicit support for high-performance graphics
hardware. On the other hand, Performer — with its under-designed
C++ API — is in wide use in both the research community and the
simulation industry.

Many promising approaches to build general-purpose DVE frameworks
have been described so far. However, on closer examination these systems
exhibit serious drawbacks and are often not usable in real-world applications
due to performance and scalability problems. The following chapter uses
the presented results to develop a general architecture for a DVE framework
that provides solutions to the problems found during the analysis of existing
systems.
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Feature OpenGL
Performer

OpenInventor Extensible 3D
(X3D)

VR Juggler

OS
Platform

SGI IRIX, I386
Linux

SGI IRIX, I386
Linux

N/A SGI IRIX, I386
Linux, Microsoft
Windows

Availability Commercial
product

Open source
project

Specification
only, no
production-
quality
implementation
yet

Open source
project

Low-Level
Graphics
API

OpenGL OpenGL N/A Application
specific

System
Structure

Toolkit Framework N/A Framework

Execution
Model

Multiple threads Single thread N/A Multiple threads

Scalability multiple
processors,
multiple
graphics
subsystems

None N/A Application
dependent

Display
Options

Mono and/or
stereo display,
multiple displays

Mono or stereo
display, single
display

N/A Mono and/or
stereo display,
multiple
displays,
application
dependent

Object
Model

Scene graph
with nested
transformations

Scene graph
with nested
transformations

Scene graph
with nested
transformations

None,
application
dependent

Event
Model

None Data-flow graph
between object
attributes

Event routes
between objects

None,
application
dependent

Persistence Scene graph
persistence,
Performer binary
format (.pfb)

Scene graph
persistence,
OpenInventor
file format, text
or binary (.iv)

Scene graph
persistence,
VRML97, XML
and binary file
formats

None,
application
dependent

Data
Formats

Loaders for all
popular 3D file
formats

OpenInventor
file format, text
or binary (.iv)

VRML file
format, text or
binary (.iv)

None,
application
dependent

Input
Devices

Mouse,
Keyboard

Mouse,
Keyboard

N/A Mouse,
Keyboard, most
popular VR
input devices

Extension
Mechanism

Subclassing Subclassing,
dynamic loading

Native object
subclassing,
script
prototyping

Subclassing

Application
Language

C, C++ C++ IDL definition,
specification
available for
C++, Java,
JavaScript

C++

Tab. 2.1: A comparative feature summary of non-distributed VE frame-
works, toolkits and technologies.
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Feature Reality Built for
Two (RB2)

MR Toolkit DIVE Repo3D Massive

OS Platform Mac OS
(application),
SGI IRIX
(renderer)

SGI IRIX SGI IRIX,
Linux

Unix (HP,
Sun, SGI),
Windows

SGI IRIX

Availability Commercial
product, no
longer
available

Source code
license

Binary code
license

Not available Not available

Low-Level Graphics
API

Iris GL Iris GL /
OpenGL

Iris GL /
OpenGL

OpenGL,
Renderware

Iris GL

System Structure Application Set of
libraries

Toolkit Toolkit Toolkit

Execution Model Single thread,
external
render process

Single thread Multiple
threads

Multiple
threads

Single thread

Scalability None None None None None
Display Options Mono or

stereo, single
display

Mono or
stereo, single
display

Mono or
stereo, single
display

Mono or
stereo, single
display

Mono or
stereo, single
display

Object Model objects,
attributes, list
of objects

tagged vertex
lists, state
variables

objects,
attributes,
scene graph

objects,
attributes,
scene graph

objects,
attributes

Event Model data-flow
network
between
object
attributes

global events,
callback
subscription

global events,
callback
subscription

global events,
callback
subscription

global events,
callback
subscription

Persistence Objects and
relationships,
no geometry

None Servers can
save
environment
state

No No

Data Formats Proprietary
formats

Proprietary
format,
loaders for
some 3d
formats

Proprietary
format,
loaders for
some 3d
formats

Unknown Unknown

Input Devices Mouse,
Keyboard,
some VR
input devices

Mouse,
Keyboard,
most popular
VR input
devices

Mouse,
Keyboard,
most popular
VR input
devices

Mouse,
Keyboard

Mouse,
Keyboard,
some VR
input devices

Extension
Mechanism

None Device driver
interface

None Subclassing None

Application
Language

BodyElectric
(a visual
programming
language)

C C, C++,
limited TCL
binding

Modula 3,
Obliq binding

C

Distributed Object
Model

Selected
object
attributes

Selected
memory
locations

Object
attributes,
replicated
scene graph

Object
attributes,
replicated
scene graph

Object
attributes

Distributed Event
Model

None Event
broadcast

State change,
attachable
notification
handlers

None Dedicated
point-to-point
connections
between
objects

Dynamic State
Modification

Attribute
modification

Variable
modification

Attribute
modification,
object cre-
ation/deletion

Attribute
modification,
object cre-
ation/deletion

Attribute
modification,
object cre-
ation/deletion

Dynamic
Membership

No No Yes, complete
state transfer

Yes, complete
state transfer

Yes

Network Transport Modem line
protocol,
one-to-one

TCP,
point-to-point

UDP, group
communica-
tion
(ISIS)

TCP, group
communica-
tion (Modula
3 Distributed
Objects)

TCP/IP,
point-to-point

Application Layout Peer-to-peer Peer-to-peer Process group Process group Client/server
Typ. # of
Processes

2 3 5 2 5

Tab. 2.2: A comparative summary of DVE frameworks and toolkits.
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Feature SPLINE CVE
(Massive-2)

HIVEK
(Massive-3)

RING NPSNET

Distributed
Object Model

Flat object
set,
replicated
objects

Flat object
set,
replicated
objects

Object
hierarchy,
replicated
scene graph

Flat object
set,
replicates
object
positions
only

Flat object
set,
replicates
object
positions
only

Distributed
Event Model

Dedicated
point-to-
point
connections
between
objects

Dedicated
point-to-
point
connections
between
objects

None None Object to
object
messaging

Dynamic State
Modification

Attribute
modifica-
tion, object
creation /
deletion

Attribute
modifica-
tion, object
creation /
deletion

Attribute
modifica-
tion, object
creation /
deletion

Client
position and
viewing
direction

Object
position and
some
attributes

Dynamic
Membership

Yes,
complete
state
transfer

Yes,
complete
state
transfer

Yes,
complete
state
transfer

Yes, partial
state
transfer

Yes, no
state
transfer

Network
Transport

TCP point-
to-point,
UDP
multicast

TCP point-
to-point,
UDP
multicast

TCP point-
to-point,
UDP
multicast

TCP point-
to-point

UDP
multicast

Application
Layout

Client /
server
Peer-to-peer

Client /
server,
Peer-to-peer

Client /
server,
Peer-to-peer

Client /
server

Client /
server,
Peer-to-peer

Intended # of
Processes

102 102 102 102 103

Partitioning
Criterion

Spatial
position and
extend

Spatial
position and
extend

Spatial
position and
extend

Visibility Spatial
position and
extend

Partition
Definition

Modeling Modeling Modeling,
run-time

Preprocessing Modeling

Partition
Selection

Topology Spatial
relationship,
distance

Topology,
distance

Preprocessed
visibility

Distance

Recursive
Partitioning

No Yes Yes No No

Tab. 2.3: A comparative summary of large-scale DVE systems. Because
the presented systems are primarily research prototypes, little is
known about platforms, object model, data formats, supported
input devices and such. Therefore, this table only lists aspects
relevant to scalability.
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3. DVE Systems - A conceptual approach

Drawing from the analysis of related work in chapter 2, this chapter develops
and describes an architecture for a general-purpose DVE framework. First,
a set of requirements for the system is formulated. These requirements
subsequently enable the identification of the major design topics and guide
the necessary design decisions. Finally, a complete architecture for a DVE
framework is provided.

3.1 DVE system requirements

A DVE framework has to fulfill a diverse and sometimes conflicting set of
requirements. They address such specific topics as the available hardware
and software infrastructure or the direct needs of the projects involved. But
also more general subjects like programming paradigm and development
style are important. The discussion of related systems in chapter 2 identi-
fies a number of areas where precise requirements need to be specified. In
particular these are:

• The definition of a distributed object and event model,

• support for a variety of different display devices,

• built in support for user interaction through direct manipulation,

• APIs and language bindings that allow rapid prototyping and provide
extensibility,

• a clear specification of target platform and performance requirements.

This section formulates and rationalizes the requirements in these ar-
eas and therefore provides a foundation for the development of the DVE
framework architecture in section 3.2.

3.1.1 Distributed object and event model

Support for network distributed applications is one of the key requirements
for a new DVE system. The object and event model must specifically allow
application designs that consist of several distributed processes that com-
municate over a network connection.

In general, object and event model of a VE system define four things:
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• The representation of objects and state in the virtual environment.

• The mechanisms and APIs that allow modification of objects and en-
vironment state.

• The general representation of events in the virtual environment.

• The mechanisms and APIs that allow generation, delivery, and con-
sumption of events.

In particular, a distributed object model must define an object repre-
sentation that can be accessed and manipulated from network distributed
processes, while a distributed event model allows the dissemination of events
between those processes. Because the object model defines the application
developers interface to the virtual environment, two principles must be hon-
ored to keep the learning curve flat and to increase the chance of adoption
by the application developers:

Familiarity: The interfaces should enable any VE developer who has a good
knowledge in VE application development using stand-alone toolk-
its and frameworks, to immediately develop distributed applications.
Therefore, the number and complexity of new concepts to learn with
respect to the distributed object and event model should be kept to a
bare minimum.

Transparency: All distribution related complexity should be hidden in the
object and event model, and the knowledge of further implementation
details should not be necessary in order to use the distribution features.

Thus, the design must define a distributed object and event model that
provides familiar interfaces for application developers and allows the creation
of network transparent distributed applications.

3.1.2 Display device abstraction

The Responsive Workbench is only one of the immersive VE devices that
are in use. Most notably the CAVE[16, 15]-like CyberStage is a display
system that needs to supported. Recently IMK VE introduced the two-sided
Responsive Workbench, which is a Responsive Workbench with a vertical
back-projection screen attached perpendicular to the table-top screen. Older
devices like various head-mounted displays and the BOOM[22] are also used
in projects at IMK VE. As a newly conceived VE system, this framework has
to support all these existing devices, while being flexible enough to adapt
to any new VE output devices.

The major challenges related to display output devices are twofold.
Multi-viewpoint rendering is essential for most immersive devices because
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they tend to use stereo image generation to amplify depth perception. The
two-sided Responsive Workbench or the CyberStage for example demand
the generation of up to four different stereo-views for their display screens.
A display device abstraction is needed that is expressive enough to model
all these different display devices.

Besides the logistic problem of generating eight independent video sig-
nals, rendering images for the different views in real-time is a serious perfor-
mance problem. Modern high-end graphics workstations tackle this problem
by providing several hardware graphics acceleration sub-systems which can
be used in parallel. Thus, the ability to make efficient use of multi-pipe hard-
ware for multi-viewpoint stereo rendering is another central requirement for
the Avocado system.

3.1.3 Direct-manipulation user interaction

All VE applications provide mechanisms for user interaction with objects
in a virtual environment. For example, the Responsive Workbench provides
user controlled virtual tools to manipulate objects is a natural part of the
workbench metaphor. In general, the implementation of user interaction
with a virtual world can be divided into two distinct steps.

Data acquisition: All user actions that describe her intentions have to be
mapped into the virtual world. Input data is acquired in a variety of
ways. Conventional methods include binary input devices like buttons
and switches or spatial input devices that track the position of real-
world objects controlled by the user. More advanced methods include
voice and gesture recognition devices that recognize and translate spo-
ken commands and articulated gestures.

Data interpretation: The raw input data that has been mapped into the vir-
tual environment has to be interpreted and applied to the appropriate
object or set of objects to evoke the desired effects.

This two step approach to user interaction needs to be supported as
interaction with the virtual environment is a major feature of all VE appli-
cations.

3.1.4 Rapid prototyping and extensibility

Research in the area of VE application development is in its early stages
often based on experimentation. For example, knowledge about working in-
teraction patterns in VE applications is still very limited, and new ideas have
to be verified and validated quickly. This early stage of development needs
to be well supported to make a framework useful as a research tool. Devel-
opers must be enabled to very rapidly explore different ways to implement
their new ideas, and need immediate feedback in that process.
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The usual development cycle found in many VE systems is to long be-
cause many steps have to be performed sequentially to modify and restart
an application:

Coding: This usually involves use of a text editor to compose the source
code and configuration files.

Compilation: The newly edited source code is compiled into object files.
Most probably a C or C++ compiler is used.

Linking: The compiled object files are linked with the VE toolkit libraries
to produce an executable.

Running the application: The linked executable is run. This involves loading
of application specific data like geometry and texture files.

Testing: Now the newly coded functionality can be tried out.

Quitting the application: Once the testing is done the application needs to
be terminated and the cycle restarts at the coding stage.

A research system needs more direct means of prototyping new applica-
tions. For this reason, in addition to the primary compiled implementation
language the framework needs a binding to an interpreted language that
will eliminate the necessity to compile and link each modification, and will
allow the developer to work on the running application without the need
to terminate and restart it after each change. At the same time, this inter-
preted language must be integrated in a way that does not affect the overall
performance of the application.

The IMK VE research group works on a great number of projects from
very different research and application areas. The range of activities spans
from entertainment applications like Caveland (Section 7.2.4) to scientific
visualization prototypes like the oil exploration demonstrator 7.2.2. Other
research groups work in areas like multi-modal human-computer interaction
and aim to incorporate voice and gesture recognition into VR applications.
To keep the amount of code and feature duplication to a minimum, it is
desirable to use one software system as a basis for the implementation of all
projects a group is working on.

As a result, the framework needs an extension mechanism that allows
for easy addition of application specific data types, objects and functional-
ity. It is important that adding or modifying extensions does not enforce
a recompilation of the entire system or application. To properly support
the rapid prototyping programming paradigm, dynamic linking and loading
capabilities are desirable.
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3.1.5 Platform and performance considerations

At the time of the requirements definition (1996), IMK VE used a 4 proces-
sor SGI Onyx RealityEngine[2] workstation with two graphics sub-systems
to drive their immersive display devices, the CyberStage and the Respon-
sive Workbench[46, 45, 26]. A later upgrade to a 12 processor Onyx2
InfinteReality[58] workstation with four graphics sub-systems was consid-
ered very likely at that time.

Researchers at IMK VE were normally equipped with smaller SGI desk-
top workstations like the SGI Indy or O2 workstations. These are single
processor machines with only very moderate graphics hardware accelerators.
Because they are binary compatible to the Onyx and Onyx2 supercomput-
ers, they are well suited to serve as inexpensive VE application development
workstations.

Thus, the compelling primary target platform for a VE research system
at IMK VE was the entire line of Silicon Graphics workstations and super-
computers. Applications should run unmodified on all SGI workstations.

Interactive immersive VE applications need to offer a reasonable high
frame update rate to be believable. For immersive display devices like the
Responsive Workbench or the Cyberstage the lower limit for the frame rate
should not be below thirty frames per second. In order to achieve the highest
possible frame rate for interactive applications, the framework needs to fully
exploit the available hardware infrastructure at IMK VE.

The main performance relevant feature of the high-end SGI graphics
super-computers are:

• Multiple processors

• Multiple graphics subsystems

Thus, a very basic requirement the efficient utilization of high-end SGI
graphics workstations by using the available processors and graphics subsys-
tems to parallelize the application and image generation. Also, because the
capabilities of real-time rendering systems tend to grow over time in accor-
dance to Moore’s Law, upward compatibility to new generations of graphics
hardware systems is highly desirable.

3.2 From concept to architecture

The general architecture of a VE system is complex and can best be de-
scribed as set of related design topics. Figure 3.1 shows the dependency
relationship of the major design topics for the system. The identification of
the topics in part stems from the evaluation of the related work in chapter
2 and in part is directly derived from the requirement specification in 3.1.
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Fig. 3.1: The dependency relationship graph for the major design topics re-
veals the hot spots of the architecture.

The dependency analysis in figure 3.1 clearly identifies five especially
relevant topics for which design decisions significantly influence the overall
architecture. These are:

• Object Model

• Platform

• System Structure

• Distributed Application Layout

This section develops the overall concepts by examining each design topic
in context of the requirements and the findings from related work. For each
topic the possible design choices are presented and discussed. The discussion
then leads to a design decision for that topic.

3.2.1 Object model

The object model of a VE system defines how the data that describes the
virtual environment is represented and which interfaces and APIs developers
can use to modify the environment. Because many other architectural details



3.2. From concept to architecture 41

directly or indirectly depend on the object model, the object model is a
central part of the entire architecture.

Very few systems renounce an object oriented paradigm to describe the
environment. Early versions of the MR Toolkit did use tagged vertex and
polygon lists to describe geometry. This works well for virtual environments
that can be described as mainly geometric in nature. In a more diverse
virtual environment, more and more non geometric attributes, like behavior
and other application specific attributes, are added to parts of the envi-
ronment. Such virtual environments are best described as a collection of
objects that have certain attributes and relationships, which directly leads
to an object oriented approach.

RB2 and Massive both describe the environment as flat collections of
typed objects that have certain attributes. While this is an improvement
over vertex lists, flat object lists do not allow to easily aggregate objects, i.e.
describe objects as a composition of sub-objects, which is a very natural and
powerful metaphor to describe complex environments. A better approach,
taken by systems like Performer, Inventor or DIVE, is to use a scene graph
to relate all objects in a directed, acyclic graph.

A scene graph represents an entire environment as the aggregation hi-
erarchy that culminates in a single root node which serves as starting point
for recursively defined operations. Together with transformation nesting
and hierarchical bounding boxes the scene graph allows the implementation
of very efficient rendering algorithms, and as such is an established choice
as the representation organizing structure in contemporary VE systems.

Following the object oriented paradigm, scene graph nodes are instances
of node classes. The node classes are organized in an inheritance hierarchy,
which provides powerful mechanisms for the extension of existing classes and
reuse of existing functionality. Further, because common class interfaces and
functionality can be factored into common base classes, the implementation
of generic operations becomes possible. For example, toolkits like Performer
and Inventor define generic traversal operations for a scene graph. These are
implemented on the level of plain nodes and group nodes but work without
modification for scene graphs built from instances of all derived node classes.

The ability to formulate generic operations for the entire representation
of a virtual environment is a basic mechanism necessary to provide general
extensibility, as new object classes can be added to a framework without re-
quiring reimplementation of already existing operations. Adding introspec-
tion or reflection to the object classes further increases the expressiveness
of generic operations. The Inventor toolkit, for example, provides generic
persistence for the entire scene graph based on the ability to completely
describe the state of any object, namely the values of its attributes, through
a reflection interface. Performer on the other hand lacks the introspection
ability. As a consequence the Performer implementation of persistence can
handle only core object classes, application specific extensions are not auto-
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matically included in Performer binary format files.
Inventor represents nodes in the scene graph as a field container which

encapsulates the object state as a collection of fields. The field container in-
terface allows generic access to all field names and values, regardless whether
the class is a native Inventor class or is defined by the application. Fields
are also directly accessible from the C++ API, because they are defined as
standard C++ class members. Inventor demonstrates a very successful com-
bination of the abstract field container interface that allows the definition
of generic operations on objects and the class member based field interface
that allows convenient access to concrete class objects from C++. This as-
pect of the Inventor object model is widely accepted and has been adopted
by many VE systems and standards. The VRML97 standard and the pro-
posed X3D standard are only two examples. Performer lacks this degree of
sophistication in the object access API. Object access is possible via class
member functions that follow a more traditional get and set pattern.

Hence, the necessary components of the object model can be character-
ized as follows:

Objects: The entire virtual environment is completely described as a collec-
tion of objects.

Scene graph: Object instances are organized in a directed acyclic graph. The
scene graph is a familiar structure for the description of a VE and is
a good basis for the implementation of performance enhancing algo-
rithms.

Object class hierarchy: Objects are instantiated from object classes that form
an inheritance hierarchy. Using classes and class inheritance to de-
fine object types allows the implementation of object based extension
mechanisms while maximizing reuse of existing functionality.

Fields: Object attributes are encapsulated in typed fields. Fields are im-
plemented as C++ data members and provide a familiar object state
access interface to the C++ developer.

Field container: The field container interface allows generic access to an ob-
jects field names and values. This allows the generic implementation
of operations like scripting, streaming and persistence.

More details on the Avocado object model and a description of the
implementation strategy is presented in sections 4.1.1, 4.1.5, 4.1.3, 4.1.6 and
4.1.11.

3.2.2 Event model

The event model describes the representation of events in the VE system and
how event generation, dissemination and consumption are handled. Events
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are normally typed and carry a value that is to be delivered at some point
in time. Interactive systems deliver events as soon as they are generated in
order to allow the creation of low-latency feedback loops that are the basis of
interactive applications. Upon delivery, events usually trigger some action,
the least of which is the cause of a state change at the destination. The
specification of this action is called an event handler.

While event generation is generally straight forward, the two important
questions an event model must consider are:

• How and where are event handlers specified?

• How is an event handler bound to a specific event?

Events in a VE system can be categorized into external and internal
events with respect to their origin. External events are generated outside the
application environment and normally describe actions like user controlled
mouse movement or spatially tracked body movements. Internal events are
generated inside the virtual environment and describe things like the passing
of time or object collisions. Often, internal events are generated through the
consumption of external events.

Simple VE event models are derived from event delivery mechanisms tra-
ditionally used in non object-oriented WIMP user interfaces and are mostly
used to deliver external events into the application. The MR toolkit, for ex-
ample, specifies event handlers as global callback functions that are bound
to a specific event type. The context in which the event handler is evaluated
is always the entire environment, which requires that the knowledge about
the events effects needs to be concentrated in one event handler.

A more object-oriented scheme allows the specification of event handlers
for specific objects in the environment. Because more than one possible han-
dler for each event type may exist, the event delivery mechanism needs to
decide which handler is selected to consume the event. For example, Open-
Inventor defines special event handler objects that can be added to various
parts of the scene graph. For each external event, the event dispatcher tra-
verses the scene graph top-down and delivers the event to the first event
handler object that will handle it. While this allows the definition of event
handlers that only need a limited, local context, the relationship between
event source and destination is inherently implicit.

Interestingly enough, OpenInventor introduces a second, completely ex-
plicit event dispatch mechanism that is only used for internal event deliv-
ery. By allowing type compatible fields of objects to be connected with
copy-on-write semantics through field connections, OpenInventor builds a
fine-grained event mechanism that allows the explicit specification of a di-
rect one-to-many relationship between event source and event destinations.
The event handlers are encapsulated in special engine nodes, that allow the
specification of notification methods for each engine field that might receive
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an event. Because this has proven to be a viable concept to express object
interrelationships in complex virtual environments, the VRML97 and X3D
standards both embrace the mechanism under the name event routing.

Because of the ability to conveniently describe the data-flow between
objects in a VE application, and because the concept is familiar to many
VE application developers, this design chooses field connections as the event
delivery mechanism for its event model. However, it fixes two unnecessary
shortcomings of the OpenInventor implementation.

First, in contrast to OpenInventor, field connections connections are used
to also deliver external events to the application. This normalizes event de-
livery within the framework and allows the developer to implement more
application specific dispatch mechanisms for external events if needed. In
order to use the field connection mechanism to deliver external events to ap-
plication objects, an explicit representation for the event source is necessary.
Therefore sensor objects are introduced that map external input data onto
a field based API. Sensor objects are standard field containers that expose
input data values as fields. Whenever an input device changes a data value,
the field value is updated accordingly. Objects that must handle input data
just connect their fields to the sensors fields to receive new data values over
the field connection whenever an input data value changes.

Second, OpenInventor unnecessarily requires the use of special engine
objects to specify event handlers as side effects of field value changes. This
enlarges the object zoo and complicates application development. Therefore,
explicit specification of event notification handlers for every field container
object in the environment is introduced. These handlers are invoked when-
ever a field on the containing object changes its value. This further normal-
izes the object model, as there now is no difference between an object state
change through an event by way of a field connection and a direct program-
matic field change through one of the available APIs, as far as object state
and notification handler invocation are concerned.

A detailed description of the Avocado event model, the resulting data-
flow network and its implementation is presented in section 4.1.5. The re-
lated data input model is described in section 4.1.7.

3.2.3 Distributed object model

The object model of a distributed VE system describes the representation of
objects in a virtual environment which can simultaneously be accessed and
manipulated by several users. This work assumes that it is important to
evoke the impression of one consistent environment for all users. Therefore,
the user processes need access to identical environment state information for
a distributed application.

A look at the current literature reveals three increasingly sophisticated
methods that attempt to present a consistent view of a shared virtual en-
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vironment to several processes. Because the users are specifically allowed
be spatially separated, the user processes are assumed to run on separate
machines that communicate via network connections.

Variable sharing: Fragments of the environment state are synchronized be-
tween processes. Usage of these shared variables in distributed appli-
cations is comparable to the use of global variables. If one process
changes the value of a shared variable, all other processes will eventu-
ally see the new value. The MR toolkit, for example, supports shared
variables as a tool for the implementation of distributed applications.

Attribute sharing: A comparable but more object-oriented approach is the
explicit sharing of selected object attributes. Similar to shared vari-
ables, shared object attributes have to be explicitly declared as such.
This method is for example used by the RB2 and the Massive-1 sys-
tems to share the position of certain objects between processes.

Object sharing: Entire objects can be declared as shared. All attributes of
a shared object are automatically shared. This includes object at-
tributes that contain references to other shared objects, like the chil-
dren attribute of scene graph nodes. Additionally, object creation and
deletion are shared operations. In combination, this effectively creates
a shared scene graph and all, even topological, changes that one pro-
cess applies to the shared scene graph will be observed by all other
processes. DIVE and Repo3D are examples for a shared scene graph
approach to support distributed applications.

Variable and attribute sharing are not very useful as the sole distribution
mechanism for general purpose DVE applications.

Because both approaches share only part of the environment state, main-
tenance of consistency is a responsibility of the application. In order to pro-
vide a consistent view of the shared environment all processes must obtain
an identical copy of the non shared environment state at application startup.
In most cases the application must provide persistent copies of the initial
environment state to all participating processes. Subsequent modifications
of local state elements must only be performed as a deterministic side effect
of shared variable changes, as direct changes of local state elements will not
be visible to other processes. Thus, only if all processes react consistently
on shared variable changes with respect to their local environment copy,
some degree of consistency might be achieved. Generally, both approaches
do not allow additional processes to join an already running application,
because the joining process would start with a virgin local application state,
while already participating processes may already have performed local state
modifications that the joining process can not reconstruct from the current
shared variable values.
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Nevertheless, some special purpose application scenarios for the use of
variable or attribute sharing in the implementation of distributed appli-
cations exist. Networked multi-player versions of first-person-shooters like
Doom, Quake or Unreal share only very small fragments of the application
state between user processes, mostly spatial object positions. The major
portion of the environment description, which can be rather large, is dis-
tributed on commercially available CDROMs. This is not a problem, be-
cause the game application does not modify the environment during game
play.

Based on the intention to present a consistent view of one environment to
any number of users, the object sharing approach is best suited as a basis for
the implementation of a general purpose DVE system. Modifications to any
shared object attributes will consistently be visible to all processes. Because
object creation and deletion can also be supported as shared operations,
and the entire environment state is shared, late joining processes can be
supported without the need to magically reconstruct the current application
state from a virgin copy. Further, because the interfaces and semantics of the
shared scene graph that are exposed to the application developer are equal
to their counterparts for a non shared scene graph, this distributed object
model is very familiar to the application developer. Further, the reflection
properties of the in section 4.1 already defined non-distributed object model
allow an almost transparent implementation of the distribution functionality.

Therefore the chosen object model will be based on the concept of a
transparently shared scene graph. A detailed description of the distributed
implementation of field container objects and fields and the resulting conse-
quences for the application developer are presented in section 5.1.

3.2.4 Distributed application layout

In distributed applications all participating processes need access to a shared
application state. Because the processes most likely run on different ma-
chines, the entire application state has to be shared over network connec-
tions. Two different variants can be used to implement the necessary com-
munication mechanism:

Client/Server semantics are commonly used by systems like CORBA[85]
(Figure 3.2). The object state resides at one process only, while re-
mote access is transparently handled via synchronous Remote Pro-
cedure Calls (RPC). This variant is most commonly used in system
where access to remote objects is relatively infrequent. It incurs a
significant communication overhead, as even read-only operations on
objects require network communication. On the other hand, overall
storage space is saved to a considerable amount as only one copy of
each object exists in the distributed system. Further, consistency is
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Fig. 3.2: Distributed systems with client/server semantics use a central
database process that clients communicate with over a network.
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Fig. 3.3: Distributed systems with replication semantics do not use a central
database. Instead, each client process holds a local copy of the
database that the system keeps synchronized for all clients.

not a problem, because only one copy of an object exists in the server
process. To the developer, the concept is easy to understand and to
handle, because remote procedure calls are synchronous and mimic
local procedure calls.

Replication semantics provide for a local copy of each object at each par-
ticipating process (Figure 3.3). Object access is completely local to
the accessing process, and thus can be very fast. Unlike RPC, object
requests trigger communications only if the object has been modified.
The replication mechanism then takes care that the object change is
replicated to the other local copies of the object. Consistency has to
be enforced by the implementation of the replication mechanism.

Because RPC communication is synchronous in nature and a client that
requested an operation on a remote object is blocked until the request has
been performed and the result is returned, the client/server model is not
applicable to the domain of high-end real-time rendering, where databases
of hundreds of distributed objects have to be traversed up to sixty times per
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second. The high bandwidth requirements during object access for rendering
necessitate that each object that is to be rendered exists in the local memory
of the rendering process.

Thus, distribution support must be based on object replication because
copies of the distributed objects are present in each processes local address
space and can be accessed for rendering without additional communication
overhead.

3.2.5 Distributed event model

The non-distributed object and event model already described in sections
3.2.1 and 3.2.2 defines event dissemination through explicit connections
between object fields and provides the possibility to specify event hand-
ling in terms of general notification handlers that respond to general field
value changes. Because the distributed object model guarantees that all
field changes on shared objects are transparently communicated to the dis-
tributed copies, local event delivery through a field connection is automat-
ically communicated as a field value change to all processes. Because field
value changes generally - and independently of the source of the change -
invoke the respective notification handler, all distributed object copies are
automatically given the opportunity to react to a local field value change.
Thus, events that are locally delivered to distributed objects via a field con-
nection are effectively delivered to all participating processes.

The shared objects provided by the distributed object model, in combi-
nation with the non-distributed event model in the form of local field con-
nections, automatically provide a seamlessly integrated distributed event
model. The model is very compact and is a consistent and almost transpar-
ent extension of the non-distributed case. It does not introduce new elements
to the API and therefore provides the application developer with a smooth
transition path from stand-alone to distributed application development.

Section 5.2 provides details on the distributed event model and intro-
duces a distributed locking facility, which is used to synchronize more com-
plex interaction patterns between processes.

3.2.6 Network transport layer

The implementation of the distributed object model requires the careful se-
lection of a network transport layer protocol. A number of different proto-
cols are potentially available, each with different properties and performance
characteristics.

Systems like Massive and MR, for example, use TCP/IP connections
between processes to share application state. The TCP protocol is one-to-
one connection oriented and, as a reliable protocol, guarantees data delivery
even in the presence of lost packets. In a low latency requiring setup, where
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each process directly communicates with each other process, the number
of direct connections to be maintained grows with the square of the total
number of processes. Further, if N is the number of processes, each state
change requires N − 1 identical packets to be sent over the network. This is
especially undesirable if shared-media networks like Ethernet or FDDI are
used. In these situations, systems that use IP multicast instead of TCP
communication fare much better.

IP multicast[17, 23, 80] can be seen as a variation of the UDP protocol.
Instead of being addressed to one destination, a multicast message can be ad-
dressed to a group of destinations. On LAN (Local Area Network) segments
like Ethernet that support hardware multicast operation, multicasting to a
group of destinations is very efficient in terms of bandwidth usage compared
to sending a separate unicast message to each destination. Multicast capable
routers connect LAN segments such that multicast communication is also
possible across wide area networks. Because all processes listen to a com-
mon multicast address, each state change only requires one update message
to be sent that is received by all processes, regardless of the total number
of processes involved. Unfortunately, IP multicast is an inherently unreli-
able protocol. Any delivery guarantees required by an application have to
be implemented on top of it. For this reason, several group communication
protocols that are based on IP multicast have been developed.

Group communication protocols address the following problems that are
not known in point-to-point communication between just two processes:

Reliability: Reliability deals with recovering from communication and site
failures such as buffer overflows, missed packages and network parti-
tions. For example, depending on the network transport used, not all
processes will always receive all messages sent. This is often the case
in WAN settings where the reliability of the routes to different des-
tinations may vary greatly. Reliability is more difficult to implement
for group communication than for point-to-point communications.

Consistency: Even if reliable delivery of messages is guaranteed, not all pro-
cesses will necessarily receive the sent messages in the same order.

Synchrony: In the presence of group membership changes, messages may or
may not be delivered to leaving or joining members. This is a source
for inconsistencies.

The process group model [9, 10] has proven to be a good abstraction
for communication between several processes. It addresses the above men-
tioned problems and provides reliable communication between distributed
processes. The concept of a process group describes a group of processes that
intend to communicate with each other using one-to-many semantics. Each
process can send a message to the group at any time, while each message sent
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to the group is received by all processes in that group. Lost messages are
detected and re-sent, such that the application can regard message delivery
as reliable.

Group membership is dynamic as processes can join or leave a group at
any time. The current list of group members, called a view, is maintained
and is replicated to all group members. The view is an ordered list, and
the perceived order is the same for all processes. Any membership changes
invalidate the current view and a newly constructed view is distributed to
the group members. Along with the view, an application specific view state
can be replicated to all new members during a view change. This is called
view atomic state transfer. Within a view the state is guaranteed to be the
same for all members. Messages to the group are delivered view synchronous.
To guarantee synchrony, a message is delivered to all processes in the same
view. Further, each message will be delivered in the same view it was sent
in. During view changes when members leave or join the group and the
member views may be temporarily inconsistent, no messages are delivered.
Join and leave operations are said to be view atomic.

Messages delivered to a group inside a view can either be unordered,
FIFO-ordered or totally ordered. If messages are unordered, no particular
order within a view is guaranteed. Messages can even arrive in a different
order at each member. FIFO-ordering guarantees that messages are received
in sender order. If a sender sends message m0 before m1, then every member
will receive message m0 before m1. Total ordering guarantees that all mes-
sages are FIFO-ordered and are received in the same order by every member
of the group.

Group communication protocols provide strong ordering and delivery
guarantees. Based on these guarantees, the implementation of a consis-
tently shared application state becomes possible, and because IP multicast
is used, it can be done very efficiently. Toolkits like DIVE and Repo-3D, for
example, use group communication systems as the network layer for their
implementation of object distribution. Therefore, the implementation of the
object model must be based on a group communication system.

3.2.7 Data input and device interface

User input data for immersive virtual environments is usually gathered by
external controller hardware that is connected via serial RS232 or network
connections, e.g. space trackers, data gloves and joystick devices. Often,
opening a connection to each of these devices requires the obedience of time
consuming initialization protocols that lead to connection setup times of
several seconds1.

1 The quality of the firmware of many of these devices is exceptionally bad. For example,
early firmware versions of the Ascension Flock of Birds magnetic space tracker where not
able to survive repeated connection attempts over the serial port without power-cycling
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Many VE toolkits, like MR and DIVE for example, integrate input de-
vice connection management directly into the application. If several different
input devices are used by an application, the need to explicitly open a con-
nection to each device can lead to unacceptably long application startup
times in the order of 60 seconds and more. During phases of rapid prototyp-
ing, frequent application restarting often becomes necessary. In these phases
it is important that application restart times converge against zero. This is
clearly not possible if the re-opening of input device connections alone takes
forever.

The solution is the use of a separate, long-running device daemon pro-
cess. When the device daemon is started, it connects to all input devices and
never disconnects until it is shut down. The application does not directly
connect to the input devices anymore, but connects to the device daemon in-
stead. The device daemon gathers the input data from the device hardware
and relays it to the application. The use of efficient connection protocols
between application and daemon allows the connection setup time for the
application to be neglected. Thus, frequent application restarts without the
time penalty of device connection setup become possible.

Therefore, the Avocado framework will not acquire input data directly
from the input devices, but utilize a long-running device daemon that man-
ages all input device connections. Details on the device daemon implemen-
tation are presented in section 4.1.8.

3.2.8 Scripting language selection and binding

Development of virtual environment applications, especially in the research
area, often follows a highly iterative approach where applications are not
even fully specified until late in the development cycle. Many VE toolkits
and frameworks do not account for this situation as changes and reconfig-
urations require recoding in C or C++ and recompilation of parts or even
the whole application.

An interpreted scripting language which has a binding to all relevant
high-level object interfaces in a framework can greatly reduce the burden on
the application programmer and will significantly shorten the development
cycle. No recompilation is necessary and often modifications can be applied
to the running application.

On the other hand, scripting languages are interpreted at run-time and
can be an order of magnitude slower than compiled code. Therefore care
must be taken if scripting languages are used in interactive applications in
order not to destroy the interactivity with slow script execution.

There are two primary usage patterns for scripting languages in interac-
tive applications:

the device between attempts. The only ”supported” mode of operation was to connect to
the device once, and to never disconnect.
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Application scripting: During startup of an application a startup script is
executed that instantiates and configures application specific compo-
nents.

Event handler scripting: Scripts are registered as event handlers and are ex-
ecuted whenever the respective event occurs. Script execution time is
critical because scripts may be executed repeatedly in every frame.

The VRML97 and X3D standards, for example, define a script language
binding for the object model and use Javascript as a scripting language.
Both standards use scripts exclusively for the definition of event notification
handlers on objects that have been defined through the PROTO extension
mechanism.

JavaScript is a good choice for a scripting language in an object-oriented
environment, because Javascript is an object-oriented delegation language
and the VRML object model and its PROTO extension interface can be
nicely mapped to Javascript objects. Unfortunately, only very few mostly
incomplete and slow implementations of Javascript interpreters have initially
been available. Further, because the early Javascript implementations were
not primarily designed for easy integration with existing applications, the
native code interface is complex and cumbersome to use.

The late DIVE versions, for example, use Tcl as a scripting language.
Like VRML97 and X3D, DIVE uses scripting exclusively to define event
notification handlers. The use of Tcl for the definition of event handlers in
interactive applications is especially problematic, because Tcl is basically a
string replacement language that is implemented as such and is therefore
especially slow. On the other hand Tcl has been designed as an applica-
tion extension language and therefore has a clean native code interface that
conveniently supports the definition of new scripting commands in compiled
code. While being easy to use, the relative simplicity of the native code
interface is at the same time a major reason for the overall slowness of Tcl.
While data values and objects can internally be represented as basic C data
types or as opaque handles to C or C++ structures, parameters to functions
can only be passed as strings. Therefore, whenever parameters are passed
as function arguments, they need to be converted to a string representation
and back. An especially bad but in a VE application very common example
is the passing of a four by four matrix value from native code to script and
back.

In Tcl this requires the conversion of 16 floating point values to a string
representation and back, just to pass the matrix value without modification.
While the forced string coercion of parameter values greatly simplifies the
parameter passing interface, it significantly slows down the evaluation of Tcl
scripts.

Inventor and Performer do not have any scripting abilities. The entire
application has to be defined in a compiled language, both toolkits support C



3.2. From concept to architecture 53

and C++ APIs. While this approach has no inherent performance problems,
the need for compilation significantly slows down the development cycle in
rapid prototyping environments.

Hence, the choice of a scripting language for an interactive virtual envi-
ronment framework should fulfill the following criteria:

Language features: Despite the fact that most scripts are rather short, the
scripting language must be a full featured programming language that
supports an adequate set of data and control abstractions.

Binding API: The binding interface must allow efficient representation of
complex C or C++ data types and structures in the scripting language
and support opaque data handles to be passed as parameters and
return values between script language and native language.

Performance: Although it is clear that interpreted languages can never reach
the performance of compiled languages, a scripting language used in an
interactive application must not be unreasonably slow. An important
factor, beside the binding interface, is the garbage collection method
that is used.

One of the languages that fulfills all of these criteria is Scheme[1, 19], a
general purpose programming language descended from Algol and Lisp. It
is a high-level language, supporting operations on structured data such as
strings, lists and vectors. Scheme is a fairly simple language to learn, since
it is based on a handful of syntactic forms and semantic concepts. Scheme
interpreters that are written in C are small, fast and provide an easy to use
binding API. Many mature implementations are available.

Scheme is one of the few contemporary programming languages that
use lexical scoping to resolve variable binding. Lexical scoping is especially
useful for the unobtrusive specification of context for scripted event handlers.
Often, callbacks and event handlers need additional context information that
is not easily available at execution time and that can not be specified through
the handlers interface. Normally, global variable bindings would be used.
Lexical scoping achieves the same effect without pollution of the global name
space and allows a finer control over the variable scope.

Therefore, Scheme is identified as the programming language of choice
to provide a scripting interface to the application developer. The design
uses Scheme for application scripting as well as for event handler scripting.
Details on the Scheme implementation used in Avocado and the application
development style that stems from the combination of a C++ framework
with the functional programming language Scheme are presented in section
4.1.9.
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3.2.9 Target platform considerations

The choice of a hardware and operating system platform is completely de-
termined by the corresponding requirement. Because all immersive display
systems at IMK VE are driven by Silicon Graphics workstations, and the
majority of developers and researchers work on smaller SGI desktop work-
stations, SGI hardware and software is clearly the main target platform.

Even if this constraint did not exist, the performance requirement would
have led to the same decision at that time (1996), because none of the com-
peting systems was able to deliver a comparable price/performance ratio.
The graphics accelerators used in workstations from Hewlett Packard and
Sun Microsystems where only able to deliver a fraction of the performance
at the same price, while image generators from Evans & Sutherland could
deliver comparable performance at considerably higher costs.

3.2.10 Execution model: Single vs. multi-threading

The execution model determines the number of flows of control that exist in
an application. There are two fundamentally different possibilities to choose
from:

• One flow of control. Often called a single threaded execution model.

• More than one flow of control. Often called a multi threaded execution
model.

The fundamental difference between single-threaded and multi-threaded
execution is the need for explicit synchronization if more than one thread
access shared data resources. While many synchronization primitives exist
on systems that support multi-threading, their use adds a considerable level
of complexity to the application development that often leads to a new class
of interesting and hard to find programming and design errors.

Multi-threading — on the other hand — offers a direct path to applica-
tion scalability on multi-processor hardware, especially on shared memory
architectures. Multiple threads of control can be scheduled simultaneously
on multiple processors, and make application performance scalable with the
number of available processors. This makes multi-threading especially inter-
esting, because the targeted graphics workstations have a shared memory,
multi-processor hardware architecture.

OpenInventor is an example for a VE toolkit that uses a single-threaded
execution model. One main-loop sequentially handles data input, prepara-
tion and rendering for each frame. This approach has two consequences.
First, only one processor is utilized by OpenInventor, even if the underlying
hardware makes more than processor available to the application. Thus,
OpenInventor is not scalable with the number of available processors. Sec-
ond, most OpenGL implementations do not allow one process to control
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more than one OpenGL graphics context. Because each separate graphics
subsystem maintains its own independent graphics context, an application
must allocate one process per graphics subsystem in order to generate im-
ages for multi-display output devices in parallel. Thus, as an inherently
single-threaded toolkit, OpenInventor can not be used to drive image gen-
eration on multi-pipe hardware. For these reasons, OpenInventor has never
been used to build applications for high-end immersive display systems.

The OpenGL Performer toolkit, on the other hand, is specifically de-
signed to be scalable with the number of available processors and graphics
subsystems. Performer uses a pipelined architecture that separates sequen-
tial tasks in the main loop into pipeline stages, and thus allows efficient
utilization of available processors and graphics subsystems.

Because the framework design is targeted at high-end graphics worksta-
tions and is required to deliver the highest possible rendering performance,
it needs to support a multi-threaded execution model that allows the full
utilization of available processor and graphics resources.

3.2.11 A base system for low-level tasks

The major reason to consider the use of existing middle-ware as a basis for
the implementation for a framework is the conservation of available devel-
opment resources. A VE framework is a complex system and requires the
commitment of a considerable amount of development resources. Care must
be taken not to waste these resources on features for which suitable imple-
mentations already exist and are available. The saved resources can better
be used to develop new and unique feature not found in existing systems.

A potential candidate must fulfill a set of requirements that directly
relate to the already made design decisions. While no system that might be
considered can be expected to meet all requirements, it is important that
if a potential base system does not support a certain feature it does at the
same time not prevent its implementation.

The platform choice suggests a closer look at systems that use the
OpenGL graphics API. While this is true for most relevant systems, the
degree of support for the implementation of the proposed object and event
model varies greatly. Support for the required multi-threaded execution
model is especially sparse. It turns out, that the only promising candidates
are the OpenGL Performer and OpenInventor toolkits. Both systems are
general purpose graphics application toolkits are intended to be used as
middle-ware systems, while specialized VE systems, like DIVE or Massive,
define restrictive object and event models that are incompatible with the
proposed object model.

OpenInventors object and event model has contributed some inspiration
during the design of the object model and already implements many of
its features, which would qualify it as a possible choice. Unfortunately,
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as described in the previous section, OpenInventor implements a single-
threaded execution model and does not support the efficient utilization of
multiple processors and multiple graphics subsystems. It is therefore not
capable to fulfill the performance requirements.

OpenGL Performer, on the other hand, is performance optimized for
multi-processor and hardware with multiple graphics subsystems. It pro-
vides a compatible object model that can be extended to fulfill the speci-
fication. Because OpenGL Performer implements all aspects of in-memory
object representation, hardware resource management and efficient render-
ing, its use can save considerable development resources. Therefore, the
OpenGL Performer toolkit is a promising candidate for the implementation
of the proposed framework design.

Details on how Avocado implementation uses OpenGL Performers data
representation and rendering capabilities as the basis for the implementation
of its object and event model are described in section 4.1.4.

3.2.12 System API structure

The system structure determines how the systems functionality is presented
to the application developer, and determines the system semantics on the
border between native system functionality and application specific func-
tionality. There are to different philosophies in use, the toolkit and the
framework approach. The main differentiation criterion between the two is
the ownership of overall flow control.

Toolkit: The application defines the flow of control. Toolkit functionality
is organized in a set of libraries. Applications are built against these
libraries and utilize the required toolkit functionality by calling toolkit
defined functions. In the case of interactive applications the applica-
tion implements the main loop and thus controls the overall flow of
control.

Framework: The framework defines the flow of control. It provides a generic
application skeleton that is extended with application specific func-
tionality. Application specific extensions are built against framework
libraries and are registered with the framework through well defined
interfaces. The frameworks application skeleton then calls the appli-
cation specific code whenever appropriate2.

When using a toolkit, application development often starts with duplica-
tion of an example application that is subsequently modified according to the
application requirements. An example is the perfly application that ships
with OpenGL Performer. Many applications that use the Performer libraries

2 This is often referred to as The Hollywood Principle: ”Don’t call us, we call you!”.
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are modified copies of perfly. This example modification approach mimics
the use of application skeletons that are provided by frameworks, without
provision of a clean interface between application and toolkit supplied code.
A problem occurs when a newer version of a toolkit becomes available and
an application should be updated to use the newer version. Because appli-
cation specific code is interwoven with, probably modified, toolkit code from
the application example, and because the original example application can
be expected to have changed in the new release, in most cases an automatic
upgrade of the application by mere recompilation against the new toolkit
libraries is not feasible. Updated fragments of the example application will
have to be identified and incorporated by hand. Therefore, long lived toolkit
based applications that are meant to be upgraded to new toolkit releases
require considerable development resources during upgrade.

Framework based applications, on the other hand, are easier to upgrade
to new framework releases, because the border between application and
framework provided code is marked by clearly defined interfaces. In many
cases, recompilation against a new framework release is sufficient, provided
the interfaces have not been changed. The OpenInventor Toolkit is, despite
it’s name, a good example for a framework. The iview application that
comes with OpenInventor is the skeleton for most OpenInventor applications
without being ever modified in application specific ways.

Frameworks also support a rapid prototyping approach to application
development naturally. The developer starts with a running application
that is incrementally extended and, if all goes well, it’s feature set gradually
converges toward the specification.

Because rapid application prototyping is a key requirement, the chosen
structure is that of an application framework. This, in turn, requires the
existence of an extension mechanism for the implementation of application
specific functionality.

3.2.13 Extension mechanism: API and link strategy

Application development using a framework is characterized by the addition
of new functionality in the form of new code to the existing framework. Two
major aspects need to be defined.

Extension API: The extension API defines the calling interface between the
framework and the application extension.

Link Strategy: The extension link strategy defines how and when the exten-
sion code is linked with the framework code.

Modern object-oriented frameworks use inheritance and polymorphism
to define an interface for application specific extensions. An extension is
represented by a class that derives from a dedicated framework base class.
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The base class defines virtual functions that can be overloaded to implement
application specific behavior. The compiled extension code needs to be
linked with the framework code in order to be used by the application.
There are two different link mechanisms that can be used.

Dynamic linking: The extension code is compiled and pre-linked into a shared
library and is automatically loaded into the application at startup.

Dynamic loading: The extension code is compiled into a shared library and
is loaded into to the application at run-time and under explicit control
of the application.

The drawback of dynamic linking compared to dynamic loading is that
the framework skeleton application must be explicitly linked against the code
in the shared extension libraries, and that all extensions are automatically
loaded at application startup, regardless of whether they are used during
that invocation or not. This behavior increases application load time and
memory footprint.

An example for a successful combination of inheritance based framework
extension and dynamic loading is the OpenInventor toolkit. OpenInventor
allows extensions to derive from and specialize any relevant class that is
defined in the framework. The custom application specific objects are loaded
on-demand at run-time.

Hence, the Avocado implementation should follow this approach. To-
gether with dynamic extension loading this provides a fine grained modular
structure even for large applications while application load time and mem-
ory footprint are kept to a minimum. Details on the extension mechanism
are presented in section 4.1.4.

3.3 Avocado Architecture Summary

This chapter formulated the requirements for and developed the architecture
of a general-purpose DVE framework. A number of design topics where
discussed in the context of the requirements and observations from related
work in the field. For each topic a solution was specified and described. The
resulting architecture is summarized in table 3.1.

The following chapters discuss details of central points of the architec-
ture, and describe a complete implementation of the discussed design in
form of the Avocado framework.
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Design Topic Definition Avocado Solution

Object Model Virtual environment object
representation and APIs.

Object oriented, scene graph,
object class hierarchy, field
container, fields

Event Model Event representation, creation,
dissemination and consumption.

Copy-on-write connections
between fields, change notification
on field containers is event
handling.

Distributed
Object Model

Distributed virtual environment
object representation and APIs.

Present consistent environment to
all user processes. Transparently
shared scene graph. All derived
field container class objects can be
shared.

Distributed
Application
Layout

Role model for application
processes.

Shared scene graph implemented
by object replication.
Synchronized local database
copies for all peer processes. No
central server.

Distributed Event
Model

Distributed event representation,
creation, dissemination and
consumption.

Field connections are local.
Distributed field notification
automatically distributes events.

Data Input
Model

Mapping of external input data
into the virtual environment.

Sensor objects map external input
data to fields. Field connections
deliver data to destinations.

Input Device
Interface

Low-level input device handling. Long-running device daemon
process handles input device
hardware. Applications
communicate with daemon via
shared memory.

Scripting
Language

Binding to interpreted scripting
language.

Script binding for all basic field
data types and derived field
container classes. Language is
Scheme. Application and event
handler scripting.

Platform Target system platform. Processor
architecture and operating system.

High-end SGI graphics
workstations running SGI IRIX.

Low-Level
Graphics API

Selection of low-level graphics
API.

SGI OpenGL.

Execution Model Single-threading vs.
multi-threading.

Multi-processing for performance
scalability with multiple
processors and graphics
subsystems. Pipelined execution.

Base System Use of existing middle-ware as
basis for implementation.

SGI OpenGL Performer for
in-memory data representation of
geometry and multi-pipe real-time
rendering.

System Structure Structure of system APIs exposed
to application developer.

Framework. Application
development is framework
extension.

Extension
Mechanism

Mechanism for application specific
extension of framework.

Inheritance based extension of
framework classes with dynamic
loading.

Network
Transport

Selection of transport layer
protocols.

Multicast based group
communication with strong
consistency guarantees.
Ensemble/Maestro from Cornell
University.

Tab. 3.1: A brief summary of the proposed architecture.
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4. Avocado - implementation of the
framework foundation

The system architecture described in chapter 3 is the basis for the imple-
mentation of the Avocado DVE framework. This chapter describes the
implementation of the basic framework aspects that are not directly related
to distribution, while chapter 5 describes how the Avocado framework is
extended to the domain of distributed applications. Additionally, a closer
look at the implementation of the display device abstraction and the tool-
based direct-manipulation framework for user interaction is presented.

4.1 The Avocado object model

The Avocado object and event model closely follows the design in sections
3.2.1 and 3.2.2. Nodes provide an object-oriented scene-graph API which
allows the representation and rendering of complex geometry. All Avocado
objects are field containers that represent object state information as a col-
lection of fields. Avocado uses field connections, to build a data-flow graph
orthogonal to the scene graph. Based on the reflective properties of the
object model, all objects support a generic streaming interface, which allows
object state information to be written to a stream, and the subsequent re-
construction of the object from that stream. The streaming capabilities are
used to implement generic object persistence for all Avocado objects and
the entire scene graph.

Following the argument in section 3.2.11, the Avocado implementa-
tion is based on OpenGL Performer. Avocado uses Performer for scene
graph management and to achieve maximum performance for graphic in-
tensive applications. Advanced rendering tasks like culling, level-of-detail
switching and communication with the graphics hardware are all handled
by Performer. Performers capabilities are utilized by sub-classing Avocado
classes from Performer classes.

In addition to its C++ API, Avocado features a complete language
binding to an interpreted scripting language. As detailed in section 3.2.8,
Scheme is the language of choice. All high-level Avocado objects can be
created and manipulated from the Scheme scripting language.

The following sections present details of the implementation and describe
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the APIs that are exposed to the application developer.

4.1.1 Mapping the field concept to Performer

The efficient implementation of generic streaming and scripting interfaces
for heterogeneous objects requires additional meta information about object
attributes and their types, and a way to access those attributes without
knowing the exact type of the containing object. The C++ programming
language does not treat classes as first-class objects, so this meta information
is not easily available on a language level.

Performer, for example, uses a member function API to access the state
attributes of an object. A symmetric pair of getter and setter functions exists
for each attribute. Setting one attribute may change another attribute of
that object as a side effect. However, no abstract information about the
number of attributes, their type and their value can be obtained from an
object via the Performer API.

As discussed in 3.2.1, Avocado uses field objects as containers for ob-
ject state attributes. Fields encapsulate basic data types and can be used
efficiently to provide generic streaming and scripting interfaces. They are
implemented as public class members and are thus inherited by derived
classes. They are directly accessible by client classes and are Avocado’s
premier interface to object state attributes.

Fields can be one of two different types. Single value fields contain one
basic data type value, while multi value fields contain a vector of an arbitrary
number of values.

Basic field data type encapsulation

Fields are implemented using the C++ template[69] mechanism.Templates
provide direct support for generic programming, that is programming us-
ing types as parameters. The C++ template mechanism allows a type to
be a parameter in the definition of a class or function. Templates do not
require the different types used for instantiation of a particular template to
be related in any inheritance hierarchy. This makes them particularly well
suited for the implementation of fields, which are used for the encapsulation
of otherwise unrelated basic field data types.

Nevertheless, basic field data types must satisfy certain constraints to be
usable as parameters for the field class templates. In particular, they must
provide the following:

• A default constructor, a copy constructor and a destructor.

• The comparison operators operator==() and operator!=()

• The assignment operator, operator=()
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C++ built-in C++ stdlib Performer Avocado

bool string avVec2 avBaseLink
int complex avVec3 avType
unsigned int avVec4 avClosure
long avMatrix
unsigned long avQuat
float avSeg
double avSphere

avPLane
avBox

Tab. 4.1: Avocado initially provides four categories of basic field data
types. Besides the built-in C++ types, several more complex
data types from the C++ standard library are supported. Fur-
ther, all classes from the Performer pfLinMath package have been
supplemented with the necessary functionality for scripting and
streaming. Finally some Avocado specific types can be used.

• Two functions av_scheme_bundle() and av_scheme_unbundle()
must exist for the particular basic field data type. They convert a
value to and from the desired Scheme representation for the scripting
interface (see section 4.1.9).

• Two operators operator<<(avOutputStream&) and
operator>>(avInputStream&) must exist. They implement
streaming capabilities for the basic field data type.

Avocado uses twenty basic types to instantiate a default set of eighty
different field types. The basic types, and the resulting field types, can
be classified into one of four categories (see table 4.1). The default set of
available field types represents those most commonly used in general interac-
tive 3D applications. The application developer can define new application
specific field types at any time.

Avocado defines four class templates for the instantiation of the differ-
ent field types which are available for every basic field data type.

avSingleField<> encapsulates one data value.

avSingleAdapterField<> adapts between the Avocado field interface and
the Performer method based interface for attribute access (see section
4.1.4).

avMultiField<> encapsulates a vector of data values. It can carry any
number of values, and is dynamically resizable.
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template<class T>
class avField : public avTyped {
public:
const string& getName() const;
avLink<avFieldContainer> getContainer() const;
bool connectFrom(avField* field);
void disconnect();
avField* getConnectedField();
virtual Elk_Object getSchemeValue();
virtual int setSchemeValue(const Elk_Object);

};
template<class T>
avOutputStream& operator<<(avOutputStream& stream,

const avField& field);
template<class T>
avInputStream& operator>>(avInputStream& stream,

avField& field);\end{verbatim}

Fig. 4.1: The abstract avField class provides a common interface for all
field specializations.

avMultiAdapterField<> adapts between the Avocado multi value field
interface and the Performer method based interface for multi valued
attributes (see section 4.1.4).

All field class templates are derived from the common abstract base class
avField. The avField class provides a common interface for all possible
field specializations. This interface provides facilities to query information
about the container a particular field, connect and disconnect other fields,
and the necessary functions and operators to support streaming and script-
ing.

As an illustration of the field class API, part of the template class def-
inition for the single field is shown in figure 4.1. Access to a field value
is provided by the getValue() and setValue() methods. These methods
with their proper signature are defined by the derived classes of avField.
For each field class a pair of stream operators exist, allowing serialization of
the field value into a stream, and the reconstruction of the field value from
a stream.

Single-value fields

Figure 4.2 shows part of the avSingleField interface. avSingleField is
a template class and is used to instantiate single value fields on basic data
types. It defines appropriate setValue() and getValue() methods according
to the template class type parameter.
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template<class T>
class avSingleField : public avField {
public:
void setValue(const T& value);
const T& getValue() const;

};

Fig. 4.2: avSingleField is a template class and is used to instantiate single
value fields of basic data types.

template<class T>
class avSingleField : public avField {
public:
void setValue(const T& vector<value>);
const vector<T>& getValue() const;

};

Fig. 4.3: avMultiField is a template class and is used to instantiate multi-
value fields of basic data types.

Multi-value fields

Avocado makes extensive use of the Standard Template Library (STL).
Multi-field values are implemented as STL vectors of the field type. Figure
4.3 shows the corresponding template class declaration for multi-value fields.

4.1.2 Field containers for object state encapsulation

Avocado objects are field containers, which represent object state as a col-
lection of fields. A field container can be queried for the number of contained
fields and their references. Relevant parts of the field container interface are
shown below. This, together with the generic streaming interface of fields,
allows us to provide streaming functionality at the field container level with-
out knowing the exact type of the underlying object. This extends to all
classes further derived from avFieldContainer.

Avocado’s field container interface for object representation provides a
solid foundation for the subsequent, generic implementation of advanced fea-
tures like data-flow computing, scripting and distribution. These capabilities
are inherited by any application specific extensions added by the program-
mer. Because Avocado nodes are sub-classed from Performer nodes, both
node types can be freely combined to build the scene graph.

The central method of the field container interface is the getFields()
method. getFields() returns a generic vector of all fields contained in a field
container, regardless of the concrete type of the field container. Together
with the ability of the avField class to denote the name and the value of any
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class avFieldContainer {
public:
int getNumFields();
avFieldPtrVec& getFields();

protected:
virtual void notify(avField& field);
virtual void evaluate();

};
ostream& operator<<(ostream& stream,

avLink<avFieldContainer>& fc);
istream& operator>>(istream& stream,

avLink<avFieldContainer>& fc);

Fig. 4.4: The avFieldContainer encapsulates the state information of an
object and represents it as a collection of fields.

field as string values, this allows the easy implementation of the streaming
operators that are in turn the basis of the implementation of persistence.

4.1.3 Smart pointers and reference counting

One of the most prominent sources of serious errors in C and C++ programs
is related to memory management and the use of pointers. In C++ every
object instantiated from heap memory, has to be explicitly deleted in order
to release that memory. As heap objects are handled via memory pointers
and those can be freely copied, the question of who is finally responsible for
proper deletion of an object arises if there is more than one reference to that
object. This leads to three potentially fatal possible errors:

Orphaned objects: This happens if all references to an object go out of scope,
without the object being deleted. There are no further references to
the object and there is no way the memory used by the object can be
released until program termination. This leads to memory leaks which
will eventually drain the memory resources to nil.

Multiple object deletion: If more than on client calls delete on one and the
same object, the integrity of the internal memory management struc-
ture is bound to be seriously damaged. This leads to subtle errors
which are very hard to find without special debug tools.

Dangling pointers: There is no way to tell whether a pointer reference to an
object is valid, or if the object has long been deleted. Access through
the invalid pointer may easily damage the internal memory structure
and most likely cause hard to find fatal errors.

One way to overcome all these problems is the use of handle objects (see
[21, 69]). A handle encapsulates a pointer to some object class and allows
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class avBase : public avTyped {
public:
void reference() {_use_count++;}
void unreference() {if (--_usecount == 0) delete this;}

private:
unsigned int _use_count;

};
template<class Type>
class avLink : public avAnyLink {
public:
avLink(Type* object_ptr) {
_ptr = object_ptr;
_ptr->reference();

}
~avLink() {_ptr->unreference();}

private:
Type* _ptr;

};

Fig. 4.5: The abstract base class avBase implements the reference counting
mechanism that Avocado uses by way of avLink<> to implement
its memory management scheme.

to separate the objects interface from its implementation. Handles can also
be used to provide memory management for the object class. By including
a use count on the object class it is easy to implement a reference counting
scheme for the handle-object combination. Whenever a handle is created
that references an object, the use count on the object is incremented. Thus,
the object knows how many references to it exist at any time. When a
handle goes out of scope, i.e. is destroyed, the use count on the object is
decremented. When the use count reaches zero, there cannot possibly exist
another reference to the object and it can safely be deleted.

The avLink<> class, as shown in figure 4.5, is used to implement refer-
ence counting as a memory management scheme on Avocado objects. The
object maintains a a use count that records the number of currently active
references to it. Whenever a new handle is instantiated, the use count on the
referenced object is incremented via the reference() function. Likewise,
whenever a reference is deleted, the use count is decremented. When the
use count reaches zero, the object is automatically deleted.

The template class avLink<> defines a typed smart pointer (or handle)
to Avocado objects which hides reference counting details from the pro-
grammer and greatly reduces the difficulty of writing exception-save code.
Because Avocado uses handles exclusively to reference objects, dangling
pointers and memory leaks are no problem in Avocado applications, which
makes them extremely stable and reliable.
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ToolkitClass
Operation1()
Operation2()
Attribute1

InheritingClass
Operation1()
Operation2()
Operation3()
Operation4()
Attribute1
Attribute2

ToolkitClass
Operation1()
Operation2()
Attribute1

ContainingClass
Operation1()
Operation2()
Operation3()
Operation4()
Attribute2
Contained

/* Implementation */
Operation1() {
  Contained.Operation1();
}
Operation2() {
  Contained.Operation2();
}

Fig. 4.6: Extension and reuse by inheritance and containment. Both meth-
ods have certain advantages and disadvantages.

4.1.4 Adaption of Performer classes through subclassing

Extension of an existing object-oriented framework or toolkit generally fol-
lows one of two possible paths, inheritance or containment (see [69]). Figure
4.6 illustrates both possibilities.

With the inheritance scheme, functionality is added to the classes of the
core toolkit by subclassing. New classes are derived from the classes of the
core toolkit. The extended classes still provide the interface and signature
of their base classes and can be used as such, while adding new interface
elements. The addition of a new interface is most conveniently implemented
with multiple inheritance.

The containment scheme implements a new, mirrored version of the orig-
inal class hierarchy. Each new class contains a pointer or reference to the
corresponding class object from the core toolkit as a private member. The
interface of the core class is replicated in the new class and member function
calls are forwarded. Further on, core classes are no longer used directly, but
only through their containing adapters. This implies, that it is no longer
possible to freely mix and match instances of core classes with instances of
new classes. Containment does not require the use of multiple inheritance,
which from the beginning would avoid a number of problems that can arise
using multiple inheritance with C++.

The use of multiple inheritance in C++ can use to phenomenons like
the Diamond of Death, shown in figure 4.7, where a class XY Zinherits from
two classes Y and Z that have a common superclass X in their derivation
hierarchies. This causes XY Z instances to have two or more instances of X
embedded within them. This causes ambiguity with regard to the data and
function members associated with X, as well as possible storage duplication.
On the other hand, it makes the combination of two classes to form a third
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Class Y

Class XYZ

Class Z

Class X

Fig. 4.7: The Diamond of Death is a common phenomenon that occurs when
multiple inheritance is used in conjunction with poor design.

much easier.
Because of its ability to freely mix Performer class objects and Avocado

class objects to build the scene graph, Avocado follows the first approach.
Each concrete Performer class in the scene graph API is sub-classed, and the
resulting Avocado class provides an Avocado specific interface in addition
to the standard Performer interface. The Avocado interface is mixed in via
multiple inheritance.

Node subclassing

By subclassing from the concrete Performer scene-graph API classes and us-
ing multiple inheritance to mix in the avFieldContainer class, Performer
objects are provided with the field oriented Avocado API. In other words,
the Avocado scene graph API inherits the structure and functionality of
the Performer scene-graph API to build concrete classes on top of its ab-
stract field container interface. To differentiate between the native Performer
classes and the derived Avocado classes, all Avocado classes replace the
Performer specific name prefix pf with the prefix av.

Adapter fields are used to bridge from the Performer method based API
to the Avocado field oriented API. They will forward getValue() and
setValue() requests to the appropriate getter and setter functions of the
Performer API. This ensures that Performer related state information is
correctly updated according to field value changes, and possible side effects
are properly evaluated.

The following example shows the subclassing procedure for a pfGroup
node. pfGroup has a partially inherited interface as shown in figure 4.8. An
avGroup class is derived from pfGroup and avFieldContainer and equipped
with a suitable collection of adapter fields (Figure 4.10). The Name field
implements its getValue() and setValue() methods in terms of calls to
pfGroup::getName() and pfGroup::setName(). The Children field shows
the adaption of a multi-field to a whole range of Performer access member
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class pfGroup {
int setName(const char *name);
const char* getName(void);
int addChild(pfNode *child);
int insertChild(int index, pfNode *child);
int replaceChild(pfNode *old, pfNode *new);
int removeChild(pfNode* child);
int searchChild(pfNode* child);
pfNode* getChild(int index);
int getNumChildren(void);
};

Fig. 4.8: The Performer pfGroup interface uses member functions to query
and alter object state.

class avGroup : public pfGroup,
public avFieldContainer {

public:
avMultiAdapterField<avLink<avGroup> > Parents;
avSingleAdapterField<string> Name;
avMultiAdapterField<avLink<avNode> > Children;

};

Fig. 4.9: The interface of the Avocado node avGroup is field based.

functions used to manage the children of a group node. The return type of
Children.getValue() is a STL vector of avLink<avNode>.

Avocado objects map the member function interface for object state
access to a field based interface.

Field subclassing

Creating of new field types is simple. The avSingleField<> and
avMultiField<> templates are used to define new field types. The new
basic type supplied to the templates must support a small set of operations:

const type& operator=(const type& value): A field basic type must be
assignable.

int operator==(const type& value): The equality operator. C++ sim-
ple types like int and float are all comparable, while new classes
must explicitly define this operator.

istream& operator>>(istream& is, type& value): The stream-in op-
erator defines how a value of the basic type is read from a stream.
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pfGroup
getParent()
getNumParents()
setName()
getName()
insertChild()
removeChild()
getChild()
getNumChildren()

avFieldContainer
getFields()

avGroup

Parents
Name
Children

Fig. 4.10: The method based interface of the pfGroup class is mapped to the
field based interface of the avGroup class.

Together with the stream out-operator it defines the stream represen-
tation of the type.

ostream& operator<<(ostream& os, const type& value): The stream-
out operator defines how a value is written to a stream.

Scheme av scheme bundle(const type& value): This function converts a
value into a suitable scheme representation. Simple types like int and
float are converted to their scheme counter-parts. More complex
types that have no comparable scheme representation, can be imple-
mented as opaque scheme objects, such that they can be handled but
not directly manipulated from scheme.

int av scheme unbundle(type& value, Scheme): This function converts
a scheme value to a value of type type. This function can fail if both
types are not compatible.

4.1.5 Field connections for event dissemination

As pointed our in 3.2.1Avocado uses the concept of field connections. Fields
of compatible type can be connected such that whenever the value of the
source field changes, it is immediately forwarded to the destination field.

Data-flow graph

Using field connections, a data-flow graph can be constructed which is con-
ceptually orthogonal to the scene graph. Avocado utilizes this mechanism
to specify additional relationships between nodes, which cannot be expressed
in terms of the standard scene graph. This facilitates implementation of in-
teractive behavior and the import of real world data into the scene graph.
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class avField {
public:
int connectFrom(avField* field);
void disconnect();
avField* getConnectedField();

};

Fig. 4.11: The field connection API of the avField class consists of three
methods.

Figure 4.11 shows the field connection API that is part of each field class
interface.

A field can be the receiving end of at most one field connection, while
any number of fields can receive their values from a single field. In other
words, the fan-in of a field is 1, the fan-out of a field is n.

Evaluation

The evaluation of the data-flow graph is performed once per rendering frame.
The starting point of the evaluation are the fields on the sensor objects that
incorporate data from real-world devices into an application. If the user, for
example, presses a button on a workbench stylus, the corresponding Trigger
field on the tracker sensor object changes value and initiates an evaluation.
The new field value propagates along the field connections until all connected
fields have received the new value. Field connections forward value changes
immediately, so that there is no propagation delay for cascaded connection
paths in the graph.

Loop detection

A data-flow network can contain loops. These must be detected and properly
resolved in order to prevent infinite notification loops that would effectively
hang the entire application. To achieve this, a field will only receive and
forward at most one new value for each evaluation cycle. If a loop existed,
value forwarding would stop in the moment the first field in the loop receives
the forwarded value for the second time.

Notification

A field container can implement side effects on field changes by overloading
the notify() and evaluate() member functions. Whenever a field is set
to a new value, the notify() method is called on the field container with
a reference to the changed field as an argument. The field container can do
whatever is necessary to achieve the desired effect, including the manipula-
tion of other fields. After all notifications for all fields on all field containers
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DCS
Matrix
Children

File
Matrix
Children
Filename

some[File]
Matrix
Filename
Children

g2[pfGeode]
GeoSets

g1[pfGeode]
GeoSets

g3[pfGeode]
GeoSets

Fig. 4.12: The avFile node.

have been made for one frame, the evaluate() method is called on each
field container which had at least one of its fields notified. This allows the
field container to perform actions which depend on more than one updated
field value for each frame.

4.1.6 Scene graph node classes

As pointed out in section 4.1.4, field container adaptions exist for all Per-
former node classes (pfGroup, pfDCS, pfLOD, ...) and most of the Performer
object classes (pfGeoState, pfMaterial, pfTexture, ...), which together
represent the Performer scene-graph API.

An example for a node extension: avFile

The ability to mix Avocado nodes with Performer nodes to construct the
scene graph can be conveniently used to define new nodes with additional
functionality. The avFile node, for example, is derived from the adaption
node avDCS. It inherits the interface of avDCS, which basically consist of
a Children and Matrix field. The avFile node adds a URL field of type
string. With an overloaded notify() method, avFile reacts to changes
of the URL field by retrieving a geometry from the specified URL and adding
that geometry to its list of children (See figure 4.12).

Thus, avFile imports the geometry into the scene graph, and can be
regarded as an opaque handle to it. Subsequent changes to the URL field
replace the old with the newly specified geometry.

4.1.7 Sensor objects

Sensors represent Avocado’s interface into the real world. They are derived
from the avFieldContainer class, but not from any Performer node, and
thus cannot be inserted into the scene graph. Sensors encapsulate the code
necessary to access input devices of various kinds. The data generated by
a device is mapped to the fields of the sensor (Figure 4.13). Whenever a
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class avTrackerSensor : public avDeviceSensor {
public:
avSingleField<string> Station; // inherited
avSingleField<avMatrix> Transform;
avSingleField<bool> Button;

};

Fig. 4.13: The Avocado sensor classes map data values from external de-
vices to fields.

device generates new data values, the fields of the corresponding sensor are
updated accordingly. Field connections from sensor fields to node fields in
the scene graph are used to incorporate device data into an application.

Avocado uses the term sensor with a different meaning than it is used
in OpenInventor (see section 2.1.2). OpenInventor uses the term sensor to
describe objects that can be attached to other objects to monitor attribute
changes on those objects and trigger application defined actions. Even ar-
bitrary changes to scene graph subtrees can be monitored using sensors.
ivview, a simple OpenInventor viewer, for example, attaches a sensor to the
root node of the scene graph. The sensor fires whenever the scene graph
is changed by the application and initiates a redraw of the scene. In Av-
ocado the term sensor to refer to objects that interface to the real world
and incorporate real-world data into the application.

An example for a sensor object: avTracker

The avTrackerSensor class, for example, provides an interface to a six-
degree-of-freedom space-tracker like the Polhemus Fastrak or the Ascension
Flock of Birds.

4.1.8 An external device daemon process

Avocado utilizes a device daemon process, which handles the direct in-
teraction with the devices via serial line or network connections. The dae-
mon updates the device data values into a shared memory segment, where
the avDeviceSensor classes can access them. A station name is used to
identify the desired device data in the shared memory segment, and every
avDeviceSensor class specifies this identifier in it’s Station field. After
connecting to the device daemon, the avTrackerSensor class provides the
current position and orientation information from the selected tracking de-
vice represented as a matrix in its Transform field. By connecting the
Matrix field of an avDCS node to the Transform field, the subtree rooted by
the avDCS node will move according to the tracker movement reported from
the selected station. Many avSensor classes have been defined to support a
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Polhemus
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Fig. 4.14: The device daemon process is started during the boot phase of the
operating system and provides low latency data from the various
devices to its clients on a permanent basis. Clients processes can
connect and disconnect at any time.

(make-ident-matrix)
(make-trans-mat tx ty tz)
(make-scale-mat sx sy sz)
(mult-mat mat1 mat2 ... matn)
(invert-full-mat matrix)
(set-mat-row matrix row value-list)
(get-mat-row matrix row)

Fig. 4.15: The Scheme binding to the avMatrix class allows creation and
manipulation of avMatrix values from Scheme. The make-...
functions create a new matrix value, while the other functions
perform manipulations on provided matrix values.

great variety of input devices, such as mouse, keyboard, trackers and gloves.

4.1.9 Integration of the ELK Scheme language

As pointed out in 3.2.8, Avocado implements a complete language binding
to the interpreted language Scheme. Avocado uses the ELK [51] Scheme
implementation, which is a small and elegant Scheme interpreter and is
especially suited to serve as an extension language for C and C++ programs.
The Avocado scheme binding is based on the field and field container APIs
of the Avocado objects.

For all basic data types which are used to instantiate field classes a
scheme representation with all necessary accessor functions exists. The basic
data types are passed by value to and from the Scheme interpreter and can
be handled like any other built-in Scheme type. Figure 4.15 shows a subset
of the Scheme binding for the avMatrix basic type.

Avocado objects like nodes and sensors are handled by reference. This
is implemented by providing a binding for the avLink class. avLink values
are again passed by value to the Scheme interpreter so that references to
Avocado objects are properly reference counted. Scheme uses a garbage
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;; the objects
(define tracker (make-instance ’avTrackerSensor))
(define file (make-instance ’avFile))

;; configure the tracker
(av-set-value tracker ’Station "head-tracker")

;; load some geometry into the file node
(av-set-value file ’Url "http://viswiz.gmd.de/head.iv")

;; build the scene graph, and connect the tracker
(av-set-value scene-root ’Children (list file))
(av-connect-from file ’Matrix tracker ’Transform)

Fig. 4.16: An example scheme script that loads an Inventor geometry, adds
it to the scene graph and draws a connection to a tracker sensor.

collector to reclaim memory from objects which can no longer be accessed by
the interpreter. When an avLink value gets garbage collected, the reference
count on the associated Avocado object is decremented properly.

Avocado objects can be created from Scheme by providing the name
of the desired object class as an argument to the (make-instance class)
function. The object is instantiated, and a reference is handed back in form
of a avLink<> value.

A set of accessor functions allows access to the field container and the
field interfaces of Avocado objects. Figure 4.16 shows an example script
which instantiates an avFile nodes and connects it to an avTrackerSensor.

An avFile nodes and an avTrackerSensor are instantiated. The tracker
is configured to read it’s input from a tracking device called head-tracker.
The file node loads an OpenInventor file from the specified URL. By making
the file node a child of the scene-root the associated geometry gets rendered.
After connecting the file node to the tracker sensor, the loaded geometry
will follow the tracker movement.

Because ELK Scheme is an interpreted language, every Avocado ap-
plication provides a command-line interface, where Scheme commands can
be given at run-time. All Avocado objects which have been defined from
a scheme script can be accessed and manipulated while the application is
running.

The Avocado scripting interface suggests a two tracked approach to
application development. Complex and performance critical functionality
is implemented in C++ by subclassing and extending existing Avocado
classes. The application itself is then just a collection of Scheme scripts
which instantiate the desired Avocado objects, set their field values and
define relationships between them. The scripts can be written and tested
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while the application is running. This leads to very short turnaround times
in the development cycle and provides a very powerful environment for rapid
application prototyping, which was proposed in the requirements.

4.1.10 A component interface for framework extension

A framework that offers a component interface encourages developers to de-
sign a complex application as a collection of objects that perform simple,
well-defined tasks. It allows the framework to be kept small while additional
functionality can be added to an application in a controlled and convenient
way. The probably most (in)famous example is Microsoft’s COM[63] (Com-
ponent Object Model). Component interfaces enforce strict encapsulation
of functionality, encourage clean interface design and foster reuse, which is
generally a good thing. A good component interface does not just expose
internal structures, but exposes functionality on a higher level of abstraction
that describes what can be done, not how it is accomplished.

A component is a collection of code that exposes a set of interfaces that
define object properties, methods and events. A few requirements must be
fulfilled by a component interface to make it useful:

• A component can be attached to the application at run-time. It need
not be available at compile-time.

• Interfaces are unique and immutable within the realm of the compo-
nent model.

• Objects can be instantiated from the component at will. They adhere
to one or more of the components interfaces.

• Each object can be queried for its set of supported interfaces.

• Each interface can be queried for the set of properties, methods and
events it defines (reflectivity).

Based on the field container class Avocado defines a simple component
interface that fulfills those requirements. An object interface description,
with respect to the component model, consists of a unique name and an un-
ordered set of fields. Additional methods or events cannot be exposed. Each
object is of type avFieldContainer and can only be manipulated through
the avFieldContainer interface and by modifying the objects fields. Be-
cause of the fully reflective properties of the avFieldContainer interface, all
component objects can be queried for their type name and for the names,
types and values of the contained fields.

A component is represented by a dynamic shared object (DSO) that can
be mapped into the address space of an application at runtime and contains
the components code and data segments. By convention, each component
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provides exactly one type of object that can by created through a factory
function. The component DSO file carries the same name as the type of the
components object.

The global function

avLink<avObject> makeInstanceByName(const string\& type);

is the key to generic object instantiation from components. First, the
type registry is check whether a factory object for a type of this name exists.
If yes, a new object of the desired type is created and returned. If not, a
set of predefined locations on disk is searched for a component DSO file
with the same name as the type of the object to be constructed. If such a
DSO is found, it is mapped into the address space of the application and
the initialization function is resolved and called. During initialization of the
component a factory object for the component type is registered with the
type registry. This factory object is now used to create an object of the
desired type and the object is returned to the caller.

Because of the full reflectivity of the objects created through the com-
ponent interface, they have all properties of normal Avocado framework
objects with respect to such important features as streaming, persistence and
script-ability. This is especially important with respect to the intended de-
velopment style when using the Avocado framework. Common and CPU
intensive functionality can be encapsulated in reusable, compiled compo-
nents and is accessible through the associated objects and interfaces, while
application specific initialization and association of components is imple-
mented using the interpreted scripting language.

4.1.11 An interface for state object persistence

The streaming interfaces for fields and field containers have already been
discussed in sections 4.1.1 and 4.1.2. The ability to serialize fields and field
containers into a stream of bytes or characters is now used to implement
persistence not only for single objects, but also for references between objects
and thus the entire scene graph.

Writing the state of a single field container object to file is straight
forward to implement. Figure 4.17 shows a code segment that writes a
set of fields to file. It is the core of the implementation of the stream-out
operator on avFieldContainer. It consists of a loop over all fields of the
field container. Each field is written as the field name followed by the string
representation of the field value followed by a newline character.

If the field has a field connection from some other field, this field connec-
tion has to be made persistent as well. This shows that it is not sufficient
to write out single field container objects, the relationships between objects
need to made persistent. There are two different kinds of relationships be-
tween objects that need to be regarded:



4.1. The Avocado object model 79

void
avFieldContainer::write(avOutputStream& os)
{
avFieldPtrVec& fields = getFields();
avFieldPtrVec::iterator i;
for (i=fields.begin(); i!=fields.end(); i++) {
os << (*i)->getName() << ’ ’ << (*i)->write(os) << endl;
(*i)->writeConnection(os);

}
}

Fig. 4.17: The core of the stream-out operator on avFieldContainer

• Field connections

• Object references via fields of type avLink<> and vector<avLink> >

Field connections and object references define a general, non-directed,
probably cyclic graph that needs to be serialized. The solution is to find a
traverser that guarantees traversal of the entire graph in a limited amount
of time and to prevent objects from being written to a stream more than
once.

The Avocado traversal algorithm exploits the fact that objects are or-
ganized in a scene graph that is guaranteed to be directed and acyclic. A
top-down, depth-first traversal of the scene graph along the edges defined by
the parent-child relationship between objects will eventually pass all objects
in the scene-graph at least once.

During the traversal an object that is passed for the first time is assigned
a traversal sequence number and its state is written to the stream. If the
object contains references to other objects, either through field connections
or object references, it is checked whether the referenced object has already
been written to the stream or has been encountered for the first time.

If it has already been streamed the reference is represented by writing the
sequence number of the referenced object to the stream. Also the traversal
does not continue with the referenced object.

If the referenced object is encountered for the first time, a new sequence
number is generated and together with the newly encountered object is
written to the stream. The traversal then continues with the referenced
object.

This way, all objects get written to the stream exactly once and all
references between objects are properly represented in the stream. Figure
4.19 shows the serialization of the simple scene graph consisting of three
objects that can be seen in figure 4.18.

Note how the sequence numbers are appended to the object classes sepa-
rated by a colon. A reference to an already written object is represented by
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Root[avGroup]
Name = "Root"
Children

Object1[avFile]
Name = "Object1"
FileName = "geometry.iv"

Object2[avFile]
Name = "Object2"
FileName = "geometry.iv"

Fig. 4.18: The serialization of this simple scene graph is shown in figure 4.19

avGroup:1 {
Name "RootNode"
Children [
avFile:2 {
Name "Object1"
FileName "geometry.iv"
= avFile:3 {

Name "Object2"
FileName "geometry.iv"

}
}
#3

]
}

Fig. 4.19: This is the result of the serialization of the simple scene graph
shown in figure 4.18.

a hash mark followed by the sequence number of the object. A field connec-
tion is represented by an equal sign following a field value. The ”Object2”
is referenced twice in this example and is written to the stream only once.
The second reference is represented using the sequence number.

The resulting file format is not intended as a public data exchange for-
mat, but is meant to be a framework internal format. Therefore it is not
explicitly documented and the modification of the resulting files with a text
editor or other framework external tools is not recommended.

4.2 Display device abstraction

A major requirement for the Avocado framework is to enable the use of
a huge variety of display devices. Possible devices can range from a simple
graphics window on a workstation monitor to sophisticated, head-tracked
stereo, multi-screen devices like the Cyberstage and the Responsive Work-
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bench. To support a specific device it may be not sufficient to provide a
suitable rendered image of the scene. Head-tracked devices like the BOOM,
for example, require that the tracking data from the device be incorporated
into the imaging model. Further, some of the more interesting devices ad-
ditionally require the provision of 8 or more different images of the scene to
compose visual output for one rendering frame.

A display device abstraction must be mighty enough to model all those
different kinds of display devices, while at the same providing maximum per-
formance through the efficient use of multi-pipe and multi-processor hard-
ware. The concepts used in the abstraction should be few in number and
easy to grasp for the application developer.

Devices can belong to one or more of the following categories:

Monoscopic Display: A monoscopic, “one eyed” view of the scene is rendered.

Stereoscopic Display: A stereoscopic “two eyed” view of the scene is ren-
dered. Actually, two monoscopic images are rendered from slightly
different view points, one for the left eye, one for the right eye. The
device supports some means of separating the two images when pre-
sented to the viewers left and right eye (e.g. shutter glasses or polar-
izing glasses).

Multiple Screens: The display consists of more than one physical display
area. Usually the physical screens are pieced together to provide the
impression of one large, not necessary flat, screen. Separate images
are rendered for each physical display screen.

Static Symmetric Frustum: The viewing frustum is static and the position of
the projection plane relative to the viewer is constant. The frustum
itself is symmetric in order to simulate the behavior of a real life camera
optic.

Static Asymmetric Frustum: The viewing frustum is static and the position
of the projection plane relative to the viewer is constant. The frustum
is asymmetric in order to accommodate for the position of the physical
viewer relative to the physical screen.

Dynamic Frustum: The frustum is recalculated for every frame in order to
accommodate for the position of the physical viewer relative to physical
screen, even if that viewer is moving relative to the screen. These
devices require some means of measuring the position of the physical
viewer relative to the physical screen.

To illustrate the enormous flexibility required from a general purpose display
device abstraction, a few of the more common existing display devices have
been categorized in Table 4.2.
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Monitor • •
Stereo Monitor • •
Wall Projection • •
CONE • • •
Stereo Projection • •
CAVE, Cyberstage • • •
Workbench • • •
Head-Mounted Display • • •
A+C Explorer Panel • •

Tab. 4.2: Categorization of common display devices. The CONE is a
curved, 4-screen surround projection with edge blending hardware.
The Art+Com Explorer Panel[67] is a screen-tracked LCD flat-
panel device.

The Avocado approach to the problem is based on a small number of
components that the application programmer can link together to customize
his application to any number of different display devices or combinations
thereof. The following section will describe each of the components in detail.

4.2.1 Basic elements of the abstraction

A class diagram showing the relationships between the display component
classes is given in Figure 4.20.

The avEye class

The avEye class is derived from the standard avDCS class. It is meant to
be part of the scene graph, and marks a possible eye point in the graph.
Additionally, avEye has a the NearFar field which is used to specify the
positions of the near and far clipping planes to be used for renderings from
that eye point. The position and orientation of the avEye node in global
world coordinates are used to determine the camera position and orientation
for renderings from that eye point. As a normal member of the scene graph,
an avEye node will inherit all transformations specified on its path to the
scene root.
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Fig. 4.20: Display class diagram. avEye and avScreen instances are part of
the scene graph. The others are part of the application environ-
ment.

The avScreen class

The avScreen class is derived from the standard avDCS class. It is meant
to be part of the scene graph, and marks a possible (virtual) projection
screen in the graph. The Size field determines the horizontal and vertical
extend of the virtual screen on the projection plane The virtual screen is
defied to be axis aligned within the projection plane coordinate system. By
convention, the projection plane is defined as the XZ-coordinate plane in the
local coordinate system of the avScreen node. The position and orientation
of the avScreen node in global world coordinates are used to determine the
position and orientation of a projection plane and the extend of the virtual
screen on that plane. As a normal member of the scene graph, an avScreen
node will inherit all transformations specified on its path to the scene root.

The avView class

The avView class is an abstract class and is directly derived from
avFieldContainer and is therefore not part of the scene graph. Its concrete
subclasses can be seen as part of the application environment surrounding
the scene graph.

The calculation of the viewing frustum is the main responsibility of
the avView class. By using the function avNode::getWorldTransform(),
avView determines the transformation from the local coordinate system of
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the avEye node into the world coordinate system. The function traverses
the scene graph upward to the root node, and accumulates the transforma-
tion matrices it finds in avDCS or avSCS nodes on the way up. The same is
done for the avScreen node. Let the avEye transform be the 4 × 4 matrix
E, and S the one for the avScreen node. Further, let w be the horizontal
width of the screen, and h the vertical height, both expressed in the local
coordinate system of the screen and obtained from the Size field of the
avScreen node. The frustum is specified in terms of the distances n and
f of the near and far clipping planes from the eye point, and the distances
of the intersection lines of the four defining, axis aligned side planes of the
frustum with the near clipping plane from the origin (Se figure 4.21). Let l
be this distance for the left side plane, and r, b, t for the right, bottom and
top planes respectively. This frustum definition is in eye space, where the
eye point is at the origin, and the viewing direction is the positive Y -axis
(by convention of the underlying graphics system). First, the projection of
the eye point onto the screens XZ-plane, eSxz , is determined as:

eSxz =


0
0
0
1

ES−1

The distances of the near and far clipping planes in eye space , nE and
fE are specified in the NearFar field of the avEye node. They are used as
absolute values and are not transformed. Now the frustum definition can be
completed as:

n = nE

f = fE

l =
(−w

2 − eSxz
x )n

eSxz
y

r =
(w

2 − eSxz
x )n

eSxz
y

b =
(−h

2 − eSxz
z )n

eSxz
y
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(h

2 − eSxz
z )n
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y

Although the frustum definition is done in eye space, by first transform-
ing the eye point into screen space and the projecting it onto the screen
plane, and then transforming it back into two dimensional eye space, all
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Fig. 4.21: The relative position and orientation of the screen and the eye
coordinate system E and the screen coordinate system S defines
the view frustum that is used for rendering. (For visual clarity, the
distance between E and S is exactly f , which is not mandatory
and not normally the case)

rotational components are conveniently eliminated from the eye point spec-
ification.

Beside the calculation of the viewing frustum, the avView class is respon-
sible for the mapping from the virtual screen to a graphics output window.
The positioning of the projected image within the graphics window is spec-
ified via the Viewport field. Its four values are used to position the image
relative to the four window borders.

The avMonoView class

The avMonoView class is a concrete subclass of the avView class. Its Eye
and Screen fields are of type avLink<avEye> and avLink<avScreen> re-
spectively, and are used to reference the particular avEye and avScreen
nodes that are to be used for view frustum calculation. The Window field
references a particular monoscopic graphics window to which the output
should be directed.

The avStereoView class

The avStereoView class is a concrete subclass of the avView class. Its
LeftEye, RightEye and Screen fields are of type avLink<avEye> and
avLink<avScreen> respectively, and are used to reference the particular
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Fig. 4.22: A combined view frustum for left and right eye is used to optimize
cull performance. Instead of two cull passes only one is needed at
the expense of a slightly larger cull frustum.

avEye and avScreen nodes that are to be used for the calculation of two
related viewing frustra for stereo rendering. The Window field references
a particular stereoscopic graphics window to which the output should be
directed.

The only reason for the existence of dedicated mono and stereo versions
of the avView class is optimization of rendering performance. As mentioned
in Section 2.1.1, Performer makes aggressive use of view frustum culling
in the CULL rendering stage to reduce the amount of geometry sent to
the DRAW stage for rendering. Typically, the viewing frustra for the left
and right eye view of a stereo image pair differ only by a small percentage,
producing almost identical results in the CULL stage (see figure 4.22).

The avStereoView class exploits this, by culling only once for each stereo
image pair. The cull is performed against the union of the view frustra for
the left and right eye. So, instead of using two CULL stages and two DRAW
stages for the generation of a stereo image pair, avStereoView only uses one
CULL stage and two DRAW stages to produce the same result. This can
reduce processor utilization by up to 25%.

The avWindow class

The avWindow class is an abstract class and is directly derived from
avFieldContainer and is therefore not part of the scene graph. Its concrete
subclasses can be seen as part of the application environment surrounding
the scene graph. The main task of an avWindow is to identify the graphics
window that an avView should render to. The PipeNum field specifies the
id of the graphics hardware subsystem, the window will be opened on. The
Origin and Size fields specify the relative position and the extend of the
window. The Name field specifies a string that will be shown in the windows
title bar.
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The avMonoWindow class

The avMonoWindow class is a concrete subclass of the avWindow class. It
will open a window of the specified size and origin on the specified hardware
graphics pipe. The window will be opened in mono mode, providing only a
front and a back buffer for double buffered rendering.

The avStereoWindow class

The avStereoWindow class is an abstract subclass of the avWindow class. It
is used as a base class for all stereo window classes. The Window field on the
avStereoView class can accept references to all concrete subclasses of the
avStereoWindow class.

The avNewStyleSW class

The avNewStyleSW class is a concrete subclass of the avStereoWindow class.
It will open a window of the specified size and origin on the specified hard-
ware graphics pipe. The window will be opened in quad buffer stereo (also
called “stereo in a window”) mode, providing a left and a right version of the
normal front and a back buffer for double buffered stereo rendering. Quad
buffer stereo supports field sequential stereo output devices and is normally
used in conjunction with synchronized LCD shutter glasses for image sepa-
ration.

The avOldStyleSW class

The avOldStyleSW class is a concrete subclass of the avStereoWindow class.
It will open a window of the specified size and origin on the specified hard-
ware graphics pipe. The window will be opened in mono mode, providing
only a front and a back buffer for double buffered rendering. The assumption
is, that the entire graphics subsystem is in “old-style stereo mode”. This has
to be assured by the user running the Avocado application. In “old-style
stereo mode” the upper half of the entire screen is used to display the video
image for the left eye, while the lower half will display that for the right eye.
The video scan-conversion logic will produce a field sequential stereo signal
from the two images. A avOldStyleSW normally opens a full screen window
and directs the image for the left eye to the upper half of that window, and
the image for the right eye to the lower half.

4.2.2 Configuration examples for selected devices

This section gives six common examples to show just how the display compo-
nents enable the Avocado application developer to support a wide variety
of different display output devices.
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monitor[Group]
Children

screen[Screen]
Size

eye[Eye]
NearFar

w[MonoWindow]
PipeNum

view[MonoView]
Screen
Eye
Window

Fig. 4.23: A configuration for a simple monitor device.

monitor[Group]
Children

screen[Screen]
Size

left[Eye]
NearFar

right[Eye]
NearFar

view[StereoView]
Screen
RightEye
LeftEye
Window

w[StereoWindow]
PipeNum

Fig. 4.24: A configuration for a stereo capable monitor device.

Monitor

A single graphics window on a workstation monitor is the most simple de-
vice that is supported by Avocado (see figure 4.23). It uses an avMonoView
object in conjunction with an avMonoWindow to open a window on the spec-
ified graphics display. One avEye node and one avScreen node are grouped
together using an avGroup node. Their relative positions and orientations
completely specify the viewing frustum for rendering. They are both refer-
enced by the avMonoView object. The avGroup node can be placed anywhere
in the scene graph to determine the eye position and orientation.

Should the application require the eye point to move (which is likely to
happen in most applications), it just needs to modify a suitable transforma-
tion node above the group node to alter its absolute position and orientation
in world coordinate space. The relative position of the avEye and avScreen
node, and thus the viewing frustum, will remain constant. The viewer will
be moved through the scene without modification of the camera parameters.

Stereo monitor

The configuration for a stereo capable monitor (see figure 4.24) is very sim-
ilar to the configuration for the simple monitor introduced above. Instead
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mon[Group]
Children

view[StereoView]
Screen
RightEye
LeftEye
Window

glasses[DCS]
Matrix
Children

s[Screen]
Size

left[Eye]
NearFar

right[Eye]
NearFar

w[StereoWindow]
PipeNum

head[Tracker]
Matrix

Fig. 4.25: A configuration for a head-tracked stereo capable monitor device.

of the mono versions of the view and window objects, the stereo versions
avStereoView and avStereoWindow are used. Stereo images need two eye
points, one for the left and one for the right eye view. The use of two avEye
nodes reflects this. Both eye points project their images onto the same vir-
tual screen, so only one avScreen node is used. Eye nodes and screen nodes
are referenced by the avStereoView object. As with the monitor configura-
tion, the group node can be added to the scene graph at any position. The
absolute world space position of the avEye nodes specifies the eye points for
left and right eye, while the relative positions of eye nodes and the screen
node determine the two frustra.

Head-tracked stereo monitor

With a slight modification the stereo monitor configuration can be altered
to support head-tracked stereo (see figure 4.25). An avDCS node is inserted
above the two avEye nodes. Its Matrix field is connected from the Matrix
field of a tracker sensor (see section 4.1.7). The tracker sensor will deliver
data from a real world sensor that is attached to the users head (or, most
probably, to the stereo glasses she is wearing). If the user moves her head in
front of the monitor, the two avEye nodes below the avDCS nodes automat-
ically follow that movement. As in the real world, where the monitor stays
fixed, the avScreen node is not moved.

Thus, the two frustra used for image rendering change along with the the
eye point movement, providing a high-quality stereo image of the objects
in the scene. Because the frustra are recalculated for each new position
of the users head, the viewed objects appear to be suspended in space,
the user can look at them from different angles just by moving his head.
Still, the whole setup can be moved freely through the scene by modifying
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eyes[Group]
Children

view[StereoView]
Screen
RightEye
LeftEye
Window

head[DCS]
Matrix
Children

s[Screen]
Size

left[Eye]
NearFar

right[Eye]
NearFar

w[StereoWindow]
PipeNum

head[Tracker]
Matrix

Fig. 4.26: A configuration for a head-mounted display with 100% overlap.

any transformation node above the avGroup node. The user will have the
impression, his monitor where a window into the scene that he can virtually
move around with.

Head-mounted display with 100% overlap

The configuration for a head-mounted display with 100% overlap (see figure
4.27) is surprisingly similar to the head-tracked stereo monitor configuration.
The position of the avGroup and avDCS nodes in the scene graph have been
swapped. Thus, not only the eye points, but also the virtual screen moves
along with the head movement of the user. This reflects the physical config-
uration of a head-mounted display, where the physical screens are attached
to the users head, and the entire assembly is tracked. There is still only
one avScreen node, so that this configuration only works for head-mounted
displays with 100% overlap.

Head-mounted display

The previous configuration examples used only one avEye object, and thus
only one avView object. This was possible because, even in the stereo con-
figurations, all the eye points used would project their images onto the same
virtual screen. For head-mounted displays with less than 100% (see figure
4.27) overlap this is no longer true. A second avScreen node is needed be-
cause the two stereo images created here do only partially overlap. This is
a common technique, used to increase the field-of-view. As a result, stereo
vision is only available in the overlapping area of the two views, and the two
viewings frustra are not only different with respect to the eye positions, but
also with respect to the screen position and orientation.
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eyes[Group]
Children

head[DCS]
Matrix
Children

right[Screen]
Size

left[Eye]
NearFar

right[Eye]
NearFar l[MonoWindow]

PipeNum

head[Tracker]
Matrix

left[Screen]
Size

left[MonoView]
Screen
Eye
Window

right[MonoView]
Screen
Eye
Window

r[MonoWindow]
PipeNum

Fig. 4.27: A configuration for a head-mounted stereo display with less than
100% overlap.

mon[Group]
Children

1[StereoView]
Screen
RightEye
LeftEye
Window

glasses[DCS]
Matrix
Children

n[Screen]
Size

left[Eye]
NearFar

right[Eye]
NearFar

1[StereoWindow]
PipeNum

head[Tracker]
Matrix

1[Screen]
Size

n[StereoView]
Screen
RightEye
LeftEye
Window

n[StereoWindow]
PipeNum

Fig. 4.28: A configuration for a two-sided head-tracked workbench device.
The same configuration with N screens and stereo views would
be used for a N -sided CAVE.

Instead of one avStereoView object, two avMonoView objects with as-
sociated avMonoWindow objects are used. Each view object references one
avEye, avScreen pair to independently produce one of the two stereo im-
ages.
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Responsive Workbench, Cyberstage and CAVE

The top of the crop are clearly large scale, immersive displays like the Cy-
berstage or the Responsive Workbench. Their similarity to head-mounted
displays, with respect to the goal of user immersion, shows in the similarity
of the to display device configurations (see figure 4.28). The basic setup is
like that for the head-mounted display with less than 100% overlap. For
each physical screen there is one avScreen object connect to one dedicated
avView object. Because CAVEs use shutter-glass stereo, an avStereoView
object with associated avStereoWindow is used. The avGroup node and
the avDCS node are again reversed such that the tracker only controls the
eye positions, not the virtual screens. The two avEye nodes are shared by
all avStereoView objects, reflecting the assumption that there is only one
head-tracked viewer in the CAVE at any one time.

Again, because the tracker controls the eye points relative to the virtual
screen, the whole setup can be freely moved around in the virtual world by
modifying any suitable transformation above the avGroup node. The user
can look at the CAVE as a vehicle that she is driving (or flying) around the
virtual world.

Summary

Avocados display device abstraction relies on a few components that can
be easily combined to adapt to any conceivable display device configuration.
Because of its modularity it can not only adapt to the device configuration,
but also efficiently utilize multi-pipe graphics hardware on multi-processor
machines to achieve the best possible performance for any configuration.
By separating the frustum definition into two independent components, the
eye point and the virtual screen, devices with head-tracked viewers can be
conveniently modeled. Moreover, by integrating the eye point and virtual
screen definition into the scene graph, even complex camera control mecha-
nisms can easily be implemented. By using special optimizations for stereo
views, the rendering performance can be increased by up to 25%.

4.3 Tool-based interaction support

Direct user interaction with objects in a VE on devices like the Responsive
Workbench is a natural part of the interface metaphor of such devices. This
section describes a framework that provides the necessary services for the
application level implementation of WIMP-style user interfaces, which are
well known from two-dimensional WYSIWYG1 applications.

Although being intended for the somewhat special case of stylus based
interaction on the Responsive Workbench, the framework should provide

1 WYSIWYG: What You See Is What You Get
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Fig. 4.29: Two users in front of a Responsive Workbench, working on a flow-
field simulation of a car.

maximum overall flexibility to the application developer in the definition
of object/pointer interaction patterns. Especially the question of where to
specify the action should not be answered by the framework, but should be
resolved by the application. Also, it should be possible to mix both styles
within one application.

Also the interaction framework must be extensible such that new ap-
plications can implement specific interaction patterns without modification
of the framework. This can be achieved by representing the necessary ab-
stractions as Avocado classes that can be extended using the standard
Avocado component interface (see also section 4.1.10).

4.3.1 An interaction metaphor for the Responsive Workbench

The Responsive Workbench[26] is a horizontal back-projection tabletop dis-
play. The height of the projection display corresponds to the height of a
real-world workbench or table. The user stands upright in front of the Re-
sponsive Workbench and looks at the stereo projection through a pair of
head-tracked goggles. Left and right image separation is achieved by either
using image sequential projection and synchronized LCD-shutter glasses, or
by using two polarizing image projectors and matching polarized glasses.

A commonly used input device is a space tracker probe in form of a
stylus that the user can grab with her hand and move around above the
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Fig. 4.30: A Polhemus Fastrack with the Stylus input device.

Workbench. The stylus is equipped with a push button. The VE software
can use the stylus position and orientation together with the status of the
push button to deduct the possible intention of the user with respect to the
context of the VE.

The virtual environment that is presented to the users often consists of
complex objects that appear to be ”lying” on the tabletop display. The
stylus will then be used to directly manipulate those objects, as for example
in a assembly testing application. The metaphor that is used to facilitate the
interaction between the stylus and an object in three dimensions is directly
related to the well known case of interaction between a mouse pointer and
two dimensional objects in a normal WYSIWYG application.

The stylus corresponds to the mouse. The user holds the stylus with
his dominant hand and moves it around above the workbench display. A
visual marker object is used inside the VE to visualize the corresponding
position of the real world stylus in the virtual environment. This marker is
the equivalent to the mouse pointer in a 2d user interface. Whenever the
marker intersects with an object in the virtual environment, an interaction
is possible.

The marker resembles an infinitely long light saber2 to overcome po-
tential reach problems. Objects can appear in positions on the workbench
display that the user can not reach with his hand. This is, for example,
always the case if the object appears under the workbench tabletop. The
one dimensional extend of the marker still allows precise interaction with
objects out of reach in a laser beam pointer like fashion.

Using the marker to identify an object for a possible interaction, the
button on the stylus is used to initiate an interaction. This is classic point
and click, just like in 2d user interfaces using a mouse and an on-screen
pointer.

2 A popular general purpose tool in the Star Wars universe.
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Point, click and drag

A user can perform three different basic actions on an object using the stylus.

Point: The pointer intersects one or more objects. No interaction takes
place. Instant visual feedback through the marker allows for easy
selection of objects for interaction.

Click: The user clicks the button on the stylus. An interaction between the
pointed to object and the pointer is initiated. It can potentially last
until the stylus button is released.

Click and Drag: The user clicks the button on the stylus. An interaction
between the pointed to object and the pointer is initiated. During the
button down period the spatial position of the stylus is available as
one parameter of the interaction.

Interaction between a pointed to object and the pointer can occur when
the stylus button is clicked. During pure pointing, when the stylus button is
not pressed, no interaction between object and stylus is supported. A more
general approach would allow interactions between the pointer and an object
even if the button is not pressed. For performance reasons it was decided
to not allow this case, as a simple implementation of a continuous detection
of intersections between the stylus and all object in the scene turned out
to significantly impact overall system performance on small, one-processor
graphics workstations.

Action specification

After an object has been selected for interaction by pointing and clicking, it
needs to be specified what kind of action should be performed. As the object
and the pointer are the only two entities participating in the interaction,
either the object or the pointer must define the details of the interaction.
A closer look at common interaction patterns found in WIMP applications
reveals good reasons for both possibilities.

Object-based Action Specification: The action is associated with the object.
The pointer is generic and just triggers the action that is defined on the
object. Different objects can define different actions. A good example
is a standard push button in a WIMP application, where the mouse
pointer behaves the same for all buttons, while each button typically
performs a specific action. The definition of a specific action is solely
associated with each button.

Pointer-based Action Specification: The action is associated with the pointer.
All objects behave the same with respect to the pointer. As an ex-
ample for this case consider a 2D drawing application. Most drawing
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Fig. 4.31: The abstraction used to represent interaction patterns between
objects and the workbench stylus consist of three classes.

applications provide a variety of user selectable pointers that perform
specific operations on objects. If the user, for example, selects the
”move pointer”, clicking and dragging any object will move the object
around on the canvas, regardless of the concrete type of the object.
The definition of the action is solely associated with the pointer.

4.3.2 Implementation of the interaction abstraction

The abstraction used to represent interaction patterns between objects
and the workbench stylus consist of three classes (see figure 4.31), the
ToolStylus, the Tool and the ToolDragger. The ToolStylus is a con-
crete class that describes a stylus, while Tool and ToolDragger are abstract
classes that must be specialized to perform application specific tasks.

The ToolStylus class

The ToolStylus class represents the physical stylus in the virtual environ-
ment. It is derived from DCS and thus inherits a Matrix field. By connecting
positional input from a tracker to the Matrix field, the ToolStylus moves
along with the real-world stylus. The ToolStylus also monitors the status
of the stylus button. If desired, a 3D representation for the ToolStylus can
be provided by adding some geometry as child nodes.

The main purpose of the ToolStylus is to relate the user controlled sty-
lus movements to tools that facilitate manipulation of objects in the virtual
environment. Objects of class Tool can be connected to the Tool field. On
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connection the Tool node is re-parented to the ToolStylus and for the dura-
tion of the connection moves along with the stylus. The stylus button status
is also forwarded to the tool and is available through the Push field. Tools
can be exchanged by the application at any time, making the ToolStylus
a generic handling device for the various Tool objects an application offers
to the user.

The Tool class

The Tool class is the abstract base class for all tools. Each concrete subclass
represents a tool that can be attached to a ToolStylus and implements a
specific method of interaction with objects in the virtual environment. If
a tool requires a 3D representation, the suitable geometry can be added as
child nodes.

A tool does not manipulate an object directly, but does so by way of a
ToolDragger object.

The ToolDragger class

The ToolDragger class is the abstract base class for all draggers. Draggers
represent the interface between the objects in the scene graph and the tools
that want to manipulate the scene graph and its objects. Together with the
tool currently attached to the tool stylus, the ToolDragger objects define
whether an interaction is possible at all, and if so, what the exact effect of
the interaction on the relevant objects will be.

Every object that is part of the scene graph is derived from the avNode
class and thus inherits the Dragger field. It is a multi-field that can contain
any number of references to ToolDragger objects.

An example for a simple ToolDragger is the MatrixDragger. The In-
terface that a MatrixDragger exposes to a tool consists of a single matrix
field.

class MatrixDragger : public ToolDragger{
public:
MatrixDragger();
avSFMatrix Children;

};

A tool that interacts with this dragger modifies the Matrix field accord-
ing to its own position. The Matrix field of the dragger, in turn, connects
to the Matrix field of a DCS node in the scene graph. The dragger has two
responsibilities: first, it marks an object for possible interaction with a cer-
tain class of tools, and second, it mediates between the interacting tool and
object and possibly filters modification requests.
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some[Group]
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fast[Tracker]
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d[MatrixDragger]
Tool
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t[DragTool]
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s[ToolStylus]
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obj[File]
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Fig. 4.32: A simple interaction setup in its initial state before the user pushes
the stylus button.

A simple interaction example

The implementation is further documented along the lines of a simple in-
teraction example. Figures 4.32, 4.33 and 4.32 show various stages of an
interaction.

Figure 4.32 describes the initial state of the system, everything is set up
but interaction is yet performed. The MatrixDragger obj is connected to
an avFile node that is part of the scene graph. The file node references
the dragger while its Matrix field is connected from the Matrix field of
the dragger. A Tracker is used to feed the Push and Matrix fields of the
ToolStylus s with the current button status, position and orientation of
the real-world stylus. The tool stylus holds the DragTool t and forward the
value of its Push field to the tool.

Now, the user points the stylus at the geometry that is represented by
the File node obj and pushes and holds the stylus button (Figure 4.33).
The tool stylus now performs a pick operation and determines whether the
stylus points at an object that has a dragger connected that is compatible
to the current tool. The process of picking and dragger matching is further
detailed in sections 4.3.2 and 4.3.2. In this example the pointed to object is
the File node obj, and the MatrixDragger d is compatible to the DragTool
t. Now d and t are connected by referencing each other with their Tool
and Dragger fields respectively. This connection between tool and dragger
is held up as long as the user keeps the stylus button pushed.

After the initial setup, whenever the user moves the stylus, the Matrix
field of the Tracker fast reflects this change and propagates it through the
field connection to the tool stylus s (Figure 4.34). The tool stylus now
calculates its new global position and makes it available to the connected
tool t. The tool in turn calculates the ∆ transformation from its old position
to the new position and communicates that to the temporarily connected
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Fig. 4.33: The user has pushed the stylus button and after some search-
ing and matching the relevant tool and dragger are temporarily
connected.
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Fig. 4.34: The connection between the tool and the dragger is established,
and as long as the user holds the stylus button, the stylus move-
ments are applied to the obj node (The lightning symbolizes an
active field connection).

dragger d. The dragger now applies this ∆ transformation to the Matrix
field of the File object obj. As a consequence, the geometry represented
by the File node obj will move along with the stylus movement in the
real-world, as long as the user pushes the stylus button.

When the user releases the stylus button the temporary connection be-
tween the dragger d and the tool t is removed and the geometry below the
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File node obj remains at its last position.

Picking

Picking is initiated in the ToolStylus once the user has pushed the button
on the stylus. The desired result of this stage is the object that intersects
with the laser pointer beam of the tool stylus. This test is performed in two
steps:

1. The pick segment is calculated in global coordinates and is described
as a line segment that extends from the global stylus position into the
direction of the laser beam pointer. First, the transformation from
the local stylus coordinate system into global coordinates is calcu-
lated by upward traversal of the scene graph and accumulation of all
transformations found on the way. Then the local stylus position and
direction is transformed into global space and used to construct the
pick segment.

2. In a top-down, depth-first traversal of the scene graph, the pick seg-
ment is tested against the object geometry. If an object geometry
intersects with the pick segment, the object and the path to the ob-
ject in the scene graph are returned. If more than one object intersects
with the pick segment, only the one closest to the stylus is returned.

Dragger matching

Every object returned from picking is now checked for a dragger that
matches the currently selected tool and can be interacted with. If no such
dragger can be found, no interaction is possible. Because each object can
associated with any number of draggers, the list of draggers is checked in
the order of specification. The first dragger that matches the tool is used
for the interaction. The remaining draggers are not considered.

If an object has no association with a matching dragger, the test is re-
peated with the parent object as specified by the pick path for the original
object. This extension of the search to all parent objects allows the speci-
fication of single draggers for complex, compound objects by attaching the
dragger to the top most group node of the object. Pick hits on subordinate
geometric detail are then automatically propagated to the top most group
node. By using the explicit pick path, it is guaranteed that the upward hit
propagation works correctly in the presence of multiple instancing.

The decision whether a tool and a dragger can interact is made based
on a two dimensional dispatch table that has an entry for each tool dragger
combination that can interact (see figure 4.35). If an entry exists for a tested
tool and dragger combination, the tool and the dragger can be connected to
perform the actions that are necessary to conduct the interaction.
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Fig. 4.35: The dispatch table has an entry for each tool dragger combination
that can interact.

Specification of action functions

Each entry in the dispatch table specifies a set of three, possibly empty,
action functions that are called during different stages of the interaction
between a tool and a dragger. These action functions completely specify the
effects of an interaction. References to the tool and the dragger are passed
as parameters to each of the three functions. Possible action function are:

Pick Action: The pick action function is called immediately after a dragger
and a tool are connected. It is called once at the beginning of an
interaction.

Drag Action: The drag action function is called each time the position or
orientation of the tool stylus changes during an interaction. It is called
only if a tool and a dragger are currently connected.

Release Action: The release action function is called at the end of an inter-
action right before the connection between the participating tool and
dragger is released.

The signature is the same for all three action functions.

typedef void (*ToolCallback)(Tool*, ToolDragger*);

The action functions implement the interaction entirely by only using
the public interfaces of the tool and the dragger object. If state information
has be passed between different invocations of the action functions, it can
be associated with either the tool or the dragger object.

4.3.3 Extension through specialization

The action function entries into the dispatch table are defined during the
definition of either a new tool or a new dragger class. Each tool or dragger
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class has an initialization function that performs the entries into the dispatch
table when the first tool or dragger of that class is instantiated.

Figure 4.35 shows a an example of a dispatch table and illustrates
the extension mechanism. Assume the dispatch table initially consists of
two rows and to columns holding the action functions for the Dragger,
MatrixDragger, PointTool and DragTool classes. The PointTool, for ex-
ample, defines a Pick and a Release function for objects of type Dragger.
The Pick function highlights the geometry associated with the dragger, while
the Release function removes the highlight. No Drag function is specified so
stylus movements will have no effect.

Now a tool is added that interacts with both existing draggers. The
new DeleteTool defines a Pick and a Release function and registers them
with all existing draggers. If the Release function is called it checks whether
the stylus still points at the same object it pointed to when the Pick func-
tion was called, and if so, it deletes the object from the scene graph. This
way the DeleteTool allows deletion of any object that has a Dragger or a
MatrixDragger connected. In the same way, new Dragger classes can be
added to the system, like in this example, the ScriptDragger. Correspond-
ing to a newly added dragger, a new tool specifies action functions for all
previously existing tools.

Interaction summary

Avocado provides a simple and elegant framework for the application
specific implementation of user interaction in virtual environments. Basic
direct-manipulation interaction on devices like the Responsive Workbench
can easily be modeled with a small number of classes and objects.

4.4 Summary

In this chapter details of the non-distributed aspects of the Avocado im-
plementation have been presented. The implementation closely follows the
general VE architecture that has been described in section 3.2, and as such
fulfills all requirements formulated in section 3.1: A comprehensive object
and event model, generic support for various display device, direct manipula-
tion interaction support, a rapid prototyping development style, extensibility
and maximum performance.

The main points of the Avocado implementation can be summarized
as follows:

• Avocado is based on OpenGL Performer. The Performer facilities are
responsible for data representation and high-performance rendering.

• The object model follows the field container paradigm and implements
the necessary interfaces by subclassing from performer node classes.
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• Nodes and sensors are the two main object classes. Nodes represent
the objects used to build the scene graph, while sensors are Avocado
s abstraction for external data input.

• The Elk Scheme implementation is used as the scripting language. A
complete binding for all field container APIs is implemented. Scheme
scripts are used for application scripting and event handler scripting.

• The component interface uses the field container interfaces to allow
the creation of run-time loadable extension node classes through sub-
classing from native Avocado classes.

• The fine grained display device abstraction describes all contemporary
display devices commonly used for virtual environment visualization.

• The interaction support framework provides the necessary abstractions
and services for the implementation of direct manipulation interaction
using tools and draggers.

Based on the presented Avocado implementation, the following chapter
describes the realization of the distributed object and event model postu-
lated in sections 3.2.1 and 3.2.2.
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5. Avocado - implementation of the
distribution architecture

In chapter 3 a general design for a distributed object and event model for
DVE systems was presented. It provides a transparently shared scene graph
and an integrated event distribution mechanism to the application developer.
The relevant implementation details and APIs are presented in this chap-
ter. Further, the implementation of the underlying transport layer based
on the Ensemble/Maestro group communication system is described. The
reliability and ordering guarantees of the transport layer allow the robust
implementation of dynamic group membership changes and consistent state
replication as described in section 3.2.6.

5.1 Distributed object model

The implementation of the distributed Avocado object model closely fol-
lows the design described in section 3.2.1.

5.1.1 State sharing through object replication

As rationalized in section 3.2.4 distribution support must be based on object
replication. This way, copies of the distributed objects are present in each
processes local address space and can be accessed for rendering without
additional communication overhead, To provide a consistent view of the
application state, local modifications of the objects are transmitted and
applied to all other object copies.

Objects are represented as field containers that encapsulate object state
in a set of fields (see section 4.1.2). The streaming interface of the field
and field container classes allows a very elegant implementation of these
distributed object semantics. Whenever a field value on a distributed object
is locally changed, the new state of the object is serialized to a network
buffer which is subsequently sent to all processes. Here the serialized state
change information is reconstructed into the appropriate object copy, and
thus distributed state consistency is reestablished.

As stated in section 4.1.1, the parent child relationship between objects
in the scene graph is represented by a multi-field of reference values on
the parent node. Because all field values, including avLink<> (see section



106 5. Avocado - implementation of the distribution architecture

4.1.3) types, are serializable, the distribution scheme described above will
not only distribute and synchronize singular objects, but also parent child
relationships between them. As a result, it will automatically replicate the
entire scene graph to all processes in a distribution application.

By default, all fields of a node are distributed. However, this is not
always necessary or even desirable. For example, the values of Parents
fields on avGroup and avDCS nodes (see section 4.1.6 for details on these
nodes) are never distributed, because the values of these fields are redundant
with respect to the Children fields. A simple example will illustrate that:
Whenever a node A is made a child of a node B, the Parents field of A is
automatically updated to include a reference to node B. Under distribution,
all replicated copies of A become children of the matching replicated copies
of node B as well, and their Parent fields are locally updated to include a
reference to node B. Thus, the Parent field needs not to be distributed.

5.1.2 The distribution group abstraction

The replication of the scene graph needs an application specific context in
order to allow several independent distributed applications to coexist on the
same network or even in the same process without interference. This context
is provided by a distribution group.

A process can attach itself to one or more distribution groups (Figure
5.1). Objects can than be instantiated either locally as local objects, or in
one of the attached to distribution groups as distributed objects. A local
object exists only in the address space of the creating process, while for a
distributed object copies will transparently be instantiated in the address
space of each process attached to the distribution group. A distributed
object belongs to no or to exactly one distribution group.

Distributed object creation in Avocado is a two stage process. First,
a local object is created, which is then, in a second step, migrated to the
desired distribution group. The migration involves the announcement of a
new object to the distribution group and the dissemination of the current
object state to all group members. Subsequent changes to an object’s state
will be forwarded to all distributed copies of the object.

State transfer to joining members

The ability to replicate object state and keep it synchronized between a
constant set of processes is not enough to guarantee consistency in a dy-
namic application setting where processes join and leave distribution groups
arbitrarily.

To illustrate this, consider the case of a distribution group with two
member processes A and B. Both processes have already created several
distributed objects in that group. Now a third process C joins the group.
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Fig. 5.1: Avocado objects can either be created local to a process, or they
can belong a distribution group, and thus be replicated over all
attached processes.

From now on, all three processes will be notified of future object creations
and manipulations, but process C will not know of the objects that A and
B had created before it joined.

This problem is solved by performing state transfer to every joining mem-
ber. When a new process joins an already populated distribution group, one
of the older group members takes the responsibility to transfer the current
state of the distribution group to the new member. This involves sending all
objects currently distributed in the group, with all their field values to the
newcomer. After the state transfer, the new member will have the proper
set of object copies for this distribution group. To prevent consistency prob-
lems, the state transfer is performed as one atomic action by suspending all
other communication during the process.

The replication of the entire scene graph, paired with the state transfer
to joining members, effectively provides a consistent view of the application
state to all processes. New members can join an existing distribution group
at any time and will immediately receive their local copy of the scene graph
constructed so far in the distribution group. Furthermore, the application
programmers do not need to concern themselves with distribution details.
They can take the scene graph for granted on a per-process level, and can
concentrate on the semantics of the distributed application.

The distribution group node avNetDCS

The group membership for the processes is managed by the avNetDCS class.
The avNetDCS class is derived from pfDCS and avPerformerNode and is
similar in functionality to the avDCS node. It has three additional fields and
two additional methods that form the distribution group API. It is used
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Fig. 5.2: The avNetDCS node represents a subtree of distributed geometry,
just like the avFile node represents a subtree of geometry loaded
from a file.

just like a normal node. avNetDCS is similar to the avFile file node, as it
represents the geometry which is shared in the distribution group associated
with the value of the Groupname field (figure 5.2). If the avNetDCS is added
to the local modeling hierarchy, the subtree of distributed nodes which is
managed by it will become part of the modeling hierarchy. Each process
that wants to join a distribution group has to instantiate a avNetDCS node
and set the appropriate distribution group identifier in Groupname.

The Groupname field identifies the distribution group the nodes repre-
sents. An empty string disables distribution for this node. This is the default
value. If the Groupname field is changed, all nodes which have been associ-
ated with the former distribution group identifier will be deleted from the
hierarchy. Any nodes present in the new distribution group will be added
to the hierarchy.

The signatures of additional free functions for the C++ and Scheme
bindings are shown in figure 5.3. distribute object() takes a link to a
locally created Avocado node and turns it into a distributed node in the
distribution group represented by the avNetDCS. The node is immediately
distributed, and copies will start to exist in any process currently attached
to the group. The node will not automatically be part of the modeling
hierarchy, and will have to be added to the hierarchy below the avNetDCS
node.

distribute object() takes a link to a currently distributed Avocado
node and removes it from the distribution group. All distributed copies will
be deleted with respect to their reference count (if a replicated copy still has
a positive reference count, it will not be deleted, but there will be no further
updates from the net).
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C++:
void distribute_object(const avLink<avDistributed>& obj);
void undistribute_object(const avLink<avDistributed>& obj);

Scheme:
(distribute-object obj)
(undistribute-object obj)

Fig. 5.3: The distribution API.

5.2 Distributed event model

As described in section 4.1.5 the scene graph is augmented by a data-flow
graph for event processing. Field connections can be drawn between object
fields. Field value changes propagate along the connection from the source
to the destination field and trigger a notification function on the destination
field.

The general object notification scheme used to implement actions on
objects in response to field value changes needs to be revised and adapted
to the case where field value changes are performed on distributed objects.

5.2.1 Distributed state change notification and event handling

The notification scheme has to distinguish between local side-effects and dis-
tributed side-effects with respect to the semantics of the notification func-
tions notify() and evaluate().

The following example illustrates the situation. In figure 5.4, three pro-
cesses A, B and C have joined a distribution group and a small scene graph
has been constructed. Now, process A changes the value of field f1 on node
aA (aA shall denote the distributed copy of node a living in process A).
Because the node is distributed, the new value is communicated to field f1
on the copies aB and aC of the node.

As described in section 4.1.5 the notify() and evaluate() methods will
be eventually called on node aA allowing the implementation of side effects
to the change in value. This may involve the modification of other field
values from within the notify() and evaluate() functions. Lets assume
the notify() function on node a will set a new value to field f2 on node a
as a result of a change to field f1.

If now notify() was called on each copy of A as a result of the dis-
tributed field change to f1, each invocation would apply the change to field
f2 on node A. This change would in turn be distributed to all copies. Thus
field f2 would be updated exactly N times on each copy of node A, where
N is the number of distributed copies involved, in this case three. This is
clearly not desirable.
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Process A

a[Object]
Field f1
Field f2

Process B

a[Object]
Field f1
Field f2

Process C

a[Object]
Field f1
Field f2

notify() {
  f2.setValue();
}
notify_lse();
evaluate();
evaluate_lse();

notify_lse();

evaluate_lse();

notify_lse();

evaluate_lse();

Fig. 5.4: The notification protocol is different for the originating field con-
tainer and the distributed copies.

If neither notify() nor evaluate was called on the copies of the mod-
ified field container, it would be for example impossible to implement the
avFile node, introduced in section 4.1.6, as a distributed node. The avFile
node (see also section 4.1.6) loads specified geometry as a side-effect of
changes to it’s Url field. If one process changes the Url field on a dis-
tributed avFile node, this change must be applied to all distributed copies
of the node, so that all copies represent the same geometry.

To resolve this problem, the notification function is split into two parts,
one for local side-effects and one for distributed side-effects. The distributed
side-effect versions notify() and evaluate() are only called on one dis-
tributed copy of the node. These functions may perform modifications to
other fields without destroying the distributed notification scheme.

On the other hand, the local side-effect versions notify lse() and
evaluate lse() will be invoked on all distributed copies of the node. They
can be used to implement side-effects which have to be executed uncondi-
tionally, regardless of whether a field has been changed locally, or as result
of a distributed change, as in the case of the avField node. The only re-
striction is that the local side-effect versions must not modify other field
values.

5.2.2 Field connections in the distributed context

Based on a working notification scheme for field changes on distributed
nodes, the behavior of field connections, introduced in section 4.1.5, in a
distributed environment can now be investigated.
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Fig. 5.5: The distributed data-flow graph (a) exhibits the same behavior as
a stand-alone version with identical connections (b) would.

The basic assumption of the distributed event model is that field con-
nections are local constructs that are not distributed. They only exist in
the process which connected the involved fields. Consider the example given
in figure 5.5a. Three processes A, B and C are attached to a distribution
group and share a small scene graph of four nodes. Process A has connected
field f1 on node aA to field f2 on node bA, while process C has connected
field f2 on node bC to field f3 on node cC .

If A writes a new value to field f1 on node aA, field f2 on node bA will
immediately receive the new value, due to the field connection between f1
and f2. Then, all distributed copies of node b will receive the new value for
field f2. Because of the field connection in process C, the field f3 on node
cC is immediately notified of the change, and will receive the new value.
This, in turn, will trigger an update of f3 on all distributed copies of node
cC . All field changes have become visible to all processes.

Without any further provisions, the behavior of the distributed data-flow
graph matches the behavior of a stand-alone graph with identical connec-
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tions. This effect can be illustrated by overlaying the three scene graphs
in figure 5.5a to obtain figure 5.5b. If field f1 is changed, the new value
propagates via field f2 to field f3.

From the application programmer’s point of view, building interactive
distributed applications is now just as straight forward as building stand-
alone applications.

5.3 Guaranteeing application state consistency

The goal of the distributed object model is to provide identical copies of the
application state to networked processes. For performance reasons, a local
state changes never initiates a network wide update of the entire application
state, but instead only the relevant state fragment is updated. Because
synchronization messages require a certain amount of time to travel the
network and because network response times are generally not deterministic,
the mere presence of the network in context with the incremental nature of
state update messages is a serious source of potential state inconsistencies.

State inconsistencies are especially annoying if processes make a local
decision based on the inconsistent distributed state copy they maintain.
Because of the inconsistency, the processes will probably come to different
conclusions. For example, if object positions are inconsistent across pro-
cesses, a test for object collisions will likely return different results for each
process. As discussed in section 5.1.2, arbitrarily joining and leaving distri-
bution group members are also a potential source of inconsistencies.

To maintain a consistent application state under these circumstances,
Avocado employs the Ensemble [39] system from Cornell University.

5.3.1 The Ensemble/Maestro group communication system

The Ensemble system[39] is a high-performance, reconfigurable plug-and-
play architecture intended for adaptive group communication applications.
The basic functionality is to track membership of groups and to provide
communication support among group members. Ensemble is a reimplemen-
tation of Horus [75] and as such implements the process group model [9]
to provide reliable multicast communication between distributed processes.
It is a successor to the ISIS system that implemented group communica-
tion with point-to-point messages and is used for the implementation of the
transport layer in the DIVE system.

Ensembles architecture revolves around the notion of a protocol stack.
Such a stack is constructed from simple micro-protocol modules, which can
be stacked in a variety of ways to meet the communication demands of an
application. Ensembles micro-protocol modules implement, among other
things, basic sliding window protocols, fragmentation and reassembly, flow
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control, signing and encryption, failure detection and recovery, group mem-
bership, and message ordering.

Ensemble is written in Objective Caml[52], a dialect of the functional
programming language ML[38]. Ensemble is freely available from the Cornell
website and is provided without fees or restrictions. Maestro[76] is a an
object-oriented high-level interface to the Ensemble group communication
system. The conceptual design of Maestro follows the group programming
model of the Ensemble system.

Maestro offers a framework for applications to implement a state transfer
to new group members. Three state transfer safety levels are supported:

Free State Transfer: Normal message exchange between group members can
proceed during a free state transfer.

Protected State Transfer: During protected state transfer only safe messages
can be send between group members. A message is considered safe, if
it does not result in modification of the group state. The application
has to explicitly mark messages as safe.

Atomic State Transfer: Only messages that are part of the state transfer pro-
tocol will be delivered during a state transfer. All other messages are
delayed until after the state transfer is finished.

Several properties of Ensemble/Maestro group communication system
are used to guarantee a consistent application state across processes. They
are discussed in the following sections.

5.3.2 Consistency through total message ordering

Like other distributed 3D systems, for example Repo-3D or DIVE, which
provide a consistent shared application state between group members, Av-
ocado relies on total message ordering to guarantee consistency.

Maestro allows totally ordered messages, such that every group member
will receive all messages sent to the group in exactly the same order. This
guarantees that each process sees and applies all incremental state update
messages, and that after a certain message has been applied by all processes,
the global application state is consistent.

Although total ordering introduces additional network latency because
a sequencer is used, it is a convenient and powerful way to guarantee con-
sistency.

5.3.3 Synchrony through view atomic message delivery

Maestro manages the processes which communicate in one group as a list
of group members, called a view. Whenever a new member joins the group,
or an old member leaves the group, the view is updated accordingly. View
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Fig. 5.6: To maintain consistency, all state update messages have to be to-
tally ordered. Therefore, local updates to distributed objects are
passed through the network layer in order to be properly sequenced.

changes are announced to all members, so that every member always has an
up-to-date list of all other members in the group.

Messages to the group are sent view atomic, such that messages sent in
one view are guaranteed to be delivered to all members in that same view,
and only to those members. New members joining a group will not see any
messages from old members until the new view is installed and is available
to all members.

Taking into account the total ordering properties of the communication,
the replicated application state is guaranteed to be consistent immediately
after a new view has been installed. At that point, all old members have
received exactly the same messages in exactly the same order, while new
members have received no messages at all.

At this point it is safe to suspend all normal messaging between members
and initiate a special state transfer phase in order to provide new members
with a copy of the current application state.

5.3.4 Dynamic membership and atomic state transfer

Immediately after joining a group, new members have no knowledge about
the history of the group, i.e. they do not possess a copy of the shared
application state. Because all old members share a consistent state at this
point, an atomic state transfer from one of the old members to the new
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Fig. 5.7: Each join operation initiates an atomic state transfer to the joining
member. Normal update message traffic is suspended during the
state transfer.
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Fig. 5.8: Each leave operation initiates view change.

member is sufficient to bring the new member up to date. During the
state transfer all other communication in the group is suspended. After
the transfer the new member has exactly the same state information as the
old members, and normal operation can resume.

The atomic state transfer allows for addition of new members to a group
at any time without destroying consistency. The apparent drawback of
this approach is the suspension of normal communication during the state
transfer. If the application state takes a considerable amount of time to
transfer, this will be noticeable to the user, as the application ’freezes’ with
respect to updates from the network.
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Fig. 5.9: The dragger that is attached to the object is shared.

5.3.5 Distributed locking through total message ordering

One of the challenges of applications that have multiple threads of control is
concurrency management. In distributed VE applications each participating
process can access and modify any object that is part of the environment. If
multiple processes choose to manipulate the same object at the same time,
this can lead to undesirable and uncontrollable results.

An example for this situation is the tool-based direct interaction pre-
sented in section 4.3. Consider a situation where two users, each controlling
a tool, try to move around an object at the same time. Figure 5.9 illus-
trates that the dragger that is attached to the object is shared and thus
replicated into the local address space of each process, while the tool that
is controlled by each user is not shared and exists only in the local address
space of each object. Because interaction between tool and dragger is han-
dled locally by each process, conflicting manipulations of the two associated
dragger replicas may occur.

Without explicit concurrency management, the implicit policy to resolve
access conflicts could be called the last one wins: Whichever tool accesses the
object last will take control of the object, regardless of whether the object
was previously controlled by another tool or not. A desirable solution is to
grant exclusive object access to one tool during an interaction, effectively
preventing any interference from other tools.

A simple approach would be to extend the tool to perform a test whether
an object is currently being controlled by another tool before taking con-
trol. In a non-concurrent, single-threaded environment this would work, in a
concurrent environment with multiple threads of control and with multiple
tools performing this test at the same time, it will lead to race conditions
that will easily break the interaction protocol between tools and draggers.
Too overcome this problem, the test for availability of the dragger and the
acquisition of the dragger needs to be one atomic operation that can not be
interrupted by other processes. This area of code is called a critical section.

To prevent a critical section from being executed by more than one
process at a time, the existence of a locking mechanism, often called a lock,
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Fig. 5.10: Under total ordering constraints, all messages sent to the group
are received in the same order by all group members, including
the processes that sent the messages.

is required. A lock can only be acquired by one process at a time, and
until the process that is holding the lock releases it, no other process can
successfully acquire it. The important property of locks is that an attempt
to acquire a lock can never lead to a race condition. To implement race-
free dragger control, a tool would acquire a lock, test the availability of the
a dragger, seize the dragger if available and release the lock. Because the
critical section of code is guarded by a lock, no concurrency problems would
occur.

A distributed lock

Avocado uses the total ordering property of its transport layer to imple-
ment a distributed locking mechanism. Total ordering guarantees that the
order of received messages is the same for all processes in a communication
group (see figure 5.10). In particular, this is true for all object field update
messages that are sent to synchronize the fields of distributed object replicas
in a distribution group.

In a communication group with total message ordering, a very simple
distributed locking mechanism can be built. Assume that the distributed
lock l is free. A process that wants to acquire lock l sends a corresponding
message to the entire group. Figure 5.11 shows processes A, B and C sending
acquisition requests for lock l to the group at roughly the same time. Because
of the total ordering properties of message delivery, all processes will receive
the three acquisition messages in the same order. This means, that the
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Fig. 5.11: All processes can decide locally which process should be granted
the lock, because all lock messages are received in the same order.
Here, process B wins the race for the lock.

race condition for lock l can be resolved locally by each of the participating
processes and does not require further communication. Each process will
locally grant the lock to the process thats acquisition message is received
first.

In this example (Figure 5.11) the lock will be granted to process B.
All other acquisition messages for lock l will be discarded until process B
is done with the lock and sends a corresponding release message. Process
B knows it has won the lock when it receives its own acquisition message
without having received any prior acquisition messages from processes A
and C. Process A and C know they lost the race for the lock when they
receive the acquisition message from process B without having yet received
their own messages. No process in the group will send a new acquisition
message for lock l until it received the corresponding lock release message
from process B.

The avLock field type

Based on the previous results, Avocado defines the avLock field type that is
meant to be used as a locking facility for distributed objects and applications
that need it. First, interface and implementation of avLock will be described
and then an usage example will be given by incorporating locking into the
tool-based interaction framework introduced in section 4.3.

The avLock class defines a field type that accepts values of type String
via the standard setValue() and getValue() methods (see section 4.1.1
for details on fields). The embedding field container is notified of field value
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setValue("acquire") Request the lock for the call-
ing process. If the lock is not
available, the calling process is
queued.

setValue("request") Request the lock for the calling
process. If the lock is not avail-
able, the calling process is not
queued.

setValue("release") Release the lock the calling pro-
cess is holding.

getValue() == "granted" The lock is held by the calling
process.

getValue() == "occupied" The lock is held by another pro-
cess.

getValue() == "free" The lock is currently not held by
any process.

Fig. 5.12: Possible operations on an avLock object.

changes by a call to the standard notify() method. The possible value
related operations on an avLock object are described in figure 5.12.

If the containing object of an avLock field is not distributed, it behaves
as though the lock where always held. A call to setValue() has no further
side effect, and directly calls notify() on the containing object. Likewise, get-
Value() always returns "granted". This prevents objects that use locking in
a distributed environment from breaking in a non-distributed environment.

The notify() method of the embedding field container is called when-
ever a status change of the lock is of potential interest to the particular
process. If the application requested the lock via setValue("acquire")
or setValue("request"), the notify() method will be called on the cor-
responding field container when the status of the lock has changed. No
polling of the lock value is necessary. In the notify() method the applica-
tion can learn whether the lock was granted or not by examining the lock
value with getValue(). If the lock value returned is "granted", the lock
has been granted, while a value of "occupied" indicates that the lock has
been acquired by some other process.

The implementation of the locking mechanism relies on the fact that
synchronization of field values on the object replicas is conducted by totally
ordered messages. Further, the group-wide unique end-point-id (eid) of
the processes is used to identify the lock requests. The mapping from the
field interface to the distributed locking algorithm developed in the previous
section is as follows:

setValue("acquire" | "request"): Send the eid of the calling process as



120 5. Avocado - implementation of the distribution architecture

a request to acquire this lock to the group. This is performed as part
of the normal object update message for the embedding object.

setValue("release"): Send the null eid as a request to release this lock
to the group. This is performed as part of the normal object update
message for the embedding object. It is only executed if the calling
process currently holds the lock.

notify(eid): An update message for the lock field containing a valid eid
has been received by the network layer. If any process is currently hold-
ing the lock and the message was generated by setValue("acquire"),
the message is added to the end of the request queue. Otherwise, if
the received eid equals the eid of the process, the lock is considered
granted to the requesting process, notify() is called on the embedding
field container and further application calls to getValue() will return
"granted". If request eid and process eid are not equal, the requesting
process is also notified, but getValue() will return "occupied".

notify(0): An update message for the lock field containing the null eid
has been received by the network layer. The lock is now considered
released. If not empty, the next eid entry will be popped from the
request queue and be handled as if received by notify(eid).

The use of the request queue with setValue("acquire") has one conse-
quence that application developers must be aware of. If a process requests a
lock, this lock will eventually be granted, but there is no way for the process
to know how long this will take (and yes, for ever is an option). Because re-
quest and grant are completely asynchronous, an application may decide to
stop waiting for a once requested lock. To avoid being subsequently granted
the lock in a probably unsuitable moment, the application can and should
cancel the acquisition request by calling setValue("release"). In that
case the process will be notified as if the lock had been denied.

Concurrent interaction with locking

To prevent race conditions in a concurrent interaction where two or more
tools try to manipulate the same dragger at the same time, the dragger base
class avToolDragger is equipped with an avLock field.

Before a tool and a dragger are connected at the beginning of an inter-
action sequence, the tool stylus has to acquire the lock on the dragger to
assure exclusive access to the dragger. This enforces, that while one tool
stylus holds the lock on the dragger, no other tool stylus can invoke a con-
current interaction between that dragger and another tool. At the end of
the interaction, tool and dragger are disconnected and the lock is released.
Because avField locking is an asynchronous process, the tool stylus main-
tains a field connection to the lock in order to be notified of a successful
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lock acquisition. The field connection is established after the lock has been
requested and released after the lock has been granted. If the user releases
the push button before a lock is granted, the tool stylus revokes the lock
request and disconnects from the lock field.

This extended interaction protocol between tool stylus, tool and dragger
works unmodified in undistributed as well as in distributed environments
and guarantees exclusive and race free interaction.

5.4 A simple distributed application example

This section presents a Scheme example on how to write a distributed
Avocado application.

A server application joins a distribution group and loads a simple ge-
ometry. A avMatrixDrager is attached to the geometry. The default point
tool is replaced with a drag tool, so that the user can drag around the geom-
etry. Any number of ’client applications can join the same group and then
immediately see the geometry the server has already loaded.

Note that the terms client and server are used on the application level,
not on the distribution transport level. One process, the server, loads a
geometry, which will be seen by all other group members, the clients. In
this sense, every process in the group can be a client and a server at the
same, as every process can add geometry to the group, and see the geometry
the other processes provide.

The server code

First, an instance of the avNetDCS class is created. The Groupname field is
set to the name of the desired distribution group, test. Then the node is
added to the aview hierarchy (figure 5.13).

Then a avFile node and a avMatrixDragger are instantiated and are
registered with the distribution group.

Then the hierarchy is constructed. The now distributed file node is
added to the avNetDCS node as a child, and the also distributed dragger
is attached. These operations are all field value manipulations and thus
happen for all copies of these nodes at all processes which are members of
the distribution group test.

Finally the filename for the geometry is set. All distributed copies of the
file node will now load the geometry found in the file unit-cube.iv.

Now the default point tool on the aview stylus is replaced with a drag
tool, so that the user will be able to drag the geometry around. Because
the drag tool operates by changing the Matrix field on the dragger, and the
dragger in turn changes the Matrix field on the file node, any manipula-
tions done by one user, will be visible to all other users in the distribution
group.
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Fig. 5.13: (1) The avNetDCS node is created in both processes separately and
the distribution group is joined by assigning the GroupName ”Ex-
ample”. (2) The avFile node is created in the server process. (3)
The avFile node is registered as a distributed node and parented
to the avNetDCS. (4) The avFile node is replicated to the client
side automatically. Setting the the Filename field on the server
will load some geometry. (5) The field change is replicated to the
client. (6) The client loads the same geometry as the server.

The client code

The client creates an instance of the avNetDCS class, joins the test group,
and adds the node to the local aview hierarchy (see figure 5.15). If the
server has already added the file node to the distribution group, the cube
will show up immediately. The client also replaces the default point tool
with a drag tool.

There can be as many client processes as needed. Every user can now
see and manipulate the geometry loaded by the server process. Furthermore
every user can load some other geometry and add it to the same group.
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;; create distribution group node and add to scene graph
(define net-group (make-instance-by-name "avNetDCS"))
(av-set-value net-group ’Groupname "test")
(av-add net-group)

;; create avFile and avMatrixDragger nodes and add to group
(define file (make-instance-by-name "avFile"))
(define dragger (make-instance-by-name "avMatrixDragger")))
(-> net-group ’distribute-object file)
(-> net-group ’distribute-object dragger)

;; add file node to group and connect dragger
(av-set-value net-group ’Children (list file))
(av-set-value file ’Dragger (list dragger))

;; load geometry
(av-set-value file ’Filename "unit-cube.iv")

;; instantiate a tool and connect to tool stylus
(define tool (make-instance-by-name "avDragTool"))
(av-set-value av-stylus ’Tool tool)

Fig. 5.14: The server code.

;; create an avNetDCS and join the group
(define net-group (make-instance-by-name "avNetDCS"))
(av-connect-from net-group ’TimeIn time-sensor ’Time)
(av-set-value net-group ’Groupname "test")
(av-add net-group)

;; replace the point tool with a drag tool
(define tool (make-instance-by-name "avDragTool"))
(av-connect-from tool ’TimeIn time-sensor ’Time)
(av-set-value av-stylus ’Tool tool)

Fig. 5.15: The client code.

5.5 Pacman: A complex distributed application example

The distributed Pacman game was inspired by the ATARI ST game clas-
sic MidiMaze, which borrows the main character from the Namco arcade
game Pac-Man, and was built as a distributed proof of concept application
that has served as a test-bed for the evaluation of different implementation
strategies for the distribution support in Avocado. This variant of Pacman
is rather aggressive as the objective for each pacman is to run around in the
maze and shoot red bullets at the other pacmans (see figure 5.16).
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Fig. 5.16: The distributed Pacman game is situated in a maze that is ran-
domly generated by a dedicated maze process. The maze is placed
into a distribution group. Player processes join the maze and let
each user interactively control the actions of one pacman.

The application consists of one maze process and any number of pacman
processes. The maze process generates and distributes the maze geometry
in the pacman distribution group, and thus provides the playing field for the
pacmans. A pacman process can join the maze process in the distribution
group and while doing so adds a pacman to the maze. The pacman is
controlled by the user via mouse and keyboard and can move around freely
within the maze. A pacman can fire bullets at the other pacmans. If a
pacman is hit by a bullet, it is deflated and paralyzed for a small amount of
time (see figure 5.18).

The implementation of Pacman demonstrates a number of techniques
that are useful during the development of distributed Avocado applica-
tions. In particular:

Compound objects: An class describes the properties of an compound ob-
ject as a collection of fields. Upon instantiation, an internal object
representation that reflects the property values of the object.

Abstract distribution: Because the field values of a compound object com-
pletely describes the objects state, the internal representation does
not need to be distributed, but can be reconstructed by each process.
This can significantly reduce the amount of bandwidth needed to repli-
cate a complex geometric object as only a few field values need to be
transmitted instead of a completed geometric description of the object.

Local behavior: An objects behavior evaluation ultimately results in one or
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Fig. 5.17: Original and Fälschung: The Pacman game (right) is loosely
based on the ATARI ST game MidiMaze (left), one of the first 3d
networked multi-player first-person shooters. The text above the
pacman shows user and host name of the controlling process.

Fig. 5.18: The pacmans can move freely through the maze and shoot at
each other (left). Once hit, a pacman is flatted and disabled for
a period of time (right)

more field value changes. In a distributed environment the local be-
havior is only evaluated locally by one process for one object copy and
the result is automatically shared via field replication. The result of
the behavior is distributed, not the behavior.

Distributed behavior: The behavior of the internal representation of an com-
pound object executed at each copy of the object. The behavior eval-
uation is distributed, not the results.

Figure 5.19 shows the node class diagram for the pacman application.
The pacman classes are derived from avDCS and represent the different
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Fig. 5.19: The class diagram of the pacman example. The game is build from
a maze , the pacmans and any number of bullets. The inheritance
graph reflects that the maze and the pacmans are targets, which
means they can be hit by bullets.

components that make up the game: the maze, the pacmans and the bullets.

The pmTarget class

The pmTarget class is an abstract class that is meant to be sub-classed if
the instances of a class need to be hittable by a bullet. The collision detec-
tion performed by the pmBullet class only recognizes bullet collisions with
objects derived from pmTarget, all other objects are ignored. The Hit field
of pmTarget is triggered for each hit, and a derived class can define appro-
priate behavior based on the notification. Additionally, a scheme closure
can be defined in field HitCB that is evaluated for each hit. The Count field
provides the number of hits that the particular target has suffered during
it’s live time.

The pmMaze class

The pmMaze class (see figure 5.20) defines the geometry of the playing
field. pmMaze is a compound node that exposes a concise field interface
and assembles its internal representation from several sub-nodes. A maze’
walls are build from a shared instance of an avFile node that loads the wall
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notify_lse(avField &f) {
  if (&f == &Seed || &f == &Size)
    rebuild_maze();
}
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Fig. 5.20: The maze walls are build from a shared instance of an avFile
node that loads the wall geometry. The Seed field value is used
to seed the random number generator that controls the the layout
of the maze.

geometry. This node is multiply referenced by avTarget nodes that define
the position and orientation of each wall segment and identify the walls as
targets. Because the walls are derived from avTarget they will block bullets
on collision.

The Seed field value is used to seed a random number generator that
controls the the layout of the playing field. Because all avMaze nodes use
the same maze generation algorithm, and thus every distributed instance of
avMaze creates the exact same maze for a given seed value, the value of the
Seed field together with the value of the Size field completely determines
the layout of the maze. The distribution of the avMaze node is extremely
efficient, only the values of Size and Seed need to be communicated over the
network. Each distributed copy rebuilds the internal maze representation
from these two values. Because it will almost always be faster to generate a
complex geometry locally than to transmit a serialized representation of that
geometry over a network connection and then reconstruct it, the abstract
distribution of compound objects is an important strategy to build high-
performance distributed applications.

The pmPacman class

The pmPacman class also defines a pacman as a compound node. On in-
stantiation, avPacman creates a sub-tree of nodes that represent the pacman
object as shown in figure 5.21.
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pmPacman() {
  build_rep();
}

notify(avField &f) {
  if (&f == &Fire) 
    fire_bullet();
}

notify_lse(avField &f) {
  if (&f == &Jump)
    jump_start();
  if (&f == User || &f == &Host)
    update_label();
  if (&f == &Hit)
    kill_me();
}

evaluate() {
  if (!Maze.getValue().valid())
    search_maze();
  if (Move.getValue() ||
      Heading.getValue())
    calculate_movement();
}

aPacman

notify_lse()

notify()
evaluate()
evaluate_lse()

pmPacman()

Children

evaluate_lse() {
  jump_eval();
  breathe_eval();
}

aDCS
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Internal
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Fig. 5.21: The pmPacman class defines a pacman as a scene graph node
that uses an internal hierarchy of nodes to implement the pac-
man appearance. The behavior is implemented in the four no-
tification functions evaluate(), notify(), evaluate lse() and
notify lse().

Action Field Behavior Method(s)
move Move, Heading local evaluate()
jump Jump distributed notify lse(), evaluate lse()
get hit Hit distributed notify lse(), evaluate lse()

Tab. 5.1: The behavior of a pacman is defined by three actions that are
triggered by field value changes.

A pacman exhibits a rather complex behavior that depends on external
user interaction and on the internal application state. The user controls
the pacman using mouse and keyboard. The Move and Heading fields are
connected to the vertical and horizontal mouse movement offset respectively.
The Fire trigger field is connected to the left mouse button, while the Jump
trigger field is connected to the middle mouse button. Whenever a bullet
detects a collision with a pacman, the Hit field on the pacman is triggered
to notify the hit. Based on these five input Fields, an avPacman object
performs three different actions as shown in table 5.1.

The jump and the hit behavior are defined as distributed behaviors and
hence are implemented in the evaluate lse() and notify lse() variants
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of the field value change notification functions. As a result, the local mod-
ification of the Jump field on the pacman in response to a mouse button
click, for example, is distributed to all copies of the pacman object and the
animation of the jump is calculated and performed locally by each pacman.
Using distributed behavior is a good strategy to conserve bandwidth. In this
case only the value change of the Jump trigger field is transmitted, while the
successive modifications of the relevant matrix field during the animation
of the jump are performed locally at each process and are not transmitted
over the network. Distributed behavior can be used safely with respect to
consistency if the result of the behavior is not accumulating.

In contrast, the move behavior is defined as a local behavior and is imple-
mented in the evaluate() function of the pacman. evaluate() is executed
only by one process, usually the one that created the corresponding object.
Therefore, the calculation of the new pacman position is performed only by
one process and the resulting modification of the pacmans transformation
matrix is replicated to all distributed copies. Each evaluation of the move
behavior modifies the position of the pacman relative to its previous posi-
tion. Implementing the movement of the pacman as a local behavior assures
the overall consistency of the pacman position because each new position is
communicated as an absolute value. If behaviors with accumulating results
are implemented as distributed behaviors, small differences in the results
locally evaluated by the different processes will also accumulate, leading to
an inconsistent application state. In this case, after some time the processes
would see differing values for the position of a certain pacman.

The pmBullet class

Each pacman is armed with four bullets that can be fired at other pacmans.
The pmBullet class (see figure 5.22) implements bullet movement and col-
lision detection as distributed behaviors. The movement is triggered by the
Launch field, while the Speed and the LifeTime fields control the rate and
the duration of the movement. During flight the bullet checks collisions with
other geometry and, if it hits an object of type avTarget, triggers the Hit
field on that object.

Because movement and collision detection for a bullet are distributed
behaviors, they are evaluated by the one process that created a particular
bullet instance. Thus, the potentially time consuming calculation of object
collisions for all bullets is effectively distributed over all processes in the
distribution group, because each process calculates collisions only for those
bullets it created. In contrast to the popular central gaming server approach
found in on-line FPS (First Person Shooter) style games like Quake and
Unreal, the distributed collision detection ensures much better scalability
with respect to available processing resources.
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notify_lse(avField &f) {
  if (&f == &Flying)
    if (Flying.getValue())
      make_visible();
    else
      make_invisible();
}

evaluate() {
  if (Flying.getValue()) {
    flying_eval();
    test_hit();
  }
}

notify(avField &f) {
  if (&f == &Launch) {
    start_flying();
    Flying.setValue(true);
  }
}
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Fig. 5.22: The bullet is launched by the pacman and autonomously performs
the collision detection to determine possible target hits.

Pacman Summary

The Avocado implementation of the pacman game has served as a test
case for distributed application development. It demonstrates how the dis-
tributed Avocado object model is used and introduces two design patterns
that lead to well balanced scalable distributed applications:

• object distribution at different levels of abstraction.

• local and distributed behavior evaluation.

5.6 Summary

In this chapter, details of the distributed aspects of the Avocado implemen-
tation have been presented. The implementation closely follows the general
DVE architecture that has been described in section 3.2, and as such fulfills
all requirements formulated in section 3.1.

The main points of the Avocado distribution implementation can be
summarized as follows:

• The distributed Avocado object model provides programmers with
the concept of a shared scene-graph that is accessible from all par-
ticipating processes of a distributed application. The scene-graph is
transparently replicated such that each process holds a local copy of
the scene-graph.
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• The unification of distributed field change notification and field con-
nection event handling gracefully extends the field connection concept
to distributed applications. This new approach provides the same
evaluation characteristics in distributed applications as in stand-alone
applications. It effectively simplifies the development of distributed
interactive applications.

• The Ensemble/Maestro group communication toolkit is used to imple-
ment the Avocado network transport layer. Ensemble/Maestro pro-
vides reliable multicast communication primitives with strong message
ordering guarantees that are used to implement the following Avo-
cado distribution features:

– Reliable and consistent state replication

– Fully dynamic group membership changes

– Automatic state transfer to joining members

– Distributed locking

• As described in section 4.1.10, the Avocado component model sup-
ports application specific extensions through subclassing. All sub-
classes automatically inherit the distribution properties and are fully
usable in distributed applications.

The successful implementation of distribution functionality in the Avo-
cado framework validates the applicability of the general DVE framework
design that has been presented in chapter 3. However, the question of scal-
ability has not been addressed so far. The following chapter analyzes the
general scalability properties of DVE systems and proposes a scalability
solution for the Avocado framework.
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6. Scalability in distributed virtual
environments

This chapter reviews the approach to distribution support presented in the
last chapter with a closer look at it’s scalability properties. The inher-
ent scalability problems are identified and a solution to these problems is
developed. A prototypical implementation, implemented as an Avocado
extension, is described.

6.1 Introduction

The transparently distributed scene graph presented in the previous chapter
provides a convenient and intuitive abstraction for the development of dis-
tributed applications. It’s conceptual strength, the distribution of the entire
scene graph to all participating processes, is at the same time it’s greatest
weakness when it comes to scalability. The complete replication scheme is
not easily applicable to large scene graphs and a great number of processes,
mainly for the following reasons: process memory, network bandwidth and
heterogeneous processing and rendering capabilities.

Process Memory: Because process memory is a limited resource the total size
of the in-memory representation of the shared scene graph is limited
by the amount of memory that is available to the smallest process in
a distribution group. Thus, scalability abruptly ends if one process in
a distributed application reaches its memory limits and is not able to
hold the entire scene graph in main memory.

Network Bandwidth: The available network bandwidth may also be a serious
constraint for scalability. For every process that joins a distribution
group the entire state of the distributed applications, i.e. the shared
scene graph, has to be distributed. Additionally, the normal update
message traffic tends to increase in a linear fashion with the number
of processes. Once the network is saturated with state transfer mes-
sages to new members and update messages between old members,
the overall performance of the distributed application drops to almost
zero.
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Processing Capabilities: Every process needs to process every state transfer
message and every update message from every other process in the
distribution group. With an increasing number of processes in the
group this at some point saturates input buffer space and/or process-
ing capabilities of the process. The process can no longer process all
incoming messages and the entire group needs to slow down in order
to maintain consistency of the shared state.

Rendering Capabilities: A heterogeneous collection of machines with different
processing and rendering capabilities may also present a problem if the
scene graph increases in size. While more capable machines may be
able to render a scene with an acceptable frame rate, the frame rate
may drop below any acceptable limit on smaller machines.

Section 6.2.1 presents a scalability analysis of two existing approaches
to address the described scalability problems, and discusses their scalability
behavior with respect to the aforementioned problems.

The more complex the scene graph becomes and the more processes
participate in a distributed application, the less likely it becomes that every
process is interested in the entire scene graph and thus in every state transfer
message and every update message from every other participating process.
This is due to the fact that the area of interest for each rendering process in
a virtual reality application is closely related to the concept of visibility. In
a typical VR application the area of interest is mainly a function of viewing
direction and viewer position.

The concept of visibility has been exploited in different ways do solve
another closely related problem associated with real-time rendering appli-
cations, performance. Section (6.3) introduces two more common real-time
rendering acceleration techniques, view frustum culling and level-of-detail
evaluation. Both techniques accelerate rendering by identifying and pro-
cessing only those parts of the scene graph which are potentially visible to
the user. They define a visibility based area of interest.

Section 6.4 proposes to apply these techniques to the scalability prob-
lem for distributed applications. The use of visibility information to define
an area interest for each participating process which allows an effective re-
duction of the amount of information that needs to be exchanged between
processes in large distributed multi-user virtual reality applications.

Section 6.5 describes a prototypical implementation of Avocados ap-
proach based on the built-in distribution support which has been introduced
in the previous chapter.

6.2 Scalability analysis

To assess the effects of scaling for the different approaches to distribution,
the development of a simple reference model is necessary. Based on this
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l

client position

Fig. 6.1: The environment is described as a flat, square, 2-dimensional plane.

model the scalability properties of the approach developed in this thesis are
compared against characteristics of existing approaches.

6.2.1 An environment model for scalability analysis

The model describes the environment as a flat, square, 2-dimensional plane.
The size of the environment is determined by the side length of the square
lenv. The geometry of the environment is entirely described using polygons,
no additional representations like texture or volumetric data is used. The
average polygon density dpoly describes the overall complexity of the envi-
ronment. To eliminate the need to specifically handle border conditions, a
torus topology is assumed for the environment.

One process acts as server that generates the polygonal description of the
environment and makes it available to a number of client processes. Clients
are evenly distributed over the environment, the average client density is
dclient (see figure 6.1). A multicast transport is used, such that each state
update message needs only be sent once and reaches all other clients.

Scalability is measured by the effects that the increase of relevant system
parameters has on the systems resource requirements. Significant increase of
resource consumption results in low scalability, while resource requirements
that are decoupled from scalability parameters are signs for a highly scalable
system.

The scalability parameters that are considered are:

Environment Size: Many application areas demand high scalability with re-
spect to the size of the environment. Examples are military battlefield
simulations that are staged in environments with a potentially very
large extend, and on-line role-playing games that are situated in envi-
ronments of ever increasing dimensions.
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Polygon Density: The current trend toward more realistic rendering of vir-
tual environments requires increasingly detailed environment descrip-
tions. In the proposed model, the average polygon density directly
corresponds to the environment complexity.

Number of Client Processes: Many DVE applications require high scalability
in the number of client processes participating in the application. The
aforementioned military simulations and on-line role-playing games
need to accommodate several hundreds or even thousands of partici-
pants simultaneously.

To evaluate how the system responds to the scaling of above parameters,
the following resource requirements are determined:

Client Process Memory: The amount of physical memory that a client can
use for the representation of the environment is limited by the total
amount of physical memory available to the client process. This hard
upper limit must never be exceeded. Any increase in environment size
or polygon density potentially increases the amount of memory needed
for the representation.

Client Update Bandwidth: All processes can modify the environment. These
modifications are communicated to all other processes. For each view,
a processes needs to receive all state update messages that are gen-
erated by the other processes. The client update bandwidth is the
minimum required bandwidth to do that.

Rendering Performance: Increasing environment size or polygon density po-
tentially increases the requirements for rendering performance. In or-
der to present a realistic view of the environment suitable for interac-
tive applications, an acceptable rendering frame rate must be achieved.
The number of polygons that can be rendered per second is the limiting
factor for the achievable frame rate.

6.2.2 Analysis of existing systems

The following analysis further underlines that scalability needs to be ad-
dressed by all DVE systems and provides a reference for the discussion of
the scalability approach presented in this work. With respect to scalability,
two different classes of DVE systems are considered. Systems like DIVE or
Repo3D that do not include any mechanism to handle scalability and sys-
tems like NPSNET Terrain or SPLINE that use tiling to address scalability
issues.
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Fig. 6.2: The environment is subdivided into smaller tiles. Only tiles within
the area defined by the maximum visibility are needed for render-
ing.

No scalability mechanism

Without support for scalability, each client maintains a copy of the entire
environment. Let lenv be the side length of the environment, dpoly the av-
erage polygon density of the environment and mpoly the amount of memory
needed to store one polygon description. The amount of process memory
necessary to store the environment representation Cmemory is approximated
as

Cmemory = l2env × dpoly ×mpoly (6.1)

Let nclient be the number of participating clients, nchanges the number of
changes that one client applies to the environment for each new view, mmsg

the average size of a single update message and rview the average number of
views that are generated per second. The total bandwidth Cbwidth required
by each client to send and receive all state update messages is defined as

Cbwidth = nclient × nchanges ×mmsg × rview (6.2)

The number of polygons that a client needs to render per second is defined
as

Crender = l2env × dpoly × rview (6.3)

Tiling for scalability

The environment is tiled and each client defines a limited area of interest
that is significantly smaller than the entire environment. Only the tiles that
belong to that area around each client is considered to be interesting (see
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Asymptotic Complexity

N No Support Tiles
Cmemory(N)

lenv O(N2) O(1)
lvis O(N2)
dpoly O(N) O(N)

Crender(N)
lenv O(N2) O(1)
lvis O(N2)
dpoly O(N) O(N)

Cbwidth(N)
nclient O(N) O(1)

Tab. 6.1: The asymtotic complexity of the cost functions depending on the
considered scalability parameters.

figure 6.2). Let lvis be the desired range of visibility that defines the area
of interest for each client. The amount of process memory necessary to
represent the area of interest Cmem is then defined as

Cmemory = 4l2vis × dpoly ×mpoly (6.4)

Cmemory does no longer depend on the size of the entire environment, but
depends on the size of the area of interest.

Likewise, only update messages for environment modifications inside the
area of interest need to be received by a client. Let dclient be the average
client density with respect to the environment size. The total bandwidth
required by each client to send and receive all state update messages relevant
to the area of interest is defined as

Cbwidth = 4l2vis × dclient × nchanges ×mmsg × rview (6.5)

Analog to equation 6.1 the number of polygons a client needs to render is
defined as

Crender = 4l2vis × dpoly × rview (6.6)

6.2.3 Comparison of tiling vs. no scalability mechanism

To compare the characteristics of the two approaches it is helpful to look
at the asymptotic complexity of the cost functions for the three scalable
parameters (see table 6.1).

It is immediately obvious that the tiling strategy provides major scala-
bility improvements. It effectively decouples client memory and rendering
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requirements from environment size. The complexity of the corresponding
cost functions is significantly reduced from O(N2) to O(N). Further, the
linear dependency of the process bandwidth on the total number of processes
is removed.

The tiling approach limits visibility and removes the dependency on
overall environment size. Similar improvements can be seen for the depen-
dency of the bandwidth required for a single process on the total number of
participating processes.

However, tiling does not address two important scalability issues. First,
there is still a quadratic increase of memory and rendering requirements,
now depending on the visibility parameter lvis that determines the size of
the area of interest. Second, the linear dependency of both requirements
on the average polygon density dpoly is not handled by the tiling approach.
Section 6.6 shows that the hierarchical distribution approach to scalability
resolves both issues.

6.3 Exploiting visibility for rendering

This section surveys basic visibility techniques that are used to increase
rendering performance for large scene in real-time graphics applications.

Normally, rendering are performed for the entire geometry that is part of
the scene graph. For large scenes this can consume considerable processing
resources and generally results in low frame rates. Visibility based accel-
eration techniques rely on the assumption that in many cases only a small
portion of the entire scene is visible in the final rendering. Thus, a lot of
processing an rendering resources are wasted on parts of the scene that are
not even visible in the final rendering. By predicting which parts of the
scene graph will visible for a particular viewpoint and viewing direction and
then rendering only those parts, the whole process of rendering would be
accelerated.

View frustum culling and level-of-detail evaluation are techniques that
classify all parts of the scene graph as either potentially visible or definitely
invisible prior to rendering a frame. They are introduced in more detail in
the following sections.

6.3.1 View frustum culling in visual rendering

The projection parameters can be represented as a viewing frustum that is
positioned and oriented in world space coordinates. All geometry that is
contained inside the viewing frustum is potentially visible on the screen for
that particular projection. Geometry outside the frustum is not visible.

View frustum culling takes advantage of the hierarchical structure of
the scene graph to efficiently decide which part of the scene is visible and
has to be rendered. All nodes in the scene graph are extended with an
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Fig. 6.3: Only object that intersect the viewing frustum are considered for
rendering. The bounding box inclusion hierarchy allows for efficient
testing.

additional attribute that describes a simple bounding volume of the node.
The bounding volume of an inner node completely contains all the geometry
that is contained in the subgraph rooted at that inner node. In case of a
leaf node, the bounding volume is guaranteed to enclose all the triangles
contained in the leaf node. Whenever the structure of the scene graph, a
triangle list of a leaf node or a transformation matrix of a transformation
node is changed, the bounding box of all nodes that are affected by this
change are recomputed.

Prior to the culling and rendering traversal, the viewing frustum is com-
puted from the current viewing parameters. During traversal the viewing
frustum is intersected with the bounding volumes of each node. Based on
the result of this intersection test, one of three possible actions is taken.

• The bounding volume lies completely outside the viewing frustum.
The entire subtree enclosed by the bounding box can not possibly
by visible and is pruned, i.e. the traversal does not continue into
this subtree. The subtree is neither processed nor is the contained
geometry rendered.

• The bounding volume lies completely inside the viewing frustum. The
entire geometry contained in the subtree is potentially visible (except
maybe for occlusion). The rendering traversal is continued into the
subtree, but no further bounding box tests are performed.

• The bounding volume and the viewing frustum intersect in some non
trivial way. No definite inside/outside decision can be made. The
traversal continues normally into the subtree and further bounding
volume tests are performed on the children of the node.
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Fig. 6.4: The evaluation of a LOD node selects the appropriate object rep-
resentation for rendering based on viewer distance.

View-frustum culling can save considerable processing resources during
rendering and can speed up the rendering process significantly. However,
the effectiveness of view frustum culling depends strongly on the quality of
the bounding volume hierarchy. Culling results are best if the structure of
the hierarchy closely corresponds to the spatial structure of the scene.

6.3.2 Level-of-detail evaluation

The culling technique described in the previous section classifies objects in
a scene by visibility and reduce resource consumption by rendering only the
visible objects. Level-of-detail (LOD) evaluation tries to further accelerate
the rendering of the visible objects (see also [24]).

Because a perspective projection is used to map objects from world-
space to screen-space the projected screen area of an object decreases with
increasing distance of the object from the viewer position. The smaller the
screen area of an object, the less object detail is visible in the final image.
Rendering complex objects at great viewer distances is a waste of resources,
because the original object detail is not perceptible in the image. A less
complex representation of the same object would be enough to achieve the
same perceptible detail, while saving considerable processing and rendering
resources.

Level-of-detail evaluation exploits this effect. For each object several dif-
ferent versions with decreasing complexity and triangle count are supplied.
For the representation of the various levels of detail for an object a new
inner node is introduced to the scene graph. The LOD node manages its
children as different versions of one and the same object. Each child is asso-
ciated with a range value that determines which version is to be rendered at
what object - viewer distance. During the rendering traversal, the distance
between an object and the viewer is calculated and used to select the ob-
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Fig. 6.5: The structure of a hierarchical level-of-detail tree.

ject representation that has the least complexity while still providing a good
perception of detail on the screen. Only this version of the object is then
rendered. Thus, an object at great distance consists of fewer polygons and
consume less rendering resources than the same object at a closer distance.

Level-of-detail evaluation performs best if the objects in the scene are
consistently modeled with multiple levels of complexity. This necessity in-
creases the modeling effort because several different versions of each object
have to be build. Automatic level-of-detail generation is a difficult problem
to solve for general objects. For specific classes of objects however, usable
reduction algorithms exist[40]. Level-of-detail evaluation is very suitable to
accompany view frustum culling and/or occlusion culling.

6.3.3 Hierarchical level-of-detail rendering

Hierarchical level-of-detail is a variation of the LOD evaluation scheme de-
scribed in the previous section. The original LOD scheme provides different
levels of details for simple objects. The hierarchical LOD scheme provides
different levels of detail for entire subtrees that, in turn, contain LOD nodes
themselves. Figure 6.5 shows a schematic view of a hierarchical LOD scene
graph.

Each LOD node has only two children, the second child for the coarse
representation of that part of the scene graph, the first child for the more
detailed representation. The coarse representation is a normal geometry
node, while the fine representation is a complete subtree that contains fur-
ther LOD nodes as its children. Thus the hierarchical LOD scheme can be
used to structure the scene graph in a way that resembles adaptive multi-
resolution space partitioning schemes like a quad-tree or an octree. Figure
6.6 illustrates how a LOD hierarchy interacts with the viewing frustum dur-
ing rendering. The example is a typical scenario that can be found in terrain
based simulators.
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Fig. 6.6: Due to the hierarchical LOD structure of the scene graph, those
parts of the surface that are close to the viewer are rendered at full
resolution, while parts further away from the viewer are rendered
at lower resolution.

To provide more visual and conceptual clarity in our figures, we introduce
a new inner node to the scene graph. This new HLOD node is a combination
of three other nodes:

• A standard LOD node with exactly two children that represent the
same area of space in two different levels of detail, the coarse rep-
resentation and the fine representation. The LOD node selects the
appropriate child node depending on its range attribute and the dis-
tance to the viewer position. It is symbolized by a trapeze.

• A standard group node whose children can be in turn HLOD nodes.
The subtree rooted at this group node is the fine representation of the
HLOD node. It is symbolized by a circle.

• A standard geometry node that holds the geometric description of the
fine representation of the HLOD node. It is represented by a square.

The scene graph in figure 6.6 represents a surface patch on which the
viewer is located. In figure 6.6(a) the entire patch is represented by one
geometric object. In this case the entire surface patch has to be rendered
at full resolution to produce the image for the viewer. In figure 6.6(b) the
surface patch has been subdivided into four single patches that are located
on level two of a LOD hierarchy. Level one represents the same surface
area with only one surface patch at a quarter the resolution using only a
quarter of the triangles. This subdivision step is reapplied in figure 6.6(c)
and produces a multi-resolution representation of the surface that is three
levels deep. During the rendering traversal the LOD nodes in the tree are
evaluated. Due to the hierarchical LOD structure of the scene graph, those
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parts of the surface that are close to the viewer are rendered at full resolution,
while parts further away from the viewer are rendered at lower resolution.

The hierarchical LOD scheme allows real-time rendering of almost arbi-
trarily large databases. However, a database must exhibit a strong spatial
coherence, the structure of the scene graph must match the spatial structure
of the database. This makes the hierarchical LOD scheme perfectly suitable
for terrain rendering application. Further, the required multi-resolution hi-
erarchy can be automatically generated from the raw surface data. Popular
examples are whole earth visualization systems like TerraVision[61] and T-
Vision[4]. Those projects use satellite remote-sensing data to construct and
render the entire world in form of a globe. The user can freely navigate
above the globes surface, while the hierarchical LOD evaluation impercep-
tibly elides all unnecessary detail from the rendered scene and guarantees
real-time rendering frame rates.

6.4 Exploiting visibility for distribution

This section introduces Avocados approach to distribution in large scale
virtual environments. Visibility based culling and LOD schemes, which are
very similar to those described in the previous section, are used to reduce the
amount of communication necessary for state transfer and update, and to
implement a hierarchical partitioning scheme that overcomes the scalability
problems described at the beginning of this chapter.

The main assumption is that in a large scale virtual environment the
area of interest of a participating process can be based on visibility. A pro-
cess is assumed to be only interested in parts of the scene that are visible
for the current viewing parameters. For large scale VEs this may be only a
small portion of the entire scene. Thus it is not necessary for the process to
have a complete copy of the scene to render the current view. A dynamic
working set, the subset of visible objects in the scene, is enough. Further,
because parts of the scene outside the working set are of no interest, the
process does not need to receive state transfer and update messages for ob-
jects from outside the working set. However, the working set needs to be
constantly updated according to changing viewing parameters. New parts
of the scene are added if they become visible, while old parts are released
from the working set if they become invisible. In addition to changing view-
ing parameters, moving geometry in the scene may also affect the current
working set. If new geometry becomes visible it is added to the working set
and geometry that becomes invisible is removed accordingly.

The following sections explain how a scene is structured into hierarchical
partitions that can be added and removed from the working set of a partic-
ipating process while maintaining overall consistency of the globally shared
application state. A method that uses visibility information that is freely
available from the rendering traversal to calculate which partitions need to
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be included in the current working set is presented. Further, the distribu-
tion concepts introduced in 5 are used to to map the hierarchical partition
of the scene to a set of distribution groups. The use of multi-cast based
distribution groups enables the construction of large-scale VE applications
that can be efficiently operated over wide area networks using the Internet
Mbone infrastructure.

A prototypical implementation of this approach is based entirely on the
work introduced in chapter 5. Details of the implementation are explained
and a short, proof-of-concept example is given.

6.4.1 Hierarchical environment partitioning

The hierarchical LOD scheme described in Section 6.3.3 enables real-time
rendering of very large scenes based on visibility and distance considerations.
The hierarchical multi-resolution structure of the scene graph suggests itself
as a good starting point for the necessary partitioning of the scene. It has
two important properties that can be utilized to efficiently calculate and
maintain a working set of visible and thus important objects.

• Strong spatial coherence. The scene graph structure directly corre-
sponds to the spatial position of objects in the scene. This enables the
efficient use of view-frustum culling techniques to select potentially
visible partitions for inclusion in the working set.

• Multi-resolution information. Objects and groups of objects exist in
different levels of detail. The calculation of the working set can not
only be based on potential visibility but also on distance. Partitions
of the scene that are located at a greater distance can be included at
a low resolution version, while partitions that are closer to the viewer
can be included at a higher resolution.

Further, the hierarchical LOD scheme can also be used to accelerate
rendering without any additional effort because Avocado fully supports
Performers LOD rendering capabilities and thus also hierarchical LOD eval-
uation during rendering.

Figure 6.7(a) illustrates how the hierarchically structured scene graph is
divided into hierarchical partitions. It shows a scene graph that structurally
resembles a BSP tree. The HLOD nodes introduced in section 6.3.3 are used
to represent the scene graph structure. Each HLOD has two children, that
are in turn HLODs and together represent the same geometry as the parent
node at a finer level of detail. Each HLOD defines a partition of the scene,
that consists of the coarse geometry contained in the HLOD node and the
references to the partitions that are defined by the child HLOD nodes. The
geometry in the child HLOD nodes does not belong to the partition formed
by the parent node. This allows the selection of a partition at a coarse level
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Fig. 6.7: Figure (a) illustrates how a hierarchical LOD scene graph is subdi-
vided into hierarchical partitions. Figure (b) shows an example of a
possible working set. The gray partitions are the selected working
set partitions. The parent partitions are marked with a sym-
bol. They also belong to the working set, but are currently not
active. The marked HLOD geometry is the only geometry that
is rendered for this working set.

of detail without automatically including the finer versions of that partition
as well.

Figure 6.7(b) shows a selection of three partitions that form a possible
working set (selected partitions are gray). The selected working set is a
complete medium to low resolution representation of the entire scene graph,
and it contains only about 20% of the geometry found in the scene graph.

The hierarchical scene graph partitioning scheme introduced in this sec-
tion allows the selection of a working subset of the scene based on visibility
information. This scheme is now extended to the distributed case such that
every participating process can define its own working set and receive and
send state update information only for those parts of the scene contained in
its working set.

6.4.2 Mapping distribution groups to scene partitions

The distribution mechanism as described in Section 5.1.2 uses the concept
of a distribution group to provide a consistently replicated copy of the entire
scene graph to all participating processes in a distributed application. The
scalability problems inherent in this approach can now be overcome by using
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Fig. 6.8: Figure (a) shows a scene graph that is created by a process of a dis-
tributed application. It is divided into seven partitions. Each par-
titions HLOD node is associated with an own distribution group.
Figure (b) shows the scene graph of another process that has joined
only the distribution group associated with the root HLOD node
of the scene graph. In Figure (c) this process has selected a more
detailed representation of the scene graph by joining additional
distribution groups.

more than one distribution group to distribute the scene graph.
A one-to-one mapping between scene graph partitions and distribution

groups is established. To achieve this, the HLOD node of each partition
of the scene graph is associated with its own distribution group. This en-
ables processes in the distributed application to precisely select only those
partitions they are interested in, by joining only the distribution groups as-
sociated with those partitions. Because all communication in a distribution
group is local to the members in this group, processes only receive messages
that concern their current working set of partitions. Thus, the number of
update messages received by a process does no longer grow with the abso-
lute size of the entire scene, but now only depends on the size of the current
working set of the process. This allows the creation of shared scenes of po-
tentially unlimited size because the size of the working set does not depend
on the size of the entire scene.

The HLOD node introduced in 6.3.3 has to be extended to provide this
additional functionality. A new groupname attribute identifies the distri-
bution group that is associated with the HLOD node. The associated dis-
tribution group contains the geometry node that describes the coarse rep-
resentation of the HLOD node and the child nodes which describe the fine
representation. The HLOD node can now be in one of two different states:

Inactive: The distribution group specified in the groupname attribute is not
joined. Thus neither the coarse geometry nor the finer representation
is available. The only information available is the bounding volume of
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the HLOD node. The scene graph effectively ends here. An inactive
HLOD node is denoted by the following symbol:

Active: The distribution group specified in the groupname attribute is
joined. This implies that the coarse geometry defined by the node
is available for rendering and manipulation. Also available in this
distribution group are the child HLOD nodes that define the fine rep-
resentation of the HLOD node. They may in turn be either active or
inactive. An active HLOD node is denoted by the following symbol:

Figure 6.8 illustrates how a process can selectively define its working set
by activating the desired HLOD nodes. Sub-figure (a) shows a scene graph
that has been created by a process A. It consists of seven HLOD nodes and
thus defines seven partitions and their associated distribution groups. All
HLOD nodes are active, so that the contents of the partitions is potentially
accessible by other processes. The scene graph is organized like a BSP tree
and presents a multi-resolution representation of a rectangular surface patch.

In Figure 6.8(b) a second process B, that wants to share the represen-
tation of the surface patch has joined the distribution group defined by the
root HLOD node. The process receives copies of the coarse representation
and the two child HLOD nodes. These are by default not activated, so that
at this point only the least detailed representation of the surface patch is
available to process B. If process B needs a more detailed representation,
it can activate the child HLOD nodes and receive more detailed partitions
of the surface patch as shown in Figure 6.8(c). This can be recursively con-
tinued until either the detail requirements are satisfied or the most detailed
level of partitions has been reached.

By associating scene graph partitions with distribution groups it be-
comes possible to selectively share only parts of the scene graph between
processes in a distributed application. Additionally, because the partitions
are structured as a multi-resolution hierarchy, partitions can be selected at
different levels of detail. The following section describes how a process can
utilize the visibility information available from the rendering traversal to de-
cide which partitions need to belong to the working set and how the HLOD
nodes are evaluated to achieve this.

6.4.3 HLOD evaluation and the working set

As described in Section 6.3.3, HLOD evaluation is performed during render-
ing traversal. Depending on the distance between the HLOD node and the
viewer, the traverser decides whether the coarse representation is rendered
or the traversal is continued into the child nodes which reveal the finer rep-
resentation. This is applied recursively until either the detail requirements
are met or the finest available resolution is reached.
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Because the scene partitioning scheme directly corresponds to the HLOD
structure of the scene graph, the definition of the working set can now be
refined in terms of the HLOD evaluation results from the rendering traversal.
The working set shall be defined to consist of all scene partitions, whose
corresponding HLOD nodes have been traversed during the last rendering
traversal. This criterion implies that the working set always contains exactly
those partitions of the scene graph that are needed to render the current
view.

The traversal starts at the root HLOD of the scene graph. This node
is assumed to exist and be active, i.e. the process has already joined the
associated distribution group. Based on the range attribute, the viewer
distance and the activation state of the node, one of two possible actions
has to be taken during traversal:

Distance > Range: The coarse representation is selected. The contained
geometry is traversed and rendered. Possible active children of the
HLOD node are inactivated and not regarded for traversal. They are
effectively removed from the working set.

Distance <= Range: The fine representation is selected. The geometry de-
scribed by the coarse representation is not rendered. Possible inactive
children of the HLOD node are activated. This initiates the transfer
of the coarse and fine representation of the node by joining the asso-
ciated distribution group. The scene partitions described by the child
HLOD nodes now belong to the working set. The traversal continues
into the possible HLOD children, that describe the fine representation
of the node.

The selection of the working set is based on viewer distance. Because
HLOD evaluation is automatically performed as part of the rendering traver-
sal, working set determination is computationally inexpensive and almost
automatic. The working set is guaranteed to contain all scene partitions at
only the minimal level of detail that is required for rendering of the current
view.

6.4.4 HLOD evaluation and view frustum culling combined

The working set can be further minimized if not only distance is considered
as the criterion for HLOD evaluation, but also visibility. As described in
section 6.3.1 view frustum culling is performed during rendering traversal.
Only those parts of the scene graph that are contained in the view frustum
or intersect with it are traversed. Subtrees that lie outside the frustum are
not traversed and, as a consequences, not rendered.

This also true for HLOD nodes. If view frustum culling is performed,
HLOD nodes outside the frustum are never rendered and thus never evalu-
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ated. Because HLOD evaluation is automatically performed as part of the
rendering traversal, the working set is automatically reduced to contain only
those nodes that survive culling against the current view frustum.

6.4.5 Caching of inactive nodes

As detailed above, the view frustum defines the current working set. If the
viewing position or orientation is changed, the frustum changes accordingly.
This in turn potentially modifies the working set and as a result some HLOD
nodes may be added to the working set and be activated while some old ones
are removed and deactivated.

Each activation or deactivation of a HLOD node means that the process
joins or leaves the corresponding distribution group. During a join operation,
a state transfer is performed and at least the joining HLOD node and it’s
internal representation have to be transmitted over the network. In case
of a fast or frequently moving viewer, the number of group membership
changes that a process has to perform in a short period of time is likely to
exceed the available resources to do so. Another effect, called thrashing, can
often be observed if a particular HLOD is repeatedly, and thus unnecessarily,
activated and deactivated.

To prevent resource saturation and thrashing a caching mechanism is
introduced that delays the deactivation of HLOD nodes that are removed
from the working set. These nodes are not rendered because they are outside
the viewing frustum, but they are still active members of their respective
distribution groups. If such a cached HLOD node is again promoted into
the working set, no further operations are necessary because the node is still
active.

The cache size can be measured in many different ways, the determina-
tion of the optimal one is certainly application dependent. One possibility
is the size of the memory occupied by the cache. If a predefined amount of
memory is exhausted, a cache clean-out is performed prior the activation of
new HLOD nodes. Other cache size criteria could be the total number of
cached HLOD nodes.

The optimal cache clean-out strategy is most likely also application de-
pendent. Possible strategies include the cache classic LRU (Least Recently
Used) or could be based on the age, i.e. the amount of time an HLOD has
been active, or the amount of time of time spent in the working set.

Because caching prevents thrashing and reduces the resource consump-
tion incurred by group membership changes, it is a necessary mechanism
that enables efficient implementations of the HLOD distribution scheme.
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Fig. 6.9: The avNetLOD is derived from a standard avNetDCS node and is im-
plemented using an internal representation build from distributable
Avocado nodes.

6.5 Implementation of the HLOD node

The HLOD node, as the single component that allows a scene-graph to be
hierarchically shared over an network, is implemented as a compound node
based on the avNetDCS node (see figure 6.9).

It has the following fields, some of which are inherited from the standard
avNetDCS class:

Groupname: When the group name is set to an non-empty string, the appro-
priate multicast group for that node is joined. The groups IP address
is calculated from the group name using a hash function. The internal
nodes are distributed in the newly joined group along with all their
children.

Ranges: This is a vector of three floating point values that determine at
which distance from the viewer this particular avNetLOD node switches
between it’s fine and it’s coarse representation. Depending on the
distance, four different cases can occur:

Distance d Representation
d < Ranges[0] none

Ranges[0] < d < Ranges[1] fine
Ranges[1] < d < Ranges[2] coarse

Ranges[2] < d none

CourseRep: A single-field of type avNode. The subtree that is attached
here defines the coarse representation of the node. Internally it is
re-parented to the coarse group node.

FineRep: A multi-field of type avNetLOD. The nodes that are attached here
define the fine representation of the node. Internally the nodes are
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re-parented to the fine group node. The coarse representation always
consists entirely of other avNetLOD nodes.

The decision whether the course or the fine representation of the node
should be rendered, is based on Performers built in level-of-detail mecha-
nism. The HLOD node is implemented as a compound node that internally
uses a standard pfLOD to automatically perform the range evaluation as part
of the CULL traversal.

The implementation of the HLOD node uses the standard Avocado
distribution mechanisms that have been described in chapter 5. Although
it exhibits a rather complex functionality, it has been implemented in only
a few hundred lines of C++ code. Therefore, besides adding the ability
to efficiently describe virtual environments in a multi-resolution hierarchy,
it can be regarded as a successful demonstration of the extensibility and
versatility of the Avocado distributed object model.

6.6 Scalability analysis of the hierarchical distribution approach

Similar to the tiling approach analyzed in section 6.2.1, each client defines
a visibility based area of interest that is significantly smaller than the en-
tire environment. Only the polygons contained in that area are considered
for rendering. Again, the environment is tiled, but this time the tiles are
structured in a hierarchical multi resolution hierarchy. Only tiles that lie
within the area of interest are considered and the level-of detail for each tile
decreases with viewer distance (see figure 6.10). To compare the proposed
approach to the previously analyzed methods, the cost functions Cmemory,
Cbwidth and Crender are defined for the hierarchical approach.

Let lvis be the desired range of visibility that defines the area of interest
for each client. Further, let ntilepoly be the average number of polygons
contained in a tile of the highest level-of-detail. The total number of high-
detail tiles contained in the area of interest nhres is then defined as

nhres = (4l2vis × dpoly)/ntilepoly (6.7)

The number of levels needed to build the aggregating level-of-detail hierarchy
nlods is then

nlods = log4 nhres (6.8)

The amount of process memory necessary to represent the area of interest
Cmemory directly relates to the number of polygons needed to represent the
are of interest. Because of the aggregating method of tile construction, the
number of polygon per tile ntilepoly is the same for the tiles from all levels
of detail. Thus, the problem is reduced to the determination of the number
of tiles needed to cover the area of interest. Looking at Figure 6.10 this
number can easily be specified.
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l
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Fig. 6.10: The size of the tiles that cover the plane increases with distance
form the client position, while the number of polygons per tile
remains constant.

For simplicity, the calculation is done for only one quadrant. From the
highest level of detail three tiles are taken to cover three quarters of the
are of interest. The remaining quarter is filled from the next higher level of
detail following the same method. Thus, the total number of tiles used to
cover the area of interest is defined as

naoitiles = 4((4− 1)× (nlods − 1) + 1)
= 12nlods − 8 (6.9)

Using equations 6.7, 6.8 and 6.9, Cmemory is defined as

Cmemory = naoitiles × ntilepoly ×mpoly

= (12nlods − 8)× ntilepoly ×mpoly

= (12 log4 nhres − 8)× ntilepoly ×mpoly

= (12 log4((4l2vis × dpoly)/ntilepoly)− 8) (6.10)
×ntilepoly ×mpoly

Cmemory does not depend on the size of the environment, but depends on
the size of the area of interest.

As described for in section 6.2.2, only update messages for environment
modifications inside the area of interest need to be received by a client. Let
dclient be the average client density with respect to the environment size.
The total bandwidth required by each client to send and receive all state
update messages relevant to the area of interest is defined as

Cbwidth = 4l2vis × dclient × nchanges ×mmsg × rview (6.11)
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Asymptotic Complexity

N No Support Tiles Hierarchy
Cmemory(N)

lenv O(N2) O(1) O(1)
lvis O(N2) O(log N)
dpoly O(N) O(N) O(log N)

Crender(N)
lenv O(N2) O(1) O(1)
lvis O(N2) O(log N)
dpoly O(N) O(N) O(log N)

Cbwidth(N)
nclient O(N) O(1) O(1)

Tab. 6.2: The asymtotic complexity of the cost functions depending on the
considered scalability parameters.

Analog to equation 6.10 the number of polygons a client needs to render
per second is defined as

Crender = (12 log4((4l2vis × dpoly)/ntilepoly)− 8) (6.12)
×dpoly × rview

Comparison

To compare the characteristics of the different strategies to handle scalabil-
ity, it is helpful to look at the asymptotic complexity of the cost functions
for the three scalable parameters (see table 6.2).

As mentioned in section 6.2.1, tiling decouples client memory consump-
tion and rendering requirements from the environment size. While this in-
creases scalability by reducing the costs from O(N2) to O(N), it does so by
shifting the cost dependency from environment size to the visibility range.
If visibility is increased, resource consumption still increases quadratically.

This problem is addressed by the proposed multi-resolution approach.
The dependency on the visibility range is reduced from O(N2) to O(log N).
This is a significant decrease in resource requirements. Compared to tiling,
it allows a much large visibility range at considerably less costs.

Further, tiling does not address the O(N) dependency on polygon den-
sity. Increasing the polygon density still leads to a linear increase of resource
requirements.

The multi-resolution approach reduces the cost complexity for memory
and rendering requirements depending on polygon density from O(N) to
O(log N). This means that the distributed virtual environment becomes
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scalable with the complexity of the environment representation. Addition-
ally, the environment complexity is dynamically adjustable for each client
and allows adaption to the clients rendering capabilities, by trading visual
complexity against resource requirements.

In conclusion, the hierarchal multi-resolution approach dramatically im-
proves scalability by reducing the dependency between resource require-
ments and environment size and complexity from O(N) to O(log N)

6.7 Summary

The hierarchical distribution strategy described in this work provides scal-
ability with respect to the size and geometric complexity of a virtual en-
vironment and the number of users that simultaneously participate in it.
It is based on well known optimization methods from the area of real-time
rendering.

A multi-resolution hierarchy describes the environment at different ge-
ometric levels of detail. To achieve scalability, not the entire environment
is shared between the processes, but each process subscribes only to a frag-
ment of the scene graph based on it’s processing capabilities and it’s viewing
parameters. The segmentation of the scene graph is marked with newly in-
troduced hierarchical level-of-detail nodes that each associate a fragment of
the multi-resolution scene graph with a separate multicast communication
group.

This solution compares favorably to existing general-purpose scalability
approaches. Hierarchical partitioning is clearly superior to flat tiling meth-
ods, as it reduces the resource complexity for increased visibility from O(N2)
to O(N).
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7. Results, applications and future work

7.1 Results of this work

Immersive virtual environments and, in particular, distributed immersive
environments are becoming an increasingly popular research area. However,
building VE applications is a complex task and requires the combination of
many different technologies from various research areas.

The goal of this work was to develop a design and an implementation for
a distributed VE framework, that can serve as a basis for VE research and
for application development. Special attention was payed to the usability
of the distributed object and event model on one hand, and competitive
performance on high-end systems on the other. As the main contributions
of this work an architecture for a general purpose DVE framework has been
developed and implemented (Chapters 3, 4 and 5) and a novel approach to
scalability for large-scale distributed virtual environment frameworks (Chap-
ter 6) has been presented.

The results of this work do not only apply to the described Avocado
architecture and implementation, but are generally applicable to the de-
sign of scalable distributed virtual environment frameworks. They can be
summarized as follows:

• The combination of a comprehensive and flexible distributed object
model with consistent APIs and scalable performance is both, highly
desirable and possible. Many VE toolkits and frameworks focus on one
aspect while totally neglecting the other. The described architecture
demonstrates the synthesis of a fully developed object and event model
and scalable performance in one system.

• The distributed object and event model provides a transparently
shared scene graph to the application developer. The API used to
handle objects and scene graph is almost identical to the stand-alone
APIs. In contrast to other approaches, that introduce new concepts
to handle distributed event delivery, the presented architecture tightly
integrates event handling and distributed object notification into a
unique and unobtrusive distributed event model.

• Application state replication is firmly based on the process group
model. Unlike most other approaches, Avocado explicitly sup-
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ports highly dynamic distributed applications with frequent and unan-
nounced membership changes, and at the same time provides very
strong consistency guarantees.

• To ensure scalability with respect to environment size and complexity
and the number of processes, a novel hierarchical multi-resolution ap-
proach has been presented. It is based on the level-of-detail concept
well-known from visual rendering. The use of visibility as a selec-
tion criterion for required object detail conforms with user expecta-
tions. Hierarchical distribution maps well to the group communication
paradigm used in Avocado, and solves the problem of heterogeneous
distribution groups that consist of peers with differing processing and
rendering capabilities.

• A distributed locking facility is integrated into the distributed object
model and communication protocol and provides the essential func-
tionality that is needed to implement race free application-level syn-
chronization across processes in distributed applications.

• The framework architecture in combination with the extension APIs
and the dynamic loading capabilities has proved to be a solid and
highly customizable platform for the development of application spe-
cific extensions. The rapid prototyping style of application develop-
ment that is encouraged by the comprehensive scripting interface has
been well received by application developers.

• Direct user interaction with objects in the virtual environment is for-
malized in a tool-based interaction framework.

• A display device abstraction allows the adaption to all common im-
mersive multi-screen displays. The display components support head-
tracking and stereo output, and use all available hardware options to
optimize the rendering performance. The explicit representation of
the display model abstractions as part of the application scene graph
has not been described before, and allows the description of complex,
dynamic display setups with a small number of primitives.

The results of this work have been validated by numerous successful re-
search projects and applications that use Avocado as a basis. The following
section presents a representative selection.

7.2 Applications built with Avocado

7.2.1 Multi-modal interaction in virtual reality

It’s rapid prototyping and scripting abilities qualify Avocado as a good
foundation for the prototypical implementation of VR related research re-
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sults.
The Artificial Intelligence Group at the University of Bielefeld works on

a demonstration platform for virtual-reality-based prototyping using gesture
and speech. They operate a three-sided CAVE using a PC cluster and the
Avocado framework to develop an integrated framework for recognition,
interpretation, and rendition of gesture and speech based interactions in
VR applications.

In this context, Latoschik[49, 50] uses the Avocado framework as a
basis for the prototypical implementation of his work on the combination
of gesture and voice recognition based methods for user interaction. His
system recognizes voice and gesture articulations of the user and combines
them to deduct the users intentions with regard to the virtual environment.
It then modifies the scene graph accordingly. The prototype allows the user
to assemble a vehicle from a number of parts using a combination of voice
commands and gestures. A typical compound utterance of the user would
be:

”Pick up this wheel [Simultaneous pointing gesture at the refer-
enced part] and attach it to the left end of the red axle.”

Gesture and voice recognition is performed by a network of intercon-
nected modules (see figure 7.1). The modules perform subtasks of the recog-
nition process and communicate with each other to reach a conclusion. The
modules are implemented as field container nodes that communicate via field
connections. Actuator nodes create a stream of data from input devices that
is channeled to the appropriate recognizer nodes.

The system demonstrates a powerful use of Avocado’s field connection
mechanism to build an easily configurable and modular recognition system
that is tightly integrated into the VR application. The system is configured
through the Scheme scripting interface. Reconfiguration is fast and does
not require any re-compilation. The use of field connections to implement
modular data-driven application components demonstrates the versatility of
Avocado’s data-driven event model.

7.2.2 Oil exploration demonstrator

IMK VE used Avocado to build a demonstrator[25] for distributed immer-
sive geo-scientific exploration on the Responsive Workbench. The applica-
tion allows the distributed visualization of geo-science data. The data sets
consist of seismic data and well log data and in its complexity presents a
challenge for interactive visualization. From the paper[25]:

Seismic data: ”Seismic surveys are carried out by sending acoustic shock
waves into the ground where they are reflected and refracted, follow-
ing the physical principles of wave-motion in layered media. The am-
plitude and travel time of acoustic waves returning to the surface are
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Fig. 7.1: Gesture and voice recognition is performed by a network of inter-
connected modules. (Figure taken from [48])

measured and processed into regular three-dimensional scalar grids.
Strong coherent reflectors and other structures can be analyzed from
these data volumes, which represent a block of the earth subsurface
that may be kilometers on a side. The seismic cube is the central data
structure for most exploration and interpretation tasks. Subsurface
structures like horizons and faults are defined relative to the seismic
cube and typically displayed as polygonal models.”

Well log data. ”Well log data is gathered by lowering instruments down an
existing drill-hole to measure physical properties such as gamma radi-
ation, neutron density, bulk density, electrical conductivity and many
others. Measurements can be made at centimeter interval over hun-
dreds of meters, so well log data is high resolution, dense and multi-
variate. Subsequent processing can be done to produce vector data
and data representing surfaces along the drilling path.”

The exploration application allows the user to interactively visualize
these volumetric datasets on the Responsive Workbench using a variety of
visualization tools, like perpendicular cutting planes, volumetric lenses and
various probes for value data extraction.

For the intuitive manipulation of dataset and visualization tools a new
input device has been developed. The CubicMouse[27] consists of a cube-
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Fig. 7.2: The upper row of screen shots shows typical geo-science datasets
and visualization tools. The bottom row of photographs shows
users that perform a distributed visualization of a shared dataset
on two remote responsive workbenches. Both use a CubicMouse
for manipulation.

shaped box with three perpendicular rods passing through the center and
buttons on the top for additional control. It controls the position and orien-
tation of the virtual model and the rods move the three orthogonal cutting
planes through the dataset.

The application is designed to be used in a distributed scenario, where
two users on remote workbenches visualize a shared dataset. The users each
use a CubicMouse to control the view on the dataset and the visualization
tools.

The implementation of this application uses a number of Avocado fea-
tures and techniques and demonstrates the validity and the versatility of the
approach that Avocado has taken toward the development of distributed
applications. In particular:

• Distribution of the application state, including datasets and visualiza-
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tion tools, is performed in one distribution group using a avNetDCS
node. The potentially very memory consuming dataset nodes are im-
plemented as compound nodes (see section 5.5) to optimize distribu-
tion behavior.

• The representation of dataset and tools is implemented as a set of
custom nodes that use the Avocado extension mechanism and provide
the desired functionality.

• User interaction and tool handling is based on the interaction frame-
work presented in section 4.3.

• Display setup for the one and two-sided Workbench is specified using
the display device abstraction described in section 4.2.

7.2.3 PC-CAVE render cluster

As mentioned in section 2.4, at IMK VE Avocado has also been used to
build a PC render cluster that drives stereoscopic multi-display devices like
the CyberStage and the CONE.

With the advent of cheap consumer oriented AGP graphics cards for
PCs, the desire to replace the high priced SGI graphics supercomputers
arose. Unfortunately, the PC bus architecture is not very scalable with
respect to the number of CPUs and graphics boards used in one PC. SGI
Onyx like setups with 12 processors and 4 graphics subsystems are not yet
feasible on a single PC.

The obvious solution is to use a cluster of networked PCs that consists of
one or two CPUs and one graphics card each. However, while this approach
promises easy scalability by just adding more PCs to the cluster, it also
introduces a number of additional problems:

• Dissemination of application state to the cluster PCs. Each PC in a
cluster renders a different view of the application state. All informa-
tion about what to render needs to be transfered to each PC for each
frame.

• Because of the loose coupling of networked PCs, synchronization of the
output image generation is often necessary to suppress visual disconti-
nuities on moving objects that span several displays. This is especially
important in multi-display active stereo setups like the CyberStage or
the CONE.

The cluster configuration used at IMK VE uses one master PC that
controls four slave PCs. The master handles user input and manipulates
application state, while each slave PC renders one view of the application
state and provides video output for one display segment. Master and slave
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PCs all run AvocadoṪhe entire application state is transparently shared
between the master and the slaves using Avocados shared scene graph.
This setup basically makes the cluster transparent to the application devel-
oper and provides good O(1) scalability due to the use of IP multicast at
the transport layer.

The cluster is mainly used to drive CONE and CAVE-like displays using
active stereo. Therefor synchronization of the render slaves is necessary.
The graphics cards directly support video gen-locking while swap-lock is
implemented with custom networking hardware that uses the control signal
lines of the PC parallel printer ports to provide low-latency synchronization
of the frame buffer swapping.

The cluster consists of HP X4000 workstations with two XEON4 proces-
sors and a ATI FireGL4 graphics card each. The PCs are networked with
using standard giga-bit Ethernet and as switching hub. Each render slave
outputs a 96HZ stereo signal at 1600 times 1460 pixels, and is capable of
delivering seven million polygons per second. This places the overall cluster
performance in the range of multi-million dollar graphics supercomputers
like the SGI Onyx InfiniteReality.

Although Avocado was never intended to be used as a communica-
tion middle-ware for PC based render clusters, nevertheless this installation
shows that it is completely up to the task. This can be interpreted as another
proof of the versatility of Avocados approach to implement distributed vir-
tual environments.

7.2.4 Caveland

The first application for the CyberStage that was build with Avocado is the
Caveland production. It was presented to the public as the main attraction
on GMD’s booth at Cebit 1997 in Hannover. Caveland takes the user on a
10 minute tour through a virtual environment that is assembled from five
different worlds (see figure 7.3 for some screen shots from the environment):

Caveland: A fantasy fair ground that serves as the basis for explorations into
the other worlds.

Iceland: A frost bitten world that presents a number of stunning visual ef-
fects to the CAVE visitor.

Fireland: An underground landscape that explores the borders of visual per-
ception and the fragility of the human sensomotoric system by pre-
senting views into the world from disturbing perspectives.

Sound Spheres: An interactive composition that is controlled by the user
through the manipulation of colored spheres floating in space and that
is rendered visually as well as audibly.
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Fig. 7.3: Screen shots from the 1997 production Caveland that was shown
as the main attraction on the GMD booth at Cebit.

The user is guided through these worlds by two animated characters that
explain the various attractions in comedic dialog. The characters are build
from polygonal meshes that are deformed in real-time during rendering. The
characters are animated by performers using traditional character anima-
tion techniques like motion capturing. Playback of the captured animation
and real-time deformation of the polygonal meshes is performed parallel to
rendering on a separate processor and thus, despite being computationally
expensive, did not decrease the overall rendering frame rate.

The presentation is structured as a guided tour to allow supervision by
untrained personnel during the extensive hours of operation. Caveland was
on display for the entire duration of the exhibition. A new show was started
every 15 minutes for about 8 hours a day. This results in approximately 256
shows in eight days.

Because of the size and the number of polygons of the virtual environ-
ment, the scene is segmented into separate worlds in order to allow ren-
dering at interactive frame rates. The transition between these worlds is
implemented using automatic portals that ensure that, while the details of
the transition are imperceptible to the user, the system never needs to ren-
der two worlds at the same time. Further, the segmentation of the world
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allowed several teams to work on the application in parallel and thus helped
to reduce development time.

In addition to the visual display provided by four stereoscopic projec-
tions the CAVE was equipped with eight independent loudspeakers. The
loudspeakers were driven by a dedicated sound server that was controlled
by the Avocado framework and that was capable of producing spatially
localized sound effects for almost any number of sound sources in real-time.
To further increase the degree of immersion, the CyberStage floor was fitted
with a low frequency resonator that would add tactile feedback to the user
experience.

Caveland was developed by a team of about thirteen people over a period
of three months. The major part of the development was performed on SGI
Indy and Indigo desktop workstations. The final application was deployed
on a four-pipe SGI Onyx InfiniteReality supercomputer.

Besides being a complete success as an eye-catcher to the more serious
exhibits on display at GMD’s Cebit booth, Caveland served as a proof-of-
concept for the entire Avocado framework design. It successfully demon-
strates several key features of the framework:

Multiple displays: Caveland was presented in a four sided CAVE, resulting in
eight views being rendered simultaneously. The views were generated
in parallel on four InfiniteReality graphics subsystems.

Interaction: The presentation was controlled entirely by the guiding operator
from within the CAVE using a combination of specialized stylus and
joystick input devices.

Rapid prototyping: The script based rapid-prototyping ability led to a very
short development cycle, providing fast and early feedback. Because
of the inherently modular extension mechanism, a large team was able
to work on the production in parallel with a minimum of interdepen-
dencies. Scripting made regression testing of modules and module
integration easy.

Extensibility: Several complex and application dependent extensions have
been implemented. Most notably these are:

• Vertex based character animation.
• 3d localized surround sound.
• Portal based scene segmentation.
• Presentation control system.

Although these extensions have been developed specifically for Cave-
land, they are immediately reusable in other application contexts.

Performance and stability: The Caveland presentation shows a highly com-
plex detailed virtual environment at frame rates that exceed 20 HZ.
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The presentation was on display for 8 days, running one show every
15 minutes without any major software stability problems.

7.2.5 Commercial applications: Vertigo Systems and RMH

The Vertigo Systems GmbH[77] and the RMH New Media GmbH[62] were
founded as GMD spin-offs in 1998. Since then, the two companies have pro-
duced several commercial CAVE applications that were showcased on fairs
and exhibitions around the world. All productions are based exclusively on
the the Avocado framework and draw from the experiences made during the
development of the Caveland presentation. Since 1998, the following pre-
sentations have been produced (see also figure 7.4 for pictures from selected
events):

• CargoMaster: A virtual reality game for the the i-CONE. Presented
at the Hannover Fair and the China Coal and Mining 2001 in Beijing.

• Avandia: Insulin Resistance Inside: An interactive CAVE presenta-
tion for GalaxSmithKline that illustrates the mechanism behind a new
diabetes drug. Demonstrated in 2000 as part of a road show at over
40 locations in Germany.

• Siemens Innovation City: An interactive CAVE presentation for
Siemens AG that introduces telecommunication technologies to the
visitors. A major attraction on the Siemens booth at the Telecom
1999 exhibition in Geneva.

• Office interior planning for the German Foreign Minister: An inter-
active planning system for interior design. Built in 1999 to assemble
and present different versions of his new office to the minister.

• Hostalen Erlebniswelt: A virtual product presentation in the CAVE.
Produced for the Kunststoffmesse 1998 in Dsseldorf.

• RAG Erlebnisreise: A virtual company and product presentation for
RAG, the former Ruhrkohle AG. Presented in a CAVE on Hannover
Fair 1998.

• Virtual Anima: A virtual CAVE based presentation of Andre Heller’s
new concepts for a theme park. The presentation was given to poten-
tial investors and later opened to the public.

The successful work of Vertigo Systems and RMH further stresses the
versatility and real-world usability of the Avocado framework.
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Fig. 7.4: Screen shots from selected commerial productions (CargoMaster,
Siemens, Foreign Minister, Hostalen, RAG, Heller).

7.3 Suggestions for future work

Although the Avocado architecture and implementation are reasonably
complete and have been validated by great number of real-world applica-
tions, there are still many areas where further research seems worthwhile:

• The presented approach to distribute object state and event informa-
tion does not consider timing issues. While it guarantees that the
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causality relationship between events is always preserved in a dis-
tributed system, it does not develop any provisions to preserve the
timing relations between events. Further research is necessary to in-
vestigate how the real-time layout of events can be preserved in a
distributed VE system without increasing the overall system latency.

• The use of total message ordering to guarantee consistency comes at
a price, as it introduces an additional source for communication la-
tency. Depending on the application, consistency requirements for
certain state attributes might be less demanding. For example, if the
consistency requirements for the spatial position attributes of a fast
moving object could be relaxed to a degree where total message order-
ing would no longer be necessary without damaging overall application
state consistency, update latency for the object position could be ef-
fectively decreased. Research into this direction would lead into the
area of reliable group communication protocols that support dynamic
quality of service (QoS) parameterization on a per message, or at least
a per message class, basis.

• Currently distributed objects are owned exclusively by one process.
As a consequence, objects that have been created and shared by one
process will never survive that process’ termination. As soon as that
process dies, the replicated copies of the shared object will also be
destroyed. Introducing the concepts of shared ownership and own-
ership migration offers an interesting starting point for research into
high-availability VE server clusters. Pursuing this direction of research
would also lead to a more thorough evaluation of the failure detection
and failure recovery mechanisms of the underlying group communica-
tion layer.

• All processes that join a hierarchical DVE currently must at least join
the top-level root group. The process group model requires each group
to maintain a list of all current members. As the number of members
increases the resource consumption due to member list maintenance
may become a problem. An investigation into dynamic re-rooting of
processes in the distribution hierarchy could further elevate the upper
limit to the number of participating users.

• Currently, new object classes can only be defined using the C++ APIs.
The script layer can instantiate and modify objects, but offers no
mechanism to define new classes from script. It would be interest-
ing to research how scriptable class definitions can be integrated into
the distributed object model. The current assumption, that all class
definitions are compiled and available to all clients, would no longer
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hold, as new object classes could be dynamically defined at run-time
and would need to be distributed to all processes.

• A closely related topic is the role of event handler scripting in dis-
tributed environments. Currently, only Scheme function definitions
can be distributed as values between processes. Any global variable
bindings contained in the Scheme environment of the transfered func-
tion definition are lost. Some first thoughts and a simple solution have
already been published in [66]. A more general approach would thor-
oughly analyze the applicability and the semantic behavior of lexical
scoping in replicated distributed environments.

The list of suggestions shows the potential for further research in this
area. As results of this work, the described advances in DVE framework
architecture and design contribute to the ongoing effort to contain and han-
dle the complexities of the development of distributed virtual environments.
Considering the increasing availability of network connectivity in general
and the current developments in the area of on-line-gaming in particular,
the technology behind distributed virtual environments will be an important
research topic for years to come.
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