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Abstract

This thesis concerns sequential-access data compression, i.e., by algorithms that

read the input one or more times from beginning to end. In one chapter we

consider adaptive prefix coding, for which we must read the input character by

character, outputting each character’s self-delimiting codeword before reading the

next one. We show how to encode and decode each character in constant worst-

case time while producing an encoding whose length is worst-case optimal. In

another chapter we consider one-pass compression with memory bounded in terms

of the alphabet size and context length, and prove a nearly tight tradeoff between

the amount of memory we can use and the quality of the compression we can

achieve. In a third chapter we consider compression in the read/write streams

model, which allows us passes and memory both polylogarithmic in the size of the

input. We first show how to achieve universal compression using only one pass

over one stream. We then show that one stream is not sufficient for achieving good

grammar-based compression. Finally, we show that two streams are necessary and

sufficient for achieving entropy-only bounds.
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Chapter 1

Introduction

Sequential-access data compression is by no means a new subject, but it remains

interesting both for its own sake and for the insight it provides into other problems.

Apart from the Data Compression Conference, several conferences often have

tracks for compression (e.g., the International Symposium on Information Theory,

the Symposium on Combinatorial Pattern Matching and the Symposium on String

Processing and Information Retrieval), and papers on compression often appear at

conferences on algorithms in general (e.g., the Symposium on Discrete Algorithms

and the European Symposium on Algorithms) or even theory in general (e.g.,

the Symposium on Foundations of Computer Science, the Symposium on Theory

of Computing and the International Colloquium on Algorithms, Languages and

Programming). We mention these conference in particular because, in this thesis,

we concentrate on the theoretical aspects of data compression, leaving practical

considerations for later.

Apart from its direct applications, work on compression has inspired the de-

sign and analysis of algorithms and data structures, e.g., succinct or compact

data structures such as indexes. Work on sequential data compression in partic-

ular has inspired the design and analysis of online algorithms and dynamic data

structures, e.g., prediction algorithms for paging, web caching and computational

finance. Giancarlo, Scaturro and Utro [GSU09] recently described how, in bioin-

formatics, compression algorithms are important not only for storage, but also for

indexing, speeding up some dynamic programs, entropy estimation, segmentation,

and pattern discovery.

In this thesis we study three kinds of sequential-access data compression: adap-

tive prefix coding, one-pass compression with memory bounded in terms of the al-
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CHAPTER 1. INTRODUCTION

phabet size and context length, and compression in the read/write streams model.

Adaptive prefix coding is perhaps the most natural form of online compression,

and adaptive prefix coders are the oldest and simplest kind of sequential compres-

sors, having been studied for more than thirty years. Nevertheless, in Chapter 2 we

present the first one that is worst-case optimal with respect to both the length of

the encoding it produces and the time it takes to encode and decode. In Chapter 3

we observe that adaptive alphabetic prefix coding is equivalent to online sorting

with binary comparisons, so our algorithm from Chapter 2 can easily be turned

into an algorithm for online sorting. Chapter 4 is also about online sorting but,

instead of aiming to minimize the number of comparisons (which remains within

a constant factor of optimal), we concentrate on trying to use sublinear memory,

in line with research on streaming algorithms. We then study compression with

memory constraints because, although compression is most important when space

is in short supply and compression algorithms are often implemented in limited

memory, most analyses ignore memory constraints as an implementation detail,

creating a gap between theory and practice. We first study compression in the

case where we can make only one pass over the data. One-pass compressors that

use memory bounded in terms of the alphabet size and context length can be

viewed as finite-state machines, and in Chapter 5 we use that property to prove a

nearly tight tradeoff between the amount of memory we can use and the quality

of the compression we can achieve. We then study compression in the read/write

streams model, which allows us to make multiple passes over the data, change

them, and even use multiple streams (see [Sch07]). Streaming algorithms have

revolutionized the processing of massive data sets, and the read/write streams

model is an elegant conversion of the streaming model into a model of external

memory. By viewing read/write stream algorithms as simply more powerful au-

tomata, which can use passes and memory both polylogarithmic in the size of the

input, in Chapter 6 we prove lower bounds on the compression we can achieve with

only one stream. Specifically, we show that, although we can achieve universal

compression with only one pass over one stream, we need at least two streams to

achieve good grammar-based compression or entropy-only bounds. We also com-

bine previously known results to prove that two streams are sufficient for us to

compute the Burrows-Wheeler Transform and, thus, achieve low-entropy bounds.

As corollaries of our lower bounds for compression, we obtain lower bounds for

computing strings’ minimum periods and for computing the Burrows-Wheeler
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Transform [BW94], which came as something of a surprise to us. It seems no

one has previously considered the problem of finding strings’ minimum periods in

a streaming model, even though some related problems have been studied (see,

e.g., [EMŞ04], in which the authors loosen the definition of a repeated substring

to allow approximate matches). We are currently investigating whether we can

derive any more such results.

The chapters in this thesis were written separately and can be read separately;

in fact, it might be better to read them with at least a small pause between chap-

ters, so the variations in the models considered do not become confusing. Of

course, to make each chapter independent, we have had to introduce some degree

of redundancy. Chapter 2 was written specifically for this thesis, and is based on

recent joint work [GN] with Yakov Nekrich at the University of Bonn; a summary

was presented at the University of Bielefeld in October of 2008, and will be pre-

sented at the annual meeting of the Italy-Israel FIRB project “Pattern Discovery

in Discrete Structures, with Applications to Bioinformatics” at the University of

Palermo in February of 2009. Chapter 3 was also written specifically for this

thesis, but Chapter 4 was presented at the 10th Italian Conference on Theoret-

ical Computer Science [Gag07b] and then published in Information Processing

Letters [Gag08b]. Chapter 5 is a slight modification of part of a paper [GM07b]

written with Giovanni Manzini at the University of Eastern Piedmont, which

was presented in 2007 at the 32nd Symposium on Mathematical Foundations of

Computer Science. A paper [GKN09] we wrote with Marek Karpinski (also at the

University of Bonn) and Yakov Nekrich that partially combines the results in these

two chapters, will appear at the 2009 Data Compression Conference. Chapter 6

is a slight modification of a paper [Gag09] that has been submitted to a confer-

ence, with a very brief summary of some material from a paper [GM07a] written

with Giovanni Manzini and presented at the 18th Symposium on Combinatorial

Pattern Matching.

As we noted above, making the chapters in this thesis independent required

us to introduce some degree of redundancy. In particular, some terms are defined

several times, sometimes with different ideas emphasized in different chapters.

For example, although we consider stable sorting in both Chapters 3 and 4, we

give a more detailed definition in Chapter 4 because our algorithm there relies

heavily on certain properties of the permutation that stably sorts the input; in

Chapter 3, stability is less important in the upper bound and we are currently
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CHAPTER 1. INTRODUCTION

trying to remove it from the lower bound. Nevertheless, in order to avoid excessive

repetition, we now present some core terms and concepts. For a more thorough

introduction to the field of data compression, we refer the reader to, e.g., the text

by Cover and Thomas [CT06].

1.1 Entropy and empirical entropy

Let X be a random variable that takes on one of σ values according to P =

p1, . . . , pσ. Shannon [Sha48] proposed that any function H(P ) measuring our

uncertainty about X should have three properties:

1. “H should be continuous in the pi.”

2. “If all the pi are equal, pi = 1
σ
, then H should be a monotonic increasing

function of σ.” [Shannon wrote n instead of σ; we have changed his notation

for consistency with the rest of this thesis.]

3. “If a choice be broken down into two successive choices, the original H

should be the weighted sum of the individual values of H.”

Shannon proved the only function with these properties isH(P ) =
∑σ

i=1 pi log(1/pi),

which he called the entropy of P . The choice of the logarithm’s base determines

the unit; by convention, log means log2 and the units are bits.

If we are given a single individual string instead of a probability distribution

over a set of strings, we cannot apply Shannon’s definition directly. Many impor-

tant papers have been written about how to measure the complexity of an individ-

ual string — by, e.g., Kolmogorov [Kol65] or Lempel and Ziv [LZ76, ZL77, ZL78]

— but in this thesis we use the notion of empirical entropy. For any non-negative

integer k, the kth-order empirical entropy of a string s[1..n] (see, e.g., [Man01]) is

our expected uncertainty about the random variable s[i] given a context of length

k, as in the following experiment: i is chosen uniformly at random from {1, . . . , n};
if i ≤ k, then we are told s[i]; otherwise, we are told s[(i−k)..(i−1)]. Specifically,

Hk(s) =



∑
a∈s

occ (a, s)

n
log

n

occ (a, s)
if k = 0,

1

n

∑
|α|=k

|sα|H0(sα) if k ≥ 1.
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1.1. ENTROPY AND EMPIRICAL ENTROPY

Here, a ∈ s means character a occurs in s; occ (a, s) is the number of occurrences

of a in s; and sα is the string whose ith character is the one immediately following

the ith occurrence of string α in s — the length of sα is the number of occurrences

of α in s, which we denote occ (α, s), unless α is a suffix of s, in which case it is

1 less. We assume sα = s when α is empty. Notice

0 ≤ Hk+1(s) ≤ Hk(s) ≤ log |{a : a ∈ s}| ≤ log σ

for k ≥ 0. For example, if s is the string mississippi, then

H0(s) =
4

11
log

11

4
+

1

11
log 11 +

2

11
log

11

2
+

4

11
log

11

4
≈ 1.82 ,

H1(s) =
1

11

(
3H0(si) +H0(sm) + 2H0(sp) + 4H0(ss)

)
=

1

11

(
3H0(ssp) +H0(i) + 2H0(pi) + 4H0(sisi)

)
≈ 0.63 ,

H2(s) =
1

11

(
H0(sip) + 2H0(sis) +H0(smi) +H0(spp) + 2H0(ssi) + 2H0(sss)

)
=

1

11

(
H0(p) + 2H0(ss) +H0(s) +H0(i) + 2H0(sp) + 2H0(ii)

)
≈ 0.18 ,

and all higher-order empirical entropies of s are 0. This means if someone chooses

a character uniformly at random from mississippi and asks us to guess it, then

our uncertainty is about 1.82 bits. If they tell us the preceding character before

we guess, then on average our uncertainty is about 0.63 bits; if they tell us the

preceding two characters, then our expected uncertainty decreases to 0.18 bits;

given any more characters, we are certain of the answer.

Empirical entropy has a surprising connection to number theory. Let (x)σ,n

denote the first n digits of the number x in base σ ≥ 2. Borel [Bor09] called x nor-

mal in base σ if, for α ∈ {0, . . . , σ− 1}∗, limn→∞
occ(α,xσ,n)

n
= 1/σ|α|. For example,

the Champernowne constant [Cha33] and Copeland-Erdös constant [CE46],

0 . 1 2 3 4 5 6 7 8 9 10 11 12 . . . and 0 . 2 3 5 7 11 13 17 19 23 . . .

5



CHAPTER 1. INTRODUCTION

respectively, are normal in base 10. Notice x being normal in base σ is equivalent

to limn→∞Hk((x)σ,n) = log σ for k ≥ 0. Borel called x absolutely normal if it

is normal in all bases. He proved almost all numbers are absolutely normal but

Sierpinski [Sie17] was the first to find an example, which is still not known to

be computable. Turing [Tur92] claimed there exist computable absolutely normal

numbers but this was only verified recently, by Becher and Figueira [BF02]. Such

numbers’ representations have finite Kolmogorov complexity yet look random if

we consider only empirical entropy — regardless of base and order. Of course, we

are sometimes fooled whatever computable complexity metric we consider.

Now consider de Bruijn sequences [dB46] from combinatorics. An σ-ary lin-

ear de Bruijn sequence of order k is a string over {0, . . . , σ − 1} containing ev-

ery possible k-tuple exactly once. For example, the binary linear de Bruijn se-

quences of order 3 are the 16 10-bit substrings of 00010111000101110 and its

reverse: 0001011100, . . . , 1000101110, 0111010001, . . . , 0011101000. By definition,

such strings have length σk + k − 1 and kth-order empirical entropy 0 (but

(k − 1)st-order empirical entropy (σk−1) log σ
σk+k−1

), even though there are (σ!)σ
k−1

of

them [vAEdB51, Knu67]. It follows that one randomly chosen has expected Kol-

mogorov complexity in Θ
(

log(σ!)σ
k−1
)

= Θ(σk log σ); whereas Borel’s normal

numbers can be much less complex than empirical entropy suggests, de Bruijn

sequences can be much more complex.

Empirical entropy also has connections to algorithm design. For example,

Munro and Spira [MS76] used 0th-order empirical entropy to analyze several sort-

ing algorithms and Sleator and Tarjan [ST85] used it in the Static Optimality

Theorem: Suppose we perform a sequence of n operations on a splay-tree, with

s[i] being the target of the ith operation; if s includes every key in the tree, then

we use O((H0(s) + 1)n) time. Of course, most of the algorithms analyzed in

terms of empirical entropy are for data compression. Manzini’s analysis [Man01]

of the Burrows-Wheeler Transform [BW94] is particularly interesting. He proved

an algorithm based on the Transform stores any string s of length n over an al-

phabet of size σ in at most about (8Hk(s) + 1/20)n + σk(2σ log σ + 9) bits, for

all k ≥ 0 simultaneously. Subsequent research by Ferragina, Manzini, Mäkinen

and Navarro [FMMN07], for example, has shown that if σk+1 log n ∈ o(n log σ),

then we can store an efficient index for s in nHk(s) + o(n log σ) bits. Notice we

cannot lift the restriction on σ and k to σk ∈ O(n): If s is a randomly chosen

σ-ary linear de Bruijn sequence of order k, then n = σk + k − 1 and Hk(s) = 0,

6



1.2. SHANNON CODES AND HUFFMAN CODES

so cnHk(s) + o(n log σ)) = o(σk log σ) for any c, but K(s) ∈ Θ(σk log σ) in the

expected case.

1.2 Shannon codes and Huffman codes

The simplest representation of a code is as a binary code-tree: a rooted, ordered

binary tree whose leaves are labelled with the characters in an alphabet and

whose left and right edges are labelled with 0s and 1s, respectively. A code

can be represented in this way if and only if it is prefix-free (often abbreviated

simply as “prefix”), meaning that no one of its codewords is a prefix of any

other. The codeword for the character labelling a leaf is simply the sequence of

edge-labels on the path from the root to that leaf, so the expected length of a

codeword is the same as the expected depth of a leaf. Shannon [Sha48] showed

that, given a probability distribution P = p1, . . . , pσ with p1 ≥ · · · ≥ pσ, we

can build a prefix code whose codewords, in lexicographic order, have lengths

dlog(1/p1)e, . . . , dlog(1/pσ)e (see Theorem 2.1); notice such a code has expected

codeword length less than H(P ) + 1. Moreover, he showed that no prefix code

can have expected codeword length strictly less than H(P ). Shortly thereafter,

Huffman [Huf52] gave an algorithm for building a code-tree having minimum

expected depth, so prefix codes with minimum expected codeword length are

often called Huffman codes (even when they cannot result from his algorithm).

We refer the reader to an article by Abrahams’ [Abr01] for a comprehensive survey

of results on prefix codes.

Given a string s[1..n] over an alphabet of size σ, if we set P to be the normalized

and sorted distribution of characters in s, then a Shannon code assigns a codeword

of length
⌈
log n

occ(a,s)

⌉
to each character a that occurs in s, where occ (a, s) is the

number of times a occurs in s. The sum of the codewords’ length for all the

characters in s is then∑
a

⌈
log

n

occ (a, s)

⌉
< (H0(s) + 1)n ,

and recording the code takes O(σ log σ) bits. Since a Huffman code minimizes

the expected codeword length, we can obtain the same bound using a Huffman

code instead of a Shannon code. Notice that, since every codeword has length

at least 1 even when its character occurs nearly always, a Huffman code can also

7



CHAPTER 1. INTRODUCTION

have redundancy arbitrarily close to 1 bit per character. However, if we know

something about the distribution (see [YY02] and references therein) then it is

sometimes possible to prove stronger bounds for Huffman coding. For example, a

result by Gallager [Gal78] implies the following:

Theorem 1.1 (Gallager, 1978). With a Huffman code, we can store s in

(H + pmax + 0.086)n+O(σ log σ)

bits, where pmax = maxa{occ (a, s)}/n.

Although a Huffman code minimizes the expected codeword length and a Shan-

non code generally does not, a Shannon code has a better bound on each character

a’s pointwise redundancy, i.e., the amount by which the length of a’s codeword

exceeds log n
occ(a,s)

. In a Shannon code, each character’s pointwise redundancy is

less than 1; in a Huffman code, the maximum pointwise redundancy is generally

not bounded by a constant [KN76]. We consider pointwise redundancy because

calculation shows that

n∑
i=1

log
i+ σ

occ (s[i], s[1..(i− 1)]) + 1
≤ nH0(s) +O(σ log n)

(see Lemmas 2.5 and 3.2) so upper bounds on pointwise redundancy can imply

upper bounds for adaptive prefix coding and online sorting, as in Theorems 2.6

and 3.4, respectively. This perhaps explains why, in Chapter 2, we are able to

improve the Vitter’s longstanding bounds [Vit87] for adaptive prefix coding.

Theorem 1.2 (Vitter, 1987). With adaptive Huffman coding, we can store s using

fewer than n more bits that we would use with Huffman coding. This is the best

bound possible in the worst case, for any adaptive Huffman coding algorithm.

Drmota and Szpankowski [DS02, DS04] showed that a generalization of Shannon

codes actually have minimum maximum pointwise redundancy. In a recent pa-

per [GG09] with Gawrychowski, we showed how their O(σ log σ)-time algorithm

can be made to run in O(σ) time and we are now studying how to turn lower

bounds for coding or sorting, such as Theorem 3.5, into lower bounds on point-

wise redundancy.

When we are encoding a string of characters drawn from the alphabet, of

course, it may be possible to achieve better compression by encoding more than

8



1.3. THE BURROWS-WHEELER TRANSFORM

one character at a time. One method for doing this is run-length coding, in

which we replace each run of a single distinct character by a single copy of the

character and the length of the run. Another method is arithmetic coding (see,

e.g., [HV92]), which encodes large blocks of characters at once, whether or not

they are the same. To do this, we rearrange the alphabet so that characters are in

non-increasing order by probability, then encode each block b by writing a prefix of

the sum of the probabilities of all possible blocks lexicographically less than b; the

more likely b is, the fewer bits we must write to distinguish its corresponding sum.

The advantage of arithmetic coding is that, whereas Shannon or Huffman coding

can waste nearly a whole bit for each character encoded, in theory arithmetic

coding has asymptotically negligible redundancy.

1.3 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform [BW94] (BWT) is an invertible transform that

rearranges the characters in a string by sorting them into the lexicographical order

of the suffixes that immediately follow them, as shown in Figure 1.1 (from [FGM06]).

When using the BWT for compression, it is customary to append a special char-

acter $ that is lexicographically less than any in the alphabet. To see why the

BWT is invertible, consider the permutation π that stably sorts the transformed

string. By definition, applying π to the the last column on the righthand matrix in

Figure 1.1 (the transformed string), produces the first column (the stably sorted

characters); moreover, notice that applying π to any other column produces the

succeeding column. Therefore, since we can compute π from the tranformed string

itself, the BWT is invertible. For a more thorough description of the BWT and

its properties, we refer readers to Manzini’s analysis [Man01].

Since the BWT does not change the distribution of characters, the 0th-order

empirical entropy of the string remains the same; since it tends to move characters

with similar contexts close together, however, the resulting string is often locally

homogeneous. By applying an invertible transform such as move-to-front or dis-

tance coding, we can turn local homogeneity into global homogeneity, obtaining

a string with low 0th-order empirical entropy, which we can then compress with a

simple algorithm that does not use context, such as Huffman coding or arithmetic

coding. Building Manzini’s results [Man01], Kaplan, Landau and Verbin [KLV07]

9
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mississippi$

ississippi$m

ssissippi$mi

sissippi$mis

issippi$miss

ssippi$missi

sippi$missis

ippi$mississ

ppi$mississi

pi$mississip

i$mississipp

$mississippi

=⇒

$ mississipp i

i $mississip p

i ppi$missis s

i ssippi$mis s

i ssissippi$ m

m ississippi $

p i$mississi p

p pi$mississ i

s ippi$missi s

s issippi$mi s

s sippi$miss i

s sissippi$m i

Figure 1.1: The Burrows-Wheeler Transform for the string s = mississippi.
The matrix on the right has the rows sorted in lexicographic order. The output
of the BWT is the last column of the matrix, i.e., ipssm$pissii.

proved several upper bounds for this approach, the best of which is shown below,

and Kaplan and Verbin [KV07] later also proved lower bounds.

Theorem 1.3 (Kaplan, Landau and Verbin, 2007). By applying the BWT followed

by distance coding and arithmetic coding, we can store s in 1.73nHk(s) +O(log n)

bits for all k simultaneously.

We note that the coefficients hidden in the asymptotic notation grow quickly

in terms of σ and k so, unlike Manzini’s analysis, the bound above does not

guarantee good compression when s is very compressible. We wrote a paper

with Manzini [GM07a] showing how to combine ideas from both analyses [Man01,

KLV07] in order to obtain a good bound even in this case.

One alternative is to partition the result of the BWT into consecutive sub-

strings, each with low 0th-order empirical entropy, and compress them sepa-

rately. Ferragina, Giancarlo, Manzini and Sciortino [FGMS05] (see also [FGM06,

FNV09]) gave an O(n)-time algorithm Boost for computing a partition such that,

if we compress each substring well in terms of its 0th-order empirical entropy,

then the whole transformed string is compressed well in terms of its higher-order

empirical entropies, as stated in the theorem below (based on the presentation

in [FGM06]). Ferragina, Giancarlo and Manzini [FGM09] later combined this al-

gorithm with other techniques to obtain the best known bounds for when s is very

compressible.

10



1.3. THE BURROWS-WHEELER TRANSFORM

Theorem 1.4 (Ferragina, Giancarlo, Manzini and Sciortino, 2005). Let A be a

compression algorithm that encodes any string x in at most λ|x|H0(x) + η|x|+ µ

bits, where λ, η and µ are constants. If we use A to compress the substrings

in the partition computed by Boost, then the overall output size is bounded by

λnHk(s) + log n+ ηn+ gk for any k ≥ 0, where gk depends only on σ and k.

Although several other alternatives have been presented by, e.g., Mäkinen and

Navarro [MN07] and Gupta, Grossi and Vitter [GGV08], the literature on the

BWT is already too large, and growing too rapidly, for us to give anything like a

thorough survey of it here.

11



CHAPTER 1. INTRODUCTION

12



Chapter 2

Adaptive Prefix Coding

Prefix codes are sometimes called instantaneous codes because, since no codeword

is a prefix of another, the decoder can output each character once it reaches

the end of its codeword. Adaptive prefix coding could thus be called “doubly

instantaneous”, because the encoder must produce a self-delimiting codeword for

each character before reading the next one. The main idea behind adaptive prefix

coding is simple: both the encoder and the decoder start with the same prefix

code; the encoder reads the first character of the input and writes its codeword;

the decoder reads that codeword and decodes the first character; the encoder and

decoder now have the same information, and they update their copies of the code

in the same way; then they recurse on the remainder of the input. The two main

challenges are, first, to update efficiently the two copies of the code and, second,

to prove the total length of the encoding is not much more than it would be if we

were to use an optimal static prefix coder.

Because Huffman codes [Huf52] have minimum expected codeword length,

early work on adaptive prefix coding naturally focused on efficiently maintain-

ing a Huffman code for the prefix of the input already encoded. Faller [Fal73],

Gallager [Gal78] and Knuth [Knu85] developed an adaptive Huffman coding algo-

rithm — usually known as the FGK algorithm, for their initials — and showed it

takes time proportional to the length of the encoding it produces. Vitter [Vit87]

gave an improved version of their algorithm and showed it uses less than one more

bit per character than we would use with static Huffman coding. (For simplic-

ity we consider only binary encodings; therefore, by log we always mean log2.)

Milidiú, Laber and Pessoa [MLP99] later extended Vitter’s techniques to analyze

the FGK algorithm, and showed it uses less than two more bits per character

13
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than we would use with static Huffman coding. Suppose the input is a string

s of n characters drawn from an alphabet of size σ � n; let H be the empir-

ical entropy of s (i.e., the entropy of the normalized distribution of characters

in s) and let r be the redundancy of a Huffman code for s (i.e., the difference

between the expected codeword length and H). The FGK algorithm encodes s

as at most (H + 2 + r)n+ o(n) bits and Vitter’s algorithm encodes it as at most

(H + 1 + r)n + o(n) bits; both take O((H + 1)n) total time to encode and de-

code, or O(H + 1) amortized time per character. Table 2.1 summarizes bounds

for various adaptive prefix coders.

If s is drawn from a memoryless source then, as n grows, adaptive Huffman

coding will almost certainly “lock on” to a Huffman code for the source and, thus,

use (H + r)n + o(n) bits. In this case, however, the whole problem is easy: we

can achieve the same bound, and use less time, by periodically building a new

Huffman code. If s is chosen adversarially, then every algorithm uses at least

(H + 1 + r)n − o(n) bits in the worst case. To see why, fix an algorithm and

suppose σ = n1/2 = 2`+1 for some integer `, so any binary tree on σ leaves has at

least two leaves with depths at least ` + 1. Any prefix code for σ characters can

be represented as a code-tree on σ leaves; the length of the lexicographically ith

codeword is the depth of the ith leaf from the left. It follows that an adversary

can choose s such that the algorithm encodes it as at least (`+ 1)n bits. On the

other hand, a static prefix coding algorithm can assign codewords of length ` to

the σ− 2 most frequent characters and codewords of length `+ 1 to the two least

frequent characters, and thus use at most `n+2n/σ+O(σ log σ) = `n+o(n) bits.

Therefore, since the expected codeword length of a Huffman code is minimum,

(H + r)n ≤ `n+ o(n) and so (`+ 1)n ≥ (H + 1 + r)n− o(n).

This lower bound seems to say that Vitter’s upper bound cannot be signifi-

cantly improved. However, to force the algorithm to use (H + 1 + r)n− o(n) bits,

it might be that the adversary must choose s such that r is small. In a previous

paper [Gag07a] we were able to show this is the case, by giving an adaptive prefix

coder that encodes s in at most (H + 1)n + o(n) bits. This bound is perhaps a

little surprising, since our algorithm was based on Shannon codes [Sha48], which

generally do not have minimum expected codeword lengths. Like the FGK algo-

rithm and Vitter’s algorithm, our algorithm used O(H + 1) amortized time per

character to encode and decode. Recently, Karpinski and Nekrich [KN09] showed

how to combine some of our results with properties of canonical codes, defined by

14
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Schwartz and Kallick [SK64] (see also [Kle00, TM00, TM01]), to achieve essen-

tially the same compression while encoding and decoding each character in O(1)

amortized time and O(log(H + 2)) amortized time, respectively. Nekrich [Nek07]

implemented their algorithm and observed that, in practice, it is significantly

faster than arithmetic coding and slightly faster than Turpin and Moffat’s GEO

coder [TM01], although the compression it achieves is not quite as good. The

rest of this chapter is based on joint work with Nekrich [GN] that shows how, on

a RAM with Ω(log n)-bit words, we can speed up our algorithm even more, to

both encode and decode in O(1) worst-case time. We note that Rueda and Oom-

men [RO04, RO06, RO08] have demonstrated the practicality of certain imple-

mentations of adaptive Fano coding, which is somewhat related to our algorithm,

especially a version [Gag04] in which we maintained an explicit code-tree.

Table 2.1: Bounds for adaptive prefix coding: the times to encode and decode
each character and the total length of the encoding. Bounds in the first row and
last column are worst-case; the others are amortized.

Encoding Decoding Length

Gagie and Nekrich [GN] O(1) O(1) (H + 1)n+ o(n)

Karpinski and Nekrich [KN09] O(1) O(log(H + 2)) (H + 1)n+ o(n)

Gagie [Gag07a] O(H + 1) O(H + 1) (H + 1)n+ o(n)

Vitter [Vit87] O(H + 1) O(H + 1) (H + 1 + r)n+ o(n)

Knuth [Knu85]

Gallager [Gal78]

}
O(H + 1) O(H + 1) (H + 2 + r)n+ o(n)

Faller [Fal73]

2.1 Algorithm

A Shannon code is one in which, if a character has probability p, then its code-

word has length at most dlog(1/p)e. In his seminal paper on information theory,

Shannon [Sha48] showed how to build such a code for any distribution containing

only positive probabilities.

Theorem 2.1 (Shannon, 1948). Given a probability distribution P = p1, . . . , pσ

with p1 ≥ · · · ≥ pσ > 0, we can build a prefix code in O(σ) time whose codewords,

in lexicographic order, have lengths dlog(1/p1)e, . . . , dlog(1/pσ)e.
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We encode each character of s using a canonical Shannon code for a probability

distribution that is roughly the normalized distribution of characters in the prefix

of s already encoded. In order to avoid having to consider probabilities equal to

0, we start by assigning every character a count of 1. This means the smallest

probability we ever consider is at least 1/(n+σ), so the longest codeword we ever

consider is O(log n) bits.

A canonical code is one in which the first codeword is a string of 0s and,

for 1 ≤ i < σ, we can obtain the (i + 1)st codeword by incrementing the ith

codeword (viewed as a binary number) and appending some number of 0s to it.

For example, Figure 2.1 shows the codewords in a canonical code, together with

their lexicographic ranks. By definition, the difference between two codewords of

the same length in a canonical code, viewed as binary numbers, is the same as the

difference between their ranks. For example, the third codeword in Figure 2.1 is

0100 and the sixth codeword is 0111, and (0111)2 − (0100)2 = 6 − 3, where (·)2

means the argument is to be viewed as a binary number. We use this property

to build a representation of the code that lets us quickly answer encoding and

decoding queries.

1) 000 7) 1000
2) 001 8) 1001
3) 0100 9) 10100
4) 0101 10) 10101
5) 0110 ...
6) 0111 16) 11011

Figure 2.1: The codewords in a canonical code.

We maintain the following data structures: an array A1 that stores the code-

words’ ranks in lexicographic order by character; an array A2 that stores the

characters and their frequencies in order by frequency; a dictionary D1 that stores

the rank of the first codeword of each length, with the codeword itself as auxiliary

information; and a dictionary D2 that stores the first codeword of each length,

with its rank as auxiliary information.

To encode a given character a, we first use A1 to find a’s codeword’s rank; then

use D1 to find the rank of the first codeword of the same length and that codeword

as auxiliary information; then add the difference in ranks to that codeword, viewed

as a binary number, to obtain a’s codeword. For example, if the codewords are as

16



2.1. ALGORITHM

shown in Figure 2.1 and a is the jth character in the alphabet and has codeword

0111, then

1. A1[j] = 6,

2. D1.pred(6) = 〈3, 0100〉,

3. (0100)2 + 6− 3 = (0111)2.

To decode a given a binary string prefixed with its codeword, we first search

in D2 for the predecessor of the first dlog(n + σ)e bits of the binary string, to

find the first codeword of the same length and that codeword’s rank as auxiliary

information; then add that rank to the difference in codewords, viewed as binary

numbers, to obtain a’s codeword’s rank; then use A2 to find a. In our example

above,

1. D2.pred(0111 . . .) = 〈0100, 3〉,

2. 3 + (0111)2 − (0100)2 = 6,

3. A2[6] = aj.

Admittedly, reading the first dlog(n + σ)e bits of the binary string will generally

result in the decoder reading past the end of most codewords before outputting

the corresponding character. We see no way to avoid this without potentially

requiring the decoder to read some codewords bit by bit.

Querying A1 and A2 takes O(1) worst-case time, so the time to encode and

decode depends mainly on the time needed for predecessor queries on D1 and

D2. Since the longest codeword we ever consider is O(log n) bits, each dictionary

contains O(log n) keys, so we can implement each as an instance of the data

structure described below, due to Fredman and Willard [FW93]. This way, apart

from the time to update the dictionaries, we encode and decode each character in a

total of O(1) worst-case time. Andersson, Miltersen and Thorup [ABT99] showed

Fredman and Willard’s data structure can be implemented with AC0 instructions,

and Thorup [Tho03] showed it can be implemented with AC0 instructions available

on a Pentium 4; admittedly though, in practice it might still be faster to use a

sorted array to encode and decode each character in O(log log n) time.

Lemma 2.2 (Fredman & Willard, 1993). Given O
(

log1/6 n
)

keys, we can build

a dictionary in O
(

log2/3 n
)

worst-case time that stores those keys and supports

predecessor queries in O(1) worst-case time.

17
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Corollary 2.3. Given O(log n) keys, we can build a dictionary in O
(

log3/2 n
)

worst-case time that stores those keys and supports predecessor queries in O(1)

worst-case time.

Proof. We store the keys at the leaves of a search tree with degree O
(

log1/6 n
)

,

size O
(

log5/6 n
)

and height at most 5. Each node stores an instance of Fred-

man and Willard’s dictionary from Lemma 2.2: each dictionary at a leaf stores

O
(

log1/6 n
)

keys and each dictionary at an internal node stores the first key in

each of its children’s dictionaries. It is straightforward to build the search tree in

O
(

log2/3+5/6 n
)

= O
(

log3/2 n
)

time and implement queries in O(1) time.

Since a codeword’s lexicographic rank is the same as the corresponding char-

acter’s rank by frequency, and a character’s frequency is an integer than changes

only by being incremented after each of its occurrences, we can use a data struc-

ture due to Gallager [Gal78] to update A1 and A2 in O(1) worst-case time per

character of s. We can use O(log n) binary searches in A2 and O
(
log2 n

)
time

to compute the number of codewords of each length; building D1 and D2 then

takes O
(

log3/2 n
)

time. Using multiple copies of each data structure and stan-

dard background-processing techniques, we update each set of copies after every

blog2 nc characters and stagger the updates, such that we need spend only O(1)

worst-case time per character and, for 1 ≤ i ≤ n, the copies we use to encode

the ith character of s will always have been last updated after we encoded the

(i− blog2 nc)th character.

Writing s[i] for the ith character of s, s[1..i] for the prefix of s of length i, and

occ (s[i], s[1..i]) for the number of times s[i] occurs in s[1..i], we can summarize

the results of this section as the following lemma.

Lemma 2.4. For 1 ≤ i ≤ n, we can encode s[i] as at most⌈
log

i+ σ

max
(
occ (s[i], s[1..i])− blog2 nc, 1

)⌉

bits such that encoding and decoding it takes O(1) worst-case time.
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2.2 Analysis

Analyzing the length of the encoding our algorithm produces is just a matter of

bounding the sum of the codewords’ lengths. Fortunately, we can do this using a

modification of the proof that adaptive arithmetic coding produces an encoding

not much longer than the one produced by decrementing arithmetic coding (see,

e.g., [HV92]).

Lemma 2.5.

n∑
i=1

⌈
log

i+ σ

max
(
occ (s[i], s[1..i])− blog2 nc, 1

)⌉ ≤ (H + 1)n+O
(
σ log3 n

)
.

Proof. Since
{

occ (s[i], s[1..i]) : 1 ≤ i ≤ n
}

and

{
j :

1 ≤ j ≤ occ (a, s),

a a character

}
are the

same multiset,

n∑
i=1

⌈
log

i+ σ

max
(
occ (s[i], s[1..i])− blog2 nc, 1

)⌉

<
n∑
i=1

log(i+ σ)−
n∑
i=1

log max
(
occ (s[i], s[1..i])− blog2 nc, 1

)
+ n

=
n∑
i=1

log(i+ σ)−
∑
a

occ(a,s)−blog2 nc∑
j=1

log j + n

<
n∑
i=1

log i+ σ log(n+ σ)−
∑
a

occ(a,s)∑
j=1

log j + σ log3 n+ n

= log(n!)−
∑
a

log(occ (a, s)!) + n+O
(
σ log3 n

)
.

Since

log(n!)−
∑
a

log(occ (a, s)!) = log
n!∏

a occ (a, s)!

is the number of distinct arrangements of the characters in s, we could complete

the proof by information-theoretic arguments; however, we will use straightfor-

ward calculation. Specifically, Robbins’ extension [Rob55] of Stirling’s Formula,

√
2πxx+1/2e−x+1/(12x+1) < x! <

√
2πxx+1/2e−x+1/(12x) ,
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implies that

x log x− x log e < log(x!) ≤ x log x− x log e+O(log x) ,

where e is the base of the natural logarithm. Therefore, since
∑

a occ (a, s) = n,

log(n!)−
∑
a

log(occ (a, s)!) + n+O
(
σ log3 n

)
= n log n−

∑
a

occ (a, s) log occ (a, s)−

n log e+
∑
a

occ (a, s) log e+ n+O
(
σ log3 n

)
=
∑
a

occ (a, s) log
n

occ (a, s)
+ n+O

(
σ log3 n

)
= (H + 1)n+O

(
σ log3 n

)
.

Combining Lemmas 2.4 and 2.5 and assuming σ = o(n/ log3 n) immediately

gives us our result for this chapter.

Theorem 2.6. We can encode s as at most (H+1)n+o(n) bits such that encoding

and decoding each character takes O(1) worst-case time.
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Chapter 3

Online Sorting with Few

Comparisons

Comparison-based sorting is perhaps the most studied problem in computer sci-

ence, but there remain basic open questions about it. For example, exactly how

many comparisons does it take to sort a multiset? Over thirty years ago, Munro

and Spira [MS76] proved distribution-sensitive upper and lower bounds that dif-

fer by O(n log log σ), where n is the size of the multiset s and σ is the number

of distinct elements s contains. Specifically, they proved that nH +O(n) ternary

comparisons are sufficient and nH − (n− σ) log log σ−O(n) are necessary, where

H =
∑

a
occ(a,s)

n
log n

occ(a,s)
denotes the entropy of the distribution of elements in s

and occ (a, s) denotes the multiplicity of the distinct element a in s. Throughout,

by log we mean log2. Their bounds have been improved in a series of papers,

summarized in Table 3.1, so that the difference between the best upper and lower

bounds (of which we are aware) is now slightly less than (1 + log e)n ≈ 2.44n,

where e is the base of the natural logarithm.

Apart from the bounds shown in Table 3.1, there have been many bounds

proven about, e.g., sorting multisets in-place or with minimum data movement,

or in the external-memory or cache-oblivious models. In this chapter we consider

online stable sorting; online algorithms sort s element by element and keep those

already seen in sorted order, and stable algorithms preserve the order of equal

elements. For example, splaysort (i.e., sorting by insertion into a splay tree [ST85])

is online, stable and takes O((H + 1)n) comparisons and time. In Section 3.1

we show how, if σ = o(n1/2/ log n), then we can sort s online and stably using

(H + 1)n + o(n) ternary comparisons and O((H + 1)n) time. In Section 3.2 we
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prove (H + 1)n− o(n) comparisons are necessary in the worst case.

Table 3.1: Bounds for sorting a multiset using ternary comparisons.

Upper bound Lower bound

Munro and Raman [MR91] (H − log e)n+O(log n)

Fischer [Fis84] (H + 1)n− σ (H − logH)n−O(n)

Dobkin and Munro [DM80]
(
H − n log

(
log n−

∑
a occ(a,s) log occ(a,s)

n

))
n−O(n)

Munro and Spira [MS76] nH +O(n) nH − (n− σ) log log σ −O(n)

3.1 Algorithm

Our idea is to sort s by inserting its elements into a binary search tree T , which

we rebuild occasionally using the following theorem by Mehlhorn [Meh77]. We

rebuild T whenever the number of elements processed since the last rebuild is

equal to the number of distinct elements seen by the time of the last rebuild. This

way, we spend O(n) total time rebuilding T .

Theorem 3.1 (Mehlhorn, 1977). Given a probability distribution P = p1, . . . , pk

on k keys, with no pi = 0, in O(k) time we can build a binary search tree containing

those keys at depths at most log(1/p1), . . . , log(1/pk).

To rebuild T after processing i elements of s, to each distinct element a seen so

far we assign probability occ (a, s[1..i]) /i, where s[1..i] denotes the first i elements

of s; we then apply Theorem 3.1. Notice the smallest probability we consider is

at least 1/n, so the resulting tree has height at most log n.

We want T always to contain a node for each distinct element a seen so far,

that stores a as a key and stores a linked list of a’s occurrences so far. After

we use Mehlhorn’s theorem, therefore, we extend T and then replace each of its

leaves by an empty AVL tree [AL62]. To process an element s[i] of s, we search

for s[i] in T ; if we find a node v whose key is equal to s[i], then we append s[i] to

v’s linked list; otherwise, our search ends at a node of an AVL tree, into which we

insert a new node whose key is equal to s[i] and whose linked list contains s[i].

If an element equal to s[i] occurs by the time of the last rebuild before we pro-

cess s[i], then the corresponding node is at depth at most log i

max

(
occ(s[i],s[1..i])−σ,1

)
in T , so the number of ternary comparisons we use to insert s[i] into T is at most
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that number plus 1; the extra comparison is necessary to check that the algo-

rithm should not proceed deeper into the tree. Otherwise, since our AVL trees

always contain at most σ nodes, we use O(log n+ log σ) = O(log n) comparisons.

Therefore, we use a total of at most

n∑
i=1

log
i

max
(
occ (s[i], s[1..i])− σ, 1

) + n+O(σ log n)

comparisons to sort s and, assuming each comparison takes O(1) time, a pro-

portional amount of time. We can bound this sum using the following technical

lemma, which says the logarithm of the number of distinct arrangements of the

elements in s is close to nH, and the subsequent corollary. We write a1, . . . , aσ to

denote the distinct elements in s.

Lemma 3.2.

nH −O(σ log(n/σ)) ≤ log

(
n

occ (a1, s) , . . . , occ (aσ, s)

)
≤ nH +O(log n) .

Proof. Robbins’ extension [Rob55] of Stirling’s Formula,

√
2πxx+1/2e−x+1/(12x+1) < x! <

√
2πxx+1/2e−x+1/(12x) ,

implies that

x log x− x log e < log(x!) ≤ x log x− x log e+O(log x) .

Therefore, since
∑

a occ (a, s) = n, straightforward calculation shows that

log

(
n

occ (a1, s) , . . . , occ (aσ, s)

)
= log(n!)−

∑
a

log(occ (a, s)!)

is at least nH −O(σ log(n/σ)) and at most nH +O(log n).

Corollary 3.3.

n∑
i=1

log
i

max
(
occ (s[i], s[1..i])− σ, 1

) + n+O(σ log n)

≤ (H + 1)n+O
(
σ2 log n

)
.
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Proof. Since
{

occ (s[i], s[1..i]) : 1 ≤ i ≤ n
}

and

{
j :

1 ≤ j ≤ occ (a, s),

a an element

}
are the

same multiset,

n∑
i=1

log
i

max
(
occ (s[i], s[1..i])− σ, 1

)
= log(n!)−

∑
a

occ(a,s)−σ∑
j=1

log j

≤ log(n!)−
∑
a

occ(a,s)∑
j=1

log j +O
(
σ2 log n

)
= log(n!)−

∑
a

log(occ (a, s)!) +O
(
σ2 log n

)
= log

(
n

occ (a1, s) , . . . , occ (aσ, s)

)
+O

(
σ2 log n

)
≤ nH +O

(
σ2 log n

)
,

by Lemma 3.2. It follows that

n∑
i=1

log
i

max
(
occ (s[i], s[1..i])− σ, 1

) + n+O(σ log n)

≤ (H + 1)n+O
(
σ2 log n

)
.

Our upper bound follows immediately from Corollary 3.3.

Theorem 3.4. When σ = o(n1/2/ log n), we can sort s online and stably using

(H + 1)n+ o(n) ternary comparisons and O((H + 1)n) time.

3.2 Lower bound

Consider any online, stable sorting algorithm that uses ternary comparisons. Since

the algorithm is online and stable, it must determine each element’s rank relative

to the distinct elements already seen, before moving on to the next element.

Since it uses ternary comparisons, we can represent its strategy for each element

as an extended binary search tree whose keys are the distinct elements already

seen. If the current element is distinct from all those already seen, then the

algorithm reaches a leaf of the tree, and the minimum number of comparisons it
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performs is equal to that leaf’s depth. If the current element has been seen before,

however, then the algorithm stops at an internal node and the minimum number

of comparisons it performs is 1 greater than that node’s depth; again, the extra

comparison is necessary to check that the algorithm should not proceed deeper

into the tree.

Suppose σ = o(n/ log n) is a power of 2; then, in any binary search tree

on σ keys, some key has depth log σ ≥ H (the inequality holds because any

distribution on σ elements has entropy at most log σ). Furthermore, suppose an

adversary starts by presenting one copy of each of σ distinct elements; after that,

it considers the algorithm’s strategy for the next element as a binary search tree,

and presents the deepest key. This way, the adversary forces the algorithm to use

at least (n− σ)(log σ + 1) ≥ (H + 1)n− o(n) comparisons.

Theorem 3.5. We generally need at least (H + 1)n− o(n) ternary comparisons

to sort s online and stably.
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Chapter 4

Online Sorting with Sublinear

Memory

When in doubt, sort! Librarians, secretaries and computer scientists all know

that when faced with lots of data, often the best thing is to organize them. For

some applications, though, the data are so overwhelming that we cannot sort.

The streaming model was introduced for situations in which the flow of data can

be neither paused nor stored in its entirety; the model’s assumptions are that we

are allowed only one pass over the input and memory sublinear in its size (see,

e.g., [Mut05]). Those assumptions mean we cannot sort in general, but in this

chapter we show we can when the data are very compressible.

Our inspiration comes from two older articles on sorting. In the first, “Sorting

and searching in multisets” from 1976, Munro and Spira [MS76] considered the

problem of sorting a multiset s of size n containing σ distinct elements in the

comparison model. They showed sorting s takes Θ((H + 1)n) time, where H =∑σ
i=1(ni/n) log(n/ni) is the entropy of s, log means log2 and ni is the frequency of

the ith smallest distinct element. When σ is small or the distribution of elements

in s is very skewed, this is a significant improvement over the Θ(n log n) bound

for sorting a set of size n.

In the second article, “Selection and sorting with limited storage” from 1980,

Munro and Paterson [MP80] considered the problem of sorting a set s of size n

using limited memory and few passes. They showed sorting s in p passes takes

Θ(n/p) memory locations in the following model (we have changed their variable

names for consistency with our own):
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“In our computational model the data is a sequence of n distinct ele-

ments stored on a one-way read-only tape. An element from the tape

can be read into one of r locations of random-access storage. The

elements are from some totally ordered set (for example the real num-

bers) and a binary comparison can be made at any time between any

two elements within the random-access storage. Initially the storage is

empty and the tape is placed with the reading head at the beginning.

After each pass the tape is rewound to this position with no read-

ing permitted. . . . [I]n view of the limitations imposed by our model,

[sorting] must be considered as the determination of the sorted order

rather than any actual rearrangement.”

An obvious question — but one that apparently has still not been addressed

decades later — is how much memory we need to sort a multiset in few passes;

in this chapter we consider the case when we are allowed only one pass. We

assume our input is the same as Munro and Spira’s, a multiset s = {s1, . . . , sn}
with entropy H containing σ distinct elements. To simplify our presentation, we

assume σ ≥ 2 so Hn = Ω(log n). Our model is similar to Munro and Paterson’s

but it makes no difference to us whether the tape is read-only or read-write, since

we are allowed only one pass, and whereas they counted memory locations, we

count bits. We assume machine words are Θ(log n) bits long, an element fits in a

constant number of words and we can perform standard operations on words in

unit time. Since entropy is minimized when the distribution is maximally skewed,

Hn ≥ n

(
n− σ + 1

n
log

n

n− σ + 1
+
σ − 1

n
log n

)
≥ (σ − 1) log n ;

thus, under our assumptions, O(σ) words take O(σ log n) ⊆ O(Hn) bits.

In Section 4.1 we consider the problem of determining the permutation π such

that sπ(1), . . . , sπ(n) is the stable sort of s (i.e., sπ(i) ≤ sπ(i+1) and, if sπ(i) = sπ(i+1),

then π(i) < π(i+ 1)). For example, if

s = a1, b1, r1, a2, c, a3, d, a4, b2, r2, a5

(with subscripts serving only to distinguish copies of the same distinct element),
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then the stable sort of s is

a1, a2, a3, a4, a5, b1, b2, c, d, r1, r2

= s1, s4, s6, s8, s11, s2, s9, s5, s7, s3, s10

and

π = 1, 4, 6, 8, 11, 2, 9, 5, 7, 3, 10 .

We give a simple algorithm that computes π using one pass, O((H + 1)n) time

and O(Hn) bits of memory. In Section 4.2 we consider the simpler problem

of determining a permutation ρ such that sρ(1), . . . , sρ(n) is in sorted order (not

necessarily stably-sorted). We prove that in the worst case it takes Ω(Hn) bits of

memory to compute any such ρ in one pass.

4.1 Algorithm

The key to our algorithm is the fact π = `1 · · · `σ, where `i is the sorted list

of positions in which the ith smallest distinct element occurs. In our example,

s = a, b, r, a, c, a, d, a, b, r, a,

`1 = 1, 4, 6, 8, 11

`2 = 2, 9

`3 = 5

`4 = 7

`5 = 3, 10 .

Since each `i is a strictly increasing sequence, we can store it compactly using

Elias’ gamma code [Eli75]: we write the first number in `i, encoded in the gamma

code; for 1 ≤ j < ni, we write the difference between the (j + 1)st and jth

numbers, encoded in the gamma code. The gamma code is a prefix-free code for

the positive integers; for x ≥ 1, γ(x) consists of blog xc zeroes followed by the

(blog xc+ 1)-bit binary representation of x. In our example, we encode `1 as

γ(1) γ(3) γ(2) γ(2) γ(3) = 1 011 010 010 011 .

Lemma 4.1. We can store π in O(Hn) bits of memory.
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Proof. Encoding the length of every list with the gamma code takes O(σ log n) ⊆
O(Hn) bits. Notice the numbers in each list `i sum to at most n. By Jensen’s

Inequality, since |γ(x)| ≤ 2 log x + 1 and log is concave, we store `i in at most

2ni log(n/ni) + ni bits. Therefore, storing `1, . . . , `σ as described above takes

σ∑
i=1

(2ni log(n/ni) + ni) = O((H + 1)n)

bits of memory.

To reduce O((H + 1)n) to O(Hn) — important when one distinct element

dominates, so H is close to 0 and Hn� n — we must avoid writing a codeword

for each element in s. Notice that, for each run of length at least 2 in s (a run

being a maximal subsequence of copies of the same element) there is a run of 1’s

in the corresponding list `i. We replace each run of 1’s in `i by a single 1 and the

length of the run. For each except the last run of each distinct element, the run-

length is at most the number we write for the element in s immediately following

that run; storing the last run-length for every character takes O(σ log n) ⊆ O(Hn)

bits. It follows that storing `1, . . . , `σ takes

σ∑
i=1

O(ri log(n/ri) + ri) ≤
σ∑
i=1

O(ni log(n/ni)) +O(r) = O(Hn+ r)

bits, where ri is the number of runs of the ith smallest distinct element and r is

the total number of runs in s. Mäkinen and Navarro [MN05] showed r ≤ Hn+ 1,

so our bound is O(Hn).

To compute `1, . . . , `σ in one pass, we keep track of which distinct elements

have occurred and the positions of their most recent occurrences, which takesO(σ)

words of memory. For 1 ≤ j ≤ n, if sj is an occurrence of the ith smallest distinct

element and that element has not occurred before, then we start `i’s encoding

with γ(j); if it last occurred in position k ≤ j − 2, then we append γ(j − k) to

`i; if it occurred in position j − 1 but not j − 2, then we append γ(1) γ(1) to `i;

if it occurred in both positions j − 1 and j − 2, then we increment the encoded

run-length at the end of `i’s encoding. Because we do not know in advance how

many bits we will use to encode each `i, we keep the encoding in an expandable

binary array [CLRS01]: we start with an array of size 1 bit; whenever the array

overflows, we create a new array twice as big, copy the contents from the old array
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into the new one, and destroy the old array. We note that appending a bit to the

encoding takes amortized constant time.

Lemma 4.2. We can compute `1, . . . , `σ in one pass using O(Hn) bits of memory.

Proof. Since we are not yet concerned with time, for each element in s we can

simply perform a linear search — which is slow but uses no extra memory —

through the entire list of distinct elements to find the encoding we should extend.

Since an array is never more than twice the size of the encoding it holds, we use

O(Hn) bits of memory for the arrays.

To make our algorithm time-efficient, we use search in a splay tree [ST85]

instead of linear search. At each node of the splay tree, we store a distinct element

as the key, the position of that element’s most recent occurrence and a pointer to

the array for that element. For 1 ≤ j ≤ n, we search for sj in the splay tree; if we

find it, then we extend the encoding of the corresponding list as described above,

set the position of sj’s most recent occurrence to j and splay sj’s node to the root;

if not, then we insert a new node storing sj as its key, position j and a pointer

to an expandable array storing γ(j), and splay the node to the root. Figure 4.1

shows the state of our splay tree and arrays after we process the first 9 elements

in our example; i.e., a, b, r, a, c, a, d, a, b. Figure 4.2 shows the changes when we

process the next element, an r: we double the size of r’s array from 4 to 8 bits

in order to append γ(10 − 3 = 7) = 00111, set the position of r’s most recent

occurrence to 10 and splay r’s node to the root. Figure 4.3 shows the final state

of our splay tree and arrays after we process the last element, an a: we append

γ(11 − 8 = 3) = 011 to a’s array (but since only 10 of its 16 bits were already

used, we do not expand it), set the position of a’s most recent occurrence to 11

and splay a’s node to the root.

Lemma 4.3. We can compute `1, . . . , `σ in one pass using O((H + 1)n) time and

O(Hn) bits of memory.

Proof. Our splay tree takes O(σ) words of memory and, so, does not change the

bound on our memory usage. For 1 ≤ i ≤ σ we search for the ith largest distinct

element once when it is not in the splay tree, insert it once, and search for it ni−1

times when it is in the splay tree. Therefore, by the Update Lemma [ST85] for
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a, 8

1011010010

c, 5

d, 7

b, 9

r, 3

00101

01000111

011

00111

Figure 4.1: Our splay tree and arrays after we process a, b, r, a, c, a, d, a, b.

a, 8

b, 9

c, 5

d, 7

1011010010

01000111

00101

00111

01100111r, 10

Figure 4.2: Our splay tree and arrays after we process a, b, r, a, c, a, d, a, b, r; notice
we have doubled the size of the array for r, in order to append γ(7) = 00111.

b, 9

c, 5

d, 7

r, 10

00111

00101

01100111

01000111

1011010010011a, 11

Figure 4.3: Our splay tree and arrays after we process a, b, r, a, c, a, d, a, b, r, a;
notice we have not had to expand the array for a in order to append γ(3) = 011.
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splay trees, the total time taken for all the operations on the splay tree is

σ∑
i=1

O
(

log
W

min(wi−1, wi+1)
+ ni log

W

wi
+ ni

)
,

where w1, . . . , wσ are any positive weights, W is their sum and w0 = wσ+1 = ∞.

Setting wi = ni for 1 ≤ i ≤ σ, this bound becomes

σ∑
i=1

O
(
(ni + 2)(log(n/ni) + 1)

)
= O((H + 1)n) .

Because appending a bit to an array takes amortized constant time, the total time

taken for operations on the arrays is proportional to the total length in bits of the

encodings, i.e., O(Hn).

After we process all of s, we can compute π from the state of the splay tree

and arrays: we perform an in-order traversal of the splay tree; when we visit a

node, we decode the numbers in its array and output their positive partial sums

(this takes O(1) words of memory and time proportional to the length in bits

of the encoding, because the gamma code is prefix-free); this way, we output the

concatenation of the decoded lists in increasing order by element, i.e., `1 · · · `σ = π.

In our example, we visit the nodes in the order a, b, c, d, r; when we visit a’s node

we output

γ−1(1) = 1

1 + γ−1(011) = 1 + 3 = 4

4 + γ−1(010) = 4 + 2 = 6

6 + γ−1(010) = 6 + 2 = 8

8 + γ−1(011) = 8 + 3 = 11 .

Our results in this section culminate in the following theorem:

Theorem 4.4. We can compute π in one pass using O((H + 1)n) time and

O(Hn) bits of memory.

We note s can be recovered efficiently from our splay tree and arrays: we start

with an empty priority queue Q and insert a copy of each distinct element, with

priority equal to the position of its first occurrence (i.e., the first encoded number
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in its array); for 1 ≤ j ≤ n, we dequeue the element with minimum priority,

output it, and reinsert it with priority equal to the position of its next occurrence

(i.e., its previous priority plus the next encoded number in its array). This idea

— that a sorted ordering of s partially encodes it — is central to our lower bound

in the next section.

4.2 Lower bound

Consider any algorithm A that, allowed one pass over s, outputs a permutation ρ

such that sρ(1), . . . , sρ(n) is in sorted order (not necessarily stably-sorted). Notice

A generally cannot output anything until it has read all of s, in case sn is the

unique minimum; also, given the frequency of each distinct element, ρ tells us the

arrangement of elements in s up to equivalence.

Theorem 4.5. In the worst case, it takes Ω(Hn) bits of memory to compute any

sorted ordering of s in one pass.

Proof. Suppose each ni = n/σ, so H = log σ and the number of possible distinct

arrangements of the elements in s is maximized,

n!∏σ
i=1 ni!

=
n!

((n/σ)!)σ
.

It follows that in the worst case A uses at least

log
(
n!/((n/σ)!)σ

)
= log n!− σ log(n/σ)!

≥ n log n− n log e− σ
(
(n/σ) log(n/σ)− (n/σ) log e+O(log(n/σ))

)
= n log σ −O(σ log(n/σ))

bits of memory to store ρ; the inequality holds by Stirling’s Formula,

x log x− x log e < log x! ≤ x log x− x log e+O(log x) .

If σ = O(1) then

σ log(n/σ) = O(log n) ⊂ o(n) ;
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otherwise, since σ log(n/σ) is maximized when σ = n/e,

σ log(n/σ) = O(n) ⊂ o(n log σ) ;

in both cases,

n log σ −O(σ log(n/σ)) ≥ n log σ − o(n log σ) ≥ Ω(Hn) .
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Chapter 5

One-Pass Compression

Data compression has come of age in recent years and compression algorithms

are now vital in situations unforeseen by their designers. This has led to a dis-

crepancy between the theory of data compression algorithms and their use in

practice: compression algorithms are often designed and analysed assuming the

compression and decompression operations can use a “sufficiently large” amount

of working memory; however, in some situations, particularly in mobile or em-

bedded computing environments, the memory available is very small compared to

the amount of data we need to compress or decompress. Even when compression

algorithms are implemented to run on powerful desktop computers, some care is

taken to be sure that the compression/decompression of large files do not take

over all the RAM of the host machine. This is usually accomplished by splitting

the input into blocks (e.g., bzip), using heuristics to determine when to discard

the old data (e.g., compress, ppmd), or by maintaining a “sliding window” over

the more recently seen data and forgetting the oldest data (e.g., gzip).

In this chapter we initiate the theoretical study of space-conscious compression

algorithms. Although data compression algorithms have their own peculiarities,

this study belongs to the general field of algorithmics in the streaming model (see,

e.g., [BBD+02, Mut05]), in which we are allowed only one pass over the input

and memory sublinear (possibly polylogarithmic or even constant) in its size.

We prove tight upper and lower bounds on the compression ratio achievable by

one-pass algorithms that use an amount of memory independent of the size of the

input. By “one-pass”, we mean that the algorithms are allowed to read each input

symbol only once; hence, if an algorithm needs to access (portions of) the input

more than once it must store it—consuming part of its precious working memory.
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Our bounds are worst-case and given in terms of the empirical kth-order empirical

entropy of the input string. More precisely we prove the following results:

(a) Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function independent

of n. In the worst case it is impossible to store a string s of length n over

an alphabet of size σ in λHk(s)n + o(n log σ) + g bits using one pass and

O
(
σk+1/λ−ε) bits of memory.

(b) Given a (λHk(s)+o(n log σ)+g)-bit encoding of s, it is impossible to recover

s using one pass and O
(
σk+1/λ−ε) bits of memory.

(c) Given λ ≥ 1, k ≥ 0 and µ > 0, we can store s in λHk(s)n + µn +

O
(
σk+1/λ log σ

)
bits using one pass and O

(
σk+1/λ log2 σ

)
bits of memory,

and later recover s using one pass and the same amount of memory.

While σ is often treated as constant in the literature, we treat it as a variable to

distinguish between, say, O
(
σk+1/λ−ε) and O

(
σk+1/λ log2 σ

)
bits. Informally, (a)

provides a lower bound to the amount of memory needed to compress a string up

to its kth-order entropy; (b) tells us the same amount of memory is required also

for decompression and implies that the use of a powerful machine for doing the

compression does not help if only limited memory is available when decompression

takes place; (c) establishes that (a) and (b) are nearly tight. Notice λ plays a

dual role: for large k, it makes (a) and (b) inapproximability results — e.g., we

cannot use O
(
σk
)

bits of memory without worsening the compression in terms

of Hk(s) by more than a constant factor; for small k, it makes (c) an interesting

approximability result — e.g., we can compress reasonably well in terms of H0(s)

using, say, O(
√
σ) bits of memory. The main difference between the bounds in

(a)–(b) and (c) is a σε log2 σ factor in the memory usage. Since µ is a constant,

µn ∈ o(n log σ) and the bounds on the encoding’s length match. Note that µ can

be arbitrarily small, but the term µn cannot be avoided (Lemma 5.5).

We use s to denote the string we want to compress. We assume that s has

length n and is drawn from an alphabet of size σ. Note that we measure memory

in terms of alphabet size so σ is considered a variable. The 0th-order empirical

entropy H0(s) of s is defined as H0(s) =
∑

a
occ(a,s)

n
log n

occ(a,s)
, where occ (a, s) is

the number of times character a occurs in s; throughout, we write log to mean log2

and assume 0 log 0 = 0. It is well known that H0 is the maximum compression

we can achieve using a fixed codeword for each alphabet symbol. We can achieve
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a greater compression if the codeword we use for each symbol depends on the

k symbols preceding it. In this case the maximum compression is bounded by

the kth-order entropy Hk(s) (see [KM99] for the formal definition). We use two

properties of kth-order entropy in particular:

• Hk(s1)|s1|+Hk(s2)|s2| ≤ Hk(s1s2)|s1s2|,

• since H0(s) ≤ log |{a : a occurs in s}|, we have

Hk(s) ≤ log max
|w|=k
{j : w is followed by j distinct characters in s} .

We point out that the empirical entropy is defined pointwise for any string and

can be used to measure the performance of compression algorithms as a function

of the string’s structure, thus without any assumption on the input source. For

this reason we say that the bounds given in terms of Hk are worst-case bounds.

Some of our arguments are based on Kolmogorov complexity [LV08]; the Kol-

mogorov complexity of s, denoted K(s), is the length in bits of the shortest

program that outputs s; it is generally incomputable but can be bounded from

below by counting arguments (e.g., in a set of m elements, most have Kolmogorov

complexity at least logm−O(1)). We use two properties of Kolmogorov complex-

ity in particular: if an object can be easily computed from other objects, then its

Kolmogorov complexity is at most the sum of theirs plus a constant; and a fixed,

finite object has constant Kolmogorov complexity.

5.1 Algorithm

Move-to-front compression [BSTW86] is probably the best example of a compres-

sion algorithm whose space complexity is independent of the input length: keep

a list of the characters that have occurred in decreasing order by recency; store

each character in the input by outputting its position in the list (or, if it has not

occurred before, its index in the alphabet) encoded in Elias’ δ code [Eli75], then

move it to the front of the list. Move-to-front stores a string s of length n over

an alphabet of size σ in
(
H0(s) +O(logH0(s))

)
n+O(σ log σ) bits using one pass

and O(σ log σ) bits of memory. When memory is scarce, we can use O
(
σ1/λ log σ

)
bits of memory by storing only the dσ1/λe most recent characters; it is easy to see

that this increases the number of bits stored by a factor of at most λ. On the
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other hand, note that we can store s in
(
Hk(s) +O(logHk(s))

)
n+O

(
σk+1 log σ

)
bits by keeping a separate list for each possible context of length k; this increases

the memory usage by a factor of at most σk. In this section we first use a more

complicated algorithm to get a better upper bound: given constants λ ≥ 1, k ≥ 0

and µ > 0, we can store s in (λHk(s) + µ)n+O
(
σk+1/λ log σ

)
bits using one pass

and O
(
σk+1/λ log2 σ

)
bits of memory.

We start with the following lemma — based on a previous paper [Gag06b]

about compression algorithms’ redundancies — that says we can store an approx-

imation Q of a probability distribution P in few bits, so that the relative entropy

between P and Q is small. The relative entropy D(P‖Q) =
∑σ

i=1 pi log(pi/qi) be-

tween P = p1, . . . , pσ and Q = q1, . . . , qσ is the expected redundancy per character

of an ideal code for Q when characters are drawn according to P .

Lemma 5.1. Let s be a string of length n over an alphabet of size σ and let P be

the normalized distribution of characters in s. Given s and constants λ ≥ 1 and

µ > 0, we can store a probability distribution Q with D(P‖Q) < (λ− 1)H(P ) + µ

in O
(
σ1/λ log(n+ σ)

)
bits using O

(
σ1/λ log(n+ σ)

)
bits of memory.

Proof. Suppose P = p1, . . . , pσ. We can use an O(n log n)-time algorithm due to

Misra and Gries [MG82] (see also [DLM02, KSP03]) to find the t ≤ rσ1/λ values

of i such that pi ≥ 1/(rσ1/λ), where r = 1 + 1
2µ/2−1

, using O
(
σ1/λ log max(n, σ)

)
bits of memory; or, since we are not concerned with time in this chapter, we can

simply make σ passes over s to find these t values. For each, we store i and

bpir2σc; since r depends only on µ, in total this takes O
(
σ1/λ log σ

)
bits. This

information lets us later recover Q = q1, . . . , qσ where

qi =


(1− 1/r)bpir2σc∑

{bpjr2σc : pj ≥ 1/(rσ1/λ)}
if pi ≥ 1/(rσ1/λ),

1

r(σ − t)
otherwise.

Suppose pi ≥ 1
rσ1/λ ; then pir

2σ ≥ r. Since
∑{
bpjr2σc : pj ≥ r

σ1/λ

}
≤ r2σ,

pi log(pi/qi)

≤ pi log

(
r

r − 1
· pir

2σ

bpir2σc

)
< 2pi log

r

r − 1

= piµ .
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Now suppose pi < 1/(rσ1/λ); then pi log(1/pi) > (pi/λ) log σ. Therefore

pi log(pi/qi)

< pi log
(
(σ − t)/σ1/λ

)
≤ (λ− 1)(pi/λ) log σ

< (λ− 1)pi log(1/pi) .

Since pi log(pi/qi) < (λ − 1)pi log(1/pi) + piµ in both cases, D(P‖Q) < (λ −
1)H(P ) + µ.

Armed with this lemma, we can adapt arithmetic coding to useO
(
σ1/λ log(n+ σ)

)
bits of memory with a specified redundancy per character.

Lemma 5.2. Given a string s of length n over an alphabet of size σ and constants

λ ≥ 1 and µ > 0, we can store s in (λH0(s) +µ)n+O
(
σ1/λ log(n+ σ)

)
bits using

O
(
σ1/λ log(n+ σ)

)
bits of memory.

Proof. Let P be the normalized distribution of characters in s, so H(P ) = H0(s).

First, as described in Lemma 5.1, we store a probability distribution Q with

D(P‖Q) < (λ− 1)H(P ) +µ/2 in O
(
σ1/λ log σ

)
bits using O

(
σ1/λ log(n+ λ)

)
bits

of memory. Then, we process s in blocks s1, . . . , sb of length d4/µe (except sb may

be shorter). For 1 ≤ i < b, we store si as the first dlog(2/Pr[X = si])e bits to the

right of the binary point in the binary representation of

f(si) = Pr[X < si] + Pr[X = si]/2

=

d4/µe∑
j=1

Pr

[
X[1] = si[1], . . . , X[j − 1] = si[j − 1], X[j] < si[j]

]
+

Pr[X = si]/2 ,

where X is a string of length d4/µe chosen randomly according to Q, X < si

means X is lexicographically less than si, and X[j] and si[j] indicate the indices

in the alphabet of the jth characters of X and si, respectively. Notice that,

since |f(si) − f(y)| > Pr[X = si]/2 for any string y 6= si of length d4/µe, these

bits uniquely identify f(si) and, thus, si. Also, since the probabilities in Q are

O(log σ)-bit numbers, we can compute f(si) from si with O(σ) additions and

O(1/µ) = O(1) multiplications using O(log σ) bits of memory. (In fact, with

appropriate data structures, O(log σ) additions and O(1) multiplications suffice.)
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Finally, we store sb in |sb|dlog σe = O(log σ) bits. In total we store s in

b−1∑
i=1

dlog(2/Pr[X = si])e+O
(
σ1/λ log σ

)
≤

b−1∑
i=1

d4/µe∑
j=1

log(1/qsi[j]) + 2

+O
(
σ1/λ log σ

)
= n

σ∑
i=1

pi log(1/qi) + 2(b− 1) +O
(
σ1/λ log σ

)
≤ n(D(P‖Q) +H(P )) + µn/2 +O

(
σ1/λ log σ

)
≤ (λH0(s) + µ)n+O

(
σ1/λ log σ

)
bits using O

(
σ1/λ log(n+ σ)

)
bits of memory.

We modify our space-conscious arithmetic coding algorithm to achieve a bound

in terms of Hk(s) instead of H0(s) by running a separate copy for each possible

k-tuple, just as we modified move-to-front compression.

Lemma 5.3. Given a string s of length n over an alphabet of size σ and constants

λ ≥ 1, k ≥ 0 and µ > 0, we can store s in (λHk(s) + µ)n+O
(
σk+1/λ log(n+ σ)

)
bits using O

(
σk+1/λ log(n+ σ)

)
bits of memory.

Proof. We store the first k characters of s in O(log σ) bits then apply Lemma 5.2

to subsequences s1, . . . , sσk , where si consists of the characters in s that immedi-

ately follow occurrences of the lexicographically ith possible k-tuple. Notice that

although we cannot keep s1, . . . , sσk in memory, enumerating them as many times

as necessary in order to apply Lemma 5.2 takes O(log σ) bits of memory.

To make our algorithm use one pass and to change the log(n + σ) factor to

log σ, we process the input in blocks s1, . . . , sb of length O
(
σk+1/λ log σ

)
. Notice

each individual block si fits in memory — so we can apply Lemma 5.3 to it —

and log(|si|+ σ) = O(log σ).

Theorem 5.4. Given a string s of length n over an alphabet of size σ and con-

stants λ ≥ 1, k ≥ 0 and µ > 0, we can store s in (λHk(s) +µ)n+O
(
σk+1/λ log σ

)
bits using one pass and O

(
σk+1/λ log2 σ

)
bits of memory, and later recover s using

one pass and the same amount of memory.
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Proof. Let c be a constant such that, by Lemma 5.3, we can store any substring

si of s in (λHk(si) +µ/2)|si|+ cσk+1/λ log σ bits using O
(
σ1/λ log(|si|+ σ)

)
bits of

memory. We process s in blocks s1, . . . , sb of length d(2c/µ)σk+1/λ log σe (except

sb may be shorter). Notice each block si fits in O
(
σk+1/λ log2 σ

)
bits of memory.

When we reach si, we read it into memory, apply Lemma 5.3 to it — using

O
(
σk+1/λ log

(
d(2c/µ)σk+1/λ log σe+ σ

))
= O

(
σk+1/λ log σ

)
bits of memory — then erase it from memory. In total we store s in

b∑
i=1

(
(λHk(si) + µ/2)|si|+ cσk+1/λ log σ

)
≤ (λHk(s) + µ/2)n+ bcσk+1/λ log σ

≤ (λHk(s) + µ)n+ cσk+1/λ log σ

bits using O
(
σk+1/λ log2 σ

)
bits of memory.

Notice the encoding of each block si also fits inO
(
σk+1/λ log2 σ

)
bits of memory.

To decode each block later, we read its encoding into memory, search through all

possible strings of length d(2c/µ)σk+1/λ log σe in lexicographic order until we find

the one that yields that encoding — using O
(
σk+1/λ log2 σ

)
bits of memory —

and output it.

The method for decompression in the proof of Theorem 5.4 above takes ex-

ponential time but is very simple (recall we are not concerned with time here);

reversing each step of the compression takes linear time but is slightly more com-

plicated.

5.2 Lower bounds

Theorem 5.4 is still weaker than the strongest compression bounds that ignore

memory constraints, in two important ways: first, even when λ = 1 the bound on

the compression ratio does not approach Hk(s) as n goes to infinity; second, we

need to know k. It is not hard to prove these weaknesses are unavoidable when

using fixed memory. In this section, we use the idea from these proofs to prove a

nearly matching lower bound for compression: in the worst case it is impossible to

store a string s of length n over an alphabet of size σ in λHk(s)n+ o(n log σ) + g
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bits, for any function g independent of n, using one encoding pass andO
(
σk+1/λ−ε)

bits of memory. We close with a symmetric lower bound for decompression.

Lemma 5.5. Let λ ≥ 1 be a constant and let g be a function independent of n. In

the worst case it is impossible to store a string s of length n in λH0(s)n+o(n) +g

bits using one encoding pass and memory independent of n.

Proof. Let A be an algorithm that, given λ, stores s using one pass and memory

independent of n. Since A’s future output depends only on its state and its

future input, we can model A with a finite-state machine M . While reading

|M | characters of s, M must visit some state at least twice; therefore either M

outputs at least one bit for every |M | characters in s — or n/|M | bits in total

— or for infinitely many strings M outputs nothing. If s is unary, however, then

H0(s) = 0.

Lemma 5.6. Let λ be a constant, let g be a function independent of n and let b

be a function independent of n and k. In the worst case it is impossible to store a

string s of length n over an alphabet of size σ in λHk(s)n+ o(n log σ) + g bits for

all k ≥ 0 using one pass and b bits of memory.

Proof. Let A be an algorithm that, given λ, g, b and σ, stores s using b bits of

memory. Again, we can model it with a finite-state machine M , with |M | = 2b

and M ’s Kolmogorov complexity K(M) = K(〈A, λ, g, b, σ〉) + O(1) = O(log σ).

(Since A, λ, g, and b are all fixed, their Kolmogorov complexities are O(1).)

Suppose s is a periodic string with period 2b whose repeated substring r has

K(r) = |r| log σ−O(1). We can specify r by specifying M , the states M is in when

it reaches and leaves any copy of r in s, and M ’s output on that copy of r. (If

there were another string r′ that took M between those states with that output,

then we could substitute r′ for r in s without changing M ’s output.) Therefore

M outputs at least

K(r)−K(M)−O(log |M |) = |r| log σ −O(log σ + b) = Ω(|r| log σ)

bits for each copy of r in s, or Ω(n log σ) bits in total. For k ≥ 2b, however, Hk(s)

approaches 0 as n goes to infinity.

The idea behind these proofs is simple: model a one-pass algorithm with a

finite-state machine and evaluate its behaviour on a periodic string. Nevertheless,
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combining it with the following simple results — based on the same previous

paper [Gag06b] as Lemma 5.1 — we can easily show a lower bound that nearly

matches Theorem 5.4. (In fact, our proofs are valid even for algorithms that

make preliminary passes that produce no output — perhaps to gather statistics,

like Huffman coding [Huf52] — followed by a single encoding pass that produces

all of the output; once the algorithm begins the encoding pass, we can model it

with a finite-state machine.)

Lemma 5.7. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let r be a randomly

chosen string of length bσk+1/λ−εc over an alphabet of size σ. With high probability

every possible k-tuple is followed by O
(
σ1/λ−ε) distinct characters in r.

Proof. Consider a k-tuple w. For 1 ≤ i ≤ n − k, let Xi = 1 if the ith through

(i + k − 1)st characters of s are an occurrence of w and the (i + k)th character

in s does not occur in w; otherwise Xi = 0. Notice w is followed by at most∑n−k
i=1 Xi + k distinct characters in s and Pr[Xi = 1 |Xj = 1] ≤ 1/σk and Pr[Xi =

1 |Xj = 0] ≤ 1/(σk − 1) for i 6= j. Therefore, by Chernoff bounds (see [HR90])

and the union bound, with probability greater than

1− σk

26bσk+1/λ−εc/(σk−1)
≥ 1− σk/26σ1/λ−ε

every k-tuple is followed by fewer than 6bσk+1/λ−εc/(σk − 1) + k ≤ 12σ1/λ−ε + k

distinct characters.

Corollary 5.8. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants. There exists a string

r of length bσk+1/λ−εc over an alphabet of size σ with K(r) = |r| log σ −O(1) but

Hk(r
i) ≤ (1/λ− ε) log σ +O(1) for i ≥ 1.

Proof. If r is randomly chosen, then K(r) ≥ |r| log σ− 1 with probability greater

than 1/2 and, by Lemma 5.7, with high probability every possible k-tuple is

followed by O
(
σ1/λ−ε) distinct characters in r; therefore there exists an r with

both properties. Every possible k-tuple is followed by at most k more distinct

characters in ri than in r and, thus,

Hk(r
i) ≤ log max

|w|=k

{
j :

w is followed by j

distinct characters in ri

}
≤ logO

(
σ1/λ−ε)

≤ (1/λ− ε) log σ +O(1) .
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Consider what we get if, for some ε > 0, we allow the algorithm A from

Lemma 5.6 to use O
(
σk+1/λ−ε) bits of memory, and evaluate it on the periodic

string ri from Corollary 5.8. Since ri has period bσk+1/λ−εc and its repeated

substring r has K(r) = |r| log σ − O(1), the finite-state machine M outputs at

least

K(r)−K(M)−O(log |M |) = |r| log σ −O
(
σk+1/λ−ε) = |r| log σ −O(|r|)

bits for each copy of r in ri, or n log σ − O(n) bits in total. Because λHk(r
i) ≤

(1 − ε) log σ + O(1), this yields the following nearly tight lower bound; notice it

matches Theorem 5.4 except for a σε log2 σ factor in the memory usage.

Theorem 5.9. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function

independent of n. In the worst case it is impossible to store a string s of length

n over an alphabet of size σ in λHk(s)n + o(n log σ) + g bits using one encoding

pass and O
(
σk+1/λ−ε) bits of memory.

Proof. Let A be an algorithm that, given λ, k, ε and σ, stores s while using one

encoding pass and O
(
σk+1/λ−ε) bits of memory; we prove that in the worst case

A stores s in more than (λHk(s) +µ)n+ o(n log σ) + g bits. Again, we can model

it with a finite-state machine M , with |M | = 2O(σ
k+1/λ−ε) and K(M) = O(log σ).

Let r be a string of length bσk+1/λ−εc with K(r) ≥ |r| log σ −O(1) and Hk(r
i) ≤

(1/λ− ε) log σ +O(1) for i ≥ 1, as described in Corollary 5.8, and suppose s = ri

for some i. We can specify r by specifying M , the states M is in when it reaches

and leaves any copy of r in s, and M ’s output on that copy. Therefore M outputs

at least

K(r)−K(M)−O
(
σk+1/λ−ε) = |r| log σ −O(|r|)

bits for each copy of r in s, or n log σ−O(n) bits in total — which is asymptotically

greater than λHk(s)n+ o(n log σ) + g ≤ (1− ε)n log σ + o(n log σ) + g.

With a good bound on how much memory is needed for compression, we turn

our attention to decompression. Good bounds here are equally important, be-

cause often data is compressed once by a powerful machine (e.g., a server or

base-station) and then transmitted to many weaker machines (clients or agents)

who decompress it individually. Fortunately for us, compression and decompres-

sion are essentially symmetric. Recall Theorem 5.4 says we can recover s from

a
(
λHk(s) + µ)n+O

(
σk+1/λ log σ

))
-bit encoding using O

(
σk+1/λ log2 σ

)
bits of
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memory and one pass. Using the same idea about finite-state machines and peri-

odic strings gives us the following nearly matching lower bound:

Theorem 5.10. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function

independent of n. There exists a string s of length n over an alphabet of size σ

such that, given a (λHk(s)n+ o(n log σ) + g)-bit encoding of s, it is impossible to

recover s using one pass and O
(
σk+1/λ−ε) bits of memory.

Proof. Let r be a string of length bσk+1/λ−εc with K(r) = |r| log σ − O(1) but

Hk(r
i) ≤ (1/λ − ε) log σ + O(1) for i ≥ 1, as described in Corollary 5.8, and

suppose s = ri for some i. Let A be an algorithm that, given λ, k, ε, σ and a

(λHk(s)n + o(n log σ) + g)-bit encoding of s, recovers s using one pass; we prove

A uses ω(σk+1/λ−ε) bits of memory. Again, we can model A with a finite-state

machine M , with log |M | equal to the number of bits of memory A uses and

K(M) = O(log σ). We can specify r by specifying M , the state M is in when it

starts outputting any copy of r in s, and the bits of the encoding it reads while

outputting that copy of r; therefore

K(r) ≤ K(M) +O(log |M |) +
(
λHk(s)n+ o(n log σ) + g

)
/i

≤ O(log σ) +O(log |M |) + |r|
(
(1− ε) log σ + o(log σ) + g/n

)
≤ (1− ε)|r| log σ + o(|r| log σ) +O(log |M |) + g/n ,

so

O(log |M |) + g/n ≥ ε|r| log σ − o(|r| log σ) = Ω(σk+1/λ−ε log σ) .

The theorem follows because n can be arbitrarily large compared to g.
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Chapter 6

Stream Compression

Massive datasets seem to expand to fill the space available and, in situations when

they no longer fit in memory and must be stored on disk, we may need new models

and algorithms. Grohe and Schweikardt [GS05] introduced read/write streams to

model situations in which one wants to process data using mainly sequential ac-

cesses to one or more disks. As the name suggests, this model is like the streaming

model (see, e.g., [Mut05]) but, as is reasonable with datasets stored on disk, it

allows us to make multiple passes over the data, change them and even use mul-

tiple streams (i.e., disks). As Grohe and Schweikardt pointed out, sequential disk

accesses are much faster than random accesses — potentially bypassing the von

Neumann bottleneck — and using several disks in parallel can greatly reduce the

amount of memory and the number of accesses needed. For example, when sorting,

we need the product of the memory and accesses to be at least linear when we use

one disk [MP80, GKS07] but only polylogarithmic when we use two [CY91, GS05].

Similar bounds have been proven for a number of other problems, such as check-

ing set disjointness or equality; we refer readers to Schweikardt’s survey [Sch07]

of upper and lower bounds with one or more read/write streams, Heinrich and

Schweikardt’s recent paper [HS08] relating read/write streams to classical com-

plexity theory, and Beame and Huỳnh-Ngo.c’s recent paper [BH08] on the value

of multiple read/write streams for approximating frequency moments.

Since sorting is an important operation in some of the most powerful data

compression algorithms, and compression is an important operation for reducing

massive datasets to a more manageable size, we wondered whether extra streams

could also help us achieve better compression. In this chapter we consider the

problem of compressing a string s of n characters over an alphabet of size σ when
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we are restricted to using logO(1) n bits of memory and logO(1) n passes over the

data. In Section 6.1, we show how we can achieve universal compression using

only one pass over one stream. Our approach is to break the string into blocks and

compress each block separately, similar to what is done in practice to compress

large files. Although this may not usually significantly worsen the compression

itself, it may stop us from then building a fast compressed index [FMMN07]

(unless we somehow combine the indexes for the blocks) or clustering by compres-

sion [CV05, FGG+07] (since concatenating files should not help us compress them

better if we then break them into pieces again). In Section 6.2 we use a vaguely

automata-theoretic argument to show one stream is not sufficient for us to achieve

good grammar-based compression. Of course, by “good” we mean here something

stronger than universal compression: we want the size of our encoding to be at

most polynomial in the size of the smallest context-free grammar that generates

s and only s. We still do not know whether any constant number of streams is

sufficient for us to achieve such compression. Finally, in Section 6.3 we show that

two streams are necessary and sufficient for us to achieve entropy-only bounds.

Along the way, we show we need two streams to find strings’ minimum periods

or to compute the Burrows-Wheeler Transform. As far as we know, this is the

first study of compression with read/write streams, and among the first studies

of compression in any streaming model; we hope the techniques we use will prove

to be of independent interest.

6.1 Universal compression

An algorithm is called universal with respect to a class of sources if, when a string

is drawn from any of those sources, the algorithm’s redundancy per character

approaches 0 with probability 1 as the length of the string grows. The class most

often considered, and which we consider in this section, is that of stationary,

ergodic Markov sources (see, e.g., [CT06]). Since the kth-order empirical entropy

Hk(s) of s is the minimum self-information per character of s with respect to a

kth-order Markov source (see [Sav97]), an algorithm is universal if it stores any

string s in nHk(s) + o(n) bits for any fixed σ and k. The kth-order empirical

entropy of s is also our expected uncertainty about a randomly chosen character
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of s when given the k preceding characters. Specifically,

Hk(s) =

 (1/n)
∑

a occ(a, s) log n
occ(a,s)

if k = 0,

(1/n)
∑
|w|=k |ws|H0(ws) otherwise,

where occ(a, s) is the number of times character a occurs in s, and ws is the

concatenation of those characters immediately following occurrences of k-tuple w

in s.

In a previous paper [GM07b] we showed how to modify the well-known LZ77

compression algorithm [ZL77] to use sublinear memory while still storing s in

nHk(s)+O(n log log n/ log n) bits for any fixed σ and k. Our algorithm uses nearly

linear memory and so does not fit into the model we consider in this chapter,

but we mention it here because it fits into some other streaming models (see,

e.g., [Mut05]) and, as far as we know, was the first compression algorithm to do

so. In the same paper we proved several lower bounds using ideas that eventually

led to our lower bounds in Sections 6.2 and 6.3 of this chapter.

Theorem 6.1 (Gagie and Manzini, 2007). We can achieve universal compression

using one pass over one stream and O
(
n/ log2 n

)
bits of memory.

To achieve universal compression with only polylogarithmic memory, we use

a recent algorithm due to Gupta, Grossi and Vitter [GGV08]. Although they

designed it for the RAM model, we can easily turn it into a streaming algorithm

by processing s in small blocks and compressing each block separately.

Theorem 6.2 (Gupta, Grossi and Vitter, 2008). In the RAM model, we can store

any string s in nHk(s) + O
(
σk log n

)
bits, for all k simultaneously, using O(n)

time.

Corollary 6.3. We can achieve universal compression using one pass over one

stream and O
(
log1+ε n

)
bits of memory.

Proof. We process s in blocks of dlogε ne characters, as follows: we read each block

into memory, apply Theorem 6.2 to it, output the result, empty the memory, and

move on to the next block. (If n is not given in advance, we increase the block

size as we read more characters.) Since Gupta, Grossi and Vitter’s algorithm

uses O(n) time in the RAM model, it uses O(n log n) bits of memory and we use
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O
(
log1+ε n

)
bits of memory. If the blocks are s1, . . . , sb, then we store all of them

in a total of

b∑
i=1

(
|si|Hk(si) +O

(
σk log log n

))
≤ nHk(s) +O

(
σkn log log n/ logε n

)
bits for all k simultaneously. Therefore, for any fixed σ and k, we store s in

nHk(s) + o(n) bits.

A bound of nHk(s)+O
(
σkn log log n/ logε n

)
bits is not very meaningful when k

is not fixed and grows as fast as log log n, because the second term is ω(n). Notice,

however, that Gupta et al.’s bound of nHk(s) +O
(
σk log n

)
bits is also not very

meaningful when k ≥ log n, for the same reason. As we will see in Section 6.3, it is

possible for s to be fairly incompressible but still to have Hk(s) = 0 for k ≥ log n.

It follows that, although we can prove bounds that hold for all k simultaneously,

those bounds cannot guarantee good compression in terms of Hk(s) when k ≥
log n.

By using larger blocks — and, thus, more memory — we can reduce the

O
(
σkn log log n/ logε n

)
redundancy term in our analysis, allowing k to grow faster

than log log n while still having a meaningful bound. We conjecture that the

resulting tradeoff is nearly optimal. Specifically, using an argument similar to

those we use to prove the lower bounds in Sections 6.2 and 6.3, we believe we can

prove that the product of the memory, passes and redundancy must be nearly

linear in n. It is not clear to us, however, whether we can modify Corollary 6.3 to

take advantage of multiple passes.

Open Problem 6.4. With multiple passes over one stream, can we achieve better

bounds on the memory and redundancy than we can with one pass?

6.2 Grammar-based compression

Charikar et al. [CLL+05] and Rytter [Ryt03] independently showed how to build

a context-free grammar APPROX that generates s and only s and is an O(log n)

factor larger than the smallest such grammar OPT, which is Ω(log n) bits in size.

Theorem 6.5 (Charikar et al., 2005; Rytter, 2003). In the RAM model, we can

approximate the smallest grammar with |APPROX| = O(|OPT|2) using O(n) time.
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In this section we prove that, if we use only one stream, then in general our

approximation must be superpolynomially larger than the smallest grammar. Our

idea is to show that periodic strings whose periods are asymptotically slightly

larger than the product of the memory and passes, can be encoded as small

grammars but, in general, cannot be compressed well by algorithms that use only

one stream. Our argument is based on the following two lemmas.

Lemma 6.6. If s has period `, then the size of the smallest grammar for that

string is O(`+ log n log log n) bits.

Proof. Let t be the repeated substring and t′ be the proper prefix of t such that

s = tbn/`ct′. We can encode a unary string Xbn/`c as a grammar G1 with O(log n)

productions of total size O(log n log log n) bits. We can also encode t and t′ as

grammars G2 and G3 with O(`) productions of total size O(`) bits. Suppose S1,

S2 and S3 are the start symbols of G1, G2 and G3, respectively. By combining

those grammars and adding the productions S0 → S1S3 and X → S2, we obtain

a grammar with O(`+ log n) productions of total size O(`+ log n log log n) bits

that maps S0 to s.

Lemma 6.7. Consider a lossless compression algorithm that uses only one stream,

and a machine performing that algorithm. We can compute any substring from

• its length;

• for each pass, the machine’s memory configurations when it reaches and

leaves the part of the stream that initially holds that substring;

• all the output the machine produces while over that part.

Proof. Let t be the substring and assume, for the sake of a contradiction, that

there exists another substring t′ with the same length that takes the machine

between the same configurations while producing the same output. Then we can

substitute t′ for t in s without changing the machine’s complete output, contrary

to our specification that the compression be lossless.

Lemma 6.7 implies that, for any substring, the size of the output the machine

produces while over the part of the stream that initially holds that substring, plus

twice the product of the memory and passes (i.e., the number of bits needed to

store the memory configurations), must be at least that substring’s complexity.
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Therefore, if a substring is not compressible by more than a constant factor (as

is the case for most strings) and asymptotically larger than the product of the

memory and passes, then the size of the output for that substring must be at least

proportional to the substring’s length. In other words, the algorithm cannot take

full advantage of similarities between substrings to achieve better compression.

In particular, if s is periodic with a period that is asymptotically slightly larger

than the product of the memory and passes, and s’s repeated substring is not

compressible by more than a constant factor, then the algorithm’s complete output

must be Ω(n) bits. By Lemma 6.6, however, the size of the smallest grammar that

generates s and only s is bounded in terms of the period.

Theorem 6.8. With one stream, we cannot approximate the smallest grammar

with |APPROX| ≤ |OPT|O(1).

Proof. Suppose an algorithm uses only one stream, m bits of memory and p passes

to compress s, with mp = logO(1) n, and consider a machine performing that algo-

rithm. Furthermore, suppose s is periodic with period dmp log ne and its repeated

substring t is not compressible by more than a constant factor. Lemma 6.7 implies

that the machine’s output while over a part of the stream that initially holds a

copy of t, must be Ω(mp log n−mp) = Ω(mp log n). Therefore, the machine’s com-

plete output must be Ω(n) bits. By Lemma 6.6, however, the size of the smallest

grammar that generates s and only s is O(mp log n+ log n log log n) ⊂ logO(1) n

bits. Since n = logω(1) n, the algorithm’s complete output is superpolynomially

larger than the smallest grammar.

As an aside, we note that a symmetric argument shows that, with only one

stream, in general we cannot decode a string encoded as a small grammar. To

prove this, instead of considering a part of the stream that initially holds a copy of

the repeated substring t, we consider a part that is initially blank and eventually

holds a copy of t. We can compute t from the machine’s memory configurations

when it reaches and leaves that part, so the product of the memory and passes

must be greater than or equal to t’s complexity. Also, we note that Theorem 6.8

has the following corollary, which may be of independent interest.

Corollary 6.9. With one stream, we cannot find strings’ minimum periods.

Proof. Consider the proof of Theorem 6.8. If we could find s’s minimum period,

then we could store s in logO(1) n bits by writing n and one copy of its repeated

substring t.
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We are currently working on a more detailed argument to show that we cannot

even check whether a string has a given period. Unfortunately, as we noted earlier,

our results for this section are still incomplete, as we do not know whether multiple

streams are helpful for grammar-based compression.

Open Problem 6.10. With O(1) streams, can we approximate the smallest gram-

mar well?

6.3 Entropy-only bounds

Kosaraju and Manzini [KM99] pointed out that proving an algorithm universal

does not necessarily tell us much about how it behaves on low-entropy strings. In

other words, showing that an algorithm encodes s in nHk(s)+o(n) bits is not very

informative when nHk(s) = o(n). For example, although the well-known LZ78

compression algorithm [ZL78] is universal, |LZ78(1n) = Ω(
√
n) while nH0(1

n) = 0.

To analyze how algorithms perform on low-entropy strings, we would like to get

rid of the o(n) term and prove bounds that depend only on nHk(s). Unfortunately,

this is impossible since, as the example above shows, even nH0(s) can be 0 for

arbitrarily long strings.

It is not hard to show that only unary strings have H0(s) = 0. For k ≥ 1,

recall that Hk(s) = (1/n)
∑
|w|=k |ws|H0(ws). Therefore, Hk(s) = 0 if and only

if each distinct k-tuple w in s is always followed by the same distinct character.

This is because, if a w is always followed by the same distinct character, then

ws is unary, H0(ws) = 0 and w contributes nothing to the sum in the formula.

Manzini [Man01] defined the kth-order modified empirical entropy H∗k(s) such that

each context w contributes at least blog |ws|c + 1 to the sum. Because modified

empirical entropy is more complicated than empirical entropy — e.g., it allows

for variable-length contexts — we refer readers to Manzini’s paper for the full

definition. In our proofs in this chapter, we use only the fact that

nHk(s) ≤ nH∗k(s) ≤ nHk(s) +O
(
σk log n

)
.

Manzini showed that, for some algorithms and all k simultaneously, it is pos-

sible to bound the encoding’s length in terms of only nH∗k(s) and a constant

that depends only on σ and k; he called such bounds “entropy-only”. In par-

ticular, he showed that an algorithm based on the Burrows-Wheeler Transform
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(BWT) [BW94] stores any string s in at most (5 + ε)nH∗k(s) + log n+ gk bits for

all k simultaneously (since nH∗k(s) ≥ log(n− k), we could remove the log n term

by adding 1 to the coefficient 5 + ε).

Theorem 6.11 (Manzini, 2001). Using the BWT, move-to-front coding, run-

length coding and arithmetic coding, we can achieve an entropy-only bound.

The BWT sorts the characters in a string into the lexicographical order of the

suffixes that immediately follow them. When using the BWT for compression, it

is customary to append a special character $ that is lexicographically less than

any in the alphabet. For a more thorough description of the BWT, we again refer

readers to Manzini’s paper. In this section we first show how we can compute and

invert the BWT with two streams and, thus, achieve entropy-only bounds. We

then show that we cannot achieve entropy-only bounds with only one stream. In

other words, two streams are necessary and sufficient for us to achieve entropy-only

bounds.

One of the most common ways to compute the BWT is by building a suffix ar-

ray. In his PhD thesis, Ruhl introduced the StreamSort model [Ruh03, ADRR04],

which is similar to the read/write streams model with one stream, except that it

has an extra primitive that sorts the stream in one pass. Among other things, he

showed how to build a suffix array efficiently in this model.

Theorem 6.12 (Ruhl, 2003). In the StreamSort model, we can build a suffix array

using O(log n) bits of memory and O(log n) passes.

Corollary 6.13. With two streams, we can compute the BWT using O(log n) bits

of memory and O
(
log2 n

)
passes.

Proof. We can compute the BWT in the StreamSort model by appending $ to s,

building a suffix array, and replacing each value i in the array by the (i − 1)st

character in s (replacing either 0 or 1 by $, depending on where we start counting).

This takes O(log n) bits of memory and O(log n) passes. Since we can sort with

two streams using O(log n) bits memory and O(log n) passes (see, e.g., [Sch07]),

it follows that we can compute the BWT using O(log n) bits of memory and

O
(
log2 n

)
passes.

Now suppose we are given a permutation π on n+1 elements as a list π(1), . . . ,

π(n + 1), and asked to rank it, i.e., to compute the list π0(1), . . . , πn(1). This
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problem is a special case of list ranking (see, e.g., [ABD+07]) and has a surprisingly

long history. For example, Knuth [Knu98, Solution 24] described an algorithm,

which he attributed to Hardy, for ranking a permutation with two tapes. More

recently, Bird and Mu [BM04] showed how to invert the BWT by ranking a

permutation. Therefore, reinterpreting Hardy’s result in terms of the read/write

streams model gives us the following bounds.

Theorem 6.14 (Hardy, c. 1967). With two streams, we can rank a permutation

using O(log n) bits of memory and O
(
log2 n

)
passes.

Corollary 6.15. With two streams, we can invert the BWT using O(log n) bits

of memory and O
(
log2 n

)
passes.

Proof. The BWT has the property that, if a character is the ith in BWT(s), then

its successor in s is the lexicographically ith in BWT(s) (breaking ties by order of

appearance). Therefore, we can invert the BWT by replacing each character by

its lexicographic rank, ranking the resulting permutation, replacing each value i

by the ith character of BWT(s), and rotating the string until $ is at the end. This

takes O(log n) memory and O
(
log2 n

)
passes.

Since we can compute and invert move-to-front, run-length and arithmetic cod-

ing using O(log n) bits of memory and O(1) passes over one stream, by combining

Theorem 6.11 and Corollaries 6.13 and 6.15 we obtain the following theorem.

Theorem 6.16. With two streams, we can achieve an entropy-only bound using

O(log n) bits of memory and O
(
log2 n

)
passes.

To show we need at least two streams to achieve entropy-only bounds, we use

De Bruijn cycles in a proof similar to the one for Theorem 6.8. A kth-order De

Bruijn cycle [dB46] is a cyclic sequence in which every possible k-tuple appears

exactly once. For example, Figure 6.1 shows a 3rd-order and a 4th-order De Bruijn

cycle. (We need consider only binary De Bruijn cycles.) Our argument this time

is based on Lemma 6.7 and the following results about De Bruijn cycles.

Lemma 6.17. If s ∈ d∗ for some kth-order De Bruijn cycle d, then nH∗k(s) =

O
(
2k log n

)
.

Proof. By definition, each distinct k-tuple is always followed by the same distinct

character; therefore, nHk(s) = 0 and nH∗k(s) = O
(
2k log n

)
.
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0 0
1 0
0 1

1 1

1 0 0 0 0 1
1 0
1 0
1 0 1 0 1 1

Figure 6.1: Examples of 3rd-order and 4th-order De Bruijn cycles.

Theorem 6.18 (De Bruijn, 1946). There are 22k−1−k kth-order De Bruijn cycles.

Corollary 6.19. We cannot store most kth-order De Bruijn cycles in o(2k) bits.

Since there are 2k possible k-tuples, kth-order De Bruijn cycles have length

2k, so Corollary 6.19 means that we cannot compress most De Bruijn cycles by

more than a constant factor. Therefore, we can prove a lower bound similar to

Theorem 6.8 by supposing that s’s repeated substring is a De Bruijn cycle, then

using Lemma 6.17 instead of Lemma 6.6.

Theorem 6.20. With one stream, we cannot achieve an entropy-only bound.

Proof. As in the proof of Theorem 6.8, suppose an algorithm uses only one stream,

m bits of memory and p passes to compress s, with mp = logO(1) n, and consider

a machine performing that algorithm. This time, however, suppose s is periodic

with period 2dlog(mp logn)e and that its repeated substring t is a kth-order De Bruijn

cycle, k = dlog(mp log n)e, that is not compressible by more than a constant factor.

Lemma 6.7 implies that the machine’s output while over a part of the stream that

initially holds a copy of t, must be Ω(mp log n −mp) = Ω(mp log n). Therefore,

the machine’s complete output must be Ω(n) bits. By Lemma 6.17, however,

nH∗k(s) = O
(
2k log n

)
= O

(
mp log2 n

)
⊂ logO(1) n.

Notice Theorem 6.20 implies a lower bound for computing the BWT: if we

could compute the BWT with one stream then, since we can compute move-to-

front, run-length and arithmetic coding using O(log n) bits of memory and O(1)

passes over one stream, we could thus achieve an entropy-only bound with one

stream, contradicting Theorem 6.20.

Corollary 6.21. With one stream, we cannot compute the BWT.

Grohe and Schweikardt [GS05] proved that, with O(1) streams, we generally

cannot sort n/ log n numbers, each consisting of log n bits, using O(n1−ε) bits of

memory and o(log n) passes. Combining this result with the following lemma, we

immediately obtain a lower bound for computing the BWT with O(1) streams.
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Lemma 6.22. With two or more streams, sorting O(n/ log n) numbers, each of

log n bits, takes O(log n) more bits of memory and O(1) more passes than com-

puting the BWT of a ternary string of length n.

Proof. We reduce the problem of sorting a sequence x1, . . . , xm of (log n)-bit binary

numbers, m = n/(2 log n+log log n+2), to the problem of computing the BWT of

a ternary string of length n. Let xi[j] denote the jth bit of xi. Using two streams,

O(1) passes and O(log n) memory, we replace each xi[j] by xi[j] 2 xi i j, writing

2 as a single character, xi and i each as log n bits, and j as log log n bits. Let

X be the resulting string and consider the last m log n characters of the BWT of

X: they are a permutation of the characters followed by 2s in X, i.e., the bits of

x1, . . . , xm; if xi < xi′ or xi = xi′ but i < i′ then, because 2 xi i is lexicographically

less than 2 xi′ i
′, each bit of xi comes before each bit of xi′ ; if j < j′ then, for

any i, because 2 xi i j is lexicographically less than 2 xi i j
′, the bit xi[j] comes

before the bit xi[j
′]. In other words, the last m log n characters of the BWT of X

are x1, . . . , xm in sorted order.

Corollary 6.23. With O(1) streams, we cannot compute the BWT of a ternary

string of length n using O(n1−ε) bits of memory and o(log n) passes.

In another paper [GM07a] we improved the coefficient in Manzini’s bound

from 5 + ε to 2.7, using a variant of distance coding instead of move-to-front and

run-length coding. We conjecture this algorithm can also be implemented with

two streams.

Open Problem 6.24. With O(1) streams, can we achieve the same entropy-only

bounds that we achieve in the RAM model?

The main idea of distance coding [Bin00] is to write the starting position of

each maximal run (i.e., subsequence consisting of copies of the same character),

by writing the distance from the start of each maximal run to the start of the next

maximal run of the same character. Notice we do not need to write the length

of each run because the end of each run (except the last) is the position before

the start of the next one. By symmetry, it makes essentially no difference to the

length of the encoding if we write the distance to the start of each maximal run

from the start of the previous maximal run of the same character, which is not

difficult with O(σ log n) bits of memory and O(1) passes.
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Kaplan, Landau and Verbin [KLV07] showed how, using the BWT followed by

distance coding and arithmetic coding, we can store s in 1.73nHk(s)+O(log n) bits

for any fixed σ and k. This bound holds only when we use an idealized arithmetic

coder with O(log n) total redundancy; if we use a 0th-order coder with per char-

acter redundancy µ, then the bound becomes 1.73nHk(s) +µn+O(log n). In our

paper [GM07a] we used a lemma due to Mäkinen and Navarro [MN05] bounding

the number of runs in terms of the product of the length and the 0th-order empir-

ical entropy, to change the latter bound into (1.73 + µ)nHk(s) +O(log n), which

is an improvement when Hk(s) < 1. Unfortunately, the presence of the O(log n)

term prevents this from being an entropy-only bound. To prove an entropy-only

bound, we modified distance coding to use an escape mechanism, which we have

not verified can be implemented in the read/write streams model.
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Chapter 7

Conclusions and Future Work

In this thesis we have tried to provide a fairly complete but coherent view of our

studies of sequential-access data compression, balancing discussion of previous

work with presentation of our own results. We would like to highlight now what we

consider our key ideas. The most important innovation in Chapter 2 was probably

our use of predecessor queries for encoding and decoding with a canonical code.

This, combined with our use of Fredman and Willard’s data structure [FW93],

Shannon coding and background processing, allowed us to encode and decode each

character in constant worst-case time while producing an encoding whose length

was worst-case optimal. Chapters 3 and 4 were, admittedly, somewhat tangential

to our topic, but we included them to show how our interests shifted from the

model we considered in Chapter 2 to the one we considered in Chapter 5. The

key idea in Chapter 5 was to view one-pass algorithms with memory bounded

in terms of the alphabet size and context length as finite-state machines. This,

combined with the fact that short, randomly chosen strings almost certainly have

low empirical entropy, allowed us to prove a lower bound on the amount of memory

needed to achieve good compression, that nearly matched our upper bound (which

was relatively easy to prove, given Lemma 5.1). Finally, the key idea in Chapter 6

was to extend the automata-theoretic arguments of Chapter 5 to algorithms that

can make multiple passes and use an amount of memory that depends on the

length of the input. This gave us our lower bound for achieving good grammar-

based compression with one stream, our lower bound for finding strings’ minimum

periods and, combined with properties of De Bruijn sequences, our lower bound

for achieving entropy-only bounds.

As we mentioned in the introduction, a paper [GKN09] we wrote with Marek
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Karpinski and Yakov Nekrich at the University of Bonn that partially combines

the results in Chapters 2 and 5, will appear at the 2009 Data Compression Con-

ference. This paper concerns fast adaptive prefix coding with memory bounded

in terms of the alphabet size and context length, and shows that we can en-

code s in (λH + O(1))n + o(n) bits while using O
(
σ1/λ+ε

)
bits of memory and

O(log log σ) worst-case time to encode and decode each character. Of course, we

would like to improve these bounds, and perhaps implement and test how our

algorithm performs with large alphabets such as Chinese, Unicode or the English

vocabulary. We would also like to implement our algorithm from Chapter 2, test-

ing several implementations of dictionaries to determine which is the fastest in

practice; Fredman and Willard’s analysis has enormous constants hidden in the

asymptotic notation. Finally, we are preparing a paper with Nekrich that will give

efficient algorithms for adaptive alphabetic prefix coding, adaptive prefix coding

for unequal letter costs, and adaptive length-restricted prefix coding (see [Gag07a]

for descriptions of these problems).

As we also mentioned in the introduction, we are currently trying to prove more

results like the lower bound in Chapter 6 on finding strings’ minimum periods.

We are working on the open problems presented in Chapter 6, about using multi-

ple passes to obtain smaller redundancy terms for universal compression with one

stream, approximating the smallest grammar with O(1) streams, and achieving

better entropy-only bounds with O(1) streams. Finally, we have been collaborat-

ing with Paolo Ferragina at the University of Pisa and Giovanni Manzini at the

University of Eastern Piedmont on a paper [FGM] about BWT-based compression

in the external memory model (see [Vit08]) with limited random disk accesses. For

the moment, however, our curiosity about sequential-access data compression is

mostly satisfied.

After proving our first results about adaptive prefix coding [Gag07a], we wrote

several papers [Gag06a, Gag06b, Gag08a, Gag09] concerning the number of bits

needed to store a good approximation of a probability distribution and, more gen-

erally, a Markov process. For one of these papers [Gag06b], about bounds on the

redundancy in terms of the alphabet size and context length, we proved versions of

Lemmas 5.1 and 5.7, which eventually led to Chapters 5 and 6. We are now curi-

ous whether our results can be combined with algorithms that build sophisticated

probabilistic models, either for data compression (see, e.g., [FGMS05, FGM06,

FM08]) or for inference (see, e.g., [Ris86, RST96, AB00, BY01] and subsequent
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articles). These algorithms work by considering a class of probabilistic models

that are, essentially, Markov sources with variable-length contexts, and finding

the model that minimizes the sum of the length of the model’s description and

the self-information of the input with respect to the model; we note this sum is

something like the kth-order modified empirical entropy. Similar kinds of models

are used in both applications because many algorithms for inference are based

on Rissanen’s Minimum Description Length Principle [Ris78], which is based on

ideas from data compression.

How we minimize the sum of the length of the model’s description and the

self-information depends on how we represent the model. At least some of the

algorithms mentioned above assume that the length of description is proportional

to the number of contexts used. However, it seems that, if some contexts occur

frequently but the distributions of characters that follow them are nearly uniform,

and others occur rarely but are always followed by the same character, then it

might give better compression to prune the former and keep the latter, which take

only O(log σ) bits each to store. Of course, this is just speculation at the moment.
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[MN07] V. Mäkinen and G. Navarro. Implicit compression boosting with ap-

plications to self-indexing. In Proceedings of the 14th Symposium on

String Processing and Information Retrieval, pages 229–241, 2007.

[MP80] J. I. Munro and M. S. Paterson. Selection and sorting with limited

storage. Theoretical Computer Science, 12:315–323, 1980.

[MR91] J. I. Munro and V. Raman. Sorting multisets and vectors in-place. In

Proceedings of the 2nd Workshop on Algorithms and Data Structures,

pages 473–480, 1991.

[MS76] J. I. Munro and P. M. Spira. Sorting and searching in multisets. SIAM

Journal on Computing, 5(1):1–8, 1976.

[Mut05] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foun-

dations and Trends in Theoretical Computer Science. Now Publishers,

2005.

[Nek07] Y. Nekrich. An efficient implementation of adaptive prefix coding. In

Proceedings of the Data Compression Conference, page 396, 2007.

[Ris78] J. Rissanen. Modeling by shortest data description. Automatica,

14:465–471, 1978.

72



BIBLIOGRAPHY

[Ris86] J. Rissanen. Complexity of strings in the class of Markov sources.

IEEE Transactions on Information Theory, 32(4):526–532, 1986.

[RO04] L. G. Rueda and B. J. Oommen. A nearly-optimal Fano-based coding

algorithm. Information Processing and Management, 40(2):257–268,

2004.

[RO06] L. Rueda and B. J. Oommen. A fast and efficient nearly-optimal

adaptive Fano coding scheme. Information Sciences, 176(12):1656–

1683, 2006.

[RO08] L. Rueda and B. J. Oommen. An efficient compression scheme for

data communication which uses a new family of self-organizing bi-

nary search trees. International Journal of Communication Systems,

21(10):1091–1120, 2008.

[Rob55] H. Robbins. A remark on Stirling’s Formula. American Mathematical

Monthly, 62(1):26–29, 1955.

[RST96] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learn-

ing probabilistic automata with variable memory length. Machine

Learning, 25(2–3):117–149, 1996.

[Ruh03] J. M. Ruhl. Efficient Algorithms for New Computational Models. PhD

thesis, Massachusetts Institute of Technology, 2003.

[Ryt03] W. Rytter. Application of Lempel-Ziv factorization to the approxima-

tion of grammar-based compression. Theoretical Computer Science,

302(1–3):211–222, 2003.

[Sav97] S. Savari. Redundancy of the Lempel-Ziv incremental parsing rule.

IEEE Transactions on Information Theory, 43(1):9–21, 1997.

[Sch07] N. Schweikardt. Machine models and lower bounds for query process-

ing. In Proceedings of the 26th Symposium on Principles of Database

Systems, pages 41–52, 2007.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell Sys-

tem Technical Journal, 27:379–423, 623–656, 1948.

73



BIBLIOGRAPHY

[Sie17] M. W. Sierpinski. Démonstration élémentaire du théorème de m.
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