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AsTrACT. Despite the good consistency of the cosmological standard model with the bulk of present obser-
vations, a number of unanticipated features have recently been detected within large-angle data of the Cosmic
Microwave Background. Among these features are the anomalous alignments of the quadrupole and octopole
with each other, their unexpected alignments with certain astrophysical directions (e.g. equinox, ecliptic) as well
as the stubborn lack of angular autocorrelation on scales > 60°. We pursue the idea that processes of non-linear
structure formation could contribute to the large-scale anomalies via a local Rees-Sciama effect. We find that
existing structures are able to produce CMB contributions up to 10~°. For an axially symmetric setup we show
that this effect does induce alignments, albeit not of the same form as extracted from the data, and that yet
a Solar system effect seems preferred by the data. Moreover, we address the relationship between the intrinsic
alignment of quadrupole and octopole on the one hand and the anomalous angular two-point correlation function
on the other hand. We demonstrate the absence of any correlations between them and are able to exclude the
joint case at high confidence with respect to recent data. This result enables us to put stringent constraints on
any relevant model that exhibits an explicit axial symmetry.

Key words. galactic dynamics, dark matter, cosmic microwave background, large-scale structure of universe,
dark energy, general relativity, cosmology

Asriss. Trotz der guten Ubereinstimmung des aktuellen kosmologischen Standardmodells mit dem Grofteil
der vorhandenen Daten, wurden kiirzlich unerwartete Figenschaften der kosmischen Mikrowellenhintergrund-
strahlung beziiglich der gofiten gemessenen Winkelskalen bekannt. Diese beinhalten: die anomale Richtungskor-
relation zwischen Quadrupol und Oktupol selbst, ihre unverstandene Ausrichtung beziiglich bestimmter astro-
physikalischer Richtungen (z.B. Equinox, Ekliptik) als auch eine Temperatur-Zweipunktskorrelationsfunktion,
die auf Winkelskalen > 60° unerwarteterweise verschwindet. Wir untersuchen die Moglichkeit, dass Prozesse, die
der nichtlinearen Strukturbildung angehdéren, zu den Anomalien beitragen kénnen, und zwar durch den lokalen
Rees-Sciama Effekt. Wir finden, dass der Rees-Sciama Effekt durch tatséchlich vorhandene, sehr massive Struk-
turen, die Grokenordnung 10~° in den Temperaturanisotropien erreichen kann. Wir kénnen zeigen, dass, im
Rahmen einer axial-symmetrischen Geometrie, in der Tat bestimmte Richtungskorrelationen durch den Effekt
induziert werden, diese jedoch nicht von der gleichen Form wie die in den Daten gefundenen sind. Gleichwohl
wird eine Korrelation mit den Richtungen unseres Sonnensystems von den Daten bevorzugt. Auferdem unter-
suchen wir inwiefern zwischen der intrinsischen Ausrichtung von Quadrupol und Oktupol zueinander und der
anomalen Zweipunktskorrelationsfunktion eine Abhéngigkeit bestehen kdnnte. Wir demonstrieren, dass keinerlei
Abhiéngigkeit zwischen diesen Anomalien besteht und wir konnen das kombinierte Szenario mit hoher Signifikanz
ausschliefen. Dadurch sind wir in der Lage, scharfe Einschrdnkungen anzugeben, die fiir alle relevanten axial-
symmetrischen Modelle bindend sein miissen.

Schlagworter. Galaxiendynamik, dunkle Materie, kosmische Mikrowellenhintergrundstrahlung, grofiriumige
Struktur des Universums, dunkle Energie, allgemeine Relativitdtstheorie, Kosmologie
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Notation

Throughout this work we will use the following metric signature,

(_7 +7 +7 +) .

By small latin indices, running from 1 to 3, we denote spatial components of tensors, e.g. Kj; .
Using small greek indices, running from 0 to 3, we denote four-dimensional components of ten-
sors, e.g. K, . We make use of the Einstein summation convention.

Partial derivatives are indicated by a comma,

7]
Kp,l/,)\ = @Kp,u
and covariant derivatives by a semicolon
0
Kuvx = wK;w - Fp,\MKpV - FP,\VKW .

The sign conventions which we use for the cosmological constant, for the definition of the Rie-
mann curvature tensor as well as for the other relevant quantities in the Einstein equations
are given in app. B. The spatial Ricci scalar is written caligraphically throughout the text,
R= OR,.

Vectors and vector fields are written in boldface, e.g. £, L, . Normal vectors are denoted by a
hat, e.g. @ .

We denote the symmetrisation and antisymmetrisation of tensors by
1

1
Ky = §(Klw + Kup) s Ky = §(KW - Kuu).

In chap. 2 we will deal with axisymmetric systems, and therefore the operators A®) and A

denote the three-dimensional and two-dimensional Laplace operators in cylindrical coordinates.
(3)

The use of cartesian coordinates is explicitly indicated, e.g. A} -






Preface

The most fundamental cosmological observation one can think of is the darkness of our night
sky. At first glance, this might appear trivial, but the appropriate question is, how is it possible
that our sky is dark at night? The proper answer to it has crucial implications for cosmology. In
the early days of astronomy, the common cosmological paradigm stated that the Universe was
eternal, infinite and of Euclidean geometry. Following this paradigm, in 1826 Heinrich Olbers
calculated the total radiation energy density of stars that would be present in such a Universe.
The stars were taken as point sources with constant luminosity and their number density was
also constant. The result of the calculation is astonishingly absurd: there would be an infinite
radiation density coming from starlight. Interpreted within a static, infinite and Euclidean world
model, the common fact that our night sky is dark becomes suddenly a mystery. This lack of
optical background light is usually referred to as Olbers’ paradox, but it should be mentioned
that the problem was discussed already much earlier, for instance by de Cheseaux in 1744.

Within the modern standard model of cosmology, a common way of resolving Olbers’ para-
dox lies in assuming a Big Bang and taking the cosmological expansion of spacetime into account.
In a Universe that has existed for an finite amount of time, the extension of the observable part
of the Universe the horizon is also finite, and therefore only a limited number of stars is
potentially observable. In this formulation of Olbers’ paradox we assumed a distribution of
point sources. We could go one step further and consider the extended surfaces of the emitting
stars. Then it turns out that every line of sight toward us must start at some finite surface
and within the old world view we would inevitably be led to a sky that is, due to projected
overlap, fully covered by the luminous surfaces of the stars. The brightness temperature of stars
is independent of distance in the Euclidean picture, and so this formulation of Olbers’ paradox
states that the whole sky should be as hot as the surface of a typical star. Now the resolution of
Olbers’ paradox within modern cosmology becomes somewhat different. Assuming a Big Bang
and continuous cosmic expansion, one can extrapolate that there indeed must have existed a
common hot emission surface, namely the surface of last scattering at which the Universe became
transparent for photons. This instant marks the birth of the Cosmic Microwave Background
(CMB) radiation. Now, since last scattering occurred a long time ago — when the temperature
of the Universe was around 3000K — and the Universe has expanded ever since, one can find
that the CMB photons have undergone a redshifting by a factor of roughly 1100 up to day. This
results in a present-day background temperature of 2.73K. In this sense, the existence of the
CMB represents the resolution of Olbers’ paradox: we cannot observe a 3000K hot sky, because
the cosmic expansion has cooled down the primordial radiation.

Today, measurements of the tiny anisotropies in the microwave background radiation provide
a cosmological probe of utmost relevance. With satellite measurements of the CMB  like the
Wilkinson Microwave Anisotropy Probe (WMAP)  a considerable precision in cosmological
data has been reached.

Due to its very good accordance with CMB measurements, as well as with other data sets
from the observation of the large-scale structure at lower redshifts, a cosmological standard
model has emerged, the inflationary A Cold Dark Matter model. Among the energy density
ingredients of that model are the contributions of Dark Energy (76%), Dark Matter (20%) and
baryonic matter (4%). Although they represent dominant contributions, the standard model is
not explanatory with respect to the nature and origin of the dark components of the Universe.
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4 PREFACE

Although a lot of effort is invested, and although numerous attempts to attack the problem can
be found, there exists no settled explanation for the dark components of the standard model;
they remain poorely understood up to day. Moreover, the current cosmological standard model
is based upon a relatively simple, homogeneous and isotropic solution of the underlying general
relativistic field equations, the Friedmann-Robertson-Walker spacetime. Within this model,
both CMB and other data require the Universe to be spatially flat.

In chap. 1 we review the phenomenology of the current standard model of cosmology as
well as its theoretical framework. We focus on the cosmological problem of Dark Energy and we
explain its basic experimental evidence. The validity of the crude standard model assumptions
of homogeneity and isotropy on large scales can be questioned. It is subject to current debate in
how far inhomogeneous models can fit the available data that indicates an accelerated expansion
of the Universe. The crucial difference is that inhomogeneous models are potentially able to
achieve this without Dark Energy. In particular we analyse the spherically symmetric Lemaitre-
Tolman-Bondi model and discuss how it may change the interpretation of supernova and CMB
data. In order to use the inhomogeneous model for the CMB analysis in the later chapters, we
finally present analytic calculations of the integrated Sachs-Wolfe effect in that model.

Chap. 2 deals with the cosmological problem of Dark Matter. We review present evidence
for Dark Matter and focus especially on the flat galactic rotation curves. We omit discussions
of particle candidates for Dark Matter and focus on an unusual approach, namely the general
relativistic modelling of galaxies. Regarding rotation curves, the comparison from which Dark
Matter follows in the standard picture, is always a comparison between Newtonian physics and
the data. It can be questioned whether general relativistic terms really can be fully neglected.
In fact, recently a general relativistic model of a galaxy has been presented (the Cooperstock-
Tieu model) in which it is claimed that Dark Matter is made superfluous. Partly, chap. 2
is very technical; we carry out various analytical analyses in order to better understand the
Cooperstock-Tieu model and especially its Newtonian limit.

A crucial component of the standard model is the inflationary scenario. Inflation pre-
dicts an early epoch of dramatic global expansion of spacetime and so provides the seeds for
the formation of large-scale structure through a freeze-out of primordial quantum fluctuations
on macroscopic scales. As a consequence, the simplest inflationary theories, predict a nearly
scale-invariant power spectrum of statistically isotropic, adiabatic and gaussianly distributed
primordial fluctuations.

Despite the remarkable achievements of the standard model, there are also some problems
with it. When analysing WMAP data from the largest angular separation scales, several anom-
alies are found, which are in conflict with the prediction of statistical isotropy of the CMB.

After reviewing the basic physical mechanisms that contribute to the CMB, and discussing
the underlying theoretical framework in chap. 3, we approach the problem of the large-scale CMB
anomalies in chap. 4 and chap. 5. In chap. 4 our ansatz is a local Rees-Sciama effect — the non-
linear analogue of the integrated Sachs-Wolfe effect. We state that the local Rees-Sciama effect
of vast, yet non-virialised structures induces significant contributions to the large-scale CMB. We
compute its influence on the phase anomalies with the help of a statistical analysis and find that
an Rees-Sciama effect — modelled by a simply spherical overdensity — can be excluded at high
confidence. In contrast to chap. 4, chap. 5 copes only with intrinsic alignments among the lowest
CMB multipoles. There are two classes of anomalies, phase (directional) anomalies and angular
power anomalies. We ask to what extent anomalies of the two classes are correlated with each
other, because this is of importance for model building. We perform an exhaustive statistical
analysis and demonstrate the absence of such correlations with high significance. Further, we
find stringent constraints on any models, trying to explain the anomalies, that exhibit axial
symmetry (‘Axis of Evil’).









Der wahre Weg geht iiber ein Seil, das
nicht in der Héhe gespannt ist,
sondern knapp iiber dem Boden.
Es scheint mehr bestimmt stolpern zu
machen, als begangen zu werden.

Franz Kafka (1883 — 1924)
Aphorismen  Betrachtungen iiber Siinde, Leid,
Hoffnung und den wahren Weg, 1931






[---] What is the significance of the vast
processes it portrays? What is the meaning,
if any there be which is intelligible to us, of

the vast accumulations of matter which

appear, on our present interpretations of
space and time, to have been created only in
order that they may destroy themselves?
What is the relation of life to that Universe
of which, if we are right, it can occupy only
so small a corner? What if any is our
relation to the remote nebulae, for surely
there must be some more direct contact than
that light can travel between them and us in a
hundred million years? Do their colossal
incomprehending masses come nearer to
representing the main ultimate reality of the
Universe, or do we? Are we merely part of
the same picture as they, or is it possible that
we are part of the artist? Are they perchance
only a dream, while we are brain cells in the
mind of the dreamer? Or is our importance
measured solely by the fractions of space and
time we occupy — space infinitely less than a
speck of dust in a large city, and time less
than one tick of a clock which has endured for
ages and will tick on for ages yet to come?

Sir James Jeans (1877 — 1946)
Astronomy and Cosmogony, 1928
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CHAPTER 1

The Cosmological Problem of Dark Energy

Why does Dark Energy seem to dominate the energy budget of the cosmos? What does this
major contributor consist of at all? Why is the absolute value of the Dark Energy density so
tiny as compared to the expectation from quantum theory? Undoubtedly, the challenge posed
by Dark Energy is the most far-reaching of the grand open questions in modern cosmology. It
is tightly related to the question of how far there is crucial physics missing in the underlying
theories at the moment; an example thereof would be a unified theory of gravity and quantum
fields. There is a generic relation to the very fundamental question of how the absolute zero-
point energies of quanta gravitate. The notion of Dark Energy goes hand in hand with Einstein’s
cosmological constant A . On the other hand, also dynamical scalar fields that would contribute
to A in a time-dependent way are considered, like for instance quintessence or moduli fields.

FIGURE 1.1. The influence of Dark Energy reaches from the smallest to the largest
structures in the Universe. Left: microscopic image of a tiny ball (d ~ 10™'mm) that
is mounted at a small distance upon a smooth plate in order to measure the occurring
(electromagnetic) Casimir effect. The minute Casimir force pulls the ball toward the
plate because the number of vacuum fluctuation modes in the small space between
ball and plate is limited, whereas the wavelengths of vacuum fluctuations occurring
in the ‘free space’ on the opposite side of the plate can take arbitrary values. Vacuum
fluctuations similar to those from the Casimir effect are associated with Dark Energy
but in this case are generated by space itself. The nowadays dominant Dark Energy
acts as a repulsive force on the largest scales, eventually causing the Universe to
expand forever. Right: an image of the cluster of galaxies named SDSS J1004 + 4112
after its detection within the Sloan Digital Sky Survey. The cluster is around seven
billion light years away (z = 0.68), located in the constellation of Leo Minor, and
represents a beautiful sample of Large-Scale Structure. Also, due to gravitational
lensing off the huge lensing mass of the cluster, arc images of more distant galaxies
in the background can be seen in the image. According to observations of distant
supernovae (z 2 0.2) the recession of galaxies is currently speeding up as due to the
actual density contribution from Dark Energy. Pictures are taken from [APO].
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14 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGY

1.1. Facets of the Problem

The famous mismatch of ~ 120 orders of magnitude that results from trying to estimate A
from quantum field theory illustrates well the amount of our ignorance regarding the fundamental
physics that may be involved. Likewise the Dark Energy which is so poorly understood does
in fact constitute a whole ~ 70% of the energy density content of the Universe, which readily
indicates the weight of the problem. Still, it is always adequate to carefully reconsider all
assumptions that are made in order to get a physical result, especially if it is such a weighty
one. In fact, the above situation results from a comparison of a large variety of astronomical
tests with the cosmological standard model. Additionally, the comparison of A with the absolute
zero-point energy takes place within quantum field theory which is at the basis of the actual
standard model of elementary particle physics. We want to emphasise that the empirical basis of
the cosmological standard model is far less substantial than that of the standard model of particle
physics. One of the main differences is of course the inherent impossibility to do astronomical
measurements in such a repeatable and controlled way as it is done in a laboratory. That
is, mostly astronomers are clever spectators, waiting for the right moment of observation, but
allways being incapable of touching or turning the source in order to repeat their measurement.
As we will see below, one of the most weighty evidence for A comes from such an astronomical
measurement, namely the observation of distant supernovae.

Within the standard cosmological model the energy-matter content of the Universe is char-
acterised by four dimensionless density parameters with the following normalisation:

(1.1) O+ Q4 Oy + Q= 1.

Here, )y, is the density of matter involving all kinds of matter present whether dark or luminous,
baryonic or non-baryonic; Q, ~ 10~% stands for the energy present in the cosmic microwave as
well as in the primordial low-mass neutrino background radiation; € stands for the energy-
matter contribution associated with the curvature of space due to General Relativity and finally
Qp is the contribution of Dark Energy. From measurements of e.g. the CMB it is known that
the three-geometry of space is flat to a high degree of accuracy such that (; can be set to zero.
Also neglecting the minor contribution from £2,, a couple of different classes of astronomical
observations suggest, the so called cosmic concordance:

(]..2) Qb ~ 004, QDM ~ 020, QA ~ 076,

where, according to usual notation, we split the matter density parameter €2, into a baryonic
contribution and a contribution from Dark Matter. The issue of Dark Matter is discussed in
more detail in chapter 2. But whatever the particular composition of the numerical values of the
different energy-matter components, as inferred in the framework of the cosmological standard
model may try to tell us, one result is particularly striking: only 4% of the whole is due to
well-understood physics, i.e. to baryons. Another surprising feature of Dark Energy is known
as the coincidence problem. It refers to the fact that the contribution of the time-independent
A parameter, if we would measure it together with the other cosmological density parameters
in the past when the universe had only around one tenth of its present size, would be only
Qp ~ 0.003. That is, the influence of A, causing the expansion of the Universe to accelerate,
appears to become significant at just around at the present time. It is unclarified in how far
these ‘coincidences’ are reflecting some deep physical contiguity. However, it is conceivable that
the cosmological constant might be a running and would approach some natural value at late
times [PRO3].
We consider the possibility of A itself being a superposition of different physical effects:

(13) QA = Q/\,]’E}ilﬂsteilﬂ + Q/\,QF + Q/\,umkmovwn .

The term 4 Einstein 1S nothing else than the original cosmological constant as introduced by
Einstein in order to maintain static cosmological solutions of his field equations; Qj qr is a
contribution from virtual particle-antiparticle fluctuations in the quantum vacuum; Q4 unknown
would describe contributions from yet unknown physics like new fields or interactions. The fact
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that quantum fluctuations {25 qr really do exist is impressively demonstrated by measurements
of the (electromagnetic) Casimir effect, see fig. 1.1. The Casimir effect can be measured between
microscopic objects, for example small conducting plates, that are positioned at a tiny distance
to each other. Whereas the quantum fluctuations of the vacuum, as predicted within quantum
field theory, can populate arbitrary modes in empty space, the number of possible modes in
between the microscopic objects is limited and so the energy of the system is suppressed. This
results in an attractive force that is of measurable strength for e.g. the electromagnetic field and
is purely due to subtle quantum effects.

The problem one naturally encounters with the contribution of A may be demonstrated
by using the CMB as an example [PR03]. The CMB has a monopole temperature of ~ 2.7K
and energy density Qcyvp ~ 107 reaching its maximum at the Wien peak A ~ 2mm. Here
the photon occupation number is ~ 1/15. Given a certain frequency, the zero-point energy
amounts to half the energy of the photon. Therefore the zero-point energy of the electromagnetic
field at the Wien peak translates into a contribution of §Q2x cmp ~ 10~* to the Dark Energy
density parameter. As it will become clear from equation (1.32) the sum over wavelengths scales
according to A™* and thus we would have 0QA.cMB ~ 100 at visible wavelengths! This naive
extrapolation already yields such an absurd figure. However, as was already mentioned above,
it may be hypothesised [PR03] that the Dark Energy density associated with A is running and
has reached nowadays because Dark Energy had almost 13.4 billion years time for running by
now close to a value that would be somewhat natural, namely zero.

1.2. Dark Energy and the Standard Cosmological Model

Before we are going to discuss rather direct evidence for a recent acceleration of the cosmic
expansion, we will concisely review the current standard model of cosmology. This comprises the
underlying symmetries of the Friedmann-Robertson-Walker spacetime as well as the resulting
general relativistic dynamics of the model. Also the basic concepts and the consequences of the
standard inflationary scenario are reviewed.

In cosmology there exist several definitions of what may be attributed as an observable
distance to an astronomical object. The non-trivial point is that the various distance measures
give approximately the same result only for nearby objects and moreover that their measurement
for distant objects is sensitive to the particular dynamics of the underlying theory. There exists
recent evidence that supports the presence of Dark Energy provided by the analysis of distant
supernovae. Under the assumption that supernovae of type la form a class of standard candles
their measured brightness can be used to directly test the distance-redshift relation within
different dynamical realisations of the standard model.

1.2.1. The Standard Model in a Nutshell. A very crucial statement that is made right
from the beginning is that the Universe appears isotropic to us in a global sense when observed
from earth. Second, following the Copernican standpoint it is assumed that an observation of
the Universe made from any other galaxy should also look isotropic for the observers there.
Once we accept this, the Universe must also be homogeneous because of its isotropy around
any point. Of course, observations of our near neighbourhood do neither look homogeneous nor
isotropic at first glance. In the standard model it is assumed that there is a transition from a
clumpy to an approximately smooth picture at a scale of roughly 100Mpc. This implies, that
when we place balls of radius 100Mpc in the Universe at random locations and we measure the
mass profile within an ensemble of balls then the root mean square fluctuation of the values
taken at 100Mpc is roughly equal to the mean value, such that we can regard the fluctuations
at large scales as perturbations on top of the homogeneous model. On the other hand, the
smaller the scale, the more non-linear are the departures of fluctuations from homogeneity. In
the following we review the nice overview paper by Peebles and Ratra on Dark Energy and the
standard model [PRO3].

Within the framework of General Relativity, homogeneity and isotropy lead quite naturally
to the expansion of the Universe. Expansion of the Universe means that the proper physical
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distance Dp between two well-separated galaxies as a function of cosmic time ¢ is
(1.4) Dp(t) o< aft),

where a is the scale factor. But a is defined such that it is independent of the choice of galaxies
we make for the comparison. Thus the expansion (1.4) preserves homogeneity and isotropy. The
derivative of (1.4) gives us the proper speed

_ dDp a(t
(t

~—

(1.5) w(t) = L =H@®ODe, HH)=>

)

~—

introducing the Hubble parameter H and denoting derivatives with respect to cosmic time with
a dot. The value of the Hubble parameter as measured today is a central parameter and so we
give here its current measure (2007) according to [YT06]

The actual expansion of the Universe was first observed in 1929 and it is referred to as the
Hubble expansion due to its discoverer [Hub29].

A law similar to (1.4) also holds for the wavelengths of light signals that are exchanged

between two galaxies. The change in wavelength that a signal a given feature in the spectrum

undergoes that has been emitted from a distant source amounts to
(1.7) Aob = alfon) =14z,

>\cm a(tcm)

and z is called the cosmological redshift. The redshift provides the most convenient character-
istic to label observations of the Universe that reach into the very far past. For example, the
decoupling of matter and radiation in the young Universe which is the origin of the CMB radi-
ation, occurred at around z = 1088. The Universe is ionised today; from CMB measurements
one infers that reionisation took place at redshifts of around z ~ 10. The galaxy cluster SDSS
J1004 + 4112 shown in fig. 1.1 is observed at a redshift of around z ~ 0.68 . How in general the
redshift is translated into distances, or vice versa, is generically depending on the parameters of
the underlying general relativistic model. However, given a small redshift z < 1, equation (1.7)
becomes Hubble’s law, which then reads to lowest order: ¢z = HD¢ .

The results so far have been obtained by using homogeneity and isotropy only, and represent,
the low-redshift limit of the standard model. However, for extrapolation to higher redshifts
z > 1, the general relativistic formulation of the theory is to be used. The crucial assumptions of
homogeneity and isotropy are reflected by the well-known Friedmann-Robertson-Walker (FRW)
spacetime

(1.8) ds? = —dt* + a*(t)

72 dr? 412 (d6‘2 + sin29dcp2) .

Through remapping of the radial coordinate one usually normalises the spatial curvature pa-
rameter k such that it takes the values k = 1,0, —1, which stand for a closed, flat or open spatial
geometry of the model. The metric can be rewritten as

(1.9) ds® = —dt* + a®(t) [dx® + Sq(x) (d6* + sin®0de?)]
by introducing the function Sj(x) with

siny fork=1
(1.10) Sk(x) = X fork=0
sinhy for k =—1

Employing the Friedmann-Robertson-Walker metric and the assumption that on large scales the
galaxies behave like the constituents of a perfect fluid, one can solve the field equations

1
(1'11) GHV = Rul/ - §Rguu =8rG [(P + p) Uy Uy + pguu] + Aguu )
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and, denoting cosmic time derivatives with a dot, obtain the result:

a 4 A
1.12 - =—-nG 3 —.
(112) S = SnGlp+3p)+
The covariant conservation of energy and momentum 7% = 0 implies then additionally
(1.13) p=—3H(p+p).
Integrating the equations (1.12) and (1.13) yields the important Friedmann equation
8 kA
1.14 H?=_7Gp— — + =
(1.14) 3TGr— 5+ 3,
and the integration constant & is related to the present value of the spatial curvature via
k
1.15 Q= ———5.
( ) k Hga%
If A is constant, a useful way of writing the Friedmann equation is
(1.16) H?(2) = Hf [Qm(1+ 2)® + (14 2)" + Qp + (1 + 2)°]
and similarly one rewrites the equation (1.12)
. 1 3
(1.17) S (Qm% +Q(1+2)* - QA> ,
a
whereby the remaining density parameters of the standard model ; are given by
Pm.r 3HZ A
1.18 O, = P28 =) Oy =
( ) ' Pcrit Perit G A Hg

The use of (1.16) lies in the fact that one can immediately read off the redshift dependence of
the respective components of the Friedmann model. Therein, €2, stands for all non-relativistic
matter whose pressure we neglect (p, < pm). We see that the mass density is diluted by
the expansion of the Universe as p, < a™® o (1 + 2)®. Further, Q, stands for radiation
(e.g. the CMB) as well as relativistic matter with equation of state®* w = 1/3, and behaves like
pr o< a=* oc (1 + 2)* under expansion. By construction, A is constant for the moment, and
further the density corresponding to spatial curvature (1.15) is diluted as pg oc a=2 o (1 + 2)2.

eq. of state density scaling Hubble
w poca 30w g (t) o ¢ 3 H(t) = 3(13_w)%
radiation, w = % pa~* a(t) o t1/2 H(t) = %
matter, w =0 pa=? a(t) o< t2/3 H(t)=2

TABLE 1.1. Standard solutions to the Friedmann equation for a radiation dominated
and a matter dominated Universe. The FRW expressions for density, scale factor and
Hubble parameter assuming a contribution with equation of state w are given in the
first line. Regarding a Dark Energy contribution with w = —1 the density is constant
and integration of the Friedmann equation yields the exponential behaviour (1.25).

Next, we want to consider the properties of A in further detail. As inspired by special
relativity, we can make the assumption that every inertial observer should measure the same
vacuum. An inertial observer is an observer who lives locally in a Minkowskian frame, that is
his metric is characterised by 7,, = diag(—1,1). Now, the form of the metric is left invariant
by Lorentz transformation to some other inertial observer’s frame. Because we assumed that all
inertial observers should see the same vacuum, the energy-momentum tensor is

(1.19) T3, = PAGur »

8In the cosmological context the term equation of state refers to the ratio w = p/p.
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with a constant vacuum energy density pp . Thus the field equations can be written in the form
(1.20) G =87G (Tyw + pagun)

which reflects Einstein’s original idea® of modifying the energy-matter content of the Universe
by adding a constant A. We see that Dark Energy behaves like an ideal fluid with negative
pressure according to the equation of state

(1.21) PA = —pA -

At the time Einstein thought about this modification, the Hubble recession of nebulae was
not yet established; quite the contrary, a static cosmos was the state of the art, which was an
extrapolation of the finding that nearby stars moved at low velocities. In order to obtain a
static solution with @ = 0 Einstein introduced an 4 — in modern language — to neutralise the
(positive) contributions of the other ingredients of matter and radiation, c.f. (1.17). However,
the balance ¢ = 0 is not a stable one because already small perturbations to either the mean
mass density or the distribution of mass will cause the Universe to contract or expand. Note
that, if the density p, is not constant in time which is the case in many modern Dark Energy
scenarios — also the Dark Energy momentum tensor would have a form that differs from (1.19),
such that in the end the characteristics of the vacuum do depend on the observer’s velocity.

In the context of gravitational fluid dynamics one usually distinguishes between the active
and passive gravitational mass density. The active mass density (p + 3p) stands for the gravi-
tational field that is generated by the fluid, the passive gravitational mass density (p + p) is a
measure of how the fluid streaming velocity is affected by a gravitational source. Thus, in the
Dark Energy model characterised by (1.19) and (1.21), the active gravitational mass density is
negative (assuming a positive pp) and if this dark component dominates the energy-momentum
tensor then @ will be positive. This reflects the fact that the expansion of the Universe accel-
erates. Thus one can summarise the effect of A in physical terms as follows: the accelerated
expansion is not the result of some new force, rather it is due to the negative active gravitational
mass density that we can associate with the Dark Energy. Then, considering non-relativistic
movement, the relative acceleration g of free falling test bodies is modified by a homogeneous
active mass density due to the presence of A to¢

2
((1175 =g+ HZQpr.
We can already guess that the magnitude of this effect is probably small. We can estimate the
size of the ratio of accelerations gp/g. Let us assume that the Solar System moves in a circular
orbit around the centre of the Milky Way with a circular speed of v ~ 220km/s at a radius of

(1.22)

bTo be exact, this is not strictly true. Though mathematically the same, Einstein [Ein17] added the new
term to the left hand side of the field equations, that is to the ‘geometric side’: G — Aguy = 87GTy,, . Note
that Einstein further motivated this modification by an analogy to Newton Gravity. Interestingly, in Newton
Gravity one encounters a serious problem with a world model that is homogeneous and infinite. It was already
seen by Newton himself that the gravitational potential energy of such a system diverges: the volume of a shell
at distance r to 7 4 &7 from an observer is 6V = 47r26r and with the assumption of homogeneous mass density
p, the mass within §V amounts to §M = 4mwpr?dr. Thus the gravitational potential energy according to this
mass becomes U = GSM/r = 4nGprdr. Integrating SU we see that U diverges like 72 when r becomes very
large [Pee93]. Einstein and after him others, c.f. [PR03], suggested a cure for this situation by a modification of
the Poisson equation according to AB ¢ — A¢p = 4wGp, which gives the potential of a point mass a Yukawa form
¢ x e— VAT (these solutions are also called Seeliger-Neumann solutions). Now, the modified Poisson equation
allows for a homogeneous static solution ¢ = —4wGp/A. But the analogy should not be taken too seriously:
note that the modified Poisson equation does not come out as a Newtonian limit from the general relativistic
equation with cosmological constant. That is, A does not act like a long-range cutoff in gravitation, it is rather
a repulsive form of energy that is in opposition to the mean gravitational attraction of matter.

€Also, the instability of the static Einstein solution can be seen from equation (1.22). A mass distribution
can be assigned such that the right hand side of equation (1.22) vanishes but this equilibrium can then be easily
destroyed by just redistributing the mass again.
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r =~ 8kpc. The ratio of g, to the total gravitational acceleration g = v?/r is then estimated by

gA o HgQAT‘2
g v

This is already a small number but it becomes much smaller when the radius is reduced. Since the
Sun is already located at the very outskirts of the luminous disc of the Milky Way, the possibility
of detecting this effect by measuring deviations from the ordinary internal dynamics in other
galaxies is not very promising. The accuracy of precision tests of gravitation on the level of our
Solar System is much better. But on these scales the ratio (1.23) is of the order g /g ~ 107%2.
Next we want to consider a complication, namely a working model for a dynamical py .

The aforementioned mechanism of coupling A to a negative active gravitational mass den-
sity is closely related to the concept of cosmological inflation. There exists a problem that is
encountered if we assume that the Universe was evolving due to a FRW solution within its entire
history. Let us recall the expression for the particle horizon

(1.24) x:/%,

where we assumed spatial flatness. It is a measure of the integrated coordinate displacement as
a light ray moves the proper distance dl = a(t)dz during the time d¢. Now the point is that for
vanishing Q, the integral (1.24) does converge in the past (ax is the proper radius of the particle
horizon), that is our view should fall on several causally disconnected parts of the Universe. In
order to make the Universe homogeneous, signals must travel between the regions that are in
contact with at most the speed of light. Thus, no regions that are more than 2az apart could
have ever been in causal contact. Let us try an estimate: assuming that the temperature of the
young Universe was T ~ 10'*GeV at some initial time tin; , we can then imagine a corresponding
causally connected ball with radius 2ax that has expanded and today should form the border
of the currently observable Universe. In our simple estimate, the temperature of the Universe
has evolved from that initial epoch at 7'~ 10'4GeV to Ty ~ 2.7K ~ 2.4 x 10%eV today, thus
giving a factor of expansion of the Universe of T'/Ty ~ 4 x 10?6. Moreover, at the temperature
T ~ 10" GeV, the horizon size has been 2az ~ 6 x 10~2°cm at a time of ¢, ~ 1073%s. Therefore
the primordial causal ball would have expanded to a size of 2.4m today which is rather small
for the current size of the Universe. And how can then galaxies as observed today in different
directions on the sky look so similar? to each other? The answer is provided by the statement
that the expansion history of the Universe was not FRW-like for a certain time period in the
young Universe. Instead one assumes a DeSitter solution with A > 0 and 7},, = 0 and the scale
factor behaviour

(1.23) ~107°.

(1.25) a(t) oc eHat

with Hj being constant. That is, in the DeSitter model, the Universe undergoes a phase of
exponential blowup and A becomes essential.

In the inflationary view the early universe is dominated by a large Dark Energy density pj .
Then the Dark Energy can be modelled with the help of an approximately homogeneous scalar
field @ in analogy to models known from quantum field theory. The action takes the form

(1.26) S = /\/—_g (%g’“’@lﬂ)&,fb - V(q>)) diz,

d0ne can give another very instructive illustration of the horizon problem regarding the CMB. Using the
concept of the angular diameter distance (1.38) (which is a measurable quantity) one can compute that up to the
time of last scattering of the CMB photons, regions that could have had causal contact to each other, today have
the size of approximately one degree on the sky. That means an image of the CMB should contain many patches
of size one degree that are rather anisotropic as a whole because they never had the chance to communicate.
Maps of the CMB however, show a totally different situation: the CMB appears overall isotropic to a high degree.



20 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGY

where g is the determinant of the metric g = det(g,,) and we used i = 1. The function V(®)

is the potential energy density and with vanishing spatial curvature we get the field equation

dV (@)
do

We can define the rest frame of an observer who is moving such that the Universe looks isotropic;
then the energy-momentum tensor of the homogeneous field ® is diagonal with

(1.27) EIS+3Z<1>+ =0.

1. 1.
(1.28) po = 5@2 +V(®) and pg = 5@2 —V(®).

From these equations it is clear that if the scalar field varies slowly with time ®2 < V , then
the equation of state of the cosmological constant can be recovered: pg ~ —pg.

Normally it is assumed in inflationary theory that the exponential phase (1.25) lasts so
long that all regions in the observable Universe have reached causal contact with each other.
Eventually ® can start to vary rapidly thus producing entropy for the Universe. This is because
after a rollover phase the field falls into the potential well of the real vacuum and starts to
oscillate due to its kinetic energy. The large initial vacuum energy is transformed into coherent
oscillations of the field ® and these fluctuations are damped — besides the Hubble friction
3H® by particle production or the interaction of ® with other fields, which is equivalent to
a thermalisation of the field energy and entropy production. Through this so called reheating,
e.g. baryons can be produced and in the end pg remains small or zero. However, it is conceivable
that pg could have a very slow late-time behaviour, possibly slower than the evolution of the
matter density. Then pg will be dominant again, after a certain time and this could provide an
answer to the coincidence problem. A concrete ansatz that leads to such a late time evolution
of pg is Vi, = k/®“ with a constant x that has the dimension of mass®™ [PR03]. We can
constrain the form of the scale factor by assuming that after the inflationary phase the Universe
is dominated by matter or by radiation which leads to a power law expansion behaviour of
a o< t™, c.f. tab. 1.1. With this form of the scale factor we can solve the field equation (1.27)
and obtain ® o t?/(2t®)  The mass density associated with the scalar field ® behaves like
Po/p X t4/(2+9) with respect to the matter or radiation density. Thus we can recover Einstein’s
cosmological constant A from this model in the limit of & — 0 which corresponds to a constant
pa . In the case @ > 0 the field ® can grow very large and due to V, = k/®% the according
density will go to zero, pp — 0, which implies that the Universe approaches a Minkowskian
state. Such a power law model with o > 0 has two important characteristics [PR03]. First,
the energy density of matter and radiation decreases more rapidly than that of the scalar field
solution. This implies that it is possible to have a pg that is small right after inflation (but
still at high redshift) and thus does not interfere with the standard production scenario of the
light elements. However, after some time pg can dominate again, mimicking a cosmological
constant. Second, it has been shown by Ratra and Peebles that the class of solutions o > 0 has
the attractor characteristic, that is a vast range of initial conditions eventually end up with this
solution.

The inflationary scenario explains the large-scale homogeneity of the Universe today by pos-
tulating a DeSitter-like phase of exponential growth of the Universe at very early times. More-
over it provides the initial conditions for structure formation by the vast freezing of zero-point
quantum field fluctuations to cosmological scales. Thus the seeds for the observed structures on
cosmological scales today have originated from quantum fluctuations of the early Universe. The
power spectrum of the classical density fluctuations that have been frozen out from quantum
fluctuations is

(1.29) P(k) = (|d(k, 0)[*) = AK"T?(k),

where d(k,t) is the Fourier transform of the density contrast, é(x,t) = p(x,t)/p(t) — 1 at
wavenumber k, with the mass density p and its mean p. A is a constant that comes out from
the concrete form of the potential V' one chooses within a given inflationary model. The transfer
function T'(k) governs how the density contrast §(k,t) evolves under the influence of radiation



1.2. DARK ENERGY AND THE STANDARD COSMOLOGICAL MODEL 21

pressure and the dynamics of matter at redshifts z < 10*. Now, for an inflationary expansion
following an approximate DeSitter solution (1.25), the spectral index n will be close to unity®. A
spectrum with exactly n = 1 is called Harrison-Zel’dovich power spectrum. The striking feature
of such a spectrum is that it would have equal power (amplitude) in all its modes at the time it
enters Hubble horizon and is this also named scale invariant. Anticipating results for the Sachs-
Wolfe effect from sec. 1.3.3 we can understand the notion of scale invariance alternatively by
the following result [Lon98| for the angular scale dependence of CMB temperature fluctuations
originating from an initial power spectrum proportional to k™,

AT A
(1.30) - = c_z(b o gI=m/2

with AT /T being scale-free in the Harrison-Zel’dovich case n = 1. Note that more complicated
scalar field potentials can be imagined (e.g. exponential form potentials) under which the spec-
tral index is tilted n # 1 and can be used as an additional free parameter of the model. However,
recent CMB measurements indicate that n = 1 is very close to the best fit!. The initial con-
ditions for the mass distribution in these inflationary models are provided by a single function
0(x,t), which is a realisation of a spatially random Gaussian process since the macroscopic per-
turbations are frozen out from almost free and pure quantum fluctuations. This is also referred
to as adiabaticity because such fluctuations can be understood as the result of purely adiabatic
compressions and decompressions of regions of an homogeneous (post-inflationary) Universe.
A consequence of the fact that the simplest inflationary models obey the above conditions is
that the initial condition as described by a single function of position 6(x,t) is statistically fully
characterised by its power spectrum (1.29). More complicated models of inflation for instance
produce fluctuations that are not exactly Gaussian or have power spectra that cannot be brought
into a power law form.

Before we come to the cosmological tests of the standard model let us return to the prob-
lem of the smallness of the vacuum energy density. The zero-point energy of quantum fields
contributes to the Dark Energy density. A relativistic field can be understood as a collection of
quantum mechanical harmonic oscillators with all possible frequencies w. The zero-point energy
will be non-vanishing and amounts, by superposition of frequencies, to Ey = >, w;/2, where i
labels oscillators and A = 1. We can think of the system as locked in a box of length L and we
then consider the limit . — oo under appropriate periodic boundary conditions. We then have

L3 WE 3
1.31 ==
(1.31) Bo= 5 [ k.

with the wavenumber k = 27 /\. We are considering a massive bosonic field ®. By employing
the dispersion relation w? = k? + m? and introducing a cutoff frequency kmax > m in order to
make physical sense®, we arrive at [KKZ97]

E, kmax Ak k2 2 kA
(1.32) ps = lim =2 :/ i T g — Cmax
SNTE T )y @ 2 1672

®Let us add a small note on the approximation of n = 1 in inflationary models. In general, it depends on
the particular underlying scalar field dynamics of the model in how far scale invariance is realised. In slow roll
inflation the field is initially rolling down the inflationary potential slowly and its movement is sizeably damped
by the Hubble friction term 3H® . Imagine a limit where the damping is extremely intense and the rollover
becomes infinitely slow, then this would correspond to exact scale invariance n = 1. Consequently, a genuine
inflationary prediction is n = 1 + & with some small €. The (small) deviations of a particular model of inflation
form exact scale invariance quantify how slow the field actually has rolled and how strongly it was damped
meanwhile, see also [DS02].

fActually, from WMAP(3yr) data alone a value of n = 0.958 + 0.016 is obtained [ST07]. Nevertheless, a
running spectral index, that is an n that varies a bit with the wavenumber k of the perturbation modes, is slightly
preferred by the WMAP(3yr) data.

8Note that, as we introduce a cutoff wavenumber kmax , we at the same time have to specify in what frame
the cutoff is defined, thus invoking a preferred frame. This violation of Lorentz invariance poses a problem of the
argument and there seems not to be a satisfactory resolution by now. In [Akh02, PR03] one can find a discussion
of possible interpretations of the occurring ambiguity.



22 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGY

If we assume General Relativity to be valid up to, say the Planck scale and set Lpjanck =
(87G) /2 = kyax we obtain a value for the vacuum energy density of

(1.33) pg ~ 10%%gem™?

which is 121 orders of magnitude off the observed value of ~ 10730, Reducing the cutoff scale
to the electroweak scale of ~ 200GeV still produces a discrepancy of 54 orders of magnitude;
inserting the QCD scale Aqcp as cutoff results in a mismatch of 42 orders of magnitude. These
discrepancies could indicate a massive incompleteness of the current underlying physics; it is
thinkable that there might be some connetion between the different components in (1.3) coming
from yet undiscovered physics that causes the almost complete cancellation of the seemingly
uncorrelated terms in (1.3), c.f. [KKZ97].

1.2.2. Distance Measures and Dark Energy Evidence. In order to describe the cur-
rent phenomenology of the standard model we first should recall the common distance measures
in cosmology. We have already introduced the proper distance Dp through (1.4). Another
natural distance is that associated with the current Hubble volume, the Hubble distance

c
(1.34) Du = 7=
Assuming continuous FRW evolution, an object that would be seen at a distance of roughly
the Hubble distance is seen as it was around a Hubble time in the past. The Hubble distance
represents a measure of the observable Universe, c.f. fig. 1.2.

The definition of the Hubble parameter as a function of redshift (1.16) will be very useful
in the following. The constant of proportionality of the proper distance scaling (1.4) can be
expressed by the comoving distance. The comoving distance along the line of sight is defined by

z dzl
(1.35) D¢ = DygHy ; m
The comoving distance between two points that were close in redshift in the past is the distance
we would measure today between the points if they were glued to the expanding background,
c.f. [Hog00]. See fig. 1.2 for an illustration of proper and comoving distances and their relation
to important cosmological scales like the particle horizon and the Hubble distance.

Going further, one can define a comoving distance in a lateral sense. If we measure two
objects at the same redshift that are separated by an angle 6 on the sky then their comoving
distance is Dpcf with transverse comoving distance denoted by Dpc and defined by

Du®; "% sinh(Q)/*De/Dy)  for Q4 >0
(1.36) Drc = D¢ for Q. =0
Du®;, ' sin(Q/?De/Dy)  for Q4 <0

If the cosmological constant vanishes there exists a closed solution

2—(1—2)Qm — (2= Q) (1 + 2Q,)"/?
(14 2)Q2

It can be shown that there is a correspondence between transverse comoving distance and the so
called proper motion distance. The proper motion distance is defined as the ratio of transverse
velocity to proper motion of an object and is measured in radians per time, c.f. [Wei72].

The ratio of the lateral physical size of an object to its angular size is an explicit observable
called the angular diameter distance. It is very useful for cosmological measurements. Especially
when considering the CMB which can be mapped onto a sphere at z = 1088, it is crucial to
convert angular separations measured by an instrument to proper separations in the source
plane. The angular diameter distance is given by

(137) DTC = 2DH for QA =0.

D¢
1.38 Da = .
( ) A 142
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FIGURE 1.2. Spacetime diagrams of cosmological time versus proper distance (upper
figure; Dp in our notation) and versus comoving distance (lower figure; D¢ in our
notation) within a fiducial FRW model with (2w, Q) = (0.3,0.7) and Ho = 70 km
s~! Mpc™!. Therein the dotted lines, that are labelled by values of redshift, represent
the worldlines of comoving objects. The past light cone (belonging to the observer with
central worldline at zero distance) enfolds all events that we are currently (¢ =now)
observing. Further, there are three kinds of horizons in the figures: the particle
horizon names the distance that light can principally have travelled from ¢ = 0 until
some given ¢, c.f. (1.24), and the redshift of objects at particle horizon becomes
infinite; the event horizon represents the distance that light can have travelled from
a given time ¢ until ¢ = oo; the Hubble sphere enfolds the set of spacetime events
beyond which comoving objects are receding faster than light the Hubble sphere is
not really a horizon because z # oo for objects at Hubble distance and moreover it is
possible to see beyond it in cosmological models with ¢ < —1. As can be seen from
the slope of the light cone, the speed of photons relative to the observer vrec — ¢ is
not constant. Photons from the region of superluminal recession (hatched) can only
reach us when coming to the region of subluminal recession (no shading). As can be
seen in the figure, initially objects beyond the Hubble sphere have been receding from
us — note the bulge of the light cone at ¢ < 5Gyr. Note that the light cone does not
hit the line ¢ = 0 asymptotically; rather it reaches a finite distance of ~ 46Glyr at
t = 0 which is exactly the current distance to the particle horizon. Thus, the light of
any objects that are currently observable to us, whose light has propagated toward us
since t = 0, has been emitted from comoving positions around 46Glyr (14Gpc) away
from us. Note that the aspect ratio of the figures ~ 3/1 reflects the ratio of the size
of observable Universe to its age ~ 46/14. The pictures are taken from [DL03].

In contrast to several other distance measures, the angular diameter distance does not diverge
for z — oo, in fact it is not a monotonic function of z; it reaches a maximum at around z ~ 1.
At high redshifts one can say, as a rule of thumb, that the angular diameter distance relates an
angular separation of one arcsecond to a size of ~ 5kpc [Hog00].

The luminosity distance measures the ratio of total bolometric (i.e. integrated over all
frequency bands) luminosity L to the apparent luminosity La . The apparent luminosity or
bolometric flux L is the power received per unit mirror area. The apparent luminosity of a
non-moving source at some distance ! in Euclidean space would be L/(4xl). Therefore it makes
sense to generalise this and define the luminosity distance as [Wei72]

I 1/2
1. = .
(1.39) Dy (MLA)
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However, in astronomy what is really measured is the apparent magnitude m . After fitting for
the calibration factor M (absolute magnitude) one usually uses the difference of these magnitudes
for analysis: the distance modulus m — M . The distance modulus is related to the luminosity
distance through m — M = 5log(Dy,/1 Mpc) + 25, with the number 25 coming from the fact
that the distance modulus is defined to vanish at 10pc. Note that due to a fundamental result —
the reciprocity theorem, c.f [EVE98| — the angular diameter distance and the luminosity distance
can be related directly by

(1.40) Dy = (14 2)’Da = (1+2)Drc.

Based on the concept of the luminosity distance, in 1998 the first direct evidence for an
apparent accelerated expansion of the Universe was published [RT98, PT99]. This was made
possible by measurements of the redshift and the (luminosity) distance of supernovae. The
appearance of this kind of evidence was dubbed a cosmological revolution, for it provided the
first direct evidence that the Universe may recently have become dominated by some mysterious
form of energy. After this discovery, measurements of the CMB and statistical analyses of
galaxy-redshift surveys have confirmed the supernova findings, albeit in a more indirect way.
However, the supernova measurements remain up to today the most direct means of probing a
present, large-scale acceleration of the Universe. What one necessarily needs in order to make
reliable measurements with the help of the luminosity distance (1.39) is a standard candle.
A standard candle would be — in a much simplified sense — something like a constant 100W
light bulb. That means, if we can rely on the fact that the light bulb is standardised, i.e. it
allways will emit a power of 100W, then we can infer the distance to the bulb by measuring
its apparent luminosity. Now, in cosmology it appeared at first not promising to think of
supernovae as standard candles because their observation yields a very heterogeneous class of
light curves. Originally, the classification scheme for supernovae was such that the type SNI
was characterised by the lack of hydrogen features in the supernova spectrum. From 1980 on
the astronomers divided the type I supernovae into two subclasses: Ia and Ib. The distinction
was made due to the presence or absence of a certain silicon absorption feature at 6150A. In
the light of this reclassification a remarkable uniformity in the light curves of supernovae Ia
suddenly became apparent.

But, are SNIa really standard candles in a strict sense? One speculates that SNIa originate
from exploding white dwarfs. But why should the white dwarfs explode and why should this
then happen at a uniform threshhold? Normally, white dwarfs are produced as remnants of Sun-
like stars that have used up their nuclear fuel for fusion. The only thing that saves the dwarf
from further collapse is the effective pressure upheld by electron degeneracy. Now, if it happens
that the white dwarf is provided with some steady stream of matter accreting onto its surface, it
would accumulate mass until a common physical threshold — which is near the Chandrasekhar
mass of ~ 1.4M,; and then suddenly erupt within a massive thermonuclear explosion. If
this scenario is true then essentially always the same physical process triggers SNIa explosions,
which then would back the assumption of regarding SNla as standard candles. Still, taking
an accurate look, the uncorrected light curves of SNIa do show some offset. Their maximal
luminosities exhibit a slight but obvious dispersion of roughly 0.4 magnitudes as measured in
the blue band [Sch06]. One finds a strong correlation between intrinsic brightness and the
shape of the respective light curves: the supernovae that have a higher maximal brightness also
decrease slower (as measured from their maximum) than those with smaller maximal brightness.
Moreover it turned out that supernovae that were fainter also appeared redder or were observed
in highly inclined host galaxies. This effect can be attributed to an extinction in the host
galaxy additional to the extinction in the Milky Way. Altogether it is possible to quantify
these systematics with a phenomenological recalibration that takes care of both the maximal
brightness-duration correlation and the extinction. The fundamental calibration is gauged to
a sample of supernovae that were located in host galaxies to which the distances are very well
known. Once the above explained correction to SNIa is applied they appear to be appropriate
standard candles. The collection of a sufficient number of SNTa observations requires very careful
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FI1GURE 1.3. Supernovae of type Ia provide standard candles and measurements of
far-away SNIa are sensitive to the cosmological parameters of the standard model.
Left: an image of supernova 1994D that took place in the outer regions of its host
galaxy NGC 4526. The supernova is of type Ia which implies that its light curve is
very similar to any other supernova of the same type, irrespective of its distance or
location. Combining a measurement of its luminosity distance with a measurement
of the redshift of the host galaxy one can use such events to probe the Hubble law
(1.41). Right: a Hubble diagram (distance modulus vs. redshift) of the 2006 Riess et
al. sample [R706]. The outer diagram shows the good fit of a Qs ~ 0.71, Q, ~ 0.29
standard model parametrisation. The inset is a binned residual Hubble diagram of 47
chosen (Gold Sample) SN with respect to an empty Universe Qm = 0 = Q4, being in
accordance with a recent acceleration of the Universe. Note that supernovae at very
high redshifts become again brighter than expected in the fiducial model, indicating
the matter domination of the Universe at very early times. The pictures are taken
from [APO] and [R"06].

logistics and search strategy: at new moon a large set of images of certain patches of the sky is
made, then just at the next new moon exactly the same regions are imaged again and eventually
found candidates are fastly assigned to follow-up spectroscopy.

Let us discuss how the supernova evidence can be quantified. The Hubble law corresponds
to the following formula for the luminosity distance [SWO07]

22 , k 23
(1.41) Dy, =Dy |z+ (1 - (Jo)g + (—jo +3q3+q —1— EDIQ{) G + h.o.] ,
0
to third order in z. One introduces the deceleration parameter and the jerk parameter
a 1 ooa 1

Note that this cosmological test is highly model-dependent. Within the standard model the
deceleration parameter provides a measure for acceleration or deceleration of the cosmic expan-
sion and the jerk parameter measures the rate of change of the latter. Thus, at high redshift
potential deviations from the linear part in the Hubble law (1.41) should provide a measure of
the parameters of the underlying cosmology. The predictions of different cosmological models
(i.e. different parameter sets within the standard model) start to diverge at redshifts of around
z ~ 0.2. The result of a recent measurement is shown in fig. 1.3. It is found that supernovae
for" 2 <1 are even fainter than one would expect in an empty Universe model (Qy, = 0 = Q,).
The fiducial empty Universe model expands at a constant rate [ = 0 = j in (1.41)]; in no other

hNote that the Hubble law does not hold for measurements at very low redshift because here the Universe
is evidently not homogeneous, see for instance fig. 1.5.
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parametrisation with Q2 = 0 is the luminosity distance higher than in the empty Universe. Is is
possible to increase the luminosity distance only if the Universe has expanded slower in the past
than it does today, thus the cosmic expansion must have accelerated. Looking at the Einstein
equation (1.12) this implies an Q4 > 0, if we believe in the very foundations of the standard
model.

Moreover, supernovae at very high redshift z 2 1 provide additional evidence: they here
appear brighter than expected in an empty Universe because at such early times the Universe was
still matter dominated which is consistent with the above explained interpretation of supernovae
at z < 1. Summarising the supernova results one can say that a recent accelerated expansion
of the Universe with standard model parametrisation Q4 ~ 0.71 and Q,, ~ 0.29 provides an
excellent fit to the available data sets.

As is indicated in fig. 1.3, nowadays the scope of experiments is not only to confirm the
presence of A domination in recent times within the standard model, but moreover to try to
measure the properties of Dark Energy for instance through its equation of state. Results of
the ESSENCE supernova survey have recently been analysed especially under this viewpoint
[D*07|. The study is done with the help of Bayesian analysis which is a statistical framework
in which models are effectively penalised for not being economic with their parameters. The
analysis enfolds tests with: Dark Energy models with variable equation of state, (flat) DGP
braneworld models, Cardassian models and models of the Chaplygin gas. The result of the
competition is that the most simple spatially flat 2, dominated model represents the best fit
to the ESSENCE sample.

Besides the findings from supernova surveys other important cosmological probes converge
to very similar results. For instance the shape of the CMB angular power spectrum is highly
sensitive to the parameters of the standard cosmological model, c.f. sec. 3.3.2. Moreover, the
statistical analysis of galaxy redshift surveys as well as measurements of the number density of
massive galaxy clusters provide consistent results. The composition of density parameters (1.2)
characterised by the domination of Dark Energy today and measured by different classes of
experiments has been attributed the notion of a cosmic concordance. The evidence is depicted
in a combined plot in fig. 1.4. Summarising, we can say that the standard model facilitates
precision cosmology and that in turn the measurements a posteriori back the standard model.
Recalling the main results of this section we can summarise the cornerstones of the standard
model as follows:

e validity of General Relativity as the basic framework; a homogeneous and isotropic as
well as spatially lat FRW solution models the large-scale dynamics of the Universe; a
trivial topology of the Universe, that is the actual size of the Universe is much bigger
than the observable horizon;

e standard inflation solves the horizon problem and it produces spatial flatness; moreover
it predicts a nearly scale-invariant spectrum of statistically isotropic, adiabatic and
Gaussian random primeval density perturbations;

e the energy content of the Universe as measured today is dominated by Dark Energy;
a subdominant fraction is due to Dark Matter and only a marginal contribution is
due to baryonic matter [see eqs. (1.2)]; as a consequence, the cosmological expansion
undergoes a recent acceleration.

Note that (Cold) Dark Matter, to which the next chapter is devoted, is also needed in models of
structure formation in order to maintain the growth of the inflationary seeds of structure within
an acceptable amount of time; read app. D for more details on this issue. Of course, the standard
model also enfolds a lot of physics that takes care of the production of the today observed
particles in the early Universe. A detailed discussion of the model of Big Bang Nucleosynthesis
and scenarios of baryogenesis as well as leptogenesis are not within the scope of this work. In
the following we are going to use the terms Lambda Cold Dark Matter (ACDM) model or just
concordance model for the current cosmological standard model described above.
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FIGURE 1.4. The cosmic concordance: roughly three thirds of the total energy-
matter content of the Universe as measured today is made up of Dark Energy, the
rest is mainly provided by the similarly mysterious Dark Matter. The most direct
evidence for Dark Energy comes from accurate measurements of supernova Ia Hub-
ble diagrams. Moreover, the shape of the angular power spectrum of the CMB is
highly sensitive to the parameters of the cosmological standard model, and so are
also analyses of the redshift evolution of the number density of galaxy clusters as well
as number counts provided by galaxy redshift surveys. Due to their very different
(partly orthogonal) systematics the combination of these observations constrains the
cosmological parameters much better than the single experiments. The convergence of
the different measurements impressively indicates self-consistency of the cosmological
standard model. The picture is taken from [Lid04]; the shaded regions as well as the
other critical lines are explained in more detail in app. A.

1.3. An Inhomogeneous Alternative?

The standard model prediction that the Universe is homogeneous on large scales today is a
very bold one, likewise problematic to prove as a matter of principle. Yet, measurements of the
CMB yield isotropy to a degree of 107°, albeit at a very early epoch. It requires measurements
at high distances and at the same time with high statistics in order to map the Large-Scale
Structure of the Universe. As observations of far-away regions show objects as they were an
enormous amount of time ago in the past, it is not possible to strictly distinguish effects of
evolution from spatial variations of the matter density. In other words, a probe that would
strictly prove the homogeneity of our current Large-Scale neighbourhood, would ideally consist
of a deep galaxy survey taken at very low redshifts. Of course, such a probe is not viable as a
matter of principle because of the enormous size of the Universe. Leaving this principal objection
apart, it is possible to demonstrate the approximate homogeneity of the Large-Scale Structure
for instance with the luminous red galaxy catalogue (z ~ 0.3) of the Sloan Digital Sky Survey
[HEBT05].

Nevertheless, homogeneity is obviously broken at small scales: catalogues within ~ 100Mpc
draw a complicated picture with large voids, lots of concentrated clusters of galaxies and even
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FIGURE 1.5. An SDSS image of the large-scale structure of our cosmological neigh-
bourhood. The Sloan Digital Sky Survey is a wide-angle spectroscopic galaxy redshift
survey. Shown are wedges of already considerable depth, that is up to roughly 900Mpc
in comoving distance. The survey has a wedge-like structure because the optical light
from far-away sources cannot penetrate through the material in the direction of our
Milky Way’s disc (Zone of Avoidance). All of the displayed points are galaxies taken
from the main galaxy sample as well as from the bright red galaxy sample of the
SDSS. Here a conformal projection is used that is shape preserving. The image un-
covers an impressively sharp look on the surrounding large-scale cosmological struc-
ture. Clearly, the filament-like distribution of matter, structured like a honeycomb,
is seen. As clearly, large voids in structure that often approximate spherical shape
are resolved throughout the map. In the upper wedge, the largest cohesive structure
ever observed by now, the Sloan Great Wall is clearly displayed. In equatorial coor-
dinates this branching object stretches from 8.7h to 14h in R.A. at a median distance
of around 310Mpc. The picture is taken from [GT05].

large accumulations thereof forming vast structures like the great wall, see fig. 1.5. Given that
basic assumptions of the ACDM model do not hold at low redshift, naturally the call for a more
complicated model arises. Interestingly, the general relativistic dynamics of even the simplest
inhomogeneous models carry the possibility to eventually make Dark Energy superfluous.
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1.3.1. The Lemaitre-Tolman-Bondi Model. This spherically symmetric model is one
of the most important known inhomogeneous working models; we follow here partly the review
given in [PKO06]. For general spherical coordinates, the assumption of a perfect fluid automat-
ically implies a vanishing rotation wag = 0, c.f. (1.50). Under this restriction, coordinates can
be used that are comoving and in which there are no space-time mixing terms, and consequently
the most general four-dimensional spherically symmetric spacetime can be written as

(1.43) ds? = —e“dt? + etdr® + R? (d6® + sin®0de?) |

where C, A and R are functions of (¢,7) only and the velocity field is given by u® = e~¢/2§%, .
The parameter R is sometimes called the areal radius'. As a further simplification we consider
the dynamics under purely gravitational interaction (p = 0). Zero pressure implies that the
movement of the fluid occurs along timelike geodesics, which then leads to C,, = 0. We can
then make a coordinate transformation ¢ — [ €©/2dt and achieve C' = 0. The ! field equation
(see app. B) then gives

9 (eatie,) <o,

The solution with R, = 0 is not of interest here; however it leads to a physical solution (Datt-
Ruban solution) of the Einstein-Maxwell equations associated with dust in an electromagnetic
field, c.f. [PK06]. Taking R, # 0 we can directly integrate (1.44) to obtain

(1.44)

R2
1.45 Albr) — 1
(1.45) ‘ 1+&(r)
We introduce the arbitrary function £(r) which will be important in the following. In order
to maintain the used signature we require €& > —1 for all ». Note that &€ = —1 is not strictly

excluded; if R, = 0 at the same point, this leads to the occurrence of a wormhole, c.f. [PKO06].
The spherically symmetric dust solution is due to Lemaitre [Lem33] and was rediscovered and
rediscussed by Tolman [Tol34] and Bondi [Bon47] (LTB), it takes the final form

R2
(1.46) ds? = —dt? + H_—’ngr2 + R?*(d6? + sin®0dy?).

where the functions R(t,7) and E(r) are related to each other and to the energy density p(t,r)
and the cosmological constant A as follows

(1.47) R%(t,r) = ZZ(?) +&(r) + %ARz(t,r),
(1.48) anGplt, r) = ——"UT)r

R2(t,7)R(t,7),

Therein m(r) is a function that describes how much energy is present within the radius r as
can be seen by integrating (1.48).

We can utilise the framework of the 3+1 split of spacetime (see 2.3.4 for an explicit discussion
of the formalism) in order to deduce the interpretation of the mass function m(r) and understand
where it stems from. Let us note that for the given LTB metric (1.46) the shift vanishes and
the lapse is equal to unity, such that the extrinsic curvature here is given by the time evolution
of the three-metric K;; = —%%gij , yielding explicitly
_ R,TR,t,r

1+& 7
For the following it is convenient to recall the standard kinematical decomposition of a

three-velocity vector field. First considering Newtonian theory, the velocity gradient v; ; is a
measure of the relative velocity of two neighbouring particles in the fluid, and can be decomposed

, R, _R
Ky = —RR,;, Ksz3=—RR,sin’f, KEK;:—R’—t’— f.

)

(1.49) Ky =

IT'his is because R plays the role of a radius in the Euclidean spherical area equation S = 4rR?, where S
stands for the area of surfaces at constant ¢t and constant r [PK06].
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into two parts: its symmetric part vy j) = 1/2(v;j 4+ v;i) = 045 (the expansion scalar) and its
antisymmetric part v, j = 1/2(vi j — v;;) = wi; (the vorticity or rotation tensor) such that

1
(1.50) Vij = V(i,5) + Vli,j] = Hij +wi; = 595” + 045 + Wiy,

where we additionally decomposed the symmetric part into a traceless contribution (the shear
tensor o;;) and a trace part @ = v; ; (the expansion scalar or rate of expansion). This result from
Newton Gravity can be transported one-to-one to General Relativity. In General Relativity —
for vanishing shift and a lapse equal to unity, see sec. 2.3.4 the expansion tensor is defined
through ©;; = %%gij and is decomposed in an analogous way

1
(1.51) Oi; = 5991'3' + 0ij + wij -

Recall that we work in a gauge with vanishing rotation. Next, we have computed the shear in
the LTB model and get

(1.52)
2 R (R, R, 1 Ri. R, 1 R:» R,
_Z " ot ZHGLT , — _RZ (T = ZR%4in%0 AL
o 31+8(R R,T> 7273 (R,T R)’U?’?’ 3\ R, TR
Furthermore, the shear scalar reads
1, 1(R; R\’

As a check, one sees directly from (1.52) that the shear is indeed traceless as it must be by
construction. Now, because of the correspondence

we can use the decomposition (1.51) for further calculation.

Our aim was to derive the mass function m(r), and for this we have to compute the field
equations. In order to keep the derivation simple, we can calculate the 3 + 1 splitted field
equations; to be exact only one of them, the Hamiltonian or energy constraint

y 2
(1.55) R—-Ky;K7+K? =R+ g92 —20% = 167Gp + 24,

c.f. subsection 2.3.4. Here R denotes the spatial Ricci scalar for which we have, in case of the
LTB model,

S S
1.56 R=- o+ — .
(130 (- m)
Now the above introduced results turn useful and the energy constraint becomes
&, | & R.R.,  (R.\
_ : il gt it ) = A
<RR7T+R2)+ RR, —|—<R> 8tGp+ A,
or, with R, R, #0, (ER), + (R?tR) .= B87Gp+A) R’R.,..
(1.57)

We can integrate the last equation in (1.57) over r and thereby define
(1.58) m(r) = 4rG /T pR?R .dr’
0
where we let R vanish at rg. Using this mass term, the last equation in (1.57) becomes
(1.59) R(R%—¢&)=2m+ %RS‘A,

which is just our equation (1.47). For this we have used the definition of the mass m(r) (1.58),
which measures how much mass there is within a radius r and is self-consistent with the density
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FIGURE 1.6. An LTB inspired solution to the cosmological horizon problem,
c.f. [CS98, PK06]. The LTB light cone is here expressed via radial null geodesics
0 =0, p=0in (1.46). The figure shows the past light cones k; and k2 of an observer
O as well as the Big Bang (BB) and a shell crossing (SC) function of a certain class
of LTB models. A shell crossing occurs where R, = 0 and when geodesics cross SC
they must have a horizontal tangent at intersection and the LTB density becomes
infinite. Below shell crossing pathologies occur like a negative LTB density (1.48)
and thus to keep the model physical we exclude the spacetime set below SC. From
the Last Scattering Surface at p2, which is defined as the two-sphere at temperature
T ~ 4000K, photons can propagate toward the observer O at (r = 0,¢g). The horizon
problem is solved if one can show that the two-sphere of last scatter (r2,t2) is con-
tained inside the future light cone of any point on the t-axis.
Assume an increasing LTB bang function ¢g(r) with local minimum at r = 0 such
that there exists a shell crossing at some ¢ > ¢tg. This curve is labelled (BB) in the
figure and has in this example the form tg r?. Note that here the shell crossing
curve is tangent to the bang function at » = 0. The observer sits at O and sends
a radial null geodesic k1 with strictly negative derivative wherever ty, (1) > tsc(r)
— backwards in time, and it intersects with the shell crossing at a point pis, having
there a horizontal tangent to k1. We do not follow the geodesic through shell cross-
ing because the model might become problematic there. On its way toward SC the
geodesic will encounter successive surfaces of constant temperature which can also
be parameterised as functions ¢(r). Then at around 7" ~ 4000K, let us denote the
last scattering by the event (r2,t2), from the point p2 on ki that is after tis, so that
ta > tis and r2 < 7is, a second radial null geodesic k- is being sent backwards in time,
this time towards the centre of symmetry at » = 0. The geodesic tx,(r) will have a
strictly positive derivative wherever t,(r) > tsc(r). One can now show that k2 must
reach the line of 7 = 0 at a later time than the Big Bang, because of monotony. By
this mechanism all regions of sky that are observable to O at present have had the
possibility to causally interact with a common source in the past. As long as O can
see the shell crossing set tsc(r) with Ortgc > 0 this mechanism resolves his horizon
problem. Moreover if O,tsc > 0 for all r then this solution is a permanent one. The
picture is taken from [PKO06|.

equation (1.48) stated before. The full Einstein equations of both the general metric (1.43) and
the LTB spacetime (1.46) are given in app. B.

In the course of the derivation of (1.57) we have seen that the cases R =0 and R, = 0 are
special. As can be read off the definition (1.48), the LTB density becomes infinite at two points;
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that happens just where R = 0 and m, # 0 as well as at R, =0 and m, # 0. The R =0
singularity is just the Big Bang which is compulsory for models with vanishing cosmological
constant. The second singularity at R, = 0 is associated with a shell crossing singularity. Con-
sider two points in the LTB spacetime with the same angular and time coordinates but different
radial coordinates r and r + dr, then at a shell crossing singularity the radial geodesic distance
|g11|'/2dr between those points vanishes. This is odd because it means that two distinct shells
with different spatial coordinates r coincide. Inserting the condition R, = 0 into components of
the Riemann curvature tensor produces infinities and thus it can be shown that shell crossings
are curvature singularities. Shell crossing singularities are considered less problematic than Big
Bang singularities because a bundle of geodesics that is sent into a shell crossing singularity
does not become degenerated (in a Big Bang singularity the bundle becomes focused onto a line
or a surface), and thus physical objects are not destroyed at a shell crossing [PK06]. However,
LTB shell crossings can be excluded by either requiring R to be monotonic with respect to r,
or requiring that when R, vanishes, m , also has to vanish. On the other hand, shell crossings
in LTB models pose an excellent working example of how very interesting, yet non-intuitive,
curiosities can occur in general relativistic models. In the inflationary model the horizon prob-
lem was solved by imposing a phase of near exponential growth (1.25) in the early Universe’.
As is pointed out by Célérier and Schneider [CS98] an LTB model with shell crossing can be
constructed to solve the horizon problem; the mechanism is sketched in fig. 1.6.

Because equation (1.47) with A = 0 is equivalent to the Newtonian equation of motion for
objects in a Coulomb potential, we can interpret the mass mc?/G that we defined in (1.58) as
the active gravitational mass. This mass is the generating mass of the effective gravitational
field and it is in general different from the mass one obtains by summing up all the constituent
masses. In a different context we already encountered this distinction in sec. 1.2.1. In fact the
active gravitational mass of a bound object could e.g. be smaller than the sum of its constituents;
this is the gravitational version of the mass defect known from nuclear physics. In this case the
mass defect equals the energy that would be needed to drag the constituents of the gravitating
body apart. For the LTB model we can explicitly compare the two mass terms. Imagine an LTB
sphere with radius r; and centre of symmetry at ro, then the sum of masses of the components
within the sphere amounts to

T1 2
(1.60) m(71 )sum = G/ p/—gdV = 47TG/ LRle T,
Vv To (1 + 8)

whereas the active gravitational mass was given by (1.58) and is in this example
1
(1.61) m(ry) = 47TG/ pR*R ,.dr.
ro

Now, the function £c?/G plays the role of the total energy within a shell of given radius and
governs the relationship of active and summed mass in the LTB model. If € < 0 the system is
a bound one and mgym — m > 0 is the gravitational mass defect that was already mentioned,
whereas for € > 0 the gravitational system must be unbound. In the case of &€ = 0 the LTB
system is said to be marginally bound.

On top of its interpretation as a total energy function, the parameter (r) can also be
understood by means of differential geometry. Taking sheets of constant time coordinate, one
can attribute an orthonormal three-tetrad to the spatial hypersurfaces. The tetrad now provides
an orthonormal basis of the three-dimensional subspaces at t = const. by the forms e!
dR/(1+&)'/2, €2 = Rdf and e* = Rsinfdy. In this basis the components of the three-Riemann
curvature read [PKO06]

&

Er
(1.62) Rig12 = Ri313 = —5%5 and  Rages = Nk

2R

J1t is outlined in [CS02] that the inflationary scenario rather postpones the horizon problem than solving
it in a permanent manner. This is because if an observer only waits for long enough he will be able to observe
regions that have not been causally connected in the early Universe.
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Now the interpretation of the function £ as a measure of spatial curvature becomes intuitive:
looking at (1.62), the curvature of the three-space becomes constant when £/R? is also constant
with respect to r. On the other hand, if € = 0 all the hypersurfaces with ¢ = const. then are
flat. Therefore we can view —& as a measure of the local curvature of spatial hypersurfaces at
constant times. Local means that the LTB curvature is allowed to switch sign from one spatial
region to the other. In this light, the FRW model with its global curvature parameter k£ can be
regarded as a very simplifying one, for a locally varying curvature appears as a natural thing in
LTB models and so a curvature characteristic as simple as k is only a peculiarity of the FRW
models and not a generic expectation from the physical world.

It remains to discuss the Newtonian-like equation of motion (1.47) and give a solution to it.
The equation can be formally integrated and the solution reads

R m(r -1/
(1.63) /0 (;,(15 T)) +&(r) + %ARQ(t,T)) dR' =t —tg(r),

where we introduce another arbitrary function ¢g which is called the bang time function. In
the case of vanishing cosmological constant the bang time characterises the time at which the
Big Bang singularity occurred. Unlike in the FRW model, the Big Bang is not a unique event
anymore but in the LTB model appears to have occurred at different times for different distances
from the centre of symmetry. We now assume A = 0 because for A # 0 one has to cope with
elliptic integrals. With this simplification (1.63) can be solved parametrically as follows:

e regarding a negative & (elliptic case),
(—8)3/2
—

For 0 < £ < m the LTB model is in the expanding phase and for 7 < £ < 27 it is in
the recollapsing phase. Assuming the former one can eliminate £ and write [BKHO03|

97 1/2
1- (1+£)
m

(1.66) R= [gm(t - tB)z] . :

(1.64) R= —%(1 —cosf) and & —siné =

m ER
(165) t— tB = W arccos <1 =+ F) —

e Regarding a vanishing & (parabolic case),

e and regarding a positive € (hyperbolic case),

3/2
(1.67) R= % (coshé —1) and sinhé — ¢ = % (t—tp) ,

or in a closed form

er\: ]Y° ER
(1 + —) — 11 — arcosh (1 + —)
m m

Finally, we consider the FRW limit of the LTB model. As can be derived from the above
solutions (1.64)-(1.68), the FRW case can be obtained from the LTB solution by setting

m

(1.69) R=ar, m=mqor>, & =—kr?, tg = const. ,

wherein a denotes the FRW scale factor. Inserting these conditions into e.g. the LTB metric
(1.46) immediately returns the FRW spacetime (1.8). Also, inserting the conditions (1.69) into
the last line of the calculation in (1.57) readlily returns the Friedmann equation (1.14). However,
the limit defined through the conditions (1.69) is coordinate dependent [PK06]. An invariant
transfer condition is given by the requirement p , = 0 or equivalently by

(1.70) = const. and ¢ = const.

m2/3
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1.3.2. Some Applications of the LTB Model. From modern galaxy surveys it is nowa-
days evident that voids are basic components of the local Universe. These ubiquitous underdense
regions of the Universe often approximate spherical shape. Their first prediction was indepen-
dently made by Tolman [Tol34] and Sen [Sen34] in 1934. The basic statement is that FRW (and
also Einstein) models show instability against processes of structure growth. The basic effect
can be understood with the help of the LTB model [PK06]. Differentiating the logarithm of
(1.48) with respect to time we have

_2@ + 2R_72t _ R’t’t’r + & (fl) ,

R R? R, R2

T ILTB

where an initial time ¢; is introduced at which the radial coordinates of the LTB model and
of a fiducial FRW model — we want to compare with — are synchronised such that the iden-
tity Rurs(t1,7) = rRrrw (t1) defines the relation between the two coordinate systems of LTB
and FRW model, and we additionally let Ryrp(t1,7) = rRprw,(t1). Note that this is not
yet sufficient in order to uniquely fix the LTB evolution. Because of this R, is arbitrary
and thus the densities at time ¢; are allowed to differ. What we assumed so far implies that
(Rir/Ry)LrB(t1) = (R,/R)rrw(t1) . The interpretation of these initial conditions is the fol-
lowing: we assume a perturbation in the initial FRW density but, since R ; is a measure of the
expansion velocity, an unperturbed initial velocity.

Applying first (1.47) to get the derivatives R, ; and Ry, and then reapplying (1.48) yields

(1.71) [8—2 lnp} (ty) =

ot? LTB

(92 R,zt R,2t,r
(172) @lnp s (tl) = 47TGp—A+2ﬁ+ R2T (tl)
’ LTB

The analogue of this within the FRW model is given by

o R,
(1.73) wlnp (t1) = 477Gp—A—|—3ﬁ (t1).
FRW FRW
The direct comparison can be made
(1.74) (Inprre — Inprrw) ; , = 47G (pLTB — PFRW) |

and it becomes clear that whenever there is a difference between the densities of the LTB and the
FRW model, irrespective of whether they correspond to under- or overdensities, the difference
would be increasing in time. In other words, an LTB model with matched initial conditions as
discussed above must be fine-tuned in order not to alienate from the background model during
its evolution with time.

Consequently, LTB models have been extensively studied in order to understand the details
of general relativistic structure growth or formation of voids. A remarkably extensive review
of such studies that is exhaustive up to 1994, has been compiled by Krasinski [Kra97|. For
instance, it was demonstrated by Mészaros [M91], with the help of a particular realisation of
an LTB model, that there exist initial conditions that allow for a homogeneous model in the
beginning which develops a void of realistic size 10-100Mpc, surrounded by a shell crossing
with an evolution time similar to the age of our Universe. Moreover, in this work it is explicitly
demonstrated that perturbation theory on an LTB model is safe if the considered inhomogeneity
is small enough.

Due to the standard model, the tiny CMB temperature anisotropies of order 10~° that
have been boosted by inflation provide the initial seeds for the growth of structure. Hellaby
and Krasinski argue that density fluctuations alone are not sufficient to properly trigger the
formation of structure, rather the distribution of initial velocities has to be incorporated into the
theory [KHO04b]. In an extended series of works the same authors have developed sophisticated
algorithms which cope with the question of how an evolution between given initial and final
density profiles (or velocity profiles) that are astrophysically relevant, can be achieved within an
LTB model. As already mentioned, the interesting result is that models are much more sensitive
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to the initial velocity profiles than to the initial density profiles regarding their evolution toward
realistic present-day density profiles. A non-exhaustive list of studies following that line is given
by [KH02, KH04b, KH04a, KH05, BKH05, KHO06].

Usually, Black Holes are studied in the context of vacuum solutions like the Kerr spacetime
(2.46) or static solutions like Schwarzschild’s (2.40). In any case, such Black Holes must have ex-
isted since ever and are observed from far away (we do not consider Hawking-Penrose radiation).
It has been first noted by Bondi [Bon47] that the formation of a Black Hole can be described by
means of the LTB model; the condition is that the collapse velocity of matter must be very high.
It turns out that the LTB framework is useful for gaining detailed insight into the formation
process of a Black Hole; albeit it is very non-trivial to locate the event horizon because of the
lack of Penrose-like null coordinates in the LTB case, c.f. [PKO06]. See also [ES79, Chr8&4].

As was outlined in sec. 1.2.2, when interpreting the supernova Ia findings within the stan-
dard model, a present-day acceleration of the cosmic expansion involving Dark Energy is the
consequence. This is not necessarily true when working in inhomogeneous cosmologies: inho-
mogeneous models often easily reproduce good fits to the standard cosmological observations.
Nevertheless, this alone is not sufficient to supersede a working standard model; it is not un-
expected that highly complicated models that involve quite a number of parameters provide a
good fit. The point is that the physics of the inhomogeneous models should be understood at
least as good as in the standard model and that a new model must of course provide universality.
Hence, it is worthy and necessary to analyse models like the LTB solution as inhomogeneous
toy-models in order to develop a feeling for non-standard model physics that might well be nec-
essary. Therefore the current literature on inhomogeneous cosmologies and applications thereof
reflects the huge amount of effort that is invested in order to test the viability of models and
better understand their sometimes unusual physics. The current situation of these subjects is
far from settled, the field is evolving rapidly. Thus we like to give a short overview and focus
on applications of the LTB model on SNIa data and CMB data.

In order to cope with observational cosmology we need a distance measure as we have worked
out in sec. 1.2.2. According to Partovi and Mashhoon [PMB84] it turns out that the luminosity
distance in an LTB spacetime takes the form

(1.75) DF™ = (14 2)°R,

thus being a function of the redshift and via R(t,r) also of the LTB model parameters m(r),
E(r) and tp(r). Note that equation (1.75) is to be taken [PM84] at the observer’s time. That
the result (1.75) makes sense can be seen easily: as we have seen the LTB function R is nothing
else than the angular diameter distance between an observer at arbitrary position and the LTB
origin at R = 0; then, by use of the reciprocity theorem we readily end up with (1.75) for the
LTB luminosity distance.

But how is the redshift function properly defined within the LTB model? From the LTB
metric (1.46) we read off the defining differential equation of a radial null geodesic heading in
the direction of the observer

dt  R(t,r),

dr — _\/1—|—8(r) .
To reduce the possible solutions to (1.76), we consider two light rays being emitted and heading
in the same direction, but with a small time delay 7 in between. Following [Bon47] we think of
the first light ray as parametrised through ¢ = T'(r) and the second through ¢ = T'(r) + 7(r).
Since both light rays must obey the common geodesic equation (1.76), we have

dT R[T r T R[T Tlr
o ar R, AT REE) +rl)r,

dr 1+ &(r) dr 1+ &(r)
For we allowed only very little time in between the two signals 7(r) < T'(r), we can write to
leading order

(1.78) R.[T(r)+7(r),r] 2R, [T(r),r]+7(r) Ry [T(r),r],

) )

(1.76)
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and insert this together with the left equation of (1.77) into the right equation of (1.77), yielding
d R[T r

_T = —T(fr M

dr 1+ E&(r)

We can access the redshift by comparing the period of the light wave at emission with its period
at observation

(1.79)

T(T‘ob)
T(Tcm)
If we now move the sources to slightly different distances rey, and 7oy + dr and use this in
equation (1.80) we get by differentiation

(1.81) tdr 1 &
' 7dr 14 zdr’

(1.80) =1+ 2(Tem) -

Inserting this in (1.79) finally gives

1 dz  R[T(r),r]sr

1.82 -— =
(1.82) 1+zdr 1+ &(r)
And with this the initial geodesic equation (1.76) becomes
dt 1 R[T r
) _ [7(7).7),

dz 14z R[T(r), e,

Now, we have reduced the problem to the solution of the two equations (1.82) and (1.83). Both
of them are solved by radial null geodesics that span from z(rem) to z =0.

In [C00], the above equations for the luminosity distance have been solved using perturbative
methods. It was found that the inhomogeneous LTB model is able to reproduce the SNIa data
at least up to z ~ 1, without the need for Dark Energy. The issue of finding the right model to
compare with the cosmological data is far from settled; rather it is the object of an increasing
number of studies. From the sizeable amount of work that has been published discussing
cosmological phenomenology with the LTB model, especially with regard to supernova la and
CMB observations — we want to give a few examples that indicate recent progress in the field. In
a recent review [Enq07], Enqvist confirms the ability of LTB models to yield good fits to SNIa
data and simultaneously give reasonable values for cosmological parameters. He also discusses
the potential of LTB models to become more realistic competitor models, especially with regard
to other (combined) datasets from CMB and Large-Scale Structure; see also [EMO07]. In [MHO07]
McClure and Hellaby push forward the non-trivial program of extracting metric information
of the Universe directly from cosmological observations. Homogeneity is not a priori assumed,
so that a description is approached within the framework of an LTB model, and a numerical
groundwork for detailed analysis of future combined datasets is set up. Tanimoto and Nambu
[TNO7] present a novel, non-parametric form of solving for the LTB areal radius. Therewith the
LTB luminosity distance is calculated perturbatively, and it is claimed that dust FRW models
and LTB models are indistinguishable up to second order, under a certain regularity requirement
at the centre of the LTB model. For LTB relations that incorporate the perspective of off-centre
observers we refer e.g. to [BMN06, HMMO97|. Other useful reading on the LTB model might be
[Gar06a, Bol05, INN02, TomO01].

An arrangement of several LTB spheres within one model is called an LTB Swiss-Cheese
Universe [Kan69] and therein inhomogeneity is realised locally while the Swiss-Cheese remains
globally homogeneous. As it is found by Biswas and Notari [BNO7], the integrated effect on light
propagation in LTB Swiss-Cheese models — that is, the averaged effect over several LTB patches
observed from outside a patch is small, and only within a local setup that is, within a single
LTB patch the effect on the photon paths can be large. Further recommended reading on the
LTB Swiss-Cheese model comprises [MKMR07, BTT07a, BTT07b, KKN*07|.

If he LTB model is to be taken serious it should also be able to explain CMB data. This has
been tested for by Alnes and Amarzguioui for an off-centred observer in an LTB underdensity
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FIGURE 1.7. Main results from a qualitative CMB analysis of an LTB underdensity
with off-centre observer [AA06]. Upper row: (r,0)-geodesics (blue lines) within a
certain LTB model as they converge toward an observer that is displaced a little
(left: d = 20Mpc), and a lot (right: d = 200Mpc) from the origin (red cross). The
red circles indicate equidistant shells that are, in terms of cosmic time, 1Gyr apart
respectively. In case of the very large displacement (right) one clearly resolves the
strong distortion of geodesics. This distortion is due to a strong density gradient
at the transition from LTB model to a homogeneous background. Lower row: from
left to right, the CMB dipole, quadrupole and octopole plotted as functions of the
observer’s distance to the LTB centre. Evidently, quadrupole and octopole are several
orders of magnitude smaller than the dipole. An experimental bound for the dipole
is 1072 which immediately puts an upper limit of around 15Mpc on the allowed
displacement of the observer. At such distances, the model then predicts a quadrupole
and octopole that are far too small, namely of the orders 1077 and 10~° . Moreover,
anisotropy induced by such a displacement is per construction axially symmetric and
thus must be subject to the general constraints that we develop in part II. In principle
it would be possible to compensate a large dipole that is due to displacement with a
contrary contribution from Doppler velocity, but this movement toward the centre of
the underdensity had to be put in just by hand. Pictures are taken from [AAQ6].

[AAQ7]. The authors find that, even though an LTB model is found that fits well a sample of SNIa
data and can reproduce the location of the first peak in the CMB power spectrum, the inclusion
of SNIa data does not yield compelling evidence for an LTB off-centre observation nor is it able
to tightly constrain the degree of displacement with respect to the LTB centre. In [AA06] the
same authors apply an off-centre analysis on CMB data alone and find the important result, that
the observed CMB dipole constrains a potential off-centre displacement to be at most 15Mpc.
Moreover it is found that, once the dipole is matched to data, the quadrupole and octopole
resulting from the displacement are too low to be in accordance with the observed multipoles,
c.f. fig. 1.7. On the other hand, Sarkar and Hunt discuss distortions in the measured CMB power
spectrum known as ‘glitches’ [HS04]. A non-standard primordial spectrum is used, coming form
a so-called multiple inflation scenario, to mimic the glitches and it is found that the LTB model
is successful in fitting the new CMB spectrum as well as the found baryon oscillations in the
galaxy two-point correlation function [c.f. app. D], and also SNIa data [HS07].
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Ishak and others have recently investigated the possibility to fit SNIa data in a more com-
plicated model, the inhomogeneous Szekeres model [Sze75]. This solution needs not to have any
symmetry and can therefore be used for instance for modelling of double or triple structures.
The advantage of the model lies in the fact that it is like LTB  an exact solution from Gen-
eral Relativity and therefore it is not necessary to constrain the model to cases of small density
contrast. The disadvantage is that the Szekeres model is very complex due to the lack of explicit
symmetry. In turn, this makes the solution appear very interesting because of its potential to
model the true lumpy structure of the Universe. In the coordinates used in [Bol07], the Szekeres
metric takes the form

Y,-YE,E 1)’ 12

( =k ) dr? 4 Vo (dp2 + dqz) ,

where Y = Y(r,t), e = 1,0, —1 and the arbitrary function k = k(r) < e plays a similar role like
the energy function € in the LTB model. The arbitrary function E = E(r,p, q) is constrained
by

(1.84) ds? = —dt* +

2
(1.85) E(r,p,q) = % (P> +¢*) — gp—% +C with C= %+§2—S+§E’

with S, P,@Q and C being functions of r only. The case ¢ = 1 is a special one: it allows the
model to have the FRW curvature cases as can be seen from the metric (1.84). This choice is
called quasispherical Szekeres model and is physically most interesting, for it is possible to have
a homogeneous FRW limit at large distances from the origin. Now, Ishak et al. [[RWGO07| have
found that the Szekeres model fits SNIa data as good as the ACDM model, and moreover, that
the found best-fit model yields spatial flatness at CMB-relevant scales.

There is a tight coupling of the above listed work on inhomogeneous models and the issue of
cosmological backreaction. The backreaction or averaging, or fitting problem referres to the
fact that, in general, the evolution of a homogeneous general relativistic model (like FRW) does
not match with the averaged evolution of an inhomogeneous model (like LTB). This is a pure
General Relativity problem, for the mentioned difference stems from the inherent non-linearity of
the underlying theory. There are serious technical difficulties with the backreaction calculations,
since: (a) in the non-perturbative case it is not clear in how far one can properly define averages
of tensor quantities, albeit this seems to be under control for scalars; and (b) in the perturbative
case the calculations become arbitrarily tedious with higher orders. See [Buc07| for a recent
overview on non-perturbative as well as perturbative studies in backreaction. Nevertheless, see
for instance [Zal04, Zal93, Par07, Beh03] for approaches toward fully covariant averaging.

1.3.3. The Integrated Sachs-Wolfe Effect in LTB Models. Here, we develop the
general relativistic framework on which the analysis of the large-scale CMB anomalies in the
next part of the thesis is based. Our aim is to model the effect of a local overdense structure
on the CMB sky. Taking an overdensity is well motivated by local galaxy surveys that indicate
the presence of very massive, non-linear structures at distances of around 100Mpc; note that
the motivation will be discussed in more detail in part II. As was mentioned in sec. 1.3.2, the
LTB model can describe the collapse of an overdensity or the formation of a void in an expand-
ing universe. Moreover it has also been used to parametrise nearby inhomogeneous structure
[FSSBO1, HTETO01]. In contrast to voids, overdense structures do not generally approximate a
spherical shape, but we will use the LTB model as a first approximation to describe the local
neighbourhood within approximately 100Mpc. Our picture of the local structure is therefore a
spherical density concentration, with our Local Group of galaxies falling toward the centre. The
setup that shall be analysed here is that of a moderate LTB perturbation on a flat FRW back-
ground. Note that this is different from models, like e.g. in [Mof05], in which it is speculated
that the entire universe is spherically symmetric. Instead, we are considering the effect of local
inhomogeneities that are known to exist, c.f. fig. 1.5.

The observational situation with regard to the Local Group falling towards a density con-
centration, known as the Great Attractor, is somewhat unclear [HSLB04, LRSHO04]. Moreover,
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the expected infall towards us from clusters on the other side of the centre has not been con-
firmed. Apparently a model with two mass concentrations provides a more satisfactory fit to
the data [Mas05]. Here we will treat the overdensity as linear, so additional attractors could
then be taken into account simply by adding their effect on top of the one we find. However, it
is evident that linearly adding a new source of anisotropy will in general add multipole power,
not reduce it, which will turn out to be a peculiar constraint to such models.

Tully points out that surveys of the local peculiar velocity field give rise to a local velocity
anomaly [Tul88]. The anomaly manifests itself as an unexplained discontinuity in measured
peculiar velocities when going from objects belonging to our local filament (Coma-Sculptor
Cloud) to galaxies belonging to the adjacent structure (Leo Spur). The evacuation of the so
called local void provides an important contribution to our local velocity field. The ‘observation’
of the local void is made difficult by the fact that most of it is hidden in the line of sight through
the galactic disc of our Milky Way (Zone of Avoidance); and thus catalogues including that
region cannot be made in the optical band. As further reading we strongly recommend [T+07]
and [Tul07].

As we assume that the local overdensity is moderate, it is possible to linearise around
the FRW model, to which the LTB model should reduce at large distances from the centre of
symmetry. The transfer conditions are listed in (1.69). Assuming that the universe be spatially
flat far away from the overdensity as well as A = 0, we have R(t,r) = a(t)r and €& = 0, with
a being the FRW scale factor. We use the standard normalisation a(ty) = 1 today. In order to
do the perturbation theory we can introduce a perturbation function f(¢,r) that parameterises
small deviations from the FRW case. It makes sense to define the perturbation function as the
deviation of physical distances in the LTB and the FRW model:

R(t, T‘) — RFRW (t)

1.86 tr) =
(1.8 fltr) = =B
The constraint, of smallness of perturbations can then be expressed by the requirements
t
(1.87) Ift,r)] <1, LHT) <1, |rf.tr) <1,
and so the linearised LTB metric functions take the form
(1.88) R(t,r) =ar[1+ f(t,r)] and &(r) = (aHr)* [3f(t,r) +2H " f4(t,7)] ,

where we obtained the second equation from inserting the first equation into (1.47) and making
an ansatz m(r) o< 73 . According to (1.48) the linearised density parameter becomes

(1.89) p(t,r) = pr(t) [L=3f(t,r) —rf.(t,r)],
with pr denoting the FRW density that scales as pr < =2 . Inverting (1.89) we likewise obtain
for the perturbation function

(1.90) flt,r) = —Tig /OT 26 (t, ) E(r)dr = —%(5(7&,7‘)%,

where § = (p — pr)/pr stands for the density contrast and (d), denotes its spatial average as
measured from the symmetry centre up to r. Employing these results, the perturbed LTB
metric can be written in terms of the conformal time d¢ = adn as

(1.91) ds® = a*(n) [—d772 + (1 +2f+2rf, —E)dr® + (1 + 2f)r2d92] ,

with the angular element dQ? = d6? 4 sin?Ady? .

For an off-centre observer, CMB photons coming from different directions have travelled
different routes through the local overdensity, hence producing additional anisotropy. Since the
effect vanishes for an observer at the centre because of the spherical symmetry, its amplitude
depends on the distance from the centre; more specifically on the ratio ¢ = ro/d, where d is
the distance to the surface of last scattering. The line from the observer to the centre defines a
preferred direction, so the situation becomes axially symmetric, and we can restrict our attention
to the plane ¢ = 0. The geometry of the situation is sketched in fig. 1.8.
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A commonly used tool of the standard model is cosmological perturbation theory. Consid-
ering linear perturbations around a spatially flat FRW model, the according metric takes the
general form [MFB92|

(1.92) ds* = a?(n) x
{—(1+2®)dn* + 2(B,; — S;)da'dn + [(1 — 20)gij + 2Ey;;; + Fyyj + Fjyi + hij] da*da? }

with the potentials ®, B, ¥ and E being the sources of scalar perturbations and S;, F; represent
vector perturbations that satisfy S, = 0 = F,"*. Furthermore, tensor perturbations (gravita-
tional waves) are characterised by h;; with h;" =0 = hij;j. As long as only Latin indices are
involved the semicolon stands for covariant differentiation with respect to the three-metric g;; .

Since the LTB model has vanishing vorticity, as explained in sec. 1.3.1, we can set the vector
modes to zero F; = 0 = S;. Moreover, the spherical symmetry together with the requirement
that perturbations do not diverge anywhere also rules out the tensor perturbations, so that
hij = 0. Adopting spherical coordinates and comparing the remaining components of (1.91)
with (1.92) enables us to solve for the metric functions (up to integration constants):

(1.93) o(t,r)=0=DB(t,r), V@)= _% /0 855)(1#,

. » 1 [Mme) ., » 1
(1.94) E ;j(t,r) =9 [f(t,r) - 5/0 w dr} +6".0,r {rfyr(t,r) — 58(7") .
Note that the first identity in (1.93) is a result that is equivalent to the application of the
synchronous gauge, which is justified because of the zero vorticity characteristic of the LTB
model. In order to obtain a formula for the CMB anisotropy, we should further follow the analogy
to cosmological perturbation theory. There exists a framework which returns the temperature
anisotropies for general perturbations as characterised by (1.92) that we discuss next.

A complete general relativistic treatment that describes the full evolution of CMB radiation
undergoing effects of metric perturbations was first given by Sachs and Wolfe [SW67]. The
hereafter named Sachs-Wolfe formula describes the transfer of the effects of a three-dimensional
gravitational potential pattern on CMB photons to the two-dimensional temperature anisotropy
field AT/T which is, in the end, the observable today.

Imagine P}, to be the position of an CMB observer today and let m be a unit vector that
points from the observer’s position to the last scattering surface. Further, let P, denote the
position of the primeval photon emission. With FE,, standing for the CMB photon energy
received by the observer and FEep, being the initial energy of the CMB photon emitted at some
location Pep,, we are ready to formulate the ratio Eop/Fen as induced by the Sachs-Wolfe

effect. In the unperturbed case one has the common result Eég)/Ec(?,} = a(Nem)/a(non) ; for
general metric perturbations (1.92) the according relation extends to [MS98]

Eob o a(ncm)

(1.95) Eem B a(nob)

{1 + [® 4+ n*(vi + By — S5)] (Pob) — [® 4+ n*(vi + Bii — S5)] (Pem)

Tob , o o 1 .
—/ [@)n -V, =2n'®; +n'n(E, — B),,; +n'n’ (S; + Fi )., + §hij,nnzn]] dn} ,

taken in the frame of the three-velocities. Neglecting the vector and tensor contributions and
employing the synchronous gauge, ® = 0 = B, the above relation simplifies to

. . Mob . 3
[1 + 1" (Pob) — 20 (Pem) — / (—\Ifm + nZnJE;i;jm) dn} .

em

Eob o a'(ncm)

(1.96) Eem B a(nob)

Therein v¢ denotes the respective peculiar velocities that enter the setup; we will discuss the
peculiar velocities in more detail below. The n dependence enters in Eqp/Fen and is fixed by
the requirement that P, denotes ‘here and now’ which is expressed as Py(no, o), and hence
we everywhere replace Pom (Mem s Zem) With Pis[mis, o — n(ms —no)] , where ‘Is’ indicates emission
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from last scattering. Note that g is fixed by the requirement that zj; = 1088 . Since the last
scattering surface is a surface of constant radiation energy density, the density contrast of the
photon fluid component 4., obeys the scaling [MS98|

(1.97) ko) = (1) + 30 () )

and we further assume a foliation such that, as seen from the hypersurface of the observer, the
baryonic energy density is constant, leading to the following scaling of the density contrast of
baryons

1

(1.98) a(nob) == a(mo) — §5b(9’0)a(770)-
Thus we can insert into the Sachs-Wolfe formula (1.96) and have

Eqy a(ms)
1.99 = X
9 F, = aw)

1 1 X . 70 o
X |14 70y(n) = 20(Po) +n'vi(Po) — n'vi(Prs) — / (=% +n'n’ Byj) dn
Ms
This is readily rewritten in terms of the temperature anisotropy:
AT AT , . LCI

(1.100) T(TPO) = T(Tls) +n'vi(Po) — n'vi(Prs) — / n'n’ E.;jndn,

Ms
note that the ¥ term vanishes because it is a function of only r (1.93). It has to be taken
into account that the overdensity is local, that is its effects vanish at the surface of emission;
moreover, we transform back to cosmic time and thus finally obtain for the Sachs-Wolfe term

AT : fo
(1101) T(:Po) = nzvi(f}’o) - /t nznjEﬂ-;jﬁtdt .
1s
The integral is over the CMB photon path along the line of sight to the last scattering surface
(i.e. rays of constant 6 in fig. 1.8). The directional dependence is due to the unit vector n‘ which
points from the observer to the emission surface and hence quantifies anisotropy deviations.
Therefore we should next consider the geometry of the model setup in more detail.

The geometric situation of our LTB model is shown in fig. 1.8. There are two relevant sets
of unit vectors, those denoted with n are pointing from the location of the observer towards the
last scattering surface, whereas the vectors e define the coordinate system and have their origin
at the centre of the LTB overdensity. From fig. 1.8 we read off that Af = 6— 0 ; applying the
law of cosines gives

2 _ 2|27 To A\ 2
(1.102) r; =d {sm 9+(d —I—COSH) } .

Our aim is to compute the components of n, thus we can start with e.g. n - e, = cosAf. In
order to compute cosAf we can use the projection law for inclined triangles and get, c.f. fig. 1.8

d = rp, cosAf + rq cos(m — 0),
- d 0+1
(1.103) cosAf = — 2 cos(m —0) + — = €~COS i — =n-e,.
"'z 'z \/sin29 + (g + cosh)?
Recall the definition of the ratio e = ro/d. We can utilise the fact that n = n'e, + n%es + 0
and thus obtain the remaining component of n

(1.104) n' = (n",n’ n%) = (14 2ecosf+e2) "2 (14ccosf, rlesinb, 0).

Obviously § the angle in the observer-centred system is the relevant angle for the CMB. There
is no dependence on ¢ due to the axial symmetry. Before we proceed and finally insert these
findings into the Sachs-Wolfe formula (1.101), we will discuss an appropriate general relativistic
treatment of the occurring peculiar velocities.
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observer

FIGURE 1.8. Schematic depiction of the LTB overdensity and its relation to the
surface of last scattering. Here d is the distance between us and the last scattering
surface, ro is the distance between our location and the centre of the overdensity and
rr, is the distance from the LTB centre to the emission surface. The unit vectors of
the coordinate system e’ point from the centre of the overdensity, the unit vectors n’
point from our position to the LSS. Note that the figure lies in the -z plane.

Regarding the peculiar velocity, there are three main components contributing to the ob-
server’s motion: the overall expansion, the radial infall velocity due to the spherical overdensity
and random motion associated with smaller structures. In the comoving coordinate system
(1.46), the fluid velocity equals the background velocity u* = §", so that the v; appearing in
the temperature anisotropy (1.101) pick up a contribution only from the random component.
This is due to coordinate artefacts and, as is emphasised in [HPLN02, HN99|, the individual
terms in the temperature anisotropy are difficult to identify by physical means.

By definition, the peculiar velocity is the extra motion on top of the overall expansion of the
Universe. In the present context the solution is exact, so in order to find the peculiar velocity we
shall follow an unambiguous procedure presented in [Maa98, EVEMO1]: we construct a physical
four-velocity such that the corresponding flow is shear-free, and obtain the peculiar velocity as
the difference between the comoving four-velocity and this (physical) shear-free flow. We start
with the comoving four-velocity u* = 6" and the corresponding non-zero shear

. (0% 1 o
(1.105) Opv = Uy With By, = <q (uqﬁu) — 34 ﬁqw) Bag,

where the last equation defines the operation (-) of taking the spatially projected, symmetric
and traceless part of some tensor B,g with the help of the according spatial projection tensor
Qv = Guv + uuu, . Working to linear order in v* , we now define a new velocity u# such that

(1.106) ut = at + ot v, =0, Gu =0.
Now we introduce the peculiar velocity v# and by &,, we denote the shear associated with u* ,
(1.107) &HVZUIW_U( >=0.

v

Given (1.105) and the linearly perturbed LTB metric (1.91) we can solve (1.107) for the peculiar
velocity and obtain

(1.108) vt =0 rf,
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so that v? = gaﬁvo‘vﬁ = a2f72tr2 and the corresponding, properly normalised spatial peculiar
velocity vector becomes

(1.109) vt =0"arf,.

This finding is in accordance with the naive definition v" = R ;—H R, where H is the background
Hubble parameter; note that using the physical expansion rate %9 = %uo‘a instead of H would
yield a different result. As can be read off from fig. 1.8, the observer is located on the z-axis, thus
giving n-v(Py) = n-e.v"(Py) = arf;cosf. Finally, we can write the Sachs-Wolfe contribution
of the linear LTB model as

AT 5

= 1+ e cosf)?
2L16.8) = rofos cosd— fo — rofo, LTI

1 + 2¢ cosf + &2
2 4 ~ 2 ~
_ [fo + <1 — §E2> rofo,r] + (Tofo,t — 3537~0f0,r> Py (cosbt) — gg%ofo,rPg(cosH)

R

4 ~
(1.110) + g£3rof0)TP3(c059) + e

and where we have expanded the temperature anisotropy in terms of the Legendre polynomials
P, , as is convenient for CMB analysis. Therein fy stands for the perturbation function as
measured today fo = f(to,r0) at our position as the off-centre observers in the LTB picture.
The power series structure in the parameter ¢ reflects the fact that here the anisotropy is due
to the observer’s deviation from the centre, and thus the amplitude of multipoles scales as °.
In principle it is possible to obtain the perturbation function f from a fit to observation
data. This can be done by extending the general relativistic analysis of the peculiar velocity
(1.109) in order to take into account also the effects of overall cosmic expansion as well as radial
LTB infall. This can be taken care of by using a common phenomenological parametrisation of

the local peculiar velocity field as measured today, see e.g. [Pan92, HSLB04]

n+1
2, 2,2\ 5
; ; r [ry+cor
1.111 t=¢ yo— | Z—-2 ,
( ) v rt0 <r2+c2r§

where r( is again the distance from observer to the centre of the overdensity, vy stands for the
infall velocity at the position of the observer, cry parameterises the core size of the structure
(the velocity peaks at crg/n'/?), and the exponent n determines how fast the velocity field falls
off with increasing r. Then the perturbation function f(¢,r) can be parametrised by means of
the local velocity field using (1.109) and this can be inserted into the Sachs-Wolfe formula.

Now we can try to estimate the multipole’s amplitudes from the Sachs-Wolfe expansion
(1.110) as due to some very massive structure in our cosmic neighbourhood. After estimating
fi~ Hf which is exact with a vanishing cosmological constant —we then get f ~v/(arH).
As we read off from equation (1.110), the quadrupole and the higher multipoles are proportional
to the term rf,. Because of (1.89) we can write rf, = (d), — 0 and thus arrive at rf, =
—3f — 8 ~ 3v/(arH) — &. The magnitude of the quadrupole is e?rf,. Let the observer be
placed at ry = 60Mpc from the origin, yielding € ~ 1072, and further assume an infall velocity
of around 500km/s [KMEO4], we end up with (0.25 — §) x 10~* for the quadrupole. With
0 = 0.1 the contribution to the quadrupole is of the same order as the intrinsic anisotropies,
1075 . The contribution to the octopole is —6¢/5 times the one to the quadrupole, and therefore
we cannot get a significant contribution to the octopole (or higher multipoles). The reason
why our numerical estimate fails is rather simple: the Sachs-Wolfe theory that we developed is
linear, but in order to go for a significant CMB effect we are forced to to apply it to highly non-
linear structures. One can see this also from the following argument. Remember the linearity
conditions (1.87) and especially the time evolution constraint f,/H < 1. Now, from the
definition of the perturbation function (1.86) we can readily see that, for an object like the here
assumed supercluster — for instance the Great Attractor —, R is nearly constant, whereas Rprw
evolves at the time scale of the Hubble rate. This implies then an f;/H of order unity.
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Because the linearised Sachs-Wolfe calculation in our model is too naive, we will, instead
of fitting the model parameters to a local velocity input and trying to predict the temperature
anisotropy, rather be interested in the general structure of the obtained solution (1.110). We
will keep the coefficients in the multipole expansion open as free parameters of the particular
LTB model and are going to use them in a statistical multipole analysis with regard to the
excellent CMB data available. This and similar analyses are the subject of part IT of this
work. Summarising, let us note the main characteristic of the Sachs-Wolfe result (1.110): the
temperature anisotropies due to the LTB perturbation only contribute to the m = 0 components
of the multipole expansion as a consequence of the axial symmetry of the local model. In turn,
any other axially symmetric structure, like e.g. a planar density field, would also be perceptible
only within the m = 0 modes. Moreover, in the standard model the dipole is hidden in a strong
signal due to peculiar motion with respect to the CMB rest frame and the quadrupole is (up
to a small kinetic correction) of cosmological origin. In the LTB model a natural correlation
between dipole and quadrupole arises, for they both originate from the same physical effect,
thus making quadrupole-dipole alignment potentially explainable.



CHAPTER 2

The Cosmological Problem of Dark Matter

Diverse physical observations support the postulation of an additional matter component,
non-luminous and only interacting through gravity. The effects according to which Dark Matter
might be postulated, manifest themselves on multiple physical scales. From the precise mea-
surement of the first acoustic peaks in the CMB power spectrum, a scale of up to one degree on
the microwave sky (zgec = 1088) can be accessed. Interpreting the WMAP data within ACDM,
it is well known that the universe appears to be spatially flat (Q ~ 0) and that the matter and
Dark Energy density form the cosmic concordance: 9, ~ 0.24 and Q2 ~ 0.76, c.f. sec. 1.2.1.

At the same time the fraction of the matter density due to baryons as inferred from primor-
dial nucleosynthesis and the deuterium abundance from Lyman-« systems is in good accordance
with the value of ), ~ 0.04 obtained from WMAP; see e.g. [PRFJ07], [WMAa]. It is notewor-
thy to say that these results, besides their model and prior dependencies, particularly depend
on the value of the Hubble constant as measured today. Counting sources within ‘low’ redshifts
(z < 2) yields a luminous baryon density that is only [NEFMO05] ~ 50% of the cosmologically
inferred value above. In the literature this is referred to as the ‘missing baryon problem’. Thus
we encounter a twofold problem when trying to combine cosmic matter yields on different scales.
First, the matter needed to close the universe obviously cannot be in form of baryons as the
inferred value for baryons from different methods is one order of magnitude to small. Second,
the upper limit for the density parameter from luminous matter as inferred from all-sky surveys
reveals that at least 50% of the baryonic matter must also be dark.

Being in a somewhat more direct form, there is more evidence for Dark Matter especially
on smaller scales. This we want to review in the next two sections and particular emphasis will
be given to the galactic rotation curves. Herculean efforts are being made in order to find an
explanation for the aforementioned Dark Matter problem(s). These range from modifications
of the Einsteinian, and therewith of Newtonian gravity to extensions of the standard model of
particle physics that involve new, yet undetected particles that could do the job. However, it
is important to stress that there is no a priori reason to believe that all of the missing matter
problems on all of the different physical scales do have a common explanation.

2.1. Direct Evidence and Lensing

A powerful tool for attempts of cataloguing the matter distribution of large-scale structures
or intermediate-scale structures in the universe is provided by the principle of gravitational
lensing. The fact that the gravitational deflection of light only depends on the effective gravita-
tional fields deployed by the lens, and not on the particular state of the lensing matter, makes
the method universal.

The phenomena of gravitational lensing split naturally into two classes: (A) strong lensing,
involving rather pronounced effects like the formation of arcs, Einstein rings or multiple images
of a single source as well as time delays — see for instance fig. 1.1; (B) weak lensing, not observable
by eye since it is a statistical effect involving a large number of background sources that appear
distorted due to large-scale foreground tidal fields.

In the following we shall discuss shortly the two different branches of gravitational lensing
and then give examples of strong recent evidence for Dark Matter, where the results of weak
and strong lensing are going hand in hand.

45
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FIGURE 2.1. Geometry of strong (left) and weak (right) gravitational lensing. Left:
without luminous and/or Dark Matter in the lens plane an observer sees the source
under an angle 3; the presence of lensing matter changes that direction to &. Right:
physical interpretation of the shear 7; and ellipticity x and e. The ellipticities €; 2
in the figure correspond to the notation y,e in the text. The shear component v is
responsible for elongation (compression) along the z-axis, whereas 72 causes the same,
just along the x = y axis. Per definition, an object with vanishing ellipticity is circular
(centre). The components of ellipticity x and €, defined with the help of the second
brightness moments tensor, cause compressions and elongations similar to those for
the shear components. Pictures are taken from [Sch03] and [Ref03].

2.1.1. Strong Gravitational Lensing. Following [Sch03] and [Sch06], we review con-
cisely the strong lensing framework without deriving the equations. Utilising the Schwarzschild
solution, the Einstein angle for a deflection off the exterior of a spherically symmetric mass M
reads

) o2 _40M

£ €
where 2 Rg is the Schwarzschild diameter and ¢ is the impact parameter of the light ray measured
in the plane of the lens, cf. fig. 2.1. This formula for ‘point mass’ deflection is valid in the weak
field limit Rg/€ < 1, or equivalently ¢/c? < 1 for the Newtonian gravitational potential.

In this limit, the lensing effects can be linearised, that is the (two-dimensional) Einstein
angle of a complex lens can be superimposed from the deflection angles of the individual de-
flectors: & = ), &;. Within the Born approximation it is moreover assumed that the ‘lens is
geometrically thin’, that is the distances between source, deflector and observer are much larger
than the extent of the lensing system. This assumption is well satisfied for typical astrophysical
lenses like galaxies or galaxy clusters but is not fulfilled in the case of lensing by the large-scale
structure. For composed ‘thin lenses’ the deflection angle becomes

ae) = 6 E g AG [ e E-€
(2.2) = [ [arper) -5 [eener =5
e—¢Pp ¢ € —¢')?
The Einstein angle only depends on the surface mass density %(¢") which is the volume density
after integrating out the line of sight dependence X(¢') = [drszp(€,73). As a rule of thumb,
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typical magnitudes of deflections for galaxies are & < 1”7 and & < 30” for galaxy clusters. For
an illustrative example of arcs, see fig. 1.1.

Looking at fig. 2.1, we see that n = Dg3 and £ = Dy40 , and the lens equation can be written
as:

(2.3) B=0-—

S
with (@) denoting the scaled deflection angle. Note that (2.3) in general can have more than
one solution corresponding to multiple imaging of the source. The dimensionless surface mass
density is defined by

(Dq6 2 D, DaDas \
(D4f) ¢ 035( dd) gcmfz.

2.4 g) = =\2d?) Sy = —— ~0.35 [ —Z42ds
(24) MO === » Yeu=pEHpo D. 1Gpe

The quantity x(0) is also referred to as the convergence. The convergence may be used to infer
the strength of a gravitational lens; with k ~ 1 we characterise strong lensing and by x < 1 the
weak lensing regime is encountered.

The simplest models for gravitational lenses show axial symmetry, i.e. (&) = X(&) with
¢ = |€] being the distance to the centre of the lens. Even without detailed modelling of mass
distributions it is possible to obtain a robust mass estimate for strong lensing. Because the mean
surface mass density inside the Einstein radius 0 just equals the critical surface mass density
of the lens, it is

(2.5) M(GE) = chrit (DdGE)z .

Analysing a picture of gravitational lensing that shows multiple images, the Einstein radius 0g
can be estimated from the radius of the circle that is traced by the different images. The more
axisymmetric the lens system is, the better the estimate (2.5) becomes.

A common isotropic galaxy model is that of a singular isothermal sphere (SIS), c.f. [BT94].
The density profile is given by: p(r) = 02/27Gr? | with o, being the one-dimensional velocity
dispersion of stars in such a potential. Note that this model is very crude and can only be
applied in a certain range of radii r: for small 7 the density diverges as »—2 and for large r
the mass M (r) diverges proportional to r. By integration the surface mass density is obtained:
Y(€) = 02/2GE¢. Finally, we arrive at a characteristic equation for the deflection angle of a
galaxy-like SIS object:

Oy 2 Dds Oy : Dds
2.6 os = am (Z) (52 ) =115 (o .
(26) B ( D, ) 200km/s) \ D,
Since the separation of images is Af = 20y, massive elliptical galaxies can generate separations
of up to ~ 3" and lighter ones as well as spiral galaxies reach ~ 1”.

Regarding clusters of galaxies the most simple approximative lens model is again provided
by the SIS ansatz. The characteristic scale is also given by the according Einstein angle

2.7) O ~28"8 [TV " (Das)
1000 km/s Dy

The analyses of galaxies and of clusters of galaxies with the help of strong gravitational
lensing show that the masses of these lenses cannot be provided by the observable luminous
matter from stars and intergalactic dust only. These findings strongly suggest that galaxies and
galaxy clusters are dominated by Dark Matter.

2.1.2. Weak Gravitational Lensing. While the effects of strong gravitational lensing
are rather strong and resolvable by eye, the effects of weak lensing can only be detected in a
statistical sense. Due to weak lensing by dark and luminous matter in the line of sight, small
distortions to the shape and orientation of background galaxies should always be present in
deep astronomical images. Assuming that the intrinsic orientations (ellipticities) of the lensed
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background galaxies are random, it is possible to reconstruct a map of the lensing matter in
between by statistically analysing the ellipticities of an ensemble of background galaxies.

Following [Sch03], shape distortions are enfolded in the proper mapping of the lens from the
plane of the source to the plane of the lens by the according Jacobi matrix

_ 9B l—g1 —92
(2.8) A(0) = 20 =(1 n)( g ltg ) .
Therein the crucial quantity is the shear v = ;1 + 72, or similarly the reduced shear g = g1 +4g2
with g; = v;/(1 — k). The physical meaning of shear and convergence & is depicted in fig. 2.1.
The mentioned mapping that describes the shape distortions of distant sources is described by
the locally linearised lens equation
(2.9) B~ By = A(60) - (0 — 0),
with 8y being the centre of image and 3y, = 3(0y) . The next step is to formally define what is
meant, by the notion of ellipticity for arbitrary faint sources. Since the least background sources
are intrinsically round, their observed ellipticity with a telescope will be an admixture of weak
lensing induced shear and some initial ellipticity. In order to formally define a morphology of
galaxies, one utilises the second brightness moments, which are components of a second-rank
tensor that is defined upon the brightness distribution 7(0) of the image. For conciseness we
do not give the explicit expressions here, the full formalism is explicitly developed for example
in [Sch03]. The important point is that from the second brightness moments, two complex
ellipticities y and € of the lensed source can be derived. Analogously, the ellipticities ) and e(®)
can be computed from the according second brightness moments of the unlensed source. Within
the standard model we make the assumption that the intrinsic orientations of the background
galaxies are completely random, that is their expectation values vanish:

(2.10) Ex®] =0=E[®)].

As a consequence one gets for the expectation value of € after averaging
_ [ g forfg| <1

(2.11) Ele = { 1/g* for|g| >1

This means that a measurement of image ellipticities directly yields an unbiased estimate of
the local shear. But the estimate suffers from high noise due to the dispersion of the intrinsic
ellipticities. Therefore obtaining a large enough ensemble of sources is crucial for such a shear
measurement. Fortunately, this is realistic and viable: e.g. the Hubble Ultra Deep Field [HST]
shows a very deep image of the sky, only 3’ x 3’ in area, containing an impressive total number
of 10* faint galaxies.

By the statistical effect of weak lensing it is possible to measure the coherent distortions of
faint background ellipticities. The observed distortions will preferably stretch the source images
in directions tangential with respect to the centre of lensing matter. Because the ellipticity that
is induced by weak lensing is generically at most of the order of the initial ellipticity a high
statistics is required for detection. Above it is discussed how a measurement of ellipticities can
be used to get the reduced shear (2.11); but how does this translate into a matter distribution
of the lensing matter in which we are finally interested? The convergence x quantifies the
increase in size of a background galaxy, independent of its shape. Within Newtonian theory the
convergence plays the role of a source in the two-dimensional Poisson equation

(2.12) AP (9) = 2x(0),

where the deflection potential ¥(0) denotes the two-dimensional counterpart of the Newtonian
potential. Thus, in Newtonian theory the convergence x is proportional to the surface mass
density of the gravitating lens, and hence producing a contour map of x from the measured
shear will trace the effective two-dimensional matter distribution. In fact, it is

—1 =g —g2 0g1/001 4 0ga /00
2.13 In(l—kK) = ———— _
( ) v Il( K) 1-— g% — g% ( —3g2 1 + g1 ) ( 892/891 — 891/892
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These equations can be integrated upon the two-dimensional data field and yield the final
convergence map. Going a step further, in non-Newtonian gravity theories the convergence
is not in a linear relation to the surface mass density anymore. However, even though within
such theories an obtained x map cannot be directly translated into a map of the two-dimensional
matter distribution, the location of s peaks will still correspond to the peak-values of the effective
surface mass density, c.f. [CT06a|. This result is crucial for the discussion in the next subsection.

The concept of weak gravitational lensing will also be used for tomography of the large
scale structure of the universe. This is a non-trivial task; there does not exist a single lens
plane anymore but the complete inhomogeneous three-dimensional and very extended matter
structure in the line of sight can be made responsible for distortions of faint sources. However,
the method opens up a new window on a wide range of global cosmological parameters which
will be accessible through completely different systematics and in a much lower redshift regime
than through CMB measurements.
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FIGURE 2.2. The ‘bullet cluster’, 3.4 billion light-years away, in optical (left) and
X-ray (right) light. Left: on top of the optical image taken by the Magellan telescope
the peaks in surface mass density x [c.f. (2.13)] as reconstructed from weak lensing
are shown (green contours). White contours quantify the error within the position of
r peaks: 68.3%,95.5% and 99.7% C.L. The white bar measures a distance of 200Mpc
in the cluster plane. Right: an X-ray image taken by the Chandra space telescope,
together with the same weak lensing reconstruction of matter density. Pictures are
taken from [CT06a].

2.1.3. Recent Direct Evidence. Usually, lensing evidence for Dark Matter is provided
by the necessity of excess gravitational potential on top of the baryonic one, in order to explain
the observed phenomena. For isolated and relaxed systems, the centre of the Dark Matter
potential coincides with the centre of the gravitational potential induced by the luminous matter;
the luminous matter is believed to trace the (stronger) Dark Matter potential. Observing a
constellation of matter, where the dark and luminous centres of mass are spatially separated,
would provide eidetic and weighty evidence for Dark Matter on the scale observed. Such an
observation would seriously challenge theories that invoke no Dark Matter but modifications of
Newton or Einstein gravity.

Interestingly, a snapshot of the above mentioned situation might recently have been made
[CT06al. The object 1E0657-558 is a high-energy merger of two galaxy clusters at z = 0.296. In
the course of the collision, the constituents of the clusters, the galaxies, behave like collisionless
particles but in addition the system is interfused with intracluster relativistic plasma. This
plasma behaves not collisionless at all, but undergoes massive ram pressure and this can be
observed in the X-ray band. Due to the shape of the high energetic tail of one of the clusters
(see fig. 2.2) the system was dubbed ‘bullet cluster’. The central regions of the two clusters
coincided approximately 100 Myr ago but today the velocity of the clusters relative to each
other is still ~ 4700 km/s.
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Compared to the collisionless stars, the hot intracluster gas represents the dominant part of
baryonic matter within the clusters. Therefore, if Dark Matter was not present in the cluster, the
centre of mass of the X-ray luminous hot gas should trace the mass density of the whole system,
as inferred e.g. by lensing methods. This is not in accordance with the physical observations as
can be clearly seen from fig. 2.2. Imaging with optical telescopes has been used to determine a
map of the surface mass density (2.13) with the help of weak gravitational lensing. At the same
time images from the Chandra X-ray telescope have been made from exactly the same region of
sky, showing the distribution of the hot gas only. Superimposing the images (fig. 2.2) shows that
the peaks in matter density have moved in advance of the X-ray plasma which was decelerated
by ram pressure. The displacement clearly indicates the presence of some form of Dark Matter
which does not behave like a fluid. Constraints on the effective cross section of self-interaction
of the Dark Matter can be directly obtained from this data [M*04]. Since the £ method only
measures a two-dimensional distribution a loophole remains: in principle, it is thinkable that yet
unidentified sources along the line of sight correspond to the density peaks that are detected.
Nevertheless, the authors [CT06a| constrain the redshift interval wherein lensing sources could
contribute to 0.18 < z < 0.39. It is noteworthy to say that the data field of the bullet cluster
allows for a combined analysis of weak and strong lensing methods, see [BT06b].

MOdified Newtonian Dynamics (MOND) as invoked by Milgrom [Mil83] is based on the
idea that the classical Newton force law is experimentally well tested only within Solar System
scales, and hence could be modified for large scales. The TeVeS theory by Bekenstein [Bek04]
comes to the same result in the weak field limit, but modifies gravity already at the level of
Einstein theory by adding new vector and scalar degrees of freedom. By the observations of the
bullet cluster the simplest of such models can be ruled out. However, more complicated versions
of modified gravity could still be in accordance with the data, see e.g. [AFZ06] or [BMO7].

Recently, a similarly impressive snapshot of Dark Matter was made using the Hubble Space
Telescope (HST). The rich cluster of galaxies CL 0024417 at z = 0.4 shows a ringlike structure
of Dark Matter, obtained using combined strong and weak lensing methods [JT07b]. Fig. 2.3
shows the reconstruction of the ring of Dark Matter. The structure is thought to be the result
of a high-speed collision similar to 1E0657-558, in this case occurring along the line of sight.

FIGURE 2.3. A ringlike structure of Dark Matter in the rich cluster CL 0024+17.
Left: a reconstruction from lensing data of the Dark Matter ring is superimposed in
diffuse blue upon an optical HST image. The size of the ring is ~ 75" or approximately
five million light-years. The ring probably originates from a massive galaxy cluster
collision along the line of sight around 1-2 Gyr ago. Right: distribution of Dark Matter
reconstructed from the CL 0024417 image. A simulation of the consequences of
gravitational lensing by the Dark Matter on orthogonal graph paper in the background
is shown. Pictures are taken from [HST] and [LSS].
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2.2. Classical Evidence from Dynamics

Historically, the first indications of Dark Matter have been observed on the scale of galaxies
and galaxy clusters. In 1933 Fritz Zwicky analysed dynamical data from the Coma Cluster
[Zwi33]. He found several galaxies with individual velocities that exceed the mean cluster ve-
locities by far. His interpretation was that these velocities provide a measure of the kinetic
energy per unit mass in the cluster. After estimating the radius of the cluster he could compute
the total mass of the cluster with the help of the virial theorem. Zwicky then independently
estimated the mass of the cluster by counting the galaxies and using the total brightness of the
galaxy cluster and found a discrepancy by a factor of 400. The observed velocities of galaxies
were far too high to be bound solely by the luminous matter present. The consequence was that
large, yet undetected amounts of matter had to be present in the Coma Cluster. Zwicky was
the first to note this. His estimates were rather crude, but the subsequent analyses of clusters
of galaxies and also of galactic systems themselves widely confirm his findings.

2.2.1. Evidence on Galactic Scales. We should begin with our galaxy, the Milky Way.
Using the 21cm emission line of hydrogen HI, it is no problem to look through the interstellar
gas in the direction of the centre of the Milky Way. Similarly, one makes use of the emission
of the 2CO gas that is present in the galactic disc. With these methods it is a straightforward
measurement to obtain the circular velocities of objects that lie within the solar radius of Rgy, =~
8 kpc using the Doppler effect. Note that our local standard of rest, the sun, is moving with a
velocity of vgun ~ 200 ki /s around the galactic centre. The result of the rotation measurement
is shown in fig. 2.4. As can be seen clearly, the rotation curve shows no pronounced decrease of
velocity for large radii. But the error bars are large in that region.
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FIGURE 2.4. The rotation curve of the Milky Way. Observations make use of HI and
12C0O emission lines and are obtained from direct Doppler measurements of objects
that lie within the solar orbit Rsun =~ 8 kpc around the galactic centre. Orbits that
have radii larger than that cannot be looked on tangentially; therefore additional
distance yields are needed, leading to huge error bars in the outer regions of the
curve. Picture is taken from [Cle85].

Rotation curve measurements for spirals other than the Milky Way are easier to obtain. It
is possible to observe orbits tangentially and measure the Doppler effect of the rotating objects.
However, correcting for the inclination of the disc is of course necessary. The rotation curves of
a large number of spiral galaxies have been measured by now (fig. 2.5). Again the HI line proves
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FIGURE 2.5. Left: galactic rotation curves of twenty-two spirals as inferred from Ha
and [NII| emission lines plotted in one figure. All the measured galaxies have either
rising or flat rotation curves, which cannot be explained by luminous matter only.
Right: rotation curve of the spiral galaxy NGC 6503 in Draco. The rotation veloc-
ity is decomposed into its contributions from the (luminous) galactic disc, luminous
interstellar gas and the dark halo. Pictures are taken from [STT*98] and [BBS91].

its usefulness because one can collect the radio data within much larger radii. The finding of
mostly flat rotation curves is confirmed for the different observed spirals.

A very simple calculation shows why these findings are so dramatic. We approximate the
orbits of the constituents of a typical spiral galaxy as circles and get the rotation curve from
the equilibrium of centripetal and gravitational force:

(2.14) v (r) = GM(r) :

r
where M(r) is the mass within r. Further approximating the galactic bulge as a sphere with
constant density, we have M(r) = p%m“3. Thus in the innermost part of the galaxy, the curve
should rise linearly with r and when leaving the galaxy the curve should decrease as V(r) oc 1//7
(Keplerian fall off). Despite the crude simplifications in this toy calculation the disagreement
with experiment is dramatic.

As can be seen from fig. 2.5, in reality, rotation curves become approximately constant for
large radii, which then implies M (r) o 7! Thus, enormous amounts of non-luminous matter
must be made responsible for the observed curves, if Einstein gravity and therewith Newton
Gravity is correct. According to (2.14) the rotation curve we expect from the luminous matter
is v2 _(r) = GMum(r)/r and hence the Dark Matter amounts to

lum
r

(215) Maark = 5 [UQ(T) - Ulzum(r)} :

The consequence is that a halo of Dark Matter must be assumed whose mass grows linearly
with radius since the density profile of the halo drops only as 1/r? for large radii. As fig. 2.5
shows, measured rotation curves show no signs of decrease out to the maximally accessible
radii measured with the help of 21cm emission. As a consequence the total mass of galaxies
are herewith left undetermined, only a bound on the extension of a typical halo can be given:
Thalo = 30 kpc, c.f. [Sch06]. But the situation is even more disillusioning: since already the use
of HI is a trick to expand the range of accessible radii, one must use something totally different
in order to probe even larger scales of the halo. Satellite galaxies could be used as test bodies.
However, their orbits are complicated and can only be interpreted in a statistical sense. Satellite
analyses extend the typical size of halos to even ry,1, 2 100 kpe, c.f. [Sch06].
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FIGURE 2.6. The rare Polar Ring Galaxies can be used to study the three-
dimensional shape of Dark Matter halos. A comparison of the rotation velocities
within the host galaxy and the polar ring is sensitive to the geometry of the halo. Re-
cent measurements combined with simulations suggest a flattened halo that is aligned
with the polar ring [TAB103]. Left: NGC 4650A, distance: 130 million light-years.
Right: NGC 660, distance: 24 million light-years. Pictures are taken from [HST| and
[SDS].

There are also other arguments in favour of the concept of a halo. As outlined in [BT94],
stability of disc galaxies® is a crucial issue. Normally, the evolution of disc galaxy models is
highly unstable towards the formation of a dominant large bar. Although such galaxies exist,
the presence of a Dark Matter halo of much larger extent than the disc is able to remove the bar
instability. It is hypothesised that halos of Dark Matter could be necessary for the formation
and stability of disc-like galaxies.

Polar Ring Galaxies (PRGs) are very exotic, likewise beautiful phenomena. Such non-typical
galaxies are very rare occurrences; only around 150 objects have been recorded by now. Their
origin is not well understood. It is hypothesised that Polar Rings develop after a merger of
two galaxies, and in simulations such a behaviour could already be reproduced. PRGs often
consist of a disc galaxy (host) plus a ring of interstellar gas and stars being in some inclination
to the host galaxy, hence polar ring. But there are exceptions: e.g. the irregular galaxy known
as Hoag’s object is a PRG but its host galaxy is spherical and surrounded by an almost perfect
ring. However, concerning dark halos such galaxies are important laboratories. Normally, the
movement of stars via rotation curves can only be captured in one plane, as per definition only
spirals can be analysed in such a way. PRGs offer the opportunity to probe the three-dimensional
matter distribution of galaxies. The comparison of the perpendicular rotation curves in the
respective outer regions shows that the rotation velocities in the polar plane are higher than
those in the equatorial plane. By comparison with simulations, this can only be understood
if the shape of the dark halo is flattened towards the polar ring [TABT03]. Only if the two
perpendicular rotation velocities approached equal values at large radii, the shape of the dark
halo would be spherical.

Also in elliptical galaxies, a major contribution to the total mass is inferred to be dark due to
dynamical considerations [KKZ97]. Rotation curves in the sense described above cannot be used
for ellipiticals, for the movement of stars is much more complicated. They can be characterised
through an anisotropic velocity field. Assuming hydrostatic equilibrium and letting the galaxy

aAccording to the Hubble Sequence of galaxies, disc galaxies enfold spirals as well as lenticular SO galaxies.
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be spherical [BT94] yields the Euler equation
dp(’r) N GMellip(r)p(r)

2.16 =
( ) dr r2
Therein the ideal gas law can be inserted, such that
kgT (r)r dlnp(r) dinT(r)
2.17 M(M)entin = — _
( ) (r)etiip Gpumy, dlnr dlnr

describes the mass interior of r for an elliptical galaxy under the above assumptions. Herein
1t denotes the mean molecular weight and m the proton mass. Thus, from a measurement of
the temperature profile T'(r) and the density profile p(r) of an elliptical galaxy, the mass within
radius r can principally be obtained through (2.17), c.f. [KKZ97]. Assuming a fully ionised,
optically thin medium one obtains the density profile from the luminosity profile via L(r) o
p2(r). The temperature gradient is harder to get but can be obtained e.g. from CHANDRA
measurements. Recent measurements confirm the presence of dark halos in elliptical galaxies,
see e.g. [FBNPT06|. Moreover, the halo density profiles are found to approximate the Navarro-
Frenk-White distribution

(2.18) p(7)dark = Po

z(1+2)
Here, po and ry are parameters that characterise a given halo.

2.2.2. Galaxy Clusters and the Virial Theorem. We start with the virial theorem in
its tensor form
1d21;
2 dt?
The theorem relates the moment of inertia to the kinetic and potential energy of an isolated
system. Although the original version of the virial theorem is deduced from the collisionless
continuum Boltzmann equation, the identity can also be proven to hold for a discrete system of
say NN particles; let the particles be either stars or galaxies, see e.g. [BT94]. Then I;; denotes
the moment of inertia tensor of the system and it reads

N
(2.20) 1 = Z Ma Ty x5
a=1

where m,, is the mass of the object with label a. By explicitly performing the derivatives with
respect to time on (2.20), one finds the expressions for the kinetic energy tensor and the potential
energy tensor, i.e.

N N a e fe B
1 1 xd — o} ) (28 — 2]
(221) Kij = = maj:f‘j:q‘ and Wij = —= E Gmamg( )( J 3 ])
3 2 J 2 |z — x|
a=1 a,B=1Na#g
Taking the trace of (2.19), gives the important scalar virial theorem:
1d%1
2.22 —-— =2K+W.
( ) 2 dt? +

Under the assumption that the system is relaxed, that is the moment of inertia has become
independent of time, we have 2K + W = 0 with the traces

1 1 a Gmam

— 2 — alltp

(223) = 5 Z mav, and W=-—= Z m .
a=1 a,f=1na#B

When the number of constituents IV is not very large, the virial theorem

(2.24) 2K+W =0
will hold only for the respective time averages [BT94].
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Our aim is to exploit the correlation between velocity distribution and total mass in clusters
of galaxies. If we like to use the virial theorem in the form of (2.24), the galaxy cluster must
be relaxed (I = 0). Therefore the question of applicability of the virial theorem (2.24) reduces
to the question whether the constituents of the considered galaxy cluster did have enough time
to arrive at mechanical equilibrium. The time that a typical galaxy needs in order to cross
the cluster can be estimated [Sch06] from the one-dimensional velocity dispersion of the cluster
ocluster and its typical extension by teposs ~ Ra /oSt . For the typical extension one inserts
the Abell radius of clusters Ry ~ 1.5h~'Mpc as well as a rough value of o¢uster ~ 1000km /s
which finally yields teross ~ 1.527 1 x 10%yr. Since this is smaller than the Hubble time, the virial
theorem (2.24) for the time-averaged quantities K and W can be applied.

Following [Sch06], we proceed with defining the mass-weighted velocity dispersion and the
gravitational radius

-1

N N
2.95 2y — i 2 d = M2 1 M
(2.25) <v>_MZmava and rg = Z - 3 ,
a1 o piTrazs 12~ 2]

with the total mass of the cluster M = Zivzl me - Potential and kinetic energy are then
rewritten as K = M(v?)/2 and W = —GM?/rg, and with the help of the virial theorem, a
formula for the cluster mass is obtained:
ra(v?)
G
The above mass estimate is based on the gravitational radius that involves the true distances
d*P = }:c"‘ — 2| in three-dimensional space. But this is not an observable, since only projections

(2.26) M =

of this distance are accessible. We assume a spherical geometry and let D*? denote the projected
distance of two objects on the plane of the sky, then it is
-1

N
1 G
(2.27) Ro =M | 3 S % and nggRg.
aB=Thaf

The factor of 7/2 comes from the angular averaging of the projected distance. Further, it is
assumed that the velocity dispersion of galaxies be isotropic: (v?) = 302. Then, finally the
cluster mass estimate amounts to

(2.28) ar= 3RS 0 (”7)2

‘ - 26 ©\1000km/s) -
By simply taking the average mga = M/N, we estimate the individual mass of a constituent
galaxy by mga ~ 103 Mg, which is very large. This estimate represents the main result of the
virial theorem ansatz for clusters and supports the early findings using mass-to-light ratios by
Zwicky.

Using the virial theorem ansatz, the matter contribution of galaxies to a typical galaxy
cluster only amounts to ~ 5%. Because the predominant fraction of matter of a cluster is dark,
it should be questioned whether the above calculation is justified. The validity of the virial
estimate can be maintained if the luminous galaxies do trace the distribution of overall matter.
If the isotropy of the constituent velocity distribution is broken, or if the approximation of the
system in being spherical is not valid, the above estimate becomes invalid [Sch06]. Therefore the
Dark Matter evidence suggested by the virial theorem should always be taken with a pinch of salt.
Moreover, observations of the hot intracluster gas yield varying fractions of this contribution to
the total mass, but also here bulk Dark Matter remains necessary.

2.3. Modelling Galaxies with General Relativity

The usual framework in which we model a galactic system is Newton Gravity. This limit is
commonly used for N-body simulations of galaxies but also for clusters of galaxies or even larger
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structures. While General Relativity is widely accepted as the correct theory for cosmology, the
Dark Matter problem has led to attempts to modify General Relativity and therewith Newton
Gravity through MOND or TeVeS as sketched in sec. 2.1. Because modified gravity theories are
deliberately designed to solve the Dark Matter problem raised by the observed non-Keplerian
fall-off of galactic rotation curves, they pose a highly fine-tuned and a posteriori attempt. In
any case, it appears adequate to modify current fundamental theories, or invent new theories, if
and only if nothing else would work out. Among other outstanding problems, the need for Dark
Matter has impelled the phenomenology of new fundamental theories also in particle physics.
But up to day none of the candidate particles that could constitute Dark Matter has been
observed directly in an experiment.

The evidence in favour of Dark Matter is manifold and appears on a vast range of physical
scales. It is yet unclarified whether these effects all have the same origin. Arguably, one of the
most weighty and most puzzling evidences is that of flat galactic rotation curves. In a recent
work by Cooperstock and Tieu (CT) the question has been raised whether one uses the correct
fiducial theory to compare with the data. Regarding a galactic system, the use of Newton
Gravity appears well warranted since the fields involved are weak (¢/c? < 107°) and the
typical rotation velocities are small (Vg ~ 220 km/s). Nevertheless, the use of the full theory of
General Relativity might bring important new insights. The fields and velocities involved in a
planetary two-body problem are also small but lead to the qualitatively new and peculiar effect
of a different perihelion precession than that given by Newton Gravity. Also, as pointed out
in [CTO05a], the effects a system undergoes that is solely bound by gravity can be intrinsically
non-linear, already in a stationary setup, and are thus not necessarily captured within the weak
field limit.

It should be noted that the concrete model as proposed in [CT05a] has been shown to suffer
from certain pathologies like singularities in the energy momentum tensor. Before we discuss this
model in more detail we recall attempts of modelling a stationary and axisymmetric gravitational
system within general relativity which exist since the nineteenth century. It is astonishing to note
that a simple and physically applicable answer, moreover without pathologies, to the problem
of a stationary rotating and axisymmetric matter system in general relativity does not exist by
now. We conclude the section with an analysis of the Newton limit of the CT model and state
that indeed a post-Newtonian model has to be invoked in order to make sense.

2.3.1. General Relativistic, Axisymmetric Systems in Equilibrium. A very impor-
tant branch of exact solutions in General Relativity belong to the axisymmetric and stationary
self-gravitating systems. Lots of astrophysical objects can principally be modelled with these
assumptions. These could be stars, black-holes, accretion discs or galaxies; we will be especially
interested in the latter. Before we can write down a general relativistic model of a galaxy, the
crucial attributes of axisymmetry and stationarity should first be defined properly.

In a formal sense [Wal84]|, the existence of two commuting one-parameter groups of isome-
tries that possess timelike and closed spacelike orbits respectively, is sufficient to call a spacetime
stationary and axisymmetric. More explicitly, this notion can be expressed with the help of the
according Killing vector fields. Killing vectors are the generators of the mentioned isometries
on a manifold and can be used to characterise the symmetries of a spacetime. Consequently,
the axisymmetric and stationary spacetimes will have two independent Killing fields; e.g. in
Minkowski spacetime there exist ten Killing vectors (due to translation, rotation and boost).

In the following we use at least ¢ = 1. We will mainly follow the excellent presentation in
Islam’s book on rotating fields in General Relativity [Is185]. If there exists a Killing vector field
£, associated with a given spacetime, that is timelike everywhere, then the spacetime is called
stationary. If; in turn, a manifold additionally admits a Killing vector field n that is spacelike
everywhere and whose orbits are closed, then the spacetime is understood to be stationary and
axisymmetric. Equivalently, using Killing’s equations

(2.29) Euw + & =Le g =0 and 1y + 1y = Ly g =0,
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one can verify that the two Killing vector fields commute everywhere on the spacetime:
(2.30) €.m) =0.

With a semicolon we denote covariant differentiation and L, stands for the Lie derivative along
some vector field & we return to the Lie derivative in sec. 2.3.4. From the requirement of
asymptotic flatness one can deduce the explicit form of the vectors: &* = 6, n* = ",. Once
£ and 1 do commute everywhere, it is possible to define coordinates ¢ and ¢ according to

0 0 0 0
2.31 —en 9 9 d el 9
(2.31) =8y =5 ad n=0'or 25
where we use the component-free notation due the explicit form of Killing vectors. Then from
Killing’s equation (2.29) it follows that

09w 0,
ot dp
The remaining coordinates are called r and z and their according vector fields ¢ = 9/9r and
X = 0/0z are each orthogonal to both & and 7 due to orthogonal transitivity [Car69]. These
orthogonalities imply for instance that g,,£*¢” = 0; with £&* = 6" and ¢ = ¢¥,, this in turn
implies go1 = 0. Analogously, from g,,,&"x” = 0 it follows gg3 = 0 and so on, such that we arrive
at the general form of the metric (2.35). This derivation of the general form of axisymmetric
and stationary spacetimes is rather formal. Interestingly, it is possible to deduce the result by
much simpler means.
Can we interpret the above formalism in physical terms? First, let us write down the four-
velocity that characterises objects undergoing stationary and purely angular movement,

=0.

(2.32) =0,

(2.33)
dt dr de dedt dz
0 0 1 2 — 0 3
ar (r2), u dr S P VA P (r2u”, dr '
(2.34) where (2%, 2, 2%, 2%) = (t,7, p, 2)

is the coordinate notation already introduced above and which we also use in the following.
Further, 7 denotes the proper time and Q(r, z) is the (differential) angular velocity. Notably,
the gravitational field produced by a rotating body according to (2.33) is neither invariant to
time reversal ¢ — —t nor is it invariant under ¢ — —¢, for both operations are inverting
the rotational sense of the object. Now, a simultaneous transformation of both ¢ — —¢ and
@ — — leaves the movement of the body unchanged. From this we can already deduce what
metric components must vanish: if e.g. go; # 0, then go dtdr would change sign® under the
transformation (¢, ) — —(¢, ) and thus destroy invariance of the metric. Analogously, we see
that any mixing terms gos, g12, g23 must vanish. Therefore the metric takes the form:

(2.35) ds? = —goodt? + 2go2dtdy + goodp? + gyndaMda |

where the indices M, N take the values 1 or 3. Finally, after some coordinate transformations,
we arrive at the general axially symmetric and stationary spacetime as due to Lewis [Lew32]
and Papapetrou [Pap66]

(2.36) ds? =e 2V [gMNda:deN + W3de?] — 2V (dt + Adp)?,
see also [SKM103]. The metric functions U, gary, W and A are free functions of 7 and z only,
reflecting axisymmetry and stationarity. This is the spacetime that is most general under the

above symmetry assumptions. Note that, with the help of {¢# = dz# /0t and n* = dz* /0yp , it is
possible to write all the metric functions from (2.36) as scalar products of the Killing fields

(2.37) —eV =¢%,, e W2 -eVAT=n",, —VA=E", W?=2&.m5".

In the following we will discuss to which extent it is possible to further simplify the general
metric (2.36), and also what solutions to this ansatz there might exist in General Relativity.

bFor an axisymmetric and stationary setup all metric coefficients will be functions of r, z only, c.f. (2.32).
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What we have considered so far is the geometry of axially symmetric and stationary systems,
that is the left hand side of Einstein’s field equations of gravity

1
(2.38) R — 5 Ry = 87G T, .

with the Ricci tensor R, and its trace R = g"” R, . The remaining input should come through
the energy-momentum tensor 7T#" | that in case of a perfect fluid takes the form

(2.39) T = (p+p)uu” +pg"” with wyu” =—1.

However, constructing solutions to the field equations is a very hard task, especially when
peculiar a priori assumptions on the symmetries are imposed. The reason for this is that the
field equations (2.38) are technically very complicated, they represent a coupled system of ten
elliptic-hyperbolic partial differential equations.

Consequently, what is done first, is to try and find exterior (vacuum) solutions to the Einstein
equations, given by R,, = 0. In this case it is always possible to replace the metric function
W(r,z) in (2.36) by r |Isl85]; we will discuss this simplification, the isotropic gauge, in much
detail in sec. 2.3.3.

The first solution found is a very famous one, the Schwarzschild solution

—1
(2.40) ds? = — (1 — 2GM) dt* + (1 — 2GM) dr? +r2d0?,

r r

with the angular element dQ? = df? + sin®fde?. As is well known, this solution describes the
field exterior to a spherically symmetric (collapsed) star with mass M. Further, the system
must be static, which is no assumption but follows from Birkhoff’s theorem. The interior
Schwarzschild solution also exists. It can be shown that the interior Schwarzschild solution is
the only axisymmetric and static spacetime that is conformally flat [SKMT03].

Weyl was then the first to find a solution involving the general axisymmetric geometry.
However, the Weyl solution [Wey17] is of limited physical applicability®, since it describes the
exterior solution of a system without rotation, that is an axisymmetric and static system. In
this case, the general spacetime (2.36) can be simplified to

(2.41) ds? = 72V [e (dr? + d2?) + r?dp?] — e?Vde?.

Another set of solutions that is physically not compelling, is the Papapetrou class [Pap53].
Yet this class of exterior solutions does not contain any solution that is asymptotically flat
and contains a non-zero mass. Asymptotic flatness is an important physical requirement, for it
enables us to check the properties of the rotating source by placing an observer who is in static
Minkowski space at some asymptotic distance. We define asymptotic flatness by demanding that,
at large distances from the rotating gravitational system, the spacetime shall look Minkowskian

(2.42) ds? = —dt? + dr? + r2de? + d22.

This condition can be cast into one for the metric functions e?Y and A at spatial infinity,
c.f. [Isl85] and chapt. 19 of [MTWT73]

2
(2_43) 62U:1_|_2G7M+... and 62UA:_ﬂ+...7
N (72 + 22)

where S is the total angular momentum of the source and the dots stand for higher terms that
vanish towards infinity faster than the other terms. Unfortunately, the Papapetrou solutions,
which would describe the exterior of an axisymmetric and stationary rotating system, always
lead to a zero mass in the flat asymptotic limit.

Similarly, the class of solutions due to Lewis [Lew32] and Van Stockum [vS37] does not
contain any asymptotically flat solutions. The metric here takes the form

(2.44) ds? = =12 (dr? + dz?) — 2rdedt + rEdi?

“Nevertheless, higher dimensional extensions of the Weyl solution are discussed as models of cosmic strings
or other exotics, c.f. [ER02]
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where = obeys A®)Z = 0. If solutions with flat limits exist, these would describe the field
of a rotating body that is infinitely long and axisymmetric around the z-axis. The body does
not need not to be cylindrically symmetric (this would imply additional translational invariance
along z) but may have a varying shape along the symmetry axis z. Cylindrically symmetric and
stationary solutions represent a subclass of the Lewis and Van Stockum class [SKMT03].

While the Papapetrou class of solutions is rotating and has a well-defined flat limit, the
mass associated must be zero. Ten years after the discovery of the Papapetrou solution, another
very famous exterior solution has been found. Using Boyer-Lindquist coordinates (7, 9)

(2.45) r= (2= 2GM7 +a?)"? sin9, 2= (7 — GM) cosv,
the Kerr solution [Ker63| takes the form

2 2GM7 - -2 S 2) 2 2 -2 fo2 2
ds*=(1—- ———= (r —2GMr+a)s1n ddep —l—(r —2G M7+ + a” cos 19)

2 4 g2 cos2y
) 2G M7 dt 2G' Mar sin®9 dy
72 + a2 cos2d 72 — 2G M7 + a? cos?y

2

df2
4 ——
x( +f2—2GMf+a2>

(2.46)

Therein a carries the interpretation of an angular momentum per unit mass and M is the
total mass of the rotating object. The limiting cases in the above parameterisation range from
a = GM (extreme Kerr limit) and a = 0 (Schwarzschild limit). At very large radii the Kerr
metric is simplified to

(2.47)

2GM 2GM\ 4 in®y
ds® ~ — (1 = G—> dt? + (1 - G—> A7 477 (d0° + sin?9dg?) — 2GS g gy
r r r

Though it is flat, with non-zero mass in the asymptotic limit, the problem is that this solution
is only valid in the vacuum case too. Thus, it could still be used to model the exterior of a
rotating black hole or galaxy. Up to day, no interior solution has been found that matches the
above exterior Kerr solution and makes physical sense.

In the 1970s a similar class of solutions has been found by Tomimatsu and Sato [TS72|. An
important characteristic of the Kerr solution is that it returns to the Schwarzschild form as soon
as the rotation stops, a = 0. This makes sense, for deformations of a spherical rotating body
are normally due to its rotation and should disappear in the static limit. However, the main
difference of the Tomimatsu-Sato solution to the Kerr solution is that it does not possess such a
nice static limit. Instead, the static limit coincides with the axisymmetric Weyl solution which
makes the model unphysical [Isl85].

As we have seen, already the known exterior solutions are not very numerous. Furthermore,
a lot of them are anyway of mathematical importance only, like e.g. the Papapetrou class of
solutions. It remains to consider the right hand side of the Einstein equations (2.38) and whether
there exist appropriate sources when axisymmetry and stationarity is assumed. Merging exterior
and interior solutions in a proper way poses a highly non-trivial program and there do not exist
many such global models. By now, the situation could be described like this: to vacuum solutions
that are be physically tempting, always very exotic and sometimes unphysical sources must be
assigned. In other words, quoting Hermann Bondi [BL93|:

[--.] the sources suggested so far for the [Kerr| metric are not the easiest
materials to buy in shops.

One of the very rare exceptions is the global Van Stockum solution [vS37]. In this solution a
setup of an infinitely long, stiffly rotating dust cylinder is realised. Van Stockum was able to
match smoothly the original exterior solution we discussed above, to an interior solution that
he found independently. In [VW77] the complication of a non-rigid rotation within the Van
Stockum class has been incorporated. According to [SKM103| there does not exist any solution
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at all to the problem of an axially symmetric and differentially rotating perfect fluid system
with non-zero pressure up to day.

It should be noted that also the Van Stockum class of solutions is not free from shortcomings.
First, as pointed out by Bonnor [Bon80], in the Van Stockum solution the matter density is
growing exponentially with radial distance to the axis of symmetry as p = aQeO‘QTQ/(QW) where
« is an arbitrary positive constant. Second, the Van Stockum class implies the existence of
closed timelike curves, similar to those occurring in the Gddel solution. Notably, the closed
timelike curves do not lie on geodesics, i.e. observers that undergo these orbits are necessarily
accelerating. The existence of such curves is hard to reconcile with causality.

All of the above approaches are based on the philosophy that the geometric part, the metric,
of a given problem is fixed first and then the solutions for the matter fields (usually a perfect
fluid) are derived by solving Einstein’s equations; this is the classical method. There are several
groups that attack the problem the other way round. As a representative thereof, we mention
here the Neugebauer and Meinel solution [NM95] where the so-called inverse (scattering) method
is applied. Tt can be shown that the Einstein equations for the problem of an axially symmetric
and stationary gravitating system are formally equivalent to the associated Ernst equation

(2.48) Re(&) AP & = AP g

In [NM95] and succeeding works an infinitesimally thin disc of dust is presumed and explicit
solutions for the complex Ernst potentials & and thus to the Einstein equation are derived in
terms of ultraelliptic functions as well as related theta functions. For the mathematical notions
see e.g. [AS72]. Being immensely complicated, this appears to be the first formally complete
solution to the problem of an axisymmetric and stationary rotating thin disc of dust within
General Relativity.

2.3.2. The Cooperstock and Tieu Solution. In a recent series of works, Cooperstock
and Tieu suggest a new approach to the Dark Matter problem, namely via General Relativity,
see [CT05a], [CT05b] and [CT06]. Rewritten in our signature, the metric of the CT model is

(2.49) ds® = "™ (dr? 4+ udz?) + r’e”“dp® — e (dt + Ndy)? .

The authors immediately set © = 1 such that there remain only three characteristic functions
to the metric v, w and N, all being functions of only r and z.

The matter model that is used is that of uniformly rotating dust. Further, comoving coordi-
nates are used in which an observer measures the four velocity as u* = 6", . From the invariant
condition u’u, = g, utu” = —1 we immediately get w = 0. Differential rotation is established
through the transformation ¢’ — @+w(r, z)t which diagonalises the metric (2.49) locally. Note
the difference between w and w. The angular velocity and the observable tangential velocity
become

N w
(2.50) w= c

= 7"~ — and vV =wr
T‘2€_w _ N2ew 712

for weak fields. Writing the field equations to order G* yields

NZ + N2 N,
’72’:87er and N,,+N,.,——=0.

(2.51) .

r
We see that the first field equation is a non-linear one. Note that, although the field equations
are expanded to order G', the characteristic function N is obviously of order G'/2 which will be
important later. It is emphasised in [CTO06] that the metric function N , unlike w which vanishes
due to the choice of comoving coordinates, cannot be eliminated consistently. Therefore the non-
linearity between N and p in (2.51) is understood to be characteristic to this problem. However,
w would not be constant if the pressure was non-zero. On the other hand, when performing the
limit of vanishing w, IV vanishes also, but since the system must remain static there will be a
non-zero pressure in that case. In this case, w is not constant, quite the contrary, it would then
serve the Poisson equation.
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Further, CT define a quasi-potential by
(2.52) oCT :/ﬂdr,
r

such that we have v = 9®CT /9r , which together with (2.50) returns a Newtonian-like definition
of the tangential velocity, c.f. [BT94]. The potential equation then becomes

(2.53) A®PCT = o1 + 9T + 21 = T 4 / —2Er.

T T r

Inserting the field equation N, , = N ,./r — N ., then yields
(2.54) ABPCT — ¢,

Hence there is a direct correspondence between the Laplace equation A®)®CT = 0 and the
second equation in (2.51) after defining the tangential velocity in the usual way v = 9®<T /or.
Looking at (2.51) it becomes clear that it is better to first solve for the generating potential
and then, after obtaining N, to compute the density profile. This is simply because the
field equation for p is non-linear, whereas the potential equation is linear. Thus the CT strategy
is to model galactic rotation curves with the help of the potential ®“T | then readily obtain N
from the fit and finally calculate the density.
The separation of variables ansatz yields a general solution to the Laplace equation in terms
of Bessel functions of the first kind

(2.55) PCT = ZCnefk"‘z‘Jo(knr) and v = — Z knCnefk"‘z‘Jl(knr),

(I)CT

where the k,, are constants that are chosen so that orthogonality of the Jy functions is main-
tained; see for instance the appendix of [BT94] for useful details on the Bessel functions.

The final results applied to the Milky Way, NGC 3031, NGC 3198 and NGC 7331, fit the
rotation velocities remarkably well [CT06]. The total disc mass producing the non-Keplerian
behaviour is quoted to be one order of magnitude smaller [CT06] than the one suggested by
typical dark halo models. Tt is crucial to note that a successful fit of e.g. only the rotation curves
would not be surprising alone; the fact that both the rotation curve and the density profile can
be reproduced realistically makes the model interesting.

In several works that criticise the CT model, it has been shown that there exist pathologies
within the energy-momentum tensor or various other imponderableness. Korzynski [Kor05]
argues that (A) a proper asymptotical flat limit is not contained in the CT model because of the
considered gauge; and that (B) the CT model must be unrealistic because unexpected additional
matter sources at z = 0 can be found.

To (A): Korzynski derives a general perturbative form of the field equations for dust, ex-
panded in G'/? and concludes that no asymptotically flat solutions exist if the lowest expansion
coefficient of the metric is G'/2. Recall, that both N and ®°T are of order G'/? . However, the
schematic Korzynski equations look rather different to the CT equations, for Korzynski works on
a Minkowskian background and spends the remaining gauge freedom to simplify the equations
within the De Donder gauge?.

To (B): While the Bondi mass and ADM® mass can be defined for asymptotically flat
exterior solutions, the Komar mass is an invariant that can be defined for any spacetime that is
stationary. In that case, due to Noether’s theorem, time-translation symmetry ensures that the
total energy of the system is a conserved quantity. Because a well-defined zero-momentum frame
is present, the invariant can be defined as the system’s mass, the Komar integral [Kom58]. The
Komar integral can be defined considering an analogy to the gravitational mass from Gauss’ law,
c.f. [Wal84]. In the presence of a timelike Killing vector field we can define the differential form

dA frame of harmonic coordinates or De Donder gauge is reached by the requirements gaﬁf‘“’aﬁ =0, or
equivalently (1?27 = 0.

®Named after Arnowitt, Deser and Misner. For an overview on energy-momentum in General Relativity see
[Sza04].
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d¢ and denote the associated Hodge dual by xd§. Assuming that V,&s = V[,§s], which holds
because of Killing’s equation (2.29), we can write the differential of the dual form as [Kor05|

1
(2.56) dxd¢ = gR”O‘faau,,pU dz” Adx” A dx®

where €,,,,, is the spacetime volume form. Inserting for the Ricci tensor and integrating over
an arbitrary three-dimensional volume V' yields

4G
(2.57) / d€ = / dxde = ”— (2T°H &0, — TEM) € ppo dz” A da? A da”
oV 1%

The crucial point is that, if there was only dust matter, the limit of shrinking the integration
volume to zero must also yield a zero Komar integral, that is of course because the mass inside a
zero volume is zero. If, on the other hand the Komar integral (2.57) gave a non-zero value in the
shrinking volume limit, we must conclude that singularities in the energy momentum tensor are
present. That is exactly what happens in the case of the CT model. To see that, one can choose
for the integration volume a three-dimensional finite cylinder with r € [0, R] and z € [—a,q]
with a and R taking positive real values. The Komar integral can be split into three parts: top

(z = a) and bottom (z = —a) circular surface parts Iy, I, and a side surface part I
2 R 2m
N ON R NON
(2.58) I+ Iy + I —/ dga/ — —dr —/ de — —dr + 1.
r 0z 0 o T 0z o

Now, we insert N from (2.52) according to the CT model and let the volume of the cylinder go
to zero by shrinking it in the z-direction. The side surface integral indeed vanishes but the two
remaining integrals neither vanish nor cancel each other:

a—0 r z

N ON f
(2.59) r- 111% (It + I) = - lim 47T/ ——dr = 47Tk5/ rJE(kr)dr #0.
0 0

zZ=a

Therefore there must exist an additional source of matter at z = 0 in the CT model and this
corresponds to a singular behaviour of the energy-momentum tensor at the discontinuity.

Further criticism has been raised in the years after the publishing of the CT model. In
[VLO5] the properties of the CT energy-momentum have been analysed. The result reveals that
the additional component in the z = 0 plane is due to matter with negative energy density.

On the other hand, in [Gar06b] it is argued that post-Newtonian corrections should already
enfold non-linear effects if they are present and that at the same time the post-Newtonian correc-
tions to the Newtonian equations are understood to be small in the limit of small velocities and
weak fields. Therefore the author claims that there should be no difference between Newtonian
and general relativistic analyses considering Dark Matter.

In [Cro06] the following inconsistency is revealed: the covariant vanishing of shear in the
CT model is demonstrated and it is pointed out that this reflects rigid rotation! which is in
contradiction with the initial CT assumption of differential rotation. Further, the author of
[Cro06] notes that the flat rotation curve from the CT model would imply a large transfer
of inertia from the inner rotating parts of a galaxy onto the outer parts, hence flattening the
rotation curve in the outer regions. Since this is unexpected from General Relativity the author
speculates that the CT model might be a manifestation of an alternative theory of gravity,
one that follows the Machian philosophy where large induction of inertia effects are certainly
thinkable.

But there also exist claims that are supporting the model of CT. Using an exact solution
and somewhat different techniques, the authors of [BGO06] derive a solution similar to that of
CT. They find the unexpected result that in their model the amount of necessary Dark Matter
is reduced by ~ 30% .

A result already found by Bonnor in his analysis of an infinitely long and axisymmetric dust cloud [Bon77].
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2.3.3. Finding the Newtonian Counterpart to the CT Model — Part I. Our basic
idea is the following: if there are valid effects from the CT model, a direct comparison with the
Newtonian equations would be very intersting. To do so, we shall find the correct Newtonian
limit of the CT model. But before we turn to the issue of the Newtonian limit, we should
reconsider the general spacetime

(2.60) ds? = eV [gMNda:deN + W2d<p2} — 2V (dt + Adyp)?.
Recall that M, N take values 1 or 3. But it is always possible to go to isotropic coordinates
(2.61) gun = e onn

without touching the generality of (2.60), c.f. [SKMT03|. Therefore we note a central result:
the final form of the most general axisymmetric and stationary spacetime due to Lewis and
Papapetrou (LP) is

(2.62) ds? = e 2V [e?F(dr? + d2?) + W2dp?] — eV (dt + Ady)?.

We recall that the free metric functions U, k, W, A are all functions of only r, z .

It is possible to simplify (2.62) a bit more, but only under crucial assumptions. We will show
that, if and only if the metric function W is harmonic, it can be transformed to® W = r. Let
us consider a complex coordinate transformation f(r41iz) = W 44V introducing an additional
potential V. Then we have from p = W (r, z) and h = V (r, z) the differentials

ow ow ov ov
2. dp=——dr+—d d dh=—dr+—dz.
(2.63) P= "ar T oz - or T 9z

The coordinates p,h are only dummies that we introduce for bookkeeping reasons. Therefore
we insert into (2.62), written in terms of p, h, and have

ds? = e 2V {e2g(dp2 +dh?) + pzdcpz} —V(dt + Adyp)? — ds? = 6_2U{e2iC X
oW \? oW \? oW oW ov\® v\°
oW 2 oW 2, OW OW S 2 oV 2
X l(@r) dr +(8z> dz +28r 8zdrdz+(8r> dr +(82> dz
(2.64) + 2%—V%—Vdrdz + W2d¢2} —e2V(dt 4 Adyp)?.
r 0z

Requiring formal invariance as compared to the original metric, we see that the mixing terms
should vanish. That is exactly provided by the Cauchy-Riemann equations for W and V'

ow oV ow oV

Moreover, with the help of the Cauchy-Riemann equations, we see that the coefficients of dr?
and dz? can be combined to a positive definite quantity

oW\ favN® oW \®  fav\®_ -
2.66 —_— — | == — ) =K>0
(2:66) (87") +(8r> (82) +(8z> -
such that we can combine e2* X' = e2* and so obtain (2.62) via (2.64). Thus we have shown that
it is possible to simplify the general LP form (2.64) by allowing W = r, which is only possible

if the transformation f is analytic, that is W (and also V) must be a harmonic function®,
APTW =0. Then, we can write down the LP metric in isotropic coordinates (or Weyl gauge)

(2.67) ds? =e 2V [er(dT2 +dz?) + r?de?] — 2V (dt 4+ Adyp)?.

8Also W =1 is possible then, but this case is of no interest as we will see later.
hNote that, this condition for W holds for exterior solutions that are stationary and axisymmetric [Is185].
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For comparison let us repeat the CT metric (v = 1),

(2.68) ds? = eV ¥ (dr2 + dz2) +r2e dp? — e (dt + Ndcp)2 .

Obviously, the CT metric does not belong to the class of the most general stationary and
axisymmetric spacetimes; it belongs to the subclass of LP solutions in the Weyl gauge, and is
therefore less general.

Now, let us try to approach the problem of finding a Newtonian counterpart to the CT model
(2.68). If there are really advantages in a certain general relativistic approach then eventually
we can pin the differences down by comparison to the well-known Newtonian physics.

The ‘Newton metric’, that is the metric that reproduces Newtonian physics, is given by

(2.69) ds? = —(1 4 2¢)dt* + dr? + r2de? + dz?,

where ¢(r, z) is the Newtonian gravitational potential. For simplicity, we start with only rigid
rotation, that is

(270) Sp:(pl_wt_
Then the rigidly rotated Newton metric (2.69) is exactly

1+ 20 rw d
(14 2¢ — w?r?) (1+2¢ — w?r?) v

In this form we can directly compare the metric with the LP metric in Weyl gauge (2.67), and
we notice a discrepancy at linear order in ¢, looking at the dg? term. Interestingly, the rigidly
rotated Newton metric (2.71) is not in accord with the isotropic form of the LP class (2.67) — as
it should be for consistency — but it is in perfect accordance with the general form of the latter
(2.62).

Now, one could speculate whether the situation might be easily cured with the help of a
coordinate transformation. Above we have derived the exact conditions under which the general
and the isotropic LP metric can be transformed into each other: the function W must be a
harmonic function with respect to the two-dimensional Laplacian A@W = 0.

In the present case, of the rigidly rotating Newton metric, W is given by

(2.72) W =ry142¢,
expanding and applying the Laplacian yields
(2.73) APOW =rA® ¢+ ¢, = 4xGpr + ¢, .

2 2

(2.71) ds* = (dr? +dz%)+ r2dg? — (14+2¢—w?r?) |dt +

Note that we can use the Poisson equation because the potential is Newtonian. After repeating
some facts from potential theory we will show that A®)W in fact does not vanish in general.

Given the general problem of solving the Laplace equation with the appropriate boundary
conditions for a disc-like distribution of matter, the solution for the potential can be obtained
via separation of variables, c.f. [BT94]

(2.74) B(r,z) = / S(k)Jo(kr)e =l dE .
0
A given surface mass density X(r) is then characterised by the according Hankel transform
(2.75) S(k) = —27TG/ Jo(kr)Z(r)rdr .
0

Now we can use these expressions for the evaluation of (2.73).
B Case (A) 2 20  Outside the disc the Newtonian potential fulfils the Laplace equation,
such that the expression (2.73) takes the form

(2.76) APW = —/ S(k)Jy(kr)ke ™ #ldk at z#0,
0
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which will not vanish in general. As a simple example we consider the Mestel disc model of
a galaxy [Mes63]. In the Newtonian Mestel model a flat rotation curve can be reached’. The
Mestel model is characterised by a surface mass density that falls off inversely with the distance

(2.77) S(r) = 2070

r

In a Mestel galaxy the surface density Hankel-transforms as S(k) = —27G3¢ro/k. Using this
we can integrate directly and obtain

1 2]
2.78 APW = 2rGSor, <— - 7> at z#0.
(2.78) o (7 - 7&

H Case (B) z =0 — We want to show that (2.73) is non-zero also here. Let us assume the
contrary and see what happens. If we assume that AW = 0 was true then equation (2.73)
gives an identity. We integrate this identity over z for some £ > 0 and then revoke the operation
by performing the appropriate limit

(2.79) —4nGr lir% d(2)X(r)dz = hr%/ / k)Jy (kr)ke™*#l dkdz .

Since the exponential term on the right hand side serves as a damping factor, the modulus of
the integrand will reach its maximum at z = 0. Thus, as an upper estimate, we can set the
integrand of the right hand side to be constant in z and therefore the integration and limit
procedure give zero. Then, for all other z the expression will be zero more than ever and we
obtain

(2.80) ArGE(r)r =0.

This will not hold generally for any realistic model, hence producing a contradiction, and there-
fore A@TW (r, 2) = 0 is not true at the surface z = 0 either.

Interestingly, the pure Newton metric (2.69) cannot be made compatible with the LP metric
in Weyl form and thus is also not compatible with the CT model. We should go one step further
and consider the Post-Newtonian (PN) metric

(2.81) ds? = — (14 2¢)dt* + (1 — 2¢)(dr* + r2dp? + dz?),

with some additional PN potential ¢). Sometimes, this metric (with ) = ¢) is referred to as the
‘Newton metric’ in the literature. The reason for this nomenclature might be that the order of
magnitude of the coefficient of the spatial part de? and the order of the Newtonian correction
are the same. Nevertheless, conceptually this makes an enormous difference. In classical Newton
Gravity there exists no curvature of space, the three-space is always euclidian. This is exactly
reflected in the Newton metric (2.69) and therefore we refer to (2.81) as the PN metric; for an
extensive discussion see chapt. 39 in [MTW73].

Let us again perform the stiff rotation (2.70) on the PN metric. The result (including higher
orders) is

2 _ 2 2 1 27 2
ds* = (1—2¢)(dr —|—dz)+(1+2¢_(1_2¢)w2r2)rd<p

(1 — 2¢)wr?
(1+2¢— (1 —2¢)w?r?)

The comparison shows that this metric is in perfect accordance with (2.67) via

=(1-20)14+20— (1 =2¢)w?*r?), €2V =(1+2¢— (1 —2¢)w*r?)
B (1 — 2¢)wr?
(142¢ — (1 —2¢)w?r?)’

(2.82) — (1420 —(1—2¢)wr?) |dt +

dep

(2.83) W2 =r?,

IThe flat rotation curve in the Mestel model can easily be obtained from the Hankel transform of (2.77),
inserted into the formula for the rotation curve: v2(r) = 7(9¢/0r),—0 = 2rGXoro -
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Thus the PN metric (2.81) belongs to the class of isotropic (Weyl) axisymmetric and stationary
solutions whereas the Newton metric (2.69) does not allow for that simplification.

Our aim is to approach the CT model from the side of Newton gravity. The next step is
to allow for differential rotations w = w(r) in order to try to make the model stepwise more
realistic. So we relax the condition of rigid rotation and consider transformations

(2.84) p=¢ —w(r)t,

which we apply to the PN metric and arrive at a lengthy expression:

2 _ _ 2 _ 22 ,2y1 2 1 279 2
ds® = (1—-2¢)dz"+ (1 —2¢)(1 + r w,t7)dr" + A720-(1- 2¢)w2r2)r de
2,.2 (1 —2¢)wr? ’
- (142¢—(1—-2¢)wr?) dt+(1+2¢—(1—2¢)w27‘2)d¢
(2.85) + (1= 2¢)2r%ww  tdrdt — (1 — 2¢)2r%w . tdrde .

Unfortunately, this metric exhibits direct time dependence in some coefficients  which is a
coordinate artefact. Because of the stationarity constraint (2.32), the differentially rotated PN
metric (2.85) only makes sense in a strictly local sense, that is within small time intervals
(r?w .t < 1). In other words, the coordinate transformation (2.84) is not a good transformation
because it holds only as long as w(r)t < 27. But there might be another problem: obviously, the
rotated PN metric (2.85) is not of the same form as the LP spacetime. Fortunately, it turns out
— after a somewhat tedious calculation — that it is possible to find a coordinate transformation
in r using a certain function r = g(r', ¢, t). Therefore we perform the following translational
transformation on the metric (2.85)

(2.86) dr = g dr’ +g,dp + g.dt.

We solve for the transformation parameters — letting primes away — using the LP constraints
and get

1-—2¢ (1 = 2¢)ww r’t (1 —2¢)w ,r’t
g,’l‘: ) g,t:—u g,tp:—u
B B B
(2.87) B=1-2¢+(1-2¢)r’wie*.
The fully rotated PN metric (2.85) with the most general angular velocity w = w(t,r,z) is a

horrendous expression that is written down in components in equations (C.3) in the app. C.
Before we now continue on the level of dynamical equations to pin down the difference of the
two Newtonian metrics (2.69) and (2.81), of which one is compatible with the LP model and
one is not, we shall recall a few facts on the 3 4+ 1 split of spacetime.

2.3.4. The Arnowitt-Deser-Misner split. In order to gain physical insight into compli-
cated problems in General Relativity it is often very useful to return to a familiar foliation into
separate dimensions. There exists a well-defined way how to split spacetime into space and time
parts (manifolds). This formalism has been developed by Arnowitt, Deser and Misner [Arn62]
and is henceforth called ADM split, see also paragraph 21.4 in [MTW73] or [Yor79]. It can be
derived from the application of the proper boundary conditions on the problem of constructing
a rigid ‘sandwich’ structure of a one-parameter sequence of spacelike hypersurfaces, see fig. 2.7.
The application of Pythagoras’ theorem in the four-dimensional setup then directly yields the
form that the metric has to attain with regard to the rigidity of such a construction:

(2.88) ds? = —N2dt*+g;;(dz’+ N'dt)(da? + Ndt) = —(N*—N; N*)dt*+2N,dtdz" +g;;dz’ da’ .
Here g;; characterises the metric of the spatial hypersurfaces.
Depending on the choice of coordinates given by (2.88) we define the ‘normal vectors’

1 ,
(2.89) n, =N(—-1,0) and nt = N(l, —N"),
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whereby we introduce the lapse function N and the shift vector N*. For concrete calculation it
is important to be aware of the fact that only the indices of n* are raised or lowered with the
four-metric g, , and that to do so with the IV; one may only use the spatial metric g;; . Further,
it will be useful to define the following projector

(2.90) h*, =", +ntn, ,

which induces the three-metric into the hypersurfaces. Next we want to take advantage of the
fact that we achieved a dimensional reduction of the hypersurfaces.

FIGURE 2.7. Tllustrating the ADM split: the general relativistic spacetime is de-
composed into spacelike hypersurfaces labelled with time coordinate. Two three-
dimensional spacelike hypersurfaces, say at ¢t and t 4 dt, are connected in a rigid way,
by inserting perpendicular connectors between the slices, with tailor-made lengths and
shifts, such that a stiff ‘sandwich structure’ is maintained. The connectors are given
by the lapse function N (which corresponds to the choice of slicing) and the shift vec-
tor N* (which corresponds to the choice of spatial coordinates ' on hypersurfaces).
The requirement of rigidity leads directly to the ADM metric (2.88). The picture is
taken from [MTW73].

Often, the central question of general relativistic problems is that of spacetime curvature.
Usually, it makes no sense to consider extrinsic curvature because it is not obvious how to assign a
physical meaning to a five-dimensional manifold in which the curvature of our four-dimensional
universe is measured. Therefore General Relativity is a theory of the intrinsic gravitational
curvature of spacetime. When using the ADM framework it suddenly makes sense to consider
extrinsic curvature, i.e. the spatial curvature of the foliated hypersurfaces with respect to the
usual four-dimensional general relativistic spacetime. The extrinsic curvature is defined as

(2.91) Kij = —h“l-h"jni;j,

which, in case of time-independence of the metric g;;, can be written in the common form
1

(2.92) Kij = W (Ni)j + Nj,i - 2F£ijNg) .

The definition of K;; can be understood more deeply when trying to derive it from a fundamental
principle, namely the Lie derivative. Loosely spoken, the Lie derivative is something like a
generalised directional derivative. The extrinsic curvature can be interpreted as the difference
that occurs during a parallel transport of a normal vector on the spatial hypersurface with
respect to the embedding (four-dimensional) space

(2.93) —2K;; = Lngij -

The extrinsic curvature is nothing else than the Lie derivative of the three-metric g;; in the
direction of the four-vector n*. Interestingly, the original definition of the Lie derivative for
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four-dimensional quantities is formulated only by applying partial derivatives
(2.94) Laguw = g,ul/-,AaA + g,upap,u + gm/an,u )

with respect to some four-direction a. This is the Lie derivative as it is defined. It represents
a derivative of a four-tensor (g, ) in direction of a four-vector field a*. We have to apply this
to the problem (2.93) where we are looking for the Lie derivative of a three-tensor g;; along the
four-vector field n* . The ansatz gives

Lngij = gijon’ + gijan® + gun’ gt gsin®
1
= N (gij,O —N;;— N+ gié,jNg + s iN° — gij,ka)

1 1
= W {gz‘j,o —Nij—Nj; +2 59@ (9ip.j + 9pji — Gisp) NE] }

1
(2.95) = ¥ [0rgij — (Nig + Ny )| = —2K5,
————

Lngij

and thus we have derived the evolution equation of the spatial metric (2.92).
Now we are prepared to write down the full set of ADM equations [Buc01] that govern the
dynamics of the 3+1 system — assuming a vanishing cosmological constant —

[Hamiltonian or Energy Constraint|
(2.96) R—K' K, + K? =16rGE with E = T,,n"n",

[Momentum Constraints|

(2.97) K’ —K;=8rGJ; with J;=-T,n"h",,
[Evolution Equation for the Metric]
1 1
(2.98) 9.0 = ~2Kij + 5 (Niyj + Nja)
[Evolution Equation for the Extrinsic Curvature]
(2.99)
Lo Ri i Lo b ok koari ATk g i Ly

with §;; = Twh”ih”j , and the according trace equations,
[Evolution Equation for the Extrinsic Curvature (Trace)]

1 1 . 1
2.100 —Ko=R+K? - 47GB3E - S) - —N" + —NFK,
( ) N ,0 + ™ ( ) N ik =+ N ik
[Evolution Equation for the Metric (Trace)]
1 1
(2.101) N0 = 29 (—K + NNk;k> with ¢ = det(g;;) -

2.3.5. Finding the Newtonian Counterpart to the CT Model — Part II. Applying
the ADM split to the rotating Newton metric should yield the equations of movement, and on
this level the differences between Newtonian and CT model might become transparent. Let us
approach the problem in steps and thus first start with the static post-Newtonian metric before
we include more and more complications.

B Setup (1) static Newton model In what follows we will always use the linearised
Newtonian metrics and further approximations will be stated explicitly. We use the more general
PN metrics and specialise to the Newton metric by setting v = 0 where it is apposite. The
warm-up exercise is going to be the simple static PN metric in cartesian coordinates

(2.102) ds? = —(1 4 2¢)dt* + (1 — 2¢)(da? + dy® + dz?),
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with ¢ = ¢(z,y, z) and ¢ = ¢(x,y,z). We read off the ADM-relevant expressions and note

(2.103) Ni=0=N;, N?=(1+4+2¢), gij=(1—-24)7, g7 = . w&” :
In three dimensions there are 15 non-vanishing components of the Christoffel symbol, they are
listed in app. C under equations (C.5). Since the shift vanishes completely and the induced

metric does not depend on time, then the extrinsic curvature also vanishes due to (2.92),
(2.104) Ky, =0, K=0,

and the trace being denoted with K = K!. Further, the non-vanishing components of the
three-dimensional Ricci tensor are computed and listed in the app. C under (C.6). The final
result for the three-Ricci scalar is

4 3) 6 3) 2 3
(2.105) R= mAf:arﬂ/f + m(vf:arﬂ/f) SV
where D.,;¢ stands for the according operators in cartesian coordinates. This result is consistent
with the one resulting from the well known first-order formula in the Newtonian case [Sch85]
(2.106) Rijii = dirt ju + 0 ik — 0ut jk — Okt -
As a matter model of the galaxy we choose dust, implying that the energy-momentum tensor
is that of a perfect fluid with vanishing pressure, T}, = pu,u, where u* is the four-velocity of
a comoving observer. Note that in this setup it is not possible to simply set u* = n# | like it
is done usually  because that would exclude to treat rotation. In case of the static Newton
metric, the normals are n, = N(—1,0) and n* = 1/N(1,0). Therefore the E function — which
is the energy density seen by the fiducial ADM observer — in the ADM formalism becomes

1

(2.107) E =T,n'n” = pN?(u")? = m(uo)2 .
Similarly, we can evaluate the Poynting vector J; in this case
(2.108) Ji = =Tun"h”; = pNuu; .
The calculation of the full divergence of the lapse function yields
. 1 1 1 1
Nk A®) (V<3) ) , (V(?’) )
ik T+ 2¢ (1 _ 2¢) cart T+ 2¢ (1 _ 2w)2 cart cartdj
1 1 9 4\~ A®)
2.109 ~ 9 (v< ) ~A® g
( ) (1 + 2¢) (1 _ 2,¢) cart cart¢
as well as N”;j ~ ¢, ; for i # j. In the end the ADM equations become
R = 16nGE, E =pN?(u°)?, (Hamilton constraint)
Ji = pNu'u; =0, (momentum constraint)
. 1. , 1 .
0 = R, - NN’l;j — 871G [Slj + 5513-(E - S)} ) (evolution, non-trace)
1.
(2.110)00 = R-— NN’]fk —4rG(BE - 95), (evolution, trace)

with the stress tensor S;; = pu;u; . Next we analyse the two cases of the classical Newton metric
and the PN metric.

¢ Case (A) ¢ = 0 and ¢ # 0 (classical Newton metric) — Since v vanishes, it follows directly
that R = 0, and thus from the Hamilton constraint with vanishing £, we have p =0V u® =0
which is equally absurd. If we assume p # 0, the momentum constraint is satisfied and u; # 0
is possible. So by now we have

(2.111) u' =0, u;#0, p#0.
The trace of the evolution equation yields a Poisson-like equation

(2.112) A®) 6 = 4nGS = 4nGpuiu;
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and the non-trace part of the evolution equation yields
(2.113) i = —81GS'; = —8nGpu'u; .

On the other hand, we could choose p = 0 which implies u® # 0, and this leads to Agﬁt =0
and ¢; ; = 0 which is the case of a test particle consistent but not very useful.

Astonishingly, the classical Newton solution does not make sense in the ADM split. Either
u® = 0 or p = 0 must be accepted but both results are unphysical. We assume that here the PN
terms are necessary in order to make sense out of the ADM split and therefore proceed with the
following case.

¢ Case (B) v = ¢ # 0 (simplest PN metric) Note that, taking ¢ = ¢ # 0 right from
the beginning is justified because the ansatz ¢ # 0, ¥ # 0 but ¢ # @, will require ¢ = ¢
for consistency, as we will see now. The Hamilton constraint returns us a reasonable Poisson
equation right away,

(2.114) A®) o = 4rGpN2 (u0)?

But with u® # 0 and p # 0 the momentum constraint gives v’ = 0 and therewith a vanishing
stress tensor. Consistency is indicated by the trace part of the evolution equation, it returns
the same Poisson equation (2.114), only with the requirement ) = ¢. The non-trace equations
give only trivial identities with the same requirement. Therefore it is concluded that in order
to make sense out of the ADM split, already at the level of a static setup (in combination with
dust matter), the classical Newton metric makes no sense whereas the PN metric does.

B Setup (2) rigidly rotated Newton model — A rigid rotation according to (2.70) with an
constant angular velocity w can be described with the following exact PN spacetime
(2.115)
ds? = [(1 = 2¢)w?r? — (1 +2¢)]dt* + (1 — 2¢)(dr? + d2?) + (1 — 2¢)r?de? — (1 — 2¢)2r’wdedt .

Now a non-vanishing shift is present. Interestingly, also here the extrinsic curvature vanishes
exactly,

(2.116) Kiy=0, K=0.
The non-vanishing quantities, relevant for the ADM split, are to exact order:

Ny =—(1-2)wr?, N¥=-w, N?=(1+4+2¢), g11=gs=(1-29),
(2117) g2 =(1—2¢)*, ¢ =¢¥=1/(1-2¢), gar=1/[(1 —2¢)r%].
Note that, because we use the exact metric (2.115), the quantity N? is exact as it stands; the
additional contribution in the time-time part of the metric cancels out in the calculation of the
lapse function. The computations of the connection and the Riemann tensor are tedious and
have been carried out partly with help of the computer. We give the explicit expressions in
app. C. We are able to reproduce the result (2.105) in cylindrical coordinates

4 6
2.118 R=—" AG — (¢ 2) ~ AAB)y
The form of Hamilton and momentum constraint as well as of the trace evolution equation are
the same as in (2.110). Only the forms of the non-trace parts are different and they read

- 1., .
R, = NN”U. +87GS";, (evolution, i # j)
5’12 = puluy =0,
=C
—_—
1 1 i1 1
R3_NN‘2 = 87TG53,
(2.119) S%, = puluz=0.

¢ Case (A) v = 0 and ¢ # 0 (classical Newton metric) — The same chain of conclusions
as in the case of the static setup above, leads via R = 0, E = 0to p = 0V u® = 0 which is
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unphysical. We still choose p # 0 to see what happens. The momentum constraint is fulfilled
and leaves u’ # 0 possible. To leading order, the trace of the evolution equation gives a Poisson-
like equation similar to (2.112). Looking at the non-trace parts of the evolution equation, the
third equation in (2.119) depends on the combination C'. Within the classical Newton limit C
becomes equal to —¢ 1,3, as we have calculated. Thus we have

St = pulug =0,
—¢13 = 81GS';=8rGputus,
(2.120) S, = pufuz=0.

Apart from u® = 0 two other solutions are also possible: (1) u? = 0 but u',u® # 0 and hence
S # 0, and (2) u!,u? = 0 leading to ¢ 13 = 0 but u? # 0 as well as S # 0 are possible. Of
course, also other solutions are thinkable, e.g. such with no matter (p = 0) but none of these
makes much physical sense, just as in the static case above.

¢ Case (B) v = ¢ # 0 (simplest PN metric)  In analogy to the static case, the momentum
and Hamilton constraints together require u; = 0, in order not to have an empty Poisson
equation (p,u® # 0). Therewith the stress tensor and its trace vanish. From the trace of the
evolution equation, the Poisson equation can be reobtained like before. The non-trace equations
do not give new information since C' = 0 in the linearised case and this is then just consistent
with the vanishing of u; . Altogether, although p # 0 and u® # 0 are possible, the equations do
not allow any motion.

B Setup (3) differentially rotated Newton model — Finally, in this model we can hope for a
non-vanishing extrinsic curvature and some non-trivial properties. The linearised differentially
rotating post-Newtonian metric takes the form

(2.121)  ds® = —(1 +2¢)dt? + (1 — 2¢)(dr? 4+ dz?) + (1 — 2¢)r?dp? — (1 — 24)2r*Qdedt

with the potentials being functions of r and z only: ¢ = ¢(r,2) , ¥ = P(r,z) , Q = Q(r, z).
Recall that the metric is only valid in a strictly local sense. Shift and lapse function become

(2.122) Ny, =—(1-2)Qr*, N?=-Q, N?=(1+2¢)+(1—2¢)Q%r?.

The spatial metric stays the same as before. The extrinsic curvature has vanishing diagonal
components, such that K = 0, and we have the following non-vanishing and exact off-diagonal
components

1 1 1 1
2.123 K'Yy=——Q, 7, K} =—-——Q,, Kih=——0O0.,, K,=—-——0Q.%.
( ) 2 IN ™, 1 IN ) 3 oN ) 2 IN r
We employ dust, that is p = 0 and T},, = pu,u, , and so we also have the following, like above,
(2.124) E=p(Nu)?, Sij =puu;, J;=—-Tun"h",.

Then, the ADM equations become, for the differentially rotating case up to all orders,
(Hamiltonian constraint) R — K, K’, + K* = 167GE ,

4 6 11
2125) @ ———A®yp 4+ —— (92 +92) — = —=r? (0% + Q%) = 167Gp(Nu)?.
( ) (1—2¢)2 Chs (1—2¢)3 (5 + %) 1 N2 (@5 +97) TGp(Nu”)
(Momentum constraints) Kji;j - K, =8rGJ;,
81GJ; = 8nGpNu'u; =0,
81GJy, = 8nGpNuluy =

" (420, 40 NSO+ N0+ (0, 1.0

IN T r T J2,2 2N2 el zRbz IN (1_2¢) e znbiz)
87GJs = 8nGpNuluz=0.

(2.126)
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(Evolution, i # j) 87GS'; = R, + KK', — LN", + L(K! N*, — K* N' NFK'_ ).

8rGSY, = 8rGpu'uy =0,
8rGSY, = 8rGputus =
ey (Ut (1= 20)02) = e (6, N — N, + (L= 20)N,02) + £ 170,

71 6. \3 r¥,z - ™zZ) T AT 71 0.9 s z z T - T,z v zZ
1 —2¢) 7" mH TN (@ —2g)2 T ) TON
871G S?% = 8rGpuiusz =0.

(2.127)
(Evolution, i = j) R = 4rG(3E — S) + %N;k;k ,
with the relevant derivatives of the lapse function being

1

Now = s5{oe+720[(1-20) Q. - Q] (=60 — 1201 - 20) (@ +79,) - r2e,]] }

+ %{qﬁ_ r{ (1= 20) 7,0 — Q[2r).Q, — 20 (1— 20 —14,) — 1 (1 — 20) Q.. ]
— Yt} E b — 600,

1
Ne = {000 -20) 0 +r0,) —r0,]} E o,
1
N. = m{s-+rla-2)0. -]} ..
(2.128)
And the full divergence of the lapse function is given by
R >
N kT Nm{_w,z{(b,r—FT Q[(1_2w)Q,z_Q¢,z]}
+ (1-29) {qsz L {(1-20) 92 — 400,02 + Q[(1-20) Q... — Q- ]}

a2 tov ] {e sl -2 @) - r%]}

b= 20) 1y { (641010 20) (@4 10,) 10,1 {6, 4 20[1 - 20) 9. — 291} |

+ =20 {2 (1= 20) Q% +rQUQ, (1= 26 — 10,) +7 (1= 20) Q] + b

+ 02 [(1-20) — 4y, — 2] }} P A®g.
(2.129)

For the sake of clarity the linear order terms are underlined in the above expressions. We can
learn from the (! 3)-equation of (2.127) that ¢ = ¢ is only allowed if O, =0or Q, =0. We
now attempt to solve the ADM equations for the first-order case.

¢ Case (A) ¢ = 0 and ¢ # 0 (classical Newton metric)  Let us approximate the above
solutions by just taking the linear orders and for convenience let us assume that Q = Q(r) only.
Then, in case we want to have p # 0, the Hamilton constraint requires the unphysical equation
1 = 0. The momentum constraint yields the equation

(2.130) 3rQ, +1r*Q,, =0,

The evolution equation for i = j gives a Poisson-like equation A®)¢ = 47GS and the i # j
equations read

(2.131) S, = putuy =0, 5% = putuz =0, —¢13= 8rGputus .
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The equations are exactly the same as in the rigidly rotating case above, with one exception
the differential equation for 2 that came out of the momentum constraint (2.130). Here we are
again left with unphysical requirements like p = 0V u° = 0 that make the right hand side of
(2.130) zero, and we can say that at most the test particle scenario with u® # 0 and p = 0 is
viable.

¢ Case (B) ¢ = ¢ # 0 (simplest PN metric) — Here the setting appears at first also very
similar to the rigidly rotated case. But there is the subtle feature in that we have non-vanishing
mixing components goo and ¢°?, which has the consequence that for instance u, can vanish
but u? can be non-zero, as we will see in the following. First, we note that we can have an
appropriate Poisson equation,

(2.132) A® ¢ = 4rGE = 47nGp(Nu°)?,
with both p # 0 and ©«® # 0. The momentum constraint requires both u; = 0 and uz = 0 which
does imply u' = 0 and u® = 0, but also the novel relation

1
(2.133) —§T2A(3)Q(T) — Q. (r) = pNuluy .
Inserting the Poisson equation into the i = j-part of the evolution equation returns S = 0 for
consistency with the Poisson equation. The i # j evolution equation gives to linear order
(2.134) Sty =puluy =0, S% =puPuz =0, S'5=puluz=0.
This, together with S = 0, implies that u?us = 0. But this alone is no problem because of the
mentioned non-diagonality of the four-metric. To linear order we can compute
(2.135) w2 = guout = goou® + gaou® = —(1 — 2¢) 0 u’ + (1 — 2¢)r*u? ~ —Qr?u® + ru?.

So the requirement u?us = 0 allows for a solution us = 0 A u? = Qu° which is consistent with
our initial assumptions on rotating axisymmetric and stationary systems (2.33). Further, from
the momentum constraint (2.133) we obtain a homogeneous differential equation for €2, that is

(2.136) Q. +3rQ, =0.

Note that this is the same equation that we have already seen in the preceding case (A), namely
(2.130); but there we had the unwanted additional constraints p = 0 or u’ = 0. Now, (2.136) is
readily solved, yielding

1
(2.137) Q(r) = 7“_201 + Cs,
with arbitrary real constants C7,Cy. If Ch7 = 0 then we obtain the limit of rigid rotation
Q(r) =Cy =w. If C3 =0 we obtain the rotation curve of the problem
(2.138) Cy=rrQ(r)=v(r)r =Ly,
———

=v(r)
and so C7 can be identified as the total angular momentum of the system. However, there is
a problem with this equation because the obtained rotation curve falls of as 1/r and not as
1/4/r which is the classical Newtonian result. Therefore the linear approximations must be to
naive. In deriving the approximate results for the differentially rotating case we made an linear
ansatz for the metric (2.121). The actual corresponding ADM equations are given to exact
order but due to their complexity we made linear approximations while evaluating them. We
therefore conjecture that the correct evaluation should enfold the full differentially rotated PN
metric (C.3), including quadratic orders, as an ansatz. This introduces numerous additional
components to the extrinsic curvature, because additional mixing terms have to be included at
second order.
Let us summarise some basic points in brief:

e Up to day, there does not exist an applicable general relativistic solution which could
help to realistically model a galactic system.
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Cooperstock and Tieu have recently proposed such a solution, but it has been argued
from various directions that their solution incorporates unphysical features. It remains
an open point whether the CT solution could provide an effective or approximate model
in restricted cases, and to which extent the breakdown of its Newtonian limit might
indicate its usefulness or its difficulties.

We have shown that the CT solution does not belong to the class of the most general
axially symmetric and stationary solutions, the Lewis-Papapetrou class. Therefore the
CT solution is less general and this restriction might be a reason for the problems of
the model.

In the same line we found the surprising fact that the Newtonian metric is not appro-
priate for a weak field limit of the CT theory; the incorporation of a post-Newtonian
potential is necessary to make physical sense.

We applied the full machinery of the ADM formalism to the problem and we derived
the exact 3+ l-equations of motion for the static and for the rigidly rotated PN metric
as well as approximate results for the differentially rotated case. We found that it is
necessary to go to full quadratic order in the potentials of the differentially rotated PN
metric to obtain a viable Newtonian limit, which is not presented here due to ‘finite
time effects’.
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Axisymmetric Effects in the CMB






CHAPTER 3

On the Cosmic Microwave Background

Currently, measurements of the CMB provide one of the most important means toward
high-precision evaluation of cosmological models, particularly the standard ACDM model. In
this chapter we attempt to give a compilation of the main physical mechanisms that contribute
to the CMB radiation. In some detail, we will outline the decoupling of the CMB photons from
matter in the early Universe, as triggered by the process of recombination. Furthermore, we
review and partly derive the standard statistical framework whose equations form the language
in which modern CMB surveys are analysed and discussed. In particular, the CMB angular
power spectrum poses a central observable of the field and we discuss measurements of it, as
well as the explicit assumptions that go into the analysis.

3.1. Overview of Sources of CMB Anisotropy

A remarkable feature of the CMB is that is overall isotropic to a first approximation. This
is only surpassed by the even more remarkable feature that tiny, yet predictable anisotropies
exist. The conditions of the early Universe as well as much of the global physics that has
taken place before decoupling are mirrored in these anisotropies. Physically, it is convenient
to divide anisotropies into two classes: (a) primary ones, which enfold all possible sources of
initial anisotropy imposed on the photon field at around the time of last scattering, triggered
by gravitational or plasma physics; (b) secondary ones, these comprise a conglomeration of all
significant effects the CMB photon can undergo on its long travel towards us along the line of
sight. Basic primary anisotropies [Sch06] can occur as a consequence of the following physical
effects:

e Due to inflation there are inhomogeneities in the primordial density field, and these
force the photons on the surface of last scattering to work against deeper potential
wells here and less deep ones there. In addition to the resulting redshift, there occurs
a gravitative time delay for the photons. This means that, e.g. the energy loss of
a photon climbing out of a deep potential well will be partly compensated by the
effect that it also undergoes its last scattering a bit earlier because of a gravitational
time shift. Within a full general relativistic treatment these two effects always occur
together naturally and are covered by the theory of the Sachs-Wolfe effect.

e The initial inhomogeneities in the primordial density field would translate into pertur-
bations in the according peculiar velocity field, c.f. app. D. Therefore, the electrons
that are mainly responsible for photon scattering, do not solely follow the global ex-
pansion of spacetime but they are also subject to the induced peculiar velocities. This
is the source for a frequency-shifting effect on the primeval photons: as the peculiar
velocity field arises, the electrons that trace the field are subjected to a Doppler mo-
tion at the moment the primordial photons undergo last scattering off them. If, for
instance, the Doppler motion in a certain region of the decoupling plasma happens to
be directed away from the future observers position, then the Doppler effect will take
a bit of the photon’s energy away, resulting in additional redshifting in that direction.

e Before recombination, the primordial plasma is a tightly coupled baryon-photon fluid.
The coupling is due to the free electrons that effectively glue the two fields through
Thomson scattering with the photons and Coulomb scattering with the baryons. Dark

"



78 3. ON THE COSMIC MICROWAVE BACKGROUND

Matter (c.f. chap. 2) is attributed a crucial role also at the early epochs of the Uni-
verse. In regions where there is a condensation of Dark Matter, the density of baryons
would also be higher. More exactly, before recombination and on super-Hubble scales,
the distribution of Dark Matter is well traced by the distribution of the baryons. But
on sub-Hubble scales the effective pressure that is produced by the baryon-photon
fluid becomes sensible and important. With the gravitational pull from Dark Matter
as the driving force, and the pressure of the baryon-photon plasma as the restoring
force, the baryons undergo acoustic oscillations®. The baryon oscillations correspond
to elongations and compressions in the baryon fluid which, in the adiabatic case, cause
the oscillating region to become colder during elongation and hotter during compres-
sion. Now, before recombination, photons are tightly coupled to the baryons, forming a
baryon-photon fluid and therefore the adiabatic perturbations are imposed on the pho-
tons too; this makes the photons accordingly hotter if they last-scatter from a region
of adiabatic compression and cooler if last-scattered from a region of adiabatic elon-
gation. At recombination this effect of the baryon environment on the photons in the
pre-recombination phase suddenly freezes, becomes visible and contributes additional
CMB anisotropy.

e But the coupling of photons and baryons is not exact. Rather, the photons do have
a finite mean free path which leads to photon dissipation on small scales. On these
scales the restoring force, which was provided by the pressure support, on the baryon
oscillations disappears and the fluctuations are effectively washed-out. This damping
mechanism, due to photon dissipation because of the finite shear viscosity and heat
conductivity of the fluid, is referred to as Silk damping. Due to Silk damping, on all
scales smaller than roughly ~ 5, there remain only tiny fluctuations. A more detailed
estimate on the effective scale of Silk damping can be found in app. D.3.

Let us shortly summarise. As primary CMB anisotropies we so far have: the Sachs-Wolfe effect;
frozen Doppler velocities and adiabatic baryon oscillations. But also damping of fluctuations oc-
curs, namely through the process of Silk damping. Of course, the first three of these mechanisms
are not independent of each other.

Let us add a comment explaining why the oscillations in the baryon-photon plasma are
possible. After matter-radiation equality =~ which is at around zeq ~ 23900Q,,h*  the overall
energy density of matter exceeds that of radiation. But when looking only at the baryon-
photon fluid, the radiation energy density is the dominant component in this fluid and so we
can treat it as a relativistic fluid. That implies that the sound speed is around ¢ ~ \/;% ~
¢/V/3 and so the large pressure in the fluid makes oscillations possible. As mentioned, the
gravitative force due to the Dark Matter provides the driving force and the baryon-photon
pressure gives rise to a restoring force in the oscillator. The adiabatic oscillations translate
into temperature anisotropies which are observable on the microwave sky today. But there is
a natural size limit for the oscillations. Since the speed of sound is around cg ~ c/\/g, there
exists a maximal wavelength, the sound horizon, which possibly could have been covered by an
acoustic perturbation up to the time of last scattering:

(3.1) /\SH ~ trCCCS = TH(th)/\/g ~ 10.

8Let us comment on the growth of the baryon perturbations. Still during the radiation dominated epoch,
there would be a moment when the baryonic and Dark Matter perturbations enter the horizon. Then, on
the smaller (causal) scales the pressure support stops the baryon perturbations from growing further, so that
the Dark Matter perturbations can go ahead of the baryonic ones. That is, for subhorizon modes the growth
of perturbations is in competition with the effective pressure from the baryon-photon fluid and is eventually
compensated. At the same time, Dark Matter is not strongly coupled to photons and grows untroubled from
matter-radiation equality, aeq, on. One can estimate [Pad02] that the Dark Matter perturbations have the
chance to grow by a factor of 2 20 in the period aeq < a < age. while the baryonic perturbations are tamed
during that phase. However, after recombination the photons are no longer strongly coupled to the baryons and
become free-streaming. This, after some time, unlocks the growth of baryon fluctuations, being driven by the
Dark Matter perturbations, and eventually catching up with the latter.
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As we will see, this scale corresponds to the first acoustic peak in the angular power spectrum
of the CMB and is a directly measurable cosmological observable.

Next we continue with a list of sources [Sch06] that are important for secondary CMB
anisotropies:

e Due to the lack of an absorption threshold in the Lyman-a spectra of very distant
quasars up to z ~ 6 together with constraints on the baryon abundance from primor-
dial nucleosynthesis it is concluded that the intergalactic medium in the Universe
today is highly ionised. Recent CMB analyses set reionisation at around z ~ 10
and so from this epoch on, there must be free electrons present in the extragalactic
medium®. Then CMB photons can again scatter off these electrons via Thomson scat-
tering. Because the CMB is isotropic around any scattering centre, the rescattered
CMB radiation that we would measure, does not contain information on the primor-
dial temperature anisotropies anymore. Rather these photons represent an additional
component with random directional origin, i.e. an isotropic background to the CMB
with a mean temperature that equals the CMB mean temperature. The result is a
decrease in the temperature anisotropies by the fraction of photons that undergo such
late Thomson scattering.

e While the photons are on their long travel through the Universe, toward the measur-
ing instrument today, the surrounding large-scale structure is in a process of dramatic
gravitative evolution. This evolution is due to the vast processes of structure forma-
tion, c.f. app. D. As a consequence, the gravitational potentials that the photons are
traversing are not stationary. This environment will induce a net effect on the photons
because of the large scale of the gravitative effects. Let us explain this in more de-
tail. Imagine two CMB photouns, coming from two different directions to us. The first
photon, say from direction 7 , would travel through a gravitational potential, and the
second one, say from direction ny would travel undisturbedly. Now, assume that the
potential wells in the line of sight were stationary, then there would be no difference in
frequency of the two photons. That is because the net effect of the potential is zero for
the first photon, for it looses exactly the same energy while climbing up the potential
well it has gained before while falling into it. This is not true anymore in case of a
potential that varies at time scales comparable to the traversing time of the photon.
Exactly such a setup is realised during structure formation — and as we will see below
this is also likely to happen at low redshifts and so additional anisotropy is induced
to the CMB. This is called the Rees-Sciama effect. In the case of an Einstein-DeSitter
Universe, one can show that the peculiar gravitational potentials are constant with
time and no Rees-Sciama effect occurs. Notably, in other cosmological models this
effect exists and cannot be neglected. Often, the conglomeration of any linear gravi-
tative effects a CMB photon can undergo after recombination on the line of sight, are
summed under the notion integrated Sachs-Wolfe effect.

e Due to the gravitational lensing of CMB photons from the cosmological field of density
perturbations, there will be a directional distortion in the line of sight to the last

bErom observations we know that the gas in the intergalactic medium is highly ionised at low redshifts. Let
us explain this finding in further detail. Assume this was not so, assume the intergalactic hydrogen would be
neutral. Then we could never observe ultraviolet radiation from far-away sources; this is because due to continuous
redshifting, at least somewhere in the line of sight, the photons would reach a wavelength of Apyq ~ 1216A and
would be absorbed by the neutral hydrogen with a high probability. The probability is high because the cross
section for photoionisation of neutral hydrogen is significantly high for photons with wavelengths near the Lyman-
a line. This is called the Gunn-Peterson test. In fact there exist sources (quasars) at z 2 6 from which we can
even see light from the blue side of the spectrum with respect to the Lyman-« line. Therefore the Universe
must have become reionised somewhere between z ~ 1100 and z ~ 6. The times between last scattering and
reionisation are sometimes called the ‘Dark Ages’ and it is speculated that reionisation was made possible by
the very first generation of stars or active galactic nuclei. Direct measurements of the Gunn-Peterson trough for
objects z > 6 are subject to current debate. However, recent WMAP measurements [ST07] of the CMB suggest
that reionisation occurred at a redshift of z,ejon = 11.3.
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scattering surface. Without that effect, an angular separation of # would correspond

due to the angular diameter distance (1.38) to a distance of Da(zrec)f at the
surface of last scattering. Taking the lensing distortion into account, this angular
distance will be slightly different. This effect results in an effective smearing of the
temperature fluctuations, observable on small scales in the correlation function of the
CMB anisotropies.

e If CMB photons happen to go through a galaxy cluster in the line of sight, in which
there is a very hot (ultrarelativistic) intra-cluster medium, they can undergo inverse
Compton scattering. This is the Sunyaev-Zel’dovich effect. In such directions there
will be a distortion in the frequency of the CMB photons in so far as they would gain
some energy on average through the scattering off the very energetic electrons in the
galaxy cluster medium. In fact, the CMB intensity shows a decrease in the low energy
part and an increase on the higher energy side of the spectrum. Therefore, when
observed at a frequency interval that is large enough, the Sunyaev-Zel’dovich effect is
well distinguishable in the CMB data.

3.2. Recombination

Recombination is a somewhat misleading term. At recombination the primordial plasma has
cooled down so far that neutral atoms could be formed. In the Big Bang picture the temperature
of the Universe goes as T'(z) « (1 + z), and so, before the time of recombination there was no
possibility for stable neutral atoms to be present; the Universe was fully ionised ever before. The
term ‘recombination’ can be understood merely in a historical sense: it refers to the process of
recombination in HII regions, c.f. [Pea99]. HII regions are high-temperature regions containing
hydrogen — and also helium — and can be found in the vicinity of stars. In a continuous process,
the hydrogen first becomes fully ionised by the ultraviolet radiation from the stars, after which
the electrons and the ions find each other again, emitting recombination radiation, before they
become photoionised once more and so on. Below we present a description following Schneider
[Sch06] and Peacock [Pea99].

Because of the very hot and dense environment, the formation of nuclei is possible within
stars. Similarly, there should be a period in the early Universe where nuclei were formed for the
first time; this is described within the model of Big Bang Nucleosynthesis (BBN). BBN ends at
a temperature of around T ~ 8 x 108K, or approximately after three minutes. After BBN the
particle content of the Universe is basically given by electrons, protons, helium nuclei and traces
of other light elements, neutrinos, photons and possibly the particles that form Dark Matter, the
Weakly Interacting Massive Particles (WIMPs). Apart from the WIMPs and the neutrinos, all
particles have roughly the same temperature; this is because of the relatively strong interaction
of the photons with the charged particles, and so a kind of thermal bath is realised.

Before the instant of equality at zeq ~ 23900Q,h?, the energy density and therewith the
rate of expansion of the Universe are dominated by the radiation, that is by the photons and
the neutrinos. After equality, the matter — we approximate it as dust — starts to dominate
the energy density and the expansion rate of the Universe. In the Friedmann equation (1.16),
this implies that the first term becomes dominant and we can make the crude simplification
H? ~ H¢Qma3. From tab. 1.1 we already know the solution to this differential equation; for
matter domination the scaling is

3 2/3
(3.2) a(t) = (iﬂgr{?Hot) within = a@eq < a < 1.

This scale behaviour is valid as long as either the curvature term or the cosmological constant
is dominant.

As the Universe expands further, after equality there will be a period when the free electrons
can combine with the ions to form neutral atoms. But, of course, there is a competing process
to this, namely the photoionisation of neutral atoms through high-energy photons. Also, there
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equality a now

FIGURE 3.1. Schematic depiction of matter and radiation decoupling. The decou-
pling is no instantaneous process. Before recombination, baryons and photons form
a tightly coupled fluid in which acoustic oscillations take place. Some time after the
radiation and matter equality at around zeq =~ 3000, the recombination of electrons
and ions as described in detail in the text sets in. At around zrec ~ 1088 the
baryon-photon fluid becomes transparent for the first time. This gives rise to a last
scattering surface from which on photons are free-streaming, and we are able to ob-
serve a snapshot of this primeval decoupling today which itself has a finite thickness
of around z ~ 60. The picture is taken from [Les04].

is another competing ionisation process due to collisions. But this can be neglected because the
ratio of baryons to photons 7 is very small, namely only of the order 10~%, see also app. E on
BBN. Note that the temperature of the Universe has to drop to a value well below the ionisation
temperature if neutral atoms are to be formed efficiently. The reason for this is that, yet at
the ionisation temperature there are photons in the Wien tail of the Planck spectrum that are
energetic enough to break the formed atoms via photoionisation. Since there are so many more
photons than baryons the Wien tail is still populated densely, making the effect significant. As
is well known, the energy needed for ionisation of hydrogen is y =~ 13.6eV, corresponding to a
temperature of ~ 105K (recall, 1eV~ 1.161 x 10*kgK). Now, the fractional ionisation is the ratio

number density of free electrons

3.3 =
(3:3) * total number density of protons

Because of the above mentioned stubborn photoionisation from photons in the tail of the Planck
distribution, the temperature of the Universe has to drop to a value of T" ~ 3000K before the
fractional ionisation significantly drops below one. For instance, at temperatures 7' > 10*K, the
fractional ionisation is still roughly equal to one, implying that nearly all electrons are free. At
a redshift of around z ~ 1300, a significant deviation of x from unity can develop.

It would be good to have a robust, quantitative estimate on when recombination has begun.
As a first step we consider Saha theory, from which the following ionisation formula stems

1- ksT \ /2
(3.4) BN 3.8477( b 2) X/ (ks T)
T MeC

The Saha equation is a thermodynamic equilibrium equation and it describes the behaviour
of the ionisation fraction as a function of temperature. Plotting the function reveals that the
ionisation shows a rather sharp decrease, going from unity to nearly zero in a temperature
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interval of around 2500K- 5000K [Nar02|. That is, if the Saha theory is all we need to describe
the recombination, the cosmos would become transparent at these temperatures, since the main
scattering partners, the free electrons, are ‘removed’ from the primordial plasma.

However, there is a loophole in the above argument. As we will see, once the process of
recombination has started, the assumption of thermodynamic equilibrium becomes invalid rather
fast. Consider a recombination directly to the ground state of the hydrogen, then a photon with
energy hv > x is emitted. Such photons are of course problematic for the recombination since
they can reionise other hydrogen atoms. In fact, they do reionise other atoms with a high
probability because of the large cross section of the photoionisation process. Hence, for every
recombination there is a reionisation, such that the net effect is zero. Recombination shall
happen stepwise: first a recombination into an excited state, whereupon the atom undergoes
successive radiative processes and eventually arrives at its ground state. But there is a problem
also with this picture. For every such stepwise recombination there will be an emission of a
Lyman-« photon from the last step of the process, the transition from the first excited state to
the ground state 2P— 1S with A\ = 1216A. The resulting Lyman-a photon would immediately
lift an atom in its ground state to its first excited state. Since for this atom the ionisation energy
is not x but only x/4 and because there are much more photons with energies of x/4 than there
are with x, such atoms can be reionised even easier, which actually also happens. One can say
that recombination radiation leads to small distortions in the Planck spectrum which in turn
makes the recombination more difficult; the recombination suppresses itself through the above
processes. Nevertheless, in gas clouds or HII regions, recombination can still happen in this
way, since the unwanted Lyman-a photons dissipate because of the finite extent of the regions.
Recombination in an infinite Universe seems much more problematic.

So it seems that recombination might not be possible at alll How can we circumvent this
absurd finding? There is only one way out: in the end it turns out that recombination can indeed
occur, namely via the scarce process of two-photon emission. Although the two-photon decay
happens 10® times rarer than the direct Lyman-« transition, this process finally succeeds in
transferring the ionisation energy into photons with wavelengths A > Ary4, and so the produced
radiation does not have enough energy to eventually excite an atom from the ground state.
In fact, the transition 25— 18 is strictly forbidden at first order in perturbation theory. But
with the emission of a pair of photons, angular momentum and energy can be conserved. Being
of second order, the process is very slow — with a lifetime of around ~ 0.1s — so that the
recombination is also slowed down as it has to pass this bottleneck. Therefore the actual rate
at which recombination happens is completely different from the prediction of the equilibrium
(Saha) theory.

Let us consider a much simplified model, a world where the hydrogen atom has only the
two levels 1S and 2S. We can just ignore any chain of recombination that reaches the ground
state because the produced photons will cause reionisation elsewhere and the net effect is zero.
Because of the above, we shall focus on recombinations into the 2S state. Some of the atoms in
that state would undergo two-photon decay before they become excited again. Then the rate of
change of the ionisation fraction follows

d(npr)
dt

Iy,
FZ'Y + Fup(T) ’
1/2

(3.5) = —R(npr)?
with n, being the number density of protons, R ~ 3 x 10~"7~Y/2m3s~! the so called recom-
bination coefficient, the two-photon decay rate I'y, and the ‘upward transition rate’ T'y,(T)
of transitions from the 2S level upwards due to stimulated emission. In our simplified picture
recombination is a two-body process after which excited states remain, which subsequently un-
dergo a decay cascade until the 2S level is reached. Then, starting from the 2S level, there will
not only be downward decay but also stimulated upward transition. These two transitions are
in a competition whose outcome will fix the effective number of downward transitions which is
the relevant one for recombination. Peebles [Pee93| offers a more detailed treatment in which
the depopulation of ground states by inverse two-photon absorption or the redshifting of the
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FIGURE 3.2. Spectral distribution of the CMB plotted as intensity vs. wavelength.
The data points lie perfectly on a black body spectrum peaking at around 160GHz.
Besides data from the COBE mission [MCC'94], there is also data shown from a
rocket experiment (UBC Rocket) [GHW90], ground based experiments (LBL/Italy)
[SBLI1]|, (Princeton) [STWWO95| as well as spectroscopy of the rotational excitation
of cyanogen [RM95]. Picture is taken from [Smo97].

Lyman-« radiation by cosmic expansion is also taken into account. However, as long as we
look at relevant redshifts of 10-1000, these effects shall not significantly affect the basic results
of our simplified consideration. Note that the rate equation (3.5) obeys a simple scaling. The
right hand side involves I'y, and R, both are functions of only temperature (redshift). Hence,
parameter dependence is only carried by nf, which scales as (2,h%)? on the right hand side,
and accordingly the scaling is proportional to Qp,h% on the right hand side. It is convenient
to express things in terms of redshift, and so we can use the following transformation valid for
matter domination and at large redshifts:

dt

(3.6) o~ —3.09x 1017 (Qh?)~1/2275/2
Combining this with the aforementioned, we obtain a scaling law for the fractional ionisation:
(th2)1/2

Note that this scaling is completely different as the one obtained from Saha theory.

In order to solve the rate equation we consider late times; that is we restrict to times when
the Universe has cooled so far that we can neglect excited transition of the 2S states. The rate
equation then becomes

dln z Qph?
3.8 — ~ 60— .
(3:8) dln 2 (Quh?2)t/2
Recall that for this equation we have neglected the cosmic expansion and so the equation is not
valid anymore when the left hand side becomes less than unity.
Now, one can include all relevant effects and solve for the ionisation fraction in the redshift

interval interesting for recombination, 800 < z < 1200 . It is found that the ionisation fraction
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may be well approximated by the criterion [JW85]

(Quh?)'/? 2 \12.75
Qph? ( 1000)

From (3.9) we can learn that the ionisation fraction has a very strong redshift dependence; that is,
the redshift changes over a rather small interval while the ionisation fraction changes drastically:
from 2 = 1 (complete ionisation) down to z ~ 10~* (nearly complete recombination). The fact
that the ionisation does not go to exactly zero reflects the influence of cosmic expansion that
we neglected before. At small values of the ionisation fraction the rate of recombination drops
below the rate of expansion of the Universe: then it happens that some ions do not have enough
time to find themselves a partner electron to recombine with before the density of the Universe
becomes too much diluted. Plugging (3.9) into the formula for the optical depth as due to
Thomson scattering, one obtains the important result

(3.10) T(z) = /TLeJJUle ~ 0.37 (

(3.9) 2(z) 24 %1073

2\ 14.25
1000) ’

where we integrated over the proper distance [ along the line of sight. The remarkable point
is that in the expression for the optical depth, the cosmological parameter dependence cancels
out. The reason for that is the scaling of the fractional ionisation (3.9) that came out of the
rate equation. Again, 7 is very sensitive to changes in z and so the last scattering shell is a
rather sharp transition. The distribution function e~ "dr/dz for the last scattering redshift can
be expressed by a Gaussian with mean z ~ 1088 and a standard deviation z ~ 60. This is the
reason why we observe a very uniform primordial radiation from an almost synchronous emission
surface (‘snapshot’) in the early Universe: the last scattering surface. The redshifting during
the billions of years the photons have travelled since then has brought the CMB radiation into
the microwave band, where it was first observed by Penzias and Wilson in 1965 [PW65].

The spectrum of the CMB radiation is a Planck spectrum. In fact, its spectrum was first
accurately measured by the Far Infrared Absolute Spectrophotometer (FIRAS) mounted on the
Cosmic Background Explorer COBE satellite [MCCT94|, and is the best black body spectrum
ever obtained from a real measurement, see fig. 3.2. Let us shortly derive how an initial Planck
spectrum for the primordial radiation keeps its form during the evolution of the Universe. Con-
sider a Planck spectrum of photons at an initial temperature Ty at time to, then the function

2hv? 1
2 chv/(keTo) _ 1

(3.11) B, (Ty) =

measures the black body surface brightness; here h is of course the Planck constant, not to be
confused with the normalised Hubble parameter. The surface brightness is the luminosity that
goes through a unit area during a unit time interval, per unit solid angle and unit frequency
interval. Then the number density of photons in a frequency range between v and v + dv is
given by

dN, 4m B, 82 1

dv  he v 3 ehw/(ksTo) _1°

Now let us consider an instant ¢; > tg, in which the Universe would have expanded by the factor
a(ty)/a(ty) and an observer sees the initial photon redshifted by the factor 1+ z = a(t1)/a(to) .
Accordingly, an initial frequency interval dv is being redshifted to dv/ = dv/(1 + z). Since we
are within matter domination, the number density of photons is diluted with =3 (c.f. tab. 1.1)
and so dN/, = dN, /(1 + z)3. Therefore, the number density of photons in the frequency range
between v/ and v/ + dv/ becomes

dN), dN,/(1+2)* 8 1 (14 2)%0? 8’2 1

A dv/(+z2) B (1t 22 /T —1 3 eh//heT) — 17

and so the form of the Planck distribution is left invariant under global expansion; only the
temperature Tj is replaced by the redshifted temperature Ty = Ty(1 + z). Thus, since we

(3.12)

(3.13)
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observe the spectrum of the CMB to be the one of a black body today, we can extrapolate that
it has had this form up to distortions due to additional physics ever since last scattering.

Note that, although there is a very small offset between the instant of recombination and
the eventual effective decoupling of the primordial photons, we are using 2. throughout this
work to denote the instant of last scattering.

3.3. Observables of the CMB

In the course of sec. 3.1 we got to know the basic mechanisms that are responsible for the
CMB anisotropy. The next question is, how the main physical effects translate into quantifiable
observables. In sec. 1.3.3, we have anticipated a basic part of the answer: the (integrated)
Sachs-Wolfe effect. The Sachs-Wolfe formula parameterises the influence of the most important
primary and secondary sources of the CMB temperature anisotropy AT /T, which is a physical
observable accessible through differential measurements. What remains to be done is to find
a statistical framework of the temperature anisotropies that is convenient and suitable for the
comparison of theory and experiment. In order to do this accurately, one must cope with the
fact that the approximation of the matter-photon medium as a perfect fluid breaks down after
recombination. An adequate treatment then involves the solution of the corresponding kinetic
equation, the full Boltzmann equation for the photon distribution function. Seljak and Zaldar-
riaga [SZ96] have developed a publicly available FORTRAN code, called CMBFAST [CMB], that can
be used for state-of-the-art computation. Here we restrict ourselves to a basic understanding of
the CMB power spectrum and its use for phenomenology. However, see for instance [HS95] for
an exhaustive discussion.

3.3.1. Fourier Analysis of the Temperature Power Spectrum. How can we relate
the three-dimensional density perturbations from inflation to the two-dimensional temperature
field that we observe in the CMB? The density perturbations — see also app. D — are characterised
by their power spectrum P(k) from equation (1.29). Sometimes the power spectrum is expressed
as [Pea99]

v
(27)?

for a given volume V. The quantity A?(k) is dimensionless and has the interpretation of the
variance of perturbations per interval of Ink; that is, A%(k) = (6%) 1 o< k*P(k) . For instance
if we had A2(k) = 1 this would mean that, per logarithmic k interval, there are density pertur-
bations of order unity. Here, we consider a simplified Fourier analysis following [Pea99]. The
simplification is provided by the assumption of local thermodynamic equilibrium of the primeval
photons as well as the assumption of spatial flatness — this will be a good approximation for
intermediate scales.

Given an observed intensity I, , the brightness temperature is the temperature a black body
would need to have in order to radiate that intensity. Therefore one can invert the Rayleigh-
Jeans law to define the brightness temperature as

I,
3.15 Ts = .
(3.15) B= g0
Now, we can think of the measured CMB as a two-dimensional random field of anisotropies in
the brightness temperature. Consider a patch of the two-dimensional CMB sky of side L, but
being small enough to be flat. It is useful to introduce the Fourier transform of the fractional
temperature differences,
AT L? - 1 AT -
—(X) = [ Tke "®XP’K and Tx(K :—/— X)eKXa2x.
T ( ) (27_‘_)2 / Ke an K( ) L2 T ( )e
Here, by K and X we denote two-dimensional vectors of position and wavenumber respectively,
and moreover the temperature anisotropy AT /T is a central quantity of CMB analysis, being
defined as AT/T = (T(0,¢) — Tp)/Ty with the monopole background temperature Ty .

(3.14) A?%(k) = 4rk3P(k),

(3.16)
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In analogy to the treatment of the three-dimensional density perturbations, we can write
down a dimensionless power spectrum of the temperature fluctuations in two dimensions

L2
3.17 Top = —— 21K Tk |*.

( ) 2D (27_(_)2 | K|

Similar to (3.14), but now in two-dimensions, this is a measure of the variance in the fractional
temperature differences of the CMB, coming from modes of unit length in In K. In fact, the
Fourier transform of the temperature power spectrum yields the two-point correlation function

Jo(K¥6
(3.18) C(0)2p = /TgD(K)% dK ,
which is the observable we were looking for. Jy denotes the Bessel function; it enters the formula
via the angular part of the Fourier integration.
We can reconstruct the two-dimensional temperature fluctuation field from the actual three-

dimensional one by integrating over the optical depth at last scattering and over the wavenumber,

AT 1% .
(3.19) T G //T,S’De_“”d?’k e Tdr.
The optical depth expression can be approximated by a Gaussian with
(320) e_TdT X 6_(T_TTQC)/(2U£) drr ,

and 7 being the comoving radius. This means that the central distance to the last scattering
shell is given by 7, which in turn can be approximated by the Hubble radius because of the
high redshift of the last scattering shell. Above, we already used an estimate for the thickness
of the last scattering shell of z ~ 70. In fact one can show [Pea99] that the thickness can be
expressed as
TMpc

(321) Op = W .

Applying an analogous definition to the spatial temperature power spectrum as in the two-
dimensional case, we can write

|4
3.22 Tip = —=K?|Tk|*.
( ) 3D (27_(_)3 | K|
By equating the respective two-dimensional and three-dimensional two-point functions, one
obtains the final projection formula [Pea99]

dw

This projection formula finally represents the relation between the two-dimensional and three-
dimensional temperature power spectra. The two-dimensional power spectrum receives contri-
butions from all the three-dimensional modes with wavenumbers smaller than K , the other
modes are integrated out. Therefore, what the projection effectively does is smearing. Through
smearing one gets the two-dimensional temperature spectrum from the three-dimensional one.
Any feature present at a certain scale in the spatial field can be found at the very same scale
in the projected spectrum. Also note that, as long as ‘TgD is not a very strongly increasing
function, the damping term will cause the integral to be dominated by the contribution around
w = 0. If this is not the case, the finite thickness o, becomes relevant.

In sec. 3.1 we discussed various sources of CMB anisotropy. Now we need some quantitative
expressions for the anisotropy contributions. We consider only some of them in order to obtain
a first picture of the standard interpretation within synchronous and comoving gauge.

(3.23) 72, = K> / T2 (K2 + w?) /2] e~w'e
0

e Sachs-Wolfe source — Perturbations in the primordial density field cause anisotropy
via: (a) additional redshifting of the photons that are climbing out of potential wells,
(b) time dilation of photons because of the gravitative perturbations. The full general
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Ficure 3.3. A Mollweide map of the intrinsic CMB temperature anisotropies
[0(107°)] as derived from three years of WMAP mission data. Here, red colours
indicate warmer spots and blue colours indicate colder regions. A superposition tech-
nique the Internal Linear Combination (ILC) has been applied to the raw data
in order to subtract astrophysical foregrounds. The ILC method introduces free co-
efficients that are fitted in order to find a maximally clean map, with the constraints
that the variance of the resulting map is minimised and, at the same time, the am-
plitude of the signal is preserved. Other (more obvious) cleaning has to be done in
addition: removing the dipole contribution fig. 3.4 and the large Milky Way contam-
ination, c.f. fig. 4.4 a slice of ~ 30° is cut away to both sides of the equator and is
to be reconstructed properly. Provided the cleaning techniques work at the required
accuracy, the residual tiny anisotropies are of cosmological origin; they represent a
snapshot of the primeval quantum fluctuations frozen out in the early Universe. The
picture is taken from [WMAal.

relativistic perturbation calculation reveals that the net result is exactly one third of
the Newtonian expression, that is

AT\*Y A
( T ) 32
The factor of 1/3 is non-intuitive; it can be shown [HPLN02| that it is a peculiar
prediction from GR, and cannot be obtained from any kind of Newtonian reasoning.
Moreover, the factor is unique also concerning the physical setting (standard model
plus adiabatic perturbations). In particular, taking an isocurvature setting, the result-

ing Sachs Wolfe contribution is AT/T = 2A¢. The corresponding Fourier-expanded
expression is

TSW _ _Q(l + Zrec) & 2 5k(zrec)
k 2 c k2

Doppler velocity — The electrons, off which the photons last scatter, are subject to
induced peculiar velocity, which results in an additional frequency-shift. The resulting

anisotropy is given by
AT\™Y v
T e

and the according result in Fourier space is

Hyg ) 05 (#rec)

C

TPV = —i[Q(1 + 2ree )] /2 ( ;
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(3.28)

(3.29)
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FIGURE 3.4. The uncorrected dipole as measured with COBE shown in Mollweide
projection. This distribution is interpreted as being the result of the Doppler effect
induced by our local motion against the CMB rest frame. Our velocity vector is the
end result of a superposition of various peculiar velocities up to the last scattering
surface; its magnitude is ~ 370km/s. The temperature excess arising from the dipole
is ~ 3.3mK and can be used for calibration. The picture is taken from [WMAD].

e Adiabatic source Because of their tight coupling before recombination, any adiabatic

perturbations in the matter-radiation density are likewise imprinted on the photons
too, resulting in additional anisotropy. The respective formulae read

(£>AS 0z (5p and TkAS _ 5k(zrec) )

_1+z: p

T N 3

Isocurvature source  As opposed to the adiabatic perturbations, the isocurvature
perturbations allow the entropy to vary. In the adiabatic scenario all the different
energy species undergo a common density perturbation. Isocurvature perturbations
are defined as an initial condition, which states that there do not exist any deviations in
total energy density from the background at the initial time. Therefore the curvature
is spatially constant and so the name becomes clear. A formal means to define an
isocurvature setting is given by d — 0 while t — 0 [MFB92|. Here P is the gauge
invariant version of the metric perturbation in (1.92). The gauge invariant Bardeen
potentials ® and ¥ are constructed from (1.92) as follows

1 ~
b=+ —[(B-E,a, , ¥=V-"2(B-E,),
a a

where 7 denotes conformal time as usual. An example of an isocurvature setting would
be to initially distribute different species — like baryons and photons — inhomogeneously
but adjust the total energy density in a homogeneous way. As it is pointed out in
[MFB92], isocurvature modes are predicted by some axion models, models with topo-
logical defects (e.g. cosmic strings) or some exotic inflationary models. Experimentally,
isocurvature modes cannot be excluded fully, but stringent bounds on such admixtures
can be given, especially concerning the cross-correlation of CMB and large-scale struc-
ture, as well as from the CMB alone, as is shown in [KS07] or [Tro07]. However, we
will omit this component in our discussion.
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Including these sources of anisotropy, the three-dimensional temperature power spectrum is
given by [Pea99]

(3.30) Tip = | (fas + fsw)? (k) + fRv (B)(k - )% | AR (2rec)
with the dimensionless factors f parameterising the different sources as
2 2 1
3.31 =——Q = — =—.
(3.31) fsw (RDER Jov D fas 3
Here Dij¢ denotes the Hubble horizon scale at last scattering
2c

3.32 Drec = 14 20ee) " V2 ~ 184(Qh2)~ Y2 Mpe.
( ) H p

02 H
Equation (3.30) provides the final answer to the question of this subsection. It relates the three-
dimensional temperature power spectrum to the three-dimensional matter power spectrum. The
two-dimensional temperature power spectrum is connected to the three-dimensional one via
the projection (3.23). The analysis is done in Fourier space. The three basic sources of CMB
anisotropy we considered here become significant on different scales. Since the comoving Hubble
scale amounts roughly to ~ 300Mpc at last scattering, we can learn from (3.30) that the Sachs-
Wolfe term is vital at wavelengths larger than ~ 300Mpc. Going to smaller scales, first the
Doppler term becomes dominant, and eventually the adiabatic fluctuations take over at small
scales.

3.3.2. The CMB Angular Power Spectrum. The preceding formalism relies on the
assumption of flatness; both flatness of the three-space of the Universe and flatness of the con-
sidered patches of the CMB. For several reasons, the simplified treatment breaks down, as being
too naive, both on the smallest and the largest CMB scales. Here, we want to shortly review
the modern standard toolkit for an adequate statistical comparison of CMB measurements with
theory, following [Lon98] and [CHSSO07].

The information we receive in form of CMB photons from the epoch of decoupling, is a
temperature field distributed on the inner surface of our last scattering sphere. From quantum
mechanics, it is known that the appropriate machinery for expanding physical functions that
live on a sphere is provided by the analysis of spherical harmonics. The spherical harmonics
provide the correct basis in which we can attempt to expand temperature anisotropy recorded
over the whole CMB sky. We can write

co m={

(3.33) %(&aﬁ) =3 amYem(0,9),

=0 m=—/¢

with expansion coefficients ag,, , containing all the physics, and the spherical harmonics Yy,, (0, ¢).
For the latter, we note the following normalisation involving the associated Legendre polynomials

241 |m)]? i (=)™  for m>0
(3.34) Ym(&@—[ i ((+|m|)! P (cost) ™ x 1 for m <0

The (associated) Legendre polynomials can be found tabulated, for instance in [AS72]. Ac-
cording to this normalisation, the spherical harmonics are a set of orthonormal basis elements
with

(3.35) /Ygtn Yo dQQ = 5@[! 5mmf ,

where the &g, is just the Kronecker delta and df2 stands for the full element of solid angle.
Hence it is possible to reconstruct the coefficients agy,, by inversion,

(3.36) oim = [ S 0.0)75,00.
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It is very useful to understand how the multipole power in a spherical harmonic of multipole
¢ relates to the according portion of angular power at a scale §. Longair [Lon98] argues that
the roots of Re(Ys,) and Im(Yy,,) provide a lattice structure on the sky that divides the field
into approximately rectangular patches. When looking at that sky from low latitude (6), the
minimal sides of the patches are well approximated by 7/¢. On the other hand, when departing
from low latitude — moving to the poles — the roots of the azimuthal parts sinm¢ and cosme
cluster more and more close to each other. But this is compensated by the associated Legendre
Polynomials, since they approach zero in these regions. Together, this leads to the remarkable
fact that to every spherical harmonic a unique angular resolution can be attributed

(3.37) 0 ~ 7

Now we come to the issue of Gaussianity. We discussed above, that the standard inflationary
model predicts fluctuations that are among other requirements purely Gaussian. This is
because, in the inflationary view, the initial perturbations in the density of the early Universe are
provided by pure quantum fluctuations which are frozen out. With Gaussianity, it is meant that
the phases of the waves that constitute the harmonic decomposition (3.33), are purely random.
The assumption of Gaussianity leads to a couple of appealing simplifications. Nevertheless,
there are models that predict non-Gaussian features in the CMB. Such are for instance models
with topological defects like cosmic strings or cosmic textures as well as complicated inflation
models.

Assuming Gaussianity of the CMB fluctuations implies that fluctuations are superimposed
from waves with random phases. Therefore each of the expansion coefficients in (3.33) provides
an estimate of the amplitude contained in the considered fluctuation mode. Because there are
(20 + 1) coefficients ag,, per multipole ¢, one obtains an ensemble of amplitude estimates over
which we can simply average, if we further assume the statistical isotropy of the temperature
anisotropy field. Statistical isotropy implies that the power spectrum is circular symmetric
around any point on the sky and consequently we can construct a well-defined estimator for the
power of a multipole by taking the mean of ag,,aj,, and performing an all-sky average,

1 ,
(338) Cg = m ; ApmQpyy, -

The bulk of current CMB analyses is well consistent with Gaussian temperature anisotropies;
the quantities that are found suitable for probing non-Gaussianity, as predicted by some non-
standard models, are the bispectrum (three-point correlation function of the ag,y,), trispectrum,
analyses of the Minkowski functionals as well as other machinery, see e.g. [ST07, CT06b| as some
representative studies. From the side of model-building, non-Gaussian features appear rather
naturally in the predictions of more involved models, like multi-field inflation. It is speculated
that non-Gaussianity may be detectable with future experiments that reach higher accuracy.
The according theoretical tools for analysis do exist already, see e.g. [FS07|. However, it should
be noted that there are studies that claim to have detected departure from Gaussianity [BTV07].
Moreover, we note that — only in case of statistical isotropy of the microwave sky — we can write
the ensemble average over the product of spherical harmonic coefficients as [CHSS07]

(3.39) (g aorme) = Cp g dmm:

As for the point with statistical isotropy, the whole next two chapters of this thesis will be
concerned with the analysis of existing evidence — the so called low-¢ CMB anomalies — indicating
violation of statistical isotropy on the largest angular scales in the CMB.

Let us proceed further with the standard statistical framework of temperature anisotropies.
The approach we pursued above was to first define the angular power spectrum of fluctuations
(3.38), which represents, in case of Gaussianity and statistical isotropy, a complete statistical
description of CMB anisotropy [Lon98]. An equivalent approach is to start with the definition
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FIGURE 3.5. The temperature power spectrum of the CMB (3.38) against angular
scale from two different experiments. Left: the binend measurement of the angular
power spectrum from three years of WMAP data. The red curve is the ACDM best
fit and the bluish region indicates cosmic variance. Right: power spectrum from
ARCHEOPS, a balloon borne experiment that took data at around 40km in altitude.
The data points have been rescaled (x1.07) for comparison with the WMAP(1yr)
standard model fit. We choose to show the Arcureoprs data because of its different
systematics; also, by comparing the error bars; one gets a feeling for the high quality
of the WMAP data. The angular power spectrum is the main observable from the
CMB; it is very sensitive to the parameters of the cosmological model one compares
with. Figures are taken from [WMAa] and [T 05].

of the two-point correlation function or autocorrelation function,

(3.40) o) = <%(é1> %<é2>> |

Here, &; are unit vectors and (-) denotes an ensemble average performed over all pairs of direc-
tions that have an angular separation of . Making use of the addition theorem for the spherical
harmonics

x4 . 20+1
(3.41) %Yem(&l) Yim(&2) = ZZ: —— Pelcost),

introducing the Legendre polynomials Py(cosf), we find that the autocorrelation function can

be written as an Legendre expansion in terms of the angular power spectrum
1

(3.42) CO) = 4= > (20 4+ 1)CyPy(cos) .
4

Conversely, we can write the angular power spectrum in terms of the two-point function

1
(3.43) Cy = 27r/ C(0)Pe(cosh) dcosh .

-1
Usually, it is said [Lon98] that it is a matter of taste whether to use the two-point function
(3.40) or the angular power spectrum (3.38) for analysis. Although the angular power spectrum
is the most popular way of presenting the CMB results in the literature, we will see in chap. 5
that, when trying to detect potential deviations from statistical isotropy, an analysis of the
autocorrelation function may provide additional insights. Moreover, it is outlined in [CHSS07]
that, in the case of statistical anisotropy, both C(f) and C, turn to be inappropriate concepts
for a proper statistical description of temperature anisotropies measured. More complicated
statistics — undemanding with respect to statistical isotropy — are then torpedoed by the fact



92 3. ON THE COSMIC MICROWAVE BACKGROUND

that we can only observe one single realisation of the CMB, namely our sky. We proceed with
a discussion of measurement of the power spectrum and their relation to the standard model.

The measurement of the angular power spectrum allows precision tests of the standard
model of cosmology. We show the measured as well as the best fit angular power spectra of
two experiments, WMAP and the balloon borne experiment ARCHEOPS, in fig. 3.5. The CMB
angular power spectrum can be roughly divided into three regions in angular scale: (a) for
¢ < 100 the spectrum is flat (Sachs-Wolfe plateau) and the Sachs-Wolfe effect is dominant, a
result we already anticipated in the course of the Fourier analysis in sec. 3.3.1, represented by
equation (3.31); within 100 < ¢ < 2000 one clearly sees the acoustic oscillations of the primordial
plasma ball; at small angular scales ¢ > 2000 the Silk damping makes the curve decrease steeply.
The power spectrum is very sensitive to the density parameters of the cosmological model. A
change in curvature, i.e. in the total density parameter €2, strongly affects the power spectrum
on all three scale regions. Tuning of the cosmological constant at a fixed curvature parameter

only affects the large scales; this is because in the standard model it is believed that the
integrated Sachs-Wolfe effect vanishes when A is zero. A change in baryon or matter density
will shift the amplitudes as well as the positions of the acoustic peaks.

Let us note some technical points. In the plots for the angular power spectrum fig. 3.5,
there is a quantity o< £(¢ + 1)Cy on the y-axis. This rises the question of the normalisation of
the power spectrum. One can work out [Lon98| the angular power spectrum that results from
a general power law input for the density power spectrum P(k) = Ak™, c.f. equation (1.29)

3

L3 —n)(¢+25%)

L2400+ 252)

(3.44) Cyp x A2"7?

where we neglect the transfer function for the moment, for clarity. Here I' denotes the common
gamma function. Now, when we plug in the condition for a Harrison-Zel’dovich spectrum (n = 1)
— which is suggested by many models — we get

A
(3.45) Cp x W+’

and so in the combination ¢(£ + 1)Cy the angular dependence is cancelled out. Another point
is that of the cosmic variance which is plotted as the blue region in the WMAP angular power
spectrum in fig. 3.5. From the figure it appears that this uncertainty becomes most important
for the largest angular scales. This can be understood by the following consideration. Each
measurement of C; is distributed like a x? having (2¢ + 1) degrees of freedom respectively.
Therefore at largest angular scales one has only very few independent estimates of a sample of
Cy. Let N be the number of independent estimates of C; then the precision of the measured
value for Cy is limited by N—=1/2. Thus we can write the cosmic variance as

9 2

(346) Ocv = ng .

What is actually measured by an differential CMB experiment like WMAP, is a time-ordered
data stream of the coefficients as,, . Because the CMB signal we observe is an admixture of
cosmological contributions and various effects that photons undergo on the line of sight like
scattering off foreground sources and many others — there are a lot of complicated cleaning
algorithms applied to the raw data, see [HT07, JT07a| for details. For instance, the strong
dipole signal, whose origin is thought of being due to our superimposed peculiar motion with
respect to the CMB rest frame, has to be subtracted. See fig. 3.4 for a map of the WMAP dipole
signal. After the application of various filtering methods the primordial CMB anisotropies can
be made visible at good accuracy, see fig. 3.3. This picture is a result of the superposition of
many higher multipoles. Let us finally note the main characteristics of the lowest multipoles
(largest angular scales):
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e The octopole (¢ = 3) — As computed from the three-year WMAP ILC map using a
Maximum Likelihood Estimate (MLE), the octopole amounts to (AT /T)s ~ 32.4uK;
the errors are largely cosmic variance dominated and can be found in [HT07].

e The quadrupole (¢ = 2)  According to one-year WMAP data, the quadrupole as
extracted from the ILC map amounts to (AT/T), ~ 14pK, with errors found in
[H*03]. According to three-year data, the quadrupole amounts to (AT /T)s ~ 15.4pK.
The increase from one to three-year data is mainly do to a new ILC bias correction; for
details and errors see [HT07]. Our motion with respect to the CMB rest frame does
not only affect the dipole, but also the quadrupole. The effect is of second order in
B=wv/c~ 1073 and gives rise to a kinetic quadrupole correction of around 1.2uK.

e The dipole (¢ = 1) — The dipole signal is the strongest anisotropic CMB signal. TIts
amplitude is measured by WMAP(3yr) as (AT/T); ~ (3.358 + 0.017)mK. Tt is inter-
preted as the result of the observer’s motion with respect to the CMB last scattering
surface. The resulting velocity vector points to (I ~ 263.86°+0.04°, b ~ 48.24°+0.10°)
in galactic coordinates. As a reference we quote here the preprint of [HT07]|. For a
Mollweide map of the COBE dipole see fig. 3.4.

e The monopole (¢ = 0) — The monopole is not a temperature anisotropy and is thus
not accessible to differential measurements like the WMAP. Therefore the best current
value of the monopole background temperature comes from the FIRAS instrument
of the COBE satellite, being Ty ~ (2.725 4+ 0.001)K. The spectrum of the monopole
radiation follows almost perfectly that of a black body radiator, c.f. fig. 3.2.






CHAPTER 4

Extrinsic Alignments in the CMB

Although the cosmological standard model is in good accordance with the data, there have
been found a couple of issues concerning the CMB that cannot be explained by the standard
ACDM paradigm. In particular, the microwave sky shows unexpected features at the largest
angular scales, and among them are strange alignments of the dipole, quadrupole and octopole.
Here, we pursue the idea that processes of structure formation could be responsible for the
large-scale anomalies via a local Rees-Sciama effect. The application of this mechanism to the
CMB anomalies is a novel idea, for usually only the (linear) integrated Sachs-Wolfe effect is
taken into account in the course of standard model CMB analysis. Motivated by recent X-ray
cluster studies, we investigate the possibility that local structures at the 100h~'Mpc scale could
be responsible for the observed correlations. These structures give rise to a local Rees-Sciama
contribution to the microwave sky that may amount to AT/T ~ 107> at the largest angular
scales. We model the local structure by a spherical overdensity (Lemaitre-Tolman-Bondi model)
and assume that the Local Group is falling toward the centre. We superimpose the local Rees—
Sciama effect on a statistically isotropic, gaussian sky. Indeed, we find alignments among the
low multipoles, but a closer look reveals that they do not agree with the type of correlations
revealed by the WMAP data.

-0.057

T (mK]
FiGURE 4.1. A Mollweide projection of the superimposed (¢ = 2 + 3) map from
WMAP(3yr) ILC. The quadrupole vectors are shown as solid red triangles and the
octopole vectors are plotted as solid magenta triangles. The according normal vectors
(cross products) are shown as open triangles with the respective colour. The solid
line indicates the ecliptic, the dashed line is the supergalactic plane and the dotted
lines are the great circles connecting multipole vectors. The magenta star indicates
the direction of maximal angular momentum dispersion for £ = 3. One sees e.g. that
the multipole normals are aligned with the ecliptic, or that the ecliptic plane carefully
follows a zero of the temperature map. The various found alignments are described
in the text, their significance is given in tab. 4.1. The figure is taken from [CHSS07].

95



96 4. EXTRINSIC ALIGNMENTS IN THE CMB

TABLE 4.1. The significance of alignments of quadrupole and octopole with given
directions as compared to WMAP(1yr) (upper row) and WMAP(3yr) (lower row),
c.f. [CHSS06] and [CHSS07]. The comparison is made with respect to a sample of 10°
fiducial standard model Monte Carlos respectively. The values have been obtained
by comparison to different foreground-cleaned maps, like the ILC and others, and
the most conservative figure is always quoted. Except for the case with the ecliptic,
the anomalous alignments remain unchanged from one-year to three-year data. The
alignment with the supergalactic plane remains in any way inconclusive.

dipole ecliptic  galactic poles equinox supergalactic ¢ =2 with ¢{ =3
>99.7 C.L. >98 C.L. > 99 C.L. > 99.8 C.L. > 85 C.L. 99.4 — 99.6 C.L.
>99.7C.L. >96 C.L. > 99 C.L. > 99.8 C.L. > 85 C.L. 99.6 C.L.

4.1. The Alignment Anomalies

The microwave sky has presented some surprises at the largest angular scales. The Wilkin-
son Microwave Anisotropy Probe confirmed the vanishing of the angular two-point correlation
function above 60° [BT03b]|, a result first obtained by the Cosmic Background Explorer’s Dif-
ferential Microwave Radiometer (COBE-DMR) experiment [HBB*96|, and not expected within
the standard model. In terms of the angular power spectrum this implies that the quadrupole
and octopole are below the theoretical expectation. We will analyse and discuss the issue of the
anomalous lack of two-point angular correlation in more detail in CHAP.

Moreover, the analysis of foreground-cleaned full-sky maps [BT03a, TAOCH03, EBGL04|
has revealed further surprises. There are a couple of surprising anomalies concerning the phases
the low multipoles. It was pointed out by [dOCTZHO04| that the octopole seems to be planar —
all minima and maxima are close to a great circle on the sky and the planes of the octopole and
the quadrupole are closely aligned. Eriksen et al. [EHB*04] showed that the northern galactic
hemisphere lacks power compared with the southern hemisphere.

In order to be able to make distinct statements with respect to a phase analysis of multipoles
we make use of the multipole vector formalism [CHS04]. With the help of the multipole vectors
we achieve a demixing of the directional (phase) information and the amplitude of a multipole,
as compared to the classical approach via spherical harmonics. By means of multipole vectors,
Schwarz et al. [SSHC04] showed that the quadrupole and octopole are correlated with each other
as well as with the orientation and motion of the Solar system. The latter is highly surprising
because the CMB signal is of cosmological origin. In particular, the four cross products of the
quadrupole and octopole vectors are unexpectedly close to the ecliptic |> 98% Confidence Level
(C.L.)] as well as to the equinox and microwave dipole (both > 99.7% C.L.) with respect to
an analysis of one-year WMAP data [CHSS06]. Moreover, from the combined full sky map of
{ = 2 + 3 one infers that the octopole is quite planar and that the ecliptic strongly follows a
zero line of the map, leaving the two strongest extrema in the southern hemisphere and the
two weakest in the northern hemisphere, see fig. 4.1. Based on the additional alignment of
a nodal line with the ecliptic and the ecliptic north-south asymmetry of the quadrupole plus
octopole map, Copi et al. [CHSS06] argued that the correlation with the ecliptic is unlikely at
the > 99.9% C.L. The significances of the above alignments are summarised in tab. 4.1; we see
that the significance of the anomalies stays the same with respect to one-year and three-year
WMAP data — with the exception of the ecliptic alignment. In this chapter we will be interested
mainly in the alignments of quadrupole and octopole with external astrophysical directions,
henceforth extrinsic alignments.

The apparent correlation with the Solar system is not understood by now. It is possible that
some yet unknown dust cloud or other absorbing object in our vicinity disturbs the cosmological
CMB signal. In fact, Dikarev et al. [DPST07| recently studied the influence of known dust
objects in our vicinity on the CMB anomalies and could exclude such an explanation of the
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phenomenon. In contrast to an unknown Solar system effect, it also seems possible that the large-
scale anomalies are due to a physical correlation with the dipole, in which case the correlation
with the ecliptic and the equinox would be due to the accidental closeness of the dipole and the
equinox.

A®
blue red blue

Axisymmetric model

Overdensity

(LTB) Last Scattering Surface (LSS)

FIGURE 4.2. Left: a sketch of the Rees-Sciama effect from an overdensity that is
still forming. Consider a photon crossing such a vast supercluster. If its traversing
time is, at least, of the order of the evolution time scale of the supercluster, then the
photon does not gain exactly the same energy when falling downhill in the potential
as it looses when escaping from it; there will be a net effect in redshift for the photon
in the end. Also it is possible that the cluster itself, or the bulk of (dark) matter in
the cluster, shows a significant motion across the line of sight, which also produces a
time-varying gravitational potential along the photon’s path. This effect is called the
moving cluster of galaxies effect or moving halo effect, c.f. [BG83], [TL95]. Right: a
schematic depiction of the geometry of our model. The local overdensity is modelled
by an LTB solution. We are located off-centre in this setup and since the structure is
evolving, due to the Rees-Sciama effect, there will be additional CMB anisotropy.

4.2. Local Rees-Sciama Effect

The Rees-Sciama effect belongs to the class of secondary CMB anisotropies discussed in
sec. 3.1. It originates from the fact that the CMB photons can pass through vast processes
of structure growth on their way to the observer. Considering a static gravitational potential,
the net effect on CMB photons passing through it would be zero. This is, because the energy
that photons gain by their infall into the structure’s potential is exactly compensated when they
escape from it. But in the case of an evolving gravitational potential the net effect is non-zero, if
the photon’s traversing time is at least of comparable duration as the overall evolving time of the
gravitational potential. This is actually the case for vast extragalactic superclusters that are in
the non-linear regime of evolution. This effect applied to evolving voids produces a net blueshift,
and when applied to still-forming overdensities it yields a net redshift. Occurring within the
regime of linear structure growth this effect known as the integrated Sachs- Wolfe effect and when
occurring in the epoch of non-linear structure formation it is called the Rees-Sciama effect. See
fig. 4.2 for an crude illustration. In sec. 1.3.3 we have derived the mathematical machinery of
the Rees-Sciama effect, which formally comes out from the integrated Sachs-Wolfe formula. In
this chapter we are going to make use of these results and apply further analysis.

Here we will explore the possibility that the effect of local non-linear structures on the
CMB, the local Rees-Sciama effect [RS68], could induce a correlation between the dipole and
higher multipoles. In the non-linear regime of structure formation the gravitational potential
changes with time, and photons climb out of a potential well slightly different from the one they
fell into. As the CMB dipole is considered to be due to our motion with respect to the CMB
rest frame, and this motion is due to the gravitational pull of local structures, these structures
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TABLE 4.2. Directions of local motion with respect to the CMB rest frame. The
estimated error for the corrected local group’s direction of [PK98|(PK) is 14°, and is
5% for their velocities.

Direction Galactic coordinates v [km/s]
WMAP(1yr) dipole velocity 1 =263°85+0°10 (368+2)
[BT03b] b = 48925 £ 0°04

local group velocity [ =276° £ 3° (627+22)
[KLST93] b=30°+£3°

Virgo infall of local group [ = 283292 170
[PK9g| b =741

Virgo corrected local group velocity [ = 276° 510
[PK9g| b=16°

Shapley concentration 1 =306%4 -
[ETJI*97| b= 2971

are a natural candidate for contributions to the higher multipoles correlated with the dipole.
For earlier work on connection of local structures with the low-multipole anomalies, see for
instance [Tom05a, Val05, Tom05b, CS05, Man05]. The Rees-Sciama effect of distant clusters
was estimated to be at most 107° in a matter-dominated Universe by Seljak [Sel96], one order
of magnitude below the intrinsic CMB anisotropy. The effect of local large structures has been
estimated to be at most 1076 using the Swiss Cheese model [MS90| and, more reliably, using the
LTB model, which is the general spherically symmetric dust solution of the Einstein equation
[Pan92, AFMS93, FSA94]. For an overview and further references we recommend [Kra97].

At the time these studies were made, it was generally thought that the dipole is mostly due to
the infall of the local group of galaxies towards the Great Attractor [LFBT88, Dre88|, a density
concentration located 40-60h~'Mpc from us, with a subdominant component due to the nearby
Virgo cluster, about 10h~'Mpc away. Recent observations of X-ray clusters suggest instead
that there is a major contribution to the dipole from the Shapley supercluster and other density
concentrations at a distance of around 130-180~2~! Mpc [KME04, HSLB04, LRSH04, KEO06].
The Shapley supercluster, c.f. fig. 4.2, is a massive concentration centred around the object
A3558. It alone has a density contrast of ~ 5 over a 30h~!Mpc region [PQCT 06|, which is 2-3
times the size of the core (of similar density) in the Great Attractor models.

The further away and the more extended the source is, the bigger is the impact on the
quadrupole and octopole for a fixed effect on the dipole so it is plausible that the Shapley
concentration would induce anisotropies at the 1075 level. This would be consistent with the
early estimate for an Shapley Supercluster-like object in [MS90] and the approximate scaling
suggested by Panek [Pan92], which we discuss next.

The CMB anisotropy produced by a spherical superstructure can be estimated by the inte-
gral of the gravitational potential perturbation ¢ ~ dM/d along the path of the photon, that
is

(@1 (7)) =on,

where d is the physical size of the structure, 6 M is the mass excess and v, the evolution velocity.
Since we are interested in an overdensity we take a collapsing structure. Further following Panek
[Pan92], we approximate the evolution time of the structure ¢. by the matter crossing time d/ v, ,
note ¢ = 1 = GG. Moreover, we estimate the typical collapse velocity from the energy balance
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FIGURE 4.3. Left: A projection of the intermediate-scale structure in our neigh-
bourhood to the supergalactic x — y plane. The contours indicate density according
to (1,3,0.5) x 103 clusters Mpc~2 respectively. The Shapley concentration repre-
sents the most massive structure in the shown distance range. One can clearly see
the zone of avoidance, from which optical data cannot be taken. Right: dipole profile
as derived from recent X-ray galaxy surveys. The Shapley supercluster dominantly
contributes to the dipole between ~ 100Mpc and ~ 200Mpc. The pictures are taken
from [TSVZ92] and [KMEO04].

condition and have v? ~ ¢, which leads us to

We are going to model the non-linear structure by a spherically symmetric LTB model embedded
in a flat (2 = 1) Friedmann-Robertson-Walker Universe. Substituting the expression for the
mass excess within this model [Pan92] we obtain the Panek scaling

(#32) - (97

We repeat, ¢ is the cosmic time at which the CMB photons crossed the structure, d is its physical
size and dp/p its density contrast. Inserting the characteristics of the Shapley supercluster, we
see that indeed a CMB anisotropy of 107> due to a local Rees-Sciama effect is reasonable.

For a large angular scale of the source — local and nearby structures — this induces contri-
butions to the low-{ multipoles, especially the dipole, quadrupole and octopole. This, in turn,
could include a non-Doppler contribution to the dipole. This would imply a change of a few
percent in the inferred dipole velocity, which might also explain some of the CMB anomalies
[FGM™06]. The Shapley concentration is a non-linear structure, and the amplitude of the in-
duced anisotropies cannot be reliably calculated in linear perturbation theory. According to a
comparison of linear and exact calculations for Great Attractor-like objects with the LTB model
in [FSA94], linear theory is reliable at distances comparable to the Hubble scale, but fails for
structures within 1000h~'Mpc or so.

The advantage of the spherical symmetry of the LTB model is that it allows exact cal-
culations for non-linear objects; the drawback is that the observed non-linear objects such as
the Great Attractor and the Shapley concentration do not appear to be spherically symmetric.
However, we can expect the result to be correct within an order of magnitude, and the core of
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FI1GURE 4.4. A Mollweide map showing the foregrounds which the WMAP collabora-
tion takes into account for map cleaning. The only extended foreground is represented
by the galactic region. The regions shown in pink and beige indicate the so called
Kp0 and Kp2 diffuse emission masks used by the WMAP collaboration to obtain cos-
mological maps. For details of the map-making process see [J707a] and [HT07]. All
of the remaining foregrounds that have been taken into account are point sources. In
this work we are considering the (Rees-Sciama) effect of extended local foregrounds,
see fig. 4.8. The picture is taken from [WMAal].

the Shapley concentration does seem to be roughly spherical [PQCT06|. Also, if the preferred
direction indicated by the low-f anomalies is due to local structures, this implies that there
indeed is a degree of symmetry in the local mass distribution.

In addition, there is a second motivation for studying a spherically symmetric inhomoge-
neous model, namely dark energy. If interpreted in the framework of isotropic and homoge-
neous cosmology, observations of SNTa imply that the expansion of the Universe is accelerating,
c.f. sec. 1.2.2. However, in an inhomogeneous spacetime the observations are not necessarily
inconsistent with deceleration, see sec. 1.3. In particular, in the LTB model the parameter qq
defined with the luminosity distance is no longer a direct measure of acceleration [HMM97]. It
has been suggested by several groups that a spherically symmetric inhomogeneity could be used
to explain the SNIa data, see sec. 1.3, though it is not clear whether such a model could be
consistent with what is known about structures in the local Universe [Bol05] or the observation
of baryon oscillations in the matter power spectrum. Here we will concern only the CMB.

The picture of the local Universe that we adopt is a spherically symmetric density distribu-
tion, with the local group falling towards the core of the overdensity at the centre, c.f. fig. 4.2.
The line between our location and the centre defines a preferred direction 2z, which in the present
case corresponds to the direction of the dipole after subtracting our motion with respect to the
local group and the local group’s infall towards the nearby Virgo cluster — assuming the primor-
dial component of the dipole to be negligible. The directions on the sky that are important for
our analysis are given in tab. 4.2. This setup exhibits rotational symmetry with respect to the
axis z neglecting transverse components of our motion. Consequently, only zonal harmonics
(m = 0 in the 2-frame) are generated. We have already anticipated this result, it is consistent
with our prediction that came out from the analytical treatment of the Rees-Sciama effect using
an LTB model in sec. 1.3.3. Note that any other effect with axial symmetry would also induce
anisotropy only in the zonal harmonics.

The density field has two effects on the CMB seen by an off-centre observer. First, photons
coming from different directions travel different routes through the local overdensity, and this
creates anisotropy — even with a perfectly homogeneous distribution of photons. In a stationary
setup, for instance for virialised structures, this effect vanishes and there is no imprint on the
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FIGURE 4.5. Left: the galactic coordinate system. The galactic coordinate system
is defined as being parallel with the plane of the Milky Way and centred on the sun.
So the equator in galactic coordinates (red circle, 0° galactic latitude) lies in the plane
of our galaxy. The galactic latitude b is the angle above or below this plane (yellow
angle) and the galactic longitude ! (green angle) is measured from 0° to 360°, counter
clockwise with respect to the north galactic pole. 0° of galactic longitude is arbitrarily
defined as the direction pointing to the galactic centre (Sagittarius). Sometimes, in
astronomy the equatorial coordinate system is used. Right: the relation of the galactic
coordinate system to the equatorial coordinate system. The latter is defined through
the plane of the Earth’s equator. Important reference directions on the sky that we
use here are, in galactic coordinates: the north ecliptic pole (I,b) ~ (96.4°,29.8°), the
equinox (I,b) ~ (276.3°,60.2°) and the north galactic pole (I,b) = (0°,90°). Pictures
are taken from [Ast] and [Org].

CMB. Second, the environment will affect the evolution of the intrinsic anisotropies — as the
homogeneous background space does, by changing the angular diameter distance. The complete
calculation taking into account both of these effects would be to study the evolution of the
CMB anisotropies as they travel across the density field using perturbation theory on the LTB
background. As in earlier treatments, we neglect the second effect and simply add the anisotropy
generated by the LTB model on top of the intrinsic contribution. It is possible that this treatment
misses some effects of processing the anisotropies already present. In particular, simply linearly
adding a new source of anisotropy will in general add multipole power, not reduce it, while
a proper analysis of the processing of the intrinsic anisotropies could lead to a multiplicative
modification of the amplitudes of the low multipoles, as mentioned in [GHHCO05].

It has been suggested that spherically symmetric inhomogeneities of the order of horizon
size or larger would contribute to the low CMB multipoles [DZS78, RT81, PP90, LP96|; it was
claimed in [Mof05] that this could explain the observed preferred axis. Leaving aside the issue
that assuming spherical symmetry for the entire Universe seems questionable, the observational
signature on the low multipoles is identical to that from the LTB model used to describe local
structures, possibly apart from the amplitude.

4.3. Angular Power Analysis

First we address the question how the cosmic microwave sky is affected by the local Rees-
Sciama effect. We are going to study how maps of the CMB are affected by the anisotropy
induced by additional axisymmetric contributions a%‘al on the largest angular scales by using

Monte Carlo methods.
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FIGURE 4.6. Likelihood of quadrupole and octopole power for increased axial
contributions. Vertical lines denote experimental data: WMAP(1lyr) cut-sky and
WMAP(3yr) maximum likelihood estimate. Considering the quadrupole adding any
multipole power was excluded at > 99% C.L. with respect to WMAP(1yr) but it
is possible to add up to 60uK within the same exclusion level with respect to the
WMAP(3yr) value. Adding 80pK (100pK) to the quadrupole leads to an exclusion of
99.7% C.L. (99.9% C.L.). The octopole is more resistant against axial contaminations
as it is possible to add a whole 100uK before reaching the same exclusion level with
respect to the updated WMAP data.

We saw in sec. 3.3.2 that the angular power spectrum in terms of the coefficients ag,, can
be expressed as

14

— 1 2
(4.4) Co=5rg > Jamml®.

m=—

As predicted by the standard perception of inflationary cosmology, the primordial perturbations
are believed to follow a gaussian statistic. Deviations from this would be hard to reconcile with
the standard inflationary paradigm. Therefore, the complex coefficients ag,, = a?;’l —i—ia?fé are
expected to be gaussianly distributed with zero mean and variance given by the angular power
Cy , according to

(4 5) f(a ) = 1 ex <—(a?—00)2> and f(aRC’Im) - 1 o _w
. £0) = \/m p 2Cg m - \/ﬂ_—@ p Cé )

Therefore, in the standard model, the coefficients ag, are fully characterised by their angular
power, for which we use the values from the best fit ACDM temperature spectrum to the WMAP
data. In our axisymmetric model, we parameterise the effect of a local structure by adding axial
contributions a%‘ial to the quadrupole and octopole. It is obvious that the additive mechanism
cannot make the power deficit anomaly disappear. For the statistical analysis we generate 10°
Monte Carlo realisations of the quadrupole and the octopole. In the following we describe the

results of our Monte Carlo analysis for the angular power (4.4) with respect to one-year as well
as three-year WMAP data.

4.3.1. WMAP(1yr) Angular Power. Considering one-year data, the values of Cy and
C3 determined from the WMAP cut-sky |[HT03|, the so called TOH map |[TdOCHO03|, the La-
grange ILC map [EBGL04] and the ILC map [B*03a] are listed in tab. 4.3. The extracted
quadrupoles have been Doppler-corrected as described in [SSHC04], except for the cut-sky value.
The values of C; and C3 from the full-sky maps are significantly larger than the cut-sky values.

In fig. F.1 we show how the C5 and C3 histograms compare with the one-year data as
a%‘ial is increased. For a%ial = 40uK, the number of Monte Carlo hits that are consistent
with the WMAP cut-sky data is smaller by a factor of ~ 2 for both C5 and C3 as compared
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FIGURE 4.7. WMAP one- and three-year ILC maps compared to the likelihood of
an alignment (4.7) of quadrupole and octopole normals with astrophysical directions
[north ecliptic pole (NEP), equinox (EQX) and north galactic pole (NGP) in columns],
for two orthogonal realisations of the preferred direction 2 (WMAP dipole, NEP in
rows). The bold histograms represent statistically isotropic and gaussian skies as
predicted by the ACDM model. Increasing the axial contribution makes the anomalies
worse for 2 being aligned with the WMAP dipole, but with the exclusions being less
significant for the ILC(3yr) than for the ILC(1lyr). At the same time a Solar system
effect is preferred by the data. The number of Monte Carlo realisations per test is
always 10° .

with the fiducial CMB sky. For a3¥'® = 70 uK, the number of consistent Monte Carlo hits
for C2(Cs5) is reduced by a factor of ~ 5(15) compared with the standard CMB sky. Note
that adding any power to the theoretically expected quadrupole is excluded at the > 99%C.L.
level from the cut-sky analysis, but for the octopole the same exclusion level is not reached
until 35! = 80uK. Further, adding 504K (100uK) to the quadrupole leads to an exclusion of
99.6%C.L. (99.9%C.L.). In fig. 4.6 we show a comparison of one- and three-year data.

4.3.2. WMAP(3yr) Angular Power. In fig. 4.6 we show how the histograms for the
quadrupole and octopole power compare with the measured values from WMAP(1yr,3yr). Con-
sidering the WMAP(1yr) cut-sky, adding any power to the quadrupole was already excluded at
> 99% C.L. whereas the WMAP(3yr) data allows for adding up to a35®! = 60uK in order to
reach the same exclusion level. The octopole is quite robust against axial contaminations as it
lies better on the fit: in order to reach the same exclusion level of > 99% C.L. it is necessary to
add ag§'®! = 80K with respect to the WMAP(1yr) cut-sky and a whole a3§® = 100uK with re-
spect to the WMAP(3yr) value. Adding a moderate axial contribution of a%‘ial = 40K leads to
an approximate bisection of the number of consistent Monte Carlo hits regarding WMAP (1yr)
data (excluded at 99.5% C.L for Cy and 91.5% C.L for C3), where for the updated cut-sky a
contribution of a%‘ial = 40uK can be excluded at > 98% C.L. for Cy and only at ~ 71% C.L for
the octopole.

4.4. Extrinsic Alignment Analysis

Now we ask what kind what kind of directional patterns the contribution a%‘ial induces on
the CMB sky. In the multipole vector representation [CHS04] any real multipole T, on a sphere
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can be expressed with £ unit vectors v and one scalar A®) as

L 4
(4.6) To(0,0) = > amYim(0,9) ~ AOT[07 - e(0,¢).
=1

m=—/{

where é(0, ¢) = (sin 6 cos ¢, sin 0 sin ¢, cos ) is a radial unit vector. Note that the right hand side
of equation (4.6) contains contributions with ‘angular momentum’ ¢ —2, £—4,... The uniqueness
of the multipole vectors is ensured by removing these terms by taking the appropriate traceless
symmetric combination; for details see [CHS04]|. Because the signs of all the multipole vectors
can be absorbed into the quantity A®) | their signs are unphysical and so one is free to choose
the hemisphere of each vector. Also note that the multipole vectors are independent of the
angular power. With the decomposition (4.6) we achieved a unique factorisation of a multipole
into a scalar part A®) | which measures its total power, and ¢ unit vectors 99 that contain all
the phase information.

Now it is necessary to define a suitable statistic to cope with the information from the
multipole vectors. Introducing the £(£—1)/2 oriented areas (49 = &9 x (9 /|60 5 (69| |
we are ready to define a statistic in order to probe alignment of the normals n(“%7) with a given
physical direction & [SSHC04],

(4.7) Sne = i Z Z’n(“’j) cic’ .

0=2,3 i<j

This statistic is a sum over all dot products for a given &, so it does not imply any ordering
between the terms and is a unique and compact quantity. For computing the multipole vectors
we use the method introduced by [CHS04]. For mathematical details of the multipole vector
formalism we refer to e.g. [Fis07].

As the contribution of the structure described by the LTB model, we add to the quadrupole
and the octopole a component, denoted by a%‘ial , which is a pure m = 0 mode with respect to
a given physical direction 2. For the direction & wee want to insert the relevant astrophysical
directions which give rise to alignment, like the direction of the ecliptic plane, the equinox etc.
But there is a catch. Once we rotate the 2z axis of our initial coordinate system into the direction
of the preferred axis of our model, the directions on the sky, like north ecliptic pole etc., have to
be recalculated in that frame. This can be done in terms of Wigner rotation matrices [CHSS06].
Written as vectors, the coefficients @), transform under rotations as aj = Dfa,, where the vector
notation means that a, is a vector of the ¢-th multipole coefficient with (2¢ + 1) entries and D
denoting the rotation. The rotations can be parameterised in terms of the so called Euler angles
a, 3,7 and are given in matrix form by [CHSS06]

DY), (a.8,7) = ™7 d) e with

a0, =3 (=17 R+ m)E = )L+ mIE — )]
mim - BNl —m! — k) —m—k)!(m+m'+k)!
2k+m’+m 20—2k—m'—m
(4.8) X <cos g) <sin g) .

We have carried out the rotations with the help of a MATHEMATICA routine. Next, let us review our
results of the Monte Carlo analysis for the alignment statistic (4.7) with respect to astrophysical
directions.

4.4.1. WMAP(1yr) Alignment. We look for alignment with three different directions
Z: the north ecliptic pole, the equinox and the north galactic pole. The first two are preferred
directions in the Solar system and the last defines the plane of the dominant foreground. The
observed S-values from the different CMB maps are given in tab. 4.3. The results of the corre-
lation analysis are shown in the appendix as fig. F.2, fig. F.3 and fig. F.4. By chance the CMB
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dipole and equinox lie very close to each other, so an alignment test with the dipole will give
results very similar to the one with the equinox.

In fig. F.2 the preferred axis 2 is chosen to be the measured WMAP(1yr) dipole [BT03b].
We perform alignment tests (4.7) with respect to the three test directions &. For all three tests
the anomaly gets clearly worse, that is the axial mechanism drives the histograms away from
the data. Next, instead of using the motion of the local group with respect to the CMB rest
frame [KLST93] as the test direction, we take the velocity of the local group when corrected
for Virgocentric motion [PK98], since this differs more from the WMAP dipole. The results are
shown in fig. F.3. The situation for the alignment with the equinox is again worse, but there
is not much effect on the ecliptic alignment. For the alignment with the galactic plane, the
axial contribution makes an apparent galactic correlation more probable, i.e. there is a certain
probability of overestimating the galactic foreground. For both test directions by now, the
alignment with the equinox gets worse. For example, in the direction of the Virgo-corrected
local group motion an exclusion of ~ 99.9% C.L. for ai! = 50uK can be given with respect
to all three cleaned maps. Note that adding any multipole power in this test can already be
excluded at the > 99.4% C.L.

As a complementary test we show the alignment likelihood with regard to an orthogonal test
direction, namely the north ecliptic pole, in fig. F.4. An ecliptic extra contribution in the CMB
would indeed induce an alignment of normal vectors similar to the observed one. In particular,
for a%ial = 50uK, the probability of finding an alignment with the north ecliptic pole itself
becomes roughly 5%, and the probability for the equinox alignment rises to 1%.

TABLE 4.3. Tests applied to various cleaned maps, as defined in equation (4.7), for
one- and three-year data, as well as the values for angular power (4.4). Foreground-
cleaned maps: TOH(1lyr) is due to [TdOCHO3], LILC (1yr) to [EBGLO04], the ILC
maps to [HT03, HT07] and the Maximum Likelihood Estimate (MLE) for low multi-
poles to [HT07]. All one-year quadrupoles except the cut-sky value have been Doppler-
corrected.

cut sky (1yr) TOH(lyr) LILC(lyr) ILC(lyr) ILC(3yr) MLE(3yr)

Co 129uK? 203uK? 352uK?  196uK?  261uK?  221uK?

Cs 320uK? 454uK? 571uK?  552uK?  550uK?  545uK?
SnNEP - 0.194 0.193 0.210 0.252 -
SnEQX - 0.886 0.866 0.870 0.846 -
SnNGP - 0.803 0.803 0.810 0.794 -

4.4.2. WMAP (3yr) Alignment. Similarly, we test for alignment with the three generic
directions @: north ecliptic pole, equinox and north galactic pole. The results of the correlation
analysis are shown in fig. 4.7: in the first row the preferred direction z coincides with the
direction of local motion, the dipole. Here the anomaly becomes worse when increasing the
amplitude of the axial contribution. But for & = NEP the exclusion becomes somewhat milder
going from one-year to three-year data; e.g. a%ial = 404K leads to an exclusion of 99.2%C.L. for
ILC(1yr) but only 98.2% C.L. for the updated ILC map. Finding an alignment with the equinox
though is strongly excluded at > 99.2%C.L., even with an vanishing axial contribution for both
one- and three-year data. For instance, for = EQX adding a contribution of a%‘ial = 20uK
(agxial = 70pK) leads to an exclusion level of 99.4%C.L. (99.9%C.L.) with respect to three-
year data. Similarly to above, a Solar system effect is preferred by the data. For example, an
alignment with the ecliptic itself (& = NEP) may only be excluded at the level of 92.3%C.L. after
adding an axial contribution of a%ial = 40pK. For the same axial contribution, the alignment
with the equinox becomes less anomalous as 99.2%C.L. — 98.2%C.L.
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4.5. Conclusion

Besides the anomalous intrinsic alignment of the CMB quadrupole and octopole with each
other and the lack two-point angular correlation on the largest angular scales, there are a number
of mysterious alignments with astrophysical directions concerning the lowest multipoles in the
WMAP data. These anomalies are present both in the one-year and in the three-year WMAP
data, c.f. tab. 4.1, and could not be satisfactory explained by now.

Here we presented an analysis that seeks to take the influence of non-linear structure for-
mation on the CMB photons into account. Such an effect is well motivated by present data
on the large-scale structure. Recent astrophysical data cataloguing our neighbourhood in the
X-ray band [KME04, KE06, HSLB04, LRSH04| point us to the existence of massive non-linear
structures, like the Shapley concentration, at distances of around 100h~'Mpc. Besides its sig-
nificant contribution to the dipole velocity profile, c.f. fig. 4.3 , such a structure is able to induce
anisotropies of order 10~° via its Rees-Sciama effect.

Regarding CMB modes, the spherical symmetry of the LTB model, which we use to ap-
proximate the local superstructure, reduces to an axial symmetry along the line connecting
our position and the centre of the overdensity, where we locate for instance the Shapley super-
cluster, c.f fig. 4.2 (right figure). Consequently, under this assumption we should observe an
axisymmetric effect on the microwave sky. The preferred axis 2 has been taken to point in the
direction of the CMB dipole, c.f. fig. 4.7 and fig. F.2 and the Virgo-corrected local group’s flow
vector, see fig. F.3. Thereby we have added the axisymmetric contribution to a statistically
isotropic gaussian random map (ACDM standard model prediction) and compared it by means
of the S-statistic with WMAP measurements. The additional zonal harmonics have been added
with increasing strength, see fig. 4.8 or figs. F.5-F.7 for full-sky maps of the Rees-Sciama effect.
When gauging the preferred axis to the direction of local motion (WMAP dipole), the consis-
tency of the data with theory becomes even worse, albeit with slightly less significance with
respect to three-year WMAP data. In particular, in case of 2 =dipole, an axial contribution
of a%‘ial = 60uK led to an exclusion level of 99.4%C.L. with respect to one-year data, but can
‘only’ be excluded at 98.7%C.L. within the updated maps. However, in case of the alignment
test with the equinox, the significance of the anomalous alignment remains nearly unchanged
when comparing with one- and three-year data. On the other hand an orthogonally directed
(Solar system) effect would largely increase the consistency with the data for both one-year and
three-year data sets: for instance, 97%C.L. — 83%C.L. with respect to WMAP(3yr) data after
adding an axial contribution of a%‘ial = T0uK.

Here we studied additive axial effects because they are well motivated. However, from our
analysis it is not excluded that there could be a multiplicative axisymmetric effect, coming from
some unknown non-linear source. Note that our analysis applies likewise to any other effect
which gives an axisymmetric addition to the statistically isotropic and gaussian random sky.

4.5.1. Alternative Proposals. The existence of the CMB anomalies support the conclu-
sion that either the Universe as seen by WMAP is not statistically isotropic on largest scales, or
that the observed features are due to unexpected foregrounds, hidden systematics or new physics
challenging the standard cosmological model. Diverse attempts for explanation can be found
in the literature: considering anisotropic or inhomogeneous models [Bianchi family or (LTB)
models| [GHS07, JBET06, AA06, Mof05, Tom05b, RRS06b|, Solar system foreground [Fri05,
DPS™07], lensing of the CMB [Val05| and moving foregrounds|CS05|, Sunyaev-Zel’dovich effect
[AS03, AJTW06, HBM™'05] and Rees-Sciama effect [1S07, IS06, MDW*07, RRS06b, RRS06a],
considering a non-trivial topology of the Universe [LWR 103, SKCSS07, ALST07], considering
modifications and refinements of the standard simplest scenario of inflation [BAVS06, CCT06,
CPKLO03, FRV04, GH04, WNL'07] and even considering possible phenomenology of loop quan-
tum gravity [HWO04, TSMO04].

This list is not meant to be exhaustive. Let us pick two models out that appear particularly
interesting from our point of view. First, also considering extended local foregrounds Abramo
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FIGURE 4.8. Full-sky Mollweide maps (¢ = 2 + 3) of the Rees-Sciama effect on
the quadrupole and octopole. Upper map: a random realisation of an statistically
isotropic and Gaussian quadrupole plus octopole. Lower left map: an axial effect
which could e.g. be due to the local Rees-Sciama effect of an spherical overdensity — of
magnitude a35™ = ¢35™ = 70uK is imposed on the random map, with the preferred
axis of the model Z pointing in the direction of the dipole (upper right quadrant);
for this model direction the alignment anomalies become worse when adding an axial
effect, c.f. fig. 4.7. For an illustration of galactic coordinates and relevant directions see
fig. 4.5. Lower right map: adding the same contribution, now with the preferred axis
being in direction of the north ecliptic pole, in which case the Monte Carlo analysis
showed that alignments become less anomalous, c.f. fig. 4.7. The colour legends are in
units of 0.1mK. For map-making we made use of the publicly available GLESP package
[DT03]. Additional maps are given in app. F.

et al. proposed [AS03, AJWO06] that a cold spot in the direction of the local Supercluster could
account for the cross alignments of quadrupole and octopole. The cold spot would be realised
by the (thermal) Sunyaev Zel’dovich® effect of CMB photons scattering off the hot intraclus-
ter gas. However, the values for the characteristics of the Sunyaev-Zel’dovich foreground (gas
temperature, density) that are required to explain the cross-alignment are at most marginally
consistent with astrophysical X-ray data.

Second, Silk and Inoue [IS06] suggested a certain geometrical pattern of two identical voids
to account for the cross alignment as well as for the octopole planarity via the Rees-Sciama
effect of this underdense structure. But extrinsic alignments remain unexplained in this model.

2In sec. 3.1 we have already mentioned this astrophysical effect. Let us shortly give some details here. CMB
photons can undergo inverse Compton scattering off hot gas electrons in galaxy clusters and so get shifted to
the Wien regime of the spectrum. Therefore, when looking at the CMB sky in the Rayleigh-Jeans band, there
appears a lack of microwave photons at the position of the hot intracluster gas. The spectral distortion is given
by [SZ70]

AT T4+1 h kpT
(4.9) (—) :(:ce + —4) Y, xE—V, yE/ne B S ordl,
T )gy er —1 kT Mec?

where y is the integrated gas pressure along the line of sight, T¢ is the temperature of the hot cluster electrons
and o7 is the Thomson cross section. Because the effect is independent of redshift, it can be used to detect hot
galaxy clusters up to very high redshifts z ~ 2 within future CMB surveys [B*06a], as well as for an independent
yield of the Hubble constant, for the basic principle see |[KKZ97|. For a review see e.g. [CHR02].
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However, this approach requires a high degree of fine-tuning in the geometrical setup of the
voids that are placed on the sky. The actual data on the large-scale structure of the Universe
do not support such a setup.

Each of the latter approaches alone is not fully satisfactory. A more realistic approach
concerning extragalactic foregrounds should take both the Rees-Sciama effect and the Sunyaev-
Zel’dovich effect into account. Moreover, since the local Rees-Sciama, effect can contribute up to
107? to the temperature anisotropies on large angular scales, a detailed study is important for
cross-correlating CMB data (including upcoming PLANCK data) with astrophysical observations
on the local large-scale structure.



CHAPTER 5

Intrinsic Alignments in the CMB

Now we want to focus on the intrinsic quadrupole-octopole alignment, which is independent
of external directions, as well as its relation to the anomalous features in the measured CMB
temperature autocorrelation function. As was mentioned, at the largest angular scales corre-
sponding to the multipole moments ¢ = 2 and ¢ =3 the presence of a number of unexpected
features has been confirmed by the latest CMB measurements. Among these are the anomalous
alignment of the quadrupole and octopole with each other as well as the stubborn lack of angular
correlation on scales > 60°. Here we search for correlations between these two phenomena and
demonstrate their absence. A Monte Carlo likelihood analysis confirms previous studies in the
literature and shows that the joint likelihood of both anomalies is incompatible with the best-fit
ACDM model at > 99.95%C.L. Extending also to some higher multipoles, a common special
direction has been identified and has been dubbed in the literature the ‘Axis of Evil’. In the
seek for an explanation of the anomalies, several studies invoke effects that exhibit an axial sym-
metry. We find that this interpretation of the ‘Axis of Evil’ is inconsistent with three-year data
from the WMAP. More precisely, the data require a preferred plane, whereupon the axis is just
the normal direction. Rotational symmetry within that plane is ruled out at high confidence.

700 I I 700 I I
LAl —Q (| LI —Q (|
500 5 1 500 |- . 1
wl 1 1YRI|-- iLckp) | | 3YR|__ ILC (kp0) i
. g — ILC (full) = ; — ILC (full)
2y 300 - B - from (pseudo) C |- i) 300 |- - from(MLE) ..
S a0 : H S w0 - g
@ 100 - g @ 100 -
O of A\ A 4 O of Mo
-100 - \ . -100 |
200 - ' 20}
300 - LCDM 4 300 F LCDM
400 | | | | | | | 400 | | | | | | | | \
0 20 40 60 8 100 120 140 160 180 0 20 40 60 8 100 120 140 160 180
0 (degrees) 0 (degrees)

FIGURE 5.1. The temperature autocorrelation (3.40) versus angular separation scale,
from WMAP(1yr) (left) and WMAP(3yr) (right) data. Kp0O-masked maps from three
different frequency bands Q (41GHz), V (61GHz) and W (94GHz) are shown, as
well as the cut and uncut ILC maps, and the Maximum Likelihood Estimate for
the smallest multipoles. None of the almost vanishing (60° < 6 < 170°) cut-sky
wavebands matches the reconstructed full-sky and neither one of the latter matches
the prediction of the best-fit model. The anomaly appears even more pronounced in
the three-year data than in the one-year data. Figures are taken from [CHSS07].
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5.1. Introduction

With the emergence of more and more precise and detailed cosmological observations, the
inflationary ACDM model remains to provide a surprisingly good fit to the bulk of cosmological
data. Thereby, the most precise and distinguished lever arm is provided by measurements of
the microwave background radiation. The standard inflationary model predicts approximately
scale-invariant, statistically isotropic and Gaussian temperature fluctuations on the surface of
last scattering and is fully consistent with the data, c.f. sec. 1.2.2. But after the release of three
years of mission data from the WMAP satellite [JT07a, HT07, PT07, WMAa]| there remain
at least open questions and at most serious challenges upon the inflationary ACDM model of
cosmology.

Based on the high precision measurements of WMAP, a couple of anomalies on the mi-
crowave sky have been identified. These anomalies manifest themselves at the largest angular
scales, mainly among the quadrupole and octopole the dipole is overwhelmingly dominated by
our local motion with respect to the CMB  but also extending to somewhat higher multipoles.
The corresponding anomalies may be divided into two types:

e First, and already seen by the COBE-DMR instrument [HBB*96| and confirmed by
the first-year analysis of the WMAP team [ST03], there is a lack of angular two-point
correlation on scales between 60° and 170° in all wavebands. In [CHSS07] the angu-
lar two-point correlation function of the three-year WMAP measurements has been
computed. Going form COBE-DMR to WMAP(3yr) the lack of correlation persists
and moreover it has been outlined [CHSS07] that among the two-point angular corre-
lation functions none of the almost vanishing cut-sky wavebands matches the recon-
structed full sky and neither one of the latter matches the prediction of the best-fit
ACDM model. This disagreement has been shown to be even more distinctive in the
WMAP(3yr) data than in the WMAP(1yr) data and is found to be unexpected at
99%C.L. with respect to the three-year Internal Linear Combination [ILC(3yr)| cut-
sky. Recently, it has been shown [Haj07] that indeed quadrupole and octopole are
responsible for the lack of correlation and that most of the large-scale angular power
comes from two distinct regions within the galactic plane (only 9% of the sky).

e Second, there exist anomalies concerning the phase relationships of the quadrupole and
octopole. As we have discussed in the previous chapter, there are a number of remark-
able alignment anomalies found [dOCT06, SSHCO04], e.g. an unexpected alignment of
the quadrupole and octopole with the dipole and with the equinox at 99.7%C.L. and
99.8%C.L., respectively [CHSS07|. In contrast to such extrinsic alignments, that is
alignments of the low multipoles with some physical direction or plane, like the dipole
or the ecliptic (discussed in the previous chapter), the intrinsic alignment between
quadrupole and octopole does not know about external directions. In this chapter,
we address the intrinsic alignment of quadrupole and octopole with each other, which
from the ILC(3yr) map is found to be anomalous at the 99.6%C.L. with respect to the
expectation for an statistically isotropic and Gaussian sky [CHSS07].

Both types of CMB phenomena challenge the statement of statistical isotropy of the CMB
sky at largest angular scales. Here we want to study the relation between the lack of angular
correlation and the intrinsic alignment of quadrupole and octopole.

In [LMO5] it has been shown that intrinsic alignments among multipole moments extend also
to higher moments and it has been proposed that the strange alignments at large angular scales
involve a preferred direction, called the ‘Axis of Evil’. This axis points approximately towards
(1,b) ~ (—100°,60°) and is identified as the direction where several low multipoles (¢ = 2 — 5)
are dominated by one m-mode when the multipole frame is rotated into the direction of the
axis. Recently, in [LMO7] the analysis of the ‘Axis of Evil’ has been redone in the light of the
WMAP(3yr) with the use of Bayesian techniques [MS07]. It was argued [dOCTO06] that the
‘Axis of Evil’ is rather robust against foreground contaminations and galactic cuts. A recent
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FIGURE 5.2. Mollweide projection of the sky with quadrupole (upper row) and oc-
topole (lower row) multipole vectors [equation (5.5)]. The mesh consists of steps in
30°. Displayed are ten pairs of quadrupole vectors (small dots) and their ten area vec-
tors [equation (5.6) (big dots)] as well as ten triples of octopole vectors (small dots)
and their area vectors (big dots); togetherness is indicated by colour. The arbitrary
sign of the vectors has been used to gauge them all to the northern hemisphere. The
statistically isotropic and Gaussian case (left column) is broken by the imprint of a
strong axial effect ago = 1000uK (right column) whereupon multipole vectors move to
the pole and area vectors move to the equatorial plane. The onset of the shown sep-
aration of multipole vectors and cross products can already be observed at moderate
axial contributions of ag ~ 100pK, c.f. fig. F.11.

[RLLAQ7| cross-correlation analysis of CMB data and galaxy survey data shows no evidence for
an ‘Axis of Evil’ in the observed large-scale structure. In contrast, recently an opposite claim
has been put forward [Lon07], where it was claimed that an analysis of SDSS data gives rise to
a preferred axis in the Universe.

Motivated by these observed CMB anomalies, several mechanisms based on some axisym-
metric effect have been proposed, although the operational definition of the ‘Axis of Evil’
[LMO05, LMO07] does not necessarily imply the existence of such a strong symmetry. Among
the various effects that have been suggested to possibly introduce a preferred axis into cosmol-
ogy are: a spontaneous breaking of statistical isotropy [GHHCO05], parity violation in general
relativity [Ale06], anisotropic perturbations of dark energy [KMO06, BMO06]|, residual large-scale
anisotropies after inflation [CCT06, GCPO06], or a primordial preferred direction [ACWO07]. At
the same time, it has been studied [RRS06b, IS06] how the local Rees-Sciama effect of an ex-
tended foreground, non-linear in density contrast, affects the low multipole moments of the CMB
via its time-varying gravitational potential, see the previous chapter. In a scenario with a single
overdensity the coefficients of the spherical harmonic decomposition, the a,,, become modified
by only zonal harmonics, i.e. m = 0 modes. This is equivalent to an axial effect along the line
connecting our position with the centre of the source.

In fact, the observed pattern in the CMB for quadrupole and octopole is a nearly pure ag,
mode respectively; as seen in a frame where the z-axis equals the normal of the plane defined
by the two quadrupole multipole vectors [CHSS06]. In [CHSSO07] it has already been argued,
that foreground mechanisms originating from a relatively small patch of the sky would mainly
excite zonal modes. Moreover all additive effects where extra contributions are added on top of
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the primordial fluctuations would have difficulties explaining the low multipole power at large
scales without a chance cancellation.

It is important to study how the inclusion of a preferred axis compares with the intrinsic
multipole anomalies at largest scales. Our analysis is restricted to axisymmetric effects on top
of the primordial fluctuations from standard inflation, thus secondary or systematic effects. We
are going to quantify how poorly an axisymmetric effect at low multipoles of whatever origin
matches the three year-data of WMAP. Further, we will demonstrate that there is no correlation
between the two types of intrinsic low-£ anomalies: the two-point correlation deficit and intrinsic
alignment; and that there remains none even when a preferred axis is introduced to the problem.

5.2. Choice of Statistic

A common observable is the multipole power. According to the standard perception of
inflationary cosmology, the CMB fluctuations are believed to follow a Gaussian statistic and
to be distributed in a statistically isotropic way. The notion of statistical isotropy means that
the expectation value of pairs of coefficients (a},,, asm) is proportional to d¢¢ Omim , c.f. (3.39).
The proportionality constant measuring the expectation value of the multipole on the full sky
is commonly estimated by Cy, c.f. sec. 3.3.2. The angular power can also be written as

14
1 1
1 = — 2=-_— 2
(5.1) Ce=gryg 2l s [ 0T,

with T, being the /-th multipole of the CMB temperature anisotropy. It can be expanded with
the help of spherical harmonics as: Ty = Zm aem Yem - Note that, since we consider multipole
moments that are real, the ag, must fulfil the additional condition: a},, = (—1)™as—p, . Using
the estimator (5.1)) the angular two-point correlation function is given by

1 oo
(5.2) CO) = - g(zz +1)CyPy(cosh),

where the P are the Legendre Polynomials of ¢/-th order.

Besides of the multipole power itself, it is useful to introduce an all-sky quantity that
embraces all scales. As inspired by the S} /; statistic, presented in [ST03] for measuring the lack
of angular power at scales larger than 60°, we use here an analogous all-sky statistic [CHSS07]

1
(5.3) Stull E/ C?%(#) d(cosh) .

-1
It is a measure of the total power squared on the full-sky. In contrast to the S;,, statistic
[ST03], the Spy statistic does not contain any a priori knowledge on the variation of the two
point angular correlation (5.2) for angles > 60°. Here we are considering especially the large
angular scales but we are not interested in the monopole and dipole and thus arrive at

1
(5.4) Spmne — 52 (5C3 +7C3) .
Of course, all multipoles have to be considered for the full-sky statistic (5.3) but we can use the
truncated part (5.4), because here the anomalies are most pronounced and we want to check
for the interplay of this part of the full-sky power statistic with the other (phase) anomalies
within quadrupole and octopole. This part is then simply to be added to the rest of the sum of
(squared) multipole power in (5.3), recovering the expression for the full-sky.

Next we turn to the statistics involving the phase relationships of multipoles. We use the
concept of Maxwell’s multipole vectors [Max79] in order to probe statistical isotropy, since this
representation proved to be useful for analyses of geometric alignments and special directions
on the CMB sky. Normally the CMB data is decomposed into spherical harmonics and the
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FI1GURE 5.3. Evolution of the Monte Carlo likelihood of the alignment statistics Spn
(5.7) and Sww (5.8). The effect of an axis in the CMB is modeled via increasing addi-
tional zonal harmonics with coefficients ago. At ago = 1000uK the multipoles become
purely zonal in good approximation. Regarding WMAP’s ILC(3yr) map Snr is un-
expected at 98.3%C.L. and Sy is odd at 99.5%C.L. with respect to the statistically
isotropic and Gaussian sky (bold histograms). The best improvement is reached for
both statistics at roughly as = 100pK.

coefficients ay,,, containing the physics. Alternatively, with the use of the multipole vectors
formalism we can expand any real temperature multipole function on a sphere into

I (8“7 2(0.)) = Lato, w)] ,

i=1

4
(5.5) Ty(0,0) = Y awmYem(0,p) = AY

m=—/{

and é is a radial unit vector, just like in (4.6). The ‘angular momentum’ residuals are subtracted
with the help of the term L,(6,p). We choose the sign of the multipole vectors so that they all
point to the northern hemisphere.

In order to disclose correlations among the multipole vectors we first consider for each £ the
£(¢ —1)/2 independent oriented areas built from the cross products

whereof we will also use the normalised vectors n(%%7) = w(6%9) /|w(G59)|. Now, in [SSHCO04]
and subsequent works, the dot products of the area vectors have proven to be a handy expression
in order to quantify alignments of the multipole vectors among each other and also with external
directions (which we do not consider here). The following measure, as stated in [Wee04], and
used in [SSHC04, CHSS06, CHSSO07] serves as a natural choice of a statistic in order to quantify
the intrinsic alignment of quadrupole and octopole oriented areas:

(5.7) S = % Z’w(zm) RGER)

i<j

Note that we consider only the very largest scales, i.e. we use the statistic only for ¢ = 2, 3.
Analogously, a statistic involving the normalised area vectors is given by:

1 . y
(5.8) Sun = 3 Z‘"(Zm'"(g’ w‘ ,
1<J
5.3. Standard Model Predictions

Standard inflationary ACDM cosmology requires the CMB anisotropies to be Gaussian and
statistically isotropic. For the subsequent analysis we have produced Monte Carlo realisations
of the harmonic coefficients ag,, following the underlying ACDM theory. From [CHS04] an
algorithm is available which we use to obtain Monte Carlo multipole vectors from the coefficients.
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FIGURE 5.4. The sign of additional axial contributions ag has no physical effect
on the statistics Spn and Sww . For the quadrupole this follows from the symmetry
of the Legendre Polynomial P, [see equation (5.13)]. The quadrupole contribution
is kept fixed at az0 = 100pK while the axial contribution to the octopole is varied
both in magnitude and in sign. Respective pairs of +aso histograms lie virtually on
each other and their statistics are thus indistinguishable. The reference histograms
following from the axially unmodified ACDM model (bold histograms in fig. 5.3 lie
nearly on top of the displayed a0 = 100uK and azo = £10uK cases, and are thus not

shown.

Mollweide maps of a sample of random Gaussian and statistically isotropic quadrupole and
octopole vectors as well as their normals are given in fig. 5.2 (left column).

Concerning the question of correlations between the multipole power and the alignment of
multipole vectors, it appears natural to expect that there is none. That is because we invoked
Gaussian random and statistically isotropic skies, leading to multipole vectors (5.5) independent
of the multipole power (5.1). This assumption needs to be tested and quantified.

Nevertheless, a small correlation could be expected from the following reason: Considering
only multipoles up to some limiting power, the resulting probability density distribution for the
agm must be non-Gaussian. In fact, this restriction leads to a negative kurtosis for the agy,
distribution (the skewness vanishes). Having that in mind, it appears suddenly unclear whether
the naive expectation of vanishing correlation of power with intrinsic alignment will hold. Below
we substantiate the absence of correlations by means of a Monte Carlo analysis.

Let us first look at the alignment anomalies. In fig. 5.3 the likelihood of the quadrupole
and octopole alignment statistics Sy and Sy, is shown. The predictions of the standard
inflationary ACDM model are shown as the bold histograms respectively (= vanishing axial
contamination). According to the three-year ILC map from WMAP [WMAa| we get the follow-
ing measured values for the alignment statistics:

SILCEY) — 08682 and  SECGY) — 07604,

when [CHSS07] corrected for the Doppler-quadrupole. The total number of Monte Carlos we
produced per sample is N = 10°. We infer that the unmodified inflationary ACDM prediction
is unexpected at 98.3% C.L. with the Sy, statistic and unexpected at 99.5% C.L.* with respect
to the Sy statistic.

Next, we consider the cross-correlation between the intrinsic phase anomalies and the mul-
tipole power (5.1) within the low-¢. For this we chose those as,, that allow for say the lowest
possible 5% in the left tail of the distributions for C5 and C3 that follow from statistical isotropy,
Gaussianity and the ACDM best-fit to the WMAP data. Then we compute the expression Sy
for the selected agy, and compare it to the according ILC(3yr) value. As expected, no correlation

AThe value quoted above was [CHSS07] 99.6% C.L. The small difference is due to the incorporation of the
WMAP pixel noise in the Monte Carlo analysis in [CHSS07].
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FIGURE 5.5. Contour of the scatter of intrinsic alignment (5.7) versus full-sky power
squared (5.4). The shape can be understood from the folding of the two respective
distributions. The total number of Monte Carlo points is N = 10°. The measured
data point from WMAP three-year data is included. The maximum of likelihood
requires Sww far smaller than obtained from ILC(3yr). Consistency with the data can
be excluded at 99.95%C.L. Contours correspond to lines of 1/2" times the maximal
likelihood, with n =1,...,5.

is found, that is neither the shape nor the expectation value of the alignment statistic is shifted.
We find the same also for the combination of the lowest allowed 5% in Cs and the highest 5%
from the right tail of the distribution of C3 and the remaining two possible combinations thereof.
As we do not find any correlations, we can conclude that the S, and Sy, statistics are not
sensitive to the non-Gaussianity induced by the restriction to low multipole power.

Moreover, we probe the opposite direction by tagging those agy, that lie in the allowed right
tail of the Sy distribution with respect to S%S(3yr>. The distribution of the multipole power
for 5y and C'5 made of these ay,, remains unchanged. The latter finding confirms that multipole
power and the shape of multipoles (phases) are uncorrelated.

Using Equation (5.4), the [WMAa] Maximum Likelihood Estimate (MLE) from the WMAP
ILC(3yr) map for the angular power spectrum yields SFSHHC’MLE = 29431uK*.  Compared to
the value of 136670uK* from the ACDM best-fit to WMAP(3yr) data, this is not significantly
unexpected, with an exclusion level of only 92.1%C.L.

Now we want to check for correlations between the all-sky multipole power and the multipole
alignment. As for reasons explained in the next section we prefer the Sy, statistic to Sy, in the
following correlation analysis. In Figure 5.5 the scatter plot of Sy, against S is shown. The
form of the contour can be understood as just the folding of the x2-like form of the distribution
for SfEic with the gaussian-like form of the Sy, distribution. At first glance we see from Figure
5.5 that the MLE from WMAP (3yr) Spii"™M® = 20431,K* requires the alignment statistic to
be of middle values (around 0.4), which is inconsistent with the respective measured anomalous
value from ILC(3yr). Moreover the lack of any linear behaviour in the contour suggests that
there is no correlation between the two statistics.

Given that no correlation is present between Sy, and SPHI¢, we would expect that the joint
probability that both power and alignment are in accordance with data factorises according to:

(5.9) p (Shli™® < data A Sy > data) = p1 (Sqi™® < data) ps (Sww > data) .
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But in reality we can only access finite statistical samples of these quantities and the fac-
torisation will not be exact. However, we want to will check the validity of (5.9) within our
statistical ensemble. When using the full sample with N = 10° respectively we obtain a joint
likelihood of p ~ 0.05%. The error A of the factorisation, which we define as the difference
between the left hand side in (5.9) and the right hand side, is of the order O(1075), that is of the
order of the Monte Carlo noise. In order to track the evolution of the error A we also compute
the joint likelihood (5.9) for smaller subsamples; see tab. 5.3. Reducing N to N = 10* we obtain
an even smaller joint likelihood of p = 0.02% but with an error that is of the same magnitude.
With N = 10% we do not have a single hit for the joint Monte Carlos leading to p = 0% with
the same error as in the N = 10% case of A = 0.02%. Note that just one Monte Carlo hit in
favour of the joint case would raise the error here to A = 0.08%. In the end, the convergence of
the joint likelihood appears to be very slow with respect to the sample size N.

Furthermore we are interested in the stability of the results for A with respect to changes
in the measured data. For this we choose the WMAP(1yr) values:

(5.10) gpmnepsendoCe — 10154, K*  and  SICMYD) — 0.7731.

We use a sample of the full size N = 10° and obtain a joint likelihood with respect to the
one-year data of p = 0.001% with an error A = 0.002%. That is, with respect to one-year data
both the joint likelihood and its error are of the order of the Monte Carlo noise. From the
WMAP(1yr) data alone we could exclude the joint case (5.9) rather conservatively at 99.99%
C.L. This appears to be a stronger exclusion than the one from three-year data. But we do not
bother much about the difference because of the different estimators that have been used by the
WMAP team for the angular power spectrum (pseudo-Cy vs. MLE) [WMAal.

sample size N joint p error A

100000 0.048% 0.008%
100000 0.001% 0.002%
10000 0.02%  0.02%
1000 0% 0.02%

TABLE 5.1. Joint likelihoods (5.9) for SE "¢ and Sy being in accordance with data
simultaneously. The experimental values refer to WMAP’s ILC(3yr) map [WMAa]
except for the second row. The error A of the factorisation in equation (5.9) is the
difference between left hand side and right hand side in that equation.

We quote here the most conservative result, namely the full sample joint likelihood case for
Sww and SEIHr with respect to the WMAP(3yr) data. Therefore we can exclude that case at
> 99.95% C.L. with an error in the third digit after the comma lying within the Monte Carlo
error of the used sample (N = 10°).

Finally we attempt to analyse the correlation of the all-sky power statistic Sfi"¢ and the
intrinsic multipole alignment Sy, by quantitative means. It is well known from statistics, that
when checking a finite two-dimensional sample for correlations, the empiric covariance

N

1 _

(5.11) COV[ SR s Suw] = 57 D (S = SEH™) (Sww.i = Swrw)
i=1

is a crucial quantity. The bar stands for the mean of a variable. As the covariance is a scale

dependent measure, i.e. depending on the magnitudes of the sample values Sy, i and Syw, i

the dimensionless Bravais-Pearson coefficient or empirical correlation coefficient is the better

expression to use:

_ cov[SEI™ , Swuw]
(5'12) PSER s Sww = Gtrunc — gtrunc S, S. '
Veov[ SEC, SEire ] cov] Sww s Sww |
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FIGURE 5.6. Scatter contour of pairs of Syw and SEi™ after an axial modification of
a¢o = 7T0pK has been applied; this is the contribution involving maximal improvement
in Sww (see fig. 5.3). The total number of Monte Carlo pairs is N = 10°. Note that
the horizontal axis now runs from zero to 1.4 x 107°mK", whereas in fig. 5.5 the
maximal displayed value is 4 x 107 "mK?*. The inclusion of a preferred axis leaves
all-sky multipole power and intrinsic alignment totally uncorrelated and inconsistent
with the WMAP(3yr) data. Contour lines are defined as in fig. 5.5.

Finally, employing the WMAP (3yr) data we obtain an empirical correlation coefficient of
pslg‘zﬁnc7sww = _00027,

with respect to the full sample N = 10°, which indeed indicates only marginal correlation.

5.4. Inclusion of a Preferred Axis

Now we ask what happens when introducing axial contributions on top of a statistically
isotropic and gaussian microwave sky. The presence of a preferred direction with axisymmetry
in the CMB will exclusively excite the zonal modes in case the axis is collinear to the z-axis.
Here we do not bother about external directions since the internal alignments are independent
of these. Therefore such an axis will manifest itself through additional contributions agy. We
are considering the quadrupole and the octopole and the question arises, in how far the sign of
the axial contributions +ag plays a role. The coefficients as,, can be reconstructed from

AT
(5.13) aim = [ S 0.6) Vi a0

Obviously, within the quadrupole the sign of tasg is irrelevant because of the symmetry of
the Legendre Polynomial P, with respect to § = 90°. The Legendre Polynomial P; however
is antisymmetric with respect to 8 = 90°. Therefore the relevance of the sign of the octopole
contributions agg has to be clarified. Consequently we have chosen a fixed value for the axial
quadrupole contribution agy and have then varied the according octopole contribution in sign
and in magnitude. The results are displayed in fig. 5.4. Apparently the Sy, and Sy, statistics
that are important here, do not distinguish between the sign of the applied axial effect. Therefore
we need not to bother about the signs of the agy and let them henceforth be positive.

In Figure 5.3 the evolution of the Sy and S, statistics with respect to increasing axial
contributions is displayed in terms of likelihood histograms:
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Let us first look at the evolution of the S,,,, statistic. This expression measures the average
|cos| of the angles between the quadrupole oriented area and the octopole areas. The pure
Monte Carlo peaks at 0.5 reflecting the fact that the average distance of four isotropically
distributed vectors on a half-sphere from each other is 60° in the case of statistical isotropy. It
is a half-sphere because the signs of the multipole vectors are arbitrary and so we choose them
all to point to the northern hemisphere. When increasing the contribution of the axial effect the
multipoles become increasingly zonal and arrive at being purely zonal in a good approximation
at values of agy = 1000uK. On the level of the multipole vectors this means that their cross
products all move to the equatorial plane (see fig. 5.2). That is the reason why the histogram in
fig. 5.3 (left) moves to the right when we increase the axial effect, because now isotropy is broken
from the half-sphere to the half-circle making the Sy, histogram peak sharper at higher values.
The measured value from the ILC(3yr) map of Sha Y™ = 0.868 is anomalous at 98.3%C.L. with
respect to the pure Monte Carlo (bold histogram in fig. 5.3 which stands for the statistically
isotropic and gaussian model. By adding axial contribution the maximal improvement is reached
at agog = 100uK where the ILC(3yr) becomes unexpected at 96.7% C.L. Further enhancement
of the axial effect makes the S,,,, statistic more and more narrow around an expectation value
< 0.7. This makes it impossible to remove the anomaly in the Sy, cross-alignment with respect
to the ILC(3yr) experimental value only by increasing the axial contribution to high enough
values.

On the other hand the Sy, statistic additionally measures the modulus of the sin of the
angles between the multipole vectors themselves. As can be seen from fig. 5.2 multipole vectors
are all moving toward the north pole clustering more and more as the axial contribution is
enhanced. The S, statistic measures the average of the modulus of the products of the sin
of angles between quadrupole vectors, octopole vectors and the cos of the angle between the
area vectors. Therefore on top of the information already contained in Sy, the Sy, statistic
is able to go to zero for highest zonal contamination as the closeness of the multipole vectors
in that case dampens the product of sines and cosines quadratically to arbitrary small values.
Thus we find that Sy, is the more convenient statistic for further analyses, as it does contain
more information than the Sy, statistic and additionally shows a simple and clear asymptotic
behaviour. In the case of this statistic the anomaly is significant at 99.5%C.L. with respect
to S&S(?’yr) = 0.7604. Similarly to before the maximal improvement is reached with an axial
contribution of agy = 70uK, which degrades the anomaly in Sy to 99.2%C.L.

Now we return to the correlation analysis of the alignment with the pure multipole power
Cy. When introducing an axial effect, say agg = 100K, we improve the fit to the Sy, statistic,
but interestingly the multipole power anomaly becomes much more pronounced. This behaviour
is expected [RRS06b, RRS06a| for the Cy-distribution (being a modified y?-distribution) when
the axial contribution is enhanced, but it is unexpected that exactly the same happens for a
multipole power distribution ‘that knows of the intrinsic alignment of quadrupole and octopole’.
This indicates that there is no correlation at all between multipole power and the phase alignment
even when they are tuned to each other.

Proceeding with the analysis of correlations between alignment and the full-sky power statis-
tic, again we try to provoke correlation with the help of axial symmetry in the CMB. In fact
we apply an axial effect of the ideal magnitude (agp = 70uK) in order achieve larger values in
Sww- The negative result is shown in fig. 5.6: as S}ﬁﬁnc is a linear combination of squared Cp
distributions it is a sharply peaked y2-like distribution being very sensitive to axial contribu-
tions. Therefore the contour in fig. 5.7 is fairly shifted to the right (to higher values in SF"°)
and broadened with respect to the axially unmodified case, obviating any correlation with the
intrinsic alignment. The shape of the overall contour is roughly left invariant by the scale shift
in Sgrne,

The fig. 5.7 illustrates the pure zonal case. Here a whole agy = 1000uK has been induced into
the multipole vectors. Again, due to the sensitivity of SEH™ to axial contamination this pushes
the allowed region in the scatter plot to very high values in full-sky power squared, degenerating
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FIGURE 5.7. Contour plot of the scatter of pairs (Sww, Sfal") after a strong axial
contingent of ago = 1000uK is induced to the multipole vectors (see also fig. 5.2 and
fig. 5.3). The total number of Monte Carlo pairs is N = 10°. The all-sky power
statistic reacts heavily as the scale on the S{"°-axis is shifted by four orders of
magnitude with respect to the case of ago = 7T0uK (fig. 5.6). The likelihood maximum
departs very articulately from the WMAP(3yr) data. The contour lines are defined

like in fig. 5.5.

the contour to a ‘small” area far away from the measured three-year WMAP values. No change
in correlation is observable.

Obviously, no coupling of the multipole power statistic and the intrinsic alignment can be
driven in favour of the anomalous experimental CMB data by an additional axisymmetric effect
on top of the primordial fluctuations.

5.5. Conclusion

We have shown that a literal interpretation of the ‘Axis of Evil’ as an axisymmetric effect
is highly incompatible with the observed microwave sky at the largest angular scales. The
formalism of multipole vectors was used to separate directional information from the absolute
power of multipoles on the CMB sky. Considered were two choices of statistic, measuring the
intrinsic cross-alignment between the quadrupole and octopole: the S,,,, and the Sy, statistic.
We confirm that the Sy, statistic contains more information on the multipoles and that it has
more discriminative power as an axial effect is included. The presence of an axial symmetry in the
CMB would excite zonal modes which are, in the frame of the axis, additional agy contributions
in the language of the harmonic decomposition. Both statistics (Sprn and Sye) reach slightly
better agreement with the measured values from the ILC(3yr) map at amplitudes of roughly
ago = 100pK. Further enhancement of the axial effect only reduces consistency with WMAP (3yr)
data.

Especially we have assayed in what way the alignment anomaly between quadrupole and
octopole can affect the respective multipole power. We made several tests where we identified
and selected the ‘anomalous ag,, ' that are still consistent with data and checked whether the
resulting distribution from these ag,, for either power or alignment shows any change with respect
to the unbiased case. For the all-sky multipole power we make use of the statistic Sfii™c. We
demonstrated that the correlation between SfI1i"¢ and intrinsic alignment is at most marginal —
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correlation coefficient of —0.0027 . Thus a factorisation of the probability for the joint case into
a product of the respective probabilities is allowed, c.f. (5.9).

We argued that the combined case of the measured all-sky power and the quadrupole-
octopole alignment is anomalous at > 99.95%C.L. with respect to the WMAP three-year data.
The correlation picture leaves no space for an axisymmetric effect in the large-angle CMB.

These findings complement our previous studies from chap. 4 of the interplay of an axisym-
metric effect and the extrinsic CMB anomalies (correlation with the motion and orientation of
the Solar system [SSHCO04]). In that work it was suggested that an axisymmetric effect might
help to explain a Solar system alignment. Finally, this study rules out that possibility.

But there is a loophole. Here and in chap. 4 we only considered additive modifications of
the agp,. Still, a preferred axis could also induce multiplicative modifications in all ay,, , see
e.g. [GHHCO5]. This could avoid the problem of additional multipole power. However, multi-
plicative effects could only be achieved by non-linear physics, like systematics of the measurement
or the map making process.

A modelling that would be able to consistently remove both the power and the intrinsic
alignment problem for low-£ must mobilise a more complex pattern of modifications than the
one induced by an axisymmetric effect. As already indicated by e.g. the odd extrinsic alignment
with the ecliptic, c.f. tab. 4.1, the CMB anomalies do rather require a special plane than a
preferred axis. The so called ‘Axis of Evil’ appears as just the normal vector of that plane, but
no axial symmetry is present within that plane.



Summary and Outlook

In this thesis I have addressed current open questions of the cosmological standard model.
I would like to close the scientific part of this work with a concise summary of the main issues
that have been covered here, as well as some remarks with regard to future interesting work.

The Issue of Dark Energy. In chap. 1 we have discussed the main observational evidence
in favour of the cosmological constant A. In particular, we have seen that observations of
distant supernovae of type Ia support an accelerated expansion of the Universe. Additionally,
the supernova data shows that this acceleration has set in at redshifts of order unity, that is
in cosmological terms ‘recently’. This is referred to as the coincidence problem. Together with
the CMB measurements and galaxy redshift surveys, the experimental findings form the cosmic
concordance.

In chap. 1 we have also seen that the supernova data can potentially be explained within
inhomogeneous models (LTB model, Szekeres model) without invoking Dark Energy. Also,
the additional inclusion of CMB data has been carried out successfully by some groups. The
methods we have used in chap. 1 to carry out analytic calculations in the LTB model can also be
used in the context of cosmological backreaction. Cosmological backreaction is an conservative
attempt to solve the Dark Energy problem, for it does not invoke any new fields or interactions.
It is known that backreaction is indeed able to mimic A, but the actual magnitude of the effect
is yet undetermined and subject to current debate. On the one hand the non-perturbative
approach via the Buchert equations shows a lack of suitable observables, and on the other
hand the perturbative approach, which deals with observables, becomes technically immensely
complicated with higher orders. However, see [LS07] for an attempt of synthesis.

Addresssing these problems, Thomas Buchert (Université Lyon 1), Dominik Schwarz and I
have begun a project in which we are examining the effects of general relativistic averaging —
carried out on the backward light cone of the observer — on the common cosmological distance
measures, which are; the angular diameter distance and the luminosity distance. This is an
ongoing work and its results are too preliminary to be written down in this thesis yet.

The Issue of Dark Matter. We have seen in chap. 2 that the evidence for Dark Matter
is manifold. However, it should be reemphasised that there is no a priori reason to believe that
all of the missing matter problems on all of the different physical scales must have a common
explanation.

The most important evidence comes from a simple astrophysical test, the galactic rotation
curve. A fully general relativistic galaxy model has been proposed by Cooperstock and Tieu
recently, and it was shown that this model can explain the observed flat rotation curves without
any Dark Matter. It is claimed by CT that Newtonian models cannot reproduce certain intrin-
sically non-linear terms within the CT model, which shall appear already in the stationary and
axisymmetric setup.

Nevertheless, it has been argued from various directions that the CT model gives rise to
unphysical features. It is an open question whether the CT solution could provide an effective
model, and to which extent the breakdown of its Newtonian limit might indicate its usefulness
or its difficulties.
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In chap. 2 we have shown that the CT solution does not belong to the class of the most
general axisymmetric and stationary solutions. Therefore the CT solution is less general and
this restriction might be a reason for the problems of the model.

Moreover, we found the surprising fact that the classical Newtonian metric is not appropriate
for a weak field limit of the CT theory, because the incorporation of a post-Newtonian potential
is necessary to make physical sense.

We then concerned ourselves with the analysis of rotating (Post-) Newtonian spacetimes in
order to find a simplified model. We applied the full machinery of the ADM formalism to the
problem and we derived the exact 3 + 1l-equations of motion for the static and for the rigidly
rotated Post-Newtonian metric as well as approximate results for the differentially rotated case.
We found that it is necessary to go to full quadratic order in the potentials of the differentially
rotated PN metric to obtain a viable Newtonian limit, which will be done in the near future.

The Issue of the CMB Anomalies. The one-year CMB data taken by the WMAP ex-
hibits several unanticipated features, especially within the smallest multipole moments (quad-
rupole and octopole). These findings have been widely confirmed after the WMAP three-year
data release. The features are referred to as ‘anomalous’ because they contradict the predic-
tions made by the standard inflationary ACDM model — especially the statistical isotropy. In
chap. 4 and chap. 5 we have presented the various shapings of the anomalies in much detail.
The odd features are present both in the CMB autocorrelation function C'(€) and in the phase
relationships of the quadrupole and octopole.

In chap. 4 we focused on the anomalous alignments of the lowest multipoles with external
(astrophysical) directions, like the CMB dipole or the characteristic directions of our Solar sys-
tem. Inspired by the correlation with the dipole, we ask how extended extragalactic foregrounds
would influence the CMB sky via the Rees-Sciama effect. The overdense structure responsible
for the effect was modelled by a spherically symmetric LTB solution. We then made use of the
analytic calculation of the Rees-Sciama effect — presented in chap. 1 — indicating that only the
zonal CMB modes are modified by the effect (axisymmetry).

We have found that massive non-linear structures like the Shapley concentration (roughly
100Mpc away) are able to produce CMB contributions of up to 10~ . For the axially symmetric
setup we have shown that this effect does induce alignments, albeit not of the same form as
extracted from WMAP, and that still rather a Solar system effect is preferred by the data.

The intrinsic alignment of the quadrupole and octopole, as well its relation to the anomalous
lack of angular two-point correlation in the WMAP data was the subject of chap. 5. After
carrying out a Monte Carlo cross-correlation analysis we could demonstrate the absence of
correlations between the two sorts of anomalies. Based on this we were able to show that
the combined case of the measured autocorrelation and the quadrupole-octopole alignment is
anomalous at > 99.95%C.L. with respect to the WMAP three-year data.

The correlation picture leaves no space for an literal interpretation of the ‘Axis of Evil’ as
an axisymmetric effect. As we pointed out in chap. 5 there are several models with a preferred
axis in the literature which seek to provide an explanation for some of the anomalies. Our result
enables us to put stringent constraints on any model that exhibits an axial symmetry.

But there is still a loophole for axial models. In this work we have considered additive
modifications of the ag,,. Still, a preferred axis could also induce multiplicative modifications in
all agp, , see [GHHCO5]. This could avoid the problem of additional multipole power. However,
multiplicative effects could only be achieved by non-linear physics. In principle it is possible to
get such a non-linear effect from the spectral distortion arising from the possible interaction of
the CMB photons with small objects in the Kuiper Belt, the so called Trans-Neptunian objects,
c.f. [BBS07]. This is a promising idea to pursue in the near future.

Moreover, I think that it is fruitful to carry out a similar Rees-Sciama analysis within the
more complicated Szekeres model, c.f. sec. 1.3.2, because much more non-trivial symmetries can
be expected there.
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Here we give a discussion of the various, partly exotic, solutions that are possible within an
FRW model with non-vanishing cosmological constant. The presentation partly refers to [FI86].

First, the line of geometrically closed, open or flat in the above fig. A.1 simply refers to the
respective choice of k. The dynamics of the FRW model is governed by the Friedmann equation
(1.14). Writing the Friedmann equation today, when the radiation is no more dominant, we
have

(A1)

APPENDIX A

Critical Values of €2, and (), in the FRW Model
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FIGURE A.1. Left: the cosmic concordance plot from fig. 1.4 has critical lines. For
instance, there is a borderline formed by the coasting (sometimes also called loitering
or hesitating) cosmologies that separates FRW models with a Big Bang from such
without Big Bang in the upper left corner of the figure. Moreover there is an ‘expan-
sion/recollapse’ borderline in the middle of the diagram. The derivation of the critical
curves is given in the text. In the lower right corner of the figure there is another
shaded region. This parameter region is falsified for it implies solutions where the
Universe is younger than the oldest stars ty < 9.6 Gyr (with any Ho > 50 km s~ *
Mpc™* [PT98]). Right: an alternative way of plotting the concordance results in the
form of a ‘cosmic triangle’. Pictures are taken from [Lid04| and [Gfr].
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such that we can read off the curvature lines in fig. A.1 by
Q4+ >1 — k>0, spatially closed
Qn+Q2=1 — k=0, spatially flat
(A.2) Qn+ Q<1 — k<0, spatially open.

Next we consider the line of ‘acceleration/deceleration’ (see the cosmic triangle). Using
dimensionless variables R = a/ap and 7 = Hyt we can write the Friedmann equation, after a bit
of algebra, as follows

(A.3) RE=1+4Qu (R —1)+ 0y (R*—1).

The deceleration parameter was defined in (1.42) and takes today the value

(A1) P (—)

where dots indicate differentiation with respect to cosmic time. Differentiation of equation (A.3)
further gives

1 ad ap aa
A — (2= )| = —-Qun | —= (2= .
(49) (25 (%) +oa (252)

so that taking the equation today yields

)

0

1
(A.6) o = 58m — Q.

Thus, with go = 0 we just get the dividing line 2Q, = Q,, as indicated in the figure.

The critical lines of A are more interesting. For very high and positive values of A the
Universe would lose its Big Bang in the past. The borderline for this is given by the class of
Eddington-Lemaitre models; in these models one employs a value for A that is slightly higher
than Aggae which is in turn defined by the static (Einstein) limit: Agae = 1/a2,,. In the
Eddington-Lemaitre model the Universe rapidly expands from a = 0 (Big Bang) on and reaches
a turning point near a = agtat , where it mimics the Einstein model for an arbitrarily long time
before it erupts again, now expanding to infinity; at the time of invention of the Eddington-
Lemaitre model it was hoped that the quasistatic feature in the model may provide time for
structure formation, c.f. [Nar02]. The ‘Big Bang/no Big Bang’ borderline models are thus
asymptotic to the Einstein model in their (infinite) past. Then models with A < Agat do have a
Big Bang in the past, whereas models with A > Ag;.¢ are collapsing from some infinite radius to
a finite minimal scale where they turn around and reexpand again to infinity — this behaviour
is also referred to as catenary or bounce. Analytic formulas for the according critical lines of
A are readily obtainable. Besides the critical line of ‘Big Bang/no Big Bang’ we will also get
a solution for models that are quasistatic in their infinite future and they form the ‘recollapse
eventually /expand forever’ borderline in the figure. Models that are to be asymptotically equal
to a static Einstein solution must obey the equation

K 3/ 8nG 1 . As
(A7) R2—0 = Agtat = B ( TP) o With Ry = —o |
stat R 7 Lgat ao
=C

where K is the Gauss curvature Ky = k/ag and we used the rescaling R = a/ag so that Ry = 1
today. In fact, the static model conditions (A.7) are two separate equations so that we can
eliminate Rg,¢ and solve for the critical Lambda value

4
(A8) Astat = §K§Oi2 and C = QmHg .
On the other hand we have from the Friedmann equation, as evaluated today,

(A.9) Ko=Hi (Qm+Qx—1) .
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We now can insert this into (A.8) and bring the result to a form convenient for the following
steps,

Astat _ i
12Q,H2 27

It is useful to define the following function

1/3 1/3
(A.11) T = _Astar - AU ,
12Q,,H2 40y

such that we can rewrite equation (A.10)

1
(A.10) (o + Q5 — 1)° o

1 3
(A.12) z? = {g (1-0."+ 43:3)] :
Now, taking the three-root is unique and we get

3 1Q, -1
Al 3_Z2 e =
(4.13) oyt 0

a dimensionless inhomogeneous cubic equation. One possibility of solving (A.13) is to use the
method by Cardano and Tartaglia: first, the ‘discriminant’ is given by
1

(A14) A=a (B +49%) = o (1= 200) o

16

and moreover we define

E [—B+ (8% + 473)1/3] _1 F (1= Q) Ol + A2

2 2 |4

with the identities « = 1, =3 = 1/4(1 — Q1n)Qy,' and v = —1/4. The solutions are formulated
for x, but our aim was to convert these to solutions for €2, and 2, . Consequently we are here
interested only in the positive and real roots of the cubic equation and with these constraints the
trigonometric form of solution [Tur52] is more convenient than the above form. The borderline
of models that expand to infinity to those that recollapse is given by the solutions that are
quasistatic in the infinite future. For universes that are to expand to infinity we get the following
trigonometric solution

(A.15) D

0 for0 <0, <1

(A.16) Qp > { 10, {COS [% ALCCOS (1;&,) + %w} }3 for O, > 1

The critical line of Big Bang/no Big Bang is characterised by those models that have been
quasistatic in the infinite past. Models without an initial singularity are characterised by

3
40, {cos [% arccos (%)} } for Q, >

(A.17) = 40, {cosh [%arccosh (%)} }3 for QO <

= N

Note that the join at Q,, = % is perfectly analytic. The need for two formulas to represent a
single function is an artefact of solving cubic equations as it is discussed by [Tur52]: ‘From a real
cubic, three real roots cannot be extracted by Cardano’s formula without a circuitous passage
into, and out of, the domain of complex numbers’.






APPENDIX B

Details of the Lemaitre-Tolman-Bondi Model

Here the field equations for the LTB model and for its more general progenitor model are given.
First let us recall the Einstein field equations of gravity with cosmological constant (¢ = 1)

1
(B.1) Rog — §Rga5 + Agop =81GT 5.

The definition that is used throughout this work for the energy momentum tensor is the one
from (2.39)

(B.2) T = (p+p)uu® + pg®®  with u®u, = -1,

The used metric signature is (—, 4, +, +) which here corresponds to 7% = diag(p, p, p, p) but
T% = diag(—p,p,p,p). The combination Gog = Rap — %Rgaﬁ is referred to as the Einstein
tensor. Given a spacetime representation g, the Christoffel symbols are calculated via

1

(B.3) %, = 59 (9857 + 9va8 = 95+.0) -

The Riemann curvature tensor can be expressed in coordinate notation as
(B.4) R 5 =T%;s  —T%, s+ 15T T, T%;.
The Ricci tensor is defined as the trace of the Riemann tensor

(B5) Rg(; = Raﬁa(; 5

and taking the trace of the Ricci tensor we define the Ricci scalar

(B.6) R = R%.

The respective quantities in their three-dimensional versions are defined analogously; in the
above relations one only changes greek to latin indices. The spatial Ricci scalar is written in
caligraphics )R = R. The following results refer to [PK06| and [Bon47| as well as to my own
calculations.

B.1. General Spherically Symmetric Spacetime with Zero Vorticity

We first discuss a more general case than the LTB solution from which the LTB model originates.
When the matter model is that of a perfect fluid, the vorticity vanishes for spherically symmetric
spacetimes. The synchronous gauge is then justified and the metric takes the general form (1.43)

(B.7) ds? = —e“dt? + e*dr? + R? (d6? + sin*0dy?) .

Note that there may be an ambiguity with the term ‘synchronous gauge’ which is sometimes
used differently in the literature. What we mean here (following [PKO06]), is that there are no
mixing terms in the metric. Further, the metric coefficients C; A and R are functions of (r,t)
only. The four-velocity field takes the form

(B.8) u® =e 92,
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Then the field equations read

1 R%  A.R R AR,
0 _ e it it ) T N
(Bg) Go—ﬁ"'e (ﬁ—FT)—G <2T R2 R )—87TGp+A
1 R R%  C.R C R,
1 _ e ot t it —A Cordtr |
L o, Bt  Re(A:r—Ch)
G22=G33=Z 0[4 7 T2 = + 24,4+ A% A
1 Rrr Rr C’I‘_AT
(B.11) e A4 4o (¢, ’)+2CTT+C2T—CTAT = —87Gp+ A,
4 R R I i E ’
_ Rtr Ath thr
B].2 1 — A 2 LT 5 T s s — .
(B12) Gl =t ol Al Sullr] g

In this general case also a mass term can be assigned. Multiplying (B.9) by R%R . and applying
(B.12) we end up with

d 1
(B.13) (R +e “RR% — e “RR? — gAR3) = 81GpR’R
. :

ar

Analogously, we can multiply (B.10) by R*R; and get

1
(B.14) 0 <R+ e “RR% — e “RR? — gAR3> = —81GpR*R; .

ot

Now, a look at (B.13) suggests that it makes sense to define the term in the brackets as a mass
1 ~C pp2 App2 _ 153

(B.15) m(r) = 3 R+e “RR% —e “RR7 — §AR )

such that (B.13) upon integration yields

(B.16) m(r) = 47TG/ pR*R ,.dr’ .

Therein we take the ro such that it coincides with R = 0. The second equation (B.14) can
then be interpreted as an energy conservation, where the work done by volume change equals
the rate of change of mass. As a simple example one could consider a spherical body, e.g. a
star modelled with the above equations. At the surface of the star the pressure is zero and thus
the conservation equation (B.14) says m = 0, i.e. the total stellar mass remains constant with
time for a star that is surrounded by vacuum.

B.2. Einstein Equations of the Lemaitre-Tolman-Bondi Model

Under the assumption of zero pressure (i.e. dust) C' can be transformed away C' = 0 and
solving the off-diagonal Einstein equation (B.12) which can be written also in the form of (1.44)
determines the form of e (1.45) up to an arbitrary function €(r). Thus the metric takes the
LTB form

2

R
(B.17) ds? = —dt* + H—’TEdTQ + R?(d6? + sin?0dp?) .
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The according non-vanishing Christoffel symbols read

R R, R, Ry
Iy = R I =%, = R o, = Txe %, =RR,,
; Ry, &, R
Py = RRasin®0, Ty =7 o5y Te=Te=F
1 R 1 R .92 2 .
F22:—R (1+€), F33:—R—(1+8)sm 0, I'“3; = —sinf cosd,
o t

B.18 3, = cotf.
( 23

The Riemann curvature tensor takes the form

Ritr Ryt 2RiRtr—E, R’ —¢&
B.19 R=2—= 44— 42— : 2—
( ) R, + R + RR, + Rz
and the non-vanishing components of the Ricci tensor are
Rtt.r Rtt Rtt.r 2Rthr 8r
RY, = === 2—= R', = = e
" R, TR ' R, N RR,  RR,’
R% R & RuR;, &,
(B.20) ) N U L

" R®" R R’ RR, 2RR,’
The Einstein equations of the LTB model read

R%,—-¢& 2R,,R,—¢&
0 _ 5t Lritt A
(B.21) Glo= —p— + RR. =81Gp+ A,
R.,: R3-¢
(B.22) Gly =225+ ;%2 = —87Gp+ A,
Riiwr R 12R,,R;—¢&,
(B.23) G =Gy =2l 4 0L ST 28 = BrGp+ A

R, 'R "2 RR,

When using these results, please take care of the sign convention for the Einstein equations,
energy momentum tensor, Riemann tensor and so forth that has been used here. The consistency
of the signs can be checked by performing the FRW limit on the LTB equations.






APPENDIX C

Rotating Post-Newtonian Metrics

C.1. Full Differential Rotation
We apply the following transformation involving full differential rotation,
(C.1) o=¢ —w(trz)t
on the following Post-Newtonian metric
(C.2) ds? = — (14 2¢)dt* + (1 — 2¢)(dr* + r2dp? + dz?).
In component notation the transformed spacetime then reads
gie = —(14+2¢) + (1 = 20)(w + wt)*r?, g = (1 — 200)2tr% (w + w 4w ot
Grp = —(1— 240)2r% (w + wet), gz =(1— 210)2r% (w + wt)w .t
grr = (1 =20) (1 + r*w%t?),  grp = —(1 = 20)2r%w .t ,
Gr> = (1 = 20)2r%w w12, gy = (1 — 20)12,

(C.3) Gpr = —(1— 21/))27’2w_rzt, .. = (1 —2¢)(1 + rQw?ztz).

C.2. Spatial Curvature Terms
C.2.1. Static Newton Metric. From the non-rotating PN metric in cartesian coordinates
(C.4) ds? = —(1+2¢)dt? + (1 — 2¢)(da? + dy? + dz?),

we have computed — using the notation (1,2,3) =(x,y, z) — the following non-zero components
of the spatial Christoffel symbols

1—\1 — _ "/’,w 1 _ Q/J,J? 1 _ w,LE 1 — "/’,y
11 1_21/}7 22 1_21/}7 33 1_2#)’ 12 1_2,¢)7
Y,z 2 ¥ Y Y
I\l _ _ ) T — _ Y F2 _ Y F2 _ Y
13 1_21/}7 22 1_2,¢)7 11 1_2,¢)7 33 1_2,¢)7
p2 __ e s W s Y s U
12 1_21/}7 23 1_2#)’ 33 1_21/}7 22 1_21/}7
"/Jz 3 ¢ wm
C.5 s, = —__ Yy M, —__Ye
( ) 11 1_21/}7 32 1_21/}7 31 1_2,¢)

For the three-dimensional Ricci tensor we get the following non-vanishing components

fin = 21¢imém¢ * 1¢iyéy¢ N 1¢izéz¢ i <1 %gw)rz * <1 %w)Q * <1 %2¢>2 ’

o= o ot e (Ve ) () (755)

R TR TR (1 %’31/})2 " (ﬂ—zwy o (1 f’221&)2 |
(C6) R, = q f;/))? +3(1¢f§$)3 ~apip forik.
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Therefore the spatial Ricci scalar becomes
4 3) (3) 2 (3)
C.7 R=— Al ——(V ~ 4A .
( ) (1 _ 2¢)2 cartw + (1 o 2¢)3 ( cartw) cart
C.2.2. Rotating PN Metrics. Let us consider the constantly rotating (w =const. ) Post-
Newtonian metric to exact order,

(C.8) ds? = [(1—2¢)w?r? —(142¢)]dt* +(1—21) (dr? +dz?) +(1—21)r?dp? — (1—2¢)2r’wdedt

where we switch to the cylindrical coordinate notation (1,2,3)=(r,p, z). In this case the non-
vanishing components of the affine connection read

6

Fl — _ wﬂ” 1 — 1/}1Z Fl — _T(l B 2/¢) - ”/),r) Fl . w,T
1 1—2¢° B2y 22 1—2¢ ’ B2
1—2¢ =719, (I (U Y
F2 — 5 F2 — _ > FB — > FB — >
21 r(1—2¢) z 1—2¢° Hy oy 13 1—2¢°
2
CO) Toy=LY= i Ve
(C.9) 27T 7 9y 33 1- 29
The spatial Ricci scalar in cylindrical coordinates then reads
4 6
C.10 R= AP 4 — (2 4 92) ~ 4ABy,

When considering differentially rotating PN metrics with Q = Q(r) or Q = Q(r, z), in the
linearised case, there are no mixing terms in the purely spatial metric; there is only time-space
mixing. Note that the case Q = Q(r) is not written down in sec. 2.3.5, but we have done the
calculation. Moreover, the spatial metric is independent of the angular velocity in the linear
case, and therefore the above non-vanishing components of the affine connection (C.9) can be
used for calculation in both the two rotating cases Q = Q(r) and Q = Q(r, z) with linear metric
ansatz, as well as in the case of rigid rotation w =const.

In the case of the simple differentially rotating (€ = Q(r)) linear PN metric,

(C.11)  ds? = —(1+2¢)dt* + (1 — 2¢p)(dr? + d2?) + (1 — 2¢p)r?de® — (1 — 2¢)2r°Q(r)depdt

we have calculated also the four-dimensional connection components. They read:

¢7‘ 0 ¢Z 0 1 2 0 ¢Z
[ = — [V = — Y, =-r*Q,, IV, =-—""
01T T 95 037 T 94" 12 27" ) 307 1124
D 1 L o 1 Vo 1 Y,z
My =—— My ==rQ, +Qr, TH=——2"— Th,=-——2_
00 1+25° 02 = 5Tt AT 11 1= 20 13 1= 20
Yor 1 1 1
[y =—r(l—ry,), Dlyy= 1-2¢° 2 = Torhr T ;Q, 2, = . Vs
Y,z 3 P2 3 Y,z 3 Yo
I\2 — _ 5 r _ 5 r _ ; r — _ 5
23 1_2,1/}7 00 1_21/}7 11 1_21/}7 13 1_2,¢)7
r’y Y
C12) TP,=—2, TIiy=-——=2_.
( ) 22 1— 21/) ) 33 1— 21/}
The according inverse four-dimensional metric has the linearised components:
(C.13)
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APPENDIX D

Aspects of Structure Formation

Here we concisely review the basic concepts of structure growth within linear Newtonian the-
ory. We want to emphasise the limits of the below outlined concepts: the Newtonian linear
perturbation theory breaks down at latest for non-linear structures, that is for structures with
density contrast of order unity as well as for fluctuations at length scales that come close to the
horizon scale. First, we review the theory of peculiar velocities and the underlying (Newtonian)
hydrodynamical equations. We also attach a concise treatment of dissipative (Silk) damping of
baryonic oscillations before recombination. In the following we closely relate to the description
given in [Sch06] and [Lon98].

D.1. Gravitational Instabilities and Peculiar Velocities

Let us denote the peculiar velocity with w, it is per construction the velocity on top of the
Hubble flow

(D.1) v(r,t) = H(a)r +u(r/a,t) .

The initial density inhomogeneities are small they correspond to CMB anisotropies O(1075)
and so are the resulting initial peculiar velocities. However, the inhomogeneities in density today
are not small, their evolution enfolds a growing mode. This can be physically understood by
simple means: through self-gravitation the initial density seeds have condensated more and more
throughout the ages ever since inflation. The linearised treatment of gravitational instability
within a Newtonian hydrodynamic framework implies the solution of the continuity equation,
the Euler equation and the Poisson equation. When looked at in a comoving frame (r = ax),
these equations read in order of appearance

(D.2) % +3H(a)p + %V- (pu) =0

(D.3) a—u4—l(u-V)u+H(a)u:—L_Vp—lng,
ot a ap a

(D.4) A¢(z,t) = 4nGa*(t)p(t)6(x,t) .

The density contrast is a crucial quantity we have already encountered in sec. 1.3.3, here given
by

_ plz,t) —p(t)
(D.5) e

Being interested in small deviations from the homogeneous evolution § = 0 = u’ one can linearise
the above set of hydrodynamical equations and, after eliminating ¢ and w among the equations,
one ends up with a second-order equation for the density contrast
026§ o)

D.6 — +2H(a)— = 47Gpd ,

(D.6) 2 + (a) ot mGp
which can be solved and upon neglecting the decaying mode, and we end up with the factorisation
solution

(D.7) 5(@,1) = o) D= (1),
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where D (t) denotes the growing mode. Within this linear solution the spatial contribution
to the density contrast is time-constant and so the peculiar velocity w has a constant direction
which is moreover collinear to the direction of the peculiar gravitational acceleration w(x) ~
fg(:c,t)dt. As measured today the peculiar velocity field can be expressed by its acceleration

field via
(D.5) u(@) = g7 (Om)g(@).

For the function f(Q,) = (a/Dy)dD, /da one finds phenomenologically f(Qy,) ~ Q%5 which
remains a good fit even when A is switched on in addition. Eliminating g with the help of
Poisson’s equation and letting u evolve within linear theory one obtains in the end [Sch06]

(D.9) u(x,t) = —aH /5 y,t)

This result gives a principal possibility to obtain 2, by observatlon of the peculiar velocity field
as well as the according density contrast.

2

d3y.
_$|3 Yy

D.2. Statistical Properties of the Density Field

The growing mode solution (D.7) is a central result of the linear theory applied above. We see
that the spatial shape of the density fluctuations is frozen when followed in the comoving frame
and solely its amplitude is growing. The growth factor D4 (¢) can be computed for an arbitrary
composition of cosmological density parameters through

H(t) /“ da’
Ho Jo [Qua'~' 4+ Qpa — (Qu + Q4 — DY

The factor of proportionality is fixed by the normalisation given by D, (tp) = 1 and thus do(x)
would be the density distribution as observable today if the evolution was linear all the time.
However, we know of vast structures today like for instance the Shapley Concentration SEC
for which the density contrast is of the order of ~ 1 such that the linear perturbation analysis
becomes invalid.

Taking as an example the Einstein-de Sitter model with Qy = 0, Q, = 1 and scaling
a(t) = (t/ty)?/? for the Hubble function and mean density it is

(D.10) D, (a) x

3t

With an ansatz D o t™ we readily solve (D.6). We skip the decaying mode and keep the growing
mode which is

(D.12) Dy(t) = (i>2/3 —a).

21 H2 [/t 2
(D.11) Hit) = 21 and p(t) = a3 pes, = 2H0 ()"
8tG \ t

to
and thus the growth factor is equal to the scale factor in the special case of an Einstein-de Sitter
solution.

In order to describe the actually observed density field today by physical means, usually two
concepts are used: the two-point correlation function and the power spectrum which we have
introduced in sec. 1.2.1. The statistical nature of the description means that we are looking for
a physical means that can be attributed to an observed density distribution so that we consider
models (universes) with equal such statistical properties as equivalent. In other words one can
imagine a whole statistical ensemble of Universes to be describable through a statistical quantity
where, of course, the details of () may be different in all those Universes.

First, the two-point correlation function £(x, y) of a density field is defined through

(D.13)  {p(@)p(y)) = p*([L +8(2)] [1 +8(y)]) = p*[1 + (8(z)d(y))] = p° [1 + &z, y)]
where () is an ensemble average and the expectation value (§(x)) = 0 at all locations . The
standard model assumption of large-scale homogeneity implies that £ only depends on @ —y and
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not on « or y individually. The standard requirement of isotropy also removes any orientational
dependence of ¢ such that the two-point correlation will be a function of only r = |z — y|
when regarded in the standard cosmological model. Because of ergodicity, we can replace the
ensemble average by the spatial average, that is due to (D.13) one can measure the two-point
correlation function by collecting many products of densities for all pairs of points at a distance
r. This has been done for example for the luminous red galaxy catalogue (z ~ 0.3) of the SDSS
[HEBT05], confirming the large-scale homogeneity of the Universe. When analysing such galaxy
catalogues the luminosity distribution is a crucial quantity. A quite general approximation for
galaxy luminosities is given by the Press-Schechter law [PS74]

* L o .

(D.14) f(L) = I:’j— (L—) e HI

wherein f* is responsible for the normalisation, « controls the slope of the function at small
L and L* is a special value beyond which the luminosity distribution undergoes the exponen-
tial decrease. Now, among galaxies that have luminosities of the order of L*, the following
approximate relation for the two-point correlation function can be found from galaxy surveys:
&(r) = (r/rg)~7 . With this relation being a good approximation within 2 Mpc < r < 30 Mpe,
the correlation length is found to be roughly rg ~ 5 Mpc and the slope is v ~ 1.8. Principally
one can proceed in writing down higher correlations up to the n point correlation function, but
these are much harder to access observationally.

Besides the two-point correlation one can utilise the power spectrum P(k) in order to de-
scribe a density field statistically. We can expand a given density field in terms of Fourier modes
as 6(x) = > Ag cos(x - k) with amplitudes Ay . The power spectrum now describes the distri-
bution of amplitudes with a common wavenumber k. Two point correlation function and power
spectrum are Fourier transforms of each other

o sin(kr)

(D.15) P(k) = 271'/000 E(r)r Tdr.

,
The factorisation (D.7) implies the following for the time evolution of the power spectrum
(D.16) P(k,t) = D3.(t)P(k, to) = D3 (t) Po(k),

and k is the wavenumber in comoving coordinates. As mentioned in sec. 1.3.3 the initial con-
ditions for P(k) are provided by the used underlying inflationary model and yield a nearly
scale-invariant Harrison-Zel’dovich spectrum with a random Gaussian initial density field. Fur-
thermore, because we neglected pressure terms and only considered matter domination there
have to be corrections included for the power spectrum bringing it to its final form (1.29). These
corrections are encoded in the transfer function 7'(k) which reflects the parameters of the un-
derlying cosmological model as well as the temperature of the used Dark Matter. In case of
Hot Dark Matter (HDM) the dark constituents are relativistic, therefore do not remain bound
in the potential well of a gravitative perturbation but rather do free-stream and thus tend to
smooth out any initial density perturbations on small scales. In such a scenario the power spec-
trum will be strongly suppressed at large k and as a consequence the very largest structures are
formed first, producing then smaller structures — like galaxies — only later through fragmenta-
tion. This is in contradiction with observations that indicate the existence of galaxies already
at extreme redshifts of ~ 6. Therefore Cold Dark Matter (CDM) is the prevailing concept from
the perspective of structure formation.

D.3. Silk Damping and Hierarchy

We now consider small imperfections in the tightly coupled baryon-photon fluid of the early
Universe before decoupling. Albeit strong, the coupling of matter and radiation is not exact and
photons will have some finite mean free path. Therefore, on small scales, where the radiation
is able to resort without scatter, the pressure support, that constitutes the restoring force of
the adiabatic matter oscillations, would vanish. Hence, oscillations on such small scales are
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effectively damped out by the photon dissipation; this is referred to as Silk damping [Sil68].
The Silk damping occurs for the same reasons as the damping of sound waves in an imperfect
gas: namely because of the finite shear viscosity and heat conductivity that are present in the
fluid. A full treatment of the photon transport problem with the according coefficients of thermal
conduction and shear viscosity has been given by Weinberg [Wei72].

We are interested in an estimate that may express the order of magnitude of the Silk damp-
ing; we follow the treatment by Longair [Lon98]. The main process for the photon scattering in
the primeval plasma is Thomson scattering by the free electrons. We can obtain an estimate by
performing a rough transport calculation with the Thomson scaterring of radiation. Generally,
for Thomson scattering, the mean free path of the photons is given by

1

)
NedT

(D.17) A=

where o1 ~ 6.665 x 1072m? is the Thomson cross section and n, the number density of
electrons. The photons and electrons are in tight thermal contact before decoupling. And
because the plasma is fully ionised, the electrons are also in tight electromagnetic interaction
with the protons (Coulomb scattering), so that the photons are in close contact to the protons
as well. We want to determine how far the photons can diffuse within a certain cosmic time ¢
under the given free mean path. This can be quantified by means of the according diffusivity
D, given by D = A¢/3. The radial distance that photons can cover by diffusion is therefore

Act\ /2
(D.18) rp ~ (Dt)Y/? = (?C) :
Next we should compute the corresponding baryonic mass Mp = (47T/3)r%pb within a ball of a
radius that equals the discussion radius.
First, long before decoupling (z > 2.4 x 10*Qh?), radiation is dominant in the Universe and
the relation between cosmic time and redshift is given by

(D.19) (3 L 3¢2 124100
' -~ \327Gp -~ \327GxaspTy (1+2)2 " (1+2)2 7’

with asp = 4ksp/c and the Stefan-Boltzmann constant ksg = 5.670 x 1078JK~#m=2s71, p =
X(T)asgT* being the total energy density and x(7) ~ 1.68 being a parameter that encodes
the sum over the statistical weights g; of the involved (standard model) particles. For Ty we
insert the presently measured CMB monopole temperature of T ~ 2.725K. Further, the number
density of electrons n, varies with redshift as

_ prcrit (

D.20 e
(D.20) ne = 2t

1422 ~110h%(1 4+ 2)> m™3,

and so we are ready to compute the resulting damping mass or Silk mass, which amounts to
4 _

(D.21) Mp = %T%pb ~ 2.4 x 10*0 (Q,h?) V214272 M.

This was so far for the times before matter-radiation equality. Within the matter-dominated
epoch, the redshift behaviour of cosmic time can be expressed as

2 2.06 x 107
( ) 3H()Ql/2( +2) 3H091/2(1 +Z)3/2 S
This leads to a Silk mass of
(D.23) Mp ~ 2.0 x 10% (2,h2) " (1 + 2)75/4 M,

The evolution of damping mass Mp , Jeans mass My and horizon mass My are plotted in fig. D.1.
Silk damping continues until recombination and upon the last scattering surface (z ~ 1088) the
damping mass reaches a value of up to Mp ~ 10'2(Q,h?)~5/4(1 + 2)~1%/4 M, . Taking big bang
nucleosynthesis into account, a bound of around Qph? < 0.036 can be given, and it follows that
perturbations with masses smaller than roughly 104 Mg, are damped out by the Silk mechanism.
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FicurE D.1. Schematic evolution of scales and their associated masses that are
relevant for structure formation within the theory of purely baryonic (no Dark
Matter) acoustic fluctuations. The Jeans scale is characterised by the wavelength
As = ¢s/7/(Gp); which is the maximal scale for stable oscillations at any epoch.
This is a result from non-linear Newtonian perturbation theory; it means that any
density perturbations with wavelengths larger than the Jeans wavelength represent
unstable modes. The Jeans mass can be defined as the mass contained in a ball
of diameter \j, thus My = (71')\3/6)pb. The mass contained in the particle hori-
zon is around My ~ 3.0 x 10%2(Q,h%)"Y2a*? M. The scale behaviour of the
Jeans mass at early times can be estimated by My ~ 85 x 10%a®*Quh? My and
by My ~ 3.75 x 10'°(Q,h?) ™2 Mg, after equality. The development of the Silk damp-
ing scale — which occurs because of photon dissipation and ends at decoupling — is
traced by Mp; c.f. (D.21) and (D.23). The picture is taken from [Lon98].

Summarising the result of the above diffusion estimate, we can conclude that all masses
smaller than roughly 102 M, are effectively suppressed by the photon dissipation. From this we
can learn an important lesson for the hierarchy of structure formation in the framework of purely
baryonic — i.e. neglecting Dark Matter — acoustic perturbations: only those perturbations with
masses of a very heavy galaxy and larger could have passed through to the post-recombination
epoch. Those perturbations with smaller associated masses like stars, star clusters or normal
galaxies — are suppressed exponentially to very small amplitudes. Hence, in this framework, the
formation of structure is anti-hierarchical (bottom-down), large structures formed first and then
have fragmented to the smaller observed structures. Let us emphasise that this result is valid
under the assumption of adiabatic baryonic perturbations, where adiabaticity is defined by the
thermodynamic relation

(D.24) b_,%,

p P
and 7 being the ratio of specific heats: v = 4/3 for a relativistic gas and v = 5/3 for a
monoatomic non-relativistic gas.

A competing framework is the theory of isothermal perturbations. Here, isothermal means
that the perturbations do not induce perturbations in the background radiation temperature at
the times of radiation domination. The intrinsic temperature of the isothermal perturbations
equals that of the uniform radiation background and so the isothermal perturbations are frozen
into the radiation-dominated background. As a consequence, there is no Silk damping in this
picture. Therefore in the isothermal scenario, structure growth is hierarchical (bottom-up):
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small structures would form first, then larger structures are attained by clustering processes.
The big advantage of the bottom-up scenario is that it allows structures of the mass of globular
clusters to have formed first and indeed, globular clusters are among the oldest objects known
in our Milky Way.

However, as we discuss in chap. 2 there is overwhelming evidence — within the scope of
standard cosmology — for the existence of Dark Matter, such that the above two versions of pure
baryonic structure formation are falsified. When transported into the framework of Dark Matter,
the competition between hierarchical and anti-hierarchical structure formation is mapped onto
the CDM (bottom-up) and HDM (bottom-down) scenarios respectively. In the CDM picture,
hierarchical processes lead to the formation of Dark Matter halos of galaxy clusters and galaxies.
Then, the baryons would fall into these potential wells and subsequently can loose energy by
dissipative processes; then eventually gas clouds and stars are formed. In the HDM scenario, vast
structures, like galaxy clusters, are formed first and an asymmetric decay of these progenitors
then leads to pancake-like structure, into which the baryonic matter than collapses. Both of
these models have been plugged into extensive computer simulations trying to reconstruct the
growth of structure. Being consistent with the conclusions of the preceding sec. D.1, a main
result of the simulations is that HDM — albeit (too) good in producing filament structure —
produces galaxies only at too late times. Moreover, as it was mentioned already above, the CDM
ansatz is successfull in reproducing the measured two-point correlation function of galaxies on
a considerably wide range of scales.



APPENDIX E

Thermal History in a Nutshell

According to the Big Bang picture, the Universe was increasingly hotter when going further
backwards in time, T'(z) = Tp(1 + 2). Because of the very high temperatures, e.g. 3 x 10°K
at z = 10°, and high pressure in the very early Universe which are ‘even’ higher than in the
interior of stars, one can expect a lot of interesting high-energy processes like nuclear fusion to
happen during the early epochs. Here we want to give a concise overview of the basic steps that
lead to nucleosynthesis, following the treatment in [Sch06].

E.1. Neutrino Decoupling

An assumption of utmost importance is underlying all the standard theory of the evolution
of particle processes in the early Universe: we assume that all the cross sections and other
fundamental constants and all the details of nuclear and particle physics we take from the
current standard model of high energy physics have been exactly the same also fourteen billion
years ago. Having that in mind, we can jump into the evolution of the very early Universe at
temperatures of around ~ 102K or roughly 100MeV. To see what the basic setup may yield we
can compare this initial energy scale with the rest masses of common standard model particles,

(E.1) my >~ 939.6MeV, mp ~938.3MeV, m, ~140MeV, me ~ 511keV.

The baryons are too heavy to be possibly produced at the considered temperature, and so at
this epoch the baryons must have existed already. Further, pairs of muons can in principle be
produced via v +v — p* + p~ down to temperatures ~ m, /3. But, as is known, existing
muons are unstable (lifetime 2.2 x 1075s) and decay into electrons (positrons) and neutrinos as
well as antineutrinos. Thus at the given temperature of around 100MeV there are the follow-
ing relativistic particles in the Universe: photons as well as electrons and neutrinos and their
antiparticles. We are within radiation domination and only these particles are contributing to
the radiation energy density p, at the moment. Although the exact mass of neutrinos has not
yet been measured, one can give a bound of m,, < 2eV from tritium decay. From cosmology
if one accepts numerous implicit assumptions — one can infer a bound of m,, < 1eV from mea-
surements probing the effect of HDM on the small-scale power spectrum of density fluctuations
in the Universe.

Because of these mass constraints, we can safely regard the neutrinos as massless (rela-
tivistic) in our discussion. Besides the relativistic particles there are also some non-relativistic
particles: protons, neutrons and the hypothetical WIMPs. Because of their absence in the accel-
erator experiments carried out by now, we know that the WIMP rest mass must be higher than
around 100GeV. All constituents apart from the WIMPs are in equilibrium through particle
reactions. The baryon reactions are discussed later, and so we can note the following relevant
reactions of the relativistic particles

(E.2) ei—l—”w—»ei—l—”y, et +e” oy+y, vdveoet +e, vtet o vtet.

We consider radiation domination, and so the total energy density is that of the radiation,

72 (kgT)* T \?
E. =pr = 10.75—= ~ Js.
(E.3) p=p=10.75 30 e at t <1MeV> 0.3s




144 E. THERMAL HISTORY IN A NUTSHELL

The cosmic time was computed with the solution ¢t = (327Gp/3)~1/2, valid at the epoch of
radiation domination.

Equilibrium can only be attained by the particle bath if the rate of the above reactions is
high. However, the environment temperature in which the particles are trying to equilibrate is
continuously changing, and so the particle equilibrium is also continuously readjusting. Under
these circumstances, an equilibrium can only be upheld if the time between two particle reactions
is much smaller than the time scale of global temperature change. The rate of change in
temperature is dictated by the cosmic expansion and so we can note the following constraint for
equilibrium: the rate of particle reactions I' has to be higher than the expansion rate.

The rate of particle reactions is I' o no, i.e. it is proportional to the number density of
the respective particle species and to the interaction cross section. The reactions involving
neutrinos belong to the weak interactions. Both of the components of the rate are decreasing
with cosmic time. The number density of particles is diluted as n o< a=3 o t=3/2 because of
global expansion. On the other hand, the weak cross sections are energy dependent and scale
roughly as o o< E? o< T? o< a~2. Thus, the reaction and expansion rate respectively scale as

(E.4) I xnooca®oct™/? versus Hoct™t.

Thus, equilibrium can be realised at early times, when the reaction rates are higher than the
expansion rate. At later times, the equilibrium will be broken because the speed of the reactions
eventually falls behind the expansion rate: this is called a freeze-out. The weak interaction
freeze-out occurs at

r T 3
E. N [
(E.5) H (1.6><1010K> ’

so that the neutrinos become decoupled from the equilibrium with other particle species at
temperatures 7 < 101°K. When the neutrinos froze out, they had a thermal distribution with
the same temperature as the other particles. From their decoupling at around T' ~ 10'°K on, the
neutrinos will keep this distribution, only their temperature is continuously redshifted according
toT oca™t.

This is a prediction. It says that there should exist a primordial neutrino background,
similar to the CMB which is a primordial photon background. It is estimated that the neutrino
abundance per flavour is 113cm ™3 today, and the cosmic neutrino temperature amounts to
around 1.9K. Because of the very small interaction cross section and the fact that the momentum
of the primordial neutrinos is also very low, there is little hope to observe the relic neutrino
background.

E.2. Electron-Positron Annihilation

We further follow the cooling of the early Universe. At temperatures of around ~ 5 X
109K (500keV) there are not enough photons in the distribution, with energies above the pair
production threshold of 511keV, that could maintain pair production at a high rate. Therefore
the efficient production of electron-positron pairs will fade out at this point. At the same time,
the annihilation reaction et 4+ e~ — v+« is proceeding undisturbedly, and because of its large
cross section the number of present electron-positron pairs will drop rather rapidly.

Through this mechanism, there will be an effect on the photon distribution. The non-
equilibrium annihilation will induce additional energy to the photon bath. Since the form of
the spectrum remains (Planck spectrum), the main effect is an increase in temperature of the
photons. This increase is fed by the energy which was initially present in form of electron and
positron rest mass as well as kinetic energy. When annihilation happens, the neutrinos are
already frozen out and so the gain in temperature has no effect on them. Therefore the photon
temperature will be ahead of the neutrino temperature after the effect of pair annihilation; in
fact one can show that Tag. annin. =~ 1.4 Thef. annin. = 1.4 T, . This ratio of photon to neutrino
temperature is frozen and valid up to today, and thus we see now the reason for the prediction
of 1.9K for the neutrino background temperature made above.
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After annihilation the number of relativistic particle species is reduced and so this in turn
leads to a change the expansion law in (E.1) to ¢t = 0.55s(7/1MeV)~2. Moreover, through
annihilation the ratio of baryons to photons approaches a constant value

(E.6) n=""~ 273 % 1078(Qh?).
Ny

From this we can get also an estimate on the electron to photon ratio n./n. . Before annihilation
the ratio of electrons (and positrons) to photons was roughly one, but during annihilation most
of the electrons disappear. However, not all of the electrons disappear; it turns out that there
remains a small excess of electrons over positrons. But there is of course another particle that
carries a charge: the proton. Because the Universe appears to be electrically neutral (bound on
free charges < 10727 [Pad02]), the electron excess is just compensated by the number of protons.
Therefore the electron to photon ratio should roughly equal 1. Now — since the neutrons are
also to be counted — one has more precisely ne/n, ~ 0.87.

E.3. Nucleosynthesis

If the environment implies a high enough pressure and temperature, nuclear fusion can take
place, like it does happen within stars. That is, protons and neutrons can combine to form
nuclei, and in fact the primordial formation of light elements is finished already after the first
few minutes.

E.3.1. Baryon Equilibrium. As discussed, the baryons play no significant role for the
dynamics of the very early Universe. However, protons and neutrons are in thermal equilibrium
via weak interaction processes. Their equilibrium reactions are

(E.7) p+e —n+v, ptvente’, nepte +0,

the last of which is the beta decay of the neutron with a lifetime of 7, ~ 887s. In order to not
freeze out, the reactions have to be quicker than the global expansion. The ratio of proton to
neutron number densities is given by the Boltzmann factor
(E.8) Mo _ o—Amc?/(keT) :

Mp
which is governed by the mass difference Am = m, —m; (neglecting their chemical potentials).
This distribution is only valid up to neutrino decoupling. At the moment of neutrino decoupling,
the ratio of neutrons to protons is around ny,/n, ~ 1/3, and after the neutrino freeze-out the
equilibrium is broken and becomes dominated by the decay of the free neutron. A number of
neutrons has to become bound into nuclei rather quickly, so that a fraction of neutrons can
survive up to today.

E.3.2. Deuterium Production. The simplest nucleus is deuterium, made from just a
proton and a neutron. It is produced via

(E.9) p+n—D+~.

The binding energy of deuterium is xp =~ 2.2MeV, the mass difference is Am ~ 1.3MeV and the
electron rest mass is 511keV; so all of these mass scales are of the same order of magnitude. The
reaction (E.9) belongs to the strong interactions and is therefore running at a high efficiency.
But there is a catch. During neutrino decoupling and pair annihilation the temperature of
the Universe becomes less than the binding energy xp , but not much less. And since there are
much more photons than baryons, c.f. (E.6), there will be enough photons in the high energy
tail of the Planck spectrum to break up the freshly formed deuterium. From the explicit balance
equations one can infer that the formation rate of deuterium can exceed its photo-dissociation
rate only at temperatures around Tp ~ 8 x 108K. This happens only at a cosmic time of around
three minutes — the decay of the neutrons has gone on in the meantime — and so the neutron to
proton ratio would have decreased to n,/n, ~ 1/7. Once the obstacle of photo-dissociation is
left behind, the production of deuterium proceeds very quickly (strong interaction). All available
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neutrons become bound into deuterium and as soon as there is a significant abundance of it,
the deuterium can start to form *He. Now, the helium has already a sizeable binding energy of
X4te =~ 28MeV and is thus not vulnerable to photo-dissociation anymore. Apart from a small
rest fraction, nearly all the deuterium is processed into *He. Therefore, in order to efficiently
produce helium, the Universe has to overcome the ‘bottleneck’ of the deuterium stage with its
low binding energy.

E.3.3. Helium Abundance. As we have seen by now, almost all of the neutrons in the
Universe become bound into helium nuclei after around three minutes. Therefore it should be
possible to predict the helium abundance. Every helium has two neutrons and so the number
density of four-helium will be nig, = n,/2. The number of protons, when helium formation is
over, amounts to ny = n, — n, because *He is symmetric in protons and neutrons. Finally, this
gives us the mass fraction of *He with respect to the full baryon density at Tp as
 dnag, 2n, 2(nn/np) 1
T dnage+nm np+n, L+ (n/ny) 47
This is a simple but robust prediction of BBN: a fraction of about one forth of the baryonic
matter in the Universe is bound into “*He. This prediction refers of course to the primordial
mass fraction. Through fusion processes within stars, metals can be formed and the helium mass
fraction is modified. However, it is possible to experimentally observe metal-poor regions in the
Universe regions, where little processing of baryonic matter has taken place and indeed a
helium mass fraction of Y ~ 0.25 is measured. Of course, a full quantitative computation of
light element abundances takes into account all the possible balance and rate equations and
what we sketched here is only a back-of-the-envelope estimate that should introduce the basic
steps. In fig. E.1 we show the result of a more detailed BBN calculation for the mass fraction.

(E.10)

Minutes: 1/60 1 5 15 60

Mass Fraction

10ﬁ$ 2 1 2 i
10 10 10 10

Temperature ( 10° K)

FiGure E.1. Temperature/cosmic time evolution of the BBN abundances of light
elements. Due to beta decay of the free neutrons there is a decrease in the neutron
abundance within the first ~ 3min. Parallel to the neutron decrease, the deuterium
abundance rises steeply until it passes the dissociation bottleneck, and subsequently
helium can be formed efficiently. Only a very little fraction (~ 107°) of deuterium is
not processed. There are also subdominant fractions of *He, “Li and other elements
produced during BBN. Picture is taken from [HES].

Since the abundances of the light elements are directly sensitive to the baryon to photon
ratio 17, one can use measured abundances of the light elements to constrain 7 [YT06],

(E.11) 34x1071%<n<6.9x1071% and Q) ~3.66 x 10"ph 2.
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Additional Plots and Results
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FI1GURE F.1. The angular power anomaly with respect to WMAP(1yr) data. The
likelihood of quadrupole and octopole power with increasing axial contamination, due
to e.g. a local Rees-Sciama effect, is compared to WMAP(1yr) data. Vertical lines
indicate the measured values as given in tab. 4.3. See sec. 4.3.1 for a discussion of
the cleaned maps. From the WMAP cut-sky analysis, adding any multipole power to
the quadrupole is already excluded at > 99%C.L., whereas it is possible to add up to
80uK to the octopole until reaching the same exclusion level. Adding 50uK (100uK)
to the quadrupole leads to an exclusion of 99.6%C.L. (99.9%C.L.).
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F. ADDITIONAL PLOTS AND RESULTS
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Alignment statistic (4.7) for quadrupole and octopole normals. The

preferred axis Z of the model points in all three cases to the direction of the WMAP
dipole. Shown are the likelihoods of the S-statistic for statistically isotropic Gaussian
skies (thick solid lines), corresponding to the ACDM prediction, as well as different
magnitudes of axial contamination of the CMB. Vertical lines represent the measured

S-values from t
c.f. tab. 4.3. In

he TOH (solid line), LILC (dotted line) and ILC (dashed line) maps,
troducing a preferred axis induces correlations. For the axis pointing

in the direction of the dipole these correlations make the discrepancy between the
measured S-values and model even bigger. For the alignment test with the north

galactic pole, a
(99.8%C.L.).

contribution a3¥1* = 60K (70uK) leads to an exclusion of 99.7%C.L.
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FI1GURE F.3. Similar to fig. F.2, here the preferred axis 2 of the model points to the
direction of motion of the local group after correction for the Virgo infall. For this
axis direction and the test directions NEP and EQX, the induced correlations make
the discrepancy between the measured S-values and model bigger, similar to the case
of the dipole fig. F.2. For the alignment test with the equinox, already a contribution
of a3y™ = 60uK leads to an exclusion of 99.9%C.L. On the other hand, in case of
2 =NGP, the anomaly is decreased in that the exclusion drops from 98%C.L. with
as¥™ = 0uK to 96%C.L. with a3¥® = 70uK.
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FIGURE F.4. Similar to fig. F.2, here the preferred axis 2 of the model points to the
direction of the north ecliptic pole. Evidently, a Solar system effect is preferred by
the data. For instance the first figure (£ =NEP) shows that the exclusion level can be
weakened from 99%C.L. with a5 = 0uK to 96%C.L. (92%C.L.) with a3 = 404K
(a3¥® = 70pK) by axial contributions. For the alignment test with the equinox, the
exclusion drops from 99.5%C.L. with a33™ = 0uK to around 98%C.L. with ajy™ =

TO0uK.
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F1GURE F.5. ¢ =2+ 3 Mollweide maps showing the effect of additional axial contri-
butions. Upper map: a random realisation of an statistically isotropic and Gaussian
superimposed quadrupole and octopole. Middle map: adding an axial contribution
of a§5® = a35?l = 70uK to the random map, with the preferred axis of the model
z pointing in the direction of the dipole. Lower map: adding the same contribution,
now with the preferred axis being in direction of the north ecliptic pole. For further

explanation see the caption of fig. 4.8. The colour legends are in units of 0.1mK.
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FIGURE F.6. Same procedure as in fig. F.5, now with a different initial random
realisation (upper map); for explanation see caption of fig. F.5. The colour legends
are in units of 0.1mK.
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FI1GURE F.7. Same procedure as in fig. F.5, now with a different initial random
realisation (upper map); for explanation see caption of fig. F.5. The colour legends
are in units of 0.1mK.
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F1GURE F.8. Besides oriented areas, it is also possible to study the alignment of the
multipole vectors themselves. Here, we probe the alignment of the quadrupole vectors
themselves with the z direction. The test is defined as Sg:ad =Y |d-9%?|. Axial
contributions are added up to 7T0uK. After some threshold behaviour (~ 40uK), the
Sg':ad alignment becomes very sensitive on axial contaminations. The horizontal lines
indicate WMAP one-year data: solid (ILC), dashed (TOH) and dotted (LILC) maps.
For more detail on the various cleaned one-year maps see sec. 4.3.1.
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FiGURE F.9. Histogram showing the (anomalous) planarity of the octopole. The ab-
solute value of the parallelepipedial product represents a volume and is an invariant
when concerning three spatial vectors 39 Therefore we can test for planarity by us-
ing the parallelepipedial product as a suitable statistic, Vocto = |(f;(3’1) X @(3’2))~1§(3’3)| .
The vertical data lines are due to the same maps as in fig. F.8. The parallelepipedial
product is rather insensitive to axial contributions.
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FiGURE F.10. Probing the effect on the alignment statistic S5, = > [n(“7) . d|
when adding asymmetric values of quadrupole and octopole axial contributions. Here
d is matched with the z axis and therefore the statistic measures alignment of quad-
rupole and octopole normals with the z direction. Plotted is, the arbitrarily scaled
(x1073) number of Monte Carlos that are, for given values of ajy® | consistent with
an experimental value of S, ~~ 3.47. That is, for instance a contour of 0.5 in the
figure means that below this contour there are 2> 500 hits consistent with data — but
never more than ~ 600, as can be seen from the figures. The experimental value is an
average of S;,, for the ILC, TOH and LILC maps of WMAP(1yr). The total number
of Monte Carlos here is 10°. The upper figure and the lower figure show the same
test, only in the lower figure the simulated range is larger by a factor of two. We
can conclude that for this test only small and symmetric axial contributions to the
quadrupole and octopole have the chance to be consistent with data.

155



156

F. ADDITIONAL PLOTS AND RESULTS

Random
/ )

[

A ERERR /7 T

\

TR SN T T Tk
N ‘ yAunt

L /H/// NI

FiGure F.11. Figure similar to fig. 5.2, here we added a smaller contribution of
ago = 100pK to the multipoles, such that we can observe the onset of the separation
process of the vectors. Mollweide projection of the sky with quadrupole (upper row)
and octopole (lower row) multipole vectors [equation (5.5)]. The mesh consists of steps
in 30°. Displayed are ten pairs of quadrupole vectors (small dots) and their ten area
vectors [equation (5.6) (big dots)] as well as ten triples of octopole vectors (small dots)
and their area vectors (big dots); togetherness is indicated by colour. The arbitrary
sign of the vectors has been used to gauge them all to the northern hemisphere. The
statistically isotropic and Gaussian case (left column) is broken by the imprint of a
moderate axial effect ago = 100uK (right column) whereupon multipole vectors start
to move to the pole and area vectors start to move to the equatorial plane. The full
separation can be observed when adding strong contributions as ~ 1000uK, c.f.
fig. 5.2.
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FIGURE F.12. Testing the effect of asymmetric additive contributions 33 on the
intrinsic cross alignment of quadrupole and octopole. Here, the cross alignment test
is defined as Spn = Y. |ﬁ(2;’1'2) -ﬁ(s“i'j)|; note the different pre-factor as compared
to (5.8). Like in fig. F.10, we have plotted the arbitrarily scaled (x107%) number
of Monte Carlos that are, for given values of a3, consistent with an experimental
value of Snn ~ 2.62, that has been obtained from WMAP(1yr) cleaned maps. The
total number of Monte Carlos is again 10° . The upper and lower figure show the same
test, only with a different range of simulations. From the upper figure, we see that
indeed, intrinsic alignments are apparently cured by adding axial contributions up to
~ 100uK. In the lower figure we see that, when increasing a3y® further, this is only

a local maximum. This is perfectly consistent with our findings fig. 5.3.
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