
An Information-Driven Architecture
for Cognitive Systems Research

Sebastian Wrede

Dipl.-Inform. Sebastian Wrede
AG Angewandte Informatik
Technische Fakultät
Universität Bielefeld
email: swrede@techfak.uni-bielefeld.de

Abdruck der genehmigten Dissertation zur Erlangung
des akademischen Grades Doktor-Ingenieur (Dr.-Ing.).
Der Technischen Fakultät der Universität Bielefeld
am 09.07.2008 vorgelegt von Sebastian Wrede,
am 27.11.2008 verteidigt und genehmigt.

Gutachter:

Prof. Dr. Gerhard Sagerer, Universität Bielefeld
Assoc. Prof. Bruce A. Draper, Colorado State University
Prof. Dr. Christian Bauckhage, Universität Bonn

Prüfungsausschuss:

Prof. Dr. Helge Ritter, Universität Bielefeld
Dr. Robert Haschke, Universität Bielefeld

Gedruckt auf alterungsbeständigem Papier nach ISO 9706

An Information-Driven Architecture

for Cognitive Systems Research

Der Technischen Fakultät der Universität Bielefeld

zur Erlangung des Grades

Doktor-Ingenieur

vorgelegt von

Sebastian Wrede

Bielefeld – Juli 2008

Acknowledgments

Conducting research on a computer science topic and writinga thesis in a collaborative research
project where the thesis results are at the same time the basis for scientific innovation in the very same
project is a truly challenging experience - both for the author as well as its colleagues. Even though,
working in the VAMPIRE EU project was always fun. Consequently, I would first like to thank all the
people involved in this particular project for their commitment and cooperation.

Among all the people supporting me over my PhD years, I need tosingle out two persons that were
of particular importance. First of all, I would like to thankmy advisor Christian Bauckhage for his
inspiration and his ongoing support from the early days in the VAMPIRE project up to his final com-
ments on this thesis manuscript. Also, I am very grateful to my colleague Marc Hanheide for frequent
discussions about our ideas and approaches, for opening insights into image processing problems as
well as his patience while serving as a beta tester of the developed software. Not to mention that
working with Marc in different projects was always fun and atthe same time productive.

The development of a fundamental infrastructure approach as described in this thesis is of course not
possible in isolation. Hence, I would like to thank the members of the Applied Informatics at Bielefeld
University, which are not only great colleagues but also exceptional collaborators. However, as there
are too many, I cannot mention everyone. Nevertheless, I would still like to thank Jannik Fritsch for
initially applying the concepts in our mobile robotics scenarios and disseminating the ideas to the
robotics community as well as Ingo Lütkebohle and Jan Schaefer for their contributions and lots of
fruitful discussions which inspired and initiated many extensions of the resulting software framework.
Furthermore, I want to say “Dank je wel!” to Lisabeth van Iersel who always assisted in bureaucratic
paperwork and was willing to listen to any issue that I came across in these years.

Last, but not least, I want to express my gratitude to GerhardSagerer and Franz Kummert as they
provided me the opportunity to pursue a PhD in the Applied Informatics. In particular, I want to thank
Gerhard Sagerer for his ongoing support, his encouraging but thought-provoking impulses and his
friendly pressure. Of course, I also want to thank the additional members of the examination board,
Helge Ritter, Robert Haschke and Bruce Draper for their timeand willingness to review this thesis.

In addition, I will not forget to deeply appreciate the help and advice of Thorsten Gröger1 when it
came to the graphical illustration of complex circumstances – even when you were on holiday.

Finally, I want to express my gratitude to those who should infact be mentioned first: my family.
While my dad left far too early, I will always be grateful for his unquestionable trust in me. I thank
my mum for sharing the excitement about my research work until now and crossing fingers whenever
necessary as well as my sister for constantly motivating me even in doubtful situations. However,
without the everyday assistance and patience of Christina,her negotiation skills with regard to Clara
when I was staying up all night in my office, and the emotional support by both of you beloved ones,
I would never have managed to come this far.

1http://www.stilwechsel.de

i

Contents

1 Software Integration in Cognitive Systems - A First Encoun ter 3
1.1 Cognitive Systems for Human-Machine-Interaction 5
1.2 Viewpoints on Software Architectures for Integrated Cognitive Systems 7
1.3 Research Questions, Objectives and Approach 12
1.4 Outline and Contributions 13

I A Systems Perspective on a Cognitive Vision Project 15

2 The Project Perspective: The VAMPIRE Endeavour 17
2.1 Cognitive Vision - An Emerging Discipline 17

2.1.1 Modularity and Multiple Computation 18
2.1.2 Dynamic Coordination and Adaptation 19
2.1.3 From Sensorial to Symbolic Information 20

2.2 The VAMPIRE Project .. . 21
2.2.1 The Human-In-The-Loop .. . 22
2.2.2 The Visual Active Memory Concept 24

2.3 Summary . 29

3 The Collaborative Perspective 31
3.1 The Scenario-Driven Research Process 31
3.2 Software Development and Scenario-Driven Research 33

3.2.1 Software Integration as Process 34
3.3 The Social Complexity of Integration 36

3.3.1 Collaboration and Usability Aspects 37
3.3.2 Mutual Understanding and Agreement 38

3.4 Summary . 40

4 The Technological Perspective 41
4.1 The Consequences of Parallelism 41
4.2 Distributed Systems and Software Integration 43

4.2.1 The Role of Middleware .. 46
4.2.2 Requirements of Distributed Systems 46

4.3 The Relevance of Architecture 53
4.3.1 Modularity as a Key to Software Quality 54
4.3.2 Software Coupling and Granularity 55
4.3.3 Architectural Styles and Software Integration 56

4.4 Summary . 57

Bielefeld University

ii Contents

5 Requirements and Architectures for Integration of Cognit ive Systems 59

5.1 Synopsis of Requirements 59

5.1.1 Functional Aspects .. . 60

5.1.2 Non-Functional Aspects 64

5.1.3 Implementation-specific and Economic Aspects 67

5.2 Software Architectures and Middleware for Cognitive Systems 67

5.2.1 Domain-specific Architectures 68

5.2.2 General Middleware Architectures 72

5.3 Evaluation of Selected Approaches 75

5.3.1 Object-oriented Middleware 76

5.3.2 Cognitive Vision Middleware 79

5.3.3 Cognitive Robotics Middleware 84

5.4 Conclusion .. 88

II The Information-Driven Integration Approach 89

6 Adopting Event-Based System Models 91

6.1 The Manifesto of Information-Driven Integration 91

6.1.1 Strategic Aims .92

6.1.2 The Service-Oriented Viewpoint 93

6.1.3 The Event-Driven Perspective 94

6.1.4 Guide to the Reader .96

6.2 Document Model .. 97

6.2.1 Information-oriented Representation 98

6.2.2 XML Processing and Extensibility 101

6.2.3 Exploiting Reflection 102

6.3 Event Model .. 103

6.3.1 Event Metadata .104

6.3.2 Optimized Packaging of Binary Data 105

6.3.3 Domain Events . 106

6.4 Observation Model 107

6.4.1 A Hybrid Subscription Model 107

6.4.2 Transformation-based Event Filtering 109

6.5 Notification Model 114

6.5.1 Implicit Invocation 115

6.5.2 Visibility and Scopes 117

6.5.3 Dynamic Dispatch of Event Notifications 122

6.5.4 Port-based Optimization 123

6.6 Summary . 124

Sebastian Wrede

Contents iii

7 From Event-based to Cognitive Systems 125
7.1 Resource Model .. . 125

7.1.1 Services, Interfaces, and Components 126
7.1.2 Naming Resources .128
7.1.3 The Federated Naming Service 130

7.2 Interaction Model 130
7.2.1 Connectors and Service Interfaces 131
7.2.2 Event-based Realization 135
7.2.3 Adaptation Patterns 136

7.3 Memory Model .138
7.3.1 Concepts . 138
7.3.2 The ActiveMemory Architecture 146

7.4 Coordination Model 153
7.4.1 Formalizing Coordination with Petri Nets 154
7.4.2 Development, Analysis, and Execution 156

7.5 Domain Model .158
7.5.1 XML Type Libraries .159
7.5.2 Application Adapters for Computer Vision Tools 160
7.5.3 Application Specific Libraries 163

7.6 Summary . 164

III Experimental Evaluation 167

8 The VAMPIRE System 169
8.1 Augmented-Reality for Context-Aware Assistance 169

8.1.1 An Augmented-Reality Interface for Human-Machine Interaction 170
8.1.2 The Assistance Scenario 171

8.2 An Information-Driven Software Architecture 173
8.2.1 Functional View .174
8.2.2 Development View .179
8.2.3 Service View . 179
8.2.4 Physical View .184
8.2.5 Interaction Scenarios 185

8.3 System Evaluation 189
8.3.1 Performance Considerations 189
8.3.2 User Studies . 192

8.4 Conclusion .. 195

9 Interactive Cognitive Robots - A New Domain 197
9.1 The Cognitive Robot Companion 197

9.1.1 System Architecture .. . 199
9.1.2 A Face Memory for a Sociable Robot 200
9.1.3 Interaction Scenario 202

9.2 An Anthropomorphic Robot for HRI Research 204
9.3 A Control Architecture for Manual Intelligence 205
9.4 Summary . 207

Bielefeld University

iv Contents

IV Synopsis 209

10 Conclusion 211
10.1 Information-driven Integration in a Nutshell 211

10.1.1 Facilitating Collaborative Development 212
10.2 Insights and Observations 213

10.2.1 The Functional Viewpoint 213
10.2.2 The Collaborative Viewpoint 215
10.2.3 The Engineering Viewpoint 216

10.3 Some Answers and New Questions 217

Bibliography 219

List of Figures 235

Sebastian Wrede

Contents 1

Abstract

With computer science more and more leaving the traits of solitary algorithms and
distinct disciplines towards complex intelligent and integrated systems, challeng-
ing research questions are in reach to be explored in novel application scenarios.
Under the term “cognitive systems” and its subfields of “cognitive robotics” and
“cognitive vision”, research recently made a significant leap forward regarding
these challenges. Experimental cognitive systems research is thus characterized
by a flexible composition of different algorithms and the development of interdis-
ciplinary models for artificial cognition.
Integrated cognitive systems allow us to address scientificquestions that go far be-
yond what can be achieved with solitary algorithms. For example, such systems
include personal robot “companions” or assistance systemsthat are embedded in
the world and permit interaction with humans and their environment. Integrated
cognitive systems allow us to test hypothetical models of cognition in the “real”
world. Owing to the innate complexity of these systems, questions of software
integration and software architecture have become research activities in their own
right. Consequently, topics and methods known from software and systems engi-
neering need to be adopted for research on experimental cognitive systems.
This thesis addresses the questions how the complexity in software architectures
for cognitive systems can be reduced and how joint integration in large-scale re-
search projects can be facilitated. It approaches these questions from three view-
points: the functional, collaborative, and engineering viewpoint. Acknowledging
their importance leads to the design of a coherent and comprehensive architectural
concept that is introduced with this dissertation. This approach fuses paradigms
of event-driven and service-oriented architectures with domain-specific support
for cognitive systems, yielding a novel concept: information-driven integration.
The resulting software architecture facilitates joint development and integration
by providing on the one hand good support for the functional requirements of ex-
perimental cognitive systems and on the other hand by explicitly considering the
peculiarities of research environments as integration contexts.
The application of the information-driven integration architecture in various cog-
nitive systems projects is presented as strong evidence forthe appropriateness of
its design and implementation. This thesis bridges the gap between single algo-
rithms and their respective component developers on the oneside, and system
integration and evaluation on the other by means of a novel integrating approach
supporting the collaborative construction of experimental cognitive systems.

Bielefeld University

2 Contents

Sebastian Wrede

3

1. Software Integration in Cognitive
Systems - A First Encounter

In theory there is no difference between theory
and practice, but in practice there is.

– Anonymous

Cognitive Systems, Interaction, Robotics. The overarching vision of these three areas of current Eu-
ropean research [Eur05] is to develop artificial systems that are able to act within the real world,
either autonomously or in cooperation with humans. An exemplary class of applications within this
paradigm are autonomous service robots, see Figure 1.1 for an ancient imagination. These kind of
systems well-know from science-fiction literature are a dream of novelists and researchers since the
earliest days of fiction and computer science until now. Although today in the automotive industry
the number of deployed robot systems compared to employed human workers increased to the ratio
of one to ten [Gat07] and robots like the semi-autonomous NASA mars rovers Spirit and Opportu-
nity [MLB07] are capable of exploring the solar system, successful examples of cognitive systems
like the envisioned service robot that are deployed in the real world and sharing their environment
with humans are still rare.

Over the last two decades, some of the innate challenges in building autonomous systems stood the
test of time. Robust, while at the same time fast enough visual perception and understanding of the
robot’s environment or speech recognition in noisy surroundings are exemplary problems, researchers
are still faced with nowadays. The integration and coordination of the manifold behaviors of a com-
plex robot, the task of action selection or the adaptation ofsystem behavior to unknown situations
while assuring high reactivity are equally important research topics which are not fully explored yet
within the domains of cognitive systems research. To bridgethe gap between the vision of cognitive
systems and the existing instantiations of these concepts,scientists all around the world covering a
very broad range of disciplines are currently concerned with the development of systems that need
to combine a wide variety of new functionality into novel applications in an inherently interdisci-
plinary approach. Following the cognitive systems paradigms, recent research projects develop a
large number of innovative applications like autonomous vehicles [TMD+06] or pro-active driver as-
sistance systems [MGS+07], multimodal interaction systems that are capable of assisting people with
dementia by observing and guiding them [HBPM07] as well as surveillance systems, e.g., capable of
monitoring aircraft servicing operations at airports [TBF+06] - just to mention a few of them.

One of these recent endeavors to realize instances of such systems from the area of cognitive inter-
action technology and the inception for this thesis was the VAMPIRE project [VAM06], which has
been an international collaborative research project funded by the European Union (EU) on cognitive
computer vision. One of its primary aims was to construct an artificial cognitive system that is able to
provide context aware assistance through a head mounted display to a human user by understanding
and memorizing what the user sees and recognizing the actions he carries out in a natural environment.

Bielefeld University

4

Figure 1.1.: Early vision of a domestic service
robot [Wal05], acting autonomously
in a human-centered environment.

While a large part of the research conducted in
the VAMPIRE project has been conducted in aug-
mented reality, context awareness, computer vi-
sion, pattern recognition, symbolic reasoning, and
knowledge representation, an additional research
question was addressed to provide an avenue for
the further advancement of cognitive systems: it
is the question of finding architectural principles,
development methodologies, and software tech-
nologies for the integration and software devel-
opment process within interdisciplinary cognitive
systems projects that shall enable researchers of
different background to jointly work on an large-
scale software-intensive research systems.

The IEEE Standard Glossary of Software Engi-
neering Terminology [IEE90] defines integration
as “the process of combining software compo-
nents, hardware components, or both, into an
overall system”. Although software integration
has been an important topic for business software
vendors and computer science research over the
last decades and has been studied at different levels of abstraction, it is a rather new trend that software
development and integration within the field of autonomous intelligent systems is explicitly focused
by the scientific community, e.g., in robotics with the series of Software Development and Integra-
tion (SDIR) [Bru05, Bru07a, Bru07b, Bru08a] workshops. Based onresearch mainly conducted in
the VAMPIRE project, this thesis takes up on this emerging topic, addressing the specific challenges
of Software Integration in collaborative interdisciplinary research projects on cognitive systems and
presenting a coherent approach to the software integrationof functional modules in a consistent archi-
tectural approach for this domain. The implicit question that needs to be addressed is how to manage
the ever growingcomplexityresulting from advanced application scenarios and yet moreintegrated
functionality in the context of experimental research thatis otherwise not explicitly considering soft-
ware architecture and software integration. The intricatearchitectural and technological challenges
in this task and their specifics with regard to collaborationin large-scale cognitive systems research
projects such as VAMPIRE or COGNIRON [Cog06] will be analyzed from three distinct viewpoints:
a functional, collaborativeandarchitecturalperspective.

The resultingInformation-Driven Integration (IDI) architecture that is presented in this dissertation
carefully considers the insights gained during the conducted requirement analysis. Conceptually, the
IDI approach exploits the content of exchanged high-level information in the software architecture
of cognitive systems for effecting coordinated interactions between functional modules. It thereby
raises the level of abstraction for the design and development of complex distributed software archi-
tectures compared to generic middleware, and provides functional services for collaborative software
development in joint research projects on experimental cognitive systems. Its design adopts principles
of service-oriented and event-driven architectures adopting current enterprise integration technolo-
gies like group communication middleware, state-of-the-art database and XML technologies as well
as formal methods for describing discrete event-based systems. The introduced architectural models
allow for a modular development of loosely-coupled cognitive systems architectures.

Sebastian Wrede

1. Software Integration in Cognitive Systems - A First Encounter 5

Research on the IDI approach was conducted coevolutionary throughout the collaborative develop-
ment process in the VAMPIRE project. A central quality of information-driven integration is that it
facilitates an efficient software development process in interdisciplinary cognitive systems research,
which permits researchers to develop complex distributed software architectures for real-world cogni-
tive systems. The necessary requirements analysis, the developed integration models and the resulting
software architecture are the main contributions of this thesis. While the proposed architecture has
already been used successfully in several experimental research projects aiming at real-world proto-
type systems, an emphasis will be put on a description of the assistance system the author developed
in close collaboration with the partners in the VAMPIRE project. This initial application served as an
iterative testbed and evaluation scenario for the developed architectural approach.

Because the scope of cognitive systems research is extremely broad, the following section introduces
the subset of cognitive systems, which are in the center of our current and our envisioned research.
While still being a broad area for research, cognitive systems aiming atCognitive Interaction Technol-
ogy (CIT) define the actual application context that is addressed by the presented approach. Having
introduced the integration domain, subsequently the threeperspectives on integration that contribute to
the innate complexity of software development and integration in cognitive systems research projects
will be introduced.

In the remainder, the research questions this thesis addresses as well as its objectives will be sum-
marize and a short overview of the followed technical approach will be given. To conclude this
introduction, the structure of this dissertation togetherwith its main contributions will be outlined.

1.1. Cognitive Systems for Human-Machine-Interaction

During the last decade, computer vision research has seen a change from brittle and narrow appli-
cations to more general and adaptive approaches. Starting out from early work of Christensen and
Crowley [CC97], the termCognitive Vision has been established [Ver04] subsequently to describe
approaches that try to combine achievements from artificialintelligence, computer perception, ma-
chine learning and robotics with the aim to build more robust, resilient and adaptive computer vision
systems.

Within this context, Christensen restricts the process of cognition to be ageneration of knowledge
on the basis of perception, reasoning, learning and prior models. As a consequence, a cognitive
vision system needs to be embodied [Ver08] in order to actively sense its environment and to interact
with its surrounding for knowledge acquisition [Chr03]. Embodiment provides the basis for situated
cognition [HW05], which permits a system to learn and act in the context of its environment. For
instance, a single cognitive activity may be embedded in a temporal stream of activities carried out
or supported by additional tools, systems or humans outsideof the considered system. Without the
possibility for physical embodied exploration, the ability to perceive the dynamical changes in the
environment and to communicate actively about events by interaction, learning can not take place in
a cognitive system.

Rather recently, e.g., in the current EU research roadmaps [Eur05], cognitive vision has been embed-
ded in the more general paradigm ofCognitive Systems. Cognitive systems conceptually extend to
other perceptual modalities such as haptic or auditory senses. According to that scheme, cognitive
vision systems can be seen asvisually-enabled cognitive systems.

Bielefeld University

6 1.1. Cognitive Systems for Human-Machine-Interaction

Humanoid
Robots

Entertainment
Systems

Assistance
Systems

Figure 1.2.: The Honda ASIMO humanoid robot [Yos04], the Sony Qrio [Gep04] entertainment robot and
an augmented reality assistance system [CTS07] are exemplary applications of state-of-the-art
cognitive systems technology operating in the real world.

While the general research agenda of cognitive systems extends to cognitive neuroscience, epistemol-
ogy, cybernetics and others, the work carried out by the author and his colleagues in the VAMPIRE
cognitive vision project and other cognitive systems projects like COGNIRON [Cog06] is targeted
at the construction of systems featuring advanced human-machine-interaction capabilities. The goal
is to assemble systems that make use of a complete loop from perception via cognitive processing
to re-action in the world rather than providing a formal theory about possible cognitive architec-
tures [Cas03]. Thus, our efforts on building systems with cognitive abilities are to a large extent
focused at the integration of an increased number of perceptual modalities and features to facilitate
interaction with humans. Examples for the use of sensorial information in such cognitive systems are
to exploit vision for human body tracking to allow interaction through gestures [SHH+08] or the anal-
ysis of human language for prosody information. On top of these cues, typically higher-level cognitive
functions aggregating information are added, e.g., a dialog system based on speech and gesture recog-
nition in order to communicate in a natural way with human interaction partners [LWS06, SHS07].

Cognitive interaction has various application domains ranging from assistance systems for engineers
or monitoring systems for elderly people that provide home-help displaying useful prompts or calling
care personnel [HBPM07] to interactive robots, that obviously need to perceive their environment
and interact or even collaborate with humans. Some examplesare shown in Figure 1.2. Due to the
ever growing set of cognitive abilities combined in these applications, the question of an effective
integration, which is the main topic of this thesis, is raised with increased priority. In order to find
answers to this question, let us now look more closely at the reasons for the intricacies cognitive
systems research may impose on system development.

Sebastian Wrede

1. Software Integration in Cognitive Systems - A First Encounter 7

1.2. Viewpoints on Software Architectures for Integrated
Cognitive Systems

While the benefits of a research approach explicitly addressing embodied cognitive systems as an
individual goal becomes nowadays more widely accepted and endorsed by current research pro-
grams [Eur05], the downside of aiming at these types of integrated systems is that they come with
significant costs. Practical experience shows that if an implementation of such software-intensive sys-
tems is actually carried out, scientists within project teams quickly face problems ofprogramming-in-
the-large[DK76].

With the ever increasing size and complexity of experimental cognitive systems, the design, specifica-
tion and evolution of the overall system structures become increasingly important. The need to handle
the complexity introduced by demanding scenarios that callfor richer functionality and more deeply
integrated systems in fact urges developers and scientiststo deal with these overall system structures.
Hence, talking about the software integration of artificialcognitive systems, inevitably poses ques-
tions of software architecture. For this reason and becausemany considerations within this thesis are
conducted from an architectural viewpoint, we need to definemore clearly what architecture means in
this context. A recent definition of this term, which was established within the ANSI/IEEE standard
2000-1471 that deals with the architectural description ofsoftware systems is as follows:

Definition 1.1 (Software Architecture) Software architecture is defined [. . .] as the fundamental
organization of a system, embodied in its components, theirrelationships to each other and the envi-
ronment, and the principles governing its design and evolution. [IEE00]

Davide Brugali1 raised at the workshop on SDIR-II at ICRA 2007 the metaphorical question why
it generally is so hard to build well-architected systems inthe domain of robotics resarch. Even if
we restrict our view to the software aspects of integration in cognitive systems, in the perspective
taken on in this thesis the answer is in the intricate interplay of domain-specific, project-specific and
engineering aspects as depicted in Figure 1.3, which makes this topic a research activity in its own
right. In order to give some first answers to the question of Davide Brugali, let us shortly introduce
these three viewpoints on the different sources of complexity that contribute to the overall challenge
of integration. Please note, that the analysis of the three perspectives will be confined in the first part
of this thesis, identifying requirements from the subsequently introduced tasks.

Functional Viewpoint

The envisioned overall behavior of a cognitive system emerges from a rich set of cognitive capabili-
ties, employing a variety of computational models, e.g., for perception, learning and classification or
for feedback and interaction assembled in a specific functional architecture. Goerick and Ceravola
describe this architectural level with the following definition we will adopt within this thesis:

Definition 1.2 (Functional Architecture) A functional architecture represents the constraints of a
hypothesis or model of the network of functional areas in thebrain that makes different modules or
components interact. [CG06]

1Prof. Davide Brugali is the chair of the IEEE RAS Technical Committee on Software Engineering in Robotics.

Bielefeld University

8 1.2. Viewpoints on Software Architectures for IntegratedCognitive Systems

Cognitive Systems

Software Engineering

Research Projects

Interdisciplinarity
Heterogeneity
Cooperativeness

Parallelism
Representation
Memorization
Adaptation Modularity

Descriptiveness
Analyzability
Agility

Figure 1.3.: Following a holistic approach, the challenges of software integration in the domain of artificial
cognitive systems research are analyzed from three distinct viewpoints.

An initial challenge that generally arises in software architectures for embodied cognitive systems
research already on the level of this functional architecture is to account for the inherentparallelism
of such systems. Components must be able to process new information that is provided by attached
sensors with low response time in order to quickly react to changes in the environment. The resulting
system must be able to adapt its behavior at least in a time scale that is appropriate to ensure system
safety and that is convenient for interaction partners. This concern and the processing power necessary
for handling high-volume datasets as well as complex processing operations often increases complex-
ity as it implies the distribution of processing load and theexchange of large amounts of data. This
manifests itself in a system architecture that is usually build on top of middleware technologies for
distributed systems. As these are in parts overly complex, their use sometimes imposes intricate us-
ability problems. However, as parallel processing is a corenecessity of nowadays cognitive systems,
large parts of the work presented in this thesis will addressthis problem.

Looking from a rather technological perspective, the offered services on the level of the functional
architecture not only differ in terms of their concrete function but are realized in component imple-
mentations of differing granularity and size. Component abstraction levels span from data processing
modules performing image segmentation to high-level modules for semantic reasoning, e.g., for sys-
tem self-awareness [Slo98]. Due to this variety an additional challenge at this level is the sheer amount
of different representationsthat range for example from image data to acquired semantic knowledge
implying inevitable challenges for handling interoperability issues.

Closely linked to the question of representation is the question of how tomemorizewhich is a prereq-
uisite for learning, adaptation and cognitive systems in general [Chr03]. Chapter 2.2.2 will elaborate
more on this, as memory functionalities have been one of the fundamental functional requirements
originating from the research paradigm followed in the VAMPIRE project.

In order to allow a cognitive systems functional architecture toadapt, e.g., to environmental changes,
the processes in a cognitive systems architecture need to beflexibly coordinated and orchestrated as
well as dynamically reconfigured, possibly across different abstraction layers. The coupling between
reactive behaviors and more deliberative cognitive functions thereby still pose challenging questions
of coordination and control as they were already introducedtwo decades ago by Brooks [Bro91].

Sebastian Wrede

1. Software Integration in Cognitive Systems - A First Encounter 9

Thinking about hybrid architectures in terms of the ongoingdebate between cognitivist and emergent
architectures [Ver08], it is still an open question how to combine cognitive functions following these
different paradigms. While the scientific community does not provide any single answer to these
problems, adaptation and coordination are central challenges in the software architectures of almost
any experimental cognitive systems.

Collaborative Viewpoint

The functional capabilities as well as their technologicalconsequences define the inevitablephysio-
logical complexityof the integration challenge in cognitive systems research. While this kind of com-
plexity is regularly recognized and considered by domain-specific software architectures, this thesis
additionally proposes to explicitly address the social complexity [Fia07] of this task, originating from
the integration context.

This context is comprised of the project stakeholders, the environment in terms of resources and
process models as well as the system developers themselves.For cognitive systems research, the
context is defined by the structure and management processesprevalent in research projects and the
involved people, e.g. scientists, students or even people from industry, their personal backgrounds
and motivations. Although software engineering research has proven that social aspects are critical
for the success [DL99] of software projects, the processes in research projects often simply neglect
these insights, even despite the fact that the challenges imposed by the domain and the context are not
easier at all than in regular business information systems.

Collaborative research projects on cognitive systems suchas VAMPIRE or COGNIRON are inher-
ently interdisciplinary and may involve a fairly large number of scientists from different domains.
While this interdisciplinarity is attributed to be a catalyzer for progress in many areas of cognitive
systems research, it poses additional questions for software development such as how to communicate
about system-level structures between the involved scientists. If a common software-intensive demon-
stration system is desired as a concrete outcome of a project, the involved team members therefore
need to develop a shared vocabulary and understanding of theproblem domain, which can become
much harder when people have very different scientific backgrounds.

From practical experience, this thesis assumes that the likeliness of performing a successful system
integration in the course of an interdisciplinary project is dramatically increasing, when the integration
model addresses this challenge explicitly, e.g., by introducing models, clear definitions and languages
for system-level entities that are easy to understand, formalize and match well their later real-world
implementation. As a concrete consequence, it must for instance be possible for all project members
to easily engage in communication about the system-level integration within a project meeting, about
representations and interactions of “their” modules within a system architecture.

This is especially important within this context as the situation in research projects concerning integra-
tion often exhibits similarities to theanarchicalsituation of enterprise software integration [Joh02],
which is characterized by only a limited amount ofcooperativeness. This may lead to less consulta-
tion and agreement between stakeholders and participants or at best as an oligarchical situation that is
present when researchers either employ or develop a certainset of standards for a given problem do-
main. Large parts of this thesis address this aspect and propose a framework that can deal with only a
limited amount of agreement between module developers and their corresponding software modules.

Bielefeld University

10 1.2. Viewpoints on Software Architectures for Integrated Cognitive Systems

Another challenge that arises from the interdisciplinary constitution of project teams can be the vary-
ing level of expertise and background knowledge even when merely computer scientists are involved.
We can safely assume that only a small number of the involved researchers will have the necessary
background knowledge and motivation to face the intricacies of low-level integration technologies
like sockets, marshaling or concurrent programming - just to name a few aspects. Therefore, the inte-
gration architecture needs to providesuitable abstractionson a level high enough to be usable for the
- according to Bill Gates [Gat07] - “average” programmer. Microsoft nowadays tries to address this
challenge with the recently released Microsoft Robotics Studio [Jac07] for the domain of robotics,
explicitly targeting for example the problems of concurrent programming by employing a completely
asynchronous process integration model.

Engineering Viewpoint

The engineering viewpoint subsumes a large number of functional and non-functional requirements
important for software and system engineering of experimental cognitive systems. A primary chal-
lenge is howmodularitycan be achieved in cognitive system instances and how largersubsystems can
be composed out of much simpler services.

This composability and further facts about modularity are critical for the overall utility of the approach
as will be explained later on in Chapter 3 particular for supporting cognitive system research. While
the functional architecture is aligned with the domain, this viewpoint additionally considers the chal-
lenges arising from the functional architecture’s realization in hard- and software components. Thus,
let us define the termSystem Architectureto distinguish this architectural level from the functional
level:

Definition 1.3 (System Architecture) A representation of a system in which there is a mapping of
functionality onto hardware and software components, a mapping of the software architecture onto
the hardware architecture, and human interaction with these components. [Car06]

Within this definition, the focus is set on the specification of hardware and software deployment, e.g.,
specifying the distribution of software components and processes to hardware nodes. Additionally
and particularly important for interactive cognitive systems is the description of use cases [Coc01]
by which humans shall use a system instance or interact with it. As the functionality of systems is
different, the system architectures are also typically rather special to each class or family of systems.

The resulting challenge is to raise the level ofdescriptivenessand to facilitate the modeling of different
attributes of the system architecture like structural composition or dynamic execution in a distributed
system. However, modularity and descriptiveness may reduce, but do not completely prevent failures
in system design and execution. For these reasons, functionality for analysisof the static and runtime
architecture of an IDI system must be provided. An exemplarytest could be whether a promoted
external interface of a component matches the referenced service interface type.

A different challenge is to facilitate anagile development process that, e.g, allows for easy testing
and incremental development of cognitive systems architectures. Even if some parts of the overall
architecture are still unfinished or need to be replaced, a corresponding simulation should in principle
be applicable.

Sebastian Wrede

1. Software Integration in Cognitive Systems - A First Encounter 11

The Integrative Viewpoint

 Integration

System

Functional
Architecture

AbstractionIn
sta

ntia
tio

n

 Integration

System

Functional
Architecture

AbstractionIn
sta

ntia
tio

n

Figure 1.4.: Evolution of the inte-
gration functionality.

While the aforementioned challenges for software architectures
supporting cognitive systems research provide already some
guidance for closer consideration, there are many more re-
quirements, e.g., originating from the scenarios and research
paradigms in the VAMPIRE project, that will be discussed in
the corresponding chapters for each of these perspectives.How-
ever, once acknowledging this triangular view on software in-
tegration, a new way of looking at software architecture is fol-
lowing.

This additional viewpoint on software architecture shall respect
all three previously introduced viewpoints and propose a level
of abstraction that is easily tractable for the developers and
stakeholders in its specific integration context.

The introduction of explicit componentinteraction patterns
may serve as an example for this. They reduce the complex-
ity of the interplay between the individual building blocksof
a cognitive system and thus increase the level of abstraction
used in integration. Capturing typical interactions in a small
number of reusable patterns is beneficial both for system as for
module developers and can play a similar role for system-level
integration as design patterns for developers of object-oriented
software [GHJV95]. Therefore, the following definition of an
Integration Architecture focuses on this level of abstraction
and summarizes the main architectural aspects that need to be
considered at this level of software architecture:

Definition 1.4 (Integration Architecture) An integration architecture deals with the structural com-
position of software components into a system instance. It provides design elements which bind
domain functionality provided by software components to artifacts of the integration architecture,
thereby exposing their services to other components. It provides design patterns for the composition
of design elements and establishes guidelines for the selection among design alternatives. It provides
functionality for physical distribution, communication,synchronization and coordination between de-
sign elements and functionality for data access within an architecture.

The motivation behind the notion of an integration architecture such as the one introduced in this
thesis is that it shall describe an approach making the development of functional architectures as pain-
free as possible under the constraints of the collaborativeviewpoint. Ceravola and Goerick [CG06]
argue that one important goal of research on software architectures in cognitive systems must be
to identify common concepts of cognitive function or necessary computational machinery with the
aim to increase the available knowledge on the architectural foundations these functions are based
upon. Figure 1.4 takes up this general idea and illustrates the increased condensed knowledge in the
fundamental architectural layers during system evolution. While the author of this thesis completely
agrees with the general idea of incrementally learning the right architectural abstractions from system
evolution, Figure 1.4 utilizes the rather different architectural viewpoints introduced previously.

Bielefeld University

12 1.3. Research Questions, Objectives and Approach

1.3. Research Questions, Objectives and Approach

The VAMPIRE EU project following a scenario-driven research approach offerred an excellently
suited testbed to investigate software integration in collaborative cognitive systems research. In the
course of the project, the ambition of this work evolved to find answers to the aforementioned chal-
lenges that are generally useful for experimental cognitive systems. In an incremental refinement
process the proposed information-driven integration model has subsequently been applied to several
other projects of different sizes from small student projects to large-scale integrated research projects.
Still, the fundamental research question that needs to be addressed by this work is the following:

What are architectural concepts and paradigms suitable for handling the innate com-
plexity of software development in cognitive systems research projects?

In order to find an answer to this very broad research hypothesis, it was necessary to focus on different
aspects of this task. Therefore, the following set of questions were chosen as more concrete guidelines
during the development of the proposed integration model:

Q1: What characterizes research projects in the cognitive systems research domain and what are
the requirements imposed on software integration?

Q2: What are the functional requirements that are generalizable and need to be addressed by an
integration architecture in the given domain?

Q3: What abstraction level needs to be chosen for the framework to be accepted by its interdisci-
plinary users?

Q4: Which selection of integration patterns and functionality is necessary for a successful integra-
tion of experimental cognitive systems?

Q5: What lessons can be learned from the application of information-driven integration approach
with regard to the development process of cognitive systemsin large-scale research projects?

In order to find answers to these questions, well-known concepts and novel techniques from the fields
distributed systems, (enterprise) software integration,artificial intelligence and software engineering,
e.g. requirement analysis, as well as the cognitive systemsdomain itself have to be taken into account.

To assess and investigate the requirements and challenges of integration in cognitive systems re-
search projects, the author actively participated in the collaborative construction of different integrated
demonstration systems as the one described in Chapter 2 and escorted the process of system archi-
tecture development from the very beginning. This actual participation in the iterative construction
procress has been very important for finding answers to some of the questions outlined above and for
the development of the three individual viewpoints on integration.

During the continuous integration of prototypical systemsin this and other projects, several developer
interviews with expert and rather novice users were carriedout. These experiences and the insights
from these discussion strongly influenced the design of the integration architecture.

The concept of information-driven integration is informedby ideas from event-driven and service-
oriented architectures. Further guidance for the realization of the approach resembles from object-
oriented software analysis and design, e.g., the differentdesign patterns, the implementation of the
framework is built upon. Data integration, coordination and the content-based routing of information
between components is realized by exploiting recent XML technologies, e.g., a native XML database

Sebastian Wrede

1. Software Integration in Cognitive Systems - A First Encounter 13

as the basis for the memory functionalities. In addition to that, the developed architecture is itself
based on other, rather low-level middleware for group communication and provides an easy-to-use
programming API as well as a set of tools that shall allow researchers to efficiently build and glue
together cognitive systems instances. The resulting toolkit provides the core-functionality of the pro-
posed architecture in terms of its services, libraries and programming interfaces for C++ and Java.

1.4. Outline and Contributions

Following up on the introduction, this thesis is coarsely composed of four subsequent parts as shown
in Figure 1.5. Part I (Chapter 2-5),A Systems Perspective on a Cognitive Systems Project, deals with
requirement identification and analysis, whereas Part II (Chapters 6 and 7),The Information-Driven
Integration Approachintroduces the conceptual design of the approach presentedin this thesis. Part
III (Chapters 8 and 9) presents its application and thus evaluation in actual research projects. To
commence this thesis, Part IV (Chapter 10),Synopsis, features a conclusion that summarizes and
highlights the insights gained.

Chapter 2 identifies generalizable requirments for software integration in cognitive systems from a
functional viewpoint with a a particular focus on the paradigms of the VAMPIRE project.

9. Interactive Cognitive Robots - A New Domain

4. The Technological Perspective

3. The Collaborative Perspective

Part I: A Systems Perspective on a Cognitive Vision Project

2. The Project Perspective: The VAMPIRE Endeavour

5. Requirements and Architectures for Integration of Cognitive Systems

Part III: Experimental Evaluation

8. The VAMPIRE System

Part II: The Information-Driven Integration Approach

10. Conclusion

Part IV: Synopsis

1. Software Integration in Cognitive Systems - A First Encounter

7. From Event-based to Cognitive Systems

6. Adopting Event-based System Models

Figure 1.5.: Structure of this thesis.

Chapter 3 highlights the particularities of con-
ducting integration in a collaborative and in-
terdisciplinary research project that aims at
real-world integrated systems and identifies
requirements resulting therefrom. Chapter 4
discusses a concise subset of high-level re-
quirements on distributed systems and soft-
ware architectures from a software engineer-
ing viewpoint already taking into account the
results from the previous chapters.

Chapter 5 reviews a qualified selection of re-
lated work in the area of software integra-
tion and integration architectures for cogni-
tive systems. This review is conducted based
on a small number of aspects that are com-
posed from the previously identified require-
ments. The subsequent selection among the
massive number of approaches is informed by
a brief overview of related fields of research
that face similar challenges in integration. Fi-
nally, three approaches are reviewed and as-
sessed according to their strength and weak-
nesses. The main contribution in the first part
of this thesis is the analysis of an EU project
such as VAMPIRE from a holistic perspective, not limited to an identification of functional and non-
functional requirements, but additionally considering the social complexity of this task in the require-
ments process.

Bielefeld University

14 1.4. Outline and Contributions

Part II presents the information-driven integration approach as the key contribution of this thesis.
Chapter 6 introduces the core models of the integration approach and describes how the paradigms
of event-driven architectures were adopted for information-driven integration. Chapter 7 extends on
these domain independent models towards features for the integration of eperimental cognitive sys-
tems with a particular focus on the memory, domain and coordination models that address central
functional requirements of the VAMPIRE project.

The role of Part III is to evaluate the developed software architecture and the introduced concepts in
a system context. It starts with Chapter 8, focusing at the application of the information-driven inte-
gration approach in the VAMPIRE EU project in order to show that the proposed models were useful
in a real-world project. The actual integration of the augmented-reality assistance system [WHWS06]
and in particular the application of the memory and coordination models of the IDI approach are
explained. The memory and coordination models represent fundamental functional building blocks
within the presented assistance scenario and are thus contributions of this thesis with regard to the
VAMPIRE project. A brief technical performance evaluationdemonstrates the utility of the realized
software architecture for the integration of cognitive systems. In addition to this, a system evalua-
tion with naive users is a contribution, which demonstratesthat it was possible to test the assistance
system developed with the presented approach in a real-world context. In order to emphasize that
information-driven integration is a more general concept,Chapter 9 briefly highlights the application
of the introduced approach in the domain of cognitive robotics. Despite the mentioned contributions, a
main matter of Part III is to highlight how the introduced IDImodels ease the integration of real-world
cognitive system instances.

Part IV represents the synopsis of this thesis. Chapter 10 puts the introduced models into the context of
the overall integration approach and shortly reports on theexperiences and lessons learned both from
a system engineers view as also from the component developers perspective. This thesis ends with
a an outlook envisioning possible further research directions in software architectures for supporting
experimental cognitive systems research.

Sebastian Wrede

15

Part I.

A Systems Perspective on a
Cognitive Vision Project

Research on real-world cognitive systems is a broad and technically challenging area spanning a num-
ber of different research disciplines. Within the following Part I, a catalogue is compiled consisting of
generalizable aspects that are required across many instances of such systems. This analysis is carried
out primarily from the viewpoint of software engineering with the aim to gather requirements that are
essential for an efficient collaborative construction of experimental cognitive systems.

This requirements identification process is guided by the idea to analyze the overall integration chal-
lenge from three distinct but intertwined perspectives. Starting with an analysis of the envisioned sce-
narios in the VAMPIRE EU project in Chapter 2, architecturalconsequences are derived which lead
to functional aspects that need to be supported in an integration environment for real-world cognitive
systems. Implications from the specific integration context, which is set by collaborative research
projects, are discussed in Chapter 3. The requirements identified until then guide the subsequent dis-
cussion of the resulting architectural and technological challenges in Chapter 4.

To commence this part, the identified set of requirements will be analyzed and clustered in a smaller
number of coarse-grained aspects in Chapter 5, which a versatile integration architecture for cognitive
system must consider in the first place. These aspects provide an avenue for the selection and assess-
ment of related work and shall serve as a guideline for the conceptual development of the integration
approach described subsequently.

At the end of Part I, the interested reader should be aware of the architectural backgrounds considered
as important for software integration in cognitive systemsresearch projects from the perspective taken
on in this thesis and thus the motivations that guided the development process for the approach to be
introduced in Part II.

Bielefeld University

17

2. The Project Perspective: The VAMPIRE
Endeavour

The aim of this chapter is to gain a deeper understanding of the challenges for software integration in
complex cognitive systems with a particular focus on the specific challenge in the VAMPIRE project
in order to approach the right targets. Within software engineering, a common property of a require-
ment is that it shall be clearly testable in terms of functions, usability tests, metrics or performance
numbers [PB04]. For the sake of clarity and to not restrict the possible solution space in preface,
the requirements term is used more liberally in the following, because many properties for an envi-
sioned software integration architecture are better described here on a high level of abstraction than in
elaborated requirement specifications.

In the following, an architecture-driven problem decomposition and requirement analysis is presented
that incorporates the knowledge and insights gained in the course of the VAMPIRE project as well
as subsequent collaborative research projects. Instead ofsimply enumerating all the “-ilities”, which
are indeed important for a software integration approach, like flexibility, adaptivity, etc. the identified
requirements shall be explained in their systemic context.

As an initial step, the primary concepts ofCognitive Vision Systemsare introduced and analyzed to
bind and confine the problem space. Adding up on that, the mainresearch themes of the VAMPIRE
cognitive vision project, which are important from a system’s perspective will be outlined. Particu-
larly, the functional requirements originating from the very characteristics of theHuman-in-the-Loop
paradigm and the fundamental research hypothesis that aVisual Active Memory(VAM) is instrumental
in artificial visual cognition will be examined for their implications on architectural properties.

2.1. Cognitive Vision - An Emerging Discipline

For almost fifty years now, computer vision researchers are striving to make “computers see”. Start-
ing as a sub-field of artificial intelligence (AI), computer vision emerged as a discipline in its own
right. Over the last decades, innovations in vision research shifted the possible space of applications
gradually from laboratory environments, e.g., the famous “Blocksworld” scenario, to more realistic
settings. Nowadays, vision systems are frequently used forvarying tasks, e.g., active tracking of hu-
mans [CRTT97], or in machine vision for all sorts of automatic visual inspection [Ver91], to increase
product quality and allow for an online failure detection.

While these innovations and applications of computer vision were major developments and paved the
way towards further research, they were still rather focused on narrow application scenarios or limited
to a specific functionality. In contrast to vision research,AI was in general concerned with rather
deliberative and symbolic models of human cognition with anequally limited scope of applicability
in the real world [Ver08].

Bielefeld University

18 2.1. Cognitive Vision - An Emerging Discipline

With the advent of cognitive computer vision as a new paradigm emerging in the 1990s, AI and com-
puter vision remarried to a certain extent [Neu04] in order to tackle more ambitious targets in the real
world. Consequently, the EU started a new research programme about cognitive computer vision in
the year 2000 [Eur01]. To improve the robustness and adaptivity of artificial vision systems, the design
of resulting systems is often inspired by findings in biology, cognitive science, and psychology. Ac-
cording to Granlund [Gra05] a Cognitive Vision System (CVS)can “perceive and learn information
in an interaction with the environment and generate appropriate, robust actions or symbolic commu-
nication [...]”, which can be treated as visually-enabled cognitive systems. A cognitivevisionsystem
therefore shares many of its high-level requirements with other types of cognitive systems, making
the resulting catalogue largely applicable also for integration architectures, e.g., from the domain of
cognitive robotics.

2.1.1. Modularity and Multiple Computation

A basic assumption behind our approach to realize cognitivevision systems is to model the abilities of
such artificial machines through the orchestration of highly interconnected processing modules. Fol-
lowing, for instance, Minsky’sSociety-of-Mind[Min86] theory, the underlying hypothesis of many
cognitive models is that the mind is made up of a possibly large number of interacting cognitive agents
with varying specificity. Rather than entering into a debateabout the subtleties of philosophical, psy-
chological or biological viewpoints on the emergence of cognition, the essence from an architectural
viewpoint here is the question of decomposition. As decomposition usually breaks down a larger
problem into smaller pieces in many iterations, we can safely infer that the result will be a larger
number of cognitive processes that will finally be implemented in software modules thereby posing
questions of softwaremodularity.

While aspects of modularity in software architectures as defined by Meyer [Mey97] extend over sev-
eral dimensions, discussed in greater detail in Chapter 4, the fundamental requirement an integration
architecture must fulfill on the functional level of cognitive systems is to support the modular decom-
position of a larger problem, which can be summarized as follows:

Requirement 2.1: Modular DecompositionAn architecture yields modular decomposability when it facili-
tates the comprehensible decomposition of a problem into a smaller number of easier subproblems that are still
manageable by the integration architecture. In order to satisfy this constraint, the resulting partitioning should
allow for independent, parallel development and interconnection through a structure as simple as possible.

Following up on modularity and inspired by biological findings, the principle of multiple computa-
tions [Cru03] is applied for the modeling of processing in a CVS. Hence, a possibly large number
of cognitive processes are generally executed in parallel and compute partly redundant multi-modal
information, “playing around” with the information contained in the system. More technically speak-
ing, for instance, several feature extraction or recognition processes are applied in parallel computing
the same information. Following this concept in an artificial system shall not only lead to an increased
performance if computation of complex input data is partitioned, but also to a higher robustness within
the overall system by exploiting a larger degree of redundancy. Acknowledging this, let us note the
subsequent requirement considering parallelism:

Requirement 2.2: ParallelismAn architecture must permit to execute multiple computations and parallelize
the processing of decomposed modules, e.g., by using multiple processing units on a single physical computer
system or by distributing the computations over a set of several networked processors or computers.

Sebastian Wrede

2. The Project Perspective: The VAMPIRE Endeavour 19

Embodiment Environments

Cognitive Processing

COGNITIVE
SYSTEM

Figure 2.1.: Embodied cognitive systems integrate numerous processes for multi-modal perception and pro-
duction in order to interact with their environment in an adaptive manner. They aim at support-
ing humans, e.g. in performing everyday tasks or decision making.

As soon as parallel processing is envisioned, at least in technical architectures this raises important
questions of concurrency and synchronization, which will be discussed from a technological view-
point in Chapter 4.

2.1.2. Dynamic Coordination and Adaptation

In addition to these purely technological considerations,the overarching question how an efficient co-
ordination between the various modules in a cognitive system can be achieved is an example for a re-
quirement that can not be cleanly assigned to a single perspective. Here, technological and functional
viewpoints mix up and are not fully orthogonal. For instance, features of the integration environment
may limit the possibilities how behavioral change can be effected.

Aiming at cognitive systems that are embedded in the real world as illustrated in Figure 2.1, the inte-
gration architecture must allow, e.g., coordinated deliberative and reactive behaviors. Let us consider
an anthropomorphic robot as an example, cf. Chapter 9. Such asystem must coordinate actions it
undertakes to achieve its designated objective such as taking a cup, with the reactions forced on it by
the environment, for instance, human actions that could interfere with the planned grasping sequence.
Thus, let us note the following requirement:

Requirement 2.3: CoordinationDynamic coordination is necessary in a technical architecture that exploits
parallelism and providies an avenue for managing the dynamic behaviors that can be executed in the system.
While the focus of sequencing is the mapping of serial behaviors to a synchronized series of system actions,
coordination goes beyond this and provides structures for executing complex behaviors and tasks that depend
on the runtime dynamics, for instance on the current perceptual state of the system or temporal aspects.

In contrast to many classical computer vision system architectures, where the processing and data flow
between the constituent modules is often pre-programmed and regularly follows a single architectural

Bielefeld University

20 2.1. Cognitive Vision - An Emerging Discipline

style like pipe-and-filter [SG96], system architectures ofCVS reveal a richer set of architectural styles
that are employed to build hybrid architectures combining data-driven bottom up with goal-directed
and knowledge-based top-down processing. It can even be necessary to connect different processes at
runtime, therefore yielding a fully dynamic system architecture, for instance for the ongoing learning
of new perception-action mappings, which can be summarizedas follows:

Requirement 2.4: Flexible OrchestrationInstead of predefined feed-forward processing chains, a CVSuses
multiple sensors and recognition pathways to gather information about its environmental context. In order to
build architectures for such systems, flexible means of managing the interconnection between different cognitive
processes are required, for instance to realize hybrid architectures that allow for sensory bottom-up as well as
actuatory top-down processing.

2.1.3. From Sensorial to Symbolic Information

A classical cognitive computer vision system consists of multiple levels of perceptual processing,
thereby incrementally increasing the contingent of semantic information. While a multitude of meth-
ods and approaches for visual scene understanding exists, the fundamental requirement of computer
vision research is that the development of corresponding algorithms by providing reusable datatypes
and fundamental operations in the form of a library or prototyping environments must be supported.

Requirement 2.5: Computer Vision SupportModular development of image processing algorithms must be
supported in order to foster reuse and the prototyping of novel approaches. It must additionally consider their
integration as processing modules in a larger system and provide common computer vision functions.

As indicated in Figure 2.1, an experimental CVS is designed for acting in the real world and is thus
usually faced with a large set of high-dimensional input signals. In order to further process these
high-volume datasets, abstraction processes that extractrelevant information from the input data are
necessary. Although there is ongoing debate whether and when to generate symbolic descriptions of
the relevant information in the input space, a drastic compression of the input data is needed, e.g.,
by the generation of abstract models for categorization. These models can for instance be beneficial
to deal with missing information or to introduce context within the symbolic domain. Furthermore,
symbolic descriptions are the basic means of communicationabout the perceived entities or events and
can be used to interact with other systems or humans [Gra05].From a system’s perspective, this calls
for the possibility to exchange these descriptions in extensible representations between the different
cognitive modules.

Requirement 2.6: Extensible RepresentationsWithin every artificial cognitive system processes exchange
information and work on representations of this data. As soon as learning and adaptation is envisioned, for
instance to dynamically add new visual features that are extracted by perceptual modules, representations must
be able to dynamically evolve. Hence, data structures must represent information in an extensible way.

In order to provide a basis for a seamless communication withhumans improved interaction and com-
munication capabilities of cognitive systems are extremely important. A basis for these capabilities
and further advanced capabilities of cognitive system is thus some kind of a memory structure or a
federation of different memories, e.g. working and long-term memory [HZW07]. This is due to the
fact that memorization capabilities are prerequisites of learning and adaptation in cognitive beings,
particularly if learning processes are active over a longerperiod of time. In cognitive vision, memo-
ries manage information and knowledge from various knowledge sources like spatial and contextual

Sebastian Wrede

2. The Project Perspective: The VAMPIRE Endeavour 21

information, as well as scene and event descriptions. Hence, an important features of memory systems
is the ability to relate new information to already existinginformation [Gra05].

Additionally, accounting for the fact that memory is basically a limited resource, processes that dis-
tinguish relevant from irrelevant information and act uponthat decision like forgetting or compacting
are necessary [Chr03]. While it is still unclear how artificial memories for cognitive systems are
organized, many of the processes in a cognitive system architecture require some kind of memory.
Based on the assumption that memories share similarities, an integration architecture should support
the notion of a memory.

Requirement 2.7: MemoryAn integration architecture shall feature a working memorysupport for cognitive
processes, allowing them to store information in relation to already existing knowledge and recall this later in
different contexts. In order to allow processes to operate in a general manner on their memory content and
taking into account the evolving information in a system, a generic architectural solution to this problem needs
to be flexible. As soon as memorization comes into play, a corresponding way of removing outdated information
is necessary, too, because memory is a limited resource bothin biological systems and artificial systems.

2.2. The VAMPIRE Project

The aspect of memory in cognitive systems provides an excellent link to the VAMPIRE project. The
long-term vision of this project has been to proceed towardscognitive assistance systems that serve as
memory prosthetic devices and assist human users in everyday environments. The project was funded
within the above mentioned thematic priority on cognitive computer vision by the EU and contributes
to many of the aspects of a CVS introduced above. It was carried out from May 2002 to July 2005 and
involved five international academic partner institutionslocated in four different European countries1.
The participating scientists were attributed to be expertsin the fields of vision, visual learning, scene
analysis as well as augmented reality and human-computer-interaction.

In order to realize a small step into the direction of memory-prosthetic devices, the projects primary
aim was to conduct research on the concept ofVisual Active Memory Processes(VAMP), which
shall facilitate artificial intelligent systems to better understand what they see based on what they
have previously memorized. Due to the fact that these systems are embedded in the real world, it is
inevitable to acquire knowledge through exploration of theenvironment and its interaction with a hu-
man communication partner. Therefore, an important research question was how to couple the model
acquisition and recognition processes for an adaptive scene understanding, because it is impossible to
predict beforehand all possible sets of objects or actions asystem is exposed to over time, e.g., in an
office environment.

Picking up on the necessity of interaction capabilities in such systems, the second line of research
carried out in the project (yielding the second half of the VAMPIRE acronym) was concerned with the
development of advanced techniques for theInteractive REtrievalof previously acquired knowledge,
for instance about objects that have been recognized and memorized by the system. Conversely, it
was necessary to design a multi-modal interaction facilityfor the system itself, for instance to ask a
human user in case of ambiguities or to give attentional feedback thereby visualizing its internal state.

1The VAMPIRE project consortium included research groups from Graz University of Technology, Austria, the Univer-
sity of Surrey, United Kingdom, the University of Erlangen-Nuremberg and the Applied Computer Science as well
Neuroinformatics research groups at Bielefeld University, Germany.

Bielefeld University

22 2.2. The VAMPIRE Project

Figure 2.2.: Scenario: A user is sitting at a table wearing the system’s hardware interface. She is supported
by the system augmentations while acting on the table.

Within all the individual research activities carried out in the course of the project to realize the
necessary vision, reasoning and interaction processes, two overarching parts stand out that will be
briefly introduced in the following, because they are fundamental to the identification of functional and
architectural requirements for the proposed software integration architecture for a cognitive (vision)
system: the human-in-the-loop paradigm and the concept of avisual active memory.

2.2.1. The Human-In-The-Loop

Recent research on human-computer interaction (HCI) aims at increasingly natural interfaces between
human users and information systems. In contrast to virtualreality,Augmented Reality(AR) describes
an approach by which a user’s view is augmented with additional information while still being situ-
ated in the real world’s context. Looking at current augmented reality applications [ABB+01], the
interaction space is often extended to real-world environments; see [KLP04] for an example. AR is
thus well suited for interaction with a cognitive vision system. The representations of this information
range from text annotation and object highlighting to the projection of complex 3D objects.

As a consequence this also leads to novel applications for computer vision research as this external
environment in turn has to be perceived through available sensors. Within the primary scenario in the
VAMPIRE project, we extended these ideas and embedded the human user directly in the processing
loop of the system. During the project the termhuman-in-the-loop[BHW+05] has been coined for this
idea. Within the space of cognitive systems research, embodiement is often realized by robots acting
in the real-world. However, in the VAMPIRE project, the hypothesis was whether the human user can
actually represent a certain kind of embodiment for the system. For a realization of the human-in-
the-loop paradigm, not only a novel type of a cognitive computer vision software with advanced HCI
capabilites needed to be developed, but also a special type of hardware device was designed, the so
calledAugmented Reality-Gear(AR-gear).

Sebastian Wrede

2. The Project Perspective: The VAMPIRE Endeavour 23

The prototypical realization of this device, which has beenused by naive users in the evaluation
studies carried out in the course of the project is shown in Figure 2.2. The design guideline for the
development of this hardware platform for use in the VAMPIREscenarios was to set aside all external
sensors. Therefore, the AR-gear, which will be explained ingreater detail in Chapter 8 integrates all
sensors necessary to realize an interactive assistance system on a mobile platform.

The resulting tight coupling of the human in the processing loop yields a novel type of embodiment,
the so calledmediated embodiment[Han06]. Thereby the perception-action loop is closed, which
ultimately allows for the active perception necessary in a cognitive vision system. A concrete instanti-
ation of this concept depicts Figure 2.2, which shows a humanuser that acts in an office environment
wearing the AR-gear and an example of an augmentation of the users’ field of view.

The hypothesis that lead to the development of this setup is that it is beneficial for a cognitive assis-
tance system to follow the ego-vision paradigm [Han06] and to take on the perspective of the human
user. The resulting situation is characterized byshared attentionwhere the system sees what the hu-
man user sees and vice versa. Exploiting this situation, thesystem can pro-actively interpret situations
and assist the user in solving given tasks, e.g., by directing him through visual prompts to objects that
have been previously memorized. Conversely, the user may execute actions for the system like record-
ing different views of an object or is able to guide the systems’ attention, for instance by focusing on
interesting objects.

Let us consider one of the classical examples that guided thedevelopment of such an assistance
system: imagine your somewhat cluttered desk and yourself wearing an AR-gear that is actively
monitoring its environment. Coming to your desk, you drop your keys somewhere on the table. After
some time acting in the scene, you are placing a sheet of paperon top of the keys without explicity
noticing it. After a while you spent working in this environment, you may have forgotten about the
location of the keys. This is a situation where you ask your cognitive assistance system: “where did I
put my keys?” The system queries its visual history and guides you by viusal prompts to the place on
the table where it has seen the keys lastly. Utilizing an overlay image, you will quickly be reminded
of the position of your keys.

During the course of the project, we experienced the necessity to extend the possible ways of inter-
action. In order to facilitate a natural communication between the users and the system, for instance
for object learning, we enhanced the AR-gear by microphonesand a software component that allows
for multi-modal interaction, for instance through speech recognition or head gestures [HBS05]. The
combined functionality of the AR-gear and this communication component allows for different types
of interaction that directly contribute to the goals of VAMPIRE. Firstly, an interactive object learning
is made possible by focusing on a previously unknown object,recording views of it and finally la-
beling it through speech. Further interaction was realizedfor information retrieval and an envisioned
multi-user collaboration, see [SHWP07] for details.

While many properties of the envisioned scenario are functions that directly map to cognitive vision
processes, we can identify the following three requirements resembling from this experimental setting
that are critical for the design of a suitable integration architecture:

Requirement 2.8: Distributed ProcessingIn contrast to some procesess tightly coupled with the AR-gear
that need real-time performance, the higher level perceptual components in the VAMPIRE scenario may process
the recorded video images in soft real-time. Because of the limited resouces on the mobile platform, large parts
of the processing therfore need to be distributed to external processing nodes.

Bielefeld University

24 2.2. The VAMPIRE Project

Contextual Scene Analysis

Categorization

Content-based Retrieval

Object recognition Context classi!cationMotion analysis

Tracking / Segmentation Localization

Image Sequence Model Visualization

categorial memory

episodic memory

perceptual memory

pictoral memory

Figure 2.3.: Sketch of the conceptual architecture of the visual active memory and its processes.

Adding up on the necessity of distributed processing, an integration architecture needs to ensure a
sufficient throughput for the simultaneous distritibutionof visual input. Multicast communication
will be particularly important as a larger number of cognitive processes may request the video stream.

Requirement 2.9: ReactivityThe overall performance in terms of low latency of an underlying communica-
tion infrastructure usable within the VAMPIRE scenario needs shall lead to an update frequency of the presented
augmentations that is subjectively convenient for users ofthe system.

The perspective on the performance profile of an integrationarchitecture for a cognitive vision system
like VAMPIRE is that system evaluation with user studies is preferred over quantitative benchmarking
as reactivity and throughput need to be evaluated in a systemcontext as it is a product of overhead in
the integration architecture, its use by the cognitive processes and the compuations in the cognitive
processes themselves.

The AR-gear and the envisioned assistance scenarios allowed to focus efforts during the project and
helped to implement a scenario-driven research approach that facilitated in the development of a
common understanding among the project partners. Section 3.1 will describe the additional effects
that scenario-driven research has on the integration process and the developed software architecture.
In the following, we will describe and analyze the conceptual architecture within all development of
VAMPIRE has been subsumed.

2.2.2. The Visual Active Memory Concept

While the neuro-physiological architecture of the human brain or of even less complex vertebrates like
birds is still not fully understood, a number of studies support the idea that memory is a time dependant
process that yields at least a separation into short-term and long-term memory. According to Tulving’s
SPI-model[TM98], the long-term memory is structured in a hierarchy were the information of the
higher levels is partially grounded in the lower ones and newinformation is promoted from the lower
levels in a serial transformation to the higher levels of thememory. Within this model, memory access
is independent from the storage mechanisms and informationretrieval is not bound to the state of the
memory when the information was initially memorized.

Sebastian Wrede

2. The Project Perspective: The VAMPIRE Endeavour 25

Following these findings, the main research hypothesis of the VAMPIRE project assumes that a so
calledVisual Active Memory(VAM) provides an avenue for learning and development of cognitive
capabilities in vision systems. Conceptually, the idea behind this architecture is that it shall build up
and maintain a visual history of the world [VAM04]. The functional architecture of a VAM as it was
envisioned within the context of the VAMPIRE assistance systems is shown in Figure 2.3.

A VAM features a number of interconnected active processes and information that is shared between
these through memory structures. This information is for instance used for the ongoing learning of
new object and motion patterns for improved recognition andcategorization in a dynamic world.
According to the SPI-model, the memory itself is hierarchically structured into four different levels
of varying abstraction that are organized successively where (sub-)symbolic data, information and
knowledge is processed and stored. Furthermore, it must be possible within this hierarchical structure
to setup and resolve associative links between the contained elements through the active memory.

The processing components that provide the feature extraction, model acquisition, learning, fusion
and recognition functionalities that operate mainly on theactive memory are termedmemory pro-
cesses. The constituent processes generate, fuse and promote information within all layers of the
active memory. As a central element of the overall system that resembles to well-known architectural
styles such as Blackboard [SSRB00], the actice memory represents a generalizable function that shall
be directly supported by the integration architecture.

Requirement 2.10: Active Memory SupportAn architecture yields support for an active memory if it pro-
vides memory functionality that extends over local memory functions to a system-wide shared information
architecture that allows cognitive modules to store, recall, update and remove mutli-modal information. Fur-
thermore, an important concept is that cognitive modules are being aware of modifications in this data.

As Figure 2.3 suggests, the hierarchical decomposition of the layers within an active memory can
follow different discriminators. While several other aspects like the relevance or nature of an informa-
tion as well as selective activation of knowledge might be important, we focused within the VAMPIRE
systems firstly on two distinctive dimensions. The VAM concept explicitly addresses on the one hand
the reliability of a hypothesis and on the other hand the “age” of an element. By age we mean at least
two different things: the creation time of a memory element and the time when it has been lastly up-
dated. Concerning the reliability of information, we enforce the paradigm of no universal truth. This
assumption states there shall be no irrevocable fact storedin the active memory, because even hu-
man perception is often error-prone and assumed facts need to be revoked. Therefore, particularly in
the sensorial and perceptual layers of the memory architecture, the feature extraction and recognition
processes need to support this concept. The hypothesis concept [HBS04] supports another invariant
feature of a memory for cognitive system [Chr03]: the ability to actively forget irrelevant information.

Based on the various features that indicate the relevance ofan element, every memory layer con-
tains differently parametrizedforgettingprocesses that actively compact or remove memory elements,
which are no longer referenced, are unreliable or simply outdated. Forgetting is a necessary require-
ment due to the fact that information with low reliability orwhich is simply not interesting for the
system just increase the cognitive load without being useful and could lead to resource contention in
a technical realization of an active memory.

Requirement 2.11: ForgettingAs a function of the memory architecture itself, forgettingis not first and
foremost a responsibility of the cognitive modules. Forgetting processes designed for active memories must be
able to operate on common extensible representations regardless of the specific type of encoded information.

Bielefeld University

26 2.2. The VAMPIRE Project

Furthermore, certain types of information, e.g., previously observed elements can be overwritten by
novel events or repetitive experiences, thereby indirectly removing old ones. The chances to remember
certain experiences increase by consolidation of information, which creates strong encoding. This
consolidation sequence of information is a key concept for visual active memory architectures that
is directly reflected in the stack of different memory layers. In order to provide these functionalities
in an architectural model, the notion of a memory is vastly extended from a local storage to a shared
repository that pro-actively manages the acquired information and serves as a mediator for information
that has to be exchanged between different cognitive modules of a system.

In order to assess further functional requirements resulting from the visual active memory architecture
as we developed it in the course of the project, let us in the following have a closer look on the
different layers within the active memory, their corresponding typical memory processes and the types
of information involved.

Sensorial Layer The bottom-most layer of the visual active memory contains processes that mainly
acquire raw sensor data and provide this information in a suitable representation to modules,
which are located in higher levels of the architecture. Within the VAMPIRE project, the function
of this layer is to realize a kind of apictorial memory. This is due to the fact that the information
processed at this level is memorized for later analysis by higher-level memory processes, for
instance to subsequently train a face recognition classifier with a set of image patches that
was recorded earlier. Another example is to compensate for the unrestricted head motion and
the limited field of view in an ego-vision [Han06] system as itis the case for the VAMPIRE
augmented reality applications by exploiting mosaicing techniques [GHC+04].

Perceptual Layer The data-driven processes in this layer extract and track features on the data that
is provided by the memory content and the processes in the sensorial layer. They perform an
initial detection and recognition of basic percepts. A resulting perceptis commonly referred
to as a compact and partially invariant representation of a significant entity in the respective
sensing space [Gra05]. A visual percept for instance is a more compact representation of a
relevant feature, object, or any other relevant entity in the image space than its iconic image.
Within the VAMPIRE systems, the typical example for a percept has been an object hypothesis,
e.g., a cup that has been recognized in a frame of the input data as depicted by the class labels
in Figure 2.4(a). The results shown in Figure 2.4(b) additionally underline that the system has
to cope with false positive hypotheses as well. Therefore, an architecture for a visual active
memory needs to support a fusion of different input cues or use context to increase robustness
in an unconstrained setting like the VAMPIRE scenario wherethe user shall move his head
arbitrarily. The overall amount of data in the perceptual layer of the memory is still huge as for
example a set of object hypothesis in the present assistancesystems was typically generated at
frame rate, typically yielding in the production of about 30to 150 object hypothesis per second
depending on the perceptual context.

However, the resulting transformation from iconic representations in the sensorial layer to the
descriptors in the perceptual layer already yields a dramatic reduction of the input data volume.
The kind of information processed in this memory layer is usually a mixture of symbolic and
subsymbolic data. Due to the high frequency of incoming percepts, the rather unreliable nature
of this information, and the fact that information is seldomupdated by other memory processes,
a rigorous forgetting process is employed that turns this memory in fact into a kind of a short-
term memory.

Sebastian Wrede

2. The Project Perspective: The VAMPIRE Endeavour 27

(a) Head motion

(b) Gazing (c) Human action

Figure 2.4.: Figures (a) and (b) show typical results of an object recognition module in an uncon-
strained office environment. The generated percepts are submitted to the perceptual
memory layer. Image (c) depicts the results of an action recognition module that posts its
hypotheses about action events and their context to the episodic memory.

Episodic Layer The next higher level within a visual active memory is the episodic layer. The
information processed in the episodic memory defines a symbolic alphabet to represent the
relevant entities that have been detected in the perceptualinformation. The information memo-
rized in this level is of a higher quality in terms of an increased reliability and a longer temporal
validity. A representative example of a process located at this level, which in fact links the
perceptual and the episodic layers is the anchoring processmentioned earlier. This multi-modal
anchoring, which will be explained in more detail in Chapter8, fuses a large number of percepts
into a new hypothesis that is stored in the episodic memory, yielding a memory element with
a significantly higher reliability. Within this level additionally the context of visual objects and
events is introduced by means of for instance geometric, spatial and temporal relations between
individual memory elements. While the memory elements can be linked to (sub-)symbolic data
in the pictorial and perceptual layers, the information in this layer is mostly symbolic. The fact
that the information in this layer is usually valid for a longer term and is more reliable is directly
reflected by a forgetting process that is accordingly parametrized.

Conceptual Layer The conceptual layer contains stable knowledge about the scene evolution of
the real-world and the cognitive systems’ internal models and categories, which are defined
through object and motion models as well as their functions and context. Examples for context
in this sense are associations between an object and its usage role as shown in Figure 2.5(c). For
instance, it seems rather typical that humans utilize a mug when drinking a “cup of coffee”. The
knowledge that is build up in this level of the memory originates from three different sources.

Firstly, the memory processes similar to the anchoring mentioned previously promote hypothe-
sis that proved to be stable over a longer time from the episodic memory to this memory layer,

Bielefeld University

28 2.2. The VAMPIRE Project

Monitor

Keyboard Mouse

(a) Typical computer setup

Hand Hand

Keyboard

(b) Hands typing on key-
board / monitor invisible

(c) An exemplary functional dependency concept for a computer typing setup,
which is maintained in the conceptual layer of a visual active memory.

Figure 2.5.: The annotated images (a) and (b) show the perceptual hypothesis generated in each sit-
uation by the recognition processes. Figure (c) depicts an exemplary Bayesian network
that is used in a consistency validation process [HBS04] formemory content.

which serves as the basis for memory functionality that a human users can utilize to recall spe-
cific information. Secondly, large parts of the encoded knowledge like object or action models
and contextual information can be dynamically re-encoded by memory processes that for ex-
ample statistically analyze the information and their associated dynamics. By this means, for
instance new object models can be acquired dynamically, traversing the links between stable but
previously unknown percepts, their corresponding features and low-level iconic representations.
Again, this needs to be carried out in interaction with the user in order to provide the system
with the information necessary to annotate the new models with the semantic concepts of the
human user. Last but not least, this memory layer allows to short-cut the bootstrapping process
of a cognitive system by “injecting” domain knowledge that has been designed by a human
expert or that was acquired by other systems of the same kind during previous missions. The
kind of data memorized and processed in this layer is again both symbolic and sub-symbolic
but represents stable knowledge that is valid even on long time-scales. Even though, memory
elements can be removed if the reliability of a knowledge hypothesis retroactively drops under
a certain threshold.

The complex algorithmic processing that is conducted in thecognitive modules within a VAM, its
repository style architecture and the reactivity that is needed in the assistance scenario strongly suggest
an asynchronous processing model for the communication between the different memory processes
themselves and the active memory. This is necessary for the sake of reactivity of the resulting system
and the fact that this system is likely to break-up if it wouldbe based on a synchronous pull-style
communication, for instance if the memory processes would ongoingly query the memory for new
information. The shared information in the visual active memory and the asynchronous processing
models shall not only improve reactivity but also facilitate background learning, e.g., to train new
object classifiers from recorded object views.

Sebastian Wrede

2. The Project Perspective: The VAMPIRE Endeavour 29

To commence this section, let us note asynchronicity as a general requirement for the functions pro-
vided by an integration architecture:

Requirement 2.12: AsynchronicityAs a synchronous processing model seems unsuitable for the parallel
processing that is conducted in the visual active memory. Modules shall not wait passively for the arrival of
new information and asynchronous communication models must be supported. This shall allow an improved
level of concurrency and increase the reactivity of the overall architecture.

2.3. Summary

This chapter introduced some of the requirements for an integration architecture that can be identified
from a functional perspective on general cognitive vision systems and the VAMPIRE EU project and
its scenario aiming at augemented reality assistance in particular.

Besides general requirements like modularity and coordination, the VAMPIRE scenario needs strong
support for distributed computing to achieve a suitable performance for the perceptual processing nec-
essary. This particular requirement has challenging technological implications that will be discussed
in more detail in Chapter 4.

Acknowledging the utility and the concepts of a visual active memory, another set of requirements has
been identified that deal with supporting this type of a functional architecture. The development of
the required support for an active memory will be one of the distinguishing concepts of the approach
to be introduced in Part II of this thesis.

Bielefeld University

30 2.3. Summary

Sebastian Wrede

31

3. The Collaborative Perspective

As outlined in the introduction, the analysis of the challenges for system-level software integration is
conducted from three perspectives. Having introduced the functional characteristics that contribute to
the inevitableessentialcomplexity of architectures, the requirement identification shall proceed along
a new dimension: the social complexity of software development and system integration in the context
of collaborative research projects.

Let us consider the VAMPIRE EU project as a prototypical example. This project had a duration
of about three years with a total of 340 person months, not counting the contributions of involved
student assistants. In terms of overall code size as a coarsehint for the complexity of a project, the
latest demonstration system we integrated at Bielefeld University featured about 260 thousands lines
of code developed in-house or by project partners. While thenumber of code lines can provide only
a rough estimate, its magnitude may indicate that the development processes in such collaborative
research projects obviously has to consider questions ofprogramming-in-the-large[DK76].

Adding up on the aspect of project size, thescenario-drivenresearch methodology that has been
pursued within this and other projects such as the COGNIRON EU project aims to bind scientific
questions to their evaluation in real-world scenarios through experimental cognitive systems proto-
types. This aim demands iterative and incremental development processes that impose additional
requirements for the design of a software integration architecture for cognitive systems. Picking up
on that, we will discuss further consequences that arise from the heterogeneous and interdisciplinary
environment in which software development and integrationare carried out.

This new perspective on the challenges of building cognitive systems is explained by firstly intro-
ducing the idea of ascenario-drivenresearch process. As a consequence, the relevance of the actual
construction of experimental prototype systems is emphasized. Subsequently, the impacts of scenario-
driven research on the software development process are discussed.

The results of a survey carried out during the COGNIRON Winter School on Human-Robot-
Interaction [Cog08] and presented at the SDIR-III [WL08] workshop suggest that the context for
software integration in cognitive systems research is indeed particularly challenging due to Interdis-
ciplinarity, heterogeneity and the ambition to actually collaborate on the level of interacting software
artifacts.

3.1. The Scenario-Driven Research Process

Scenario-driven research is a methodology for conducting collaborative research that continuously
compares the developed hypotheses with their applicability to previously specified evaluation scenar-
ios. Figure 3.1 provides a high-level overview of this concept and highlights the role of system-level
integration in this context.

Bielefeld University

32 3.1. The Scenario-Driven Research Process

Adaption Experiments

Analysis

Research
Activities

Scientific
Questions

Integration

define strategy ask new questions

change
strategy

provide
specs

implications
provide
results

provide
functionality

support

refine requirements define and build system

Figure 3.1.: System-level integration is an enabling method to facilitate experimental research in collabo-
rative projects on cognitive systems. Results from experiments with integrated demonstration
systems shall affect the scientific hypotheses of the individual research activities.

The core scientific questions of a project are usually tackled by a number of so-calledresearch activ-
ities. These activities often conduct their work in isolation without interfacing other project partners.
Following a scenario-driven research approach, the situation is different: researchers define collabo-
rative experiments that involve several other partners on the basis of a common scenario, which will
contribute to the demonstration of scientific results and shall provide insights on previously unknown
aspects of a problem domain.

To facilitate these experiments, the developed prototypical functionality is provided to the integration
research activity, which develops a system architecture that employs the novel functionality in the
given scenario. Besides performing the experiments in close collaboration with the researchers of the
involved scientific activities, a subsequent task of integration is to assist in the interpretation of the
results of the experimental evaluation. As the consequenceof each iteration, the interpreted results
shall lead to an adaptation of the research and integration strategy.

Looking from a system perspective, this approach as carriedout in the VAMPIRE EU project, can
particularly yield the following benefits for collaborative research:

• The individual project partners are “glued” together and motivated through a common scenario
already at early stages in the project. This helps in mutual understanding, which is essential for
the success of larger interdisciplinary projects.

• The project development gains momentum from the very beginning, because first results are
already visible early in the course of the project.

• Early and continuous integration within the project helps to identify risks in the overall ar-
chitecture already in early stages of a project. This is particularly important as fundamental
architectural changes at later stages in a project quickly become costly.

• The individual research activities can easily test their developed hypotheses in realistic settings
that conform to the overall scientific scenarios of a projectinstead of simplified simulations,
which often suppress the complexity of the real world.

• It allows for a better assessment of project progress. An evaluation in terms of a scientific

Sebastian Wrede

3. The Collaborative Perspective 33

experiment that integrates a limited number of features like object learning and labeling by
speech is more meaningful than to report on the observation that for instance“80 percent of the
code for the integrated system is almost there“.

An additional example for scenario-driven research are thedifferent so-calledkey experiments(KE)
in the COGNIRON EU project that is concerned with the development of robot companions for use
in largely unrestricted, natural environments.

Within this project, the KE1 [Cog06] lead by Bielefeld University is about a home-tour robot that is
able to interact with a human instructor showing the robot its apartment. This experimental setup not
only allows for the ongoing evaluation of the project partners’ research results but additionally serves
as an indicator for the overall project progress and as a vehicle for increasing communication and
exchange between the involved scientists.

Unfortunately, this vision of an incremental research paradigm that is aligned with realized system
instances to iteratively conduct real-world experiments in defined evaluation scenarios is difficult to
achieve. Apart from the potential difficulties in the individual research activities, there are equally
hard challenges for the software development and integration process, which underlines the need for
coherent system-level integration approaches.

3.2. Software Development and Scenario-Driven Research

The scenario-driven research approach naturally comes with the way software and systems are de-
veloped in such projects. Software development processes in general are concerned with the set of
activities that need to be carried out to produce a software artifact [Som01].

Within software engineering, two lines of thought are well established. On the one hand, the sequential
software development processes like theWaterfall [Roy87] or V-models[AR08] that are organized
around a cascade of phases like specification, design, implementation and testing. On the other hand,
there are iterative models of software development like BoehmsSpiral model [Boe88] or Kent Becks
Extreme Programming[BA04] (XP) approach that interleave the different phases and reiterate these
many times in short cycles until the desired features of a software product are realized. In order
to facilitate a scenario-driven research approach, this thesis suggests to follow an iterative software
development approach.

Following an iterative approach in a research project, particularly for cognitive systems is beneficial,
because the requirements and the necessary space of designsare inherently poorly understood at the
inception of a project. Accounting for the“myth of stable requirements”[McC04] a fundamental
truth is that the better people are understanding a problem,the more likely requirements will change
within software projects. As a primary aim of science is to better understand the innate problems of
a given domain, it seems very likely that requirements are going to change and develop in the course
of a research project. As scenario-driven research is itself an iterative process, it seems likely that a
corresponding software process is chosen. This leads to thefirst requirement that can be identified
from this viewpoint, the aim to supportchange.

Requirement 3.1: Embrace ChangeA basic requirement that arises from following an iterativesoftware
development process is to appreciate changes and to incorporate these easily into existing system architectures.

Bielefeld University

34 3.2. Software Development and Scenario-Driven Research

For fulfilling this requirement, the integration approach needs to explicitly support mechanisms that
are as resilient as possible to changes of system structures. For example, the impact of interface
changes on an existing (distributed) system architecture should be minimal to avoid a versioning
problem as known from CORBA [SV01]. This also relates to the continuity property of modularity,
cf. Chapter 4, which states that the impact of a local change to other components must be limited.

3.2.1. Software Integration as Process

The termintegrationhas traditionally been referred to as a single activity within a software develop-
ment process. Due to the fact that integration in artificial cognitive systems is much more complex
than plugging a small number of classes together and its importance in larger projects has recently
been well acknowledged, integration nowadays becomes itself a process.

Hence, different models for system integration evolved that can be distinguished into phased and
incremental approaches as it is done for the software development processes. Following a phased
approach for system-level integration of a software artifact inevitably leads to a “big bang integration”
where a large number of features are integrated in one huge effort. This procedure is very unlikely
to succeed due to the fact that many errors surface simultaneously when new classes or features are
combined for the first time. These intricate errors often interact between each other and are therefore
extremely hard to localize. What follows is usually a debugging step that quickly turns into a “system
dis-integration” [McC04] process.

In contrast to a phased integration model and to facilitate scenario-driven research, an incremental
approach is just as necessary for the system-level integration as an iterative processes for the software
development itself. Incremental integration in general follows a simple pattern that starts with the
realization of a small but already functional part of the system. This basis acts as a scaffold that allows
the integration of additional elements in the system. Thus,this initial part needs to be thoroughly tested
and debugged to provide a stable and correct foundation for integration of further functionality.

Subsequently, the first iterative step is the design, realization and testing of new features for the system.
Within scientific projects this is done in the separate research activities. The second step is then to
integrate asinglenew feature at a time with the help of the scaffold and test it in combination with the
already integrated features. These two steps are iterated until all desired functionalities are integrated
and operational.

In order to verify the correct integration of new functionality, a central necessity to effect a feature-
driven integration processes is to allow for frequent testing of added software modules. Thus, let us
note support for this task as an additional requirement on the level of the integration architecture.

Requirement 3.2: Testing and EvaluationWithin scenario-driven research that makes use of an incremental
development and integration approach, the testing and evaluation of individual modules must be supported by
a suitable software architecture.

Christensen and Crowley [CC94] extend this requirement by considering system-level evaluation sup-
port as an essential feature on the level of an integration architecture. For instance, it shall be possible
by carrying out offline experiments on the basis of recorded data, yielding a basis for analysis of
system dynamics and evaluation experiments.

Sebastian Wrede

3. The Collaborative Perspective 35

System Instance

P

M M

C C

F
2

P

M

CC C

F
1

F
3

P

M M

CC C

F
4

P

M

CC C

F
21

Figure 3.2.: An example for feature-oriented integration (from [McC04]). An integrated system constructed
according to object-oriented design principles is assembled from features (F), processes (P),
modules (M) and classes (C). In order to develop the featureson different schedules, the inte-
gration framework needs to provide the scaffolding for the system and temporary replacements
for missing modules or features (shown with dotted borders).

Exemplary support for this kind of requirement are debugging tools for dynamic introspection of
systems at runtime or tools facilitating the recording and simulation of data sources. Within the
VAMPIRE project, the synchronized simulation of the video streams gathered from the users head-
mounted camera devices in conjunction with the replaying ofinformation about his head pose are
examples for this kind of system integration support.

A challenging task in incremental integration is the planning of the integration schedule on the basis
of time-based milestones. By the very nature of research projects as explained in the aforementioned
paragraphs, it is hard to assess in preface when a component will be available for a first integration
in a system. Hence, an integration process is needed that addresses this peculiarity and allows for
flexibility with regard to thesequencingof integration.

Feature-oriented integration [McC04] (FOI) is an approachthat allows exactly this and is therefore
well suited for projects carried out according to the scenario-driven research paradigm. Figure 3.2
sketches this process and depicts four exemplary features of a system instance. In object-oriented
systems, these features are composed from processes, modules and classes, yielding a decreasing
abstraction level. According to FOI, they are integrated one time after another. Features need to be
tested in isolation and shall be self-contained to the extent possible. However, to apply this concept,
generic scaffolding is necessary, for instance to emulate dependant feature until these are available.

Requirement 3.3: Incremental DevelopmentAn integration architecture needs to provide re-usable scaf-
folding that allows functional parts of the system architecture to be iteratively developed and incrementally
integrated. To cope with missing parts of functionality, itmust be possible to simulate missing components or
add mock components that can easily be replaced later on.

Feature-oriented integration allows for a controlled extension of individual functional units that be-
come a visible indicator for project progress and that can directly be applied for improved experimen-
tal studies.

Bielefeld University

36 3.3. The Social Complexity of Integration

Figure 3.3.: Education prior to PhD programme. Some participants had an interdisciplinary background,
holding degrees in more than one discipline, while22% of the attendees were persons with no
computer science or computer engineering related background.

3.3. The Social Complexity of Integration

Acknowledging that a fundamental requirement for the envisioned integration framework is to support
incremental development processes, we still need to analyze the implications that stem from the people
that are conducting research in this integration context and that actually provide the core functionality
for the artificial cognitive systems to be constructed: the scientists themselves.

In order to assess the expectations, backgrounds and skillsof a typical group of users that are in-
volved in collaborative research projects, we conducted a survey on software integration [WL08]
aspects at the COGNIRON winter school on Human-Robot-Interaction [Cog08], which had partici-
pants from all over Europe (and one from Korea). It should be noted that the school was organized
by the COGNIRON consortium as a dissemination activity for non-members, and correspondingly,
there was no project member amongst the 35 participants, which were mainly students in the first
years of their PhD period. This group is particularly important as it is usually heavily involved in
implementation work but has comparatively little experience.

As already outlined in Section 1.2 a common characteristic of research projects aiming at the con-
struction of cognitive systems for improved human-machineinteraction isinterdisciplinarity. Hence,
project teams are often composed of a heterogeneous set of domain experts as underlined by the sur-
vey results shown in Figure 3.3. While a large number of the participants has a computer science or
computer engineering-related background, many participants did in fact study multiple disciplines,
for example, product design, cognitive science, psychology and linguistics. The underlying data also
reveals that the fraction of people with no computer sciencebackground at all is about 22%.

This is supported by a considerable breadth in the spectrum of reported research areas, see [WL08]
for details, encompassing much of the diversity of the HRI field. Taken together, it seems quite
appropriate to call HRI a prototypical interdisciplinary area of cognitive systems research. However,
the resulting heterogeneity does not reduce but rather increase the need for sophisticated methods and
tools that must be known and applied in order to manage a meaningful integration process.

Sebastian Wrede

3. The Collaborative Perspective 37

3.3.1. Collaboration and Usability Aspects

Figure 3.4.: Number of dependencies.29% of the atten-
dees reported that their modules do not in-
tegrate information from any other compo-
nents. However,58% stated that they rely on
data from one to three components, while the
overall median indicates that modules inter-
act with four other system components.

The varying levels of proficiency and back-
ground knowledge related to software devel-
opment and integration techniques impose
additional challenges for collaborative sys-
tem development even when merely com-
puter scientists are involved.

This is particularly important because of the
stated aim of scenario-driven research to col-
laborate in terms of building real-world ex-
perimental systems. Figure 3.4 suggests that
many people actually collaborate even on
the software level. After all, even 10% re-
ported to use information from more than
five components, indicating considerable in-
tegration and corresponding collaboration.

Figure 3.5.: Use of middleware for distributed systems.
In general, there seems to be a large
known/use gap exemplified by CORBA that
is well-known but seems not to be used regu-
larly. 46% of the participants answered that
they did not use any middleware, so far.

One of the most important and most obvious
requirement for an integration architecture is
that the framework must support collabora-
tive development in an easy-to-use and un-
derstandable approach. The survey affirmed
the assumption that domain experts in cog-
nitive systems not necessarily are middle-
ware experts. As shown in Figure 3.5 al-
most half of the participants never used any
type of middleware before. Therefore, Mar-
tin Fowler’s quote “write programs for peo-
ple first, computers second” is particularly
important for the design of an integration
toolkit in cognitive systems research as the
overall goal is to enable researchersthem-
selvesto provide modules that feature high
integrability1.

A development process that is purely carried
out by explicit software architects may not be eligible in this context with reasonable effort as in cog-
nitive systems research projects system development is intrinsically a joint effort, due to the required
amount of interdisciplinary domain knowledge involved. For these reasons and as a general concern,
let us note that an integration architecture explicitly needs to take into account usability factors.

Requirement 3.4: UsabilityThis requirement incorporates the goal to design an integration architecture that
is not only easy to learn and to use, but equally allows non-expert programmers to efficiently accomplish their
desired tasks. Thus, comprehensible abstractions for integration patterns need to be provided with regard to the
discovered functional and architectural requirements.

1Integrability is the ability to make separately developed components work correctly together in a larger system [BCK05]

Bielefeld University

38 3.3. The Social Complexity of Integration

While usability is an important quality for the acceptance of a framework, it would be overly opti-
mistic to assume that a software framework, which provides integration on the level of fine-grained
operators such as single image filters will get used across different institutions within in a large-scale
research project. Almost every research group uses their own toolkits for developing cognitive (vision)
functionality. Within the VAMPIRE project, there have beenat least five software artifacts involved
that belong to this category: Matlab [The08], RAVL [CVS08],Nessy (a toolkit for image processing
used by the Neuroinformatics Group at Bielefeld Universityat that time), the Graz Computer Vision
Libaries and IceWing [LWHF06].

While some researchers argue that integration in such a situation is almost impossible [CG06], the
practical experiences working in different large-scale projects suggest that this heterogeneity is rather
typical, especially for interdisciplinary reseach. This single observation was again underlined by
the survey where the spectrum of used robotics toolkits was very diverse. Hence, the viewpoint in
this thesis is that an integration framework for cognitive systemsinevitably has to cope with this
diversity. In contrast to the one-size-fits-all paradigm, an integration framework must be able to easily
incorporate domain specific tools into its architecture.

Requirement 3.5: Embrace ReuseWithin interdisciplinary research or scientific projects that extend over the
boundaries of single laboratories it is often hard or impossible due to political or functional reasons to define a
single development toolkit for the low-level software development of functionality for a cognitive vision system.
Hence, the requirement here is to develop a concept that facilitates re-use by a minimally invasive approach that
allows the integration and extension of legacy software frameworks with reasonable effort.

An additional benefit of this approach is that scientists cancontinue to work in their familiar envi-
ronments, which shall increase research efficiency. On the downside, the presence of a number of
different low-level platforms may increase maintenance efforts and limits to a certain extend the pos-
sible outreach of the integration architecture in terms of control over software processes and the level
of integration.

3.3.2. Mutual Understanding and Agreement

Even worse than the technological heterogeneity in the software landscape is often the lack of mutual
understanding, communicated agreements and social interaction between the members of geographi-
cally distributed large-scale research projects. A project with two developers is naturally completely
different from a large-scale software project in terms of developer interaction, because of the multi-
plicatively increasing number of communication paths withevery single new developer. Hence, the
amount of necessary communication quickly becomes impractical and failures by misunderstanding
become propable.

As the actual process of integrating and developing a functional architecture for a system instance
inevitable involves communication between human developers, e.g., to discuss interface changes of
modules (cf. [WL08]), the stated hypothesis is that collaboration is indeed a software engineering
challenge and the integration approach therefore needs to facilitate communication about architectural
issues. When developers discuss an architectural aspect, the abstractions of the integration framework
should easily be bound to domain entities. The chosen abstractions and techniques shall facilitate the
system-level understanding between people from differentdomains. The goal is to find representa-
tions and models that map system models well to the features of the integration architecture like its
communication abstractions but are still accessible for all members of a project.

Sebastian Wrede

3. The Collaborative Perspective 39

Monarchical Oligarchical Anarchical

Actors Exactly one Dependant Independent

Modifiability Not applicable Coordinated Uncoordinated

Agreement Not applicable Strong None

Abstraction Technical, Low-level Standards-based Specific, High-level

Technology Shared Memory, IPC, . . . HTTP, CVML, JAUS, . . . Adapters, ESB, . . .

Table 3.1.:Characteristics and technological implications of monarchical, oligarchical and anarchical sit-
uations of software integration.

From a system’s perspective, a long-term vision for the design of integrated cognitive system architec-
tures is to develop a domain-driven design [Eva03] methodology binding models to implementations
by employing techniques likeModel-Driven Architecture[Fra03] (MDA). Nowadays, even the cap-
turing of domain knowledge in robotics, e.g., for the higher-level layers of a cognitive robotics system
through a catalog of analysis patterns [Bru07c], architectural description languages [GT07] or through
extensions of UML by robotic profiles are areas of current research.

While it is beyond the scope of this thesis to provide a formaldescriptive framework for the functional
architectures of cognitive systems, a requirement towardsthese aspects shall be that the system archi-
tectures, which are constructed using the resulting framework shall be clearly understandable. Every
developer in an interdisciplinary project team should be able to participate in a discussion about sys-
tem instances and the corresponding functional architectures, for instance by comprehensible models
of information that is exchanged in the system. No team member should be hindered by technical
peculiarities like firstly learning a specific intermediatelanguage like CORBA’s Interface Definition
Language [Sie00] (IDL) before she can start thinking about her contribution to an integrated system,
which leads us to call for understandable representations:

Requirement 3.6: Understandable RepresentationsBesides being interpretable by computational pro-
cesses, the representation language should additionally allow for human understandability. Representations
that are self-descriptive and accessible to human interpretation are beneficial for the integration process, be-
cause they ease communication and contribute to modular understandability.

Questions of modeling, verification and documentation are especially important within this context
as the situation for system integration in research projects often exhibits similarities to the anarchical
or oligarchical situation of enterprise software integration [Joh02]. Johnson introduced an analogy
to political science and compares the context of enterprisesoftware integration to amonarchical,
oligarchical or anarchical situations, which are characterized by the properties thatare outlined in
Table 3.1. Monarchical situations map to small-scale projects where the component developer is also
responsible for the integration of a system often utilizingfairly fundamental programming language
tools for Inter-Process Communication [ASTMvS02] (IPC). In contrast, the oligarchical situation is
largely different because a number of actors, which are somehow institutionally organized and there-
fore depending on each other are collaborating in a common project. In this situation, modifications
are carried out in a coordinated way and the strong agreements between project participants pave the
way towards integration. According to Johnson the techniques used in this context are often exploit-

Bielefeld University

40 3.4. Summary

ing domain-specific standards or at least generic standards-based methods like the Hypertext Transfer
Protocol [FIG99] (HTTP) for integration. Unfortunately, in the domain of cognitive vision systems,
the number of available domain-specific standards is up to now fairly limited, one approach for set-
ting up such a standard is the XML-based Computer Vision Markup Language [LF04] (CVML) for
use in Cognitive Vision. A larger number of examples for already existing standards can be found in
the area of robotics like the Joint Architecture for Unmanned Systems (JAUS) for the development
of air, ground, surface, or underwater systems [Alb00] or the recently evolved Object Management
Groups’ (OMG) robotics standards [(OM08]. The third type ofcontexts describes a rather anarchical
environment. This situation is characterized by a larger and largely independent set of people working
on system(s) to be integrated, yielding largely uncoordinated modifications to whole modules or sub-
systems in an architecture. Within this situational context, usually concepts on a higher abstraction
level, for instance from the domain of Enterprise Application Integration (EAI) are used like sets of
specific adapters or in a more recent fashion Enterprise Service Bus [Cha04] (ESB) concepts.

Looking at the integration context of a cognitive systems project like VAMPIRE from this perspective,
similarities to the oligarchical situation for software integration can be identified. While researchers
usually are willing to participate in a collaboration, which was clearly underlined by the conducted
study, the fact that almost no standards are available within this domain and that the amount of coor-
dination between project partners is naturally limited theintegration situation can quickly turn into an
anarchical one. While the project administration can adaptthe collaboration processes within a project
to prevent this turn, an integration framework shall additionally support these mechanisms by provid-
ing means for more efficiently finding and documenting necessary agreements. Hence, an additional
goal of the approach developed in this thesis will be on the declarative description of architectural
properties like the coordination of modules within a systeminstance.

Requirement 3.7: Declarative SpecificationThe modeling and communication about architectures for com-
plex cognitive systems requires a description at a high level of abstraction. In order to be able to specify the
behavior of the system on an architectural level, a declarative description is needed that specifies the interactions
in the possible design space of the provided integration patterns.

The rationale behind this requirement is that strong modelsthat allow validation promote a better un-
derstanding and specification on the architectural level, at the same time alleviating some of the innate
problems of an oligarchical environment like the stated lack of agreements. Exemplary properties that
shall be specifiable are types of component interactions, the coordination strategies in an architecture,
the types of exchanged information as well as module interfaces.

3.4. Summary

The software integration task in collaborative cognitive systems research quickly faces problems of
programming-in-the-large. Not only with regard to its size, but also in terms of the social complexity
involved. If real collaboration is desired, e.g. if a scenario-driven research process is envisioned
that emphasizes the integration task, the interdisciplinary and heterogeneous project environment in
conjunction with the aim to actually build systems impose unique, partly conflicting, challenges on
the design of an integration architecture. The acknowledgment of these specifics in the integration
context affects many design decisions of the software architecture that will be introduced in Part II of
this thesis for the sake of supportingcollaborativeexperimental cognitive systems research.

Sebastian Wrede

41

4. The Technological Perspective

Compared to the project and the collaborative perspectiveson software integration addressed in the
previous two chapters, the requirement analysis continueswithin this chapter along a different axis.
The fact that integration is rather pointless when it is not actually carried out in the real world imposes
some tough challenges for researchers and system developers. These primarily arise from the kind
of substrates that are nowadays used to build artificial cognitive systems, which are software and
hardware modules.

Researchers need to cope with the technological propertiesof theses substrates. One exemplary con-
sequence of this fact is that the exploitation of parallelism in distributed systems results in a number
of intricate challenges for the scientist acting as a software developer. Within the introduced archi-
tectural model, this perspective primarily looks on software architecture from the level of the system
architecture. Taking on this viewpoint and a software engineer’s mindset, we will look at some of the
questions inevitably arising if we aim at developing large-scale distributed software systems.

A fairly large number of textbooks and PhD theses were written in the past solely devoted to the
challenges of parallelism and distributed systems. In contrast to these, the subsequent sections only
briefly introduce the reader to some of the peculiarities deriving from parallelism. Due to the fact that
we already identified the need for a distributed system architecture during the analysis of the project
perspective in Chapter 2, the presentation will subsequently elaborate on a number of important chal-
lenges that originate from this matter, because the requirement to build a distributed integration archi-
tecture proved to be an extremely important and far-reaching issue for the overall approach developed
during the course of this thesis project.

Thinking about concurrency, distributed systems and anintentionalsoftware architecture addressing
the requirements identified so far, quickly leads to core aspects of software architecture itself as the ar-
chitectural development of the integration approach callsfor further guidance. Therefore, well-known
concepts from software engineering need to be taken into account right from the beginning. Being an
equally large field as concurrency and distributed systems,I will particularly address two relationships
in the following, critical for the development of an integration approach: the relation between archi-
tectural quality and modularity as well as the exploitationbut independence of architectural styles for
structuring software architectures.

4.1. The Consequences of Parallelism

Fundamental for many artificial cognitive systems is the necessity to run multiple computations in
parallel. While this principle could be applied in a serialized manner, instances of artificial cognitive
systems usually employ a large amount of true parallelism inorder to achieve online performance
allowing for their safe operation in the real-world, e.g., imagine a robot that would suspend reading
sensor data while replanning due to previous change of environmental conditions.

Bielefeld University

42 4.1. The Consequences of Parallelism

However, not only for robots but also in cognitive vision, the ability to run several components of the
functional architecture in parallel is one of the key requirements as motivated in Chapter 2. Besides
the fact that the used algorithms themselves need to be developed and optimized for parallel execution
on the functional level, the technological implications ofconcurrency vastly increases the complexity
of the resulting systems and their software development.

Nowadays, computer systems usually feature a single CPU with an ever increasing number of pro-
cessing cores or are composed of multiple processing nodes in a distributed system connected by
some kind of distributed computing architecture. Concurrency in this respect two independent control
flows, let alone whether operating systems processes or lightweight threads, appear to be running at
the same time. However, often the the high-level tasks thesecontrol flows are executing will on a sin-
gle instruction machine with one CPU be de-composed into a number of possibly interleaved atomic
processing instructions. On computer systems featuring multiple processing cores, the control flows
will in fact run completely parallel.

Even when the development is carried out in a single programming language, most languages delegate
the assignment of execution time to the scheduler of the operating system’s kernel. This has at least
two important consequences:

1. The order of execution between different flows of control is not guaranteed in preface.

2. Concurrent access to resources by independent control flows, e.g., access to a shared memory
region or the same hardware device at the same point in time.

These uncertainties introduce intricate error patterns like stale data or an incorrect orders of updates
that need to be addressed by synchronization primitives which prevent other control flows from mod-
ifying or accessing a critical memory or code region until the thread that locked the synchronization
primitive in first place has finished the protected operation.

Although these problems are understood in theory, only recently solid API’s for dealing with common
synchronization problems matured from research into main-stream libraries, for instance the new Java
concurrency API [GBB+06], which introduces several well-known patterns like Mutexes or Reader-
Writer-Locks into the standard API of this modern programming language. Writing portable multi-
threaded code is even nowadays a challenge for senior software developers and therefore a higher
level of abstraction is needed for allowing theaverageprogrammer to handle these kinds of problems
in research software systems.

Besides others, Ceravola and Goerick identified the challenges of parallelism as one of the major
points an integration architecture needs to address [CG06]in order to let researchers fully exploit the
features of modern hardware setups for the development of cognitive robots.

From personal experience, an additional aspect is that the necessary high-level features for the syn-
chronization of several modules, processes or threads shall not lock-in the programmer into a specific
style of programming. This decreases usability and acceptance of an integration architecture. Instead,
it must leave software developers the freedom to choose between an asynchronous programming
model fully exploiting parallelism which is at the same timemore complex to handle and a syn-
chronous, non-multithreaded model that allows fairly simple sequential programming if this suffices
in a given situation.

Sebastian Wrede

4. The Technological Perspective 43

Appl. A

Distributed System Layer (Middleware)

Local OS

Appl. B

Local OS Local OS

Appl. C

Local OS

Computer A Computer B Computer C Computer D

Network

Figure 4.1.: Schema of a distributed system [ASTMvS02] and the role of middleware services. Middleware
provides abstractions for machine-specific low-level operating system resources such as sockets,
which are used by applications to exchange data across process boundaries, e.g. over network
links. Thus, logically unified applications may be physically distributed over multiple nodes.

Even large software companies like Microsoft nowadays acknowledge [Gat07] that the design and de-
velopment of concurrent applications yields one of the major challenges that developers of cognitive
systems are exposed to and that problems originating from concurrency are one of the first sources
of complexity that hinder robotics research. As a consequence of this observation, Microsoft explic-
itly addresses these challenges in their recently releasedMicrosoft Robotics Studio(MSRS) toolkit,
which is an integration software for educative and personalrobotics [Jac07]. ItsConcurrency and
Coordination Runtime(CCR) dramatically simplifies parallel and asynchronous programming.

To commence this brief excursion into the threats of parallel computing, let us state the following,
rather general but sill important requirement:

Requirement 4.1: Support for Concurrent ProcessingThe integration architecture needs to support means
for the development of concurrent software systems, because of the inherent parallelism in the application
domain. It should provide higher level abstractions for dealing with these challenges than regular programming
language constructs. The resulting programming model mustsupport synchronous or asynchronous use.

4.2. Distributed Systems and Software Integration

Realizing cognitive systems executing multiple computations in parallel often demands for computa-
tional power that is beyond the limits of a single standard computer system. Hence, the integration
architecture’s responsibility is to provide these resources by distributing necessary processing tasks
either on multiple CPUs or to multiple processing nodes. Theresulting structure of an interconnected
process network yields adistributed system, cf. Figure 4.1, which can be defined as follows:

Definition 4.1 (Distributed System) A distributed computing system is a set of computer programs,
executing on one or more computers, and coordinating actions by exchanging messages. [Bir05]

It is noteworthy that many challenges of distributed systems may nowadays also show up if such a
process network is solely executed on asinglemulti-processor or multi-core machine.

Bielefeld University

44 4.2. Distributed Systems and Software Integration

Despite this observation, many challenge are still specificto distributed systems that are intercon-
nected via some transport layer due to the unreliable characteristics of many types of communication
links, the increased latency of interprocess communication and further aspects.

However, as described in Section 2.2.1, the sketch of the VAMPIRE assistance scenario envisioned
to distribute as much processing as possible from the mobilesetup to off-board computers in order
to have the necessary computational power for the cognitivefunctions available at hand, cf. Require-
ment 2.8, without letting the users carry bulky hardware around. Hence, the integration architecture
presented in this thesis, was designed right from the beginning for network distribution, having to deal
with the typical challenges of distributed systems.

In order to access the far-reaching consequences that originate by accepting distributedness as a key
requirement, let us consider the intricate aspects of remote interactions in an object-oriented soft-
ware architecture. In the following, we focus at three aspects - latency, memory accessandpartial
failure - that feature the largest discrepancies compared to local interactions between a set of ob-
jects [WWWK97]:

Latency Although not being the most important of the three concerns,the fact that a remote invoca-
tion carried out over a wired or wireless medium simply takesorders of magnitude more time
to complete, at best around four or five orders [FRF+02], compared to a local method invoca-
tion, is the most obvious difference between the two cases. This so-calledlatencyof a remote
method invocation sums up from the propagation, transmission and processing times needed at
the sending and receiving sides of a communication channel.

As we will discuss later on, it is almost impossible to hide this fact from an implementation al-
though techniques like pre-fetching [KS04] can be applied to partly overcome this issue. Unfor-
tunately, these techniques are rather domain-specific and cannot be applied in a general manner.
Therefore, an integrated system needs to take into account this difference, particularly for time-
critical sub-systems, for instance when active vision techniques are used for visual servoing of
robot manipulators.

Concerning these sub-systems an additional issue may arisefrom (hard) real-time algorithms
that need to be scheduled for execution in constant time intervals in order to guarantee a certain
algorithmic property. Seriously addressing real-time in distributed systems is an ongoing field
of research, which has been addressed for example in the arm control system of the Justin
robot at the DLR Oberpfaffenhofen [OEF+06]. Within the VAMPIRE project and additional
research projects the resulting integration architecturehas so far been applied to, there were no
requirements for enforcing real-time properties, so we could safely ignore this issue until the
time of writing this thesis.

Memory Access Another important difference between local and remote invocations is the fact that
the execution context can change by any invocation to another address space in a completely
different processing and language environment. Therefore, every pointer that references an
object or data structure in the local address space will instantaneously become invalid when
naively transmitted over a network link.

Although modern implementations ofObject Request Brokers(ORB), for instance the Ice ORB
discussed in the next chapter, can overcome this limitation, this approach restricts programmer
to use object references for every interaction thereby breaking the transparency that is on the
other hand envisioned by such object distribution systems.

Sebastian Wrede

4. The Technological Perspective 45

Partial Failure Even local interactions of objects are subject to failures for all sorts of reasons. The
important difference to errors that occur in remote invocations is that in the case of local invo-
cations, failures are total. Either interactions between objects fail completely or it is possible
at least through operating system support to detect an erroneous software or hardware module.
Through examination of this error state, it is at least in principle possible to overcome this class
or errors. For distributed systems, the concept ofpartial failure is an unfortunate reality, which
describes a system state where a number of entities (objects, processes, machines, network
links, . . .) are in an erroneous state while others are not.

In order to exemplify this, let us think about problematic situations that represent a partial fail-
ure [WWWK97] and possible solutions for this while carryingout a remote method invocation
by a caller object (theclient) on a callee object (theserver) [ASTMvS02]:

1. Client cannot locate server: This situation is rather easy to handle, because we just need
to report back the exceptional circumstance to the caller.

2. Client request is lost: If we can identify by inspecting the local processing statebefore
the crash that the message has been lost within the client subsystem, a straightforward
solution is to just resend the message.

3. Server crashes: The crash of the server object represents one of the mentioned intrica-
cies, due to the fact that is usually not possible to detect whether the server has already
processed the invocation message. In order to handle this, it is necessary to specify the
operational semantics of an invocation, for instanceat-least-onceor at-most-onceseman-
tics.

4. Server response is lost: Another example of partial failure is when a response of a server
object on an invocation is lost. In this situation, it is impossible to decide whether the
server has already processed the invocation. The only solution that is available in this case
is to resend the message if and only if the operation is markedasidempotent, which means
that the invocation is repeatable without any side effects in the server object.

5. Client crashes: If the client object crashes and the interaction with the server object is
stateful, which means that the server is keeping track of itsclients, for instance by holding
a transaction lock, these orphan computations are wasting resources that are eventually
blocking other distributed processes. Solutions to this class of problems can for instance
be to kill the orphans by the client as soon as it is again available or to let the server kill
the orphans after a certain period of time.

These failures differ from a simple exception that is raisedin a local object interaction as it
is usually impossible for a client object to determine whether the source of the problem is
a malfunction in a network link or a crash in the server process, thereby leaving the overall
distributed system in an inconsistent state. The target object may simply disappear and the
thread of control may never return to the calling object. Theultimate consequence of this
observation is that partial failure requires the application level programs to account for this
indeterminacy.

Bielefeld University

46 4.2. Distributed Systems and Software Integration

4.2.1. The Role of Middleware

Novel methodologies for the development and the design of complex distributed systems that take into
account the problems introduced above, historically emerged from two different starting points: on the
one hand researchers who are trying to extend the model and expressiveness of existing programming
languages by incorporating features for building distributed systems. On the other hand, scientists
and companies are trying to directly focus on the innate problems of distributed systems by conduct-
ing research on advanced communication protocols featuring semantically stronger guarantees for
networked interactions resulting in increased reliability [Bir05] or by providing distributed comput-
ing environments comprised of code libraries and improved tools explicitly addressing the challenges
arising from networked applications. For a number of good reasons, the integration approach in this
thesis deals with distributedness in the latter way.

Software that provides this functionality either in terms of language enhancements, specialized tools
and protocols or any combination of these is termedMiddleware. Usually, it provides a connectivity
layer and services that allow multiple processes running onone or more machines to communicate
across a network or other accessible means of communicationas indicated in Figure 4.1. Middleware
can be defined as follows:

Definition 4.2 (Middleware) A set of layers and components that provides reusable commonservices
and network programming mechanisms. Middleware resides ontop of an operating system and its
protocol stacks but below the structure and functionality of any particular application. [SEI08]

Although the term middleware is often used in a broad sense, we will stick within this thesis to
the primary aim of middleware, which is to provide interoperability between individual applications
and software modules across process, platform and hardwareboundaries as shown in Figure 4.1.
However, middleware can be extended into more versatile software architectures for cognitive systems
by integrating generalizable functionality or encoding domain-specific interaction strategies between
distributed processes. Hence, it may provide services thatare not directly available from the native
network layer such as ordering and reliability or add domainsupport that is directly available over
different types of communication media. Examples for both types of middleware and domain-specific
approaches will be briefly discussed in the next chapter.

Similar to a certain extent, the development of an integration architecture differs from the design of a
middleware in terms of its domain specificity, which is in thecontext of this thesis defined by what we
identified as important in from the project and the collaborative perspectives as well as from its core
aim to support the integration process itself, cf. Chapters2 and 3. Hence, the resulting approach shall
not compete with fully generic networking middleware but instead be tailored to the aforementioned
aspects and may rather provide suitable or novel abstractions adopting methodologies from recent
middleware approaches in order to assist users in the problems outlined previously and to fulfill the
requirements deriving therefrom.

4.2.2. Requirements of Distributed Systems

Continuing the requirement identification, let us now look in a bit more detail on some of the key
characteristics of distributed systems and discuss them inthe context of middleware and the per-
spectives developed in the previous two chapters. Besidesconcurrency, which we already discussed

Sebastian Wrede

4. The Technological Perspective 47

separately in the previous section, important properties of distributed systems [TB01] areresource
sharing, openness, scalability, transparency, fault toleranceas well asconfigurability, extensibility
andsecurity.

Resource Sharing

A fundamental property of a distributed computing systems is the sharing of resources. In order to
share specific resources whether these are free processing time and memory space or in the context
of cognitive systems sensors and actuators that allow a system to be embedded in the real world as
described in Chapter 2, each resource needs an interface that allows other members of the system to
access these.

Within cognitive systems, it is often not sufficient to provide a simple abstraction over the local re-
source, but more sophisticated arbitration mechanisms arenecessary in order to produce meaningful
behavior of for instance a navigation module in a robotic system. Due to the fact that distributed arbi-
tration in cognitive systems is still a research topic in itsown right, the consequence for the integration
architecture from this point is to provide generic functionality to support the arbitration between dis-
tributed components, for instance by providing notification services that simplify the development of
the necessary arbitration management modules. The resulting requirement from this aspect therefore
deals with the possible ways to expose shared resources to the distributed systems. Due to the fact
that this is not only a matter of middleware but rather of software architecture, we shall discuss this a
more deeply in Section 4.3 in the context of architectural styles for software integration.

Not anticipating the conclusion, supporting arbitration in an integration architecture is one of the
challenging areas for future research on integrated cognitive systems. However, Section 7.4 will
introduce a method that is tightly integrated with the general concepts of the integration architecture
for explicit modeling of arbitration strategies, which hasfor coordinating access to the sensors and
actuators important within the context of the VAMPIRE project.

Openness

Openness in a distributed systems in general deals with the incremental extensibility of these sys-
tems. While it is nowadays taken for granted that within one system, extensibility, for instance by
adding new components shall be easily feasible if a recent middleware is used, the interaction and
integration with services exposed on other systems, irrespective of the underlying software and hard-
ware infrastructure is a more ambitious challenge. Particularly important for achieving a high level of
openness are the abstraction from concrete technical environments and comprehensible interface as
well as protocol specifications.

The abstraction from low-level software and hardware environments for masking out the inevitable
heterogeneity in distributed systems is a key technique to allow for portability of applications. For
instance, it should be possible that an application writtenfor a single integration architecture, shall
be easily portable to a different operating system, hardware platform and programming language.
Protocol and interface specifications are important for openness in order to allow an easy integration
with other systems that are developed on a different middleware basis. Therefore, the syntax and se-
mantics of the interface functionality must be very well documented for the provided communication
abstractions as well as the protocols that need to be accessible in an open way.

Bielefeld University

48 4.2. Distributed Systems and Software Integration

Examples for open middleware systems are architectures such as REST [RTF00], which is based on
Hyper Text Transfer Protocol(HTTP) as a transport protocol and often uses serializedExtensible
Markup Language(XML) infosets [CT04] as syntactical basis for exchanged messages. Thereby,
REST-based systems achieve a high degree of openness allowing 3rd-party systems to more easily
integrate in existing applications.

Concerning the relevancy for an integration architecture,it is natural that openness is an extremely
important criterion, because the integration with systemswritten by others is one of the primary goals
as already explained during the discussion of the project perspective. Therefore, we will add openness
on our list of requirements:

Requirement 4.2: OpennessThe ability to integrate additional services and modules aswell as being itself
integrable with other frameworks by concise definition of the integration interfaces and the used protocols is an
important requirement for the overall approach. Ideally, the approach shall be based on well-known standard
protocols and techniques that are beneficial for building distributed systems. Additionally, the framework shall
support portability in terms of hardware platforms, operating systems and programming languages.

Because within cognitive systems as the one that are in the focus of the VAMPIRE project, the question
of how to flexibly represent data, information and knowledgeis crucial in the overall architecture, it
is important to stress that this is one of the conjunctions where functional and technical architecture
meet and mutually extend each other.

Therefore, we will extend the call for extensible and understandable representations, cf. Require-
ments 2.6 and 3.6, by an additional requirement, which is that exchanged representations are not only
interoperable, which is covered by openness in general, butalsointerpretable.

In order to assess the benefits of a representation that is interpretable by other modules without prior
knowledge about the contained structures, let us shortly discuss the reverse situation. Imagine a
data visualization component for a cognitive system actingas a common service for supporting the
integration process. If the representations used for message exchange are not self descriptive and
can not be interpreted by the machine on its own, the visualization service unnecessarily needs to be
aware of many if not all the interface and datatype definitions that are used within a system, thereby
increasing the software coupling and maintenance efforts.In order to prevent such situations we
therefore call for interpretable representations:

Requirement 4.3: Interpretable RepresentationsIn addition to the benefits that openness provides for an
integration architecture, the exchanged data items need tobe self-descriptive and dynamically interpretable by
components that feature little or no knowledge about the exchanged data types.

Considering this requirement in the design of an integration architecture shall later yield in a decreased
coupling of the resulting software components. This requirement is fundamental to the approach
described in this thesis. Therefore we shall revisit this topic recurrently though subsequent sections.
Low coupling eases the design of re-usable building blocks that provide common functionality on
top or within an integration architecture like notification, logging, proxy or visualization services.
In order to achieve interpretable representations, some kind of self-descriptive formal language like
SGML [GR00], XML or similar techniques may be applicable.

Sebastian Wrede

4. The Technological Perspective 49

Scalability

Scale is an important goal for the design of distributed systems, because it shall guarantee that a
system can grow and is extensible for an increased processing load, for instance take into account
the exponential growth of queries on the root servers for theinternet’s Domain Name Service (DNS)
during the 1990s [Bir05] that lead to several internet brownouts. In general,scalability in distributed
systems can be defined as follows:

Definition 4.3 (Scalability) A system is said to be scalable if it can handle the addition ofusers and
resources without suffering a noticeable loss of performance or increase in administrative complex-
ity. [Neu94]

Even though the usual meanings of scalability like increasing a user base from one thousand to one
million without breaking quality-of-service (QoS) guarantees is rather not in scope of the cognitive
systems to be developed, scalability questions nevertheless can become important.

Adding a component such as a global monitoring service that integrates with many other components
in an existing system architecture triggers additional concerns about extensibility but imposes to the
same extent questions of scalability. Whether or not a system is capable of handling the increased data
flow and how it copes with the additional interactions is often unpredictable. Thus, let us consider the
three distinct dimensions [Neu94] that comprise scalability. Each of these influences the challenge of
building a scalable integration architecture in differentways:

Size scalabilityneeds to be supported in that it must be possible to dynamically add components to a
developing system architecture without suffering performance loss and to improve the system perfor-
mance if a service is properly replicated. Although it for instance never occurred within the VAMPIRE
systems that a single source of information published its information to more than50 receiving mod-
ules, size scalability becomes important for cognitive systems with regard to the dynamics of latency,
throughput or robustness when additional services are integrated. As a general requirement scalability
is often claimed to be supported by middleware solutions butit is usually not proved. Therefore, it will
be necessary for a proper evaluation to test the integrationapproach in meaningful scenarios relevant
for the application domain.

Geographical scalabilityis less important for the work carried out in this thesis as the goal is to build
networked systems like an assistance system that features ahigh degree of local cohesion, which
is usually integrated within one local area network (LAN). The question of geographical scalability
needs to be addressed differently when the network distancebetween participating computers is very
large, for instance when scalability on a global level is needed.

That said, it is tempting to apply broadcasting or IP multicast protocols on the transport layer of LANs
in order to ease the design of scalable applications. Unfortunately, this decision will turn out as an
over-simplification with regard to the given integration context outlined in Chapter 3. Even in the
simple case of performing integration within a single University network it is rather usual that the
systems which are set up cross the boundaries of single LANs.Therefore, a simple network broadcast
is no longer possible and the correct handling of IP multicast packets is no longer guaranteed if one
is not in control of the network infrastructure. Thus, although geographical scalability is not of prime
importance, certain aspects still need to be taken into account.

Bielefeld University

50 4.2. Distributed Systems and Software Integration

Transparency Aim and Description of Transparency Level Relevance

Access Hides platform or language specific details in data representations and differ-
ences in local or remote invocation mechanisms.

o

Location Hides the physical location of a component, for instance on which node a
service runs in a distributed system.

++

Migration Hides the movement of a component from one location to another. +

Relocation Hides the fact that a system can change the location of a service to which a
client is bound at runtime.

-

Concurrency Hides from a client the concurrent access to services by other clients. ++

Failure Hides failures like temporary disconnection from servicesby applying recov-
ery strategies without client involvement.

o

Table 4.1.:Levels of transparency in a distributed systems [ASTMvS02]and relevance for the integration
approach (++ important, + desirable, o neutral, - less important).

Administrative scalabilityis concerned with scale in terms of the number of organizations involved in
the operation of a distributed system and deals for instancewith security matters. It may be of interest
for very large-scale integration projects with a large number of involved organizations but is of less
importance for the integration context of this thesis.

Concluding, it is important to note that scalability is an important attribute of an integration architec-
ture for cognitive systems, particularly when systems are dynamically evolving, which is the favored
development approach for software integration in the givenenvironment as outlined in the description
of the collaborative perspective in Chapter 3. The following requirement shall summarize the most
important points of scalability from this viewpoint:

Requirement 4.4: ScalabilityAn integration architecture supporting the development ofscalable cognitive
systems needs to provide at least two properties of scalability. On the one hand, scalability is provided if an
increased number of components reasonable for the given domain performing different tasks do not degrade
overall system performance. Conversely, the overall system performance shall scale up if the processing of a
single component is distributed to a number of different components. Additionally, geographical scalability
must be supported at least in terms of addressing the needs ofthe integration environment.

Transparency

Transparencyin a distributed system describes the degree to which the differences between a local
and a remote interaction are masked out, e.g., for users working with an application on the system
level or software developers utilizing a middleware in a specific programming language. While even
more dimensions of transparency have been defined in the literature, Table 4.4 summarizes the most
important dimensions of distribution transparency [ASTMvS02] and their relevance to the integration
approach in the context of its network functionality. Aiming at full transparency in every aspect is
an extremely hard to achieve goal - although incorrectly claimed by many middleware products - that
may not even be well worth doing so in every case.

Sebastian Wrede

4. The Technological Perspective 51

So, what are the relative merits of the different levels of distribution transparency in the context of an
integration architecture?

Access transparencyaims at masking out the heterogeneity in different softwareand hardware plat-
forms used in a distributed system, e.g., in terms of byte ordering or language specific representations
as well as for instance with regard to the question how procedures are invoked. Aiming at a very high
degree of access transparency shall allow software developers to design programs that can be easily
broken up into smaller parts when distribution is needed. This shall reduce the complexity in the
design of distributed systems. Unfortunately, with regardto the inevitable differences between local
and remote interactions in latency, memory access and the existence of partial failure as outlined in
the beginning of this section, transparency in terms of, e.g., memory access and method invocation
can never be complete [WWWK97].

A high degree of access transparency masks the important fact that a distributed operation is possibly
carried out with the explained different characteristics.Just merging a CORBA implementation in an
existing object-oriented architecture to improve a performance gain by distribution is very likely to
result in an errant architecture [FRF+02] possibly with the same or almost no improved performance.
Even worse, errant architectures often exhibit a brittle, tightly coupled system architecture that is hard
to maintain and evolve on the longer run and ever harder to understand and test. In contrast, the system
design needs to reflect the distributedness through an explicit decomposition strategy, for instance by
choosing a suitable interface granularity [FRF+02] at the distribution boundaries.

While certain features of access transparency, for instance to overcome different memory represen-
tations are valuable and shall be addressed, full access transparency is for this reasons not of prior
importance for the approach to be developed within this thesis. The aim in this thesis is to deal
with the inevitable challenges of distributedness to the extent necessary and to reduce the essential
complexity in solving those within the given environment.

Compared to access transparency,location and migration transparencyare essential requirements
within distributed systems. If these dimensions are supported, the concrete physical location of a
component is masked out, for instance by assigning a symbolic name to a shared resource. Consider
a fully qualified domain name (FQDN) specifying a host computer in the internet over the equivalent
IP address of the machine as an example. While the FQDN hides the concrete location of a machine
on the network, the IP address directly reflects the network structure. From a practical perspective,
this requirement is important for maintainability of complex system setups as the involved node and
their network setup may change any time. Embracing locationand migration transparency, location
independence is an important requirement in general and also for the work carried out in this thesis.

Requirement 4.5: Location IndependenceThe component developers must not be aware of the physical
location of another service they utilize in a concrete system setup. Therefore, the integration architecture needs
to provide and use an abstraction strategy that masks out physical locations from the system developers. It must
not be necessary to change the code base of a service if the physical locations of other components change.

As an extension to migration transparency,relocation transparencyhides the dynamic movement of
components to other physical locations at runtime from other dependant services. While this may be
an important property for distributed architectures in general, this requirement did not show up during
the VAMPIRE project as services needed not to change their execution context at runtime.

Bielefeld University

52 4.2. Distributed Systems and Software Integration

The requirements arising from the parallel utilization of shared resources are much the same as what
we already discussed in Section 4.1 except the additional claim that the services utilizing others shall
not be aware of this fact and therefore operate in a loosely coupled manner. Thus, achievingcon-
currency transparencyand supporting the developers in coping with the challengestherefrom is an
important aspect and already on the list of requirements forthe integration architecture.

Due to the fact that the last aspect of transparency listed inTable 4.4,failure transparencyis highly
intertwined with the larger concerns of fault tolerance, let us discuss this now separately in the context
of this more general characteristic of a distributed system.

Fault Tolerance

Owing to the effects of partial failure and the existence of Byzantine errors due to the partly prototyp-
ical status of research software that is integrated in the envisioned systems, fault tolerance needs to be
taken into account in the design of an integration architecture. Fault tolerance in a distributed system
is comprised of availability, reliability, safety and maintainability [ASTMvS02].

An individual failure is a single cause out of a potential larger number of failuresthat is responsible
for the temporary failing of a distributed system. This may imply that all or parts of the regular
functionality are notavailable to human users or other system components. Within this context, the
difference between availability and reliability is important, because a highly available system need not
necessarily be extremely reliable.

Fault tolerance and failure transparency deal with error handling techniques in order to increase both
properties. While safely is naturally extremely importantfor instance in control systems in the broader
context of machine automation, safety can become an equallyimportant concern in the context of
cognitive systems that are autonomously acting in the real world like mobile robots. Maintenance
is important in order to allow for autonomous recovery without human intervention and is therefore
equally important in the application domain once such systems are leaving the experimental state and
non-expert users become dependant.

Failures can be classified according to their occurrence frequency, e.g. temporary, periodic, permant
and their characteristics. For instance,Byzantinefailures that may leave components in an undefined
state are often the result of erroneous software componentsand are hard to track down. Furthermore,
there are simplehalting errors where a software component aborts and is no longer available or fail-
stopfailures where a component cleanly aborts by being able to previously notify the rest of the system
of its malfunctional state. Besides these, a number of additional models of failures have been defined
in the literature, e.g., [ASTMvS02] that need to be treated on different levels of abstraction and with
specialized methodologies.

As we cannot assume user code to perform correctly, the integration architecture needs to detect
and notify the halting as well as fail-stop errors without requiring modifications of user code. The
inspection of Byzantine errors needs to be supported by a good instrumentation within the resulting
framework to track the state of affairs between involved software components.

In order to overcome the effects of partial failure different techniques can be applied that often impose
further limitations, e.g. non-standard extensions to network protocols or other constraints [Bir05]
that are not generally applicable, for instance annotatinga method asidempotent, which conveys the
information that a method call can be repeated in case of a previous error without side effects.

Sebastian Wrede

4. The Technological Perspective 53

In any case, it is important for software developers utilizing the integration architecture to know
the exact semantics of a provided functionality, e.g., whether point-to-point interactions feature at-
most-once or best-effort semantics and if in broadcast communication the ordering of the messages is
preserved in receiving processes. If this information is not available, both the development process of
a system can be cumbersome as well as it will be hard to come up with highly reliable system in the
end.

Concerning the level of error transparency that can be achieved in a distributed system, let us
note that it is theoretically and practically infeasible tototally mask out failure in such environ-
ments [WWWK97]. Thus, the concept followed within this thesis is that errors are an exceptional
but regular system state that needs to be made explicit by corresponding mechanisms to be exposed
by the integration architecture to software developers in order to handle errors in application specific
ways on a higher level of abstraction. Thus, error transparency is not a primary goal of the integration
architecture. Providing a high degree of error transparency in development situations may make
matters even worse, e.g. by masking out coding errors, thereby ignoring the principles of defensive
programming [Lad94].

Requirement 4.6: Error HandlingIn contrast to providing a high level of error transparency,an integration
architecture shall explicitly accept errors as a central reality and provide functionalities that allow to assess the
possible cause of failure, actively handle them and eventually recover from them at runtime by reconstruction
of a corrected system state without human intervention.

The questions how fault tolerance and error transparency goalong with the software design of the
resulting systems or components, provides a starting pointfor the subsequent section on software
architecture in the context of the envisioned distributed system.

4.3. The Relevance of Architecture

Complexity in software development usually arises from twodifferent sources. On the one hand there
is unavoidableinherentcomplexity in the domain of cognitive and distributed systems. This type
of complexity needs to be handled on the level of the functional or integration architecture of the
resulting software system.

On the other hand,accidentalcomplexity [Bro95] is non-essential for solving the functional chal-
lenges. This type of complexity may emerge in this integration context from heterogeneous devel-
opment processes, a varying level of cooperativeness between project partners and from architectural
mismatch between sub-systems. To cope with the resulting overall complexity and the technological
peculiarities of parallel and distributed systems, a coherent integration architecture is critical.

The goal of architecture-centric software and systems development is to raise the level of abstraction
in order to reduce the overall problem complexity. In the following, we shall discuss what additional
requirements origin from this perspective for the envisioned integration approach, particularly why
modularity is on a more abstract level the most important factor for reducing overall complexity.
Linked to the aspects of modularity, the reasons for aiming at a loosely coupled service approach
within this work will be explained. To commence this chapter, questions of architectural style will be
discussed in the context of an integration architecture.

Bielefeld University

54 4.3. The Relevance of Architecture

4.3.1. Modularity as a Key to Software Quality

Modularity is a fundamental principles that is often found in complex technical and organizational
structures as well as in nature. Looking at the definition of acomplex system, one approach to deal
with the challenges arising therefrom is to reduce the number of distinct parts by aggregating elements
into more coarse grained subsystems. As a consequence, the aim is to build larger systems by com-
bining thesemodulesand focusing at the interactions between them on a higher abstraction level than
one would otherwise do. Decomposing a large number of intertwined elements into a smaller set of
less interdependant modules is the general aim of modular software development approaches.

Parnas introduced the classical definition of modularity and the concept of information hiding already
in the Seventies as he states that every module “is characterized by its knowledge of a design decision
which it hides from all others. Its interface or definition was chosen to reveal as little as possible
about its inner workings”[Par72].

While the ideas of Parnas and others are still influential forthe design of programming languages, it
will be necessary for the envisioned integration approach to allow for modularity and reduced inter-
dependencies on a higher level of abstraction than that of programming language elements. Examples
for more abstract information important on this level are what functional roles and interdependen-
cies an individual module, what interface specifications itadheres to or what rules prescribing the
development and integration it needs to conform to.

In order to assess modularity in the context of software architecture, let us take on the perspective
that Bertrand Meyer introduced [Mey97]. He gives a more detailed description for the notion of
modularity that can be summarized by the following six properties of a modular approach, which
we will adopt and consider as refinements for the call to follow a modular approach as stated in
Requirement 2.1:

• Modular Decomposability: A software architecture yields modular decomposability when it
facilitates the comprehensible decomposition of a probleminto a smaller number of easier
subproblems that are still manageable by the integration architecture. In order to satisfy this
constraint, the resulting partitioning should allow for independent, parallel development and
interconnection through a structure as simple as possible.

• Modular Composability: This property of modularity relates to reusability of already existing
building blocks of functionality in different contexts. Anarchitecture satisfying composabil-
ity shall allow to freely integrate existing building blocks in novel applications that were not
foreseen during the initial development of these modules.

• Modular Understandability: If a software favors modular understandability, it shall be compar-
atively easy for humans to understand the system-level functionality of a software module. It
needs to be possible to understand the interactions of a module without getting to know all other
modules within an architecture. In order to allow for betterunderstandability, our assumption
is that traceability of the dynamic behavior of modules is anequally important requirement.

• Modular Continuity: The aim of this property is to limit the impact of change. A software
architecture conforms to modular continuity when a change in one of the domain modules
yields only a minimal number of changes in other modules. This property poses questions of
versioning and backward compatibility of interfaces.

Sebastian Wrede

4. The Technological Perspective 55

• Modular Protection: While continuity is concerned with the impact of change, this property is
concerned with the impact of failure. It states that the number of modules of an architecture
that are affected by an abnormal condition within one moduleshall be minimal. This challenge
relates to the question of combined critical dependencies introduced previously and the aim to
achieve a high degree of robustness.

These attributes need to be carefully considered when designing a software architecture as they pro-
vide a fundamental basis to allow problem decomposition on the level of the integration and the
functional architecture. Even so, the question how modularity can be achieved in the reality of larger
systems must not be answered in this analysis but in later chapters of this thesis. However, an archi-
tectural property that is closely related to the attributesof modularity is the degree of coupling that a
system exhibits at different levels of abstraction.

4.3.2. Software Coupling and Granularity

Coupling in a software system is a “the strength of association established by a connection from one
module to another” [SMC99]. While a minimal amount of coupling is needed for a modularized sys-
tem to perform a meaningful task,tight andloose couplingdefine the extreme ends of this continuum.
From the perspective of software architecture, coupling can be interpreted as the fragility exposed by
module interdependencies.

Tight coupling induces a high fragility in the relation between a number of components, which often
implies negative effects on the aspects of modularity explained above. Aiming at loose coupling in
contrast, acknowledges the benefits of a modular approach while granting the fact that a problem may
not necessarily be fully decomposable in a modular manner, for instance due to performance require-
ments. Realizing a loosely coupled architecture focuses ona reduction of the number of external
interdependencies between modules, hiding internal parameters that are only important for the con-
crete implementation behind the module’s interface. Loosecoupling is particularly beneficial given
the characteristics of the integration context, e.g., to effect independent component development and
improved changeability of individual modules.

Coupling can be induced along several orthogonal dimensions [Fai06]. The critical source of coupling
for the context of this work is coupling on the component interface level. This type of coupling is
comprised of aspects like data and interface formats as wellas granularity, version resilience, transport
independence and the granularity of expected interaction patterns. Furthermore, stateful interactions
and implicit as well as explicit correlations, the ability to mediate data between components through
proxies or routers and dynamicity are concerns that influence the degree of interface coupling.

Acknowledging the benefits of loose coupling and the desiredabstraction level of an integration ar-
chitecture, the question of interface granularity quicklyarises. Considering this aspect in the context
of software integration, boils down to the question of what abstraction level shall be targeted when
modules in the functional level of the system’s architecture are to be integrated with the services an
integration approach provides.

From the viewpoint taken on in this thesis, the assumption isthat it is beneficial to focus on rather
coarse-grainedcomponent interfaces for two reasons. Firstly, a decomposition into modules that offer
their functions through a coarse-grained interface forcesmodule developers to design system-level
interactions on a higher level of abstraction, which reduces overall complexity.

Bielefeld University

56 4.3. The Relevance of Architecture

Secondly, the introduction of coarse-grained interfaces has positive impacts on the overall perfor-
mance in distributed systems as fewer message exchanges between components are necessary. Fur-
thermore, this strategy promotes modular protection, reuse and changeability, e.g., because coarse
grained interfaces at the same time exhibit smaller interfaces with fewer methods.

Another argument in favor of coarse grained components for integration within a loosely coupled ar-
chitecture is that some fine-grained modules need to be more tightly clustered within a larger building
block to cope with specific requirements, e.g. real-time guarantees for the visual servoing of a robotic
arm or control algorithms that need to be executed with fixed timing intervals.

If these building blocks are encapsulated in coarse-grained component interfaces, they can still be
integrated without inducing unnecessary complexity on theoverall integration what would be the case
if, for instance, real-time would be a first class requirement. For the reasons outlined in this chapter
taking into account the integration environment and the distributedness requirement, we state that a
suitable integration approach needs to support the development and integration of loosely coupled
software modules:

Requirement 4.7: Loose CouplingThe integration architecture shall primarily promote loose coupling on the
interface level for the services it provides, thereby allowing for reduced coupling on the level of the functional
components. The goals are to foster independent development and evolution of components as well as to
increase testability, which are all important software qualities in the context of the given integration context.

4.3.3. Architectural Styles and Software Integration

An important aspect for finding dependable solutions to the challenges described previously and par-
ticularly in the context of distributed systems and loose coupling is the concept ofarchitectural style.
Similar to idioms on the level of programming languages [Cop91, Lan01] anddesign patternsin
object-oriented software [GHJV95], architectural stylesencode design decisions which are applied to
the construction of systems [SC97]. Each style promotes qualities that are of special interest under
certain conditions. For instance, the C2 style, depicted inFigure 4.2, was developed with a particular
focus on the development of GUI systems [TMA+95]. Architectural styles are a critical concept in
achieving reuse of structures, relations and interactionson a high abstraction level.

According to this understanding, architectural styles aredescribing the structural organization and
interaction of software entities, remaining completely independent of specific domains. Examples for
these domain-independent architectural styles arepipe-and-filter, request-reply, shared repositoryor
object-request-brokeras well as many more [SG96, AZ05]. These styles are extremelyimportant in
order to describe, model and communicate the high-level structures of software architectures. While
the border lines between patterns and styles are yet unclear, it is nowadays very well recommended
practice to design and describe software systems using these building blocks. Specifying and applying
well-known architectural styles is not only useful for the realization of an integration framework itself
but is particularly beneficial for the services it provides itself to its clients.

Styles that map to software patterns allow to codify proved solutions that encapsulate large fractions
of the accidental complexity in distributed component interaction. An integration approach featuring
anintentionalarchitecture, shall make the rules governing the composition of design elements explicit
and document them in one or more architectural styles or system-level patterns.

Sebastian Wrede

4. The Technological Perspective 57

Figure 4.2.: Exemplary C2 architecture with four components
in three layers and two connectors, which actu-
ally isolate higher-level from lower-level compo-
nents [AZ05].

The quality of resulting system in-
stances and software architectures
can greatly benefit from distin-
guished styles that are followed pre-
cisely during system construction at
the same time making it easier to
communicate about the structural as-
pects of a larger system.

As functional and technological di-
mensions are not orthogonal, it will
be important to provide a set of ar-
chitectural styles or patterns on a
system level that matches well with
the functional and non-functional re-
quirements identified in the previous
chapters. However, it is impossible
to assess in preface possible future
styles needed in an integration archi-
tecture and as it is hard to assess at the beginning of a project like VAMPIRE which architectural styles
will be best suited for integration, the focus of this work with regard to architectural style is to not be
fixed on a single style but rather provide an extensible, opensoftware architecture providing build-
ing blocks for easy extension, yielding a further requirement mainly derived from the technological
perspective:

Requirement 4.8: Architecture ExtensibilityIntegration architectures must allow for extension of their func-
tionality in terms of provided styles with a reasonable effort, e.g. by offering predefined extension points.

4.4. Summary

The main matter of this chapter was to detail some of the technological challenges involved and sug-
gest strategies for reducing their impact, with a particular focus on parallel and distributed computing.
The goal here is to encapsulate the accidental complexity without constraining architectural choice
for system developers. The previous sections described requirements that have to be fulfilled in an
integration architecture for experimental cognitive systems to realize this.

Following a modular approach is a key requirement for integration and directly leads to the question
of interface design and coupling. While a certain amount of coupling between modules is inevitable,
loose coupling is especially important here due to the collaborative nature of software development
in research projects as described in Chapter 3. To a certain extent, the aim of encapsulating com-
plexity and providing guidance for the design of distributed software architectures conflicts with the
required freedom of architectural choices. Hence, the outlined approach strives at a balance which
hides accidental complexity while exposing inherent complexity.

Bielefeld University

58 4.4. Summary

Sebastian Wrede

59

5. Requirements and Architectures for
Integration of Cognitive Systems

Throughout the past decade, several frameworks for vision systems have been proposed [FJK+96,
PUV03, DKRH94, KR94, LWT94]. Most of these frameworks were tailored to certain project specific
requirements and thus are of limited applicability for the more general challenges of cognitive systems.
However, there are common needs in traditional computer vision as well as in cognitive systems which
this thesis tries to address in order to provide a suitable software integration approach that increases
the efficiency of research aiming at real-world prototype systems. In the previous chapters, these
needs were identified through consideration of three perspectives for a holistic integration approach
in this context: the project, the collaborative and the technological perspective. This presentation may
suggest that these perspectives are orthogonal. However, this is fortunately not true. The aim of this
chapter is to provide a condensed set of key aspects representing the essential thematic priorities within
this thesis, thus laying a basis for comparing selected related work against these general requirements.
Additionally, this will provide an avenue for the transition to Part two of this thesis that presents the
approach introduced with this dissertation.

The first section of this chapter further analyzes the identified requirements by clustering them into an
evaluation scheme. This is subsequently used for estimating the strengths and weaknesses of other ap-
proaches compared to the key aspects important within this thesis. This catalogue extends a report that
prepared for the EC Vision network of excellence [PVWB04] and presented at ICPR04 [WPB+04]. It
was requested due to the fact that only less comparative and not very recent reports [CC94, RRH99]
were available at that time. While this report mainly focused on computer vision toolkits, the analysis
in this section is geared towards approaches to software integration, explicitly considering approaches
supporting cognitive vision and robotics systems.

The resulting compact catalogue of the most important aspects and requirements shall provide an
avenue for a brief introduction to related research activities from the domains of cognitive systems
science. Subsequently, three exemplary architectures ranging from object-oriented middleware and
cognitive vision research to an integration architecture for cognitive robotics will be reviewed along
the identified criteria. The chapter ends with a short discussion and brief conclusion of Part I, de-
scribing how the existing approaches differ from the properties one would expect for the envisioned
integration approach that is presented in the second part ofthis thesis.

5.1. Synopsis of Requirements

The aim of this section is to develop a conceptual framework for comparing existing related work
against the requirements identified in the previous chapters, similar to what was done for agent archi-
tectures [EM02] or mobile robotics [Ore99, KS07], but constantly keeping in mind the three perspec-
tives explained before.

Bielefeld University

60 5.1. Synopsis of Requirements

Requirements engineering usually separates individual requirements into so-calledfunctional and
non-functionalrequirements, which has not been done for the requirements identified so far. While
functional requirements (FR) specify “a function that a system [. . .] must be able to perform”[IEE90],
the latter are less clearly defined. Within this thesis, we will adopt the definition of non-functional re-
quirements (NFR) according to Sommerville [SK98] as a specification of cross-cutting system aspects
placing restrictions on the artifact to be developed, the development process or representing external
constraints that must be considered. Thus, the first step in analyzing the discovered requirements is to
assign them to either one of these two categories.

As a second step, each individual requirement thatshouldbe taken care of is assigned to one larger
aspect representing an aggregated requirement whichmustbe addressed in some way by an integration
approach applicable for conducting research on cognitive (vision) systems as in the VAMPIRE project.

Figure 5.1 depicts the results of this process. Each key aspect originates either directly from a previ-
ously discovered requirement like the need for adistribution infrastructureor is denoted by a newly
introduced term that better describes its aim as a whole likethe ambition to supportsoftware engineer-
ing methodologies. Furthermore, requirements were adapted orbroadened, for instance the computer
vision requirement. Looking from the more general perspective of cognitive systems, the relevant
question is whether candidate approaches provide some way of support for the functions needed in
one of the domains of cognitive systems research, not solelybeing restricted to computer vision. In
addition to discussing the aspects introduced subsequently, I will shortly argue why, e.g., a rather typ-
ical requirement such as security is of less importance in the given context and explain the resulting
scheme used for subsequent assessment of related approaches.

5.1.1. Functional Aspects

The functional requirements that are motivated by the idea of a visual active memory as well as the
interactions within such an architecture yield a set of key aspects an integration solution must sup-
port. These aspects areData Representation, Information Management, Distribution Infrastructure,
Adaptive CoordinationandDomain Supportwith regard to computer vision functionality. The con-
siderations behind each of these key aspects are the following:

Data Representation Finding a common representation for the data processed in a visual active
memory was considered important from the very beginning of the project. One of the fundamen-
tal ideas about the functional architecture of a VAM system is to let various interpretation processes
operate directly on a set of shared information in order to build a history of the visual events in its
environment. While this idea is conceptually close to the well known style of blackboard architec-
tures [SG96], which we shall revisit later in this thesis, itis considerably different from procedural
integration where services invoke each other directly via their specific interfaces.

Acknowledging the importance of shared data representation it becomes clear that the chosen type
of representation must be extensible (Req. 2.6) in order to cope with the data variability inherent to
cognitive systems, for instance the different types of multi-modal sensor information like visual and
audio information as well as more abstract information processed in a VAM system. Therefore, the
data types an integration architecture offers must themselves be extensible, e.g., by using service or
data definition languages.

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 61

Figure 5.1.: Key aspects for software integration in cognitive systems research projects consituted by aggre-
gation of related requirements identified in the previous chapters.

Moreover, representations should be interpretable (Req. 4.3) by software modules without knowledge
of the source and types as well as ideally understandable by humans (Req. 3.6) to facilitate communi-
cation between system developers.

Concerning other functional requirements for the integration approach, questions of data represen-
tation are usually linked to the data formats used for service interaction within a distributed sys-
tems architecture and can affect the coupling between components, e.g., when comparing document-
oriented interactions versus programming language-oriented parameter passing. Additionally, the
induced overhead of a specific data representation naturally has implications on the performance of
the overall integration approach. Last but not least, the chosen representations should be accessible
for external implementations to offer a certain level of openness.

Information Management The memory metaphor is an important conceptual cornerstoneof the
VAMPIRE project’s vision and for cognitive vision systems (Req. 2.7). Thus, an integration approach
must feature substantial support for an active management of multi-modal information, providing a
robust basis for cognitively motivated architectures.

Beyond the application of potentially suitable state-of-the-art data management technology like active
databases or techniques like distributed shared memory, anintegration architecture needs to provide
additional means for an active self-management of the information contained within the repository
(Req. 2.10), induced for instance by the idea to model a forgetting process (Req. 2.11) that maintains

Bielefeld University

62 5.1. Synopsis of Requirements

consistency and performs an automatic garbage collection within the stored multi-modal information.
In traditional databases, similar functionality is often realized with rule-based triggers [DBM88] and
stored procedures. In addition to these features, it shouldbe possible to provide flexible means for the
interlinking of multi-modal information by inserting references between elements within the different
memory instances.

Looking from a technological perspective, this aspect is also related to the chosen data representation
as it can become cumbersome to provide the necessary conversions if the data model of the infor-
mation management service does not match the one chosen for the data representation. Ideally, both
models shall be equal or shall complement each other in orderto let the information management
system directly operate on model instances. To the same extent as for the data representation, it is
necessary to consider the question of extensibility with regard to the large variability of data types
that need to be handled by the information management architecture. Furthermore, the information
management aspect needs to be integrated seamlessly with the functions and patterns provided by the
distributed processing architecture in order to be accessible throughout a networked system and to
improve usability factors.

Distribution Infrastructure In order to support the functional architecture with the necessary
computational resources and account for the inherent parallelism as a fundamental requirement of
cognitive systems (Req. 2.2), an integration architecturemust offer the possibility to distribute multi-
ple computations in parallel over standard networks (Req. 2.8).

While a general purpose middleware has to deal with a larger amount of requirements, still several of
the identified requirements contribute to this aspect:

• Asynchronous communication patterns (Req. 2.12)

• Support for inherent concurrency issues (Req. 4.1)

• Partial distribution transparency, at least location independence (Req. 4.5)

• Preference for a loosely coupled distributed architecture(Req. 4.7)

Looking at the interdependencies with other aspects, let usfirst note that we can identify a conflict
with the usability requirement: once a distributed architecture is envisioned, the level of expertise that
is needed by software developers due to intricate technological implications raises. Thus, it is not only
importantwhatmethods for parallel processing are offered, but alsohow these are provided and how
they affect the overall usability. For instance, ACE [SH01]allows users to provide per-thread memory
allocators to reduce latency induced by per-request memoryallocation within the marshaling step of
the network input/output, but this shifts the burden of a correct implementation of these allocators to
the end users. Other functional aspects related to the question of distribution are representation and
information management as well as adaptive coordination ofparallel processes if carried out across
network boundaries.

Avoiding a discussion about non-functional aspects, the question of how to design a programming
interface and provide an architecture for distributed processing is related to almost all of the non-
functional requirements. For instance, it must clearly deal with the aspect of product utility: while
reactivity in terms of low response times is one example, throughput, scalability and reliability are
other examples that need to be considered in realizing the distribution functions of the integration
approach.

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 63

Adaptive Coordination The need for coordination in the context of interactive cognitive sys-
tems inevitably arises from the contradicting need to perform multiple computations carried out asyn-
chronously in parallel (Req. 2.2) and the necessity to produce a meaningfully sequenced behavior.
Additionally, it shall be possible to fuse information fromdifferent input sources that is generated at
different points in time with these models. As soon as some sort of robotic actuator or other means for
interaction are needed, more advanced arbitration problems arise that can only be handled by an ex-
plicit sequencing and coordination strategy taking into account the overall system context (Req. 2.3).
While these functions can be encoded in the implementationsof the individual components, a de-
sirable quality from the point-of-view of software engineering is that models for coordination and
control are encoded externally and controlled by the integration architecture.Considering adaptive co-
ordination mechanisms in the integration architecture shall simplify the implementation of software
components, resulting in an modular and maintainable overall architecture, thus improving testability
as well as reuse of individual components.

However, in order to put coordination into effect, featuresmust be provided that allow to dynami-
cally change the behavior of individual components, e.g., by modifying their orchestration at runtime
(Req. 2.4), for instance by activation and dynamic interconnection of components in a specific system
context. Furthermore, dynamic configuration as a new requirement shall be introduced here, which
can be exploited for carrying out adaptive changes, e.g., bychanging the algorithmic or other param-
eters at runtime or prior startup without changing implementation code.

Another requirement is to allow for extension either of existing integration abstractions (Req. 4.8) or
by introducing complete new patterns, which allow for behavior modification of individual compo-
nents, once more ideally without changing the component’s internal implementation.

While coordination mechanisms can be very domain specific, achallenge is to find models for spec-
ifying system-wide coordination behaviors in a generic wayat different levels of abstraction which
also incorporate environment information and system state. Furthermore, potential errors during the
execution of a coordination model need to be taken into account, too. Thus, functionality for handling
these anomalies must be provided by a meaningful approach. Adaptive coordination can additionally
relate to declarative specification if the coordination models can be specified in a declarative syntax
as it can be done, for instance, when using hierarchical finite state machines [RHS07].

Domain Support From the perspective of the VAMPIRE project, the relevant domain specific
support that is primarily required considers computer vision and pattern recognition related function-
ality (Req. 2.5). Considering the field of experimental cognitive systems, different or even multiple
domain specific functions need to be encapsulated, which mayrange from robotics to artificial intel-
ligence or even other areas in order to develop and integratea fully fledged cognitive system like an
interactive robot. Support for a specific domain commonly manifests itself by providing all or a subset
of the following functionalities:

• Datatypes: Abstract data types representing domain structures, e.g., scene objects.

• Algorithms: Implementations of typical algorithms like object detection.

• Adapters: Wrappers for directly re-usable building blocks of domain-specific functionality, for
instance a software component that is wrapping a specific object learning implementation.

Bielefeld University

64 5.1. Synopsis of Requirements

• Visualization: Visualization functions for domain-specific information. Both generic or specific
for certain data structures or applications.

• Simulation: Support for specific hardware (e.g., Player/Stage [GVH03]) or environment (e.g.,
Vortex [Sim08]) simulation or combinations thereof (e.g.,MSRS [Jac07]).

Obviously, all these functions are requirements an integration architecture should consider as impor-
tant functionality with regard to its domain support. Unfortunately, it is well beyond the scope of the
work carried out in this thesis and may not even be possible inlarger projects to provide the level of
domain-specific functionality needed within an integration architecture itself. Also, this functionality
is often readily available by experts in the field or providedby larger organizations in feature-rich
libraries like OpenCV for computer vision research. While acknowledging the importance of this
aspect, in this thesis the availability of adapters for relevant software packages, cf. Chapter 3, with
a particular focus on computer vision and pattern recognition toolkits is a desired characteristic of
a suitable integration approach. If corresponding application adapters are not readily available, it
must be easily possible to increase the level of domain support by developing additional adapters that
encapsulate already existing software packages.

From a functional viewpoint, this aspect relates to almost any of the other ones, simply because
developing adapters is itself an integration task. Naturally, writing adapters which are subject to the
constraints defined by the VAMPIRE project’s scenario and the approach developed in this thesis is
after all at least related to the representation and distributed architecture aspects. Furthermore, an
approach supporting a set of relevant domain functions obviously improves the efficiency of software
development in a research project, e.g. through contributing to the overall agile development process,
permitting reuse and incremental development.

5.1.2. Non-Functional Aspects

Practical experience from many larger research projects that were carried out in the past shows that
if cognitive systems prototypes are being integrated (usually by teams of researchers from different
institutes, backgrounds and countries as explained in Chapter 3), one has to consider not only domain
specific requirements but always will face problems of programming in the large. Therefore, non-
functional requirements have to be taken into account, too.

Figure 5.1 depicts three aspects,Product Utility, Collaborative Complexityand support forSoftware
Engineeringmethodologies that represent non-functional requirements which need to be considered
in a suitable integration approach. The individual aspectsagain cluster several related requirements
that were identified in the previous chapters. Each maps to one general kind of NFR as defined by
Summerville [Som01], which are quality attributes on the implementation level like high availability
and external as well as process constraints, e.g., with regard to legal requirements or the development
process. The three main non-functional aspects in this context are as follows:

Product Utility Compared to the functional aspects, non-functional aspects place constraints on
the realization or feasibility of certain conceptual design decisions within the integration architecture
with regard to, e.g., performance, reliability or scalability. For instance, it is important to note that
within the VAMPIRE project’s scenarios the degree of utility an online assistance system provides is
largely dependant on its overall performance. An exemplaryrequirement that needs to be fulfilled with

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 65

regard to this aspect is that the round-trip cycle from imagecapturing, image processing and object
recognition to scene augmentation must allow for an adequate alignment between the visualizations
of detected scene objects and the scene the user sees in the head-up display. The latency between
visualization and head movement must match the user’s expectations with regard tocomfortablein-
teraction speed, because otherwise the utility of the product will diminish regardless of its functional
attributes.

Unfortunately, it is extremely hard to define a set of comfortable parameters with regard to the overall
responsivityof a system and the reactivity requirement (Req. 2.9) without considering a specific in-
stance of an integrated system. In addition, it is obvious that the framework overhead shall be minimal
compared to the time that is allocated to processing in the functional layer. Unfortunately, it seems
impossible to compare the performance of other approaches as no standard test sets are available and
the semantics of integration are often not comparable to each other. In order to get a coarse estimate
for the utility of an approach, either reported performancenumbers or the complexity of published
systems integrated with a specific framework must be considered.

Another requirement for the utility of an integration approach is the level of scalability (Req. 4.4)
for the provided integration services.Reliability is an additional requirement introduced here that is
obviously important, even in the context of experimental cognitive systems research, cf. Chapter 4.
As a non-functional aspect, it relates to almost any of the functional aspects outlined in the previous
section.

In contrast to software architectures for other domains, security is not that important in the context
of research systems. This is due to the fact that collaboration should not be obstructed by unnec-
essary security precautions. This is justifiable as the developed prototype systems, operate rather in
isolation than in cooperation with possibly external hazardous services. That said, security needs at
least be considered to a certain extent in order to avoid obvious abuse of, e.g., the service execution
functionality of an integration framework. One way to handle this generally is to shift the respon-
sibility for authorization to the underlying operating systems and utilize the secure protocols and its
corresponding tools for externally applying security measures.

Collaborative Complexity Recalling the three types of NFRs as introduced above, this aspect
represents a sort of external constraint that must be met by asuitable integration approach. This aspect
is largely concerned with requirements that are rooted in the integration context in terms of research
projects, heterogeneous stakeholders and user structure and the lack of standards in the cognitive
systems domain as described in Chapter 3 yielding an anarchic, at best oligarchic integration situation.

In order to deal with the challenges of collaboration and to handle, for instance, geographically dis-
tributed development situations, usability and communication are primary concerns. Addressing ease-
of-use (Req. 3.4), an integration approach needs to featurelow entry requirements and avoid a steep
learning curve. Furthermore, questions of how users can be protected from or overcome errors in using
an approach as well as the convenience to work with an integration architecture are important usabil-
ity factors. Usability in the context of an integration architecture may span across several dimensions
including installation, software development, configuration, deployment, distribution and operation.
Therefore, usability additionally calls for sophisticated support tools, e.g., for system management.

As discussed in Chapter 3, the need to embrace change (Req. 3.1) in every phase of a software devel-
opment process is essential for successful integration. Frequent changes of requirements on the level

Bielefeld University

66 5.1. Synopsis of Requirements

of the functional architecture are assumed to be rather natural in a dynamically evolving collaborative
research project that aims at an integrated software system. Related to the call for a loosely coupled
distributed processing architecture, this requirement needs to be considered by an integration archi-
tecture, e.g., by avoiding the need for re-compilation of software artifacts if interfaces are extended or
when an information source in a system architecture is exchanged by a different module.

Another requirement identified upon looking at the development process in collaborative research
projects is the necessity to embrace reuse (Req. 3.5) in order to benefit from already existing legacy
components. This is even more important as not every novel functionality may exist at the beginning
of a project although higher-level software modules may depend on it. This requirement is related to
the aspect of domain support, particularly in terms of simulation functionality and existing adapters.

Last but not least, well maintainedDocumentationand technical support must be available. Introduc-
ing this requirement here comes from the observation that especially in software frameworks resulting
from research projects this point is often neglected. Documentation must not be limited to an appendix
in a corresponding PhD thesis. It at least necessitates an up-to-date reference manual focusing on the
concepts and a complete programming-oriented documentation. For successful use of any approach
this is critical. Looking at documentation and openness from a different perspective, these qualities
are critical for the probability that external collaborators commit themselves to a specific platform or
integration architecture. Following an open approach alleviates political reasons for not using existing
software in joint projects as external partners feel not locked in to a closed platform.

Software Engineering Although software development and software integration are slightly dif-
ferent tasks, it is beneficial to perform both tasks according to principles adapted from software engi-
neering. This aspect summarizes different requirements originating from this viewpoint.

In software engineering, a frequent goal is to find abstractions that provide generic solutions applicable
to a class of similar problems. This is similar to what is expected from an integration approach in the
context of this thesis. It shall provide a generic design space for functional architectures relevant in
the domain of cognitive systems. The additional requirement which derives from that is to what extent
an approach is neutral with regard to domain-specific specific architectural styles and what limits are
imposed by the integration approach on the space of possiblefunctional architectures.

Albeit not being used frequently (as shown in Chapter 3), many of the methodologies in software en-
gineering can be useful for the development of integrated cognitive systems. In order to facilitate their
use, an integration architecture needs to support these methods. One of these concepts is to support
incremental development (Req. 3.3). Combined with a modular approach (Req. 2.1), integration can
start early with a basic design to evolve over time.

Another way of reducing complexity in software integrationis to support a (declarative) specification
(Req. 3.7) of the relevant abstractions used in a system, e.g., by employing a generic modeling lan-
guage like UML. At least, it must be possible (literally) to write down the application of integration
concepts for a given system in order to maintain models of integration-related properties as com-
plete as possible for all project participants. Ideally, itis an executable specification as aimed for in
model-driven engineering approaches.

Support for system analysis at runtime must allow for tracing the dynamics of module interactions
and global system state, e.g. to inspect the data flow betweenindividual components, which is also
important for system testing and evaluation (Req. 3.2).

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 67

5.1.3. Implementation-specific and Economic Aspects

So far, we mostly considered criteria, which are important from a functional or non-functional point
of view. Some features, however, are less important from theconceptual viewpoint but need to be
considered from a technological or economic perspective, which are:

Platform Support This aspect describes for which hardware and software platforms (operating sys-
tem) implementations of an integration concept are available.

Language Bindings In addition to platform support, this point addresses whichprogramming lan-
guages are supported by a specific approach. Regarding this requirement, support for C/C++ is
critical as this has been the language used by most domain experts at the time of writing of this
thesis.

Standard Compliance The standards compliance of an integration approach describes what stan-
dards are defined or supported by an integration approach. This aspect also relates to the open-
ness of an approach.

Dependencies A small dependency graph regarding external libraries is desirable for reasons of
software complexity and maintainability.

Licensing As within European union research projects a strategical aim is to support the open source
idea, questions of licensing are naturally important.

All aspects outlined above will be used in the following to assess related work aiming at similar goals
as the approach presented within the remainder of this thesis.

5.2. Software Architectures and Middleware for Cognitive
Systems

Recalling the different architectural layers (system, integration, functional) that constitute a cognitive
system instance as introduced in Chapter 1 and taking into account both the aspects identified in the
previous section as well as the large number of possible application scenarios for these systems, one of
the initial challenges is to get an overview of related work.Within the context of this thesis, relevant
related work either stems from application-independent middleware approaches focussed on the innate
problems of software integration such as object-oriented middleware or from one of the research
areas that are domain specific but related to cognitive systems like pattern recognition or cognitive
modelling. Figure 5.2 gives a graphical overview of the relevant areas where research is conducted
related to software integration in cognitive systems. Thisoverview and the following descriptions of
each activity do not make any claims about completeness withregard to cognitive systems research in
general, but nevertheless describe which areas were considered to be relevant for the task of integration
in the VAMPIRE project.

Bielefeld University

68 5.2. Software Architectures and Middleware for Cognitive Systems

Cognitive

Modelling
R obotics

V is ion

Sy s tem s

Pattern

R ecognition

R obotics

Middleware

R obotics

Architectu res

Artificia l

Intelligence

Cognitive

Architectu res

Au gm ented

R ea lity

Cognitive

V is ion

Hu m an-

Com puter-

Interaction

Knowledge

Representation

Cognitive

R obotics

Research

Areas

Research

Activ ities

Scientific

Domains

Multi-Agent

Architectures

VAMPIRE
specific

Figure 5.2.: Overview of selected research areas in cognitive systems and corresponding research activities
relevant for software integration. Additionally, their relation to cognitive vision and cognitive
robotics as scientific application domains is shown.

5.2.1. Domain-specific Architectures

Artificial intelligence (AI) is clearly related to cognitive vision research [Neu04]. Within the many
subfields of AI, two activities are relevant from the point ofview in this thesis. Firstly, multi-agent
architectures (MAA) are the primary way of building multi-agent systems (MAS) in AI research. A
MAS usually consists of interacting agents that cooperatively solve a given task. Approaches like
ADE [KS06], MicroPSI [BBV06] or Jade [BCG07] are generally interesting due to the fact that they
need to solve related challenges of integration, too, and are applied in similar domains. However, the
properties of a single agent differ significantly from the functional model of an individual process in
a visual active memory architecture in terms of autonomy, access to information and the fact that a
classical MAS features no central coordination.

Secondly, knowledge representation (KR) is another long-standing area of AI research that is con-
nected to cognitive systems research. KR is, for instance, concerned with the formal encoding of
knowledge in a way that it becomes accessible to computational processes like inference engines,
which in turn may generate hypotheses, validate rules, etc.Examples for techniques in this area
are KL-ONE [BS85], ERNEST [NSSK90] or the web ontology language [MvH04]. Overlaps exist
between KR and MAA research in the area of agent communication languages that aim at defining
the interactions between software agents in a distributed system like KQML [FFMM94] or FIPA-
ACL [LFP99]. While much can be learned from AI research in thearea of KR and agent communica-
tion languages, many approaches suffer from their special syntactic structures for representing natural
language constructs or high-level task descriptions. Other approaches like FIPA employ a specialized
syntax for message encoding, which requires the presence ofproprietary message parsers in every
component, effectively increasing coupling between software components.

Another area that is important for the work carried out in theVAMPIRE project is human-machine-
interaction research. Within this again rather broad field,augmented reality systems in particular need
to be considered as they often exhibit a high degree of integration. Furthermore, AR systems are
the primary application scenario within VAMPIRE. It turns out that in the context of AR research
indeed specific frameworks for software integration are developed, e.g. the Distributed Wearable
Augmented Reality Framework (DWARF) [MRB03] or the Studierstube Augmented Reality Frame-
work [SFH+00]. While the latter provides limited functionality for distributed processing, the former
features an event-driven integration concept allowing fornetwork communication.

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 69

Both projects provide domain-specific AR functionality, but fall short on other required aspects, e.g.,
by supporting only very specific styles of interaction between the components in a system architecture
or not providing any data management functionality. Therefore, we refrained from using one of these
frameworks as a basis for integration in VAMPIRE.

Research on pattern recognition algorithms and computer vision systems was naturally central to
the VAMPIRE project since it was defined as a cognitive visionproject. Although a huge num-
ber of libraries encapsulating domain-specific functionality like OpenCV [Int08], RAVL [CVS08] or
VXL [Vxl08] exist in this area and even MATLAB (with extensions like the Image Processing Tool-
box [The08]) is commonly used for software development, a smaller number of approaches explicitly
target the modular construction of vision systems.

Selected approaches that address this goal explicitly are:

• HALCON: Providing a huge number of image processing operators for many areas of com-
puter vision and pattern recognition and featuring an integrated development environment,
HALCON [ES99] is a commercial toolkit especially designated for the development of machine
vision systems used in industrial environments. Figure 5.3shows an exemplary screenshot of
the included development environment.

• IceWing: The aim of IceWing [Lö04] is to provide a toolkit for the development and prototyping
of real-time vision algorithms. It supports typical use cases in the development process of a
vision system like grabbing and recording of image streams,visualization of intermediate data
and dynamic parameterization. However, it featured a monolithic architecture by the time the
VAMPIRE project started.

• VisiQuest: With Khoros [KR94] being one of its ancestors, VisiQuest [Acc08] provides a large
set of libraries implementing vision algorithms, 3D vision, GUI construction and visualization.
It can be utilized for image analysis and ships with its own visual programming environment
for developing computer vision systems. Even so, resultingprototypes are usually restricted to
a to pipe&filter style architecture.

The strength of these toolkits, which is their domain-specific vision functionality is at the same time
their critical drawback, because almost all of them lack sufficient support for building larger systems
in a heterogeneous environment as is the case here.

Nevertheless, the computer vision-specific functionalityof these toolkits is an important feature that
must in some way be available in an integration architecturefor a cognitive vision system. We shall
revisit this aspect later on in this thesis.

The last research area directly related to the goals of the VAMPIRE project are computational models
of human-like cognition. Within this area, particularly work on cognitive architectures and corre-
sponding toolkits like SOAR [WJ05] or ACT-R [And93] is important when looking, for instance,
at arbitration and coordination in cognitive systems. These approaches provide strong support for
instantiating a particular cognitive model within a specific software architecture. However, this con-
flicts with the general aims of the work done here. In fact, theconcept is to provide an integration
layer allowing for a space of possibly different functionalarchitectures, with the primary use case to
support the development of a visual active memory.

Bielefeld University

70 5.2. Software Architectures and Middleware for Cognitive Systems

Figure 5.3.: Exemplary screenshot of the HALCON development environment.

In addition, it seems rather impractical to build large-scale integrated systems acting in real-time
with those toolkits. This is due to limited support for the non-functional aspects defined earlier as
well as the specific representations module developers mustadhere to when using such an approach.
However, cognitive models provide many of the functional requirements for an integration architecture
for cognitive systems similar to the role the VAM architecture plays for the approach described in this
thesis.

Another area that turned out to be related to cognitive systems and integration of such systems is cog-
nitive robotics research. This is mainly due to two reasons:On the one hand, a sophisticated vision
system is a critical constituent for robots resembling to a cognitive system. On the other hand, many of
the requirements that were identified in the previous three chapters are important for robotics research,
too. For instance, the need for concurrent and asynchronousprocessing as well as methods for coordi-
nation and arbitration appear as well, not to mention the fact that robotics projects are usually carried
out by a larger number of people, thereby posing many of the question described in Chapter 3. Recent
initiatives particularly address the problems of softwareintegration in robotics [TS08, RoS08] and a
large number of toolkits exist that support robotics software development [KS07] by encapsulation
of domain specific functionality like mapping, localization or navigation. These and other function-
alities like grasping objects and higher level symbolic processing are often based on cognitive vision
techniques.

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 71

Therefore, the requirements for a cognitive robotics development environment need to incorporate
many cognitive vision-related aspects and vice versa - withthe notable exception of the low-level
control aspects in robotics. Looking at the state-of-the-art in robotics integration, two overlapping
research activities can be identified that need to be considered here: work on robotics middleware and
work on robotic architectures.

Research on robotics middleware focuses on providing the connections between the modules in a
robotic system and offers device abstractions as well as simulation environments for sensors and actu-
ators of one or more robotics platforms. Typical examples ofrobotics middleware are the Player/Stage
project [CMG05] or MIRO [USEK02] for mobile robotics, YARP [FMN08] for humanoid robotics
or the recently introduced Microsoft Robotics Studio [Jac07] (MSRS) as a generic and easy-to-use
robotics development environment. Despite their focus on rather low-level robotic functionality,
robotic middleware is qualifying as related work here as it is specifically addressing communica-
tion and system integration. Unfortunately, many of these approaches lack the necessary extensibility,
usability and flexibility that would be needed in order to easily apply them for the integration of a
cognitive vision system. However, much of the functionality in robotic middleware is related to the
concepts considered in this thesis, e.g. the component model in OROCOS or the Decentralized Soft-
ware Service Protocol [NC07] (DSS) specifying the interactions of services in a distributed MSRS
architecture.

Research on robotic architectures is usually either based on top of an existing robotics middleware or
subsumes those aspects and adds an architectural model thatspecifies how sequencing and deliberative
processes act in a coordinated manner towards the goals thata robotic system pursues. Examples
for approaches at the borderline between robotics middleware and a robotics architecture are the
Open Robot Control Software [Bru08b] (OROCOS) project or URBI [Bai05]. Both introduce features
for robotic control and modeling of basic robot behaviors. While OROCOS focuses on real-time
robotic control, URBI provides an event-driven scripting language that addresses the challenges of
concurrency and asynchronous programming.

A prominent example of a more holistic robotics architecture that features a sound integration toolkit
is CLARAty [VNE+00], which is developed by the NASA Jet Propulsion Laboratory within the
Mars Technology Program and serves as technological basic for the different Mars rover prototypes.
CLARAty, which is an acronym for Coupled-Layer Architecture for Robotic Autonomy excels be-
yond robotics middleware in that it introduces a coupled layered architecture featuring a deliberative
decision layer and a functional layer that provides low-level functionality for hardware access up to
higher level features for e.g. navigation realizing already mid-level autonomy capabilities.

The decision layer interacts with the functional layer and provides a framework for global reasoning
taking into account system resources and mission constraints. It monitors the execution of behavior in
the functional layer and can interrupted or preempt its behavior depending on mission priorities and
constraints.

While the open source release of CLARAty in 2007 will almost certainly incite developments in
software integration in robotics, it equally conflicts withthe goal of architecture neutrality aimed at
in this thesis. In contrast, it solely allows for a specific task-based functional architecture and does
not explicitly address the challenges of collaboration anddistributed processing. Similar to the above
mentioned models of cognitive architectures, the integration architecture introduced by this thesis
shall allow for the development of the higher-level functions found in functional robotics architectures
like the task-based coupled-layer approach that CLARAty ispursuing.

Bielefeld University

72 5.2. Software Architectures and Middleware for Cognitive Systems

Client

Compile Time

Runtime

Stub Skeleton Server

Parameters

Result

Remote Request

Return Call

RPC Network Transport

Parameters

Result

IDL
Compiler

IDL
Specification

Figure 5.4.: Use of stubs and skeletons in operation-oriented middleware communication.

5.2.2. General Middleware Architectures

Recalling the introduction, a second domain-independent class of approaches exists that explicitly tar-
gets software integration from a purely software-engineering viewpoint, often providing the techno-
logical basis for the above mentioned domain-specific integration toolkits. As the field of middleware
is extremely broad and a detailed overview of the field is beyond the scope of this work, the follow-
ing description focuses on three organizational principles that allow for clustering a larger number
of approaches that can be used for the integration of cognitive systems:operation-, message-and
resource-oriented middleware.

Operation-oriented Middleware The main concept of operation-oriented middleware is to en-
able interprocess communication across network boundaries by providing means for calling individual
functions of independent software modules. Operation-oriented middleware approaches like remote
procedure call (RPC) as introduced by SUN Microsystems in the early 1980s impose a client-server
style of distributed computing. A server program offers parameterized functions to its clients that can
call these functions via the network with the support of an RPC library and marshalling code that is
generated at compile time from an interface definition language file as shown in Figure 5.4. This func-
tionality is encoded in so-calledstubsandskeletons. Despite the transparent marshalling and unmar-
shalling of function parameters into a network representation, they often provide proxies [SSRB00]
that are local representatives allowing transparent access to functionality in remote address spaces.

With the advent of the object-orientated programming paradigm, operation-oriented middleware ex-
tended towards a remote method invocation approach, which allows to remotely call member functions
of individual objects, e.g. in Java using the Java RMI [MvNV+01] approach. While Java RMI as well
as other approaches are focusing on supporting a single language, the CORBA standard [Sie00] ad-
dresses a greater audience, envisioning a language independent object-oriented middleware model.
Due to the great importance of this standard and the fact thatmany of the aforementioned domain-
specific integration architectures like MIRO or OROCOS are built on top of CORBA toolkits, we
will evaluate an instance of this approach subsequently in greater detail. Recent additions that try to
address different shortcomings of this class of middlewareapproaches are XML-RPC or the SOAP
protocol.

Although operation-oriented middleware has been used to build very large-scale and mission critical
systems, it is not directly applicable for integration given the required aspects introduced in Chap-

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 73

Sender 2

Receiver 2
[Time t+1]

Receiver 1
[Time t]

Receiver 3
[Time t]

Message B

Message B

Message B

MessageMessageMessage Queue B

Sender 1 Message A

Message A

Message A

MessageMessageMessage Queue A

Message Broker

Figure 5.5.: Message-oriented middleware architectures focus on temporal decoupling of participants uti-
lizing indirect communication models.

ter 5.1. First and foremost, the fine-grained per-method integration approach in a point-to-point archi-
tecture can lead to a high degree of coupling. Another aspectof coupling is that interface changes in
classical RPC architectures often involves recompilationof both clients and servers. Thus, version-
ing and the goal to embrace change is not supported. Furthermore, advanced functionality like data
management and asynchronous coordination or the general lack of scalability in operation-oriented
middleware is only addressed in vendor specific ways.

Message-oriented Middleware Compared to operation-oriented middleware, message-oriented
middleware (MOM) architectures directly address the challenges of distribution, taking into account
a decreased level of transparency in their programming models. MOM is a concept which emerged in
the mid 80s as a way of decoupling processes over existing RPClayers. This de-coupling is achieved
in MOM architectures through the introduction of self-contained messages. In contrast to the auto-
matic marshaling of RPC communication, encoding and decoding of messages in MOM architectures
need to be implemented by module developers.

Using message passing instead of RPC for communication thusallows for greater flexibility as the
message’s content is not bound to the signature of a specific operation. On the downside, all modules
connected in an architecture must share compatible messageparsers. In addition to direct communica-
tion through message passing, MOM systems support indirectcommunication through intermediary
message brokers and message queues. The resulting level of de-coupling can vary greatly and span
over referential and temporal dimensions [ASTMvS02]. MOMsfeature message brokers enabling
deferred asynchronous communication where de-coupling intime is critical due to the fact the life-
cycle of the message producing components may be independent of the consumer’s lifecycle. MOM
systems allow for point-to-point or broadcast communication.

Figure 5.5 shows the data flow in a typical MOM system. Messages are sent from a producer process
to a message broker containing various queues, often termedmailboxes, which are usually identified
by name. After the message is reliably received by a queue, the message can bepushedto or pulled
by a receiver. Publish-/Subscribe [BMRS96] models of communication are extensions to MOM ar-
chitectures where interested clients are able to subscribeto specific subjects, so-calledtopics. After
subscription, clients will receive all messages that are posted to a queue and conform to a given topic
specification.

Bielefeld University

74 5.2. Software Architectures and Middleware for Cognitive Systems

Message-oriented middleware provides good support for building loosely coupled systems and of-
ten features good database integration yielding in high reliability. However, they are not directly
applicable to cognitive systems integration for a number ofreasons. Firstly, the focus on temporal de-
coupling very likely prevents their application for the integration of systems that need to act at least
in soft real-time conditions. Secondly, many of the burdensof distributed programming are pushed to
the module developers.

For instance, it is comparatively challenging to realize multi-threaded request-reply communication
on top of a MOM architecture. Last, but not least there existsonly few overarching standards in this
area and many technologies are thus proprietary to specific MOM architectures like IBM’s MQSeries,
TIBCO Rendezvous or XMLBlaster. Nevertheless, many aspects of MOM match well to the required
aspects defined earlier. The concept of message-oriented middleware evolved recently into the concept
of event-based middleware, which is a central cornerstone of the approach that will be described in
the remainder of this thesis. Thus, we will not discuss theseconcepts now but revisit them later on.

Resource-oriented Middleware Middleware architectures that focus onresourcesas central ab-
straction and allow the referencing of individual entitiesusing a global identifier system shall be
denoted here as resource-oriented approaches. Resources are representing specific sources of infor-
mation, e.g. database items or files served by a web application. This concept is the basis of the
web architecture (WWW), which is following an architectural style denoted as Representational State
Transfer (REST) introduced by Roy Fielding [RTF00]. Fielding describes the externally visible be-
havior of a REST-based distributed system as follows:

“Representational State Transfer is intended to evoke an image of how a well-designed
Web application behaves: a network of web pages (a virtual state-machine), where the
user progresses through an application by selecting links (state transitions), resulting in
the next page (representing the next state of the application) being transferred to the user
and rendered for their use.”[RTF00]

The fundamental concept of a resource in this sense is that application state and functionality are
divided into separate resources. That said, REST differs from the previously introduced middleware
architectures in a sense that it proposes and enforces a specific architectural style for building dis-
tributed systems. However, this style turned out to be extremely scalable, which is obviously proven
by the World Wide Web, and is recently considered to be a more general model for designing dis-
tributed systems. As every resource is identified by uniquely addressable through unique uniform
resource identifiers (URI), it is possible in a REST-based system to navigate from one resource to
another, which is what we use all day in a web browser. As Figure 5.6 depicts, another fundamental
difference to, e.g., RPC concepts is that all resources share a uniform interface for the necessary state
transfer, consisting of a limited set of well-defined operations. Furthermore, the message format is
bound to a constrained set of content types.

Additional important properties of REST-based systems arethat the communication between two par-
ties follows a client-/server model and is usually stateless. This implies that the server does not keep
track of the identity of its clients and the possibility to add caches in such an architecture to increase
scalability. Despite its scalability, REST promotes loosecoupling due to the document-based data
exchange and the uniform interfaces concept. Due to the latter and the hyperlinking of resources with
URIs, modules within a REST-based system only need a very limited view of the overall system and
can traverse a link network to get access to required services. While URIs, uniform interfaces, state-

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 75

HTTP
Library

REST Client

HTTP Network Transport

Remote Request on URI (w/ CRUD Operation + MIME Content)

Return Result (Status Code + MIME Content)

HTTP
Server

REST Service

Figure 5.6.: Overview of a client-server interaction according to representational state transfer based on
the HTTP protocol and uniform resource identifiers.

lessness and document-based data exchange support loose coupling, clients still need to understand
the format of the exchanged representations. Another drawback of the statelessness of REST archi-
tectures is the fact that the communication between client and server always follows a pull puttern,
not allowing for pushing notification of representation changes to subscribed clients as it is possible
in MOM systems. However, REST approaches are drawing increased attention. A recent domain-
specific example that follows this approach is the Decentralized Software Services Protocol [NC07]
(DSS) used in the Microsoft Robotics Studio architecture. In contrast to MOM approaches, a large
number of middleware tools for building generic REST-basedsystems following WWW standards
like HTTP [FIG99] or MIME [FB96] are freely available. However, the level of integration in these
tools differs from the aforementioned systems due to the fact that REST is constituted by different
standards, which are supported by individual products likeweb servers or HTTP libraries.

Given the number of approaches to software integration in research and industry, it is impossible to
review all facets that are somehow related to what is in the focus of this work. For instance, work on
transactional middleware technologies, the specifications of the web services stack were intentionally
omitted as they are not used much for software integration inthe given domain. In contrast to these,
the other approaches outlined in the previous paragraphs are more closely related to what is presented
in this thesis and are directly important for the integration challenge in cognitive systems research.

5.3. Evaluation of Selected Approaches

The previous section concentrated on a presentation of the overall fields and approaches that can be
considered important with regard to the identified coarse-grained functional aspects. However, neither
individual approaches nor their level of fulfillment compared against the more fine-grained require-
ments were discussed. While this is clearly impossible for all the areas mentioned, the subsequent
sections will assess three state-of-the-art instances of integration architectures in greater detail.

The assessment of the individual approaches shall be guidedby the aspects and requirements iden-
tified in Section 5.1. In the following, an evaluation schemewill be applied that rates the effort
needed and the difficulties to get support for a single aspecton a 5-point likert scale (--=aggravated;
-=difficult; o=neutral; +=supported; ++=strongly supported). While most of these levels are rather
self-explanatory, an aspect that is aggravated by an approach means that it is even made harder to
achieve its requirements following the approach under evaluation. A caveat is that especially for the
non-functional aspects the assessment is based on the subjective experiences of the author.

Bielefeld University

76 5.3. Evaluation of Selected Approaches

For these reasons, all assessments will be explained for each of the ratings due to the fact that it is
very hard to measure them quantitatively. Nevertheless, the graphical visualization of the individual
strength’s and weaknesses compared to the defined aspects shall allow for a quick assessment of the
focus of each evaluated approach.

Given the number of approaches in this area, three approaches were selected due to theirrelevancy,
recencyandavailability. Relevancy implies that at least one instance of an integrated system must
haven been built on that basis and reported on in a scientific publication, where recency calls at least
one software release during the last two years at the time of writing this thesis. Last but not least,
availability implies that the software license must allow for free usage for non-commercial purposes
and academic research.

Applying only these criteria, still too many approaches would have to be considered. Therefore, the
selection is based on the areas outlined in Figure 5.2 and theoverview in the foregoing section: On the
one hand, a popular representative of the object-oriented middleware paradigm will be reviewed. This
is based on the frequent use of object-request brokers for integration in cognitive systems. Recent
examples where object-request brokers are used have been the German service robotics initiative’s
project DESIRE [DES08] and as a basis for approaches like OROCOS, MIRO, SmartSoft [Sch06a]
or ORCA [BKM+05]. On the other hand, two approaches from the scientific application domains of
cognitive vision and cognitive robotics will be reviewed for the reasons mentioned at the beginning
of this paragraph and the fact that not only the targeted application domains are similar, but also the
goals these integration architectures are addressing match very well to the aspects defined earlier. The
individual selection of an approach within these subfields will be argued in the beginning of each of
the following three subsections.

5.3.1. Object-oriented Middleware

Object-oriented middleware approaches extend remote-procedure call systems at least with regard to
three conceptual elements from the object-oriented programming model: inheritance, object refer-
ences and exceptions. Operations are no longer called on processes but on individual objects. Despite
proprietary approaches like Microsoft’s DCOM [Mic08] or Ice from ZeroC [HS08b], the main stan-
dard in this area is the Common Object Request Broker Architecture [Sie00] (CORBA), which is a
set of specifications that is being maintained by the Object Management Group (OMG). Due to the
openness of the CORBA specifications, a large number of corresponding toolkits implementing them
exist, including several open-source variants. The CORBA standard is completely independent from
hardware or operating system environments, thus many different platforms are supported. Another
claim of CORBA is interoperability in a way that a CORBA program shall be able to invoke methods
on objects in any other CORBA environment.

The most important architectural concepts of an object request broker architecture usually supported
by compliant CORBA middleware are shown in Figure 5.7. Whilecertain aspects are similar to
general operation-oriented middleware as described earlier, some additional elements are introduced
with this approach:

• ORB Core: The core of the ORB handles the transparent communication between networked
processes. It manages object identity through so-called Interoperable Object References (IORs)
that are used for transparent access to objects regardless of their physical location in a distributed
system.

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 77

Dynamic
Invocation
Interface

Client Object IDL Specification Servant Object

IR Impl.-
Rep.

Static
Invocation
Interface

ORB
Interface

Static
IDL

Skeleton

Dynamic
Skeleton
Interface

Object Adapter

ORB CoreORB Core

IIOP Network Transport

ORB
Interface

Figure 5.7.: Overview of a standard CORBA architecture.

• IDL: The CORBA interface definition language is used for describing object-oriented interfaces
and data structures. Additionally, specifications for language mappings allow for the generation
of standardized stubs and skeletons.

• Servant: The domain functionality that needs to be provided in orderto serve the request on
an object interfaces are usually implemented by module developers in servant classes, which
provide the implementations for one or more IDL specified remote objects.

• Object Adapter: The (portable) object adapter is an abstraction, which maps object requests to
corresponding skeletons and servant implementations.

• IIOP: The Internet Inter-ORB Protocol is the standard network protocol for communication
between instances of object request brokers. Supporting IIOP, different ORB implementations
are able to communicate with each other. Additionally, the CORBA specification allows for
custom transport protocol implementations.

In addition to these basic features of a CORBA architecture,a large number of advanced concepts
was introduced into the standard. The more important examples of these are the Dynamic Invoca-
tion Interface (DII), which allows to invoke methods of remote objects without having access to the
IDL-compiled stubs for a remote object, thus removing this compile time dependency. Using DII, a
client needs to explicitly specify the operation to be performed and the types of parameters that must
be encoded in a request. Client objects may query the detailsof a remote interfaces at runtime by
accessing so-called Interface Repository (IR) services.

Analogous to the DII concept, the Dynamic Skeleton Interface (DSI) allows dynamic dispatching of
requests according to operation name and type parameters onthe server side without using a stati-
cally compiled IDL skeleton. The DSI concept is often required in scripting languages and similar
applications, which may dynamically instantiate new remote objects.

Another server side concept is the Implementation Repository (Impl.-Rep.), which provides a service
that permits to dynamically instantiate required servantsonce requested by a remote object. Based
upon this functionality, the OMG defined a larger number of common CORBA services that can be
used in a system architecture if provided by a concrete implementation.

Bielefeld University

78 5.3. Evaluation of Selected Approaches

Figure 5.8.: Aspect assessment for TAO.

Frequently used services that provides location trans-
parency in CORBA systems are the naming service, which
allows to bind IORs to symbolic names or trading services,
allowing client objects to lookup an IOR based on pub-
lished properties of the offered services.

One of the approaches that defines the state-of-the-art
in this field is The ACE ORB [Sch06b], a CORBA-
implementation based on the Adaptive Communication
Environment [SH01]. The concepts of TAO are undergo-
ing constant development, which is lead by the Distributed
Object Computing (DOC) Group of Douglas C. Schmidt.
TAO is used at many universities and companies including
Boeing/McDonnell Douglas, Siemens and Motorola and is
available in a freeresearchversion that includes experi-
mental features and as a commercially supported stable
version. The target group of TAO are developers of dis-
tributed and embedded applications. As TAO is the basis
of, e.g., OROCOS and additionally features real-time ca-
pabilities important in specific cognitive systems application domains (e.g., robotics) we will review
this ORB as a representative for high-end CORBA approaches.

Figure 5.8 shows the qualitative assessment of TAO when it iscompared against the required aspects
as defined in Section 5.1. Not surprisingly for a high-performance distribution middleware, the dis-
tributed processing aspects and the product utility aspectin terms of performance, latency, etc. are
rated as very well supported by TAO. The reasons for these assessments and the considerations that
lead to the score for the remaining aspects are as follows:

Data Representation:The CORBA IDL allows for an object-oriented data model, focusing on op-
eration interfaces and not on data representation. The datais inherent modeled in type signatures of
method parameters. A conceptual drawback of CORBA IDL is thelack of a sound concept to support
extensibility and versioning of object interfaces [SV01].Therefore and due to the natural consequence
of method orientation the exchanged information is only implicitly available and understandable.

Information Management:While TAO certainly allows for the implementation of a networked infor-
mation repository geared towards an active memory, it does not directly support any kind of database
or data management related technology. However, the Persistent State Service (PSS), which is the
successor of the persistent object service and supported byTAO may be a basis for a realization of
this aspect.

Distribution Infrastructure:This aspect is fully supported by TAO. It offers functionality for all the
identified requirements either through its internal architecture, its API, or external services as is the
case for the question of location transparency, which is realized by TAO’s naming service. Loose
coupling is not directly supported by the operation-oriented and fine-granular object interface but is
achievable with TAO’s notification service realization.

Adaptive Coordination:Following its object-oriented programming model, anomalies are reported to
communicating parties as exceptions. Concerning extensibility, TAO provides different interception
points for developers to add extensions to the functionality of the ORB core. Even so, advanced
features for modeling the interactions between objects arenot supported.

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 79

Domain Support:As a pure middleware solution, TAO does not support domain specific features for
cognitive systems research. However, a notable exception is that TAO supports an OMG CORBA
specification for control and management of audio and video streams [SM99].

Software Engineering:TAO (and the underlying ACE framework) are built with many proven soft-
ware engineering-related principles in mind and generallyallow for a modular approach by enforcing
an object-oriented programming model without further restrictions on possible architectural styles in
the functional layer. Concerning system specification, standard techniques used for object-oriented
modeling like UML can be applied. However, CORBA implementations such as TAO usually do not
feature concepts or tools for incremental development. Furthermore, tools for runtime analysis or
debugging on a system level need to be realized by system developers.

Collaborative Complexity:A drawback of CORBA-based solutions is that frequent changes are rather
complicated to incorporate in an IDL-based CORBA architecture due to the reasons described above.
The necessity to use an IDL precompiler adds further complexity to the development process for mod-
ule developers, not mentioning the complex concepts of dynamic CORBA (e.g., DII/DSI). Despite the
openness of the CORBA specifications, they are nowadays the biggest disadvantage of the CORBA
concept. Since the OMG defined an overarching standard for middleware integration, the CORBA
specifications embrace a large number of different requirements in integration and communication.
Therefore, the amount of available functionality (and specifications) is enormous which dramatically
decreases usability. Another rather problematic aspect ofCORBA is that other implementations might
not adhere completely to defined standards. Thus, the original idea to provide one interoperable stan-
dard for distributed systems was foiled and typical advantages of a standards-based solution are lost.

Product Utility: In contrast to the collaborative aspects, the performance and utility characteristics
of TAO is superior, which is not suprising as TAO was developed and specified as high performance
real-time object request broker.

5.3.2. Cognitive Vision Middleware

As introduced in Chapter 2.1, the paradigm that guided research in the VAMPIRE project was the de-
velopment of cognitive vision systems. Looking at the results of the other eight collaborative projects
that were funded in this research area by the European Union,it turns out that only two of these
projects addressed questions of software development and integration either in scientific publications
or publicly available integration architectures.

From these two, the software integration approach of the ActIPret [The05] project on interpreting and
understanding activities of expert operators features a component-based software architecture termed
ZWork [PVZ05], which focuses on dynamic service selection according to quality of service parame-
ters, e.g., describing the performance of an object recognition algorithm under certain environmental
constraints. However, the software has not been publicly released at the time of writing of this thesis.
Similar to the goals of this approach, but with completely different concepts, a central aim of the
CAVIAR [CAV07] project on image-based active recognition was to achieve adaptation in cognitive
vision systems. Thus, the CAVIAR architecture [LBFT05] aims at partly autonomic coordination re-
quiring self-describing, self-regulating and self-optimizing modules. Relying on this information, a
global controller orchestrates data-flow and parameterization in a system instance according to con-
textual information.

Bielefeld University

80 5.3. Evaluation of Selected Approaches

Figure 5.9.: Software architecture of an exemplary Psyclone cognitive vision system for person tracking and
scene interpretation (from [LBF+05]).

While both approaches provide concepts for different kindsof adaptive coordination, they lack support
for many of the other aspects that are important for the work described in this thesis. Interestingly, an
additional integration approach was developed during the course of the CAVIAR project that already
addresses many of the aforementioned aspects in a more holistic way. Due to the fact that this approach
was applied in a cognitive vision scenario and that it has similar aims as what is envisioned in this
thesis, the following section shall review the Psyclone architecture in greater detail.

Psyclone

Psyclone is a an integration architecture that shall facilitate the development of integrated artificial
intelligence systems following theconstructionist designmethodology [LBF+05]. This software ar-
chitecture has been applied for the development and integration of cognitive vision systems as well
as recently to humanoid robotics [TPLD04]. The main integration abstraction provided by Psyclone
is the so-calledwhiteboard, named in analogy to the concepts of a blackboard architecture, which
we will discuss in the next chapter. While the authors claim to introduce this term, it can be traced
back to early work in mobile robotics architectures [SST86]as reported in a reference book of soft-
ware engineering [SG96]. Figure 5.9 depicts a cognitive vision system instance as developed in the
CAVIAR project performing a scene interpretation task thatis integrated according to the Psyclone
concepts. The basic idea of Psyclone is to mediate all data flow through central server instances,
i.e. scheduling blackboards [TLPD05] that feature ageneric data format, a type ontologyfor mes-
sages and data streams as well asrouting specificationsallowing for a declarative setup of module
interconnections. Whiteboards act as publish-/subscribeservices for registered modules. The system
architecture shown in Figure 5.9 consists of three whiteboard instances that dispatch data of different
system layers, namely images, tracked objects and high-level role and context information to modules
in higher layers. Thus, Psyclone systems are conceptually similar to classical bottom-uppipe-and-
filter [SG96] software architectures as no top-down links betweenthe different layers are established.

Whiteboards allow to store the exchanged information for a reasonable amount of time (the authors
do not provide any further information about the capabilities of their approach in that respect). While
the stored information is made globally available via a query interface, it is not possible to update this
information. However, whiteboards supportpush(publish) andpull (query) communication styles,
which will be discussed in more detail in subsequent chapters. Psyclone uses a protocol termed
OpenAIR [Min07], whose specifications are freely availablefrom the author’s web page.

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 81

1 <sequence name="Fight_OneManDown">

2 <frame number="192">

3 <entitylist>

4 <entity id="1">

5 <orientation>151</orientation>

6 <box x="81" y="101" w="31" h="21" />

7 <appearance>visible</appearance>

8 <movement>walking</movement>

9 <role evaluation="1.0">walker</role>

10 <event evaluation="1.0"></event>

11 <scenario evaluation="1.0">immobile</scenario>

12 <situation evaluation="1.0">moving</situation>

13 </entity>

14 </entitylist>

15 <grouplist>

16 <group id="0">

17 <orientation>103</orientation>

18 <box x="228" y="110" w="55" h="126" />

19 <entities>4,5</entities>

20 <appearance>appear</appearance>

21 <movement>active</movement>

22 <role evaluation="1.0">fighter</role>

23 <event evaluation="1.0"></event>

24 <scenario evaluation="1.0">fighting</scenario>

25 <situation evaluation="1.0">merge</situation>

26 </group>

27 </grouplist>

28 </frame>

29 </sequence>
30

Listing 5.1: Exemplary instance of a Computer Vision Markup Language XMLdocument.

Psyclone employs theComputer Vision Markup Language[LF04] (CVML) as a general purpose mes-
sage format encoding the data exchange between components in a vision system. Figure 5.1 shows
an excerpt of a CVML document, encoded high-level information about a scene that is observed by a
system as shown in Figure 5.9. In contrast to special data areas within the whiteboards, the exchanged
messages are additionally tagged with information about their unique identity, individual priority and
framework-generated timestamps.

In order to subscribe to different types of data, interestedmodules connect to a whiteboard and register
their interest in a specific message type. These types are encoded in a dot-delimited list yielding
a straightforward type hierarchy. For instance, the expression “Input.Perc.UniM.Hear.Voice.Speak“
describes a message type that was generated by speech recognition module. In Psyclone, this type
ontology serves as the basis for routing of new data that is published on a whiteboard.

Bielefeld University

82 5.3. Evaluation of Selected Approaches

While Psyclone supports the concept of continuous data streams, this type of exchanged information
is not mediated via whiteboards. Stream-based connectionsand their datatypes must be defined at
compile-time due to certain technical restrictions [TLPD05]. As the authors do not elaborate further
on this issue, it appears that the sole purpose of the whiteboards for stream communication is to act as
a nameservice for the clients of a streaming service.

Figure 5.10.:Psyclone assessment.

In contrast to other approaches, Psyclone offers both a li-
brary for the integration of external processes and a lo-
cal runtime environment for modules, which allows for
a more efficient coupling between a set of modules that
feature more sophisticated timing constraints. However,
integrating internal modules via so-calledcranks is done
by calling aC-function with a specific signature that must
be exported within dynamically loaded libraries, acting as
a hook for these modules to get called by the Psyclone
runtime. Through this mechanism, the Psyclone runtime
provides a proxy to the actual whiteboard object, and, in
turn, the individual module may access any of the white-
board’s functions. Last but not least, acontextmechanism
is supported that allows to switch module configurations
dependant on this single system-level string-value parame-
ter. The context can be set by any module that is part of a
Psyclone system.

The psyclone runtime environment is realized in C++ and runson Unix, Windows and Macintosh
operating systems. Language bindings for remote integration of process are available for C++, Java
and Lisp. Psyclone is freely available for non-commercial use in a closed-source version with certain
restrictions. Additionally, the version that, at the time of writing this is available for download appears
to be a limited evaluation version. Figure 5.10 shows a qualitative assessment of Psyclone compared
against the previously identified aspects. The reasons for this subjective evaluation are as follows:

Data Representation:Psyclone itself does not make any assumption about the user’s data model and
does not prescribe any, except that all information must be converted to character data (or well-formed
XML elements) due to the fact that it is embedded within OpenAIR messages, which ultimately are
XML [BPSM+04] documents. Consequently, Psyclone suggests to utilizeCVML for data exchange
between the modules within a vision system’s architecture,thus providing at least some guidance for
module developers. However, no advanced features of XML or CVML are exploited or specifically
supported within Psyclone and the data model for stream-based communication as a binary protocol
is independent from the textual format used for whiteboard communication.

Information Management:In contrast to blackboard systems that resemble database management
systems, Psyclone lacks most of this functionality and is closer to publish-/subscribe [BMRS96] ar-
chitectures for distributed systems. Therefore, no globalstate can be updated through the whiteboards,
except by distributing state information across all connected modules. The question remains how this
is handled across different whiteboards. However, the ability to recall information within whiteboards
and a so-calledcatalogfunction that serves as a persistent data storage for information to be reloaded
after a system shutdown outside the whiteboards provides atleast a limited level of information man-
agement support.

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 83

Distribution Infrastructure:Psyclone offers networking functionality following a publish-/subscribe
pattern utilizing an XML-based protocol that shall yield loose coupling between system modules. Ad-
ditionally, media streams are provided allowing for a more efficient way of dealing with audio and
video data although no detailed information about their realization is available and the benefits of a
document-oriented approach are decreased due to the binaryprotocol used here. Equally opposed to
the idea of loose coupling is the fact that whiteboards and media streams must be defined prior to
system startup and location independence is only provided for whiteboard-based interactions. While
asynchronous integration is naturally supported by this model, Psyclone offers no asynchronous pro-
cessing API for the attached whiteboard clients and no further interaction semantics than messaging
via publish-/subscribe.

Adaptive Coordination:The Psyclone architecture supports a basic level of coordination in a sense
introduced earlier due to the ability to fully configure the system architecture and its dataflow in a
central point of configuration. However, no dynamic reconfiguration is supported by way of this
mechanism. Nevertheless, modules can be dynamically instantiated and connected to whiteboard
instances at runtime. Coordination in Psyclone systems is based on a simple type ontology for the
module’s message subscriptions, no further functions for filtering, matching or the based on module
identity are available for subscription specification. Thefairly simple context mechanism provides
a very limited system coordination facility compared to other approaches developed in the CAVIAR
project [CAV07]. It is neither possible to model the coordination dynamics in a meaningful way nor
to change this at runtime. Furthermore, there exists no possibility for framework extension or features
for intercepting the data flow between modules and the whiteboard for system integrator’s or module
developers.

Domain Support:Psyclone offers no special domain-specific extensions or adapters, except that the
author’s propose to encode vision system related information in CVML. However, on the one hand it
is questionable whether this proposal fits to a larger class of vision systems and on the other hand, no
further support seems to be publicly available for the datatypes defined in this domain-specific XML
dialect.

Software Engineering:Despite its similarity to a blackboard architecture, Psyclone allows for dif-
ferent functional architectures. It offers a limited levelof modularity as it permits to decompose a
problem into several different whiteboard clients or whiteboard servers to the extent this is possible
within a blackboard architecture. However, advanced features for a modular development like hierar-
chies or subsystems are not available. As far as this could beconsidered by reading publications and
looking at the documentation, the main feature of Psyclone that matches this aspect is a tool called
PsyProbe. It provides a web-based mechanism for analyzing whiteboards at runtime and allows for
manual modification of system behavior.

Collaborative Complexity:Psyclone scores with regard to collaborative complexity first and foremost
with regard to its good documentation and the openness of theused networking protocol and of the
CVML specification. Unfortunately, the whiteboard implementation itself is closed source and there-
fore contradicts the idea of providing an open integration architecture. Furthermore, it remains unclear
how change is handled in the Psyclone messaging architecture and whether OpenAIR or CVML ac-
tually are endorsed by a standards body.

Bielefeld University

84 5.3. Evaluation of Selected Approaches

Product Utility: As all communication is usually mediated via whiteboard servers based on a textual
protocol over a standard network, the overall performance may decrease. In order to overcome this,
Psyclone offers the ability to integrate modules within an instance of a whiteboard, thereby avoiding
the overhead of network communication. While this is in general a useful feature for a close coupling
of modules, the Psyclone approach leaves many questions unanswered, e.g. about the life-cycle of
cranks, timing issues if a module blocks within a hook and in general the error handling procedures
Psyclone implements here.

5.3.3. Cognitive Robotics Middleware

Research conducted in the domain of cognitive robotics is inmany ways related to what is done in
the area of cognitive vision systems. First and foremost, the goal to enhance a robotic system by
cognitive abilities implies a strong need for building an integrated system. Secondly, a cognitive robot
usually consists of several interacting components, whichagain are developed in an inherently inter-
disciplinary approach. Last but not least, cognitive vision functions can be considered as important
subsystems of cognitive robots.

Although the distinction between robotics middleware and robotics architectures on the one hand
and cognitive robotics approaches on the other hand as depicted in Figure 5.2 is sometimes arbitrary,
a number of approaches define this intersection due to their specific support for the needs of soft-
ware development in cognitive robotics. Examples of these approaches are the component-oriented
approach that is used for the development of cognitive abilities at the Honda-Research-Institute Eu-
rope [CJD+06], the CAST/BALT integration architecture [HZW07] that emerged in the context of the
Cosy [COS04] European Union collaborative research project or MARIE, which is an integration ap-
proach that explicitly targets the re-use of larger building blocks of domain-specific software needed
for the development of cognitive robots.

In contrast to the aforementioned approaches that provide rich integration functionality based on a
fine-grained component-model, requiring researchers to adapt their software modules to specific con-
straints imposed by the integration architecture, MARIE aims at integrating more coarse-grained soft-
ware modules. Similar to what is in the focus of the approach described in this thesis, MARIE aims
at allowing for aminimally invasiveintegration strategy, connecting software modules without large
modifications to their internal structure to a system architecture. Therefore, MARIE’s concepts shall
subsequently be compared against the aspects, which were identified as important for integration in
the context of the VAMPIRE project.

MARIE

MARIE [CBL+06] (Mobile and Autonomous Robotics Integration Environment) is a middleware-
oriented approach that is geared towards application integration in robotics. The specific motivation of
the developer’s of MARIE has been to overcome the lack of standards in the robotics domain [Ore99]
by a unifying abstraction and integration layer. The MARIE approach has for instance been used to
develop Spartacus, which is a socially interactive mobile robot [MBCC+05] that features localization
and mapping, a certain level of visual processing and dialogue interaction integrated on the functional
level according to a behavior based approach called motivated behavioral architecture.

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 85

Figure 5.11.: Software architecture of Spartacus [CBL+06], integrated utilizing MARIE.

The fundamental ideas behind the concept of MARIE are to facilitate reuse in the domain of robotics
research to foster the development in the field. Therefore, this approach aims at supporting multiple
concepts as well as abstractions for integration as different experts expect a different set of specific
functionality on varying levels of abstraction.

Another vision of MARIE is to support a wide range of different communication and integration plat-
forms in robotics. The architectural concept is based on theidea of a so calledcomponent mediation
layer, which is a network- and system-wide implementation of the mediator pattern as known from
object-oriented design [GHJV95] on the level of a distributed software architecture. The design ratio-
nale for the chosen approach are to support loose coupling and to hide the internal implementation of
each individual component.

In order to support modules developers and system integrators, MARIE provides a component frame-
work that shall allow for the management of integrated applications with regard to component lifecycle
(e.g. initialization, (re-)starting, ...) as well as dynamic configuration. Apart from that, MARIE itself
does not provide a component execution container or a runtime environment. The concept of MARIE
introduces four fundamental functions that are responsible for the desired abstraction from individual
applications and their specific communication protocols aswell as their integration with the mediation
layer, which in the end carries out the necessary interaction.

The notion of anapplication adapteris used in similar ways as the term adapter is defined in ap-
plication integration or software engineering. It adapts and connects the local interface of a specific
application to the mediation layer, thereby integrating this application into a larger system. In contrast
to the concept of an application adapter, the idea of acommunication adapteris to apply protocol
transformations necessary for interconnection of otherwise incompatible components.

Bielefeld University

86 5.3. Evaluation of Selected Approaches

While adapters can become specific for each software application, the following general types of
communication adapters were used in the Spartacus integration project as shown in Figure 5.11:

• Mailbox: a data buffer for interactions between asynchronous components.

• Splitter: forwards incoming data to multiple outputs.

• Switch: sends only one of its inputs to an output port.

• SharedMap: a push-in/pull-out key-value data structure accessible by all components.

Both types of adapters are used bycommunication managerprocesses, which are responsible for the
orchestration and management of the communication links between components. One instance of a
communication manager needs to be run on any single node thatis part of a MARIE system. However,
at the time of this writing, no implementation of the communication manager concept was published
that demonstrates this feature. Last but not least,application managerinstances control the execution
of the different components that run in the overall system. Once more, an instance of this type of
manager must be running on each node participating in a distributed system setup. Although in a
prototypical state, implementations of this function are available.

An implementation of MARIE’s concepts is available under the GPL and LGPL open-source software
licenses. It is based on ACE [SH01] that provides portable abstractions from low-level operating
system functionality like threads, memory access or sockets as well as many more. Therefore, the
framework is usable on recent Microsoft and Unix operating systems. On the downside, no other
language bindings than those for C++ are available. Although MARIE implements a Port concept,
which shall in principle allow to change the underlying communication strategy, it turned out that only
ACE sockets are used for network data exchange in the mediation layer [CBL+06]. Furthermore, all
data exchange in this layer is solely based on text-only XML documents, binary data is not supported
in these mediated interactions.

One of MARIE’s strengths, which is the available support forthe robotics domain, leads to the qual-
itative suitability rating of this approach shown in Figure5.12 and its available implementation com-
pared to the aspects summarized in Section 5.1. The considerations that lead to this assessment are as
follows:

Data Representation: The MARIE concept does not prescribe the use of a specific data model for
software integration. In fact, it suggests to use XML for data serialization in network communication
without making further use of XML concepts, thus not adding value with regard to software integration
except a possibly improved understandability on the protocol level. While the data types that can be
used with MARIE are extensible, corresponding factories and parsers must be provided by the users
of the framework. In general, questions of data representation have little impact on the integration
concepts of this approach.

Information Management:Except for the fairly simple SharedMap communication adapter that allows
to store text data in a map-like structure, no advanced functionalities for this aspect are available.

Distribution Infrastructure:With regard to distributed systems functionality, MARIE’sstrength is its
support for the integration of heterogeneous infrastructures via the Port concept. On the downside,
this capability comes at the prize of added complexity, e.g., with regard to the necessary configuration.
While asynchronous processing is supported and parallelism as well as concurrency are addressed by
the underlying ACE framework, location independence is notconsidered. For example, concepts for
hiding the physical location of a component are not available. Despite that, MARIE supports loose

Sebastian Wrede

5. Requirements and Architectures for Integration of Cognitive Systems 87

coupling to a certain extent, mainly by decoupling component interaction through the mediation layer.
Nevertheless, some questions remain, e.g., with regard to the fact that for fast exchange of multi-modal
data the mediation layer is circumvented and direct networkcommunication is applied [CBL+06].

Figure 5.12.:MARIE assessment.

Adaptive Coordination:Concerning features for adaptive
coordination, only dynamic configuration of components is
supported, which fully depends on the implementation of
the application adapter with regard to relevant adaptation.
While the communication manager may very well be a
concept for flexible orchestration, no working examples of
this idea are available. Application managers are supposed
to provide a limited support for fail-stop errors but descrip-
tions of how these are handled are not available. Neither
other types of coordination functions, nor extension points
on the framework level are considered here. However, at
least the additional RobotFlow software toolkit interfaces
with MARIE and thus allows for graphical modelling of
the data flow in a robot architecture and the specification
of coordinated robot behaviors.

Domain Support: The aspect of domain support is a
strength of MARIE, but limited to robotics functionality.
Besides a number of robotics related datatypes, adapters
for a number of relevant robotics software packages such as Player/Stage [GVH03] are available.

Software Engineering:MARIE’s mediation layer and integration concepts do not require a specific
functional architecture. Modularity is supported by the component concept although no further guide-
lines for conducting software development in a modular manner or how to achieve incremental de-
velopment are provided. MARIE provides a straightforward set of abstractions describing component
interactions, but does not suggest any way of modeling instances of integrated systems. It features a
tool for inspecting system interactions, thereby allowingruntime analysis. Beyond advertising unit
testing and available benchmarks there is no additional support for system debugging or testing.

Collaborative Complexity:While it remains unclear how change is addressed in this integration archi-
tecture the already available application adapters underline MARIE’s aim to provide a framework that
allows re-use of existing software packages. Concerning usability, an observation is that integrating
additional components needs the module developer to deal with a number of abstract classes that must
be used to build a novel application adapter, which can become cumbersome.

Moreover, the invocation of target methods needs to be handled by the framework user and that com-
ponent configuration is everything but a trivial task. The interchangeable protocol implementation on
the one hand, but the incomplete (design) documentation on the other hand, a limited level of usability
and openness can be attributed.

Product Utility: Unfortunately, this aspect cannot be assessed given the available information. None
of the desired features is evaluated by the author’s of the framework. In particular, nothing is reported
on the scalability of the mediation layer. The only available fact is that MARIE has been applied for
the integration of several robotic systems, which are able to act in the real world.

Bielefeld University

88 5.4. Conclusion

Figure 5.13.: Level of support for the defined functional and non-functional aspects. The green line repre-
sents the desired minimum level of support for all of these aspects.

5.4. Conclusion

The domain-specific integration architectures reviewed inthe previous two sections represent related
research that emerged in parallel to the approach presentedin this thesis. However, it turned out that
no single approach sufficiently considers all of the requirements as depicted in Figure 5.13.

TAO representsthestate of the art in real-time CORBA and scores in performance-related aspects as
well as all other areas of distributed processing. However,while TAO may be a basis for an integration
architecture in cognitive systems, its direct applicationin an interdisciplinary integration context as is
the case for cognitive systems projects is prohibited mainly due to its complexity and missing support
for an iterative development process with constant change being a central reality.

Looking at Psyclone and MARIE as integration approaches developed in related scientific projects
and with similar goals in mind, it is natural that they already consider many of the aspects defined
as requirements. Psyclone offers an approach that shares atits core many similarities with publish-
/subscribe systems and less similarities with classical blackboards. On a functional level it addresses
most of the aspects that could be useful for the integration scenario within VAMPIRE, but in a way that
many functional requirements are only briefly addressed. MARIE has good support for the domain of
socially interactive robotics and provides at least on the conceptual level a sophisticated architecture
for integrating coarse grained software components. On theother hand, it introduces overly complex
abstractions for functions that are even unused up to now (communication manager) or in its early
stages (application manager). Finally, it remains unclearhow component interfaces can be specified
and how the considerable additional effort of maintaining anumber of additional infrastructures can
be managed with MARIE’s concepts.

However, particularly the aspect of information management, which is central for the realization of a
visual active memory is not directly support by Psyclone andby MARIE. To commence this chapter, I
would assess that Psyclone represents the approach that comes closest to the architecture described in
this thesis. Even so, despite the fact that there are certainconceptual similarities, the two approaches
feature important differences. As none of these architectures completely match the requirements
identified for the VAMPIRE project, the remainder of this thesis will bear this challenge and explain
how these aspects are supported by the architectural approach to be introduced subsequently.

Sebastian Wrede

89

Part II.

The Information-Driven Integration
Approach

Information-Driven integration describes an event-basedapproach for the collaborative development
of complex software architectures as needed to realize experimental cognitive systems. The following
part consists of two concerted chapters that in conjunctiondescribe the models of information-driven
integration.

Chapter 6 describes the models that consitute the core architecture, which is primarily adopting con-
cepts of event-based systems yielding a versatile communication environment for software compo-
nents that operate in a distributed system architecture. The abstractions presented in this chapter
provide the conceptual and technological basis for advanced integration functions.

Chapter 7 explains extensions built on these basic models that realize the additional requirements
prevalent for software integration in experimental cognitive systems. Exemplary models that partic-
ularly support the software development in this domain are the memory model, which provides a
foundation for a visual active memory as envisioned in the VAMPIRE project or a coordination model
for flexible perception-action linking in an asynchronous architecture.

Bielefeld University

91

6. Adopting Event-Based System Models

Developing an architecture for software integration that is used right from the beginning of a new
project is a challenging endeavor for the component and the framework developers. This is partic-
ularly true in the given integration context because changing requirements not only yield challenges
for the individual functional services within a complex system but also progress of the attributes and
structures of the overall system architecture towards the realization of a project’s scenario. Therefore,
it is a necessity that the integration architecture meets these changing requirements. Consequently,
the approach that will be introduced in this chapter is the streamlined result of an evolutionairy de-
velopment process, particularly conceived during its application in the VAMPIRE and COGNIRON
EU projects. However, the evolution of the subsequently presented approach once more confirms
Lehman’s first law [ER03], which states that a system that is usedwill be changed. And since the fact
that it actuallyis used is good, change shall be appreciated here.

Setting out from a first implementation of a visual active memory, which was based on a rather fixed
client-server architecture, the whole approach developedinto a generic and extensible integration
architecture comprised by a set of stable methods representing the core of information-driven inte-
gration. This chapter presents the first part of these concepts primarily considering event-based com-
munication. They represent the foundation all other modelsthat will be described in the next chapter
are built upon. In terms of the functional aspects introduced in the previous chapter, the following
sections mainly addressdata representation, distributionand features foradaptive coordination.

This chapter starts with a manifesto of information-drivenintegration. It highlights a number of strate-
gic aims that are considered important for the given task andhelp to weight conflicting requirements. It
also discusses well-known architectural styles like service-oriented architecture, which provide valu-
able insights adopted for the concepts of information-driven integration. The assumption in this work
is that in particular elements from event-driven architectures match best with the stated requirements.
Thus, the remaining sections in this chapter shall explain the core features of information-driven in-
tegration along the lines of event-based systems models. The different models are described from an
architectural viewpoint focusing on their concepts. Specific implementation aspects are explained in
excerpts that describe technology-agnostic features in some level of detail.

6.1. The Manifesto of Information-Driven Integration

The transition from the vision of a visual active memory architecture to an actual implementation of
a system-level software architecture that facilitates cognitive systems research needs careful consid-
eration. The first step in doing so has been requirements identification and analysis. However, as
indicated in Section 5.1 some of the stated requirements areeven contradicting. Thus, the first step to
move from analysis to design is to highlight some aspects that shall be particularly accentuated by the
architecture, which helps in selecting and developing suitable software engineering concepts.

Bielefeld University

92 6.1. The Manifesto of Information-Driven Integration

6.1.1. Strategic Aims

While the overaching aim of this dissertation is to support collaborative research projects on ex-
perimental cognitive systems by providing a software architecture that is broadly applicable across
different application scenarios, the following list presents specific strategic aims resulting from this
integration context, which represent a kind of amanifestofor the core architecture to be developed:

1. Loose Coupling: Reducing the dependencies between functional modules on the system level
in terms of temporal, spatial and referential coupling is a primary concern of the information-
driven integration architecture, see Chapter 4 for a detailed discussion. While coupling is nec-
essary for meaningful systems, the decisionswhere, what and how to couple software arti-
facts must be made explicit and be supported by the architecture. In general, loose coupling is
paramount for handling oligarchical or anarchical integration contexts, cf. Chapter 3 in business
enterprises or in collaborative cognitive systems research.

2. Explicit Boundaries: In contrast to operation-oriented middleware that aims atmaximizing
distribution transparency, cf. Chapter 4 this approach takes on the position of Waldo et
al. [WWWK97] that it is undesirable to hide too much of the fact that an interaction with
a software artifact executed in a different execution context takes place. The message sent to or
received from a module, its contract, and a representation of the remote communication partner
itself should all be first-class constructs within the integration architecture. Hence, the resulting
programming models shall provide an API that exposes these concepts to the module developer.

3. Increase Autonomy: Interacting modules such as those integrated in the VAMPIRE systems, cf.
Chapter 2, should in general not rely on a specific execution context, due to the fact that the
loose coupling principle mandates that dependence on implicit assumptions should be as small
as possible. In contrast to operation-oriented infrastructures that require synchronized evolution
of client and server program code and interface descriptions, the interaction between modules in
this architecture shall not be based on class types but instead on sharing of interaction contracts,
which shall facilitate an agile, independent development process as envisioned in Chapter 3.

4. Focus on Usability: Despite the stated aim to make application boundaries explicit, the pro-
gramming models that allow developers to make use of functionality offered by other modules
should naturally be as easy as possible. However, this is even more important in the given in-
terdisciplinary context, cf. Chapter 3, due to the fact thatusually only few middleware experts
will be among the users of this architecture. The goal is to pick people up whatever they already
know about distributed systems technology, making simple things easy while still allowing ex-
perienced users to develop complex functionality. Thus, the viewpoint taken in this thesis is
that the architecture shall focus on a minimal core of important functions needed for the design
and integration of distributed cognitive systems, exposing only a small set of recurring patterns
in its external API for use by regular module developers.

In addition to these non-functional aims which influence theconceptual architecture, a secondary but
nevertheless important aim that constraints the actual software development is to endorse the ideas
of free and open source softwareas this is often a requirement for collaboration between academic
institutions. By endorsement, the reuse of existing packages and the free provisioning of the resulting
software toolkit according to an open-source license is meant.

Sebastian Wrede

6. Adopting Event-Based System Models 93

This work’s ambition is to become actually used in large-scale research projects, thus the resulting
software architecture needs to be developed from a holisticviewpoint, aiming at supporting most
stages in an iterative development cycle of cognitive systems: design, construction, integration, test
and operation. In order to achieve this aim to a certain extent, pragmatism is preferred over evan-
gelism, rendering useful concepts from otherwise orthogonal paradigms such as service-oriented and
event-driven architectures or tuplespaces into a coherentnovel architectural concept.

Apparently, the reader could ask why the domain specific functional support for a cognitive vision
project like VAMPIRE is not prominently considered in the above list. The answer is two-fold: on
the one hand, many of the above mentioned aims extend to the development of individual functional
processing modules and from a functional viewpoint alreadymany well designed libraries for domain
specific tasks exist. On the other hand, the proposed architecture provides domain support by easily
integrating itself into existing domain specific toolkits as explained in Section 7.5. The challenge
as it is understood in this thesis is to support the development of experimental systems for cognitive
interaction which exhibitcomposite behaviorbased on the sum of all individual functional modules
in a software architecture.

Given the aforementioned aims and the requirements from Chapter 5, the question arises what con-
cepts eventually can be adopted to find a solution for the imposed challenges. From a high-level
perspective, a first answer is to draw inspiration from service-oriented architectures.

6.1.2. The Service-Oriented Viewpoint

Nowadays,Service-Oriented Architecture[OAS06] (SOA) represents a popular approach that com-
poses systems of autonomous services. The vision is to promote integration to become a forethought
rather than an afterthought, which is not only important forenterprise application integration but also
for software architectures of experimental research systems. Naturally, not all of the SOA concepts
are new but rather evolved out of the experiences associatedwith designing and developing distributed
systems based on technologies explained in Chapter 5. Similarly, many service principles have their
roots in earlier techniques from object-oriented analysisand design such as encapsulation, abstraction
and clearly defined interfaces.

A service can be defined as a high-level application functionthat can be interacted with via well-
defined message exchanges. Services shall be designed for both availability and stability. The basic
interaction model of web services is request-reply, which is similar to what standard operational mid-
dleware provides with remote procedure calls. However, SOAraises the level of abstraction in these
interactions and focuses on the semantic functions of a module. While the granularity of request-
reply in SOAs is usually more coarse-grained than in classicoperational middleware, the interaction
is still identity-based, leading to a stateful coupling between caller and callee [MFP06]. While usually
applied in business contexts, the assumption of this thesisis that some of the general SOA concepts
implemented on a loosely-coupled infrastructure can as well lead to much more open and changeable
software architectures in experimental cognitive system’s particularly compared to the development
of systems based on operational middleware.

So, the question arises what actually differentiates a service-oriented architecture from a distributed
system that is integrated utilizing well known techniques.

Bielefeld University

94 6.1. The Manifesto of Information-Driven Integration

The characteristics of a SOA primarily are the same as the fiveaspects of modularity that were intro-
duced by Bertrand Meyer (decomposability, composability, understandability, continuity, protection,
cf. Chapter 4), but with distinguishing extensions [Per08]. The following list interprets these from the
perspective of service development as these properties arenot only dependant on the capabilities of
the integration architecture but also of the design of the individual modules:

• Introspection: Services must be able to query the structure of modules and their communication
at runtime.

• Remotability: Services in an architecture should be designed and plannedfor existence in a
distributed and heterogeneous computing environment.

• Asynchronicity: Services shall not assume an immediate response from an interaction and take
into account latency either in the transport mechanism or the callee.

• Document Orientation: Services must not implicitly share state across single interactions and
shall explicitly communicate via well defined messages.

• Standardized Protocol Envelope: Service share a common envelope message format for module
communication.

• Decentralized Administration: Services should be designed and planned for decentralizedad-
ministration, which allows their reuse in different organizational contexts, e.g., projects.

All these aspects contribute to the central goal of loose coupling on the level of an integration architec-
ture. This list partially overlaps with the functional requirements that deal with distribution and some
of the desired non-functional requirements. However, the SOA paradigms are not necessarily bound
to any specific implementing software technology, even if SOA is frequently reported to be linked to
web service standards [NL04]. Fortunately, gaining insight from the principles of SOA is not coupled
to the use of these overly complex stack of standardized specifications. Nevertheless, the abstract
characteristics of a service and its underlying design considerations can provide an avenue for the
collaborative integration of experimental cognitive systems, which will be detailed in the remainder
of this thesis.

Acknowledging these considerations, the following section and the models of the IDI approach ex-
plain the realization of a software integration architecture that take into account the SOA paradigms
and realizes these as well as further functions suitable forcognitive systems engineering by adopting
concepts from event-driven architectures, which shall be introduced next.

6.1.3. The Event-Driven Perspective

While the focus of SOA is on decomposing system functions in acommand-and-control style, the
general ambition ofEvent-Driven Architecture(EDA) as interpreted here is to support the exchange
of events that contain information about semantically important observations. This notion of an event
matches well with the natural characteristics of the application domain. The real world provides many
good examples of occurrences that can easily be described with events like a person entering a scene,
a robot that hits a wall with its bumpers or even better, the obstacle avoidance that detected this barrier
already some seconds in preface.

Sebastian Wrede

6. Adopting Event-Based System Models 95

MTFs DCs

Router

Registrar

Listener
(Participant)

Informer
(Participant)

register

send

register

send

instruct

Figure 6.1.: Functional components of an event-based integration infrastructure.

The architectural concepts that define the information-driven integration approach are largely based
upon the ideas of event-based systems research. This section briefly introduces the abstract key con-
cepts of event-driven architectures in order to lay the foundation for the explanation of the adopted
event-based model in the IDI architecture.

The largest difference to other approaches is the inverted model of interaction [MFP06]. The initiator
of communication in event-based systems is the provider of data, the so-calledinformer, which sends
event messages, termednotifications, to other participants. However, notifications are usuallynot
addressed to any specific set oflistenermodules. Instead, listeners receive notifications by expressing
their interest through so-called subscriptions. If a notification matches a subscription, it is delivered
to its listener. The nature of the event-based interaction can be described as follows [MFP06]:

The essential characteristics of this model is that producers do not know any con-
sumers. They send information about their own state only, precluding any assumptions
on consumer functionality. A component “knows” how to react to incoming notifications
and it publishes changes to its own state, but it must not publish a notification with the
intention of triggering other activity.

This definition underlines the aforementioned aim of increased autonomy by explicitly calling for the
design ofself-focusedservices from a technical perspective, yielding coherent modules that solely
process information restricted to their own task and exercise control only over their own implementa-
tion. No implicit knowledge about the state of other modulesmust be used. Following this paradigm,
the overall behavior of the system arises from the implicit interaction between the event-based sys-
tem modules. Withdrawing control of interaction from the participating components, the necessary
coordination has to be handled externally.

Many different realizations of EDAs, cf. [MFP06] for a recent overview, were developed in industry
and research over the last decade, however, all with different focus and with just only a few gaining
wide acceptance. Reasons for this may have been that software architectures were only retrofitted
with event-based extensions that introduced this architectural style into otherwise operational middle-
ware [Sie00, HS08b]. Thereby, they share many of their drawbacks, e.g, such as fine-granular event
structures.

The integration architecture presented in this thesis has asimilar aim that actually adopts many meth-
ods from event-driven architectures to provide an environment that combines the suitable aspects of
both approaches in a coherent architecture usable within the given integration context. The assumption
is that the functional composition from SOAand the event-based interaction form EDA is a promis-

Bielefeld University

96 6.1. The Manifesto of Information-Driven Integration

ing foundation for the development of reusable system modules in an agile development process as
needed for efficient research on experimental cognitive systems. With regard to SOA, recently the bor-
derlines between SOA and EDA are beginning to diminish, mostly from the web services community
that introduced standards such as WS-Notification.

From these concepts, particularly the notion of document-orientation is of capital importance in the
context of information-driven integration. As documents actually encode all necessary information
about interactions thecommunicated messages are the loci of state changeyield the basis of infor-
mation processing in a distributed IDI architecture. This in-band communication paradigm will be
fully exploited to design an architecture that targets the aforementioned strategic aims, utilizing the
concepts of service-oriented and event-driven architectures with specific extensions for memory, co-
ordination and domain support.

6.1.4. Guide to the Reader

Several attempts to describe event-based styles and to classify event-based architectures according
to well-defined frameworks have been proposed. The effort presented in [BCTW96] will be used in
the following sections as a common vocabulary for referringto the core functional components of an
event-based infrastructure, which are depicted in Figure 6.1.

Observation Model Notification Model

Event Model

Document Model

Figure 6.2.: The adopted event-
based models.

According to this scheme,participantscan either acts as anin-
former that sends messages encoding the occurrence of some
event or as alistener, which is receives event notifications. Be-
fore sending or receiving any message, a participant may inform
some kind ofregistrar of its intention to do so. The actual deliv-
ery of event messages is in the responsibility of therouter com-
ponent. It may contain additional elements, e.g. so-calledmes-
sage transforming functions(MTFs) anddelivery constraints
(DCs). While MTFs are in charge of transforming, e.g., filtering,
messages on behalf of some listener, DCs define some extra conditions with regard to event delivery,
e.g., on the order in which events are received.

The explanation of the information-driven architecture inthe following two chapters is loosely in-
formed along the lines of the general of event-based system proposed in [CNF01]. While not all of
those models are applicable to the presented approach, e.g., the subscription model is subsumed by the
observation model, and the document model is introduced as an additional model, this still provides a
coarse framework for the following sections as shown in Figure 6.2. This notion of introducing mod-
els for describing coherent building blocks of concepts andtechnology will be continued in Chapter 7
with the extensions that are geared towards facilitating integration in a collaborative research project
on cognitive systems like VAMPIRE.

In this and the following chapter, the different models and functions of the IDI architecture will mainly
be explained from a conceptual viewpoint. Nevertheless, within each of these sections, interesting or
important details of the architectural realization will beexplained in an excerpt-like style. If imple-
mentation details are reported, they describe a general object-oriented design of an available imple-
mentation independent of a specific programming language ifnot otherwise stated.

Sebastian Wrede

6. Adopting Event-Based System Models 97

In order to visualize the different aspects of the software architecture from different viewpoints, class
and composite structure diagrams are used for describing static viepoints and activity diagrams for
dynamic aspects. All diagrams utilize the notations of theUnified Modeling Language(UML). All
depicted diagrams restrict the visibility of classifiers within the shown part of the software model to
the absolute minimum necessary to understand a particular aspect. This is needed, because otherwise
the resulting visual complexity of the UML diagrams would impede the communication of the main
matters.

In order to get a grip on the concepts behind the IDI approach,let us now turn to the document model,
which yields already an important technical and conceptualfoundation for the overall architecture.

6.2. Document Model

The document model is fundamental for many of the advanced concepts in the information-driven
architecture as event notifications are encoded in accordance with its principles. For instance, the
chosen representation in the document model has a large impact on the available functionality in
the observation model which allows content-based matchingon information elements encoded in
accordance with the document model. Hence, it serves as an underlying theme used across almost all
models of the information driven integration architecture.

The IDI architecture actually employes adocumented-orienteddata-model for semi-structured infor-
mation. Document-orientation is an important mean that promotes loose coupling due to the fact that
the documents shall be self-contained and encode ideally all information that is needed by a participant
to process a received document-based event notification, which is well suited for the asynchronous
interactions in an event-driven architecture. Taking up onthe point of loose coupling, document-
orientated messages that follow the ideas stated in the nextsection, represent a variant of thevalue
objectpattern for distributed systems, which recommends to communicate objects that are immutable
and that can be identified based on their state rather than on their object identity.

Guided by the requirements defined in 5 regarding data representation in an integration architecture
and given the desired application independence and document orientation, the use of theExtensi-
ble Markup Language[BPSM+04] (XML) as the underlying basis for data description nowadays is
a quite natural choice. Using XML documents instead of a hardwired binary protocol, plain text,
ASN/1 [Dub08], or JSON, which is used in web environments, has several benefits for integration
such as extensibility, declarativity and standardization. The latter fostered the development of ex-
cellent tools and programming APIs for processing of XML documents. In conjunction with addi-
tional XML standards likeXPath, XSLT, XML Schemaand XLink [BDG01] it provides a domain-
and programming language independent representation model, which is widely known and promotes
openness. If XML is used as proposed in the subsequent section, it also contributes to the understand-
ability of system-level interactions. Utilizing XML allows to store, retrieve and process information
from different abstraction levels and semantic domains, yielding aunified data model.

Using XML structures such as the object document shown in Listing 6.1 certainly yields performance
penalties for its textual encoding and verbosity. However,the hypothesis with regard to this point is
that the performance loss is outweighed by the positive impact on many of the introduced requirements
and that XML construction and access is fast enough for performing system-level integration in real-
world cognitive systems as shall be substantiated in Part III of this thesis.

Bielefeld University

98 6.2. Document Model

1 <?xml version="1.0" encoding="ISO-8859-1"?>

2 <OBJECT>

3 <HYPOTHESIS>

4 <GENERATOR>Object Recognizer BU(N)</GENERATOR>

5 <RATING>

6 <RELIABILITY value="0.6"/>

7 <RELEVANCE value="0.5"/>

8 </RATING>

9 </HYPOTHESIS>

10 <CLASS>Cup</CLASS>

11 <REGION image="img_office210703_122">

12 <RECTANGLE x="335" y="245" w="65" h="80"/>

13 </REGION>

14 <CENTER x="32" y="44"/>

15 </OBJECT>

Listing 6.1: Example of a basic object recognition event as used in the VAMPIRE systems.

Even so, as cognitive computer vision systems make wide use of subsymbolic information, binary data
like images would need to be encoded in an XML document by treating it numerically and translating
it into abase64representation, which is unacceptable. Thus, the event model in Section 6.3 introduces
the notion of anattachment, which handles this class of data more efficiently and binds it to the event
notification concepts.

From a collaborative perspective, XML schemas help to checkexchanged XML documents for their
validity. XML Schema files define a grammar that a valid XML document has to conform to and can
be used in collaborative project to formally define messaging contracts between interacting partici-
pants. Excerpt 6.1 briefly highlights the use of schemas in the COGNIRON project.

Since XML only specifies the syntax of a document, let us discuss a general strategy for how informa-
tion shall be encoded in the IDI architecture and what the resulting implications for the information
exchange in integrated cognitive systems are if extensibility is taken into account.

6.2.1. Information-oriented Representation

In contrast to other approaches liketuple-, record-or object-based event models [MFP06], the XML
data model as defined by theXML Information Set[CT04] (XIS) specification is a hierarchical tree-
structured data model. The XIS recommendation defines a number of information items, primarily
thedocumentinformation item as the single root node as well aselementandattribute items that can
be used as nodes in a tree to model hierarchically structuredevent information like the availability of
object recognition information as exemplarily displayed in Listing 6.1.

A hierarchical model was supposed to be well suited for the encoding of scene information and other
important data in the context of the VAMPIRE project. While tree-models lack the expressiveness
of graphs, they were chosen as a compromise for the sake of clarity and simplicity while already
allowing for greater flexibility in describing events than atuple- or record-based approach.

Sebastian Wrede

6. Adopting Event-Based System Models 99

Exemplary XML-RPC encoding

<member>

 <name>CENTER</name>

 <value>

 <struct>

 <member>

 <name>y</name>

 <value><int>44</int></value>

 </member>

 <member>

 <name>x</name>

 <value><int>32</int></value>

 </member>

 </struct>

 </value>

</member>

Information-oriented XML encoding

<OBJECT>

 <REGION>

 <RECT x="13" y="27"

 w="80" h="80"/>

 </REGION>

 <CENTER x="32" y="44"/>

 <CLASS>CUP</CLASS>

</OBJECT>

Figure 6.3.: Contrasting XML-RPC with document/literal information encoding.

The document model assumes that the different functional modules of a cognitive systems generate
symbolic information from sensing their environment, which permits them to encode these results,
i.e. object percepts, as XML documents. These include results of for instanceobject localizations,
spatial relationsof objects, andactions. As different sensors often share the same attributes, parts of
the knowledge fragments are common for different documentsand some are specific for the respective
type. Theseshared representationsallows processes to handle different types of knowledge fragments
transparently, since they can only consider the data relevant for their processing.

An example of a shared representation that was widely used inthe software architecture of the
VAMPIRE project is theHypothesis[HBS04]. Since perceptive modules typically do not provide
complete accurate results, cognitive systems should not process information as irrevocable facts but
as hypotheses with a givenReliability. This common data structure describing the uncertainty of a
knowledge fragment are called theMetadataof the hypothesis. Listing 6.1 shows an example of a
hypothesis containing a common metadata part. As this metadata is available for any kind of hypoth-
esis, processes are developed that only consider this information and can therefore handle any kind of
hypothesis, as for instance the “forgetting”-process thatis described in Section 7.3 in more detail.

Information-oriented representations conform to guidelines on the design of interactions in service-
oriented architectures to enforce loose coupling. Ideally, messages in the IDI architecture shall be:

• Reference free: Representations containing reference types to data structures that are in the state
space of other distributed participants shall be limited tothe extent possible.

• Feature a coarse granularity: Messages should at best be of coarse granularity making it not
necessary to issue a sequence of fine-granular message exchanges. In general, they should
contain all information that is needed to process them in a cognitive system architecture.

• Free of technological details: The encoded information must not contain details about thespe-
cific component implementation that generated the message.

Bielefeld University

100 6.2. Document Model

The use of the XML Infoset as the unifying data model for the IDI architecture enforces the desired
document-orientation and contributes to the required extensibility of event interaction. Please note
that XML is used here differently as in data exchange protocols like XML-RPC [KAU04]. Those
protocols are often designed from a programming language orsolely from a marshaling perspective
and usually result in a lot of overhead through text-based representation of binary data and parameter
encoding rules which in turn leads to poor understandability of the textual XML representation.

Looking at the object recognition example shown in Figure 6.3 you see two alternative encodings
of a “CENTER” element. The example shows aninformation-orientedencoding of the center item
(embedded in an object recognition result) on the right as well as a serialization of the same item in
XML-RPC encoding on the left. It is not only this obvious overhead induced by a naive serialization
of data to XML that is not desirable, but even worse is the lossof comprehensibility at all process-
ing levels that is imposed by this type of encoding.1 Using XIS as a unifying data model and XML
as the publication language in the IDI architecture not onlyyields great flexibility in event notifica-
tion encoding, but at the same time provides a programming-language independent representation of
information.

Excerpt 6.1: Event Specification and Validation

Meta-information, e.g., about allowable data types, is kept separate in corresponding XML schema files
and is not encoded in the instance documents themselves. Specifying data types with XML schema has
several advantages in contrast to traditional programminglanguage constructs.
First of all, the data types are independent from specific programming languages. Even so, tools for using
them are available on almost every platform. Furthermore, XML schemas are able to specify content
models and ranges of allowed values in great detail. Providing fine grained sets of semantically grouped
declarations in separate schemas with associated XML namespaces makes them reusable throughout
different systems. Complex schemas for individual modulescan then easily be composed out of these
basic type libraries, only adding specific complex types. Iftaken into account, extensibility of data types
is possible with schema evolution. Even complex grammars for components capable of interpreting
and validating XML documents originating from different robot modules are easy to compose and well
understandable with a sophisticated schema hierarchy. Information-oriented encoding of XML event
notifications and the use of XML schemas for validation of theexchanged information are both very
useful for system integration in interdisciplinary research projects. The focus on simple XML messages
to describe exchanged information helps during project inception as almost every developer will be able
to contribute to the discussion about the data flow in the system. Later on, XML grammars like XML
schema allow for a rigid specification and validation of the datatypes a project consortium has agreed
upon. For example, schemas have been defined in the European project COGNIRON [Cog06] to ease
the integration of the partner’s contributions in the realized robot prototypes.

1The idea to directly encode information and not data in XML has recently gained more interest even in the Web Services
community where SOAP-RPC encoding (which is somewhat similar to XML-RPC encoding) is being more and more
replaced by the document/literal encoding as favored by theapproach presented here.

Sebastian Wrede

6. Adopting Event-Based System Models 101

CameraRobot Base

Recognition
Object

 <CENTER x="345" y="12"/>
<TRACK ...>

 ...
</TRACK>

<OBJECT ...>
 <CENTER x="122" y="347"/>
 <REGION>

 </REGION>
 ...
</OBJECT>

 <RECT x="80" y="387" w="80" h="80"/>

Person Tracker

VisualizationHardware Control

Figure 6.4.: Accessing common information at arbitrary locations with XPath.

6.2.2. XML Processing and Extensibility

To promote the goal of loose coupling by using self-contained XML documents, the policies for han-
dling XML structures are critical. In the IDI architecture,a two-fold strategy is proposed. On the one
hand, modules that receive an event notification must not remove information they do not understand.
In contrast to the must-understand policy, the IDI architecture proposes amust-ignorepolicy, which
means that unknown document structures are not interpretedas erroneous but are left in place but pos-
sibly changed or augmented by additional information before they are communicated to other system
components. On the other hand, the answer comes from the recommended way of accessing the infor-
mation in an event document. In contrast to template-based access like in tuple-based approaches or
the direct reference to a field in a record-based data structure, a selection of XML information items
through XPath expressions [CD99] helps in building extensible systems that will not break as soon
as modifications of the event encodings occur. Carefully designed XML vocabularies and path-based
access therefore are important methods to overcome prevalent versioning problems [SV01].

An example that explains the benefit of the XPath-based selection of XML information items for
system integration is depicted in Figure 6.4. Four modules processing partially equivalent XML data
structures are shown. This allows a component (e.g. “Hardware Control” for adjusting the robot base
and the pan-tilt camera) to process information from different other system modules. Only the part in
the XML document that contains information about center points (“<CENTER>”) has to be present in
an exchanged data item. Starting with a simple partial path specialization to access the context node,
e.g. in this example as simple as “/*/CENTER”, the extraction of contained information is easily
possible although the context node itself might appear in varying places of different XML structures.
Thus, this path expression works on both documents shown in Figure 6.4.

As long as no necessary information is removed, this strategy yields loose coupling and facilitates
interoperability between separately developed modules. This serves as an initial example of how the
XML infoset-based representation of event notifications contributes to the goals of the requirements
identified earlier. The path-based access to information will be revisited as a fundamental part of the
content-based observation model in Section 6.4.

Bielefeld University

102 6.2. Document Model

6.2.3. Exploiting Reflection

Reflectionis a general programming language concept, realized for instance in Java and Smalltalk,
which allows applications to query information about objects and classes at runtime. In terms of
middleware, e.g., dynamic CORBA [Sie00] supports reflection at runtime using, e.g., the dynamic
invocation facilitates as explained in Chapter 3. However,even CORBA advocates admit that these
reflection facilities are “hard and tedious” to use. Even so, they argue that this is a rather small prob-
lem in practice for CORBA applications, because most of themexhibit a static character utilizing stubs
and skeletons generated by an IDL compiler. Hence, CORBA clients and servers generally already
know all necessary type information to evaluate received data and issue calls on remote objects. In
fact, theymustbe aware of this information as CORBA’sGeneral Inter-ORB Protocol(GIOP) omits
type information from requests, requiring participants toknow messages types a priori.

Excerpt 6.2: A Content-based Similarity Metric

Exploiting reflection in the XML-based document model, we developed a similarity measure that in-
cludes a data integration mechanism and can thus process data from a variety of sources coherently. It
uses the label information in XML document trees, the element name, to identify comparable values and
to transparently handle missing, repeated or re-ordered occurrences of an element or sub-tree.
In any data integration task, care must be taken not to mix up data with different semantics. E.g., in object
recognition, the coordinates of an object and its label are not on the same abstraction level. Therefore,
the hierarchicalnestingas a generic indicator of semantic differences is exploited, taking advantage of
an existing and established way of formulating this crucialbit of information.
Hence, the similarity measure constitutes a kernel. It has been shown that many machine-learning
methods can bekernelized in a straightforward manner, either by using the kernel in place of
the scalar product or through a distance measure constructed from the kernel, e.g. d(x, y) =
√

K(x, x)− 2K(x, y) + K(y, y)[Hau99].

Kernel Over XML Documents An XML document is a labeled tree rooted at thedocument node.
In the following, for a noden, let L(n) be its label,V (n) its value andC(n) be the set of children and
attributes. In the XML infoset, only attributes and text nodes have a value assigned but for the purposes
of this paper, we take element value to be composed of the immediate text nodes:

Definition 6.1 (Element Value) The value of an elementn with levell is the concatenation of all text
nodes with rootn and levell + 1.

For the kernel definition, two cases are special: The empty comparison and non-matching labels. For
these,k(0, 0) = 1 respectivelyL(s) 6= L(t) : k(s, t) = 0.
For nodes, we adopt the idea of Gärtner et al. [GLF04] to exploit possible functional dependencies by
combining the similarity of parent and children:

k(s, t) = kL(s)(V (s), V (t))k(C(s), C(t))

Nodesets, despite the name, have document order but may be treated as both a set or a list, with the
corresponding kernels (and using the above). For sets:k(u, v) =

∑

i,k kn(ui, vk) and for lists:k(u, v) =
∑n

i k(ui, vi). Last, but not least, for basic numeric values, a Gaussian:k(a, b) = e−|a−b|2/h2

and for

strings, a Hamming similarity:k(m, n) = 1/k
∑k

i=1 δ(mi, ni) is applied.
While this can be extended with kernels for domain-specific information, the mapping of the basic XML
infoset items already yields a variant of a similarity metric that can be applied in a general manner. How
this can be used for the purpose of clustering similar XML documents will be explained in Excerpt 6.3.

Sebastian Wrede

6. Adopting Event-Based System Models 103

While in CORBA and other operational middleware, this information is typically used to perform
dynamic invocations, the main utility of reflection for the integration architecture is different. As
event-based systems do not feature operational semantics,the focus is set on the dynamic interpreta-
tion of event notifications. With regard to that, the self-describing nature of XML documents yields a
kind of type reflection, which allows to develop generic modules which would, e.g., in CORBA only
be possible by exploiting its full complexity.

Excerpt 6.2 gives an example how the reflective characteristics of the XML approach can be exploited
to design an XML kernel for measuring the similarity betweentwo documents in a generic way.

6.3. Event Model

The IDI architecture introduces a generic event model to allow participants in a system to signal
relevant event occurrences independent of a specific abstraction level, content and operational context.
An event describes any occurrence of a happening of interestthat an informer in a cognitive system
wants to communicate instantaneously to listener participants. Types of events in the systems that
are discussed here range from the presence of new sensorial information like the availability of new
laser scanner data sets to the detection of an unknown personentering a scene, which is visually
observed by a surveillance system or the encoding of actuator state changes.Eventsrepresent the
central abstraction that is used by module or system developers to model their domain objects in an
IDI-based system.

However, not only developers but also the proposed architecture is itself fundamentally based on
event concepts in order to provide higher-level integration functions like the services offered by the
memory model that will be described in Section 7.3. The higher level components of the architecture
and the application specific modules in an IDI system communicate by generating and receivingevent
notifications, which actually are physical representations of events in terms of programming language
constructs, e.g., an object instance in an object-orientedclass hierarchy.

Figure 6.5 depicts the structure of an event notification as the fundamental mean of communication in
an IDI architecture. As in many other event-based systems, an event encodesinformationthat conveys
the semantic information associated with an event. Based onthe principles of the document model,
each notification shall be self-contained to facilitate efficient asynchronous communication, which is
a key characteristic of event-based systems. Therefore, the message content is represented according
to the document model in exactly one underlying instance of an XML document.

Rephrased in terms of the event-based system paradigm, XML is used here aspublication language
for event notifications. An individual notificationn is thus constituted by a set of attributesa1, ..., an

available through the event documentm where the value of information items in the underlying tree
model is accessible through associated pairs(xi, nsi) of XPath expressionsx. The corresponding
nodesetsns are returned by evaluating XPath expressions with their types conforming to the XPath
1.0 data model [CD99]. This generic accessibility allows for the introduction expressive content-based
filtering functions in the observation model of the IDI architecture.

Besides the message and the underlying document, an individual event is consituted bymetadataand
a number of optionalattachments, which are explained in the following before the introduction of
user-definable event notification types in object-orientedprogramming languages will be explained.

Bielefeld University

104 6.3. Event Model

Architecture Event Modelpackage []

Event

 : Information

 : Document [1] : Attachment [0..*]

 : Metadata

getDocument

get / set get / set

Examples for typical event

metadata:

- Event ID

- Sender URI

- Receiver URI

- Runtime Type Information

- Timing Information

- Action / Operation

- Delivery Constraints

Figure 6.5.: Composite structure diagram for the document-oriented event model. An event object is consti-
tuted by domain-specific information, referenced binary attachments and metadata. Attributes
in italics are examples for optional metadata elements.

6.3.1. Event Metadata

Apart from the basic data model that module developers use toencode information in event notifi-
cations, the architecture itself inserts an extensiblemetadatablock into the event representation as
exemplarily shown in Listing 6.2. Conceptually, this metadata is a dictionary featuring an additional
set of predefined information-oriented attributes that areaugmented to event notifications by the inte-
gration architecture in order to facilitate advanced functionalities like scoping, which is a feature of
the notification model explained in Section 6.5, which restricts visibility of notifications or to enforce
other constraints such as delivering only recent hypothesis to a listener.

The metadata elements are located in a separate XML namespace [BDG01] (seeline 4of Listing 6.2),
thereby protecting them from other information encoded in an event representation.

Typical metadata attributes are identity information for the event itself, which is represented as a
Universally Unique IDentifier(UUID) that serves as aUniform Resource Name[BLFM05] (URN)
for individual event notifications (line 4). The identity of informer and optionally listener participants
is encoded in accordance to the URI scheme of the resource model that will be explained in Section 7.1
(lines 5 and 6). Furthermore, the time of event publication and retrieval(line 7) is added by the IDI
architecture as it is fundamental for synchronization in this architecture. Adding up to this, specific
delivery constraints (line 8) like the Time-To-Live(TTL) information that specifies a lease time in
which an event remains valid or runtime type information (lines 9–11) are represented in the metadata
structures.

By integrating this metadata into the documents itself the architecture complies with the goal to in-
teract through self-containend event notifications. This has the advantage that the core architecture
may largely use similar processing strategies as they are offered to module developers. Details about
the use of different metadata attributes will be explained in the subsequent sections along with the
description of the higher level functionalities they contribute to.

Sebastian Wrede

6. Adopting Event-Based System Models 105

1 <?xml version="1.0" encoding="ISO-8859-1"?>

2 <OBJECT>
3 ...

4 <xcf:meta eid="d96f80c9-c1b2-4519-a6bc-d7b250490af5" xmlns:xcf="http://xcf.sf.net/">

5 <sender uri="xcf://or.vampire.agai/boost"/>

6 <receiver uri="xcf://vampire.agai"/>

7 <timing pub="1209295281648" rec="1209295294015"/>

8 <dc ttl="100" timeunit="ms" />

9 <event type="xcf.event.PublishEvent">

10 <isa type="xcf.event.XcfEvent"/>

11 </event>

12 </xcf:meta>

13 </OBJECT>

Listing 6.2: Exemplary XML metadata element that is transparently attached to each event notifications by
the integration architecture.

6.3.2. Optimized Packaging of Binary Data

As pointed out in the beginning of this section, a regular counterargument against the use of XML is
the inefficiency of its textual serialization. The IDI architecture extends over the purely infoset-based
model along two dimensions in order to provide improved performance while keeping most of the ben-
efits: on the one hand, an optimized packaging of binary data in XML documents is used to increase
the efficiency of serializing event notifications and to savebandwith on the transport medium. On the
other hand, the notification model, cf. section 6.5, introduces a transparent optimization scheme that
allows transport-layer specific serialization strategies, which may dramatically increase efficiency of
marshalling event notifications. As part of the event model,let us now focus on the efficient handling
of binary data.

As document-orientation and XML encoding is fundamental for many aspects of the IDI models, the
decision was taken to keep this scheme for as much information as possible but treatBinary Large
OBjects(BLOBs) like image data or general array-like data types differently. Thus, as depicted in
Figure 6.5, BLOBs can be added to an event notification withattachmentsthat can be referenced and
described in the event document and are transmitted in the native encoding of the underlying transport
layer implementation. This style of adding attachments to XML documents is inspired by theXML
Optimized Packaging[GMNR99] recommendation.

Marshaling of attachments is directly supported for a number of predefined vectorial data structures,
e.g. vectors for floating point types. Additionally, a container type for unsigned character data is
provided which may be used to communicate any user-defined data structure efficiently in an event
notification. However, this implies that the module developer already serialized domain specific ob-
jects into a byte vector representation as besides byte ordering no further operation on the data is
carried out by the implemented serialization strategy.

However, as binary data formats re-introduce versioning issues and are not accessible in a generic
manner, it is recommended to limit the use of binary-encodedelements and better describe relevant
event data either in an information-oriented symbolic event description or to extend the metadata

Bielefeld University

106 6.3. Event Model

dictionary. More details about attachments and the marshaling of events in one specific transport
implementation will be briefly presented along the explanation of the notification model in Section 6.5.

6.3.3. Domain Events

The IDI architecture defines a logical taxonomy of event types, tailored to its own functional needs,
e.g., defining event types for system management and the like. This taxonomy is realized in an object-
oriented class hierarchy, which wraps the domain information that is contained in an the event no-
tification document into a programming language specific interface. In comparison to the generic
XML-based document interface, these wrapper objects increase usability and allow for polymorphic
dispatch of event notifications in object-oriented programming languages, cf. Section 6.5. Besides
usability concerns, the strategy that is presented in the following, dramatically increases the efficiency
of read access to event data due to the fact that it is carried out as a language specific operation on
cached data value objects.

In order to be extensible for module developers, implementations for domain specific event types
can be added to the event taxonomy. As event marshalling is handled in the transport layer 6.5,
the necessary mechanisms to deal with user defined event types have to be provided there. Event
notifications are converted in language-specific object representations if serializers for the received
event or one of its super types are available in the used programming language. Even though it is in
general possible to use different technologies to realize the transport layer, it is mandatory to provide
the backing XML document that encodes the data of the event notification, because this is used as a
fallback information source if a specific function of any of the IDI models cannot be mapped to an
optimization, e.g., in the transport layer. For instance, scope or identity information are supported to
a very different extent by underlying middleware implementations.

The IDI architecture’s standard implementation of the event marshalling mechanism in the transport
layer uses a rather simple XML plus binary object serialization to transport the event notification.
As event type as well as its super types are encoded in the metadata block of the document, this
allows to instantiate the most specialized type that is available upon unmarshaling of a serialized
event notification. User defined event types can be dynamically registered with the transport layer
in order to be serializable, but since all events have to be derived from a base type provided by the
IDI architecture, deserialization of the event base type isalways possible. This yields an important
difference to stubs and skeletons as known from operationalmiddleware because event notifications
can be interpreted in a language specific way but participants can communicate even if no specific
type information is available.

The native event implementations use alocation-based data-binding concept to access parts of docu-
ment passed to them, therefore no further marshalling is necessary. Locations provide type-safe and
cached access to their values. They also allow for optimizations in the transport layer as it will often
be possible to determine certain values, usually metadata,using native mechanisms of the underlying
communication technology. Values that have been cached by alocation either because they have al-
ready been extracted from the document or because they have been set in a more efficient way will
not be extracted again. Based on the assumption that writes to an event structure occur much less
frequent than reads, the underlying document and the cachedcontent of a location are both updated
during the setting of a value. This representation of event notification provides an avenue for efficient
but expressive filtering in the observation model that shallbe introduced next.

Sebastian Wrede

6. Adopting Event-Based System Models 107

6.4. Observation Model

The observation model describes the concepts that allow a listener component to express its interest in
specific events produced by informer components and the mechanisms that are involved in the process
of propagating incoming notifications to listeners. A consumer specifies the events it is interested in
through asubscription[MFP06], which is in this approach registered at the local router component
of the IDI middleware stack in the address space of the participant and evaluated against all incoming
notifications. If a subscription matches a notification in the evaluation process, the contained event is
dispatched to the callbacks of the listener components thatare associated with this subscription.

Event-based architectures usually support a subset of one of the following mechanisms for subscribing
to event notifications [MFP06, Fai06, BCTW96]:

• Type: Matching based on runtime type information. In many architectures the event type refers
to the type of data that is contained in an event notifications.

• Channel: Subscription matching based on a physical or an abstract communication channel.
Different event types can be published without further selection.

• Group: Event matching based on group memberships. Subscribers belonging to a group will
receive the same set of event notifications.

• Subject: Instead of operating on the payload of an event notification, pattern matching opera-
tions are applied to event descriptors.

• Filter: Subscription models that utilize filters allow listeners to restrict published notifications
to a suitable subset.

Filter-based approaches provide high flexibility as they allow to narrow down the received set of
notifications for anindividual listener. In event-driven architectures that support thisconcept, listeners
can specify subscriptions as stateless boolean-valuedfilter functions operating on a single notification.
By applying a test on specific properties of the incoming notifications let alone whether this is based
on the whole content, certain attributes or an expected sequence [Fai06], they return eithertrue or
false representing the success of the filtering operation.

The IDI architecture permits all the aforementioned ways ofsubscribing to events by introducing
a number of predefined but generally applicable filter types and a filtering subsystem that transpar-
ently optimizes the matching step if possible by exploitingplatform specific operations. In cases
where this is not possible a content-based filtering approach is applied that is based on the intro-
duced information-oriented representations introduced in the previous sections. This strategy will be
explained in more detail in the following.

6.4.1. A Hybrid Subscription Model

A central question from the viewpoint of the observation model is what elements actually comprise a
subscription. At this point, the notion of a filter is extended towards a more genericmessage trans-
forming function(MTF).

Bielefeld University

108 6.4. Observation Model

An MTF differs significantly from a traditional filter in a sense that it is stateful and (optionally)
applies a transformation to the notification message it receives as input. An MTF shall in this approach
be defined by

transform(X,mi, φi) = ({mi+1}, φi+1) (6.1)

whereX is an individual participant,mi is a message delivered to component X,φi is the state of
the transform function before processing ofmi. If an MTF is not able to apply a transformation a
message, it returns an empty set as result of this transforming step.

While the abstract concept of a transforming function in event-based systems was originally intro-
duced by Barret et al. [BCTW96], the definition introduced here differs in that the individual MTFs
are not directly associated with individual listener instances and are defined here in a sense that pro-
vides a generalization of the non-mutating filter concept found in the aforementioned subscription
models of event-based systems. While this constraint does not allow, e.g., to re-route messages to
other listeners, it enhances the observation model with capabilities that provide the basis for advanced
integration functionality.

Particularly MTFs that are stateful and the ability to re-structure event messages allow to encapsulate
integration functionality like simple frequency filters ormore advanced concepts like a novelty detec-
tion as described in Excerpt 6.3 in re-usable software components that can neatly be integrated into
the observation model of the IDI architecture.

In order to observe specific events that occurred in a system,e.g., that the interaction partner’s face was
detected in front of the VAMPIRE AR gear’s cameras with a certain probability, listener components
can register expressive subscriptions that specify the conditions that describe a listener’s interest in
observing specific state changes in an information-driven system architecture.

In this example, the subscription would possibly feature a type filter matching representation of faces,
which would be linked to a reliability filter in order to discard notification messages containing de-
tections with low probability. One could even imagine to consider this request only if a number of
occurrences of observations matching the previous filters happenend during a short time interval in
order to be sure that someone is interested in attracting therobot’s attention.

The subscription process in an event-driven architecture is consituted by all steps necessary for a lis-
tener to become subscribed at runtime to event notificationsissued by an informer. From a developers
perspective, the above mentioned example can be expressed and registered in the IDI architecture with
a composite subscription as shown in Listing 6.3. This subscription basically represents a mapping
of the stated functional condition to instances of available filter types. While theTypeFilter
(line 3) usually is a programming language-optimized filter, e.g.,by exploiting polymorphic dis-
patch [BCH+96], the reliability checking (line 4) yields an example of content-based matching with
a generic filter that is based on XPath expressions on the document that is contained in each event
notification. If all filters match, in this example an instance of the matching face event notification is
pushed into a type-safe queue for face events.

Sebastian Wrede

6. Adopting Event-Based System Models 109

1 SynchronizedQueue<FaceEvent> faces = new FaceQueue();

2 Subscription s = new Subscription();

3 s.append(new TypeFilter(FaceEvent.class));

4 s.append(new XPathFilter(new XPath("//HYPOTHESIS/RATING/RELIABILITY[@value>=0.95]")));

5 s.append(new FrequencyFilter(10,1,TimeUnit.SECONDS));

6 // add subscription to router object

7 r.subscribe(s,new QueueAdapter<FaceEvent>(faces));

Listing 6.3: Java example of a filter chain representing an event subscription for faces detected with a high
reliability and frequency. If it matches, the event is dispatched to the registered callback handler,
which is here a generic adapter that appends detected eventsto a queue.

6.4.2. Transformation-based Event Filtering

In the spirit of this example, a subscription can more formally be specified as afilter function, which
is defined here as a concatenation of multiple transforming functions operating on a single message

filter(Xs,m1) = transform(X,m1, φ1) ◦ . . . ◦ transform(X,mI , φI) (6.2)

whereI denotes the number of MTFs that constitute the subscriptions at componentX. As for a
single transformation functions, a filter returns an empty set if a message is either not matched by any
of the registered functions or if it is intentionally “consumed”, what is for instance actually done in
the frequency filter implementation.

As in most event-based infrastructures, a router actually performs the matching of incoming notifi-
cations. It maintains the list of active subscriptions for an individual listener and needs to decide
whether one of these matches a received notification. This isdone in the IDI architecture for an
individual subscription by an evaluation of the following function

match(Xs,DX) = filter(Xs, n1) ◦ . . . ◦ filter(Xs, nI) | ∀n ∈ DX (6.3)

whereDX is the set of notifications that are received by componentX in an event-based system in
the given time interval. If this function evaluates to an empty set, this indicates that the notifications
were discarded and the conditions expressed through the subscription were not fulfilled during the
observation interval.

If a subscription matches a received notification an optionally transformed message is returned. In
turn, the IDI architecture dispatches the represented event to the registered local callback handler as
shown in Figure 6.6. These handlers bind application logic of an individual component either directly
to the integration architecture or insert events in synchronized queues, cf. Listing 6.3, that allow for an
subsequent retrieval of information by the component, effectively inverting the local event notification
semantics.

Bielefeld University

110 6.4. Observation Model

Name Description Optimization

XPath Content-based matching with XPath expressions. Content

XSLT Generic message transformation using XSLT scripts. Content

Reliability Evaluates notifications against a certain probability threshold. Content

Compacting Compares novelty of received notifications against previous ones. Content

Identity Matches on unique identity information. Content

Scope Reduces the visibility of events by introducing scopes. Transport

Type Matches on event types and sub-types defined in the event model. Language

Frequency Filter that outputs only every n-th received notification. Language

Table 6.1.:MTFs supported in the IDI architecture and their layer of optimized execution, e.g. whether they
can be evaluated on the content level or on the network level.

These two different styles of interaction between softwaremodules are often refereed to aspushand
pull communication [Fai06]. While in the former model, the software framework calls the component
(in conformance with the Hollywood2-principle as known in software engineering), which couples
the temporal behavior of informer and listener, the latter style allows the component to perform an
asynchronous event processing in accordance with its internal information processing architecture,
actually pulling events from corresponding queues.

The independence of the individual MTFs allows to optimize the transformation and matching process
within the router component. In the IDI architecture, the current realization of the matching strategy
is based on a direct acyclic graph structure (contained in the MTFTreeas shown in Figure 6.7 whose
current implementation is explained in greater detail in Excerpts 6.4).

It currently supports grouping of identical filters as long as those are equal or covering the same subset
of notifications, which implies that the filter instances must produce exactly the same matchings as
well as the same transformations results. If stateful transforming functions want to be grouped, this is
only possible if they feature the same state at the time of merging. Covering or merging is supported
only for a subset of these filters and is possible future work.

2Don’t call us, we call you.

Sebastian Wrede

6. Adopting Event-Based System Models 111

Event Source

tf1,1
Event Sink

Event Sink

Event Sink

Event Sink

tf1,2 tf1,3

S1

S2

S3

S4

tf2,1

tf3,1

tf2,2

tf4,1 tf4,2 tf4,3 tf4,4

tf2,3 tf2,4

e

es1

es2

es3

Subscriptions

Figure 6.6.: Simple event notification matching and transformation. If anotification message is successfully
matched, the event is dispatched to an event sink, e.g., to the registered local callback handler.
MTFstf4,3 andtf4,4 are not executed astf4,2 did not match the event notification.

Excerpt 6.3: The Compacting Filter

To reduce the burden of redundant and/or bad results in a system architecture, the aim is to filter elements
based on their level of similarity. Firstly, the amount of new information present will be estimated
utilizing the XML kernel as introduced in Excerpt 6.2 and only if a change isbig enoughelements will
be forwarded for further processing. Secondly, elements areclustered. When a close group is found, it is
updated, otherwise a new group will be created. This is called compacting.
Compacting at the level of the integration architecture allows to take advantage of global information,
e.g. when two redundant recognizers are present. For the developer, it is beneficial to have a dedicated
component for relevancy detection that can be changed to adapt to new challenges. Last, but not least,
our approach allows components to selectively bypass compaction to receive all elements.

Detecting Relevant Elements Detection of relevant elements requires an indication of the
amount of new information contained, relative to the elements already present in the memory. We use
the violation of the present clustering to determine significance: New clusters are considered relevant.
To determine this, we observe the minimum distance between anew element and the existing clusters
over time and estimate the change using a moving average for the parameters of a normal distribution
pI ∼ Nµ,σ. Let I be the current number of elements, anddi the minimum distance observed at element
numberi, then the sample mean is̄µI = 1

k

∑I
i=I−k di and sample variance analogous. A new cluster

is created ifpI(di+1) < t. The parameterk allows for adaption to the result rate of the system, in our
experiments it is based on frame rate.t has been chosen constant (0.05), with the variability in thesystem
captured by the densitypI .

Online Clustering E.g., in the VAMPIRE system events about detected objects arrive one-by-
one, not batched and due to user interaction stationarity can only be assumed short-term. The relevancy
detection determines creation of new clusters but aims at fast reaction time more than at clustering quality
and it has to, because of the limited amount of information and the strictly limited processing time.
Fortunately, over time good clusters will acquire more support while outliers won’t and this can be
used to achieve good clustering quality in an online settingby determining cluster size and removing
unreasonably small ones. The exact cut-off to choose depends on the variance in the input. In experiments
the mean has proven a good choice.

Bielefeld University

112 6.4. Observation Model

Observation ModelArchitecturepackage []

<<component>>

IDI Listener

Router

 : Dispatcher [1]

 : DTM [1]

 : Processor [1]
add

notify

<<Component Level>>

Listener

 : Subscription [1]

 : MTF [0..*]

 : Callback [1..*]

<<boundary>>
<<Event Source>>

Port next
receive

0..*

Figure 6.7.: The conceptual architecture of the event observation model. The names of the composite classi-
fiers were chosen in accordance with the framework of Barret et al. [BCTW96].

Although the matching strategy can be treated as a black-boxcomponent that can be realized in a
number of different ways, its interface must at least permitfor dynamic (de-)registration of subscrip-
tions and callbacks at runtime as this is necessary for the required level of dynamism that is needed
in the IDI architecture for adaptation and orchestration ofsystem components. A further benefit of
this IDI concept is that MTFs can externally be injected in the router components of participants,
which allows for the ex-post adaption of integrated components without the necessity to change the
underlying source code.

The local callbacks that allow a particpant to actually connect its application code to the IDI archi-
tecture represent theevent sinksin the observation model. These sinks finally receive the notification
that matches a specific subscription.

On the contrary, theevent sourceas shown in Figure 6.7 is the source of notifications. Thus, a single
subscription is solely a logical connection from an event source to an event sink. Viewing an individual
matching process as a transformation of a notification from an event source to an event sink is the
basis for abstraction from the concreteconnectortypes for sources (and sinks as we will see in the
next chapter), e.g., network communication, shared memoryor in-process communication.

The IDI architecture defines a number of filters that are directly reusable by system integrators. Ta-
ble 6.1 gives an overview of these MTFs and summarizes their functionality. Some of these will be
explained in more detail in later sections as they are used within the architecture to permit further
integration functions. Users of the framework can transparently enhance the observation model by
providing additional event types as well as filter functionsthat operate on these.

Last but not least, the dispatcher component as shown in Figure 6.7 is responsible for multi-threaded
invocation of the callback functions that are associated with matching subscriptions within listener
components. As part of the technology mapping, the multipledispatch-based design of the dispatcher
will be described in the next chapter.

Sebastian Wrede

6. Adopting Event-Based System Models 113

Excerpt 6.4: Dynamic Tree Matching For Efficient Event Notification Transformation

The current implementation of subscription matching organizes the transforming function chains of the
registered event sinks, e.g. event listeners, into a tree structure. In the most basic case, where subscrip-
tions do not have any filter elements in common, this tree corresponds to the organization depicted in
Figure 6.6. Each subscription’s transforming functions are attached to the tree’s root node as a separate
branch, the event sink forming the leaf. An overview of the elements involved in the implementation is
given in the class diagram shown in Figure 6.8.

Transformation When an event notification becomes available at theEventSource connected to
the observation chain, it is picked up by theEventProcessor which provides the necessary process-
ing threads to perform the transformation. The processor passes the notification to theTreeMatcher
that implements the tree-based matching algorithm. It traverses theMTFTree structure recursively,
depth-first, handing the result of the last step to the nextMTF. If a node returns an empty result, the
recursion stops for the current branch. A subscription has matched when the recursion reaches a leaf
node. TheEventSink contained in the leaf is then stored together with the resultof the transformation
as returned by the corresponding branch into a list ofMatch objects. Once theTreeMatcher has tra-
versed the wholeMTFTree, the resulting list of sink-event pairs is returned to theEventProcessor
using theIterator pattern [GHJV95]. The final dispatching of the transformed notifications to the corre-
sponding sinks is then done by theEventDispatcher, allowing to implement a different threading
strategy to process user-implemented event handlers.

Isolation Since the incoming event notification may be transformed by any of the tree nodes, it has
to be copied before applying changes in order to prevent sideeffects in sibling nodes. In order to reduce
the complexity of implementing theMTF’s transform function, copying is done by theTreeMatcher
before passing the event to theMTF. This step only has to be applied where the tree branches, nodes
without siblings may be passed the event without copying it before. For reasons of efficiency binary data
contained in the event notification is not copied, in case anMTF needs to transform attachments, it must
therefore handle the copying of these by itself before applying any changes.

Optimization Organizing subscriptions into a tree structure opens room for performance optimiza-
tions by collapsing common parts of different subscriptions. CollapsedMTFs have to be processed only
once. Such optimizations can only be applied to subscriptions (or a prefix of the transforming function
lists) that apply exactly the same transformations to eventnotifications. Especially statefulMTFs have
to be treated with great care. Analysis of a given tree in order to automatically find pairs of collapsible
branches is not covered by this thesis and may be explored in future work.

It is nevertheless important to note that the evaluation of subscriptions and their contained message
transformation functions is executed locally in the process of the listener components. How a router
as presented here is connected to its informers, the event sources, will be explained in the following
section that shall explain the notification model.

Bielefeld University

114 6.5. Notification Model

Event Transformation and Matchingpackage dtm[]

MTF

+transform(XcfEvent) : XcfEvent

EventSource

+next() : XcfEvent

Matcher

+match(XcfEvent) : Iterator

EventSink

+push(XcfEvent)

EventProcessor

+run()
+add(Subscription, EventSink)
+remove(Subscription)

TreeMatcher

+match(XcfEvent) : Iterator
+add(Subscription, EventSink)

java.util.Iterator

T > Match

<<XML Document>>

MTFTree

ScopeFilterTypeFilter EventSinkAdapter

Match

+event : XcfEvent

Filter

+equals(Filter)

IdentityFilter

Subscription

+append(MTF)
+getIterator()

Element

<<XML Element>>

AbstractElement

Returns Iterator with matches
to be dispatched to callbacks.

-sink

0..* -sources

+sink

0..*

-subscriptions

0..*

-children

Figure 6.8.: Class diagram for the tree-based event matching and transformation model.

6.5. Notification Model

The fundamental paradigm for communication between participants in an IDI architecture is event-
based interaction. Following up on the event and document models as well as the primarily content-
based features for specifying event subscriptions, the critical piece missing to provide the basic func-
tionality of an EDA are methods for distributing event notifications from informer to listener partici-
pants.

Thus, the aim of this section is to describe the abstractionsnecessary for communicating event notifi-
cations and to explain how events shall generally be dispatched to application code.

Sebastian Wrede

6. Adopting Event-Based System Models 115

Port
<out>

Informer

Port
<in>

Listener

Port
<in>

Listener

Port
<in> / <out>

Participant

E
v
e

n
t

B
u

s
P

ro
ce

ss
e

s

p
1

p
2

p
3

p
4

e
S

e
T

e
U

Figure 6.9.: Participants connect via ports to a global, logically unified event bus that guarantees the de-
livery of event notifications to observing listeners. By adopting a scopeconcept, this bus is
internally channelized, which is mapped to the capabilities of the underlying transport by port
implementations for reasons of efficiency.

In order to get started, let us recapitulate the requirements every event-based system architecture
must comply with, concerning its delivery policy for notifications. Satisfyinglivelinessandsafety
conditions [MFP06], a listener participant shall receive:

• Only event notifications it is subscribed to at a given point in time.

• Only notifications that were previously actually publishedby an informer.

• Each single event notification at most once.

• All further notifications that match one of its active subscriptions.

It is in the responsibility of the observation and the notification models that the fulfillment of these
requirements is guaranteed for each participant in an event-based system.

While the observation model already addresses the requirements that are necessary on the listening end
of an interaction, it leaves open how these notifications arerouted to their destination. In accordance
with the event-based model of interaction, the style of communication between participants in the IDI
architecture follows apush-based paradigm, which implies that informers in a system architecture
initiate event transmission. Section 7.2 describes a number of communication patterns that allow to
overcome this on the next higher level of abstraction if needed. In general, the fact that informers are
not aware of their associated listeners contributes to the desired loose-coupling of participants.

6.5.1. Implicit Invocation

The push-based architecture and the decision to collocate the event observation model functions with
each listener instance allows for realizing animplicit invocationarchitecture. Informers and listeners
are connected via so-calledports to an event bus as shown in Figure 6.9.

The sole responsibility of this bus on a conceptual level is to distribute all event notifications to all
connected ports. Models for propagating event notifications in event-based systems range from direct
communication between participants, over centralized to distributed and broadcast architectures or
mixtures thereof [MC05]. In order to decide on a particular method for event propagation, scalability

Bielefeld University

116 6.5. Notification Model

concerns must be considered, because they have a large impact on the design of the notification rout-
ing facility in an event-based system. If internet-level scalability is desired, this prevents the use of
centralized (single broker) or broadcast (flooding) event propagation models.

However, as explained during the discussion of the technology perspective in Section 4.2, the level
of geographic scalability needed for the integration task here does not exceed over the boundaries of
a set of interconnected local area networks. While this prevents the application of broadcast models,
the use ofIP multicastgroups [Bir05] is a favorable alternative for distributingevent notifications
over IP-based networks. In contrast to architectures that make use of intermediate components ei-
ther distributed as it is done in Jedi [CNF01] or centralizedas in many other approaches [MFP06],
this multicast model has the advantage that subscriptions become immediately effective at the local
observation models and that latency from event generation to notification retrieval is minimized.

The actual interaction between participants is carried outbased on the port concept either over a
networking layer or some other kind of serialized communication media as indicated in Figure 6.9.
By utilizing in-band signaling[Fai06], control flow is not separated from the event notifications and
thus no additional control channels are necessary. Ports connect the observation to the communication
functions of the notification model and logically offer a businterface to the higher-level components
of the IDI architecture. For listeners, ports act as local event sources whereas they serve as event sinks
for associated informer components as shown in Figure 6.10.Much of the functionality that deals
with the networking and low-level infrastructure issues like efficient marshaling of event content or
metadata is encapsulated in middleware or transport-specific port implementations.

In the current implementation of the IDI software architecture, the multicast-based event bus is re-
alized on top of a group communication framework as explained in Excerpt 6.5 which allows for
efficientand reliable process communication based on unicastor IP multicast. Ports serve as an ab-
straction layer decoupling higher level code of the integration architecture and thus also application
code from the concrete low-level technology that is used forevent transmission.

The router component of each individual listener participant thereby acts as a registrar connecting new
subscriptions to its inbound port and as a local event dispatcher which forwards event notifications
received from an associated port to the matching algorithmsof its observation model. The locality of
the notification model with regard to individual participants and the missing direct connection between
informer and listener actually effects the claim for an implicit invocation architecture. A port in the
IDI architecture shall thus be defined as follows:

Definition 6.2 (Port) An IDI port is a bi-directional communication endpoint abstracting from a con-
crete transport infrastructure. Its responsibility is to realize a software bus for the exchange of event
notifications. If possible, it maps concepts of the event, resource and observation models on its specific
technology, thereby allowing for an orthogonal optimization of event processing.

This definition highlights an additional benefit gained by the introduction of ports, which is that a port
implementation may optimize event processing along different dimensions, e.g., in terms of notifica-
tion marshaling.

Excerpt 6.5 contains a brief explanation how this is performed in the current software architecture.
Another examples is the evaluation of event notifications before they are written on the network layer.

Sebastian Wrede

6. Adopting Event-Based System Models 117

Notification ModelArchitecturepackage []

<<component>>

IDI Informer

Router

 : Dispatcher [1]

 : DTM [1]

 : Processor [1]add

publish

<<Component Level>>
<<Event Source>>

Informer

 : MTF [0..*]

 : Event [0..*] <<boundary>>
<<Event Source>>

<<Event Sink>>

Port

push

<<component>>

IDI Listener

Observes registered MTFs

<<boundary>>
<<Event Source>>

<<Event Sink>>

Port

receive next Router

<<Component Level>>
<<Event Sink>>

Listener
Event

Serialized according to
port-specific transport layer.

send push

Figure 6.10.:Architecture of the basic event-based communication model.

Thereby, ports may send messages directly to specific participants, which is made possible by ana-
lyzing the sender / receiver metadata. Another example is toenforce specific delivery constraints as
encoded in the metadata of an event notification with constructs of a specific underlying technology
infrastructure.

Even more important with regard to port behavior than marshaling and delivery constraints is that ports
can act as observers of MTFs that are registered for incomingand outgoing events in its associated
router component. This allows for an optimized mapping of the software bus concept to the properties
of the underlying technical infrastructure. If a subscription registers a new MTF that is known by a
port implementation, it is registered with the port and dynamically reconfigures the behavior of the
corresponding port instance, e.g., in terms of what events are actually received from the network.
While the filters in the observation model are designed to work solely on the event content and its
metadata, port implementations can dramatically increasethe performance of filters if their semantics
are natively supported.

If an event is received by a port that already satisfies a filter’s matching rule, the router skips the
subsequent content-based matching for this filter instanceand event notification. The marking of
individual events as being already filtered is termedwhitelisting in the IDI architecture. Whitelisting
is a generic functionality available for all IDI filters. Port-based optimizations must be dynamic as
filters are usually dynamically (de-)registered at runtime. If a specific port type does not support an
optimization, content-based matching is applied as a fallback. Obviously, port implementations must
comply with the general requirements for the notification model as described in the beginning and
must not change the semantics of a transformation function.

6.5.2. Visibility and Scopes

Operational middleware (see Chapter 5) does not concern visibility in the first place due to the fact that
participants are explicitly addressed. Within an event-driven architecture that connects participants
through a unified notification bus without explicit subscription routing, things are different as event
notifications are logically accessible by every participant.

Bielefeld University

118 6.5. Notification Model

While the effected traffic overhead on a network link may be negligible if IP multicast is utilized as
done in the proposed IDI architecture, the overhead in eventprocessing can not simply be avoided.
Thus, a concept of event-driven architectures for limitingthe visibility of event notifications is adopted
that decreases the overhead of the broadbast-style event notification model without breaking its se-
mantics by utilizing the introduced port-based optimizations.

Excerpt 6.5: A Event-Bus Based on a Group Communication System

Notification routing in the IDI software architecture over standard IP network layers is based on the
Spread group communication toolkit [AS98]. Spread is a high-performance (it allows for communica-
tion of over 8,000 1Kbytes messages a second in local area networks), fault-tolerant messaging service
that provides a unified message bus for distributed applications based on network-level multicast and
group communication support [Bir05]. The Spread toolkit ispublicly available and is being used by
several organizations in both research and production settings. The system consists of a per-host daemon
architecture and a client library that is linked to applications. It supports cross-platform applications and
has been ported to several Unix platforms as well as to Windows and Java environments. It features
different language bindings, in particular for C and Java, which was essential for using it as a basis for
the realization of the IDI software architecture.
Spread offers messaging guarantees ranging from reliable message passing to fully ordered messages
with additional delivery guarantees. It supports multicast and unicast connections across the boundaries
of local area networks. While in LANs (IP) multicast groups are used, unicast connections are established
between Spread daemons for routing between LANs. Thereby iteffects a distributed [Fai06] routing of
event notifications up to the level of the IDI port structure while keeping up the unified messaging bus
semantics. It features a simple but rather low-level API, that does not offer much functionality above
pure group-based messaging. Thus, it provides almost orthogonal features compared to the high-level
functions introduced by the IDI architecture yielding a good match for the reference implementation of
a multicast-based IDI port.

Group Communication The central abstraction concept in Spread is agroup, which is a logi-
cal representation of a set of processes that communicate via multicast in an asynchronous environment
where failures can occur. Besides ordered message delivery, spread basically features a group mem-
bership service [Bir05]. This service provides all membersof a group with information about the list
of currently connected and alive group members and notifies group members about every group change
either when members voluntarily join or leave the group or faults occur, e.g., if a process crashes. Spread
offers a many-to-many communication paradigm where any group member can be both a sender and a re-
ceiver. Messages can be send by processes to groups even if the sender is not a member of the destination
group.

Event Notification Marshaling Marshaling is a process that transfers data structures fromone
address space into another. As Spread ultimately is about networking over of a serialized connection,
the marshaling process also serializes the data structure,while the unmarshaler deserializes them on the
other end [Fai06]. However, Spread comes only with very limited support for marhaling. Actually, it
solely accepts structures that are already broken down intoa sequence of bytes.
Thus, the IDI software architecture comes with a simple marhaling algorithm, which translates event
notifications into a vector of unsigned characters which cansubsequently be processed by spread. Each
serialized event notification message starts with of a header block that contains the event ID, the event
type, its timestamp as well as sender and receiver URIs. Thisallows for the port-based optimization of
certain filtering operations, e.g., identity filtering. TheXML document is marshalled subsequently to this
metadata block, followed by all binary attachments associated with this event. All binary data types are
encoded utilizing a simple scheme that is inspired by thebasic encoding rulesas known from the ASN/1
standard [Dub08].

Sebastian Wrede

6. Adopting Event-Based System Models 119

Scopesare abstract means of restricting the visibility of notifications to the participants in event-based
system. While observation and notification principles are applied in the same way as described earlier,
the interaction between the members of a scope with participants outside of the scope can be limited
or completely prohibited [MFP06].

Scoping is complementary and connected upstream of the subscription-based filtering process3. If a
notification is not visible to a participant, which means in the IDI architecture that it does not match
any of its scope filters, it needs not to be further processed by the local observation model. Despite this
obviously positive impact on the processing load of participants, the introduction of scopes promotes
good software engineering principles like information hiding, abstraction and the specification of
component interfaces in an event-based architecture. While subscriptions govern the local actions
that are executed in a participant if its conditions match, scopes govern the system-level interactions
between participants. As these interactions are defined externally in the participants configuration by
developers or system architects, no source-level compile time dependencies are introduced. Scopes in
the IDI architecture can thus be defined as follows:

Definition 6.3 (Scope)A scope is an abstract concept that limits the visibility of event notifications
in the global event space. Scopes logically bundle a set of participants and allow for optimizing the
routing of event messages in the notification model.

This definition highlights an additional benefit of scoping:scopes may serve as a structuring principle
for grouping of physically or logically coupled participants. This provides an avenue for advanced
optimization steps, e.g., the use of more efficient transport protocols within a single scope. Other
advantages of introducing scopes will be explained during the discussion of the resource models and
in Section 7.1.

Scoped Notification Dissemination

Figure 6.11.:Scopes restrict the vis-
ibility of notifications.

As each scope itself can recursively be a member of higher-
level scopes, a hierarchical graph structure, the so-called scope
graphcan be constructed. A abstract example of a simple tree-
like scope graph is shown in Figure 6.11.

The delivery policy for scoped notification dissemination in the
IDI architecture is that event notifications sent by informers
are delivered to the specified scopeand to all children of this
scope. This is exemplified in Figure 6.11. A notification thatis
published from an informerp4 in scopeG.C.A to listeners in
scopeE.B.A is visible in the target scopes and for participants
belonging to a scope below, hencep2 in scopeH.E.B.A and
p3 in scopeI.E.B.A. However, the notification must not be
visible anywhere else, particularly not for participantp1 in the
D.B.A scope.

3While not visible in the external subscription interface, port implementations guarantee that scope filtering is conducted
in preface of any notification matching.

Bielefeld University

120 6.5. Notification Model

The semantics of scope membership shall denote apart-of relationship between the participants in a
scope. For instance,p2 andp4 are parts of the scopesH.E.B.A as well asI.E.B.A and thus also
of E.B.A. While scopes are defined in the IDI architecture up to now only from a receiving per-
spective, scope control concepts can additionally be utilized for, e.g., defining intra-scope delivery or
inter-scope transformation policies [MFP06]. However, asthe benefits of doing so were less clear
compared to the added complexity, the use of scopes in this architecture is primarily to elicit per-
formance benefits by reducing the set of unfitting notifications that are to be evaluated by the local
observation model of each participant and for structuring purposes.

Scope membership is specified individually for each participant and is evocative of a direct addressing
scheme. Even so, the scope information is in this approach not encoded in the components but is
configured externally. Thus, it delivers the benefits of visibility restriction and grouping on the basis of
a much more loosely coupled communication model without anyadditional compile time references.
Figure 7.3 that will be explained during the introduction tothe resource model in Section 7.1 depicts
an example of a scope tree for the components of the VAMPIRE assistance system, which is described
in greater detail in Chapter 8. Based on this logical scope model, visibility control can be enforced in
a system architecture.

Scope Architecture

While the previous paragraphs described the aims and semantics behind scopes, the following will
explain how these concepts are mapped to the implicit invocation architecture of the IDI approach.
Due to the lack of intermediate event brokering components and for performance reasons, the chosen
strategy is based on animplicit but instantiated scope implementation in conjunction withacollapsed
filters [MFP06] approach.

An implicit scope implementation shifts the responsibility of scope management and thus of visibility
control into the individual participants that are connected to the event bus. While such an approach
is infeasible in domains that require strong security policies4, it is well suited for an architecture that
aims at availability of information for all participating system components. Due to the fact that no
explicit administrative scope components are used, these approaches often lack flexibility if the scope
assignment for participants change. Following up on this, the IDI software architecture features an
explicit instantiated scope implementation that maintains the scope attributes for all participants and
allows for changing these at runtime if needed.

In general, the IDI scope architecture requires a bi-lateral cooperation between informer and listener
participants with regard to their way of sending and receiving event notifications from the event bus.

Regarding receipt of event notification, a collapsed filter approach is followed where visibility con-
straints are enforced by merging these as an upstream filter,the so-calledScopeFilter, in the
subscriptions of the listening participants. This leads toa “flat” notification model where enhanced
filters implicitly enforce the visibility constraints. Forthe scenario in Figure 6.11 this means that the
notification send byp4 is physically transmitted directly via the event bus to the listening participants
that are members of theE.B.A scope. Scope filtering in the IDI architecture is based on theassump-
tion that each fully qualified scope name, which is the concatenated list of scopes from bottom to top,
e.g.D.B.A in Figure 6.11, is unique in a single system.

4Participants not adhering to these conventions could easily compromise visibility constraints.

Sebastian Wrede

6. Adopting Event-Based System Models 121

ParticipantParticipant Participant

Event Bus

Listener

Participant

Idle WorkerIdle WorkerIdle WorkerJob Queue

Worker

Worker

Workers processing
requests

Interacts
with

Worker
Pool

Port Event Processor Domain
Objects

Matches

Figure 6.12.:Multi-threaded event dispatch is realized in a variant of the job queue pattern [Pet05].

Secondly, informers must annotate event notifications withadditional scope information. As partici-
pants must be members of a scope, the receiver information isset to the root scope if not otherwise
specified, which would make a notification visible for all participants in the system. This scope in-
formation is encoded as a fully qualified scope name in the receiver metadata in the form of an URI
scheme that will be introduced in Section 7.1. Thus, informers control the visibility of information in
the event-based system architecture.

If expressive content-based matching functions are available as provided by the previously introduced
observation model, scope filtering is possible solely by evaluating the metadata of received event
notifications. Scope filters are always evaluated before allother filters that are registered in a sub-
scription. However, while this would already prevent the complete evaluation of subsequent filters in
a subscription, still all received events would be fed into the local observation model of participants.

Fortunately, the abstraction of low-level communication through the port concept allows for shifting
the scope evaluation functionality into the network layer.As explained previously, ports may observe
the registration of filters. Thus, the addition of a scope filter to an observation model allows it to recon-
figure itself and fetch only those notifications from the communication layer that match its visibility
constraints. By whitelisting the received event identity in the scope filter instance, its content-based
matching process is circumvented, which shall yield the expected performance gain.

A consequence of scoping is that the broadcast style event bus is logically and physically partitioned
into many-to-many communication channels that emerge fromsending a message from an informer
to a number of listeners in a specific scope. If a port implementation supports a mapping to an
underlying middleware or communication technology that natively facilitates these concepts, ports
act aschannelizer[Fai06] for the event notification. Excerpt 6.6 describes how the presented scope
concept is mapped to the Spread-based port implementationswhich are used for network distribution
at the time of writing this thesis.

The idea of using scopes is essential for large parts of the system management functionality that is
available in the integration architecture as scopes directly support group addressing and anonymous
requests based on the naming concept that is introduced in Section 6.5.

Bielefeld University

122 6.5. Notification Model

Excerpt 6.6: Mapping Scopes to a Group Communication System

Since all communication in the current realization of the IDI architecture is carried out on top of the
Spread toolkit as described in Excerpt 6.5, a technology mapping for the scope concepts was developed
that maps scopes to spread groups. By doing so, the Spread Toolkit already enforces in conjunction with
the spread-based port implementation the visibility constraints in its low-level messaging subsystem.
Only matching messages are delivered by a spread-daemon to the requesting process.

Dynamic Mapping To achieve this mapping, a scope name is translated to a spread group. The
fully qualified name of the scope is used as a unique group name. Each message is sent only to the
group of the receiving scope. Upon registration of a scope filter, the port of a listener participant joins
its own group as encoded in the scope filter instance as well asthe groups of all parent scopes of this
specific scope. This way participants in sub-scopes will also be able to see messages that are send to its
super-scopes as it is intended.
Let us consider again Figure 6.11 as an example. According tothe shown configuration, the port of
participantp1 is configured through the registration of filters as a member of the D.B.A scope. In
addition to joining the corresponding spread groups forD.B.A, the port has joined groups for the scopes
B.A andA. Thus, it receives messages send to its own scopes as well as all of its super-scopes. This
easily allows to address composite parts of a larger system by sending a message to a super-scope. The
message send fromp4 that is targeted atE.B.A is not visible to this port as it is not a member of the
corresponding spread groups. Thus, the visibility constraints are already enforced through spread and
need not be evaluated through the content-based matching inthe observation model.

Whitelisting Even so, whitelisting of single events is necessary to conform to the safety condition of
an event-based system as an individual port can be a member ofmany scope groups. Thus, the individual
scope filter within a subscription must be notified about the fact that the received message has already
been successfully evaluated in terms of its visibility constraints.

Additionally, using scopes for grouping and structuring a system, allows for re-configuration and
re-use of individual participants or whole sub-scopes in differing application scenarios as the actual
scope configuration can be configured externally.

Instead of hiding interactions between cooperating components in the source code, their collaboration
is made explicit. Thus, scopes are not only a technical optimization within the observation model but
additionally positively impact on the non-functional attributes of the IDI architecture.

6.5.3. Dynamic Dispatch of Event Notifications

While scoping is an abstract concept that has technologicalimplications, the final missing link for the
notification model to become effective is the question how local callback handlers of participants are
invoked. While this is closely related to the observation model, it shall be briefly discussed now as the
aforementioned functions of the notification model are required for it to perform its tasks.

The dispatching model in the IDI architecture is informed bythe job queue and worker pool pat-
tern [Pet05] as depicted in Figure 6.12. It realizes the multi-threaded dynamic dispatching of matching
event notifications to locally callback handlers that are registered in the observation model.

Sebastian Wrede

6. Adopting Event-Based System Models 123

If an event notification is received from a port it is matched in the observation model against its
subscriptions by the event processor, cf. Figure 6.10. The matching pairs of event data and the
callback handler that is attached to the corresponding subscriptions are inserted into the job queue,
which is part of the dispatcher component. In turn, the next idle worker thread processes this pair and
actually invokes the local callback handler with the given event.

The worker pool pattern allows to separate event matching from callback invocation. Thus, long-
running event handlers do not stall the event matching process for pending events. The worker
pool is externally configurable as the optimal parameterization of thread pool sizes can be application
specific. In contrast to the standard job-queue and leader-follower pattern, an individual worker has
no possibility to return job’s to the queue and does not hold any network connections or locks for
low-level devices. Instead, this is handled by the individual higher-level patterns as will be explained
in Section 7.2. In the current realization of the IDI software architecture, the dispatcher component is
based on generic synchronized queues and the dynamic workerthread pools.

6.5.4. Port-based Optimization

Adding up on scoping and port-based optimization, another important aspect of the notification model
in the IDI architecture is that similar to the registration of message transformation functions through
subscriptions in the inbound event processor of the router component in the observation model, an
outward set of (optional) transformation functions can be registered that allows for filtering of outgo-
ing events before they are broadcasted by associated ports.In fact, it is the same concept except that
now informers are the event source and a transformation is performed to ports that act as event sinks.

Recalling Figure 6.10 the basic concepts of the notificationmodel and its connection with the obser-
vation model can be summarized as follows: Events are published by an informer to its local router
component that processes it in its outward event processor instance, which transforms or filters a
published event still within the informer component. If theevent notification is dispatched by the
matching algorithms to a specific port, it is marshalled and transmitted according to the port-specific
transport strategies that are optimized according to the current state of the outward set of MTFs in
its event processor component and its event metadata information. From the perspective of the lis-
tener, the process is reversed. Ports dynamically enter communication with other ports according to
the semantics of the underlying technology, ideally already filtering for scope or other selective in-
formation according to the current set of subscriptions registered in the inbound event processor of
its associated router. If a subscription matches the notification as described in the previous section,
the corresponding event handling methods of associated callback objects are invoked dynamically in
a separate thread of control.

Many of the aforementioned mechanisms, e.g. scoping or native metadata serialization in conjunction
with whitelisting explain the notion oforthogonal optimizationthat was mentioned in the port defini-
tion. While the layering in the overall architecture is maintained, ports introduce low-level optimiza-
tions that have effects at higher architectural levels without breaking encapsulation. By transparently
introducing these optimizations, the overhead of the general bus architecture can be alleviated while
keeping its benefits. Compatibility across different port implementations is ensured as all concepts
can be mapped to content-based methods if necessary.

Bielefeld University

124 6.6. Summary

6.6. Summary

This chapter introduced the core architecture of the IDI approach, which is largely adopting mod-
els of event-based systems, that are typical choices for scalable and modifiable architectures [SG96].
Modules in an EDA are self-focused, thereby contributing massively to the strategic aims stated in the
beginning of this chapter. Loose coupling is facilitated through a consistent application of document-
orientation on the natural basis of the XML data model, whichat the same time allows for the devel-
opment of generic message transforming functions such as the introduced compacting filter.

However, extensions for efficient handling of binary large objects have been added to the introduced
event model. The event types and the introduced expressive features of the observation model in
conjunction with the optimizations introduced by the notification model such as the channelized event-
bus yield pre-selection mechanisms that reduce the processing burden on components and allow to
build scalable and efficient cognitive systems architectures.

While the core features of the IDI architecture described inthis chapter are rather generic, the next
chapter introduces domain-specific IDI models particularly facilitating the design and construction of
experimental cognitive systems.

Sebastian Wrede

125

7. From Event-based to Cognitive Systems

Interaction Model

Memory Model

Domain Model

Resource Model

C
o

o
rd

in
a

ti
o

n
 M

o
d

e
l

Figure 7.1.: Domain-specific integration models.

A common prejudice about asynchronous event-
based system architectures is that they are designed
from a purely architectural viewpoint, which may
lead to minimal coupling between participants
but at the same time complicates their devel-
opment due to the lack of pre-defined higher-
level structures [Hoh07]. While the features of
the observation model in conjunction with the
document-oriented event model already allow for
expressive logical connections between interacting
services, this chapter describes explicit domain-
specific functionality which shall aid researchers in
constructing cognitive systems.

A number of higher-level models are introduced in the following sections, added on the IDI architec-
ture’s fundamental event-based integration layer, that have proven substantial for the domain. Some
of the models, e.g., the resource model break to a certain extent with strict event-based principles,
but they do this for good reason. They are focused at the fulfillment of real-world requirements,
which in this case was to be able to structure a system into larger reusable services that represent
coarse-grained named building blocks of functionality, permitting to assign functional responsibilities
to clearly separated components in a cognitive system architecture.

In addition to functional concerns, modularization facilitates collaborative work through independent
but parallel development, thus additionally assigning organizational responsibilities to individual col-
laborators for clearly defined parts of a software architecture.

These additional models provide still generic but at the same time already more specific functionality.
The structural dependencies between these models and the corresponding organization of this chapter
is shown in Figure 7.1, starting with theresourceandinteractionmodels, which introduce higher-level
abstractions and extensions to the event-driven models fordeveloping experimental cognitive systems.
Thememory, coordinationanddomainmodels explained subsequently, represent central functions in
the IDI approach that were used as major building blocks in cognitive systems research projects.

7.1. Resource Model

The resource model describes concepts and terminology for structuring and referencing the partici-
pants in an event-driven architecture. However, in strictly event-based systems, direct referencing of
resources is considered harmful as a source of coupling and participants are solely defined in terms of
generated and observed events. Even so, the need for modularity and composition of resources needs

Bielefeld University

126 7.1. Resource Model

to be addressed in an event-based system. In the IDI architecture, functions for resource structuring
are primarily defined from an abstract perspective that focusses on modularization of domain func-
tions. In order to prevent source-code coupling based on specific identifiers, the overall approach is
highly configurable. The resource model as presented in the following fuses ideas from two current
methods in software integration of distributed systems: theService Component Architecture[OAS07]
(SCA) and the previously introduced scope concept. Both aspects are merged into a URI scheme that
allows participants to refer to each other individually, toabstract services or to groups of services
contained in a scope.

An additional benefit of re-introducing identity information in an event-based system is that this fur-
ther increases the expressiveness of the observation model, which is particularly useful for, e.g., event
correlation and other situations where the identity of a participant is critical for interaction. Further-
more, the need for the actual naming, management and monitoring of individual participants within
an integrated cognitive system suggests the re-introduction of resource identifiers. Besides these mo-
tives, another important aspect originating from usability considerations is that identity information
helps system developers to communicate about a system architecture and assign responsibilities for
specific services or components. Therefore, a consistent naming terminology and resource model is
crucial.

Necessary for the realization of a resource model are definitions for the structuring elements to be
used, a coherent syntax and semantics for resource naming that respect the aforementioned aims and
the introduction of a federated naming service. The following paragraphs introduce definitions that
are used subsequently to refer to certain types of resourcesin the IDI architecture.

7.1.1. Services, Interfaces, and Components

While the lower-level layers in the IDI architecture are completely based on the adopted event-driven
foundations, the provided higher-level functions are informed by high-level concepts of theService-
Oriented Architecture(SOA) paradigms. In particular, the logical modularization shall be guided
by service-oriented concepts. Hence, the notion of aservicein the information-driven integration
approach is inspired by the corresponding OASIS service definition [OAS06]:

Definition 7.1 (Service) A service represents a mechanism to effect access to one or more high-level,
usually coarse-grained functionalities on the level of thefunctional architecture of a cognitive sys-
tem. Access is provided using a prescribed information-driven interface and is exercised with the
constraints and policies specified in a service description.

The eventual consumers of a service may not be known to the service provider and may use the service
beyond to what was originally conceived by the provider. As the IDI architecture was developed with
loose-coupling in mind, so shall services consider this as an important prerequisite for getting reused
and combined in new experimental system contexts.

The service definition is purely conceptual and must not depend on any implementation details. Ser-
vices do not necessarily map one-to-one any component implementation. However, this definition
promotes the use of interfaces for describing access to service functionality. While in the general
SOA concept, the actual technology this access is based on isintentionally omitted, the IDI architec-
ture defines it in terms of its event-based foundation:

Sebastian Wrede

7. From Event-based to Cognitive Systems 127

Definition 7.2 (Interface) The interface of a service is a named set of event types that isprovided or
requested by a participant in addition to a specification of its dynamic interaction behavior indepen-
dent of any actual implementation.

In order to describe the dynamics of interactions in an interface specification, the IDI architecture
introduces a set of genericinteraction patterns, such as request-reply, which will be explained in
the Section 7.2. They actually determine - and realize - the expected dynamics in accessing the
underlying capabilities of a service that is exposed using apattern-based interface. As this set of
interaction patterns is easily extensible, new interaction scenarios can be defined to be used in interface
descriptions. However, the introduction of new patterns shall be limited as these interaction strategies
must be available for the service consumer.

Interfaces represent the boundaries between functional and integration architecture, concept and im-
plementation. While services are purely abstract bundles of functionality, their actual realization and
exposition on a system level is realized with interfaces that ultimately map to pattern-specific instances
of the event-based participants introduced in the previouschapter. While consumers of a service need
to fully comply with individual interfaces, services may offer their functionality on different interfaces
that may be used independently.

Nevertheless, interfaces are defined separately as they canbe realized by different implementation
artifacts that contribute to service functionality. To clarify this, the following definition of acomponent
shall be used in the IDI architecture:

Definition 7.3 (Component) A component represents a descriptor of a software artifact that realizes
any number of interfaces, which can actually be executed in adefined system context. Execution
of a component yields instantiation of participants that implement the specified interfaces, thereby
contributing to or fully realizing services.

Components are thus logical capsules for executables featuring an independent configuration. This
allows to free their underlying source code from application specific properties and static dependen-
cies, which again promotes to the goal of loose coupling. Their scenario-specific deployment may
vary through different system instances.

A coherent understanding of service, interface and component concepts facilitate the collaboration in
experimental cognitive systems research and promotes modularization. Furthermore, these up to now
rather abstract definitions are the basis for the actual configuration management functions of the IDI
architecture, which allow to orchestrate and demonstrate system instances.

Let us consider a person anchoring service as an example to demonstrate these concepts. Person an-
choring is an important basis for stable human-robot-interaction as is realized in the robot companion
developed in the COGNIRON EU project, which is described in Chapter 9. Such a service may be
realized internally with many different strategies and maymake use of different types of event infor-
mation in a system if available. Even so, the interface of this service is quite abstract as it states that it
solely publishes person hypotheses in the system and observes useful lower-level event perceptions,
which may or may not be available. Such a high-level service,which makes minimal assumptions
about its environment is easily reusable in a different application context with a similar requirement.
In contrast, the component specification binds realizations of this service to a functional architecture
and allows for their actual execution in a running prototypesystem.

Bielefeld University

128 7.1. Resource Model

Figure 7.2.: Exemplary resource reference as used in the IDI architecture and description of its constituting
elements as specified in the introduced URI scheme.

7.1.2. Naming Resources

A naming scheme for the envisioned integration architecture needs to support modularity, scalabil-
ity, transparency and shall additionally promote understandability while not conflicting with the aim
of loose coupling. In order to find a suitable compromise between these partly contradictory re-
quirements, the resource model utilizes two concepts from different domains: theUniform Resource
Identifier (URI) and hierarchical scoping as introduced with the notification model in Section 6.5.

In contrast to other resource schemes abstracting solely from a specific physical location in a system
architecture, e.g., aUniform Resource Locator[BLFM05] (URL) referencing a web server available
under a specific port on a given domain name address, the focusof the resource model in the IDI
architecture is to permit a logical structuring of servicesaccording to their domain function. This
is possible as most aspects of the required location transparency are inherently available using the
broadcast communication style. Hence, the IDI functions introduce a higher abstraction level for
resource modeling.

Compared to URLs, aUniform Resource Identifier[BLFM05] (URI) as introduced by theWorld
Wide Web(WWW) global information initiative in the 1990s is defined as “a compact sequence of
characters that identifies an abstract or physical resource”. This definition underlines the ability to
addressabstractresources and the featured declarative text representation, which is exactly why URIs
are used to describe logical resources in the IDI architecture.

Figure 7.2 exemplifies the URI scheme developed for referencing resources in the IDI architecture
following the recommendations for the general syntax of URIs. An IDI URI scheme starts with
the name of the scheme (herexcf). Following up on the protocol specifier, theauthoritativepart
of the URI describes in this URI scheme the logical location of the referenced resource through a
hierarchical specification of its scope. As discussed in Section 6.5 scopes provide the basis for efficient
communication in the event-based layer of the IDI architecture. The resource model takes up on the
idea of scopes and utilizes these for the logical structuring of a system architecture on the functional
level. While scopes are a very general concept, the URI scheme as shown in Figure 7.2 proposes at
least three hierarchical scope levels, which were introduced from a practical standpoint in accordance
to the integration context in cognitive systems research:

• Organization: Defines an institutional scope for participants.

• Instance: Defines a project or system scope for participating components.

• Functions: One or more scope representing logically or physically coupled functionality.

Sebastian Wrede

7. From Event-based to Cognitive Systems 129

Figure 7.3.: Utilizing the scope-based URIs, a tree can be constructed for an actual system architecture
that quickly summarizes available services as shown here for the vampire system. Parent-nodes
represent scopes while leafs are services. Although avis service is used in three scopes, name
clashes are avoided by the locality of identifiers.

Even so, a servicemustbe contained in at least one enclosing scope to allow for referencing with
a valid URI. A service is encoded as the first element of an URI’s pathconstituent by specifying its
symbolic name, which is then local to the context defined by its enclosing scope. This path component
of an IDI URI can be extended by a single additional name that specifies a single interface within a
service.

In the depicted URI example, it is thewidget interface that is responsible for distributing informa-
tion about the augmentations displayed in the video see-through glasses to other system components.
Further refinement of a URI is possible by appending optionalaction and query information to the
interface or service identifier. While this can be useful to literally encode queries on participants, the
introduced hierarchical scoping and the path element of theIDI URIs already allow for a transparent
referencing of the scopes, services and service interfacesin a distributed system architecture.

Additionally, integrating the hierarchical scope in the URI concept facilitates the locality of service
and interface identifiers. This not only prevents name clashes but also fosters re-use of application
code if individual participants are designed to minimally rely on information about their enclosing
scopes. This is enforced by the architecture as scope information is usually injected externally by a
system designer and is not necessary for the development of component functionality. Summarizing,
a URI in the IDI approach can be defined as follows:

Definition 7.4 (URI) An IDI URI encodes an abstract reference to a logical entity such as a service
or a service interface in a system. It uses hierarchical scopes for modularization in its authority part
and thereby allows for referencing of functional sets of services or interfaces in a system architecture.

To exemplify this, let us once again look at the URI depicted in Figure 7.2, which is taken from the
software architecture of a VAMPIRE system. It references the vis service, which is located in the
loop scope that contains the participants responsible for realizing the human-in-the-loop interaction
exploiting the hardware and software of the AR-gear. Theloop scope again is part of thevampire
system and theagai organizational scopes. The consequent application of these concepts leads to
clear and understandable service references, which can be visualized as a tree structure. Figure 7.3
shows an example of a resulting URI tree for the VAMPIRE assistance system that is described in
greater detail in Chapter 8. The information contained in such a tree can in turn be used in system
management tools that allow for configuring, deploying or introspecting a system at different levels
of granularity, namely scopes, services or at an interface level.

Bielefeld University

130 7.2. Interaction Model

7.1.3. The Federated Naming Service

While IDI URIs encode informationwherea component is logically placed in a system and how its
services or interfaces can be referenced, an additional question that must be dealt with in the resource
model is how URIs translate to physical resources and how unique names can be guaranteed. Both
is usually realized in centralized or distributed naming services [Bir05], e.g., the Internet’sDomain
Name System[Net87] or Jini’s trading service [Sun99].

The IDI architecture realizes naming in a federated approach. The realized naming service is itself
largely based on the introduced event-based paradigms but exploits additional mechanisms.

The implementation of this service makes use of the advancedlow-level features of the group com-
munication framework that is currently used for the implementation of the notification model as intro-
duced in Excerpt 6.5. For instance, guaranteed ordering anddelivery as well as the group membership
management functions are exploited for its efficient realization.

However, from a high-level perspective, the following properties of the nameservice realized in the
IDI architecture are important for the realization of higher-level functionality that is introduced in
subsequent sections:

• Local uniqueness: The name service guarantees that the chosen service identifiers are unique in
their enclosing scopes.

• Component mapping: The name service resolves URIs to process identities that permit access
to the actual component that implements a service interface.

• System model: The name service gives participants runtime access to a system model maintain-
ing a list of all active participants and scopes of the overall system.

• Failure detection: Based on group membership, the name service can check whether a service
is still available or has been disconnected for some reason,e.g., due to a crash.

The scoped URI model and the federated naming service as introduced here are inevitable corner-
stones of the integration architecture to support developers in managing the complexities of setting up
and running a complex distributed system. How these concepts contribute to the realization of higher
level interaction patterns is in the focus of the following sections.

7.2. Interaction Model

In the same manner as the resource model proposes a hierarchical naming mechanism for logical
structuring of service components, theinteraction modelspecifies and enforces modes of interaction
between participants. These modes and the accepted event types yield the specification of service
interfaces. The aim of this model is to provide a set of broadly understoodinteraction patternslike
synchronousRequest-Replycommunication between two system participants, which are realized on
top of the asynchronous event-based core of the IDI architecture.

Sebastian Wrede

7. From Event-based to Cognitive Systems 131

An interaction pattern (also commonly referred to ascommunication[Sch06a] ormessage exchange
pattern) shall be defined here as follows:

Definition 7.5 (Interaction Pattern) Interaction patterns provide reusable solutions for reoccurring
types of communication that require the exchange of messagesequences between software components
in an asynchronous, event-based system architecture. Theyare defined on an abstract level and relieve
developers from the error-prone details of interaction design in concurrent and distributed systems.

These patterns come in particularly handy when realizing interactions more complex than publishing
a single event, resembling to aconversation[Fai06]. Often, certain extra conditions shall be assured,
e.g., the availability of an interaction partner, which needs supplementary coding in an asynchronous
architecture. In addition to the aspect of reusing these generalizable functions and the higher abstrac-
tion level of interaction patterns compared to single eventnotifications, the available set of patterns
defines a common vocabulary for software integration. It is by these patterns that developers may
compose the overall architecture of a cognitive system out of services and components, which realize
them by exposing pattern-based interfaces.

Recalling the integration context, interdisciplinary users often simply expect certain broadly under-
stood interaction styles to be available in an integration architecture. For instance, it must be possible
for them to interrogate a component for certain data by usingsynchronous request-reply - although
extensive use of this pattern is not the central idea of event-based system integration. In addition
to this, the available set of patterns shall in conjunction with the previously introduced models of
the IDI architecture lead to modular, well understood semantics of event-based interactions between
participants.

For these reasons, the IDI architecture itself provides an extensible set of interaction patterns that
are utilizing all the concepts introduced so far to provide the needed abstractions, thereby hiding
for instance threading, protocol, synchronization or lifecycle details of distributed and concurrent
interaction. Excerpt 7.1 reports on some of these common design issues that are considered here for
all pattern objects taking into account for instance their lifecycle.

7.2.1. Connectors and Service Interfaces

An interaction pattern usually consists of two complementary parts with distinct roles in an interaction
that further describe their relationship, e.g.PublisherandSubscriber(with the exception of the event
channelwhere there are no separate roles for the interaction partners). From the software architecture
viewpoint, an interaction pattern provides an abstractconnectorbetween two or more components that
is independent from a concrete transport infrastructure and that can be used to model and structure the
software architecture of a complex system.

Mary Shaw defines a connector as theloci of relations among components[SG96]. Connectors shall
decouple application from communication code as far as possible. The difference between the purely
architectural viewpoint on connectors and interaction patterns is that the latter shall provide actual
assistance for typical integration situations that may be domain-specific or introduce additional se-
mantics in an interaction like theactive memorypattern explained in the next section.

Bielefeld University

132 7.2. Interaction Model

Arbitration VisualizerImage Service
Channel Req-Rep Pub-Sub

Face Recognition

Object Recognition

Figure 7.4.: Architecture of a simple vision system exemplifying the useof the Channel, Request-Reply (Req-
Rep) and Publish-Subscribe (Pub-Sub) interaction patterns.

Instead of introducing new labels for already established concepts, the names for the patterns and
supporting functions of the interaction model were chosen in accordance with well known terms from
service-oriented and event-driven architectures. That said, the interaction patterns realized on the
basis of the core models which are directly supported by the IDI architecture are:

• Channel (N:M communication): Participants can act at the same time asynchronously as listen-
ers and informers on the event bus that may be channelized. This is the basic communication
pattern that is directly supported by the core IDI models.

• Publish - Subscribe (1:N): Only publisher objects are allowed to send information on avirtually
separated event bus they originally created. Subscribers act as listeners that are connected to
the publisher’s bus. This a restriction of the channel pattern.

• Request - Reply (1:1): Classical client / server point-to-point remote-method invocation with
at-most once semantics and support for asynchronous request objects. Excerpt 7.2 describes
the event-based realization of this pattern in greater detail.

• Anonymous Request - Reply (1:N): Compared to the request-reply pattern, a participant utiliz-
ing this pattern may send a request to an unknown server component. Any number of server
particpants may reply to this optionally asynchronous request.

All of these assume that the interaction patterns are available at runtime, resembling to a kind of
meeting-oriented communication [ASTMvS02]. While the first two patterns clearly origin from the
domain of event-driven architecture, the latter are exemplary patterns that realize a command-and-
control type of communication as attributed primarily to service-oriented architectures. The semantics
of interaction that are usually associated with these patterns, can be easily described in analogy to
natural language [Fai06]. While channel and publish-subscribe bear similarity to a declarative type
of interaction, (anonymous) request-reply can be primarily interpreted as imperative or interrogative,
which may give at the same time some initial advice when to apply which pattern.

Recalling the aim of loose coupling, the position taken up inthis thesis is to use the EDA pattern
to the extent possible, while the SOA patterns should be applied with caution and without making
assumptions about the context of a request with regard to thecalled service, e.g. the state of the
component or its specific environment.

Figure 7.4 depicts a simple vision application utilizing these patterns in an architecture diagram, re-
stricting the model solely to the high level architectural aspects of a system in terms of components and
connectors. The diagram exemplifies that image events are communicated via the Publish-Subscribe

Sebastian Wrede

7. From Event-based to Cognitive Systems 133

1 try {

2 XcfManager xm = XcfManager.createXcfManager();

3 // scope is set externally

4 Server s = xm.createServer(new XcfUri("xcf://vis/widget"));

5 s.addListener(new RequestAdapter<FaceEvent>("create") {

6 @Override

7 public XcfEvent handleRequest(FaceEvent fe) {

8 // augment video and return status info

9 return vis.highlight(fe.getName(),fe.getRegion());;

10 }

11 });

12 s.run(false);

13 } catch (XcfException e) {

14 // ignored here for reasons of brevity

15 }

Listing 7.1: Minimalist but complete example for server instantiation and callback registration using the
request-reply pattern in Java. While request adapters can also be registered in Java with annota-
tions, the example depicts regular callback registration as it is most similar to the programming
model realized in C++.

pattern from the image service to the pair of recognition processes, which in turn publish results and
retrieve arbitration info via the general event channel pattern from a specific arbitration component.
Finally, the visualization component is connected to this arbitration component via a Request-Reply
pattern.

Please note that the connection between the arbitration andthe visualization component is more
closely coupled as it depends on mutual identity information. Besides their actual functionality, inter-
action patterns additionally contribute to the aim of improving communication between the collabo-
rators in a research project due to their mapping to connectors in design-time, which allows to model
their run-time system architectures.

Listing 7.1 gives an impression on how a (fully functional with regard to the IDI architecture) simple
realization of a visualization service may look like from the developer’s perspective. After the con-
struction of aServer object that processes incoming requests (line 4) with a scope-independent URI,
a callback is registered as a local listener at the router of this pattern object (line 5–11) that is automat-
ically bound to a subscription matching this request and event type. Upon instantiation, this service
would be available under the URI explained in the resource model that was shown in Figure 7.2 given
that the scope is configured correctly toloop.vampire.agai.

Bielefeld University

134 7.2. Interaction Model

Excerpt 7.1: State-Based Design of Interaction Patterns

All interaction patterns that are provided by the IDI architecture implement an object structure as shown
in Figure 7.5 that combines a number of software design patterns and aggregates different framework
objects that provide commonly used supporting functions. The essential parts responsible for the basic
pattern functionality are the following:

• ActiveObject: This class is the common base of all pattern objects that feature their own
thread of control. In general, these objects are said to beactiveas indicated in Figure 7.5 for the
Subscriber class. Active objects must (de-)allocate used threads or other operating system
resources cleanly upon activation or deactivation. To enforce this contract, it is specified in the
generalXcfObject interface that all active objects must implement. TheActiveObject
class additionally provides access to the typical collaborators of a higher-level IDI object, which
are:

– XcfManager: The manager class utilizes aBuilder pattern [GHJV95] and hides con-
struction and implementation details of pattern objects from their usage. Client objects are
thereby solely bound to the generic interfaces of specific pattern instances.

– XcfUri: As patterns instantiateresourcesin the sense of the IDI architecture, this class
encodes an URI according to the resource model introduced inSection 7.1.

– XcfConfigurator: Configuration is an important requirement for the actual deployment
and use of software artifacts in different contexts, thus a configuration strategy is needed as
will be explained in the next chapter. This class provides access to the configuration object
that is necessary to dynamically modify parameters of a participant.

– Finder: This interface encapsulates access to the federated trading service and therefore
to the current state of the resource model for a specific IDI system. It allows to register
and retrieve meta-information about resources, e.g., about the state of a Publisher, which is
needed for the correct realization of the different patterns.

• Subscriber: The interface of this class represents the actual functionality of a spe-
cific interaction pattern, here the subscriber role of the Publish/Subscribe pattern. All pat-
tern objects are modelled according to theStatepattern [GHJV95] where the main pattern
class, here theSubscriber class, serves as the context object, which only implements
bridge methods for the external interface and state-independent functionality. It delegates all
other calls to the corresponding method of the currently instantiated state object, which is
in this example one ofSubscriberStateActive, SubscriberStateCorrupted or
SubscriberStatePassive. The state pattern allows to cleanly encode a finite state machine
in an object-oriented structure where the current state of the context objects changes dynamically
at runtime.

Applying this pattern-based approach for the design of integration classes with their usually complex
internal structure has important benefits for the software architecture in terms of clarity of realization, e.g.
by encapsulating a finite set of capabilities that is state-dependent in an individual class and the ability to
handle the whole lifecycle of active objects cleanly at runtime, contributing generally to the correctness
of a software design. It provides a straightforward structural and functional basis for extension and
introduction of additional patterns.

Sebastian Wrede

7. From Event-based to Cognitive Systems 135

Pattern Objectpackage net.sf.xcf []

ActiveObject

+addListener(SystemEventListener)

SubscriberStateActive

SubscriberStatePassive

SubscriberStateCorrupted

Subscriber

+receive()
+addListener(EventListener)

Finder ErrorHandler

SuscriberState

+receive()

XcfManager

XcfConfigurator

XcfUri

XcfObject

+activate()
+deactivate() Router

-state

1

1
0..*

Figure 7.5.: The general software design of interaction patterns in the IDI architecture exemplified using the
classes responsible for theSubscriber realization. Besides collaborating with implementa-
tions for the IDI models, the pattern objects implement a State pattern [GHJV95].

7.2.2. Event-based Realization

The described patterns realize their conversational strategies utilizing the event-based core of the IDI
architecture. Thus, they use the features of the observation model, e.g. for dynamic registration of
subscriptions in order to add guarantees to the communication between participants like the exchange
of acknowledgements for received events or utilize subscriptions in conjunction with the functionality
of the resource model to allow for patterns that re-introduce identity information.

Taking up on the previous examples, it is therefore possiblefor the IDI architecture to cancel the
publishing of request events to a server and to throw an exception if it is not available at that time.
This not only eases system development as failures are made explicit, but also simplifies their use
from a developers perspective.

Not only event types and their serialization methods can be re-used by module developers across dif-
ferent patterns but at the same time it is for instance possible to combine filters with a method handler
callback that is registered at aServer object in order to further constrain the set of events that is
dispatched to this method handler. Similarly, it is possible to register the same event listener or a
clone of a complex subscription at different interaction patterns to achieve code re-use and combine
information from different interaction patterns in a central place. This underlines that the same con-
cepts were consequently applied across the different partsof the integration architecture, which shall
further increase usability.

If specific timing or quality-of-service constraints must be enforced, this is generally handled by
adding corresponding MTFs to the inbound or outbound observation models of the patterns, cf. Chap-
ter 6.4 and must not necessarily be part of the pattern implementation. In order to better assess the
implementation aspects of the IDI patterns, Excerpt 7.2 describes the realization of the Request-Reply
pattern in greater detail.

It is important to note that in contrast to middleware approaches that are based on static stubs and
skeletons as outlined in Chapter 5, all patterns introducedhere and their parts, e.g. the exposed
methods of aServer interfaces, are per-se dynamically instantiated and registered at the architecture
runtime without the involvement of a meta-compiler. This allows for the dynamicity necessary to
adapt the orchestration of a system architecture as needed at runtime and reduces the complexity of
the resulting toolchain for module developers thereby promoting to the overall usability.

Bielefeld University

136 7.2. Interaction Model

Excerpt 7.2: An Event-based Request-Reply Pattern

Realization of the Request-Reply pattern using the event-based IDI core models requires to solve two
tasks. On the one hand both participants need to directly address their partner, on the other hand delivery
needs to be guaranteed, respectively errors detected to prevent the client side from blocking infinitely.

Identity Evaluation In order to allow for identity based message observation, an
IdentityFilter is needed, which can be parameterized with either the sender’s or the re-
ceiver’s URI. In contrast to the concept of a scope filter, matching on identity is based on the whole
URI and does not consider scoping mechanisms. The current implementation applies transport layer
optimizations to theIdentityFilter by encoding the sender’s and receiver’s URIs into the binary
message protocol, thus allowing for more efficient filteringwithout the need to deserialize or match
message content.

Roles and Responsibilities The Request-Reply pattern defines two distinct roles realized in
separate classes, theServer and theRemoteServer. The latter role represents the client side as it
initiates the communication by sending a request and expects a reply from the server. As multiple requests
may be sent in parallel, the client needs to match incoming replies to the corresponding requests. The
event correlator pattern described in Section 7.2.3 is applied to achieve this. In Java, theget method of
theFuture interface, which is the basis of the asynchronous callback pattern is used to block the thread
that sent the request until the reply becomes available or a timeout occurs.
On the server side, identity filtering is applied to incomingnotifications as the server only answers re-
quests directed to its method URIs. Incoming requests are dispatched to registered event listeners which
implement the different methods. The generated replies areautomatically augmented with the correlation
id of their request, sender and receiver URI are transferredas well but swapped. Therefore the reply is
directed to the scope of the client participant.
On the client side, identity filtering narrows notificationsdown to those sent by the server. Events are
then handed to the event correlator which looks up the corresponding request and notifies the waiting
requester thread of the reply.

7.2.3. Adaptation Patterns

Instead of the interaction patterns that deal mainly with message exchange protocols, the following list
of patterns is generally applied locally. While not being first class interaction patterns, they represent
auxiliary functions dealing with synchronization and adaptation of the programming model semantics.
Due to the fact that they are very important from a component developers perspective and are even
frequently used within the IDI architecture itself, they are additionally supported at this level of the
integration architecture and explained in the following:

Active Queues Queues are versatile and generic communication adapters. They can be used to
reverse API semantics with regard to handling of incoming event notifications. While usually a push
model is realized by the IDI architecture, queues permit to process events according to the pull model.
By attaching them to multiple informers using providedqueue adapters, several subscriptions can
be attached to one queue. As all queue implementations are thread-safe, they can be easily used
as synchronization points in multi-threaded applications. Queues can also realize temporal event
handling schemes. E.g., a queue type is provided that storesonly then most recent events, which
allows to couple a listener to an informer with incompatibleevent production / consumption ratios.

Sebastian Wrede

7. From Event-based to Cognitive Systems 137

Active queues additionally register request handlers in the IDI architecture, allowing to access them
not only locally but also remotely via Request-Reply communication. Therefore, they can also be seen
as a special type of connector from an architectural viewpoint and thus partially share the semantics
of an interaction pattern.

Asynchronous Callbacks Synchronous calls to API functions have the obvious drawback that
processing is suspended until the thread of control returnsfrom the called function. However, a benefit
of this synchronous model is that failures can be directly reported to the caller, usually in the form of
an exception in object-oriented programming. In contrast,asynchronous invocation allows to directly
continue processing instead of waiting for the result of a possibly long-lasting request to a service
with the drawback that errors can not be easily fed back to thecaller.

The IDI architecture provides an asynchronous callback pattern that can be used in conjunction with
most of the functions of the pattern objects. Within the JavaAPI, this class is based on theFuture
interface, thus allowing for synchronous as well as asynchronous retrieval of results. This object is
also notified in case that a message has been discarded or another error occurred.

Thereby, the programming model allows developers to decidewhether to make use of an asynchronous
processing without losing the benefits of a synchronous operation.

Event Correlators Whenever bi-directional communication occurs, for example in the Request-
Reply pattern, a mechanism is needed to find event notifications belonging to the same communicative
act. Considering the Request-Reply pattern, a client may send a number of requests and expect a reply
for each of them. A single communicative act consists of a request and the corresponding reply. But in
event based systems notifications are independent of one another, therefore the client implementation
is faced with the task to correlate the set of open requests toall incoming replies in order to match
them up.

Hence, the IDI architecture offers an implementation of anevent correlationpattern to handle this
matching. The mechanism is based on adding correlation identifiers to any event which is meant to be
answered by the communication partner. Each opponent answering the event must augment the reply
with the identifier. This allows the sender of the initial event to filter for the correlation ids of open
requests and thus find the corresponding reply.

As it implements theEventSink interface as introduced in Section 6.4, the event correlator can
be linked into the observation model. This way it is possibleto use the pattern with independent
subscriptions and it is possible for other patterns to make use of this functionality. Access to correlated
events is provided through the aforementioned asynchronous callback objects.

While the basic but fundamental interaction patterns help system designers to identify the core struc-
ture of applications in terms of integration, the adaptation patterns help developers to use the pro-
gramming API in a way that suits their needs in a specific situation. The presented set of interaction
patterns shall avoid mixing interaction and implementation issues and is easily extensible towards
specific scenarios. An exemplary pattern that was adopted and added in the DESIRE [DES08] context
is a Taskpattern that permits monitoring of the completion state of an asynchronous request. The
next section will introduce additional patterns at this abstraction level that realize a specific connector
based on an active memory, already utilizing the patterns introduced in this section.

Bielefeld University

138 7.3. Memory Model

7.3. Memory Model

Object Recognition
Viola&Jones

Object Recognition
VPL

Action Recognition

Head-Pose Analysis

AR Gear

Interaction Controller

Context Analysis

Active Memory

Compacting Filter

Adaptive Forgetting

Figure 7.6.: An exemplary cognitive vision system utilizing a
single instance of an active memory.

The aim of the visual active memory
(VAM) as proposed in Section 2.2.2
is to provide an avenue for integrated
systems to track the real-world con-
text in terms of visually perceived
episodes, events, and scenes. In pre-
vious chapters, concepts were intro-
duced that allow for loosely-coupled
but still efficient interaction between
the functional components in a VAM
system. However, even with these
mechanisms in place, it is (apart from
obvious computational capacity con-
straints) neither feasible nor meaning-
ful to process all data immediately and then discard it. Thisbrings us to the centerpiece of the
information-driven integration approach and the architectural basis of the aforementioned visual ac-
tive memory paradigm, thememory model.

7.3.1. Concepts

A unifying property of many cognitive vision systems is thatknowledge is generated, which is to
be inspected later on, made available to other systems (or tohumans) or re-examined when other
relevant information becomes available. Learning processes need access to results generated earlier if
conducted over longer time periods implying persistent storage of information, knowledge or data for
later retrieval. Therefore, the function of memory is essential for cognitive systems.

Conceptually, the memory model introduces atemporaldimension in the otherwise transient commu-
nication patterns provided by the IDI architecture. It extends the referential (identities) and spatial
(distribution) decoupling of participants as supported bythe event-based integration functions intro-
duced so far by a temporal decoupling.

In close analogy to the ideas presented during the discussion of the VAM concepts in Chapter 2, the
memory model bases its terminology on that architectural sketch, which is used later on to discuss the
characteristics of this rather complex integration pattern within the general IDI approach.

The memory model introduces the concept of anActive Memorythat maintains dynamic represen-
tations of the world by correlating and consolidating events over time, e.g., to track the interaction
state of cognitive system instances as will be exemplified inchapters 8 and 9. Information is stored
dynamically, organized hierarchically and accessed by so-calledMemory Processes. These processes
perform the actual computations on the memory content including reasoning, fusion and learning.
They also gather new knowledge from perceptions or allow interaction with the user.

Within this model, general events are mapped toMemory Elementsas atomic information entities.
The actual memory content at a given point in time is therefore defined as aview that contains the
newest “generation” of correlated events. This virtual data space that is shared between otherwise

Sebastian Wrede

7. From Event-based to Cognitive Systems 139

independent components is actively controlled by the memory itself and can be accessed by so-called
intrinsic as well asextrinsic memory processes. While the latter are external processes, the former are
executed synchronously within active memory instances. Figure 7.6 gives an informal example for a
system that is integrated using the concept of an active memory.

The memory model features an architecture that is inspired by the concepts of tuple spaces, pio-
neered two decades ago by David Gelernter during research ontheLinda TupleSpacessystem [Gel85].
Linda [CG89] is the precursor of a generation of languages that aim at modeling and describing paral-
lel algorithms without reference to any specific computer architecture. The basic idea is that different
participants cooperate by reading or writing information through a virtual shared memory, which is
termed atuple space. Data exchanged via spaces is in general represented as tuples which are essen-
tially ordered collections of primitive data types.

Apart from a large variety of prototypes, SUN Microsystems introduced a commercially supported
software architecture called JavaSpaces [WA01] as part of the Jini [Sun08, Sun99] networking infras-
tructure utilizing tuple space concepts for integration and coordination in distributed systems. The
term JavaSpaces already suggests that this implementationis targeted at the Java programming lan-
guage and runtime environment. The JavaSpaces as well as theTSpaces [WMLF98] architecture by
IBM enhance the Linda approach by adding a subscription and notification mechanism.

Functional Characteristics

Besides other aspects, the memory model introduced here extends those approaches by consequently
applying the event-driven features introduced earlier forthe design of a space-based active memory
architecture. In the following description of the fundamental features of the memory model, both
differences and similarities to the JavaSpaces concepts [FAH99] are outlined as a closely related ap-
proach to the memory model. The architecture of the ActiveMemory has the following characteristics:

• Memory elements: Thetuplesin the memory model are in fact event messages encoded accord-
ing to an information driven representation as described insections 6.2 and 6.3. Thus, each ele-
ment is a tree-structured hierarchical document with optional binary attachments. This serves as
a basis for dealing with versioning and extensibility of memory elements in very much the same
way as described in the document model 6.2. Aiming to supportpotentially long-running cog-
nitive vision systems, the latter is particularly important to enable visual memories for recalling
of, e.g., memorized views of objects or actions. For an efficient use of binary attachments, it is
possible to link multiple memory elements to a single copy ofa reference-counted attachment.

• Shared repository: As within JavaSpaces, active memory instances allow distributed processes
to interact with them concurrently. The active memory architecture deals with all details of dis-
tributedness, concurrent access and multi-threading permitting component developers to focus
on the design of the abstract semantic interaction between processes.

• Generative communication: The communication model realized through the active memory is
generative. As valid for general tuple spaces, events generated by attached memory processes
feature an independent “existence” in the active memory instances. This is achieved by map-
ping transient events to memory elements. Any other memory process may remove generated
elements as they are not bound to any individual process. Thus, locking of elements is not
supported in the memory model.

Bielefeld University

140 7.3. Memory Model

• Persistence: An active memory instance provides reliable storage for its contained elements.
Once a new memory element is generated, it will remain there indefinitely until it is removed.
In the JavaSpaces architecture, aleasetime can be specified [FAH99] for each tuple indicating
how long an object shall be stored, whereas the active memoryintroduces the general concept
of extensibleintrinsic processes. Among other things, these intrinsic processes are capable
of performing a garbage collection in the space of memory elements. This concept will be
explained in more detail later in this section.

• Atomic operations: The active memory guarantees that any single operation on an element
is atomic, which means that either the operation can be carried out successfully as a whole
or not at all. In contrast to JavaSpaces that make use of Jini’s transaction service [Sun99],
the active memory intentionally not supports distributed transactions across multiple memory
instances and operations of extrinsic memory processes. Therefore, the memory model shares
the benefits of a state-less distributed system architecture [Bir05] as the memory server does
not keep track of the state of its clients.

• Associative lookup: A key feature of most tuple spaces is that tuples are locatedby a kind of
associative lookup, not by a concrete memory location or an identifier. In contrast to the JavaS-
paces approach where templates with wildcards are used to locate tuples, the active memory
concept applies content-based selection methods. Based onthe document-oriented data model,
XPath queries realize the associative lookup in the active memory. This allows a memory pro-
cess to find required documents based on their content in verymuch the same way as described
during the introduction of the observation model in Section6.4, without having to know the
type name of a memory element or the identity of the process who generated it.

• Executable content: As long as a memory element is contained in a shared repository, it is just
passive data. It is not possible to modify it or remotely invoke any of its methods. However,
when an element is retrieved from a memory server, a local programming language specific
value object is created, whose fields and methods can be used as usual if their type is registered
at the runtime of the IDI architecture. However, even if a specific type is unknown, the general
event model as described in Section 6.3 permits accessing itvia the generic event interface.

The modification of an active memory space is carried out by means of a small set of basic memory
operations, which areinsert, replace, queryandremoveas well astake. The methods behave as one
can expect from their names and as illustrated in Figure 7.7.Insertstores a tuple, whileremovedeletes
one or more of them.Replaceexchanges an existing memory element with a new one.Queryretrieves
tuples from the memory. Finally, thetakemethod deletes a tuple and, in contrast to remove, returns
it. Both queryandremoveuse a content-based selection statement to select tuples. The semantics of
these five methods will be explained in greater detail later on in this section.

Observing the Dynamics of an Active Memory

In addition to these fundamental operations and the aforementioned general characteristics, which are
- despite their different semantics - still comparable to state-of-the-art databases, the memory is not
limited to these rather passive functions for managing the elements contained in a memory space.
Instead, the active memory itself acts as an informer.

Sebastian Wrede

7. From Event-based to Cognitive Systems 141

Forgetting

Active Memory Active Memory

Forgetting

Component B

Insert Query

Query Remove

Notify Listening Replace

Component A Component C

me
1

me
3

me
4

me
5

me
2

Memory
Element

Figure 7.7.: Interaction between memory processes is mediated via active memory instances.

Upon any modification or assessment of memory elements through other system participants, the
memory becomes active and publishes new events that containeither the original event notification or
the modified memory element augmented with memory specific metadata information.

Figure 7.7 exemplifies this idea. All participants act concurrently on the elements that are contained
in two active memory spaces. In this situation, participantA is notified if and only if elementme3

is queried and participantC is informed as soon asme4 was removed from the second active mem-
ory shown. While these new events do not technically manifest themselves in a separate event type
as introduced in the event model, the following definition ofa memory event is developed from a
conceptual point of view:

Definition 7.6 (Memory Event) A memory event is generated upon the application of any of the
basic operations provided by the active memory (insert, query, take, replace, remove) executed on a
specific element within a memory container. It contains the involved element and additional metadata,
e.g., about the type of operation carried out or the correlation identifier.

In contrast to the template-based registration of listeners at a JavaSpace instance, listener participants
interested in being notified about state changes in an activememory can use all the concepts that were
introduced in the observation model. Thus, subscriptions are not limited to specifying all of the dif-
ferent types of memory actions (which was not possible, e.g., JavaSpaces only allowed notification
upon insertion of new tuples matching a given template but not on their removal). Instead, interested
listeners may use all the expressive power of the observation model in conjunction with these opera-
tions. For instance, it is easily possible to specify and register a subscription as shown in Listing 7.2
that states“a notification shall be issued if a memory element of type FaceEvent with a recognition
probability of 95% has been inserted or updated at least 10 times within a second”in the observation
model of an active memory listener.

There is another difference to the notification models of most tuple space architectures: the under-
lying event-based infrastructure guarantees that all participants which registered their interest in an
information will eventually receive it. Within the IDI architecture, the notification and observation
models ensure that all events are distributed to all subscribed listeners via the multicast event bus.

Bielefeld University

142 7.3. Memory Model

1 SynchronizedQueue<FaceEvent> faces = new FaceQueue();

2 Subscription s = new Subscription();

3 s.append(new TypeFilter(FaceEvent.class));

4 s.append(new MemoryFilter(MemoryAction.INSERT || MemoryAction.UPDATE));

5 s.append(new XPathFilter(new XPath("//HYPOTHESIS/RATING/RELIABILITY[@value>=0.95]")));

6 s.append(new FrequencyFilter(10,1,TimeUnit.SECONDS));

7 // add subscription to local am pattern object

8 am.subscribe(s,new QueueAdapter<FaceEvent>(faces));

Listing 7.2: Extension of the plain Java subscription from Section 6.4 bya memory filter. This subscription,
cf. Listing 6.3, only matches if face events were actually inserted in a memory.

To achieve similar functionality in a space-based approach, the producer of an information would
need to take care of this, e.g., by inserting a single tuple for all interested parties or checking against
another global state information whether an element may be safely removed because all subscribers
already received a copy. [CNF01]. Due to the use of the event-driven core layer of the IDI architecture
and the fact that extrinsic memory processes register subscriptions for memory content at their local
observation models, the server component of the active memory retains a stateless characteristic.
Consequently, there is no need in the IDI architecture to attach lease times to subscriptions as it is
done in the JavaSpaces model. If a listening memory process crashes, it is able to reconnect at any
point in time to the event bus of the core architecture, re-registering its memory-related subscriptions
at its local observation model.

Activating and Extending the Memory by Intrinsic Processes

In general, memory is a limited resource [Chr03], not only for computer systems but also for bio-
logical cognitive systems. Thus, some kind of garbage collection needs to be a basic quality of this
memory model for cognitive systems. However, it is not clearthat there is an optimal garbage col-
lection strategy, as there might be other constraints on thedata, most of which cannot be foreseen,
in particular not by individual component developers. Thus, from a system-level engineering per-
spective it seems counterproductive to annotate every single information in a system with a specific
time-to-live information.

In contrast to these lease-based approaches, the memory model allows users to extend its core func-
tionality by introducing so-calledIntrinsic Memory Processesthat co-exist with the memory data in
close coupling. As explained in Excerpt 7.3,forgetting is the prototypical example of an intrinsic
process. It discards memory elements from the active memoryrepository based on metadata informa-
tion. This metadata is available in almost every type of event exchanged within the IDI architecture,
e.g., the time when an element has been updated last by a functional component of a system. As a
consequence, other memory processes (either external or internal) can indirectly cause a hypothesis
to be removed by changing relevant metadata. Due to the closecoupling of this task to large parts
of the memory content, processes such as forgetting can be realized as an IMP. The combination of
forgetting and memory events is additionally useful for expiring requests in a space-based architecture
because otherwise requests would remain in the system forever.

Sebastian Wrede

7. From Event-based to Cognitive Systems 143

reliability < 0.5

<OBJECT>

</OBJECT>

<CLASS>Keyboard</CLASS>
...

</HYPOTHESIS>

<RELIABLITY value="0.6"/>
...

<HYPOTHESIS>
...

exist_A_typing

exit_O_computer

... ...

vis_O_keyboard

vis_A_typing

Forgetting

Contextual reasoning

Memory Server

Memory Interface

event listener

trigger

XPath query

DB

Figure 7.8.: EMP/IMP coupling
(from [WWHB05]).

Another example of an IMP is the compacting filter that was
introduced in Section 6.4, originally developed as an IMP that
conditionally inserts new memory elements. The insertion
only takes place if the calculated change to existing similar
elements is significant enough, otherwise an already existing
element will be updated.

Figure 7.8 provides an example of the interaction between
extrinsic and intrinsic memory processes. In order to under-
stand this example, let us shortly recall the hypothesis concept
as introduced in Section 2.2.2, which is a domain-specific ex-
tension of a general memory element that turned out to be
a fundamental concept for a visual active memory [HBS04].
The hypothesis type adds additional meta data like reliability
or conflict values to each event exchanged and mapped to a
memory element. This allows memory processes to transpar-
ently deal with any kind of hypothesis. One of these intrinsic
memory processes is the aforementioned forgetting process
that is supported through consistency validation by evaluating
the added reliability information as explained in Excerpt 7.3.

On the basis of the hypothesis concept, contextual reasoning
is an important example for the utility of the memory model.
It provides functionalities like scenery classification orcon-
sistency validation. Instead of being specialized to certain
contexts and tasks, the realization of this component applies
Bayesian networks [SSP00] for the interpretation and valida-
tion of memory content as well as model learning. It interacts with other perception and maintenance
processes that feed new hypotheses into the memory or adapt the memory content, respectively, by
observing the status of the corresponding memory elements.In order to actually perform the consis-
tency validation, so-calledfunctional dependency concepts(FDCs) are defined by the structure and
parameterization of a Bayesian network, which can be learned from relevant memory content.

For example, in Figure 7.8 the FDC expects the user to be located in front of a computer and occa-
sionally performing the action ”typing”. It is rather improbable to perform the action ”typing” without
having a computer in the scene. If this situation occurs, theinvolved hypotheses have to be doubted,
since they are not expected by the underlying model in the given context. Action and object hypothe-
ses are interrelated by FDCs so that actions define a functional context for objects and vice versa.
Conflicts between hypotheses are detected by calculating a conflict value as defined in [HBS04].

In active memory systems built according to this hypothesisconcept, consistency validation modules
provide important cues for higher-level processes even if the original event source is not able to rate
the reliability or contextual suitability of its generatedinformation. The added reliability values in this
scenario are used to guide the removal of conflicting hypotheses through a forgetting process, which
is illustrated in Figure 7.8.

Bielefeld University

144 7.3. Memory Model

Excerpt 7.3: An IMP Example: The Forgetting Process

Intrinsic memory processes can be declared using so called IMP specifications that consist of an ini-
tialization block, one or more memory event listeners and the corresponding algorithms expressed in a
scripting language, which is Python in the current prototypical implementation of the virtual machine.
A trigger specification is constituted by a content-based XPath condition that selects among the set of
incoming events, e.g., hypothesis elements, as well as the memory action type.

Specification An example of such a declarative IMP specification for the forgetting process is
shown in Listing 7.3. It consists of three trigger listenersand some initialization code, which are de-
fined for the insert and replace actions within the memory as well as for a specialtimer event that is
generated by the runtime environment in the given interval.The provided conditions match every hy-
pothesis element inserted or updated by the memory instance. The respective algorithms of the IMP
listeners are thus executed upon creation or modification ofany hypothesis memory elements.

The Actual Forgetting In the process shown, forgetting is performed based on reliability
information and a timestamp indicating when the element wasupdated last. Upon insertion of a new
hypothesis, its reliability and updated timestamps are stored in an IMP internal dictionary utilizing
the memory element identifier as a key attribute (lines 6-13). If the reliability value of a hypothesis is
modified, the stored value in the internal dictionary is updated as well (lines 14-20). Correspondingly, a
dictionary entry is updated if its timestamp information has changed or if the observed memory element
has simply been removed (not shown here). The main task of theforgetting IMP is performed by the
time-based listener (lines 21-33). It compares the updated timestamp with the current time, removes a
memory element if it is older than 5 seconds and if its reliability is below a certain threshold (here0.5).

Through the IMP concept, extension and adaptation processes like forgetting can easily be defined in
a declarative way. The IMPs themselves can be reconfigured and stored as an element in the mem-
ory model. Through the execution of IMPs in the virtual machine architecture of the active memory,
processes that are dependant on vast amounts of data can efficiently be realized.

At the time of this writing, contextual reasoning was realized as an extrinsic memory process. The
active memory server triggers a single consistency validation step through implicit invocation of event
listener while the evidential nodes of the prototypical Bayesian network are instantiated by memory
hypotheses retrieved by using associative lookup during a bootstrapping phase. After this single
consistency validation step, the reliability value of the memory hypothesis is updated. This in turn may
trigger the intrinsic forgetting process to clean up the memory by removing the potentially doubted
memory element.

From the perspectives of long-running cognitive systems, apersistent memory is important for tem-
poral decoupling of producers (e.g., a process that acquires views of objects for training) from re-
ceivers of information (e.g., a long-running object classifier training process). From the viewpoint of
information-driven integration a memory is important, because the responsibility for keeping state is
shifted in event-driven architectures from informer to listener participants [Hoh06].

The principle that informers must not maintain state for their listeners promotes loose coupling and
scalability again. Even though listeners may know about their informer’s identity in the IDI archi-
tecture, they shall not make use of this knowledge, e.g., forretrieval of state information through a
request-reply interaction as this would re-introduce the unwanted unnecessary coupling.

Sebastian Wrede

7. From Event-based to Cognitive Systems 145

1 <imp name="forgetting" lang="python">

2 <init>

3 objects = []

4 reliabilities = {}

5 </init>

6 <trigger type="insert" xpath="/HYPOTHESIS">

7 <code>

8 ts = int(get_xpath(’//TIMESTAMPS/UPDATED/@value’))

9 rel = float(get_xpath(’//RATING/RELIABILITY/@value’))

10 reliabilities[vamid] = rel

11 objects.append((ts, vamid))

12 </code>

13 </trigger>

14 <trigger type="update"

15 xpath="/HYPOTHESIS/RATING/RELIABILITY">

16 <code>

17 reliabilities[vamid] =

18 float(get_xpath(’//RATING/RELIABILITY/@value’))

19 </code>

20 </trigger>

21 <trigger type="timer" interval="2">

22 <code>

23 current_time = time.time()

24 for o in objects:

25 timestamp, vamid = o

26 if timestamp > (current_time - 5000):

27 break

28 if reliabilities[vamid] < 0.5:

29 mi.remove(vamid)

30 del reliabilities[vamid]

31 objects.remove(o)

32 </code>

33 </trigger>

34 </imp>

Listing 7.3: An IMP specification for a reliability-based forgetting process.

Nevertheless, it is often important for a participant torecall past events in order to adapt their lo-
cal state to the overall system state, e.g. for bootstrapping purposes during component initialization.
Thus, a memory instance must have all data available, even ifnot all of it is stored. In such cases, the
active memory is able to guarantee that all event-generating data is actually stored for later reference.
In contrast to request-reply interaction between different components in a system to retain state infor-
mation, the memory approach reduces coupling to a small number of identities, which represent the
memory instances themselves, if a boostrapping phase is needed.

Bielefeld University

146 7.3. Memory Model

Memory ModelArchitecturepackage []

<<component>>

Active Memory Server

<<boundary>>

Data Manager

 : Document Storage : BLOB Storage

low-level DBMS accesslocal MI access

Event Manager

 : Dispatcher

 : Processor

publish

<<Virtual Machine>>

Process Manager

 : Intrinsic Process [0..*]

 : Intrinsic Listener [0..*]

add / remove IMP

notify

add

<<control>>

Active Memory

<<boundary>>

Server

<<boundary>>

Publisher

MemoryInterface

+insert(XcfEvent) : MemoryElement

+update(MemoryElement)

+remove(MemoryElement)

+query(XPath) : ResultSet

+getAttachment(MemoryElement)

+addIMP()

+removeIMP()
...

MemoryEvent

Annotated Events

brokered through

ActiveMemory.

Accessible via

event-based

Request-/Reply

communication

pattern.

Figure 7.9.: Conceptual architecture of the event-based memory model. Shown here is the server part of the
active memory pattern.

7.3.2. The ActiveMemory Architecture

The conceptual basis for the software architecture realizing the tuple space-inspired memory model
follows data-centered opposed to task-centered paradigms. As a consequence, the architecture of the
active memory is largely based on recent database technology that realizes the overall functionality
of the memory model in conjunction with the functionality ofthe IDI architecture. The following
paragraphs describe the conceptual software architectureof the memory server and its client processes
in terms of general architectural styles, including the patterns and concepts introduced in the previous
models.

The system architecture of the memory model is comprised of the aforementioned extrinsic memory
processes, a database management system and an event processing subsystem, which shares com-
monality with therouter component of the observation model as introduced in Section6.4 as well
as a runtime environment for intrinsic processes. Usually,there is exactly one database per memory,
which is accessed by an arbitrary number of memory processes. While these may also communi-
cate directly via the communication patterns introduced inthe previous section, this is usually due to
reasons that are conceptually independent of the memory. Therefore, the memory and its processes
form a hub-and-spoke topology as indicated in Figure 7.6. From a software engineering viewpoint,
however, participants are still loosely coupled as the memory makes extensive use of the event-driven
patterns introduced so far and does not keep track of the state of its external clients.

In accordance with the other patterns presented in the previous section, the memory model is based
on the principles and services of the resource model. Thereby, it offers location transparency through
its client interface used by extrinsic memory processes. The client part of the active memory pattern
provides an implementation of theMemoryInterface and encapsulates the communication logic

Sebastian Wrede

7. From Event-based to Cognitive Systems 147

between client and server, currently based on a Request-Reply pattern, which is non-trivial, e.g., for
query processing or the retrieval of binary attachments of queried elements. Additionally, it provides
shortcuts for subscribing client-side listeners at the observation model that match specific memory
events. As most of the used functions have already been explained in the previous section, we now
shall concentrate on the server part of the pattern as it accounts for the advanced features of the
memory model. These functions are located and realized in a single composite component, the so-
calledactive memory server. First of all, it must be noted that multiple instances of this component can
be executed as regular operating system processes that actually represent instances of active memories
in order to partition the overall event space for scalability reasons. Each memory may additionally
feature specific semantics as exemplified in the VAMPIRE systems explained in Chapter 8.

The Communication Layer - An Event-based Service Interface

Figure 7.9 shows the composite structure of the active memory service component featuring a three-
layer architecture. Event and process manager constitute the core layer of the memory. They are
sandwiched between the database management below and the communications management layer
above. The latter is composed of two boundary components that connect the memory service with
external IDI participants and the main control class for theoverall active memory component.

In order to invoke the fundamental operations that can be applied on the data space of an active
memory as exemplified in Figure 7.7, a request-reply patternis used here. The remotely callable
event request handlers in this server interface are:

• Insert: The insert request handler is equivalent to theput method in the tuplespace concept. It
allows to store any type of IDI event persistently in an active memory as long as it is encoded
in accordance with the document model explained in Section 6.2.

• Replace: The replace handler allows to exchange the content of a memory element with the
contents of a new event. Since events represent a single observation, and thus a single point in
time, the elements in a memory instance are not correlated onthe basis of their event identity
but on an additional memory-specific correlation identifier. Once an element in the memory has
successfully been correlated, its predecessor is usually removed for resource reasons.

• Take: Similar to tuplespaces, the take request handler reads an element and removes it from
an active memory within a single transaction. This request blocks if no matching element is
available, but can also be combined with an asynchronous callback object.

• Query: The query request handler realizes the associative lookup of memory elements. It re-
turns a list of elements that conform to a given content-based query statement and thereby
corresponds to the read operation in the tuplespace concept.

• Remove:The sole purpose of the remove operation is to delete one or more elements from the
active memory that conform to a content-based selection statement.

In addition to these fundamental methods, further request handlers for intrinsic memory process and
database management are exposed in this remote API that realizes the externalMemoryInterface.
Requests accepted by the corresponding server pattern instance are delegated to the main control
component. This internalActiveMemorycontroller further dispatches them. Besides exposing the
memory interface, apublisherpattern is used in this layer to realize the informer part of this service.

Bielefeld University

148 7.3. Memory Model

Active Memory Event Manageractivity []

Active Memory Server

ActiveMemory EventManager Trigger Listeners Error Recovery

Action

Notify

Notify is invoked

on arbitraty

processes that

registered for

this event.

Rollback

Detached Notify

Match

Undo Immediates

Immediate Notify

Database Action

Publish Event

Extrinsic Process

Intrinsic Event

Memory Event

Action

Event

Event

 [Commit] [Error]

 [Error]

 [OK]

Figure 7.10.:Activity diagram showing the fundamental processing stepsin the memory model.

Applying a publisher instance ensures that a unique event channel is created for each single mem-
ory instance. Each memory event can be multicasted by the publisher on the event bus of the IDI
architecture, which in turn allows listeners to subscribe to individual events as exemplified earlier.

The Core Layer - Event Manager and Intrinsic Processes

The internal architecture of the active memory was largely influenced by performance and usability
concerns. A usual issue with regard to distributed architectures and in particular with tuplespace
approaches is inter-process communication delay. Large amounts of data, as they routinely occur in
vision systems, aggravate this problem. The answer in the memory architecture is two-fold: first,
detached notificationand second,intrinsic processes.

The core layer of the active memory as shown in Figure 7.9 features anEventManagercomponent that
is fundamental for the realization of these two concepts. The interaction between event manager, com-
munication layer and database management layer is performed via so-calledcomposite actionsand
intrinsic memory events[Lüt04]. Composite actions encode an arbitrary sequence ofoperations to be
carried out on the memory content. For instance, a memory interface operation such asreplace, con-
stituted by a query operation is followed by an update of the retrieved target element. Each action runs
within its own transactional context and is executed by the active memory controller in its own thread
of control. Figure 7.10 shows the processing steps carried out for handling a received request. Upon
successful completion of an action performed on the database, the actions themselves create intrinsic
memory events about the operation and the affected information. This allows the memory to publish
fine-grained events as for instance in the case of an associative removethat affects a larger number of
elements. In this situation, a single notification is sent out after each deletion of an individual memory
element.

Sebastian Wrede

7. From Event-based to Cognitive Systems 149

As actions should not be aware of higher-level functions of the active memory, the actual responsibility
for forwarding events to other architectural layers is contained in the event manager component. The
event manager augments and forwards each intrinsic event upon completion of its transaction to the
publisher instance of the active memory where it leaves the active memory component and is placed
on the general event bus. The published memory event in turn leads to an event notification in the
extrinsic memory processes, subscribed to this specific event at their local observation model.

From the perspective of the active memory server, thedetached notificationrealized by its publisher is
vital. It allows processing in the memory component to continue without having to wait for event re-
ceipt, thus minimizing delay. Conversely, the same appliesfor the processing in the extrinsic listeners
as they can already begin to react even if a complex memory modification may not have been finished
yet. Taking up the deletion example again, it might be more important for an extrinsic listener to get
notified about the removal of a specific memory element as fastas possible than about the fact that the
overall removal operation was completed successfully. It has to be stated that its in the responsibility
of the IDI publisher pattern to perform an asynchronous notification, which actually detaches event
distribution in the active memory from its listeners. Moreover, the IDI publisher pattern guarantees
that each subscribed process will eventually be notified about the occurrence of the event given with
a short delay after the successful completion of the operation.

If a transaction fails, memory events are not sent via the publisher instance. Otherwise, the overall
system state could quickly become corrupted due to partial failure. Furthermore, detached notification
provides an avenue for a stateless implementation of the memory server component, because it does
not need to track the subscription status of its clients. Theconcept of detached notification is crucial
for successful operation of active memory systems. It enables participants to react to changes in
the observed memory content with low latency and exchange time-critical information via the active
memory patterns.

In addition to detached notification, the second mechanism to be introduced to increase the perfor-
mance of the memory model are the so-calledintrinsic memory processes(IMP). These are extensible
programs that can be registered in an active memory at runtime and executed under certain constraints
directly in the memory component. The specification of constraints and the matching of events against
the resulting subscriptions is similar to what is done in therouter component of the observation model.
In this case, the active memory uses the same content-based matching strategy that takes the given doc-
ument model as a basis; supporting equal expressiveness of (stateless) conditions as provided by the
general observation model. As the name suggests, the event manager assumes the role of the observa-
tion model in the active memory. In order to achieve this in conjunction with a database backend, the
design of the event manager follows the Event-Condition-Action (ECA) model [DBM88], which is a
common pattern in active databases, realizing conditionalevent processing. Local action callbacks,
which are intrinsic listeners attached to IMPs as shown in Figure 7.9 can be registered at the event
manager and will be invoked if their condition matches an intrinsic memory event. The ECA pattern
is applied here to allow for a flexible execution binding of the intrinsic memory processes and for
supporting undo and rollback of intrinsic notifications. This pattern coordinates access to a database
in a transaction-oriented way, which has a different focus than that of an observation and notification
component in a distributed event-driven architecture.

Summarized in Table 7.1, intrinsic and extrinsic processesdiffer in several ways. Considering the data
flow within the active memory and the semantics of IMPs, the first important difference is that IMPs
are executed byimmediatenotification. In contrast to detached notification, intrinsic processes are
executed within the transaction context of the enclosing memory operation that triggered an intrinsic

Bielefeld University

150 7.3. Memory Model

Attribute Intrinsic Memory Processes Extrinsic Memory Processes

Transaction Inside Outside

Access Full DBMS backend Client API

Coupling Strong Low

Execution Synchronous Asynchronous

Environment Virtual machine Any (with client API)

Examples Forgetting, Statistics Object recognition, Information fusion

Table 7.1.:Characteristics of intrinsic (internal) and extrinsic (external) memory processes.

listener of the IMP. A second distinguishing feature is thatthe callbacks of IMPs are invoked syn-
chronously. When an immediate notification is performed, the memory passes control to the intrinsic
listener that is to be notified and waits for it to return before proceeding. This ensures that an event
was received and, if necessary, processed.

It is for these reasons that IMPs permit to change the behavior of the memory by, e.g., updating
statistics, updating referenced documents or perform memory optimizations. For external processes,
this constitutes a transparent change in the behavior of thememory model in a specific system con-
text. Thus, intrinsic processes are a generic mechanism to change memory behavior and to provide
modifiability.

The basis for intrinsic processes is a virtual machine architecture [SG96] running inside a memory
operating system context as indicated in Figure 7.9. This in-process execution of IMPs reduces noti-
fication delay and enables access to the full functionality of the database backend. The close coupling
between the database and the fact that no network or inter-process communication is necessary makes
it additionally practical to work on large amounts of binarydata that can be stored in an active mem-
ory. Additionally, the virtual machine architecture serves to isolate data structures, thus protecting the
memory from malicious behavior of erroneous intrinsic processes. Besides being possibly erroneous,
a much more common problem of IMPs can be that certain database actions, which are executed by
an IMP within the provided transactional context may fail sothat the enclosing operation fails as well.
In this situation, the state of the underlying database is guaranteed to be consistent even if modifica-
tions through intrinsic processes were already effected due to the complete rollback performed by the
database layer.

However, the same does not apply for the internal state of intrinsic processes. If IMPs received a
number of notifications within a complex transaction, theirinternal state might may have become
inconsistent. In order to handle this situtation, the memory will notify all previously involved IMP
listeners about this exceptional occurrence. All memory events within a transaction are therefore
recorded by the event manager, which allows to dispatch themin reverse order to the undo operation of
subscribed intrinsic listeners. It is then the responsibility of the intrinsic processes to react accordingly
to these situations and adjust their internal process state. Further details about the realization of a
Python-based Virtual Machine for IMP’s can be found in Excerpt 7.4.

Sebastian Wrede

7. From Event-based to Cognitive Systems 151

Excerpt 7.4: A Virtual Machine Architecture for Python-bas ed Intrinsic Processes

The memory model supports the execution of intrinsic memoryprocesses. Listing 7.3 shows an ex-
emplary forgetting process based on Python. Python is a dynamic, object-oriented, high-level language
that provides both a compiler and a virtual machine to run compiled bytecode [vR04]. The virtual ma-
chine architecture of the active memory actually embeds Python and connects it to the event manager
component, performs lifecycle management for IMPs, binds internal objects to IMPs and schedules their
execution. As shown in Listing 7.3, IMP specifications are submitted to the active memory at runtime by
extrinsic processes in the form of an XML document.

Activation Theprocess activatorof the virtual machine component features a built-in listener sub-
scribed for the insertion of new process specifications in the active memory by matchingimp on the root
tag of the process specification messages. Upon notificationit evaluates the specification in order to cre-
ate a python object from the provided python scriptlets. Theinit block becomes a Python constructor,
all other actions are translated into member functions. Theprocess activator will then proceed to compile
that class and instantiate an object. The intrinsic listeners are actually bound with their subscription to the
generated member functions and wrapped in a local C++ callback object registered at the event manager
of the memory. This wrapping is carried out using the Python C/API [vR08] and Boost.Python [AGK08].
The process is commonly denominated asembeddingPython [vR04]. Wrapping and registration of in-
trinsic callbacks complete the instantiation of an immediately dispatchable IMP listener from Python
code.

Binding The primary usecase executed within IMP listeners is memorymodification. It is the only
meaningful way of changing the externally visible behaviorof a memory system. In order to facilitate
this, IMPs can use the same basic memory operations as are exposed to extrinsic processes via a python-
based memory interface that wraps a corresponding C++ class. In contrast to embedding python into
C++, this is the reverse situation. It is commonly referred to as extending Python and is integrated
through a loadable module (shared object), dynamically loaded at runtime by the Python interpreter.

Execution For reasons of transactional control and usability, a reference to the instantiated C++
memory interface is bound to a predefined variable at each invocation of an IMP listener. Please note that
theself pointer can regularly be used as internal object reference in order to share variables between
the various actions. The C++Event class has been wrapped for Python, and is made available as
another predefined variable in order to reference the event that just happened from within a python
listener method. While an action has no return value, it may raise an error, which is passed through to the
calling C++ code in the event manager. Like other event listeners, intrinsic processes are called when an
event matches a specified subscription. Due to the introduced wrapping procedure, this becomes a simple
method call into the Python virtual machine. When all registered listeners have successfully completed
their computations, the XML information is written to the repository backend.
For more information on the virtual machine architecture ofthe active memory and more details on
extending/embedding and the rationale behind the choice ofBoost.Pythonas a wrapper generator, please
see the corresponding technical report [Lüt04].

The Database Management Layer

The lowest layer of the active memory is a persistent storageengine for multi-modal information. The
data management subsystem wraps two individual databases,one for XML-encoded textual data and
another one for binary-encoded attachments such as croppedimage patches which are stored for long-
running subsequent classifier training. Besides realizinga reference counting and linking strategy

Bielefeld University

152 7.3. Memory Model

for binary attachments of memory elements, the database manager serves as a wrapper facade that
encapsulates database management functions like opening and closing of data containers, deadlock
exception handling etc. from higher-level layers. Most importantly, it is responsible for creating
transactional contexts provided to the aforementioned database actions, which access the underlying
database natively and support potential database rollbacks.

Coherently with the other models in the IDI architecture, the document-oriented data model was
adopted in the memory model, too. Integrability and modifiability were a deciding factor that also had
to be taken into account for the technical design and evaluation of the data management component of
the active memory. It quickly became clear that database support was needed for the sake of re-use,
e.g., with regard to the aforementioned support of transactions, and the available resources for the
project in order to be able to realize the concepts of the memory model.

A native XML database concept was chosen as the technical basis of the memory model. This has
been beneficial for several reasons:

• Document model: Native XML databases directly supported the XML-based data model as
XML documents are fundamental units of (logical) storage, which means that there is no com-
plex and potentially resource consuming mapping between hierarchical and, e.g., relational data
models [MK02] necessary.

• Schema independence: Given the free data model as described in Section 6.2, whichaims at
general applicability for cognitive systems, it would be counterproductive if the information
mediated via an active memory was required to conform to a certain predefined structure in
order to get persisted. Luckily, native XML databases usually support schema independence,
which frees developers from the burden to provide database schemata for every type of informa-
tion exchanged via the memory model. This greatly improves the actual usability of the active
memory by minimizing knowledge and effort needed for database management.

• Query languages: Taking up the general concept used in the observation model, memory ele-
ments that match a particular set of content-based conditions can be retrieved in native XML
databases either by XPath or XQuery statements. This support for content-based declarative
queries already realizes the required associative lookup of memory elements within an active
memory space.

As the Berkeley DBXML supports all of these requirements andfeatures high performance, this
database was selected as backend storage for the active memory. Using this database had the additional
benefit that the handling of binary attachments was facilitated by the Berkeley DB non-relational data
store, which is itself a dependency of the Berkely DBXML and therefore represents no additional
dependency for the active memory. The active memory realizes a linking mechanism for binary
attachments that is based on RDF descriptions [KC04]. As an embedded database, the Berkeley
database libraries link directly into an application, but is in contrast no complete database server. Its
therefore small footprint permits an efficient implementation of the active memory server, based on
the introduced event-driven networking infrastructure without any additional unwanted client/server
communication. Excerpt 7.5 details on some of the advanced aspects of the Berkeley DBXML chosen
as repository backend.

Sebastian Wrede

7. From Event-based to Cognitive Systems 153

Excerpt 7.5: An Embedded XML Database as a Basis for Active Memory Spaces

The Sleepycata Berkeley DBXML [Sle06] (BDBXML) is an open-source databasethat provides the
technological backend for the memory part of the IDI architecture. It is packaged as an embedded C++
library and supports transactions as well as multi-threaded environments. In contrast to classical database
servers it offers only core features and is not a complete server application. The Berkeley DBXML stores
XML documents directly, without mapping them to another data model. Queries are made using XPath
1.0, an additionally included query optimizer utilizes user-defined indices. Indices are specified using
the names of tags, without reference to a schema and can be added, removed or modified dynamically at
runtime. While for the implementation of the memory model the Berkeley DBXML was used in version
1.2, recent versions support the full XQuery recommendation as query language on XML data - besides
other improvements.
Although a number of different database approaches were tested during the initial evaluation phase,
which was performed in early 2003, e.g., also relational databases such as MySQL, it turned out that the
BDBXML provided an excellent match for the realization of the persistence features of the active mem-
ory. Besides taking credit for the active memory concept by the makers of the DBXML databaseb, further
usability experiments were carried out, which we additionally reported to the broader public [LW04] that
underlined the suitability of this approach.
However, utilizing an embedded database comes with certaincosts. For instance, with the Berkeley
DBXML, the developer is responsible for reacting to deadlocks. These can occur when two concurrent
actions each hold a lock on a database page the other action needs next. When encountering such a
dead-lock, DBXML will throw an exception and the typical reaction is to retry the action immediately,
giving up after a certain number of retries [Ber04]. This is the approach taken by the active memory. It
is transparent to the client developer, who will only see aDatabaseException after all retries have
been failed.

aSleepycat Inc. was acquired by Oracle in 2007.
bThe active memory concept won Sleepycat’s DBXML innovationaward in 2004.

The memory model extends the set of interaction patterns presented in the previous section in two
directions: on the one hand, a set of interaction operationsinspired by tuplespaces permit distributed
coordination through generative communication. On the other hand, this paradigm is coherently in-
tegrated with the so far presented models of the IDI approach. In addition to the regular event-based
communication, it providesmediatedevent-driven communication, resulting in a new type of events
that extending regular ones by additional semantics based on the state of the corresponding mem-
ory elements. Therefore, distributed interactions can be flexibly composed out of the set of memory
actions and the corresponding events. While this is still anexample of implicit coordination, the
following section introduces a method for external coordination of participants.

7.4. Coordination Model

In addition to providing patterns for interactions betweenindividual components on an architectural
level and utilizing functions of the observation model for developing implicit coordination strategies,
an explicit coordination model for event-based componentsis needed on a system level. The avail-
ability of a system-level coordination mechanism that permits modeling of complex component or
service interactions yields functional component implementations that are easier to develop, integrate,
test and reuse.

Bielefeld University

154 7.4. Coordination Model

The coordination model thus not only contributes to the functional requirement of modeling and syn-
chronizing high-level system interactions but also supports the fulfillment of some non-functional
requirements originating from the software engineering aspect, cf. Chapter 5 such as modularity,
declarativity and testability.

Additionally, explicit coordination facilitates the integration of modular event-based cognitive systems
for the following reasons:

• Control of Asynchronous Interaction: While in general, control flow is highly asynchronous and
decoupled, arbitration and hardware access demand for sequenced and coordinated execution.
Realization of such arbitration processes is eased by a generic reusable coordination model.
In the VAMPIRE project, an exemplary use cases is multi-model interaction control as will be
exemplified in Chapter 8.

• Complex Event Processing: While this term denotes a complete field of research in its own right,
the proposed coordination model yields a simple but yet general variant for evaluating complex
event sequences. The coordination model excels in this regard beyond what is possible with the
introduced observation model due to its ability to combine individual subscriptions exploiting
the full expressiveness of Petri net semantics. Thus, complex stateful event sequences can be
matched and new higher-level events generated.

• Component Adaptation: Instead of developing components which are very specific due to their
coupling to expected system states, often mirroring highlycomplex system state models, com-
ponents can be further decomposed if their application specific adaptation is done externally.
Hence, it is possible for component implementations to makefewer assumptions about their
operational execution context as the responsibility for keeping track of complex stateful inter-
actions is separated. While a flexible configuration system may permit this with regard to static
properties, the coordination model achieves this in terms of their runtime dynamics.

Therefore, this section introduces a simple, yet expressive approach based on Petri nets [Pet81] for the
modeling, analysis and execution of complex tasks or actionstrategies, which seamlessly integrates
into the IDI architecture. Petri nets are well suited as formal underpinning of the coordination model.

They extend classic state machines by the ability to represent concurrency. Thus, they are well
suited for modeling structure and behavior of parallel distributed systems such as discrete event-driven
architectures. Within robotics research, petri nets were already widely used for different purposes, e.g.
to model tasks and actions under temporal constraints [MPV00] or for behavior selection [KCkPK05].
Utilizing Petri nets, a formal model can be developed that can be independently tested, which permits
a declarative specification improving changeability and that aims at high utility in terms of execution
performance.

7.4.1. Formalizing Coordination with Petri Nets

The coordination model utilizes marked petri nets that are extended by guards, which couple state
transitions in the petri net to external events that are observed utilizing the features of the IDI obser-
vation model.

Sebastian Wrede

7. From Event-based to Cognitive Systems 155

In general, a petri net is a bi-partite, directed graph, which consists ofplacesthat may contain tokens,
transitionsand directedarcsthat connect places with transitions. The so-calledmarkingdescribes the
current system state by the number of tokens which are present in the places at a given point in time.
The current marking of a petri-net corresponds to the actualstate of, e.g., a modeled action sequence,
robot behavior or other dynamics aspects in a cognitive system. Computations are triggered by the
firing of transitions.

In the subsequently introduced variant of Petri nets, the firing of a transition is made dependant on the
evaluation of aguard function.

Definition 7.7 proposes a formal description for the type of high-level petri net developed for the
coordination model that integrates ordinary petri nets with the match function of the observation
model through the aforementioned guard function.

Definition 7.7 (Guarded Petri Net) A guarded petri net in the IDI coordination model is a six-tuple
GPN = (P, T, I,O, g,M0) where

• P = {p1, p2, . . . , pn} is a finite, non-empty set of places;

• T = {t1, t2, . . . , tm} is a finite, non-empty set of transitions;

• I = P × T represent arc connections from places to transitions with an assigned weightw; if
an arc exists frompl to tj, thenilj = w, otherwiseilj = 0;

• O = T × P represent the arc connections from transitions to places with an assigned weight
w; if an arc exists fromtj to pl, thenojl = w, otherwiseojl = 0;

• g : I → {true, false}, whereg((pl, tj)) =











true, iff ilj = 0

true, iff ilj > 0 ∧match(slj,DX) 6= ∅

false, iff ilj > 0 ∧match(slj,DX) = ∅

and

pl ∈ P, tj ∈ T ;

• Mc = (mc1,mc2 , . . . ,mcn
) represents the marking of a petri net.Mc is a vector in non-

negative integer|P |-space. Thei-th element of a marking,mci
, specifies the number of markers

in placepi at time instantc. M0 is the initial marking of the net;

andP ∩ T = ∅ while match(slj,DX) represents the matching of a trace of received event notifica-
tionsDX against a subscriptionslj registered at the observation model. The flow relationF can be
defined asF ⊆ I ∪O.

In contrast to colored petri nets [Jen91], which feature similar guard functions that are defined on
data available within an associated place, the approach here couples petri net execution to external
information through the binding of input arcs(pl, tj) ∈ I to regular IDI event subscriptions.

Input arcs,(pl, tj) ∈ I, of transitions aresatisfiedif the marking of the input place corresponds to the
weightilj of the arc which specifies the number of tokens that this arc consumes from its input place.
In ordinary petri nets, the fulfillment of this condition forall input arcs of a transition wouldenable
it, eventually yielding its firing.

However, the IDI petri net model features a slightly more complex firing rule. It changes semantics
of enabling a transition and adds a precondition to this enablement. This additional step is termed
activationand is described in Definition 7.8.

Bielefeld University

156 7.4. Coordination Model

Definition 7.8 (Extended Firing Rule) IDI guards add an additional condition to the process that
decides whether a transitiontj ∈ T is firable or not:

1. An individual arc(pl, tj) ∈ I with pl ∈ P is activated by some markingMc, denotedMc ⊲

(pl, tj) iff ilj <= mcl
.

2. A individual transitiontj may then subsequently be enabled by some markingMc, denoted
Mc ◮ tj iff ilj <= mcl

∧ g((pl, tj)) = true | pl ∈ P, 1 ≤ l ≤ n.

3. Iff Mc ◮ tj thentj may fire.

This definition formally describes that once a sufficient marking is available in a place that is attached
to an input arc of a transition, this arc is activated.Activation in this context means that the guard
function for this arc is constantly evaluated in each processing cycle. Thus, the subscription that is
attached to this guard is itself dependant on the marking in the Petri net.

Only the set of notificationsDX that is retrieved since arc activation and as long as the corresponding
place is satisfied is matched for this listener. This is particularly important as not all listeners are
context-free and often only provide meaningful semantics in the context of a modeled state.

Thus, the corresponding transition can only be enabled oncethe place’s condition is fulfilled and the
specified subscription has matched one of the events that were received in the observation model since
its activation, fulfilling the additional guard condition.If a transition is enabled and subsequently fired,
it executes a list of registered action callbacks, which mayinclude the generation of new events that
are sent to other system components. Thus, the effected changes in system behavior is bound to the
observation of external events, which are evaluated in the context of the current system state.

This is the fundamental concept that couples the execution of the specified high-level petri-net model
to the overall state of a system. If all input arcs of a transition are satisfied, the attached transition is
enabled and the marking can be propagated to following stateby applying the equation described in
Definition 7.9.

Definition 7.9 (State Transition) If a transition tj ∈ T fires, then the markingMc is changed to
Mc+1 by the iterative application of the state transition equation:

m(c+1)l
= mcl

− ilj + ojl | 1 ≤ l ≤ n

7.4.2. Development, Analysis, and Execution

Figure 7.11 depicts how a petri net-based coordination model process is coupled to the overall system.
In terms of the IDI architecture, an instantiated petri net model represents a complex service compo-
nent that observes events by subscriptions which are registered dynamically upon evaluation of guard
specifications and that generates new events as soon as transitions fire.

Sebastian Wrede

7. From Event-based to Cognitive Systems 157

Participant

Active Memory

Petri-Net
Control Process

Pub-Sub

Observed Event

Observed Event

Generated Event

Event Bus

Participant Participant

Channel

Req-Rep

Figure 7.11.:Observed events yield in firing transitions, which in turn may generate new events that modify
system behavior. By utilizing a petri-net based approach, an event-based control loop from
perception to action can be modeled and directly instantiated.

These events result from the aforementioned action sequences that can be attached to any transition.
The library that realizes the coordination model provides anumber of reusable basic actions based
on the patterns provided in the interaction and memory models such as (a-)synchronous request-reply
communication, or active memory access.

Additionally, it is possible to exchange generic data itemsencoded according to the document model
through a pre-defined local blackboard or to perform any action if their implementing classes are
derived from a basicAction interface.

An example of reusable actions generally applicable are invocations of the service management func-
tionality available in the IDI architecture. This allows for instance to restart or reconfigure a compo-
nent, which realizes these management event handlers.

Figure 7.12 shows a screenshot depicting a fragment of the petri net model that handles user inter-
action in the VAMPIRE assistance system, which will be described in more detail in Chapter 8. The
screenshot shows a session in theWorkflow Petri Net Designer[Tho05] (WoPed). A tool like Woped
facilitates the interactive development and testing of petri nets, even without other system components
running. Besides invoking transitions manually or throughreplaying of observed events, petri nets can
be analyzed for their logical soundness, e.g., with regard to reachability or liveliness [MFP06].

The realization of the coordination model permits a formal and declarative specification of net struc-
ture and guards as well as the attached actions in an application of the XML-based PNML document
format [WK03].

This provides an avenue for extending petri-net coordination models at runtime by new places and
transitions. The memorization of PNML models in an active memory space permits a dynamically
reconfiguration of instantiated petri-net execution engines.

Further examples for the utility of modeling system behavior with petri-nets will be given in Chapter 8
along the explanation of the VAMPIRE system architecture.

Bielefeld University

158 7.5. Domain Model

Figure 7.12.: Interactive modelling and simulation of Petri nets with Woped [Tho05]

7.5. Domain Model

Whereas the memory and coordination models provide essential functions geared at cognitive systems
developed according to the visual active memory paradigm, they are still rather generic and domain
independent as the other IDI models, too. Due to the fact thatthe IDI architecture shall be usable
across the broad range of scenarios in cognitive interaction technology systems, a one-size-fits-all
approach is neither desirable nor feasible. Thus, the overaching aim of the integration architecture is
to easily support the development of different domain specific models.

Even so, the functional services already integrated with the IDI architecture, supporting specific func-
tions in the domain of cognitive systems, e.g., a face recognition service [Lan07], represent a type of
domain support available for reuse in other system instances. The aforementioned face recognition
component can be easily integrated into both a robotics as well as cognitive vision system, which
further eases the development and prototyping of novel types of composite services.

However, domain-specific functions from the perspective ofan integration architecture and as ex-
plained in Chapter 5 must rather provide features on a technological level, e.g., reusable datatypes
and algorithms or support for computer vision toolkits. While it is non-entertaining to describe all
functionality that has been integrated in a reusable way on the basis of the IDI Architecture, the fol-
lowing sections shall highlight some prototypical examples for available domain support in this sense,
each of which can coarsely be classified in one of three types.Of particular interest in the context of
the VAMPIRE project was to support different computer vision toolkits, which is the reason that the
adapterplugins developed for the IceWing [LWHF06] prototyping environment are briefly described
as an example for this class of domain support, whiletype librariesand otherdomain specific libaries
shall only be mentioned shortly.

Sebastian Wrede

7. From Event-based to Cognitive Systems 159

Figure 7.13.:Graphical visualization of an XML schema used in the VAMPIREproject. It specifies the
syntax of valid XML documents which describe memorized scene states.

7.5.1. XML Type Libraries

As introduced in the document model, cf. Section 6.2, XML document types are the basis to describe
event content transmitted, stored, and processed by the various services in an IDI-based cognitive
system. In order to facilitate the integration process, a first step is thus to develop XML vocabularies
such as the Computer Vision Markup Language [LF04] (CVML), which represents a similar approach
developed in the context of Psyclone, cf. Section 5.3.2.

A suitable formalism - among other approaches like RelaxNG -for specifying an XML language such
as CVML areXML Schema[BDG01] specifications. Figure 7.13 visualizes an XML schema for the
description of a scene state at a given point in time as developed early within the VAMPIRE project.
Schemas were defined for events generated by individual services such as head pose tracking, action
recognition and many others. Similarly, in the COGNIRON EU project a large number of different
schemas for symbolic robotic data (e.g., states, events, objects, etc.) were developed [FKH+05]1

yielding a formal data model and permitting runtime validation.

While XML schemas are useful to specify and validate implementation-independent interfaces with
regard to certain document and thus event types, different language-specific libraries are available that
contain these event types, thus their XML marshaling and possibly additional utility functions. These
libraries often translate events with binary attachments into a domain specific API that is accessible
for developers and beyond what is generalizable in the IDI architecture. A typical examples for an
event type that is commonly provided by XML type libraries are image events, which encapsulate one
or more images grabbed by an image service and translate the raw data into the specific representation
needed in a particular technical environment.

1See also:http://www.cogniron.org/wiki/DataStructures

Bielefeld University

http://www.cogniron.org/wiki/DataStructures

160 7.5. Domain Model

These libraries are usually shared across single organizations or between a smaller number of col-
laborators in a more closely controlled integration context, cf. Chapter 3. Even so, in contrast to
the mandatory use of IDL libraries with stubs and skeletons as known from operational middleware,
developers are not obliged to use the XML type libraries in order to access event information. Thus,
a different process may interpret an event notification in a different, possibly more suitable way, e.g.
by evaluating only specific fragments of the document contained in a event notification, which allows
for developing very generic and loosely coupled processes like coordination, forgetting or anchoring
processes, which do feature any compile-time dependency tospecific event types and corresponding
libraries.

Due to the fact that the exchanged information between functional services in a system architecture
is often application specific, no extra effort was made to wrap all functionality that is available in a
complex domain specific library such as OpenCV. However, as the effort to encode a necessary type
according to the IDI document model is rather low, necessarytypes were added on a case-by-case
basis to the domain model of a particular application when needed.

7.5.2. Application Adapters for Computer Vision Tools

Application adapters retrofit otherwise monolithic standalone applications into a larger system archi-
tecture. Due to the anarchical or at best oligarchical integration context in experimental cognitive
systems research, cf. Chapter 3, the development of adapters is a common task in collaborative re-
search projects. Adapters permit the integration of already existing legacy applications that are not
based on the IDI architecture by means of, e.g., source-codemodification, buddy processes, library
replacements and other approaches [Bir05]. Most of these mechanisms are tied to certain applica-
tions, sometimes even to particular component configurations, increasing coupling and leading to poor
reusability in other scenarios. In contrast, the IDI architecture supports the development of reusable
adapters.

In order to extend the ideas of information-driven integration and provide reusable adapters in the do-
main of computer vision and pattern recognition, a previously monolithic computer vision toolkit was
refactored. This toolkit, IceWing [Löm08], was originallydeveloped as an infrastructural contribution
of a dissertation on object learning [Lö04]. Thus, while other modular toolkits like Neo [Rit], which
has its roots in neural networks research, are well integrated with the IDI concepts, too, the following
paragraphs sketch the approach we realized for the modular development of computer vision services
using a plugin-based architecture.

The Graphical Plugin Environment IceWing

IceWing is a graphical plugin shell optimized for the special needs arising in the field of vision system
development. In contrast to the desired level of loose coupling on the system level, vision components
may often need to run in a closely coupled execution context.Correspondingly, encapsulation and
communication overhead should only have a negligible impact on the overall execution speed. Largely
the same as for the overall architecture, a vision toolkit should help to develop and optimize the
single components as well as integrated subsystems. Therefore, easy and fast introspection of any
intermediate results as well as easy and flexible modification of algorithm parameters at any time are
key points. As will be explained subsequently, these requirements are well covered by IceWing.

Sebastian Wrede

7. From Event-based to Cognitive Systems 161

Figure 7.14.: Exemplary screenshot of the IceWing image processing toolkit as typical representative for
a domain specific software development environment. IceWing allows for flexible local cou-
pling of image processing plugins and interactive prototyping. Generic infrastructure plugins
are provided by the IDI architecture, yielding versatile and reusable application adapters for
computer vision subsystems.

Plugin Interaction Figure 7.14 shows a typical runtime session with the graphical plugin shell.
IceWing itself provides solely an administrative core, an initially minimal user interface and a variety
of support functions for tasks like user interface creation, communication and introspection. The real
functionality for the task the user wants to solve with IceWing is provided by dynamically loaded plu-
gins, which are realized as standard shared libraries. For the component designer, plugin development
is as easy as deriving from an abstract base class and implementing aprocessmethod that carries out
computations on data passed to the method by IceWing. Duringthese computations plugins can take
advantage of other external libraries, for example OpenCV or RAVL for enhanced image processing
functionality. Plugin development can be done in C and C++. Additionally, bindings for the scripting
languages Python and MATLAB are available.

For interaction between plugins two distinct communication patterns are provided, which actually fea-
ture similar semantics as the patterns introduced in Section 7.2, but operate on an in-process level in-
stead of the system level [SSRB00]. On the one hand, a realization of the Observer pattern [GHJV95]
implements a process local variant of the Publish-Subscribe pattern while on the other hand a func-
tion storage and retrieval interface for procedural communication realizes a form of local request-reply
pattern.

Data items communicated via the observer pattern are represented in IceWing by a reference to the
actual data and a stringified identifier. This allows to exchange any data without any restrictions and
without the need of any preprocessing. However,cooperative plugins[LWHF06] are developed ac-
cording to the information-driven paradigms introduced with the document model in Section 6.2 and

Bielefeld University

162 7.5. Domain Model

thus technically process XML documents with binary attachments. Plugins observe the storage of any
number of such data items. If an observed data item is stored by a different plugin, the observing
plugin gets called with the new data after the storing pluginhas finished its work. The data itself is
not copied during the complete process, but managed by reference counting, allowing a fast commu-
nication between plugins even for large images. The now running plugin may again store any number
of new data items with equal or different identifiers and may thereby itself invoke other observing
plugins. In contrast to the IDI system-level concepts the IceWing architecture does not provide a
sophisticated observation model due to the stated goal of maximizing performance. However, filter-
ing and transformation of data is easily possible as pluginsmay insert a transformed data item in the
processing loop.

Besides the data driven observer pattern plugins can provide any number of C functions under different
identifiers. After registration other plugins can retrieveand freely call these functions from within their
processing steps.

While plugins are executed sequentially, they are free to start new threads and thus perform any
calculations in parallel. At the same time more advanced andmore dynamical distributed interaction
patterns are possible utilizing the generic IDI infrastructure plugins.

Transparent Distribution and Integration with IDI Plugins A library of cooperative plugins
not only pays off in reusability of plugin implementations but also facilitates smooth collaboration
between vision researchers on the one hand and system integrators on the other hand.

This is achieved through a small set of generic infrastructure plugins that extend IceWing transparently
by the different interaction patterns described in Section7.2. With those plugins events can, e.g., be
observed from or published to several different IceWing instances running on an arbitrary number of
network nodes or any other service utilizing the IDI architecture.

Listener plugins such as the subscriber plugin only need be configured with the subscription that
matches the corresponding informer and the identifier underwhich the imported data shall be made
available to other locally registered IceWing plugins. Vice versa, informer plugins like the publisher
plugin must be configured with the specific internal identifier for the data to be exported. Neither
a special meta-compiler or data-description is necessary nor any implementation change of existing
plugins is needed to make use of those plugins if the data to beexported conforms to the IDI document
model.

Following this concept, vision subsystems can be quickly integrated into larger loosely coupled sys-
tems but locally executed in a closely coupled processing environment as well as transparently dis-
tributed for boosting overall performance if available processing resources are an issue.

Mosaicing as Exemplary Application A wide variety of plugins have been developed in the
course of the different applications, ranging from fundamental plugins that allow reading of image
streams from sources like multiple disk files, movie files, and various grabbers and cameras to filter
plugins for, e.g., image smoothing, image cropping, or color conversion, etc. Besides these, a number
of higher-level plugins for object- and action recognitionas well as visual tracking were provided by
partners in different research projects.

Sebastian Wrede

7. From Event-based to Cognitive Systems 163

Node 1

 Tracks

Node 2

IceWing IceWing

IceWing

Node 3

IDI Subscriber

Mosaicing

IDI Publisher

Plane
Motion &

Image
IDI Subscriber

IDI Subscriber

Plane Detector

IDI Publisher

IDI Request

Feature Point Tracker

IDI Publisher

Left Image

Stereo
Images

Image Service

Mosaics

Figure 7.15.:Exemplary IceWing application for generating mosaics fromarbitrary stereo video camera
sequences [GHC+04] using the presented IDI plugins. Besides providing the resulting mosaics
to other components, the IDI architecture is used here for parallelizing processing to increase
the overall performance [LWHF06] of this service.

Figure 7.15 depicts how IceWing was used for a vision subsystem in the VAMPIRE project that
generates mosaics from an arbitrarily moving stereo camerapair. This use case underlined the benefits
of distributed processing and comprised individual algorithms developed by different partners in the
project, which were integrated as cooperative IceWing plugins. Details of the underlying algorithms
can be found in [GHC+04]. The architectural sketch of the three stage system is shown along with
some results of each stage. The image service publishes captured stereo images from two cameras
mounted to the VAMPIRE augmented reality device [SP04], which will be described in more detail
in Chapter 8.

The Feature Point Trackerplugin detects feature points in the left image of the stereocamera pair
request from the image service on demand and tracks these at about 15Hz frame rate. ThePlane
Detectorplugin computes stereo matches from the tracked feature points and the corresponding right
images. In terms of IceWing interactions, the plane detection observes tracking result data (via a
corresponding subscription for tracking events) and referenced binary stereo images to compute new
planes whenever the required data is pending.

As this correspondence matching can not be done at frame rate, parallel processing of tracking and
plane detection is essential. Once planes are detected by stereo matching, tracking feature points
indeed allows to track the individual planes. Finally, individual mosaics are asynchronously computed
and published whenever new plane information becomes available.

Summarizing, IceWing itself is a development tool for a non-distributed low-level image processing
which is highly extensible and already widely used within several research projects such as the VAM-
PIRE project. As up-to-date documentation and the softwareis freely available, IceWing facilitates
real-time image processing on several platforms. In conjunction with the IDI infrastructure plugins,
cooperative plugins are integrated transparently in larger system architectures utilizing the presented
infrastructure plugins.

7.5.3. Application Specific Libraries

In contrast to modular and domain specific application adapters or type libraries, application specific
libraries encode a complete domain model in a target language aimed at a particular scenario. Thereby
it not only encodes the used data types but additionally encapsulates services behind a usually appli-
cation specific programming interface.

Bielefeld University

164 7.6. Summary

An example of this class of available domain support is theBonSAI (BirON Sensor Actuator Inter-
face)which is a high-high level Java API2 encapsulating complex services running on the BIRON
mobile robotics platform for training and teaching purposes. While all of these services are natively
using the various functions of the presented integration architecture, BonSAI makes them available
in domain specific primitives such as sensor and actuator abstractions on different competence levels.
It provides a very robust and easy to use layer comprised by out of-the-box usable implementations
of COGNIRON functions (CF) for simple implementation of robot behaviors, picking up concepts of
traditional behavior-based robotics or behavior-oriented design. It thereby eases the implementation
of sophisticated robot behaviors by young researchers and scientists even if they are unexperienced
in robotics systems. The goal is to allow easy access to COGNIRON functions that enables these re-
searchers to also more easily contribute their interdisciplinary experience and knowledge and quickly
pour it into prototype systems that can actually be used for evaluation.

The BonSAI release has been successfully used and positively evaluated by interdisciplinary students
of a winter school on human robot interaction3.

To commence this section on domain support, let us recall thebeginning. As no single domain model
up to now exists for cognitive (interaction) systems, the main contribution towards domain functions is
usabilityof the core models yielding in different models that are provided by users of the architecture.
The infrastructure plugins for the Neo toolkit may serve as an example here. As these toolkits can
then easily be integrated by others, the available domain support shall be steadily increasing.

7.6. Summary

While the previous chapter presented the core layer of the information-driven integration approach,
this chapter introduced five additional models. Together they define the information-driven integration
architecture that supports the actual development and software integration of experimental cognitive
systems.

The resource model provides a vocabulary for conducting integration from a higher-level of abstrac-
tion. This is on the one hand beneficial for a logical problem decomposition; the introduced URI
scheme also permits to assign responsibilities for clearlydefinable parts of a system architecture on
different abstraction levels. Thereby, it implicitly supports a feature-driven integration approach as
presented in Chapter 3. For the integration architecture itself, the naming model provides essential
features for realizing higher-level interaction patterns.

The interaction model maps well known message exchange patterns from service-oriented and event-
driven architectures into a consistent programming model that is solely based on the introduced
information-driven core layer. Thus, it allows architectsto use both functional and event-based de-
composition for system design. The introduced adaptation patterns harmonize the expected interaction
profile from the viewpoint of an individual component, e.g.,in terms of synchronous or asynchronous
programming models, thus promoting usability and flexibility of the resulting programming interface.

2seehttps://code.ai.techfak.uni-bielefeld.de/bonsai for documentation regarding the Bon-
SAI API

3the COGNIRON winter school on human robot interaction (CWSHRI) took place at Lausanne, Jan. 21st to 25th, 2008

Sebastian Wrede

https://code.ai.techfak.uni-bielefeld.de/bonsai

7. From Event-based to Cognitive Systems 165

The memory model is a core feature of the information-drivenintegration architecture. Besides re-
using the patterns of the event-based integration model, itextends the basic interaction patterns in
many respects. It provides a simple but powerful model to coordinate distributed processes of a cog-
nitive system inspired by the tuplespace concept. However,the semantics of memory operations are
less strict and therefore more flexible. The active memory isa modular, event-driven service with
clear communication and synchronization semantics. It permits subscribers to rely on the additional
guarantees associated with memory events. For instance, anevent is forwarded only after successful
memorization, which in turn allows subsequent synchronized access to this element by other partic-
ipants. In conjunction with the concept of synchronously executed intrinsic memory processes this
provides an extensible and effective integration service.While in an event-based architecture partic-
ipants are typically not synchronized, in the memory, immediate notification provides an additional
form of synchronization for intrinsic processes.

From the perspective of event-based architectures, the active memory realizes a distributed event
infrastructure using a separated multiple middleware approach [MC05]. The server part follows a
multiple intermediate broker pattern, yielding potentially a number of memory servers that partition
the overall event space into smaller fractions for which they act as central message brokers. Events
are only forwarded to subscribers of the memory model if theyare brokered via an instance of the
active memory service.

Although state-of-the-art database technology is fundamental for the realization of this memory
model, important conceptual differences to pure database systems can be stated. On the one hand,
databases deal with events primarily internally instead offocussing on communication and coordina-
tion of loosely coupled distributed processes. Thus, the methods used in the database domain differ
greatly from the concepts applied for distributed scenarios [CNF01]. On the other hand, the semantics
attached with the externally visible interfaces differ from the operations defined on tuplespaces.

The persistence mechanism of the memory also bears some resemblance to a data-centered architec-
ture like the blackboard. However, the memory itself does not need a central control component, as
is usually assumed with blackboards [BMRS96]. Other differences are more important: Where in
classical blackboards the topology is rather fixed, it is dynamic in active memory systems. Also, the
memory uses the more scalablesignal/querymechanism to pass data instead of direct access, which
was one of the critiques of the naive implementation of the visual active memory concept. In black-
board architectures, data sharing for controlled components is emphasized, whereas in the memory
the emphasis is put on notification betweenindependentcomponents and on persistent storage. The
envisioned linear scalability of the active memory model byevent space partitioning, detached noti-
fications and the IMP virtual machine architecture provide an avenue for a scalable implementation.
If state-of-the-art database technology and the principles of the event-based IDI approach are also
considered, the objective of an efficient virtual shared memory architecture for cognitive systems is
achieved.

Furthermore, within the different research projects wherethe active memory has been applied so far
for integration and coordination of cognitive systems, some standard patterns emerged on the basis
of the introduced memory model and its fundamental operations. Although many of those might be
specific, a current research hypothesis [HS08a] is that someof those are applicable to a broader range
of systems and scenarios.

Bielefeld University

166 7.6. Summary

However, many complex event-based architectures suffer from the fact that component coordination
is implicit. To compensate for this, the coordination modelintroduces a standard method for dealing
with the asynchronicity inherent to the information exchange in the IDI architecture, permitting the
modeling of controlled arbitration in cognitive systems. The aim of this model is to permit a declar-
ative and testable specification of the coordination strategies. Hence, an extension of Petri nets has
been presented that integrates coherently with the IDI models. It not only permits to develop expres-
sive coordination strategies but also yields a form of complex event processing component. Last but
not least, an external coordination service eases the implementation of components, which permits
the development of reusable generic services that are orchestrated in a scenario-specific manner by
coordination models.

As the final contribution of the IDI architecture to the requirements identified in the first part of this
thesis, the available types of domain support were explained. While XML type libraries are useful
but not necessarily needed for integration in collaborative projects, the main contribution of this thesis
in terms of domain support was to provide generic infrastructure plugins for an existing computer
vision toolkit. While this toolkit can be used for the development of high-performance, real-time
computer vision services, the infrastructure plugins resembles versatile application adapters that allow
to integrate developed applications into larger systems.

To commence this section, let me briefly refer to the requiredaspects as introduced in Chapter 5.
The IDI architecture largely fulfills most of the requirements, with a particular focus on functions
for information management, distributedness and coordination. How these functionalities have been
applied to research systems is the main focus of the following part of this dissertation.

Sebastian Wrede

167

Part III.

Experimental Evaluation

The main contribution that is presented in the third part of this thesis is the augmented reality assis-
tance system that the author cooperatively developed in theVAMPIRE EU project.

The various other VAMPIRE systems developed prior to this served as an iterative testbed for the
presented information-driven approach. Besides explaining the utility of taking “the human in the
loop”, this chapter further argues for the usefulness of thepresented approach for coordination and
integration of experimental, distributed cognitive systems.

In order to underline the claim that information-driven integration is a more general concept and can
be applied to different application scenarios, the second chapter in this part will briefly report on the
application of the framework and the design concept in otherresearch projects, particularly in the
domain of cognitive robotics.

Bielefeld University

169

8. The VAMPIRE System

The vision of the VAMPIRE research project has been to develop systems capable of understanding
what they see based on what they have previously memorized following the concept of a visual active
memory as introduced in chapter 2. Throughout the project, anumber of prototype systems were co-
operatively constructed involving several partners in a geographically distributed and scenario-driven
research process (cf., Chapter 3). This integration process contributed at the same time to the iterative
improvement of the integration approach described in this thesis. All demonstration systems, e.g. the
office assistant [BHWS04], combined several perceptual processes in a coherent and usable system.
In addition to perceptual features, techniques for the retrieval and interactive learning of new visually
perceivable artifacts have been prototyped in the VAMPIRE demonstration systems.

Those systems were primarily build along the lines of two distinct scenarios: sports video annota-
tion [KCK07] and wearable AR-based assistance [SHWP07]. The focus of the following sections is
on the assistance scenario as it served as the fundamental testcase for the introduced IDI approach.
At the same time, the software design and integration of the services used in the final demonstra-
tion system within the VAMPIRE project is one of the main contributions of this dissertation (cf.
[WHWS06, WWH06]). The developed assistance system and previous prototypes were demon-
strated at various occasions, e.g., the EU IST Event 2004 in The Hague, NL as well as on other
international research workshops and conferences such as the ICVS 2006 in New York City, USA.

The software architecture of the assistance system was constructed according to the concepts of the
introduced information-driven integration approach and is based on the initial implementation of the
corresponding software framework [WFBS04]. It combines the perceptual processes that were coop-
eratively developed by the various project partners as wellas the ones that were created at Bielefeld
University into a coherent architecture based on the principles of the different IDI models introduced
in the foregoing chapters. The IDI approach and the underlying software framework provided an
avenue for the efficient collaborative construction of a real-world visual active memory instance.

This chapter first introduces the scenario of the augmented-reality based context-aware assistance
system. In order to manifest the concepts introduced so far,the subsequent section explains the imple-
mented instance of a visual active memory focusing on the useof the information-driven integration
models. Last but not least, some results of a user study will be discussed that was conducted based on
the available integrated system which also allows to draw conclusions on the utility of the software
architecture when applied in a systemic context.

8.1. Augmented-Reality for Context-Aware Assistance

The aim of mobile assistance technologies is to support users in performing complex tasks or provide
them with additional information either previously learned by the system or dynamically retrieved
from external knowledge sources.

Bielefeld University

170 8.1. Augmented-Reality for Context-Aware Assistance

← Hybrid tracking unit consisting of an inertial sensor
(XSens MT9) and a custom CMOS camera for pose
tracking.

← Custom stereo video see-through set combining two
Fire-i firewire webcams and a head-mounted display
(I-visor 4400VPD HMD). The webcams are also used
for scene analysis as well as object and action recogni-
tion.

Figure 8.1.: The assistance system: Hardware setup of the AR gear. It has been designed and assembled by
Graz University of Technology [SP04].

Information relevant for a particular situation must be made available to the user in a context dependent
and unobtrusive manner. Future real world applications might include industrial assembly, remote
teaching, multi-user collaboration and prosthetic memorydevices for personal assistance. Prototypical
questions answered by such assistants are for instance "Where have I put my keys?" or "How do
I construct this assembly?". In the VAMPIRE mobile assistant scenario the user wears a mobile
device that - by means of Augmented Reality (AR) - integrateshim in the processing loop to close
the perception-action cycle as explained in Section 2.2.1.Thereby, human-computer interaction and
visual processing is tightly coupled and it is beneficial that system and user share the same view. By
this means, the AR device’s sensory equipment enables the system to take the perspective of an acting
human as well as to provide feedback.

In order to exemplify these concepts and to demonstrate as well as evaluate the ideas of a visual active
memory and the presented integration architecture, we considered an interactive scenario that is easily
explained: the VAMPIRE cocktail assistant. Prior to the presentation of the resulting information-
driven software architecture, the utilized AR platform serving as the hardware basis for integrating
the human-in-the-loop and the desired functional properties of the cocktail assistant system will be
introduced.

8.1.1. An Augmented-Reality Interface for Human-Machine I nteraction

The first requirement for a mobile augmented reality (AR) device useful within the VAMPIRE appli-
cation contexts is toprovide informationabout its environment to the active memory components. As
the system shall be able to assume the perspective of the human user, video images from his or her
perspective need to be recorded and forwarded to other architectural components. Furthermore, as the
system is not stationary, information about the direction of the user’s view for (self-) localization and
head pose recovery need to be made available, which can be achieved, e.g., by applying vision-based
tracking methods or by using inertial tracking devices [SHWP07].

Sebastian Wrede

8. The VAMPIRE System 171

Last but not least, the system shall allow for natural language understanding, hence, a microphone is
needed to facilitate speech recognition.

The second requirement for an interactive device is toprovide feedbackto the users of the system. This
is usually done via a head mounted display (HMD) in mobile augmented reality. In such a scenario, the
perceived or simulated environment together with additional textual or graphical information overlays
is projected into the user’s field of view. Additionally, auditive feedback can be provided to users
via some sort of sound output in order to achieve multi-modalinteraction. Through these functions,
an AR-based human computer interface effects a rich bi-directional communication channel between
man and machine.

Visualization is carried out on a laptop that features an OpenGL graphic chip (nVidia Quadro) with
hardware supplied stereo graphics rendering for high-quality augmented reality. The custom stereo
video see-through head mounted display (HMD) utilizes low cost, off-the-shelf components such as
two Fire-i firewire webcams and an I-visor 4400VPD HMD. Additionally, attached earphones account
for the desired non-distracting audio output.

Hybrid tracking is performed with a custom CMOS camera and aninertial tracker. This tracking sub-
system is run on a custom mobile single board computer (SBC).Besides the SBC itself, the tracking
unit includes a power supply (AC / DC) serving all the peripheral hardware of the mobile AR sys-
tem such as HMD, firewire cameras, CMOS camera and inertial sensor. It utilizes a custom-made
Fuga 1000 based CMOS camera (‘i:nex’) featuring an USB2 interface for extremely fast acquisition
of small, arbitrarily positioned image portions typicallyused for tracking of corners or other local
features with small support regions [SHWP07].

Figure 8.1 depicts the prototypical realization of such a hardware device as designed for the VAMPIRE
project. It was made available to all project partners and has been usable even for unexperienced
persons during the evaluation studies. This device as developed by TU Graz [SP04] consists of a
visualization and a tracking subsystem.

A wireless mouse may be used as an additional input device forcontrolling the system besides giving
speech commands via the attached microphone. Laptop and SBCcan be mounted on a backpack and
connected via (W)LAN to the other parts of the system.

8.1.2. The Assistance Scenario

In the course of the project, we considered a scenario that aimed at the realization of an interaction loop
providing context aware assistance to users carrying out everyday tasks in real-world environments.

In this scenario a user is sitting in front of a table and is wearing the AR-gear as introduced above. The
user inspects or manipulates objects, e.g. beverages, cupsor other rigid objects, which are placed on
the table. Based on the multimodal interface of the AR-gear as outlined above, different capabilities
were integrated that allowed us to design a number of assistance use cases.

Exemplary high-level capabilities are object recognitionand learning, visual tracking and action
recognition as well as task models for the supervision of action sequences. Visualization capabili-
ties were developed allowing the system not only to display instructions but also to highlight objects
and even guide the user to referenced objects outside the current field of view through visual markers.

Bielefeld University

172 8.1. Augmented-Reality for Context-Aware Assistance

(a) Acquiring views for the training of new objects (b) Displayed object recognition results

(c) Assistance: The system guides the user to the next
ingredient (arrow on the right)

(d) Action recognition: The blue box indicates the
tracked object.

Figure 8.2.: Screenshots of the user’s augmented view while performing prototypical use cases.

The following use cases were realized that exemplify the utility of this visual active memory system:

• Interactive Learning: As shown in Figure 8.2(a) it is possible to teach the visual active memory
new objects in order to achieve the desired flexibility of a cognitive vision system. To assist
in the interactive learning procedure, snapshots of the recorded views subsequently used for
training are displayed as augmentations that can be discarded by the user. Furthermore, only
the object focussed by the user is considered in the capturing step.

• Object Memorization: The system is context- and situation-aware in its visualization and infor-
mation presentation. Figure 8.2(b) shows a prototypical augmented view of a scene including
detected objects on a table. Two objects were correctly classified and thus highlighted by a
green box. Perceptions with a reliability below a certain threshold are not displayed to the user.
If an object hypothesis is constantly reliable over a longertime interval it is considered as a
stable hypothesis and memorized for later retrieval. Additionally, the displayed augmentations
depend and vary according to the overall operational context of the system. For instance, no
other object recognition results than the relevant ones areshown if step-wise instructions are
presented to the user.

Sebastian Wrede

8. The VAMPIRE System 173

• Object Retrieval: Based on a computation of the three-dimensional position for recognized
objects and the beneficial properties of taking the human-in-the-loop through augmented reality,
the system is able to direct the user’s attention in the sceneand guide her or him to a referenced
object that may reside outside the current field of view as done with the three-dimensional
arrow-like augmentations in Figure 8.2(c). However, as a natural precondition the object that
is searched for must have been previously memorized by the system. This serves as the basic
interactive retrieval functionality of the visual active memory and allows to provide an answer
to the questions raised in the beginning of this section.

• Step-wise Assistance and Supervision: The system provides context-aware assistance for simple
object manipulation tasks, here the exemplary task is to mixbeverages according to a given
recipe. It guides the user to memorized ingredients, prompts for the necessary next step as
shown in Figure 8.2(c) and observes and recognizes the actions carried out by the user, which
is depicted in Figure 8.2(d). As a possibly complex recipe isbroken down into a sequence of
actions that are carried out with specific objects and as these are stored in corresponding task
models, the system is able to dynamically check the correctness of an individual action and the
involved objects.

On the one hand, the scenario highlights the purpose of a visual active memory. At the same time,
it demonstrates the concepts of placing the human inside theprocessing loop of a vision system that
would otherwise lack the necessary embodiment to modify theenvironment for its purposes, e.g. to
acquire views from different perspectives in order to learna new object. On the other hand, the im-
mediate feedback on visual processing results is prevalentin this scenario making the ongoing system
behavior transparent to the user and augmenting his or her reality with the results of an interactive
retrieval process.

These are the basic functionalities our demonstration system needs to provide in order to qualify as an
instance of a visual active memory. However, which components were used for the actual realization
of this system and how all this is designed and integrated based on the concepts of the information-
driven integration approach shall be explained in the following section.

8.2. An Information-Driven Software Architecture

The following sub-sections describe the architecture of the resulting context-aware assistance system
from a functional viewpoint, a development perspective, a service oriented and a physical viewpoint.
Subsequently, a number of interaction scenarios will be presented that combine different aspects of
these views. This style of presentation is loosely inspiredby the 4+1 model of software architecture
introduced by Kruchten et. al [Kru95] but stays on a rather high level of abstraction in order to provide
a good architectural overview.

The developed assistance system serves as a proof of conceptfor the integration architecture pre-
sented in this thesis. While the functional building blocksthat allowed the realization of the different
use cases for the context-aware assistance system were independently developed by the partners in
the VAMPIRE project, they were incrementally integrated with the IDI approach. The overall sys-
tem functionality results from the interplay of the different components managed by the coordination
functions of the introduced architecture as will be explained in Section 8.2.5. Implicit and explicit co-
ordination is thus an important raison d’être for the proposed information-driven integration approach.

Bielefeld University

174 8.2. An Information-Driven Software Architecture

Conceptual

Memory

Interaction
Server Image

Server

ContextualAnalysis

Action
Recognition

VPL ObjectRecognition
Boost ObjectRecognition

Speech
Recognition

Coordination &Arbitration

ContextualVisualization HypothesisAnchoring

3D ContextAugmentation

Pose
Tracking

Episodic

Memory

Perceptual

Memory

Transient Events

Forgetting

Forgetting

Forgetting

Figure 8.3.: Illustration of the functional architecture of the VAMPIREassistance system. Processes coarsely
map to different layers of the visual active memory. Abstraction level of information is increas-
ing from bottom to top layers and higher-level components potentially make use of lower-level
information while this is not the case vice versa.

However, before entering this discussion we shall have a closer look on the individual components
that were integrated into the overall system.

8.2.1. Functional View

Figure 8.3 depicts the functional architecture of the assistance system. The depicted processes can
be classified into object recognition and learning processes, the 3D vision and hybrid tracking sub-
system, visualization and multimodal interaction processes, action recognition modules as well as
hypothesis anchoring processes. All processes are making use of the functions of the IDI architecture,
on this level in particular of the coordination and the memory models. While the former, e.g., manages
the aforementioned task models used for supervision and assistance, the latter is the central method
of integration as most of the processes interact via the active memory.

According to the conceptual layers of a visual active memoryarchitecture as introduced in Sec-
tion 2.2.2, the software architecture is structured similarly featuring three different active memory
spaces and a transient event space for sensorial data as shown in Figure 8.3. Each of the memory
spaces features an independent forgetting process with different parameterization. Hence, informa-
tion is usually more durable in the conceptual and episodic layers than in the perceptual layer.

As the active memory and the intrinsic forgetting processesare fundamental features of the integration
architecture and have been introduced in the previous chapters, they shall not be explained here once
again. Contextual analysis is not explained here either as it has been discussed as an example for
the coupling of IMPs and EMPs in Section 7.3. The functional architecture presented in Figure 8.3
permits the realization of all features important for the construction of a cognitive assistance system.
Please note that each of these processes usually reflects an area of research for itself. However, in order
to assess the capabilities of the integrated system, the most important building blocks for this scenario
will be outlined briefly. For further information, the interested reader is referred to the corresponding
publications that describe each approach in greater detail.

Sebastian Wrede

8. The VAMPIRE System 175

Object Recognition & Learning

Objects, e.g., ingredients for recipes, play a crucial rolein the presented scenario of a cognitive assis-
tant. The system needs to know which object is located where and which objects are manipulated by
the user. The assistance system features two different methods with distinct characteristics for object
recognition: one that is robust and domain-driven but needsto be trained in preface and an object
recognition and learning component that allows fast onlineretraining of classifiers. The latter repre-
sents an appearance based object recognition [BBHR04] component that is motivated by biological
information processing principles which are believed to underlie early visual processing in the brain.
It is constituted by a two-step procedure consisting of segmentation and classification.

The first step is based on the integration of different saliency measures such as local entropy, symme-
try and Harris’ edge-corner-detection into an attention map. Based on this map, objects on the table
are distinguished and segmented. Each segment is normalized in orientation and scale and a com-
bination of vector quantization and local Principal Component Analysis (PCA) is applied to achieve
a dimension reduction of the input data. The final classification decision is realized on the basis of
Local Linear Maps.

These classifiers can be trained with only few (about five) different views of an object acquired in-
teractively by the user. The training set is automatically extended by including rotated and scaled
versions of the captured views. The VPL classification itself performs at real-time on recent com-
puters, which makes the approach feasible in online reactive systems and particularly useful for the
envisioned scenario [BBHR04].

For robust domain-specific object detection, we integrateda well known cascaded weak classifier ap-
proach as introduced by Viola & Jones [VJ01]. In order to provide a basis for higher-level processes
such as action recognition, several cascaded classifiers are pre-trained. Therefore, objects typically
found in everyday environments would be recognizable upon starting the system. In long running cog-
nitive systems featuring a visual active memory, cascaded classifiers could even be trained a posteriori,
e.g., if the system is not being used and thus in an idle state.

As both object recognition components typically do not generate perfect recognition results, the visual
active memory considers their outputs as hypothesis data asintroduced earlier.

3D Vision Sub-System & Hybrid User Tracking

As explained in the scenario description the system needs toknow the position of objects in the real
world to guide the user and to be aware of the current situation. Since the environment is perceived
only from (visual) sensors mounted to the AR gear their position with respect to the environment
must be known. Accordingly, a component for user pose estimation and tracking is integrated into the
system making use of the calibrated CMOS camera depicted in Figure 8.1.

The three-dimensional pose is computed from artificial landmarks [CSP03] as depicted in Fig-
ure 8.4(a). By knowing the precise location of at least four coplanar but not collinear reference points
(or at least six arbitrary points) in the 3D environment and detecting their corresponding 2D image
points, one can calculate the position and orientation of the camera. The applied targets provide excel-
lent landmarks as they contain seven coplanar points definedby the corners of the target. To overcome
deficits in visual tracking of these points, an inertial tracker aids the tracking process [RBP04].

Bielefeld University

176 8.2. An Information-Driven Software Architecture

Tpose

Tobject Ptable

Landmark

(a) The position of objects on the table can be
computed from the tracked 3D position of the
user.

(b) Absolute trajectory of the manipulated object in a recognized “pour-
ing” action. Image coordinates of previous frames are motion compen-
sated.

Figure 8.4.: Examples of 3D pose tracking and action recognition in the integrated system.

By means of this pose estimation, the precise position and orientation of the user’sTpose is known
(cf. 8.4(a)), allowing the system to determine where the user is looking. Hence, the 3D position
Tobject of objects located on the table (or any other known plane) canbe computed by the intersection
of the view ray determined by the object position in the imagewith the known table planePtable,
which allows the 3D context augmentation component to add estimated 3D locations to generated 2D
object hypotheses.

Visualization & Multimodal Interaction

The AR gear realizes the interface between the user and the system. It can guide the user visually
to certain places and provides feedback about the system’s status and processing results by means of
visualization, e.g., object recognition results as shown in Figure 8.2(b). Since the system and the user
share the same view, the scene is really augmented by visual elements like semi-transparent rectangles,
three dimensional arrows, etc. This allows for an efficient support of the user by the system, as for
instance instructions can be directly displayed in the fieldof view and relevant places are visually
referenced.

Furthermore, the system is able to receive input and requests from the user. The underlying software
component is designed for multimodal interaction [Sch08] to navigate the GUI and control the system.
It is decoupled through the active memory from arbitrary input and command sources. The scroll
wheel of a wireless mouse can be used to choose buttons in menus and dialogs. Furthermore, speech
input [Fin99] for labeling and more natural control, as wellas head gestures [HBS05] to express
confirm or decline in various communication situations are integrated. By this means, it enables
interactive learning and labeling of objects, informationretrieval and overall control of the system by
the user.

An additional responsibility of the visualization and multimodal interaction layer is to connect the
available sensors and feedback devices to other system components. In that sense, e.g., the image
server is not a memory processes but a regular IDI process that sends image events as soon as a new
frame has been captured from the AR gear’s webcams to subscribed perceptual processes.

Sebastian Wrede

8. The VAMPIRE System 177

Hypothesis Anchoring

Time

Po
sit

io
n

VPL Boost

Fusion
to Memory

Figure 8.5.: Anchoring maps percepts to reliable sym-
bols in a memory space.

Components as, for instance, object recog-
nition only provide instant percepts of the
environment that describe the current visual
appearance of the scene. These percepts are
fed into the active memory and are trans-
parently available to other components for
further processing using information-driven
integration principles. As indicated by Fig-
ure 8.5, the producer of information is not
relevant for the anchoring implementation.

Inspired by the work of Coradeschi and Saf-
fiotti [CS01] a component calledhypothesis
anchoringhas been developed which is de-
scribed in [Han06] that maps these percepts
to reliable symbols (anchors). This is es-
sential for representing episodes over an ex-
tended period of time. For objects, anchoring compares the 2D or 3D position of a percept to assign
it to existing anchored hypotheses. This position can be estimated based on a self-localization of the
cameras as described previously. Object hypotheses are fused over time if the 3D positions are close
enough to each other as illustrated in Figure 8.5. A Gaussiancurve models the probability that two
hypotheses refer to the same object (see the superimposed curve in Figure 8.4(a)). For the final clas-
sification result the labels provided by the object recognition component are integrated over a short
period of time. If there is no anchored hypothesis that matches, a new one is created. Thus, hypotheses
are anchored over time and a specific hypothesis gains increased reliability if many matching percepts
support it. The reliability factor is included in the hypothesis representations in the active memory.

Action Recognition

As the system should not only guide the user but also supervise his actions, a component for action
recognition is integrated. It has to answer the question whether the user has correctly performed the
requested action or not. We utilize a classification approach based on the two dimensional trajectory
of the manipulated object in the video sequence [FHS04]. It is trained with model trajectories of
the respective actions and copes with variations of these byclassifying them using a condensation
algorithm.

Since objects cannot be reliably recognized by the object recognition component when being manip-
ulated, visual object tracking [BGD05] is integrated to provide the trajectory of the object as input for
the action recognition itself. Whenever an object is reliably recognized, visual tracking is initialized
and follows the object. The robustness of the approach with regard to occlusion allows to track the
object even when being manipulated. But since the scene is perceived by the head mounted cameras
only, it is necessary to compensate for camera movement to compute the absolute trajectory of the
manipulated object. Based on the fact that this object only covers a minor area of the field of view of
every frame we compute the global motion of the image from themovement of tracked feature points
in the background [ZGN04].

Bielefeld University

178 8.2. An Information-Driven Software Architecture

This visual background model permits to estimate the absolute trajectory by compensating the user’s
own movement. Figure 8.4(b) shows an estimated absolute trajectory of an object when performing a
“pouring” action. Note, that the trajectory started on the right handside in a part of the scene that is
not visible anymore in the current frame.

Coordination and Arbitration

While the interplay of many of the presented component functionalities is based on the event-based
implicit invocation patterns in the IDI architecture as explained later on, more complex behaviors of
the system like those necessary for supervision and assistance need to be coordinated explicitly.

Due to this requirement, an arbitration component [WHWS06]was developed as part of this thesis
that is based on the concepts of the coordination model as introduced in Section 7.4. Utilizing ex-
tended Petri nets [Pet81], the functions of the coordination model allowed to develop a component
that controls the overall behavior of the context-aware assistance system. Its main responsibilities are:

• Assistance models: Representation of step-wise task models that consist of action sequences,
parallel actions with or without involved objects and corresponding user interactions, which
permits the system to guide and supervise user actions. For instance, it has to answer the
question whether the user has performed the requested action in a specific task step with the
correct object or not.

• Interaction modeling: Modeling of the interaction options that the system offersto its user in a
particular situation. Petri-nets easily permit to set up context-dependent models that define the
space of possible actions that may be invoked through any kind of event, with the additional
possibility to transform low-level events sequences, e.g., into higher-level interaction events.

• Exception handling: Exceptions not only occur on a programming language level,but may also
be raised due to hardware defects or unexpected user behavior. Thus, the system needs to react
and adapt accordingly in order to continue its operation. For known exceptions, this component
defines system level handling strategies to deal with these situations. Section 8.2.5 will give an
example that models the recovery strategy for situations where the head pose of the user is not
availabe.

• Component control: In order to embed components into a specific system context,they must be
dynamically reconfigured according to the overall system state. This is an additional respon-
sibility of the control component that achieves this eitherthrough the general service control
interface or by specific means that are encoded in custom coordination model actions. An
exemplary use of this feature is the reconfiguration of the visualization components in the as-
sistance system, which provide differing visual feedback based on the interaction context, cf.,
Figures 8.2(a) and 8.2(b).

In order to execute the various system-level actions a number of additional generic and domain-
specific actions were developed, e.g., for object learning,that perform necessary operations such as
image transformations or the like and actually generate newevents in the system. Extending the sys-
tem behavior is easily possible with this approach as high-level petri-nets can make use of structured
transactions that are itself executed in instances of control components. Concluding, the petri-net
based control component allows for easy realization of different assistance scenarios.

Sebastian Wrede

8. The VAMPIRE System 179

8.2.2. Development View

The software development process for the context-aware demonstration system was carried out iter-
atively at different geographical locations distributed all over Europe with only a small number of
intermediate technical meetings that were attended solelyby researchers who were involved in the
actual software development. Those meetings were used to discuss the overall architecture and find
sustainable agreements, cf. Section 3.3. The declarativity and the high abstraction level of the service
interfaces explained in the next section were quickly adopted by participants.

Besides using the AR-gear as a common hardware platform available to all participants, only the
used operating system, which was Linux, and the IDI architecture itself were adopted as project-wide
standards. With these exceptions, a number of different toolkits and libraries for signal processing
introduced earlier such as IceWing, Matlab, Nessy or RAVL were used by the institutions. Due to this
technical and organizational environment, the challengesdescribed in chapter 3 had to be dealt with
in the integration process in the VAMPIRE project.

In order to permit the use of the integration architecture onthese platforms a number of specific appli-
cation adapters - in addition to the IceWing infrastructureplugins [LWHF06] described in Section 7.5
- were developed as part of the integration effort. As other project participants interfaced these with
further system components, the implementation and quick integration of the different services was
facilitated, which will be explained next.

8.2.3. Service View

As introduced in chapter 7, the IDI architecture defines a service as a logical unit that represents a
high-level functionality. Every service that can actuallybe used in a concrete system architecture con-
sists of at least one component implementation that provides parts of or a complete functional service
interface. In the assistance system, a component implementation features an external control inter-
face handling system events like start, reconfigure, and stop requests. These services communicate
via the introduced set of event-based communication mechanisms like publish-subscribe or memory-
based interaction. Individual services must be designed such that they avoid assumptions about their
collocation in the same process or processing node.

A service interface is characterized by consumed and provided event types, the patterns they use for
interaction as provided by the interaction and memory models (cf. sections 7.2 and 7.3) and their
explicit references to other system components. While a full specification of a service interface would
need to state which schemas are used for event types and give exact descriptions of subscriptions,
this information shall be omitted here for reasons of brevity. Instead, this section gives an overview
of the different services which were instantiated in the assistance system’s architecture as shown in
Figure 8.6. However, some more detailed examples for certain use-cases will be given later on.

Naturally, a research system’s software architecture mustbe broken down into smaller sets of inde-
pendent services not only for functional but also for organizational reasons (cf. Chapter 3). During
the development of the context-aware assistance system, a number of services were developed that
can coarsely be classified in five groups according to their overall function. Each of these groups and
their consituting processes will be shortly described subsequently.

Bielefeld University

180 8.2. An Information-Driven Software Architecture

Service Patterns Roles Provides Observes References

Hybrid Tracking PS I PoseEvents None

Visualization and
Interaction Service

RR, AM I, L VisEvents PoseEvents,
VisRequests

Hybrid Tracking
Conceptual Memory

Image Services PS, RR I, L ImageEvents ImageRequests Visualization and
Interaction Service

Table 8.1.:Service interfaces for the integrated visualization and sensing components. The abbreviations
represent the different high-level interaction patterns and the component role as follows: PS =
Publish-Subscribe, RR = Request-Reply, AM = Active Memory,I = Informer, L = Listener.

Visualization and Sensing

Table 8.1 lists the three services that are directly relatedto sensing and visualization. Each of these
services needs hardware access to the augmented reality device and its sensors. While this is obviously
necessary, the three services thereby violate the stated rule that an individual service shall not make
assumptions about its execution environment.

The hybrid tracking component sends information about the orientation of the user’s head observing
system components via a publish-subscribe pattern. It actsas an informer and does not reference
any other system components. Due to the fact that the pose information is almost transient, it is not
inserted in an active memory space but solely distributed asunreliable event notifications via multicast
to other subscribed services like the 3D context service.

The visualization and interaction service (VIS) componentrealizes the multi-modal interaction as
explained in the previous section. In order to receive events that need to be executed synchronously, it
provides specific request handlers. Results of visualization requests are put in the conceptual memory
and thus are persistently available for other system components, e.g., to analyze the interaction history
of a user with the system. The VIS component references the conceptual memory but is otherwise
not bound to the existence of the remaining system components. As an additional feature, it permits
to grab regions of interest from the visualized video stream, which can be used for the asynchronous
training of view-based object recognition services.

The most obvious component in a distributed cognitive vision system architecture is an image service
that distributes grabbed images to other system processes.Utilizing the introduced publisher pattern,
image events that solely contain metadata about the image itself are sent as unreliable messages via IP
multicast to the perceptual services in the system. The image publisher is for efficiency and historical
reasons co-located with the VIS component mainly because the latter performs the actual grabbing
and places the current images in a shared memory buffer that is further used by both processes.

The image service features an additional request handler for on-demand retrieval of images in a short-
term buffer as explained in the previous section returning preceding image events asynchronously
to the calling component. If needed and if supported, the image service transforms grabbed images
according to colorspace, resolution or region of interest specifications contained in the request events.

Sebastian Wrede

8. The VAMPIRE System 181

Service Patterns Roles Provides Observes References

3D Context PS, AM I, L ObjectEvents PoseEvents,
ObjectEvents

PerceptualMemory

Object Anchoring AM I, L ObjectEvents ObjectEvents
(Anchored)

Perceptual Memory,
Episodic Memory,
Conceptual Memory

Contextual Analysis AM I, L ObjectEvents,
ActionEvents

ContextEvents,
ObjectEvents

Perceptual Memory,
Episodic Memory

Perceptual Memory AM, PS I, L Perceptual MemoryEvents None

Episodic Memory AM, PS I, L Episodic MemoryEvents None

Conceptual Memory AM, PS I, L Conceptual MemoryEvents None

Table 8.2.:Service interfaces for information fusion and memory components.

Information Fusion and Memory

The services in Table 8.2 represent actual instantions of the active memory components that realize the
necessary partitioning of the overall space for memory elements and closely related functionality. The
three active memory services are set up with individually parameterized memory processes reflecting
the different semantic profile of the corresponding memory layers. For instance,forgettingdiscards in
the perceptual memory all hypotheses older than 2 seconds without consideration of their reliability
while in the conceptual memory only doubted hypotheses are discarded and no time-based forgetting
at all is used. As for the active memory, the role of forgetting and intrinsic memory processes were
already introduced in Section 7.3 as core concepts of the IDIapproach and at the same time their
interplay with the contextual analysis service was explained. Thus, I refer the interested reader to
these pages for further information.

In addition to permit memorization, recalling of memory elements and the publishing of correspond-
ing memory events through the active memory instances, a 3D context service is part of this group of
services that is a rather scenario specific component. It enhances the object hypotheses inserted in the
perceptual memory with their estimated 3D position based onthe approach introduced in the previous
section. From an interaction point of view, it subscribes topose events as published by the hybrid
tracking service in order to accomplish this task.

In contrast to the other services discussed so far, the hypothesis anchoring service is realized as an
extrinsic memory processes that exclusively works on available memory spaces (and even as more
general listener participant), not referencing any producers of the information that is to be anchored.
It can thus be realized as a very generic process that only evaluates common metadata elements making
no assumptions about specific event types, similar to the forgetting and contextual analysis processes,
and can thus be applied in other memory-based systems, too.

The fact that this interface is not referencing any specific producer of events and just subscribes to
the event types its implementation can process allows it to fuse information as sketched in Figure 8.5
without further configuration, regardless of whether, e.g., one or both object recognition services
are available in the system or whether a different information source is providing information about
objects.

Bielefeld University

182 8.2. An Information-Driven Software Architecture

Service Patterns Roles Provides Observes References

Object Recognition
(V&J Approach)

PS I, L ObjectEvents ImageEvents None

Object Recognition
(VPL Classifier)

PS I, L ObjectEvents ImageEvents None

Online Learning of
Objects (VPL)

RR I,L TrainEvents TrainRequests Object Recognition
(VPL Classifier)

Action Recognition AM, PS I, L ActionEvents,
TrackingEvents

ImageEvents,
ObjectEvents

Episodic Memory,
Conceptual Memory

Speech Recognition AM I PhraseEvents Episodic Memory

Table 8.3.:Service interfaces for recognition and learning components.

In the present scenario it was mainly needed for tracking of otherwise independent percepts. In addi-
tion to that, it provides two other important functions: it improves the quality and stability of object
recognition results and it judges whether an anchored object hypothesis shall be memorized in the con-
ceptual space of the memory. The anchoring component subscribes for any modification or insertion
of object events in the perceptual and episodic memories andassigns them to new or existing anchors
that are managed in the episodic memory space. Anchored objects usually feature an improved reli-
ability and are less transient than perceptual object events which is useful, e.g., to compensate scarce
errors in an otherwise stable stream of object recognition results. If 3D information is available in an
object hypothesis, its reliability is further increased.

This effects an improved visualization quality in the head-mounted display preventing, e.g., a flick-
ering of augmentations. If an object hypothesis is highly reliable over a certain time interval and is
thus considered to be correct, it is copied from the episodicmemory and inserted into the conceptual
memory for later interactive retrieval.

Recognition and Learning

For a cognitive vision system, services for recognition andlearning as shown in Table 8.3 are essential
to provide its functionality and consequently all of these service process incoming sensor data, either
some kind of image or audio data. According to the image service’s use of the publisher pattern
for distribution of the captured live images, action and object recognition components subscribe to
the corresponding image events like the object recognitionservice that was realized according to the
weak-classifier concept.

In general, both object recognition components realize thesame service interface, which allows other
services to handle object events in a uniform manner. Regarding the VPL-based object recognition
component, however, integration was slightly more complicated. In order to deal with the unnecessary
high rate of new object hypotheses the underlying algorithmgenerates, which was much higher than
the expected rate of change in the scene, we wanted to adapt its behavior concerning this matter.

As internal change would have resulted in a significant effort, we made use of the possibility to
register message transforming functions in the outgoing router of the components object publisher as
described in Section 6.5.

Sebastian Wrede

8. The VAMPIRE System 183

Service Patterns Roles Provides Observes References

Context-Aware Visu-
alization

AM, PS,
RR

I, L VisRequests ObjectEvents,
TrackingEvents

Interaction Service,
Episodic Memory

CASA Control and
Coordination

AM, RR I, L CmdRequests,
VisRequests,
TrainRequests

ObjectEvents,
ActionEvents,
VisEvents,
TrainEvents

Episodic Memory,
Conceptual Memory,
Interaction Service,
Object Learning

Table 8.4.:Service interfaces for coordination and interaction components.

This permitted us to modify its behavior without changing the underlying source code. Additionally,
it was possible to register a transformation function that translated internally used coordinates into the
globally used coordinate system. In addition to this, the learning capability of this component needed
to be integrated by an additional wrapper as the necessary functionality was only available as a set
of legacy shell scripts. Thus, a new high-level service interface was introduced that features an event
handler for training requests. Observed events contain object metadata and the image patches to be
used for subsequent training processes that are carried outasynchronously. Further request event han-
dlers allow to control the operation of the legacy componentvia shared memory. The learning adapter
references the VPL-based object recognition service not bymeans of the IDI architecture but is closely
coupled via the filesystem and the shared memory regions withthis component, yielding in a legacy
service that violates the stated goals of not making assumptions about its execution environment.

The action recognition service interface is consituted by apublisher that provides events about tracked
objects to other system components, which is, for instance,used to provide user feedback. It is based
on active memory access as it subscribes to reliable object hypothesis available in the episodic memory
space, which allows to trigger the actual action recognition process as will be explained later. Last but
not least, the speech recognition service provides information about recognized phrases and submits
these events to the episodic memory, which may, e.g., be observed by the interaction service that
can be configured to scan, dependant on its own interaction context, the phrase events for matching
commands allowing for verbal system control.

Interaction and Coordination

The services that belong to the final group of components usedin the described instance of the assis-
tance system are shown in Table 8.4. Their main responsibilities are to control the interaction with the
user and the overall coordination of the system as well as to permit context-dependant augmentation
and to provide visual feedback of the internal system state to the user.

The context-aware visualization service(s) observe object events in the episodic memory layer and
tracking events generated by the publisher of the action recognition services. Events are visualized
according to the overall system state. Visualization is carried out by asynchronously sending cor-
responding visualization requests to the interaction service component. While the components that
implement this service interface are rather simple, they are essential for the usability of the overall
system. Separating this functionality from other components allowed for parallel development and
independent testing.

Bielefeld University

184 8.2. An Information-Driven Software Architecture

The CASA1 control and coordination service as explained in the previous section is a component
that coordinates and supervises the behavior of the system as well as the actions of the human user.
Thus, it makes use of almost all of the available interactionpatterns and observes many events that
are exchanged via the conceptual and episodic memories. Controlling the interaction of the user with
the system, it is closely coupled with the visualization service using its request-reply interface. It
communicates changes in the Petri net encoded interaction state synchronously to this service and
thus permits an online synchronization between the interaction service visualized state and the state
of the corresponding part of the Petri net.

The control component also makes use of asynchronous requests for long-running actions such as
object learning, which involves a query for recent snapshots in the episodic memory space and the
triggering of the object learning adapter. This concurrentexecution can directly be mapped to corre-
sponding petri-net structures and may therefore be encodedin the coordination models.

Despite its semantic coupling to the higher-level layers ofthe VAMPIRE assistance system, it refer-
ences only the two components explicitly that do not allow other interactions, which are interaction
and learning. However, as requests to these components are sent using the IDI request-reply pat-
tern, requests are dynamically constructed and therefore,there is no compile or sequence coupling
that imposes specific startup ordering between these components for the control service to become
operational.

Infrastructure Components

The service architecture of the assistance system featuresa number of additional services that permit
an efficient development and seamless operation of the overall system such as distributed application
logging, introspection and visualization of memory contents or the control of the process life-cycles.
Despite their importance from a collaborative and technological perspective as motivated in Chapter 3,
they are not going to be further explained here as they do not affect the core functionality of the
assistance system. Thus, they are also not depicted in Figure 8.6 for reasons of brevity.

The introduced service interfaces provide an avenue for therealization of the functional architecture
with regard to component interaction and coordination. Theoverall functionality of the resulting
software architecture allows an efficient realization of the use cases to be handled by the assistance
system. Not anticipating the conclusion, most of the described service interfaces based on the concepts
of IDI approach yield loosely coupled services that could independently be developed and reused in
different scenarios. In order to gain further insights about the software integration of the VAMPIRE
system using the IDI architecture, the next section describes a chosen deployment situation to briefly
underline the distribution capabilities of the developed integration architecture.

8.2.4. Physical View

Figure 8.6 depicts a deployment of our assistance system. Itis running on four standard Linux PCs
(Pentium 4, 2.4GHz, 512MB) connected via a switched Fast Ethernet network infrastructure, a visu-
alization laptop and the tracking subsystem as explained inSection 8.1.1. Images are captured from
the fire-I firewire cameras and distributed with a resolutionof 320 x 200 pixels.

1CASA has been the working title for the assistance system.

Sebastian Wrede

8. The VAMPIRE System 185

Figure 8.6.: Architectural sketch of the cognitive assistant

Services presented in the previous section that realize thedistributed assistance system’s software
architecture run on each of these nodes. The components shown in the active memory and the signal
processing partition can be distributed freely as they makeno assumptions about co-located services
and are not dependant on specific hardware.

However, this is naturally not true for all of the shown components. For instance, the hybrid tracking
process runs on the single board computer due to the local access to the CMOS camera of the AR gear
via USB2.0 and the RS232-based local interface to the inertial tracker. Similar to this component, the
visual interaction service must be run on the visualizationlaptop for accessing the webcams via the
local firewire interface and the availability of the specificgraphics hardware, which in turn restricts
the image service to be run co-located with this component asimages are transferred between the two
components via shared memory.

While this kind of hardware-induced execution coupling is sometimes inevitable, this already exem-
plifies how coupling limits flexibility, which for instance in this case lead to an unusable system if the
visualization laptop was broken. Another example of such anexecution coupling are the VPL-based
object recognition and its learning adapter. If a system features many of these coupled components,
its combined accidental complexity imposes problems on thedevelopment process, yields a brittle op-
eration and will finally make it unusable and unattractive asa research platform over a longer period
of time.

8.2.5. Interaction Scenarios

The functionality of the system certainly depends on the individual components, their correct com-
position as services and the physical deployment of the service components as well as their coherent
development, but even more on their adequate and efficient interplay. In the presented assistance
system, the implicit and explicit coordination features ofthe IDI approach are applied for the integra-

Bielefeld University

186 8.2. An Information-Driven Software Architecture

Active Memory

Forgetting

Object
Recognition

3D Context

Highlighter

Image Service

Visual Interaction
Service

Hypothesis
Anchoring

Images
2D Object
Percepts

Visualize
Commands

3D Object
Percepts

anchored
Objects

/OBJECT

/OBJECT

/OBJECT
...[value>0.9]

3D Pose

(a) Data loop from images to visualization.

/OBJECT

Image Service

Hypothesis
Anchoring

Action
Recognition

Context-aware
Visualation

anchored
Objects Actions

/OBJECT
...[@rel>0.9]
...[@rel>160 and ...]

Tracked Region

Visualize
Commands

Images

Visual Interaction
Service

Active Memory

Forgetting

(b) Triggering action recognition when a reliable object is
in focus.

Figure 8.7.: Information-driven integration in the cognitive assistant. The diagrams illustrate the logical
flow of data in the specific cases. Much of the data flow is mediated through the active memory.

tion of the different components. Three different rather simple usecases that are fundamental for the
system shall exemplify how components are coordinated based on the concepts introduced with the
information-driven integration approach with regard to this aspect in a distributed system architecture.

Augmenting the User’s Perspective

Since a central idea of the information-driven integrationarchitecture is to coordinate involved com-
ponents by events, a usecase can be explained by analyzing the flow of these events in a system.

Figure 8.7(a) outlines the processing path of an object fromperception to augmentation. It starts with
image frames that are captured from the user’s perspective and published as image events. As the
object recognition component is subscribed to these events, their observation triggers its recognition
algorithm. Detected objects itself yield new events and areinserted as 2D object hypotheses into an
active memory space. The 3D context component is directly subscribed to the insertion of new 2D
hypotheses which it extends with 3D information based on thecurrent headpose of the user that is
frequently updated by a corresponding listener registeredfor published pose events. The received 2D
percept is updated and its memory element replaced.

Because the hypothesis anchoring component has subscribeditself on the insert or replace action
carried out on such percepts it in turn gets triggered, matches the percept to anchored hypotheses and
assigns a reliability factor. The hypothesis is then once more replaced in the active memory.

Continuing along its path, the hypothesis triggers the context-aware visualization component only
if the hypothesis is reliable, since the user should not be bothered with unreliable information. In
the memory concept this filtering is realized by registeringthe corresponding listener with a more
restrictive XPath condition as in this example:/OBJECT[RELIABILITY@value >= 0.9].

Sebastian Wrede

8. The VAMPIRE System 187

Thus, the data is already interpreted by the IDI architecture itself. Finally, the visualization sends an
asynchronous request to the visualization service to display the anchored, reliable object hypothesis
to the user.

By accepting and executing the visualization commands, theinformation is displayed to the user and
by this means, it closes the interaction cycle. Note, that all of the described activities are carried out
asynchronously, which, e.g., allows for continuous augmentations even if for a certain amount of time
no new stable hypotheses are detected by the object recognition processes.

Outdated or unreliable hypotheses are discarded at regularintervals from the active memory through
the forgetting processes as explained in Section 7.3.

Triggering Action Recognition

As a second case study, we consider the way action recognition is triggered. We follow the idea
that a user usually focuses an object before starting to manipulate it. Therefore, the action recog-
nition component registers itself on reliable (/OBJECT[RELIABILITY@value >= 0.9]) and
centered (...[@x>160 and @x<240]...) hypotheses that are available in the active memory
space.

Figure 8.7(b) illustrates the complete flow of data in this usecase. The action recognition component
starts tracking the object in the video stream when its subscription gets triggered by its local observa-
tion model due to the availability (either insert or replace) of a suitable memory element. Publishing
tracked regions to the context-aware visualization provides a visual feedback to the user and allows
him to seize the system behavior. A recognized action is subsequently inserted into the memory and
may trigger further processing steps.

Coordinating complex behaviors

Implicit notification for component coordination is often sufficient for control of individual compo-
nents. To realize more complex context-dependent coordination of several components running in
parallel, the CASA control and coordination component usesthe features of the coordination model.

To exemplify this, Figure 8.8 shows a small module of our high-level petri-net that models an exem-
plary part of system behavior: The handling of self-localization errors of the 3D vision subsystem.
When the user is mixing a beverage, the system guides him witharrows to the next ingredient as shown
in Figure 8.2(c). For this task, a correct 3D-pose is necessary. If it gets lost, e.g., due to occlusion of
the landmark, the system copes with this situation and reconfigures several system components, e.g.,
the 3D guide widget in the visualization server. In particular, it instructs the user explicitly to re-focus
the target. When the pose is available again, the system resumes normal operation.

Figure 8.8(a) shows the system working when the pose is available and the 3D object guide is acti-
vated. The event listener associated with the guard of the transition’s input arcTargetLost is triggered
in this state, if the 3D context module has inserted information about an illegal pose in the specified
memory instance. Thus, the transition fires, which leads to areconfiguration of the system compo-
nents and petri-net model state as shown in Figure 8.8(b). Consequently, the transitionStopGuide is
now fireable.

Bielefeld University

188 8.2. An Information-Driven Software Architecture

StopGuide

RestartGuide

GuidePaused

PoseAvailable

NoPose TargetFound

TargetLostAMGuard[Insert,
’/POSE_LOST/...’]

User
Follows
Guide

AMGuard[Insert,
’/VIEWCONTEXT/...’]

(a)

StopGuide

RestartGuide

GuidePaused

PoseAvailable

NoPose TargetFound

TargetLostAMGuard[Insert,
’/POSE_LOST/...’]

User
Follows
Guide

AMGuard[Insert,
’/VIEWCONTEXT/...’]

(b)

StopGuide

RestartGuide

GuidePaused

PoseAvailable

NoPose TargetFound

TargetLostAMGuard[Insert,
’/POSE_LOST/...’]

User
Follows
Guide

AMGuard[Insert,
’/VIEWCONTEXT/...’]

(c) (d)

Figure 8.8.: Active Petri net transitions when 3D pose is lost during object guidance and resulting system
feedback. Rectangles depict transitions, circles places and filled circles tokens in places. Rel-
evant model elements of each step are drawn in bold face. Existing guard specifications are
annotated at corresponding input arcs.

After this transition fires, the guide is paused, which is directly reflected in the model as illustrated
in Figure 8.8(c). The system now waits for reacquisition of the 3D pose and in case one is inserted,
TargetFound andRestartGuide would be fired and their set of actions be executed. This change
would result in the original marking as shown in 8.8(a).

As described in Section 7.4, a sequence of actions is executed when a transition fires. To give an
example, a dynamically constructed request event is attached to theTargetLost transition to deactivate
the 3D object guide on the interaction service component.

While these usecases shall have underlined the suitabilityof the proposed models for coordination
and integration of a distributed cognitive vision system, the following section considers the evalua-
tion of the introduced system with user studies, which implicitly also evaluates the proposed system
architecture.

Sebastian Wrede

8. The VAMPIRE System 189

8.3. System Evaluation

Evaluating the presented integrative system includes verydifferent aspects. On the one hand, the
applicability of the realized integration infrastructurein terms of performance has to be evaluated.
As the IDI patterns play a central role in the assistance system’s architecture, criteria such as access
performance are fundamental to ensure the reactivity of theproposed system. On the other hand, these
numbers are generally of little use as a meaningful evaluation needs to be carried out in system context.
Thus, we shall put our emphasis on the latter type of evaluation. Even so, the subsequent section starts
by discussing central product utility aspects with regard to typical performance considerations.

8.3.1. Performance Considerations

From a user’s perspective, the main programming interface (besides the use of XML tools) of the IDI
architecture are the different patterns that are provided by the interaction and the memory model. Be-
sides ease of use, performance is another important factor for usability. Thus, the following paragraphs
briefly report selected performance considerations to demonstrate that the chosen XML document
model in conjunction with the interaction patterns and the memory model are fast enough to allow for
the integration of a reactive cognitive vision systems suchas the VAMPIRE assistance system.

Interaction Patterns

The performance of the basic interaction patterns providesa first rough estimate for the utility of the
architecture in the given context. The version of the IDI architecture that has been used in the VAM-
PIRE project features a port implementation that is based onIce [Zer06]. As this is an operational
middleware with strong support for network-wide object references, patterns involving identity infor-
mation are performing extremely well. For instance, the latency of a request-reply interaction carried
out in C++, sending an object hypothesis as shown in Listing 6.1 on a 100MBit ethernet amounts
approximately to 0.2∼0.5ms [WFBS04]. Optional schema validation takes∼1ms for typical object
hypotheses as shown in Listing 6.1 in Section 6.3.

Evaluation of the native datatype transmission showed thatperformance is also sufficient to pub-
lish image data to a limited number of subscribers. However,experiments with this implementation
yielded that if the number of subscribers is raised, the overall performance drops quickly. This is
due to the fact that in 2004 the Ice-based solution did not support multicast and thus each subscriber
received an individual copy of the event.

This was one of the technical reasons that an additional portimplementation on the basis of the
Spread Group Communication Toolkit was carried out, cf. section 6.5. As Spread supports network-
level multicast, e.g., image data can be very efficiently communicated to a potentially large number
of listeners.

On the basis of the Spread-port implementation, publish-subscribe using multicast communication
can be very efficiently realized as shown in Figure 8.9. The screenshot shows the results of applying
the Netbeans2 profiler to a simple publisher application.

2see alsohttp://profiler.netbeans.org

Bielefeld University

http://profiler.netbeans.org

190 8.3. System Evaluation

Figure 8.9.: Runtime profile of the current Java implementation using a Spread-based Port implementation.

While the quantitative results of the profiler obviously include measurement overhead and are thus
quantitatively too high, some insights can be gained by analzing the shown behavior qualitatively:

• The XML serialization that converts the Document Object Model into a byte array consumes a
significant amount of time as indicated in the call tree by line a in Figure 8.9.

• A single synchronous multicast of a reliable message with analready serialized XML document
of 1KB size and a10KB attachments takes only about 1ms to send (lineb).

• The dynamic dispatch approach, cf. section 6.4, takes only anegligible amount of time (1.9%)
that is very well acceptable given the increase in usability(line c).

Profiling the subscriber, it appeared that while each individual subscriber is able to receive messages
in full speed with a cycle time of∼ 0.8ms, the limiting factors to perform load tests with an increased
number of subscribers is supposed to be the local loopback interface of the receiving machine and
the consumed CPU time. However, as it seems rather improbable that individual processes exchange
messages at the rate of several kHz, this overhead is still acceptable. From a system-level perspective,
the combined number of interactions is very well expected toexploit full network bandwith.

Memory Model

While features for XML processing are widely supported in recent databases, it still has to be en-
sured that information processing within the memory model allows for the necessary reactivity of
a real-world cognitive system. Therefore, we conducted a performance analysis of the XML-based
repository. Of foremost interest was the question how queryperformance scales with larger datasets
which are to be expected in cognitive vision systems.

Our evaluation method resembles the application independent Michigan micro-benchmark procedure
for XML databases [RPJ+03] but was adapted to our own dataset consisting of memory elements
similar to the standard example as introduced in Section 6.2.

Sebastian Wrede

8. The VAMPIRE System 191

1000 2000 3000 5000 7500 10000 20000 30000 50000 75000 100000
0

0.5

1

1.5

2

2.5

3

3.5

4

qu
er

y
tim

e
(s

ec
)

number of memory elements in repository, logarithmic scale

qs3: high selectivity (~5%), w/o index
qs3: high selectivity (~5%), w/ index
qs4: low selectivity (~0.7%), w/o index
qs4: low selectivity (~0.7%), w/ index

Figure 8.10.:Query performance of the used DBXML database backend for memory elements.

Figure 8.10 exemplarily depicts the mean performance of an attribute equality query such as
/OBJECT/REGION/RECTANGLE/COORDS[@w=225]/@w (qs3) that will return a set of XML nodes matching
the given condition, described by an XPath statement. Apartfrom the size of the dataset the size of
the result set is also of interest. A typical query might return less than one percent of the whole dataset
(low selectivity), no query is expected to exceed a result set size of five percent (high selectivity).

Looking at indexed and non-indexed queries, the latter onesare very expensive in terms of time.
Also, in that case, selectivity of a query is irrelevant as disk I/O for a sequential scan of the repos-
itory seems to be the limiting factor. In contrast, indexed queries with low selectivity show almost
constantly excellent performance regardless of repository size. Even better, the performance of the
indexedqs3query with high selectivity is also sufficient for our application as it takes e.g.∼0.57
seconds to retrieve about 1000 XML hypotheses from a repository with 20000 memory elements (see
Figure 8.10).

However, as this are results collected in-process, the question remains how well this is supported
on the system level. Table 8.5 suggests that these remote operations obviously come with a certain
overhead due to network transmission of event payload. Fortunately, the fact that in the functional ar-
chitectures of VAMPIRE and COGNIRON rather small documentsare exchanged definitely facilitates
the reactivity of this software architecture.

In addition to the performance of the memory interface operations, an evaluation of the latency be-
tween the initiation of a memory action such as an insert and the retrieval of the memory event has
been carried out. For instance, in Java, this latency amounts for different memory events to∼ 1.5ms
that must be added to the duration of the corresponding operation involved.

Document Size Java C++

1 KB 3.825 ms 1.322 ms

10 KB 16.798 ms 7.528 ms

100 KB 164.324 ms 64.66 ms

Table 8.5.:Active memory insert performance on
a 100MBit network (Ice).

These and other results frequently gathered dur-
ing practical integration underline that the use of
XML-encoded memory elements with binary at-
tachments, the multicast-based event distribution
and the ability of indexing the underlying database
provide a fast and reliable basis for the informa-
tion processing in the IDI architecture. However,
as such an evaluation is only partially useful and
within VAMPIRE the user’s are part of the processing loop of the system, they provide an implicit but
more meaningful evaluation of the concepts, how well this approach works in a real-world context.

Bielefeld University

192 8.3. System Evaluation

0 50 100 150 200 250 300 350 400

User.object selection

User.capture object view

User.discard object view

User.give label via speech

User.perform requested action

User.look around

User.follow guide to object

User.reacquire pose

System.pose available

System.learning object

System.guide on

System.track object

System.memorize object

seconds

teaching phase assistance phase

Figure 8.11.:Annotation of user actions and system activities taken fromone of the user study sessions
conducted for evaluation.

8.3.2. User Studies

The availability of the integrated system allowed us to perform comprehensive user experiments to
gather insights about how humans collaborate with such systems in the context of scenarios and ded-
icated tasks.

First of all, this permits to qualitatively assess the approach of a cognitive assistant and furthermore
provides valuable hints for future development not only of the system itself but also of the underlying
integration architecture as its utility is evaluated in a real-world systemic context. This is particularly
important as the human user is part of the processing loop of the system and thus he or she can clearly
judge the performance of the overall system. In the following, results of a user study are presented,
which evaluates certain aspects of the described cognitiveassistant system.

In contrast to performance figures about the framework or individual components, we focused this
study on the question whether the human-in-the-loop paradigm is beneficial for users and which im-
plications it induces on HCI and augmented reality assistance systems. Thus, our evaluation of the
system in the assistance scenario covers important non-functional aspects like usability, comfortabil-
ity, and reactivity of such a system as well as the provided functionality for user-assistance itself.

A total of eleven computer-literate subjects who had never before used an augmented reality system
attended in this series of our evaluation study. To guarantee equivalent knowledge about usage of the
system, a short instruction video was shown to each participant, which explained basic interaction
primitives, e.g., how to present an object to the system for learning.

The task the users had to carry out was two-fold: Firstly, they had to train two previously unknown
ingredients like orange juice or champagne to the system, which involved both labeling of the objects
by speech and additional system interaction by using the mouse wheel. Secondly, they had to follow
system commands in an assistance mode without prior instructions in order to mix a specific cocktail.
This step has been carried out twice with different recipes to evaluate the familiarization of the user
with the assistance system. During the experiments all userinteraction has been recorded by video

Sebastian Wrede

8. The VAMPIRE System 193

1 (very good)

2

3

4

5 (very bad)

11%

22%67%

(a) Orientation

1 (comprehensible)

2

3

4

5 (not comprehensible)

22%

11%

44%

22%

(b) Intelligibility of Activity Sequences

1 (very good)

2

3

4

5 (very bad)

44% 44%

11%

(c) Mouse Interaction

1 (very good)

2

3

4

5 (very bad)

11%

11%

44%

33%

(d) Speech Interaction

1 (very short)

2

3

4

5 (very long)

22%

67%
11%

(e) Familiarization Time

1 (very good)

2

3

4

5 (very bad)

22%

67%

11%

(f) Learning Capabilities

Figure 8.12.:Selected results of overall system evaluation

cameras for later analysis. Afterwards, the subjects were asked to fill out a questionnaire yielding
both quantitative and qualitative results regarding the presented system, which can be found in the
appendix of this thesis. Faced with questions like “How would you rate the overall collaboration with
the system?” they ranked their assessments on a scale from 1 (very good) to 5 (poor).

Our basic goal during this evaluation has been to prove whether the concept of the human-in-the-loop
is suitable for users of the presented cognitive assistant system and whether the overall performance
of the system is sufficient. As a basic pre-requisite to answer this question, we asked the subjects
several questions about the AR gear prototype from an ergonomic perspective. Not surprisingly, most
users experienced the bulky hardware device itself in its prototype state as heavy and uncomfortable
but were able to complete the requested task with it. Besidesthat, the participants had a good overall
orientation when looking through the HMD at the augmented video stream as shown in Figure 8.12(a).
Most comments we received indicate that the chosen semi-transparent overlay with additional infor-
mation is usually convenient for users of the system.

The hypothesis that quality and richness of human-computerinteraction in the cognitive assistance
scenario can significantly benefit from the concept of the human-in-the-loop has been verified with
good results in our study. The evaluation underlined our personal experiences that system feedback is
of highest importance to achieve this result, e.g., becausethe user needs to be informed about how he
can collaborate with the system in order to accomplish a specific goal.

Bielefeld University

194 8.3. System Evaluation

Within the evaluated scenario, an example for the assessment of system feedback are the ratings
for the clarity of action sequences carried out by the subjects to perform a specific task, which are
rather positive as shown in Figure 8.12(b). Furthermore, wereceived positive comments for the clear
indication of error states, e.g., when the 3D pose is lost. This is shown in Figure 8.8(d) in the upper-
right corner of the augmented image. A different example where we can improve the system feedback
is e.g. for the tracking initialization. As shown in Figure 8.7(b) no additional information is given to
the user that he or she might now start interaction with the object. An improved solution would be to
indicate this clearly as it is done during object learning, see Figure 8.2(a).

An interesting finding of our study is the correlation of the type of system feedback, system reactivity
and user adaptation. During the execution of a single step inthe action sequence, e.g., pouring an
ingredient into a cup, the visualized tracking highlight, see Figure 8.7(b), has not been able to follow
the modified object in real-time. As a consequence, 77% of thesubjects reduced the speed of their
motions during the action sequences, thus adapting to the speed of the system, which in turn lead to a
lower recognition rate due to the fact that the action recognition classifier was trained with faster mo-
tions. Nevertheless, comments from the subjects show that the overall speed of the system with regard
to object and speech recognition as well as visualization was sufficient for a seamless interaction.

While the ability of the system to present its internal stateto the human is important for productive
modalities, the question of which perceptive modalities touse for interaction is equally relevant for
the overall collaboration with the system. To that effect, we allowed the users to interact via the
mouse wheel and a speaker independent speech recognition. Figures 8.12(c) and 8.12(d) show the
individual interaction quality as reported by our subjects. The results for mouse-wheel interaction
indicate that this interaction primitive seems convenientfor most people. The familiarity of mouse-
based interaction and the fact that the subjects were able tofurther concentrate on the given task by
only using the scroll wheel for interaction have been reported as main reasons for this assessment. As
all of the subjects were non-native English speakers, the results for speech recognition quality vary
greatly since our speech recognizer has been trained on the American English Wall-Street Journal
corpus.

The marks for the overall usability of the system have been rather good as 44% of the subjects rated
it as moderate while the majority of 56% of the participants stated that the system has been easy to
use. This is underlined by a steep learning curve as the familiarization time shown in Figure 8.12(e)
indicates and additionally confirmed as all of the subjects needed significantly less time for the training
of the second object and the preparation of the second cocktail.

Finally, all of the subjects involved in the study managed the given tasks and really liked to play
around with the system. From subjects comments and answers,it can be concluded that the ability
of the system to learn about its environment, see Figure 8.12(f), and the direct feedback resulted in
a high motivation of the participants during the experiments. The ability to interact and collaborate
with the system has been directly exploited by the subjects,e.g., to separate objects spatially in order
to get better detection results. In our opinion all these observations underline the fact that the idea of
the human-in-the-loop is suitable and useful for vision-based HCI and assistance systems. Further-
more, memorization and learning were appealing for users and the performance of the overall system
was good and not distracting people when looking around in the scene or gazing at objects with the
exception of the above mentioned action tracking visualization.

Sebastian Wrede

8. The VAMPIRE System 195

8.4. Conclusion

The aim of this chapter was to underline the applicability and utility of the introduced approach
by explaining the software architecture of the context-aware assistance system that was developed
collaboratively with the partners in the VAMPIRE EU project.

While the evaluation with naive users that was reported in the previous section showed that the system
fulfilled the envisioned usecases, it showed on the other hand that the software architecture of the
overall system was able to perform fast enough for running a reactive system for an augmented reality
scenario, thereby proving its utility in a systemic context.

In addition to that, the explanations on the developed information-driven software architecture and the
introduced service interfaces for the functional components within the VAMPIRE assistance system
prove that the applied IDI approach yields - among others - the following beneficial characteristics
when applied to research systems engineering:

• Modularity: The IDI approach clearly supports a modular development ofsoftware services
for cognitive systems in heterogeneous research environments on the pattern, information and
service level.

• Understandability: The resulting integrated software architectures are withregard to their coor-
dination characteristics easy to understand and comprehensible as implicit invocation is applied
for simpler situations whereas petri-nets allow for the modelling of complex integration scenar-
ios.

• Parallelism: To allow for simple distributed, parallel operation was one of the basic motivations
behind the development of this approach. Thus, the inherentparallelism in cognitive systems is
well supported through the various integration patterns.

• Asynchronous operation: With parallelism inevitably comes asynchronicity – at least if one
wants to exploit the benefits of the former. Thus, asynchronous communication is supported in
all models of the information-driven integration architecture.

• Low coupling: The resulting software architecture and the underlying integration approach fo-
cus on promoting loose coupling between components whenever possible. This implies refer-
ential decoupling, distribution and temporal decoupling.To support this concept, services shall
make no assumptions about their execution environment or bootstrapping sequence.

• Improved testability: Modular testing is possible based on the event profiles of service interfaces
and the possibility to record and replay document-based event notifications.

While these benefits already suggest that many of the required aspects are met by the introduced
approach, the next chapter shall shortly describe how the IDI approach has been applied in the domain
of cognitive robotics.

Bielefeld University

196 8.4. Conclusion

Sebastian Wrede

197

9. Interactive Cognitive Robots - A New
Domain

In recent years an increased interest arised on building personal robots that are capable of a human-like
interaction. In addition to multi-modal interaction skills, robots must also be able to adapt to unknown
environments as they are recently moving out of restricted lab environments into less constrained hu-
man environments. Therefore, a robot has to be capable of knowledge acquisition through embodied
perception in a lifelong learning process. Furthermore, reactive control of the robot’s hardware is
important as humans are around.

Consequently, researchers aiming to realize a personal robot have to integrate a variety of features
considering aspects such as social rules, interaction design and usability factors. Hence, interactive
robotics research is a truly interdisciplinary challenge and matches well with the stated aims for the
introduced integration architecture, cf. Chapter 3. Naturally, the question arises whether the proposed
approach can also be applied in this new domain.

Not anticipating the conclusion, this question has indeed been answered positively [FW07] as the
integration architecture has been applied to a number of different research projects on robotics. In
the following, the BIRON mobile robot companion developed cooperatively under the involvement
of seven international research teams in the context of Key Experiment 1 of the COGNIRON EU
project [Cog06] is shortly explained. It shall serve as the primary example for the utility of the
integration architecture in this domain. As the BIRON robotand its software architecture are a truly
collaborative system’s project and its detailed description very well beyond the scope of this text, a
particular focus will be set on a recent extension of the robot’s capabilities.

Instead of discussing BIRON’s interaction capabilities, involved algorithms, and the system archi-
tecture comprehensively, a case study of a face memory [HWLS08] for improved human-robot-
interaction is presented as the main contribution of this chapter. It vividly illustrates how concepts
of an active memory and the information-driven architecture are applied to collaborative robotics re-
search. In addition to this, further applications of the presented approach in collaborative robotics
research will be briefly presented with a short summary.

9.1. The Cognitive Robot Companion

The robot BIRON (BIelefeld Robot companiON, see Figure 9.1)is equipped with several sensors that
allow an assessment of the current situation as a basis for interaction. Recent versions of BIRON
feature already quite impressive interaction capabilities [LHW+05]. For instance, it is able to pay
attention to different persons and engage in a one-to-one interaction with one user as illustrated in
Figure 9.1(a) if this user greets the robot by saying “Hello Robot”. From this point on, the robot
focuses on this communication partner and engages in a dialog with him.

Bielefeld University

198 9.1. The Cognitive Robot Companion

(a) Two persons interacting with BIRON

O
ve

ra
ll

he
ig

ht
 a

pp
ro

x.
 1

45
cm

Laser range finder
(at height 30cm)

Stereo speaker
(at height 90cm)

gesture camera (iSight)
(at height 95cm)

Stereo microphones
(at height 107cm)

Touch screen display
(at height 117cm)

Pan tilt camera
(at height 142cm)

WLAN

Fast Ethernet

Core2 duo
2 GHz

Core2 duo
2 GHz

R O B O T I C S
ActivMedia

(b) Hardware

Figure 9.1.: The BIRON robot companion engaged in social interaction in its hometour environment and
sketched from a technological viewpoint. Its hardware platform is a Pioneer PeopleBot from
Mobilerobots Inc. with two on-board laptops for control of actuators and on-board sensors as
well as for sound and image processing. A third external laptop is used for speech processing
and dialog control linked via WLAN. A pan-tilt-zoom color camera (Sony EVI-D31) is mounted
on top of the robot at a height of 141 cm for acquiring images ofthe upper body part of humans
interacting with the robot. Two AKG far-field microphones are mounted right below the touch
screen display. A SICK laser range finder is attached to the front. As additional interactive
device a 12” touch screen is provided on the robot.

BIRON features extensive speech processing capabilities that allow it to understand instructions, ques-
tions, and statements in a flexible manner [LW07]. For example, the command “Follow me” results
in the robot following the human around. The user can teach new objects to the robot by pointing at
them while giving additional information. For example, giving an instruction like “This<gesture> is
my blue cup” enables the robot to focus its attention on the referenced object and acquire an image of
it for later recognition. Components for localization and navigation enable the user to teach the robot
places and locations as well as to enable the robot to autonomously go to verbally specified locations
(e.g., ‘Go to the kitchen’).

The development of these capabilities is framed by the so-called home-tour scenario which is driven
by the vision of future household robots being introduced for the first time use after purchase. A
robot needs to get to know its new working environment which cannot be pre-programmed, but which
can be explored together with inexperienced users in an interactive manner. Hence, human-robot
interaction about the spatial and functional environment is in the focus of research in such home-tour
scenarios. Capabilities a home-tour robot must reveal for natural interaction comprise understanding
of spoken utterances, co-verbal deictic reference, verbaloutput, referential feedback, as well as person
attention and following. The sketched functionality has been achieved by integrating modules for
robot control, person tracking, person attention, speech recognition, speech understanding, dialog,
gesture recognition, object recognition and object attention.

Sebastian Wrede

9. Interactive Cognitive Robots - A New Domain 199

Figure 9.2.: System architecture of the BIRON robot companion based on the IDI approach (from [Sie08]).
All component interaction is based on the introduced interaction patterns utilizing three different
instances of an active memory. Green and red rectangles attached to components indicate
memory access while request-reply and publish-subscribe is indicated by the different line types.

Following up on a brief explanation of BIRON’s system architecture, the novel face memory part will
be explained and the activities of the system when a user is entering a discourse with this robot aiming
at natural human-robot-interaction are exemplified as an integration scenario.

9.1.1. System Architecture

From a functional viewpoint, the original architecture of BIRON was inspired by a three-layer hybrid
architecture [FKH+05], as it yielded a flexible way to organize a system which integrates autonomous
control and human-robot-interaction capabilities. In order to further enhance the robot companion
with additional functional features, we adapted the previously realized integration and control archi-
tecture towards an extended use of the principles of information-driven integration and the memory
model concepts. This refactoring of BIRON’s software architecture was carried out in the course of
the COGNIRON project [Sie08] with the aim to exploit concepts of information-driven integration to
ease collaborative research and software development on this platform.

Figure 9.2 depicts a current sketch of the BIRON system architecture. It integrates over twenty dif-
ferent services that are realized by about twice the number of component implementations ranging
from reactive processes such as obstacle avoidance (contained in the NAV service, see Figure 9.2)
over arbitration functions (ACMI) to high-level processesfor interaction and dialog control (DLG).

Bielefeld University

200 9.1. The Cognitive Robot Companion

The extension of BIRON’s capabilities by a face memory towards a robot capable of improved social
interaction serves as a case study for the usefulness of the information-driven integration in cognitive
robotics. Thereby, it demonstrates the interplay of perceptual and deliberative processes according to
the introduced models.

9.1.2. A Face Memory for a Sociable Robot

Considering the ability to get to know and re-recognize human interlocutors by means of their face as
a core cognitive function for a social robot we need to ask thequestion, how the mutual introduction
and the recalling of faces is embedded into the general interaction scheme. Different sources of
information are available, as the identity of a person mightbe the result of the current conversation
(“What is your name?”) or obtained from analyzing the person’s appearance. Which knowledge
source to combine is depending on the current content of aface memoryand the conversational state.

The memory here serves as a central aggregator of relevant information. It allows the system to
determine whether a person is known or not. In case the personis already known and the robot is
certain about her identity it can just activate its knowledge about this person, while in the other case it
has different options. First, it can take initiative and askthe new person for her name. Alternatively,
it may continue conversation with an implicit but not yet named user model and wait for the name
of the person to be mentioned sometime. Currently, the robotasks for the human’s name whenever
a yet unknown persons is engaged in conversation, hence implementing a certain curiosity in the
robot behavior. However, it should be noted that the robot does not require to know every person in
its vicinity. Besides recognizing and memorizing people’sfaces the system also comprises a person
tracking and attention functionality called person anchoring that is similar to the anchoring process
explained in the previous chapter. It establishes and tracks anonymous hypotheses about surrounding
persons. Storing face views of these persons of interest alongside in a memory allows to immediately
compute a new face representation an the basis of the last seen face patches. This is in accordance
to human behavior, as we do not start looking at someone’s face after hearing the respective name.
Instead, we already memorize the appearance when initiating the conversation.

Figure 9.3 shows the part of BIRON’s system architecture that is responsible for the realization of
the face memory functionality. Utilizing the information-driven integration approach no changes have
been necessary to reuse the already existing dialog subsystem. The coordination between the different
processes is solely event-driven as explained in Chapter 6.While the perceptual memory is configured
for short-term memorization of hypotheses generated from the stream of low-level sensor data, the
episodical memory stores and processes higher-level symbolic information which is valid for longer
periods of time. In the following, we will shortly describe the functionality of the different integrated
services as depicted in Figure 9.3.

Perceptual Processing

Within BIRON’s system architecture a number of different components performing bottom-up pro-
cessing of incoming sensor data provide large parts of the perceptual capabilities of our interactive
robot. For the face memory functionality we focus on three ofthese processes. Firstly, a voice detec-
tion component analyzes the cross-power spectrum phase to estimate the relative locations of multiple
speakers. As soon as a speaker is detected, this and the spatial origin of the corresponding audio

Sebastian Wrede

9. Interactive Cognitive Robots - A New Domain 201

Active Memory

Forgetting

Face Detector

Active Memory

Forgetting

<< Episodic >>

<< Perceptual >>

Voice DetectorLeg Detector

Person Anchoring

Face Recognition

Dialog

query Face patches

replace Face percepts

insert/replace
IAPartner

insert Face, Leg
and Voice percepts

insert/replace POI

insert percepts

insert/replace POI

insert/replace
IAPartner

Figure 9.3.: Relevant parts of BIRON’s architecture for an interactive face memory shown in the notation
introduced earlier. The face memory utilizes two memory instances and several perceptual
services on different functional levels.

signal is submitted to the perceptual memory. A second process is a “leg” detector, which scans the
surrounding of the robot for pairs of legs by analyzing the data available from the attached laser scan-
ner in order to generate hypotheses about possible human interaction partners standing or moving in
front of the system. The face detection component as the third process in this extracts for each video
frame the detected facial regions and inserts these in the perceptual memory of our robot together with
a referring face hypothesis for subsequent processing.

Person Anchoring

A key component facilitating a face memory for an interactive robot is a multi-modal person anchor-
ing process. Our realization is inspired by the approach introduced by Coradeschi & Safiotti [CS01]
similar to the anchoring service used in the VAMPIRE assistance system. Anchoring in general can
be interpreted as a process that links perceptual information about real world entities, e.g., faces, to
symbols that reliably represent the found entity over a certain period of time. Anchoring processes in
active memory architectures are employed to populate the episodic layer with information generated
from the data available in the perceptual layer. Within BIRON’s face memory, information generated
by the individual modalities in the perceptual layer (face,legs and speakers) is anchored separately
in the person anchoring component itself and is afterwards assigned to a person-of-interest (POI) hy-
pothesis. A new POI will be created iff one of the input percepts does not match any of the existing
modality anchors. Existing POI hypothesis are maintained as long as at least one of its three modality
anchors can be tracked continuously. New POI hypotheses andtheir updates are submitted as episodic
information to the corresponding active memory instance. Additionally, the person anchoring com-
ponent frequently updates the face information in the perceptual memory with a reference link to the
corresponding POI for subsequent use through the face recognition component.

Bielefeld University

202 9.1. The Cognitive Robot Companion

Dialog

For a social robot it is important to be capable of social communication, e.g., by speech understand-
ing. These features are realized in our robot by a dialog subsystem [LW07]. The currently realized
model is inspired by the grounding-principle [Cla92], which states that within a conversation the
communication partners need to coordinate their mental states based on their mutual understanding.

Adding up on the actual dialog functionality, a social robotmust be able to distinguish between dif-
ferent persons communicating actively in its surrounding and to identify as well as align its commu-
nication to a human interaction partner focusing its attention on the robot itself.

While the former function is in the responsibility of the person anchoring module, the latter is an
additional service that is provided by the dialog subsystem. As soon as the dialog is triggered by a
specific initiation phrase (“Hello Biron!”) from a person that is registered as a POI in the episodic
memory, the dialog selects this person as its interaction partner (IP) and in turn submits this new
information with the preserved ID from the POI hypothesis tothe episodic memory.

The identification of its communication partners without repetitive asking the human for his name,
significantly improves the interaction experience. This isdue to the fact that the dialog manages
individual user models stored in the episodic memory. In consequence, it is possible to, e.g., adapt
the speech recognition component to speaker dependent profiles before a conversation starts or to
optimize its interaction by not repeating instruction already known by the respective person.

Face Identification

Within this architecture, the face recognition component,which is described in greater detail in
[Lan07], makes use of several sources of information generated by other components, e.g., the IP
hypotheses and their corresponding face patches. This information is utilized to perform the classi-
fication of the robots’ communication partners. When the user has been trained previously and the
classification is successful, the information available inthe episodic memory is updated by the cor-
responding class name. Otherwise the face patches are used to train a new classifier as soon as the
name of the communication partner has been acquired throughthe dialog subsystem. While the POI
anchors and the name of the current interaction partner - if set by the dialog component - is retrieved
through event notifications from the episodic memory, a query on the perceptual memory is performed
to retrieve recent face patches that correspond to the current interaction partner.

9.1.3. Interaction Scenario

Figure 9.4 exemplifies the dynamic interactions between thecomponents of the system in terms of
activities that are carried out in the face memory when a human user enters the robots’ interaction
area, looks at BIRON and finally starts the interaction by greeting it with the initiation phrase.

As soon as the human approaches the robots sensors and her legs are detected, the episodic memory
notifies the person anchoring component about the new “leg” percepts. In turn, a local modality anchor
is set up and a new POI hypothesis is submitted to the episodicmemory. While possible in parallel,
let us assume for this example that the face of the user is detected as he further approaches the robot.
As a consequence of this activity, two things happen concurrently: the detected faces and their views

Sebastian Wrede

9. Interactive Cognitive Robots - A New Domain 203

Figure 9.4.: Activities carried out by the human communication partner and the robot system when initiating
a conversation utilizing a face memory. Interactions with active memory instances are shown
in green boxes, while other relevant data flow is shown in Greyrectangles.

Bielefeld University

204 9.2. An Anthropomorphic Robot for HRI Research

are submitted to the perceptual memory and the previously established POI profile is extended by the
information that the person is now “facing” the robot.

The next action the human carries out to start a new discoursewith BIRON is to address him by
speech using the initiation phrase. This leads to an update of the corresponding POI hypothesis,
which is enhanced by the information that this person is talking. Additionally, the dialog component
selects this POI as its interaction partner iff the speech understanding result provides the symbol for
the initiation phrase.

Dependant on this decision, the information about the selected IP is submitted to the episodic memory.
Once the IP hypothesis is available, the face recognition component is activated by a corresponding
event and starts to query the recent face patches corresponding to this interaction partner. These views
are used for the following classification step that yields anupdate of the IP hypothesis in the episodic
memory. It is enhanced either by the name of the communication partner in case of a successful
classification or it just left empty to indicate that this human is so far unknown.

The following activity, once more triggered by the update ofthe IP hypothesis is carried out within
the dialog component in two different ways based on the name information updated previously by the
face recognition available within the IP hypothesis. When the system does already know the name of
its communication partner, the final activities in this example are the retrieval of the corresponding
user model from the episodic memory as well as the adaptationof the dialogs’ interaction strategy and
the greeting of the IP using its name. In case the user could not be classified successfully from the
set of recent face patches, the dialog subsystem asks the user for this information and uses the label
retrieved from its speech recognition module to update the IP hypothesis with the given name. In
this case the face recognition is triggered by the updated IPhypotheses and starts to train a classifier
for this previously unknown person. Finally, the dialog generates a new user model that is used in
subsequent interactions when this communication partner is hopefully recalled by the robots’ face
memory system.

The previous sections present a unique face memory that is conceptually well integrated into a larger
architecture of robot companion using the IDI architecture. It links interactive introduction of inter-
locutors with an online learning face classification scheme. The results presented in [HWLS08] not
only confirm that the face memory facilitates a way of mutual control necessary for a socially ac-
ceptable interaction and the adequacy of the chosen perceptual methods, but also elicit the benefits of
the information-driven integration approach and hence underpins its suitability as a basis for building
hybrid software architectures for robots with cognitive abilities.

Before we are going to discuss some of the insights gained during application of the IDI architecture in
the COGNIRON project for the collaborative development of BIRON’s software layers, let us briefly
look at two other robotic research systems that make use of the approach presented in this thesis.

9.2. An Anthropomorphic Robot for HRI Research

In contrast to the aforementioned mobile robot, BARTHOC is an anthropomorphic robot, cf. Fig-
ure 9.5, that is able to show facial expressions and use its arms and hands for deictic gestures for
effecting more natural interaction with humans. On the other hand the robot can also recognize point-
ing gestures and also coarsely the mood of a human, achievingan equivalence in production and
perception of different communication modalities.

Sebastian Wrede

9. Interactive Cognitive Robots - A New Domain 205

Taking advantage of these communication abilities a systemhas been developed where BARTHOC
provides information retrieval services acting similar toa receptionist. As a first intermediate step
towards this scenario research on the task of introducing the robot to its environment has been carried
out [SHS07]. This scenario already covers a broad range of communication capabilities. The interac-
tion mainly consists of an initialization by e.g. greeting the robot and introducing it to new objects,
which are lying on a table, by deictic gestures of a human advisor.

Figure 9.5.: The head of BARTHOC without
its artificial skin.

Once more software integration is necessary to inte-
grate all the perceptual and deliberative components
needed for an experimental realization of this scenario.
The software architecture of BARTHOC lends itself to
a good example for supporting effective research with
the information-driven integration architecture. For
BARTHOC, basically the same set of services could be
reused as are running in the BIRON systems due their
loosely coupled software design applying the IDI mod-
els. Mainly, hardware control and a scenario specific
component needed to be added or replaced. All other
services like dialog or perceptual processes are further-
more able to operate in both scenarios. Thus, efficient
research on experimental cognitive systems is effected
as the duplicated development of similar functionalties can be avoided.

In the scenarios addressed with the BARTHOC robot, all applications avoid the usage of human-
unlike wide range sensors like laser range finders or omnidirectional cameras. However, in order
to avoid loosing track of interaction partners due to the limited area covered by the given sensors,
recently a short time person memory was developed that extends the existing anchoring of people,
which once more underlines the general utility of memory functions for cognitive systems aiming at
interaction [SHS07]. Furthermore, a long time memory was added to store person specific data, which
can be recalled to improve tracking results.

9.3. A Control Architecture for Manual Intelligence

As motivated by Ritter et al. in [RHS07], the study of manual intelligence, e.g., how human-like
grasping capabilities can be transferred to an artificial cognitive system, may serve as a key problem
for the design of cognitive robotics architectures that is more manageable than the design of a com-
plete functional cognitive architecture. Even so, their hypothesis is that grasping is a sufficiently rich
problem to provide essential insights into the architectural principles enabling natural cognition.

Manipulative acts involve the structuring of a complex physical interaction between a highly redun-
dant, articulated manipulator and a physical object as shown in Figure 9.6, which can be highly
variable. Dextrous manipulation is a form of mechanical control that is pervaded by frequent dis-
continuous changes of the contact topology between the actuator and the object. As a result, dextrous
manipulation calls for an unusually tight coupling betweencontinuous control and more discrete,
symbol-like representations that can deal with issues suchas topology-switching and encapsulation
of parameter uncertainty.

Bielefeld University

206 9.3. A Control Architecture for Manual Intelligence

Figure 9.6.: Grasping as a “rosetta stone” for research on cognitive models (from [RHS07]).

According to Ritter et al. [RHS07], it is the level of coupling between continuous, sensorimotor control
loops and discrete, symbol-like representations that seems to be a prerequisite for realizing system
structures and corresponding architecture, which shall finally lead to improved cognitive capabilities.

In order to conduct experimental research on the aspects of manual intelligence, a software archi-
tecture was developed that features a tight interconnection and coordination between subprocesses
as well as a highly structured and modular design of the system and its state representation. In or-
der to achieve this, dynamically configurableHierarchical State Machines(HSM) are used, which
reflect high-level system states encoded symbolically. These HSM’s coordinate several behavior con-
trollers that directly interfacing on a subsymbolic level low-level hardware controllers of a bi-manual
hand/arm robotic system. For the interested reader [RHS07]provides further details about the tech-
nological and algorithmic properties of this approach.

However, even in this tightly coupled system which is not directly the primary target domain of the
presented approach, the IDI architecture could be successfully applied to integrate the different HSM
services. In the realized system the modality- and context-specific interaction patterns of a significant
number of low-level subsymbolic processes are bound to elements provided by the HSM model. These
elements feature a semantic interface on a symbolic level. For the event interchange between these
individual HSM elements, event publishing and matching functions of the IDI architecture are used in
this scenario. For the interaction with a number of externalprocesses, e.g. to integrate perception and
interaction services, the features of the memory and interaction models are applied.

Due to the fact that grasping and the interaction between model elements in this architecture represents
a task that is much more sensitive to timing issues than the previously introduced examples, the utility
of the IDI architecture with regard to this aspect is underlined.

Sebastian Wrede

9. Interactive Cognitive Robots - A New Domain 207

9.4. Summary

The emphasis of this chapter was to demonstrate that the concepts of the IDI architecture were trans-
ferable to the new domain of interactive cognitive robotics. As one of the primary application areas
of cognitive systems, robotic systems and corresponding research projects represent important oppor-
tunities for further studies on software integration and software architecture.

In contrast to rather low-level robotics middlewares whichhave been described in Chapter 5, the
previous sections outlined that the use of the presented approach even in robotics is geared at a higher
level of abstraction. Even so, its performance is still sufficient to coordinate system components
that directly deal with reactive services or to interface with components that are closely coupled to
actuators.

Furthermore, all of the presented systems make use of features that are part of the interaction and in
particular the memory model. This underlines that memory features are an important generalizable
function in cognitive systems and that the chosen approach was versatile enough to become applicable
across different scenarios. In the BARTHOC and BIRON scenarios, the active memory additionally
provides an avenue for dynamic adaptation and reconfiguration as, e.g., behavioral specifications are
stored in the memory and automatically distributed to respective control components as soon as those
are updated by other processes. On the basis of the memory model functions, current research [HS08a]
is concerned with the identification of reusable domain specific interactions patterns that facilitate
integration on an even higher level of abstraction.

The previous examples underlined that the IDI architecturenot only provides the profound techno-
logical basis for software integration of experimental cognitive robotics but additionally facilitates
collaborative work and software reuse.

Bielefeld University

208 9.4. Summary

Sebastian Wrede

209

Part IV.

Synopsis

A brief conclusion that summarizes and reviews the benefits of information-driven integration in the
context of collaborative research projects on cognitive systems shall commence this dissertation.

Bielefeld University

211

10. Conclusion

I rarely end up where I was intending to go, but
often I end up somewhere that I needed to be.

– Douglas Adams

Douglas Adams saying is a good metaphor for research on developing a software architecture for
experimental cognitive systems. The presented approach emerged by iteratively identifying require-
ments on software integration in cognitive systems research, evaluating related work and successively
integrating and testing generalizable relevant functionality. Evolution occurred not only by adding
new functionalities like the active memory but also with regard to the conceptual foundations of the
IDI architecture. The architectural core evolved from a closed approach based on remote-procedure
call techniques to a generic and extensible event-driven architecture with strong support for service-
oriented principles.

This conclusion summarizes the key aspects of the information-driven integration approach, relates
the developed concepts and insights found to the three perspectives spanned at the beginning of this
thesis, to the identified requirements and finally to the research question posed in the beginning. To
commence this dissertation an outlook is provided on possible future research directions.

10.1. Information-driven Integration in a Nutshell

The IDI architecture is a middleware with particular support for the integration tasks in experimental
cognitive systems research. It enables efficient communication between applications and devices in
a network of heterogeneous standard computers and operating systems by combining methods from
service-oriented and event-driven architectures as well as tuplespaces into a coherent approach.

It directly supports publish-subscribe as well as request-reply and channel-based group communica-
tion patterns, virtually shared memory services, URL-based naming services, and permits expressive
matching of extensible events, effected by a hybrid subscription model operating on XML documents.
Event matching utilizes an extended message transformation approach that permits the use of stateful
filters such as a compacting filter, which can, e.g., be applied to retrofit the interaction behavior of
legacy applications. A coordination feature for modeling and external control of discrete event-based
system components and universal adapter plugins for a modular toolkit focused at the development of
real-time computer vision algorithms round out the services provided through the core architecture.

Based on this core, a set of tools are offered that ease practical system development, which, for in-
stance, permit a distributed and transparent monitoring ofthe dynamics in a cognitive system architec-
ture. The architecture has so far been implemented in C++ andJava and thus provides a good level of
platform independence, which makes it for instance directly usable in Matlab [TM08] environments.

Bielefeld University

212 10.1. Information-driven Integration in a Nutshell

Coordination

Level

System

Level

Network

Level

Integration

Level

Component

Level

Arbitration

Events

System

Events

Network

Events

Integration

Events

Application

Events

D
a
ta

-
a
n

d
 E

v
e
n

t-
D

ri
v
e
n

 I
n

te
g

ra
ti

o
n

Network and System Abstraction
Ports, Scoping, Event-Dispatch, Naming, Re�ection, ...

Integration Patterns
Event Matching, Publish-Subscribe, Request-Reply, Active Memory, ...

Coordination
Guarded Petri Nets

Adaptation
Filtering, Compacting

Functional Components
Domain Functionality, e.g., Perception, Reasoning, Action

System Development and Management
Composition, Con!guration, Deployment, Monitoring, ...

Figure 10.1.:Overview of the information-driven integration architecture from a system-engineering per-
spective. The layers correspond to functionality available for component developers and sys-
tem architects. While the former primarily deal with the component and integration level, the
latter usually additionally exploit services in the upper layers. Enhancements are possible
across all layers, including transport-specific extensions in the lowest layer.

The different models that were introduced in Part II of this dissertation largely fulfill the needs that
were identified during the requirements analysis carried out in Chapter 5, yielding a layered stack of
functionality as shown in Figure 10.1 that supports the engineering of experimental cognitive systems.
A particular focus of this work has been how to foster software development in collaborative research
projects on experimental cognitive systems.

10.1.1. Facilitating Collaborative Development

While collaboration has been studied in software engineering and social sciences in great detail, cf.
Chapter 3, software architectures for cognitive systems did not credit this issue first class importance.
In contrast, the work in this thesis treats this aspect as critical for project success not only in large-scale
projects from business information technology but also forlarger collaborative, usually international,
research projects. Recently, Ceravola and Goerick [CG06] did recognize this aspect, too. However,
their approach is focused at application in a rather closed organizational integration context and might
thus not be transferable to an oligarchic or anarchic environment as defined by collaborative research
projects.

Acknowledging the importance of this perspective, strategic aims were derived that directly reflect
this insight and have huge impact on subsequent design decisions. First and foremost, the resulting
emphasis on loose coupling influenced many other software architectural aspects such as to choose an
event-based integration style.

Sebastian Wrede

10. Conclusion 213

Considering the collaborative aspects and thus loose coupling as primary aims leads to many conflict-
ing requirements. For instance, a compromise had to be foundbalancing fast component interactions
with low latency on the one hand and programming models that actually implement these interac-
tions in a loosely coupled manner and on a high abstraction level on the other hand. If in doubt, the
approach taken in this thesis was to prefer usability, modularity and abstraction over performance,
because it was unclear whether up front optimization would have been of any real benefit.

Due to the performance requirements and particularly the level of usability required, general purpose
middleware or commercial solutions that provide similar oreven more features were no suitable al-
ternatives to the partially simpler, partially more complex problems of the given domain. Despite the
non-commercial research background of the presented architecture it certainly resembles to a kind of
novelenterprise service busknown from enterprise integration admittedly with a strongbias towards
cognitive systems research environments.

10.2. Insights and Observations

The information-driven integration model has been successfully utilized for the design, develop-
ment and operation of several instances of experimental cognitive systems in the VAMPIRE and
COGNIRON EU projects as outlined in the previous two chapters. Furthermore, the IDI architecture
has been used for the integration of several other systems ofdifferent sizes, e.g., [VAM06, Cog06,
DES08, WKF07, SHS07], ranging from small student projects and projects with educative purposes
to further individual projects embedded in larger nationalresearch programs and large-scale projects
on service robotics.

Besides the iterative refinement of the integration architecture’s core functionality and concepts, this
broad application allows to reflect - from the three viewpoints defined in the introduction - on how
different developers and architects actually used the IDI concepts and permits to discuss some lessons
learned during the course of these projects.

10.2.1. The Functional Viewpoint

Successful integration and demonstration of many resulting system instances and the ability to eval-
uate those in real-world experiments with naive users actually serves as a proof for the suitability of
the chosen system architecture for interactive cognitive systems. Besides that, the concepts of the
IDI architecture that contributed most to the different projects from a functional perspective will be
explained in the following and contrasted with popular alternatives:

• Asynchronous vs. Synchronous Interaction: Utilizing an event-driven architecture for asyn-
chronous integration of many independent processes running in parallel in a distributed system
actually increased the modular protection between individual components. In contrast to the
synchronous, operation-oriented model, the failure of individual components is less critical as
components in an EDA shall make only minimal assumptions about state of other participants.
In contrast, components using a synchronous architecture may freeze a complete system due to
resource starvation whereas in event-driven architectures, the components simply do not receive
new events and may still be able to react on exceptional conditions.

Bielefeld University

214 10.2. Insights and Observations

• Document- vs. Object-oriented Representation: The use of XML helped in defining data types
which were suitable for every involved project partner, particular if it was acted upon the guide-
lines of the document model, e.g., themust-ignoreprinciple. In contrast to object-oriented class
hierarchies, information-oriented representations facilitated the design of coarse grained service
interactions, effecting loose coupling, improved understandability and performance.

• Unified vs. Domain-specific Data Access: Based on the document-oriented data model and
the global event bus, both subscriptions evaluated on the transient event-based conversations as
well as queries on the memory content expressed with XPath statements allowed components
to freely retrieve information in a standardized fashion using declarative specifications. To
achieve similar functionality based on, e.g., object-oriented data structures much more specific
infrastructure and programming models like OQL [Obj00] would have been necessary.

• Active Memories vs. Component-specific Data Management: The active memory has been crit-
ical for the overall architecture and function of many of thesystems developed so far for many
reasons. Through extension of a native XML database towardsa virtually shared memory, in-
formation becomes easily accessible for components utilizing declarative XPath expressions.
Hence, it prevents the emergence of component specificdata silosin cognitive system architec-
tures. Interpreting the memory as an extended event-driventuplespace architecture allows the
design of high-level interaction protocols composed by a simple set of atomic operations.

• Active Forgetting vs. Lease Times: Modeling forgetting as an autonomic process frees devel-
opers from keeping track of memory element lifecycle. This eases component implementation,
allows to associate memory element types with different temporal semantics and permits for-
getting processes to evaluate meta information not considered by individual components prior
to removing any memory elements.

• Explicit Coordination vs. Stateful Interaction: The development of guarded Petri nets permits
rigorous modeling and simulation of system behavior on a high level of abstraction even with-
out the actual components at hand. The concept of guards thatare connected to the observation
model provides a generic semantic coupling of this model to actions executed in an integrated
system in order to effect a specific task behavior. The externalization of control from compo-
nents to federations of domain specific controllers permitted to further reduce the complexity
of individual components and limit their use of stateful interactions with other services.

• Generic vs. Application Specific Adapters: Within computer vision projects, partners expected
support for the development of corresponding algorithms. By effecting the modularization of
IceWing and the provisioning of generic infrastructure plugins, developers were able to use a
well suited and efficient vision toolkit while system architects did benefit from an easy integra-
tion of processing results by the introduced set of generic plugins. This approach was far more
useful than integrating each application manually with specific application adapters.

While these points were all beneficial, some aspects need further investigation. For instance, it is rather
straightforward to define some heuristics when to apply which interaction pattern. In contrast, it is
pretty hard to give generally applicable guidelines for decomposing individual components or services
in terms of their dynamic coordination, e.g. when to use a subscription inside of a component and
when to externalize stateful interactions with other components with the features of the coordination
model.

Sebastian Wrede

10. Conclusion 215

10.2.2. The Collaborative Viewpoint

Besides fulfilling the functional requirements, the IDI architecture was designed right from the begin-
ning towards facilitating collaborative software development as highlighted in the beginning of this
section. Hence, one of the actual outcomes in this regard is high usability of the different features
through a clear and straightforward programming model.

On the one hand, this is facilitated through the use of a limited set of recurring object-oriented building
blocks, e.g., the possibility to register event-based callbacks with the same interface at different inter-
action patterns or the integration of a polymorphic event dispatching method. The Java API sketched
in Part II represents the state of the current iteration of the corresponding framework implementa-
tion as a result of this joint effort. On the other hand, the use of standards based XML technologies
throughout the whole framework, e.g., by using XPath both for selecting memory content as well as
for the specification of content-based event subscriptionsand the consideration of developer feedback
further promotes usability and extensibility. Besides aiming at high usability, the following observa-
tions could be made during the different projects with regard to the proposed integration methods and
questions of collaboration (again briefly contrasted with popular alternatives):

• Pattern-based vs. Object-Oriented Vocabulary: The definition of a common vocabulary for
interaction patterns and integration entities such asdocuments, events, subscriptions, services,
componentsandinterfacesfosters efficient communication between developers about essential
structures of cognitive systems on the level of the integration architecture. In contrast to describ-
ing software on the level of object-oriented structures, complexity can be reduced by omitting
irrelevant detail in compact architectural descriptions;see Figure 8.7(b) for an example.

• Dynamic vs. Static Interfaces: The consequent focus on dynamic middleware techniques and
the reflective properties of the document, notification and naming models eased the develop-
ment of generic monitoring tools that were highly valuable during system development and
for controlling the correct processing of data at the systemintegration level at runtime. For
instance, central logging of participant interactions in BIRON eased the tracing of typical pro-
cessing paths usually found in complex robot architectures.

• Simulation vs. Live Operation: The event-driven approach facilitates debugging and evaluation
of integrated cognitive systems byreplayingrecorded event notifications. As the event metadata
provides time as well as sender and receiver information, cf. Section 6.3), architectural layers
can with certain limitations be replaced by components thatare simulated by a generic emula-
tion service. Development and evaluation of different algorithms or system configurations on
comparable data has been much easier with this feature.

Though many of these assessments are truly subjective, the technology foundation has been laid by
this work and its appropriateness has been substantiated bythe numerous systems built. A possible
area of future research could be to provide factual evidenceon the performance of chosen engineering
methods as done in software engineering by developer observation [PPV00, Sea99], e.g., encoding
what amount of time is consumed by certain types of tasks, e.g., reviewing the documentation or
system testing, during a coding or integration session. This discretization allows a kind of quantitative
evaluation of the achieved usability. Besides that, simulation and testing imposes unsolved challenges
with regard to emulation of complex and non-discrete components.

Bielefeld University

216 10.2. Insights and Observations

10.2.3. The Engineering Viewpoint

The first observation in this context was that due to the chosen interface granularity and the separation
of structured and binary data contents, the transport and processing of XML data in distributed system
architectures has up to now been no critical bottleneck for system reactivity. Furthermore, through the
use of XML- and pattern-based service interfaces, theflexibility requirement was fulfilled. This results
in changeability, easier adaptation and integration of newmodules. As an example taken from the
COGNIRON project, an existing localization and mapping module was replaced by a different module
from other project partners in just one day [SSS08]. Utilizing the information-driven approach, even
after this modification, the previous module could be instantaneously reactivated as no specific identity
or reference type information was part of the service interfaces. Let us consider some additional
lessons learned from the engineering viewpoint:

• Interaction Patterns vs. Remote-Method Invocation: In contrast to object-oriented remote
method invocations, the abstraction level of integration is raised through the introduction of
interaction patterns to that of architectural styles. Adding up on that, the defined interaction be-
havior is kept separate from the exchanged data messages andexplicit distribution boundaries
are enforced by the programming model. All these aspects contribute to the aim of encapsulat-
ing accidental but exposing essential complexity, cf. Chapter 4.

• Loose vs. Tight Coupling: Loose coupling is achieved through the event-based core, document-
orientation and external configurability. A refactoring ofthe BIRON architecture on the ba-
sis of the IDI approach yielded in a dramatically reduced number of point-to-point connec-
tions [SSS08]. However, the ability to integrate vision algorithms in a tightly coupled fashion
using the IceWing development environment, was essential for building real-time computer vi-
sion subsystems out of tightly coupled image processing plugins. Hence, the answer is not loose
or tight coupling but to support both in a coherent way.

• Declarative vs. Procedural Specification: In contrast to burying relevant architectural detail
in programming language constructs, most properties relevant on the level of the integration
architecture can be declaratively specified in a way that is easily understandable by developers,
if an information-oriented representation was chosen, cf.Section 6.2. Interpretability of the
exchanged XML data types directly payed off in shorter development cycles during integration,
because of the ability to viewand to understand messages at runtime.

• Schema Independence vs. Relational Schemata: Another aspect useful both for development
of the system and the runtime architecture is the ability to integrate new information types
without having to physically restart any servers or to redeploy any database schema’s as known
from relational databases. The absence of fixed data schema’s helps also in restructuring of
content and allows for storing of completely new information structures which is useful, e.g.,
for learning architectures.

• Independence vs. Vendor Lock-In: Through the increased level of abstraction and the Port-
based design of the core architecture, cf. Section 6.5, independence of a specific middleware
technology or vendor is achieved. For instance, while previous versions of the resulting IDI
architecture were based on the Internet Communication Engine [HS08b], which is an innovative
object-oriented middleware, the current implementation is based on Spread, which is a group
communication framework and thus promoting completely different concepts. Even so, the
basic principles of the IDI architecture remained stable. This independence increases flexibility
and avoids critical dependencies on a single technology.

Sebastian Wrede

10. Conclusion 217

From an engineering perspective, further work must be primarily carried out on scalability aspects
with regard to the active memory implementation and the matching algorithms in the observation
model. Regarding the latter, many approaches for optimizedmatching of multiple XPath statements,
e.g., [CFGR02], exist that are well suited for evaluation and possible extension. The replacement of
the request-reply based event handlers for the memory services by fully event-driven interfaces paves
the way towards linear scalability of the memory model basedon a flexible partitioning of the overall
event space.

A disadvantage of the XML-based data exchange, which additionally impedes usability at first sight
is that due to the call for information-driven representation, most methods for automatic data binding
from abstract data types in programming languages to XML documents are not applicable. However,
despite the fact that the position taken in this thesis is that careful design of shared data structures
and corresponding domain specific accessor classes is worthwhile in software integration, a template-
based XML parsing and serialization library [FW07] was developed in the context of this dissertation
project, which dramatically eases this task and provides a solution to this problem.

10.3. Some Answers and New Questions

In the introduction of this thesis, a number of questions were posed that were addressed throughout
this dissertation. Let us for the conclusion shortly recallthe primary research question that guided my
work in the different projects and on the development of the integration architecture: “what are archi-
tectural concepts and paradigms suitable for handling the innate complexity of software development
in cognitive systems research projects?”

Not surprisingly, this thesis does not answer this questionto its full extent and with universal valid-
ity. In order to do so, even more systems of different kind need to be developed, although already
quite a number of examples exist that utilities the presented approach. Thus, the introduced models
of information-driven integration and their concepts as presented in Part II of this thesis may pave the
way towards further investigation on this question. For theprojects the architecture has been applied
in so far, the combination of functional and event-based composition, the exploitation of the in-band
information for component coordination, and an increased level of abstraction for the design of these
interactions in cognitive systems architectures are important aspects of an answer. This thesis pre-
sented a novel, holistic perspective on an emerging topic inexperimental cognitive systems research,
introducing an architecture that considers the integration context as an important source for specific
complexity and adopting state-of-the-art methods from current software engineering research on soft-
ware integration and distributed systems into a coherent and innovative approach, thus making them
easily usable for cognitive systems domain experts.

Picking up on the introduction, the specific challenge of this work has been to find aworkingdefinition
of an integration architecture that puts users and the researcher on software architectures in cognitive
systems both in a position where they can explore new issues and ask questions they simply could not
have asked earlier. Emphasizing the termworking is of particular importance here as this beneficial
situation can only be achieved if a technically sound platform is available, which inevitably is a huge
engineering and dissemination challenge.

Bielefeld University

218 10.3. Some Answers and New Questions

New Opportunities

However, as this state has been reached for the IDI architecture and stable implementations of the
presented concepts are available, this yields an excellentopportunity for further research on advanced
architectural functions. A promising trait for further research is to analyze the resulting dynamics
of component interactions in these systems in an autonomic computing approach applying pattern
recognition and data mining techniques in order to autonomously classify the situational context of
a cognitive system. On the long run, this may lead to a meta-level for system self-awareness. Other
examples are questions of adaptive coordination, where intelligent coordination models can be learned
from data available at an architectural level or to further investigate the question what the specifics of
the visual active memory are with regard to architectural style and cognitive architectures.

Finally, it should be mentioned that all the lessons learnedcould only be learned by a research policy
that aims to actually build systems for the real world and by having great collaborators in the differ-
ent projects the presented concepts were applied in. Let me thank them here for their commitment,
patience and dedication to support the development of this approach.

Sebastian Wrede

219

Bibliography

[ABB+01] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier,and B. Macintyre. Recent ad-
vances in augmented reality.Computer Graphics and Applications, IEEE, 21:34–47, 2001.

[Acc08] Accusoft. Visiquest data and image analysis software, 2008.
http://www.accusoft.com/products/visiquest/.

[AGK08] David Abrahams and Ralf W. Gross-Kunstleve. Boost.python.
http://www.boost.org/doc/libs/release/libs/python/doc/, 2008. last
checked 05/30/2008.

[Alb00] J.S Albus. 4-d/rcs reference model architecture for unmanned ground vehicles.Robotics
and Automation, 2000. Proceedings. ICRA ’00., 4:3260–3265, 2000.

[And93] John R. Anderson.Rules of the Mind. 1993.

[AR08] Manfred Broy Andreas Rausch. Das V-Modell XT: Grundlagen, Erfahrungen und
Werkzeuge.Dpunkt Verlag, 2008.

[AS98] Yair Amir and Jonathan Stanton. The spread wide area group communication system.
Technical report, The Center for Networking and Distributed Systems, The Johns Hopkins
University, 1998. CNDS-98-4.

[ASTMvS02] Andrew S. Tanenbaum and Maarten van Steen.Distributed Systems: Principles and
Paradigms. Prentice Hall, 2002.

[AZ05] P. Avgeriou and U. Zdun. Architectural patterns revisited - a pattern language. InPro-
ceedings of the 10th European Conference on Pattern Languages of Programs (EuroPLoP
2005), Irsee, Germany, July 2005.

[BA04] Kent Beck and Cynthia Andres.Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional, 2004.

[Bai05] Baillie. Urbi: Towards a universal robotic low-level programming language. InProceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS05,
2005.

[BBHR04] H. Bekel, I. Bax, G. Heidemann, and H. Ritter. Adaptive Computer Vision: Online Learn-
ing for Object Recognition. InProc. Pattern Recognition Symposium (DAGM), volume
3175 ofLNCS, pages 447–454. Springer, 2004.

[BBV06] Joscha Bach, Colin Bauer, and Ronnie Vuine. Micropsi: Contributions to a broad architec-
ture of cognition. 4314:7–18, 2006.

[BCG07] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing Multi-
Agent Systems with JADE. Wiley & Sons, 2007.

[BCH+96] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and P. Tucker
Withington. A monotonic superclass linearization for dylan. In OOPSLA ’96: Proceed-

Bielefeld University

http://www.boost.org/doc/libs/release/libs/python/doc/

220 Bibliography

ings of the 11th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 69–82, New York, NY, USA, 1996. ACM.

[BCK05] Len Bass, Paul Clements, and Rick Kazman.Software Architecture in Practice. Addison
Wesley Longman Publishing Co., Inc., Boston, USA, 2005.

[BCTW96] Daniel J. Barrett, Lori A. Clarke, Peri L. Tarr, andAlexander E. Wise. A framework for
event-based software integration.ACM Transactions on Software Engineering Methodol-
ogy, 5(4):378–421, 1996.

[BDG01] M. Birbeck, J. Duckett, and O.G. Gudmundsson.Professional XML. Wrox Press Inc., 2nd
edition, 2001.

[Ber04] Berkeley DB Reference Guide Version 4.2.52. Technical report, 2004. Last checked 30th
June 2004.

[BGD05] F. Bajramovic, Ch. Gräßl, and J. Denzler. Efficient Combination of Histograms for Real-
Time Tracking Using Mean-Shift and Trust-Region Optimization. In DAGM, Heidelberg,
2005. Springer.

[BHW+05] Christian Bauckhage, Marc Hanheide, Sebastian Wrede, Thomas Käster, Michael
Pfeiffer, and Gerhard Sagerer. Vision Systems with the Human in the Loop.
EURASIP Journal on Applied Signal Processing, 2005(14):2375–2390, 2005.
http://www.hindawi.com/GetArticle.aspx?pii=S1110865704411275.

[BHWS04] Christian Bauckhage, Marc Hanheide, Sebastian Wrede, and Gerhard Sagerer. A Cog-
nitive Vision System for Action Recognition in Office Environments. InProceedings In-
ternational Conference on Computer Vision and Pattern Recognition, number 2, pages
827–832, 2004.

[Bir05] Kenneth P. Birman.Reliable Distributed Systems: Technologies, Web Services, and Appli-
cations. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[BKM +05] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback. Towards component-
based robotics.Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Inter-
national Conference on, pages 163–168, 2-6 Aug. 2005.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986: Uniform resource identifier
(uri): Generic syntax. Technical report, The Internet Society, 2005.

[BMRS96] F. Buschmann, R. Meunier, H. Rohnert, and P. Sommerlad. Pattern-Oriented Software
Architecture, volume 1: A System of Patterns. John Wiley & Sons Ltd., 1996.

[Boe88] Barry Boehm. A spiral model of software developmentand enhancement.IEEE Computer,
21:61 – 72, 1988.

[BPSM+04] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,and François
Yergeau. Extensible Markup Language (XML) 1.0 (Third Edition), W3C Rec-
ommendation. Technical report, World Wide Web Consortium,Feb 2004.
http://www.w3.org/TR/2004/REC-xml-20040204.

[Bro91] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence, 47(1-
3):139–159, 1991.

[Bro95] F.P. Brooks.The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley,
anniversary edition, 1995.

Sebastian Wrede

http://www.hindawi.com/GetArticle.aspx?pii=S1110865704411275
http://www.w3.org/TR/2004/REC-xml-20040204

Bibliography 221

[Bru05] Davide Brugali, editor.IEEE ICRA 2005 Workshop on Software Development and Integra-
tion in Robotics (SDIR-I), Barcelona, Spain, 2005. IEEE RAS TC-SOFT, IEEE Robotics
and Automation Society.

[Bru07a] Davide Brugali, editor.IEEE ICRA 2007 Workshop on Software Engineering for Robotics
II (SDIR-II), Roma, Italy, April 2007. IEEE RAS TC-SOFT, IEEE Robotics and Automa-
tion Society.

[Bru07b] Davide Brugali, editor.Software Engineering for Experimental Robotics, volume 30 of
Springer Tracts in Advanced Robotics. Springer, Berlin, 2007. ISBN: 978-3-540-68949-2.

[Bru07c] Davide Brugali.Software Engineering for Experimental Robotics. Springer Engineering,
2007.

[Bru08a] Davide Brugali, editor.IEEE ICRA 2008 Workshop on Software Engineering for Robotics
III (SDIR-III) , Pasadena, CA, USA, May 2008. IEEE RAS TC-SOFT, IEEE Robotics and
Automation Society.

[Bru08b] Herman Bruyninckx. Open robot control software, 2008. http://www.orocos.org.

[BS85] Ronald J. Brachman and James G. Schmolze. An overviewof the kl-one knowledge rep-
resentation system.Cognitive Science, 9:171–216, 1985.

[Car06] Carnegie Mellon University’s Software Engineering Institute. Software engineering glos-
sary. WWW, October 2006.

[Cas03] Cristiano Castelfranchi. Cognitive systems: Towards an integration of symbolic and
sensor-motor intelligence?ERCIM News, 53:10–11, April 2003.

[CAV07] CAVIAR Consortium. Caviar: Context aware vision using image-based active recognition,
Aug 2007. IST 2001 37540,http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

[CBL+06] C. Côté, Y. Brosseau, D. Létourneau, C. Raïevsky, and F. Michaud. Robotic software
integration using marie.International Journal of Advanced Robotic Systems, 3(1):55–60,
March 2006.

[CC94] Henrik I. Christensen and James L. Crowley, editors.Experimental Environments for Com-
puter Vision and Image Processing, volume 11 ofSeries on Machine Perception and Arti-
ficial Intelligence. World Scientific Publisher, 1994. ISBN 981-02-1510-X.

[CC97] H. I. Christensen and Alain Chehikian.Vision as Process: Basic Research on Computer
Vision Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[CD99] James Clark and Steven DeRose. XML Path Language, W3CRecommendation. Technical
Report REC-xpath-19991116, World Wide Web Consortium, Nov1999. W3C Recommen-
dation 16 November 1999,http://www.w3.org/TR/1999/REC-xpath-19991116.

[CFGR02] Chee-Yong Chan, Pascal Felber, Minos Garofalakis, and Rajeev Rastogi. Efficient filter-
ing of xml documents with xpath expressions. InProceedings of the 18th International
Conference on Data Engineering (ICDE), page 235, Los Alamitos, CA, USA, 2002. IEEE,
IEEE.

[CG89] Nicholas Carriero and David Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, 1989.

[CG06] Antonello Ceravola and Christian Goerick. An integrated approach towards researching
and designing real-time brain-like computing systems. InProceedings of the AISB ’06 Sym-

Bielefeld University

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://www.w3.org/TR/1999/REC-xpath-19991116

222 Bibliography

posium on Nature Inspired Systems: Natures-Inspired Systems for Parallel, Asynchronous
and Decentralised Environments, Bristol, April 2006.

[Cha04] David A. Chappell.Enterprise Service Bus. Theory in Practice. O’Reilly Media, 2004.

[Chr03] H.I. Christensen. Cognitive (vision) systems.ERCIM News, 53:17–18, April 2003.

[CJD+06] Antonello Ceravola, Frank Joublin, Mark Dunn, Julian Eggert, Marcus Stein, and Chris-
tian Goerick. Integrated research and development environment for real-time distributed
embodied intelligent systems. InProceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1631–1637. IEEE, 2006.

[Cla92] Herbert Clark.Arenas of Language Use. University of Chicago Press, 1992.

[CMG05] Toby H. J. Collett, Bruce A. MacDonald, and Brian Gerkey. Player 2.0: Toward a practical
robot programming framework. InAustralasian Conference on Robotics and Automation,
Sydney, 5–7 December 2005.

[CNF01] G. Cugola, E. Di Nitto, and A. Fuggetta. The jedi event-based infrastructure and its appli-
cation to the development of the opss wfms.IEE Transactions on Software Engineering,
27(9):827–850, 2001.

[Coc01] A. Cockburn.Agile Software Development. Addison-Wesley, 2001.

[Cog06] Cogniron Consortium. COGNIRON – The Cognitive Robot Companion, May 2006.
http://www.cogniron.org.

[Cog08] Cogniron Consortium. COGNIRON Winter School on Human Robot Interaction (CW-
SHRI’08), January 2008.

[Cop91] James O. Coplien.Advanced C++ Programming Styles and Idioms. Addison-Wesley
Longman, 1991.

[COS04] COSY Consortium. Cognitive Systems for Cognitive Assistants. DR.11.1 Proc. Cognitive
Systems Kick-Off meeting. CoSy-FP6-004250, dec 2004.

[CRTT97] N. Chleq, C. Regazzoni, A. Teschioni, and M. Thonnat. A visual surveillance system for
the prevention of vandalism in metro stations.EMMSEC’97, 1997.

[Cru03] H. Cruse. The evolution of cognition- a hypothesis.Cognitive Science: A Multidisciplinary
Journal, 27:135–155, 2003.

[CS01] Silvia Coradeschi and Alessandro Saffiotti. Perceptual Anchoring of Symbols for Action.
In Proc. Intl. Conf. on Artificial Intelligence, pages 407–416, 2001.

[CSP03] M.K. Chandraker, C. Stock, and A. Pinz. Real Time Camera Pose in a Room. InInt. Conf.
on Computer Vision Systems, volume 2626 ofLNCS, pages 98–110, April 2003.

[CT04] John Cowan and Richard Tobin. XML Information Set (Second Edition), W3C
Recommendation. Technical report, World Wide Web Consortium, Feb 2004.
http://www.w3.org/TR/2004/REC-xml-infoset-20040204.

[CTS07] Jigna Chandaria, Graham A. Thomas, and Didier Stricker. The matris project: real-time
markerless camera tracking for augmented reality and broadcast applications.Journal of
Real-Time Image Processing, 2:69–79, 2007.

[CVS08] CVSSP, University of Surrey. Recognition And Vision Library, 2008.
http://ravl.sourceforge.net.

Sebastian Wrede

http://www.cogniron.org
http://www.w3.org/TR/2004/REC-xml-infoset-20040204

Bibliography 223

[DBM88] U. Dayal, A. P. Buchmann, and D. R. McCarthy. Rules are objects too: A knowledge
model for an active, object-oriented database system. InLecture notes in computer science
on Advances in object-oriented database systems, pages 129–143. Springer-Verlag New
York, Inc., 1988.

[DES08] DESIRE Consortium. DESIRE – Deutsche Service-Robotik-Initiative (German Initiative
for Service Robotics), February 2008.

[DK76] Frank DeRemer and Hans Kron. Programming-in-the-Large versus Programming-in-the-
Small. IEEE Transactions on Software Engineering, pages 321–327, 1976.

[DKRH94] B.A. Draper, G. Kutlu, E.M. Riseman, and A.R. Hanson. ISR3: Communication and
Data Storage for an Unmanned Ground Vehicle. InProceedings International Conference
on Pattern Recognition, volume I, pages 833–836, 1994.

[DL99] T. DeMarco and T. Lister.Peopleware: Productive Projects and Teams. DORSET HOUSE
PUBLISHING CO., INC, 1999.

[Dub08] Olivier Dubuisson. Asn.1 reference book.http://www.oss.com/asn1/, May 2008.

[EM02] Thomas Eiter and Viviana Mascardi. Comparing environments for developing software
agents.AI Communication, 15(4):169–197, 2002.

[ER03] Albert Endres and Dieter Rombach.A Handbook of Software and Systems Engineering:
Empirical Observations, Laws, and Theories. Addison-Wesley, Reading, MA, USA, 2003.

[ES99] W. Eckstein and C. Steger. The halcon vision system: An example for flexible software
architecture. In3rd Japanese Conference on Practical Applications of Real-Time Image
Processing, pages 18–23. Technical Committe of Image Processing Applications, Japanese
Society for Precision Engineering, 1999.

[Eur01] European Commission. Work Programme 2002, Programme for Research, Technol-
ogy Development and Demonstration under the Fifth Framework Programme, Nov 2001.
ftp://ftp.cordis.lu/pub/ist/docs/b_wp_en_200201.pdf.

[Eur05] European Commission. Proposal for a Decision of theeuropean parliament and of the
council concerning the seventh framework programme of the European Community for re-
search, technological development and demonstration activities (2007 to 2013), Apr 2005.
http://ica.cordis.lu/documents/documentlibrary/2461EN.pdf.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, 2003.

[FAH99] Eric Freeman, Ken Arnold, and Susanne Hupfer.JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

[Fai06] Ted Faison.Event-Based Programming: Taking Events to the Limit. Apress, Berkeley, CA,
May 2006.

[FB96] N. Freed and N. Borenstein. Multipurpose internet mail extensions. Technical report,
Network Working Group, 1996.

[FFMM94] T. Finin, R. Fritzson, D. Mckay, and R. Mcentire. Kqml as an agent communication lan-
guage. InProceedings of the 3rd International Conference on Information and Knowledge
Management (CIKM’94), 1994.

Bielefeld University

http://www.oss.com/asn1/
ftp://ftp.cordis.lu/pub/ist/docs/b_wp_en_200201.pdf
http://ica.cordis.lu/documents/documentlibrary/2461EN.pdf

224 Bibliography

[FHS04] J. Fritsch, N. Hofemann, and G. Sagerer. Combining Sensory and Symbolic Data for
Manipulative Gesture Recognition. InProc. Int. Conf. on Pattern Recognition, number 3,
pages 930–933, Cambridge, United Kingdom, 2004. IEEE.

[Fia07] José Luiz Fiadeiro. Designing for software’s social complexity. IEEE Computer, 40(1):34–
39, 2007.

[FIG99] R. Fielding, UC Irvine, and J. Gettys. Hypertext transfer protocol – http/1.1. Technical
report, Network Working Group, 1999.

[Fin99] G. A. Fink. Developing HMM-based Recognizers with ESMERALDA. In Václav Ma-
toušek, Pavel Mautner, Jana Ocelíková, and Petr Sojka, editors,Lecture Notes in Artificial
Intelligence, volume 1692, pages 229–234, Berlin Heidelberg, 1999. Springer.

[FJK+96] G.A. Fink, N. Jungclaus, F. Kummert, H. Ritter, and G. Sagerer. A Distributed System
for Integrated Speech and Image Understanding. InInternational Symposium on Artificial
Intelligence, pages 117–126, 1996.

[FKH+05] Jannik Fritsch, Markus Kleinehagenbrock, Axel Haasch,Sebastian Wrede, and Gerhard
Sagerer. A Flexible Infrastructure for the Development of aRobot Companion with Ex-
tensible HRI-Capabilities. InProceedings IEEE International Conference on Robotics and
Automation, pages 3419–3425, Barcelona, Spain, April 2005.

[FMN08] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-lived robot genes.
Robotics and Autonomous Systems, 56(1):29–45, 2008.

[Fra03] David S. Frankel.Model Driven Architecture. Applying MDA to Enterprise Computing.
Wiley, 2003.

[FRF+02] Martin Fowler, David Rice, Matthew Foemmel, Edward Hieatt, Robert Mee, and Randy
Stafford. Patterns of Enterprise Application Architecture, chapter Distribution Strategies,
pages 87–94. Addison-Wesley Longman Publishing Co., Inc.,Boston, MA, USA, 2002.

[FW07] Jannik Fritsch and Sebastian Wrede.Software Engineering for Experimental Robotics,
volume 30 ofSpringer Tracts in Advanced Robotics, chapter An Integration Framework
for Developing Interactive Robots, pages 291–305. Springer, Berlin, 2007. ISBN: 978-3-
540-68949-2.

[Gat07] Bill Gates. A robot in every home.Scientific American, pages 58–65, January 2007.

[GBB+06] Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, and Tim Peierls.
Java Concurrency in Practice. Addison-Wesley, 2006.

[Gel85] David Gelernter. Generative communication in linda. ACM Trans. Program. Lang. Syst.,
7(1):80–112, 1985.

[Gep04] L Geppert. Qrio, the robot that could.IEEE Spectrum, 41:34–37, 2004.

[GHC+04] Nicolas Gorges, Marc Hanheide, William Christmas, Christian Bauckhage, Gerhard
Sagerer, and Josef Kittler. Mosaics from Arbitrary Stereo Video Sequences. In C. E.
Rasmussen, H. H. Bülthoff, M. A. Giese, and B. Schölkopf, editors, Proceedings of the
DAGM Symposium 2004, volume 3175 ofLecture Notes in Computer Science, pages 342–
349, Heidelberg, Germany, 2004. Springer-Verlag.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and JohnVlissides. Design Patterns. Ad-
dison Wesley, Reading, MA, 1995.

Sebastian Wrede

Bibliography 225

[GLF04] T. Gärtner, John W. Lloyd, and Peter A. Flach. Kernels and Distances for Structured Data.
Machine Learning, 57(3):205–232, 2004.

[GMNR99] Martin Gudgin, Noah Mendelsohn, Mark Nottingham,and Hervé Ruellan. XML-binary
Optimized Packaging, W3C Recommendation. Technical report, World Wide Web Con-
sortium, Jan 1999.http://www.w3.org/TR/2005/REC-xop10-20050125.

[GR00] Charles F. Goldfarb and Yuri Rubinsky.The SGML Handbook. Clarendon Press, Oxford,
2000.

[Gra05] Gösta Granlund. Organization of architectures forcognitive vision systems. In Hans Hell-
mut Nagel and Henrik I. Christensen, editors,Cognitive Vision Systems, pages 39–58.
Springer, Heidelberg, 2005.

[GT07] John Georgas and Richard Taylor. An architectural style perspective on dynamic robotic
architectures. 2007.

[GVH03] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The player/stage project: Tools
for multi-robot and distributed sensor systems. InICAR 2003, 2003.

[Han06] Marc Hanheide.A Cognitive Ego-Vision System for Interactive Assistance. PhD thesis,
Technische Fakultät – Universität Bielefeld, December 2006.

[Hau99] D. Haussler. Convolution Kernels on Discrete Structures. Technical Report UCS-CRL-99-
10, UC Santa Cruz, 1999.

[HBPM07] Jesse Hoey, Axel von Bertoldi, Pascal Poupart, andAlex Mihailidis. Assisting persons
with dementia during handwashing using a partially observable markov decision process.
In Gerhard Sagerer and Monique Thonnat, editors,Proceedings of the 5th International
Conference on Computer Vision Systems (ICVS), Bielefeld, Germany, March 2007. Biele-
feld University.

[HBS04] Marc Hanheide, Christian Bauckhage, and Gerhard Sagerer. Memory Consistency Vali-
dation in a Cognitive Vision System. InProceedings International Conference on Pattern
Recognition, number 2, pages 459–462. IEEE, 2004.

[HBS05] M. Hanheide, C. Bauckhage, and G. Sagerer. Combining Environmental Cues & Head
Gestures to Interact with Wearable Devices. InProc. of International Conference on Mul-
timodal Interfaces, 2005.

[Hoh06] Gregor Hohpe. Programmieren ohne Stack: ereignis-getriebene Architekturen.OB-
JEKTspektrum, 02:18–24, February 2006. in German, English version available at:
http://www.eaipatterns.com/docs/EDA.pdf.

[Hoh07] Gregor Hohpe. Architect’s dream or developer’s nightmare? InDEBS ’07: Proceedings
of the 2007 inaugural international conference on Distributed event-based systems, pages
188–188, New York, NY, USA, 2007. ACM.

[HS08a] Marc Hanheide and Gerhard Sagerer. Active memory-based interaction strategies for
learning-enabling behaviors. InProceedings of the International Symposium on Robot
and Human Interactive Communication (RO-MAN), Munich, August 2008.

[HS08b] Michi Henning and Mark Spruiell.Distributed Programming with Ice. ZeroC Inc., 2008.

[HW05] Erik Hollnagel and David D. Woods.Joint cognitive systems : foundations of cognitive
systems engineering. CRC Press, 2005.

Bielefeld University

http://www.w3.org/TR/2005/REC-xop10-20050125
http://www.eaipatterns.com/docs/EDA.pdf

226 Bibliography

[HWLS08] Marc Hanheide, Sebastian Wrede, Christian Lang, and Gerhard Sagerer. Who am i talk-
ing with? a face memory for social robots. InProceedings of the IEEE International
Conference on Robotics and Automation, Pasadena, CA, USA, 2008. IEEE, IEEE.

[HZW07] Nick Hawes, Michael Zillich, and Jeremy Wyatt. BALT& CAST: Middleware for cogni-
tive robotics. InProceedings of IEEE RO-MAN 2007, pages 998 – 1003, August 2007.

[IEE90] IEEE Standards Association. IEEE Std 610.12-1990,glossary of software en-
gineering terminology. Technical report, IEEE, Dec 1990. Reaffirmed 2002,
http://ieeexplore.ieee.org/servlet/opac?punumber=2238.

[IEE00] IEEE Architecture Working Group. IEEE Std 1471-2000, recommended practice for ar-
chitectural description of software-intensive systems. Technical report, IEEE, 2000.

[Int08] Intel Corporation. Open Source Computer Vision Library, 2008. Software and documen-
tation available athttp://www.intel.com/technology/computing/opencv/.

[Jac07] J. Jackson. Microsoft robotics studio: A technicalintroduction.IEEE Robotics & Automa-
tion Magazine, 14(4):82–87, Dec. 2007.

[Jen91] Kurt Jensen. Coloured petri nets: a high level language for system design and analysis.
In APN 90: Proceedings on Advances in Petri nets 1990, pages 342–416, New York, NY,
USA, 1991. Springer-Verlag New York, Inc.

[Joh02] Pontus Johnson.Enterprise Software System Integration: An ArchitecturalPerspective.
PhD thesis, KTH, Royal Institute of Technology, 2002.

[KAU04] P. Kiatisevi, V. Ampornaramveth, and H. Ueno. A Distributed Architecture for Knowledge-
Based Interactive Robots. InProc. Int. Conf. on Information Technology for Application
(ICITA), pages 256–261, Harbin, China, 2004.

[KC04] Graham Klyne and Jerem J. Carrol. Resource Description Framework (RDF): Concepts
and Abstract Syntax. Technical report, 2004.

[KCK07] Ilias Kolonias, William Christmas, and Josef Kittler. A layered active memory architec-
ture for cognitive vision systems. InProceedings of the 5th International Conference on
Computer Vision Systems. Library of Bielefeld University, March 2007.

[KCkPK05] Gunhee Kim, Woojin Chung, Sung kee Park, and Munsang Kim. Experimental research
of navigation behavior selection using generalized stochastic petri nets (gspn) for a tour-
guide robot. InProceedings of the 2005 IEEE/RSJ International Conferenceon Intelligent
Robots and Systems (IROS 2005), August 2005.

[KLP04] Rick Kjeldsen, Anthony Levas, and Claudio S. Pinhanez. Dynamically reconfigurable
vision-based user interfaces.International Journal of Machine Vision and Applications,
16(1):6–12, 2004.

[KR94] K. Konstantinides and J. R. Rasure. The Khoros Software Development Environment For
Image And Signal Processing.IEEE Transactions on Image Processing, 3(3):243–252,
1994.

[Kru95] Philippe Kruchten. Architectural blueprints - the"4+1" view model of software architec-
ture. IEEE Software, 12 (6):42–50, 1995.

[KS04] Kristian Kvilekval and Ambuj K. Singh. Spree: Objectprefetching for mobile computers.
In CoopIS/DOA/ODBASE (2), pages 1340–1357, 2004.

Sebastian Wrede

http://ieeexplore.ieee.org/servlet/opac?punumber=2238
http://www.intel.com/technology/computing/opencv/

Bibliography 227

[KS06] James Kramer and Matthias Scheutz. ADE: A framework for robust complex robotic archi-
tectures. InIEEE/RSJ International Conference on Intelligent Robots and Systems, pages
4576–4581, Bejing, China, October 2006.

[KS07] James Kramer and Matthias Scheutz. Development environments for autonomous mobile
robots: A survey.Auton. Robots, 22(2):101–132, 2007.

[Lad94] Scott Robert Ladd.Defensive Programming with C++. John Wiley & Sons Inc, 1994.

[Lan01] A. Langer. Java programming idioms.Technology of Object-Oriented Languages and
Systems, 2001., pages 197 – 198, 2001.

[Lan07] Christian Lang. Personenidentifikation mit activeappearance models. Master’s thesis,
Bielefeld University, 2007. in german.

[LBF+05] Thor List, José Bins, Robert B. Fisher, David Tweed, and Kristinn R. Thórisson. Two
approaches to a plug-and-play vision architecture - caviarand psyclone. InAAAI-05 Work-
shop on Modular Construction of Human-Like Intelligence, Pittsburgh, PA, July 2005.
Twentieth Annual Conference on Artificial Intelligence.

[LBFT05] Thor List, José Bins, Robert B. Fisher, and David Tweed. A Plug-and-Play Architecture
for Cognitive Video Stream Analysis. InSeventh International Workshop on Computer Ar-
chitectures for Machine Perception, pages 67–72, Palermo, Italy, Jul 2005. IEEE Computer
Society.

[LF04] T. List and R.B. Fisher. CVML - an XML-based computer vision markup language. In
Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004.,
volume 1, pages 789–792. IEEE, IEEE, August 2004.

[LFP99] Yannis Labrou, Tim Finin, and Yun Peng. Agent communication languages: The current
landscape.IEEE Intelligent Systems, 14:45–52, 1999.

[LHW+05] S. Li, A. Haasch, B. Wrede, J. Fritsch, and G. Sagerer. Human-style interaction with a
robot for cooperative learning of scene objects. InProc. Int. Conf. on Multimodal Inter-
faces, pages 151–158, Trento, Italy, 2005. ACM Press.

[Löm08] Frank Lömker. iceWing – A graphical plugin shell, 2008. http://icewing.sf.net.

[Lüt04] Ingo Lütkebohle. An active memory for cognitive processes. Projektarbeit, Bielefeld
University, Faculty of Technology, July 2004.

[LW04] Ingo Lütkebohle and Sebastian Wrede. Catwalk. Einsatz der XML-Datenbank Berkeley
DB XML. iX, Heise, 9/2004:68–73, 2004.

[LW07] Shuyin Li and Britta Wrede. Why and how to model multi-modal interaction for a mo-
bile robot companion. InAAAI Technical Report SS-07-04: Interaction Challenges for
Intelligent Assistants, pages 71 – 79, Stanford, 2007. AAAI Press.

[LWHF06] Frank Lömker, Sebastian Wrede, Marc Hanheide, andJannik Fritsch. Building Modular
Vision Systems with a Graphical Plugin Environment. InProc. of International Conference
on Vision Systems, St. Johns University, Manhattan, New York City, USA, January 2006.
IEEE.

[LWS06] Shuyin Li, Britta Wrede, and Gerhard Sagerer. A dialog system for comparative user
studies on robot verbal behavior. InProceedings on the 15th International Symposium on
Robot and Human Interactive Communication, pages 129–134, Hatfield, United Kingdom,
September 2006. IEEE, IEEE Press.

Bielefeld University

http://icewing.sf.net

228 Bibliography

[LWT94] Christopher Lindblad, David Wetherall, and David L. Tennenhouse. The VuSystem: A
Programming System for Visual Processing of Digital Video.In ACM Multimedia, pages
307–314, 1994.

[Lö04] Frank Lömker.Lernen von Objektbenennungen mit visuellen Prozessen. PhD thesis, Uni-
versität Bielefeld, Technische Fakultät, 2004.

[MBCC+05] F. Michaud, Y. Brosseau, C. C. Côté, D. Letourneau, P. Moisan, A. Ponchon,
C. Raievsky, J.-M. Valin, E. Beaudry, and F. Kabanza. Modularity and integration in the de-
sign of a socially interactive robot. InIEEE International Workshop on Robot and Human
Interactive Communication, ROMAN., pages 172–177. IEEE, August 2005.

[MC05] Rene Meier and Vinny Cahill. Taxonomy of DistributedEvent-Based Programming Sys-
tems.The Computer Journal, 48(5):602–626, 2005.

[McC04] Steve McConnell.Code Complete, Second Edition: A Practical Handbook of Software
Construction. Microsoft Press, June 2004.

[Mey97] Bertrand Meyer.Object-Oriented Software Construction, Second Edition. Prentice Hall,
Inc., 1997.

[MFP06] Gero Mühl, Ludger Fiege, and Peter Pietzuch.Distributed Event-Based Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[MGS+07] Thomas Michalke, Alexander Gepperth, Martin Schneider, Jannik Fritsch, and Christian
Goerick. Towards a human-like vision system for resource-constrained intelligent cars.
In Gerhard Sagerer and Monique Thonnat, editors,The 5th International Conference on
Computer Vision Systems (ICVS). Bielefeld University, March 2007.

[Mic08] Microsoft. Distributed component object model (dcom) remote protocol specification.
Technical report, Microsoft corporation, 2008.

[Min86] Marvin Minsky. The society of mind. Simon & Schuster, Inc., 1986.

[Min07] Mindmakers.org. OpenAIR: Specification and reference implementations, August 2007.
http://mindmakers.org/mindmakers/openair.

[MK02] Holger Meyer Maike Klettke. XML & Datenbanken. Konzepte, Sprachen und Systeme.
Dpunkt Verlag, December 2002.

[MLB07] Mark W. Maimone, P. Chris Leger, and Jeffrey J. Biesiadecki. Overview of the mars ex-
ploration rovers’ autonomous mobility and vision capabilities. InProceedings of the IEEE
International Conference on Robotics and Automation (ICRA) Space Robotics Workshop,
Rome, Italy, April 2007.

[MPV00] Luis Montano, Francisco José García Peñalvo, and José Luis Villarroel. Using the time
petri net formalism for specification, validation, and codegeneration in robot-control ap-
plications. I. J. Robotic Res., 19(1):59–76, 2000.

[MRB03] Asa MacWilliams, Thomas Reicher, and Bernd Brügge.Decentralized coordination of
distributed interdependent services. InIEEE Distributed Systems Online – Middleware ’03
Work in Progress Papers, Rio de Janeiro, Brazil, June 2003.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language overview.
Technical report, The World Wide Web Consortium (W3C), 2004.

Sebastian Wrede

http://mindmakers.org/mindmakers/openair

Bibliography 229

[MvNV +01] J. Maassen, R. van Nieuwpoort, Ronald Veldema, H.E. Bal,T. Kielmann, C. Jacobs,
and R. Hofmann. Efficient java rmi for parallel programming.ACM Transactions on
Programming Languages and Systems, 23(6):747–775, 2001.

[NC07] Henrik Frystyk Nielsen and George Chrysanthakopoulos. Decentralized software service
protocol. Technical report, Microsoft Corporation, 2007.

[Net87] Network Working Group. RFC 1034: Domain names - concepts and facilities. Technical
report, The Internet Engineering Task Force, 1987.

[Neu94] B. Clifford Neuman.Scale in Distributed Systems, pages 463–489. IEEE Computer Soci-
ety, Los Alamitos, CA, 1994.

[Neu04] Bernd Neumann. Cognitive Vision - Remarriage of Computer Vision and AI?KI, 18(1):47–
49, 2004.

[NL04] Eric Newcomer and Greg Lomow.Understanding SOA with Web Services. Addison-
Wesley Professional, 2004.

[NSSK90] H. Niemann, G. Sagerer, S. Schröder, and F. Kummert. Ernest: A semantic network
system for pattern understanding.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12:883–905, 1990.

[OAS06] OASIS. Reference model for service oriented architecture 1.0. Technical report, OASIS,
2006.

[OAS07] OASIS Open Composite Services Architecture (CSA) Member Section. Sca assembly
model specification v1.00. Technical report, OASIS Open Composite Services Architec-
ture (CSA) Member Section, 2007.

[Obj00] Object Data Management Group (ODMG).The Object Data Standard: ODMG 3.0. Mor-
gan Kaufmann, 2000.

[OEF+06] Ott, O. Eiberger, W. Friedl, B. Bäuml, U. Hillenbrand, Ch. Borst, A. Albu-Schäfer,
B. Brunner, H. Hirschmüller, S. Kielhöfer, R. Konietschke,M. Suppa, T. Wimböck,
F. Zacharias, and Gerhard Hirzinger. A humanoid two-arm system for dexterous manipu-
lation. IEEE-RAS International Conference on Humanoid Robots, pages 276 – 283, 2006.

[(OM08] Object Management Group (OMG). Robotics domain task force.
http://www.omg.org/robotics/, May 2008.

[Ore99] Anders Orebäck. Components in Intelligent Robotics. Technical report, Royal Institute of
Technology, KTH Stockholm, 1999.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules.Communi-
cations of the ACM, 15:1053 – 1058, 1972.

[PB04] Robert Dupuis Pierre Bourque, editor.SWEBOK. American National Standards Institute
(ANSI), 2004.

[Per08] Carlos E. Perez. SOA rediscovering modularity.http://www.manageability.org,
May 2008.

[Pet81] James Lyle Peterson.Petri Net Theory and The Modeling of Systems. Prentice Hall, Inc.,
Englewood Cliffs, Massachusetts„ 1981.

[Pet05] Peter Tabeling.Softwaresysteme und ihre Modellierung: Grundlagen, Methoden und Tech-
niken. Springer Verlag, Berlin, 2005.

Bielefeld University

http://www.omg.org/robotics/
http://www.manageability.org

230 Bibliography

[PPV00] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empirical studies of software
engineering: a roadmap. InICSE ’00: Proceedings of the Conference on The Future of
Software Engineering, pages 345–355, New York, NY, USA, 2000. ACM.

[PUV03] W. Ponweiser, G. Umgeher, and M. Vincze. A Reusable Dynamic Framework for Cognitive
Vision Systems. InWorkshop on Computer Vision System Control Architectures, Graz,
2003. In conjunction with ICVS2003.

[PVWB04] Wolfgang Ponweiser, Markus Vincze, Sebastian Wrede, and Christian Bauckhage.
Overview of software frameworks for use in cognitive visionapproaches. Techni-
cal report, EC Vision, Network of Excellence, 2004. ECVision Specific Action 13-2,
http://www.ecvision.info.

[PVZ05] Wolfgang Ponweiser, Markus Vincze, and Michael Zillich. A software framework to in-
tegrate vision and reasoning components for cognitive vision systems.Robotics and Au-
tonomous Systems, 52:101–114, July 2005. Advances in Robot Vision.

[RBP04] M. Ribo, M. Brandner, and A. Pinz. A flexible softwarearchitecture for hybrid tracking.
Journal of Robotics Systems, 21(2):53–62, 2004.

[RHS07] Helge Ritter, Robert Haschke, and Jochen J. Steil.Perspectives of Neural-Symbolic Inte-
gration, chapter A Dual Interaction Perspective for Robot Cognition: Grasping as a Rosetta
Stone. Computational Intelligence. Springer, 2007.

[Rit] H. Ritter. The graphical simulation toolkit neo/nst. http://www.TechFak.Uni-
Bielefeld.DE/ags/ni/projects/simulation_and_visual/neo/neo_e.html.

[RoS08] RoSta. Robot standards and reference architectures, 2008. http://www.robot-standards.eu/.

[Roy87] W. W. Royce. Managing the development of large software systems: concepts and tech-
niques. InICSE ’87: Proceedings of the 9th international conference on Software Engi-
neering, 1987.

[RPJ+03] K. Runapongsa, J.M. Patel, H.V. Jagadish, Y. Chen, and S.Al-Khalifa. The michigan
benchmark: Towards XML query performance diagnostics. InProc. VLDB Conference.
Morgan Kaufmann, 2003.

[RRH99] A. Rares, M.J.T. Reinders, and E.A. Hendriks. Mapping Image Analysis Problems on
Multi-Agent-Systems. Technical report, Information and Communication Theory Group,
TU Delft, Nov 1999.

[RTF00] R. Roy Thomas Fielding.Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000.

[SC97] Mary Shaw and Paul Clements. A field guide to boxology:Preliminary classification of
architectural styles for software systems.compsac, 00:6, 1997.

[Sch06a] Christian Schlegel. Communication patterns as key towards component-based robotics
task. International Journal of Advanced Robotic Systems, 3(1):049–054, 2006.

[Sch06b] Douglas Schmidt. Real-Time CORBA programming with TAO (The ACE ORB), 2006.
http://siesta.cs.wustl.edu/~schmidt/TAO.html.

[Sch08] Jan Schaefer. Visualization and interaction server - a user interaction service for a cognitive
system. Technical report, Bielefeld University, 2008.

[Sea99] Carolyn B. Seaman. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on Software Enginering, 25:557–572, 06/1999 1999.

Sebastian Wrede

http://www.ecvision.info
http://siesta.cs.wustl.edu/~schmidt/TAO.html

Bibliography 231

[SEI08] Carnegie Mellon University Software Engineering Institute. Uls systems glossary.
http://www.sei.cmu.edu/uls/glossary.html, Mai 2008.

[SFH+00] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. ari, L. Encarnac, a Gervautz, and W. Pur-
gathofer. The studierstube augmented reality project. Technical report, Vienna University
of Technology, 2000.

[SG96] Mary Shaw and David Garlan.Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River, New Jersey, 1996.

[SH01] Douglas C. Schmidt and Stephen D. Huston.C++ Network Programming, Volume 1:
Mastering Complexity with ACE and Patterns. Addison Wesley Professional, 2001.

[SHH+08] Joachim Schmidt, Nils Hofeman, Axel Haasch, Jannik Fritsch, and Gerhard Sagerer. In-
teracting with a mobile robot: Evaluating gestural object references. Nice, France, Septem-
ber 2008.

[SHS07] T.P. Spexard, M. Hanheide, and G. Sagerer. Human-oriented interaction with an anthropo-
morphic robot.IEEE Transactions on Robotics, 23:852–862, 2007.

[SHWP07] H. Siegl, M. Hanheide, S. Wrede, and A. Pinz. An augmented reality human-computer
interface for object localization in a cognitive vision system. Image and Vision Computing,
Special Issue on The Age of Human-Computer-Interaction, 25(12):1895–1903, December
2007.

[Sie00] Jon Siegel.CORBA 3. Fundamentals and Programming. John Wiley & Sons, Inc., 2000.

[Sie08] Frederic Siepmann. Refactoring der systemarchitektur eines mobilen roboters für die
multi-modale mensch-roboter interaktion. Diplomarbeit,Bielefeld University, Bielefeld,
Germany, March 2008.

[Sim08] CMLabs Simulations. Vortex training simulators, 2008.
http://www.vortexsim.com/.

[SK98] Ian Sommerville and Gerald Kotonya.Requirements Engineering: Processes and Tech-
niques. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[Sle06] Sleepycat Software. Berkely DB XML, 2006.
http://www.sleepycat.com/products/xml.shtml.

[Slo98] Aaron Sloman. Damasio, descartes, alarms and meta-management.In Proceedings IEEE
Conference on Systems, Man, and Cybernetics, 3:2652–2657, 1998.

[SM99] Douglas C. Schmid Sumedh Mungee, Nagarajan Surendran. The design and performance
of a corba audio/video streaming service. InHICSS ’99: Proceedings of the Thirty-second
Annual Hawaii International Conference on System Sciences-Volume 8, page 8043, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[SMC99] Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured design.IBM
Systems Journal, 38:231–256, 1999.

[Som01] Ian Sommerville.Software Engineering. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 6th edition, 2001.

[SP04] H. Siegl and A. Pinz. A Mobile AR kit as a Human ComputerInterface for Cognitive
Vision. In Int. Workshop on Image Analysis for Multimedia InteractiveServices, Lissabon,
2004.

Bielefeld University

http://www.sei.cmu.edu/uls/glossary.html
http://www.vortexsim.com/
http://www.sleepycat.com/products/xml.shtml

232 Bibliography

[SSP00] G. Socher, G. Sagerer, and P. Perona. Bayesian reasoning on qualitative descriptions from
images and speech.Image and Vision Computing, 18:155–172, 2000.

[SSRB00] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Ar-
chitecture, volume 2: Patterns for Concurrent and Networked Objects. John Wiley & Sons
Ltd., 2000.

[SSS08] Thorsten P. Spexard, Frederic H. K. Siepmann, and Gerhard Sagerer. A memory-based
software integration for development in autonomous robotics. InProceedings of the 10th
International Conference on Intelligent Autonomous Systems Intelligent Autonomous Sys-
tems, number 10, Baden-Baden, Germany, 2008. IOS-Press.

[SST86] Steven Shafer, Anthony (Tony) Stentz, and Chuck Thorpe. An architecture for sensor fu-
sion in a mobile robot. Technical Report CMU-RI-TR-86-09, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, April 1986.

[Sun99] Sun Microsystems, Inc. Jini technology architectural
overview. Technical report, Sun Microsystems, Inc., 1999.
http://www.sun.com/software/jini/whitepapers/architecture.html.

[Sun08] Sun Microsystems, Inc. Jini network technology. WWW, Feb 2008.
http://java.sun.com/developer/products/jini/index.jsp.

[SV01] D. C. Schmidt and S. Vinoski. Object Interconnections: CORBA
and XML, Part 1: Versioning. C/C++ Users Journal, May 2001.
http://www.cs.wustl.edu/~schmidt/report-doc.html.

[TB01] Zahir Tari and Omran Bukhres.Fundamentals of Distributed Object Systems. Wiley-
Interscience, 2001.

[TBF+06] D. Thirde, M. Borg, J. Ferryman, F. Fusier, V. Valentin, F. Bremond, and M. Thonnat.
A real-time scene understanding system for airport apron monitoring. In Proceedings of
the IEEE International Conference on Computer Vision Systems (ICVS ’06), pages 26–26,
January 2006.

[The05] The ActIPret Consortium. The ActIPret Project, 2005. IST-2001-32184,
http://robsens.acin.tuwien.ac.at/actipret/.

[The08] The Mathworks, Inc. The MATLAB Image Processing Toolbox, 2008. Software and
documentation available athttp://www.mathworks.com/.

[Tho05] Thomas Freytag. WoPeD - workflow petri net designer.Technical report, University of
Cooperative Education (Berufsakademie) Karlsruhe, 2005.

[TLPD05] Kristinn R. Thórisson, Thor List, Christopher Pennock, and John DiPirro. Whiteboards:
Scheduling blackboards for semantic routing of messages & streams. InAAAI-05 Work-
shop on Modular Construction of Human-Like Intelligence, Pittsburgh, PA, July 2005.
Twentieth Annual Conference on Artificial Intelligence.

[TM98] E. Tulving and H. J. Markowitsch. Episodic and declarative memory: role of the hip-
pocampus.Hippocampus, 3:198–204, 1998.

[TM08] Inc. The MathWorks. Matlab. Technical report, The MathWorks, Inc., 2008.

[TMA +95] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, Jr. E. James Whitehead,
and Jason E. Robbins. A component- and message-based architectural style for gui soft-
ware. InICSE ’95: Proceedings of the 17th international conferenceon Software engi-
neering, 1995.

Sebastian Wrede

http://www.sun.com/software/jini/whitepapers/architecture.html
http://java.sun.com/developer/products/jini/index.jsp
http://www.cs.wustl.edu/~schmidt/report-doc.html
http://robsens.acin.tuwien.ac.at/actipret/
http://www.mathworks.com/

Bibliography 233

[TMD+06] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V.Pratt, P. Stang, S. Stro-
hband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C.Rummel, J. van Niekerk,
E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and
P. Mahoney. Stanley: The robot that won the darpa grand challenge. Journal of Field
Robotics, 23(9):661–692, September 2006.

[TPLD04] K. R. Thórisson, C. Pennock, T. List, and J. DiPirro. Artificial intelligence in computer
graphics: A constructionist approach.Computer Graphics Quarterly, ACM SIGGRAPH,
38:26–30, 2004.

[TS08] TC-SOFT. Technical comittee on software engineering for robotics and automation, 2008.
http://robotics.unibg.it/tcsoft/index.htm.

[USEK02] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar. Miro - middleware for mobile
robot applications.Robotics and Automation, IEEE Transactions on, 18(4):493–497, Aug
2002.

[VAM04] VAMPIRE Consortium. VAMPIRE: Visual Active MemoryProcesses and Interactive Re-
trieval, Annex 1 - "Description of Work". IST-2001-34401, sep 2004.

[VAM06] VAMPIRE Consortium. VAMPIRE: Visual Active MemoryProcesses and Interactive Re-
trieval, Feb 2006. IST-2001-34401,http:/www.vampire-project.org.

[Ver91] David Vernon. Machine vision: automated visual inspection and robot vision. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[Ver04] David Vernon. European Research Network for Cognitive Computer Vision Systems, Mar
2004.http://www.ecvision.info.

[Ver08] David Vernon. Cognitive vision: The case for embodied perception.Image Vision Com-
puting, 26(1):127–140, 2008.

[VJ01] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
In Proceedings of the 2001 Conference on Computer Vision and Pattern Recognition, vol-
ume 1, pages 511–518, Kauai, Hawaii, December 2001.

[VNE+00] Richard Volpe, Issa A.D. Nesnas, Tara Estlin, Darren Mutz, Richard Petras, and Hari Das.
Claraty: Coupled layer architecture for robotic autonomy.Technical report, Jet Propulsion
Laboratory, California Institute of Technology, 2000.

[vR04] Guido van Rossum. Extending and embedding the pythoninterpreter, release 2.3.4.
http://docs.python.org/ext/ext.html, 2004. last checked 05/30/2008.

[vR08] Guido van Rossum. Python/c api reference manual, release 2.5.2.
http://docs.python.org/api/api.html, 2008. last checked 05/30/2008.

[Vxl08] C++ libraries for computer vision research and implementation, Jan 2008.
http://vxl.sourceforge.net/.

[WA01] Jim Waldo and Ken Arnold.The Jini specifications. Jini technology series. Addison-Wes-
ley, Reading, MA, USA, second edition, 2001.

[Wal05] P. Wallich. Tools & toys: I, roboticist.IEEE Spectrum, 42(10):63–65, October 2005.

[WFBS04] Sebastian Wrede, Jannik Fritsch, Christian Bauckhage, and Gerhard Sagerer. An XML
Based Framework for Cognitive Vision Architectures. InProceedings International Con-
ference on Pattern Recognition, number 1, pages 757–760, 2004.

Bielefeld University

http:/www.vampire-project.org
http://www.ecvision.info
http://docs.python.org/ext/ext.html
http://docs.python.org/api/api.html

234 Bibliography

[WHWS06] Sebastian Wrede, Marc Hanheide, Sven Wachsmuth, and Gerhard Sagerer. Integration
and Coordination in a Cognitive Vision System. InProceedings of International Confer-
ence on Computer Vision Systems, St. Johns University, Manhattan, New York City, USA,
2006. IEEE.

[WJ05] R. E. Wray and Jones. An introduction to soar as an agent architecture. InIn Cognition
and Multi-Agent Interaction: From Cognitive Modeling to So- cial Simulation, ed. R. Sun.,
2005.

[WK03] Michael Weber and Ekkart Kindler. The petri net markup language. InPetri Net Technology
for Communication Based Systems., LNCS 2472. Springer-Verlag, 2003.

[WKF07] Britta Wrede, Marcus Kleinehagenbrock, and JannikFritsch. Towards an integrated robotic
system for interactive learning in a social context. InProc. IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems - IROS 2006, Bejing, 2007.

[WL08] Sebastian Wrede and Ingo Lütkebohle. Integration expertise in hri research: A first study.
In ICRA’08 Workshop on Software Engineering for Robotics III. IEEE RAS TC-SOFT,
May 2008.

[WMLF98] P. Wyckoff, S. W. McLaughry, T. J. Lehmann, and D. A.Ford. T spaces.IBM Systems
Journal, 37(3):454–474, 1998.

[WPB+04] Sebastian Wrede, Wolfgang Ponweiser, Christian Bauckhage, Gerhard Sagerer, and
Markus Vincze. Integration Frameworks for Large Scale Cognitive Vision Systems - An
Evaluative Study. InProceedings International Conference on Pattern Recognition, num-
ber 1, pages 761–764, 2004.

[WWH06] Sven Wachsmuth, Sebastian Wrede, and Marc Hanheide. Coordinating Interactive Vision
Behaviors for Cognitive Assistance.Computer Vision and Image Understanding, 2006.

[WWHB05] Sven Wachsmuth, Sebastian Wrede, Marc Hanheide, and Christian Bauckhage. An
Active Memory Model for Cognitive Computer Vision Systems.KI-Journal, Special Issue
on Cognitive Systems, 19(2):25–31, 2005.

[WWWK97] Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C.Kendall. A note on distributed
computing. InMOS ’96: Selected Presentations and Invited Papers Second International
Workshop on Mobile Object Systems - Towards the Programmable Internet, pages 49–64,
London, UK, 1997. Springer-Verlag.

[Yos04] Sakagami Yoshiaki. Intelligent function of humanoid robot asimo-system and integration
of vision auditory behavior.Journal of the Society of Automotive Engineers of Japan,
58:22–27, 2004.

[Zer06] ZeroC Inc. The Internet Communications Engine, ZeroC Inc., 2006.
http://www.zeroc.com/ice.html.

[ZGN04] T. Zinßer, Ch. Gräßl, and H. Niemann. Efficient Feature Tracking for Long Video Se-
quences. In C. E. Rasmussen, H. H. Bülthoff, M. A. Giese, and B. Schölkopf, editors,
Pattern Recognition, 26th DAGM Symposium, volume 3175 ofLNCS, pages 326–333,
Tübingen, Germany, September 2004. Springer-Verlag, Berlin, Heidelberg, New York.

Sebastian Wrede

http://www.zeroc.com/ice.html

235

List of Figures

1.1 Early vision of a domestic service robot. 4
1.2 Exemplary applications of cognitive systems technology. 6
1.3 The three viewpoints on software integration in cognitive systems research. 8
1.4 Evolution of the integration functionality. 11
1.5 Structure of this thesis. 13

2.1 Embodied cognitive systems combine perception and production for interaction. . . . 19
2.2 Assisting humans through an augmented reality system. 22
2.3 Conceptual architecture of the visual active memory andits processes. 24
2.4 Object and action recognition in an unconstrained officeenvironment. 27
2.5 Functional dependency concepts for consistency validation. 28

3.1 System-level integration as experimental research activity in collaborative projects. . 32
3.2 Feature-oriented integration. 35
3.3 CWSHRI: Interdisciplinary background of participants. 36
3.4 CWSHRI: Number of dependencies in components developedby participants. 37
3.5 CWSHRI: Use of distributed systems middleware. 37

4.1 Schema of a distributed system and the role of middleware. 43
4.2 C2 architecture. 57

5.1 Key aspects for software integration in cognitive systems research projects. 61
5.2 Selected research areas related to cognitive systems and their integration. 68
5.3 Exemplary screenshot of the HALCON development environment. 70
5.4 Role of stubs and skeletons in RPC-style middleware. 72
5.5 Message-oriented middleware architecture. 73
5.6 REST-style client-server interaction. 75
5.7 Overview of a standard CORBA architecture. 77
5.8 Aspect assessment for TAO. 78
5.9 Software architecture of an exemplary cognitive visionsystem utilizing Psyclone. . . 80
5.10 Psyclone assessment. 82
5.11 Software architecture of Spartacus, integrated utilizing MARIE. 85
5.12 MARIE assessment. 87
5.13 Qualitative comparison of the selected approaches. 88

6.1 Functional components of an event-based integration infrastructure. 95
6.2 The adopted event-based models. 96
6.3 Contrasting XML-RPC with document/literal information encoding. 99
6.4 Accessing common information at arbitrary locations with XPath. 101

Bielefeld University

236 List of Figures

6.5 Document-oriented event model. 104
6.6 Event notification matching and transformation. 111
6.7 Conceptual architecture of the event observation model. 112
6.8 Class diagram for the tree-based event matching and transformation model. 114
6.9 Implicit invocation architecture utilizing a unified event bus. 115
6.10 Architecture of the basic event-based communication model. 117
6.11 Exemplary visualization of hierarchical scoping. 119
6.12 Multi-threaded dispatching of events. 121

7.1 Domain-specific integration models. 125
7.2 Exemplary resource reference specified in the introduced URI scheme 128
7.3 Exemplary scoping tree constructed from IDI URIs. 129
7.4 Exemplary architecture of a simple pattern-based vision system. 132
7.5 Software design of interaction patterns in the IDI architecture. 135
7.6 Exemplary cognitive vision system utilizing an active memory. 138
7.7 Interaction between memory processes is mediated via active memory instances. . . 141
7.8 Systemic coupling of extrinsic and intrinsic memory processes. 143
7.9 Conceptual architecture of the event-based memory model. 146
7.10 Fundamental processing steps in the active memory. 148
7.11 Effecting control of system behaviors with Petri nets.. 157
7.12 Interactive modelling and simulation of Petri nets 158
7.13 Exemplary XML schema used in the VAMPIRE project. 159
7.14 The IceWing image processing toolkit. 161
7.15 A distributed IceWing application for generating mosaics using generic IDI plugins. . 163

8.1 Hardware setup of the AR gear. 170
8.2 Screenshots of the user’s augmented view while performing prototypical use cases. . 172
8.3 Functional architecture of the VAMPIRE assistance system. 174
8.4 Examples of 3D pose tracking and action recognition in the integrated system. 176
8.5 Anchoring maps percepts to reliable symbols in a memory space. 177
8.6 Architectural sketch of the cognitive assistant 185
8.7 Information-driven control loops in the cognitive assistant system. 186
8.8 Exemplary Petri net model for error recovery during interaction. 188
8.9 Java runtime profile of Spread-based Port implementation. 190
8.10 Query performance of the used DBXML database backend for memory elements. . . 191
8.11 Annotation of user’s actions and recorded system activities during user study. 192
8.12 Selected results of overall system evaluation 193

9.1 The BIRON robot companion. 198
9.2 A robotics system architecture based on the IDI approach. 199
9.3 System architecture of an interactive face memory for interactive robots. 201
9.4 Activity diagram for basic face memory use cases. 203
9.5 The head of BARTHOC without its artificial skin. 205
9.6 Grasping as a “rosetta stone” for research on cognitive models. 206

10.1 The information-driven integration architecture from a system-engineering perspective. 212

Sebastian Wrede

	Software Integration in Cognitive Systems - A First Encounter
	Cognitive Systems for Human-Machine-Interaction
	Viewpoints on Software Architectures for Integrated Cognitive Systems
	Research Questions, Objectives and Approach
	Outline and Contributions

	A Systems Perspective on a Cognitive Vision Project
	The Project Perspective: The VAMPIRE Endeavour
	Cognitive Vision - An Emerging Discipline
	Modularity and Multiple Computation
	Dynamic Coordination and Adaptation
	From Sensorial to Symbolic Information

	The VAMPIRE Project
	The Human-In-The-Loop
	The Visual Active Memory Concept

	Summary

	The Collaborative Perspective
	The Scenario-Driven Research Process
	Software Development and Scenario-Driven Research
	Software Integration as Process

	The Social Complexity of Integration
	Collaboration and Usability Aspects
	Mutual Understanding and Agreement

	Summary

	The Technological Perspective
	The Consequences of Parallelism
	Distributed Systems and Software Integration
	The Role of Middleware
	Requirements of Distributed Systems

	The Relevance of Architecture
	Modularity as a Key to Software Quality
	Software Coupling and Granularity
	Architectural Styles and Software Integration

	Summary

	Requirements and Architectures for Integration of Cognitive Systems
	Synopsis of Requirements
	Functional Aspects
	Non-Functional Aspects
	Implementation-specific and Economic Aspects

	Software Architectures and Middleware for Cognitive Systems
	Domain-specific Architectures
	General Middleware Architectures

	Evaluation of Selected Approaches
	Object-oriented Middleware
	Cognitive Vision Middleware
	Cognitive Robotics Middleware

	Conclusion

	The Information-Driven Integration Approach
	Adopting Event-Based System Models
	The Manifesto of Information-Driven Integration
	Strategic Aims
	The Service-Oriented Viewpoint
	The Event-Driven Perspective
	Guide to the Reader

	Document Model
	Information-oriented Representation
	XML Processing and Extensibility
	Exploiting Reflection

	Event Model
	Event Metadata
	Optimized Packaging of Binary Data
	Domain Events

	Observation Model
	A Hybrid Subscription Model
	Transformation-based Event Filtering

	Notification Model
	Implicit Invocation
	Visibility and Scopes
	Dynamic Dispatch of Event Notifications
	Port-based Optimization

	Summary

	From Event-based to Cognitive Systems
	Resource Model
	Services, Interfaces, and Components
	Naming Resources
	The Federated Naming Service

	Interaction Model
	Connectors and Service Interfaces
	Event-based Realization
	Adaptation Patterns

	Memory Model
	Concepts
	The ActiveMemory Architecture

	Coordination Model
	Formalizing Coordination with Petri Nets
	Development, Analysis, and Execution

	Domain Model
	XML Type Libraries
	Application Adapters for Computer Vision Tools
	Application Specific Libraries

	Summary

	Experimental Evaluation
	The VAMPIRE System
	Augmented-Reality for Context-Aware Assistance
	An Augmented-Reality Interface for Human-Machine Interaction
	The Assistance Scenario

	An Information-Driven Software Architecture
	Functional View
	Development View
	Service View
	Physical View
	Interaction Scenarios

	System Evaluation
	Performance Considerations
	User Studies

	Conclusion

	Interactive Cognitive Robots - A New Domain
	The Cognitive Robot Companion
	System Architecture
	A Face Memory for a Sociable Robot
	Interaction Scenario

	An Anthropomorphic Robot for HRI Research
	A Control Architecture for Manual Intelligence
	Summary

	Synopsis
	Conclusion
	Information-driven Integration in a Nutshell
	Facilitating Collaborative Development

	Insights and Observations
	The Functional Viewpoint
	The Collaborative Viewpoint
	The Engineering Viewpoint

	Some Answers and New Questions

	Bibliography
	List of Figures

