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1. SUMMARY  
 

Agricultural land currently occupies approximately 38% of the planet’s land surface, or 

around half its habitable area, and is the largest cause of native habitat loss and fragmentation. 

Perhaps one of the most important impacts of destruction of natural habitat is the loss of 

natural ecosystem services like pollination, through reduction in species richness and 

abundance of pollinator guilds, and the resulting reduction in the reproductive success of 

plants relying on pollination by these animals. As bees have rather small foraging ranges 

(solitary bees: 150m – 600m, African honeybees: 400m - 1000m), local habitat structure and 

resource configuration appear of great importance to their behaviour and survival. As pairs of 

pollinator and plant species do not interact in an ecological vacuum, we need more than the 

analysis of pairwise interactions to understand the evolution of diversified mutualisms, and 

their role in the ecosystems. Community-wide approaches, like food webs, are a fundamental 

component of any attempt to describe how natural communities are structured.  

To assess the impact of habitat conversion on biodiversity and ecosystem processes I 

investigated (i) the composition and spatial as well as temporal heterogeneity of plant-flower 

visitor networks, (ii) the flower visitor community together with its pollination service for the 

herbal plant Justicia flava (Acanthaceae) and (iii) the spatial heterogeneity of J. flava’s flower 

visitors in an agriculture-forest mosaic. These studies were conducted in and around the 

Kakamega Forest, a tropical rain forest remnant and its surrounding structurally diverse 

agricultural area in Western Kenya.  

The flower visitor networks in the three different habitat types farmland, forest edge 

and forest interior differed highly in size, with the bigger networks in the agricultural and thus 

open and disturbed areas. The flower visitor webs in all three habitat types were highly 

asymmetric, with the three most involved plant species building 54% – 84% of the network. 

Apis mellifera was the most abundant bee species in all habitats, and was involved in 

60% - 80% of the interactions in the networks. Species turnover was very high between 

habitat types, indicating connectivity as well as interplay between the different habitats. 

Seasonal turnover was found to be high only inside the forest, the habitat with the highest 

fluctuation in flower and thus food availability. The floral resources were found to be the best 

explaining factor rather than other habitat parameters for network size in this structurally rich 

and diverse landscape.  

Focusing on the common herbal plant Justicia flava (Acanthaceae), I found 74 species 

of insects visiting the flowers, with only 2-19 species per study site. While highest species 
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richness was found in the farmland, highest diversity (both species richness and eveness) was 

found inside the forest. Due to a high dominance of honeybees, the abundance of flower 

visitors outside the forest was extremely high. Up to a distance of 1500m from the forest, the 

number of bee species visiting the flowers of Justicia flava decreased significantly with 

increasing distance from the forest whereas the flower visitor composition on study sites 

farther from the forest did not show any dependency on the distance. The reproductive 

success of the self-incompatible plant was neither influenced by the diversity nor by the 

abundance of flower visitors, due to the fact, that J. flava seemed to be a keystone food source 

for several bee species and thus experienced high visitation frequencies. Hence, the plants’ 

reproductive success was not pollinator-limited, but rather resource-limited (water-limited) 

due to a very dry observation season. Even if diversity and abundance of pollinators did not 

show any direct influence on fruit and seed set of Justicia flava in this rather short-term 

observation, the composition of the visitor communities are of great importance for the long 

term preservation of the plant’s reproductive success and thus the maintenance of the plant 

pollinator system.  

Comparative results showed, that the composition of flower visitors of Justicia flava 

was spatially heterogeneous not only between different habitats, but also between study sites 

closely located in the same habitat type (distance between 200m – 2000m). Especially inside 

the forest, spatial autocorrelation in flower visitor composition was found, with flower visitor 

communities in close vicinity to each other being more similar compared to compositions 

farther apart. This pattern might be due to different foraging regimes in the different habitat 

types, with random foraging in the flower-rich open areas compared to a more traplining-

behaviour inside the flower-poor forest. Furthermore, the results showed, that bee species 

compositions in forested areas with small numbers of flowers were spatially heterogeneous 

and thus difficult to predict. As geographic differences in interactions are an inherent part of 

the coevolutionary process, and geographically structured species tend to coevolve towards a 

complex spatial mosaic of coevolutionary hot spots and cold spots, there is the potential of 

coevolutionary shifts in the pollination system of Justicia flava. 

To conclude, the diverse agricultural land, rather than the natural forest, acted as a 

stable pollinator reservoir due to its large floral resources. Hence, the conservation of the 

whole countryside, not only the forest, is important to preserve the ecosystem service 

pollination for natural plants as well as crop plants in Kakamega area. 
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2. GENERAL INTRODUCTION  

 

 

 

 

 

 

 

2.1 Tropical agriculture-forest mosaics: changes in landuse patterns and biodiversity  

Global biodiversity is changing at an unprecedented rate (PIMM ET AL . 1995) as a complex 

response to several human-induced changes in the environment (VITOUSEK 1994), like land 

use change, habitat fragmentation and climate change. The magnitude of biodiversity change 

is so large (PIMM ET AL . 1995) and so strongly linked to ecosystem processes (CHAPIN ET AL. 

1997, LUNDBERG &  MOBERG 2003) and society’s use of natural resources (DAILY 1997, 

COSTANZA ET AL. 1997) that biodiversity change is considered an important global change in 

its own right nowadays (WALKER &  STEFFEN 1996, SALA ET AL . 2000). Estimates of complete 

habitat conversion vary by biome from 0.4% (tundra) to 48.5% (tropical/subtropical dry 

broadleaf forests), but a much larger area is directly influenced by human activities to some 

degree (SANDERSON ET AL. 2002, HOEKSTRA ET AL. 2005). Agricultural land currently 

occupies approximately 38% of the planet’s land surface, or around half its habitable area 

(DONALD &  EVANS 2006), and is the largest cause of native habitat loss and fragmentation 

(DEFRIES ET AL. 2004, WILLIAMS &  KREMEN 2007), followed by climate change, nitrogen 

deposition, biotic exchange and elevated carbon dioxide concentration (SALA ET AL . 2000). In 

the developing world, the area of agriculture (particularly in South America and sub Saharan 

Africa) may increase by more than 30% by 2050 (TILMAN ET AL . 2001), occupying a new area 

approximately equal to that of all the planet’s remaining rainforests (MAYAUX ET AL . 1998).  

The conversion of native forests to croplands and the increasing agricultural intensification 

have led to simplification of landscape structure, furthermore to declines in diversity and 

abundance of many taxa of animals and plants (MYERS 1992, SALA ET AL . 2000, BENTON ET 

AL. 2002, TSCHARNTKE ET AL. 2005) and consequently to species extinctions. 

 While large-scale commercial logging operations are major drivers of deforestation in 

South America and Asia, the pattern in sub-Saharan Africa is different. Here, countries 

holding tropical rainforests are characterized by highest population densities and growth rates. 
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As people show very low per capita income, they rely on subsistence farming and the 

utilization of forest products, like fuelwood and bush meat. One result of these population 

densities and the related smallholder agriculture is a highly structured and diverse agricultural 

land, a complex landscape mosaic. CARROLL ET AL. (2004) highlighted, that the negative 

effects of habitat-isolation on species diversity and abundance and thus on the functioning of 

ecological processes, are reduced as the quality of the matrix increases. Thus, smallholder 

agriculture is often important for the maintenance of biodiversity (RICKETTS ET AL. 2001, 

KLEIN ET AL. 2006) and can provide habitat for a variety of organisms normally associated 

with forest (THIOLLAY 1995, PERFECTO &  VANDERMEER 2002). Consequently, this 

smallholder agriculture could be an important component of landscape- or regional-level 

conservation strategies, especially in sub-Saharan Africa, where population growth, 

deforestation and rural poverty are acute problems (WORLD BANK 2001) with strong 

“positive” influences on annual rates of deforestation and landuse change (LAURANCE 1999). 

However, in Africa, most scientific work is still focusing on the natural landscapes, 

disregarding the high importance of such well structured smallholder agricultural areas. 

Especially in Europe and North America, scientists are aware of the importance of the 

farmland respectively the complete countryside (DAILY ET AL . 2001, STEFFAN-DEWENTER ET 

AL. 2002, LUCK &  DAILY 2003, HOLZSCHUH ET AL. 2007) for the maintenance of biodiversity 

(e.g. KLEIJN ET AL. 2006) and attention is given to the functioning of landscape mosaics. 

 

2.2 The ecosystem service pollination and habitat conversion/fragmentation 

Perhaps the most important impact of destruction of natural habitat, and especially of tropical 

forests, is the loss of natural ecosystem services. Ecosystem services are all the natural 

services provided by ecosystems that are useful to humans (DAILY 1997, LOREAU ET AL. 2002, 

LUCK &  DAILY 2003, KREMEN 2005, KLEIN ET AL. 2006), such as soil nutrient supply, soil 

carbon storage and biodiversity-related services like pollination, seed dispersal, 

decomposition, natural control of pests and invasive species. Some ecosystem services, such 

as pollination and seed dispersal, are produced at a local scale by mobile organisms foraging 

within or between habitats (LUNDBERG &  MOBERG 2003, SEKERCIOGLU 2006). Although these 

mobile organisms deliver services locally, their individual behaviour, population biology and 

community dynamics are often affected by the spatial distribution of resources at a variety of 

spatial (and also temporal) scales from local (single patch) to landscape (e.g. composition and 

connectivity of habitats) (LEVIN 1992, MCGARIGAL &  CUSHMAN 2002, WILLIAMS &  KREMEN 

2007). 



 2. General Introduction - 5 - 

To understand how changes in landscape composition affect pollination processes and 

other species interactions, knowledge about the responses of the mobile species to habitat 

parameters and their changes are essential. Studies from throughout the world indicate that 

landscape fragmentation and degradation often lead to declines in diversity and abundance of 

insect pollinators as well as the interacting plant species (AIZEN &  FEINSINGER 1994, 

CUNNINGHAM 2000, AIZEN ET AL. 2002, KLEIN ET AL. 2002, RICKETTS 2004). However, a few 

studies found positive effects of habitat fragmentation and forest loss on diversity and 

abundance of bees, though (TAKI ET AL . 2007, WILLIAMS &  KREMEN 2007). Furthermore, 

some researchers have suggested that bees may be buffered to the effects of fragmentation 

(CANE 2001), as they inherently rely on patches of resources that are commonly separated 

from nesting sites (OSBORNE ET AL. 1999, MORRIS ET AL. 2001, WILLIAMS AND TEPEDINO 

2003) rather than on continuous more or less monotonous habitats. Populations of many 

species exist at the interface of agricultural and natural areas or within agricultural landscapes, 

using the whole habitat mosaic. Landscape level factors, such as the amount and distribution 

of various habitat types, the resources they contain, and the connectivity among habitat types, 

are critical to maintaining bee populations (KREMEN ET AL. 2002, STEFFAN-DEWENTER ET AL. 

2002, WILLIAMS &  KREMEN 2007). The rate, timing, duration, frequency, and spatial extent of 

the mobile links could all be affected by changes in landscape composition (DUKES &  

MOONEY 1999, HARRINGTON ET AL. 1999, HUGHES 2000), leading to profound changes in 

local ecosystems (POST ET AL. 1998). Especially the connectivity among habitats will likely be 

crucial for persistence of pollinator populations as natural habitats are increasingly 

fragmented by human activities. Recent studies showed that connectivity was critical for 

offspring as increasing isolation from natural habitat decreased offspring production and 

survival for bees (WILLIAMS &  KREMEN 2007). All these different findings highlight the 

complexity of the topic as well as the need for greater attention to how populations and 

communities perform in different habitats and at their interface. 

Bees move actively between habitats and ecosystems and are thus essential components in the 

dynamics of ecosystem development and ecosystem resilience (that is buffer capacity and 

opportunity for reorganization) that provides ecological memory (that is, sources for 

reorganization after disturbance) (MOBERG &  FOLKE 1999). They help to sustain the capacity 

of ecosystems to supply the ecological services essential for social welfare and economic 

development (COSTANZA ET AL. 1997, CHAPIN ET AL. 2000). In this sense, they often provide 

functions analogously to keystone species (PAINE 1969).  
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2.3 Human dependence on the ecosystem service pollination 

Pollination is not only mutually beneficial to the interacting plants and animals, but also 

serves humanity directly through the yield of many crops, and indirectly by contributing to 

the healthy functioning of unmanaged terrestrial ecosystems (COSTANZA ET AL. 1997, 

NABHAN &  BUCHMANN 1997, KLEIN ET AL. 2007). 

One-third of the world’s crops demand pollination to set seeds and fruits (e.g. BUCHMANN &  

NABHAN 1996, KLEIN ET AL. 2007) and the great majority of them are pollinated by many of 

the estimated 25,000 species of bees (ROUBIK 1995). The estimated annual value of this 

service worldwide is US$ 65-70 billion (PIMENTEL ET AL. 1997). The most widely used 

species in crop pollination is the honeybee (Apis mellifera), which in many parts of the world 

has contracted serious diseases resulting in decreasing numbers of colonies. A major problem 

is emerging for the world’s agricultural production, reflecting the risk involved in relying on a 

single pollinator species (BUCHMANN &  NABHAN 1996). As many species of native bees are 

known to be efficient pollinators of crops and a few species have been managed for this 

purpose, farmers nowadays are interested to use the service of native bees. However, the 

numbers of native bees are dwindling. Declines in numbers have been reported in North and 

Central America (e.g. ALLEN-WARDELL ET AL. 1998) and Europe (OSBORNE ET AL. 1991, 

BANASZAK 1996, BIESMEIJER ET AL. 2006). The losses are due to mostly the use of 

agrochemicals, to land use changes like deforestation and monocultures and possibly to the 

introduction of exotic pollinators as well (e.g. HINGSTON &  MCQUILLAN 1999, GOULSON 2003, 

INARI ET AL. 2005, INGS ET AL. 2006). 

The so called ‘pollinator crisis’ exemplifies the intimate relationship existing between the 

welfare of natural environments and their biodiversity and the needs of sustainable agriculture.   

On the basis of the convention of biodiversity (Rio de Janeiro 1992), the International 

Pollinators Initiative was started, to emphasize the importance as well as vulnerability of the 

ecosystem service pollination and to investigate especially in understanding and conserving 

the dynamics and patterns of pollination interactions. 

 

2.4 Plant-pollinator networks 

Pollination of flowers is an essential step in the sexual reproduction of angiosperms. Most 

angiosperm species rely on insects or other animals (90% of the estimated 240.000 flowering 

plant species, NABHAN &  BUCHMANN 1997), rather than wind, for transfer of pollen among 

individual plants. It has even been suggested that the reproductive success of plants is often 
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more limited by pollinator scarcity than resource scarcity (BURD 1994). The pollinators in turn 

benefit by obtaining floral resources such as nectar or pollen. 

As pairs of pollinator and plant species do not interact in an ecological vacuum, we need more 

than the analysis of pairwise interactions to understand the evolution of diversified 

mutualisms such as animal-mediated pollination, and the outcomes of their interactions are 

best viewed within the network of community-level interactions. All individuals and species 

are linked in networks through interactions like predation, parasitism or pollination. 

Community wide approaches, like food webs, are a fundamental component of any attempt to 

describe how natural communities are structured, how complexes of species interact 

(LAWTON 1995, MEMMOTT 1999), how mutualisms evolve (JORDANO 1987, MEMMOT 1999, 

BASCOMPTE 2007) and how pollinators can be managed in crop situations (ALLEN-WARDELL 

ET AL. 1998). In nature, networks of species interactions are ‘the architecture of biodiversity’ 

(JORDANO ET AL. 2006), because community dynamics rely deeply on the way species interact. 

Most pollination interactions are not specific and do not involve tight mutualisms between 

species pairs, yet pollination interactions are paradigmatic examples of coevolved interactions 

among animals and plants.   

 

2.5 The study area: Kakamega Forest and its surrounding farmland 

The studies were conducted in and around the Kakamega Forest (Figure 2.1), a tropical rain 

forest remnant and its surrounding agricultural areas. The forest is located in western Kenya 

(0°17’N, 34°54’E) at an altitude of 1500 m to 1700 m, about 50 km north of Lake Victoria. 

The annual rainfall reaches about 2000 mm, and is more or less well distributed over the year, 

with two distinct rainfall peaks. The mean monthly temperatures range from 11°C to 29°C, 

with an average temperature of 22°C. The Kakamega Forest is considered to be the 

easternmost remnant of the lowland guineo-congolian rain forest belt (KOKWARO 1988) with 

rain forest dwelling animals and plants. Furthermore, due to its elevation it also contains 

montane elements of flora and fauna (ALTHOF 2005). Kakamega Forest is severely 

overexploited due to its small size and dense surrounding human population. The forest’s area 

covers an estimated 12000 ha (BENNUN &  NJOROGE 1999, LUNG &  SCHAAB 2004). Apart from 

the main forest area there are 5 isolated forest fragments situated around the forest (BROOKS 

ET AL. 1999). About 4000 ha of the northern Buyangu part of the forest and the northern 

fragment Kisere are declared as National Reserves under management of the Kenya Wildlife 

Service (KWS) with conservation of biodiversity as their main dogma since 1982 (KIFCON 

1994, MITCHELL 2004). This part of the forest is characterized by a series of abandoned 
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secondary forests at different stages, including premature and mature forests. The history of 

the forest is well documented (Mitchell 2004). Some parts of the forest were grasslands in 

former times; some have been afforestated 100 years ago. In Buyangu Hill forest, logging is 

reported to have taken place until the 1970s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The farmland, which borders the forest mostly without any buffer zone (Figure 2.2), has rich 

agricultural soils, which in combination with the temperatures makes it very suitable for 

farming. JAETZOLD &  SCHMIDT (1982) classified the region as one of the high potential areas 

in Kenya for agricultural production. The traditional small-scale farming subdivides the 

agricultural matrix in small land units ranging from 0.2 ha to 0.7 ha per household (GREINER 

1991, MOA 2006). These small land units generate a highly structured and diverse landscape 

mosaic with a high proportion of diverse hedgerows, field margins, gardens, homesteads, etc.  

 

Figure 2.1:  
(A) Map of Africa indicating location of Kenya; (B) Map of Kenya indicating location of 
Kakamega Forest; (C) Satellite image of Kakamega Forest and the surrounding farmland 
(Landsat ETM + (7); 05 Feb 2001, spectral bands 5/4/3, contrast enhanced; courtesy of G. 
Schaab)  

A 

B 

C 
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The area is one of the most highly populated rural areas in the world, with population ranging 

from 433 to 713 inhabitants per km2 (Mitchell 2004), boosted by a growth rate of 2.8% a year 

(CINCOTTA 2000). Thus the anthropogenic impact on the forest will even be amplified and the 

conflict between nature conservation and land use will increase at the same time (BALMFORD 

ET AL. 2001). 62% of all households generate their incomes from agriculture and the district’s 

poverty rate is about 52% (DOSE 2007). With 76% of the district’s area being under 

agricultural cultivation and an additional 11% being covered with (gazetted) forest, an 

extension of cultivated areas would result in (1) an increasing monotony of the agricultural 

landscape, or (2) in reduction of the forest cover.  

 

The highly structured pattern of landscape, which is under increasing pressure by the 

population growth, makes Kakamega Forest a suitable and interesting study area, to 

investigate the influence of different landscape parameters (like habitat type, food availability) 

on plant-flower visitor interactions. Especially the interactions in the interface between 

natural forest and highly structured farmland are of great concern, as previous studies usually 

focused on rather monotonous farmland.  

In this thesis, I investigated the strength of the interplay between the different habitat 

types. Furthermore, the spatial and temporal patterns of pollination interactions between 

whole communities as well as between populations of a single plant species and its visitors 

were investigated. I examined, if the mutualistic interaction partners were more influenced by 

habitat diversity, habitat nativeness or resource availability (like soil quality, flower supply).  

The thesis is divided into three major studies.  

In the second chapter, the flower visitor network composition in the Kakamega Forest, 

the forest edge and the adjacent farmland is analysed. Specifically it was investigated to what 

extent the network composition differed between habitat types and seasons. The spatial and 

Figure 2.2: 
The farmland borders 
Kakamega Forest directly, 
without any buffer zone. 
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temporal turnover rates were calculated to analyse the connectedness as well as the 

interchange between habitats and seasons. 

In the third chapter, the flower visitor composition of J. flava is investigated, and the 

influence of diversity and abundance of bees on the reproductive success evaluated. 

Specifically it was tested, if the flower supply, climatic factors or the distance to forest 

influenced the composition (diversity and abundance) of the flower visiting bees. Furthermore 

we tested the influence of the composition of bees, the soil conditions, and the canopy cover 

on the reproductive success of J. flava. 

In the fourth chapter, the spatial composition and autocorrelation of the flower visitors 

of Justicia flava (Acanthaceae) is analyzed. Specifically it was tested, if the flower visitor 

communities of the herbal plant Justicia flava differed in composition, not only between 

habitats but between study sites of the same habitat. Furthermore, the spatial patterns of 

flower visitors were compared, and the underlying factors investigated.  
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3. SPATIO -TEMPORAL VARIATION IN  
FLOWER VISITOR NETWORKS  

 
 
 
 
 
 
 
 
3.1 Abstract 

Local habitat structure and resource configuration as well as matrix structure appear of great 

importance to the behaviour and survival of bees. I examined the contribution of three 

different habitat types (farmland, forest edge, forest interior) to regional diversity in the 

tropics, and established the differences and overlap in plant-bee community interactions 

between the nearby habitats. I identified the key species in the three different webs and used 

network properties, like connectance, nestedness and quantified network to describe temporal 

and spatial variation. 

The study was carried out on 18 study sites (six in each habitat type) in the Kakamega Forest 

area in Kenya. In total I found a number of 121 bee and 89 plant species involved in the 

interactions. Bees were limited by floral resources rather than other habitat parameters. Thus, 

highest diversity and abundance were found in the flower rich areas outside the forest. The 

flower visitor webs in all three habitat types were highly asymmetric, with the three most 

involved plant species building 54.0% - 84.0% of the network. Apis mellifera was the most 

abundant bee species in all habitats, and was involved in 60.0% - 80.0% of the interactions in 

the networks.  

Overall, at the level of sampling conducted, α-diversity comprised 6.5% of the total 

diversity of the study region (121 bee species). Temporal and spatial turnover comprised 

11.6% and 35.2% respectively of total diversity and the remaining 46.7% represented 

turnover in species between the different habitat types. Due to high similarities in bee 

population between the habitats as well as high seasonal fluctuations in flower abundance 

inside the forest, the conservation of the whole countryside is important to preserve the 

ecosystem service pollination for natural plants as well as crop plants. 
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3.2 Introduction 

Modification of landscapes, like habitat fragmentation, conversion of natural habitats to 

agricultural areas, and intensification of agriculture can lead to changes in species diversity 

and composition, interruption of movements between populations and might possibly result in 

a reduction of gene flow as well. Some studies have shown that increased agricultural 

management intensity leads to decreased diversity of a variety of pollinator taxa (STEFFAN-

DEWENTER ET AL. 2002, MAS &  DIETSCH 2003), whereas others have demonstrated higher 

species richness in disturbed habitats (LAWTON ET AL. 1998, DEVRIES &  WALLA 2001, KLEIN 

ET AL. 2002). Such divergent information shows how little is known, despite the ecological 

and economic importance of bees, about the drivers of bee diversity and abundance, 

especially in changing landscapes. However, the worldwide decline of pollinators and its 

consequences on ecological processes is in the focus of several scientists and subject to 

discussions (see GHAZOUL 2005(A), (B), STEFFAN-DEWENTER ET AL. 2005) and, in Europe, 

declines in pollinators and plants could be attributed to anthropogenically induced changes in 

habitats and climates (BIESMEIJER ET AL. 2006). But it is still not yet clear, how habitat 

modification affects the interactions among species. Plant-animal interactions have a 

pervasive influence in community dynamics and diversity, where they play a central role in 

the reproduction of the plants and the life histories of the animals.  

 

Community wide approaches are a fundamental component of any attempt to describe how 

natural communities are structured, how complexes of species interact (MEMMOTT 1999), how 

mutualisms evolve (JORDANO 1987, MEMMOT 1999, BASCOMPTE 2007) and how to choose 

and manage pollinators in crop situations (ALLEN-WARDELL ET AL. 1998). In contrast to the 

complex food webs examined so far (e.g. BERSIER ET AL. 1999, WILLIAMS ET AL . 2002), plant-

animal mutualistic networks embed not only the trophic relationships among mutualistic 

partners (JORDANO 1987), but also the complexities of the evolutionary effects on each other 

that drive coevolutionary processes (THOMPSON 1999). This process is rather diffuse, 

involving sets of generalistic as well as specialised species, and pairwise coevolution (JANZEN 

1980) is very rare in most plant-animal mutualisms (THOMPSON 1982, HOWE 1984).  

 

Pollination webs or networks are highly asymmetrically organized, with the core set of 

generalist species interacting with one another and the most specialized species interacting 

with the most generalist species only (VÁZQUEZ &  AIZEN 2004). This nestedness has been 

shown to increase network robustness, as nested networks appear less prone to the detrimental 
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effects of habitat loss (FORTUNA &  BASCOMPTE 2006) and species extinctions (MEMMOTT ET 

AL. 2004). While a network would not be affected much by the disappearance of specialised 

interaction partners, it would react sensitively to losing generalist pollinators. These losses are 

predicted to be unlikely because the broad floral preferences of generalist pollinators buffer 

them against extinction (FORTUNA &  BASCOMPTE 2006, PEMBERTON &  WHEELER 2006). 

However, PAUW (2007) highlighted, that in a worst-case scenario, the decline of generalist 

pollinators is predicted to trigger cascades of linked declines among the multiple specialist 

plant species to which they are linked. This can lead to the acceleration of biodiversity loss 

(GILBERT 1978, COX ET AL. 1991). We still have a limited understanding of the consequences 

of network patterns for ecosystem stability and evolution (JORDANO ET AL. 2003) although the 

importance of conserving these interactions and associated processes has been stressed 

repeatedly (e.g. PAUW 2007), particularly as humans rely on ecosystem services associated 

with species interactions, such as pollination and biological control. Plant-pollinator 

communities are subject to continuous spatial and temporal changes in species composition, 

which is likely to influence inherent network structure. Environmental conditions and the 

availability of food change spatially as well as temporally throughout a species distribution 

range (NIELSEN ET AL. 2007) or throughout seasons (WOLDA 1988, TYLIANAKIS ET AL . 2005). 

Thus, it is important not to assume all partners to coexist, but to investigate the network 

patterns for the different seasons and habitats separately (MEDAN ET AL. 2006). 

 
Especially in the tropics, initial studies and conservation efforts understandably focused on 

natural ecosystems and, more recently, on their remaining fragments (DAILY 2001). It has 

become clear that reserves are too few, small, isolated, and subject to change, to sustain on 

their own more than a tiny fraction of biodiversity and ecosystem services over the long run 

(BROSI ET AL. 2007). Thus, it is highly important to understand the plant-pollinator network 

patterns in compound landscapes or ‘countrysides’. Researchers became aware, that many 

countryside habitats are actually not as inhospitable as was thought before. For instance, more 

than half of Costa Rica’s native bird species occur in largely deforested countryside habitats, 

together with similar fractions of mammals and butterflies (DAILY 2001). Europe, much of 

which has been “countryside” for a long time, shows clearly that some farming landscapes 

retain more biodiversity and valuable ecosystem services than others (TSCHARNTKE ET AL. 

2002, HOLZSCHUH ET AL. 2007). In the tropics, more data is highly needed as understanding 

how bees and their plants deal with such landscapes is increasingly important for the 

conservation of biodiversity as well as the ecosystem service pollination, as even small 

variations in the number of species can have severe effects on pollination rates. 
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I did the investigations in a highly structured, diverse forest-farmland mosaic in Western 

Kenya, where the endangered forest borders the highly populated and structured farmland. I 

conducted the study in three different habitat types (farmland, forest edge, forest interior), 

which were in close vicinity to each other. My aim was, to investigate the differences as well 

as similarities in composition between the three plant-pollinator webs and to highlight the 

unity, coherence and similarity between them. Furthermore, I was interested, which of the 

networks showed the highest generalization pattern. Special focus was set on spatial and 

seasonal fluctuations and turnover rates, and thus the variability in the composition of the 

flower visitor webs.  

 

 

3.3 Material and methods 

3.3.1 Study time and area 

The study was conducted on 18 study sites located inside and around the northern part of 

Kakamega Forest, six in each of the three habitat types, farmland, forest edge and forest 

interior (Figure 3.1). Data were collected between June 2005 and July 2006 on a monthly 

basis in each study site. 

The study sites were ten by ten meters square, and not farther than 2800m from each other, 

while the farthest distance between study sites of different habitats was 4500m between 

Kabrasi B in the farmland and Salazar B inside the forest. As, depending on the bee species, 

flight distances can reach up to several kilometres (JANZEN 1971, WASER 1982, ROUBIK &  

ALUJA 1983, CRESSWELL ET AL. 2000), bees are theoretically able to move between the chosen 

study sites. 

 

Seasons 

As the rainfall in Kakamega area shows a bimodal pattern, the year is subdivided into four 

seasons. The annual rainfall reaches about 2000 mm. The highest amount of rain is received 

between March – May (long rain season), while the rains between September – November are 

not as heavy (short rain season). Between June – August the climate is cold and dry (cold dry 

season) while the temperatures increase explicitly between December – February (dry season). 

I treated the four seasons separately in the analysis, because a full year exceeds the period of 

pollination activity of the average plant and animal mutualists in this system and thus e.g. 

overall connectance would have been seriously misleading if calculated for the whole year.  
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3.3.2 Community structure 

Plant communities 

In the beginning of the study, the vegetation in the study sites was identified and mapped. The 

cover of canopy, giving shade to the herbal layer and thus the focal plants, was estimated 

using a percentage scale (from 0% = no canopy to 100% = complete canopy coverage). This 

canopy cover in each study site was used for analysing potential influence of the canopy cover 

on the visitation frequency. Parallel to the flower visitor observation units, monthly flower 

counts were conducted to produce a quantitative measure of flower density over time at each 

study site. 

 

Flower visitor communities 

Investigations on flower visiting bees were done once a month on each study site between 

09.00 am and 11.00 am, and between 12.00 am and 02.00 pm, the time period with the highest 

insect activity and the lowest chance of interference by rain. One observation unit consisted of 

two 30-minutes catching periods hour after hour (09.00-09.30 plus 10.00-10.30, or 12.00-

12.30 plus 13.00-13.30). Twelve observation units were conducted on each of the 18 study 

sites. Unknown insects were caught, well known bees only observed and listed to reduce the 

negative impact on the bee community. In every observation unit, every bee, the number of 

flowers and the identity and number of different plant species it visited, were recorded. The 

data on flower abundance were used as a measure for attractiveness and food availability for 

the flower visitors. 

Figure 3.1:  
(A) Satellite image of Kakamega Forest and the surrounding farmland (Landsat ETM + (7); 
05 Feb 2001, spectral bands 5/4/3, contrast enhanced); 
(B) Detail: the study area in the northern part of the forest. 
courtesy of G. Schaab 
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Diversity of flower visitors 

The within-habitat-diversity of flower visitors was calculated using the Rényi diversity 

profiles. The use of non-parametric index families allows the diversity of a community to be 

characterized by a (scale-dependent) diversity profile instead of a numerical value 

(TÓTHMÉRÉSZ 1998). The first of these techniques, the ‘generalized entropy’, was published 

by RÉNYI (1961). 
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α = scale parameter 

 
A profile is calculated by changing the value of α from 0 to infinity. In this thesis, the values 

of α are: 0, 0.25, 0.5, 1, 2, 4, 8, 16, Infinity (Inf.). 

The scale parameter α: 

α = 0 => information on species richness; the profile value is the logarithm of 

the species richness 

 α = 1  => Shannon diversity index 

 α = 2  => logarithm of the reciprocal Simpson diversity index 

α = infinity => provides information on the proportion of the most abundant species. 

Profiles that are higher at α = infinity have a lower proportion of the 

dominant species.  

  
The shape of the Rényi-curve profile is an indication of the eveness. A horizontal profile 

indicates that all species have the same abundance. The less horizontal a profile is, the less 

evenly species are distributed. If the profile for one site is everywhere above the profile for 

another site, then this means that the site with the highest profile is the more diverse of the 

two. If the profiles intersect, it is not possible to order the sites from lowest to highest 

diversity (KINDT &  COE 2005). The Rényi Diversity profiles were produced, using R 2.4 (THE 

R DEVELOPMENT CORE TEAM 2006) and the R package vegan 1.8-3 (OKSANEN ET AL. 2006).  

Due to the fact, that there was not a single “diversity-value” for the flower visitor 

communities of each site, the Rényi diversity index could not be used for further statistical 
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analyses. Thus, the species richness was used, which was defined here as the number of 

species, independent of the species’ abundance and the community’s eveness.  

 

Partitioning of bee species diversity across spatiotemporal scales 

I partitioned biodiversity as followed: (1) α’-diversity, which is the average diversity within a 

plot, (2) γ-diversity, which is the total diversity across plots and (3) β-diversity, the difference 

between γ (total) diversity and α’ (local), which is a measure of the variation of species 

composition between plots or seasons. I used the additive diversity partitioning method 

(LANDE 1996), such that γ = α’ + βs + βt. This technique is insensitive to differences in 

sampling effort among replicates, and therefore, rarefaction of data prior to analyses was not 

necessary. In this study I partitioned the β-diversity in between-site β-diversity (βs) and 

between-season β-diversity (βt) for all habitat types. The temporal turnover in species richness 

between seasons was calculated for each plot (βtplot) within a given habitat type as the total 

number of species found within that plot (over the entire year) minus the mean number of 

species per season for that plot (α’). Overall βt was calculated as the mean βtplot for a given 

habitat type. Spatial turnover βs was calculated as the total number of species found within a 

habitat type over the entire year minus the mean number of species per plot of that habitat 

type (over the entire year). As the results of Rényi-diversity profiles are equations rather than 

single values, I used α’ in the additive diversity partitioning method, which is the number of 

species found in each study site.   

In this study, abundance is defined as the number of individuals of a certain group, visiting 

flowers in the study site during the observation period. 

 

Quantitative similarity measurements 

The similarity between the different study sites was investigated using Morisita-Horn 

Similarity measurements (MORISITA 1959, HORN 1966). This index measures similarity 

between two communities and varies from 0 (no similarity) to about 1.0 (complete similarity). 

The index is nearly independent of sample size and compares abundances, species by species 

(CHAO ET AL. 2005).  
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  CH  =  Morisita-Horn index of similarity between sample j and k 

  Xij, Xik        = number of individuals of species i in sample j and sample k 

  Nj   =  Σ Xij  = total number of individuals in sample j 

  Nk  =  Σ Xik = total number of individuals in sample k 

 
 

3.3.3 Visitation webs 

There are actually two webs to consider when working on plant-pollinator communities. First, 

a plant visitation web which identifies the flower choices made by putative pollinators and 

second, a pollinator web which quantifies pollen transfer, thus showing which insect species 

pollinate which plant species. I investigated the visitation webs only. 

 

Structure of visitation webs 

Following OLESEN &  JORDANO (2002), I analysed different descriptive structural parameters 

to characterize the visitation webs of the different habitat types in the different seasons. I 

counted (1) the number of plant species (P), (2) the number of flower visiting bee species (B), 

(3) the total number of interactions recorded (I), (4) the total number of flower visits 

recorded (N), (5) I calculated the network size ( BPM ×= ) and (6) the connectance 

( ( )MIC /100= ). As in year-long active systems network composition and size can fluctuate 

during the year, impossible interactions between partners that never overlap in time, so-called 

forbidden links (sensu JORDANO ET AL. 2003), can occur. Thus, C based on the overall 

community would overestimate the level of generalization. Therefore, I calculated the overall 

connectance as the average connectance of the seasonal networks, as proposed by MEDAN ET 

AL. (2006). 

Connectance is a scale- or M-independent measure of the generalization level of a network 

(JORDANO 1987). In addition, I used two measures of generalization at the species level: mean 

number of interaction partners (= plants) across bee species (LmBee = I / B) and mean number 

of interaction partners (= bees) across plant species (LmPlant = I / P). Furthermore I determined 

the linkage level (= the number of interaction partners) of the most-connected animal and 

plant species (Lmax). I used Pajek software for Network Analysis (BATAGELJI &  MRVAR 1996) 

to analyze and draw the flower visitor networks. 
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Quantified visitation rate 

Following the definition of KAISER ET AL. (2006), I used the following equation to analyse the 

quantified visitation rate, which takes into account the abundance of flowers and animals in 

the community, and is thus more convincing than qualitative flower visitor webs only. 

( )∑ ∑
= =








 ×=
n

p

m

a
patotal fQ

1 1

ν  

 
Qtotal  =  quantified visitation rate of all animal species to all plant species 
νa  =  total number of visits hour-1 flower -1 of animal species a to plant      

     species p 
fp =  floral abundance of plant species p 

 

Measure of nestedness 

I estimated an index of matrix nestedness (N) by using Nestedness Calculator software 

(ATMAR &  PATERSON 1993(a,b)). Given a particular number of plants (P), bees (B), and 

interactions (L), an isocline of perfect nestedness was calculated for each matrix. The 

unexpected presences and absences of interactions occurring in real data were weighted in a 

way that bounds the so called temperature T from zero (perfect nestedness) to 100 (perfect 

non-nestedness). The idiosyncratic temperature, the contribution of each row (plant) and 

column (bee) to T was calculated. Furthermore, I compared the observed T values with 

expected values under the assumption that presences were randomly assigned to any cell 

within the matrix (null model) to assess the significance of nestedness (Monte Carlo 

simulations, 1000 runs each). Following BASCOMPTE ET AL. (2003) I emphasized nestedness 

instead of disorder. Hence I calculate the nestedness N as: ( ) 100/100 TN −= , with values 

ranging from 0 to 1 (maximum nestedness). Nestedness measures were done for the habitat 

types in total as well as for the different seasons in detail. 

 
3.3.4 Data analysis and statistics 

In this study the received data were listed with Microsoft Office Excel 2003. Rényi diversity 

profiles were produced, and Morisita-Horn Similarity calculated, using R 2.4 (THE R 

DEVELOPMENT CORE TEAM 2006) and the R package vegan 1.8-3 (OKSANEN ET AL. 2006). 

Further statistical tests were conducted using SPSS 12.0. A result was called significant, if the 

significance level was p ≤ 0.05, highly significant, if the level was p ≤ 0.001 and marginally 

significant, if 0.10 ≥ p > 0.05. 
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3.4 Results 

3.4.1 Community structure 

Plant communities 

The total number of plant species was highly similar between the three habitats (farmland: 

152 species, forest edge: 150 species, forest interior: 142 species). But differences in 

vegetation structure were obvious. While, tree species dominated the plant community inside 

the forest, herbal plants built 95% of the vegetation in the farmland. The proportion of 

flowering plants which were involved in interactions was rather low and differed significantly 

between habitats (One-way ANOVA: F(2,15) = 13.386, p < 0.001, Post hoc Tukey HSD). 

While about 32% of the flowering plants were involved in interactions in the farmland, this 

proportion was smaller at the forest edge (24%) and inside the forest (12%) (Table 3.1). The 

numbers of plant species involved in interactions varied between seasons. Especially inside 

the forest, differences were notable, with numbers of interacting plant species varying 

between three (in the long rain season) and 14 (in the short rain season).  

 

Table 3.1:  
Number of plant and bee species and abundance of flowers and bees in the different seasons and habitats 
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farmland long rain 152 36 79 22 31 718 71 28 87 3 631 

 cold dry 152 41 50 14 36 649 54 33 102 3 547 
 short rain 152 51 183 15 27 323 49 24 80 3 243 

 dry 152 39 49 15 31 207 47 29 71 2 136 

  all seasons 152 66 90 38 67 1897 160 64 340 3 1557 

forest edge long rain 150 42 71 20 44 301 65 40 132 4 169 

 cold dry 150 56 84 21 47 410 74 44 132 3 278 
 short rain 150 56 199 21 37 445 65 35 108 2 337 

 dry 150 37 62 10 44 231 64 42 141 2 90 

  all seasons 150 85 104 37 92 1387 194 88 513 4 874 

Forest long rain 142 29 25 3 9 25 9 8 12 1 13 
 cold dry 142 35 39 10 32 452 38 31 45 1 407 

 short rain 142 37 45 14 20 157 29 17 38 3 119 

 dry 142 35 34 4 20 66 23 19 34 1 32 

 all seasons 142 60 36 18 51 700 69 48 129 3 571 
                          

 

As the number of flowers in a study site at a given time is a good predictor for the 

attractiveness of the given study site for flower visitors, I counted the number of flowering 

plant species and their flowers after every observation unit. Smallest numbers of flowers were 

found inside the forest, while highly significantly more flowers were found at the study sites 
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in farmland and forest edge (one-way ANOVA: F(2,213) = 6.899, p = 0.001; Post hoc 

Tukey-HSD). In the farmland and at the forest edge, the numbers of flowers varied 

significantly between seasons (One-way ANOVA: farmland: F(3,69) = 3.731, p = 0.015; forest 

edge: F(3,69) = 6.34, p = 0.001, Table 3.1), with the short rain season showing the highest 

flower abundance. Inside the forest, no differences in flower numbers were found between the 

seasons (One-way ANOVA: F(3,69) = 1.071, p = 0.367).  

 

Flower visitor communities 

In total I found 121 species of bees on the 18 study sites in a one-year observation period, 

with the forest edge being the significantly most diverse habitat with 92 bee species, while in 

farmland and forest interior only 67 respectively 51 species were found (One-way ANOVA:  

F(2,32) = 5.641, p = 0.008). Not only highest species richness but also highest eveness was 

found at the forest edge (Figure 3.2A). Bees were most abundant in the farmland (One-way 

ANOVA: F(2,32) = 7.275, p = 0.002), due to the high proportion of social bees (especially Apis 

mellifera) in the flower visitor community. The proportion of solitary bees in the flower 

visitor abundance differed greatly between habitats. While the proportion was relatively low 

Figure 3.2:  
Rényi Diversity Profiles of the bee species communities; the steeper the shape of a profile, the lower is 
the eveness. 
(A): Profiles of all species in the different habitats; (B) For the different seasons in the farmland; 
(C) For the different seasons at the forest edge; (D) For the different seasons inside the forest. 
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in the farmland as well as inside the forest (farmland: solitary bees: 17%, forest interior: 

solitary bees: 18% of all flower visits recorded), the proportion was significantly higher at the 

forest edge (solitary bees: 37%, One-way ANOVA: F(2,16) = 5.469, p = 0.016, Post hoc Tukey 

HSD). Inside the forest, highly significantly bigger bee species occurred (One-way ANOVA: 

F(2,719) = 11.627, p < 0.001, Post hoc Dunnett).  

The bee species composition did not only differ on the spatial but also on a seasonal 

scale. In all habitats, highest numbers of species were found in the cold dry season, while the 

highest eveness values occurred in the dry season (Figure 3.2 B-D). Comparisons of 

Rényi-profiles were difficult, due to crossings of the profiles. The highest abundance of social 

bees was found in different seasons depending on the habitats. In the farmland, the highest 

abundance was found in the long rain season, at the forest edge in the short rain season, and 

inside the forest in the cold dry season (Table 3.1). For detailed information on study site 

level see Appendix 3.1. 

 

3.4.2 The most important plant and bee species in the webs 

In all three habitat types, the herb Justicia flava was the plant with the highest number of 

flower visits (farmland: 24.8% of all flower visits, forest edge: 46.9%, forest interior: 39.3%). 

Furthermore, it was the most connected plant species, with 39 interaction partners in the 

farmland, 40 inside the forest and 59 at the forest edge (Table 2, Appendices 3.2-3.10). The 

other important species differed between habitats as shown in Table 2. In all habitats, the 

three most important plant species were involved in more than 50.0% of the observed 

interactions, and showed a highly generalized pattern. 

The most abundant bee species was the honeybee Apis mellifera, which was involved 

in at least 60.0% of the observed interactions (farmland: 75.0%, forest edge: 61.9%, forest: 

80.0%) and dominated the bee communities. It was the most connected bee species with 11 

interaction partners in the forest, 12 at the forest edge and 25 in the farmland. The three most 

important bee species were involved in more than two-thirds of all observed interactions. 

While Apis mellifera was not only very dominant, but also visitor to a great number of plant 

species, some of the other dominant bee species were rather “specialized”, visiting only a few 

plant species, but with a high frequency (Table 3.2).  

The most dominant bee and plant species were very common and rather habitat-non-

specific species, and thus, found at most of the 18 study sites (Apis mellifera (18 sites), 

Xylocopa calens (13 sites), Meliponula bocandei (12 sites), and Amegilla aff. langi (11 sites)) 

and in all seasons.  
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Table 3.2: 
Proportions of the most important plant and bee species in the different habitat types 
 plant species % no. links bee species % no. links 
              
Farmland Justicia flava 24.83 39 Apis mellifera 75.00 25 
 Bidens pilosa 15.66 17 Meliponula bocandei 6.75 4 
 Tithonia diversifolia 14.13 7 Xylocopa calens 2.27 2 
forest edge Justicia flava 46.94 59 Apis mellifera 61.93 20 
 Cordia abyssinica 10.09 1 Ceratina sp. 4.10 12 
 Bidens pilosa 4.11 11 Amegilla acraensis 1.80 2 
Forest Justicia flava 39.28 40 Apis mellifera 80.00 11 
 Harungana madagascariensis 26.00 1 Xylocopa melissa 3.42 2 
 Maesa lanceolata 19.28 1 Meliponula bocandei 1.14 2 
              

 

 

3.4.3 Partitioning of bee species diversity across spatiotemporal scales 

The different habitat types did not show substantial differences in the relative partitioning of 

diversity across space and time. In each of the three habitats, spatial species turnover was 

relatively high, while temporal turnover was rather low (Table 3.3). At the forest edge spatial 

as well as temporal species turnover were significantly higher compared to the other two 

habitat types (One-way ANOVA: spatial turnover: F(2,17) = 9.431, p = 0.002; temporal 

turnover: F(2, 17) = 5.069, p = 0.021), which is consistent with the larger flower visitor network 

at the forest edge. Correcting for the different web sizes, differences were not significant 

between habitats (Table 3.3). High β-diversity values indicate large differences between sites 

or seasons in the identity of species encountered. 

Overall, at the level of sampling conducted, α-diversity comprised 6.5% of the total 

diversity of the study region (121 bee species). Temporal and spatial turnover comprised 

11.6% and 35.2% respectively of total diversity and the remaining 46.7% represented 

turnover in species between the different habitat types. 

 

 

Table 3.3:  
Proportion of total (γ) diversity partitioned into α diversity and temporal (βt) and spatial (βs) turnover 

 α % of γ βtplot % of γ βsplot % of γ γ 
        

Farmland 9.00 7.20 14.67 11.73 43.33 34.67 125.00 
forest edge 11.58 6.71 21.08 12.23 59.33 34.41 172.42 
Forest 5.17 5.33 9.83 10.15 36.00 37.18 96.83 
Total 8.58 6.53 15.19 11.56 46.22 35.17 131.42 
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Similarities between study sites 

In comparison to the species turnover rates, which I calculated above, the Morisita Horn 

similarity measurements take into account not only qualitative data, but also the abundance of 

the flower visitors. Morisita-Horn Similarity values between the bee species compositions in 

the different habitats were very high (farmland – forest edge: S = 0.97, farmland – forest: S = 

0.99, forest edge – forest: S = 0.96). 

Taking into account the whole flower visitor community, I found the species compositions to 

be highly similar between the different seasons in the farmland (Table 3.4A). In the other two 

habitats similarity values were lower between the seasons, showing a higher degree of 

temporal species turnover compared to the farmland. Remarkable were the comparatively low 

similarity values between the cold dry and short rain season inside the forest as well as the 

cold dry and short rain season at the forest edge in comparison to all other seasons and 

habitats. The former four units were characterized by high numbers of flowers, high numbers 

of bee species and high numbers of interactions (Table 3.1).  

 Excluding the social and highly dominant bees from analysis, similarities between the 

units decreased significantly (farmland – forest edge: S = 0.77, farmland – forest: S = 0.43, 

forest edge – forest: S = 0.45, Table 3.4B), but the pattern was still the same: especially inside 

the forest, bee species compositions in the cold dry and short rain seasons were dissimilar 

compared to the other bee communities in other seasons and / or habitats. 

  

3.4.4 Visitation webs 

Structure of visitation webs 

Although the highest number of flower visits was found in the farmland (farmland: N = 1897, 

forest edge: N = 1387, forest interior: N = 700), highest number of recorded interactions was 

found at the forest edge (forest edge: I = 194, farmland: I = 160, forest interior: I = 69) as well 

as the biggest network (forest edge: M = 3404, farmland: M = 2546, forest interior:  

M = 918; Figure 3, Table 3.5). Highest connectance was found in the forest (forest: C = 20.16, 

forest edge: C = 9.45, farmland: C = 10.83). The mean number of interactions across bee 

species (lmBee) as well as plant species (lmPlant) was highest in the farmland compared to the 

other two habitat types (farmland: lmBee = 2.52, lmPlant = 2.28, forest edge: lmBee = 2.16, lmPlant 

= 1.95, forest interior: lmBee = 1.55, lmPlant = 0.80). 

 The flower visitor web patterns differed highly between seasons. While the biggest 

network in the farmland was found in the long rain season (M = 682), smallest web and 

highest connectance values were found in the short rain season (M = 405, C = 12.09). At the 
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forest edge the biggest network was found in the cold dry season (M = 987), while smallest 

network and highest connectance appeared in the dry season (M = 440, C = 14.54). The 

biggest network inside the forest was found in the cold dry season (M = 320), the smallest 

network and highest connectance in the long rain season (M = 27, C = 29.63, Table 3.5, for 

details see Appendices 3.2-3.10). 

 

 

Table 3.4:  
Morisita-Horn Similarities of the flower visiting bee species in the different habitats and 
seasons; (A) all bee species, (B) solitary bee species only (lr = long rain season, cd = cold dry 
season, sr = short rain season, d = dry season 

farmland forest edge forest 
A 

lr cd sr d lr cd sr d lr cd sr 

cd 0.969                   >0.95 

sr 0.988 0.968                 >0.90 

fa
rm

la
n

d
 

d 0.991 0.989 0.983               >0.85 

lr 0.978 0.991 0.971 0.988             <0.849 

cd 0.761 0.861 0.772 0.803 0.850             

sr 0.908 0.955 0.905 0.933 0.959 0.874           

fo
re

st
 e

d
g

e 

d 0.995 0.979 0.979 0.993 0.988 0.786 0.939         

lr 0.991 0.937 0.970 0.973 0.949 0.706 0.864 0.980       

cd 0.854 0.917 0.863 0.887 0.908 0.892 0.899 0.871 0.816     

sr 0.871 0.915 0.875 0.894 0.915 0.850 0.911 0.892 0.837 0.961   fo
re

st
 

d 0.985 0.985 0.985 0.989 0.990 0.824 0.933 0.986 0.961 0.911 0.922 

             

farmland forest edge Forest 
B 

lr cd sr d lr cd sr d lr cd Sr 

cd 0.614                   >0.75 

sr 0.489 0.446                 >0.50 

fa
rm

la
n

d
 

d 0.609 0.829 0.367               >0.25 

lr 0.894 0.589 0.420 0.550             <0.249 

cd 0.501 0.522 0.304 0.367 0.572             

sr 0.675 0.441 0.252 0.465 0.619 0.276           

fo
re

st
 e

d
g

e 

d 0.796 0.541 0.277 0.557 0.747 0.301 0.902         

lr 0.480 0.447 0.257 0.402 0.529 0.533 0.366 0.411       

cd 0.102 0.170 0.130 0.200 0.109 0.260 0.074 0.055 0.529     

sr 0.113 0.074 0.028 0.082 0.132 0.132 0.234 0.221 0.369 0.690   fo
re

st
 

d 0.538 0.378 0.258 0.354 0.590 0.462 0.250 0.386 0.465 0.545 0.537 
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A. Forest Edge 

bees plants 

B. Farmland 

bees plants 

C. Forest Interior 

bees plants 

Figure 3.3:  
A network approach to plant-bee mutualisms. Every red dot 
indicates a bee or plant species. A bee and a plant interact, if 
there is a qualitative link (black line) between them; bees and 
plants are ordered after the number of interaction partners 
and the number of interactions with their partners. Thus, 
generalist interaction partners are found at the top, specialists 
at the bottom. Obviously, the biggest network is found at the 
forest edge. All networks are highly asymmetric.  
 
A: number of bee species: 67, number of plant species: 38 
B: number of bee species: 92, number of plant species: 37 
C: number of bee species: 51, number of plant species: 18 
    Identities of bees and plants are listed in Appendices 2 - 10 
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Quantified visitation rate 

The quantified visitation rates were calculated for each habitat, taking into account the 

influence of the abundance of bees as well as plants on the pattern of interactions. The total 

quantitative flower visitor webs of farmland and forest edge were of more than double the size 

of the flower visitor web found inside the forest (farmland: Qtotal = 24270, forest edge: Qtotal = 

22648, forest interior: Qtotal = 10844; Table 3.5).  

After subdividing the data into seasonal units, the flower visitor webs in farmland and at the 

forest edge were biggest in the short rain season, while the biggest web inside the forest was 

found in the cold dry season (farmland: Qshort rain = 9480, forest edge: Qshort rain = 14001, forest: 

Qcold dry = 8773; Table 3.5). The quantified visitation rate differed highly between seasons, 

especially inside the forest, where the flower visitor web size of the cold dry season built 

80.1% of the whole year’s quantified network. Differences in size between the seasons in the 

other two habitat types were significantly lower, with the short rain season building 39.1% in 

the farmland and 61.8% at the forest edge. 

 

 

Table 3.5:  
Structure of the flower visitor webs in the different habitats and seasons (M = network size, C = connectance, 
LmPlant = no. interactions across plant species, LmaxPlant = no. interaction partners of the most-connected plant 
species, LmBee = no. interactions across bee species, LmaxBee = no. interaction partners of the most-connected bee 
species 
  season M C LmPlant LmaxPlant LmBee LmaxBee Quant visit.rate 
                  
Farmland long rain 682 10.41 3.23 11 2.29 17 6901 
 cold dry 504 10.71 3.68 16 1.50 9 5607 
 short rain 405 12.09 3.26 14 1.81 11 9480 
 dry 465 10.11 3.13 20 1.52 10 2282 
 all seasons 2546 10.83 2.28 39 2.52 25 24270 
forest edge long rain 880 7.39 3.25 28 1.48 8 1668 
 cold dry 987 7.49 3.52 26 1.57 13 3812 
 short rain 777 8.37 3.20 16 1.76 12 14001 
 dry 440 14.54 6.40 32 1.45 5 3167 
 all seasons 3404 9.45 1.95 59 2.16 20 22648 
Forest long rain 27 29.63 3.00 6 1.00 2 223 
 cold dry 320 11.88 3.80 25 1.19 8 8773 
 short rain 280 10.36 2.07 12 1.45 8 913 
 dry 80 28.75 5.75 19 1.15 3 935 
 all seasons 918  20.16 0.80 40 1.55 11 10844 
                

M = network size, C = connectance, LmPlant = no. interactions across plant species, LmaxPlant = no. interaction partners of the most-connected 
plant species, LmBee = no. interactions across bee species, LmaxBee = no. interaction partners of the most-connected bee species 
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Measure of nestedness – asymmetry of the flower visitor webs 

Nestedness organizes the community in a highly asymmetric way, with specialist species 

interacting only with generalist (and so less fluctuating) species and generalist species 

interacting with generalist as well as specialist species.  

In all three habitat types, flower visitor webs were highly nested (farmland: N = 0.975, forest 

edge: N = 0.976, forest: N = 0.967; Figure 3.4) and the interactions among species thus 

asymmetrically organized. The networks departed highly significantly (p < 0.001) from 

randomly assembled webs (Table 3.6), and thus, a large number of species with few 

interactions coexisted with a relatively small number of “super”-generalists. Nestedness 

increased with the complexity (number of interactions) of the network: for a given number of 

species, communities with more interactions were significantly more nested. 

 

 

 

Table 3.6:  
matrix temperature and nestedness of the bee-flower communities in the different seasons and habitats 

Habitat type Season matrix temperature nestedness 
no. of 

species 
averg. matrix 
temperature 

Farmland long rain 9.85°       0.901***  53  24.73°   
 cold dry 10.07°       0.899**     50  21.84°       
 short rain 6.56°       0.934** 42  24.53°       
 dry 5.44°       0.946** 46  20.49°       

forest edge long rain 10.11°       0.899ns 64  14.50°         
 cold dry 6.17°       0.938*** 68  19.72°       
 short rain 6.01°       0.931** 58  18.78°       
 dry 14.91°       0.851** 54  32.57°      

Forest long rain 21.15°        0.789ns               12  21.25°       
 cold dry 4.01°           0.960*** 42  24.68°       
 short rain 9.05°       0.910* 34  17.42°       
  dry 3.27°       0.967**    24   37.42°       
Farmland all seasons 2.40°       0.976***   105  18.23°       
forest edge all seasons 2.46°       0.975*** 129  16.68°       
forest  all seasons 3.25°                0.968***  69  19.14°       
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Figure 3.4:  
Nestedness calculation of the bee-plant interactions in the three habitats 
farmland, forest edge, forest interior; the values of nestedness were 
N = 0.975 (forest edge), N = 0.976 (farmland), N = 0.968 (forest). Numbers 
label bee and plant species, which are ranked in decreasing number of 
interactions per species. A filled square indicates an observed interaction 
between plant species I and animal species j. the line represents the isocline 
of perfect nestedness. On a perfectly nested scenario, all interactions would 
lie before the isocline (on the left side). 
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3.5 Discussion 

3.5.1 Community structure 

The investigations were conducted in three habitat types, which differed in their plant 

composition and vegetation structure. Although the numbers of plant species I found in each 

habitat were rather similar, the proportion of flowering species differed highly, with the forest 

interior presenting the smallest number of flowering species. However, the number of plant 

species involved in interactions was rather small in all habitats. While 32% of the flowering 

species were involved in interactions in the farmland, only 24% respectively 12% were 

involved at the forest edge and inside the forest. Although the total number of flowering plant 

species was higher at the forest edge, the number of plant species involved in interactions did 

not differ from the farmland. As some plant species had only very few numbers of flowers, 

they might have been not attractive enough for flower visiting bees as other plant species 

showed bigger floral displays and thus provided the bees with bigger food resources. 

Furthermore, I observed high numbers of singletons (bees which occurred only once in a 

habitat during the whole observation period) especially at the forest edge and inside the forest. 

These possibly rare species tended to visit the most generalized and abundant plant species, 

ignoring plants with smaller amounts of flowers and a rather patchy distribution. However, as 

observations were conducted at given times of the day only, flowers were possibly visited in 

the non-observed periods. Furthermore, as I did not investigate the mutualistic interactions 

between flowers and non-bee flower visitors like flies, beetles or sunbirds, I investigated a 

subweb only. Thus, plants with flower syndromes not attractive or suitable for bees were 

counted but were not visited by bees due to the forbidden links (sensu JORDANO ET AL. 2003). 

Furthermore, the flower visitor community of trees was definitely underestimated, because 

observations were done from the forest floor, and thus the focus was on the understorey plant 

community. 

In its lifecycle, a bee needs several different resources, like nectar, pollen, specific 

nesting sites or nesting materials (WESTRICH 1996, GATHMANN &  TSCHARNTKE 2002). All 

investigated habitats were richly structured, such that enough nesting sites for bees should 

have been available in all these habitats. Other factors were of higher influence on the bees’ 

lifecycle, like the food resources (number of flowers) and abiotic factors like temperature and 

humidity. In this study, the forest edge was the most diverse habitat type in terms of plant as 

well as bee species richness. As this habitat is characterised by a rather high habitat 

heterogeneity (large number of different nesting sites), the conjunction with the other habitats, 

and in this case a great number of flowers as well, it was not surprising to find the highest bee 
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species richness here. Bee species richness correlated with flower abundance, and was thus 

resource-limited. Consequently, smallest bee species richness and abundance were found in 

the flower-poor forest interior.  

Most flower visitors in all three habitats were extremely rare, and we found a high 

number of singletons and doubletons (52% with one or two interactions), which was similar to 

numbers presented by PETANIDOU &  POTTS (2006) on species rich Mediterranean pollinator 

communities. 

 

Spatiotemporal variation in flower visitors 

I found clear variation on the seasonal scale in flower abundance as well as diversity and 

abundance of bees. The increase in bee abundance that I observed in certain seasons 

according to the habitats was concomitant with higher flower abundance per plot at that time, 

while the increase in bee diversity was not concomitant with higher flower diversity at that 

time. Thus, my results differed from TYLIANAKIS ET AL . (2005), who found high 

Hymenoptera diversity in the seasons with higher flowering herb numbers at that time. 

In the farmland, highest abundance of bees was found in the long rain and cold dry seasons. 

Although this was not the period of highest flower abundance in the study sites, it is the usual 

flowering season of crops (especially beans and cowpeas) which offer a high amount of 

flower and thus food supply, and increased this habitat’s attractiveness to the bees. At the 

forest edge, the pattern was divided between social and solitary bees. Social bees were most 

abundant in the short rain season, when flower abundance was highest. Instead, solitary bees 

were most abundant in the dry season, the season with the smallest flower numbers. As the 

numbers of flowers in the other two habitats were even smaller during that season, bees 

possibly migrated to the forest edge because of the higher food availability there.  

The results suggest, that the reduced flower quantity inside the forest shaped not only 

bee species number of the community, but favoured selectively larger bees. Large bees are 

able to invade new habitats faster respectively are able to nest far from their forage source due 

to their greater dispersal ability (GATHMANN ET AL . 1994). Furthermore, HERRERA (1997) 

found, that due to size related thermal constraints, small bees foraged only under high-

irradiance conditions, while bigger bees selected conditions of low irradiance. Thus, 

variations in pollinator compositions within and between habitats and seasons seemed to be 

influenced by thermal and resource limitations. These findings imply that although the most 

important plant species occurred in all habitat types, restrictions for migration are existent.  
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In all habitat types high rates of spatial turnover were found. Especially inside the forest, the 

spatial turnover rate explained a high proportion of the γ-diversity. These results suggest, that 

especially inside the forest, the bee species compositions differ more between study sites 

compared to the open habitats. This pattern might be caused by (1) different flower displays 

in different study sites, (2) the overall small bee community inside the forest, and thus just an 

artefact, (3) the flower-visiting behaviour of the bees inside the forest. Focusing on a single 

plant species (Justicia flava, chapter 3), I found distinct spatial autocorrelation in flower 

visitor composition as a possible indirect sign for spatial explicit trap-lining behaviour of the 

bees. The bees’ behaviour seemed to result from the small numbers and scattered distribution 

of flowers, forcing them to fly relatively long distances and to revisit all flowers on the 

trapline. 

While the overall bee species composition was highly similar between the habitats, 

differences were obvious focusing on the different seasons. Although the temporal turnover 

rates in all habitat types were relatively low, they did still explain a greater fraction of the 

γ-diversity than did the α-diversity. Especially the cold dry and short rain seasons at the forest 

edge and inside the forest, which showed highest bee diversities, were highly dissimilar to bee 

species compositions in other seasons and habitats. The former two seasons seemed to be 

most attractive to the bees, most likely because of big flower displays as well as comparably 

good nesting conditions, especially in the cold dry season (personal observations). 

Furthermore, the uniqueness of the bee species composition can increase with increasing bee 

species richness. 

46.7% of the overall γ-diversity represented turnover in species between the different 

habitat types. Thus, the overlap in species composition and diversity between the habitats was 

high. As all study sites were situated in close vicinity to each other, bees were theoretically in 

the position to migrate between the study sites. If bees really migrate between extremely 

different habitats (open farmland versus dense forest) is still not yet proved and needs to be 

investigated in more detail, e.g. with the help of radio tracking techniques. 

 

3.5.2 Visitation webs 

Structure of visitation webs 

The three webs were characterized by a few very abundant species and many rare species with 

small numbers of interactions. Corresponding with the species richness distribution between 

habitats, I found the smallest visitation web inside the forest, while the biggest network 

occurred at the forest edge. 
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The web connectance in all three habitats was relatively high, compared to 29 plant-pollinator 

systems compiled by OLESEN &  JORDANO (2002). As I sampled a subset of a whole web only, 

this could explain the discrepancy in connectance between this and other studies. The highest 

connectance and thus the most generalized network (JORDANO ET AL. 2006) were found inside 

the forest, meaning that each bee species was connected with a relatively large fraction of the 

plant species and vice versa. Consequently, in the bigger webs in the farmland and at the 

forest edge, that had lower connectance values, species had a relatively smaller portion of the 

interactions of the whole network. However, total numbers of interaction partners were higher 

compared to the forest network (see 3.5.3).  

The big flower displays of crop plants (beans, cowpeas) increased the suitability and 

attractiveness of the open habitats outside the forest extremely. However, the structure of the 

visitation webs differed between seasons. Due to drought and/or low temperatures, numbers 

of flowers varied dramatically, leading to decreasing numbers in flower visitors in periods of 

food scarcity. Especially inside the forest I found high seasonal fluctuations in flower display 

and consequently in visitation web size. The results emphasize, that it is extremely necessary 

to create year-long networks from consecutive rather than cumulative data or networks 

(BASILIO ET AL. 2006). Consecutive webs reflect the pattern of interactions during a discrete 

time span, and do thus describe interactions only among partners with coincident phenologies, 

and reveal oscillations in the number of partners and their degree of generalization, and thus 

changes in the connectance of the system. As I only investigated the time period of one year, I 

was not able to take into concern annual differences in species richness and abundance of bees 

and plants which are most likely (HERRERA 1988). 

 

Quantified visitation rate (QVR) 

Taking into account not only the qualitative components of the flower visitor web, like web 

size and number of interaction partners, but also the abundance of bees and flowers, the 

flower visitor webs in farmland and at the forest edge were double the size of the web inside 

the forest. Besides other reasons, this was due to the high abundance of social bees which 

were highly attracted by the big flower displays of the crop plants. Although the qualitative 

flower visitor network was biggest at the forest edge, QVR was highest in the farmland as 

abundance of honeybees was very high.  

 Outside the forest, the seasonal pattern of the quantified visitation rate did not 

correspond with that of the qualitative flower visitor web size, as highest QVR occurred in the 

short rain season. The mass flower of different crops in the long rain and cold dry season, in 
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which the biggest qualitative networks were found, might have been the reason. First of all, a 

mass flower creates a big food supply to the flower visitors. Furthermore, social and solitary 

bees react differently, as the social bees need to provide their colony with food, while the 

solitary bees need much smaller amounts of nectar and pollen to provide their nests. Thus, the 

social bees, which especially influence the QVR, might have shifted during the crop flower 

into the farms, while the solitary bees might, due to avoidance of competition, stay at the wild 

flowers. Inside the forest, QVR rate was highest in the cold dry season as was the qualitative 

network size. However, I found a strong seasonality in both the qualitative and the 

quantitative component of the network. Inside the forest, the quantitative pollinator web in the 

cold dry season built more than 80 % of the year’s web, whereas seasonal differences in the 

other habitats were much smaller. It seemed like abiotic factors, especially comparatively low 

temperatures and high humidity influenced the flower production as well as the activity 

pattern of the flower visiting bees inside the forest most. Especially in the rainy seasons, 

temperatures are usually very low, and flowers, fruits and bee-nests were found moulding 

(personal observations). 

 

3.5.3 Key species and generalization 

In this study, plants tended to be more generalistic compared to the bees. This pattern might 

be an observation artefact as observations on interactions were done focusing on the plant 

respectively their flowers rather than focusing on the visiting insects. 

Although the most generalized flower visitor network was found inside the forest, the species 

with the most interactions partners (= the most generalized species) occurred in the farmland. 

The three most important plant species in each of the three habitat types were involved in 

more than 50% of the observed interactions. These species interacted with at least 36% of all 

animal species and were thus the “supergeneralists” of this study (farmland: 39.4%, forest 

edge: 36.4%, forest interior: 60.1%) Especially the herbal plant Justicia flava was found to be 

a keystone species. Flowers of this plant were found throughout the year in every habitat, 

which made it an important nectar resource for the bees. Bidens pilosa and Tithonia 

diversifolia, the other two dominant species in the farmland, showed the same pattern in their 

flowering phenology. At the forest edge and inside the forest, two of the three plant species 

showed also a year through flowering phenology, but in each habitat one species showed 

seasonal flowering patterns (forest edge: Cordia abyssinica, forest: Harungana 

madagascariensis). Therefore, the problem of forbidden links was more acute in these 

habitats. 
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The three most important bee species were involved in more than 65% of the observed 

interactions. Especially the bee species Apis mellifera and Meliponula bocandei showed a 

high linkage level. These long-lived eusocial groups interact with a greater fraction of the 

available flowers (ROUBIK 1980) because a greater turnover of flower species during their 

longer flight periods promotes “sequential specialization” (HEINRICH 1979) in contrast to 

solitary bees with short activity periods (CRUDEN 1972). The three most important bee species 

interacted with at least 17.5% of all plant species (farmland: 19.4%, forest edge: 17.5%, forest 

interior: 21.7%). The most dominant bee species was the honeybee Apis mellifera, which was 

found in high abundances in all habitat types. This indigenous species was responsible for the 

highest proportion of interactions in all three webs. While it’s proportion of links at the forest 

edge was 10.3%, the proportion increased with decreasing web size (farmland: 15.6%, forest 

interior: 21.7%). The results suggest that as the networks become increasingly diverse, each 

species “dilutes” its interaction strength because it interacts with a smaller fraction of the 

available partners and because the average dependence decreases as the absolute number of 

mutualists increases. These findings concurred with earlier findings of pollination networks 

(JORDANO 1987, OLESEN &  JORDANO 2002).  

Some of the most important plant and bee species were highly linked in all habitat 

types, while others, like Tithonia diversifolia and Cordia abyssinica were restricted to the 

farmland respectively the forest edge. In all habitats very high numbers of rare species were 

characteristic (proportion of bees and plants, which occurred only once or twice over the 

whole observation period; bees (plants): farmland: 31.9% (14.4%), forest edge: 37.9% 

(37.9%), forest interior: 87.2% (17.4%))  

 

Asymmetry of the flower visitor  webs 

The networks in this study showed high nestedness. These findings concurred with earlier 

findings of pollination networks (e.g. BASCOMPTE ET AL. 2003). Nested networks are highly 

cohesive; that is, the most generalist plant and animal species interact among them generating 

a dense core of interactions to which the rest of the community is attached. Thus, a species is 

more unlikely to become isolated of the network after the elimination of other species when 

embedded on such a highly cohesive network. Second, nestedness organizes the community 

in a highly asymmetrical way, with specialist species interacting only with generalist (and so 

less fluctuating) species. This asymmetrical pattern can provide pathways for rare species to 

persist. Nestedness organizes complex coevolving networks in a specific way between highly 

specialized pairwise coevolution and highly diffuse coevolution. It results in both a core of 
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taxa that may drive the evolution of the whole community, and in asymmetric interactions 

among species with different specialization levels. Furthermore, the seasonal and spatial 

variation, and the resulting existence of forbidden links limits the growth of interaction 

networks, and confers then broad-scale behaviour. Thus, nested networks show potential 

implications for community persistence, as they are more robust to the eventual loss of 

keystone species, which are the backbone of the interactions (JORDANO ET AL. 2003).  

 

In this study, I found bigger flower visitor networks outside the forest in habitats which on 

one side were more disturbed than the forest but on the other hand offered higher amounts and 

a better seasonal distribution of resources to the bees compared to the forest. Thus, in this 

highly structured forest-farmland mosaic, bees seemed to be highly limited by resources 

rather than directly by other factors of habitat quality. However, to offer a sufficient amount 

of floral resources to the flower visiting bees, landscapes need to stay structured and diverse, 

as the amount of food resources will decrease with increasing monotony of the farmland. 

The seasonal variation was highest inside the forest, while the different seasons were more 

similar in the other two habitats. Thus, these open areas might work as a reservoir in periods 

of very small flower amounts inside the forest and bees could be able to move between 

farmland and forest, which needs to be investigated in future. Furthermore, as I found a high 

spatial overlap in bee species composition between the different habitats, conserving not only 

the forest-nature-reserve but also the structure of the surrounding farmland, and thus the 

whole landscape mosaic, is an important step in conserving bees and the ecosystem service 

pollination.  
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4. JUSTICIA FLAVA (ACANTHACEAE ):  

INFLUENCE OF DIVERSITY AND 

ABUNDANCE OF FLOWER VISITORS ON 

THE REPRODUCTIVE SUCCESS  
 

 

 

4.1 Abstract 

Destruction and fragmentation of landscapes can lead to reduction in species richness and 

abundance of pollinator guilds and thus to a reduction in the reproductive success of plants 

relying on pollination by these animals. 

I investigated the pattern of diversity and abundance of flower visitors of an abundant 

herbal plant species, Justicia flava (Acanthaceae) in a tropical agriculture-forest mosaic in 

Western Kenya. Furthermore I analysed the influence of diversity and abundance of the 

flower visiting insects on the reproductive success of this self-incompatible plant. 

The flowers were visited by 74 species of insects in total, but only by 2-19 species per study 

site. While highest species richness was found in the farmland, highest diversity (species 

richness + eveness) was found inside the forest. Due to a high dominance of honeybees, the 

abundance of flower visitors outside the forest was extremely high. Up to a distance of 1500m 

from the forest, the number of bee species visiting the flowers of Justicia flava decreased 

significantly with increasing distance from the forest whereas the flower visitor composition 

on study sites farther from the forest did not show any dependency on the distance. 

The reproductive success of the self-incompatible plant was neither influenced by the 

diversity nor by the abundance of flower visitors, due to the fact, that J. flava seemed to be a 

keystone food resource for several bee species and thus experienced high visitation 

frequencies. Thus, the plant was not pollinator-limited, but rather resource-limited due to a 

very dry observation season. Even if diversity and abundance of pollinators did not show any 

direct influence on the fruit and seed set of Justicia flava in this rather short observation, the 

composition and plant communities are of great importance for the long term preservation of 

maintenance of plant pollinator systems. 
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4.2  Introduction 

The decline of biodiversity and its effect on the composition of ecosystems and the 

interactions between organisms and populations is one of the most urgently researched and 

discussed topics in ecology. CHAPIN ET AL. (1997) highlighted human-induced changes in 

biotic diversity and alterations to the structure and functioning of ecosystems as the two most 

dramatic ecological trends of the past century. Especially land-use practices, like 

intensification of agricultural land use, deforestation, urbanization and overexploitation 

strongly affect species composition and diversity. Thus ecosystems suffer not only directly 

through changes in ecosystem processes (like productivity, nitrogen mineralization rate, etc.). 

Moreover a loss of differential environmental sensitivity, which is important for an 

ecosystem’s ability to react to a changing environment (e.g. climatic changes), is the 

consequence. This loss is caused by a loss of genetic and species diversity. To understand 

how changes in species composition affect ecosystem processes and services is currently a 

major aim of ecology (FONTAINE ET AL. 2006), and links between species and ecosystem 

processes are emerging as a problem of fundamental concern (CHAPIN ET AL. 1997). 

Pollination is an ecological process involving 90% of flowering plant species by some 

estimates (NABHAN &  BUCHMANN 1997) and providing for 15%-30% of the worlds nutrition 

(O’TOOLE 1993, ROUBIK 1995, KREMEN ET AL. 2002, KLEIN ET AL. 2006). The loss of native 

habitats threatens natural plants as well as their mutualistic visitors, and thus affects the 

agricultural production by degrading the services of pollinators (FOLEY ET AL. 2005). 

The mutualistic interactions between plants and their pollinators are manifold and 

highly complex. The rates of visitation of pollinators may vary in relation to various features 

of floral design, e.g. flower colour (KAY 1978, WASER &  PRICE 1981, STANTON 1987, 

USHIMARU 2007), size (BELL 1985, ECKHART 1991, CONNER &  RUSH 1996), nectar production 

(M ITCHELL 1994), floral morph (WOLFE &  BARRETT 1987, HUSBAND &BARRETT 1992), and 

gender in unisexual species (KAY ET AL. 1984, AGREN ET AL. 1986, SCHEMSKE ET AL. 1996). 

Insect visitation may also be significantly influenced by the display size, the spatial and 

temporal arrangement of flowers in the floral display (HANDEL 1985, KLINKHAMER &  DE 

JONG 1990) and in a given neighbourhood (FEINSINGER ET AL. 1991, KUNIN 1993). Thus, 

diversity of pollinators plays a fundamental role in the response to changing environmental 

conditions. Flower displays that only attract single species, may be subject to periods of 

extremely low visitation, if these visitor species recruit to other foraging locations (a 

behaviour that can be observed in several eusocial bee species). Pollination services provided 

by a diverse pollinator community are less sensitive to changes in the behaviour or abundance 
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of individual species and are more likely to remain stable under changing climate conditions, 

e.g. as pollinator species replace each other along a temperature gradient according to their 

thermal preferences (WILLMER 1983, JOHNSON &  STEINER 2000, GHAZOUL 2006).  

Besides these indirect effects of pollinator diversity through compensation of temporal 

and spatial variation and a possibly higher cross-pollination rate through differences in 

pollination behaviour, there is also a potential direct effect through an increase in fruit and 

seed production with increasing diversity of pollinators. Pollination limitation has usually 

been related to the visitation rate or abundance of pollinators (KUNIN 1993, LARSON ET AL. 

1999, HERRERA 2000, MORANDIN ET AL. 2005). Only few recent studies are dealing with the 

direct influence of pollinator diversity on the reproductive success of plants. KREMEN ET AL. 

(2002) found, that diversity was essential for sustaining the pollination service for the 

watermelon (Citrullus lanatus) in the American agricultural system, because of the year-to-

year variation in bee community composition and abiotic factors (e.g. climatic). The fruit set 

of coffee (Coffea arabica) increased with the diversity of pollinating bees (KLEIN ET AL. 

2003), revealing the influencing effects of changes in pollinator composition on the 

reproductive success of plants. The studies conducted by KREMEN ET AL. (2002) and KLEIN ET 

AL. (2003) focused on crop plants, which represent a non-native mass flowering food source 

for flower visitors in the landscape. Whether there is a direct effect of abundance and 

diversity of flower visitors on the reproductive success of wild plants, I analysed the 

pollination system of an entomophilous herb, common to several habitats in an agriculture-

forest mosaic in western Kenya. I investigated the different habitat types, and the influence of 

biotic as well as abiotic factors (e.g. flower display, plant diversity, canopy cover, soil fertility 

etc.) on the pollination system. 

 

 

4.3 Material and Methods 

4.3.1 Study area and study sites 

Study area was the Kakamega Forest, a tropical rain forest and it’s surrounding agricultural 

areas. The forest is located in western Kenya (0°17’N, 34°54’E) at an altitude of 1,500 m to 

1,700 m, about 50 km north of Lake Victoria.  

 

Study sites 

The study was conducted on 35 study sites, which were ten by ten metres square and located 

inside and around the northern part of the forest. The sites were situated in the three different 
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habitat types farmland, forest edge and forest interior. The study sites differed in structural 

parameters and, thus, complexity, ranging from closed rainforest over bushlands and 

grasslands to a highly structured farmland mosaic. Five sites were situated inside the forest, 

eight at the forest edge, and 22 in the surrounding farmland in different distances to the forest.  

For the analysis of differences in flower visitor composition and reproductive success of 

Justicia flava in the different habitat types, average rather than total values were used, as 

numbers of study sites differed between habitat types. 

 

4.3.2. Justicia flava (Forssk) Vahl (Acanthaceae) 

Justicia flava is a self-incompatible herbal plant, common to a variety of habitats in East 

African highlands (Figure 4.1: distribution in Kenya). The floral syndrome is adaptive to bee 

pollination, but also a variety of butterflies belong to the flower visitors. Nectar is the only 

reward to the flower visitors, what makes the flowers also very attractive to male and parasitic 

bees. Flowers of Justicia flava can be found throughout the year, which makes it an important 

food resource to many insects. The fruits contain maximally four seeds and open with an 

explosive mechanism, dispersing the seeds in the close vicinity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  
(A): Distribution of Justicia flava in the highlands of Kenya, grey colours: distribution, occurrence 
proved (from: Agnew & Agnew 1994); 
(B) Justicia flava with Xylocopa sp. (photo by Manfred Kraemer) 

A B 
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4.3.3 Considered biotic and abiotic factors 

The following biotic and abiotic factors were considered during the analysis of the pollinator 

systems. 

Plant species composition 

The plant species composition was investigated prior to flower visitor observations, and all 

plant species occurring in the study sites identified at least to genus and most of them up to 

species-level (identification keys: AGNEW &  AGNEW 1994, BEENTJE 1994). 

Canopy cover 

The cover of canopy, giving shade to the herbal layer and thus the focal plant, was estimated 

using a percentage scale (from 0% = no canopy to 100% = complete canopy coverage). This 

canopy cover in each study site was used for analysing potential influence of the shade effect 

of the canopy cover on the visitation frequency. 

Number of flowers per study site 

Parallel to the flower observation units all flowers of Justicia flava as well as of all other plant 

species on the study sites were counted, to measure the potential influence of food supply on 

the behaviour of the flower visiting insects (visitation frequency, duration of stay on the site). 

Distance to the forest edge 

The GPS-coordinates of all study sites were taken, and the distance to the nearest forest edge 

was calculated with ArcGis 8.0 on the basis of Landsat 7 (ETM+) satellite images (band 

combination 5/4/3, contrast enhanced). These data were provided by Gertrud Schaab (BIOTA 

E02, University of Applied Science, Karlsruhe). 

Cloudiness 

The cloud cover was estimated using eighths (from 0 = no clouds to 8 = full cloud cover). The 

average cloudiness of all units in each study sites was used for analysing potential relations 

between visitation frequency and cloudiness. 

Windspeed 

The windspeed was also estimated using eighths (from 0 = no wind to 8 = strong wind). The 

average windspeed of all units in each study site was used for analysing potential relations 

between visitation frequency and windspeed. 

Soil parameters 

Soil samples of the upper soil horizon were taken from all study sites in January 2005. 

PH-value, electrical conductivity (EC) and the amount of cations (K+, Ca2+, Mg2+) from water 

extracts were measured in the laboratory. Water extracts the water soluble ions and indicates 

the amount of nutrients available to a plant at all time. 



 4. Justicia flava: Influence of Flower Visitors on the Reproductive Success - 53 - 

4.3.4 Flower visitors of Justicia flava 

The monitoring on the composition of flower visitors of Justicia flava was done between 

January and February 2005. Five observation units were conducted on each of the 35 study 

sites. Flower visitation observations were done in 30 min units between 10.00 am and 02.00 

pm on sunny days. In every observation unit, ten flowers were observed; every visitor, the 

number of flowers it visited, and the flower visit duration were recorded. These data provided 

the basis for the calculations of species composition, the abundance and diversity of the 

flower visitors. After each observation unit, the numbers of conspecific and non-conspecific 

flowers in the study sites were counted, and flower visitors were caught for 10 minutes with a 

sweep net for later identification. It was not possible, to identify some of the very small 

visitors up to species level in the field. In order to avoid interfering with the flower visiting 

behaviour of the bees, I grouped small bees in 12 groups (Appendix 4.1).  

Identifications of the flower visiting bees were done by two specialist taxonomists for 

African bees. Dr. Mary Gikungu (National Museums of Kenya, Nairobi, Kenya) worked on 

the families Megachilidae and Halictidae, and Dr. Connal Eardley (Plant Protection Research 

Institute, Pretoria, South Africa) identified the specimens belonging to the Apidae. 

 
Flower visitor diversity 

The between-habitat-diversity of flower visitors was calculated using the Rényi diversity 

profiles. The use of non-parametric index families allows the diversity of a community to be 

characterized by a (scale-dependent) diversity profile instead of a numerical value 

(TÓTHMÉRÉSZ 1998). The first of these techniques, the ‘generalized entropy’, was published 

by RÉNYI (1961). 
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Hα = Rényi Diversity Index 

pi  = proportions of each species 

α   = scale parameter 

 
A profile is calculated by changing the value of α from 0 to infinity. In this thesis, the values 

of α are: 0, 0.25, 0.5, 1, 2, 4, 8, 16, Inf. 
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The scale parameter α: 

α = 0 => information on species richness; the profile value is the logarithm of 

the species richness 

α = infinity => provides information on the proportion of the most abundant species. 

Profiles that are higher at α = infinity have a lower proportion of the 

dominant species.              

 α = 1  => Shannon diversity index 

 α = 2  => logarithm of the reciprocal Simpson diversity index 

 
The shape of the Rényi-curve profile is an indication of the eveness. A horizontal profile 

indicates that all species have the same abundance. The less horizontal a profile is, the less 

evenly species are distributed. If the profile for one site is everywhere above the profile for 

another site, then this means that the site with the highest profile is the more diverse of the 

two. If the profiles intersect, it is not possible to order the sites from lowest to highest 

diversity (KINDT &  COE 2005). The Rényi diversity profiles were produced, using R 2.4 (THE 

R DEVELOPMENT CORE TEAM 2006) and the R package vegan 1.8-3 (OKSANEN ET AL. 2006).  

Due to the fact, that there was not a single “diversity-value” for the flower visitor 

communities of each site, the Rényi diversity index could not be used for further statistical 

analyses, e.g. the influence on the reproductive success of the plant. Thus, the species richness 

was used, which was defined here as the number of species, independent of the species’ 

abundance and the community’s eveness.  

 

Flower visiting frequency 

The rates at which pollinators visit flowers and their patterns of movement between them can 

affect the success of pollination, gene flow, and the energy budgets of pollinators (KEARNS &  

INOUYE 1993). Visitation rates were used as an index of the relative abundance of pollinators, 

either within or among study sites. In this study, visitation frequency was defined as the 

number of flower visits per 30-minute time unit.  

 

4.3.5 Reproductive success 

I compared the reproductive success of Justicia flava in the different study sites and habitat 

types. In this study, reproductive success was determined as the number of developed fruits 

and seeds. Germination success and seedling recruitment were not investigated.  

Subsequently to the flower visitor observation units, ten flowers per site were marked. After 

one week, the number of developed fruits (out of the ten marked flowers) was counted and 
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these developed fruits collected. The seeds per fruit were counted in the laboratory; the mean 

seed set was calculated including the seeds of all developed fruits of each study site. 

In this thesis, fruit set is defined as the portion of flowers that developed into fruit; seed set is 

defined as the portion of seeds that developed per fruit (in Justicia flava: maximally 4 seeds 

per fruit). The reproductive success is the product of fruit and seed set. 

4.3.6 Pollination efficiency 

The pollination-efficiency observations were done between June and August 2002. Buds of 

Justicia flava were bagged, to prevent unobserved flower visitors. After the flowers reached 

the female phase they were exposed to a single flower visit, and afterwards covered with 

mosquito net again. After seven days, fruit set was investigated, developed fruits collected, 

and seeds counted. The measurements were done on 261 flowers in total. 

Such a direct measure of pollinator effectiveness relying on successful seed production after 

visitation requires fewer assumptions than an indirect measure, and is intuitively much clearer 

than more elaborate indirect methods, like counts of pollen grains on an insect’s body or the 

plant’s stigma. I calculated the Spears efficiency which is the proportion of unrestrained seed 

set caused by a single visit of species i corrected by the amount of seed set when visitation 

occurs and allows comparisons of populations of any animal-pollinated plant species (SPEARS 

1983). 

Spears efficiency was calculated with the following formula: 

  
( )
( )ZU

ZP
P i

E −
−

=  

Pe = Spears Efficiency 

Z  = mean number of seeds set / flower by a plant population in the absence of     

      pollinator visits 

U  = mean number of seeds set / flower by a plant population with unrestrained     

visitation 

Pi  = mean number of seeds set / flower by a plant population receiving a single  

  visit from species i 

 

Furthermore, I investigated the mating system of Justicia flava. To answer the questions, if 

the plants are able to self-pollinate, I bagged 10 flowers prior to anthesis each, to investigate 

the ability of active selfing as well as the potential of geitonogamous pollination. For the 

geitonogamous pollination experiment I transferred pollen of flowers of the same plant to the 

stigmas of the bagged flowers. Another 10 flowers were marked and used as open control 

without any treatment. 
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4.3.7 Data analysis and statistics 

In this study the received data were listed with Microsoft Office Excel 2003 and analysed 

with SPSS 12.0 for Windows. Normality of data was tested using Kolgomorov-Smirnov Test 

(DORMANN &  KÜHN 2004), and if necessary, data were transformed. Number of bee species 

and individuals visiting Justicia flava, the number of individuals of Apis mellifera visiting J. 

flava, and number of flowers of Justicia flava were square root transformed prior to analyses. 

The nonparametric Mann-Whitney-U Test was used to compare the pollination efficiency 

values of small and big bees, as data were not normally distributed.  

Simple linear regression analysis was conducted, to investigate the direct influence of species 

richness and abundance of the flower visitors on the reproductive success of Justicia flava. To 

analyze the influence of biotic and abiotic factors on the species richness and abundance of 

flower visitors as well as on the fruit and seed sets of J. flava, I used multiple backwards 

regression analyses. Predictor variables were sequentially omitted according to their relative 

reduction of R2s. Inter-correlation among explanatory variables was investigated with 

Pearson’s product moment correlation (MORGAN ET AL. 2004). In case of correlation 

coefficient of |r| < 0.7, I accepted variables to be uncorrelated enough to be retained together 

as predictors in models. I used one-way analysis of variance (ANOVA) to determine, if 

flower visitor composition and reproductive success of Justicia flava differed among habitats. 

When the ANOVA was significant, I used Tukey’s HSD test to detect pair wise differences 

between habitats. The assumption of homogeneity of variance for all ANOVAs presented in 

this paper was tested using Levene’s test (UNDERWOOD 1997). 

A result is called significant, if the significance level is p ≤ 0.05, highly significant, if the 

level is p ≤ 0.001 and marginally significant, if 0.10 ≥ p ≥ 0.05. 

 
 

 4.4 Results 

4.4.1 The flower visitor community of Justicia flava 

In total J. flava was observed for 87 hours, subdivided into 174 observation units of 

30 minutes each. During the observations I recorded 4750 flower visits of insects belonging to 

74 species of five insect groups (64 species of bees, 9 butterfly species, one beetle species, 

three fly species, one ant species, the bee species are listed in Appendix 1), with Apis 

mellifera being most abundant (3523 flower visits, 74.0% of all visits) and thus dominating 

the visitor community. If Apis mellifera was found on the study sites, the share of honeybee 

visits varied between 3.7% in Salazar B (forest interior) and 99.7% in the farmland site 

Buyangu D.  
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Bukhaywa A  6 2.99 2.02 5 2.87 0.98 2.77 1.02 0.73 0.18 0.13 

Bukhaywa B 4 1.04 0.90 3 0.99 0.82 0.95 1.00 0.84 0.21 0.18 

Buyangu A 9 4.60 0.74 7 4.60 0.74 4.13 0.55 0.62 0.16 0.10 

Buyangu B  5 4.17 2.14 5 4.17 2.14 2.77 2.75 0.22 0.05 0.01 

Buyangu C  7 5.36 1.34 5 5.28 1.18 3.72 0.34 0.73 0.18 0.13 

Buyangu D  4 7.27 2.52 2 7.17 2.64 7.12 2.62 0.67 0.17 0.11 

Buyangu E  13 5.97 4.76 10 5.87 4.82 5.12 5.75 0.68 0.17 0.11 

Buyangu F  12 2.18 1.09 11 2.16 1.06 1.62 0.97 0.59 0.15 0.09 

Buyangu Hill A  11 1.45 1.32 11 1.45 1.32 0.00 0.00 0.60 0.15 0.09 

Campsite A 9 1.30 0.40 6 1.07 0.22 0.20 0.40 0.52 0.13 0.07 

Chevoso A  4 3.87 3.41 4 3.87 3.41 3.47 3.51 0.61 0.15 0.09 

Ivakale C 4 1.91 0.58 3 1.88 0.59 1.92 0.61 0.83 0.90 0.75 

Kabrasi A 6 3.03 2.19 6 2.98 2.15 2.87 2.21 0.73 xx xx 

Kabrasi B  5 1.32 1.00 5 1.32 1.00 1.15 1.06 0.76 0.19 0.14 

Kabrasi D 8 3.50 1.05 6 3.45 0.99 1.97 1.09 0.61 0.15 0.09 

Kabrasi E 6 3.85 2.89 6 3.85 2.89 3.72 2.92 0.60 0.15 0.09 

Kisere C  5 2.86 1.70 4 2.81 1.72 1.87 0.85 0.73 0.18 0.13 

Kisere D 8 1.90 1.51 8 1.88 1.47 1.10 0.74 0.80 0.20 0.16 

Kivaywa 9 2.75 1.74 8 2.70 1.71 2.20 1.61 0.48 0.11 0.05 

Lukhokho people 6 2.28 1.15 5 2.25 1.15 1.80 1.34 0.46 0.16 0.07 

Lukhokho river  18 3.95 2.10 17 3.67 1.68 1.00 1.80 0.64 0.15 0.10 

Lukume 4 1.27 1.82 4 1.27 1.82 0.87 1.61 0.60 0.16 0.10 

Lusero B  9 2.61 2.23 9 2.61 2.23 2.20 1.91 0.66 0.18 0.12 

Lusero C  3 4.15 1.96 2 4.12 1.97 4.10 1.92 0.70 0.15 0.11 

Mapera  15 2.38 1.21 9 2.16 1.29 0.72 1.01 0.60 0.13 0.08 

Mukangu 3 2.99 0.81 3 2.99 0.81 2.62 0.95 0.54 0.13 0.07 

Okumo   6 2.23 1.26 4 2.13 1.19 2.12 1.26 0.54 0.17 0.09 

Place M 9 1.99 1.29 6 1.81 1.34 1.37 0.94 0.71 0.03 0.02 

Salazar A 19 2.23 1.49 15 1.93 1.52 0.00 0.00 0.67 0.13 0.08 

Salazar B  12 0.68 0.29 10 0.60 0.27 0.02 0.05 0.13 0.12 0.02 

Shikusa A  11 3.82 1.15 10 3.80 1.18 2.67 1.91 0.50 0.16 0.08 

Shikusa B 12 2.80 1.28 9 2.47 1.52 2.02 1.61 0.49 0.16 0.08 

Shikutse  8 1.07 0.86 8 1.07 0.86 0.47 0.47 0.66 0.15 0.10 

Upper Campsite  3 1.91 1.52 2 1.88 1.54 1.85 1.52 0.65 0.17 0.11 

farmland 43 3.15 2.06 35 3.09 2.05 2.48 2.07 0.61 0.70 0.43 

forest edge 29 2.92 2.59 25 2.88 2.58 2.46 2.65 0.69 0.73 0.51 

forest 40 1.61 1.14 29 1.44 1.12 0.19 0.52 0.50 0.70 0.35 

Table 4.1:  
Overview of the composition of flower visitors (sum of species, mean and standard deviation of flower visits) for 
all visitor species and for bees explicit. Fruit and seed rates of Justicia flava.  



- 58 - 4. Justicia flava: Influence of Flower Visitors on the Reproductive Success  

Visitor communities with high proportions of honeybees showed highest abundance of flower  

visitors, with flower visiting frequencies ranging from 0.6 visits/30 min in Salazar B to 7 

visits/30 min in Buyangu D. In only two study sites no honey bees were observed (Table 4.1).  

Both sites were located inside the forest. Study sites differed highly in visitor species richness 

with the numbers of species varying between 2 (Lusero C, Upper Campsite, Buyangu D) and 

19 (Salazar A) (Table 4.1).  

The final model of a backwards regression indicated with a high significance (R2 = 0.154, 

F(3, 126) = 7.633, p< 0.001) that the number of open flowers of Justicia flava showed the 

highest positive influence on the flower visiting frequency, while canopy cover and number of 

flowers of all plant species showed a negative effect (Table 4.2). The number of flower visitor 

species was also best explained by the number of Justicia flava flowers. Canopy cover and 

number of co-flowering species resulted in a negative effect on the species richness 

(R2 =0.165, F(4, 125) = 6.188, p< 0.001, Table 4.3). The goodness of fit for the frequency as 

well as for the species richness is rather low, due to the great number of factors influencing 

complex systems under natural conditions.  

 

 

Table 4.2:  
Factors influencing the abundance of flower visitors of Justicia flava. Final model coefficients of a 
backward multiple regression (R2 = 0.154, F(3,126) = 7.633, p < 0.001; started with n = 7 factors). 
Dependent variable: number of flower visits (sqrt-transformed) 

Variable     B SEB β      p 

No. J .flava flowers (sqrt.) 3.97           1.22 0.29 0.001 

Canopy cover -0.71           0.26 -0.27 0.007 

No. flowers total -0.00015 8.1003E-05 -0.19 0.063 
B = regression coefficient; SEB = standard error of B, β = standardized beta coefficient. 

 
 
 
 
Table 4.3:  
Factors influencing the bee species richness on Justicia flava. Final model coefficients of a 
backward multiple regression (R2 = 0.165, F(4, 125) = 6.188, p < 0.001; started with n = 7 factors). 
Dependent variable: number of visitor species (sqrt-transformed) 

Variable B SEB β p 

No. J. flava flowers (sqrt.) 2.61 0.76 0.31 0.001 

Canopy cover     -0.32 0.16 -0.20 0.049 

Wind speed 0.29 0.15 0.16 0.055 

No. flowers total -0.00008             0 -0.18 0.082 
              B = regression coefficient; SEB = standard error of B, β = standardized beta coefficient. 
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Distance to forest 

Depending on the scale, the number of bees visiting the flowers of Justicia flava decreased 

significantly with increasing distance from the forest. This pattern was true up to a distance of 

about 1500 m (linear Regression: R2 = 0.226, p = 0.007, F(1,29) = 8.473), whereas this pattern 

was not observed on study sites farther from the forest (up to 16 km, linear Regression: 

R2 = 0.016, p = 0.45, F(1,34) = 0.583, Figure 4.2). 

 

 

Comparing the different habitat types 

The composition of flower visitors differed between the three considered habitat types 

farmland, forest edge and forest interior. Especially at some of the forest edge sites, the 

frequency of flower visitors reached very high values (up to 7.2 visits/30min of all flower 

visitors and up to 7.1 visits of bees only, Table 4.1: Buyangu D), and showed low values 

inside the forest (Salazar B: 0.68 visits (0.6 by bees), Buyangu Hill: 1.45 visits (1.07 by bees)). 

A statistically significant difference was found among the three habitat types farmland, forest 

edge and forest interior concerning the species richness of the insect visitors of Justicia flava 

(One-way ANOVA: F(2, 133) = 5.495, p = 0.005, Figure 4.3, Table 4.4), and also on their 

abundance (One-way ANOVA F(2, 133) = 4.76, p = 0.01). Post hoc Tukey HSD Tests indicated, 

that the number of flower visits as well as the species richness of insects in general and bees 

in detail were significantly higher in the farmland compared to the forest. 
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Figure 4.2: 
Number of bee species visiting Justicia flava in relation to the distance to forest; (A) Distances from -
1000m (inside the forest) up to 16000m; 
(B) Distances from -1000m (inside the forest) up to 1500m. 
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Nevertheless, highest species diversity (species richness plus eveness) was found inside the 

forest as Rényi diversity profiles indicate (Figure 4.4). If profiles of the Rényi diversity index 

intersect, comparisons are not allowed. In border-cases, if the intersection occurs very close to 

zero, as it is the case between the profiles of forest and farmland, this can be discussed 

(personal communication R. KINDT). Species richness and eveness were lowest at the forest 

edge. 
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Mean number of flower visits per observation unit 
(30 min) in the different habitats. 
(A) By all insect visitors of J. flava. 
       (ANOVA: F(2,133) = 4.76, p = 0.01); 
(B) By bees, the potential pollinators  
       (ANOVA: F(2,133) = 5.679, p = 0.004); 
(C) By Apis mellifera, the dominant visitor and    
       most-effective pollinator.  
       (ANOVA: F(2,133) = 4.449, p = 0.013).  
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Table 4.4:  
One-way analysis of variance summary table comparing the habitat types on 
species richness and abundance of flower visiting insects, bee species and Apis 
mellifera 
      

source df 
Sum of 
square 

Mean of 
square F p 

insect visitors      
no. visits      
between groups 2 37.45 18.73 4.76 0.01 
within groups 133 523.07 3.93   
total 135 560.52    
      
no. visitor species      
between groups 2 16.44 8.22 5.49 0.005 
within groups 133 198.96 1.49   
total 135 215.41    
      
bee visitors      
no. visits      
between groups 2 45.28 22.64 5.68 0.004 
within groups 133 530.20 3.99   
total 135 575.48    
      
no. visitor species      
between groups 2 326.15 163.08 16.07 < 0.001 
within groups 133 1350.08 10.15   
total 135 1676.24    
      
Apis mellifera      
no. visits      
between groups 2 1.99 1 4.45 0.01 
within groups 133 29.76 0.22   
total 135 31.75    

Figure 4.4: 
Rényi’s diversity profiles. Highest species number was found in the 
farmland, while highest eveness of flower visitors was found inside the 
forest (as indicated by the horizontal shape of the profile). 
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4.4.2 Reproductive success 

Fruits of Justicia flava on the different study sites were collected between 13th of January and 

5th of February 2005. In total 1219 flowers were marked and the fruit set of the developed 

fruits per study site determined. In total 70.0% of the marked flowers produced fruits, and the 

fruit set ranged between 23% in Salazar B and 88.0% in Bukhaywa B. The overall number of 

seeds developed was 2.89 out of 4 possible seeds per developed fruit (72.0% seed set). The 

highest value was found for Ivakale C with 3.60 seeds per fruit (90.0% seed set), and the 

lowest value in Salazar B with 1.67 seeds per fruit (42.0% seed set). The reproductive success 

(rs), defined as the mathematical product of fruit and seed set varied strongly and was highest 

in Ivakale C (rs = 0.75), and lowest in Salazar B (rs = 0.02) (Table 4.1). 

 

Fruit and seed sets in the different habitats 

While the differences in seed set and reproductive success (the product of fruit and seed set) 

did not show any interdependence with the habitat type, the fruit set differed significantly 

between the habitats (Figure 4.5). Post hoc Tukey HSD Tests indicated that the fruit set at the 

forest edge was significantly higher (67.0%, p < 0.05) than at the other two habitat types 

(farmland: 61.0%, forest interior: 51.0%). The latter two did not differ significantly from each 

other.  

 

4.4.3 Pollination efficiency 

Studies on the pollination efficiency of the flower visitors of Justicia flava showed, that 

among all flower visiting insects only bees contributed to the plant’s reproductive success. 

Other flower visitors, mainly butterflies, fed on the flowers’ nectar without touching the 

reproductive parts of the flowers and were classified as nectar robbers. Thus, I excluded all 

non-bee visitors from further analysis, and investigated the influence of diversity and 

abundance of flower visiting bees on the reproductive success of Justicia flava only. 

Concerning the qualitative (per-single-visit efficiency) as well as the quantitative (abundance) 

component of the “most-effective-pollinator” principle (definition after SPEARS 1983, 

HERRERA 1987, 1989), the common and in this area native honeybee Apis mellifera was the 

most effective pollinator of Justicia flava (2.87 seeds/fruit after a single flower visit, 74.0% of 

all flower visits).  

Beside this prominent pollinator a trend in the per-visit efficiency was evident, that bigger 

bees were better pollinators than smaller bees. While a single flower visit of a big bee 

(body size ≥ 12mm) resulted into a mean seed set of 1.79 seeds per fruit, only an average of 
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1.27 seeds per fruit were produced after a small bee’s (<12mm) flower visit (Mann-Whitney-

U Test: U = 3436.5; p = 0.045) (Figure 4.6A) (HAGEN 2003). 

 

 

Self pollination 

Without any pollinating vector, the flowers of Justicia flava did not produce any fruits and 

seeds due to the strictly timed separation between anthesis and receptiveness of the stigma. 

None of the stigmas of bagged flowers received any pollen grains (N = 10), and no fruits were 

developed, indicating that flowers did not actively self-pollinate. Pollination experiments 

showed that geitonogamous (neighbour-) pollination was possible but resulted in a lower 

reproductive success than open pollination. The fruit set of neighbour-pollinated plants was 

about 51%, and an average of 1.48 seeds per fruit were developed (Figure 4.6B). 

Figure 4.5:  
Fruit set, seed set and reproductive success in the 
three different habitats.  
(A) The differences in reproductive success    
       between the habitats were significant  
       (ANOVA F(2, 129) = 1.778, p = 0.173); 
(B) The differences in fruit set between the  
       habitats were significant 
       (ANOVA F(2, 129) = 12.730, p < 0.001); 
(C) The differences in seed set were not    
      significant  
      (ANOVA F(2, 129) = 1.219, p = 0.299). 
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4.4.4 Influence of diversity of flower visitors on the fruit and seed set 

Due to the fact, that only bees pollinate the flowers of Justicia flava, the analysis of the 

influence of diversity and flower visiting frequency on the reproductive success of J. flava 

was done focusing only on bee-species. Simple linear regressions were conducted to 

investigate if the species richness and abundance of flower visitors influenced the fruit and 

seed set of Justicia flava. The results were not statistically significant. Bee species richness 

did not show any influence on the plants’ fruit set (Simple Regression: R2 = 0.057, 

F(1, 134) =  .037, p = 0.163, Figure 4.7A), seed set (Simple Regression: R2 = 0.001, 

F(1, 134) = 0.149, p = 0.637, Figure 4.7B) nor the reproductive success (Simple Regression: 

R2 = 0.014, F(1, 130) = 0.1.847, p = 0.176). The visiting frequency did as well not show any 

influence on the plants’ fruit set (Simple Regression: R2 = 0.002, F(1, 134) = 0.027, p = 0.778, 

Figure 4.7C), seed set (Simple Regression: R2 = 0.025, F(1, 130) = 3.332, p = 0.375, Figure 4.7D) 

nor reproductive success (Simple Regression: R2 = 0.008, F(1, 130) = 1.007, p = 0.318). 

Focusing on the honey bee Apis mellifera, which is the most-effective as well as most 

abundant pollinator, the abundance did not have any influence on fruit set and reproductive 

success as well. I found a marginal influence on the seed set of J. flava (Table 4.5). 

 

Backwards multiple regressions were conducted to investigate the influence of a number of 

factors on the fruit and seed set. Concerning the fruit set of J. flava the combination of the 

factors: number of J. flava flowers, cloud cover, wind speed, number of plant species and 
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Figure 4.6B:  
Number of seeds (mean + standard deviation) after hand-
pollination with geitonogamous pollen versus open-
pollinated control flowers  

Figure 4.6A:  
Pollination efficiency (mean number of seeds after a 
single flower visit + standard deviation) of small (body 
length < 12 mm) versus big bees (body length ≥ 12 mm)  
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distance to forest showed the highest influence (R2 = 0.392, F(5, 108) = 13.908, p < 0.001; 

started with n = 12 factors). The beta coefficients are presented in Table 6. The factors soil pH, 

canopy cover, visit duration and the numbers of flowers of other plants, of bee species and 

visits did not show a significant influence and were excluded from analysis.  

Investigating the seed set, the results were significant when the factors: duration of 

flower visit, number of J. flava flowers and distance to forest were included (R2 = 0.177, F(3, 

110) = 7.905, p < 0.001). The beta coefficients are presented in Table 4.7. Note that number 

of J. flava flowers and distance to forest predicted the number of seeds (on a low level) when 

also the flower visitation duration was included, which by itself did not have a significant 

influence on the seed set. The factors soil-pH, canopy and cloud cover, windspeed, numbers 

of bee species, flowers of other plants, flower visits, and plant species were excluded. 

Concerning the reproductive success the combination of number of J. flava flowers, cloud 

cover, windspeed, number of plant species per plot and distance to the forest showed the 

highest influence (R2 = 0.313, F(5, 108) = 9.844, p < 0.001) (Table 4.6). The beta coefficients 

are presented in Table 4.8. The factors soil-pH, number of flower visits and of flower visiting 

species were excluded. 

 

 

 

 

Table 4.5:   
Influence of the abundance of flower visiting honeybees on (A) fruit set (R2 = 0.00, F(1,134) = 0.018, p = 
0.894), (B) seed set (R2 = 0.027, F(1,130) = 3.66, p = 0.058), (C) reproductive success (R2 = 0.007, F(1,130) = 
0.967, p = 0.327 of Justicia flava; simple regression analysis 

Variable B SEB β p 

(A) Fruit set     

No. of honeybee visits (sqrt.) 0.004 0.032 0.011 0.894 

     

(B) Seed set     

No. of honeybee visits (sqrt.) 0.142 0.074 0.166 0.058 

     

(C) Reproductive success     

No. of honeybee visits (sqrt.) 0.094 0.096 0.086 0.327 
        B = regression coefficient; SEB = standard error of B, β = standardized beta coefficient. 
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Figure 4.7:  
Fruit and seed set of Justicia flava in relation to species number and abundance of bees in the 35 study sites. 
(A) fruit set as a function of bee species richness; (B) seed set as a function of bee species richness; (C) fruit set 
as a function of bee abundance; (D) seed set as a function of bee abundance 
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Table 4.6:  
Factors influencing the fruit set of Justicia flava. Final model coefficients of a backward multiple 
regression (R2 = 0.392, F(5,108) = 13.908, p < 0.001; started with N = 12 factors). Dependent variable: fruit 
rate (sqr-transformed). 

Variable B SEB β p 

no. J.flava flowers (sqrt.) 0.478 0.091 0.475 < 0.001 

cloud cover 0.038 0.014 0.206 0.007 

canopy cover 0.082 0.017 0.368 < 0.001 

no. plant species / site 0.005 0.001 0.469 < 0.001 

distance to forest -0.0000116 0.000003 -0.358 < 0.001 
       B = regression coefficient; SEB = standard error of B, β = standardized beta coefficient. 

 

 

 

 

Table 4.7: 
Factors influencing the seed set of Justicia flava. Final model coefficients of a backward multiple 
regression (R2 = 0.177, F(3,110) = 7.905, p < 0.001; started with N = 12 factors). Dependent variable: 
number of seeds/fruit (mean). 

Variable B SEB β p 

duration of flower visit (mean) 0.006 0.003 0.160 0.073 

no. J. flava flowers (sqrt.) 0.770 0.238 0.288 0.002 

distance to forest -0.000028 0.000008 -0.324 < 0.001 
        B = regression coefficient; SEB = standard error of B, β = standardized beta coefficient. 

  

 

 

 

Table 4.8:  
Factors influencing the reproductive success of Justicia flava. Final model coefficients of a backward 
multiple regression (R2 = 0.313, F(5,108) = 9.844, p < 0.001) Dependent variable: reproductive success 
(fruit rate x seed rate) 

Variable B SEB β p 

no. J.flava flowers (sqrt.) 1.453 0.319 0.438 < 0.001 

cloud cover 0.101 0.049 0.166 0.04    

wind speed 0.215 0.059 0.292 < 0.001 

no. plant species / site 0.010 0.003 0.303 < 0.001 

distance to forest 0.000 0.000 -0.407 < 0.001 
       B = regression coefficient; SEB = standard error of B, β = standardized beta coefficient. 

 

 



- 68 - 4. Justicia flava: Influence of Flower Visitors on the Reproductive Success  

4.5 Discussion 

In this study, the flowers of Justicia flava were found to be visited by a large number of bees 

and some other insects. However, the composition of the flower visitors differed highly 

between study sites (2 to 19 species) as well as habitat types (29 species at the forest edge to 

43 species in the farmland). While the highest number of bee species was found in the 

farmland, the visitor community in this habitat type was highly dominated by the honey bee 

Apis mellifera, which made up to 68% of the flower visits. The species richness inside the 

forest was slightly smaller (40 species compared to 43 species), but no dominant species 

could be identified and the composition of flower visitors showed a high eveness, as indicated 

by the shape of the Rényi Diversity Profiles (Figure 4.4). Thus, flower visitor diversity, which 

is composed of species richness as well as eveness, is highest inside the forest. The flower 

visitor community of Justicia flava at the forest edge was relatively poor, and extremely 

dominated by the honey bee. The high dominance of honey bees outside the forest can be 

explained by the circumstance that the farmland holds a relatively high number of beehives 

and natural nests as well, which are harvested regularly by local people for private as well as 

commercial purposes. Inside the forest, honeybees were very rare, even though some few 

natural nests were found as well. Flowers of Justicia flava can be found throughout the year, 

and are thus a reliable and highly attractive nectar source for the visiting bees. Especially if 

the plant occurs with large flower displays it is highly attractive for eusocial bees (like the 

honey bee), which need high amounts of nectar and pollen to provide their colonies with food. 

The honey bees showed aggressive behaviour at the flowers, and I observed some signs of 

competition between them and the solitary bees.  

The tendency was found, that the diversity of bees visiting the flowers of J. flava decreased 

with increasing distance to the forest. This pattern was true up to a distance of about 1500m, 

while no tendency was observed farther away from the forest. This tendency indicates the 

different importance of Justicia flava as food source in the habitat types. As long as there are 

no mass-flowering trees inside the forest, bees rely on very few flowering plant species. J. 

flava, which flowers almost throughout the year, is one of the most important food sources in 

this habitat. Especially during the observations, I hardly observed other flowering plant 

species. Outside the forest, several plant species flowered, and bees were not depending on 

one single food source as inside the forest. With an increasing number of different flowering 

plant species, the diversity of bees visiting J. flava decreased.  

At the forest edge, a lot of honey bees visited the flowers of J. flava very frequently. 

Conceivably, they competed with other flower visitors for nectar. Individuals of other bee 
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species might have switched to other floral resources to avoid this resource sharing, 

respectively competition. Farther from the forest, no such effect could be found, and the 

differences in bee species composition were caused by other factors, like habitat quality and 

landscape structure. 

Diversity as well as abundance of bees increased with the increasing flower display of J. flava, 

and decreased with increasing canopy cover and flower display of other plant species. 

Interestingly, a correlation between diversity and abundance was found. This is caused by the 

composition of the flower visitors as I found only one or two specimens of many species in 

the whole observation period. 

 

Numerous studies showed that various pollinators, especially social bees can assess the costs 

and rewards of floral choices, and their visitation can be highly sensitive to resource density 

and dispersion (WADDINGTON &  HEINRICH 1981, REAL 1981, REAL ET AL. 1982). In dense 

floral patches of J. flava, social bees tended to visit more flowers than in sparse patches. My 

results suggest and conform to the findings of other authors, that the size of a plant population 

respectively the size of its flower display has a positive effect on the visitation frequency of 

pollinators (HEINRICH 1979, WADDINGTON &  HEINRICH 1981, ROUBIK 1982, REAL 1983, 

KIRCHNER 2005) as well as on the pollination success (e.g. KUNIN 1993, AIZEN &  FEINSINGER 

1994). Not only the number of conspecific flowers but also the number of flowers belonging 

to other plant species can influence pollination systems as we could show in this study. While 

a number of studies support the facilitative effect of shared flower displays because of the 

conjoined attraction to pollinators (THOMSON 1978, BROWN &  KODRIC-BROWN 1979, 

RATHCKE 1983, GHAZOUL 2006), I found signs for competition in the present system. The 

number and abundance of insects visiting J. flava flowers was negatively correlated to the 

overall flower display. Due to the high attractiveness of J. flava to flower visitors it might 

have acted as a magnet species especially inside the forest (THOMSON 1978, LAVERTY 1992, 

JOHNSON ET AL. 1993). The magnet species, as its name implies, increases the local abundance 

of pollinators and thus appear facilitative for neighbouring plants with inferior rewards. 

Furthermore, the flower visitors of J. flava were negatively influenced by the weather 

conditions and the number of bees decreased with increasing cloud cover, showing the 

dependency on dry and sunny weather. 

 

Justicia flava is a self-incompatible plant species, which obligatorily relies on the pollination 

by bees. Due to the fact, that the flowers provide nectar to their visitors, they are not only a 



- 70 - 4. Justicia flava: Influence of Flower Visitors on the Reproductive Success  

food source for female bees, which collect pollen and nectar for provisioning their brood cells. 

They are also very important for male and parasitic bees, which collect nectar to maintain 

their own energy requirements only.  

Several studies showed the positive influence of pollinators’ abundance on the reproductive 

success of plants (KUNIN 1993, LARSON ET AL. 1999, HERRERA 2000, MORANDIN ET AL. 2005), 

while few studies also found a direct influence of pollinator diversity on the reproductive 

success of highland coffee (Coffea arabica, KLEIN ET AL. 2003) and watermelon (Citrullus 

lanatus, KREMEN ET AL. 2002). Seed and fruit set of the self-incompatible Justicia flava 

varied between study sites and habitats. However, the pollination system of J. flava was 

neither positively nor negatively influenced by the abundance and diversity of its entire 

flower visitor community although bee species differed in their ability to pollinate J. flava 

flowers. The flower visiting frequency on the study sites was very high, varying between one 

and fourteen visits per hour. The number of pollen grains, deposited on the stigmas should 

have been large enough, to induce full fruit and seed set, even on the study sites with low 

visitation frequency. Studies on other plant species showed, that fruit set can occur at 

pollination intensities of single pollen per ovule or even less (e.g. BERTIN (1982) on Campsis 

radicans (Bignoniaceae), SNOW (1982) on Passiflora vitifolia (Passifloraceae), MC DADE 

(1983) on Trichanthera gigantea (Acanthaceae)).  

Although the flowers of J. flava are dichogamic (male and female phase are separated 

in time, LLOYD &  WEBB 1986), which is described as one of the mechanisms preventing self-

pollination, the dichogamy found is not synchronous within a plant. Thus, neighbour 

pollination is possible, but, as highlighted before, resulted in a lower seed set. This pattern 

was also found in other plant species (STEPHENSON 1981). The honeybee Apis mellifera was 

the most efficient pollinator of J. flava, as well qualitatively, revealed by single-visit 

experiments, as quantitatively due to its high abundance especially in patches with large 

flower displays. As a single honey bee-visit to a virgin flower on average resulted in almost 

75% seed set (2.87 out of 4 possible seeds), the reproductive effect of surplus visitation was 

rather low. Due to relatively high visitation rates, pollination limitation was not observed. To 

assess the different influences of the very dominant honey bee on one side and the solitary 

bees on the other hand I analysed the data for these two groups separately. While I did not 

find any effect of the abundance of the honeybees on the fruit set of J. flava, the seed set was 

(marginally significantly) positively influenced by their abundance. The observed effect was 

rather low, but showed the different responses of fruit and seed development to factors. 
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Focusing on the solitary bees, no significant effects were observed and fruit and seed set were 

independent of the diversity and abundance of the solitary bees. 

However, the reproductive success of J. flava did not reach 100%. Besides the 

limitation by the pollinator behaviour, several other parameters can cause limitations, like the 

quality and quantity of pollen, inbreeding depression, resource limitation, or coevolutionary 

adaptations or strategies of the plants (KUNIN 1997, ROLL ET AL. 1997, BOSCH &  WASER 2001, 

ASHMAN ET AL. 2004). Fruit and seed set of J. flava were both positively influenced by the 

number of conspecific flowers in the neighbourhood. A high number of flowers is directly 

correlated to a high number of pollen, which could potentially be deposited on the stigmas. 

Furthermore, a high number of flowering plants could imply that the proportion of 

geitonogamous pollination might be rather low, if genetic diversity is still high. While the 

seed set was only marginally influenced by the distance to the forest and marginally and 

insignificantly by the visit-duration of the pollinators, the fruit set was (highly) influenced by 

abiotic and habitat factors, like cloud and canopy cover and the number of plant species on 

the study sites. Dense cloud and canopy covers cause high humidity and low temperature 

values. Especially in very humid areas, like the Kakamega Forest, these factors can increase 

the proportion of fruits going mouldy. Furthermore, resource limitation of fruit production can 

be the result of inadequate soil nutrients, water, or light (e.g. CARUSO ET AL. 2005) and as this 

study was conducted in an extremely marked dry season, water could have acted as the 

resource-limiting factor.  

This study was carried out in natural populations. Thus, the uncontrolled and unmeasured 

environmental and genetic (inbreeding depression) factors possibly affected and overlaid the 

measured effects. While 39% of the variance in fruit set was explained by the above 

mentioned factors, the (co-)evolutionary background can explain a fraction as well. 

E.g. hermaphroditic plants commonly produce more flowers than are matured into fruit, 

resulting in fruit-to-flower ratios less than unity (STEPHENSON 1981, SUTHERLAND &  DELPH 

1984, HOLLAND ET AL. 2004). Studies showed, that the production of surplus flowers is 

advantageous because it increases the male contribution to fitness (pollen donation), rather 

than the female contribution (seed production) (WILLSON &  RATHCKE 1974, WILLSON 

& PRICE 1977, STEPHENSON 1981). This pattern might be true for J. flava as well. 

 

Even if diversity and abundance of pollinators did not show any direct influence on the fruit 

and seed set of J. flava in this short-term observation, the composition of visitor and also plant 

communities are of great importance for the long term preservation of maintenance of plant 
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pollinator systems. Floral abundance in species, even in perennial communities can vary 

highly among years (reviewed by TEPEDINO &  STANTON 1980, RATHCKE 1983) and in space 

(LAZARO &  TRAVESET 2005, DE LA BANDERA &  TRAVESET 2006). Nectar production, for 

example, can vary with rainfall or insolation within a species (FEINSINGER ET AL. 1979). 

Because local populations are open systems, pollinator limitation may alternate with 

overabundance in different sites and years, lending unpredictability to interactions and their 

outcomes. Furthermore, in some study areas the number of flowers of J. flava and their 

density reached high values. Pollinators may become more sedentary and even territorial 

(FEINSINGER 1976, STEPHENSON 1982), and most visits may be local. This and the high 

portion of honeybees in the visitor community have the potential to increase improper pollen 

transfer if visits occur mainly within one individual plant or among closely related plants 

(PRICE &  WASER 1979, AUGSPURGER 1980, STEPHENSON 1982). Apis mellifera, the most 

important pollinator of J. flava collects, like all social bee species, big amounts of nectar and 

pollen for brood provisioning very economically through successive visits to several flowers 

on each plant (e.g. GALEN ET AL. 1985, VISSCHER &  SEELEY 1982, SEELEY 1985). Although 

THOMSON &  PLOWRIGHT (1980) showed that a bee load of pollen may be deposited over up to 

seven sequential flower visits, actual pollen carryover from outcross flowers seems to be 

lower than this, because bee loads are accumulated from geitonogamous pollen and also from 

several pollen sources. Thus geitonogamy is bound to occur in J. flava, except for the rare 

situation when pollinators visit only a single flower per plant during a foraging bout. The 

influence of paternity on realized reproductive output cannot be ruled out (HERRERA 1987), as 

the seed set of J. flava was smaller after geitonogamous pollination and as previous studies 

have often shown greater survival of seedlings from crossed versus inbred or selfed progeny 

(PRICE &  WASER 1979, HESSING 1988, FINER &  MORGAN 2003, YOUNG ET AL. 1996, 

ARMBRUSTER &  ROGERS 2004, HIRAYAMA ET AL . 2005).  

Not to suffer from inbreeding, J. flava is reliant on either (long-distance) cross pollination or 

seed dispersal. Explosive seed dispersal, like in J. flava is a short-distance process, 

distributing the seeds most likely in a distance below 6 meters away from the mother plant 

(STAMP &  LUCAS 1983, GARRISON ET AL. 2000). Secondary dispersal by ungulates (at least 

inside the forest and at the forest edge) which feed on grass and herbs might be possible. They 

distribute the seeds endozoochorically or exozoochorically in their fur (KIVINIEMI 1996, 

MOUISSIE ET AL. 2005, HOWE &  M IRITI  2004) even if the seeds do not have any hooks or 

sticky substances on the surface (FISCHER ET AL. 1996). The plant’s life cycle is embedded in 

an ecological context in which many hazards may affect from one to several different stages 
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of the process by operating through certain phenotypic traits of the plant. The effect of 

pollinators on total fitness can be weakened through other factors accounting for a greater 

effect on the plant’s fitness (HERRERA 1996). 

 

Justicia flava is a highly successful plant with a generalized pollination system, which is a 

typical phenomenon in tropical regions due to the high spatiotemporal variability in the 

composition of the floral visitor assemblage (GÓMEZ &  ZAMORRA 2006). The self-

incompatible flowers, which rely on bee-pollination, seem to be an important food source for 

large numbers of visiting bees and butterflies, especially inside the Kakamega Forest. Since 

this very common plant species is found in several different habitats in tropical Africa, 

populations of J. flava might serve as stepping stones for flower visitors in areas with 

spatiotemporal habitat changes, where only small amounts of other food sources are 

accessible. GIKUNGU (2006) highlighted the importance of J. flava to several species of bees 

inside Kakamega Forest. However, the attractiveness of J. flava seems to work as a magnet 

for flower visitors (THOMSON 1978, JOHNSON ET AL. 2003) and thus might facilitate the 

reproductive success of relatively rare co-flowering plants. 
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5. SMALL -SCALE HETEROGENEITY IN 

FLOWER VISITOR COMMUNITIES OF 

JUSTICIA FLAVA (ACANTHACEAE ) IN 

AGROECOSYSTEMS OF KAKAMEGA , 

WESTERN KENYA  
 
 
 
 
5.1 Abstract 

Bees usually have a rather small foraging range (solitary bees: 150 m – 600 m, African 

honeybees: 400m - 1000m), although reports about foraging distances up to several 

kilometres can be found. Thus, local habitat structure and resource configuration appear of 

great importance to the behaviour of bees. In this study I investigate the small spatial scale 

differences in uniform habitats (3 habitat types: farmland, forest edge, forest interior) of the 

flower visitor species of Justicia flava (Acanthaceae), an entomophilous herb, common to 

Eastern Africa. Comparative results show, that the composition of flower visitors did not only 

differ clearly between different habitats, but also between study sites, closely located in the 

same habitat type (distance between 200 m - 2000 m). In total J. flava is visited by a large 

variety of bees (66 species), but only by 3 - 19 species at a single site. Values for the 

Morisita-Horn Similarity Index varied obviously (within habitat types between S = 0.00 and S 

= 0.59) and spatial distance had a high significant effect on the composition of flower visitors. 

Especially in the farmland as well as inside the forest the effect was pronounced, while the 

effect was not found between study sites located at the forest edge. Thus, bee species 

composition, especially in forested areas with small numbers of flowers seems to be spatially 

heterogeneous and thus difficult to predict. 

As geographic differences in interactions are an inherent part of the coevolutionary process, 

and geographically structured species tend to coevolve towards a complex spatial mosaic of 

coevolutionary hot spots and cold spots, there is the potential of coevolutionary shifts in the 

pollination system of Justicia flava. 
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5.2  Introduction 

In nature, organisms are distributed neither uniformly nor at random. Rather, they are 

aggregated in patches, or they form gradients or other kinds of spatial structures. Although the 

spatial heterogeneity of populations and communities plays a central role in ecological theory 

(LEGENDRE &  FORTIN 1989), relatively little attention has been given to variation over time 

and space in flower visitor or pollinator faunas, especially at intermediate spatial scales and 

within more or less homogeneous habitats (but see HERRERA 1988, HORVITZ &  SCHEMSKE 

1990, FISHBEIN &  VENABLE 1995). However, the evolution of species interactions can only be 

fully understood by considering their variation in space and time (THOMPSON &  PELLMYR 

1992, BRODY 1997, GOMEZ &  ZAMORA 2000), because this variation can limit species 

responses to selection (REY ET AL. 2006). Spatial or geographic variation forms the basis of 

the geographic mosaic theory of coevolution (THOMPSON 1997, 1999), which suggests that 

much of the dynamics of coevolution between pairs or groups of species often occurs at a 

geographic scale above the level of local populations and below the level of the fixed traits of 

interacting species (THOMPSON 1997). 

 

According to ASHMANN ET AL. (2004), variation in pollinator composition and pollination 

service has the potential to profoundly influence the ecological dynamics of plant populations 

and communities. But, little is known about variation in pollinator composition and 

pollination service to single plant species (PRICE ET AL. 2005). Spatial variation in pollinators 

is the logical consequence of well-known, widespread phenomena such as microclimatic 

preferences related to physiological tolerance (TAYLOR 1963, RAWLINS 1980, CHAPPELL 1982), 

and habitat selection (ERHARDT 1985), or requirements in terms of nesting sites versus 

foraging sites (TSCHARNTKE ET AL. 1998, GATHMANN &  TSCHARNTKE 2002). In the case of a 

plant species that interacts mutualistically with animals for pollination or seed dispersal, one 

of the most obvious potential causes of unpredictability in selective pressures is variation in 

time or space of the assemblage of its animal mutualists. Especially in “year-long” systems, 

like in tropical rainforests, pollinator and plant abundance are not only likely to fluctuate 

across years, but also across seasons (MEDAN ET AL. 2006). Thus, tropical mutualistic 

interactions involving an assemblage of species are far more frequent than one-on-one 

mutualisms or taxon-specific coevolution (HORVITZ &  SCHEMSKE 1990, WASER ET AL. 1996, 

overview in WASER &  OLLERTON 2006). However, the tropics do appear to have a greater 

range in degree of specialization than temperate zones, as the number of functional groups of 
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pollinators declines with latitude (bird or bat pollination is only possible in areas where these 

animals visit flowers) (ARMBRUSTER 2006). 

Individuals or populations of plant species that occur in a variety of different habitat types 

might show different phenological characteristics due to differences in environmental 

parameters like solar irradiation, humidity, soils etc. Concerning flowering phenology, 

GENTRY (1974) described the endpoints of the broad spectrum as the “steady state” and the 

“big bang”. While the latter describes mass flowering phenomena, which occur mainly 

outside the forest or in the forest canopy, the “steady state” bloomers, which are found 

frequently in the forest understory communities (KATO ET AL. 2005), depend for pollination 

on the fixed foraging patterns of pollinators, designated “trap liners” by JANZEN (1971), 

which visit flowering plants as part of a standard sequence, after having learned the location 

of a particular plant. Once incorporated on a trapline, such a plant enjoys a higher frequency 

of pollinator visits per unit of energy expended and a greater likelihood of cross pollination. 

Trap-lining has been reported in several bumblebee species, euglossine bees, honeybees, but 

also hummingbirds, tamarins, rats, pied wagtails and long-nosed bats (see SALEH &  CHITTKA  

2007 for references). On the opposite, the “big bang” blooming is especially highly 

interesting for social bees and their high energy needs due to large colony sizes and the year-

through activity patterns.  

 

In this study, I investigated the similarity or dissimilarity in flower visitor composition of the 

common entomophilous herb Justicia flava (Acanthaceae) within and between habitats. I also 

investigated the role of spatial correlation between flower visitor compositions as a base to 

understand the spatial organization of pollinator communities. As an indirect measure of 

behaviour, I predicted that pollinator composition should be dissimilar between different 

habitat types, and more similar between study sites belonging to the same habitat type, due to 

similar environmental parameters like irradiation, humidity and food sources. Within 

homogeneous zones, biotic processes often produce an aggregation of organisms, following 

various spatiotemporal scales, which can be measured (LEGENDRE ET AL. 1985). Typically, 

locations that are close together tend to have more similar values, or are more positively 

correlated, than those that are farther apart; this tendency is termed spatial autocorrelation 

(LEGENDRE &  FORTIN 1989, VER HOEF &  CRESSIE 2001). Thus, I expected spatial 

autocorrelation to be positive for short distances among points. 
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5.3 Material and methods 

5.3.1 Study area and study sites 

Study area was the Kakamega Forest, a tropical rain forest remnant and it’s surrounding 

agricultural areas. The forest is located in western Kenya (0°17’N, 34°54’E) at an altitude of 

1,500 m to 1,700 m, about 50 km north of Lake Victoria.  

The study was conducted in 15 study sites located inside and around the northern part of 

Kakamega Forest in the three different habitat types farmland, forest edge and forest interior, 

with five replicate plots in each habitat type (Figure 5.1). 

The study sites were ten by ten metres square, and in close vicinity to each other. Study sites 

of the same habitat type were not farther than 2,800 metres from each other (Appendix 1), 

while the farthest distance between study sites of different habitat was 4,500 metres, that was, 

between Kabrasi B in the farmland and Salazar B in the forest.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plant communities 

In the beginning of the study, the vegetation in the study sites was identified and mapped. The 

cover of canopy, giving shade to the herbal layer and thus the focal plant, was estimated using 

a percentage scale (from 0% = no canopy to 100% = complete canopy coverage). This canopy 

cover in each study site was used for analysing potential influence of the canopy cover on the 

visitation frequency. 

Figure 5.1:  
(A) Satellite image of Kakamega Forest and the surrounding farmland (Landsat ETM + (7); 05 Feb 
2001, spectral bands 5/4/3, contrast enhanced); 
(B) Detail: the study area in the northern part of the forest. 
courtesy of G. Schaab 
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Parallel to the flower visitor observation units I conducted flower counts to produce a 

quantitative measure of flower density of Justicia flava and all other plant species at each 

study site. 

 

5.3.2 Flower visitor composition 

Flower visitors of Justicia flava 

The monitoring of the composition of flower visitors of J. flava was done between January 

and February 2005. Five observation units were conducted on each of the 15 study sites. 

Flower visitors were observed in 30-min units between 10.00 am and 02.00 pm on sunny days. 

In these observation units ten flowers were observed, every visitor, the number of flowers it 

visited, and the flower visit duration recorded. These data provided a basis for the calculations 

of species composition, the abundance and diversity of the flower visitors. After each 

observation unit conspecific and heterospecific flowers were counted, and flower visitors 

were caught with a sweep net for 10 minutes for later identification. It was not possible, to 

identify some of the small visitors up to species level in the field, due to their size and colour. 

In order to avoid interfering with the flower visiting behaviour of the bees, small bees were 

grouped in 4 groups (Appendix 5.2).  

 

Diversity and similarity 

The within-habitat-diversity of flower visitors was calculated using the Rényi diversity index 

(RÉNYI 1961, TÓTHMÉRÉSZ 1995).  
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pi  = proportions of each species 

α   = scale parameter 

 
A profile is calculated by changing the value of α from 0 to infinity. In this thesis the values 

of α are: 0, 0.25, 0.5, 1, 2, 4, 8, 16, Inf. (vegan package, OKSANEN ET AL. 2006). The shape of 

the Rényi-curve profile is an indication of the eveness. A horizontal profile indicates that all 

species have the same eveness. The less horizontal a profile is, the less evenly species are 

distributed. If the profile for one site is everywhere above the profile for another site, then this 

means that the site with the highest profile is the more diverse of the two. If the profiles 
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intersect, it is not possible to order the sites from lowest to highest diversity (KINDT &  COE 

2005). 

The similarity of flower visitor compositions between the different study sites was 

investigated using Morisita-Horn Similarity measurements (MORISITA 1959, HORN 1966). 

This index measures similarity between two communities and varies from 0 (no similarity) to 

about 1.0 (complete similarity). The index is nearly independent of sample size and compares 

abundances, species by species (CHAO ET AL. 2005).  
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  CH = Morisita-Horn Index of similarity between sample j and k 

  Xij, Xik = number of individuals of species i in sample j and sample k 

  Nj = Σ Xij = total number of individuals in sample j 

  Nk = Σ Xik = total number of individuals in sample k 

 

   
5.3.3 Spatial autocorrelation 

The Mantel Test was conducted to investigate the influence of geographical distance on the 

bee composition in the different study sites. The test is based on distance matrices and 

permutation tests and examines the relationship between two matrices (MANTEL 1967). The 

Mantel Test computes a correlation between the two n x n distance matrices, where one 

matrix might represent spatial distances for example, whereas the other represents differences 

(= distances) between ecological variables or patterns (e.g. bee species composition). In 

calculating the Mantel statistic, the products of corresponding elements of the distance 

matrices (Aij and Bij) summed as follows for i ≠ j: 
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Z = Mantel coefficient 
A = variable distance matrix (here: Morisita-Horn Dissimilarity of bees) 
B = actual Euclidean (spatial) distances among the n study sites 

 

For preparing distance matrices, the Morisita-Horn Dissimilarity (1- M-H Similarity) was 

calculated between the bee communities of the different study sites, and Euclidean Distance 
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was calculated for the geographical distance as well as for the differences in flower number 

between study sites. To overcome the problem of unbounded Z-statistic, which can not be 

compared from one study to another, the Z-statistic can be normalized (r) such that it behaves 

as a product-moment correlation coefficient (similar to Pearson’s r representing a linear 

relationship), which ranges from -1 to +1. The normalization of each distance matrix was 

carried out separately using the standard normal transformation, subtracting the mean of that 

matrix from each element, and then dividing by the standard deviation of the elements in that 

matrix. This normalized Mantel statistic (r) can be used to compare results from different 

variables, or studies, by means of confidence limits, as described by MANLY  (1986, 1997). 

When the r-statistic is calculated between a variable distance matrix and a geographical 

distance matrix, the value of r corresponds to the average magnitude of spatial autocorrelation 

of the variable for the entire study area. Because the Mantel statistic cannot be tested as an 

ordinary product-moment correlation because the distances in each matrix are not independent 

of one another, the significance is assessed by using a permutation test to construct a 

reference distribution. In this permutation test, the statistic calculated on the actual data is 

compared with what happens when the elements of the matrices are shuffled at random. If 

there is a strong spatial pattern in the data, shuffling the data points will eliminate that pattern. 

In this project, the number of permutations was 5000.  

Space can create spurious relations between two variables that are in fact driven by a spatial 

gradient or by a third variable that follows the spatial gradient. To address this issue, partial 

Mantel test allows the comparison among three distance matrices. A partial correlation 

between two matrices is calculated, keeping the effects of the third matrix constant. The test 

was conducted to investigate the influence of food availability on the bee composition in the 

different study sites. Partial Mantel Test was conducted, with the Morisita Horn 

Dissimilarities building the first cross table, the geographical distance building the second and 

the differences in flower numbers building the third cross table.  

 

5.3.4 Data analysis and statistics 

In this study the received data were listed with Microsoft Office Excel 2003. Rényi diversity 

profiles were produced, and Morisita-Horn Similarity, Euclidean distances and Mantel Test 

calculated using R 2.4 (The R Development Core Team 2006) and the R package vegan 1.8-3 

(OKSANEN ET AL. 2006).  

A result is called significant, if the significance level is p ≤ 0.05, highly significant, if the 

level is p ≤ 0.001 and marginally significant, if 0.10 ≤ p ≤ 0.05. 
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5.3.5 Identification of bees 

Identifications of the flower visiting bees were done by two specialist taxonomists for African 

bees. Dr. Mary Gikungu (National Museums of Kenya, Nairobi) worked on the families 

Megachilidae and Halictidae, and Dr. Connal Eardley (Plant Protection Research Institute, 

Pretoria, South Africa) identified the specimens belonging to the Apidae. 

 

 

5.4 Results 

5.4.1 Flower visitor composition and diversity 

During the study 2264 visits of 64 species of bees were recorded on the flowers of Justicia 

flava (Appendix 5.2). The highest species richness was found inside the forest (total: 47 

species, Salazar A: 19 species, Table 5.1), while highest abundance was observed in the 

farmland. The most abundant species was the honey bee Apis mellifera, which was 

responsible for 71% of the total flower visits and thus highly dominant.  

 

 

Table 5.1:  
Number of flower visitor species and their visits to Justicia flava  

habitat type study site 
number of 
visitor species 

No. of flower 
visits by bees 

No. of flower visits by 
A. mellifera 

No. number of 
J. flava flowers 
(mean) 

farmland Buyangu C           8 281 205 197 
farmland Buyangu D  4 332 327 383 
farmland Kabrasi B  5  73  57 255 
farmland Kabrasi D  8 140  79 274 
farmland Kabrasi E  6 170 160 380 
forest edge Buyangu A  9 244 219 229 
forest edge Buyangu E 13 279 233 174 
forest edge Buyangu F 11 115  87 265 
forest edge Lusero B  9 121  98 512 
forest edge Upper Campsite  3 117 115 304 
forest Buyangu Hill 12  82  0 114 
forest Campsite A  9  64  8  77 
forest Mapera  15 105 34  69 
forest Salazar A 19 111  0  75 
forest Salazar B 12  29  1  15 
 farmland 19 996 827 293 
 forest edge 29 876 751 237 
 forest interior 47 391  43   70 
 total 64        2264               1622 249 
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Rényi diversity profiles showed not only the higher species richness but also higher evenness 

of the flower visitor composition inside the forest compared to the other two habitat types 

(Figure 5.2 A). In the different habitat types, the Rényi-profiles showed habitat-congruent 

shapes. While for all forest interior sites, the sparsely sloped Rényi profiles indicated high 

evenness (Figure 5.2 D), low evenness was found in the two habitat types outside the forest 

(Figure 5.2 B,C), displaying the high dominance of the honeybee Apis mellifera. 

5.4.2 Similarity in visitor composition between study sites 

Morisita-Horn Similarity Index was calculated to compare the flower visitor compositions 

between the study sites of the same as well as of different habitat types. 

Some species were found only on single study sites or in single habitat types. For example 

Amegilla albigena was found only in the farmland site Kabrasi D, while Xylocopa calinata 

was found only in the forest site Salazar B. Xylomelissa sp.1 occurred only inside the forest, 

and the males of Xylocopa nigrita were found only in the farmland study site Buyangu C, 

while the females were found only inside the forest. The case of Xylocopa nigrita might serve 

Figure 5.2: 
Rényi Diversity Profiles of flower visiting insects of J. flava. A: Profiles of all visitors in the different habitats; 
B: Profiles of visitors in the different forest edge sites; C: Profiles of visitors in the different farmland sites; D: 
Profiles of visitors in the different forest sites. 
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as an indication, that habitat specificity found in this study might be a result of under-

sampling rather than real habitat specificity. Thus, absolute conclusions should be drawn 

cautiously. Only few species of flower visitors occurred on several of the study sites. The 

honey bee was found on 13 sites but was absent in Salazar A and Buyangu Hill while 

Xylocopa calens and Xylocopa hottentotta were found on only seven respectively five sites. 

Interestingly, X. calens was found only in open habitat types outside the forest, while X. 

hottentotta occurred only inside the forest and at the forest edge. Even if the number of flower 

visitors was not the highest at the forest edge, it was evident that this habitat shared quite a 

number of species with the other habitat types. Conversely, farmland and forest interior 

showed species, that did not occur in the completely different habitat types and the species 

seemed to be more or less habitat dependent.  

Comparisons of the flower visitor communities between the different habitats showed, that 

the composition was rather similar between farmland and forest edge (overall: S = 0.99, for 

details see Table 5.2 A,B), while higher differences were found between both habitats 

compared with the forest interior (overall: S = 0.25 for both combinations).  

Comparing the study sites within each habitat, Morisita-Horn Similarity measurements 

showed high similarity within either farmland and forest edge sites and low similarity within 

the forest (Table 5.2 A). In combination with the high species numbers inside the forest, this 

habitat type seemed to be highly diverse, inhomogeneous and difficult to predict. However, 

excluding Apis mellifera from the analysis changed the pattern, especially in the farmland and 

at the forest edge. In these two habitat types, similarities in bee composition between study 

sites decreased significantly, if only solitary bees were investigated (Table 5.2 B). 

  

5.4.3 Spatial autocorrelation 

Mantel Test was applied, to answer the question “Are samples that are close together also 

compositionally similar?”. The test was conducted with the Morisita-Horn Dissimilarities as 

dependent and the geographical distance as independent variable. However, while there was 

no spatial autocorrelation between visitor composition and geographical distance between the 

study sites at the forest edge (r = 0.003, p = 0.425), the effect was significant inside the forest 

r = 0.574, p = 0.026) and obvious but only marginally significant in the farmland (r = 0.72, p 

= 0.066) (Figure 5.3, Table 5.3). The same pattern appeared for the influence of geographic 

distance on the composition of solitary bees (excluding the dominant honeybee from analysis). 

While there was no effect at the forest edge, spatial autocorrelation was found in the other two 

habitat types (farmland: r = 0.448, p = 0.085; forest interior: r = 0.578, p = 0.01). Because of 
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the honeybees’ high dominance, the influence of geographic distance on the abundance of 

Apis mellifera was tested separately using Mantel Test. A strong correlation was found only 

among study sites in the farmland (r = 0.793, p = 0.008), while no spatial autocorrelation was 

found in the other two habitat types (Table 5.3). Partial Mantel Test was conducted to 

investigate the influence of the number of flowers on the flower visitor composition, but in 

farmland and forest edge no such effect was found. A marginally significant correlation was 

found inside the forest (r = 0.58, p = 0.072). However, inside the forest partial Mantel Test 

showed that correlation between the similarity Matrix and the geographic distance matrix 

increased significantly if the number of flowers was used as Z matrix (r = 0.575, p = 0.043). 

Geographic distance and flower number were themselves not correlated. This pattern was not 

found in the farmland and at the forest edge. During this study the forest was the only habitat 

where I found a correlation between geographical distance and flower number was found.  

 

 

 

 

A   
Farmland Forest Edge Forest 

    BuyC BuyD KabB KabD KabE BuyA BuyE BuyF LusB UCam BuHi CamA Map SalA 

BuyD 0.94                          <0.25 

KabB 0.96 0.96                        <0.50 

KabD 0.84 0.80 0.84                      <0.75 

F
a

rm
la

n
d

 

KabE 0.95 1.00 0.97 0.82                    >0.75  

BuyA 0.95 0.99 0.98 0.84 1.00                   

BuyE 0.98 0.98 0.98 0.84 0.99 0.99                 

BuyF 0.97 0.96 0.98 0.87 0.97 0.98 0.99               

LusB 0.96 0.97 0.98 0.85 0.98 0.99 0.99 0.99             F
o

re
st

 e
d

ge
 

Ucam 0.94 1.00 0.96 0.80 1.00 0.99 0.98 0.96 0.97           

BuHi 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.04 0.02 0.00         

CamA 0.25 0.22 0.25 0.26 0.22 0.24 0.24 0.27 0.26 0.22 0.07       

Map 0.63 0.55 0.63 0.60 0.57 0.58 0.61 0.67 0.62 0.55 0.33 0.44     

SalA 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.00 0.20 0.00 0.15   

F
o

re
st

 

SalB 0.07 0.06 0.07 0.07 0.06 0.07 0.07 0.07 0.08 0.06 0.13 0.03 0.11 0.10 

                

 B   Farmland Forest Edge Forest 

    BuyC BuyD KabB KabD KabE BuyA BuyE BuyF LusB UCamp BuHil CampA Map SalA 

BuyD 0.02                          <0.25 

KabB 0.00 0.00                        <0.50 

KabD 0.06 0.00 0.00                      <0.75 

F
a

rm
la

n
d

 

KabE 0.00 0.00 0.17 0.36                    >0.75  

BuyA 0.00 0.00 0.09 0.63 0.26                   

BuyE 0.86 0.03 0.00 0.06 0.00 0.01                 

BuyF 0.29 0.00 0.00 0.25 0.09 0.44 0.41               

LusB 0.00 0.00 0.00 0.15 0.03 0.22 0.01 0.26             F
o

re
st

 E
d

ge
 

Ucam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00           

BuHi 0.00 0.00 0.02 0.03 0.04 0.12 0.06 0.39 0.27 0.00         

CamA 0.00 0.03 0.00 0.03 0.00 0.18 0.00 0.18 0.10 0.00 0.07       

Map 0.00 0.00 0.01 0.00 0.02 0.00 0.13 0.46 0.02 0.00 0.48 0.34     

SalA 0.00 0.00 0.05 0.02 0.10 0.01 0.05 0.14 0.26 0.00 0.21 0.00 0.22   

F
o

re
st

 

SalB 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.07 0.00 0.12 0.00 0.06 0.11 

Table 5.2:  
Morisita-Horn Similarities (A) of the flower visitor composition of J. flava between study sites of the same and 
of different habitat types; (B) of solitary bees visiting J. flava (Apis mellifera excluded) 
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Figure 5.3:  
Morisita-Horn Similarity Indices between study sites in relation to the distance between the sites. (A) all 
habitat types included, (B) forest sites only, (C) farmland sites only, (D) forest edge sites only. Significant 
spatial autocorrelation found only inside the forest (see Mantel Test). 
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Table 5.3:  
Significant results of Mantel- and Partial Mantel test (simi= Morisita-Horn similarity of flower 
visitor group, flower= number of J. flava flowers, geogr.dist. = geographic distance between the 
study sites 

          mantel-statistic 
visitor group habitat type x-matrix y-matrix z-matrix   r p 

all bees farmland simi geogr.dist. - 0.72 0.066 
all bees farmland simi flowers -             n.s. 
all bees farmland flowers geogr.dist. -             n.s. 
all bees farmland simi flowers geogr.dist.             n.s. 
all bees farmland simi geogr.dist. flowers             n.s. 
all bees forest edge simi geogr.dist. - -0.1152 0.629 
all bees forest edge simi flowers -             n.s. 
all bees forest edge flowers geogr.dist. -             n.s. 
all bees forest edge simi flowers geogr.dist.             n.s. 
all bees forest edge simi geogr.dist. flowers             n.s. 
all bees forest simi geogr.dist. - 0.55 0.025 
all bees forest simi flowers -             n.s. 
all bees forest flowers geogr.dist. -             n.s. 
all bees forest simi flowers geogr.dist.             n.s. 
all bees forest simi geogr.dist. flowers 0.575 0.043 
solitary bees farmland simi geogr.dist. -             n.s. 
solitary bees farmland simi flowers -             n.s. 
solitary bees farmland flowers geogr.dist. -             n.s. 
solitary bees farmland simi flowers geogr.dist.             n.s. 
solitary bees farmland simi geogr.dist. flowers             n.s. 
solitary bees forest edge simi geogr.dist. -             n.s. 
solitary bees forest edge simi flowers -             n.s. 
solitary bees forest edge flowers geogr.dist. -             n.s. 
solitary bees forest edge simi flowers geogr.dist.             n.s. 
solitary bees forest edge simi geogr.dist. flowers             n.s. 
solitary bees forest simi geogr.dist. - 0.5784 0.01 
solitary bees forest simi flowers -             n.s. 
solitary bees forest flowers geogr.dist. -             n.s. 
solitary bees forest simi flowers geogr.dist. 0.5824 0.072 
solitary bees forest simi geogr.dist. flowers 0.683 0.008 
Apis mellifera farmland abundance geogr.dist. - 0.793 0.008 
Apis mellifera farmland abundance flowers -             n.s. 
Apis mellifera farmland flowers geogr.dist. -             n.s. 
Apis mellifera farmland abundance flowers geogr.dist.             n.s. 
Apis mellifera farmland abundance geogr.dist. flowers 0.7966 0.008 
Apis mellifera forest edge abundance geogr.dist. -             n.s. 
Apis mellifera forest edge abundance flowers -             n.s. 
Apis mellifera forest edge flowers geogr.dist. -             n.s. 
Apis mellifera forest edge abundance flowers geogr.dist.             n.s. 
Apis mellifera forest edge abundance geogr.dist. flowers             n.s. 
Apis mellifera forest abundance geogr.dist. -             n.s. 
Apis mellifera forest abundance flowers -             n.s. 
Apis mellifera forest flowers geogr.dist. -             n.s. 
Apis mellifera forest abundance flowers geogr.dist.             n.s. 
Apis mellifera forest abundance geogr.dist. flowers             n.s. 
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 5.5 Discussion 

Justicia flava, the focal plant in this study features a highly generalized pollination system 

with the very abundant honey bee Apis mellifera being the most efficient pollinator (HAGEN 

2003, chapter 4 in this thesis), and a high number of additional flower-visiting and pollinating 

insect species. The plant occurs in a variety of habitats, in dense groups of plants with many 

flowers (“big bang”) in the open areas, and as a typical component of the understory 

community scattered (“steady state”) in the forest interior. The composition of flower visitors 

differed highly not only between these habitats but also between study sites of the same 

habitat type. Based on differences in solar radiation (which is higher in open areas compared 

to the forest interior) and number of flowers, which was also significantly higher outside the 

forest, other living conditions for flower visiting bees were suspected to be significantly 

different between habitats as well. Thus, it was not surprising that the composition of flower 

visitors of Justicia flava differed highly between habitats.  

The flower visitor composition in the farmland and at the forest edge closely resembled each 

other (Morisita Horn Similarity: S = 0.99) only due to the high dominance of the honeybee. 

After focusing on the solitary bee species only, differences in flower visitor composition 

between the study sites within as well as between habitats became obvious and significant. 

Visitor composition differed especially between the farmland compared to the other habitats 

(similarity with forest edge: from 99% to 70%; with forest interior: from 25% to 2%). The 

similarity between forest edge and forest interior was completely based on the composition of 

solitary bees, as exclusion of honeybees from analysis did not bring any changes. Only seven 

out of the 66 insect species visiting the flowers of J. flava were found in all three habitat types. 

These species seemed to be generalists, without specific habitat requirements. Highest 

correlation in species composition was found between forest edge and forest interior (nine co-

occurring species), while only three species were found in the farmland as well as inside the 

forest. Expectedly, I found a typical edge effect, with the flower visitor composition of the 

forest edge showing higher similarities with the compositions of the other two habitat types 

compared to the very low correlation between the flower visitors of farmland and forest 

interior.  

 

Spatial patterns and correlations differed highly between habitats. Based on Mantel test 

results, there was no influence of geographical distance on the flower visitor communities and 

their predictability across habitats at the forest edge but a spatial autocorrelation was 

conspicuous in farmland and forest interior. However, the pattern of the results differed 
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between the two habitat types. The positive spatial autocorrelation in the composition of 

flower visitors in the farmland (r = 0.72, p = 0.066) seemed to be primarily due to high spatial 

autocorrelation in the abundances of honeybees (r = 0.793, p = 0.008), while the influence on 

solitary bees was smaller and only marginally significant (r = 0.448, p = 0.085). SCHNEIDER &  

MCNALLY  (1993) found that under most conditions colonies of honeybees met their food 

needs by exploiting relatively small regions of the environment (majority within 1 km of the 

nest), if enough food is available. J. flava and several other plant species showed big flower 

displays in the farmland. Since Apis mellifera and other eusocial bees can communicate the 

foraging site to nest members and recruit them (ROUBIK 1989), they were presumably 

attracted by the high amounts of J. flava flowers in the farmland, where they could harvest 

vast quantities of floral rewards to provision their nests. Thus, spatial autocorrelation, found 

in the farmland, seemed to be a result of the honeybees’ behaviour. However, in our analysis, 

neither flower visitor composition nor abundance of honeybees seemed to be influenced by 

the number of flowers of J. flava or the whole plant community in the study sites. Thus, the 

food availability was not the limiting factor in the farmland. 

In turn, the flowers of J. flava and other plant species were found sparsely distributed 

in the forest understorey (GIKUNGU 2006). Thus, mass-recruiting eusocial bees, which 

furthermore prefer sunny habitats (MICHENER 2000), play a minor role in flower visitor 

composition of the forest floor, compared to long-tongued, traplining solitary bees which have 

a strong preference for flying at ground level and in shaded habitats (KATO ET AL. 2005). The 

plants usually incorporated in such traplines are “steady state” bloomers (GENTRY 1974) 

which produce few flowers each day and flower over a long period (JANZEN 1971) and are 

thus a predictable food source. The food resources might have influenced the flower visitor 

behaviour to a “spatial-use strategy” or trap-lining strategy (OHASHI ET AL. 2007) rather than a 

random visitation pattern, in contrast to the study sites outside the forest. 

Inside the forest, the effect of geographical distances was found for the flower 

abundance of J. flava as well as for the whole flower visitor communities and even stronger 

for the community of solitary bees visiting the flowers of J. flava. Inside the forest, food 

resources were the limiting factor for the occurrence and behaviour of the bees.  

Real landscapes, of course, are heterogeneous. Their quality as habitat varies across 

space, and suitable habitat is commonly interspersed in a matrix of unsuitable habitat, which 

reduces the probability of successful dispersal (e.g. HIRZEL ET AL. 2007). In case of flower 

visiting bees the suitable habitat is built by the flowers, and the matrix of unsuitable habitat is 

the non-flowering rest of, in this case, the forest. To exploit the suitable, but widely and 
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scattered distributed food sources, specific foraging methods are needed. Some pollinator 

species are known to exploit food sources in a traplining manner, including honeybees, 

bumblebees, euglossine bees, sunbirds and Heliconius-butterflies (e.g. RIBBANDS 1949, 

COMBA 1999, MAKINO &  SAKAI 2004, WILLIAMS &  THOMSON 1998, GILBERT 1980). Foraging 

strategies of individuals of single bee species can differ, depending on the number of flowers 

available to flower visitors. For example, THOMSON &  CHITTKA  (2001) highlighted that 

bumblebees showed clear trap-lining behaviour on scattered plants of Aralia hispida in central 

New Brunswick (THOMSON ET AL. 1982); in dense stands of Solidago spp. nearby, however, 

bees of the same species showed no discernable tendency to repeat their flight paths, although 

they were using small foraging areas. Apparently, the skill with which bees solve a particular 

foraging task depends substantially on their earlier experience with related tasks (ZHANG &  

SRINIVASAN  1994). Thus, the behaviour of insects visiting the flowers of J. flava seemed to be 

variable based on the number of flowers available. In the Kakamega farmland, many flowers 

of several plant species were suspected to offer big amounts of nectar and pollen to their 

flower visitors, which could be the reason why solitary bees showed a more or less random 

visitation pattern. In contrast, the small amounts of flowers and the dominance of J. flava 

flowers inside the forest might have led to a trap-lining behaviour. The data suggest that the 

observed bees in the different habitat types followed different flower visitation strategies due 

to the availability of food. This might be the reason for the significant spatial autocorrelation 

inside the forest.  Due to the small flower numbers, bees might need to be more “organized” 

to find enough food. Further studies concerning the flower visitation behaviour of single 

specimens of bees are urgently needed, due to the fact, that up to now only indirect measures 

were applied to the behaviour of bees.  

Furthermore, studies on bee diversity (see chapter 3) showed that inside the forest 

significantly more large-sized bee species occurred compared to the other habitat types as the 

metabolism of larger bees is better adapted to scattered food sources (GATHMANN ET AL . 1994, 

GATHMANN &  TSCHARNTKE 2002) compared to small-sized bees. Habitat does influence the 

composition of bees, and even within homogeneous habitats (e.g. Kakamega Forest), 

differences occur. These patterns can also influence the coevolutionary processes. Due to the 

fact, that bigger bees showed a higher pollination efficiency, the plants inside the forest did 

not have lower reproductive success compared to the plants in the open areas, where higher 

flower visitation rates were found. Furthermore, there might be the chance of higher 

outcrossing rates inside the forest, due to the bees’ foraging behaviour. 
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The evolution of species interactions can only be fully understood by considering their 

variation in space and time (THOMPSON &  PELLMYR 1992, GOMEZ &  ZAMORA 2000), as 

species interactions commonly coevolve as complex geographic mosaics of populations 

shaped by differences in local selection and gene flow (HORVITZ &  SCHEMSKE 1990, 

GOMULKIEWICZ ET AL. 2000). But spatial variation must be stable through time to result in 

local evolutionary specialization of mutualisms, provided the genetically effective population 

size of the plants is small relative to the area occupied by a particular animal taxon. Because 

of temporal variation found in the pollinator system of J. flava (chapter 3), the effect of spatial 

variation will be diffused by this temporal variation, which favours a whole assemblage of 

mutualists rather than one specialized pollinator. The results of the present study support the 

hypothesis that diffuse selection by a variable assemblage is common in plant-animal 

mutualisms, especially in the tropics. At least inside the forest, flower visitor composition 

varied highly on a spatial scale, as shown by low Morisita-Horn values and spatial 

autocorrelation. Plant species relying on animal vectors for pollination and seed dispersal 

suffer from a reduction in reproductive success at low abundances, because small patch sizes 

and increased isolation limit pollen transfer and prevent seed dispersal (AGREN 1996, KUNIN 

&  IWASA 1996, GROOM 1998), and can lead in extreme cases to a reduction in the per capita 

growth rate, the Allee effect (ALLEE 1931, AMARASEKARE 2004). Interacting species coevolve 

in different ways in different populations, often creating a geographic mosaic of traits and 

counter traits. The geographic mosaic theory of coevolution indicates that geographic 

differences in interactions are an inherent part of the coevolutionary process, driven by 

variation between habitats as well as variation in habitats. The theory predicts that 

geographically structure species will tend to coevolve toward a complex spatial mosaic of 

coevolutionary hotspots and coldspots. Flower visitor communities of J. flava were found to 

differ highly between nearby habitats in composition and reaction to environmental 

parameters – building a complex spatial mosaic of mutualistic interaction. 
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6. GENERAL CONCLUSIONS 

 

 

 

 

 

 

In this PhD-thesis, I investigated plant – flower visitor interactions in Kakamega Forest and 

the surrounding highly structured agricultural area. Due to high anthropogenic pressure the 

whole landscape mosaic is changing, resulting in a simplification of landscape pattern, which 

endangers the biodiversity of the area. Especially for bees, which use a high number of 

different habitats in close vicinity during their life cycle, the presence, configuration and 

connectivity of the different habitat types is essential and thus of great concern for 

conservationists. 

The thesis is divided in three major topics. First of all, with a food-web approach, the 

composition, dependency and interaction between the members of the plant – flower visitor 

networks were investigated. Furthermore, I focused on spatial and temporal changes in the 

composition of the networks in as well as between the different habitats. As such overall 

surveys give a broad generalized picture only, I analysed the plant – flower visitor 

interactions of Justicia flava (Acanthaceae) in more detail. I focused not only on the plant and 

its pollinators but also on their spatial pattern in terms of distribution, spatial autocorrelation, 

and furthermore the connectance between plant populations through their mobile animal 

vectors. 

 

6.1 Flower visitor networks 

Plant-animal mutualistic networks are interaction webs consisting of two sets of entities, plant 

and animal species, whose evolutionary dynamics are deeply influenced by the outcomes of 

the interactions, yielding a diverse array of coevolutionary processes. This coevolutionary 

change is basically a diffuse process involving sets of species, and pairwise coevolution 

(JANZEN 1980) is rare in most plant-animal mutualisms (e.g. JORDANO 1987). Networks 

involving plants and their pollinators or frugivores have recently been shown to exhibit a 

complex structural characteristic called nestedness, which particularly implies great levels of 

asymmetric specialization with the core set of generalist species interacting with one another 
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and the most specialised species interacting with the most generalist species only 

(BASCOMPTE ET AL. 2003, 2006, JORDANO ET AL. 2003). In Kakamega area the flower visitor 

webs in all three habitat types were highly asymmetric, with the three most involved plant 

species building 54% – 84% of the network. Interestingly, the most important plants and bees, 

all of them generalists in terms of pollination partners, were the same in the different habitats 

whereas the more specialised species differed highly between the habitats, showing habitat 

dependency. Apis mellifera was the most abundant bee species in all habitats, and was 

involved in 60% - 80% of the interactions in the networks. This is a typical pattern in tropical 

ecosystems, where the possibility of year-through activity patterns support the eusocial bees 

in being very successful and dominant (ROUBIK 1979, MICHENER 2000). The genus Apis in 

southern Asia and in Africa and the other highly social bees, the Meliponini, are often the 

most abundant bees in the tropics. Each such species must be, from the standpoint of floral 

resources, the ecological equivalent of a number of species of non-social bees as the workers 

of eusocial species are not only highly abundant but also active all year through. Competition 

for food by these aggressive generalists has an important influence on the tropical bee faunas 

(M ICHENER 2000). Apart from the negative impacts of humidity on the survival of solitary 

bees (MICHENER 2000), this is one explanation for the relative scarcity (relative to what would 

be expected from experience) of bee species in the tropics. 

In nested networks, the disappearance of such a strongly interactive species, like A. mellifera 

can lead to profound changes in ecosystem composition, structure, and diversity (SOULÉ AND 

TERBORGH 1999, TERBORGH ET AL. 1999, OKSANEN &  OKSANEN 2000, SCHMITZ ET AL. 2000, 

SOULÉ ET AL. 2003, SOULÉ ET AL. 2005). However, the extinction of such successful species 

seems to be rather improbable, although in some parts of the world extreme declines in 

honeybee-colonies are found. But, depending on the size of a network, the importance of 

single interaction partners differs. The bigger a pollinator web, and the smaller the relative 

number of interaction partners per individual is, the less important is the single bee or plant 

for the persistence of the network. Thus, bigger networks might be less vulnerable to shifts or 

extinctions in interaction partners (OLESEN &  JORDANO 2002). In Kakamega Forest area, I 

found the bigger networks in the open areas, whereas the network inside the forest was rather 

small, showing high seasonal fluctuations. Generally, bee species are more adapted to open 

areas rather than to forests and, in this study, profited highly from the big food/flower 

supplies, the heterogeneous and thus suitable landscapes as well as the good climatic 

conditions in the farmland, whereas the small numbers of flowers and the high humidity 

inside the forest seemed to be more of a challenge to some of the species. However, due to 
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high spatial turnover rates, movements between the habitat types seemed to be probable, and 

the species- and individual-poor forest profited from the exchange with the species- and 

individual-rich surrounding open areas. Especially during mass flowering events of forest 

trees, high numbers of flower visitors must be recruited from the surrounding areas. Thus, 

every habitat type contributes to the welfare of the plants and animals and a rather high 

diversity level, and due to movements between habitats, stability of the whole ecosystem 

might increase. The dimensions of exchange of bees, and thus of genetic material of the plants, 

between the different habitats, is not known, and future investigations will help to fill the 

existing gaps of knowledge. 

 

6.2 Justicia flava: diversity, abundance and spatial patterns of the flower visitors 

Destruction and fragmentation of landscapes can lead to reduction in species richness and 

abundance of pollinator guilds and thus to a reduction in the reproductive success of plants 

relying on pollination by these animals. I focused on the abundant herbal self-incompatible 

plant species Justicia flava (Acanthaceae). Comparative results showed that the composition 

of flower visitors did not only differ clearly between different habitat types, but also between 

study sites, in close vicinity within the same habitat. Spatial distance had a high significant 

effect on the composition of flower visitors especially inside the forest, where small numbers 

of flowers and their scattered distribution challenged the bees during their foraging bouts. As 

J. flava was one of the few plants species flowering throughout the year, it acted as keystone 

food source for the flower visitors. Thus, bee species composition relied on the distribution of 

these flowers, and flower visitor behaviour inside the forest seemed to result in traplining 

behaviour, explaining the spatial autocorrelative pattern which was not found in the 

composition of solitary bees outside the forest. Interestingly, highest diversity of flower 

visitors occurred inside the forest, while the flower visitor composition outside the forest was 

highly dominated by the honeybee, Apis mellifera. Up to a distance of 1500m from the forest, 

the number of bee species visiting the flowers of J. flava decreased significantly with 

increasing distance from the forest whereas the flower visitor composition on study sites 

farther from the forest did not show any dependency on the distance. This pattern resulted 

from the different spatial distribution of flowering plant species, with high numbers of flowers 

of different plant species in the farmland, and few flowers of some keystone species like J. 

flava inside the forest.  

Furthermore, I investigated the influence of diversity and abundance of flower visiting 

insects on the reproductive success of J. flava. The reproductive success of the self-
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incompatible plant was neither influenced by the diversity nor by the abundance of flower 

visitors, due to the fact, that J. flava experienced high visitation frequencies. Even though the 

plant was not pollinator limited, a diverse and abundant pollinator community is a necessary 

prerequisite for the survival of this self-incompatible plant, especially in a spatial and seasonal 

dynamic environment. Investigations on the influence of flower visitors as well as spatial 

parameters need to be extended to other plant species and their visitors. Especially more 

specialised pollination systems, like of the oil-providing plant Momordica foetida 

(Cucurbitaceae), which is visited by generalistic as well as specialised bee species (oil-

collecting bees of the genus Ctenoplectra) need to be investigated in detail in the future.   

 

6.3 Bee diversity pattern depends on focus 

A recurring phenomenon in ecological sciences: The level of focus influences the pattern 

found in the analysis. While focusing on the whole plant-flower visitor network, highest 

diversity of bees was found in the open, flower rich areas, especially at the forest edge, while 

only small numbers of bees with high seasonal fluctuations were found inside the forest. 

Investigations in the diversity of flower visitors of one single plant species (Justicia flava) in 

a specific season showed smallest bee species numbers at the forest edge, with species 

diversity being highest inside the forest. Especially the high species diversity inside the forest 

was caused by a high dominance of Justicia flava as one of the keystone floral resources, 

concentrating the bee visitation on a few plant species. Such differences in diversity pattern 

clarify the high importance of the focus (whole year versus specific season, whole pollinator 

web versus visitors of a single plant species) in analyses, and the responsibility of the 

scientists and conservation ecologists, to collect and analyze data carefully, having in mind 

the potential of different datasets. Depending on the focus, conclusions can be misleading!  

 

6.4 Conservation strategies: conserve the whole landscape mosaic 

National parks are important structures to conserve wildlife (especially big vertebrates) in 

many parts of the world and in the past, conservation in tropical regions was concentrated 

only in such protected areas (PERFECTO &  VANDERMEER 2002). But they become more and 

more isolated islands within highly developed landscapes (GARDNER ET AL. 2007), and an 

exclusive focus of conservation efforts on the existing strictly protected area network is 

insufficient for the successful conservation of biodiversity and ecological integrity 

(WOODWELL 2002, ARMSWORTH ET AL. 2007, GARDNER ET AL. 2007) especially for organisms 

like bees. We have seen: for organisms like bees a structured agricultural landscape rather 
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than the conserved National Park is the important structure, and thus needs to get attention. 

Conservation biologists are increasingly aware that the matrix, within which forest fragments 

exist, may be as important for conservation as the forest fragments themselves (LAURANCE 

1991, THIOLLAY 1995, VANDERMEER &  PERFECTO 1997) and that it becomes imperative to 

understand the conservation value of an entire protected-area network for a wide range of 

taxonomic groups. There still exist many biodiversity-rich agroecosystems (VANDERMEER &  

PERFECTO 1997), especially in tropical areas, like the smallholder agricultural areas in the 

Kakamega Farmland. Attention to such agroecosystems that make up the majority of the 

matrix may be the key to conservation at the landscape level (VANDERMEER &  PERFECTO 

1997, PERFECTO &  VANDERMEER 2002, FISCHER ET AL. 2006, VANDERMEER &  PERFECTO 

2007), as patterns of beta diversity and habitat heterogeneity occur at regional, not reserve-

size scale (GERING ET AL. 2003). A diverse bee composition and thus a successful pollination 

of native as well as crop plants, relies on a diverse landscape with a variety of useful habitats 

for nesting as well as feeding requirements. As the availability of food resources (numbers of 

flowers) was always positively correlated with abundance as well as diversity of the flower 

visiting bees in this study, a high proportion of flowering plants in the landscape is one of the 

key requirements for the conservation of the ecosystem service pollination. In this study, the 

majority of bee species did not show specific habitat preferences, and were found in all 

different habitats. If these species need the habitats of the whole mosaic rather than only a 

small portion of these habitats, needs to be investigated in future. However, my results 

suggest that the forest understorey is not a reservoir for pollinators of crop plants. The forest 

itself seemed to rather profit from the bee composition of the farmland and possible migration 

events into the forest. However, I also found some bee species with possible habitat 

dependency on the forest. The conservation of these specialised species is of great concern for 

the conservation of a high biodiversity.  

 

This study and other detailed studies of biodiversity in different land-uses show that 

smallholder agricultural areas have much to contribute to tropical forest biodiversity 

conservation (DAILY ET AL . 2001, HUGHES ET AL. 2002, LUCK &  DAILY 2003), even though 

they might have only a limited capacity to compensate for forest loss (LAUBE ET AL. 2008). If 

human dependency on nature (e.g. through ecosystem services like pollination) becomes 

widely recognized, society will demand greater environmental stewardship (ARMSWORTH ET 

AL. 2007). Nature conservation is not widely recognized and thus applied in tropical countries, 

as poverty in the communities is very high, and people fight for their daily needs rather than 
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for nature conservation. Thus, ecologists also need to make marked efforts to embed human 

beings within their conceptualization of ecosystems (ARMSWORTH ET AL. 2007), e.g. through 

socio-economic approaches of alternative income generation. 

 

6.5 Outlook 

In this thesis, I found several bee species that occurred in all three habitat types, indicating 

their tolerance to as well as their dependency on different habitats in their lifecycle, with a 

highly structured landscape and sufficient food resources as limiting factors. As there is good 

knowledge about the composition of the flower visiting bees, nothing is known about their 

nesting and detailed foraging behaviour in East Africa. For a profound conservation of bees 

and their interacting mutualists, such knowledge is essential and highly needed. Furthermore, 

we only have the snapshot of spatial distribution with a lot of bee species occurring in the 

different habitat types rather than a general survey of the dynamics in the bee communities 

over larger temporal scales. If bee individuals migrate between habitats or if a distinct 

population of the species exist in each habitat, is not yet clear and needs further investigations. 

The direct evidence of this pattern is one of the big challenges in pollination ecology, as direct 

movements of bees are hard to follow and detect. Different methods, like capture-recapture, 

or radio-tracking need to be improved, to answer this urgent question, which is a necessary 

basis for the understanding of spatial patterns of pollination interactions as well as for their 

conservation.  
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9. APPENDICES 

 
 

Appendix 3.1: Number of plant and bee species and abundance of flowers and bees in the 
different seasons and study sites 
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farmland Buyangu B long rain 50 15 105 8 12 93 17 10 12 2 81 

 Buyangu B cold dry 50 15 68 3 3 32 5 2 2 1 30 

 Buyangu B short rain 50 21 633 5 5 13 6 4 6 1 7 

 Buyangu B dry 50 13 41 3 10 26 11 9 20 1 6 
  Buyangu B all seasons 50 29 212 12 19 164 31 17 40 2 124 

farmland Buyangu C long rain 23 9 32 7 5 215 11 3 5 2 210 

 Buyangu C cold dry 23 11 45 5 11 112 16 8 31 3 81 

 Buyangu C short rain 23 17 159 8 12 78 20 10 26 2 52 
 Buyangu C dry 23 17 55 5 13 68 16 11 24 2 44 

  Buyangu C all seasons 23 20 73 11 25 473 45 22 86 3 387 

farmland Buyangu D long rain 34 18 94 13 23 145 34 20 42 3 103 

 Buyangu D cold dry 34 8 60 5 17 60 18 15 28 2 32 

 Buyangu D short rain 34 20 199 5 16 69 21 14 20 2 49 
 Buyangu D dry 34 15 61 5 9 38 12 8 8 1 30 

 Buyangu D all seasons 34 23 103 16 44 312 68 41 98 3 214 

farmland Kabrasi B long rain 26 13 88 4 3 132 6 2 3 1 129 

 Kabrasi B cold dry 26 15 51 3 6 266 7 5 6 1 260 

 Kabrasi B short rain 26 17 89 5 3 32 6 2 7 1 25 
 Kabrasi B dry 26 12 53 3 5 21 6 4 6 1 15 

  Kabrasi B all seasons 26 18 70 9 10 451 17 9 22 1 429 

farmland Kabrasi D long rain 32 9 67 6 5 21 7 4 4 1 17 

 Kabrasi D cold dry 32 12 33 4 9 41 10 7 11 2 30 
 Kabrasi D short rain 32 19 69 7 8 60 12 6 9 2 51 

 Kabrasi D dry 32 14 45 5 10 26 12 9 10 1 16 

 Kabrasi D all seasons 32 23 54 14 22 148 33 19 34 3 114 

farmland Kabrasi E long rain 32 17 87 7 10 112 18 8 21 2 91 

 Kabrasi E cold dry 32 13 51 6 14 138 17 12 24 2 114 
 Kabrasi E short rain 32 15 53 3 3 71 5 2 12 1 59 

 Kabrasi E dry 32 12 37 5 4 28 6 3 3 1 25 

  Kabrasi E all seasons 32 25 57 12 22 349 35 19 60 3 289 

forest edge Bukhaywa B long rain 68 17 94 7 15 25 17 13 14 2 11 

 Bukhaywa B cold dry 68 24 156 6 14 61 17 12 20 2 41 
 Bukhaywa B short rain 68 28 242 5 12 59 13 10 18 2 41 

 Bukhaywa B dry 68 12 61 5 17 57 20 16 32 1 25 

 Bukhaywa B all seasons 68 37 138 10 39 202 53 36 84 3 118 

forest edge Buyangu A long rain 38 15 111 13 24 197 36 23 85 3 112 
 Buyangu A cold dry 38 21 74 7 9 56 12 9 17 1 39 

 Buyangu A short rain 38 22 269 9 15 59 23 14 32 1 27 

 Buyangu A dry 38 19 70 2 7 26 8 5 6 2 20 

  Buyangu A all seasons 38 30 131 16 42 338 67 38 140 4 198 

forest edge Buyangu E long rain 27 7 60 5 10 30 13 9 14 1 16 

 Buyangu E cold dry 27 14 55 6 9 40 10 7 11 2 29 

 Buyangu E short rain 27 9 63 7 11 34 17 10 17 1 17 
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 Buyangu E dry 27 13 58 5 11 23 12 11 23 0 0 

 Buyangu E all seasons 27 18 59 13 28 127 34 27 65 2 62 

forest edge Buyangu F long rain 32 8 14 3 4 13 5 3 3 1 10 

 Buyangu F cold dry 32 17 67 8 17 123 24 15 31 2 92 

 Buyangu F short rain 32 16 251 6 10 144 15 9 11 1 133 

 Buyangu F dry 32 13 61 4 14 23 14 12 17 2 6 
  Buyangu F all seasons 32 22 98 12 36 303 46 33 62 3 241 

forest edge Lusero B long rain 52 18 106 3 12 36 12 11 16 1 20 

 Lusero B cold dry 52 20 124 9 22 72 30 21 48 1 24 

 Lusero B short rain 52 22 330 4 7 29 10 6 10 1 19 

 Lusero B dry 52 20 61 5 20 71 23 19 43 1 28 
 Lusero B all seasons 52 31 155 12 37 208 53 36 117 1 91 

forest edge Upper Camp long rain 25 7 27 0 0 0 0 0 0 0 0 
 Upper Camp cold dry 25 10 24 3 4 58 3 3 5 1 53 
 Upper Camp short rain 25 9 18 3 2 120 3 1 20 1 100 

 Upper Camp dry 25 8 59 2 12 31 14 11 20 1 11 

  Upper Camp all seasons 25 14 32 5 14 209 18 13 45 1 164 

forest Buyangu G long rain 60 9 33 1 2 2 1 2 2 0 0 
 Buyangu G cold dry 60 12 56 4 4 273 4 3 3 1 270 

 Buyangu G short rain 60 14 40 4 4 18 4 3 4 1 14 

 Buyangu G dry 60 4 27 2 2 5 3 2 5 0 0 

 Buyangu G all seasons 60 34 39 8 9 298 10 8 14 1 284 

forest Buyangu Hill long rain 55 7 11 1 2 7 1 1 1 1 6 

 Buyangu Hill cold dry 55 10 35 5 12 23 15 11 11 1 12 

 Buyangu Hill short rain 55 9 40 4 10 23 11 8 13 2 10 

 Buyangu Hill dry 55 5 28 1 6 7 6 5 5 1 2 

  Buyangu Hill all seasons 55 17 28 5 23 60 24 21 30 2 30 

forest Campsite A long rain 41 8 29 1 2 4 2 1 2 1 2 

 Campsite A cold dry 41 9 32 3 6 100 7 5 5 1 95 

 Campsite A short rain 41 6 22 2 5 17 5 3 3 2 14 

 Campsite A dry 41 4 41 2 7 15 7 6 11 1 4 

 Campsite A all seasons 41 14 31 3 13 136 14 11 21 2 115 

forest Mapera long rain 47 7 20 1 4 5 2 3 3 1 2 

 Mapera cold dry 47 13 38 2 7 23 8 6 7 1 16 

 Mapera short rain 47 12 58 3 6 12 5 5 5 1 7 

 Mapera dry 47 6 28 1 8 21 9 7 8 1 13 
  Mapera all seasons 47 19 36 5 18 61 18 17 23 1 38 

forest Salazar A long rain 58 12 45 1 5 7 5 4 4 1 3 

 Salazar A cold dry 58 13 53 1 12 28 10 11 14 1 14 

 Salazar A short rain 58 18 63 1 8 33 10 5 9 3 24 

 Salazar A dry 58 8 72 6 5 18 5 4 5 1 13 
 Salazar A all seasons 58 22 58 6 20 86 24 17 32 3 54 

forest Salazar B long rain 54 11 15 0 0 0 0 0 0 0 0 

 Salazar B cold dry 54 8 21 2 3 5 3 3 5 0 0 

 Salazar B short rain 54 13 41 3 4 54 4 3 4 1 50 

 Salazar B dry 54 6 13 0 0 0 0 0 0 0 0 
 Salazar B all seasons 54 18 23 3 7 59 7 6 9 1 50 
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Appendix 3.2:  
Bee species and their interaction partners in the farmland; reflecting the order of the pollination network analysis 
(Figure 3) 
      

bee-species plant species 

Number 
recorded 
interactions 

Apis mellifera (Apidae) Justicia flava (Acanthaceae) 61 
 Bidens pilosa (Asteraceae) 35 
 Crassocephalum vitellinum (Asteraceae) 2 
 Galinsoga parviflora (Asteraceae) 18 
 Commelina diffusa (Asteraceae) 1 
 Aspilia plurisetta (Asteraceae) 5 
 Aspilia mossambicensis (Asteraceae) 5 
 Ageratum conyzoides (Asteraceae) 7 
 Solanum mauritianum (Solanaceae) 2 
 Tithonia diversifolia (Asteraceae) 11 
 Asystasia mysorensis (Acanthaceae) 1 
 Leucas deflexa (Lamiaceae) 4 
 Asystasia gangetica (Acanthaceae) 3 
 Ipomoea wightii (Convolvulaceae) 1 
 Phaseolus vulgaris (Fabaceae) 2 
 Oxalis latifolia (Oxalidaceae) 9 
 Vernonia sp. 1 (Asteraceae) 5 
 Acmella calirhiza (Asteraceae) 1 
 Manihot esculenta (Euphorbiaceae) 1 
 Richardia brasiliensis (Rubiaceae) 1 
 Tagetes minuta (Asteraceae) 1 
 Justicia striata (Acanthaceae) 1 
 Leonotis nepetifolia (Lamiaceae) 3 
 Lantana camara (Verbenaceae) 7 
  Croton macrostachys (Euphorbiaceae) 2 
Halictus (Seladonia sp. 2) (Halictidae) Justicia flava (Acanthaceae) 3 
 Bidens pilosa (Asteraceae) 2 
 Crassocephalum vitellinum (Asteraceae) 1 
 Aspilia plurisetta (Asteraceae) 1 
 Ageratum conyzoides (Asteraceae) 6 
 Asystasia gangetica (Acanthaceae) 1 
 Crassocephalum crepidoides (Asteraceae) 1 
 Cynoglossum coeruleum (Boraginaceae) 1 
Ceratina sp. (Apidae) Justicia flava (Acanthaceae) 1 
 Bidens pilosa (Asteraceae) 5 
 Crassocephalum vitellinum (Asteraceae) 6 
 Galinsoga parviflora (Asteraceae) 4 
 Commelina diffusa (Commelinaceae) 1 
 Aspilia plurisetta (Asteraceae) 1 
 Ageratum conyzoides (Asteraceae) 2 
  Asystasia gangetica (Acanthaceae) 1 
Halictidae Bidens pilosa (Asteraceae) 1 
 Crassocephalum vitellinum (Asteraceae) 6 
 Aspilia mossambicensis (Asteraceae) 1 
 Ageratum conyzoides (Asteraceae) 3 
 Solanum mauritianum (Solanaceae) 2 
 Tithonia diversifolia (Asteraceae) 2 
 Momordica foetida (Cucurbitaceae) 1 
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Halictus sesdomiale (Halictidae) Bidens pilosa (Asteraceae) 6 
 Aspilia plurisetta (Asteraceae) 1 
 Ageratum conyzoides (Asteraceae) 1 
 Solanum mauritianum (Solanaceae) 2 
 Asystasia mysorensis (Acanthaceae) 1 
  Justicia calyculata (Acanthaceae) 1 
Lasioglossum (Ctenonomia sp.) Justicia flava (Acanthaceae) 1 
 Galinsoga parviflora (Asteraceae) 1 
 Commelina diffusa (Commelinaceae) 2 
 Ageratum conyzoides (Asteraceae) 2 
 Vernonia sp. 1 (Asteraceae) 1 
Megachile bituberculata (Megachilidae) Justicia flava (Acanthaceae) 2 
 Bidens pilosa (Asteraceae) 2 
 Crassocephalum vitellinum (Asteraceae)  2 
 Commelina diffusa (Commelinaceae) 1 
  Asystasia mysorensis (Acanthaceae) 1 
Braunsapis foveata (Apidae) Galinsoga parviflora (Asteraceae) 1 
 Aspilia plurisetta (Asteraceae) 1 
 Aspilia mossambicensis (Asteraceae) 1 
 Ageratum conyzoides (Asteraceae) 1 
Meliponula lendliana (Apidae) Justicia flava (Acanthaceae) 1 
 Bidens pilosa (Asteraceae) 1 
 Commelina diffusa (Commelinaceae) 1 
  Tithonia diversifolia (Asteraceae) 1 
Meliponula bocandei (Apidae) Bidens pilosa (Asteraceae) 9 
 Aspilia plurisetta (Asteraceae) 1 
 Aspilia mossambicensis (Asteraceae) 2 
 Tithonia diversifolia (Asteraceae) 7 
Braunsapis leptozonia (Apidae) Bidens pilosa (Asteraceae) 1 
 Aspilia plurisetta (Asteraceae) 1 
  Aspilia mossambicensis (Asteraceae) 1 
Pseudapis aff. amoenula (Halictidae) Justicia flava (Acanthaceae) 1 
 Asystasia mysorensis (Acanthaceae) 1 
  Oxalis latifolia (Oxalidaceae) 1 
Ceratina viridis (Apidae) Galinsoga parviflora (Asteraceae) 1 
 Leucas deflexa (Lamiaceae) 1 
 Crassocephalum crepidoides (Asteraceae) 1 
Ceratina (Pithitis) nasalis  (Apidae) Justicia flava (Acanthaceae) 1 
 Bidens pilosa (Asteraceae) 2 
  Galinsoga parviflora (Asteraceae) 1 
Halictus (Seladonia sp. 1) (Halictidae) Justicia flava (Acanthaceae) 2 
 Bidens pilosa (Asteraceae) 2 
 Galinsoga parviflora (Asteraceae) 1 
Megachile ianthoptera (Megachilidae) Justicia flava (Acanthaceae) 4 
 Bidens pilosa (Asteraceae) 1 
  Grass species 1 
Amegilla aff. langi (Apidae) Justicia flava (Acanthaceae) 15 
 Commelina diffusa (Commelinaceae) 1 
 Tithonia diversifolia (Asteraceae) 1 
Ceratina (Ctenoceratina) ericia (Apidae) Galinsoga parviflora (Asteraceae) 1 
  Asystasia mysorensis (Acanthaceae) 1 
Ctenoplectra antinorii (Apidae) Commelina diffusa (Commelinaceae) 1 
 Tithonia diversifolia (Asteraceae) 1 
Heriades sp. (Megachilidae) Justicia flava (Acanthaceae) 1 
  Crassocephalum vitellinum (Asteraceae) 1 
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Patellapis (Zonalictus sp.) Solanum mauritianum (Solanaceae) 1 
 Leucas deflexa (Lamiaceae) 1 
Lasioglossum (Sellalictus sp.) (Halictidae) Justicia flava (Acanthaceae) 1 
  Crassocephalum vitellinum (Asteraceae) 2 
Nomia aff. Welwitschii (Halictidae) Justicia flava (Acanthaceae) 2 
 Aspilia plurisetta (Asteraceae) 1 
Xylocopa nigrita (Apidae) Justicia flava (Acanthaceae) 1 
  Acanthus pubescens (Acanthaceae) 1 
Lipotriches orientalis (Lipotriches) Justicia flava (Acanthaceae) 3 
 Aspilia mossambicensis (Asteraceae) 1 
Pseudanthidium (Microanthidium) (Megachilidae) Asystasia mysorensis (Acanthaceae) 1 
  Leucas deflexa (Lamiaceae) 1 
Xylocopa calens (Apidae) Justicia flava (Acanthaceae) 27 
 Phaseolus vulgaris (Fabaceae) 1 
Amegilla (Megamegilla sp. 1) (Apidae) Justicia flava (Acanthaceae) 1 
Amegilla sp (Apidae) Justicia flava (Acanthaceae) 1 
Braunsapis aff. angolensis (Apidae) Justicia flava (Acanthaceae) 1 
Braunsapis aff leptozonia (Apidae) Bidens pilosa (Asteraceae) 1 
Braunsapis langenburgensis (Apidae) Bidens pilosa (Asteraceae) 1 
Braunsapis sp. (Apidae) Ocimum hadiens (Lamiaceae) 1 
Colletes sp. (Colletidae) Tithonia diversifolia (Asteraceae) 1 
Hylaeus sp. 1 (Colletidae) Oxalis corniculatum (Oxalidaceae) 1 
Lasioglossum (Ctenonomia sp. 2) (Halictidae) Bidens pilosa (Asteraceae) 1 
Lasioglossum (Rubrihalictus sp. 2) (Halictidae) Justicia flava (Acanthaceae) 1 
Lasioglossum sp. (Halictidae) Commelina diffusa (Commelinaceae) 1 
Lipotriches aff. welwitschii (Halictidae) Justicia flava (Acanthaceae) 1 
Megachile basalis (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile rufipes (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile felina (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile sp. (Megachilidae) Crotalaria sp. (Fabaceae) 1 
Megachile dariensis (Megachilidae) Justicia flava (Acanthaceae) 1 
Nomia theryi (Halictidae) Justicia flava (Acanthaceae) 1 
Patellapis sp. (Halictidae) Acanthus pubescens (Acanthaceae) 1 
Patellapis sp. 2 (Halictidae) Solanum mauritianum (Solanaceae) 1 
Pleibena hildebrandti (Apidae) Galinsoga parviflora (Asteraceae) 1 
Pseudanthidium truncatum (Megachilidae) Bidens pilosa (Asteraceae) 1 
Pseudapis sp. (Halictidae) Solanum mauritianum (Solanaceae) 1 
Systropha sp. (Halictidae) Ipomoea wightii (Convolvulaceae) 1 
Xylocopa (Xylomellisa sp. 1) (Apidae) Justicia flava (Acanthaceae) 1 
Xylocopa aff. albifrons (Apidae) Justicia flava (Acanthaceae) 1 
Xylocopa carinata (Apidae) Justicia flava (Acanthaceae) 1 
Ceratina sp. 6 (Apidae) Bidens pilosa (Asteraceae) 1 
Megachilidae Justicia flava (Acanthaceae) 2 
Thyreus interruptus (Apidae) Justicia flava (Acanthaceae) 2 
Thyreus sp. (Apidae) Justicia flava (Acanthaceae) 1 
Xylocopa bouyssoui (Apidae) Solanum mauritianum (Solanaceae) 1 
Xylocopa inconstans (Apidae) Justicia flava (Acanthaceae) 2 
Amegilla acraensis (Apidae) Justicia flava (Acanthaceae) 2 
Ceratina sp. 2 (Apidae) Justicia flava (Acanthaceae) 3 
Thyreus calceata (Apidae) Justicia flava (Acanthaceae) 3 
Thyreus pictus (Apidae) Justicia flava (Acanthaceae) 2 
Xylocopa hottentotta (Apidae) Justicia flava (Acanthaceae) 3 
Ceratina sp. 2 (Apidae) Aspilia mossambicensis (Asteraceae) 1 
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Appendix 3.3:  
Plant species and their interaction partners in the farmland; reflecting the order of the pollination network 
analysis (Figure 3) 
   

plant species bee-species 

Number 
recorded 
interactions 

Justicia flava (Acanthaceae) Apis mellifera (Apidae) 61 
 Halictus (Seladonia sp. 2) (Halictidae) 3 
 Ceratina sp. (Apidae) 1 
 Lasioglossum (Ctenonomia sp.) (Halictidae) 1 
 Megachile bituberculata (Megachilidae) 2 
 Meliponula lendliana (Apidae) 1 
 Pseudapis aff. amoenula (Halictidae) 1 
 Ceratina (Pithitis) nasalis (Apidae) 1 
 Halictus (Seladonia sp. 1) (Halictidae) 2 
 Megachile ianthoptera (Megachilidae) 4 
 Amegilla aff. langi (Apidae) 15 
 Heriades sp. (Megachilidae) 1 
 Lasioglossum (Sellalictus sp.) (Halictidae) 1 
 Nomia aff. welwitschii (Halictidae) 2 
 Xylocopa nigrita (Apidae) 1 
 Lipotriches orientalis (Halictidae) 3 
 Xylocopa calens (Apidae) 27 
 Amegilla (Megamegilla sp. 1) (Apidae) 1 
 Amegilla sp. (Apidae) 1 
 Braunsapis aff. angolensis (Apidae) 1 
 Lasioglossum (Rubrihalictus sp. 2) (Halictidae) 1 
 Lipotriches aff welwitschii (Halictidae) 1 
 Megachile basalis (Megachilidae) 1 
 Megachile ciactacombusta (Megachilidae) 1 
 Megachile felina (Megachilidae) 1 
 Megachile rufipes (Megachilidae) 1 
 Nomia theryi (Halictidae) 1 
 Xylocopa (Xylomellisa sp. 1) (Apidae) 1 
 Xylocopa aff. albifrons (Apidae) 1 
 Xylocopa carinata (Apidae) 1 
 Megachilidae 2 
 Thyreus interruptus (Apidae) 2 
 Thyreus sp (Apidae) 1 
 Xylocopa inconstans (Apidae) 2 
 Amegilla acraensis (Apidae) 2 
 Ceratina (Ceratina) sp. 2 (Apidae) 3 
 Thyreus calceata (Apidae) 3 
 Thyreus pictus (Apidae) 2 
  Xylocopa hottentotta (Apidae) 3 
Bidens pilosa (Asteraceae) Apis mellifera (Apidae) 35 
 Halictus (Seladonia sp. 2) 2 
 Ceratina sp. (Apidae) 5 
 Halictidae 1 
 Halictus sesdomiale (Halictidae) 6 
 Megachile bituberculata (Megachilidae) 2 
 Meliponula lendliana (Apidae) 1 
 Meliponula bocandei (Apidae) 9 
 Braunsapis leptozonia (Apidae) 1 
 Ceratina (Pithitis) nasalis (Apidae) 2 
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 Halictus (Seladonia sp. 1) (Halictidae) 2 
 Megachile ianthoptera (Megachilidae) 1 
 Braunsapis aff. leptozonia (Apidae) 1 
 Braunsapis langenburgensis (Apidae) 1 
 Lasioglossum (Ctenonomia sp. 2) 1 
 Pseudanthidium truncatum  (Megachilidae) 1 
 Ceratina sp. 6 (Apidae) 1 
Crassocephalum vitellinum (Asteraceae) Apis mellifera (Apidae) 2 
 Halictus (Seladonia sp. 2) (Halictidae) 1 
 Ceratina sp. (Apidae) 6 
 Halictidae 6 
 Megachile bituberculata (Megachilidae) 2 
 Heriades sp. (Megachilidae) 1 
  Lasioglossum (Sellalictus sp.) (Halictidae) 2 
Galinsoga parviflora (Asteraceae) Apis mellifera (Apidae) 18 
 Ceratina sp. (Apidae) 4 
 Lasioglossum (Ctenonomia sp.) (Halictidae) 1 
 Braunsapis foveata (Apidae) 1 
 Ceratina viridis (Apidae) 1 
 Ceratina (Pithitis) nasalis (Apidae) 1 
 Halictus (Seladonia sp. 1) (Halictidae) 1 
 Ceratina (Ctenoceratina) ericia (Apidae) 1 
 Pleibena hildebrandtii (Apidae) 1 
Commelina diffusa (Commelinaceae) Apis mellifera (Apidae) 1 
 Ceratina sp. (Apidae) 1 
 Lasioglossum (Ctenonomia sp.) (Halictidae) 2 
 Megachile bituberculata (Megachilidae) 1 
 Meliponula lendliana (Apidae) 1 
 Amegilla aff. langi (Apidae) 1 
 Ctenoplectra antinorii (Apidae) 1 
  Lasioglossum sp. (Halictidae) 1 
Aspilia plurisetta (Asteraceae) Apis mellifera (Apidae) 5 
 Halictus (Seladonia sp. 2) (Halictidae) 1 
 Ceratina sp. (Apidae) 1 
 Halictus sesdomiale (Halictidae) 1 
 Braunsapis foveata (Apidae) 1 
 Meliponula bocandei (Apidae) 1 
 Braunsapis leptozonia  (Apidae) 1 
 Nomia aff. welwitschii (Halictidae) 1 
Aspilia mossambicensis (Asteraceae) Apis mellifera (Apidae) 5 
 Halictidae 1 
 Braunsapis foveata (Apidae) 1 
 Meliponula bocandei (Apidae) 2 
 Braunsapis leptozonia (Apidae) 1 
 Lipotriches orientalis (Halictidae) 1 
  Ceratina sp. 2 (Apidae) 1 
Ageratum conyzoides (Asteraceae) Apis mellifera (Apidae) 7 
 Halictus (Seladonia sp. 2) 6 
 Ceratina sp. (Apidae) 2 
 Halictidae 3 
 Halictus sesdomiale (Halictidae) 1 
 Lasioglossum (Ctenonomia sp.) (Halictidae) 2 
 Braunsapis foveata (Apidae) 1 
Solanum mauritianum (Solanaceae) Apis mellifera (Apidae) 2 
 Halictidae 2 
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 Halictus sesdomiale (Halictidae) 2 
 Patellapis (Zonalictus sp.) (Halictidae) 1 
 Patellapis sp. 2 (Halictidae) 1 
 Pseudapis sp. (Halictidae) 1 
  Xylocopa bouyssoui (Apidae) 1 
Tithonia diversifolia (Asteraceae) Apis mellifera (Apidae) 11 
 Halictidae 2 
 Meliponula lendliana (Apidae) 1 
 Meliponula bocandei (Apidae)  7 
 Amegilla aff. langi (Apidae) 1 
 Ctenoplectra antinorii  (Apidae) 1 
 Colletes sp. (Colletidae) 1 
Asystasia mysorensis (Acanthaceae) Apis mellifera (Apidae) 1 
 Halictus sesdomiale (Halictidae) 1 
 Megachile bituberculata (Megachilidae) 1 
 Pseudapis aff. amoenula (Halictidae) 1 
 Ceratina (Ctenoceratina) ericia (Apidae) 1 
  Pseudanthidium (Microanthidium) (Megachilidae) 1 
Leucas deflexa (Lamiaceae) Apis mellifera (Apidae) 4 
 Ceratina viridis (Apidae) 1 
 Patellapis (Zonalictus sp.) (Halictidae) 1 
 Pseudanthidium (Microanthidium) (Megachilidae) 1 
Asystasia gangetica (Acanthaceae) Apis mellifera (Apidae) 3 
 Halictus (Seladonia sp. 2) (Halictidae) 1 
  Ceratina sp. (Apidae) 1 
Acanthus pubescens (Acanthaceae) Xylocopa nigrita (Apidae) 1 
 Patellapis sp. (Halictidae) 1 
Crassocephalum crepidoides (Asteraceae) Halictus (Seladonia sp. 2) (Halictidae) 1 
  Ceratina viridis (Apidae) 1 
Ipomoea wightii (Convolvulaceae) Apis mellifera (Apidae) 1 
 Systropha sp. (Halictidae) 1 
Phaseolus vulgaris (Fabaceae) Apis mellifera (Apidae) 2 
  Xylocopa calens (Apidae) 1 
Oxalis latifolia (Oxalidaceae) Apis mellifera (Apidae) 9 
 Pseudapis aff amoenula (Halictidae) 1 
Vernonia sp. 1 (Asteraceae) Apis mellifera (Apidae) 5 
  Lasioglossum (Ctenonomia sp.) (Halictidae) 1 
Crotalaria sp. (Fabaceae) Megachile sp. (Megachilidae) 1 
Cynoglossum coeruleum (Boraginaceae) Halictus (Seladonia sp. 2) (Halictidae) 1 
Ipomoea purpurea (Convolvulaceae)  Ceratina sp. 3 (Apidae) 1 
Justicia calyculata (Acanthaceae) Halictus sesdomiale (Halictidae) 1 
Grass species Megachile ianthoptera (Megachilidae) 1 
Momordica foetida (Ccurbitaceae) Halictidae 1 
Oxalis corniculatum (Oxalidaceae) Hylaeus sp. 1 (Colletidae) 1 
Acmella calirhiza (Asteraceae) Apis mellifera (Apidae) 1 
Manihot esculenta (Euphorbiaceae) Apis mellifera (Apidae) 1 
Richardia brasiliensis (Rubiaceae) Apis mellifera (Apidae) 1 
Tagetes minuta (Asteraceae) Apis mellifera (Apidae) 1 
Justicia striata (Acanthaceae) Apis mellifera (Apidae) 1 
Leonotis nepetifolia (Lamiaceae) Apis mellifera (Apidae) 3 
Ocimum hadiens (Lamiaceae) Braunsapis sp. (Apidae) 1 
Lantana camara (Verbenaceae) Apis mellifera (Apidae) 7 
Croton macrostachys (Euphorbiaceae) Apis mellifera (Apidae) 2 
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Appendix 3.4:  
Farmland: A network approach to plant-bee mutualisms in the different seasons. Every red dot indicates 
a bee or plant species. A bee and a plant interact, if there is a qualitative link (black line) between them; 
bees and plants are ordered after the number of interaction partners and the number of interactions with 
their partners. Thus, generalist interaction partners are found on the left, specialists on the right.  
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Appendix 3.5:  
Bee species and their interaction partners at the forest edge; reflecting the order of the pollination network 
analysis (Figure 3) 

bee-species plant species 

Numb
er 
record
ed 
interac
tions 

Apis mellifera (Apidae) Justicia flava (Acanthaceae) 61 
 Justicia striata (Acanthaceae) 7 
 Bidens pilosa (Asteraceae) 8 
 Solanum mauritianum (Solanaceae) 1 
 Asystasia gangetica (Acanthaceae) 11 
 Emilia discifolia (Asteraceae) 1 
 Justicia calyculata (Acanthaceae) 4 
 Crassocephalum vitellinum (Asteraceae) 5 
 Galinsoga parviflora (Asteraceae) 6 
 Lantana camara (Verbenaceae) 10 
 Ageratum conyzoides (Asteraceae) 3 
 Acmella calirhiza (Asteraceae) 2 
 Asystasia mysorensis (Acanthaceae) 2 
 Desmodium repandum (Fabaceae) 1 
 Leucas deflexa (Lamiaceae) 2 
 Pavonia urens (Malvaceae) 4 
 Cordia abyssinica (Boraginaceae) 2 
 Justicia glabra (Acanthaceae) 2 
 Psidium guajava (Myrtaceae) 3 
  Zea mays (Poaceae) 1 
Halictidae Justicia flava (Acanthaceae) 1 
 Justicia striata (Acanthaceae) 1 
 Bidens pilosa (Asteraceae) 5 
 Solanum mauritianum (Solanaceae) 4 
 Emilia discifolia (Asteraceae) 2 
 Justicia calyculata (Acanthaceae) 1 
 Crassocephalum vitellinum (Asteraceae) 2 
 Galinsoga parviflora (Asteraceae) 1 
 Momordica foetida (Cucurbitaceae) 2 
 Ageratum conyzoides (Asteraceae) 1 
 Pavonia urens (Malvaceae) 1 
 Basella alba (Basellaceae) 1 
 Microglossa pyrifolia (Asteraceae) 1 
Ceratina sp. (Apidae) Justicia flava (Acanthaceae) 7 
 Justicia striata (Acanthaceae) 3 
 Bidens pilosa (Asteraceae) 2 
 Solanum mauritianum (Solanaceae) 1 
 Asystasia gangetica (Acanthaceae) 4 
 Emilia discifolia (Asteraceae) 1 
 Crassocephalum vitellinum (Asteraceae) 3 
 Galinsoga parviflora (Asteraceae) 1 
 Momordica foetida (Cucurbitaceae) 2 
 Acmella calirhiza (Asteraceae) 1 
 Asystasia mysorensis (Acanthaceae) 1 
  Solanum nigrum (Solanaceae) 1 
Halictus (Seladonia sp. 2) (Halictidae) Justicia flava (Acanthaceae) 4 
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 Emilia discifolia (Asteraceae) 2 
 Crassocephalum vitellinum (Asteraceae) 2 
 Acanthus pubescens (Acanthaceae) 1 
 Ageratum conyzoides (Asteraceae) 3 
 Dyschoriste nagchana (Acanthaceae) 1 
Lasioglossum (Ctenonomia sp.) (Halictidae) Justicia striata (Acanthaceae) 1 
 Emilia discifolia (Asteraceae) 1 
 Crassocephalum vitellinum (Asteraceae) 1 
 Galinsoga parviflora (Asteraceae) 1 
 Dyschoriste nagchana (Acanthaceae) 1 
  Conyza sp. (Asteraceae) 1 
Ceratina (Ctenoceratina) ericia (Apidae) Justicia flava (Acanthaceae) 2 
 Justicia striata (Acanthaceae) 2 
 Bidens pilosa (Asteraceae) 1 
 Justicia calyculata (Acanthaceae) 1 
 Crotalaria sp (Fabaceae) 1 
Meliponula lendliana (Apidae) Justicia flava (Acanthaceae) 1 
 Justicia striata (Acanthaceae) 1 
 Solanum mauritianum (Solanaceae) 4 
 Crassocephalum vitellinum (Asteraceae) 1 
  Galinsoga parviflora (Asteraceae) 1 
Ceratina viridis (Apidae) Justicia flava (Acanthaceae) 1 
 Bidens pilosa (Asteraceae) 1 
 Asystasia gangetica (Acanthaceae) 1 
 Galinsoga parviflora (Asteraceae) 1 
Halictus (Seladonia sp. 1) (Halictidae) Bidens pilosa (Asteraceae) 1 
 Emilia discifolia (Asteraceae) 1 
 Crassocephalum vitellinum (Asteraceae) 1 
  Desmodium sp. (Fabaceae) 1 
Megachilidae Justicia flava (Acanthaceae) 8 
 Acmella calirhiza (Asteraceae) 1 
 Crotalaria sp (Fabaceae) 1 
 Desmodium repandum (Fabaceae) 1 
Xylocopa carinata (Apidae) Justicia flava (Acanthaceae) 2 
 Acanthus pubescens (Acanthaceae) 1 
 Caesalpinia decapetala (Caesalpiniaceea) 1 
  Clerodendrum myricoides (Verbenaceae) 1 
Amegilla aff. langi (Apidae) Justicia flava (Acanthaceae) 7 
 Lantana camara (Verbenaceae) 1 
 Lantana trifolia (Verbenaceae) 1 
Braunsapis foveata (Apidae) Asystasia gangetica (Acanthaceae) 1 
 Momordica foetida (Cucurbitaceae) 1 
  Dyschoriste nagchana (Acanthaceae) 1 
Ceratina (Pithitis) nasalis (Apidae) Justicia flava (Acanthaceae) 2 
 Asystasia gangetica (Acanthaceae) 1 
 Justicia calyculata (Acanthaceae) 1 
Heriades sp. (Megachilidae) Justicia striata (Acanthaceae) 1 
 Asystasia gangetica (Acanthaceae) 1 
  Hibiscus occidentalis (Malvaceae) 1 
Meliponula bocandei (Apidae) Bidens pilosa (Asteraceae) 1 
 Caesalpinia decapetala (Caesalpiniaceae) 1 
 Zea mays (Poaceae) 1 
Xylocopa nigrita (Apidae) Justicia flava (Acanthaceae) 2 
 Acanthus pubescens (Acanthaceae) 7 
  Caesalpinia decapetala (Caesalpiniaceae) 3 



- 126 - 9. Appendix  

Allodape interrupta (Apidae) Justicia striata (Acanthaceae) 1 
 Justicia calyculata (Acanthaceae) 1 
Amegilla (Megamegilla sp. 1) (Apidae) Justicia flava (Acanthaceae) 8 
  Oxalis corniculatum (Oxalidaceae) 1 
Amegilla acraensis (Apidae) Justicia flava (Acanthaceae) 17 
 Lantana camara (Verbenaceae) 1 
Ceratina (Ctenoceratina) near lineola (Apidae) Justicia flava (Acanthaceae) 1 
  Lantana camara (Verbenaceae) 1 
Ctenoplectra terminalis (Apidae) Bidens pilosa (Asteraceae) 1 
 Momordica foetida (Cucurbitaceae) 1 
Halictus sesdomiale (Halictidae) Justicia flava (Acanthaceae) 2 
  Solanum mauritianum (Solanaceae) 2 
Lasioglossum (Sellalictus sp.) (Halictidae) Justicia striata (Acanthaceae) 1 
 Bidens pilosa (Asteraceae) 1 
Megachile ?fulvitarsis (Megachilidae) Justicia flava (Acanthaceae) 2 
  Bidens pilosa (Asteraceae) 1 
Megachile ciacta combusta (Megachilidae) Justicia flava (Acanthaceae) 1 
 Asystasia mysorensis (Acanthaceae) 1 
Megachile bituberculata (Megachilidae) Justicia flava (Acanthaceae) 4 
  Justicia striata (Acanthaceae) 1 
Nomia (Leuconomia sp. 1) (Halictidae) Justicia flava (Acanthaceae) 2 
 Ageratum conyzoides (Asteraceae) 1 
Nomia (Leuconomia sp. 2) (Halictidae) Justicia flava (Acanthaceae) 1 
  Bidens pilosa (Asteraceae) 1 
Nomia (Leuconomia sp. 3) (Halictidae) Justicia calyculata (Acanthaceae) 1 
 Lantana camara (Verbenaceae) 1 
Patellapis (Zonalictus sp.) (Halictidae) Solanum mauritianum (Solanaceae) 2 
  Hibiscus occidentalis (Malvaceae) 1 
Thrinchostoma sp (Halictidae) Justicia flava (Acanthaceae) 1 
 Leucas deflexa (Lamiaceae) 1 
Thyreus pictus (Apidae) Justicia flava (Acanthaceae) 14 
  Justicia calyculata (Acanthaceae) 1 
Xylocopa bouyssoui (Apidae) Justicia flava (Acanthaceae) 2 
 Acanthus pubescens (Acanthaceae) 1 
Xylocopa torrida (Apidae) Justicia flava (Acanthaceae) 1 
  Clerodendrum myricoides (Verbenaceae) 1 
Aframegilla sp. (Apidae) Solanum mauritianum (Solanaceae) 1 
Amegilla bipartita (Apidae) Justicia flava (Acanthaceae) 1 
Amegilla mimadvena  (Apidae) Justicia flava (Acanthaceae) 9 
Amegilla sp. (Apidae) Justicia flava (Acanthaceae) 4 
Braunsapis angolensis  (Apidae) Asystasia gangetica (Acanthaceae) 1 
Braunsapis lyrata (Apidae) Lantana camara (Verbenaceae) 1 
Ceratina (Ceratina) sp. 1 (Apidae) Justicia flava (Acanthaceae) 1 
Ceratina (Ceratina) sp. 2 (Apidae) Emilia discifolia (Acanthaceae) 1 
Ceratina (Ceratina) sp. 3 (Apidae) Asystasia gangetica (Acanthaceae) 1 
Ceratina aff. moerenhouti (Apidae) Justicia striata (Acanthaceae) 1 
Ceratina sp. 2 (Apidae) Asystasia gangetica (Acanthaceae) 1 
  Thunbergia alata (Acanthaceae) 1 
Coelioxys sp. 4 (Megachilidae) Justicia flava (Acanthaceae) 1 
Colletes sp. (Colletidae) Solanum mauritianum (Solanaceae) 1 
Creightoniella ithanoptera (Apidae) Justicia flava (Acanthaceae) 1 
Euaspis abdominalis (Megachilidae) Justicia flava (Acanthaceae) 2 
Euaspis erythros (Megachilidae) Justicia flava (Acanthaceae) 2 
Lasioglossum (Sellalictus sp. 2) (Halictidae) Momordica foetida (Cucurbitaceae) 1 
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Hylaeus sp. 1 (Colletidae) Justicia calyculata (Acanthaceae) 1 
Lasioglossum (Rubrihalictus sp. 2) (Halictidae) Asystasia gangetica (Acanthaceae) 1 
Lasioglossum sp. (Halictidae) Justicia striata (Acanthaceae) 1 
Lipotriches aff. panganina (Halictidae) Justicia flava (Acanthaceae) 1 
Lipotriches aff. welwitschii (Halictidae) Justicia flava (Acanthaceae) 1 
Lipotriches sp. (Halictidae) Solanum mauritianum (Solanaceae) 1 
Megachile aff. bengualense (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile ciactacombusta (Megachilidae) Justicia flava (Acanthaceae) 6 
Megachile felina (Megachilidae) Justicia flava (Acanthaceae) 8 
Megachile ianthoptera (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile nifipennis (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile niveicauda (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile picta (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile torrida (Megachilidae) Justicia flava (Acanthaceae) 2 
Megachile rufipes (Megachilidae) Justicia flava (Acanthaceae) 1 
Meliponula ferruginea (Megachilidae) Zea mays (Poaceae) 1 
Nomia sp. (Halictidae) Justicia flava (Acanthaceae) 1 
Nomia viridicincta (Halictidae) Justicia striata (Acanthaceae) 1 
Pachyanthidium aff. bengalense (Megachilidae) Emilia discifolia (Acanthaceae) 1 
Patellapis (Zonalictus sp. 7) (Apidae) Justicia flava (Acanthaceae) 1 
Patellapis (Zonalictus sp.) (Apidae) Lantana camara (Verbenaceae) 1 
Patellapis fonalictus (Apidae) Solanum mauritianum (Solanaceae) 1 
Pseudapis aff. amoenula (Halictidae) Justicia flava (Acanthaceae) 1 
Pseudapis sp. (Halictidae) Galinsoga parviflora (Acanthaceae) 1 
Systropha sp. (Halictidae) Momordica foetida (Cucurbitaceae) 1 
Thyreus bouyssoui (Apidae) Justicia flava (Acanthaceae) 1 
Thyreus calceata (Apidae) Justicia flava (Acanthaceae) 3 
Thyreus interruptus (Apidae) Justicia flava (Acanthaceae) 5 
Thyreus sp. (Apidae) Justicia flava (Acanthaceae) 4 
Xylocopa (Kortosoma sp. 1) (Apidae) Justicia flava (Acanthaceae) 3 
Xylocopa calens (Apidae) Justicia flava (Acanthaceae) 16 
Xylocopa erythrina  (Apidae) Justicia flava (Acanthaceae) 1 
Xylocopa flavorufa (Apidae) Acanthus pubescens (Acanthaceae) 2 
Xylocopa (Xylomelissa sp. 2) (Apidae) Acanthus pubescens (Acanthaceae) 1 
Xylocopa hottentotta (Apidae) Justicia flava (Acanthaceae) 6 
Xylocopa imitator (Apidae) Justicia flava (Acanthaceae)  1 
Xylocopa melissa (Apidae) Justicia flava (Acanthaceae) 5 
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Appendix 3.6:  
Plant species and their interaction partners at the forest edge; reflecting the order of the pollination network 
analysis (Figure 3) 

plant species bee-species 

Number 
recorded 
interactio
ns 

Justicia flava (Acanthaceae) Apis mellifera (Apidae) 61 
 Halictidae 1 
 Ceratina sp. (Apidae) 7 
 Halictus (Seladonia sp. 2) (Halictidae) 4 
 Ceratina (Ctenoceratina) ericia  (Apidae) 2 
 Meliponula lendliana (Apidae) 1 
 Ceratina viridis (Apidae) 1 
 Megachilidae 8 
 Xylocopa carinata (Apidae) 2 
 Amegilla aff. langi (Apidae) 7 
 Ceratina (Pithitis) nasalis  (Apidae) 2 
 Xylocopa nigrita (Apidae) 2 
 Amegilla (Megamegilla sp. 1) (Apidae) 8 
 Amegilla acraensis  (Apidae) 17 
 Ceratina (Ctenoceratina) near lineola (Apidae) 1 
 Halictus sesdomiale (Halictidae) 2 
 Megachile ? fulvitarsis (Megachilidae) 2 
 Megachile rufipes (Megachilidae) 1 
 Megachile bituberculata (Megachilidae) 4 
 Nomia (Leuconomia sp. 1) (Halictidae) 2 
 Nomia (Leuconomia sp. 2) (Halictidae) 1 
 Thrinchostoma sp. (Halictidae) 1 
 Thyreus pictus (Apidae) 14 
 Xylocopa bouyssoui (Apidae) 2 
 Xylocopa torrida (Apidae) 1 
 Amegilla bipartita (Apidae) 1 
 Amegilla mimadvena (Apidae)  9 
 Amegilla sp. (Apidae) 4 
 Ceratina sp. 1 (Apidae) 1 
 Coelioxys sp. 4 (Megachilidae) 1 
 Creightoniella ithanoptera (Apidae) 1 
 Euaspis abdominalis (Megachilidae) 2 
 Euaspis erythros (Megachilidae) 2 
 Lipotriches aff. panganina (Halictidae) 1 
 Lipotriches aff. welwitschii (Halictidae) 1 
 Megachile aff. bengualense (Megachilidae) 1 
 Megachile ciactacombusta (Megachilidae) 6 
 Megachile felina (Megachilidae) 8 
 Megachile ianthoptera (Megachilidae) 1 
 Megachile nifipennis (Megachilidae) 1 
 Megachile niveicauda (Megachilidae) 1 
 Megachile picta (Megachilidae) 1 
 Megachile torrida (Megachilidae) 2 
 Megachile bituberculata (Megachilidae) 1 
 Nomia sp (Halictidae) 1 
 Patellapis (Zonalictus sp. 7) (Halictidae) 1 
 Pseudapis aff. amoenula (Halictidae) 1 
 Thyreus bouyssoui  (Apidae) 1 
 Thyreus calceata  (Apidae) 3 
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 Thyreus interruptus  (Apidae) 5 
 Thyreus sp. (Apidae) 4 
 Xylocopa (Kortosoma sp. 1) (Apidae) 3 
 Xylocopa calens (Apidae) 16 
 Xylocopa erythrina  (Apidae) 1 
 Xylocopa hottentotta (Apidae)  6 
 Xylocopa imitator (Apidae) 1 
 Xylocopa melissa (Apidae) 5 
Justicia striata  (Acanthaceae) Apis mellifera (Apidae) 7 
 Halictidae 1 
 Ceratina sp. (Apidae) 3 
 Lasioglossum (Ctenonomia sp.) (Halictidae) 1 
 Ceratina (Ctenoceratina) ericia (Apidae)  2 
 Meliponula lendliana (Apidae) 1 
 Heriades sp. (Colletidae) 1 
 Allodape interrupta (Apidae)  1 
 Lasioglossum (Sellalictus sp.) (Halictidae) 1 
 Megachile bituberculata (Megachilidae) 1 
 Ceratina aff. moerenhouti (Apidae) 1 
 Lasioglossum sp. (Halictidae) 1 
  Nomia viridicincta (Halictidae) 1 
Bidens pilosa (Asteraceae) Apis mellifera (Apidae) 8 
 Halictidae 5 
 Ceratina sp. (Apidae) 2 
 Ceratina (Ctenoceratina) ericia (Apidae)  1 
 Ceratina viridis (Apidae) 1 
 Halictus (Seladonia sp. 1) (Halictidae) 1 
 Meliponula bocandei (Apidae) 1 
 Ctenoplectra terminalis (Apidae) 1 
 Lasioglossum (Sellalictus sp.) (Halictidae) 1 
 Megachile ?fulvitarsis (Megachilidae) 1 
 Nomia (Leuconomia sp. 2) (Halictidae) 1 
Solanum mauritianum (Solanaceae) Apis mellifera (Apidae) 1 
 Halictidae 4 
 Ceratina sp. (Apidae) 1 
 Meliponula lendliana (Apidae) 4 
 Halictus sesdomiale (Halictidae) 2 
 Patellapis (Zonalictus sp.) (Halictidae) 2 
 Aframegilla sp. (Apidae) 1 
 Colletes sp. (Colletidae) 1 
 Lipotriches sp. (Halictidae) 1 
  Patellapis fonalictus (Halictidae) 1 
Asystasia gangetica (Acanthaceae) Apis mellifera (Apidae) 11 
 Ceratina sp. (Apidae) 4 
 Ceratina viridis (Apidae) 1 
 Braunsapis foveata (Apidae) 1 
 Ceratina (Pithitis) nasalis (Apidae) 1 
 Heriades sp. (Megachilidae) 1 
 Braunsapis angolensis (Apidae)  1 
 Ceratina sp. 3 (Apidae) 1 
 Ceratina sp. 2 (Apidae) 1 
 Lasioglossum (Rubrihalictus sp. 2) (Halictidae) 1 
Emilia discifolia (Asteraceae) Apis mellifera (Apidae) 1 
 Halictidae 2 
 Ceratina sp. (Apidae) 1 
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 Halictus (Seladonia sp. 2) (Halictidae) 2 
 Lasioglossum (Ctenonomia sp.) (Halictidae) 1 
 Halictus (Seladonia sp. 1) (Halictidae) 1 
 Ceratina sp. 2 (Apidae) 1 
  Pachyanthidium aff. bengalense (Megachilidae) 1 
Justicia calyculata (Acanthaceae) Apis mellifera (Apidae) 4 
 Halictidae 1 
 Ceratina (Ctenoceratina) ericia (Apidae)  1 
 Ceratina (Pithitis) nasalis (Apidae) 1 
 Allodape interrupta (Apidae)  1 
 Nomia (Leuconomia sp. 3) (Halictidae) 1 
 Thyreus pictus (Apidae) 1 
 Hylaeus sp. 1 (Colletidae) 1 
Crassocephalum vitellinum (Asteraceae) Apis mellifera (Apidae) 5 
 Halictidae 2 
 Ceratina sp. (Apidae) 3 
 Halictus (Seladonia sp. 2) (Halictidae) 2 
 Lasioglossum (Ctenonomia sp.) (Halictidae) 1 
 Meliponula lendliana (Apidae) 1 
  Halictus (Seladonia sp. 1) (Halictidae) 1 
Galinsoga parviflora (Asteraceae) Apis mellifera (Apidae) 6 
 Halictidae 1 
 Ceratina sp. (Apidae) 1 
 Lasioglossum (Ctenonomia sp.) (Halictidae) 1 
 Meliponula lendliana (Apidae) 1 
 Ceratina viridis (Apidae) 1 
 Pseudapis sp. (Halictidae) 1 
Lantana camara (Verbenaceae) Apis mellifera (Apidae) 10 
 Amegilla aff langi (Apidae) 1 
 Amegilla acraensis (Apidae) 1 
 Ceratina (Ctenoceratina) near lineola (Apidae)  1 
 Nomia (Leuconomia sp. 3) (Halictidae) 1 
 Braunsapis lyrata (Apidae)  1 
  Patellapis (Zonalictus sp.) (Halictidae) 1 
Acanthus pubescens (Acanthaceae) Halictus (Seladonia sp. 2) (Halictidae) 1 
 Xylocopa carinata (Apidae) 1 
 Xylocopa nigrita (Apidae) 7 
 Xylocopa bouyssoui (Apidae) 1 
 Xylocopa flavorufa (Apidae) 2 
 Xylocopa imitator (Apidae) 1 
Momordica foetida (Cucurbitaceae) Halictidae 2 
 Ceratina sp. (Apidae) 2 
 Braunsapis foveata (Apidae) 1 
 Ctenoplectra terminalis (Apidae) 1 
 Lasioglossum (Ctenonomia sp. 2) (Halictidae) 1 
  Systropha sp. (Halictidae) 1 
Ageratum conyzoides (Asteraceae) Apis mellifera (Apidae) 3 
 Halictidae 1 
 Halictus (Seladonia sp. 2) (Halictidae) 3 
 Nomia (Leuconomia sp. 1) (Halictidae) 1 
Acmella calirhiza (Asteraceae) Apis mellifera (Apidae) 2 
 Ceratina sp. (Apidae) 1 
  Megachilidae 1 
Asystasia mysorensis (Acanthaceae) Apis mellifera (Apidae) 2 
 Ceratina sp. (Apidae) 1 
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 Megachile ciactacombusta (Megachilidae) 1 
Caesalpinia decapetala (Caesalpiniaceae) Xylocopa carinata (Apidae) 1 
 Meliponula bocandei (Apidae) 1 
  Xylocopa nigrita (Apidae) 3 
Dyschoriste nagchana (Acanthaceae) Halictus (Seladonia sp. 2) (Halictidae) 1 
 Lasioglossum (Ctenonomia sp.) (Halictidae) 1 
 Braunsapis foveata (Apidae) 1 
Zea mays (Poaceae) Apis mellifera (Apidae) 1 
 Meliponula bocandei (Apidae) 1 
  Meliponula ferruginea (Apidae) 1 
Clerodendrum myricoides (Verbenaceae) Xylocopa carinata (Apidae) 1 
 Xylocopa torrida (Apidae) 1 
Crotalaria sp. (Fabaceae) Ceratina (Ctenoceratina) ericia (Apidae) 1 
  Megachilidae 1 
Desmodium repandum (Fabaceae) Apis mellifera (Apidae) 1 
 Megachilidae 1 
Hibiscus occidentalis (Malvaceae) Heriades sp. (Megachilidae) 1 
  Patellapis (Zonalictus sp.) (Halictidae) 1 
Leucas deflexa (Lamiaceae) Apis mellifera (Apidae) 2 
 Thrinchostoma sp (Halictidae) 1 
Pavonia urens (Malvaceae) Apis mellifera (Apidae) 4 
  Halictidae 1 
Basella alba (Basellaceae) Halictidae 1 
Conyza sp. (Asteraceae) Lasioglossum (Ctenonomia sp.) (Halictidae) 1 
Cordia abyssinica (Boraginaceae) Apis mellifera (Apidae) 2 
Desmodium sp. (Fabaceae) Halictus (Seladonia sp. 1) (Halictidae) 1 
Justicia glabra (Acanthaceae) Apis mellifera (Apidae) 2 
Lantana trifolia (Verbenaceae) Amegilla aff. langi (Apidae) 1 
Microglossa pyrifolia (Asteraceae) Halictidae 1 
Oxalis corniculatum (Oxalidaceae) Amegilla (Megamegilla sp. 1) (Apidae) 1 
Psidium guajava (Myrtaceae) Apis mellifera (Apidae) 3 
Solanum nigrum (Solanaceae) Ceratina sp. (Apidae) 1 
Thunbergia alata (Acanthaceae) Ceratina sp. 3 (Apidae) 1 
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Appendix 3.7:  
Forest Edge: A network approach to plant-bee mutualisms in the different seasons. Every red dot 
indicates a bee or plant species. A bee and a plant interact, if there is a qualitative link (black line) 
between them; bees and plants are ordered after the number of interaction partners and the number of 
interactions with their partners. Thus, generalist interaction partners are found on the left, specialists on 
the right.  



 9. Appendix - 133 - 

Appendix 3.8:  
Bee species and their interaction partners in the forest; reflecting the order of the pollination network analysis 
(Figure 3) 

bee-species plant species 

Number 
recorded 
interactions 

Apis mellifera (Apidae) Justicia flava (Acanthaceae) 31 
 Lantana camara (Verbenaceae) 8 
 Harungana madagascariensis (Clusiaceae) 5 
 Psidium guajava (Myrtaceae) 4 
 Maesa lanceolata (Maesaceae) 4 
 Asystasia gangetica (Acanthaceae) 2 
 Justicia calyculata (Acanthaceae) 2 
 Ageratum conyzoides (Asteraceae) 2 
 Vernonia auriculifera (Asteraceae) 1 
 Pollia condensator (Commelinaceae) 1 
  Galinsoga parviflora (Asteraceae) 1 
Ceratina sp. (Apidae) Justicia flava (Acanthaceae) 2 
 Asystasia gangetica (Acanthaceae) 1 
 Rubus friesiorum (Rosaceae) 1 
Halictidae Justicia flava (Acanthaceae) 2 
 Asystasia gangetica (Acanthaceae) 1 
  Solanum mauritianum (Solanaceae) 2 
Xylocopa melissa (Apidae) Justicia flava (Acanthaceae) 19 
 Acanthus pubescens (Acanthaceae) 2 
Meliponula bocandei (Apidae) Lantana camara (Verbenaceae) 1 
  Rubus friesiorum (Rosaceae) 1 
Xylocopa nigrita (Apidae) Justicia flava (Acanthaceae) 1 
 Desmodium repandum (Fabaceae) 1 
Amegilla fallax  (Apidae) Justicia flava (Acanthaceae) 1 
  Desmodium repandum (Fabaceae) 1 
Lasioglossum sp. (Halictidae) Solanum mauritianum (Solanaceae) 1 
 Triumfetta rhomboidea (Tiliaceae) 1 
Xylocopa calens (Apidae) Justicia flava (Acanthaceae) 6 
Megachile bituberculata (Megachilidae) Justicia flava (Acanthaceae) 5 
Megachilidae Justicia flava (Acanthaceae) 6 
Megachile felina (Megachilidae) Justicia flava (Acanthaceae) 3 
Xylocopa flavorufa (Apidae) Acanthus pubescens (Acanthaceae) 1 
Megachile torrida (Megachilidae) Justicia flava (Acanthaceae) 3 
Thyreus pictus (Apidae) Justicia flava (Acanthaceae) 3 
Xylocopa (Kortosoma sp. 1) (Apidae) Justicia flava (Acanthaceae) 3 
Xylocopa carinata (Apidae) Justicia flava (Acanthaceae) 2 
Amegilla mimadvena  (Apidae) Justicia flava (Acanthaceae) 2 
Ceratina (Pithitis) nasalis  (Apidae) Justicia flava (Acanthaceae) 2 
Lasioglossum (Sellalictus sp.) (Halictidae) Justicia flava (Acanthaceae) 1 
Megachile ciactacombusta (Megachilidae) Justicia flava (Acanthaceae) 2 
Meliponula lendliana (Apidae) Justicia striata (Acanthaceae) 2 
Thyreus calceata  (Apidae) Justicia flava (Acanthaceae) 2 
Thyreus interruptus  (Apidae) Justicia flava (Acanthaceae) 2 
Xylocopa imitator  (Apidae) Justicia flava (Acanthaceae) 1 
Amegilla (Megamegilla sp. 1) (Apidae) Justicia flava (Acanthaceae) 1 
Amegilla acraensis  (Apidae) Justicia flava (Acanthaceae) 1 
Amegilla aff langi (Apidae) Justicia flava (Acanthaceae) 1 
Amegilla cornuta (Apidae) Justicia flava (Acanthaceae) 1 



- 134 - 9. Appendix  

Braunsapis sp. (Apidae) Justicia flava (Acanthaceae) 1 
Ceratina viridis (Apidae) Justicia flava (Acanthaceae) 1 
Halictus (Seladonia sp. 1) (Halictidae) Psidium guajava 1 
Heriades sp. (Megachilidae) Justicia flava (Acanthaceae) 1 
Lasioglossum (Sellalictus sp. 2) (Halictidae) Lantana camara 1 
Lipotriches aff. welwitschii (Halictidae) Psidium guajava 1 
Megachile dariensis (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile decemsignata (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile ianthoptera (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile niveicauda (Megachilidae) Justicia flava (Acanthaceae) 1 
Megachile rufipes (Megachilidae) Justicia flava (Acanthaceae) 1 
Patellapis sp. 2 (Halictidae) Justicia flava (Acanthaceae) 1 
Thrinchostoma sp (Halictidae) Asystasia gangetica (Acanthaceae) 1 
Thrinchostoma torridum (Halictidae) Justicia flava (Acanthaceae) 1 
Thyreus sp (Apidae) Justicia flava (Acanthaceae) 1 
Xylocopa (Xylomellisa sp. 1) (Apidae) Acanthus pubescens (Acanthaceae) 1 
Xylocopa bouyssoui (Apidae) Justicia flava (Acanthaceae) 1 
Xylocopa erythrina  (Apidae) Acanthus pubescens (Acanthaceae) 1 
Xylocopa hottentotta  (Apidae) Justicia flava (Acanthaceae) 1 
Xylocopa inconstans (Apidae) Justicia flava (Acanthaceae) 1 
Xylocopa scioensis  (Apidae) Justicia flava (Acanthaceae) 1 
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Appendix 3.9:  
Plant species and their interaction partners in the forest; reflecting the order of the pollination network analysis 
(Figure 3) 

plant species bee-species 

Number 
recorded 
interactio
ns 

Justicia flava (Acanthaceae) Apis mellifera (Apidae) 31 
 Ceratina sp. (Apidae) 2 
 Halictidae 2 
 Xylocopa melissa (Apidae) 19 
 Xylocopa nigrita (Apidae) 1 
 Amegilla fallax (Apidae) 1 
 Xylocopa calens (Apidae) 6 
 Megachile bituberculata (Megachilidae) 5 
 Megachilidae 6 
 Megachile felina (Megachilidae) 3 
 Megachile torrida (Megachilidae) 3 
 Thyreus pictus (Apidae) 3 
 Xylocopa (Kortosoma sp. 1) (Apidae) 3 
 Xylocopa carinata (Apidae) 2 
 Amegilla mimadvena (Apidae) 2 
 Ceratina (Pithitis) nasalis  (Apidae) 2 
 Lasioglossum (Sellalictus sp.) (Halictidae) 1 
 Megachile ciactacombusta (Megachilidae) 2 
 Thyreus calceata  (Apidae) 2 
 Thyreus interruptus  (Apidae) 2 
 Xylocopa imitator  (Apidae) 1 
 Amegilla (Megamegilla sp. 1) 1 
 Amegilla acraensis  (Apidae) 1 
 Amegilla aff. langi (Apidae) 1 
 Amegilla cornuta (Apidae) 1 
 Braunsapis sp. (Apidae) 1 
 Ceratina viridis (Apidae) 1 
 Heriades sp. (Megachilidae) 1 
 Megachile dariensis (Megachilidae) 1 
 Megachile decemsignata (Megachilidae) 1 
 Megachile ianthoptera (Megachilidae) 1 
 Megachile niveicauda (Megachilidae) 1 
 Megachile rufipes (Megachilidae) 1 
 Patellapis sp. 2 (Halictidae) 1 
 Thrinchostoma torridum (Halictidae) 1 
 Thyreus sp (Apidae) 1 
 Xylocopa bouyssoui (Apidae) 1 
 Xylocopa hottentotta (Apidae) 1 
 Xylocopa inconstans (Apidae) 1 
 Xylocopa scioensis  (Apidae) 1 
Asystasia gangetica (Acanthaceae) Apis mellifera (Apidae) 2 
 Ceratina sp. (Apidae) 1 
 Halictidae 1 
  Thrinchostoma sp. (Halictidae) 1 
Acanthus pubescens (Acanthaceae) Xylocopa melissa (Apidae) 2 
 Xylocopa flavorufa (Apidae) 1 
 Xylocopa (Xylomellisa sp. 1) (Apidae) 1 
 Xylocopa erythrina  (Apidae) 1 
Lantana camara (Verbenaceae) Apis mellifera (Apidae) 8 
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 Meliponula bocandei (Apidae) 1 
  Lasioglossum (Sellalictus sp. 2) (Halictidae) 1 
Psidium guajava (Myrtaceae) Apis mellifera (Apidae) 4 
 Halictus (Seladonia sp. 1) (Halictidae) 1 
 Lipotriches aff welwitschii (Halictidae) 1 
Rubus friesiorum (Rosaceae) Ceratina sp. (Apidae) 1 
  Meliponula bocandei (Apidae) 1 
Solanum mauritianum (Solanaceae) Halictidae 2 
 Lasioglossum sp. (Halictidae) 1 
Desmodium repandum (Fabaceae) Xylocopa nigrita (Apidae) 1 
  Amegilla fallax (Apidae) 1 
Harungana madagascariensis (Clusiaceae) Apis mellifera (Apidae) 5 
Maesa lanceolata (Maesaceae) Apis mellifera (Apidae) 4 
Vernonia auriculifera (Asteraceae) Apis mellifera (Apidae) 1 
Justicia calyculata (Acanthaceae) Apis mellifera (Apidae) 2 
Pollia condensator (Commelinaceae) Apis mellifera (Apidae) 1 
Ageratum conyzoides (Asteraceae) Apis mellifera (Apidae) 2 
Galinsoga parviflora (Asteraceae) Apis mellifera (Apidae) 1 
Justicia striata (Acanthaceae) Meliponula lendliana (Apidae) 2 
Triumfetta rhomboidea (Tiliaceae) Lasioglossum sp. (Halictidae) 1 
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Appendix 3.10:  
Forest: A network approach to plant-bee mutualisms in the different seasons. Every red dot indicates a 
bee or plant species. A bee and a plant interact, if there is a qualitative link (black line) between them; 
bees and plants are ordered after the number of interaction partners and the number of interactions with 
their partners. Thus, generalist interaction partners are found on the left, specialists on the right.  
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Appendix 4.1: 
Bee species visiting the flowers of Justicia flava; in the field small species were 
grouped into 4 groups 
Bee Family Bee species observation groups 
Apidae Amegilla aff. vivida  
 Amegilla acraensis  
 Amegilla aff. langi  
 Amegilla albigena  
 Amegilla albocaudata  
 Amegilla caelestina  
 Amegilla calens  
 Amegilla fallax  
 Amegilla mimadvena  
 Anthophora aff. vegtita  
 Apis mellifera  
 Braunapis angolensis Braunsapis 
 Braunsapis foveata Braunsapis 
 Braunsapis langenburgensis Braunsapis 
 Braunsapis leptozonia Braunsapis 
 Braunsapis lyrata Braunsapis 
 Ceratina ericia Ceratina 
 Ceratina moerenhouti Ceratina 
 Ceratina sp. 2 Ceratina 
 Ceratina sp. 3 Ceratina 
 Ceratina sp. 6 Ceratina 
 Ceratina sp. 8 Ceratina 
 Ceratina viridis Ceratina 
 Ctenoplectra antinorii  
 Ctenoplectra polita  
 Ctenoplectra terminalis  
 Pleibena hildebrandtii small bee 
 Tetraloniella katagensis small bee 
 Thyreus calceatus  
 Thyreus interruptus  
 Thyreus pictus  
 Thyreus vachali  
 Xylocopa albifrons  
 Xylocopa bouyssoui  
 Xylocopa calens  
 Xylocopa erythrina  
 Xylocopa hottentotta  
 Xylocopa inconstans  
 Xylocopa melissa  
 Xylocopa nigrita  
 Xylocopa scioensis  
 Xylocopa torrida  
      
Colletidae Hylaeus sp. 1 small bee 
      
Halictidae Halictus (Seladonia) sp. 1 Halictid 
 Halictus (Seladonia) sp. 2 Halictid 
 Nomia (Leuconomia) sp. 1  
 Nomia (Leuconomia) sp. 2  
 Nomia theryi  
 Nomia viridiciacta  
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 Patellapis (Zonalictus) sp. 2 Halictid 
 Patellapis sp. Halictid 
 Systropha sp.  
      
Megachilidae Anthidium sp.  
 Euaspis abdominalis  
 Euaspis erythros  
 Megachile bituberculata  
 Megachile dariensis  
 Megachile felina  
 Megachile ianthoptera  
 Megachile niveicauda  
 Megachile rufipes  
 Megachile torrida  
 Pachyanthidium bengalense  
 Pseudanthidium (Microanthidium) sp. 3  
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Appendix 5.1:  
Distances (in metres) between the study sites 
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Appendix 5.2:  
Bee species visiting the flowers of Justicia flava; in the field small 
species were grouped into 4 groups 
Bee Family Bee species observation groups 
Apidae Amegilla aff. vivida  
 Amegilla acraensis  
 Amegilla aff. langi  
 Amegilla albigena  
 Amegilla albocaudata  
 Amegilla caelestina  
 Amegilla calens  
 Amegilla fallax  
 Amegilla mimadvena  
 Anthophora aff. vegtita  
 Apis mellifera  
 Braunapis angolensis Braunsapis 
 Braunsapis foveata Braunsapis 
 Braunsapis langenburgensis Braunsapis 
 Braunsapis leptozonia Braunsapis 
 Braunsapis lyrata Braunsapis 
 Ceratina ericia Ceratina 
 Ceratina moerenhouti Ceratina 
 Ceratina sp. 2 Ceratina 
 Ceratina sp. 3 Ceratina 
 Ceratina sp. 6 Ceratina 
 Ceratina sp. 8 Ceratina 
 Ceratina viridis Ceratina 
 Ctenoplectra antinorii  
 Ctenoplectra polita  
 Ctenoplectra terminalis  
 Pleibena hildebrandtii small bee 
 Tetraloniella katagensis small bee 
 Thyreus calceatus  
 Thyreus interruptus  
 Thyreus pictus  
 Thyreus vachali  
 Xylocopa albifrons  
 Xylocopa bouyssoui  
 Xylocopa calens  
 Xylocopa erythrina  
 Xylocopa hottentotta  
 Xylocopa inconstans  
 Xylocopa melissa  
 Xylocopa nigrita  
 Xylocopa scioensis  
 Xylocopa torrida  
      
Colletidae Hylaeus sp.1 small bee 
      
Halictidae Halictus (Seladonia) sp. 1 Halictid 
 Halictus (Seladonia) sp. 2 Halictid 
 Nomia (Leuconomia) sp. 1  
 Nomia (Leuconomia) sp. 2  
 Nomia theryi  
 Nomia viridiciacta  
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 Patellapis (Zonalictus) sp. 2 Halictid 
 Patellapis sp. Halictid 
 Systropha sp.  
      
Megachilidae Anthidium sp.  
 Euaspis abdominalis  
 Euaspis erythros  
 Megachile bituberculata  
 Megachile dariensis  
 Megachile felina  
 Megachile ianthoptera  
 Megachile niveicauda  
 Megachile rufipes  
 Megachile torrida  
 Pachyanthidium bengalense  
 Pseudanthidium (Microanthidium) sp. 3  
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