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1. Introduction

The standard model of particle physics is a theory that describes three of the four known

fundamental interactions between the elementary particles that make up all matter. It is

a quantum field theory developed between 1970 and 1973 which is consistent with both

quantum mechanics and special relativity. The standard model is a grouping of two

major theories quantum electroweak and quantum chromodynamics which provides an

internally consistent theory describing interactions between all experimentally observed

particles.

According to the Standard Model, the basic classification of fundamental particles in

nature is into hadrons which experience the strong interaction, leptons which do not,

and thirdly, the quanta of the interaction fields. All hadrons are bound states of particles

called quarks, and leptons themselves are considered to be fundamental, so the leptons

and the quarks form the basic building blocks of all matter in the universe.

In this model quarks come in six different flavours, up (u), down (d), strange (s), charmed

(c), bottom (b) and top (t). They also have a hidden three valued degree of freedom

known as colour: each quark flavour comes in three colours. The forces through which

quarks interact are the strong forces of attraction or repulsion between these colour

charges. The strong forces are carried by massless bosons called gluons.

The theory of quark interactions arising from the exchange of gluons is called Quan-

tum Chromodynamics (QCD). The local gauge group is SU(3) generated by three colour

charges, the field quanta are eight massless spin 1 colour carrying gluons. One of the

most striking physical properties of QCD is confinement of quarks in a hadron so that

only colour singlets can be produced and observed. In high energy atomic collisions,

we can split an atom into its constituents, atomic nucleus and electrons. In high en-

ergy nucleus-nucleus collisions, we can split a nucleus into its constituents, neutrons

and protons. But in high energy hadron-hadron collisions, a hadron is not split into
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its constituents, quarks. A hadron-hadron collision results not into free quarks but into

hadrons.

Quark confinement is reflected in the attractive, linearly rising potential of a static

quark and an antiquark (qq̄) pair. Since the potential linearly confines, it would take

infinite energy to separate such pairs. The study of confinement has always been one of

the most challenging topics in particle physics and appears to play a role solely for the

unbroken non-Abelian gauge theory of strong interactions.

Such a linear rise with slope σ can be explained by the formation of a flux tube be-

tween the qq̄ pair with constant energy per length σ. In the flux tube picture, the

chromoelectric field originating from a quark does not spread uniformly in space, but is

squeezed into tubes of constant cross section. Since confinement is related to flux tube

formation, to understand confinement essentially means to understand the properties of

the flux tube.

At low temperature and density, quarks and gluons appear only as constituents of

hadrons because of confinement. However, QCD lattice simulations predict that above a

certain temperature or density, nuclear matter undergoes a phase transition after which

quarks and gluons are deconfined from hadrons and form a new state of matter called

quark-gluon plasma (QGP). Investigating the behaviour of matter in the vicinity of the

critical temperature of the deconfinement transition and at high temperature is a major

goal of current and planned heavy ion collision experiments.

Motivated by the successful flux tube analyses at zero temperature [1, 2, 3, 4], interesting

questions arise at finite or high temperature, concerning the behaviour of the flux tube

when QCD undergoes a phase transition. What steps will the flux tube pass through

and how does it behave to go to the quark-gluon plasma phase? To have answers to

these questions we need to do the finite or high temperature study. To see how the

flux tube melts into the quark-gluon plasma phase one has to look into the details of

the interaction between quark pairs studying the distribution of the chromoelectric and

chromomagnetic components of gluon fields which compose energy and action density of

the flux tube. This investigation may also shed more light to our current understanding

about the confinement problem.
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The main goal of this work is a more detailed quantitative analysis of the flux tube

picture at high temperature. In particular we shall see how the shape and size of the

flux tube change when QCD undergoes a phase transition from the hadronic phase to a

QGP.

The organization of this work is as follows.

Chapter 2 will be devoted to a brief introduction to Lattice Gauge Theory. It also

contains the lattice formulation of finite temperature field theory. Chapter 3, which

is about the heavy quark potential, describes the main motivation of doing our finite

temperature investigation of flux tube profiles. In Chapter 4 we present the flux tube

model and its lattice formulation, which is our object to be investigated and collect its

zero temperature results. Chapter 5 presents the details of the simulation, error reduc-

tional techniques and scaling relation. In Chapter 6 we present and discuss our high

temperature results on various profiles of the flux tube. Finally Chapter 7 will give some

concluding remarks.



2. Introduction to Lattice Gauge

Theories

2.1. Discretizing Space-Time

Quantum Chromodynamics, which is believed to be the fundamental theory of strong

interactions, is a field theory of basic quark and gluon constituents. At short distances

QCD is weakly coupled and can be studied analytically using perturbation theory, while

at large distances it is strongly coupled and in most cases it can not be studied analyti-

cally. In order to study physical processes that are controlled by large-distance, nonper-

turbative effects of QCD, in 1974 Kenneth Wilson introduced Lattice Gauge Theory in

which the space-time continuum is discretized on a lattice with lattice points or sites x.

In this Euclidean lattice formulation [5], after a Wick rotation (to Euclidean space), the

quantization is performed via the path integral formalism. We will follow the Euclidean

formulation with a space-time lattice spacing a.

In a continuum notation the QCD Lagrangian is given as

L = LG + LF (2.1)

where

LG = −1

4
F a
µν(x)F

aµν(x),

LF = ψ̄(x)(iγµDµ −M0)ψ(x). (2.2)

LG and LF are the Lagrangian densities of the SU(N) pure gauge theories and matter

fields of mass M0, respectively and

F a
µν(x) = ∂µA

a
ν(x) − ∂νA

a
µ(x) + gfabcAbµ(x)A

c
ν(x), (2.3)
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Dµ = ∂µ − ig
λa
2
Aaµ(x). (2.4)

Here Aaµ are the gauge fields (a = 1, 2, ..., N2 − 1), g is the gauge coupling constant and

fabc are the structure constants of the SU(N) group and γµ are 4 × 4 Dirac matrices

satisfying the following anticommutation relations

{γµ, γν} = 2gµν . (2.5)

In the lattice formulation the quark fields are only defined at the sites of the lattice.

Two adjacent sites are connected by an oriented link n, µ. Instead of a vector potential

as in the continuum case, the gauge field variables are defined on the links of the lattice

and correspond to the parallel transport along the edge which takes on values in the

Lie group. Hence to simulate QCD, for which the Lie group is SU(3), there is a 3 × 3

special unitary matrix defined on each link. The gauge connection Uµ(n), the so-called

link variable leaving site n in direction µ, replaces the continuum gauge field Aµ(x) in

the way

Uµ(n) = exp

(

iga
N2−1
∑

a=1

λaAaµ(n)

)

. (2.6)

The product of four links, enclosing an elementary square, is a plaquette. For simplicity,

we adopt an isotropic lattice with equal lattice spacing a in all directions.

2.2. The Path Integral Approach to Quantization and

The Partition Function

A convenient way to write down the lattice theory is in the Euclidean path integral

framework. Since a detailed introduction on the path integral formulation of quantum

field theory is in many books about lattice gauge theories, e.g. in [6], we will not discuss

it in such detail.

The expectation values of observables in QCD can be expressed by the path integral

over the link variable, U , and the quark fields, ψ, as

〈O〉 =
1

Z

∫

[dU ]
[

dψ̄dψ
]

O exp [−SG − SF ] (2.1)
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Here

Z =

∫

[dU ]
[

dψ̄dψ
]

exp [−SG − SF ] (2.2)

is the partition function of an SU(N) gauge theory interacting with matter fields written

in the Euclidean path-integral formulation and SG and SF respectively are the discretised

gauge and fermion actions which are

SG =
2N

g2

∑

P

[1 − Tr

2N
(UP + U+

P )], (2.3)

SF = (M0 + 4r)
∑

n

N
∑

a=1

ψ̄a(n)ψa(n)

−1

2

∑

n,µ

N
∑

a=1

[ψ̄a(n)(r − γµ)ψ
a(n+ µ̂) (2.4)

+ψ̄a(n+ µ̂)(r + γµ)ψ
a(n)].

where UP stands for the product of link variables around the boundary of a plaquette

P taken in the counterclockwise direction.

In continuum QCD

S
(cont)
G =

1

4

∫

d4xF a
µνF

a
µν (2.5)

where F a
µν is related to the colored gauge potentials by Eq. 2.3. Hence, in contrast to

the Abelian case, the pure gauge sector of QCD describes a highly non-trivial interacting

theory, which involves tripel and quartic interactions of Aaµ. This is the reason why a

study of the pure gauge sector of QCD is of great interest. In fact, the self-couplings

of the gauge potentials are believed to be responsible for quark confinement. The first

non-abelian gauge theory was proposed by Yang and Mills (1954) and was based on

SU(2). For this reason one usually refers to Eq. 2.3 or 2.5 as the Yang-Mills action [6].

Fermionic and gluonic actions on the lattice are invariant under local gauge transforma-

tions G(n)

ψ(n) → G(n)ψ(n)

ψ̄(n) → ψ̄(n)G−1(n) (2.6)
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Un,n+µ̂ → G(n)Un,n+µ̂G
−1(n+ µ̂)

Un+µ̂,n → G(n+ µ̂)Un+µ̂,nG
−1(n).

The lattice thus provides a gauge invariant regularization scheme. In the theory, unlike

in the real world, we can vary the quark masses, the number of colours, the number of

flavours, the temperature, the volume, the space time dimension of our lattice-universe.

In order words, lattice gauge theory offers the laboratory to test non-perturbative phe-

nomena arising, for instance, in the high temperature regime.

Lattice formulation of the field theory is equivalent to a statistical mechanics system

and can be studied using Monte Carlo numerical simulations. So we can call upon all

our experience and intuition of statistical mechanics to solve problems in quantum field

theory.

With a finite lattice there are a finite number of variables. By changing β = 2N/g2 one

can control the lattice spacing a throughout the simulations (see Section. 5.3). Since

nonabelian gauge theories are asymptotically free, the continuum limit corresponds to

infinite β. After the simulations are performed for a set of values of the lattice spacing

a and systems of several sizes V , continuum quantities can be recovered by taking the

limits V → ∞, a→ 0.

2.3. Finite Temperature Lattice Gauge Theories

In this section we will give some formula that describe the behaviour of hadronic matter

at finite temperature as predicted by QCD. As the temperature enters the theory we

have to define expectation values of the thermodynamical observables from the partition

function

ZQCD =

∫

[dU ]
[

dψ̄dψ
]

e−S
(β)
QCD[U,ψ,ψ̄]. (2.1)

S
(β)
QCD is the finite-temperature action

S
(β)
QCD =

∫ β

0

dτ

∫

d3xL (2.2)
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where β = 1/T is the inverse temperature here. Correspondingly, if Nτ is the number

of lattice sites along the temporal direction, the temperature is

T = 1/Nτa(β). (2.3)

A finite temperature then implies that Nτ of the N3
σ ×Nτ lattice has to be shorter than

Nσ. Also we have to impose periodic boundary conditions in the temporal direction,

while the boundary conditions in the other direction can be chosen freely. Dirac fields

are subjected to antiperiodic boundary condition. Thus at finite temperature the lattice

is compactified in the euclidean time direction, with the link variables satisfying the

boundary condition

Uµ(~n, β) = Uµ(~n, 0) (2.4)

where β is the inverse temperature measured in lattice units.

Given the partition function one can proceed to study the behaviour of thermodynami-

cal observables as a function of temperature and to determine the critical properties of

the theory. For instance, the energy density and pressure are defined by the partition

function in the usual way

ǫ = − 1

V

∂

∂β
(lnZ)V ,

p =
1

β

∂

∂V
(lnZ)β. (2.5)

These continuum expressions must be translated on the lattice into expectation values

of gauge invariant expressions constructed from the link variables. According to Eq.

2.5, to keep the physical volume V or temperature T fixed while varying, respectively,

the temperature or volume, we must be able to vary independently the extension of the

lattice in the time and space directions. For a given lattice this can be done by choosing

different lattice spacings a and aτ along the space and time directions.

In the following we will restrict ourselves to SU(N) pure gauge theory. Then the parti-

tion function has the form

Z =

∫

per

DUe−SG[U ]. (2.6)



10 Introduction to Lattice Gauge Theories

Figure 2.1.: Two dimensional picture of a loop winding around the time direction.

As we have stated in the introductory section the pure SU(N) Yang Mills theory confines

a static quark and an antiquark pair at low temperatures and the question is whether

confinement persists as the temperature is raised, or whether there exists a critical

temperature where deconfinement takes place. To have an answer to this question one

needs non-perturbative observables.

2.3.1. Polyakov Loop

Due to the finite extension in the time direction the Wilson loop no longer plays the

role to determine the potential of a static qq̄ pair. It will be replaced by Polyakov loops

which are the relevant variables in the physics of deconfinement for pure gauge theories.

The Polyakov loop is a gauge-invariant quantity, which is the trace of the product of

link variables along topologically non-trivial loops winding around the time direction.

In Fig. 2.1 we show a two-dimensional picture of the simplest loop we can construct,

located at some spatial lattice site ~n.

Its mathematical expression is

L(~n) ≡ 1

Nc

Tr
Nτ
∏

τ=1

U4(~n, τ) (2.7)

The Polyakov loop is invariant under gauge transformations:

U4(~n, τ) → G(~n, τ)U4(~n, τ)G
−1(~n, τ + 1)

G(~n, 1) = G(~n,Nτ + 1). (2.8)

As we will see in the following section the expectation value of the Polyakov loops has

a simple physical interpretation.
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2.3.2. Spontaneous Breakdown of the Center Symmetry and the

Deconfinement Phase Transition

As a result of the periodic structure of the lattice, pure SU(N) gauge action has not

only local gauge invariance, but also global Z(N) symmetry. Gauge transformations

related to this symmetry can be expressed as

U4(~n, τ) → zU4(~n, τ), ∀~n, τ fixed (2.9)

where z ∈ C. The elements belonging to the center C of the SU(N) group are given

as exp(2πin/N), n = 0, ..., N − 1. While the lattice action of the pure SU(N) gauge

theory is invariant under above transformation, the Polyakov loop is not invariant and

transforms non-trivially:

L(~n) → zL(~n). (2.10)

Because the Polyakov loop has a special feature associated to the spontaneous breaking

of the center symmetry this quantity can be used as an order parameter to describe the

high temperature regime, which is characterized by the breaking of the global symmetry

with respect to the center of the group.

The free energy, Fq, of an isolated static quark is given by the average of the Polyakov

loop over the lattice by the following way

e−Fq/T = 〈L(~n)〉 = 〈L〉. (2.11)

In the confined Z(N) symmetric phase

〈L〉 = 0 (2.12)

while

〈L〉 6= 0 (2.13)

in the deconfined phase. Thus the expectation value of the Polyakov loop evaluated in

a pure gluonic medium becomes a signal for distinguishing the confined phase from the

deconfined, center symmetry broken phase.
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The free energy of a quark and antiquark located at different sites of the lattice can

be obtained from the correlation function of two opposite oriented Polyakov loops,

Γ(~n, ~m) = 〈L(~n)L+(~m)〉, (2.14)

where ~n and ~m are the site positions. Thus it is easy to show that the free energy

Fqq̄(~n, ~m) of a static qq̄ pair is given by

Γ(~n, ~m) = e−βFqq̄(~n,~m). (2.15)

Now it is well known that SU(3) pure gauge theory undergoes a first order phase tran-

sition, while SU(2) gauge theory undergoes a second order continuous phase transition.

Continuous phase transitions are easier to study than first order transitions due to the

absence of latent heat, and they have been discovered to have many interesting proper-

ties.

2.3.3. Determination of the Transition Temperature

As will be worked out in more detail in Section 5.3 of Chapter 5 the lattice spacing is a

function of the coupling constant β = 2N/g2. Moreover, the temperature T of a lattice

with temporal extent Nτ is given by

T =
1

Nτa(β)
(2.16)

Thus, at fixed Nτ one can vary the temperature by changing the coupling constant.

Correspondingly, the critical temperature Tc of a phase transition is determined from

a critical coupling βc

Tc =
1

Nτa(βc)
(2.17)

One has to determine the critical couplings, where transitions occur, on a lattice with

temporal extent Nτ . The deconfining transition point in the coupling constant values

for two values of Nτ has been identified through the location of the peak in the suscep-

tibility, χL, of the Polyakov loop using Ferrenberg-Swendsen reweighting technique [7].

The Ferrenberg-Swendsen reweighting technique [7] we used to find the critical β value

is especially important when the behavior of the system displays sharp peaks, such as



2.3 Finite Temperature Lattice Gauge Theories 13

0

0.5

1

1.5

2

2.5

3

3.5

2.25 2.3 2.35 2.4 2.45 2.5

χ L
(β

)

β

reweighting

data

Figure 2.2.: Polyakov loop susceptibility, χL, against coupling constant β for a 123 × 6

lattice.

near those first and second order phase transitions.

If we calculate the Polyakov loop susceptibility

χL = N3
σ

(

〈L2〉 − 〈L〉2
)

, (2.18)

where N3
σ is a factor of lattice volume, for every β to look for the critical β, the result is a

set of discrete points, none of which is exactly at the peak. With the algorithm one can

accurately determine the peak position where a transition occurs. In other words, the

algorithm does a weighted interpolation between those discrete points that are plotted

from data. In Fig. 2.2 the Polyakov loop susceptibility, χL, is plotted for several values

of β, which are near the transition for Nτ = 6.

In Fig. 2.2 the blue discrete points are χL obtained from our data. As we see from

these values it seems that the critical β should be somewhere between 2.40 − 2.45, but

it is difficult to locate an exact position of the peak where the transition occurs, if there

was no interpolating curve drawn with the red square points. The position of the peak
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has been determined with high accuracy using the reweighting method to be

βc = 2.2985 ± 0.0006, Nτ = 4 (2.19)

βc = 2.434 ± 0.002, Nτ = 6. (2.20)

Once we know the critical couplings on our two lattices with temporal extents Nτ = 4

and 6, using Eq. 2.17 we can determine the corresponding critical temperatures.



3. Heavy Quark Potentials

3.1. Heavy Quark Potentials at Zero Temperature

As we have already mentioned the confining property of QCD manifests itself in the long

range behaviour of the heavy quark potential.

In non-abelian gauge field theories, the coupling constant decreases at short distances.

In the familiar Abelian theory of QED, one has an intuitive understanding of the de-

crease of the effective coupling constant at long distance as being due to the dielectric

screening by the cloud of virtual electron-positron pairs. For non-Abelian gauge theories,

we have to understand an anti-screening effect. The anti-screening effect is due to the

self-couplings of the gauge potentials. Thus the exploring of the heavy quark potential

in detail is important for the understanding about confinement and deconfinement. At

zero temperature the potential of a system that contains two heavy quarks rises linearly

at large distances,

Vqq̄(R) = V0 −
π

12

1

R
+ σR, (3.1)

where V0 denotes the self-energy of the quark lines, σ is the string tension which forces

the quarks and gluons to be confined to a hadronic bag and the Coulomb-like term 1/R

stems from fluctuations of the string [8]. The static qq̄ potential in lattice units, defined

as the ground state energy of the system, can simply be expressed as a function of the

Wilson loop

Vqq̄(R) = − lim
T̂→∞

1

T̂
lnW (R, T̂ ) (3.2)

where W (R, T̂ ) is the expectation value of the Wilson loop with spatial and temporal

extension R and T̂ , respectively. The confining potential is spin and flavour independent.
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Since the Wilson loops can be calculated accurately, the analysis of the heavy quark

potential and the string tension is useful to check scaling and thereby determine the lat-

tice spacing a(β). The string tension extracted from the long distance part of the heavy

quark potential can be used to test the scaling of the dimensionless ratios of physical

quantities [10].

3.2. Heavy Quark Potentials at Finite and High

Temperature

It is expected that fundamental forces between quarks, which are mediated by gluons,

change because of the additional interaction of gluons with the constituents of the ther-

mal bath. The modifications of these forces due to the temperature change can be inves-

tigated from the analysis of the temperature dependence of a heavy quark potential [11].

For nonvanishing temperatures below the critical temperature Tc, a temperature-dependent

potential has been computed [12], which can be expressed as

V (R, T ) = V0 −
[

π

12
− 1

6
arctan(2RT )

]

1

R
+

+

[

σ − π

3
T 2 +

2

3
T 2 arctan

(

1

2RT

)]

R +
T

2
ln[1 + (2RT )2]. (3.1)

In the limit R ≫ 1/T , this goes over into

V (R, T ) = V0 +

[

σ − π

3
T 2

]

R + T ln(2RT ). (3.2)

In Eqs. 3.1 and 3.2 σ is the zero temperature string tension. However, one may also allow

for a temperature dependent string tension σ(T ). Such a string tension was computed

by means of a 1/D expansion [13]

σ(T )

σ(0)
=

(

1 − T 2

T 2
c

)1/2

(3.3)

where Tc was obtained as

T 2
c =

3

π(D − 2)
σ(0). (3.4)

In the case of SU(3) [14] it is found that the string tension decreases with rising temper-

ature but retains a finite value at the deconfinement transition, while in colour SU(2)
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[15], which exhibits a second order transition, the temperature dependent string tension

σ(T ) vanishes ∼ (βc − β)ν , with a critical exponent ν taking its three-dimensional Ising

value of 0.63.

There are several qq̄ potentials that can be studied, since the qq̄ pair can be in a singlet

or an octet state at high temperature. We denote these potentials by V1(~R, T ) and

V8(~R, T ), and identify them with the free energy of the system [6]

(Tre−H/T )(l) = e−Vl(~R,T )/T . (3.5)

Here the trace is taken over all states of the system with a heavy qq̄ pair in the singlet

(l = 1) or octet (l = 8) state, separated by a distance ~R. This expression is degenerate

in the colour magnetic quantum numbers of the qq̄ system. We now define the so called

colour averaged potential by taking the average of the above expression over the two

possible states weighted with their degeneracy

e−V (~R,T )/T =
1

9
(e−V1(~R,T )/T + 8e−V8(~R,T )/T ). (3.6)

The colour averaged potential between a heavy quark and an anti-quark pair at finite

temperature is computed from two Polyakov loop correlations

〈L(~0)L(~R)†〉 = e−V (|~R|,T )/T (3.7)

where L(~x) denotes the Polyakov loop at spatial coordinates ~x.

As a by product we have computed the potential at various temperatures. The re-

sults are in Fig. 3.1.

As temperature increases the potential decreases due to the temperature dependent

string tension but keeps rising as the qq̄ separation increases. The slope of the potential

decreases as temperature increases. This means that the string tension is no longer

constant but is T -dependent and becomes smaller close to Tc.

The potentials have first been fitted to fit ansatz Eq. 3.1 allowing for a temperature

dependent string tension σ(T ). The fit results are displayed in the Table. 3.1.

One can compare the resulting string tension values with zero temperature string tension

values, obtained from renormalization group inspired interpolation ansatz to data from
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Figure 3.1.: The heavy quark potentials as a function of qq̄ separation at various temper-

atures. The potentials and qq̄ separations are in units of the temperature.

The lattice size was 24 × 122 × 6.

Nτ β T/Tc aV0 a2σ χ2 < χ2 >

2.31 0.65 0.74(2) 0.120(4) 0.1 0.04

2.35 0.75 0.7479(6) 0.0846(5) 37 6.2

6 2.39 0.86 0.7601(6) 0.0491(5) 20 3.3

2.43 0.98 0.7688(7) 0.0108(4) 32 5.3

Table 3.1.: Results for the string tension from fits with Eq. 3.1.

Nτ β T/Tc a2σ

2.31 0.65 0.128

2.35 0.75 0.099

6 2.39 0.86 0.076

2.43 0.98 0.057

Table 3.2.: Results in Fig. 5.6 in the form of table.
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Nτ β T/Tc aV0 a2σ(T ) γ χ2 < χ2 >

2.31 0.65 0.755(125) 0.106(48) 0.55(1.42) 0.01 0.007

6 2.35 0.75 0.834(32) 0.05(1) 1.14(29) 0.09 0.03

2.39 0.86 0.887(24) -0.001(8) 1.47(22) 0.05 0.02

2.43 0.98 0.802(19) -0.011(7) 0.85(19) 0.008 0.003

Table 3.3.: Results for the fit parameters from fits with Eq. 3.8.

[16].

From the zero temperature string tension values in Tables. 3.1 and 3.2 one can con-

clude that the fit is only working at low temperatures.

We then tried two alternative fit ansätze. The first one, which is inspired by Eq. 3.2, is

V (R, T ) = V0 + σ(T )R + γT ln(2RT ) (3.8)

with three free parameters: the self energy V0, a temperature dependent string tension

σ(T ) and an arbitrary coefficient γ, and

V (R, T ) = V0 −
α

R
+ σ(T )R (3.9)

with also three free parameters: the self energy V0, the coefficient α and a temperature

dependent string tension σ(T ). The later one of these fit ansätze accounts for a 1/R

piece which reflects the Coulomb type behaviour for small qq̄ separations and the first

one accounts for a logarithmic behavior and both of them include the linear rising part

in the potential. These two fits both work well as the data show either a Coulomb or

a logarithmic behavior as well as the linearly rising feature. The results for the free

parameters obtained from the fits with Eq. 3.8 and 3.9 are shown in Tables. 3.3 and

3.4, respectively.

The fits have only been done on the 24 × 122 × 6 lattice. For all fits the minimum

distance was RminT = 0.5 which means r = 3a in lattice units. Varying the minimum

distance to be fitted does not lead to noticeable changes of the results.

In the Table. 3.3 the fits return values for the coefficient γ of the logarithm which
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Nτ β T/Tc aV0 a2σ(T ) α χ2 < χ2 >

2.31 0.65 0.81(26) 0.11(3) 0.24(62) 0.02 0.009

6 2.35 0.75 0.91(5) 0.069(6) 0.41(11) 0.3 0.1

2.39 0.86 0.99(4) 0.024(4) 0.55(8) 0.4 0.1

2.43 0.98 0.87(3) 0.004(4) 0.32(8) 0.07 0.02

Table 3.4.: Results for the fit parameters from fits with Eq. 3.9.

are approximately equal to 1 within an error margin. Fixing γ to 0 leads to a decreasing

string tension when Rmin is raised. Thus, in order to account a purely linear rise at large

distances as long as the minimum distance is fixed one can not exclude the logarithmic

term or can not fix γ to 0.

The resulting string tension values in Table. 3.4 normalized to its zero temperature

value are shown in Fig. 3.2.

We set the coefficient α of the Coulomb type term in Eq. 3.9 as a free parameter

in the potential fits and the fits return values which are bigger but with large errors

than π/12 = 0.26 for the coefficient.

We see the decreasing string tension with rising temperature in Fig. 3.2. Recall that the

string model prediction assumes a second order transition with a continuous vanishing

of the string tension at the critical temperature (Eq. 3.3). Our results of σ(T )/σ(0) in

Fig. 3.2 confirm the prediction giving the value 0.07(7) at T/Tc = 0.98.

The string tension σ(T ) is compared with the leading behavior σ(0) − πT 2/3 as given

in Eq. 3.2. The latter values are shown as the triangle points in Fig. 3.2. A clear

deviation is observed between the line that connects the triangle points and σ(T )/σ(0).

This deviation reflects the thermal corrections of the temperature-dependent terms to

the zero temperature string tension.

Above Tc, the potential is exponentially screened. Motivated by the decrease of the

potential caused by the increase of temperature discussed above, it is natural to be in-

terested in how the flux tube connecting quarks reacts when temperature changes. In
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Figure 3.2.: The string tension as obtained from fits with Eq. 3.9, normalized to its

zero temperature value. The data are compared with the lowest-order tem-

perature effect on the linear part of the potential (Eq. 3.2), shown as the

triangle points.
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particular, we are interested in T -dependence of the shape and size of the tube. The

rest of this work is devoted to have answers to these questions.



4. Flux Tube Model

In this chapter we will give a description of a model that becomes a central object to be

explored in our simulation.

The color flux tube models were developed to describe the deconfinement phase tran-

sition. Ours is the case of a pure SU(2) gauge theory. Flux tubes connect quarks and

antiquarks on the lattice. The flux tube is characterized by two parameters: the string

tension σ and the width D. We assume that there is a constant energy per unit length

along the tube. This is σ.

The linearly rising potential with the qq̄ separation is what is expected from the flux

tube picture of confinement.

In contrast to quantum electrodynamics (QED), where the field lines connecting a pair of

opposite charges are allowed to spread, one expects that the quarks within a hadron are

the sources of chromoelectric flux which is concentrated within narrow tubes connecting

the constituents. Unlike the neutral photon of QED, gluons themselves participate in

strong interactions. The gluon has the ability to do this as it carries color charge and so

interacts with itself, making QCD significantly harder to analyse than QED. The flux

tube picture of hadrons is depicted in Fig. 4.1.

Flux tubes can terminate only on quarks. A flux tube carries color indices at its ends.

Gauge invariance implies that an allowed configuration of a quark and an antiquark on

adjacent sites is the one in which the quark and an antiquark are linked by a string so that

the colour index of quark (antiquark) and the colour index of the string at that end are

contracted to form a colour singlet. When a quark and an antiquark are far apart, flux

tubes have to be excited to connect the two sites. When there is enough energy available

to create a new qq̄, the system breaks up permitting the formation of two colour singlets.
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Figure 4.1.: Separation of a qq̄ pair.

Since the static interquark potential describes the strong interaction in the region be-

tween static sources, the details of the interaction can be seen by calculating the chro-

moelectric and chromomagnetic field distributions in this narrow tube. It is therefore of

great interest to study the spatial distribution of the energy density between two static

sources in a pure gluonic sector. Then the investigation of the confining string converts

to the scanning the nature of the flux tube. First calculations of the flux distribution

as a function of qq̄ separations have been carried out by Fukugita and Niuya [17], by

Flower and Otto [18] for SU(3) and by Sommer [1]. For the case of the SU(2) gauge

theory, quite detailed calculations of the flux distribution for qq̄ separations up to six

lattice units have been done by Haymaker et al. [2, 19].

4.1. Dual Superconductor Picture of Confinement

The most popular mechanism of colour confinement in QCD is dual superconductivity of

the vacuum [20], idea of which based on that the solenoidal magnetic monopole currents

that surround the flux tube leads to flux tube formation. It has been suggested that the

QCD vacuum is a condensate of gluons and as well as light quark-antiquark pairs. This

is somewhat analogues to the ground state of a superconductor. There the condensate

of paired electrons gives rise to the Meissner effect of magnetic flux exclusion from the

condensate unless the energy balance favours a local breakdown to the normal phase.

And one can imagine placing a pair of magnetic monopole and antimonopole into this

superconducting medium, the magnetic flux will be confined to a string-like configura-

tion joining the pair of monopoles.
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Figure 4.2.: Polyakov loops on the lattice.

Analogous to this situation the chromoelectric field in the region of space between a

qq̄ pair is constrained by dual Meissner effect into Abrikosov flux tubes, generating a

static potential proportional to the interquark distance. In the zero temperature con-

fined phase, some numerical results of the distribution of the colour flux around the

quark sources support this conjecture [2, 3, 19]. From the standpoint of this theory, the

flux distribution in the flux tube is explained by the two main effects that the abelian

monopoles are expelled from the region of space between a quark pair creating monopole

condensation and this causes the squeezing of the abelian electric flux into an almost

one-dimensional flux tube. More details about the conjecture can be found in the lit-

erature [2, 3, 19]. Gross features of colour field distribution between quark sources are

understood as a result of many constructive studies based on this theory, mainly focus-

ing on the flux formation, flux tube distributions as a function of lattice volume and qq̄

separations at zero temperature case [3, 19]. We will just recall some of those results in

this chapter.

4.2. Lattice Measures of the Flux Tube

The distribution of gluon fields in the flux tube is measured as follows. Time propa-

gation of the two static quarks sitting in the ends of the flux tube are represented by

Polyakov loop L and its conjugate L+, which are located at distance r from each other

on the lattice as shown in Fig.4.2.



26 Flux Tube Model

Figure 4.3.: Sketch of the geometry.

The plaquette variable

�µν =
1

Nc

Tr(Uµ,ν) (4.1)

with the orientation (µ, ν), which has six different values (2, 3), (1, 3), (1, 2), (1, 4),

(3, 4), (2, 4), measures the field strength. Flux tube profiles can thus be extracted from

the correlation of a plaquette with the Polyakov loops

fµν(r,x) =
β

a4

[〈L(0)L+(r)�µν(x)〉
〈L(0)L+(r)〉 − 〈�µν〉

]

. (4.2)

by varying the distance x and the orientation of the plaquette with respect to the

Polyakov loops. A visualisation of the flux tube in 3-space is depicted in Fig. 4.3, where

one can easily read off the longitudinal x‖ as well as the transverse distances x⊥ of the

plaquette from the sources.

Six different (µ, ν) combinations define the six components of electric and magnetic

fields. Three space-space plaquettes correspond to the magnetic fields and three space-

time plaquettes correspond to the electric fields:

f12 →
1

2
(−B2

⊥)

f13 →
1

2
(−B2

⊥)

f23 →
1

2
(−B2

‖)

f24 →
1

2
E2

⊥

f34 →
1

2
E2

⊥ (4.3)

f14 →
1

2
E2

‖ .
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The directions of orientations of the field components (i.e orthogonal and parallel) de-

scribe their orientation to the axis connecting qq̄ which we choose to be in the 1 direction.

The derivation of the correspondence between the field strength tensor in Euclidean space

and Minkowski space is treated in Appendix B.

Total magnetic and electric field strengths, respectively, are

M = −(f12 + f13 + f23) (4.4)

E = f24 + f34 + f14. (4.5)

Combinations of M and E define the total energy and action density,

ε = E + M (4.6)

δ = E −M. (4.7)

Since the magnetic contributions are negative, there is a cancellation between the two

terms in the energy density, while the action density is amplified. We can thus expect

that the action density will be much larger than the energy density.

4.3. Flux Tube at Zero Temperature

In this section we will briefly summarize what has been done so far about flux tube

distributions at zero temperature. Some evidence of superconductivity of the vacuum

has been produced by Monte Carlo numerical simulations on the lattice. Numerical

studies of the distribution of the colour flux around the quark sources [1, 2, 3] based on

this conjecture confirm that in the confining phase the center width of the colour flux

tube joining a pair of quarks [3]

D2
δ =

∫ xcut

0
dx⊥x

3
⊥δ(r/2, x⊥)

∫ xcut

0
dx⊥x⊥δ(r/2, x⊥)

(4.1)

is a physical quantity which is independent of the interquark distance and is fixed by the

parameters of the Ginzburg-Landau formulation [21] of the standard superconductivity.

Here x⊥ and xcut denote the transverse distance and the maximum transverse distance
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for which the measurements were performed, respectively. Full details of the lattice tech-

nique and implementation of the colour field operators can be found in [3, 4, 19, 22, 23].

Most of these studies focused on the transverse profile of field distributions in the mid-

dle plane of the flux tube. The energy and action density profiles for SU(2) that were

obtained by Bali, Schilling and Schlichter [3], who have studied the distribution for qq̄

separations up to about 2fm, were consistent with those obtained by Haymaker et al.

[4]. Bali et al. were mainly interested in studying the behavior of the energy and action

densities with large qq̄ separation, which can ascertain impact of the finite size of the

lattice on the flux distribution results.

The basic parameters one is interested in are the maximum value εmax of the energy

density and widths D of the energy and action density. Basic studies have been done on

the behavior of the energy and action density distributions as functions of qq̄ separation,

concentrating on the question whether the maximum value of the field distribution of the

energy density, εmax, goes to a constant or goes to zero with increasing qq̄ separation, r

[4]. Speculating that the string tension σ should be constant from the linearly confining

potential they have given evidence that εmax at x‖ = r/2 and x⊥ = 0 goes to a constant

as a function of r. In [3] the r dependence of the width of the energy and action density

is displayed. Since the width reaches a constant value at large qq̄ separation after some

increasing, the maximum value of the field distribution must also reach a constant value

after some decreasing.

The r-dependence of the flux distributions can also be clearly seen in [19], where the

value of the action density on the middle plane between qq̄ decreases first as r increases

and then it approaches a finite value as r becomes large in the region β < βc. Even

at large r the action density does not vanish. This means that string formation indeed

occur in this phase as expected. What was also confirmed from the fit results [3] is that

the width of the energy flux tube is smaller than the width of the action flux tube for

distances below 0.5fm for the zero temperature case.

According to another conjecture [8, 9, 24, 25], which is the string picture of confine-

ment, it is assumed that in the confining phase the mean squared width of the colour

flux tube should grow logarithmically as a function of interquark distance. This calcula-

tion disagrees with the above introduced results based on the superconductivity picture,
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where the width stabilizes to a constant value at large qq̄ separation. Interestingly, the

width of the action density predicted by superconductivity theory alone was growing

strongly with r [1] as explained in the string theory. One does not know why the string

model explanation should be relevant for the width of the action density and not for the

width of the energy density of the flux tube.

All of the mentioned works, however, have demonstrated that by using Wilson loop

plaquette correlations one can obtain much information on the flux tube problem on the

required length scale of 1 − 2fm.



5. Measurements on the Lattice

5.1. Update and Details of the Simulation

Numerical method that is known as Monte Carlo method has been used successively

in this work. In Monte Carlo simulation, some physical or mathematical system can

be described in terms of probability distribution functions. In essence, the physics and

mathematics are replaced by random sampling of possible states from probability distri-

bution functions that describe the system. One can read the details about this method

in [26, 27].

Wilson’s lattice gauge theory with gauge group SU(2) on a four dimensional simple

hypercubic lattice with periodic boundary conditions has been used in the simulation.

It is generally accepted that the SU(3) gauge theory of quark and gluons describes the

strong interactions. But because of the similarity of SU(3) vacuum structure with the

one of SU(2) and also in order to simplify the simulation we had to restrict our analysis

to the quenched approximation of SU(2) pure gauge theories without matter fields. The

standard Wilson action

SG(U) = β
∑

n,µ<ν

[

1 − 1

2
Tr
(

Un,µUn+µ,νU
+
n+ν,µU

+
n,ν

)

]

. (5.1)

is used in our simulation. Here the traces are of products of gauge links around the

elementary plaquettes of the lattice.

Simulations have been carried out in the vicinity of the critical coupling values de-

termined in Eq. 2.19 and 2.20. Instead of lattices with the same extension Nσ in all 3

spatial directions we have used an extended number N‖ of lattice points in the direction

of the qq̄ axis. Our lattice sizes are thus N‖ ×N2
⊥ ×Nτ as illustrated in Fig. 5.1.
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Figure 5.1.: Flux tube on the lattice.

The measurements are performed on lattices of size N‖ ×N2
⊥ ×Nτ with Nτ = 4 and 6,

with N‖ = 8, 16 and 24 and with N⊥ = 8 and 12. Here N‖ > N⊥ as it is illustrated

in Fig. 5.1, due to our interest to have as large as possible qq̄ separations along the N‖

direction (see Fig. 5.1).

We used one heatbath update [28, 29, 30] followed by four overrelaxation steps [31, 32]

to obtain a new gauge configuration. Measurements of the observables were performed

after each sweep. In order to thermalize the gauge configurations we allowed 2000 sweeps

and then carried out between 20000 and 40000 measurements. As we could do the noise

reduction by the link integration method [33] on the lattice of size 24 × 122 × 6, 20000

measurements were done on this lattice reducing some computing time, while 40000 on

the smaller lattices.

The electric and magnetic components described in Eq. 4.3 have been measured up to

the transverse lattice distances x⊥ = 3, 3 and 4 for the three lattices 83 × 4, 16× 82 × 4

and 24× 122 × 6 respectively and along the entire qq̄ axis which means up to the longi-

tudinal distance x‖ = 8 for the first two lattices, while 12 for the largest lattice.

Numerical results have been obtained for the simulation parameters, i.e. the lattice
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coupling β, the temperature T/Tc, the lattice spacing a and the number of configura-

tions used at each β value, given in Table. 5.1.

One can estimate that many symmetric values for the correlation of a plaquette with

the two Polyakov loops will be produced over the lattice by the measurements due to

the geometrically symmetric positions of the plaquette relative to the axis connecting qq̄

as well as the middle plane between the qq̄ pair. Therefore, we have averaged over the

measurements on the symmetric lattice points. They have afterwards been duplicated

again when we depict surface plots of the distributions.

5.2. Error Reduction

In this section we will shortly discuss two methods of noise reduction we used.

5.2.1. The Reference Point Method

It was found that the fluctuations are large in the quantity L(0)L+(r)�. A significant

improvement is achieved by replacing 〈�µν〉 with �µν(xR) where xR is a reference point

placed far from the quark sources [19]. A corner of the lattice has been chosen as the

reference point. This replacement has no effect on the measured average value due to

the cluster decomposition theorem, but the statistical errors are significantly reduced.

Thus Eq. 4.2 will be replaced by

fµν(r,x) =
β

a4

[〈L(0)L+(r)�µν(x)〉 − 〈L(0)L+(r)�µν(xR)〉
〈L(0)L+(r)〉

]

. (5.1)

First, the difference of two correlation terms, one of which is the Polyakov loop-plaquette

correlation term and another one is the Polyakov loop-reference point correlation term,

is calculated configuration by configuration instead of subtracting them after averages

of those terms are computed. The reason for doing this is that the statistical errors

of the terms will be added if we subtract the average of those correlation terms, while

large amount of the errors will be cancelled during the subtraction configuration by

configuration.
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N‖ ×N2
⊥ ×Nτ β T/Tc a[fm] Nmeas

2.20 0.79 0.21 40000

2.22 0.82 0.20 40000

2.24 0.85 0.19 40000

2.25 0.87 0.19 40000

8 × 82 × 4 2.26 0.89 0.18 40000

2.28 0.95 0.17 40000

2.30 1.00 0.16 40000

2.40 1.40 0.12 40000

2.50 1.96 0.08 40000

2.20 0.79 0.21 40000

2.25 0.87 0.19 40000

16 × 82 × 4 2.27 0.92 0.18 40000

2.29 0.97 0.17 40000

2.30 1.00 0.16 40000

2.32 1.07 0.15 40000

2.31 0.65 0.16 18000

2.35 0.75 0.14 18000

2.39 0.86 0.12 18000

24 × 122 × 6 2.43 0.98 0.11 18000

2.47 1.13 0.09 18000

2.51 1.29 0.08 18000

Table 5.1.: Simulation parameters.
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5.2.2. Noise Reduction by Link Integration

The signal in the correlations between a plaquette and Polyakov loops also tends to get

drowned in the statistical noise when the distance between two Polyakov loops increases.

Here we used our second noise reduction technique [33] that is achieved by integrating

out the temporal links in the Polyakov loops. The method is given in Appendix C in

more detail and the achievement of using the method is going to be discussed in this

subsection.

The trick can be used for measuring the correlation of two mutually independent vari-

ables, in our case two Polyakov loops. If the interaction is nearest neighbour, this

requires that the two Polyakov loops are at least at distance of two lattice spacings.

Additionally, to obtain electric or magnetic field strengths at a given lattice point we

average four plaquettes in our algorithm, in order to arrive at operator insertions that

are symmetric in respect to a given lattice site n. Thus, finally in order to use the link

integration method, qq̄ separations must be at least four in lattice units which was two in

lattice units in its original formulation of the link integration method. This forces us to

use the method only at lattice qq̄ separations 4a, 5a, 6a, 7a and 8a, not at 1a, 2a and 3a.

Here we are going to show the improvement of our lattice data by comparing non-

link integrated results with link integrated results. We present here only the parallel

electric field strength, which is the largest one, and the parallel magnetic field strength

representing the other 3 field strengths, which are equal approximately as we will see

later in Chapter 6.

For 1/2E2
‖(x‖, x⊥) the comparison is displayed in Figs. 5.2 and 5.3 for the longitu-

dinal and the transverse profiles respectively and for −1/2B2
‖(x‖, x⊥) the same is done

in Figs. 5.4 and 5.5. The compared data value and the plaquette distance are in units

of the string tension but the qq̄ separation is in lattice units on these figures.

The comparison is done at two values of qq̄ separation, r = 4a and 6a. At each value of

the separations the data have been plotted for temperatures both below and above the

critical temperature, which are T = 0.75Tc and T = 1.13Tc.

The blue points are the link integrated results while the red square ones are obtained
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Figure 5.2.: Comparison of link integrated 1/2E2
‖(x‖, x⊥ = 0) with non-link integrated

one. Lattice size is 24×122 ×6. Left: r = 4a and 6a at T = 0.75Tc; Right:

r = 4a and 6a at T = 1.13Tc.
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Figure 5.3.: Comparison of link integrated 1/2E2
‖(x‖ = r/2, x⊥) with non-link integrated

one. Lattice size is 24×122 ×6. Left: r = 4a and 6a at T = 0.75Tc; Right:

r = 4a and 6a at T = 1.13Tc.
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from the non-link integrated simulation. Let us see the difference between them first

on the longitudinal profiles. Since the link integration has been performed only on the

temporal links of the Polyakov loops, the link integrated and non-link integrated field

strength values can be compared for plaquette-Polyakov loop distances larger than 2

lattice units. For the two nearest neighbour sites of the Polyakov loops as well as on

top of the Polyakov loops the link integrated results can not be used, but are shown for

completeness. However, since we are mostly interested in the flux tube at some large

enough qq̄ separation, the middle region between the qq̄ pair where our analysis has been

done is always far from the sources.

The non-link integrated field strength values in the two outside edges of the flux tube

were fluctuating, sometimes having even negative values around zero. The error bars

were also large. As a result of the link integration they have been stabilized around

zero and look smoother. The error bars have become much smaller than the ones of the

non-link integrated results. The same things happen to the transverse profiles.

Additionally, the fluctuation and the error bars of the results at temperatures above

Tc are always smaller than those of the results at temperatures below Tc as we approach

to the continuum with rising temperature. It can be seen comparing the plots in the left

hand side with the ones in the right hand side.

The improvement achieved by the link integration tends to be smaller at smaller lattice

spacings. This is due to the fact that the physical extent of the neighbourhood to be

integrated out becomes smaller. On the other hand, the error of a non-link integrated

operator also decreases with the lattice spacing. At the bottom line, the two effects

almost cancel each other and the relative errors of link integrated Polyakov loops appear

to remain rather independent of the lattice spacing, provided that the physical lattice

volumes and the number of measurements are kept constant [3].

The application of the link integration significantly reduces computer time, because

in order to get the same accuracy on the average values without the link integration, the

simulation would require a larger number of measurements than the one with the link

integration.
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5.3. From the Lattice to the Continuum

The lattice regularization has a temporary role only. At the end, regularization should

be removed and the final predictions will not depend upon the specific regularization

used. In a regularization, this process is done using a scaling relation. The lattice results

come out in units of the lattice spacing a. The physical value of the lattice cutoff a has

to be fixed by assigning some dimensionful physical quantity to its experimental value,

and afterwards the results can be expressed in physical units. Since this limit, where the

results are in physical units is continuum, the functional dependence between the lattice

spacing and the coupling can be computed perturbatively. This can be written as

a
dg

da
= b0g

3 + b1g
5 + O(g7), (5.1)

where the first two coefficients

b0 =
1

16π2

(

11Nc

3
− 2nf

3

)

, (5.2)

b1 =

(

1

16π2

)2(
34N2

c

3
−
(

10Nc

3
+
N2
c − 1

Nc

)

nf

)

, (5.3)

are the same for the lattice discretisation and for the continuum QCD. After the inte-

gration the functional dependence between the lattice spacing and the coupling becomes

aΛL ≡ R(β) =

(

2Ncb0
β

)

−b1
2b20

exp

{

− β

4Ncb0

}

. (5.4)

Here ΛL is the so-called Λ parameter of the theory. This parameter sets the scale for

QCD. It is an external parameter, like the fine structure coupling α ≈ 1/137 in QED. If

lattice results at finite a show the behavior of the right hand side of the aΛL, a reliable

continuum extrapolation is possible.

For the determination of our scaling function we used the scaling relation based on

the SU(2) zero temperature string tension results given by [16].

The string tension a
√
σ can be expressed as

a
√
σ =

√
σ

ΛL

R(β) (5.5)
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Figure 5.6.: Fit of a
√
σ data with the continuum. The red line connects the data and

the blue line is the fit to Eq. 5.6.

with R(β) as given in Eq. 5.4. But Eq. 5.5 will not describe our data. The reason for

this is that the left hand side of the equation is the lattice data, while R(β) in the right

hand side is perturbative, therefore it is only valid at small g2 or large β. To fit the data

for a
√
σ we therefore use a renormalisation group inspired ansatz

√
σa(β) = R(β)(1 + c2â

2(β) + c4â
4(β))/c0 = F (β) (5.6)

with â ≡ R(β)/R(β̄). Here β̄ = 2.70 is the reference point which was chosen as the β

value that has the smallest error bar from our data.

The fit is shown in Fig. 5.6, where the dotted line connects the a
√
σ data which is

the left hand side of Eq. 5.6 and the solid line is the fit results.

The fit was done in the interval [2.20 : 2.90] of β and the fit parameters were found

to be

c0 = 0.0234958 ± 0.0002972,

c2 = 0.10258 ± 0.005234,

c4 = −0.00534346 ± 0.00032. (5.7)

Now our scaling function F (β) = a(β)
√
σ has been completely determined. So we can

obtain estimates of the corresponding temperatures in units of the critical temperature
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at each β

T

Tc
=
F (βc)

F (β)
, (5.8)

Estimates of the physical values of the lattice spacings at each β have been obtained by

setting
√
σ = 440MeV. They are displayed in Table. 5.1.

The lattice spacing a(β) has a different value for each β. This means that a qq̄ sep-

aration value that was equal in lattice units will give a different value in physical units

because rphys = rlata(β). Since we want to see the temperature dependence of the flux

distribution at a fixed value of the physical qq̄ separation rphys, we have to collect the

data at approximately matching physical qq̄ separations but for various temperatures.

The physical values of the qq̄ separations which we could study here are summarized in

Tables. 6.1 and 6.2.



6. Analysis for Flux Tube Profiles at

Finite Temperature

Now we are in the position to do a detailed analysis of the results we have obtained. We

have studied correlations of a plaquette with Polyakov loops describing the two-quark

static-meson system as defined in Eq. 4.2.

Recall the six definitions given by Eq. 4.3. We have studied the individual parallel

and orthogonal contributions of the chromoelectric and chromomagnetic field strengths

to the energy and action densities of the flux tube in the vicinity of Tc.

6.1. Distribution Surface

Distribution surfaces of 1/2E2
‖(r,x), 1/2E2

⊥(r,x), 1/2B2
‖(r,x) and 1/2B2

⊥(r,x), in units

of the string tension, are shown in Figs. 6.1, 6.2, 6.3 and 6.4 at some values of the

physical qq̄ separation and temperature. The results on Figs. 6.1 and 6.2 have been

obtained from the 16 × 82 × 4 lattice, while the results on Figs. 6.3 and 6.4 come from

the 24 × 122 × 6 lattice.

The distribution surfaces show the general behavior that any field is distributed all

over the space in such a way that it has a peak on q and q̄ and its value decreases as the

point on which the field strength is computed goes away from the q or q̄. In general, the

distributions look geometrically symmetric relative to the middle plane perpendicular

to the qq̄ axis at x‖ = r/2.

The data have relatively large fluctuations for small values of β as is clearly visible

in the figures of the distribution surfaces. As β increases it approaches to the continuum
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Figure 6.1.: Left: Distribution of 1/2E2
‖(x‖, x⊥) and Right: Distribution of
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⊥(x‖, x⊥) at r

√
σ = 2.1 for T = 0.87Tc and 1.07Tc from 16 × 82 × 4
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Figure 6.3.: Left: Distribution of 1/2E2
‖(x‖, x⊥) and Right: Distribution of

1/2E2
⊥(x‖, x⊥) at r

√
σ = 2.2 and 1.7 for 0.75Tc, 0.86Tc and 1.13Tc from

24 × 122 × 6 lattice.
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Figure 6.4.: Left: Distribution of 1/2B2
‖(x‖, x⊥) and Right: Distribution of

1/2B2
⊥(x‖, x⊥) at r

√
σ = 2.2 and 1.7 for 0.75Tc, 0.86Tc and 1.13Tc from

a 24 × 122 × 6 lattice.
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and the distribution surfaces are becoming smooth. Therefore it is getting more sym-

metrized when the temperature increased. We avoid use of an interpolating procedure

prefering to judge the significance of the actual data.

On the distribution surfaces both a longitudinal (x‖) and a transverse (x⊥) distribu-

tion of any field strength is easily seen at the same time. In the following we will look

at the longitudinal and the transverse profiles of these distribution surfaces separately

in detail.

6.2. Longitudinal Profiles

A longitudinal profile of a field strength shows how the field strength value is spread along

the direction parallel to the axis connecting qq̄ pair at a fixed constant x⊥. Throughout

the work we focused on the longitudinal profiles at x⊥ = 0 since the plane, (x‖, x⊥ = 0),

on which the quark sources are both placed has the maximum field strength value which

apparently decreases as x⊥ increases.

Before exploring the T -dependence of the longitudinal profiles we were interested in the

comparison of the electric and magnetic field components. The comparison is clearly

visible in Fig. 6.5 for one longitudinal profile. It turns out that at any qq̄ separation the

parallel electric component is much larger than the other three components which are

equal approximately,

1/2E2
⊥ ≈ −1/2B2

‖ ≈ −1/2B2
⊥. (6.1)

This holds for both below and above Tc. The statement also will be true for any other

longitudinal as well as the transverse profiles and for lattices of any size as we have

checked it on other two lattices.

The parallel electric field strength which is directed along the axis connecting the qq̄

pair being largest one states us that there is a force which tries to bind the q and q̄

together and this force is larger than the other forces in other directions.
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x‖ = r/2 from 83 × 4 lattice.

6.2.1. Results on the 16 × 82 × 4 lattice

The results of the longitudinal profiles of the field components on the lattice 16× 82 × 4

are shown in Figs. 6.6, 6.7, 6.8 and 6.9 at qq̄ separations r
√
σ = 1.4, 1.7, 2.1 and 2.4.

On the longitudinal profiles one quark source is placed at x‖ = 0 and another one

is at the distance r. For the shape of the longitudinal profiles, it has the peak values

at the positions of the two Polyakov loops, then it rapidly falls down as the plaquette

position goes away from the sources to two opposite directions with x‖ < 0 and x‖ > r

which belong to the outside of the flux tube. At approximately x‖
√
σ = −1 and r

√
σ+1

the field strength is almost zero indicating there is no field strength outside the flux

tube. The two positions at which the field strength vanishes seem to be the same for all

field components as well as for both lattices with Nτ = 4 and 6.

In each of the figures there are two data sets differing in temperature in each of the

four diagrams that have been plotted at four different values of separation. In these

figures, the data corresponding to a higher temperature is expressed by the red square

points, while the blue dots are the data at the lower temperature.

It should, first, be explained why there are only two temperature values plotted at

a fixed value of separation. In our study the parameters are the qq̄ separation r, the
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Figure 6.6.: Longitudinal profile 1/2E2
‖(x‖) at x⊥ = 0 and r

√
σ = 1.4, 1.7, 2.1 and 2.4,

in units of the string tension, for several values of T from 16×82×4 lattice.
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Figure 6.7.: Longitudinal profile 1/2E2
⊥(x‖) at x⊥ = 0 and r

√
σ = 1.4, 1.7, 2.1 and 2.4,

in units of the string tension, for several values of T from 16×82×4 lattice.
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Figure 6.8.: Longitudinal profile −1/2B2
‖(x‖) at x⊥ = 0 and r

√
σ = 1.4, 1.7, 2.1 and 2.4,

in units of the string tension, for several values of T from 16×82×4 lattice.

plaquette distance x and the coupling constant β. One must compare results at a fixed

value of these parameters. If we want to compare our data in physical units and we

transform our parameter values to physical units the qq̄ separations that were equal, r,

in lattice units will be no longer equal because it will be expressed as ra and a takes a

different value for each β. This reduces the number of data to be compared at a fixed

value of the qq̄ separation. Producing as many as possible lattice data at as many as

possible values of r and β increases the number of the matching physical separations as

it gives many combinations of r and a to the expression ra. So the larger the lattice,

the more number of data to be plotted as a function of temperature as we reach higher

number of values of the qq̄ separation. qq̄ separation values at Nτ = 4, in units of the

string tension, are summarized in Table. 6.1.

Now let us pay attention to how the temperature changes the longitudinal profiles.

Look at the middle region between the two Polyakov loops where the separation takes

the largest value. Then it will be clearly seen that the field strength on the middle point

between the qq̄ pair is going down when the temperature is changed from the lower to

the higher. Increase of the peak values, the other way around, indicates a non-scaling of



52 Analysis for Flux Tube Profiles at Finite Temperature

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

1/
2 

B
2 ⊥

(r
,x

)/
σ2

x||√ σ

rσ1/2=1.4

0.79 Tc

1.07 Tc

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

1/
2 

B
2 ⊥

(r
,x

)/
σ2

x||√ σ

rσ1/2=1.7

0.87 Tc

1.07 Tc

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-2 -1 0 1 2 3 4

1/
2 

B
2 ⊥

(r
,x

)/
σ2

x||√ σ

rσ1/2=2.1

0.87 Tc

1.07 Tc

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-2 -1 0 1 2 3 4

1/
2 

B
2 ⊥

(r
,x

)/
σ2

x||√ σ

rσ1/2=2.4

0.92 Tc

1.07 Tc

Figure 6.9.: Longitudinal profile of −1/2B2
⊥(x‖) at x⊥ = 0 and r

√
σ = 1.4, 1.7, 2.1 and

2.4, in units of the string tension, for several values of T from 16 × 82 × 4

lattice.

Nτ = 4

β r/a = 1 r/a = 2 r/a = 3 r/a = 4 r/a = 5 r/a = 6 r/a = 7 r/a = 8 β/(a
√
σ)4

2.20 0.469 0.938 1.407 1.876 2.345 2.814 3.283 3.752 46

2.22 0.455 0.910 1.365 1.820 52

2.24 0.437 0.874 1.311 1.748 62

2.25 0.426 0.852 1.278 1.704 2.130 2.556 2.982 3.408 68

2.26 0.415 0.830 1.245 1.660 76

2.27 0.404 0.808 1.212 1.616 2.020 2.424 2.828 3.232 85

2.28 0.393 0.786 1.179 1.572 96

2.29 0.381 0.762 1.143 1.524 1.905 2.286 2.667 3.048 108

2.30 0.370 0.740 1.110 1.480 1.850 2.220 2.590 2.960 123

2.32 0.347 0.694 1.041 1.388 1.735 2.082 2.429 2.776 160

2.40 0.265 0.530 0.795 1.060 485

Table 6.1.: qq̄ separations, in units of the string tension, at Nτ = 4.
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Figure 6.10.: Longitudinal profile 1/2E2
‖(x‖) at x⊥ = 0 and r

√
σ = 1.1 and 1.6, in units

of the string tension, for several values of T from 24 × 122 × 6 lattice.

the results near to the self energy region. At small distances the flux tube is corrupted

by lattice artefacts, which can be understood in terms of lattice perturbation theory [3].

We refrained from solving the problem in the self energy region since we are interested

in the physical region which can be considered as the region far from the sources.

This T -dependence holds for all electric and magnetic field components. The T -dependence

of the field strength value on the middle point will be discussed in Sec. 6.7 in more detail.

What one also can see from the figures is the r-dependence of the field strength value.

To do so one has to compare those data points which are at the same value of the tem-

perature, say 1.07Tc in this case, but at different separation. When the separation value

goes from r
√
σ = 1.4 to 2.4 a field strength value is apparently decreasing.

6.2.2. Results on the 24 × 122 × 6 lattice

One needs an increase in resolution of the underlying lattice in order to be as close

as possible to the continuum limit. The next lattice we tried the measurement was

24 × 122 × 6. The lattice has a finer lattice spacing than it was at Nτ = 4. In Figs.

6.10, 6.11, 6.12 and 6.13 the electric and magnetic field strengths from this lattice are

depicted.

As it has already been mentioned in the previous section the larger the lattice, the

more data can be plotted as a function of temperature as we obtain more values of the

qq̄ separation. So we have now three data sets with the same separation. qq̄ separation
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Figure 6.11.: Longitudinal profile 1/2E2
⊥(x‖) at x⊥ = 0 and r

√
σ = 1.1 and 1.6, in units

of the string tension, for several values of T from 24 × 122 × 6 lattice.
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Figure 6.12.: Longitudinal profile −1/2B2
‖(x‖) at x⊥ = 0 and r

√
σ = 1.1 and 1.6, in

units of the string tension, for several values of T from 24× 122 × 6 lattice.
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Figure 6.13.: Longitudinal profile −1/2B2
⊥(x‖) at x⊥ = 0 and r

√
σ = 1.1 and 1.6, in

units of the string tension, for several values of T from 24× 122 × 6 lattice.
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Nτ = 6

β r/a = 1 r/a = 2 r/a = 3 r/a = 4 r/a = 5 r/a = 6 r/a = 7 r/a = 8 β/(a
√
σ)4

2.31 0.358 0.716 1.074 1.432 1.790 2.148 2.506 2.864 140

2.35 0.314 0.628 0.942 1.256 1.570 1.884 2.198 2.512 241

2.39 0.274 0.548 0.822 1.096 1.370 1.644 1.918 2.192 421

2.43 0.239 0.478 0.717 0.956 1.195 1.434 1.673 1.912 739

2.47 0.209 0.418 0.627 0.836 1.045 1.254 1.463 1.672 1293

2.51 0.183 0.366 0.549 0.732 0.915 1.098 1.281 1.464 2240

Table 6.2.: qq̄ separations, in units of the string tension, at Nτ = 6.
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Figure 6.14.: Comparison of 1/2E2
‖(x‖) at x⊥ = 0 for T = 0.86Tc from two lattices

differing in lattice spacing a. Left: r
√
σ = 1.6; Right: r

√
σ = 2.2.

values at Nτ = 6, in units of the string tension, are summarized in Table. 6.2.

On this lattice the two separation values r
√
σ = 1.1 and 1.6 were chosen to show the

T -dependence of the field strength. The same T as well as r dependence as they were for

Nτ = 4 are seen for all field strengths on the middle point between the qq̄ pair. But since

the lattice has a finer lattice spacing than it was at Nτ = 4 there should be differences

in the field strength values. The effect that is caused by a decrease of the lattice spacing

is called finite a effects which is going to be discussed in the next section.

6.2.3. Finite a Effects

The finite a effects on our results can be seen from the plots given in Fig. 6.14. Here

we have chosen 1/2E2
‖(x‖) at x⊥ = 0 for T = 0.86Tc to be compared from two different

lattices as an example.
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The data denoted by red square points have been obtained from the lattice with Nτ = 6

which has a finer lattice spacing. Though the data away from the Polyakov loops lo-

cations are compatible to each other within error bars, the values obtained at the finer

lattice spacing tend to be systematically smaller than the value corresponding at smaller

Nτ = 4 value. The same is found in a comparison of the transverse profiles. Note, how-

ever, that the self energy peaks at the positions of the Polyakov loops become higher.

At the larger qq̄ separation which is on the right of the figure one can also notice that the

effect becomes smaller than at the smaller qq̄ separation. Overall, however, discretiza-

tion effects appear to be small enough for the present purpose of the investigation about

T -dependence of the field strengths.

Above we have seen the longitudinal profiles at y = 0 as well as z = 0 of the sur-

face plots shown in Section. 6.1. In principle, it is possible to see longitudinal profiles

also at x⊥ 6= 0, where x⊥ =
√

y2 + z2. These profiles would show decreasing field

strengths when x⊥ is raised, as will be discussed in the next section.

6.3. Transverse Profiles

A transverse profile of a field strength shows how the field strength value is spread

along the direction perpendicular to the axis connecting qq̄ pair at a fixed constant x‖.

Throughout the work we looked at the transverse profiles at x‖ = r/2 as the middle

plane between the q and q̄ can be considered as the physical region where the self energy

contributions of the sources are negligible and also equally far from the sources.

With the finite a effects discussed in the previous section, here we only show the results

from the lattice with Nτ = 6. The number of lattice sites in the transverse direction

investigated is N⊥/4 + 1 = 4 for the lattice of size 24× 122 × 6. The transverse distance

is x⊥ =
√

y2 + z2 and it contains not only on-axis distances, y 6= 0, z = 0 or y = 0,

z 6= 0, but also off-axis distances corresponding to y 6= 0, z 6= 0.

Transverse profiles of the field components on the middle point x‖ = r/2 from the

lattice of size 24 × 122 × 6 are shown in Figs. 6.15, 6.16, 6.17 and 6.18.
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Figure 6.15.: Transverse profile 1/2E2
‖(x⊥) on the middle point x‖ = r/2 at r

√
σ = 1.1

and 1.6, in units of the string tension, for several values of T from 24×122×6

lattice.
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Figure 6.16.: Transverse profile 1/2E2
⊥(x⊥) on the middle point x‖ = r/2 at r

√
σ = 1.1

and 1.6, in units of the string tension, for several values of T from 24×122×6

lattice.
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Figure 6.17.: Transverse profile −1/2B2
‖(x⊥) on the middle point x‖ = r/2 at r

√
σ = 1.1

and 1.6, in units of the string tension, for several values of T from 24×122×6

lattice.
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Figure 6.18.: Transverse profile −1/2B2
⊥(x⊥) on the middle point x‖ = r/2 at r

√
σ = 1.1

and 1.6, in units of the string tension, for several values of T from 24×122×6

lattice.

The transverse profiles are those profiles the starting values at x⊥ = 0 of which are ex-

actly the midpoints between the two Polyakov loops on the longitudinal profiles shown

in Figs. 6.10, 6.11, 6.12 and 6.13 at each separation value. The starting maximum value,

then, decreases as it goes away from the axis connecting the qq̄ pair.

From what we see on the plots, we are led to the conclusion that there are three factors

that lead field strength values to decrease when those factors increase: the transverse

distance x⊥, qq̄ separation r and temperature T .

• when a plaquette goes away from the axis connecting the qq̄ pair along the per-

pendicular direction the field strength value rapidly falls down and goes to zero;

• if we separate q and q̄ sources further away from each other the field strength

decreases compared to its previous value at the smaller qq̄ separation;

• the decrease with increasing temperature in which we are interested in this work.

In the shown figures the two temperature values are both from below and above Tc

presenting how a transverse profile is changing when it undergoes the deconfining phase

transition. Not only the maximum field strength value at x⊥
√
σ = 0 but also the field

strengths at all x⊥
√
σ > 0 are falling down with rising temperature.

What else one can see at first sight from the transverse profiles is a T -dependence of the

half width, D, of the flux tube. It is already visible that the half width of the transverse

profile is decreasing with rising temperature. Denote an initial field strength at a lower

temperature T1 by f1 and a final one at a higher temperature T2 by f2. The maximum
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Figure 6.19.: Two possible szenarios of the change of transverse profiles with tempera-

ture.

field strength value at x⊥ = 0 decreases with rising temperature as we have seen at the

middle point of the longitudinal profiles. So f1(x⊥ = 0) decreases to f2(x⊥ = 0) for both

left and right part of Fig. 6.19 like it has been drawn. In Fig. 6.19 the difference is that

the width is decreasing for the left figure while it is increasing for the right figure.

Our main task is to find out whether the transverse profiles look like the left figure

or look like the right figure in the sketch illustrated in Fig. 6.19.

If the width decreases with temperature, as in the left of Fig. 6.19, then the equal-

ity

f1(r, x
1
⊥
√
σ, T1) = f2(r, x

2
⊥
√
σ, T2) (6.1)

is reached at perpendicular distances x1
⊥
√
σ > x2

⊥
√
σ, and vice versa.

It is seen from the transverse profiles that x1
⊥
√
σ > x2

⊥
√
σ or D1 > D2 at all qq̄ sepa-

ration values if T1 < T2 where x1
⊥
√
σ and x2

⊥
√
σ are the transverse coordinates of the

plaquette the temperature of which corresponds to T1 and T2 respectively.

Because of the symmetry of the distribution relative to the axis connecting the qq̄ pair
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we did not plot another half width which whould have been plotted at negative x⊥
√
σ.

Quantitative analysis on the width will be done in detail in Sec. 6.5 by means of the fit

to the transverse profiles and its results will be discussed in Sec. 6.6.

6.4. Energy and Action densities

After we have investigated the profiles of the basic ingredients which compose the energy

and action densities of the flux tube we can now start to discuss the energy and action

densities. The combinations of total electric and magnetic field components define the

total energy ε and action densities δ by Eqs. 4.6 and 4.7. From now on all our analysis

as well as the fitting procedure for the determination of the width of the flux tube will

be done on our largest lattice of size 24 × 122 × 6.

The magnetic contributions are negative, while electric contributions are positive. Thus,

there is a cancellation between the two terms in Eq. 4.6, while the action density is am-

plified in Eq. 4.7. We can thus expect that the action density δ is much larger than the

energy density ε and is also more broader around the two sources. Indeed, it is clearly

seen from the surface plots in Figs. 6.20, 6.21 and 6.22 that the action density value,

δ(x‖, x⊥), is about 3 − 4 times larger than the energy density value, ε(x‖, x⊥).

In the left columns of each figure the energy density distribution ε(x‖, x⊥) is depicted,

while in the right columns the action density distribution δ(x‖, x⊥) is depicted. In Fig.

6.20 they have been plotted for the temperature T = 0.86Tc which is below Tc and for

the temperatures T = 1.13Tc and 1.29Tc which are above Tc at qq̄ separation r
√
σ = 1.1,

while in Fig. 6.21 the same are plotted but for T = 0.65Tc and 0.98Tc below Tc and for

1.29Tc above Tc at r
√
σ = 1.4 and in Fig. 6.22 the situation for T = 0.86Tc and 0.98Tc

below Tc and for 1.13Tc above Tc at r
√
σ = 1.6 is shown.

The remarks on geometrical symmetry as well as on the general T and r dependence as

discussed in the context of the electric and magnetic field strength distributions apply as

well for the energy and action densities. Both, energy and action density distributions

look smoother than their components’ distributions due to the cancellation of some fluc-

tuations when they are computed with the Eqs. (4.6) and (4.7).
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Figure 6.20.: Left: The energy density distribution ε(x‖, x⊥) and Right: the action

density distribution δ(x‖, x⊥) in units of the string tension at r
√
σ = 1.1

for T = 0.86Tc, 1.13Tc and 1.29Tc from 24 × 122 × 6 lattice.



62 Analysis for Flux Tube Profiles at Finite Temperature

-3 -2 -1  0  1  2  3  4-4.5-4
-3.5-3

-2.5-2
-1.5-1

-0.5 0

-0.5

 0

 0.5

 1

 1.5

 2

ε(r,x)/σ2

rσ1/2=1.4

T=0.65Tc

x||√ σ
x⊥ √ σ

ε(r,x)/σ2

-3 -2 -1  0  1  2  3  4-4.5-4
-3.5-3

-2.5-2
-1.5-1

-0.5 0

-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

δ(r,x)/σ2 rσ1/2=1.4

T=0.65Tc

x||√ σ
x⊥ √ σ

δ(r,x)/σ2

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3-3
-2.5

-2
-1.5

-1
-0.5

 0

-1
 0
 1
 2
 3
 4
 5
 6

ε(r,x)/σ2 rσ1/2=1.4
T=0.98Tc

x||√ σ
x⊥ √ σ

ε(r,x)/σ2

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3-3
-2.5

-2
-1.5

-1
-0.5

 0

-5

 0

 5

 10

 15

 20

 25

δ(r,x)/σ2

rσ1/2=1.4

T=0.98Tc

x||√ σ
x⊥ √ σ

δ(r,x)/σ2

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3-2.5
-2

-1.5
-1

-0.5
 0

-2
 0
 2
 4
 6
 8

 10
 12
 14

ε(r,x)/σ2 rσ1/2=1.4

T=1.29Tc

x||√ σ
x⊥ √ σ

ε(r,x)/σ2

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3-2.5
-2

-1.5
-1

-0.5
 0

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

δ(r,x)/σ2 rσ1/2=1.4

T=1.29Tc

x||√ σ
x⊥ √ σ

δ(r,x)/σ2

Figure 6.21.: Left: The energy density distribution ε(x‖, x⊥) and Right: the action

density distribution δ(x‖, x⊥) in units of the string tension at r
√
σ = 1.4

for T = 0.65Tc, 0.98Tc and 1.29Tc from 24 × 122 × 6 lattice.
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Figure 6.22.: Left: The energy density distribution ε(x‖, x⊥) and Right: the action

density distribution δ(x‖, x⊥) in units of the string tension at r
√
σ = 1.6

for T = 0.86Tc, 0.98Tc and 1.13Tc from 24 × 122 × 6 lattice.
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Figure 6.23.: Longitudinal profile ε(x‖, x⊥ = 0) at r
√
σ = 1.1, 1.3, 1.4 and 1.6 for several

values of temperatures from 24 × 122 × 6 lattice.

If one chooses a column of one of the figures and looks into the temperature increasing

direction one will be able to observe the melting or disappearance of the flux tubes. The

energy or action density in the region between two sources is eventually disappearing

with rising temperature at a fixed r
√
σ value. Above Tc, in particular at 1.29Tc the

sources are completely isolated from each other. We will see the numerical indication of

this isolation or disappearance in Sec. 6.7.

Let us now look through the longitudinal profiles of the above shown energy and action

density distributions. The longitudinal profiles at x⊥ = 0 of the energy ε(x‖, x⊥) and ac-

tion densities δ(x‖, x⊥) at r
√
σ = 1.1, 1.3, 1.4 and 1.6 for several values of temperatures

are shown in Figs. 6.23 and 6.24, where one can more easily watch the T -dependence of

the density values.

From these profiles one can see that the energy density ε at x‖ = r/2, x⊥ = 0 and
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Figure 6.24.: Longitudinal profile δ(x‖, x⊥ = 0) at r
√
σ = 1.1, 1.3, 1.4 and 1.6 for several

values of temperatures from 24 × 122 × 6 lattice.
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Figure 6.25.: Transverse profile ε(x‖ = r/2, x⊥) at r
√
σ = 1.1, 1.3, 1.4 and 1.6 for several

values of temperatures from 24 × 122 × 6 lattice.

r
√
σ = 1.1 is decreasing from about 2 to 0.8 when the temperature varies from 0.86Tc

to 1.29Tc. For r
√
σ = 1.4, it is decreasing from about 0.75 to 0.3 when the temperature

varies from 0.98Tc to 1.29Tc. The same quantitative estimation can be done for the

action density δ.

The transverse profiles at x‖ = r/2 of the energy ε(x‖, x⊥) and action densities δ(x‖, x⊥)

at the same values of the qq̄ separation and temperature are shown in Figs. 6.25 and

6.26. The transverse profiles are those profiles the starting values at x⊥ = 0 of which

are exactly the midpoints between the two Polyakov loops on the longitudinal profiles

shown in Figs. 6.23 and 6.24 at each separation value. The starting maximum value,

then, decreases as the plaquette position moves away from the axis connecting the qq̄

pair in the transverse direction.
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Figure 6.26.: Transverse profile δ(x‖ = r/2, x⊥) at r
√
σ = 1.1, 1.3, 1.4 and 1.6 for several

values of temperatures from 24 × 122 × 6 lattice.
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6.5. Fit to the Transverse Distribution

In principle, the width of the flux tube will be different at each x‖ along the axis connect-

ing the qq̄ pair. However, we prefer to choose a middle transverse plane (x‖ = r/2, x⊥).

The data values on the middle transverse plane allow for fits to estimate half width

squared, D2, of the flux tube.

All transverse profiles show a general behavior that they have a maximum value at

x⊥ = 0, then they decrease with transverse distance x⊥ rapidly. We have seen from Fig.

6.5 that all our data obey

1

2
E2

⊥(r, x⊥) ≈ −1

2
B2

⊥(r, x⊥) ≈ −1

2
B2

‖(r, x⊥). (6.1)

Hence we fit the average of the three components 1
2
E2

⊥(r, x⊥), −1
2
B2

⊥(r, x⊥) and −1
2
B2

‖(r, x⊥)

and 1/2E2
‖(x‖) on the center plane between the qq̄ pair, for each β value, to an exponen-

tial

fexp(x⊥) = a1 exp(−a2x⊥), (6.2)

and a coulombic

fcoul(x⊥) = a1/(a2 + x2
⊥)3 (6.3)

fit function. It turned out that the average of the three components is adequately

described by the exponential fit function while 1/2E2
‖ in addition needs a coulombic

contribution. Thus, the fitted form [1] is

1

2β
E2

⊥(r, x⊥) ≈ − 1

2β
B2

‖(r, x⊥) ≈ − 1

2β
B2

⊥(r, x⊥) = a1e
−a2x⊥ ,

1

2β
E2

‖(r, x⊥) =
a1

(a2 + x2
⊥)3

+ a
(ε)
1 e−a

(ε)
2 x⊥ . (6.4)

From the resulting fit parameters we determine the width of the flux tube defined via

[1]

Dε,δ/a =

√

∫

d2x⊥x2
⊥(E2 ±B2)

∫

d2x⊥(E2 ±B2)
. (6.5)
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β r/a a1 a2 a
(ε)
1 a

(ε)
2 a−2D2

ε
a−2D2

δ
aEs χ2 < χ2 >

2.20 2 0.12(4) 2.45(26) 0.0834(8) 2.27(4) 1.16(4) 1.99(14) 0.223(8) 419 26

4 0.25(9) 2.90(46) 0.018(2) 2.98(1.48) 0.68(67) 2.80(42) 0.028(28) 166 10

2.25 2 2.91(7) 7.51(8) 0.0618(5) 2.21(2) 1.23(2) 6.63(6) 0.178(4) 244 15

4 8.31(42) 10.93(24) 0.012(1) 0.99(7) 6.12(87) 10.43(20) 0.173(28) 2.6 0.2

2.27 2 1.28(3) 4.80(4) 0.0463(4) 2.53(2) 0.94(1) 4.49(3) 0.103(2) 422 26

4 25.07(5.98) 17.92(1.73) 0.0099(5) 1.26(16) 3.78(96) 17.21(1.52) 0.089(23) 11 1

2.29 2 23.83(1.15) 17.18(32) 0.0448(4) 2.32(2) 1.11(2) 16.15(27) 0.119(2) 807 50

4 35.91(9.14) 23.57(2.59) 0.0071(4) 1.03(8) 5.65(88) 22.41(2.20) 0.09(2) 6.3 0.4

2.30 2 3.83(21) 9.35(18) 0.0400(3) 2.34(2) 1.09(2) 8.52(14) 0.106(2) 529 33

4

2.32 2 4.01(12) 10.23(11) 0.0322(2) 2.23(2) 1.21(2) 9.32(9) 0.094(2) 353 22

4

Table 6.3.: The fit parameters and the derived quantities on the lattice 16 × 82 × 4.

The width of the energy and action density, corresponding to the +/− sign, are denoted

by an index ε and δ respectively. In terms of the fit parameters they are given by

a−2D2
ε =

6

(a
(ε)
2 )2

(6.6)

a−2D2
δ =

6a
(ε)
1 (a

(ε)
2 )−4 + 6a1/4a2

a
(ε)
1 (a

(ε)
2 )−2 + 6a1/4a2

2

. (6.7)

A further quantity of interest is the total energy in a slice of thickness one lattice unit:

aEs =

∫

d2x⊥(E2 +B2)/2 (6.8)

and it is given by the fit parameters as

aEs =
2πβa

(ε)
1

(a
(ε)
2 )2

. (6.9)

The χ2 fit results on the four fit parameters and on the derived quantities from 16×82×4

and 24 × 122 × 6 lattices are listed in Tables. 6.3 and 6.4, respectively, together with

their statistical errors in brackets and corresponding χ2 values in the last two columns.

Since we did not prefer to do an interpolation on our data we had to choose those

r = Na separations with N to be of an even number in order to fit the transverse

profiles on x‖ = r/2. The lattice qq̄ separations fitted are written in the first columns

named r/a of the tables.

It turned out that the fit does not work well when r increases as well as for smaller

β. Not well fitted ones are left open in the tables. The displayed derived quantities are
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β r/a a1 a2 a
(ε)
1 a

(ε)
2 a−2D2

ε
a−2D2

δ
aEs χ2 < χ2 >

2.31 4 1.43(69) 6.11(96) 0.0117(5) 1.15(11) 4.53(87) 5.90(78) 0.13(3) 104 4

6 36.7(65.1) 22.3(13.8) 0.008(1) 0.44(18) 30.99(25.35) 24.66(15.05) 0.60(49) 55 2

2.35 4 6.38(2.03) 11.91(1.27) 0.0116(5) 1.23(14) 3.96(90) 11.09(1.01) 0.11(2) 26 1

6

2.39 4 3.43(21) 10.38(24) 0.0050(2) 1.19(4) 4.24(28) 9.96(21) 0.053(4) 53 2

6 9.24(2.99) 19.51(2.41) 0.0018(2) 0.83(14) 8.71(2.94) 18.79(2.09) 0.039(14) 12 1

2.43 4 3.08(53) 14.08(94) 0.0034(1) 1.04(4) 5.55(43) 13.06(73) 0.048(1) 56 2

6 24.8(2.7) 33.5(1.5) 0.00090(7) 0.93(5) 6.93(75) 32.7(1.39) 0.016(2) 88 3

2.47 4 2.51(9) 13.86(22) 0.00204(9) 1.33(6) 3.39(31) 13.28(19) 0.018(2) 130 5

6 15.99(79) 37.4(79) 0.00058(7) 0.98(8) 6.25(1.02) 36.34(74) 0.009(2) 66 3

2.51 4 0.72(2) 12.53(16) 0.00200(4) 1.11(4) 4.87(35) 11.06(11) 0.026(2) 36 1

6 0.44(8) 11.68(85) 0.00024(2) 1.33(31) 3.39(1.58) 11.45(79) 0.002(1) 192 7

Table 6.4.: The fit parameters and the derived quantities on the lattice 24 × 122 × 6.

a−2D2
ε , a

−2D2
δ and aEs but plotted ones are D2

ε , D
2
δ and Es in units of the string tension

after their scaling according to the scaling function. The resulting half widths for energy

and action densities will be discussed in the next section.

As a by-product we obtain the total energy in a slice of thickness of the flux tube

given by Eq. 6.8 from the fit of the transverse profiles. (See 9th column of the tables).

In Fig. 6.27 we show the results for Es from the Nτ = 6 lattice. The figure shows

that Es is decreasing with temperature. Note also that the results have been plotted at

fixed distance in lattice units. This quantity resembles the string tension as it expresses

an energy per slice of the flux tube. The fact that Es decreases, therefore, agrees with

our results on the temperature dependent string tension presented and discussed in Sec.

3.1 of Chapter 3.

6.6. Width of the Flux Tube

We call the width of the energy density the physical width of the flux tube. It was already

clearly seen from the transverse profiles shown in Figs. 6.25 and 6.26 that the half width

of the flux tube decreases with increasing temperature. In order to see its T -dependence

more quantitatively we have fitted the transverse profiles of the field components to the

fit function given by Eq. 6.4 for each β value.

The width of the energy D2
ε and action density D2

δ as determined from the fits of the

Nτ = 6 data are plotted in Fig. 6.28 at several lattice qq̄ separations.
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Figure 6.27.: The energy in a slice of thickness of the flux tube, Es, in units of the string

tension as determined from the fit on the lattice 24 × 122 × 6.
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Figure 6.28.: Left: The mean squared width of the energy density, D2
ε , and Right: The

mean squared width of the action density, D2
δ , in units of the string tension

as a function of temperature at r = 4a and 6a from 24 × 122 × 6 lattice.
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In the left of Fig. 6.28 we see the mean squared width of the energy density, D2
ε ,

versus temperature at lattice qq̄ separations r = 4a and 6a from the lattice of size

24×122×6. At both values of the separation one can say D2
ε is decreasing with increas-

ing temperature. For the width of the action density in the right of Fig. 6.28 r = 4a

appears decreasing with temperature, while r = 6a seems to increase up to Tc. The

difference of values of the width at r = 4a and 6a can be considered not significantly

large. Unfortunately, the fit is not working for r = 6a at small β. However, the general

T -dependence is a decreasing dependence. We also confirm the width of the action flux

tube to be larger than the width of the energy flux tube.

6.7. Disappearance of The Flux Tube above Tc

At finite temperatures the flux tube is expected to exist only in the region below Tc,

but not in the high-temperature deconfined phase. In this section we shall collect our

observations of disappearance or melting of the flux tube as temperature comes close to

the critical temperature of the deconfinement transition.

A first direct confirmation of our expectation was the decrease of the values of the

field strengths on the middle point between the qq̄ pair as temperature increases.

This falling down of the field strengths on the middle point was already observed when

we discussed the longitudinal profiles as a function of temperature in Figs. 6.10, 6.11,

6.12 and 6.13 in Sec. 6.2. In Fig. 6.29 of this section, all field strengths as well as the

energy and action densities on the middle point are collected in one plot as a function

of temperature at r = 4a, 6a and 8a. qq̄ separation and the data are in lattice units in

this figure.

One should notice from the figure that at the larger separation and at the smaller β

the data have relatively large error bars sometimes having the negative values. This

happens at one temperature value T = 0.65Tc for r = 6a and at two temperatures

T = 0.65Tc and 0.75Tc for r = 8a tending to increase the number of β at which the data

are noisy with increasing lattice separation. As β increases T rises and we get more

stable data values with small error bars.
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Figure 6.29.: Field strengths on the middle point between the qq̄ pair as a function of

temperature at qq̄ separations r = 4a, 6a and 8a. Lattice size is 24×122×6.

The data are in lattice units.
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Figure 6.30.: A longitudinal profile of the flux tube. Outside of the flux tube is drawn

by the blue line and inside one is drawn by the red line.

All the field strengths as well as the energy and action densities are all vanishing with

increasing temperature in Fig. 6.29. The field strengths, except for δ, are almost be-

coming zero at about T = 0.98Tc for r = 4a, while the same is happening at T = 0.86Tc

for r = 6a and at T = 0.75Tc for r = 8a. This means that an increase of the separation

accelerates the disappearance of the flux tube. At the larger separation the lower tem-

perature is needed the flux tube to be melted.

Next, we are going to introduce the notion of inside and outside of the flux tube to

also show the melting of the flux tube. In the figures of the longitudinal profiles, x‖ = 0

is the location of one Polyakov loop, so x‖ < 0 and x‖ > r correspond to the outside

region of the flux tube, 0 < x‖ < r correspond to the inside region of the flux tube as

illustrated in Fig. 6.30.

So computing the difference of field strength values

∆E2
‖(r, x) =

1

2
E2

‖(r, x‖ = na, x⊥ = 0) − 1

2
E2

‖(r, x‖ = −na, x⊥ = 0) (6.1)

and similarly ∆E2
⊥(r, x), ∆B2

‖(r, x) and ∆B2
⊥(r, x) as well as of energy and action den-

sities

∆ε(r, x) = ε(r, x‖ = na, x⊥ = 0) − ε(r, x‖ = −na, x⊥ = 0),
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∆δ(r, x) = δ(r, x‖ = na, x⊥ = 0) − δ(r, x‖ = −na, x⊥ = 0) (6.2)

on an inside point that is at the lattice distance x‖ = na from L(0) and an outside one at

x‖ = −na one can watch the disappearance of the flux tube with increasing temperature.

The differences in Eq. 6.1 as a function of temperature are plotted in Fig. 6.31, where

n takes values 1 and 2 for r = 4a, while it takes 1, 2 and 3 for r = 6a. The number of

lattice sites the difference of which is computed increases when the qq̄ lattice separation

increases.

The difference of the field strengths values on inside and outside points decreases and

the two values at a given temperature are getting close to each other with increasing

temperature. This means that the field strength distribution approaches the one of a

single isolated quark with rising temperature. This holds for all field components as

well as the energy and action density distributions as illustrated in Fig. 6.31 and 6.32.

The statement that an increase of the qq̄ separation accelerates the difference of field

strength values going to zero should be repeated here.

By doing the detailed quantitative estimation of the fall of the field strengths on the

middle point and of the thinning of the width we are driven to the conclusion that the

flux tube disappears as it undergoes a phase transition.
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Figure 6.31.: Difference of field strength values on inside and outside points of the flux

tube as a function of T from 24 × 122 × 6 lattice. Left: r = 4a; Right:

r = 6a.
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Figure 6.32.: Difference of energy and action densities on inside and outside points of

the flux tube as a function of T from 24 × 122 × 6 lattice. Left: r = 4a;

Right: r = 6a.



7. Conclusions

There are numerical indications that the slope of the linearly rising heavy quark poten-

tial decreases as temperature increases due to the temperature dependent string ten-

sion. Above Tc, the potential is exponentially screened. Motivated by the decrease

of the potential with temperature, we were interested in how the flux tube connecting

quarks reacts when the temperature changes. In particular, we were interested in the

T -dependence of the shape and size of the tube.

Therefore, in this work we have studied field distributions around a static qq̄ pair at

high temperature using Polyakov loop plaquette correlations at physical qq̄ separations

up to 1.4fm. We simulated pure gauge theory with gauge group SU(2) on lattices of

size 83 × 4, 16 × 82 × 4 and 24 × 122 × 6. The temperature range was 0.65Tc − 1.3Tc.

Measuring the electric and magnetic components of the field in close vicinity of the

phase transition by using Monte Carlo numerical simulation, we were able to see longi-

tudinal and transverse profiles of the flux tube in the vicinity of the critical temperature.

Distribution surfaces obtained for the field strengths show the expected general fea-

ture that they are symmetric with respect to the qq̄ axis as well as the middle plane

between the qq̄ pair. We see the two peaks at the two quark sources and the field

strengths decreasing as the plaquette goes away from the sources.

We conclude that there are three factors that lead the field strength value to decrease

when the values of those factors or parameters increase, plaquette distance x, qq̄ separa-

tion r and temperature T . We have investigated the influence of the latest one in more

detail, focusing on whether the width of the flux tube increases or decreases with rising

temperature.

First observation from the results for the longitudinal as well as the transverse pro-

files was that the parallel electric field component turned out to be larger than the other
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three field components, which are approximately equal, at a fixed constant qq̄ separation

and temperature. This tells us that, indeed, the force that comes from the field strength

that is oriented along the axis connecting the qq̄ pair is large and trying to bind a quark

and an antiquark together. This was true for all lattice sizes.

We have analyzed how the longitudinal and transverse profiles of all four field com-

ponents which compose energy as well as action densities in the flux tube change as a

function of temperature at various qq̄ separations. It has been found that it becomes

difficult to obtain the data at as large as possible qq̄ separations one wants. The signal

in the correlations between a plaquette and Polyakov loops tends to get drowned in

the statistical noise when the distance between two Polyakov loops increases. We could

reduce large statistical errors at large qq̄ separation using the link integration method,

which also results in saving computing time. In order to get the same accuracy on the

average values without the link integration, the simulation would require more measure-

ments than the one with the link integration.

What was mainly concluded from the longitudinal profiles is that the field strengths

at x‖ = r/2, x⊥ = 0 fall down with rising temperature. This was also confirmed when

we computed the differences of the field strength values on inside and outside points of

the flux tube and plotted them as a function of temperature. Doing so we were able to

show that the field strength distribution approaches the one of a single isolated quark

when the rising temperature approaches the critical temperature.

The field strengths at x‖ = r/2, x⊥ = 0 which were falling down with rising temper-

ature on the longitudinal profiles are the maximum field strengths for the transverse

profiles at a certain temperature value. This means that the height of the flux tube

decreases with rising temperature.

From the transverse profiles at various temperatures we further have found that the

physical width of the flux tube decreases when the temperature increases.

The decrease with increasing temperature of the width and the height of the trans-

verse profiles at the same time shows the gradual disappearance of the flux tube when

the temperature approaches the critical temperature of the phase transition from the

confined phase to the deconfined phase. The gradual disappearance agrees with the
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continuous behaviour of the second order phase transition of SU(2) gauge theory.



Appendix

A. SU(2)

A 2 × 2 unitary matrix with unit determinant can be written in the form

U = exp

(

i
~τ

2
· ~θ
)

(A.1)

where ~θ = (θ1, θ2, θ3) are three arbitrary parameters and ~τ = (τ1, τ2, τ3) are the traceless

matrices

τ1 =

(

0 1

1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0

0 −1

)

(A.2)

known as the Pauli matrices. They obey the commutation relations

τ1
2

τ2
2
− τ2

2

τ1
2

≡
[τ1

2
,
τ2
2

]

= i
τ3
2

(A.3)

and cyclic permutations. Putting

U =

(

a b

c d

)

, (A.4)

the unitarity condition U+ = U−1, reads

(

a∗ c∗

b∗ d∗

)

=

(

d −b
−c a

)

(A.5)

and hence a∗ = d, b∗ = −c. Then detU = |a|2 + |b|2 = 1, so we have

U =

(

a b

−b∗ a∗

)

, |a|2 + |b|2 = 1. (A.6)
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B. Maxwell and Proca equations

Here we derive the correspondence between the six (µ, ν) orientations of the plaquette

and the electric and magnetic components in Minkowski space.

Photons have no mass and are described by Maxwell’s equations, and massive spin

1 particles are described by the Proca equations. Well known Maxwell’s equations are

[34]

divB = 0, (B.7)

curlE +
∂B

∂t
= 0, (B.8)

divE = ρ, (B.9)

curlB − ∂E

∂t
= j. (B.10)

Introducing the 4-vector potential

Aµ = (φ,A) (B.11)

with

B = curlA,

E = −∂A
∂t

−∇φ, (B.12)

Eqs. (B.7) and (B.8) are automatically satisfied, since div curl≡ 0 and curl grad≡
0. Now observe that the right-hand side of Eqs. (B.12) are the components of a 4-

dimensional curl, defined by

F µν = −F νµ = ∂µAν − ∂νAµ. (B.13)

It has components (recall that ∂i = −∂i)

F 0i = ∂0Ai − ∂iA0

=

(

∂A

∂t
+ ∇φ

)

i

= −Ei (B.14)

and

F ij = ∂iAj − ∂jAi

= −εijkBk, (B.15)
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where εijk = εijk is the totally antisymmetric Levi-Civita symbol

εijk =











+1 if (ijk) is an even permutation of (123),

−1 if (ijk) is an odd permutation of (123),

0 otherwise.

Eqs. (B.13) and (B.14) may be displayed in matrix form, with the rows and columns

corresponding to the numbers 0, 1, 2, 3:

F µν =













0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0













(B.16)

F µν is called the electromagnetic field tensor. Lowering the indices on the field tensor

gives (Ex ≡ E1, etc.)

F01 = Ex, F02 = Ey, F03 = Ez,

F12 = −Bz, F31 = −By, F23 = −Bx. (B.17)

All above derivation was of course in 4-dimensional Minkowski space-time. Now the

plaquette variable

�µν = −1

2
(FE

µν)
2, (B.18)

where FE
µν is the field strength tensor in Euclidean space. Taking into account the

connection between time components of gauge fields

AM0 = iAE4 (B.19)

as well as the connection between space components

AMk = AEk (B.20)

it will be found that

�4i = −1

2
(FE

4i )
2 = −1

2
(−iFM

0i )2 =
1

2
(FM

0i )2 =
1

2
E2
i (B.21)

for the electric field components and that

�jk = −1

2
(FE

jk)
2 = −1

2
(FM

jk )2 = −1

2
B2
i . (B.22)

for the magnetic field components. Here the upper indices E andM denote the Euclidean

and Minkowski spaces, respectively.
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C. Link integration for SU(2)

The essence of the link integration is to reduce the statistical noise by substituting the

link operator by an expression giving the same mean values with less variance. We

replace temporal link variables U in the Polyakov loops with the new link variable Ū :

Uµ(n) −→ Ūµ(n) (C.23)

so that

Ūµ(n) =

∫

dUµ(n)Uµ(n) exp(βTr(Uµ(n)X†
µ(n)))

∫

dUµ(n) exp(βTr(Uµ(n)X†
µ(n)))

(C.24)

with

Xµ(n) =
∑

ν 6=µ
Uν(n)Uµ(n+ ν̂)U †

ν(n+ µ̂). (C.25)

Here

Uµ(n)X†
µ(n) =

∑

L⊃ link x,µ

UL. (C.26)

In this way only those links that do not share a common plaquette can be integrated

independently.

In our case of SU(2) gauge theory Ū can be calculated analytically in terms of the

modified Bessel functions. The idea is the following. If A and B are any observables

〈AŪiB〉 =

=
1

Z

∫
∏

j 6=i dUjdUidViAViBe
βTr(ViX

†
i )eβTrUi

∫

dVieβTr(ViX
†
i )

=
1

Z

∫
∏

j 6=i dUjdUidViAUiBe
βTr(Ui+Vi)X

†
i

∫

dVieβTr(ViX
†
i )

(C.27)

=
1

Z

∫

∏

j

dUjAUiBe
βTr(UiX

†
i )
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= 〈AUiB〉 (C.28)

provided neither A nor B contain Ui or a modified link whose neighborhood contains Ui

because Eq. C.27 utilizes the identity
∫

dUdV U exp(Tr[(U + V )X†]) =

∫

dUdV V exp(Tr[(U + V )X†]). (C.29)

Now

Ū =

∫

dUUeβTr(UX
†)

∫

dV eβTr(V X†)

=

∫

d(UX†)UeβTr(UX
†)

∫

d(V X†)eβTr(V X†)
(C.30)

with

XX† = ‖X‖ · 1 = detX · 1 = λ2 · 1 X ∈ U(2). (C.31)

Then Ū becomes

Ū =
1

λ2
X

∫

d(UX†)(UX†)eβTr(UX
†)

∫

d(V X†)eβTr(V X†)
. (C.32)

Let us do the integrals separately. In the evaluation of the integrals a possible parametriza-

tion

UX† = λ

(

cos(k/2) + i sin(k/2) cos θ sin(k/2) sin θeiφ

− sin(k/2) sin θe−iφ cos(k/2) − i sin(k/2) cos θ

)

(C.33)

is used. The denominator integral becomes

∫

d(V X†)eβTr(V X
†) =

∫ 2π

0

sin2 k

2
dk

∫ π

0

sin θdθ

∫ 2π

0

dφeβλ cos( k
2
) =

8π2

βλ
I1(βλ). (C.34)

while for the numerator integral we are left with

∫

d(UX†)(UX†)eβTr(UX
†) = 8πλ · 1 ·

(

− π

(βλ)2
I1(βλ) +

π

βλ

∂

∂(βλ)
I1(βλ)

)

. (C.35)

Thus we have to replace the temporal links in the Polyakov loops by

Ūµ(n) =
I2(βλ)

λI1(βλ)
Xµ(n), λ =

√

det(Xµ(n)) (C.36)

where In denote the modified Bessel functions.
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