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Chapter 1

Introduction

In recent years Gaussian analysis and in particular white noise analysis have developed to
a useful tool in applied mathematics and mathematical physics. White noise analysis is a
mathematical framework which offers various generalizations of concepts known from finite
dimensional analysis, among them are differential operators and Fourier transform. For a
detailed exposition of the theory and for many examples of applications we refer the reader
to the recent monographs [BeKo88, HKPS93, Ob94, Hi80] and the introductory articles
[Kuo92, Po91, S94, W93].

This work consists of three different main parts:

• The generalization of the theory to an infinite dimensional analysis with underlying
non-Gaussian measure.

• Further development of Gaussian analysis.

• Applications to the theory of path-integrals.

Some of the results presented here have already been published as joint works, see
[KLPSW94, LLSW94a, LLSW94b, CDLSW95, KoSW95, KSWY95]. We present here a
systematic exposition of this circle of ideas.

Non-Gaussian infinite dimensional analysis

An approach to such a theory was recently proposed by [AKS93]. For smooth probability
measures on infinite dimensional linear spaces a biorthogonal decomposition is a natural
extension of the orthogonal one that is well known in Gaussian analysis. This biorthogonal
“Appell” system has been constructed for smooth measures by Yu.L. Daletskii [Da91]. For
a detailed description of its use in infinite dimensional analysis we refer to [ADKS94].

Aim of the present work (Chapter 3). We consider the case of non–degenerate measures
on co-nuclear spaces with analytic characteristic functionals. It is worth emphasizing that
no further condition such as quasi–invariance of the measure or smoothness of logarithmic
derivatives are required. The point here is that the important example of Poisson noise is
now accessible.
For any such measure µ we construct an Appell system Aµ as a pair (Pµ,Qµ) of Appell
polynomials Pµ and a canonical system of generalized functions Qµ, properly associated to
the measure µ.
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Central results. Within the above framework

• we obtain an explicit description of the test function space introduced in [ADKS94]
(Theorem 28)

• in particular this space is in fact identical for all the measures that we consider

• characterization theorems for generalized as well as test functions are obtained analo-
gously as in Gaussian analysis [KLS94] for more references see [KLPSW94] (Theorems
33 and 35)

• the well known Wick product and the corresponding Wick calculus [KLS94] extends
rather directly (Section 3.7)

• similarly, a full description of positive distributions (as measures) will be given (Sec-
tion 3.8).

Finally we should like to underline here the important conceptual role of holomorphy here
as well as in earlier studies of Gaussian analysis (see e.g., [PS91, Ou91, KLPSW94, KLS94]
as well as the references cited therein).

All these results are collected in Chapter 3 as well as [KSWY95].

Gaussian analysis

In recent years there was an increasing interest in white noise analysis, due to its rapid
developments in mathematical structure and applications in various domains. Especially,
the circle of ideas going under the heading ‘characterization theorems’ has played quite an
important role in the last few years. These results [Ko80a, Lee89, PS91], and their varia-
tions and refinements (see, e.g., [KPS91, MY90, Ob91, SW93, Yan90, Zh92], and references
quoted there), provide a deep insight into the structure of spaces of smooth and generalized
random variables over the white noise space or – more generally – Gaussian spaces. Also,
they allow for rather straightforward applications of these notions to a number of fields: for
example, Feynman integration [FPS91, HS83, KaS92, LLSW94a], representation of quan-
tum field theory [AHPS89, PS93], stochastic equations [CLP93, Po91, Po92, Po94], inter-
section local times [FHSW94, Wa91], Dirichlet forms [AHPRS90a, AHPRS90b, HPS88],
infinite dimensional harmonic analysis [Hi89] and so forth. Moreover, characterization the-
orems have been at the basis of new methods for the construction of smooth and generalized
random variables [KoS93, MY90] which seem to be useful in applications untractable by
existing methods (e.g., [HLØUZ93a, HLØUZ93b]).

One of the basic technical ideas in the development of the theory is the use of dual
pairs of spaces of test and generalized functionals. Since the usefulness of a particular test
function space depends on the application one has in mind various dual pairs appear in
the literature. In this work we are particulary interested in the following spaces:

• The Hida spaces
We construct a nuclear rigging

(N ) ⊂ L2(µ) ⊂ (N )′

2



We give the construction of the second quantized space (N ) solely in terms of the
topology ofN , independent of the particular representation as a projective limit. The
purpose of Section 4.1 is four-fold: We wish 1. to clarify and generalize the structure
of the existing characterization theorems, and at the same time, 2. to review and unify
recent developments in this direction, 3. to establish the connection to rich, related
mathematical literature [AR73, Co82, Di81, Si69, Za76], which might be helpful in
future developments, and – last but not least – 4. to fill a gap in the article [PS91]. In
the course of doing this, we also establish some new results, for instance an analytic
extension property of U–functionals, and the topological invariance of certain spaces
of generalized random variables with respect to different construction schemes.
The material presented in Section 4.1 is the central part of [KLPSW94]

• The test function spaces G and M
In section 4.3 we discuss the space G introduced in [PT94]. This space and is dual
are interesting because all terms in the chaos expansion are given by Hilbert space
kernels. So also the distributions have an expansion in a series of n-fold stochastic
integrals.
A second useful property is that G is an algebra under pointwise multiplication [PT94]
which is larger than (N ). Since we are interested in more general pointwise products,
we introduce a second test function spaceM which again is bigger than G. One can
not expect that M is closed under multiplication but we will show that pointwise
multiplication is a separately continuous bilinear map G ×M→M. (Corollary 66).
We will see that the shift operator τη : ϕ 7→ ϕ(·+ η) , η ∈ H is well defined from G
into G and M into M and that we can extend τη to complex η ∈ HC (Theorem 67)
Using this it is easy to see that G andM are closed under Gâteaux differentiation.
In section 4.3.3.2 we consider the composition of test functions with projection op-
erations on N ′. This is of particular interest to understand the action of Donsker’s
delta on test functions. Note that Donsker’s delta is in M′ (Theorem 90). We will
understand what it means to integrate out this delta distribution (Proposition 72).

• The Meyer–Yan triple
We sketch the well-known construction of the triple [MY90] and state a convenient
form of the characterization theorem for generalized functions [KoS93]. For later use
we add a corollary controlling the convergence of a sequence of generalized functions.
Furthermore the integration of a family of distributions is discussed and controlled
in terms of S-transform.

Besides the discussion of various spaces of test and generalized functions Chapter 4
also contains a discussion of the scaling operator σz which suggests one of the possible
approaches to path integrals in a white noise framework. We will collect some properties
of σz and specify its domain and range where it acts continuously (similar to [HKPS93]).
But applications to path integrals require extended domains of σz. This naturally leads to
the study of traces. In Proposition 84 we give sufficient conditions on ϕ ∈ L2(µ) to ensure
that σzϕ exists in some useful sense.

We close Chapter 4 by a detailed discussion of Donsker’s delta function. In particular we
study its behavior under σz. Most of this results have already been published in [LLSW94b].
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Applications to Feynman integrals

Path integrals are a useful tool in many branches of theoretical physics including quantum
mechanics, quantum field theory and polymer physics. We are interested in a rigorous
treatment of such path integrals. As our basic example we think of a quantum mechanical
particle.

On one hand it is possible to represent solutions of the heat equation by a path integral
representation, based on the Wiener measure in a mathematically rigorous way. This is
stated by the famous Feynman Kac formula. On the other hand there have been a lot of
attempts to write solutions of the Schrödinger equation as a Feynman (path) integral in a
useful mathematical sense.

Unfortunately, however there can be no hope of extending the theory of invariant mea-
sure from finite to infinite dimensional spaces. For example, one may easily prove that no
reasonably well-behaved translation invariant measure exists on any infinite-dimensional
Hilbert space. More specifically, for any translation invariant measure on a infinite dimen-
sional Hilbert space such that all balls are measurable sets there must be many balls whose
measure is either zero or ∞. This is the reason why the formal expression D∞x used in
some physical textbooks is problematic and misleading.

One may have some hope that the ill defined term D∞x combines with the kinetic
energy term to produce a well defined complex measure with imaginary variance σ2 = i,
or that this combination is the limit of Gaussian measures. But this causes problems if we
assume that cylinder functions are integrated in the obvious way, see [Ex85, p.217].

Theorem 1 (Cameron [C60])
Any finite (complex or real) measure with N-dimensional densities

ρtN>···>t0(xN , . . . , x0) =
N∏

j=1

1√
2πiγ(tj − tj−1)

exp

(
i
(xj − xj−1)

2

2γ (tj − tj−1)

)
must have iγ ∈ R+.

So there is no hope for measure theory to solve the problems with path integration.
The successful methods are always more involved and less direct than in the Euclidean

(i.e., Feynman Kac) case. Among them are analytic continuation, limits of finite dimen-
sional approximations and Fourier transform. We are not interested in giving full reference
on various theories of Feynman integrals (brief surveys can be found in [Ex85, Ta75]) but
we like to mention the method in [AHK76] using Fresnel integrals. Here we have chosen a
white noise approach.

The idea of realizing Feynman integrals within the white noise framework goes back to
[HS83]. The “average over all paths” is performed with a Hida distribution as the weight
(instead of a measure). The existence of such Hida distributions corresponding to Feynman
integrands has been established in [FPS91].

In this white noise framework we define the Feynman integrand as a white noise distri-
bution. Its expectation reduces to the Feynman integral, which had to be defined. But the
Feynman integrand defined before may also be very useful. The point is that at least the
pairing with the corresponding test functions is well defined. In this sense the Feynman
integrand serves as an integrator. We will illustrate this by two examples.
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1. Since all of our test function spaces contain smooth polynomials, all “moments” of
the Feynman integrand are well defined. Furthermore the singularity of the Feynman
integrand gives some information on the growth of the moments (w.r.t. n) i.e., if we
have ∣∣∣∣∣

〈〈
I,

n∏
j=1

〈·, ξj〉

〉〉∣∣∣∣∣ ≤ (n!)xCn
n∏

j=1

|ξj|p , ξj ∈ S(R)

for some C > 0 and some continuous norm on S(R), then
x = 1⇔ I ∈ (S)−1,
x = 1/2⇔ I ∈ (S)′.

2. Exponential functions are test functions (at least of finite order). So if I is a gener-
alized white noise functional we can study the pairing〈〈

I, ei〈·,ξ〉〉〉 , ξ ∈ S(R) ,

which is the Fourier-Gauss transform of I. From the singularity of the distribution
I we get some additional information of the analyticity of the above pairing with
respect to ξ.

A second advantage is that the general white noise mathematics allows some manipu-
lations with the Feynman integrand I, since there are many operators acting continuously
on the corresponding distribution space. This allows well defined calculations. We will
illustrate this advantage in Chapter 9. There we will prove Ehrenfest’s theorem and derive
a functional form of the canonical commutation relations for one particular class of poten-
tials. The first argument is essentially been done by applying the adjoint of a differentiation
operator to I. After calculating this expression we take expectation and obtain Ehrenfest’s
theorem.

We also want to stress that the white noise setting gives a good“conceptual background”
to discuss some of the numerous independent definitions of path integrals in a “common
language”. In some sense this has been done in Chapters 7–8:

• We present an analytic continuation approach related to the work of Doss [D80] based
on our discussion of the scaling operator in section 4.5. As a by-product we will also
see the relation to the definition of Hu and Meyer [HM88]. We will also use our
discussion in section 4.3.3 and integrate out Donsker’s delta (introduced to fix the
endpoints of the paths). This gives a convenient form of the propagator.

• In the white noise framework the first attempt to include interaction with a potential
was done in [KaS92]. Khandekar and Streit constructed the Feynman integrand for a
large class of potentials including singular ones. Basically they constructed a strong
Dyson series converging in the space of Hida distributions. This approach only works
for one space dimension. We will generalize this construction to (one dimensional)
time-dependent potentials of non-compact support (Theorem 103). In Section 7.2 we
will show that the expectation of the constructed Feynman integrand is indeed the
physical propagator, i.e., it solves the Schrödinger equation. This results can also be
found in [LLSW94a].
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• The above construction is not restricted to perturbations of the free Feynman inte-
grand. For example we may expand around the Feynman integrand of the harmonic
oscillator. This construction works for small times for the same large class of poten-
tials (Section 7.3 or [CDLSW95]).

• Modifications and generalizations of the Khandekar Streit construction as above suffer
from the restriction to one dimensional quantum systems. In the work [AHK76]
Feynman integrals for potentials which are Fourier transforms of bounded complex
measures are discussed (with independent methods). This class of potentials can
also be considered in the white noise framework, without restriction to the space
dimension d. We need some integrability condition of the measure associated to the
potential to ensure that the expansion the Feynman integrand converges in (Sd)

−1

(Theorem 110).
A smaller distribution space to control the convergence of the perturbative expansion
may be obtained by sharpening the integrability condition on the measure.
We will also allow time dependent potentials which surprisingly may be more singular
than in the previous construction (Theorem 111).
For this class of Feynman integrands we will show that our mathematical background
allows to prove some relations which were based before on some heuristic arguments,
(see Feynman and Hibbs [FH65, p.175]). In Chapter 9 we will do this for Ehrenfest’s
theorem and for the functional form of the canonical commutation relations.
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Chapter 2

Preliminaries

2.1 Some facts on nuclear triples

We start with a real separable Hilbert space H with inner product (·, ·) and norm |·| .
For a given separable nuclear space N (in the sense of Grothendieck) densely topologically
embedded in H we can construct the nuclear triple

N ⊂ H ⊂ N ′.

The dual pairing 〈·, ·〉 of N ′ and N then is realized as an extension of the inner product in
H

〈f, ξ〉 = (f, ξ) f ∈ H, ξ ∈ N

Instead of reproducing the abstract definition of nuclear spaces (see e.g., [Sch71]) we give a
complete (and convenient) characterization in terms of projective limits of Hilbert spaces.

Theorem 2 The nuclear Fréchet space N can be represented as

N =
⋂
p∈N

Hp,

where {Hp, p ∈ N} is a family of Hilbert spaces such that for all p1, p2 ∈ N there exists
p ∈ N such that the embeddings Hp ↪→ Hp1 and Hp ↪→ Hp2 are of Hilbert-Schmidt class.
The topology of N is given by the projective limit topology, i.e., the coarsest topology on N
such that the canonical embeddings N ↪→ Hp are continuous for all p ∈ N.

The Hilbertian norms on Hp are denoted by |·|p. Without loss of generality we always
suppose that ∀p ∈ N,∀ξ ∈ N : |ξ| ≤ |ξ|p and that the system of norms is ordered, i.e., |·|p
≤ |·|q if p < q. By general duality theory the dual space N ′ can be written as

N ′ =
⋃
p∈N

H−p.

with inductive limit topology τind by using the dual family of spaces {H−p := H′
p, p ∈ N}.

The inductive limit topology (w.r.t. this family) is the finest topology on N ′ such that
the embeddings H−p ↪→ N ′ are continuous for all p ∈ N. It is convenient to denote the
norm on H−p by |·|−p. Let us mention that in our setting the topology τind coincides with

7



the Mackey topology τ(N ′,N ) and the strong topology β(N ′,N ). Further note that the
dual pair 〈N ′,N〉 is reflexive if N ′ is equipped with β(N ′,N ). In addition we have that
convergence of sequences is equivalent in β(N ′,N ) and the weak topology σ(N ′,N ), see
e.g., [HKPS93, Appendix 5].

Further we want to introduce the notion of tensor power of a nuclear space. The simplest
way to do this is to start from usual tensor powers H⊗n

p , n ∈ N of Hilbert spaces. Since
there is no danger of confusion we will preserve the notation |·|p and |·|−p for the norms on

H⊗n
p and H⊗n

−p respectively. Using the definition

N⊗n := pr lim
p∈N

H⊗n
p

one can prove [Sch71] that N⊗n is a nuclear space which is called the nth tensor power of
N . The dual space of N⊗n can be written(

N⊗n
)′

= ind lim
p∈N

H⊗n
−p

Most important for the applications we have in mind is the following ’kernel theorem’,
see e.g., [BeKo88].

Theorem 3 Let ξ1, ..., ξn 7→ Fn (ξ1, ..., ξn) be an n-linear form on N⊗n which is Hp-
continuous , i.e.,

|Fn (ξ1, ..., ξn) | ≤ C
n∏

k=1

|ξk|p

for some p ∈ N and C > 0.
Then for all p′ > p such that the embedding ip′,p : Hp′ ↪→ Hp is Hilbert-Schmidt there exist
a unique Φ(n) ∈ H⊗n

−p′ such that

Fn (ξ1, . . . , ξn) = 〈Φ(n), ξ1 ⊗ · · · ⊗ ξn〉 , ξ1, ..., ξn ∈ N

and the following norm estimate holds∣∣Φ(n)
∣∣
−p′
≤ C ‖ip′,p‖nHS

using the Hilbert-Schmidt norm of ip′,p.

Corollary 4 Let ξ1, ..., ξn 7→ F (ξ1, ..., ξn) be an n-linear form on N⊗n which is H−p-
continuous, i.e.,

|Fn (ξ1, . . . , ξn) | ≤ C

n∏
k=1

|ξk|−p

for some p ∈ N and C > 0.
Then for all p′ < p such that the embedding ip,p′ : Hp ↪→ Hp′ is Hilbert-Schmidt there exist
a unique Φ(n) ∈ H⊗n

p′ such that

Fn (ξ1, ..., ξn) = 〈Φ(n), ξ1 ⊗ · · · ⊗ ξn〉, ξ1, ..., ξn ∈ N

and the following norm estimate holds∣∣Φ(n)
∣∣
p′
≤ C ‖ip,p′‖nHS .
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If in Theorem 3 (and in Corollary 4 respectively ) we start from a symmetric n-linear
form Fn on N⊗n i.e., Fn(ξπ1 , . . . , ξπn) = Fn (ξ1, . . . , ξn) for any permutation π, then the

corresponding kernel Φ(n) can be localized in H⊗̂n
p′ ⊂ H

⊗n
p′ (the nth symmetric tensor power

of the Hilbert space Hp′). For f1, . . . , fn ∈ H let ⊗̂ also denote the symmetrization of the
tensor product

f1⊗̂ · · · ⊗̂fn :=
1

n!

∑
π

fπ1 ⊗ · · · ⊗ fπn ,

where the sum extends over all permutations of n letters. All the above quoted theorems
also hold for complex spaces, in particular the complexified space NC. By definition an ele-
ment θ ∈ NC decomposes into θ = ξ+ iη , ξ, η ∈ N . If we also introduce the corresponding
complexified Hilbert spaces Hp,C the inner product becomes

(θ1, θ2)Hp,C = (θ1, θ̄2)Hp = (ξ1, ξ2)Hp + (η1, η2)Hp + i(η1, ξ2)Hp − i(ξ1, η2)Hp

for θ1, θ2 ∈ Hp,C, θ1 = ξ1 + iη1 , θ2 = ξ2 + iη2 , ξ1, ξ2, η1, η2 ∈ Hp. Thus we have introduced
a nuclear triple

N ⊗̂n
C ⊂ H⊗̂n

C ⊂
(
N ⊗̂n

C

)′
We also want to introduce the (Boson or symmetric) Fock space Γ(H) of H by

Γ(H) =
∞⊕

n=0

H⊗̂n
C

with the convention H⊗̂0
C := C and the Hilbertian norm

‖~ϕ‖2Γ(H) =
∞∑

n=0

n!
∣∣ϕ(n)

∣∣2 , ~ϕ =
{
ϕ(n)

∣∣∣ n ∈ N0

}
∈ Γ(H) .

2.2 Holomorphy on locally convex spaces

We shall collect some facts from the theory of holomorphic functions in locally convex
topological vector spaces E (over the complex field C), see e.g., [Di81]. Let L(En) be the
space of n-linear mappings from En into C and Ls(En) the subspace of symmetric n-linear
forms. Also let Pn(E) denote the n-homogeneous polynomials on E . There is a linear

bijection Ls(En) 3 A ←→ Â ∈ Pn(E). Now let U ⊂ E be open and consider a function
G : U → C.

G is said to be G-holomorphic if for all θ0 ∈ U and for all θ ∈ E the mapping from
C to C : λ → G(θ0 + λθ) is holomorphic in some neighborhood of zero in C. If G is
G-holomorphic then there exists for every η ∈ U a sequence of homogeneous polynomials
1
n!

d̂nG(η) such that

G(θ + η) =
∞∑

n=0

1

n!
d̂nG(η)(θ)

for all θ from some open set V ⊂ U . G is said to be holomorphic, if for all η in U there

exists an open neighborhood V of zero such that
∞∑

n=0

1
n!

d̂nG(η)(θ) converges uniformly on

9



V to a continuous function. We say that G is holomorphic at θ0 if there is an open set U
containing θ0 such that G is holomorphic on U . The following proposition can be found
e.g., in [Di81].

Proposition 5 G is holomorphic if and only if it is G-holomorphic and locally bounded.

Let us explicitly consider a function holomorphic at the point 0 ∈ E = NC, then
1) there exist p and ε > 0 such that for all ξ0 ∈ NC with |ξ0|p ≤ ε and for all ξ ∈ NC

the function of one complex variable λ→ G(ξ0 + λξ) is analytic at 0 ∈ C, and
2) there exists c > 0 such that for all ξ ∈ NC with |ξ|p ≤ ε : |G(ξ)| ≤ c.

As we do not want to discern between different restrictions of one function, we consider
germs of holomorphic functions, i.e., we identify F and G if there exists an open neighbor-
hood U : 0 ∈ U ⊂ NC such that F (ξ) = G(ξ) for all ξ ∈ U . Thus we define Hol0(NC) as the
algebra of germs of functions holomorphic at zero equipped with the inductive topology
given by the following family of norms

np,l,∞(G) = sup
|θ|p≤2−l

|G(θ)| , p, l ∈ N.

Let use now introduce spaces of entire functions which will be useful later. Let
Ek

2−l(H−p,C) denote the set of all entire functions on H−p,C of growth k ∈ [1, 2] and type
2−l, p, l ∈ Z. This is a linear space with norm

np,l,k(ϕ) = sup
z∈H−p,C

|ϕ(z)| exp
(
−2−l|z|k−p

)
, ϕ ∈ Ek

2−l(H−p,C)

The space of entire functions on N ′
C of growth k and minimal type is naturally introduced

by
Ek

min(N ′
C) := pr lim

p,l∈N
Ek

2−l(H−p,C) ,

see e.g., [Ou91]. We will also need the space of entire functions on NC of growth k and
finite type:

Ek
max(NC) := ind lim

p,l∈N
Ek

2l(Hp,C) .

In the following we will give an equivalent description of Ek
min(N ′

C) and Ek
max(NC). Cauchy’s

inequality and Corollary 4 allow to write the Taylor coefficients in a convenient form. Let
ϕ ∈ Ek

min(N ′
C) and z ∈ N ′

C, then there exist kernels ϕ(n) ∈ N ⊗̂n
C such that

〈z⊗n, ϕ(n)〉 =
1

n!
d̂nϕ(0)(z)

i.e.,

ϕ(z) =
∞∑

n=0

〈z⊗n, ϕ(n) 〉. (2.1)

This representation allows to introduce a nuclear topology on Ek
min(N ′

C), see [Ou91] for
details. Let Eβ

p,q denote the space of all functions of the form (2.1) such that the following
Hilbertian norm

|||ϕ|||2p,q,β :=
∞∑

n=0

(n!)1+β2nq
∣∣ϕ(n)

∣∣2
p
, p, q ∈ N (2.2)

10



is finite for β ∈ [0, 1]. (By
∣∣ϕ(0)

∣∣
p

we simply mean the complex modulus for all p.) The

space E−β
−p−,q with the norm |||ϕ|||−p,−q,−β is defined analogously.

Theorem 6 The following topological identity holds:

pr lim
p,q∈N

Eβ
p,q = E

2
1+β

min (N ′
C) .

The proof is an immediate consequence of the following two lemmata which show that
the two systems of norms are in fact equivalent.

Lemma 7 Let ϕ ∈Eβ
p,q then ϕ ∈ E

2
1+β

2−l (H−p,C) for l = q
1+β

. Moreover

np,l,k(ϕ) ≤ |||ϕ|||p,q,β , k = 2
1+β

. (2.3)

Proof. We look at the convergence of the series ϕ(z) =
∑∞

n=0〈z⊗n, ϕ(n) 〉 , z ∈
H−p,C , ϕ(n) ∈ Hp,C if

∑∞
n=0(n!)1+β2nq|ϕ(n)|2p = |||ϕ|||2p,q,β is finite. The following estimate

holds:

∞∑
n=0

|〈z⊗n, ϕ(n) 〉| ≤

(
∞∑

n=0

(n!)1+β2nq|ϕ(n)|2p

)1/2( ∞∑
n=0

1

(n!)1+β
2−nq|z|2n

−p

)1/2

≤ |||ϕ|||p,q,β ·

(
∞∑

n=0

{
1

n!
2−

nq
1+β |z|

2n
1+β

−p

}1+β
)1/2

≤ |||ϕ|||p,q,β

(
∞∑

n=0

1

n!
2−

nq
1+β |z|

2n
1+β

−p

)(1+β)/2

≤ |||ϕ|||p,q,β exp

(
2−

q
1+β |z|

2
1+β

−p

)
.

2

Lemma 8 For any p′, q ∈ N there exist p, l ∈ N such that

E
2

1+β

2−l (H−p,C) ⊂ Eβ
p′,q

i.e., there exists a constant C > 0 such that

|||ϕ|||p′,q,β ≤ C np,l,k(ϕ), ϕ ∈ Ek
2−l(H−p,C), k = 2

1+β
.

Remark. More precisely we will prove the following: If ϕ ∈ Ek
2−l(H−p,C) then ϕ ∈Eβ

p′,q

for k = 2
1+β

and ρ := 2q−2l/kk2/ke2 ‖ip′,p‖2HS < 1 (in particular this requires p′ > p to be

such that the embedding ip′,p : Hp′ ↪→ Hp is Hilbert-Schmidt).
Moreover the following bound holds

|||ϕ|||p′,q,β ≤ np,l,k(ϕ) · (1− ρ)−1/2 . (2.4)
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Proof. The assumption ϕ ∈ Ek
2−l(H−p,C) implies a bound of the growth of ϕ :

|ϕ(z)| ≤ np,l,k(ϕ) exp(2−l|z|k−p) .

For each ρ > 0 , z ∈ H−p,C the Cauchy inequality from complex analysis [Di81] gives∣∣∣∣ 1

n!
d̂nϕ(0)(z)

∣∣∣∣ ≤ np,l,k(ϕ)ρ−n exp(ρk2−l) |z|n−p .

By polarization [Di81] it follows for z1, . . . , zn ∈ H−p,C∣∣∣∣ 1

n!
dnϕ(0)(z1, . . . , zn)

∣∣∣∣ ≤ np,l,k(ϕ)
1

n!

(
n

ρ

)n

exp(ρk2−l)
n∏

k=1

|zk|−p .

For p′ > p such that ‖ip′,p‖HS is finite, an application of the kernel theorem guarantees the

existence of kernels ϕ(n) ∈ H⊗̂n
p′,C such that

ϕ(z) =
∞∑

n=0

〈z⊗̂n, ϕ(n) 〉

with the bound ∣∣ϕ(n)
∣∣
p′
≤ np,l,k(ϕ)

1

n!

(
n

ρ
‖ip′,p‖HS

)n

exp(ρk · 2−l) .

We can optimize the bound with the choice of an n-dependent ρ. Setting ρk = 2ln/k we
obtain ∣∣ϕ(n)

∣∣
p′
≤ np,l,k(ϕ)

1

n!
nn(1−1/k)

(
1
k
2l
)−n/k ‖ip′,p‖nHS e

n/k

≤ np,l,k(ϕ) (n!)−1/k
{
(k2−l)1/ke ‖ip′,p‖HS

}n
,

where we used nn ≤ n! en in the last estimate. Now choose β ∈ [0, 1] such that k = 2
1+β

to
estimate the following norm:

|||ϕ|||2p′,q,β ≤ n2
p,l,k(ϕ)

∞∑
n=0

(n!)1+β− 2
k 2qn

{
(k2−l)1/ke ‖ip′,p‖HS

}2n

≤ n2
p,l,k(ϕ)

(
1− 2q

{
(k2−l)1/ke ‖ip′,p‖HS

}2
)−1

for sufficiently large l. This completes the proof. 2

Analogous estimates for these systems of norms also hold if β, p, q, l become negative.
This implies the following theorem. For related results see e.g., [Ou91, Prop.8.6].

Theorem 9
If β ∈ [0, 1) then the following topological identity holds:

ind lim
p,q∈N

E−β
−p,−q = E2/(1−β)

max (NC).

If β = 1 we have
ind lim

p,q∈N
E−1
−p,−q = Hol0(NC) .

This theorem and its proof will appear in the context of section 3.6. The characterization
of distributions in infinite dimensional analysis is strongly related to this theorem. From
this point of view it is natural to postpone its proof to section 3.6.
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Chapter 3

Generalized functions in infinite
dimensional analysis

3.1 Measures on linear topological spaces

To introduce probability measures on the vector spaceN ′, we consider Cσ(N ′) the σ-algebra
generated by cylinder sets on N ′, which coincides with the Borel σ-algebras Bσ(N ′) and
Bβ(N ′) generated by the weak and strong topology on N ′ respectively. Thus we will
consider this σ-algebra as the natural σ-algebra on N ′. Detailed definitions of the above
notions and proofs of the mentioned relations can be found in e.g., [BeKo88].

We will restrict our investigations to a special class of measures µ on Cσ(N ′), which
satisfy two additional assumptions. The first one concerns some analyticity of the Laplace
transformation

lµ(θ) =

∫
N ′

exp 〈x, θ〉 dµ(x) =: Eµ(exp 〈·, θ〉) , θ ∈ NC.

Here we also have introduced the convenient notion of expectation Eµ of a µ-integrable
function.

Assumption 1 The measure µ has an analytic Laplace transform in a neighborhood
of zero. That means there exists an open neighborhood U ⊂ NC of zero, such that lµ
is holomorphic on U , i.e., lµ ∈ Hol0(NC) . This class of analytic measures is denoted by
Ma(N ′).

An equivalent description of analytic measures is given by the following lemma.

Lemma 10 The following statements are equivalent

1) µ ∈Ma(N ′)

2) ∃pµ ∈ N, ∃C > 0 :

∣∣∣∣∫
N ′
〈x, θ〉n dµ(x)

∣∣∣∣ ≤ n!Cn |θ|npµ
, θ ∈ Hpµ,C

3) ∃p′µ ∈ N, ∃εµ > 0 :

∫
N ′

exp(εµ |x|−p′µ
) dµ(x) <∞

13



Proof. The proof can be found in [KoSW95]. We give its outline in the following. The
only non-trivial step is the proof of 2)⇒3).
By polarization [Di81] 2) implies∣∣∣∣∣

∫
N ′
〈x⊗n,

n⊗
j=1

ξj〉 dµ(x)

∣∣∣∣∣ ≤ n! Cn

n∏
j=1

|ξj|pµ
, ξj ∈ Hp′ (3.1)

for a (new) constant C > 0. Choose p′ > pµ such that the embedding ip′,pµ : Hp′ → Hpµ

is of Hilbert-Schmidt type. Let {ek, k ∈ N} ⊂ N be an orthonormal basis in Hp′ . Then

|x|2−p′ =
∞∑

k=1

〈x, ek〉2, x ∈ H−p′ . We will first estimate the moments of even order

∫
N ′
|x|2n

−p′ dµ(x) =
∞∑

k1=1

· · ·
∞∑

kn=1

∫
N ′
〈x, ek1〉

2 · · · 〈x, ekn〉
2 dµ(x) ,

where we changed the order of summation and integration by a monotone convergence
argument. Using the bound (3.1) we have∫

N ′
|x|2n

−p′ dµ(x) ≤ C2n (2n)!
∞∑

k1=1

· · ·
∞∑

kn=1

|ek1|
2
pµ
· · · |ekn|

2
pµ

= C2n (2n)!

(
∞∑

k=1

|ek|2pµ

)n

=
(
C ·
∥∥ip′,pµ

∥∥
HS

)2n
(2n)!

because
∞∑

k=1

|ek|2pµ
=
∥∥ip′,pµ

∥∥2

HS
.

The moments of arbitrary order can now be estimated by the Schwarz inequality∫
|x|n−p′ dµ(x) ≤

√
µ(N ′)

(∫
|x|2n

−p dµ(x)

) 1
2

≤
√
µ(N ′)

(
C
∥∥ip′,pµ

∥∥
HS

)n√
(2n)!

≤
√
µ(N ′)

(
2C
∥∥ip′,pµ

∥∥
HS

)n
n!

since (2n)! ≤ 4n(n!)2 .

Choose ε <
(

2C
∥∥ip′,pµ

∥∥
HS

)−1
then∫

eε|x|−p′dµ(x) =
∞∑

n=0

εn

n!

∫
|x|n−p′ dµ(x)

≤
√
µ(N ′)

∞∑
n=0

(
ε 2C

∥∥ip′,pµ

∥∥
HS

)n
<∞ (3.2)

Hence the lemma is proven. 2
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For µ ∈ Ma(N ′) the estimate in statement 2 of the above lemma allows to define the
moment kernels Mµ

n ∈ (N ⊗̂n)′. This is done by extending the above estimate by a simple
polarization argument and applying the kernel theorem. The kernels are determined by

lµ(θ) =
∞∑

n=0

1

n!
〈Mµ

n, θ
⊗n〉

or equivalently

〈Mµ
n, θ1⊗̂ · · · ⊗̂θn〉 =

∂n

∂t1 · · · ∂tn
lµ(t1θ1 + · · ·+ tnθn)

∣∣∣∣
t1=···=tn=0

.

Moreover, if p > pµ is such that embedding ip,pµ : Hp ↪→ Hpµ is Hilbert-Schmidt then

|Mµ
n|−p ≤

(
nC
∥∥ip,pµ

∥∥
HS

)n ≤ n!
(
eC
∥∥ip,pµ

∥∥
HS

)n
. (3.3)

Definition 11 A function ϕ : N ′ → C of the form ϕ(x) =
∑N

n=0〈x⊗n, ϕ(n)〉, x ∈ N ′,

N ∈ N, is called a continuous polynomial (short ϕ ∈ P(N ′) ) iff ϕ(n) ∈ N ⊗̂n
C , ∀n ∈ N0 =

N ∪ {0}.

Now we are ready to formulate the second assumption:

Assumption 2 For all ϕ ∈ P(N ′) with ϕ = 0 µ-almost everywhere we have ϕ ≡ 0. In
the following a measure with this property will be called non-degenerate.

Note. Assumption 2 is equivalent to:
Let ϕ ∈ P(N ′) with

∫
A
ϕ dµ = 0 for all A ∈ Cσ(N ′) then ϕ ≡ 0.

A sufficient condition can be obtained by regarding admissible shifts of the measure µ.
If µ(· + ξ) is absolutely continuous with respect to µ for all ξ ∈ N , i.e., there exists the
Radon-Nikodym derivative

ρµ(ξ, x) =
dµ(x+ ξ)

dµ(x)
, x ∈ N ′ ,

Then we say that µ is N–quasi-invariant see e.g., [GV68, Sk74]. This is sufficient to ensure
Assumption 2, see e.g., [KoTs91, BeKo88].

Example 1 In Gaussian Analysis (especially White Noise Analysis) the Gaussian measure
γH corresponding to the Hilbert space H is considered. Its Laplace transform is given by

lγH(θ) = e
1
2
〈θ,θ〉 , θ ∈ NC ,

hence γH ∈ Ma(N ′). It is well known that γH is N–quasi-invariant (moreover H–quasi-
invariant) see e.g., [Sk74, BeKo88]. Due to the previous note γH satisfies also Assumption
2.

Example 2 (Poisson measures)

Let use consider the classical (real) Schwartz triple

S(R) ⊂ L2(R) ⊂ S ′(R) .
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The Poisson white noise measure µp is defined as a probability measure on Cσ(S ′(R)) with
the Laplace transform

lµp(θ) = exp

{∫
R
(eθ(t) − 1) dt

}
= exp

{
〈eθ − 1, 1〉

}
, θ ∈ SC(R) ,

see e.g., [GV68]. It is not hard to see that lµp is a holomorphic function on SC(R), so
Assumption 1 is satisfied. But to check Assumption 2, we need additional considerations.

First of all we remark that for any ξ ∈ S(R) , ξ 6= 0 the measures µp and µp(· + ξ)
are orthogonal (see [VGG75] for a detailed analysis). It means that µp is not S(R)-quasi-
invariant and the note after Assumption 2 is not applicable now.

Let some ϕ ∈ P(S ′(R)) , ϕ = 0 µp-a.s. be given. We need to show that then ϕ ≡ 0. To
this end we will introduce a system of orthogonal polynomials in the space L2(µp) which
can be constructed in the following way. The mapping

θ(·) 7→ α(θ)(·) = log(1 + θ(·)) ∈ SC(R) , θ ∈ SC(R)

is holomorphic on a neighborhood U ⊂ SC(R) , 0 ∈ U . Then

eα
µp

(θ;x) =
e〈α(θ),x〉

lµp(α(θ))
= exp{〈α(θ), x〉 − 〈θ, 1〉} , θ ∈ U , x ∈ S ′(R)

is a holomorphic function on U for any x ∈ S ′(R). The Taylor decomposition and the
kernel theorem (just as in subsection 3.2.1 below) give

eα
µp

(θ;x) =
∞∑

n=0

1

n!
〈θ⊗n, Cn(x)〉 ,

where Cn : S ′(R) → S ′(R)⊗̂n are polynomial mappings. For ϕ(n) ∈ SC(R)⊗̂n , n ∈ N0, we
define Charlier polynomials

x 7→ Cn(ϕ(n);x) = 〈ϕ(n), Cn(x)〉 ∈ C , x ∈ S ′(R) .

Due to [Ito88, IK88] we have the following orthogonality property:

∀ϕ(n) ∈ SC(R)⊗̂n , ∀ψ(m) ∈ SC(R)⊗̂n∫
Cn(ϕ(n))Cm(ψ(m)) dµp = δnmn!〈ϕ(n), ψ(n)〉 .

Now the rest is simple. Any continuous polynomial ϕ has a uniquely defined decomposition

ϕ(x) =
N∑

n=0

〈ϕ(n), Cn(x)〉 , x ∈ S ′(R) ,

where ϕ(n) ∈ SC(R)⊗̂n. If ϕ = 0 µp-a.e. then

‖ϕ‖2L2(µp) =
N∑

n=0

n! 〈ϕ(n), ϕ(n)〉 = 0.

Hence ϕ(n) = 0 , n = 0 , . . . , N , i.e., ϕ ≡ 0. So Assumption 2 is satisfied.
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3.2 Concept of distributions in infinite dimensional

analysis

In this section we will introduce a preliminary distribution theory in infinite dimensional
non-Gaussian analysis. We want to point out in advance that the distribution space con-
structed here is in some sense too big for practical purposes. In this sense section 3.2 may
be viewed as a stepping stone to introduce the more useful structures in §3.3 and §3.4.

We will choose P(N ′) as our (minimal) test function space. (The idea to use spaces
of this type as appropriate spaces of test functions is rather old see [KMP65]. They also
discussed in which sense this space is “minimal”.) First we have to ensure that P(N ′) is
densely embedded in L2(µ). This is fulfilled because of our assumption 1 [Sk74, Sec.ğ10
Th.1]. The space P(N ′) may be equipped with various different topologies, but there exists
a natural one such that P(N ′) becomes a nuclear space [BeKo88]. The topology on P(N ′)
is chosen such that is becomes isomorphic to the topological direct sum of tensor powers
N ⊗̂n

C see e.g., [Sch71, Ch II 6.1, Ch III 7.4]

P(N ′) '
∞⊕

n=0

N ⊗̂n
C .

via

ϕ(x) =
∞∑

n=0

〈
x⊗n, ϕ(n)

〉
←→ ~ϕ =

{
ϕ(n)

∣∣∣ n ∈ N0

}
.

Note that only a finite number of ϕ(n) is non-zero. We will not reproduce the full con-
struction here, but we will describe the notion of convergence of sequences this topology
on P(N ′). For ϕ ∈ P(N ′), ϕ(x) =

∑N(ϕ)
n=0

〈
x⊗n, ϕ(n)

〉
let pn : P(N ′) → N ⊗̂n

C denote

the mapping pn is defined by pnϕ := ϕ(n). A sequence {ϕj, j ∈ N} of smooth polynomials

converges to ϕ ∈ P(N ′) iff the N(ϕj) are bounded and pnϕj −→
n→∞

pnϕ in N ⊗̂n
C for all n ∈ N.

Now we can introduce the dual space P ′µ(N ′) of P(N ′) with respect to L2(µ). As a
result we have constructed the triple

P(N ′) ⊂ L2(µ) ⊂ P ′µ(N ′)

The (bilinear) dual pairing 〈〈·, ·〉〉µ between P ′µ(N ′) and P(N ′) is connected to the (sesqui-
linear) inner product on L2(µ) by

〈〈ϕ, ψ〉〉µ = (ϕ, ψ)L2(µ) , ϕ ∈ L2(µ), ψ ∈ P(N ′) .

Since the constant function 1 is in P(N ′) we may extend the concept of expectation from
random variables to distributions; for Φ ∈ P ′µ(N ′)

Eµ(Φ) := 〈〈Φ, 1〉〉µ .

The main goal of this section is to provide a description of P ′µ(N ′) , see Theorem 19
below. The simplest approach to this problem seems to be the use of so called µ-Appell
polynomials.
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3.2.1 Appell polynomials associated to the measure µ

Because of the holomorphy of lµ and lµ(0) = 1 there exists a neighborhood of zero

U0 =
{
θ ∈ NC

∣∣∣ 2q0 |θ|p0
< 1
}

p0, q0 ∈ N, p0 ≥ p′µ , 2−q0 ≤ εµ (p′µ, εµ from Lemma 10) such that lµ(θ) 6= 0 for θ ∈ U0 and
the normalized exponential

eµ(θ; z) =
e〈z,θ〉

lµ(θ)
for θ ∈ U0, z ∈ N ′

C , (3.4)

is well defined. We use the holomorphy of θ 7→ eµ(θ; z) to expand it in a power series in θ
similar to the case corresponding to the construction of one dimensional Appell polynomials
[Bo76]. We have in analogy to [AKS93, ADKS94]

eµ(θ; z) =
∞∑

n=0

1

n!
̂dneµ(0, z)(θ)

where ̂dneµ(0; z) is an n-homogeneous continuous polynomial. But since eµ(θ; z) is not only
G-holomorphic but holomorphic we know that θ → eµ(θ; z) is also locally bounded. Thus
Cauchy’s inequality for Taylor series [Di81] may be applied, ρ ≤ 2−q0 , p ≥ p0∣∣∣∣ 1

n!
̂dneµ(0; z)(θ)

∣∣∣∣ ≤ 1

ρn
sup
|θ|p=ρ

|eµ(θ; z)| |θ|np ≤
1

ρn
sup
|θ|p=ρ

1

lµ(θ)
eρ|z|−p |θ|np (3.5)

if z ∈ H−p,C. This inequality extends by polarization [Di81] to an estimate sufficient for

the kernel theorem. Thus we have a representation ̂dneµ(0; z)(θ) = 〈P µ
n (z), θ⊗n〉 where

P µ
n (z) ∈

(
N ⊗̂n

C

)′
. The kernel theorem really gives a little more: P µ

n (z) ∈ H⊗̂n
−p′ for any

p′(> p ≥ p0) such that the embedding operator ip′,p : Hp′ ↪→ Hp is Hilbert-Schmidt. Thus
we have

eµ(θ; z) =
∞∑

n=0

1

n!

〈
P µ

n (z), θ⊗n
〉

for θ ∈ U0, z ∈ N ′
C . (3.6)

We will also use the notation

P µ
n (ϕ(n))(z) :=

〈
P µ

n (z), ϕ(n)
〉
, ϕ(n) ∈ N ⊗̂n

C , n ∈ N.

Thus for any measure satisfying Assumption 1 we have defined the Pµ-system

Pµ =
{〈
P µ

n (·), ϕ(n)
〉 ∣∣∣ ϕ(n) ∈ N ⊗̂n

C , n ∈ N
}
.

Let us collect some properties of the polynomials P µ
n (z).

Proposition 12 For x, y ∈ N ′ , n ∈ N the following holds

(P1) P µ
n (x) =

n∑
k=0

(
n

k

)
x⊗k⊗̂P µ

n−k(0), (3.7)
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(P2) x⊗n =
n∑

k=0

(
n

k

)
P µ

k (x)⊗̂Mµ
n−k (3.8)

(P3) P µ
n (x+ y) =

∑
k+l+m=n

n!

k! l!m!
P µ

k (x)⊗̂P µ
l (y)⊗̂Mµ

m

=
n∑

k=0

(
n

k

)
P µ

k (x)⊗̂y⊗(n−k) (3.9)

(P4) Further we observe

Eµ(〈P µ
m(·), ϕ(m)〉) = 0 for m 6= 0 , ϕ(m) ∈ N ⊗̂m

C . (3.10)

(P5) For all p > p0 such that the embedding Hp ↪→ Hp0 is Hilbert–Schmidt and for all

ε > 0 small enough

(
ε ≤ 2−q0

e‖ip,p0‖HS

)
there exists a constant Cp,ε > 0 with

|P µ
n (z)|−p ≤ Cp,ε n! ε−n eε|z|−p , z ∈ H−p,C (3.11)

Proof. We restrict ourselves to a sketch of proof, details can be found in [ADKS94].
(P1) This formula can be obtained simply by substituting

1

lµ(θ)
=

∞∑
n=0

1

n!

〈
P µ

n (0), θ⊗n
〉
, θ ∈ NC, |θ|q < δ (3.12)

and

e〈x,θ〉 =
∞∑

n=0

1

n!

〈
x⊗n, θ⊗n

〉
, θ ∈ NC, x ∈ N ′

in the equality eµ(θ;x) = e〈x,θ〉l−1
µ (θ). A comparison with (3.6) proves (P1). The proof of

(P2) is completely analogous to the proof of (P1).
(P3) We start from the following obvious equation of the generating functions

eµ(θ;x+ y) = eµ(θ;x) eµ(θ; y) lµ(θ)

This implies

∞∑
n=0

1

n!
〈P µ

n (x+ y), θ⊗n〉 =
∞∑

k,l,m=0

1

k! l!m!
〈Pk(x)⊗̂Pl(y)⊗̂Mm, θ

⊗(k+l+m)〉

from this (P3) follows immediately.
(P4) To see this we use, θ ∈ NC,

∞∑
n=0

1

n!
Eµ(〈P µ

m(·), θ⊗n〉) = Eµ(eµ(θ; ·)) =
Eµ(e〈·,θ〉)

lµ(θ)
= 1 .

Then a comparison of coefficients and the polarization identity gives the above result.
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(P5) We can use

|P µ
n (z)|−p′ ≤ n!

(
sup
|θ|p=ρ

1

lµ(θ)

)
eρ|z|−p

(
e

ρ
‖ip′,p‖HS

)n

, z ∈ H−p,C (3.13)

p > p0, p
′, ρ defined above. (3.13) is a simple consequence of the kernel theorem by (3.5).

In particular we have

|P µ
n (0)|−p ≤ n!

(
sup
|θ|p0=ρ

1

lµ(θ)

)(
e

ρ
‖ip,p0‖HS

)n

If p > p0 such that ‖ip,p0‖HS is finite. For 0 < ε ≤ 2−q0/e ‖ip,p0‖HS we can fix ρ =
ε e ‖ip,p0‖HS ≤ 2−q0 . With

Cp,ε := sup
|θ|p0=ρ

1

lµ(θ)

we have
|P µ

n (0)|−p ≤ Cp,ε n! ε−n.

Using (3.7) the following estimates hold

|P µ
n (z)|−p ≤

n∑
k=0

(
n

k

)
|P µ

k (0)|−p |z|
n−k
−p , z ∈ H−p,C

≤ Cp,ε

n∑
k=0

(
n
k

)
k! ε−k |z|n−k

−p

= Cp,ε n! ε−n

n∑
k=0

1
(n−k)!

(ε |z|−p)
n−k

≤ Cp,ε n! ε−n eε|z|−p .

This completes the proof. 2

Note. The formulae (3.7) and (3.12) can also be used as an alternative definition of
the polynomials P µ

n (x) .

Example 3 Let us compare to the case of Gaussian Analysis. Here one has

lγH(θ) = e
1
2
〈θ,θ〉 , θ ∈ NC

Then it follows

Mµ
2n = (−1)nP µ

2n(0) =
(2n)!

n! 2n
Tr⊗̂n , n ∈ N

and Mµ
n = P µ

n (0) = 0 if n is odd. Here Tr ∈ N ′⊗2 denotes the trace kernel defined by

〈Tr, η ⊗ ξ〉 = (η, ξ) , η, ξ ∈ N (3.14)

A simple comparison shows that

P µ
n (x) =: x⊗n :
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and
eµ(θ;x) =: e〈x,θ〉 :

where the r.h.s. denotes usual Wick ordering see e.g., [BeKo88, HKPS93]. This procedure
is uniquely defined by

〈: x⊗n :, ξ⊗n〉 = 2−
n
2 |ξ|nHn

(
1√
2|ξ|〈x, ξ〉

)
, ξ ∈ N

where Hn denotes the Hermite polynomial of order n (see e.g., [HKPS93] for the normal-
ization we use).

Now we are ready to give the announced description of P(N ′).

Lemma 13 For any ϕ ∈ P(N ′) there exists a unique representation

ϕ(x) =
N∑

n=0

〈
P µ

n (x), ϕ(n)
〉
, ϕ(n) ∈ N ⊗̂n

C (3.15)

and vice versa, any functional of the form (3.15) is a smooth polynomial.

Proof. The representations from Definition 11 and equation (3.15) can be transformed
into one another using (3.7) and (3.8). 2

3.2.2 The dual Appell system and the representation theorem
for P ′µ(N ′)

To give an internal description of the type (3.15) for P ′µ(N ′) we have to construct an
appropriate system of generalized functions, the Qµ-system. The construction we propose
here is different from that of [ADKS94] where smoothness of the logarithmic derivative of
µ was demanded and used for the construction of the Qµ-system. To avoid this additional
assumption (which excludes e.g., Poisson measures) we propose to construct the Qµ-system
using differential operators.

Define a differential operator of order n with constant coefficient Φ(n) ∈
(
N ⊗̂n

C

)′

D(Φ(n))〈x⊗m, ϕ(m)〉 =

{ m!

(m− n)!
〈x⊗(m−n)⊗̂Φ(n), ϕ(m)〉 for m ≥ n

0 for m < n

(ϕ(m) ∈ N ⊗̂m
C ,m ∈ N) and extend by linearity from the monomials to P(N ′).

Lemma 14 D(Φ(n))is a continuous linear operator from P(N ′) to P(N ′) .

Remark. For Φ(1) ∈ N ′ we have the usual Gâteaux derivative as e.g., in white noise
analysis [HKPS93]

D(Φ(1))ϕ = DΦ(1)ϕ :=
d

dt
ϕ(·+ tΦ(1))|t=0

for ϕ ∈ P(N ) and we have D(
(
Φ(1)

)⊗n
) = (DΦ(1))n thus D(

(
Φ(1)

)⊗n
) is in fact a differential

operator of order n.
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Proof. By definition P(N ′) is isomorphic to the topological direct sum of tensor powers

N ⊗̂n
C

P(N ′) '
∞⊕

n=0

N ⊗̂n
C .

Via this isomorphism D(Φ(n)) transforms each component N ⊗̂m
C , m ≥ n by

ϕ(m) 7→ n!

(m− n)!
(Φ(n), ϕ(m))H⊗̂n

where the contraction (Φ(n), ϕ(m))H⊗̂n ∈ N⊗(m−n)
C is defined by

〈x⊗(m−n), (Φ(n), ϕ(m))H⊗̂n〉 := 〈x⊗(m−n)⊗̂Φ(n), ϕ(m)〉 (3.16)

for all x ∈ N ′. It is easy to verify that

|(Φ(n), ϕ(m))H⊗̂n|q ≤ |Φ(n)|−q|ϕ(m)|q , q ∈ N

which guarantees that (Φ(n), ϕ(m))H⊗̂n ∈ N⊗(m−n)
C and shows at the same time thatD(Φ(n))

is continuous on each component. This is sufficient to ensure the stated continuity of
D(Φ(n)) on P(N ′). 2

Lemma 15 For Φ(n) ∈ N ′⊗̂n
C , ϕ(m) ∈ N ⊗̂m

C we have

(P6) D(Φ(n))〈P µ
m(x), ϕ(m)〉 =

{ m!

(m− n)!

〈
P µ

m−n(x)⊗̂Φ(n), ϕ(m)
〉

for m ≥ n

0 for m < n
(3.17)

Proof. This follows from the general property of Appell polynomials which behave like
ordinary powers under differentiation. More precisely, by using

〈P µ
m, θ

⊗m〉 =

(
d

dt

)m

eµ(tθ; ·)
∣∣∣∣
t=0

, θ ∈ NC

we have

D(Φ(1))〈P µ
m(x), θ⊗m〉 =

d

dλ
〈P µ

m(x+ λΦ(1)), θ⊗m〉
∣∣∣∣
λ=0

=

(
∂

∂t

)m
∂

∂λ
eµ(tθ;x+ λΦ(1))

∣∣∣∣ t=0
λ=0

= 〈Φ(1), θ〉
(

∂
∂t

)m
t eµ(tθ;x)

∣∣
t=0

= 〈Φ(1), θ〉
m∑

k=0

(
m
k

) ((
d
dt

)k
t
) (

d
dt

)m−k
eµ(tθ;x)

∣∣∣∣∣
t=0

= m 〈Φ(1), θ〉
(

d
dt

)m−1
eµ(tθ;x)

∣∣∣
t=0

= m 〈Φ(1), θ〉
〈
P µ

m−1(x), θ
⊗(m−1)

〉
.
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This proves

D(Φ(1))〈P µ
m, ϕ

(m)〉 = m
〈
P µ

m−1⊗̂Φ(1), ϕ(m)
〉
.

The property (3.17), then follows by induction. 2

In view of Lemma 21 it is possible to define the adjoint operator D(Φ(n))∗ : P ′µ(N ′)→
P ′µ(N ′) for Φ(n) ∈ N ′⊗̂n

C . Further we can introduce the constant function 11 ∈ P ′µ(N ′) such
that 11(x) ≡ 1 for all x ∈ N ′ , so

〈〈11, ϕ〉〉µ =

∫
N ′
ϕ(x) dµ(x) = Eµ(ϕ).

Now we are ready to define our Q-system.

Definition 16 For any Φ(n) ∈
(
N ⊗̂n

C

)′
we define Qµ

n(Φ(n)) ∈ P ′µ(N ′) by

Qµ
n(Φ(n)) = D(Φ(n))∗11 .

We want to introduce an additional formal notation Qµ
n(x) which stresses the linearity

of Φ(n) 7→ Qµ
n(Φ(n)) ∈ P ′

µ(N ′) :

〈Qµ
n,Φ

(n)〉 := Qµ
n(Φ(n)) .

Example 4 It is possible to put further assumptions on the measure µ to ensure that the
expression is more than formal. Let us assume a smooth measure (i.e., the logarithmic
derivative of µ is infinitely differentiable, see [ADKS94] for details) with the property

∃q ∈ N , ∃{Cn ≥ 0, n ∈ N} : ∀ξ ∈ N∣∣∣∣∫ Dn
ξϕ dµ(x)

∣∣∣∣ ≤ Cn ‖ϕ‖L2(µ) |ξ|
n
q

where ϕ is any finitely based bounded C∞-function on N ′. This obviously establishes a
bound of the type

‖Qµ
n(ξ1 ⊗ · · · ⊗ ξn)‖L2(µ) ≤ C ′

n

n∏
j=1

|ξj|q , ξ1, . . . , ξn ∈ N , n ∈ N

which is sufficient to show (by means of kernel theorem) that there exists Qµ
n(x) ∈

(
N ⊗̂n

C

)′
for almost all x ∈ N ′ such that we have the representation

Qµ
n(ϕ(n))(x) = 〈Qµ

n(x), ϕ(n)〉 , ϕ(n) ∈ N ⊗̂n
C

for almost all x ∈ N ′. For any smooth kernel ϕ(n) ∈ N ⊗̂n
C we have then that the function

x 7→ 〈Qµ
n(x), ϕ(n)〉 = Qµ

n

(
ϕ(n)

)
(x)

belongs to L2(µ).
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Example 5 The simplest non trivial case can be studied using finite dimensional real
analysis. We consider R as our basic Hilbert space and as our nuclear space N . Thus the
nuclear “triple” is simply

R ⊆ R ⊆ R

and the dual pairing between a “test function” and a “distribution” degenerates to multi-
plication. On R we consider a measure dµ(x) = ρ(x) dx where ρ is a positive C∞–function
on R such that Assumptions 1 and 2 are fulfilled. In this setting the adjoint of the differ-
entiation operator is given by(

d

dx

)∗
f(x) = −

(
d
dx

+ β(x)
)
f(x) , f ∈ C1(R)

where the logarithmic derivative β of the measure µ is given by

β =
ρ′

ρ

This enables us to calculate the Qµ-system. One has

Qµ
n(x) =

((
d
dx

)∗)n
11 = (−1)n

(
d
dx

+ β(x)
)n

11

= (−1)nρ
(n)(x)

ρ(x)
.

The last equality can be seen by simple induction.
If ρ = 1√

2π
e−

1
2
x2

is the Gaussian density Qµ
n is related to the nth Hermite polynomial:

Qµ
n(x) = 2−n/2Hn

(
x√
2

)
.

Definition 17 We define the Qµ-system in P ′µ(N ′) by

Qµ =

{
Qµ

n(Φ(n))
∣∣∣ Φ(n) ∈

(
N ⊗̂n

C

)′
, n ∈ N0

}
,

and the pair (Pµ,Qµ) will be called the Appell system Aµ generated by the measure µ.

Now we are going to discuss the central property of the Appell system Aµ.

Theorem 18 (Biorthogonality w.r.t. µ)〈〈
〈Qµ

n(Φ(n)), 〈P µ
m, ϕ

(m)〉
〉〉

µ
= δm,n n! 〈Φ(n), ϕ(n)〉 (3.18)

for Φ(n) ∈
(
N ⊗̂n

C

)′
and ϕ(m) ∈ N ⊗̂m

C .
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Proof. It follows from (3.10) and (3.17) that〈〈
Qµ

n(Φ(n)), 〈P µ
m, ϕ

(m)〉
〉〉

µ
=

〈〈
11, D(Φ(n))〈P µ

m, ϕ
(m)〉

〉〉
µ

=
m!

(m− n)!
Eµ

(
〈P µ

(m−n)⊗̂Φ(n), ϕ(m)〉
)

= m! δm,n 〈Φ(m), ϕ(m)〉 .

2

Now we are going to characterize the space P ′µ(N ′)

Theorem 19 For all Φ ∈ P ′µ(N ′) there exists a unique sequence {Φ(n)| n ∈ N0}, Φ(n) ∈(
N ⊗̂n

C

)′
such that

Φ =
∞∑

n=0

Qµ
n(Φ(n)) ≡

∞∑
n=0

〈Qµ
n,Φ

(n)〉 (3.19)

and vice versa, every series of the form (3.19) generates a generalized function in P ′µ(N ′).

Proof. For Φ ∈ P ′µ(N ′) we can uniquely define Φ(n) ∈
(
N ⊗̂n

C

)′
by

〈Φ(n), ϕ(n)〉 =
1

n!
〈〈Φ, 〈P µ

n , ϕ
(n)〉〉〉µ , ϕ(n) ∈ N ⊗̂n

C

This definition is possible because 〈P µ
n , ϕ

(n)〉 ∈ P(N ′). The continuity of ϕ(n) 7→ 〈Φ(n), ϕ(n)〉
follows from the continuity of ϕ 7→ 〈〈Φ, ϕ〉〉 , ϕ ∈ P(N ′). This implies that ϕ 7→∑∞

n=0 n! 〈Φ(n), ϕ(n)〉 is continuous on P(N ′). This defines a generalized function in P ′µ(N ′),

which we denote by
∑∞

n=0Q
µ
n(Φ(n)). In view of Theorem 18 it is obvious that

Φ =
∞∑

n=0

Qµ
n(Φ(n)) .

To see the converse consider a series of the form (3.19) and ϕ ∈ P(N ′). Then there

exist ϕ(n) ∈ N ⊗̂n
C , n ∈ N and N ∈ N such that we have the representation

ϕ =
N∑

n=0

P µ
n (ϕ(n)) .

So we have 〈〈
∞∑

n=0

Qµ
n(Φ(n)), ϕ

〉〉
µ

:=
N∑

n=0

n! 〈Φ(n), ϕ(n)〉

because of Theorem 18. The continuity of ϕ 7→ 〈〈
∑∞

n=0Q
µ
n(Φ(n)), ϕ〉〉µ follows because

ϕ(n) 7→ 〈Φ(n), ϕ(n)〉 is continuous for all n ∈ N . 2
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3.3 Test functions on a linear space with measure

In this section we will construct the test function space (N )1 and study its properties. On
the space P(N ′) we can define a system of norms using the representation from Lemma
13. Let

ϕ =
N∑

n=0

〈P µ
n , ϕ

(n)〉 ∈ P(N ′)

be given, then ϕ(n) ∈ H⊗̂n
p,C for each p ≥ 0 (n ∈ N). Thus we may define for any p, q ∈ N a

Hilbertian norm on P(N ′) by

‖ϕ‖2p,q,µ =
N∑

n=0

(n!)2 2nq |ϕ(n)|2p

The completion of P(N ′) w.r.t. ‖·‖p,q,µ is called (Hp)
1
q,µ .

Definition 20 We define
(N )1

µ := pr lim
p,q∈N

(Hp)
1
q,µ .

This space has the following properties

Theorem 21 (N )1
µ is a nuclear space. The topology (N )1

µ is uniquely defined by the topol-
ogy on N : It does not depend on the choice of the family of norms {| · |p}.

Proof. Nuclearity of (N )1
µ follows essentially from that of N . For fixed p, q consider the

embedding
Ip′,q′,p,q : (Hp′)

1
q′,µ → (Hp)

1
q,µ

where p′ is chosen such that the embedding

ip′,p : Hp′ → Hp

is Hilbert–Schmidt. Then Ip′,q′,p,q is induced by

Ip′,q′,p,qϕ =
∞∑

n=0

〈P µ
n , i

⊗n
p′,pϕ

(n)〉 for ϕ =
∞∑

n=0

〈P µ
n , ϕ

(n)〉 ∈ (Hp′)
1
q′,µ .

Its Hilbert–Schmidt norm is easily estimated by using an orthonormal basis of (Hp′)
1
q′,µ.

The result is the bound

‖Ip′,q′,p,q‖2HS ≤
∞∑

n=0

2n(q−q′) ‖ip′,p‖2n
HS

which is finite for suitably chosen q′.
Let us assume that we are given two different systems of Hilbertian norms | · |p and | · |′k,

such that they induce the same topology on N . For fixed k and l we have to estimate
‖ · ‖′k,l,µ by ‖ · ‖p,q,µ for some p, q (and vice versa which is completely analogous). Since | · |′k
has to be continuous with respect to the projective limit topology on N , there exists p and
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a constant C such that |f |′k ≤ C |f |p, for all f ∈ N , i.e., the injection i from Hp into the
completion Kk of N with respect to | · |′k is a mapping bounded by C. We denote by i also
its linear extension from Hp, C into K k,C. It follows that i⊗n is bounded by Cn from H⊗n

p,C

into K⊗n
k,C. Now we choose q such that 2

q−l
2 ≥ C. Then

‖ · ‖′2k,l,µ =
∞∑

n=0

(n!)2 2nl | · |′2k

≤
∞∑

n=0

(n!)2 2nlC2n | · |2p

≤ ‖ · ‖2p,q,µ ,

which had to be proved. 2

Lemma 22 There exist p, C,K > 0 such that for all n∫
|P µ

n (x)|2−p dµ(x) ≤ (n!)2CnK (3.20)

Proof. The estimate (3.13) may be used for ρ ≤ 2−q0 and ρ ≤ 2εµ (εµ from Lemma 10).
This gives ∫

|P µ
n (x)|2−p dµ(x) ≤ (n!)2

(
e

ρ
‖ip,p0‖HS

)2n ∫
e2ρ|x|−p0dµ(x)

which is finite because of Lemma 10. 2

Theorem 23 There exist p′, q′ > 0 such that for all p ≥ p′, q ≥ q′ the topological embed-
ding (Hp)

1
q,µ ⊂ L2(µ) holds.

Proof. Elements of the space (N )1
µ are defined as series convergent in the given topology.

Now we need to study the convergence of these series in L2(µ). Choose q′ such that C > 2q′

(C from estimate (3.20)). Let us take an arbitrary

ϕ =
∞∑

n=0

〈P µ
n , ϕ

(n)〉 ∈ P(N ′)

For p > p′ (p′ as in Lemma 22 ) and q > q′ the following estimates hold

‖ϕ‖L2(µ) ≤
∞∑

n=0

∥∥〈P µ
n , ϕ

(n)〉
∥∥

L2(µ)

≤
∞∑

n=0

|ϕ(n)|−p ‖ |P µ
n |−p‖L2(µ)

≤ K
∞∑

n=0

n! 2nq/2
∣∣ϕ(n)

∣∣
−p

(C2−q)n/2

≤ K

(
∞∑

n=0

(C 2−q)n

) 1
2
(

∞∑
n=0

(n!)2 2qn
∣∣ϕ(n)

∣∣2
−p

) 1
2

= K
(
1− C 2−q

)−1/2 ‖ϕ‖p,q,µ .
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Taking the closure the inequality extends to the whole space (Hp)
1
q. 2

Corollary 24 (N )1
µ is continuously and densely embedded in L2(µ).

Example 6 (µ-exponentials as test functions)

The µ-exponential given in (3.6) has the following norm

||eµ(θ; ·)||2p,q,µ =
∞∑

n=0

2nq |θ|2n
p , θ ∈ NC

This expression is finite if and only if 2q|θ|2p < 1. Thus we have eµ(θ; ·) /∈ (N )1
µ if θ 6= 0.

But we have that eµ(θ; ·) is a test function of finite order i.e., eµ(θ; ·) ∈ (Hp)
1
q if 2q|θ|2p < 1.

This is in contrast to some useful spaces of test functions in Gaussian Analysis, see e.g.,
[BeKo88, HKPS93].

The set of all µ–exponentials {eµ(θ; ·) | 2q|θ|2p < 1, θ ∈ NC} is a total set in (Hp)
1
q. This

can been shown using the relation dneµ(0; ·)(θ1, ..., θn) = 〈P µ
n , θ1⊗̂ · · · ⊗̂θn〉.

Proposition 25 Any test function ϕ in (N )1
µ has a uniquely defined extension to N ′

C as
an element of E1

min (N ′
C)

Proof. Any element ϕ in (N )1
µ is defined as a series of the following type

ϕ =
∞∑

n=0

〈P µ
n , ϕ

(n)〉 , ϕ(n) ∈ N ⊗̂n
C

such that

‖ϕ‖2p,q,µ =
∞∑

n=0

(n!)2 2nq |ϕ(n)|2p

is finite for each p, q ∈ N . In this proof we will show the convergence of the series

∞∑
n=0

〈P µ
n (z), ϕ(n)〉, z ∈ H−p,C

to an entire function in z.
Let p > p0 such that the embedding ip,p0 : Hp ↪→ Hp0 is Hilbert-Schmidt. Then for all

0 < ε ≤ 2−q0/e ‖ip,p0‖HS we can use (3.11) and estimate as follows

∞∑
n=0

|〈P µ
n (z), ϕ(n)〉| ≤

∞∑
n=0

|P µ
n (z)|−p|ϕ(n)|p

≤ Cp,ε e
ε|z|−p

∞∑
n=0

n! |ϕ(n)|p ε−n

≤ Cp,ε e
ε|z|−p

(
∞∑

n=0

(n!)22nq|ϕ(n)|2p

)1/2( ∞∑
n=0

2−nqε−2n

)1/2

= Cp,ε

(
1− 2−qε−2

)−1/2 ‖ϕ‖p,q,µ eε|z|−p
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if 2q > ε−2. That means the series
∑∞

n=0〈P µ
n (z), ϕ(n)〉 converges uniformly and absolutely

in any neighborhood of zero of any space H−p,C . Since each term 〈P µ
n (z), ϕ(n)〉 is entire

in z the uniform convergence implies that z 7→
∑∞

n=0〈P µ
n (z), ϕ(n)〉 is entire on each H−p,C

and hence on N ′
C. This completes the proof. 2

The following corollary is an immediate consequence of the above proof and gives an
explicit estimate on the growth of the test functions.

Corollary 26 For all p > p0 such that the norm ‖ip,p0‖HS of the embedding is finite and
for all 0 < ε ≤ 2−q0/e ‖ip,p0‖HS we can choose q ∈ N such that 2q > ε−2 to obtain the
following bound.

|ϕ(z)| ≤ C ‖ϕ‖p,q,µ e
ε|z|−p , ϕ ∈ (N )1

µ, z ∈ H−p,C ,

where
C = Cp,ε

(
1− 2−qε−2

)−1/2
.

Let us look at Proposition 25 again. On one hand any function ϕ ∈ (N )1
µ can be

written in the form

ϕ(z) =
∞∑

n=0

〈P µ
n (x), ϕ(n)〉 , ϕ(n) ∈ N ⊗̂n

C , (3.21)

on the other hand it is entire, i.e., it has the representation

ϕ(z) =
∞∑

n=0

〈z⊗n, ϕ̃(n)〉 , ϕ̃(n) ∈ N ⊗̂n
C , (3.22)

To proceed further we need the explicit correspondence
{
ϕ(n), n ∈ N

}
←→

{
ϕ̃(n), n ∈ N

}
which is given in the next lemma.

Lemma 27 (Reordering)

Equations (3.21) and (3.22) hold iff

ϕ̃(k) =
∞∑

n=0

(
n+ k

k

)(
P µ

n (0), ϕ(n+k)
)
H⊗̂n

or equivalently

ϕ(k) =
∞∑

n=0

(
n+ k

k

)(
Mµ

n, ϕ̃
(n+k)

)
H⊗̂n

where
(
P µ

n (0), ϕ(n+k)
)
H⊗̂n and

(
Mµ

n, ϕ̃
(n+k)

)
H⊗̂n denote contractions defined by (3.16).

This is a consequence of (3.7) and (3.8). We omit the simple proof.

Proposition 25 states
(N )1

µ ⊆ E1
min(N ′)

as sets, where

E1
min(N ′) =

{
ϕ|N ′

∣∣∣ ϕ ∈ E1
min(N ′

C)
}
.

Corollary 26 then implies that the embedding is also continuous. Now we are going to
show that the converse also holds.
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Theorem 28 For all measures µ ∈Ma(N ′) we have the topological identity

(N )1
µ = E1

min(N ′) .

To prove the missing topological inclusion it is convenient to use the nuclear topology on
E1

min(N ′
C) (given by the norms |||·|||p,q,1) introduced in section 2. Theorem 6 ensures that

this topology is equivalent to the projective topology induced by the norms np,l,k. Then
the above theorem is an immediate consequence of the following norm estimate.

Proposition 29 Let p > pµ (pµ as in Lemma 10) such that
∥∥ip,pµ

∥∥
HS

is finite and q ∈ N
such that 2q/2 > Kp (Kp := eC

∥∥ip,pµ

∥∥
HS

as in (3.3)). For any ϕ ∈ E1
p,q the restriction

ϕ|N ′ is a function from (Hp)
1
q′,µ , q

′ < q. Moreover the following estimate holds

||ϕ||p,q′,µ ≤ |||ϕ|||p,q,1 (1− 2−q/2Kp)
−1(1− 2q′−q)−1/2 .

Proof. Let p, q ∈ N, Kp be defined as above. A function ϕ ∈ E1
p,q has the representation

(3.22). Using the Reordering lemma combined with (3.3) and∣∣ϕ̃(n)
∣∣
p
≤ 1

n!
2−nq/2 |||ϕ|||p,q,1

we obtain a representation of the form (3.21) where∣∣ϕ(n)
∣∣
p
≤

∞∑
k=0

(
n+ k

k

)
|Mµ

k |−p

∣∣ϕ̃(n+k)
∣∣
p

≤ |||ϕ|||p,q,1

∞∑
k=0

(
n+ k

k

)
k!

(n+ k)!
Kk

p 2−(n+k)q/2

≤ |||ϕ|||p,q,1

1

n!
2−nq/2

∞∑
k=0

(2−q/2Kp)
k

≤ |||ϕ|||p,q,1

1

n!
2−nq/2(1− 2−q/2Kp)

−1.

For q′ < q this allows the following estimate

||ϕ||2p,q′,µ =
∞∑

n=0

(n!)2 2q′n |ϕ(n)|2p

≤ |||ϕ|||2p,q,1 (1− 2−q/2Kp)
−2

∞∑
k=0

2n(q′−q) <∞

This completes the proof. 2

Since we now have proved that the space of test functions (N )1
µ is isomorphic to E1

min(N ′)
for all measures µ ∈ Ma(N ′), we will now drop the subscript µ. The test function space
(N )1 is the same for all measures µ ∈Ma(N ′).

Corollary 30 (N )1 is an algebra under pointwise multiplication.

Corollary 31 (N )1 admits ‘scaling’ i.e., for λ ∈ C the scaling operator σλ : (N )1 → (N )1

defined by σλϕ(x) := ϕ(λx), ϕ ∈ (N )1, x ∈ N ′ is well–defined.

Corollary 32 For all z ∈ N ′
C the space (N )1 is invariant under the shift operator τz :

ϕ 7→ ϕ(·+ z).
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3.4 Distributions

In this section we will introduce and study the space (N )−1
µ of distributions corresponding

to the space of test functions (N )1. Since P(N ′) ⊂ (N )1 the space (N )−1
µ can be viewed

as a subspace of P ′µ(N ′)

(N )−1
µ ⊂ P ′µ(N ′)

Let us now introduce the Hilbertian subspace (H−p)
−1
−q,µ of P ′µ(N ′) for which the norm

‖Φ‖2−p,−q,µ :=
∞∑

n=0

2−qn
∣∣Φ(n)

∣∣2
−p

is finite. Here we used the canonical representation

Φ =
∞∑

n=0

Qµ
n(Φ(n)) ∈ P ′µ(N ′)

from Theorem 19. The space (H−p)
−1
−q,µ is the dual space of (Hp)

1
q with respect to L2(µ)

(because of the biorthogonality of P−and Q−systems). By general duality theory

(N )−1
µ :=

⋃
p,q∈N

(H−p)
−1
−q,µ

is the dual space of (N )1 with respect to L2(µ). As we noted in section 2 there exists a
natural topology on co-nuclear spaces (which coincides with the inductive limit topology).
We will consider (N )−1

µ as a topological vector space with this topology. So we have the
nuclear triple

(N )1 ⊂ L2(µ) ⊂ (N )−1
µ .

The action of Φ =
∑∞

n=0Q
µ
n(Φ(n)) ∈ (N )−1

µ on a test function ϕ =
∑∞

n=0〈P µ
n , ϕ

(n)〉 ∈ (N )1

is given by

〈〈Φ, ϕ〉〉µ =
∞∑

n=0

n!〈Φ(n), ϕ(n)〉 .

For a more detailed characterization of the singularity of distributions in (N )−1
µ we will

introduce some subspaces in this distribution space. For β ∈ [0, 1] we define

(H−p)
−β
−q,µ =

{
Φ ∈ P ′µ(N ′)

∣∣∣ ∞∑
n=0

(n!)1−β2−qn
∣∣Φ(n)

∣∣2
−p
<∞ for Φ =

∞∑
n=0

Qµ
n(Φ(n))

}

and
(N )−β

µ =
⋃

p,q∈N

(H−p)
−β
−q,µ ,

It is clear that the singularity increases with increasing β:

(N )−0 ⊂ (N )−β1 ⊂ (N )−β2 ⊂ (N )−1

if β1 ≤ β2.We will also consider (N )β
µ as equipped with the natural topology.
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Example 7 (Generalized Radon–Nikodym derivative)

We want to define a generalized function ρµ(z, ·) ∈ (N )−1
µ , z ∈ N ′

C with the following
property

〈〈ρµ(z, ·), ϕ〉〉µ =

∫
N ′
ϕ(x− z) dµ(x) , ϕ ∈ (N )1 .

That means we have to establish the continuity of ρµ(z, ·). Let z ∈ H−p,C. If p′ ≥ p is
sufficiently large and ε > 0 small enough, Corollary 26 applies i.e., ∃q ∈ N and C > 0 such
that ∣∣∣∣∫

N ′
ϕ(x− z)dµ(x)

∣∣∣∣ ≤ C ‖ϕ‖p′,q,µ

∫
N ′
eε|x−z|−p′dµ(x)

≤ C ‖ϕ‖p′,q,µ e
ε|z|−p′

∫
N ′
eε|x|−p′dµ(x)

If ε is chosen sufficiently small the last integral exists. Thus we have in fact ρ(z, ·) ∈ (N )−1
µ .

It is clear that whenever the Radon–Nikodym derivative dµ(x+ξ)
dµ(x)

exists (e.g., ξ ∈ N in case

µ is N -quasi-invariant) it coincides with ρµ(ξ, ·) defined above. We will now show that in
(N )−1

µ we have the canonical expansion

ρµ(z, ·) =
∞∑

n=0

1

n!
(−1)nQµ

n(z⊗n).

It is easy to see that the r.h.s. defines an element in (N )−1
µ . Since both sides are in (N )−1

µ

it is sufficient to compare their action on a total set from (N )1. For ϕ(n) ∈ N ⊗̂n
C we have〈〈

ρµ(z, ·), 〈P µ
n , ϕ

(n)〉
〉〉

µ
=

∫
N ′
〈P µ

n (x− z), ϕ(n)〉 dµ(x)

=
∞∑

k=0

(
n

k

)
(−1)n−k

∫
N ′
〈P µ

k (x)⊗̂z⊗n−k, ϕ(n)〉 dµ(x)

= (−1)n〈z⊗n, ϕ(n)〉

=

〈〈
∞∑

k=0

1

k!
(−1)kQµ

k(z⊗k), 〈P µ
n , ϕ

(n)〉

〉〉
µ

,

where we have used (3.9), (3.10) and the biorthogonality of P- and Q-systems. This had
to be shown. In other words, we have proven that ρµ(−z, ·) is the generating function of
the Q-functions

ρµ(−z, ·) =
∞∑

n=0

1

n!
Qµ

n(z⊗n) . (3.23)

Let use finally remark that the above expansion allows for more detailed estimates. It is
easy to see that ρµ ∈ (N )−0

µ .

Example 8 (Delta distribution)

For z ∈ N ′
C we define a distribution by the following Q-decomposition:

δz =
∞∑

n=0

1

n!
Qµ

n(P µ
n (z))
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If p ∈ N is large enough and ε > 0 sufficiently small there exists Cp,ε > 0 according to
(3.11) such that

‖δz‖2−p,−q,µ =
∞∑

n=0

(n!)−22−nq |P µ
n (z)|2−p

≤ C2
p,ε e

2ε|z|−p

∞∑
n=0

2−nqε−2n , z ∈ H−p,C ,

which is finite for sufficiently large q ∈ N. Thus δz ∈ (N )−1
µ .

For ϕ =
∑∞

n=0〈P µ
n , ϕ

(n)〉 ∈ (N )1 the action of δz is given by

〈〈δz, ϕ〉〉µ =
∞∑

n=0

〈P µ
n (z), ϕ(n)〉 = ϕ(z)

because of (3.18). This means that δz (in particular for z real) plays the role of a “δ-
function” (evaluation map) in the calculus we discuss.

3.5 Integral transformations

We will first introduce the Laplace transform of a function ϕ ∈ L2(µ). The global
assumption µ ∈ Ma(N ′) guarantees the existence of p′µ ∈ N , εµ > 0 such that∫
N ′ exp(εµ|x|−p′µ) dµ(x) < ∞ by Lemma 10. Thus exp(〈x, θ〉) ∈ L2(µ) if 2|θ|p′µ ≤ εµ , θ ∈
Hp′µ,C. Then by Cauchy–Schwarz inequality the Laplace transform defined by

Lµϕ(θ) :=

∫
N ′
ϕ(x) exp〈x, θ〉 dµ(x)

is well defined for ϕ ∈ L2(µ) , θ ∈ Hp′µ,C with 2|θ|p′µ ≤ εµ. Now we are interested to extend
this integral transform from L2(µ) to the space of distributions (N )−1

µ .
Since our construction of test function and distribution spaces is closely related to P-

and Q-systems it is useful to introduce the so called Sµ-transform

Sµϕ(θ) :=
Lµϕ(θ)

lµ(θ)
.

Since eµ(θ;x) = e〈x,θ〉/lµ(θ) we may also write

Sµϕ(θ) =

∫
N ′
ϕ(x) eµ(θ;x) dµ(x) .

The µ-exponential eµ(θ, ·) is not a test function in (N )1, see Example 6 . So the definition
of the Sµ-transform of a distribution Φ ∈ (N )−1

µ must be more careful. Every such Φ is

of finite order i.e., ∃p, q ∈ N such that Φ ∈ (H−p)
−1
−q,µ. As shown in Example 6 eµ(θ, ·) is

in the corresponding dual space (Hp)
1
q,µ if θ ∈ Hp,C is such that 2q|θ|2p < 1. Then we can

define a consistent extension of Sµ-transform.

SµΦ(θ) := 〈〈Φ, eµ(θ, ·)〉〉µ
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if θ is chosen in the above way. The biorthogonality of P- and Q-system implies

SµΦ(θ) =
∞∑

n=0

〈Φ(n), θ⊗n〉 .

It is easy to see that the series converges uniformly and absolutely on any closed ball{
θ ∈ Hp,C| |θ|2p ≤ r, r < 2−q

}
, see the proof of Theorem 35. Thus SµΦ is holomorphic a

neighborhood of zero, i.e., SµΦ ∈ Hol0(NC). In the next section we will discuss this relation
to the theory of holomorphic functions in more detail.

The third integral transform we are going to introduce is more appropriate for the
test function space (N )1. We introduce the convolution of a function ϕ ∈ (N )1 with the
measure µ by

Cµϕ(y) :=

∫
N ′
ϕ(x+ y) dµ(x), y ∈ N ′.

From Example 7 the existence of a generalized Radon–Nikodym derivative ρµ(z, ·), z ∈ N ′
C

in (N )−1
µ is guaranteed. So for any ϕ ∈ (N )1, z ∈ N ′

C the convolution has the representation

Cµϕ(z) = 〈〈ρµ(−z, ·), ϕ〉〉µ .

If ϕ ∈ (N )1 has the canonical representation

ϕ =
∞∑

n=0

〈P µ
n , ϕ

(n)〉

we have by equation (3.23)

Cµϕ(z) =
∞∑

n=0

〈z⊗n, ϕ(n)〉 .

In Gaussian Analysis Cµ- and Sµ-transform coincide. It is a typical non-Gaussian effect
that these two transformations differ from each other.

3.6 Characterization theorems

Gaussian Analysis has shown that for applications it is very useful to characterize test and
distribution spaces by the integral transforms introduced in the previous section. In the
non-Gaussian setting first results in this direction have been obtained by [AKS93, ADKS94].

We will start to characterize the space (N )1 in terms of the convolution Cµ.

Theorem 33 The convolution Cµ is a topological isomorphism from (N )1 on E1
min(N ′

C).

Remark. Since we have identified (N )1 and E1
min(N ′) by Theorem 28 the above

assertion can be restated as follows. We have

Cµ : E1
min(N ′)→ E1

min(N ′
C)

as a topological isomorphism.
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Proof. The proof has been well prepared by Theorem 6, because the nuclear topology
on E1

min(N ′
C) is the most natural one from the point of view of the above theorem. Let

ϕ ∈ (N )1 with the representation

ϕ =
∞∑

n=0

〈P µ
n , ϕ

(n)〉 .

From the previous section it follows

Cµϕ(z) =
∞∑

n=0

〈z⊗n, ϕ(n)〉

It is obvious from (2.2) that
|||Cµϕ|||p,q,1 = ‖ϕ‖p,q,µ

for all p, q ∈ N0, which proves the continuity of

Cµ : (N )1 → E1
min(N ′

C) .

Conversely let F ∈ E1
min(N ′

C). Then Theorem 6 ensures the existence of a sequence of
generalized kernels

{
ϕ(n) ∈ N ′

C | n ∈ N0

}
such that

F (z) =
∞∑

n=0

〈z⊗n, ϕ(n)〉 .

Moreover for all p, q ∈ N0

|||F |||2p,q,1 =
∞∑

n=0

(n!)2 2nq
∣∣ϕ(n)

∣∣2
p

is finite. Choosing

ϕ =
∞∑

n=0

〈P µ
n , ϕ

(n)〉

we have ‖ϕ‖p,q,µ = |||F |||p,q,1. Thus ϕ ∈ (N )1. Since Cµϕ = F we have shown the existence
and continuity of the inverse of Cµ. 2

To illustrate the above theorem in terms of the natural topology on E1
min(N ′

C) we will re-
formulate the above theorem and add some useful estimates which relate growth in E1

min(N ′
C)

to norms on (N )1.

Corollary 34
1) Let ϕ ∈ (N )1 then for all p, l ∈ N0 and z ∈ H−p,C the following estimate holds

|Cµϕ(z)| ≤ ‖ϕ‖p,2l,µ exp(2−l|z|−p)

i.e., Cµϕ ∈ E1
min(N ′

C).

2) Let F ∈ E1
min(N ′

C). Then there exists ϕ ∈ (N )1 with Cµϕ = F . The estimate

|F (z)| ≤ C exp(2−l|z|−p)

for C > 0, p, q ∈ N0 implies

‖ϕ‖p′,q,µ ≤ C
(
1− 2q−2le2 ‖ip′,p‖2HS

)−1/2

if the embedding ip′,p : Hp′ ↪→ Hp is Hilbert-Schmidt and 2l−q/2 > e ‖ip′,p‖HS.
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Proof. The first statement follows from

|Cµϕ(z)| ≤ np,l,1(Cµϕ) · exp(2−l|z|−p)

which follows from the definition of np,l,1 and estimate (2.3). The second statement is an
immediate consequence of Lemma 8. 2

The next theorem characterizes distributions from (N )−1
µ in terms of Sµ-transform.

Theorem 35 The Sµ-transform is a topological isomorphism from (N )−1
µ on Hol0(NC).

Remark. The above theorem is closely related to the second part of Theorem 9. Since
we left the proof open we will give a detailed proof here.

Proof. Let Φ ∈ (N )−1
µ . Then there exists p, q ∈ N such that

‖Φ‖2−p,−q,µ =
∞∑

n=0

2−nq|Φ(n)|2−p

is finite. From the previous section we have

SµΦ(θ) =
∞∑

n=0

〈Φ(n), θ⊗n〉 . (3.24)

For θ ∈ NC such that 2q|θ|2p < 1 we have by definition (Formula (2.2))

|||SµΦ|||−p,−q,−1 = ‖Φ‖−p,−q,µ .

By Cauchy–Schwarz inequality

|SµΦ(θ)| ≤
∞∑

n=0

|Φ(n)|−p|θ|np

≤

(
∞∑

n=0

2−nq|Φ(n)|2−p

)1/2( ∞∑
n=0

2nq|θ|2n
p

)1/2

= ‖Φ‖−p,−q,µ

(
1− 2q|θ|2p

)−1/2
.

Thus the series (3.24) converges uniformly on any closed ball
{
θ ∈ Hp,C| |θ|2p ≤ r, r < 2−q

}
.

Hence SµΦ ∈ Hol0(NC) and

np,l,∞(SµΦ) ≤ ‖Φ‖−p,−q,µ (1− 2q−2l)−1/2

if 2l > q. This proves that Sµ is a continuous mapping from (N )−1
µ to Hol0(NC). In the

language of section 2.2 this reads

ind lim
p,q∈N

E−1
−p,−q ⊂ Hol0(NC)

topologically.
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Conversely, let F ∈ Hol0(NC) be given, i.e., there exist p, l ∈ N such that np,l,∞(F ) <∞.
The first step is to show that there exists p′, q ∈ N such that

|||F |||−p′,−q,−1 < np,l,∞(F ) · C ,

for sufficiently large C > 0. This implies immediately

Hol0(NC) ⊂ ind lim
p,q∈N

E−1
−p,−q

topologically, which is the missing part in the proof of the second statement in Theorem 9.
By assumption the Taylor expansion

F (θ) =
∞∑

n=0

1

n!
d̂nF (0)(θ)

converges uniformly on any closed ball
{
θ ∈ Hp,C| |θ|2p ≤ r, r < 2−l

}
and

|F (θ)| ≤ np,l,∞(F ) .

Proceeding analogously to Lemma 7, an application of Cauchy’s inequality gives

1

n!
d̂nF (0)(θ) ≤ 2l|θ|np sup

|θ|p≤2−l

|F (θ)|

≤ np,l,∞(F ) · 2nl · |θ|np

The polarization identity gives∣∣∣∣ 1

n!
dnF (0)(θ1, . . . , θn)

∣∣∣∣ ≤ np,l,∞(F ) · en · 2nl

n∏
j=1

|θj|p

Then by kernel theorem (Theorem 3) there exist kernels Φ(n) ∈ H⊗̂n
−p′,C for p′ > p with

‖ip′,p‖HS <∞ such that

F (θ) =
∞∑

n=0

〈Φ(n), θ⊗n〉 .

Moreover we have the following norm estimate∣∣Φ(n)
∣∣
−p′
≤ np,l,∞(F )

(
2le ‖ip′,p‖HS

)n
Thus

|||F |||2−p′,−q,−1 =
∞∑

n=0

2−nq
∣∣Φ(n)

∣∣2
−p′

≤ n2
p,l,∞(F )

∞∑
n=0

(
22l−qe2 ‖ip′,p‖2HS

)n
= n2

p,l,∞(F )
(
1− 22l−qe2 ‖ip′,p‖2HS

)−1
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if q ∈ N is such that ρ := 22l−qe2 ‖ip′,p‖2HS < 1. So we have in fact

|||F |||−p′,−q,−1 ≤ np,l,∞(F )(1− ρ)−1/2.

Now the rest is simple. Define Φ ∈ (N )−1
µ by

Φ =
∞∑

n=0

Qµ
n(Φ(n))

then SµΦ = F and

‖Φ‖−p′,−q,µ = |||F |||−p′,−q,−1

This proves the existence of a continuous inverse of the Sµ–transform. Uniqueness of Φ
follows from the fact that µ-exponentials are total in any (Hp)

1
q. 2

We can extract some useful estimates from the above proof which describe the degree
of singularity of a distribution.

Corollary 36 Let F ∈ Hol0(NC) be holomorphic for all θ ∈ NC with |θ|p ≤ 2−l. If p′ > p
with ‖ip′,p‖HS < ∞ and q ∈ N is such that ρ := 22l−qe2 ‖ip′,p‖2HS < 1. Then Φ ∈ (H−p′)

−1
−q

and

‖Φ‖−p′,−q,µ ≤ np,l,∞(F ) · (1− ρ)−1/2.

For a more detailed discussion of the degree of singularity the spaces (N )−β, β ∈ [0, 1)
are useful. In the following theorem we will characterize these spaces by means of Sµ-
transform.

Theorem 37 The Sµ-transform is a topological isomorphism from (N )−β
µ , β ∈ [0, 1) on

E2/(1−β)
max (NC).

Remark. The proof will also complete the proof of Theorem 9.

Proof. Let Φ ∈ (H−p)
−β
−q,µ with the canonical representation Φ =

∑∞
n=0Q

µ
n(Φ(n)) be

given. The Sµ-transform of Φ is given by

SµΦ(θ) =
∞∑

n=0

〈Φ(n), θ⊗n〉.

Hence

|||SµΦ|||2−p,−q,−β =
∞∑

n=0

(n!)1−β 2−nq|Φ(n)|2−p

is finite. We will show that there exist l ∈ N and C < 0 such that

n−p,−l,2/(1−β)(SµΦ) ≤ C |||SµΦ|||−p,−q,−β .
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We can estimate as follows

|SµΦ(θ)| ≤
∞∑

n=0

∣∣Φ(n)
∣∣
−p
|θ|np

≤

(
∞∑

n=0

(n!)1−β2−nq|Φ(n)|2−p

)1/2( ∞∑
n=0

1

(n!)1−β
2nq |θ|2n

p

)1/2

= |||SµΦ|||−p,−q,−β

(
∞∑

n=0

ρnβ · 1

(n!)1−β
2nqρ−nβ |θ|2n

p ·

)1/2

,

where we have introduced a parameter ρ ∈ (0, 1). An application of Hölder’s inequality for
the conjugate indices 1

β
and 1

1−β
gives

|SµΦ(θ)| ≤ |||SµΦ|||−p,−q,−β

(
∞∑

n=0

ρn

)β/2

·

(
∞∑

n=0

1

n!

(
2qρ−β|θ|2p

) n
1−β

) 1−β
2

= |||SµΦ|||−p,−q,−β (1− ρ)−β/2 exp

(
1−β

2
2

q
1−β ρ−

β
1−β |θ|

2
1−β
p

)
If l ∈ N is such that

2l− q
1−β > 1−β

2
ρ−

β
1−β

we have

n−p,−l,2/(1−β)(SµΦ) = sup
θ∈Hp,C

|SµΦ(θ)| exp
(
−2l|θ|2/(1−β)

p

)
≤ (1− ρ)−β/2 |||SµΦ|||−p,−q,−β

This shows that Sµ is continuous from (N )−β
µ to E2/(1−β)

max (NC). Or in the language of
Theorem 9

ind lim
p,q∈N

E−β
−p,−q ⊂ E2/(1−β)

max (NC)

topologically.

The proof of the inverse direction is closely related to the proof of Lemma 8. So we will
be more sketchy in the following.
Let F ∈ Ek

max(NC), k = 2
1−β

. Hence there exist p, l ∈ N0 such that

|F (θ)| ≤ n−p,−l,k(F ) exp(2l|θ|kp) , θ ∈ NC

From this we have completely analogous to the proof of Lemma 8 by Cauchy inequality
and kernel theorem the representation

F (θ) =
∞∑

n=0

〈Φ(n), θ⊗n〉

and the bound ∣∣Φ(n)
∣∣
−p′
≤ n−p,−l,k(F ) (n!)−1/k

{
(k2l)1/ke ‖ip′,p‖HS

}n
,
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where p′ > p is such that ip′,p : Hp′ ↪→ Hp is Hilbert–Schmidt. Using this we have

|||F |||2−p′,−q,−β =
∞∑

n=0

(n!)1−β2−qn
∣∣Φ(n)

∣∣2
−p′

≤ n2
−p,−l,k(F )

∞∑
n=0

(n!)1−β−2/k2−qn
{
(k2l)1/ke ‖ip′,p‖HS

}2n

≤ n2
−p,−l,k(F )

∞∑
n=0

ρn

where we have set ρ := 2−q+2l/kk2/ke2 ‖ip′,p‖2HS . If q ∈ N is chosen large enough such that
ρ < 1 the sum on the right hand side is convergent and we have

|||F |||−p′,−q,−β ≤ n−p,−l,2/(1−β)(F ) · (1− ρ)−1/2 . (3.25)

That means
E2/(1−β)

max (NC) ⊂ ind lim
p,q∈N0

E−β
−p,−q

topologically.
If we set

Φ :=
∞∑

n=0

Qµ
n(Φ(n))

then SµΦ = F and Φ ∈ (H−p′)
−β
−q since

∞∑
n=0

(n!)1−β2−qn|Φ(n)|2−p′

is finite. Hence
Sµ : (N )−β

µ → E2/(1−β)
max (NC)

is one to one. The continuity of the inverse mapping follows from the norm estimate
(3.25). 2

3.7 The Wick product

In Gaussian Analysis it has been shown that (N )−1
γH

(and other distribution spaces) is closed
under so called Wick multiplication (see [KLS94] and [BeS95, Øk94, Va95] for applications).
This concept has a natural generalization to the present setting.

Definition 38 Let Φ,Ψ ∈ (N )−1
µ . Then we define the Wick product Φ �Ψby

Sµ(Φ �Ψ) = SµΦ · SµΨ .

This is well defined because Hol0(NC) is an algebra and thus by the characterization
Theorem 35 there exists an element Φ �Ψ ∈ (N )−1

µ such that Sµ(Φ �Ψ) = SµΦ · SµΨ.
By definition we have

Qµ
n(Φ(n)) �Qµ

m(Ψ(m)) = Qµ
n+m(Φ(n)⊗̂Ψ(m)) ,
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Φ(n) ∈ (N ⊗̂n
C )′ and Ψ(m) ∈ (N ⊗̂m

C )′. So in terms of Q–decompositions Φ =
∑∞

n=0Q
µ
n(Φ(n))

and Ψ =
∑∞

n=0Q
µ
n(Ψ(n)) the Wick product is given by

Φ �Ψ =
∞∑

n=0

Qµ
n(Ξ(n))

where

Ξ(n) =
n∑

k=0

Φ(k)⊗̂Ψ(n−k)

This allows for concrete norm estimates.

Proposition 39 The Wick product is continuous on (N )−1
µ . In particular the following

estimate holds for Φ ∈ (H−p1)
−1
−q1,µ , Ψ ∈ (H−q2)

−1
−q2

and p = max(p1, p2), q = q1 + q2 + 1

‖Φ �Ψ‖−p,−q,µ = ‖Φ‖−p1,−q1,µ ‖Ψ‖−p2,−q2,µ .

Proof. We can estimate as follows

‖Φ �Ψ‖2−p,−q,µ =
∞∑

n=0

2−nq
∣∣Ξ(n)

∣∣2
−p

=
∞∑

n=0

2−nq

(
n∑

k=0

∣∣Φ(k)
∣∣
−p

∣∣Ψ(n−k)
∣∣
−p

)2

≤
∞∑

n=0

2−nq (n+ 1)
n∑

k=0

∣∣Φ(k)
∣∣2
−p

∣∣Ψ(n−k)
∣∣2
−p

≤
∞∑

n=0

n∑
k=0

2−nq1
∣∣Φ(n)

∣∣2
−p

2−nq2
∣∣Ψ(n−k)

∣∣2
−p

≤

(
∞∑

n=0

2−nq1
∣∣Φ(k)

∣∣2
−p1

)(
∞∑

n=0

2−nq2
∣∣Ψ(n)

∣∣2
−p2

)
= ‖Φ‖2−p1,−q1,µ ‖Ψ‖

2
−p2,−q2,µ .

2

Similar to the Gaussian case the special properties of the space (N )−1
µ allow the defini-

tion of Wick analytic functions under very general assumptions. This has proven to be of
some relevance to solve equations e.g., of the type Φ�X = Ψ for X ∈ (N )−1

µ . See [KLS94]
for the Gaussian case.

Theorem 40 Let F : C→ C be analytic in a neighborhood of the point z0 = Eµ(Φ) , Φ ∈
(N )−1

µ . Then F �(Φ) defined by Sµ(F �(Φ)) = F (SµΦ) exists in (N )−1 .
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Proof. By the characterization Theorem 35 SµΦ ∈ Hol0(NC). Then F (SµΦ) ∈ Hol0(NC)
since the composition of two analytic functions is also analytic. Again by characterization
Theorem we find F �(Φ) ∈ (N )−1

µ . 2

Remark. If F (z) =
∑∞

n=0 ak(z − z0)
n then the Wick series

∑∞
n=0 ak(Φ− z0)

�n (where
Ψ�n = Ψ � . . . �Ψ n-times converges in (N )−1 and F �(Φ) =

∑∞
n=0 ak(Φ− z0)

�n holds.

Example 9 The above mentioned equation Φ�X = Ψ can be solved if Eµ(Φ) = SµΦ(0) 6=
0. That implies (SµΦ)−1 ∈ Hol0(NC). Thus Φ�(−1) = S−1

µ ((SµΦ)−1) ∈ (N )−1
µ . Then

X = Φ�(−1) �Ψ is the solution in (N )−1
µ . For more instructive examples we refer the reader

to [KLS94].

3.8 Positive distributions

In this section we will characterize the positive distributions in (N )−1
µ . We will prove that

the positive distributions can be represented by measures in Ma(N ′). In the case of the
Gaussian Hida distribution space (S)′ similar statements can be found in works of Kon-
dratiev [Ko80a, b] and Yokoi [Yok90, Yok93], see also [Po87] and [Lee91]. In the Gaussian
setting also the positive distributions in (N )−1 have been discussed, see [KoSW95].

Since (N )1 = E1
min(N ′) we say that ϕ ∈ (N )1 is positive (ϕ ≥ 0) if and only if ϕ(x) ≥ 0

for all x ∈ N ′.

Definition 41 An element Φ ∈ (N )−1
µ is positive if for any positive ϕ ∈ (N )1 we have

〈〈Φ, ϕ〉〉µ ≥ 0 . The cone of positive elements in (N )−1
µ is denoted by (N )−1

µ,+.

Theorem 42 Let Φ ∈ (N )−1
µ,+ . Then there exists a unique measure ν ∈ Ma(N ′) such

that ∀ϕ ∈ (N )1

〈〈Φ, ϕ〉〉µ =

∫
N ′
ϕ(x) dν(x) . (3.26)

Vice versa, any (positive) measure ν ∈Ma(N ′) defines a positive distribution Φ ∈ (N )−1
µ,+

by (3.26).

Remarks.

1. For a given measure ν the distribution Φ may be viewed as the generalized Radon-
Nikodym derivative dν

dµ
of ν with respect to µ. In fact if ν is absolutely continuous with

respect to µ then the usual Radon-Nikodym derivative coincides with Φ.

2. Note that the cone of positive distributions generates the same set of measuresMa(N ′)
for all initial measures µ ∈ Ma(N ′).

Proof. To prove the first part we define moments of a distribution Φ and give bounds
on their growth. Using this we construct a measure ν which is uniquely defined by given
moments∗. The next step is to show that any test functional ϕ ∈ (N )1 is integrable with
respect to ν.

∗Since the algebra of exponential functions is not contained in (N )1µ we cannot use Minlos’ theorem to
construct the measure. This was the method used in Yokoi’s work [Yok90].
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Since P(N ′) ⊂ (N )1 we may define moments of a positive distribution Φ ∈ (N )−1
µ by

Mn(ξ1, ..., ξn) =

〈〈
Φ,

n∏
j=1

〈·, ξj〉

〉〉
µ

, n ∈ N, ξj ∈ N , 1 ≤ j ≤ n

M0 = 〈〈Φ, 11〉〉 .

We want to get estimates on the moments. Since Φ ∈ (H−p)
−1
−q,µ for some p, q > 0 we may

estimate as follows∣∣∣〈〈Φ,

〈
x⊗n,

n⊗
j=1

ξj

〉〉〉
µ

∣∣∣ ≤ ‖Φ‖−p,−q,µ

∥∥∥∥∥
〈
x⊗n,

n⊗
j=1

ξj

〉∥∥∥∥∥
p,q,µ

.

To proceed we use the property (3.8) and the estimate (3.3) to obtain∥∥∥∥∥
〈
x⊗n,

n⊗
j=1

ξj

〉∥∥∥∥∥
2

p,q,µ

=
n∑

k=0

(
n

k

)2
∥∥∥∥∥
〈
P µ

k ⊗̂Mµ
n−k,

n⊗
j=1

ξj

〉∥∥∥∥∥
2

p,q,µ

≤
n∑

k=0

(
n

k

)2

(k!)2 2kq |Mµ
n−k|

2
−p

n∏
j=1

|ξj|2p

=
n∏

j=1

|ξj|2p
n∑

k=0

(
n

k

)2

(k!)2 ((n− k)!)2K2(n−k)2kq

≤
n∏

j=1

|ξj|2p (n!)2 2nq

n∑
k=0

2−(n−k)qK2(n−k)

≤
n∏

j=1

|ξj|2p (n!)2 2nq

∞∑
k=0

2−kqK2k

which is finite for p, q large enough. Here K is determined by equation (3.3).
Then we arrive at ∣∣∣Mn(ξ1, ...ξn)

∣∣∣ ≤ K Cn n!
n∏

j=1

|ξj|p (3.27)

for some K,C > 0.
Due to the kernel theorem 3 we then have the representation

Mn(ξ1, ...ξn) =
〈
M(n), ξ1 ⊗ ...⊗ ξn

〉
,

where M(n) ∈ (N ⊗̂n)′. The sequence
{
M(n), n ∈ N0

}
has the following property of positiv-

ity: for any finite sequence of smooth kernels
{
g(n), n ∈ N

}
(i.e., g(n) ∈ N ⊗̂n and g(n) = 0

∀ n ≥ n0 for some n0 ∈ N) the following inequality is valid

n0∑
k,j

〈
M(k+j) , g(k) ⊗ g(j)

〉
≥ 0 . (3.28)

This follows from the fact that the left hand side can be written as 〈〈Φ, |ϕ|2〉〉 with

ϕ(x) =

n0∑
n=0

〈
x⊗n, g(n)

〉
, x ∈ N ′ ,
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which is a smooth polynomial. Following [BS71, BeKo88] inequalities (3.27) and (3.28) are
sufficient to ensure the existence of a uniquely defined measure ν on (N ′, Cσ(N ′)), such
that for any ϕ ∈ P(N ′) we have

〈〈Φ, ϕ〉〉µ =

∫
N ′
ϕ(x) dν(x) .

From estimate (3.27) we know that ν ∈ Ma(N ′). Then Lemma 10 shows that there
exists ε > 0 , p ∈ N such that exp(ε|x|−p) is ν−integrable. Corollary 26 then implies that
each ϕ ∈ (N )1 is ν-integrable.

Conversely let ν ∈ Ma(N ′) be given. Then the same argument shows that each ϕ ∈
(N )1 is ν-integrable and from Corollary 26 we know that∣∣∣∣∫

N ′
ϕ(x)dν(x)

∣∣∣∣ ≤ C ‖ϕ‖p,q,µ

∫
N ′

exp(ε|x|−p) dν(x)

for some p, q ∈ N , C > 0. Thus the continuity of ϕ 7→
∫
N ′ ϕ dν is established, showing

that Φ defined by equation (3.26) is in (N )−1
µ,+. 2

3.9 Change of measure

Suppose we are given two measures µ, µ̂ ∈ Ma(N ′) both satisfying Assumption 2. Let a
distribution Φ̂ ∈ (N )−1

µ̂ be given. Since the test function space (N )1 is invariant under
changes of measures in view of Theorem 28, the continuous mapping

ϕ 7→ 〈〈Φ̂, ϕ〉〉µ̂ , ϕ ∈ (N )1

can also be represented as a distribution Φ ∈ (N )−1
µ . So we have the implicit relation

Φ ∈ (N )−1
µ ↔ Φ̂ ∈ (N )−1

µ̂ defined by

〈〈Φ̂, ϕ〉〉µ̂ = 〈〈Φ, ϕ〉〉µ .

This section will provide formulae which make this relation more explicit in terms of re-
decomposition of the Q-series. First we need an explicit relation of the corresponding
P-systems.

Lemma 43 Let µ, µ̂ ∈Ma(N ′) then

P µ
n (x) =

∑
k+l+m=n

n!

k! l!m!
P µ̂

k (x)⊗̂P µ
l (0)⊗̂Mµ

m .

Proof. Expanding each factor in the formula

eµ(θ, x) = eµ̂(θ, x)l−1
µ (θ)lµ̂(θ) ,

we obtain
∞∑

n=0

1

n!
〈P µ

n (x), θ⊗n〉 =
∞∑

k,l,m=0

1

k! l!m!
〈P µ

k (x)⊗ P µ̂
l (0)⊗Mµ

m, θ
⊗(k+l+m)〉 .

A comparison of coefficients gives the above result. 2

An immediate consequence is the next reordering lemma.
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Lemma 44 Let ϕ ∈ (N )1 be given. Then ϕ has representations in Pµ-series as well as
Pµ̂-series:

ϕ =
∞∑

n=0

〈P µ
n , ϕ

(n)〉 =
∞∑

n=0

〈P µ̂
n , ϕ̂

(n)〉

where ϕ(n), ϕ̂(n) ∈ N ⊗̂n
C for all n ∈ N0, and the following formula holds:

ϕ̂(n) =
∞∑

l,m=0

(l +m+ n)!

l!m!n!

(
P µ

l (0)⊗̂Mµ̂
m, ϕ

(l+m+n)
)
H⊗(l+m) . (3.29)

Now we may prove the announced theorem.

Theorem 45 Let Φ̂ =
∑∞

n=0〈Qµ̂
n, Φ̂

(n)〉 ∈ (N )−1
µ̂ . Then Φ =

∑∞
n=0〈Qµ

n,Φ
(n)〉 defined by

〈〈Φ, ϕ〉〉µ = 〈〈Φ̂, ϕ〉〉µ̂ , ϕ ∈ (N )1

is in (N )−1
µ and the following relation holds

Φ(n) =
∑

k+l+m=n

1

l!m!
Φ̂(k)⊗̂P µ

l (0)⊗̂Mµ̂
m

Proof. We can insert formula (3.29) in the formula

∞∑
n=0

n! 〈Φ(n), ϕ(n)〉 =
∞∑

n=0

n! 〈Φ̂(n), ϕ̂(n)〉

and compare coefficients again. 2
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Chapter 4

Gaussian analysis

The primordial object of Gaussian analysis (e.g., [BeKo88, HKPS93, Ko80a, KT80], ) is a
real separable Hilbert space H. One then considers a rigging of H, N ⊂ H ⊂ N ′, where
N is a real nuclear space (see below and [GV68]), densely and continuously embedded into
H, and N ′ is its dual (H being identified with its dual). A typical example (which appears
for instance in white noise analysis) is the rigging S(IR) ⊂ L2(IR) ⊂ S ′(IR) of L2(IR) (with
Lebesgue measure) by the Schwartz spaces of test functions and tempered distributions.
Via Minlos’ theorem the canonical Gaussian measure µ on N ′ is introduced by giving its
characteristic function

C(ξ) =

∫
N ′
ei〈ω,ξ〉 dµ(ω) = e−

1
2
|ξ|2H , ξ ∈ N .

Of course the basic setting has already been introduced in the previous chapter, see e.g.,
Example 3 on page 20. For traditional reasons we have some changes in the notation at
this point. The Gaussian measure connected with the Hilbert space H previously denoted
by γH is called µ from now on. Since it is fixed throughout the rest of the work, we
will drop some subscripts µ. Since Sµ-transform and convolution Cµ coincide both will be
denoted by S. The letter C will be reserved for the characteristic function of the Gaussian
measure, which will be used more frequently than its Laplace transform. The basic variable
of integration, in the previous chapter called x ∈ N ′ will now be called ω ∈ N ′.

The space L2(N ′, µ) ≡ L2(µ) of (equivalence classes of) complex valued functions on N ′

which are square-integrable with respect to µ has the well-known Wiener–Itô–Segal chaos
decomposition [Ne73, Si74, Se56], and one has the familiar Segal isomorphism I between
L2(µ) and the complex Fock space Γ(H) over the complexification HC of H. Spaces of
smooth functions on N ′ can be constructed by mapping appropriate subspaces of Γ(H)
into L2(µ) via the unitary mapping I−1 : Γ(H)→L2(µ), see, e.g., the construction using
second quantized operators in [BeKo88, HKPS93]. So ϕ ∈ L2(µ) has a representation

ϕ =
∞∑

n=0

〈: ω⊗n :, ϕ(n)〉 , ϕ(n) ∈ H⊗̂n
C

with norm

‖ϕ‖2L2(µ) =
∞∑

n=0

n!
∣∣ϕ(n)

∣∣2 .
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4.1 The Hida spaces (N ) and (N )′

4.1.1 Construction and properties

In the Gaussian setting it is of course also possible to study the triple

(N )1 ⊂ L2(µ) ⊂ (N )−1 .

This will be done in the next section. But for Gaussian measures one also has the very
important possibility to construct the space of Hida test functionals (N ) ⊃ (N )1 which
is much bigger and was historically considered first. We will only sketch the well known
construction of (N ).

Consider the space of smooth polynomials P (N ′) . For ϕ =
∑µ

n=0〈: ω⊗n :, ϕ(n)〉 ∈
P (N ′) , ϕ(n) ∈ N ⊗̂n

C we introduce the Hilbertian norm, p, q,∈ N0

‖ϕ‖2p,q =
∞∑

n=0

n! 2nq
∣∣ϕ(n)

∣∣2
p
. (4.1)

Note. Of course the notation is now in some sense misleading, since ‖·‖p,q is different
from ‖·‖p,q,µ from the previous chapter. Despite of this the notation (4.1) will be used to
stay consistent with the literature. The norm ‖·‖p,q,µ will be called ‖·‖p,q,1 in the Gaussian
setting.

Denote the closure of P (N ′) with respect to ‖·‖p,q by (Hp)q. Finally we set

(N ) = pr lim
p,q∈N

(Hp)q .

Remark. Evidently substitution of the value 2 in equation (4.1) by any other number
strictly larger than 1 produces the same space (N ).

It is worthwhile to note that (N ) is continuously embedded in L2(µ) in the Gaussian
case. This is due to the fact that our P-system used here coincides with the orthonormal
basis of Hermite functions.

Lemma 46 (N ) is nuclear.

Proof. Nuclearity of (N ) follows essentially from that of N . For fixed p, q consider
the embedding

I : (Hp′)q′ → (Hp)q′

where p′ is chosen such that the embedding

ip′,p : Hp′ ↪→ Hp

is Hilbert–Schmidt. Then I is given by

III−1 =
⊕

n

i⊗n
p′,p.
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where I is the Segal isomorphism. Its Hilbert–Schmidt norm is easily estimated by using
an orthonormal basis (cf., e.g., [HKPS93, Appendix A. 2]) of (Hp′)q′ . The result is the
bound

‖I‖2HS ≤
∞∑

n=0

2n(q−q′) ‖ip′,p‖2n
HS

which is finite for suitably chosen q′. 2

Theorem 47 The topology on (N ) is uniquely determined by the topology on N .

Proof. Let us assume that we are given two different systems of Hilbertian norms
| · |p and | · |′k , such that they induce the same topology on N . For fixed k and l we have

to estimate ‖ · ‖′k,l by ‖ · ‖p,q for some p, q (and vice versa which is completely analogous).

Since | · |′k has to be continuous with respect to the projective limit topology on N , there
exists p and a constant C such that |f |′k ≤ C |f |p, for all f ∈ N , i.e., the injection ι from
Hp into the completion Kk of N with respect to | · |′k is a mapping bounded by C. We
denote by ι also its linear extension from HC,p into KC,k. It follows from a straightforward
modification of the proof of the Proposition on p. 299 in [ReSi72], that ι⊗n is bounded by

Cn from H⊗n
C,p into K⊗n

C,k. Now we choose q such that 2
q−l
2 ≥ C. Then

‖ · ‖′2k,l =
∞∑

n=0

n! 2nl | · |′2k ≤
∞∑

n=0

n! 2nlC2n | · |2p ≤ ‖ · ‖
2
p,q ,

which had to be proved. 2

From general duality theory on nuclear spaces we know that the dual of (N ) is given by

(N )′ = ind lim
p,q∈N

(H−p)−q ,

where

(H−p)−q = (Hp)
′
q .

We shall denote the bilinear dual pairing on (N )′ × (N ) by 〈〈·, ·〉〉 :

〈〈Φ, ϕ〉〉 =
∞∑

n=0

n! 〈Φ(n), ϕ(n)〉,

where Φ ∈ (H−p)−q corresponds to the sequence (Φ(n), n ∈ N) with Φ(0) ∈ C, and Φ(n) ∈
H⊗̂n

C,−p, n ∈ N.

Remark. Consider the particular choice N = S(IR). Then (N )(′) coincide with the well-
known spaces (S)(′) of white noise functionals, see, e.g., [HKPS93, PS91]. For the norms
‖ϕ‖p ≡ ‖Γ(Ap)ϕ‖0 introduced there, we have ‖ · ‖p = ‖ · ‖p,0, and ‖ · ‖p,q ≤ ‖ · ‖p+ q

2
.

More generally, if the norms on N satisfy the additional assumption that for all p ≥ 0
and all ε > 0 there exists p′ ≥ 0 such that | · |p ≤ ε| · |p′ , then the construction of Kubo
and Takenaka [KT80] (and other authors) leads to the same space (N ). The construction
presented here has the advantage of being manifestly independent of the choice of any
concrete system of Hilbertian norms topologizing N .
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For Wick exponentials

: exp〈·, ξ〉 := e〈·,ξ〉−
1
2
〈ξ,ξ〉 =

∞∑
n=0

〈: ω⊗n :,
1

n!
ξ⊗n〉

one calculates the norms
‖: exp〈·, ξ〉 :‖2p,q = e2

q |ξ|2p ,

and hence for all ξ ∈ N they are in (N ). This then allows for the following

Definition 48 Let Φ ∈ (N )′. The S–transform of Φ is the mapping from N into C
given by

SΦ(ξ) := 〈〈Φ, : exp〈·, ξ〉 :〉〉, ξ ∈ N .

We note that the exponential vectors {: exp〈·, ξ〉 :, ξ ∈ N}, are a total set E in (N ), and
hence elements of (N )′ are characterized by their S–transforms. Furthermore, it is obvious
that the S–transform of Φ ∈ (N )′ extends to NC: for θ ∈ NC set SΦ(θ) = 〈〈Φ, : exp〈·, θ〉 :〉〉,
where : exp〈·, θ〉 : ∈ (N ) has complex kernels.

4.1.2 U–functionals and the characterization theorems

We begin with a definition.

Definition 49 Let F : N → C be such that

C.1 for all ξ, η ∈ N , the mapping l 7−→ F (η + lξ) from R into C has an entire extension
to l ∈ C,
C.2 for some continuous quadratic form B on N there exists constants C, K > 0 such that
for all f ∈ N , z ∈ C,

|F (zξ)| ≤ C exp(K |z|2|B(ξ)|).
Then F is called a U–functional.

Remark. Condition C.2 is actually equivalent to the more conventional

C.2 ′ there exists constants C, K > 0 and p ∈ IN0, so that for all ξ ∈ N , z ∈ C,

|F (zξ)| ≤ C exp(K |z|2|ξ|2p). (4.2)

To proceed we need a result which is related to the celebrated “cross theorem” of Bern-
stein. For a review of such results we refer the interested reader also to [AR73]. The
following is a special case of a result by Siciak: if we make use of the fact that any seg-
ment of the real line in the complex plane has strictly positive transfinite diameter, then
Corollary 7.3 in [Si69] implies

Proposition 50 Let n ∈ N, n ≥ 2, and f be a complex valued function on Rn. Assume
that for all k = 1, 2, . . . , n, and (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1, the mapping

xk 7−→ f(x1, . . . , xk−1, xk, xk+1, . . . , xn),

from R into C has an entire extension. Then f has an entire extension to Cn.
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Lemma 51 Every U–functional F has a unique extension to an entire function on NC.
Moreover, if the bound on F holds in the form (4.2) then for all ρ ∈ (0, 1),

|F (θ)| ≤ C ′ exp(K ′ |θ|2p), θ ∈ NC,

with C ′ = C(1− ρ)− 1
2 , K ′ = 2ρ−1e2K.

Proof. First we show that a U–functional F has a G–entire extension. The extension
of F (denoted by the same symbol) is given by F (θ) = F (ξ0 + zξ1), θ = ξ0 + zξ1 ∈
NC, ξ0, ξ1 ∈ N , z ∈ C. Let θ ∈ NC be of the form θ = ξ2 + iξ3, ξ2, ξ3 ∈ N . Consider the
mapping

(λ1, λ2, λ3) 7−→ F (ξ0 + λ1ξ1 + λ2ξ2 + λ3ξ3),

from IR3 into C. Condition C.1 and Proposition 50 imply that this function has an entire
extension to C3. In particular, F is G–entire on NC. Let θ ∈ NC, and consider the Taylor
expansion of F (θ) at the origin :

F (θ) =
∞∑

n=0

1

n!
d̂nF (0)(θ). (4.3)

For all ξ ∈ N , n ∈ N, R > 0, we obtain from C.2′ and Cauchy’s inequality the estimate

|d̂nF (0)(ξ)| ≤ C n!R−neR2K|ξ|2p .

We choose R = ( n
2K

)
1
2 , and get for ξ ∈ N with |ξ|p = 1 the inequality

|d̂nF (0)(ξ)| ≤ C n!
(2eK

n

)n/2

.

A standard polarization argument (see, e.g., [Na69, sec.3]) and homogeneity of d̂nF (0)
yield the following bound for the n–linear form dnF (0):

|dnF (0)(ξ1, . . . , ξn)| ≤ C(n! (2e2K)n)
1
2

n∏
k=1

|ξk|p, (4.4)

where ξ1, . . . , ξn ∈ N (and we used nn

n!
≤ en). Since dnF (0) is n–linear on NC, the last

inequality gives the estimate

|dnF (0)(θ1, . . . , θn)| ≤ C (n! (4e2K)n)
1
2

n∏
k=1

|θk|p, (4.5)

for θ1, . . . , θn ∈ NC. In particular, the Taylor coefficients in (4.3) have absolute value
bounded by

C
((4e2K|θ|2p)n

n!

) 1
2
,

and we get (by Schwarz’ inequality) the following estimate for all ρ ∈ (0, 1),

|F (θ)| ≤ C(1− ρ)−
1
2 e2ρ−1e2K|θ|2p , θ ∈ NC.

Hence F is locally bounded on NC, and therefore Proposition 5 implies that F is entire. 2

Now we are ready to prove the following generalization of the main result in [PS91]
which characterizes the space (N )′ in terms of its S–transform.

Theorem 52 A mapping F : N → C is the S–transform of an element in (N )′ if and
only if it is a U–functional.
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Proof. Let Φ ∈ (N )′. Then Φ ∈ (H−p)−q for some p, q ∈ N0. As we have remarked
after Definition 48, the S–transform of Φ extends to NC, and therefore it makes sense to
consider the mapping θ 7→ SΦ(θ) from NC into C. We shall show that this mapping is
entire. We have

SΦ(θ) =
∞∑

n=0

〈Φ(n), θ⊗n〉, θ ∈ NC.

We estimate as follows:

|SΦ(θ)| ≤
∞∑

n=0

|Φ(n)|−p|θ|np

≤
( ∞∑

n=0

n! 2−qn|Φ(n)|2−q

)1/2( ∞∑
n=0

1

n!
2qn|θ|2n

p

)1/2

= ‖Φ‖−p,−q e
2q−1|θ|2p .

The last estimation shows that the power series for SΦ on NC converges uniformly on every
bounded neighborhood of zero in NC, and therefore it defines an entire function on this
space [Di81]. In particular, C.1 holds for SΦ. Moreover, the choice θ = zξ, z ∈ C, ξ ∈ N ,
shows that also C.2′ is fulfilled. Hence SΦ is a U–functional.

Conversely let F be a U–functional. We may assume the bound in the form (4.2).
Consider the n–linear form dnF (0) on NC constructed in the proof of Lemma 51. The
estimate (4.5) shows that dnF (0) is separately continuous on NC in its n variables. Hence

by the Kernel Theorem 3 there exists Φ(n) ∈ (N ′
C)⊗̂n so that

〈Φ(n), θ1⊗̂ · · · ⊗̂θn〉 =
1

n!
dnF (0)(θ1, . . . , θn), θ1, . . . , θn ∈ NC

and from (4.4) we have the norm estimate∣∣Φ(n)
∣∣
−p′
≤ C(n!)

1
2

(
2e2K ‖ip′,p‖2HS

)n/2
(4.6)

if p′ > p is such that the embedding ip′,p : Hp′ ↪→ Hp is Hilbert Schmidt. For Φ given by
the sequence (Φ(n), n ∈ N0) (Φ(0) ≡ F (0)) we have

‖Φ‖2−p′,−q =
∞∑

n=0

n! 2−nq
∣∣Φ(n)

∣∣2
−p′

≤ C2

∞∑
n=0

(21−qe2K ‖ip′,p‖2HS)
n

= C2(1− 21−qe2K ‖ip′,p‖2HS)
−1

< +∞,
if we choose q large enough so that 21−qe2K ‖ip′,p‖2HS < 1. In particular, Φ ∈ (N )′, and for
f ∈ N we have by (4.3),

SΦ(ξ) =
∞∑

n=0

〈Φ(n), ξ⊗n〉

=
∞∑

n=0

1

n!
d̂nF (0)(ξ)

= F (ξ).
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Uniqueness of Φ = S−1F follows from the fact that the exponential vectors are total in
(N ). 2

As a by-product of the above proof we obtain the following localization result for generalized
functionals.

Corollary 53 Given a U–functional F satisfying C.2 ′. Let p′ > p be such that the embed-
ding ip′,p : Hp′ → Hp is Hilbert–Schmidt, and q ∈ N0 so that ρ := 21−qe2K ‖ip′,p‖2HS < 1.
Then Φ := S−1F ∈ (H−p′)−q, and

‖Φ‖−p′,−q ≤ C(1− ρ)−1/2. (4.7)

For analogous results in white noise analysis see, e.g., [KoS92, Ob91, Yan90].

We close this section by the corresponding characterization theorem for (N ). This result
is independently due to [Ko80a, KPS91, Lee89], and has been generalized and modified in
various ways, e.g., [Ob91, Yan90, Zh92].

Theorem 54 A mapping F : N →C is the S–transform of an element in (N ) if and only
if it admits C.1 and the following condition

C.3 there exists a system of norms (| · |−p , p ∈ N0), which yields the inductive limit topology
on N ′, and such that for all p ≥ 0 and ε > 0 there exists Cp,ε > 0 so that

|F (zξ)| ≤ Cp,ε exp
(
ε|z|2 |ξ|2−p

)
, ξ ∈ N , z ∈ C. (4.8)

If for F conditions C.1 and C.3 are satisfied we say that F is of order 2 and minimal
type, i.e., F ∈ E2

min(N ′).

Proof. If ϕ ∈ (N ) then condition C.1 is satisfied as a consequence of Theorem 52. For
any p, q ≥ 0 we estimate as follows

|Sϕ(zf)| = |
∞∑

n=0

〈ϕ(n), (zξ)⊗n〉|

≤
∞∑

n=0

|z|n|ϕ(n)|p |ξ|n−p

≤ (
∞∑

n=0

n! 2nq |ϕ(n)|2p)1/2(
∞∑

n=0

1

n!
(2−q|z|2|ξ|2−p)

n)1/2

= ‖ϕ‖p,q exp(21−q|z|2|ξ|2−p).

Hence condition C.3, too, is necessary.

Conversely, let F be a U–functional of order 2 and minimal type. From F , construct
a sequence ϕ = (ϕ(n), n ∈ IN0) of continuous linear forms ϕ(n) on N ⊗̂n as in the proof of
Lemma 51. We have to show that ϕ belongs to (Hr)q for all r, q ∈ IN0. Let r, q ∈ IN0 be
given. Choose p > r such that the injection ip,r : Hp → Hr is Hilbert–Schmidt. Then so is

52



the injection i∗p,r : H−r → H−p. ε > 0 in (4.8) is chosen so that ρ := ε21+qe2 ‖i∗p,r‖2HS < 1.
Then the analogue of (4.6) reads

‖ϕ(n)‖2r,q ≤ C2
p,ε(2

q+1e2ε ‖i∗p,r‖2HS)
n

= C2
p,ερ

n,

and we get

‖ϕ‖r,q = (
∞∑

n=0

‖ϕ(n)‖2r,q)1/2

≤ Cp,ε(1− ρ)−1/2.

Thus ϕ ∈ (N ), and the proof is complete. 2

Within the framework established here one can treat the following and numerous other
examples in a unified way.

Example 10 We choose the triplet

S(Rn) ⊂ L2(Rn) ⊂ S ′(Rn),

and equip S ′(Rn) with the Gaussian measure with characteristic functional

C(ξ) = e−
1
2

∫
ξ2(t) dnt, ξ ∈ S (IRn) .

Then the framework allows to discuss functionals of white noise with n–dimensional time
parameter [SW93].

Example 11 (Vector valued white noise)

The starting point is the real separable Hilbert space L2
d := L2(R)⊗Rd, d ∈ N which is

isomorphic to a direct sum of d identical copies of L2(R). In this space we choose a densely
imbedded nuclear space. Here we fix this space to be Sd := S(R)⊗ Rd. A typical element
f ∈ Sd is a d-dimensional vector where each component fj 1 ≤ j ≤ d is a Schwartz test
function. The topology on Sd may be represented by a system of Hilbertian norms∣∣∣~f ∣∣∣2

p
=

d∑
j=1

|fj|2p , p ≥ 0, ~f ∈ Sd

where |·|p on the r.h.s. is an increasing system of Hilbertian norms topologizing S(R). For

notational simplicity we identify |·|0 with the norm on L2
d. Together with the dual space

S ′d ≡ S ′(R)⊗ Rd of Sd we obtain the basic nuclear triple

Sd ⊂ L2
d ⊂ S ′d .

On S ′d the canonical Gaussian measure is introduced by the characteristic function

C(~ξ) = e−
1
2
〈~ξ,~ξ〉, ~ξ ∈ Sd.

If we introduce the vector valued random variable

~B(t, ~ω) := 〈~ω, 11[0,t)〉 =
(
〈ωj, 11[0,t)〉, j = 1..d

)
, ~ω ∈ S ′d
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a representation of an d–dimensional Brownian motion is obtained. In this setting the
above theorem gives the characterization of the space of Hida distributions of the noise of
an d–dimensional Brownian motion [SW93].

Example 12 For later use we are interested in the formal expression

Φ = exp

(
1

2
(1− z−2)〈ω, ω〉

)
, z ∈ C/{0} .

Using finite dimensional approximations to calculate its S–transform, we see that the se-
quence factorizes in a convergent sequence of U-functionals and a divergent pre-factor. So
instead of constructing the ill defined expression Φ, we consider its multiplicative renormal-
ization (see [HKPS93] for more details) Jz = Φ/E(Φ) . So the divergent pre-factor cancels
in each step of approximation. For Jz we also use the suggestive notation of normalized
exponential

Jz = Nexp

(
1

2
(1− z−2)〈ω, ω〉

)
The resulting S–transform is given by

SJz(θ) = exp

(
−1

2
(1− z2)〈θ, θ〉

)
, θ ∈ HC .

The right hand side is obviously a U-functional and thus by characterization Jz ∈ (N )′.

Let us now choose z = λ ∈ R+ and consider the T -transform:

TJλ(θ) = C(θ) · SJλ(iθ) = exp

(
−λ

2

2
〈θ, θ〉

)
= Cλ2(θ)

which is the characteristic function of the Gaussian measure µλ2 with variance λ2. This
implies

Jλ =
dµλ2

dµ

where the right hand side is the generalized Radon Nikodym derivative (see Example 7 for
this concept). The fact that Jλ /∈ L2(µ) for λ 6= 1 is in agreement with the fact that µλ2

and µ are singular measures if λ 6= 1.

Example 13 (A simple second quantized operator)

Let z ∈ C and Φ ∈ (N )′. Then SΦ has an entire analytic extension and we may
consider the function

θ 7→ SΦ(zθ) , θ ∈ N ′
C .

This function is also an element of E2
max(N ′

C). Thus we may define ΓzΦ by

S (ΓzΦ) (θ) = SΦ(zθ) .

Moreover Γz is continuous from (N )′ into (N )′. Γz is an extension of Γ(z11) where Γ is the
usual second quantization, see e.g., [Si74].
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Example 14 (Wick product)

The characterization theorems give simple arguments why the spaces (N )′ and (N ) are
closed under the so called Wick product (already discussed in the non-Gaussian setting).
Besides the defining equation

S(Φ �Ψ) = SΦ · SΨ , Φ,Ψ ∈ (N )(′)

we only need to mention that E2
max(NC) and E2

min(N ′
C) are both algebras under pointwise

multiplication.

4.1.3 Corollaries

One useful application of Theorem 52 is the discussion of convergence of a sequence of
generalized functionals. A first version of this theorem is worked out in [PS91]. Here we
use our more general setting to state

Theorem 55 Let (Fn, n ∈ N) denote a sequence of U–functionals such that

1. (Fn(ξ), n ∈ N) is a Cauchy sequence for all ξ ∈ N ,

2. there exists a continuous norm | · | on N and C, K > 0 such that |Fn(zξ)| ≤ CeK|z|2|ξ|2

for all ξ ∈ N , z ∈ C, and for almost all n ∈ N. Then (S−1Fn, n ∈ N) converges strongly

in (N )′.

Proof. The assumptions and inequality (4.7) imply that there exist p, q ≥ 0 and
ρ ∈ (0, 1) such that for all n ∈ IN ,

‖Φn‖−p,−q ≤ C(1− ρ)−
1
2

where Φn = S−1Fn. Since E is total in (H−p)−q, assumption 1 implies that (〈〈Φn, ϕ〉〉,n ∈ N)
is a Cauchy sequence for all ϕ ∈ (N ). Since (N )′ is the dual of the countable Hilbert space
(N ), which is in particular Fréchet, it follows from the Banach–Steinhaus theorem that
(N )′ is weakly sequentially complete. Thus there exists Φ ∈ (N )′ such that Φ is the
weak limit of (Φn, n ∈ N). The proof is concluded by the remark that weak and strong
convergence of sequences coincide in the duals of nuclear spaces (e.g., [GV68]). 2

As a second application we consider a theorem which concerns the integration of a family
of generalized functionals.

Theorem 56 Let (Λ,A, ν) be a measure space, and λ 7→ Φλ a mapping from Λ to (N )′.
We assume that the S–transform Fλ = SΦλ satisfies the following conditions:

1. for every ξ ∈ N the mapping λ 7→ Fλ (ξ) is measurable,

2. there exists a continuous norm | · | on N so that for all l ∈ Λ, Fλ satisfies the bound
|Fλ(zξ)| ≤ Cλe

Kλ|z|2|ξ|2 , and such that λ 7→ Kλ is bounded ν–a.e., and λ 7→ Cλ is integrable
with respect to ν.

Then there are q, p ≥ 0 such that Φ· is Bochner integrable on (H−p)−q. Thus in particular,∫
Λ

Φλ dν(λ) ∈ (N )′ ,

and

S

(∫
Λ

Φλ dν(λ)

)
(ξ) =

∫
Λ

SΦλ(ξ) dν(λ), ξ ∈ N .
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Proof. In inequality (4.2) for Fl(zξ) we can replace Kl by its bound. With this
modified estimate and Corollary 12 we can find p, q ≥ 0 and ρ ∈ (0, 1) such that for all
λ ∈ Λ,

‖Φλ‖−p,−q ≤ Cλ(1− ρ)−
1
2 . (4.9)

Since the right hand side of (4.9) is integrable with respect to ν, we only need to show the
weak measurability of λ 7→ Φλ (see [Yo80]). But this is obvious because λ 7→ 〈〈Φλ, ϕ〉〉 is
measurable for all ϕ ∈ E which is total in (Hp)q. 2

Example 15 Let us look at Donsker’s delta function (see section 4.6 for the definition)

δ(〈ω, η〉 − a) =
1

2π

∫
R
eiλ(〈ω,η〉−a)dλ , η ∈ N , a ∈ R (4.10)

in the sense of Bochner integration (see [HKPS93] and compare Theorem 91).

Remark.
For later use we have to define pointwise products of a Hida distribution Φ with a Donsker
delta function

δ (〈ω, η〉 − a) , η ∈ L2(R) , a ∈ R .

If TΦ has an extension to L2
C(R) and the mapping λ 7−→ TΦ(θ+ λη), θ ∈ NC is integrable

on R the following formula may be used to define the product Φ · δ

T (Φ · δ(〈ω, η〉 − a)) (θ) =
1

2π

∫
R
e−iλa TΦ (θ + λη) dλ, (4.11)

in case the right hand integral is indeed a U-functional.
This definition extends the usual definition of pointwise multiplication where one factor

is a test function. This is easily seen by use of (4.10) in the following calculation, ϕ ∈ (N )

T (ϕ · δ(〈ω, η〉 − a)) (θ) =
〈〈
δ(〈ω, η〉 − a), ϕ · ei〈ω,θ〉〉〉

=
1

2π

∫
R
e−iλa

〈〈
eiλ〈ω,η〉, ϕ · ei〈ω,θ〉〉〉 dλ

=
1

2π

∫
R
e−iλa Tϕ (θ + λη) dλ .

4.2 The nuclear triple (N )1 ⊂ L2(µ) ⊂ (N )−1

4.2.1 Construction

Consider the space P(N ′) of continuous polynomials on N ′, i.e., any ϕ ∈ P(N ′) has the
form ϕ(ω) =

∑N
n=0

〈
ω⊗n, ϕ̃(n)

〉
, ω ∈ N ′ , N ∈ N for kernels ϕ̃(n) ∈ N ⊗̂n. It is well-known

that any ϕ ∈ P(N ′) can be written as a Wick polynomial i.e., ϕ(ω) =
∑N

n=0

〈
: ω⊗n :, ϕ(n)

〉
,

ϕ(n) ∈ N ⊗̂n, N ∈ N (see e.g., equations (3.7) and (3.8)). To construct test functions we
define for p, q ∈ N, β ∈ [0, 1] the following Hilbertian norm on P(N ′)

‖ϕ‖2p,q,β =
∞∑

n=0

(n!)(1+β)2nq
∣∣ϕ(n)

∣∣2
p

, ϕ ∈ P(N ′) . (4.12)
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Then we define (Hp)
β
q to be the completion of P(N ′) with respect to ‖·‖p,q,β. Or equivalently

(Hp)
β
q =

{
ϕ ∈ L2(µ)

∣∣∣ ‖ϕ‖p,q,β <∞
}

.

Finally, the space of test functions (N )β is defined to be the projective limit of the spaces
(Hp)

β
q :

(N )β = pr lim
p,q∈N

(Hp)
β
q .

For 0 ≤ β < 1 the corresponding spaces have been studied in [KoS92] and in the special
case of Gaussian product measures all the spaces for 0 ≤ β ≤ 1 were introduced in [Ko78].
For β = 0 and N = S(R) the well-known space (S) = (S)0 of Hida test functions is
obtained (e.g., [KoSa78, Ko80a, Ko80b, KT80, HKPS93, BeKo88, KLPSW94]), while in
this section we concentrate on the smallest space (N )1.

Let (H−p)
−1
−q be the dual with respect to L2(µ) of (Hp)

1
q and let (N )−1 be the dual with

respect to L2(µ) of (N )1. We denote by 〈〈 . , . 〉〉 the corresponding bilinear dual pairing
which is given by the extension of the scalar product on L2(µ). We know from general
duality theory that

(N )−1 = ind lim
p,q∈N

(H−p)
−1
−q .

In particular, we know that every distribution is of finite order i.e., for any Φ ∈ (N )−1

there exist p, q ∈ N such that Φ ∈ (H−p)
−1
−q. The chaos decomposition introduces the

following natural decomposition of Φ ∈ (N )−1. Let Φ(n) ∈ (N ′
C)⊗̂n be given. Then there is

a distribution
〈
: ω⊗n :,Φ(n)

〉
in (N )−1 acting on ϕ ∈ (N )1 as〈〈〈
: ω⊗n :,Φ(n)

〉
, ϕ
〉〉

= n!
〈
Φ(n), ϕ(n)

〉
.

Any Φ ∈ (N )−1 then has a unique decomposition

Φ =
∞∑

n=0

〈
: ω⊗n :,Φ(n)

〉
,

where the sum converges in (N )−1 and we have

〈〈Φ, ϕ〉〉 =
∞∑

n=0

n!
〈
Φ(n), ϕ(n)

〉
, ϕ ∈ (N )1 .

From the definition it is not hard to see that (H−p)
−1
−q is a Hilbert space with norm

‖Φ‖2−p,−q,−1 =
∞∑

n=0

2−nq
∣∣Φ(n)

∣∣2
−p

.

Remark. Considering also the above mentioned spaces (N )β and their duals (N )−β we
have the following chain of spaces

(N )1 ⊂ ... ⊂ (N )β ⊂ ... ⊂ (N ) = (N )0 ⊂ L2(µ) ⊂ (N )′ ⊂ ... ⊂ (N )−β ⊂ ... ⊂ (N )−1 .
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4.2.2 Description of test functions by infinite dimensional holo-
morphy

We state a theorem proven in [KLS94] which shows that functions from (N )1 have a
pointwise meaning on N ′ and are even (real) analytic on this space. Since the space (N )1

is discussion in great detail in the previous chapter, we can refer to Theorem 28. But we
will also give an independent proof using different methods.

Corollary 57 Any test function in (N )1 has a pointwise defined version which has an an-
alytic continuation onto the space N ′

C as an element of E1
min(N ′

C). Vice versa the restriction
of any function in E1

min(N ′
C) to N ′ is in (N )1.

In the rest of the paper we identify any ϕ ∈ (N )1 with its version in E1
min(N ′

C). In this
sense we may write

(N )1 = E1
min(N ′) =

{
u|N ′

∣∣∣ u ∈ E1
min(N ′

C)
}

.

We will give an independent and short proof of Corollary 26.

Corollary 58 For all ϕ ∈ (N )1 and q ≥ 0 we have the following pointwise bound

|ϕ(ω)| ≤ Cp,ε ‖ϕ‖p,q,1 e
ε|ω|−p, ω ∈ H−p , (4.13)

where ε = 2−
q
2 and

Cp,ε =

∫
N ′
eε|ω|−p dµ(ω) .

Here p > 0 is taken such that the embedding ip,0 : Hp↪→ H0 is of Hilbert-Schmidt type.

Proof. Let us introduce the following function

w(z) =
∞∑

n=0

(−i)n
〈
z⊗n, ϕ(n)

〉
, z ∈ N ′

C

using the chaos decomposition ϕ(ω) =
∑∞

n=0

〈
: ω⊗n :, ϕ(n)

〉
of ϕ. Using the inequality∣∣ϕ(n)

∣∣
p
≤ 1

n!
εn ‖ϕ‖p,q,1 , ε = 2−

q
2

we may estimate |w(z)| for z ∈ H−p as follows

|w(z)| ≤
∞∑

n=0

∣∣ϕ(n)
∣∣
p
|z|n−p

≤ ‖ϕ‖p,q,1

∞∑
n=0

1

n!
εn |z|n−p

= ‖ϕ‖p,q,1 exp
(
ε |z|−p

)
.

To achieve a bound of the type (4.13) we use the relation [KLS94, BeKo88]

ϕ(ω) =

∫
N ′
w(y + iω) dµ(y) , ω ∈ N ′ .
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This allows to estimate

|ϕ(ω)| ≤ ‖ϕ‖p,q,1

∫
N ′

exp
(
ε |y + iω|−p

)
dµ(y)

≤ ‖ϕ‖p,q,1 e
ε|ω|−p

∫
N ′
eε|y|−p dµ(y)

We conclude the proof with the inequality

Cp,ε =

∫
N ′
eε|ω|−p dµ(ω) ≤ e

ε2

4α

∫
N ′
eα|ω|2−p dµ(ω)

for α > 0 . If p > 0 is such that the embedding ip,0 is of Hilbert-Schmidt type and α
is chosen sufficiently small the right hand integral is finite, see e.g., [Kuo75, Fernique’s
theorem]. 2

4.3 The spaces G and M

4.3.1 Definitions and examples

For applications it is often useful to have distribution spaces with kernels Φ(n) but not more
singular than Φ(n) ∈ H⊗̂n

C . To this end Potthoff and Timpel [PT94] introduced a triple

G ⊂ L2(µ) ⊂ G ′ .

We will introduce a second triple which is embedded in the above chain

G ⊂M ⊂ L2(µ) ⊂M′ ⊂ G ′ . (4.14)

We compare the properties of the two triples and we will discuss some interesting interplay
between these spaces.

Let use first note that there is no need in the definition of (H)q := (H0)q to choose
q ∈ N. We will denote the new real parameter replacing q by α ∈ R+

Definition 59 We can define
G := pr lim

α>0
(H)α

and
M := ind lim

α>0
(H)α

Both spaces are Fréchet spaces continuously embedded in L2(µ). By general duality
theory [Sch71] we have the representations

G ′ = ind lim
α>0

(H)−α

M′ = pr lim
α>0

(H)−α .

Obviously (4.14) holds.
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Example 16 Let η ∈ H , c ∈ R , 2c|η|2 < 1 and

ϕ = ec〈·,η〉2 .

The S-transform is easy to calculate, ξ ∈ N

Sϕ(ξ) = (1− 2c|η|2)−1/2 exp

(
c

1− 2c|η|2
〈ξ, η〉2

)
,

expanding the exponential we obtain the kernels

ϕ(2n) =
1

n!

(
c

1− 2c|η|2

)n

η⊗2n , ϕ(n) = 0 if n is odd.

Then

‖ϕ‖20,α =
∞∑

n=0

n! 2αn|ϕ(n)|2

≤
∞∑

n=0

22αn

(
2c|η|2

1− 2c|η|2

)2n

which is finite if 2α 2c|η|2
1−2c|η|2 < 1.

From this it follows
ϕ /∈ G if c 6= 0 but ϕ ∈M if 4c|η|2 < 1
ϕ /∈ L2(µ) if 4c|η|2 = 1 but then ϕ ∈M′

ϕ /∈M′ if 4c|η|2 > 1 but ϕ ∈ G ′ if 2c|η|2 < 1.

In section 4.6 we will prove that we also can define Donsker’s delta δ(〈·, η〉−a) ∈M′ for
a ∈ C , η ∈ HC , arg〈η, η〉 6= π. This was in fact one of the main motivations to introduce
M′. We wanted to study pointwise multiplication of δ with other functions.

The next proposition will produce whole classes of examples.

Proposition 60
1) Let ϕ ∈ Lp(µ) for some p > 1 then ϕ ∈ G ′, i.e.,⋃

p>1

Lp(µ) ⊂ G ′ .

2) Let ϕ ∈ Lp(µ) for all 1 < p < 2 then ϕ ∈M′, i.e.,⋂
p<2

Lp(µ) ⊂M′ .

Proof. The argument is based on Nelson’s Hypercontractivity Theorem [Ne73]. In
particular we obtain 2−αN/2 : Lp(µ) → L2(µ) (here N denotes the well known number
operator) is a contraction if 2−α ≤ p− 1. Otherwise 2−αN/2 is unbounded. Hence

‖ϕ‖0,−α =
∥∥2−αN/2ϕ

∥∥
L2(µ)

≤ ‖ϕ‖Lp(µ) if 2−α ≤ p− 1
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If ϕ ∈ Lp(µ) for some p > 1 , there exists a α > 0 such that the above inequality holds.
Now we prove the second assertion. For any α > 0 we may choose p ∈ (1, 2) such that the
above estimate holds, hence ϕ ∈M′. 2

Notes.
1. The first assertion is already proved in [PT94].

2. From Example 16 we know that for all p ∈ (1, 2), there exists ϕ ∈ M′ such that
ϕ /∈ Lp(µ), i.e., ∀p ∈ (1, 2)

Lp(µ) 6⊂ M′ .

Moreover L1(µ) 6⊂ G ′.
3. Let us also mention the trivial consequence that any Lp(µ)-function, p > 1, has a chaos

expansion with all kernels contained in H⊗̂n
C .

Now we state the ‘dual result’ which may be proved along the same lines.

Proposition 61
1.

ϕ ∈ G ⇒ ϕ ∈
⋂
p>1

Lp(µ) .

2.
ϕ ∈M⇒ ∃p > 2 : ϕ ∈ Lp(µ) .

Note. Assertion 1 is related to the inclusion G ⊂ D where D is the so called Meyer-
Watanabe space, see [HKPS93] for a definition and [PT94] for a proof of the inclusion.
We can again refer to Example 16. For all p > 2 there exists ϕ ∈M such that ϕ /∈ Lp(µ),
i.e., ∀p > 2

M 6⊂ Lp(µ) ,

in particular
M 6⊂ D .

4.3.2 The pointwise product

It is well known that (N ) and (N )1 are algebras under pointwise multiplication (sometimes
called Wiener Product). In [PT94] it has been shown that also G has this property. On
the other hand it is obvious thatM can not be an algebra. To see this consider ϕ = e〈·,η〉

2
,

|η|2 = 1/8 then ϕ ∈ M but ϕ2 = e2〈·,η〉
2
/∈ L2(µ), see Example 16 on page 60. We will

show that the pointwise product can also be defined if one factor is inM and the other in
G. To prove this we found it useful to have a detailed discussion of pointwise products in
[Ob94] which we were able to modify to the present setting.

The first question is, how does the pointwise product look like in terms of chaos expan-
sion?

Lemma 62 Let ϕ, ψ ∈ G be given by

ϕ =
∞∑

n=0

〈: ω⊗n :, ϕ(n)〉 , ψ =
∞∑

n=0

〈: ω⊗n :, ψ(n)〉 .
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Then the chaos expansion of

ϕψ =
∞∑
l=0

〈: ω⊗l :, f (l)〉

is given by

f (l) =
∑

m+n=l

∞∑
k=0

k!

(
m+ k

k

)(
n+ k

k

)
ϕ(m+k) ⊗̂

k
ψ(n+k) (4.15)

where the contraction ϕ(m+k) ⊗̂
k
ψ(n+k) of the kernels ϕ(m+k) and ψ(n+k) is the symmetriza-

tion of the partial scalar product
(
ϕ(m+k), ψ(n+k)

)
H⊗k ∈ H

⊗(m+n)
C .

Note that ∣∣∣∣ϕ(m+k) ⊗̂
k
ψ(n+k)

∣∣∣∣ ≤ ∣∣ϕ(m+k)
∣∣ ∣∣ψ(n+k)

∣∣
Now we are giving a variant of Lemma 3.5.4 in [Ob94]. The only qualitative change is that
we do not need smoother kernels in the estimate.

Lemma 63 Let α, β ≥ 0, then f (l) defined by (4.15) can be estimated

l!
∣∣f (l)

∣∣2 ≤ (l + 1)(2−α + 2−β)l ‖ϕ‖20,β ‖ψ‖
2
0,β

∞∑
k=0

(
l + 2k

2k

)
2−k(α+β) .

Following the lines of the proof in [Ob94] a little further we obtain.

Theorem 64 Let α, β, γ ≥ 0 satisfy 2−(α+β)/2 + 2γ−α + 2γ−β < 1 then

‖ϕψ‖0,γ ≤
√

1− 2−(α+β)/2

1− 2−(α+β)/2 − 2γ−α − 2γ−β
‖ϕ‖0,α ‖ψ‖0,β .

Corollary 65 G is closed under pointwise multiplication and multiplication is a separately
continuous bilinear map from G × G into G.

This result is also shown in [PT94].

Corollary 66 The pointwise multiplication is a separately continuous bilinear map from
G ×M into M.

Proof. First fix the factor ϕ ∈ G. To prove that ψ 7→ ϕ · ψ from M into itself is
continuous we have to show that for all β > 0 there exists a γ > 0 such that ψ 7→ ϕ · ψ is
continuous from (H)β into (H)γ. But this follows from the above theorem, since we may
choose γ < β and α large enough.
For fixed ψ ∈M we have to show that there exist α > 0 and γ > 0 such that ϕ 7→ ϕ · ψ is
continuous from (H)α into (H)γ. Also this is clear from the above theorem. 2

Now we can extend the concept of pointwise multiplication to products where one factor
is a distribution.

Let Φ ∈M′ , ϕ ∈ G then Φ · ϕ ∈M′ defined by

〈〈Φ · ϕ, ψ〉〉 := 〈〈Φ, ϕψ〉〉 , ψ ∈M
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is well defined because of the previous corollary. More useful is the following:

Let Φ ∈M′ , ψ ∈M then Φ · ψ ∈ G ′ given by

〈〈Φ · ψ, ϕ〉〉 := 〈〈Φ, ϕψ〉〉 , ϕ ∈ G (4.16)

is well defined.

4.3.3 Integrating out Donsker’s delta

Let a ∈ C , η ∈ N such that |η| = 1 and ϕ ∈ (N ) than a simple calculation yields

〈〈δ(〈·, η〉 − a), ϕ〉〉 =
1√
2π
e−

1
2
a2E (ϕ(·+ (a− 〈·, η〉)η) . (4.17)

Since ϕ has a pointwise well defined version which has some analytic continuation, we
understand what ϕ(ω+ aη) for a ∈ C means. So everything is well defined. In this section
we want to extend the above formula to ϕ ∈ M and η ∈ H. This raises at least the
following questions

1. What does ϕ (ω + (a− 〈ω, η〉)η) mean? In particular in what sense do we have an
analytic continuation?

2. Is the expectation value at the end of the procedure well defined?

4.3.3.1 Analyticity of shifts

In this section we want to define an operator

τη :M→M , ϕ 7→ ϕ(·+ η) for η ∈ HC .

(Note that this operation surely has no sense pointwisely. Consider e.g., ϕ = 〈: ω⊗2 :, ϕ(2)〉
then τηϕ(0) = 〈: η⊗2 :, ϕ(2)〉 = 〈η⊗2, ϕ(2)〉 − 〈Tr, ϕ(2)〉 which is ill defined if ϕ(2) ∈ H⊗̂2

C
allows no trace.)

To give a meaningful definition we use

: (ω + η)⊗n : =
n∑

k=0

(
n

k

)
: ω⊗(n−k) : ⊗η⊗k

and define ∀η ∈ HC

τηϕ = ϕ(·+ η) :=
∞∑

k=0

∞∑
l=0

(
k + l

k

)
〈: ω⊗l :,

(
η⊗k, ϕ(k+l)

)
H⊗k〉

whenever the series converges.

Theorem 67
1. Let ϕ ∈M , η ∈ HC then τηϕ ∈M. Moreover the mapping η 7→ τηϕ ∈ E2

max(HC,M).

2. Let ϕ ∈ G , η ∈ HC then τηϕ ∈ G and moreover the mapping η 7→ τηϕ ∈ E2
min(HC,G).
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Proof. Define the k-homogeneous polynomials on HC

1

k!
d̂kϕ(η) :=

∞∑
l=0

(
k + l

k

)
〈: ω⊗l :,

(
η⊗k, ϕ(k+l)

)
H⊗k〉

with values inM (or G respectively). To show that this is well defined let ϕ ∈ (H)α , α > 0.

Such that
∣∣ϕ(k)

∣∣2 ≤ ‖ϕ‖20,α
1
k!

2−αk and choose γ ∈ (0, α) to estimate∥∥∥∥ 1

k!
d̂kϕ(η)

∥∥∥∥2

0,γ

≤
∞∑
l=0

l! 2γl

(
k + l

k

)2

|η|2k|ϕ(k+l)|

≤ ‖ϕ‖20,α |η|
2k

∞∑
l=0

(
k + l

k

)2
l!

(k + l)!
2lγ2−α(k+l)

≤ ‖ϕ‖20,α

1

k!
2−αk|η|2k

∞∑
l=0

(
k + l

k

)
2l(γ−α)

= ‖ϕ‖20,α

1

k!
2−αk|η|2k(1− 2γ−α)−(k+1)

= (1− 2γ−α)−1 ‖ϕ‖20,α

1

k!
|η|2k(2α − 2γ)−k .

This shows that 1
k!

d̂kϕ(η) is in fact a k-homogeneous continuous polynomial. If ϕ ∈ G and

if ϕ ∈M then 1
k!

d̂kϕ(η) ∈M.

The next step is to show that
∑∞

k=0
1
k!

d̂kϕ(η) converges uniformly on any ball in HC in
the topology ofM (or G respectively). So we estimate

∞∑
k=0

∥∥∥∥ 1

k!
d̂kϕ(η)

∥∥∥∥
0,γ

≤ ‖ϕ‖0,α (1− 2γ−α)−1/2

∞∑
k=0

1√
k!

(2α − 2γ)−k/2 |η|k

≤ ‖ϕ‖0,α (1− 2γ−α)−1/2

(
∞∑

k=0

1

k!
2k(α−γ)(2α − 2γ)−k|η|2k

)1/2( ∞∑
k=0

2k(γ−α)

)1/2

= ‖ϕ‖0,α (1− 2γ−α)−1 exp

(
2α−γ

2(2α − 2γ)
|η|2
)
.

showing the uniform and absolute convergence of the series.

If ϕ ∈M we have shown that η 7→ τηϕ ∈ E2
max(HC,M).

If ϕ ∈ G choose e.g., α = 2γ, then the type of growth is bounded by (2γ+1 − 2)−1 which
converges to zero for growing γ. Thus η 7→ τηϕ ∈ E2

min(HC,G). 2

The second term in the Taylor series coincides with the Gâteaux derivative. So we have
the following corollary.

Corollary 68 Let η ∈ HC then the Gâteaux derivative defined by

Dηϕ :=
∞∑
l=0

l 〈: ω⊗l :,
(
η, ϕ(l+1)

)
H〉 , ϕ ∈M

is a well defined operator from M into itself and from G into itself.
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4.3.3.2 Composition with projection operators

Let η ∈ N with |η| = 1. In view of the aim of this section we also want to understand how
to define ϕ(ω − 〈ω, η〉η) (if ϕ /∈ (N ) this is non trivial). Note that

P⊥ : N ′ → N ′ , ω 7→ P⊥ω = ω − 〈ω, η〉η

is the projection on the orthogonal complement of the subspace spanned by η ∈ HC. For
ϕ ∈ G (also for ϕ ∈M) we want to define Pϕ = ϕ ◦ P⊥.

First we have to understand what happens in terms of chaos expansion.

Lemma 69 For η ∈ N , |η| = 1 and ω ∈ N ′ we have : (P⊥ω)⊗n : ∈ (N ⊗̂n)′ and the
following relation holds

: (P⊥ω)⊗n :=

[n
2
]∑

k=0

n!

k! (n− 2k)!
(−1

2
)k
(
: ω⊗(n−2k) : ◦P⊗(n−2k)

⊥

)
⊗̂η⊗2k

where : ω⊗l : ◦P⊗l
⊥ ∈ (N ⊗̂l)′ is defined by

〈: ω⊗l : ◦P⊗l
⊥ , ϕ(l)〉 = 〈: ω⊗l :, P⊗l

⊥ ϕ(l)〉 .

Proof. Choose ϕ =: exp〈·, ξ〉 : then

Pϕ = exp

(
〈P⊥ω, ξ〉 −

1

2
|ξ|2
)

= : exp〈ω, P⊥ξ〉 : exp

(
−1

2
(|ξ|2 − |P⊥ξ|2)

)
= : exp〈ω, P⊥ξ〉 : exp

(
−1

2
〈η, ξ〉2

)
Expanding both sides of this equation we obtain

∞∑
n=0

1

n!
〈: (P⊥ω)⊗n :, ξ⊗n〉 =

∞∑
l=0

1

l!
〈: ω⊗l :, (P⊥ξ)

⊗l〉
∞∑

k=0

1

k!
(−1

2
)k〈η⊗2k, ξ⊗2k〉

=
∞∑

n=0

[n
2
]∑

k=0

1

k! (n− 2k)!
(−1

2
)k
〈(

: ω⊗(n−2k) : ◦P⊗(n−2k)
⊥

)
⊗ η⊗2k, ξ⊗n

〉
.

A comparison of coefficients proves the lemma. 2

An immediate consequence is the following lemma

Lemma 70 Let η ∈ N , |η| = 1 and ϕ =
∑N

n=0〈: ω⊗n :, ϕ(n)〉 ∈ G be a finite linear
combination. Then

Pϕ =
∞∑

n=0

〈: ω⊗n :, ϕ̃(n)〉 (4.18)

where

ϕ̃(n) =
∞∑

k=0

(n+ 2k)!

k!n!

(
−1

2

)k

P⊗n
⊥
(
η⊗2k, ϕ(n+2k)

)
H⊗2k . (4.19)

(We have no problems of convergence since all sums are in fact finite.)
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Proof. Follows from

Pϕ =
∞∑

n=0

〈: (P⊥ω)⊗n :, ϕ(n)〉

=
∞∑

n=0

[n
2
]∑

k=0

n!

k! (n− 2k)!
(−1

2
)k
〈(

: ω⊗(n−2k) : ◦P⊗(n−2k)
⊥

)
⊗ η⊗2k, ϕ(n)

〉
=

∞∑
l=0

∞∑
k=0

(l + 2k)!

k! l!

(
−1

2

)k 〈
: ω⊗l :, P⊗l

⊥
(
η⊗2k, ϕ(l+2k)

)
H⊗2k

〉
.

2

Now we observe that the kernels ϕ̃(n) ∈ H⊗̂n
C in (4.19) are well defined if we extend from

η ∈ N to η ∈ H. Also the definition of P is not restricted to finite linear combinations as
the following theorem shows.

Theorem 71 The linear mapping P has the following well defined extensions; for η ∈ H,
|η| = 1

P : G → G
P :M→ G ′

P : (H)α →M , α > 1,

more precisely
P : (H)α → (H)γ if 2α − 1 > 2γ

Proof. We discuss the convergence of (4.18) with (4.19). First note∣∣P⊗l
⊥
(
η⊗2k, ϕ(l+2k)

)
H⊗2k

∣∣ ≤ |η|2k
∣∣ϕ(l+2k)

∣∣ ≤ ∣∣ϕ(l+2k)
∣∣

since |η| = 1. If we assume ϕ ∈ (H)α then n!
∣∣ϕ(n)

∣∣2 ≤ 2−αn ‖ϕ‖20,α. For γ < α we have∥∥∥∥∥
∞∑

n=0

(n+ 2k)!

k!n!

(
−1

2

)k 〈
: ω⊗n :, P⊗n

⊥
(
η⊗2k, ϕ(n+2k)

)
H⊗2k

〉∥∥∥∥∥
2

0,γ

=
∞∑

n=0

n!

(
(n+ 2k)!

k!n!

)2

2nγ

(
1

2

)2k ∣∣ϕ(n+2k)
∣∣2

=
∞∑

n=0

(
n+ 2k

2k

)
(2k)!

(k!)222k
(n+ 2k)!

∣∣ϕ(n+2k)
∣∣2 2nγ

≤ ‖ϕ‖20,α 2−2kα

∞∑
n=0

(
n+ 2k

2k

)
2n(γ−α)

= ‖ϕ‖20,α 2−2kα(1− 2γ−α)−(2k+1)

= (1− 2γ−α)−1 ‖ϕ‖20,α (2α − 2γ)−2k

Hence

‖Pϕ‖0,γ ≤
∞∑

k=0

∥∥∥∥∥
∞∑

n=0

(n+ 2k)!

k!n!

(
−1

2

)k 〈
: ω⊗n :, P⊗n

⊥
(
η⊗2k, ϕ(n+2k)

)
H⊗2k

〉∥∥∥∥∥
0,γ
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≤ (1− 2γ−α)−1/2 ‖ϕ‖0,α

∞∑
k=0

(2α − 2γ)−k

which is convergent if 2α − 2γ > 1.
If ϕ ∈ G then for every γ > 0 there exists an α > 0 (e.g., α = γ+1) such that 2α− 2γ > 1.
Hence Pϕ ∈ G.
If ϕ ∈ M there exists α > 0 such that ‖ϕ‖0,α < ∞. Then we choose γ ∈ R such that
2α − 1 > 2γ (γ possibly negative), to obtain ‖Pϕ‖0,γ <∞ i.e., Pϕ ∈ G ′.
If ϕ ∈ (H)α , α > 1 then we can find γ > 0 such that 2α − 1 > 2γ , i.e., ϕ ∈M. 2

Now we are going back to our motivating example.
Let η ∈ N , |η| = 1 and ϕ ∈ (N ). Starting from expression (4.17) we calculate

ϕ(ω + (a− 〈ω, η〉)η) = ϕ(P⊥ω + aη) = Pϕ(ω + aη) = Pτaηϕ(ω) .

The last expression can be extended to η ∈ H , |η| = 1, ϕ ∈M in view of Propositions 67
and 71, since

ϕ ∈M⇒ τaηϕ ∈M⇒ Pτaηϕ ∈ G ′.

Hence we can take expectation E(Pτaηϕ) without problems. So now we can formulate
equation (4.17) as a proposition

Proposition 72 Let η ∈ H , |η| = 1 , a ∈ C and ϕ ∈M. Then

〈〈δ(〈·, η〉 − a), ϕ〉〉 =
1√
2π
e−

1
2
a2E(Pτaηϕ) .

Proof. It is easy to show that both sides coincide if we choose ϕ =: exp〈·, ξ〉 : , ξ ∈ H.
Then a continuity argument shows that they agree for all ϕ ∈M. 2

4.4 The Meyer–Yan triple

If the S-(or T -)transform of a distribution is well defined as an entire function, but of
infinite order of growth, then the distributions spaces (N )−β for 0 ≤ β < 1 are too small.
Obviously we can use (N )−1 but then we will only require that the S-transform is analytic
in a neighborhood of zero. Meyer and Yan [MY90] introduced a triple which helps to close
this gap. In [KoS93] this triple was discussed in great detail. So we will only introduce the
notation and quote some useful results from the second work. The only new results are
stated in the two corollaries.

Definition 73 The Meyer–Yan space is defined by

Y := pr lim
p∈N

ind lim
q∈N

(Hp)
1
−q .

The dual space can be represented as

Y ′ = ind lim
p∈N

pr lim
q∈N

(H−p)
−1
+q .
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Then we have

(N )1 ⊂ Y ⊂ (N )β ⊂ (N ) ⊂ L2(µ) ⊂ (N )′ ⊂ (N )−β ⊂ Y ′ ⊂ (N )−1

for β ∈ [0, 1).

We will only need a characterization of distributions.

Theorem 74 A mapping F : NC → C is the S-transform of a distribution Φ ∈ Y ′ if and
only if
1. F is entire on NC.

2. There exists p ∈ N0 such that for any R > 0 exists C > 0 :

|F (θ)| ≤ C , |θ|p ≤ R , θ ∈ NC . (4.20)

In particular if inequality (4.20) holds and p′, q ∈ N0 are such that ‖ip′,q‖HS < ∞ and
2q < (‖ip′,q‖HS R/e)

2 then

‖Φ‖−p′,q,−1 ≤
√

2C .

Of course the same is true for the T -transform.

As consequences of the above theorem we discuss the convergence of a sequence of
distributions as well as an integration theorem.

Corollary 75 Let (Fn , n ∈ N) denote a sequence of entire functions Fn : NC → C such
that

1. (Fn (θ) , n ∈ N) is a Cauchy sequence for all θ ∈ NC.

2. There exists p ∈ N0 such that ∀R > 0 ∃C > 0 :

|Fn(θ)| ≤ C , |θ|p ≤ R , θ ∈ NC

uniformly in n ∈ N.

Then the sequence (Φn = S−1Fn , n ∈ N) converges weakly to a distribution Φ ∈ Y ′, i.e.,

〈〈Φ, ϕ〉〉 = lim
n→∞
〈〈Φn, ϕ〉〉 , ϕ ∈ Y . (4.21)

Proof. Let Φn := S−1Fn ∈ Y ′. Since E is total in Y assumption 1 implies that
(〈〈Φn, ϕ〉〉 , n ∈ N) is a Cauchy sequence for all ϕ ∈ Y . Theorem 74 implies that there
exists p′ ∈ N such that ∀q ∈ N ∃C > 0 :

‖Φn‖−p′,q,−1 ≤
√

2C .

Thus ∣∣∣ lim
n→∞
〈〈Φn, ϕ〉〉

∣∣∣ ≤ √2C ‖ϕ‖p′,−q,+1

which proves the continuity of the linear functional Φ defined by (4.21). 2

Now we are going to prove the analog of Theorem 56. Since the representation of Y ′
involves a projective limit, it is more convenient to use Pettis integration instead of Bochner
integration.

68



Corollary 76 Let (Λ,A, ν) be a measure space and λ 7→ Φλ a mapping from Λ to Y ′. We
assume that the S-transform Fλ = SΦλ satisfies the following conditions:

1. for every θ ∈ NC the mapping λ 7→ Fλ(θ) is measurable,

2. there exists p ∈ N such that ∀R > 0 ∃C ∈ L1(ν):

|Fλ(θ)| ≤ Cλ , |θ|p ≤ R , θ ∈ NC

for almost all λ ∈ Λ.

Then λ 7→ Φλ is Pettis integrable i.e., ∃Φ ∈ Y ′ :

〈〈Φ, ϕ〉〉 =

∫
Λ

〈〈Φλ, ϕ〉〉 dν(λ) , ϕ ∈ Y .

Proof. Let ϕ ∈ E , then assumption 1 implies that λ 7→ 〈〈Φλ, ϕ〉〉 is measurable. From
Theorem 74 and assumption 2 we know that there exists p′ ∈ N such that ∀q ∈ N ∃C ∈
L1(ν) : ‖Φλ‖−p′,q,−1 ≤

√
2Cλ. Thus∫

Λ

|〈〈Φλ, ϕ〉〉| dν(λ) ≤
√

2 ‖ϕ‖p′,−q,1

∫
Λ

Cλ dν(λ) , ϕ ∈ E .

This implies that Φ defined by

〈〈Φ, ϕ〉〉 =

∫
Λ

〈〈Φλ, ϕ〉〉 dν(λ)

is well defined for all ϕ ∈ E . The definition of Φ may now be extended by continuity to
ϕ ∈ Y . 2

4.5 The scaling operator

In this section we collect some facts about the so called “scaling operator”, which has some
interesting applications in the theory of Feynman integrals. We first define this operator
on a small domain, collect some properties and afterwards extend the domain to include
more interesting examples. For the definition we follow [HKPS93].

Let ϕ ∈ (N ) be given. Without loss of generality we assume that ϕ coincides with its
pointwisely defined, continuous version. Let z ∈ C be given and define

(σzϕ)(ω) := ϕ(zω) .

Theorem 77 For all z ∈ C the mapping σz : ϕ 7→ σzϕ is continuous from (N ) into itself.

We will give a proof later (which is related to the one in [HKPS93]). Let ϕ ∈ (N ) be
given by its chaos expansion ϕ =

∑∞
n=0〈: ω⊗n :, ϕ(n)〉. It is easy to calculate the expansion

σzϕ =
∞∑

n=0

〈: ω⊗n :, ϕ̃(n)〉 ,

ϕ̃(n) = zn

∞∑
k=0

(n+ 2k)!

k! n!

(
z2 − 1

2

)k

trkϕ(n+2k) (4.22)
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where trkϕ(n+2k) is shorthand for the contraction (def. eq. (3.16)) of iterated traces (def.
eq. (3.14)) with ϕ(n+2k):

trkϕ(n+2k) :=
(
Tr⊗k, ϕ(n+2k)

)
H⊗2k ∈ N ⊗̂n

C .

Lemma 78 Tr∈ H⊗̂2
−p if and only if ip,0 : Hp → H is of Hilbert–Schmidt type. Moreover

|Tr|−p = ‖ip,0‖HS .

Proof. Let {ej| j ∈ N0} be an orthonormal basis of H. Then the expansion

Tr =
∞∑

j=0

ej ⊗ ej

is valid, and we may calculate

|Tr|2−p =

∣∣∣∣∣
∞∑

j=0

ej ⊗ ej

∣∣∣∣∣
2

−p

=
∞∑

j=0

|ej|2−p = ‖i0,−p‖2HS = ‖ip,0‖2HS .

2

For p > 0 large enough, the estimate∣∣trkϕ(n+2k)
∣∣
p
≤ |Tr|k−p

∣∣ϕ(n+2k)
∣∣
p

= ‖ip,0‖kHS ·
∣∣ϕ(n+2k)

∣∣
p

(4.23)

shows that smooth kernels ϕ(n) ∈ N ⊗̂n
C allow the action of iterated traces. Now we are

ready to prove a statement which is a little more general then Theorem 77.

Theorem 79 Let z ∈ C, and p > 0 be such that ip,0 is of Hilbert–Schmidt type. If q′ and
q′ − q are large enough, σz is continuous from (Hp)q′ into (Hp)q.

Proof. Note that (2k)!
(k!)222k ≤ 1 for all k ∈ N0. Using this and the estimate (4.23) we can

estimate as follows

∣∣ϕ̃(n)
∣∣
p
≤ (n!)−1/2|z|n

∞∑
k=0

(
n+ 2k

2k

) 1
2

√
(2k)!

k! 2k
|z2 − 1|k

√
(n+ 2k)! ‖ip,0‖kHS

∣∣ϕ(n+2k)
∣∣
p

≤ (n!)−1/2|z|n
∞∑

k=0

(
n+ k

k

) 1
2

|z2 − 1|k/2 ‖ip,0‖k/2
HS ·

√
(n+ k)!

∣∣ϕ(n+k)
∣∣
p

≤ (n!)−1/22−nq′/2|z|n
(

∞∑
k=0

(
n+ k

k

)
2−q′k

(
|z2 − 1| ‖ip,0‖HS

)k) 1
2

·

·

(
∞∑

k=0

(n+ k)! 2q′(n+k)
∣∣ϕ(n+k)

∣∣2
p

) 1
2

≤ ‖ϕ‖p,q′ (n!)−1/2 2−nq′/2|z|n
(
1− 2−q′|z2 − 1| ‖ip,0‖HS

)−n+1
2
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if q′ is such that 2q′ > |z2 − 1| ‖ip,0‖HS. Then we get

‖σzϕ‖2p,q ≤ ‖ϕ‖
2
p,q′ ·

∞∑
n=0

2n(q−q′)|z|2n
(
1− 2−q′|z2 − 1| ‖ip,0‖HS

)−(n+1)

.

The sum on the right hand side converges if q′ − q is large enough. 2

Note. We can also give a completely different proof of Theorem 77 using the powerful
theorem describing the space (N ). Since (N ) = E2

min(N ′), every test function ϕ ∈ (N ) has
a version which has an extension to a function from E2

min(N ′
C). The function

ω 7→ σzϕ(ω) = ϕ(zω)

is also entire of the same growth. Since ϕ is of minimal type also ω 7→ ϕ(zω) is of minimal
type. Thus σzϕ ∈ (N ). In fact σz : E2

min(N ′
C) → E2

min(N ′
C) is continuous. The same

argument based on Theorem 28 shows:

Theorem 80 For all z ∈ C the mapping σz is continuous from (N )1 into (N )1.

This kind of argument also shows

Theorem 81 For ϕ, ψ ∈ (N ) the following equation holds σz(ϕ · ψ) = (σzϕ) · (σzψ).

Note. To prove these relations without referring to the description of (N ), only based on
chaos expansions, requires much more effort.

Since σz is continuous from (N ) into (N ) it is possible to define its adjoint operator
σ†z : (N )′ → (N )′ by

〈〈σ†zΦ, ψ〉〉 = 〈〈Φ, σzψ〉〉 , ψ ∈ (N ) . (4.24)

Of course there also exists a well defined extension σ†z : (N )−1 → (N )−1.

The next Lemma will be useful later.

Lemma 82 For z ∈ C , Φ ∈ (N )−1 we have

σ†zΦ = Jz � ΓzΦ

in particular

σ†z11 = Jz

where Jz is defined in Example 12 .
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Proof. The following calculation is valid

S(σ†zΦ)(ξ) = 〈〈Φ, : exp〈·, zξ〉 :〉〉e−
1
2
(1−z2)〈ξ,ξ〉

= SΦ(zξ) · SJz(ξ)

= S (ΓzΦ � Jz) (ξ) .

2

We can also derive some useful formulae concerning the pointwise product of Jz ∈ (N )′

with a test functional.

Lemma 83 Let ϕ ∈ (N ) then
Jzϕ = σ†z(σzϕ) (4.25)

or if we prefer to rewrite the r.h.s. as a Wick product

Jzϕ = Jz � Γz(σzϕ) . (4.26)

Proof. Let ϕ, ψ ∈ (N )

〈〈Jzϕ, ψ〉〉 = 〈〈σ†z11, ϕ · ψ〉〉 = 〈〈σzϕ, σzψ〉〉 = 〈〈σ†z(σzϕ), ψ〉〉 ,

hence (4.25) follows. 2

Example 17 Let us discuss the above formula for the concrete choice ϕ = 〈·, η〉n , η ∈ N .
Then

〈·, η〉n Jz = z2n

[n/2]∑
k=0

n!

k! (n− 2k)!

(
1

2z2
|η|2
)k

〈·, η〉�(n−2k) � Jz (4.27)

by use of formula (4.26) and the expansion

〈·, η〉n =

[n/2]∑
k=0

n!

k! (n− 2k)!

(
1

2
|η|2
)k

: 〈·, η〉n−2k : .

Formula (4.27) allows to express pointwise products by Wick products which are well
defined in more general situations. The right hand side immediately extends to η ∈ HC.
Then formula (4.27) may serve as a definition of the pointwise product on the left hand
side. By polarization this is also possible for mixed products. Examples:
1)

〈·, η〉Jz = z2〈ω, η〉 � Jz.

Note that pointwise multiplication has a non-trivial translation to Wick multiptication.
2)

〈·, η〉〈·, ξ〉Jz = z4〈·, η〉 � 〈·, ξ〉 � Jz + z2(η, ξ)Jz.

This formula allows to read off the “covariance” of Jz

E (〈·, η〉〈·, ξ〉Jz) = z2(η, ξ) .
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For the applications we have in mind the domain of σz given in Theorem 79 is too small.
We want to apply σz to Donsker’s delta and the interaction term in Feynman integrals.
Both have kernels in H⊗̂n

C but obviously not in H⊗̂n
p,C for p > 0. Thus we need to study

extensions of σz. Of course this is not trivial, since we may construct elements inH⊗̂n
C where

a contraction with iterated traces is not well defined. On the other hand kernels consisting
of tensor products raise no problems in this context. Let ξj ∈ HC, 1 ≤ j ≤ n+ 2k then

trk(ξ1⊗̂ · · · ⊗̂ξn+2k) =
1

(n+ 2k)!

∑
π

(ξπ1 , ξπ2) · · ·
(
ξπ2k−1

, ξπ2k

)
ξπ2k+1

⊗̂ · · · ⊗̂ξπn+2k
,

where the sum extends over the symmetric group of order n + 2k. Obviously also finite
sums of tensor products are allowed. The next step is to discuss infinite sums of tensor
products. We give a sufficient condition discussed in [JK93].

Proposition 84 Let ϕ(n) ∈ H⊗̂n
C . Suppose there exists a complete orthonormal system

{ej | j ∈ N0} of H such that the expansion

ϕ(n) =
∞∑

j1,···,jn=1

aj1,···,jn ej1 ⊗ · · · ⊗ ejn

holds. If the coefficients (aj1,···,jn) are in l1, i.e.,

Cn :=
∞∑

j1,···,jn=0

|aj1,···,jn| (4.28)

is finite, then for every k, 0 ≤ k ≤ [n
2
] trkϕ(n) exists in H⊗̂(n−2k)

C and is given by

trkϕ(n) =
∞∑

j2k+1,···,jn=0

(
∞∑

j1,···,jk=0

aj1, j1︸︷︷︸,···,jk, jk︸ ︷︷ ︸,j2k+1, · · · , jn︸ ︷︷ ︸
)
ej2k+1

⊗ · · · ⊗ ejn . (4.29)

Moreover ∣∣trkϕ(n)
∣∣
H⊗̂(n−2k)

C
≤ Cn .

Now we are going to use Proposition 84 to extend σz. We will take the chaos expansion
of σzϕ given by equation (4.22) as the fundamental definition, whenever this is well defined.
The question arises to find sufficient conditions to ensure that σzϕ ∈ M (or L2(µ) or G ′)
or at least the existence of the expectation value

E(σzϕ) = ϕ̃(0) .

We will formulate this type of conditions in terms of the Cn appearing in Proposition 84.

Lemma 85 Let α ∈ R such that 2α > |z2 − 1| and assume that Kα defined by

K2
α =

∞∑
n=0

n! 2αnC2
n

is finite. Then

|ϕ̃(n)|2 ≤ K2
α

1

n!
|z|2n2−αn

(
1− 2−α/2|z2 − 1|

)−(n+1)
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Proof. The proof is very similar to the proof of Theorem 79. We can use the bound
(4.29) and 1

k! 2k

√
(2k)! ≤ 1 in the following estimate:

|ϕ̃(n)| ≤ |z|n 1√
n!

∞∑
k=0

√
(n+ 2k)!

n! (2k)!

√
(2k)!

k! 2k
|z2 − 1|k

√
(n+ 2k)Cn+2k

≤ |z|n(n! 2αn)−1/2

(
∞∑

k=0

(
n+ 2k

2k

)
|z2 − 1|2k2−2αk

)1/2( ∞∑
k=0

(n+ 2k)! 2α(n+2k)C2
n+2k

)1/2

≤ Kα(n! 2αn)−1/2|z|n
(

∞∑
k=0

(
n+ k

k

)
|z2 − 1|k2−αk

)1/2

= Kα(n! 2αn)−1/2|z|n(1− 2α|z2 − 1|)−
n+1

2

if 2α > |z2 − 1|. 2

Proposition 86 Assume all definitions as before.

If α ∈ R is such that 2α > |z2 − 1|, then Kα <∞ implies σzϕ ∈ G ′.
If α ∈ R is such that 2α > |z|2 + |z2 − 1|, then Kα <∞ implies σzϕ ∈M.

Note. In the case z =
√
i we obtain

Kα <∞ , α > 0.5 ⇒ σzϕ ∈ G ′

Kα <∞ , α >
∼ 1.27 ⇒ σzϕ ∈M .

Proof. For α, β ∈ R with 2α > |z2 − 1| we can estimate

‖σzϕ‖20,β =
∞∑

n=0

n! 2βn|ϕ̃(n)|2

≤ K2
α

∞∑
n=0

|z|2n2n(β−α)(1− |z2 − 1| 2−α)−(n+1).

1) If β < 0 is chosen small enough the series on the right hand side is convergent, such
that σzϕ ∈ G ′.
2) If α ∈ R is such that 2α > |z|2 + |z2 − 1| then |z|2 2−α(1 − |z2 − 1| 2−α)−1 < 1. Hence
there exists β > 0 such that ‖σzϕ‖0,β <∞, which proves σzϕ ∈M. 2

Now let us check if we get less restrictive conditions if we only define ϕ̃(0) (and interpret
this as E(σzϕ)). We have

|ϕ̃(0)| ≤
∞∑

k=0

(2k)!

k! 2k
|z2 − 1|kC2k

≤
∞∑

k=0

√
(2k)! |z2 − 1|k C2k .
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This series is convergent if
∑∞

k=0(2k)! 2
2kαC2

2k is finite for α ∈ R such that 2α > |z2 − 1|,
i.e., we get the same type of growth, but conditions are only put on the kernels ϕ(2k) of
even order.

One important application of the scaling operator is the following theorem from [S93]
(see also [HKPS93]) which gives an explicit relation to pointwise multiplication with Jz:

Theorem 87 Let ϕn be a sequence of test functionals in (N ). Then the following state-
ments are equivalent:

(i) The sequence Jzϕn → Ψ converges in (N )′.

(ii) The sequence σzϕn converges in (N )′.

(iii) The sequence E (ψ · σzϕn) converges for all ψ ∈ (N ).

The action of Ψ is given by

〈〈Ψ, ψ〉〉 = lim
n→∞

E (σz (ϕnψ)) ,

if one of the conditions (i) to (iii) holds.

The proof is an immediate consequence of Lemma 83.

One may be tempted to extend σz by continuity arguments. This has to be done with
great care as the following illustrative example shows.

Example 18 We will construct a sequence {ϕn|n ∈ N} ⊂ (N ) converging to zero in
the topology of L2(µ). But for z 6= 1 the sequence {σzϕn|n ∈ N} converges to a constant
different from zero in L2(µ).

Let {ϕ(2)
n ∈ N ⊗̂2

C | n ∈ N} denote a sequence converging to ϕ(2) ∈ H⊗̂2
C , such that

the sequence {cn := trϕ
(2)
n | n ∈ N} ⊂ C is divergent. We consider the sequence of test

functions

ϕn =
1

cn
〈ω⊗2, ϕ(2)

n 〉

which by construction converges to zero in L2(µ).

On the other hand

σzϕn =
1

cn
〈ω⊗2, z2ϕ(2)

n 〉+
1

cn
(z2 − 1)trϕ(2)

n

=
1

cn
〈ω⊗2, z2ϕ(2)

n 〉+ (z2 − 1)

such that

lim
n→∞

σzϕn = (z2 − 1)

which is different from zero for z 6= 1, concluding the example.
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4.6 Donsker‘s delta “function”

4.6.1 Complex scaling of Donsker’s delta

Consider again the S-transform of Donsker’s delta function:

F (θ) =
1√

2π〈η, η〉
exp

(
− 1

2〈η, η〉
(〈θ, η〉 − a)2

)
, θ ∈ NC , η ∈ H+ .

This is clearly analytic in the parameter a ∈ R. We can thus extend to complex a and
the resulting expression is still a U-functional. The same argument holds if we extend to
η ∈ HC. We only have to be careful with regard to the square root. For our purpose it is
convenient to cut the complex plane along the negative axis. So we have to exclude η ∈ HC
with 〈η, η〉 negative. Hence by Theorem 52 it is possible to define δ (〈ω, η〉 − a) for this
choice of parameters. First of all we calculate the chaos expansion of Donsker’s delta.

Lemma 88 Let a ∈ C , η ∈ HC , arg〈η, η〉 6= π , then

δ(〈·, η〉 − a) =
∞∑

n=0

〈: ω⊗n :, f (n)〉

where

f (n) =
e−

a2

2〈η,η〉√
2π〈η, η〉

1

n!
Hn

(
a√

2〈η, η〉

)
(2〈η, η〉)−n/2 η⊗n (4.30)

is in H⊗̂
C . Here Hn denotes the nth Hermite polynomial (in the normalization of [HKPS93]).

Proof. We can expand the S-transform of δ

Sδ(〈·, η〉 − a)(θ) =
1√

2π〈η, η〉
exp

(
− 1

2〈η, η〉
(〈θ, η〉 − a)2

)

=
e−

a2

2〈η,η〉√
2π〈η, η〉

∞∑
n=0

1

n!
Hn

(
a√

2〈η, η〉

)
(2〈η, η〉)−n/2 〈θ⊗n, η⊗n〉 .

Then it is easy to read of the kernels f (n) given by equation (4.30). 2

To discuss the convergence of the chaos expansion we need estimates on the growth of
the sequence {Hn(λ) | n ∈ N0} at a fixed complex point λ. This is a well known fact for
λ ∈ R, but for complex λ the sequence grows faster.

Lemma 89 [Sz39, Th. 8.22.7 and eq. (8.23.4)]
Let λ ∈ C, then

lim
n→∞

(2n)−1/2 log

{
Γ(n/2 + 1)

Γ(n+ 1)
|Hn(λ)|

}
= |Im(λ)| .
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Note. That means for n large we have the asymptotic behavior

|Hn(λ)| ∼ Γ(n+ 1)

Γ(n/2 + 1)
· e

√
2n|Im(λ)|

.
√
n! 2ne

√
2n |Im(λ)| . (4.31)

Theorem 90 Let a ∈ C , η ∈ HC , arg〈η, η〉 6= π be given. Then δ(〈·, η〉 − a) defined
by the chaos expansion (4.30) (or equivalently by its S-transform) is in M′, i.e., for all
α > 0, ‖δ(〈·, η〉 − a)‖0,−α is finite.

Proof. We have

‖δ‖20,−α =
∞∑

n=0

n! 2−nα|f (n)|2

≤

∣∣∣∣∣∣ e−
a2

2〈η,η〉√
2π〈η, η〉

∣∣∣∣∣∣
∞∑

n=0

1

n!
2−nα

∣∣∣∣∣Hn

(
a√

2〈η, η〉

)∣∣∣∣∣
2

|2〈η, η〉|−n |η|2n

.
e
|a|2

2|η|2

√
2π|η|

∞∑
n=0

2−nα exp

(
2
√

2n | Im(
a

2〈η, η〉
)|
)

in view of (4.31). The series is convergent for any α > 0. 2

Now we intend to study complex scaling of a sequence of test functionals converging to δ.
This is done in the spirit of Theorem 87. Let ηn ∈ N be a sequence of real Schwartz test
functions converging to η ∈ H .
Choose |α| < π

4
and z ∈ Sα ≡

{
z ∈ C | arg z ∈

(
−π

4
+ α, π

4
+ α

)}
and define

ϕn,z (ω) =
1

2π

ne−iα∫
−ne−iα

eiλ(z〈ω,ηn〉−a)dλ . (4.32)

To shorten notation we call the basic sequence ϕn,1 simply ϕn. Note that given any z with
|arg z| < π

2
one can choose α such that z and 1 are in Sα. In this section we will establish

the following results:

Theorem 91 [LLSW94b]
For all z ∈ Sα we have:

i) ϕn,z ∈ (N ).

ii) σzϕn = ϕn,z.

iii) ϕn → δ in (N )′.

iv) σzϕn converges in (N )′.
The limit element is called σzδ.

Remark. The limit elements in (iii) and (iv) do not depend on α.
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Proof. i) First of all we calculate the S-transform of the integrand of equation (4.32),
θ ∈ NC:

S (exp (iλ (z 〈ω, ηn〉 − a))) (θ) = exp

(
−1

2
z2λ2 |ηn|20 + iλ (z〈θ, ηn〉 − a)

)
.

This fulfills the requirements of Theorem 56, thus the integral (4.32) is well-defined. Hence

Sϕn,z (θ) =
1

2π

ne−iα∫
−ne−iα

S (exp (iλ (z 〈ω, ηn〉 − a))) (θ) dλ

=
1

2π

ne−iα∫
−ne−iα

exp

(
−1

2
z2λ2 |ηn|20 + iλ (z〈θ, ηn〉 − a)

)
dλ .

We substitute ν = eiαλ , this leads to

Sϕn,z (θ) =
e−iα

2π

n∫
−n

exp

(
−1

2
z2e−2iαν2 |ηn|20 + ie−iαν (z〈θ, ηn〉 − a)

)
dν. (4.33)

Now take the absolute value

|Sϕn,z (θ)| ≤ 1

2π

n∫
−n

exp

(
1

2
|z|2 ν2 |ηn|20 + |ν| |z| |θ|−p |ηn|p + |ν| |a|

)
dν

≤ 1

2π

n∫
−n

exp

(
1

2
|z|2 ν2 |ηn|20 +

1

2s2
ν2 |z|2 |ηn|2p +

1

2
s2 |θ|2−p + |ν| |a|

)
dν

≤ n

π
exp

(
n2

2
|z|2

(
|ηn|20 +

1

s2
|ηn|2p

)
+ n |a|

)
exp

(
+

1

2
s2 |θ|2−p

)
.

This estimate holds for all s ∈ R and p ∈ N. Thus it fulfills the requirements of the
characterization Theorem 54 and we arrive at ϕn,z ∈ (N ) .

ii) Now we study the action of σz on ϕn. A direct computation yields

ϕn (ω) =
1

2π

ne−iα∫
−ne−iα

eiλ(〈ω,ηn〉−a)dλ

=
1

2πi (〈ω, ηn〉 − a)
(
exp

(
ine−iα (〈ω, ηn〉 − a)

)
− exp

(
−ine−iα (〈ω, ηn〉 − a)

))
=

1

π (〈ω, ηn〉 − a)
sin
(
ne−iα (〈ω, ηn〉 − a)

)
.

This is defined pointwise and continuous. Thus

σzϕn (ω) =
1

π (z 〈ω, ηn〉 − a)
sin
(
ne−iα (z 〈ω, ηn〉 − a)

)
.
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On the other hand we get

1

2π

ne−iα∫
−ne−iα

eiλ(z〈ω,ηn〉−a)dλ =
1

π (z 〈ω, ηn〉 − a)
sin
(
ne−iα (z 〈ω, ηn〉 − a)

)
= ϕn,z (ω) .

Hence
σzϕn (ω) = ϕn,z (ω) , z ∈ Sα.

iii,iv) Let us look at the convergence of (4.33). The following estimate holds:

|Sσzϕn (θ)| ≤ 1

2π

∞∫
−∞

exp

(
−1

2
Re
(
z2e−2iα

)
ν2 |ηn|20 + νRe

(
ie−iα (z〈θ, ηn〉 − a)

))
dν .

The integral exists if Re (z2e−2iα) > 0.
This condition is satisfied for −π

4
+ α < arg z < π

4
+ α . We get

|Sσzϕn (θ)| ≤ 1

2π

√
2π

Re (z2e−2iα) |ηn|20
exp

(
[Re (ie−iα (z〈θ, ηn〉 − a))]

2

2Re (z2e−2iα) |ηn|20

)

≤ 1√
2πRe (z2e−2iα) 1

2
|η|20

exp

(
(|z| |θ|0 2 |η|0 + |a|)2

2Re (z2e−2iα) 1
2
|η|20

)
,

for n large enough.
Now the convergence Theorem 55 applies:

lim
n→∞

Sσzϕn (θ) =
1

2π
e−iα

∞∫
−∞

exp

(
−1

2
z2e−2iαν2 |η|20 + iνe−iα (z〈θ, η〉 − a)

)
dν

= e−iα 1√
2πze−iα |η|0

exp

(
−e−2iα (z〈θ, η〉 − a)

2 |η|20 z2e−2iα

2
)

=
1√

2πz |η|0
exp

(
− (z〈θ, η〉 − a)

2 |η|20 z2

2
)

. (4.34)

Note that the limit does not depend on α. 2

Proposition 92 δ is homogeneous of degree −1 in z ∈ Sα:

σzδ (〈ω, η〉 − a) =
1

z
δ
(
〈ω, η〉 − a

z

)
.

Proof. From formula (4.34) we have

Sσzδ (〈ω, η〉 − a) (θ) =
1√

2πz |η|0
exp

(
−1

2

(a− z〈θ, η〉)2

z2 |η|20

)
(4.35)
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=
1

z

1√
2π |η|0

exp

(
−1

2

(
a
z
− 〈θ, η〉

)2
|η|20

)

= S

(
1

z
δ
(
〈ω, η〉 − a

z

))
(θ) .

2

4.6.2 Products of Donsker‘s deltas

To define products of scaled Donsker‘s deltas, we use the following ansatz

Φ =
n∏

j=1

σzδ (〈·, ηj〉 − aj) =
1

(2π)n

n∏
j=1

∫
γ

exp (iλj (z 〈·, ηj〉 − aj)) dλj , (4.36)

here γ = {e−iαt | t ∈ R}, z ∈ Sα, where α is chosen such that |α| < π
4
, ηj are real, linear

independent elements of H and aj ∈ C. We use the notation

exp

(
n∑

j=1

iλj (〈·, ηj〉 − aj)

)
= exp

(
i~λ (〈·, ~η〉 − ~a)

)
.

To prove that Φ is well-defined, we calculate it‘s T -transform:

TΦ (θ) =
e−iαn

(2π)n

∫ ∫
exp

(
ize−iα

〈
ω,~λ~η

〉
− ie−iα~λ~a+ i 〈ω, θ〉

)
dµ dnλ

=
1

(2π)n e
−iαn

∫ ∫
exp

(
i
〈
ω, ze−iα~λ~η + θ

〉
− ie−iα~λ~a

)
dµ dnλ

=
1

(2π)n e
−iαn

∫
C
(
ze−iα~λ~η + θ

)
exp

(
−ie−iα~λ~a

)
dnλ .

To calculate C(ze−iα~λ~η + θ) consider now

〈ze−iα~λ~η, ze−iα~λ~η〉 = z2e−i2α
∑
k,l

λkλl (ηk, ηl) = z2e−i2α~λM~λ,

where M ≡ (ηk, ηl)k,l. This is a Gram matrix of linear independent vectors and thus
positive definite.

TΦ (θ) =
1

(2π)n e
−iαne−

1
2
〈θ,θ〉

×
∫

exp

[
−1

2
z2e−i2α~λM~λ− ze−iα~λ〈~η, θ〉 − ie−iα~λ~a

]
dnλ

=

√
(2π)n

(z2e−i2α)n detM

e−iαn

(2π)n e
− 1

2
〈θ,θ〉

× exp

[
1

2

(
ze−iα〈~η, θ〉+ ie−iα~a

) (
z2e−i2αM

)−1 (
ze−iα〈~η, θ〉+ ie−iα~a

)]
,

this Gaussian integral exists if Re (z2e−i2α) > 0, which is equivalent to z ∈ Sα. The last
expression is a U-functional, so we get:
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Theorem 93 [LLSW94b]
Let aj ∈ C, ηj ∈ L2(R) linear independent and M = (ηk, ηl)k,l the corresponding Gram
matrix.

Then for all z ∈ Sα Φ =
n∏

j=1

σzδ (〈·, ηj〉 − aj) is a Hida distribution with S-transform

SΦ (θ) =
1√

(2πz2)n detM
exp

[
−1

2

(
〈~η, θ〉 − 1

z
~a

)
M−1

(
〈~η, θ〉 − 1

z
~a

)]
. (4.37)

4.6.3 Complex scaling of finite dimensional Hida distributions

We can use Theorem 93 to extend the scaling operator. Let ηj ∈ H , 1 ≤ j ≤ n be linear
independent and G : Rn → C in Lp

C
(
Rn, exp(−1

2
~x ·M−1~x) dnx

)
for some p > 1 where

M = (ηk, ηl)k,l is positive definite. These assumptions allow to define

ϕ := G (〈·, η1〉, . . . , 〈·, ηn〉)

such that ϕ ∈ Lp
C(µ). In view of Proposition 61.1 ϕ ∈ G ′. Since ϕ depends only on a finite

number of “coordinates” 〈·, ηj〉 we call it a finite dimensional Hida distribution (similar to
[KK92] where this notion was restricted to smooth ηj ∈ N , 1 ≤ j ≤ η).

Lemma 94 In the case of the above assumptions the following representation holds

ϕ =

∫
Rn

G(~x) δn(〈·, ~η〉 − ~x) dnx

where the integral in (N )′ is in the sense of Bochner and

δn(〈·, ~η〉 − ~x) :=
n∏

j=1

δ(〈·, ηj〉 − xj)

is defined in Theorem 93.

The proof is postponed because the existence of the Bochner integral will follow from the
more general discussion in the next theorem. Then the equality follows from a comparison
on the dense set of exponential functions.

Now it is natural to try the following extension of σz :

σzϕ =

∫
Rn

G(~x)σzδ
n(〈·, ~η〉 − ~x) dnx

whenever the right hand side is a well defined Bochner integral in (N )′. To do this, stronger
assumptions on G are needed. In the next theorem we will give a sufficient condition.

Theorem 95 Let z ∈ S0 (i.e., Re 1
z2 > 0) and let

G ∈ Lp
C

(
Rn, exp

(
−1

2
(Re

1

z2
) ~x ·M−1~x

)
dnx

)
for some p > 1.

Then ∫
Rn

G(~x)σzδ
n(〈·, ~η〉 − ~x) dnx

is a well defined Bochner integral in (N )′.
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Proof. From equation (4.37) we can estimate

|Sσzδ
n(〈·, ~η〉 − ~x)(θ)| ≤

≤ 1√
(2π|z|2)n detM

exp

(
−1

2
Re

1

z2
~x ·M−1~x+

1

|z|
∣∣〈θ, ~η〉 ·M−1~x

∣∣+ 1

2
|θ|2|~η||M−1~η|

)
.

The term linear in ~x can now be estimated using a general estimate for positive quadratic
forms; for all ε > 0

1

|z|
∣∣〈θ, ~η〉 ·M−1~x

∣∣ ≤ ε~x ·M−1~x+
1

4ε|z|2
〈θ, ~η〉 ·M−1〈θ, ~η〉

≤ ε~x ·M−1~x+
1

4ε|z|2
|θ|2|~η||M−1~η| .

Thus

|Sσzδ
n(〈·, ~η〉 − ~x)(θ)| ≤

≤ 1√
(2π|z|2)n detM

exp

(
−
(

1

2
Re

1

z2
− ε
)
~x ·M−1~x+

1

2

(
1

2ε|z|2
+ 1

)
|~η||M−1~η||θ|2

)
.

Now we choose q > 1 with 1
p

+ 1
q

= 1 and ε > 0 such that qε < 1
2
Re 1

z2 . Then∫
Rn

|G(~x)| exp

(
−
(

1

2
Re

1

z2
− ε
)
~x ·M−1~x

)
dnx ≤

(∫
|G(~x)|p exp

(
−1

2
Re

1

z2
~x ·M−1~x

)
dnx

)1/p

·
(∫

exp

(
−
(

1

2
Re

1

z2
− qε

)
~x ·M−1~x

)
dnx

)1/q

is finite because of our assumptions. Hence Theorem 56 applies and proves the theorem.2

Notes.
1. Instead of integration with respect to G(~x) · dnx we can use complex measures v on Rn

to define the more general distribution∫
Rn

σzδ
n(〈·, ~η〉 − ~x) dnv(x) .

2. If z /∈ S0 (not negative) it is sill possible to define σzδ
n(〈·, ~η〉 − ~x) (if we do not insist

on the existence of an integral representation of type (4.36)). Then equation (4.37) defines
this object. In this case Re 1

z2 may be negative and the analog of Theorem 95 would require
rapid decrease of |G| at infinity, more precisely there has to be an ε > 0 such that∫

|G(~x)| exp

((
ε− 1

2
Re

1

z2

)
~x ·M−1~x

)
dnx

is finite.
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4.6.4 Series of Donsker‘s deltas

We set

ΦN =
N∑

n=−N

σz δ (〈ω, η〉 − a+ n) , a ∈ C .

This is a well-defined Hida distribution and its S-transform is given by

SΦN (θ) =
1√

2π|η|2z

N∑
n=−N

exp

(
− 1

2|η|2z2
(a− n− z〈η, θ〉)2

)
.

We now assume Re 1
z2 > 0. To study the limit N → ∞ we calculate a uniform bound (in

N) for

|SΦN (θ)| ≤ 1

|z|
√

2π|η|2

N∑
n=−N

exp

(
− 1

2|η|2
Re

(
1

z2
(a− n− z〈η, θ〉)2

))

≤ 1

|z|
√

2π|η|2

N∑
n=−N

exp

(
1

2|η|2

(
−n2Re

1

z2
+ 2

∣∣∣n
z

∣∣∣ ∣∣∣a
z
− 〈η, θ〉

∣∣∣+ ∣∣∣a
z
− 〈η, θ〉

∣∣∣2))

≤ 1

|z|
√

2π|η|2

∞∑
n=−∞

exp

(
1

2|η|2

(
−n2 1

2
Re

1

z2
+

(
1 +

2 |z|2

Re z2

)∣∣∣a
z
− 〈η, θ〉

∣∣∣2))

=
1

|z|
√

2π|η|2
exp

(
1

2|η|2

(
1 +

2 |z|2

Re z2

)(∣∣∣a
z

∣∣∣− |η|0 |θ|0)2
)

∞∑
n=−∞

exp

(
− 1

4|η|2
Re

1

z2
n2

)
.

The infinite sum converges if Re 1
z2 > 0, i.e., if z ∈ S0. The sum can also be expressed as

ϑ
(
0, i

4π|η|2 Re 1
z2

)
using the theta function (see [Mu79])

ϑ (ρ, τ) =
∞∑

n=−∞

exp
(
πin2τ + 2πinρ

)
.

Now Theorem 55 applies and we get:

SΦ (θ) =
1

z
√

2π|η|2

∞∑
n=−∞

exp

(
− 1

2z2|η|2
(a− n− z〈η, θ〉)2

)

=
1

z
√

2π|η|2
exp

(
− 1

2|η|2
(
〈η, θ〉 − a

z

)2
) ∞∑

n=−∞

exp

(
− n2

2z2|η|2
− n

|η|2
(
〈η, θ〉 − a

z

))
=

1

z
√

2π|η|2
exp

(
− 1

2|η|2
(
〈η, θ〉 − a

z

)2
)
ϑ

(
i

2π|η|2
(
〈η, θ〉 − a

z

)
,

i

2πz2|η|2

)
= Sσzδ (θ) · ϑ

(
i

2π|η|2
(
〈η, θ〉 − a

z

)
,

i

2πz2|η|2

)
.

Thus we have proved:

83



Theorem 96 [LLSW94b]
For all a ∈ C and all z ∈ S0 the infinite sum

Φ =
∞∑

n=−∞

σz δ (〈ω, η〉 − a+ n)

exists as a Hida distribution with S-transform

SΦ (θ) = Sσz δ (θ) · ϑ
(

i

2π|η|2
(
〈θ, η〉 − a

z

)
,

i

2πz2|η|2

)
.

4.6.5 Local Time

In the next two sections we choose the nuclear triple

Sd ⊂ L2
d ⊂ S ′d

and η = 11[0,t) the indicator function of a real interval. As is well known Brownian motion

may be represented in the framework of Gaussian analysis as ~B(t) =
〈
~ω, 11[0,t]

〉
. Let us

consider the local time, which intuitively should measure the mean time a Brownian particle
spends at a given point. Informally the local time is given by “Tanaka’s formula”

L(τ,~a) =
1

τ

∫ τ

0

δd( ~B(t)− ~a) dt , ~a ∈ Rd, τ ∈ R+ ,

where δd( ~B(t)− ~a) is Donsker delta function with S-transform given by

Sδd( ~B(t)− ~a)(~ξ) =

(
1

2πt

) d
2

exp

(
− 1

2t

[∫ t

0

~ξ(s)ds− ~a
]2
)

.

For dimension d ≥ 2 this expression is usually treated by renormalization, i.e., the can-
cellation of divergent terms, see e.g., [SW93, FHSW94]. However, for ~a 6= 0 — Brownian
motion starts in 0, thus one expects a strong divergence for ~a = 0 — the local time can be
rigorously defined in (Sd)

−1 using Bochner integrals. In fact we can estimate as follows

∣∣∣Sδd( ~B(t)− ~a)(~θ)
∣∣∣ ≤ ( 1

2πt

) d
2

exp

(
1

2t

∣∣11[0,t]

∣∣2 ∣∣∣~θ∣∣∣2 +
|~a|
t
t sup

0≤s≤t

∣∣∣~θ(s)∣∣∣− ~a2

2t

)

≤
(

1

2πt

) d
2

exp

(
−~a

2

2t

)
exp

(∣∣∣~θ∣∣∣2
1

)
exp

(
1

2
|~a|2
)

.

Now

C(t) :=

(
1

2πt

) d
2

exp

(
−~a

2

2t

)
exp

(
1

2
|~a|2
)

is integrable on any interval [0, τ ] with respect to Lebesgue measure dt. Hence the conditions
of Theorem 56 are satisfied and we have

L(τ,~a) =
1

τ

∫ τ

0

δd( ~B(t)− ~a) dt ∈ (Sd)
′ , 0 6= ~a ∈ Rd, τ ∈ R+ .
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In the case d = 1 and a ∈ C the relevant estimate becomes

|Sδ (B (t)− a) (θ)| ≤ 1√
2πt

e
1
2
|a|2e−

Re(a2)
2t exp

(
|θ|21
)

.

This fulfills the conditions of Theorem 56 if Re (a2) ≥ 0. Thus we have an analytic extension

of L (τ, a) = 1
τ

τ∫
0

δ (B (t)− a) dt to a ∈ C with Re (a2) ≥ 0. That means the point a = 0 is

allowed in this case (Note that
τ∫
0

t−d/2dt only exists for d = 1.).
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Chapter 5

Concept of path integration in a
white noise framework

5.1 The free Feynman integrand

The idea of realizing Feynman integrals within the white noise framework goes back to
[HS83]. The “average over all paths” is performed with a Hida distribution as the weight.
The existence of such Hida distributions corresponding to Feynman integrands has been
established in [FPS91]. There the Feynman integrand for the free motion (in one space
dimension) reads:

I0,old = Nexp

(
i+ 1

2

∫ t

t0

ω2 (τ) dτ

)
δ (x (t)− x) .

However the distribution

J = Nexp

(
i+ 1

2

∫
R
ω2 (τ) dτ

)
has recently been seen to be particularly useful in this context because of its relation to
complex scaling (see Theorem 87). It turns out that it is unnecessary to use the time
interval [t0, t] in the kinetic energy factor; the delta function introduces the interval into
the resulting distribution I0 := Jδ. Indeed it will be shown that I0 produces the correct
physical results. As the choice of I0 rather than I0,old as a starting point produces only
minor modifications in calculations and formulae, all the pertinent results in [FPS91] can
be established in a completely analogous manner.

Let us look at the construction of the free Feynman integrand (in more than one space
dimension) in more detail. We are going to use a variant of white noise analysis which
allows vector valued white noise and hence the possibility to build up Brownian paths in
d-dimensional space, see Example 11 on page 53.

We introduce the heuristic term

exp

(
1 + i

2

∫
R
~ω2(τ) dτ

)
where ~ω ∈ S ′d is a d–tuple of independent white noises. Formal speaking we expect this
term to consist of one factor representing Feynman’s factor introduced for the kinetic
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part and one factor compensating the Gaussian fall-off of the white noise measure which
is used instead of Feynman’s ill defined flat measure on path–space. The above term
is not well defined because of its infinite expectation. Formally this can be cured by
dividing out this infinite constant. This leads to the normalized exponential J := J√i =
Nexp

(
1+i
2

∫
R ~ω

2(τ) dτ
)

in (Sd)
′ studied in Example 12 on page 54. It can be defined

rigorously by its T -transform

exp

(
− i

2

∫
R

~ξ2(τ) dτ

)
, ~ξ ∈ Sd

where ~ξ2 =
d∑

j=1

ξ2
i denotes the Euclidean inner product. The version of Brownian motion

we are going to use starts in point ~x0 at time t0:

~x(τ) = ~x0 +
〈
~ω, 11[t0,τ)

〉
, ~ω ∈ S ′d (5.1)

here 11[t0,τ) denotes the indicator function of the interval [t0, τ). Since we will discuss prop-
agators we also have to fix the endpoint ~x of the paths at time t. To this end we introduce
Donsker’s delta function which is the formal composition of a delta function and a Brownian
motion:

δd(~x(t)− ~x) .
This is a well defined distribution in (Sd)

′ as can be verified by calculating its T -transform.
Here we give instead the slightly more general T -transform where the scaling operator
σz : ϕ(~ω) −→ ϕ(z~ω) has been applied to Donsker’s delta. This can be justified following
the lines of section 4.6.1;

T (σzδ)(~ξ) =
(
2πz2(t− t0)

)− d
2 exp

(
−1

2

∣∣∣~ξ∣∣∣2 − 1

2(t− t0)

(
i

∫ t

t0

~ξ(τ) dτ − ~x− ~x0

z

)2)
.

Now we have to justify the pointwise multiplication of J and δ to get the so called free
Feynman integrand I0. This was initially been done in [FPS91] for d = 1 and in [SW93]
for higher dimensions. So we use a short way to reproduce this result. Using the relation
of Nexp and complex scaling which is condensed in the following formula (Lemma 83)

T (I0)(~ξ) = T (Jδ)(~ξ) = T (σ√iδ)(
√
i~ξ) , (5.2)

we arrive at the T -transform of the free Feynman integrand

T (I0)(~ξ) = (2πi(t− t0))−
d
2 exp

(
− i

2

∣∣∣~ξ∣∣∣2 − 1

2i(t− t0)

(∫ t

t0

~ξ(τ) dτ + (~x− ~x0)

)2 )
. (5.3)

This is clearly a U -functional and can be used to define I0 in (Sd)
′. If it is necessary to be

more precise we will also use the notation I0 (~x, t|~x0, t0).

Furthermore the Feynman integral E (I0) = T I0 (0) is indeed the (causal) free particle

propagator (2πi(t− t0))−
d
2 exp

[
i

2|t−t0| (~x− ~x0)
2
]
.

Not only the expectation but also the T–transform has a physical meaning. By a formal
integration by parts

T I0

(
~ξ
)

= E
(

I0 e
−i
∫ t

t0
~x(τ)

.
~ξ(τ) dτ

)
ei~x~ξ(t)−i~x0

~ξ(t0) e − i
2 |~ξ[t0,t]c|2 .
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(~ξ[t0,t]c denotes the restriction of ~ξ to the complement of [t0, t]). The term e
−i
∫ t

t0
~x(τ)

.
~ξ(τ) dτ

would thus arise from a time-dependent potential W (~x, τ) =
.

~ξ (τ)~x. And indeed it is
straightforward to verify that

Θ(t− t0) · T I0

(
~ξ
)

= K

( .
~ξ

)
0 (~x, t|~x0, t0) e

i~x~ξ(t)−i~x0
~ξ(t0) e − i

2 |~ξ[t0,t]c|2 , (5.4)

where

K

( .
~ξ

)
0 (~x, t|~x0, t0) =

Θ (t− t0)√
2πi |t− t0|

×

exp

(
i~x0

~ξ(t0)− i~x~ξ(t)−
i

2

∣∣∣~ξ[t0,t]

∣∣∣2 +
i

2 |t− t0|

(∫ t

t0

~ξ(τ) dτ + ~x− ~x0

)2
)

(5.5)

is the Green’s function corresponding to the potential W , i.e., K

( .
~ξ

)
0 obeys the Schrödinger

equation (
i∂t +

1

2
4−

.

~ξ (t)x

)
K

( .
~ξ

)
0 (~x, t|~x0, t0) = i δ (t− t0) δd (~x− ~x0) .

More generally one calculates (e.g., using Theorem 93)

T

(
J

n+1

Π
j=1

δd (~x (tj)− ~xj)

)(
~ξ
)

= e−
i
2 |~ξ[t0,t]c|2ei~x~ξ(t)−i~x0

~ξ(t0)
n+1

Π
j=1

K

( .
~ξ

)
0 (~xj, tj|~xj−1, tj−1) .

(5.6)

= e
in
2 |~ξ|

2 n+1

Π
j=1

T I0 (~xj, tj|~xj−1, tj−1) (~ξ)

Here t0 < t1 < ... < tn < tn+1 ≡ t and ~xn+1 ≡ ~x .

5.2 The unperturbed harmonic oscillator

In this section we first review some results of [FPS91]. Then we prepare a proposition on
which we base the perturbative method in section 7.3.

To define the Feynman integrand

Ih = I0 exp

(
−i
∫ t

t0

U (x(τ)) dτ

)
, U(x) =

1

2
k2x2

of the harmonic oscillator (for space dimension d = 1), at least two things have to be done.
First we have to justify the pointwise multiplication of I0 with the interaction term and

secondly it has to be shown that E(Ih) solves the Schrödinger equation for the harmonic
oscillator. Both has been done in [FPS91]. There the T -transform of Ih has been calculated
and shown to be a U -functional. Thus Ih ∈ (S)′. Later we will use the following modified
version of their result:

T Ih (ξ) =

√
k

2πi sin k |∆|
exp

(
− i

2
|ξ|2
)

exp
{ ik

2 sin k |∆|

[ (
x2

0 + x2
)
·
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· cos k |∆| − 2x0x+ 2x

∫ t

t0

dt′ ξ(t′) cos k(t′ − t0)− 2x0

∫ t

t0

dt′ ξ(t′) cos k(t− t′)

+ 2

∫ t

t0

ds1

∫ s1

t0

ds2 ξ(s1)ξ(s2) cos k(t− s1) cos k(s2 − t0)
]}
, (5.7)

with 0 < k |∆| < π

2
, ∆ = [t0, t] , |∆| = |t− t0| . T Ih is easily seen to be a U -functional.

For our purposes it is convenient to introduce

K
(ξ̇)
h (x, t | x0, t0) = θ(t− t0) T Ih(ξ) · exp i

2
|ξ∆c|2 · exp (ix0ξ(t0)− ixξ(t)) ,

which is the propagator of a particle in a time dependent potential 1
2
k2x2+xξ̇(t). (Again ξ∆c

denotes the restriction of ξ to the complement of ∆.) This allows for an independent check
on the correctness of the above result. In advanced textbooks of quantum mechanics such
as [Ho92] the propagator for a harmonic oscillator coupled to a source j (forced harmonic
oscillator) is worked out. Upon setting j = ξ̇ their result is easily seen to coincide with the
formula given above.

As in equation (5.6) we also need a definition of the (pointwise) product

Ih
n∏

j=1

δ (x(tj)− xj)

in (S)′. The expectation of this object can be interpreted as the propagator of a particle
in a harmonic potential, where the paths all are “pinned” such that x(tj) = xj, 1 ≤ j ≤ n.
Following the ideas of the remark at the end of the section 4.1.3 we will have to apply
(4.11) repeatedly. But due to the form of T Ih(ξ), which contains ξ only in the exponent
up to second order, all these integrals are expected to be Gaussian.

Using this we arrive at the following proposition.

Proposition 97 For x0 < xj < x, 1 ≤ j ≤ n, t0 < tj < tj+1 < t, 1 ≤ j ≤ n− 1,
Ih
∏n

j=1 δ (x(tj)− xj) is a Hida distribution and its T -transform is given by

T
(
Ih

n∏
j=1

δ (x(tj)− xj)
)
(ξ) = e−

i
2
|ξ∆c |2ei(xξ(t)−x0ξ(t0))

n+1∏
j=1

K
(ξ̇)
h (xj, tj|xj−1, tj−1) .

Proof. For n = 1 we may check the assertion by direct computation using formula
(4.11). To perform induction one needs the following lemma.

Lemma 98 Let [t0, t] ⊂ [t
′
0, t

′
] then

K

(
(ξ+λ11

[t
′
0,t

′
]
)
·)

h (x, t|x0, t0) = K
(ξ̇)
h (x, t|x0, t0) , ∀λ ∈ R .

The lemma is also proven by a lengthy but straightforward computation. On a formal
level the assertion of the lemma is obvious as both sides of the equation are solutions of
the same Schrödinger equation if [t0, t] ⊂ [t

′
0, t

′
] . 2

The proposition states what one intuitively expects, ordinary propagation from one
intermediate position to the next.
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5.3 An example: Quantum mechanics on a circle

In this section we study a free quantum system whose one degree of freedom is constrained
to a unit circle. Constructing a path integral for such a system, one has to take into
account paths with different winding numbers n. Thus the following ansatz for the Feynman
integrand seems to be natural:

I (ϕ1, t|ϕ0, 0) ≡
∞∑

n=−∞

J δ (ϕ (t)− ϕ1 + 2πn) , J=J√i

where ϕ(t) = ϕ0 + B(t) is the angle of position modulo 2π. (Other quantizations would
arise if we summed up the contributions from different winding numbers with a phase
factor eiθn [Ri87].) However multiplication by J corresponds to complex scaling by z =

√
i

and we have seen in section 4.6.4 that the series does not converge for this value of z. A
formal calculation (e.g., using Theorem 96 and equation (5.2)) would lead to the following
S-transform:

SI (ϕ1, t|ϕ0, 0) (θ) = SI0 (ϕ1, t|ϕ0, 0) (θ) · ϑ

1

t

i t∫
0

θ (s) ds− (ϕ1 − ϕ0)

 ,
2π

t

 .

However the ϑ-function does not converge for these arguments, see [Mu79]. To stay within
the ordinary white noise framework we thus consider as final states smeared wave packets
F instead of strictly localized states. So let

F (ϕ) =
∞∑

l=−∞

al e
ilϕ ,

where
∞∑

l=−∞
|al| exp

(
1
2
s2l2
)
<∞ for some s > 0. This leads to:

I = JF (B (t) + ϕ0)

=
∞∑

l=−∞

alJ exp
(
il
(〈
ω, 11[0,t)

〉
+ ϕ0

))
.

It is then easy to calculate

T I (θ) =
∞∑

l=−∞

al e
ilϕ0T

(
J exp

(
il
〈
ω, 11[0,t)

〉))
(θ)

=
∞∑

l=−∞

al e
ilϕ0 exp

(
− i

2

∫ (
θ + l11[0,t)

)2
dτ

)

= e−
i
2

∫
θ2dτ

∞∑
l=−∞

al exp

− i
2
l2t+ il

− t∫
0

θ (s) ds+ ϕ0

 .

To ensure convergence of the series we estimate:

|T I (θ)| ≤
∞∑

l=−∞

|al| e |l||(11[0,t),θ)| e
1
2
|θ|20
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≤
∞∑

l=−∞

|al| e|l|
√

t|θ|0 e
1
2
|θ|20

≤

(
∞∑

l=−∞

|al| e
1
2
s2l2

)
e

1
2(1+ t

s2
)|θ|20 .

This is a uniform bound, sufficient for the application of Theorem 55. Thus we have proved
I ∈ (S)′. It is straightforward to check that the Feynman integral

E(I) =
∞∑

t=−∞

al exp

(
− i

2
l2t+ ilϕ0

)
solves the corresponding Schrödinger equation.
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Chapter 6

Feynman integrals and complex
scaling

6.1 General remarks

It has been shown in section 5.1 that the kinetic energy term and the factor compensat-
ing the Gaussian fall-off of the white noise measure combine to give a well-defined Hida
distribution

J := J√i = Nexp
(

i+1
2
|ω|2

)
So the central question in realizing Feynman integrals in terms of white noise distributions
is the definition of J · ϕ for most general ϕ (e.g., ϕ = δ( ~B(t)− ~x) in order to construct the
free particle propagator).

A very elegant and general way of defining products of J and other distributions has
been suggested in [S93], where the connection between J and complex scaling was noted.
One has J = σ†√

i
11 by Lemma 82. In order to define products with J one approximates the

other factor by test functionals and then studies the convergence of the scaled sequence
according to Theorem 87.
Here we have to remind the reader of Example 18 on page 75. If we want to define the
action of σz on Φ ∈ (N )′ by a limiting procedure, the result depends on the choice of the
approximating sequence ϕn → Φ. In view of Theorem 87 the same care is necessary if we
want to define the pointwise product J · Φ.

If we choose N = Sd(R) and

ϕ = δ( ~B(t)− ~x) · exp(−i
∫ t

0

V ( ~B(τ))dτ)

then E(J · ϕ) is a representation of a Feynman integral, i.e., it should coincide with the
particle propagator K(~x, t|~0, 0).

In this section we follow the idea suggested by Lemma 83. There we proved

Jz · ϕ = σ†z(σzϕ) , ϕ ∈ (N ) .

We will use the right hand side as a definition of the left side for a larger class of ϕ if
this makes sense. Since the functionals ϕ in question have kernels in H⊗̂n

C we discussed
extensions of the scaling operator, which led to sufficient conditions (in Proposition 86) on
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ϕ to ensure the existence of σzϕ in G ′ or more restrictive ones for σzϕ ∈M. The last case is
interesting if we choose ϕ = exp(−i

∫ t

0
V ( ~B(τ))dτ). Then we can justify the multiplication

with σzδ afterwards (Theorem 90).

Now assume ϕ ∈ G ′ such that σzϕ is well defined in G ′. Then we define

Jzϕ := σ†z(σzϕ) ∈ (N )′ ,

such that
E(Jzϕ) = E(σ†z(σzϕ) ) = E(σzϕ) .

Using equation (4.22) we obtain

E(σzϕ) = ϕ̃(0) =
∞∑

k=0

(2k)!

k! 2k
(z2 − 1)k trkϕ(2k) .

Considerations of this type have been used by Hu and Meyer [HM88]. They defined the
Feynman integral by

E(J√iϕ) =
∞∑

k=0

(2k)!

k! 2k
(i− 1)k trkϕ(2k) ,

whenever the right hand side is well defined. (Note that they used different normalization
in the definition of chaos expansion.) One central question in this approach is the existence

of iterated traces if ϕ(2k) ∈ H⊗̂2k
C . This was one important motivation in the work [JK93],

see Proposition 84 for a brief account. The second problem in this approach is that it
depends on the knowledge of the chaos expansion of ϕ, which often cannot be calculated
explicitly enough. An alternative approach is suggested by the work of Doss [D80].

6.2 Inspection of the Doss approach

Let V : Rd → R denote a potential on d dimensional space. We assume that V has an
extension to an analytic function (also denoted by V ) defined on the following “strip”

S =
{
~x+
√
i~y
∣∣∣ ~x ∈ D and ~y ∈ Rd

}
where D ⊂ Rd is a connected open set.

Doss studies the expression

ψ(t, ~x) = E
{
f
(
~x+
√
i ~B(t)

)
exp

(
−i
∫ t

0

V
(
~x+
√
i ~B(τ)

)
dτ

)}
to obtain Feynman Kac type solutions of the time dependent Schrödinger equation, where
f : S → C plays the role of the initial wave function f(~x) = ψ(0, ~x). He introduces

conditions on V to define exp
(
−i
∫ t

0
V (~x+

√
i ~B(τ)) dτ

)
as a well defined random variable.

Nevertheless these conditions are not very transparent, so we will restrict ourselves to sub–
classes of potentials where the meaning of the conditions becomes more obvious. But before
we need to give the underlying lemma. On the space C

(
[0,∞),Rd

)
we introduce the norms

|||~g|||t = sup
j=1,...,d

sup
τ∈[0,t)

|~gj(τ)| , ~g ∈ C
(
[0, t),Rd

)
.
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Lemma 99 [D80]
Let k : R+ → R+ denote a measurable function. Then

E
(
k(
∣∣∣∣∣∣∣∣∣ ~B∣∣∣∣∣∣∣∣∣

t
)
)
≤ 2d

√
2

πt
·
∫ ∞

0

k(u) exp(−u
2

2t
) du .

Now we state our central assumption

Definition 100 Let z ∈ C. An analytic function V : S → C is said to be in the Doss
class (with parameters z, a, b) if there exist a, b ≥ 0 such that V obeys the following bound

ImV (~x+ z~y) ≤ a+ b|~y|2 , ~x ∈ D , ~y ∈ Rd . (6.1)

The above definition is interesting in view of the following proposition.

Proposition 101 Let V be in the Doss class with parameters z ∈ C, a, b ≥ 0.

1. Let ~x ∈ D , p ≥ 1 and b < 3
2pt2

then

exp

(
−i
∫ t

0

V
(
~x+ z ~B(τ)

)
dτ

)
∈ Lp(µ) .

2. Let D be convex and ~x, ~y ∈ D, p ≥ 1 and b < 3
14pt2

then

exp

(
−i
∫ t

0

V
(
~x+

τ

t
(~y − ~x) + z

(
~B(τ)− τ

t
~B(t)

))
dτ

)
∈ Lp(µ) .

Proof. We prove assertion 2. the proof of statement 1. is completely analogous. The
following holds∣∣∣∣exp−i

∫ t

0

V
(
~x+

τ

t
(~y − ~x) + z

(
~B(τ)− τ

t
~B(t)

))
dτ

∣∣∣∣
= exp

∫ t

0

ImV
(
~x+

τ

t
(~y − ~x) + z

(
~B(τ)− τ

t
~B(t)

))
dτ

≤ exp

(
ta+ b

∫ t

0

∣∣∣∣∣∣∣∣∣ ~B(τ)− τ

t
~B(t)

∣∣∣∣∣∣∣∣∣2
t
dτ

)
≤ exp

(
ta+ b

∫ t

0

(∣∣∣∣∣∣∣∣∣ ~B(t)
∣∣∣∣∣∣∣∣∣2

t
+ 2

τ

t

∣∣∣∣∣∣∣∣∣ ~B(t)
∣∣∣∣∣∣∣∣∣2

t
+
τ 2

t2

∣∣∣∣∣∣∣∣∣ ~B(t)
∣∣∣∣∣∣∣∣∣2

t

)
dτ

)
= exp

(
ta+

7

3
bt
∣∣∣∣∣∣∣∣∣ ~B(t)

∣∣∣∣∣∣∣∣∣2
t

)
.

Lemma 99 gives

E
(∣∣∣∣exp−i

∫ t

0

V
(
~x+

τ

t
(~y − ~x) + z

(
~B(τ)− τ

t
~B(t)

))
dτ

∣∣∣∣p)
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≤ E
(

exp

(
pta+

7

3
ptb
∣∣∣∣∣∣∣∣∣ ~B(t)

∣∣∣∣∣∣∣∣∣2
t

))
≤ 2d

√
2

πt

∫ ∞

0

exp

(
pta−

(
1

2t
− 7

3
ptb

)
u2

)
du

which is finite if b < 3
14pt2

. 2

Example 19 Let d = 1 , z =
√
i , and D bounded. Then consider the polynomial potential

V (x) = g

n∑
k=0

ckx
k , g, ck ∈ R k ≤ n and cn = 1 .

First we assume the harmonic oscillator potential, i.e., n = 2. If g < b then there exist
a = a(D) > 0 such that (6.1) is fulfilled. Note in particular that negative values of the
coupling constant g are allowed. For positive g the restriction g < b is consistent with the
fact that the propagator Kh(x, t|0, 0) of the harmonic oscillator is only defined for small
times t (compare (5.7) with Proposition 101.2, which is the relevant case for propagators
as we will see).

Now let n = 2 + 8m, m ∈ N0 and g < 0 or n = 6 + 8m, m ∈ N0 and g > 0, then the
dominant behavior of the highest power shows that ImV (x+

√
iy) < 0 for y large enough.

So due to the smoothness of V
ImV (x+

√
iy) < a

for some a = a(D) ≥ 0.
Note that we have included an interesting class of repulsive potentials i.e., g < 0.
Let us also mention that this example allows a comparison with results in the recent mono-
graph [Us94]. He obtained a nice behaviour for sextic oscillators i.e., for some polynomial
interactions with leading power x6. If the coefficients ck satisfy an additional condition, the
Schrödinger equation becomes quasi–exact solvable, i.e., a finite number of energy eigen-
values Em and eigenfunctions can be calculated explicitly. On the other hand the work
of Bender and Wu [BeWu69] demonstrated that potentials with leading power x4 produce
very complicated non–perturbative effects (e.g., rapid growth of |Em| ∼ m!Am and the
“horn structure” of the singularities of the function g 7→ E(g) :=

∑∞
m=0Emg

m in a neigh-
borhood of zero).
For more examples see [D80].

To shorten notation we define

ϕ := exp−i
∫ t

0

V (~x0 + ~B(τ)) dτ , x0 ∈ D .

Of course ϕ ∈ Lp(µ) for any p ≥ 0. If V satisfies the conditions of Proposition 101 for
some p ≥ 0 we will write

σzϕ
def
= exp−i

∫ t

0

V (~x0 + z ~B(τ)) dτ ∈ Lp(µ)

since the right hand side may be viewed as a well defined extension of the scaling operator
σz. (Any useful extension of the scaling operator is expected to reflect the structure of the
original definition σzϕ(~ω) = ϕ(z~ω) for ϕ ∈ (Sd).)
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Smooth final wave function. We want to define Jz · ϕ · ψ by extension of formula (4.25):

Jz · ϕ · ψ = σ†z(σzϕ · σzψ) .

If we assume V in the Doss class for some a and b < 3
2t2

then there exists p > 1 such that
σzϕ ∈ Lp(µ), i.e., by Proposition 60 σzϕ ∈ G ′. Let ψ ∈ G such that σzψ ∈ G (for example
ψ ∈ (Sd)) then σzϕ · σzψ ∈ G ′ and σ†z(σzϕ · σzψ) ∈ (Sd)

′. For example we can choose ψ to

be an approximation of δd( ~B(t) − (~x − ~x0)) and z =
√
i then J√iϕψ defined above is an

approximation of the Feynman integrand. Thus

E(J√iϕψ) = E
(
σ†√

i
(σ√iϕ · σ√iψ)

)
= E(σ√iϕ · σ√iψ)

is an approximation of the propagator KV (~x, t|~x0, 0).

Rewriting the propagator. Now assume V in the Doss class for some a and b < 3
14t2

such
that σzϕ ∈ M. This condition is not easy to check but nevertheless at the end of this
consideration it will be possible to extend the validity of the result to more general V .

We define
Jz · δ · ϕ := σ†z(σzδ · σzϕ)

here δ is shorthand for δd
(
~B(t)− (~x− ~x0)

)
. This is well defined since σzδ ∈M′ (Theorem

90) and the pointwise product σzδ · σzϕ is in G ′ in view of (4.16).
The homogeneity property in Proposition 92 writes

σzδ
d
(
~B(t)− (~x− ~x0)

)
=

(
1

z
√
t

)d

δd

(
〈~ω, 11t√

t
〉 − ~x− ~x0

z
√
t

)
,

since δd is no more than the product of d independent Donsker deltas. Using this and
Proposition 72 we can calculate:

E
(
σ†z(σzϕ · σzδ)

)
= E(σzδ · σzϕ)

=

(
1

z
√
t

)d〈〈
δd

(
〈·, 11t√

t
〉 − ~x− ~x0

z
√
t

)
, σzϕ

〉〉
=

(
1√

2πt z

)d

e−
(~x−~x0)2

2z2t E
(
Pτ~x−~x0

zt
11t

(σzϕ)
)

where P :M 7→ G ′ is defined as in section 4.3.3.2 with η = 11t/
√
t. Using the definitions

we obtain

Pτ~x−~x0
zt

11t
(σzϕ) = exp−i

∫ t

0

V

(
~x0 + z

〈
~ω − 〈~ω, 11t〉11t/t+

~x− ~x0

zt
11t, 11τ

〉)
dτ

= exp−i
∫ t

0

V
(
~x0 +

τ

t
(~x− ~x0) + z

(
~B(τ)− τ

t
B(t)

))
dτ .

This term can now be substituted in the above formula. Furthermore it is possible to change
the representation of Brownian motion in the expectation. If ~B(τ) is a Wiener process then

also l ~B( τ
l2

) , l > 0 and they have the same covariance min(τ, τ ′). This property is called
scaling invariance of Brownian motion.

96



Thus we have derived

E(Jzδϕ) =

(
1√

2πz2t

)d

exp

(
−(~x− ~x0)

2

2z2t

)
·

·E
(

exp−i
∫ t

0

V
(
~x0 +

τ

t
(~x− ~x0) + z

(
~B(τ)− τ

t
~B(t)

))
dτ

)
=

(
1√

2πz2t

)d

exp

(
−(~x− ~x0)

2

2z2t

)
·

·E
(

exp−it
∫ 1

0

V
(
~x0 + s(~x− ~x0) + z

√
t
(
~B(s)− s ~B(1)

))
ds

)
Note that τ 7→ ~B(τ)− τ

t
~B(t) is a representation of the Brownian bridge from zero to t. In

the physically relevant case z =
√
i the factor(

1√
2πit

)d

exp

(
−(~x− ~x0)

2

2it

)
= K0(~x, t|~x0, 0)

appearing in the above formulae is the free particle propagator. So we obtained a well
defined probabilistic expression. To write down the right hand side of the above equations
it is only necessary that V satisfied the Doss condition for some a and b < 3

14t2
. Then

the functional in the expectation is in Lp(µ) for some p > 1. Hence the physical relevant
quantity is well defined, also if σzϕ ∈M is not true. It remains to show that this is in fact
the fundamental solution of the corresponding Schrödinger equation. We will only give a
partial answer to this question. Expressions of the type discussed above were also studied
in the work of Yan [Yan93]. We will state his result in our setting

Proposition 102 [Yan93, Th’s 3.9 and 5.2]
Let V be as above. The expression

q(~x, λt|~x0, 0) =
1√

2πλt
exp

(
−(~x− ~x0)

2

2λt

)
·

·E
(

exp−it
∫ 1

0

V
(
~x0 + s(~x− ~x0) + z

√
λt( ~B(s)− s ~B(1))

)
ds

)
has an analytic continuation to all λ ∈ C such that Reλ > 0. Moreover q(~x, λt|~x0, 0) is
the fundamental solution of

∂ψ

∂t
= λ(

1

2
∆− V )ψ , λ ∈ C+ .

So the quantities constructed above solve the right (partial) differential equation if
z2 (∼ λ) is such that Re z2 > 0. The open question remains if this is also true for z2 = i.
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Chapter 7

Quantum mechanical propagators in
terms of white noise distributions

7.1 An extension of the Khandekar Streit method

In order to pass from the free motion to more general situations, one has to give a rigorous
definition of the heuristic expression

I = I0 exp

(
−i
∫ t

t0

V (~x (τ)) dτ

)
.

In [KaS92] Khandekar and Streit accomplished this by perturbative methods in the case
d = 1 and V is a finite signed Borel measure with compact support. (Note that singular
potentials are included in this class.) We generalize the construction by allowing time-
dependent potentials and a Gaussian fall–off instead of a bounded support. In section
7.1.2 potentials of exponential fall–off are considered, for the price that we need to use a
larger distribution space.

Let D ≡ [T0,T] ⊃ ∆ = [t0, t] and let v be a finite signed Borel measure on R×D . Let
vx denote the marginal measure

vx (A) ≡ v (A×D) , A ∈ B(R)

similarly

vt (B) ≡ v (R×B) , B ∈ B(D).

7.1.1 The Feynman integrand as a Hida distribution

We assume that |v|x and |v|t satisfy:

i ) ∃R > 0 ∀ r > R : |v|x ({x : |x| > r}) < e−βr2
for some β > 0 ,

ii ) |v|t has a L∞density.

The essential bound of this density is denoted by Cv.
Let us first describe heuristically the construction by treating v as an ordinary function
V before stating the rigorous result Theorem 103. The starting point is a power series

expansion of exp
(
−i
∫ t

t0
V (x(τ), τ) dτ

)
using V (x(τ), τ) =

∫
dxV (x, τ) δ (x(τ)− x) :
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exp

(
−i
∫ t

t0

V (x(τ), τ)dτ

)
=

∞∑
n=0

(−i)n

∫
Λn

dnt
n

Π
i=1

∫
dxi V (xi, ti)δ(x(ti)− xi)

where
Λn = {(t1, ..., tn)| t0 < t1 < ... < tn < t} . (7.1)

If necessary we will also use the notation Λn(t, t0).

More generally we can show:

Theorem 103

I = I0 +
∞∑

n=1

(−i)n

∫
Rn

∫
Λn

n

Π
i=1

v (dxi, dti) I0
n

Π
j=1

δ (x (tj)− xj) (7.2)

exists as a Hida distribution in case V obeys i) and ii).

Proof. 1) In =
∫

Rn

∫
Λn

n

Π
i=1

v (dxi, dti) I0
n

Π
j=1

δ (x (tj)− xj) is a Hida distribution for

n ≥ 1. This is shown by applying Theorem 56.

Hence we have to establish a bound of the required type for the T-transform of the
integrand. From formulae (5.5) and (5.6) we find (θ ∈ SC)

T

(
I0

n∏
j=1

δ(x(tj)− xj)

)
(θ) = exp(− i

2
|θ|20) ·

n+1∏
j=1

1√
2πi(tj − tj−1)

·

· exp

(
n+1∑
j=1

i
(xj − xj−1)

2

2(tj − tj−1)

)

· exp

(
n+1∑
j=1

i
xj − xj−1

tj − tj−1

∫ tj

tj−1

θ(s)ds

)

· exp

n+1∑
j=1

i

2(tj − tj−1)

[∫ tj

tj−1

θ(s)ds

]2
 .

It is easy to estimate the last term∣∣∣∣∣∣
n+1∑
j=1

i

2(tj − tj−1)

[∫ tj

tj−1

θ(s)ds

]2
∣∣∣∣∣∣ ≤

n+1∑
j=1

1

2(tj − tj−1)

[∫ tj

tj−1

|θ(s)|2ds ·
∫ tj

tj−1

112
[tj−1,tj ]

(s)ds

]

≤
n+1∑
j=1

1

2

∫ tj

tj−1

|θ(s)|2ds ≤ 1

2
|θ|20 .

In order to estimate the term

exp

(
n+1∑
j=1

i
xj − xj−1

tj − tj−1

∫ tj

tj−1

θ(s)ds

)
, (7.3)
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we proceed as follows

n+1∑
j=1

i
xj − xj−1

tj − tj−1

∫ tj

tj−1

θ(s)ds =
x

t− tn

∫ t

tn

θ(s)ds− x0

t1 − t0

∫ t1

t0

θ(s)ds +

n∑
j=1

xj

(∫ tj
tj−1

θ(s)ds

tj − tj−1

−

∫ tj+1

tj
θ(s)ds

tj+1 − tj

)
.

By the mean value theorem

n∑
j=1

xj

(∫ tj
tj−1

θ(s)ds

tj − tj−1

−

∫ tj+1

tj
θ(s)ds

tj+1 − tj

)
=

n∑
j=1

xj(θ(τj)− θ(τj+1)) ,

where τk ∈ (tk−1, tk). Then we can estimate∣∣∣∣∣
n∑

j=1

xj(θ(τj)− θ(τj+1))

∣∣∣∣∣ ≤
n∑

j=1

|xj||θ(τj)− θ(τj+1)|

≤
(

sup
1≤j≤n

|xj|
)
·

n∑
j=1

∫ τj+1

τj

|θ′(s)|ds

≤
(

sup
1≤j≤n

|xj|
)
·

n∑
j=1

∫ tj+1

tj

|θ′(s)|ds

≤
(

sup
1≤j≤n

|xj|
)
·
∫ t

t0

|θ′(s)|ds .

Therefore we have∣∣∣∣∣exp

(
n+1∑
j=1

i
xj − xj−1

tj − tj−1

∫ tj

tj−1

θ(s)ds

)∣∣∣∣∣
≤ exp

(
|x| sup

tn≤s≤t
|θ(s)|+ |x0| sup

t0≤s≤t1

|θ(s)|+
(

sup
1≤j≤n

|xj|
)
·
∫ t

t0

|θ′(s)|ds
)

≤ exp

((
sup

0≤j≤n+1
|xj|
)
·
[

sup
tn≤s≤t

|θ(s)|+ sup
t0≤s≤t1

|θ(s)|+
∫ t

t0

|θ′(s)|ds
])

.

Let us introduce the following norm on SC(R)

‖θ‖ ≡
∫ t

t0

|θ′(s)|ds+ sup
t0≤s≤t

|θ(s)| .

Clearly this is a continuous norm on SC(R). From the last estimate we obtain∣∣∣∣∣exp

(
n+1∑
j=1

i
xj − xj−1

tj − tj−1

∫ tj

tj−1

θ(s)ds

)∣∣∣∣∣ ≤ exp

((
sup

0≤j≤n+1
|xj|
)
· ‖θ‖

)

≤ exp

[
γ

(
sup

0≤j≤n+1
|xj|
)2
]
· exp

(
1

γ
‖θ‖2

)
,
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where 0 < γ is to be chosen later. Now we can estimate as follows∣∣∣∣∣T
(

I0

n∏
j=1

δ(x(tj)− xj)

)
(θ)

∣∣∣∣∣ ≤ exp

(
1

2
|θ|20
)
·

n+1∏
j=1

1√
2π(tj − tj−1)

· exp

[
γ

(
sup

0≤j≤n+1
|xj|
)2
]
· exp

(
1

γ
‖θ‖2

)
· exp

(
1

2
|θ|20
)
.

If we introduce the norm
|||θ||| ≡ ‖θ‖+ |θ|0 ,

which is obviously also continuous on SC(R), we have the bound∣∣∣∣∣T
(

I0

n∏
j=1

δ(x(tj)− xj)

)
(θ)

∣∣∣∣∣
≤

n+1∏
j=1

1√
2π(tj − tj−1)

· exp

[
γ

(
sup

0≤j≤n+1
|xj|
)2
]
· exp

(
1 + γ

γ
|||θ|||2

)
.

In order to apply Theorem 56 we have to show the integrability of the first two factors
with respect to v. To this end we will use Hölder’s inequality.

Choose q > 2 and 0 < γ < β/q and p such that 1
p

+ 1
q

= 1. The property i) of v yields

that eγx2 ∈ Lq(R×D, |v|). Let Q ≡
(∫

R |v|x (dx) eγqx2
)1/q

, then∫
Rn

∫
Λn

n

Π
i=1
|v| (dxi, dti)e

γq

(
sup

0≤i≤n+1
|xi|
)21/q

≤ eγ|x0|2eγ|x|2Qn.

Using the property ii) of v and the formula∫
Λn

dnt
n+1

Π
j=1

1

(2π |tj − tj−1|)α
=

(
Γ(1− α)

(2π)α

)n+1 |t− t0|n(1−α)−α

Γ ((n+ 1)(1− α))
, α < 1

we obtain the following estimate:(∫
Rn

∫
Λn

n

Π
i=1
|v| (dxi, dti)

n+1

Π
j=1

(
1√

2π |tj − tj−1|

)p)1/p

≤ C
n
p
v

Γ(2−p
2

)
n+1

p

(2π)
n+1

2

|∆|
n
p
− 1

2
(n+1)

Γ
(
(n+ 1)(2−p

2
)
)1/p

Let

Cn(x, |∆|) ≡ eγ|x0|2eγ|x|2QnC
n
p
v

Γ(2−p
2

)
n+1

p

(2π)
n+1

2

|∆|
n
p
− 1

2
(n+1)

Γ
(
(n+ 1)(2−p

2
)
)1/p

.

Hölder’s inequality yields the following estimate:∫
Rn

∫
Λn

n

Π
i=1
|v| (dxi, dti)

∣∣∣∣T (I0
n

Π
j=1

δ(x(tj)− xj)

)
(θ)

∣∣∣∣
≤ Cn exp

(
1 + γ

γ
|||θ|||2

)
(7.4)

This establishes the bound required for the application of Theorem 56 and hence In exists
as a Bochner integral in (S)′.

101



2) I =
∞∑

n=0

In exists in (S)′ .

As the Cn are rapidly decreasing in n the hypotheses of Theorem 55 are fulfilled and
hence the convergence in (S)′ is established. 2

Remark. Conditions i) and ii) allow for some rather singular potentials, e.g., ṽ =∑
e−n2

δn . For a cut-off interaction, i.e., compactly supported vx, condition i) is of course
valid. Note also that v is not supposed to be a product measure, hence the time dependence
can be more intricate than simple multiplication by a function of time. For example we
can take two bounded continuous functions f and g on ∆. Use one to move the potential
around and the other one to vary its strength: v(x, t) = f(t) ṽ(x− g(t)).

7.1.2 The Feynman integrand in (S)−1

Instead of (S)′ we can also use (S)−1 to discuss the convergence of the perturbative ex-
pansion (7.2). In this case some of the technical difficulties in estimating the term (7.3)
disappear. Furthermore we obtain a larger class of potentials which allows some weaker
decrease in the space direction.

Theorem 104 Let v be a finite signed Borel measure on R × D such that the (absolute)
marginal measures satisfy

i’) ∃R > 0 ∀ r > R : |v|x ({x : |x| > r}) < e−βr for some β > 0 ,

ii) |v|t has a L∞density.

Then I defined by (7.2) exists in (S)−1.

Proof. The term (7.3) may be estimated∣∣∣∣∣exp i
n+1∑
j=1

xj − xj−1

tj − tj−1

∫ tj

ti−1

θ(s)ds

∣∣∣∣∣ ≤ exp

(
2|θ|∞

n+1∑
j=1

|xj|

)
.

Using this we obtain∣∣∣∣∣T
(

I0

n∏
j=1

δ(x(tj)− xj)

)
(θ)

∣∣∣∣∣ ≤ e|θ|
2
0 ·

n+1∏
j=1

1√
2π(tj − tj−1)

exp

(
2|θ|∞

n+1∑
j=1

|xj|

)
.

To prove that this bound is integrable w.r.t. the (n–fold) product measure we refer to
Hölder’s inequality again. Choose q > 2 and p such that 1

p
+ 1

q
= 1. In this case it is

sufficient to do this for all θ ∈ SC(R) in a neighborhood of zero. A possible choice is

θ ∈ U :=

{
θ ∈ SC(R); |θ|∞ <

β

2q

}
.

Then(∫
Rn

∫
Λn

n

Π
i=1
|v| (dxi, dti) exp

(
2q|θ|∞

n+1∑
j=1

|xj|

))1/q

≤ e
β
q
(|x|+|x0|)

(∫
R
|v|x (dx) eβ|x|

)n
q

for all θ ∈ U . The rest of the proof is along the lines of the proof of Theorem 103. The
main difference is that the convergence of the integrals and of the series here are controlled
by the corresponding theorems for (S)−1 (Theorems 5 and 6 in [KLS94]) 2
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7.2 Verifying the Schrödinger equation

In this section we prove that the expectation of the Feynman integrand constructed in
section 7.1.1, i.e., the Feynman integral, does indeed solve the usual integral equation for
quantum mechanical propagators, which corresponds to the Schrödinger equation. (In this
section we will always assume the situation of section 7.1.1 for simplicity.)

As in the case of the free motion we expect

K(ξ̇) (x, t|x0, t0) ≡ e+
i
2
|ξ∆c|2 e−ixξ(t)+ix0ξ(t0) Θ(t− t0)T I (x, t|x0, t0) (ξ) (7.5)

to be the propagator corresponding to the potential W (x, t) = V (x, t) + ξ̇(t)x. More
precisely we have to use the measure w(dx, dt) = v (dx, dt) + ξ̇(t)x dx dt. We now proceed

to show some properties of K(ξ̇). As the propagators K
(ξ̇)
0 are continuous on R2×Λ2 (see

(5.5)), the product
n+1

Π
j=1

K
(ξ̇)
0 (xj, tj|xj−1, tj−1) is continuous on Rn+1 × Λn+1. Set

K(ξ̇) (x, t|x0, t0) =
∞∑

n=0

K
(ξ̇)
n (x, t|x0, t0) (7.6)

where

K
(ξ̇)
n (x, t | x0, t0) = (−i)n

∫
Rn

∫
Λn

n

Π
i=1

v (dxi, dti)
n+1

Π
j=1

K
(ξ̇)
0 (xj, tj|xj−1, tj−1) .

As the test functions ξ are real the explicit formula (5.5) yields

|K(ξ̇)
0 (x, t|x0, t0) | =

Θ(t− t0)√
2π|t− t0|

≡M0 (7.7)

and for n ≥ 1 the bounds∣∣∣∣K(ξ̇)
n (x, t|x0, t0)

∣∣∣∣ ≤ ∫
Rn

∫
Λn

n

Π
i=1
|v| (dxi, dti)

n+1

Π
j=1

1√
2π |tj − tj−1|

(7.8)

≤ Cn
v

|t− t0|
n−1

2

2
n+1

2 Γ(n+1
2

)
≤ Cn

v

|∆|n−1
2

2
n+1

2 Γ(n+1
2

)
≡Mn.

Hence
n+1

Π
j=1

K
(ξ̇)
0 (xj, tj|xj−1, tj−1) is integrable on Rn × Λn with respect to vn. (This is also

established in the course of a detailed proof of Theorem 103 and we have reproduced the
argument here for the convenience of the reader.) Thus we can apply Fubini’s theorem to

change the order of integration in K
(ξ̇)
n to obtain

K
(ξ̇)
n (x, t|x0, t0) = −i

∫∫
v (dxn, dtn)K

(ξ̇)
0 (x, t|xn, tn) ×

(−i)n−1

∫
Rn−1

∫
Λ
′
n−1

n−1

Π
i=1

v (dxi, dti)
n

Π
j=1

K
(ξ̇)
0 (xj, tj|xj−1, tj−1)
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(Λ
′
n−1 = {(t1, ..., tn−1) | t0 < t1 < ... < tn−1 < tn}). This establishes the following recursion

relation for K
(ξ̇)
n

K
(ξ̇)
n (x, t|x0, t0) = (−i)

∫∫
v (dy, dτ)K

(ξ̇)
0 (x, t|y, τ)K(ξ̇)

n−1 (y, τ |x0, t0) . (7.9)

We now claim that the series K(ξ̇) (y, τ |x0, t0) =
∑

n

K
(ξ̇)
n (y, τ |x0, t0) converges uniformly

in y, τ on R× (t0,T). To see this recall the above estimate (7.8) which is uniform in y, τ.
Because the Mn are rapidly decreasing it follows that

∞∑
n=1

sup

{∣∣∣∣K(ξ̇)
n (y, τ |x0, t0)

∣∣∣∣ ∣∣∣(y, τ) ∈ R× (t0,T)

}
≤

∞∑
n=1

Mn <∞ .

Due to the uniform convergence we may interchange summation and integration in the
following expression

−i
∫∫

v (dy, dτ)K
(ξ̇)
0 (x, t|y, τ)K(ξ̇) (y, τ |x0, t0)

= −i
∫∫

v (dy, dτ)K
(ξ̇)
0 (x, t|y, τ)

∑
n

K
(ξ̇)
n (y, τ |x0, t0)

=
∑

n

−i
∫∫

v (dy, dτ)K
(ξ̇)
0 (x, t|y, τ)K(ξ̇)

n (y, τ |x0, t0) .

By the above recursion relation (7.9) for K
(ξ̇)
n this equals∑

n

K
(ξ̇)
n+1 (x, t|x0, t0) = K(ξ̇) (x, t|x0, t0)−K

(ξ̇)
0 (x, t|x0, t0) .

Hence we obtain the following

Theorem 105 K(ξ̇) as defined in (7.5) obeys the following integral equation:

K(ξ̇) (x, t|x0, t0) = K
(ξ̇)
0 (x, t|x0, t0)− i

∫∫
v (dy, dτ)K

(ξ̇)
0 (x, t|y, τ)K(ξ̇) (y, τ |x0, t0) .

In particular the Feynman integral E (I) ≡ K obeys the well-known propagator equation:

K (x, t|x0, t0) = K0 (x, t|x0, t0)− i
∫∫

v (dy, dτ)K0 (x, t|y, τ)K (y, τ |x0, t0) .

We now proceed to show that this corresponds to the Schrödinger equation. To prove
this we first prepare the following

Lemma 106 The mapping (x, t) 7→ K(ξ̇) (x, t|x0, t0) is continuous on R× (t0,T).
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Proof. Because the series (7.6) converges uniformly it is sufficient to show the continuity

of K
(ξ̇)
n . For n = 0, 1 this is straightforward from the explicit formula (5.5). For n > 1 we

use (7.9) and the estimate (7.8) to obtain∣∣∣∣K(ξ̇)
n (x′, t′|x0, t0)−K

(ξ̇)
n (x, t|x0, t0)

∣∣∣∣
≤Mn−1

∫
R

∫
∆

|v| (dxn, dtn)

∣∣∣∣K(ξ̇)
0 (x′, t′|xn, tn)−K(ξ̇)

0 (x, t|xn, tn)

∣∣∣∣ .
Using the explicit form (5.5) of K

(ξ̇)
0 it is now straightforward to check that∫

R

∫
∆

|v| (dxn, dtn)

∣∣∣∣K(ξ̇)
0 (x′, t′|xn, tn)−K(ξ̇)

0 (x, t|xn, tn)

∣∣∣∣
≤ | x− x′ | C(x, t) + | t− t′ |α Cα(x, t)

where 0 < α < 1
2

and x > x′, t > t′. 2

An application of Lemma 106 combined with the estimate (7.7) shows that

K(ξ̇) (., .|x0, t0) is locally integrable on R × (T0,T) with respect to both v and Lebesgue

measure. We can thus regard K(ξ̇) as a distribution on D (Ω) ≡ D (R× (T0,T)):〈
K(ξ̇), ϕ

〉
=

∫∫
dx dtK(ξ̇) (x, t|x0, t0)ϕ (x, t) , ϕ ∈ D (Ω) .

And we can also define a distribution vK(ξ̇) by setting〈
vK(ξ̇), ϕ

〉
=

∫∫
v(dx, dt)K(ξ̇) (x, t|x0, t0)ϕ (x, t) , ϕ ∈ D (Ω) .

(K(ξ̇) is locally integrable with respect to v, ϕ is bounded with compact support and v is

finite, hence ϕK(ξ̇) is integrable with respect to v).

We now proceed to show thatK(ξ̇) solves the Schrödinger equation as a distribution. To

abbreviate we set L̂ =
(
i∂t + 1

2
∂2

x − ξ̇ (t)x
)

and let L̂∗ denote its adjoint. Let ϕ ∈ D (Ω).

By Theorem 105 we have

〈
L̂K(ξ̇), ϕ

〉
=

〈
K

(ξ̇)
0 (x, t|x0, t0)− i

∫∫
v (dy, dτ)K

(ξ̇)
0 (x, t|y, τ)K(ξ̇) (y, τ |x0, t0) , L̂

∗ϕ

〉
.

By Fubini’s theorem this equals〈
K

(ξ̇)
0 , L̂∗ϕ

〉
− i
∫∫

v (dy, dτ)

[∫∫
dx dtK

(ξ̇)
0 (x, t|y, τ) L̂∗ϕ (x, t)

]
K(ξ̇) (y, τ |x0, t0) .

As K
(ξ̇)
0 is a Green’s function of L̂ we obtain

iϕ (x0, t0) +

∫∫
v (dy, dτ)ϕ (y, τ)K(ξ̇) (y, τ |x0, t0) = 〈iδx0δt0 , ϕ〉+

〈
vK(ξ̇), ϕ

〉
.

Hence we have the following
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Theorem 107 K(ξ̇)is a Green’s function for the full Schrödinger equation, i.e.,(
i ∂t +

1

2
∂2

x − ξ̇ (t)x− v
)
K(ξ̇) (x, t|x0, t0) = i δx0 δt0 .

In particular the Feynman integral E (I) = K solves the Schrödinger equation

i ∂t K (x, t|x0, t0) =

(
−1

2
∂2

x + v

)
K (x, t|x0, t0) , for t > t0.

Hence the construction proposed by Khandekar and Streit yields a rigorously defined
Feynman integrand whose expectation is the correct quantum mechanical propagator.

7.3 The Feynman integrand for the perturbed har-

monic oscillator

In this section we carry the ideas of section 7.1 over to perturbations of the harmonic
oscillator. Hence instead of constructing a Dyson series around the free particle Feyn-
man integrand we expand around the Feynman integrand of the harmonic oscillator. The
external potentials to which the oscillator is submitted correspond to the wide class of
time-dependent singular potentials treated in section 7.1.

In [AHK76, chap 5] the path integral of the unharmonic oscillator is defined within the
theory of Fresnel integrals. Compared to our ansatz this procedure has the advantage of
being manifestly independent of the space dimension. Despite the lack of a generalization
to higher dimensional quantum systems our construction has some interesting features:

• The admissible potentials may be very singular.

• We are not restricted to smooth initial wave functions and may thus study the prop-
agator directly.

In this section we construct the Feynman integrand for the harmonic oscillator in an
external potential V (x, t). Thus we have to define

IV = Ih · exp

(
−i
∫ t

t0

V (x(τ), τ) dτ

)
.

As for the free particle we introduce the perturbation V via the series expansion of the
exponential. Hence we have to find conditions for V such that the following object exists
in (S)′

IV = Ih +
∞∑

n=1

(−i)n

∫
Rn

dnx

∫
Λn

dnt
n∏

j=1

V (xj, tj) δ (x (tj)− xj) Ih .

We are able to treat the same class of singular time-dependent potentials as in section 7.1.1
i.e., we consider ν a finite signed Borel measure on R×D, where D = [T0,T] ⊃ ∆ = [t0, t].
The following theorem contains conditions under which the Feynman integrand IV exists
as a Hida distribution.
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Theorem 108 Let v be a finite signed Borel measure on R × D satisfying i) and ii) of
section 7.1.1. Then

IV = Ih +
∞∑

n=1

(−i)n

∫
Rn

∫
Λn

( n∏
j=1

v(dxj, dtj)
)
Ih

n∏
j=1

δ (x (tj)− xj) (7.10)

is a Hida distribution.

Proof.
1. part. In the first part of the proof we have to perform some technicalities which are
necessary to establish the central estimate (7.11). We have to use a very careful procedure
to achieve that (7.11) survives n-fold integration and summation in the second part of the
proof.

Let θ ∈ SC(R). From Proposition 97 and the explicit formula (5.7) we find (∆j =
[tj−1, tj])∣∣∣T(Ih n∏

j=1

δ (B(tj)− xj)
)

(θ)
∣∣∣ ≤ e

1
2
|θ|20

(
n+1∏
j=1

√
1

4|∆j |

)
exp

(
(|xn+1|+ |x0|)

π

2
sup
∆
|θ|
)
·

·
∣∣∣ exp

({ n∑
j=1

ikxj

[ 1

sin k |∆j|

∫
∆j

dt θ (t) cos k (t− tj−1)

− 1

sin k |∆j+1|

∫
∆j+1

dt θ (t) cos k (t− tj+1)
]})∣∣∣·

· exp

{
n∑

j=1

π

2 |∆j|

∫
∆j

ds1

∫
∆j

ds2 |θ (s1)| |θ (s2)|

}
We define

X = sup
0≤j≤n+1

|xj|

and
‖θ‖ ≡ sup

∆
|θ|+ sup

∆
|θ′|+ |θ|0 .

With these∣∣∣T(Ih n∏
j=1

δ (B(tj)− xj)
)

(θ)
∣∣∣ ≤ e

1
2
‖θ‖2

(
n+1∏
j=1

√
1

4|∆j |

)
exp

(
Xπ ‖θ‖+

π

2
|∆| ‖θ‖2

)
·

·
∣∣∣ exp

({ n∑
j=1

ikxj

[ 1

sin k |∆j|

∫
∆j

dt θ (t) cos k (t− tj−1)

− 1

sin k |∆j+1|

∫
∆j+1

dt θ (t) cos k (t− tj+1)
]})∣∣∣ .

To estimate the last factor we proceed as follows:∣∣∣∣∣
n∑

j=1

ikxj

[
1

sin k |∆j+1|

∫
∆j+1

dt θ (t) cos k (t− tj)−
1

sin k |∆j+1|

∫
∆j+1

dt θ (t) cos k (t− tj+1)

]∣∣∣∣∣
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≤
n∑

j=1

kX
1

sin k |∆j+1|

∣∣∣∣∣
∫

∆j+1

dt θ (t)

∫ tj+1

tj

k sin k (t− τ) dτ

∣∣∣∣∣
≤

n∑
j=1

kX sup
∆
|θ| π

2
|∆j+1|

≤ π

2
Xk ‖θ‖ |∆|

To obtain a bound for the remaining term∣∣∣∣∣
n∑

j=1

ikxj

[
1

sin k |∆j|

∫
∆j

dt θ (t) cos k (t− tj−1)−
1

sin k |∆j+1|

∫
∆j+1

dt θ (t) cos k (t− tj)

]∣∣∣∣∣
we expand F (tj−1) =

∫ tj
tj−1

dt θ(t) cos k (t− tj−1) and G(tj+1) =
∫ tj+1

tj
dt θ(t) cos k (t− tj)

around tj. This yields with ηj ∈ ∆j and ηj+1 ∈ ∆j+1

≤ kX

∣∣∣∣∣
n∑

j=1

θ (tj)

[
|∆j|

sin k |∆j|
− |∆j+1|

sin k |∆j+1|

]∣∣∣∣∣+
+kX

n∑
j=1

[
(tj−1 − tj)2

2 sin k |∆j|

(
−θ′ (ηj)− k2

∫ tj

ηj

dt θ (t) cos k (t− ηj)

)]
−

−kX
n∑

j=1

[
− (tj+1 − tj)2

2 sin k |∆j+1|
(θ′ (ηj+1) cos k (ηj+1 − tj)− kθ (ηj+1) sin k (ηj+1 − tj))

]

Since sup
0≤x≤π

2

(
x

sin x

)′
= 1 then the first term above is bounded by

2k |∆|X ‖θ‖

For the second term we obtain the bound

X
|∆|
4

sup
∆
|θ′|+ k2 |∆|2

4
sup
∆
|θ|+ π

4
|∆| sup

∆
|θ′|+ πk

4
|∆| sup

∆
|ξ| ≤

≤ X |∆|π
4

(
‖θ‖

(
2 + k2 |∆|+ k

))
Putting all of this together we finally arrive at∣∣∣T(Ih n∏

j=1

δ (B(tj)− xj)
)

(θ)
∣∣∣ ≤ (n+1∏

j=1

√
1

4|∆j |

)
exp

(
LX ‖θ‖+

(
π

2
|∆|+ 1

2

)
‖θ‖2

)
where L = π + 3

4
πk |∆|+ 2k |∆|+ π

4
|∆| (2 + k2 |∆|) is a constant.

Hence for θ ∈ SC(R) we have the following estimate∣∣∣T(Ih n∏
j=1

δ (B(tj)− xj)
)

(zξ)
∣∣∣ ≤ (n+1∏

j=1

√
1

4|∆j |

)
exp

(
X2γ

)
exp

[
|z|2 ‖ξ‖2

(
1

2
+
π

2
|∆|+ L2

2γ

)]
(7.11)
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where γ > 0 is chosen later.

2. part. In this final step we use the method developed in the proof of Theorem 103 to
control the convergence of (7.10). Although the slight modification to our case is easy we
give the basic steps for the convenience of the reader.

In order to apply Theorem 56 to perform the integration we need to show that(
n+1∏
j=1

√
1

4|∆j |

)
exp

(
X2γ

)
is integrable with respect to v. To this end we choose q > 2 and 0 < γ < β

q
. With this

choice of γ the property i) of v yields that exp (γX2) ∈ Lq (Rn × Λn, |v|) and with

Q ≡
(∫

R

∫
∆

|v| (dx, dt) exp
(
γqx2

)) 1
q

we have (∫
Rn

∫
Λn

n∏
j=1

|v| (dxj, dtj) exp
(
γqX2

)) 1
q

≤ exp
(
γ
(
x2

0 + x2
))
Qn <∞.

Now we choose p such that 1
p

+ 1
q

= 1. Using the property ii) of v and the formula∫
Λn

dnt
n+1∏
j=1

(
1

4 |tj − tj−1|

)α

=

(
Γ (1− α)

4α

)n+1 |∆|n(1−α)−α

Γ ((n+ 1) (1− α))
, α < 1

we obtain the following bound[∫
Rn

∫
Λn

n∏
j=1

|v| (dxj, dtj)
n+1∏
j=1

(
1

4 |tj − tj−1|

) p
2

] 1
p

≤

≤ Cn/p
v

Γ
(

2−p
2

)n+1
p |∆|

n
p
− 1

2
(n+1)

4
n+1

2 Γ
(
(n+ 1) 2−p

2

) 1
p

<∞

(remember: Cv is the essential supremum of the L∞-density of |v|t ).
Finally an application of Hölder’s inequality gives∣∣∣∣∣

(
n+1∏
j=1

√
1

4|tj−tj−1|

)
exp

(
γX2

)∣∣∣∣∣
L1(|v|)

≤

≤ exp
(
γx2

0 + γx2
)
QnCn/p

v

Γ
(

2−p
2

)n+1
p |∆|

n
p
− 1

2
(n+1)

2n+1Γ
(
(n+ 1) 2−p

2

) 1
p

≡ Cn <∞

Hence Theorem 56 yields

In ≡
∫

Rn

∫
Λn

n∏
j=1

v (dxj, dtj)
(
Ih

n∏
j=1

δ (B(tj)− xj)
)
∈ (S)′ .
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As the Cn are rapidly decreasing in n the hypotheses of Theorem 55 are fulfilled and
hence

IV =
∞∑

n=0

In ∈ (S)′ .

2
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Chapter 8

The Feynman integrand for the
Albeverio Høegh-Krohn class

8.1 Introduction

First we will introduce a further class of potentials for which we will define a path integral
representation of the Green’s function for the Schrödinger equation. Potentials of this type
already appeared in earlier (mathematically rigorous) works on Feynman integrals, see
e.g., the works [AHK76, Ga74, Ito66]. The most elegant construction of a path integral for
this class of potentials has been proposed by Albeverio and Høegh-Krohn [AHK76]. They
used the so-called Fresnel integral, an extension of the Lebesgue integral. Thus I will call
potentials of that kind the Albeverio Høegh-Krohn class.

Besides the fact that we use completely different methods than [AHK76, Ga74, Ito66]
this approach differs from previous ones in two main points.

1. In the works [AHK76, Ga74] smooth initial wave functions were used and their prop-
agation was handled by construction of a path integral. In our white noise framework
we are able to introduce delta like initial wave functions. Thus we can go back to
Feynman’s original idea to treat propagators by path integrals.

2. We wish to give a meaning to the integrand itself. Its expectation yields the desired
propagator. We will see later that this seems to be the reason why we will have to
put one additional assumption on the class of potentials we are able to handle.

Definition 109 Let m denote a bounded complex measure on the Borel sets of Rd, d ≥ 1.
A complex valued function V on Rd is called Fresnel integrable (following [AHK76]) if

V (~x) =

∫
Rd

ei~α~x ddm(α) (8.1)

Since the bounded complex Borel measures form an algebra under convolution, the Fresnel
integrable functions are an algebra F(Rd) under pointwise multiplication. F(Rd) is called
the Albeverio Høegh-Krohn class.
We will call V ∈ F(Rd) admissible, if∫

Rd

eε|~α|dd|m|(α) (8.2)
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is finite for some ε > 0.
For later use we need also the condition∫

Rd

exp(ε|~α|1+δ) dd|m|(α) (8.3)

is finite for some ε, δ > 0.

Remark. It is clear from the definition that our admissible potentials are C∞(Rd) since all
moments of the corresponding measure m exist. In fact admissible potentials are analytic in
the open ball of radius ε. Since formula (8.1) now makes sense for all ~x ∈ Cd : |Im(~x )| < ε,
an admissible potential is regular in this strip containing the real axis. A useful reference
on (analytic) characteristic functions has proven to be [Lu70]. Condition (8.3) implies that
V in fact is an entire function.

In their well known work [AHK76] Albeverio and Høegh-Krohn made extensive use of
the fact that a suitable choice of norm makes F(Rd) to be a Banach algebra. Since the
measures m have to be bounded, F(Rd) contains only functions bounded on the real line.

Example 20 One particular example is given by the 2 dimensional (periodic) potential

V (~x) = {cos(x1) · sin(x2)}β

which is of special interest in the theory of antidot (super) lattices, see [FGKP95] for a recent
review. The integer valued even parameter β determines if the potential is “soft or hard”.
This potential generates chaotic behavior in classical systems and the Hamiltonian has a
fractal spectrum of eigenvalues in a quantum mechanical treatment. Since the measure m
corresponding to V is a linear combination of (products of) delta measures and thus has
compact support, the condition (8.3) is satisfied. Details will be presented in a forthcoming
“Diplomarbeit” of M. Grothaus.

8.2 The Feynman integrand as a generalized white

noise functional

Now we proceed to introduce these interactions into the Feynman integral. Mathematically
speaking this means to give a rigorous definition to the pointwise product

I = I0 · exp

[
−i
∫ t

t0

V (~x(τ)) dτ

]
.

In Chapter 7 we already saw a method which works in the one dimensional case. There
the potential was “expanded in terms of delta functions”. In a second step the expansion of
the exponential led to a convergent series of Hida distributions. Since in higher dimensions
d the delta functions cause problems (in respect to the t-integration) we here use a Fourier
decomposition of the potential. Then we will proceed as in Chapter 7 but we have to face
the fact that the occurring integrals in the perturbation series are only convergent in some
larger distribution space (Sd)

−1 (at least Y ′ is necessary).
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Theorem 110 Let V be an admissible potential in the Albeverio Høegh-Krohn class, i.e.,
there exists a bounded complex Borel measure m satisfying (8.2). Then

I = I0 +
∞∑

n=1

(−i)n

∫
Λn

dnτ

∫
Rdn

n∏
j=1

ddm(αj) I0 ·
n∏

j=1

ei~αj~x(τj) (8.4)

exists as a generalized white noise functional i.e., I ∈ (Sd)
−1. If also (8.3) is satisfied then

I is a Meyer-Yan distribution i.e., I ∈ Y ′. The integrals we are using here are in sense of
Theorems 56 and 76 respectively. Λn is defined by eq. (7.1).

Notes.
1. From physical reasons V may supposed to be real, but in mathematical respect this is
irrelevant here.

2. The integral
∫

Λn
can be replaced by 1

n!

∫
[t0,t]n

=: 1
n!

∫
2n

.

3. The fact, that E(I) is physically reasonable i.e., it is the elementary solution of the (time
dependent) Schrödinger equation is well known. It coincides with the series developed in
[AHK76]. In [Ga74] it is proved explicitly that this series is in fact the physical solution.

Proof. As a first step we have to justify the pointwise product

Φn = I0 ·
n∏

j=1

ei~αj~x(τj) (8.5)

Since the explicit formula (5.3) allows an extension of T (I0)(~ξ) to all ~ξ ∈ L2
d we may use

the following ansatz to calculate

TΦn(~ξ) = T (I0)

(
~ξ +

n∑
j=1

~αj11[t0,τj)

)
· exp

(
i~x0

n∑
j=1

~αj

)

= (2πi(t− t0))−
d
2 exp

(
i~x0

n∑
j=1

~αj

)
exp

− i
2

∫
R

[
~ξ(s) +

n∑
j=1

~αj11[t0,τj)(s)

]2
ds


· exp

− 1

2i(t− t0)

[∫ t

t0

~ξ(s)ds+

{
n∑

j=1

~αj(τj − t0) + ~x− ~x0

}]2
Obviously this has an extension in ~ξ ∈ Sd(R) to all ~θ ∈ Sd,C(R) and is locally bounded
in a neighborhood of zero (see estimate (8.6) below.) Thus Φn ∈ (Sd)

−1 (in fact Φn ∈
(Sd)

′). Now we want to apply Theorem 56. Since TΦn(~θ) is a measurable function of

(τ1, ..., τn; ~α1, ..., ~αn) for all ~θ ∈ Sd,C(R), we only have to find an integrable local bound

|TΦn(~θ)| ≤ (2π(t− t0))−
d
2 exp

(1

2

∣∣∣~θ∣∣∣2
0
+

n∑
j=1

∣∣∣(~θ, ~αj11[t0,τj))
∣∣∣+ 1

2(t− t0)

[
(t− t0)

∣∣∣~θ∣∣∣2
0

+2

∣∣∣∣∣
∫ t

t0

~θ(s)ds ·

{
n∑

j=1

~αj(τj − t0) + ~x− ~x0

}∣∣∣∣∣ ])
≤ (2π(t− t0))−

d
2 exp

( ∣∣∣~θ∣∣∣2
0
+ 2
√
t− t0

∣∣∣~θ∣∣∣
0

n∑
j=1

|~αj|+
|~x− ~x0|√
t− t0

∣∣∣~θ∣∣∣
0

)
=: Cn(~α1, ..., ~αn, ~θ) (8.6)
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Since m has the property (8.2) we can find neighborhood of zero

U0,r =
{
~θ ∈ Sd,C

∣∣∣ ∣∣∣~θ∣∣∣
0
< r
}

, r =
ε

2
√
t− t0

(8.7)

such that ∫
Rd

dd|m|(α) e2|~α|
√

t−t0|~θ|

is finite for all ~θ ∈ U0,r. So we have∫
Λn

dnτ

∫
Rdn

n∏
j=1

dd|m|(αj) Cn(~α1, ..., ~αn, ~θ) ≤ (8.8)

≤ 1

n!
(t− t0)n(2π(t− t0))−

d
2 exp

(∣∣∣~θ∣∣∣2
0
+
|~x− ~x0|√
(t− t0)

∣∣∣~θ∣∣∣
0

)(∫
Rd

dd|m|(α) e2|~α|
√

t−t0|~θ|
0

)n
Thus we have proved the existence of an integrable bound. Also the convergence of the
series in n is established because the right hand side may be summed up. Thus we have
proved I defined by (8.4) is in (Sd)

−1 and established the bound

∣∣∣T I(~θ)
∣∣∣ ≤ 1

(2π(t− t0))
d
2

exp

(∣∣∣~θ∣∣∣
0
+
|~x− ~x0|√
(t− t0)

∣∣∣~θ∣∣∣
0
+ (t− t0)

∫
Rd

dd|m|(α) e2|~α|
√

t−t0|~θ|
0

)

for all ~θ ∈ U .

Now we assume that also (8.3) is satisfied. Then it is useful to estimate Cn in (8.6).
We use the elementary estimate

α · β ≤ 1

p
αp +

1

q
βq , α, β > 0,

1

p
+

1

q
= 1

to show

2
√
t− t0|~θ|0|~αj| ≤ ε|~αj|1+δ + δε−1/δ

(
2
√
t− t0|θ|0
1 + δ

)1+δ
δ

then ∫
Λn

dnτ

∫
Rdn

n∏
j=1

dd|m|(αj) Cn(~α1, ..., ~αn, ~θ) ≤

≤ 1

n!
(t− t0)n(2π(t− t0))−

d
2 exp

∣∣∣~θ∣∣∣2
0
+
|~x− ~x0|√
(t− t0)

∣∣∣~θ∣∣∣
0
+ nδε−1/δ

(
(2
√
t− t0|θ|0
1 + δ

)1+δ
δ

 ·
·
(∫

Rd

dd|m|(α) exp(ε|~α|1+δ)

)n

This shows that the assumption of Theorem 76 are satisfied so that the integrals in
equation (8.4) are well defined Pettis integrals in Y ′. The series in n now is no problem
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in view of Corollary 75 since the right hand side of the above bound can be summed up.
Thus I ∈ Y ′ (defined by (8.4)) and we have the bound

|T I(~θ)| ≤ (2π(t− t0))−d/2 · exp

(
|~θ|20 +

|~x− ~x0|√
t− t0

|~θ|0
)
·

· exp

(t− t0) · exp

δε−1/δ

(
2
√
t− t0|θ|0
1 + δ

)1+δ
δ

 · ∫
Rd

d|m|(α) exp(ε|~α|1+δ)

 .

2

The above construction may be generalized to include also explicitly time dependent
potentials.

Theorem 111 Let m denote a complex measure on Rd × [t0, t] , d ≥ 1 such that∫
Rd

∫ t

t0

eε|~α| |m|(ddα, dτ) <∞ (8.9)

Then

I = I0 +
∞∑

n=1

(−i)n

∫
Λn

∫
Rdn

n∏
j=1

m(ddαj, dτj) I0 ·
n∏

j=1

ei~αj~x(τj) (8.10)

exists as in (Sd)
−1 i.e., as a generalized white noise functional.

Proof. The proof can be done in the same way as in the previous theorem. But
inequality (8.8) has to be modified∫

Λn

∫
Rdn

n∏
j=1

|m|(ddαj, dτj) Cn(~α1, ..., ~αn, ~θ) ≤

≤ (2π(t− t0))−
d
2 exp

(∣∣∣~θ∣∣∣2
0
+
|~x− ~x0|√
(t− t0)

∣∣∣~θ∣∣∣
0

)∫
Λn

∫
Rdn

n∏
j=1

|m|(ddαj, dτj) e
2|~αj |

√
t−t0|~θ|

0

≤ 1

n!
(2π(t− t0))−

d
2 exp

(∣∣∣~θ∣∣∣2
0
+
|~x− ~x0|√
(t− t0)

∣∣∣~θ∣∣∣
0

)(∫ t

t0

∫
Rd

|m|(ddα, dτ) e2|~α|
√

t−t0|~θ|
0

)n
.

This shows that the integration and the summation in equation (8.10) are well defined in
(Sd)

−1. 2

Remark. Note that the time dependence of our ‘potentials’ may be very singular here.
Let us consider an admissible potential V in F(Rd) represented by the measure m̃

V (~x) =

∫
Rd

ei~α~xddm̃(α)

We wish to study a quantum mechanical system which is ‘kicked’ a finite number of times
sj ∈ (t0, t). This is done by multiplication with a delta measure in time. Thus we have to
introduce

m(ddα, dτ) :=
∑

j

m̃(ddα) · δsj
(dτ),

which clearly fulfills (8.9).
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Chapter 9

A new look at Feynman Hibbs

9.1 Transition amplitudes

Since [FH65] it is quite common to discuss so called transition amplitudes which in our
framework would read

E(F · I)

where F : ~x(·) 7→ F (~x(·)) is a function of the path. Of course this is well defined (by writing
E(F · I) = 〈〈I, F 〉〉) whenever F ∈ (Sd)

1. Since this is too restrictive for relevant cases we
shall discuss some special extensions of this pairing before we start to discuss the physical
interpretation of the transition amplitudes we have defined. Throughout this chapter we
assume the setting of Theorem 110 for simplicity.

First let us introduce some convenient notations which will help to keep formulas little
shorter:

~ζ :=
n∑

j=1

~αj11[t0,τj), ~χ :=
n∑

j=1

~αj(τj − t0)

and
~X := ~x− ~x0, ∆ = [t0, t] , |∆| = t− t0 .

For later use we collect some useful formulas.

Lemma 112 Let ~η, ~η1, ~η2 ∈ Sd(R) , ~θ ∈ Sd,C(R) then

T (〈·, ~η〉Φn)(~θ) = −
[
〈~η, ~θ + ~ζ〉 − 1

t−t0

∫
∆
~η
{∫

∆
~θ + ~χ+ ~X

}]
TΦn(~θ) (9.1)

and

T (〈·, ~η1〉〈·, ~η2〉Φn)(~θ) =

= TΦn(~θ) ·
{
i(~η1, ~η2) +

i

|∆|
∫

∆
~η1

∫
∆
~η2 +

[
(~η1, ~θ + ~ζ)− 1

|∆|

∫
∆
~η1

{∫
∆
~θ + ~χ+ ~X

}]
·

·
[
(~η2, ~θ + ~ζ)− 1

|∆|

∫
∆
~η2

{∫
∆
~θ + ~χ+ ~X

}]}
(9.2)

of course 〈·, ~η〉 · Φn and 〈·, η1〉〈·, η2〉 · Φn ∈ (Sd)
′.
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Proof. Use the formula

T (〈·, ~η〉kΦn)(~θ) =

(
d

i dλ

)k

TΦn(~θ + λ~η)
∣∣∣
λ=0

and polarization identity. 2

Furthermore we need the possibility for an intermediate pinning of the paths, which is
prepared by the next proposition. This is a generalization of formula (5.6).

Proposition 113 The distribution

Φn(~x, t|~x0, t0) ·
m∏

l=1

δd(~x(tl)− ~xl) , t0 < tl ≤ t, ~xl ∈ Rd; 1 ≤ l ≤ m

is well defined in (Sd)
′ with T -transform

T

(
Φn(~x, t|~x0, t0)

m∏
l=1

δd(~x(tl)− ~xl)

)
(~θ) = ei m

2
|~θ|2

m+1∏
l=1

TΦnl
(~xl, tl|~xl−1, tl−1)(~θ)

here ~xm+1 ≡ ~x , tm+1 ≡ t , nl = # {j | tl−1 < τj ≤ tl} and Φnl
depends on the parameters

{αj, τj | tl−1 < τj ≤ tl}.

Proof. To simplify the calculation we propose the use of

m+1∏
l=1

δd(~x(tl)− ~xl)
n∏

j=1

exp
(
i~αj(~x0 + 〈·, 11[t0,τj)〉)

)
=

=
m+1∏
l=1

δd(~x(tl)− ~xl)
∏

tl−1<τj≤tl

exp
(
i~αj(~xl−1 + 〈·, 11[tl−1,τj)〉)

)
which is simply checked by a comparison T -transforms. In view of formula (5.6)
J
∏m+1

l=1 δd(~x(tl) − ~xl) is well defined due to its explicit T -transform. Then the starting
point of the calculation is

T

(
Φn

m+1∏
l=1

δd(~x(tl)− ~xl)

)
(~θ) =

T

(
J

m+1∏
l=1

δd(~x(tl)− ~xl)

)~θ +
m+1∑
l=1

∑
{j|tl−1<τj≤tl}

~αj11[tl−1,τj)

 exp

m+1∑
l=0

~xl−1

∑
{j|tl−1<τj≤tl}

~αj


which can be evaluated without problems. 2

Now we continue the discussion of Feynman integrands defined in Theorem 110. Point-

wise products of I = I(~x, t|~x0, t0) with ~x(s),
·
~x (s) and

··
~x (s) for t0 < s < t have natural

interpretations in usual quantum mechanics as we will see in the next section.

In the white noise framework ~x(s) is represented as ~x0 + 〈·, 11[t0,s)〉 ,
·
~x (s) as 〈·, δs〉 and

by a formal partial integration we obtain
··
~x (s) = −〈·, δ′s〉. So we have to study products

of the form 〈·, ~T 〉 · I for suitable distributions ~T ∈ S ′d. This can conveniently be done by
approximating the first factor by test functions.
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Definition 114 Let ~T ∈ S ′d and {~ηl ∈ Sd , l ∈ N} a sequence of test functions such that

liml→∞ ~ηl = ~T . We define

〈·, ~T 〉 · I := lim
l→∞
〈·, ~ηl〉 · I

if the limit exists and is independent of the sequence.

That this is fulfilled in the three mentioned cases is shown in the following proposition.

Proposition 115 In the sense of the above definition we have xk(s) ·I , ẋk (s) ·I , ẍk(s) ·I ∈
(Sd)

−1 (the index 1 ≤ k ≤ d indicates the kth-component) and

xk (s) · I =
∞∑

n=0

(−i)n

∫
Λn

dnτ

∫
Rnd

n∏
j=1

ddm(αj) xk(s) · Φn (9.3)

ẋk (s) · I =
∞∑

n=0

(−i)n

∫
Λn

dnτ

∫
Rnd

n∏
j=1

ddm(αj) ẋk(s) · Φn .

Proof. Since 〈·, ~ηl〉 is in (Sd) pointwise multiplication intertwines with Bochner integra-
tion and the infinite sum:

〈·, ~ηl〉I =
∞∑

n=0

(−i)n

∫
Λn

dnτ

∫
Rnd

n∏
j=1

ddm(αj) 〈·, ~ηl〉 · Φn .

In the case ~ηl → 11[t0,s)~ek ({~ek, 1 ≤ k ≤ d} denotes the canonical basis of Rd) equation
(9.1) gives the estimate

∣∣∣T (〈·, ~ηl〉 · Φn) (~θ)
∣∣∣ ≤ 2 |~ηl|

(∣∣∣~θ∣∣∣+√t− t0 n∑
j=1

|αj,k|+
| ~X|

2
√
t− t0

)∣∣∣TΦn(~θ)
∣∣∣

≤ 2 |~ηl|

(∣∣∣~θ∣∣∣+√t− t0 n∑
j=1

|αj,k|+
| ~X|

2
√
t− t0

)
Cn(~α1, . . . , ~αn, ~θ)

where αj,k = ~αj · ~ek. It is easy to see that for ~θ ∈ U0,r (defined in (8.7) the right hand side
of the estimate is integrable on Λn × Rnd w.r.t. dnτ

∏n
j=1 dd|m|(αj) such that∣∣∣T (〈·, ~ηl〉I)(~θ)

∣∣∣ ≤ |~ηl| ·Kn

on U0,r for some rapidly decreasing sequenceKn. This is sufficient to ensure the convergence
of the sequence l→ 〈·, ~ηl〉I . The limit of the sequence l→ (x0,k + 〈·, ~ηl〉)I is given by (9.3)
with

T (~x(s) · Φn)(~θ) =
{ t− s
t− t0

(
~x0 −

∫ s

t0

~θ −
k∑

j=1

~αj(τj − t0)

)

+
s− t0
t− t0

(
~x+

∫ t

s

~θ −
n∑

j=k+1

~αj(t− τj)

)}
TΦn(~θ) .
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By a similar argument we discuss the product with ẋk(s). Here the basic formula is

T (ẋk(s)Φn)(~θ) =
(
− θk(s)−

k∑
j=1

αj,k11[t0,τj)(s)+

+
1

t− t0

(∫ t

t0

θk +
n∑

j=1

αj,k(τj − t0) + xk − x0,k

))
TΦn(~θ) .

Again we can find a neighborhood of zero in Sd such that the resulting estimate∣∣∣T (ẋk(s)Φn)(~θ)
∣∣∣ ≤ 2

(∣∣∣~θ∣∣∣
∞

+
n∑

j=1

|αj,k|+
| ~X|

2 · |t− t0|

)
Cn(~α1, . . . ~αn, ~θ) (9.4)

is integrable and can be summed up (|·|∞denotes the sup–norm). In particular this is
sufficient to show that the requirement of Definition 114 is fulfilled.

In the third case we have

T (ẍk(s)Φn)(~θ) =

(
−θ̇k(s) +

n∑
j=1

αj,k · δs(τj)

)
TΦn(~θ) .

The term θ̇(s) · TΦn(~θ) causes no problem. To ensure integrability one integration (w.r.t.
τj) has to be regarded as integration with respect to Dirac measure. This is possible because
the bound (8.6) is independent of τj. The rest of the proof is as before. 2

Note. In terms of Wick products we may write

〈·, ~η〉 · I = i

(
〈·, ~η〉 − 1

t− t0

∫ t

t0

~η
(
〈·, 11[t0,t)〉 − ~x+ ~x0

))
� I

+
∞∑

n=0

(−i)n

∫
Λn

dnτ

∫
Rdn

n∏
j=1

ddm(αj)

(
n∑

j=1

~αj

(
τj − t0
t− t0

∫ t

t0

~η −
∫ τj

t0

~η

))
Φn .

In fact the bound (9.4) proves that ẋk(s) ·Φn is integrable with respect to the product
measure dnτ

∏n
j=1 dd|m|(αj) ·ds on the domain Λn×Rdn× [t0, t]. This implies that ẋk(s) · I

is Bochner integrable w.r.t. ds, i.e.,∫ s

t0

(ẋk(s) · I) ds = xk(s) · I− x0,kI ,

in particular
d

ds
E(~x(s) · I) = E(

.

~x (s) · I) . (9.5)

Furthermore we need pointwise products of the type F (~x(s)) · I for fixed s ∈ (t0, t] and
appropriate functions F . Since F (~x(s)) is not in (Sd)

1 we have to give an extension of this
pointwise product. We will give two alternative definitions which have different advantages
such that later we can use the most convenient one.
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Definition 116 Let F ∈ F(Rd) such that F (~x) =
∫

Rd e
i~α~xddmF (α) and Φ ∈ (Sd)

−1. If

the product Φ · ei~α~x(s) is well defined in (Sd)
−1 and the Bochner integral with respect to

dd|mF |(α) exists we define

F (~x(s)) · Φ :=

∫
Rd

Φ · ei~α~x(s)ddmF (α) .

Remark. One can show that this definition extends the usual definition of pointwise
multiplication. Without loss of generality let F ∈ F(R) and η ∈ S. Further we assume
that |mF | satisfies the following integrability condition: ∀K > 0∫

eKα2

d|mF |(α) <∞ .

Then ∣∣∣∣∫ eiα〈z,η〉dmF (α)

∣∣∣∣ ≤ (∫ eKα2

d|mF |(α)

)
exp

(
1

4K
|z|2−p|η|2p

)
for all p > 0. This shows that F (〈·, η〉) =

∫
eiα〈·,η〉dmF (α) is in E2

min(S ′) which is the same
as (S). For this class of multipliers the coincidence of the two definitions can now easily
be seen. Let Φ ∈ (S)′ be arbitrary and ϕ ∈ (S)〈〈∫

Φ · eiα〈·,η〉dmF (α), ϕ

〉〉
=

∫ 〈〈
Φ, ϕ · eiα〈·,η〉〉〉 dmF (α)

=

〈〈
Φ, ϕ ·

∫
eiα〈·,η〉dmF (α)

〉〉
= 〈〈Φ, ϕ · F (〈·, η〉)〉〉 .

Lemma 117 Let F ∈ F(Rd) be admissible i.e., there exists ε > 0 such that∫
Rd e

ε|~α|dd|mF |(α) is finite. Then F (~x(s)) · I ∈ (Sd)
−1 in the sense of the above definition.

Moreover

F (~x(s)) · I =
∞∑

n=0

(−i)n

∫
Λn

dnτ

∫
Rdn

n∏
j=1

ddm(αj)

∫
Rd

ddmF (β) Φn · ei~β~x(s) .

The proof is a simple modification of the proof of Theorem 110.

A different class of multipliers is obtained by the following definition.

Definition 118 Let F : Rd → C denote a Borel measurable function and Φ ∈ (Sd)
−1. If

the product Φ ·δd(~x(s)−~y) is well defined and Bochner integrable with respect to |F (~y)| ddy
then

F (~x(s)) · Φ :=

∫
Rd

F (~y) Φ · δd(~x(s)− ~y) ddy .

Theorem 119 Let F : Rd → C such that∫
eε|~y| |F (~y)| ddy <∞

for some ε > 0. Then F (~x(s)) · I is defined in the sense of the above definition. Moreover

T (F (~x(s)) · I) (~θ) = e
i
2
|~θ|2
∫

Rd

T I(~x, t|~y, s)(~θ)F (~y)T I(~y, s|~x0, t0)(~θ) ddy . (9.6)
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Remark. If the last formula is evaluated at ~θ = ~0 we obtain

E(F (~x(s)) · I) =

∫
K(~x, t|~y, s)F (~y)K(~y, s|~x0, t0) ddy (9.7)

which is one of the key formulas in Feynman Hibbs [FH65].

Proof. The expression I · δd(~x(s) − ~y) has a natural sense in view of Proposition 113.
More precisely we have

T (Φn · δ(~x(s)− ~y)) (~θ) =
n∑

k=0

11(τk,τk+1](s) e
i
2
|~θ|2TΦn−k(~x, t|~y, s)(~θ) TΦk(~y, s|~x0, t0)(~θ)

(9.8)
which can be estimated as follows (similar to (8.6))

T
(
Φn · δd(~x(s)− ~y)

)
(~θ) ≤ n ·

(
4π2(t− s)(s− t0)

)−d/2

· exp

(
|~θ|2 + 2

√
t− t0|~θ|

n∑
j=1

|~αj|+ |~θ||~y|
(

1√
t−s

+ 1√
s−t0

)
+ |~θ|

(
|~x|√
t−s

+ |~y|√
s−t0

))
.

Analogous to the proof of Theorem 110 we can find a neighborhood of zero in Sd such
that this bound is integrable with respect to

∫
Λn

dnτ
∫

Rdn

∏n
j=1 dd|m|(αj)

∫
Rd |F (~y)|ddy. In

particular

I · δd(~x(s)− ~y) =
∞∑

n=0

(−i)n

∫
Λn

dnτ

∫
Rnd

n∏
j=1

ddm(αj) Φn · δd(~x(s)− ~y)

is well defined and integrable w.r.t. |F (~y)| ddy.
Now we deduce formula (9.6). Note that each term in the sum in equation (9.8) fac-

torizes in one factor depending on τj, ~αj , 1 ≤ j ≤ k and a second factor depending on the
remaining τj, αj , k + 1 ≤ j ≤ n. So it is natural to use the corresponding decomposition
of the domain of integration

Λn(t, t0) =
n⋃

k=0

Λ′
n−k(t, s)× Λk(s, t0)

where the prime indicates that Λ′
n−k(t, s) is a set in the τk+1 × . . .× τn–plane. Then∫

Λn

T
(
Φnδ

d(~x(s)− ~y)
)
(~θ) dnτ =

= e
i
2
|θ|2

n∑
k=0

∫
Λ′n−k(t,s)

TΦn−k(~x, t|~y, s)(~θ) ·
∫

Λk(s,t0)

TΦk(~y, s|~x0, t0)(~θ) .

This implies

T
(
I·δd(~x(s)− ~y)

)
(~θ) = e

i
2
|~θ|2T I(~x, t|~y, s)(~θ) · T I(~y, s|~x0, t0)(~θ) . (9.9)

Integration with respect to F (~y) · ddy gives (9.6). 2

121



Remark. Since the situation in Proposition 113 is more general, we can show the following
generalization of Theorem 119. Let t0 < s1 < s2 < . . . < sn < t and Fj : Rd → C, 1 ≤
j ≤ n as in Theorem 119. Then

∏n
j=1 Fj(~x(sj)) · I is in (Sd)

−1. Moreover (9.6) generalizes
to

T

(
n∏

j=1

Fj(~x(sj)) · I

)
(~θ) =

(9.10)

= e
in
2
|~θ|2
∫

Rdn

T I(~x, t|~yn, sn)(~θ)
n∏

j=1

Fj(~yj) T I(~yj, sj|~yj−1, sj−1)(~θ) ddyj .

There are two relevant cases which are not covered by the previous theorem. First of
all we want to discuss (9.7) for the constant function F = 1. In other words we want to
apply the identity ∫

Rd

δd(~x(s)− ~y) ddy = 1

to (9.9). The second case is F (~y) = yk. Here we want to compare the two definitions 114
and 118. In both cases the integral in (9.7) is not absolutely convergent (easily seen in the
free case) but has a sense as a Fresnel integral. Since the notion of a Fresnel integral of a
family white noise distributions is not yet developed we will use a regularization procedure.

Proposition 120 Let Fε(~y) = e−
ε2

2
y2

and s ∈ (t0, t). Then the following two limits exist
in (Sd)

−1 and are given by
1)

lim
ε→0

(Fε(~x(s)) · I) = I

2)

lim
ε→0

(xk(s)Fε(~x(s)) · I) = xk(s) · I

Proof. Let g(~y) be a real valued function which either is identical 1 or equal to yk. By
definition

T (g(~x(s))Fε(~x(s)) · I)(θ) = e
i
2
|~θ|2
∫

Rd

g(~y)Fε(~y) T I(~x, t|~y, s)(~θ) T I(~y, s|~x0t0)(~θ) ddy

=
∞∑

n=0

n∑
k=0

(−i)n

∫
Λ′n−k(t,s)×Λk(s,t0)

dnτ

∫
Rnd

n∏
j=1

ddm(αj) Gε

with

Gε =

∫
Rd

g(~y)Fε(~y) TΦn−k(~x, t|~y, s)(~θ) TΦk(~y, s|~x0t0)(~θ) ddy .

The Gaussian integral Gε can be evaluated explicitly:

Gε =

(
2π

aε

)d/2

g

(
i~b

aε

)
TΦn−k(~x, t|~0, s)(~θ) TΦk(~0, s|~x0, t0)(~θ) · exp

(
−
~b2

2aε

)
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with

aε = ε2 − i(t− t0)
(t− s)(s− t0)

~b =
1

s− t0

(∫ s

t0

~θ +
k∑

j=1

~αj(τj − t0)− ~x0

)
− 1

t− s

(∫ t

s

~θ −
n∑

j=k+1

~αj(t− τj) + ~x

)
.

From this the following bound can be calculated

|Gε| ≤ (2π|∆|)d/2Cn−k(~x, t|~0, s) Ck(~0, s|~x0, t0) ·

∣∣∣∣∣g
(
i~b

a

)∣∣∣∣∣
· exp

|∆|
2

(
|~θ|2∞ + 2|~θ|∞

(
n∑

j=1

|~αj|+
|~x|
|∆|

+
|~x0|
|∆|

))

where
∣∣∣g ( i~b

a

)∣∣∣ is either equal to 1 or

∣∣∣∣∣g
(
i~b

a

)∣∣∣∣∣ ≤
(
|~x0|+ |~x|+ |∆||~θ|∞ + |∆|

n∑
j=1

|~αj|

)
.

It is easy to see that in both cases this bound can be integrated for ~θ in some neighborhood
of zero w.r.t. dnτ

∏n
j=1 dd|m|(αj) on Rnd × Λ′

n−k(t, s) × Λk(s, t0) and stays finite after∑∞
n=0

∑n
k=0. Thus the limit ε → 0 exists in both cases. The limit itself can be identified

by an elementary calculation of limε→0Gε. 2

Consequences. The above proposition together with (9.7) gives

K(~x, t|~x0, t0) = E(I(~x, t|~x0, t0))

= lim
ε→0

∫
Rd

E(I(~x, t|~y, s)) Fε(~y) E(I(~y, s|~x0, t0)) dd~y

= lim
ε→0

∫
Rd

K(~x, t|~y, s) Fε(~y) K(~y, s|~x0, t0) ddy .

We will use this as a substitute of Feynman’s

“ K(~x, t|~x0, t0) =

∫
Rd

K(~x, t|~y, s) K(~y, s|~x0, t0) ddy ”

which is not absolutely convergent. The second consequence we want to mention is

E(~x(s) · I) = lim
ε→0

∫
Rd

K(~x, t|~y, s) ~y Fε(~y) K(~y, s|~x0, t0) ddy (9.11)

which allows to calculate the transition element directly from the propagator.
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9.2 Relation to operator notation

In usual quantum mechanics time evolution can be represented by an unitary group U(t, t0)
acting on a suitable Hilbert space. The infinitesimal generator of U(t, t0) is assumed to
be the Hamiltonian H. In the Schrödinger representation the matrix element of U(t, t0) is
given by the propagator

〈~x|U(t, t0)|~x0〉 = K(~x, t|~x0, t0) .

(We have not proved this explicitly since this question is discussed in [Ga74] in great detail.)
The above formula may be viewed as the standard connection of path integral techniques
to usual quantum mechanics.

For our discussion we will choose the Heisenberg picture where states are time indepen-
dent and observables evolve in time according to the time evolution operator. Concretely
the position operator is given by

~q(t) = U∗(t, t0) ~q U(t, t0)

with
~q |~x〉 = ~x |~x〉

and the star denotes the adjoint operator. Now we are ready to connect the transition
amplitudes from the previous section to quantum mechanical observables. From (9.11) it
follows

E(~x(s) · I) = lim
ε→0

∫
Rd

〈~x|U(t, s)|~y〉 Fε(~y) ~y 〈~y|U(s, t0)|~x0〉 ddy

= lim
ε→0

∫
Rd

〈~x|U(t, s)Fε(~q) ~q |~y〉 〈~y|U(s, t0)|~x0〉 ddy

= lim
ε→0
〈~x|U(t, s)Fε(~q) ~q U(s, t0)|~x0〉

= 〈~x|U(t, t0)U
∗(s, t0)~qU(s, t0)|~x0〉

= 〈~x|U(t, t0) ~q(s) |~x0〉 .

More generally we can show, based on (9.10)

E(~x(s1) . . . ~x(sn) · I) = 〈~x|U(t, t0) T~q(s1) . . . ~q(sn) |~x0〉 ,

where the usual time ordering of operators appears T~q(s1) . . . ~q(sn) = ~q(sn) . . . ~q(s1) if
sn > sn−1 > . . . > s1.

Before E(
·
~x (s) · I) is discussed we need one more assumption. Assume the Hamiltonian

H not to be explicitly time dependent. Then the Heisenberg equation of motion

d

ds
~q(s) =

i

~
[H, ~q(s)]

holds where the square brackets denote the commutator. If furthermore the Hamiltonian
is of the form

H =
1

2m
~p2 + V (~q)

we can use the relation
[pn

l , qk] = −ni~pn−1
l δk,l
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to find

[H, ~q(s)] = −i ~
m
~p(s) .

Hence we have
d

ds
~q(s) =

1

m
~p(s) .

The starting point of the following calculation is formula (9.5):

E(
·
~x (s) · I) =

d

ds
E(~x(s) · I) =

d

ds
〈~x|U(t, t0) ~q(s) |~x0〉 =

1

m
〈~x|U(t, t0) ~p(s) |~x0〉 .

To give more evidence on these relations between transition elements and operator
notation we will try to identify the canonical commutation relations in the language of
transition elements.

9.3 A functional form of the canonical commutation

relations

A well-known fact from quantum mechanics is the non commutativity of momentum and
position operators at equal times. This seems to have no direct translation in a path-
integral formulation of quantum mechanics. But on a heuristic level Feynman and Hibbs
[FH65] found an argument to show that E(ẋ(s+ε)x(s)I) 6= E(ẋ(s−ε)x(s)I) for infinitesimal
small ε and that the difference is given by the commutator. In this section we will prove
this fact rigorously for the class of potentials introduced in the previous chapter.

First of all we use the convergence theorem to extend the validity of formula (9.2). We
study the two limits ~η1 → 11[t0,s)~ek, ~η2 → δs±ε~el, t0 < s < t . To avoid further terms in our
formulas we assume without loss of generality ~x0 = 0. Then we have

Lemma 121

ẋl(s± ε)xk(s)Φn ∈ (Sd)
′

with T -transform

T (ẋl(s± ε)xk(s)Φn)(~θ) = lim
~η1→11(t0,s]~ek

~η2→δs±ε~el

T (〈·, ~η1〉〈·, ~η2〉Φn)(~θ)

= TΦn(~θ)
{

(θl(s± ε) + ζl(s± ε))
[∫ s

t0
θk +

∫ s

t0
ζk − s−t0

|∆|

(∫
∆
θk + χk +Xk

)]
− 1

|∆|
(∫

∆
θl + χl +Xl

) [∫ s

t0
θk +

∫ s

t0
ζk − s−t0

|∆|

(∫
∆
θk + χk +Xk

)]
+i s−t0

|∆| δkl + i11[t0,s)(s± ε)δkl

}
where the dependence τ1, ..., τn → ẋl(s± ε)xk(s) · Φn is now only defined in L2(Rn) sense.
(The value at the point τj = s ± ε is not uniquely defined, which causes no problems in
respect to later integration.)
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Proof. Let us look to the terms which may cause problems.
1) The sequence {~η2,m,m ∈ N} may be chosen such that the support of each ~η2,m does

not contain the point s where 11[t0,s) has its jump. Thus the convergence of (η1, η2) causes
no problems.

2) We may find uniform bounds in m for (~ζ, ~η1,m). For simplicity suppose ~η1,m · ~ek ≤
11[t0,s), m ∈ N then ∣∣∣(~ζ, ~η1,m)

∣∣∣ ≤ ∣∣∣∣∣
n∑

j=1

αj,k

∫ τj

t0

11[t0,s)

∣∣∣∣∣ ≤ (s− t0)
n∑

j=1

|~αj| .

3) The limit ~η2,m → δs±ε~el in the term (~ζ, ~η2,m) is more subtle. The form ~ζ =∑n
j=1 ~αj11[t0,τj) urges us to study the action of a delta sequence on a step function. If

we write
lim

m→∞
(~η2,m, 11[t0,τj)) = 11[t0,τj)(s) = 11[s,t)(τj)

this formula is only valid (pointwise) for s 6= τj or in respect to τj-dependence in L2(R)-
sense. (In the point s = τj we may find delta-sequences which produce any value between
0 and 1.) 2

Remark. Compare to (9.17) where a similar extension procedure forces us to view τj-
dependence as a distribution.

Now we are interested to study the difference

T ((ẋl(s+ ε)xk(s)− xk(s)ẋl(s− ε))Φn)(~θ) =

= iTΦn(~θ) · δkl + (θl(s+ ε)− θl(s− ε) + ζl(s+ ε)− ζl(s− ε))

·
(∫ s

t0

θk +

∫ s

t0

ζk −
s− t0
|∆|

(∫
∆
θk + χk +Xk

))
TΦn(~θ) . (9.12)

Lemma 122 The series

∞∑
n=0

(−i)n

n!

∫
2n

dnτ

∫
Rdn

n∏
j=1

ddm(αj) (ẋl(s+ ε)xk(s)− xk(s)ẋl(s− ε))Φn

converges in (Sd)
−1.

Proof. The convergence of the above stated limits of the first term on the r.h.s. of
(9.12) is proven in Theorem 110. The second term may be bounded by

2|∆|
(
2ε|~θ′|∞ +

n∑
k=1

|~αk|11[s−ε,s+ε](τk)
)(
|~θ|∞ +

n∑
j=1

|~αj|+ | ~X|
2|∆|

)
Cn(α1, ..., αn, ~θ) ≤

≤ |∆|
n∑

k=1

n∑
j=1

11[s−ε,s+ε](τk) (|~αk|2 + |~αj|2) Cn(~α1, ..., ~αn, ~θ)

+2|∆|
n∑

k=0

(
2ε|~θ′|∞ +

(
|~θ|∞ + | ~X|

2|∆|

)
11[s−ε,s+ε](τk)

)
|αk| Cn(~α1, ..., ~αn, ~θ)

+4|∆|ε|~θ′|∞
(
|~θ|∞ + | ~X|

2|∆|

)
Cn(~α1, ..., ~αn, ~θ) . (9.13)
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For all ~θ ∈ Sd(R) such that 2|~θ|0
√
t− t0 < ε we know that∫

eε|~α| |m|(dα) := K1,

∫
|~α| eε|~α| |m|(dα) := K2 and

∫
|~α|2eε|~α| |m|(dα) := K3

all are finite. Thus the above bound is integrable w.r.t.
∏n

j=1 |m|(dαj) and w.r.t. τ1...τn.
The convergence of the sum causes no problems. 2

In the last step we want to prove that the last term of (9.12)

Fε(~θ) := ((θl(s+ ε)− θl(s− ε) + ζl(s+ ε)− ζl(s− ε)))

·
(∫ s

t0

θk +

∫ s

t0

ζk −
s− t0
|∆|

(∫
∆
θk + χk +Xk

))
TΦn(~θ)

has the following property
∑

1
n!

∫
2n

dnτ
∫

Rdn

∏n
j=1 |m|(dαj) |Fε(~θ)| is of order ε, i.e., the

part of equation (9.12) connected to Fε(~θ) vanishes in the limit ε→ 0.

Proof. Let us consider (9.13) after
∏n

j=1 |m|(dαj)-integration is performed

∫
Rdn

n∏
j=1

|m|(dαj) |Fε(~θ)| ≤ |∆|
n∑

k=1

n∑
j=1

11[s−ε,s+ε](τk) 2K3K
n−1
1

+2|∆|
n∑

k=0

(
2ε|~θ′|∞ +

(
|~θ|∞ + | ~X|

2|∆|

)
11[s−ε,s+ε](τk)

)
K2K

n−1
1

+4|∆|ε|~θ′|∞
(
|~θ|∞ + | ~X|

2|∆|

)
Kn

1

the whole estimate will now be integrated w.r.t. τ1, ..., τn. Here each integration produces
a factor of 2ε iff 11[s−ε,s+ε](τk) appears in the integrand. Thus∫

2n

dnτ

∫
Rdn

n∏
j=1

|m|(dαj) |Fε(~θ)| ≤ 2|∆|K3K
n−1
1 · |∆|n−1 · 2ε · n2

+2|∆|
(
2|∆|ε|~θ′|∞ + 2ε

(
|~θ|∞ + | ~X|

2|∆|

))
K2K

n−1
1 |∆|n−1 · n

+4|∆|ε|~θ′|∞
(
|~θ|∞ + | ~X|

2|∆|

)
Kn

1 |∆|
n

= 4ε|∆|nKn−1
{
K3n

2 +
(
|~θ′|∞|∆|+ |~θ|∞ + | ~X|

2|∆|

)
K2 · n+K1|~θ′|∞|∆|

(
|~θ|∞ + | ~X|

2|∆|

)}
.

The sum converges due to the rapidly decreasing factor 1
n!

. The additional quadratic
polynomial (in braces) in n does not prevent convergence. 2

Thus for ~θ ∈ Sd(R) with 2
√
t− t0|θ|0 < ε we have

lim
ε→0

T ((ẋk(s+ ε)xl(s)− xl(s)ẋk(s− ε)) I)(~θ) = −iT I(~θ) · δkl.

Using the characterization theorem we have the following result.
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Theorem 123 In the space (Sd)
−1 we have the following identity

lim
ε→0

((ẋk(s+ ε)xl(s)− xl(s)ẋk(s− ε))I) = −iδklI.

In particular we have in terms of expectation values

lim
ε→0

E((ẋk(s+ ε)xl(s)− xl(s)ẋk(s− ε))I) = −iδklE(I).

This reflects the well-known fact that the quantum mechanical observables position
and momentum do not commute. Thus we have proved a functional integral form of the
canonical commutation relations, which was derived by a heuristic argument in [FH65].
The above theorem also shows that the important sample paths in the mean value can
not have a continuous derivative. Hence this form of the canonical commutation relations
reflects the lack of smoothness of the sample paths.

9.4 Ehrenfest’s theorem

This section is intended to demonstrate that it is worthwhile to work in a white noise
framework for the discussion of path integrals. The underlying ideas are simple. We
exploit identities from general Gaussian analysis like

E(D∗
~T
I) = 0 , I ∈ (Sd)

−1, ~T ∈ S ′d(R) .

A good choice of ~T and a calculation of the derivative may lead to interesting quantum
mechanical relations if I is chosen to be a Feynman integrand. The above formula may be
viewed as a partial integration formula in functional integrals.

We start with the Feynman integrand defined in Theorem 110 and choose

~T := δ′s · ~ek , t0 < s < t (9.14)

where {~ek, 1 ≤ k ≤ d} is the canonical basis of Rd. For convenience of notation we will
introduce the following abbreviation Ds,k := Dδ′s·~ek

. This differential operator has the
following interesting property, which is the basic motivation for our choice (9.14)

Ds,k~x(t) = δ(t− s) ~ek . (9.15)

So this represents a kind of “partial derivative sensitive to the paths at given time”. In
textbooks of theoretical physics (9.15) is often used as a definition of the so called functional
derivative.

Now we apply D∗
~T

to I and interchange it with limit and integration. This is allowed
because

T (D∗
~T
I)(~θ) = i 〈~T , ~θ〉 T I(~θ)

= i
∑

(−i)n

∫
Λn

dnτ

∫
Rdn

n∏
j=1

ddm(αj) 〈~T , ~θ〉 TΦn(~θ)

=
∑

(−i)n

∫
Λn

dnτ

∫
Rdn

n∏
j=1

ddm(αj) T (D∗
~T
Φn)(~θ).
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In the next step we apply the (slightly generalized) product rule with ~η ∈ Sd(R) to Φn

from (8.5)

D∗
~ηΦn = D∗

~η(I0)
n∏

j=1

exp(i~αj~x(τj))− I0D~η exp
(
i

n∑
j=1

~αj~x(τj)
)

= −i 〈~ω, ~η〉 · Φn − i
( n∑

j=1

~αj〈11[t0,τj), ~η〉
)
Φn . (9.16)

Here we had to be careful because the product rule in this form requires smooth directions ~η
∈ Sd(R) of differentiation. To ensure that the second equality holds, we used only such ~η for
which

∫ t

t0
~η(τ) dτ = ~0 in order to avoid an additional term coming from the differentiation

of Donsker’s delta.

In the next step a careful discussion of the limit ~η −→ δ′s~ek is necessary. As we have
seen in Proposition 115 the first term in (9.16) becomes iẍk(s) · Φn Thus let us fix our
intermediate result

D∗
s,kΦn = iẍk(s)Φn − i

n∑
j=1

αj,kδs(τj)Φn . (9.17)

Remark. In fact the whole argument holds in a more general situation. Let ~T ∈ S ′d(R) of
order 1 such that there exist neighborhoods U0 and U of 0 and t respectively with

T = 0 on U0 and U .

Then there exists ~S ∈ S ′d(R) of order 0 (i.e., a Radon measure), such that

d

dt
~S = ~T and ~S = 0 on U0

If we assume further ~S = 0 on U then we have

D∗
~T
Φn = −i

〈
~ω, ~T

〉
Φn − i

n∑
j=1

~αj
~S(τj) · Φn

(We restricted the order of the distributions ~T and ~S to have a τj-dependence in the last
formula which allows τj-integration later in this section).

Let us now consider the second term in (9.17) after integration and summing up

∞∑
n=0

(−i)n

n!

n∑
l=1

∫
2n

dnτ

∫ ( n∏
j=1

ddm(αj)
)
αl,k δs(τl) Φn =: (∗) .

Φn contains a factor ei~αl~x(τl) which is continuous in τl µ-a.e.. Thus τl– integration amounts
to substitution of τl by s. (A different argument can easily be produced by considering
the integration of the corresponding T -transform). Then one has to do a renumbering of
integration variables:

(∗) =
∞∑

n=0

(−i)n

n!
n

∫
2n−1

dn−1τ

∫
Rd(n−1)

n−1∏
j=1

ddm(αj) Φn−1

∫
ddm(α) α,k e

i~α~x(s)

= −
(∫

ddm(α) i α,k e
i~α~x(s)

) ∞∑
n=0

(−i)n−1

(n− 1)!

∫
2n−1

dn−1τ

∫
Rd(n−1)

n−1∏
j=1

ddm(αj) Φn−1

= −(∇kV )(~x(s)) · I
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in the sense of Definition 118. Hence together with Proposition 115 we have derived

D∗
s,kI = iẍk(s) · I + i(∇kV )(~x(s)) · I .

Collecting all components and taking expectation we have

E(
..

~x (s) · I) = −E(~∇V (~x(s)) · I) .

This is a variant of the well-known Ehrenfest theorem of quantum mechanics. The mean-
values of the quantum observables satisfy the classical law of motion.
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Stuttgart. Cited on 83, 90

[Na69] Nachbin, L. (1969), Topology on spaces of holomorphic mappings. Springer, Berlin.
Cited on 50

[Ne73] Nelson, E. (1973), Probability theory and Euclidean quantum field theory. In: “Con-
structive Quantum Field Theory.” Eds.: Velo, G. and Wightman, A., Springer,
Berlin, Heidelberg, New York. Cited on 46, 60

[Ob91] Obata, N. (1991), An analytic characterization of symbols of operators on white
noise functionals. J. Math. Soc. Japan 45 No. 3, 421–445. Cited on 2, 52

[Ob94] Obata, N. (1994), White Noise Calculus and Fock Space. LNM 1577. Springer,
Berlin. Cited on 1, 61, 62

[Øk94] Øksendal, B. (1994), Stochastic Partial Differential Equations and Applications to
Hydrodynamics. In: [CFPSS94] . Cited on 40

[Ou91] Ouerdiane, H. (1991), Application des méthodes d’holomorphie et de distributions
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