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Introduction

In 1974, an unusual resonance was discovered almost simultaneously at the Brookhaven

National Laboratory (BNL) [1] and at the Stanford Linear Accelerator Center (SLAC)

[2]. This new resonance, which is called “J/ψ”, was the first observed bound state of

a charm quark and its antiquark (cc̄). By analogy to positronium, the bound state of

cc̄ in general is then named charmonium. The charmonium system, which is mainly

governed by the strong force, should be the simplest object for studying the strong

interaction. It was hoped to play the same role in understanding hadronic system as

its analog, the hydrogen atom, which is governed by the electromagnetic force, had

played in understanding atomic physics. Indeed, this has been the case. The analyses

of properties of charmonium and of its higher sibling bottomonium have induced the

development of many methods in QCD [3,4].

Physics thrives on analogies. Since charmonium has been a useful candidate to study

hadronic systems at zero temperature, T. Matsui and H. Satz were wondering whether

it could also be useful to study some sort of new “medium” at finite temperature. Due

to the success of the potential model at zero temperature, in 1986 they proposed the

suppression of J/ψ in the medium as a signal of the formation of the Quark Gluon

Plasma (QGP) assuming the quark-antiquark potential being color screened [5]. This

idea has been triggering intensely studies on the properties of heavy quarkonium states

(charmonium and bottonium) in a hot and dense QCD medium, both experimentally

and theoretically [3, 6, 7].

The experiments carried out at the SPS at CERN and the RHIC at BNL have indeed

observed J/ψ suppression [3, 6, 7]. The interpretation of experimental data, however,

is not as straightforward as the original idea proposed since the observed modification

when comparing J/ψ production in nuclei-nuclei (AA) collisions to that in proton-

proton (pp) collisions could be caused by two distinct classes of effects. On the one

hand there are cold nuclear matter effects, which originate from the presence of cold

nuclear matter in target and projectile. These can be studied from pA collisions with

respect to pp collisions [8]. On the other hand there are hot medium effects, which are

of the primary interest and concern the properties of the QGP we want to study. In
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order to disentangle these two effects, it is crucial to have a good understanding of the

dynamics of the quarkonium in the QGP and the fate of its possible bound states.

From the theoretical point of view, the charmonium spectral function at finite tem-

perature [9, 10], which contains all the information of the hadron properties in the

thermal medium, such as the presence, the location and the width of bound states

(and thus about dissociation temperatures) as well as transport properties, is the key

quantity to be investigated. Since this is a difficult task, several theoretical approaches

to determine the quarkonium properties at finite temperature have been followed.

The most traditional one is the non-relativistic potential model, which assumes the

interaction between a heavy quark pair inside the quarkonium can be described by a

potential [11]. Due to its success at zero temperature, the potential model is applied to

this phenomenon at finite temperature [12–23]. It is based either on models or on finite

temperature lattice QCD results [24] for the heavy quark potential in a non-relativistic

Schrödinger equation. The resulting dissociation temperatures depend strongly on the

potential used. Recently progress has been made in comparing directly to correlators

calculated on the lattice with the potential model results in order to clarify certain

ambiguities [19–23, 25] or trying to tell from the experimental data which potential is

more appropriate [26]. However, the potential model approach at finite temperature is

still under scrutiny.

Another potential-like investigation [27–35] is the calculation of the correlation func-

tion of a heavy quark pair directly in real time. This renders the long time behavior of

the dynamics with the possibility of being described by a Schrödinger like equation with

a complex potential. The potential includes both, effects of screening via its real part,

and of the interaction with the medium via its imaginary part. However, this approach

is only valid in the infinite quark mass limit where the potential can be calculated and

is also well defined. More recently a new approach is proposed in Ref. [36]. It is based

on a path integral for non-relativistic massive particles with a non-local self-interaction

that summarizes the effects of the medium on the heavy quark. However, the effects

of the medium on the heavy quark in this approach is modeled with only Coulomb

interactions. Thus it needs further research.

First principle calculations in lattice QCD are thus crucially needed to determine

the dynamics of heavy quarks in the hot medium. The investigations of charmonium at

finite temperate, which has been performed in both quenched and full lattice QCD, have

led to the rather surprising result that J/ψ appears to survive up to temperatures well

above Tc [37–43]. This is in sharp contrast to the results from the potential model [44].

In this thesis we will try to understand more about the dynamics of heavy quarks in

the hot medium within the lattice QCD approach.

The activities carried out in this thesis are summarized in the following paragraphs:
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• In the first chapter, we will give a brief introduction to lattice QCD. The stan-

dard Wilson gauge action and the non-perturbatively improved Sheikholeslami-

Wohlert fermion action are explained. After that, simulation techniques as well

as error estimation methods are described. We will present the lattice parame-

ters used in our simulation and how the scale is set. At the end we will show

renormalization constants used in our analysis.

• In the second chapter we will first introduce the basics about mesonic correlation

and spectral functions. We find that the reconstructed correlators can be directly

obtained from the measured lattice correlation function at a certain lower temper-

ature. Next we give a review on the Maximum Entropy Method, which is used to

extract the spectral function from the lattice calculated correlation function. We

also introduce some variants of the Maximum Entropy Method to suppress pos-

sible zero mode contributions. The extended Maximum Entropy Method, which

can deal with non-positive spectral functions, is introduced to the lattice QCD

field for the first time. Then we have a brief discussion on the general features

of free correlation and spectral functions in both the continuum and the Wil-

son fermion case, where the zero mode contribution is also described. Thereafter

we give a brief review on linear response theory and, in addition by using the

Langevin equations, we have a brief discussion on the heavy quark diffusion in

the medium. At the end a review on the current status of charmonium studies

with the lattice QCD approach is given.

• The third chapter includes the main results of this thesis concerning the tem-

perature dependence of charmonium properties. A toy model is employed to

study the contribution of different frequency parts of the spectral function to

the correlators. Both measured and reconstructed correlators are analyzed. Fur-

thermore the zero mode contributions are discussed. We test the applicability

of the Maximum Entropy Method to our specific situation with mock data. We

reconstruct the spectral functions in the pseudo scalar and vector spectral chan-

nels at T = 0.73 Tc, 1.46 Tc, 2.20 Tc, and 2.93 Tc. We also discuss the possible

systematic uncertainties, including the dependences on default models and on the

number of data points used, as well as the statistical errors.

• In the fourth chapter the properties of the charmonium states moving with respect

to the heat bath frame are studied at the correlator level. The screening mass,

measured correlator as well as the reconstructed correlator are investigated.

• The last chapter summarizes the results and provides an outlook on possible

directions for future investigations.
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Chapter 1

Lattice QCD - A brief introduction

Lattice gauge theory, which nowadays serves as a main numerical tool to study the non-

perturbative properties of QCD, was suggested by K. G. Wilson already in 1974 [45].

It is based on the path integral formalism and is regularized by introducing a finite

lattice spacing. In this way the space-time is discretized and the path integral becomes

a finite yet high dimensional integral. The discretization of space and time introduces

“errors”, which vanish when the lattice spacing is taken to zero, i.e. continuum limit.

The theoretical and technical details can be found in various textbooks [46–48] such

that only a brief introduction is given here.

We start by writing down the Lagrangian of QCD in the continuum:

LQCD = Lgluon + Lfermion, (1.1)

Lgluon = −1

4

N2
c−1
∑

a=1

Fµν
a (x)F a

µν(x), (1.2)

Lfermion =

Nf
∑

f=1

ψ̄α
f (x)( /Dαβ −mf δαβ)ψ

β
f (x), (1.3)

where Greek letters are spinor indices, a is the color index, Nc is the number of colors

(Nc = 3 for QCD) and mf is the quark mass with flavor f . The covariant derivative /D

and the field strength tensor F a
µν read:

/D = i(∂µ − ig
λa

2
Aa

µ)γ
µ, (1.4)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.5)

where Aa
µ are the gauge fields, ψα

f are the quark fields, λa are the generators of SU(Nc),

fabc are the corresponding structure constants and g is the bare coupling constant.
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6 1. Lattice QCD - A brief introduction

The partition function of QCD in the Euclidean path-integral formalism is given

by:

Z(T, V ) =

∫

∏

µ

DAµ

Nf
∏

f=1

DψfDψ̄f exp
(

−SE[T, V,Aµ, ψf , ψ̄f , g,mf ]
)

, (1.6)

where the Euclidean action SE reads:

SE [T, V,Aµ, ψf , ψ̄f , g,mf ] =

∫ 1/T

0
dτ

∫

V
d3x LE

QCD[Aµ, ψf , ψ̄f , g,mf ] , (1.7)

where the Euclidean Lagrangian LE
QCD is obtained from Eq. (1.1) by going from

Minkowski to Euclidean space, i.e. substituting t → −iτ with τ ∈ R and reads as

follows

LE
QCD = LE

gluon + LE
fermion

=
1

4
Fµν
a (x)F a

µν +

Nf
∑

f=1

ψ̄α
f (x)

(

/D
E
αβ +mfδαβ

)

ψβ
f (x). (1.8)

Now the Euclidean covariant derivative turns into

/D
E
= γEµ D

E
µ =

(

∂µ + ig
λa
2
Aa

µ

)

γEµ , (1.9)

where the γEµ and λa are the Euclidean Dirac matrices and SU(Nc) generators given

in the appendices A.1 and A.2. The thermal expectation value of physical observables

can be obtained through:

〈O〉 =
∫
∏

µDAµ
∏Nf

f=1 DψfDψ̄f O exp(−SE)
∫
∏

µDAµ
∏Nf

f=1 DψfDψ̄f exp(−SE)
. (1.10)

In practice there are basically two ways to evaluate Eq. (1.10). One way is to use

perturbative methods but then the magnitude of the momenta is limited by a finite

cut-off Λ. The other way is lattice gauge theory as mentioned before. It is a theory

regularized on a four-dimensional discretized Euclidean space-time. After introducing

a hyper-cubic lattice of size N3
σ × Nτ with a small but finite lattice spacing a and

defining the fields on the lattice sites, Eq. (1.10) becomes multiple integrations and

can be computed via e.g. Monte Carlo simulations. The volume V as well as the the

temperature T on the lattice are related to its spatial and temporal extents

V = (aNσ)
3, T =

1

aNτ
, (1.11)

where Nσ and Nτ are the number of discretized points in spatial and temporal direc-

tions, respectively. A consequence of lattice gauge theory is that some of the symme-

tries, e.g. the Lorentz symmetry, are lost. Since all the symmetries are restored in the
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continuum limit, in order to recover the real physics, we remove the discretization by

taking the continuum limit a→ 0 at fixed V and T (Nτ → ∞) and the thermodynamic

limit V → ∞ (Nσ → ∞). Consequently the infrared and ultraviolet momentum cut-off

Λ̃ = π/(aNσ), Λ = π/a goes to zero and infinity, respectively.

At finite a the “errors” of lattice observables mainly include discretization effects

and finite volume effects. To make the error small one needs to obey the following

inequality

a≪ ξ ≪ aNσ (1.12)

with ξ being the correlation length of the particle to be investigated. For instance ξ is

proportional to the inverse of the particle mass m, so the discretization effects should

be small if am≪ 1 and the finite volume effects should be small if amNσ ≫ 1.

In the following sections we will briefly review the discretized version of fields we

used in our simulation, the simulation techniques and parameters employed as well as

the scale determination and the renormalization of quantities on the lattice.

1.1 Gluon fields on the lattice

The gluon fields are represented by the elements of the non-abelian SU(3) group. On the

lattice they are defined as the links between lattice sites connecting site na to (n+ µ̂)a

in the µ direction

Uµ(n) = P exp

(

iga

∫ (n+µ̂)a

na
dyAµ(y)

)

, (1.13)

where P denotes path ordering, Aµ =
∑N2

c−1
a=1

λa

2 A
a
µ. The trace of any path ordered

gauge field product on a closed loop is gauge invariant. The simplest closed loop is the

plaquette

Uµν(n) ≡ Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) (1.14)

= Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n), (1.15)

where the property Uµ(n) = U †
−µ(n+ µ̂) of the gauge links is used.

The Wilson action for the gauge field is given by a sum over plaquette variables

Uµν(n):

SG = β
∑

n,µ<ν

(

1− 1

Nc
ReTrUµν(n)

)

, (1.16)

where the gauge coupling β is related with the bare coupling g through β = 2Nc/g
2.

To reproduce the continuum gauge action an expansion in powers of the lattice spac-

ing a and the coupling g needs to be performed. Using the Baker-Campbell-Hausdorff
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formula eAeB = eA+B+1/2[A,B]+··· and expanding the plaquette (1.15) about n + µ̂+ν̂
2

gives

Uµν(n) = exp

{

iga2
(

∂µAν(na)− ∂νAµ(na) + ig [Aµ(na), Aν(na)]

)

+O(a3)

}

, (1.17)

so that one arrives at the continuum gauge action with corrections starting at O(a2)

in O(g0):

SG = a4
∑

n,µ<ν

(

TrFµν(n)F
µν(n) +O(a2)

)

+O(g2a2)

−−−→
a→0

1

2

∫

V
d3x

∫ 1/T

0
dτ Tr (Fµν(n)F

µν(n)) +O(g2), (1.18)

where Fµν is the field strength tensor

Fµν(x) = ∂µAν(n)− ∂νAµ(n) + ig [Aµ(n), Aν(n)] . (1.19)

One can improve the gauge action to the higher orders of corrections, e.g. by adding

further gauge invariant terms. But the further improvement requires a larger computing

effort and does not reduce the overall error of the complete action. Since in our work

the lattice spacing is already quite small, we used the standard Wilson gauge action

(1.16) in our simulation.

1.2 Matter fields on the lattice

1.2.1 Näıve action and fermion doublers

On the lattice the fermion fields ψ(n) are defined on the lattice sites. The näıve dis-

cretized form of the continuum action is

SF =
∑

n,l,α,β

¯̂
ψα(n)Mαβ(n, l) ψ̂β(l), (1.20)

where the fermion matrix reads

Mαβ(n, l) =
1

2

∑

µ

(γµ)αβ

[

Uµ(n)δl,n+µ̂ − U †
µ(n− µ̂)δl,n−µ̂

]

+ m̂ δlnδαβ, (1.21)

here the symbols with hats are dimensionless quantities obtained with the help of

transformations, e.g. m̂ = ma and ψ̂ = ψ a3/2. To check to which degree the näıve

fermion action (1.20) reproduces the continuum one we need to expand the näıve action

in powers of the lattice spacing a. For a gauge link this expansion reads

Uµ(n) = 1+ iga

[

Aµ(na) +
1

2
a∂µAµ(na) +

1

6
a2∂2µAµ(na) +O(a3)

]

+O(a2g2). (1.22)
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Inserting the above expression into the lattice action (1.20), one arrives at

SF = a4
∑

n

{

∑

µ

(

γαβµ

)

ψ̄α(na)
1

2a

[

ψβ

(

(n+ µ)a
)

− ψβ

(

(n− µ)a
)

+ iga
(

Aµ(na)ψβ

(

(n+ µ)a
)

+Aµ

(

(n− µ)a
)

ψβ

(

(n− µ)a
)

)

]

+mψα(na)ψβ(na)δ
αβ

}

+O(a5) (1.23)

−−−→
a→0

∫

V
d3x

∫ 1/T

0
dτ ψ̄α(x)

(

/Dαβ +mδαβ
)

ψβ(x). (1.24)

Thus the continuum fermion action is reproduced up to order O(a2).

The propagator of a free fermion in the momentum space is obtained by the Fourier

transform of the inverse of the fermion matrix

M̃−1
αβ ∝

(

m− i
∑

µ γµ
˜̂pµ

)

αβ

m2 +
∑

µ
˜̂p2µ

, (1.25)

where ˜̂pµ is given by ˜̂pµ = sin(pµa)/a. For ˜̂pµ → pµ Eq. (1.25) will give the familiar con-

tinuum propagator in the continuum limit. However as the momentum pµ is restricted

to the so called Brillouin zone (BZ) [−π/a, π/a], the zeros of the sine-function at the

edges of the BZ would destroy the correct continuum limit. Thus there exist 16 poles

where ˜̂pµ takes a finite value in the limit of a → 0. Only one of them, p = (0, 0, 0, 0),

corresponds to the physical single particle propagator and each of the additional 15

ones involving high momentum excitation of the order of π/a (and −π/a) corresponds
to an unwanted particle state which is called a “doubler”. Since locality is a mandatory

property and because of the no-go theorem [49], all the lattice actions have to be a

compromise between breaking chiral symmetry and allowing doublers. There are quite

a few different discretized versions of fermion actions, e.g. Staggered fermions [50–52],

domain wall fermions [53–55] and Wilson fermions [45]. Here in this work since we focus

on the spectroscopy and properties of charmonium states, the number of points in the

temporal directions is very important as we will see in the following chapters. Due to

this and also due to the available computing resource we will use Wilson fermions as

described in the next section.

1.2.2 Wilson fermions

To avoid doublers Wilson proposed to add a new dimension 5 operator, 1
2 ψ̄D

2
µψ, which

vanishes in the continuum limit:

1

2
ψ̄D2

µψ = ˆ̄ψ(n)
∑

µ

{

Uµ(n)δn+µ̂,l + U †
µ(n − µ̂)δn−µ̂,l − 2δn,l

}

ψ̂(l). (1.26)
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The new fermion matrix then becomes

MW
αβ(n, l) = (m̂+4)δn,lδαβ −

1

2

∑

µ

{

(1−γµ)αβ Uµ(n) δn+µ̂,l+(1+γµ)αβ U
†
µ(n−µ̂) δn−µ̂,l

}

.

(1.27)

With a redefinition of the dimensionless fermion fields ψ̃(n) =
√
m̂+ 4 ψ̂(n) the matrix

changes into:

M̃W
αβ(n, l) = δn,l δαβ − κ

∑

µ

{

(1− γµ)αβ Uµ(n) δn+µ̂,l + (1+ γµ)αβ U
†
µ(n− µ̂) δn−µ̂,l

}

,

(1.28)

where κ is the hopping parameter: κ = 1/(2m̂+8). Consequently the fermion propagator

becomes:

(

MW (p)
)−1

αβ
∝

(

−i
∑

µ γµ sin(pµa)/a+m(p)
)

αβ
∑

µ sin
2(pµa)/a2 +m2(p)

, (1.29)

where

m(p) = m+
2

a

∑

µ

sin2(pµa/2). (1.30)

The new propagator indicates that the doubler receives an additional mass, which is

proportional to inverse lattice spacing. If the lattice spacing is small enough, the doubler

masses would be very heavy and thus their contribution is small and vanishes in the

continuum limit.

To reduce the lattice cutoff errors to O(a2) Sheikholeslami and Wohlert [56] used

the procedure proposed by Symanzik [57]. They added additional counter terms of

dimension d > 4 to the pure Lagrangian and tuned coefficients such that all contribution

of order O(ad−4) could be eliminated. In this way the O(a)-improved Sheikholeslami-

Wohlert action (also called clover action) SSW
F reads

SSW
F =

∑

n,l

¯̃
ψ(n)M̃SW(n, l)ψ̃(l) (1.31)

with ψ̃ = ψ/
√
2κ and the fermion matrix

M̃SW(n, l) = A(n)δn,l − κ∆n,l, (1.32)

where

∆n,l =
∑

µ

(1− γµ)Uµ(n) δn+µ,l + (1+ γµ)U
†
µ(n− µ) δn−µ,l (1.33)

and the correction term

A(n) = 1− ig
κ cSW
2

σµνFµν , (1.34)

where

Fµν(n) = − i

8g

∑

j

(

U j
µν(n)− U j†

µν(n)
)

, (1.35)
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and σµν = 1
2 [γµ, γν ] is given explicitly in the appendix A.1. The sum in Eq. (1.35) is

defined over the four plaquettes in the µν-plane around the site n. The clover action

can be depicted as follows

SSW
F =

∑

n,l

¯̃
ψ(n)

{

[

1− κ cSW
2

∑

µν

Im �
-
6 ?r�

-
6 ?r

�
-
6 ?
r

�
-
6 ?

r

µν

(n) σµν(n)
]

δn,l

−κ
∑

µ

[

(1− γµ) δn+µ̂,l
r -r

µ(n) + (1+ γµ) δn−µ̂,l
r� r

µ(l)
]

}

ψ̃(l). (1.36)

The correction term A(n) is also called clover term. For tree level improvement cSW

can be simply set to one. A perturbative and non-perturbative evaluation of cSW has

been performed by Lüscher et al [58] and the results for cSW were found to be well

fitted by

cSW =
1− 0.656g2 − 0.152g4 − 0.054g6

1− 0.922g2
for 0 ≤ g ≤ 1. (1.37)

The precision of this parametrization is around 3% in the whole range of couplings. In

our simulation the values of cSW obtained from the above relation are utilized.

Since this work mainly deals with heavy quark mesons we need to estimate the

quark mass from the simulation with respect to doublers or for the input in the free

theory. There are several ways to define quark mass. One way is to define the bare

quark mass

m̂q =
1

2κ
− 1

2κc
, (1.38)

where κc is the critical value of the hopping parameter and is defined in the limit where

the pion mass vanishes. In the free case no mass renormalization is needed and thus

m̂q = m̂ and κc = 1/8. An alternative way to define a quark mass is to make use of the

Axial Ward Identity (AWI) [46,59]

〈

α
∣

∣∇µAa
µ

∣

∣β
〉

=
〈

α
∣

∣ψ{Ta,m}γ5ψ +X
∣

∣β
〉

, (1.39)

where |α〉 and |β〉 are arbitrary states, Aa
µ are the gauge fields, T a are the SU(Nc)

generators Ta = λa/2 shown in the appendix A.2, ∇ denotes for the lattice derivative

and X is a dimension 5 operator

X = −1

2

∑

µ

[

ψ(n)Taγ5Uµ(n)ψ(n + µ) + ψ(n+ µ)Taγ5U
†
µ(n)ψ(n + µ)

+(n→ n− µ)− 4ψ(n)Ta γ5 ψ(n)
]

. (1.40)

Note X is mixed with lower dimensional operators and may not vanish in the continuum

limit i.e. X/a4. To circumvent this one can define an operator X ′ by subtracting from

X all the allowed lower dimensional operators

X ′ = X + ψ{Ta,m′}γ5ψ + (ZA − 1)∇µAµ , (1.41)
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with an additional mass parameter m′. By definition X ′ vanishes in the continuum

limit. Putting X ′ into Eq. (1.39) one obtains the following relation in the continuum

limit
〈

α
∣

∣∂µ(ZAAµ)
∣

∣β
〉

=
〈

α
∣

∣ψ{Ta,mq}γ5ψ
∣

∣β
〉

. (1.42)

Hence the axial current is conserved for a vanishing quark mass mq = m−m′.

Using 〈α| = 〈0| and |β〉 = |P 〉 (a pion state) in Eq. (1.42) and integrating over space

leads to the definition of the AWI quark mass

mAWI(τ) =

∑

x

〈

∂µ(ZAAµ(τ,x))P
†(0)

〉

∑

x 〈P (τ,x)P †(0)〉 . (1.43)

Since the fourth component of the axial current has the largest overlap with the pion

state, we determine mAWI through relation (1.43) by setting µ =4 in practice. The

signal of the AWI quark mass can be improved by using a higher lattice derivative

to O(a4) following Ref. [60]. The result from (1.43) can be further improved by the

redefinition of the currents

AI
µ = Aµ + a cA∇̃µP, (1.44)

V I
µ = Vµ + a cV ∇̃νTµν , (1.45)

where ∇̃ = 1
2(∆

b + ∆f ), ∆f (∆b) is the forward (backward) derivative on the lattice

and Tµν = ψσµνψ denotes the tensor current. The coefficient cA has been determined

non-perturbatively [58]

cA = −0.00756
1 − 0.748g2

1 − 0.977g2
g2 with 0 ≤ g ≤ 1, (1.46)

and the coefficient cV almost vanishes for β > 6.4 [61].

1.3 The continuum limit of lattice QCD

As addressed before, the lattice regularization introduces a finite momentum cut-off and

breaks some symmetries. These consequences should be removed in the thermodynamic

limit V → ∞ and in the continuum limit a→ 0.

The quantities O(g(a), a) on the lattice are all rescaled through lattice spacing a to

be dimensionless quantities Ô(g(a), a)

lim
a→0

O(g(a), a) = lim
a→0

(
1

a
)dO Ô(g(a), a) = Ophys, (1.47)

where dO is the dimension of the lattice observable O(g(a), a) and Ophys is the physical

continuum observable. The continuum limit is reached when g → 0 due to asymptotic

freedom. When close to the continuum limit, the observable measured on the lattice
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should be independent of the lattice spacing a, leading to the renormalization group

equation
[

a
∂

∂a
− β(g)

∂

∂g

]

O(g(a), a) = 0, (1.48)

which can be solved in the perturbative regime and leads to the β function defined as

β(g) = −a∂g
∂a
, (1.49)

which has been computed perturbatively up to fourth order

β(g) = −β0g3 − β1g
5 − β2g

7 − β3g
9 +O(g11). (1.50)

The coefficients for SU(3) in the MS scheme are [62]

β0 =
1

(4π)2

(

11 − 2

3
Nf

)

, (1.51)

β1 =
1

(4π)4

(

102 − 38

3
Nf

)

, (1.52)

β2 =
1

(4π)6

(

2857

2
− 5033

18
Nf +

325

54
N2

f

)

, (1.53)

β3 =
1

(4π)8

(

149753

6
+ 3564ζ3 +

(

− 1078361

162
− 6508

27
ζ3

)

Nf

+
(50065

162
+

6472

81
ζ3

)

N2
f +

1093

729
N3

f

)

. (1.54)

ζ is Riemann’s zeta function, with ζ3 ≈ 1.202057. Nf is the number of quark flavors.

Note the first two coefficients β0 and β1 are independent of the renormalization scheme.

Using the two-loop order β function the differential equation (1.49) has the solution

g−2(a) = 2β0 log

(

1

aΛ

)

+
β1
β0

log

(

2 log

(

1

aΛ

))

, (1.55)

where Λ is the integration parameter (aΛ ≪ 1) and depends on the renormalization

scheme. Inverting Eq. (1.55) gives

aΛ = R(g2) ≡ (β0g
2)−β1/2β2

0 exp

(

− 1

2β0g2

)

. (1.56)

The above equation can be used to determine the physical scale of the lattice spacing

a for given β at finite temperature by rescaling, e.g. see section 1.5.2. At finite lattice

spacing there are corrections on the right hand side of Eq. (1.48), which can be reduced

by improving actions and operators.
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1.4 Simulation technique and error estimation

In this section we will briefly review the algorithm we used in the simulation and the

way we employed to estimate the errors.

To evaluate thermal averages from Eq. (1.10) one has to deal with the multi-

dimensional integral over gauge and fermion fields on the lattice. Monte Carlo sim-

ulation is suitable to do the job. One normally considers generating the configurations

according to the Boltzmann weight exp(−S) to ensure a high hit efficiency and thus

build a Markov chain of configurations. The expectation value of the observable of

interest 〈O〉 is given by

〈O〉 = lim
N→∞

1

N

N
∑

i=1

O[Ci], (1.57)

where N is the number of configurations in the generated ensemble. The configurations

generated after some finite number of thermalization steps should be distributed ac-

cording to the probability exp(−S). This can be achieved by requiring the transition

probability P (C → C ′) between two consecutive configurations to meet the detailed

balance condition

exp(−S(C))P (C → C ′) = exp(−S(C ′))P (C ′ → C). (1.58)

which ensures the configuration approaches the phase region belonging to the thermal

equilibrium of the system. Additionally the probability distribution has to be ergodic,

i.e. P (C → C ′) should be finite for every configuration pair C and C ′.

The partition function in lattice QCD can be written as

Z =

∫

DUDψDψ̄ exp
(

−ψ̄Mψ − SG(U)
)

=

∫

DU detM exp(−SG(U)) (1.59)

where DU , Dψ and Dψ̄ are defined as DU =
∏

µ,n dUµ(n), Dψ =
∏

n dψ(n), Dψ̄ =
∏

n dψ̄(n), and M is the fermionic matrix. An enormous amount of computing time

can be saved by setting detM = constant, e.g. 1. This approximation is known as

quenched approximation. Physically it corresponds to neglecting internal quark loops

and the presence of gluon and valence quark fields only in the thermal background.

Obviously it is not appropriate to implement this approximation for physics where the

dynamic quark loop has a significant contribution, e.g. the study of the magnetic QCD

equation of state [63]. But it is suitable for the qualitative understanding of the most

features of QCD, where the contribution from gluon fields dominates. For instance, the

hadron spectrum and decay constant calculations within the quenched approximation

agree with the experimental values in an average 10% range [64–66]. Since in this work



1.4. Simulation technique and error estimation 15

our focus is on the spectroscopy of charmonium and also due to available computing

resources, we will restrict ourselves to the quenched approximation.

To evaluate the thermal averages in Eq. (1.10) within the quenched approximation,

one thus needs to determine the inverse of the fermion matrixM−1(x, y) on every gauge

configuration. This can be done by solving the following inhomogeneous equation

M(x, y)ψ(y) = φ(x) (1.60)

with point-like sources φ(x) for every color-spin combination of the quark fields. Since

M(x,y) is a huge sparse matrix Eq. (1.60) can only be solved approximately by an itera-

tive method, i.e. restricting the error function of residuals r, 〈r, r〉 = 〈Mψ−φ,Mψ−φ〉,
below some certain value ǫ. The Conjugate Gradient (CG) algorithm [67] requires M

to be Hermitian and positive definite, a condition which can be fulfilled by replacing

Eq. (1.60) with M †Mψ = M †φ. An alternative is the application of algorithms which

do not require Hermiticiy, e.g. the stabilized bi-conjugate gradients (BiCGStab) algo-

rithm [68]. It has been found that CG is fast for the case of large quark mass or above

Tc while the BiCGStab performs better for small quark masses below Tc. The conver-

gence time of both algorithms is governed by the ratio of the largest to the smallest

eigenvalues of the matrix, which approaches infinity at vanishing quark mass mq → 0

(κ → κc). Since in the current work we are focusing on the charmonium system, we

utilize CG for both cases below and above Tc.

Additionally the even-odd preconditioning technique [69] has been used to accel-

erate the inversion of the matrix. It decouples the lattice into (e)ven and (o)dd sites.

Consequently the equation Mψ = φ becomes

(

Aee −κ∆eo

−κ∆oe Aoo

)(

ψe

ψo

)

=

(

φe

φo

)

, (1.61)

where ∆ and A are defined in Eq. (1.33) and (1.34). Multiplying the above relation

with
(

1ee κ∆eoA
−1
oo

0 0

)

(1.62)

one obtains

M̃eeψe = (Aee − κ2∆eoA
−1
oo ∆oe)ψe = φe + κ∆eoA

−1
oo φo = φ̃e, (1.63)

ψo = A−1
oo (φo + κ∆oeψe), (1.64)

with a new source vector φ̃e and a modified fermion matrix M̃ee. After the inversion

is done on the even sites of lattice through Eq. (1.63), the solution for the odd sites

can be simply obtained by a back substitution through Eq. (1.64). The preconditioning

procedure reduces the number of required iteration steps since the new matrix M̃ee
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contains κ2 rather than κ. Consequently M̃ee gets closer to the unity matrix when κ is

very small. Further acceleration is achieved in our simulation due to the fact that
1−γµ

2

in Eq. (1.33) are projectors of rank 2 which can be decomposed from the four-spinor

ψ into two two-spinors. This is utilized to save computing time in the matrix inversion

routine [70].

Another important property we used to save computing time is the γ5 hermiticity

γ5M
−1(x, y) γ5 = (M−1)†(y, x). (1.65)

Thus for computing two point relation functions, i.e. Eq. (2.34), one only needs to invert

the fermion matrix once.

In our current simulation the typical lattice size is e.g. 1283 × 48. The simulation of

such a big lattice is strongly constrained by the available computing resources. Due to

the typical size of the propagator, which is N3
σ ·Nτ ·N2

c ·42 ·16/10243 = 216 GB, even in

the parallel way the I/O could cost the same amount or even more computing time as the

inversion of the fermion matrix. Thus we do not write/read the propagators to/from

the storage devices and just use them as intermediate variables. To save additional

computing time for the inversion of the fermion matrix we measure both the spatial

and temporal correlators in one run. In addition we need to take care of the memory

consumption due to the limited memory size of each CPU (500 MB) in our available

machines. For a relatively small local lattice size of 16 · 16 · 16 · 121, we have to have

8 · 8 · 8 · 8 = 4096 CPUs in order to simulate our largest lattice size 1283 × 96. The

memory for the propagator itself in such a simulation is already around 150 MB and

the additional memory required to store the matrix for the clover term is of the same

order. We have to reduce the memory consumed by the codes to meet the restriction

by the hardware. The only memory we can reduce is the one from the clover term, i.e.

rather evaluating them in the real time than allocating space for them on the heaps.

The details can be found in the appendix B.

In this work the local pseudo heat bath algorithm [71,72] has been used to generate

a new configuration after one sweep over the lattice. One further step is to reduce the

autocorrelation time of the Markov chain, which can be done by using the overrelaxation

update algorithm [73,74]. In our simulation 5 overrelaxation steps have been performed

between every heat bath update.

Systematic errors are taken to be the quenched approximation, finite size effects

and scaling violations. Their influence will be discussed in the following analysis. The

statistical errors due to a limited sample of configurations are unavoidable. Since the

configurations as well as the final observable are statistically correlated, the naive error

estimate would be suspicious and misleading. Thus the jackknife and bootstrap methods

1Due to the even-odd preconditioning the local lattice size in each direction has to be even.
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are applied for error estimation in the same data set and different data sets, respectively

[75].

Given that f is a function of the observable x, in the Jackknife method one first

divides the N data sets into Nb blocks with the same number of data sets n: {xji}
j=1,Nb

i=1,n .

By leaving one block out, one calculates the average over Nb − 1 blocks:

Xℓ =
1

n(Nb − 1)

∑

j 6=ℓ

n
∑

i=1

xji , (1.66)

and then calculates the standard mean value of x

X =
1

Nb

Nb
∑

ℓ

Xℓ. (1.67)

With the pseudo Jackknife data sets

X̃ℓ = NbX − (Nb − 1)Xℓ , (1.68)

and let fℓ = f(X̃ℓ), the mean and variance of f(x) given by Jackknife method is:

f̄ =
1

Nb

Nb
∑

ℓ=1

fℓ and σJ (f̄) =

√

√

√

√

1

Nb(Nb − 1)

Nb
∑

ℓ=1

(fℓ − f̄)2 . (1.69)

Given that F is a function of the distribution g and h, which are related with lattice

observables {xi}i=1,N1 and {yi}i=1,N2 respectively, F = F (g(x), h(y)). The bootstrap

method works as the following:

1. Divide the data sets into Jackknife blocks {gℓ}ℓ=1,Nb1
and {hℓ}ℓ=1,Nb2

. The mean

value of F is obtained from the Jackknife averages of distribution g and h over

measurements of x and y, respectively: F̄ = F (ḡ, h̄).

2. From the Jackknife blocks obtained from the first step, randomly pick up block

i and j from distribution g and h, without avoiding double sampling. And then

calculate the quantity over the selected data: Fm = F (gi, hj).

3. Repeat steps 2 a large number of times, say Nboot. The bootstrap error is then

given by

σB =

√

√

√

√

1

Nboot − 1

Nboot
∑

m=1

(Fm − F̄ )2. (1.70)

The auto correlation length in our data is small and normally we set block length

to 10 in the Jackknife error estimation and Nboot = 5000 in the bootstrap procedure.
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1.5 Simulation details

In this section the scale determination and the simulation parameters for the clover

improved Wilson fermions as well as gauge fields are given. The tactics to tune the

hopping parameter κ are presented and the discussion on the resulting meson masses

is also given.

1.5.1 Simulation parameters

All the simulations are performed on the IBM-JUGENE computer at NIC Jülich and

Blue Gene computers at BNL/NewYork with double precision numbers. The simulation

parameters are shown in Table 1.1. The gauge field configurations have been generated

with the standard Wilson gluon action on an isotropic lattice. All the subsequent con-

figurations are separated by 500 sweeps, each with 5 overrelaxation steps per heat bath.

We have simulated at three values of the bare coupling β = 6/g2 = 6.872, 7.457 and

7.793. At these β values the lattice spacing has been determined from the string tension

parameterization from formula (1.71) [76].

For the fermion part the O(a) Symanzik-improved Sheikholeslami-Wohlert action

has been implemented in our simulation with cSW listed in Table 1.1. The inversion of

the Dirac matrix was carried out by means of Conjugate Gradient algorithm. For the

finest lattice, β = 7.793, we have measured two point correlation functions on 1283×96,

1283×48, 1283×32 and 1283×24 at 0.73 Tc, 1.46 Tc, 2.20 Tc and 2.93 Tc, respectively.

Due to the size of the currently simulated lattice and the correlation function decreasing

exponentially with distance, we employed a rather small convergence value of 10−24 in

the CG algorithm.

β a [fm] a−1[GeV] Lσ [fm] cSW κ N3
σ ×Nτ T/Tc Nconf

6.872 0.031 6.432 3.93 1.412488 0.13035 1283 × 32 0.74 126

1283 × 16 1.49 198

7.457 0.015 12.864 1.96 1.338927 0.13179 1283 × 64 0.74 179

1283 × 32 1.49 250

7.793 0.010 18.974 1.33 1.310381 0.13200 1283 × 96 0.73 234

1283 × 48 1.46 461

1283 × 32 2.20 105

1283 × 24 2.93 81

Table 1.1. Lattice parameters and number of configurations for the clover improved Wilson

fermion action. The non-perturbatively determined cSW are obtained from Eq. (1.37).
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Figure 1.1. Left: The scale determination of a
√
σ versus β. The label “string tension, Ed-

wards98” denotes the results from Eq. (1.71) and “Teper03” labels the data points from Ref. [78].

“current work” means the β and a values we adopted in current work. Right: Critical hopping

parameters κc versus β values from Ref. [58] by Lüscher et al., “sim” stands for the κ vaules

used in our simulations.

1.5.2 Scale determination

As mentioned before, all the fields and observables defined on the lattice are in terms of

the lattice spacing a such that only dimensionless quantities appear during the lattice

simulation. The physical scale is then set by comparing lattice results with physical

quantities, e.g. experiment results. There are several ways to fix the scale. Here we

adopt the way using the square root of the string tension,
√
σ, which characterizes the

long distance behavior of the static quarkonium potential Vqq̄ = −α/r + σr at T = 0.

For the Wilson gauge action Edwards et al. [76] parameterized the string tension in the

range of 5.6 ≤ β ≤ 6.5 using [77]

(a
√
σ)(g) = R(g2)

1 + c2 r
2(g) + c4 r

4(g) + c6 r
6(g)

λ/
√
σ

, (1.71)

r(g) ≡ R(g2)

R(g2(β = 6.0))
, (1.72)

where the constants c2 = 0.2731, c4 = −0.01545, c6 = 0.01975, λ/
√
σ = 0.01364 and

the function R(g2) is the universal two-loop scaling function of SU(3) gauge theory

given in Eq. (1.56). The lattice spacing multiplied by the square root of the string

tension a
√
σ versus β is shown in the left plot of Fig. 1.1.

In order to obtain the physical temperature of the lattice in units of the critical

one, for definiteness we have consistently chosen the string tension to set the scale by

T/Tc = (T/
√
σ) · (

√
σ/Tc), (1.73)
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where Tc/
√
σ = 0.630(5) is taken from [79]. Whenever converting to physical units we

use a value for the string tension of
√
σ = 428 MeV. Thus Tc is 270 MeV. The lattice

spacing a(β) as well as the estimated T/Tc are listed in Table 1.1.

1.5.3 J/ψ mass tuning

Since the isotropic clover improved Wilson fermions are implemented in our simulation,

in addition to the lattice spacing, i.e. the gauge coupling β, only one parameter, the

hopping parameter κ needs to be tuned to reproduce the physical mass of the charmonia.

Here we restrict ourselves to tune the κ value to reproduce the mass of charmonium

in the vector channel, i.e. J/ψ. To hit the correct region of κ values in our simulation,

we utilize the empirical relation between the Renormalization Group Invariant (RGI)

quark mass and the meson mass in the vector channel of the lowest state.

The RGI quark mass is a physical quantity and does not depend on the scheme

or the scale. The non-perturbative O(a) improved definition of the RGI quark mass is

based on the bare quark mass mq

mRGI = Zm Z [1 + bm amq]mq , (1.74)

where the renormalization factor Zm has been determined very precisely in the range

of 6.0 ≤ β ≤ 6.5 [80], the renormalization constant Z and the improvement coefficient

bm have been computed non-perturbatively in Ref. [60, 81]. The coefficients appearing

in the two definitions are all parameterized in terms of the bare coupling g0 [80,81] and

are listed as the following:

Zm(g20) = 1.752 + 0.321(6/g20 − 6)− 0.220(6/g20 − 6)2, (1.75)

Z(g20) = (1 + 0.090514 g20 )
1− 0.9678 g20 + 0.04284 g40 − 0.04373 g60

1− 0.9678 g20
, (1.76)

bm(g20) = −(0.5 + 0.09623 g20 )
1− 0.6905 g20 + 0.0584 g40

1− 0.6905 g20
. (1.77)

The bare quark mass amq is related to the critical hoping parameter κc through rela-

tion (1.38). κc has been determined for some β values in Ref. [58] as shown in the right

plot of Fig. 1.1. By doing an interpolation one can get the corresponding κc, which is

also shown in the right plot of Fig. 1.1. Thus together with formula (1.74) the RGI

quark mass for our β values can be obtained.

Collecting the data points from Refs. [39, 82] and together with the experimental

value of ρ mass [83], we plot the relation of meson masses in the vector channel MVC

versus the RGI quark mass mRGI in Fig. 1.2. There is an approximately linear relation

between MVC and mRGI with some “correct” κ values. Utilizing this empirical relation,

we hit the κ values and the corresponding MVC and mRGI are shown as red points in

Fig. 1.2.
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Figure 1.2.Meson mass in vector channel versus the RGI quark mass evaluated from Eq. (1.74).

The data points for β = 6.499, 6.640 and 7.192 are obtained from Ref. [39]. “QCD-TARO” labels

the data points from Ref. [82]. The red points of β = 6.872, 7.457 and 7.793 are from our current

simulation.

The calculation of the RGI mass we did from Eq. (1.74) strongly depends on the

accurate determination of κc since the bare quark mass mq is used. At temperatures

below the critical one, one can determine the bare quark mass mq by searching for

the critical hopping parameter κc, where the pion mass vanishes. When going above

the critical temperature the chiral symmetry is restored, then the pion is no longer a

Goldstone boson and has a non-zero mass. Thus instead one utilizes the AWI quark mass

defined in Eq. (1.43) with the O(a) non-perturbatively improved currents Eq. (1.44).

The AWI quark mass should be independent of temperature as well as of the temporal

or spatial directions that used to measure the operator (1.44) since it is based on

the operator identity and should hold for all distances. We find indeed there is no

dependence on direction at both above and below critical temperature. Obviously the

distance in the spatial direction is larger and is going to be mainly analyzed in this

work.

The AWI quark mass is related to the RGI quark mass through

mRGI = Zm [1 + (bA − bP )amq]mAWI, (1.78)

where the combination bA− bP of the improvement coefficients of the axial current and

pseudoscalar density has been non-perturbatively computed in Refs. [60, 81]:

(bA − bP )(g
2
0) = −0.00093 g20

1 + 23.3060 g20 − 27.3712 g40
1− 0.9833 g20

. (1.79)
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β κ κc amb T/Tc Nτ amAWI mRGI[GeV] mMS(m)[GeV]

6.872 0.13035 0.13497 0.13130 0.74 32 0.13305(2) 1.592(4) 1.255(2)

1.49 16 0.13305(2) 1.592(4) 1.255(2)

7.457 0.13179 0.13398 0.06201 0.74 64 0.065430(6) 1.4742(3) 1.1739(2)

1.49 32 0.065352(4) 1.4734(8) 1.1733(6)

7.793 0.13200 0.13346 0.04143 0.73 96 0.044245(7) 1.358(3) 1.093(2)

1.46 48 0.044222(2) 1.357(2) 1.094(1)

2.20 32 0.044280(6) 1.359(3) 1.096(2)

2.93 24 0.04420(1) 1.357(3) 1.095(2)

Table 1.2. Quark masses on available lattices.mb stands for bare quark mass,mAWI is obtained

from the axial ward identity at the scale of µ = 1/a and mMS(m) denotes the renormalized

quark mass in MS scheme at scale of µ = mMS(µ). The errors quoted in amAWI are statistical

errors while in mRGI and mMS(m) arise from the two different definitions of mRGI in Eq. (1.74)

and Eq. (1.78).

The RGI quark mass can be expressed in terms of running quark mass m(µ)

mRGI = lim
µ→∞

m(µ)
(

2b0g
2(µ)

)−d0/2b0 , (1.80)

where b0 = (11 − 2Nf/3)/(4π)
2 and d0 = 8/(4π)2 are the lowest order perturbative

coefficients of the renormalization group functions for SU(3) gauge theory. As mentioned

before, the RGI quark mass is more a physical quantity, however, it is customary to

quote the running quark masses in the MS scheme at some reference scale. In particular,

for heavy quarks, e.g. charm quark, the reference scale is chosen to be equivalent to

the running quark mass itself: mMS(µ) = µ. Starting from the scale µ0 = 1/a, with the

coupling constant g2
MS

(µ0) in MS scheme quoted in Table. 1.4, the evolution of mMS(µ)

to µ can be done using perturbative renormalization group functions which are known

with four-loop accuracy [62,84–86].

The quark masses are listed in Table 1.2. The errors quoted in mRGI are estimated

from the two definitions (1.74) and (1.78) since the statistical error arising from amAWI

is negligible. One can see that there is only a very small difference brought by the

definitions. As we mentioned before, the mAWI is independent of temperature, which

consequently makes the RGI quark mass mRGI and running quark mass mMS(m) tem-

perature independent.

Since we haven’t performed simulations on a zero temperature lattice, our estimate

of the zero-temperature meson mass is obtained through the screening mass of the

spatial correlator at temperatures below the critical temperature Tc
2. In fact, the finite

2From the investigation on the dispersion relation in section 4.1, the screening mass is a good
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Mass in GeV

β J/ψ ηc χc1 χc0

6.872 3.1127(6) 3.048(2) 3.624(36) 3.540(25)

7.457 3.147(1)(25) 3.082(2)(21) 3.574(8) 3.486(4)

7.793 3.472(2)(114) 3.341(2)(104) 4.02(2)(23) 4.52(2)(37)

Table 1.3. Meson masses.

Masses (in GeV) of the different charmonium states obtained from the screening mass

plateau of the spatial correlators below Tc. The errors in the first bracket are the

statistical errors and the errors in the second bracket are the errors brought by the

limited physical distance.
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Figure 1.3. The resulting screening masses for vector (left) and pseudo scalar (right) channels

from lattice with κ = 0.13035, 0.13179 and 0.13200 at T ≈ 0.75 Tc and T ≈ 1.5 Tc.

temperature (below confinement) lattice can be considered as a small (in one of the

directions) zero temperature lattice. The resulting meson masses from the three κ

values used in this work are listed in Table 1.3 and our lattice volumes are summarized

in Table. 1.1. For our finest lattice the volume is (1.33 fm)3. It has been found that

even for a size of (0.75 fm)3 there are no sizable finite volume effects on the quenched

lattice [82]. Furthermore, for the light mesons, which have even larger sizes, their spatial

corrrelators calculated on lattices at 0.9 Tc (0.75 Tc) have produced good estimates for

the zero-temperature mass [87] and have a small volume dependence [88,89]. However,

as seen from Table. 1.2, e.g. on our finest lattice with β = 7.793, the running quark mss

mMS(m) is smaller than the charm quark mass quoted in Refs. [83,90,91]. At the same

time, the J/ψ mass is much larger than 3.097 GeV. Thus there could be finite volume

approximation of the pole mass at temperatures below Tc in our current work.
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effects which bring the mass of J/ψ up. In addition, on our finest lattice the physical

distance in the spatial direction does not allow us to observe a clear plateau of the

screening mass (see Fig. 1.3). But if we focus on the relative change of the properties of

charmonium systems at different temperatures, these effects should be under control.

1.6 Renormalization constants

In the current work we consider the local current J lat
H (τ,x), which has the form of

J lat
H (τ,x) = q̄(τ,x)ΓHq(τ,x), (1.81)

with ΓH the γ matrices for different channels. To connect to the continuum case, one

has to do the renormalization. Following the transformation in Eq. (1.28), we have

Jcont
H = 2κZHJ

lat
H a−3 . (1.82)

The calculation of the renormalization constants ZH for the currents, which can be

defined perturbatively and non-perturbatively, is presented in the following.

The perturbative calculation of ZH is available at both one-loop and two-loop or-

ders. The one loop calcuation of the renormalization constants of some bilinear quark

operators for improved Wilson fermions at vanishing quark mass in the quenched ap-

proximation [92] has the form of

ZH = 1− g2

16π2
CF (γO ln(aµ) +BO) , (1.83)

where CF = 4
3 , γO is the anomalous dimension and BO is the finite part of the renor-

malization constant, which is parameterized as a function of cSW. The values and pa-

rameterization form of γO and BO can be read off from Ref. [92]. In the lowest order

perturbation theory cSW = 1. Thus during the evaluation of Eq. (1.83) cSW needs to

be set to 1.

Since the renormalization constants calculated from lattice perturbation theory of-

ten deviate far from the non-perturbative ones, tadpole improvement was proposed to

enhance the predictive power of lattice perturbation theory [92–94]. The renormaliza-

tion constants in the Landau gauge with tadpole improvement read [95]:

ZH = u0(g
2)

(

1− g2P
16π2

CF

(

γO ln(aµ) +BO − π2
)

)

, (1.84)

with u0 approximated by the fourth root of the plaquette expectation value [96]

u0 = 1− g2

16π2
CFπ

2 +O(g4) ≃
〈

1

Nc

∑

x

Re TrUµν(x)

〉1/4

, (1.85)
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which can be calculated non-perturbatively on the lattice. One way to define the tadpole

improved coupling is given by g2P = g2/u40 [97]. It is more common to replace g2P with

g2
MS

to perform the cacluation in the MS scheme.

To compute g2
MS

one starts with the determination of the coupling gV in the V

scheme, which is defined by the potential V (µ) = −CF g
2
V (µ)/µ

2. The plaquette expec-

tation value can be expanded in terms of g2V in the quenched case as follows [97]

− ln(u40) =
CF g

2
V (µ

∗)

4

[

1− g2V (µ
∗)

4π

(

11Nc

12π
ln

(

6.7117

µ∗

)2
)]

+O(g6V (µ
∗)), (1.86)

whereby the matching should be most accurate at the scale µ∗ = 3.4018/a [97]. With

the plaquette expectaton value quoted in Table 1.4 the evolution of coupling g to the

scale µ = 1/a can be carried out with the standard two loop renormalization group

equation through Eq. (1.55). The relation of scale parameters between the MS scheme

and the V scheme is ΛMS = 0.6252ΛV [93]. The resulting g2
MS

(µ = 1/a) are listed in

Table 1.4.

The two-loop order perturbative calculation is available only since recently [98].

The renormalization constants can be written as:

Zbare
H (g2, aµ) = 1 +

g2

16π2
(

− γ0 ln(aµ) + z1
)

+

(

g2

16π2

)2
(

l1 ln
2(aµ) + l2 ln(aµ) + z2

)

. (1.87)

The coefficients l1, l2, z1, z2 can be read off from Refs. [99, 100] as functions of cSW in

terms of the bare coupling constants in the renormalized Feynman gauge.

To set up tadpole improvement we need the expansion [101]

u0 = 1 + r1
g2

16π2
+ r2

(

g2

16π2

)2

+O(g6)

= 1 + r1
g2LAT
16π2

+ (r2 − 16π2r1p1)

(

g2LAT
16π2

)2

+O(g6LAT) , (1.88)

with the above expansion and Eq. (1.87), we arrive at [101]

ZLAT
H (g2LAT, aµ) = u0

[

1 +
g2LAT
16π2

(

−γ0 ln(aµ) + z1 + CFπ
2
)

+

(

g2LAT
16π2

)2
(

l1 ln
2(aµ) + (l2 + 16π2p1γ0 + r1γ0) ln(aµ)

+z2 − r2 − 16π2p1(z1 − r1) + r21 − r1z1

)

+O(g6LAT)

]

, (1.89)
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where

g2LAT = g2/u40, (1.90)

p1 =
1

3
, p2 = −2r2 + 3r21

128π4
, (1.91)

and r1, r2 can be found in Ref. [102]. In a similar way to the one-loop perturbative

calculations, g2LAT is replaced by g2
MS

to perform the cacluation in the MS scheme.

More reliable renormalization constants can be obtained by non-perturbative calcu-

lations, which have been done for vector and axial vector mesons with nearly vanishing

quark mass in the range: 6.0 ≤ β ≤ 24.0 and 0.0 ≤ g0 ≤ 1 [103]. The fitting parame-

terization with the data reads:

ZV C =
1− 0.7663 g20 + 0.0488 g40

1− 0.6369 g20
, (1.92)

ZAV =
1− 0.8496 g20 + 0.0610 g40

1− 0.7332 g20
. (1.93)

It is worth noting that the one-loop perturbative calculations for the PS (pseudo

scalar) and AV (axial vector) channels from more recent Refs. [99, 100] (one-loop part

of Eq. (1.89)) differ from the previous calculation done in Ref. [92] (Eq. (1.84)), while

for the VC (vector) and SC (scalar) channels the results from these two group concide.

In Fig. 1.4 we show the renormalization constants at vanishing quark mass obtained

from different approaches in the AV, VC, PS and SC channels. The label “1-loop SP09”

denotes the calculation from Ref. [99, 100] and the label “1-loop Göckeler97” for the

results from Ref. [92]. Non-perturbative calculations are only available for the VC and

AV channels and it is hard to tell the convergent behavior of lattice perturbation theory

from Fig. 1.4. Thus in the data analysis one should try to study the renormalization

independent quantities more, e.g. the ratio of two correlators. As pointed out by the

authors of Refs. [99, 100], there are terms missing in the calculation for PS and AV

done in Ref. [92]. Thus in what follows, we will quote one-loop perturbative renormal-

ization constants from the one-loop part of Eq. (1.89). The renormalization constants

at vanishing quark masses for our simulated β values are summarized in Table 1.5.

For the currents with non-vanishing quark mass the renormalization constants are

given by:

ZH(amq, g
2
MS

) = ZH(g2
MS

, aµ = 1)
(

1 + bH(g2
MS

)amq

)

, (1.94)

where the coefficients bH(g2
MS

) can be expanded in powers of the coupling,

bH(g2
MS

) = 1 + CF bH g2
MS

, (1.95)

which has been calculated at one loop level [94, 104]. In particular, bH for the vector

channel has been determined non-perturbatively and is parameterized as follows

bV C =
1− 0.6518 g20 − 0.1226 g40

1− 0.8467 g20
. (1.96)
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But the non-perturbative determination of bAV requires a very sophisticated approach.

However, if one is interested in situations where amq is very small (say less than 0.01),

a perturbative estimate of bAV may be perfectly satisfactory [103].

In practice, for the vector channels, the non-perturbatively determined renormal-

ization constants are used; for the axial vector channels, the renormalization constants

obtained through relations (1.93) and (1.94) with a perturbatively determined bAV are

used; for the scalar and pseudo scalar channels, the renormalization constants obtained

through the formula (1.94) and the one-loop part of formula (1.89) are used. These

renormalization constants are listed in Table. 1.6.

β u0 g2
MS

(1/a)

6.872 0.902626 1.70310

7.457 0.913450 1.43185

7.793 0.918537 1.31517

Table 1.4. The non-perturbatively determined plaquette values u0 and the resulting g2
MS

at

µ=1/a.

β SCTI PSTI VCTI AVTI VCNP AVNP

6.872 0.780093 0.844049 0.831763 0.903624 0.829295 0.846796

7.457 0.809197 0.863611 0.853159 0.914299 0.851246 0.867908

7.793 0.822246 0.872505 0.872505 0.919321 0.861273 0.877244

Table 1.5. Renormalization constants at vanishing quark mass. “TI” stands for the results from

one-loop tadpole improved perturbative calculations (one-loop part of Eq. (1.89)) at µ = 1/a

while “NP” denotes the non-perturbative results.

β κ κc SCTI PSTI VCTI AVTI VCNP AVNP

6.872 0.13035 0.13497 0.916090 0.983772 0.969473 1.053021 0.970641 0.986769

7.457 0.13179 0.13398 0.873207 0.928910 0.917675 0.983354 0.917012 0.933458

7.793 0.13200 0.13346 0.864942 0.915940 0.905811 0.965040 0.904983 0.920882

Table 1.6. Renormalization constants in the massive quark case at the scale of µ=1/a. “TI”

stands for the results from 1-loop tadpole improved perturbative calculations while “NP” de-

notes the non-perturbative results.
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Figure 1.4. Comparisons of renormalization constants at vanishing quark mass from one-loop,

two-loop perturbative (with tadpole improvement) and non-perturbative calculations. “1-1oop

SP09” and “2-loop” are the perturbative results obtained from formula (1.89) while “1-loop

Göckeler” stands for the perturbative results obtained from formula (1.84). “Non-pert.” denotes

the non-perturbative results evaluated from formulae (1.92) and (1.93).



Chapter 2

Mesonic correlation and spectral functions

In this chapter we will elaborate the theoretical basics as well as the main techniques

used in the charmonium correlation function analysis and also briefly review the current

status of the charminoum study. It is organized as follows: In section 2.1 the definition

of the correlation function and its relation to the spectral function is given. To study

the thermal effects to the charmonia states at the correlator level, we find a very

useful relation to calculate the reconstructed correlator directly from the correlation

function at the reference temperature. In section 2.2 we will give a brief review on the

Maximum Entropy Method, which will be utilized to extract the spectral function from

the correlation funciton. We also introduce variants of the Maximum Entropy Method

to suppress the τ independent constant in the correlator. To further enhance the signal

of the low frequency part of the spectral function, for the first time, we will introduce

the extended Maximum Entropy Method to the lattice QCD field. In section 2.3 we will

depict the one-loop calculation of the free correlation and spectral function in the non-

interacting case in both the continuum and Wilson discretized lattice case. The main

features of the free correlators and spectral functions are discussed. In section 2.4 we

will give a brief introduction to linear response theory and heavy quark diffusion. The

resulting spectral functions from the Langevin equation are discussed. In section 2.5

we will briefly review the status of the current study on the charmonium system from

the lattice QCD approach.

2.1 Mesonic correlation and spectral functions

In this section we will give the definition of the correlation functions in both real and

imaginary time and show they can be connected by analytic continuation. More details

can be found in various books [9, 10]. Some remarks on the integral kernel and the

reconstructed correlator are also presented [105].

29
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We start by the definition of two point correlation functions in the operator formal-

ism in real time:

iD+(t,x) = 〈O(t,x)O(0,0)〉β , (2.1)

iD−(t,x) = 〈O(0,0)O(t,x)〉β , (2.2)

(2.3)

where 〈O〉β = 1/Z
∑

n e
−βEn 〈n|O|n〉 stands for thermal average and O(t,x) is the

operator in the Heisenberg picture:

e−βHO(t,x)eβH = e−βHeiHtO(0,x)e−iHteβH = O(t+ iβ,x). (2.4)

With

〈n|O(t,x)|m〉 = ei(kn−km)·x 〈n|O(0)|m〉 (2.5)

and inserting a complete set of eigenvectors of H one can express D+(t,x) as

iD+(t,x) =
1

Z(β)

∑

n,m

e−βEn ei(kn−km)·x |〈n |O(0)|m〉|2 , (2.6)

where x = (t,x) and kn = (En,k). If the convergence in the above equation is controlled

by the exponentials, one can see that D+(t,x) is defined for −β ≤ Im t ≤ 0 andD−(t,x)

is defined for 0 ≤ Im t ≤ β.

The Fourier transform of Eq. (2.6)

D+(ω,p) =

∫

d4x

(2π)4
eip·xD+(t,x) (2.7)

can be expressed in terms of the spectral density

σ+(ω,p) =
1

Z(β)

∑

n,m

e−βEn δ(p + kn − km) |〈n |O(0)|m〉|2 . (2.8)

as D+(ω,p) = 2πσ+(ω,p), where p = (ω,p).

Inserting relation (2.4) into Eq. (2.7) one has:

D+(t,x) = D−(t+ iβ,x),

D+(ω,p) = eβωD−(ω,p). (2.9)

The Eq. (2.9) is the Kubo-Martin-Schwinger (KMS) relation.

Similarly we define D−(ω,p) = 2πσ−(ω,p) and using the KMS relation we have

σ−(ω,p) =
1

Z(β)

∑

n,m

e−β(En+ω) δ(p + kn − km) |〈n |O(0)|m〉|2 . (2.10)
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The ensemble average of the commutator is

D(t, x) = −i 〈[O(t,x),O(0,0)]〉 = D+(t,x) −D−(t,x). (2.11)

and its spectral density σ(ω,p) can be expressed as

σ(ω,p) =
D+(ω,p)−D−(ω,p)

2π
= σ+(ω,p)− σ−(ω,p)

=
1

2π

∫

d4x eiωt−ip·x 〈[O(t,x),O(0,0)]〉 . (2.12)

An explicit expression for σ(ω,p) can be obtained by using (2.8) and (2.10):

σ(ω,p) =
1

Z(β)

∑

n,m

e−βEn (1− e−βω) δ
(

p+ kn − km
)

|〈n |O(0)|m〉|2

=
1

Z(β)

∑

n,m

(

e−βEn − e−βEm

)

δ
(

p+ kn − km
)

|〈n |O(0)|m〉|2 (2.13)

=
1

Z(β)

∑

n,m

e−βEn

(

δ
(

p+ kn − km
)

− δ
(

p+ km − kn
)

)

|〈n |O(0)|m〉|2 .

From the above equation, one can see the spectral function σ(ω,p) has the symmetry

of σ(−ω,−p) = σ(ω,p) and ωσ(ω,p) ≥ 0. If the system is rotationally invariant,

which means the state can have same energy ω but opposite momentum p, the spectral

function σ(ω,p) would then be an odd function of ω.

The retarded and advanced propagator are defined as

DR(t,x) = −θ(t)D(t,x), (2.14)

DA(t,x) = θ(−t)D(t,x), (2.15)

whose Fourier transforms can also be written in terms of the spectral density (2.13) as

the following

DR(ω,p) =

∫ +∞

−∞

dk0
k0 − ω − iǫ

σ(k0,p), (2.16)

DA(ω,p) =

∫ +∞

−∞

dk0
k0 − ω + iǫ

σ(k0,p). (2.17)

The imgainary parts of these functions are proportional to the spectral density as

ImDR(ω,p) = −ImDA(ω,p) = π σ(ω,p), (2.18)

and the real parts are equivalent

ReDR(ω,p) = ReDA(ω,p). (2.19)
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Now we make the connection to the imaginary time picture. The imaginary time

propagator in the coordinate space reads

G(τ,x) = 〈O(τ,x)O(0,0)〉 . (2.20)

The time evolution of operator becomes

O(τ,x) = eHτ O(0,x) e−Hτ . (2.21)

Inserting the complete eigenstates into Eq. (2.20) one arrives at

G(τ,x) =
1

Z(β)

∑

n,m

e−βEneτ(En−Em) ei(pm−pn)·x |〈n |O(0)|m〉|2 , (2.22)

and its Fourier transform reads

G(ωn,p) =

∫ β

0
dτ

∫

d3x

(2π)3
e−i(k·x+ωnτ)G(τ,x)

=
1

Z(β)

∑

n,m

e−βEn − e−βEm

Em − En + iωn
δ(p − km + kn) |〈n |O(0)|m〉|2 , (2.23)

where ωn = 2πnT are called Matsubara frequencies owing to the periodic condition of

G(τ,x) = G(τ+β,x). The above equation can be related with the spectral density (2.13)

as

G(ωn,p) =

∫ +∞

−∞

dk0
k0 + iωn

σ(k0,p). (2.24)

By comparing the formluae (2.16), (2.17) and (2.24) we find the advanced and retarded

propagators can be obtained from the finite temperature imaginary time propagator

by analytic continuation as the following

DR(ω,p) = G(ωn → iω − ǫ, p), (2.25)

DA(ω,p) = G(ωn → iω + ǫ, p). (2.26)

The spectral density σ(ω,p) determines both the imaginary and real time propagator

and thus is a very important quantity. The analytic continuation from imaginary time

propagator to real time propagator serves as a crucial theoretical basis in this work of

measuring two-point Euclidean correlation functions.

The Euclidean temporal correlation function G(τ,p) is defined as

G(τ,p) =

∫

d3x e−ip·x 〈OE(τ,x)OE(0,0)〉 , (2.27)
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and can be related to the spectral function through

G(τ,p) =

∫

d3x e−ip·x D+(−iτ,x)

=

∫

d3x

∫

dω

2π

∫

d3p′

2π3
ei(p

′−p)·x−ωτD+(ω,p′)

=

∫

dω

2π

∫

d3p′δ3(p′ − p)e−ωτD+(ω,p′)

=

∫

dω

2π
e−ωτD+(ω,p)

=

∫ ∞

0

dω

2π
e−ωτD+(ω,p) +

∫ 0

−∞

dω

2π
e−ωτD+(ω,p)

=

∫ ∞

0

dω

2π
e−ωτD+(ω,p) +

∫ ∞

0

dω

2π
eωτD−(ω,p)

=

∫ ∞

0

dω

2π
· 2π

(

(1 + n(ω)) e−ωτ + n(ω)eωτ
)

σ(ω,p)

=

∫ ∞

0
dω

cosh
(

ω(τ − β
2 )
)

sinh(ωβ2 )
σ(ω,p) (2.28)

=

∫ ∞

0
dω K(ω, τ) σ(ω,p). (2.29)

where K(ω, τ) is the integration kernel in the continuum limit1. Since the relation

between the temporal correlation function and spectral function is straightforward, it

will be utilized to extract the spectral function in the following chapter.

The Euclidean spatial correlation function G(z,p⊥, ωn) is obtained via an integra-

tion over the so called funny space, which includes the Euclidean time τ and two spatial

directions x⊥:

G(z,p⊥, ωn) =

∫ 1/T

0
dτ

∫

dx⊥ e−ip̃·x̃ 〈OE(τ,x)OE(0,0)〉 , (2.30)

where p⊥ = (px, py), x⊥ = (x, y), x̃ = (x⊥, τ) and p̃ = (p⊥, p4 = ωn). The spatial

correlation function can again be related with the spectral function through [107]

G(z,p⊥, ωn) =

∫ ∞

−∞

dpz
2π

eipzz
∫ ∞

−∞
dp0

σ(p0,p⊥, pz, ωn)

p0
. (2.31)

The above relation is much more complicated than that of the temporal correlation

function and thus it is not so straightforward to extract the spectral function from the

spatial correlation function. However, one advantage of spatial correlation functions

over temporal functions is that the physical extent in the spatial direction is not re-

stricted by the temperature and thus by going to the large distance one can extract the

exponentially decayed constant, i.e. screening mass.

1Although this relation is derived in the continuum limit, it has been shown that this relation also

holds in the limit of non-interacting theory [106].
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Channel ΓH
2S+1LJ JPC IG cc̄ M(cc̄)[GeV]

PS γ5
1S0 0−+ 0+ ηc 2.980(1)

VC γµ
3S1 1−− 0− J/ψ 3.097(1)

SC 1 3P0 0++ 0+ χc0 3.415(1)

AV γ5γµ
3P1 1++ 0+ χc1 3.510(1)

Table 2.1. Charmonium states in different channels from PDG [83].

In this work we consider the local meson operator JH(τ,x), which has the form of

JH(τ,x) = ψ̄(τ,x)ΓHψ(τ,x), (2.32)

with

ΓH = 1, γ5, γµ, γ5γµ, (2.33)

for scalar, pseudo scalar, vector and axial vector channels, respectively. The correspon-

dence of these quantum numbers to different charmonium states is summarized in Table

2.1.

In the path integral formalism the two-point correlation function has the form of

GH(xf , xi) =
〈

JH(xf )J
†
H(xi)

〉

=
1

Z

∫

DUDψDψ̄
(

ψ̄(xf )ΓHψ(xf )
) (

ψ̄(xi)Γ
†
Hψ(xi)

)

e−S

=
1

Z

∫

DU
{

Tr

(

M−1(xf , xi)ΓHM
−1(xi, xf )Γ

†
H

)

−Tr

(

Γ†
HM

−1(xi, xi)

)

Tr

(

ΓHM
−1(xf , xf )

)

}

e−SG(U) (2.34)

= xi xf − xi xf. (2.35)

where Tr denotes the trace over color and Dirac indices. The second term in Eq. (2.34)

describes disconnected diagrams in which each of the quark lines starts and ends at

the same point as depicted in Eq. (2.35). The charmonium states we want to study are

actually singlet, as seen from Table 2.1. The disconnected diagrams should be small

due to OZI suppression and so in our simulation only the connected part, i.e. the first

term of Eq. (2.34) is considered. Taking advantage of the γ5-Hermiticity of M−1(1.65),

the connected part of the two-point function can be computed as

GH(xf , xi) =

〈

Tr

(

M−1(xf , xi)ΓH γ5(M−1)†(xf , xi)γ
5 Γ†

H

)〉

. (2.36)
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The temporal and spatial correlators can thus be obtained through

GH(τ,p) =
∑

x

e−ip·xGH(τ,x; 0,0), (2.37)

GH(z,p⊥, ωn) =
∑

x̃

e−ip̃·x̃GH(τ,x; 0,0). (2.38)

In particular the vector channel can be decomposed into the density-density corre-

lator

GNN(τ,x) =
〈

J0(τ,x)J0(0,0)
〉

(2.39)

and the current-current corrlator

Gij
JJ =

〈

J i(τ,x)J j(0,0)
〉

. (2.40)

These correspond to the real time correlators

GNN(τ,x) = −D+
NN(−iτ,x), (2.41)

Gij
JJ(τ,x) = D+

JJ(−iτ,x). (2.42)

The corresponding real time retarded correlators χNN(t,x) and χJJ(t,x) can be defined

in the same way. The current-current retarded correlator in the momentum-energy

space can be decomposed into longitudinal and transverse parts:

χij
JJ(ω,p) =

(

pipj

p2
− δij

)

χT
JJ(ω,p) +

pipj

p2
χL
JJ(ω,p) . (2.43)

The density-density correlators can be related to the longitudinal current-current cor-

relators due to current conservation

χNN(ω,p) =
pipj

ω2
χij
JJ =

p2

ω2
χL
JJ(ω,p) . (2.44)

The spectral function in the vector channel is related to the experimentally acces-

sible differential cross section for the thermal production of dilepton pairs2 [9,108,109]

dW

dω d3p
=

5α2

27π2
1

ω2(eω/T − 1)
σV (ω,p, T ), (2.45)

where α is the electromagnetic fine structure constant, σV is the spectral function in

γµ channel. The presence or absence of the bound states of heavy quarkonium can be

observed from this quantity. Additionally the spectral function in γi channel is related

to the heavy quark diffusion constant D [9, 110]

D =
π

3χ00
lim
ω→0

3
∑

i=1

σiiV (ω, ~p = 0, T )

ω
, (2.46)

2Here in this formula the lepton is considered as massless particle.
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where χ00 is the quark number susceptibility of χH with γH = γ0. χH is defined as the

space-time integral over the Euclidean correlation function,

χH =

∫ 1/T

0
dτ GH(τ, T,p = 0), (2.47)

which is connected to spectral function directly with the help of relation (2.61)

χH = 2

∫ ∞

0
dω

σH(ω,p = 0)

ω
. (2.48)

2.1.1 A close look at the integrand kernel

The relation between spectral function and temporal correlation function is:

G(τ, T,p) =

∫ ∞

0
dωK(τ, ω, T )σ(ω, T,p). (2.49)

where the integral kernel reads

K(ω, τ, T ) =
cosh (ω(τ − 1/2T ))

sinh(ω/2T )
. (2.50)

The kernel has following important properties:

• In the very high frequency region or the case T → 0,

K(τ, ω) = e−ωτ , (2.51)

which indicates that the correlation function is very insensitive to the large ω

behavior of the spectral function.

• In the very low frequency region,

K(τ, ω) =
2T

ω
+ (

1

6T
− τ + Tτ2)ω +O[ω]3, (2.52)

which is divergent at ω = 0 and consequently the spectral function at ω ≈ 0

should be at the order or higher order of 0.

• K(τ, ω, T ) has a trivial temperature dependence, which one should remove, if one

wants to compare the difference of the spectral function directly at the correlator

level.
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2.1.2 The reconstructed correlator

To study the difference of the spectral function at temperature T and T ′ directly from

the temporal correlator3, one constructs

Grec(τ, T ;T
′) =

∫ ∞

0
dω σ(ω, T ′)

cosh (ω(τ − 1/2T ))

sinh(ω/2T )
, (2.53)

in order to cancel the trivial temperature dependence of K(τ, ω, T ). The deviation of

G(τ, T ) from Grec(τ, T ;T
′) indicates the thermal modification of the spectral function.

One normally needs a technique to obtain the spectral function σ(ω, T ′) at a ref-

erence temperature T ′ and consequently the evaluation of Eq. (2.53) suffers from the

uncertainty of the determination of the spectral function brought by the certain tech-

nique.

We find a useful exact relation [105]4:

cosh[ω(τ −Nτ/2)]

sinh(ωNτ/2)
≡

N ′

τ−Nτ+τ
∑

τ ′=τ ; τ ′+=Nτ

cosh[ω(τ ′ −N ′
τ/2)]

sinh(ωN ′
τ/2)

, (2.54)

where T ′ = (aN ′
τ )

−1, T = (aNτ )
−1, τ ′ ∈ [0, N ′

τ − 1], τ ∈ [0, Nτ − 1], N ′
τ =

m Nτ , m ∈ Z
+. Nτ and N ′

τ are the number of time slices in the temporal directions at

temperature T and T ′, respectively. τ denotes the time slice of the correlation function

at temperature T while τ ′ denotes the time slice of the correlation function at temper-

ature T ′. The sum of τ ′ on the right hand side of Eq. (2.54) starts from τ ′ = τ with a

step length Nτ to the upper limit N ′
τ −Nτ + τ . After putting σ(ω, T ′) into both sides

of the above relation and performing the integration over ω, one immediately arrives

at:

Grec(τ, T ;T
′) =

N ′

τ−Nτ+τ
∑

τ ′=τ ; τ ′+=Nτ

G(τ ′, T ′), (2.55)

which shows the evaluation of Grec(τ, T ;T
′) can be done directly from the correlator

G(τ ′, T ′) at T ′.

For instance when T = 2T ′,

Grec(τ, T ;T
′) = G(τ, T ′) +G(τ +Nτ , T

′), (2.56)

when T = 3T ′,

Grec(τ, T ;T
′) = G(τ, T ′) +G(τ +Nτ , T

′) +G(τ + 2Nτ , T
′), (2.57)

3For the spatial correlator the physical distance does not change with temperature and one does

not need any reconstruction to compare the spatial correlators at different temperatures.
4Our finding covers the special case of T = 2T ′ (Eq. (2.56)) and T = 0 (Eq. (2.56)) which were

previously found in Ref. [111].
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when T = 4T ′,

Grec(τ, T ;T
′) = G(τ, T ′) +G(τ +Nτ , T

′) +G(τ + 2Nτ , T
′) +G(τ + 3Nτ , T

′). (2.58)

In particular when T ′ = 0, which means N ′
τ goes to infinity (at fixed lattice spacing a):

Grec(τ, T ; 0) =
∑

ℓ∈Z

G(|τ + ℓNτ | , T ′ = 0). (2.59)

In practice we will utilize Eq. (2.56), (2.57) and (2.58) to reconstruct the correlators in

the following chapter.

2.1.3 Sum rules

The kernel obeys two following relations. One is in the sum representation:

Nτ−1
∑

τ=0

K(ω, τ) = 1/ tanh(ω/2), (2.60)

and the other one is in the integral representation:
∫ 1/T

0
dτ K(ω, τ) =

2

ω
. (2.61)

With relation (2.60) we arrive at the first sum rule:

Nτ−1
∑

τ=0

G(τ) =

∫ ∞

0
dω coth

(ω

2

)

σ(ω, T ), (2.62)

which sheds some light on the size of the spectral function.

Performing the sum over τ on both sides of Eq. (2.49) and Eq. (2.53), with relation

(2.61), one has

Nτ−1
∑

τ=0

G(τ, T ) =

∫ ∞

0
dω coth

(ω

2

)

σ(ω, T ), (2.63)

Nτ−1
∑

τ=0

Grec(τ, T ;T
′) =

∫ ∞

0
dω coth

(ω

2

)

σ(ω, T ′). (2.64)

With the above two relations, one obtains the second sum rule of the spectral function:

∫ ∞

0
dω coth

(ω

2

)

∆σ(ω) =

Nτ−1
∑

τ=0

(

G(τ, T ) −Grec(τ, T ;T
′)
)

, (2.65)

where ∆σ(ω) = σ(ω, T )− σ(ω, T ′). The second sum rule can give us some hints on the

gross features of the thermal modification to the spectral function.

Similarly we have in the integral representation

2

∫ ∞

0
dω

∆σ(ω)

ω
=

∫ 1/T

0
dτ
(

G(τ, T )−Grec(τ, T ;T
′)
)

. (2.66)
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2.2 Maximum Entropy Method

The Maximum Entropy Method (MEM) is currently the best tool on the market for

extracting the spectral function from the correlation data. Since the 70s it has been

widely implemented in various fields [112–117], e.g. condensed matter physics, nuclear

physics and image reconstruction in astrophyiscs. Around 2000 MEM was introduced

to lattice QCD by Asakawa et al. [118]. It has been successfully applied to the lattice

QCD data at zero temperature to extract the parameters of the ground and excited

states of hadrons [119–124]. The application to finite temperature lattice QCD has also

been made recently [37–41,105,109,125,126].

In this section we will first review the standard Maximum Entropy Method. More

details can be found from the reviews and textbooks [117,118,127,128]. The standard

MEM can only be used for the analysis of non-negative spectral functions. We will then

introduce the extended Maximum Entropy Method [105], which is also applicable for

the analysis on negative spectral functions5.

The imaginary two point static temporal correlation functions can be obtained

from lattice QCD simulations, while the dynamic spectral function can be extracted by

inverting:

G(τ, T,p) =

∫ ∞

0
dω

cosh(τ(ω − 1
2T ))

sinh( ω
2T )

σ(ω, T,p). (2.67)

Inverting Eq. (2.67) to extract the spectral function is a typical ill-posed problem.

At finite temperature the inversion is more complicated, since the temporal extent is

always restricted by the temperature, aτ ≤ 1/T . The spectral functions we want to

have should be continuous and have an approximate degree of freedom of O(1000),

while the correlators are calculated in the discretized time slices with limited numbers,

typically O(10). So an infinite number of solutions exist. The task then is to select the

best one from the solutions by some criterion. The best one could be the most probable

one or the “average” spectrum. Due to the non-negativity and the normalizibility of

the spectral function it can be interpreted as a probability function, thus the guiding

principle for the selection could be the Bayesian statistical inference [132], which is the

root of the Maximum Entropy Method.

According to Bayes’s theorem the joint probability P [X,Y ] of two given events X

and Y can be written as:

P [X,Y ] = P [X|Y ]P [Y ] = P [Y |X]P [X], (2.68)

5For the two-point correlation function with non-equal operators, its corresponding spectral function

is not necessarily positive semi-defnite. Typical examples are the meson and baryon mixing, e.g. ρ−ω,

Λ− Ω0 [129–131].
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where P [Y ] is the probability of Y and P [X|Y ] is the conditional probability of X given

Y . From probability theory the condition for the marginalization of a variable reads:

P [X] =

∫

dY P [X,Y ], (2.69)

and the condition for normalization is:

∫

dX P [X] = 1,

∫

dX P [X|Y ] = 1. (2.70)

From (2.68) and (2.69) one obtains:

P [X] =

∫

dY P [X|Y ]P [Y ] (2.71)

Applied to our specific problem the probability of spectral function σ(ω,p) given

data G(τ,p) and prior knowledge parameterized in H can be expressed as:

P [σ|GH] = P [G|σH]P [σ|H]/P [G|H], (2.72)

where P [σ|GH] is called the posterior probability, P [G|σH], the likelihood function,

P [σ|H], the prior probability, and P [G|H], the evidence. Eq. (2.72) is very meaningful

since it transfers the problem of specifying the posterior probability into the problem

of specifying the likelihood function and the prior probability. The latter ones can be

more easily accessible by making reasonable assumptions (for the likelihood function)

and having specific knowledge (for the prior probability).

2.2.1 Likelihood function

The likelihood function is a probability distribution for the data given in terms of its

dependences on a set of parameters. Following the central limit theorem, the functional

form of P [G|σH] can be expressed via the usual χ2 when the number of measurements

M becomes large:

P [G|σH] ∝ exp(−L) = exp(−χ
2

2
), (2.73)

with

χ2 =

Nτ/2
∑

i,j

(

Ḡ(τi)− F (τi)
)

C−1
ij

(

Ḡ(τj)− F (τj)
)

, (2.74)

where Ḡ(τi) is the average over all measurments

Ḡ(τi) =
1

M

M
∑

m=1

Gm(τi), (2.75)
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C is the covariance matrix,

Cij =
1

M(M − 1)

M
∑

m=1

(

Gm(τi)− Ḡ(τi)
) (

Gm(τj)− Ḡ(τj)
)

, (2.76)

and the fitting function

F (τi) =

∫ ∞

0
dω K(τi, ω)σ(ω) ≃

∑

j

Kij σj (2.77)

is obtained in the discretized version through a predefined kernel Kij ≡ K(τi, ωj) and

the spectral function σj = σ(ωj)∆ω.

Using the data to find an appropriate spectral function cannot be done solely with

a least-squares fitting procedure by maximizing the likelihood function (2.73) or mini-

mizing χ2 (2.74), since too many parameters for the spectral function σ(ω) have to be

used during the fitting procedure, which unfortunately leads to overfitting (χ2 ≈ 0) and

non-unique results. Thus some sort of regularization methods is required. An entropic

prior is one of the best regulators in the literature6, which will be described in the

following section.

2.2.2 Entropic prior information

The prior probability

P [σ|H] ∝ exp(αS), (2.78)

with the Shannon-Jaynes entropy [133–135]

S[σ] =

∫ ∞

0
dω

[

σ(ω)−m(ω)− σ(ω) ln

(

σ(ω)

m(ω)

)]

≃
∑

i

Si =
∑

i

[

σi −mi − σi ln

(

σi
mi

)]

, (2.79)

where m(ω) is a real and positive function called default model and it needs the prior

information of the spectral function σ(ω) as input. In the discretized version σi =

σ(ωi)∆ω and mi = m(ωi)∆ω. From Eq. (2.79), one can see the entropy is a non-

positive number and reaches the maximum value zero when σi = mi. Consequently

how negative the entropy is can be a measure of how much σi differs from mi. One can

expand the entropy about σ(ω) = m(ω):

S[σ] ≈ −1

2

∫ ∞

0
dω [σ(ω)−m(ω)]2 /m(ω). (2.80)

6There are also some other regularization methods in the literature, such as Tikhonov [136] and

L-curved regularization [137].
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One has to note that the functional form of the entropy has been chosen to satisfy

certain requirements: the entropy should not depend on the type of data being analyzed

and the units of σ, the extra knowledge about σ in one part of frequency space should

not affect σ elsewhere and the independent data should combine multiplicatively [117]7.

2.2.3 Posterior probability

Together with Eq. (2.72), (2.73) and (2.78), the posterior probability reads

P [σ|GH] ∝ exp(αS − L) ≡ exp(Q). (2.81)

Thus the most probable spectral function can be obtained by maximizing P [σ|GH] or

by maximizing Q as a function of σ:

α∇S −∇L = 0. (2.82)

We expand Q about the maximum for a fixed value of α in a coordinate system

which is described by the variable Xi [117]

Q(σ, α) ≈ Q(σ̂α) +
∑

i

δXi

[

∂Q

∂Xi

∣

∣

∣

∣

∣

σ=σ̂α

+
1

2

∑

i,j

δXi δXj

[

∂2Q

∂Xi ∂Xj

∣

∣

∣

∣

∣

σ=σ̂α

= Q(σ̂α) +
1

2

∑

i,j,k,l

δXi δXj

[

∂σk
∂Xi

∂σl
∂Xj

∂2Q

∂σk∂σl

∣

∣

∣

∣

∣

σ=σ̂α

, (2.83)

where δXi = Xi − X̂i and

∂2Q

∂σk∂σl
= α

∂2S

∂σk∂σl
− ∂2L

∂σk∂σl
= − αδkl√

σkσl
− ∂2L

∂σk∂σl
. (2.84)

With a new coordinate system

∂σk
∂Xl

=
√
σk δkl (2.85)

we can further write

Q(σ, α) ≈ Q(σ̂α)−
1

2

∑

ij

δXi Γij δXj , (2.86)

where Γ is a positive-definite matrix Γij = αδij + Λij with

Λij =

[

√
σi

∂2L

∂σi∂σj

√
σj

∣

∣

∣

∣

∣

σ=σ̂α

, (2.87)

and
∂2L

∂σi∂σj
=
[

KT · C−1 ·K
]

ij
. (2.88)

7The proof of these properties can be found in Ref. [118].
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2.2.4 Distributions and their normalizations

The likelihood function in a specific form can be expressed as

P [G|σ] = e−χ2/2/ZL, (2.89)

where

ZL =

∫

DGe−χ2
=

∫

∏

i

dGi e
−χ2

= (2π)N/2
√
detC. (2.90)

The prior probability of the spectral function given α in a specific form can be

expressed as

P [σ|α] = eαS/ZS(α), (2.91)

where

ZS(α) =

∫

Dσ eαS =
∏

i

∫

dσi√
σi

eαSi . (2.92)

Si as a function of
√
σi can be expanded about

√
mi:

Si ≈ −2 (
√
σi −

√
mi)

2 , (2.93)

which leads to

ZS(α) ≈
( π

2α

)N/2
=

(π/2)
N
2

√
detαI

. (2.94)

The posterior probability of α given the data

P [α|G] = P [α]

∫

DA eQ

ZLZS(α)
, (2.95)

where the value of P [α] is set to be 1/α following Jeffrey’s argument [138]. Inserting

Eq. (2.86) into Eq. (2.95) and with relations (2.90) and (2.94), we have:

P [α|G] ≈ 1

α

eQ(σ̂α)

ZLZS(α)

∫

DX e−
1
2
δX·(αI+Λ)·δX

=
1

α

eQ(σ̂α)

(π/2)
N
2

√
detC

√

detαI

det [αI + Λ(σ̂α)]
. (2.96)

Then the final spectral function we want is:

σ(ω) ≈
∫

dα σ̂α P [α|G]
∫

dαP [α|G]

≈
∑αmax

αmin
σ̂α(ω) e

1
2

∑

i log
(

α
α+λi

)

+Q
∆ log(α)

∑αmax

αmin
e

1
2

∑

i log
(

α
α+λi

)

+Q
∆ log(α)

, (2.97)

where λ is the eigenvalue of Λ.
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2.2.5 MEM algorithm

The basic idea of the commonly used MEM algorithm is to get the most probable

spectral function from given data by maximizing the conditional probability or solving

α∇S −∇L = 0. (2.98)

with

∇S = −
∑

i

log(σi/mi), ∇L =
∂F

∂σ

∂L

∂F
= KT ∂L

∂F
. (2.99)

Eq. (2.98) can be further written as

−α log(σi/mi) =
∑

j

Kji
∂L

∂Fj
. (2.100)

With the implementation of the singular value decomposition8, theNτ×Nω kernel K

can be written as a product K = V ΞUT , where V and U are orthogonal matrices while

Ξ is a diagonal matrix with ordered singular values ξi. Since some ξi are very small and

rounding errors maybe introduced, the space should be reduced to the singular space

with dimension Ns ≤ Nτ by a criterion, e.g. ξmin > 10−10ξmax.

Then from Eq. (2.100) it is convenient to parameterize σ with some Ns-dimensional

vector u,

σi = mi exp





Ns
∑

j=1

Uijuj



 ,
∂σ

∂u
= diag{σ}U, (2.101)

which automatically fulfills the requirement that the spectral function should be non-

negative. Inserting the parameterization of the spectral function into Eq. (2.100) the

most probable image of the spectral function σ̂α at given α, can be obtained by solving

αu + ΞV T ∂L

∂F
= 0 (2.102)

with a standard Newton search algorithm [139, 140]. Then with Eq. (2.97) the final

output image of the spectral function can thus be determined.

2.2.6 The extended MEM

As we have seen from the previous description of MEM, the spectral function can only

be non-negative in the MEM analysis since it is interpreted as the probability. In some

cases, we are also interested in the MEM analysis on the reconstruction of negative

distributions, e.g. the spectral function difference ∆σ(ω) from the difference of the

correlators G(τ, T ) and Grec(τ, T ) (see Eq. (2.65)) might be negative somewhere.

8The algorithm without singular value decomposition can be found in Ref. [40].
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In condensed matter physics MEM has already been extended to reconstruct distri-

butions which can be either positive or negative [113, 116, 128]. Here for the first time

we introduce this extended version of MEM to lattice QCD [105]9 and complete the

details missed in the previous references.

The idea is straightforward, say g is the difference between two subsidiary positive

distributions f and h:

g = f − h. (2.103)

The total entropy with respect to a common default model m can then be written as

the additive of two Shannon-Jaynes entropies for distributions f and h:

S̃(f ,h) =
∑

i

(

fi −mi − fi log(fi/mi)
)

+
∑

i

(

hi −mi − hi log(hi/mi)
)

. (2.104)

Generally,
∂S̃

∂f
=
∂S̃

∂g

∂g

∂f
= −∂S̃

∂g

∂g

∂h
= −∂S̃

∂h
(2.105)

with Eq. (2.104) and Eq. (2.105), one obtains:

fi hi = m2
i . (2.106)

Thus with Eq. (2.103) and Eq. (2.106), the total entropy can be written as a function

of g alone:

S̃(g) =
∑

i

(

ψi − 2mi − gi log
[

(ψi + gi)/2mi

]

)

, (2.107)

where

ψi = (g2i + 4m2
i )

1/2. (2.108)

The entropy S̃(g) has a maximum value when g = 0.

Following the procedures in the previous sections with

∂S̃

∂gi
= − log

(

ψi + gi
2mi

)

, (2.109)

∂2S̃

∂gi∂gj
= − δij√

ψi

√

ψj

, (2.110)

we expand Q̃ = αS̃ − L about the maximum for a fixed value of α in a coordinate

system which is described by the variable Yi:

Q̃(g, α) ≈ Q̃(ĝα) +
∑

i

δYi

[

∂Q̃

∂Yi

∣

∣

∣

∣

∣

g=ĝα

+
1

2

∑

i,j

δYiδYj

[

∂2Q̃

∂Yi∂Yj

∣

∣

∣

∣

∣

g=ĝα

= Q̃(ĝα) +
1

2

∑

i,j,k,l

δYiδYj

[

∂gk
∂Yi

∂gl
∂Yj

∂2Q̃

∂gk∂gl

∣

∣

∣

∣

∣

g=ĝα

, (2.111)

9We note that MEM has been used to deal with negative spectral functions by Langfeld et al. in

Ref. [121], but their entropy terms (formula (46) and (47)) obviously do not fulfill with the requirements

we mentioned in Section 2.2.2.
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where δYi = Yi − Ŷi and

∂2Q̃

∂gk∂gl
= α

∂2S̃

∂gk∂gl
− ∂2L

∂gk∂gl
= − α δkl√

ψk

√
ψl

− ∂2L

∂gk∂gl
. (2.112)

With a new coordinate system

∂gk
∂Yl

=
√

ψk δkl (2.113)

we can further write

Q̃(g, α) ≈ Q̃(ĝα)−
1

2

∑

ij

δYi Γ̃ij δYj , (2.114)

where Γ̃ is the positive-definite matrix Γ̃ij = αδij + Λ̃ij with

Λ̃ij =

[

√

ψi
∂2L

∂gi∂gj

√

ψj

∣

∣

∣

∣

∣

g=ĝα

, (2.115)

where ∂2L
∂gi∂gj

has the following form

∂2L

∂gi∂gj
=
[

KT · C̃−1 ·K
]

ij
, (2.116)

with C̃ the covariance matrix of the correlation data for the distribution g.

The corresponding normalization function

Z̃S =
∏

i

∫

dgi√
ψi
eαS̃i , (2.117)

is maximized at gi = 0 and can be approximated by:

Z̃S ≈
∏

i

∫

dgi
2mi

e−αg2i /4/mi ≈
(π

α

)N/2
=

πN/2

√
detαI

. (2.118)

which together with Eq. (2.114) give us the final output image:

g(ω) ≈
∑αmax

αmin
ĝα(ω) e

1
2

∑

i log

(

α

α+λ̃i

)

+Q̃
∆ log(α)

∑αmax

αmin
e

1
2

∑

i log

(

α

α+λ̃i

)

+Q̃
∆ log(α)

(2.119)

which is similar to Eq. (2.97). Then we can use the same algorithm that we used in

the standard MEM only replacing the entropy term and the parameterization of the

spectral function, that is to

• replace Eq. (2.79) with Eq. (2.107),

• replace Eq. (2.101) with

gi = 2mi sinh





∑

j

Uijuj



 ,
∂g

∂u
= 2mUcosh

(

∑

Uu
)

. (2.120)
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2.2.7 MEM analysis with zero mode contribution suppressed

To suppress the τ independent constant in the correlator10 in the MEM analysis one

way is to look into the difference of neighboring correlators, G(τ) − G(τ + 1) [126],

which gives

G(τ)−G(τ + 1) =

∫ ∞

0
dω σ(ω, T ) Kdiff(τ, ω), (2.121)

where Kdiff is given by

Kdiff(τ, ω) = 2 sinh
(ω

2

) sinh [ω(Nτ − 2τ − 1)/2]

sinh(ωNτ/2)
. (2.122)

The relation (2.121) is exact and without any approximation. Consequently the spectral

function obtained from the inversion of the relation (2.121) should be the same as that

in the relation (2.67) except the constant contribution is suppressed. The new kernel

Kdiff goes smoothly to zero when the energy goes to zero as

lim
ω→0

Kdiff(ω, τ) =
Nτ − 2τ − 1

Nτ
ω + O(ω3). (2.123)

This avoids the divergence problem of the standard kernel at ω = 0 as pointed out

by Aarts et al. [41] and opens the possibility to explore the information of spectral

functions in the very low frequency region.

The other way is to look into midpoint subtracted correlators [141]

G(τ)−G(
Nτ

2
) =

∫ ∞

0
dω σ(ω, T ) Ksub(τ, ω), (2.124)

with

Ksub(τ, ω) =
2 sinh2[ω(Nτ/2− τ)/2]

sinh(ωNτ/2)
. (2.125)

Ksub(τ, ω) has the following limiting behavior at ω → 0

Ksub(τ, ω) =

(

Nτ

4
− τ +

τ2

Nτ

)

ω +O(ω3). (2.126)

Thus one also does not need to worry about the instability of the kernel at ω ≈ 0 and

we can also explore the behavior of the spectral function in the very low frequency

region.

2.2.8 Remarks on MEM

One very important parameter in the MEM analysis is the default model. The default

model is important, extremely when the data is not good enough. Since the correlators

are not sensitive to the high frequency part of the spectral function, one direct choice is

10The description of the τ independent constant can be found in section 2.3.1, see e.g. Eq. (2.146).
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to supply the correct high frequency information to the default model. Due to asymp-

totic freedom the large ω part corresponds to the free non-interacting case, which we

will discuss in the next session. The default model dependence of a mock data test as

well as of the real data is investigated in detail in the next chapter.

Actually one is free to redefine the kernel and the spectral function with a factor

and its inverse such that G(τ) remains unchanged. Rather than putting a prefactor of

ω/2 [41] in the kernel to circumvent the singularity of the kernel, here we adopt the

following modified kernel [126,142]

K̃(τ, ω) = tanh
(ω

2

)

K(ω, τ), (2.127)

σ̃(ω) = coth
(ω

2

)

σ(ω), (2.128)

which has several advantages:

• the large ω behavior of the kernel K(τ, ω) and the spectral function σ(ω) are not

changed

• the limits of K̃(τ, ω) for T → 0 and ω → 0 are finite and commutable.

• the size of σ̃(ω) can be estimated from the sum rule Eq. (2.62).

2.3 Free temporal correlation and spectral function

In this section we will briefly review the derivation of free temporal correlation and

spectral functions in the non-interacting case at the lowest order in the loop expansion.

More details can be found in the Refs. [106, 143]. A discussion of the general features

of the free correlation and spectral functions is also presented.

We rewrite the definition of the spectral function with quantum numbers H in the

coordinate space (Fourier transform of Eq. (2.12)):

σH(τ,x) = 〈[JH(τ,x), JH (0,0)]〉 , (2.129)

where the local meson operator JH(τ,x) has the form of

JH(τ,x) = q̄(τ,x)ΓHq(τ,x), (2.130)

with

ΓH = 1, γ5, γµ, γ5γµ, (2.131)

for scalar, pseudo scalar, vector and axial vector channels, respectively. The spectral

function is related to the correlation function,

GH(τ,x) = 〈JH(τ,x)JH (0,0)〉 , (2.132)
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via the standard integral relation

GH(τ,p) =

∫ ∞

0
dω σH(ω,p) K(τ, ω). (2.133)

2.3.1 Free spectral function in the continuum

At the lowest order in the loop expansion the Euclidean correlators in momentum space

read:

GH(P̄ ) = −T
∑

n

∫

d3k

2π3
Tr
(

S(K) ΓH S(P +K) γ0 ΓH γ
0
)

, (2.134)

where P̄ = (iωn,p) with ωn = 2πnT (n ∈ Z) the Matsubara frequency in the imaginary

time formalism. The fermion propagators are given by

S(K̃) = − 1

iω̃nγ0 − γk−m
= −

∫ ∞

−∞

dω

2π

σF (ω,k)

iω̃n − ω
, (2.135)

with K̃ = (iω̃n,k), ω̃n = (2n+1)πT (n ∈ Z) the fermionic Mastsubara frequency and

σF (ω,k) the spectral density of the fermion,

σF (K) = ( /K +m) σ(K) = 2π( /K +m) sgn(k0) δ(k20 − ω2
k), (2.136)

with K = (k0,k) and ωk =
√
k2 +m2. In the spectral representation of the fermion

propagators the spectral function has the form as follows

σH(P ) =
1

π
ImGH(iωn → ω + i0+,p) (2.137)

=
Nc

π

∫

d4k

(2π)4
Tr
(

( /K +m)ΓH(/R+m)γ0Γ†
Hγ

0σ(K)σ(R)[nF (k
0)− nF (r

0)]
)

,

where P = (ω,p), R = P +K = (ω+k0,p+k) and nF (ω) = (eω/T +1)−1 is the Fermi

distribution.

After performing the momentum integral in the above relation one arrives at the
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final expression of the free continuum spectral function [143]

σH(P ) = Θ(s− 4m2)
NcT

2

2π2

{

β(P )

24T 2

[

(

3ω2 − p2β2(P )
)

a
(1)
H +

(

3p2 − (3ω2 − 2p2)β2(P )
)

a
(2)
H − 12m2a

(3)
H

]

+
1

4|p|T
[

(

ω2 − p2β2(P )
)

a
(1)
H +

(

p2 − ω2β2(P )
)

a
(2)
H − 4m2a

(3)
H

]

ln
1 + e−p̄+/T

1 + e−p̄−/T

+
(

a
(1)
H + a

(2)
H

)(

β(P )
[

Li2(−e−p̄+/T ) + Li2(−e−p̄−/T )
]

+
2T

|p|
[

Li3(−e−p̄+/T )− Li3(−e−p̄−/T )
] )

}

+Θ(−s)NcT
2

2π2

{

1

4|p|T
[

(

ω2 − p2β2(P )
)

a
(1)
H +

(

p2 − ω2β2(P )
)

a
(2)
H − 4m2a

(3)
H

]

ln
1 + e−p̄+/T

1 + ep̄−/T
+
(

a
(1)
H + a

(2)
H

)(

β(P )
[

Li2(−e−p̄+/T )− Li2(−ep̄−/T )
]

+
2T

|p|
[

Li3(−e−p̄+/T )− Li3(−ep̄−/T )
] )

}

. (2.138)

where

p̄± =
1

2
[ω ± |p|β(P )] , β(P ) =

√

1− 4m2

s
, s = ω2 − p2, (2.139)

and the polylogarithm function Lis is defined as Lis(z) =
∑∞

k=1
zk

ks . The coefficients

a
(i)
H for different channels can be read off from Table 2.2. It is not so straightforward

to read off the physics from the above equation, so we consider several limits in the

following paragraphs.

In the large frequency limit the spectral functions of channels ΓH = 1, γi, γ5, γiγ5

increase with ω2

lim
ω→∞

σH(ω,p) = Θ(s− 4m2)
Nc

16π2
ω2 (a

(1)
H − a

(2)
H ). (2.140)

while the spectral functions in the other two channels ΓH = γ0, γ5γ0 increase with p2

lim
ω→∞

σ00V C(ω,p) = Θ(s− 4m2)
Nc

12π2
p2, (2.141)

lim
ω→∞

σ00AV (ω,p) = Θ(s− 4m2)
Nc

12π2
(p2 + 6m2). (2.142)

Since the correlation function is given as the integral of the spectral function in the

frequency space, the low frequency information in γ0 and γ0γ5 should be more pro-

nounced than in the other channels as indicated from the formulae (2.140), (2.141) and

(2.142).
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ΓH a
(1)
H a

(2)
H a

(3)
H

σSC 11 1 −1 1

σPS γ5 1 −1 −1

σ00VC γ0 1 1 1

σiiVC γi 3 −1 −3

σVC γµ 2 −2 −4

σ00AV γ0γ5 1 1 −1

σiiAV γiγ5 3 −1 3

σAV γµγ5 2 −2 4

Table 2.2. Coefficients a
(i)
H for free spectral functions in different channels H [143]. The index

i is summed over i = 1, 2, 3 in γi and γiγ5 channels. σVC = σii
VC − σ00

VC and σAV = σii
AV − σ00

AV.

In the zero momentum limit the spectral functions (2.149) reduce to [143]11

σH(ω,0) =
Nc

16π2
Θ(ω2 − 4m2)ω2 tanh

( ω

4T

)

√

1−
(

2m

ω

)2

×
[

(

a
(1)
H − a

(2)
H

)

+

(

2m

ω

)2
(

a
(2)
H − a

(3)
H

)

]

+ Nc

[

(

a
(1)
H + a

(3)
H

)

I1 +
(

a
(2)
H − a

(3)
H

)

I2

]

ω δ(ω), (2.143)

with

I1 = −2

∫

d3k

(2π)3
∂nF (ωk)

∂ωk

, I2 = −2

∫

d3k

(2π)3
k2

ω2
k

∂nF (ωk)

∂ωk

. (2.144)

There appears a ωδω term in the above spectral function. As indicated from rela-

tion (2.52), when the frequency approaches zero the integrand kernel K(τ, ω) behaves

as 2T/ω, thus the ωδω term will give a τ independent constant term to the correlator.

Furthermore in the case of vanishing quark mass I1 = I2 = T 2/6 and the correlation

function can be given analytically [143]

GH(τ,p = 0) =
NcT

3

6

(

(

a
(1)
H + a

(2)
H

)

+
3

2

(

a
(1)
H − a

(2)
H

) 3u+ u cos(2u) − 2 sin(2u)

sin3(u)

)

,

(2.145)

with u = 2πT (τ − 1/(2T )). If one evaluates a
(1)
H + a

(2)
H from Table 2.2, one can see

that there are non-zero τ independent constants in the correlation functions in γ0, γi,

11There is a typo in the last term of Eq. (2.143), i.e. Eq. (19) in Ref. [143]. (a
(1)
H + a

(2)
H )I1 should be

(a
(1)
H + a

(3)
H )I1.
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γ0γ5 and γiγ5 channels. Specially due to charge conservation, the correlation function

in the γ0 channel G00
V C and its spectral function σ00V C are related to the quark number

susceptibility χ through

G00
V C(T,p = 0) = Tχ, (2.146)

σ00V C(ω,p = 0) = ωδ(ω)χ, (2.147)

and in this case χ = NcT
2/3. In the non-zero quark mass case I1 and I2 are not equal

any more and consequently there will be a non-zero τ independent constant contribution

to the correlator in all the channels except the pseudo scalar channel. This can be seen

from the quark number susceptilibility in general

χ(m,p = 0) = −2Nc

∫

d3k

(2π)3

(

a
(1)
H + a

(2)
H

)

k2 +
(

a
(1)
H + a

(3)
H

)

m2

ω2
k

∂nF (ωk)

∂ωk

. (2.148)

In the zero mass limit, the spectral functions reduce to

σH(P ) = Θ(ω2 − p2)
NcT

2

2π2

{

1

4|p|T
(

ω2 − p2
)

(

a
(1)
H − a

(2)
H

)

ln

(

cosh
(ω+p

4T

)

cosh
(ω−p

4T

)

)

+
1

12T 2

(

a
(1)
H + a

(2)
H

)

p2

+
(

a
(1)
H + a

(2)
H

)(

Li2(−e−(ω+|p|)/2T ) + Li2(−e−(ω−|p|)/2T )

+
2T

|p|
[

Li3(−e−(ω+|p|)/2T )− Li3(−e−(ω−|p|)/2T )
] )

}

+Θ(p2 − ω2)
NcT

2

2π2

{

1

4|p|T
(

ω2 − p2
)

(

a
(1)
H − a

(2)
H

)

[

ln

(

cosh
(ω+p

4T

)

cosh
(ω−p

4T

)

)

− ω

2T

]

+
(

a
(1)
H + a

(2)
H

)(

Li2(−e−(ω+|p|)/2T )− Li2(−e(ω−|p|)/2T )

+
2T

|p|
[

Li3(−e−(ω+|p|)/2T )− Li3(−e(ω−|p|)/2T )
] )

}

. (2.149)

As one can see obviously from the above equation the spectral function depends on

the coefficients a
(1)
H and a

(2)
H but not a

(3)
H . In other words, as expected, in the chiral limit

(vanishing quark mass) scalar and pseudo scalar (vector and axial vector) degenerate.

In the limit of p ≪ T and the non-relativisitc limit, i.e. nF = exp(−p2/(2MT )),

one can get the low energy part of spectral functions of the density-denstiy correlator
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and of the longitudinal current-current correlator as follows [144]

σNN(ω,p)
∣

∣

∣

low
= χs ω

1
√

2πp2
〈

v2

3

〉

exp



− ω2

2p2
〈

v2

3

〉



 , (2.150)

σJJ(ω,p)
∣

∣

∣

low
= χs

ω3

p2

1
√

2πp2
〈

v2

3

〉

exp



− ω2

2p2
〈

v2

3

〉



 , (2.151)

where χs is the static quark number susceptibility,
〈

v2

3

〉

is the thermal average of the

squared velocity of quarks. For the massive quark case
〈

v2

3

〉

= T/M while for the

massless quark case
〈

v2

3

〉

= 1/3.

2.3.2 Free spectral function for Wilson fermions on the lattice

The meson spectral functions on aN3
σ×Nτ lattice are derived as follows. The discretized

version of Eq. (2.134) reads:

GH(τ,p) = −Nc

L3

∑

k

Tr
(

S(τ,k) ΓH S(−τ, r) ΓH

)

, (2.152)

with p = k+ r, and the Wilson fermion propagator is

S(K) =
−iγ4 sin k4 − iKk + 1− cos k4 +Mk

sin2 k4 +K2
k
+ (1− cos k4 +Mk)2

, (2.153)

with

Kk =
3
∑

i=1

γi sin ki, Mk =
3
∑

i=1

(1− cos ki) +m (2.154)

where for spatial directions (i=1,2,3), periodic boundary conditions are used: ki =

2πni/Nσ with ni ∈ Z, ni ∈ [−Nσ/2 + 1, Nσ/2]; for the temporal direction anti-periodic

boundary conditions are employed: k4 = π(2n4 + 1)/Nτ with n4 ∈ Z, n4 ∈ [−Nτ/2 +

1, Nτ/2].

Using the mixed representation in Ref. [145]

S(τ,k) = γ4S4(τ,k) +

3
∑

i=1

γiSi(τ,k) + 11Su(τ,k), (2.155)

where

S4(τ,k) = S4(k) cosh(τ̃Ek),

Si(τ,k) = Si(k) sinh(τ̃Ek),

Su(τ,k) = Su(k) sinh(τ̃Ek)−
δτ0

2(1 +Mk)
. (2.156)
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Here τ̃ = τ − 1/2T and

S4(k) =
sinh (Ek)

2Ek cosh(Ek/2T )
,

Si(k) =
i sin ki

2Ek cosh(Ek/2T )
,

Su(k) = −1− cosh (Ek) +Mk

2Ek cosh(Ek/2T )
, (2.157)

with Ek = (1 +Mk) sinh (Ek). The single particle energy Ek is determined by

cosh (Ek) = 1 +
K2

k +M2
k

2(1 +Mk)
. (2.158)

The final term in Su(τ,k) is the sole remnant of the nonpropagating time doubler

and in the following we consider 0 < τ < 1/T . The propagator satisfies S(−τ,k) =

γ5S
†(τ,k)γ5. Thus correlators are given by [143]

GH(τ,p) =
4Nc

L3

∑

k

[

a
(1)
H S4(τ,k)S

†
4(τ, r) − a

(2)
H

∑

i

Si(τ,k)S
†
i (τ, r)

−a(3)H Su(τ,k)S
†
u(τ, r)

]

, (2.159)

and the spectral functions can be obtained from the integral relation (2.133) [143]

σWilson
H (P ) =

2Nc

L3

∑

k

sinh
( ω

2T

)

{

[

a
(1)
H S4(k)S

†
4(r) + a

(2)
H

∑

i

Si(k)S
†
i (r) + a

(3)
H Su(k)S

†
u(r)

]

δ(ω + Ek − Er)

+

[

a
(1)
H S4(k)S

†
4(r)− a

(2)
H

∑

i

Si(k)S
†
i (r)− a

(3)
H Su(k)S

†
u(r)

]

δ(ω − Ek − Er)

+(ω → −ω)
}

, (2.160)

where the coefficients a
(i)
H are same as before (see Table 2.2).

At the symmetry point τ = 1/(2T ) (τ̃ = 0) the form of the fermion propagator

(2.156) in the mixed representation becomes simpler and one can easily obtain

GH(τ = 1/2T,p) =
4Nc

L3

∑

k

a
(1)
H S4(k)S

†
4(r). (2.161)

From Table. 2.2 one concludes the midpoint of the scalar and pseudo scalar (vector and

axial vector) channel overlaps

GSC(τ = 1/2T,p) = GPS(τ = 1/2T,p), (2.162)

GVC(τ = 1/2T,p) = GAV(τ = 1/2T,p). (2.163)

It is worth noting that the above relations hold for both massive and massless quark

cases.



2.3. Free temporal correlation and spectral function 55

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.5  1  1.5  2  2.5  3  3.5  4

σ(ω)/ω2

ωa

VC
AV
PS
SC

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.5  1  1.5  2  2.5  3  3.5  4

σ(ω)/ω2

ωa

VC
AV
PS
SC

Figure 2.1. Free spectral functions σ(ω,p = 0)/ω2 as a function of ωa on Nτ = 64 lattices. The

solid lines are free lattice spectral functions while the dotted lines correspond to free continuum

spectral functions. The left plot is for zero quark mass case and the right one is with non-zero

quark mass ma = 0.01. VC, AV, PS and SC denote vector (γµ), axial vector (γ5γµ), pseudo

scalar and scalar channel, respectively. Note in the right plot the δ(ω)/ω behavior at ω = 0 is

not shown for VC, AV and SC channels.
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Figure 2.2. Massless pseudo scalar (left) and scalar (right) spectral functions σ(ω,p = 0)/ω2

as a function of ω/T with Nτ = 32, 48, 64 at fixed T .

2.3.3 Comparison of free spectral function and correlator

Based on the calculation in the previous two sections, we now study the properties of

free lattice and continuum spectral functions from different aspects. The lattice spectral

function can be evaluated with different Nσ and Nτ . Here we focus on the effects of

Nτ and take the thermodynamic limit Nσ → ∞. Technically we take Nσ = 4000,

Nω = 2000 with a bin width △ω ≈ 4/Nω .
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We plot the free spectral function for different channels at zero momentum in

Fig. 2.1. The left plot is for zero quark mass case and the right one is with non-zero

quark mass ma = 0.01. To suppress the large ω rise we divide the spectral function by

ω2. In the massless case (chiral limit) we can see that the continuum spectral functions

of the vector (VC) and axial vector (AV), pseudo scalar (PS) and scalar (SC) coincide.

They reach a constant value of 3/(4π2) and 3/(8π2), respectively, as indicated from

Eq. (2.140). When the quark mass is non-zero the chiral symmetry is explicitly broken

and consequently the continuum vector and axial vector, pseudo scalar and scalar start

to differ in the low frequency region and coincide only in the high frequency region

where the quark mass is negligible. Let’s now look at free lattice spectral functions.

Due to the Wilson discretization the chiral symmetry is explicitly broken. Thus the

free lattice spectral functions of vector and axial vector (scalar and pseudo scalar) only

coincide in the low frequency region in the massless case and do not overlap at all

in the non-zero quark mass case where the chiral symmetry is broken more severely.

The deviation of the lattice spectral functions from the continuum ones, especially in

the high frequency region, is mainly due to lattice discretization effects. Rather than

approaching a constant value like the free continuum spectral function the free lat-

tice spectral function goes to zero at a certain ω value. This can be understood from

the single particle dispersion relation (2.158), where the single particle energy can be

expressed as

E(k) = log

(

1 +
K2

k +M2
k

2(1 +Mk)
+

√

(

K2
k +M2

k

) (

K2
k + (Mk + 2)2

)

2(1 +Mk)

)

. (2.164)

When the fermion momentum k hits the edge of the Brillouin zone the doublers con-

tribute at the frequency value of

ω ≡ 2E(k) = 2 log(1 +Mk). (2.165)

The highest frequency value on the lattice is thus determined when the fermion mo-

mentum k = (π/a, π/a, π/a):

aωmax = 2 log
(

1 + (6 + am)
)

, (2.166)

and the lowest frequency value on the lattice is

aωmin = 2 log (1 + am) , k = (0, 0, 0). (2.167)

The other two cusps seen from Fig. 2.1 are located at

aω1 = 2 log
(

1 + (2 + am)
)

, k = (
π

a
, 0, 0), (0,

π

a
, 0), (0, 0,

π

a
), (2.168)

aω2 = 2 log
(

1 + (4 + am)
)

, k = (
π

a
,
π

a
, 0), (0,

π

a
,
π

a
), (

π

a
, 0,

π

a
). (2.169)
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Figure 2.3. Pseudo scalar and scalar spectral functions σPS,SC(ω,p)/ω
2 (left) and

σPS,SC(ω,p)/T
2 (right) as a function of ω/T with Nτ = 32, |p|/T = 4 and m/T = 1. The

dotted lines are free lattice spectral functions while the solid lines correspond to free continuum

spectral functions.

In particular, spectral functions in P wave channels (scalar and axial vector) suffer

much larger lattice cut-off effects. This is more notable in the massive quark case, as

one can see from the right panel of Fig. 2.1 that there are even some energy regions

where the spectral function are negative.

To check lattice cut-off effects we plot the pseudo scalar (left) and scalar (right) spec-

tral function as a function of ω/T at zero momentum and vanishing quark mass with

different Nτ at fixed T in Fig. 2.2. ωmax/T as well as the peak locations of the two dou-

blers (aω1 and aω2) increases with increasing Nτ . Recalling the relation T = 1/(aNτ )

as expected from relation (2.166), this behavior means lattice artifacts (doublers) are

shifted to the larger energy region and thus are separated further from the region of the

physics interests when the lattice spacing is decreased. As expected the lattice spectral

functions reproduce the continuum ones better at larger Nτ .

So far we have looked at zero momentum spectral functions. When momentum

is switched on there will be an additional contribution from the frequency region of

ω2 < p2, as indicated from Eq. (2.149). In Fig. 2.3 the free pseudo scalar and scalar

spectral functions with |p|/T = 4 and m/T = 1 are shown. The left plot is for the

whole frequency region and shows σ(ω,p)/ω2 versus ω/T while the right plot shows

σ(ω,p)/T 2 versus ω/T in the low frequency region. The spectral functions vanish in

the energy region of p2 < ω2 < p2 + 4m2. Due to the non-zero quark mass the pseudo

scalar and scalar are physically distinct. The mismatch even in such a low frequency

region between lattice and continuum is due to the dispersion relations and they will

move closer with increasing Nτ .
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Figure 2.4. Left: Free vector (γ0 channel ) spectral functions σ00
V C(ω,p)/T

2 as a function of

ω/T with Nτ = 32, |p|/T = 4 and m/T = 1. The red solid line is the lattice spectral function

while the black dash-dotted line denotes the free continuum one. Right: Free spectral function

σ(ω,p)/ sinh(w/2T ) in vector and axial vector channel as a function of ω/T with Nτ = 32,

|p|/T = 4 and m/T = 1. The dotted lines are free lattice spectral function while the solid lines

correspond to free continuum spectral function.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  50  100  150  200  250

|p|/T=3
|p|/T=4
|p|/T=5

σ00
vc(ω,p)/T2

ω/T  0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  2  4  6  8  10

|p|/T=3

|p|/T=4

|p|/T=5

σ00
vc(ω,p)/T2

ω/T

Figure 2.5. Momentum dependences of the spectral functions σ00
V (ω,p)/T 2 with Nτ = 64 and

m/T = 1. Solid lines are free lattice spectral functions while the dotted lines correspond to free

continuum spectral functions. The right plot is a blowup of the low frequency region of the left

plot.

We have observed τ independent constants in the vanishing momentum correlator

from Eq. (2.145) and in particular σ00V C relates with the quark number susceptibility

through relation (2.147). The change of this phenomenon is also interesting when going

to finite momenta. We show the σ00V C(ω,p)/T
2 at |p|/T = 4 and m/T = 1 in the

left panel of Fig. 2.4. σ00V C(ω,p) does not behave like ωδω anymore and now has a
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sophiscated structure. The additional interesting feature of this spectral function is

that it does not have a ω2 rise like the other spectral functions, e.g. σiiV C , as one can

read from relations (2.140), (2.141), and (2.142). Thus we show σ00V C/T
2 in the left plot

of Fig. 2.4. The small cusps which appear in the very low frequency region are mainly

due to momentum effects and the higher frequency region as usual is distorted by the

lattice discretization effects. On the right hand side of Fig. 2.4, the vector and axial

vector spectral functions multiplied by the integrand kernel at the symmetry point is

shown. As we have seen before the midpoint contribution to the correlator from these

two channels are the same and thus the area under the spectral functions should be the

same: the larger spectral function weight of σV C above the threshold is compensated

by its smaller spectral weight below the lightcone.

We further look into the momentum dependence of the spectral function in the γ0

channel shown in Fig. 2.5. The spectral functions σ00V C(ω,p) are obtained with Nτ =

64 and m/T = 4. We vary the value of |p|/T to be 3, 4 and 5. One can see from

the left plot of Fig. 2.5, the large ω behavior of the continuum spectral functions

(labeled by the dashed lines) increases with increasing |p|/T and scales with p2 as

indicated from Eq. (2.141). The large free lattice spectral function as usual is distorted

by the discretization effects and its amplitude follows the free continuum one and

approximately scales with p2. For the very low frequency part of the spectral function,

seen in the right panel of the Fig. 2.5, the lattice free spectral function, which appears as

a bump, can reproduce the continuum one quite well. The amplitudes in this region do

not increase as p2 and only the peak location moves to larger frequency when increasing

the momentum.

In the following chapter we will take advantage of the above features of the free

spectral function in the data analysis.

2.4 Linear response theory and Heavy quark diffusion

One useful (and normally adopted) way to investigate the properties of some certain

system is to apply some sort of weak external force to the system and look what happens

and then infer from that the properties of the system itself. Linear response theory is the

quantitative formalism for dealing with such situations. The beauty of the theory is that

the response of the system can be expressed as a product of the external source causing

the disturbance with a retarded correlator that is computable using the correlation

functions in the thermal equilibrium not dependent on the external source. In other

words, the details of the internal dynamic properties can be studied from the static

equilibrium features of the system with proper weak external probes. Introductions to

this theory and its various applications can be found in many textbooks [10,110,146].
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In our particular subject, for instance, the heavy quark diffusion constant can be

expressed as the low frequency limit of the vector spectral function obtained from the

static two point correlation function (Eq. 2.46) via Kubo relation from linear response

theory [10]. Phenomenologically the two point correlation function of a charm and

anticharm quark pair describes the response of the medium to the presence of two

quarks c and c̄ traveling to each other from two separated space time points with the

temporal separation being the inverse temperature of the medium12. It concerns the

propagation of the single quark and its interaction with the medium, e.g. diffusion

properties.

In this section we will restrict ourself to give a brief introduction to linear response

theory and together with the Langevin equation we will briefly discuss the resulting

spectral functions. More details can be found in the textbooks mentioned above and

also in Refs. [144,147,148].

The goal of linear response theory is to decribe how the ensemble average of any op-

erator O(x, t) changes with a weakly external perturbationHext. The total Hamiltonian

of the weakly perturbated system is

H = H0 +Hext . (2.170)

The expectation value of O(x, t) is modified according to

〈j|O(x, t)|j〉 →
〈

j|U−1(t)O(x, t)U(t)|j
〉

, (2.171)

where U(t) is the evolution operator in the interaction representation of H and has the

form of

U(t) = exp

(

−i
∫ t

−∞
dt′Hext(t

′)

)

. (2.172)

Since we are interested in the case where the external field is very weak, we expand the

expectation value of O(x, t) to the lowest (linear) order of Hext(t)

δ〈j|O(x, t)|j〉 = i

∫ t

−∞
dt′
〈

j|[Hext(t
′),O(x, t)]|j

〉

. (2.173)

Consider an external source h(x, t) that is coupled to O(x, t) via

Hext =

∫

d3xh(x, t)O(x, t). (2.174)

Inserting (2.174) into relation (2.173) gives

δ〈O(x, t)〉 = −i
∫ t

−∞
dt′
∫

d3x′ h(x′, t′ )
〈

[O(x, t),O(x′, t′)]
〉

. (2.175)

12One can also interpret the correlation function as describing the response of the charm quak pair

to the presence of the medium. It concerns more the fate of the charmonium states in the medium, e.g.

dissociation temperatures.
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Recall the definition of the retarded correlator (2.14), formula (2.175) becomes

δ〈O(x, t)〉 =
∫ t

−∞
dt′
∫

d3x′ h(x′, t′)DR(x, t;x′, t′). (2.176)

By using the Fourier transform

h(x′, t′) =

∫

dω d3p

(2π)4
ei(p·x

′−ωt′) h(ω,p), (2.177)

DR(t− t′,x− x′) =

∫

dαd3k

(2π)4
ei(k·(x−x′)−α(t−t′))DR(α,k). (2.178)

and the translation invariance of the retarded correlator we obtain Eq. (2.176) in

momentum-time space

δ〈O(p, t)〉 =

∫ t

−∞
dt′ h(p, t′)DR(p, t− t′), (2.179)

and in frequency-momentum space

δ〈O(ω,p)〉 = h(ω,p)DR(ω,p). (2.180)

Eq. (2.180) means the change in the ensemble average of the field can be expressed as

the product of the external source and the retarded Green’s function! This is the main

result of linear response theory. As we have shown before, the retarded Green’s function

can be obtained by analytic continuation of the two point correlation function, which

in practice is computable from lattice simulation.

One can further assume the external source obeys

h(x, t) = eǫt θ(−t)h0(x), (2.181)

which means the external source is slowly (ǫ ≪ 1) turned on in the past and abruptly

turned off at t=0. Inserting relation (2.181) into (2.179) gives the time dependence of

the modifications of the ensemble average of O

δ〈O(p, t)〉 =

∫ t

−∞
dt′ eǫt

′

θ(−t′)h0(p)DR(p, t− t′), (2.182)

At t=0 this external force has induced the change of the ensemble average of O,

δ〈O(p, t = 0)〉 = χs(p)h
0(p), (2.183)

where χs(p) is the static susceptibility

χs(p) =

∫ ∞

0
dt e−ǫt h0(p)DR(p, t). (2.184)
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With the translation invariance of the retarded correlator and ignoring the contribution

in terms of ǫ one obtains the time derivative of (2.182) as the following

∂

∂t
(δ〈O(p, t)〉) = −DR(p, t)h0(p). (2.185)

Combining relations (2.183) and (2.185) one can get rid of the external source h0(p)

and express the formula as

χs(p)
∂

∂t
(δ〈O(p, t)〉) = −DR(p, t) δ〈O(p, 0)〉 . (2.186)

Following the framework of linear response theory we assume the system is per-

turbed by a small excess of heavy quarks [144]

µ(x, t) = eǫt θ(−t)µ0(x). (2.187)

The initial distribution of heavy quarks in the phase according to Boltzmann distribu-

tion is [144]

f(x,p, t = 0) = exp

(

−p
2/(2M) +M − µ(x)

T

)

. (2.188)

Performing the momentum integration and summing over colors and spins the initial

net number density of heavy quarks is

N(x, t = 0) = 4Nc

(

MT

2π

)3/2

exp

(

−M
T

)

sinh

(

µ(x)

T

)

. (2.189)

The net heavy quark number density at a later time can be expressed as

N(x, t) =

∫

d3x′ P (x− x′, t)N(x′, 0), (2.190)

where P (x− x′, t) stands for the probability of a heavy quark moving from position x′

at t = 0 to position x at time t. The Fourier transform of N(x, t) reads

N(p, t) = P (p, t)N(p, 0). (2.191)

In this case the DR(p, t) is just the density-density retarded correlator χNN(p, t). Com-

paring the above relation with Eq. (2.186) from linear response theory, one can express

the density-denstiy retarded correlator as [144]

χNN(p, t) = −χs(p)
∂P (p, t)

∂t
. (2.192)

Fortunately, we can get the transition probability P (p, t) from effective Langevin

theory. Due to the time scale for the heavy quark transport M/T 2 being much larger
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than the typical time scale for the light quarks in the medium, the macroscopical

properties of charm quarks can be described by the Langevin equations [147]

dxi

dt
=
pi

M
, (2.193)

dpi

dt
= ξi(t)− η pi, (2.194)

〈

ξi(t)ξj(t′)
〉

= κ δij δ(t− t′), (2.195)

where η is the momentum drag coefficient, ξi(t) delivers random momentum kicks that

are uncorrelated in time and 3κ is the mean squared momentum transfer per unit time.

The drag coefficient η and fluctuation coefficient κ are related through the fluctuation-

dissipation relation [147,148]

η =
κ

2MT
. (2.196)

For a time scale which is much larger than 1/η the heavy quark number density obeys

the ordinary diffusion equation

∂tN + D∇2N = 0. (2.197)

The drag coefficient η can be connected to the diffusion coefficient D by the Einstein

relation [147,148]

D =
T

M η
=

2T 2

κ
. (2.198)

To get P (x, t) one would rather consider the discretized Langevin equation as the

following

xt+1 − xt = pt/M, (2.199)

pt+1 − pt = η pt∆t+ ξt∆t, (2.200)
〈

ξitξ
j
t′

〉

=
κ

∆t
δij δtt′ . (2.201)

The initial probability of having momenta p0 can be given by

P (p0) =
1

(2πMT )3/2
exp

(

− p20
2MT

)

, (2.202)

and according to Eq. (2.200) and (2.201) the probability of a heavy quark changing

momentum from pi to pi+1 can be expressed as

P (pi+1|pi) =

∫

d3ξ δ3
(

pi+1 − (pi − η pi∆t+ ξ∆t)
)

×
(

∆t

2πκ

)3/2

exp

(

ξ2

2κ/∆t

)

. (2.203)
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Thus the probability for heavy quark to have momenta pn is

P (pn) = P (pn|pn−1) · P (pn−1|pn−2) · · ·P (p2|p1)P (p1|p0) · P (p0), (2.204)

= (2πκ∆t)−
3
2
N P (p0) exp

(

−
N−1
∑

i=0

∆t

2κ

(

pi+1 − pi

∆t
+ η pi

)2
)

, (2.205)

which together with Eq. (2.199) give the probability of a heavy quark moving a distance

∆x over a time ∆t

P (∆x,∆t) =

∫ N
∏

j=0

d3pj P (pn) δ
3

(

∆x−
N−1
∑

i=0

pi

M
∆t

)

. (2.206)

Inserting the Fourier integral of the delta function

δ3

(

∆x−
N−1
∑

i=0

pi

M
∆t

)

=

∫

d3k

(2π)3
exp

(

ik ·∆x− i
N−1
∑

i=0

∆t

M
k · pi

)

(2.207)

into Eq. (2.206), one obtains

P (∆x,∆t) = (2πκ∆t)−
3
2
N
∫ N
∏

j=0

d3pj

∫

d3k

(2π)3
eik·∆x P (p0)

× exp

(

−
N−1
∑

i=0

∆t

2κ

(

pi+1 − pi

∆t
+ η pi

)2

− i
N−1
∑

i=0

∆t

M
k · pi

)

. (2.208)

To perform the integration of Eq. (2.208) we first integrate out the p’s in the order of

pn to p0

P (∆x,∆t) =

∫

d3k

(2π)3
exp

(

− k2

2(b1 + b2)
+ ik∆x

)

, (2.209)

then after performing the k integration we have a Gauss form

P (∆x, t) =
1

(2πσ2)3/2
exp

(

−(∆x)2

2σ2

)

, (2.210)

with t = N∆t and the width

σ2 = b1 + b2 , (2.211)

where the coefficients read as follows

b1 =
κ(∆t)3

M2

N−1
∑

m=1

(

m−1
∑

ℓ=0

(1− η∆t)ℓ

)2

, (2.212)

b2 =
T (∆t)2

M

(

N−1
∑

ℓ=1

(1− η∆t)ℓ

)2

. (2.213)
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Taking N → ∞ and making use of exp(x) = limn→∞(1 + x
n)

n we can get

b1 =
κ

M2

−e−2ηt + 4e−ηt + 2ηt− 3

2η3
, (2.214)

b2 =
T

M

e−2ηt − 2e−ηt + 1

η2
. (2.215)

By using the fluctuation-dissipation and Einstein relation (2.196) and (2.198) the width

σ2 in the Gauss form (2.210) finally reads [144]

σ2 =
2D

η

(

ηt− (1− e−ηt)
)

. (2.216)

For large times t ≫ 1/η, one has σ2 ≈ 2Dt as expected from the ordinary diffusion

equation; for small times t ≪ 1/η, one has σ2 ≈ (T/M)t2, which reflects the initial

thermal velocity distribution of heavy quarks,
〈

v2/3
〉

= T/M [144].

With relation (2.192) from linear response theory and the probability (2.210) from

Langevin effective theory, one finally gets the density-density retarded correlator [144]

χNN(ω,p) = χs(p)D p2

∫ ∞

0
dt eiωt (1− e−ηt)

× exp

(

−Dp2

η

(

ηt− (1− e−ηt)
)

)

. (2.217)

Eq. (2.217) summarizes the contribution from the Langevin equation with linear re-

sponse theory under the assumptions (2.187) and (2.188).

We first look into the behavior of the above equation under the assumption of

Dp2 ≪ η, that is (Dp)2 ≪ T/M . In this case the integrand of Equation (2.217) can be

approximated to

χNN(ω,p) = χs(p)D p2

∫ ∞

0
dt eiωt

(

exp(−D p2t)− exp(−ηt)
)

= χs(p)D p2

(

1

D p2 − iω
− 1

η − iω

)

. (2.218)

For small frequencies ω ∼ Dp2 ≪ η, the first term dominates and resembles the

diffusion equation (∂t+D∇2)−1; for the large frequency case ω ∼ η ≫ Dp2, the second

term dominates and resembles the drag term of the Langevin equations (∂t+η)
−1. The

correspoding spectral function is thus given through the relation (2.18)

σNN(ω,p) =
1

π
ImχNN(ω,p) =

χs(p)

π

ω
(

η2 − (D p2)2
)

D p2

(

(D p2)2 + ω2
)(

η2 + ω2
) (2.219)

and the spectral function in the current-current channel is obtained through the real-

tion (2.44)

σJJ(ω,p) =
ω2

p2
σNN(ω,p) =

χs(p)

π

ω3
(

η2 −
(

D p2)2
)

D
(

(D p2)2 + ω2
)(

η2 + ω2
) . (2.220)
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Figure 2.6. Left: The spectral density of the density-density correlator σNN(ω̄, p̄) multiplied

by π/χs(p̄) as a function of a scaled frequency ω̄ for various values of a scaled momentum

p̄ = 0.5, 1.0, 2.0 and 4.0. Right: The spectral function of the current-current correlator σJJ(ω̄, p̄)

multiplied by π/(ωDχs(p̄)) as a function of a scaled frequency ω̄ for various values of a scaled

momentum p̄ = 0, 0.5, 1.0, 2.0 and 4.0. In both plots, the solid lines denote the spectral

functions from the Langevin equations for non-zero p̄. The dotted lines show the spectral

functions in the free theory. The dash-dotted line shows the p̄ = 0 result of the Langevin

equations (Eq. (2.221)). This plot is an analog of Fig.1 in Ref. [144].

One particularly interesting case in the current-current channel is the one at van-

ishing momentum p = 0 [144]

σJJ(ω,0) = lim
p→0

ω2

p2
σNN(ω,p) = χs(0)

T

M

1

π

ωη

ω2 + η2
. (2.221)

In the limit of η → 0,

σJJ(ω,0) = χs(0)
T

M
ωδ(ω). (2.222)

It is similar to the spectral function in the free case, i.e. Eq. (2.147) as described in

section 2.3.1.

Then we perform the time integration in Eq. (2.217) directly without any assump-

tions. Due to the typical relaxation time being 1/η, one can redefine

t̄ = tη, ω̄ =
ω

η
and p̄2 =

D p2

η
. (2.223)

The density-density retarded correlator Eq. (2.217) thus becomes

χNN(ω̄, p̄) = χs(p) p̄
2

∫ ∞

0
dt̄ eiω̄t̄ (1− e−η̄t̄) exp

(

−p̄2
(

t̄− (1− e−t̄ )
))

(2.224)

= χs(p) p̄
2
(

1 + iω̄ ep̄
2
p̄−2(p̄2+iω̄)

(

Γ(p̄2 − iω̄)− Γ(p̄2 − iω̄, p̄2
)

)

. (2.225)
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The calculation from Eq. (2.224) to Eq. (2.225) is exact. The Γs appearing in the

above equation are the Euler gamma function Γ(z) and the incomplete gamma function

Γ(a, z). Consequently the current-current correlator is of the form

χJJ(ω̄, p̄) = χs(p)Dω ω̄
(

1 + iω̄ ep̄
2
p̄−2(p̄2+iω̄)

(

Γ(p̄2 − iω̄)− Γ(p̄2 − iω̄, p̄2
)

)

. (2.226)

As one can see from Eq. (2.225) and Eq. (2.226), both the density-density correla-

tor χNN(ω̄, p̄) multiplied by π/χs(p̄) and the longitudinal current-current correlator13

χJJ(ω̄, p̄) multiplied by π/(ωDχs(p̄)) scale with the rescaled frequency ω̄ and momen-

tum p̄. We thus show the corresponding spectral functions in Fig. 2.6 as functions of

ω̄ with p̄ = 0.5, 1.0, 2.0 and 4.0. As expected, as the p̄ increases, the widths of the

both spectral functions increase with the increasing frequency ω̄ and momentum p̄. For

comparison the spectral function from the free theory (Eq. (2.150) and Eq. (2.151)) are

also shown as dotted lines in Fig. 2.6. It is worth noting that at ω̄ = 0 the longitudinal

current-current spectral function goes to zero when p̄ 6= 0 and has a finite value when

p̄ = 0.

2.5 Charmonium at finite temperature on the lattice: a

brief review

The properties of charmonium states at finite temperature have been investigated on

the lattice by several groups. Iida et al. tried, by changing the boundary conditions

of the simulation, to check the response from the charmonium states [42], Ohno et

al. focused on the wave functions [43] with variational analysis and the other groups

mainly tried to understand the temperature dependence of the charmonium properties

armed with MEM. In this section we will briefly summarize the status from the last

approach and a brief list of the lattice parameters of the finest lattices of these groups

is given in the Table 2.3. The details can be found in Refs. [37–41].

Datta et al. [39] implemented the Wilson gauge action and clover improved Wilson

fermions on isotropic quenched lattices. They measured at four different temperatures

of 0.9 Tc, 1.5 Tc, 2.25 Tc and 3 Tc on their finest lattice (aσ = 0.02 fm) with Nτ =

40, 24, 16 and 12, respectively. They utilized the ratio of the measured correlator to the

reconstructed correlator for the first time to study thermal modifications of spectral

functions. Based on the analysis of the temporal correlators and the reconstructed

spectral functions, they found that, J/ψ and ηc survive up to quite high temperatures,

with little observable change up to 1.5 Tc, and then gradually weaken and disappear by

13Here we only mentioned the longitudinal current current spectral function. There is a notable

difference between the longitudinal current current spectral function and the transverse one as indicated

from Ref. [149]. We will show this difference on the correlator level from our lattice data in section 4.2.
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3 Tc. For the scalar and axial vector channels, serious modifications are induced by the

hot medium already close to Tc, possibly dissocating the mesons by 1.1 Tc
14 [39].

All the other groups are using anisotropic lattices. Asakawa et al. [38] took the sim-

ple plaquette gauge action and standard Wilson quark action on quenched anisotropic

lattices in their simulation. The renormalized anisotropy is ζ = aσ/aτ = 4 with

aσ = 0.039 fm. They simulated the correlation functions with relatively large num-

ber of points in the temporal direction having Nτ = 96, 54, 46, 40 and 32 at 0.78 Tc,

1.38 Tc, 1.62 Tc, 1.87 Tc and 2.33 Tc, respectively. They concentrated on the study of

J/ψ and ηc, and found that J/ψ and ηc survive as distinct resonances in the plasma

even up to T ≈ 1.6 Tc and that they eventually dissociate between 1.6 Tc and 1.9 Tc [38].

Umeda et al. [37] adopt the standard Wilson plaquette action for the gauge field

and the O(a) improved Wilson type action for the quark field. They measured the

correlation functions at only two temperatures (0.9 Tc and 1.1 Tc) on quenched lattices

and concentrated more on smeared correlators. From the analysis of the smeared cor-

relators, they found that at T ≈ 0.9 Tc, the spectral function exhibits a strong peak,

well approximated by a delta function corresponding to the ground state with almost the

same mass as at T = 0, and at T ≈ 1.1 Tc, the strong peak structure still persists at

almost the same place as below Tc, but with a finite width of a few hundred MeV [37].

Jakovác et al. [40] measured heavy squark correlation functions with the Fermilab

action for the heavy quark sector and the standard Wilson action for the gauge sector on

quenched anisotropic lattices. They developed a new MEM algorithm without singular

value decomposition of the integrand kernel, which can accelerate the running time of

the MEM analysis. They also extended the simulation to the bottomonium correlation

function. On their finest lattice (aσ = 0.056 fm, ζ = 4), they measured charmonium

correlation function at 1.09 Tc, 1.20 Tc, 1.50 Tc, 1.99 Tc, 2.39 Tc and 2.99 Tc with

Nτ = 44, 40, 32, 24, 20 and 16, respectively. They detected the transport contribution in

the vector correlators for the first time. From their analysis, they found that the spectral

functions in the pseudo scalar channel do not change up to 1.5 Tc within systematic and

statistical errors of the calculations, the results of 1P states suggest the melting of the

1P charmonium states at temperature T = 1.1 − 1.2 Tc, and the spectral functions in

the vector channel at finite temperature always differ from the zero temperature spectral

functions and extend to significantly smaller ω values [40].

The most recent published paper is by Aarts et al. [41]. They carried out two-flavor-

dynamic simulations on anisotropic lattices and utilized the two-plaquette Symanzik

improved gauge action and the fine-Wilson, coarse-Hamber-Wu fermion action with

stout-link smearing. The finest lattice they simulated has aσ= 0.163 fm with ζ = 6

and the temporal lattice extend being Nτ = 80, 32, 24 and 16 at 0.42 Tc, 1.05 Tc,

14In this section, all the texts with Italian style are quoted from the corresponding references.
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N3
σ ×Nτ T/Tc #conf aσ[10

−3fm] aσ/aτ

Umeda02 [37]
203 × 32 0.88 1000

203 × 26 1.08 1000 96 4

Asakawa03 [38]

323 × 96 0.78 194

323 × 54 1.38 150 39 4

323 × 46 1.62 182

323 × 40 1.87 181

323 × 32 2.33 141

Datta03 [39]

403 × 40 0.9 85

643 × 24 1.5 80 20 1

483 × 16 2.25 100

483 × 12 3 90

Jakovác06 [40]

243 × 44 1.09 110

243 × 40 1.20 1680 56 4

24 · 32× 32 1.50 1000

243 × 24 1.99 300

243 × 20 2.39 640

243 × 16 2.99 310

Aarts07 [41]

123 × 80 0.42 250

83 × 32 1.05 1000 162 6

83 × 24 1.40 1000

83 × 16 2.09 1000

Table 2.3. A brief summary of parameters of the finest lattices used by several groups to study

charmonium via the MEM approach. The details can be found in Refs. [37–41].

1.40 Tc and 2.09 Tc, respectively. As pointed out in Ref. [125], at finite temperature the

commonly used Maximum Entropy Method is inherently unstable at small energies due

to the divergence of the integrand kernel at ω = 0 (see e.g. Eq. (2.52)). Thus the MEM

analysis done in Ref. [37–40] might be unstable in the very small ω region. Using the

improved integrand kernel proposed in Ref. [125] to avoid the instability of MEM at

ω ≈ 0, Aarts et al. found their results indicate that the S-waves (J/ψ and ηc) survive

up to temperatures close to 2 Tc, while the P waves (χc0 and χc1) melt away below

1.2 Tc
15 [41].

In addition to the instability of MEM found in Ref. [125], Umeda [141] recently

discussed a constant contribution to meson correlators at finite temperature (see e.g. in

section 2.3.1), which should be removed in the MEM analysis to get the correct spectral

function shape of the bound state. Later on Datta and Petreczky implemented the time

15Note the pseudo critical temperature Tc in 2 flavor QCD is different from that in quenched QCD.

Tc in Ref. [41] is around 205− 210 MeV.
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derivative of the ratio of the measured correlator to the reconstructed correlator and

found the temperature dependence of this ratio in the vector and P waves channels can

be understood mainly from the zero mode contribution [150], which is also confirmed

by our MEM analysis of the vector channel at T ≈ 1.5Tc [126].

Besides the information on the bound states, due to the Kubo relation, the transport

properties of the medium can in principle also be read from the spectral function in

the appropriate mesonic channel. Recent progress to obtain the heavy quark diffusion

constant on the lattice has been made in Ref. [144,151], however, it is quite hard to get

precise values due the quality of the correlator data.

Recently, it is realized that it could be also interesting to look into the correlation

functions at non-zero momentum: first the dispersion relation might be changed and

also the bound state could be melted when moving in the heatbath, second the spectral

function could also give some hints on the transport properties of the medium [149].

Progress on the lattice has been reported in various contributions [40,152–156].

In the following chapter, we will analyze the correlator data from different aspects

and try to develop further understanding of the dynamics of charm quarks in the

medium and the fate of its possible bound states at finite temperature.



Chapter 3

Analysis of charmonium properties at vanishing

momentum

3.1 Toy model test of spectral function

In this section we will employ a toy model to address the in-medium charmonium

behavior [157]. We start from a single Breit-Wigner resonance and study its efffect on

the correlator under different conditions. Then we include continuum contributions and

identify their effect. In general there are three distinct features of the spectral function

which determine the behavior of the correlator: the width of the resonance, its relative

strength to the continuum and the onset point of the continuum. All three parameters

are presumably coupled through the temperature. By varying the three parameters

separately we study the effect of the different contributions of the spectral function to

the correlator. In addition, we also consider the transport contribution in the very low

frequency region to the correlator.

We analyze the sensitivity of the correlators to the spectral function by using the

two following reference correlators:

G0(τ, T ) =

∫ ∞

0
dω σ(ω, T = 0)K(τ, T ), (3.1)

Gfree(τ, T ) =

∫ ∞

0
dω σfree(ω, T )K(τ, T ), (3.2)

where G0(τ, T ) is the so called “reconstructed” correlator and Gfree(τ, T ) is the free

correlator at finite T . Comparing to G0(τ, T ) or Gfree(τ, T ) we can analyze if the

correlator or the corresponding spectral function behaves more like the zero temperature

one or is closer to the free one. The ratios of the finite T correlators to these two

71
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references are:

R0(τ, T ) =
G(τ, T )

G0(τ, T )
, (3.3)

Rfree(τ, T )) =
G(τ, T )

Gfree(τ, T )
. (3.4)

then R0 ≈ 1 and Rfree ≈ 1 could serve as an indication for the presence or dissolution

of the bound state, respectively.

We consider the spectral function as a combination of the resonance and the contin-

uum: σ = σres+ σcont+ σtrans. For the spectral function of the resonance the following

form is taken at T = 0:

σres(ω, T = 0) = |Φ(0)|2 δ(ω −M) = |Φ(0)|2 2M δ(ω2 −M2), (3.5)

where M denotes the mass of J/ψ and Φ(0) is the wave function of the J/ψ at the

origin and determines the relative strength of the resonance contribution1. Using the

vacuum spectral function in Eq. (3.5), we obtain a correlator at temperature T ,

Gres
0 (τ, T ) = |Φ(0)|2 cosh[M(τ − 1/(2T ))]

sinh(M/(2T ))
, (3.6)

where in current study |Φ(0)|2 is set to 1 GeV3 [19].

At finite temperature T we take the spectral function of the resonance to have the

relativistic Breit-Wigner like form

σres(ω, γ) = N(γ) |Φ(0)|2 M
π

2ωγ

ω2γ2 + (ω2 −M2)2
, (3.7)

where γ is the width of the resonance at half-maximum. We allow this width to have a

(so far unspecified) temperature dependence, γ = γ(T ). Note that

lim
ǫ→0

1

π

ǫ

x2 + ǫ2
= δ(x). (3.8)

So that for γ(T ) → 0 when T → 0 we recover the correct T = 0 behavior. The

normalization factor N(γ) is introduced to maintain the normalization to unity given

by the δ-function for the Breit-Wigner form: when γ → 0, N(γ) → 1. In other words,

we want to assure that the resonance contribution always is of the same strength, no

matter what the width is.

One should note that the Ansatz for the spectral resonance we are using here

behaves linearly in ω in the vicinity of ω = 0. Thus we introduce an additional lower

bound ω0 = 2mc, with mc as the charm quark mass, in order to remove this segment.

N(γ, ω0) is now defined such as to retain the same strength as at T = 0 for σres(ω, γ)

1In this section, only J/ψ is concerned.
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Figure 3.1. Ratios without the transport contribution. R0(τT ) and Rfree(τT ) versus τT . (a)

γ dependence of R0(τT ), (b) s dependence of R0(τT ), (c) γ dependence of Rfree(τT ), (d) s

dependence of Rfree(τT ).

with a finite width resonance and a threshold cut-off ω0. A straightforward calculation

gives

1

N(γ, ω0)
=

2M

π
√

4M2 − γ2

[

π

2
− arctan

(

2ω2
0 + γ2 − 2M2

γ
√

4M2 − γ2

)]

. (3.9)

For the continuum part of the spectral function we take the formula of

σcont =
3

8π2
ω2 tanh

( ω

4T

)

√

1−
( s

ω

)2
(

2 +
( s

ω

)2
)

, (3.10)

where s is the threshold of the continuum, for T = 0, s = s0, for the free case, s = 2mc

and for finite T , s is T dependent. At zero temperature s0 and mc are set to be 4.5 GeV

and 1.32 GeV, respectively [19].

Concerning the transport peak, here we use the Ansatz as mentioned in section 2.4

σtrans(ω) = A
ωη

ω2 + η2
, (3.11)

where A is a normalization constant to maintain the area under σtrans(ω)/ω to be a

constant [158].
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Figure 3.2. Ratios with transport contribution included. Left: R0 versus τT varying the width

of the transport peak η=0.05, 0.15, 0.25, 0.35 and 0.45. Right: the same setting as the left plot

but for Rfree.

Having the spectral functions in hand we can construct R0(τ, T ) and Rfree(τ, T ),

R0(τ, T ) =
Gres(τ, T, γ) +Gcont(τ, T, s) +Gtrans(τ, T, η)

Gres
0 (τ, T ) +Gcont(τ, T, s = s0)

, (3.12)

Rfree(τ, T ) =
Gres(τ, T, γ) +Gcont(τ, T, s) +Gtrans(τ, T, η)

Gcont(τ, T, s = 2mc)
. (3.13)

We first check the effects brought by the resonance part and the continuum part to

the ratios R0(τ, T ) and Rfree(τ, T ). In this case we don’t include the contribution from

the transport peak in the calculation of R0 and Rfree in Eq. (3.12) and Eq. (3.13). The

ratios R0 (plots (a) and (b) in upper panel) and Rfree (plots (c) and (d)) are shown

in Fig. 3.1. Plot (a) shows different values of the resonance’s width at fixed threshold

s = s0 = 4.5 GeV and plot (b) is for different values of the continuum’s threshold at

fixed width γ = 0.3 GeV. We can see that both increasing the resonance’s width and

decreasing the continuum’s threshold can make R0 deviate further away from unity

but in the opposite direction. With the width of 0.9 GeV only making a deviation

of 12% at the symmetry point, the influence of the resonance is smaller than that of

the continuum, with the threshold being 0.8 GeV smaller than s0=4.5 GeV making a

difference of 20%. The corresponding pictures for the ratio Rfree are shown in plots (c)

and (d) in Fig. 3.1. Similar to R0 the influence of the resonance is smaller than that of

the continuum.

We further include the transport peak part into the evaluation of R0 and Rfree. We

set the width of the resonance peak to γ = 0.3 GeV, the threshold of the continuum to

s = s0 = 4.5 GeV. We then vary the width of the transport peak η to be 0.05, 0.15, 0.25,

0.35 and 0.45 GeV. The ratio R0 (left) and Rfree (right) are shown in Fig. 3.2. After

the transport peak contribution is included, we find the temperature dependence of

R0(τT ) changes strongly in the large distances. R0(τ, T ) becomes larger than unity at
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distances τT & 0.1 and reaches around 1.6 at the largest distance. The small distances

behavior of R0 shown in Fig. 3.2 is similar with that in Fig. 3.1. We also observe that

the widths of the transport peak varying from 0.05 GeV to 0.45 have a relative small

effects on R0. Similar effects are found on Rfree.

Within the current scenario of the spectral function the correlator is more sensitive

to the change of the continuum part than of the resonance and the transport parts,

which makes the exploration of properties of the resonance and transport peaks difficult.

3.2 Mock data test of MEM

A common technique to extract the spectral functions from the correlator is the Max-

imum Entropy Method as we described in the last chapter. Since the default model

(DM) is a very important parameter in the MEM analysis, we will make a mock data

test of the Maximum Entropy method to check the dependence on the default models

in this section.

The mock spectral function we use here is a relativistic Breit-Wigner peak with a

continuum part

σ(ω, T ) = σrbw(ω, T ) + σcont(ω, T ), (3.14)

where σrbw(ω, T ) is of the form

σrbw(ω, T ) =
Mγ

(ω2 −M2)2 +M2γ2
ω2

π
. (3.15)

To let σrbw(ω, T )/ω
2 go to zero smoothly, we let the width γ vary with ω [159]

γ(ω) = θ(ω − ω0)

(

1− ω2
0

ω2

)5

γ0 . (3.16)

The continuum spectral function σcont(ω, T ) is chosen as the free lattice spectral func-

tion.

In the real situation the correlation function data generated on the lattice is corre-

lated and consequently its covariance matrix is not diagnoal. To mimic the noise better

we adopt the following covariance matrix in our mock data [40]

Cmock
ij =

Cij

Ḡ(τi)Ḡ(τj)
Gmock(τi)G

mock(τj), (3.17)

where Cij is the covariance matrix from the real data and is of the form of Eq. (2.76),

Ḡ(τ) denotes the mean value of the correlation function from the real data and takes

the form of Eq. (2.75), and Gmock(τ) are evaluated from the spectral function in Eq.

(3.14). In the following test the real lattice data are obtained from data sets of 1283×48

at 1.46 Tc with β = 7.793 and from 1283 × 64 at 0.74 Tc with β = 7.457.
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Figure 3.3. The DM dependence (varying the large ω part) of spectral function extracted from

mock data with Nτ = 64 (left) and Nτ = 48 (right).“DM”s are the default models and “spf”s

are the corresponding output spectral functions. “input” labels the input spectral function of

the mock data.“DM 1”, “DM 2” and “DM 3” have the same shape and only differ in amplitudes

as described in the text.

The default model is very important as it strongly affects the output of the MEM

when the quality of the data is not sufficient to fully constrain the spectral function.

As we are focusing on the modification of the ground state of the spectral function, it

is natural to choose a DM which reproduces the behavior of the spectral function in

the very large ω region. To investigate the effects brought by the very large ω prior

information, in Fig. 3.3, we show the outputs of MEM using different default models

m(ω) = F · σcont(ω), (3.18)

where F is a constant. We first focus on the left panel of Fig. 3.3, where the test is done

with Nτ = 64. The red solid line denotes the input spectral function σ(ω) of Eq. (3.14).

All the dotted lines stand for different DMs and the solid lines in the same color are the

corresponding output spectral functions from MEM. For “DM 1”, we set F=1, which

means the DM reproduces the high frequency behavior of the input spectral function.

For “DM 2” and “DM 3”, F is set to be 0.5 and 1.5, respectively. At first glance, in

the high frequency region (aω & 2.3) the output spectral functions from MEM are

trying to follow the shape or the trend of the default model; in the low frequency

region (aω . 0.5) the output spectral functions have an important universality that

is not present in the default model and might be present in the real spectral function

(physics). The bias of the output spectral function to the default model in the large ω

region is mainly due to the insensitivity of the correlator to the details of the spectral

function in this region. If the exact large ω behavior is provided, for instance, here

“DM 1” with F=1, MEM simply does nothing but reproduces it. In the small ω region,
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impressingly enough, all three output spectral functions from different default models

reproduce the correct peak location and the qualitatively correct shape of the resonance

part of the input spectral function. In particular the output spectral function “spf 1”

with correct large ω information in the DM gives the most reliable image. “spf 2” and

“spf 3” with incorrect large ω prior information produce some wiggles in the frequency

regions higher than the resonance part. These are normally considered to be “lattice

artifacts” but could also be the “MEM artifacts”. From this study we see that it is

important to include the “correct” high frequency behavior of the spectral function in

the default model.

We also checked the MEM output dependence on the temporal lattice extent Nτ . We

did the same exercise with the number of points Nτ = 48. As one can see from the right

panel of Fig. 3.3, with a smaller number of data points Nτ = 48, the spectral function

is also well reproduced. This indicates that in the real case at 1.46 Tc, i.e. 128
3 × 48

on our finest lattice, the spectral function extracted from MEM should be reliable.

Nevertheless, the “correct” large ω behavior in the default model is still favorable when

the quality of data is not sufficient as we emphasized before.
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Figure 3.4. Weight factor distribution (left) and correlators calculated from the DM (right)

according to the left plot of Fig. 3.3.

Thanks to asymptotic freedom the high frequency part should resemble the free

spectral function. It could be helpful to compare the correlators calculated from the

default models to the real lattice data (shown in the right plot of Fig. 3.4). If simi-

lar behavior of the real correlator data and the correlator calculated from the default

model exists at some small distances, it could indicate the default model has the cor-

rect large frequency information of the spectral function, consequently the normalized

weight function P̃ [α|G] may have a peak location at larger α (shown in the left panel

of Fig. 3.4). However, one cannot judge from the comparisons of quantities in Fig. 3.4

which output spectral function from MEM is definitely better, since α itself as a param-
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eter just reflects the relative weight of the entropy S and the likelihood function L. If

P̃ [α|G] has a large peak location, it just means MEM tends to fit the spectral function

to the default model while if the peak location is small it tells us that MEM tends to fit

the spectral function to the lattice data. One also has to keep in mind that, no matter

what kind of default model is used, the correlators, that are calculated from the output

spectral functions obtained from MEM, always reproduce the lattice correlator data

within the errors. This essentially accents the importance of the prior knowledge of the

spectral function and a careful analysis of the default model dependence. In practice

what we will do in the real data analysis is to choose the free lattice spectral function

as a default model at large ω and change its amplitude to reproduce the small distance

behavior of the correlation function to circumvent the issue of differences between the

free lattice correlator and the renormalized lattice data.
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Figure 3.5. The DM dependence (varying the resonance peak) of the spectral function ex-

tracted from mock data with Nτ = 64. The resonance peak in the input mock spectral function

has a width aγ = 0.15 and peak location aω = 0.3. The right panel is a blowup of the left plot

in the low frequency region. “input” is the input mock spectral function. “DM”s are default

models while “spf”s are corresponding output spectral functions.

We now provide the correct large ω (aω & 1) information and vary the low frequency

information (resonance part 0 ≤ ω . 0.8) in the default model. This can help us to

know how many details of the resonance part of the spectral function we can explore

from MEM with the current quality of the mock data. In Fig. 3.5, we show the output



3.2. Mock data test of MEM 79

spectral functions extracted from mock data with Nτ = 64. Again the red solid line

denotes the input spectral funciton. The peak location and the width of the resonance

part of the input mock spectral function are aω = 0.3 and aγ = 0.15, respectively.

“DM”s are default models and “spf”s are corresponding output spectral functions. “DM

1” is the free spectral function. “DM 2” is the free spectral function plus a resonance

peak whose peak location is aω = 0.2 and width is aγ = 0.05. The corresponding output

spectral functions “spf 1” and “spf 2” , corresponding to “DM 1” and “DM 2”, are quite

independent of the default models. They reproduce the peak location correctly and the

width of the peak with a precision of 20%, even with the prior information “incorrectly”

provided in 0 ≤ aω . 0.55 in “DM2”! We now put “partly” correct information into

“DM 3” to test whether we can get more details of the resonance peak, e.g. the width.

“DM 3” is also a combination of a free spectral function and a resonance peak, but the

resonance peak in “DM 3” has a same peak location as that in the input mock spectral

function (aω = 0.3) and a relatively smaller width aγ = 0.05 compared to that in the

input mock spectral function (aγ = 0.15). Unfortunately, probably due to the quality

of the data, the output “spf 3” from MEM simply reproduces the “DM 3”. Thus it is

hard to get a precise determination of the absolute width of the resonance peak but still

by comparing the width of the resonance peak from MEM at different temperatures

one can get a qualitative feeling of the thermal modification of the resonance due to

the change of the width.

In addition we add a transport peak at ω ≈ 0 using

σtrans(ω) ∝
1

π

ωη

ω2 + η2
(3.19)

and try to find out to what extent MEM can explore it under the current circumstances.

In this case σtrans(ω)/ω
2 is divergent at ω = 0. As in the previous test we adopt the

default model that reproduces the large ω (aω & 2.3) behavior of the input spectral

function. For the very low frequency region (aω . 0.12) in the default model, we

utilize a form like formula (3.19) varying the width η and the amplitude. We tried

with three default models, all with the same widths but different amplitudes of the

transport peak. In the left panel of Fig. 3.6 we show the spectral function divided by

ω2, σ(ω)/ω2, to cancel the large ω rise. We observe that the resonance parts of the

output spectral functions are quite independent of the three default models provided.

In the right panel of Fig. 3.6 we plot σ(ω)a/ω in the very low frequency region to

show the transport peak in more detail. For the very low frequency parts of the default

models we keep the widths of the transport peaks unchanged and vary the amplitudes.

Surprisingly there are only minor changes of the output spectral functions even if the

amplitude of the transport peak is amplified four times.

As we found in the test done in Fig. 3.6 the output transport peak from MEM is
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Figure 3.6. The DM dependence (varying the amplitudes of the transport peak) of the spectral

function extracted from mock data with Nτ = 64. The left plot shows σ(ω)/ω2 as a function of

ωa while the right plot shows σ(ω)a/ω as a function of ωa. The very high frequency (aω & 2.3)

behavior of all the DMs is the same as that of the input spectral functions. The very low

frequency (aω . 0.12) information in the DMs is the transport peak like, with fixed width but

different amplitudes. The resonance width of the input spectral function aγ is set to be 0.15

and the transport width aη is set to be 0.05. The width of the transport peak in the default

model is fixed to be 0.1.

quite independent of the default model when the large ω (aω & 0.12) information and

the width of the transport peak in the default model are not changed. We also checked

the case when the width of the transport peak in the default model is changed. This is

done with the amplitudes of the transport peak and the large ω information are fixed

in the default model. As seen from the left plot of Fig. 3.7 the resonance part of the

spectral function again shows only small default model dependence. In the right plot of

Fig. 3.7 the low frequency part of the output spectral function depends on the default

model a lot. This can be understood to be the same situation as with the width of the

resonance peak, due to the intrinsic insensitivity of the correlators to these quantities.

We also find an empirical rule: when one provides a peak (transport or resonance) which

is much narrower than the real input, MEM will be “fooled” by the prior information

provided in the default model and just follows the trend of the default model not only

in the high frequency region but also in the low frequency region; on the other side, if

one provides a relatively broad peak into the default mode, MEM can reproduce the

input spectral function qualitatively. It is sure that one cannot set a reference scale to

say which is broad and which is narrow, or in other words, it is a compromise between

the prior information provided into default models and the quality of the correlator

data.



3.3. Effective mass 81

 0

 0.05

 0.1

 0.15

 0.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

ωa

σ(ω)/ω2 input
DM 1
spf 1
DM 2
spf 2
DM 3
spf 3
DM 4
spf 4

 0⋅100

 2⋅10-4

 4⋅10-4

 6⋅10-4

 8⋅10-4

 1⋅10-3

 1⋅10-3

 1⋅10-3

 2⋅10-3

 2⋅10-3

 2⋅10-3

 0  0.02  0.04  0.06  0.08  0.1  0.12

σ(ω)a/ω

ωa

input
DM 1
spf 1
DM 2
spf 2
DM 3
spf 3
DM 4
spf 4

Figure 3.7. The DM dependence (varying the width of the transport peak) of the spectral

function extracted from mock data with Nτ = 64. The left plot shows σ(ω)/ω2 as a function

of ωa while the right plot shows σ(ω)a/ω as a function of ωa. The high frequency behavior

(aω & 2.3) of all the DMs are the same to the input spectral functions. The very low frequency

(aω . 0.12)information in the DMs are the transport peak like and with fixed amplitudes but

different widths. Both the resonance width aγ and the transport peak width aη of the input

spectral function are set to be 0.1. “DM 1”, “DM 2”, “DM 3” and “DM 4” are the default

models with aη to be 0.1, 0.15, 0.025 and 0.01, respectively.

3.3 Effective mass

Now we start to do analysis on the real lattice data. Since our correlation function is

precisely measured on the lattice, we first investigate the charmonium properties at the

correlator level. At this level one can look into the effective mass mcosh
eff (τ) obtained

from the ratios of the neighboring correlators

G(τ)

G(τ + 1)
=

cosh
[

mcosh
eff (τ)(Nτ

2 − τ)
]

cosh
[

mcosh
eff (τ)(Nτ

2 − τ − 1)
] . (3.20)

The effective mass mcosh
eff (τ) should give the lowest energy states of the corresponding

channel at very large distance. As we already saw, even in the free continuum case,

there are constant (zero mode) contributions in the correlators. To focus on the peak

structure of the lowest energy states it is useful to suppress or remove the constant

contribution from the correlators by using appropriate techniques. Since the constant

contribution is τ independent one straightforward idea is to check the derivative of

the correlator with respect to Euclidean time τ , practically by using differences of the

neighboring correlators

Gdiff(τ) = G(τ)−G(τ + 1), (3.21)
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Figure 3.8. The effective mass meff(τ) as a function of τT obtained from the standard corre-

lators mcosh
eff (τ) (Eq. (3.20)), the differential correlator mdiff

eff (τ) (Eq. (3.22)) and the midpoint

subtracted correlatormsub
eff (τ) (Eq. (3.24)) at temperatures 0.73 Tc, 1.46 Tc, 2.20 Tc and 2.93 Tc

calculated on the lattice with β = 7.793.

where Gdiff(τ) is equal to the symmetric derivative at τ + 1/2. The corresponding

effective mass can be defined as [141]2

Gdiff(τ)

Gdiff(τ + 1)
=

sinh
[

mdiff
eff (τ) (Nτ

2 − τ − 1/2)
]

sinh
[

mdiff
eff (τ) (Nτ

2 − τ − 3/2)
] . (3.22)

Since among all the correlator data points the symmetry point of correlation func-

tion has the largest contribution from the zero mode contribution, an alternative way to

suppress the zero mode contribution is to look into the midpoint subtracted correlator

Gsub(τ) = G(τ)−G(Nτ/2). (3.23)

The corresponding effective mass can be defined as [141]

Gsub(τ)

Gsub(τ + 1)
=

sinh2[12m
sub
eff (τ) (Nτ

2 − τ)]

sinh2[12m
sub
eff (τ) (Nτ

2 − τ − 1)]
. (3.24)
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Figure 3.9. Temperature dependence of effective mass obtained from the standard correlator

mcosh
eff (τ) (Eq. (3.20)) calculated on our finest lattice with β = 7.793.
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Figure 3.10. Temperature dependence of effective mass obtained from the midpoint subtracted

correlator msub
eff (Eq. (3.24)) calculated on our finest lattice with β = 7.793.

Since there is only a τ independent constant difference between Vii and Vµµ chan-

nels, thus Vii and Vµµ channels can be a good platform to test behaviors of mdiff
eff and

msub
eff . In Fig. 3.8 we plot mcosh

eff (τ), mdiff
eff (τ) and msub

eff (τ) of these two channels at four

different temperatures available on our finest lattice. At temperatures below Tc m
cosh
eff

should be the same in the Vii and Vµµ channels since the constant difference from these

2There is a typo of the corresponding formula (Eq.(8)) in Ref. [141].
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two channels is nearly zero. When going to higher temperatures above Tc one can see

clearly that at large distances there is a difference of mcosh
eff in the Vii and Vµµ chan-

nels due to the finite τ independent constant. At small distance mcosh
eff in these two

channels coincides, since the constant contribution becomes negligible. The effective

masses obtained from the differential correlators in the Vµµ and Vii channels overlap

with each other at all distances. When going to higher temperature, as expected from

section 2.3.1, the discrepancy between mcosh
eff in the Vµµ and Vii channels becomes larger

at larger distance, but mdiff
eff is always the same in these two channels at all distances.

The third quantity, msub
eff , gives similar results as mdiff

eff at all temperatures. msub
eff and

mdiff
eff overlap with each other at very large distances and start to differ only at small

distances, in particular msub
eff reproduces mcosh

eff at small distances. The results shown in

Fig. 3.8 indicate both methods work well for this obvious case. Since msub
eff works better

we will utilize it to investigate the other channels at finite temperature.

As a reference we first plot the standard effective mass mcosh
eff (τ) for PS, SC, Vii

and Aii at all temperatures available from our simulation in Fig. 3.9. In the same

physical distance, the S wave states i.e. the pseudo scalar and vector channels show

small changes up to 1.46 Tc, while the P waves states show large changes even at 1.46 Tc.

The corresponding effective mass from the midpoint subtracted correlator is shown in

Fig. 3.10. We find that both P wave states and S waves states change dramatically

already at 1.46 Tc. This indicates there might be thermal modifications beyond the

zero mode contributions. To really get a clear understanding, one has to investigate on

the spectral functions in these channels.

3.4 Spectral functions below Tc

In this section we will discuss the spectral function obtained from MEM at temperatures

below Tc. We will mainly focus on results from our finest lattice 1283×96 with β = 7.793.

When we analyze the correlation function using MEM, we always set the number of

points in the frequency space to Nω = 8000, with the minimum aωmin = 0.0000013 and

the step length a∆ω=0.0005, i.e. we fix aωmax ≈ 4. As we discussed in the mock data

test, it would be better to provide the prior information into the default model, which

describes the very high frequency part of the real spectral function. The direct choice

here is the free lattice spectral function which has an automatic cut-off at aω ≈ 4. If

there is no additional description, we implicitly use the free lattice spectral functions

obtained with quark mass am ≈ 0.06 in our MEM analyses. The value am ≈ 0.06

corresponds to the value of mMS(m) listed in Table 1.2. In Fig. 3.11 we show the ratio

3One actually can set aω = 0 numerically. Since the aωmin (0.000001) we used is already a very

small number and Nω is very large, there are no effects brought by this issue.
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Figure 3.11. Ratios of G(τ, T ) to Gfree(τ) at 0.73 Tc (a), 1.46 Tc (b), 2.20 Tc (c) and 2.93 Tc

(d) from our finest lattice with β = 7.793. Quark mass used in the calculation of free correlators

is obtained from Table 1.2.

of the correlator data to the free lattice correlator with am ≈ 0.06. There are still

quite some differences of the ratio G(τ, T )/Gfree(τ) from unity at small distances, at

0.73 Tc (a), 1.46 Tc (b), 2.20 Tc (c) and 2.93 Tc (d), even after the renormalization to

the correlator data mentioned in section 1.6. This difference might be partly due to the

inaccuracy of the renormalization constants. To reduce discretization effects, we omit

some correlation data points at very small distances, i.e. we use τ/a = 4, 5, 6, · · · , Nτ/2.

To reduce the difference between the free lattice correlation function and the correlation

data, we normalize the free spectral function to make the free spectral function roughly

equal to the real spectral function in the large frequency region. In practice, we set

G(τ/a = 4, T )/Gfree(τ/a = 4, T )=1. To explore the very low frequency behavior of the

spectral function and avoid the instability of the kernel at ω ≈ 0, we use the modified

kernel given in Eq. (2.127).

Due to large lattice cut-off effect in the scalar and axial vector channels, which is

seen already in the free case (see e.g. the right panel of Fig. 2.1), at the spectral function
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Figure 3.12. Default model dependences of the output spectral functions in the PS channel

at 0.73 Tc on the 1283 × 96 lattice. The plot in the right panel is a blowup of the low energy

region of the left panel. “DM”s are the input default models while “spf”s are the corresponding

MEM outputs.

level we restrict ourselves to study the S wave states only.

We first look at the spectral function in the PS channel. We show the default model

dependence of the PS spectral function in Fig. 3.12. The left panel of Fig. 3.12 shows

the default models and the output spectral function from MEM in the whole energy

region while the right panel of Fig. 3.12 is a blowup in the low frequency region (ω ≤ 14

GeV). To suppress the large ω rise, we plot the spectral function divided by ω2 as a

function of ω. The default models are all represented by the dotted lines and the output

spectral functions are the corresponding solid lines with the same colors. We test three

different default models, “DM 1” is the normalized free lattice spectral function, “DM

2” is the normalized free lattice spectral function supplemented with a resonance peak

located in the low frequency region and “DM 3” is the normalized free lattice spectral

function with a transport peak, i.e. Eq. (3.19) in the very low frequency region. In

the very high frequency region (ω & 55 GeV), as we can see from the left panel of

Fig. 3.12, the MEM outputs just resemble the behavior of the input default models

as we already saw from the mock data test. In the low frequency region, as seen from

the right panel of Fig. 3.12, the spectral functions from MEM have a uniform behavior

that is different from the input default models, which should be physics. The default

model dependence of the first peak is very weak, though there are some differences in

the amplitudes of the output spectral functions. The peak locations of the first peak
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Figure 3.13. Default model dependences of the output spectral functions in the Vii channel

at 0.73 Tc on the 1283 × 96 lattice. The plot in the right panel is a blowup of the low energy

region of the left panel. “DM”s are the input default models while “spf”s are the corresponding

MEM outputs.

are always the same, at around ω ≈ 3.31 GeV, which in turn is close to the value of

the screening mass obtained from the spatial correlator quoted in Table 1.3. Thus this

peak can be interpreted as the bound state peak of ηc and remains quite stable and

robust from MEM with quite different prior information. However, the width of this

peak cannot be directly interpreted as the width of ηc due to the statistics and number

of data points. The second and third peak in the Fig. 3.12 could be a mixture of higher

excited states or MEM artifacts due to the finite lattice spacing and limited number of

correlator points.

Since there is no zero mode contribution in the PS channel in the high temperature

limit as we have learned from section 2.3.1, it would be interesting to check whether it

has a zero mode contribution at the temperature below Tc. We thus put transport prior

information into the default model (“DM 3”). It turns out there is no transport peak in

“spf 3”. As in the infinite temperature limit there is also no zero mode contribution in

this channel we thus conclude there is no zero mode contribution in the pseudo scalar

channel at temperatures above Tc. Then the PS spectral function would be a good

candidate to look into the change of the bound states.

We did the same exercise for the vector channel Vii (summing over the spatial

components only). The results are shown in Fig. 3.13. Again the MEM outputs are

quite independent of the default models. The ground peak stays stable and robust, and



88 3. Analysis of charmonium properties at vanishing momentum

its peak location is approximately ω ≈ 3.48 GeV, which is comparable to the value we

obtained in Table 1.3. As for the pseudo scalar channel, the width of the ground peak

is affected by the quality of the data and cannot be interpreted as the width of J/ψ.

The second peak could be again a mixture of higher excited states and the artifacts

of MEM. We also put a transport peak into the default model (“DM 3”), and like the

case in pseudo scalar channel, we find there is no transport peak in “spf 3” as well. We

thus conclude at this temperature there is also no zero mode contribution in the vector

channel.

3.5 Reconstructed correlator

As seen in the previous section we have successfully reconstructed spectral functions

in the PS and Vii channel. We are confident that there are ground state peaks in each

channel locating at the correct meson masses at T < Tc. At temperatures above Tc,

the temporal extent becomes shorter and the number of data points available for the

analysis becomes smaller. Thus the reconstruction of the spectral function will become

difficult. To analyze thermal modifications of spectral functions, we will first investigate

the ratio of the measured correlator to the reconstructed correlator, which can remove

the trivial temperature dependence of the kernel K(ω, T, τ).

G(τ, T )

Grec(τ, T )
=

∫∞
0 dω K(τ, T, ω) σ(ω, T )
∫∞
0 dω K(τ, T, ω) σ(ω, T ′)

. (3.25)

With relation (2.55) we calculate Grec(τ, T ) directly from the correlator data at

temperature T ′ and thus the systematic error is more under control.

3.5.1 The pseudo scalar correlators

We first investigate the temperature dependence of the pseudo scalar correlators. We

show the numerical results for G(τ, T )/Grec(τ, T ) at 1.46 Tc, 2.20 Tc and 2.93 Tc on our

finest lattice in Fig. 3.14. Grec(τ, T ) are evaluated from correlator data at T ′ = 0.73 Tc.

The ratio of G(τ, T )/Grec(τ, T ) shows very little deviation from unity at 1.46 Tc. As

seen from Fig. 3.14, the temperature effects start to set in at around 0.06 fm at 1.46 Tc

and make the ratio deviate from unity around 5% at the largest distance. The very

small temperature dependence of the pseudo scalar correlator might indicate that the

corresponding ground state ηc(1S) survives up to the temperature as high as 1.46 Tc.

When going to the higher temperature, 2.20 Tc, the temperature effects set in at a much

smaller distance (≈ 0.02 fm). The deviation slope is larger and the deviation from unity

(≈ 8%) is much larger at the largest available distance. At the highest temperature we

have, 2.93 Tc, the deviation of the ratio from unity becomes about 12% at the largest
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Figure 3.14. The ratio G(τ, T )/Grec(τ, T ) for the PS channel as function of the Euclidean

distance τ on our finest lattice with β = 7.793 (a−1 = 18.974 GeV) at T = 1.46, 2.20 and

2.93 Tc. The reconstructed correlator Grec is reconstructed from correlator data at 0.73 Tc.

distance. This may suggest considerable modifications in the lowest state of pseudo

scalar channel at this temperature.

The qualitative temperature dependence is found to be similar to the previous

findings of Ref. [40]. The differences of G/Grec in Ref. [40] are smaller. This might

be due to first, we are calculating the G/Grec exactly without evaluating the spectral

functions from MEM, and second, an anisotropic lattice is used in Ref. [40]. In favor

of saving computing power anisotropic lattices are always employed to get a relatively

large number of points in the temporal directions, but decreasing the temporal lattice

spacing aτ at fixed spatial lattice spacing aσ, i.e. increasing the anisotropy ζ = aσ/aτ ,

will not reduce cut-off effects. Unfortunately the mass of J/ψ is not tuned accurately

on our finest lattice (β = 7.793, a−1 = 18.974 GeV) but lattice cut-off effects should

be very small.

3.5.2 The P wave correlators

In this subsection we will discuss the temperature dependence of the scalar and axial

vector (summing over spatial components only) correlators corresponding to P wave

states.

The numerical results for these two channels are shown in Fig. 3.15 on our finest

lattice. In the left panel of Fig. 3.15 the ratio G/Grec for the scalar channel is shown

while in the right panel the ratio for the axial vector is shown. We find already at

1.46 Tc that a significant thermal modification of the mesons is manifest in G/Grec at all
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Figure 3.15. The ratio G(τ, T )/Grec(τ, T ) of P wave states as a function of the Euclidean

distance τ on our finest lattice with β = 7.793 (a−1 = 18.974 GeV) at T = 1.46, 2.20 and

2.93 Tc. The reconstructed correlator Grec is reconstructed from correlator data at 0.73 Tc. The

left plot is for the SC channel and the right one is for the Aii channel.

distances. G/Grec reach around 1.9 in the SC channel and around 2.5 in the Aii channel

at the largest available distance. Such a magnitude of the deviation from unity is much

larger compared to the case of the PS channel. This indicates a strong modification of

the properties of the low frequency region of the spectral function (maybe the frequency

region including the lowest states) and the possible dissolution of 1P charmonium states

already at 1.46 Tc. We also observe the deviation of G(τ, T )/Grec(τ, T ) from unity at

the largest distances decreases with increasing temperature, which is in contradiction

to the case of the PS channel.

3.5.3 The vector correlators

We show the ratio G(τ, T )/Grec(τ, T ) for vector correlator Vii (summing over spatial

components only) on our finest lattice in Fig. 3.16. As one can see from this figure the

temperature dependence of G(τ, T )/Grec(τ, T ) is different from the pseudo scalar case

and this ratio is larger than unity at large distance4. The deviation of G(τ, T )/Grec(τ, T )

from unity starts from smaller distances at higher temperatures. Unlike in the PS, SC

and Aii channels the magnitudes of G(τ, T )/Grec(τ, T ) at the largest available distance

at different temperatures do not differ that much.

To study lattice spacing effects on the ratio of measured correlators to reconstructed

correlators, we show the ratios on our two coarse lattices in Fig. 3.17. The two plots

4The ratio G(τ, T )/Grec(τ, T ) in the Vµµ channel (summing over both the temporal and spatial

components) is smaller than unity at large distance due to the presence of the τ independent constant

G00
V .
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Figure 3.16. The ratio G(τ, T )/Grec(τ, T ) for the Vii channel as a function of the Euclidean

distance τ on our finest lattice with β = 7.793 (a−1 = 18.974 GeV) at T = 1.46, 2.20 and

2.93 Tc. The reconstructed correlator Grec is reconstructed from 0.73 Tc correlator data.

in the upper panel of Fig. 3.17 are the results from the lattice with β = 6.872, a−1 =

6.432 GeV while the two plots in the lower panel are the results from the lattice with

β = 7.457, a−1 = 12.864 GeV. The plots on the left hand side are for P wave states

and the plots on the right hand side are for S wave states. By comparing the results

from β = 6.872 and β = 7.457 with that from our finest lattice β = 7.793, it is clear

that the temperature dependence of the correlator is not affected significantly by the

finite lattice spacing. The difference we see from the two coarser lattices and the finest

lattice could originate from the different masses of the mesons due to the κ tuning.

The big rise of the ratio G/Grec at large distances in the vector channel seen from

Fig. 3.16 indicates the thermal change of the spectral function in the low frequency

region. Initially, the deviation of the ratio in the vector channel was interpreted as to

indicate a considerable thermal change of the bound states. Recently it is found that the

temperature dependence of the vector correlator can be also explained by the diffusion

contribution [40,126,141].

To illustrate this point we take a look at the ratio of the differences of the neigh-

boring correlators to the difference of the corresponding reconstructed correlators

Gdiff(τ, T )

Gdiff
rec (τ, T )

≡ G(τ, T )−G(τ + 1, T )

Grec(τ, T )−Grec(τ + 1, T )
, (3.26)

which equals the ratio of the time derivative of the correlators to the time derivative

of the reconstructed correlators at τ + 1/2. If the diffusion contribution is just a τ

independent constant it will be canceled in this ratio. One can also check the ratio of
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Figure 3.17. The ratio G(τ, T )/Grec(τ, T ) as a function of the Euclidean distance τ at 1.49 Tc

on two coarse lattices. The reconstructed correlator Grec is reconstructed from correlator data

at 0.74 Tc. The plots on the top show the results from lattice data sets with β = 6.872 (a−1 =

6.432 GeV) while the lower plots show the results from lattice data sets with β = 7.457 (a−1 =

12.864 GeV).

midpoint subtracted correlators

Gsub(τ, T )

Gsub
rec (τ, T )

≡ G(τ, T )−G(Nτ/2, T )

Grec(τ, T )−Grec(Nτ/2, T )
. (3.27)

One expects that this ratio has only a very small temperature dependence, if the diffu-

sion contribution is dominated at the largest distance and at the same time is a almost

τ independent constant.

In Fig. 3.18, we show the results for Gsub/Gsub
rec and Gdiff/Gdiff

rec in the Vii (left) and

also in the PS channel (right). The filled symbols denote the ratio Gsub/Gsub
rec while open

symbols label the ratio Gdiff/Gdiff
rec . The ratios Gsub/Gsub

rec and Gdiff/Gdiff
rec give similar

results at all the distances. Seen from the left panel of Fig. 3.18 the magnitude of

the measured correlator to the reconstructed correlator reduces dramatically after the

implementation of the difference of neighboring correlators (Eq. (3.26)) and mid-point
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Figure 3.18. The ratio Gsub(τ, T )/Gsub
rec (τ, T ) (Gdiff(τ, T )/Gdiff

rec (τ, T )) of S wave sates as a

function of the Euclidean distance τ on our finest lattice with β = 7.793 at T = 1.46, 2.20

and 2.93 Tc. The “diff” and “sub” stand for the results of the ratio Gdiff/Gdiff
rec and Gsub/Gsub

rec ,

respectively. The left plot is for the Vii channel and the right one is for the PS channel.

subtracted correlators (Eq. (3.27)). At 1.46 Tc the ratio is more or less unity at all

distances, at 2.20 Tc and 2.93 Tc the ratio becomes even smaller than unity at large

distances. This could be understood by the zero mode contribution as mentioned in

section 2.3.1. The zero mode contribution gives the most temperature dependence of

the ratio G/Grec at least at 1.46 Tc seen in Fig. 3.16. The deviations of the ratios

from unity in the PS channel shown in the right panel of Fig. 3.18 are also reduced.

However, the effect is not as strong as that in the Vii channel and the values at the

largest distance are shifted up only about 3% at both 1.46 Tc and 2.20 Tc and about

6% at 2.93 Tc compared with the results in Fig. 3.14. Comparing the results for the

vector channel (Vii) with those for the pseudo scalar one in Fig. 3.18, we find the ratios

Gsub/Gsub
rec (Gdiff/Gdiff

rec ) in these two channels have similar behavior at all distances at

the two higher temperatures 2.20 Tc and 2.93 Tc. However, they differ at 1.46 Tc. The

phenomenon we observe here might suggest J/ψ could survive up to 1.46 Tc and start

to melt at 2.20 Tc. For PS it might be melted already at 1.46 Tc.

For completeness we also show the results of Gsub/Gsub
rec and Gdiff/Gdiff

rec in the P

wave states on our finest lattice. The left panel of Fig. 3.19 shows the ratios for the

Aii channel while the right panel shows the ratio for the SC channel. The magnitudes

of the ratios for both Aii and SC are greatly reduced when compared to the ratios

shown in Fig. 3.15. This behavior is quite similar to the ratios in the Vii channel and it

indicates the big rise seen in G/Grec in Fig. 3.15 could mainly originate from the zero

mode contributions.
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Figure 3.19. The ratio Gsub(τ, T )/Gsub
rec (τ, T ) (Gdiff(τ, T )/Gdiff

rec (τ, T )) of P wave sates as a

function of the Euclidean distance τ on our finest lattice with β = 7.793 at T = 1.46, 2.20

and 2.93 Tc. The “diff” and “sub” stand for the results of the ratio Gdiff/Gdiff
rec and Gsub/Gsub

rec ,

respectively. The left plot is for the Aii channel and the right one is for the SC channel.

3.6 Estimate of the zero mode contribution

Since at higher temperatures the number of data points available becomes smaller, it

could be better to provide some physical prior information into the default model. In

this section we attempt to estimate the transport contribution in the vector channel at

1.46 Tc and put it into the default model in the MEM analysis.

From the above analysis, the ratio of G/Grec for the vector correlator (Vii) at T =

1.46 Tc remains unity up to a distance of ≈ 0.06 fm and its temperature dependence at

large distances can be understood by the diffusion contribution. Thus we can assume

that the spectral function from the current-current correlator5 can be separated into a

low frequency part σlowJJ and a high frequency part σhighJJ , correspondingly

GJJ(τ, T ) = Glow
JJ (τ, T ) +Ghigh

JJ (τ, T ). (3.28)

In the high frequency region, the lowest vector state J/ψ could, at least at 1.46 Tc,

remain unmodified or suffer from minor thermal changes. So we assume the high fre-

quency behavior can be parameterized as the following

Ghigh
JJ (τ, T ) = (1 + k(T ))Grec

JJ (τ, T ), (3.29)

where the modification from the temperature below Tc at small distances is parameter-

ized by the coefficient k and Grec
JJ (τ, T ) is the reconstructed correlator at temperature T

5The vector channel, as mentioned in the section 2.1, at T = 1.46 Tc, can be decomposed into

density-density (time-like) part GNN and current-current (space-like) part GJJ.
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reconstructed from the correlator at temperature 0.73 Tc. For the low frequency region,

as derived in Eq. (2.221), we make the spectral Ansatz as

σJJ(ω) =
3

π

Tχ00

M

ωη

ω2 + η2
, η =

T

MD
, (3.30)

where η is the drag coefficient, D denotes the heavy quark diffusion constant and χ00

is the quark number susceptibility. Consequently,

Glow
JJ (τ, T ) =

∫ ∞

0
dω

cosh (ω(τ − 1/2T ))

sinh(ω/2T )

3

π

Tχ00

M

ωη

ω2 + η2
. (3.31)

One can fit the following renormalization independent quantity

R(τ, T ) ≡ G(τ, T )

Grec
JJ (τ, T )

=
Glow

JJ (τ, T )

Grec
JJ (τ, T )

+ 1 + k(T ) (3.32)

to get four parameters χ00, k, η and M .
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Figure 3.20. Left: the temporal component of the vector correlator GNN(τT )/T
3 versus τT at

T ≈ 1.5 Tc. Right: the temperature dependence of the quark number susceptibility χ00 obtained

from available lattice data sets.

Actually we obtain χ00 from the density-density correlator through the relation

GNN(T ) = Tχ00(T ). Due to the current we are using in our simulation being a non-

conserved current, we need to check to what degree GNN(T ) is independent of Euclidean

time τ . We show the GNN(T ) as a function of Euclidean time τ obtained from our

available lattices in the left plot of Fig. 3.20 at T ≈ 1.5Tc. It is obvious that the

results are very τ independent even at small distances. We also show the temperature

dependence of the quark number susceptibility χ00 obtained from the available lattice

data sets in the right plot of Fig. 3.20. χ00/T
2 increases monotonically with increasing

temperature up to 2.93 Tc. It is hard to explore any quantitative relation between

χ00/T
2 and T/Tc due to our limited number of available data points.
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In practice, we rewrite Eq. (3.31) as follows

Glow
JJ (τ, T ) =

∫ ∞

0
dω

cosh (ω(τ − 1/2T ))

sinh(ω/2T )

3χ00

π
DT

ω

ω2(MD)2 + 1
. (3.33)

and thus do a χ2 fit to get parameters DT , MD and k. The resulting fit parameters

are listed in Table. 3.1. One has to note the numbers shown in Table 3.1 are obtained

under the assumption that J/ψ at 1.46 Tc remains almost unchanged.

β Nτ τmin : τmax DT MD k

7.793 48 6:24 0.49 ± 0.12 2.22 ± 1.79 0.00016 ± 0.0002

8:24 0.48 ± 0.12 2.17 ± 1.77 -0.0012 ± 0.0002

10:24 0.47 ±0.12 2.06 ± 1.70 -0.0021 ± 0.0004

Table 3.1. Fitting parameters DT , MD and k at 1.46 Tc on the lattice of 1283 × 48 with

β = 7.793.

Since the two parameters DT and MD are correlated, we get the parameters but

with relatively large uncertainty even with 19 points. We need further information to

constrain the spectral function which will be discussed in the following section.

3.6.1 Thermal moments of correlators

As we mentioned before the low frequency part of the spectral function corresponds to

the large distance behavior of the correlation spectral function. By doing the Taylor

expansion of the correlators at the largest distance accessible at finite temperature

GH(τT ) =

∫ ∞

0
dω σH(ω)

cosh(ω(τ − 1/2T ))

sinh(ω/2T )
(3.34)

=

∫ ∞

0
dω

σH(ω)

sinh(ω/2T )

[

1 +
1

2!

(ω

T

)2
(τT − 1

2
)2 +

1

4!

(ω

T

)4
(τT − 1

2
)4 + · · ·

]

,

one might be able to explore the properties of the low frequency behavior of the spectral

function. Here we define the Taylor expansion coefficients and also the time derivatives

of the Euclidean correlation function

G
(n)
H =

1

n!

dnGH(τ, T )

d(τT )n

∣

∣

∣

∣

∣

τT=1/2

=
1

n!

∫ ∞

0
dω

(ω

T

)n σH(ω)

sinh(ω/2T )
, (3.35)

as thermal moments [88]. In particular the value of the zeroth moment G
(0)
H is the

same as the symmetry point GH(τT = 1/2).

As discussed in section 1.6 the renormalization constants of the non-conserved vector

current in our lattice calculations is imprecisely determined. To avoid this issue we
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consider the ratios of the thermal moments

Rn,m
H ≡ G

(n)
H

G
(m)
H

(3.36)

in which the multiplicative renormalization constants drop out. With this we rewrite

the Taylor expansion of the Euclidean correlator (3.34) as follows

GH(τT ) = G
(0)
H

∞
∑

n=0

R2n,0
H

(

τT − 1

2

)2n

. (3.37)

Before we move to the lattice data analysis, we first have a look at the free continuum

spectral function. In the massless case, as discussed in section 2.3.1, the correlator

is obtained analytically in Eq. (2.145). Its thermal moments can thus be calculated

analytically

G
(0)
H,free/T

3 = a
(1)
H , (3.38)

G
(2)
H,free/T

3 =
7

5
(a

(1)
H − a

(2)
H )π2, (3.39)

G
(4)
H,free/T

3 =
31

21
(a

(1)
H − a

(2)
H )π4. (3.40)

The coefficients aH are listed in Table. 2.2. As expected, the moments for the scalar

and pseudo scalar (vector and axial vector) are the same. For the comparison to the

lattice data we also give the ratio of the moments

R2,0
H,free =

7

5

(

1− a
(2)
H

a
(1)
H

)

π2, (3.41)

R4,2
H,free =

155

147
π2. (3.42)

The value of R2,0
free remains the same in the vector and axial vector (scalar and pseudo

scalar) channels. It is worth noting that the values of R4,2
free are the same in all the

channels.

For the lattice data analysis, in practice, we first calculate the curvature of the

vector correlation function at τT = 1/2 from the subsequent differences of the vector

correlator at τT and τT = 1/2

∆H(τT ) =
GH(τT )−GH(1/2)

(τT − 1/2)2
. (3.43)

To get a renormalization independent quantity, with relation (3.37), the above equation

can be further written as follows

∆H(τT )

GH(1/2)
= R2,0

H

(

1 +
∞
∑

n=1

R2n+2,2n
H (τT − 1/2)2n

)

(3.44)

= R2,0
H

(

1 +R4,2
H (τT − 1/2)2 + · · ·

)

. (3.45)
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Figure 3.21. The curvatures of the correlation function in the Vii channel (left) and the PS

channel (right) versus τT at 1.46 Tc, 2.20 Tc and 2.93 Tc on our finest lattice with β = 7.793.

The filled symbols stand for curvatures of the measured correlators (“mes”) while the open

symbols denote the curvatures of the reconstructed correlators (“rec”, reconstructed from the

data at 0.73 Tc). The arrows label the values from massless free continuum theory at τT = 1/2.

We show the results of ∆H(τT )/GH (1/2) for the Vii channel in the left plot of Fig. 3.21.

For comparison we also show the results for the PS channel in the right plot of Fig. 3.21.

In both plots the filled symbols stand for the values obtained from measured correlators

at different temperatures while the open symbols denote the values of the correlators

at T > Tc reconstructed from the correlation function at 0.73 Tc. The arrows label the

value of ∆H(τT )/GH(1/2) from the massless free continuum theory (Eq. (3.41)). The

value of ∆H(τT )/GH(1/2) at τT = 1/2 gets closer to the free case with increasing

temperature in both Vii and PS channels. At 2.93 Tc this value in the PS channel is

closer to the free massless limit value than that in the Vii channel. This might be due to

the presence of a zero mode contribution at this temperature in the Vii channel, which

in turn can also be seen from the comparison of ∆H(τT )/GH(1/2) in Fig. 3.21 with

Gsub/Gsub
rec in Fig. 3.18.

In what follows we will concentrate on the Vii channel and suppress the label

H. We thus use the quadratic Ansatz, R2,0
(

1 +R4,2 (τT − 1/2)2
)

, in the interval

[(τT )min, 1/2] to fit the data of ∆(τT )/G(1/2) shown in the left plot of Fig. 3.21.

Increasing the lower limit of the fit range we eliminate the influence of higher order

corrections in a Taylor expansion of G(τT ) and get better estimates for the ratio of

thermal moments defined in Eq. (3.36). Results of these fits for R2,0 and R4,2 as a

function of (τT )min are shown in the left and right plot of Fig. 3.22, respectively. Since
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Figure 3.22. Ratios of the thermal moments in the Vii channel from 1283×48 lattice at 1.46 Tc.

The left plot shows G(2)/G(0) and the right one shows G(4)/G(2). “mes” denotes the values

from the measured correlators at 1.46 Tc while “rec” labels the values from the reconstructed

correlators at 1.46 Tc obtained from the correlation function at 0.73 Tc.

G(τT )/Grec(τT ) shown in Fig. 3.16 can be expanded as

G(τT )

Grec(τT )
=
G(0)

G
(0)
rec

(

1 +
(

R2,0 −R2,0
rec

)

(

τT − 1

2

)2

+ · · ·
)

, (3.46)

and Gsub(τT )/Gsub
rec (τT ) shown in Fig. 3.18 can be written as

Gsub(τT )

Gsub
rec (τT )

=
G(2)

G
(2)
rec

(

1 +
(

R4,2 −R4,2
rec

)

(

τT − 1

2

)2

+ · · ·
)

, (3.47)

then the relative magnitude of G(2)/G(0) (G(4)/G(2)) from the measured correlator and

the reconstructed correlator shown in Fig. 3.22 can be easily understood from Fig. 3.16

and Fig. 3.18.

A linear extrapolation of the results shown in Fig. 3.22 to τT = 1/2 can give the

best estimate for the ratio of the thermal moments. However, due to the statistical

errors on G(4)/G(2) being relatively large, it is impossible to further constrain the

fitting parameters shown in Table 3.1. Actually one could use a “cleaner” reference

correlator, i.e. the free correlator Gfree rather than the reconstructed correlator Grec.

As we have better knowledge of the free correlator Gfree and its thermal moments it

could be more practical to employ it at 2.93 Tc where presumably all the bound states

are gone and the spectral function is close to the non-interacting case. However, there

is still a big uncertainty of the quark mass to be used in the free theory. Thus it is more

stable to utilize this way for investigating spectral properties of the light mesons where

quark masses can be ignored [88, 89]. Nevertheless, we will provide the parameter we
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have obtained in Table 3.1 into the default models for the MEM analysis of the vector

channel at 1.46 Tc.

3.7 Spectral functions above Tc

One has to note that the comparison of the measured correlator with the reconstructed

correlator can only give a rough idea of the magnitude of any medium effects at a

certain temperature. To really explore the properties of the charmonium states, one

has to go to the spectral function level. Thus it is crucial to reconstruct the spectral

function from the correlators using MEM. In this section we will study the spectral

function at T > Tc. The basic settings of MEM are the same as what we mentioned at

the beginning of section 3.4, if without additional description.

3.7.1 Default model dependences

At temperatures above Tc, the MEM analysis becomes harder, due to the limited num-

ber of points in the temporal direction. As has been done at temperatures below Tc,

the default model dependence test is always the first thing we need to do. In principle

one should put as much physical information into default models as possible. This rule

leads to a very straightforward default model dependence test for the spectral functions

above Tc. That is to fully benefit from the two limits which we already know quite well:

the free lattice spectral function at very high temperature and the spectral function

obtained from MEM at a temperature below Tc. To put these pieces of information into

the default model, one might be able to check to which limit, free or confinement limit,

the output spectral function is closer. However, due to the fact that below Tc the spec-

tral function has a very sharp ground state peak and the quality of correlator data at

temperature above Tc is not sufficient, the MEM output basically reproduces the below

Tc spectral function with negligible changes. This inability of MEM is already known

from mock data test shown in Fig. 3.5. Thus in the following default model dependence

test we will not use the spectral function from below Tc as the default model but the

free lattice spectral functions with some additional resonance peaks and/or transport

peaks.

We first investigate the PS channel. The feature that there should not exist a zero

mode contribution at all temperatures in this channel restricts the choices of default

models. Hereby the policy to choose default models is: for the high frequency part, use

the large ω part of the free lattice spectral function normalized to the small distance

behavior of the correlation data; for the low frequency part, use the resonance peaks

with peak locations smaller, equal or larger to the peak location of the spectral functions

at temperatures below Tc. We show the default model dependence of the output spectral
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Figure 3.23. Default model dependences of spectral functions in the PS channel at tem-

peratures above Tc. “DM”s are the input default models (dotted lines) while “spf”s are the

corresponding MEM outputs (solid lines).

functions from MEM in Fig. 3.23 at the temperatures above Tc, i.e. 1.46 Tc (left),

2.20 Tc (middle) and 2.93 Tc (right). As before all the solid lines correspond to the

output spectral functions and their corresponding input default models are dashed

lines with the same colors. For all the three temperature analyses, “DM 1” is provided

by the normalized free lattice spectral function, “DM 2” is provided by the normalized

free lattice spectral function supplemented with a resonance peak with the same peak

location as the spectral function at T < Tc, “DM 3” is provided by the normalized free

lattice spectral function supplemented with a resonance peak whose peak location is

smaller than that of the spectral function at T < Tc and “DM 4” is the same as “DM

3” but with a resonance peak whose peak location is larger than that of the below Tc

spectral function. “DM 3” and “DM 4” may vary from different temperatures with a

relatively larger or smaller peak location/amplitude but the general feature mentioned

above does not change. “spf”s are the corresponding MEM outputs. At all the three

temperatures we find the output spectral functions are independent of the input default

models, considering how big the difference is between the output spectral function and

the input default model. At 1.46 Tc the location of the ground peak is shifted to higher

energy and the width becomes larger compared to the case at 0.73 Tc. We cannot make

a conclusive statement about the dissolution of ηc here since the broadening of the peak

and also the shift of the peak location might also be due to the melting of higher states

or the enhancement of the continuum, which cannot be identified by using current

techniques. When going to higher temperatures at 2.20 Tc the ground peak becomes
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Figure 3.24. Default model dependences (varying the transport peak) of spectral functions

in the Vii channel at temperatures above Tc. At each temperature the very large ω part of

the default model is fixed to the behavior of the free lattice spectral function. Upper panel:

σ(ω, T )/ω2 as a function of ω, Lower Panel: a blowup of plots in the upper panel in the very

low frequency region and plotted as σ(ω, T )/(ωT ) versus ω/T . “DM”s are the input default

models while “spf”s are the corresponding MEM outputs.

much broader and its location shifts to even higher energy, which indicates a larger

thermal modification. At 2.93 Tc we cannot really see a peak and the output spectral

functions are quite close to the free case. This could indicate all the PS states are melted

at this temperature.

Let’s now move to the vector channel. Here we do the MEM analysis on the cor-

relation function in the Vii (spatial components summed only) channel. It is more

complicated than the PS channel due to the presence of the zero mode contribution. In
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Figure 3.25. Default model dependences (varying the resonance part) of spectral functions in

the Vii channel at temperatures above Tc. The transport part of the default model is fixed in

each temperature same as that of “DM 1”s in Fig. 3.24. Upper panel: σ(ω, T )/ω2 as a function

of ω, Lower Panel: a blowup of plots in the upper panel in the very low frequency region but

plotted as σ(ω, T )/(ωT ) versus ω/T . “DM”s are the input default models while “spf”s are the

corresponding MEM outputs.

other words, the physical information concerned with a single quark and one quark pair

is all enclosed in the correlation function. Thus for the default model dependence test

we first fix the large ω behavior of the default model by using the normalized free lattice

spectral function and vary the information on the very low ω part, i.e. the transport

peak in Eq. (3.19). We show the result in Fig. 3.24. The upper panel of Fig. 3.24 shows

σ(ω, T )/ω2 as a function of ω in a large ω region while the lower panel of Fig. 3.24

shows σ(ω, T )/(ωT ) as a function of ω/T in the low frequency region. “DM”s are the
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input default models while “spf”s are the corresponding MEM outputs. At each tem-

perature the width of the transport peak of the default models are fixed. In particular,

the transport parts of “DM 1” in the MEM analysis at 1.46 Tc are parameterized as

DT = 0.49 and MD = 2.2 obtained from Table 3.1. Looking at the output spectral

functions at each temperature, we find the variation of the lower ω part of the default

model gives negligible effects to the intermediate ω part (resonance part) of the output

spectral functions. Concerning the temperature dependence of the resonance peak, the

upper panel of Fig. 3.24 shows that, already at 1.46 Tc, the ground state peak compared

to that at 0.73 Tc (see Fig. 3.13) becomes much broader and is shifted to higher energy.

When going to the higher temperature of 2.20 Tc one can hardly see a bump in the

interesting ω region. At our highest temperature available, i.e. 2.93 Tc, we find the large

ω part more or less resembles the free lattice spectral function and no peak structure

is observed. For the transport peak shown in the lower panel of Fig. 3.24, the output

is strongly independent on the input default models. Note only the amplitudes of the

transport peaks in the default models are changed in the current MEM analyses.

After studying the effects of variation of the transport peak in the default model on

the output spectral function in the intermediate ω (resonance peak) region in Fig. 3.24,

we now fix the very low frequency (transport peak) part of the default model and vary

the intermediate ω (resonance part) behavior of the default models. The default models

in the low frequency part are fixed to have the same low frequency behavior as “DM 1”

in Fig. 3.24 at each temperature. For the intermediate frequency part we use the same

policy as we did in the analysis of the PS channel. We test four different default models.

“DM 1” is the normalized free spectral function with a transport peak, “DM 2” is the

normalized free spectral function with a transport peak supplemented with a resonance

peak whose peak location is same as that of the spectral function at 0.73 Tc, “DM 3”

and “DM 4” are basically the same as “DM 2” but with a resonance peak whose peak

location is smaller and larger than that of the below Tc spectral function peak loca-

tion, respectively. We show the default models and their corresponding output spectral

functions (“spf”s) divided by ω2 as functions of ω in the upper panel of Fig. 3.25. At

T = 1.46 Tc there is a minor default model dependence of the output spectral func-

tions, but the trend is similar: the peak location is shifted to a location larger than the

peak location of the spectral function at 0.73 Tc and also the width becomes larger.

At 2.20 Tc the default model dependence is a little larger which should be due to the

smaller number of data points in the temporal direction and lower statistics. But still,

the outputs from MEM have unique differences from the input default models and they

all have a trend to resemble the free spectral functions. At 2.93 Tc we have only 9 points

in the analysis and together with the issue of the transport peak, the default model

dependence is considerably larger than that in the analysis at the other temperatures.
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Based on the results from 1.46 and 2.20 Tc we do not expect the peak location of the

resonance peak at 2.93 Tc shifted to smaller energies compared to the case at 0.73 Tc

and would rather expect that the spectral function at this temperature is much closer

to the spectral function in the non-interacting case. In the lower panel of Fig. 3.25 we

enlarge the very low frequency part of the upper panel in Fig. 3.25 and show σ(ω)/(ωT )

as a function of ω/T . Unlike the case in the lower panel of Fig. 3.24, the change of the

default model in the intermediate ω part (resonance part) has a relatively large effect

on the output in the low frequency region. Without the quantitative description of the

transport peak we can observe a trend that the width of the transport peak becomes

smaller with increasing temperature.

3.7.2 Systematic uncertainties and statistical errors

The systematic error includes the uncertainty from different lattice settings and also

the number of points as well as the default models used in the MEM analysis.

First we will study the lattice spacing dependence of the output spectral function

on our available lattices. We show the spectral function in the PS channel (left) and the

Vii channel (right) at temperatures below Tc from the lattices with a−1 = 18.974 GeV

(β = 7.793, 1283×96), a−1 = 12.864 GeV (β = 7.457, 1283×64) and a−1 = 6.432 GeV

(β = 6.872, 1283 × 32) in Fig. 3.26. The improvement of output spectral functions can

be truly seen with smaller lattice spacing. One can observe that with smaller lattice

spacing the lattice cutoff effects can be well separated from the physically interesting

frequency region. We find the width of the ground state peak becomes narrower with

decreasing lattice spacing. We also find that the second peak should be lattice or MEM

artifacts.

We always have to compare the spectral functions at T > Tc to those at T < Tc

to check the thermal modification. As the number of points at higher temperatures is

reduced, we need to study the dependence on the number of points used in the MEM

analysis at T < Tc, i.e. use the same number of points below and above Tc to check

whether there are deviations. We have studied the default model dependence before,

so here we restrict the default model to have the behavior of the free lattice spectral

function. At T = 0.73 Tc we select the data points in the temporal direction as to start

at τmin = 4 and be separated by a step length of ∆τ . For instance when ∆τ = 2 we

select data points of τ = 4, 6, 8, · · · , 48, in total 13 points. So the number of points

used with ∆τ = 2, 3, 4 at 0.73 Tc correspond to the number points used at 1.46 Tc,

2.20 Tc and 2.93 Tc, respectively. We show the results in Fig. 3.27. “DM” labels the

input default model and the other lines are the output spectral functions with different

values of ∆τ . For both the PS spectral function (left) and the Vii spectral function

(right), in the interesting frequency region we observe negligible dependences on the
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Figure 3.26. Output spectral functions from MEM in the PS (left) and the Vii (right) channels

at temperatures below Tc from three different lattices: 1283 × 32 with β = 6.872 (a−1 =

6.432 GeV) at 0.74 Tc, 128
3 × 64 with β = 7.457 (a−1 = 12.864 GeV) at 0.74 Tc and 1283 × 96

with β = 7.793 (a−1 = 18.974 GeV) at 0.73 Tc.
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Figure 3.27. Dependence of the output spectral function on the number of points used in the

MEM analysis at T = 0.73 Tc. The left plot is for the PS channel and the right one is for the Vii

channel. All the points included start at τmin = 4. ∆τ is the step size between the neighboring

data points selected. For instance, ∆τ = 4 means τ = 4, 8, 12, · · · , 48 are used. “DM” labels the

input default model and the other lines are the output spectral functions with different values

of ∆τ .

number of data points used.

To remove the discretization effects, we normally omit some data points at very
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small distances. However, it is not very certain that how many data points should be

omitted. Thus we check the dependence on τmin of the output spectral function. We vary

τmin to be 4, 7, 16, 24 and 36 at 0.73 Tc in the PS and Vii channels to see the effects.

The default models are fixed in each channel. They are free lattice spectral functions

such that G(τ = 4)/Gfree(τ = 4) = 1. The upper plot of Fig. 3.28 shows the results for

the PS channel while the lower one shows the results for the Vii channel. “DM” denotes

default model used. “spf 1”, “spf 2”, “spf 3”, “spf 4” and “spf 5” are the output spectral

functions from MEM corresponding to the analyses with τmin = 4, 7, 16, 24 and 36.

For both the PS and Vii channels we observe that the large ω (ω & 5 GeV) behavior

of the output spectral functions changes with τmin and in the low ω region (ω . 5

GeV) the peak location of the ground state peak stays unchanged even with τmin = 36.

Thus the τmin dependence of the spectral function in the PS and Vii channels in the

interesting frequency region is very small at T < Tc on our finest lattice.

We also investigate the default model (induced by the quark mass in the free lattice

spectral function) and the τmin dependence of the output spectral function in the PS

and Vii channels at T > Tc. At higher temperatures the number of points available in

the analysis is reduced and we have in total 32, 24 and 12 points at 1.46 Tc, 2.20 Tc

and 2.93 Tc, respectively. Thus we test the value of τmin = 4, 7, and 10 at 1.46 Tc and

τmin = 4, 6, and 7 at both 2.20 Tc and 2.93 Tc.

We first show τmin dependence of the output spectral function in the PS channel

at T = 1.46, 2.20 and 2.93 Tc. The results are shown in the upper plot of Fig 3.29.

As in the case of Fig. 3.28 the default models at each temperature are fixed such that

G(τ = 4, T )/Gfree(τ = 4) = 1. “spf”s are the output spectral functions from MEM

with different values of τmin. For the three temperatures above Tc the outputs have a

minor dependence on the value of τmin.

Due to the insensitivity of MEM on the very large ω behavior of the spectral func-

tion, as we observed from, e.g. the left panel of Fig. 3.13, the outputs always reproduce

the very large ω behavior of the input default models, which in our case normally is the

free lattice spectral function multiplied by a certain constant to reproduce the value of

G(τmin). However, we don’t really know the exact behavior of the large ω part. We thus

check the effects caused by using the free lattice spectral functions with different quark

masses in the default models. The different quark masses am have an effect on the

threshold and the structure of the free spectral function as discussed in section 2.3.2.

The results for the PS channel at T > Tc are shown in the lower panel of Fig. 3.29. Here

we test with free lattice spectral functions having am = 0.066 (“DM 1”), am = 0.04

(“DM 2”) and am = 0.02 (“DM 3”) such that G(τ = 4, T )/Gfree(τ = 4) = 1. At 1.46 Tc

the ground state peak structure is quite independent of the default models. At both

6am = 0.06 is the quark mass obtained from the running quark mass on the lattice (see Table 1.2).
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Figure 3.28. The τmin dependence of the output spectral functions at T = 0.73 Tc on our

finest lattice of 1283 × 96. The upper plot shows the results in the PS channel while the lower

one shows the result in the Vii channel. In each plot, the right panel is a blowup of the left

panel. The default models are the same in each plot, which is labeled by “DM”. “spf 1”, “spf

2”, “spf 3”, “spf 4” and “spf 5” are the output spectral functions from MEM with τmin =4, 7,

16, 24 and 36, respectively.
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Figure 3.29. The τmin (upper plot) and am (lower plot) dependences of the output spectral

functions in the PS channel at T > Tc.

2.20 Tc and 2.93 Tc the output spectral function starts to be non-vanishing at the point

where the default model starts to be non-zero, i.e. the rising side of the first bump of

the output spectral function changes with the default model while the decreasing side

has minor changes. Together with the default model test done in Fig. 3.23, the lower

panel of Fig. 3.29 indicates a small dependence of the output spectral function in the

PS channel at T > Tc on the am parameter of the free lattice spectral function.

We did the same exercise in the analysis for the Vii channel to check the effects

of τmin and am. The case of the Vii channel becomes more complicated due to the

presence of the transport contributions. We show the results for the dependence of the

output spectral function on τmin in Fig. 3.30. The upper panel shows σ(ω)/ω2 as a

function of ω at three available temperatures above Tc while the lower panel focuses

on the transport behavior of the spectral function in the low frequency region and
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Figure 3.30. The τmin dependence of the output spectral functions in the Vii channel at

T > Tc. The upper plot shows the behavior of σ(ω)/ω2 as a function of ω while the lower

plot shows the transport behavior of σ(ω)/(ωT ) as a function of ω/T which corresponds to the

divergent parts in the upper plot at the corresponding temperatures.

has σ(ω)/(ωT ) as function of ω/T . The default models (“DM”) are the same in the

whole frequency region at each temperature. “DM” is provided by the normalized free

lattice spectral function and an additional transport peak. “DM” is also the same as

“DM 1” in Fig. 3.24 at each temperature. As seen from the upper plot of Fig. 3.30,

at 1.46 Tc, from τmin = 4 to τmin = 7 and 10, the peak location of the ground peak

seems to move a little further to larger energy, however at both 2.20 Tc and 2.93 Tc the

output spectral functions show negligible changes due to the variation of τmin = 4, 6,

and 7. In the lower panel of Fig. 3.30 the very low frequency behavior of the spectral

function is shown. Note “DM” in the current frequency region are also the same at

each temperature. At all three temperatures the output transport peaks show minor
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Figure 3.31. The am dependence of the output spectral functions in the Vii channel at T > Tc.

The upper plot shows the behavior of σ(ω)/ω2 as a function of ω while the lower plot shows the

transport behavior of σ(ω)/(ωT ) as function of ω/T which corresponds to the divergent parts

in the upper plot at the corresponding temperatures.

dependences on τmin.

In Fig. 3.31 we show the dependence of the output spectral function in the Vii

channel on am at T > Tc. The upper panel of Fig. 3.31 shows the large ω behavior of

the spectral function and the lower panel highlights the transport peak. “DM 1” here is

the same as “DM 1” in Fig. 3.30. Unlike the case in the PS channel, the rising side of the

ground state peak starts to be non-zero following the trend the default model already

at 1.46 Tc and the amplitude of the ground state peak also changes with different values

of am. However, the peak location of the ground peak remains almost the same. At

2.20 Tc, the output spectral functions “spf 2” and “spf 3” from the default models “DM

2” (am = 0.04) and “DM 3” (am = 0.02) have a small bump structure other than “spf
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Figure 3.32. The statistical errors for the output spectral functions in the PS channel at all

available temperatures on our finest lattice with β = 7.793. The shaded areas are the errors of

the output spectral function. The mean values are the solid lines inside the shaded areas.

1”. At 2.93 Tc, “spf 1”, “spf 2” and “spf 3” have negligible differences when ω & 3 GeV.

As seen from the lower panel of Fig. 3.31, with decreasing am, the transport peak’s

amplitude becomes smaller and its width becomes larger at all the three temperatures.

At 1.46 Tc the change of the transport peak of “spf 1” is very small, and when going

to higher temperatures the deviations become larger, probably as a consequence of the

bigger differences of “spf”s in the frequency region of 1 . ω . 7 GeV.

After checking the systematic uncertainties we now analyze the statistical errors.

The statistical error is obtained from the Jackknife method. In this analysis we fix the

default model as “DM 1” in the PS and Vii channels at each temperature shown in the

above figures. Quite often statistical errors are given on σ(ω) over a certain ω region

in the spectral function plot [37–41], but it is not so straightforward to get a feeling

of how big the error is on the spectral function itself. Here we rather calculate the

Jackknife error on each point of the spectral function and show them in Fig. 3.32 for

the PS channel and in Fig. 3.33 for the Vii channel.

From Fig. 3.32 one can see that at 0.73 Tc the spectral function in the PS channel has

large uncertainties in the amplitude at the point which corresponds to the ground state

peak location in the mean spectral function. However, even at the lower end of the error
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Figure 3.33. The statistical errors for the output spectral functions in the Vii channel at all

available temperatures on our finest lattice with β = 7.793. The left plot is for the large ω region

and shows σ(ω)/ω2 as a function of ω, while the right plot is for the low frequency region and

shows σ(ω)/(ωT ) as a function of ω/T . The shaded areas are the errors of the output spectral

function. The mean values are the solid lines inside the shaded areas.

bar, the amplitude is still larger than the peak amplitudes at the higher temperatures

within the errors. The peak location of the ground state peak at 0.73 Tc might be shifted

to a lower energy of ω ≈ 3 GeV or to a higher energy at ω ≈ 3.6 GeV. In the latter

case, the peak location would have the same peak location as the spectral function at

1.46 Tc but with a much larger amplitude and smaller width. At 2.23 Tc there is hardly

a peak structure within the statistical errors. At 2.93 Tc the spectral function flattens.

Thus this picture and together with the systematic uncertainties studied suggest ηc is

“partly” melted at 1.46 Tc and dissolves at higher temperatures.

In the left plot of Fig. 3.33, we focus on the resonance part of the spectral function

in the Vii channel. One sees that the peak location of the spectral function at 0.73 Tc

does not have an overlap with the peak location of the spectral function at 1.46 Tc.

The amplitudes between these two differs a lot. At both 2.20 Tc and 2.93 Tc there are

hardly any peak structures and at 2.93 Tc the spectral function is flattened. Together

with the systematic uncertainty study we have done before, this picture indicates J/ψ

is already melted at 1.46 Tc.

The statistical uncertainties of the transport peaks are shown in the right plot of

Fig. 3.33. The amplitude of the transport peak at ω = 0 gives the value of the heavy

quark diffusion constant. The uncertainties of both, amplitudes and widths of the peak,

are relatively small. Recall Eq. (2.46) and with the quark number susceptibility from

Fig. 3.20, we get DT of 0.28± 0.12, 0.314± 0.065 and 0.358± 0.065 at 1.46 Tc, 2.20 Tc
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and 2.93 Tc, respectively. The result at 1.46 Tc is slightly smaller than the estimation

in Table 3.1. This indicates that the Ansatz used in section 3.6 might be too simple.

For a short summary of the spectral analysis on the fate of the bound states in the

PS and Vii channels, our results suggest that ηc starts to dissolve at 1.46 Tc and does

not exist when going to higher temperature at T = 2.20 Tc, and that J/ψ is already

melted at 1.46 Tc.



Chapter 4

Analysis of charmonium properties at non-zero

momentum

4.1 Screening mass and dispersion relation

Since at finite temperature the temporal extent is always restricted by 1/2T we also

compute the spatial correlation functions in the z direction. Here we plot the effective

mass meff(z) from the relation

G(z, T )

G(z + 1, T )
=

cosh
[

meff(z)(
Nz

2 − z)
]

cosh
[

meff(z)(
Nz

2 − z − 1)
] (4.1)

At finite temperature the Lorentz symmetry is lost due to the temporal direction

being distinguished as the direction of the four-velocity of the heat bath. Consequently,

unlike the zero temperature case where it depends on the Lorentz invariant scalar p2, at

finite temperature the spectral density will depend on temporal and spatial components

of p separately. At temperatures below Tc, however, the spectrum will still consist of

particle excitations, their dispersion relations might be more complicated and reflect

the breaking of Lorentzian invariance. The spectral density is assumed to have the form

σ(p0,p) = 2π θ(p0) δ
(

p20 − ω2(p, T )
)

, (4.2)

with

ω2(p, T ) = m2 + p2 +Π(p, T ), (4.3)

containing the temperature dependent vacuum polarization tensor Π(p, T ). Assuming

the temperature effects can be absorbed into a temperature dependent mass m(T ) and

a coefficient A(T ) which might also be temperature dependent and different from unity,

the dispersion relation can be written as

ω2(p, T ) ≃ m2(T ) +A2(T )p2. (4.4)

115
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Such an approximation might hold at least at small temperatures. Evaluating correla-

tion functions from the spectral function (4.2) at zero momentum and together with

relation (4.4) one finds the temporal correlator exponentially decays with the so-called

pole mass m(T )

G(τ,p = 0) ∼ exp (−m(T ) τ) , (4.5)

while the spatial correlator exponentially decays with the screening mass msc(T )

G(z,p⊥, p4 = 0) ∼ exp (−msc(T ) z) . (4.6)

with msc(T ) = m(T )/A(T ). At zero temperature A(T=0)=1 and the screening mass is

the same as the pole mass; temperature effects come into play and the screening mass

will differ from the pole mass when A(T ) 6= 1. At non-zero “momentum” (p⊥ || p4 6= 0),

the spatial correlator is described by Esc

G(z,p⊥, ωn) ∼ exp(−Escz), (4.7)

following the assumption made in relation (4.4) Esc reads

E2
sc = p2

⊥ +
ω2
n

A2
+m2

sc, (4.8)

where ωn = 2πnT are the Matsubara frequencies. It is worth noting that the above

relation is the continuum dispersion relation.

In the free limit the decay of the spatial correlator at large distances is dominated by

two times the lowest quark Matsubara frequency ω̃n = (2n+1)πT [], thus the screening

mass of a meson at non-vanishing momentum p⊥ mfree
H in the free limit can be written

as

mH =
√

m2
q + ω̃2

0 +
√

m2
q + ω̃2

0 + p2
⊥, (4.9)

By showing the dispersion relation at T < Tc compared with the relation (4.8) one

may be able to get a feeling of how large the pole mass differs from the screening mass.

Comparing the dispersion relation with the relation (4.9) could also shed some light on

to which degree the interacting system is close to a system of free quarks at T > Tc.

We first show the dispersion relation of the screening mass in the PS channel in

Fig. 4.1. The results are obtained from 1283 ×Nτ lattices at 0.74 Tc (Nτ = 64) and at

1.49 Tc (Nτ = 32) with a−1 = 12.864 GeV. “dir” denotes whether spatial (“dir x”) or

temporal (“dir τ”) directions are used. The lines denote the dispersion relation obtained

by fitting with an Ansatz of E2
sc(p) = ap2 + b. At 0.75 Tc, for the results from the spa-

tial directions, we have a good fit with parameters a=1.02±0.01 and b=9.530±0.013.

The applicability of the Ansatz ap2 + b indicates our lattice is very close to the con-

tinuum limit; for the results from the temporal direction, even though we only have

3 data points, at this temperature, the data points have the same behavior as that
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Figure 4.1. The dispersion relation of the screening mass in the PS channel obtained from

lattice with β = 7.457. In the figure, “dir” labels whether spatial (“dir x”) or temporal compo-

nents (“dir τ”) of (px, py, pt) were chosen. The lines denote the dispersion relation obtained by

fitting with the form of Eq. (4.8).

from the spatial direction. We also performed a χ2 fit and obtained a=1.01±0.03 and

b=9.539±0.033. The slope parameter a here is an analogy of A−2 in Eq. (4.8). The

proximity of a to 1 indicates the screening mass is a good approximation of the pole

mass at 0.74 Tc. When going to the higher temperature of 1.49 Tc, the data point from

the temporal direction jumps out of the fitting line of the results from spatial direc-

tions. Thus, the temporal direction is distinguished from the spatial direction and the

breaking of Lorentz symmetry is clearly observed at this temperature.

We then show the dispersion relation of the screening mass in the PS channel on

our finest lattice in the left plot of Fig. 4.2. The “momenta” here are chosen to be

non-vanishing in the spatial components. With increasing temperature the value of E2
sc

also increases as expected. In the very high temperature limit, E2
sc(p⊥) should behave

according to Eq. (4.9). However, as shown in the right plot of Fig. 4.2, the curvature

of the free case is quite similar to that of the T=0 case. Thus it is hardly possible to

tell at which temperature the correlator is closer to free from the investigation of the

dispersion relation.

4.2 Longitudinal and transverse correlation function

In Table 4.1, we list all the available momenta of the temporal correlation function

simulated on our lattice. As indicated in section 2.4, one expects distinct differences
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Figure 4.2. Left: The dispersion relation of the screening mass in the PS channel at 0.73 Tc,

1.46 Tc, 2.20 Tc and 2.93 Tc with lattice spacing a−1 = 18.974 GeV. The momenta are chosen

only from spatial directions. Right: The dispersion relation of the screening mass in the PS

channel in the free theory (Eq. 4.9) together with the case of T = 0.

pL/(2π) |p|L/(2π) Longitudinal Transverse

(0,0,0) 0 - -

(0,0,1) 1 V33 V11 & V22

(0,0,2) 2 V33 V11 & V22

(0,0,3) 3 V33 V11 & V22

(1,0,0) 1 V11 V22 & V33

(1,1,0)
√
2 - V33

(2,0,0) 2 V11 V22 & V33

(2,1,0)
√
5 - V33

(2,2,0) 2
√
2 - V33

Table 4.1. A list of the momenta p = (px, py, pz) of the temporal correlation function simulated

on our lattices. L is the spatial size of the lattice and can be read from Table 1.1. The longitudinal

and transverse components of the vector current, Vii = q̄γiq, are also listed in the third and

the fourth column, respectively.

between the longitudinal and the transverse correlation functions. In Fig. 4.3, we show

both the longitudinal and transverse correlators GL,T normalized by the averaged cor-

relation function GAV E = (GL + 2GT )/3 for momenta p̃ = |p|L/(2π) = 1, 2, 3. The

data are obtained from the lattice of 1283 × 48 with β = 7.793 at 1.46 Tc. We find

clear differences between the longitudinal and transverse correlators: the longitudinal

correlator is always larger than the transverse one. Both, the longitudinal and the trans-
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Figure 4.3. Longitudinal and transverse vector correlation functions normalized by the average

correlation function, GAVE(τ, T,p) = (GL(τ, T,p) + 2GT (τ, T,p))/3. The momenta are chosen

as p̃ = |p|L/(2π) = 1, 2, 3. The grey dot-dashed line labels unity in order to guide eye. The

data are obtained from a lattice of size 1283 × 48 with β = 7.793 at 1.46 Tc.

verse correlator, deviate from unity further with increasing momenta but in opposite

directions.

At the spectral function level, as predicted in Ref. [149] with non-vanishing mo-

menta the longitudinal vector spectral function σL(ω,p)/ω goes to zero at ω = 0 while

the transverse vector spectral function σT (ω,p)/ω has a non-zero value at ω = 0. It

would be very interesting to understand this feature at the spectral function level,

which connects to the transport properties of the heavy quark. The longitudinal and

transverse vector spectral function have been investigated very recently in Ref. [156],

whose authors found a contradiction between the small ω behavior of the transverse

vector spectral function from their lattice data and the prediction made in Ref. [149].

This controversial finding is still under scrutiny and requires further study.

4.3 The reconstructed correlators

Like the case in the zero momentum, we also construct the reconstructed correlator at

finite momentum through relation (2.53).

In Fig. 4.4, we show ratios of measured correlators to reconstructed correlators in

the PS channel at T > Tc on our finest lattice with spatial extent L = 1.33 fm. The

momenta are chosen from spatial direction only and p̃ = |p|L/(2π) = 1, 2, and 3.

We find G/Grec increases with increasing momentum at all temperatures. This finding
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Figure 4.4. The ratios of G(τ, T,p)/Grec(τ, T,p) versus τ at T > Tc varying p̃ = |p|L/(2π) =
1, 2 and 3 on our finest lattice with spatial extent L = 1.33 fm. The reconstructed correlators

Grec are evaluated from the measured lattice correlators at 0.73 Tc. The grey short-dashed line

labels unity in order to guide eye.
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Figure 4.5. The ratios of Gsub(τ, T,p)/Gsub
rec (τ, T,p) versus τ at T > Tc varying p̃ =

|p|L/(2π) = 1, 2, and 3 on our finest lattice with spatial extent L = 1.33 fm. The recon-

structed correlators Grec are evaluated from the measured lattice correlators at 0.73 Tc. The

grey short-dashed line labels unity in order to guide eye.

is qualitatively comparable to the results in Ref. [40, 152]. The different temperature

dependence of G/Grec in the zero momentum and non-zero momenta cases might be

due to different temperature dependent contributions from the frequency part below

the light cone in the spectral function. As these low frequency contributions lead to
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contributions to the correlator which are nearly constant or have a small curvature,

thus we plot midpoint subtracted ratios Gsub/Gsub
rec in the PS channel in Fig. 4.5 to

suppress these contributions. We find that the momentum dependences of Gsub/Gsub
rec

at each temperature above Tc are very similar. At T = 2.20 and 2.93 Tc, since the bound

states may already dissolve, it is more likely that different momentum dependences of

G/Grec seen in Fig. 4.4 are due to the contribution of the very low frequency part of the

spectral function. To make conclusive statements of this, one has to go to the spectral

function level, which needs further research.





Conclusion and outlook

In this thesis, we have investigated the properties of charmonium states at finite tem-

perature in quenched QCD on isotropic lattices. The standard Wilson plaquette action

for the gauge field and the non-perturbatively O(a) improved clover fermion action

for charm quarks are implemented in the simulation. In our investigations we used a

variety of different lattice spacings to control cut-off effects in the charmonium corre-

lators and spectral functions. In particular, our finest lattices have a very small lattice

spacing, i.e. a = 0.01 fm. Using the Maximum Entropy Method we have reconstructed

the spectral functions both at T < Tc and T > Tc. Since the temporal extent is a very

import ingredient in the spectral analysis, we measured charmonium correlators on our

finest lattices with a relative large size of 1283 × 96, 1283 × 48, 1283 × 32 and 1283 × 24

at 0.73 Tc, 1.46 Tc, 2.20 Tc and 2.93 Tc, respectively.

The MEM analyses of charmonium spectral functions have been done very carefully.

We utilized the improved integrand kernel to avoid the instability of MEM at very low

frequency. The number of points in the accessible frequency interval is set to 8000 in

order to give a relative continuous picture of the spectral function. We studied the

changes of the output spectral functions when using various default models both below

and above Tc. We also checked the dependence of the output spectral functions on

the number of data points used in the MEM analysis, in particular we compared the

spectral functions at T > Tc and T < Tc reconstructed by using the same number

of data points. We estimated statistical errors of the spectral functions as well. The

statistical errors are obtained using the Jackknife method and are calculated on every

point of the extracted spectral function.

The main physics results of this thesis are summarized as follows:

• At T < Tc, we found stable and reliable ground state peaks of both J/ψ and ηc,

whose peak locations correspond to their physical masses. At temperatures below

Tc, there are no zero mode contributions found in these two channels.

• At T > Tc in the pseudo scalar channel, we observed that the spectral function

in this channel at T = 1.46 Tc might have a small overlap with the one at T < Tc

within the statistical uncertainties. At both T = 2.20 Tc and T = 2.93 Tc, the
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spectral functions are distinct from that at T < Tc. Our analysis suggests that ηc

starts to dissolve at 1.46 Tc and does not exist when going to higher temperatures.

• At T > Tc in the vector channel, we observed that vector spectral functions at

T > Tc are always distinct from that at T < Tc. Our analysis suggests that

J/ψ is melted already at 1.46 Tc. We also identified the transport peak in the

vector channel at the spectral function level for the first time. As estimations

for the diffusion constant, we obtained DT to be 0.28 ± 0.12, 0.314 ± 0.065 and

0.358 ± 0.065 at 1.46 Tc, 2.20 Tc and 2.93 Tc, respectively.

Beside the main results we mentioned before, we found a very useful relation to

calculate the reconstructed correlator at T directly from the measured correlator at

lower temperature T ′ without knowing the spectral function at T ′. We introduced

variants of the Maximum Entropy Method to suppress the zero mode contribution. We

also introduced the extended Maximum Entropy Method, which is able to deal with

negative spectral functions, to the lattice QCD field for the first time.

There are also quite a lot of interesting things related to this work worth to do in

the near future. Some of them are listed as follows

1. Since the correlator data in the scalar and axial vector channels are relatively

noisier than that in the pseudo scalar and vector, we didn’t include the analysis

of these two channels in the current work. It is necessary to study them in details.

2. The ratios G/Grec are found to be close to unity at very small distances in all

channels, which indicates spectral functions at T > Tc and T < Tc are similar in

the very high frequency region. Thus, in the spectral function ∆σ extracted from

the difference G − Grec the high frequency part should be suppressed. ∆σ then

has a pronounced low frequency part and a high frequency part which is close

to zero (and might be negative). It would be interesting to apply the extended

Maximum Entropy method to the analysis of G−Grec.

3. The detailed study of the properties of charmonium moving with respect to the

heat bath frame is promising. It can provide hints on the transport properties of

the charm quark as well as the modification of the bound state due to the change

of the dispersion relation. The implementation of twisted boundary conditions

would be helpful to get arbitrary momenta in each direction.

4. Since the transport peak as well as the resonance peak is enclosed in the vector

correlator, it is not easy to disentangle these two contributions. The evaluation of

the heavy quark transport properties following a recent proposal [161, 162] itself

is very interesting and it can also help us to identify the transport peaks in our

MEM analysis.



5. With the advent of the LHC, one has in prospect to measure bottomonium states.

Working out the properties of bottomonium at finite temperature from the the-

oretical side is thus becoming of particular interest. However, to study this topic

on the lattice, it needs new sophisticated techniques or large computing time to

control the lattice cut-off effects due to the large mass of the bottom quark.

.
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Appendix A

The Euclidean Dirac γ matrices and the SU(N)

generators λ

A.1 Dirac matrices

In the Euclidean metric, the γ matrices are defined in terms of the Pauli matrices σ as

γi =

(

0 iσi

−iσi 0

)

γ0 =

(

12 0

0 −12

)

where the Pauli matrices are given by

σ1 =

(

0 1

1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0

0 −1

)

The γ matrices read explicitly

γ1 =













0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0













γ2 =













0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0













γ3 =













0 0 i 0

0 0 0 −i
−i 0 0 0

0 i 0 0













γ0 =













1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1













γ5 =













0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0













= γ1γ2γ3γ0

with {γµ, γν} = 2δµν and γ†µ = γµ.

The σ-matrix defined through σµν = 1
2 [γµ, γν ] are listed in the following
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128 A. The Euclidean Dirac γ matrices and the SU(N) generators λ

σ12 =













i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i













σ13 =













0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0













σ10 =













0 0 0 −i
0 0 −i 0

0 −i 0 0

−i 0 0 0













σ23 =













0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0













σ20 =













0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0













σ30 =













0 0 −i 0

0 0 0 i

−i 0 0 0

0 i 0 0













with σµµ = 0 and σµν = −σνµ.

A.2 SU(N) generators

The elements of Λ of the group SU(N) can be written as

Λ = exp

(

N2−1
∑

a=1

i Taω
a

)

, (A.1)

where ωa ∈ R. Ta are the traceless, hermitian generators, which are normalized as the

following,

Tr(TaTb) =
1

2
δab (A.2)

The generators are defined through the commutation relations and the corresponding

total anti-symmetric structure constants fabc ∈ R of SU(N)

[Ta, Tb] = i fabcTc, a, b, c ∈ [1, N2 − 1] (A.3)

For SU(3) the generators Ta can be expressed in terms of Gell-Mann matrices λa:

Ta = λa/2. The Gell-Mann matrices have the following representation

λ1 =







0 1 0

1 0 0

0 0 0






λ2 =







0 −i 0

i 0 0

0 0 0






λ3 =







1 0 0

0 −1 0

0 0 0






λ4 =







0 0 1

0 0 0

1 0 0







λ5 =







0 0 −i
0 0 0

i 0 0






λ6 =







0 0 0

0 0 1

0 1 0






λ7 =







0 0 0

0 0 −i
0 i 0






λ8 =

1√
3







1 0 0

0 1 0

0 0 −2









Appendix B

Memory optimization for the clover term

We rewrite the clover term A from Eq. (1.34)

A(n) = 1− ig
κ cSW
2

σµνFµν , (B.1)

with

σµν =
1

2
[γµ, γν ] , (B.2)

gFµν(n) = − i

8

∑

j

(

U j
µν(n)− U j†

µν(n)
)

. (B.3)

1
2σµνFµν can be further written as

1

2
σµνFµν =













W0 W1 W2 W3

W †
1 −W0 W †

3 −W2

W2 W3 W0 W1

W †
3 −W2 W †

1 −W0













(B.4)

with

W0 = −i F21, (B.5)

W1 = −i F32 + F31, (B.6)

W2 = −i F34, (B.7)

W3 = −i F14 + F42. (B.8)

The clover term A can be decomposed as

A(n) = L†(n)D(n)L(n) (B.9)

with L is a upper triangle matrix and D is a diagonal matrix. This decomposition

renders the manipulation with A−1 more efficient.
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Practically simulation is done in the double precision and due to the even-odd

preconditioning, the size of matrix A is 8 ·N2
c ·N2

µ ·Ñ3
σ ·Ñτ , for L it is 8 ·N2

c ·N2
µ ·Ñ3

σ ·Ñτ

and for D it is 8 ·Nc ·Nµ · Ñ3
σ · Ñτ . The Ñs with hats are the number of points in the

spatial/temporal directions on the local lattice, Nc is the number of colors and Nµ is

the number of spinors. To save the memory, we do not allocate memory for matrices A,

L and D on heap and just evaluate them by using the basic matrices W s when needed.

The matrices W s have a size of 16 ·N2
c ·Nµ ·Ñ3

σ ·Ñτ , thus in this way 25/(25+6) ≈ 80%

of the original memory consumed by the colver term is reduced.
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[12] See a recent review, A. Mócsy, Potential Models for Quarkonia, Eur. Phys. J. C61

(2009) 705, arXiv:0811.0337.

131
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[103] M. Lüscher, S. Sint, R. Sommer and H. Wittig, Non-perturbative determination

of the axial current normalization constant in O(a) improved lattice QCD, Nucl.

Phys. B491 (1997) 344, hep-lat/9611015.

[104] S. Sint and P. Weisz, Further one-loop results in O(a) improved lattice QCD,

Nucl. Phys. B (Procl. Suppl.) 63A-C (1998) 856, hep-lat/9709096.

[105] H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz and W. Söldner, Char-
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