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t. Despite the good 
onsisten
y of the 
osmologi
al standard model with the bulk of present obser-vations, a number of unanti
ipated features have re
ently been dete
ted within large-angle data of the Cosmi
Mi
rowave Ba
kground. Among these features are the anomalous alignments of the quadrupole and o
topolewith ea
h other, their unexpe
ted alignments with 
ertain astrophysi
al dire
tions (e.g. equinox, e
lipti
) as wellas the stubborn la
k of angular auto
orrelation on s
ales > 60◦. We pursue the idea that pro
esses of non-linearstru
ture formation 
ould 
ontribute to the large-s
ale anomalies via a lo
al Rees-S
iama e�e
t. We �nd thatexisting stru
tures are able to produ
e CMB 
ontributions up to 10−5 . For an axially symmetri
 setup we showthat this e�e
t does indu
e alignments, albeit not of the same form as extra
ted from the data, and that yeta Solar system e�e
t seems preferred by the data. Moreover, we address the relationship between the intrinsi
alignment of quadrupole and o
topole on the one hand and the anomalous angular two-point 
orrelation fun
tionon the other hand. We demonstrate the absen
e of any 
orrelations between them and are able to ex
lude thejoint 
ase at high 
on�den
e with respe
t to re
ent data. This result enables us to put stringent 
onstraints onany relevant model that exhibits an expli
it axial symmetry.Key words. gala
ti
 dynami
s, dark matter, 
osmi
 mi
rowave ba
kground, large-s
ale stru
ture of universe,dark energy, general relativity, 
osmologyAbriss. Trotz der guten Übereinstimmung des aktuellen kosmologis
hen Standardmodells mit dem Groÿteilder vorhandenen Daten, wurden kürzli
h unerwartete Eigens
haften der kosmis
hen Mikrowellenhintergrund-strahlung bezügli
h der göÿten gemessenen Winkelskalen bekannt. Diese beinhalten: die anomale Ri
htungskor-relation zwis
hen Quadrupol und Oktupol selbst, ihre unverstandene Ausri
htung bezügli
h bestimmter astro-physikalis
her Ri
htungen (z.B. Equinox, Ekliptik) als au
h eine Temperatur-Zweipunktskorrelationsfunktion,die auf Winkelskalen > 60◦ unerwarteterweise vers
hwindet. Wir untersu
hen die Mögli
hkeit, dass Prozesse, dieder ni
htlinearen Strukturbildung angehören, zu den Anomalien beitragen können, und zwar dur
h den lokalenRees-S
iama E�ekt. Wir �nden, dass der Rees-S
iama E�ekt dur
h tatsä
hli
h vorhandene, sehr massive Struk-turen, die Gröÿenordnung 10−5 in den Temperaturanisotropien errei
hen kann. Wir können zeigen, dass, imRahmen einer axial-symmetris
hen Geometrie, in der Tat bestimmte Ri
htungskorrelationen dur
h den E�ektinduziert werden, diese jedo
h ni
ht von der glei
hen Form wie die in den Daten gefundenen sind. Glei
hwohlwird eine Korrelation mit den Ri
htungen unseres Sonnensystems von den Daten bevorzugt. Auÿerdem unter-su
hen wir inwiefern zwis
hen der intrinsis
hen Ausri
htung von Quadrupol und Oktupol zueinander und deranomalen Zweipunktskorrelationsfunktion eine Abhängigkeit bestehen könnte. Wir demonstrieren, dass keinerleiAbhängigkeit zwis
hen diesen Anomalien besteht und wir können das kombinierte Szenario mit hoher Signi�kanzauss
hlieÿen. Dadur
h sind wir in der Lage, s
harfe Eins
hränkungen anzugeben, die für alle relevanten axial-symmetris
hen Modelle bindend sein müssen.S
hlagwörter. Galaxiendynamik, dunkle Materie, kosmis
he Mikrowellenhintergrundstrahlung, groÿräumigeStruktur des Universums, dunkle Energie, allgemeine Relativitätstheorie, KosmologieBielefeld, De
ember 20, 2007
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NotationThroughout this work we will use the following metri
 signature,
(−,+,+,+) .By small latin indi
es, running from 1 to 3 , we denote spatial 
omponents of tensors, e.g. Kij .Using small greek indi
es, running from 0 to 3 , we denote four-dimensional 
omponents of ten-sors, e.g. Kµν . We make use of the Einstein summation 
onvention.Partial derivatives are indi
ated by a 
omma,

Kµν,λ ≡ ∂

∂xλ
Kµνand 
ovariant derivatives by a semi
olon

Kµν;λ ≡ ∂

∂xλ
Kµν − Γρ

λµKρν − Γρ
λνKρµ .The sign 
onventions whi
h we use for the 
osmologi
al 
onstant, for the de�nition of the Rie-mann 
urvature tensor as well as for the other relevant quantities in the Einstein equationsare given in app. B. The spatial Ri

i s
alar is written 
aligraphi
ally throughout the text,

R ≡ (3)Ri
i .Ve
tors and ve
tor �elds are written in boldfa
e, e.g. ξ, Lσ . Normal ve
tors are denoted by ahat, e.g. x̂ .We denote the symmetrisation and antisymmetrisation of tensors by

K{µν} ≡ 1

2
(Kµν +Kνµ) , K[µν] ≡

1

2
(Kµν −Kνµ) .In 
hap. 2 we will deal with axisymmetri
 systems, and therefore the operators ∆(3) and ∆(2)denote the three-dimensional and two-dimensional Lapla
e operators in 
ylindri
al 
oordinates.The use of 
artesian 
oordinates is expli
itly indi
ated, e.g. ∆

(3)
cart .
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Prefa
eThe most fundamental 
osmologi
al observation one 
an think of is the darkness of our nightsky. At �rst glan
e, this might appear trivial, but the appropriate question is, how is it possiblethat our sky is dark at night? The proper answer to it has 
ru
ial impli
ations for 
osmology. Inthe early days of astronomy, the 
ommon 
osmologi
al paradigm stated that the Universe waseternal, in�nite and of Eu
lidean geometry. Following this paradigm, in 1826 Heinri
h Olbers
al
ulated the total radiation energy density of stars that would be present in su
h a Universe.The stars were taken as point sour
es with 
onstant luminosity and their number density wasalso 
onstant. The result of the 
al
ulation is astonishingly absurd: there would be an in�niteradiation density 
oming from starlight. Interpreted within a stati
, in�nite and Eu
lidean worldmodel, the 
ommon fa
t that our night sky is dark be
omes suddenly a mystery. This la
k ofopti
al ba
kground light is usually referred to as Olbers' paradox, but it should be mentionedthat the problem was dis
ussed already mu
h earlier, for instan
e by de Cheseaux in 1744.Within the modern standard model of 
osmology, a 
ommon way of resolving Olbers' para-dox lies in assuming a Big Bang and taking the 
osmologi
al expansion of spa
etime into a

ount.In a Universe that has existed for an �nite amount of time, the extension of the observable partof the Universe � the horizon � is also �nite, and therefore only a limited number of stars ispotentially observable. In this formulation of Olbers' paradox we assumed a distribution ofpoint sour
es. We 
ould go one step further and 
onsider the extended surfa
es of the emittingstars. Then it turns out that every line of sight toward us must start at some �nite surfa
eand � within the old world view � we would inevitably be led to a sky that is, due to proje
tedoverlap, fully 
overed by the luminous surfa
es of the stars. The brightness temperature of starsis independent of distan
e in the Eu
lidean pi
ture, and so this formulation of Olbers' paradoxstates that the whole sky should be as hot as the surfa
e of a typi
al star. Now the resolution ofOlbers' paradox within modern 
osmology be
omes somewhat di�erent. Assuming a Big Bangand 
ontinuous 
osmi
 expansion, one 
an extrapolate that there indeed must have existed a
ommon hot emission surfa
e, namely the surfa
e of last s
attering at whi
h the Universe be
ametransparent for photons. This instant marks the birth of the Cosmi
 Mi
rowave Ba
kground(CMB) radiation. Now, sin
e last s
attering o

urred a long time ago � when the temperatureof the Universe was around 3000K � and the Universe has expanded ever sin
e, one 
an �ndthat the CMB photons have undergone a redshifting by a fa
tor of roughly 1100 up to day. Thisresults in a present-day ba
kground temperature of 2.73K. In this sense, the existen
e of theCMB represents the resolution of Olbers' paradox: we 
annot observe a 3000K hot sky, be
ausethe 
osmi
 expansion has 
ooled down the primordial radiation.Today, measurements of the tiny anisotropies in the mi
rowave ba
kground radiation providea 
osmologi
al probe of utmost relevan
e. With satellite measurements of the CMB � like theWilkinson Mi
rowave Anisotropy Probe (WMAP) � a 
onsiderable pre
ision in 
osmologi
aldata has been rea
hed.Due to its very good a

ordan
e with CMB measurements, as well as with other data setsfrom the observation of the large-s
ale stru
ture at lower redshifts, a 
osmologi
al standardmodel has emerged, the in�ationary Λ Cold Dark Matter model. Among the energy densityingredients of that model are the 
ontributions of Dark Energy (76%), Dark Matter (20%) andbaryoni
 matter (4%). Although they represent dominant 
ontributions, the standard model isnot explanatory with respe
t to the nature and origin of the dark 
omponents of the Universe.3



4 PREFACEAlthough a lot of e�ort is invested, and although numerous attempts to atta
k the problem 
anbe found, there exists no settled explanation for the dark 
omponents of the standard model;they remain poorely understood up to day. Moreover, the 
urrent 
osmologi
al standard modelis based upon a relatively simple, homogeneous and isotropi
 solution of the underlying generalrelativisti
 �eld equations, the Friedmann-Robertson-Walker spa
etime. Within this model,both CMB and other data require the Universe to be spatially �at.In 
hap. 1 we review the phenomenology of the 
urrent standard model of 
osmology aswell as its theoreti
al framework. We fo
us on the 
osmologi
al problem of Dark Energy and weexplain its basi
 experimental eviden
e. The validity of the 
rude standard model assumptionsof homogeneity and isotropy on large s
ales 
an be questioned. It is subje
t to 
urrent debate inhow far inhomogeneous models 
an �t the available data that indi
ates an a

elerated expansionof the Universe. The 
ru
ial di�eren
e is that inhomogeneous models are potentially able toa
hieve this without Dark Energy. In parti
ular we analyse the spheri
ally symmetri
 Lemaître-Tolman-Bondi model and dis
uss how it may 
hange the interpretation of supernova and CMBdata. In order to use the inhomogeneous model for the CMB analysis in the later 
hapters, we�nally present analyti
 
al
ulations of the integrated Sa
hs-Wolfe e�e
t in that model.Chap. 2 deals with the 
osmologi
al problem of Dark Matter. We review present eviden
efor Dark Matter and fo
us espe
ially on the �at gala
ti
 rotation 
urves. We omit dis
ussionsof parti
le 
andidates for Dark Matter and fo
us on an unusual approa
h, namely the generalrelativisti
 modelling of galaxies. Regarding rotation 
urves, the 
omparison from whi
h DarkMatter follows in the standard pi
ture, is always a 
omparison between Newtonian physi
s andthe data. It 
an be questioned whether general relativisti
 terms really 
an be fully negle
ted.In fa
t, re
ently a general relativisti
 model of a galaxy has been presented (the Coopersto
k-Tieu model) in whi
h it is 
laimed that Dark Matter is made super�uous. Partly, 
hap. 2is very te
hni
al; we 
arry out various analyti
al analyses in order to better understand theCoopersto
k-Tieu model and espe
ially its Newtonian limit.A 
ru
ial 
omponent of the standard model is the in�ationary s
enario. In�ation pre-di
ts an early epo
h of dramati
 global expansion of spa
etime and so provides the seeds forthe formation of large-s
ale stru
ture through a freeze-out of primordial quantum �u
tuationson ma
ros
opi
 s
ales. As a 
onsequen
e, the simplest in�ationary theories, predi
t a nearlys
ale-invariant power spe
trum of statisti
ally isotropi
, adiabati
 and gaussianly distributedprimordial �u
tuations.Despite the remarkable a
hievements of the standard model, there are also some problemswith it. When analysing WMAP data from the largest angular separation s
ales, several anom-alies are found, whi
h are in 
on�i
t with the predi
tion of statisti
al isotropy of the CMB.After reviewing the basi
 physi
al me
hanisms that 
ontribute to the CMB, and dis
ussingthe underlying theoreti
al framework in 
hap. 3, we approa
h the problem of the large-s
ale CMBanomalies in 
hap. 4 and 
hap. 5. In 
hap. 4 our ansatz is a lo
al Rees-S
iama e�e
t � the non-linear analogue of the integrated Sa
hs-Wolfe e�e
t. We state that the lo
al Rees-S
iama e�e
tof vast, yet non-virialised stru
tures indu
es signi�
ant 
ontributions to the large-s
ale CMB. We
ompute its in�uen
e on the phase anomalies with the help of a statisti
al analysis and �nd thatan Rees-S
iama e�e
t � modelled by a simply spheri
al overdensity � 
an be ex
luded at high
on�den
e. In 
ontrast to 
hap. 4, 
hap. 5 
opes only with intrinsi
 alignments among the lowestCMB multipoles. There are two 
lasses of anomalies, phase (dire
tional) anomalies and angularpower anomalies. We ask to what extent anomalies of the two 
lasses are 
orrelated with ea
hother, be
ause this is of importan
e for model building. We perform an exhaustive statisti
alanalysis and demonstrate the absen
e of su
h 
orrelations with high signi�
an
e. Further, we�nd stringent 
onstraints on any models, trying to explain the anomalies, that exhibit axialsymmetry (`Axis of Evil').







Der wahre Weg geht über ein Seil, dasni
ht in der Höhe gespannt ist,sondern knapp über dem Boden.Es s
heint mehr bestimmt stolpern zuma
hen, als begangen zu werden.Franz Kafka (1883 � 1924)Aphorismen � Betra
htungen über Sünde, Leid,Ho�nung und den wahren Weg, 1931





[...℄ What is the signi�
an
e of the vastpro
esses it portrays? What is the meaning,if any there be whi
h is intelligible to us, ofthe vast a

umulations of matter whi
happear, on our present interpretations ofspa
e and time, to have been 
reated only inorder that they may destroy themselves?What is the relation of life to that Universeof whi
h, if we are right, it 
an o

upy onlyso small a 
orner? What if any is ourrelation to the remote nebulae, for surelythere must be some more dire
t 
onta
t thanthat light 
an travel between them and us in ahundred million years? Do their 
olossalin
omprehending masses 
ome nearer torepresenting the main ultimate reality of theUniverse, or do we? Are we merely part ofthe same pi
ture as they, or is it possible thatwe are part of the artist? Are they per
han
eonly a dream, while we are brain 
ells in themind of the dreamer? Or is our importan
emeasured solely by the fra
tions of spa
e andtime we o

upy � spa
e in�nitely less than aspe
k of dust in a large 
ity, and time lessthan one ti
k of a 
lo
k whi
h has endured forages and will ti
k on for ages yet to 
ome?Sir James Jeans (1877 � 1946)Astronomy and Cosmogony, 1928





Part IExa
t Solutions as Toy Models





CHAPTER 1The Cosmologi
al Problem of Dark EnergyWhy does Dark Energy seem to dominate the energy budget of the 
osmos? What does thismajor 
ontributor 
onsist of at all? Why is the absolute value of the Dark Energy density sotiny as 
ompared to the expe
tation from quantum theory? Undoubtedly, the 
hallenge posedby Dark Energy is the most far-rea
hing of the grand open questions in modern 
osmology. Itis tightly related to the question of how far there is 
ru
ial physi
s missing in the underlyingtheories at the moment; an example thereof would be a uni�ed theory of gravity and quantum�elds. There is a generi
 relation to the very fundamental question of how the absolute zero-point energies of quanta gravitate. The notion of Dark Energy goes hand in hand with Einstein's
osmologi
al 
onstant Λ . On the other hand, also dynami
al s
alar �elds � that would 
ontributeto Λ in a time-dependent way � are 
onsidered, like for instan
e quintessen
e or moduli �elds.

Figure 1.1. The in�uen
e of Dark Energy rea
hes from the smallest to the largeststru
tures in the Universe. Left: mi
ros
opi
 image of a tiny ball (d ≃ 10−1mm) thatis mounted at a small distan
e upon a smooth plate in order to measure the o

urring(ele
tromagneti
) Casimir e�e
t. The minute Casimir for
e pulls the ball toward theplate be
ause the number of va
uum �u
tuation modes in the small spa
e betweenball and plate is limited, whereas the wavelengths of va
uum �u
tuations o

urringin the `free spa
e' on the opposite side of the plate 
an take arbitrary values. Va
uum�u
tuations similar to those from the Casimir e�e
t are asso
iated with Dark Energybut in this 
ase are generated by spa
e itself. The nowadays dominant Dark Energya
ts as a repulsive for
e on the largest s
ales, eventually 
ausing the Universe toexpand forever. Right: an image of the 
luster of galaxies named SDSS J1004 + 4112after its dete
tion within the Sloan Digital Sky Survey. The 
luster is around sevenbillion light years away (z = 0.68), lo
ated in the 
onstellation of Leo Minor, andrepresents a beautiful sample of Large-S
ale Stru
ture. Also, due to gravitationallensing o� the huge lensing mass of the 
luster, ar
 images of more distant galaxiesin the ba
kground 
an be seen in the image. A

ording to observations of distantsupernovae (z & 0.2) the re
ession of galaxies is 
urrently speeding up as due to thea
tual density 
ontribution from Dark Energy. Pi
tures are taken from [APO℄.13



14 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGY1.1. Fa
ets of the ProblemThe famous mismat
h of ∼ 120 orders of magnitude that results from trying to estimate Λfrom quantum �eld theory illustrates well the amount of our ignoran
e regarding the fundamentalphysi
s that may be involved. Likewise the Dark Energy whi
h is so poorly understood doesin fa
t 
onstitute a whole ∼ 70% of the energy density 
ontent of the Universe, whi
h readilyindi
ates the weight of the problem. Still, it is always adequate to 
arefully re
onsider allassumptions that are made in order to get a physi
al result, espe
ially if it is su
h a weightyone. In fa
t, the above situation results from a 
omparison of a large variety of astronomi
altests with the 
osmologi
al standard model. Additionally, the 
omparison of Λ with the absolutezero-point energy takes pla
e within quantum �eld theory whi
h is at the basis of the a
tualstandard model of elementary parti
le physi
s. We want to emphasise that the empiri
al basis ofthe 
osmologi
al standard model is far less substantial than that of the standard model of parti
lephysi
s. One of the main di�eren
es is of 
ourse the inherent impossibility to do astronomi
almeasurements in su
h a repeatable and 
ontrolled way as it is done in a laboratory. Thatis, mostly astronomers are 
lever spe
tators, waiting for the right moment of observation, butallways being in
apable of tou
hing or turning the sour
e in order to repeat their measurement.As we will see below, one of the most weighty eviden
e for Λ 
omes from su
h an astronomi
almeasurement, namely the observation of distant supernovae.Within the standard 
osmologi
al model the energy-matter 
ontent of the Universe is 
har-a
terised by four dimensionless density parameters with the following normalisation:(1.1) Ωm + Ωr + ΩΛ + Ωk = 1 .Here, Ωm is the density of matter involving all kinds of matter present whether dark or luminous,baryoni
 or non-baryoni
; Ωr ∼ 10−4 stands for the energy present in the 
osmi
 mi
rowave aswell as in the primordial low-mass neutrino ba
kground radiation; Ωk stands for the energy-matter 
ontribution asso
iated with the 
urvature of spa
e due to General Relativity and �nally
ΩΛ is the 
ontribution of Dark Energy. From measurements of e.g. the CMB it is known thatthe three-geometry of spa
e is �at to a high degree of a

ura
y su
h that Ωk 
an be set to zero.Also negle
ting the minor 
ontribution from Ωr , a 
ouple of di�erent 
lasses of astronomi
alobservations suggest the so 
alled 
osmi
 
on
ordan
e:(1.2) Ωb ≃ 0.04 , ΩDM ≃ 0.20 , ΩΛ ≃ 0.76 ,where, a

ording to usual notation, we split the matter density parameter Ωm into a baryoni

ontribution and a 
ontribution from Dark Matter. The issue of Dark Matter is dis
ussed inmore detail in 
hapter 2. But whatever the parti
ular 
omposition of the numeri
al values of thedi�erent energy-matter 
omponents, as inferred in the framework of the 
osmologi
al standardmodel may try to tell us, one result is parti
ularly striking: only 4% of the whole is due towell-understood physi
s, i.e. to baryons. Another surprising feature of Dark Energy is knownas the 
oin
iden
e problem. It refers to the fa
t that the 
ontribution of the time-independent
Λ parameter, if we would measure it together with the other 
osmologi
al density parametersin the past when the universe had only around one tenth of its present size, would be only
ΩΛ ≃ 0.003 . That is, the in�uen
e of Λ, 
ausing the expansion of the Universe to a

elerate,appears to be
ome signi�
ant at just around at the present time. It is un
lari�ed in how farthese `
oin
iden
es' are re�e
ting some deep physi
al 
ontiguity. However, it is 
on
eivable thatthe 
osmologi
al 
onstant might be a running and would approa
h some natural value at latetimes [PR03℄.We 
onsider the possibility of Λ itself being a superposition of di�erent physi
al e�e
ts:(1.3) ΩΛ = ΩΛ,Einstein + ΩΛ,QF + ΩΛ,unknown .The term ΩΛ,Einstein is nothing else than the original 
osmologi
al 
onstant as introdu
ed byEinstein in order to maintain stati
 
osmologi
al solutions of his �eld equations; ΩΛ,QF is a
ontribution from virtual parti
le-antiparti
le �u
tuations in the quantum va
uum; ΩΛ,unknownwould des
ribe 
ontributions from yet unknown physi
s like new �elds or intera
tions. The fa
t
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tuations ΩΛ,QF really do exist is impressively demonstrated by measurementsof the (ele
tromagneti
) Casimir e�e
t, see �g. 1.1. The Casimir e�e
t 
an be measured betweenmi
ros
opi
 obje
ts, for example small 
ondu
ting plates, that are positioned at a tiny distan
eto ea
h other. Whereas the quantum �u
tuations of the va
uum, as predi
ted within quantum�eld theory, 
an populate arbitrary modes in empty spa
e, the number of possible modes inbetween the mi
ros
opi
 obje
ts is limited and so the energy of the system is suppressed. Thisresults in an attra
tive for
e that is of measurable strength for e.g. the ele
tromagneti
 �eld andis purely due to subtle quantum e�e
ts.The problem one naturally en
ounters with the 
ontribution of Λ may be demonstratedby using the CMB as an example [PR03℄. The CMB has a monopole temperature of ≃ 2.7Kand energy density ΩCMB ∼ 10−5 rea
hing its maximum at the Wien peak λ ∼ 2mm. Herethe photon o

upation number is ∼ 1/15 . Given a 
ertain frequen
y, the zero-point energyamounts to half the energy of the photon. Therefore the zero-point energy of the ele
tromagneti
�eld at the Wien peak translates into a 
ontribution of δΩΛ,CMB ∼ 10−4 to the Dark Energydensity parameter. As it will be
ome 
lear from equation (1.32) the sum over wavelengths s
alesa

ording to λ−4 and thus we would have δΩΛ,CMB ∼ 1010 at visible wavelengths! This naiveextrapolation already yields su
h an absurd �gure. However, as was already mentioned above,it may be hypothesised [PR03℄ that the Dark Energy density asso
iated with Λ is running andhas rea
hed nowadays � be
ause Dark Energy had almost 13.4 billion years time for running bynow � 
lose to a value that would be somewhat natural, namely zero.1.2. Dark Energy and the Standard Cosmologi
al ModelBefore we are going to dis
uss rather dire
t eviden
e for a re
ent a

eleration of the 
osmi
expansion, we will 
on
isely review the 
urrent standard model of 
osmology. This 
omprises theunderlying symmetries of the Friedmann-Robertson-Walker spa
etime as well as the resultinggeneral relativisti
 dynami
s of the model. Also the basi
 
on
epts and the 
onsequen
es of thestandard in�ationary s
enario are reviewed.In 
osmology there exist several de�nitions of what may be attributed as an observabledistan
e to an astronomi
al obje
t. The non-trivial point is that the various distan
e measuresgive approximately the same result only for nearby obje
ts and moreover that their measurementfor distant obje
ts is sensitive to the parti
ular dynami
s of the underlying theory. There existsre
ent eviden
e that supports the presen
e of Dark Energy provided by the analysis of distantsupernovae. Under the assumption that supernovae of type Ia form a 
lass of standard 
andlestheir measured brightness 
an be used to dire
tly test the distan
e-redshift relation withindi�erent dynami
al realisations of the standard model.1.2.1. The Standard Model in a Nutshell. A very 
ru
ial statement that is made rightfrom the beginning is that the Universe appears isotropi
 to us in a global sense when observedfrom earth. Se
ond, following the Coperni
an standpoint it is assumed that an observation ofthe Universe made from any other galaxy should also look isotropi
 for the observers there.On
e we a

ept this, the Universe must also be homogeneous be
ause of its isotropy aroundany point. Of 
ourse, observations of our near neighbourhood do neither look homogeneous norisotropi
 at �rst glan
e. In the standard model it is assumed that there is a transition from a
lumpy to an approximately smooth pi
ture at a s
ale of roughly 100Mp
. This implies, thatwhen we pla
e balls of radius 100Mp
 in the Universe at random lo
ations and we measure themass pro�le within an ensemble of balls then the root mean square �u
tuation of the valuestaken at 100Mp
 is roughly equal to the mean value, su
h that we 
an regard the �u
tuationsat large s
ales as perturbations on top of the homogeneous model. On the other hand, thesmaller the s
ale, the more non-linear are the departures of �u
tuations from homogeneity. Inthe following we review the ni
e overview paper by Peebles and Ratra on Dark Energy and thestandard model [PR03℄.Within the framework of General Relativity, homogeneity and isotropy lead quite naturallyto the expansion of the Universe. Expansion of the Universe means that the proper physi
al
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e DP between two well-separated galaxies as a fun
tion of 
osmi
 time t is(1.4) DP(t) ∝ a(t) ,where a is the s
ale fa
tor. But a is de�ned su
h that it is independent of the 
hoi
e of galaxieswe make for the 
omparison. Thus the expansion (1.4) preserves homogeneity and isotropy. Thederivative of (1.4) gives us the proper speed(1.5) vP(t) =
dDP

dt
= H(t)DP , H(t) ≡ ȧ(t)

a(t)
,introdu
ing the Hubble parameter H and denoting derivatives with respe
t to 
osmi
 time witha dot. The value of the Hubble parameter as measured today is a 
entral parameter and so wegive here its 
urrent measure (2007) a

ording to [Y+06℄(1.6) H0 = 100 h kms−1 Mpc−1 = h (9.78 Gyr)−1 with h = 0.73+0.04

−0.03 .The a
tual expansion of the Universe was �rst observed in 1929 and it is referred to as theHubble expansion due to its dis
overer [Hub29℄.A law similar to (1.4) also holds for the wavelengths of light signals that are ex
hangedbetween two galaxies. The 
hange in wavelength that a signal � a given feature in the spe
trum� undergoes that has been emitted from a distant sour
e amounts to(1.7) λob

λem
=
a(tob)

a(tem)
≡ 1 + z ,and z is 
alled the 
osmologi
al redshift. The redshift provides the most 
onvenient 
hara
ter-isti
 to label observations of the Universe that rea
h into the very far past. For example, thede
oupling of matter and radiation in the young Universe whi
h is the origin of the CMB radi-ation, o

urred at around z = 1088 . The Universe is ionised today; from CMB measurementsone infers that reionisation took pla
e at redshifts of around z ≃ 10 . The galaxy 
luster SDSSJ1004 + 4112 shown in �g. 1.1 is observed at a redshift of around z ≃ 0.68 . How in general theredshift is translated into distan
es, or vi
e versa, is generi
ally depending on the parameters ofthe underlying general relativisti
 model. However, given a small redshift z < 1 , equation (1.7)be
omes Hubble's law, whi
h then reads to lowest order: cz = HDC .The results so far have been obtained by using homogeneity and isotropy only, and representthe low-redshift limit of the standard model. However, for extrapolation to higher redshifts

z > 1 , the general relativisti
 formulation of the theory is to be used. The 
ru
ial assumptions ofhomogeneity and isotropy are re�e
ted by the well-known Friedmann-Robertson-Walker (FRW)spa
etime(1.8) ds2 = −dt2 + a2(t)

[
1

1 − kr2
dr2 + r2

(
dθ2 + sin2θdϕ2

)
]

.Through remapping of the radial 
oordinate one usually normalises the spatial 
urvature pa-rameter k su
h that it takes the values k = 1, 0,−1 , whi
h stand for a 
losed, �at or open spatialgeometry of the model. The metri
 
an be rewritten as(1.9) ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)
(
dθ2 + sin2θdϕ2

)]
,by introdu
ing the fun
tion Sk(χ) with(1.10) Sk(χ) =







sinχ for k = 1
χ for k = 0

sinhχ for k = −1
.Employing the Friedmann-Robertson-Walker metri
 and the assumption that on large s
ales thegalaxies behave like the 
onstituents of a perfe
t �uid, one 
an solve the �eld equations(1.11) Gµν ≡ Rµν − 1

2
Rgµν = 8πG [(ρ+ p)uµuν + pgµν ] + Λgµν ,
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osmi
 time derivatives with a dot, obtain the result:(1.12) ä

a
= −4

3
πG (ρ+ 3p) +

Λ

3
.The 
ovariant 
onservation of energy and momentum T µν

;µ = 0 implies then additionally(1.13) ρ̇ = −3H (ρ+ p) .Integrating the equations (1.12) and (1.13) yields the important Friedmann equation(1.14) H2 =
8

3
πGρ− k

a2
+

Λ

3
,and the integration 
onstant k is related to the present value of the spatial 
urvature via(1.15) Ωk = − k

H2
0a

2
0

.If Λ is 
onstant, a useful way of writing the Friedmann equation is(1.16) H2(z) = H2
0

[
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + Ωk(1 + z)2

]
,and similarly one rewrites the equation (1.12)(1.17) ä

a
= −H2

0

(

Ωm
(1 + z)3

2
+ Ωr(1 + z)4 − ΩΛ

)

,whereby the remaining density parameters of the standard model Ωi are given by(1.18) Ωm,r =
ρm,r

ρcrit
, ρcrit ≡

3H2
0

8πG
, ΩΛ =

Λ

H2
0

.The use of (1.16) lies in the fa
t that one 
an immediately read o� the redshift dependen
e ofthe respe
tive 
omponents of the Friedmann model. Therein, Ωm stands for all non-relativisti
matter whose pressure we negle
t (pm ≪ ρm). We see that the mass density is diluted bythe expansion of the Universe as ρm ∝ a−3 ∝ (1 + z)3 . Further, Ωr stands for radiation(e.g. the CMB) as well as relativisti
 matter with equation of statea w = 1/3 , and behaves like
ρr ∝ a−4 ∝ (1 + z)4 under expansion. By 
onstru
tion, Λ is 
onstant for the moment, andfurther the density 
orresponding to spatial 
urvature (1.15) is diluted as ρk ∝ a−2 ∝ (1 + z)2 .eq. of state density s
aling Hubble

w ρ ∝ a−3(1+w) a(t) ∝ t
2

3(1+w) H(t) = 2
3(1+w)

1
tradiation, w = 1

3 ρa−4 a(t) ∝ t1/2 H(t) = 1
2tmatter, w = 0 ρa−3 a(t) ∝ t2/3 H(t) = 2
3tTable 1.1. Standard solutions to the Friedmann equation for a radiation dominatedand a matter dominated Universe. The FRW expressions for density, s
ale fa
tor andHubble parameter assuming a 
ontribution with equation of state w are given in the�rst line. Regarding a Dark Energy 
ontribution with w = −1 the density is 
onstantand integration of the Friedmann equation yields the exponential behaviour (1.25).Next, we want to 
onsider the properties of Λ in further detail. As inspired by spe
ialrelativity, we 
an make the assumption that every inertial observer should measure the sameva
uum. An inertial observer is an observer who lives lo
ally in a Minkowskian frame, that ishis metri
 is 
hara
terised by ηµν = diag(−1,1) . Now, the form of the metri
 is left invariantby Lorentz transformation to some other inertial observer's frame. Be
ause we assumed that allinertial observers should see the same va
uum, the energy-momentum tensor is(1.19) TΛ

µν = ρΛgµν ,aIn the 
osmologi
al 
ontext the term equation of state refers to the ratio w = p/ρ .
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onstant va
uum energy density ρΛ . Thus the �eld equations 
an be written in the form(1.20) Gµν = 8πG (Tµν + ρΛgµν) ,whi
h re�e
ts Einstein's original ideab of modifying the energy-matter 
ontent of the Universeby adding a 
onstant Λ . We see that Dark Energy behaves like an ideal �uid with negativepressure a

ording to the equation of state(1.21) pΛ = −ρΛ .At the time Einstein thought about this modi�
ation, the Hubble re
ession of nebulae wasnot yet established; quite the 
ontrary, a stati
 
osmos was the state of the art, whi
h was anextrapolation of the �nding that nearby stars moved at low velo
ities. In order to obtain astati
 solution with ä = 0 Einstein introdu
ed an ΩΛ � in modern language � to neutralise the(positive) 
ontributions of the other ingredients of matter and radiation, 
.f. (1.17). However,the balan
e ä = 0 is not a stable one be
ause already small perturbations to either the meanmass density or the distribution of mass will 
ause the Universe to 
ontra
t or expand. Notethat, if the density ρΛ is not 
onstant in time � whi
h is the 
ase in many modern Dark Energys
enarios � also the Dark Energy momentum tensor would have a form that di�ers from (1.19),su
h that in the end the 
hara
teristi
s of the va
uum do depend on the observer's velo
ity.In the 
ontext of gravitational �uid dynami
s one usually distinguishes between the a
tiveand passive gravitational mass density. The a
tive mass density (ρ + 3p) stands for the gravi-tational �eld that is generated by the �uid, the passive gravitational mass density (ρ + p) is ameasure of how the �uid streaming velo
ity is a�e
ted by a gravitational sour
e. Thus, in theDark Energy model 
hara
terised by (1.19) and (1.21), the a
tive gravitational mass density isnegative (assuming a positive ρΛ) and if this dark 
omponent dominates the energy-momentumtensor then ä will be positive. This re�e
ts the fa
t that the expansion of the Universe a

el-erates. Thus one 
an summarise the e�e
t of Λ in physi
al terms as follows: the a

eleratedexpansion is not the result of some new for
e, rather it is due to the negative a
tive gravitationalmass density that we 
an asso
iate with the Dark Energy. Then, 
onsidering non-relativisti
movement, the relative a

eleration g of free falling test bodies is modi�ed by a homogeneousa
tive mass density due to the presen
e of Λ to
(1.22) d2r

dt2
= g +H2

0ΩΛr .We 
an already guess that the magnitude of this e�e
t is probably small. We 
an estimate thesize of the ratio of a

elerations gΛ/g . Let us assume that the Solar System moves in a 
ir
ularorbit around the 
entre of the Milky Way with a 
ir
ular speed of v ≃ 220km/s at a radius ofbTo be exa
t, this is not stri
tly true. Though mathemati
ally the same, Einstein [Ein17℄ added the newterm to the left hand side of the �eld equations, that is to the `geometri
 side': Gµν − Λgµν = 8πGTµν . Notethat Einstein further motivated this modi�
ation by an analogy to Newton Gravity. Interestingly, in NewtonGravity one en
ounters a serious problem with a world model that is homogeneous and in�nite. It was alreadyseen by Newton himself that the gravitational potential energy of su
h a system diverges: the volume of a shellat distan
e r to r + δr from an observer is δV = 4πr2δr and with the assumption of homogeneous mass density
ρ , the mass within δV amounts to δM = 4πρr2δr . Thus the gravitational potential energy a

ording to thismass be
omes δU = GδM/r = 4πGρrδr . Integrating δU we see that U diverges like r2 when r be
omes verylarge [Pee93℄. Einstein and after him others, 
.f. [PR03℄, suggested a 
ure for this situation by a modi�
ation ofthe Poisson equation a

ording to ∆(3)φ−λφ = 4πGρ , whi
h gives the potential of a point mass a Yukawa form
φ ∝ e−

√
λr (these solutions are also 
alled Seeliger-Neumann solutions). Now, the modi�ed Poisson equationallows for a homogeneous stati
 solution φ = −4πGρ/λ . But the analogy should not be taken too seriously:note that the modi�ed Poisson equation does not 
ome out as a Newtonian limit from the general relativisti
equation with 
osmologi
al 
onstant. That is, Λ does not a
t like a long-range 
uto� in gravitation, it is rathera repulsive form of energy that is in opposition to the mean gravitational attra
tion of matter.
Also, the instability of the stati
 Einstein solution 
an be seen from equation (1.22). A mass distribution
an be assigned su
h that the right hand side of equation (1.22) vanishes but this equilibrium 
an then be easilydestroyed by just redistributing the mass again.
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r ≃ 8kp
. The ratio of gΛ to the total gravitational a

eleration g = v2/r is then estimated by(1.23) gΛ

g
=
H2

0ΩΛr
2

v2
∼ 10−5 .This is already a small number but it be
omes mu
h smaller when the radius is redu
ed. Sin
e theSun is already lo
ated at the very outskirts of the luminous dis
 of the Milky Way, the possibilityof dete
ting this e�e
t by measuring deviations from the ordinary internal dynami
s in othergalaxies is not very promising. The a

ura
y of pre
ision tests of gravitation on the level of ourSolar System is mu
h better. But on these s
ales the ratio (1.23) is of the order gΛ/g ∼ 10−22 .Next we want to 
onsider a 
ompli
ation, namely a working model for a dynami
al ρΛ .The aforementioned me
hanism of 
oupling Λ to a negative a
tive gravitational mass den-sity is 
losely related to the 
on
ept of 
osmologi
al in�ation. There exists a problem that isen
ountered if we assume that the Universe was evolving due to a FRW solution within its entirehistory. Let us re
all the expression for the parti
le horizon(1.24) x =

∫
dt

a(t)
,where we assumed spatial �atness. It is a measure of the integrated 
oordinate displa
ement asa light ray moves the proper distan
e dl = a(t)dx during the time dt . Now the point is that forvanishing ΩΛ the integral (1.24) does 
onverge in the past (ax is the proper radius of the parti
lehorizon), that is our view should fall on several 
ausally dis
onne
ted parts of the Universe. Inorder to make the Universe homogeneous, signals must travel between the regions that are in
onta
t with at most the speed of light. Thus, no regions that are more than 2ax apart 
ouldhave ever been in 
ausal 
onta
t. Let us try an estimate: assuming that the temperature of theyoung Universe was T ≃ 1014GeV at some initial time tinit , we 
an then imagine a 
orresponding
ausally 
onne
ted ball with radius 2ax that has expanded and today should form the borderof the 
urrently observable Universe. In our simple estimate, the temperature of the Universehas evolved from that initial epo
h at T ≃ 1014GeV to T0 ≃ 2.7K ≃ 2.4 × 104eV today, thusgiving a fa
tor of expansion of the Universe of T/T0 ≃ 4 × 1026 . Moreover, at the temperature

T ≃ 1014GeV, the horizon size has been 2ax ≃ 6×10−25
m at a time of tinit ≃ 10−35s. Thereforethe primordial 
ausal ball would have expanded to a size of 2.4m today whi
h is rather smallfor the 
urrent size of the Universe. And how 
an then galaxies as observed today in di�erentdire
tions on the sky look so similard to ea
h other? The answer is provided by the statementthat the expansion history of the Universe was not FRW-like for a 
ertain time period in theyoung Universe. Instead one assumes a DeSitter solution with Λ > 0 and Tµν = 0 and the s
alefa
tor behaviour(1.25) a(t) ∝ eHΛt ,with HΛ being 
onstant. That is, in the DeSitter model, the Universe undergoes a phase ofexponential blowup and Λ be
omes essential.In the in�ationary view the early universe is dominated by a large Dark Energy density ρΛ .Then the Dark Energy 
an be modelled with the help of an approximately homogeneous s
alar�eld Φ in analogy to models known from quantum �eld theory. The a
tion takes the form(1.26) S =

∫ √−g
(

1

2
gµν∂µΦ∂νΦ − V (Φ)

)

d4x ,dOne 
an give another very instru
tive illustration of the horizon problem regarding the CMB. Using the
on
ept of the angular diameter distan
e (1.38) (whi
h is a measurable quantity) one 
an 
ompute that up to thetime of last s
attering of the CMB photons, regions that 
ould have had 
ausal 
onta
t to ea
h other, today havethe size of approximately one degree on the sky. That means an image of the CMB should 
ontain many pat
hesof size one degree that are rather anisotropi
 as a whole be
ause they never had the 
han
e to 
ommuni
ate.Maps of the CMB however, show a totally di�erent situation: the CMB appears overall isotropi
 to a high degree.



20 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYwhere g is the determinant of the metri
 g = det(gµν) and we used ~ = 1 . The fun
tion V (Φ)is the potential energy density and with vanishing spatial 
urvature we get the �eld equation(1.27) Φ̈ + 3
ȧ

a
Φ̇ +

dV (Φ)

dΦ
= 0 .We 
an de�ne the rest frame of an observer who is moving su
h that the Universe looks isotropi
;then the energy-momentum tensor of the homogeneous �eld Φ is diagonal with(1.28) ρΦ =

1

2
Φ̇2 + V (Φ) and pΦ =

1

2
Φ̇2 − V (Φ) .From these equations it is 
lear that if the s
alar �eld varies slowly with time Φ̇2 ≪ V , thenthe equation of state of the 
osmologi
al 
onstant 
an be re
overed: pΦ ≃ −ρΦ.Normally it is assumed in in�ationary theory that the exponential phase (1.25) lasts solong that all regions in the observable Universe have rea
hed 
ausal 
onta
t with ea
h other.Eventually Φ 
an start to vary rapidly thus produ
ing entropy for the Universe. This is be
auseafter a rollover phase the �eld falls into the potential well of the real va
uum and starts toos
illate due to its kineti
 energy. The large initial va
uum energy is transformed into 
oherentos
illations of the �eld Φ and these �u
tuations are damped � besides the Hubble fri
tion

3HΦ̇ � by parti
le produ
tion or the intera
tion of Φ with other �elds, whi
h is equivalent toa thermalisation of the �eld energy and entropy produ
tion. Through this so 
alled reheating,e.g. baryons 
an be produ
ed and in the end ρΦ remains small or zero. However, it is 
on
eivablethat ρΦ 
ould have a very slow late-time behaviour, possibly slower than the evolution of thematter density. Then ρΦ will be dominant again, after a 
ertain time and this 
ould provide ananswer to the 
oin
iden
e problem. A 
on
rete ansatz that leads to su
h a late time evolutionof ρΦ is Vκ = κ/Φα with a 
onstant κ that has the dimension of massα+4 [PR03℄. We 
an
onstrain the form of the s
ale fa
tor by assuming that after the in�ationary phase the Universeis dominated by matter or by radiation whi
h leads to a power law expansion behaviour of
a ∝ tn , 
.f. tab. 1.1. With this form of the s
ale fa
tor we 
an solve the �eld equation (1.27)and obtain Φ ∝ t2/(2+α) . The mass density asso
iated with the s
alar �eld Φ behaves like
ρφ/ρ ∝ t4/(2+α) with respe
t to the matter or radiation density. Thus we 
an re
over Einstein's
osmologi
al 
onstant Λ from this model in the limit of α→ 0 whi
h 
orresponds to a 
onstant
ρΦ . In the 
ase α > 0 the �eld Φ 
an grow very large and due to Vκ = κ/Φα the a

ordingdensity will go to zero, ρΦ → 0 , whi
h implies that the Universe approa
hes a Minkowskianstate. Su
h a power law model with α > 0 has two important 
hara
teristi
s [PR03℄. First,the energy density of matter and radiation de
reases more rapidly than that of the s
alar �eldsolution. This implies that it is possible to have a ρΦ that is small right after in�ation (butstill at high redshift) and thus does not interfere with the standard produ
tion s
enario of thelight elements. However, after some time ρΦ 
an dominate again, mimi
king a 
osmologi
al
onstant. Se
ond, it has been shown by Ratra and Peebles that the 
lass of solutions α > 0 hasthe attra
tor 
hara
teristi
, that is a vast range of initial 
onditions eventually end up with thissolution.The in�ationary s
enario explains the large-s
ale homogeneity of the Universe today by pos-tulating a DeSitter-like phase of exponential growth of the Universe at very early times. More-over it provides the initial 
onditions for stru
ture formation by the vast freezing of zero-pointquantum �eld �u
tuations to 
osmologi
al s
ales. Thus the seeds for the observed stru
tures on
osmologi
al s
ales today have originated from quantum �u
tuations of the early Universe. Thepower spe
trum of the 
lassi
al density �u
tuations that have been frozen out from quantum�u
tuations is(1.29) P (k) = 〈|δ(k, t)|2〉 = AknT 2(k) ,where δ(k, t) is the Fourier transform of the density 
ontrast, δ(x, t) = ρ(x, t)/ρ̄(t) − 1 atwavenumber k , with the mass density ρ and its mean ρ̄ . A is a 
onstant that 
omes out fromthe 
on
rete form of the potential V one 
hooses within a given in�ationary model. The transferfun
tion T (k) governs how the density 
ontrast δ(k, t) evolves under the in�uen
e of radiation
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s of matter at redshifts z . 104 . Now, for an in�ationary expansionfollowing an approximate DeSitter solution (1.25), the spe
tral index n will be 
lose to unitye. Aspe
trum with exa
tly n = 1 is 
alled Harrison-Zel'dovi
h power spe
trum. The striking featureof su
h a spe
trum is that it would have equal power (amplitude) in all its modes at the time itenters Hubble horizon and is this also named s
ale invariant. Anti
ipating results for the Sa
hs-Wolfe e�e
t from se
. 1.3.3 we 
an understand the notion of s
ale invarian
e alternatively bythe following result [Lon98℄ for the angular s
ale dependen
e of CMB temperature �u
tuationsoriginating from an initial power spe
trum proportional to kn ,(1.30) ∆T

T
≃ ∆φ

c2
∝ θ(1−n)/2 ,with ∆T/T being s
ale-free in the Harrison-Zel'dovi
h 
ase n = 1 . Note that more 
ompli
ateds
alar �eld potentials 
an be imagined (e.g. exponential form potentials) under whi
h the spe
-tral index is tilted n 6= 1 and 
an be used as an additional free parameter of the model. However,re
ent CMB measurements indi
ate that n = 1 is very 
lose to the best �tf. The initial 
on-ditions for the mass distribution in these in�ationary models are provided by a single fun
tion

δ(x, t) , whi
h is a realisation of a spatially random Gaussian pro
ess sin
e the ma
ros
opi
 per-turbations are frozen out from almost free and pure quantum �u
tuations. This is also referredto as adiabati
ity be
ause su
h �u
tuations 
an be understood as the result of purely adiabati

ompressions and de
ompressions of regions of an homogeneous (post-in�ationary) Universe.A 
onsequen
e of the fa
t that the simplest in�ationary models obey the above 
onditions isthat the initial 
ondition as des
ribed by a single fun
tion of position δ(x, t) is statisti
ally fully
hara
terised by its power spe
trum (1.29). More 
ompli
ated models of in�ation for instan
eprodu
e �u
tuations that are not exa
tly Gaussian or have power spe
tra that 
annot be broughtinto a power law form.Before we 
ome to the 
osmologi
al tests of the standard model let us return to the prob-lem of the smallness of the va
uum energy density. The zero-point energy of quantum �elds
ontributes to the Dark Energy density. A relativisti
 �eld 
an be understood as a 
olle
tion ofquantum me
hani
al harmoni
 os
illators with all possible frequen
ies ω . The zero-point energywill be non-vanishing and amounts, by superposition of frequen
ies, to E0 =
∑

i ωi/2 , where ilabels os
illators and ~ = 1 . We 
an think of the system as lo
ked in a box of length L and wethen 
onsider the limit L→ ∞ under appropriate periodi
 boundary 
onditions. We then have(1.31) E0 =
L3

2

∫
ωk

(2π)3
d3k ,with the wavenumber k = 2π/λ . We are 
onsidering a massive bosoni
 �eld Φ̃. By employingthe dispersion relation ω2

k = k2 +m2 and introdu
ing a 
uto� frequen
y kmax ≫ m in order tomake physi
al senseg, we arrive at [KKZ97℄(1.32) ρΦ̃ = lim
L→∞

E0

L3
=

∫ kmax

0

4πk2

(2π)3

√
k2 +m2

2
dk =

k4
max

16π2
.eLet us add a small note on the approximation of n = 1 in in�ationary models. In general, it depends onthe parti
ular underlying s
alar �eld dynami
s of the model in how far s
ale invarian
e is realised. In slow rollin�ation the �eld is initially rolling down the in�ationary potential slowly and its movement is sizeably dampedby the Hubble fri
tion term 3HΦ̇ . Imagine a limit where the damping is extremely intense and the rolloverbe
omes in�nitely slow, then this would 
orrespond to exa
t s
ale invarian
e n = 1 . Consequently, a genuinein�ationary predi
tion is n = 1 ± ε with some small ε . The (small) deviations of a parti
ular model of in�ationform exa
t s
ale invarian
e quantify how slow the �eld a
tually has rolled and how strongly it was dampedmeanwhile, see also [DS02℄.fA
tually, from WMAP(3yr) data alone a value of n = 0.958 ± 0.016 is obtained [S+07℄. Nevertheless, arunning spe
tral index, that is an n that varies a bit with the wavenumber k of the perturbation modes, is slightlypreferred by the WMAP(3yr) data.gNote that, as we introdu
e a 
uto� wavenumber kmax , we at the same time have to spe
ify in what framethe 
uto� is de�ned, thus invoking a preferred frame. This violation of Lorentz invarian
e poses a problem of theargument and there seems not to be a satisfa
tory resolution by now. In [Akh02, PR03℄ one 
an �nd a dis
ussionof possible interpretations of the o

urring ambiguity.



22 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYIf we assume General Relativity to be valid up to, say the Plan
k s
ale and set LPlanck =
(8πG)−1/2 = kmax we obtain a value for the va
uum energy density of(1.33) ρΦ̃ ∼ 1092gcm−3 ,whi
h is 121 orders of magnitude o� the observed value of ∼ 10−30 . Redu
ing the 
uto� s
aleto the ele
troweak s
ale of ∼ 200GeV still produ
es a dis
repan
y of 54 orders of magnitude;inserting the QCD s
ale ΛQCD as 
uto� results in a mismat
h of 42 orders of magnitude. Thesedis
repan
ies 
ould indi
ate a massive in
ompleteness of the 
urrent underlying physi
s; it isthinkable that there might be some 
onnetion between the di�erent 
omponents in (1.3) 
omingfrom yet undis
overed physi
s that 
auses the almost 
omplete 
an
ellation of the seeminglyun
orrelated terms in (1.3), 
.f. [KKZ97℄.1.2.2. Distan
e Measures and Dark Energy Eviden
e. In order to des
ribe the 
ur-rent phenomenology of the standard model we �rst should re
all the 
ommon distan
e measuresin 
osmology. We have already introdu
ed the proper distan
e DP through (1.4). Anothernatural distan
e is that asso
iated with the 
urrent Hubble volume, the Hubble distan
e(1.34) DH ≡ c

H0
.Assuming 
ontinuous FRW evolution, an obje
t that would be seen at a distan
e of roughlythe Hubble distan
e is seen as it was around a Hubble time in the past. The Hubble distan
erepresents a measure of the observable Universe, 
.f. �g. 1.2.The de�nition of the Hubble parameter as a fun
tion of redshift (1.16) will be very usefulin the following. The 
onstant of proportionality of the proper distan
e s
aling (1.4) 
an beexpressed by the 
omoving distan
e. The 
omoving distan
e along the line of sight is de�ned by(1.35) DC ≡ DHH0

∫ z

0

dz′

H(z′)
.The 
omoving distan
e between two points that were 
lose in redshift in the past is the distan
ewe would measure today between the points if they were glued to the expanding ba
kground,
.f. [Hog00℄. See �g. 1.2 for an illustration of proper and 
omoving distan
es and their relationto important 
osmologi
al s
ales like the parti
le horizon and the Hubble distan
e.Going further, one 
an de�ne a 
omoving distan
e in a lateral sense. If we measure twoobje
ts at the same redshift that are separated by an angle θ on the sky then their 
omovingdistan
e is DTCθ with transverse 
omoving distan
e denoted by DTC and de�ned by(1.36) DTC ≡







DHΩ
−1/2
k sinh(Ω

1/2
k DC/DH) for Ωk > 0

DC for Ωk = 0

DHΩ
−1/2
k sin(Ω

1/2
k DC/DH) for Ωk < 0

.If the 
osmologi
al 
onstant vanishes there exists a 
losed solution(1.37) DTC = 2DH
2 − (1 − z)Ωm − (2 − Ωm)(1 + zΩm)1/2

(1 + z)Ω2
m

for ΩΛ = 0 .It 
an be shown that there is a 
orresponden
e between transverse 
omoving distan
e and the so
alled proper motion distan
e. The proper motion distan
e is de�ned as the ratio of transversevelo
ity to proper motion of an obje
t and is measured in radians per time, 
.f. [Wei72℄.The ratio of the lateral physi
al size of an obje
t to its angular size is an expli
it observable
alled the angular diameter distan
e. It is very useful for 
osmologi
al measurements. Espe
iallywhen 
onsidering the CMB whi
h 
an be mapped onto a sphere at z = 1088 , it is 
ru
ial to
onvert angular separations measured by an instrument to proper separations in the sour
eplane. The angular diameter distan
e is given by(1.38) DA ≡ DTC

1 + z
.
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Figure 1.2. Spa
etime diagrams of 
osmologi
al time versus proper distan
e (upper�gure; DP in our notation) and versus 
omoving distan
e (lower �gure; DC in ournotation) within a �du
ial FRW model with (Ωm, ΩΛ) = (0.3, 0.7) and H0 = 70 kms−1 Mp
−1 . Therein the dotted lines, that are labelled by values of redshift, representthe worldlines of 
omoving obje
ts. The past light 
one (belonging to the observer with
entral worldline at zero distan
e) enfolds all events that we are 
urrently (t =now)observing. Further, there are three kinds of horizons in the �gures: the parti
lehorizon names the distan
e that light 
an prin
ipally have travelled from t = 0 untilsome given t , 
.f. (1.24), and the redshift of obje
ts at parti
le horizon be
omesin�nite; the event horizon represents the distan
e that light 
an have travelled froma given time t until t = ∞ ; the Hubble sphere enfolds the set of spa
etime eventsbeyond whi
h 
omoving obje
ts are re
eding faster than light � the Hubble sphere isnot really a horizon be
ause z 6= ∞ for obje
ts at Hubble distan
e and moreover it ispossible to see beyond it in 
osmologi
al models with q < −1 . As 
an be seen fromthe slope of the light 
one, the speed of photons relative to the observer vrec − c isnot 
onstant. Photons from the region of superluminal re
ession (hat
hed) 
an onlyrea
h us when 
oming to the region of subluminal re
ession (no shading). As 
an beseen in the �gure, initially obje
ts beyond the Hubble sphere have been re
eding fromus � note the bulge of the light 
one at t . 5Gyr. Note that the light 
one does nothit the line t = 0 asymptoti
ally; rather it rea
hes a �nite distan
e of ∼ 46Glyr at
t = 0 whi
h is exa
tly the 
urrent distan
e to the parti
le horizon. Thus, the light ofany obje
ts that are 
urrently observable to us, whose light has propagated toward ussin
e t = 0 , has been emitted from 
omoving positions around 46Glyr (14Gp
) awayfrom us. Note that the aspe
t ratio of the �gures ∼ 3/1 re�e
ts the ratio of the sizeof observable Universe to its age ∼ 46/14 . The pi
tures are taken from [DL03℄.In 
ontrast to several other distan
e measures, the angular diameter distan
e does not divergefor z → ∞ , in fa
t it is not a monotoni
 fun
tion of z ; it rea
hes a maximum at around z ∼ 1 .At high redshifts one 
an say, as a rule of thumb, that the angular diameter distan
e relates anangular separation of one ar
se
ond to a size of ∼ 5kp
 [Hog00℄.The luminosity distan
e measures the ratio of total bolometri
 (i.e. integrated over allfrequen
y bands) luminosity L to the apparent luminosity LA . The apparent luminosity orbolometri
 �ux LA is the power re
eived per unit mirror area. The apparent luminosity of anon-moving sour
e at some distan
e l in Eu
lidean spa
e would be L/(4πl) . Therefore it makessense to generalise this and de�ne the luminosity distan
e as [Wei72℄(1.39) DL ≡

(
L

4πLA

)1/2

.



24 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYHowever, in astronomy what is really measured is the apparent magnitude m . After �tting forthe 
alibration fa
torM (absolute magnitude) one usually uses the di�eren
e of these magnitudesfor analysis: the distan
e modulus m −M . The distan
e modulus is related to the luminositydistan
e through m −M = 5 log(DL/1 Mpc) + 25 , with the number 25 
oming from the fa
tthat the distan
e modulus is de�ned to vanish at 10p
. Note that due to a fundamental result �the re
ipro
ity theorem, 
.f [EvE98℄ � the angular diameter distan
e and the luminosity distan
e
an be related dire
tly by(1.40) DL = (1 + z)2DA = (1 + z)DTC .Based on the 
on
ept of the luminosity distan
e, in 1998 the �rst dire
t eviden
e for anapparent a

elerated expansion of the Universe was published [R+98, P+99℄. This was madepossible by measurements of the redshift and the (luminosity) distan
e of supernovae. Theappearan
e of this kind of eviden
e was dubbed a 
osmologi
al revolution, for it provided the�rst dire
t eviden
e that the Universe may re
ently have be
ome dominated by some mysteriousform of energy. After this dis
overy, measurements of the CMB and statisti
al analyses ofgalaxy-redshift surveys have 
on�rmed the supernova �ndings, albeit in a more indire
t way.However, the supernova measurements remain up to today the most dire
t means of probing apresent large-s
ale a

eleration of the Universe. What one ne
essarily needs in order to makereliable measurements with the help of the luminosity distan
e (1.39) is a standard 
andle.A standard 
andle would be � in a mu
h simpli�ed sense � something like a 
onstant 100Wlight bulb. That means, if we 
an rely on the fa
t that the light bulb is standardised, i.e. itallways will emit a power of 100W, then we 
an infer the distan
e to the bulb by measuringits apparent luminosity. Now, in 
osmology it appeared at �rst not promising to think ofsupernovae as standard 
andles be
ause their observation yields a very heterogeneous 
lass oflight 
urves. Originally, the 
lassi�
ation s
heme for supernovae was su
h that the type SNIwas 
hara
terised by the la
k of hydrogen features in the supernova spe
trum. From 1980 onthe astronomers divided the type I supernovae into two sub
lasses: Ia and Ib. The distin
tionwas made due to the presen
e or absen
e of a 
ertain sili
on absorption feature at 6150Å. Inthe light of this re
lassi�
ation a remarkable uniformity in the light 
urves of supernovae Iasuddenly be
ame apparent.But, are SNIa really standard 
andles in a stri
t sense? One spe
ulates that SNIa originatefrom exploding white dwarfs. But why should the white dwarfs explode and why should thisthen happen at a uniform threshhold? Normally, white dwarfs are produ
ed as remnants of Sun-like stars that have used up their nu
lear fuel for fusion. The only thing that saves the dwarffrom further 
ollapse is the e�e
tive pressure upheld by ele
tron degenera
y. Now, if it happensthat the white dwarf is provided with some steady stream of matter a

reting onto its surfa
e, itwould a

umulate mass until a 
ommon physi
al threshold � whi
h is near the Chandrasekharmass of ≃ 1.4M⊙ � and then suddenly erupt within a massive thermonu
lear explosion. Ifthis s
enario is true then essentially always the same physi
al pro
ess triggers SNIa explosions,whi
h then would ba
k the assumption of regarding SNIa as standard 
andles. Still, takingan a

urate look, the un
orre
ted light 
urves of SNIa do show some o�set. Their maximalluminosities exhibit a slight but obvious dispersion of roughly 0.4 magnitudes as measured inthe blue band [S
h06℄. One �nds a strong 
orrelation between intrinsi
 brightness and theshape of the respe
tive light 
urves: the supernovae that have a higher maximal brightness alsode
rease slower (as measured from their maximum) than those with smaller maximal brightness.Moreover it turned out that supernovae that were fainter also appeared redder or were observedin highly in
lined host galaxies. This e�e
t 
an be attributed to an extin
tion in the hostgalaxy additional to the extin
tion in the Milky Way. Altogether it is possible to quantifythese systemati
s with a phenomenologi
al re
alibration that takes 
are of both the maximalbrightness-duration 
orrelation and the extin
tion. The fundamental 
alibration is gauged toa sample of supernovae that were lo
ated in host galaxies to whi
h the distan
es are very wellknown. On
e the above explained 
orre
tion to SNIa is applied they appear to be appropriatestandard 
andles. The 
olle
tion of a su�
ient number of SNIa observations requires very 
areful
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Figure 1.3. Supernovae of type Ia provide standard 
andles and measurements offar-away SNIa are sensitive to the 
osmologi
al parameters of the standard model.Left: an image of supernova 1994D that took pla
e in the outer regions of its hostgalaxy NGC 4526. The supernova is of type Ia whi
h implies that its light 
urve isvery similar to any other supernova of the same type, irrespe
tive of its distan
e orlo
ation. Combining a measurement of its luminosity distan
e with a measurementof the redshift of the host galaxy one 
an use su
h events to probe the Hubble law(1.41). Right: a Hubble diagram (distan
e modulus vs. redshift) of the 2006 Riess etal. sample [R+06℄. The outer diagram shows the good �t of a ΩΛ ≃ 0.71, Ωm ≃ 0.29standard model parametrisation. The inset is a binned residual Hubble diagram of 47
hosen (Gold Sample) SN with respe
t to an empty Universe Ωm = 0 = ΩΛ, being ina

ordan
e with a re
ent a

eleration of the Universe. Note that supernovae at veryhigh redshifts be
ome again brighter than expe
ted in the �du
ial model, indi
atingthe matter domination of the Universe at very early times. The pi
tures are takenfrom [APO℄ and [R+06℄.logisti
s and sear
h strategy: at new moon a large set of images of 
ertain pat
hes of the sky ismade, then just at the next new moon exa
tly the same regions are imaged again and eventuallyfound 
andidates are fastly assigned to follow-up spe
tros
opy.Let us dis
uss how the supernova eviden
e 
an be quanti�ed. The Hubble law 
orrespondsto the following formula for the luminosity distan
e [SW07℄(1.41) DL = DH

[

z + (1 − q0)
z2

2
+

(

−j0 + 3q20 + q0 − 1 − k

a2
0

D2
H

)
z3

6
+ h.o.

]

,to third order in z . One introdu
es the de
eleration parameter and the jerk parameter(1.42) q = − ä
a

1

H2
and j =

...
a

a

1

H3
.Note that this 
osmologi
al test is highly model-dependent. Within the standard model thede
eleration parameter provides a measure for a

eleration or de
eleration of the 
osmi
 expan-sion and the jerk parameter measures the rate of 
hange of the latter. Thus, at high redshiftpotential deviations from the linear part in the Hubble law (1.41) should provide a measure ofthe parameters of the underlying 
osmology. The predi
tions of di�erent 
osmologi
al models(i.e. di�erent parameter sets within the standard model) start to diverge at redshifts of around

z ∼ 0.2 . The result of a re
ent measurement is shown in �g. 1.3. It is found that supernovaeforh z . 1 are even fainter than one would expe
t in an empty Universe model (Ωm = 0 = ΩΛ).The �du
ial empty Universe model expands at a 
onstant rate [q = 0 = j in (1.41)℄; in no otherhNote that the Hubble law does not hold for measurements at very low redshift be
ause here the Universeis evidently not homogeneous, see for instan
e �g. 1.5.



26 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYparametrisation with ΩΛ = 0 is the luminosity distan
e higher than in the empty Universe. Is ispossible to in
rease the luminosity distan
e only if the Universe has expanded slower in the pastthan it does today, thus the 
osmi
 expansion must have a

elerated. Looking at the Einsteinequation (1.12) this implies an ΩΛ > 0 , if we believe in the very foundations of the standardmodel.Moreover, supernovae at very high redshift z & 1 provide additional eviden
e: they hereappear brighter than expe
ted in an empty Universe be
ause at su
h early times the Universe wasstill matter dominated whi
h is 
onsistent with the above explained interpretation of supernovaeat z . 1 . Summarising the supernova results one 
an say that a re
ent a

elerated expansionof the Universe with standard model parametrisation ΩΛ ≃ 0.71 and Ωm ≃ 0.29 provides anex
ellent �t to the available data sets.As is indi
ated in �g. 1.3, nowadays the s
ope of experiments is not only to 
on�rm thepresen
e of Λ domination in re
ent times within the standard model, but moreover to try tomeasure the properties of Dark Energy for instan
e through its equation of state. Results ofthe ESSENCE supernova survey have re
ently been analysed espe
ially under this viewpoint[D+07℄. The study is done with the help of Bayesian analysis whi
h is a statisti
al frameworkin whi
h models are e�e
tively penalised for not being e
onomi
 with their parameters. Theanalysis enfolds tests with: Dark Energy models with variable equation of state, (�at) DGPbraneworld models, Cardassian models and models of the Chaplygin gas. The result of the
ompetition is that the most simple spatially �at ΩΛ dominated model represents the best �tto the ESSENCE sample.Besides the �ndings from supernova surveys other important 
osmologi
al probes 
onvergeto very similar results. For instan
e the shape of the CMB angular power spe
trum is highlysensitive to the parameters of the standard 
osmologi
al model, 
.f. se
. 3.3.2. Moreover, thestatisti
al analysis of galaxy redshift surveys as well as measurements of the number density ofmassive galaxy 
lusters provide 
onsistent results. The 
omposition of density parameters (1.2)
hara
terised by the domination of Dark Energy today and measured by di�erent 
lasses ofexperiments has been attributed the notion of a 
osmi
 
on
ordan
e. The eviden
e is depi
tedin a 
ombined plot in �g. 1.4. Summarising, we 
an say that the standard model fa
ilitatespre
ision 
osmology and that in turn the measurements a posteriori ba
k the standard model.Re
alling the main results of this se
tion we 
an summarise the 
ornerstones of the standardmodel as follows:
• validity of General Relativity as the basi
 framework; a homogeneous and isotropi
 aswell as spatially �at FRW solution models the large-s
ale dynami
s of the Universe; atrivial topology of the Universe, that is the a
tual size of the Universe is mu
h biggerthan the observable horizon;
• standard in�ation solves the horizon problem and it produ
es spatial �atness; moreoverit predi
ts a nearly s
ale-invariant spe
trum of statisti
ally isotropi
, adiabati
 andGaussian random primeval density perturbations;
• the energy 
ontent of the Universe as measured today is dominated by Dark Energy;a subdominant fra
tion is due to Dark Matter and only a marginal 
ontribution isdue to baryoni
 matter [see eqs. (1.2)℄; as a 
onsequen
e, the 
osmologi
al expansionundergoes a re
ent a

eleration.Note that (Cold) Dark Matter, to whi
h the next 
hapter is devoted, is also needed in models ofstru
ture formation in order to maintain the growth of the in�ationary seeds of stru
ture withinan a

eptable amount of time; read app. D for more details on this issue. Of 
ourse, the standardmodel also enfolds a lot of physi
s that takes 
are of the produ
tion of the today observedparti
les in the early Universe. A detailed dis
ussion of the model of Big Bang Nu
leosynthesisand s
enarios of baryogenesis as well as leptogenesis are not within the s
ope of this work. Inthe following we are going to use the terms Lambda Cold Dark Matter (ΛCDM) model or just
on
ordan
e model for the 
urrent 
osmologi
al standard model des
ribed above.
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Figure 1.4. The 
osmi
 
on
ordan
e: roughly three thirds of the total energy-matter 
ontent of the Universe as measured today is made up of Dark Energy, therest is mainly provided by the similarly mysterious Dark Matter. The most dire
teviden
e for Dark Energy 
omes from a

urate measurements of supernova Ia Hub-ble diagrams. Moreover, the shape of the angular power spe
trum of the CMB ishighly sensitive to the parameters of the 
osmologi
al standard model, and so arealso analyses of the redshift evolution of the number density of galaxy 
lusters as wellas number 
ounts provided by galaxy redshift surveys. Due to their very di�erent(partly orthogonal) systemati
s the 
ombination of these observations 
onstrains the
osmologi
al parameters mu
h better than the single experiments. The 
onvergen
e ofthe di�erent measurements impressively indi
ates self-
onsisten
y of the 
osmologi
alstandard model. The pi
ture is taken from [Lid04℄; the shaded regions as well as theother 
riti
al lines are explained in more detail in app. A.1.3. An Inhomogeneous Alternative?The standard model predi
tion that the Universe is homogeneous on large s
ales today is avery bold one, likewise problemati
 to prove as a matter of prin
iple. Yet, measurements of theCMB yield isotropy to a degree of 10−5 , albeit at a very early epo
h. It requires measurementsat high distan
es and at the same time with high statisti
s in order to map the Large-S
aleStru
ture of the Universe. As observations of far-away regions show obje
ts as they were anenormous amount of time ago in the past, it is not possible to stri
tly distinguish e�e
ts ofevolution from spatial variations of the matter density. In other words, a probe that wouldstri
tly prove the homogeneity of our 
urrent Large-S
ale neighbourhood, would ideally 
onsistof a deep galaxy survey taken at very low redshifts. Of 
ourse, su
h a probe is not viable as amatter of prin
iple be
ause of the enormous size of the Universe. Leaving this prin
ipal obje
tionapart, it is possible to demonstrate the approximate homogeneity of the Large-S
ale Stru
turefor instan
e with the luminous red galaxy 
atalogue (z ∼ 0.3) of the Sloan Digital Sky Survey[HEB+05℄.Nevertheless, homogeneity is obviously broken at small s
ales: 
atalogues within ∼ 100Mp
draw a 
ompli
ated pi
ture with large voids, lots of 
on
entrated 
lusters of galaxies and even
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Figure 1.5. An SDSS image of the large-s
ale stru
ture of our 
osmologi
al neigh-bourhood. The Sloan Digital Sky Survey is a wide-angle spe
tros
opi
 galaxy redshiftsurvey. Shown are wedges of already 
onsiderable depth, that is up to roughly 900Mp
in 
omoving distan
e. The survey has a wedge-like stru
ture be
ause the opti
al lightfrom far-away sour
es 
annot penetrate through the material in the dire
tion of ourMilky Way's dis
 (Zone of Avoidan
e). All of the displayed points are galaxies takenfrom the main galaxy sample as well as from the bright red galaxy sample of theSDSS. Here a 
onformal proje
tion is used that is shape preserving. The image un-
overs an impressively sharp look on the surrounding large-s
ale 
osmologi
al stru
-ture. Clearly, the �lament-like distribution of matter, stru
tured like a honey
omb,is seen. As 
learly, large voids in stru
ture that often approximate spheri
al shapeare resolved throughout the map. In the upper wedge, the largest 
ohesive stru
tureever observed by now, the Sloan Great Wall is 
learly displayed. In equatorial 
oor-dinates this bran
hing obje
t stret
hes from 8.7h to 14h in R.A. at a median distan
eof around 310Mp
. The pi
ture is taken from [G+05℄.large a

umulations thereof forming vast stru
tures like the great wall, see �g. 1.5. Given thatbasi
 assumptions of the ΛCDM model do not hold at low redshift, naturally the 
all for a more
ompli
ated model arises. Interestingly, the general relativisti
 dynami
s of even the simplestinhomogeneous models 
arry the possibility to eventually make Dark Energy super�uous.



1.3. AN INHOMOGENEOUS ALTERNATIVE? 291.3.1. The Lemaître-Tolman-Bondi Model. This spheri
ally symmetri
 model is oneof the most important known inhomogeneous working models; we follow here partly the reviewgiven in [PK06℄. For general spheri
al 
oordinates, the assumption of a perfe
t �uid automat-i
ally implies a vanishing rotation ωαβ = 0 , 
.f. (1.50). Under this restri
tion, 
oordinates 
anbe used that are 
omoving and in whi
h there are no spa
e-time mixing terms, and 
onsequentlythe most general four-dimensional spheri
ally symmetri
 spa
etime 
an be written as(1.43) ds2 = −eCdt2 + eAdr2 +R2
(
dθ2 + sin2θdϕ2

)
,where C,A and R are fun
tions of (t, r) only and the velo
ity �eld is given by uα = e−C/2δα

0 .The parameter R is sometimes 
alled the areal radiusi. As a further simpli�
ation we 
onsiderthe dynami
s under purely gravitational intera
tion (p = 0). Zero pressure implies that themovement of the �uid o

urs along timelike geodesi
s, whi
h then leads to C,r = 0 . We 
anthen make a 
oordinate transformation t 7→ ∫
eC/2dt and a
hieve C = 0 . The 1

0 �eld equation(see app. B) then gives(1.44) ∂

∂t

(

e−A(t,r)/2R,r

)

= 0 .The solution with R,r = 0 is not of interest here; however it leads to a physi
al solution (Datt-Ruban solution) of the Einstein-Maxwell equations asso
iated with dust in an ele
tromagneti
�eld, 
.f. [PK06℄. Taking R,r 6= 0 we 
an dire
tly integrate (1.44) to obtain(1.45) eA(t,r) =
R2

,r

1 + E(r)
.We introdu
e the arbitrary fun
tion E(r) whi
h will be important in the following. In orderto maintain the used signature we require E ≥ −1 for all r . Note that E = −1 is not stri
tlyex
luded; if R,r = 0 at the same point, this leads to the o

urren
e of a wormhole, 
.f. [PK06℄.The spheri
ally symmetri
 dust solution is due to Lemaître [Lem33℄ and was redis
overed andredis
ussed by Tolman [Tol34℄ and Bondi [Bon47℄ (LTB), it takes the �nal form(1.46) ds2 = −dt2 +

R2
,r

1 + E
dr2 +R2(dθ2 + sin2θdϕ2) .where the fun
tions R(t, r) and E(r) are related to ea
h other and to the energy density ρ(t, r)and the 
osmologi
al 
onstant Λ as follows

R2
,t(t, r) =

2m(r)

R(t, r)
+ E(r) +

1

3
ΛR2(t, r) ,(1.47)

4πGρ(t, r) =
m(r),r

R2(t, r)R(t, r),r
.(1.48)Therein m(r) is a fun
tion that des
ribes how mu
h energy is present within the radius r as
an be seen by integrating (1.48).We 
an utilise the framework of the 3+1 split of spa
etime (see 2.3.4 for an expli
it dis
ussionof the formalism) in order to dedu
e the interpretation of the mass fun
tionm(r) and understandwhere it stems from. Let us note that for the given LTB metri
 (1.46) the shift vanishes andthe lapse is equal to unity, su
h that the extrinsi
 
urvature here is given by the time evolutionof the three-metri
 Kij = − 1

2
∂
∂tgij , yielding expli
itly(1.49) K11 = −R,rR,t,r

1 + E
, K22 = −RR,t , K33 = −RR,t sin2θ , K ≡ Ki

i = −R,t,r

R,r
− 2

R,t

R
.For the following it is 
onvenient to re
all the standard kinemati
al de
omposition of athree-velo
ity ve
tor �eld. First 
onsidering Newtonian theory, the velo
ity gradient vi,j is ameasure of the relative velo
ity of two neighbouring parti
les in the �uid, and 
an be de
omposediThis is be
ause R plays the role of a radius in the Eu
lidean spheri
al area equation S = 4πR2 , where Sstands for the area of surfa
es at 
onstant t and 
onstant r [PK06℄.



30 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYinto two parts: its symmetri
 part v(i,j) = 1/2(vi,j + vj,i) ≡ θij (the expansion s
alar) and itsantisymmetri
 part v[i,j] = 1/2(vi,j − vj,i) ≡ ωij (the vorti
ity or rotation tensor) su
h that(1.50) vi,j = v(i,j) + v[i,j] ≡ θij + ωij ≡ 1

3
θδij + σij + ωij ,where we additionally de
omposed the symmetri
 part into a tra
eless 
ontribution (the sheartensor σij) and a tra
e part θ ≡ vi,i (the expansion s
alar or rate of expansion). This result fromNewton Gravity 
an be transported one-to-one to General Relativity. In General Relativity �for vanishing shift and a lapse equal to unity, see se
. 2.3.4 � the expansion tensor is de�nedthrough Θij ≡ 1

2
∂
∂tgij and is de
omposed in an analogous way(1.51) Θij =

1

3
θgij + σij + ωij .Re
all that we work in a gauge with vanishing rotation. Next, we have 
omputed the shear inthe LTB model and get(1.52)

σ11 =
2

3

R2
,r

1 + E

(
R,t

R
− R,t,r

R,r

)

, σ22 =
1

3
R2

(
R,t,r

R,r
− R,t

R

)

, σ33 =
1

3
R2 sin2θ

(
R,t,r

R,r
− R,t

R

)

.Furthermore, the shear s
alar reads(1.53) σ2 ≡ 1

2
σijσ

ij =
1

3

(
R,t

R
− R,t,r

R,r

)2

.As a 
he
k, one sees dire
tly from (1.52) that the shear is indeed tra
eless as it must be by
onstru
tion. Now, be
ause of the 
orresponden
e(1.54) Kij = −Θij ,we 
an use the de
omposition (1.51) for further 
al
ulation.Our aim was to derive the mass fun
tion m(r), and for this we have to 
ompute the �eldequations. In order to keep the derivation simple, we 
an 
al
ulate the 3 + 1 splitted �eldequations; to be exa
t only one of them, the Hamiltonian or energy 
onstraint(1.55) R −KijK
ij +K2 = R +

2

3
θ2 − 2σ2 = 16πGρ+ 2Λ ,
.f. subse
tion 2.3.4. Here R denotes the spatial Ri

i s
alar for whi
h we have, in 
ase of theLTB model,(1.56) R = −2

(
E,r

RR,r
+

E

R2

)

.Now the above introdu
ed results turn useful and the energy 
onstraint be
omes
−
(

E,r

RR,r
+

E

R2

)

+ 2
R,tR,t,r

RR,r
+

(
R,t

R

)2

= 8πGρ+ Λ ,

or, with R,R,r 6= 0 , (ER),r +
(
R2

,tR
)

,r
= (8πGρ+ Λ)R2R,r .(1.57)We 
an integrate the last equation in (1.57) over r and thereby de�ne(1.58) m(r) ≡ 4πG

∫ r

r0

ρR2R,r′dr′ ,where we let R vanish at r0 . Using this mass term, the last equation in (1.57) be
omes(1.59) R
(
R2

,t − E
)

= 2m+
1

3
R3Λ ,whi
h is just our equation (1.47). For this we have used the de�nition of the mass m(r) (1.58),whi
h measures how mu
h mass there is within a radius r and is self-
onsistent with the density
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Figure 1.6. An LTB inspired solution to the 
osmologi
al horizon problem,
.f. [CS98, PK06℄. The LTB light 
one is here expressed via radial null geodesi
s
θ = 0, ϕ = 0 in (1.46). The �gure shows the past light 
ones k1 and k2 of an observerO as well as the Big Bang (BB) and a shell 
rossing (SC) fun
tion of a 
ertain 
lassof LTB models. A shell 
rossing o

urs where R,r = 0 and when geodesi
s 
ross SCthey must have a horizontal tangent at interse
tion and the LTB density be
omesin�nite. Below shell 
rossing pathologies o

ur � like a negative LTB density (1.48)� and thus to keep the model physi
al we ex
lude the spa
etime set below SC. Fromthe Last S
attering Surfa
e at p2 , whi
h is de�ned as the two-sphere at temperature
T ∼ 4000K, photons 
an propagate toward the observer O at (r = 0, t0) . The horizonproblem is solved if one 
an show that the two-sphere of last s
atter (r2, t2) is 
on-tained inside the future light 
one of any point on the t-axis.Assume an in
reasing LTB bang fun
tion tB(r) with lo
al minimum at r = 0 su
hthat there exists a shell 
rossing at some t > tB . This 
urve is labelled (BB) in the�gure and has in this example the form tB ∝ r2 . Note that here the shell 
rossing
urve is tangent to the bang fun
tion at r = 0 . The observer sits at O and sendsa radial null geodesi
 k1 � with stri
tly negative derivative wherever tk1(r) > tSC(r)� ba
kwards in time, and it interse
ts with the shell 
rossing at a point pis , havingthere a horizontal tangent to k1 . We do not follow the geodesi
 through shell 
ross-ing be
ause the model might be
ome problemati
 there. On its way toward SC thegeodesi
 will en
ounter su

essive surfa
es of 
onstant temperature whi
h 
an alsobe parameterised as fun
tions t(r) . Then at around T ∼ 4000K, let us denote thelast s
attering by the event (r2, t2) , from the point p2 on k1 that is after tis , so that
t2 > tis and r2 < ris , a se
ond radial null geodesi
 k2 is being sent ba
kwards in time,this time towards the 
entre of symmetry at r = 0 . The geodesi
 tk2(r) will have astri
tly positive derivative wherever tk2(r) > tSC(r) . One 
an now show that k2 mustrea
h the line of r = 0 at a later time than the Big Bang, be
ause of monotony. Bythis me
hanism all regions of sky that are observable to O at present have had thepossibility to 
ausally intera
t with a 
ommon sour
e in the past. As long as O 
ansee the shell 
rossing set tSC(r) with ∂rtSC > 0 this me
hanism resolves his horizonproblem. Moreover if ∂rtSC > 0 for all r then this solution is a permanent one. Thepi
ture is taken from [PK06℄.equation (1.48) stated before. The full Einstein equations of both the general metri
 (1.43) andthe LTB spa
etime (1.46) are given in app. B.In the 
ourse of the derivation of (1.57) we have seen that the 
ases R = 0 and R,r = 0 arespe
ial. As 
an be read o� the de�nition (1.48), the LTB density be
omes in�nite at two points;



32 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYthat happens just where R = 0 and m,r 6= 0 as well as at R,r = 0 and m,r 6= 0 . The R = 0singularity is just the Big Bang whi
h is 
ompulsory for models with vanishing 
osmologi
al
onstant. The se
ond singularity at R,r = 0 is asso
iated with a shell 
rossing singularity. Con-sider two points in the LTB spa
etime with the same angular and time 
oordinates but di�erentradial 
oordinates r and r+ dr , then at a shell 
rossing singularity the radial geodesi
 distan
e
|g11|1/2dr between those points vanishes. This is odd be
ause it means that two distin
t shellswith di�erent spatial 
oordinates r 
oin
ide. Inserting the 
ondition R,r = 0 into 
omponents ofthe Riemann 
urvature tensor produ
es in�nities and thus it 
an be shown that shell 
rossingsare 
urvature singularities. Shell 
rossing singularities are 
onsidered less problemati
 than BigBang singularities be
ause a bundle of geodesi
s that is sent into a shell 
rossing singularitydoes not be
ome degenerated (in a Big Bang singularity the bundle be
omes fo
used onto a lineor a surfa
e), and thus physi
al obje
ts are not destroyed at a shell 
rossing [PK06℄. However,LTB shell 
rossings 
an be ex
luded by either requiring R to be monotoni
 with respe
t to r ,or requiring that when R,r vanishes, m,r also has to vanish. On the other hand, shell 
rossingsin LTB models pose an ex
ellent working example of how very interesting, yet non-intuitive,
uriosities 
an o

ur in general relativisti
 models. In the in�ationary model the horizon prob-lem was solved by imposing a phase of near exponential growth (1.25) in the early Universej.As is pointed out by Célérier and S
hneider [CS98℄ an LTB model with shell 
rossing 
an be
onstru
ted to solve the horizon problem; the me
hanism is sket
hed in �g. 1.6.Be
ause equation (1.47) with Λ = 0 is equivalent to the Newtonian equation of motion forobje
ts in a Coulomb potential, we 
an interpret the mass mc2/G that we de�ned in (1.58) asthe a
tive gravitational mass. This mass is the generating mass of the e�e
tive gravitational�eld and it is in general di�erent from the mass one obtains by summing up all the 
onstituentmasses. In a di�erent 
ontext we already en
ountered this distin
tion in se
. 1.2.1. In fa
t thea
tive gravitational mass of a bound obje
t 
ould e.g. be smaller than the sum of its 
onstituents;this is the gravitational version of the mass defe
t known from nu
lear physi
s. In this 
ase themass defe
t equals the energy that would be needed to drag the 
onstituents of the gravitatingbody apart. For the LTB model we 
an expli
itly 
ompare the two mass terms. Imagine an LTBsphere with radius r1 and 
entre of symmetry at r0 , then the sum of masses of the 
omponentswithin the sphere amounts to(1.60) m(r1)sum = G

∫

V

ρ
√−g d3V = 4πG

∫ r1

r0

ρR2R,r

(1 + E)
1/2

dr ,whereas the a
tive gravitational mass was given by (1.58) and is in this example(1.61) m(r1) ≡ 4πG

∫ r1

r0

ρR2R,rdr .Now, the fun
tion Ec2/G plays the role of the total energy within a shell of given radius andgoverns the relationship of a
tive and summed mass in the LTB model. If E < 0 the system isa bound one and msum −m > 0 is the gravitational mass defe
t that was already mentioned,whereas for E > 0 the gravitational system must be unbound. In the 
ase of E = 0 the LTBsystem is said to be marginally bound.On top of its interpretation as a total energy fun
tion, the parameter E(r) 
an also beunderstood by means of di�erential geometry. Taking sheets of 
onstant time 
oordinate, one
an attribute an orthonormal three-tetrad to the spatial hypersurfa
es. The tetrad now providesan orthonormal basis of the three-dimensional subspa
es at t = const. by the forms e1 =
dR/(1+E)1/2, e2 = Rdθ and e3 = R sinθ dϕ . In this basis the 
omponents of the three-Riemann
urvature read [PK06℄(1.62) R1212 = R1313 = −E,r

2R
and R2323 = − E

R2
.jIt is outlined in [CS02℄ that the in�ationary s
enario rather postpones the horizon problem than solvingit in a permanent manner. This is be
ause if an observer only waits for long enough he will be able to observeregions that have not been 
ausally 
onne
ted in the early Universe.



1.3. AN INHOMOGENEOUS ALTERNATIVE? 33Now the interpretation of the fun
tion E as a measure of spatial 
urvature be
omes intuitive:looking at (1.62), the 
urvature of the three-spa
e be
omes 
onstant when E/R2 is also 
onstantwith respe
t to r . On the other hand, if E = 0 all the hypersurfa
es with t = const. then are�at. Therefore we 
an view −E as a measure of the lo
al 
urvature of spatial hypersurfa
es at
onstant times. Lo
al means that the LTB 
urvature is allowed to swit
h sign from one spatialregion to the other. In this light, the FRW model with its global 
urvature parameter k 
an beregarded as a very simplifying one, for a lo
ally varying 
urvature appears as a natural thing inLTB models and so a 
urvature 
hara
teristi
 as simple as k is only a pe
uliarity of the FRWmodels and not a generi
 expe
tation from the physi
al world.It remains to dis
uss the Newtonian-like equation of motion (1.47) and give a solution to it.The equation 
an be formally integrated and the solution reads(1.63) ∫ R

0

(
2m(r)

R′(t, r)
+ E(r) +

1

3
ΛR′2(t, r)

)−1/2

dR′ = t− tB(r) ,where we introdu
e another arbitrary fun
tion tB whi
h is 
alled the bang time fun
tion. Inthe 
ase of vanishing 
osmologi
al 
onstant the bang time 
hara
terises the time at whi
h theBig Bang singularity o

urred. Unlike in the FRW model, the Big Bang is not a unique eventanymore but in the LTB model appears to have o

urred at di�erent times for di�erent distan
esfrom the 
entre of symmetry. We now assume Λ = 0 be
ause for Λ 6= 0 one has to 
ope withellipti
 integrals. With this simpli�
ation (1.63) 
an be solved parametri
ally as follows:
• regarding a negative E (ellipti
 
ase),(1.64) R = −m

E
(1 − cosξ) and ξ − sinξ =

(−E)3/2

m
.For 0 < ξ < π the LTB model is in the expanding phase and for π < ξ < 2π it is inthe re
ollapsing phase. Assuming the former one 
an eliminate ξ and write [BKH05℄(1.65) t− tB =

m

(−E)3/2






arccos

(

1 +
ER

m

)

−
[

1 −
(

1 +
ER

m

)2
]1/2






.

• Regarding a vanishing E (paraboli
 
ase),(1.66) R =

[
9

2
m (t− tB)

2

]1/3

,

• and regarding a positive E (hyperboli
 
ase),(1.67) R =
m

E
(coshξ − 1) and sinhξ − ξ =

E3/2

m
(t− tB) ,or in a 
losed form(1.68) t− tB =

m

E3/2







[(

1 +
ER

m

)2

− 1

]1/2

− arcosh

(

1 +
ER

m

)





.Finally, we 
onsider the FRW limit of the LTB model. As 
an be derived from the abovesolutions (1.64)-(1.68), the FRW 
ase 
an be obtained from the LTB solution by setting(1.69) R = ar , m = m0r

3 , E = −kr2 , tB = const. ,wherein a denotes the FRW s
ale fa
tor. Inserting these 
onditions into e.g. the LTB metri
(1.46) immediately returns the FRW spa
etime (1.8). Also, inserting the 
onditions (1.69) intothe last line of the 
al
ulation in (1.57) readlily returns the Friedmann equation (1.14). However,the limit de�ned through the 
onditions (1.69) is 
oordinate dependent [PK06℄. An invarianttransfer 
ondition is given by the requirement ρ,r = 0 or equivalently by(1.70) E

m2/3
= const. and tB = const.



34 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGY1.3.2. Some Appli
ations of the LTB Model. From modern galaxy surveys it is nowa-days evident that voids are basi
 
omponents of the lo
al Universe. These ubiquitous underdenseregions of the Universe often approximate spheri
al shape. Their �rst predi
tion was indepen-dently made by Tolman [Tol34℄ and Sen [Sen34℄ in 1934. The basi
 statement is that FRW (andalso Einstein) models show instability against pro
esses of stru
ture growth. The basi
 e�e
t
an be understood with the help of the LTB model [PK06℄. Di�erentiating the logarithm of(1.48) with respe
t to time we have(1.71) [
∂2

∂t2
ln ρ

]

LTB

(t1) =

[

−2
R,t,t

R
+ 2

R2
,t

R2
− R,t,t,r

R,r
+
R2

,t,r

R2
,r

]

LTB

(t1) ,where an initial time t1 is introdu
ed at whi
h the radial 
oordinates of the LTB model andof a �du
ial FRW model � we want to 
ompare with � are syn
hronised su
h that the iden-tity RLTB(t1, r) = rRFRW(t1) de�nes the relation between the two 
oordinate systems of LTBand FRW model, and we additionally let RLTB,t(t1, r) = rRFRW,t(t1) . Note that this is notyet su�
ient in order to uniquely �x the LTB evolution. Be
ause of this R,t,t is arbitraryand thus the densities at time t1 are allowed to di�er. What we assumed so far implies that
(R,t,r/R,r)LTB(t1) = (R,r/R)FRW(t1) . The interpretation of these initial 
onditions is the fol-lowing: we assume a perturbation in the initial FRW density but, sin
e R,t is a measure of theexpansion velo
ity, an unperturbed initial velo
ity.Applying �rst (1.47) to get the derivatives R,t,t and R,t,t,r and then reapplying (1.48) yields(1.72) [

∂2

∂t2
ln ρ

]

LTB

(t1) =

[

4πGρ− Λ + 2
R2

,t

R2
+
R2

,t,r

R2
,r

]

LTB

(t1) .The analogue of this within the FRW model is given by(1.73) [
∂2

∂t2
ln ρ

]

FRW

(t1) =

[

4πGρ− Λ + 3
R2

,t

R2

]

FRW

(t1) .The dire
t 
omparison 
an be made(1.74) (ln ρLTB − ln ρFRW),t,t = 4πG (ρLTB − ρFRW) ,and it be
omes 
lear that whenever there is a di�eren
e between the densities of the LTB and theFRW model, irrespe
tive of whether they 
orrespond to under- or overdensities, the di�eren
ewould be in
reasing in time. In other words, an LTB model with mat
hed initial 
onditions asdis
ussed above must be �ne-tuned in order not to alienate from the ba
kground model duringits evolution with time.Consequently, LTB models have been extensively studied in order to understand the detailsof general relativisti
 stru
ture growth or formation of voids. A remarkably extensive reviewof su
h studies that is exhaustive up to 1994 , has been 
ompiled by Krasi«ski [Kra97℄. Forinstan
e, it was demonstrated by Mészáros [M�91℄, with the help of a parti
ular realisation ofan LTB model, that there exist initial 
onditions that allow for a homogeneous model in thebeginning whi
h develops a void of realisti
 size 10-100Mp
, surrounded by a shell 
rossingwith an evolution time similar to the age of our Universe. Moreover, in this work it is expli
itlydemonstrated that perturbation theory on an LTB model is safe if the 
onsidered inhomogeneityis small enough.Due to the standard model, the tiny CMB temperature anisotropies of order 10−5 thathave been boosted by in�ation provide the initial seeds for the growth of stru
ture. Hellabyand Krasi«ski argue that density �u
tuations alone are not su�
ient to properly trigger theformation of stru
ture, rather the distribution of initial velo
ities has to be in
orporated into thetheory [KH04b℄. In an extended series of works the same authors have developed sophisti
atedalgorithms whi
h 
ope with the question of how an evolution between given initial and �naldensity pro�les (or velo
ity pro�les) that are astrophysi
ally relevant, 
an be a
hieved within anLTB model. As already mentioned, the interesting result is that models are mu
h more sensitive
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ity pro�les than to the initial density pro�les regarding their evolution towardrealisti
 present-day density pro�les. A non-exhaustive list of studies following that line is givenby [KH02, KH04b, KH04a, KH05, BKH05, KH06℄.Usually, Bla
k Holes are studied in the 
ontext of va
uum solutions like the Kerr spa
etime(2.46) or stati
 solutions like S
hwarzs
hild's (2.40). In any 
ase, su
h Bla
k Holes must have ex-isted sin
e ever and are observed from far away (we do not 
onsider Hawking-Penrose radiation).It has been �rst noted by Bondi [Bon47℄ that the formation of a Bla
k Hole 
an be des
ribed bymeans of the LTB model; the 
ondition is that the 
ollapse velo
ity of matter must be very high.It turns out that the LTB framework is useful for gaining detailed insight into the formationpro
ess of a Bla
k Hole; albeit it is very non-trivial to lo
ate the event horizon be
ause of thela
k of Penrose-like null 
oordinates in the LTB 
ase, 
.f. [PK06℄. See also [ES79, Chr84℄.As was outlined in se
. 1.2.2, when interpreting the supernova Ia �ndings within the stan-dard model, a present-day a

eleration of the 
osmi
 expansion involving Dark Energy is the
onsequen
e. This is not ne
essarily true when working in inhomogeneous 
osmologies: inho-mogeneous models often easily reprodu
e good �ts to the standard 
osmologi
al observations.Nevertheless, this alone is not su�
ient to supersede a working standard model; it is not un-expe
ted that highly 
ompli
ated models that involve quite a number of parameters provide agood �t. The point is that the physi
s of the inhomogeneous models should be understood atleast as good as in the standard model and that a new model must of 
ourse provide universality.Hen
e, it is worthy and ne
essary to analyse models like the LTB solution as inhomogeneoustoy-models in order to develop a feeling for non-standard model physi
s that might well be ne
-essary. Therefore the 
urrent literature on inhomogeneous 
osmologies and appli
ations thereofre�e
ts the huge amount of e�ort that is invested in order to test the viability of models andbetter understand their sometimes unusual physi
s. The 
urrent situation of these subje
ts isfar from settled, the �eld is evolving rapidly. Thus we like to give a short overview and fo
uson appli
ations of the LTB model on SNIa data and CMB data.In order to 
ope with observational 
osmology we need a distan
e measure as we have workedout in se
. 1.2.2. A

ording to Partovi and Mashhoon [PM84℄ it turns out that the luminositydistan
e in an LTB spa
etime takes the form(1.75) DLTB
L = (1 + z)2R ,thus being a fun
tion of the redshift and via R(t, r) also of the LTB model parameters m(r),

E(r) and tB(r) . Note that equation (1.75) is to be taken [PM84℄ at the observer's time. Thatthe result (1.75) makes sense 
an be seen easily: as we have seen the LTB fun
tion R is nothingelse than the angular diameter distan
e between an observer at arbitrary position and the LTBorigin at R = 0 ; then, by use of the re
ipro
ity theorem we readily end up with (1.75) for theLTB luminosity distan
e.But how is the redshift fun
tion properly de�ned within the LTB model? From the LTBmetri
 (1.46) we read o� the de�ning di�erential equation of a radial null geodesi
 heading inthe dire
tion of the observer(1.76) dt

dr
= − R(t, r),r

√

1 + E(r)
.To redu
e the possible solutions to (1.76), we 
onsider two light rays being emitted and headingin the same dire
tion, but with a small time delay τ in between. Following [Bon47℄ we think ofthe �rst light ray as parametrised through t = T (r) and the se
ond through t = T (r) + τ(r) .Sin
e both light rays must obey the 
ommon geodesi
 equation (1.76), we have(1.77) dT

dr
= −R[T (r), r],r

√

1 + E(r)
and

d(T + τ)

dr
= −R[T (r) + τ(r), r],r

√

1 + E(r)
.For we allowed only very little time in between the two signals τ(r) ≪ T (r) , we 
an write toleading order(1.78) R,r[T (r) + τ(r), r] ≃ R,r[T (r), r] + τ(r)R,t,r [T (r), r] ,



36 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYand insert this together with the left equation of (1.77) into the right equation of (1.77), yielding(1.79) dτ

dr
= −τ(r)R[T (r), r],t,r

√

1 + E(r)
.We 
an a

ess the redshift by 
omparing the period of the light wave at emission with its periodat observation(1.80) τ(rob)

τ(rem)
≡ 1 + z(rem) .If we now move the sour
es to slightly di�erent distan
es rem and rem + dr and use this inequation (1.80) we get by di�erentiation(1.81) 1

τ

dτ

dr
= − 1

1 + z

dz

dr
.Inserting this in (1.79) �nally gives(1.82) 1

1 + z

dz

dr
=
R[T (r), r],t,r
√

1 + E(r)
.And with this the initial geodesi
 equation (1.76) be
omes(1.83) dt

dz
= − 1

1 + z

R[T (r), r],r
R[T (r), r],t,r

.Now, we have redu
ed the problem to the solution of the two equations (1.82) and (1.83). Bothof them are solved by radial null geodesi
s that span from z(rem) to z = 0 .In [C�00℄, the above equations for the luminosity distan
e have been solved using perturbativemethods. It was found that the inhomogeneous LTB model is able to reprodu
e the SNIa dataat least up to z ∼ 1 , without the need for Dark Energy. The issue of �nding the right model to
ompare with the 
osmologi
al data is far from settled; rather it is the obje
t of an in
reasingnumber of studies. From the sizeable amount of work that has been published � dis
ussing
osmologi
al phenomenology with the LTB model, espe
ially with regard to supernova Ia andCMB observations � we want to give a few examples that indi
ate re
ent progress in the �eld. Ina re
ent review [Enq07℄, Enqvist 
on�rms the ability of LTB models to yield good �ts to SNIadata and simultaneously give reasonable values for 
osmologi
al parameters. He also dis
ussesthe potential of LTB models to be
ome more realisti
 
ompetitor models, espe
ially with regardto other (
ombined) datasets from CMB and Large-S
ale Stru
ture; see also [EM07℄. In [MH07℄M
Clure and Hellaby push forward the non-trivial program of extra
ting metri
 informationof the Universe dire
tly from 
osmologi
al observations. Homogeneity is not a priori assumed,so that a des
ription is approa
hed within the framework of an LTB model, and a numeri
algroundwork for detailed analysis of future 
ombined datasets is set up. Tanimoto and Nambu[TN07℄ present a novel, non-parametri
 form of solving for the LTB areal radius. Therewith theLTB luminosity distan
e is 
al
ulated perturbatively, and it is 
laimed that dust FRW modelsand LTB models are indistinguishable up to se
ond order, under a 
ertain regularity requirementat the 
entre of the LTB model. For LTB relations that in
orporate the perspe
tive of o�-
entreobservers we refer e.g. to [BMN06, HMM97℄. Other useful reading on the LTB model might be[Gar06a, Bol05, INN02, Tom01℄.An arrangement of several LTB spheres within one model is 
alled an LTB Swiss-CheeseUniverse [Kan69℄ and therein inhomogeneity is realised lo
ally while the Swiss-Cheese remainsglobally homogeneous. As it is found by Biswas and Notari [BN07℄, the integrated e�e
t on lightpropagation in LTB Swiss-Cheese models � that is, the averaged e�e
t over several LTB pat
hesobserved from outside a pat
h � is small, and only within a lo
al setup � that is, within a singleLTB pat
h � the e�e
t on the photon paths 
an be large. Further re
ommended reading on theLTB Swiss-Cheese model 
omprises [MKMR07, BTT07a, BTT07b, KKN+07℄.If he LTB model is to be taken serious it should also be able to explain CMB data. This hasbeen tested for by Alnes and Amarzguioui for an o�-
entred observer in an LTB underdensity



1.3. AN INHOMOGENEOUS ALTERNATIVE? 37
r cosθ

r 
si

nθ

r cosθ

r 
si

nθ

					

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

Distance from origin [Mpc]

a 10

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5

Distance from origin [Mpc]

a 20

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

−6

Distance from origin [Mpc]

a 30
Figure 1.7. Main results from a qualitative CMB analysis of an LTB underdensitywith o�-
entre observer [AA06℄. Upper row: (r, θ)-geodesi
s (blue lines) within a
ertain LTB model as they 
onverge toward an observer that is displa
ed a little(left: d = 20Mp
), and a lot (right: d = 200Mp
) from the origin (red 
ross). Thered 
ir
les indi
ate equidistant shells that are, in terms of 
osmi
 time, 1Gyr apartrespe
tively. In 
ase of the very large displa
ement (right) one 
learly resolves thestrong distortion of geodesi
s. This distortion is due to a strong density gradientat the transition from LTB model to a homogeneous ba
kground. Lower row: fromleft to right, the CMB dipole, quadrupole and o
topole plotted as fun
tions of theobserver's distan
e to the LTB 
entre. Evidently, quadrupole and o
topole are severalorders of magnitude smaller than the dipole. An experimental bound for the dipoleis 10−3 whi
h immediately puts an upper limit of around 15Mp
 on the alloweddispla
ement of the observer. At su
h distan
es, the model then predi
ts a quadrupoleand o
topole that are far too small, namely of the orders 10−7 and 10−9 . Moreover,anisotropy indu
ed by su
h a displa
ement is per 
onstru
tion axially symmetri
 andthus must be subje
t to the general 
onstraints that we develop in part II. In prin
ipleit would be possible to 
ompensate a large dipole that is due to displa
ement with a
ontrary 
ontribution from Doppler velo
ity, but this movement toward the 
entre ofthe underdensity had to be put in just by hand. Pi
tures are taken from [AA06℄.[AA07℄. The authors �nd that, even though an LTB model is found that �ts well a sample of SNIadata and 
an reprodu
e the lo
ation of the �rst peak in the CMB power spe
trum, the in
lusionof SNIa data does not yield 
ompelling eviden
e for an LTB o�-
entre observation nor is it ableto tightly 
onstrain the degree of displa
ement with respe
t to the LTB 
entre. In [AA06℄ thesame authors apply an o�-
entre analysis on CMB data alone and �nd the important result, thatthe observed CMB dipole 
onstrains a potential o�-
entre displa
ement to be at most 15Mp
.Moreover it is found that, on
e the dipole is mat
hed to data, the quadrupole and o
topoleresulting from the displa
ement are too low to be in a

ordan
e with the observed multipoles,
.f. �g. 1.7. On the other hand, Sarkar and Hunt dis
uss distortions in the measured CMB powerspe
trum known as `glit
hes' [HS04℄. A non-standard primordial spe
trum is used, 
oming forma so-
alled multiple in�ation s
enario, to mimi
 the glit
hes and it is found that the LTB modelis su

essful in �tting the new CMB spe
trum as well as the found baryon os
illations in thegalaxy two-point 
orrelation fun
tion [
.f. app. D℄, and also SNIa data [HS07℄.



38 1. THE COSMOLOGICAL PROBLEM OF DARK ENERGYIshak and others have re
ently investigated the possibility to �t SNIa data in a more 
om-pli
ated model, the inhomogeneous Szekeres model [Sze75℄. This solution needs not to have anysymmetry and 
an therefore be used for instan
e for modelling of double or triple stru
tures.The advantage of the model lies in the fa
t that it is � like LTB � an exa
t solution from Gen-eral Relativity and therefore it is not ne
essary to 
onstrain the model to 
ases of small density
ontrast. The disadvantage is that the Szekeres model is very 
omplex due to the la
k of expli
itsymmetry. In turn, this makes the solution appear very interesting be
ause of its potential tomodel the true lumpy stru
ture of the Universe. In the 
oordinates used in [Bol07℄, the Szekeresmetri
 takes the form(1.84) ds2 = −dt2 +

(
Υ,r − ΥE,rE

−1
)2

(ε− k)
dr2 +

Υ2

E2

(
dp2 + dq2

)
,where Υ = Υ(r, t) , ε = 1, 0,−1 and the arbitrary fun
tion k = k(r) ≤ ε plays a similar role likethe energy fun
tion E in the LTB model. The arbitrary fun
tion E = E(r, p, q) is 
onstrainedby(1.85) E(r, p, q) =

1

2S

(
p2 + q2

)
− P

S
p− Q

S
q + C with C =

P

2S
+
Q2

2S
+
S

2
ε ,with S, P,Q and C being fun
tions of r only. The 
ase ε = 1 is a spe
ial one: it allows themodel to have the FRW 
urvature 
ases as 
an be seen from the metri
 (1.84). This 
hoi
e is
alled quasispheri
al Szekeres model and is physi
ally most interesting, for it is possible to havea homogeneous FRW limit at large distan
es from the origin. Now, Ishak et al. [IRWG07℄ havefound that the Szekeres model �ts SNIa data as good as the ΛCDM model, and moreover, thatthe found best-�t model yields spatial �atness at CMB-relevant s
ales.There is a tight 
oupling of the above listed work on inhomogeneous models and the issue of
osmologi
al ba
krea
tion. The ba
krea
tion � or averaging, or �tting � problem referres to thefa
t that, in general, the evolution of a homogeneous general relativisti
 model (like FRW) doesnot mat
h with the averaged evolution of an inhomogeneous model (like LTB). This is a pureGeneral Relativity problem, for the mentioned di�eren
e stems from the inherent non-linearity ofthe underlying theory. There are serious te
hni
al di�
ulties with the ba
krea
tion 
al
ulations,sin
e: (a) in the non-perturbative 
ase it is not 
lear in how far one 
an properly de�ne averagesof tensor quantities, albeit this seems to be under 
ontrol for s
alars; and (b) in the perturbative
ase the 
al
ulations be
ome arbitrarily tedious with higher orders. See [Bu
07℄ for a re
entoverview on non-perturbative as well as perturbative studies in ba
krea
tion. Nevertheless, seefor instan
e [Zal04, Zal93, Par07, Beh03℄ for approa
hes toward fully 
ovariant averaging.1.3.3. The Integrated Sa
hs-Wolfe E�e
t in LTB Models. Here, we develop thegeneral relativisti
 framework on whi
h the analysis of the large-s
ale CMB anomalies in thenext part of the thesis is based. Our aim is to model the e�e
t of a lo
al overdense stru
tureon the CMB sky. Taking an overdensity is well motivated by lo
al galaxy surveys that indi
atethe presen
e of very massive, non-linear stru
tures at distan
es of around 100Mp
; note thatthe motivation will be dis
ussed in more detail in part II. As was mentioned in se
. 1.3.2, theLTB model 
an des
ribe the 
ollapse of an overdensity or the formation of a void in an expand-ing universe. Moreover it has also been used to parametrise nearby inhomogeneous stru
ture[FSSB01, HTET01℄. In 
ontrast to voids, overdense stru
tures do not generally approximate aspheri
al shape, but we will use the LTB model as a �rst approximation to des
ribe the lo
alneighbourhood within approximately 100Mp
. Our pi
ture of the lo
al stru
ture is therefore aspheri
al density 
on
entration, with our Lo
al Group of galaxies falling toward the 
entre. Thesetup that shall be analysed here is that of a moderate LTB perturbation on a �at FRW ba
k-ground. Note that this is di�erent from models, like e.g. in [Mof05℄, in whi
h it is spe
ulatedthat the entire universe is spheri
ally symmetri
. Instead, we are 
onsidering the e�e
t of lo
alinhomogeneities that are known to exist, 
.f. �g. 1.5.The observational situation with regard to the Lo
al Group falling towards a density 
on-
entration, known as the Great Attra
tor, is somewhat un
lear [HSLB04, LRSH04℄. Moreover,
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ted infall towards us from 
lusters on the other side of the 
entre has not been 
on-�rmed. Apparently a model with two mass 
on
entrations provides a more satisfa
tory �t tothe data [Mas05℄. Here we will treat the overdensity as linear, so additional attra
tors 
ouldthen be taken into a

ount simply by adding their e�e
t on top of the one we �nd. However, itis evident that linearly adding a new sour
e of anisotropy will in general add multipole power,not redu
e it, whi
h will turn out to be a pe
uliar 
onstraint to su
h models.Tully points out that surveys of the lo
al pe
uliar velo
ity �eld give rise to a lo
al velo
ityanomaly [Tul88℄. The anomaly manifests itself as an unexplained dis
ontinuity in measuredpe
uliar velo
ities when going from obje
ts belonging to our lo
al �lament (Coma-S
ulptorCloud) to galaxies belonging to the adja
ent stru
ture (Leo Spur). The eva
uation of the so
alled lo
al void provides an important 
ontribution to our lo
al velo
ity �eld. The `observation'of the lo
al void is made di�
ult by the fa
t that most of it is hidden in the line of sight throughthe gala
ti
 dis
 of our Milky Way (Zone of Avoidan
e); and thus 
atalogues in
luding thatregion 
annot be made in the opti
al band. As further reading we strongly re
ommend [T+07℄and [Tul07℄.As we assume that the lo
al overdensity is moderate, it is possible to linearise aroundthe FRW model, to whi
h the LTB model should redu
e at large distan
es from the 
entre ofsymmetry. The transfer 
onditions are listed in (1.69). Assuming that the universe be spatially�at far away from the overdensity as well as Λ = 0 , we have R(t, r) = a(t)r and E = 0 , with
a being the FRW s
ale fa
tor. We use the standard normalisation a(t0) = 1 today. In order todo the perturbation theory we 
an introdu
e a perturbation fun
tion f(t, r) that parameterisessmall deviations from the FRW 
ase. It makes sense to de�ne the perturbation fun
tion as thedeviation of physi
al distan
es in the LTB and the FRW model:(1.86) f(t, r) ≡ R(t, r) −RFRW(t)

RFRW(t)
.The 
onstraint of smallness of perturbations 
an then be expressed by the requirements(1.87) |f(t, r)| ≪ 1 ,

f,t(t, r)

H
≪ 1 , |rf,r(t, r)| ≪ 1 ,and so the linearised LTB metri
 fun
tions take the form(1.88) R(t, r) = ar [1 + f(t, r)] and E(r) = (aHr)2

[
3f(t, r) + 2H−1f,t(t, r)

]
,where we obtained the se
ond equation from inserting the �rst equation into (1.47) and makingan ansatz m(r) ∝ r3 . A

ording to (1.48) the linearised density parameter be
omes(1.89) ρ(t, r) = ρF(t) [1 − 3f(t, r) − rf,r(t, r)] ,with ρF denoting the FRW density that s
ales as ρF ∝ a−3 . Inverting (1.89) we likewise obtainfor the perturbation fun
tion(1.90) f(t, r) = − 1

r3

∫ r

0

r′2δ(t, r′)E(r′)dr = −1

3
〈δ(t, r)〉r ,where δ ≡ (ρ − ρF)/ρF stands for the density 
ontrast and 〈δ〉r denotes its spatial average asmeasured from the symmetry 
entre up to r . Employing these results, the perturbed LTBmetri
 
an be written in terms of the 
onformal time dt = adη as(1.91) ds2 = a2(η)

[
−dη2 + (1 + 2f + 2rf,r − E)dr2 + (1 + 2f)r2dΩ2

]
,with the angular element dΩ2 ≡ dθ2 + sin2θdϕ2 .For an o�-
entre observer, CMB photons 
oming from di�erent dire
tions have travelleddi�erent routes through the lo
al overdensity, hen
e produ
ing additional anisotropy. Sin
e thee�e
t vanishes for an observer at the 
entre be
ause of the spheri
al symmetry, its amplitudedepends on the distan
e from the 
entre; more spe
i�
ally on the ratio ε ≡ r0/d, where d isthe distan
e to the surfa
e of last s
attering. The line from the observer to the 
entre de�nes apreferred dire
tion, so the situation be
omes axially symmetri
, and we 
an restri
t our attentionto the plane ϕ = 0. The geometry of the situation is sket
hed in �g. 1.8.
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ommonly used tool of the standard model is 
osmologi
al perturbation theory. Consid-ering linear perturbations around a spatially �at FRW model, the a

ording metri
 takes thegeneral form [MFB92℄
ds2 = a2(η) ×(1.92)
{
−(1 + 2Φ)dη2 + 2(B;i − Si)dx

idη + [(1 − 2Ψ)gij + 2E;i;j + Fi;j + Fj;i + hij ] dx
idxj

}with the potentials Φ, B, Ψ and E being the sour
es of s
alar perturbations and Si, Fi representve
tor perturbations that satisfy S ;i
i = 0 = F ;i

i . Furthermore, tensor perturbations (gravita-tional waves) are 
hara
terised by hij with h i
i = 0 = h ;j

ij . As long as only Latin indi
es areinvolved the semi
olon stands for 
ovariant di�erentiation with respe
t to the three-metri
 gij .Sin
e the LTB model has vanishing vorti
ity, as explained in se
. 1.3.1, we 
an set the ve
tormodes to zero Fi = 0 = Si . Moreover, the spheri
al symmetry together with the requirementthat perturbations do not diverge anywhere also rules out the tensor perturbations, so that
hij = 0 . Adopting spheri
al 
oordinates and 
omparing the remaining 
omponents of (1.91)with (1.92) enables us to solve for the metri
 fun
tions (up to integration 
onstants):

Φ(t, r) = 0 = B(t, r) , Ψ(r) = −1

2

∫ r

0

E(r′)

r′
dr′ ,(1.93)

E;i
;j(t, r) = δi

j

[

f(t, r) − 1

2

∫ r

0

E(r′)

r′
dr′
]

+ δi
rδjr

[

rf,r(t, r) −
1

2
E(r)

]

.(1.94)Note that the �rst identity in (1.93) is a result that is equivalent to the appli
ation of thesyn
hronous gauge, whi
h is justi�ed be
ause of the zero vorti
ity 
hara
teristi
 of the LTBmodel. In order to obtain a formula for the CMB anisotropy, we should further follow the analogyto 
osmologi
al perturbation theory. There exists a framework whi
h returns the temperatureanisotropies for general perturbations as 
hara
terised by (1.92) that we dis
uss next.A 
omplete general relativisti
 treatment that des
ribes the full evolution of CMB radiationundergoing e�e
ts of metri
 perturbations was �rst given by Sa
hs and Wolfe [SW67℄. Thehereafter named Sa
hs-Wolfe formula des
ribes the transfer of the e�e
ts of a three-dimensionalgravitational potential pattern on CMB photons to the two-dimensional temperature anisotropy�eld ∆T/T whi
h is, in the end, the observable today.Imagine Pob to be the position of an CMB observer today and let n be a unit ve
tor thatpoints from the observer's position to the last s
attering surfa
e. Further, let Pem denote theposition of the primeval photon emission. With Eob standing for the CMB photon energyre
eived by the observer and Eem being the initial energy of the CMB photon emitted at somelo
ation Pem , we are ready to formulate the ratio Eob/Eem as indu
ed by the Sa
hs-Wolfee�e
t. In the unperturbed 
ase one has the 
ommon result E(0)
ob /E

(0)
em = a(ηem)/a(ηob) ; forgeneral metri
 perturbations (1.92) the a

ording relation extends to [MS98℄(1.95) Eob

Eem
=
a(ηem)

a(ηob)

{

1 +
[
Φ + ni(vi +B;i − Si)

]
(Pob) −

[
Φ + ni(vi +B;i − Si)

]
(Pem)

−
∫ ηob

ηem

[

Φ,η − Ψ,η − 2niΦ;i + ninj(E,η − B);i;j + ninj(Si + Fi,η);j +
1

2
hij,ηn

inj

]

dη

}

,taken in the frame of the three-velo
ities. Negle
ting the ve
tor and tensor 
ontributions andemploying the syn
hronous gauge, Φ = 0 = B , the above relation simpli�es to(1.96) Eob

Eem
=
a(ηem)

a(ηob)

[

1 + nivi(Pob) − nivi(Pem) −
∫ ηob

ηem

(
−Ψ,η + ninjE;i;j,η

)
dη

]

.Therein vi denotes the respe
tive pe
uliar velo
ities that enter the setup; we will dis
uss thepe
uliar velo
ities in more detail below. The n dependen
e enters in Eob/Eem and is �xed bythe requirement that Pob denotes `here and now' whi
h is expressed as P0(η0,x0) , and hen
ewe everywhere repla
e Pem(ηem,xem) with Pls[ηls,x0−n(ηls−η0)] , where `ls' indi
ates emission
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attering. Note that ηls is �xed by the requirement that zls = 1088 . Sin
e the lasts
attering surfa
e is a surfa
e of 
onstant radiation energy density, the density 
ontrast of thephoton �uid 
omponent δγ obeys the s
aling [MS98℄(1.97) a(ηem) ≃ a(ηls) +
1

4
δγ(n) a(ηls) ,and we further assume a foliation su
h that, as seen from the hypersurfa
e of the observer, thebaryoni
 energy density is 
onstant, leading to the following s
aling of the density 
ontrast ofbaryons(1.98) a(ηob) ≃ a(η0) −

1

3
δb(P0)a(η0) .Thus we 
an insert into the Sa
hs-Wolfe formula (1.96) and have

E0

Els
=
a(ηls)

a(η0)
×(1.99)

×
[

1 +
1

4
δγ(n) − 1

3
δb(P0) + nivi(P0) − nivi(Pls) −

∫ η0

ηls

(
−Ψ,η + ninjE;i;j,η

)
dη

]

.This is readily rewritten in terms of the temperature anisotropy:(1.100) ∆T

T
(P0) =

∆T

T
(Pls) + nivi(P0) − nivi(Pls) −

∫ η0

ηls

ninjE;i;j,ηdη ,note that the Ψ term vanishes be
ause it is a fun
tion of only r (1.93). It has to be takeninto a

ount that the overdensity is lo
al, that is its e�e
ts vanish at the surfa
e of emission;moreover, we transform ba
k to 
osmi
 time and thus �nally obtain for the Sa
hs-Wolfe term(1.101) ∆T

T
(P0) = nivi(P0) −

∫ t0

tls

ninjE;i;j,tdt .The integral is over the CMB photon path along the line of sight to the last s
attering surfa
e(i.e. rays of 
onstant θ̃ in �g. 1.8). The dire
tional dependen
e is due to the unit ve
tor ni whi
hpoints from the observer to the emission surfa
e and hen
e quanti�es anisotropy deviations.Therefore we should next 
onsider the geometry of the model setup in more detail.The geometri
 situation of our LTB model is shown in �g. 1.8. There are two relevant setsof unit ve
tors, those denoted with n are pointing from the lo
ation of the observer towards thelast s
attering surfa
e, whereas the ve
tors e de�ne the 
oordinate system and have their originat the 
entre of the LTB overdensity. From �g. 1.8 we read o� that ∆θ = θ̃ − θ ; applying thelaw of 
osines gives(1.102) r2L = d2

[

sin2 θ̃ +
(r0
d

+ cosθ̃
)2
]

.Our aim is to 
ompute the 
omponents of n , thus we 
an start with e.g. n · er = cos∆θ . Inorder to 
ompute cos∆θ we 
an use the proje
tion law for in
lined triangles and get, 
.f. �g. 1.8
d = rL cos∆θ + r0 cos(π − θ̃) ,

cos∆θ = − r0
rL

cos(π − θ̃) +
d

rL
=

ε cosθ̃ + 1
√

sin2 θ̃ + (ε+ cosθ̃)2
= n · er .(1.103)Re
all the de�nition of the ratio ε ≡ r0/d . We 
an utilise the fa
t that n = n1er + n2eθ + 0and thus obtain the remaining 
omponent of n(1.104) ni = (nr, nθ, nϕ) = (1 + 2ε cos θ̃ + ε2)−1/2 ( 1 + ε cos θ̃, r−1ε sin θ̃, 0 ) .Obviously θ̃ � the angle in the observer-
entred system � is the relevant angle for the CMB. Thereis no dependen
e on ϕ̃ due to the axial symmetry. Before we pro
eed and �nally insert these�ndings into the Sa
hs-Wolfe formula (1.101), we will dis
uss an appropriate general relativisti
treatment of the o

urring pe
uliar velo
ities.
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θFigure 1.8. S
hemati
 depi
tion of the LTB overdensity and its relation to thesurfa
e of last s
attering. Here d is the distan
e between us and the last s
atteringsurfa
e, r0 is the distan
e between our lo
ation and the 
entre of the overdensity and
rL is the distan
e from the LTB 
entre to the emission surfa
e. The unit ve
tors ofthe 
oordinate system ei point from the 
entre of the overdensity, the unit ve
tors nipoint from our position to the LSS. Note that the �gure lies in the x-z plane.Regarding the pe
uliar velo
ity, there are three main 
omponents 
ontributing to the ob-server's motion: the overall expansion, the radial infall velo
ity due to the spheri
al overdensityand random motion asso
iated with smaller stru
tures. In the 
omoving 
oordinate system(1.46), the �uid velo
ity equals the ba
kground velo
ity uµ = δµ

0, so that the vi appearing inthe temperature anisotropy (1.101) pi
k up a 
ontribution only from the random 
omponent.This is due to 
oordinate artefa
ts and, as is emphasised in [HPLN02, HN99℄, the individualterms in the temperature anisotropy are di�
ult to identify by physi
al means.By de�nition, the pe
uliar velo
ity is the extra motion on top of the overall expansion of theUniverse. In the present 
ontext the solution is exa
t, so in order to �nd the pe
uliar velo
ity weshall follow an unambiguous pro
edure presented in [Maa98, EvEM01℄: we 
onstru
t a physi
alfour-velo
ity su
h that the 
orresponding �ow is shear-free, and obtain the pe
uliar velo
ity asthe di�eren
e between the 
omoving four-velo
ity and this (physi
al) shear-free �ow. We startwith the 
omoving four-velo
ity uµ = δµ
0 and the 
orresponding non-zero shear(1.105) σµν = u〈µ;ν〉 with B〈µν〉 =

(

qα
(µq

β
ν) −

1

3
qαβqµν

)

Bαβ ,where the last equation de�nes the operation 〈·〉 of taking the spatially proje
ted, symmetri
and tra
eless part of some tensor Bαβ with the help of the a

ording spatial proje
tion tensor
qµν ≡ gµν + uµuν . Working to linear order in vµ , we now de�ne a new velo
ity ũµ su
h that(1.106) uµ = ũµ + vµ , ũµvµ = 0 , σ̃µν = 0 .Now we introdu
e the pe
uliar velo
ity vµ and by σ̃µν we denote the shear asso
iated with ũµ ,(1.107) σ̃µν = σµν − v〈µ;ν〉 = 0 .Given (1.105) and the linearly perturbed LTB metri
 (1.91) we 
an solve (1.107) for the pe
uliarvelo
ity and obtain(1.108) vµ = δµ

r rf,t ,
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αvβ = a2f2

,tr
2 and the 
orresponding, properly normalised spatial pe
uliarvelo
ity ve
tor be
omes(1.109) vi = δi

r arf,t .This �nding is in a

ordan
e with the naive de�nition vr = R,t−HR , whereH is the ba
kgroundHubble parameter; note that using the physi
al expansion rate 1
3θ = 1

3u
α
α instead of H wouldyield a di�erent result. As 
an be read o� from �g. 1.8, the observer is lo
ated on the z-axis, thusgiving n ·v(P0) = n ·ezv

r(P0) = arf,t cos θ̃ . Finally, we 
an write the Sa
hs-Wolfe 
ontributionof the linear LTB model as
∆T

T
(θ̃, ϕ̃) = r0f0,t cosθ̃ − f0 − r0f0,r

(1 + ε cosθ̃)2

1 + 2ε cosθ̃ + ε2

≃ −
[

f0 +

(

1 − 2

3
ε2
)

r0f0,r

]

+

(

r0f0,t −
4

5
ε3r0f0,r

)

P1(cosθ̃) − 2

3
ε2r0f0,rP2(cosθ̃)

+
4

5
ε3r0f0,rP3(cosθ̃) + · · · ,(1.110)and where we have expanded the temperature anisotropy in terms of the Legendre polynomials

Pℓ , as is 
onvenient for CMB analysis. Therein f0 stands for the perturbation fun
tion asmeasured today f0 ≡ f(t0, r0) at our position as the o�-
entre observers in the LTB pi
ture.The power series stru
ture in the parameter ε re�e
ts the fa
t that here the anisotropy is dueto the observer's deviation from the 
entre, and thus the amplitude of multipoles s
ales as εℓ .In prin
iple it is possible to obtain the perturbation fun
tion f from a �t to observationdata. This 
an be done by extending the general relativisti
 analysis of the pe
uliar velo
ity(1.109) in order to take into a

ount also the e�e
ts of overall 
osmi
 expansion as well as radialLTB infall. This 
an be taken 
are of by using a 
ommon phenomenologi
al parametrisation ofthe lo
al pe
uliar velo
ity �eld as measured today, see e.g. [Pan92, HSLB04℄(1.111) vi = δi
rv0

r

r0

(
r20 + c2r20
r2 + c2r20

)n+1
2

,where r0 is again the distan
e from observer to the 
entre of the overdensity, v0 stands for theinfall velo
ity at the position of the observer, cr0 parameterises the 
ore size of the stru
ture(the velo
ity peaks at cr0/n1/2), and the exponent n determines how fast the velo
ity �eld fallso� with in
reasing r. Then the perturbation fun
tion f(t, r) 
an be parametrised by means ofthe lo
al velo
ity �eld using (1.109) and this 
an be inserted into the Sa
hs-Wolfe formula.Now we 
an try to estimate the multipole's amplitudes from the Sa
hs-Wolfe expansion(1.110) as due to some very massive stru
ture in our 
osmi
 neighbourhood. After estimating
f,t ≃ Hf � whi
h is exa
t with a vanishing 
osmologi
al 
onstant � we then get f ≃ v/(arH) .As we read o� from equation (1.110), the quadrupole and the higher multipoles are proportionalto the term rf,r . Be
ause of (1.89) we 
an write rf,r = 〈δ〉r − δ and thus arrive at rf,r =
−3f − δ ≃ 3v/(arH) − δ . The magnitude of the quadrupole is ε2rf,r . Let the observer bepla
ed at r0 = 60Mp
 from the origin, yielding ǫ ≃ 10−2 , and further assume an infall velo
ityof around 500km/s [KME04℄, we end up with (0.25 − δ) × 10−4 for the quadrupole. With
δ = 0.1 the 
ontribution to the quadrupole is of the same order as the intrinsi
 anisotropies,
10−5 . The 
ontribution to the o
topole is −6ǫ/5 times the one to the quadrupole, and thereforewe 
annot get a signi�
ant 
ontribution to the o
topole (or higher multipoles). The reasonwhy our numeri
al estimate fails is rather simple: the Sa
hs-Wolfe theory that we developed islinear, but in order to go for a signi�
ant CMB e�e
t we are for
ed to to apply it to highly non-linear stru
tures. One 
an see this also from the following argument. Remember the linearity
onditions (1.87) and espe
ially the time evolution 
onstraint f,t/H ≪ 1 . Now, from thede�nition of the perturbation fun
tion (1.86) we 
an readily see that, for an obje
t like the hereassumed super
luster � for instan
e the Great Attra
tor �, R is nearly 
onstant, whereas RFRWevolves at the time s
ale of the Hubble rate. This implies then an f,t/H of order unity.
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ause the linearised Sa
hs-Wolfe 
al
ulation in our model is too naïve, we will, insteadof �tting the model parameters to a lo
al velo
ity input and trying to predi
t the temperatureanisotropy, rather be interested in the general stru
ture of the obtained solution (1.110). Wewill keep the 
oe�
ients in the multipole expansion open as free parameters of the parti
ularLTB model and are going to use them in a statisti
al multipole analysis with regard to theex
ellent CMB data available. This and similar analyses are the subje
t of part II of thiswork. Summarising, let us note the main 
hara
teristi
 of the Sa
hs-Wolfe result (1.110): thetemperature anisotropies due to the LTB perturbation only 
ontribute to the m = 0 
omponentsof the multipole expansion as a 
onsequen
e of the axial symmetry of the lo
al model. In turn,any other axially symmetri
 stru
ture, like e.g. a planar density �eld, would also be per
eptibleonly within the m = 0 modes. Moreover, in the standard model the dipole is hidden in a strongsignal due to pe
uliar motion with respe
t to the CMB rest frame and the quadrupole is (upto a small kineti
 
orre
tion) of 
osmologi
al origin. In the LTB model a natural 
orrelationbetween dipole and quadrupole arises, for they both originate from the same physi
al e�e
t,thus making quadrupole-dipole alignment potentially explainable.



CHAPTER 2The Cosmologi
al Problem of Dark MatterDiverse physi
al observations support the postulation of an additional matter 
omponent,non-luminous and only intera
ting through gravity. The e�e
ts a

ording to whi
h Dark Mattermight be postulated, manifest themselves on multiple physi
al s
ales. From the pre
ise mea-surement of the �rst a
ousti
 peaks in the CMB power spe
trum, a s
ale of up to one degree onthe mi
rowave sky (zdec = 1088) 
an be a

essed. Interpreting the WMAP data within ΛCDM,it is well known that the universe appears to be spatially �at (Ωk ≃ 0) and that the matter andDark Energy density form the 
osmi
 
on
ordan
e: Ωm ≃ 0.24 and ΩΛ ≃ 0.76 , 
.f. se
. 1.2.1.At the same time the fra
tion of the matter density due to baryons as inferred from primor-dial nu
leosynthesis and the deuterium abundan
e from Lyman-α systems is in good a

ordan
ewith the value of Ωb ≃ 0.04 obtained from WMAP; see e.g. [PRFJ07℄, [WMAa℄. It is notewor-thy to say that these results, besides their model and prior dependen
ies, parti
ularly dependon the value of the Hubble 
onstant as measured today. Counting sour
es within `low' redshifts(z < 2) yields a luminous baryon density that is only [NEFM05℄ ∼ 50% of the 
osmologi
allyinferred value above. In the literature this is referred to as the `missing baryon problem'. Thuswe en
ounter a twofold problem when trying to 
ombine 
osmi
 matter yields on di�erent s
ales.First, the matter needed to 
lose the universe obviously 
annot be in form of baryons as theinferred value for baryons from di�erent methods is one order of magnitude to small. Se
ond,the upper limit for the density parameter from luminous matter as inferred from all-sky surveysreveals that at least 50% of the baryoni
 matter must also be dark.Being in a somewhat more dire
t form, there is more eviden
e for Dark Matter espe
iallyon smaller s
ales. This we want to review in the next two se
tions and parti
ular emphasis willbe given to the gala
ti
 rotation 
urves. Her
ulean e�orts are being made in order to �nd anexplanation for the aforementioned Dark Matter problem(s). These range from modi�
ationsof the Einsteinian, and therewith of Newtonian gravity to extensions of the standard model ofparti
le physi
s that involve new, yet undete
ted parti
les that 
ould do the job. However, itis important to stress that there is no a priori reason to believe that all of the missing matterproblems on all of the di�erent physi
al s
ales do have a 
ommon explanation.2.1. Dire
t Eviden
e and LensingA powerful tool for attempts of 
ataloguing the matter distribution of large-s
ale stru
turesor intermediate-s
ale stru
tures in the universe is provided by the prin
iple of gravitationallensing. The fa
t that the gravitational de�e
tion of light only depends on the e�e
tive gravita-tional �elds deployed by the lens, and not on the parti
ular state of the lensing matter, makesthe method universal.The phenomena of gravitational lensing split naturally into two 
lasses: (A) strong lensing,involving rather pronoun
ed e�e
ts like the formation of ar
s, Einstein rings or multiple imagesof a single sour
e as well as time delays � see for instan
e �g. 1.1; (B) weak lensing, not observableby eye sin
e it is a statisti
al e�e
t involving a large number of ba
kground sour
es that appeardistorted due to large-s
ale foreground tidal �elds.In the following we shall dis
uss shortly the two di�erent bran
hes of gravitational lensingand then give examples of strong re
ent eviden
e for Dark Matter, where the results of weakand strong lensing are going hand in hand. 45
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Figure 2.1. Geometry of strong (left) and weak (right) gravitational lensing. Left:without luminous and/or Dark Matter in the lens plane an observer sees the sour
eunder an angle β; the presen
e of lensing matter 
hanges that dire
tion to α̂. Right:physi
al interpretation of the shear γi and ellipti
ity χ and ǫ. The ellipti
ities ǫ1,2in the �gure 
orrespond to the notation χ,ǫ in the text. The shear 
omponent γ1 isresponsible for elongation (
ompression) along the x-axis, whereas γ2 
auses the same,just along the x = y axis. Per de�nition, an obje
t with vanishing ellipti
ity is 
ir
ular(
entre). The 
omponents of ellipti
ity χ and ǫ, de�ned with the help of the se
ondbrightness moments tensor, 
ause 
ompressions and elongations similar to those forthe shear 
omponents. Pi
tures are taken from [S
h03℄ and [Ref03℄.2.1.1. Strong Gravitational Lensing. Following [S
h03℄ and [S
h06℄, we review 
on-
isely the strong lensing framework without deriving the equations. Utilising the S
hwarzs
hildsolution, the Einstein angle for a de�e
tion o� the exterior of a spheri
ally symmetri
 mass Mreads(2.1) α̂ =
2RS

ξ
=

4GM

c2ξ
,where 2RS is the S
hwarzs
hild diameter and ξ is the impa
t parameter of the light ray measuredin the plane of the lens, 
f. �g. 2.1. This formula for `point mass' de�e
tion is valid in the weak�eld limit RS/ξ ≪ 1, or equivalently φ/c2 ≪ 1 for the Newtonian gravitational potential.In this limit, the lensing e�e
ts 
an be linearised, that is the (two-dimensional) Einsteinangle of a 
omplex lens 
an be superimposed from the de�e
tion angles of the individual de-�e
tors: α̂ =

∑

i α̂i . Within the Born approximation it is moreover assumed that the `lens isgeometri
ally thin', that is the distan
es between sour
e, de�e
tor and observer are mu
h largerthan the extent of the lensing system. This assumption is well satis�ed for typi
al astrophysi
allenses like galaxies or galaxy 
lusters but is not ful�lled in the 
ase of lensing by the large-s
alestru
ture. For 
omposed `thin lenses' the de�e
tion angle be
omes(2.2) α̂(ξ) =
4G

c2

∫

d2ξ′
∫

dr′ρ(ξ, r′)
ξ − ξ

′

|ξ − ξ′|2 =
4G

c2

∫

d2ξ′ Σ(ξ′)
ξ − ξ

′

|ξ − ξ′|2 .The Einstein angle only depends on the surfa
e mass density Σ(ξ′) whi
h is the volume densityafter integrating out the line of sight dependen
e Σ(ξ′) ≡
∫

dr3ρ(ξ, r3) . As a rule of thumb,
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al magnitudes of de�e
tions for galaxies are α̂ . 1′′ and α̂ . 30′′ for galaxy 
lusters. Foran illustrative example of ar
s, see �g. 1.1.Looking at �g. 2.1, we see that η = Dsβ and ξ = Ddθ , and the lens equation 
an be writtenas:(2.3) β = θ − Dds

Ds
α̂(Ddθ) ≡ θ − α(θ) ,with α(θ) denoting the s
aled de�e
tion angle. Note that (2.3) in general 
an have more thanone solution 
orresponding to multiple imaging of the sour
e. The dimensionless surfa
e massdensity is de�ned by(2.4) κ(θ) ≡ Σ(Ddθ)

Σcrit
, Σcrit ≡

c2

4πG

Ds

DdDds
≃ 0.35

(
DdDds

Ds 1Gpc

)−1

g cm−2 .The quantity κ(θ) is also referred to as the 
onvergen
e. The 
onvergen
e may be used to inferthe strength of a gravitational lens; with κ ∼ 1 we 
hara
terise strong lensing and by κ≪ 1 theweak lensing regime is en
ountered.The simplest models for gravitational lenses show axial symmetry, i.e. Σ(ξ) = Σ(ξ) with
ξ = |ξ| being the distan
e to the 
entre of the lens. Even without detailed modelling of massdistributions it is possible to obtain a robust mass estimate for strong lensing. Be
ause the meansurfa
e mass density inside the Einstein radius θE just equals the 
riti
al surfa
e mass densityof the lens, it is(2.5) M(θE) = πΣcrit(DdθE)2 .Analysing a pi
ture of gravitational lensing that shows multiple images, the Einstein radius θE
an be estimated from the radius of the 
ir
le that is tra
ed by the di�erent images. The moreaxisymmetri
 the lens system is, the better the estimate (2.5) be
omes.A 
ommon isotropi
 galaxy model is that of a singular isothermal sphere (SIS), 
.f. [BT94℄.The density pro�le is given by: ρ(r) = σ2

v/2πGr
2 , with σv being the one-dimensional velo
itydispersion of stars in su
h a potential. Note that this model is very 
rude and 
an only beapplied in a 
ertain range of radii r: for small r the density diverges as r−2 and for large rthe mass M(r) diverges proportional to r. By integration the surfa
e mass density is obtained:

Σ(ξ) = σ2
v/2Gξ . Finally, we arrive at a 
hara
teristi
 equation for the de�e
tion angle of agalaxy-like SIS obje
t:(2.6) θE = 4π

(σv

c

)2
(
Dds

Ds

)

≃ 1′′.15

(
σv

200 km/s

)2(
Dds

Ds

)

.Sin
e the separation of images is ∆θ = 2θE , massive ellipti
al galaxies 
an generate separationsof up to ∼ 3′′ and lighter ones as well as spiral galaxies rea
h ∼ 1′′.Regarding 
lusters of galaxies the most simple approximative lens model is again providedby the SIS ansatz. The 
hara
teristi
 s
ale is also given by the a

ording Einstein angle(2.7) θE ≃ 28′′.8

(
σv

1000 km/s

)2(
Dds

Ds

)

.The analyses of galaxies and of 
lusters of galaxies with the help of strong gravitationallensing show that the masses of these lenses 
annot be provided by the observable luminousmatter from stars and intergala
ti
 dust only. These �ndings strongly suggest that galaxies andgalaxy 
lusters are dominated by Dark Matter.2.1.2. Weak Gravitational Lensing. While the e�e
ts of strong gravitational lensingare rather strong and resolvable by eye, the e�e
ts of weak lensing 
an only be dete
ted in astatisti
al sense. Due to weak lensing by dark and luminous matter in the line of sight, smalldistortions to the shape and orientation of ba
kground galaxies should always be present indeep astronomi
al images. Assuming that the intrinsi
 orientations (ellipti
ities) of the lensed
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kground galaxies are random, it is possible to re
onstru
t a map of the lensing matter inbetween by statisti
ally analysing the ellipti
ities of an ensemble of ba
kground galaxies.Following [S
h03℄, shape distortions are enfolded in the proper mapping of the lens from theplane of the sour
e to the plane of the lens by the a

ording Ja
obi matrix(2.8) A(θ) ≡ ∂β

∂θ
= (1 − κ)

(
1 − g1 −g2
−g2 1 + g1

)

.Therein the 
ru
ial quantity is the shear γ = γ1 + iγ2, or similarly the redu
ed shear g = g1 + ig2with gi = γi/(1 − κ). The physi
al meaning of shear and 
onvergen
e κ is depi
ted in �g. 2.1.The mentioned mapping that des
ribes the shape distortions of distant sour
es is des
ribed bythe lo
ally linearised lens equation(2.9) β − β0 = A(θ0) · (θ − θ0) ,with θ0 being the 
entre of image and β0 ≡ β(θ0) . The next step is to formally de�ne what ismeant by the notion of ellipti
ity for arbitrary faint sour
es. Sin
e the least ba
kground sour
esare intrinsi
ally round, their observed ellipti
ity with a teles
ope will be an admixture of weaklensing indu
ed shear and some initial ellipti
ity. In order to formally de�ne a morphology ofgalaxies, one utilises the se
ond brightness moments, whi
h are 
omponents of a se
ond-ranktensor that is de�ned upon the brightness distribution I(θ) of the image. For 
on
iseness wedo not give the expli
it expressions here, the full formalism is expli
itly developed for examplein [S
h03℄. The important point is that from the se
ond brightness moments, two 
omplexellipti
ities χ and ǫ of the lensed sour
e 
an be derived. Analogously, the ellipti
ities χ(s) and ǫ(s)
an be 
omputed from the a

ording se
ond brightness moments of the unlensed sour
e. Withinthe standard model we make the assumption that the intrinsi
 orientations of the ba
kgroundgalaxies are 
ompletely random, that is their expe
tation values vanish:(2.10) E[χ(s)] = 0 = E[ǫ(s)] .As a 
onsequen
e one gets for the expe
tation value of ǫ after averaging(2.11) E[ǫ] =

{
g for |g| ≤ 1

1/g∗ for |g| > 1
.This means that a measurement of image ellipti
ities dire
tly yields an unbiased estimate ofthe lo
al shear. But the estimate su�ers from high noise due to the dispersion of the intrinsi
ellipti
ities. Therefore obtaining a large enough ensemble of sour
es is 
ru
ial for su
h a shearmeasurement. Fortunately, this is realisti
 and viable: e.g. the Hubble Ultra Deep Field [HST℄shows a very deep image of the sky, only 3′ × 3′ in area, 
ontaining an impressive total numberof 104 faint galaxies.By the statisti
al e�e
t of weak lensing it is possible to measure the 
oherent distortions offaint ba
kground ellipti
ities. The observed distortions will preferably stret
h the sour
e imagesin dire
tions tangential with respe
t to the 
entre of lensing matter. Be
ause the ellipti
ity thatis indu
ed by weak lensing is generi
ally at most of the order of the initial ellipti
ity a highstatisti
s is required for dete
tion. Above it is dis
ussed how a measurement of ellipti
ities 
anbe used to get the redu
ed shear (2.11); but how does this translate into a matter distributionof the lensing matter in whi
h we are �nally interested? The 
onvergen
e κ quanti�es thein
rease in size of a ba
kground galaxy, independent of its shape. Within Newtonian theory the
onvergen
e plays the role of a sour
e in the two-dimensional Poisson equation(2.12) ∆(2)Ψ(θ) = 2κ(θ) ,where the de�e
tion potential Ψ(θ) denotes the two-dimensional 
ounterpart of the Newtonianpotential. Thus, in Newtonian theory the 
onvergen
e κ is proportional to the surfa
e massdensity of the gravitating lens, and hen
e produ
ing a 
ontour map of κ from the measuredshear will tra
e the e�e
tive two-dimensional matter distribution. In fa
t, it is(2.13) ∇ ln(1 − κ) =

−1

1 − g2
1 − g2

2

(
1 − g1 −g2
−g2 1 + g1

)(
∂g1/∂θ1 + ∂g2/∂θ2
∂g2/∂θ1 − ∂g1/∂θ2

)

.
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an be integrated upon the two-dimensional data �eld and yield the �nal
onvergen
e map. Going a step further, in non-Newtonian gravity theories the 
onvergen
eis not in a linear relation to the surfa
e mass density anymore. However, even though withinsu
h theories an obtained κ map 
annot be dire
tly translated into a map of the two-dimensionalmatter distribution, the lo
ation of κ peaks will still 
orrespond to the peak-values of the e�e
tivesurfa
e mass density, 
.f. [C+06a℄. This result is 
ru
ial for the dis
ussion in the next subse
tion.The 
on
ept of weak gravitational lensing will also be used for tomography of the larges
ale stru
ture of the universe. This is a non-trivial task; there does not exist a single lensplane anymore but the 
omplete inhomogeneous three-dimensional and very extended matterstru
ture in the line of sight 
an be made responsible for distortions of faint sour
es. However,the method opens up a new window on a wide range of global 
osmologi
al parameters whi
hwill be a

essible through 
ompletely di�erent systemati
s and in a mu
h lower redshift regimethan through CMB measurements.

Figure 2.2. The `bullet 
luster', 3.4 billion light-years away, in opti
al (left) andX-ray (right) light. Left: on top of the opti
al image taken by the Magellan teles
opethe peaks in surfa
e mass density κ [
.f. (2.13)℄ as re
onstru
ted from weak lensingare shown (green 
ontours). White 
ontours quantify the error within the position of
κ peaks: 68.3%,95.5% and 99.7% C.L. The white bar measures a distan
e of 200Mp
in the 
luster plane. Right: an X-ray image taken by the Chandra spa
e teles
ope,together with the same weak lensing re
onstru
tion of matter density. Pi
tures aretaken from [C+06a℄.2.1.3. Re
ent Dire
t Eviden
e. Usually, lensing eviden
e for Dark Matter is providedby the ne
essity of ex
ess gravitational potential on top of the baryoni
 one, in order to explainthe observed phenomena. For isolated and relaxed systems, the 
entre of the Dark Matterpotential 
oin
ides with the 
entre of the gravitational potential indu
ed by the luminous matter;the luminous matter is believed to tra
e the (stronger) Dark Matter potential. Observing a
onstellation of matter, where the dark and luminous 
entres of mass are spatially separated,would provide eideti
 and weighty eviden
e for Dark Matter on the s
ale observed. Su
h anobservation would seriously 
hallenge theories that invoke no Dark Matter but modi�
ations ofNewton or Einstein gravity.Interestingly, a snapshot of the above mentioned situation might re
ently have been made[C+06a℄. The obje
t 1E0657-558 is a high-energy merger of two galaxy 
lusters at z = 0.296. Inthe 
ourse of the 
ollision, the 
onstituents of the 
lusters, the galaxies, behave like 
ollisionlessparti
les but in addition the system is interfused with intra
luster relativisti
 plasma. Thisplasma behaves not 
ollisionless at all, but undergoes massive ram pressure and this 
an beobserved in the X-ray band. Due to the shape of the high energeti
 tail of one of the 
lusters(see �g. 2.2) the system was dubbed `bullet 
luster'. The 
entral regions of the two 
lusters
oin
ided approximately 100 Myr ago but today the velo
ity of the 
lusters relative to ea
hother is still ∼ 4700 km/s.
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ollisionless stars, the hot intra
luster gas represents the dominant part ofbaryoni
 matter within the 
lusters. Therefore, if Dark Matter was not present in the 
luster, the
entre of mass of the X-ray luminous hot gas should tra
e the mass density of the whole system,as inferred e.g. by lensing methods. This is not in a

ordan
e with the physi
al observations as
an be 
learly seen from �g. 2.2. Imaging with opti
al teles
opes has been used to determine amap of the surfa
e mass density (2.13) with the help of weak gravitational lensing. At the sametime images from the Chandra X-ray teles
ope have been made from exa
tly the same region ofsky, showing the distribution of the hot gas only. Superimposing the images (�g. 2.2) shows thatthe peaks in matter density have moved in advan
e of the X-ray plasma whi
h was de
eleratedby ram pressure. The displa
ement 
learly indi
ates the presen
e of some form of Dark Matterwhi
h does not behave like a �uid. Constraints on the e�e
tive 
ross se
tion of self-intera
tionof the Dark Matter 
an be dire
tly obtained from this data [M+04℄. Sin
e the κ method onlymeasures a two-dimensional distribution a loophole remains: in prin
iple, it is thinkable that yetunidenti�ed sour
es along the line of sight 
orrespond to the density peaks that are dete
ted.Nevertheless, the authors [C+06a℄ 
onstrain the redshift interval wherein lensing sour
es 
ould
ontribute to 0.18 . z . 0.39 . It is noteworthy to say that the data �eld of the bullet 
lusterallows for a 
ombined analysis of weak and strong lensing methods, see [B+06b℄.MOdi�ed Newtonian Dynami
s (MOND) as invoked by Milgrom [Mil83℄ is based on theidea that the 
lassi
al Newton for
e law is experimentally well tested only within Solar Systems
ales, and hen
e 
ould be modi�ed for large s
ales. The TeVeS theory by Bekenstein [Bek04℄
omes to the same result in the weak �eld limit, but modi�es gravity already at the level ofEinstein theory by adding new ve
tor and s
alar degrees of freedom. By the observations of thebullet 
luster the simplest of su
h models 
an be ruled out. However, more 
ompli
ated versionsof modi�ed gravity 
ould still be in a

ordan
e with the data, see e.g. [AFZ06℄ or [BM07℄.Re
ently, a similarly impressive snapshot of Dark Matter was made using the Hubble Spa
eTeles
ope (HST). The ri
h 
luster of galaxies CL 0024+17 at z = 0.4 shows a ringlike stru
tureof Dark Matter, obtained using 
ombined strong and weak lensing methods [J+07b℄. Fig. 2.3shows the re
onstru
tion of the ring of Dark Matter. The stru
ture is thought to be the resultof a high-speed 
ollision similar to 1E0657-558, in this 
ase o

urring along the line of sight.

Figure 2.3. A ringlike stru
ture of Dark Matter in the ri
h 
luster CL 0024+17.Left: a re
onstru
tion from lensing data of the Dark Matter ring is superimposed indi�use blue upon an opti
al HST image. The size of the ring is ∼ 75′′ or approximately�ve million light-years. The ring probably originates from a massive galaxy 
luster
ollision along the line of sight around 1-2 Gyr ago. Right: distribution of Dark Matterre
onstru
ted from the CL 0024+17 image. A simulation of the 
onsequen
es ofgravitational lensing by the Dark Matter on orthogonal graph paper in the ba
kgroundis shown. Pi
tures are taken from [HST℄ and [LSS℄.
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al Eviden
e from Dynami
sHistori
ally, the �rst indi
ations of Dark Matter have been observed on the s
ale of galaxiesand galaxy 
lusters. In 1933 Fritz Zwi
ky analysed dynami
al data from the Coma Cluster[Zwi33℄. He found several galaxies with individual velo
ities that ex
eed the mean 
luster ve-lo
ities by far. His interpretation was that these velo
ities provide a measure of the kineti
energy per unit mass in the 
luster. After estimating the radius of the 
luster he 
ould 
omputethe total mass of the 
luster with the help of the virial theorem. Zwi
ky then independentlyestimated the mass of the 
luster by 
ounting the galaxies and using the total brightness of thegalaxy 
luster and found a dis
repan
y by a fa
tor of 400. The observed velo
ities of galaxieswere far too high to be bound solely by the luminous matter present. The 
onsequen
e was thatlarge, yet undete
ted amounts of matter had to be present in the Coma Cluster. Zwi
ky wasthe �rst to note this. His estimates were rather 
rude, but the subsequent analyses of 
lustersof galaxies and also of gala
ti
 systems themselves widely 
on�rm his �ndings.2.2.1. Eviden
e on Gala
ti
 S
ales. We should begin with our galaxy, the Milky Way.Using the 21
m emission line of hydrogen HI, it is no problem to look through the interstellargas in the dire
tion of the 
entre of the Milky Way. Similarly, one makes use of the emissionof the 12CO gas that is present in the gala
ti
 dis
. With these methods it is a straightforwardmeasurement to obtain the 
ir
ular velo
ities of obje
ts that lie within the solar radius of Rsun ≃
8 kp
 using the Doppler e�e
t. Note that our lo
al standard of rest, the sun, is moving with avelo
ity of vsun ≃ 200 km/s around the gala
ti
 
entre. The result of the rotation measurementis shown in �g. 2.4. As 
an be seen 
learly, the rotation 
urve shows no pronoun
ed de
rease ofvelo
ity for large radii. But the error bars are large in that region.

Figure 2.4. The rotation 
urve of the Milky Way. Observations make use of HI and
12CO emission lines and are obtained from dire
t Doppler measurements of obje
tsthat lie within the solar orbit Rsun ≃ 8 kp
 around the gala
ti
 
entre. Orbits thathave radii larger than that 
annot be looked on tangentially; therefore additionaldistan
e yields are needed, leading to huge error bars in the outer regions of the
urve. Pi
ture is taken from [Cle85℄.Rotation 
urve measurements for spirals other than the Milky Way are easier to obtain. Itis possible to observe orbits tangentially and measure the Doppler e�e
t of the rotating obje
ts.However, 
orre
ting for the in
lination of the dis
 is of 
ourse ne
essary. The rotation 
urves ofa large number of spiral galaxies have been measured by now (�g. 2.5). Again the HI line proves
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Figure 2.5. Left: gala
ti
 rotation 
urves of twenty-two spirals as inferred from Hαand [NII℄ emission lines plotted in one �gure. All the measured galaxies have eitherrising or �at rotation 
urves, whi
h 
annot be explained by luminous matter only.Right: rotation 
urve of the spiral galaxy NGC 6503 in Dra
o. The rotation velo
-ity is de
omposed into its 
ontributions from the (luminous) gala
ti
 dis
, luminousinterstellar gas and the dark halo. Pi
tures are taken from [STT+98℄ and [BBS91℄.its usefulness be
ause one 
an 
olle
t the radio data within mu
h larger radii. The �nding ofmostly �at rotation 
urves is 
on�rmed for the di�erent observed spirals.A very simple 
al
ulation shows why these �ndings are so dramati
. We approximate theorbits of the 
onstituents of a typi
al spiral galaxy as 
ir
les and get the rotation 
urve fromthe equilibrium of 
entripetal and gravitational for
e:(2.14) v2(r) =
GM(r)

r
,where M(r) is the mass within r. Further approximating the gala
ti
 bulge as a sphere with
onstant density, we have M(r) = ρ 4

3πr
3. Thus in the innermost part of the galaxy, the 
urveshould rise linearly with r and when leaving the galaxy the 
urve should de
rease as V (r) ∝ 1/

√
r(Keplerian fall o�). Despite the 
rude simpli�
ations in this toy 
al
ulation the disagreementwith experiment is dramati
.As 
an be seen from �g. 2.5, in reality, rotation 
urves be
ome approximately 
onstant forlarge radii, whi
h then implies M(r) ∝ r ! Thus, enormous amounts of non-luminous mattermust be made responsible for the observed 
urves, if Einstein gravity and therewith NewtonGravity is 
orre
t. A

ording to (2.14) the rotation 
urve we expe
t from the luminous matteris v2

lum(r) = GMlum(r)/r and hen
e the Dark Matter amounts to(2.15) Mdark =
r

G

[
v2(r) − v2

lum(r)
]
.The 
onsequen
e is that a halo of Dark Matter must be assumed whose mass grows linearlywith radius sin
e the density pro�le of the halo drops only as 1/r2 for large radii. As �g. 2.5shows, measured rotation 
urves show no signs of de
rease out to the maximally a

essibleradii measured with the help of 21
m emission. As a 
onsequen
e the total mass of galaxiesare herewith left undetermined, only a bound on the extension of a typi
al halo 
an be given:

rhalo & 30 kp
, 
.f. [S
h06℄. But the situation is even more disillusioning: sin
e already the useof HI is a tri
k to expand the range of a

essible radii, one must use something totally di�erentin order to probe even larger s
ales of the halo. Satellite galaxies 
ould be used as test bodies.However, their orbits are 
ompli
ated and 
an only be interpreted in a statisti
al sense. Satelliteanalyses extend the typi
al size of halos to even rhalo & 100 kp
, 
.f. [S
h06℄.
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Figure 2.6. The rare Polar Ring Galaxies 
an be used to study the three-dimensional shape of Dark Matter halos. A 
omparison of the rotation velo
itieswithin the host galaxy and the polar ring is sensitive to the geometry of the halo. Re-
ent measurements 
ombined with simulations suggest a �attened halo that is alignedwith the polar ring [IAB+03℄. Left: NGC 4650A, distan
e: 130 million light-years.Right: NGC 660, distan
e: 24 million light-years. Pi
tures are taken from [HST℄ and[SDS℄.There are also other arguments in favour of the 
on
ept of a halo. As outlined in [BT94℄,stability of dis
 galaxiesa is a 
ru
ial issue. Normally, the evolution of dis
 galaxy models ishighly unstable towards the formation of a dominant large bar. Although su
h galaxies exist,the presen
e of a Dark Matter halo of mu
h larger extent than the dis
 is able to remove the barinstability. It is hypothesised that halos of Dark Matter 
ould be ne
essary for the formationand stability of dis
-like galaxies.Polar Ring Galaxies (PRGs) are very exoti
, likewise beautiful phenomena. Su
h non-typi
algalaxies are very rare o

urren
es; only around 150 obje
ts have been re
orded by now. Theirorigin is not well understood. It is hypothesised that Polar Rings develop after a merger oftwo galaxies, and in simulations su
h a behaviour 
ould already be reprodu
ed. PRGs often
onsist of a dis
 galaxy (host) plus a ring of interstellar gas and stars being in some in
linationto the host galaxy, hen
e polar ring. But there are ex
eptions: e.g. the irregular galaxy knownas Hoag's obje
t is a PRG but its host galaxy is spheri
al and surrounded by an almost perfe
tring. However, 
on
erning dark halos su
h galaxies are important laboratories. Normally, themovement of stars via rotation 
urves 
an only be 
aptured in one plane, as per de�nition onlyspirals 
an be analysed in su
h a way. PRGs o�er the opportunity to probe the three-dimensionalmatter distribution of galaxies. The 
omparison of the perpendi
ular rotation 
urves in therespe
tive outer regions shows that the rotation velo
ities in the polar plane are higher thanthose in the equatorial plane. By 
omparison with simulations, this 
an only be understoodif the shape of the dark halo is �attened towards the polar ring [IAB+03℄. Only if the twoperpendi
ular rotation velo
ities approa
hed equal values at large radii, the shape of the darkhalo would be spheri
al.Also in ellipti
al galaxies, a major 
ontribution to the total mass is inferred to be dark due todynami
al 
onsiderations [KKZ97℄. Rotation 
urves in the sense des
ribed above 
annot be usedfor ellipiti
als, for the movement of stars is mu
h more 
ompli
ated. They 
an be 
hara
terisedthrough an anisotropi
 velo
ity �eld. Assuming hydrostati
 equilibrium and letting the galaxyaA

ording to the Hubble Sequen
e of galaxies, dis
 galaxies enfold spirals as well as lenti
ular S0 galaxies.
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al [BT94℄ yields the Euler equation(2.16) dp(r)

dr
= −GMellip(r)ρ(r)

r2
.Therein the ideal gas law 
an be inserted, su
h that(2.17) M(r)ellip =

kBT (r)r

Gµmp

(

−dlnρ(r)

dln r
− dlnT (r)

dln r

)des
ribes the mass interior of r for an ellipti
al galaxy under the above assumptions. Herein
µ denotes the mean mole
ular weight and mp the proton mass. Thus, from a measurement ofthe temperature pro�le T (r) and the density pro�le ρ(r) of an ellipti
al galaxy, the mass withinradius r 
an prin
ipally be obtained through (2.17), 
.f. [KKZ97℄. Assuming a fully ionised,opti
ally thin medium one obtains the density pro�le from the luminosity pro�le via L(r) ∝
ρ2(r) . The temperature gradient is harder to get but 
an be obtained e.g. from CHANDRAmeasurements. Re
ent measurements 
on�rm the presen
e of dark halos in ellipti
al galaxies,see e.g. [FBNP+06℄. Moreover, the halo density pro�les are found to approximate the Navarro-Frenk-White distribution(2.18) ρ(r)dark =

ρ0

r
r0

(

1 + r
r0

) .Here, ρ0 and r0 are parameters that 
hara
terise a given halo.2.2.2. Galaxy Clusters and the Virial Theorem. We start with the virial theorem inits tensor form(2.19) 1

2

d2Iij
dt2

= 2Kij +Wij .The theorem relates the moment of inertia to the kineti
 and potential energy of an isolatedsystem. Although the original version of the virial theorem is dedu
ed from the 
ollisionless
ontinuum Boltzmann equation, the identity 
an also be proven to hold for a dis
rete system ofsay N parti
les; let the parti
les be either stars or galaxies, see e.g. [BT94℄. Then Iij denotesthe moment of inertia tensor of the system and it reads(2.20) Iij ≡
N∑

α=1

mαx
α
i x

α
j ,where mα is the mass of the obje
t with label α . By expli
itly performing the derivatives withrespe
t to time on (2.20), one �nds the expressions for the kineti
 energy tensor and the potentialenergy tensor, i.e.(2.21) Kij =

1

2

N∑

α=1

mαẋ
α
i ẋ

α
j and Wij = −1

2

N∑

α,β=1∧α6=β

Gmαmβ

(xα
i − xβ

i )(xα
j − xβ

j )

|xα − xβ |3
.Taking the tra
e of (2.19), gives the important s
alar virial theorem:(2.22) 1

2

d2I

dt2
= 2K +W .Under the assumption that the system is relaxed, that is the moment of inertia has be
omeindependent of time, we have 2K +W = 0 with the tra
es(2.23) K ≡ 1

2

N∑

α=1

mαv
2
α and W ≡ −1

2

N∑

α,β=1∧α6=β

Gmαmβ

|xα − xβ| .When the number of 
onstituents N is not very large, the virial theorem(2.24) 2K +W = 0will hold only for the respe
tive time averages [BT94℄.
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orrelation between velo
ity distribution and total mass in 
lustersof galaxies. If we like to use the virial theorem in the form of (2.24), the galaxy 
luster mustbe relaxed (Ï = 0). Therefore the question of appli
ability of the virial theorem (2.24) redu
esto the question whether the 
onstituents of the 
onsidered galaxy 
luster did have enough timeto arrive at me
hani
al equilibrium. The time that a typi
al galaxy needs in order to 
rossthe 
luster 
an be estimated [S
h06℄ from the one-dimensional velo
ity dispersion of the 
luster
σcluster

v and its typi
al extension by tcross ∼ RA/σ
cluster
v . For the typi
al extension one insertsthe Abell radius of 
lusters RA ≃ 1.5h−1Mp
 as well as a rough value of σcluster

v ≃ 1000km/swhi
h �nally yields tcross ∼ 1.5h−1×109yr. Sin
e this is smaller than the Hubble time, the virialtheorem (2.24) for the time-averaged quantities K and W 
an be applied.Following [S
h06℄, we pro
eed with de�ning the mass-weighted velo
ity dispersion and thegravitational radius(2.25) 〈v2〉 ≡ 1

M

N∑

α=1

mαv
2
α and rG ≡M2




1

2

N∑

α,β=1∧α6=β

Gmαmβ

|xα − xβ |





−1

,with the total mass of the 
luster M ≡
∑N

α=1mα . Potential and kineti
 energy are thenrewritten as K = M〈v2〉/2 and W = −GM2/rG , and with the help of the virial theorem, aformula for the 
luster mass is obtained:(2.26) M =
rG〈v2〉
G

.The above mass estimate is based on the gravitational radius that involves the true distan
es
dαβ ≡

∣
∣xα − xβ

∣
∣ in three-dimensional spa
e. But this is not an observable, sin
e only proje
tionsof this distan
e are a

essible. We assume a spheri
al geometry and letDαβ denote the proje
teddistan
e of two obje
ts on the plane of the sky, then it is(2.27) RG ≡M2




1

2

N∑

α,β=1∧α6=β

Gmαmβ

Dαβ





−1

and rG =
π

2
RG .The fa
tor of π/2 
omes from the angular averaging of the proje
ted distan
e. Further, it isassumed that the velo
ity dispersion of galaxies be isotropi
: 〈v2〉 = 3σ2

v . Then, �nally the
luster mass estimate amounts to(2.28) M =
3πRGσ

2
v

2G
≃ 1.1 × 1015M⊙

(
σv

1000 km/s

)2

.By simply taking the average mgal ≡ M/N , we estimate the individual mass of a 
onstituentgalaxy by mgal ∼ 1013M⊙ whi
h is very large. This estimate represents the main result of thevirial theorem ansatz for 
lusters and supports the early �ndings using mass-to-light ratios byZwi
ky.Using the virial theorem ansatz, the matter 
ontribution of galaxies to a typi
al galaxy
luster only amounts to ∼ 5%. Be
ause the predominant fra
tion of matter of a 
luster is dark,it should be questioned whether the above 
al
ulation is justi�ed. The validity of the virialestimate 
an be maintained if the luminous galaxies do tra
e the distribution of overall matter.If the isotropy of the 
onstituent velo
ity distribution is broken, or if the approximation of thesystem in being spheri
al is not valid, the above estimate be
omes invalid [S
h06℄. Therefore theDark Matter eviden
e suggested by the virial theorem should always be taken with a pin
h of salt.Moreover, observations of the hot intra
luster gas yield varying fra
tions of this 
ontribution tothe total mass, but also here bulk Dark Matter remains ne
essary.2.3. Modelling Galaxies with General RelativityThe usual framework in whi
h we model a gala
ti
 system is Newton Gravity. This limit is
ommonly used for N -body simulations of galaxies but also for 
lusters of galaxies or even larger
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tures. While General Relativity is widely a

epted as the 
orre
t theory for 
osmology, theDark Matter problem has led to attempts to modify General Relativity and therewith NewtonGravity through MOND or TeVeS as sket
hed in se
. 2.1. Be
ause modi�ed gravity theories aredeliberately designed to solve the Dark Matter problem raised by the observed non-Keplerianfall-o� of gala
ti
 rotation 
urves, they pose a highly �ne-tuned and a posteriori attempt. Inany 
ase, it appears adequate to modify 
urrent fundamental theories, or invent new theories, ifand only if nothing else would work out. Among other outstanding problems, the need for DarkMatter has impelled the phenomenology of new fundamental theories also in parti
le physi
s.But up to day none of the 
andidate parti
les that 
ould 
onstitute Dark Matter has beenobserved dire
tly in an experiment.The eviden
e in favour of Dark Matter is manifold and appears on a vast range of physi
als
ales. It is yet un
lari�ed whether these e�e
ts all have the same origin. Arguably, one of themost weighty and most puzzling eviden
es is that of �at gala
ti
 rotation 
urves. In a re
entwork by Coopersto
k and Tieu (CT) the question has been raised whether one uses the 
orre
t�du
ial theory to 
ompare with the data. Regarding a gala
ti
 system, the use of NewtonGravity appears well warranted sin
e the �elds involved are weak (φ⊙/c2 . 10−5) and thetypi
al rotation velo
ities are small (V⊙ ≃ 220 km/s). Nevertheless, the use of the full theory ofGeneral Relativity might bring important new insights. The �elds and velo
ities involved in aplanetary two-body problem are also small but lead to the qualitatively new and pe
uliar e�e
tof a di�erent perihelion pre
ession than that given by Newton Gravity. Also, as pointed outin [CT05a℄, the e�e
ts a system undergoes that is solely bound by gravity 
an be intrinsi
allynon-linear, already in a stationary setup, and are thus not ne
essarily 
aptured within the weak�eld limit.It should be noted that the 
on
rete model as proposed in [CT05a℄ has been shown to su�erfrom 
ertain pathologies like singularities in the energy momentum tensor. Before we dis
uss thismodel in more detail we re
all attempts of modelling a stationary and axisymmetri
 gravitationalsystem within general relativity whi
h exist sin
e the nineteenth 
entury. It is astonishing to notethat a simple and physi
ally appli
able answer, moreover without pathologies, to the problemof a stationary rotating and axisymmetri
 matter system in general relativity does not exist bynow. We 
on
lude the se
tion with an analysis of the Newton limit of the CT model and statethat indeed a post-Newtonian model has to be invoked in order to make sense.2.3.1. General Relativisti
, Axisymmetri
 Systems in Equilibrium. A very impor-tant bran
h of exa
t solutions in General Relativity belong to the axisymmetri
 and stationaryself-gravitating systems. Lots of astrophysi
al obje
ts 
an prin
ipally be modelled with theseassumptions. These 
ould be stars, bla
k-holes, a

retion dis
s or galaxies; we will be espe
iallyinterested in the latter. Before we 
an write down a general relativisti
 model of a galaxy, the
ru
ial attributes of axisymmetry and stationarity should �rst be de�ned properly.In a formal sense [Wal84℄, the existen
e of two 
ommuting one-parameter groups of isome-tries that possess timelike and 
losed spa
elike orbits respe
tively, is su�
ient to 
all a spa
etimestationary and axisymmetri
. More expli
itly, this notion 
an be expressed with the help of thea

ording Killing ve
tor �elds. Killing ve
tors are the generators of the mentioned isometrieson a manifold and 
an be used to 
hara
terise the symmetries of a spa
etime. Consequently,the axisymmetri
 and stationary spa
etimes will have two independent Killing �elds; e.g. inMinkowski spa
etime there exist ten Killing ve
tors (due to translation, rotation and boost).In the following we use at least c ≡ 1. We will mainly follow the ex
ellent presentation inIslam's book on rotating �elds in General Relativity [Isl85℄. If there exists a Killing ve
tor �eld
ξ, asso
iated with a given spa
etime, that is timelike everywhere, then the spa
etime is 
alledstationary. If, in turn, a manifold additionally admits a Killing ve
tor �eld η that is spa
elikeeverywhere and whose orbits are 
losed, then the spa
etime is understood to be stationary andaxisymmetri
. Equivalently, using Killing's equations(2.29) ξµ;ν + ξν;µ = Lξ gµν = 0 and ηµ;ν + ην;µ = Lη gµν = 0 ,
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an verify that the two Killing ve
tor �elds 
ommute everywhere on the spa
etime:(2.30) [ξ,η] = 0 .With a semi
olon we denote 
ovariant di�erentiation and Lσ stands for the Lie derivative alongsome ve
tor �eld σ � we return to the Lie derivative in se
. 2.3.4. From the requirement ofasymptoti
 �atness one 
an dedu
e the expli
it form of the ve
tors: ξµ = δµ
0, ηµ = δµ

2 . On
e
ξ and η do 
ommute everywhere, it is possible to de�ne 
oordinates t and ϕ a

ording to(2.31) ξ = ξµ ∂

∂xµ
=

∂

∂t
and η = ηµ ∂

∂xµ
=

∂

∂ϕ
,where we use the 
omponent-free notation due the expli
it form of Killing ve
tors. Then fromKilling's equation (2.29) it follows that(2.32) ∂gµν

∂t
= 0 ,

∂gµν

∂ϕ
= 0 .The remaining 
oordinates are 
alled r and z and their a

ording ve
tor �elds ζ = ∂/∂r and

χ = ∂/∂z are ea
h orthogonal to both ξ and η due to orthogonal transitivity [Car69℄. Theseorthogonalities imply for instan
e that gµνξ
µζν = 0 ; with ξµ = δµ

0 and ζν = δν
1 , this in turnimplies g01 = 0. Analogously, from gµνξ

µχν = 0 it follows g03 = 0 and so on, su
h that we arriveat the general form of the metri
 (2.35). This derivation of the general form of axisymmetri
and stationary spa
etimes is rather formal. Interestingly, it is possible to dedu
e the result bymu
h simpler means.Can we interpret the above formalism in physi
al terms? First, let us write down the four-velo
ity that 
hara
terises obje
ts undergoing stationary and purely angular movement,(2.33)
u0 =

dt

dτ
= u0(r, z) , u1 =

dr

dτ
= 0 , u2 =

dϕ

dτ
=

dϕ

dt

dt

dτ
≡ Ω(r, z)u0 , u3 =

dz

dτ
= 0 ,(2.34) where (x0, x1, x2, x3) = (t, r, ϕ, z)is the 
oordinate notation already introdu
ed above and whi
h we also use in the following.Further, τ denotes the proper time and Ω(r, z) is the (di�erential) angular velo
ity. Notably,the gravitational �eld produ
ed by a rotating body a

ording to (2.33) is neither invariant totime reversal t → −t nor is it invariant under ϕ → −ϕ , for both operations are invertingthe rotational sense of the obje
t. Now, a simultaneous transformation of both t → −t and

ϕ → −ϕ leaves the movement of the body un
hanged. From this we 
an already dedu
e whatmetri
 
omponents must vanish: if e.g. g01 6= 0, then g01dtdr would 
hange signb under thetransformation (t, ϕ) → −(t, ϕ) and thus destroy invarian
e of the metri
. Analogously, we seethat any mixing terms g03, g12, g23 must vanish. Therefore the metri
 takes the form:(2.35) ds2 = −g00dt2 + 2g02dtdϕ+ g22dϕ
2 + gMNdxMdxN ,where the indi
es M,N take the values 1 or 3 . Finally, after some 
oordinate transformations,we arrive at the general axially symmetri
 and stationary spa
etime as due to Lewis [Lew32℄and Papapetrou [Pap66℄(2.36) ds2 = e−2U

[
gMNdxMdxN +W 2dϕ2

]
− e2U (dt+Adϕ)2 ,see also [SKM+03℄. The metri
 fun
tions U, gMN ,W and A are free fun
tions of r and z only,re�e
ting axisymmetry and stationarity. This is the spa
etime that is most general under theabove symmetry assumptions. Note that, with the help of ξµ = ∂xµ/∂t and ηµ = ∂xµ/∂ϕ , it ispossible to write all the metri
 fun
tions from (2.36) as s
alar produ
ts of the Killing �elds(2.37) −e2U = ξαξα , e−2UW 2 − e2UA2 = ηαηα , −e2UA = ξαηα , W 2 = 2 ξ[αηβ] ξ

αηβ .In the following we will dis
uss to whi
h extent it is possible to further simplify the generalmetri
 (2.36), and also what solutions to this ansatz there might exist in General Relativity.bFor an axisymmetri
 and stationary setup all metri
 
oe�
ients will be fun
tions of r, z only, 
.f. (2.32).



58 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERWhat we have 
onsidered so far is the geometry of axially symmetri
 and stationary systems,that is the left hand side of Einstein's �eld equations of gravity(2.38) Rµν − 1

2
Rgµν = 8πGTµν ,with the Ri

i tensor Rµν and its tra
e R ≡ gµνRµν . The remaining input should 
ome throughthe energy-momentum tensor T µν , that in 
ase of a perfe
t �uid takes the form(2.39) T µν = (ρ+ p)uµuν + pgµν with uµu

µ = −1 .However, 
onstru
ting solutions to the �eld equations is a very hard task, espe
ially whenpe
uliar a priori assumptions on the symmetries are imposed. The reason for this is that the�eld equations (2.38) are te
hni
ally very 
ompli
ated, they represent a 
oupled system of tenellipti
-hyperboli
 partial di�erential equations.Consequently, what is done �rst, is to try and �nd exterior (va
uum) solutions to the Einsteinequations, given by Rµν = 0 . In this 
ase it is always possible to repla
e the metri
 fun
tion
W (r, z) in (2.36) by r [Isl85℄; we will dis
uss this simpli�
ation, the isotropi
 gauge, in mu
hdetail in se
. 2.3.3.The �rst solution found is a very famous one, the S
hwarzs
hild solution(2.40) ds2 = −

(

1 − 2GM

r

)

dt2 +

(

1 − 2GM

r

)−1

dr2 + r2dΩ2 ,with the angular element dΩ2 = dθ2 + sin2θdϕ2 . As is well known, this solution des
ribes the�eld exterior to a spheri
ally symmetri
 (
ollapsed) star with mass M . Further, the systemmust be stati
, whi
h is no assumption but follows from Birkho�'s theorem. The interiorS
hwarzs
hild solution also exists. It 
an be shown that the interior S
hwarzs
hild solution isthe only axisymmetri
 and stati
 spa
etime that is 
onformally �at [SKM+03℄.Weyl was then the �rst to �nd a solution involving the general axisymmetri
 geometry.However, the Weyl solution [Wey17℄ is of limited physi
al appli
ability
, sin
e it des
ribes theexterior solution of a system without rotation, that is an axisymmetri
 and stati
 system. Inthis 
ase, the general spa
etime (2.36) 
an be simpli�ed to(2.41) ds2 = e−2U
[
e2k(dr2 + dz2) + r2dϕ2

]
− e2Udt2 .Another set of solutions that is physi
ally not 
ompelling, is the Papapetrou 
lass [Pap53℄.Yet this 
lass of exterior solutions does not 
ontain any solution that is asymptoti
ally �atand 
ontains a non-zero mass. Asymptoti
 �atness is an important physi
al requirement, for itenables us to 
he
k the properties of the rotating sour
e by pla
ing an observer who is in stati
Minkowski spa
e at some asymptoti
 distan
e. We de�ne asymptoti
 �atness by demanding that,at large distan
es from the rotating gravitational system, the spa
etime shall look Minkowskian(2.42) ds2 = −dt2 + dr2 + r2dϕ2 + dz2 .This 
ondition 
an be 
ast into one for the metri
 fun
tions e2U and A at spatial in�nity,
.f. [Isl85℄ and 
hapt. 19 of [MTW73℄(2.43) e2U = 1 +

2GM√
r2 + z2

+ · · · and e2UA = − 2GSr2

(r2 + z2)3
+ · · · ,where S is the total angular momentum of the sour
e and the dots stand for higher terms thatvanish towards in�nity faster than the other terms. Unfortunately, the Papapetrou solutions,whi
h would des
ribe the exterior of an axisymmetri
 and stationary rotating system, alwayslead to a zero mass in the �at asymptoti
 limit.Similarly, the 
lass of solutions due to Lewis [Lew32℄ and Van Sto
kum [vS37℄ does not
ontain any asymptoti
ally �at solutions. The metri
 here takes the form(2.44) ds2 = r−1/2

(
dr2 + dz2

)
− 2rdϕdt+ rΞdt2 ,
Nevertheless, higher dimensional extensions of the Weyl solution are dis
ussed as models of 
osmi
 stringsor other exoti
s, 
.f. [ER02℄



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 59where Ξ obeys ∆(3)Ξ = 0 . If solutions with �at limits exist, these would des
ribe the �eldof a rotating body that is in�nitely long and axisymmetri
 around the z-axis. The body doesnot need not to be 
ylindri
ally symmetri
 (this would imply additional translational invarian
ealong z) but may have a varying shape along the symmetry axis z. Cylindri
ally symmetri
 andstationary solutions represent a sub
lass of the Lewis and Van Sto
kum 
lass [SKM+03℄.While the Papapetrou 
lass of solutions is rotating and has a well-de�ned �at limit, themass asso
iated must be zero. Ten years after the dis
overy of the Papapetrou solution, anothervery famous exterior solution has been found. Using Boyer-Lindquist 
oordinates (r̂, ϑ)(2.45) r =
(
r̂2 − 2GMr̂ + a2

)1/2
sinϑ , z = (r̂ −GM) cosϑ ,the Kerr solution [Ker63℄ takes the form

ds2 =

(

1 − 2GMr̂

r̂2 + a2 cos2ϑ

)−1
[

(
r̂2 − 2GMr̂ + a2

)
sin2ϑdϕ2 +

(
r̂2 − 2GMr̂ + a2 cos2ϑ

)

×
(

dϑ2 +
dr̂2

r̂2 − 2GMr̂ + a2

)]

−
(

1 − 2GMr̂

r̂2 + a2 cos2ϑ

)(

dt+
2GMar̂ sin2ϑ dϕ

r̂2 − 2GMr̂ + a2 cos2ϑ

)2

.(2.46)Therein a 
arries the interpretation of an angular momentum per unit mass and M is thetotal mass of the rotating obje
t. The limiting 
ases in the above parameterisation range from
a = GM (extreme Kerr limit) and a = 0 (S
hwarzs
hild limit). At very large radii the Kerrmetri
 is simpli�ed to(2.47)

ds2 ≃ −
(

1 − 2GM

r̂

)

dt2 +

(

1 − 2GM

r̂

)−1

dr̂2 + r̂2
(
dϑ2 + sin2ϑdϕ2

)
− 4Gma sin2ϑ

r̂
dϕdt .Though it is �at, with non-zero mass in the asymptoti
 limit, the problem is that this solutionis only valid in the va
uum 
ase too. Thus, it 
ould still be used to model the exterior of arotating bla
k hole or galaxy. Up to day, no interior solution has been found that mat
hes theabove exterior Kerr solution and makes physi
al sense.In the 1970s a similar 
lass of solutions has been found by Tomimatsu and Sato [TS72℄. Animportant 
hara
teristi
 of the Kerr solution is that it returns to the S
hwarzs
hild form as soonas the rotation stops, a = 0 . This makes sense, for deformations of a spheri
al rotating bodyare normally due to its rotation and should disappear in the stati
 limit. However, the maindi�eren
e of the Tomimatsu-Sato solution to the Kerr solution is that it does not possess su
h ani
e stati
 limit. Instead, the stati
 limit 
oin
ides with the axisymmetri
 Weyl solution whi
hmakes the model unphysi
al [Isl85℄.As we have seen, already the known exterior solutions are not very numerous. Furthermore,a lot of them are anyway of mathemati
al importan
e only, like e.g. the Papapetrou 
lass ofsolutions. It remains to 
onsider the right hand side of the Einstein equations (2.38) and whetherthere exist appropriate sour
es when axisymmetry and stationarity is assumed. Merging exteriorand interior solutions in a proper way poses a highly non-trivial program and there do not existmany su
h global models. By now, the situation 
ould be des
ribed like this: to va
uum solutionsthat are be physi
ally tempting, always very exoti
 and sometimes unphysi
al sour
es must beassigned. In other words, quoting Hermann Bondi [BL93℄:[...℄ the sour
es suggested so far for the [Kerr℄ metri
 are not the easiestmaterials to buy in shops.One of the very rare ex
eptions is the global Van Sto
kum solution [vS37℄. In this solution asetup of an in�nitely long, sti�y rotating dust 
ylinder is realised. Van Sto
kum was able tomat
h smoothly the original exterior solution we dis
ussed above, to an interior solution thathe found independently. In [VW77℄ the 
ompli
ation of a non-rigid rotation within the VanSto
kum 
lass has been in
orporated. A

ording to [SKM+03℄ there does not exist any solution



60 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERat all to the problem of an axially symmetri
 and di�erentially rotating perfe
t �uid systemwith non-zero pressure up to day.It should be noted that also the Van Sto
kum 
lass of solutions is not free from short
omings.First, as pointed out by Bonnor [Bon80℄, in the Van Sto
kum solution the matter density isgrowing exponentially with radial distan
e to the axis of symmetry as ρ = α2eα2r2

/(2π) where
α is an arbitrary positive 
onstant. Se
ond, the Van Sto
kum 
lass implies the existen
e of
losed timelike 
urves, similar to those o

urring in the Gödel solution. Notably, the 
losedtimelike 
urves do not lie on geodesi
s, i.e. observers that undergo these orbits are ne
essarilya

elerating. The existen
e of su
h 
urves is hard to re
on
ile with 
ausality.All of the above approa
hes are based on the philosophy that the geometri
 part, the metri
,of a given problem is �xed �rst and then the solutions for the matter �elds (usually a perfe
t�uid) are derived by solving Einstein's equations; this is the 
lassi
al method. There are severalgroups that atta
k the problem the other way round. As a representative thereof, we mentionhere the Neugebauer and Meinel solution [NM95℄ where the so-
alled inverse (s
attering) methodis applied. It 
an be shown that the Einstein equations for the problem of an axially symmetri
and stationary gravitating system are formally equivalent to the asso
iated Ernst equation(2.48) Re(E )∆(3)

E = ∆(2)
E .In [NM95℄ and su

eeding works an in�nitesimally thin dis
 of dust is presumed and expli
itsolutions for the 
omplex Ernst potentials E and thus to the Einstein equation are derived interms of ultraellipti
 fun
tions as well as related theta fun
tions. For the mathemati
al notionssee e.g. [AS72℄. Being immensely 
ompli
ated, this appears to be the �rst formally 
ompletesolution to the problem of an axisymmetri
 and stationary rotating thin dis
 of dust withinGeneral Relativity.2.3.2. The Coopersto
k and Tieu Solution. In a re
ent series of works, Coopersto
kand Tieu suggest a new approa
h to the Dark Matter problem, namely via General Relativity,see [CT05a℄, [CT05b℄ and [CT06℄. Rewritten in our signature, the metri
 of the CT model is(2.49) ds2 = eν−w

(
dr2 + udz2

)
+ r2e−wdϕ2 − ew (dt+Ndϕ)2 .The authors immediately set u ≡ 1 su
h that there remain only three 
hara
teristi
 fun
tionsto the metri
 ν, w and N , all being fun
tions of only r and z .The matter model that is used is that of uniformly rotating dust. Further, 
omoving 
oordi-nates are used in whi
h an observer measures the four velo
ity as uµ = δµ

0 . From the invariant
ondition uµuµ = gµνu
µuν = −1 we immediately get w = 0 . Di�erential rotation is establishedthrough the transformation ϕ′ 7−→ ϕ+ω(r, z)t whi
h diagonalises the metri
 (2.49) lo
ally. Notethe di�eren
e between w and ω . The angular velo
ity and the observable tangential velo
itybe
ome(2.50) ω =

New

r2e−w −N2ew
≃ N

r2
and v = ωrfor weak �elds. Writing the �eld equations to order G1 yields(2.51) N2

,r +N2
,z

r2
= 8πGρ and N,r,r +N,z,z −

N,r

r
= 0 .We see that the �rst �eld equation is a non-linear one. Note that, although the �eld equationsare expanded to order G1 , the 
hara
teristi
 fun
tion N is obviously of order G1/2 whi
h will beimportant later. It is emphasised in [CT06℄ that the metri
 fun
tion N , unlike w whi
h vanishesdue to the 
hoi
e of 
omoving 
oordinates, 
annot be eliminated 
onsistently. Therefore the non-linearity between N and ρ in (2.51) is understood to be 
hara
teristi
 to this problem. However,

w would not be 
onstant if the pressure was non-zero. On the other hand, when performing thelimit of vanishing ω , N vanishes also, but sin
e the system must remain stati
 there will be anon-zero pressure in that 
ase. In this 
ase, w is not 
onstant, quite the 
ontrary, it would thenserve the Poisson equation.



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 61Further, CT de�ne a quasi-potential by(2.52) ΦCT =

∫
N

r
dr ,su
h that we have v = ∂ΦCT/∂r , whi
h together with (2.50) returns a Newtonian-like de�nitionof the tangential velo
ity, 
.f. [BT94℄. The potential equation then be
omes(2.53) ∆(3)ΦCT = ΦCT

,r,r + ΦCT
,z,z +

ΦCT
,r

r
=
N,r

r
+

∫
N,z,z

r
dr .Inserting the �eld equation N,z,z = N,r/r −N,r,r then yields(2.54) ∆(3)ΦCT = 0 .Hen
e there is a dire
t 
orresponden
e between the Lapla
e equation ∆(3)ΦCT = 0 and these
ond equation in (2.51) after de�ning the tangential velo
ity in the usual way v = ∂ΦCT/∂r .Looking at (2.51) it be
omes 
lear that it is better to �rst solve for the generating potential

ΦCT and then, after obtaining N , to 
ompute the density pro�le. This is simply be
ause the�eld equation for ρ is non-linear, whereas the potential equation is linear. Thus the CT strategyis to model gala
ti
 rotation 
urves with the help of the potential ΦCT , then readily obtain Nfrom the �t and �nally 
al
ulate the density.The separation of variables ansatz yields a general solution to the Lapla
e equation in termsof Bessel fun
tions of the �rst kind(2.55) ΦCT =
∑

n

Cne
−kn|z|J0(knr) and v = −

∑

n

knCne
−kn|z|J1(knr) ,where the kn are 
onstants that are 
hosen so that orthogonality of the J0 fun
tions is main-tained; see for instan
e the appendix of [BT94℄ for useful details on the Bessel fun
tions.The �nal results applied to the Milky Way, NGC 3031, NGC 3198 and NGC 7331, �t therotation velo
ities remarkably well [CT06℄. The total dis
 mass produ
ing the non-Keplerianbehaviour is quoted to be one order of magnitude smaller [CT06℄ than the one suggested bytypi
al dark halo models. It is 
ru
ial to note that a su

essful �t of e.g. only the rotation 
urveswould not be surprising alone; the fa
t that both the rotation 
urve and the density pro�le 
anbe reprodu
ed realisti
ally makes the model interesting.In several works that 
riti
ise the CT model, it has been shown that there exist pathologieswithin the energy-momentum tensor or various other imponderableness. Korzy«ski [Kor05℄argues that (A) a proper asymptoti
al �at limit is not 
ontained in the CT model be
ause of the
onsidered gauge; and that (B) the CT model must be unrealisti
 be
ause unexpe
ted additionalmatter sour
es at z = 0 
an be found.To (A): Korzy«ski derives a general perturbative form of the �eld equations for dust, ex-panded in G1/2 and 
on
ludes that no asymptoti
ally �at solutions exist if the lowest expansion
oe�
ient of the metri
 is G1/2. Re
all, that both N and ΦCT are of order G1/2 . However, thes
hemati
 Korzy«ski equations look rather di�erent to the CT equations, for Korzy«ski works ona Minkowskian ba
kground and spends the remaining gauge freedom to simplify the equationswithin the De Donder gauged.To (B): While the Bondi mass and ADMe mass 
an be de�ned for asymptoti
ally �atexterior solutions, the Komar mass is an invariant that 
an be de�ned for any spa
etime that isstationary. In that 
ase, due to Noether's theorem, time-translation symmetry ensures that thetotal energy of the system is a 
onserved quantity. Be
ause a well-de�ned zero-momentum frameis present, the invariant 
an be de�ned as the system's mass, the Komar integral [Kom58℄. TheKomar integral 
an be de�ned 
onsidering an analogy to the gravitational mass from Gauss' law,
.f. [Wal84℄. In the presen
e of a timelike Killing ve
tor �eld we 
an de�ne the di�erential formdA frame of harmoni
 
oordinates or De Donder gauge is rea
hed by the requirements gαβΓγ

αβ = 0 , orequivalently �2xγ = 0 .eNamed after Arnowitt, Deser and Misner. For an overview on energy-momentum in General Relativity see[Sza04℄.
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dξ and denote the asso
iated Hodge dual by ⋆dξ . Assuming that ∇αξβ = ∇[αξβ], whi
h holdsbe
ause of Killing's equation (2.29), we 
an write the di�erential of the dual form as [Kor05℄(2.56) d ⋆ dξ =

1

3
Rµαξαεµνρσ dxν ∧ dxρ ∧ dxσ ,where εµνρσ is the spa
etime volume form. Inserting for the Ri

i tensor and integrating overan arbitrary three-dimensional volume V yields(2.57) ∫

∂V

⋆dξ =

∫

V

d ⋆ dξ =
4πG

3

∫

V

(2Tαµξα − Tξµ) εµνρσ dxν ∧ dxρ ∧ dxσ .The 
ru
ial point is that, if there was only dust matter, the limit of shrinking the integrationvolume to zero must also yield a zero Komar integral, that is of 
ourse be
ause the mass inside azero volume is zero. If, on the other hand the Komar integral (2.57) gave a non-zero value in theshrinking volume limit, we must 
on
lude that singularities in the energy momentum tensor arepresent. That is exa
tly what happens in the 
ase of the CT model. To see that, one 
an 
hoosefor the integration volume a three-dimensional �nite 
ylinder with r ∈ [0, R] and z ∈ [−a, a]with a and R taking positive real values. The Komar integral 
an be split into three parts: top(z = a) and bottom (z = −a) 
ir
ular surfa
e parts It, Ib and a side surfa
e part Is(2.58) It + Ib + Is =

∫ 2π

0

dϕ

∫ R

0

N

r

∂N

∂z
dr

∣
∣
∣
∣
∣
z=a

−
∫ 2π

0

dϕ

∫ R

0

N

r

∂N

∂z
dr

∣
∣
∣
∣
∣
z=−a

+ Is .Now, we insert N from (2.52) a

ording to the CT model and let the volume of the 
ylinder goto zero by shrinking it in the z-dire
tion. The side surfa
e integral indeed vanishes but the tworemaining integrals neither vanish nor 
an
el ea
h other:(2.59) r - lim
a→0

(It + Ib) = r - lim
a→0

4π

∫ R

0

N

r

∂N

∂z
dr

∣
∣
∣
∣
∣
z=a

= 4πk5

∫ R

0

rJ2
1 (kr)dr 6= 0 .Therefore there must exist an additional sour
e of matter at z = 0 in the CT model and this
orresponds to a singular behaviour of the energy-momentum tensor at the dis
ontinuity.Further 
riti
ism has been raised in the years after the publishing of the CT model. In[VL05℄ the properties of the CT energy-momentum have been analysed. The result reveals thatthe additional 
omponent in the z = 0 plane is due to matter with negative energy density.On the other hand, in [Gar06b℄ it is argued that post-Newtonian 
orre
tions should alreadyenfold non-linear e�e
ts if they are present and that at the same time the post-Newtonian 
orre
-tions to the Newtonian equations are understood to be small in the limit of small velo
ities andweak �elds. Therefore the author 
laims that there should be no di�eren
e between Newtonianand general relativisti
 analyses 
onsidering Dark Matter.In [Cro06℄ the following in
onsisten
y is revealed: the 
ovariant vanishing of shear in theCT model is demonstrated and it is pointed out that this re�e
ts rigid rotationf whi
h is in
ontradi
tion with the initial CT assumption of di�erential rotation. Further, the author of[Cro06℄ notes that the �at rotation 
urve from the CT model would imply a large transferof inertia from the inner rotating parts of a galaxy onto the outer parts, hen
e �attening therotation 
urve in the outer regions. Sin
e this is unexpe
ted from General Relativity the authorspe
ulates that the CT model might be a manifestation of an alternative theory of gravity,one that follows the Ma
hian philosophy where large indu
tion of inertia e�e
ts are 
ertainlythinkable.But there also exist 
laims that are supporting the model of CT. Using an exa
t solutionand somewhat di�erent te
hniques, the authors of [BG06℄ derive a solution similar to that ofCT. They �nd the unexpe
ted result that in their model the amount of ne
essary Dark Matteris redu
ed by ∼ 30% .fA result already found by Bonnor in his analysis of an in�nitely long and axisymmetri
 dust 
loud [Bon77℄.



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 632.3.3. Finding the Newtonian Counterpart to the CT Model � Part I. Our basi
idea is the following: if there are valid e�e
ts from the CT model, a dire
t 
omparison with theNewtonian equations would be very intersting. To do so, we shall �nd the 
orre
t Newtonianlimit of the CT model. But before we turn to the issue of the Newtonian limit, we shouldre
onsider the general spa
etime(2.60) ds2 = e−2U
[
gMNdxMdxN +W 2dϕ2

]
− e2U (dt+Adϕ)2 .Re
all that M,N take values 1 or 3 . But it is always possible to go to isotropi
 
oordinates(2.61) gMN = e2kδMN ,without tou
hing the generality of (2.60), 
.f. [SKM+03℄. Therefore we note a 
entral result:the �nal form of the most general axisymmetri
 and stationary spa
etime due to Lewis andPapapetrou (LP) is(2.62) ds2 = e−2U

[
e2k(dr2 + dz2) +W 2dϕ2

]
− e2U (dt+Adϕ)2 .We re
all that the free metri
 fun
tions U, k,W,A are all fun
tions of only r, z .It is possible to simplify (2.62) a bit more, but only under 
ru
ial assumptions. We will showthat, if and only if the metri
 fun
tion W is harmoni
, it 
an be transformed tog W = r . Letus 
onsider a 
omplex 
oordinate transformation f(r+ iz) = W + iV introdu
ing an additionalpotential V . Then we have from ρ ≡W (r, z) and h ≡ V (r, z) the di�erentials(2.63) dρ =

∂W

∂r
dr +

∂W

∂z
dz and dh =

∂V

∂r
dr +

∂V

∂z
dz .The 
oordinates ρ, h are only dummies that we introdu
e for bookkeeping reasons. Thereforewe insert into (2.62), written in terms of ρ, h , and have

ds2 = e−2U
[

e2k̃(dρ2 + dh2) + ρ2dϕ2
]

− e2U (dt+Adϕ)2 7−→ ds2 = e−2U

{

e2k̃ ×

×
[(

∂W

∂r

)2

dr2 +

(
∂W

∂z

)2

dz2 + 2
∂W

∂r

∂W

∂z
drdz +

(
∂V

∂r

)2

dr2 +

(
∂V

∂z

)2

dz2

+ 2
∂V

∂r

∂V

∂z
drdz

]

+W 2dϕ2

}

− e2U (dt+Adϕ)2 .(2.64)Requiring formal invarian
e as 
ompared to the original metri
, we see that the mixing termsshould vanish. That is exa
tly provided by the Cau
hy-Riemann equations for W and V(2.65) ∂W

∂r
=
∂V

∂z
and

∂W

∂z
= −∂V

∂r
.Moreover, with the help of the Cau
hy-Riemann equations, we see that the 
oe�
ients of dr2and dz2 
an be 
ombined to a positive de�nite quantity(2.66) (

∂W

∂r

)2

+

(
∂V

∂r

)2

=

(
∂W

∂z

)2

+

(
∂V

∂z

)2

≡ K̃ ≥ 0 ,su
h that we 
an 
ombine e2k̃K̃ ≡ e2k and so obtain (2.62) via (2.64). Thus we have shown thatit is possible to simplify the general LP form (2.64) by allowing W = r , whi
h is only possibleif the transformation f is analyti
, that is W (and also V ) must be a harmoni
 fun
tionh,
∆(2)W = 0 . Then, we 
an write down the LP metri
 in isotropi
 
oordinates (or Weyl gauge)(2.67) ds2 = e−2U

[
e2k(dr2 + dz2) + r2dϕ2

]
− e2U (dt+Adϕ)2 .gAlso W = 1 is possible then, but this 
ase is of no interest as we will see later.hNote that, this 
ondition for W holds for exterior solutions that are stationary and axisymmetri
 [Isl85℄.



64 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERFor 
omparison let us repeat the CT metri
 (u = 1),(2.68) ds2 = eν−w
(
dr2 + dz2

)
+ r2e−wdϕ2 − ew (dt+Ndϕ)

2 .Obviously, the CT metri
 does not belong to the 
lass of the most general stationary andaxisymmetri
 spa
etimes; it belongs to the sub
lass of LP solutions in the Weyl gauge, and istherefore less general.Now, let us try to approa
h the problem of �nding a Newtonian 
ounterpart to the CT model(2.68). If there are really advantages in a 
ertain general relativisti
 approa
h then eventuallywe 
an pin the di�eren
es down by 
omparison to the well-known Newtonian physi
s.The `Newton metri
', that is the metri
 that reprodu
es Newtonian physi
s, is given by(2.69) ds2 = −(1 + 2φ)dt2 + dr2 + r2dϕ2 + dz2 ,where φ(r, z) is the Newtonian gravitational potential. For simpli
ity, we start with only rigidrotation, that is(2.70) ϕ = ϕ′ − ω t .Then the rigidly rotated Newton metri
 (2.69) is exa
tly(2.71) ds2 = (dr2+dz2)+
1 + 2φ

(1 + 2φ− ω2r2)
r2dϕ2−(1+2φ−ω2r2)

[

dt+
r2ω

(1 + 2φ− ω2r2)
dϕ

]2

.In this form we 
an dire
tly 
ompare the metri
 with the LP metri
 in Weyl gauge (2.67), andwe noti
e a dis
repan
y at linear order in φ , looking at the dϕ2 term. Interestingly, the rigidlyrotated Newton metri
 (2.71) is not in a

ord with the isotropi
 form of the LP 
lass (2.67) � asit should be for 
onsisten
y � but it is in perfe
t a

ordan
e with the general form of the latter(2.62).Now, one 
ould spe
ulate whether the situation might be easily 
ured with the help of a
oordinate transformation. Above we have derived the exa
t 
onditions under whi
h the generaland the isotropi
 LP metri
 
an be transformed into ea
h other: the fun
tion W must be aharmoni
 fun
tion with respe
t to the two-dimensional Lapla
ian ∆(2)W = 0 .In the present 
ase, of the rigidly rotating Newton metri
, W is given by(2.72) W = r
√

1 + 2φ ,expanding and applying the Lapla
ian yields(2.73) ∆(2)W = r∆(3)φ+ φ,r = 4πGρr + φ,r .Note that we 
an use the Poisson equation be
ause the potential is Newtonian. After repeatingsome fa
ts from potential theory we will show that ∆(2)W in fa
t does not vanish in general.Given the general problem of solving the Lapla
e equation with the appropriate boundary
onditions for a dis
-like distribution of matter, the solution for the potential 
an be obtainedvia separation of variables, 
.f. [BT94℄(2.74) φ(r, z) =

∫ ∞

0

S(k)J0(kr)e
−k|z|dk .A given surfa
e mass density Σ(r) is then 
hara
terised by the a

ording Hankel transform(2.75) S(k) = −2πG

∫ ∞

0

J0(kr)Σ(r)rdr .Now we 
an use these expressions for the evaluation of (2.73).
� Case (A) z 6= 0 � Outside the dis
 the Newtonian potential ful�ls the Lapla
e equation,su
h that the expression (2.73) takes the form(2.76) ∆(2)W = −

∫ ∞

0

S(k)J1(kr)ke
−k|z|dk at z 6= 0 ,
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h will not vanish in general. As a simple example we 
onsider the Mestel dis
 model ofa galaxy [Mes63℄. In the Newtonian Mestel model a �at rotation 
urve 
an be rea
hedi. TheMestel model is 
hara
terised by a surfa
e mass density that falls o� inversely with the distan
e(2.77) Σ(r) =
Σ0r0
r

.In a Mestel galaxy the surfa
e density Hankel-transforms as S(k) = −2πGΣ0r0/k. Using thiswe 
an integrate dire
tly and obtain(2.78) ∆(2)W = 2πGΣ0r0

(
1

r
− |z|
r
√
r2 + z2

)

at z 6= 0 .

� Case (B) z = 0 � We want to show that (2.73) is non-zero also here. Let us assume the
ontrary and see what happens. If we assume that ∆(2)W = 0 was true then equation (2.73)gives an identity. We integrate this identity over z for some ε > 0 and then revoke the operationby performing the appropriate limit(2.79) −4πGr lim
ε→0

∫ ε

−ε

δ(z)Σ(r)dz = lim
ε→0

∫ ε

−ε

∫ ∞

0

S(k)J1(kr)ke
−k|z|dkdz .Sin
e the exponential term on the right hand side serves as a damping fa
tor, the modulus ofthe integrand will rea
h its maximum at z = 0. Thus, as an upper estimate, we 
an set theintegrand of the right hand side to be 
onstant in z and therefore the integration and limitpro
edure give zero. Then, for all other z the expression will be zero more than ever and weobtain(2.80) 4πGΣ(r)r = 0 .This will not hold generally for any realisti
 model, hen
e produ
ing a 
ontradi
tion, and there-fore ∆(2)W (r, z) = 0 is not true at the surfa
e z = 0 either.Interestingly, the pure Newton metri
 (2.69) 
annot be made 
ompatible with the LP metri
in Weyl form and thus is also not 
ompatible with the CT model. We should go one step furtherand 
onsider the Post-Newtonian (PN) metri
(2.81) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dr2 + r2dϕ2 + dz2) ,with some additional PN potential ψ . Sometimes, this metri
 (with ψ = φ) is referred to as the`Newton metri
' in the literature. The reason for this nomen
lature might be that the order ofmagnitude of the 
oe�
ient of the spatial part dx2 and the order of the Newtonian 
orre
tionare the same. Nevertheless, 
on
eptually this makes an enormous di�eren
e. In 
lassi
al NewtonGravity there exists no 
urvature of spa
e, the three-spa
e is always eu
lidian. This is exa
tlyre�e
ted in the Newton metri
 (2.69) and therefore we refer to (2.81) as the PN metri
; for anextensive dis
ussion see 
hapt. 39 in [MTW73℄.Let us again perform the sti� rotation (2.70) on the PN metri
. The result (in
luding higherorders) is

ds2 = (1 − 2ψ)(dr2 + dz2) +
1

(1 + 2φ− (1 − 2ψ)ω2r2)
r2dϕ2

− (1 + 2φ− (1 − 2ψ)ω2r2)

[

dt+
(1 − 2ψ)ωr2

(1 + 2φ− (1 − 2ψ)ω2r2)
dϕ

]2

.(2.82)The 
omparison shows that this metri
 is in perfe
t a

ordan
e with (2.67) via
e2k = (1 − 2ψ)(1 + 2φ− (1 − 2ψ)ω2r2) , e2U = (1 + 2φ− (1 − 2ψ)ω2r2)

W 2 = r2 , A = − (1 − 2ψ)ωr2

(1 + 2φ− (1 − 2ψ)ω2r2)
.(2.83)iThe �at rotation 
urve in the Mestel model 
an easily be obtained from the Hankel transform of (2.77),inserted into the formula for the rotation 
urve: v2(r) = r(∂φ/∂r)z=0 = 2πGΣ0r0 .
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 (2.81) belongs to the 
lass of isotropi
 (Weyl) axisymmetri
 and stationarysolutions whereas the Newton metri
 (2.69) does not allow for that simpli�
ation.Our aim is to approa
h the CT model from the side of Newton gravity. The next step isto allow for di�erential rotations ω = ω(r) in order to try to make the model stepwise morerealisti
. So we relax the 
ondition of rigid rotation and 
onsider transformations(2.84) ϕ = ϕ′ − ω(r) t ,whi
h we apply to the PN metri
 and arrive at a lengthy expression:
ds2 = (1 − 2ψ)dz2 + (1 − 2ψ)(1 + r2ω2

,rt
2)dr2 +

1

(1 + 2φ− (1 − 2ψ)ω2r2)
r2dϕ2

− (1 + 2φ− (1 − 2ψ)ω2r2)

[

dt+
(1 − 2ψ)ωr2

(1 + 2φ− (1 − 2ψ)ω2r2)
dϕ

]2

+ (1 − 2ψ)2r2ωω,rtdrdt − (1 − 2ψ)2r2ω,rtdrdϕ .(2.85)Unfortunately, this metri
 exhibits dire
t time dependen
e in some 
oe�
ients � whi
h is a
oordinate artefa
t. Be
ause of the stationarity 
onstraint (2.32), the di�erentially rotated PNmetri
 (2.85) only makes sense in a stri
tly lo
al sense, that is within small time intervals(r2ω,rt≪ 1). In other words, the 
oordinate transformation (2.84) is not a good transformationbe
ause it holds only as long as ω(r)t < 2π . But there might be another problem: obviously, therotated PN metri
 (2.85) is not of the same form as the LP spa
etime. Fortunately, it turns out� after a somewhat tedious 
al
ulation � that it is possible to �nd a 
oordinate transformationin r using a 
ertain fun
tion r = g(r′, ϕ, t) . Therefore we perform the following translationaltransformation on the metri
 (2.85)(2.86) dr = g,r′dr′ + g,ϕdϕ+ g,tdt .We solve for the transformation parameters � letting primes away � using the LP 
onstraintsand get
g,r =

√

1 − 2ψ

B
, g,t =

(1 − 2ψ)ωω,rr
2t

B
, g,ϕ =

(1 − 2ψ)ω,rr
2t

B
,

B = 1 − 2ψ + (1 − 2ψ)r2ω2
,rt

2 .(2.87)The fully rotated PN metri
 (2.85) with the most general angular velo
ity ω = ω(t, r, z) is ahorrendous expression that is written down in 
omponents in equations (C.3) in the app. C.Before we now 
ontinue on the level of dynami
al equations to pin down the di�eren
e of thetwo Newtonian metri
s (2.69) and (2.81), of whi
h one is 
ompatible with the LP model andone is not, we shall re
all a few fa
ts on the 3 + 1 split of spa
etime.2.3.4. The Arnowitt-Deser-Misner split. In order to gain physi
al insight into 
ompli-
ated problems in General Relativity it is often very useful to return to a familiar foliation intoseparate dimensions. There exists a well-de�ned way how to split spa
etime into spa
e and timeparts (manifolds). This formalism has been developed by Arnowitt, Deser and Misner [Arn62℄and is hen
eforth 
alled ADM split, see also paragraph 21.4 in [MTW73℄ or [Yor79℄. It 
an bederived from the appli
ation of the proper boundary 
onditions on the problem of 
onstru
tinga rigid `sandwi
h' stru
ture of a one-parameter sequen
e of spa
elike hypersurfa
es, see �g. 2.7.The appli
ation of Pythagoras' theorem in the four-dimensional setup then dire
tly yields theform that the metri
 has to attain with regard to the rigidity of su
h a 
onstru
tion:(2.88) ds2 = −N2dt2+gij(dx
i+N idt)(dxj+N jdt) = −(N2−NiN

i)dt2+2Nidtdx
i+gijdx

idxj .Here gij 
hara
terises the metri
 of the spatial hypersurfa
es.Depending on the 
hoi
e of 
oordinates given by (2.88) we de�ne the `normal ve
tors'(2.89) nµ = N(−1,0) and nµ =
1

N
(1,−N i) ,
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e the lapse fun
tion N and the shift ve
tor N i . For 
on
rete 
al
ulation itis important to be aware of the fa
t that only the indi
es of nµ are raised or lowered with thefour-metri
 gµν , and that to do so with the Ni one may only use the spatial metri
 gij . Further,it will be useful to de�ne the following proje
tor(2.90) hµ
ν = δµ

ν + nµnν ,whi
h indu
es the three-metri
 into the hypersurfa
es. Next we want to take advantage of thefa
t that we a
hieved a dimensional redu
tion of the hypersurfa
es.

Figure 2.7. Illustrating the ADM split: the general relativisti
 spa
etime is de-
omposed into spa
elike hypersurfa
es labelled with time 
oordinate. Two three-dimensional spa
elike hypersurfa
es, say at t and t+dt , are 
onne
ted in a rigid way,by inserting perpendi
ular 
onne
tors between the sli
es, with tailor-made lengths andshifts, su
h that a sti� `sandwi
h stru
ture' is maintained. The 
onne
tors are givenby the lapse fun
tion N (whi
h 
orresponds to the 
hoi
e of sli
ing) and the shift ve
-tor N i (whi
h 
orresponds to the 
hoi
e of spatial 
oordinates xi on hypersurfa
es).The requirement of rigidity leads dire
tly to the ADM metri
 (2.88). The pi
ture istaken from [MTW73℄.Often, the 
entral question of general relativisti
 problems is that of spa
etime 
urvature.Usually, it makes no sense to 
onsider extrinsi
 
urvature be
ause it is not obvious how to assign aphysi
al meaning to a �ve-dimensional manifold in whi
h the 
urvature of our four-dimensionaluniverse is measured. Therefore General Relativity is a theory of the intrinsi
 gravitational
urvature of spa
etime. When using the ADM framework it suddenly makes sense to 
onsiderextrinsi
 
urvature, i.e. the spatial 
urvature of the foliated hypersurfa
es with respe
t to theusual four-dimensional general relativisti
 spa
etime. The extrinsi
 
urvature is de�ned as(2.91) Kij ≡ −hµ
ih

ν
jni;j ,whi
h, in 
ase of time-independen
e of the metri
 gij , 
an be written in the 
ommon form(2.92) Kij ≡ 1

2N

(
Ni,j +Nj,i − 2Γℓ

ijNℓ

)
.The de�nition ofKij 
an be understood more deeply when trying to derive it from a fundamentalprin
iple, namely the Lie derivative. Loosely spoken, the Lie derivative is something like ageneralised dire
tional derivative. The extrinsi
 
urvature 
an be interpreted as the di�eren
ethat o

urs during a parallel transport of a normal ve
tor on the spatial hypersurfa
e withrespe
t to the embedding (four-dimensional) spa
e(2.93) −2Kij = Lngij .The extrinsi
 
urvature is nothing else than the Lie derivative of the three-metri
 gij in thedire
tion of the four-ve
tor nµ . Interestingly, the original de�nition of the Lie derivative for



68 2. THE COSMOLOGICAL PROBLEM OF DARK MATTERfour-dimensional quantities is formulated only by applying partial derivatives(2.94) Lagµν ≡ gµν,λa
λ + gµρa

ρ
,ν + gκνa

κ
,µ ,with respe
t to some four-dire
tion a . This is the Lie derivative as it is de�ned. It representsa derivative of a four-tensor (gµν) in dire
tion of a four-ve
tor �eld aµ . We have to apply thisto the problem (2.93) where we are looking for the Lie derivative of a three-tensor gij along thefour-ve
tor �eld nµ . The ansatz gives

Lngij = gij,0n
0 + gij,kn

k + giℓn
ℓ
,j + gsjn

s
,i

=
1

N

(
gij,0 −Ni,j −Nj,i + giℓ,jN

ℓ + gsj,iN
s − gij,kN

k
)

=
1

N

{

gij,0 −Ni,j −Nj,i + 2

[
1

2
gℓp (gip,j + gpj,i − gij,p)Nℓ

]}

=
1

N

[
∂tgij −

(
Ni;j +Nj;i
︸ ︷︷ ︸

LN gij

)]
= −2Kij ,(2.95)and thus we have derived the evolution equation of the spatial metri
 (2.92).Now we are prepared to write down the full set of ADM equations [Bu
01℄ that govern thedynami
s of the 3+1 system � assuming a vanishing 
osmologi
al 
onstant �[Hamiltonian or Energy Constraint℄(2.96) R −Ki

jK
j
i +K2 = 16πGE with E ≡ Tµνn

µnν ,[Momentum Constraints℄(2.97) Kj
i;j −K;i = 8πGJi with Ji ≡ −Tµνn

µhν
i ,[Evolution Equation for the Metri
℄(2.98) 1

N
gij,0 = −2Kij +

1

N

(
Ni;j +Nj;i

)
,[Evolution Equation for the Extrinsi
 Curvature℄(2.99)

1

N
Ki

j,0 = R
i
j+KK

i
j−

1

N
N ;i

;j+
1

N
(Ki

kN
k
;j−Kk

jN
i
;kN

kKi
j;k)−8πG

[

Si
j +

1

2
δi

j(E − S)

]

,with Sij ≡ Tµνh
µ
ih

ν
j , and the a

ording tra
e equations,[Evolution Equation for the Extrinsi
 Curvature (Tra
e)℄(2.100) 1

N
K,0 = R +K2 − 4πG(3E − S) − 1

N
N ;k

;k +
1

N
NkK;k ,[Evolution Equation for the Metri
 (Tra
e)℄(2.101) 1

N
g,0 = 2g

(

−K +
1

N
Nk

;k

)

with g ≡ det(gij) .2.3.5. Finding the Newtonian Counterpart to the CT Model � Part II. Applyingthe ADM split to the rotating Newton metri
 should yield the equations of movement, and onthis level the di�eren
es between Newtonian and CT model might be
ome transparent. Let usapproa
h the problem in steps and thus �rst start with the stati
 post-Newtonian metri
 beforewe in
lude more and more 
ompli
ations.
� Setup (1) stati
 Newton model � In what follows we will always use the linearisedNewtonian metri
s and further approximations will be stated expli
itly. We use the more generalPN metri
s and spe
ialise to the Newton metri
 by setting ψ = 0 where it is apposite. Thewarm-up exer
ise is going to be the simple stati
 PN metri
 in 
artesian 
oordinates(2.102) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dx2 + dy2 + dz2) ,



2.3. MODELLING GALAXIES WITH GENERAL RELATIVITY 69with φ = φ(x, y, z) and ψ = ψ(x, y, z) . We read o� the ADM-relevant expressions and note(2.103) N i = 0 = Ni , N2 = (1 + 2φ) , gij = (1 − 2ψ)δij , gij =
1

1 − 2ψ
δij .In three dimensions there are 15 non-vanishing 
omponents of the Christo�el symbol, they arelisted in app. C under equations (C.5). Sin
e the shift vanishes 
ompletely and the indu
edmetri
 does not depend on time, then the extrinsi
 
urvature also vanishes due to (2.92),(2.104) Kik = 0 , K = 0 ,and the tra
e being denoted with K ≡ Ki

i . Further, the non-vanishing 
omponents of thethree-dimensional Ri

i tensor are 
omputed and listed in the app. C under (C.6). The �nalresult for the three-Ri

i s
alar is(2.105) R =
4

(1 − 2ψ)2
∆

(3)
cartψ +

6

(1 − 2ψ)3
(∇(3)

cartψ)2 ≃ 4∆
(3)
cartψ ,where Dcart stands for the a

ording operators in 
artesian 
oordinates. This result is 
onsistentwith the one resulting from the well known �rst-order formula in the Newtonian 
ase [S
h85℄(2.106) Rijkl = δikψ,j,l + δjlψ,i,k − δilψ,j,k − δjkψ,i,l .As a matter model of the galaxy we 
hoose dust, implying that the energy-momentum tensoris that of a perfe
t �uid with vanishing pressure, Tµν = ρuµuν where uµ is the four-velo
ity ofa 
omoving observer. Note that in this setup it is not possible to simply set uµ = nµ , like itis done usually � be
ause that would ex
lude to treat rotation. In 
ase of the stati
 Newtonmetri
, the normals are nµ = N(−1,0) and nµ = 1/N(1,0) . Therefore the E fun
tion � whi
his the energy density seen by the �du
ial ADM observer � in the ADM formalism be
omes(2.107) E = Tµνn

µnν = ρN2(u0)2 = ρ
1

N2
(u0)

2 .Similarly, we 
an evaluate the Poynting ve
tor Ji in this 
ase(2.108) Ji = −Tµνn
µhν

i = ρNu0ui .The 
al
ulation of the full divergen
e of the lapse fun
tion yields
N ;k

;k =
1√

1 + 2φ

1

(1 − 2ψ)
∆

(3)
cartφ− 1√

1 + 2φ

1

(1 − 2ψ)2

(

∇(3)
cartφ

)

·
(

∇(3)
cartψ

)

− 2
1

(1 + 2φ)

1

(1 − 2ψ)

(

∇(3)
cartφ

)2

≃ ∆
(3)
cartφ ,(2.109)as well as N ;i

;j ≃ φ,i,j for i 6= j . In the end the ADM equations be
ome
R = 16πGE , E = ρN2(u0)2 , (Hamilton constraint)

Ji = ρNu0ui = 0 , (momentum constraint)

0 = Ri
j −

1

N
N ;i

;j − 8πG

[

Si
j +

1

2
δi

j(E − S)

]

, (evolution, non-trace)

0 = R − 1

N
N ;k

;k − 4πG(3E − S) , (evolution, trace)(2.110)with the stress tensor Sij = ρuiuj . Next we analyse the two 
ases of the 
lassi
al Newton metri
and the PN metri
.
� Case (A) ψ = 0 and φ 6= 0 (
lassi
al Newton metri
) � Sin
e ψ vanishes, it follows dire
tlythat R = 0 , and thus from the Hamilton 
onstraint with vanishing E , we have ρ = 0 ∨ u0 = 0whi
h is equally absurd. If we assume ρ 6= 0 , the momentum 
onstraint is satis�ed and ui 6= 0is possible. So by now we have(2.111) u0 = 0 , ui 6= 0 , ρ 6= 0 .The tra
e of the evolution equation yields a Poisson-like equation(2.112) ∆

(3)
cartφ = 4πGS = 4πGρuiui
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e part of the evolution equation yields(2.113) φ,i,j = −8πGSi
j = −8πGρuiuj .On the other hand, we 
ould 
hoose ρ = 0 whi
h implies u0 6= 0 , and this leads to ∆

(3)
cartφ = 0and φ,i,j = 0 whi
h is the 
ase of a test parti
le � 
onsistent but not very useful.Astonishingly, the 
lassi
al Newton solution does not make sense in the ADM split. Either

u0 = 0 or ρ = 0 must be a

epted but both results are unphysi
al. We assume that here the PNterms are ne
essary in order to make sense out of the ADM split and therefore pro
eed with thefollowing 
ase.
� Case (B) ψ = φ 6= 0 (simplest PN metri
) � Note that, taking ψ = φ 6= 0 right fromthe beginning is justi�ed be
ause the ansatz φ 6= 0 , ψ 6= 0 but φ 6= ψ , will require φ = ψfor 
onsisten
y, as we will see now. The Hamilton 
onstraint returns us a reasonable Poissonequation right away,(2.114) ∆

(3)
cartψ = 4πGρN2(u0)2But with u0 6= 0 and ρ 6= 0 the momentum 
onstraint gives ui = 0 and therewith a vanishingstress tensor. Consisten
y is indi
ated by the tra
e part of the evolution equation, it returnsthe same Poisson equation (2.114), only with the requirement ψ = φ. The non-tra
e equationsgive only trivial identities with the same requirement. Therefore it is 
on
luded that in orderto make sense out of the ADM split, already at the level of a stati
 setup (in 
ombination withdust matter), the 
lassi
al Newton metri
 makes no sense whereas the PN metri
 does.

� Setup (2) rigidly rotated Newton model � A rigid rotation a

ording to (2.70) with an
onstant angular velo
ity ω 
an be des
ribed with the following exa
t PN spa
etime(2.115)
ds2 = [(1− 2ψ)ω2r2 − (1 + 2φ)]dt2 + (1− 2ψ)(dr2 + dz2) + (1− 2ψ)r2dϕ2 − (1− 2ψ)2r2ωdϕdt .Now a non-vanishing shift is present. Interestingly, also here the extrinsi
 
urvature vanishesexa
tly,(2.116) Kik = 0 , K = 0 .The non-vanishing quantities, relevant for the ADM split, are to exa
t order:

Nϕ = −(1 − 2ψ)ωr2 , Nϕ = −ω , N2 = (1 + 2φ) , g11 = g33 = (1 − 2ψ) ,

g22 = (1 − 2ψ)r2 , g11 = g33 = 1/(1 − 2ψ) , g22 = 1/[(1 − 2ψ)r2] .(2.117)Note that, be
ause we use the exa
t metri
 (2.115), the quantity N2 is exa
t as it stands; theadditional 
ontribution in the time-time part of the metri
 
an
els out in the 
al
ulation of thelapse fun
tion. The 
omputations of the 
onne
tion and the Riemann tensor are tedious andhave been 
arried out partly with help of the 
omputer. We give the expli
it expressions inapp. C. We are able to reprodu
e the result (2.105) in 
ylindri
al 
oordinates(2.118) R =
4

(1 − 2ψ)2
∆(3)ψ +

6

(1 − 2ψ)3
(ψ2

,r + ψ2
,z) ≃ 4∆(3)ψ .The form of Hamilton and momentum 
onstraint as well as of the tra
e evolution equation arethe same as in (2.110). Only the forms of the non-tra
e parts are di�erent and they read

Ri
j =

1

N
N ;i

;j + 8πGSi
j , (evolution, i 6= j)

S1
2 = ρu1u2 = 0 ,

≡C
︷ ︸︸ ︷

R1
3 −

1

N
N ;1

;2 = 8πGS1
3 ,

S2
3 = ρu2u3 = 0 .(2.119)

� Case (A) ψ = 0 and φ 6= 0 (
lassi
al Newton metri
) � The same 
hain of 
on
lusionsas in the 
ase of the stati
 setup above, leads via R = 0, E = 0 to ρ = 0 ∨ u0 = 0 whi
h is
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al. We still 
hoose ρ 6= 0 to see what happens. The momentum 
onstraint is ful�lledand leaves ui 6= 0 possible. To leading order, the tra
e of the evolution equation gives a Poisson-like equation similar to (2.112). Looking at the non-tra
e parts of the evolution equation, thethird equation in (2.119) depends on the 
ombination C . Within the 
lassi
al Newton limit Cbe
omes equal to −φ,1,3 , as we have 
al
ulated. Thus we have
S1

2 = ρu1u2 = 0 ,

−φ,1,3 = 8πGS1
3 = 8πGρu1u3 ,

S2
3 = ρu2u3 = 0 .(2.120)Apart from ui = 0 two other solutions are also possible: (1) u2 = 0 but u1, u3 6= 0 and hen
e

S 6= 0 , and (2) u1, u3 = 0 leading to φ,1,3 = 0 but u2 6= 0 as well as S 6= 0 are possible. Of
ourse, also other solutions are thinkable, e.g. su
h with no matter (ρ = 0) but none of thesemakes mu
h physi
al sense, just as in the stati
 
ase above.
� Case (B) ψ = φ 6= 0 (simplest PN metri
) � In analogy to the stati
 
ase, the momentumand Hamilton 
onstraints together require ui = 0 , in order not to have an empty Poissonequation (ρ, u0 6= 0 ). Therewith the stress tensor and its tra
e vanish. From the tra
e of theevolution equation, the Poisson equation 
an be reobtained like before. The non-tra
e equationsdo not give new information sin
e C = 0 in the linearised 
ase and this is then just 
onsistentwith the vanishing of ui . Altogether, although ρ 6= 0 and u0 6= 0 are possible, the equations donot allow any motion.
� Setup (3) di�erentially rotated Newton model � Finally, in this model we 
an hope for anon-vanishing extrinsi
 
urvature and some non-trivial properties. The linearised di�erentiallyrotating post-Newtonian metri
 takes the form(2.121) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dr2 + dz2) + (1 − 2ψ)r2dϕ2 − (1 − 2ψ)2r2Ωdϕdt ,with the potentials being fun
tions of r and z only: φ = φ(r, z) , ψ = ψ(r, z) , Ω = Ω(r, z) .Re
all that the metri
 is only valid in a stri
tly lo
al sense. Shift and lapse fun
tion be
ome(2.122) Nϕ = −(1 − 2ψ)Ωr2 , Nϕ = −Ω , N2 = (1 + 2φ) + (1 − 2ψ)Ω2r2 .The spatial metri
 stays the same as before. The extrinsi
 
urvature has vanishing diagonal
omponents, su
h that K = 0 , and we have the following non-vanishing and exa
t o�-diagonal
omponents(2.123) K1

2 = − 1

2N
Ω,rr

2 , K2
1 = − 1

2N
Ω,r , K2

3 = − 1

2N
Ω,z , K3

2 = − 1

2N
Ω,zr

2 .We employ dust, that is p = 0 and Tµν = ρuµuν , and so we also have the following, like above,(2.124) E = ρ(Nu0)2 , Sij = ρuiuj , Ji = −Tµνn
µhν

i .Then, the ADM equations be
ome, for the di�erentially rotating 
ase up to all orders,(Hamiltonian 
onstraint) R −Ki
jK

j
i +K2 = 16πGE ,(2.125) 4

(1 − 2ψ)2
∆(3)ψ +

6

(1 − 2ψ)3
(
ψ2

,r + ψ2
,z

)
− 1

4

1

N2
r2
(
Ω2

,r + Ω2
,z

)
= 16πGρ(Nu0)2 .(Momentum 
onstraints) Kj

i;j −K;i = 8πGJi ,

8πGJ1 = 8πGρNu0u1 = 0 ,

8πGJ2 = 8πGρNu0u2 =

r2

2N

(

Ω,r,r +
3

r
Ω,r + Ω,z,z

)

− r2

2N2
(N,rΩ,r +N,zΩ,z) +

r

2N

1

(1 − 2ψ)
(ψ,rΩ,r + ψ,zΩ,z) ,

8πGJ3 = 8πGρNu0u3 = 0 .(2.126)
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j = Ri

j +KKi
j − 1

NN
;i
;j + 1

N (Ki
kN

k
;j −Kk

jN
i
;kN

kKi
j;k) ,

8πGS1
2 = 8πGρu1u2 = 0 ,

8πGS1
3 = 8πGρu1u3 =

1

(1 − 2ψ)3
(3ψ,rψ,z + (1 − 2ψ)ψ,r,z) −

1

N

1

(1 − 2ψ)2
(ψ,rN,z − ψ,zN,r + (1 − 2ψ)N,r,z) +

1

2

1

N
r2Ω,rΩ,z ,

8πGS2
3 = 8πGρu2u3 = 0 .(2.127)(Evolution, i = j) R = 4πG(3E − S) + 1

NN
;k

;k ,with the relevant derivatives of the lapse fun
tion being
N,r,z =

1

N3

{

φ,z + r2Ω
[
(1 − 2ψ)Ω,z − Ωψ,z

][
−φ,r − rΩ [(1 − 2ψ) (Ω + rΩ,r) − rΩψ,r]

]}

+
1

N

{

φ,r,z + r
{

(1 − 2ψ) rΩ,rΩ,z − Ω
[
2rψ,zΩ,r − 2Ω,z (1 − 2ψ − rψ,r) − r (1 − 2ψ)Ω,r,z

]

− Ω2 (2ψ,z + rψ,r,z)
}} LO≃ φ,r,z − φ,rφ,z ,

N,r =
1

N

{

φ,r + rΩ
[
(1 − 2ψ) (Ω + rΩ,r) − rΩψ,r

]} LO≃ φ,r ,

N,z =
1

N

{

φ,z + r2Ω
[
(1 − 2ψ)Ω,z − Ωψ,z

]} LO≃ φ,z .(2.128)And the full divergen
e of the lapse fun
tion is given by
N ;k

;k =
1

N

1

(1 − 2ψ)2

{

− ψ,z

{
φ,r + r2Ω [(1 − 2ψ)Ω,z − Ωψ,z]

}

+ (1 − 2ψ)
{

φ,z,z + r2
{
(1 − 2ψ)Ω2

,z − 4ΩΩ,zψ,z + Ω [(1 − 2ψ)Ω,z,z − Ωψ,z,z]
}}

+

[

(1 − 2ψ)
1

r
− ψ,r

]{

φ,r + rΩ [(1 − 2ψ) (Ω + rΩ,r) − rΩψ,r ]
}

+ (1 − 2ψ)
1

N2

{

{φ,r + rΩ [(1 − 2ψ) (Ω + rΩ,r) − rΩψ,r]}2 −
{
φ,z + r2Ω [(1 − 2ψ)Ω,z − Ωψ,z]

}2
}

+ (1 − 2ψ)
{

r2 (1 − 2ψ)Ω2
,r + rΩ [4Ω,r (1 − 2ψ − rψ,r) + r (1 − 2ψ)Ω,r,r] + φ,r,r

+ Ω2
[
(1 − 2ψ) − 4rψ,r − r2ψ,r,r

] }
}

LO≃ ∆(3)φ .(2.129)For the sake of 
larity the linear order terms are underlined in the above expressions. We 
anlearn from the (1 3)-equation of (2.127) that φ = ψ is only allowed if Ω,r = 0 or Ω,z = 0 . Wenow attempt to solve the ADM equations for the �rst-order 
ase.
� Case (A) ψ = 0 and φ 6= 0 (
lassi
al Newton metri
) � Let us approximate the abovesolutions by just taking the linear orders and for 
onvenien
e let us assume that Ω = Ω(r) only.Then, in 
ase we want to have ρ 6= 0 , the Hamilton 
onstraint requires the unphysi
al equation

u0 = 0 . The momentum 
onstraint yields the equation(2.130) 3rΩ,r + r2Ω,r,r = 0 .The evolution equation for i = j gives a Poisson-like equation ∆(3)φ = 4πGS and the i 6= jequations read
S1

2 = ρu1u2 = 0 , S2
3 = ρu2u3 = 0 , −φ,1,3 = 8πGρu1u3 .(2.131)
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tly the same as in the rigidly rotating 
ase above, with one ex
eptionthe di�erential equation for Ω that 
ame out of the momentum 
onstraint (2.130). Here we areagain left with unphysi
al requirements like ρ = 0 ∨ u0 = 0 that make the right hand side of(2.130) zero, and we 
an say that at most the test parti
le s
enario with u0 6= 0 and ρ = 0 isviable.
� Case (B) ψ = φ 6= 0 (simplest PN metri
) � Here the setting appears at �rst also verysimilar to the rigidly rotated 
ase. But there is the subtle feature in that we have non-vanishingmixing 
omponents g02 and g02 , whi
h has the 
onsequen
e that for instan
e u2 
an vanishbut u2 
an be non-zero, as we will see in the following. First, we note that we 
an have anappropriate Poisson equation,(2.132) ∆(3)φ = 4πGE = 4πGρ(Nu0)2 ,with both ρ 6= 0 and u0 6= 0 . The momentum 
onstraint requires both u1 = 0 and u3 = 0 whi
hdoes imply u1 = 0 and u3 = 0 , but also the novel relation(2.133) −1

2
r2∆(3)Ω(r) − rΩ,r(r) = ρNu0u2 .Inserting the Poisson equation into the i = j-part of the evolution equation returns S = 0 for
onsisten
y with the Poisson equation. The i 6= j evolution equation gives to linear order

S1
2 = ρu1u2 = 0 , S2

3 = ρu2u3 = 0 , S1
3 = ρu1u3 = 0 .(2.134)This, together with S = 0, implies that u2u2 = 0 . But this alone is no problem be
ause of thementioned non-diagonality of the four-metri
. To linear order we 
an 
ompute(2.135) u2 = gµ2u

µ = g02u
0 + g22u

2 = −(1 − 2φ)Ωr2u0 + (1 − 2φ)r2u2 ≃ −Ωr2u0 + r2u2 .So the requirement u2u2 = 0 allows for a solution u2 = 0 ∧ u2 = Ωu0 whi
h is 
onsistent withour initial assumptions on rotating axisymmetri
 and stationary systems (2.33). Further, fromthe momentum 
onstraint (2.133) we obtain a homogeneous di�erential equation for Ω , that is(2.136) r2Ω,r,r + 3rΩ,r = 0 .Note that this is the same equation that we have already seen in the pre
eding 
ase (A), namely(2.130); but there we had the unwanted additional 
onstraints ρ = 0 or u0 = 0 . Now, (2.136) isreadily solved, yielding(2.137) Ω(r) =
1

r2
C1 + C2 ,with arbitrary real 
onstants C1, C2 . If C1 = 0 then we obtain the limit of rigid rotation

Ω(r) = C2 = ω . If C2 = 0 we obtain the rotation 
urve of the problem(2.138) C1 = r rΩ(r)
︸ ︷︷ ︸

=v(r)

= v(r)r ≡ L0 ,and so C1 
an be identi�ed as the total angular momentum of the system. However, there isa problem with this equation be
ause the obtained rotation 
urve falls of as 1/r and not as
1/

√
r whi
h is the 
lassi
al Newtonian result. Therefore the linear approximations must be tonaïve. In deriving the approximate results for the di�erentially rotating 
ase we made an linearansatz for the metri
 (2.121). The a
tual 
orresponding ADM equations are given to exa
torder but due to their 
omplexity we made linear approximations while evaluating them. Wetherefore 
onje
ture that the 
orre
t evaluation should enfold the full di�erentially rotated PNmetri
 (C.3), in
luding quadrati
 orders, as an ansatz. This introdu
es numerous additional
omponents to the extrinsi
 
urvature, be
ause additional mixing terms have to be in
luded atse
ond order.Let us summarise some basi
 points in brief:

• Up to day, there does not exist an appli
able general relativisti
 solution whi
h 
ouldhelp to realisti
ally model a gala
ti
 system.
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• Coopersto
k and Tieu have re
ently proposed su
h a solution, but it has been arguedfrom various dire
tions that their solution in
orporates unphysi
al features. It remainsan open point whether the CT solution 
ould provide an e�e
tive or approximate modelin restri
ted 
ases, and to whi
h extent the breakdown of its Newtonian limit mightindi
ate its usefulness or its di�
ulties.
• We have shown that the CT solution does not belong to the 
lass of the most generalaxially symmetri
 and stationary solutions, the Lewis-Papapetrou 
lass. Therefore theCT solution is less general and this restri
tion might be a reason for the problems ofthe model.
• In the same line we found the surprising fa
t that the Newtonian metri
 is not appro-priate for a weak �eld limit of the CT theory; the in
orporation of a post-Newtonianpotential is ne
essary to make physi
al sense.
• We applied the full ma
hinery of the ADM formalism to the problem and we derivedthe exa
t 3+1-equations of motion for the stati
 and for the rigidly rotated PN metri
as well as approximate results for the di�erentially rotated 
ase. We found that it isne
essary to go to full quadrati
 order in the potentials of the di�erentially rotated PNmetri
 to obtain a viable Newtonian limit, whi
h is not presented here due to `�nitetime e�e
ts'.



Part IIAxisymmetri
 E�e
ts in the CMB





CHAPTER 3On the Cosmi
 Mi
rowave Ba
kgroundCurrently, measurements of the CMB provide one of the most important means towardhigh-pre
ision evaluation of 
osmologi
al models, parti
ularly the standard ΛCDM model. Inthis 
hapter we attempt to give a 
ompilation of the main physi
al me
hanisms that 
ontributeto the CMB radiation. In some detail, we will outline the de
oupling of the CMB photons frommatter in the early Universe, as triggered by the pro
ess of re
ombination. Furthermore, wereview and partly derive the standard statisti
al framework whose equations form the languagein whi
h modern CMB surveys are analysed and dis
ussed. In parti
ular, the CMB angularpower spe
trum poses a 
entral observable of the �eld and we dis
uss measurements of it, aswell as the expli
it assumptions that go into the analysis.3.1. Overview of Sour
es of CMB AnisotropyA remarkable feature of the CMB is that is overall isotropi
 to a �rst approximation. Thisis only surpassed by the even more remarkable feature that tiny, yet predi
table anisotropiesexist. The 
onditions of the early Universe as well as mu
h of the global physi
s that hastaken pla
e before de
oupling are mirrored in these anisotropies. Physi
ally, it is 
onvenientto divide anisotropies into two 
lasses: (a) primary ones, whi
h enfold all possible sour
es ofinitial anisotropy imposed on the photon �eld at around the time of last s
attering, triggeredby gravitational or plasma physi
s; (b) se
ondary ones, these 
omprise a 
onglomeration of allsigni�
ant e�e
ts the CMB photon 
an undergo on its long travel towards us along the line ofsight. Basi
 primary anisotropies [S
h06℄ 
an o

ur as a 
onsequen
e of the following physi
ale�e
ts:
• Due to in�ation there are inhomogeneities in the primordial density �eld, and thesefor
e the photons on the surfa
e of last s
attering to work against deeper potentialwells here and less deep ones there. In addition to the resulting redshift, there o

ursa gravitative time delay for the photons. This means that, e.g. the energy loss ofa photon 
limbing out of a deep potential well will be partly 
ompensated by thee�e
t that it also undergoes its last s
attering a bit earlier be
ause of a gravitationaltime shift. Within a full general relativisti
 treatment these two e�e
ts always o

urtogether naturally and are 
overed by the theory of the Sa
hs-Wolfe e�e
t.
• The initial inhomogeneities in the primordial density �eld would translate into pertur-bations in the a

ording pe
uliar velo
ity �eld, 
.f. app. D. Therefore, the ele
tronsthat are mainly responsible for photon s
attering, do not solely follow the global ex-pansion of spa
etime but they are also subje
t to the indu
ed pe
uliar velo
ities. Thisis the sour
e for a frequen
y-shifting e�e
t on the primeval photons: as the pe
uliarvelo
ity �eld arises, the ele
trons that tra
e the �eld are subje
ted to a Doppler mo-tion at the moment the primordial photons undergo last s
attering o� them. If, forinstan
e, the Doppler motion in a 
ertain region of the de
oupling plasma happens tobe dire
ted away from the future observers position, then the Doppler e�e
t will takea bit of the photon's energy away, resulting in additional redshifting in that dire
tion.
• Before re
ombination, the primordial plasma is a tightly 
oupled baryon-photon �uid.The 
oupling is due to the free ele
trons that e�e
tively glue the two �elds throughThomson s
attering with the photons and Coulomb s
attering with the baryons. Dark77



78 3. ON THE COSMIC MICROWAVE BACKGROUNDMatter (
.f. 
hap. 2) is attributed a 
ru
ial role also at the early epo
hs of the Uni-verse. In regions where there is a 
ondensation of Dark Matter, the density of baryonswould also be higher. More exa
tly, before re
ombination and on super-Hubble s
ales,the distribution of Dark Matter is well tra
ed by the distribution of the baryons. Buton sub-Hubble s
ales the e�e
tive pressure that is produ
ed by the baryon-photon�uid be
omes sensible and important. With the gravitational pull from Dark Matteras the driving for
e, and the pressure of the baryon-photon plasma as the restoringfor
e, the baryons undergo a
ousti
 os
illationsa. The baryon os
illations 
orrespondto elongations and 
ompressions in the baryon �uid whi
h, in the adiabati
 
ase, 
ausethe os
illating region to be
ome 
older during elongation and hotter during 
ompres-sion. Now, before re
ombination, photons are tightly 
oupled to the baryons, forming abaryon-photon �uid and therefore the adiabati
 perturbations are imposed on the pho-tons too; this makes the photons a

ordingly hotter if they last-s
atter from a regionof adiabati
 
ompression and 
ooler if last-s
attered from a region of adiabati
 elon-gation. At re
ombination this e�e
t of the baryon environment on the photons in thepre-re
ombination phase suddenly freezes, be
omes visible and 
ontributes additionalCMB anisotropy.
• But the 
oupling of photons and baryons is not exa
t. Rather, the photons do havea �nite mean free path whi
h leads to photon dissipation on small s
ales. On theses
ales the restoring for
e, whi
h was provided by the pressure support, on the baryonos
illations disappears and the �u
tuations are e�e
tively washed-out. This dampingme
hanism, due to photon dissipation be
ause of the �nite shear vis
osity and heat
ondu
tivity of the �uid, is referred to as Silk damping. Due to Silk damping, on alls
ales smaller than roughly ∼ 5′ , there remain only tiny �u
tuations. A more detailedestimate on the e�e
tive s
ale of Silk damping 
an be found in app. D.3.Let us shortly summarise. As primary CMB anisotropies we so far have: the Sa
hs-Wolfe e�e
t;frozen Doppler velo
ities and adiabati
 baryon os
illations. But also damping of �u
tuations o
-
urs, namely through the pro
ess of Silk damping. Of 
ourse, the �rst three of these me
hanismsare not independent of ea
h other.Let us add a 
omment explaining why the os
illations in the baryon-photon plasma arepossible. After matter-radiation equality � whi
h is at around zeq ≃ 23900Ωmh

2 � the overallenergy density of matter ex
eeds that of radiation. But when looking only at the baryon-photon �uid, the radiation energy density is the dominant 
omponent in this �uid and so we
an treat it as a relativisti
 �uid. That implies that the sound speed is around cs ≃
√

p/ρ ≃
c/
√

3 and so the large pressure in the �uid makes os
illations possible. As mentioned, thegravitative for
e due to the Dark Matter provides the driving for
e and the baryon-photonpressure gives rise to a restoring for
e in the os
illator. The adiabati
 os
illations translateinto temperature anisotropies whi
h are observable on the mi
rowave sky today. But there isa natural size limit for the os
illations. Sin
e the speed of sound is around cs ≃ c/
√

3 , thereexists a maximal wavelength, the sound horizon, whi
h possibly 
ould have been 
overed by ana
ousti
 perturbation up to the time of last s
attering:(3.1) λSH ≃ treccs = rH(trec)/
√

3 ∼ 1◦.aLet us 
omment on the growth of the baryon perturbations. Still during the radiation dominated epo
h,there would be a moment when the baryoni
 and Dark Matter perturbations enter the horizon. Then, onthe smaller (
ausal) s
ales the pressure support stops the baryon perturbations from growing further, so thatthe Dark Matter perturbations 
an go ahead of the baryoni
 ones. That is, for subhorizon modes the growthof perturbations is in 
ompetition with the e�e
tive pressure from the baryon-photon �uid and is eventually
ompensated. At the same time, Dark Matter is not strongly 
oupled to photons and grows untroubled frommatter-radiation equality, aeq , on. One 
an estimate [Pad02℄ that the Dark Matter perturbations have the
han
e to grow by a fa
tor of & 20 in the period aeq < a < adec while the baryoni
 perturbations are tamedduring that phase. However, after re
ombination the photons are no longer strongly 
oupled to the baryons andbe
ome free-streaming. This, after some time, unlo
ks the growth of baryon �u
tuations, being driven by theDark Matter perturbations, and eventually 
at
hing up with the latter.
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ale 
orresponds to the �rst a
ousti
 peak in the angular power spe
trumof the CMB and is a dire
tly measurable 
osmologi
al observable.Next we 
ontinue with a list of sour
es [S
h06℄ that are important for se
ondary CMBanisotropies:
• Due to the la
k of an absorption threshold in the Lyman-α spe
tra of very distantquasars up to z ≃ 6 � together with 
onstraints on the baryon abundan
e from primor-dial nu
leosynthesis � it is 
on
luded that the intergala
ti
 medium in the Universetoday is highly ionised. Re
ent CMB analyses set reionisation at around z ∼ 10and so from this epo
h on, there must be free ele
trons present in the extragala
ti
mediumb. Then CMB photons 
an again s
atter o� these ele
trons via Thomson s
at-tering. Be
ause the CMB is isotropi
 around any s
attering 
entre, the res
atteredCMB radiation that we would measure, does not 
ontain information on the primor-dial temperature anisotropies anymore. Rather these photons represent an additional
omponent with random dire
tional origin, i.e. an isotropi
 ba
kground to the CMBwith a mean temperature that equals the CMB mean temperature. The result is ade
rease in the temperature anisotropies by the fra
tion of photons that undergo su
hlate Thomson s
attering.
• While the photons are on their long travel through the Universe, toward the measur-ing instrument today, the surrounding large-s
ale stru
ture is in a pro
ess of dramati
gravitative evolution. This evolution is due to the vast pro
esses of stru
ture forma-tion, 
.f. app. D. As a 
onsequen
e, the gravitational potentials that the photons aretraversing are not stationary. This environment will indu
e a net e�e
t on the photonsbe
ause of the large s
ale of the gravitative e�e
ts. Let us explain this in more de-tail. Imagine two CMB photons, 
oming from two di�erent dire
tions to us. The �rstphoton, say from dire
tion n1 , would travel through a gravitational potential, and these
ond one, say from dire
tion n2 would travel undisturbedly. Now, assume that thepotential wells in the line of sight were stationary, then there would be no di�eren
e infrequen
y of the two photons. That is be
ause the net e�e
t of the potential is zero forthe �rst photon, for it looses exa
tly the same energy while 
limbing up the potentialwell it has gained before while falling into it. This is not true anymore in 
ase of apotential that varies at time s
ales 
omparable to the traversing time of the photon.Exa
tly su
h a setup is realised during stru
ture formation � and as we will see belowthis is also likely to happen at low redshifts � and so additional anisotropy is indu
edto the CMB. This is 
alled the Rees-S
iama e�e
t. In the 
ase of an Einstein-DeSitterUniverse, one 
an show that the pe
uliar gravitational potentials are 
onstant withtime and no Rees-S
iama e�e
t o

urs. Notably, in other 
osmologi
al models thise�e
t exists and 
annot be negle
ted. Often, the 
onglomeration of any linear gravi-tative e�e
ts a CMB photon 
an undergo after re
ombination on the line of sight, aresummed under the notion integrated Sa
hs-Wolfe e�e
t.
• Due to the gravitational lensing of CMB photons from the 
osmologi
al �eld of densityperturbations, there will be a dire
tional distortion in the line of sight to the lastbFrom observations we know that the gas in the intergala
ti
 medium is highly ionised at low redshifts. Letus explain this �nding in further detail. Assume this was not so, assume the intergala
ti
 hydrogen would beneutral. Then we 
ould never observe ultraviolet radiation from far-away sour
es; this is be
ause due to 
ontinuousredshifting, at least somewhere in the line of sight, the photons would rea
h a wavelength of λLyα ≃ 1216Å andwould be absorbed by the neutral hydrogen with a high probability. The probability is high be
ause the 
rossse
tion for photoionisation of neutral hydrogen is signi�
antly high for photons with wavelengths near the Lyman-

α line. This is 
alled the Gunn-Peterson test. In fa
t there exist sour
es (quasars) at z & 6 from whi
h we 
aneven see light from the blue side of the spe
trum with respe
t to the Lyman-α line. Therefore the Universemust have be
ome reionised somewhere between z ∼ 1100 and z ∼ 6 . The times between last s
attering andreionisation are sometimes 
alled the `Dark Ages' and it is spe
ulated that reionisation was made possible bythe very �rst generation of stars or a
tive gala
ti
 nu
lei. Dire
t measurements of the Gunn-Peterson trough forobje
ts z > 6 are subje
t to 
urrent debate. However, re
ent WMAP measurements [S+07℄ of the CMB suggestthat reionisation o

urred at a redshift of zreion = 11.3 .
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attering surfa
e. Without that e�e
t, an angular separation of θ would 
orrespond� due to the angular diameter distan
e (1.38) � to a distan
e of DA(zrec)θ at thesurfa
e of last s
attering. Taking the lensing distortion into a

ount, this angulardistan
e will be slightly di�erent. This e�e
t results in an e�e
tive smearing of thetemperature �u
tuations, observable on small s
ales in the 
orrelation fun
tion of theCMB anisotropies.
• If CMB photons happen to go through a galaxy 
luster in the line of sight, in whi
hthere is a very hot (ultrarelativisti
) intra-
luster medium, they 
an undergo inverseCompton s
attering. This is the Sunyaev-Zel'dovi
h e�e
t. In su
h dire
tions therewill be a distortion in the frequen
y of the CMB photons in so far as they would gainsome energy on average through the s
attering o� the very energeti
 ele
trons in thegalaxy 
luster medium. In fa
t, the CMB intensity shows a de
rease in the low energypart and an in
rease on the higher energy side of the spe
trum. Therefore, whenobserved at a frequen
y interval that is large enough, the Sunyaev-Zel'dovi
h e�e
t iswell distinguishable in the CMB data.3.2. Re
ombinationRe
ombination is a somewhat misleading term. At re
ombination the primordial plasma has
ooled down so far that neutral atoms 
ould be formed. In the Big Bang pi
ture the temperatureof the Universe goes as T (z) ∝ (1 + z) , and so, before the time of re
ombination there was nopossibility for stable neutral atoms to be present; the Universe was fully ionised ever before. Theterm `re
ombination' 
an be understood merely in a histori
al sense: it refers to the pro
ess ofre
ombination in HII regions, 
.f. [Pea99℄. HII regions are high-temperature regions 
ontaininghydrogen � and also helium � and 
an be found in the vi
inity of stars. In a 
ontinuous pro
ess,the hydrogen �rst be
omes fully ionised by the ultraviolet radiation from the stars, after whi
hthe ele
trons and the ions �nd ea
h other again, emitting re
ombination radiation, before theybe
ome photoionised on
e more and so on. Below we present a des
ription following S
hneider[S
h06℄ and Pea
o
k [Pea99℄.Be
ause of the very hot and dense environment, the formation of nu
lei is possible withinstars. Similarly, there should be a period in the early Universe where nu
lei were formed for the�rst time; this is des
ribed within the model of Big Bang Nu
leosynthesis (BBN). BBN ends ata temperature of around T ∼ 8 × 108K, or approximately after three minutes. After BBN theparti
le 
ontent of the Universe is basi
ally given by ele
trons, protons, helium nu
lei and tra
esof other light elements, neutrinos, photons and possibly the parti
les that form Dark Matter, theWeakly Intera
ting Massive Parti
les (WIMPs). Apart from the WIMPs and the neutrinos, allparti
les have roughly the same temperature; this is be
ause of the relatively strong intera
tionof the photons with the 
harged parti
les, and so a kind of thermal bath is realised.Before the instant of equality at zeq ≃ 23900Ωmh

2 , the energy density and therewith therate of expansion of the Universe are dominated by the radiation, that is by the photons andthe neutrinos. After equality, the matter � we approximate it as dust � starts to dominatethe energy density and the expansion rate of the Universe. In the Friedmann equation (1.16),this implies that the �rst term be
omes dominant and we 
an make the 
rude simpli�
ation
H2 ≃ H2

0Ωma
−3 . From tab. 1.1 we already know the solution to this di�erential equation; formatter domination the s
aling is(3.2) a(t) =

(
3

2
Ω1/2

m H0t

)2/3

within aeq ≪ a≪ 1 .This s
ale behaviour is valid as long as either the 
urvature term or the 
osmologi
al 
onstantis dominant.As the Universe expands further, after equality there will be a period when the free ele
trons
an 
ombine with the ions to form neutral atoms. But, of 
ourse, there is a 
ompeting pro
essto this, namely the photoionisation of neutral atoms through high-energy photons. Also, there
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Figure 3.1. S
hemati
 depi
tion of matter and radiation de
oupling. The de
ou-pling is no instantaneous pro
ess. Before re
ombination, baryons and photons forma tightly 
oupled �uid in whi
h a
ousti
 os
illations take pla
e. Some time after theradiation and matter equality at around zeq ≃ 3000 , the re
ombination of ele
tronsand ions � as des
ribed in detail in the text � sets in. At around zrec ≃ 1088 thebaryon-photon �uid be
omes transparent for the �rst time. This gives rise to a lasts
attering surfa
e from whi
h on photons are free-streaming, and we are able to ob-serve a snapshot of this primeval de
oupling today � whi
h itself has a �nite thi
knessof around z ≃ 60 . The pi
ture is taken from [Les04℄.is another 
ompeting ionisation pro
ess due to 
ollisions. But this 
an be negle
ted be
ause theratio of baryons to photons η is very small, namely only of the order 10−8 , see also app. E onBBN. Note that the temperature of the Universe has to drop to a value well below the ionisationtemperature if neutral atoms are to be formed e�
iently. The reason for this is that, yet atthe ionisation temperature there are photons in the Wien tail of the Plan
k spe
trum that areenergeti
 enough to break the formed atoms via photoionisation. Sin
e there are so many morephotons than baryons the Wien tail is still populated densely, making the e�e
t signi�
ant. Asis well known, the energy needed for ionisation of hydrogen is χ ≃ 13.6eV, 
orresponding to atemperature of ∼ 105K (re
all, 1eV≃ 1.161×104kBK). Now, the fra
tional ionisation is the ratio(3.3) x ≡ number density of free electrons

total number density of protons
.Be
ause of the above mentioned stubborn photoionisation from photons in the tail of the Plan
kdistribution, the temperature of the Universe has to drop to a value of T ∼ 3000K before thefra
tional ionisation signi�
antly drops below one. For instan
e, at temperatures T > 104K, thefra
tional ionisation is still roughly equal to one, implying that nearly all ele
trons are free. Ata redshift of around z ∼ 1300 , a signi�
ant deviation of x from unity 
an develop.It would be good to have a robust, quantitative estimate on when re
ombination has begun.As a �rst step we 
onsider Saha theory, from whi
h the following ionisation formula stems(3.4) 1 − x

x2
≃ 3.84η

(
kBT

mec2

)3/2

eχ/(kBT ) .The Saha equation is a thermodynami
 equilibrium equation and it des
ribes the behaviourof the ionisation fra
tion as a fun
tion of temperature. Plotting the fun
tion reveals that theionisation shows a rather sharp de
rease, going from unity to nearly zero in a temperature



82 3. ON THE COSMIC MICROWAVE BACKGROUNDinterval of around 2500K- 5000K [Nar02℄. That is, if the Saha theory is all we need to des
ribethe re
ombination, the 
osmos would be
ome transparent at these temperatures, sin
e the mains
attering partners, the free ele
trons, are `removed' from the primordial plasma.However, there is a loophole in the above argument. As we will see, on
e the pro
ess ofre
ombination has started, the assumption of thermodynami
 equilibrium be
omes invalid ratherfast. Consider a re
ombination dire
tly to the ground state of the hydrogen, then a photon withenergy hν > χ is emitted. Su
h photons are of 
ourse problemati
 for the re
ombination sin
ethey 
an reionise other hydrogen atoms. In fa
t, they do reionise other atoms with a highprobability be
ause of the large 
ross se
tion of the photoionisation pro
ess. Hen
e, for everyre
ombination there is a reionisation, su
h that the net e�e
t is zero. Re
ombination shallhappen stepwise: �rst a re
ombination into an ex
ited state, whereupon the atom undergoessu

essive radiative pro
esses and eventually arrives at its ground state. But there is a problemalso with this pi
ture. For every su
h stepwise re
ombination there will be an emission of aLyman-α photon from the last step of the pro
ess, the transition from the �rst ex
ited state tothe ground state 2P→ 1S with λ = 1216Å. The resulting Lyman-α photon would immediatelylift an atom in its ground state to its �rst ex
ited state. Sin
e for this atom the ionisation energyis not χ but only χ/4 and be
ause there are mu
h more photons with energies of χ/4 than thereare with χ , su
h atoms 
an be reionised even easier, whi
h a
tually also happens. One 
an saythat re
ombination radiation leads to small distortions in the Plan
k spe
trum whi
h in turnmakes the re
ombination more di�
ult; the re
ombination suppresses itself through the abovepro
esses. Nevertheless, in gas 
louds or HII regions, re
ombination 
an still happen in thisway, sin
e the unwanted Lyman-α photons dissipate be
ause of the �nite extent of the regions.Re
ombination in an in�nite Universe seems mu
h more problemati
.So it seems that re
ombination might not be possible at all! How 
an we 
ir
umvent thisabsurd �nding? There is only one way out: in the end it turns out that re
ombination 
an indeedo

ur, namely via the s
ar
e pro
ess of two-photon emission. Although the two-photon de
ayhappens 108 times rarer than the dire
t Lyman-α transition, this pro
ess �nally su

eeds intransferring the ionisation energy into photons with wavelengths λ > λLyα, and so the produ
edradiation does not have enough energy to eventually ex
ite an atom from the ground state.In fa
t, the transition 2S→ 1S is stri
tly forbidden at �rst order in perturbation theory. Butwith the emission of a pair of photons, angular momentum and energy 
an be 
onserved. Beingof se
ond order, the pro
ess is very slow � with a lifetime of around ≃ 0.1s � so that there
ombination is also slowed down as it has to pass this bottlene
k. Therefore the a
tual rateat whi
h re
ombination happens is 
ompletely di�erent from the predi
tion of the equilibrium(Saha) theory.Let us 
onsider a mu
h simpli�ed model, a world where the hydrogen atom has only thetwo levels 1S and 2S. We 
an just ignore any 
hain of re
ombination that rea
hes the groundstate be
ause the produ
ed photons will 
ause reionisation elsewhere and the net e�e
t is zero.Be
ause of the above, we shall fo
us on re
ombinations into the 2S state. Some of the atoms inthat state would undergo two-photon de
ay before they be
ome ex
ited again. Then the rate of
hange of the ionisation fra
tion follows(3.5) d(npx)

dt
= −R(npx)

2 Γ2γ

Γ2γ + Γup(T )
,with np being the number density of protons, R ≃ 3 × 10−17T−1/2m3s−1 the so 
alled re
om-bination 
oe�
ient, the two-photon de
ay rate Γ2γ and the `upward transition rate' Γup(T )of transitions from the 2S level upwards due to stimulated emission. In our simpli�ed pi
turere
ombination is a two-body pro
ess after whi
h ex
ited states remain, whi
h subsequently un-dergo a de
ay 
as
ade until the 2S level is rea
hed. Then, starting from the 2S level, there willnot only be downward de
ay but also stimulated upward transition. These two transitions arein a 
ompetition whose out
ome will �x the e�e
tive number of downward transitions whi
h isthe relevant one for re
ombination. Peebles [Pee93℄ o�ers a more detailed treatment in whi
hthe depopulation of ground states by inverse two-photon absorption or the redshifting of the
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Figure 3.2. Spe
tral distribution of the CMB plotted as intensity vs. wavelength.The data points lie perfe
tly on a bla
k body spe
trum peaking at around 160GHz.Besides data from the COBE mission [MCC+94℄, there is also data shown from aro
ket experiment (UBC Ro
ket) [GHW90℄, ground based experiments (LBL/Italy)[SBL91℄, (Prin
eton) [SJWW95℄ as well as spe
tros
opy of the rotational ex
itationof 
yanogen [RM95℄. Pi
ture is taken from [Smo97℄.Lyman-α radiation by 
osmi
 expansion is also taken into a

ount. However, as long as welook at relevant redshifts of 10-1000 , these e�e
ts shall not signi�
antly a�e
t the basi
 resultsof our simpli�ed 
onsideration. Note that the rate equation (3.5) obeys a simple s
aling. Theright hand side involves Γup and R, both are fun
tions of only temperature (redshift). Hen
e,parameter dependen
e is only 
arried by n2
p whi
h s
ales as (Ωbh

2)2 on the right hand side,and a

ordingly the s
aling is proportional to Ωbh
2 on the right hand side. It is 
onvenientto express things in terms of redshift, and so we 
an use the following transformation valid formatter domination and at large redshifts:(3.6) dt

dz
≃ −3.09× 1017(Ωmh

2)−1/2z−5/2s ,Combining this with the aforementioned, we obtain a s
aling law for the fra
tional ionisation:(3.7) x(z) ∝ (Ωmh
2)1/2

Ωbh2
.Note that this s
aling is 
ompletely di�erent as the one obtained from Saha theory.In order to solve the rate equation we 
onsider late times; that is we restri
t to times whenthe Universe has 
ooled so far that we 
an negle
t ex
ited transition of the 2S states. The rateequation then be
omes(3.8) dlnx

dln z
≃ 60xz

Ωbh
2

(Ωmh2)1/2
.Re
all that for this equation we have negle
ted the 
osmi
 expansion and so the equation is notvalid anymore when the left hand side be
omes less than unity.Now, one 
an in
lude all relevant e�e
ts and solve for the ionisation fra
tion in the redshiftinterval interesting for re
ombination, 800 . z . 1200 . It is found that the ionisation fra
tion



84 3. ON THE COSMIC MICROWAVE BACKGROUNDmay be well approximated by the 
riterion [JW85℄(3.9) x(z) ≃ 2.4 × 10−3 (Ωmh
2)1/2

Ωbh2

( z

1000

)12.75

.From (3.9) we 
an learn that the ionisation fra
tion has a very strong redshift dependen
e; that is,the redshift 
hanges over a rather small interval while the ionisation fra
tion 
hanges drasti
ally:from x = 1 (
omplete ionisation) down to x ∼ 10−4 (nearly 
omplete re
ombination). The fa
tthat the ionisation does not go to exa
tly zero re�e
ts the in�uen
e of 
osmi
 expansion thatwe negle
ted before. At small values of the ionisation fra
tion the rate of re
ombination dropsbelow the rate of expansion of the Universe: then it happens that some ions do not have enoughtime to �nd themselves a partner ele
tron to re
ombine with before the density of the Universebe
omes too mu
h diluted. Plugging (3.9) into the formula for the opti
al depth as due toThomson s
attering, one obtains the important result(3.10) τ(z) ≡
∫

nexσTdl ≃ 0.37
( z

1000

)14.25

,where we integrated over the proper distan
e l along the line of sight. The remarkable pointis that in the expression for the opti
al depth, the 
osmologi
al parameter dependen
e 
an
elsout. The reason for that is the s
aling of the fra
tional ionisation (3.9) that 
ame out of therate equation. Again, τ is very sensitive to 
hanges in z and so the last s
attering shell is arather sharp transition. The distribution fun
tion e−τdτ/dz for the last s
attering redshift 
anbe expressed by a Gaussian with mean z ≃ 1088 and a standard deviation z ≃ 60 . This is thereason why we observe a very uniform primordial radiation from an almost syn
hronous emissionsurfa
e (`snapshot') in the early Universe: the last s
attering surfa
e. The redshifting duringthe billions of years the photons have travelled sin
e then has brought the CMB radiation intothe mi
rowave band, where it was �rst observed by Penzias and Wilson in 1965 [PW65℄.The spe
trum of the CMB radiation is a Plan
k spe
trum. In fa
t, its spe
trum was �rsta

urately measured by the Far Infrared Absolute Spe
trophotometer (FIRAS) mounted on theCosmi
 Ba
kground Explorer COBE satellite [MCC+94℄, and is the best bla
k body spe
trumever obtained from a real measurement, see �g. 3.2. Let us shortly derive how an initial Plan
kspe
trum for the primordial radiation keeps its form during the evolution of the Universe. Con-sider a Plan
k spe
trum of photons at an initial temperature T0 at time t0 , then the fun
tion(3.11) Bν(T0) =
2hν3

c2
1

ehν/(kBT0) − 1measures the bla
k body surfa
e brightness; here h is of 
ourse the Plan
k 
onstant, not to be
onfused with the normalised Hubble parameter. The surfa
e brightness is the luminosity thatgoes through a unit area during a unit time interval, per unit solid angle and unit frequen
yinterval. Then the number density of photons in a frequen
y range between ν and ν + dν isgiven by(3.12) dNν

dν
=

4π

hc

Bν

ν
=

8πν2

c3
1

ehν/(kBT0) − 1
.Now let us 
onsider an instant t1 > t0 , in whi
h the Universe would have expanded by the fa
tor

a(t1)/a(t0) and an observer sees the initial photon redshifted by the fa
tor 1 + z = a(t1)/a(t0) .A

ordingly, an initial frequen
y interval dν is being redshifted to dν′ = dν/(1 + z) . Sin
e weare within matter domination, the number density of photons is diluted with a−3 (
.f. tab. 1.1)and so dN ′
ν′ = dNν/(1 + z)3 . Therefore, the number density of photons in the frequen
y rangebetween ν′ and ν′ + dν′ be
omes(3.13) dN ′

ν′

dν′
=

dNν/(1 + z)3

dν/(1 + z)
=

8π

c3
1

(1 + z)2
(1 + z)2ν′2

ehν′(1+z)/(kBT0) − 1
=

8πν′2

c3
1

ehν′/(kBT1) − 1
,and so the form of the Plan
k distribution is left invariant under global expansion; only thetemperature T0 is repla
ed by the redshifted temperature T1 = T0(1 + z) . Thus, sin
e we
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trum of the CMB to be the one of a bla
k body today, we 
an extrapolate thatit has had this form � up to distortions due to additional physi
s � ever sin
e last s
attering.Note that, although there is a very small o�set between the instant of re
ombination andthe eventual e�e
tive de
oupling of the primordial photons, we are using zrec throughout thiswork to denote the instant of last s
attering.3.3. Observables of the CMBIn the 
ourse of se
. 3.1 we got to know the basi
 me
hanisms that are responsible for theCMB anisotropy. The next question is, how the main physi
al e�e
ts translate into quanti�ableobservables. In se
. 1.3.3, we have anti
ipated a basi
 part of the answer: the (integrated)Sa
hs-Wolfe e�e
t. The Sa
hs-Wolfe formula parameterises the in�uen
e of the most importantprimary and se
ondary sour
es of the CMB temperature anisotropy ∆T/T , whi
h is a physi
alobservable a

essible through di�erential measurements. What remains to be done is to �nda statisti
al framework of the temperature anisotropies that is 
onvenient and suitable for the
omparison of theory and experiment. In order to do this a

urately, one must 
ope with thefa
t that the approximation of the matter-photon medium as a perfe
t �uid breaks down afterre
ombination. An adequate treatment then involves the solution of the 
orresponding kineti
equation, the full Boltzmann equation for the photon distribution fun
tion. Seljak and Zaldar-riaga [SZ96℄ have developed a publi
ly available FORTRAN 
ode, 
alled CMBFAST [CMB℄, that 
anbe used for state-of-the-art 
omputation. Here we restri
t ourselves to a basi
 understanding ofthe CMB power spe
trum and its use for phenomenology. However, see for instan
e [HS95℄ foran exhaustive dis
ussion.3.3.1. Fourier Analysis of the Temperature Power Spe
trum. How 
an we relatethe three-dimensional density perturbations from in�ation to the two-dimensional temperature�eld that we observe in the CMB? The density perturbations � see also app. D � are 
hara
terisedby their power spe
trum P (k) from equation (1.29). Sometimes the power spe
trum is expressedas [Pea99℄(3.14) ∆2(k) ≡ V

(2π)3
4πk3P (k) ,for a given volume V . The quantity ∆2(k) is dimensionless and has the interpretation of thevarian
e of perturbations per interval of ln k ; that is, ∆2(k) = 〈δ2〉,lnk ∝ k3P (k) . For instan
eif we had ∆2(k) = 1 this would mean that, per logarithmi
 k interval, there are density pertur-bations of order unity. Here, we 
onsider a simpli�ed Fourier analysis following [Pea99℄. Thesimpli�
ation is provided by the assumption of lo
al thermodynami
 equilibrium of the primevalphotons as well as the assumption of spatial �atness � this will be a good approximation forintermediate s
ales.Given an observed intensity Iν , the brightness temperature is the temperature a bla
k bodywould need to have in order to radiate that intensity. Therefore one 
an invert the Rayleigh-Jeans law to de�ne the brightness temperature as(3.15) TB ≡ Iνc

2

2kBν2
.Now, we 
an think of the measured CMB as a two-dimensional random �eld of anisotropies inthe brightness temperature. Consider a pat
h of the two-dimensional CMB sky of side L , butbeing small enough to be �at. It is useful to introdu
e the Fourier transform of the fra
tionaltemperature di�eren
es,(3.16) ∆T

T
(X) =

L2

(2π)2

∫

TKe
−iK·Xd2K and TK(K) =

1

L2

∫
∆T

T
(X)eiK·Xd2X .Here, by K and X we denote two-dimensional ve
tors of position and wavenumber respe
tively,and moreover the temperature anisotropy ∆T/T is a 
entral quantity of CMB analysis, beingde�ned as ∆T/T ≡ (T (θ, φ) − T0)/T0 with the monopole ba
kground temperature T0 .



86 3. ON THE COSMIC MICROWAVE BACKGROUNDIn analogy to the treatment of the three-dimensional density perturbations, we 
an writedown a dimensionless power spe
trum of the temperature �u
tuations in two dimensions(3.17) T
2
2D ≡ L2

(2π)2
2πK2|TK |2 .Similar to (3.14), but now in two-dimensions, this is a measure of the varian
e in the fra
tionaltemperature di�eren
es of the CMB, 
oming from modes of unit length in lnK . In fa
t, theFourier transform of the temperature power spe
trum yields the two-point 
orrelation fun
tion(3.18) C(θ)2D ≡

∫

T
2
2D(K)

J0(Kθ)

K
dK ,whi
h is the observable we were looking for. J0 denotes the Bessel fun
tion; it enters the formulavia the angular part of the Fourier integration.We 
an re
onstru
t the two-dimensional temperature �u
tuation �eld from the a
tual three-dimensional one by integrating over the opti
al depth at last s
attering and over the wavenumber,(3.19) ∆T

T
=

V

(2π)3

∫ ∫

T 3D
k e−ik·rd3k e−τdτ .The opti
al depth expression 
an be approximated by a Gaussian with(3.20) e−τdτ ∝ e−(r−rrec)/(2σ2

r) dr ,and r being the 
omoving radius. This means that the 
entral distan
e to the last s
atteringshell is given by rrec , whi
h in turn 
an be approximated by the Hubble radius be
ause of thehigh redshift of the last s
attering shell. Above, we already used an estimate for the thi
knessof the last s
attering shell of z ≃ 70 . In fa
t one 
an show [Pea99℄ that the thi
kness 
an beexpressed as(3.21) σr ≃ 7Mpc

(Ωh2)1/2
.Applying an analogous de�nition to the spatial temperature power spe
trum as in the two-dimensional 
ase, we 
an write(3.22) T

2
3D ≡ V

(2π)3
K2|TK |2 .By equating the respe
tive two-dimensional and three-dimensional two-point fun
tions, oneobtains the �nal proje
tion formula [Pea99℄(3.23) T

2
2D = K2

∫ ∞

0

T
2
3D[(K2 + w2)1/2] e−w2σ2

r
dw

(K2 + w2)3/2
.This proje
tion formula �nally represents the relation between the two-dimensional and three-dimensional temperature power spe
tra. The two-dimensional power spe
trum re
eives 
ontri-butions from all the three-dimensional modes with wavenumbers smaller than K , the othermodes are integrated out. Therefore, what the proje
tion e�e
tively does is smearing. Throughsmearing one gets the two-dimensional temperature spe
trum from the three-dimensional one.Any feature present at a 
ertain s
ale in the spatial �eld 
an be found at the very same s
alein the proje
ted spe
trum. Also note that, as long as T2

3D is not a very strongly in
reasingfun
tion, the damping term will 
ause the integral to be dominated by the 
ontribution around
w = 0 . If this is not the 
ase, the �nite thi
kness σr be
omes relevant.In se
. 3.1 we dis
ussed various sour
es of CMB anisotropy. Now we need some quantitativeexpressions for the anisotropy 
ontributions. We 
onsider only some of them in order to obtaina �rst pi
ture of the standard interpretation within syn
hronous and 
omoving gauge.

• Sa
hs-Wolfe sour
e � Perturbations in the primordial density �eld 
ause anisotropyvia: (a) additional redshifting of the photons that are 
limbing out of potential wells,(b) time dilation of photons be
ause of the gravitative perturbations. The full general
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Figure 3.3. A Mollweide map of the intrinsi
 CMB temperature anisotropies[O(10−5)℄ as derived from three years of WMAP mission data. Here, red 
oloursindi
ate warmer spots and blue 
olours indi
ate 
older regions. A superposition te
h-nique � the Internal Linear Combination (ILC) � has been applied to the raw datain order to subtra
t astrophysi
al foregrounds. The ILC method introdu
es free 
o-e�
ients that are �tted in order to �nd a maximally 
lean map, with the 
onstraintsthat the varian
e of the resulting map is minimised and, at the same time, the am-plitude of the signal is preserved. Other (more obvious) 
leaning has to be done inaddition: removing the dipole 
ontribution �g. 3.4 and the large Milky Way 
ontam-ination, 
.f. �g. 4.4 � a sli
e of ∼ 30◦ is 
ut away to both sides of the equator and isto be re
onstru
ted properly. Provided the 
leaning te
hniques work at the requireda

ura
y, the residual tiny anisotropies are of 
osmologi
al origin; they represent asnapshot of the primeval quantum �u
tuations frozen out in the early Universe. Thepi
ture is taken from [WMAa℄.relativisti
 perturbation 
al
ulation reveals that the net result is exa
tly one third ofthe Newtonian expression, that is(3.24) (
∆T

T

)SW

=
∆φ

3c2
.The fa
tor of 1/3 is non-intuitive; it 
an be shown [HPLN02℄ that it is a pe
uliarpredi
tion from GR, and 
annot be obtained from any kind of Newtonian reasoning.Moreover, the fa
tor is unique also 
on
erning the physi
al setting (standard modelplus adiabati
 perturbations). In parti
ular, taking an iso
urvature setting, the result-ing Sa
hs Wolfe 
ontribution is ∆T/T = 2∆φ . The 
orresponding Fourier-expandedexpression is(3.25) T SW

k = −Ω(1 + zrec)

2

(
H0

c

)2
δk(zrec)

k2
.

• Doppler velo
ity � The ele
trons, o� whi
h the photons last s
atter, are subje
t toindu
ed pe
uliar velo
ity, whi
h results in an additional frequen
y-shift. The resultinganisotropy is given by(3.26) (
∆T

T

)DV

=
δv · r̂
c

,and the a

ording result in Fourier spa
e is(3.27) TDV
k = −i[Ω(1 + zrec)]

1/2

(
H0

c

)
δk(zrec)

k
k̂ · r̂ .
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Figure 3.4. The un
orre
ted dipole as measured with COBE shown in Mollweideproje
tion. This distribution is interpreted as being the result of the Doppler e�e
tindu
ed by our lo
al motion against the CMB rest frame. Our velo
ity ve
tor is theend result of a superposition of various pe
uliar velo
ities up to the last s
atteringsurfa
e; its magnitude is ≃ 370km/s. The temperature ex
ess arising from the dipoleis ≃ 3.3mK and 
an be used for 
alibration. The pi
ture is taken from [WMAb℄.
• Adiabati
 sour
e � Be
ause of their tight 
oupling before re
ombination, any adiabati
perturbations in the matter-radiation density are likewise imprinted on the photonstoo, resulting in additional anisotropy. The respe
tive formulae read(3.28) (

∆T

T

)AS

= − δz

1 + z
=
δρ

ρ
and TAS

k =
δk(zrec)

3
.

• Iso
urvature sour
e � As opposed to the adiabati
 perturbations, the iso
urvatureperturbations allow the entropy to vary. In the adiabati
 s
enario all the di�erentenergy spe
ies undergo a 
ommon density perturbation. Iso
urvature perturbationsare de�ned as an initial 
ondition, whi
h states that there do not exist any deviations intotal energy density from the ba
kground at the initial time. Therefore the 
urvatureis spatially 
onstant and so the name be
omes 
lear. A formal means to de�ne aniso
urvature setting is given by Φ̃ → 0 while t → 0 [MFB92℄. Here Φ̃ is the gaugeinvariant version of the metri
 perturbation in (1.92). The gauge invariant Bardeenpotentials Φ̃ and Ψ̃ are 
onstru
ted from (1.92) as follows(3.29) Φ̃ ≡ Φ +
1

a
[(B − E,η)a],η , Ψ̃ ≡ Ψ − a,η

a
(B − E,η) ,where η denotes 
onformal time as usual. An example of an iso
urvature setting wouldbe to initially distribute di�erent spe
ies � like baryons and photons � inhomogeneouslybut adjust the total energy density in a homogeneous way. As it is pointed out in[MFB92℄, iso
urvature modes are predi
ted by some axion models, models with topo-logi
al defe
ts (e.g. 
osmi
 strings) or some exoti
 in�ationary models. Experimentally,iso
urvature modes 
annot be ex
luded fully, but stringent bounds on su
h admixtures
an be given, espe
ially 
on
erning the 
ross-
orrelation of CMB and large-s
ale stru
-ture, as well as from the CMB alone, as is shown in [KS07℄ or [Tro07℄. However, wewill omit this 
omponent in our dis
ussion.
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luding these sour
es of anisotropy, the three-dimensional temperature power spe
trum isgiven by [Pea99℄(3.30) T
2
3D =

[

(fAS + fSW)2(k) + f2
DV(k)(k̂ · r̂)2

]

∆2
k(zrec) ,with the dimensionless fa
tors f parameterising the di�erent sour
es as(3.31) fSW ≡ − 2

(kDrec
H )2

, fDV ≡ 2

kDrec
H

, fAS ≡ 1

3
.Here Drec

H denotes the Hubble horizon s
ale at last s
attering(3.32) Drec
H ≡ 2c

Ω
1/2
m H0

(1 + zrec)
−1/2 ≃ 184(Ωh2)−1/2Mpc .Equation (3.30) provides the �nal answer to the question of this subse
tion. It relates the three-dimensional temperature power spe
trum to the three-dimensional matter power spe
trum. Thetwo-dimensional temperature power spe
trum is 
onne
ted to the three-dimensional one viathe proje
tion (3.23). The analysis is done in Fourier spa
e. The three basi
 sour
es of CMBanisotropy we 
onsidered here be
ome signi�
ant on di�erent s
ales. Sin
e the 
omoving Hubbles
ale amounts roughly to ∼ 300Mp
 at last s
attering, we 
an learn from (3.30) that the Sa
hs-Wolfe term is vital at wavelengths larger than ∼ 300Mp
. Going to smaller s
ales, �rst theDoppler term be
omes dominant, and eventually the adiabati
 �u
tuations take over at smalls
ales.3.3.2. The CMB Angular Power Spe
trum. The pre
eding formalism relies on theassumption of �atness; both �atness of the three-spa
e of the Universe and �atness of the 
on-sidered pat
hes of the CMB. For several reasons, the simpli�ed treatment breaks down, as beingtoo naïve, both on the smallest and the largest CMB s
ales. Here, we want to shortly reviewthe modern standard toolkit for an adequate statisti
al 
omparison of CMB measurements withtheory, following [Lon98℄ and [CHSS07℄.The information we re
eive in form of CMB photons from the epo
h of de
oupling, is atemperature �eld distributed on the inner surfa
e of our last s
attering sphere. From quantumme
hani
s, it is known that the appropriate ma
hinery for expanding physi
al fun
tions thatlive on a sphere is provided by the analysis of spheri
al harmoni
s. The spheri
al harmoni
sprovide the 
orre
t basis in whi
h we 
an attempt to expand temperature anisotropy re
ordedover the whole CMB sky. We 
an write(3.33) ∆T

T
(θ, φ) =

∞∑

ℓ=0

m=ℓ∑

m=−ℓ

aℓmYℓm(θ, φ) ,with expansion 
oe�
ients aℓm , 
ontaining all the physi
s, and the spheri
al harmoni
s Yℓm(θ, φ).For the latter, we note the following normalisation involving the asso
iated Legendre polynomials(3.34) Yℓm(θ, φ) =

[
2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)!

]1/2

Pℓm(cosθ) eimφ ×
{

(−1)m for m ≥ 0
1 for m < 0

.The (asso
iated) Legendre polynomials 
an be found tabulated, for instan
e in [AS72℄. A
-
ording to this normalisation, the spheri
al harmoni
s are a set of orthonormal basis elementswith(3.35) ∫

Y ∗
ℓm Yℓ′m′ dΩ = δℓℓ′ δmm′ ,where the δℓm is just the Krone
ker delta and dΩ stands for the full element of solid angle.Hen
e it is possible to re
onstru
t the 
oe�
ients aℓm by inversion,(3.36) aℓm =

∫
∆T

T
(θ, φ)Y ∗

ℓmdΩ .



90 3. ON THE COSMIC MICROWAVE BACKGROUNDIt is very useful to understand how the multipole power in a spheri
al harmoni
 of multipole
ℓ relates to the a

ording portion of angular power at a s
ale θ . Longair [Lon98℄ argues thatthe roots of Re(Yℓm) and Im(Yℓm) provide a latti
e stru
ture on the sky that divides the �eldinto approximately re
tangular pat
hes. When looking at that sky from low latitude (θ), theminimal sides of the pat
hes are well approximated by π/ℓ . On the other hand, when departingfrom low latitude � moving to the poles � the roots of the azimuthal parts sinmφ and cosmφ
luster more and more 
lose to ea
h other. But this is 
ompensated by the asso
iated LegendrePolynomials, sin
e they approa
h zero in these regions. Together, this leads to the remarkablefa
t that to every spheri
al harmoni
 a unique angular resolution 
an be attributed(3.37) θ ≃ π

ℓ
.Now we 
ome to the issue of Gaussianity. We dis
ussed above, that the standard in�ationarymodel predi
ts �u
tuations that are � among other requirements � purely Gaussian. This isbe
ause, in the in�ationary view, the initial perturbations in the density of the early Universe areprovided by pure quantum �u
tuations whi
h are frozen out. With Gaussianity, it is meant thatthe phases of the waves that 
onstitute the harmoni
 de
omposition (3.33), are purely random.The assumption of Gaussianity leads to a 
ouple of appealing simpli�
ations. Nevertheless,there are models that predi
t non-Gaussian features in the CMB. Su
h are for instan
e modelswith topologi
al defe
ts like 
osmi
 strings or 
osmi
 textures as well as 
ompli
ated in�ationmodels.Assuming Gaussianity of the CMB �u
tuations implies that �u
tuations are superimposedfrom waves with random phases. Therefore ea
h of the expansion 
oe�
ients in (3.33) providesan estimate of the amplitude 
ontained in the 
onsidered �u
tuation mode. Be
ause there are

(2ℓ+ 1) 
oe�
ients aℓm per multipole ℓ , one obtains an ensemble of amplitude estimates overwhi
h we 
an simply average, if we further assume the statisti
al isotropy of the temperatureanisotropy �eld. Statisti
al isotropy implies that the power spe
trum is 
ir
ular symmetri
around any point on the sky and 
onsequently we 
an 
onstru
t a well-de�ned estimator for thepower of a multipole by taking the mean of aℓma
∗
ℓm and performing an all-sky average,(3.38) Cℓ =

1

2ℓ+ 1

∑

m

aℓma
∗
ℓm .The bulk of 
urrent CMB analyses is well 
onsistent with Gaussian temperature anisotropies;the quantities that are found suitable for probing non-Gaussianity, as predi
ted by some non-standard models, are the bispe
trum (three-point 
orrelation fun
tion of the aℓm), trispe
trum,analyses of the Minkowski fun
tionals as well as other ma
hinery, see e.g. [S+07, C+06b℄ as somerepresentative studies. From the side of model-building, non-Gaussian features appear rathernaturally in the predi
tions of more involved models, like multi-�eld in�ation. It is spe
ulatedthat non-Gaussianity may be dete
table with future experiments that rea
h higher a

ura
y.The a

ording theoreti
al tools for analysis do exist already, see e.g. [FS07℄. However, it shouldbe noted that there are studies that 
laim to have dete
ted departure from Gaussianity [BTV07℄.Moreover, we note that � only in 
ase of statisti
al isotropy of the mi
rowave sky � we 
an writethe ensemble average over the produ
t of spheri
al harmoni
 
oe�
ients as [CHSS07℄(3.39) 〈a∗ℓm aℓ′m′〉 = Cℓ δℓℓ′δmm′ .As for the point with statisti
al isotropy, the whole next two 
hapters of this thesis will be
on
erned with the analysis of existing eviden
e � the so 
alled low-ℓ CMB anomalies � indi
atingviolation of statisti
al isotropy on the largest angular s
ales in the CMB.Let us pro
eed further with the standard statisti
al framework of temperature anisotropies.The approa
h we pursued above was to �rst de�ne the angular power spe
trum of �u
tuations(3.38), whi
h represents, in 
ase of Gaussianity and statisti
al isotropy, a 
omplete statisti
aldes
ription of CMB anisotropy [Lon98℄. An equivalent approa
h is to start with the de�nition
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Figure 3.5. The temperature power spe
trum of the CMB (3.38) against angulars
ale from two di�erent experiments. Left: the binend measurement of the angularpower spe
trum from three years of WMAP data. The red 
urve is the ΛCDM best�t and the bluish region indi
ates 
osmi
 varian
e. Right: power spe
trum fromAr
heops, a balloon borne experiment that took data at around 40km in altitude.The data points have been res
aled (×1.07) for 
omparison with the WMAP(1yr)standard model �t. We 
hoose to show the Ar
heops data be
ause of its di�erentsystemati
s; also, by 
omparing the error bars, one gets a feeling for the high qualityof the WMAP data. The angular power spe
trum is the main observable from theCMB; it is very sensitive to the parameters of the 
osmologi
al model one 
ompareswith. Figures are taken from [WMAa℄ and [T+05℄.of the two-point 
orrelation fun
tion or auto
orrelation fun
tion,(3.40) C(θ) =

〈
∆T

T
(ê1)

∆T

T
(ê2)

〉

.Here, êi are unit ve
tors and 〈·〉 denotes an ensemble average performed over all pairs of dire
-tions that have an angular separation of θ . Making use of the addition theorem for the spheri
alharmoni
s(3.41) ∑

ℓ,m

Y ∗
ℓm(ê1)Yℓm(ê2) =

∑

ℓ

2ℓ+ 1

4π
Pℓ(cosθ) ,introdu
ing the Legendre polynomials Pℓ(cosθ) , we �nd that the auto
orrelation fun
tion 
anbe written as an Legendre expansion in terms of the angular power spe
trum(3.42) C(θ) =

1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(cosθ) .Conversely, we 
an write the angular power spe
trum in terms of the two-point fun
tion(3.43) Cℓ = 2π

∫ 1

−1

C(θ)Pℓ(cosθ) dcosθ .Usually, it is said [Lon98℄ that it is a matter of taste whether to use the two-point fun
tion(3.40) or the angular power spe
trum (3.38) for analysis. Although the angular power spe
trumis the most popular way of presenting the CMB results in the literature, we will see in 
hap. 5that, when trying to dete
t potential deviations from statisti
al isotropy, an analysis of theauto
orrelation fun
tion may provide additional insights. Moreover, it is outlined in [CHSS07℄that, in the 
ase of statisti
al anisotropy, both C(θ) and Cℓ turn to be inappropriate 
on
eptsfor a proper statisti
al des
ription of temperature anisotropies measured. More 
ompli
atedstatisti
s � undemanding with respe
t to statisti
al isotropy � are then torpedoed by the fa
t



92 3. ON THE COSMIC MICROWAVE BACKGROUNDthat we 
an only observe one single realisation of the CMB, namely our sky. We pro
eed witha dis
ussion of measurement of the power spe
trum and their relation to the standard model.The measurement of the angular power spe
trum allows pre
ision tests of the standardmodel of 
osmology. We show the measured as well as the best �t angular power spe
tra oftwo experiments, WMAP and the balloon borne experiment Ar
heops, in �g. 3.5. The CMBangular power spe
trum 
an be roughly divided into three regions in angular s
ale: (a) for
ℓ . 100 the spe
trum is �at (Sa
hs-Wolfe plateau) and the Sa
hs-Wolfe e�e
t is dominant, aresult we already anti
ipated in the 
ourse of the Fourier analysis in se
. 3.3.1, represented byequation (3.31); within 100 . ℓ . 2000 one 
learly sees the a
ousti
 os
illations of the primordialplasma ball; at small angular s
ales ℓ & 2000 the Silk damping makes the 
urve de
rease steeply.The power spe
trum is very sensitive to the density parameters of the 
osmologi
al model. A
hange in 
urvature, i.e. in the total density parameter Ω, strongly a�e
ts the power spe
trumon all three s
ale regions. Tuning of the 
osmologi
al 
onstant � at a �xed 
urvature parameter� only a�e
ts the large s
ales; this is be
ause in the standard model it is believed that theintegrated Sa
hs-Wolfe e�e
t vanishes when Λ is zero. A 
hange in baryon or matter densitywill shift the amplitudes as well as the positions of the a
ousti
 peaks.Let us note some te
hni
al points. In the plots for the angular power spe
trum �g. 3.5,there is a quantity ∝ ℓ(ℓ + 1)Cℓ on the y-axis. This rises the question of the normalisation ofthe power spe
trum. One 
an work out [Lon98℄ the angular power spe
trum that results froma general power law input for the density power spe
trum P (k) = Akn , 
.f. equation (1.29),(3.44) Cℓ ∝ A2nπ2 Γ(3 − n)Γ(ℓ+ n−1

2 )

Γ2(4−n
2 )Γ(ℓ+ 5−n

2 )
,where we negle
t the transfer fun
tion for the moment, for 
larity. Here Γ denotes the 
ommongamma fun
tion. Now, when we plug in the 
ondition for a Harrison-Zel'dovi
h spe
trum (n = 1)� whi
h is suggested by many models � we get(3.45) Cℓ ∝

A

ℓ(ℓ+ 1)
,and so in the 
ombination ℓ(ℓ + 1)Cℓ the angular dependen
e is 
an
elled out. Another pointis that of the 
osmi
 varian
e whi
h is plotted as the blue region in the WMAP angular powerspe
trum in �g. 3.5. From the �gure it appears that this un
ertainty be
omes most importantfor the largest angular s
ales. This 
an be understood by the following 
onsideration. Ea
hmeasurement of Cℓ is distributed like a χ2 having (2ℓ + 1) degrees of freedom respe
tively.Therefore at largest angular s
ales one has only very few independent estimates of a sample of

Cℓ . Let N be the number of independent estimates of Cℓ then the pre
ision of the measuredvalue for Cℓ is limited by N−1/2 . Thus we 
an write the 
osmi
 varian
e as(3.46) σ2
CV =

2

2ℓ+ 1
Cℓ .What is a
tually measured by an di�erential CMB experiment like WMAP, is a time-ordereddata stream of the 
oe�
ients aℓm . Be
ause the CMB signal we observe is an admixture of
osmologi
al 
ontributions and various e�e
ts that photons undergo on the line of sight � likes
attering o� foreground sour
es and many others � there are a lot of 
ompli
ated 
leaningalgorithms applied to the raw data, see [H+07, J+07a℄ for details. For instan
e, the strongdipole signal, whose origin is thought of being due to our superimposed pe
uliar motion withrespe
t to the CMB rest frame, has to be subtra
ted. See �g. 3.4 for a map of the WMAP dipolesignal. After the appli
ation of various �ltering methods the primordial CMB anisotropies 
anbe made visible at good a

ura
y, see �g. 3.3. This pi
ture is a result of the superposition ofmany higher multipoles. Let us �nally note the main 
hara
teristi
s of the lowest multipoles(largest angular s
ales):
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• The o
topole (ℓ = 3) � As 
omputed from the three-year WMAP ILC map using aMaximum Likelihood Estimate (MLE), the o
topole amounts to (∆T/T )3 ≃ 32.4µK;the errors are largely 
osmi
 varian
e dominated and 
an be found in [H+07℄.
• The quadrupole (ℓ = 2) � A

ording to one-year WMAP data, the quadrupole asextra
ted from the ILC map amounts to (∆T/T )2 ≃ 14µK, with errors found in[H+03℄. A

ording to three-year data, the quadrupole amounts to (∆T/T )2 ≃ 15.4µK.The in
rease from one to three-year data is mainly do to a new ILC bias 
orre
tion; fordetails and errors see [H+07℄. Our motion with respe
t to the CMB rest frame doesnot only a�e
t the dipole, but also the quadrupole. The e�e
t is of se
ond order in
β ≡ v/c ∼ 10−3 and gives rise to a kineti
 quadrupole 
orre
tion of around 1.2µK.

• The dipole (ℓ = 1) � The dipole signal is the strongest anisotropi
 CMB signal. Itsamplitude is measured by WMAP(3yr) as (∆T/T )1 ≃ (3.358 ± 0.017)mK. It is inter-preted as the result of the observer's motion with respe
t to the CMB last s
atteringsurfa
e. The resulting velo
ity ve
tor points to (l ≃ 263.86◦±0.04◦ , b ≃ 48.24◦±0.10◦)in gala
ti
 
oordinates. As a referen
e we quote here the preprint of [H+07℄. For aMollweide map of the COBE dipole see �g. 3.4.
• The monopole (ℓ = 0) � The monopole is not a temperature anisotropy and is thusnot a

essible to di�erential measurements like the WMAP. Therefore the best 
urrentvalue of the monopole ba
kground temperature 
omes from the FIRAS instrumentof the COBE satellite, being T0 ≃ (2.725 ± 0.001)K. The spe
trum of the monopoleradiation follows almost perfe
tly that of a bla
k body radiator, 
.f. �g. 3.2.





CHAPTER 4Extrinsi
 Alignments in the CMBAlthough the 
osmologi
al standard model is in good a

ordan
e with the data, there havebeen found a 
ouple of issues 
on
erning the CMB that 
annot be explained by the standard
ΛCDM paradigm. In parti
ular, the mi
rowave sky shows unexpe
ted features at the largestangular s
ales, and among them are strange alignments of the dipole, quadrupole and o
topole.Here, we pursue the idea that pro
esses of stru
ture formation 
ould be responsible for thelarge-s
ale anomalies via a lo
al Rees-S
iama e�e
t. The appli
ation of this me
hanism to theCMB anomalies is a novel idea, for usually only the (linear) integrated Sa
hs-Wolfe e�e
t istaken into a

ount in the 
ourse of standard model CMB analysis. Motivated by re
ent X-ray
luster studies, we investigate the possibility that lo
al stru
tures at the 100h−1Mp
 s
ale 
ouldbe responsible for the observed 
orrelations. These stru
tures give rise to a lo
al Rees-S
iama
ontribution to the mi
rowave sky that may amount to ∆T/T ∼ 10−5 at the largest angulars
ales. We model the lo
al stru
ture by a spheri
al overdensity (Lemaître-Tolman-Bondi model)and assume that the Lo
al Group is falling toward the 
entre. We superimpose the lo
al Rees�S
iama e�e
t on a statisti
ally isotropi
, gaussian sky. Indeed, we �nd alignments among thelow multipoles, but a 
loser look reveals that they do not agree with the type of 
orrelationsrevealed by the WMAP data.

Figure 4.1. A Mollweide proje
tion of the superimposed (ℓ = 2 + 3) map fromWMAP(3yr) ILC. The quadrupole ve
tors are shown as solid red triangles and theo
topole ve
tors are plotted as solid magenta triangles. The a

ording normal ve
tors(
ross produ
ts) are shown as open triangles with the respe
tive 
olour. The solidline indi
ates the e
lipti
, the dashed line is the supergala
ti
 plane and the dottedlines are the great 
ir
les 
onne
ting multipole ve
tors. The magenta star indi
atesthe dire
tion of maximal angular momentum dispersion for ℓ = 3 . One sees e.g. thatthe multipole normals are aligned with the e
lipti
, or that the e
lipti
 plane 
arefullyfollows a zero of the temperature map. The various found alignments are des
ribedin the text, their signi�
an
e is given in tab. 4.1. The �gure is taken from [CHSS07℄.95



96 4. EXTRINSIC ALIGNMENTS IN THE CMBTable 4.1. The signi�
an
e of alignments of quadrupole and o
topole with givendire
tions as 
ompared to WMAP(1yr) (upper row) and WMAP(3yr) (lower row),
.f. [CHSS06℄ and [CHSS07℄. The 
omparison is made with respe
t to a sample of 105�du
ial standard model Monte Carlos respe
tively. The values have been obtainedby 
omparison to di�erent foreground-
leaned maps, like the ILC and others, andthe most 
onservative �gure is always quoted. Ex
ept for the 
ase with the e
lipti
,the anomalous alignments remain un
hanged from one-year to three-year data. Thealignment with the supergala
ti
 plane remains in any way in
on
lusive.dipole e
lipti
 gala
ti
 poles equinox supergala
ti
 ℓ = 2 with ℓ = 3

> 99.7 C.L. > 98 C.L. > 99 C.L. > 99.8 C.L. > 85 C.L. 99.4 − 99.6 C.L.
> 99.7 C.L. > 96 C.L. > 99 C.L. > 99.8 C.L. > 85 C.L. 99.6 C.L.4.1. The Alignment AnomaliesThe mi
rowave sky has presented some surprises at the largest angular s
ales. The Wilkin-son Mi
rowave Anisotropy Probe 
on�rmed the vanishing of the angular two-point 
orrelationfun
tion above 60◦ [B+03b℄, a result �rst obtained by the Cosmi
 Ba
kground Explorer's Dif-ferential Mi
rowave Radiometer (COBE-DMR) experiment [HBB+96℄, and not expe
ted withinthe standard model. In terms of the angular power spe
trum this implies that the quadrupoleand o
topole are below the theoreti
al expe
tation. We will analyse and dis
uss the issue of theanomalous la
k of two-point angular 
orrelation in more detail in CHAP.Moreover, the analysis of foreground-
leaned full-sky maps [B+03a, TdOCH03, EBGL04℄has revealed further surprises. There are a 
ouple of surprising anomalies 
on
erning the phasesthe low multipoles. It was pointed out by [dOCTZH04℄ that the o
topole seems to be planar �all minima and maxima are 
lose to a great 
ir
le on the sky � and the planes of the o
topole andthe quadrupole are 
losely aligned. Eriksen et al. [EHB+04℄ showed that the northern gala
ti
hemisphere la
ks power 
ompared with the southern hemisphere.In order to be able to make distin
t statements with respe
t to a phase analysis of multipoleswe make use of the multipole ve
tor formalism [CHS04℄. With the help of the multipole ve
torswe a
hieve a demixing of the dire
tional (phase) information and the amplitude of a multipole,as 
ompared to the 
lassi
al approa
h via spheri
al harmoni
s. By means of multipole ve
tors,S
hwarz et al. [SSHC04℄ showed that the quadrupole and o
topole are 
orrelated with ea
h otheras well as with the orientation and motion of the Solar system. The latter is highly surprisingbe
ause the CMB signal is of 
osmologi
al origin. In parti
ular, the four 
ross produ
ts of thequadrupole and o
topole ve
tors are unexpe
tedly 
lose to the e
lipti
 [> 98% Con�den
e Level(C.L.)℄ as well as to the equinox and mi
rowave dipole (both > 99.7% C.L.) with respe
t toan analysis of one-year WMAP data [CHSS06℄. Moreover, from the 
ombined full sky map of

ℓ = 2 + 3 one infers that the o
topole is quite planar and that the e
lipti
 strongly follows azero line of the map, leaving the two strongest extrema in the southern hemisphere and thetwo weakest in the northern hemisphere, see �g. 4.1. Based on the additional alignment ofa nodal line with the e
lipti
 and the e
lipti
 north-south asymmetry of the quadrupole pluso
topole map, Copi et al. [CHSS06℄ argued that the 
orrelation with the e
lipti
 is unlikely atthe > 99.9% C.L. The signi�
an
es of the above alignments are summarised in tab. 4.1; we seethat the signi�
an
e of the anomalies stays the same with respe
t to one-year and three-yearWMAP data � with the ex
eption of the e
lipti
 alignment. In this 
hapter we will be interestedmainly in the alignments of quadrupole and o
topole with external astrophysi
al dire
tions,hen
eforth extrinsi
 alignments.The apparent 
orrelation with the Solar system is not understood by now. It is possible thatsome yet unknown dust 
loud or other absorbing obje
t in our vi
inity disturbs the 
osmologi
alCMB signal. In fa
t, Dikarev et al. [DPS+07℄ re
ently studied the in�uen
e of known dustobje
ts in our vi
inity on the CMB anomalies and 
ould ex
lude su
h an explanation of the
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ontrast to an unknown Solar system e�e
t, it also seems possible that the large-s
ale anomalies are due to a physi
al 
orrelation with the dipole, in whi
h 
ase the 
orrelationwith the e
lipti
 and the equinox would be due to the a

idental 
loseness of the dipole and theequinox.
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Figure 4.2. Left: a sket
h of the Rees-S
iama e�e
t from an overdensity that isstill forming. Consider a photon 
rossing su
h a vast super
luster. If its traversingtime is, at least, of the order of the evolution time s
ale of the super
luster, then thephoton does not gain exa
tly the same energy when falling downhill in the potentialas it looses when es
aping from it; there will be a net e�e
t in redshift for the photonin the end. Also it is possible that the 
luster itself, or the bulk of (dark) matter inthe 
luster, shows a signi�
ant motion a
ross the line of sight, whi
h also produ
es atime-varying gravitational potential along the photon's path. This e�e
t is 
alled themoving 
luster of galaxies e�e
t or moving halo e�e
t, 
.f. [BG83℄, [TL95℄. Right: as
hemati
 depi
tion of the geometry of our model. The lo
al overdensity is modelledby an LTB solution. We are lo
ated o�-
entre in this setup and sin
e the stru
ture isevolving, due to the Rees-S
iama e�e
t, there will be additional CMB anisotropy.4.2. Lo
al Rees-S
iama E�e
tThe Rees-S
iama e�e
t belongs to the 
lass of se
ondary CMB anisotropies dis
ussed inse
. 3.1. It originates from the fa
t that the CMB photons 
an pass through vast pro
essesof stru
ture growth on their way to the observer. Considering a stati
 gravitational potential,the net e�e
t on CMB photons passing through it would be zero. This is, be
ause the energythat photons gain by their infall into the stru
ture's potential is exa
tly 
ompensated when theyes
ape from it. But in the 
ase of an evolving gravitational potential the net e�e
t is non-zero, ifthe photon's traversing time is at least of 
omparable duration as the overall evolving time of thegravitational potential. This is a
tually the 
ase for vast extragala
ti
 super
lusters that are inthe non-linear regime of evolution. This e�e
t applied to evolving voids produ
es a net blueshift,and when applied to still-forming overdensities it yields a net redshift. O

urring within theregime of linear stru
ture growth this e�e
t known as the integrated Sa
hs-Wolfe e�e
t and wheno

urring in the epo
h of non-linear stru
ture formation it is 
alled the Rees-S
iama e�e
t. See�g. 4.2 for an 
rude illustration. In se
. 1.3.3 we have derived the mathemati
al ma
hinery ofthe Rees-S
iama e�e
t, whi
h formally 
omes out from the integrated Sa
hs-Wolfe formula. Inthis 
hapter we are going to make use of these results and apply further analysis.Here we will explore the possibility that the e�e
t of lo
al non-linear stru
tures on theCMB, the lo
al Rees-S
iama e�e
t [RS68℄, 
ould indu
e a 
orrelation between the dipole andhigher multipoles. In the non-linear regime of stru
ture formation the gravitational potential
hanges with time, and photons 
limb out of a potential well slightly di�erent from the one theyfell into. As the CMB dipole is 
onsidered to be due to our motion with respe
t to the CMBrest frame, and this motion is due to the gravitational pull of lo
al stru
tures, these stru
tures



98 4. EXTRINSIC ALIGNMENTS IN THE CMBTable 4.2. Dire
tions of lo
al motion with respe
t to the CMB rest frame. Theestimated error for the 
orre
ted lo
al group's dire
tion of [PK98℄(PK) is 14◦, and is5% for their velo
ities.Dire
tion Gala
ti
 
oordinates v [km/s℄WMAP(1yr) dipole velo
ity l = 263◦.85 ± 0◦.10 (368±2)[B+03b℄ b = 48◦.25 ± 0◦.04lo
al group velo
ity l = 276◦ ± 3◦ (627±22)[KLS+93℄ b = 30◦ ± 3◦Virgo infall of lo
al group l = 283◦.92 170[PK98℄ b = 74◦.51Virgo 
orre
ted lo
al group velo
ity l = 276◦ 510[PK98℄ b = 16◦Shapley 
on
entration l = 306◦.44 -[ETJ+97℄ b = 29◦.71

are a natural 
andidate for 
ontributions to the higher multipoles 
orrelated with the dipole.For earlier work on 
onne
tion of lo
al stru
tures with the low-multipole anomalies, see forinstan
e [Tom05a, Val05, Tom05b, CS05, Man05℄. The Rees-S
iama e�e
t of distant 
lusterswas estimated to be at most 10−6 in a matter-dominated Universe by Seljak [Sel96℄, one orderof magnitude below the intrinsi
 CMB anisotropy. The e�e
t of lo
al large stru
tures has beenestimated to be at most 10−6 using the Swiss Cheese model [MS90℄ and, more reliably, using theLTB model, whi
h is the general spheri
ally symmetri
 dust solution of the Einstein equation[Pan92, AFMS93, FSA94℄. For an overview and further referen
es we re
ommend [Kra97℄.At the time these studies were made, it was generally thought that the dipole is mostly due tothe infall of the lo
al group of galaxies towards the Great Attra
tor [LFB+88, Dre88℄, a density
on
entration lo
ated 40-60h−1Mp
 from us, with a subdominant 
omponent due to the nearbyVirgo 
luster, about 10h−1Mp
 away. Re
ent observations of X-ray 
lusters suggest insteadthat there is a major 
ontribution to the dipole from the Shapley super
luster and other density
on
entrations at a distan
e of around 130-180h−1 Mp
 [KME04, HSLB04, LRSH04, KE06℄.The Shapley super
luster, 
.f. �g. 4.2, is a massive 
on
entration 
entred around the obje
tA3558 . It alone has a density 
ontrast of ≈ 5 over a 30h−1Mp
 region [PQC+06℄, whi
h is 2-3times the size of the 
ore (of similar density) in the Great Attra
tor models.The further away and the more extended the sour
e is, the bigger is the impa
t on thequadrupole and o
topole � for a �xed e�e
t on the dipole � so it is plausible that the Shapley
on
entration would indu
e anisotropies at the 10−5 level. This would be 
onsistent with theearly estimate for an Shapley Super
luster-like obje
t in [MS90℄ and the approximate s
alingsuggested by Panek [Pan92℄, whi
h we dis
uss next.The CMB anisotropy produ
ed by a spheri
al superstru
ture 
an be estimated by the inte-gral of the gravitational potential perturbation φ ≃ δM/d along the path of the photon, thatis(4.1) (
∆T (θ, ϕ)

T

)

RS

≃ φ vc ,where d is the physi
al size of the stru
ture, δM is the mass ex
ess and vc the evolution velo
ity.Sin
e we are interested in an overdensity we take a 
ollapsing stru
ture. Further following Panek[Pan92℄, we approximate the evolution time of the stru
ture tc by the matter 
rossing time d/vc ,note c = 1 = G . Moreover, we estimate the typi
al 
ollapse velo
ity from the energy balan
e
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Figure 4.3. Left: A proje
tion of the intermediate-s
ale stru
ture in our neigh-bourhood to the supergala
ti
 x − y plane. The 
ontours indi
ate density a

ordingto (1, 3, 0.5) × 10−3 
lusters Mp
−2 respe
tively. The Shapley 
on
entration repre-sents the most massive stru
ture in the shown distan
e range. One 
an 
learly seethe zone of avoidan
e, from whi
h opti
al data 
annot be taken. Right: dipole pro�leas derived from re
ent X-ray galaxy surveys. The Shapley super
luster dominantly
ontributes to the dipole between ∼ 100Mp
 and ∼ 200Mp
. The pi
tures are takenfrom [TSVZ92℄ and [KME04℄.
ondition and have v2
c ≃ φ , whi
h leads us to(4.2) (

∆T (θ, ϕ)

T

)

RS

∼ φ3/2 ∼
(
δM

d

)3/2

.We are going to model the non-linear stru
ture by a spheri
ally symmetri
 LTB model embeddedin a �at (Ω = 1) Friedmann-Robertson-Walker Universe. Substituting the expression for themass ex
ess within this model [Pan92℄ we obtain the Panek s
aling(4.3) (
∆T (θ, ϕ)

T

)

RS

∼
(
δρ

ρ

)3/2(
d

t

)3

.We repeat, t is the 
osmi
 time at whi
h the CMB photons 
rossed the stru
ture, d is its physi
alsize and δρ/ρ its density 
ontrast. Inserting the 
hara
teristi
s of the Shapley super
luster, wesee that indeed a CMB anisotropy of 10−5 due to a lo
al Rees-S
iama e�e
t is reasonable.For a large angular s
ale of the sour
e � lo
al and nearby stru
tures � this indu
es 
ontri-butions to the low-ℓ multipoles, espe
ially the dipole, quadrupole and o
topole. This, in turn,
ould in
lude a non-Doppler 
ontribution to the dipole. This would imply a 
hange of a fewper
ent in the inferred dipole velo
ity, whi
h might also explain some of the CMB anomalies[FGM+06℄. The Shapley 
on
entration is a non-linear stru
ture, and the amplitude of the in-du
ed anisotropies 
annot be reliably 
al
ulated in linear perturbation theory. A

ording to a
omparison of linear and exa
t 
al
ulations for Great Attra
tor-like obje
ts with the LTB modelin [FSA94℄, linear theory is reliable at distan
es 
omparable to the Hubble s
ale, but fails forstru
tures within 1000h−1Mp
 or so.The advantage of the spheri
al symmetry of the LTB model is that it allows exa
t 
al-
ulations for non-linear obje
ts; the drawba
k is that the observed non-linear obje
ts su
h asthe Great Attra
tor and the Shapley 
on
entration do not appear to be spheri
ally symmetri
.However, we 
an expe
t the result to be 
orre
t within an order of magnitude, and the 
ore of
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Figure 4.4. AMollweide map showing the foregrounds whi
h the WMAP 
ollabora-tion takes into a

ount for map 
leaning. The only extended foreground is representedby the gala
ti
 region. The regions shown in pink and beige indi
ate the so 
alledKp0 and Kp2 di�use emission masks used by the WMAP 
ollaboration to obtain 
os-mologi
al maps. For details of the map-making pro
ess see [J+07a℄ and [H+07℄. Allof the remaining foregrounds that have been taken into a

ount are point sour
es. Inthis work we are 
onsidering the (Rees-S
iama) e�e
t of extended lo
al foregrounds,see �g. 4.8. The pi
ture is taken from [WMAa℄.the Shapley 
on
entration does seem to be roughly spheri
al [PQC+06℄. Also, if the preferreddire
tion indi
ated by the low-ℓ anomalies is due to lo
al stru
tures, this implies that thereindeed is a degree of symmetry in the lo
al mass distribution.In addition, there is a se
ond motivation for studying a spheri
ally symmetri
 inhomoge-neous model, namely dark energy. If interpreted in the framework of isotropi
 and homoge-neous 
osmology, observations of SNIa imply that the expansion of the Universe is a

elerating,
.f. se
. 1.2.2. However, in an inhomogeneous spa
etime the observations are not ne
essarilyin
onsistent with de
eleration, see se
. 1.3. In parti
ular, in the LTB model the parameter q0de�ned with the luminosity distan
e is no longer a dire
t measure of a

eleration [HMM97℄. Ithas been suggested by several groups that a spheri
ally symmetri
 inhomogeneity 
ould be usedto explain the SNIa data, see se
. 1.3, though it is not 
lear whether su
h a model 
ould be
onsistent with what is known about stru
tures in the lo
al Universe [Bol05℄ or the observationof baryon os
illations in the matter power spe
trum. Here we will 
on
ern only the CMB.The pi
ture of the lo
al Universe that we adopt is a spheri
ally symmetri
 density distribu-tion, with the lo
al group falling towards the 
ore of the overdensity at the 
entre, 
.f. �g. 4.2.The line between our lo
ation and the 
entre de�nes a preferred dire
tion ẑ, whi
h in the present
ase 
orresponds to the dire
tion of the dipole after subtra
ting our motion with respe
t to thelo
al group and the lo
al group's infall towards the nearby Virgo 
luster � assuming the primor-dial 
omponent of the dipole to be negligible. The dire
tions on the sky that are important forour analysis are given in tab. 4.2. This setup exhibits rotational symmetry with respe
t to theaxis ẑ � negle
ting transverse 
omponents of our motion. Consequently, only zonal harmoni
s(m = 0 in the ẑ-frame) are generated. We have already anti
ipated this result, it is 
onsistentwith our predi
tion that 
ame out from the analyti
al treatment of the Rees-S
iama e�e
t usingan LTB model in se
. 1.3.3. Note that any other e�e
t with axial symmetry would also indu
eanisotropy only in the zonal harmoni
s.The density �eld has two e�e
ts on the CMB seen by an o�-
entre observer. First, photons
oming from di�erent dire
tions travel di�erent routes through the lo
al overdensity, and this
reates anisotropy � even with a perfe
tly homogeneous distribution of photons. In a stationarysetup, for instan
e for virialised stru
tures, this e�e
t vanishes and there is no imprint on the
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Figure 4.5. Left: the gala
ti
 
oordinate system. The gala
ti
 
oordinate systemis de�ned as being parallel with the plane of the Milky Way and 
entred on the sun.So the equator in gala
ti
 
oordinates (red 
ir
le, 0◦ gala
ti
 latitude) lies in the planeof our galaxy. The gala
ti
 latitude b is the angle above or below this plane (yellowangle) and the gala
ti
 longitude l (green angle) is measured from 0◦ to 360◦, 
ounter
lo
kwise with respe
t to the north gala
ti
 pole. 0◦ of gala
ti
 longitude is arbitrarilyde�ned as the dire
tion pointing to the gala
ti
 
entre (Sagittarius). Sometimes, inastronomy the equatorial 
oordinate system is used. Right: the relation of the gala
ti

oordinate system to the equatorial 
oordinate system. The latter is de�ned throughthe plane of the Earth's equator. Important referen
e dire
tions on the sky that weuse here are, in gala
ti
 
oordinates: the north e
lipti
 pole (l, b) ≃ (96.4◦, 29.8◦) , theequinox (l, b) ≃ (276.3◦, 60.2◦) and the north gala
ti
 pole (l, b) = (0◦, 90◦) . Pi
turesare taken from [Ast℄ and [Org℄.CMB. Se
ond, the environment will a�e
t the evolution of the intrinsi
 anisotropies � as thehomogeneous ba
kground spa
e does, by 
hanging the angular diameter distan
e. The 
omplete
al
ulation taking into a

ount both of these e�e
ts would be to study the evolution of theCMB anisotropies as they travel a
ross the density �eld using perturbation theory on the LTBba
kground. As in earlier treatments, we negle
t the se
ond e�e
t and simply add the anisotropygenerated by the LTB model on top of the intrinsi
 
ontribution. It is possible that this treatmentmisses some e�e
ts of pro
essing the anisotropies already present. In parti
ular, simply linearlyadding a new sour
e of anisotropy will in general add multipole power, not redu
e it, whilea proper analysis of the pro
essing of the intrinsi
 anisotropies 
ould lead to a multipli
ativemodi�
ation of the amplitudes of the low multipoles, as mentioned in [GHHC05℄.It has been suggested that spheri
ally symmetri
 inhomogeneities of the order of horizonsize or larger would 
ontribute to the low CMB multipoles [DZS78, RT81, PP90, LP96℄; it was
laimed in [Mof05℄ that this 
ould explain the observed preferred axis. Leaving aside the issuethat assuming spheri
al symmetry for the entire Universe seems questionable, the observationalsignature on the low multipoles is identi
al to that from the LTB model used to des
ribe lo
alstru
tures, possibly apart from the amplitude.4.3. Angular Power AnalysisFirst we address the question how the 
osmi
 mi
rowave sky is a�e
ted by the lo
al Rees-S
iama e�e
t. We are going to study how maps of the CMB are a�e
ted by the anisotropyindu
ed by additional axisymmetri
 
ontributions aaxial
ℓ0 on the largest angular s
ales by usingMonte Carlo methods.
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Figure 4.6. Likelihood of quadrupole and o
topole power for in
reased axial
ontributions. Verti
al lines denote experimental data: WMAP(1yr) 
ut-sky andWMAP(3yr) maximum likelihood estimate. Considering the quadrupole adding anymultipole power was ex
luded at > 99% C.L. with respe
t to WMAP(1yr) but itis possible to add up to 60µK within the same ex
lusion level with respe
t to theWMAP(3yr) value. Adding 80µK (100µK) to the quadrupole leads to an ex
lusion of
99.7% C.L. (99.9% C.L.). The o
topole is more resistant against axial 
ontaminationsas it is possible to add a whole 100µK before rea
hing the same ex
lusion level withrespe
t to the updated WMAP data.We saw in se
. 3.3.2 that the angular power spe
trum in terms of the 
oe�
ients aℓm 
anbe expressed as(4.4) Cℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ

|aℓm|2 .As predi
ted by the standard per
eption of in�ationary 
osmology, the primordial perturbationsare believed to follow a gaussian statisti
. Deviations from this would be hard to re
on
ile withthe standard in�ationary paradigm. Therefore, the 
omplex 
oe�
ients aℓm = aRe
ℓm + i aIm

ℓm areexpe
ted to be gaussianly distributed with zero mean and varian
e given by the angular power
Cℓ , a

ording to(4.5) f(aℓ0) =

1√
2πCℓ

exp

(

− (aRe
ℓ0 )2

2Cℓ

)

and f(aRe,Im
ℓm ) =

1√
πCℓ

exp

(

− (aRe,Im
ℓm )2

Cℓ

)

.Therefore, in the standard model, the 
oe�
ients aℓm are fully 
hara
terised by their angularpower, for whi
h we use the values from the best �t ΛCDM temperature spe
trum to the WMAPdata. In our axisymmetri
 model, we parameterise the e�e
t of a lo
al stru
ture by adding axial
ontributions aaxial
ℓ0 to the quadrupole and o
topole. It is obvious that the additive me
hanism
annot make the power de�
it anomaly disappear. For the statisti
al analysis we generate 105Monte Carlo realisations of the quadrupole and the o
topole. In the following we des
ribe theresults of our Monte Carlo analysis for the angular power (4.4) with respe
t to one-year as wellas three-year WMAP data.4.3.1. WMAP(1yr) Angular Power. Considering one-year data, the values of C2 and

C3 determined from the WMAP 
ut-sky [H+03℄, the so 
alled TOH map [TdOCH03℄, the La-grange ILC map [EBGL04℄ and the ILC map [B+03a℄ are listed in tab. 4.3. The extra
tedquadrupoles have been Doppler-
orre
ted as des
ribed in [SSHC04℄, ex
ept for the 
ut-sky value.The values of C2 and C3 from the full-sky maps are signi�
antly larger than the 
ut-sky values.In �g. F.1 we show how the C2 and C3 histograms 
ompare with the one-year data as
aaxial

ℓ0 is in
reased. For aaxial
ℓ0 = 40µK, the number of Monte Carlo hits that are 
onsistentwith the WMAP 
ut-sky data is smaller by a fa
tor of ∼ 2 for both C2 and C3 as 
ompared
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Figure 4.7. WMAP one- and three-year ILC maps 
ompared to the likelihood ofan alignment (4.7) of quadrupole and o
topole normals with astrophysi
al dire
tions[north e
lipti
 pole (NEP), equinox (EQX) and north gala
ti
 pole (NGP) in 
olumns℄,for two orthogonal realisations of the preferred dire
tion ẑ (WMAP dipole, NEP inrows). The bold histograms represent statisti
ally isotropi
 and gaussian skies aspredi
ted by the ΛCDM model. In
reasing the axial 
ontribution makes the anomaliesworse for ẑ being aligned with the WMAP dipole, but with the ex
lusions being lesssigni�
ant for the ILC(3yr) than for the ILC(1yr). At the same time a Solar systeme�e
t is preferred by the data. The number of Monte Carlo realisations per test isalways 105 .with the �du
ial CMB sky. For aaxial
ℓ0 = 70 µK, the number of 
onsistent Monte Carlo hitsfor C2(C3) is redu
ed by a fa
tor of ∼ 5(15) 
ompared with the standard CMB sky. Notethat adding any power to the theoreti
ally expe
ted quadrupole is ex
luded at the > 99%C.L.level from the 
ut-sky analysis, but for the o
topole the same ex
lusion level is not rea
heduntil aaxial

30 = 80µK. Further, adding 50µK (100µK) to the quadrupole leads to an ex
lusion of
99.6%C.L. (99.9%C.L.). In �g. 4.6 we show a 
omparison of one- and three-year data.4.3.2. WMAP(3yr) Angular Power. In �g. 4.6 we show how the histograms for thequadrupole and o
topole power 
ompare with the measured values from WMAP(1yr,3yr). Con-sidering the WMAP(1yr) 
ut-sky, adding any power to the quadrupole was already ex
luded at
> 99% C.L. whereas the WMAP(3yr) data allows for adding up to aaxial

20 = 60µK in order torea
h the same ex
lusion level. The o
topole is quite robust against axial 
ontaminations as itlies better on the �t: in order to rea
h the same ex
lusion level of > 99% C.L. it is ne
essary toadd aaxial
30 = 80µK with respe
t to the WMAP(1yr) 
ut-sky and a whole aaxial

30 = 100µK with re-spe
t to the WMAP(3yr) value. Adding a moderate axial 
ontribution of aaxial
ℓ0 = 40µK leads toan approximate bise
tion of the number of 
onsistent Monte Carlo hits regarding WMAP(1yr)data (ex
luded at 99.5% C.L for C2 and 91.5% C.L for C3), where for the updated 
ut-sky a
ontribution of aaxial

ℓ0 = 40µK 
an be ex
luded at > 98% C.L. for C2 and only at ∼ 71% C.L forthe o
topole. 4.4. Extrinsi
 Alignment AnalysisNow we ask what kind what kind of dire
tional patterns the 
ontribution aaxial
ℓ0 indu
es onthe CMB sky. In the multipole ve
tor representation [CHS04℄ any real multipole Tℓ on a sphere



104 4. EXTRINSIC ALIGNMENTS IN THE CMB
an be expressed with ℓ unit ve
tors v̂
(ℓ,i) and one s
alar A(ℓ) as(4.6) Tℓ(θ, ϕ) =

ℓ∑

m=−ℓ

aℓmYℓm(θ, ϕ) ≃ A(ℓ)
ℓ∏

i=1

v̂
(ℓ,i) · ê(θ, ϕ) ,where ê(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) is a radial unit ve
tor. Note that the right hand sideof equation (4.6) 
ontains 
ontributions with `angular momentum' ℓ−2, ℓ−4,. . . The uniquenessof the multipole ve
tors is ensured by removing these terms by taking the appropriate tra
elesssymmetri
 
ombination; for details see [CHS04℄. Be
ause the signs of all the multipole ve
tors
an be absorbed into the quantity A(ℓ) , their signs are unphysi
al and so one is free to 
hoosethe hemisphere of ea
h ve
tor. Also note that the multipole ve
tors are independent of theangular power. With the de
omposition (4.6) we a
hieved a unique fa
torisation of a multipoleinto a s
alar part A(ℓ) , whi
h measures its total power, and ℓ unit ve
tors v̂

(ℓ,i) that 
ontain allthe phase information.Now it is ne
essary to de�ne a suitable statisti
 to 
ope with the information from themultipole ve
tors. Introdu
ing the ℓ(ℓ−1)/2 oriented areas n(ℓ;i,j) ≡ v̂
(ℓ,i)×v̂

(ℓ,j)/|v̂(ℓ,i)×v̂
(ℓ,j)| ,we are ready to de�ne a statisti
 in order to probe alignment of the normals n(ℓ;i,j) with a givenphysi
al dire
tion x̂ [SSHC04℄,(4.7) Snx ≡ 1

4

∑

ℓ=2,3

∑

i<j

∣
∣
∣n

(ℓ;i,j) · x̂
∣
∣
∣ .This statisti
 is a sum over all dot produ
ts for a given x̂, so it does not imply any orderingbetween the terms and is a unique and 
ompa
t quantity. For 
omputing the multipole ve
torswe use the method introdu
ed by [CHS04℄. For mathemati
al details of the multipole ve
torformalism we refer to e.g. [Fis07℄.As the 
ontribution of the stru
ture des
ribed by the LTB model, we add to the quadrupoleand the o
topole a 
omponent, denoted by aaxial

ℓ0 , whi
h is a pure m = 0 mode with respe
t toa given physi
al dire
tion ẑ . For the dire
tion x̂ wee want to insert the relevant astrophysi
aldire
tions whi
h give rise to alignment, like the dire
tion of the e
lipti
 plane, the equinox et
.But there is a 
at
h. On
e we rotate the ẑ axis of our initial 
oordinate system into the dire
tionof the preferred axis of our model, the dire
tions on the sky, like north e
lipti
 pole et
., have tobe re
al
ulated in that frame. This 
an be done in terms of Wigner rotation matri
es [CHSS06℄.Written as ve
tors, the 
oe�
ients a′
ℓ transform under rotations as a′

ℓ = D†aℓ , where the ve
tornotation means that aℓ is a ve
tor of the ℓ-th multipole 
oe�
ient with (2ℓ+ 1) entries and Ddenoting the rotation. The rotations 
an be parameterised in terms of the so 
alled Euler angles
α, β, γ and are given in matrix form by [CHSS06℄

D
(ℓ)
m′m(α, β, γ) = eim′γ d

(ℓ)
m′ e

imα with

d
(ℓ)
m′m =

∑

k

(−1)ℓ−m′−k[(ℓ+m′)!(ℓ−m′)!(ℓ+m′)!(ℓ−m′)!]1/2

k!(l −m′ − k)!(l −m− k)!(m+m′ + k)!

×
(

cos
β

2

)2k+m′+m (

sin
β

2

)2ℓ−2k−m′−m

.(4.8)We have 
arried out the rotations with the help of a MATHEMATICA routine. Next, let us review ourresults of the Monte Carlo analysis for the alignment statisti
 (4.7) with respe
t to astrophysi
aldire
tions.4.4.1. WMAP(1yr) Alignment. We look for alignment with three di�erent dire
tions
x̂: the north e
lipti
 pole, the equinox and the north gala
ti
 pole. The �rst two are preferreddire
tions in the Solar system and the last de�nes the plane of the dominant foreground. Theobserved S-values from the di�erent CMB maps are given in tab. 4.3. The results of the 
orre-lation analysis are shown in the appendix as �g. F.2, �g. F.3 and �g. F.4. By 
han
e the CMB
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lose to ea
h other, so an alignment test with the dipole will giveresults very similar to the one with the equinox.In �g. F.2 the preferred axis ẑ is 
hosen to be the measured WMAP(1yr) dipole [B+03b℄.We perform alignment tests (4.7) with respe
t to the three test dire
tions x̂ . For all three teststhe anomaly gets 
learly worse, that is the axial me
hanism drives the histograms away fromthe data. Next, instead of using the motion of the lo
al group with respe
t to the CMB restframe [KLS+93℄ as the test dire
tion, we take the velo
ity of the lo
al group when 
orre
tedfor Virgo
entri
 motion [PK98℄, sin
e this di�ers more from the WMAP dipole. The results areshown in �g. F.3. The situation for the alignment with the equinox is again worse, but thereis not mu
h e�e
t on the e
lipti
 alignment. For the alignment with the gala
ti
 plane, theaxial 
ontribution makes an apparent gala
ti
 
orrelation more probable, i.e. there is a 
ertainprobability of overestimating the gala
ti
 foreground. For both test dire
tions by now, thealignment with the equinox gets worse. For example, in the dire
tion of the Virgo-
orre
tedlo
al group motion an ex
lusion of ∼ 99.9% C.L. for aaxial
l0 = 50µK 
an be given with respe
tto all three 
leaned maps. Note that adding any multipole power in this test 
an already beex
luded at the ≥ 99.4% C.L.As a 
omplementary test we show the alignment likelihood with regard to an orthogonal testdire
tion, namely the north e
lipti
 pole, in �g. F.4. An e
lipti
 extra 
ontribution in the CMBwould indeed indu
e an alignment of normal ve
tors similar to the observed one. In parti
ular,for aaxial

ℓ0 = 50µK, the probability of �nding an alignment with the north e
lipti
 pole itselfbe
omes roughly 5%, and the probability for the equinox alignment rises to 1%.Table 4.3. Tests applied to various 
leaned maps, as de�ned in equation (4.7), forone- and three-year data, as well as the values for angular power (4.4). Foreground-
leaned maps: TOH(1yr) is due to [TdOCH03℄, LILC (1yr) to [EBGL04℄, the ILCmaps to [H+03, H+07℄ and the Maximum Likelihood Estimate (MLE) for low multi-poles to [H+07℄. All one-year quadrupoles ex
ept the 
ut-sky value have been Doppler-
orre
ted.
ut sky (1yr) TOH(1yr) LILC(1yr) ILC(1yr) ILC(3yr) MLE(3yr)
C2 129µK2 203µK2 352µK2 196µK2 261µK2 221µK2

C3 320µK2 454µK2 571µK2 552µK2 550µK2 545µK2

SnNEP - 0.194 0.193 0.210 0.252 -
SnEQX - 0.886 0.866 0.870 0.846 -
SnNGP - 0.803 0.803 0.810 0.794 -4.4.2. WMAP(3yr) Alignment. Similarly, we test for alignment with the three generi
dire
tions x̂: north e
lipti
 pole, equinox and north gala
ti
 pole. The results of the 
orrelationanalysis are shown in �g. 4.7: in the �rst row the preferred dire
tion ẑ 
oin
ides with thedire
tion of lo
al motion, the dipole. Here the anomaly be
omes worse when in
reasing theamplitude of the axial 
ontribution. But for x̂ = NEP the ex
lusion be
omes somewhat mildergoing from one-year to three-year data; e.g. aaxial

ℓ0 = 40µK leads to an ex
lusion of 99.2%C.L. forILC(1yr) but only 98.2% C.L. for the updated ILC map. Finding an alignment with the equinoxthough is strongly ex
luded at > 99.2%C.L., even with an vanishing axial 
ontribution for bothone- and three-year data. For instan
e, for x̂ = EQX adding a 
ontribution of aaxial
ℓ0 = 20µK(aaxial

ℓ0 = 70µK) leads to an ex
lusion level of 99.4%C.L. (99.9%C.L.) with respe
t to three-year data. Similarly to above, a Solar system e�e
t is preferred by the data. For example, analignment with the e
lipti
 itself (x̂ = NEP) may only be ex
luded at the level of 92.3%C.L. afteradding an axial 
ontribution of aaxial
ℓ0 = 40µK. For the same axial 
ontribution, the alignmentwith the equinox be
omes less anomalous as 99.2%C.L.→ 98.2%C.L.
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lusionBesides the anomalous intrinsi
 alignment of the CMB quadrupole and o
topole with ea
hother and the la
k two-point angular 
orrelation on the largest angular s
ales, there are a numberof mysterious alignments with astrophysi
al dire
tions 
on
erning the lowest multipoles in theWMAP data. These anomalies are present both in the one-year and in the three-year WMAPdata, 
.f. tab. 4.1, and 
ould not be satisfa
tory explained by now.Here we presented an analysis that seeks to take the in�uen
e of non-linear stru
ture for-mation on the CMB photons into a

ount. Su
h an e�e
t is well motivated by present dataon the large-s
ale stru
ture. Re
ent astrophysi
al data 
ataloguing our neighbourhood in theX-ray band [KME04, KE06, HSLB04, LRSH04℄ point us to the existen
e of massive non-linearstru
tures, like the Shapley 
on
entration, at distan
es of around 100h−1Mp
. Besides its sig-ni�
ant 
ontribution to the dipole velo
ity pro�le, 
.f. �g. 4.3 , su
h a stru
ture is able to indu
eanisotropies of order 10−5 via its Rees-S
iama e�e
t.Regarding CMB modes, the spheri
al symmetry of the LTB model, whi
h we use to ap-proximate the lo
al superstru
ture, redu
es to an axial symmetry along the line 
onne
tingour position and the 
entre of the overdensity, where we lo
ate for instan
e the Shapley super-
luster, 
.f �g. 4.2 (right �gure). Consequently, under this assumption we should observe anaxisymmetri
 e�e
t on the mi
rowave sky. The preferred axis ẑ has been taken to point in thedire
tion of the CMB dipole, 
.f. �g. 4.7 and �g. F.2 and the Virgo-
orre
ted lo
al group's �owve
tor, see �g. F.3. Thereby we have added the axisymmetri
 
ontribution to a statisti
allyisotropi
 gaussian random map (ΛCDM standard model predi
tion) and 
ompared it by meansof the S-statisti
 with WMAP measurements. The additional zonal harmoni
s have been addedwith in
reasing strength, see �g. 4.8 or �gs. F.5-F.7 for full-sky maps of the Rees-S
iama e�e
t.When gauging the preferred axis to the dire
tion of lo
al motion (WMAP dipole), the 
onsis-ten
y of the data with theory be
omes even worse, albeit with slightly less signi�
an
e withrespe
t to three-year WMAP data. In parti
ular, in 
ase of ẑ =dipole, an axial 
ontributionof aaxial
ℓ0 = 60µK led to an ex
lusion level of 99.4%C.L. with respe
t to one-year data, but 
an`only' be ex
luded at 98.7%C.L. within the updated maps. However, in 
ase of the alignmenttest with the equinox, the signi�
an
e of the anomalous alignment remains nearly un
hangedwhen 
omparing with one- and three-year data. On the other hand an orthogonally dire
ted(Solar system) e�e
t would largely in
rease the 
onsisten
y with the data for both one-year andthree-year data sets: for instan
e, 97%C.L.→ 83%C.L. with respe
t to WMAP(3yr) data afteradding an axial 
ontribution of aaxial

ℓ0 = 70µK.Here we studied additive axial e�e
ts be
ause they are well motivated. However, from ouranalysis it is not ex
luded that there 
ould be a multipli
ative axisymmetri
 e�e
t, 
oming fromsome unknown non-linear sour
e. Note that our analysis applies likewise to any other e�e
twhi
h gives an axisymmetri
 addition to the statisti
ally isotropi
 and gaussian random sky.4.5.1. Alternative Proposals. The existen
e of the CMB anomalies support the 
on
lu-sion that either the Universe as seen by WMAP is not statisti
ally isotropi
 on largest s
ales, orthat the observed features are due to unexpe
ted foregrounds, hidden systemati
s or new physi
s
hallenging the standard 
osmologi
al model. Diverse attempts for explanation 
an be foundin the literature: 
onsidering anisotropi
 or inhomogeneous models [Bian
hi family or (LTB)models℄ [GHS07, JBE+06, AA06, Mof05, Tom05b, RRS06b℄, Solar system foreground [Fri05,DPS+07℄, lensing of the CMB [Val05℄ and moving foregrounds[CS05℄, Sunyaev-Zel'dovi
h e�e
t[AS03, AJW06, HBM+05℄ and Rees-S
iama e�e
t [IS07, IS06, MDW+07, RRS06b, RRS06a℄,
onsidering a non-trivial topology of the Universe [LWR+03, SKCSS07, ALST07℄, 
onsideringmodi�
ations and re�nements of the standard simplest s
enario of in�ation [BdVS06, CCT06,CPKL03, FRV04, GH04, WNL+07℄ and even 
onsidering possible phenomenology of loop quan-tum gravity [HW04, TSM04℄.This list is not meant to be exhaustive. Let us pi
k two models out that appear parti
ularlyinteresting from our point of view. First, also 
onsidering extended lo
al foregrounds Abramo
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Figure 4.8. Full-sky Mollweide maps (ℓ = 2 + 3) of the Rees-S
iama e�e
t onthe quadrupole and o
topole. Upper map: a random realisation of an statisti
allyisotropi
 and Gaussian quadrupole plus o
topole. Lower left map: an axial e�e
t �whi
h 
ould e.g. be due to the lo
al Rees-S
iama e�e
t of an spheri
al overdensity � ofmagnitude aaxial
20 = aaxial

30 = 70µK is imposed on the random map, with the preferredaxis of the model ẑ pointing in the dire
tion of the dipole (upper right quadrant);for this model dire
tion the alignment anomalies be
ome worse when adding an axiale�e
t, 
.f. �g. 4.7. For an illustration of gala
ti
 
oordinates and relevant dire
tions see�g. 4.5. Lower right map: adding the same 
ontribution, now with the preferred axisbeing in dire
tion of the north e
lipti
 pole, in whi
h 
ase the Monte Carlo analysisshowed that alignments be
ome less anomalous, 
.f. �g. 4.7. The 
olour legends are inunits of 0.1mK. For map-making we made use of the publi
ly available GLESP pa
kage[D+03℄. Additional maps are given in app. F.et al. proposed [AS03, AJW06℄ that a 
old spot in the dire
tion of the lo
al Super
luster 
oulda

ount for the 
ross alignments of quadrupole and o
topole. The 
old spot would be realisedby the (thermal) Sunyaev Zel'dovi
ha e�e
t of CMB photons s
attering o� the hot intra
lus-ter gas. However, the values for the 
hara
teristi
s of the Sunyaev-Zel'dovi
h foreground (gastemperature, density) that are required to explain the 
ross-alignment are at most marginally
onsistent with astrophysi
al X-ray data.Se
ond, Silk and Inoue [IS06℄ suggested a 
ertain geometri
al pattern of two identi
al voidsto a

ount for the 
ross alignment as well as for the o
topole planarity via the Rees-S
iamae�e
t of this underdense stru
ture. But extrinsi
 alignments remain unexplained in this model.aIn se
. 3.1 we have already mentioned this astrophysi
al e�e
t. Let us shortly give some details here. CMBphotons 
an undergo inverse Compton s
attering o� hot gas ele
trons in galaxy 
lusters and so get shifted tothe Wien regime of the spe
trum. Therefore, when looking at the CMB sky in the Rayleigh-Jeans band, thereappears a la
k of mi
rowave photons at the position of the hot intra
luster gas. The spe
tral distortion is givenby [SZ70℄(4.9) „

∆T

T

«

SZ

=

„

x
ex + 1

ex − 1
− 4

«

y , x ≡
hν

kBT
, y ≡

Z

ne
kBTe

mec2
σT dl ,where y is the integrated gas pressure along the line of sight, Te is the temperature of the hot 
luster ele
tronsand σT is the Thomson 
ross se
tion. Be
ause the e�e
t is independent of redshift, it 
an be used to dete
t hotgalaxy 
lusters up to very high redshifts z ∼ 2 within future CMB surveys [B+06a℄, as well as for an independentyield of the Hubble 
onstant, for the basi
 prin
iple see [KKZ97℄. For a review see e.g. [CHR02℄.
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h requires a high degree of �ne-tuning in the geometri
al setup of thevoids that are pla
ed on the sky. The a
tual data on the large-s
ale stru
ture of the Universedo not support su
h a setup.Ea
h of the latter approa
hes alone is not fully satisfa
tory. A more realisti
 approa
h
on
erning extragala
ti
 foregrounds should take both the Rees-S
iama e�e
t and the Sunyaev-Zel'dovi
h e�e
t into a

ount. Moreover, sin
e the lo
al Rees-S
iama e�e
t 
an 
ontribute up to
10−5 to the temperature anisotropies on large angular s
ales, a detailed study is important for
ross-
orrelating CMB data (in
luding up
oming Plan
k data) with astrophysi
al observationson the lo
al large-s
ale stru
ture.



CHAPTER 5Intrinsi
 Alignments in the CMBNow we want to fo
us on the intrinsi
 quadrupole-o
topole alignment, whi
h is independentof external dire
tions, as well as its relation to the anomalous features in the measured CMBtemperature auto
orrelation fun
tion. As was mentioned, at the largest angular s
ales � 
orre-sponding to the multipole moments ℓ = 2 and ℓ = 3 � the presen
e of a number of unexpe
tedfeatures has been 
on�rmed by the latest CMB measurements. Among these are the anomalousalignment of the quadrupole and o
topole with ea
h other as well as the stubborn la
k of angular
orrelation on s
ales > 60◦. Here we sear
h for 
orrelations between these two phenomena anddemonstrate their absen
e. A Monte Carlo likelihood analysis 
on�rms previous studies in theliterature and shows that the joint likelihood of both anomalies is in
ompatible with the best-�t
ΛCDM model at > 99.95%C.L. Extending also to some higher multipoles, a 
ommon spe
ialdire
tion has been identi�ed and has been dubbed in the literature the `Axis of Evil'. In theseek for an explanation of the anomalies, several studies invoke e�e
ts that exhibit an axial sym-metry. We �nd that this interpretation of the `Axis of Evil' is in
onsistent with three-year datafrom the WMAP. More pre
isely, the data require a preferred plane, whereupon the axis is justthe normal dire
tion. Rotational symmetry within that plane is ruled out at high 
on�den
e.
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Figure 5.1. The temperature auto
orrelation (3.40) versus angular separation s
ale,from WMAP(1yr) (left) and WMAP(3yr) (right) data. Kp0-masked maps from threedi�erent frequen
y bands Q (41GHz), V (61GHz) and W (94GHz) are shown, aswell as the 
ut and un
ut ILC maps, and the Maximum Likelihood Estimate forthe smallest multipoles. None of the almost vanishing (60◦ . θ . 170◦) 
ut-skywavebands mat
hes the re
onstru
ted full-sky and neither one of the latter mat
hesthe predi
tion of the best-�t model. The anomaly appears even more pronoun
ed inthe three-year data than in the one-year data. Figures are taken from [CHSS07℄.109



110 5. INTRINSIC ALIGNMENTS IN THE CMB5.1. Introdu
tionWith the emergen
e of more and more pre
ise and detailed 
osmologi
al observations, thein�ationary ΛCDM model remains to provide a surprisingly good �t to the bulk of 
osmologi
aldata. Thereby, the most pre
ise and distinguished lever arm is provided by measurements ofthe mi
rowave ba
kground radiation. The standard in�ationary model predi
ts approximatelys
ale-invariant, statisti
ally isotropi
 and Gaussian temperature �u
tuations on the surfa
e oflast s
attering and is fully 
onsistent with the data, 
.f. se
. 1.2.2. But after the release of threeyears of mission data from the WMAP satellite [J+07a, H+07, P+07, WMAa℄ there remainat least open questions and at most serious 
hallenges upon the in�ationary ΛCDM model of
osmology.Based on the high pre
ision measurements of WMAP, a 
ouple of anomalies on the mi-
rowave sky have been identi�ed. These anomalies manifest themselves at the largest angulars
ales, mainly among the quadrupole and o
topole � the dipole is overwhelmingly dominated byour lo
al motion with respe
t to the CMB � but also extending to somewhat higher multipoles.The 
orresponding anomalies may be divided into two types:
• First, and already seen by the COBE-DMR instrument [HBB+96℄ and 
on�rmed bythe �rst-year analysis of the WMAP team [S+03℄, there is a la
k of angular two-point
orrelation on s
ales between 60◦ and 170◦ in all wavebands. In [CHSS07℄ the angu-lar two-point 
orrelation fun
tion of the three-year WMAP measurements has been
omputed. Going form COBE-DMR to WMAP(3yr) the la
k of 
orrelation persistsand moreover it has been outlined [CHSS07℄ that among the two-point angular 
orre-lation fun
tions none of the almost vanishing 
ut-sky wavebands mat
hes the re
on-stru
ted full sky and neither one of the latter mat
hes the predi
tion of the best-�t

ΛCDM model. This disagreement has been shown to be even more distin
tive in theWMAP(3yr) data than in the WMAP(1yr) data and is found to be unexpe
ted at
99%C.L. with respe
t to the three-year Internal Linear Combination [ILC(3yr)℄ 
ut-sky. Re
ently, it has been shown [Haj07℄ that indeed quadrupole and o
topole areresponsible for the la
k of 
orrelation and that most of the large-s
ale angular power
omes from two distin
t regions within the gala
ti
 plane (only 9% of the sky).

• Se
ond, there exist anomalies 
on
erning the phase relationships of the quadrupole ando
topole. As we have dis
ussed in the previous 
hapter, there are a number of remark-able alignment anomalies found [dOCT06, SSHC04℄, e.g. an unexpe
ted alignment ofthe quadrupole and o
topole with the dipole and with the equinox at 99.7%C.L. and
99.8%C.L., respe
tively [CHSS07℄. In 
ontrast to su
h extrinsi
 alignments, that isalignments of the low multipoles with some physi
al dire
tion or plane, like the dipoleor the e
lipti
 (dis
ussed in the previous 
hapter), the intrinsi
 alignment betweenquadrupole and o
topole does not know about external dire
tions. In this 
hapter,we address the intrinsi
 alignment of quadrupole and o
topole with ea
h other, whi
hfrom the ILC(3yr) map is found to be anomalous at the 99.6%C.L. with respe
t to theexpe
tation for an statisti
ally isotropi
 and Gaussian sky [CHSS07℄.Both types of CMB phenomena 
hallenge the statement of statisti
al isotropy of the CMBsky at largest angular s
ales. Here we want to study the relation between the la
k of angular
orrelation and the intrinsi
 alignment of quadrupole and o
topole.In [LM05℄ it has been shown that intrinsi
 alignments among multipole moments extend alsoto higher moments and it has been proposed that the strange alignments at large angular s
alesinvolve a preferred dire
tion, 
alled the `Axis of Evil'. This axis points approximately towards

(l, b) ≃ (−100◦, 60◦) and is identi�ed as the dire
tion where several low multipoles (ℓ = 2 − 5)are dominated by one m-mode when the multipole frame is rotated into the dire
tion of theaxis. Re
ently, in [LM07℄ the analysis of the `Axis of Evil' has been redone in the light of theWMAP(3yr) with the use of Bayesian te
hniques [MS07℄. It was argued [dOCT06℄ that the`Axis of Evil' is rather robust against foreground 
ontaminations and gala
ti
 
uts. A re
ent
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Random Axial + Random

Figure 5.2. Mollweide proje
tion of the sky with quadrupole (upper row) and o
-topole (lower row) multipole ve
tors [equation (5.5)℄. The mesh 
onsists of steps in
30◦. Displayed are ten pairs of quadrupole ve
tors (small dots) and their ten area ve
-tors [equation (5.6) (big dots)℄ as well as ten triples of o
topole ve
tors (small dots)and their area ve
tors (big dots); togetherness is indi
ated by 
olour. The arbitrarysign of the ve
tors has been used to gauge them all to the northern hemisphere. Thestatisti
ally isotropi
 and Gaussian 
ase (left 
olumn) is broken by the imprint of astrong axial e�e
t aℓ0 = 1000µK (right 
olumn) whereupon multipole ve
tors move tothe pole and area ve
tors move to the equatorial plane. The onset of the shown sep-aration of multipole ve
tors and 
ross produ
ts 
an already be observed at moderateaxial 
ontributions of aℓ0 ∼ 100µK, 
.f. �g. F.11.[RLLA07℄ 
ross-
orrelation analysis of CMB data and galaxy survey data shows no eviden
e foran `Axis of Evil' in the observed large-s
ale stru
ture. In 
ontrast, re
ently an opposite 
laimhas been put forward [Lon07℄, where it was 
laimed that an analysis of SDSS data gives rise toa preferred axis in the Universe.Motivated by these observed CMB anomalies, several me
hanisms based on some axisym-metri
 e�e
t have been proposed, although the operational de�nition of the `Axis of Evil'[LM05, LM07℄ does not ne
essarily imply the existen
e of su
h a strong symmetry. Amongthe various e�e
ts that have been suggested to possibly introdu
e a preferred axis into 
osmol-ogy are: a spontaneous breaking of statisti
al isotropy [GHHC05℄, parity violation in generalrelativity [Ale06℄, anisotropi
 perturbations of dark energy [KM06, BM06℄, residual large-s
aleanisotropies after in�ation [CCT06, GCP06℄, or a primordial preferred dire
tion [ACW07℄. Atthe same time, it has been studied [RRS06b, IS06℄ how the lo
al Rees-S
iama e�e
t of an ex-tended foreground, non-linear in density 
ontrast, a�e
ts the low multipole moments of the CMBvia its time-varying gravitational potential, see the previous 
hapter. In a s
enario with a singleoverdensity the 
oe�
ients of the spheri
al harmoni
 de
omposition, the aℓm, be
ome modi�edby only zonal harmoni
s, i.e. m = 0 modes. This is equivalent to an axial e�e
t along the line
onne
ting our position with the 
entre of the sour
e.In fa
t, the observed pattern in the CMB for quadrupole and o
topole is a nearly pure aℓℓmode respe
tively; as seen in a frame where the z-axis equals the normal of the plane de�nedby the two quadrupole multipole ve
tors [CHSS06℄. In [CHSS07℄ it has already been argued,that foreground me
hanisms originating from a relatively small pat
h of the sky would mainlyex
ite zonal modes. Moreover all additive e�e
ts where extra 
ontributions are added on top of



112 5. INTRINSIC ALIGNMENTS IN THE CMBthe primordial �u
tuations would have di�
ulties explaining the low multipole power at larges
ales without a 
han
e 
an
ellation.It is important to study how the in
lusion of a preferred axis 
ompares with the intrinsi
multipole anomalies at largest s
ales. Our analysis is restri
ted to axisymmetri
 e�e
ts on topof the primordial �u
tuations from standard in�ation, thus se
ondary or systemati
 e�e
ts. Weare going to quantify how poorly an axisymmetri
 e�e
t at low multipoles of whatever originmat
hes the three year-data of WMAP. Further, we will demonstrate that there is no 
orrelationbetween the two types of intrinsi
 low-ℓ anomalies: the two-point 
orrelation de�
it and intrinsi
alignment; and that there remains none even when a preferred axis is introdu
ed to the problem.5.2. Choi
e of Statisti
A 
ommon observable is the multipole power. A

ording to the standard per
eption ofin�ationary 
osmology, the CMB �u
tuations are believed to follow a Gaussian statisti
 andto be distributed in a statisti
ally isotropi
 way. The notion of statisti
al isotropy means thatthe expe
tation value of pairs of 
oe�
ients 〈a∗ℓ′m′aℓm〉 is proportional to δℓ′ℓ δm′m , 
.f. (3.39).The proportionality 
onstant measuring the expe
tation value of the multipole on the full skyis 
ommonly estimated by Cℓ , 
.f. se
. 3.3.2. The angular power 
an also be written as(5.1) Cℓ ≡
1

2ℓ+ 1

ℓ∑

m=−ℓ

|aℓm|2 =
1

2ℓ+ 1

∫

dΩ T 2
ℓ (θ, ϕ) ,with Tℓ being the ℓ-th multipole of the CMB temperature anisotropy. It 
an be expanded withthe help of spheri
al harmoni
s as: Tℓ =

∑

m aℓmYℓm . Note that, sin
e we 
onsider multipolemoments that are real, the aℓm must ful�l the additional 
ondition: a∗ℓm = (−1)maℓ−m . Usingthe estimator (5.1)) the angular two-point 
orrelation fun
tion is given by(5.2) C(θ) =
1

4π

∞∑

ℓ=0

(2ℓ+ 1)CℓPℓ(cos θ) ,where the Pℓ are the Legendre Polynomials of ℓ-th order.Besides of the multipole power itself, it is useful to introdu
e an all-sky quantity thatembra
es all s
ales. As inspired by the S1/2 statisti
, presented in [S+03℄ for measuring the la
kof angular power at s
ales larger than 60◦, we use here an analogous all-sky statisti
 [CHSS07℄(5.3) Sfull ≡
∫ 1

−1

C2(θ) d(cosθ) .It is a measure of the total power squared on the full-sky. In 
ontrast to the S1/2 statisti
[S+03℄, the Sfull statisti
 does not 
ontain any a priori knowledge on the variation of the twopoint angular 
orrelation (5.2) for angles > 60◦ . Here we are 
onsidering espe
ially the largeangular s
ales but we are not interested in the monopole and dipole and thus arrive at(5.4) Strunc
full =

1

8π2

(
5C2

2 + 7C2
3

)
.Of 
ourse, all multipoles have to be 
onsidered for the full-sky statisti
 (5.3) but we 
an use thetrun
ated part (5.4), be
ause here the anomalies are most pronoun
ed and we want to 
he
kfor the interplay of this part of the full-sky power statisti
 with the other (phase) anomalieswithin quadrupole and o
topole. This part is then simply to be added to the rest of the sum of(squared) multipole power in (5.3), re
overing the expression for the full-sky.Next we turn to the statisti
s involving the phase relationships of multipoles. We use the
on
ept of Maxwell's multipole ve
tors [Max79℄ in order to probe statisti
al isotropy, sin
e thisrepresentation proved to be useful for analyses of geometri
 alignments and spe
ial dire
tionson the CMB sky. Normally the CMB data is de
omposed into spheri
al harmoni
s and the
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SwwFigure 5.3. Evolution of the Monte Carlo likelihood of the alignment statisti
s Snn(5.7) and Sww (5.8). The e�e
t of an axis in the CMB is modeled via in
reasing addi-tional zonal harmoni
s with 
oe�
ients aℓ0. At aℓ0 = 1000µK the multipoles be
omepurely zonal in good approximation. Regarding WMAP's ILC(3yr) map Snn is un-expe
ted at 98.3%C.L. and Sww is odd at 99.5%C.L. with respe
t to the statisti
allyisotropi
 and Gaussian sky (bold histograms). The best improvement is rea
hed forboth statisti
s at roughly aℓ0 = 100µK.
oe�
ients aℓm 
ontaining the physi
s. Alternatively, with the use of the multipole ve
torsformalism we 
an expand any real temperature multipole fun
tion on a sphere into(5.5) Tℓ(θ, ϕ) =

ℓ∑

m=−ℓ

aℓmYℓm(θ, ϕ) = A(ℓ)

[
ℓ∏

i=1

(

v̂
(ℓ,i) · ê(θ, ϕ)

)

− Lℓ(θ, ϕ)

]

,and ê is a radial unit ve
tor, just like in (4.6). The `angular momentum' residuals are subtra
tedwith the help of the term Lℓ(θ, ϕ). We 
hoose the sign of the multipole ve
tors so that they allpoint to the northern hemisphere.In order to dis
lose 
orrelations among the multipole ve
tors we �rst 
onsider for ea
h ℓ the
ℓ(ℓ− 1)/2 independent oriented areas built from the 
ross produ
ts(5.6) w(ℓ;i,j) ≡ ± v̂

(ℓ,i) × v̂
(ℓ,j) ,whereof we will also use the normalised ve
tors n(ℓ;i,j) ≡ w(ℓ;i,j)/|w(ℓ;i,j)|. Now, in [SSHC04℄and subsequent works, the dot produ
ts of the area ve
tors have proven to be a handy expressionin order to quantify alignments of the multipole ve
tors among ea
h other and also with externaldire
tions (whi
h we do not 
onsider here). The following measure, as stated in [Wee04℄, andused in [SSHC04, CHSS06, CHSS07℄ serves as a natural 
hoi
e of a statisti
 in order to quantifythe intrinsi
 alignment of quadrupole and o
topole oriented areas:(5.7) Sww ≡ 1

3

∑

i<j

∣
∣
∣w

(2;1,2) · w(3;i,j)
∣
∣
∣ .Note that we 
onsider only the very largest s
ales, i.e. we use the statisti
 only for ℓ = 2, 3.Analogously, a statisti
 involving the normalised area ve
tors is given by:(5.8) Snn ≡ 1

3

∑

i<j

∣
∣
∣n

(2;1,2) · n(3;i,j)
∣
∣
∣ .5.3. Standard Model Predi
tionsStandard in�ationary ΛCDM 
osmology requires the CMB anisotropies to be Gaussian andstatisti
ally isotropi
. For the subsequent analysis we have produ
ed Monte Carlo realisationsof the harmoni
 
oe�
ients aℓm following the underlying ΛCDM theory. From [CHS04℄ analgorithm is available whi
h we use to obtain Monte Carlo multipole ve
tors from the 
oe�
ients.
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Figure 5.4. The sign of additional axial 
ontributions aℓ0 has no physi
al e�e
ton the statisti
s Snn and Sww . For the quadrupole this follows from the symmetryof the Legendre Polynomial P2 [see equation (5.13)℄. The quadrupole 
ontributionis kept �xed at a20 = 100µK while the axial 
ontribution to the o
topole is variedboth in magnitude and in sign. Respe
tive pairs of ±a30 histograms lie virtually onea
h other and their statisti
s are thus indistinguishable. The referen
e histogramsfollowing from the axially unmodi�ed ΛCDM model (bold histograms in �g. 5.3 lienearly on top of the displayed a20 = 100µK and a30 = ±10µK 
ases, and are thus notshown.Mollweide maps of a sample of random Gaussian and statisti
ally isotropi
 quadrupole ando
topole ve
tors as well as their normals are given in �g. 5.2 (left 
olumn).Con
erning the question of 
orrelations between the multipole power and the alignment ofmultipole ve
tors, it appears natural to expe
t that there is none. That is be
ause we invokedGaussian random and statisti
ally isotropi
 skies, leading to multipole ve
tors (5.5) independentof the multipole power (5.1). This assumption needs to be tested and quanti�ed.Nevertheless, a small 
orrelation 
ould be expe
ted from the following reason: Consideringonly multipoles up to some limiting power, the resulting probability density distribution for the
aℓm must be non-Gaussian. In fa
t, this restri
tion leads to a negative kurtosis for the aℓmdistribution (the skewness vanishes). Having that in mind, it appears suddenly un
lear whetherthe naive expe
tation of vanishing 
orrelation of power with intrinsi
 alignment will hold. Belowwe substantiate the absen
e of 
orrelations by means of a Monte Carlo analysis.Let us �rst look at the alignment anomalies. In �g. 5.3 the likelihood of the quadrupoleand o
topole alignment statisti
s Sww and Snn is shown. The predi
tions of the standardin�ationary ΛCDM model are shown as the bold histograms respe
tively (= vanishing axial
ontamination). A

ording to the three-year ILC map from WMAP [WMAa℄ we get the follow-ing measured values for the alignment statisti
s:

SILC(3yr)
nn = 0.8682 and SILC(3yr)

ww = 0.7604 ,when [CHSS07℄ 
orre
ted for the Doppler-quadrupole. The total number of Monte Carlos weprodu
ed per sample is N = 105. We infer that the unmodi�ed in�ationary ΛCDM predi
tionis unexpe
ted at 98.3% C.L. with the Snn statisti
 and unexpe
ted at 99.5% C.L.a with respe
tto the Sww statisti
.Next we 
onsider the 
ross-
orrelation between the intrinsi
 phase anomalies and the mul-tipole power (5.1) within the low-ℓ. For this we 
hose those aℓm that allow for say the lowestpossible 5% in the left tail of the distributions for C2 and C3 that follow from statisti
al isotropy,Gaussianity and the ΛCDM best-�t to the WMAP data. Then we 
ompute the expression Swwfor the sele
ted aℓm and 
ompare it to the a

ording ILC(3yr) value. As expe
ted, no 
orrelationaThe value quoted above was [CHSS07℄ 99.6% C.L. The small di�eren
e is due to the in
orporation of theWMAP pixel noise in the Monte Carlo analysis in [CHSS07℄.
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full [0.1mK]4Figure 5.5. Contour of the s
atter of intrinsi
 alignment (5.7) versus full-sky powersquared (5.4). The shape 
an be understood from the folding of the two respe
tivedistributions. The total number of Monte Carlo points is N = 105. The measureddata point from WMAP three-year data is in
luded. The maximum of likelihoodrequires Sww far smaller than obtained from ILC(3yr). Consisten
y with the data 
anbe ex
luded at 99.95%C.L. Contours 
orrespond to lines of 1/2n times the maximallikelihood, with n = 1, . . . , 5.is found, that is neither the shape nor the expe
tation value of the alignment statisti
 is shifted.We �nd the same also for the 
ombination of the lowest allowed 5% in C2 and the highest 5%from the right tail of the distribution of C3 and the remaining two possible 
ombinations thereof.As we do not �nd any 
orrelations, we 
an 
on
lude that the Sww and Snn statisti
s are notsensitive to the non-Gaussianity indu
ed by the restri
tion to low multipole power.Moreover, we probe the opposite dire
tion by tagging those aℓm that lie in the allowed righttail of the Sww distribution with respe
t to SILC(3yr)

ww . The distribution of the multipole powerfor C2 and C3 made of these aℓm remains un
hanged. The latter �nding 
on�rms that multipolepower and the shape of multipoles (phases) are un
orrelated.Using Equation (5.4), the [WMAa℄ Maximum Likelihood Estimate (MLE) from the WMAPILC(3yr) map for the angular power spe
trum yields Strunc,MLE
full = 29431µK4. Compared tothe value of 136670µK4 from the ΛCDM best-�t to WMAP(3yr) data, this is not signi�
antlyunexpe
ted, with an ex
lusion level of only 92.1%C.L.Now we want to 
he
k for 
orrelations between the all-sky multipole power and the multipolealignment. As for reasons explained in the next se
tion we prefer the Sww statisti
 to Snn in thefollowing 
orrelation analysis. In Figure 5.5 the s
atter plot of Sww against Strunc

full is shown. Theform of the 
ontour 
an be understood as just the folding of the χ2-like form of the distributionfor Strunc
full with the gaussian-like form of the Sww distribution. At �rst glan
e we see from Figure5.5 that the MLE from WMAP(3yr) Strunc,MLE

full = 29431µK4 requires the alignment statisti
 tobe of middle values (around 0.4), whi
h is in
onsistent with the respe
tive measured anomalousvalue from ILC(3yr). Moreover the la
k of any linear behaviour in the 
ontour suggests thatthere is no 
orrelation between the two statisti
s.Given that no 
orrelation is present between Sww and Strunc
full , we would expe
t that the jointprobability that both power and alignment are in a

ordan
e with data fa
torises a

ording to:(5.9) p

(
Strunc

full ≤ data ∧ Sww ≥ data
)

= p1

(
Strunc

full ≤ data
)
p2 (Sww ≥ data) .



116 5. INTRINSIC ALIGNMENTS IN THE CMBBut in reality we 
an only a

ess �nite statisti
al samples of these quantities and the fa
-torisation will not be exa
t. However, we want to will 
he
k the validity of (5.9) within ourstatisti
al ensemble. When using the full sample with N = 105 respe
tively we obtain a jointlikelihood of p ≃ 0.05%. The error ∆ of the fa
torisation, whi
h we de�ne as the di�eren
ebetween the left hand side in (5.9) and the right hand side, is of the order O(10−5), that is of theorder of the Monte Carlo noise. In order to tra
k the evolution of the error ∆ we also 
omputethe joint likelihood (5.9) for smaller subsamples; see tab. 5.3. Redu
ing N to N = 104 we obtainan even smaller joint likelihood of p = 0.02% but with an error that is of the same magnitude.With N = 103 we do not have a single hit for the joint Monte Carlos leading to p = 0% withthe same error as in the N = 104 
ase of ∆ = 0.02%. Note that just one Monte Carlo hit infavour of the joint 
ase would raise the error here to ∆ = 0.08%. In the end, the 
onvergen
e ofthe joint likelihood appears to be very slow with respe
t to the sample size N .Furthermore we are interested in the stability of the results for ∆ with respe
t to 
hangesin the measured data. For this we 
hoose the WMAP(1yr) values:(5.10) Strunc,pseudo-Cℓ

full = 10154µK4 and SILC(1yr)
ww = 0.7731 .We use a sample of the full size N = 105 and obtain a joint likelihood with respe
t to theone-year data of p = 0.001% with an error ∆ = 0.002%. That is, with respe
t to one-year databoth the joint likelihood and its error are of the order of the Monte Carlo noise. From theWMAP(1yr) data alone we 
ould ex
lude the joint 
ase (5.9) rather 
onservatively at 99.99%C.L. This appears to be a stronger ex
lusion than the one from three-year data. But we do notbother mu
h about the di�eren
e be
ause of the di�erent estimators that have been used by theWMAP team for the angular power spe
trum (pseudo-Cℓ vs. MLE) [WMAa℄.sample size N joint p error ∆100000 0.048% 0.008%100000b 0.001% 0.002%10000 0.02% 0.02%1000 0% 0.02%Table 5.1. Joint likelihoods (5.9) for Strunc

full and Sww being in a

ordan
e with datasimultaneously. The experimental values refer to WMAP's ILC(3yr) map [WMAa℄ex
ept for the se
ond row. The error ∆ of the fa
torisation in equation (5.9) is thedi�eren
e between left hand side and right hand side in that equation.We quote here the most 
onservative result, namely the full sample joint likelihood 
ase for
Sww and Strunc

full with respe
t to the WMAP(3yr) data. Therefore we 
an ex
lude that 
ase at
> 99.95% C.L. with an error in the third digit after the 
omma lying within the Monte Carloerror of the used sample (N = 105).Finally we attempt to analyse the 
orrelation of the all-sky power statisti
 Strunc

full and theintrinsi
 multipole alignment Sww by quantitative means. It is well known from statisti
s, thatwhen 
he
king a �nite two-dimensional sample for 
orrelations, the empiri
 
ovarian
e(5.11) cov[Strunc
full , Sww ] ≡ 1

N − 1

N∑

i=1

(
Strunc

full, i − S̄trunc
full

) (
Sww, i − S̄ww

)is a 
ru
ial quantity. The bar stands for the mean of a variable. As the 
ovarian
e is a s
aledependent measure, i.e. depending on the magnitudes of the sample values Sww, i and Sww, i,the dimensionless Bravais-Pearson 
oe�
ient or empiri
al 
orrelation 
oe�
ient is the betterexpression to use:(5.12) ρStrunc
full , Sww

≡ cov[ Strunc
full , Sww ]

√
cov[Strunc

full , Strunc
full ] cov[Sww , Sww ]

.
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Strunc
full [0.1mK]4Figure 5.6. S
atter 
ontour of pairs of Sww and Strunc

full after an axial modi�
ation of
aℓ0 = 70µK has been applied; this is the 
ontribution involving maximal improvementin Sww (see �g. 5.3). The total number of Monte Carlo pairs is N = 105. Note thatthe horizontal axis now runs from zero to 1.4 × 10−6mK4, whereas in �g. 5.5 themaximal displayed value is 4 × 10−7mK4. The in
lusion of a preferred axis leavesall-sky multipole power and intrinsi
 alignment totally un
orrelated and in
onsistentwith the WMAP(3yr) data. Contour lines are de�ned as in �g. 5.5.Finally, employing the WMAP(3yr) data we obtain an empiri
al 
orrelation 
oe�
ient of

ρStrunc
full ,Sww

= −0.0027 ,with respe
t to the full sample N = 105, whi
h indeed indi
ates only marginal 
orrelation.5.4. In
lusion of a Preferred AxisNow we ask what happens when introdu
ing axial 
ontributions on top of a statisti
allyisotropi
 and gaussian mi
rowave sky. The presen
e of a preferred dire
tion with axisymmetryin the CMB will ex
lusively ex
ite the zonal modes in 
ase the axis is 
ollinear to the z-axis.Here we do not bother about external dire
tions sin
e the internal alignments are independentof these. Therefore su
h an axis will manifest itself through additional 
ontributions aℓ0. Weare 
onsidering the quadrupole and the o
topole and the question arises, in how far the sign ofthe axial 
ontributions ±aℓ0 plays a role. The 
oe�
ients aℓm 
an be re
onstru
ted from(5.13) aℓm =

∫
∆T

T
(θ, ϕ) Y ∗

ℓm dΩ .Obviously, within the quadrupole the sign of ±a20 is irrelevant be
ause of the symmetry ofthe Legendre Polynomial P2 with respe
t to θ = 90◦. The Legendre Polynomial P3 howeveris antisymmetri
 with respe
t to θ = 90◦. Therefore the relevan
e of the sign of the o
topole
ontributions a30 has to be 
lari�ed. Consequently we have 
hosen a �xed value for the axialquadrupole 
ontribution a20 and have then varied the a

ording o
topole 
ontribution in signand in magnitude. The results are displayed in �g. 5.4. Apparently the Snn and Sww statisti
sthat are important here, do not distinguish between the sign of the applied axial e�e
t. Thereforewe need not to bother about the signs of the aℓ0 and let them hen
eforth be positive.In Figure 5.3 the evolution of the Sww and Snn statisti
s with respe
t to in
reasing axial
ontributions is displayed in terms of likelihood histograms:



118 5. INTRINSIC ALIGNMENTS IN THE CMBLet us �rst look at the evolution of the Snn statisti
. This expression measures the average
| cos | of the angles between the quadrupole oriented area and the o
topole areas. The pureMonte Carlo peaks at 0.5 re�e
ting the fa
t that the average distan
e of four isotropi
allydistributed ve
tors on a half-sphere from ea
h other is 60◦ in the 
ase of statisti
al isotropy. Itis a half-sphere be
ause the signs of the multipole ve
tors are arbitrary and so we 
hoose themall to point to the northern hemisphere. When in
reasing the 
ontribution of the axial e�e
t themultipoles be
ome in
reasingly zonal and arrive at being purely zonal in a good approximationat values of aℓ0 = 1000µK. On the level of the multipole ve
tors this means that their 
rossprodu
ts all move to the equatorial plane (see �g. 5.2). That is the reason why the histogram in�g. 5.3 (left) moves to the right when we in
rease the axial e�e
t, be
ause now isotropy is brokenfrom the half-sphere to the half-
ir
le making the Snn histogram peak sharper at higher values.The measured value from the ILC(3yr) map of SILC(3yr)

nn = 0.868 is anomalous at 98.3%C.L. withrespe
t to the pure Monte Carlo (bold histogram in �g. 5.3 whi
h stands for the statisti
allyisotropi
 and gaussian model. By adding axial 
ontribution the maximal improvement is rea
hedat aℓ0 = 100µK where the ILC(3yr) be
omes unexpe
ted at 96.7% C.L. Further enhan
ementof the axial e�e
t makes the Snn statisti
 more and more narrow around an expe
tation value
< 0.7. This makes it impossible to remove the anomaly in the Snn 
ross-alignment with respe
tto the ILC(3yr) experimental value only by in
reasing the axial 
ontribution to high enoughvalues.On the other hand the Sww statisti
 additionally measures the modulus of the sin of theangles between the multipole ve
tors themselves. As 
an be seen from �g. 5.2 multipole ve
torsare all moving toward the north pole 
lustering more and more as the axial 
ontribution isenhan
ed. The Sww statisti
 measures the average of the modulus of the produ
ts of the sinof angles between quadrupole ve
tors, o
topole ve
tors and the 
os of the angle between thearea ve
tors. Therefore on top of the information already 
ontained in Snn the Sww statisti
is able to go to zero for highest zonal 
ontamination as the 
loseness of the multipole ve
torsin that 
ase dampens the produ
t of sines and 
osines quadrati
ally to arbitrary small values.Thus we �nd that Sww is the more 
onvenient statisti
 for further analyses, as it does 
ontainmore information than the Snn statisti
 and additionally shows a simple and 
lear asymptoti
behaviour. In the 
ase of this statisti
 the anomaly is signi�
ant at 99.5%C.L. with respe
tto SILC(3yr)

ww = 0.7604. Similarly to before the maximal improvement is rea
hed with an axial
ontribution of aℓ0 = 70µK, whi
h degrades the anomaly in Sww to 99.2%C.L.Now we return to the 
orrelation analysis of the alignment with the pure multipole power
Cℓ. When introdu
ing an axial e�e
t, say aℓ0 = 100µK, we improve the �t to the Sww statisti
,but interestingly the multipole power anomaly be
omes mu
h more pronoun
ed. This behaviouris expe
ted [RRS06b, RRS06a℄ for the Cℓ-distribution (being a modi�ed χ2-distribution) whenthe axial 
ontribution is enhan
ed, but it is unexpe
ted that exa
tly the same happens for amultipole power distribution `that knows of the intrinsi
 alignment of quadrupole and o
topole'.This indi
ates that there is no 
orrelation at all between multipole power and the phase alignmenteven when they are tuned to ea
h other.Pro
eeding with the analysis of 
orrelations between alignment and the full-sky power statis-ti
, again we try to provoke 
orrelation with the help of axial symmetry in the CMB. In fa
twe apply an axial e�e
t of the ideal magnitude (aℓ0 = 70µK) in order a
hieve larger values in
Sww. The negative result is shown in �g. 5.6: as Strunc

full is a linear 
ombination of squared Cℓdistributions it is a sharply peaked χ2-like distribution being very sensitive to axial 
ontribu-tions. Therefore the 
ontour in �g. 5.7 is fairly shifted to the right (to higher values in Strunc
full )and broadened with respe
t to the axially unmodi�ed 
ase, obviating any 
orrelation with theintrinsi
 alignment. The shape of the overall 
ontour is roughly left invariant by the s
ale shiftin Strunc

full .The �g. 5.7 illustrates the pure zonal 
ase. Here a whole aℓ0 = 1000µK has been indu
ed intothe multipole ve
tors. Again, due to the sensitivity of Strunc
full to axial 
ontamination this pushesthe allowed region in the s
atter plot to very high values in full-sky power squared, degenerating
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Strunc
full [0.1mK]4Figure 5.7. Contour plot of the s
atter of pairs (Sww , Strunc

full ) after a strong axial
ontingent of aℓ0 = 1000µK is indu
ed to the multipole ve
tors (see also �g. 5.2 and�g. 5.3). The total number of Monte Carlo pairs is N = 105. The all-sky powerstatisti
 rea
ts heavily as the s
ale on the Strunc
full -axis is shifted by four orders ofmagnitude with respe
t to the 
ase of aℓ0 = 70µK (�g. 5.6). The likelihood maximumdeparts very arti
ulately from the WMAP(3yr) data. The 
ontour lines are de�nedlike in �g. 5.5.the 
ontour to a `small' area far away from the measured three-year WMAP values. No 
hangein 
orrelation is observable.Obviously, no 
oupling of the multipole power statisti
 and the intrinsi
 alignment 
an bedriven in favour of the anomalous experimental CMB data by an additional axisymmetri
 e�e
ton top of the primordial �u
tuations. 5.5. Con
lusionWe have shown that a literal interpretation of the `Axis of Evil' as an axisymmetri
 e�e
tis highly in
ompatible with the observed mi
rowave sky at the largest angular s
ales. Theformalism of multipole ve
tors was used to separate dire
tional information from the absolutepower of multipoles on the CMB sky. Considered were two 
hoi
es of statisti
, measuring theintrinsi
 
ross-alignment between the quadrupole and o
topole: the Snn and the Sww statisti
.We 
on�rm that the Sww statisti
 
ontains more information on the multipoles and that it hasmore dis
riminative power as an axial e�e
t is in
luded. The presen
e of an axial symmetry in theCMB would ex
ite zonal modes whi
h are, in the frame of the axis, additional aℓ0 
ontributionsin the language of the harmoni
 de
omposition. Both statisti
s (Snn and Sww) rea
h slightlybetter agreement with the measured values from the ILC(3yr) map at amplitudes of roughly

aℓ0 = 100µK. Further enhan
ement of the axial e�e
t only redu
es 
onsisten
y with WMAP(3yr)data.Espe
ially we have assayed in what way the alignment anomaly between quadrupole ando
topole 
an a�e
t the respe
tive multipole power. We made several tests where we identi�edand sele
ted the `anomalous aℓm ' that are still 
onsistent with data and 
he
ked whether theresulting distribution from these aℓm for either power or alignment shows any 
hange with respe
tto the unbiased 
ase. For the all-sky multipole power we make use of the statisti
 Strunc
full . Wedemonstrated that the 
orrelation between Strunc

full and intrinsi
 alignment is at most marginal �
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orrelation 
oe�
ient of −0.0027 . Thus a fa
torisation of the probability for the joint 
ase intoa produ
t of the respe
tive probabilities is allowed, 
.f. (5.9).We argued that the 
ombined 
ase of the measured all-sky power and the quadrupole-o
topole alignment is anomalous at > 99.95%C.L. with respe
t to the WMAP three-year data.The 
orrelation pi
ture leaves no spa
e for an axisymmetri
 e�e
t in the large-angle CMB.These �ndings 
omplement our previous studies from 
hap. 4 of the interplay of an axisym-metri
 e�e
t and the extrinsi
 CMB anomalies (
orrelation with the motion and orientation ofthe Solar system [SSHC04℄). In that work it was suggested that an axisymmetri
 e�e
t mighthelp to explain a Solar system alignment. Finally, this study rules out that possibility.But there is a loophole. Here and in 
hap. 4 we only 
onsidered additive modi�
ations ofthe aℓm. Still, a preferred axis 
ould also indu
e multipli
ative modi�
ations in all aℓm , seee.g. [GHHC05℄. This 
ould avoid the problem of additional multipole power. However, multi-pli
ative e�e
ts 
ould only be a
hieved by non-linear physi
s, like systemati
s of the measurementor the map making pro
ess.A modelling that would be able to 
onsistently remove both the power and the intrinsi
alignment problem for low-ℓ must mobilise a more 
omplex pattern of modi�
ations than theone indu
ed by an axisymmetri
 e�e
t. As already indi
ated by e.g. the odd extrinsi
 alignmentwith the e
lipti
, 
.f. tab. 4.1, the CMB anomalies do rather require a spe
ial plane than apreferred axis. The so 
alled `Axis of Evil' appears as just the normal ve
tor of that plane, butno axial symmetry is present within that plane.



Summary and OutlookIn this thesis I have addressed 
urrent open questions of the 
osmologi
al standard model.I would like to 
lose the s
ienti�
 part of this work with a 
on
ise summary of the main issuesthat have been 
overed here, as well as some remarks with regard to future interesting work.The Issue of Dark Energy. In 
hap. 1 we have dis
ussed the main observational eviden
ein favour of the 
osmologi
al 
onstant Λ . In parti
ular, we have seen that observations ofdistant supernovae of type Ia support an a

elerated expansion of the Universe. Additionally,the supernova data shows that this a

eleration has set in at redshifts of order unity, that isin 
osmologi
al terms `re
ently'. This is referred to as the 
oin
iden
e problem. Together withthe CMB measurements and galaxy redshift surveys, the experimental �ndings form the 
osmi

on
ordan
e.In 
hap. 1 we have also seen that the supernova data 
an potentially be explained withininhomogeneous models (LTB model, Szekeres model) without invoking Dark Energy. Also,the additional in
lusion of CMB data has been 
arried out su

essfully by some groups. Themethods we have used in 
hap. 1 to 
arry out analyti
 
al
ulations in the LTB model 
an also beused in the 
ontext of 
osmologi
al ba
krea
tion. Cosmologi
al ba
krea
tion is an 
onservativeattempt to solve the Dark Energy problem, for it does not invoke any new �elds or intera
tions.It is known that ba
krea
tion is indeed able to mimi
 Λ , but the a
tual magnitude of the e�e
tis yet undetermined and subje
t to 
urrent debate. On the one hand the non-perturbativeapproa
h via the Bu
hert equations shows a la
k of suitable observables, and on the otherhand the perturbative approa
h, whi
h deals with observables, be
omes te
hni
ally immensely
ompli
ated with higher orders. However, see [LS07℄ for an attempt of synthesis.Addresssing these problems, Thomas Bu
hert (Université Lyon 1), Dominik S
hwarz and Ihave begun a proje
t in whi
h we are examining the e�e
ts of general relativisti
 averaging �
arried out on the ba
kward light 
one of the observer � on the 
ommon 
osmologi
al distan
emeasures, whi
h are, the angular diameter distan
e and the luminosity distan
e. This is anongoing work and its results are too preliminary to be written down in this thesis yet.The Issue of Dark Matter. We have seen in 
hap. 2 that the eviden
e for Dark Matteris manifold. However, it should be reemphasised that there is no a priori reason to believe thatall of the missing matter problems on all of the di�erent physi
al s
ales must have a 
ommonexplanation.The most important eviden
e 
omes from a simple astrophysi
al test, the gala
ti
 rotation
urve. A fully general relativisti
 galaxy model has been proposed by Coopersto
k and Tieure
ently, and it was shown that this model 
an explain the observed �at rotation 
urves withoutany Dark Matter. It is 
laimed by CT that Newtonian models 
annot reprodu
e 
ertain intrin-si
ally non-linear terms within the CT model, whi
h shall appear already in the stationary andaxisymmetri
 setup.Nevertheless, it has been argued from various dire
tions that the CT model gives rise tounphysi
al features. It is an open question whether the CT solution 
ould provide an e�e
tivemodel, and to whi
h extent the breakdown of its Newtonian limit might indi
ate its usefulnessor its di�
ulties. 121



122 SUMMARY AND OUTLOOKIn 
hap. 2 we have shown that the CT solution does not belong to the 
lass of the mostgeneral axisymmetri
 and stationary solutions. Therefore the CT solution is less general andthis restri
tion might be a reason for the problems of the model.Moreover, we found the surprising fa
t that the 
lassi
al Newtonian metri
 is not appropriatefor a weak �eld limit of the CT theory, be
ause the in
orporation of a post-Newtonian potentialis ne
essary to make physi
al sense.We then 
on
erned ourselves with the analysis of rotating (Post-) Newtonian spa
etimes inorder to �nd a simpli�ed model. We applied the full ma
hinery of the ADM formalism to theproblem and we derived the exa
t 3 + 1-equations of motion for the stati
 and for the rigidlyrotated Post-Newtonian metri
 as well as approximate results for the di�erentially rotated 
ase.We found that it is ne
essary to go to full quadrati
 order in the potentials of the di�erentiallyrotated PN metri
 to obtain a viable Newtonian limit, whi
h will be done in the near future.The Issue of the CMB Anomalies. The one-year CMB data taken by the WMAP ex-hibits several unanti
ipated features, espe
ially within the smallest multipole moments (quad-rupole and o
topole). These �ndings have been widely 
on�rmed after the WMAP three-yeardata release. The features are referred to as `anomalous' be
ause they 
ontradi
t the predi
-tions made by the standard in�ationary ΛCDM model � espe
ially the statisti
al isotropy. In
hap. 4 and 
hap. 5 we have presented the various shapings of the anomalies in mu
h detail.The odd features are present both in the CMB auto
orrelation fun
tion C(θ) and in the phaserelationships of the quadrupole and o
topole.In 
hap. 4 we fo
used on the anomalous alignments of the lowest multipoles with external(astrophysi
al) dire
tions, like the CMB dipole or the 
hara
teristi
 dire
tions of our Solar sys-tem. Inspired by the 
orrelation with the dipole, we ask how extended extragala
ti
 foregroundswould in�uen
e the CMB sky via the Rees-S
iama e�e
t. The overdense stru
ture responsiblefor the e�e
t was modelled by a spheri
ally symmetri
 LTB solution. We then made use of theanalyti
 
al
ulation of the Rees-S
iama e�e
t � presented in 
hap. 1 � indi
ating that only thezonal CMB modes are modi�ed by the e�e
t (axisymmetry).We have found that massive non-linear stru
tures like the Shapley 
on
entration (roughly
100Mp
 away) are able to produ
e CMB 
ontributions of up to 10−5 . For the axially symmetri
setup we have shown that this e�e
t does indu
e alignments, albeit not of the same form asextra
ted from WMAP, and that still rather a Solar system e�e
t is preferred by the data.The intrinsi
 alignment of the quadrupole and o
topole, as well its relation to the anomalousla
k of angular two-point 
orrelation in the WMAP data was the subje
t of 
hap. 5. After
arrying out a Monte Carlo 
ross-
orrelation analysis we 
ould demonstrate the absen
e of
orrelations between the two sorts of anomalies. Based on this we were able to show thatthe 
ombined 
ase of the measured auto
orrelation and the quadrupole-o
topole alignment isanomalous at > 99.95%C.L. with respe
t to the WMAP three-year data.The 
orrelation pi
ture leaves no spa
e for an literal interpretation of the `Axis of Evil' asan axisymmetri
 e�e
t. As we pointed out in 
hap. 5 there are several models with a preferredaxis in the literature whi
h seek to provide an explanation for some of the anomalies. Our resultenables us to put stringent 
onstraints on any model that exhibits an axial symmetry.But there is still a loophole for axial models. In this work we have 
onsidered additivemodi�
ations of the aℓm. Still, a preferred axis 
ould also indu
e multipli
ative modi�
ations inall aℓm , see [GHHC05℄. This 
ould avoid the problem of additional multipole power. However,multipli
ative e�e
ts 
ould only be a
hieved by non-linear physi
s. In prin
iple it is possible toget su
h a non-linear e�e
t from the spe
tral distortion arising from the possible intera
tion ofthe CMB photons with small obje
ts in the Kuiper Belt, the so 
alled Trans-Neptunian obje
ts,
.f. [BBS07℄. This is a promising idea to pursue in the near future.Moreover, I think that it is fruitful to 
arry out a similar Rees-S
iama analysis within themore 
ompli
ated Szekeres model, 
.f. se
. 1.3.2, be
ause mu
h more non-trivial symmetries 
anbe expe
ted there.
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APPENDIX ACriti
al Values of Ωm and ΩΛ in the FRW ModelHere we give a dis
ussion of the various, partly exoti
, solutions that are possible within anFRW model with non-vanishing 
osmologi
al 
onstant. The presentation partly refers to [FI86℄.

Figure A.1. Left: the 
osmi
 
on
ordan
e plot from �g. 1.4 has 
riti
al lines. Forinstan
e, there is a borderline formed by the 
oasting (sometimes also 
alled loiteringor hesitating) 
osmologies that separates FRW models with a Big Bang from su
hwithout Big Bang in the upper left 
orner of the �gure. Moreover there is an `expan-sion/re
ollapse' borderline in the middle of the diagram. The derivation of the 
riti
al
urves is given in the text. In the lower right 
orner of the �gure there is anothershaded region. This parameter region is falsi�ed for it implies solutions where theUniverse is younger than the oldest stars t0 . 9.6 Gyr (with any H0 & 50 km s−1Mp
−1 [P+98℄). Right: an alternative way of plotting the 
on
ordan
e results in theform of a `
osmi
 triangle'. Pi
tures are taken from [Lid04℄ and [Gfr℄.First, the line of geometri
ally 
losed, open or �at in the above �g. A.1 simply refers to therespe
tive 
hoi
e of k . The dynami
s of the FRW model is governed by the Friedmann equation(1.14). Writing the Friedmann equation today, when the radiation is no more dominant, wehave(A.1) k

H2
0a

2
0

= Ωm + ΩΛ − 1 ,127



128 A. CRITICAL VALUES OF Ωm AND ΩΛ IN THE FRW MODELsu
h that we 
an read o� the 
urvature lines in �g. A.1 by
Ωm + ΩΛ > 1 → k > 0 , spatially closed

Ωm + ΩΛ = 1 → k = 0 , spatially flat

Ωm + ΩΛ < 1 → k < 0 , spatially open .(A.2)Next we 
onsider the line of `a

eleration/de
eleration' (see the 
osmi
 triangle). Usingdimensionless variables R = a/a0 and τ = H0t we 
an write the Friedmann equation, after a bitof algebra, as follows(A.3) R2
,τ = 1 + Ωm

(
R−1 − 1

)
+ ΩΛ

(
R2 − 1

)
.The de
eleration parameter was de�ned in (1.42) and takes today the value(A.4) q0 = −

(
aä

ȧ2

)
∣
∣
∣
∣
∣
0

,where dots indi
ate di�erentiation with respe
t to 
osmi
 time. Di�erentiation of equation (A.3)further gives(A.5) 1

H2

(

2
ȧä

a2
0

)

= −Ωm

(
a0ȧ

a2

)

+ ΩΛ

(

2
aȧ

a2
0

)

,so that taking the equation today yields(A.6) q0 =
1

2
Ωm − ΩΛ .Thus, with q0 = 0 we just get the dividing line 2ΩΛ = Ωm as indi
ated in the �gure.The 
riti
al lines of Λ are more interesting. For very high and positive values of Λ theUniverse would lose its Big Bang in the past. The borderline for this is given by the 
lass ofEddington-Lemaître models; in these models one employs a value for Λ that is slightly higherthan Λstat whi
h is in turn de�ned by the stati
 (Einstein) limit: Λstat ≡ 1/a2

stat. In theEddington-Lemaître model the Universe rapidly expands from a = 0 (Big Bang) on and rea
hesa turning point near a = astat , where it mimi
s the Einstein model for an arbitrarily long timebefore it erupts again, now expanding to in�nity; at the time of invention of the Eddington-Lemaître model it was hoped that the quasistati
 feature in the model may provide time forstru
ture formation, 
.f. [Nar02℄. The `Big Bang/no Big Bang' borderline models are thusasymptoti
 to the Einstein model in their (in�nite) past. Then models with Λ < Λstat do have aBig Bang in the past, whereas models with Λ > Λstat are 
ollapsing from some in�nite radius toa �nite minimal s
ale where they turn around and reexpand again to in�nity � this behaviouris also referred to as 
atenary or boun
e. Analyti
 formulas for the a

ording 
riti
al lines of
Λ are readily obtainable. Besides the 
riti
al line of `Big Bang/no Big Bang' we will also geta solution for models that are quasistati
 in their in�nite future and they form the `re
ollapseeventually/expand forever' borderline in the �gure. Models that are to be asymptoti
ally equalto a stati
 Einstein solution must obey the equation(A.7) K0

R2
stat

= Λstat =
3

2

( 8πG

3
ρ

︸ ︷︷ ︸

≡C

) 1

R3
stat

with Rstat ≡
astat

a0
,where K0 is the Gauss 
urvature K0 ≡ k/a2

0 and we used the res
aling R ≡ a/a0 so that R0 = 1today. In fa
t, the stati
 model 
onditions (A.7) are two separate equations so that we 
aneliminate Rstat and solve for the 
riti
al Lambda value(A.8) Λstat =
4

9
K3

0C
−2 and C = ΩmH

2
0 .On the other hand we have from the Friedmann equation, as evaluated today,(A.9) K0 = H2

0 (Ωm + ΩΛ − 1) .



A. CRITICAL VALUES OF Ωm AND ΩΛ IN THE FRW MODEL 129We now 
an insert this into (A.8) and bring the result to a form 
onvenient for the followingsteps,(A.10) Λstat

12 ΩmH2
0

=
1

27
(Ωm + ΩΛ − 1)

3 1

Ω3
m

.It is useful to de�ne the following fun
tion(A.11) x ≡
(

Λstat

12 ΩmH2
0

)1/3

=

(
ΩΛ

4 Ωm

)1/3

,su
h that we 
an rewrite equation (A.10)(A.12) x3 =

[
1

3

(
1 − Ω−1

m + 4x3
)
]3

.Now, taking the three-root is unique and we get(A.13) x3 − 3

4
x+

1

4

Ωm − 1

Ωm
= 0 ,a dimensionless inhomogeneous 
ubi
 equation. One possibility of solving (A.13) is to use themethod by Cardano and Tartaglia: �rst, the `dis
riminant' is given by(A.14) ∆ ≡ α−2

(
β2 + 4γ3

)
=

1

16
(1 − 2Ωm)

1

Ω2
m

,and moreover we de�ne(A.15) p ≡ 1

2

[

−β +
(
β2 + 4γ3

)1/3
]

=
1

2

[
1

4
(1 − Ωm)Ω−1

m + ∆1/2

]

,with the identities α = 1 , −β = 1/4(1 − Ωm)Ω−1
m and γ = −1/4 . The solutions are formulatedfor x , but our aim was to 
onvert these to solutions for Ωm and ΩΛ . Consequently we are hereinterested only in the positive and real roots of the 
ubi
 equation and with these 
onstraints thetrigonometri
 form of solution [Tur52℄ is more 
onvenient than the above form. The borderlineof models that expand to in�nity to those that re
ollapse is given by the solutions that arequasistati
 in the in�nite future. For universes that are to expand to in�nity we get the followingtrigonometri
 solution(A.16) ΩΛ ≥

{
0 for 0 ≤ Ωm ≤ 1

4Ωm

{

cos
[

1
3 arccos

(
1−Ωm

Ωm

)

+ 4π
3

]}3

for Ωm > 1
.The 
riti
al line of Big Bang/no Big Bang is 
hara
terised by those models that have beenquasistati
 in the in�nite past. Models without an initial singularity are 
hara
terised by(A.17) ΩΛ ≥







4Ωm

{

cos
[

1
3 arccos

(
1−Ωm

Ωm

)]}3

for Ωm > 1
2

4Ωm

{

cosh
[

1
3arccosh

(
1−Ωm

Ωm

)]}3

for Ωm < 1
2

.Note that the join at Ωm = 1
2 is perfe
tly analyti
. The need for two formulas to represent asingle fun
tion is an artefa
t of solving 
ubi
 equations as it is dis
ussed by [Tur52℄: `From a real
ubi
, three real roots 
annot be extra
ted by Cardano's formula without a 
ir
uitous passageinto, and out of, the domain of 
omplex numbers'.





APPENDIX BDetails of the Lemaître-Tolman-Bondi ModelHere the �eld equations for the LTB model and for its more general progenitor model are given.First let us re
all the Einstein �eld equations of gravity with 
osmologi
al 
onstant (c ≡ 1)(B.1) Rαβ − 1

2
Rgαβ + Λgαβ = 8πGTαβ .The de�nition that is used throughout this work for the energy momentum tensor is the onefrom (2.39)(B.2) Tαβ = (ρ+ p)uαuβ + pgαβ with uαuα = −1 ,The used metri
 signature is (−,+,+,+) whi
h here 
orresponds to Tαβ = diag(ρ, p, p, p) but

Tα
β = diag(−ρ, p, p, p) . The 
ombination Gαβ ≡ Rαβ − 1

2Rgαβ is referred to as the Einsteintensor. Given a spa
etime representation gµν the Christo�el symbols are 
al
ulated via(B.3) Γα
βγ ≡ 1

2
gαδ (gβδ,γ + gγδ,β − gβγ,δ) .The Riemann 
urvature tensor 
an be expressed in 
oordinate notation as(B.4) Rα

βγδ ≡ Γα
βδ,γ − Γα

βγ,δ + Γε
βδ Γα

εγ − Γζ
βγ Γα

ζδ .The Ri

i tensor is de�ned as the tra
e of the Riemann tensor(B.5) Rβδ ≡ Rα
βαδ ,and taking the tra
e of the Ri

i tensor we de�ne the Ri

i s
alar(B.6) R ≡ Rδ
δ .The respe
tive quantities in their three-dimensional versions are de�ned analogously; in theabove relations one only 
hanges greek to latin indi
es. The spatial Ri

i s
alar is written in
aligraphi
s (3)R ≡ R . The following results refer to [PK06℄ and [Bon47℄ as well as to my own
al
ulations.B.1. General Spheri
ally Symmetri
 Spa
etime with Zero Vorti
ityWe �rst dis
uss a more general 
ase than the LTB solution from whi
h the LTB model originates.When the matter model is that of a perfe
t �uid, the vorti
ity vanishes for spheri
ally symmetri
spa
etimes. The syn
hronous gauge is then justi�ed and the metri
 takes the general form (1.43)(B.7) ds2 = −eCdt2 + eAdr2 +R2
(
dθ2 + sin2θdϕ2

)
.Note that there may be an ambiguity with the term `syn
hronous gauge' whi
h is sometimesused di�erently in the literature. What we mean here (following [PK06℄), is that there are nomixing terms in the metri
. Further, the metri
 
oe�
ients C,A and R are fun
tions of (r, t)only. The four-velo
ity �eld takes the form(B.8) uα = e−C/2 .131



132 B. DETAILS OF THE LEMAÎTRE-TOLMAN-BONDI MODELThen the �eld equations read
G0

0 =
1

R2
+ e−C

(

R2
,t

R2
+
A,tR,t

R

)

− e−A

(

2
R,r,r

R
+
R2

,r

R2
− A,rR,r

R

)

= 8πGρ+ Λ ,(B.9)
G1

1 =
1

R2
+ e−C

(

2
R,t,t

R
+
R2

,t

R2
− C,tR,t

R

)

− e−A

(

R2
,r

R2
+
C,rR,r

R

)

= −8πGp+ Λ ,(B.10)
G2

2 = G3
3 =

1

4
e−C

[

4
R,t,t

R
+ 2

R,t (A,t − C,t)

R
+ 2A,t,t +A2

,t − C,tA,t

]

−1

4
e−A

[

4
R,r,r

R
+ 2

R,r (C,r −A,r)

R
+ 2C,r,r + C2

,r − C,rA,r

]

= −8πGp+ Λ ,(B.11)
G1

0 = e−A

[

2
R,t,r

R
− A,tR,r

R
− R,tC,r

R

]

= 0 .(B.12)In this general 
ase also a mass term 
an be assigned. Multiplying (B.9) by R2R,r and applying(B.12) we end up with(B.13) ∂

∂r

(

R+ e−CRR2
,t − e−ARR2

,r −
1

3
ΛR3

)

= 8πGρR2R,r .Analogously, we 
an multiply (B.10) by R2R,t and get(B.14) ∂

∂t

(

R+ e−CRR2
,t − e−ARR2

,r −
1

3
ΛR3

)

= −8πGpR2R,t .Now, a look at (B.13) suggests that it makes sense to de�ne the term in the bra
kets as a mass(B.15) m(r) ≡ 1

2

(

R+ e−CRR2
,t − e−ARR2

,r −
1

3
ΛR3

)

,su
h that (B.13) upon integration yields(B.16) m(r) = 4πG

∫ r

r0

ρR2R,r′dr′ .Therein we take the r0 su
h that it 
oin
ides with R = 0 . The se
ond equation (B.14) 
anthen be interpreted as an energy 
onservation, where the work done by volume 
hange equalsthe rate of 
hange of mass. As a simple example one 
ould 
onsider a spheri
al body, e.g. astar modelled with the above equations. At the surfa
e of the star the pressure is zero and thusthe 
onservation equation (B.14) says m,t = 0 , i.e. the total stellar mass remains 
onstant withtime for a star that is surrounded by va
uum.B.2. Einstein Equations of the Lemaître-Tolman-Bondi ModelUnder the assumption of zero pressure (i.e. dust) C 
an be transformed away C = 0 andsolving the o�-diagonal Einstein equation (B.12) whi
h 
an be written also in the form of (1.44)determines the form of eA (1.45) up to an arbitrary fun
tion E(r) . Thus the metri
 takes theLTB form(B.17) ds2 = −dt2 +
R2

,r

1 + E
dr2 +R2(dθ2 + sin2θdϕ2) .



B.2. EINSTEIN EQUATIONS OF THE LEMAÎTRE-TOLMAN-BONDI MODEL 133The a

ording non-vanishing Christo�el symbols read
Γ1

01 =
R,t,r

R,r
, Γ2

02 = Γ3
03 =

R,t

R
, Γ0

11 =
R,rR,t,r

1 + E
, Γ0

22 = RR,t ,

Γ0
33 = RR,t sin2θ , Γ1

11 =
R,r,r

R,r

E,r

2(1 + E)
, Γ2

12 = Γ3
13 =

R,t

R
,

Γ1
22 = − R

R,r
(1 + E) , Γ1

33 = − R

R,t
(1 + E) sin2θ , Γ2

33 = − sinθ cosθ ,

Γ3
23 = cotθ .(B.18)The Riemann 
urvature tensor takes the form(B.19) R = 2

R,t,t,r

R,r
+ 4

R,t,t

R
+ 2

2R,tR,t,r − E,r

RR,r
+ 2

R2
,t − E

R2
,and the non-vanishing 
omponents of the Ri

i tensor are

R0
0 =

R,t,t,r

R,r
+ 2

R,t,t

R
, R1

1 =
R,t,t,r

R,r
+

2R,tR,t,r

RR,r
− E,r

RR,r
,

R2
2 = R3

3 =
R2

,t

R2
+
R,t,t

R
− E

R2
+
R,tR,t,r

RR,r
− E,r

2RR,r
.(B.20)The Einstein equations of the LTB model read

G0
0 =

R2
,t − E

R2
+

2R,t,rR,t − E,r

RR,r
= 8πGρ+ Λ ,(B.21)

G1
1 = 2

R,t,t

R
+
R2

,t − E

R2
= −8πGp+ Λ ,(B.22)

G2
2 = G3

3 =
R,t,t,r

R,r
+
R,t,t

R
+

1

2

2R,t,rR,t − E,r

RR,r
= −8πGp+ Λ .(B.23)When using these results, please take 
are of the sign 
onvention for the Einstein equations,energy momentum tensor, Riemann tensor and so forth that has been used here. The 
onsisten
yof the signs 
an be 
he
ked by performing the FRW limit on the LTB equations.





APPENDIX CRotating Post-Newtonian Metri
sC.1. Full Di�erential RotationWe apply the following transformation involving full di�erential rotation,(C.1) ϕ = ϕ′ − ω(t, r, z)ton the following Post-Newtonian metri
(C.2) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dr2 + r2dϕ2 + dz2) .In 
omponent notation the transformed spa
etime then reads
gtt = −(1 + 2φ) + (1 − 2ψ)(ω + ω,tt)

2r2 , gtr = (1 − 2ψ)2tr2(ω + ω,tt)ω,rt ,

gtϕ = −(1 − 2ψ)2r2(ω + ω,tt) , gtz = (1 − 2ψ)2r2(ω + ω,tt)ω,zt ,

grr = (1 − 2ψ)(1 + r2ω2
,rt

2) , grϕ = −(1 − 2ψ)2r2ω,rt ,

grz = (1 − 2ψ)2r2ω,rω,zt
2 , gϕϕ = (1 − 2ψ)r2 ,

gϕz = −(1 − 2ψ)2r2ω,zt , gzz = (1 − 2ψ)(1 + r2ω2
,zt

2) .(C.3) C.2. Spatial Curvature TermsC.2.1. Stati
 Newton Metri
. From the non-rotating PN metri
 in 
artesian 
oordinates(C.4) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dx2 + dy2 + dz2) ,we have 
omputed � using the notation (1, 2, 3) =̂(x, y, z) � the following non-zero 
omponentsof the spatial Christo�el symbols
Γ1

11 = − ψ,x

1 − 2ψ
, Γ1

22 =
ψ,x

1 − 2ψ
, Γ1

33 =
ψ,x

1 − 2ψ
, Γ1

12 = − ψ,y

1 − 2ψ
,

Γ1
13 = − ψ,z

1 − 2ψ
, Γ2

22 = − ψ,y

1 − 2ψ
, Γ2

11 =
ψ,y

1 − 2ψ
, Γ2

33 =
ψ,y

1 − 2ψ
,

Γ2
12 = − ψ,x

1 − 2ψ
, Γ2

23 = − ψ,z

1 − 2ψ
, Γ3

33 = − ψ,z

1 − 2ψ
, Γ3

22 =
ψ,z

1 − 2ψ
,

Γ3
11 =

ψ,z

1 − 2ψ
, Γ3

32 = − ψ,y

1 − 2ψ
, Γ3

31 = − ψ,x

1 − 2ψ
.(C.5)For the three-dimensional Ri

i tensor we get the following non-vanishing 
omponents

R11 = 2
ψ,x,x

1 − 2ψ
+

ψ,y,y

1 − 2ψ
+

ψ,z,z

1 − 2ψ
+ 4

(
ψ,x

1 − 2ψ

)2

+

(
ψ,y

1 − 2ψ

)2

+

(
ψ,z

1 − 2ψ

)2

,

R22 =
ψ,x,x

1 − 2ψ
+ 2

ψ,y,y

1 − 2ψ
+

ψ,z,z

1 − 2ψ
+

(
ψ,x

1 − 2ψ

)2

+ 4

(
ψ,y

1 − 2ψ

)2

+

(
ψ,z

1 − 2ψ

)2

,

R33 =
ψ,x,x

1 − 2ψ
+

ψ,y,y

1 − 2ψ
+ 2

ψ,z,z

1 − 2ψ
+

(
ψ,x

1 − 2ψ

)2

+

(
ψ,y

1 − 2ψ

)2

+ 4

(
ψ,z

1 − 2ψ

)2

,

Ri
k =

ψ,i,k

(1 + 2ψ)2
+ 3

ψ,iψ,k

(1 + 2ψ)3
≃ ψ,i,k for i 6= k .(C.6) 135



136 C. ROTATING POST-NEWTONIAN METRICSTherefore the spatial Ri

i s
alar be
omes(C.7) R =
4

(1 − 2ψ)2
∆

(3)
cartψ +

6

(1 − 2ψ)3
(∇(3)

cartψ)2 ≃ 4∆
(3)
cartψ .C.2.2. Rotating PN Metri
s. Let us 
onsider the 
onstantly rotating (ω =
onst. ) Post-Newtonian metri
 to exa
t order,(C.8) ds2 = [(1−2ψ)ω2r2−(1+2φ)]dt2+(1−2ψ)(dr2+dz2)+(1−2ψ)r2dϕ2−(1−2ψ)2r2ωdϕdt ,where we swit
h to the 
ylindri
al 
oordinate notation (1, 2, 3) =̂(r, ϕ, z) . In this 
ase the non-vanishing 
omponents of the a�ne 
onne
tion read

Γ1
11 = − ψ,r

1 − 2ψ
, Γ1

13 =
ψ,z

1 − 2ψ
, Γ1

22 = −r(1 − 2ψ − rψ,r)

1 − 2ψ
, Γ1

33 =
ψ,r

1 − 2ψ
,

Γ2
21 =

1 − 2ψ − rψ,r

r(1 − 2ψ)
, Γ2

23 = − ψ,z

1 − 2ψ
, Γ3

11 =
ψ,z

1 − 2ψ
, Γ3

13 = − ψ,r

1 − 2ψ
,

Γ3
22 =

r2ψ,z

1 − 2ψ
, Γ3

33 = − ψ,z

1 − 2ψ
.(C.9)The spatial Ri

i s
alar in 
ylindri
al 
oordinates then reads(C.10) R =

4

(1 − 2ψ)2
∆(3)ψ +

6

(1 − 2ψ)3
(ψ2

r + ψ2
z) ≃ 4∆(3)ψ .When 
onsidering di�erentially rotating PN metri
s with Ω = Ω(r) or Ω = Ω(r, z) , in thelinearised 
ase, there are no mixing terms in the purely spatial metri
; there is only time-spa
emixing. Note that the 
ase Ω = Ω(r) is not written down in se
. 2.3.5, but we have done the
al
ulation. Moreover, the spatial metri
 is independent of the angular velo
ity in the linear
ase, and therefore the above non-vanishing 
omponents of the a�ne 
onne
tion (C.9) 
an beused for 
al
ulation in both the two rotating 
ases Ω = Ω(r) and Ω = Ω(r, z) with linear metri
ansatz, as well as in the 
ase of rigid rotation ω =
onst.In the 
ase of the simple di�erentially rotating (Ω = Ω(r)) linear PN metri
,(C.11) ds2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dr2 + dz2) + (1 − 2ψ)r2dϕ2 − (1 − 2ψ)2r2Ω(r)dϕdtwe have 
al
ulated also the four-dimensional 
onne
tion 
omponents. They read:

Γ0
01 =

φ,r

1 + 2φ
, Γ0

03 =
φ,z

1 + 2φ
, Γ0

12 =
1

2
r2Ω,r , Γ0

30 =
φ,z

1 + 2φ
,

Γ1
00 = − φ,r

1 + 2φ
, Γ1

02 =
1

2
r2Ω,r + Ωr , Γ1

11 = − ψ,r

1 − 2ψ
, Γ1

13 = − ψ,z

1 − 2ψ
,

Γ1
22 = −r(1 − rψ,r) , Γ1

33 =
ψ,r

1 − 2ψ
, Γ2

01 = −1

2
Ω,r −

1

r
Ω , Γ2

12 =
1

r
− ψ,r ,

Γ2
23 = − ψ,z

1 − 2ψ
, Γ3

00 =
φ,z

1 − 2ψ
, Γ3

11 =
ψ,z

1 − 2ψ
, Γ3

13 = − ψ,r

1 − 2ψ
,

Γ3
22 =

r2ψ,z

1 − 2ψ
, Γ3

33 = − ψ,z

1 − 2ψ
.(C.12)The a

ording inverse four-dimensional metri
 has the linearised 
omponents:(C.13)

g00 = − 1

1 + 2φ
, g02 = − Ω

1 + 2φ
, g11 =

1

1 + 2ψ
, g22 =

1

r2(1 + 2ψ)
, g33 =

1

1 + 2ψ
.



APPENDIX DAspe
ts of Stru
ture FormationHere we 
on
isely review the basi
 
on
epts of stru
ture growth within linear Newtonian the-ory. We want to emphasise the limits of the below outlined 
on
epts: the Newtonian linearperturbation theory breaks down at latest for non-linear stru
tures, that is for stru
tures withdensity 
ontrast of order unity as well as for �u
tuations at length s
ales that 
ome 
lose to thehorizon s
ale. First, we review the theory of pe
uliar velo
ities and the underlying (Newtonian)hydrodynami
al equations. We also atta
h a 
on
ise treatment of dissipative (Silk) damping ofbaryoni
 os
illations before re
ombination. In the following we 
losely relate to the des
riptiongiven in [S
h06℄ and [Lon98℄.D.1. Gravitational Instabilities and Pe
uliar Velo
itiesLet us denote the pe
uliar velo
ity with u , it is per 
onstru
tion the velo
ity on top of theHubble �ow(D.1) v(r, t) = H(a)r + u (r/a, t) .The initial density inhomogeneities are small � they 
orrespond to CMB anisotropies O(10−5) �and so are the resulting initial pe
uliar velo
ities. However, the inhomogeneities in density todayare not small, their evolution enfolds a growing mode. This 
an be physi
ally understood bysimple means: through self-gravitation the initial density seeds have 
ondensated more and morethroughout the ages ever sin
e in�ation. The linearised treatment of gravitational instabilitywithin a Newtonian hydrodynami
 framework implies the solution of the 
ontinuity equation,the Euler equation and the Poisson equation. When looked at in a 
omoving frame (r = ax),these equations read in order of appearan
e
∂ρ

∂t
+ 3H(a)ρ+

1

a
∇ · (ρu) = 0(D.2)

∂u

∂t
+

1

a
(u · ∇)u +H(a)u = − 1

aρ
∇p− 1

a
∇φ ,(D.3)

∆φ(x, t) = 4πGa2(t)ρ(t)δ(x, t) .(D.4)The density 
ontrast is a 
ru
ial quantity we have already en
ountered in se
. 1.3.3, here givenby(D.5) δ(x, t) ≡ ρ(x, t) − ρ(t)

ρ(t)
.Being interested in small deviations from the homogeneous evolution δ = 0 = ui one 
an linearisethe above set of hydrodynami
al equations and, after eliminating φ and u among the equations,one ends up with a se
ond-order equation for the density 
ontrast(D.6) ∂2δ

∂t2
+ 2H(a)

∂δ

∂t
= 4πGρδ ,whi
h 
an be solved and upon negle
ting the de
aying mode, and we end up with the fa
torisationsolution(D.7) δ(x, t) = δ0(x)D+(t) ,137



138 D. ASPECTS OF STRUCTURE FORMATIONwhere D+(t) denotes the growing mode. Within this linear solution the spatial 
ontributionto the density 
ontrast is time-
onstant and so the pe
uliar velo
ity u has a 
onstant dire
tionwhi
h is moreover 
ollinear to the dire
tion of the pe
uliar gravitational a

eleration u(x) ∼
∫

g(x, t)dt . As measured today the pe
uliar velo
ity �eld 
an be expressed by its a

eleration�eld via(D.8) u(x) =
2

3H0Ωm
f(Ωm)g(x) .For the fun
tion f(Ωm) ≡ (a/D+)dD+/da one �nds phenomenologi
ally f(Ωm) ≃ Ω0.6

m whi
hremains a good �t even when Λ is swit
hed on in addition. Eliminating g with the help ofPoisson's equation and letting u evolve within linear theory one obtains in the end [S
h06℄(D.9) u(x, t) =
Ω0.6

m

4π
aH(a)

∫

δ(y, t)
y − x

|y − x|3 d3y .This result gives a prin
ipal possibility to obtain Ωm by observation of the pe
uliar velo
ity �eldas well as the a

ording density 
ontrast.D.2. Statisti
al Properties of the Density FieldThe growing mode solution (D.7) is a 
entral result of the linear theory applied above. We seethat the spatial shape of the density �u
tuations is frozen when followed in the 
omoving frameand solely its amplitude is growing. The growth fa
tor D+(t) 
an be 
omputed for an arbitrary
omposition of 
osmologi
al density parameters through(D.10) D+(a) ∝ H(t)

H0

∫ a

0

da′

[Ωma′−1 + ΩΛa′2 − (Ωm + ΩΛ − 1)]
3/2

.The fa
tor of proportionality is �xed by the normalisation given by D+(t0) = 1 and thus δ0(x)would be the density distribution as observable today if the evolution was linear all the time.However, we know of vast stru
tures today like for instan
e the Shapley Con
entration SECfor whi
h the density 
ontrast is of the order of ∼ 1 su
h that the linear perturbation analysisbe
omes invalid.Taking as an example the Einstein-de Sitter model with ΩΛ = 0 , Ωm = 1 and s
aling
a(t) = (t/t0)

2/3 for the Hubble fun
tion and mean density it is(D.11) H(t) =
2

3

1

t
and ρ̄(t) = a−3ρcrit =

3H2
0

8πG

(
t0
t

)2

.With an ansatz D ∝ tn we readily solve (D.6). We skip the de
aying mode and keep the growingmode whi
h is(D.12) D+(t) =

(
t

t0

)2/3

= a(t) ,and thus the growth fa
tor is equal to the s
ale fa
tor in the spe
ial 
ase of an Einstein-de Sittersolution.In order to des
ribe the a
tually observed density �eld today by physi
al means, usually two
on
epts are used: the two-point 
orrelation fun
tion and the power spe
trum whi
h we haveintrodu
ed in se
. 1.2.1. The statisti
al nature of the des
ription means that we are looking fora physi
al means that 
an be attributed to an observed density distribution so that we 
onsidermodels (universes) with equal su
h statisti
al properties as equivalent. In other words one 
animagine a whole statisti
al ensemble of Universes to be des
ribable through a statisti
al quantitywhere, of 
ourse, the details of δ(x) may be di�erent in all those Universes.First, the two-point 
orrelation fun
tion ξ(x,y) of a density �eld is de�ned through(D.13) 〈ρ(x)ρ(y)〉 = ρ̄2〈[1 + δ(x)] [1 + δ(y)]〉 = ρ̄2 [1 + 〈δ(x)δ(y)〉] ≡ ρ̄2 [1 + ξ(x,y)] ,where 〈·〉 is an ensemble average and the expe
tation value 〈δ(x)〉 = 0 at all lo
ations x . Thestandard model assumption of large-s
ale homogeneity implies that ξ only depends on x−y and



D.3. SILK DAMPING AND HIERARCHY 139not on x or y individually. The standard requirement of isotropy also removes any orientationaldependen
e of ξ su
h that the two-point 
orrelation will be a fun
tion of only r = |x − y|when regarded in the standard 
osmologi
al model. Be
ause of ergodi
ity, we 
an repla
e theensemble average by the spatial average, that is due to (D.13) one 
an measure the two-point
orrelation fun
tion by 
olle
ting many produ
ts of densities for all pairs of points at a distan
e
r . This has been done for example for the luminous red galaxy 
atalogue (z ∼ 0.3) of the SDSS[HEB+05℄, 
on�rming the large-s
ale homogeneity of the Universe. When analysing su
h galaxy
atalogues the luminosity distribution is a 
ru
ial quantity. A quite general approximation forgalaxy luminosities is given by the Press-S
he
hter law [PS74℄(D.14) f(L) =

f∗

L∗

(
L

L∗

)α

e−L/L∗

,wherein f∗ is responsible for the normalisation, α 
ontrols the slope of the fun
tion at small
L and L∗ is a spe
ial value beyond whi
h the luminosity distribution undergoes the exponen-tial de
rease. Now, among galaxies that have luminosities of the order of L∗ , the followingapproximate relation for the two-point 
orrelation fun
tion 
an be found from galaxy surveys:
ξ(r) = (r/r0)

−γ . With this relation being a good approximation within 2 Mp
 . r . 30 Mp
,the 
orrelation length is found to be roughly r0 ≃ 5 Mp
 and the slope is γ ≃ 1.8 . Prin
ipallyone 
an pro
eed in writing down higher 
orrelations up to the n point 
orrelation fun
tion, butthese are mu
h harder to a

ess observationally.Besides the two-point 
orrelation one 
an utilise the power spe
trum P (k) in order to de-s
ribe a density �eld statisti
ally. We 
an expand a given density �eld in terms of Fourier modesas δ(x) =
∑
Ak cos(x · k) with amplitudes Ak . The power spe
trum now des
ribes the distri-bution of amplitudes with a 
ommon wavenumber k . Two point 
orrelation fun
tion and powerspe
trum are Fourier transforms of ea
h other(D.15) P (k) = 2π

∫ ∞

0

ξ(r)r2
sin(kr)

kr
dr .The fa
torisation (D.7) implies the following for the time evolution of the power spe
trum(D.16) P (k, t) = D2

+(t)P (k, t0) ≡ D2
+(t)P0(k) ,and k is the wavenumber in 
omoving 
oordinates. As mentioned in se
. 1.3.3 the initial 
on-ditions for P (k) are provided by the used underlying in�ationary model and yield a nearlys
ale-invariant Harrison-Zel'dovi
h spe
trum with a random Gaussian initial density �eld. Fur-thermore, be
ause we negle
ted pressure terms and only 
onsidered matter domination therehave to be 
orre
tions in
luded for the power spe
trum bringing it to its �nal form (1.29). These
orre
tions are en
oded in the transfer fun
tion T (k) whi
h re�e
ts the parameters of the un-derlying 
osmologi
al model as well as the temperature of the used Dark Matter. In 
ase ofHot Dark Matter (HDM) the dark 
onstituents are relativisti
, therefore do not remain boundin the potential well of a gravitative perturbation but rather do free-stream and thus tend tosmooth out any initial density perturbations on small s
ales. In su
h a s
enario the power spe
-trum will be strongly suppressed at large k and as a 
onsequen
e the very largest stru
tures areformed �rst, produ
ing then smaller stru
tures � like galaxies � only later through fragmenta-tion. This is in 
ontradi
tion with observations that indi
ate the existen
e of galaxies alreadyat extreme redshifts of ∼ 6 . Therefore Cold Dark Matter (CDM) is the prevailing 
on
ept fromthe perspe
tive of stru
ture formation.D.3. Silk Damping and Hierar
hyWe now 
onsider small imperfe
tions in the tightly 
oupled baryon-photon �uid of the earlyUniverse before de
oupling. Albeit strong, the 
oupling of matter and radiation is not exa
t andphotons will have some �nite mean free path. Therefore, on small s
ales, where the radiationis able to resort without s
atter, the pressure support, that 
onstitutes the restoring for
e ofthe adiabati
 matter os
illations, would vanish. Hen
e, os
illations on su
h small s
ales are
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tively damped out by the photon dissipation; this is referred to as Silk damping [Sil68℄.The Silk damping o

urs for the same reasons as the damping of sound waves in an imperfe
tgas: namely be
ause of the �nite shear vis
osity and heat 
ondu
tivity that are present in the�uid. A full treatment of the photon transport problem with the a

ording 
oe�
ients of thermal
ondu
tion and shear vis
osity has been given by Weinberg [Wei72℄.We are interested in an estimate that may express the order of magnitude of the Silk damp-ing; we follow the treatment by Longair [Lon98℄. The main pro
ess for the photon s
attering inthe primeval plasma is Thomson s
attering by the free ele
trons. We 
an obtain an estimate byperforming a rough transport 
al
ulation with the Thomson s
aterring of radiation. Generally,for Thomson s
attering, the mean free path of the photons is given by(D.17) λ =
1

neσT
,where σT ≃ 6.665 × 10−29m2 is the Thomson 
ross se
tion and ne the number density ofele
trons. The photons and ele
trons are in tight thermal 
onta
t before de
oupling. Andbe
ause the plasma is fully ionised, the ele
trons are also in tight ele
tromagneti
 intera
tionwith the protons (Coulomb s
attering), so that the photons are in 
lose 
onta
t to the protonsas well. We want to determine how far the photons 
an di�use within a 
ertain 
osmi
 time tunder the given free mean path. This 
an be quanti�ed by means of the a

ording di�usivity

D , given by D = λc/3 . The radial distan
e that photons 
an 
over by di�usion is therefore(D.18) rD ≃ (Dt)1/2 =

(
λct

3

)1/2

.Next we should 
ompute the 
orresponding baryoni
 mass MD ≡ (4π/3)r3Dρb within a ball of aradius that equals the dis
ussion radius.First, long before de
oupling (z > 2.4× 104Ωh2), radiation is dominant in the Universe andthe relation between 
osmi
 time and redshift is given by(D.19) t =

(
3c2

32πGρ

)1/2

=

(
3c2

32πGχaSBT 4
0

)1/2
1

(1 + z)2
≃ 2.4 × 1019

(1 + z)2
s ,with aSB = 4kSB/c and the Stefan-Boltzmann 
onstant kSB = 5.670 × 10−8JK−4m−2s−1 , ρ =

χ(T )aSBT
4 being the total energy density and χ(T ) ≃ 1.68 being a parameter that en
odesthe sum over the statisti
al weights gi of the involved (standard model) parti
les. For T0 weinsert the presently measured CMB monopole temperature of T0 ≃ 2.725K. Further, the numberdensity of ele
trons ne varies with redshift as(D.20) ne =

Ωbρcrit

mp
(1 + z)3 ≃ 11 Ωbh

2(1 + z)3 m−3 ,and so we are ready to 
ompute the resulting damping mass or Silk mass, whi
h amounts to(D.21) MD =
4π

3
r3Dρb ≃ 2.4 × 1026

(
Ωbh

2
)−1/2

(1 + z)−9/2 M⊙ .This was so far for the times before matter-radiation equality. Within the matter-dominatedepo
h, the redshift behaviour of 
osmi
 time 
an be expressed as(D.22) t =
2

3H0Ω1/2
(1 + z)−3/2 ≃ 2.06 × 1017

3H0Ω1/2(1 + z)3/2
s .This leads to a Silk mass of(D.23) MD ≃ 2.0 × 1023

(
Ωbh

2
)−5/4

(1 + z)−15/4 M⊙ .The evolution of damping massMD , Jeans massMJ and horizon massMH are plotted in �g. D.1.Silk damping 
ontinues until re
ombination and upon the last s
attering surfa
e (z ≃ 1088) thedamping mass rea
hes a value of up toMD ≃ 1012(Ωbh
2)−5/4(1+ z)−15/4M⊙ . Taking big bangnu
leosynthesis into a

ount, a bound of around Ωbh

2 < 0.036 
an be given, and it follows thatperturbations with masses smaller than roughly 1014M⊙ are damped out by the Silk me
hanism.
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Figure D.1. S
hemati
 evolution of s
ales and their asso
iated masses that arerelevant for stru
ture formation within the theory of purely baryoni
 (no DarkMatter) a
ousti
 �u
tuations. The Jeans s
ale is 
hara
terised by the wavelength
λJ ≡ cs

p

π/(Gρ) ; whi
h is the maximal s
ale for stable os
illations at any epo
h.This is a result from non-linear Newtonian perturbation theory; it means that anydensity perturbations with wavelengths larger than the Jeans wavelength representunstable modes. The Jeans mass 
an be de�ned as the mass 
ontained in a ballof diameter λJ , thus MJ ≡ (πλ3
J/6)ρb . The mass 
ontained in the parti
le hori-zon is around MH ≃ 3.0 × 1022(Ωbh2)−1/2a3/2 M⊙. The s
ale behaviour of theJeans mass at early times 
an be estimated by MJ ≃ 8.5 × 1028a3Ωbh2 M⊗ andby MJ ≃ 3.75× 1015(Ωbh2)−2 M⊙ after equality. The development of the Silk damp-ing s
ale � whi
h o

urs be
ause of photon dissipation and ends at de
oupling � istra
ed by MD ; 
.f. (D.21) and (D.23). The pi
ture is taken from [Lon98℄.Summarising the result of the above di�usion estimate, we 
an 
on
lude that all massessmaller than roughly 1012M⊙ are e�e
tively suppressed by the photon dissipation. From this we
an learn an important lesson for the hierar
hy of stru
ture formation in the framework of purelybaryoni
 � i.e. negle
ting Dark Matter � a
ousti
 perturbations: only those perturbations withmasses of a very heavy galaxy and larger 
ould have passed through to the post-re
ombinationepo
h. Those perturbations with smaller asso
iated masses � like stars, star 
lusters or normalgalaxies � are suppressed exponentially to very small amplitudes. Hen
e, in this framework, theformation of stru
ture is anti-hierar
hi
al (bottom-down), large stru
tures formed �rst and thenhave fragmented to the smaller observed stru
tures. Let us emphasise that this result is validunder the assumption of adiabati
 baryoni
 perturbations, where adiabati
ity is de�ned by thethermodynami
 relation(D.24) δp

p
= γ

δρ

ρ
,and γ being the ratio of spe
i�
 heats: γ = 4/3 for a relativisti
 gas and γ = 5/3 for amonoatomi
 non-relativisti
 gas.A 
ompeting framework is the theory of isothermal perturbations. Here, isothermal meansthat the perturbations do not indu
e perturbations in the ba
kground radiation temperature atthe times of radiation domination. The intrinsi
 temperature of the isothermal perturbationsequals that of the uniform radiation ba
kground and so the isothermal perturbations are frozeninto the radiation-dominated ba
kground. As a 
onsequen
e, there is no Silk damping in thispi
ture. Therefore in the isothermal s
enario, stru
ture growth is hierar
hi
al (bottom-up):



142 D. ASPECTS OF STRUCTURE FORMATIONsmall stru
tures would form �rst, then larger stru
tures are attained by 
lustering pro
esses.The big advantage of the bottom-up s
enario is that it allows stru
tures of the mass of globular
lusters to have formed �rst and indeed, globular 
lusters are among the oldest obje
ts knownin our Milky Way.However, as we dis
uss in 
hap. 2 there is overwhelming eviden
e � within the s
ope ofstandard 
osmology � for the existen
e of Dark Matter, su
h that the above two versions of purebaryoni
 stru
ture formation are falsi�ed. When transported into the framework of Dark Matter,the 
ompetition between hierar
hi
al and anti-hierar
hi
al stru
ture formation is mapped ontothe CDM (bottom-up) and HDM (bottom-down) s
enarios respe
tively. In the CDM pi
ture,hierar
hi
al pro
esses lead to the formation of Dark Matter halos of galaxy 
lusters and galaxies.Then, the baryons would fall into these potential wells and subsequently 
an loose energy bydissipative pro
esses; then eventually gas 
louds and stars are formed. In the HDM s
enario, vaststru
tures, like galaxy 
lusters, are formed �rst and an asymmetri
 de
ay of these progenitorsthen leads to pan
ake-like stru
ture, into whi
h the baryoni
 matter than 
ollapses. Both ofthese models have been plugged into extensive 
omputer simulations trying to re
onstru
t thegrowth of stru
ture. Being 
onsistent with the 
on
lusions of the pre
eding se
. D.1, a mainresult of the simulations is that HDM � albeit (too) good in produ
ing �lament stru
ture �produ
es galaxies only at too late times. Moreover, as it was mentioned already above, the CDMansatz is su

essfull in reprodu
ing the measured two-point 
orrelation fun
tion of galaxies ona 
onsiderably wide range of s
ales.



APPENDIX EThermal History in a NutshellA

ording to the Big Bang pi
ture, the Universe was in
reasingly hotter when going furtherba
kwards in time, T (z) = T0(1 + z) . Be
ause of the very high temperatures, e.g. 3 × 109Kat z = 109 , and high pressure in the very early Universe whi
h are `even' higher than in theinterior of stars, one 
an expe
t a lot of interesting high-energy pro
esses like nu
lear fusion tohappen during the early epo
hs. Here we want to give a 
on
ise overview of the basi
 steps thatlead to nu
leosynthesis, following the treatment in [S
h06℄.E.1. Neutrino De
ouplingAn assumption of utmost importan
e is underlying all the standard theory of the evolutionof parti
le pro
esses in the early Universe: we assume that all the 
ross se
tions and otherfundamental 
onstants and all the details of nu
lear and parti
le physi
s we take from the
urrent standard model of high energy physi
s have been exa
tly the same also fourteen billionyears ago. Having that in mind, we 
an jump into the evolution of the very early Universe attemperatures of around ∼ 1012K or roughly 100MeV. To see what the basi
 setup may yield we
an 
ompare this initial energy s
ale with the rest masses of 
ommon standard model parti
les,(E.1) mn ≃ 939.6MeV , mp ≃ 938.3MeV , mµ ≃ 140MeV , me ≃ 511keV .The baryons are too heavy to be possibly produ
ed at the 
onsidered temperature, and so atthis epo
h the baryons must have existed already. Further, pairs of muons 
an in prin
iple beprodu
ed via γ + γ → µ+ + µ− down to temperatures ∼ mµ/3 . But, as is known, existingmuons are unstable (lifetime 2.2× 10−6s) and de
ay into ele
trons (positrons) and neutrinos aswell as antineutrinos. Thus at the given temperature of around 100MeV there are the follow-ing relativisti
 parti
les in the Universe: photons as well as ele
trons and neutrinos and theirantiparti
les. We are within radiation domination and only these parti
les are 
ontributing tothe radiation energy density ρr at the moment. Although the exa
t mass of neutrinos has notyet been measured, one 
an give a bound of mνe < 2eV from tritium de
ay. From 
osmology �if one a

epts numerous impli
it assumptions � one 
an infer a bound of mνe < 1eV from mea-surements probing the e�e
t of HDM on the small-s
ale power spe
trum of density �u
tuationsin the Universe.Be
ause of these mass 
onstraints, we 
an safely regard the neutrinos as massless (rela-tivisti
) in our dis
ussion. Besides the relativisti
 parti
les there are also some non-relativisti
parti
les: protons, neutrons and the hypotheti
al WIMPs. Be
ause of their absen
e in the a

el-erator experiments 
arried out by now, we know that the WIMP rest mass must be higher thanaround 100GeV. All 
onstituents apart from the WIMPs are in equilibrium through parti
lerea
tions. The baryon rea
tions are dis
ussed later, and so we 
an note the following relevantrea
tions of the relativisti
 parti
les(E.2) e± + γ ↔ e± + γ , e+ + e− ↔ γ + γ , ν + ν̄ ↔ e+ + e− , ν + e± ↔ ν + e± .We 
onsider radiation domination, and so the total energy density is that of the radiation,(E.3) ρ = ρr = 10.75
π2

30

(kBT )4

~c3
at t ≃

(
T

1MeV

)−2

0.3s .143



144 E. THERMAL HISTORY IN A NUTSHELLThe 
osmi
 time was 
omputed with the solution t = (32πGρ/3)−1/2 , valid at the epo
h ofradiation domination.Equilibrium 
an only be attained by the parti
le bath if the rate of the above rea
tions ishigh. However, the environment temperature in whi
h the parti
les are trying to equilibrate is
ontinuously 
hanging, and so the parti
le equilibrium is also 
ontinuously readjusting. Underthese 
ir
umstan
es, an equilibrium 
an only be upheld if the time between two parti
le rea
tionsis mu
h smaller than the time s
ale of global temperature 
hange. The rate of 
hange intemperature is di
tated by the 
osmi
 expansion and so we 
an note the following 
onstraint forequilibrium: the rate of parti
le rea
tions Γ has to be higher than the expansion rate.The rate of parti
le rea
tions is Γ ∝ nσ , i.e. it is proportional to the number density ofthe respe
tive parti
le spe
ies and to the intera
tion 
ross se
tion. The rea
tions involvingneutrinos belong to the weak intera
tions. Both of the 
omponents of the rate are de
reasingwith 
osmi
 time. The number density of parti
les is diluted as n ∝ a−3 ∝ t−3/2 be
ause ofglobal expansion. On the other hand, the weak 
ross se
tions are energy dependent and s
aleroughly as σ ∝ E2 ∝ T 2 ∝ a−2 . Thus, the rea
tion and expansion rate respe
tively s
ale as(E.4) Γ ∝ nσ ∝ a−5 ∝ t−5/2 versus H ∝ t−1 .Thus, equilibrium 
an be realised at early times, when the rea
tion rates are higher than theexpansion rate. At later times, the equilibrium will be broken be
ause the speed of the rea
tionseventually falls behind the expansion rate: this is 
alled a freeze-out. The weak intera
tionfreeze-out o

urs at(E.5) Γ

H
≃
(

T

1.6 × 1010K

)3

,so that the neutrinos be
ome de
oupled from the equilibrium with other parti
le spe
ies attemperatures T . 1010K. When the neutrinos froze out, they had a thermal distribution withthe same temperature as the other parti
les. From their de
oupling at around T ∼ 1010K on, theneutrinos will keep this distribution, only their temperature is 
ontinuously redshifted a

ordingto T ∝ a−1 .This is a predi
tion. It says that there should exist a primordial neutrino ba
kground,similar to the CMB whi
h is a primordial photon ba
kground. It is estimated that the neutrinoabundan
e per �avour is 113
m−3 today, and the 
osmi
 neutrino temperature amounts toaround 1.9K. Be
ause of the very small intera
tion 
ross se
tion and the fa
t that the momentumof the primordial neutrinos is also very low, there is little hope to observe the reli
 neutrinoba
kground. E.2. Ele
tron-Positron AnnihilationWe further follow the 
ooling of the early Universe. At temperatures of around ∼ 5 ×
109K (500keV) there are not enough photons in the distribution, with energies above the pairprodu
tion threshold of 511keV, that 
ould maintain pair produ
tion at a high rate. Thereforethe e�
ient produ
tion of ele
tron-positron pairs will fade out at this point. At the same time,the annihilation rea
tion e+ + e− → γ + γ is pro
eeding undisturbedly, and be
ause of its large
ross se
tion the number of present ele
tron-positron pairs will drop rather rapidly.Through this me
hanism, there will be an e�e
t on the photon distribution. The non-equilibrium annihilation will indu
e additional energy to the photon bath. Sin
e the form ofthe spe
trum remains (Plan
k spe
trum), the main e�e
t is an in
rease in temperature of thephotons. This in
rease is fed by the energy whi
h was initially present in form of ele
tron andpositron rest mass as well as kineti
 energy. When annihilation happens, the neutrinos arealready frozen out and so the gain in temperature has no e�e
t on them. Therefore the photontemperature will be ahead of the neutrino temperature after the e�e
t of pair annihilation; infa
t one 
an show that Taft. annih. ≃ 1.4 Tbef.annih. = 1.4 Tν . This ratio of photon to neutrinotemperature is frozen and valid up to today, and thus we see now the reason for the predi
tionof 1.9K for the neutrino ba
kground temperature made above.



E.3. NUCLEOSYNTHESIS 145After annihilation the number of relativisti
 parti
le spe
ies is redu
ed and so this in turnleads to a 
hange the expansion law in (E.1) to t = 0.55s(T/1MeV)−2 . Moreover, throughannihilation the ratio of baryons to photons approa
hes a 
onstant value(E.6) η ≡ nb

nγ
≃ 2.73 × 10−8(Ωbh

2) .From this we 
an get also an estimate on the ele
tron to photon ratio ne/nγ . Before annihilationthe ratio of ele
trons (and positrons) to photons was roughly one, but during annihilation mostof the ele
trons disappear. However, not all of the ele
trons disappear; it turns out that thereremains a small ex
ess of ele
trons over positrons. But there is of 
ourse another parti
le that
arries a 
harge: the proton. Be
ause the Universe appears to be ele
tri
ally neutral (bound onfree 
harges . 10−27 [Pad02℄), the ele
tron ex
ess is just 
ompensated by the number of protons.Therefore the ele
tron to photon ratio should roughly equal η . Now � sin
e the neutrons arealso to be 
ounted � one has more pre
isely ne/nγ ≃ 0.8η .E.3. Nu
leosynthesisIf the environment implies a high enough pressure and temperature, nu
lear fusion 
an takepla
e, like it does happen within stars. That is, protons and neutrons 
an 
ombine to formnu
lei, and in fa
t the primordial formation of light elements is �nished already after the �rstfew minutes.E.3.1. Baryon Equilibrium. As dis
ussed, the baryons play no signi�
ant role for thedynami
s of the very early Universe. However, protons and neutrons are in thermal equilibriumvia weak intera
tion pro
esses. Their equilibrium rea
tions are(E.7) p + e− ↔ n + ν , p + ν̄ ↔ n + e+ , n ↔ p + e− + ν̄ ,the last of whi
h is the beta de
ay of the neutron with a lifetime of τn ≃ 887s. In order to notfreeze out, the rea
tions have to be qui
ker than the global expansion. The ratio of proton toneutron number densities is given by the Boltzmann fa
tor(E.8) nn

np
= e−∆mc2/(kBT ) ,whi
h is governed by the mass di�eren
e ∆m ≡ mn −mp (negle
ting their 
hemi
al potentials).This distribution is only valid up to neutrino de
oupling. At the moment of neutrino de
oupling,the ratio of neutrons to protons is around nn/np ≃ 1/3 , and after the neutrino freeze-out theequilibrium is broken and be
omes dominated by the de
ay of the free neutron. A number ofneutrons has to be
ome bound into nu
lei rather qui
kly, so that a fra
tion of neutrons 
ansurvive up to today.E.3.2. Deuterium Produ
tion. The simplest nu
leus is deuterium, made from just aproton and a neutron. It is produ
ed via(E.9) p + n → D + γ .The binding energy of deuterium is χD ≃ 2.2MeV, the mass di�eren
e is ∆m ≃ 1.3MeV and theele
tron rest mass is 511keV; so all of these mass s
ales are of the same order of magnitude. Therea
tion (E.9) belongs to the strong intera
tions and is therefore running at a high e�
ien
y.But there is a 
at
h. During neutrino de
oupling and pair annihilation the temperature ofthe Universe be
omes less than the binding energy χD , but not mu
h less. And sin
e there aremu
h more photons than baryons, 
.f. (E.6), there will be enough photons in the high energytail of the Plan
k spe
trum to break up the freshly formed deuterium. From the expli
it balan
eequations one 
an infer that the formation rate of deuterium 
an ex
eed its photo-disso
iationrate only at temperatures around TD ≃ 8×108K. This happens only at a 
osmi
 time of aroundthree minutes � the de
ay of the neutrons has gone on in the meantime � and so the neutron toproton ratio would have de
reased to nn/np ≃ 1/7 . On
e the obsta
le of photo-disso
iation isleft behind, the produ
tion of deuterium pro
eeds very qui
kly (strong intera
tion). All available



146 E. THERMAL HISTORY IN A NUTSHELLneutrons be
ome bound into deuterium and as soon as there is a signi�
ant abundan
e of it,the deuterium 
an start to form 4He. Now, the helium has already a sizeable binding energy of
χ4He ≃ 28MeV and is thus not vulnerable to photo-disso
iation anymore. Apart from a smallrest fra
tion, nearly all the deuterium is pro
essed into 4He. Therefore, in order to e�
ientlyprodu
e helium, the Universe has to over
ome the `bottlene
k' of the deuterium stage with itslow binding energy.E.3.3. Helium Abundan
e. As we have seen by now, almost all of the neutrons in theUniverse be
ome bound into helium nu
lei after around three minutes. Therefore it should bepossible to predi
t the helium abundan
e. Every helium has two neutrons and so the numberdensity of four-helium will be n4He = nn/2 . The number of protons, when helium formation isover, amounts to nH = np −nn be
ause 4He is symmetri
 in protons and neutrons. Finally, thisgives us the mass fra
tion of 4He with respe
t to the full baryon density at TD as(E.10) Y ≡ 4n4He

4n4He + nH
=

2nn

np + nn
=

2(nn/np)

1 + (nn/np)
≃ 1

4
.This is a simple but robust predi
tion of BBN: a fra
tion of about one forth of the baryoni
matter in the Universe is bound into 4He. This predi
tion refers of 
ourse to the primordialmass fra
tion. Through fusion pro
esses within stars, metals 
an be formed and the helium massfra
tion is modi�ed. However, it is possible to experimentally observe metal-poor regions in theUniverse � regions, where little pro
essing of baryoni
 matter has taken pla
e � and indeed ahelium mass fra
tion of Y ≃ 0.25 is measured. Of 
ourse, a full quantitative 
omputation oflight element abundan
es takes into a

ount all the possible balan
e and rate equations andwhat we sket
hed here is only a ba
k-of-the-envelope estimate that should introdu
e the basi
steps. In �g. E.1 we show the result of a more detailed BBN 
al
ulation for the mass fra
tion.

Figure E.1. Temperature/
osmi
 time evolution of the BBN abundan
es of lightelements. Due to beta de
ay of the free neutrons there is a de
rease in the neutronabundan
e within the �rst ≃ 3min. Parallel to the neutron de
rease, the deuteriumabundan
e rises steeply until it passes the disso
iation bottlene
k, and subsequentlyhelium 
an be formed e�
iently. Only a very little fra
tion (∼ 10−5) of deuterium isnot pro
essed. There are also subdominant fra
tions of 3He, 7Li and other elementsprodu
ed during BBN. Pi
ture is taken from [HES℄.Sin
e the abundan
es of the light elements are dire
tly sensitive to the baryon to photonratio η , one 
an use measured abundan
es of the light elements to 
onstrain η [Y+06℄,(E.11) 3.4 × 10−10 < η < 6.9 × 10−10 and Ωb ≃ 3.66 × 107ηh−2 .
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Figure F.1. The angular power anomaly with respe
t to WMAP(1yr) data. Thelikelihood of quadrupole and o
topole power with in
reasing axial 
ontamination, dueto e.g. a lo
al Rees-S
iama e�e
t, is 
ompared to WMAP(1yr) data. Verti
al linesindi
ate the measured values as given in tab. 4.3. See se
. 4.3.1 for a dis
ussion ofthe 
leaned maps. From the WMAP 
ut-sky analysis, adding any multipole power tothe quadrupole is already ex
luded at > 99%C.L., whereas it is possible to add up to
80µK to the o
topole until rea
hing the same ex
lusion level. Adding 50µK (100µK)to the quadrupole leads to an ex
lusion of 99.6%C.L. (99.9%C.L.).
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Figure F.2. Alignment statisti
 (4.7) for quadrupole and o
topole normals. Thepreferred axis ẑ of the model points in all three 
ases to the dire
tion of the WMAPdipole. Shown are the likelihoods of the S-statisti
 for statisti
ally isotropi
 Gaussianskies (thi
k solid lines), 
orresponding to the ΛCDM predi
tion, as well as di�erentmagnitudes of axial 
ontamination of the CMB. Verti
al lines represent the measured
S-values from the TOH (solid line), LILC (dotted line) and ILC (dashed line) maps,
.f. tab. 4.3. Introdu
ing a preferred axis indu
es 
orrelations. For the axis pointingin the dire
tion of the dipole these 
orrelations make the dis
repan
y between themeasured S-values and model even bigger. For the alignment test with the northgala
ti
 pole, a 
ontribution aaxial

ℓ0 = 60µK (70µK) leads to an ex
lusion of 99.7%C.L.(99.8%C.L.).
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Figure F.3. Similar to �g. F.2, here the preferred axis ẑ of the model points to thedire
tion of motion of the lo
al group after 
orre
tion for the Virgo infall. For thisaxis dire
tion and the test dire
tions NEP and EQX, the indu
ed 
orrelations makethe dis
repan
y between the measured S-values and model bigger, similar to the 
aseof the dipole �g. F.2. For the alignment test with the equinox, already a 
ontributionof aaxial
ℓ0 = 60µK leads to an ex
lusion of 99.9%C.L. On the other hand, in 
ase of

x̂ =NGP, the anomaly is de
reased in that the ex
lusion drops from 98%C.L. with
aaxial

ℓ0 = 0µK to 96%C.L. with aaxial
ℓ0 = 70µK.
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Figure F.4. Similar to �g. F.2, here the preferred axis ẑ of the model points to thedire
tion of the north e
lipti
 pole. Evidently, a Solar system e�e
t is preferred bythe data. For instan
e the �rst �gure (x̂ =NEP) shows that the ex
lusion level 
an beweakened from 99%C.L. with aaxial
ℓ0 = 0µK to 96%C.L. (92%C.L.) with aaxial

ℓ0 = 40µK(aaxial
ℓ0 = 70µK) by axial 
ontributions. For the alignment test with the equinox, theex
lusion drops from 99.5%C.L. with aaxial

ℓ0 = 0µK to around 98%C.L. with aaxial
ℓ0 =

70µK.
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Figure F.5. ℓ = 2+3 Mollweide maps showing the e�e
t of additional axial 
ontri-butions. Upper map: a random realisation of an statisti
ally isotropi
 and Gaussiansuperimposed quadrupole and o
topole. Middle map: adding an axial 
ontributionof aaxial
20 = aaxial

30 = 70µK to the random map, with the preferred axis of the model
ẑ pointing in the dire
tion of the dipole. Lower map: adding the same 
ontribution,now with the preferred axis being in dire
tion of the north e
lipti
 pole. For furtherexplanation see the 
aption of �g. 4.8. The 
olour legends are in units of 0.1mK.
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Figure F.6. Same pro
edure as in �g. F.5, now with a di�erent initial randomrealisation (upper map); for explanation see 
aption of �g. F.5. The 
olour legendsare in units of 0.1mK.
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Figure F.7. Same pro
edure as in �g. F.5, now with a di�erent initial randomrealisation (upper map); for explanation see 
aption of �g. F.5. The 
olour legendsare in units of 0.1mK.
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Figure F.8. Besides oriented areas, it is also possible to study the alignment of themultipole ve
tors themselves. Here, we probe the alignment of the quadrupole ve
torsthemselves with the z dire
tion. The test is de�ned as Squad

d̂v
≡

P

|d̂ · v̂(ℓ,i)| . Axial
ontributions are added up to 70µK. After some threshold behaviour (∼ 40µK), the
Squad

d̂v
alignment be
omes very sensitive on axial 
ontaminations. The horizontal linesindi
ate WMAP one-year data: solid (ILC), dashed (TOH) and dotted (LILC) maps.For more detail on the various 
leaned one-year maps see se
. 4.3.1.
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Figure F.9. Histogram showing the (anomalous) planarity of the o
topole. The ab-solute value of the parallelepipedial produ
t represents a volume and is an invariantwhen 
on
erning three spatial ve
tors v̂(3,i) . Therefore we 
an test for planarity by us-ing the parallelepipedial produ
t as a suitable statisti
, Vocto ≡ |(v̂(3,1)×v̂(3,2))·v̂(3,3)| .The verti
al data lines are due to the same maps as in �g. F.8. The parallelepipedialprodu
t is rather insensitive to axial 
ontributions.
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Figure F.10. Probing the e�e
t on the alignment statisti
 Sd̂n ≡
P

|n(ℓ;i,j) · d|when adding asymmetri
 values of quadrupole and o
topole axial 
ontributions. Here
d̂ is mat
hed with the z axis and therefore the statisti
 measures alignment of quad-rupole and o
topole normals with the z dire
tion. Plotted is, the arbitrarily s
aled(×10−3) number of Monte Carlos that are, for given values of aaxial

ℓ0 , 
onsistent withan experimental value of Sd̂n ≃ 3.47 . That is, for instan
e a 
ontour of 0.5 in the�gure means that below this 
ontour there are & 500 hits 
onsistent with data � butnever more than ∼ 600 , as 
an be seen from the �gures. The experimental value is anaverage of Sd̂n for the ILC, TOH and LILC maps of WMAP(1yr). The total numberof Monte Carlos here is 105 . The upper �gure and the lower �gure show the sametest, only in the lower �gure the simulated range is larger by a fa
tor of two. We
an 
on
lude that for this test only small and symmetri
 axial 
ontributions to thequadrupole and o
topole have the 
han
e to be 
onsistent with data.



156 F. ADDITIONAL PLOTS AND RESULTS
Random

Figure F.11. Figure similar to �g. 5.2, here we added a smaller 
ontribution of
aℓ0 = 100µK to the multipoles, su
h that we 
an observe the onset of the separationpro
ess of the ve
tors. Mollweide proje
tion of the sky with quadrupole (upper row)and o
topole (lower row) multipole ve
tors [equation (5.5)℄. The mesh 
onsists of stepsin 30◦. Displayed are ten pairs of quadrupole ve
tors (small dots) and their ten areave
tors [equation (5.6) (big dots)℄ as well as ten triples of o
topole ve
tors (small dots)and their area ve
tors (big dots); togetherness is indi
ated by 
olour. The arbitrarysign of the ve
tors has been used to gauge them all to the northern hemisphere. Thestatisti
ally isotropi
 and Gaussian 
ase (left 
olumn) is broken by the imprint of amoderate axial e�e
t aℓ0 = 100µK (right 
olumn) whereupon multipole ve
tors startto move to the pole and area ve
tors start to move to the equatorial plane. The fullseparation 
an be observed when adding strong 
ontributions aℓ0 ∼ 1000µK, 
.f.�g. 5.2.
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Figure F.12. Testing the e�e
t of asymmetri
 additive 
ontributions aaxial
ℓ0 on theintrinsi
 
ross alignment of quadrupole and o
topole. Here, the 
ross alignment testis de�ned as Snn ≡

P

|n̂(2;,1,2) · n̂(3;,i,j)| ; note the di�erent pre-fa
tor as 
omparedto (5.8). Like in �g. F.10, we have plotted the arbitrarily s
aled (×10−3) numberof Monte Carlos that are, for given values of aaxial
ℓ0 , 
onsistent with an experimentalvalue of Snn ≃ 2.62 , that has been obtained from WMAP(1yr) 
leaned maps. Thetotal number of Monte Carlos is again 105 . The upper and lower �gure show the sametest, only with a di�erent range of simulations. From the upper �gure, we see thatindeed, intrinsi
 alignments are apparently 
ured by adding axial 
ontributions up to

∼ 100µK. In the lower �gure we see that, when in
reasing aaxial
ℓ0 further, this is onlya lo
al maximum. This is perfe
tly 
onsistent with our �ndings �g. 5.3.
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