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Mistakes are the portals of discovery.

- James Joyce (1882-1941)
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Abbreviations, Symbols and Physical

Constants

Abbreviations:

2D two-dimensional

2DES two-dimensional electron system

2pt two-terminal/point

4pt four-terminal/point

AC alternating current

AlAs aluminium arsenide

a.u. arbitrary units

BEC Bose-Einstein condensate

CB conduction band

CP(s) composite particle(s)

DA digital-analog

DC direct current

DOS density of states

DMM digital multimeter

HF high-frequency

MBE molecular beam epitaxy

QW quantum well

FWHM full width at half maximum

GaAs gallium arsenide

GPIB general purpose interface bus

VB valence band

VGND virtual ground (of a current pre-amplifier)
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Symbols:

A¤ area of the sample/the 2DES

Aª area enclosed by cyclotron motion

∆S,AS single electron tunneling splitting

(between the symmetric and antisymmetric state)

Φ magnetic flux

Φ0 magnetic flux quantum

ρxx longitudinal resistivity

ρxy Hall resistivity

σxx longitudinal conductivity

σxy Hall conductivity

ωC cyclotron frequency

µ mobility

ν filling factor

νCP filling factor for composite particles

νtot total filling factor (sum of all individual filling factors)

B strength of the magnetic field (in Tesla)

d (center-to-center) quantum well separation

dG = dI/dV differential conductance

D(E) density of states (general)

D0 density of states (in a 2D system which is independent of E)

Ed interlayer Coulomb interaction

EF , εF Fermi energy

ElB , El intralayer Coulomb interaction

G conductance

kx, ky wave vector components in plane of a 2DES

kz wave vector components perpendicular to the 2DES

lB magnetic length

n, ne, ns electron (sheet) density

t, tQW width of a quantum well

T temperature
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Physical Constants:

ε0 8.854187·10−12 F m−1 vacuum permittivity

e 1.602176·10−19 C electron charge in Coulomb

h 6.626068·10−34 J s Planck’s constant

~ = h/2π 1.054572·10−34 J s Planck’s constant divided by 2π

kB 1.380650·10−23 J K−1 Boltzman constant

me 9.109382·10−31 kg mass of an electron

m∗ = 0.067 ·me 6.103291·10−32 kg effective mass of an electron in GaAs

RK = h/e2 25812.807 Ω von-Klitzing constant

Conversions:

1 eV
.
= 1.60217·10−19 J

1 J/kB
.
= 7.24293·10+22 K

1 eV/kB
.
= ∼11604 K





Chapter 1

Introduction

Macroscopic quantum systems such as superconductors and superfluids are the remarkable

consequence of many of bosonic particles occupying the same lowest energy state, and

thus forming a Bose-Einstein condensate (BEC). The feasibility of a BEC of excitons in

semiconductors was suggested in 1962 [Bla1962], however, it has shown to be difficult

to realize experimentally. Generally, excitonic condensation is expected to occur at low

temperatures and low exciton densities nX . While the critical temperature1 TX ∝ n
2/3
X

MX
∼

1 K for exciton condensation is much larger than for an atomic BEC owing to the lower

effective mass MX of the excitons, the condensation of optically excited electron-hole pairs

is limited by their finite life-time. There are certain possibilities to increase the excitonic

life-time and make it much longer than the exciton thermalization time, however, only

the design of two closely-spaced two dimensional electron systems allows to realize quasi-

excitons with infinite life-time.

The foundation to create these quasi-excitons is the quantum Hall effect [Kli1980,

Tsu1982] which is observed in two-dimensional electron systems under a strong perpen-

dicular magnetic field B. Exposed to a sufficiently large B, the density of states of each of

the two-dimensional systems (referred to simply as double-layer or bilayer, owing to their

reduced dimensionality) will condense into a discrete set of dispersionless sub-bands, the

Landau levels. The number of occupied states is then parameterized by the filling factor

ν ∝ n/B. If the electron densities n are tuned to be identical in both layers, the two

filling factors will simultaneously be at 1
2

at a particular magnetic field. In this situation,

where only the lowest Landau levels are half-filled, the dynamics of each layer is governed

by Coulomb interactions (not by the kinetic energies of the electrons) where the electrons

in each layer correlate their motion in order to comply with the Fermi exclusion principle.

If the distance between the two layers is sufficiently small, of the order of 10 nm, then also

Coulomb interactions between electrons of opposite layers will occur. Trying to maintain

1For a three dimensional semiconductor.
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maximal distance between one another the electron configuration at this total filling fac-

tor 1
2
+1

2
is that where an electron in one layer is opposite a correlation space (or hole) in

the opposite layer and vice versa. It can be shown that the ground state of this strongly

correlated bilayer system is that of a Bose condensate of interlayer quasi-excitons. As the

filling factor in each layer is at 1
2
, this correlated state is denoted as total filling factor 1

state or simply νtot = 1 state. These interlayer excitons have infinite life-time, so their

properties can be investigated via electrical transport experiments. However, an exciton

is a charge-neutral object, and condensation may not lead to any spectacular electrical

effect. Nevertheless, many experiments have shown remarkable properties owing to the

interlayer-phase coherence associated with the Bose condensate. Interlayer tunneling ex-

periments (which require independent Ohmic contacts to the two layers) have shown an

I/V characteristic which has an astonishing resemblance to the one of the Josephson-effect

of superconductivity. Other Magneto-transport experiments performed on the common

Hall bar geometry, where currents of equal magnitude but opposite sign are sent through

the two layers, have shown that (only) when the system approaches a total filling factor

of 1, the Hall voltage and the longitudinal voltage (i.e., the voltage drop along the current

direction) vanish. The vanishing Hall voltage indicates the existence of charge-neutral

excitons, and the disappearance of all resistivity components may suggest that the sys-

tem could indeed be a superconductor. However, the absence of dissipation may simply

be owing to dissipationless one-dimensional edge channels which would mimic superfluid-

ity/superconductivity at νtot = 1. Thus, the use of a ring geometry (referred to as Corbino

ring) instead of the common Hall bar was suggested for it excludes the influence of the

edge channels and allows straightforward computation of the conductivity. The focus of

this work is the investigation of the correlated νtot = 1 state on these Corbino rings (and

to a certain level, on the common Hall bars).

The chapter Physics of the Quantum Hall Effect will introduce to the physics of the inte-

ger and fractional quantum Hall effect which are essential for this work as it also defines

many important parameters such as the filling factor.

The chapter The νtot = 1 Quantum Hall State in Bilayers discusses the properties and

physics of the (electron) bilayer at νtot = 1 in detail and also introduces other equivalent

pictures which the Bose condensed state can be mapped onto.

The chapter Equipment and Samples illustrates the step from the commonly used Hall

bar geometry to the ring geometry both from the physical and technical side. It also

discusses the experimental conditions for low temperature measurements.
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The chapter Interlayer Drag Measurements starts with a theoretical introduction to the

physics of the ”drag experiments” where a current is sent through only one of the layers

whereas the other is kept as an open circuit. The drag experiments on a Corbino device

found that the conductance of the drive layer vanishes when the total filling factor ap-

proaches a value of one. At the same time, identical voltages across both the drive and

drag layer can be observed. The results of these magneto-transport measurements on

the Corbino device are shown in their dependence on the temperature and the strength

of interlayer correlation. Also the differences between drag at νtot = 1 and larger filling

factors are discussed.

The chapter Interlayer Tunneling starts with the theoretical aspects of tunneling between

uncorrelated and correlated layers. The empirical part begins with differential tunneling

conductance experiments which will then be substituted by pure DC measurements. These

experiments were able to demonstrate a critical behavior which had been expected but

had not been shown before. The characteristics and properties of tunneling at total filling

factor 1 are discussed. A new type of tunneling experiment is introduced which may be

able to trigger excitonic supercurrents in the bulk.





Chapter 2

Physics of the Quantum Hall Effect

This chapter will give an introduction to two-dimensional electron systems (2DES) where

the confinement of the electron motion in addition to strong perpendicular magnetic fields

and low temperatures leads to the observation of the integer and fractional quantum Hall

effect. While the integer quantum Hall effect is owing to the magnetic quantization of

the single particle motion, the fractional quantum Hall effect arises when the systems

dynamics are governed by Coulomb interactions between the electrons.

2.1 2-Dimensional Electron Systems

Modern molecular beam epitaxy (MBE) technology is able to produce semiconductor

structures with a precision of a single atomic layer by evaporating pure materials with

fast-shutting effusion cells onto a single wafer. Using this technology, heterojunctions can

be grown which are composed of layers of different semiconductor materials with nearly

identical lattice constants but non-equal band gaps. Of special interest are heterostruc-

tures formed by GaAs and AlAs (both zinc-blende structure with a lattice constant of

approximately 0.56 nm) or their compound AlxGa1−xAs, respectively. Usually, a com-

position parameter x of 0.33 is used. If GaAs (or AlAs) and AlxGa1−xAs are forming

a heterojunction, the composition parameter influences the band structure properties at

the interface.

Quantum wells (QW) consist of a thin layer of a semiconductor with a narrow band

gap sandwiched between two layers of a semiconductor with a wide band gap. To obtain

electrical conductance at cryogenic temperatures, the wide band-gap AlxGa1−xAs mate-

rials are doped, generally by Si. Owing to the alignment of the Fermi energies of both

semiconductor materials, electrons originating from the doping site will re-distribute to

the narrow band-gap GaAs quantum well, like in a pn-junction. The remaining positively

charged ionized Si-dopant ions and the electron accumulation form a carrier depleted
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space charge region. Depending on the relative positions of conduction and valence bands

of the two semiconductor materials, a discontinuity (band bending) in the conduction

and valence band will be formed. This discontinuity is the major advantage of hetero-

junctions, since the locally modified band-structure can confine the motion of the charge

carriers and produce a two-dimensional electron system (2DES). The confinement poten-

tial leads to a discreet set of energy sub-bands of the quantum well (as discussed later in

this chapter). Since the doping terminates in sufficient distance from the GaAs (a method

called modulation doping), electron scattering is strongly reduced. This technique leads

to an increased mobility of the carriers which is required to observe fractional quantum

Hall effects for instance.

Figure 2.1: Schematics of a modulation-doped AlxGa1−xAs/GaAs/AlxGa1−xAs single

quantum well. The two lowest sub-bands are marked. At low electron densities and if

kBT ¿ (Ez(2)− Ez(1)) only the lowest sub-band will be occupied.

2.2 Classical Magnetotransport: The Drude Theory

For a detailed discussion of the electronic transport in a 2-dimensional system, especially

under strong perpendicular magnetic fields, quantum mechanical considerations are re-

quired. However, the Drude model of electrical conduction can be used to describe the

transport properties of electrons when treated as classical, non-interacting (charged) ob-

jects, whose motion is affected by collisions.
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Figure 2.2: a) Hall bar and b) Corbino geometry. When a constant current ISD is imposed

on a Hall bar between source (S) and drain (D), the Lorentz force will lead to an accu-

mulation of carriers on one side of the sample which creates an equilibrating electric field

Ey. The boundary conditions of a Corbino geometry, which will be discussed in chapter

4, however enforce Ey=0. Yellow areas are Ohmic contacts.

The relaxation time approximation assumes that carriers are exposed to a homoge-

neous electric field Ex (see Figure 2.2) and a magnetic field B (with
−→
B ⊥ 2DES). The

Lorentz force
−→
FL will accelerate the electrons. However, permanent elastical scattering

on impurities or phonons after the mean scattering time τ will impede the carriers from

accelerating over the entire 2DES. In the steady state condition, the Lorentz force is

balanced by the force due to scattering, i.e.,

m∗

τ
−→vD

︸ ︷︷ ︸
Scattering

= −e(
−→
E + (−→vD ×−→B ))︸ ︷︷ ︸
Lorentz force

, (2.1)

where −→vD is the electrons drift velocity which can be calculated as

−→vD = −µ




Ex + vyB

Ey − vxB

0


 . (2.2)

The newly defined parameter µ = eτ
m∗ is the electron mobility, i.e., the higher µ the

higher the drift velocity. The Lorentz force which accelerates the electrons towards one

side of the 2DES is opposed by the growing electric field
−−→
FEy owing to the electron accu-

mulation. In the steady state both forces balance one another so that vy = 0. Note that

this is the case for a Hall bar geometry. This allows to calculate the resistances using the

definition of the current density
−→
j = −ne−→vD



16 Physics of the Quantum Hall Effect

Rxx =
Vxx

ISD

=
ExL

jxW
=

1

neµ

L

W
= ρxx

L

W
(2.3)

Rxy =
Vxy

ISD

=
EyW

jxW
=

B

ne
= ρxy. (2.4)

More generally, magneto-transport in a 2DES can be described by Ohm’s law
−→
E = ρ̂

−→
j ,

with ρ̂ being the resistivity tensor. With the two common definitions ρ0 = 1
neµ

and

ωC = eB
m∗ (cyclotron frequency) and using ρyy = ρxx and ρyx = −ρxy (Onsager relation),

the resistivity tensor reads

ρ̂ =

(
ρxx ρxy

ρyx ρyy

)
= ρ0

(
1 ωCτ

−ωCτ 1

)
. (2.5)

Resistivity and conductivity are connected via tensor inversion, i.e., σ̂−1 = ρ̂ which

also yields the Drude conductivity σ0 = 1
ρ0

. The conductivity tensor

σ̂ =
1

ρ2
xx + ρ2

xy

(
ρxx −ρxy

ρxy ρxx

)
(2.6)

is relevant for measurements on the Corbino device in Figure 2.2 b) where, in contrast

to Hall bars, a constant voltage is applied and the current is measured (see chapter 4 for

details). It should be emphasized that in strong magnetic fields, i.e., for τ >> ω−1
C , the

diagonal components of the resistivity and conductivity tensor are proportional to one

another, whereas in the limit of resistivity scattering that both ρxx and σxx become zero

which is characteristic for the quantum Hall effect.

2.3 The Landau Quantization

With increasing magnetic field, the Lorentz force will bend the electron motion from a

straight line to an orbital trajectory. Within the low field regime with ωCτ ¿ 1, the elec-

trons will only complete a small fraction of a full (cyclotron) orbit before they scatter and

begin a new orbit with an arbitrary momentum vector. The situation is very different for

ωCτ À 1, where the electrons can complete multiple cyclotron orbits before a scattering

event occurs. Under these conditions, the corresponding length scales require a quantum

mechanical approach to explain the empirical observations. This quantum mechanical

approach1 will lead to the so-called Landau quantization.

1For a complete solution refer to [Coh1997,Lau1982,Cha1994].
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Landau Levels

The Schrödinger equation for an electron in a magnetic field which is given by the vector

potential
−→
A (x, y, z) is Hψ(x, y, z) = Eψ(x, y, z). The corresponding Hamiltonian is

H =
1

2m∗ [
−→
P + e

−→
A ]2, (2.7)

where
−→
P = −i~∇ is the momentum operator. Using the Landau gauge

−→
A = (0, B ·

x, 0), the homogeneous magnetic field is in z-direction, i.e.,
−→
B = ∇×−→A = (0, 0, B), and

it is then convenient to separate the Hamiltonian to

H =
p2

z

2m∗︸︷︷︸
H||(z)

+
1

2m∗ (p
2
x + [py + eBx]2)

︸ ︷︷ ︸
H⊥(x,y)

(2.8)

so that [H⊥, H||] = 0 and consequently E = E⊥ + E||. The two Schrödinger equations

can be solved independently for a free electron in the xy-plane under B with ψ(x, y) and

for a free particle in z-direction with ψ(z) = C1e
ikzz + C2e

−ikzz. Since H|| describes the

kinetic energy of the free particle, its solution is easily found to be E|| = ~2k2
z

2m∗ . However,

the (infinite) potential of the quantum well will confine the electron motion to between

its boundaries. This boundary condition ψ(z = −t/2) = ψ(z = +t/2) = 0, where t is the

well width, yields kzt = iπ with i ∈ {0, 1, 2, ...} and thus result in an energy quantization

of

Ez(i) = E|| =
~2π2

2m∗
i2

t2
. (2.9)

The eigenfunction ψ(x, y) = eikyyχn(x − x0) of H⊥ is a plane wave extended in y-

direction and centered around the equilibration point x0 of the eigenfunction of the

Schrödinger equation for the quantum harmonic oscillator χn(x − x0) [Cha1994]. Cal-

culation of the corresponding eigenvalues yields the equally spaced energy levels of the

harmonic oscillator, which are called Landau levels,

Ej = E⊥ = ~ωC

(
j +

1

2

)
j ∈ {0, 1, 2, ...}. (2.10)

The electron spin has been ignored so far, however, for large magnetic fields, a Zeeman

splitting term EZeeman = sgµBB has to be added to equation 2.4, where s = ±1/2 is the

spin quantum number, g the Landé factor and µB the Bohr magneton.

Filling Factor and Density of States

Since the Landau energy levels depend only on the quantum number j, they are strongly

degenerate (i.e., independent) with respect to the center x0 = kyl
2
B of the jth harmonic
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eigenfunction ψ(x, y) [Cha1994]. The newly defined length scale lB =
√

~
eB

is called

magnetic length. Note that the commutator of the operators for the center coordinates is

[x̂0, ŷ0] = il2B, i.e., these coordinates are two non-commuting observables which makes a

determination of their values uncertain to the order of lB. The degeneracy (i.e. number

of states per Landau level with the same energy Ej) is given by the sample length (in

x-direction) divided by the distance between neighboring center coordinates ∆x0, i.e.,

NL =
Ly

∆x0

=
LxLy

2πl2B
= LxLyB

e

h
=

Φ

Φ0

=
A¤
Aª

, (2.11)

where Φ = LxLyB is the total magnetic flux through the area of the sample A¤ = LxLy

and Φ0 = h/e the flux quantum. As equation 2.11 shows, the number of degenerate states

is equal to the number of magnetic flux quanta that penetrate the 2DES or the total area

of the sample A¤ divided by the area enclosed by the cyclotron motion in real space

Aª = h/eB. Both the degeneracy of the Landau levels and their energetic separation

~ωC increase linearly with B (see Figure 2.3).

One important quantity is the dimensionless density of electrons expressed as the

Landau level filling factor ν. The filling factor is defined as the number of filled states by

electrons Ne = A¤ne, where ne is the electron density, divided by the number of available

states NL,

ν =
Ne

NL

=
h

eB
ne. (2.12)

Formally, the density of states of a 2DES exposed to a perpendicular magnetic field is

a set of δ-functions at the energies of Ej,

D(E) = nL

∑
n

δ(E − Ej) (B > 0 T ), (2.13)

where nL = NL/A¤ is the number of states per unit area. At zero magnetic field on

the other hand, there is no Landau level quantization and the energy of the system is

given by E = Ez(i) + ~2
2m∗ (k

2
x + k2

y), i.e., parabolic sub-bands start off from the discrete

energy Ez(i) of the quantum well (see Figure 2.4 c)). The density of states D(E) for these

sub-bands is

D(E) =
m∗

2π~2︸ ︷︷ ︸
≡D0

Θ(E − Ez(i)) (B = 0 T ), (2.14)

where Θ is the step function2. Within a given sub-band, D(E) is energy-independent3,

and as previously mentioned, at for low densities and at low temperatures only the lowest

2Not to confuse with the δ-function that describes the separation of the Landau levels!
3This is not true anymore if the effective mass m∗ depends on the energy, such as in Graphene.
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Figure 2.3: Chemical potential

and Landau level energy as a func-

tion of the magnetic field. The

chemical potential shows a jump

of ~ωC at all integer filling factors

(as long as the Landau levels are

not broadened by disorder). Fig-

ure from [Goe2004].

sub-band Ez(1) is occupied. The Fermi energy which defines the number of occupied

states is

EF =
2π~2

m∗ ne = ne/D0. (2.15)

If Landau level quantization occurs, all electron states within the range of energy ~ωC

collapse onto a Landau level as shown on Figure 2.4 c).

2.4 The Integer Quantum Hall Effect

Calculation of the Hall resistance with equation 2.4 under the condition that an integer

number of Landau levels are fully occupied yields the expression for the quantized Hall

resistance which was found experimentally by Klaus von Klitzing [Kli1980] in 1980, i.e.,

Rxy =
1

ν

h

e2
=

1

ν
RK ν ∈ {1, 2, 3, ...}, (2.16)

where RK is the von-Klitzing constant. The quantization of the resistivity requires

a minimal Landau level broadening by disorder (discussed next) and kBT < ~ωC . Its

value solely (!) depends on physical constants. The integer quantum Hall effect can be

measured with an astonishing accuracy of approximately 10−9 and is used to define a

resistance standard or to determine high precision values of the fine structure constant α.
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Figure 2.4: a) energy spectrum ∝ k2 and states (black dots) in momentum space which

are filled up to the Fermi vector kF for B=0 T. b) density of states D of a two-dimensional

(solid line) and three-dimensional system (dotted line). Shaded area marks occupied states

up to the Fermi energy EF (dashed line). At low temperatures only the lowest energetic

state Ez(1) of the quantum well is occupied. c) blow-up of occupied states for B ≥0 T.

At a finite magnetic field B 6= 0 T the Landau level energies are separated by ~ωC . The

Landau levels are theta functions in absence of an impurity potential or broadened into

bands if impurity scattering occurs. Spins are ignored. Figure c) after [Jec2001].
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Boundary Conditions: The Edge Channels

If the Fermi energy EF lies between two Landau levels, no current would be able to flow

from one arbitrary point (source) to another (drain) if the 2DES has no boundaries4.

However, Hall bars are finite in size, thus at the sample edges a confinement potential

U(y) has to be added to the Landau energy Ej from equation 2.4 and will consequently

bend the Landau levels upwards. Towards the sample edges the Landau levels will thus

cross the Fermi energy EF , giving rise to electron states at EF . These states require

only low energy excitations and run parallel to the sample edges, i.e., a current can flow

between source and drain (see Figure 2.5) along one-dimensional (1D) edge channels.

Figure 2.5: a) the Landau levels bend upwards due to the confinement potential U(y).

At the edges they cross the Fermi energy allowing dissipationless electron transport along

one-dimensional edge channels. b) the Hall bar at filling factor 2 with the two counter-

flowing edge channels at each sample boundary. Figure from [Goe2004].

As long as EF lies between two Landau levels, there are no bulk states available and

backscattering between opposite sample edges is suppressed. The current that flows along

an individual edge channel between source and drain contacts is thus dissipationless, i.e.,

no voltage difference exists between any two points along a single edge5 (the longitudinal

voltage is zero).

The Landauer and Büttiker approach [Bue1988] to this edge channel concept is also

able to explain the quantization to integers of h/e2. The density of states of a single edge

channel with index j that connects two electron reservoirs which are at the electrochemi-

cal potential µS and µD is D(E) = (2π~vj)
−1, where vj is the longitudinal velocity at the

Fermi energy along this channel. Assuming ideal Ohmic contacts, the current that flows

owing to the potential difference ∆µ = µS − µD ≡ eV is then Ij = evjD(E)∆µ = e
h
∆µ.

4As it will be shown later that is exactly the situation for a Corbino device at all integer filling factors.
5This is only true if these two points are not the source and drain contacts themselves which then

would include the Hall voltage.
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The total current is thus the sum over all edge channels given by the filling factor, i.e.,

I =
∑

j Ij = ν e
h
∆µ. Note that the velocity is v ∝ ∂U(y)

∂y
[Dat1995], i.e., the edge states at

opposite sample edges carry current of opposite direction.

Figure 2.6: Left hand side: a), b) one electron picture of edge states. c) electron density

as a function of the distance to the boundary. Right hand side: d)-f) electrostatic picture:

shaded areas are compressible strips (non-integer filling factors), unshaded areas are the

incompressible ones (integer filling factors). Figure from reference [Chk1992].

In this edge channel picture, the electron density should jump from zero at the very

edge to the value of the first edge channel as depicted in Figure 2.6 c), and the width

of each edge channel should be of order of the magnetic length lB. However, as calcula-

tions [Chk1992,Lie1994] have shown, the density gradually increases within the depletion

length. In their quantitative electrostatic theory which includes the screening effects of
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the electrons in the 2DES, the electrostatic potential in the region occupied by the 2DES

changes in a steplike manner due to the formation of two different types of alternating

edge strips: a) the compressible strips which are pinned at the Fermi energy (i.e., like a

metallic conductor), where the electron density increases towards the bulk. Electrons can

be added while leaving the electrochemical potential unchanged. b) the incompressible

strips where there are no states at EF (Fermi energy is in the mobility gap) and the

electron density is constant. For experimental details of the potential distribution in a

Hall bar refer to [Ahl2002].

Landau Level Broadening and Disorder Potential

Generally, a quantized Hall resistance is expected if no scattering between compressible

strips from opposite (Hall) edges occurs, i.e, when there exists a wide incompressible strip

in between. As Figure 2.3 shows, in ideal samples such incompressibility exists only for an

infinitesimal small magnetic field region, where the chemical potential is located within

the energy gap. However, all real samples are finite in width, and at the sample edges

there exists a continuum of states which stabilizes the Fermi energy in the gap of the

bulk region (i.e., there is no sharp jump of the chemical potential). Yet, the density of

states of these compressible edge states is not big enough to explain the width of the Hall

plateaus which are observed in experiment. That means that the density of states in the

bulk region, instead of consisting of δ-functions, must have states between the Landau

levels [Gud1987]. Impurity disorder such as donor atoms and crystalline defects give rise

to a random impurity potential UDisorder(r) =
∑

i ui(r − ri), as a sum over all single

potentials ui, which has to be added to equation 2.8. These potential fluctuations over

the entire sample area broaden the Landau levels into Gaussian-shaped distributions (the

degeneracy of the states with different center coordinates (x0,y0) is lifted). For long range

potential fluctuations (which exceed the magnetic length lB) this leads to states near

the Fermi energy within the bulk. Like at the sample edges, one-dimensional conducting

channels emerge, which however form a closed trajectory around the individual potentials

ui. Since the electrons in these states are ”captured” by ui, they cannot contribute to the

current from source to drain and are consequently called localized states. The energetic

range of localized states is called mobility gap. The center states of each broadened Landau

level are comprised of current carrying states, the so-called extended states which lie close

to the original Ej, calculated with equation [Lau1982,Pra1987].

The impurity potential model combined with the edge channel picture can now give

a qualitative explanation to describe the empirical features of the integer quantum Hall

effect: if EF lies in the center of the mobility gap, we find ρxx = 0 and ρx,y = RK/ν, i.e.,

the electrons move along equipotential lines which run parallel to the sample edges. If the
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Figure 2.7: a) Landau level potential distribution with disorder along the red line in

Figure b) for filling factor 2. A single exemplary disorder potential creates a closed one-

dimensional conducting channel within the bulk of the topmost Landau Level. b) in

addition to edge channels, the disorder potential (at cross section in red) yields localized

states.

Fermi energy is shifted towards the next Landau level by increasing B (which will reduce

the filling factor), individual areas of localized states will appear which are distributed

over the sample area. By further increasing B, they will increase in spatial extension.

Eventually, different regions of localized states percolate into a single extended state that

covers the entire sample and connects both sample edges. In this situation backscattering

between opposite sample edges is possible where ρxx > 0 and ρx,y climbs to the next

quantized step.

The oscillations in the longitudinal resistance are called Shubnikov-de Haas Effect. As

outlined above, it is the result of the density of states, or the broadened Landau levels,

respectively, which oscillates as a function of the magnetic field. The minima are periodic

in 1/B as

∆

(
1

B

)
=

2e

hn
, (2.17)

where it is assumed that the magnetic field B is small enough and no spin splitting

has occurred yet. To observe Shubnikov-de Haas oscillations both ~ωC > Γ (to assure

sufficient separation between the Landau levels) and ~ωC À kBT (to avoid thermal exci-

tations to a Landau level of higher energy) have to be met.
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2.5 The Fractional Quantum Hall Effect

In high mobility (and low density6) samples, additional features in the longitudinal and

transversal resistance can be observed mainly for ν < 2. Since all magnetic field-induced

energy gaps (i.e., the integer quantum Hall energy gaps of ~ωC) are exhausted for ν < 1,

these additional gaps which are shown in Figure 2.8) must be of different origin than the

Landau quantization.

Figure 2.8: Longitudinal and Hall resistivities for a high mobility sample. Fractional

features are observable in the lowest (spin-split) Landau level N = (0, ↓) and N = (0, ↑).
Filling factor ν = 1/3 lies beyond 16 T. Figure from [Goe2004].

The fractional quantum Hall effect was first observed in 1982 by Tsui et al. [Tsu1982]

at filling factor ν = 1/3. Robert Laughlin [Lau1983] developed a model that was not

only able to account for this ν = 1/3 state but for all 1/q fractional quantum Hall states

(where q is an odd integer) found later on. These energy gaps are the result of interactions

between the electrons, where the electrons are avoiding one another by correlating their

relative motion due to the Coulomb interaction. This is only possible because for ν < 1

there are (unlike at all integer filling factors) vacant states in the (lowest) Landau level

available, allowing this ”spatial redistribution”. The interaction effects can be accounted

for by including

6To observe effects at accessible magnetic fields.
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∝
∑

j 6=k

e2

| −→r j −−→r k | (2.18)

to the Hamiltonian of equation 2.8. Laughlin’s fermionic many-body ground state

trial wave function is aside from a factor

Ψ1/q(z1, z2, ..., zN) ∝
N∏

j 6=k

(zi − zk)
q, (2.19)

where the position (xj, yj) of each electron j is given by the complex representation

zj = xj − iyj. This wave function obeys the Pauli principle because if two particles

approach one another, i.e., zj −→ zk, one of the factors of the product will zero and Ψ1/q

vanishes rapidly. Also, due to the antisymmetry requirement, under particle exchange

(electrons are Fermions) the Laughlin states are restricted to odd values of q. Addition

or subtraction of a single electron disturbs the order described by Ψ1/q at a considerable

energetic cost. For that reason, all 1/q states are referred to as ground states [Eis1990a].

Figure 2.9: Electron-vortex system at filling factor 1/3. Black dots are the electrons, white

circles are vortices and the arrows represent the flux quanta. a)-b) the spare vortices are

placed onto the other electrons. c) since a vortex can be represented by its flux quantum,

each electron is attached to three quanta. Figure from reference [Sto1999].

Quantum mechanically, the single electron wave functions are ”smeared out” over the

entire 2D system, i.e., the probability of finding a single electron at a certain location

is uniform over the whole plane. The electrons behave thus as a featureless liquid. An

impinging magnetic field can be viewed as creating vortices (topological defects) in this

homogeneous liquid of charge, with one vortex per flux quantum φ0 = h/e. The charge
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is displaced from the center of each vortex. As in case of the electrons, the probability

of finding a vortex at a certain location is uniform over the entire plane as well. Since

electrons and vortices are objects of ”opposite” charge, it is energetically beneficial to

place one onto the other because it reduces the repulsion between electrons7. For filling

factor 1 there are the same number of electrons and vortices, at filling factor 1/3, however,

the number of vortices is 3 times larger. The system can reduce its electrostatic Coulomb

energy by placing more vortices onto each electron and thus increase the relative distance

between the electrons. Conceptionally, it is equivalent to replace the vortices by the

corresponding flux quanta. Electrons plus flux quanta can be viewed as a composite

particle [Jai1989,Sto1999]. Generally, these composite particles are either Fermions if the

number of attached flux quanta is even (such as for the ν = 1/2 state), or bosons, if the

number of flux quanta is odd. The composite particles thus obey either the Bose statistic

or the Fermi statistic. For exactly ν = 1/3 the composite particles are bosons and all

flux quanta are attached to electrons, leading to a new ground state and the observed

energy gap. When the magnetic field deviates from ν = 1/3 by +∆B, more vortices are

created which do not attach to electrons because this would disturbed the ground state.

Instead, for each additional vortex there is a charge-deficit of e/3, i.e., each vortex can be

considered as a quasihole. Equivalently, for −∆B quasielectrons with excess-charge of e/3

are created. These quasiparticles can move freely through the 2D system and transport

electrical charge, however, as in the integer quantum Hall effect, they can get trapped at

weak random impurity potentials.

Figure 2.10: At higher magnetic fields than ν = 1/3 additional vortices, i.e., quasiholes,

are created each having a charge-deficit of e/3. These quasiparticles can move freely

through the 2D system. Figure from reference [Sto1999].

The composite fermionic particle picture allows to understand the fractional quantum

Hall effect in terms of an integer quantum Hall effect of composite particles. When the

7This is not very intrusive because now each electron is BOTH part of the uniform liquid AND at the
center of a vortex. However, this can be viewed as satisfying the Pauli principle. In this configuration,
no two electrons can be at the same position.
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electrons attach themselves to a number m of flux quanta φ0 = h/e with m ∈ N, it

will (partly) cancel the external magnetic field. The system then experiences a reduced

effective magnetic field of B∗ = B − mφ0ne. A composite particle filling factor can be

defined as νCP = φ0
ne

|B∗| . Introducing B(νCP ) into the regular filling factor ν (equation

2.12) yields

ν =
νCP

mνCP ± 1
νCP ∈ N/0,m ∈ N. (2.20)

Table 2.1 shows some examples how to reduce the regular filling factor ν with a

fractional value to an integer value of the composite particle filling factor νCP . For exactly

ν = 1/2, all flux quanta are attached to electrons again (two per electron) so that the

resulting composite Fermions reside at zero effective field. Since these composite particles

are Fermions, they will successively fill up all available energy states. Thus, ν = 1/2

does not exhibit an energy gap, and the Hall line is featureless as it is for electrons at

B = 0 T. The oscillating features around ν = 1/2 visible in Figure 2.8 resemble those

around B = 0 T [Sto1999].

ν νCP m

1/3 1 2

2/5 2 2

3/7 3 2
...

...
...

Table 2.1: Three examples of the integer quantum Hall effect of composite particles.

Certain fractional quantum Hall states can be observed in the second Landau level

(such as ν = 5/2) due to the spin degree of freedom, however, no fractional quantum Hall

effect have been observed at higher filling factors.



Chapter 3

The νtot = 1 Quantum Hall State in

Bilayers

In this chapter the concept and properties of the total filling factor 1 (νtot = 1) state

are discussed, which displays an energy gap when the filling factors of two closely spaced

2DES are simultaneously at 1/2. Its origin is attributed to Coulomb interactions between

all electrons in the two 2DES and it is thus comparable to a fractional quantum Hall

state.

3.1 Electron Bilayer Systems

Generally, a bilayer system consists of two-closely spaced quantum wells (due to their

dimensionality referred to as ”layers”) which are populated by charge carriers. The total

filling factor 1 state can emerge if the carriers of both layers are either electrons or holes,

or electrons for one layer and holes for the other. For this work exclusively electron bilayer

systems were investigated. Using equation 2.9, the energy gap between the lowest and

the following sub-band of a quantum well with width t=19 nm can be calculated to be

∆E = Ez(2) − Ez(1) ≈ 360 K. Since the intrinsic densities do not exceed 5 · 1014m−2,

it can definitely be assumed that during all measurements the electrons will occupy only

the lowest subband1.

Quantum-mechanically, the wave function of an electron in a quantum well with finite

potential height has a finite decay length into the confinement potential (barrier). If

the barrier between two quantum wells is smaller than this decay length, the two wave

functions will overlap. This finite probability of having the particle in the barrier and

1Generally, the sub-band population can be calculated as the integral of the product of density of states
D0 and the Fermi-Dirac function that gives the probability of occupation of a state

∫
subband

D0(exp[(E−
EF )/kBT ] + 1)−1dE
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in the other well is generally referred to as (interlayer) tunneling, and the amount of

the overlap quantifies the tunneling strength. Tunneling thus violates separate charge

conservation in each layer. If the overlap is strong, it forces the (degenerate) ground state

to split into a bonding state Ψ+ = 1√
2
(Ψ1 + Ψ2) with lower energy and an antibonding

state Ψ− = 1√
2
(Ψ1−Ψ2) with higher energy, to satisfy the Pauli exclusion principle. This

is analogous to the hydrogen molecule where the formation of a pair of bonding and anti-

bonding orbitals occurs once two hydrogen atoms 1 and 2 are brought together. Each

electron will have a wave function which is either symmetric or antisymmetric relative to

the barrier. The corresponding energies for a double quantum well are separated by an

energy gap ∆S,AS = EAS − ES, which is called single electron tunnel splitting [Har1999].

Figure 3.1 shows the symmetric and antisymmetric states and the single electron splitting

for the double quantum well structure if (strong) tunneling occurs.

The application of a perpendicular magnetic field will split ES and EAS into a set of

spin-split Landau levels [Boe1990]. For very large ∆SAS (À El) the system is essentially

a single wide quantum well. All lower lying symmetric states are occupied, while all

antisymmetric states are empty. The total filling factor 1 quantum Hall state would be

the ordinary ν = 1 integer Hall effect [Sar1997] of a wide quantum well with double the

density of the single layer.

Figure 3.1: Schematic energy diagram of the single electron tunnel splitting ∆S,AS. As

the magnetic field is increased, the energy states split due to Landau level quantization

(N: Landau level index) and lifting the spin degeneracy (Zeeman term). The inset shows

the symmetric and antisymmetric states. After [Boe1990].

The single electron splitting ∆S,AS can be calculated by numerically solving the Poisson
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and Schrödinger equation self-consistently. Its value for a (19/9.6/19) nm double quantum

well system is estimated2 to be approximately 150 µK, which is in good agreement with

earlier reports on comparable double quantum well structures [Spi2000,Kel2004] that were

used to investigate the total filling factor 1 state.

3.2 Weak Tunneling Limit

Since ∆S,AS can vary between 0 and hundreds of Kelvin, it is important to determine its

value relative to the relevant Coulomb energy El. At the magnetic field where the total

filling factor 1 state is found to be firmly established (at about 2 T for ntot = 4 ·1014 m−2),

the corresponding Coulomb energy El is about 1.3·10−20 J or equivalently El/kB ≈ 950 K.

So, even a ∆S,AS of order of the measured activation energy at total filling factor 1 (i.e.,

≈ 0.5 K, see chapter 5) would yield ∆SAS/El ≈ 5 · 10−4. In this limit, the νtot = 1

quantum Hall state is mainly the result of the competing Coulomb interactions of the

electrons within the individual layer and electrons of opposite layers. Like in the fractional

quantum Hall effect, these Coulomb interactions drive all electrons to minimize their

exchange energy and thus form a new bilayer ground state. However, the observed energy

gap at νtot = 1 can even survive the limit ∆S,AS → 0 so that the associated phase transition

is believed to display a purely spontaneous breaking of the systems symmetry (what this

means will become clear further in the text).

In addition to the filling factor, relevant parameters for the total filling factor one

state are the intralayer Coulomb energy El = e2

2πεlB
, with the magnetic length lB ∝ B−0.5,

and the inter layer Coulomb energy Ed = e2

2πεd
, with the center-to-center quantum well

separation d (a fixed parameter). In the weak tunneling limit, theoretical calculations (and

all experiments) show that the νtot = 1 quantum Hall state cannot exist for arbitrarily

weak interlayer interactions. Instead, a phase transition from two uncorrelated layers to

the (excitonic) bilayer ground state occurs when the ratio El/Ed = d/lB is smaller than

about 2 [Yos1989,Fer1989]. This ratio is often referred to as the effective layer separation

or coupling parameter. Figure 3.2 shows the empirical phase diagram for a bilayer system

at a total filling factor of 1. Only below the dashed line, the new νtot = 1 quantum Hall

state was observed in a Hall bar geometry.

The energy gap of the νtot = 1 state (which can be measured via temperature acti-

vation, see chapter 5) should be dominated by ∆S,AS if tunneling is strong, while it is

expected to be independent of it, if the νtot = 1 state is solely due to Coulomb interactions.

In a tilted magnetic field with angle Θ, i.e., when an in-plane magnetic field component is

2I thank K. Muraki for running the calculations on a professional Poisson solver which provided the
required resolution.
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Figure 3.2: The phase diagram for the bi-

layer νtot = 1 quantum Hall state. Solid

symbols represent samples that show a quan-

tum Hall effect while open symbols indicate

samples that do not. Taken and modified

from [Mur1994].

?
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added, the single particle tunneling ∆S,AS(Θ), which is associated with hopping between

layers, should reduce [Hu1992]. In their experiments Murphy et al. [Mur1994] found that

the energy gap of the νtot = 1 state partly depends on tunneling for small angles but is

nearly angle-independent for larger angles3.

3.3 The νtot = 1 Ground State

At filling factor 1/2 the real spin degree of freedom can be ignored4 because of complete

spin alignment owing to the strong magnetic field. However, the physics of bilayers at

νtot = 1 can be described by using a spin analogy (the pseudo- or iso-spin) of the layer

index degree of freedom, where a pseudo-spin up | ↑〉 and down | ↓〉 refer to the carrier in

the top and bottom layer (see Figure 3.3).

A generalization of Laughlin’s wave function was given by Halperin which describes

systems with two different spin-split Landau states at the same energy (a level crossing).

In terms of the pseudo-spin language the ground state of the bilayer system for d → 0

can be expressed as [Hal1983]

Ψ111 ∝
N↑∏
i<j

(zi,↑ − zj,↑)1

N↓∏

k<l

(zk,↓ − zl,↓)1

N↑,N↓,∏
m,n

(zm,↑ − zn,↓)1, (3.1)

where zs,↑/↓ = xs + iys are the complex coordinates of the sth electron in the top (↑)
or bottom (↓) layer, and N is the number of electrons (which by definition should be

3This was for samples with a barrier of 3 nm - 4 nm, i.e., about 2-3 times smaller than the barriers of
samples that were used in this work.

4This is only correct for strong magnetic fields, where the Zeeman splitting is large. In the regime
where the νtot = 1 state occurs, the spin alignment is not complete. Recent experiments [Giu2008] suggest
that this may be of certain relevance for the νtot = 1 state.
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Figure 3.3: Pseudo-spin repre-

sentation of a double quantum

well system when the carrier is

either in the top (red vector) or

the bottom (blue vector) layer.

Figure from [Mra2008].

identical for both layers and conserved if tunneling is zero, i.e., N ↓ +N ↑ is a good

quantum number). Like the Laughlin wave function, the Halperin (111) wave function

goes to zero as soon as electrons in either the upper or the lower layer approach one

another. However, it also goes rapidly to zero whenever zm,↑ → zn,↓, i.e., when electrons

of opposite layers approach each other. For d = 0 this represents a single layer with

a completely filled lowest Landau level, because each positional degree of freedom is

occupied. For small effective layer separations d/lB, the above wave function describes

in good approximation the bilayer system in the ground state where all electrons are

maximally spaced to minimize their exchange energy, as shown in Figure 3.4.

Figure 3.4: A bilayer system in the Halperin ground state, where a flux quantum (red

arrows) is attached to each electron (blue filled circles). The dashed empty circles indicate

positions in real space that are not occupied by electrons.
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At the single layer filling factor 1/2 there are twice as many flux quanta/vortices as

electrons in each layer. The Coulomb energy favors a state in which each electron is

attached to one flux quantum, regardless in which layer the electron resides5. As in the

fractional quantum Hall effect, the vortices are complex zeros of the wave function so

the electrons strongly avoid one another, independent of whether they are in the same

or opposite layers. Because every electron sees a vortex attached to every other electron,

the wave function in equation 3.1 is equivalent to a wave function of a single layer with

a completely filled lowest Landau level. Owing to this equivalence, equation 3.1 is thus

completely independent of which of the two layers a particular electron is in [Gir2002].

The ground state may be written in a different form [Fer1989]

|Ψ〉 =
∏

k

(ac†k,↑ + bc†k,↓)|0〉 (3.2)

which means that c†k,↑/↓ creates an electron in the upper/lower layer from the vacuum

state |0〉. The index k is a momentum/wave vector index. The normalization factors |a|2 =

|b|2 = 1/2 guarantee that each layer is half-filled. Using a particle-hole transformation

d†−k,↑ ≡ ck,↑, the wave function can be rewritten to a BCS-type wave function [Fer1989]

|Ψ〉 =
∏

k

(a + bc†k,↓d
†
−k,↑)(

∏

k

c†k,↑|0〉). (3.3)

The operators c†k,↓d
†
−k,↑ create electron-hole pairs, and the wave function of equa-

tion 3.3 may be viewed as that of a Bose condensate of excitons in their lowest energy

state [Fer1989,Paq1985]. These bilayer excitons are Bosons and have the same net k = 0

momentum (the electrons and hole momentum vectors are equal but opposite in direc-

tion). They have a vanishing charge-density at every point in space. These charge-neutral

objects are indifferent to the Lorentz force induced by the magnetic field and should not

suffer any Aharonov-Bohm phase shift which is proportional to the charge6. Even though

bilayer excitons are charge-neutral, there is still a weak net interaction due to intralayer

interactions between electrons which is stronger than the interlayer ones. As Figure 3.4

suggests, the particle-hole transformation means that each electron in one layer is coupled

to the ”vacant correlation space” (or hole) directly opposite to it in the adjacent layer

forming an interlayer exciton.

5The 1’s in equation 3.1 refer to the number of attached flux quanta.
6However, the experimental demonstration of Aharonov-Bohm oscillations in a bilayer sample would

be able to definitely demonstrate long range quantum coherence.
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Using a = b = 1√
2
, each factor 1√

2
(c†k,↑ + c†k,↓) in equation 3.2 creates an electron with

a pseudo-spin (degree of freedom) of | →〉 = 1√
2
(| ↑〉 + eiϕ · | ↓〉), i.e., each electron is

in a coherent superposition of both layers. Owing to this coherence, an electron can be

destroyed in one layer and (re)created in the other layer without changing the ground

state. Thus, the wave function 3.2 consists of a spatial part independent of the layer

index and a pseudo-spin part [Gir2002]

|Ψ〉 ∝
N↓+N↑∏

i<j

(zi − zj) ⊗
N↓+N↑∏

j

(| ↑〉j + eiϕ| ↓〉j). (3.4)

When the total number of electrons is conserved while N ↑= N ↓, then the resulting

coherent pseudo-spin vector has no z-component so there is a net polarization in the xy

pseudo-spin plane as shown in Figure 3.5 a). While this easy-plane pseudo-spin mag-

netization can point in any direction, tunneling will orient the polarization along the

x-axis [Mur1994], because the symmetric (eigen) state for the double quantum well with

a finite ∆S,AS is ∝ | ↑〉+ | ↓〉. In the absence of tunneling, however, the electrons have no

way of telling the phase angle ϕ. This is a spontaneous breaking of the global symmetry

(which is a planar rotational symmetry), where the system exhibits a degeneracy in ϕ, i.e.,

0 < ϕ < 2π, so the ground state energy does not depend on the pseudo-spin orientation7.

Hence, at a total filling factor of one all pseudo-spins in the bilayer tend to align

along an arbitrary direction given by ϕ owing to exchange interactions, resulting in an

excitation gap. The bilayer system at νtot = 1 can (equivalently) be viewed as an easy-

plane (quantum Hall) pseudo-spin ferromagnet [Jog2000]. If the electron densities are

imbalanced (total number of electrons is still conserved), the pseudo-spin vector will have

a finite z-component 〈Sz〉 ∝ |a|2 − |b|2 and will point out of the plane under an angle Θ

(Figure 3.5 b)).

The Halperin (111) ground state, the Bose-Einstein condensate of excitons and the

pseudo-spin representation are equivalent descriptions of the bilayer system at a total

filling factor of one.

3.4 Exciton Superfluidity

As shown, the bilayer system can be described in terms of a 2-dimensional (2D) pseudo-

spin ferromagnet. The Mermin-Wagner-Hohenberg theorem [Mer1966, Hoh1967] states

that any finite 2D system at finite temperature with a continuous symmetry prohibits the

possibility of spontaneous long-range order (or spontaneous symmetry breaking), owing

7For d = 0, the interactions are pseudo-spin independent, thus for small d/lB this wave function is
believed to be a good estimate for the ground state energy [Fer1989].
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Figure 3.5: a) In the balanced case, i.e., when N ↑= N ↓, the pseudo-spin vector has no

z-component and lies in the xy plane. b) in the imbalanced case, there is a surplus of

carriers in one layer, and the pseudo-spin vector points out of the plane with an angle Θ.

Figure from [Mra2008].

to phase fluctuations which are energetically favored and thus become more important.

These low-energy fluctuations or pseudo-spin waves are called Goldstone modes. They

are linearly8 dispersing collective modes which are associated with a spatial gradient in

the phase (see inset in Figure 3.6). Goldstone modes of the ground state are the smallest

excitation of the ground state at νtot = 1 and mean a very slow change of the phase ϕ from

one electron to the next. It is thus a very long wavelength, and since the change occurs

very gradually the energy is virtually zero. Goldstone modes of the ground state are

therefore gapless in the long wave length limit (momentum k −→ 0) as shown in Figure

3.6 which also illustrates the dispersion relation for a two-layer system. The Goldstone

mode is essentially an oscillation of the electron density in the bilayer where the electrons

move back and forth out of phase with one another. The condensate state also possesses

properties similar to superfluidity, which is associated with the gradient of the phase-

variable as well. The order parameter, which is a measure for the symmetry of the system

is [Gir2002]

〈c†k,↑ck,↓〉 ∝ eiϕ(r). (3.5)

This order parameter is charge-neutral, so it can condense despite the presence of a

8In fact, for d = 0, the ground state is a broken-symmetry state and a Goldstone mode is expected
with the dispersion ∝ k2. However, for small d a symmetry-breaking term is added which can be treated
as a small pertubation which leads to a linear behavior at small k (see [Fer1989]).
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magnetic field, unlike Cooper pairs where vortices would form. The symmetry is thus

broken spontaneously, if ϕ is different from zero. If tunneling occurs, the order parameter

is zero, because the pseudo-spin vector aligns along the x-axis. Superflow arises whenever

the condensate phase ϕ(r) varies in space (like for superfluid Helium). As previously

mentioned, the energy does not depend on ϕ, however, it can depend on spatial gradients

H ∝ ρs

∫
dr|∇ϕ(r)|2, where ρs is the pseudo-spin stiffness which represents costs of energy

to turn a pseudo-spin out of perfect alignment when ϕ(r) varies with position. Note that

an imbalance will require to introduce a capacitive term due to a charging energy of the

bilayer which is proportional to the z-component of the pseudo-spin vector. The gradient

energy is stored in an exciton supercurrent [Gir2002]

J− = ρs∇ϕ(r). (3.6)

The charge conjugate to ϕ is the z-component of the pseudo-spin which is the charge-

difference between the two layers. Hence, the supercurrent corresponds to oppositely di-

rected charge currents in the two layers. This will become clearer in the experimental

chapter 5.

Figure 3.6: Dispersion relation for a bilayer system when the layer separation d is com-

parable to the magnetic length lB. For small momenta k the dispersion relation vanishes

linearly. At klB ∼ 1 the dispersion relation shows a dip (roton part, like in superfluid

Helium) which indicates that the system undergoes a phase-transition (after [Fer1989]).

The inset shows the pseudo-spin field in the ground state which is aligned along a common

direction given by the phase ϕ. Spin-waves (Goldstone modes) are low energy excitations

(and favored to direct spin-flips).
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For small k the dispersion relation for a bilayer system in Figure 3.6 increases linearly

like for a weakly interacting Bose gas such as superfluid Helium. In bilayer systems,

the electron-electron interaction within a layer is usually stronger than the interlayer-

interaction leading to a net weak repulsive interaction between the excitons. In terms

of the pseudo-spin language this means that the Coulomb interaction is spin-dependent

(unlike for real spins, where the Coulomb interaction is spin-invariant). The quantum

Hall gap is related to an electron-hole charged excitation with a large wave vector k (i.e.,

short wave length), so the quantum Hall effect itself is preserved even in the absence of

long-range order.

Tunneling spectroscopy experiments were able to demonstrate long-range pseudo-spin

order and the existence of Goldstone modes through the response to weak parallel, i.e.,

in-plane, magnetic fields. Tunneling experiments will be discussed in detail in chapter

6, it however should already be noted that they exhibit a large zero bias anomaly that

resembles the one of the Josephson effect of superconductivity.

Figure 3.7: Meron pair, which is formed by local pseudo-spin re-orientation, is connected

by ”domain walls”. From [Gir2000].

Interacting 2D spin systems are not expected to possess a normal second order phase

transition. They instead undergo at a nonzero critical temperature a true thermody-

namic phase transition (i.e., a ”condensation”), known as the Kosterlitz-Thouless (KT)

[Kos1973] transition. Below the critical temperature, the system shows ”intermediate”
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long-range order over a finite distance which are the result of topological defects, i.e.,

vortices in the pseudo-spin field called merons [Moo1995]. The existence of a vortex will

disturb the phase with an energetic cost that is proportional to the gradient of the order

parameter ϕ(r). Consequently, it is energetically favorable to have a binding of vortices

with opposite vorticity in order to ”localize” the disturbance in the pseudo-spin field (Fig-

ure 3.7). Because each vortex correspond to the pseudo-spin vector locally pointing out of

plane, one half of an extra electron (or hole) resides in each defect, i.e., each vortex carries

a charge of e
2

[Gir2000]. The KT phase transition, which should occur at a temperature of

the order of the spin-stiffness ρs ∼ 0.5 K [Gir2000], is of topological nature, where vortex

excitations (vortex unbinding with a gain in entropy) occur as the temperature increases.

Generally, exciton condensation has two limits. In the low density limit, excitons

will already exist above the critical temperature TC , i.e., their number does not change

with T . The critical temperature in this limit is only determined by the statistical dis-

tribution in momentum space of weakly interacting bosons. On the other hand, in the

high density limit, the critical temperature for condensation is reached when excitons

begin to form (like Cooper pairing in the BCS theory). The condensation can exhibit a

mixed nature for intermediate densities [But2004,Kel1965,Kel1968]. For typical electron

densities (n ∼ 2.3 · 1014 m−2) at νtot = 1, the exciton density can be estimated to be

a2
Bn ≈ 0.2 (0.5*), where aB is the exciton’s Bohr radius. Naively aB is the center-to-

center layer separation (i.e., aB = d ≈ 29 nm) but more precisely it has to include the

magnetic length lB ≈ 18 nm (for 2 T) since the electrons perform cyclotron orbits, i.e.,

aB =
√

(2lB)2 + d2 ≈ 46 nm (yields value marked with *). Even though the spacing

between the excitons is comparable to the exciton Bohr radius which might suggest that

the system forms a BCS-like state [Sno2002], the pairing in the excitonic state in bilayers

is due to the Coulomb interactions at low densities giving it BEC characteristic.

”Superfluidity” and ”superconductivity” are closely related phenomena and refer to

a macroscopic state of matter, where the probability of finding one of its constituents is

uniform over the entire region where the phenomenon occurs. The state can thus be de-

scribed by a single wave function which exhibits coherence over macroscopic length scales.

Objects which show this macroscopic phase transition always undergo a Bose condensa-

tion. These objects are either Boson particle ”by nature” or they couple-up by phonon-

interaction in the case of Cooper pairs or Coulomb interactions for bilayer excitons so that

Bose statistics apply. Conceptionally, superconductors are also superfluids. However, in a

superconductor the ”fluid” is made of electrons which conduct electricity and not material

atoms/molecules as in superfluid Helium for instance. While there are certain similarities
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between the excitonic state in bilayers and superfluidity/superconductivity, there is no

Meissner effect, i.e., the magnetic field still penetrates the bilayer (it needs to!). Also,

interlayer tunneling experiments which show a Josephson-like effect are not tunneling be-

tween two superconductors but between two electron layers which only as a whole form

a correlated state. So far, no long range quantum coherence has been demonstrated in

experiment.

3.5 Wigner Crystallization?

At a filling factor of 1/2 (or below) and when the density is low enough, the Coulomb

energies dominate and the electrons can assume a configuration which is believed to

be a regular (pinned) lattice called Wigner crystal (WC) [Wig1934]. Such WC phases

have been considered to be occurring at a total filling of one to be competing with the

Bose condensate of excitons at intermediate layer separation [Che2006,Jog2006,Cot1992].

However, the appearance of a quantized Hall voltage at total filling factor 1 strongly

questions its importance for the νtot = 1 quantum Hall state. Yet, at sufficiently small

νtot, the bilayer ground state is expected to be a pure bilayer WC. In real samples, a

WC can be pinned by disorder. If the electrons coherently belong to both layer then the

WC of each layer is effectively pinned by the joint disorder [Che2006]. This bilayer WC

should be insulating but would exhibit a sharp interlayer tunneling conductance peak

at low temperatures due to the interlayer phase coherence [Vei2002, Jog2006]. For large

d/lB two staggered WCs (due to minimization of interlayer Coulomb interaction) without

interlayer coherence can exist.



Chapter 4

Equipment and Samples

The following chapter is divided into four main sections that will be used as an introduc-

tion to the experiments. Parts 1 and 2 will deliver a brief review of earlier experiments

and the motivation for this experimental work. The third part will give details on the

sample/crystal structure and the techniques of sample preparation. The last part will

give a physical (less technical) description of the cryogenic concept which is necessary

to reach sufficiently low temperatures in order to observe the νtot = 1 state and give an

overview over the experimental setup.

4.1 Review and Motivation

Interlayer drag measurements on Hall bars, which are performed by passing a current

through one of the two layers (called drive layer) and measuring the voltage drop across

the adjacent layer (called drag layer), have shown that at νtot = 1 the Hall drive and

drag voltages are quantized to h/e2. At the same time, a longitudinal drag voltage is

observable [Kel2002, Wie2005]. This quantized drag resistance was predicted by theory

and is believed to be a direct signature of the Bose condensation of interlayer excitons

[Yan1998,Zho1999,Yan2001] and the boundary condition of the drag experiment (which

will be discussed in chapter 5). If the configuration is slightly changed by passing two

equal but oppositely directed currents through both layers (a counter-flow measurement),

it is found that both ρxy and ρxx tend to zero [Tut2004,Kel2004,Wie2005], as shown in

Figure 4.1. Here, the boundary conditions allow the current to be completely carried by

interlayer excitons which are charge-neutral and are thus unaffected by the presence of a

magnetic field, i.e., the Hall voltage vanishes because excitons do not feel a Lorentz force.

While the vanishing of both resistivity components at a total filling factor of one

suggests that the bilayer may indeed be a superconductor exhibiting a dissipationless

exciton current, such a direct comparison is invalid. Owing to the dimensionality and
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Figure 4.1: Counterflow measurements on a Hall bar. Left hand side: Hall resistance in

the vicinity of νtot = 1 for several temperatures. For lowest temperatures, Rxy → 0 Ω.

Right hand side: the calculated conductivity σxx which appears to become very large for

lowest temperatures. The longitudinal resistivity, which also vanishes for T → 0 K, is not

shown. Plots are taken from [Kel2004].

the magnetic field, the bulk conductivity of a 2DES is only accessible by inverting the

resistivity tensor as

σxx =
ρxx

ρ2
xx + ρ2

xy

. (4.1)

If (only) ρxx → 0 then also σxx → 0 as long as ρxy 6= 0. But when both resistivity

components tend towards zero, this would suggest σxx →∞. This calculation is however

formally difficult as both values become infinitesimal small, also because residual resis-

tivities may depend on disorder [Hus2005] or other intermixed states without interlayer

phase coherence [Dem2001]. Nevertheless, as temperature-dependent measurements indi-

cate (see Figure 4.1), σxx could become very large as the temperature approaches absolute

zero. Yet, the computability is not the only issue. It was suggested [Mac0708] that the

vanishing of both components could rather be the result of the formation of (excitonic)

edge channels which intrinsically provide dissipationless transport owing to a suppression

of backscattering. By using a ring geometry instead of a Hall bar, both problems can be

circumvented.
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4.2 The (Quasi-)Corbino Geometry

An ideal Corbino ring as shown in Figure 2.2 is (usually) an annulus where the entire

inner area constitutes one Ohmic contact (source) and the entire outer edge is connected

to another Ohmic contact (drain). However, since an ideal Corbino ring configuration

does not allow independent contacts to both layers of a double quantum well system, the

ring has to be modified into a quasi -Corbino geometry as depicted in Figure 4.2. By

using a gate technique, two independent quasi-Corbino rings can be obtained with three

contacts to the outer and two contacts to the inner perimeter.

Since the ring symmetry prevents an electric field in the azimuthal direction under

isotropic conditions, i.e., Eφ = 0, there is no contribution to the measured conductivity

from off-diagonal tensor components. So, by applying a constant potential difference V

between source and drain, and measuring the current I that flows through the bulk, the

(diagonal) conductivity σxx = A · I/V , where A is a geometrical factor, can be calculated

directly. The Corbino ring is therefore complementary to the Hall bar which directly

yields the components of the resistivity tensor ρxx and ρxy. Even though edge channels

will form around the inner and outer circumference in this geometry as well, they are,

however, completely separated by the bulk, i.e., a Corbino ring provides an entirely edge

channel free transport from source to drain.

If no magnetic field is applied, the electron transport is purely radial between source

and drain. As the magnetic field B is increased from zero, Lorentz forces will bend

the electron trajectory into a spiral and drive the electrons multiple times around the

annulus before reaching the drain. When the magnetic field is strong enough to exhibit

Landau Level quantization, the Fermi energy will eventually lie in the mobility gap,

while edge channels form around the inner and outer perimeters of the ring. In this

incompressible regime that occurs at all integer filling factors, the electron motion is

purely orbital which leads to a vanishing radial current between source and drain. While

the Fermi energy moves through extended (compressible regimes) and localized states

(incompressible regimes) when B is varied, the electron motion repeatedly enter regimes

of spiral and orbital nature with a 1/B periodicity. The total current thus consists of a

radial and an azimuthal part which oscillate anti-cyclically as a function of the magnetic

field, i.e., in a quantum Hall regime the radial fraction which is accessible by experiment

is zero while the azimuthal (orbital) part is maximal. A finite element analysis and solver

software package (Comsol Multiphysics) was used to simulate the potential and current

distribution in this geometry. The simulation assumes non-vanishing diagonal components

of the conductivity tensor,

σ̂ =

(
σxx −σxy

σxy σxx,

)
, (4.2)
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Figure 4.2: Top panel: schematic view of the Corbino geometry used in this experiment.

Application of appropriate voltages to the back gates (marked as ”BG”) and front gates

(”FG”) will lead to contact separation, i.e., the Ohmic contacts 1 through 5 will connect

to the upper quantum well and 1* through 5* to the lower one. Bottom panel: selective

depletion technique after [Eis1990b]. An appropriate voltage to a back gate (or front

gate) will depopulate the nearest 2DES in the vicinity of the gate. The tooth pattern will

improve electrical contact, and the rectangular recess at the head-side will assure that

contact is provided even with poor lithography (see text for details).
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with σxx = cos(θH) and σxy = sin(θH), using the definition of the Hall angle θH , i.e.,

tan(θH) = sin(θH)
cos(θH)

. Figure 4.3 shows a sequence of potential and current density distribu-

tions for several values of the Hall angle for a single ring including the contacts. At a Hall

angle of (nearly) 90 degrees, the ring becomes incompressible.

Figure 4.3: Sequence of the potential distributions for six different Hall angles. The

colors mark equipotential lines, with blue being a predefined ground potential and red an

arbitrary potential voltage.

With the drag experiments in chapter 5, it will be demonstrated that voltages of

equal amplitude can be observed at a total filling factor of one under sufficient coupling

conditions. Since the contact pairs which probe the voltages of drive and drag layer are

located at opposite sample edges, the question is under which circumstances such identical

potential distribution can exist. Figure 4.4 thus plots the ratios of the expected voltages

probed at opposite perimeters of the sample (like in a drag experiment) versus the Hall

angle. It is found that equal voltages should only be assumed for a Hall angle closest to

90 degrees.

4.3 Samples Structure and Preparation

The entire crystal structure is grown using the MBE technique and starts with a 100 nm

highly Si-doped GaAs layer1. Ex-situ photolithography and wet chemical etching are ap-

1The heavy doping will lead to quasi-metallic conductance at low temperatures (degenerate conduc-
tion).
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Figure 4.4: Analysis of the ratio of the theoretically expected drive and drag voltages

versus the Hall angle. The inset is a top view onto the Corbino ring and illustrates where

the voltages are probed. The colors red and blue mark the Ohmic contacts to the top

and bottom layer. Identical voltages should only be observable for Hall angles exceeding

85 degrees.

plied to define back gates. The wafer is cleaned using the FFP technique developed by

Fronius, Fischer and Ploog [Fro1986] which will remove contaminations and generate a

protective surface oxide. It is re-introduced into the MBE machine for the overgrowth

of the remaining bilayer structure on top of the back gates. This overgrown-back-gate

method was developed by Rubel et al. [Rub1997] to exploit the selective depletion tech-

nique engineered by Eisenstein et al. [Eis1990b] as explained later on. The double quan-

tum well structure is sandwiched between several hundred nm of isolating buffer layers.

The complete crystal structure can be found in the appendix. The 9.6 nm wide barrier

consists of a superlattice of alternating layers of AlAs (1.70 nm) and GaAs (0.28 nm)

which is used to improve the electron mobility. The electrons inside the quantum wells

originate from volume-doped Si regions 300 nm above/below the upper/lower quantum

well. The donor atoms energetically pull the conduction band towards the Fermi energy

EF . This will pull the quantum well conduction bands below EF , leading to an electron

population at low temperatures.

The details of the double quantum well structure and the doping are fairly relevant

for the physics of the νtot = 1 state. While the center-to-center separation d is a fixed

value given by the epitaxy process, lB scales directly with the magnetic field which can

be manipulated in the experiment. As pointed out in chapter 3, to observe interlayer
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Figure 4.5: Top panel: band structure calculated with a Poisson solver as a function of

the distance from the surface. Bottom panel: Coulomb energies for interlayer Ed and

intralayer El interactions plotted versus the magnetic length (which is ∝ B−0.5) for a

set of five different barrier widths d∗ ∈ {6, 8, 10, 12, 14} in 10−9 m. Note that while

the energies are plotted versus d∗, the energies were calculated with the center-to-center

separation, i.e., d∗ = d−tQW , with tQW as the quantum well width. Inset: with the barrier

height from the top panel, the tunnel splitting ∆S,AS was estimated with equation 4.3.

As this estimate shows, the Coulomb energies are many orders of magnitude larger than

the tunnel splitting. The dashed line shows the splitting energy for the double quantum

well structure used in this thesis.
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correlation effects, d/lB must be smaller than 2. Since lB ∝ B−0.5 and ν ∝ ne/B (see

equation 2.12), the 2DES should have low densities ne. Large intrinsic densities are not

preferable as they require also a large gate voltage to reduce ne to reach the required value

of d/lB.

The top panel of Figure 4.5 shows the band diagram for the a (19/9.6/19) nm double

quantum well structure which was calculated with a a simple Poisson solver2. The esti-

mated quantum well densities of (5.0/4.7) · 1010 cm−2 for the upper/lower quantum well

agree within (10-15) % with the experimental data. With the calculated barrier height,

the tunnel splitting can roughly be estimated assuming parabolic quantum Wells (and

barrier) [Ens2000]

∆S,AS ≈ 2E1e
− d

2~
√

2m∗V , (4.3)

where m∗ = 0.067me is the effective electron mass in GaAs, V = 0.27 eV the calcu-

lated barrier height and E1 = 180 K the energy of the lowest sub-band of a quantum well

with width 19 nm (see equation 2.9). Since it is very difficult to prevent tunneling be-

tween the layers entirely when the two layers are close enough to exhibit interlayer phase

coherence, real samples usually are weakly tunneling with a small estimated ∆S,AS of the

order (100. . . 200) µK [Spi2000,Kel2004]. The bottom panel of Figure 4.5 compares the

intralayer Coulomb energy El with the interlayer Coulomb energies Ed for five different

barrier widths (which are constant in B or lB), both independent of the particular shape

of the barrier. These Coulomb energies are many orders of magnitude larger than the

single tunneling splitting which was estimated with equation 4.3. Note that a) the simple

1D Poisson solver did not provide the required solution to obtain ∆S,AS directly, and b)

that this estimate of ∆S,AS for a 9.6 nm barrier is about 130 times larger than the one

obtained with a professional Poisson solver, as given in chapter 3. However, equation 4.3

assumes a barrier of different shape, which will largely effect the value of ∆S,AS.

The two sample structures used in this work are a ring geometry (see later for details)

and a standard Hall bar (refer to [Wie2005]) which were defined by photolithography

with a chromium on quartz mask and then wet chemically etched. Electrical contact to

the two quantum wells is realized by evaporating 3216 Å gold, 1584 Å germanium, and

600 Å nickel onto the sample after contact regions where defined by photolithography and

slightly wet chemically etched to reduce the distance to the two 2DESs and to remove

surface oxides. When the sample is annealed3 to 440 ◦C under a H2/N2 forming gas atmo-

21D Poisson/Schrödinger Band Diagram Calculator by Greg Snider [Sni2008].
3For the given concentration, Au and Ge form an eutectic alloy where both components simultaneously

harden into a solid at a specific temperature. Ni is used as a diffusion enhancer.
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sphere, the metals will diffuse into the structure connecting both 2DES simultaneously,

i.e., each Ohmic contact will have electrical contact to both layers. However, to provide

independent contact the layers, the overgrown back gates and additional front gates are

used which cross the contact arm as shown in Figure 4.2. The front gates are produced

by evaporating 50-100 Å of chromium as adhesive layer followed by 1250 Å of gold onto

photolithographically defined areas on top of the crystal. When a sufficient negative volt-

age is applied to one of the gates, the 2DES in its vicinity will be depleted by the field

effect. The voltage has to be large enough to completely cut off the nearby 2DES but has

to remain small enough to not affect the other 2DES. The latter is usually screened by the

2DES nearest to the gate. This method is called selective depletion technique [Eis1990b].

The regions for the Ohmic contacts exhibit a ”tooth pattern” as shown in Figure

4.2 owing to a dependence of the conductance on the crystal direction, i.e., the tooth

pattern will provide interfaces for the [011] and [011] crystal direction. In the Landauer-

Büttiker picture [Bue1988,Mue1990], the edge channels are injected into/reflected out of

the Ohmic contacts. For that reason the contacts possess a rectangular recess at their

head-sides which will assure that the edge channels run into the contact material even if

the Ohmic area gets accidentally shifted inwards in the lithography process.

4.4 Cryogenics and Experimental Setup

Evaporation Cooling

Temperatures of approximately 1 K (using 4He) or 0.25 K (using 3He) can be achieved by

reducing the pressure above the almost adiabatically confined liquid of either one of the

two stable isotopes of Helium (evaporation cooling). The pumping process will remove

high energy gas particles first, and to maintain an equilibrium state, particles with lower

energy will undergo a transition into the gas phase. This will reduce the (mean) energy

of the liquid and thus reduce its temperature. However, as T−→ 0 K, the vapor pressure

decreases exponentially as ∝ e−L/T [Ens2000], where L is latent heat of evaporation which

is approximately independent of the temperature for this range. Since pumps run with a

constant pumping power, the mass flow across the phase boundary and consequently the

cooling power will decrease exponentially with temperature (or with the vapor pressure).

This limits the achievable temperature by evaporation cooling to 1 K (4He)/0.25 K(3He).
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Dilution Refrigerator

A dilution refrigerator can provide continuous refrigeration to below 20 mK. The cooling

principle is comparable to that of evaporation cooling, however, a dilution fridge exploits

the quantum properties of a mixture of 3He and 4He which separate into two distinct

phases at low temperatures as shown in Figure 4.6. 4He has a nuclear/total spin of 0

and is thus a Boson. At low temperatures this Bose liquid of 4He undergoes a Bose

condensation in momentum space and becomes superfluid. After this transition, 4He will

act as an inert background (or vacuum) for the dissolved other isotope 3He. 3He, on the

other hand, has a nuclear spin of 1/2 which makes it a Fermion that obeys the Pauli

principle.

Figure 4.6: Left: phase diagram of a 3He-4He mixture (from [Cer2008]). Right: principle

of a dilution fridge. Explanations in the text.

The phase diagram shows that at below approximately 0.9 K and a concentration

of about 0.65, a phase separation takes place. The 3He-rich phase is lighter which thus

floats on top of the heavier 4He-rich phase. As the diagram shows, even for T=0 K,

both isotopes are not completely separated, there is instead a finite 3He concentration of

approximately 6 % in the 4He-rich phase. The origin for this finite solubility which allows

permanent cooling lies in the quantum properties of the mixture: since the 3He atoms

have a smaller mass, they have a larger zero point motion than the heavier 4He atoms.

Consequently, a 3He atom can have a larger binding energy with a 4He atom than with

another 3He atom, i.e., the effective binding energy in 4He-rich phase is larger than in the
3He-rich phase. If the temperature is low enough, the 3He can be treated as a degenerate

Fermi liquid, where the strength of interactions can be tuned by the concentration xHe3
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of 3He. The Fermi temperature TF is defined by [Ens2000]

kBTF = EF ∝ x
2/3
He3, (4.4)

where kB is the Boltzman constant. This relation states that when more 3He atoms

are added, they will need to occupy states with larger and larger kinetic energy. At the

same time the effective binding energy is lowered. At T=0 K and a concentration of about

6%, the binding energy and Fermi energy are identical and it is energetically favorable

to have two distinct phases. Since there are fewer 3He atoms the 4He-rich than in the
3He-rich phase, its Fermi energy is significantly lower. If EF is smaller, the specific heat

of this Fermi gas CHe3,

CHe3 ∝ T

TF

∝ T

x
2/3
He3

, (4.5)

is larger. It depends linearly on the temperature and dominates over that for liquid
4He with CHe4 ∝ T 3. The cooling power of the dilution refrigerator benefits from the large

difference of the specific heats of the two phases owing to the different concentrations of
3He. The cooling power can be calculated as proportional to [Ens2000]

∫

T

∆CHe3dT ∝ T 2 (4.6)

and is thus more effective at low temperatures than evaporation cooling which vanishes

exponentially with the temperature.

The dilution cycle is shown in Figure 4.6. The circulation is maintained by pumping

on the still which is kept at approximately 0.7 K. Owing to the low vapor pressure of 4He

at this temperature, mainly 3He is being pumped. After passing the external gas handling

circuit (where the flow of the mixture can be controlled), the gas is sent through an 1-K

Pot4 where it is pre-cooled. An impedance will increase the gas pressure to liquify the
3He. In a multi-level heat exchange system, the liquified 3He is further cooled and then

reintroduced into the 3He-rich phase (above the phase boundary) of the mixing chamber.

The gas cycle is closed with the lines running from below the phase boundary up again to

the still. Pumping 3He from the 4He-rich phase creates a gradient in the concentration so

that 3He atoms from the 3He-rich phase pass the phase boundary which yields a cooling

effect by ”evaporation into the 4He-rich phase”. The sample that is being measured is

located at the phase-boundary where this cooling effect is large, and where the magnetic

field of the superconducting magnet can penetrate the 2DES perpendicularly. Not shown

in the schematic diagram are the liquid 4He and liquid nitrogen reservoirs (separated by

a vacuum chamber) that enclose the dilution cycle to reduce thermal radiation.

4The 1-K Pot is cooled by evaporation cooling using liquid 4He.
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The Electron Temperature

The base temperature Tbase is the lowest accessible temperature of the mixing chamber

when it is in thermal equilibrium. Since the sample is in direct thermal contact with the

mixture, Tbase is close to the temperature of the crystal Tsample. The electron temperature

Te of the 2DES, however, is usually at a much higher temperatures than Tbase. There

are two different mechanisms for electrons to lose energy. Electrons can relax to lower

temperatures via electron-phonon interaction. The cooling power is [Mit1996]

∝ Asample√
n

(T 5
e − T 5

sample). (4.7)

Below 1 K, this mechanism can be neglected but hot electrons can diffuse out to the

cold Ohmic contacts and be replaced by cold electrons from the leads. The power flow by

this mechanism is [Mit1996]

∝ 1

R2pt

(T 2
e − T 2

sample), (4.8)

where R2pt is the total resistance between two current contacts. Owing to these small

cooling powers for the electrons, external sources can raise the electron temperature to

above those of the crystal by coupling energy such as high frequency (HF) radiation into

the system, either by the wiring or insufficient shielding.

Measurement Infrastructure

Low temperature measurements were performed with a Kelvinox TLM (top loading) sys-

tem with a superconducting magnet (Bmax=21.5 T). A cooling power of 600 µW provides

temperatures of the mixing chamber of down to 12 mK, which was confirmed by nuclear

thermometry on 60Co. Alternatively, a 3He system was used with a base temperature of

approximately 0.25 K, where the sample was mounted on top of a cold finger.

Figure 4.7 shows a schematics of the experimental setup. A LabView-controlled com-

puter is used for both data acquisition and controlling the power supply of the super-

conducting magnet. The computer is isolated from the GPIB network by a GPIB bus

expander/isolator and from the serial RS232 cable that connects the magnet with an

opto-bridge. All measurement equipment is isolated from the common AC power line by

using isolation transformers. Pumping lines running into the cryostat are also electrically

isolated from the pumps with non-conducting clamps and centering rings.

AC measurements were performed with Signal Recovery 5210 analog lock-in amplifiers

which are connected to Keithley 2000 digital multimeters (DMM) for data acquisition.

The internal oscillator of one lock-in provides the low frequency AC excitations voltage,
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Figure 4.7: Schematics of the experimental setup. Experimental details can be found in

the corresponding chapters. The digital-analog (DA) converter provide all DC voltages.

AC measurements are performed with Stanford Research 5210 lock-in amplifiers (SR 5210

LI) connected to Keithley 2000 Digital Multimeters (K2000 DMM) which are read over the

GPIB bus. The reference signal for the AC measurements is distributed with one/several

opto-coupler/s.
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and its reference signal is distributed with opto-couplers to avoid ground loops. All DC

voltages (including gate voltages) were provided by an in-house built digital-analog (DA)

converter with a voltage output range of ±10 V. For the DC measurements, the lock-

ins were replaced by Stanford Research low noise preamplifiers SR560 (not shown in the

diagram). The switch box is connected to the head of the probe via a doubly shielded

cable (i.e., in addition to an outer shield, each individual wire is shielded as well).

While AC measurements allow a sensitive and straightforward detection of small volt-

ages, problems with the phase of the lock-in can arise which are associated with capaci-

tances (sample, cables, etc.) and the high resistances at large magnetic fields. Issues like

these can be circumvented by doing DC measurements which however are more vulnerable

to noise. Also, insufficient/loose wiring can lead to induced voltages in external magnetic

fields, such as the terrestrial magnetic field or stray fields from the superconducting mag-

net.



Chapter 5

Interlayer Drag Measurements

5.1 Background: (Coulomb) Drag Experiments

Intralayer electron-electron Coulomb interactions in a single layer conserve the total mo-

mentum of the 2DES (assuming no inelastic scattering on impurities, etc.). If there is

an isolated second 2DES close enough for inter layer electron-electron Coulomb inter-

actions to occur while interlayer tunneling is negligible, momentum can be transferred

yielding a build-up of charges that are swept along in current direction of this second

2DES. This results in a voltage which is opposite to the voltage in the current-carrying

layer [Tso1992] to balance the momentum transfer. The current carrying layer is referred

to as the drive layer and the adjacent layer, which is passive and kept as an open-circuit,

called the drag layer. The drag effect relies on charge inhomogeneities in form of density

fluctuations/undulations [Zhe1993] which push away electrons in the opposite layer (two

completely flat density distribution would not couple). Theoretical calculations show that

at zero field the drag voltage has a T 2 and d−4 dependence, where d is the layer separa-

tion. However, measurements [Gra1993] had shown deviations which can be explained by

phonon-mediated electron-electron interaction [Tso1992] for larger d. At zero magnetic

field, the interlayer interactions are owing to direct momentum transfer via Coulomb

scattering. At filling factor 1/2, the drag effect is explained in terms of Coulomb in-

teraction between composite fermions, where electrons minimize their interaction energy

by binding to an even number of magnetic flux quanta (see chapter 2) which exhibit a

∝ T 4/3 dependence [Lil1998, Joe2000,Mra2004]. This simple drag model cannot explain

the observations at νtot = 1 where the behavior of drag changes dramatically [Lil1998],

i.e., where the drag does not disappear with T −→ 0 K but instead exhibits a Hall drag

with the same sign and magnitude as the Hall drive [Kel2002] being quantized to h/e2 (in

Hall bars). The existence of a quantized Hall drag at νtot = 1 can be explained by making

an analogy between Laughlin’s wave function (equation 2.19) and the superconducting
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vortex problem [Yan1998,Gir2002].

Figure 5.1: Cartoon of the bilayer at νtot = 1. Left-hand side: an electron in the drive

layer drags along a vortex in the adjacent layer (as each electron is attached to one flux

quantum at νtot = 1). Here I is the total drive current and ṅv the flux of vortices. Right-

hand side: as a vortex is equivalent to a missing charge (=hole), this means that this

hole current jh is equivalent to an oppositely directed electron current −je. The current

je in the drive layer and the current −je in the drag layer constitute the antisymmetric

(exciton) current JAS. Since no net current is allowed to flow through the drag layer, −je

is compensated for by a +je which is present in both layers.

As described in chapter 3, in a single 2DES at filling factor 1/2 there are twice as many

flux quanta/vortices (complex zeros of the wave function) as electrons. In the (bilayer)

νtot = 1 ground state, each electron is attached to one flux quantum, regardless in which

layer the electron resides, so all electrons (i.e., independent of the layer index) strongly

avoid one another. Thus, an electron in the drive layer will drag along a vortex in the

drag layer (left-hand side of Figure 5.1). The electric current along the sample in the

drive layer is then I = e · ṅe, where ṅe is the flux of electrons. The Josephson relation says

that the voltage drop is given by V = (~/e)φ̇ = (~/e)2πṅv, where the Cooper pair charge

2e was replaced by e and the quantum phase of the system can wind by 2π. Since the flux

of vortices ṅv is identical to the flux of electrons ṅe, this yields the universal quantized

Hall resistance h/e2 (like for regular filling factor 1).

In a drag experiment no net current is allowed to flow in the drag layer. However,

as charges are being dragged along, it violates this boundary condition. Thus there has

to exist a mechanism to compensate for the net current in the drag layer. The exciton

current that consists of an uniform electron-hole flow is referred to as the antisymmetric

current JAS
1. The current that cancels the charge transfer in the drag layer is referred

to as the symmetric current JS which also exists in the drive layer owing to symmetry

1”Antisymmetric” because it corresponds to an electron-hole flow in one direction, or to two oppositely
directed electron currents in the two layers.
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reasons. The drag experiment is thus analyzed in terms of the symmetric JS and the

antisymmetric currents JAS as shown on the right-hand side of Figure 5.1. The antisym-

metric current is just the supercurrent from equation 3.6, i.e., J− = JAS, which produces

no Hall field [Gir2002], and the symmetric transport channel is the one that can produce

the quantized Hall plateau.

In the pseudo-spin picture the quantum Hall effect at νtot = 1 can be viewed as follows:

if the layers are uncoupled, the lowest Landau level of each layer is half filled, also only half

of all pseudo-spin states are filled. However, for sufficiently strong coupling, the system

is a pseudo-spin ferromagnet, i.e., the bilayer has a full pseudo-spin Landau level where

the Fermi energy is in a pseudo-spin localized region and displays a quantum Hall effect.

5.2 Drag Measurement Setup

In an experiment with a real Corbino disk, a constant voltage is applied between the

source and drain contact and only the current through the annulus is measured. As

pointed out in chapter 4, the current in a Corbino ring consists of two parts (i.e., circular

and radial), where the radial part oscillates between a finite value and zero as a function

of the magnetic field. Hence, the radial voltage dropping across the annulus changes in

response to that radial part of the current Ir as well. In a quantum Hall regime, Ir is zero

and the entire voltage drops across the highly resistive annulus. If the resistance of the

annulus is always large compared to other resistances in the circuit (such as the internal

resistance of the voltage source), this does not pose a problem. However, in a quasi-

Corbino ring at a non-integer filling factor its resistance might be comparable to those

of the contacts arms, which are not entirely covered by the front and back gate leaving

them at higher densities than the annulus itself. Since in this situation a large portion of

the voltage might drop across the contact arms (which are not in a correlated state), the

voltage across the annulus was monitored with a lock-in amplifier using a separate pair

of contacts in a quasi four-terminal geometry. This will exclude the effect of the finite

resistances of the Ohmic contacts and the contact arms.

Prior to all (drag) measurements, sufficient gate voltages are applied to the front and

back gates as to provide separate contacts to both layers. At zero field interlayer tunneling

experiments (see chapter 6) were performed and/or DC I/V characteristics were measured

to check layer separation and obtain the interlayer resistances (details on each sample are

found in the appendix).

All drag measurements were performed by using the internal oscillator of a lock-in

to provide the low-frequency (2-5) Hz excitation voltage which is sized down to below
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about 60 µV with a (50k:50) Ω voltage divider. This voltage was applied radially across

the designated drive layer through an 1:1 isolation transformer, and a ground position

is defined. The current through this layer was detected by measuring the voltage drop

across a (1-10) kΩ resistor connected in series. In the diagrams of the experimental

setup which are given with each measurement, for simplicity the current measurement

is represented by the electric symbol for an ampere meter. The voltage across the drag

layer was measured simultaneously. The drag layer is kept as an open circuit, however,

to prevent it from floating it is either directly put to common ground or kept quasi-

floating, i.e., put to ground over a large resistor. This resistor is chosen to be be at

least one magnitude larger than the interlayer resistance in resonance, i.e., > 10 MΩ.

Initial investigations of the grounding position were performed which had shown that the

experiment is indifferent to which perimeter the drag layer is grounded as long as it is in

a quasi-floating geometry. Putting the drag layer directly to ground had initially shown

to be indifferent of which perimeter is chosen as well. However, as some contacts/samples

might become highly resistive at larger fields, direct grounding will not differ from having

the layer quasi-floating. Especially the inner, smaller contacts are more resistive under

strong magnetic fields than the outer ones (and may dissipate more energy).

The choice of which layer is the designated drive and drag layer is arbitrary. However,

it was found that generally if the lower layer is used as drive layer, the currents at higher

fields are lower and the νtot = 1 regime is less pronounced. These differences may be

attributed to the different mobilities and qualities of the two quantum wells (also contact

resistances) which are strongly influenced by the properties of the interface to a quantum

well in growth direction. Despite these obvious differences, the drag resistance RDrag =

VDrag/IDrive will yield nearly the same value regardless of which layer is used to pass a

current.

5.3 Interlayer Drag at Elevated Temperatures

Figure 5.2 shows a drag measurements performed on sample 81653:247C at 3He temper-

ature, i.e., Tbath ≈ 250 mK. The densities in both layers were reduced simultaneous to be

equal (nupper = nlower ≈ 2.12 · 1014 m−2) and producing a d/lB = 1.48 at a total filling

factor of one. The top panel shows the (radial) current through the drive layer and the

lower panel the drive and drag voltage as a function of the magnetic field B. The inset

illustrated the measurements setup. The current and voltages oscillate anti-cyclically as

a function of B. At all integer filling factor, the current is zero and the drive voltage

equals the excitation voltage. At total filling factor 1, a small minimum in the current

is observable while peaks in the drive and drag voltage can be seen. While the current
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hardly changes when the total filling factor moves across a value of one, the dissipation

in the drive layer (marked by the voltage peak) is yet nearly doubled which indicates

increased interlayer scattering. The longitudinal conductance of the drag layer must be

small, or else the potential difference which exists between the inner and outer perimeter

would be shortened.

Depending on the sample and the measurement setup, it was found that at all integer

filling factors, features in the drag voltage can be found2. These feature show a very

different characteristic if compared with the feature at νtot = 1 and can be a lot smaller

or even larger than the excitation voltage or the voltage peak at νtot = 1. Figure 5.2

shows these features split up in their x-(in-phase) and y-(out-of phase) components. At

all integer filling factors (where no drag is expected), the annulus is is highly resistive.

Since the electron bilayer is in fact a capacitor, the relatively big out-of phase component

is a signature of this large R · C. However, tunneling will become important if the bulk

resistance is magnitudes larger than the interlayer resistance.

All further drag measurements will be displayed in the more common notation where

the calculated conductance G = IDrive/VDrive is plotted versus B instead of voltages and

currents separately. Figure 5.3 thus shows a contour plot of the drive layer conductance

and drag voltage as a function of B and the single layer density n = nupper = nlower. With

increasing density, the ordinary integer quantum Hall states shift to higher fields but do

not change. The νtot = 1 state, on the other hand, evolves smoothly and can be tracked

to a d/lB > 1.76 (at these elevated temperatures). With increasing density, screening

effects become more relevant and the fermionic state of the single layers are dominating

the transport regime.

To see how the νtot = 1 quantum Hall state progresses, the data from Figure 5.3 can

be re-analyzed by determining the conductance G at the minimum (center) at νtot = 1

and the ratio of drag and drive voltage and plotting them versus d/lB. The top panel of

Figure 5.4 thus illustrates the conductance of the drive layer versus d/lB and the bottom

panel the ratio of drag and drive voltage. For (very) large values of d/lB, the conductance

appears to go into saturation, i.e., current and voltage approach values of a single layer

at filling factor ν = 1/2. While moving from high to low d/lB, the conductance decreases

slowly without showing a phase-transition with a critical behavior, before G appears to

saturate again. The ratio of drag and drive voltage also displays a monotonic decrease

from 1 beyond d/lB ≈ 1.60, i.e., the amplitudes of both voltage maxima diverge, indicating

a breakdown of the correlated state.

2The usage of room temperature π-filters in addition to RL and RLC filters inside the probe at
temperature below 4.2 K have shown to completely suppress these features (Cryostat provided by J.
Smet).
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Figure 5.2: Results of a drag measurement at Tbath=250 mK for n ≈ 2.12 · 1014 m−2,

i.e., d/lB=1.48 at νtot = 1. Top panel: current through the drive layer, measured as a

voltage drop across a known resistance (see text for details). For simplicity the current

measurement is represented by the symbol for an ampere meter. Inset: measurement

setup, where red contacts are connected to the top and blue contacts are connected to the

bottom layer. The voltage probe V measures the drive voltage VDrive and V ∗ measures

the drag voltage VDrag. Bottom panel: drive and drag voltages. The latter is split up in

its in-phase and out-of-phase components for clarity. Sample 81653:247C.
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Figure 5.3: Contour plots of the conductance G = I/V of the drive layer (top panel) and

the drag voltage V ∗ (bottom panel) as a function of the magnetic field B (and d/lB) and

the density n of the single layer. Sample 81653:247C. Tbath=250 mK.
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Figure 5.4: Re-analyzed data from Figure 5.3 where the top panel shows the conductance

and the bottom panel the ratio of drag and drive voltage at a total filling factor of one

plotted versus the corresponding d/lB. Sample 81653:247C. Tbath=250 mK.
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5.4 Interlayer Drag at Lowest Temperatures

At the lowest accessible temperatures of a dilution fridge, i.e., Tbath=15 mK, the con-

ductance at a total filling factor of one vanishes nearly completely as shown in Figure

5.5. Drive and drag voltage are identical, and they are only about 1 % smaller than the

excitation voltage V0 which drops over the sample at the regular filling factor 1. These

data were produced on sample 81653:248C. The single layer density is n ≈ 2.36 ·1014 m−2,

which yields d/lB=1.58 at νtot = 1.

In chapter 4 the potential distribution for a Corbino device was simulated, which had

shown a circular potential distribution when the Hall angle is at 90 degrees (see Figure

4.3). This is the case at all ordinary integer quantum Hall states. In analogy to these

ordinary quantum Hall states at larger fillings, the behavior of the νtot = 1 quantum

Hall state may imply a circular potential distribution in the drive layer as well, or the

existence of an azimuthal, i.e., circling, current. Owing to the excitonic coupling, this

current would trigger an azimuthal current of the same magnitude in the drag layer,

leading to identical voltages across both layers. However, as excitons are charge-neutral,

they should be indifferent to the presence of the magnetic field so that this circular current

should be carried by uncoupled electrons in a symmetric transport channel as discussed

at the beginning of this chapter. However, from the magneto-transport data at hand

it cannot be concluded whether this circling current model is correct, or if it is correct,

where the current may flow. It could be homogeneously distributed throughout the bulk

or rather concentrated at the sample edges. Circling currents could explain why drive and

drag voltages are identical even though the corresponding voltages probes are located at

opposite sides of the ring, approximately 1 mm apart. If the product of the scattering

time and the cyclotron frequency is much larger than 1, i.e., ωCτ À 1, then the Hall

angle is close to 90 degrees. Rewriting equation 2.6 σxx = σ0

1+ω2
Cτ2 to ωCτ =

√
σ0/σxx − 1

yields3 ωCτ = 168 at νtot = 1 for the low temperature measurement in Figure 5.5. The

Hall angle Θ is connected with this product by Θ = arctan(ωCτ) which then is 89.5

degrees. For the high temperature data in Figure 5.2 at νtot = 1 it is found that ωCτ = 22

and Θ = 87.4 degrees. This suggests that the Hall angle is close enough to 90 degrees

to observe identical voltages across opposite sides of the annulus, as shown in chapter 4.

Note that this calculation implies a homogenous current distribution.

Despite the similarities between νtot = 1 and the other regular integer filling factors in

magneto-transport experiments, the observation of a transport gap and identical voltage

across both layers at νtot = 1 (regardless whether this is the case in Corbino rings or Hall

bars) already demonstrates that the voltage drop across the barrier must be -at least- very

3The ratio of the conductivity is identical to the ratio of the conductances, because G = σ ·A, where
A is a geometrical factor.
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Figure 5.5: Combined plot of the conductance of the drive layer (blue, left vertical axis)

and drive and drag voltage (red, right vertical axis) at Tbath=15 mK as a function of the

magnetic field. At νtot = 1 (d/lB=1.58), the conductance vanishes like in the other integer

quantum Hall regimes. The drive voltage is only shown to the single layer filling factor 1

to indicate the excitation voltage V0. Data points of the drag voltage were omitted below

1.5 T. In this setup, the front gate plus an interlayer bias was used to tune the densities.

Sample 81653:248C.
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Figure 5.6: Model of excitonic edge state formation. a) while in two uncorrelated layers

there is no overlap of the electronic wave functions, an excitonic wave function would

have to exist across the barrier making it impossible to determine in which layer the

electron/hole is in. b) at filling factor 1/2, the Fermi energy εF lies in the center of the

lowest Landau level (for two uncorrelated layers), where the edges are of no particular

relevance. In the correlated state, however, an energy gap will open up around εF , leading

to a situation where available states only intersect εF at the sample edges.
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small. Thus, identical voltages can equivalently be attributed to (condensate) electrons

which are coherently spread between the layers and equilibrate any potential difference

at νtot = 1 (see chapter 3). Figure 5.6 tries to motivate a näıve model of the formation of

excitonic edge states as suggested by Allan H. MacDonald. For two uncorrelated layers

the single electron wave functions show no overlap, and the Fermi energy lies in the center

of the lowest Landau level where the edge states are of no particular relevance. In the

correlated regime, on the other hand, excitons will form, and it will require a finite amount

of energy (i.e., energy gap) to break them apart and excite quasiparticles. This energy

gap will open up around the Fermi energy εF which still lies in the center of the lowest

Landau level. Since in this situation the only available states are those close to the sample

edges, the situation is comparable to that at all ordinary integer filling factors. The wave

function which is associated with the interlayer excitons, exists across the barrier and will

equilibrate the interlayer potential to zero because the electron or hole (that participate

in the correlated state) can be present in either one of the two layers. That means there

is no chemical potential difference at νtot = 1 between the two layers, and this is the same

situation as in resonant tunneling which will be discussed in chapter 6. Thus, as the bulk

of the correlated system is impenetrable for any current, it may as well be that the edges

are in a state like the regular integer quantum Hall effect of single layer filling factor 1.

It should also be emphasized that towards the edges the individual Landau levels bend

upwards and progressively depopulate.

At some finite temperature, the collapse of the excitonic condensate can be observed,

and the magnitude of the energy gap can be investigated via temperature activation.

Generally, the activation energy is interpreted as the energy difference between the Fermi

energy and the mobility edge [Sta1985], i.e., the boundary between localized and extended

states. Figure 5.7 indicates that below 0.25 K, the conductance G = I/V is well described

by thermal activation, i.e., G ∝ exp(−Egap/T ), with an activation energy gap of approxi-

mately 0.5 K for d/lB=1.58. The magnitude of this energy gap is in good agreement with

earlier reports on comparable double quantum well structures [Kel2002,Kel2004,Wie2005]

where the activation energy was extracted from measurements of the temperature depen-

dence of the longitudinal resistance in Hall bars.

Like in Figure 5.4 for elevated temperatures, the onset of the νtot = 1 state at lowest

temperatures was investigated. The experiments is performed on sample 81653:146C by

simultaneously reducing the (matched) densities n in both layers, adjusting the magnetic

field to Bνtot=1 ∝ n and measuring drive current, drive and drag voltage, and in addition,

the interlayer voltage with a separate pair of contacts. Figures 5.8 and 5.9 illustrate

the results of this experiment. The top panel of Figure 5.8 thus shows the conductance

of the drive layer versus the coupling parameter d/lB. While moving from high to low
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Figure 5.7: Temperature dependence of the conductance G versus the inverse temperature

at νtot = 1 (d/lB=1.58). The black solid line is a fit using G ∝ exp(−Egap/T ). Sample

81653:248C.
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Figure 5.8: The top panel illustrates the conductance of the drive layer versus d/lB. To

investigate the elevation in the conductance around d/lB = 1.92 with a Gmax ≈ 30 µS,

the bottom panel shows magneto-transport sweeps around νtot = 1 for three different d/lB

that lie in the vicinity of Gmax. Solid lines show the current through the drive layer with

the corresponding axis on the left-hand side, and the dotted/dashed lines the drive/drag

voltage with the corresponding axis on the right-hand side. The interlayer voltage VI is

shown in Figure 5.9. Sample 81653:146C.
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values of d/lB, the conductance first exhibits an elevation before it slowly vanishes to

nearly zero. To account for this unusual increase, three magneto-transport plots (1), (2)

and (3) are shown on the bottom panel with the corresponding d/lB=1.89, 1.92, 1.95.

These three plots show that while the drive current is hardly affected, the drive voltage

undergoes a significant change which, however, is not limited to the direct vicinity of

filling factor 1/2. As the voltage appears to change ”on a global scale” it suggests that the

increase in G around d/lB=1.90 may not be a relevant characteristic of the correlated state

itself. Instead, the maximum may be the result of a competition between the increasing

conductance σxx = σ0

1+µ2B2 at ν = 1/2 (no correlation) and the commencing interlayer

correlation which suppresses scattering between the inner and outer edge and induces the

gap at νtot = 1. Yet, Figure 5.9 shows a very strong characteristic which is reminiscent of

a phase transition point at about the same d/lB. The behavior in the weak coupling limit

differs from that observed at elevated temperatures, where the conductance at νtot = 1

does not show a maximum. However, for 250 mK, the thermal energy is comparable

to the energy gap as shown in Figure 5.7 which will lead to thermal fluctuations and a

smearing of the effect.

In Figure 5.9 the ratio of drag and drive voltage is plotted versus d/lB, which is 1

below d/lB = 1.75, i.e., both voltages are identical. The same measurement on a different

sample had shown that the ratio of both voltages is already 1 when the maximum in the

conductance occurs. It is not clear if this difference is of a certain physical significance or

not, or if the results of either of these two measurements is owing to a peculiarity of the

sample that was used. However, in contrast to the previous sample, in this experiment

the drive layer is more conductive. The inset shows the measured interlayer voltage which

is compared to the calculated) difference between drive and drag voltage. Very significant

is the sharp peak in the measured voltage which might indicate the phase transition

between the correlated and uncorrelated state. At large coupling parameters these two

values diverge but appear to re-approach another again.

The smooth transition from a vanishingly small conductance and identical voltages

across both layers to two uncorrelated layers with a finite conductance and no drag volt-

age suggests that the model of a uniform Bose condensate of interlayer excitons might

not be the physical reality. Rather, the system could be a fragmentation of single con-

densates as suggested by Stern and Halperin [Ste2002]. In their theoretical analysis, the

electron bilayer system at high d/lB ratios is composed of puddles of strong interlayer

correlation incorporated in the compressible fluids of the individual layers. Their model,

albeit addressing specifically Hall bar geometries, appears to be connected with our obser-

vations as well. As long as these puddles are small in number and/or unrelated, a sizable

current could flow between these puddles through the bulk from source to drain. As
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Figure 5.9: Ratio of drag and drive voltage versus d/lB. Below d/lB < 1.75 both voltages

become identical. For the lowest d/lB = 1.47, drive and drag are about 25 % smaller than

the excitation voltage V0 = 35 µV. The inset compares the interlayer voltage measured

with probe VI with the calculated difference between drive and drag voltage, i.e., V −V ∗.

For small coupling parameters both values are identical. The peak in the measured

interlayer voltage could be reproduced in repeated measurements and might indicate the

critical phase transition, where both layers become uncorrelated. Sample 81653:146C.
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d/lB is decreased, their number and/or size will increase until they eventually percolate,

while the current through the bulk slowly diminishes. The smooth transition in Corbino

samples from a compressible to a nearly fully incompressible state upon decreasing the

temperature and/or the parameter d/lB appears to signify such a percolation.

5.5 Separated Layers at νtot = 1 ?

As previously demonstrated, identical drive and drag voltages mean that both layers are

at the same potential and that the interlayer voltage is zero. Although, both layers are

believed to be still electrically isolated, empirically the same result could be obtained if

both layers were directly connected. The following experiment shows several magneto-

transport sweeps between the ordinary ν = 1 integer quantum Hall effect and the total

filling factor one quantum Hall state. With each sweep of the magnetic field the voltage

to the layer separation gate for the drag layer was reduced. This means that the Ohmic

contacts of the drag layer will progressively (re-)connect to the drive layer. Figure 5.10

shows the drag voltage for this experiment. While the voltage to the two separation gates

is progressively turned off from the value where the contacts are electrically separated

from the drive layer, the drag voltage at νtot = 1 does not change whereas at all other

filling factors the drag voltage increases from zero to the value of the drive voltage. This

experiment directly illustrates that at νtot = 1 both layers appear to be directly connected,

presumably in the vicinity of the edges.
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Figure 5.10: Voltage V ∗ across the drag layer versus the magnetic field for 7 different

separation gate voltages. While the voltage to the black separation gates is progressively

turned off (from the value where the contacts are electrically separated to 0 V), the

drag voltage at νtot = 1 does not change, suggesting its indifference to layer separation.

However, at all other filling factors a (drag) voltage appears. For Vgate=0 V, the drive

voltage (measured with probe V ) and drag voltage (measured with probe V ∗) are identical

for all values of B. The dashed line shows the magneto-transport sweep for full contacts

separation. The voltage to the shaded gates was not manipulated in this experiment.

Sample D050803A:267C.
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5.6 Additional Remarks

The transport properties of the νtot = 1 quantum Hall state can further be investigated

by imposing an imbalance on the systems electron density. Such a density imbalance

refers to a density increase by -∆n in one layer and +∆n in the other one, leaving the

total electron density ntot unchanged. This has the consequence that the regular quantum

Hall states will shift to lower/higher fields, due to a higher/lower density in the respec-

tive single layer. The νtot = 1 quantum Hall state on the other hand depends only on

ntot and thus does not shift to a different magnetic field. It can be demonstrated that

with increasing imbalance, the νtot = 1 state will become broader with respect to the

magnetic field in magneto-transport experiments. Very strong imbalances > 10 % will

even merge νtot = 1 with the regular ν = 1 integer quantum Hall effect yielding a single

very broad and undistinguishable quantum Hall state. The physics behind this is difficult

because screening effects in one layer are increased which might lead to an intermixing

of a Fermi gas-like system (in one layer) with the excitonic bilayer ground state. It was

also shown that at large d/lB, where there is no trace of the νtot = 1 state, an imbalance

can induce the correlated state [Spi2004]. Drag experiments conducted by Wiersma et

al. [Wie2004,Wie2005] which compared the activation energies at different density imbal-

ances had shown an asymmetry depending on in which layer the activation energy was

measured.

A detailed discussion on density imbalances will not be given, however, imbalances

become also relevant in interlayer tunneling experiments which will be discussed in the

following chapter. These tunneling experiments will be able to account for the results of

the interlayer drag experiments presented above.
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5.7 Chapter Summary

The interlayer drag experiments on a Corbino device have shown that at a total filling

factor of 1 an additional quantum Hall state appears and amplifies with decreasing tem-

perature and decreasing coupling parameter d/lB. This new νtot = 1 quantum Hall state is

characterized by a minimum in the drive layer’s conductance and a drag voltage which is

identical in sign and magnitude to the voltage across the drive layer. The smooth transi-

tion from a weak to a firmly established quantum Hall state with a vanishing conductance

suggests the formation and percolation of correlated areas within the uncorrelated rest.

Since for lowest temperatures and low d/lB, this νtot = 1 quantum Hall state displays a

vanishing conductance like any other regular quantum Hall state, it implies the existence

of a circular potential distribution. On the other hand, the identity of drive and drag

voltages is argued to be the result of a Bose condensation where the electrons are coher-

ently spread between both layers. In such a situation it would be absurd to refer to the

two layers as being electrically isolated, at least in the common sense.



Chapter 6

Interlayer Tunneling

6.1 Background: Coherent and Incoherent Tunnel-

ing

An important technique to investigate the properties of a double quantum well is the dif-

ferential tunneling conductance1 dG = dI/dV . Measuring dG is very useful in non-linear

devices, or in devices of reduced dimensionality, where the resistance is not a constant

(i.e., Ohmic behavior) but changes along the I/V curve. A differential conductance curve

can be obtained by directly measuring the I/V curve (i.e., apply a tunable bias voltage V

and measure the current I) and calculate its derivative. However, in this direct DC mea-

surement any noise might be amplified. Alternatively, the modulation of a tunable DC

bias VDC with a low amplitude AC sine wave VAC which is applied between the two layers

is a convenient and commonly used method to determine the differential conductance

dIAC/dVAC experimentally. Since the AC modulation is very small compared to VDC , it

can be viewed as a perturbation. Thus the current I = I(V ) with V = VDC +VAC ·sin(ωt)

can be approximated in a Taylor series as

I(V ) ≈ I(VDC) +

(
dI

dV

)

VDC

VAC · sin(ωt) + . . . . (6.1)

The AC amplitude is chosen to be (a lot) smaller than the Fermi energies of both

2DES which are in the meV range, so only electrons at the Fermi level will participate.

The AC modulation method has the advantage of allowing a sensitive low-noise measure-

ment of the second term dI = dIAC of the equation above. On the other hand, during the

measurement with a lock-in amplifier, problems with the phase might arise under strong

magnetic field conditions (due to capacitances and large resistances). An I/V character-

1Also referred to as tunneling spectroscopy.
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istic can be deduced by integration, i.e., IAC =
∫

dG · dVDC .

Figure 6.1: Top: band diagram of the double quantum well with an applied interlayer bias

VDC . The densities in the two quantum wells are slightly imbalanced, and the two Fermi

energies are shifted by eVDC . Bottom: Fermi surface kF =
√

k2
x + k2

y ∝
√

n. Only when

the momentum kF for both quantum wells or the respective energies ∝ k2
F are conserved,

resonant tunneling can occur. Dotted line is for the upper quantum well which has a

slightly smaller density. After [Eis1991,Eis1992].

At zero magnetic field, tunneling between two 2DES can be explained in terms of a

simple single-particle picture [Eis1991,Eis1992] depicted in Figure 6.1: the Fermi energy

in the top and bottom quantum well is given by Et,b
F = nt,b/D0 (see equation 2.15, with

nt,b: electron density, D0: density of states). It is assumed that kBT ¿ EF while both

quantum wells are identical and the barrier is free of impurities so no electron scattering

occurs. Application of a finite DC voltage VDC 6= 0 will yield a static counter-shift of these

two Fermi energies by eVDC . Due to the capacity of the double quantum well system2,

the electron densities in both quantum wells will then be imbalanced, i.e., the density in

one quantum well is decreased by the same amount as it increased in the other quantum

well. Tunneling is possible when the sub-band edges of the two quantum wells align and

∆E0 is nearly zero [Eis1991]

2In the appendix, an estimate for the capacity of our bilayer systems can be found.
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∆E0 = eVDC + (nb − nt)/D0 ≈ 0. (6.2)

For small VDC this condition is equivalent to nt = nb, so a VDC ≈ 0 V will allow

tunneling. In this condition, (in-plane) momentum and energy is conserved because the

energetic states of both quantum wells are
~2k2

F

2m∗ with k2
F = k2

x + k2
y ∝ n. This process is

referred to as resonant tunneling. The AC voltage dVAC which weakly modulates the DC

voltage, creates a small AC (tunneling) current dIAC which can be detected by a lock-in

amplifier. The differential conductance dIAC/dVAC plotted versus VDC thus shows a sharp

peak centered around VDC ≈ 0. The presence of a tunneling current of course requires the

bare ∆SAS to be non-zero. The tunneling Hamiltonian can be written in a pseudo-spin

language as [Par2006]

Htl = ∆S,AS

∑

k

(c†k,↑ck,↓ + c†k,↓ck,↑), (6.3)

where it is assumed that momenta are conserved, i.e., there is no tunneling between

different k-states.

In real samples, the tunneling peak is not singular as implied above, rather, tunneling

peaks possess a finite width which results from scattering (breakdown of momentum

conversion) on static disorder inside the barrier. Also interface defects such as fluctuations

in the width of the quantum well, which will produce a sub-band energy shift [Eis1991], can

yield a broadening. Yet, it is difficult to quantify the disorder. However, the broadening

by disorder is always influenced by the finite life-time of electrons τ within the wells

[Zhe1993b, Mur1995]. Thus, the experimentally measured full width at half maximum

(FWHM) Γ of the tunneling peak is directly proportional to the average life-time of the

electrons, i.e., Γ = ~/τ . The width of the tunneling peak increases with the temperature

due to electron-phonon and electron-electron scattering at higher temperatures, and not

by thermal smearing as one might expect since the constraint of momentum-conservation

is indifferent to the thermal population of the momentum states [Mur1995].

Under the application of a perpendicular magnetic field B, the density of states changes

as a function of B and at large enough fields the kinetic energy is quenched while Coulomb

correlations dominate the dynamics of the system. The high field localizes the electrons

on a length scale of the magnetic length lB. An electron designated to tunnel, must first

be extracted from one correlated liquid and then (re-)injected into an interstitial position

of the other liquid which both times requires a finite energy eVDC ∼ EC of the order

of the Coulomb energy EC . After the tunneling process, the electrons in both systems

will relax. These energy penalties suppresses tunneling at the Fermi level which creates

a pseudo-gap (Coulomb blockade) [Eis1992].
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This pseudo-gap is also expected for tunneling between two quantum wells each at

filling factor 1/2. However, when the coupling factor d/lB is sufficiently small to exhibit

the total filling factor 1 quantum Hall state, tunneling experiments instead shows a dI/dV

anomaly with a sharp zero bias tunneling peak as shown first by Spielman et al. [Spi2000].

This strongly enhanced conductance peak, which for low d/lB has a much higher ampli-

tude than the peak at B=0 T, is believed to be the direct indication of the macroscopic

phase coherence. The (integrated) I/V characteristic has an astonishing resemblance to

the one of the Josephson effect of superconductivity which originates from the phase co-

herence between two superconductors. Even though the ground state of the bilayer system

can be mapped onto the BCS-type wave function as shown in chapter 3, the bilayer at

νtot = 1 is only partially analogous to a Josephson junction [Ros2005,Par2006]. In fact,

it is important to recognize the experiment as tunneling between two electron systems

that only as a whole form the correlated state [Par2006]. This also explains why no true

DC supercurrent at zero bias has been observed so far (details later in the text). The en-

hanced conductance peak in bilayers is directly related to the presence of interlayer phase

coherence of the Bose condensation which equilibrates any chemical potential difference

as shown in Figure 6.2. Since small interlayer voltages cannot induce any chemical poten-

tial difference, the sub-band edges of both Fermi energies remain aligned (as in resonant

tunneling at zero field). In the ground state, the total net interlayer current is zero, since

any charge-transfer will be in both directions. That means it is hard to prevent tunnel-

ing between the layers when they are close enough to exhibit interlayer phase coherence.

However, a potential difference that breaks the balance can be imposed by the external

leads [Par2006,Su2008].

The observables in any of these measurements performed on the bilayer νtot = 1 state

are the currents and voltages in the (uncorrelated) leads [Su2008], so there is no direct

access to what is happening within the correlated bulk. As shown in chapter 3, the ground

state of the bilayer system in the correlated regime can be described by the Halperin (111)

state, as the Laughlin wave function describes the ground state of the fractional quantum

Hall effect. And like in the fractional quantum Hall effect, it is convenient to introduce

the quasiparticle concept [Fog2001,Ros2005,Par2006, Su2008]. The quasiparticles in the

bilayer system arise at the interface where the single particle electron current from the

leads meets the correlated νtot = 1 phase. This interface is located at the sample edges, so

when the νtot = 1 quantum Hall effect is firmly established, any quasiparticle transport will

occur near the edges of the system. Every incident single electron from the leads is changed

into a quasiparticle of the Bose condensate which can then be easily transferred and exits

into the leads in the adjacent layer. This process which conserves total charge in both

layers is analogous to Andreev reflection [Mac0708]. The constant flow of quasiparticles
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Figure 6.2: For coherent quasiparticle tunneling between correlated layers at νtot = 1 there

is no chemical potential difference between the two layers, as shown on the left-hand side.

When d or d/lB is sufficiently large (right-hand side), the two layers are independent and

regular single electron tunneling is taking place. From [Par2006].

(across the barrier) is the process that will be referred to as quasiparticle tunneling, as

the quasiparticle Hamiltonian of a real superconductor has pair creation and annihilation

terms. Like regular zero field resonant tunneling requires that the bare ∆S,AS to be non-

zero, also the tunneling at total filling factor 1 needs a small but finite ∆S,AS (which is

constant since it depends on the layer separation d only). Thus, to observe the νtot = 1

quantum Hall state in tunnel experiment with spontaneous interlayer phase coherence,

i.e., with ∆S,AS −→ 0, is unrealistic. In fact, the finiteness of ∆S,AS appears to be a

vital component. The reported independence of the Hall drag (in Hall bars) from an

interlayer bias [Kel2002] was used as counter-evidence for the relevance of tunneling in

magneto-transport experiments. However, it was assumed that an interlayer bias will

suppress resonant tunneling, like it would do at zero magnetic field. At total filling

factor 1, however, this is not the case (anymore) as the measurements in this chapter will

demonstrate!

In the pseudo-spin picture presented in chapter 3, tunneling in quantum Hall bilayers

is an example of pseudospin transfer, where the planar pseudo-spin orientation ϕ in the

xy-plane is in fact the phase difference between the two layers. And as pointed out, the

(small) single particle tunneling amplitude ∆S,AS selects this phase difference [Ros2005].

The exciton condensate can carry an interlayer current by adjusting its (macroscopic)

phase difference ϕ. This phase is analogous to the phase of the order parameter in a
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conventional superconductor. It can be shown [Par2006] that the expectation value of the

interlayer current is given by

〈ÎInterlayer〉 = 2e∆S,AS(〈S〉sin(ϕ)), (6.4)

where 〈S〉 is the expectation value of the pseudo-spin vector in the xy-plane of the

pseudo-spin field. Hence, when there is (spontaneous) coherence, the range of currents

over which there exists a large conductivity is proportional to ∆S,AS, so that the tunneling

peak gets narrower and narrower as ∆S,AS goes to zero [Ros2005,Par2006]. There exists

a maximal current that can be carried by the coherent state [Eza1993] which is given

by [Par2006],

〈ÎInterlayer〉 6 Icritical = 2e∆S,AS〈S〉. (6.5)

This termination of the coherent quasiparticle tunneling beyond a critical value which

depends on ∆S,AS is the reason why the tunneling conductance has a narrow peak near

zero bias, i.e., the tunneling conductance is coherent (i.e., carried by quasiparticles) only

within a small window of the effective interlayer bias voltage. Once this bias voltage gets

large enough, the tunneling current will become too large to be carried by quasiparticles.

The then commencing regular electron tunneling has a low conductance as tunneling

occurs between regular composite Fermion seas [Par2006]. However, below Icritical, the

bilayer system does not show a DC Josephson effect in the conventional sense with infi-

nite tunneling conductance. As all experiments indicate, the tunneling anomaly always

displays a finite height and width [Spi2000, Spi2001, Spi2004,Chm2008]. Several mecha-

nisms are considered to limit the ”bilayer Josephson effect”, such as topological defects in

the pseudo-spin field. These merons (introduced in chapter 3) whose motion destroy the

long-range order, constitute a dissipative environment [Ste2001,Bal2001]. The (differen-

tial) conductance can be calculated to be finite, i.e., I ∝ |〈T̂ 〉|2 · V [Par2006], where 〈T̂ 〉
measures the phase coherence between the states from opposite layers.

Despite several theoretical approaches there is no unifying theory which is able to ac-

count for both the Josephson effect-like behavior and the observation in magneto-transport

experiments. The model of quasiparticle tunneling induced by a process comparable to

Andreev reflection is a very powerful tool and appears to agree well with the empirical

data that will be presented below, however, it still lacks definite experimental proof.
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6.2 Interlayer Tunneling Experiments

In the tunneling measurements about to be shown, identical densities in the two layers

were produced by using the top and bottom field gates. With this method both quan-

tum wells remain at the same Fermi energy since both layers are connected to the same

(ground) potential by at least one Ohmic contact. Applying an interlayer bias on the

other hand, will counter-shift the Fermi energies and consequently the density of states

of both layers. Owing to a capacitor effect, electrons will redistribute from the quantum

well at the higher potential to the one at the lower potential. That means that when

the interlayer bias is swept during a tunneling experiment, a (varying) density imbalance

is imposed onto the bilayer. The bias-induced imbalance for the standard Hall bar ge-

ometry is about 4 % for an interlayer bias voltage of 500 µV . This imbalance was both

measured with magneto-transport experiments and confirmed by estimating the bilayer’s

capacitance (≈ 250 pF, see appendix) and calculating the charge transfer upon applying

a voltage. However, by using the Shubnikov-De Haas oscillations in magneto-transport

experiments in the low field regime (i.e., filling factor > 1), it is possible to adjust the

voltages to the front and back gate while sweeping the interlayer bias to keep the electron

density in each of the two layers constant. While this adjustment has a negligible effect

around zero bias, it can alter the details of the tunneling characteristic at large biases.

Details can be found later in the text. However, in all tunneling experiments presented

here, the front and back gates are not adjusted while sweeping the interlayer bias to

account for the density imbalance in both layers, unless it is specifically mentioned.

The notation for the voltages is as follows: any applied 2-terminal voltages are re-

ferred to as VDC and VAC , optionally the abbreviation ”2pt” may be added. All measured

4-terminal voltages always include the superscript ”4pt”, i.e., V 4pt
DC and V 4pt

AC , to clearly

distinguish between 2- and 4-terminal/point measurements.

6.3 AC Modulation of a DC Interlayer Bias

The contour plot of Figure 6.3 shows the 2-point (2pt) differential tunneling conductance

dIAC/dVAC plotted versus the magnetic field B and the 2pt voltage VDC , because it

is assumed that the interlayer resistance is still much larger than any other (contact)

resistances. The differential tunneling conductance was measured as previously described.

The AC voltage from the internal oscillator of a lock-in amplifier and DC voltage from

an external voltage source were reduced and added, resulting in a VAC ≈ 17µV (3 Hz)

for this experiment. The virtual ground (VGND) of the same lock-in amplifier was used

to detect the AC current. On the top panel on right-hand side, a (rotated and mirrored)
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magneto transport sweep of the conductance in a drag experiment is shown (for the same

density) which allows direct comparison with the different regimes and filling factors when

the magnetic field is varied. The bottom panel shows several cross sections of the contour

plot. These measurements were performed on sample 81653:247C at Tbath ≈ 250 mK with

balanced carrier densities of n ≈ 2.12 · 1014 m−2 in each layer.

While at zero field, we can observe the zero bias tunneling peak, the magnetic field

will suppress tunneling around zero bias at all integer filling factors due to the Coulomb

blockade. At total filling factor 1, on the other hand, a tunneling anomaly appears.

Owing to the interlayer phase coherence the electrons can easily tunnel without being

submitted to the Coulomb blockade. However, unlike prior reports which had shown this

anomaly to be very sharp [Spi2000,Spi2001,Spi2004], the anomaly shown in Figure 6.3 is

very broad instead. Its FWHM is roughly 7 times larger than the one at zero field. As

pointed out, disorder greatly influences the width of the tunneling peak. Yet, this strong

increase in width does not appears to be related to disorder, and as Figure 6.4 suggests,

the width of the tunneling anomaly further increases with decreasing d/lB. Since from

high to low values of d/lB, the full width at half maximum in these three cases is about

(60, 160, 200) µV, the origin of this behavior must be found somewhere else. These latter

measurements were performed on sample 81653:210H at Tbath ' 25 mK3 and νtot = 1

with balanced carrier densities in the two layers leading to three different d/lB which are

compared to the one at zero magnetic field. Even though, these data were produced on

a Hall bar, the results do not qualitatively differ from data obtained on a Corbino ring.

The tunable DC bias was modulated with a small (≈ 7 µV) AC voltage (5 Hz). The

AC current was detected by measuring the voltage drop across a 10 kΩ resistor connected

towards common ground, instead of using the virtual ground of a lock-in amplifier as in the

previous experiment. However, in the diagram of the experimental setup, for simplicity

the current measurement is represented by the electric symbol for an ampere meter.

Plotting the measured 4pt voltages V 4pt
DC and V 4pt

AC versus the 2pt DC voltage VDC

as shown on the top panel of Figure 6.5 illustrates that both the AC and DC voltage

break down when the coupling parameter is reduced. At zero magnetic field, on the

other hand, it is hardly affected at all. As pointed out at the beginning of this chapter,

once interlayer phase coherence is established it is difficult to impose any electrochemical

potential difference on the two layers (Figure 6.2). With increasing phase coherence,

i.e., with decreasing d/lB, it becomes progressively harder to impose such electrochemical

potential difference, so the 2pt voltages need to become larger and larger, resulting in their

strong reduction around zero bias. This means that 2pt measurements should generally

3Owing to a technical problems with the cryostat, the bath temperature was larger than in prior
experiments.



6.3. AC MODULATION OF A DC INTERLAYER BIAS 83

Figure 6.3: Differential conductance dG = dI/dV versus the magnetic field and the 2pt

DC interlayer bias at Tbath=250 mK (top left) for nupper = nlower ≈ 2.12 · 1014 m−2. To

locate the different filling factors, a rotated and mirrored magneto-transport sweep is

shown (top right). The bottom panel shows cross-sections at B=0 T, filling factor 1 and

total filling factor 1 (both color-coded and marked with (1), (2) and (3)). A broad zero

bias tunneling anomaly at total filling factor 1 is observed, while at the regular filling

factor 1, tunneling is suppressed at zero bias. The measurement was set up as shown

(bottom right) and explained in the text. Sample 81653:247C.
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Figure 6.4: Differential conductance dG = dI/dV for three different values of d/lB =

{1.70, 1.77, 1.83} and at zero magnetic field versus the 2pt DC interlayer bias at Tbath '
25 mK. With decreasing d/lB, the FWHM increases. The top panel shows the schematics

of this experiment. Red contacts (shaded) connect to the upper layer and blue ones to

the lower layer. The AC and DC voltage were reduced and added. The current was

measured as the voltage drop across a known resistance (see text for details). However,

for simplicity the current measurement is represented by the symbol for an ampere meter.

The measured 4pt interlayer voltage V 4pt
DC and V 4pt

AC will be shown in Figure 6.5. Sample

81653:210H.
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not be used in interlayer tunneling experiments at νtot = 1 because it cannot be assumed

that the interlayer resistances is much larger than other resistances anymore. The strong

elevation of VAC prior to its vanishing is not accompanied by an out of phase component.

This behavior at the flanks remains unaccounted for, however, it explains the largely

negative conductance of the dI/dV curve at the flanks of the tunneling anomaly around

zero bias. The largely reduced 4-terminal voltages mean that the differential conductance

dG curve, which assumes that dVAC ≈7 µV to be constant and VDC ≈ V 4pt
DC , is incorrect.

A largely reduced dVAC will increase the height of dG and if plotted versus V 4pt
DC instead

of VDC its width will decrease. Figure 6.6 thus shows dG for a single representative value

of d/lB = 1.70 which uses the measured 4-terminal voltages V 4pt
DC and V 4pt

AC from Figure

6.5. The full width at half maximum thus reduces from about 200 µV to less than 30 µV.

As all these measurements already indicate, while moving deeper into the correlated

total filling factor 1 state, the bilayer changes from two layers which are separated by a

(large) interlayer resistance comparable to that at zero field to two layers which appear to

be electrically connected, i.e., the interlayer resistance becomes much smaller than other

series resistances.
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Figure 6.5: Measured 4-terminal AC and DC voltages plotted versus the 2-terminal (2pt)

voltage VDC . These voltages were simultaneously measured with the data presented in

Figure 6.4. Further explanations can be found in the text. Sample 81653:210H.
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Figure 6.6: Differential conductance for d/lB = 1.70 in a 2-terminal (2pt) and 4-terminal

(4pt) representation. The 2pt curve shows dI/dV plotted versus the 2pt DC voltage VDC

as shown in Figure 6.4. For the 4pt curve, however, dVAC is identical to the measured

4-terminal voltages V 4pt
AC from Figure 6.5. The resulting dI/dV is plotted versus V 4pt

DC . For

simplicity the label to the x-axis remains unchanged. Sample 81653:210H.
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6.4 Unmodulated DC Measurements

Using a sufficiently sensitive DC measurement setup, the tunneling experiment can be

simplified by measuring the DC current directly. This DC current was detected by probing

the voltage drop across a 10 kΩ resistor connected towards the common ground with a

Stanford Research low noise preamplifier. The interlayer voltage was detected with an

additional preamplifier or by repeating the interlayer bias sweep with the same amplifier

which is then connected across the barrier. Note that rerunning a bias sweep usually

alters the curve at large biases, i.e., the width of the curve around zero bias may slightly

change. The DC voltage originates from an in-house built (low noise) ±10 V digital-analog

converter and is sized down with a voltage divider.

Figure 6.7 shows an unmodulated DC measurement performed on sample 81653:146C

at d/lB = 1.68. The top panel illustrates the DC current as a function of the 2pt DC

voltage. Consistent with the prior observation of an enhanced tunneling conductance

dIAC/dVAC at small bias voltages, the DC current displays a relatively steep slope around

zero bias which abruptly terminates when the current exceeds values of approximately

-3.4 nA or +5.8 nA. The bottom panel of Figure 6.7 reveals a plateau in the probed

4-terminal DC voltage of nearly zero which accompanies the region where the current

flow is enhanced. The most striking features in this plot are the existence of a critical

voltage or current below which the 4pt interlayer resistance V 4pt
DC/I is very small and the

prominent asymmetry. This asymmetry has occurred in all measured samples, however,

it was especially strong in Corbino samples. This asymmetry will be discussed later in

this chapter, however, it is owing to a hysteretic behavior.

For now, the focus will be on the observation of what appears to be a critical current

rather than a critical voltage. The lack of prior experimental evidence of critical currents

in bilayers at νtot = 1, which had already been predicted by theory [Ros2005,Par2006], may

be related to the AC modulation itself. In an AC modulated measurement when the DC

voltage is large enough to obtain I ≈ Icritical, the AC voltage will wobble the total current

around Icritical may lead to a smearing effect. Even though direct comparison between

different samples is difficult (because it includes sample specifics and also temperature

effects), comparing Figures 6.5 and 6.7 already indicates that even a small AC modulation

alters the characteristics of the 4-terminal DC voltage.
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Figure 6.7: Current (top panel) and 4pt interlayer voltage (bottom panel) from an un-

modulated DC measurement at d/lB = 1.68 and Tbath ≈15 mK, on sample 81653:146C

(I and V not measured simultaneously). Below a critical current of -3.4 nA or +5.8 nA,

the interlayer voltage nearly vanishes. The arrow indicates the sweep direction of the 2pt

voltage, i.e., from negative to positive values.
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The Critical and Relevant Parameters

A näıve question is whether it is the current or the small but finite4 four-terminal voltage

which is ”critical”, i.e, which triggers the ”quenching” of the tunneling enhancement? As

the 4pt voltage remains small, the critical behavior appears to be related to the current

which exceeds a threshold value. It should be noted that the critical behavior strongly

depends on the temperature and probably also on external sources of interference such as

HF radiation which may prematurely induce the quench. This means that repeated inter-

layer bias sweeps can yield slightly different critical values, making a direct comparison

difficult. Nevertheless, when additional series resistances are introduced into the electri-

cal circuit, the plateau which was found in Figure 6.7 will increases in width, however, it

hardly affects the 4-terminal interlayer voltage or the current. This means that the 2pt

DC voltage VDC is in fact not a physical relevant parameter since the resistances cannot

be controlled in experiment. Especially contact resistances may become fairly large under

strong perpendicular magnetic fields and at low densities. Plotting the measured current

and 4pt voltage as a function of 2pt DC voltage VDC however allows to clearly resolve

and indicate the critical currents and the regime of interlayer phase coherence. For that

reason, this notation (while not physically relevant) will be used occasionally for some

of the following experiments. Figure 6.8 presents the I/V curve from Figure 6.7 in its

physical relevant representation of the current versus the 4-terminal voltage V 4pt
DC . This

plot show a Josephson effect-like characteristic. The slope around zero bias is not infinite,

its full width between −ICritical and +ICritical is about 18 µV .

These data resemble earlier reports [Spi2001] where however the maximal current was

of order 20 pA instead. Depending on the sample and d/lB, this is between 100...1000

times smaller than the critical current in the data presented in this thesis. The I/V char-

acteristic in [Spi2001] was deduced from integrating the differential tunneling conductance

data which may have masked the critical current behavior reported here. Even though

the sample characteristics differ only marginally (QW/barrier/QW width in [Spi2001] is

(18/9.9/18) nm which yields a comparable value of ∆S,AS, the effective single particle

tunneling amplitude in our samples appears to be larger. Hence, it can be assumed that

the different magnitudes of the maximal currents can be attributed to a different bare in-

terlayer tunneling which strongly influences the tunneling anomaly at νtot = 1 as discussed

at the beginning of this chapter.

4Its value depends on the value of d/lB and the temperature. For Figure 6.7 it is approximately
<5...10 µV .
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Figure 6.8: The current versus the 4-terminal voltage V 4pt
DC (data from Figure 6.7). The

curve shows a Josephson-like characteristic. Only filled symbols are actual data points,

the dotted lines are used to guide the eye.
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Hysteresis and Asymmetry

The aforementioned prominent asymmetry in the data is related to a strong hysteresis5

as shown in Figure 6.9 for d/lB = 1.56. To distinguish between the critical points for

both sweep directions, they are marked with u1/u2 (for the upsweep) and d1/d2 (for the

downsweep). As Figure 6.9 shows, the hysteresis requires to compare the critical values

at u1 and d1 and at u2 and d2 rather than within each sweep. The critical currents are

then found to be nearly identical, i.e., -5.8 nA and +5.5 nA at u1 and d1 and -10.7 nA

and +10 nA at u2 and d2. The origin of the hysteresis might be owing to a density effect6

or energy dissipation/heating. When the interlayer bias is increased to values above zero

(coming from negative values for instance) the quasiparticle flow from one layer to the

other layer increases. Even though both layers are in near chemical potential equilibrium,

an incident single electron which is transferred into a quasiparticle will leave a defect in

one layer and has to find a interstitial position in the other layer, which is ”easy” owing

to the interlayer phase coherence. However, with increasing interlayer bias, when more

and more quasiparticles tunnel, the system cannot relax rapidly enough to minimize the

total Coulomb energy. This process may eventually dissipate enough energy to destroy

the quasiparticle tunneling altogether. Dissipation also could originate from the incident

single electrons coming from the leads. Since the contact arms are a regular quantum

Hall system, they might exhibit ”hot spots” [Kla1991] at the interface to the correlated

phase. If the filling factor of the contact arms is close to the regular filling factor 1, the

Joule heating at these hot spots is about ρxy · I2, where ρxy = h/e2 is the Hall resistivity

of the contact arm. The inset in bottom panel of Figure 6.9 shows a blow-up around

zero 4pt voltage. As this inset indicates, the 4pt interlayer bias increases linearly only

exactly between the points u1 and d1. Beyond these two points, the measured voltage

increases with (what appears to be) a quadratic dependence before at even higher 2pt bias

voltages, the enhanced tunneling quenches. Strongly reducing the sweep rate of the bias

voltage can flatten the curve at points u2 (d2). As previously pointed out, if a bias-sweep

is repeated without having changed any other parameter, the critical points u1/2, d1/2

generally may lie at larger or lower 2-terminal voltages, however, changes were found to

be usually stronger for u2 (or d2) than for u1 (or d1).

5This hysteresis was found to be very pronounced in the Corbino device 81653:146C as shown here and
weak in Hall bars. However, since only one Corbino sample was examined in these tunneling experiments,
it may as well be sample-specific rather than geometry-dependent.

6If density inhomogeneities exist, some parts of the ring may be more strongly correlated than others.
Depending on the sweep direction, these areas may induce a quench of the enhanced tunneling.
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Figure 6.9: The observed asymmetry is owing to a large hysteresis. The top panel shows

the current and the bottom panel the voltage for both sweep directions (current and

voltage were not measured simultaneously). The critical currents at u1 and d1 (-5.8 nA

and +5.5 nA) and at u2 and d2 (-10.7 nA and +10 nA) are nearly identical. The inset

is a blow-up around zero 4-terminal voltage. Prior to reaching points u2 and d2 the 4-

terminal voltage increases quadratically. Sample 81653:146C. Same measurement setup

as in Figure 6.7, however at d/lB = 1.56.
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The Evolving νtot = 1 State

After having discussed the properties of the tunneling characteristic, Figure 6.10 now

demonstrates how the tunneling process evolves upon reducing the ratio d/lB from high

to low values, i.e., upon reducing the electron densities in both layers simultaneously

and adjusting the magnetic field correspondingly. These data were produced on sample

81653:146C where the interlayer bias was again applied between the two outer circum-

ferences of the upper and lower layer. Moving from high to low values of d/lB, plateaus

in the 4pt voltage appear which progressively take on lower values and become broader.

At the same time, the critical currents grow. As pointed out earlier, with decreasing

d/lB, it becomes progressively harder to impose any electrochemical potential difference

between the layers owing to the growing interlayer phase coherence. So it requires pro-

gressively larger 2pt voltages to induce a quench of the enhanced tunneling. This behavior

is reminiscent of the data on interlayer drag that were presented in chapter 5. A puddle

model was introduced which assumes a fragmentation of single condensates in the active

region for large and intermediate values of d/lB. Thus, if there are areas which display

no or only weak interlayer phase-coherence, they will thus dissipate energy in interlayer

tunneling experiments and yield a large 4pt interlayer resistance R4pt = V 4pt
DC/I. For the

lowest d/lB, however, the phase-coherence has seized the entire sample so that the 4pt

interlayer resistance R4pt has a value of only about 200 Ohms at Tbath ≈ 15 mK. When

the critical current is exceeded, R4pt is nearly of the same magnitude for all d/lB. This

suggests that the condensate is destroyed and the current is maintained by bare electron

tunneling given by ∆S,AS which is independent of the coupling parameter. However, it is

not clear if the condensate and its phase coherence is destroyed entirely or only in certain

areas of the sample, such as the edges where the current is expected to flow. Note that

the observed asymmetry is particularly pronounced for low d/lB. This is owing to the

previously discussed hysteretic behavior. The enhanced noise around VDC = 0 originates

from the noise in detecting small voltages, as the voltage drop across a 10 kΩ resistor is

measured.

Figure 6.11 re-evaluates the data from Figure 6.10. The top panel plots the current

versus the 4-terminal voltage for three representative values of d/lB to indicate how the

characteristic changes from a Josephson-effect like curve to a regular linear I/V char-

acteristic. The bottom panel shows the value of the critical currents plotted versus the

coupling parameter d/lB. Since the bias sweeps were performed only in one direction,

the critical currents display an asymmetry (owing to the hysteresis). Although there are

small deviations, the trend is linear as indicated by the dashed lines (best linear fits).

When extrapolated the intersection of the dashed lines with the dotted horizontal line

(i.e., no current) should indicate the phase transition point which lies between a d/lB of
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Figure 6.10: The top panel plots the measured tunneling current versus the 2pt interlayer

bias VDC for a set of six different d/lB. The mid panel shows the probed 4pt voltage

V 4pt which was not measured simultaneously, and the bottom panel illustrates the

calculated 4pt interlayer resistance. Same setup as in Figure 6.7, however, current and

voltage contacts were exchanged. Sweep direction always from negative to positive values.

Sample 81653:146C.
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approximately 1.85 and 1.90. However, as very small tunneling currents may flow between

both layers in the uncorrelated state the curve should saturate at larger d/lB & 2.

Figure 6.11: Top panel: current versus 4-terminal voltage for three representative d/lB.

With decreasing coupling parameter, the characteristic changes from Josephson-like to

Ohmic. Bottom panel: critical currents versus the coupling parameter d/lB. The dashed

lines are best linear fits. Their intersection with the horizontal (dotted) axis may indicate

the phase transition point. This plot uses the data presented in Figure 6.10 along with

additional measurements (not shown), i.e., here the sweep direction is from negative to

positive values as well. Sample 81653:146C.
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Tunneling Peculiarity at νtot = 1

As Figure 6.3 already implies, which had shown only 2-terminal (AC modulated) mea-

surements, the tunneling anomaly is a peculiarity and only occurs close to a total filling

factor of 1 and at no other filling factor. Figure 6.12 shows a DC measurement for a

constant electron density ntot ≈ 3.94 · 1014m−2 (d/lB = 1.42 at νtot = 1), performed on

sample 81653:210H, i.e., a Hall bar, at Tbath ≈ 25 mK. It plots the current versus the

4-terminal interlayer voltage and the inverse total filling factor. As this Figure demon-

strates, the strong reduction of the 4-terminal interlayer voltage along with the current

increase (which yields a Josephson-effect like characteristic) is only occurring in the direct

vicinity of a total filling factor of 1. At all other filling factors, the Coulomb blockade

suppresses/reduces the current flow around zero bias, and even at zero magnetic field, the

maximal current is still about 14 times smaller than at νtot = 1.

Figure 6.12: 3D plot of the current versus the 4-terminal interlayer voltage V 4pt
DC and

the inverse total filling factor. Only close to total filling factor 1, a Josephson-effect like

characteristic emerges. Sample 81653:210H.
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Identifying the Tunneling Region

The question where exactly the enhanced tunneling may take place can be addressed by

performing the tunneling experiment on a Corbino geometry when a current is sent from

the outer perimeter of one layer to the inner perimeter of the adjacent layer, as shown

in the inset of Figure 6.13. The experimental data confirm the results of the magneto-

transport experiments presented in chapter 5 which had demonstrated an energy gap

at total filling factor 1. Unlike tunneling between the same sample perimeter, now the

4-terminal interlayer voltage does not vanish anymore, i.e., 2-terminal and 4-terminal

voltage are nearly identical, and no critical currents can be found. These data imply that

the strongly enhanced quasiparticle tunneling process must occur in the vicinity of the

sample edges as the gapped bulk does not permit any quasiparticle/electron transport

across the annulus.

Figure 6.13: I/V characteristic (current versus V 4pt
DC ) for tunneling between opposite

perimeters at d/lB = 1.56. Current and voltage were not measured simultaneously. No

transport across the gapped bulk is possible. Sample 81653:146C.

If this quasiparticle tunneling is occurring in the vicinity of the sample edges, then the

question is if there should be a dependence of tunneling conductance on the length of the

edges. This possibility will be discussed as an outlook in the last part of this chapter.
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Residual Interlayer Voltage

The question of the lowest obtainable 4pt resistance and/or its accuracy is directly related

to the question which factors or parameters influence the 4-terminal voltage. In addition

to the temperature-activated behavior, it is relevant where exactly the potential is probed

because residual resistances from ordinary quantum Hall systems might come into play.

These ordinary quantum Hall systems can either be the contacts arms or even parts of the

active region which are only weakly coupled (puddle model). Any current I that crosses

the boundary of such a two-dimensional electron system under quantum Hall conditions

will produce a voltage difference across the contact of the order of the Hall voltage h/e2 ·I
(≈25 µV at I = 10−9 A). Probing the voltage between opposite edges of the two layers

should thus generally include a Hall component to the interlayer voltage as Figure 6.14

suggests. Since the sign of the Hall voltage depends on the sign of the magnetic field B, it

should be possible to account for its influence by inverting the magnetic field. This effect

can best be seen in the Hall bar geometry.

Figure 6.14: Cartoon of different interlayer potential probing in a pseudo 3D view. The

voltage probe VH will directly measure the Hall voltage VH = h
e2 · I. The probe V ∗ will

measure this Hall component as well, since it probes the interlayer voltage across the Hall

bar, whereas only V directly yields the interlayer voltage.

Figure 6.15 shows the result of a systematic investigation of this potential probe de-

pendence, performed on sample 81653:210H at d/lB = 1.42 and Tbath ' 25 mK. On the

left-hand side, the simplified setup is shown, where S and D mark the source (voltage

source) and drain (ground) contacts. The right-hand side shows the current plotted versus

the 4-terminal voltage.
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Figure 6.15: Dependence of the 4-terminal voltage on the potential probes. The left-hand

side shows the experimental setup, where S and D mark the source and drain contacts.

On the right-hand side, the 4-terminal voltage is shown. When the voltage is probed on

opposite sample edges, the slope around zero bias depends on the polarity of the magnetic

field. Sample 81653:210H at d/lB = 1.42 and Tbath ' 25 mK.
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As the top-panel clearly shows, when the interlayer voltage is probed between opposite

(Hall) edges, the 4-terminal voltage for I < Icritical is not only strongly reduced but also

sign-inverted. The current, on the other hand, does not display any significant dependence

on the polarity of the magnetic field in all cases. Changing the polarity of the magnetic

field from +Bνtot=1 to -Bνtot=1 inverts the slope around zero bias again. Nevertheless, the

mean value calculated from the two curves at +B and -B, does not completely cancel out

V 4pt
DC as one may expect. This might be caused by longitudinal resistance components, if

the current flows through dissipative regions. The dissipation could originate from finite

temperature effects. The occurrence of dissipative regions would indeed explain the larger

4-terminal voltage in these data (<50...100 µV ), but not the behavior of its slope around

zero bias.

On the mid panel of Figure 6.15, the interlayer voltage was probed on the same

side of the sample but spatially separated. This measurement shows that the 4-terminal

interlayer voltage at νtot = 1 is B-invariant, i.e., it does not depend on the polarity of

the magnetic field. Even probing the voltages directly atop of each other (bottom panel)

yields a finite 4-terminal interlayer voltage. This could be an intrinsic property of the

system or directly related to a temperature-effect.

Figure 6.16: Temperature-dependence of the 4-terminal voltage and current (measured

simultaneously). The insets show the critical currents and the residual voltages V 4pt
DC,C

measured at ±ICritical versus the inverse temperature. Sample 81653:210H at d/lB = 1.42.

However, by increasing the temperature it can be observed how the slope around zero
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bias flattens as it would be for increasing the coupling parameter d/lB. Figure 6.16 shows

how the tunneling characteristic changes upon increasing the temperature. As the bottom

panel indicates, the residual voltage does not seem to change much below 50 mK, so it is

questionable if it will vanish altogether for T → 0 K. The insets illustrate the re-analyzed

data by plotting critical currents and the voltage V 4pt
DC,C versus the inverse temperature,

where V 4pt
DC,C is the 4-terminal voltage at ICritical. It should be noted that in contrast to the

Corbino measurements the asymmetry in the critical behavior appears to be reversed, i.e.,

the negative critical current is larger than the positive one for a bias upsweep. Whether

this a sample-specific behavior or owing to some density fluctuation effect is not clear.

Champagne et al. [Chm2008] have investigated the tunneling characteristic of the

strongly correlated νtot = 1 quantum Hall state as a function of the layer separation,

temperature, and interlayer charge imbalance. They found strong evidence for a finite

temperature phase transition. The transition temperature is dependent on both the layer

spacing and charge imbalance between the layers. Experiments typically show a con-

tinuous transition between the two phases. However, it is possible that disorder (e.g.,

static density fluctuations) might smooth out weakly discontinuous observables via phase

separation near the critical point [Chm2008].

As pointed out at the beginning of this chapter, identical densities in the two layers

were produced by using the top and bottom field gates. These matched densities, however,

are imbalanced upon imposing an interlayer bias, which was not compensated for in the

measurements presented above. Since the effective 4-terminal interlayer bias was found

to nearly vanish for I < Icritical at νtot = 1, no dramatic differences in the tunneling

characteristic are to be expected around zero bias anyway. Nevertheless, it is possible to

adjust the voltages to the front and back gate while sweeping the interlayer bias to keep

the electron density in each of the two layers constant. Originally, these adjustments were

performed on a Corbino device, where aside from a reduction of the plateau width7 by

ca. (10-15) % and slightly reduced critical currents (< 2 %) no significant changes were

found. As discussed above, in Hall bars the 4-terminal voltage depends on the location

of the voltage probes. When the voltages are probed between opposite sample edges

and the gate voltages are adjusted, then the same observation as in Corbino samples

was made while the (inverted) slope around zero bias (see Figure 6.15) remained nearly

unchanged. However, when the voltages are probed at the same edge while adjusting

the gate voltages, the 4-terminal interlayer voltage nearly vanishes completely like in

Corbino devices. Figure 6.17 compares the 4-terminal I/V characteristics of an adjusted

and unadjusted measurement on sample 81653:210H at d/lB = 1.42. The voltages were

7The plateau that appears if the 4-terminal voltages (and currents) are plotted versus the 2-terminal
voltage.
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probed as shown on the mid panel of Figure 6.15. For the adjusted measurement the

4-terminal voltage remains below the noise level, which is about 2 µV, until the current

exceeds about 0.5 nA (in sweep direction).

Even though the imbalance should not disrupt the total number of excitons because the

number of holes and electrons remains constant, it does disrupt other parts of the system

which may explain the differences between adjusted and unadjusted measurements. It

should be kept in mind that the interlayer bias is not directly applied to the active region

that exhibits interlayer phase-coherence but to contacts arms which are at some other

filling factor (certainly close to 1). The interlayer bias will thus shift the filling factors of

these two contacts arms, one to higher and the other one to lower fillings. This may have

some effect at the boundary to the active region. On the other hand, a density imbalance

may introduce dissipation because now there are more electrons in one layer than in the

other. When an electron is designated to tunnel it comes from an initial state of high

energy from a layer where there is ”much space” to a final state of lower energy where

Figure 6.17: Comparison of the 4-terminal I/V characteristic for a tunneling measurement

where the gate voltages were adjusted while sweeping the interlayer bias and a measure-

ment where the gate voltages were kept constant (current and voltage were measured

simultaneously). For the adjusted measurement the 4-terminal voltage remains below the

noise level (about 2 µV) until the current exceeds about 0.5 nA. The dashed lines connect

actual data points. Sample 81653:210H at d/lB = 1.42.
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there is ”not so much space anymore” which may make it much more difficult for this

system to relax, despite the existence of interlayer phase-coherence. Also, an imbalance

can be associated with an out-of plane pseudo-spin and the formation of merons (vortices

in the pseudo-spin field) which dissipate energy [Roo2008].
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6.5 Magneto-Transport versus Interlayer Tunneling

The previously investigated temperature-dependence is of certain relevance. If at lowest

temperatures (and low d/lB) the 4-terminal interlayer resistance is largely reduced, then

identical voltages across both layers are trivially explainable, whether it is the case in

Corbino rings or Hall bars.

Figure 6.18: Comparison of the 4-terminal intralayer (bulk) and interlayer resistance

versus the inverse temperature. For temperatures below 500 mK, the interlayer resistance

is smaller than the resistance of the bulk. The inset shows a simple resistor model to

account for the data. Details can be found in the text. At the bottom, the two setups

are shown that were used to determine RI and RB. Sample 81653:146C at d/lB = 1.56.
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Figure 6.18 compares two temperature-dependent AC measurements performed on a

Corbino device at total filling factor 1 with d/lB = 1.56. The first measurement shows the

4-terminal resistance of the bulk (the intralayer resistance) as a function of the inverse

temperature T−1. Owing to the large noise in the data (blue dots are actual data points),

the black curve is a polynomial fit to emphasize the trend of the data. The second

measurement which was performed directly afterwards illustrates the 4-terminal interlayer

resistance. The corresponding measurement setups are schematically shown below. The

inset in Figure 6.18 shows a simplified resistor model, where the intralayer resistance RB

and the interlayer resistance RI are represented by their electric symbols. This model is

not to be taken literally, since it implies that transport and tunneling is only occurring in

a certain region. More correctly, these resistors should be distributed all over the annulus.

At lowest temperatures, the bulk is highly resistive, i.e., RB À RI , so any current I fed

in by the current contact at the outer edge will simply flow across the barrier. Probing

the voltages between inner and outer edge thus yields the same voltage for drive and drag

layer as shown in the drag experiments discussed in chapter 5. It should be emphasized

that the magneto-transport properties are influenced by the large enhancement of the

quasiparticle tunneling and not by regular electron tunneling.

With increasing temperature, however, this quasiparticle tunneling slowly subsides and

the (excitonic) energy gap at the Fermi level diminishes. This will fundamentally change

the transport properties of the system because it progressively allows regular electron

transport to occur across the annulus while quasiparticle transfers across the barrier

decreases. As quasiparticle tunneling remain a dominant process up to about 500 mK,

where both curves cross, it is not surprising that identical voltages were found in magneto-

transport experiments up to 250 mK as shown in chapter 5. Between approximately

200 mK and 50 mK, the 4-terminal interlayer resistance decays nearly exponentially,

where e−0.7/T gives a fairly good fit to the data within this temperature range. The

energy of 0.7 K is essentially identical to the (temperature-activated) gap energy that

can be deduced from the longitudinal resistivity ρxx in Hall bars [Wie2005] from another

wafer. Since in Hall bars Vxx is measured at the edge as well (only in one layer, though!),

the energy gap deduced here does not differ.
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6.6 Alternative Tunneling Experiments

The magneto-tunneling and magneto-transport experiments presented so far have shown

that at a total filling factor of one, the 4-terminal interlayer resistance is fairly small.

However, largely enhanced tunneling appears to be limited to the vicinity of the edges.

Using the notion of a Bose condensation of excitons as a base, a rudimentary model of

the potential Φ(r) which is experienced by the quasiparticles and the interlayer excitons

(which open up a correlation gap) can be developed. In this model, the excitons are con-

fined to the bulk and experience an infinite potential towards the edges, the quasiparticles

on the other hand cannot (completely) penetrate the bulk. These ideas are considered in

Figure 6.19.

Figure 6.19: Rudimentary model of the potential Φ(r) which is experienced by the quasi-

particles near the edges and the excitons in the bulk. While the excitons are confined to

the bulk and experience a large potential near the edges (blue dashed line), the quasipar-

ticles cannot penetrate the bulk (red solid line).

The question thus is if the excitons in the bulk are completely inert or if they can be

excited to a steady state excitonic (super)current? Even though the inner and outer edges

of a Corbino ring are separated by the bulk, quasiparticle tunneling at both circumferences

should occur coherently as phase-coherence should exists across the active sample area.

Keeping this in mind, tunneling can simultaneously be investigated at both perimeters

of a Corbino ring when the system is set up as in a drag experiment. In this alternative
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approach to tunneling at νtot = 1, a variable resistor RLoad is applied between the same

contacts that are used to measure the drag voltage, i.e., both edges of the drag layer

are connected via a resistive bridge. For future reference, this setup is referred to as

the load configuration/setup. For RLoad → ∞ the system behaves as in a regular drag

experiment. However, upon slowly decreasing RLoad from ∞ to 0 Ohms, a current I∗

begins to flow through the bridge. This current I∗ = V ∗/RLoad is identical to the current

I which simultaneously starts to flow in the circuit of the drive layer. The results of this

experiments are shown in Figure 6.20 for d/lB=1.58. The top panel illustrates the current

in the drive and drag circuit and the bottom panel the drive voltage as a (log) function

of RLoad. Note that for RLoad → 0 Ω, V ∗ → 0 V, however, the drag voltage itself, if

measured across another pair of contacts, remains finite and identical to the drive voltage

(not shown here).

The limiting factor in this load configuration are the contact resistances which are

in series to RLoad. Low densities (and consequently low d/lB) may lead to larger series

resistances, which then limit the current through the resistive bridge and consequently the

current in the drive circuit and the reduction of the corresponding voltages. Note that if

the grounding to the bottom layer is removed, the behavior does not significantly change.

However, since the drag layer would float at an arbitrary potential once the correlation is

broken, it is kept grounded at all times.

The quasiparticle tunneling at both edges is argued to induce excitonic condensate

current in the bulk [Su2008]. Figure 6.21 tries to account for this model. Every incident

single electron on the left side of the top layer is changed into a quasiparticle. This

quasiparticle will launch an exciton in the bulk, and to conserve total charge in both

layers a quasiparticle is reflected back into the leads of the bottom layer in an Andreev

reflection-like process. Here it is assumed that quasiparticle flow across the sample is

negligible. In this picture, it follows that IL = ITL + IBL is the exciton supercurrent

emitted from the left side of the sample. If the inner and outer circumference of the

bottom layer are physically connected over a sufficiently small resistance, it offers a short

cut path across the gapped bulk for reflected single electrons. Once having passed that

bridge, each electron will by itself undergo the same process of quasiparticle tunneling at

the right side of the sample where IR = ITR + IBR is the exciton supercurrent absorbed

on the right side. That means that condensate currents are induced by quasiparticle

counterflow currents as they are of opposite direction on the two sample edges. The large

potential difference between inner and outer edge imposed by the leads between TL and

TR is the driving force for this exciton current. The steady state condensate currents are

possible only when the two quantities of emitted and absorbed currents are equal [Su2008],

i.e., IL = IR.
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Figure 6.20: Experimental results of a load configuration experiment. The top panel

shows the current I through the circuit of the drive layer and the current I∗ = V ∗/RLoad

through load resistance as a (log) function of RLoad. The mid panel shows the current

across the drive layer. The bottom panel illustrates the experimental setup. Sample

81652:146C at d/lB=1.58 and Tbath ≈ 14 mK.
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While the quasiparticle tunneling by itself is able to account for the data presented in

Figure 6.20, it cannot directly demonstrate that this configuration really triggers such an

excitonic current through the bulk of the νtot = 1 quantum Hall state or not. It may also

be possible that the bulk excitons remains completely inert and some additional tunneling

process is taking place.

Figure 6.21: Load configuration. An incident single electron at the outer top-left (TL)

perimeter is changed into a quasiparticle which launches an exciton/condensate current in

the bulk. To conserve total charge, an electron is reflected back into the leads at the outer

bottom-left (BL) perimeter. When the outer (L) and inner (R) perimeter are connected

via a resistive link, the electron can flow across this bridge and undergo the same process

at the other edge, where the condensate current is absorbed. Modified from [Su2008].

All experimental anomalies associated with bilayer exciton condensation require only

that the quasiparticle tunneling amplitude be dramatically enhanced compared to the bare

regular single electron tunneling splitting ∆S,AS. The single electron interlayer tunneling

however is responsible for creating and annihilating excitons and it thus determines the

length scale over which steady state collective currents can exists and the value of the

critical current. The bare electron tunneling is also expected to be the dominant process

which fixes a preferred phase8. It however has little effect on the transport properties

[Su2008].

8It determines ”how” spontaneously phase-coherence is established.
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6.7 Chapter Summary

Interlayer tunneling experiments were performed in three different configurations. The

commonly used 2-terminal AC modulation technique had shown inconsistencies with ear-

lier publications where the νtot = 1 tunneling anomaly increased in width which led to

a simplified 4-terminal DC experiment. These DC measurements could for the first time

clearly demonstrate the existence of critical currents Icritical. As long as the total current is

below Icritical, the 4-terminal interlayer voltage/resistance is strongly reduced. The small

interlayer voltage was able to account for the observation in the modulated experiments.

The value of the 4-terminal voltage below Icritical depends on temperature, the coupling

parameter d/lB and the choice of voltage probes. If these factors are taken into considera-

tion and if the gate voltages are adjusted while sweeping the interlayer bias, the 4-terminal

interlayer voltage on Hall bars becomes vanishingly small so that the I/V characteristic

resembles the one from the Josephson-effect of superconductivity. Tunneling in the load

configuration on Corbino rings is believed to trigger an exciton supercurrent inside the

bulk of the νtot = 1 system.
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6.8 Outlook

As previously mentioned, if the quasiparticle tunneling is occurring in the vicinity of

the sample edges, then one would expect a dependence of tunneling conductance on the

length of the edges. Unlike Hall bars, the Corbino device allows direct investigation of

such a dependence on a single sample since inner and outer perimeter differ in length.

A simple model can be used to evaluate a dependence of the tunneling on the length of

the two perimeters. In the first näıve approach, the tunneling conductance G is directly

related to the (one-dimensional) circumference of the ring U = 2rπ, i.e., the ratio Uo/Ui of

the outer (o) and inner (i) circumference should correspond to the ratio of the tunneling

conductances Go/Gi for tunneling between either inner or outer edges (see left-hand side

of Figure 6.22). However, a better approximation can be found by assuming a strip of

constant width w near each sample edge, over which tunneling is enhanced (shaded area

on the right-hand side of Figure 6.22). The area of this strip for the inner edge is then

Ai = π((ri + w)2 − r2
i ) = πw(w + 2ri) and for the outer strip Ao = π(r2

o − (ro − w)2) =

πw(2ro−w). The ratio of both tunneling conductances C ≡ Go/Gi is an empirical value.

Thus, the equation C = 2ro−w
w+2ri

can be solved to find w which is

w = −2
Cri − ro

1 + C
. (6.6)

Figure 6.22: Left-hand side: tunneling is directly proportional to the one-dimensional

circumference U = 2rπ of the inner and outer edge. A better approximation assumes

that tunneling occurs over a strip of with w near each sample edge (right-hand side).

This width w is assumed to be identical for inner and outer edge.

If no apparent dependence on the length of the perimeters is to be found, this could
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simply mean that the width w of the strips is not constant for both edges. Thus, instead

of having an uniform w, there exists a wi > wo which satisfy the condition Ai ≈ Ao. This

however is equivalent to the statement that tunneling depends on the area of the sample.

If this is the case, then equating both strip areas yields

wi = −ri +
√

r2
i + 2rowo − w2

o, (6.7)

where there exists the boundary condition (as given by the empirical data) that both

strips cannot overlap, i.e., ri + wi < ro − wo. Assuming a sample with ro = 430 µm and

ri = 160 µm (such as sample 81653:146C) then Figure 6.23 shows how the width of the

inner strip wi depends on the width of the outer strip wo if Ai = Ao. Only below the

black dotted line the boundary condition that both strips cannot overlap is met.

Figure 6.23: Dependence of the width of the inner strip wi on the width of the outer strip

wo (green solid and red dashed line). Only below the black dotted line both strips do not

overlap.

Experiments have to show whether these models reflect the physical reality.





Chapter 7

Summary and Conclusion

The total filling factor one quantum Hall state occurs between two two-dimensional elec-

tron systems (2DES). When the separation between the two 2DES is sufficiently small,

electron correlation effects can lead to an energy gap which would not occur in an in-

dividual 2DES. This correlated state can be viewed in terms of a Bose condensate of

interlayer excitons which exhibits interlayer phase-coherence, and a spatial variation of

its order parameter φ is associated with a dissipationless flow of excitons, comparable to

the superfluidity of Helium. However, this (possible) exciton condensate in quantum Hall

systems is not exactly like a regular condensate of non-interacting or weakly interacting

Bosons - but has many elements in common.

Magneto-transport experiments performed on electron double layer Hall bars at total

filling factor 1 had suggested that the conductivity may become fairly large when the cor-

related state is firmly established [Kel2004]. However, the boundary conditions imposed

by the Hall bar geometry did not grant direct access to the conductivity and also raised

doubts whether the observed behavior may not only simply be the signature of the regu-

lar quantum Hall effect. A Corbino ring geometry, which is generally used to investigate

directly the σxx component of the conductivity tensor, was suggested. However, a regular

Corbino ring which generally consists of three concentric rings, i.e., two Ohmic contacts

and the 2DES, does not allow independent contact to both layers. To perform interlayer

drag and tunneling measurements the total filling factor one state was investigated with

a quasi -Corbino ring, i.e., an annulus with contact arms attached to both circumferences.

Interlayer drag experiments were performed on such a quasi-Corbino ring, where one

2DES is the active (drive) layer, i.e., where a voltage is applied, and the other 2DES is a

passive (drag) layer. It was found that when the magnetic field approaches a value that

corresponds to a total filling factor of 1, a drag voltage appears which is identical in sign

and magnitude to the voltage across the drive layer, as soon as the coupling parameter is
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sufficiently small. At the same time, a minimum in the current through the drive layer can

be observed. When the state is firmly established, the conductance G = I/V of the drive

layer is vanishingly small. In this situation the νtot = 1 state resembles the other regular

integer filling factors, where the radial current through the bulk is zero, because there is

only an azimuthal (circling) part. Thus, the question is if at νtot = 1 circling currents in

the drive layer could be present which by the strong interlayer correlation create a circling

current of the same magnitude in the drag layer, leading to identical voltages across both

layers. However, certain aspects suggest that another mechanism is at work, which is

directly related to the interlayer phase-coherence. While a (possible) macroscopic wave

function of the Bose-condensate of interlayer excitons would not only have to exist across

the entire active sample area, it will also exist between the layers, making it impossible

to determine in which layer an electron (or hole, for that matter) is in. Identical voltages

are then the result of these coherently spread electrons which equilibrate any potential

difference between the layers. As the bulk of the correlated system is impenetrable for any

current, it appears that this ”layer connection governed by coherently-spread electrons”

is limited to a region (of unknown width) near the sample edges. It may as well be that

the edges are therefore in a state like the regular integer quantum Hall effect (of single

layer filling factor 1). This would explain the similarities in the magneto-transport data

between ν = 1 and νtot = 1. The interior of the bulk, on the other hand, could consist of

inert interlayer excitons which are indifferent to any electrical and/or magnetic field.

Increasing the temperature has found to delay the emergence of the total filling factor

1 state towards lower coupling parameters d/lB, i.e., it requires a lower d/lB to observe

identical voltages across both layers. This also means that increasing d/lB at lowest

temperatures results in a similar behavior than increasing the temperature at low d/lB.

Nevertheless, the smooth transition from two uncorrelated layers each at filling factor

1/2 to a correlated bilayer system on decreasing the temperature and/or d/lB appears to

support the notion of a puddle model [Ste2002]. In this model some areas of the active

region are in a state of interlayer phase-coherence while others are still uncorrelated.

When the coupling is increased (by lowering the temperature or density and magnetic

field) these regions grow and eventually percolate. For that reason the bilayer system

is not instantaneously transferred between both states and no phase transition with a

discontinuity can be found.

The motivation for investigating the total filling factor 1 state in Corbino rings was

the notion that its conductivity may become very large in an equivalent experiment to

the Hall bar counter-flow configuration. However, as the bulk of a Corbino ring is im-

penetrable for single electron current, it is evident that such an analogy cannot be easily

made and that the results in Hall bars may simply be due to the edges which connect
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source and drain. Nevertheless, contrary to näıve expectations, bilayer superfluidity in

magneto-transport may be apparent in the disappearance of the conductance and not in

its strong increase, since the exciton formation opens up an energy gap around the Fermi

energy. In this situation no regular current can be injected into the superfluid phase. The

effects observed in Hall bars are then only the manifestations of edge channels.

Interlayer tunneling experiments on both Corbino rings and Hall bars were conducted.

Instead of finding a tunneling conductance dI/dV anomaly with a small width and a high

amplitude at a total filling factor 1 in AC modulated measurements, the width of the

tunneling conductance peak was very broad and appeared to increase with a decreasing

coupling parameter. As the interlayer resistance is large compared to other resistances in

the circuit for ν−1
tot . 0.50, it was assumed that 2-terminal measurements were sufficient

at ν−1
tot = 1 as well. This, however, is not the case anymore, once the system exhibits

interlayer phase-coherence. In this situation, both the (4-terminal) DC interlayer bias

and the AC modulation decrease with decreasing d/lB. Since the 4-terminal interlayer

resistance is then (much) smaller than other series resistances, only a small fraction of the

2-terminal voltage drops across the barrier. Thus, the width of the tunneling anomaly

appears to increase, if dI/dV is plotted versus this 2-terminal voltage.

Pure DC interlayer tunneling measurements were performed which (also) had shown

that for sufficiently strong interlayer correlation, the 4-terminal interlayer resistance is very

small. However, as soon as a critical current Icritical is exceeded, the enhanced tunneling

quenches abruptly, leading to a 4-terminal resistance comparable to the 2-terminal one.

The value of the residual 4-terminal interlayer resistance for I < Icritical depends on the

choice of contacts, the parameter d/lB and the temperature. It was also found that when

the density imbalance that is imposed by the interlayer bias, is compensated for, the 4-

terminal interlayer resistance can be further reduced. If the current is plotted versus the

4-terminal instead of the 2-terminal voltage, the I/V characteristic resembles those of the

Josephson effect of superconductivity. The sign of the 4-terminal voltage in the regime

of interlayer phase-coherence appears to be influenced by the choice of contacts. If the

interlayer voltage is probed across the boundary of a quantum Hall system (such as the

width of a Hall bar bilayer) its sign was found to depend on the sign of the magnetic field.

This contact dependence however requires further systematic investigation.

The enhanced tunneling is explainable in terms of a model which assumes a process

analogues to Andreev reflection. In this model, every incident electron from the leads of

one layer will meet the correlated state of the active region somewhere near the sample

boundary. Once that happens, it is changed into a quasiparticle of the condensate. Owing

to the interlayer phase-coherence, the quasiparticle is easily transferred between layers,
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and it is then reflected back into the leads of the other layer to conserve total charge.

However, this enhanced quasiparticle tunneling is limited to an area of unknown width

close to the sample edges, since it remains impossible to observe enhanced interlayer

tunneling across the annulus of a Corbino ring. Thus, the quasiparticle lifetime appears

to be rather short. When the interlayer bias is increased, the imposed electrochemical

potential difference by the leads increases the quasiparticle tunneling beyond a critical

point and it stops altogether.

In a complementary tunneling experiment, a Corbino ring was set-up as in a drag ex-

periment. At total filling factor 1, a variable resistor RLoad was then applied between the

inner and outer circumference of the drag layer. For RLoad →∞, the system displayed the

total filling factor one state with a strongly reduced conductance of the drive layer and

a large drag voltage (equal to the drive voltage). However, as RLoad was slowly reduced

to zero, the current through the circuit of the drive layer increased again, and it was

identical in magnitude and sign to the current that was now flowing through RLoad. Here,

the resistive link which connects both perimeters of the drag layer allows the electrons to

shortcut the gapped bulk of the total filling factor one state. Despite the presence of the

excitonic condensate in the bulk (which remains unaffected), now a current can flow which

is maintained by the quasiparticle tunneling at both sample edges. It is argued [Su2008]

that with each incident electron, an exciton is launched in the bulk, driven by the large

potential difference between the inner and outer edge of the drive layer. This exciton

supercurrent can progress from one side of the sample to the other because of the link

in the drag layer that allows a steady state current. As the drive current is identical

in sign and magnitude to the drag current (which are both measured bulk-externally),

it implies that bulk-internally currents of opposite direction may flow, i.e., an excitonic

supercurrent. However, there is no direct way to probe the properties of the bulk using

regular transport experiments.

Ring-shaped (i.e., Corbino) bilayer samples have been able to provide a deeper insight

into the physics of the total filling factor one state. Since Corbino rings allow a separation

between bulk- and edge-transport, this experimental work was able to distinguish between

edge effects which are carried by quasiparticles and the physics of the bulk, and it demon-

strated for the first time the existence of critical currents at νtot = 1 in four-terminal (DC)

measurements.
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Growth Sequence Wafer 81653

material (deposition) time (s) thickness (10−10 m) repetitions (entire block)

GaAs 360 1000

- 3 STOP 12

AlAs 14 20 |
- 3 STOP |

GaAs 7 20 ⊥
AlGaAs 19 80 50

- 3 STOP |
GaAs 8 23 |

- 3 STOP ⊥
AlGaAs 71 300

AlGaAs:Si 83 350

AlGaAs 119 500

- 20 STOP

AlGaAs 119 500 5

- 20 STOP ⊥
GaAs 68 190

- 20 STOP

AlAs 12 17 5

- 3 STOP |
GaAs 1 2.8 |

- 3 STOP ⊥
- 20 STOP

GaAs 67 187

- 20 STOP

AlGaAs 660 2800

- 3 STOP

AlGaAs:Si 95 400

- 3 STOP

AlGaAs 480 2000

GaAs 71 200

SURFACE

Si-doped regions (n ∼ 2 · 1018 cm−3), quantum wells and the barrier are shaded. The

composition parameter for AlGaAs ≡ AlxGa1−xAs is x=0.33.
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Samples

The following to tables contain all samples that were examined. The tables include the

dimensions and the measured interlayer resistances in and out of resonance. Sample ref-

erences in the main text are given by e.g. 81653:146C, where a ”C” after the sample

number indicates that it is a Corbino ring and a ”H” that it is a Hall bar geometry.

Corbino Samples

wafer sample outer ring interlayer resistance at B=0 T Temp.

diameter width in/out of resonance (106 Ω) (K)

(10−6 m) (10−6 m)

81653 146C 860 270 (A) 0.82/100 4.20

(B) 0.33/>20 0.01

81653 247C 600 140 (A) 1.30/ 42 4.20

(B) 0.55/ 76 0.25

81653 248C 780 230 (A) 0.88/ 40 4.20

D050803A 267C 480 80 (B) 10/ 25 0.01

Hall Bar Samples

All samples are standard Hall bars of dimension (880 × 80) µm2.

wafer sample interlayer resistance at B=0 T Temp.

in/out of resonance (106 Ω) (K)

81653 210H (B) 0.55/>20 0.01

(A): deduced from 2pt I/V characteristic (error ±5%)

(B): deduced from 2pt differential conductance dI/dV
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Intrinsic Densities and Mobilities

The table below shows the approximate intrinsic densities and mobilities deduced from

magneto-transport sweeps at approximately 15 mK. These values may differ by ± 5 %

from sample to sample.

wafer density upper and lower QW mobility upper/lower QW

(1014 m−2) (m2 V−1s−1)

81653 ∼ 4.3 ∼ 65/45

D050803A

81653 grown at the Max-Planck Institute in Stuttgart, Germany

by M. Hauser

D050803A grown at the University of Regensburg, Germany

by D. Schuh and W. Wegscheider
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Bilayer Capacitance and Imbalances

A bilayer can be considered to be equivalent to two conducting plates of area A which are

separated by a dielectric material of thickness d. The bilayer is thus a capacitor which

has the following characteristics:

dielectricity of barrier ε ≈12 (εGaAs=13, εAlAs=11)

Hall bar area A=(80×880)·10−12 m2

layer separation d=28.6·10−9 m.

The capacitance of such a parallel-plate capacitor is given by

C = ε0ε
A

d
≈ 260 · 10−12 F, (7.1)

with the vacuum permittivity ε0 = 8.8542 ·10−12 F m−1. The charge transfer between the

plates upon applying a voltage of ∆V [V] can be estimated by

C ·∆V = ∆N · e (7.2)

=⇒ ∆N = (C ·∆V )/e, (7.3)

where e is the electron charge and N the number of electrons. The density change is ∆n =

∆N/A. For a given (matched) electron density the change in percent can be calculated

which has shown to agree well with the results of magneto-transport experiments.




