
The Double Cut and Join Operation and
its Applications to Genome Rearrangements

Dissertation
zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

an der Technischen Fakultät

der Universität Bielefeld

vorgelegt von

Julia Zakotnik geb. Mixtacki

April 2008

Betreuer: Prof. Jens Stoye

Gutachter: Prof. Anne Bergeron
Prof. Robert Giegerich
Prof. Jens Stoye

Gedruckt auf alterungsbeständigem Papier – ISO 9706

Meiner Familie

Abstract

The aim of this thesis is to study mathematical models suitable for genome comparison
in order to compute the evolutionary distance between two given genomes. We present a
new model for genome comparison and apply the unifying double cut and join operation
to this genome model. Different variants of the model are studied, yielding simpler
formulations of earlier results.

Unlike the traditional sequence-based approach, evolution on the genomic level proceeds
by large scale operations which rearrange the order and the direction of chromosomal
regions. With an increasing number of sequenced genomes, it is now possible to com-
pare whole genomes instead of short sequences. Different species often share similar
genes that were inherited from common ancestors, and large scale mutations are ob-
served in more distantly related genomes. It is widely accepted that the number of
genome rearrangements needed to transform one genome into another is a measure of
evolutionary distance between two species.

In the reconstruction of evolution based on genome rearrangement, the most common
approach is to infer a sequence of rearrangements under the assumption of parsimony,
motivating the following combinatorial problem: Given two genomes that have the
same gene content, compute a shortest sequence of rearrangements that are needed to
transform one genome into the other. The length of such a sequence is the genomic
distance between these two genomes. For multi-chromosomal genomes, the most com-
mon operations are translocations, fusions, fissions, inversions and block interchanges.
Remarkably, all these operations can be modeled by a single one, termed the double
cut and join (DCJ) operation.

Besides genome rearrangements, another important source for genome evolution is
whole genome duplication. Compared to the duplication at regional level, genome-
wide doubling is a rare and spectacular event. This gives rise to the following com-
binatorial problem, called the Genome Halving Problem: Given a rearranged du-
plicated genome, find a perfectly duplicated genome such that the distance between
these genomes is minimal with respect to some distance measure. Clearly, solutions to
this problem depend on the underlying genome model and also on the rearrangement
operations that are allowed.

The main contributions of this thesis are summarized as follows:

Graph-based genome model. The basic tools for our genome representation are
graphs that are unions of paths and cycles. On this type of graphs, called genome
graphs, it is possible to model all rearrangement operations on the most general
genome structure that mixes both circular and linear chromosomes. Thus, the
graph-based representation is used for modeling genomes, as well as genome re-
arrangements.

i

ii

DCJ distance formula and sorting algorithm. With a suitable genome represen-
tation, the DCJ operation is applied to the most general type of genomes with a
mixed collection of linear and circular chromosomes. A very simple data struc-
ture, the adjacency graph, is symmetric with respect to the two genomes under
study and is closely related to the visual picture of the genomes themselves. More-
over, this graph simplifies the theory and distance computation considerably and
yields an efficient sorting algorithm that can be tailored to optimize the use of
certain types of operations.

Unifying treatment of the traditional HP distances. Our main result is an anal-
ysis of the relation between the general DCJ model and the three rearrange-
ment models considered in the traditional Hannenhalli-Pevzner (HP) theory:
the inversions-only, the translocations-only and a combination of inversions and
translocations. The latter model motivates the general HP distance that can be
solved using similar concepts as in the unichromomal case. A simple tree struc-
ture captures all the delicate features of the general HP problem. Moreover, we
show how all three rearrangement models considered in the HP theory can be
integrated in the more general DCJ model.

Reconstruction algorithm for duplicated genomes. The Genome Halving Prob-
lem under the DCJ operation, where the ancestral genome may contain linear and
circular chromosomes, is revisited. Our genome model takes into account con-
straints required for genomes with only linear chromosomes, as well as the ones
for genomes with only circular chromosomes. This yields a new proof and a simple
algorithm for reconstructing an ancestral genome. Moreover, using our results,
we correct an error in an analysis by Warren and Sankoff.

Contents

1 Introduction 1
1.1 Genomic Distances . 4
1.2 Structure of the Thesis . 7
1.3 Acknowledgements . 8

2 Genome Rearrangements 11
2.1 Relevance of Genome Rearrangement . 11

2.1.1 Human-Mouse Comparison . 11
2.1.2 Whole-Genome Duplication of the Yeast Genome 15

2.2 Genomic Distances for Phylogenetic Reconstruction 16

3 The Double Cut and Join Distance 21
3.1 Problem Formulation . 21

3.1.1 Graphs with Vertices of Degree One and Two 21
3.1.2 Genes, Chromosomes and Genomes 24

3.2 The Adjacency Graph . 25
3.3 Computing the DCJ Distance . 28
3.4 Algorithm Details . 28
3.5 Summary and Historical Notes . 29

4 HP Distances via the DCJ Distance 33
4.1 Problem Formulation . 33
4.2 Components and Oriented Sorting . 35

4.2.1 Oriented DCJ Operations . 35
4.2.2 Components . 36
4.2.3 Oriented Sorting . 38

4.3 Computing the General HP Distance . 45
4.3.1 Destroying Unoriented Components 45
4.3.2 Unoriented Sorting . 49

4.4 Relation to Other Genomic Distances 54
4.4.1 Inversion Distance . 54
4.4.2 Translocation Distance . 57

4.5 Algorithms . 60
4.5.1 Component Identification . 61
4.5.2 Distance Computation . 68

4.6 Summary and Historical Notes . 69

iii

CONTENTS CONTENTS

5 Genome Halving under the DCJ Distance 73
5.1 Problem Formulation . 73
5.2 Natural Graphs . 76
5.3 Reconstructing an Ancestral Genome . 77

5.3.1 Distance Formula . 77
5.3.2 Algorithm . 78

5.4 A Note on the Warren-Sankoff Formula 79
5.5 Summary and Historical Notes . 81

6 Conclusion and Future Directions 83

iv

Chapter 1

Introduction

One of the major scientific breakthroughs of the 20th century was Watson and Crick’s
discovery of the molecular structure of DNA. The DNA is a helix-shaped molecule
whose constituents are two parallel strands of nuclecotides, as shown in Fig. 1.1. The
rungs of the ladder are formed by two complementary pairs of nucleotides – adenine
(A) always pairs with thymine (T), and cytosine (C) always pairs with guanine (G). On
an abstract level, the DNA is represented as a sequence over the four-letter alphabet
{A,C, G, T} and the opposite strand can be obtained by taking the reverse complement.

Figure 1.1: DNA double-helix. Picture taken from Watson and Crick [129].

A genome is the entire DNA sequence of a living organism and consists of smaller
segments called chromosomes. A chromosome can be viewed as an ordered sequence
of genes. A gene is a segment of DNA that is typically involved in producing proteins
or encoding functional RNAs. Its orientation depends on the DNA strand that it is
located on.

Genome rearrangement is a branch of comparative genomics that studies gene order
among different species. The goal is to infer their phylogenetic relationships and es-
timate the number of genome rearrangements that have occurred during evolution.
Despite a long history in molecular genetics, comparative genomics is still in its early
days due to the large amounts of genomic data becoming available. Several key in-
sights and new technologies have made this field take off in new directions and have

1

produced the need for sound mathematical models and efficient algorithms for genome
comparison.

The measurement of evolutionary difference between organisms by comparing of their
genomes has become possible through the development of molecular biology and modern
genetics. Molecular evolution proceeds in two different forms: local mutations and
global rearrangements. Local mutations such as nucleotide substitutions, deletions and
insertions result in local changes in the DNA sequence. Most phylogenetic studies are
based on these traditional sequence-based mutations [38, 57, 53].
On the other hand, evolution on the genomic level proceeds by large scale operations
which rearrange the order and the orientation of genes along the genome. With an
increasing number of sequenced genomes, it is now possible to compare whole genomes
instead of short sequences. Different species often share similar genes that were inher-
ited from common ancestors, and large scale mutations are observed in more distantly
related genomes. It is widely accepted that the number of genome rearrangements
needed to transform one genome into another is a measure of evolutionary distance
between two species.

Surprisingly, genome rearrangements of chromosomes have already been identified in
close species by Sturtevant [116] in the beginning of the 20th century. Shortly after,
Dobzhansky and Sturtevant [42] compared the gene orders in giant chromosomes of
strains of Drosophila pseudoobscura coming from different geographical regions. Chro-
mosomal segments that are similar enough pair together due to the linkage in hybrids
between different strains. If two chromosomes have a segment inverted, then the struc-
ture of these chromosomes builds a loop that is visible under the light microscope
(Fig. 1.2).

Figure 1.2: Configuration observed in the third chromosome of Drosophila. The chromosome
coming from the region Arrowhead has an inverted segment compared to the Standard chro-
mosome that is partitioned into segments from 1 to 100. Picture taken from Dobzhansky and
Sturtevant [42].

Genome rearrangement occurs when a chromosome breaks at two or more locations,
called breakpoints, and the resulting segments are rejoined in a different way. In the
chromosome shown in Fig. 1.2, a rearrangement operation has occurred within the
segments 70 and 76 and has resulted in 69, (70, 76), 75, 74, 73, 72, 71, (70, 76), 77. Over

2

CHAPTER 1. INTRODUCTION

time, such rearrangements accumulate, creating a more and more divergent picture
of the formerly identical chromosomes. In contrast to the traditional sequence-based
approach in which local mutation accumulate rather quickly, genome rearrangements
are usually extremely rare. For this reason, genome rearrangement studies allow for
evolutionary reconstructions of more divergent species.
Genome rearrangement have been modeled by a variety of operations such as in-
versions, translocations, fissions, fusions, transpositions and block interchanges. For
uni-chromosomal genomes, the operations are limited to inversions, which reverse a
segment of genes, and block interchanges, which exchange two segments of genes.
When two segments are adjacent, a block interchange is called a transposition. For
multi-chromosomal genomes, the repertoire can be extended by translocations, which
exchange segments of genes between two chromosomes. Translocations involving or
creating empty chromosomes are called fusions and fissions.
In the reconstruction of evolution based on genome rearrangement, the most common
approach is to infer a sequence of rearrangements under the parsimony assumption.
This approach was pioneered by Palmer and Herbon [95] who presented a most parsi-
monious scenario for the mitochondrial genomes of cabbage and turnip and postulated
that a minimum of three inversions has occurred during evolution, see Fig. 1.3.

Figure 1.3: The mitochondrial genomes of B. oleracea (cabbage) and B. campestris (turnip)
have essentially the same gene content, but they differ in gene order. The genomes can be di-
vided into five linkage groups and a minimum of three inversions has occurred during evolution.
Figure taken from Palmer and Herbon [95].

On an abstract level, the study of genome rearrangement problems involves the combi-
natorial task of finding a minimum sequence of rearrangements operations to transform
one genome into another. The example of transforming cabbage into turnip became
famous with the milestone publication by Hannenhalli and Pevzner [63]. At the time
when the first genomes were completely sequenced, Hannenhalli and Pevzner presented
an exact inversion distance formula and a polynomial time algorithm to compute it.
Shortly after, two further papers [62, 60] followed and completed the series by Han-

3

1.1. GENOMIC DISTANCES

nenhalli and Pevzner. Since then, genomic distances have been studied extensively and
the major results are reviewed in the next section.

1.1 Genomic Distances

In comparative genomics, it is often convenient to represent the genes of a genome by
positive integers and a chromosome as a sequence of these numbers. If the orientation
of all genes is known, a (plus or minus) sign is associated to each integer. A genome
is a set of chromosomes. Genomes consisting of just a single chromosome are uni-
chromosomal, and genomes with one or more chromosomes are multi-chromosomal.
Given two genomes that share exactly the same set of genes, and where each gene
occurs exactly once, the genomes can be represented as (signed) permutations of the
set of genes by chaining the chromosomes in an arbitrary order.
During the course of evolution, the genes in a genome can be shuffled around by genome
rearrangements that move genes within a chromosome or among chromosomes. This
motivates the following combinatorial problem: Given two genomes that have the same
gene content, compute a shortest sequence of rearrangements that are needed to trans-
form one genome into the other. The length of such a sequence is the genomic distance
between these two genomes. Of course, the distance depends on the repertoire of opera-
tions that are considered. For example, as shown in Fig. 1.4, the human X chromosome
can be transformed into the mouse X chromosome by six inversions, or alternatively
by one inversion and three transpositions. As it turns out, not only the set of opera-
tions is crucial for the distance computation, but also the orientation of the segments.
However, when the paper [8] was published in 1995, the orientation was known only
for some segments of the X chromosome.
Among genomic distances, the most often studied distance is the inversion distance: In
1982, Watterson et al. [130] first formulated the problem of finding the minimum num-
ber of inversions required to transform one configuration of genes into another. It took
more than ten years until Kececioglu and Sankoff [72] developed the first approxima-
tion algorithm for the problem of sorting an unsigned permutation by inversions. They
also conjectured that this problem is NP-hard, which was proved later by Caprara [35].
Fortunately, the biologically more relevant signed version of the problem is polynomial-
time solvable. In order to model the orientation of genes, Bafna and Pevzner [9] ini-
tiated the study of signed permutations. In 1995, Hannenhalli and Pevzner [63] gave
the first inversion distance formula and polynomial-time algorithm for the problem of
sorting a signed permutation by inversions using the concepts developed by Bafna and
Pevzner [9]. Later, a linear-time algorithm for computing the inversion distance was
given by Bader et al. [6], whereas the best known algorithm for sorting by inversions is
subquadratic [119, 118].
For multi-chromosomal genomes with the same chromosome ends, Hannenhalli [60]
gave the first polynomial-time algorithm for sorting by translocations. In 2004, the
first linear-time algorithm for computing the translocation distance was given by Li
et al. [79]. Shortly after, Wang et al. [126] presented a quadratic time algorithm for
sorting by translocations. However, the last two algorithms rely on Hannenhalli’s paper
which is erroneous. In 2005, Bergeron et al. [21] corrected the error in the original paper

4

CHAPTER 1. INTRODUCTION

Figure 1.4: Transformation of human X chromosome into mouse X chromosome. The orienta-
tion of segments, if known, is indicated by an arrow. (a) Conserved linkage groups between
human and mouse X chromosomes. (b) A most parsimonious scenario assuming that the chro-
mosomes evolve only by inversions. (c) A rearrangement scenario involving both inversions and
transpositions. Figure taken from Bafna and Pevzner [8].

and presented a new proof for the distance formula and a first correct sorting algorithm.
Due to the similarity between the sorting by inversions problem and the sorting by
translocations problem [93], Ozery-Flato and Shamir adapted the algorithm by Tannier
et al. [118] and obtained a subquadratic algorithm for sorting by translocations [92].

In the more difficult case of genomes with different chromosome ends, the distance ac-
counts not only for inversions and translocations, but also for fusions and fissions. In
1995, Hannenhalli and Pevzner [62] presented the first distance formula, called the gen-
eral HP-distance. The rather complicated distance computation requires preprocessing
steps such as capping and concatenation and involves seven parameters. In the last
decade, a number of authors pointed to problems in the original formula and algorithm
given by Hannenhalli and Pevzner. The first correction was given by Tesler [120]. In
2003, Ozery-Flato and Shamir [91] found a counter-example and modified one of the
parameters of the distance formula. Very recently, another correction was presented by
Jean and Nikolski [70]. These two recent results have not been implemented in a soft-
ware tool yet. The only available tool is GRIMM that was implemented by Tesler [121]
based on [120].

5

1.1. GENOMIC DISTANCES

Given their prevalence in eukaryotic genomes [110], the usual choices of operations in-
clude translocations, fusions, fissions and inversions. There are some indications that
transpositions should also be included in the set of operations [24]. However, the lack
of theoretical results showing how to include transpositions in the models led to algo-
rithms that simulate transpositions as sequences of inversions. The problem of sorting
by transpositions was first studied by Bafna and Pevzner [10] who derived an approxi-
mation algorithm. Since then, many researchers [125, 66, 51, 76, 64] have investigated
the problem and several approximation algorithms have been suggested. For combina-
tions of inversions and transpositions, there exist approximation algorithms [65], too,
including models where the operations are weighted differently [7]. There is little hope
to find a polynomial-time algorithm since sorting by inversions and transpositions on a
binary alphabet was proven to be NP-hard [40]. Up to now, the complexity of sorting
by transpositions only is still open.
In contrast, the more general problem of sorting by block interchanges has a very
simple quadratic-time solution [39] that was further improved by Feng and Zhu [54]
and implemented by Martin [83].
Recently, Yancopoulos et al. [134] introduced a general operation called double cut and
join operation (or shortly DCJ operation). Each of the classical operations can be
viewed as making up to two cuts in a genome and joining the resulting segments in
any order. In addition to inversions and translocations, the DCJ operation also models
transpositions and block-interchanges by creating an intermediate circular chromosome
that is re-integrated by another DCJ operation. Their general model accounts for the
genomic evidence of the coexistence of both linear and circular chromosomes or plasmids
in many genomes [37, 124].

Despite the recent efforts to generalize the underlying genome model [22], the computa-
tion of the genomic distance still relies on the strong assumption that each gene occurs
exactly once in each genome. While this assumption may be appropriate for smaller
genomes such as viruses and mitochondria, it is rather unrealistic for more divergent
species where genes often have several copies across the genome. One way to overcome
this restriction is to use the exemplar method studied by Sankoff [103]. The idea is to
choose in both genomes one occurrence of each gene, called its exemplar, to delete all
the other occurrences, and then to minimize the distance between the resulting exem-
plar permutations. Shortly after, it was shown that the problem of choosing exemplars
so that the inversion distance between the exemplar permutations is minimized is NP-
hard [34]. Another direction [45, 82] is to extend the approach by Hannenhalli and
Pevzner [62, 63] to include insertions and deletions; see [47] for a survey chapter.
Compared to the duplication at regional level, genome-wide doubling is definitely the
rarest and the most spectacular duplication event. Already in the early 1970s, Susumu
Ohno [90] came up with the hypothesis that whole genome duplication has occurred
in mammalian evolution. Not without controversy, this question has been addressed
several times in the last three decades, both in the biological [1, 59, 74, 41] and in the
computational literature [49, 50, 4, 128].
The related combinatorial problem, called the Genome Halving Problem, was first in-
troduced in [49]: Given a rearranged duplicated genome, find a perfectly duplicated
genome such that the distance between these genomes is minimal with respect to some

6

CHAPTER 1. INTRODUCTION

distance measure. Clearly, solutions to this problem depend on the underlying genome
model and also on the rearrangement operations that are allowed.
El-Mabrouk and Sankoff [50] solved the Genome Halving Problem under the HP dis-
tance. Their algorithm for the reconstruction of doubled genomes is far from being
trivial and is the final result of a whole series of papers [49, 48, 46]. In addition to the
well-known breakpoint graph, they introduce further graphs, called natural graph and
signature graph. Later, Alekseyev and Pevzner gave an alternative approach based on
the notion of contracted breakpoint graph [3] and corrected in [4] an error in the El-
Mabrouk-Sankoff analysis. Very recently, Warren and Sankoff [128] studied the Genome
Halving Problem under the more general DCJ model. This generalization simplifies the
problem, because some of the complicated components of the breakpoint graph, such
as hurdles and knots, can be ignored. However, their solution still relies on the complex
concepts introduced by El-Mabrouk and Sankoff.

1.2 Structure of the Thesis

In this thesis, we present a new genome model for genome comparison and we study
the double cut and join operation under this model. The main results are (1) a new
DCJ distance formula and sorting algorithm, (2) a unifying treatment of the tradi-
tional HP distances and (3) a new reconstruction algorithm for duplicated genomes.
The structure of the thesis is as follows. In Chapter 2, we give an introduction to
genome rearrangement and their uses in comparative genomics and phylogenetic recon-
struction. The relevance of genome rearrangement is exemplified by the human-mouse
comparison and the whole genome duplication of the yeast genome. After discussing
the two examples, we give a simplified formalization of genomes with coexisting circu-
lar and linear chromosomes. Finally, we explain how genomic distance matrices can be
used for phylogenetic reconstruction.
In Chapter 3, we present a formal treatment of sorting genomes with a mixture of
linear and circular chromosomes by the double cut and join operation. This yields a
simple distance formula for the DCJ distance and a linear time sorting algorithm. An
overview of our results and their link to related works can be found at the end of the
chapter.
In Chapter 4, we study the relation between the general DCJ model and the three rear-
rangement models considered in the traditional Hannenhalli-Pevzner theory: inversions-
only [63], translocations-only [60] and a combination of inversions and translocations [62].
The latter model motivates the general HP distance that can be solved using similar
concepts as in the uni-chromosomal case [19]. A simple tree structure captures all the
delicate features of the general HP problem. Moreover, we show how all three rear-
rangement models considered in the HP theory can be integrated in the more general
DCJ model. Again, a summary and historical notes are included at the end of the
chapter.
In Chapter 5, we study the Genome Halving Problem under the DCJ model where
the ancestral genome may contain linear and circular chromosomes. Therefore, in our
genome model, we take into account both: constraints required for genomes with only
linear chromosomes, as well as the ones for genomes with only circular chromosomes.

7

1.3. ACKNOWLEDGEMENTS

Compared to the more general model studied in [128], these requirements on the ances-
tral genome increase the distance between the genomes. This yields a simple algorithm
for reconstructing an ancestral genome. Moreover, by our results, we also correct an
error in the Warren-Sankoff analysis. At the end of the chapter, we summarize our
results and discuss related work.
Finally, Chapter 6 summarizes the results of this thesis and addresses open questions.

Parts of this thesis have been published in advance. The results on the DCJ distance
given in Chapter 3 appeared in [22]. Moreover, the sorting algorithm was implemented
and is publicly available at http://bibiserv.techfak.uni-bielefeld.de/dcj/.
Parts of Chapter 4 are already published [18, 19, 20, 21, 23] and a journal version about
the latest results on the general HP distance is submitted [17].
Furthermore, a conference paper about the results of Chapter 5 is published [84].

1.3 Acknowledgements

This thesis would not have been possible without the help of many people. It is my
pleasure that I have the opportunity to express my gratitude to them.
First and foremost, I would like to thank my advisor Jens Stoye for his continuous
supervision and mentoring. He has always been supportive through many ups and
downs. It helped me a lot that I could always discuss with him on any topic without
any hesitation.
I am very grateful to Anne Bergeron for providing a lot of inspiration, useful comments
and critical feedback. She is an expert in the field of comparative genomics, but also
in finding nice and interesting places to work – and to dine. When I met her for the
first time in Minneapolis in fall 2003, I could not imagine that the program that we
started would last for so many years. It was a great pleasure to meet and work with
her. Merci beaucoup!
My working and traveling experiences were further enriched by two research visits to
Paris and Vancouver. I thank Mathieu Raffinot for scientific discussions and motivating
me to start the PhD program. I also wish to thank Cedric Chauve with whom I was
very lucky working, even if only for brief time. Although the results did not find their
way into the thesis, they inspired a collaboration with Sebastian Böcker and Katharina
Jahn. Thanks to all co-authors who showed me that research is more productive and
much more fun in a team.
Sometimes, I have tried to implement algorithms on my own to check our ideas, but
this effort has been less successful and has not taken long. I thank three students who
have been courageous and patient enough to implement our algorithms: Rafael Friesen,
Marcel Martin and Marvin Meinold.
I would like to acknowledge the financial, academic and spiritual support of the Inter-
national NRW Graduate School in Bioinformatics and Genome Research at Bielefeld
University. Apart from a three-year fellowship, it gave me the possibility to attend
conferences and the opportunity to meet the Dalai Lama.
Many current and former colleagues made the Genome Informatics group a great en-
vironment to work in. In particular, I would like to mention my officemates: Conni

8

CHAPTER 1. INTRODUCTION

who was also a nice company for sports activities, and perhaps the closest contact to
Biology I ever had during my work; Yasmin and Katharina who founded with me the
first girls’ office in the AGGI group. I am also thankful to Paul Medvedev, Martin
Milanic and Wiebke Timm who carefully read earlier drafts of the thesis and gave valu-
able comments for improvement. And lastly, special thanks go to our secretary Heike
Samuel for taking care of administration and for helping in all the things that a student
in our group needs help with.
Inspired by the Klosters’ winter seminar, members of the AGGI and closely related
groups carried on this tradition with annual skiing trips. I very much appreciated the
discussions with Sven on the lift, and the accompany of Arne and Thomas – whose
office was my hideaway.
Thanks to the mentoring program ”mo-ment-mal” of Bielefeld University. Especially,
I want to thank my mentor Claudia Nölker for her strategic advice for career devel-
opment. Moreover, some of us kept in touch even after completion of the program. I
am very grateful to Beate, Carola, Nadine, Sonja, Tina, and Vera with whom I shared
good times, common concerns, many worries and a lot of discussions that helped me
to grow. I hope they will all achieve their goals.
At various times, I was fortunate for the company and encouragement of good friends
like Anna, Annette, Elisabeth, Friedi, Jörg, Jule, Julia, Juliane, Maike, Thomas (in
alphabetic order).
Last but not least, I am especially thankful to all members of my family who encouraged
me throughout my whole life. I would not have made it so far without them. Most
importantly, my husband Jure unconditionally loved me during my good and bad times.
The last years have not been an easy ride, both academically and personally, and I truly
thank Jure for being by my side.

9

1.3. ACKNOWLEDGEMENTS

10

Chapter 2

Genome Rearrangements

This chapter provides an introduction to genome rearrangements and, more specifically,
its uses in comparative genomics and phylogenetic reconstruction. We will focus on two
specific evolutionary events: speciation and whole genome duplication. Speciation is an
evolutionary process in which organisms from the same species slowly diverge until they
form two different species. Thus, speciation starts in offspring genomes that initially
have identical gene content and order. In contrast, whole genome duplication creates a
new genome with two identical copies of the ancestral genome embedded in it. In both
cases, the offspring genomes will diverge over time and their gene order will change
due to genome rearrangements. Without selective pressure on gene order, the order of
genes would be randomized over time. Thus, similarities in the genomic architecture
allow to infer evolutionary relationships among species.

The structure of this chapter is as follows: First, in Section 2.1, we demonstrate the
relevance of genome rearrangement with two examples, the human-mouse comparison
and the whole genome duplication of yeast. Then, in Section 2.2, two approaches for
inferring phylogenetic trees, the Steiner tree reconstruction and the distance matrix
based approach, are described.

2.1 Relevance of Genome Rearrangement

The analysis of genome rearrangements was pioneered by Dobzhansky and Sturte-
vant [42] early in the 20th century. Traditionally, comparative genome analysis begins
with identifying homologous genes, where segments belonging to different genomes are
said to be homologous if they descend from a common ancestor [56]. Homologous genes
then give rise to graphical representations in form of comparative maps. However, se-
quencing of whole genomes during the 1990s allowed widespread comparative analysis
of gene orders in complete genomic sequences. Even before the completion of the rough
drafts of the human [69, 123] and mouse genomes, the human-mouse comparison has
been extensively studied in the comparative analysis of mammalian genomes.

2.1.1 Human-Mouse Comparison

Humans and mice diverged from their common ancestor about 100 million years ago.
A major question is how many translocations, fusions, fissions and inversions have

11

2.1. RELEVANCE OF GENOME REARRANGEMENT

occurred during this time. This question is addressed by two different approaches, the
statistical and the combinatorial.
The statistical approach was pioneered by Nadeau and Taylor [89] who defined homol-
ogous segments as segments with the same gene content and order in both genomes. At
that time, only 83 homologous genes were known which led to 13 homologous segments.
It turns out that the length of these segments is a very useful parameter. Nadeau and
Taylor based their analysis on Ohno’s hypothesis [90] that the breakpoints between
homologous segments are uniformly distributed. The segment lengths approximate an
exponential distribution with density function f(x) = 1/Le−x/L, where L is the aver-
age length of all segments. Indeed, the average length L = 8.1 centiMorgan (cM) of
the 13 conserved segments in the human-mouse comparison fits very well the expected
lengths distribution for L = 8 (see Fig. 2.1), implying that the data is consistent with
the assumptions of their analysis.

Figure 2.1: The curves illustrate the expected cumulative frequency distribution of segments
containing two or more genes for different average segment lengths L = 4 cM (− · −), L = 8
cM (· · ·), and L = 12 cM (−−−). The circles show the cumulative distribution of segments of
the human-mouse comparative map. Picture taken from [89].

Based on a very small number of homologous segments, Nadeau and Taylor estimated
the total number of disruptions of homologies between human and mouse, denoted by
R. Since each disruption increases the number of conserved segments by one, the total
number of conserved segments equals the number of disruptions plus the number of
chromosomes N , that are present in the last common ancestor of human and mouse.
On the other hand, the total number of conserved segments equals the total genome
length, denoted by G, divided by the average length L. Altogether, we have that

R = (G/L)−N.

12

CHAPTER 2. GENOME REARRANGEMENTS

For the mouse genome with N = 20 chromosomes, G = 1, 600 cM and L = 8.1 cM,
Nadeau and Taylor estimated that the number of disruptions between human and
mouse is approximately 180.
The estimated number of disruptions given by Nadeau and Taylor was confirmed by
further studies with progressively increasing levels of resolution and newly discovered
homologous segments. More than ten years later, Ehrlich et al. [44] studied a human-
mouse comparative map containing 1152 homologous genes distributed among 91 con-
served syntenies, which are segments where the order of genes is not preserved. They
estimated 140 synteny disruptions and 180 segment disruptions, yielding 40 intrachro-
mosomal disruptions. Thus, the estimated ratio between translocations and inversions
is 140:40. The Nadeau-Taylor model was further improved by estimating not only the
number of undiscovered segments, but also their lengths [88], and by modelling the
dependency of the segment lengths on each other [68]. Recently, another direction for
estimating separately the number of inversions and translocations was suggested by
Sankoff and Mazowita [109]. They studied human-mouse comparative maps at differ-
ent resolutions and showed that the number of estimated translocations is relatively
stable, whereas the number of inversions increases with finer resolution.

In the combinatorial approach, the focus is on the process rather than on the end re-
sult: one tries to explain differences in gene order in genomes by most parsimonious
rearrangement scenarios. Depending on the rearrangement operations that are consid-
ered, several genomic distances have been studied in the last two decades, as already
mentioned in the previous chapter. Most algorithmic studies of genomic distances rely
on signed permutations of the integers {1, . . . , N}, where N is the number of genes in
the comparative map. Therefore, genome rearrangement algorithms require that the
orientation of each gene is known, that the genes are unique and that they are linearly
ordered. For comparative mapping data, these requirements are not always fulfilled for
several reasons: the lack of resolution of maps, missing data or no information about the
orientation of genes, or several copies of a gene in a comparative map. These difficulties
were addressed by Sankoff et al. [113] who studied the application of rearrangement
methods to traditional comparative maps.

With the era of completely sequenced genomes, the human-mouse comparison shifted
from comparative maps to genomic data. In order to bypass gene finding and homol-
ogous identification needed for traditional comparative maps, Pevzner and Tesler [97]
used syntenic blocks constructed from sequence data as input for their rearrangement
algorithm. More precisely, syntenic blocks are regions of high similarity that may nev-
ertheless be interrupted by dissimilar regions or gaps. In order to find syntenic blocks,
Pevzner and Tesler developed the Grimm-Synteny algorithm. The underlying idea of
the algorithm is illustrated by the comparison of the human and mouse X chromosomes,
shown in Fig. 2.2. Details can be found in [97].
The Grimm-Synteny algorithm yields 281 syntenic blocks shared by human and mouse
of size at least one megabase. Even though the number of syntenic blocks is higher
than that predicted by comparative mapping data, their lengths still fit the expo-
nential distribution. In addition, Pevzner and Tesler found evidence for 3,170 micro-
rearrangements within these blocks that were beyond the resolution of comparative

13

2.1. RELEVANCE OF GENOME REARRANGEMENT

Figure 2.2: Comparison of the human and mouse X chromosome: (a) Bidirectional best local
similarities are called anchors. (b) A distance measure in the 2-dimensional dot-plot yields
15 clusters. (c) Rectified clusters ignore the details of the internal anchor arrangement. (d)
These rectified clusters are combined into diagonals that correspond to 11 synteny blocks. By
assigning to each synteny block an integer from 1 to 11 (e, f) and constructing the breakpoint
graph (f, g), an optimal rearrangement scenario (h) is obtained. Picture taken from [97].

maps. On the other hand, using the 281 syntenic blocks as input for GRIMM [121]
shows that 245 macro-rearrangements of these blocks have occurred since the diver-
gence of human and mouse.

Inspired by their results from human-mouse comparison [97], Pevzner and Tesler had a
closer look at the rearrangement scenario constructed by GRIMM and introduced the
concept of breakpoint reuse [98, 99]. For example, there are at least three breakpoint
reuses in any most parsimonious scenario of the X chromosomes of human and mouse
because they consist of the eleven synteny blocks (see Fig. 2.2) and any inversion breaks
the chromosome at two points. Thus, genome rearrangement analysis, together with
formulas for computing breakpoint reuse, implies that there are 190 breakpoint reuses,
yielding short “hidden” synteny blocks of length shorter than one megabase.

Although complete sequencing of genomes has confirmed the number of large-scale
rearrangements originally found by comparative gene maps, a debate started about

14

CHAPTER 2. GENOME REARRANGEMENTS

the huge amount of short synteny blocks that do not fit the exponential distribution
of the random breakage model. Pevzner and Tesler suggested the fragile breakage
model [98, 99]: the probability of a breakpoint in a short fragile region follows the
Poisson process, while the probability of a breakpoint in a long solid region is zero.
Assuming that fragile regions are distributed randomly in the genome, both the random
breakage and the fragile breakage model predict the same distribution for long synteny
blocks. Since then, there has been an ongoing controversy, with more arguments against
and in favor of this model being proposed [112, 104, 3, 5].

2.1.2 Whole-Genome Duplication of the Yeast Genome

Besides genome rearrangements, another source of genome evolution is whole genome
duplication. First stated by Ohno [90], this hypothesis has found biological evidence
among several eukaryotes. An excellent example is the duplication in the yeast genome,
recently confirmed by biological experiments [74].
Already in 1997, Wolfe and Shields [131] suggested that the yeast genome has under-
gone a whole genome duplication 100 million years ago. They identified 55 duplicated
regions, containing 376 homologous genes and representing 50% of the genome. Fig-
ure 2.3 illustrates the location of the 55 regions within the 16 chromosomes.

I : 2,−1

II : 4,−3,−7, 8,−5, 6

III : 9,−10,−11

IV : 20, 12, 12, 54, 15, 21,−3,−13,−16, 17,−24,−22,−14,−23,−19, 18,−9

V : 28,−25,−27,−4,−26,−13

VI : 55,−36

VII : 36, 25, 26, 32, 6,−33, 5,−30,−34,−31,−29

VIII : 35,−14,−37,−29,−1

IX : 38, 39, 27

X : 10, 40, 41,−28,−42

XI : 42, 40, 43, 35,−41,−52,−38

XII : 53,−53,−31,−55,−16,−18,−17,−45,−30,−15,−44

XIII : 46, 44, 19,−43,−54,−48,−47,−46

XIV : 49, 20, 37, 50, 39,−11

XV : 49, 21,−22,−52,−50,−23,−45,−51,−47,−2

XVI : 48, 32, 33, 51, 8, 24,−7,−34

Figure 2.3: Locations of the 55 duplicated regions on the 16 chromosomes of the yeast
genome [131].

Assuming that a genome is duplicated and then rearranged over time, can we recon-
struct an ancestral genome from the gene order that we observe today? The key to

15

2.2. GENOMIC DISTANCES FOR PHYLOGENETIC RECONSTRUCTION

1 : 2,−1

2 : 46, 47, 48, 54, 43, 35,−41,−40,−42

3 : 9,−10,−11

4 : 44, 15, 21,−22,−14,−23,−19, 18, 16, 13, 26, 32, 33, 51, 45,

17,−24,−8 7, 3,−4

5 : 55, −36

6 : 38, 39, 27, 25,−28

7 : 29, 37, 50, 52,−53

8 : 49, 20, 12, 31, 34, 30,−5, 6

Figure 2.4: Ancestral genome suggested by El-Mabrouk and Sankoff [50].

the solution of this question is the structure of the genome right after duplication: it
must have been perfect, i.e. each chromosome has existed in two identical copies. Of
course, there exist many perfectly duplicated genomes that could have been the an-
cestral genome. Therefore, one wants to reconstruct a genome such that its distance
to the current one is minimal. In [50], El-Mabrouk and Sankoff solved this problem
under the HP distance. By applying their algorithm to Wolfe and Shields’ data, they
reconstructed an ancient genome shown in Fig. 2.4. The present-day genome can be
obtained from this one by a genome duplication followed by 45 translocations.

2.2 Using Genomic Distances for Phylogenetic Reconstruc-

tion

Inferring the evolutionary relationship among different species is a major field in com-
parative genomics. Gene order comparison for phylogenetic inference has been proven
to be powerful for studying the evolution of eukaryotes [33] and prokaryotes [43, 11].
Phylogenetic trees, where each leaf is labeled by a species, are used to represent the his-
tory of speciation events. One of the first phylogenetic trees in comparative genomics
was given by Dobzhansky and Sturtevant [42]. After comparing the chromosomes of
Drosophila pseudoobscura coming from different geographical regions, they eventually
came up with a phylogenetic tree that represents a rearrangement scenario with alto-
gether 17 inversions, shown in Fig. 2.5.
In the last 30 years, most phylogenetic inference has been based on DNA or protein
sequences [38, 57, 53]. After whole genomic sequences became available, inferring phylo-
genetic relationship based on genome rearrangements became feasible. There exist two
major approaches [27]: the reconstruction of a minimal Steiner tree and the distance
matrix based methods.
The former approach was pioneered by Hannenhalli et al. [61] who studied most par-
simonious scenarios for multiple genomes. As a proof of concept, they presented an
exhaustive analysis of seven complete and three partial sequences of the herpes virus

16

CHAPTER 2. GENOME REARRANGEMENTS

Figure 2.5: Phylogenetic tree of Drosophila pseudoobscura coming from different geographical
regions. Two species are connected by an arrow if they differ by one inversion. The arrow-
head indicates the derived species. The arrow ↔ is used, if the ancestral species can not be
determined. Picture taken from Dobzhansky and Sturtevant [42].

genomes. Their strategy led to phylogenetic trees whose quality was comparable to
that of trees based on sequence comparison.

From a computational point of view, the reconstruction approach can be formulated as
the problem of finding a phylogenetic tree describing the most parsimonious rearrange-
ment scenario for multiple species. More formally, for a given a set of m genomes, the
Multiple Genome Rearrangement Problem is to find a tree T whose leaves are the m

genomes and to assign m− 2 genomes to internal nodes such that

D(T) =
∑

(A,B)∈E(T)

d(A,B)

is minimized, where d is the genomic distance between two genomes A and B and E(T)
is the set of edges of T [111]. In the special case of three genomes and only one internal
node, the problem is called the Genomic Median Problem [105].

A well-studied distance for phylogenetic reconstruction is the breakpoint distance that
is defined as the number of breakpoints between two genomes [28]. As in the Nadeau-
Taylor model [89], this distance takes into account the number of disruptions and is not
based on any specific rearrangement operations. Despite the rather simple computation
of breakpoints between two genomes, the Steiner tree problem under the breakpoint
distance, and even the median problem, are known to be NP-hard [96].

Beside the breakpoint distance, the inversion distance is of great interest for inferring
phylogenetic relationships [115, 87], particularly after a linear time algorithm for its
computation was given [6]. Moreover, experimental studies by Moret et al. [85] show

17

2.2. GENOMIC DISTANCES FOR PHYLOGENETIC RECONSTRUCTION

that inversion medians are strongly preferable over breakpoint medians. Unfortunately,
the median problem for the inversion distance is also NP-hard [36].
Because of the computational difficulties, heuristics have been developed and imple-
mented in programs: BPAnalysis [106] uses a heuristic for the Traveling Salesman
Problem to minimize the breakpoint distance between genomes. GRAPPA [87] is a
re-implementation of BPAnalysis with algorithmic improvements and inclusion of the
inversion distance. MGR [32] is developed for the reconstruction of multi-chromosomal
genomes under translocations, fusions, fissions and inversions and uses GRIMM [121]
for distance computation. rEvoluzzer [26] searches for rearrangement scenarios with
the additional property that gene groups should not be destroyed by inversions.

An alternative to the reconstruction approach is to view the data as a matrix of pairwise
distances. Given a set of genomes {G1, . . . , Gm}, such an approach proceeds in two
steps [127]:

1. For each pair of distinct genomes Gi and Gj , calculate their pairwise genomic
distance d(Gi, Gj) and store the results in a matrix D.

2. Apply a distance-based phylogenetic tree reconstruction method.

For the second step, distance-based methods developed in sequence-based phylogeny
can be used, with the Fitch-Margoliash [57] and the Neighbor-Joining [102] methods
being the most popular ones. However, the first step is very important as well and
mathematical modeling of evolution on the genome level began with the availability of
whole genome sequences.
In the early 1990s, this approach has been followed by Sankoff et al. [108] who studied
the evolution of 16 mitochondrial gene orders from fungi and other eukaryotes. Their
analysis is based on an edit distance E = D+R, where D is the number of genes present
in either one of the genomes, but not in both, and R is the number of inversions and
transpositions needed to transform one genome into the other. For computing the
number of rearrangements, they developed a branch-and-bound algorithm that was
implemented in the program DERANGE.
Ten years later, phylogenetic reconstruction based on rearrangement distances got a
boost by the program GRIMM [121] that computes the minimal number of transloca-
tions, fusions, fissions and inversions needed to transform one genome into another. For
example, GRIMM was used for the analysis of 30 complete γ-proteobacterial genomes
by Belda et al. [11]. First, they took a subset of 244 genes shared by all genomes
and then computed the inversion distance between all pairs of genomes with GRIMM.
Their analysis showed a high correlation between the breakpoint and the inversion
distance, indicating that inversions are the dominant rearrangement operations in γ-
Proteobacteria. The phylogenetic tree obtained by using pairwise inversion distances
computed by GRIMM is shown in Fig. 2.6. In the same year, another analysis of 12
γ-Proteobacteria based on the data set of [78] was presented by Blin et al. [30]. They
handled the multiple copies of genes by computing a matching of the genomes, yielding
permutations. In their analysis, they used three different distance measures that are
based on breakpoints, conserved intervals and common intervals. The resulting phylo-
genetic trees agree well with the one given by Lerat et al. (shown in Fig. 5 in [78]).

18

CHAPTER 2. GENOME REARRANGEMENTS

Figure 2.6: Phylogenetic relationship between 30 γ-proteobacterial genomes inferred from an
inversion distance matrix. The bar represents 20 inversions. Figure taken from Belda et al. [11].

From a theoretical point of view, the quality of reconstructed trees is addressed in
experimental studies by Kothari and Moret [75]. Clearly, genomic distances underes-
timate the true evolutionary distances. Moreover, the choice of distance computation
might affect tree reconstruction. To address these issues, Kothari and Moret compare
three distance measures, the inversion, the DCJ and the transposition distance. Recall
that exact linear time algorithms exist only for the first two distances, whereas only ap-
proximation algorithms are known [66] for the transposition distance. Their approach
is to simulate data, then to compute the pairwise distances, and finally measure the
quality of the trees reconstructed from the distances using neighbor-joining. Surpris-
ingly, inversion and DCJ distances gave very similar results, even on data generated
using only transpositions.

Tools for analyzing gene-order data lag behind tools for sequence analysis, because of
the almost 20 years of delay for obtaining genomic data and the rather complex math-
ematics of genome rearrangements. It is apparent, however, that simple and sound
algorithms for genomic distance computation are the key for phylogenetic reconstruc-
tion based on genome rearrangement. Therefore, the focus of the next chapter is on a
simple and unifying treatment of genomic distances.

19

2.2. GENOMIC DISTANCES FOR PHYLOGENETIC RECONSTRUCTION

20

Chapter 3

The Double Cut and Join

Distance

In this chapter we present a simplified formalization of genomes with coexisting circular
and linear chromosomes, and a formal treatment of sorting such genomes by the double
cut and join operation. We introduce a very simple data structure, the adjacency graph,
that is symmetric with respect to the two genomes under study and is closely related to
the visual picture of the genomes themselves. We also show how the algebraic simplicity
of the double cut and join operation yields efficient sorting algorithms.

The chapter is organized in the following manner: we begin by formally stating the
DCJ distance problem in the next section. Then, in Section 3.2, we introduce our main
construct, the adjacency graph. Using this graph, we give a simple sorting algorithm
and a formula for the DCJ distance in Section 3.3. Finally, Section 3.5 concludes with
a summary of our results and links them to the existing literature.

3.1 Problem Formulation

An essential ingredient in genome rearrangment studies are graphs where each vertex
has degree one or two. Before showing how graphs of this type can be used for mod-
eling genomes and genome rearrangements, we recall some of their properties and the
definition of the DCJ distance.

3.1.1 Graphs with Vertices of Degree One and Two

Let G be a graph where each vertex has degree one or two (we allow for loops and
multiple edges). We call a vertex of degree one external and a vertex of degree two
internal. An internal vertex connecting edges p and q is denoted by the unordered
multiset {p, q} and an external vertex incident to an edge p by the singleton set {p}.

It follows immediately from the definition of G that any connected component of G is
either circular, consisting only of internal vertices, or it is linear, consisting of internal
vertices bounded by two external vertices, one at each end. We call circular components
cycles and linear components paths. A cycle or path is even if it has an even number
of edges, otherwise it is odd.

21

3.1. PROBLEM FORMULATION

(a)'

&

$

%

�
�

�
�rrp q

r s

�
�

�
�rrp r

s q

�
�

�
�rrp s

q r

-�

AAUAAK ������

(b)'

&

$

%

�
�

�
�rrp q

r

�
�

�
�rrp r

q

�
�

�
�rrp

q r

-�

AAUAAK ������

(c)'

&

$

%

�
�

�
�rr q

r

�
�

�
�rr r

q

�
�

�
�r

q r

-�

AAUAAK ������

Figure 3.1: Definition of the double cut and join operation. Note that the operations between
the two top graphs of part (c) are the identity.

Example 3.1 The following graph has four vertices of degree one and six vertices of
degree two. It has two cycles and two paths, one of which is even and one of which is
odd.

t t t t tt t t t t
Definition 3.2 The double cut and join (DCJ) operation acts on two vertices u and
v of a graph with vertices of degree one or two in one of the following three ways:

(a) If both u = {p, q} and v = {r, s} are internal vertices, these are replaced by the
two vertices {p, r} and {s, q} or by the two vertices {p, s} and {q, r}.

(b) If u = {p, q} is internal and v = {r} is external, these are replaced by {p, r} and
{q} or by {q, r} and {p}.

(c) If both u = {q} and v = {r} are external, these are replaced by {q, r}.

In addition, as an inverse of case (c), a single internal vertex {q, r} can be replaced by
two external vertices {q} and {r}.

Figure 3.1 illustrates the definition.
The DCJ operation, although defined locally on a pair of vertices, has global effects
on the connected components of the graph. In order to describe these effects, we use
terminology essentially borrowed from biology.
First, consider Figure 3.2. If the two vertices are contained in two different paths and
at least one of them is internal, then these paths exchange their ends, which is called a
path translocation. If both are external vertices of different paths, as in Figure 3.2 (c),
then these paths are merged, called a path fusion. The inverse of a path fusion is a path
fission.
The case shown in Fig. 3.3, where both linear and circular components are mixed, is
more intricate. If the DCJ operation acts on vertices contained in the same path and at
least one of them is internal, then the intermediate part of the path is either reversed,
called an inversion, or spliced out producing a new cycle, called an excision. The
inverse operation of an excision is called an integration. If both are external vertices

22

CHAPTER 3. THE DOUBLE CUT AND JOIN DISTANCE

of the same path, as in Fig. 3.3 (c), then a cycle is formed, called a circularization. Its
opposite is a linearization.
If the vertices are contained in the same cycle, or in two different cycles, as shown in
Fig. 3.4, then we have either an inversion, a cycle fusion or a cycle fission.

(a)'

&

$

%

�
�

�
�rrp q

r s

�
�

�
�rrp r

s q

�
�

�
�rrp s

q r

-�

AAUAAK ������

(b)'

&

$

%

�
�

�
�rrp q

r

�
�

�
�rrp r

q

�
�

�
�rrp

q r

-�

AAUAAK ������

(c)'

&

$

%

�
�

�
�rr q

r

�
�

�
�rr r

q

�
�

�
�r

q r

-�

AAUAAK ������

Figure 3.2: The DCJ operation acts on two internal (a), one internal and one external (b),
or two external vertices (c). Applying the DCJ operation on one or two paths yields path
translocations, fusions and fissions.

(a)'

&

$

%

�
�

�
�r rp q r s

�
�

�
�r rp r q s

�
�

�
�rr�� ��p s

q r

-�

AAUAAK ������

(b)'

&

$

%

�
�

�
�r rp q r

�
�

�
�r rp r q

�
�

�
�rr�� ��p

q r

-�

AAUAAK ������

(c)'

&

$

%

�
�

�
�r rq r

�
�

�
�r rr q

�
�

�
�r�� ��q r

-�

AAUAAK ������

Figure 3.3: The DCJ operation acts on two internal (a), one internal and one external (b),
or two external vertices (c). Applying the DCJ operation a single path or a path and a cycle
yields inversions, excisions, integrations, circularizations and linearizations.

'

&

$

%

�
�

�
�rr�� ��p q

rs

�
�

�
�rr�� ��p r

s q

�
�

�
�rr�� ���� ��p s

q r

-�

AAUAAK ������

Figure 3.4: Applying the DCJ operation on two internal vertices of a single cycle or of two
cycles yields inversions, cycle fusions and fissions.

The following lemma is an immediate consequence of the enumeration of all possible
cases in Figures 3.2, 3.3 and 3.4:

Lemma 3.3 The application of a single DCJ operation changes the number of circular
or linear components by at most one.

23

3.1. PROBLEM FORMULATION

3.1.2 Genes, Chromosomes and Genomes

In this section, we introduce our notation of genomes and explain how they are modeled
as graphs with vertices of degree one and two.
A gene is an oriented sequence of DNA that starts with a tail and ends with a head.
These are called the extremities of the gene. The tail of a gene a is denoted by at, and
its head is denoted by ah. In biology, the tail of a gene is often called its 3’ end and
the head its 5’ end.
Since two consecutive genes do not necessarily have the same orientation, an adjacency
of two consecutive genes a and b, depending on their respective orientation, can be of
four different types:

{ah, bt}, {ah, bh}, {at, bt}, {at, bh}.

An extremity that is not adjacent to any other gene is called a telomere, represented
by a singleton set {ah} or {at}.
Given a set of genes, a genome is a set of adjacencies and telomeres of these genes such
that the tail or the head of any gene appears in exactly one adjacency or telomere.
Given a genome, one reconstructs its chromosomes by representing the telomeres and
adjacencies as vertices and then joining for each gene its tail and its head by an edge.
Note that the genome graph obtained this way is a graph with vertices of degree one
or two. The connected paths and cycles represent chromosomes of the genome, which
are either linear or circular. Linear chromosomes are flanked by telomeres.
Chromosomes are often represented by lists of gene labels. These lists are obtained by
choosing a telomere in a linear chromosome, or an arbitrary gene in a circular chromo-
some, and then enumerating the gene labels along the chromosome, using positive signs
to indicate genes that are read from tail to head and negative signs to indicate genes
that are read from head to tail. For linear chromosomes, the enumeration stops at its
other telomere, while for circular chromosomes it stops when the initial gene appears
for the second time in the list. Positive signs may be omitted where convenient.
In the list notation, an adjacency of two consecutive genes a and b is represented by
an ordered pair of genes. According to the four types of an adjacency, the ordered pair
can be of the form

(a, b), (a,−b), (−a, b), (−a,−b).

Note that this representation depends on the telomere of a linear chromosome, or on
the gene of a circular chromosome where we start the list representation.

Example 3.4 Let

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {f t}, {fh, gt}, {gh}}

be a genome with genes {a, b, c, d, e, f, g}. The corresponding genome graph is the fol-
lowing:

t t t t tt t t tat ah ct ch dtdh

bt

bh et

eh
f t fh gt gh

One possible list representation of A is {(a, c,−d), (b, e, b), (f, g)}.

24

CHAPTER 3. THE DOUBLE CUT AND JOIN DISTANCE

Since the genome graph is a graph with vertices of degree one and two, the double
cut and join operations defined in Section 3.1.1 can be applied to these graphs. This
operation is the same as the one defined, with different notation, by Yancopoulos et
al. [134].
We can now formulate the problem that we consider:

The DCJ Sorting and Distance Problem. Given two genomes A and B defined
on the same set of genes, find a shortest sequence of DCJ operations that transforms
A into B. The length of such a sequence is called the DCJ distance between A and B,
denoted by dDCJ(A,B).

Example 3.5 Consider the following two genomes that are defined over the set of
genes {a, b, c, d, e, f, g}:

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {f t}, {fh, gt}, {gh}}
B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, f t}}

Sorting A into B can, for example, be done in the following five steps, where the affected
gene extremities are underlined:

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {f t}, {fh, gt}, {gh}}
{{at}, {ah, bt}, {ch, dh}, {dt}, {bh, et}, {eh, ct}, {f t}, {fh, gt}, {gh}}
{{et}, {ah, bt}, {ch, dh}, {dt}, {bh, at}, {eh, ct}, {f t}, {fh, gt}, {gh}}
{{et}, {ah, bt}, {ch, dt}, {dh}, {bh, at}, {eh, ct}, {f t}, {fh, gt}, {gh}}
{{et}, {ah, bt}, {ch, dt}, {dh}, {bh, at}, {eh}, {ct}, {f t}, {fh, gt}, {gh}}

B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, f t}}

The DCJ distance between A and B is dDCJ(A,B) = 5. Indeed, the sorting scenario
is optimal as we will see in Section 3.3.

3.2 The Adjacency Graph

In order to solve the DCJ Distance Problem stated above, another graph of the type
discussed in the previous section proves to be useful, this time defined on a pair of
genomes A and B.

Definition 3.6 The adjacency graph AG(A,B) is a graph whose set of vertices is the
disjoint union of the sets of adjacencies and telomeres of A and B. For each u ∈ A

and v ∈ B there are |u ∩ v| edges between u and v.

Example 3.7 The adjacency graph of our two genomes

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {f t}, {fh, gt}, {gh}}
B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, f t}}

25

3.2. THE ADJACENCY GRAPH

is the following:

t t t t t t t t tat ahct chdh dt bt eh et bh f t fhgt gh

t t t t t t t t t
ahbt bhat ct chdt dh et eh fhgt ghf t

�
�

�
�

��

����������������

S
S

S
S

SS

����������������

S
S

S
S

SS

S
S

S
S

SS

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Obviously, every vertex in the adjacency graph has degree one or two, therefore the
graph is a union of cycles and paths. Since the graph is bipartite, all cycles have even
length.
As we will see below, the adjacency graph allows a simple characterization of many of
the properties of sorting by DCJ operations.

Lemma 3.8 Let A and B be two genomes defined on the same set of N genes, then
we have

A = B if and only if N = C + I/2

where C is the number of cycles and I the number of odd paths in AG(A,B).

Proof Let a be the number of adjacencies and t the number of telomeres in A = B,
then N = a + t/2. The adjacency graph AG(A,B) has C = a cycles and I = t odd
paths, hence N = a + t/2 = C + I/2.
To show that N = C + I/2 implies A = B, assume an adjacency graph G = AG(A,B)
such that N = C + I/2. Let a be the number of adjacencies and t the number of
telomeres in A, then N = a + t/2. Each cycle in G contains at least one adjacency of
A, thus C ≤ a. Each odd path in G contains exactly one telomere of A, thus I ≤ t.
From C + I/2 = N = a + t/2 it follows that C = a and I = t. Thus all cycles have
length two and all odd paths have length one, which is only possible if the genomes are
equal.

When a DCJ operation is applied to genome A, it acts on the adjacencies and telomeres
of genome A. The same DCJ operation acts also on the adjacency graph since the
adjacencies and telomeres of genome A are vertices of this graph. Since the adjacency
graph is a union of paths and cycles, all the tools and terminology of Section 3.1.1 can
be used.
In Lemma 3.3, we showed that the number of circular and linear components can change
by at most one when a DCJ operation is applied to a graph that is a union of paths
and cycles. In the case of adjacency graphs we also have constraints on the possible
changes in the number of odd paths:

Lemma 3.9 The application of a single DCJ operation to the adjacencies and telom-
eres of genome A changes the number of odd paths in the adjacency graph AG(A,B)
by –2, 0, or 2.

Proof Consider operations that are path translocations, fusions or fissions (Figure 3.2).
Two odd paths can be either transformed into two odd paths, or into one or two paths

26

CHAPTER 3. THE DOUBLE CUT AND JOIN DISTANCE

of even length. Path(s) of even length(s) can be either transformed into path(s) of
even length, or into two paths of odd length. One even and one odd path are always
transformed into one even and one odd path. Finally, splitting one odd path always
yields an even and an odd path.
Inversions, excisions, integrations, circularizations and linearizations (Figure 3.3) do
not change the number of odd paths since all cycles have even length. No paths are
involved in the DCJ operations of Figure 3.4.

Lemma 3.9 allows to derive the following lower bound for the DCJ distance:

Lemma 3.10 Let A and B be two genomes defined on the same set of N genes, then
we have

dDCJ(A,B) ≥ N − (C + I/2)

where C is the number of cycles and I the number of odd paths in AG(A,B).

Proof Since none of the cases of the DCJ operation modifies the number of cycles and
odd paths simultaneously, this follows immediately from Lemmas 3.3, 3.8 and 3.9.

The adjacency graph is also very useful when one wants to find an optimal sequence of
sorting operations.
Observe that any pair of edges in the adjacency graph that connect two different vertices
of genome A with an adjacency {p, q} in genome B can be transformed by a single DCJ
operation into a cycle of length two, plus the remaining structure, reduced by the two
edges. This operation always increases C + I/2 by one since C is increased by one and
we have already seen that no DCJ operation can simultaneously change C and I.

r r r r
r r r r r rS

S
SS

�
�

�� ⇒

Now assume that all adjacencies of genome B are contained in cycles of length two.
There might still be pairs of telomeres of B that form an adjacency in A. These
adjacencies can be split into two telomeres, thus creating two odd paths of length one
each, increasing I by two.

r r r
r r r r�

�
��

S
S

SS ⇒

Pseudocode for this greedy sorting procedure is given in Algorithm 1. We will see later
in Section 3.4 that the adjacency graph does not need to be constructed explicitly if
the genomes are stored in an appropriate way. But first, we will show in the next
section that Algorithm 1 provides an optimal solution to the DCJ sorting and distance
problem.

27

3.3. COMPUTING THE DCJ DISTANCE

Algorithm 1 (Greedy sorting by DCJ)
1: for each adjacency {p, q} in genome B do
2: let u be the element of genome A that contains p

3: let v be the element of genome A that contains q

4: if u 6= v then
5: replace u and v in A by {p, q} and (u \ {p}) ∪ (v \ {q})
6: end if
7: end for
8: for each telomere {p} in genome B do
9: let u be the element of genome A that contains p

10: if u is an adjacency then
11: replace u in A by {p} and (u \ {p})
12: end if
13: end for

3.3 Computing the DCJ Distance

Theorem 3.11 Let A and B be two genomes defined on the same set of N genes, then
we have

dDCJ(A,B) = N − (C + I/2)

where C is the number of cycles and I the number of odd paths in AG(A,B). An
optimal sorting sequence can be found in O(N) time by Algorithm 1.

Proof Lemma 3.10 together with the fact that Algorithm 1 increments in each iteration
either C by one or I by two prove the distance formula.
The linear time complexity follows from the fact that our genome representation allows
to find and perform each sorting operation in constant time and the DCJ distance is
never larger than N .

For example, our genomes

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {f t}, {fh, gt}, {gh}}
B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, f t}}

have seven genes and their adjacency graph AG(A,B) has C = 1 cycle, two even paths
and I = 2 odd paths, as shown in Example 3.7. Thus, we have

dDCJ(A,B) = N − (C + I/2) = 7− (1 + 1) = 5.

Recall that an optimal sorting scenario with dDCJ = 5 DCJ operations was given in
Example 3.4.

3.4 Algorithm Details

The adjacency graph can easily be constructed as shown in Algorithm 2. Let N be the
number of genes in genomes A and B, respectively. Then Algorithm 2 takes O(N) time
and uses O(N) space if the genomes are stored in a data structure where, for each gene
extremity, one can access in constant time the adjacency or telomere that contains it.

28

CHAPTER 3. THE DOUBLE CUT AND JOIN DISTANCE

Algorithm 2 (Construction of the adjacency graph)
1: create a vertex for each adjacency and each telomere in genomes A and B

2: for each adjacency {p, q} in genome A do
3: create an edge connecting {p, q} and the vertex of genome B that contains p

4: create an edge connecting {p, q} and the vertex of genome B that contains q

5: end for
6: for each telomere {p} of genome A do
7: create an edge connecting {p} and the vertex of genome B that contains p

8: end for

This can be done by using two tables for each genome. More precisely, we store in a
table with two rows of length at most 2N the adjacencies and telomeres of a genome.
Another table with two rows of length N stores for each gene the columns of the first
table containing its head and its tail. Once again, consider the genome

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {f t}, {fh, gt}, {gh}}

from Example 3.4. The two tables are shown in Tables 3.1 and 3.2.

1 2 3 4 5 6 7 8 9
first at ah ch dt bh eh f t fh gh

second – ct dh – et bt – gt –

Table 3.1: Table storing the adjacencies
and telomeres of genome A. Adjacencies
have two entries, telomeres just one.

a b c d e f g

head 2 5 3 3 6 8 9
tail 1 6 2 4 5 7 8

Table 3.2: Table storing for each gene in
A the location of its head and its tail in
Table 3.1.

Finally, the number of cycles and paths of the adjacency graph AG(A,B) are computed
in linear time by Algorithm 3. The idea is to mark all vertices of AG(A,B) and to
process them in left-to-right order. Each time an unmarked vertex s is detected, we
first check whether this adjacency belongs to a cycle or to a path. Therefore, we follow
its edges until we reach a telomere or return to s (see lines 6-8 of Algorithm 3). In
the first case, we increase the number of paths (line 10), and in the second case the
number of cycles (line 12). Then, we go backward through the path/cycle and mark
all vertices that belong to it (lines 15 and 18). Since the vertices of each path/cycle are
traversed at most twice and the total number of vertices is in O(N), the running time
of Algorithm 3 is linear. Note that one can also compute the number of even and odd
paths by a slight modification of lines 16 to 19, without affecting the running time.

3.5 Summary and Historical Notes

We have shown that, with a suitable representation, it is possible to model all rear-
rangement operations on the most general genome structure that mixes both circular
and linear chromosomes.
It is worth mentioning that our distance formula is equivalent to the result dDCJ =
b − c given by Yancopulos et al. [134], where b is the number of breakpoints and c is
the number of cycles of the breakpoint graph after appropriate capping of the linear

29

3.5. SUMMARY AND HISTORICAL NOTES

Algorithm 3 (Compute the number of cycles and paths of AG(A,B))
1: initially all vertices of AG(A,B) are unmarked
2: c← 0, p← 0 (* counters for the number of cycles and paths *)

3: for each vertex s of AG(A,B) do
4: if s is not marked then

(* Check whether s belongs to a cycle or a path *)
5: choose one edge incident to s and call the other vertex of this edge v

6: while v 6= s and v is not a telomere do
7: u← v, v ← vertex incident to U

8: end while
9: if v is a telomere then

10: p← p + 1
11: else
12: c← c + 1
13: end if

(* Go back through the path/cycle and mark all its vertices *)
14: s← v, v ← u

15: mark s and v

16: while v 6= s and v is not a telomere do
17: u← v, v ← vertex incident to the other edge of u

18: mark v

19: end while
20: end if
21: end for

chromosomes. To see this, let lA and lB be the number of linear chromosomes in
genomes A and B, respectively. Then the total number of breakpoints, as defined
in [134], is b = N + lB + aa = N + lA + bb where aa is the number of even paths that
start and end in genome A and bb is the number of even paths that start and end in
genome B. The number of cycles is c = C + I + E where C is the number of cycles,
I the number of odd paths and E the number of even paths in the adjacency graph
AG(A,B) as defined in Section 3.2. Obviously E = aa + bb. Moreover, each linear
chromosome is associated to two path ends, thus the number of linear chromosomes
equals the number of paths, lA+lB = I+E. Together this implies that 2b = 2N+2E+I,
giving b− c = N − C − I/2.
Another related rearrangement problem has recently been studied in [81], where op-
erations are fusions and fissions between circular unsigned chromosomes, and block
interchanges within a circular unsigned chromosome. The authors assign equal weight
to the three operations, even though a block interchange requires two DCJ operations,
and propose an O(N2) time algorithm to sort these circular genomes. Their algorithm
first applies fusions to both source and target genome, until they have two genomes
whose chromosomes have equal gene content. These fusions can be identified in linear
time by a search of the adjacency graph. They then sort the resulting genomes by
block interchanges using an O(N2) time algorithm described in [80]. This can be done
with the same time complexity, but with elementary means, using a modification of our
Algorithm 1 where every intermediate chromosome created by a fission is immediately

30

CHAPTER 3. THE DOUBLE CUT AND JOIN DISTANCE

re-absorbed in the next step, such that only block interchanges are performed. The
modification consists of searching, in the newly created circular chromosomes, a pair
of genes that are adjacent in the target genome, but on different chromosomes in the
source genome.

31

3.5. SUMMARY AND HISTORICAL NOTES

32

Chapter 4

HP Distances via the Double Cut

and Join Distance

The main purpose of this chapter is to study the relation between the DCJ distance
and other existing genomic distances. In a series of papers, Hannenhalli and Pevzner
considered three rearrangement models: inversions only [63], translocations only [60]
and a combination of inversions and translocations [62]. The latter is motivated by the
Hannenhalli-Pevzner (HP) distance problem: Given two genomes whose chromosomes
are linear, calculate the minimum number of inversions and translocations that trans-
form one genome into the other. In this chapter, we present a new distance formula
based on a simple tree structure that captures all the delicate features of this problem
in a unifying way. Moreover, we show how all three rearrangement models considered
in the HP theory can be integrated in the more general DCJ model.

This chapter is organized as follows. The next section introduces the notation needed
to formulate the HP distance problem. In Section 4.2, we establish the conditions
under which the DCJ distance and the HP distance are equal. The general case is
treated in Section 4.3, where we introduce the basic concepts and the tree needed for
the computation of the HP distance, and we give a new proof and formula for the
Hannenhalli-Pevzner theorem. Two further genomic distances, the inversion and the
translocation distance, are discussed in Section 4.4. Section 4.5 describes the algorithms
needed for the HP distance computation. Finally, Section 4.6 concludes with a summary
and historical notes.

4.1 Problem Formulation

In this chapter, we represent a gene by a signed integer where the sign represents its
orientation. A chromosome is a sequence of genes and does not have an orientation.
A genome is a set of chromosomes. We distinguish between uni-chromosomal genomes
consisting of just a single chromosome and multi-chromosomal genomes consisting of
one or more chromosomes.
In HP sorting, the shapes of chromosomes are restricted to linear forms throughout
the sorting process. In order to be able to model this behavior, we need to introduce

33

4.1. PROBLEM FORMULATION

explicit unsigned telomere markers. This leads to a slight modification in the definition
of adjacencies, extending it to the case of genes that are adjacent to telomere markers.
A linear chromosome will thus be represented by an ordered sequence of k signed genes,
flanked by two telomere markers:

X = (◦, x1, . . . , xk, ◦).

Since a chromosome does not have an orientation, we can flip a chromosome X into
−X = (−◦,−xk, . . . ,−x1,−◦) and still have the same chromosome. Note that, by
definition, ◦ = −◦.
An interval (l, . . . , r) in a genome is a sequence of at least two consecutive genes or
telomere markers within a chromosome. The set {l,−r} is the set of extremities of the
interval (l, . . . , r) = (−r, . . . ,−l). In this context, we use the notation of representing
an adjacency as an interval (x, y) of length 2. An adjacency that contains a telomere
marker is called a telomere. It is sometimes convenient to represent an adjacency (x, y)
by its set of extremities {x,−y}. In the following, we use the term adjacency also when
referring to this set. It will be clear from the context if we mean the set of genes or
two consecutive genes.
Looking at a single chromosome, the most common rearrangement operations are in-
versions. An inversion of an interval (xi, . . . , xj) of a chromosome

X = (◦, x1, . . . , xi−1, xi, . . . , xj , xj+1, . . . , xk, ◦)

reverses the order of the elements of the interval while changing their signs, yielding

X ′ = (◦, x1, . . . , xi−1,−xj , . . . ,−xi, xj+1, . . . , xk, ◦).

Another type of genome rearrangements that occur in multichromosomal genomes are
translocations. A translocation transforms two linear chromosomes

X = (◦, x1, . . . , xi, xi+1, . . . xk, ◦) and Y = (◦, y1, . . . , yj , yj+1, . . . , yl, ◦)

into linear chromosomes

X ′ = (◦, x1, . . . , xi, yj+1, . . . , yl, ◦) and Y ′ = (◦, y1, . . . , yj , xi+1, . . . , xk, ◦).

Fusions and fissions are translocations where chromosomes consisting of just two telom-
eres are involved or created. All other translocations are internal.

The HP Distance Problem. Given two multichromosomal genomes A and B defined
on the same set of genes, compute the minimum number of inversions, translocations,
fusions and fissions needed to transform A into B. This number is called the HP
distance between A and B, denoted by dHP (A,B).

The solution of this problem is based on an extension of a simplified problem where
the genomes to be compared are unichromosomal. In this case, the rearrangement
operations are limited to inversions only. Another well known restriction of the general
problem deals with genomes that have the same telomeres and that can be sorted by
internal translocations only. Both variants of the general problem will be discussed in
Section 4.4, but first we will present the solution for the general HP distance problem.

34

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

4.2 Components and Oriented Sorting

The goal of this section is to characterize the genomes for which we have dDCJ = dHP .
We begin by recalling some of the results of the previous chapter. In particular, we
define the adjacency graph in a slightly different way. Moreover, we introduce the
notion of components.

4.2.1 Oriented DCJ Operations

In a given genome, any gene g is the extremity of two adjacencies, one as +g, and
one as −g, in the set notation. For genomes A and B on the same set of genes,
this remark allows to view the adjacency graph from a different perspective than as
in Definition 3.6: In AG(A,B), each gene g defines two edges, one connecting the two
adjacencies of genome A and B in which g appears as extremity +g, and one connecting
the two adjacencies in which g appears as extremity −g.
For example, the adjacency graph of the genomes A = {(◦, 3, 2, 1, 4, ◦), (◦, 6, 5, ◦)} and
B = {(◦, 1, 2, 3, 4, ◦), (◦, 5, 6, ◦)} is then the following:

s s s s s s s s{◦,−3} {3,−2} {2,−1} {1,−4} {4,−◦} {◦,−6} {6,−5} {5,−◦}

s s s s s s s s
{◦,−1} {1,−2} {2,−3} {3,−4} {4,−◦} {◦,−5} {5,−6} {6,−◦}

�
�

�
�

�
��

�
�

�
�

�
��

Q
Q

Q
Q

Q
QQ

Q
Q

Q
Q

Q
QQ

�
�

�
��

�
�

�
��

S
S

S
SS

S
S

S
SS

As stated in Definition 3.2, a DCJ operation applied to two adjacencies of the same
genome disconnects the incident edges of the adjacency graph and reconnects them
in one of the possible other ways. Recall that the DCJ distance between genomes A

and B, denoted by dDCJ(A,B), is the minimum number of DCJ operations necessary
to transform genome A into genome B. In the preceding section, we have shown in
Theorem 3.11 that for two genomes A and B on the same N genes

dDCJ(A,B) = N − (C + I/2)

where C is the number of cycles and I the number of paths of odd length in AG(A,B).
A DCJ operation that reduces the DCJ distance by 1 is called DCJ-sorting. Using
Theorem 3.11, we have the following property of DCJ-sorting operations, based on the
fact that a DCJ operation acts on at most two paths or cycles, and produces at most
one new path or cycle:

Corollary 4.1 A DCJ-sorting operation acts on a single path or cycle, or on two even
paths of the adjacency graph.

Proof A DCJ operation reduces the DCJ distance by one if it increases the number
of cycles C by one or the number of odd paths by two. Recall that no DCJ operation
can modify the number of cycles and odd paths simultaneously. First, suppose that the
number of cycles is increased. Then the DCJ operation acts either on a single path,
called an excision in Fig. 3.3, or on a single cycle, called a cycle fission in Fig. 3.4. Now,

35

4.2. COMPONENTS AND ORIENTED SORTING

suppose that the number of odd paths is increased. Then the DCJ operation is a path
translocation, shown in Fig. 3.2, and the two paths affected are even.

Some DCJ operations can create intermediate circular chromosomes, even if both
genomes A and B are linear, and we will want to avoid them in the HP model. The
following definition is a generalization of a classical concept in rearrangement theory,
oriented operations [63]:

Definition 4.2 A DCJ-sorting operation is oriented if it does not create circular chro-
mosomes.

For two linear genomes, oriented operations are necessarily inversions, translocations,
fusions or fissions. These operations are also called HP operations. Since DCJ opera-
tions are more general than HP operations, we have the following lower bound:

Proposition 4.3 For two linear genomes A and B, we have that

dDCJ(A,B) ≤ dHP (A,B).

Proof Any optimal HP sorting scenario is also a DCJ scenario. Thus, by extending
the set of operations, the distance cannot increase.

4.2.2 Components

We introduce here the notion of components. They roughly correspond to the classical
concept of components, which are connected components in a graph called the overlap
graph [63]. In the context of adjacency graphs, we will prove that they are unions of
paths and cycles.

Definition 4.4 Given two genomes A and B, an interval (l, . . . , r) of genome A is a
component relative to genome B if there exists an interval in genome B with the same
extremities, with the same set of genes, and that is not the union of two such intervals.

Example 4.5 Let

A = {(◦, 2, 1, 3, 5, 4, ◦), (◦, 6, 7,−11,−9,−10,−8, 12, 16, ◦), (◦, 15, 14,−13, 17, ◦)},
B = {(◦, 1, 2, 3, 4, 5, ◦), (◦, 6, 7, 8, 9, 10, 11, 12, ◦), (◦, 13, 14, 15, ◦), (◦, 16, 17, ◦)}.

The components of genome A relative to genome B are: (◦, 2, 1, 3), (3, 5, 4, ◦), (◦, 6),
(6, 7), (−11,−9,−10,−8), (7,−11,−9,−10,−8, 12), (◦, 15, 14,−13) and (17, ◦).

Note that components of length 2 are the same adjacencies in both genomes, up to
flipping of a chromosome. Such components are called trivial components. All other
components are non-trivial.

Two components are nested if one is included in the other and their extremities are
different. As the following lemma shows, two components cannot share a telomere:

36

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

Lemma 4.6 If (◦, . . . , r1) and (◦, . . . , r1, . . . , r2) are two components, then r1 = r2,
and if (l1, . . . , l2, . . . , ◦) and (l2, . . . , ◦) are two components then l1 = l2.

Proof Suppose that (◦, . . . , r1) and (◦, . . . , r1, . . . , r2) are two components. Since the
corresponding intervals in genome B, (◦, . . . , r1) and (◦, . . . , r2), share the same gene
content, the interval (r1, . . . , r2) shares the same gene content in both genomes, thus
(r1, . . . , r2) is a component, and (◦, . . . , r1, . . . , r2) is the union of two components, a
contradiction. The second statement has a similar proof.

It is further known that two components cannot overlap on two or more elements. We
thus have the following generalization of a statement from [24]:

Proposition 4.7 Two components are either disjoint, nested, or overlap on exactly
one gene.

Proof Consider two components C and C′ of the form

C = (l, . . . , r) and C′ = (l′, . . . , r′).

Suppose first that the interval (l′, . . . , r′) is nested in the interval (l, . . . , r) with l =
l′. By Lemma 4.6, two components cannot share the same telomere implying that
l 6= ◦. Since C′ is a component, the interval (l′, . . . , r′) has the same gene content in
both genomes. Hence, the interval (r′, . . . , r) has also the same gene content in both
genomes. This contradicts the fact that the component C is not the union of two shorter
components. The case where (l′, . . . , r′) is nested in (l, . . . , r) with r′ = r can be treated
similarly.
Now, suppose that the components C = (l, . . . , r) and C′ = (l′, . . . , r′) overlap on more
than one element. Without loss of generality, we can assume that both genomes have
an interval of the form

(l, . . . , l′, . . . , r, . . . , r′)

with the same gene content. Since the interval (l′, . . . , r′) has the same gene content
in both genomes, also the interval (l, . . . , l′) must have the same gene content in both
genomes. Thus, C = (l, . . . , r) is the union of two shorter components, which leads to
a contradiction.

Components can be partially ordered by inclusion, and, by Proposition 4.7, overlapping
components will have the same parent (if they have one). An adjacency that is contained
in one or more components, properly belongs to the smallest of these. This definition is
not ambiguous since overlapping components overlap on exactly one gene.

Definition 4.8 The adjacency graph of a component C is the subgraph of the adjacency
graph of genomes A and B induced by the adjacencies that properly belong to C.

As an example, we consider the genomes A = {(◦, 1, 4, 3, 2, 5, ◦), (◦,−8, 7,−6, 9, ◦)} and
B = {(◦, 1, 2, 3, 4, 5, ◦), (◦, 6, 7, 8, 9, ◦)} and their adjacency graph AG(A,B):

37

4.2. COMPONENTS AND ORIENTED SORTING

s s s s s s s s s s s{◦,−1} {1,−4} {4,−3} {3,−2} {2,−5} {5,−◦} {◦, 8} {−8,−7} {7, 6} {−6,−9} {9,−◦}

s s s s s s s s s s s
{◦,−1} {1,−2} {2,−3} {3,−4} {4,−5} {5,−◦} {◦,−6} {6,−7} {7,−8} {8,−9} {9,−◦}

�
�

�
�

�
��

�
�

�
�

�
��

Q
Q

Q
Q

Q
QQ

Q
Q

Q
Q

Q
QQ

!!!!!!!!!!

�
�

�
��

S
S

S
SS

aaaaaaaaaa

The adjacencies {1,−4}, {4,−3}, {3,−2}, and {2,−5} properly belong to the compo-
nent (1, . . . , 5). Thus, the adjacency graph of (1, . . . , 5) consists of two cycles. There are
two other non-trivial components: (◦, . . . ,−9) consisting of one path and (−8, . . . ,−6)
consisting of one cycle.

An important property of the adjacency graph is the following:

Proposition 4.9 The adjacency graph of a component is the union of one or more
connected components of the adjacency graph of genomes A and B.

Proof Let C = (l, . . . , r) be a component. Since it has the same gene content and the
same extremities as the corresponding interval in genome B, its adjacency graph is the
union of one or more connected components of the adjacency graph of genomes A and
B.
Each component that is nested in C is also a union of connected components of the
adjacency graph of genomes A and B, and none of them contains an adjacency that
properly belongs to C. We can thus remove them without compromising the connec-
tivity of the adjacency graph of C.

4.2.3 Oriented Sorting

In this section we will characterize genomes for which the DCJ distance and the HP
distance are equal. We first consider sorting involving only one chromosome. In par-
ticular, we apply well known results from the inversion theory that are obtained by
working on permutations.
Since the naming and orientation of genes is relative, we can always assume that all
genes in a chromosome of genome B are positive and in increasing order. The proper
adjacencies of a component C = (l, . . . , r) induce a partition in the corresponding
intervals of genomes A and B into sub-intervals that we will subsequently call blocks.
If we label the blocks in the interval of C in genome B with numbers from 1 to k, the
corresponding blocks of the interval of C in genome A will be a signed permutation
(p1, . . . , pk) of the elements {1, . . . , k}. We will call this permutation – or its reverse –
the permutation associated to the component C.
Consider for example the following two genomes:

A = {(◦ 5, 1, 3,−2, 4, 6,−10, 9, 8,−7, 11 ◦)},
B = {(◦ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ◦)}.

The components of A with respect to B can easily be seen in the following diagram:

◦ 5 1 3 -2 4 6 -10 9 8 -7 11 ◦

38

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

The component (◦, . . . , 6) consists of three blocks: the gene−5, the component (1, . . . , 4)
and the gene 6. Thus, the permutation associated to the component (◦, . . . , 6) is
(−2, 1, 3). For the other three non-trivial components, the associated permutations
are (1, 3,−2, 4), (−4, 3, 2,−1) and (1,−2, 3).
As shown in the proof of Corollary 4.1, a DCJ-sorting operation increases either the
number of cycles or the number of odd paths. When the elements of the permutation
associated to a component have both positive and negative signs, then there exists a
pair of consecutive elements with opposite signs. This implies that there exists a DCJ-
sorting inversion that increases the number of cycles by creating an adjacency of the
form (i, i + 1) or (−(i + 1),−i). For instance, the permutation (−2, 1, 3) associated to
component (◦, . . . , 6) in the above example admits the DCJ-sorting inversion of element
1, creating the adjacency of elements (−2,−1). This corresponds to the adjacency of
genes (−5,−4) in the component (◦, . . . , 6), yielding a new genome

A′ = {(◦ − 5,−4, 2,−3,−1, 6,−10, 9, 8,−7, 11 ◦)}.

Components whose associated permutations have only elements with the same sign
are more intricate. We will see later that some of them can be optimally sorted by
DCJ-sorting operations, others not. For example, consider the pair of genomes:

A = {(◦, 4, 3, 2, 1, ◦)} and B = {(◦, 1, 2, 3, 4, ◦)},

whose associated permutation is (4, 3, 2, 1). There exists a DCJ-sorting operation that
is a path fission increasing the number of odd paths. The DCJ distance is 4, and it can
be optimally sorted by inverting each of the four genes. However, we have:

Lemma 4.10 If all elements of the permutation associated to a component have the
same sign, then no inversion acting on one of its paths or cycles can create a new cycle.

Proof By possibly flipping the chromosome, we can assume that all the elements of
the permutation are positive. Suppose that an inversion is applied to two adjacencies
(+i,+j) and (+k, +l) in a single path or cycle of the component, and that this creates
a new cycle. The new adjacencies will be (+i,−k) and (−j, +l), where at most one of
+i and +l can be a telomere. If both of these new adjacencies belong to the same path
or cycle, there was no creation of a new cycle. Suppose that the adjacency (+i,−k)
belongs to the new cycle. Then, all other adjacencies of this cycle existed in the original
component, and are composed of positive elements. This, however, is impossible by the
construction of the adjacency graph.

Definition 4.11 A component is oriented if there exists an oriented DCJ-sorting op-
eration that acts on the vertices of its adjacency graph, otherwise it is unoriented.

Oriented components are characterized by the following:

Proposition 4.12 A component is oriented if and only if either its associated permu-
tation has positive and negative elements, or its adjacency graph has two even paths.

39

4.2. COMPONENTS AND ORIENTED SORTING

Proof If the associated permutation has positive and negative elements, then there
is at least one change of signs between blocks labeled by consecutive integers. Thus,
there exists an inversion that creates an adjacency in genome B, thus a new cycle, and
the inversion is DCJ-sorting. If there are two even paths, then one of them must be
a path from genome A to genome A, and the other one must be a path from genome
B to genome B. An inversion in genome A that acts on one adjacency in each path
creates two odd paths, thus is DCJ-sorting.
In order to show the converse, suppose that all elements of the associated permutation
are positive, and all paths are odd. By Corollary 4.1, a DCJ-sorting operation must
act on a single path or cycle. This operation cannot be a translocation or a fusion
since all paths and cycles of a component are within the same chromosome. This
operation cannot be an inversion, since inversions that create new cycles are ruled out
by Lemma 4.10, inversions acting on a single odd path cannot augment the number of
odd paths, and inversions acting on cycles never create paths. Finally, this operation
cannot be a fission: a fission acting on a cycle creates an even path; and a fission
acting on an odd path must circularize one of the chromosome parts in order to be
DCJ-sorting, otherwise it would be split into an even path and an odd path.

As a consequence of Proposition 4.12, we have dDCJ(A,B) < dHP (A,B) in the pres-
ence of unoriented components, since all DCJ-sorting operations will create circular
chromosomes. On the other hand, well-known results from the Hannenhalli-Pevzner
theory show that, when each component admits a sorting inversion, then it is possible
to create a new cycle at each step of the sorting process with HP operations, without
creating unoriented components [63]. We will see in the next propositions that the same
type of result can be obtained in this context. According to Proposition 4.12, it will
be useful to treat components with paths and components without paths separately.

Definition 4.13 Components whose both extremities are genes are called real compo-
nents. Components that contain one or two telomeres are semi-real components.

First, let us consider oriented real components that are well studied in the context
of sorting by inversions. In [63], it was first shown that oriented real components
can be sorted optimally by oriented inversions. This relies on the fact that among all
possible oriented inversions there always exists one that does not create new unoriented
components. Such an inversion is called a safe inversion and can be found by trial and
error. More sophisticated techniques to efficiently find safe inversions can be found
in [14, 25, 71].

Proposition 4.14 ([63]) An oriented real component has an oriented DCJ-sorting
operation that does not create new unoriented components.

As a consequence of Proposition 4.14, it is possible to sort real components with oriented
DCJ-sorting inversions as shown in the next proposition.

Proposition 4.15 A real component can be sorted with oriented DCJ-sorting opera-
tions if and only if it is oriented.

40

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

Proof If a real component can be sorted by oriented DCJ-sorting operations, then,
by definition, the component is oriented. If a real component is oriented, then there
exists an oriented DCJ-sorting inversion and Proposition 4.14 guarantees that there
will always be enough oriented DCJ-sorting inversions to sort the component.

Now, we come to the semi-real components. First, we consider semi-real components
whose associated permutation has positive and negative elements. As it turns out,
these components can be treated in the same way as oriented real components by
adding extra genes.

Proposition 4.16 An oriented semi-real component whose associated permutation has
positive and negative elements can be sorted with oriented DCJ-sorting operations.

Proof We will show that an oriented semi-real component whose associated permuta-
tion has positive and negative elements can be embedded in an oriented real component
with the same DCJ distance. Then, by Proposition 4.15, we can sort the component
with oriented DCJ-sorting operations.
Consider a component C = (l, . . . , r) and its associated permutation (p1, . . . , pk). As-
sume that the adjacency graph of the component C has C cycles and I odd paths, then
the number of DCJ-sorting operations equals

k − (C +
I

2
).

We will show that this distance is also achieved after having added extra genes to the
component. Depending on the component, we distinguish the following cases:

1. If the component C has one telomere, then either l = ◦ or r = ◦. Suppose that
l = ◦, then we add an extra gene 0 at the beginning of the associated permutation.
This yields a real component C′ = (l′, . . . , r) = (0, . . . , k). In the adjacency graph,
the – unique – odd path is transformed into a cycle and a new path of length one
is created. Thus, the number of DCJ-sorting operations equals

k + 1− ((C + 1) +
I

2
) = k − (C +

I

2
).

The case where r = ◦ can be treated similarly.

2. If the component has two telomeres, then l = ◦ and r = ◦. The adjacency graph
has two paths, either both even or both odd.

(a) Suppose that both paths are odd. First, if the telomere (◦, p1) of A and
the telomere (◦, 1) of B belong to the same odd path, then we add the
extra gene 0 at the beginning and the extra gene k + 1 at the end of the
associated permutation. This results in a real component C′ = (l′, . . . , r′) =
(0, . . . , k+1). This transforms the two odd paths into two cycles and creates
two new paths of length one. Therefore, we have

k + 2− ((C + 2) +
I

2
) = k − (C +

I

2
).

41

4.2. COMPONENTS AND ORIENTED SORTING

Similarly, if the telomere (◦, p1) of A and the telomere (pk, ◦) of B are the
ends of an odd path, then we add the gene −(k + 1) at the beginning and
−0 at the end of the associated permutation. Again, the DCJ distance is
preserved.

(b) Suppose that both paths are even. By adding genes 0 and k + 1 at the
beginning and the end of the permutation, the component C is embedded in
a real component C′ = (0, . . . , k + 1). By doing this, the two even paths are
joined into one cycle and two paths of length one are added. Therefore, the
DCJ distance remains the same:

k + 2− ((C + 1) +
I + 2

2
) = k − (C +

I

2
).

Oriented components must sometimes be sorted with fissions. This is the case for
semi-real components with paths of even length. Such components have two paths, one
of them connecting two telomeres of A and one connecting two telomeres of B. The
latter path can be split by a fission into two odd paths without creating new unoriented
components as stated in the next proposition.

Proposition 4.17 A semi-real component whose adjacency graph has even paths can
be sorted with oriented DCJ-sorting operations.

Proof First, note that a semi-real component C = (l, . . . , r) with one even path must
have two even paths, i. e., l = ◦ and r = ◦.
Consider the permutation (p1, . . . , pk) associated to component C. If the permutation is
oriented, then it is possible to sort the component with oriented DCJ-sorting operations
by Proposition 4.16.
Now, if the permutation is unoriented, then all genes p1 to pk have the same sign.
Without loss of generality, we assume that they are all positive and that pi = k precedes
pj = 1. Then, one chromosome of genome A is given by

(◦, p1, . . . , pi−1, k, pi+1, . . . , pj−1, 1, pj+1, . . . , pk, ◦).

The path connecting the two telomeres of genome B implies two possible fissions: fission
F1 creating telomere (k, ◦) and fission F2 creating (◦, 1).
Suppose that both fissions create new unoriented components. Let (l1, . . . , r1) and
(l2, . . . , r2) be unoriented components created by fissions F1, respectively F2. Since
fission F1 yields the chromosomes

(◦, p1, . . . , pi−1, k, ◦) and (◦, pi+1, . . . , pj−1, 1, pj+1, . . . , pk, ◦),

the newly created component (l1, . . . , r1) must be in the beginning of the second chro-
mosome, otherwise it would have existed before. Moreover, gene 1 belongs to the
component (l1, . . . , r1) because the interval is in the beginning of a chromosome of B.
On the other hand, fission F2 creates chromosomes:

(◦, p1, . . . , pi−1, k, pi+1, . . . , pj−1, ◦) and (◦, 1, pj+1, . . . , pk, ◦).

42

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

By a similar argumentation, the component (l2, . . . , r2) is at the end of the first chro-
mosome and contains the gene k. This means that the genes in the set {pi+1, . . . , pj−1}
are in the beginning and at the end of a chromosome of B. But, since each gene occurs
exactly once, the set {pi+1, . . . , pj−1} must be empty, implying that i + 1 = j. Thus,
both fissions create the following two chromosomes

(◦, p1, . . . , pi−1, k, ◦) and (◦, 1, pj+1, . . . , pk, ◦).

But, a component (l1, . . . , r1) in the end of the first chromosome would be a real com-
ponent. This contradicts the fact that the component was newly created by the fission.
Also, contradicting our assumption, (l2, . . . , r2) cannot be created by a fission. Thus,
we have shown that at least one of the two fissions does not create any new unoriented
components.

Until now, we have dealt only with components, i.e. included in chromosomes. Now,
we will turn to the general problem of sorting linear genomes. This requires also DCJ
operations that act on different chromosomes. More formally, we have:

Definition 4.18 A DCJ operation creating the adjacency (a, b) of B, where a and b are
genes, is called interchromosomal, if (a, x) and (y, b) belong to different chromosomes
in A.

1. If x 6= ◦ and y 6= ◦, the DCJ operation is a translocation.

2. If x = ◦ or y = ◦ (but not both), the DCJ operation is a semi-translocation.

3. If x = ◦ and y = ◦, the DCJ operation is a fusion.

The next lemma is the key, it says that for any interchromosomal DCJ operation that
creates an unoriented component there always exists an alternative interchromosomal
DCJ-sorting operation that does not. This statement, already proven in the context of
sorting by internal translocations [21], can be shown similarly for the general case.

Proposition 4.19 Given two linear genomes A and B, if an interchromosomal DCJ
operation creates an unoriented component, then there exists another interchromosomal
DCJ-sorting operation that does not.

Proof First note that an interchromosomal DCJ-sorting operation can be a translo-
cation, a semi-translocation or a fusion. Without loss of generality, we assume that the
DCJ operation is a translocation.
Suppose that a translocation T creates new unoriented components by acting on adja-
cencies (a, x) and (y, b), and let

C = (l, . . . , a, b, . . . , r)

be the smallest such component in the resulting genome A′ that contains a and b. We
will show that then there must exist another DCJ-sorting translocation that either
creates smaller components, or does not create non-trivial components.
We distinguish the two cases whether the component C is real or semi-real:

43

4.2. COMPONENTS AND ORIENTED SORTING

First, if the newly created component is real, then l 6= ◦ and r 6= ◦ and genome A

contains the two chromosomes

(◦, . . . , l, . . . , a, . . . , ◦) and (◦, . . . , b, . . . , r, . . . , ◦).

If the component C is a real component, then there exists an element M in (l, . . . , a)
such that the element M + 1 is in (b, . . . , r). This follows from the definition of a
component and the fact that either l 6= a or b 6= r. Therefore, the two chromosomes of
genome A can be written as

(◦, . . . , l, . . . , M, . . . , a, . . . , ◦) and (◦, . . . , b, . . . , M + 1, . . . , r, . . . , ◦).

Thus, there exists an alternative DCJ-sorting translocation creating the adjacency
(M,M + 1). Applying this translocation results in a genome A′′ with chromosomes

(◦, . . . , l, . . . ,M, M + 1, . . . , r, . . . , ◦) and (◦, . . . , b, . . . , a, . . . , ◦).

If a or b belong to a new non-trivial component in A′′, then this component must be
strictly smaller than (l, . . . , r), since both a and b are contained in C = (l, . . . , r), a
contradiction.
Moreover, a new non-trivial component cannot contain both l and r, since the element
a ∈ {l, . . . , r} is on a different chromosome. If it contains l and is longer than (l, . . . , r),
then it must be an interval of the form (l′, . . . , l, . . . , r′), where l′ < l < r′ < r. But all
the elements at the right of l are greater than l, and all the elements at the left of l

are smaller than l, implying that either l′ = l or l = r′, which are both contradictions.
Similar arguments hold if the new non-trivial component contains r and is longer than
(l, . . . , r).

Secondly, if the component C = (l, . . . , a, b, . . . , r) is semi-real, then either l = ◦, or
r = ◦, or both. Suppose that r = ◦, then genome A contains the chromosomes

(◦, . . . , l, . . . , a, . . . , ◦) and (◦, . . . , b, . . . , ◦).

Suppose that the component C is a semi-real component with gene content {m, . . . ,M},
and that l = m and r = ◦. Moreover, M is either in the interval (l, . . . , a) or in
the interval (b, . . . , r). Assume that the first case holds, then the genome A has the
chromosomes

(◦, . . . , l, . . . ,M, . . . , a, . . . , ◦) and (◦, . . . , b, . . . , ◦).
The translocation creating the telomere (M, ◦) yields the genome A′′:

(◦, . . . , l, . . . ,M, ◦) and (◦, . . . , b, . . . , a, . . . , ◦).

Again, if a or b belong to a new non-trivial component in A′′, then this component must
be strictly smaller than (l, . . . , r), since both a and b are contained in C = (l, . . . , r), a
contradiction.
Moreover, a new non-trivial component cannot contain both l and M , since the element
a ∈ {m, . . . ,M} is on a different chromosome. If it contains l and is longer than (l . . . r),
then it must be an interval of the form (l′, . . . , l, . . . , r′), where l′ < l < r′ < M . But
all the elements at the right of l are greater than l, and all the elements at the left of l

are smaller than l, implying that either l′ = l or l = M , which are both contradictions.
Similar arguments hold if the new non-trivial component contains M and is longer than
(l, . . . , r).

44

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

Finally, we have all necessary ingredients for our main result of this section.

Theorem 4.20 Given two linear genomes A and B, dHP (A,B) = dDCJ(A,B) if and
only if there are no unoriented components.

Proof The “if” part comes from the fact that we can sort a genome without unoriented
components with DCJ-sorting operations (Propositions 4.16, 4.17, 4.19), adding the fact
that semi-real components whose graphs have even paths can be “destroyed” by fissions.
The “only if” part comes from the fact that if there are unoriented components, then
dDCJ(A,B) < dHP (A,B), since we showed in Proposition 4.12 that in this case all
DCJ-sorting operations create circular chromosomes.

4.3 Computing the General HP Distance

In this section we will show that, given the DCJ distance dDCJ , one can express the
Hannenhalli-Pevzner distance dHP in the form

dHP = dDCJ + t,

where t represents the additional cost of not resorting to unoriented DCJ operations.
First, we describe how to destroy unoriented components in Section 4.3.1 and after
that, in Section 4.3.2, we compute the additional cost from the inclusion and linking
tree of the unoriented components.

4.3.1 Destroying Unoriented Components

Destroying unoriented components is done by applying a DCJ operation either on one
component in order to orient it, or on two components in order to destroy or to merge
them, and possibly others, into a single oriented component. By using the nesting and
linking relationship between components, one can minimize the number of operations
necessary to destroy unoriented components.
When two components overlap on one element, we say that they are linked. Successive
linked components form a chain. A chain that cannot be extended to the left or right
is called maximal. We represent the nesting and linking relations between components
of a chromosome in the following way:

Definition 4.21 Given a chromosome X of genome A and its components relative to
genome B, define the forest FX by the following construction:

1. Each non-trivial component is represented by a round node.

2. Each maximal chain that contains non-trivial components is represented by a
square node whose (ordered) children are the round nodes that represent the non-
trivial components of this chain.

3. A square node is the child of the smallest component that contains this chain.

45

4.3. COMPUTING THE GENERAL HP DISTANCE

FX1 :
���c

(◦, . . . , 3)

HHHc
(3, . . . , ◦)

FX2 : c(7, . . . , 12)

c(−11, . . . ,−8)

FX3 : c(◦, . . . ,−13)

Figure 4.1: The forests associated to the genomes A and B of Example 4.5 where FX1 , FX2 and
FX3 are the forests of the first, the second and the third chromosome of genome A, respectively.

For example, the forests of the genomes A and B of Example 4.5 are shown in Fig. 4.1.
Let us consider a single tree of a forest. Clearly, there is a unique path between any
two components in this tree. Moreover, we have the following result:

Proposition 4.22 ([19]) Let C be a component on the unique path joining components
A and B in a tree of FX , i. e. C contains either A or B, or both.

1. If C contains both A and B, then it is the only component on the path that contains
A and B.

2. No component of the path contains both A and B if and only if A and B are
included in two components that are in the same chain.

Proof Consider the smallest component D that contains components A and B. Sup-
pose that D is on the path that joins A and B, like in the left tree of Fig. 4.2. Then,
any other component that contains A and B is an ancestor of D, therefore not on the
path. Now, suppose that D is not on the path that joins A and B, as shown in the
right tree of Fig. 4.2. The least common ancestor of components A and B is a square
node q that is a child of the round node representing D, thus A and B are included in
two components that are in the chain represented by q.

cD
���

cA

HHH

cB
cD

���cA
HHHc B

Figure 4.2: Component D is the smallest component that contains components A and B. Left:
D is on the path between A and B. Right: D is not on the path between A and B.

Next, we define a tree associated to the components of a genome by combining the
forests of all chromosomes into one rooted tree:

Definition 4.23 Suppose genome A consists of chromosomes X1, . . . , XK . The tree
T associated to the components of genome A relative to genome B is given by the
following construction:

1. The root of T is a round node.

2. All trees of the set of forests {FX1 , FX2 , . . . , FXK
} are children of the root.

46

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

The round nodes of T are painted according the following classification:

1. The root and all nodes corresponding to oriented components are painted black.

2. Nodes corresponding to unoriented, real components are painted white.

3. Nodes corresponding to unoriented, semi-real components are painted gray.

The tree associated to the components of the genomes A and B of Example 4.5 is shown
in Fig. 4.3. Note that gray nodes are never included in other components.s

�
���

��

H
HHH

HH
���c×

(◦, . . . , 3)

HHHc×
(3, . . . , ◦)

s(7, . . . , 12)

c(−11, . . . ,−8)

s(◦, . . . ,−13)

Figure 4.3: The tree T associated to the genomes A and B of Example 4.5 has two gray leaves,
one white leaf and one black leaf.

The following two propositions are general remarks on components and are useful to
show how to destroy unoriented components.

Proposition 4.24 A translocation acting on two (unoriented) components cannot cre-
ate new (unoriented) components.

Proof Consider two components A and B and let (p1, . . . , pk) and (q1, . . . , ql) be
their associated permutations. For contradiction, assume that a translocation acting
on A and B creates a new component D. Without loss of generality, we assume that
the translocation transforms the adjacencies (pi, pi+1) and (qj , qj+1) into (pi, qj+1) and
(qj , pi+1). The newly created component D must contain at least one of the two ad-
jacencies, either (pi, qj+1) or (qj , pi+1), otherwise D would have existed before. Since
a translocation acts on one cycle or one path in each component, we consider several
possible cases:

1. If the translocation merges two cycles into one cycle, then both adjacencies
(pi, qj+1) and (qj , pi+1) belong to the new cycle. This contradicts the fact that
all adjacencies of a component are in the same chromosome.

2. If the translocation merges one cycle and one path into one path, then both
adjacencies (pi, qj+1) and (qj , pi+1) belong to the new path. Again, this is a
contradiction to the definition of a component.

3. If the translocation acts on two paths, then the adjacencies (pi, qj+1) and (qj , pi+1)
are in two different paths. Because both paths have adjacencies that belong to
two different chromosomes, this is again a contradiction to the definition of a
component.

47

4.3. COMPUTING THE GENERAL HP DISTANCE

Proposition 4.25 An inversion acting on two (unoriented) components A and B cre-
ates a new component D if and only if A and B are included in linked components.

Proof Assume that an inversion acting on A and B creates a new component D =
(l, . . . , r), then the extremities of the interval D must be both outside the inverted
interval. Indeed, if both extremities of D are inside the inverted interval, D existed in
the original permutation. If one extremity of D is outside the interval, then component
D must contain at least one endpoint of the inverted interval in order to be affected by
the inversion. To see that the other endpoint of the inverted interval is also in D, we
distinguish between the three cases that the inversion is a cycle fusion, an integration,
or a path translocation in the adjacency graph. Certainly, this is evident in the first
two cases because the two endpoints of the inverted interval belong to the same cycle
or the same path. If the inversion is a path translocation, then the resulting two paths
span the whole chromosome and hence belong to the same component D. Thus, in all
cases, the second extremity of D is also outside the interval.
One can easily check that there does not exist a component C on the path from A to B
that contains A and B. In particular, if there would be such a component C, then, after
the inversion, the new component D would be included in C. Thus, by Proposition 4.22,
the components A and B are included in linked components.
To show the converse, suppose that components A and B are nested in components
A′ = (l1, . . . , r1) and B′ = (l2, . . . , r2) such that A′ and B′ are linked in a chain. Then,
an inversion acting on one adjacency of A and one adjacency of B creates the new
component D = (l1, . . . , r2).

Now, we have all necessary results to get rid of unoriented components. The follow-
ing two propositions are straightforward generalizations of well-known results from the
sorting by inversion theory. We will start by looking at one single unoriented compo-
nent.

Proposition 4.26 If a component C is unoriented, any inversion between adjacencies
of the same cycle or the same path of C orients C, and leaves the number of cycles and
paths of the adjacency graph of C unchanged.

Proof Inverting an interval changes the sign of the elements of the inverted interval.
Therefore, component C will be oriented. Since the adjacencies belong to the same
cycle or path, the inversion cannot merge cycles or paths. By Proposition 4.10, the
inversion cannot split a cycle, nor a path. Therefore, the number of cycles and the
number of paths remain unchanged.

Orienting a component as in Proposition 4.26 is called cutting the component. Note that
this operation leaves the DCJ distance unchanged, and does not create new components.
It is possible to destroy more than one unoriented component with a single DCJ oper-
ation acting on two unoriented components. The following proposition describes how
to merge several components, and the relations of this operation to paths in the tree
T .

Proposition 4.27 There always exists an HP operation acting on adjacencies of two
different components A and B destroys, or orients, all components on the path from A to
B in the tree T , without creating new unoriented components or circular chromosomes.

48

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

Proof If A and B are in different chromosomes, then we apply a translocation to
destroy A and B. As shown in Proposition 4.24, such a translocation cannot create
new unoriented components. Moreover, all components that contain either A or B are
also destroyed by the translocation. Thus, all components on the path are destroyed.
If A and B are in the same chromosome, then we apply an inversion to destroy A
and B. By Proposition 4.25, the only component eventually created by an inversion is
the union of two or more linked components. Since linked components have extremities
with the same sign, the sign of the links will be different from the sign of the extremities
of the new component, thus it will be oriented.
Now, if the components A and B are not included in linked components, then the
lowest common ancestor must be a round node, either the root or, by Proposition 4.22,
a component C that is on the path from A to B and that contains both. In the latter
case, components A and B must be real, thus the inversion merges two cycles, one from
each component, into one new cycle. If A and B are unoriented, the new cycle contains
at least one oriented adjacency. Since C is the smallest component that contains the
new cycle, C will be oriented.
Finally, for any component C on the path from A to B and that contains either A or
B, but not both, the inversion changes the sign of one of the bounding elements of C,
and C will be destroyed.

Remark 4.28 If the HP operation acts on two odd paths, thus on gray components,
then merging the two components can be done without changing the number of odd
paths, and the DCJ distance is unchanged. If the HP operation involves at least one
cycle, then merging two components decreases the number of cycles by one, and the
DCJ distance will increase by 1 in the resulting pair of genomes.

4.3.2 Unoriented Sorting

Let T be the tree associated to the components of genome A relative to genome B, and
let T ′ be the smallest subtree of T that contains all the unoriented components, that
is, the white and gray nodes.

Definition 4.29 A cover of T ′ is a collection of paths joining all the unoriented com-
ponents, such that each terminal node of a path belongs to a unique path.

A path that contains two or more white or gray components, or one white and one
gray component, is called a long path. A path that contains only one white or one gray
component, is a short path.
The cost of a cover is defined to be the sum of the costs of its paths, where the cost
of path is the increase in distance caused by destroying the unoriented components
along the path. More precisely, the cost of a path represent the sum of one extra HP
operation and the variation of the DCJ distance. Using Remark 4.28, we have:

1. The cost of a short path is 1.

2. The cost of a long path with only two gray components is 1.

3. The cost of all other long paths is 2.

49

4.3. COMPUTING THE GENERAL HP DISTANCE

An optimal cover is a cover of minimal cost. Define t as the cost of any optimal cover
of T ′. We first establish that t is the difference between the DCJ distance and the HP
distance, using the following terminology:

Definition 4.30 Given genomes A and B, we call a DCJ operation applied to genome A

� proper, if it decreases dDCJ(A,B) by one, i. e., ∆(C + I/2) = 1,

� improper, if dDCJ(A,B) remains unchanged, i. e., ∆(C + I/2) = 0, and

� bad, if it increases dDCJ(A,B) by one, i. e., ∆(C + I/2) = −1.

Theorem 4.31 If t is the cost of an optimal cover of T ′, the smallest subtree of T that
contains all the unoriented components of genome A relative to genome B, then:

dHP (A,B) = dDCJ(A,B) + t.

Proof First, we will show that dHP (A,B) ≤ dDCJ(A,B) + t. Consider any cover of
the tree T ′. Let

� ww be the number of long paths with only white components,

� wg be the number of long paths with white and gray components,

� gg be the number of long paths with only gray components,

� w be the number of short paths with one white component,

� g be the number of short paths with one gray component.

Clearly, we have that the cost t′ of this cover is t′ = 2ww + 2wg + gg + w + g.
Suppose that the adjacency graph AG(A,B) has C cycles and I odd paths. Applying
ww+wg bad DCJ operations and gg+w+g improper DCJ operations yields a genome
A′. Since each bad DCJ operation merges two cycles or one cycle and a path, the
number of cycles in AG(A′, B) is C − ww − wg. Note that the number of odd paths
remains unchanged. Therefore, by Theorem 4.20, we have that

dHP (A,B) ≤ dHP (A′, B) + ww + wg + gg + w + g

= N − ((C − ww − wg) +
I

2
) + ww + wg + gg + w + g

= N − (C +
I

2
) + 2ww + 2wg + gg + w + g

= dDCJ(A,B) + t′

Since the above equation is true for any cover, we have: dHP (A,B) ≤ dDCJ(A,B) + t.

Now, we will show that dHP (A,B) ≥ dDCJ(A,B) + t. Consider an optimal sequence
of HP operations of length d. Observe that we can write

d = p + i + b

50

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

where p is the number of proper DCJ operations, i the number of improper DCJ
operations and b denotes the number of bad DCJ operations. Since p operations increase
C + I

2 by one and b operations decrease C + I
2 by one, and by Lemma 3.8, we have:

C +
I

2
+ p− b = N, implying d = N − (C +

I

2
) + 2b + i.

We will show that 2b + i ≥ t, implying dHP (A,B) ≥ dDCJ(A,B) + t.
The sequence of d HP operations induces a cover of T . Indeed, any HP operation
that merges a group of components traces a path in T , of which we keep the shortest
segment that includes all unoriented components of the group. Of these paths, suppose
that ww, wg and gg are the numbers of paths joining two white, one white and one
gray, and two grey terminal nodes, respectively. Clearly we have ww + wg ≤ b, since
merging two white, or one white and one gray component is a bad HP operation.
After applying the sequence of d operatiosn, all unoriented components are eventually
destroyed. Therefore, the remaining unoriented components are all cut. Suppose that
w and g are the numbers of remaining white and gray nodes, respectively. Because
merging two gray components, as well as cutting unoriented components is done by
improper HP operations, we have that gg + w + g ≤ i. Altogether, we have

t ≤ 2ww + 2wg + gg + w + g ≤ 2b + i.

Thus, we get d ≥ n− c + t, completing the proof.

It remains to establish a closed formula for t. A first easy but significant result on the
size of t is the following lower bound. Let w be the number of white leaves and g be
the number of gray leaves in T ′. Since destroying a white leaf costs at least 1, and
destroying a gray leaf costs at least 1/2, and t is an integer, we have:

w +
⌈g

2

⌉
≤ t.

It is quite remarkable, as was observed in the original paper on HP distance [62], that
this bound is at most within one rearrangement operation from the optimal solution.
To show the upper bound, we need the following observation that at most two gray
leaves are paired with white leaves:

Lemma 4.32 Consider an optimal cover of T ′ and the maximal number of paths cov-
ering one white and one gray leaf in such a cover. There exists an optimal cover such
that this number is at most two.

Proof Assuming the contrary, the number of paths covering one black and one gray
leaf is greater than two. Consider three such pairs, then t = x + 6, where x is the cost
of the remaining paths.
Now, we consider an alternative cover. We pair two black leaves such that the lowest
common ancestor of the three black leaves is on the path. Finally, it remains one
black and one gray leaf that are paired. This cover has cost x + 5, contradicting the
minimality of the cost t.

A branch in a tree is called a long branch if it has two or more unoriented components.
A tree is called a fortress if it has an odd number of leaves, all of them on long branches.

51

4.3. COMPUTING THE GENERAL HP DISTANCE

A standard theorem of the sorting by inversion theory states that the minimal cost to
cover a tree that is not a fortress is `, the number of leaves of the tree, and ` + 1 in the
case of a fortress [18, 63].

Proposition 4.33 Let w be the number of white leaves of T ′ and g the number of gray
leaves of T ′. Then we have

t ≤ w +
⌈g

2

⌉
+ 1

Proof We show the upper bound by a case-by-case analysis. For any values of w and
g, we give a cover with cost t∗ such that

t∗ ≤ w +
⌈g

2

⌉
+ 1.

Since t ≤ t∗, the upper bound holds. Consider the following cases:
First, if g = 0, then the cost of an optimal cover of the white leaves is given by:

t∗ =

{
w + 1 if T ′ is a fortress,
w otherwise.

If g = 1, then the cost for covering the white leaves is similar to the previous case. In
addition, we have one short path for the gray leaf. In total, we have:

t∗ =

{
w + 2 = w +

⌈
1
2

⌉
+ 1 , if T ′ is a fortress,

w + 1 ≤ w +
⌈

1
2

⌉
+ 1 , otherwise.

If g = 2 and w is even, then the only two gray leaves are either covered by one long
path at cost 1, if w = 0, or they are paired with two white leaves, if w ≥ 2. In the
latter case, the remaining w − 2 white leaves are paired at cost w − 2. In both cases,
we have t∗ ≤ w +

⌈
2
2

⌉
+ 1.

If g = 2 and w is odd, then we choose one white leaf that is on a long branch, if possible.
This white leaf is paired with one gray leaf at cost 2. In addition, the remaining w− 1
white leaves can be covered at cost w− 1, and the second gray leaf is destroyed at cost
1. Altogether, we have t∗ = 2 + (w − 1) + 1 = w +

⌈
2
2

⌉
+ 1.

If g ≥ 3 odd, then we pair g − 1 gray leaves at cost g−1
2 . As shown previously, the

remaining gray leaf and the w white leaves can be destroyed with cost at most w + 2.
By summing up, we have t∗ ≤ w + 2 + g−1

2 = w + 2 + dg−1
2 e = w +

⌈g
2

⌉
+ 1.

Finally, if g ≥ 4 even, then we pair g − 2 gray leaves at cost g−2
2 . By a previous case,

the remaining two grey leaves and the w white leaves can be destroyed with cost at
w + 2. Thus, we have t∗ = w + 2 + g−2

2 = w + g
2 + 1 = w +

⌈g
2

⌉
+ 1.

The closed formula for t is now given in the following two theorems.

Theorem 4.34 Let w be the number of white leaves and g be the number of gray leaves
in T ′, the smallest subtree of T that contains all the unoriented components of genome
A relative to genome B. If the root of T ′ has more than one child with white leaves,
then the minimal cost of a cover of T ′ is:

t = w + dg2e if the smallest subtree T ′′ that contains all the white leaves
of T ′ is not a fortress, or g is odd,

t = w + dg2e+ 1 otherwise.

52

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

Proof If the subtree T ′′ is not a fortress then it admits a cover of cost w, and pairing
the maximum number of gray nodes yields a cover of T ′ costing w + dg2e. If the subtree
T ′′ is a fortress, then one of its white leaves is not paired with another leaf since the
number of leaves is odd. A cover of T ′ can be obtained by pairing this white leaf with
a gray leaf, which exists if g is odd. The resulting cost will be again w + dg2e which
equals the lower bound, and thus the cover is optimal.
If the subtree is a fortress and g is even, we can construct a cover costing (w+1)+g/2,
using the cover of the fortress and pairing the gray nodes. To show that this cost is
minimal, suppose that k gray nodes are paired with k white nodes, and the remaining
white and gray nodes are paired separately. If k is even, then the cost of such a cover
would be (w− k + 1) + (g− k)/2 + 2k, which is greater than (w + 1) + g/2. If k is odd,
then the cost of this cover is (w − k) + (g − k + 1)/2 + 2k, which is again greater than
or equal to (w + 1) + g/2.

When all the white leaves belong to a single child of the root, the situation is more
delicate. Define a junior fortress as a tree with an odd number of white leaves, all of
them on long branches, except one that is alone on its branch, called the top of the
fortress. We have the following:

Theorem 4.35 Let w > 0 be the number of white leaves and g > 0 be the number of
gray leaves in T ′, the smallest subtree of T that contains all the unoriented components
of genome A relative to genome B. If the root of T ′ has only one child c with white
leaves then the minimal cost of a cover of T ′ is:

t = w + dg2e if g is odd and the subtree Tc that is rooted at c

is neither a fortress nor a junior fortress with c as its top,
t = w + dg2e+ 1 otherwise.

Proof Suppose first that g = 1, then the only gray leaf either belongs to Tc or not. In
the first case, this gray leaf must be the child c implying that Tc is not a junior fortress.
If Tc is not a fortress, then there exists a cover with minimal cost equal to the number
of leaves of Tc, which is given by w + dg2e, since g = 1. If Tc is a fortress, then the
minimal cost of a cover is w + dg2e+ 1.
In the other case, i.e. the gray leaf does not belong to Tc, then if Tc is a fortress or
a junior fortress with c as its top, the whole tree T ′ is a fortress with w + dg2e leaves,
yielding a cost of w+dg2e+1. Otherwise, if Tc is neither a fortress nor a junior fortress,
then T ′ can not be a fortress, and hence can be destroyed with cost w + 1 = w + dg2e.
The same argumentation holds for any g > 1 if g is odd.
Now, we consider the case g = 2. If Tc is a fortress, two of the white leaves in Tc can
be paired with the two gray leaves outside Tc at cost 4. This eliminates the two gray
leaves, two of the long white branches, and the branch containing c. The remaining
w − 2 long branches are paired at cost w − 2. Together, this gives a cover of cost
4+w− 2 = w + dg2e+1. This is optimal since the cost of T ′ is the same as for Tc. If Tc

is not a fortress, we do not need to pair white and gray leaves. Tc can be covered with
cost w + 1 and the g gray leaves are paired with cost dg2e, giving again a total cost of
w + dg2e+ 1.

53

4.4. RELATION TO OTHER GENOMIC DISTANCES

If g > 2 and g is even, it is always possible to pair the gray leaves, as long as there are
more than two left, and then apply the case g = 2. This gives the same cost w+dg2e+1.

For example, the genomes A and B of Example 4.5 have N = 17 genes. The adjacency
graph AG(A,B) has C = 3 cycles and I = 6 odd paths. After removing the dangling
black leaf, the tree T ′ has g = 2 gray leaves and w = 1 white leaf (see Fig. 4.3).
Therefore, by Theorem 4.35, we have t = 2 and thus

dHP (A,B) = N − (C +
I

2
) + t = 17− (3 + 3) + 2 = 13.

4.4 Relation to Other Genomic Distances

In this section, we are looking at two further genomic distances: the inversion distance
(Section 4.4.1) and the translocation distance (Section 4.4.2). Similar to the general
case studied in the previous sections, both distance computations are based on the
nesting and linking relation of components, but this time, the components are directly
defined on the elements of a permutation. Although both distance computations rely
on the same concepts, there is a fundamental difference in destroying unoriented com-
ponents: in the multichromosomal case, we are working with a forest instead of a single
tree. Recently, this finding led to a correction of the original formula for the translo-
cation distance. The connection to the existing literature is shortly given at the end of
each subsection. For a detailed and complete discussion of the problems, we refer the
reader to [20] for the inversion distance and to [21] for the translocation distance.

4.4.1 Inversion Distance

Let A be a unichromosomal, linear genome defined on the set of genes {1, . . . , N}. The
genome graph of A consists of one linear component. For example, consider the genome
graph of the genome A = {(◦, 1,−3, 4,−5,−2, 6, ◦)}:

t t t t t t t1t 1h 3h 3t 4t 4h 5h 5t 2h 2t 6t 6h

We are interested in comparing two unichromosomal, linear genomes A and B defined
on the same set genes {1, . . . , N}. We can assume that both genomes have the same
telomeres. Moreover, by renaming the genes, one of the genomes to be compared,
say genome B, is represented by the identity Id = (1, . . . , N). Out of the set of HP
operations, only inversions act on uni-chromosomal, linear genomes. This gives rise to
the following problem:

The Inversion Distance Problem. Given two unichromosomal, linear genomes A

and B, compute the minimum number of inversions needed to transform A into B.
This number is called the inversion distance between A and B, denoted by dinv(A,B).
By assuming that B = Id, we will simply write dinv(A) instead of dinv(A,B).

In order to compute the inversion distance between two linear genomes, we first have
a look at their DCJ distance. Consider two unichromosomal, linear genomes A and
B and let AG(A,B) be the adjacency graph of Definition 3.6. Since the number of

54

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

odd paths equals two, and thus is constant, the DCJ distance between A and B only
depends on the number of cycles. Thus, by Theorem 3.11, we have that

dDCJ(A,B) = N − (C + 1)

where C is the number of cycles in in the adjacency graph AG(A,B).
However, the distance given by this formula does not guarantee that all intermediate
genomes are unichromosomal and linear. Therefore, an additional cost is needed that
is computed from the components in a very similar way as for the HP distance. By
definition, the forest of Definition 4.21 consists of one single tree and all components of
two linear genomes are real components. For this reason, the tree associated to two lin-
ear genomes has only white and black, and no gray round nodes. For example, Fig. 4.4
represents the tree T ′

A2
associated to the genomes A2 = {(◦, 1,−4, 2, 3, 5, 7, 6, 8,

−16,−14,−15,−13,−11,−12,−10, 9, 17, ◦)} and B = Id.

A2 = {(◦, 1 −4, 2, 3, 5, 7, 6, 8, −16, −14, −15, −13, −11, −12, −10, 9, 17, ◦)}.

1 -4 2 3 5 7 6 8 -16 -14 -15 -13 -11 -12 -10 9 17

TA2 :

s(1, . . . , 5) c(5, . . . , 8) s(8, . . . , 17)

s(2, . . . , 3) c(−16, . . . ,−13) c(−13, . . . ,−10)

�
���

���

H
HHH

HHH

�
�

�
��

Z
Z

Z
ZZ

T ′A2
:

�
�

�
��

Z
Z

Z
ZZc(5, . . . , 8) s(8, . . . , 17)

�
�

�
��

Z
Z

Z
ZZc(−16, . . . ,−13) c(−13, . . . ,−10)

Figure 4.4: The tree TA2 and the tree T ′
A2

associated to the genomes A2 =
{(◦, 1,−4, 2, 3, 5, 7, 6, 8, −16,−14,−15,−13,−11,−12,−10, 9, 17, ◦)} and B = Id.
White round nodes correspond to unoriented components, and black round nodes correspond
to oriented components.

Let T ′ be the smallest unrooted subtree of T that contains all unoriented components
of A with respect to B. For example, the tree T ′

A2
is obtained from the tree TA2 of

Fig. 4.4 by removing the dangling oriented components (2, . . . , 3) and (1, . . . , 5). Thus,
the tree T ′

A2
contains three unoriented components and one oriented one. Since all

components of the tree T ′ are real, the extra cost for destroying the white leaves is
given by a simplified version of Theorem 4.34:

Theorem 4.36 ([18]) Let A and B be two unichromosomal, linear genomes that are
defined on N genes and have the same telomeres. If the adjacency graph AG(A,B) has
C cycles and the associated tree T has w white leaves, then

dinv(A,B) = N − (C + 1) + t

= dDCJ(A,B) + t

55

4.4. RELATION TO OTHER GENOMIC DISTANCES

where

t =

{
w + 1 if T is a fortress
w otherwise.

For example, the adjacency graph of the genomes

A2 = {(◦, 1 −4, 2, 3, 5, 7, 6, 8, −16, −14, −15, −13, −11, −12, −10, 9, 17, ◦)}

and B = Id has 6 cycles, as shown in Fig. 4.4. Its associated tree T ′ can be covered
by one long path and one short path, since it has three leaves, all of them on short
branches. Thus:

d(A2) = N − (C + 1) + t = 17− (6 + 1) + 3 = 13.

Relation to Previous Literature. The inversion distance formula given in Theorem
4.36 was first developed by Hannenhalli and Pevzner [63] in 1995. They introduced
the notions of hurdles and fortresses in order to express the inversion distance in terms
of breakpoints, cycles and hurdles. Moreover, Hannenhalli and Pevzner gave the first
polynomial-time algorithm for the problem of sorting by inversions using the concepts
developed by Bafna and Pevzner [9]. A clear distinction between the problem of com-
puting the inversion distance and finding an optimal sorting sequence was worked out
by Kaplan et al. [71] and Bader et al. [6]. Currently, the most efficient algorithms to
solve the inversion distance problem are linear [6, 18], while the most efficient algorithm
to find optimal sorting sequences is subquadratic [119].
In the traditional analysis of the sorting by inversions problem, the cycles of the break-
point graph and the connected components of the overlap graph play an important role.
Therefore, a genome is modeled as a signed permutation. Consider a genome A on the
set of genes {1, . . . , N}. By replacing the telomere markers by 0 at the beginning and by
N+1 at the end of the chromosome of A, we get a signed permutation PA on the integers
{0, . . . , n}, where n = N + 1. For the above genome A = {(◦, 1,−3, 4,−5,−2, 6, ◦)},
we get:

PA = (0 1 −3 4 −5 −2 6 7)

Instead of working on graphs, an inversion can also be modeled by changing the order
and the signs of an interval of genes of the signed permutation:

P = (0 1 −3 4 −5 −2 6 7)

P ′ = (0 1 −3 4 2 5 6 7)

The most dominant parameter in the distance formula is the number of cycles. Usually,
cycles are defined in the breakpoint graph whose most common version is based on an
unsigned permutation of 2n elements defined as follows: replace any positive element
x of a signed permutation by 2x − 1, 2x and any negative element −x by 2x, 2x − 1.
The breakpoint graph is an edge-colored graph whose set of vertices are the elements
(p0, . . . , p2n−1) of this unsigned permutation.

56

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

For each 0 ≤ i < n, vertices p2i and p2i+1 are joined by a black edge, and elements
2i and 2i + 1 of the permutation are joined by a gray edge. Thus, each vertex of the
breakpoint graph has exactly two incident edges. This allows the unique decomposition
of the breakpoint graph into cycles. The number of cycles c is maximized and equals
n, if and only if the permutation P is the identity permutation Id. Note that c = C +2
where C is the number of cycles defined in the adjacency graph.
Traditionally, components are defined as connected components of a graph. The support
of a gray edge is the interval of elements between and including the endpoints. Two
gray edges overlap if their supports intersect without proper containment. The overlap
graph is the graph whose vertices are the gray edges of the breakpoint graph and whose
edges join overlapping gray edges.
In the literature the notion of hurdle is handled in different ways: Hannenhalli and
Pevzner [63] define minimal hurdles as unoriented components which are minimal with
respect to the order induced by span inclusion. In addition, the greatest element is a
hurdle, called greatest hurdle, if it does not separate any two minimal hurdles. Kaplan
et al. [71] do not distinguish between minimal and greatest hurdles since they order the
elements of unoriented components on a circle. They define a hurdle as an unoriented
connected component whose elements occur consecutively on the circle. Regardless of
the precise definition of a hurdle, hurdles can be classified as follows: A simple hurdle
is defined as a hurdle whose elimination decreases the number of hurdles, otherwise the
hurdle is called a super-hurdle. A fortress is a permutation that has an odd number of
hurdles, all of which are super-hurdles.
Let P be a permutation on the set {0, . . . , n}, Hannenhalli and Pevzner proved the
following:

d(P) =

{
n− c + h + 1, if P is a fortress
n− c + h, otherwise

where c is the number of cycles and h is the number of hurdles of permutation P . Note
that the above distance formula is equivalent to the formula given in Theorem 4.36
since n = N + 1, c = C + 2 and h = w.
It should be mentioned that, alternatively to the breakpoint graph, cycles and compo-
nents can also be defined directly on the permutation by using elementary intervals [18].

4.4.2 Translocation Distance

In this section, we are focusing on multichromosomal, linear genomes that are affected
by translocations that do not act on the telomeres of their chromosomes. As defined
previously, a translocation acts on two adjacencies belonging to different chromosomes.
If none of the two adjacencies is a telomere, the translocation is internal. For example,
a translocation applied on the adjacencies (4, 3) and (2,−7) of genome A

A = {(4 3), (1 2 -7 5), (6 -8 9)}

results in a new genome:

A′ = {(4 -7 5), (1 2 3), (6 -8 9)}

57

4.4. RELATION TO OTHER GENOMIC DISTANCES

Multichromosomal, linear genomes can be sorted by internal translocations, if the
genomes have the same chromosome ends. More precisely, for a chromosome X =
(◦, x1, . . . , xk, ◦), the elements x1 and −xk are called its tails. Two genomes are co-
tailed, if their sets of tails are equal. Since an internal translocation does not change
the set of tails of a genome, sorting by internal translocations is restricted to co-tailed
genomes.
Given two genomes A and B, we assume that both genomes are co-tailed and that the
elements of each chromosome of the target genome B are positive and in increasing
order. For example, we have that

A = {(4 3), (1 2 −7 5), (6 −8 9)}

B = {(1 2 3), (4 5), (6 7 8 9)}.

The Translocation Distance Problem. Given two co-tailed genomes A and B,
compute the minimum number of internal translocations needed to transform A into
B. This number is called the translocation distance between A and B, denoted by
dtrans(A,B). By assuming that the elements of B are positive and in increasing order,
we will shortly use dtrans(A) instead of dtrans(A,B).

Suppose that the co-tailed genomes A and B have K chromosomes and that AG(A,B)
is the adjacency graph as given by Definition 3.6. Observe that the adjacency graph
consists of 2K 1-paths and otherwise only cycles. Due to this, the DCJ distance given
by Thereom 3.11 equals

dDCJ(A,B) = N − (C + K)

where C is the number of cycles in AG(A,B).
According to Definition 4.21, we define for each chromosome X a forest FX by its
components. Given a genome A consisting of chromosomes {X1, X2, . . . , XK}, the
forest FA is the set of trees from the forests {FX1 , FX2 , . . . , FXK

}. Note that, in contrast
to the general HP formula, these trees are not joined into one large tree. Consider for
example the genomes

A3 = {(◦, 1, −2, 3, 8, 4, −5, 6, ◦),

(◦, 7, 9, −10, 11, −12, 13, 14, −15, 16, ◦)}.
and B = Id. Figure 4.5 shows the forest FA3 that consists of three trees.
In the context of sorting by translocations, destroying unoriented components is del-
icate, and somehow dynamic. It is also possible to eventually destroy by a single
translocation two components that initially belong to two different trees of the same
chromosome. Before destroying them, such components have to be separated during
the sorting processes [21]. Therefore, the forest instead of a tree is the basic construct
for the sorting algorithm, as well as for the distance formula given in the next theorem.

Theorem 4.37 ([21]) Let A and B be two co-tailed genomes defined on N genes. If
the adjacency graph AG(A,B) has C cycles and the forest FA has L leaves and T trees,
then

dtrans(A) = N − (C + K) + t

= dDCJ(A,B) + t

58

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

A3 = {(◦ 1 -2 3 8 4 -5 6 ◦),(◦ 7 9 -10 11 -12 13 14 -15 16 ◦) }

FA3 :

c [1 . . . 3] c [4 . . . 6]

��
���

��

HH
HHH

HHc [9 . . . 11] c [11 . . . 13] c [14 . . . 16]

Figure 4.5: The non-trivial components of genome A3 = {(1−2 3 8 4−5 6), (7 9−10 11−12 13
14− 15 16)} and the forest FA3 .

where

t =

L + 2 if L is even and T = 1
L + 1 if L is odd
L if L is even and T 6= 1.

For example, the genome A3 of Figure 4.5consists of two chromosomes and 16 elements.
The adjacency graph AG(A3, Id) has seven cycles. The forest FA3 has three trees and
five leaves. Therefore, we have

d(A3) = N − (C + K) + t = 16− (7 + 2) + 6 = 13.

Relation to Previous Literature. The algorithmic study of genome rearrange-
ment by internal translocations was pioneered by Kececioglu and Ravi [73] in 1995.
One year later, Hannenhalli [60] gave the first polynomial time algorithm for sorting a
genome by internal translocations. In 2004, Li et al. [79] developed the first linear-time
algorithm for computing the translocation distance. But, their algorithm relies on Han-
nenhalli’s distance formula that, shortly after, was proven to be wrong [21]. Bergeron
et al. corrected the distance formula and presented an O(n3) time sorting algorithm.
By adapting the concepts of the subquadratic algorithm for sorting by inversions [119],
Ozery-Flato and Shamir obtained a subquadratic algorithm [92] for sorting by translo-
cations. To make use of the concepts developed in the unichromosomal case, it is
common to simulate translocations by inversions of intervals of signed permutations,
see [62, 91, 120]. For a genome A with K chromosomes, there are 2KK! possible ways
to chain the K chromosomes, each of these is called a concatenation. Given a concate-
nation, we extend it by adding a first element 0 and a last element N + 1. This results
in a signed permutation PA on the set {0, . . . , N +1}. We can model translocations on
the genome A by inversions on the signed permutation PA. Sometimes it is necessary
to flip a chromosome. This can also be modeled by the inversion of a chromosome,
but does not count as an operation in computing the translocation distance since the
represented genomes are identical. See Fig. 4.6 for an example.
Given any concatenation, cycles are defined on the signed permutation PA similar to
the unichromosmal case. In order to make the distance computation independent of
the concatenation, we distinguish between dashed cycles and solid cycles, as shown in
Fig. 4.6. More precisely, for two co-tailed genomes with K chromosomes, the dashed

59

4.5. ALGORITHMS

A1 ={(4 3), (1 2 -7 5), (6 -8 9)}

{(4 -7 5), (1 2 3), (-9 8 -6)}

{(4 -7 -6), (1 2 3), (-5 -8 9)}

{(-9 -4), (1 2 3), (-5 -8 -7 -6)}

B1 ={(1 2 3), (4 5), (6 7 8 9)}

PA1 =(0 4 3 1 2 -7 5 6 -8 9 10)b b
(0 4 3 -5 7 -2 -1 6 -8 9 10)r r
(0 4 -7 5 -3 -2 -1 6 -8 9 10)r r
(0 4 -7 -6 1 2 3 -5 -8 9 10)b b
(0 4 -7 -6 1 2 3 -9 8 5 10)r r
(0 4 9 -3 -2 -1 6 7 8 5 10)b b
(0 -9 -4 -3 -2 -1 6 7 8 5 10)r r
(0 -9 -8 -7 -6 1 2 3 4 5 10)b b
(0 -5 -4 -3 -2 -1 6 7 8 9 10)b b

Id = (0 1 2 3 4 5 6 7 8 9 10)

Figure 4.6: Left: An optimal sorting scenario for the translocation distance problem for the
genomes A and B; the exchanged chromosome ends are underlined. Right: Given an arbitrary
concatenation, the problem can be modeled by sorting the signed permutation PA by inversions;
solid lines denote inversions that represent translocations, dashed lines denote inversions that
flip chromosomes.

cycles formed by the K + 1 dashed adjacencies depend on the concatenation. Since
the order and the orientation of the chromosomes are irrelevant for the sorting by
translocation problem, we focus on the solid cycles that are formed by the N −K solid
adjacencies. The number of solid cycles c of PA is maximized, and equals N − K, if
and only if genome A is sorted. In order to compute the translocation distance, Han-
nenhalli [60] introduced the notions of subpermutations and even-isolation. We call
a component intrachromosomal, if all its elements belong to the same chromosome.
Subpermutations are equivalent to the non-trivial intrachromosomal components de-
fined in the previous section. A genome A has an even-isolation if all the minimal
subpermutations of A reside on a single chromosome, the number of minimal subper-
mutations is even, and all the minimal subpermutations are contained within a single
subpermutation. Hannenhalli showed that

d(P) = N −K − c + s + o + 2i

where s denotes the number of minimal subpermutations, o = 1 if the number of
minimal subpermutations is odd and o = 0 otherwise, and i = 1 if P has an even-
isolation and i = 0 otherwise. Although the distance formula given by Hannenhalli is
correct, there is an error in its proof and in the sorting algorithm as shown in [22].

4.5 Algorithms

The goal of this section is to present a linear time algorithm to compute the HP dis-
tance between two linear genomes based on Theorem 4.31. The main part of the algo-
rithm is the component identification of two genomes that is described in Section 4.5.1.
The basic idea is to adapt the algorithm for real component identification used in the

60

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

unichromosomal case [19] to multichromosomal genomes. Thereafter, we present the
overall algorithm for the distance computation in Section 4.5.2. Therefore, we compute
the cycles and paths of the adjacency graph in the same way as for the DCJ distance,
described earlier in Section 3.4. Finally, we construct the tree associated to the genomes
and we compute the optimal cost of a cover of this tree by Theorems 4.34 and 4.35.

4.5.1 Component Identification

For two multichromosomal genomes A and B defined on the set of genes {1, . . . , N},
we give an algorithm to compute the components of genome A with respect to B. In
the following, we modify the algorithm for unichromosomal genomes [19] such that not
only real, but also semi-real components are identfied. Throughout this section, we will
follow the notation and terminology used in [19].
Equivalently to Definition 4.4, a real component can be described as an interval from
i to (i + j) or from −(i + j) to −i, for some j > 0, whose set of unsigned elements is
{i, . . . , i + j}, and that is not the union of two such intervals [19]. The elements i and
i + j are called the bounding elements. If the bounding elements have positive sign,
then the component is called direct, otherwise the component is a reversed component.
In order to extend the notion of direct and reversed components to semi-real compo-
nents, we replace the telomere markers by caps such that the left and the right end of a
chromosome are different and that they also have a sign. More concretely, we transform
the genome A into two strings: First, we add 0 at the beginning and N +1 at the end of
each chromosome of genome A and chain its chromosomes into a string P+. Similarly,
we add −(N +1) at the beginning and −0 at the end of each chromosome of genome A

and chain its chromosomes into a string P−. If genome A consists of K chromosomes,
then both strings P+ and P− have length l = N + 2K.
Compared to the uni-chromosomal case, we need to do some extra work in order to
identify components: The chromosomes of B are numbered consecutively and an array c

stores for each gene in A its chromosome number in B. More precisely, if P+[i] = P−[i],
then c[i] is the chromosome number in B of the element at index i. Otherwise, at index
i is a chromosome end and c[i] gets the chromosome number of its adjacent gene.
Now, with the help of array c, we are able to describe components of genome A and B

as intervals in the strings P+ and P−. Depending whether the bounding elements are
caps or genes, there are eight different types of components: four direct components
shown at the left and four reversed components shown at the right of Fig. 4.7.

Example 4.38 Consider the genomes A and B of Example 4.5 with N = 17 genes:

A = {(◦, 2, 1, 3, 5, 4, ◦), (◦, 6, 7,−11,−9,−10,−8, 12, 16, ◦), (◦, 15, 14,−13, 17, ◦)},
B = {(◦, 1, 2, 3, 4, 5, ◦), (◦, 6, 7, 8, 9, 10, 11, 12◦), (◦, 13, 14, 15, ◦), (◦, 16, 17, ◦)}.

By replacing the telomere markers by the caps 0 and 18 (or −18 and −0), we get the
string P+ (or P− respectively) and the array c that stores the chromosome in B

61

4.5. ALGORITHMS

Type I: i {i + 1, . . . ,i + j − 1} i + j

Type II: i {i + 1, . . . ,i + j − 1} N + 1

Type III: 0 {i + 1, . . . ,i + j − 1} i + j

Type IV: 0 {i + 1, . . . ,i + j − 1} N + 1

Type V: −(i + j) {i + 1, . . . ,i + j − 1} −i

Type VI: −(i + j) {i + 1, . . . ,i + j − 1} −0

Type VII: −(N + 1) {i + 1, . . . ,i + j − 1} −i

Type VIII: −(N + 1) {i + 1, . . . ,i + j − 1} −0

Figure 4.7: Left: Direct components. Right: Reversed components.

for each gene:

P+ : 0 2 1 3 5 4 18 0 6 7 −11 −9 −10 −8 12 16 18 0 15 14 −13 17 18

P− : −18 2 1 3 5 4 −0 −18 6 7 −11 −9 −10 −8 12 16 −0 −18 15 14 −13 17 −0

c : 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 4 4 3 3 3 3 4 4

The components of genome A relative to genome B can be classified according to their
bounding elements. There are six direct components: (0, . . . , 3) and (0, 6) are of type
III, (3, . . . , 18) and (17, 18) are of type II, and (6, 7) and (7, . . . , 12) are of type I. The
two remaining components are reversed, the real component (−11, . . . ,−8) of type V
and the semi-real component (−18, . . . ,−13) of type VII.

It should be noticed that real components are also known as framed common intervals
and that the algorithm presented in [19] is based on the algorithm for finding framed
common intervals given in [16]. The more general concept of common intervals was
recently used in the context of gene cluster detection and efficient [122] and simple [15]
algorithms were developed. Probably, with appropriate post-processing, it would be
possible to use also these algorithms. However, our approach described in the following
is a more direct one.

Preprocessing

The input for the component identification algorithm is a string of length l, either P+

or P−, separated into an array of unsigned elements π = (π0, π1, . . . , πl−1) and an array
of signs σ = (σ0, σ1, . . . , σl−1).
For each string P+ and P−, two further arrays M and m are computed beforehand.
The array M is defined as follows: M [i] is the nearest unsigned element of π that
precedes πi, and is greater than πi, and N + 1 if no such element exists, or if index i

is a cap. Similarly, m[i] is the nearest unsigned element of π that precedes πi and is
smaller than πi, and 0 if no such element exists or if index i is a cap.

62

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

Like in the unichromosomal case [19], the arrays M and m can efficiently be computed
using two stacks M1 and M2, as shown for P+ in Algorithm 4. For example, the arrays
π+, σ+, M and m of the string P+ of Example 4.38 are given by:

π+ : 0 2 1 3 5 4 18 0 6 7 11 9 10 8 12 16 18 0 15 14 13 17 18

σ+ : + + + + + + + + + + − − − − + + + + + + − + +

M : 18 18 2 18 18 5 0 18 18 18 18 11 11 10 18 18 0 18 18 15 14 18 0

m : 0 0 0 1 3 3 0 0 0 6 7 7 9 7 8 12 0 0 0 0 0 13 0

The corresponding arrays for the other string P− are computed analogously, and we
get:

π− : 18 2 1 3 5 4 0 18 6 7 11 9 10 8 12 16 0 18 15 14 13 17 0

σ− : − + + + + + − − + + − − − − + + − − + + − + −
M : 18 3 3 5 18 18 18 18 7 11 12 10 12 12 16 18 18 18 17 17 17 18 18

m : 0 1 0 0 4 0 0 0 0 0 9 8 8 0 0 0 0 0 14 13 0 0 0

Algorithm 4 (Preprocessing for P+ = (π+, σ+), adapted from [19])
1: M1 and M2 are stacks of integers; initially M1 contains N + 1 and M2 contains 0

2: for i← 0, . . . , l − 1 do
3: M [i]← N + 1
4: m[i]← 0
5: i++
6: while π+[i] 6= N + 1 do

(* Compute the M [i] *)
7: if π+[i− 1] > π+[i] then
8: push π+[i− 1] on M1

9: else
10: pop from M1 all entries that are smaller than π+[i]
11: end if
12: M [i]← the top element of M1

(* Compute the m[i] *)
13: if π+[i− 1] < π+[i] then
14: push π+[i− 1] on M2

15: else
16: pop from M2 all entries that are larger than π[i]
17: end if
18: m[i]← the top element of M2

19: i++
20: end while
21: M [i]← N + 1
22: m[i]← 0
23: end for

63

4.5. ALGORITHMS

Component Identification

Now, we are coming to the component identification algorithm, consisting of two steps.
In the first step, we identify the direct components of types I, III and IV and the
reversed components of type VII by going from left to right through string P+, and
then, in the second step, we compute the reversed components of types V, VI and VIII
and the direct components of type III by going from right to left through string P−.
Thus, in both steps, direct as well as reversed components are reported.
To find components in Step 1 (and Step 2), we systematically test for each index i from
0 to l − 1 (or from l − 1 to 0, respectively), whether there is a component with right
bounding element πi, i.e. an interval of the form (πs . . . πi). Potential positive starting
positions for direct components are stored in stack S1 and negative ones for reversed
components in stack S2.
Four additional arrays are required for the component identification: Min and Max

for direct components, and min and max for reversed components. Concretely, if j is
the top of stack S1, then Min[j] is the minimum and Max[j] is the maximum between
j and the current index i, excluding chromosome caps. In the same way, the arrays
min and max are defined using the stack S2. Since direct and reversed components are
reported in both steps, all four arrays and both stacks S1 and S2 are updated in both
steps.

The component identification in Step 1, shown as pseudocode in Algorithm 5 is as
follows: First, let us consider direct real components. Additionally to the three con-
ditions described in [19], we require that all elements of a component must be on the
same chromosome in B. In line 12 of Algorithm 5, when a left bounding element s is
tested, σs must be positive because s is the top of the stack S1. Thus, we test s by the
following criterion: (πs . . . πi) is a component of type I if and only if:

1. σi is positive,

2. all elements between πs and πi in π are greater than πs and smaller than πi, the
latter being equivalent to the simple test M [i] = M [s],

3. π[s] 6= 0 and Max[s]−Min[s] = i− s, and

4. all elements from s to i are on the same chromosome in B.

It should be mentioned that the third condition is equivalent, but slightly different to
the one given in [19]. For real components, we have that πi − πs = Max[s] −Min[s].
The reason for testing Max[s] − Min[s] = i − s instead of πi − πs = i − s is that
the latter one is not extendable to semi-real components where one or both bounding
elements are caps.

Now, we turn from real to semi-real components. Our strategy in Step 1 is to report
semi-real components whose left bounding element is a cap. These are direct compo-
nents of type III and reversed components of type VII. Semi-real components whose
right bounding element is a cap will be reported in Step 2.
First, let us consider components of type III. Compared to real components, only the
third condition has to be modified. Since the left bounding element is a cap, the number

64

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

of genes in the interval is one less than for real components. Moreover, Min[s] is the
minimum of the interval (πs, . . . , πi) and there must be a gene Min[s] at the left end
of a chromosome in B. Bringing this together, the two conditions are replaced by:

2. all elements between πs and πi in π are smaller than πi, which is equivalent to
the simple test M [i] = M [s],

3. πs = 0 and Max[s] −Min[s] = i − s − 1 and Min[s] is a left chromosome end
in B.

In line 13 of Algorithm 5, components of type I are reported together with components
of type III since their conditions are the same, except for the third one (see line 12).

The identification of components of types V and VII is similar to the one of types I
and III. To switch from direct to reversed, we change the sign of σi and replace Max

and Min by max and min in the four conditions (see line 19). As a consequence,
the following four conditions have to be tested for the identification of components of
type VII:

1. σi is negative,

2. all elements between πs and πi in π are greater than πi which is equivalent to the
simple test m[i] = m[s],

3. π[s] = 0 and max[s] −min[s] = i − s − 1 and max[s] is at a right chromosome
end in B, and

4. all elements from s to i are on the same chromosome in B.

Note that we only report reversed components of type VII in line 20 of Algorithm 5.
Even though the direct components of type V are identified and the arrays are updated
in Step 1, they will not be reported.

Finally, at the end of a chromosome, when πi = N + 1, semi-real components whose
bounding elements are both caps and have positive sign are identified. As long as
we have πs 6= 0 for the top element of stack S1, we remove s (line 30) and update
Min and Max (line 31). Then, we test whether the whole chromosome is a semi-real
component. In particular, we have that πs = 0 and πi = N +1. Obviously, all elements
between πs and πi are greater than πs and smaller than πi, making the second condition
meaningless. Since both bounding elements are caps, the number of genes is two less
than for real components. Furthermore, there must exist a chromosome in B of the
form (◦,Min[s], . . . ,Max[s], ◦). Altogether, we have to check for components of type
IV the following conditions in line 33:

1. σs+1 is positive,

2. (not applicable)

3. Max[s] −Min[s] = i − s − 2 and Min[s] is at a left chromosome end in B and
Max[s] is at a right chromosome end of B,

4. all elements from s to i are on the same chromosome in B

65

4.5. ALGORITHMS

5. the component is not a chain of shorter components.

In Step 2, we apply Algorithm 5 to string P− instead of P+. By going backwards
through P−, we report the remaining components in the following order: First, the
components of types V and VI are found in the same way as the components of types I
and III in Step 1. Then, by switching from reversed to direct, we test for the components
of types I and II, but we only report those of type II because the others are already
found in Step 1. Finally, at the end of each chromosome, we compute the components
of type VIII.

Component Classification

Up to now, Algorithm 5 reports all components of genome A with respect to B and it
remains to classify which of them are unoriented, and which are not. For the classifi-
cation of components of types I-III and of types V-VII, it is sufficient to test whether
all elements of the component have the same sign. As shown in [19], this can be done
by a slight modification of Algorithm 5, without affecting the running time. The clas-
sification for the components of types IV and VIII is more delicate and requires the
computation of the paths and cycles that belong to the component.

In order to test whether all elements of a component have the same sign, we need an
extra array o to store the signs of any two consecutive elements πi and πi+1 of the
permutation P+ (for ease of notation shifted down by one position). For 0 ≤ i < l, the
entries of the array o are initially defined as follows:

o[i] =

+, if σi = + and σi+1 = +
−, if σi = − and σi+1 = −
0, otherwise.

For example, the initial array o of permutation P+ of Example 4.38 is:

P+ : 0 2 1 3 5 4 18 0 6 7 −11 −9 −10 −8 12 16 18 0 15 14 −13 17 18

σ+ : + + + + + + + + + + − − − − + + + + + + − + +

o : + + + + + + + + + 0 − − − 0 + + + + + 0 0 +

Now we define a function f : {−, 0,+}2 → {−, 0,+} as:

f(x1, x2) =

{
x1, if x1 = x2

0, otherwise.

Then, in the modified algorithm, whenever an index s is removed from the stack such
that index r becomes the top of the stack, o[r] will be replaced by f(o[r], o[s]). We
also replace the entry of the left bounding element of an identified direct component by
+, and the entry of the left bounding element of an identified reversed component by
−. This way, when a component (πs . . . πi) is reported in Algorithm 5, the signs of all
adjacencies belonging to the component are folded by repeated application of function
f to the leftmost index s of the component. Its orientation can then easily be derived:
(πs . . . πi) is unoriented if and only if o[s] equals + or − (all its points have the same
sign).

66

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

Algorithm 5 (Phase 1: Find components of P+ = (π, σ))
1: for i← 0, . . . , l do
2: S1 and S2 are stacks of integers; initially S1 contains i and S2 contains i

3: Min[i]← N , Max[i]← 0, min[i]← N , max[i]← 0
4: while π[i] 6= N + 1 do

(* Update minima and maxima *)
5: Min[i]← π[i], Min[top element of S1]← min(Min[top element of S1], π[i])
6: Max[i]← π[i], Max[top element of S1]← max(Max[top element of S1], π[i])
7: update similarly min and max using stack S2

(* Find components of types I and III *)
8: while π[s] > π[i] or M [s] < π[i] do
9: pop the top element s from S1

10: update Min and Max as in line 5 and 6
11: end while
12: if σ[i] = + and M [i] = M [s] and ((π[s] 6= 0 and Max[s] − Min[s] = i − s) or

(π[s] = 0 and Max[s] −Min[s] = i − s − 1 and Min[s] is at a left chromosome end
in B)) and all elements from s to i are on the same chromosome in B then

13: report the component (πs . . . πi)
14: end if

(* Find components of type VII *)
15: while (π[s] < π[i] or m[s] > π[i]) and π[s] > 0 do
16: pop the top element s from S2

17: update min and max as in line 7
18: end while
19: if σ[i] = − and m[i] = m[s] and (π[s] = 0 and max[s] − min[s] = i − s − 1 and

max[s] is at a right chromosome end in B) and all elements from s to i are on the
same chromosome in B then

20: report the component (πs . . . πi)
21: end if

(* Update stacks *)
22: if σ[i] = + then
23: push i on S1

24: else
25: push i on S2

26: end if
27: i++
28: end while

(* Find components of type IV *)
29: while π[s] 6= 0 do
30: pop the top element s from S1

31: update Min and Max as in lines 5 and 6
32: end while
33: if σ[s+1] = + and Max[s]−Min[s] = i−s−2 and Min[s] is at a left chromosome end

in B and Max[s] is at the right chromosome end of B and all elements from s to i are on
the same chromosome in B and this chromosome is not a chain of shorter components
then

34: report the component (πs . . . πi)
35: end if
36: end for

67

4.5. ALGORITHMS

Additionally to the array o, the classification of the components of types IV and VIII
requires the computation of the cycles and paths that belong to the components. Re-
call that a component of type IV (or VIII) is unoriented if its elements are positive
(respectively negative) and its adjacency graph does not contain an even path. The
idea is to mark in an additional boolean array whether an adjacency belongs to an even
path or not. This can be done in linear time by a slight modification of Algorithm 3.
If a semi-real component (πs . . . πi) is reported in line 34 of Algorithm 5, we check in
constant time whether the two adjacencies (◦, πs+1) and (πi−1, ◦) belong to an even
path, or not.

Summarizing, we have that:

Theorem 4.39 All components of two linear genomes on the set of genes {1, . . . , N}
can be found and classified as oriented or unoriented with a modified version of Algo-
rithm 5 in O(N) time and space.

4.5.2 Distance Computation

Now that we have an algorithm for the component identification, we present a linear-
time algorithm for computing the general HP distance between two linear genomes A

and B, consisting of five parts:

1. Construct the adjacency graph AG(A,B);

2. Compute the cycles and paths of AG(A,B);

3. Compute the components of A with respect to B;

4. Construct the trees T and T ′ associated to genomes A and B;

5. Compute the minimal cost of the cover of T ′.

The first two steps can be solved by Algorithms 2 and 3 as described in Section 3.4. As
discussed in detail in Section 4.5.1, the components can be computed in linear time.
Given the components, we construct the tree in the fourth step as follows: For each
index i, 0 ≤ i ≤ l, at most one component can start at position i, and at most one
component can end at position i. Hence, it is possible to create a data structure that
tells, in constant time, if there is a component beginning or ending at position i and,
if so, reports such components. Given this data structure, it is a simple procedure
to construct the tree T in one left-to-right scan along the permutation. Initially one
round root node is created. Then, for each additional component, a new round node p

is created as the child of a new or an existing square node q, depending if p is the first
component in a chain or not. For details, see Algorithm 6.
Finally, we compute the extra cost. To generate tree T ′ from tree T , a bottom-up
traversal of T recursively removes all dangling round leaves that represent oriented
components, and square nodes, including the root if it has degree 1. Given the tree T ′,
it is easy to compute the cover cost: Perform a depth-first traversal of T ′ and count
the number of leaves and the number of long and short branches, including the root if

68

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

Algorithm 6 (Construct T from the components of A with respect to B)
1: create a round node p, the root of T

2: for i← 1, . . . , l − 1 do
3: if there is a component C starting at position i then
4: if there is no component ending at position i then
5: create a new square node q as a child of p

6: end if
7: create a new round node p (representing C) as a child of q

8: else if there is a component ending at position i then
9: p← parent of q

10: q ← parent of p

11: end if
12: end for

it has degree 1. Then use the formulas from Theorems 4.34 and 4.35 to obtain t, and
the formula from Theorem 4.31 to obtain the distance dHP .

Altogether we have:

Theorem 4.40 The HP distance dHP (A,B) of two genomes A and B on the set
{1, . . . , N} can be computed in linear time O(N).

4.6 Summary and Historical Notes

In this chapter, we have presented three formulas for genomic distances. The main
contribution was a simpler formula for the HP distance problem. It requires only a few
parameters that can easily be computed directly from the genomes and from simple
graph structures derived from the genomes.
In 1995, the first exact distance formula for this problem was given by Hannenhalli
and Pevzner and involves more than half a dozen parameters [62]. Although some of
them are derived from the problem of sorting by inversions [63], the general formula is
much more complicated. In the last decade, different authors pointed to problems in
the original formula and algorithm. The first correction was by Tesler [120] whose main
contribution was a constructive algorithm how to achieve optimal concatenations. In
2003, Ozery-Flato and Shamir [91] found a counter-example and modified one of the
parameters of the distance formula. To show their distance formula, they followed to
a large extent the notation introduced by Hannenhalli and Pevzner [62] and in the
following, we briefly recapture their results.

Consider two multichromosomal, linear genomes Π and Γ defined on the same set of
n genes. Let M and N be the number of chromosomes of Π and Γ. If one of the two
genomes has fewer chromosomes than the other, then empty chromosomes are added to
this genome, such that afterwards both genomes contain L = max(M,N) chromosomes
each.
Now, we consider a set of 2L additional elements, called caps. These elements are added
at the ends of the linear chromosomes of both genomes such that the resulting genomes,
denoted by Π̂ and Γ̂, are co-tailed. Chaining the chromosomes of the genomes Π̂ and Γ̂

69

4.6. SUMMARY AND HISTORICAL NOTES

in any order results in two signed permutations π and γ. Let G(π, γ) be the breakpoint
graph as defined in the historical notes of Section 4.4.1. Note that the number of cycles
of G(π, γ) depends on the capping and the concatenation.

Let G(Π,Γ) be the graph obtained after removing the 2(L + 1) gray and black edges
that define the concatenation and the 2L grey edges that define the capping. Since
G(Π,Γ) has 4L vertices of degree one, the graph is composed of cycles and 2L paths.
A path is called a ΠΠ-path (ΓΓ-path) if both endpoints are telomeres of Π (of Γ). A
ΠΓ-path is a path that has one telomere of Π and one telomere of Γ.
Similar to the unichromosomal case described in Section 4.4.1, cycles and paths overlap
in G(Π,Γ). This allows to define components as unions of cycles and paths. Let RU be
the set of real, unoriented components in G(Π,Γ). Hurdles, super-hurdles and fortresses
for the set RU are called real-knots, super-real-knots and fortresses-of-real-knots.
A component in G(Π,Γ) containing a ΠΓ-path is simple if it is not a semi-real-knot.
Let G(Π,Γ) be the graph obtained from G(Π,Γ) by closing all ΠΓ-paths in simple
components.

Let IU be the set of intrachromosomal, unoriented components of G(Π,Γ). A compo-
nent from the set IU \RU is a semi-real-knot if (i) it does not contain a ΓΓ-path in its
interval, and (ii) closing all the ΠΓ-paths in it creates a minimal real-knot or a simple
(not super-real-knot) greatest real-knot.
The breakpoint graph G is a weak-fortress-of-real-knots if:

1. the number of real-knots in G is odd,

2. one of the real-knots is the greatest real-knot

3. every real-knot but the greatest one is a super-real-knot

4. there exists semi-real knots in G(Π,Γ).

Ozery-Flato and Shamir [91] have shown that for two genomes Π and Γ

d(Π,Γ) = b(Π,Γ)− c(Π,Γ) + r(Π,Γ) +
⌈

s′(Π,Γ)− gr′(Π,Γ) + fr′(Π,Γ)
2

⌉
where

� b(Π,Γ) is the number of black edges in the graph G(Π,Γ),

� c(Π,Γ) is the number of cycles, ΠΓ-paths, and ΓΓ-paths,

� r(Π,Γ) is the number of real-knots in G(Π,Γ),

� s′(Π,Γ) is the number of semi-real knots in G(Π,Γ),

� gr′(Π,Γ) is equal to 1, if G has the greatest real-knot and s′ > 0, and is 0
otherwise,

� fr′(Π,Γ) is equal to 1, if either (i) G is a fortress of real knots and the greatest
semi-real knot does not exist in G, or (ii) G is a weak-fortress-of-real-knots.

70

CHAPTER 4. HP DISTANCES VIA THE DCJ DISTANCE

The relation to Theorems 4.34 and 4.35 is as follows: It can be shown in the same way
as in Section 3.5 that b(Π,Γ) − c(Π,Γ) is equal to the DCJ distance. Moreover, the
real components are equivalent to the white components, implying that r = w. The
last term of the distance formula given by Ozery-Flato and Shamir corresponds to

⌈g
2

⌉
,

respectively
⌈g

2

⌉
+ 1.

It should be mentioned that the distance computation is independent of capping and
concatenation. However, finding a most parsimonious sorting scenario requires an opti-
mal capping, as well as an optimal concatenation. Very recently, Jean and Nikolski [70]
presented a new algorithm for capping the genomes. Moreover, they provide an exten-
sive classification of the connected components of the breakpoint graph.

71

4.6. SUMMARY AND HISTORICAL NOTES

72

Chapter 5

Genome Halving under the

Double Cut and Join Distance

The Genome Halving Problem is the following: Given a rearranged duplicated genome,
find a perfectly duplicated genome such that the distance between these genomes is
minimal with respect to some distance measure. Recently, Warren and Sankoff [128]
studied this problem under the general DCJ model where the pre-duplicated genome
contains both, linear and circular chromosomes. In this chapter we will revisit the
Genome Halving Problem under the double cut and join operation where the ancestral
genome may contain linear and circular chromosomes. In our genome model, we take
into account constraints required for genomes with only linear chromosomes, as well as
the ones for genomes with only circular chromosomes. Compared to the more general
model studied in [128], these requirements on the ancestral genome increase the distance
between the genomes. This yields a simple algorithm for reconstructing an ancestral
genome. Moreover, by our results, we will also correct an error in the Warren-Sankoff
analysis.

The structure of this chapter is as follows. We begin by formalizing the problem in the
next section. Then, in Section 5.2, we study the effect of a DCJ operation on the natural
graph. In Section 5.3 we present our distance formula and a linear-time algorithm to
reconstruct an ancestral genome with the minimum number of DCJ operations. Finally,
we will discuss the Warren-Sankoff formula in Section 5.4. The last section summarizes
our results and gives an overview of existing results that can be found in the literature.

5.1 Problem Formulation

First, we briefly recall the terminology. A gene is represented by a directed identifier
where the direction is indicated by a head and a tail. These are called the extremities
of the gene. The tail of a gene a is denoted by at, and its head is denoted by ah.
An adjacency of two consecutive genes a and b can be of four different types:

{ah, bt}, {ah, bh}, {at, bt}, {at, bh}.

An extremity that is not adjacent to any other gene is called a telomere, represented
by a singleton set {ah} or {at}.

73

5.1. PROBLEM FORMULATION

Definition 5.1 A duplicated genome A is a set of adjacencies and telomeres such that
the head and the tail of every gene appears exactly twice.

Thus, a duplicated genome has two identical copies of each gene that are called paralogs
and we distinguish them by a subscript, called an assignment of the paralogs. For a
gene a, we denote its copies by a1 and a2 and the paralogous extremities by at

1, at
2 and

ah
1 , ah

2 .

Example 5.2 Consider the following genome defined on the set of genes {a, b, c, d}:

{{dh
2}, {dt

2, a
t
2}, {ah

2 , dh
1}, {dt

1, c
h
2}, {ct

2, b
t
2}, {bh

2}, {bh
1}, {bt

1, c
t
1}, {ch

1 , at
1}, {ah

1}}

A genome can be represented as a graph, called the genome graph, with vertices cor-
responding to the adjacencies and telomeres and edges joining the head and the tail of
each paralogous extremity. Thus, we have:

s s s s s s s s s sdh
2 dt

2 at
2 ah

2 dh
1 dt

1c
h
2 ct

2 bt
2 bh

2 bh
1 bt

1 ct
1 ch

1 at
1 ah

1

Suppose that the genome graph consists of K components C1, . . . , CK . A chromosome
is a set of adjacencies and telomeres that belong to the same component. Note that,
by definition, each vertex in the genome graph has degree one or two, and thus the
components of the genome graph are either linear or circular. We call a genome linear
if all its chromosomes are linear. Similarly, a genome is circular if all its chromosomes
are circular. For example, the above genome graph is a linear genome consisting of two
linear chromosomes.
For paralogous extremities, we also use the following notation: if p is an extremity,
then p is its corresponding paralogous extremity. By elevating this notation to sets
of extremities, we can apply it to adjacencies and telomeres. For example, for an
adjacency x = {ah

1 , bt
2}, we have x = {ah

2 , bt
1}.

For a chromosome C, we define C = {x | x is an adjacency or telomere of C}. This
notation is useful to describe the different notions of a duplicated genome that can be
found in the literature, for linear genomes in [50] and for circular genomes in [4]. By
bringing this together for genomes with a mixture of linear and circular chromosomes,
we have:

Definition 5.3 A duplicated genome A consisting of chromosomes C1, . . . , CK is

� linear-perfectly duplicated, if for each linear chromosome Ci, we have Ci = Cj

for some j ∈ {1, . . . ,K}\{i};

� circular-perfectly duplicated, if for each circular chromosome Ci, either we have
Ci = Cj for some j ∈ {1, . . . ,K}\{i} or Ci = C ∪C, where each adjacency of Ci

occurs either in C or in C, but not in both;

� perfectly duplicated, if it is linear- and circular-perfectly duplicated.

74

CHAPTER 5. GENOME HALVING UNDER THE DCJ DISTANCE

s s s s sat
1 ah

1 dh
2 dt

2 ch
1 ct

1b
t
1 bh

1

s s s s sat
2 ah

2 dh
1 dt

1 ch
2 ct

2b
t
2 bh

2
s s sch

1 ct
1 bt

1 bh
1

s s sch
2 ct

2 bt
2 bh

2

s s ssah
2d

t
2 ah

1 dt
1at

2 dh
1

dh
2 at

1

Figure 5.1: Two perfectly duplicated genomes.

Note that this definition does not depend on the assignment of the paralogs. Two
examples of perfectly duplicated genomes are given in Fig. 5.1. From the right genome
in that figure, we also see that the number of chromosomes of a perfectly duplicated
genome is not necessarily even.
Alternatively to the formulation on the level of chromosomes, a perfectly duplicated
genome can also be characterized locally, as stated by the next lemma.

Lemma 5.4 A genome A is perfectly duplicated if and only if

� for each adjacency {u, v} in A, also {u, v} is in A and u 6= v, and

� for each telomere {u} in A, also {u} is in A.

Now, let us consider rearrangement operations. Generally speaking, such an operation
applied to two adjacencies or telomeres of a genome disconnects the incident edges
of the genome graph, and reconnects them in one of the possible other ways. More
formally, we have:

Definition 5.5 ([22]) The double cut and join (DCJ) operation acts on two vertices
u and v of a graph with vertices of degree one or two in one of the following three ways:

(a) If both u = {p, q} and v = {r, s} are internal vertices, these are replaced by the
two vertices {p, r} and {s, q} or by the two vertices {p, s} and {q, r}.

(b) If u = {p, q} is internal and v = {r} is external, these are replaced by {p, r} and
{q} or by {q, r} and {p}.

(c) If both u = {q} and v = {r} are external, these are replaced by {q, r}.

In addition, as an inverse of case (c), a single internal vertex {q, r} can be replaced by
two external vertices {q} and {r}.

Given two genomes A and B, the DCJ distance denoted by dDCJ(A,B) is the minimum
number of DCJ operations necessary to transform genome A into genome B. Thus, we
can formulate the following problem:

The Genome Halving Problem. Given a rearranged duplicated genome A, find a
perfectly duplicated genome B such that the DCJ distance between A and B is minimal.

To solve this problem, we will construct another graph in the next section. Again, the
graph is defined on the adjacencies and telomeres of A, but this time it represents the
relation between paralogous extremities.

75

5.2. NATURAL GRAPHS

��
��

��
��

��
��

�
��

@
@@

at
2d

t
2 dt

1c
h
2

at
1c

h
1

at ch

dt ��
��

��
��

ct

bt

ct
1 bt

1 ct
2 bt

2

��
��

��
��

��
��

ah
1 ah

2 dh
1 dh

2
ah dh

��
��

��
��

bh
1 bh

2
bh

Figure 5.2: Natural graph N(A) of genome A of Example 5.2.

5.2 Natural Graphs

Let us consider a duplicated genome A with N genes, each present in two copies.
Assume that the two paralogs of every gene are assigned arbitrarily.

Definition 5.6 The natural graph NG(A) is a graph whose vertices are the adjacen-
cies and telomeres of A and, for each extremity, the two paralogous extremities are
connected by an edge, i. e., two vertices u and v are connected if p ∈ u and p ∈ v.

Observe that the total number of edges in the graph equals two times the number of
genes. The natural graph of genome A from Example 5.2 is given in Fig. 5.2.
In a natural graph, by definition, every vertex has degree one or two. Thus, the natural
graph consists only of cycles and paths.

Definition 5.7 A cycle (or a path) with k edges is a k-cycle (or k-path). If k is even,
the cycle (or path) is called even, otherwise odd.

Note that an adjacency {p, p} consisting of two paralogous extremities is a 1-cycle.
The set of components of the natural graph can be partitioned into the following four
disjoint subsets:

� EC := set of even cycles

� EP := set of even paths

� OC := set of odd cycles

� OP := set of odd paths

The following lemma is an immediate consequence of Lemma 5.4:

Lemma 5.8 A genome A is perfectly duplicated if and only if all cycles in NG(A) are
2-cycles and all paths in NG(A) are 1-paths, i. e., N = |EC|+ |OP |/2.

76

CHAPTER 5. GENOME HALVING UNDER THE DCJ DISTANCE

5.3 Reconstructing an Ancestral Genome

In this section, we solve the genome halving problem by applying DCJ operations to
the natural graph. This allows us to reconstruct a perfectly duplicated genome. We
will first present our distance formula in Section 5.3.1 and then a linear time algorithm
in Section 5.3.2.

5.3.1 Distance Formula

Consider a rearranged duplicated genome A. When a DCJ operation is applied to
genome A, it acts on the adjacencies and telomeres of genome A. The same DCJ
operation acts also on the natural graph NG(A) since the adjacencies and telomeres
of genome A are the vertices of this graph. Because the natural graph is a union of
cycles and paths, all the properties of DCJ operations apply here as well, for instance:
A DCJ operation can change the number of components only by one, as shown in [22].
Thus, we get a lower bound on the distance:

Lemma 5.9 For a given genome A and any perfectly duplicated genome B over the
same set of 2N genes, we have that

dDCJ(A,B) ≥ N − (|EC|+
⌊
|OP |

2

⌋
).

In fact, there always exists a DCJ operation that increases either the number of even
cycles or the number of odd paths. Thus, the distance decreases and the lower bound
is strict as we see in the next theorem.

Theorem 5.10 Let A be a rearranged duplicated genome with N genes each present in
two copies, then the minimal distance between A and any perfectly duplicated genome
B equals

dDCJ(A,B) = N − (|EC|+
⌊
|OP |

2

⌋
)

where |EC| is the number of even cycles and |OP | is the number of odd paths in the
natural graph NG(A).

Proof We explain how to find a sequence of DCJ operations that achieves the lower
bound of Lemma 5.9.
Let J , K, L and M be the total number of edges in all even cycles, even paths, odd
cycles and odd paths, respectively. Note that the number of genes equals half of the
total number of edges in NG(A), i. e. N = (J + K + L + M)/2.
Consider a connected component G of NG(A).

1. If G is an even j-cycle, we can create j
2 2-cycles with j

2−1 DCJ operations. Thus,
for |EC| even cycles with J edges in total, we need J

2 − |EC| DCJ operations to
create J

2 2-cycles.

2. If G is an even k-path, we can create k
2 2-cycles with k

2 DCJ operations. Thus,
for |EP | even paths with K edges in total, we need K

2 DCJ operations to create
K
2 2-cycles.

77

5.3. RECONSTRUCTING AN ANCESTRAL GENOME

3. If |OP | is even, then |OC| is also even.

(a) If G is an odd l-cycle, we can create l−1
2 2-cycles and one 1-cycle with l−1

2

DCJ operations. Thus, for |OC| odd cycles with L edges in total, we need
L−|OC|

2 DCJ operations to create L−|OC|
2 2-cycles and |OC| 1-cycles. We

can choose two 1-cycles and create one 2-cycle. Since |OC| is even, we can
thus create |OC|

2 2-cycles with |OC|
2 DCJ operations. Thus, in total we need

L−|OC|
2 + |OC|

2 = L
2 DCJ operations.

(b) If G is an odd m-path, we can create m−1
2 2-cycles and one 1-path with m−1

2

DCJ operations. Thus, for |OP | odd paths with M edges in total, we need
M−|OP |

2 DCJ operations to create M−|OP |
2 2-cycles and |OP | 1-paths.

Since L and M are even, summing up (a) and (b) gives us in total L+M
2 − |OP |

2

DCJ operations.

4. If |OP | is odd, then |OC| is also odd.

(a) If G is an odd l-cycle, we can create l−1
2 2-cycles and one 1-cycle with l−1

2

DCJ operations. Thus, for |OC| odd cycles with L edges in total, we need
L−|OC|

2 DCJ operations to create L−|OC|
2 2-cycles and |OC| 1-cycles. We

can choose two 1-cycles and create one 2-cycle. Since |OC| is odd, there is
one remaining 1-cycle that can be transformed into a 1-path by one extra
DCJ operation. Thus, in total we need L−|OC|

2 + |OC|−1
2 + 1 = L+1

2 DCJ
operations.

(b) If G is an odd m-path, we can create m−1
2 2-cycles and one 1-path with m−1

2

DCJ operations. Thus, for |OP | odd paths with M edges in total, we need
M−|OP |

2 DCJ operations to create M−|OP |
2 2-cycles and |OP | 1-paths.

Since L and M are odd, summing up (a) and (b) gives us in total L+1
2 + M−|OP |

2 =
L+M

2 − |OP |−1
2 DCJ operations.

By bringing together the results, the distance formula follows.

5.3.2 Algorithm

In this section, we show how the distance computation as well as an algorithm for
reconstructing an ancestral genome can be implemented to run in linear time. Based
on the proof of Theorem 5.10, our strategy for reconstructing a perfectly duplicated
genome is the following:

1. Construct the natural graph

2. Maximize the number of even cycles and odd paths in the natural graph

3. Reconstruct the perfectly duplicated genome from the resulting natural graph

The natural graph can easily be constructed in O(n) time and O(n) space if we store
the information about the adjacencies and the telomeres in two tables. The first table

78

CHAPTER 5. GENOME HALVING UNDER THE DCJ DISTANCE

represents the vertices of the natural graph. Each of its entries contains one or two
extremities, depending whether it represents an adjacency or a telomere. The edges can
be obtained from the second table that stores for each paralogous extremity the index
of the vertex that contains it. The two tables for genome A of Example 5.2 are given
in Tables 5.1 and 5.2. Thus, the natural graph NG(A) has 10 vertices and 8 edges, for
example one edge joining vertex 10 with vertex 3, another edge joining vertex 9 with
vertex 2, and so on.

1 2 3 4 5 6 7 8 9 10
first dh

2 dt
2 ah

2 dt
1 ct

2 bh
2 bh

1 bt
1 ch

1 ah
1

second – at
2 dh

1 ch
2 bt

2 – – ct
1 at

1 –

Table 5.1: Table storing the adjacencies and
telomeres of genome A. Adjacencies have two
entries, telomeres just one.

a1 a2 b1 b2 c1 c2 d1 d2

head 10 3 7 6 9 4 3 1
tail 9 2 8 5 8 5 4 2

Table 5.2: Table storing for each gene in
A the location of its head and its tail in
Table 5.1.

Using these tables, the connected components can be computed in linear time, and thus
the distance as given by Theorem 5.10.
In order to reconstruct a perfectly duplicated genome, we maximize the number of
even cycles and odd paths in the natural graph. This is done by Algorithm 7, following
the idea used in the proof of Theorem 5.10. By marking each adjacency of Table 3.1,
Algorithm 7 can be implemented in linear time. The adjacencies are processed in left-
to-right order, and each time an unmarked adjacency is detected, all adjacencies on
its path or cycle are marked and transformed into 2-cycles and 1-paths by successively
applying DCJ operations. Note that, by applying a DCJ operation, at most 4 entries
in each of the two tables have to be updated. Eventually, all cycles are 2-cycles and all
paths are 1-paths and a perfectly duplicated genome can be obtained as follows: By
ignoring the assignment of the paralogs, each 2-cycle consists of two adjacencies of the
form {ux, vy}, where x, y ∈ {t, h}, and each 1-path connects two telomeres of the form
ux, where x ∈ {t, h}. Thus, a perfectly duplicated genome can be reconstructed by
replacing each 2-cycle by the adjacency {ux, vy} and each 1-path by the telomere ux.
So, the overall running time of the algorithm for reconstructing a perfectly duplicated
genome is linear.

5.4 A Note on the Warren-Sankoff Formula

In [128], Warren and Sankoff consider a more general genome model where the ancestral
genome has to be neither circular-perfectly duplicated, nor linear-perfectly duplicated.
Therefore, we will use the notion general-perfectly duplicated in order to distinguish
it from our definition of a perfectly duplicated genome. More precisely, a genome is
general-perfectly duplicated if and only if for each adjacency {u, v} in A, also {u, v}
is in A, and for each telomere {u} in A, also {u} is in A. Observe that, in contrast
to our definition, a general-perfectly duplicated genome can have adjacencies of the
type {u, u}. For example, the following genome is general-perfectly duplicated, but not
perfectly duplicated:

79

5.4. A NOTE ON THE WARREN-SANKOFF FORMULA

Algorithm 7 Reconstruction of a perfectly duplicated genome
1: Construct NG(A), the natural graph of genome A

2: while there exists a k-path with k > 1 do
3: Create a 2-cycle (and a (k − 2)-path if k > 2)
4: end while

(* all remaining paths have length 1 *)
5: while there exists a k-cycle with k > 2 do
6: Create a 2-cycle and a (k − 2)-cycle
7: end while

(* all remaining cycles have length 1 or 2 *)
8: while there exists a 1-cycle do
9: if there exists another 1-cycle then

10: Create a 2-cycle
11: else
12: Create a 1-path
13: end if
14: end while

s s s s sbh
1 bt

1 ch
1 ct

1 ct
2 ch

2b
t
2 bh

2 s s ssdt
2a

h
2 ah

1 dt
1dh

2d
h
1

at
2a

t
1

Now, let us denote by dgeneral
DCJ (A,B) the minimum number of DCJ operations needed

to transform a rearranged duplicated genome A into a general-perfectly duplicated
genome B. By showing an upper and a lower bound, Warren and Sankoff finally claim
that

dgeneral
DCJ (A,B) = N − (|EC|+ |OP |+

⌊
|OC|

2

⌋
).

As a counterexample, consider a genome with just one gene a. Assume that the genome
has two linear chromosomes, each consisting of one paralog a1 and a2. Note that the
genome is general-perfectly duplicated and the natural graph has two paths of length
one. Thus, the distance should be zero, but the above formula gives us

N − |OP | = 1− 2 = −1.

Even though their distance formula is formulated in terms also defined in the natural
graph, Warren and Sankoff follow a different approach. Therefore, instead of using their
techniques, we will present in the following a correction of their result by modifying
our algorithm.
As mentioned above, the difference is that a general-perfectly duplicated genome may
have adjacencies that correspond to 1-cycles in the natural graph. Thus, we have:

Lemma 5.11 A genome A is general-perfectly duplicated if and only if all cycles in
NG(A) are 2-cycles or 1-cycles, and all paths in NG(A) are 1-paths, i. e., N = |EC|+
(|OP |+ |OC|)/2.

As a consequence of this lemma, we do not have to apply DCJ operations in order to
get rid of 1-cycles in the natural graph as in our genome model. Since there are at
most d|OC|/2e such DCJ operations, one can easily show that

80

CHAPTER 5. GENOME HALVING UNDER THE DCJ DISTANCE

dDCJ(A,B) = dgeneral
DCJ (A,B) +

⌈
|OC|

2

⌉
.

By this fundamental relation, one can derive the distance formula for the general DCJ
model studied by Warren and Sankoff in [128]:

Theorem 5.12 Let A be a rearranged duplicated genome with N genes each present in
two copies, then the minimal distance between A and any perfectly duplicated genome
B equals

dgeneral
DCJ (A,B) = N − (|EC|+ |OP |+ |OC|

2
)

where |EC| is the number of even cycles, |OC| the number of odd cycles and |OP | the
number of odd paths in the natural graph NG(A).

It should be mentioned that an optimal algorithm for reconstructing a general-perfectly
duplicated genome is obtained by just removing the last while-loop in our Algorithm 7.

5.5 Summary and Historical Notes

In this chapter, we have presented a new genome model with coexisting circular and
linear chromosomes that unifies earlier genome models for linear genomes and for cir-
cular genomes. Under this model, we solve the Genome Halving Problem for the DCJ
distance. Surprisingly, this can be done by working directly on the natural graph —
all other graphs that are typically used in this context are bypassed.
El-Mabrouk and Sankoff [50] solved the Genome Halving Problem under the HP dis-
tance. Their algorithm for the reconstruction of doubled genomes is from of being
trivial and is the final result of a whole series of papers [49, 48, 46]. In addition to
the well-known breakpoint graph, they introduce further graphs, called natural graph
and signature graph. Later, Alekseyev and Pevzner gave an alternative approach based
on the notion of contracted breakpoint graph [3] and corrected in [4] an error in the
El-Mabrouk-Sankoff analysis.
Very recently, Warren and Sankoff [128] studied the Genome Halving Problem under
the more general DCJ model. This generalization simplifies the problem because some
of the complicated components of the breakpoint graph, such as hurdles and knots, can
be ignored. Unfortunately, their solution still relies on the complex concepts introduced
by El-Mabrouk and Sankoff. Indeed, as we have seen in this chapter, our approach is
also able to describe alternative genome models such as the one presented by Warren
and Sankoff. Thus, our genome model represents a firm starting point for further
studies and variants of the Genome Halving Problem.
One direction is to consider duplicated genomes with a higher multiplicity of each gene.
This extension yields a natural graph with vertices of degree greater than two. It would
have to be studied whether the DCJ operation can also be used on such a graph and
how to partition the connected components.

81

5.5. SUMMARY AND HISTORICAL NOTES

82

Chapter 6

Conclusion and Future Directions

In this thesis, we presented a novel approach for genome comparison and studied the
double cut and join (DCJ) operation on the most general genome structure that allows
for both circular and linear chromosomes. With this genome model, the DCJ operation
elegantly accounts for all classical rearrangement operations such as translocations, fu-
sions, fissions, inversions and block interchanges. Our main result is an elementary and
formal presentation of the DCJ distance problem. The basic tools for this representa-
tion are graphs that are unions of paths and cycles. Surprisingly, this type of graphs can
be used for representing genomes, as well as for modeling genome rearrangements. We
have introduced a very simple data structure, the adjacency graph, which is symmetric
with respect to the two genomes under study and is closely related to the visual picture
of the genomes themselves. This graph simplifies the theory and distance computation
considerably and yields an efficient algorithm for suggesting rearrangement scenarios.

In a unifying way, the model of DCJ operations yields a global picture of genome
rearrangements that includes existing models such as the classical Hannenhalli-Pevzner
(HP) model that is restricted to linear chromosomes. The three rearrangement models
considered in the HP theory (inversions-only, translocations-only and a combination
of inversions and translocations) can be integrated in the more general DCJ model.
Our main contribution here is a simpler formula for the HP genomic distance problem.
Traditionally used concepts that were sometimes hard to access, like weak-fortresses-
of-semi-real-knots, are bypassed. Indeed, the original HP distance formula involves
more than half a dozen parameters, “making it very hard to explain an intuition behind
it” [62]. On the other hand, our method is based on a simple tree structure that captures
all the delicate features of this problem in a unifying way and allows for simple and
efficient algorithms for distance computation. Our approach simplifies the classical HP
results, both on the combinatorial and on the algorithmic level.

Another application of the DCJ operation is the Genome Halving Problem where the
ancestral genome may contain both linear and circular chromosomes. With our genome
model, constraints required for genomes with only linear chromosomes, as well as the
ones for genomes with only circular chromosomes are taken into account. This yields a
new proof and a simple algorithm for reconstructing an ancestral genome. Moreover,
our results correct an error in the analysis of Warren and Sankoff.

83

The main focus of this thesis is the combinatorial and algorithmic study of the DCJ
model as a framework for distance computation between two genomes. The presented
approach is powerful and a firm starting point to explore further rearrangement prob-
lems in comparative genomics.
One direction to increase the applicability of a genome model would be to include
centromeres that are special regions in a chromosome. A rearrangement operation
that preserves a centromere in each chromosome is more biologically realistic since a
chromosome that lacks a centromere is likely to be lost during subsequent cell division.
Unlike genes, different centromeres are not distinguishable and only their position on the
chromosome is known. This additional level of structure excludes some translocations,
namely those that result in one chromosome with two centromeres and one with none.
For the translocations-only model, Ozery-Flato and Shamir presented a solution that
takes centromeres into account [94]. To extend their model by fusions and fissions, one
should also allow for centromere creation and disappearance.
Beside extending the genome model, one can also consider a more general set of rear-
rangement operations, called multi-break rearrangements [4]. By this generalization, a
DCJ operation is equivalent to a 2-break operation and a transposition can be modelled
by a 3-break operation instead of two DCJ operations as in our model. Therefore, the
results of [3] can be extended to genomes with linear and circular chromosomes that
are studied in this work.
Another extension towards more realistic genome comparison would be to give different
weights to different rearrangement operations. This motivates the weighted rearrange-
ment problem that is given as: find a sorting sequence such that the sum of the weights
of the operations in the sequence is minimal. One should note that a shortest sequence
is not necessarily optimal. When operations are combined, the weighted rearrangement
problem brings up the question how to assess the relative contribution of operations.
First results are due to Blanchette et al. [29] and further investigations [7, 101] lead
to approximation algorithms. It is believed that transpositions should cost twice as
much as other operations, which is the case for the DCJ distance. But so far this
has not been proven rigorously, despite some efforts [52]. In the context of the DCJ
model, it would be an interesting question how variable weights should be assigned to
the different operations.
For the inversions-only model, an alternative approach for assigning weights is moti-
vated by a cost model in which the lengths of the reversed segments play a role [100, 12].
The additive inversion cost was also studied by Ajana et al. [2] who developed a method
that allows to choose one or more solutions based on different criteria. As it turns out,
their branch and bound algorithm for sorting by weighted inversions was useful for
testing certain inversion hypotheses.
Usually, algorithms for computing sorting scenarios propose only one solution, and dif-
ferent ways around this limitation have been suggested in the context of sorting by
inversions only. However, the enumeration of all sorting inversions [114], with no crite-
ria to discriminate among them, is not helpful, since Bérard et al. [13] showed that the
number of parsimonious sequences can be exponential. They suggested to group the
solutions into equivalence classes and, following this approach, Braga et al. [58] devel-
oped an algorithm that gives one representative for each class of solutions and counts

84

CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

the number of solutions in each class. Another approach to handle the huge amount
of inversion sorting scenarios is to take into account structural constraints based on
the notion of common intervals [122, 67]. Common intervals are sets of genes that
occur as single contiguous blocks in two or more genomes. A sorting scenario is called
perfect if it does not break any common interval. It was shown that the computation
of parsimonious, perfect scenarios is NP-complete [55], but in some cases, an efficient
computation is feasible [13]. Perfect scenarios based on common intervals are closely
related to strong interval trees that can be represented by PQ-trees due to the rela-
tionship between common intervals and the modular decomposition of permutations
graphs [13]. Another application of PQ-trees in comparative genomics is the represen-
tation and detection of gene clusters [77]. In fact, the tree that is used in our distance
computation is similar to the PQ-tree introduced by Booth and Lueker [31].
Once the genomic distance between two genomes is computed, there is a need for the
statistical validation of the results and the underlying assumptions. This led to studies
of the probability distribution of the genomic distance under the hypothesis of random
gene order. The statistical properties of random genomes have been worked out for
one or more circular chromosomes [107] and for random genomes containing the same
number of linear chromosomes [133]. Moreover, it was shown that the calculation of
the cycle expectations can be simplified considerably, using the DCJ distance formula
and collapsing all caps of the linear chromosomes into one single source [132].
The combinatorial approach of computing genomic distances has the advantage that
it represents a clearly defined minimization problem. On the other hand, it underes-
timates the true evolutionary distance between two genomes. One attempt to more
accurate evolutionary distances is based on distance corrections. Moret et al. [86] de-
veloped a formula to correct the underestimate of the inversion distance. This approach
was further generalized by including duplications and insertions [117]. Indeed, our as-
sumptions that no gene is duplicated and that both genomes have exactly the same gene
content is clearly unrealistic. Thus, the most natural extension of our model would be
to involve either gene duplications [47] or missing information about the actual order
of genes in a genome [135].

The fundamental problem that must be solved first, before one can tackle higher level
problems, is the distance computation between two genomes. In the last decade, several
solutions have been suggested, but their benefit was sometimes restricted by rather
complex mathematics, or erroneous results. The general DCJ model presented in this
work contributes to the field of comparative genomics by a unifying theory of genome
rearrangement problems and suggests a promising avenue for further exploration. The
presented concepts and algorithms will eventually allow us to better understand the
different genome rearrangement effects found in real genomic data.

85

86

Bibliography

[1] S. Ahn and S. D. Tanksley. Comparative linkage maps of rice and maize genomes.
Proceedings of the National Academy of Sciences, 90(17):7980–7984, 1993.

[2] Y. Ajana, J.-F. Lefebvre, E. R. M. Tillier, and N. El-Mabrouk. Exploring the
set of all minimal sequences of reversals – an application to test the replication-
directed reversal hypothesis. In Proceedings of the Second International Workshop
on Algorithms in Bioinformatics (WABI 2002), volume 2452 of LNCS, pages 300–
315. Springer Verlag, 2002.

[3] M. Alekseyev and P. A. Pevzner. Whole genome duplications and contracted
breakpoint graphs. SIAM Journal on Computing, 36(6):1748–1763, 2007.

[4] M. Alekseyev and P. A. Pevzner. Whole genome duplications, multi-break re-
arrangements, and genome halving problem. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pages
665–679, 2007.

[5] M. A. Alekseyev. Multi-break rearrangements: from circular to linear genomes. In
Proceedings of the Fifth RECOMB Satellite Workshop on Comparative Genomics,
volume 4751 of LNBI, pages 1–15. Springer Verlag, 2007.

[6] D. A. Bader, B. M. E. Moret, and M. Yan. A linear-time algorithm for comput-
ing inversion distance between signed permutations with an experimental study.
Journal of Computational Biology, 8(5):483–491, 2001.

[7] M. Bader and E. Ohlebusch. Sorting by weighted reversals, transpositions, and
inverted transpositions. In Proceedings of the Tenth Annual Conference on Com-
putational Molecular Biology (RECOMB 2006), volume 3909 of LNCS, pages
30–35, 2006.

[8] V. Bafna and P. A. Pevzner. Sorting by reversals: Genome rearrangements in
plant organelles and evolutionary history of X chromosome. Molecular Biology
and Evolution, 12(2):239–246, 1995.

[9] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25(2):272–289, 1996.

[10] V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM Journal on Discrete
Mathematics, 11(2):224–240, 1998.

[11] E. Belda, A. Moya, and F. J. Silva. Genome rearrangement distances and gene or-
der phylogeny in γ-proteobacteria. Molecular Biology and Evolution, 22(6):1456–
1467, 2005.

87

BIBLIOGRAPHY

[12] M. A. Bender, D. Ge, S. He, H. Hu, R. Y. Pinter, S. Skiena, and F. Swidan.
Improved bounds on sorting with length-weighted reversals. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004),
pages 919–928, 2004.

[13] S. Bérard, A. Bergeron, C. Chauve, and C. Paul. Perfect sorting by reversals
is not always difficult. In Proceedings of the 5th Workshop on Algorithms in
Bioinformatics (WABI 2005), volume 3692 of LNCS, pages 228–238. Springer,
2005.

[14] A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory.
In Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching
(CPM 2001), volume 2089 of LNCS, pages 106–117. Springer Verlag, 2001.

[15] A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot. Computing com-
mon intervals of k permutations, with applications to modular decomposition of
graphs. In Proceedings of the 13th Annual European Symposium Algorithms (ESA
05), volume 3669 of LNCS, pages 779–790. Springer, 2005.

[16] A. Bergeron, S. Heber, and J. Stoye. Common intervals and sorting by reversals:
A marriage of necessity. Bioinformatics, 18(Suppl. 2):S54–S63, 2002. (Proceed-
ings of ECCB 2002).

[17] A. Bergeron, J. Mixtacki, and J. Stoye. A new algorithm to compute the HP
distance via the double cut and join distance in linear time. Submitted.

[18] A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles and
fortresses. In Proceedings of the 15th Annual Symposium on Combinatorial Pat-
tern Matching (CPM 2004), volume 3109 of LNCS, pages 388–399. Springer Ver-
lag, 2004.

[19] A. Bergeron, J. Mixtacki, and J. Stoye. The inversion distance problem. In
O. Gascuel, editor, Mathematics of Evolution and Phylogeny, chapter 10, pages
262–290. Oxford University Press, Oxford, UK, 2005.

[20] A. Bergeron, J. Mixtacki, and J. Stoye. On sorting by translocations. In Pro-
ceedings of the 9th Annual International Conference on Research in Computa-
tional Molecular Biology (RECOMB 2005), volume 3500 of LNCS, pages 615–629.
Springer, 2005.

[21] A. Bergeron, J. Mixtacki, and J. Stoye. On sorting by translocations. Journal of
Computational Biology, 13(2):567–578, 2006.

[22] A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrange-
ments. In Proceedings of the 6th International Workshop on Algorithms in Bioin-
formatics (WABI 2006), volume 4175 of LNBI, pages 163–173. Springer Verlag,
2006.

[23] A. Bergeron, J. Mixtacki, and J. Stoye. HP distance via double cut and join
distance. In Proceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching (CPM 2008), volume 5029 of LNCS, pages 56–68. Springer Verlag, 2008.

88

BIBLIOGRAPHY

[24] A. Bergeron and J. Stoye. On the similarity of sets of permutations and its appli-
cations to genome comparison. In Proceedings of the 13th Annual International
Conference on Computing and Combinatorics (COCOON 2003), volume 2697 of
LNCS, pages 68–79. Springer Verlag, 2003.

[25] P. Berman and S. Hannenhalli. Fast sorting by reversal. In Proceedings of the
7th Annual Symposium on Combinatorial Pattern Matching (CPM 1996), volume
1075 of LNCS, pages 168–185. Springer Verlag, 1996.

[26] M. Bernt, D. Merkle, and M. Middendorf. Genome rearrangement based on
reversals that preserve conserved intervals. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 3(3):275–288, 2006.

[27] M. Blanchette. Evolutionary puzzles: An introduction to genome rearrange-
ment. In Proceedings of the 9th International Conference on Conceptual Struc-
tures (ICCS 2001), volume 2074 of LNCS, pages 1003–1011. Springer Verlag,
2001.

[28] M. Blanchette, G. Bourque, and D. Sankoff. Breakpoint phylogenies. In Proceed-
ings of Genome Informatics Workshop (GIW 1997), pages 25–34, 1997.

[29] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement.
Gene, 172:11–17, 1996.

[30] G. Blin, C. Chauve, and G. Fertin. Genes order and phylogenetic reconstruction:
Application to γ-proteobacteria. In Proceedings of the Third RECOMB Satel-
lite Workshop on Comparative Genomics, volume 3678 of LNBI, pages 11–20.
Springer Verlag, 2005.

[31] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and
System Sciences, 13(3):335–379, 1976.

[32] G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing gene
orders in the ancestral species. Genome Research, 12(1):26–36, 2002.

[33] G. Bourque, P. A. Pevzner, and G. Tesler. Reconstructing the genomic archi-
tecture of ancestral mammals: lessons from human, mouse and rat genomes.
Genome Research, 14(4):507–516, 2004.

[34] D. Bryant. The complexity of calculating exemplar distances. In D. Sankoff
and J. H. Nadeau, editors, Comparative Genomics: Empirical and Analytical
Approaches to Gene Order Dynamics, pages 207–211. Kluwer, 2000.

[35] A. Caprara. Sorting by reversals is difficult. In Proceedings of the First Conference
on Computational Molecular Biology (RECOMB 1997), pages 75–83. ACM Press,
1997.

[36] A. Caprara. The reversal median problem. INFORMS Journal on Computing,
15(1):93–113, 2003.

[37] S. Casjens, N. Palmer, R. van Vugt, W. M. Huang, B. Stevenson, P. Rosa,
R. Lathigra, G. Sutton, J. Peterson, R. J. Dodson, D. Haft, E. Hickey, M. Gwinn,
O. White, and C. M. Fraser. A bacterial genome in flux: The twelve linear and

89

BIBLIOGRAPHY

nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease
spirochete Borrelia burgdorferi. Molecular Microbiology, 35(3):490–516, 2000.

[38] L. Cavalli-Sforza and A. Edwards. Phylogenetic analysis, models and estimation
procedures. Evolution, 32:550–570, 1967.

[39] D. A. Christie. Sorting permutations by block-interchanges. Information Pro-
cessing Letters, 60(4):165–169, 1996.

[40] D. A. Christie and R. W. Irving. Sorting strings by reversals and by transposi-
tions. SIAM Journal on Discrete Mathematics, 14(2):193–206, 2001.

[41] P. Dehal and J. L. Boore. Two rounds of whole genome duplication in the ances-
tral vertebrate. PLoS Biology, 3(10):e314, 2003.

[42] T. Dobzhansky and A. H. Sturtevant. Inversions in the chromosomes of
Drosophila pseudoobscura. Genetics, 23:28–64, 1938.

[43] J. V. Earnest-DeYoung, E. Lerat, and B. M. E. Moret. Reversing gene erosion -
reconstructing ancestral bacterial genomes from gene-content and order data. In
Proceedings of the 4th International Workshop on Algorithms in Bioinformatics
(WABI 2004), LNBI, pages 1–13, 2004.

[44] J. Ehrlich, D. Sankoff, and J. H. Nadeau. Synteny conservation and chromosome
rearrangements during mammalian evoltion. Genetics, 147:289–296, 1997.

[45] N. El-Mabrouk. Genome rearrangement by reversals and insertions/deletions of
contiguous segments. In Proceedings of the 11th Annual Symposium on Combi-
natorial Pattern Matching (CPM 2000), volume 1848 of LNCS, pages 222–234,
2000.

[46] N. El-Mabrouk. Reconstructing an ancestral genome using minimum segments
duplications and reversals. Journal of Computer and System Science, 65(3), 2002.

[47] N. El-Mabrouk. Genome rearrangements with gene families. In O. Gascuel, edi-
tor, Mathematics of Evolution and Phylogeny, pages 291–320. Oxford University
Press, 2005.

[48] N. El-Mabrouk, D. Bryant, and D. Sankoff. Reconstructing the pre-doubling
genome. In Proceedings of the Third Annual International Conference on Research
in Computational Molecular Biology (RECOMB 1999), pages 154–163, 1999.

[49] N. El-Mabrouk, J. Nadeau, and D. Sankoff. Genome halving. In Proceedings
of the 9th Annual Symposium on Combinatorial Pattern Matching (CPM 1998),
volume 1448 of LNCS, pages 235–250, 1998.

[50] N. El-Mabrouk and D. Sankoff. The reconstruction of doubled genomes. SIAM
Journal on Computing, 32(3):754–792, 2003.

[51] I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by trans-
positions. In Proceedings of the 5th Workshop on Algorithms in Bioinformatics
(WABI 2005), volume 3692 of LNCS, pages 204–215. Springer, 2005.

[52] N. Eriksen. (1 + ε)-approximation of sorting by reversals and transpositions.
Journal Theoretical Computer Science, 289:517–529, 2002. (Proceedings of WABI
2001).

90

BIBLIOGRAPHY

[53] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood
approach. Journal of Molecular Evolution, 17(6):368–376, 1981.

[54] J. Feng and D. Zhu. Faster algorithms for sorting by transpositions and sorting
by block interchanges. ACM Transactions on Algorithms, 3(3):25, 2007.

[55] M. Figeac and J.-S. Varre. Sorting by reversals with common intervals. In Proceed-
ings of the 4th International Workshop on Algorithms in Bioinformatics (WABI
2004), volume 3240 of LNCS, pages 26–37. Springer Verlag, 2004.

[56] W. M. Fitch. Homology: a personal view on some of the problems. Trends in
Genetics, 16(5):227–231, 2000.

[57] W. M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,
155:279–284, 1967.

[58] Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, and T. Jiang. The solution space
of sorting by reversals. In Proceedings of the Third International Symposium on
Bioinformatics Research and Applications (ISBRA 2007), volume 3909 of LNCS,
pages 293–304. Springer Verlag, 2007.

[59] R. Guyot and B. Keller. Ancestral genome duplication in rice. Genome, 47:610–
614, 2004.

[60] S. Hannenhalli. Polynomial-time algorithm for computing translocation distance
between genomes. Discrete Applied Mathematics, 71(1-3):137–151, 1996.

[61] S. Hannenhalli, C. Chappey, E. Koonin, and P. A. Pevzner. Genome sequence
comparison and scenarios for gene rearrangements: A test case. Genomics,
30:299–311, 1995.

[62] S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial
algorithm for genomic distance problem). In Proceedings of the 36th IEEE Sym-
posium on Foundations of Computer Science (FOCS 1995), pages 581–592. IEEE
Comuter Society Press, 1995.

[63] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial
algorithm for sorting signed permutations by reversals. Journal of the ACM,
46(1):1–27, 1999.

[64] T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algorithm for
sorting by transpositions. Information and Computation, 204(2):275–290, 2006.

[65] T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by
transpositions and transreversals. Journal of Computer and System Sciences,
70(3):300–320, 2005. (Proceedings of WABI 04).

[66] T. Hartmann. A simpler 1.5− approximation algorithm for sorting by transpo-
sitions. In Proceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching (CPM 2003), LNCS, pages 156–169. Springer Verlag, 2003.

[67] S. Heber and J. Stoye. Finding all common intervals of k permutations. In
Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching
(CPM 2001), volume 2089 of LNCS, pages 207–218. Springer Verlag, 2001.

91

BIBLIOGRAPHY

[68] E. A. Housworth and J. Postlethwait. Measures of synteny conservation between
species pairs. Genetics, 162:441–448, 2002.

[69] International Human Genome Consortium. Initial sequencing and analysis of the
human genome. Nature, 409:860–921, 2001.

[70] G. Jean and M. Nikolski. Genome rearrangements: a correct algorithm for opti-
mal capping. Information Processing Letters, 104:14–20, 2007.

[71] H. Kaplan, R. Shamir, and R. E. Tarjan. A faster and simpler algorithm for sort-
ing signed permutations by reversals. SIAM Journal on Computing, 29(3):880–
892, 1999.

[72] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the inver-
sion distance between two chromosomes. In Proceedings of the 4th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 1993), volume 684 of LNCS,
pages 87–105, 1993.

[73] J. D. Kececioglu and R. Ravi. Of mice and men: Algorithms for evolutionary
distances between genomes with translocation. In Proceedings of the Sixth ACM-
SIAM Symposium on Discrete Algorithm, pages 604–613. Society of Industrial
and Applied Mathematics, 1995.

[74] M. Kellis, B. W. Birren, and E. S. Lander. Proof and evolutionary analysis
of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature,
428(6983):617–624, 2004.

[75] M. Kothari and B. M. E. Moret. An experimental evaluation of inversion- and
transposition-based genomic distances through simulations. In Proceedings of
IEEE Symposium on Computational Intelligence and Bioinformatics and Com-
putational Biology (CIBCB 2007), pages 151–158, 2007.

[76] A. Labarre. A new tight upper bound on the transposition distance. In Proceed-
ings of the 5th Workshop on Algorithms in Bioinformatics (WABI 2005), volume
3692 of LNCS, pages 216–227. Springer, 2005.

[77] G. M. Landau, L. Parida, and O. Weimann. Using PQ trees for comparative ge-
nomics. In Proceedings of the 16th Annual Symposium on Combinatorial Pattern
Matching (CPM 2005), volume 3537 of LNCS, pages 128–143. Springer, 2005.

[78] E. Lerat, V. Daubin, and N. A. Moran. From gene tree to organismal phylogeny
in prokaryotes: the case of γ-proteobacteria. PLoS Biology, 1(1):101–109, 2003.

[79] G. Li, X. Qi, X. Wang, and B. Zhu. A linear-time algorithm for computing
translocation distance between signed genomes. In Proceedings of the 15th Annual
Symposium on Combinatorial Pattern Matching (CPM 2004), volume 3109 of
LNCS, pages 323–332. Springer Verlag, 2004.

[80] Y. C. Lin, C. L. Lu, H.-Y. Chang, and C. Y. Tang. An efficient algorithm for
sorting by block-interchanges and its application to the evolution of vibrio species.
Journal of Computational Biology, 12(1):102–112, 2005.

[81] L. Lu, Y. L. Huang, T. C. Wang, and H.-T. Chiu. Analysis of circular genome
rearrangement by fusions, fissions and block-interchanges. BMC Bioinformatics,
7(295), 2006.

92

BIBLIOGRAPHY

[82] M. Marron, K. Swenson, and B. M. E. Moret. Genomic distances under deletions
and insertions. Theoretical Computer Science, 325:347–360, 2004. (Proceedings
of COCOON 2003).

[83] M. Martin. SBBI - sorting by block-interchanges. http://bibiserv.techfak.
uni-bielefeld.de/sbbi/, 2007.

[84] J. Mixtacki. Genome halving under DCJ revisited. In Proceedings of the 14th
Annual International Conference on Computing and Combinatorics (COCOON
2008), volume 5092 of LNCS, pages 276–286. Springer Verlag, 2008.

[85] B. M. E. Moret, A. C. Siepel, J. Tang, and T. Liu. Inversion medians outperform
breakpoint medians in phylogeny reconstruction from gene-order data. In Pro-
ceedings of the Second International Workshop on Algorithms in Bioinformatics
(WABI 2002), volume 2452 of LNCS, pages 521–536. Springer Verlag, 2002.

[86] B. M. E. Moret, J. Tang, L.-S. Wang, and T. Warnow. Steps toward accurate
reconstructions of phylogenies from gene-order data. Journal of Computer and
System Science, 65(3):508–525, 2002.

[87] B. M. E. Moret, L. Wang, T. Warnow, and S. Wyman. New approaches for recon-
structing phylogenies from gene-order data. Bioinformatics, 17:S165–S173, 2001.
(Proceedings 9th International Conference on Intelligent Systems for Molecular
Biology, ISMB 2001).

[88] J. H. Nadeau and D. Sankoff. The lengths of undiscovered conserved segments
in comparative maps. Mammalian Genome, 9:491–495, 1998.

[89] J. H. Nadeau and B. A. Taylor. Lengths of chromosomal segments conserved since
divergence of man and mouse. Proceedings of the National Academy of Sciences
USA, 81:814–818, 1984.

[90] S. Ohno. Ancient linkage group and frozen accidents. Nature, 244:259–262, 1973.

[91] M. Ozery-Flato and R. Shamir. Two notes on genome rearrangements. Journal
of Bioinformatics and Computational Biology, 1(1):71–94, 2003.

[92] M. Ozery-Flato and R. Shamir. An O(n3/2√
log(n)) algorithm for sorting by

reciprocal translocations. In Proceedings of the 17th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2006), volume 4009 of LNCS, pages 258–269.
Springer Verlag, 2006.

[93] M. Ozery-Flato and R. Shamir. Sorting by translocations via reversals theory.
In Proceedings of RECOMB 2006 International Workshop on Comparative Ge-
nomics, (RCG 2006), volume 4205 of LNCS, pages 87–98. Springer, 2006.

[94] M. Ozery-Flato and R. Shamir. Rearrangements in genomes with centromeres
part I: Translocations. In Proceedings of the 11th Annual International Confer-
ence on Research in Computational Molecular Biology (RECOMB 2007), volume
4453 of LNCS, pages 339–353. Springer Verlag, 2007.

[95] J. D. Palmer and L. A. Herbon. Plant mitochondrial DNA evolves rapidly in
structure, but slowly in sequence. Journal of Molecular Evolution, 28:87–97,
1988.

93

BIBLIOGRAPHY

[96] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete.
Technical report, Elec. Colloq. on Comput. Complexity, Report 71, 1998.

[97] P. A. Pevzner and G. Tesler. Genome rearrangements in mammalian evolution:
Lessons from human and mouse genomes. Genome Research, 13:37–45, 2003.

[98] P. A. Pevzner and G. Tesler. Human and mouse genomic sequences reveal exten-
sive breakpoint reuse in mammalian evolution. Proceedings of National Academy
of Sciences, 100(13):7672–7677, 2003.

[99] P. A. Pevzner and G. Tesler. Transforming men into mice: the Nadeau-Taylor
chromosomal breakage model revisited. In Proceedings of the Seventh Annual
Conference on Computational Molecular Biology (RECOMB 2003), pages 247–
256. ACM Press, 2003.

[100] R. Y. Pinter and S. Skiena. Genomic sorting with length-weighted reversals.
Genome Informatics, 13:103–111, 2002.

[101] A. Rahman, S. Shatabda, and M. Hasan. An approximation algorithm for sorting
by reversals and transpositions. In Proceedings of Workshop on Algorithms and
Computation (WALCOM 2007), pages 97–108, 2007.

[102] N. Saitau and M. Nei. The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4:406–425, 1987.

[103] D. Sankoff. Genome rearrangement with gene families. Bioinformatics,
15(11):909–917, 1999.

[104] D. Sankoff. The signal in the genomes. PLoS Computational Biology, 2(4):e35,
2006.

[105] D. Sankoff and M. Blanchette. The median problem for breakpoints in com-
parative genomics. In Proceedings of Third Annual International Conference on
Computing and Combinatorics (COCOON 1997), pages 251–264, 1997.

[106] D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint
phylogeny. Journal of Computational Biology, 5(3):555–570, 1998.

[107] D. Sankoff and L. Haque. The distribution of genomic distance between random
genomes. Journal of Computational Biology, 13:1005–1012, 2006.

[108] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. Lang, and R. Cedergren. Gene
order comparisons for phylogenetic inference: Evolution of the mitochondrial
genome. Proceedings of the National Academy of Sciences USA, 89:6575–6579,
1992.

[109] D. Sankoff and M. Mazowita. Estimators of translocations and inversions in
comparative maps. In Proceedings of the Second RECOMB Satellite Workshop
on Comparative Genomics (RCG 2004), volume 3388 of LNCS, pages 109–122.
Springer, 2004.

[110] D. Sankoff and M. Mazowita. Stability of rearrangement measures in the com-
parison of genome sequences. In Proceedings of the 9th Annual International
Conference on Research in Computational Molecular Biology, (RECOMB 2005),
volume 3500 of LNCS, pages 603–614. Springer, 2005.

94

BIBLIOGRAPHY

[111] D. Sankoff, G. Sundaram, and J. D. Kececioglu. Steiner points in the space
of genome rearrangements. International Journal of Foundations of Computer
Science, 7(1):1–9, 1996.

[112] D. Sankoff and P. Trinh. Chromosomal breakpoint re-use in the inference of
genome sequence rearrangement. In Proceedings of the Eighth Annual Conference
on Computational Molecular Biology (RECOMB 2004), pages 30–35. ACM Press,
2004.

[113] D. Sankoff, C. Zheng, and A. Lenert. Reversals of fortune. In Proceedings of
RECOMB 2005 International Workshop on Comparative Genomics (RCG 2005),
volume 3678 of LNCS, pages 131–141. Springer, 2005.

[114] A. Siepel. An algorithm to enumerate all sorting reversals. In Proceedings of the
Sixth Annual International Conference on Research in Computational Molecular
Biology (RECOMB 2002), pages 281–290. ACM Press, 2002.

[115] A. C. Siepel and B. M. E. Moret. Finding an optimal inversion median: Experi-
mental results. In Proceedings of the First International Workshop on Algorithms
in Bioinformatics (WABI 2001), volume 2149 of LNCS, pages 189–203, 2001.

[116] A. H. Sturtevant. A crossover reducer in Drosophila melanogaster due to inversion
of a section of the third chromosome. Biologisches Zentralblatt, 46(12):697–702,
1926.

[117] K. M. Swenson, M. Marron, J. V. Earnest-DeYoung, and B. M. E. Moret. Approx-
imating the true evolutionary distance between two genomes. In Proceedings of
the Seventh Workshop on Algorithm Engineering and Experiments and the Second
Workshop on Analytic Algorithmics and Combinatorics (ALENEX / ANALCO
2005), pages 121–129, 2005.

[118] E. Tannier, A. Bergeron, and M.-F. Sagot. Advances in sorting by reversals.
Discrete Applied Mathematics, 155(6-7):881–888, 2007.

[119] E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time. In Proceed-
ings of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM
2004), volume 3109 of LNCS, pages 1–13. Springer Verlag, 2004.

[120] G. Tesler. Efficient algorithms for multichromosomal genome rearrangements.
Journal of Computer and System Sciences, 65(3):587–609, 2002.

[121] G. Tesler. GRIMM: Genome rearrangements web server. Bioinformatics,
18(3):492–493, 2002.

[122] T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of
two permutations. Algorithmica, 26(2):290–309, 2000.

[123] J. C. Venter et al. The sequence of the human genome. Science, 291:1304–1351,
2001.

[124] J.-N. Volff and J. Altenbuchner. A new beginning with new ends: Linearisation
of circular chromosomes during bacterial evolution. FEMS Microbiology Letters,
186:143–150, 2000.

95

BIBLIOGRAPHY

[125] M. E. M. T. Walter, L. R. A. F. Curado, and A. G. Oliveira. Working on the
problem of sorting by transpositions on genome rearrangements. In Proceedings
of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM 2003),
LNCS, pages 372–383. Springer Verlag, 2003.

[126] L. Wang, D. Zhu, X. Liu, and S. Ma. A O(n2) algorithm for sigend translocation.
Journal of Computer and System Sciences, 70(3):284–299, 2005.

[127] L.-S. Wang and T. Warnow. Distance-based genome rearrangement phylogeny. In
O. Gascuel, editor, Mathematics of Evolution and Phylogeny, chapter 13, pages
353–383. Oxford University Press, Oxford, UK, 2005.

[128] R. Warren and D. Sankoff. Genome halving with double cut and join. In Pro-
ceedings of APBC 2008, volume 6 of Series on Advances in Bioinformatics and
Computational Biology, 2008.

[129] J. D. Watson and F. H. C. Crick. A structure for deoxyribose nucleic acid. Nature,
171:737–738, 1953.

[130] G. A. Watterson, W. J. Ewens, and T. E. Hall. The chromosome inversion
problem. Journal of Theoretical Biology, 99:1–7, 1982.

[131] K. H. Wolfe and D. C. Shields. Molecular evidence for an ancient duplication of
the entire yeast genome. Nature, 387:708–713, 1997.

[132] W. Xu. The distance between randomly constructed genomes. In Proceedings of
the Fifth Asia Pacific Bioinformatics Conference (APBC 2007), pages 227–236,
2007.

[133] W. Xu, C. Zheng, and D. Sankoff. Paths and cycles in breakpoint graphs of
random multichromosomal genomes. In Proceedings of the Fourth RECOMB
Satellite Workshop on Comparative Genomics (RCG 2006), pages 51–62, 2006.

[134] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340–3346, 2005.

[135] C. Zheng, A. Lenert, and D. Sankoff. Reversal distance for partially ordered
genomes. Bioinformatics, 21(Suppl. 1):i502–i508, 2005. (Proceedings of ISMB
2005).

96

