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Abstract

With computer science more and more leaving the traits dtbsgplalgorithms and
distinct disciplines towards complex intelligent and greted systems, challeng-
ing research questions are in reach to be explored in nopéitapion scenarios.
Under the term “cognitive systems” and its subfields of “dtiga robotics” and
“cognitive vision”, research recently made a significar@pldorward regarding
these challenges. Experimental cognitive systems rdséatbus characterized
by a flexible composition of different algorithms and the elepment of interdis-
ciplinary models for artificial cognition.

Integrated cognitive systems allow us to address scienqtiféstions that go far be-
yond what can be achieved with solitary algorithms. For gdatsuch systems
include personal robot “companions” or assistance systeatsare embedded in
the world and permit interaction with humans and their envinent. Integrated
cognitive systems allow us to test hypothetical models ghdmn in the “real”
world. Owing to the innate complexity of these systems, tjoirs of software
integration and software architecture have become rdseativities in their own
right. Consequently, topics and methods known from softveanrd systems engi-
neering need to be adopted for research on experimentaitivegsystems.

This thesis addresses the questions how the complexityftwase architectures
for cognitive systems can be reduced and how joint integmdti large-scale re-
search projects can be facilitated. It approaches thessigng from three view-
points: the functional, collaborative, and engineeringapoint. Acknowledging
their importance leads to the design of a coherent and cdrapséve architectural
concept that is introduced with this dissertation. Thisrapph fuses paradigms
of event-driven and service-oriented architectures wimdin-specific support
for cognitive systems, yielding a novel concept: informatdriven integration.
The resulting software architecture facilitates joint@lepment and integration
by providing on the one hand good support for the functioaquirements of ex-
perimental cognitive systems and on the other hand by étplconsidering the
peculiarities of research environments as integrationexts.

The application of the information-driven integrationatecture in various cog-
nitive systems projects is presented as strong evidendbdappropriateness of
its design and implementation. This thesis bridges the gapden single algo-
rithms and their respective component developers on thesiglge and system
integration and evaluation on the other by means of a notegjiating approach
supporting the collaborative construction of experimeodgnitive systems.

Bielefeld University



2 Contents

Sebastian Wrede



1. Software Integration in Cognitive
Systems - A First Encounter

In theory there is no difference between theory
and practice, but in practice there is.
— Anonymous

Cognitive Systems, Interaction, Robotid$e overarching vision of these three areas of current Eu-
ropean research [Eur05] is to develop artificial systems dh@ able to act within the real world,
either autonomously or in cooperation with humans. An examlass of applications within this
paradigm are autonomous service robots, see F[gure 1.hfan@ent imagination. These kind of
systems well-know from science-fiction literature are aadreof novelists and researchers since the
earliest days of fiction and computer science until now. @ligh today in the automotive industry
the number of deployed robot systems compared to employedimuvorkers increased to the ratio
of one to ten[[Gaf(7] and robots like the semi-autonomous AAtrs rovers Spirit and Opportu-
nity [MLBO7] are capable of exploring the solar system, sssful examples of cognitive systems
like the envisioned service robot that are deployed in tlad weorld and sharing their environment
with humans are still rare.

Over the last two decades, some of the innate challengesidinguautonomous systems stood the
test of time. Robust, while at the same time fast enough kger@eption and understanding of the
robot’s environment or speech recognition in noisy surdings are exemplary problems, researchers
are still faced with nowadays. The integration and coottitimaof the manifold behaviors of a com-
plex robot, the task of action selection or the adaptatiosystem behavior to unknown situations
while assuring high reactivity are equally important reskdopics which are not fully explored yet
within the domains of cognitive systems research. To britigegap between the vision of cognitive
systems and the existing instantiations of these concegientists all around the world covering a
very broad range of disciplines are currently concerneth wie development of systems that need
to combine a wide variety of new functionality into novel &pations in an inherently interdisci-
plinary approach. Following the cognitive systems panadigrecent research projects develop a
large number of innovative applications like autonomousiales [TMDT0€] or pro-active driver as-
sistance systems [MG®7], multimodal interaction systems that are capable a$tisg people with
dementia by observing and guiding theém [HBPMO07] as well agaillance systems, e.g., capable of
monitoring aircraft servicing operations at airpofts [THIH] - just to mention a few of them.

One of these recent endeavors to realize instances of sat@gnsy from the area of cognitive inter-
action technology and the inception for this thesis was tAMFIRE project [VAMOE], which has
been an international collaborative research projectddria/ the European Union (EU) on cognitive
computer vision. One of its primary aims was to constructréfi@al cognitive system that is able to
provide context aware assistance through a head mountgldydi® a human user by understanding
and memorizing what the user sees and recognizing the adt@oarries out in a natural environment.

Bielefeld University



While a large part of the research conducted i
the VAMPIRE project has been conducted in aug
mented reality, context awareness, computer v
sion, pattern recognition, symbolic reasoning, an
knowledge representation, an additional researg
question was addressed to provide an avenue fo#
the further advancement of cognitive systems: if@

is the question of finding architectural principles

development methodologies, and software techg
nologies for the integration and software devel-
opment process within interdisciplinary cognitive B
systems projects that shall enable researchers
different background to jointly work on an large-
scale software-intensive research systems.

The IEEE Standard Glossary of Software Engi
neering Terminologyl[TIEEY0] defines integration
as ‘the process of combining software compo-

nents, hardware components, or both, into afjgyre 1.1.:Early vision of a domestic service
overall systeth Although software integration robot [Wal0%], acting autonomously
has been an important topic for business software in @ human-centered environment.
vendors and computer science research over the

last decades and has been studied at different levels ahatish, it is a rather new trend that software
development and integration within the field of autonomausliigent systems is explicitly focused
by the scientific community, e.g., in robotics with the serid Software Development and Integra-
tion (SDIR) [Bru05,[Bru07a, BruO7h, BruO8a] workshops. Basedesearch mainly conducted in
the VAMPIRE project, this thesis takes up on this emergimgctcaddressing the specific challenges
of Software Integration in collaborative interdisciplinary research projects ogritive systems and
presenting a coherent approach to the software integratiumctional modules in a consistent archi-
tectural approach for this domain. The implicit questioattheeds to be addressed is how to manage
the ever growingcomplexityresulting from advanced application scenarios and yet nmbegrated
functionality in the context of experimental research thaitherwise not explicitly considering soft-
ware architecture and software integration. The intricathitectural and technological challenges
in this task and their specifics with regard to collaboraiiotarge-scale cognitive systems research
projects such as VAMPIRE or COGNIRON [Cog06] will be analyZeom three distinct viewpoints:
afunctional collaborativeandarchitecturalperspective.

The resultingnformation-Driven Integration (IDI) architecture that is presented in this dissertation
carefully considers the insights gained during the coretlcequirement analysis. Conceptually, the
IDI approach exploits the content of exchanged high-lerrmation in the software architecture
of cognitive systems for effecting coordinated interatcsidoetween functional modules. It thereby
raises the level of abstraction for the design and developwfecomplex distributed software archi-
tectures compared to generic middleware, and providedifunat services for collaborative software
development in joint research projects on experimentahitivg systems. Its design adopts principles
of service-oriented and event-driven architectures adgpturrent enterprise integration technolo-
gies like group communication middleware, state-of-thtedatabase and XML technologies as well
as formal methods for describing discrete event-base@msgst The introduced architectural models
allow for a modular development of loosely-coupled cogeisystems architectures.
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1. Software Integration in Cognitive Systems - A First Enuen 5

Research on the IDI approach was conducted coevolutiomaoyghout the collaborative develop-
ment process in the VAMPIRE project. A central quality ofamhation-driven integration is that it
facilitates an efficient software development process ti@erdisciplinary cognitive systems research,
which permits researchers to develop complex distributévare architectures for real-world cogni-
tive systems. The necessary requirements analysis, tietoged integration models and the resulting
software architecture are the main contributions of thesidh While the proposed architecture has
already been used successfully in several experimentenels projects aiming at real-world proto-
type systems, an emphasis will be put on a description ofghistance system the author developed
in close collaboration with the partners in the VAMPIRE ] This initial application served as an
iterative testbed and evaluation scenario for the develapehitectural approach.

Because the scope of cognitive systems research is exyrémueld, the following section introduces
the subset of cognitive systems, which are in the center ptorrent and our envisioned research.
While still being a broad area for research, cognitive systaiming atCognitive Interaction Technol-
ogy (CIT) define the actual application context that is addrdsethe presented approach. Having
introduced the integration domain, subsequently the theegpectives on integration that contribute to
the innate complexity of software development and intégmah cognitive systems research projects
will be introduced.

In the remainder, the research questions this thesis addres well as its objectives will be sum-
marize and a short overview of the followed technical apgho@ill be given. To conclude this
introduction, the structure of this dissertation togethih its main contributions will be outlined.

1.1. Cognitive Systems for Human-Machine-Interaction

During the last decade, computer vision research has sekarge from brittle and narrow appli-
cations to more general and adaptive approaches. Starinfyjomn early work of Christensen and
Crowley [CC9T], the ternCognitive Vision has been established [Ver04] subsequently to describe
approaches that try to combine achievements from artifiotalligence, computer perception, ma-
chine learning and robotics with the aim to build more roptesilient and adaptive computer vision
systems.

Within this context, Christensen restricts the processogition to be ageneration of knowledge
on the basis of perception, reasoning, learning and priordsie As a consequence, a cognitive
vision system needs to be embodied [Vér08] in order to dgtsense its environment and to interact
with its surrounding for knowledge acquisitidn [Chr03]. Bodiment provides the basis for situated
cognition [HWO%], which permits a system to learn and acthi@ tontext of its environment. For
instance, a single cognitive activity may be embedded imegptgal stream of activities carried out
or supported by additional tools, systems or humans outffilee considered system. Without the
possibility for physical embodied exploration, the akilib perceive the dynamical changes in the
environment and to communicate actively about events lgyaation, learning can not take place in
a cognitive system.

Rather recently, e.g., in the current EU research roadntam®%], cognitive vision has been embed-
ded in the more general paradigm@bgnitive Systems Cognitive systems conceptually extend to
other perceptual modalities such as haptic or auditoryesenéccording to that scheme, cognitive
vision systems can be seenvésually-enabled cognitive systems

Bielefeld University



6 1.1. Cognitive Systems for Human-Machine-Interaction

Humanoid >
Robots

Figure 1.2.: The Honda ASIMO humanoid rob6t[Yo504], the Sony (rio [Gebdertainment robot and
an augmented reality assistance system [CTS07] are exeyrgiplications of state-of-the-art
cognitive systems technology operating in the real world.

While the general research agenda of cognitive systemadste cognitive neuroscience, epistemol-
ogy, cybernetics and others, the work carried out by theaxughd his colleagues in the VAMPIRE
cognitive vision project and other cognitive systems ptsjdike COGNIRON [[Cog06] is targeted
at the construction of systems featuring advanced humarimexinteraction capabilities. The goal
is to assemble systems that make use of a complete loop froregi®n via cognitive processing
to re-action in the world rather than providing a formal thyeabout possible cognitive architec-
tures [Cas03]. Thus, our efforts on building systems witgnitive abilities are to a large extent
focused at the integration of an increased number of parakptodalities and features to facilitate
interaction with humans. Examples for the use of sensarfatination in such cognitive systems are
to exploit vision for human body tracking to allow interatithrough gestures [SHHE] or the anal-
ysis of human language for prosody information. On top o$éheues, typically higher-level cognitive
functions aggregating information are added, e.g., adisystem based on speech and gesture recog-
nition in order to communicate in a natural way with humaeiattion partners [LWS06, SHI07].

Cognitive interaction has various application domaingiag from assistance systems for engineers
or monitoring systems for elderly people that provide hdmés displaying useful prompts or calling
care personne[ [HBPM07] to interactive robots, that obsipuneed to perceive their environment
and interact or even collaborate with humans. Some exanmapéeshown in FigurEZ1l.2. Due to the
ever growing set of cognitive abilities combined in theseligations, the question of an effective
integration, which is the main topic of this thesis, is rdisgth increased priority. In order to find
answers to this question, let us now look more closely at &asans for the intricacies cognitive
systems research may impose on system development.
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1. Software Integration in Cognitive Systems - A First Enuen 7

1.2. Viewpoints on Software Architectures for Integrated
Cognitive Systems

While the benefits of a research approach explicitly adidrgssmbodied cognitive systems as an
individual goal becomes nowadays more widely accepted addreed by current research pro-
grams [Eur0b], the downside of aiming at these types of mated systems is that they come with
significant costs. Practical experience shows that if andmpntation of such software-intensive sys-
tems is actually carried out, scientists within projectiieajuickly face problems gfrogramming-in-

the-large[DK76].

With the ever increasing size and complexity of experimestignitive systems, the design, specifica-
tion and evolution of the overall system structures becareeasingly important. The need to handle
the complexity introduced by demanding scenarios thatfealicher functionality and more deeply
integrated systems in fact urges developers and scietdigesal with these overall system structures.
Hence, talking about the software integration of artifidagnitive systems, inevitably poses ques-
tions of software architecture. For this reason and becaasg considerations within this thesis are
conducted from an architectural viewpoint, we need to definee clearly what architecture means in
this context. A recent definition of this term, which was b#thed within the ANSI/IEEE standard
2000-1471 that deals with the architectural descriptiosafivare systems is as follows:

Definition 1.1 (Software Architecture) Software architecture is defined [...] as the fundamental
organization of a system, embodied in its components, tlkitionships to each other and the envi-
ronment, and the principles governing its design and elatu{lIEEQQ]

Davide Brugaﬂ raised at the workshop on SDIR-II at ICRA 2007 the metaplabrigiestion why

it generally is so hard to build well-architected systemshie domain of robotics resarch. Even if
we restrict our view to the software aspects of integratiorcagnitive systems, in the perspective
taken on in this thesis the answer is in the intricate inggrlf domain-specific, project-specific and
engineering aspects as depicted in Fiduré 1.3, which makes$opic a research activity in its own
right. In order to give some first answers to the question ofi@aBrugali, let us shortly introduce

these three viewpoints on the different sources of comiyleékat contribute to the overall challenge
of integration. Please note, that the analysis of the theegpectives will be confined in the first part
of this thesis, identifying requirements from the subsedyeantroduced tasks.

Functional Viewpoint

The envisioned overall behavior of a cognitive system es®fgpom a rich set of cognitive capabili-
ties, employing a variety of computational models, e.qg. perception, learning and classification or
for feedback and interaction assembled in a specific funatiarchitecture. Goerick and Ceravola
describe this architectural level with the following defiioim we will adopt within this thesis:

Definition 1.2 (Functional Architecture) A functional architecture represents the constraints of a
hypothesis or model of the network of functional areas inkttan that makes different modules or
components interactl [CGD6]

Prof. Davide Brugali is the chair of the IEEE RAS Technicah@nittee on Software Engineering in Robotics.
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8 1.2. Viewpoints on Software Architectures for Integratemfnitive Systems

o Parallelism
o Representation
o Memorization

o Adaptation o Modularity

o Descriptiveness
o Analyzability
o Agility

‘ Cognitive Systems

Software Engineering I

’ Research Projects

o Interdisciplinarity
o Heterogeneity
o Cooperativeness

Figure 1.3.: Following a holistic approach, the challenges of softwartegration in the domain of artificial
cognitive systems research are analyzed from three distiewpoints.

An initial challenge that generally arises in software #edtures for embodied cognitive systems
research already on the level of this functional architects to account for the inhereparallelism

of such systems. Components must be able to process newnatfon that is provided by attached
sensors with low response time in order to quickly react tnges in the environment. The resulting
system must be able to adapt its behavior at least in a tinte 8@t is appropriate to ensure system
safety and that is convenient for interaction partnerss Thncern and the processing power necessary
for handling high-volume datasets as well as complex psiegperations often increases complex-
ity as it implies the distribution of processing load and éixehange of large amounts of data. This
manifests itself in a system architecture that is usualijdban top of middleware technologies for
distributed systems. As these are in parts overly complesir tise sometimes imposes intricate us-
ability problems. However, as parallel processing is a c@aessity of nowadays cognitive systems,
large parts of the work presented in this thesis will addteissproblem.

Looking from a rather technological perspective, the effeservices on the level of the functional
architecture not only differ in terms of their concrete ftioc but are realized in component imple-
mentations of differing granularity and size. Componerstiaztion levels span from data processing
modules performing image segmentation to high-level mesifor semantic reasoning, e.g., for sys-
tem self-awareness [SId98]. Due to this variety an addifichallenge at this level is the sheer amount
of differentrepresentationshat range for example from image data to acquired semantiwledge
implying inevitable challenges for handling interopelifpissues.

Closely linked to the question of representation is the tijpre®f how tomemorizevhich is a prereg-
uisite for learning, adaptation and cognitive systems imegal [Chr03]. Chaptdr2.4.2 will elaborate
more on this, as memory functionalities have been one ofuhddmental functional requirements
originating from the research paradigm followed in the VAIRE project.

In order to allow a cognitive systems functional architeetto adapt e.g., to environmental changes,
the processes in a cognitive systems architecture needftexitdy coordinated and orchestrated as
well as dynamically reconfigured, possibly across diffeadstraction layers. The coupling between
reactive behaviors and more deliberative cognitive fumsithereby still pose challenging questions
of coordination and control as they were already introdueeridecades ago by BrooKs [Brd91].

Sebastian Wrede



1. Software Integration in Cognitive Systems - A First Enuen 9

Thinking about hybrid architectures in terms of the ongaileate between cognitivist and emergent
architectures[[VerQ8], it is still an open question how tondine cognitive functions following these
different paradigms. While the scientific community does$ pmvide any single answer to these
problems, adaptation and coordination are central clgdiein the software architectures of almost
any experimental cognitive systems.

Collaborative Viewpoint

The functional capabilities as well as their technologwahsequences define the inevitaphg/sio-
logical complexityof the integration challenge in cognitive systems reseafdhile this kind of com-
plexity is regularly recognized and considered by domaiecic software architectures, this thesis
additionally proposes to explicitly address the social plaxity [[Fia07] of this task, originating from
theintegration context

This context is comprised of the project stakeholders, thdrenment in terms of resources and

process models as well as the system developers themsdfeesognitive systems research, the
context is defined by the structure and management procpssedent in research projects and the
involved people, e.g. scientists, students or even peopia ihdustry, their personal backgrounds

and motivations. Although software engineering reseaashdgroven that social aspects are critical
for the success [DL99] of software projects, the processessearch projects often simply neglect

these insights, even despite the fact that the challengessied by the domain and the context are not
easier at all than in regular business information systems.

Collaborative research projects on cognitive systems asctAMPIRE or COGNIRON are inher-
ently interdisciplinary and may involve a fairly large number of scientists from eliént domains.
While this interdisciplinarity is attributed to be a catady for progress in many areas of cognitive
systems research, it poses additional questions for safte@velopment such as how to communicate
about system-level structures between the involved sstentf a common software-intensive demon-
stration system is desired as a concrete outcome of a préfecinvolved team members therefore
need to develop a shared vocabulary and understanding girtbsdern domain, which can become
much harder when people have very different scientific beokuds.

From practical experience, this thesis assumes that thknidss of performing a successful system
integration in the course of an interdisciplinary projeatliamatically increasing, when the integration
model addresses this challenge explicitly, e.g., by intoity models, clear definitions and languages
for system-level entities that are easy to understand, dlizenand match well their later real-world
implementation. As a concrete consequence, it must foauest be possible for all project members
to easily engage in communication about the system-letejiation within a project meeting, about
representations and interactions of “their” modules withisystem architecture.

This is especially important within this context as theaditon in research projects concerning integra-
tion often exhibits similarities to thanarchicalssituation of enterprise software integratién [Jgh02],
which is characterized by only a limited amountoafoperativenessThis may lead to less consulta-

tion and agreement between stakeholders and participaatdest as an oligarchical situation that is
present when researchers either employ or develop a ceghof standards for a given problem do-
main. Large parts of this thesis address this aspect andgeapframework that can deal with only a
limited amount of agreement between module developerstaiddorresponding software modules.
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Another challenge that arises from the interdisciplinaspstitution of project teams can be the vary-
ing level of expertise and background knowledge even wharlgneomputer scientists are involved.
We can safely assume that only a small number of the involgedarchers will have the necessary
background knowledge and motivation to face the intricadlow-level integration technologies
like sockets, marshaling or concurrent programming - joistame a few aspects. Therefore, the inte-
gration architecture needs to provisigitable abstractionsn a level high enough to be usable for the
- according to Bill Gates [Gatl7] - “average” programmer.cMsoft nowadays tries to address this
challenge with the recently released Microsoft Robotiagd®t [JacOV] for the domain of robotics,
explicitly targeting for example the problems of concutrerogramming by employing a completely
asynchronous process integration model.

Engineering Viewpoint

The engineering viewpoint subsumes a large number of fomaktiand non-functional requirements
important for software and system engineering of expertalarognitive systems. A primary chal-
lenge is howmodularitycan be achieved in cognitive system instances and how lanpsystems can

be composed out of much simpler services.

This composability and further facts about modularity artoal for the overall utility of the approach
as will be explained later on in Chapfér 3 particular for saipg cognitive system research. While
the functional architecture is aligned with the domains triewpoint additionally considers the chal-
lenges arising from the functional architecture’s rediain hard- and software components. Thus,
let us define the terrSystem Architecturto distinguish this architectural level from the functibna
level:

Definition 1.3 (System Architecture) A representation of a system in which there is a mapping of
functionality onto hardware and software components, apirapof the software architecture onto
the hardware architecture, and human interaction with theesmponents[ [Car06]

Within this definition, the focus is set on the specificatidmardware and software deployment, e.g.,
specifying the distribution of software components andcpsses to hardware nodes. Additionally
and particularly important for interactive cognitive sysis is the description of use casgs [Cdc01]
by which humans shall use a system instance or interact witAs the functionality of systems is

different, the system architectures are also typicallggaspecial to each class or family of systems.

The resulting challenge is to raise the levetie&criptivenesand to facilitate the modeling of different
attributes of the system architecture like structural cositfipn or dynamic execution in a distributed
system. However, modularity and descriptiveness may edud do not completely prevent failures
in system design and execution. For these reasons, fuatitiofor analysisof the static and runtime
architecture of an IDI system must be provided. An exemptasy could be whether a promoted
external interface of a component matches the referenceitsénterface type.

A different challenge is to facilitate aagile development process that, e.g, allows for easy testing
and incremental development of cognitive systems ardhites. Even if some parts of the overall
architecture are still unfinished or need to be replacedrr@sponding simulation should in principle
be applicable.
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The Integrative Viewpoint

While the aforementioned challenges for software archites
supporting cognitive systems research provide alreadyesom
guidance for closer consideration, there are many more re-
quirements, e.g., originating from the scenarios and rekea
paradigms in the VAMPIRE project, that will be discussed in
the corresponding chapters for each of these perspectiveg-
ever, once acknowledging this triangular view on software i
tegration, a new way of looking at software architectureols f
lowing.

Functional
Architecture

This additional viewpoint on software architecture shedipect
all three previously introduced viewpoints and proposevelle ‘
of abstraction that is easily tractable for the developerd a
stakeholders in its specific integration context.

The introduction of explicit componerihteraction patterns
may serve as an example for this. They reduce the complex- Functional
ity of the interplay between the individual building blocks Arecture
a cognitive system and thus increase the level of abstractio
used in integration. Capturing typical interactions in aam
number of reusable patterns is beneficial both for systeroras f
module developers and can play a similar role for systeratlev
integration as design patterns for developers of objdented
software [GHJV9B]. Therefore, the following definition afi a
Integration Architecture _focuse_s on this level of abstraction Figure 1.4.: Evolution of the inte-
and summarizes the main architectural aspects that neesl to b gration functionality.
considered at this level of software architecture:

Definition 1.4 (Integration Architecture) An integration architecture deals with the structural com-
position of software components into a system instance.roltiges design elements which bind
domain functionality provided by software components tifaats of the integration architecture,
thereby exposing their services to other components. itiges design patterns for the composition
of design elements and establishes guidelines for thet&gleamong design alternatives. It provides
functionality for physical distribution, communicaticsynchronization and coordination between de-
sign elements and functionality for data access within aiaecture.

The motivation behind the notion of an integration architez such as the one introduced in this
thesis is that it shall describe an approach making the dexednt of functional architectures as pain-
free as possible under the constraints of the collaboratewpoint. Ceravola and Goerick [CG06]
argue that one important goal of research on software eathites in cognitive systems must be
to identify common concepts of cognitive function or neaegscomputational machinery with the
aim to increase the available knowledge on the architelctaradations these functions are based
upon. Figuré_Tl4 takes up this general idea and illustréiesncreased condensed knowledge in the
fundamental architectural layers during system evolutishile the author of this thesis completely
agrees with the general idea of incrementally learningitite architectural abstractions from system
evolution, Figuré_L}4 utilizes the rather different arehtural viewpoints introduced previously.
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1.3. Research Questions, Objectives and Approach

The VAMPIRE EU project following a scenario-driven resdam@pproach offerred an excellently
suited testbed to investigate software integration inatxatative cognitive systems research. In the
course of the project, the ambition of this work evolved tal famswers to the aforementioned chal-
lenges that are generally useful for experimental cogniiystems. In an incremental refinement
process the proposed information-driven integration rhbde subsequently been applied to several
other projects of different sizes from small student prgjéo large-scale integrated research projects.
Still, the fundamental research question that needs to tessked by this work is the following:

What are architectural concepts and paradigms suitable for handling the innate com-
plexity of software development in cognitive systems research projects?

In order to find an answer to this very broad research hypisthies/as necessary to focus on different
aspects of this task. Therefore, the following set of qoestivere chosen as more concrete guidelines
during the development of the proposed integration model:

Q1: What characterizes research projects in the cognitivgteans research domain and what are
the requirements imposed on software integration?

Q2: What are the functional requirements that are geneaflie and need to be addressed by an
integration architecture in the given domain?

Q3: What abstraction level needs to be chosen for the framewobe accepted by its interdisci-
plinary users?

Q4: Which selection of integration patterns and functidtyals necessary for a successful integra-
tion of experimental cognitive systems?

Q5: What lessons can be learned from the application of médion-driven integration approach
with regard to the development process of cognitive sysitetagge-scale research projects?

In order to find answers to these questions, well-known quiscand novel techniques from the fields
distributed systems, (enterprise) software integratiotificial intelligence and software engineering,
e.g. requirement analysis, as well as the cognitive systeamsin itself have to be taken into account.

To assess and investigate the requirements and challefigetegration in cognitive systems re-
search projects, the author actively participated in ti@lgorative construction of different integrated
demonstration systems as the one described in Chdpter 2saadesl the process of system archi-
tecture development from the very beginning. This actudigjpation in the iterative construction
procress has been very important for finding answers to sdithe guestions outlined above and for
the development of the three individual viewpoints on inggign.

During the continuous integration of prototypical systemthis and other projects, several developer
interviews with expert and rather novice users were cawigtd These experiences and the insights
from these discussion strongly influenced the design ofritegration architecture.

The concept of information-driven integration is informleygl ideas from event-driven and service-
oriented architectures. Further guidance for the reaimatf the approach resembles from object-
oriented software analysis and design, e.g., the diffadesign patterns, the implementation of the
framework is built upon. Data integration, coordinatiorddne content-based routing of information
between components is realized by exploiting recent XMhmedtogies, e.g., a native XML database
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as the basis for the memory functionalities. In additionhatt the developed architecture is itself
based on other, rather low-level middleware for group comigation and provides an easy-to-use
programming API as well as a set of tools that shall allow aeseers to efficiently build and glue

together cognitive systems instances. The resulting itom&vides the core-functionality of the pro-

posed architecture in terms of its services, libraries andramming interfaces for C++ and Java.

1.4. Outline and Contributions

Following up on the introduction, this thesis is coarselyjnposed of four subsequent parts as shown
in Figure[Lh. Part | (Chapter 2-5), Systems Perspective on a Cognitive Systems Prdjeals with
requirement identification and analysis, whereas Parthb(@ers 6 and 7)[he Information-Driven
Integration Approachintroduces the conceptual design of the approach presantbi thesis. Part

IIl (Chapters 8 and 9) presents its application and thusueti@n in actual research projects. To
commence this thesis, Part IV (Chapter 18ynopsisfeatures a conclusion that summarizes and
highlights the insights gained.

Chapter 2 identifies generalizable requirments for softwategration in cognitive systems from a
functional viewpoint with a a particular focus on the pagads of the VAMPIRE project.

Chapter 3 highlights the particularities of con—‘
ducting integration in a collaborative and in-

1. Software Integration in Cognitive Systems - A First Encounter ‘

tel’diSCipIinary researCh prOjeCt that aimS at Part I: A Systems Perspective on a Cognitive Vision Project
real-world integrated systems and identifies [ 2.The Project Perspectiv: The VAMPIRE Endeavour |
requirements resulting therefrom. Chapter 4 | 3.The Collaborative Perspective |

discusses a concise subset of high-level re
quirements on distributed systems and soft
ware architectures from a software engineer
ing viewpoint already taking into account the
results from the previous chapters.

| 4.The Technological Perspective I

5. Requirements and Architectures for Integration of Cognitive Systems I

Part Il: The Information-Driven Integration Approach

| 6. Adopting Event-based System Models |

Chapter 5 reviews a qualified selection of re-
lated work in the area of software integra- | 7. From Event based o Cogitive Systems |
tion and integration architectures for cogni-
tive systems. This review is conducted base
on a small number of aspects that are com

posed from the previously identified require- ’
ments. The subsequent selection among the ‘
massive humber of approaches is informed by
a brief overview of related fields of research
that face similar challenges in integration. Fi-
nally, three approaches are reviewed and a5—|
sessed according to their strength and weak-

nesses. The main contribution in the first part Figure 1.5.: Structure of this thesis.

of this thesis is the analysis of an EU project

such as VAMPIRE from a holistic perspective, not limited toidentification of functional and non-
functional requirements, but additionally considering slocial complexity of this task in the require-
ments process.

Q.

Part I11: Experimental Evaluation

8.The VAMPIRE System |

9. Interactive Cognitive Robots - A New Domain |

Part IV: Synopsis

10. Conclusion I
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Part Il presents the information-driven integration apglo as the key contribution of this thesis.

Chapter 6 introduces the core models of the integrationcagr and describes how the paradigms
of event-driven architectures were adopted for informmatioven integration. Chapter 7 extends on
these domain independent models towards features for tbgration of eperimental cognitive sys-

tems with a particular focus on the memory, domain and caatitin models that address central
functional requirements of the VAMPIRE project.

The role of Part Il is to evaluate the developed softwardisgcture and the introduced concepts in
a system context. It starts with Chapter 8, focusing at theiegtion of the information-driven inte-
gration approach in the VAMPIRE EU project in order to shoattthe proposed models were useful
in a real-world project. The actual integration of the augtad-reality assistance system [WHWS06]
and in particular the application of the memory and coortithimamodels of the IDI approach are
explained. The memory and coordination models represemtaimental functional building blocks
within the presented assistance scenario and are thushctioins of this thesis with regard to the
VAMPIRE project. A brief technical performance evaluatid@monstrates the utility of the realized
software architecture for the integration of cognitiveteyss. In addition to this, a system evalua-
tion with naive users is a contribution, which demonstrales it was possible to test the assistance
system developed with the presented approach in a reathworitext. In order to emphasize that
information-driven integration is a more general conc@piapter 9 briefly highlights the application
of the introduced approach in the domain of cognitive raistDespite the mentioned contributions, a
main matter of Part Ill is to highlight how the introduced IBbdels ease the integration of real-world
cognitive system instances.

Part IV represents the synopsis of this thesis. Chapter tBXpeiintroduced models into the context of
the overall integration approach and shortly reports oretperiences and lessons learned both from
a system engineers view as also from the component devslpeespective. This thesis ends with
a an outlook envisioning possible further research dioestin software architectures for supporting
experimental cognitive systems research.
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Part I.

A Systems Perspective on a
Cognitive Vision Project

Research on real-world cognitive systems is a broad anditadly challenging area spanning a num-

ber of different research disciplines. Within the follogiRart I, a catalogue is compiled consisting of
generalizable aspects that are required across manyéestafsuch systems. This analysis is carried
out primarily from the viewpoint of software engineeringtivthe aim to gather requirements that are
essential for an efficient collaborative construction gierkmental cognitive systems.

This requirements identification process is guided by tea i@ analyze the overall integration chal-
lenge from three distinct but intertwined perspectiveart8tg with an analysis of the envisioned sce-
narios in the VAMPIRE EU project in Chapter 2, architecturahsequences are derived which lead
to functional aspects that need to be supported in an irttegranvironment for real-world cognitive
systems. Implications from the specific integration copt@hich is set by collaborative research
projects, are discussed in Chagiker 3. The requirementsfiddruntil then guide the subsequent dis-
cussion of the resulting architectural and technologiballenges in Chaptéi 4.

To commence this part, the identified set of requirementsbeibnalyzed and clustered in a smaller
number of coarse-grained aspects in Chdgter 5, which atieriséegration architecture for cognitive
system must consider in the first place. These aspects pravidhvenue for the selection and assess-
ment of related work and shall serve as a guideline for theeptual development of the integration
approach described subsequently.

At the end of Part |, the interested reader should be awaleedrchitectural backgrounds considered
as important for software integration in cognitive systeasearch projects from the perspective taken
on in this thesis and thus the motivations that guided theldpment process for the approach to be
introduced in Part Il.
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2. The Project Perspective: The VAMPIRE
Endeavour

The aim of this chapter is to gain a deeper understandingeathiallenges for software integration in
complex cognitive systems with a particular focus on theiigechallenge in the VAMPIRE project
in order to approach the right targets. Within software eegiing, a common property of a require-
ment is that it shall be clearly testable in terms of funcionsability tests, metrics or performance
numbers[[PB04]. For the sake of clarity and to not restriet plossible solution space in preface,
the requirements term is used more liberally in the follgyyibecause many properties for an envi-
sioned software integration architecture are better destihere on a high level of abstraction than in
elaborated requirement specifications.

In the following, an architecture-driven problem deconifias and requirement analysis is presented
that incorporates the knowledge and insights gained in tliese of the VAMPIRE project as well
as subsequent collaborative research projects. Instesichpfy enumerating all the “-ilities”, which
are indeed important for a software integration approaké flexibility, adaptivity, etc. the identified
requirements shall be explained in their systemic context.

As an initial step, the primary concepts Gbgnitive Vision Systenae introduced and analyzed to
bind and confine the problem space. Adding up on that, the neaarch themes of the VAMPIRE
cognitive vision project, which are important from a syst&perspective will be outlined. Particu-
larly, the functional requirements originating from theweharacteristics of theluman-in-the-Loop
paradigm and the fundamental research hypothesis Watial Active MemorfVAM) is instrumental

in artificial visual cognition will be examined for their ifipations on architectural properties.

2.1. Cognitive Vision - An Emerging Discipline

For almost fifty years now, computer vision researchers tairgrgy to make ‘tomputers sée Start-
ing as a sub-field of artificial intelligence (Al), computesion emerged as a discipline in its own
right. Over the last decades, innovations in vision reseahifted the possible space of applications
gradually from laboratory environments, e.g., the famdBlo¢tksworld scenario, to more realistic
settings. Nowadays, vision systems are frequently useddiging tasks, e.g., active tracking of hu-
mans [CRTTY7], or in machine vision for all sorts of autoroatisual inspection[Verd1], to increase
product quality and allow for an online failure detection.

While these innovations and applications of computer wisie@re major developments and paved the
way towards further research, they were still rather fodusenarrow application scenarios or limited
to a specific functionality. In contrast to vision researéhwas in general concerned with rather
deliberative and symbolic models of human cognition withegnally limited scope of applicability

in the real world[[\VerOB].
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With the advent of cognitive computer vision as a new paradignerging in the 1990s, Al and com-
puter vision remarried to a certain extenf [Neu04] in ordetackle more ambitious targets in the real
world. Consequently, the EU started a new research progeaairout cognitive computer vision in
the year 2000 [Eur01]. To improve the robustness and adgpbifartificial vision systems, the design
of resulting systems is often inspired by findings in biologygnitive science, and psychology. Ac-
cording to GranlundIGra05] a Cognitive Vision System (C\¢8h ‘perceive and learn information
in an interaction with the environment and generate appiatp; robust actions or symbolic commu-
nication [...]", which can be treated as visually-enabled cognitive systeA cognitivevisionsystem
therefore shares many of its high-level requirements wilteotypes of cognitive systems, making
the resulting catalogue largely applicable also for iraéign architectures, e.g., from the domain of
cognitive robotics.

2.1.1. Modularity and Multiple Computation

A basic assumption behind our approach to realize cognitsien systems is to model the abilities of
such artificial machines through the orchestration of lyigihterconnected processing modules. Fol-
lowing, for instance, Minsky'sSociety-of-MindIMin86] theory, the underlying hypothesis of many
cognitive models is that the mind is made up of a possiblyelangmber of interacting cognitive agents
with varying specificity. Rather than entering into a delaieut the subtleties of philosophical, psy-
chological or biological viewpoints on the emergence ofrétgn, the essence from an architectural
viewpoint here is the question of decomposition. As decasitipm usually breaks down a larger
problem into smaller pieces in many iterations, we can gafder that the result will be a larger
number of cognitive processes that will finally be impleneghin software modules thereby posing
guestions of softwarmodularity.

While aspects of modularity in software architectures dsedd by Meyer|[[Mey9[7] extend over sev-
eral dimensions, discussed in greater detail in Ch@ptdredfundamental requirement an integration
architecture must fulfill on the functional level of cogméisystems is to support the modular decom-
position of a larger problem, which can be summarized asvl

Requirement 2.1: Modular Decompositidn architecture yields modular decomposability when iilfac
tates the comprehensible decomposition of a problem intoalsr number of easier subproblems that are still
manageable by the integration architecture. In order isfgdhis constraint, the resulting partitioning should
allow for independent, parallel development and interemtion through a structure as simple as possible.

Following up on modularity and inspired by biological fings) the principle of multiple computa-
tions [Cru03] is applied for the modeling of processing in SC Hence, a possibly large number
of cognitive processes are generally executed in parailgélcampute partly redundant multi-modal
information, ‘playing around with the information contained in the system. More teclflicspeak-
ing, for instance, several feature extraction or recognifirocesses are applied in parallel computing
the same information. Following this concept in an artifisigstem shall not only lead to an increased
performance if computation of complex input data is pamtiéid, but also to a higher robustness within
the overall system by exploiting a larger degree of reduaglaAcknowledging this, let us note the
subsequent requirement considering parallelism:

Requirement 2.2: ParallelisrAn architecture must permit to execute multiple computetiand parallelize
the processing of decomposed modules, e.g., by using Heuttipcessing units on a single physical computer
system or by distributing the computations over a set ofrs¢wetworked processors or computers.
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Figure 2.1.: Embodied cognitive systems integrate numerous processegsifti-modal perception and pro-
duction in order to interact with their environment in an gdize manner. They aim at support-
ing humans, e.g. in performing everyday tasks or decisickimga

As soon as parallel processing is envisioned, at least mieal architectures this raises important
questions of concurrency and synchronization, which wélldiscussed from a technological view-
point in Chaptefl.

2.1.2. Dynamic Coordination and Adaptation

In addition to these purely technological consideratiding,overarching question how an efficient co-
ordination between the various modules in a cognitive systan be achieved is an example for a re-
quirement that can not be cleanly assigned to a single paigpeHere, technological and functional

viewpoints mix up and are not fully orthogonal. For instarfeatures of the integration environment
may limit the possibilities how behavioral change can bectéd.

Aiming at cognitive systems that are embedded in the reddvasrillustrated in FigurE=2.1, the inte-
gration architecture must allow, e.g., coordinated deditiee and reactive behaviors. Let us consider
an anthropomorphic robot as an example, cf. Chdgter 9. Swgistam must coordinate actions it
undertakes to achieve its designated objective such agtaktup, with the reactions forced on it by
the environment, for instance, human actions that couktfierte with the planned grasping sequence.
Thus, let us note the following requirement:

Requirement 2.3: Coordinatiobynamic coordination is necessary in a technical architecthat exploits
parallelism and providies an avenue for managing the dynéeiaviors that can be executed in the system.
While the focus of sequencing is the mapping of serial barawb a synchronized series of system actions,
coordination goes beyond this and provides structuresxdieciging complex behaviors and tasks that depend
on the runtime dynamics, for instance on the current peuve¢tate of the system or temporal aspects.

In contrast to many classical computer vision system achites, where the processing and data flow
between the constituent modules is often pre-programmedegyularly follows a single architectural
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style like pipe-and-filtel[SG96], system architecture€¥ufS reveal a richer set of architectural styles
that are employed to build hybrid architectures combiniataedriven bottom up with goal-directed
and knowledge-based top-down processing. It can even lessey to connect different processes at
runtime, therefore yielding a fully dynamic system arcttitee, for instance for the ongoing learning
of new perception-action mappings, which can be summasezddllows:

Requirement 2.4: Flexible Orchestratitmstead of predefined feed-forward processing chains, a ¢S
multiple sensors and recognition pathways to gather inédion about its environmental context. In order to
build architectures for such systems, flexible means of igiagahe interconnection between different cognitive
processes are required, for instance to realize hybridtaothres that allow for sensory bottom-up as well as
actuatory top-down processing.

2.1.3. From Sensorial to Symbolic Information

A classical cognitive computer vision system consists oftiple levels of perceptual processing,
thereby incrementally increasing the contingent of seroamformation. While a multitude of meth-
ods and approaches for visual scene understanding existfjridamental requirement of computer
vision research is that the development of correspondiggrihms by providing reusable datatypes
and fundamental operations in the form of a library or prgiotg environments must be supported.

Requirement 2.5: Computer Vision Suppdrddular development of image processing algorithms must be
supported in order to foster reuse and the prototyping oEhapproaches. It must additionally consider their
integration as processing modules in a larger system andderoommon computer vision functions.

As indicated in Figur€21, an experimental CVS is desigrmedéting in the real world and is thus
usually faced with a large set of high-dimensional inpunalg. In order to further process these
high-volume datasets, abstraction processes that exélagant information from the input data are
necessary. Although there is ongoing debate whether and whgenerate symbolic descriptions of
the relevant information in the input space, a drastic ca&sgion of the input data is needed, e.g.,
by the generation of abstract models for categorizatiores€hmodels can for instance be beneficial
to deal with missing information or to introduce contexthiit the symbolic domain. Furthermore,
symbolic descriptions are the basic means of communicationt the perceived entities or events and
can be used to interact with other systems or hunfans [Gr&®aijn a system’s perspective, this calls
for the possibility to exchange these descriptions in esitde representations between the different
cognitive modules.

Requirement 2.6: Extensible Representatidfigin every artificial cognitive system processes excleang
information and work on representations of this data. Asisa® learning and adaptation is envisioned, for
instance to dynamically add new visual features that amaeted by perceptual modules, representations must
be able to dynamically evolve. Hence, data structures nepsesent information in an extensible way.

In order to provide a basis for a seamless communicationiwithans improved interaction and com-
munication capabilities of cognitive systems are extrgnralportant. A basis for these capabilities
and further advanced capabilities of cognitive system us ttome kind of a memory structure or a
federation of different memories, e.g. working and longrtenemory [HZWOY]. This is due to the

fact that memorization capabilities are prerequisiteseafing and adaptation in cognitive beings,
particularly if learning processes are active over a loqggiod of time. In cognitive vision, memo-

ries manage information and knowledge from various knogéesburces like spatial and contextual
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information, as well as scene and event descriptions. Hamdenportant features of memory systems
is the ability to relate new information to already existinéprmation [Gra0b].

Additionally, accounting for the fact that memory is ba#lica limited resource, processes that dis-
tinguish relevant from irrelevant information and act uploat decision like forgetting or compacting
are necessary_[Chr03]. While it is still unclear how artélcmemories for cognitive systems are
organized, many of the processes in a cognitive systemtecttiie require some kind of memory.
Based on the assumption that memaories share similaritieigitegration architecture should support
the notion of a memory.

Requirement 2.7: Memo®n integration architecture shall feature a working menmrgport for cognitive
processes, allowing them to store information in relatmalteady existing knowledge and recall this later in
different contexts. In order to allow processes to openmata general manner on their memory content and
taking into account the evolving information in a systemeaeyic architectural solution to this problem needs
to be flexible. As soon as memorization comes into play, a&sponding way of removing outdated information
is necessary, too, because memory is a limited resourcerbbiblogical systems and artificial systems.

2.2. The VAMPIRE Project

The aspect of memory in cognitive systems provides an exadihk to the VAMPIRE project. The
long-term vision of this project has been to proceed toweodgitive assistance systems that serve as
memory prosthetic devices and assist human users in eyegydl@onments. The project was funded
within the above mentioned thematic priority on cognitieenputer vision by the EU and contributes
to many of the aspects of a CVS introduced above. It was caoaefrom May 2002 to July 2005 and
involved five international academic partner institutibmsated in four different European countBes
The participating scientists were attributed to be exparthe fields of vision, visual learning, scene
analysis as well as augmented reality and human-committmaction.

In order to realize a small step into the direction of memuoysthetic devices, the projects primary
aim was to conduct research on the concepVishial Active Memory Process€¥AMP), which
shall facilitate artificial intelligent systems to bettanderstand what they see based on what they
have previously memorized. Due to the fact that these systemembedded in the real world, it is
inevitable to acquire knowledge through exploration oféheironment and its interaction with a hu-
man communication partner. Therefore, an important rebeguestion was how to couple the model
acquisition and recognition processes for an adaptiveesgederstanding, because it is impossible to
predict beforehand all possible sets of objects or actisstem is exposed to over time, e.g., in an
office environment.

Picking up on the necessity of interaction capabilities untssystems, the second line of research
carried out in the project (yielding the second half of theMRIRE acronym) was concerned with the
development of advanced techniques forlifiteractive REtrievabf previously acquired knowledge,
for instance about objects that have been recognized ancbriza by the system. Conversely, it
was necessary to design a multi-modal interaction fadititythe system itself, for instance to ask a
human user in case of ambiguities or to give attentionaltfaekl thereby visualizing its internal state.

1The VAMPIRE project consortium included research groupsnfiGraz University of Technology, Austria, the Univer-
sity of Surrey, United Kingdom, the University of ErlangBliremberg and the Applied Computer Science as well
Neuroinformatics research groups at Bielefeld Univeysiigrmany.
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Figure 2.2.: Scenario: A user is sitting at a table wearing the systemislvare interface. She is supported
by the system augmentations while acting on the table.

Within all the individual research activities carried ountthe course of the project to realize the
necessary vision, reasoning and interaction processespwerarching parts stand out that will be
briefly introduced in the following, because they are fundatal to the identification of functional and
architectural requirements for the proposed softwargymten architecture for a cognitive (vision)
system: the human-in-the-loop paradigm and the conceptisial active memory.

2.2.1. The Human-In-The-Loop

Recent research on human-computer interaction (HCI) difnst@asingly natural interfaces between
human users and information systems. In contrast to viraadity, Augmented Realit{AR) describes
an approach by which a user’s view is augmented with additioriormation while still being situ-
ated in the real world’s context. Looking at current augradnieality applications [ABBO1)], the
interaction space is often extended to real-world enviremis; see[[KLPU4] for an example. AR is
thus well suited for interaction with a cognitive vision 8. The representations of this information
range from text annotation and object highlighting to thejguetion of complex 3D objects.

As a consequence this also leads to novel applications fopater vision research as this external
environment in turn has to be perceived through availabie@s. Within the primary scenario in the
VAMPIRE project, we extended these ideas and embedded tharhuser directly in the processing
loop of the system. During the project the temioman-in-the-loogBHW T 05] has been coined for this
idea. Within the space of cognitive systems research, erimaoht is often realized by robots acting
in the real-world. However, in the VAMPIRE project, the hyfpesis was whether the human user can
actually represent a certain kind of embodiment for theesystFor a realization of the human-in-
the-loop paradigm, not only a novel type of a cognitive cotapuision software with advanced HCI
capabilites needed to be developed, but also a special fyijperdware device was designed, the so
calledAugmented Reality-GegAR-gear).

Sebastian Wrede



2. The Project Perspective: The VAMPIRE Endeavour 23

The prototypical realization of this device, which has besed by naive users in the evaluation
studies carried out in the course of the project is shown gufelZ2. The design guideline for the
development of this hardware platform for use in the VAMPI&Enarios was to set aside all external
sensors. Therefore, the AR-gear, which will be explainegraater detail in Chaptét 8 integrates all
sensors necessary to realize an interactive assistarteensga a mobile platform.

The resulting tight coupling of the human in the processoaplyields a novel type of embodiment,
the so callednediated embodimeffifan06]. Thereby the perception-action loop is closed,ciwhi
ultimately allows for the active perception necessary ingnitive vision system. A concrete instanti-
ation of this concept depicts FigureR.2, which shows a huuasan that acts in an office environment
wearing the AR-gear and an example of an augmentation ofshes'Ufield of view.

The hypothesis that lead to the development of this setupaisittis beneficial for a cognitive assis-
tance system to follow the ego-vision paradidm [Han06] anthke on the perspective of the human
user. The resulting situation is characterizedshgred attentiorwhere the system sees what the hu-
man user sees and vice versa. Exploiting this situatiorsytiEm can pro-actively interpret situations
and assist the user in solving given tasks, e.g., by dirgttim through visual prompts to objects that
have been previously memorized. Conversely, the user nepuéxactions for the system like record-
ing different views of an object or is able to guide the systeattention, for instance by focusing on
interesting objects.

Let us consider one of the classical examples that guidedi¢hielopment of such an assistance
system: imagine your somewhat cluttered desk and yoursedfring an AR-gear that is actively
monitoring its environment. Coming to your desk, you dropiykeys somewhere on the table. After
some time acting in the scene, you are placing a sheet of jpaptp of the keys without explicity
noticing it. After a while you spent working in this enviromemt, you may have forgotten about the
location of the keys. This is a situation where you ask yognitive assistance systemwhere did |
put my keys?The system queries its visual history and guides you byalipsompts to the place on
the table where it has seen the keys lastly. Utilizing anlayemage, you will quickly be reminded
of the position of your keys.

During the course of the project, we experienced the negessextend the possible ways of inter-
action. In order to facilitate a natural communication bexdw the users and the system, for instance
for object learning, we enhanced the AR-gear by microphamelsa software component that allows
for multi-modal interaction, for instance through speeebognition or head gesturds [HB$05]. The
combined functionality of the AR-gear and this communmattomponent allows for different types
of interaction that directly contribute to the goals of VANRE. Firstly, an interactive object learning
is made possible by focusing on a previously unknown objectording views of it and finally la-
beling it through speech. Further interaction was realipeihformation retrieval and an envisioned
multi-user collaboration, seé¢ [SHWRO07] for details.

While many properties of the envisioned scenario are fanstihat directly map to cognitive vision
processes, we can identify the following three requiresesgembling from this experimental setting
that are critical for the design of a suitable integratioch#tecture:

Requirement 2.8: Distributed Processing contrast to some procesess tightly coupled with the AR-ge
that need real-time performance, the higher level peredptimponents in the VAMPIRE scenario may process
the recorded video images in soft real-time. Because ofrtfiteld resouces on the mobile platform, large parts
of the processing therfore need to be distributed to ext@noaessing nodes.
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Figure 2.3.: Sketch of the conceptual architecture of the visual actigenory and its processes.
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Adding up on the necessity of distributed processing, aggiaition architecture needs to ensure a
sufficient throughput for the simultaneous distritibutiohvisual input. Multicast communication
will be particularly important as a larger number of cogrtprocesses may request the video stream.

Requirement 2.9: Reactivifthe overall performance in terms of low latency of an undagycommunica-
tion infrastructure usable within the VAMPIRE scenario d&shall lead to an update frequency of the presented
augmentations that is subjectively convenient for useth@tystem.

The perspective on the performance profile of an integratiohitecture for a cognitive vision system
like VAMPIRE is that system evaluation with user studiesrisferred over quantitative benchmarking
as reactivity and throughput need to be evaluated in a sysbemext as it is a product of overhead in
the integration architecture, its use by the cognitive psses and the compuations in the cognitive
processes themselves.

The AR-gear and the envisioned assistance scenarios dllmrfecus efforts during the project and
helped to implement a scenario-driven research approathfdhilitated in the development of a
common understanding among the project partners. SdcfibwiB describe the additional effects
that scenario-driven research has on the integration gsoed the developed software architecture.
In the following, we will describe and analyze the conceparahitecture within all development of
VAMPIRE has been subsumed.

2.2.2. The Visual Active Memory Concept

While the neuro-physiological architecture of the humaairbor of even less complex vertebrates like
birds is still not fully understood, a number of studies supghe idea that memory is a time dependant
process that yields at least a separation into short-techioaig-term memory. According to Tulving’s
SPI-model[TM98], the long-term memory is structured in a hierarchyrevéhe information of the
higher levels is partially grounded in the lower ones and imdarmation is promoted from the lower
levels in a serial transformation to the higher levels ofrtt@mory. Within this model, memory access
is independent from the storage mechanisms and informedioieval is not bound to the state of the
memory when the information was initially memorized.
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Following these findings, the main research hypothesis @MAMPIRE project assumes that a so
called Visual Active MemoryVAM) provides an avenue for learning and development ofnitdge
capabilities in vision systems. Conceptually, the idearmkthis architecture is that it shall build up
and maintain a visual history of the world [VAMD4]. The fuiwstal architecture of a VAM as it was
envisioned within the context of the VAMPIRE assistanceaays is shown in Figule3.3.

A VAM features a number of interconnected active procesaddrdormation that is shared between
these through memory structures. This information is fgtance used for the ongoing learning of
new object and motion patterns for improved recognition eatkgorization in a dynamic world.
According to the SPI-model, the memory itself is hieraralicstructured into four different levels
of varying abstraction that are organized successivelyrevf@ub-)symbolic data, information and
knowledge is processed and stored. Furthermore, it mustdsigde within this hierarchical structure
to setup and resolve associative links between the cont@ieenents through the active memory.

The processing components that provide the feature eitnaaghodel acquisition, learning, fusion
and recognition functionalities that operate mainly on élcve memory are termeghemory pro-
cesses The constituent processes generate, fuse and promotenatfon within all layers of the
active memory. As a central element of the overall systernrdgseembles to well-known architectural
styles such as Blackboarld [SSRBO00], the actice memorysepts a generalizable function that shall
be directly supported by the integration architecture.

Requirement 2.10: Active Memory Suppart architecture yields support for an active memory if it pro
vides memory functionality that extends over local memanyctions to a system-wide shared information
architecture that allows cognitive modules to store, iecgldate and remove mutli-modal information. Fur-
thermore, an important concept is that cognitive modulebaing aware of modifications in this data.

As Figure[ZB suggests, the hierarchical decompositiom®flayers within an active memory can
follow different discriminators. While several other asfsdike the relevance or nature of an informa-
tion as well as selective activation of knowledge might bpantant, we focused within the VAMPIRE

systems firstly on two distinctive dimensions. The VAM cqpioexplicitly addresses on the one hand
the reliability of a hypothesis and on the other hand the “afan element. By age we mean at least
two different things: the creation time of a memory elemart the time when it has been lastly up-
dated. Concerning the reliability of information, we em®ithe paradigm of no universal truth. This
assumption states there shall be no irrevocable fact siordte active memory, because even hu-
man perception is often error-prone and assumed facts ndmlrevoked. Therefore, particularly in

the sensorial and perceptual layers of the memory archiecthe feature extraction and recognition
processes need to support this concept. The hypothesiemoffif8S04] supports another invariant
feature of a memory for cognitive systeim [CHr03]: the apiiit actively forget irrelevant information.

Based on the various features that indicate the relevanem @lement, every memory layer con-
tains differently parametrizeftrgettingprocesses that actively compact or remove memory elements,
which are no longer referenced, are unreliable or simpldated. Forgetting is a necessary require-
ment due to the fact that information with low reliability which is simply not interesting for the
system just increase the cognitive load without being usefd could lead to resource contention in

a technical realization of an active memory.

Requirement 2.11: Forgettings a function of the memory architecture itself, forgettisgnot first and
foremost a responsibility of the cognitive modules. Faiiggtprocesses designed for active memories must be
able to operate on common extensible representationsilegaiof the specific type of encoded information.
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Furthermore, certain types of information, e.g., previpubserved elements can be overwritten by
novel events or repetitive experiences, thereby indiyeethoving old ones. The chances to remember
certain experiences increase by consolidation of infalmatvhich creates strong encoding. This
consolidation sequence of information is a key concept femal active memory architectures that
is directly reflected in the stack of different memory laydrsorder to provide these functionalities
in an architectural model, the notion of a memory is vastiigesded from a local storage to a shared
repository that pro-actively manages the acquired inftionand serves as a mediator for information
that has to be exchanged between different cognitive medhila system.

In order to assess further functional requirements regpftom the visual active memaory architecture
as we developed it in the course of the project, let us in thlewiing have a closer look on the
different layers within the active memory, their corresgiog typical memory processes and the types
of information involved.

Sensorial Layer The bottom-most layer of the visual active memory contanosg@sses that mainly
acquire raw sensor data and provide this information in tablé representation to modules,
which are located in higher levels of the architecture. Withe VAMPIRE project, the function
of this layer is to realize a kind offictorial memory. This is due to the fact that the information
processed at this level is memorized for later analysis ghdrilevel memory processes, for
instance to subsequently train a face recognition classifith a set of image patches that
was recorded earlier. Another example is to compensatdéunrestricted head motion and
the limited field of view in an ego-visiori [HanD6] system assithe case for the VAMPIRE

augmented reality applications by exploiting mosaicirghtéques[[GHC 04].

Perceptual Layer The data-driven processes in this layer extract and traatkifes on the data that
is provided by the memory content and the processes in tremsahlayer. They perform an
initial detection and recognition of basic percepts. A hasg perceptis commonly referred
to as a compact and partially invariant representation amificant entity in the respective
sensing spacé [Gra05]. A visual percept for instance is amompact representation of a
relevant feature, object, or any other relevant entity mithage space than its iconic image.
Within the VAMPIRE systems, the typical example for a petdes been an object hypothesis,
e.g., a cup that has been recognized in a frame of the inpatedadepicted by the class labels
in Figure[Z2.4(3). The results shown in Fig{ire Z.(b) addélty underline that the system has
to cope with false positive hypotheses as well. Therefonearahitecture for a visual active
memory needs to support a fusion of different input cues erasmtext to increase robustness
in an unconstrained setting like the VAMPIRE scenario whteee user shall move his head
arbitrarily. The overall amount of data in the perceptugklteof the memory is still huge as for
example a set of object hypothesis in the present assistystems was typically generated at
frame rate, typically yielding in the production of aboutt8QL50 object hypothesis per second
depending on the perceptual context.

However, the resulting transformation from iconic repreagons in the sensorial layer to the
descriptors in the perceptual layer already yields a drameduction of the input data volume.
The kind of information processed in this memory layer isaligua mixture of symbolic and
subsymbolic data. Due to the high frequency of incoming gyets; the rather unreliable nature
of this information, and the fact that information is seldopdated by other memory processes,
a rigorous forgetting process is employed that turns thisorg in fact into a kind of a short-
term memory.
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(b) Gazing (c) Human action

Figure 2.4.: Figures (a) and (b) show typical results of an object rectignimodule in an uncon-
strained office environment. The generated percepts arenisigal to the perceptual
memory layer. Image (c) depicts the results of an actiongaitmn module that posts its
hypotheses about action events and their context to thedipismemory.

Episodic Layer The next higher level within a visual active memory is thesedic layer. The
information processed in the episodic memory defines a slimbitphabet to represent the
relevant entities that have been detected in the perceipfoaiation. The information memo-
rized in this level is of a higher quality in terms of an incged reliability and a longer temporal
validity. A representative example of a process locatediatlevel, which in fact links the
perceptual and the episodic layers is the anchoring prauessioned earlier. This multi-modal
anchoring, which will be explained in more detail in Chafefuses a large number of percepts
into a new hypothesis that is stored in the episodic memaejding a memory element with
a significantly higher reliability. Within this level ad@inally the context of visual objects and
events is introduced by means of for instance geometritiasad temporal relations between
individual memory elements. While the memory elements ealinied to (sub-)symbolic data
in the pictorial and perceptual layers, the informationhis tayer is mostly symbolic. The fact
that the information in this layer is usually valid for a l@rgerm and is more reliable is directly
reflected by a forgetting process that is accordingly pataneel.

Conceptual Layer The conceptual layer contains stable knowledge about teesevolution of
the real-world and the cognitive systems’ internal modeld eategories, which are defined
through object and motion models as well as their functios@ntext. Examples for context
in this sense are associations between an object and its tdlags shown in Figufe Z.5{c). For
instance, it seems rather typical that humans utilize a mhgyvdrinking a “cup of coffee”. The
knowledge that is build up in this level of the memory origesfrom three different sources.

Firstly, the memory processes similar to the anchoring faeeatl previously promote hypothe-
sis that proved to be stable over a longer time from the eisnémory to this memory layer,
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Figure 2.5.: The annotated images (a) and (b) show the perceptual hypistgenerated in each sit-
uation by the recognition processes. Figure (c) depictsxan®lary Bayesian network
that is used in a consistency validation procéss [HBESO4hiemory content.

which serves as the basis for memory functionality that adunsers can utilize to recall spe-
cific information. Secondly, large parts of the encoded Kedge like object or action models
and contextual information can be dynamically re-encodednbmory processes that for ex-
ample statistically analyze the information and their aiged dynamics. By this means, for
instance new object models can be acquired dynamicalyerisang the links between stable but
previously unknown percepts, their corresponding featarel low-level iconic representations.
Again, this needs to be carried out in interaction with therus order to provide the system

with the information necessary to annotate the new models the semantic concepts of the
human user. Last but not least, this memory layer allows dotstut the bootstrapping process
of a cognitive system by “injecting” domain knowledge thaishtbeen designed by a human
expert or that was acquired by other systems of the same kiridgdprevious missions. The

kind of data memorized and processed in this layer is agaim $mbolic and sub-symbolic

but represents stable knowledge that is valid even on lang-ficales. Even though, memory
elements can be removed if the reliability of a knowledgedtlgpsis retroactively drops under
a certain threshold.

The complex algorithmic processing that is conducted incibgnitive modules within a VAM, its
repository style architecture and the reactivity that isdesl in the assistance scenario strongly suggest
an asynchronous processing model for the communicatiomeleet the different memory processes
themselves and the active memory. This is necessary foalteedf reactivity of the resulting system
and the fact that this system is likely to break-up if it woblel based on a synchronous pull-style
communication, for instance if the memory processes woualgbimgly query the memory for new
information. The shared information in the visual activenmogy and the asynchronous processing
models shall not only improve reactivity but also facil@dtackground learning, e.g., to train new
object classifiers from recorded object views.
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To commence this section, let us note asynchronicity as argerequirement for the functions pro-
vided by an integration architecture:

Requirement 2.12: Asynchroniciys a synchronous processing model seems unsuitable foraitadied
processing that is conducted in the visual active memorydies shall not wait passively for the arrival of
new information and asynchronous communication modeld misupported. This shall allow an improved
level of concurrency and increase the reactivity of the alarchitecture.

2.3. Summary

This chapter introduced some of the requirements for agiat®n architecture that can be identified
from a functional perspective on general cognitive visigstsms and the VAMPIRE EU project and
its scenario aiming at augemented reality assistance trcpiar.

Besides general requirements like modularity and cootidinathe VAMPIRE scenario needs strong
support for distributed computing to achieve a suitablégoarance for the perceptual processing nec-
essary. This particular requirement has challenging w@olgical implications that will be discussed
in more detail in Chaptdi 4.

Acknowledging the utility and the concepts of a visual activemory, another set of requirements has
been identified that deal with supporting this type of a fiow@l architecture. The development of
the required support for an active memory will be one of theijuishing concepts of the approach
to be introduced in Part Il of this thesis.

Bielefeld University



30 2.3. Summary

Sebastian Wrede



31

3. The Collaborative Perspective

As outlined in the introduction, the analysis of the chales for system-level software integration is
conducted from three perspectives. Having introducedthetional characteristics that contribute to
the inevitableessentiatomplexity of architectures, the requirement identifimatshall proceed along
a new dimension: the social complexity of software develepnand system integration in the context
of collaborative research projects.

Let us consider the VAMPIRE EU project as a prototypical egkem This project had a duration
of about three years with a total of 340 person months, nobhtoog the contributions of involved
student assistants. In terms of overall code size as a chantstor the complexity of a project, the
latest demonstration system we integrated at Bielefelddisity featured about 260 thousands lines
of code developed in-house or by project partners. Whilentieber of code lines can provide only
a rough estimate, its magnitude may indicate that the dpuedat processes in such collaborative
research projects obviously has to consider questiopsogiamming-in-the-larggDK76].

Adding up on the aspect of project size, theenario-drivenresearch methodology that has been
pursued within this and other projects such as the COGNIR@NoEbject aims to bind scientific
questions to their evaluation in real-world scenariosuffoexperimental cognitive systems proto-
types. This aim demands iterative and incremental devetoprmprocesses that impose additional
requirements for the design of a software integration #chire for cognitive systems. Picking up
on that, we will discuss further consequences that ariga fhe heterogeneous and interdisciplinary
environment in which software development and integragiancarried out.

This new perspective on the challenges of building cogmiystems is explained by firstly intro-
ducing the idea of acenario-driverresearch process. As a consequence, the relevance of ta¢ act
construction of experimental prototype systems is emphdsiSubsequently, the impacts of scenario-
driven research on the software development process angsgisd.

The results of a survey carried out during the COGNIRON Wiriehool on Human-Robot-

Interaction [Cog08] and presented at the SDIR{III_[WI 08]rsshop suggest that the context for
software integration in cognitive systems research iséddearticularly challenging due to Interdis-
ciplinarity, heterogeneity and the ambition to actualljladmorate on the level of interacting software
artifacts.

3.1. The Scenario-Driven Research Process

Scenario-driven research is a methodology for conductoi@lworative research that continuously
compares the developed hypotheses with their applicaldipreviously specified evaluation scenar-
ios. Figurd=31l provides a high-level overview of this cqutcand highlights the role of system-level
integration in this context.
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Figure 3.1.: System-level integration is an enabling method to fac¢ditexperimental research in collabo-
rative projects on cognitive systems. Results from exmarisnwith integrated demonstration
systems shall affect the scientific hypotheses of the thdiVresearch activities.

The core scientific questions of a project are usually tackiea number of so-callegsearch activ-
ities. These activities often conduct their work in isolationhitit interfacing other project partners.
Following a scenario-driven research approach, the gitua different: researchers define collabo-
rative experiments that involve several other partnersherbsis of a common scenario, which will
contribute to the demonstration of scientific results arall gitovide insights on previously unknown
aspects of a problem domain.

To facilitate these experiments, the developed protoafgimctionality is provided to the integration
research activity, which develops a system architectuae émploys the novel functionality in the
given scenario. Besides performing the experiments ireatofiaboration with the researchers of the
involved scientific activities, a subsequent task of irdign is to assist in the interpretation of the
results of the experimental evaluation. As the consequeheach iteration, the interpreted results
shall lead to an adaptation of the research and integratiiategy.

Looking from a system perspective, this approach as caaigdn the VAMPIRE EU project, can
particularly yield the following benefits for collaboragivesearch:

e The individual project partners argltied’ together and motivated through a common scenario
already at early stages in the project. This helps in mutndétstanding, which is essential for
the success of larger interdisciplinary projects.

e The project development gains momentum from the very baginrbecause first results are
already visible early in the course of the project.

e Early and continuous integration within the project helpsdentify risks in the overall ar-
chitecture already in early stages of a project. This isi@ddrly important as fundamental
architectural changes at later stages in a project quicktpime costly.

e The individual research activities can easily test theurettped hypotheses in realistic settings
that conform to the overall scientific scenarios of a projastead of simplified simulations,
which often suppress the complexity of the real world.

e It allows for a better assessment of project progress. Atuatian in terms of a scientific
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experiment that integrates a limited number of features dkject learning and labeling by
speech is more meaningful than to report on the observaiatrfdr instancé80 percent of the
code for the integrated system is almost there"

An additional example for scenario-driven research aralifierent so-calleckey experimenteKE)
in the COGNIRON EU project that is concerned with the develept of robot companions for use
in largely unrestricted, natural environments.

Within this project, the KE1[[Cog06] lead by Bielefeld Uniséy is about a home-tour robot that is
able to interact with a human instructor showing the rol®afartment. This experimental setup not
only allows for the ongoing evaluation of the project partheesearch results but additionally serves
as an indicator for the overall project progress and as achefir increasing communication and
exchange between the involved scientists.

Unfortunately, this vision of an incremental research gga that is aligned with realized system

instances to iteratively conduct real-world experimentsléfined evaluation scenarios is difficult to

achieve. Apart from the potential difficulties in the indiual research activities, there are equally
hard challenges for the software development and integrgtiocess, which underlines the need for
coherent system-level integration approaches.

3.2. Software Development and Scenario-Driven Research

The scenario-driven research approach naturally comésthdt way software and systems are de-
veloped in such projects. Software development processgsrieral are concerned with the set of
activities that need to be carried out to produce a softwdifaet [Som0O1].

Within software engineering, two lines of thought are westbblished. On the one hand, the sequential
software development processes like Waterfall [Roy87] or V-models[AR08] that are organized
around a cascade of phases like specification, design, ringpliation and testing. On the other hand,
there are iterative models of software development likeHBe&Spiral model [Boe88] or Kent Becks
Extreme Programmin§BA04] (XP) approach that interleave the different phased iterate these
many times in short cycles until the desired features of avswé product are realized. In order
to facilitate a scenario-driven research approach, thasishsuggests to follow an iterative software
development approach.

Following an iterative approach in a research project,i@aérly for cognitive systems is beneficial,
because the requirements and the necessary space of designkerently poorly understood at the
inception of a project. Accounting for tHenyth of stable requirementsfMcC04] a fundamental
truth is that the better people are understanding a prolileemore likely requirements will change
within software projects. As a primary aim of science is tttdreunderstand the innate problems of
a given domain, it seems very likely that requirements areggtm change and develop in the course
of a research project. As scenario-driven research ig dseiterative process, it seems likely that a
corresponding software process is chosen. This leads tlirsheequirement that can be identified
from this viewpoint, the aim to suppochange

Requirement 3.1: Embrace Changebasic requirement that arises from following an iteratedtware
development process is to appreciate changes and to inetegbese easily into existing system architectures.
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For fulfilling this requirement, the integration approadeds to explicitly support mechanisms that
are as resilient as possible to changes of system structi@sexample, the impact of interface
changes on an existing (distributed) system architecthoaild be minimal to avoid a versioning
problem as known from CORBATISV0D1]. This also relates to thetinuity property of modularity,
cf. Chaptef}, which states that the impact of a local changéhier components must be limited.

3.2.1. Software Integration as Process

The termintegrationhas traditionally been referred to as a single activity inith software develop-
ment process. Due to the fact that integration in artific@jritive systems is much more complex
than plugging a small number of classes together and itsrigpoe in larger projects has recently
been well acknowledged, integration nowadays becomdsatpeocess.

Hence, different models for system integration evolved tam be distinguished into phased and
incremental approaches as it is done for the software dewedat processes. Following a phased
approach for system-level integration of a software astifiaevitably leads to alfig bang integration
where a large number of features are integrated in one hdige. €This procedure is very unlikely

to succeed due to the fact that many errors surface simolishewhen new classes or features are
combined for the first time. These intricate errors ofterriatt between each other and are therefore
extremely hard to localize. What follows is usually a debinggstep that quickly turns into asystem

dis-integratiori [McC04] process.

In contrast to a phased integration model and to facilitaenario-driven research, an incremental
approach is just as necessary for the system-level integras an iterative processes for the software
development itself. Incremental integration in generdlbfes a simple pattern that starts with the

realization of a small but already functional part of thetegs This basis acts as a scaffold that allows
the integration of additional elements in the system. Tthis jnitial part needs to be thoroughly tested

and debugged to provide a stable and correct foundatiomfegtiation of further functionality.

Subsequently, the first iterative step is the design, r&@diz and testing of new features for the system.
Within scientific projects this is done in the separate negeactivities. The second step is then to
integrate asinglenew feature at a time with the help of the scaffold and test@imbination with the
already integrated features. These two steps are iteratédiidesired functionalities are integrated
and operational.

In order to verify the correct integration of new functioigla central necessity to effect a feature-
driven integration processes is to allow for frequent testif added software modules. Thus, let us
note support for this task as an additional requirement enetel of the integration architecture.

Requirement 3.2: Testing and Evaluatifithin scenario-driven research that makes use of an inen¢ash
development and integration approach, the testing and&ah of individual modules must be supported by
a suitable software architecture.

Christensen and Crowley JCTO94] extend this requiremenoimgiclering system-level evaluation sup-
port as an essential feature on the level of an integraticmitacture. For instance, it shall be possible
by carrying out offline experiments on the basis of recordath,dyielding a basis for analysis of

system dynamics and evaluation experiments.
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Figure 3.2.: An example for feature-oriented integration (froln_McCD4n integrated system constructed
according to object-oriented design principles is asseadlitom features (F), processes (P),
modules (M) and classes (C). In order to develop the featomedifferent schedules, the inte-
gration framework needs to provide the scaffolding for th&tam and temporary replacements
for missing modules or features (shown with dotted borders)

Exemplary support for this kind of requirement are debugdimols for dynamic introspection of
systems at runtime or tools facilitating the recording amdugation of data sources. Within the
VAMPIRE project, the synchronized simulation of the vidéeams gathered from the users head-
mounted camera devices in conjunction with the replayingnfafrmation about his head pose are
examples for this kind of system integration support.

A challenging task in incremental integration is the plaignof the integration schedule on the basis
of time-based milestones. By the very nature of researdegisoas explained in the aforementioned
paragraphs, it is hard to assess in preface when a compoilehewavailable for a first integration
in a system. Hence, an integration process is needed thet¢ssed this peculiarity and allows for
flexibility with regard to thesequencingf integration.

Feature-oriented integration [McQ04] (FOI) is an appro#wt allows exactly this and is therefore
well suited for projects carried out according to the scendriven research paradigm. Figurel3.2
sketches this process and depicts four exemplary featdirassgstem instance. In object-oriented
systems, these features are composed from processes,es@ohd classes, yielding a decreasing
abstraction level. According to FOI, they are integrated time after another. Features need to be
tested in isolation and shall be self-contained to the éxgessible. However, to apply this concept,
generic scaffolding is necessary, for instance to emulgpedant feature until these are available.

Requirement 3.3: Incremental Developm@ntintegration architecture needs to provide re-usablé sca
folding that allows functional parts of the system arcHitee to be iteratively developed and incrementally
integrated. To cope with missing parts of functionalitynitist be possible to simulate missing components or
add mock components that can easily be replaced later on.

Feature-oriented integration allows for a controlled egten of individual functional units that be-
come a visible indicator for project progress and that cagctly be applied for improved experimen-
tal studies.
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Figure 3.3.: Education prior to PhD programme. Some participants hadraerdisciplinary background,
holding degrees in more than one discipline, whi8 of the attendees were persons with no
computer science or computer engineering related backgtou

3.3. The Social Complexity of Integration

Acknowledging that a fundamental requirement for the eomisd integration framework is to support
incremental development processes, we still need to améhgzimplications that stem from the people
that are conducting research in this integration contedtthat actually provide the core functionality
for the artificial cognitive systems to be constructed: ttiergists themselves.

In order to assess the expectations, backgrounds and skiidypical group of users that are in-
volved in collaborative research projects, we conductedraey on software integratio [WLD8]
aspects at the COGNIRON winter school on Human-Robotdoten [CogOB], which had partici-
pants from all over Europe (and one from Korea). It should tteadh that the school was organized
by the COGNIRON consortium as a dissemination activity fon4members, and correspondingly,
there was no project member amongst the 35 participanthwhere mainly students in the first
years of their PhD period. This group is particularly impait as it is usually heavily involved in
implementation work but has comparatively little expecien

As already outlined in Sectidn1.2 a common characteridti@gearch projects aiming at the con-
struction of cognitive systems for improved human-macliteraction isnterdisciplinarity. Hence,
project teams are often composed of a heterogeneous setafiidexperts as underlined by the sur-
vey results shown in Figufe3.3. While a large number of théigigants has a computer science or
computer engineering-related background, many partitspdid in fact study multiple disciplines,
for example, product design, cognitive science, psychobogl linguistics. The underlying data also
reveals that the fraction of people with no computer scidramkground at all is about 22%.

This is supported by a considerable breadth in the spectfueported research areas, see [WIL08]
for details, encompassing much of the diversity of the HRIfieTaken together, it seems quite
appropriate to call HRI a prototypical interdisciplinamea of cognitive systems research. However,
the resulting heterogeneity does not reduce but rathezaiserthe need for sophisticated methods and
tools that must be known and applied in order to manage a mgfahintegration process.
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3.3.1. Collaboration and Usability Aspects

The varying levels of proficiency and back-

ground knowledge related to software devel-
opment and integration techniques impose
additional challenges for collaborative sys-
tem development even when merely com-
puter scientists are involved.

This is particularly important because of the
stated aim of scenario-driven research to col-
laborate in terms of building real-world ex-

Il No other components 29%

[l More than 5 components 10%
[ 3 to 5 other components 3%

[ 1 to 3 other components 58%

perimental systems. FigufEB.4 suggests thaigure 3.4.: Number of dependencie29% of the atten-

many people actually collaborate even on
the software level. After all, even 10% re-
ported to use information from more than
five components, indicating considerable in-
tegration and corresponding collaboration.

One of the most important and most obvious
requirement for an integration architecture is
that the framework must support collabora-
tive development in an easy-to-use and un-

derstandable approach. The survey affirmed

the assumption that domain experts in cog-
nitive systems not necessarily are middle-
ware experts. As shown in FigukeB.5 al-
most half of the participants never used any
type of middleware before. Therefore, Mar-
tin Fowler’s quote fwrite programs for peo-

ple first, computers secohds particularly

dees reported that their modules do not in-
tegrate information from any other compo-
nents. Howevel8% stated that they rely on
data from one to three components, while the
overall median indicates that modules inter-
act with four other system components.

A CORBA implementation (TAO, ORBIX, Mico, ...) F
Ice from ZeroC F
XML-RPC F
A SOAP implementation (Axis, ...) —
A group communication framework (Spread, ...) r
Other -
0 2 4 6 8 10 12 14

M Known B Used

important for the design of an integration rigyre 3.5.: Use of middleware for distributed systems.

toolkit in cognitive systems research as the
overall goal is to enable researchéhnem-
selvesto provide modules that feature high
integrabilitﬂ

A development process that is purely carried

In general, there seems to be a large
known/use gap exemplified by CORBA that
is well-known but seems not to be used regu-
larly. 46% of the participants answered that
they did not use any middleware, so far.

out by explicit software architects may not be eligible iisttontext with reasonable effort as in cog-
nitive systems research projects system developmentissitally a joint effort, due to the required
amount of interdisciplinary domain knowledge involvedr Bwese reasons and as a general concern,
let us note that an integration architecture explicitlydset take into account usability factors.

Requirement 3.4: Usabilityhis requirement incorporates the goal to design an intiegrarchitecture that
is not only easy to learn and to use, but equally allows ngreedprogrammers to efficiently accomplish their
desired tasks. Thus, comprehensible abstractions faritien patterns need to be provided with regard to the

discovered functional and architectural requirements.

Integrability is the ability to make separately developechponents work correctly together in a larger system [BQJK05
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While usability is an important quality for the acceptandeadramework, it would be overly opti-

mistic to assume that a software framework, which providésgration on the level of fine-grained
operators such as single image filters will get used acrd&setit institutions within in a large-scale
research project. Almost every research group uses theitavlkits for developing cognitive (vision)

functionality. Within the VAMPIRE project, there have beanleast five software artifacts involved
that belong to this category: Matlab TThé08], RAVLICV$0Blessy (a toolkit for image processing
used by the Neuroinformatics Group at Bielefeld Universityhat time), the Graz Computer Vision

Libaries and lceWing [LWHEU6].

While some researchers argue that integration in such atisituis almost impossiblé_ [CGD6], the
practical experiences working in different large-scalgjguts suggest that this heterogeneity is rather
typical, especially for interdisciplinary reseach. Thisgie observation was again underlined by
the survey where the spectrum of used robotics toolkits veag diverse. Hence, the viewpoint in
this thesis is that an integration framework for cognitiystemsinevitably has to cope with this
diversity. In contrast to the one-size-fits-all paradigmjragegration framework must be able to easily
incorporate domain specific tools into its architecture.

Requirement 3.5: Embrace Rewsihin interdisciplinary research or scientific projedtatextend over the
boundaries of single laboratories it is often hard or imfmesiue to political or functional reasons to define a
single developmenttoolkit for the low-level software dieyement of functionality for a cognitive vision system.
Hence, the requirement here is to develop a concept thétdses re-use by a minimally invasive approach that
allows the integration and extension of legacy softwarméaorks with reasonable effort.

An additional benefit of this approach is that scientists camtinue to work in their familiar envi-
ronments, which shall increase research efficiency. On dgwenside, the presence of a number of
different low-level platforms may increase maintenandertf and limits to a certain extend the pos-
sible outreach of the integration architecture in termsooftiol over software processes and the level
of integration.

3.3.2. Mutual Understanding and Agreement

Even worse than the technological heterogeneity in theveoft landscape is often the lack of mutual
understanding, communicated agreements and socialétirdetween the members of geographi-
cally distributed large-scale research projects. A ptojath two developers is naturally completely
different from a large-scale software project in terms ofad@per interaction, because of the multi-
plicatively increasing number of communication paths vattery single new developer. Hence, the
amount of necessary communication quickly becomes imiped@nd failures by misunderstanding
become propable.

As the actual process of integrating and developing a fanatiarchitecture for a system instance
inevitable involves communication between human deveigpeg., to discuss interface changes of
modules (cf. [WL0B]), the stated hypothesis is that coltakion is indeed a software engineering
challenge and the integration approach therefore needsititéfte communication about architectural
issues. When developers discuss an architectural aspeethstractions of the integration framework
should easily be bound to domain entities. The chosen alistna and technigues shall facilitate the
system-level understanding between people from diffedentains. The goal is to find representa-
tions and models that map system models well to the featdrse dntegration architecture like its
communication abstractions but are still accessible fanambers of a project.
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Monarchical Oligarchical Anarchical
Actors Exactly one Dependant Independent
Modifiability | Not applicable Coordinated Uncoordinated
Agreement | Not applicable Strong None
Abstraction | Technical, Low-level Standards-based Specific, High-level
Technology | Shared Memory, IPC, ... | HTTP, CVML, JAUS, ... | Adapters, ESB, ...

Table 3.1.: Characteristics and technological implications of mortacal, oligarchical and anarchical sit-
uations of software integration.

From a system’s perspective, a long-term vision for thegiesf integrated cognitive system architec-
tures is to develop a domain-driven design [Eva03] methamlobinding models to implementations
by employing techniques likModel-Driven ArchitecturdEra03] (MDA). Nowadays, even the cap-
turing of domain knowledge in robotics, e.qg., for the highesel layers of a cognitive robotics system
through a catalog of analysis patterns [Bru07c], archirattdescription languages [GT07] or through
extensions of UML by robotic profiles are areas of currenéaesh.

While it is beyond the scope of this thesis to provide a fordeacriptive framework for the functional
architectures of cognitive systems, a requirement towtielse aspects shall be that the system archi-
tectures, which are constructed using the resulting fraonlewshall be clearly understandable. Every
developer in an interdisciplinary project team should be &b participate in a discussion about sys-
tem instances and the corresponding functional architestdior instance by comprehensible models
of information that is exchanged in the system. No team mersheuld be hindered by technical
peculiarities like firstly learning a specific intermedida@guage like CORBA's Interface Definition
LanguagellSieli0] (IDL) before she can start thinking abautdontribution to an integrated system,
which leads us to call for understandable representations:

Requirement 3.6: Understandable Representatidasides being interpretable by computational pro-
cesses, the representation language should additiorkly Bor human understandability. Representations
that are self-descriptive and accessible to human intetioa are beneficial for the integration process, be-
cause they ease communication and contribute to modularstaghdability.

Questions of modeling, verification and documentation apeeially important within this context
as the situation for system integration in research prejeften exhibits similarities to the anarchical
or oligarchical situation of enterprise software integnat[JohO2]. Johnson introduced an analogy
to political science and compares the context of enterm@$vare integration to aonarchica)
oligarchical or anarchical situations, which are characterized by the propertiesdratutlined in
Table[311. Monarchical situations map to small-scale jgtejerhere the component developer is also
responsible for the integration of a system often utiliziagly fundamental programming language
tools for Inter-Process Communicatidn [ASTMv$02] (IPQ).contrast, the oligarchical situation is
largely different because a number of actors, which are boménstitutionally organized and there-
fore depending on each other are collaborating in a commajegdr In this situation, modifications
are carried out in a coordinated way and the strong agresrbetiveen project participants pave the
way towards integration. According to Johnson the teche#sqused in this context are often exploit-
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ing domain-specific standards or at least generic standesisd methods like the Hypertext Transfer
Protocol [EIG99] (HTTP) for integration. Unfortunately) the domain of cognitive vision systems,
the number of available domain-specific standards is up wofaoly limited, one approach for set-
ting up such a standard is the XML-based Computer Vision Markanguagel[LE04] (CVML) for
use in Cognitive Vision. A larger number of examples for athg existing standards can be found in
the area of robotics like the Joint Architecture for UnmahiSystems (JAUS) for the development
of air, ground, surface, or underwater systems TAlb0OO] erricently evolved Object Management
Groups’ (OMG) robotics standards [(OMO08]. The third typecofitexts describes a rather anarchical
environment. This situation is characterized by a largérlargely independent set of people working
on system(s) to be integrated, yielding largely uncootdithanodifications to whole modules or sub-
systems in an architecture. Within this situational cofjtegually concepts on a higher abstraction
level, for instance from the domain of Enterprise Applioatintegration (EAI) are used like sets of
specific adapters or in a more recent fashion Enterpriséc®eBus [Cha04] (ESB) concepts.

Looking at the integration context of a cognitive systentjqut like VAMPIRE from this perspective,
similarities to the oligarchical situation for softwardegration can be identified. While researchers
usually are willing to participate in a collaboration, whiwas clearly underlined by the conducted
study, the fact that almost no standards are available mittis domain and that the amount of coor-
dination between project partners is naturally limitedititegration situation can quickly turn into an
anarchical one. While the project administration can atteptollaboration processes within a project
to prevent this turn, an integration framework shall addigilly support these mechanisms by provid-
ing means for more efficiently finding and documenting nemgsagreementsHence, an additional
goal of the approach developed in this thesis will be on theadative description of architectural
properties like the coordination of modules within a systegtance.

Requirement 3.7: Declarative Specificatidime modeling and communication about architectures forcom
plex cognitive systems requires a description at a highl leivabstraction. In order to be able to specify the
behavior of the system on an architectural level, a dedl@rdescription is needed that specifies the interactions
in the possible design space of the provided integratiote pet.

The rationale behind this requirement is that strong mathelsallow validation promote a better un-
derstanding and specification on the architectural lev¢heasame time alleviating some of the innate
problems of an oligarchical environment like the statedt lasfcagreements. Exemplary properties that
shall be specifiable are types of component interactioescabrdination strategies in an architecture,
the types of exchanged information as well as module intega

3.4. Summary

The software integration task in collaborative cognitiystems research quickly faces problems of
programming-in-the-large. Not only with regard to its silkat also in terms of the social complexity
involved. If real collaboration is desired, e.g. if a scémalriven research process is envisioned
that emphasizes the integration task, the interdiscipfiaad heterogeneous project environment in
conjunction with the aim to actually build systems imposejue, partly conflicting, challenges on
the design of an integration architecture. The acknowlezigrof these specifics in the integration
context affects many design decisions of the software &ctire that will be introduced in Part Il of
this thesis for the sake of supportingllaborativeexperimental cognitive systems research.
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4. The Technological Perspective

Compared to the project and the collaborative perspectinvesoftware integration addressed in the
previous two chapters, the requirement analysis contimitsn this chapter along a different axis.

The fact that integration is rather pointless when it is mbaally carried out in the real world imposes
some tough challenges for researchers and system dewelopeese primarily arise from the kind

of substrates that are nowadays used to build artificial itegnsystems, which are software and
hardware modules.

Researchers need to cope with the technological propettiteses substrates. One exemplary con-
sequence of this fact is that the exploitation of paralhelis distributed systems results in a number
of intricate challenges for the scientist acting as a saftvaeveloper. Within the introduced archi-
tectural model, this perspective primarily looks on sofvarchitecture from the level of the system
architecture. Taking on this viewpoint and a software eegils mindset, we will look at some of the
questions inevitably arising if we aim at developing laspale distributed software systems.

A fairly large number of textbooks and PhD theses were writtethe past solely devoted to the
challenges of parallelism and distributed systems. Inraeshto these, the subsequent sections only
briefly introduce the reader to some of the peculiaritiesvitey from parallelism. Due to the fact that
we already identified the need for a distributed system tachire during the analysis of the project
perspective in Chapt€&t 2, the presentation will subsetjuetaborate on a number of important chal-
lenges that originate from this matter, because the remeiné to build a distributed integration archi-
tecture proved to be an extremely important and far-regcisisue for the overall approach developed
during the course of this thesis project.

Thinking about concurrency, distributed systems anthgentional software architecture addressing
the requirements identified so far, quickly leads to coreetspof software architecture itself as the ar-
chitectural development of the integration approach éatlfurther guidance. Therefore, well-known
concepts from software engineering need to be taken intouatcight from the beginning. Being an
equally large field as concurrency and distributed systémi, particularly address two relationships
in the following, critical for the development of an inteticm approach: the relation between archi-
tectural quality and modularity as well as the exploitation independence of architectural styles for
structuring software architectures.

4.1. The Consequences of Parallelism

Fundamental for many artificial cognitive systems is theessity to run multiple computations in
parallel. While this principle could be applied in a sedati manner, instances of artificial cognitive
systems usually employ a large amount of true parallelisrardter to achieve online performance
allowing for their safe operation in the real-world, e.gnaigine a robot that would suspend reading
sensor data while replanning due to previous change of@mwiental conditions.

Bielefeld University



42 4.1. The Consequences of Parallelism

However, not only for robots but also in cognitive visione thbility to run several components of the
functional architecture in parallel is one of the key regments as motivated in Chapfér 2. Besides
the fact that the used algorithms themselves need to beagedehnd optimized for parallel execution
on the functional level, the technological implicationscofcurrency vastly increases the complexity
of the resulting systems and their software development.

Nowadays, computer systems usually feature a single CPlJamitever increasing number of pro-
cessing cores or are composed of multiple processing nodaddistributed system connected by
some kind of distributed computing architecture. Conawyean this respect two independent control
flows, let alone whether operating systems processes awkgdgiht threads, appear to be running at
the same time. However, often the the high-level tasks tbestol flows are executing will on a sin-
gle instruction machine with one CPU be de-composed intonabeu of possibly interleaved atomic
processing instructions. On computer systems featuringjpteuprocessing cores, the control flows
will in fact run completely parallel.

Even when the development is carried out in a single progragnfanguage, most languages delegate
the assignment of execution time to the scheduler of theatipgrsystem’s kernel. This has at least
two important consequences:

1. The order of execution between different flows of contsaidt guaranteed in preface.

2. Concurrent access to resources by independent contnd, fing., access to a shared memory
region or the same hardware device at the same point in time.

These uncertainties introduce intricate error pattekesdiale data or an incorrect orders of updates
that need to be addressed by synchronization primitiveshwirievent other control flows from mod-
ifying or accessing a critical memory or code region untd thread that locked the synchronization
primitive in first place has finished the protected operation

Although these problems are understood in theory, onlyntceolid API’s for dealing with common
synchronization problems matured from research into retigam libraries, for instance the new Java
concurrency API[GBE06], which introduces several well-known patterns like bkets or Reader-
Writer-Locks into the standard API of this modern programgnianguage. Writing portable multi-
threaded code is even nowadays a challenge for senior seftlevelopers and therefore a higher
level of abstraction is needed for allowing theerageprogrammer to handle these kinds of problems
in research software systems.

Besides others, Ceravola and Goerick identified the clgderof parallelism as one of the major
points an integration architecture needs to addfess [Cia@6Her to let researchers fully exploit the
features of modern hardware setups for the developmentgoiitbee robots.

From personal experience, an additional aspect is thatabessary high-level features for the syn-
chronization of several modules, processes or threadsrsitdbck-in the programmer into a specific
style of programming. This decreases usability and acoeptaf an integration architecture. Instead,
it must leave software developers the freedom to chooseeaetvan asynchronous programming
model fully exploiting parallelism which is at the same timm®re complex to handle and a syn-
chronous, non-multithreaded model that allows fairly demgequential programming if this suffices
in a given situation.
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Figure 4.1.: Schema of a distributed system JASTM\IS02] and the role aflevicire services. Middleware
provides abstractions for machine-specific low-level afiag system resources such as sockets,
which are used by applications to exchange data across psbeundaries, e.g. over network
links. Thus, logically unified applications may be phydicdlstributed over multiple nodes.

Even large software companies like Microsoft nowadays eskedge [Gat07] that the design and de-
velopment of concurrent applications yields one of the mel@llenges that developers of cognitive
systems are exposed to and that problems originating fromauccency are one of the first sources
of complexity that hinder robotics research. As a consecgi@nf this observation, Microsoft explic-
itly addresses these challenges in their recently releiBesoft Robotics StudiMSRS) toolkit,
which is an integration software for educative and persooldtics [JacO7]. It<Concurrency and
Coordination RuntiméCCR) dramatically simplifies parallel and asynchronousypmming.

To commence this brief excursion into the threats of pdratenputing, let us state the following,
rather general but sill important requirement:

Requirement 4.1: Support for Concurrent Processihg integration architecture needs to support means
for the development of concurrent software systems, becatishe inherent parallelism in the application
domain. It should provide higher level abstractions forisgawvith these challenges than regular programming
language constructs. The resulting programming model sumgtort synchronous or asynchronous use.

4.2. Distributed Systems and Software Integration

Realizing cognitive systems executing multiple compotatiin parallel often demands for computa-
tional power that is beyond the limits of a single standanmshgoter system. Hence, the integration
architecture’s responsibility is to provide these resesrby distributing necessary processing tasks
either on multiple CPUs or to multiple processing nodes. rEselting structure of an interconnected
process network yieldsdistributed systepncf. Figure[41l, which can be defined as follows:

Definition 4.1 (Distributed System) A distributed computing system is a set of computer programs
executing on one or more computers, and coordinating astignexchanging messages. [Bir05]

It is noteworthy that many challenges of distributed systemay nowadays also show up if such a
process network is solely executed osirgle multi-processor or multi-core machine.
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Despite this observation, many challenge are still spetifidistributed systems that are intercon-
nected via some transport layer due to the unreliable ctaistics of many types of communication
links, the increased latency of interprocess communioaitd further aspects.

However, as described in Sectibn 212.1, the sketch of the RMRE assistance scenario envisioned
to distribute as much processing as possible from the mebtigp to off-board computers in order
to have the necessary computational power for the cogritivetions available at hand, cf. Require-
mentlZ8, without letting the users carry bulky hardwareuacb Hence, the integration architecture
presented in this thesis, was designed right from the begirfor network distribution, having to deal
with the typical challenges of distributed systems.

In order to access the far-reaching consequences thahategby accepting distributedness as a key
requirement, let us consider the intricate aspects of rerméractions in an object-oriented soft-
ware architecture. In the following, we focus at three atpetatency memory accesand partial
failure - that feature the largest discrepancies compared to lotadaictions between a set of ob-

jects [WWWK9T]:

Latency Although not being the most important of the three concehesfact that a remote invoca-
tion carried out over a wired or wireless medium simply tagegers of magnitude more time
to complete, at best around four or five ordérs [ERE], compared to a local method invoca-
tion, is the most obvious difference between the two cashgs Jo-calledatencyof a remote
method invocation sums up from the propagation, transonsaind processing times needed at
the sending and receiving sides of a communication channel.

As we will discuss later on, it is almost impossible to hidis flact from an implementation al-
though techniques like pre-fetchirlg [KS04] can be appligprtly overcome this issue. Unfor-
tunately, these techniques are rather domain-specificamtbt be applied in a general manner.
Therefore, an integrated system needs to take into acdaigrdifference, particularly for time-
critical sub-systems, for instance when active vision mégples are used for visual servoing of
robot manipulators.

Concerning these sub-systems an additional issue mayfeosise(hard) real-time algorithms
that need to be scheduled for execution in constant timevaltein order to guarantee a certain
algorithmic property. Seriously addressing real-timeisiributed systems is an ongoing field
of research, which has been addressed for example in the @rtrocsystem of the Justin
robot at the DLR Oberpfaffenhofeh [OEBE]. Within the VAMPIRE project and additional
research projects the resulting integration architedtaseso far been applied to, there were no
requirements for enforcing real-time properties, so wddasafely ignore this issue until the
time of writing this thesis.

Memory Access Another important difference between local and remotedations is the fact that
the execution context can change by any invocation to anaithéress space in a completely
different processing and language environment. Thergfrery pointer that references an
object or data structure in the local address space wilaimaheously become invalid when
naively transmitted over a network link.

Although modern implementations @bject Request Broke(®RB), for instance the Ice ORB
discussed in the next chapter, can overcome this limitatias approach restricts programmer
to use object references for every interaction therebykimgahe transparency that is on the
other hand envisioned by such object distribution systems.
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Partial Failure Even local interactions of objects are subject to failumesafl sorts of reasons. The
important difference to errors that occur in remote invioret is that in the case of local invo-
cations, failures are total. Either interactions betwelsjeds fail completely or it is possible
at least through operating system support to detect anemusnsoftware or hardware module.
Through examination of this error state, it is at least imgiple possible to overcome this class
or errors. For distributed systems, the conceptatial failure is an unfortunate reality, which
describes a system state where a number of entities (objatisesses, machines, network
links, ...) are in an erroneous state while others are not.

In order to exemplify this, let us think about problematituations that represent a partial fail-
ure [WWWKZ97] and possible solutions for this while carryiogt a remote method invocation
by a caller object (thelient) on a callee object (theerve) [ASTMvS0Z]:

1. Client cannot locate serveiThis situation is rather easy to handle, because we just nee
to report back the exceptional circumstance to the caller.

2. Client request is lostIf we can identify by inspecting the local processing staaéore
the crash that the message has been lost within the cliesystein, a straightforward
solution is to just resend the message.

3. Server crashesThe crash of the server object represents one of the medtiorrica-
cies, due to the fact that is usually not possible to detedthdr the server has already
processed the invocation message. In order to handle thigsnécessary to specify the
operational semantics of an invocation, for instaatéeast-onceor at-most-onceseman-
tics.

4. Server response is losfnother example of partial failure is when a response ofreese
object on an invocation is lost. In this situation, it is inggile to decide whether the
server has already processed the invocation. The onlyicoliltat is available in this case
is to resend the message if and only if the operation is makiedmpotentwhich means
that the invocation is repeatable without any side effatthé server object.

5. Client crashes If the client object crashes and the interaction with theveseobject is
stateful, which means that the server is keeping track afigsts, for instance by holding
a transaction lock, these orphan computations are wastismurces that are eventually
blocking other distributed processes. Solutions to thasglof problems can for instance
be to kill the orphans by the client as soon as it is again ablor to let the server Kill
the orphans after a certain period of time.

These failures differ from a simple exception that is raigea local object interaction as it
is usually impossible for a client object to determine wietthe source of the problem is
a malfunction in a network link or a crash in the server precéisereby leaving the overall
distributed system in an inconsistent state. The targegcblipay simply disappear and the
thread of control may never return to the calling object. Titanate consequence of this
observation is that partial failure requires the applaratievel programs to account for this
indeterminacy.
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4.2.1. The Role of Middleware

Novel methodologies for the development and the designrofpbex distributed systems that take into
account the problems introduced above, historically eetfgom two different starting points: on the
one hand researchers who are trying to extend the model gnelssiveness of existing programming
languages by incorporating features for building distelousystems. On the other hand, scientists
and companies are trying to directly focus on the innatelprob of distributed systems by conduct-
ing research on advanced communication protocols fegtig@mantically stronger guarantees for
networked interactions resulting in increased reliab{Bir05] or by providing distributed comput-
ing environments comprised of code libraries and improeetstexplicitly addressing the challenges
arising from networked applications. For a number of go@soas, the integration approach in this
thesis deals with distributedness in the latter way.

Software that provides this functionality either in ternisamguage enhancements, specialized tools
and protocols or any combination of these is terrvéddleware Usually, it provides a connectivity
layer and services that allow multiple processes runningr@or more machines to communicate
across a network or other accessible means of communicadiordicated in Figurie4.1. Middleware
can be defined as follows:

Definition 4.2 (Middleware) A set of layers and components that provides reusable coraergites
and network programming mechanisms. Middleware resideprof an operating system and its
protocol stacks but below the structure and functionalitamy particular application. [SEIU8]

Although the term middleware is often used in a broad sensewill stick within this thesis to
the primary aim of middleware, which is to provide interagiatity between individual applications
and software modules across process, platform and hardveanedaries as shown in Figure4.1.
However, middleware can be extended into more versatitevaoé architectures for cognitive systems
by integrating generalizable functionality or encodingndin-specific interaction strategies between
distributed processes. Hence, it may provide servicesattgahot directly available from the native
network layer such as ordering and reliability or add donsipport that is directly available over
different types of communication media. Examples for bgges of middleware and domain-specific
approaches will be briefly discussed in the next chapter.

Similar to a certain extent, the development of an integraéirchitecture differs from the design of a
middleware in terms of its domain specificity, which is in ttmntext of this thesis defined by what we
identified as important in from the project and the collativeaperspectives as well as from its core
aim to support the integration process itself, cf. ChaffleaadB. Hence, the resulting approach shall
not compete with fully generic networking middleware but isstéde tailored to the aforementioned
aspects and may rather provide suitable or novel abstrecadopting methodologies from recent
middleware approaches in order to assist users in the pnsbdeitlined previously and to fulfill the
requirements deriving therefrom.

4.2.2. Requirements of Distributed Systems

Continuing the requirement identification, let us now loakai bit more detail on some of the key
characteristics of distributed systems and discuss thethercontext of middleware and the per-
spectives developed in the previous two chapters. Besiolesurrency which we already discussed
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separately in the previous section, important propertfedistributed systems [TB01] anesource
sharing opennessscalability, transparency fault toleranceas well asconfigurability, extensibility
andsecurity

Resource Sharing

A fundamental property of a distributed computing systesnthé sharing of resources. In order to
share specific resources whether these are free processm@riid memory space or in the context
of cognitive systems sensors and actuators that allow arsysi be embedded in the real world as
described in Chaptél 2, each resource needs an interfacalltves other members of the system to
access these.

Within cognitive systems, it is often not sufficient to prdeia simple abstraction over the local re-
source, but more sophisticated arbitration mechanismeewessary in order to produce meaningful
behavior of for instance a navigation module in a robotidesys Due to the fact that distributed arbi-

tration in cognitive systems is still a research topic iroits right, the consequence for the integration
architecture from this point is to provide generic functbty to support the arbitration between dis-

tributed components, for instance by providing notificatservices that simplify the development of

the necessary arbitration management modules. The resuétguirement from this aspect therefore
deals with the possible ways to expose shared resources tlidtnibuted systems. Due to the fact
that this is not only a matter of middleware but rather ofwafe architecture, we shall discuss this a
more deeply in Sectidn 4.3 in the context of architecturgestfor software integration.

Not anticipating the conclusion, supporting arbitrationain integration architecture is one of the
challenging areas for future research on integrated degnslystems. However, Secti@nl7.4 will
introduce a method that is tightly integrated with the gaheoncepts of the integration architecture
for explicit modeling of arbitration strategies, which Has coordinating access to the sensors and
actuators important within the context of the VAMPIRE putje

Openness

Openness in a distributed systems in general deals withnttrernental extensibility of these sys-
tems. While it is nowadays taken for granted that within op&tesn, extensibility, for instance by
adding new components shall be easily feasible if a recedtleware is used, the interaction and
integration with services exposed on other systems, iectse of the underlying software and hard-
ware infrastructure is a more ambitious challenge. Pdatityuimportant for achieving a high level of
openness are the abstraction from concrete technicalomm@nts and comprehensible interface as
well as protocol specifications.

The abstraction from low-level software and hardware emrirents for masking out the inevitable
heterogeneity in distributed systems is a key techniqudldav dor portability of applications. For
instance, it should be possible that an application wriftera single integration architecture, shall
be easily portable to a different operating system, harevpdatform and programming language.
Protocol and interface specifications are important fomopss in order to allow an easy integration
with other systems that are developed on a different midallevbasis. Therefore, the syntax and se-
mantics of the interface functionality must be very well doented for the provided communication
abstractions as well as the protocols that need to be abtegsan open way.
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Examples for open middleware systems are architecturdsaI®ESTI[RTECUO], which is based on
Hyper Text Transfer ProtocqHTTP) as a transport protocol and often uses serialzensible
Markup LanguagegXML) infosets [CT04] as syntactical basis for exchangedssages. Thereby,
REST-based systems achieve a high degree of opennessngll8vd-party systems to more easily
integrate in existing applications.

Concerning the relevancy for an integration architectitris, natural that openness is an extremely
important criterion, because the integration with systemiten by others is one of the primary goals
as already explained during the discussion of the projesipeetive. Therefore, we will add openness
on our list of requirements:

Requirement 4.2: OpenneTke ability to integrate additional services and modulewel$ as being itself
integrable with other frameworks by concise definition & thtegration interfaces and the used protocols is an
important requirement for the overall approach. Idealg, approach shall be based on well-known standard
protocols and techniques that are beneficial for buildisgyithiuted systems. Additionally, the framework shall
support portability in terms of hardware platforms, op@gsystems and programming languages.

Because within cognitive systems as the one that are in this fof the VAMPIRE project, the question
of how to flexibly represent data, information and knowledgerucial in the overall architecture, it
is important to stress that this is one of the conjunctiongnetiunctional and technical architecture
meet and mutually extend each other.

Therefore, we will extend the call for extensible and untderdable representations, cf. Require-
mentdZ.b anl3 6, by an additional requirement, which isakehanged representations are not only
interoperable, which is covered by openness in generahlbainterpretable

In order to assess the benefits of a representation thaeipiatable by other modules without prior

knowledge about the contained structures, let us shortlguds the reverse situation. Imagine a
data visualization component for a cognitive system acis@ common service for supporting the
integration process. If the representations used for rgessachange are not self descriptive and
can not be interpreted by the machine on its own, the visatidiz service unnecessarily needs to be
aware of many if not all the interface and datatype defindtithrat are used within a system, thereby
increasing the software coupling and maintenance effdrsorder to prevent such situations we

therefore call for interpretable representations:

Requirement 4.3: Interpretable Representatitmaddition to the benefits that openness provides for an
integration architecture, the exchanged data items nebéd self-descriptive and dynamically interpretable by
components that feature little or no knowledge about théa&nged data types.

Considering this requirement in the design of an integnadichitecture shall later yield in a decreased
coupling of the resulting software components. This reaignt is fundamental to the approach
described in this thesis. Therefore we shall revisit thideecurrently though subsequent sections.
Low coupling eases the design of re-usable building blobks provide common functionality on
top or within an integration architecture like notificatidogging, proxy or visualization services.
In order to achieve interpretable representations, some & self-descriptive formal language like
SGML [GRO0], XML or similar techniques may be applicable.
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Scalability

Scale is an important goal for the design of distributed esyst because it shall guarantee that a
system can grow and is extensible for an increased proceksad, for instance take into account
the exponential growth of queries on the root servers foirtegnet's Domain Name Service (DNS)
during the 19904 [Bir05] that lead to several internet brows. In generalscalability in distributed
systems can be defined as follows:

Definition 4.3 (Scalability) A system is said to be scalable if it can handle the additiomsefs and
resources without suffering a noticeable loss of perforogaor increase in administrative complex-

ity. [Neu94]

Even though the usual meanings of scalability like incregsi user base from one thousand to one
million without breaking quality-of-service (QoS) guatees is rather not in scope of the cognitive
systems to be developed, scalability questions nevesheln become important.

Adding a component such as a global monitoring service ttegrates with many other components
in an existing system architecture triggers additionalceons about extensibility but imposes to the
same extent questions of scalability. Whether or not a sy&eapable of handling the increased data
flow and how it copes with the additional interactions is oftmpredictable. Thus, let us consider the
three distinct dimension5 [Neu94] that comprise scalgbitach of these influences the challenge of
building a scalable integration architecture in differestys:

Size scalabilityneeds to be supported in that it must be possible to dynamiaadl components to a
developing system architecture without suffering perfance loss and to improve the system perfor-
mance if a service is properly replicated. Although it fatamce never occurred within the VAMPIRE
systems that a single source of information published ftaination to more thah0 receiving mod-
ules, size scalability becomes important for cognitiveeys with regard to the dynamics of latency,
throughput or robustness when additional services argriatied. As a general requirement scalability
is often claimed to be supported by middleware solutionstlisitisually not proved. Therefore, it will
be necessary for a proper evaluation to test the integrafipnoach in meaningful scenarios relevant
for the application domain.

Geographical scalabilitys less important for the work carried out in this thesis @&sgbal is to build
networked systems like an assistance system that featuneghalegree of local cohesion, which
is usually integrated within one local area network (LANheTquestion of geographical scalability
needs to be addressed differently when the network distaetveeen participating computers is very
large, for instance when scalability on a global level isdezek

That said, it is tempting to apply broadcasting or IP muftiqgarotocols on the transport layer of LANs
in order to ease the design of scalable applications. Wnfately, this decision will turn out as an

over-simplification with regard to the given integrationntext outlined in Chaptdil 3. Even in the

simple case of performing integration within a single Unsity network it is rather usual that the

systems which are set up cross the boundaries of single LANsefore, a simple network broadcast
is no longer possible and the correct handling of IP multipagkets is no longer guaranteed if one
is not in control of the network infrastructure. Thus, alijb geographical scalability is not of prime

importance, certain aspects still need to be taken intouaxtco
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Transparency| Aim and Description of Transparency Level Relevance

Access Hides platform or language specific details in data reptasiens and differ- o]
ences in local or remote invocation mechanisms.

Location Hides the physical location of a component, for instance bitlvnode a ++
service runs in a distributed system.

Migration Hides the movement of a component from one location to anothe +

Relocation | Hides the fact that a system can change the location of acgetwiwhich a -
client is bound at runtime.

Concurrency | Hides from a client the concurrent access to services by otieats. ++

Failure Hides failures like temporary disconnection from serviegspplying recov- o]
ery strategies without client involvement.

Table 4.1.: Levels of transparency in a distributed systeins [ASTMv&0d]relevance for the integration
approach ¢+ important, + desirable, o neutral, - less impor}ant

Administrative scalabilitys concerned with scale in terms of the number of organimatiovolved in
the operation of a distributed system and deals for instaitbesecurity matters. It may be of interest
for very large-scale integration projects with a large nemaf involved organizations but is of less
importance for the integration context of this thesis.

Concluding, it is important to note that scalability is arpiontant attribute of an integration architec-
ture for cognitive systems, particularly when systems areathically evolving, which is the favored
development approach for software integration in the gamrnronment as outlined in the description
of the collaborative perspective in Chapiér 3. The follayviequirement shall summarize the most
important points of scalability from this viewpoint:

Requirement 4.4: Scalabilitén integration architecture supporting the developmertaafiable cognitive
systems needs to provide at least two properties of sciyal®n the one hand, scalability is provided if an
increased number of components reasonable for the givemidgmerforming different tasks do not degrade
overall system performance. Conversely, the overall sygterformance shall scale up if the processing of a
single component is distributed to a number of different porents. Additionally, geographical scalability
must be supported at least in terms of addressing the nedus ioftegration environment.

Transparency

Transparencyin a distributed system describes the degree to which therelifces between a local

and a remote interaction are masked out, e.g., for usersingorkith an application on the system

level or software developers utilizing a middleware in ac#jie programming language. While even

more dimensions of transparency have been defined in thatlite, Tabl€Zl4 summarizes the most
important dimensions of distribution transparericy [ASTS2] and their relevance to the integration
approach in the context of its network functionality. Airgiat full transparency in every aspect is
an extremely hard to achieve goal - although incorrectlinada by many middleware products - that
may not even be well worth doing so in every case.
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So, what are the relative merits of the different levels sfribution transparency in the context of an
integration architecture?

Access transparenggims at masking out the heterogeneity in different softveare@ hardware plat-
forms used in a distributed system, e.g., in terms of byterand or language specific representations
as well as for instance with regard to the question how praeedare invoked. Aiming at a very high
degree of access transparency shall allow software dessldp design programs that can be easily
broken up into smaller parts when distribution is neededis hall reduce the complexity in the
design of distributed systems. Unfortunately, with regarthe inevitable differences between local
and remote interactions in latency, memory access and thteege of partial failure as outlined in
the beginning of this section, transparency in terms of,, @g@mory access and method invocation

can never be complete [WWWKD7].

A high degree of access transparency masks the importanhé&ia distributed operation is possibly
carried out with the explained different characteristitisst merging a CORBA implementation in an
existing object-oriented architecture to improve a penfance gain by distribution is very likely to
result in an errant architecturle [ERB2] possibly with the same or almost no improved performance
Even worse, errant architectures often exhibit a brititgytty coupled system architecture that is hard
to maintain and evolve on the longer run and ever harder terstehd and test. In contrast, the system
design needs to reflect the distributedness through arcébgidicomposition strategy, for instance by
choosing a suitable interface granularlty [ERE] at the distribution boundaries.

While certain features of access transparency, for instamovercome different memory represen-
tations are valuable and shall be addressed, full accasspaeency is for this reasons not of prior
importance for the approach to be developed within thisisheShe aim in this thesis is to deal
with the inevitable challenges of distributedness to therxnecessary and to reduce the essential
complexity in solving those within the given environment.

Compared to access transparenogation and migration transparencyare essential requirements
within distributed systems. If these dimensions are supporthe concrete physical location of a
component is masked out, for instance by assigning a symbalne to a shared resource. Consider
a fully qualified domain name (FQDN) specifying a host corepin the internet over the equivalent
IP address of the machine as an example. While the FQDN Higesoincrete location of a machine
on the network, the IP address directly reflects the netwtrdctire. From a practical perspective,
this requirement is important for maintainability of coraplsystem setups as the involved node and
their network setup may change any time. Embracing locaimhmigration transparency, location
independence is an important requirement in general and@lshe work carried out in this thesis.

Requirement 4.5: Location Independende component developers must not be aware of the physical
location of another service they utilize in a concrete systetup. Therefore, the integration architecture needs
to provide and use an abstraction strategy that masks osiqahjocations from the system developers. It must
not be necessary to change the code base of a service if teahpcations of other components change.

As an extension to migration transparen@tpcation transparencyides the dynamic movement of

components to other physical locations at runtime fromrotdlependant services. While this may be
an important property for distributed architectures inegah this requirement did not show up during
the VAMPIRE project as services needed not to change therugion context at runtime.
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The requirements arising from the parallel utilization lb&ed resources are much the same as what
we already discussed in Sectionl4.1 except the additioaahdhat the services utilizing others shall
not be aware of this fact and therefore operate in a loosalpled manner. Thus, achievirgpn-
currency transparencgnd supporting the developers in coping with the challerigesefrom is an
important aspect and already on the list of requirementthfointegration architecture.

Due to the fact that the last aspect of transparency listd@lne[Z2 failure transparencyis highly
intertwined with the larger concerns of fault tolerancépkediscuss this now separately in the context
of this more general characteristic of a distributed system

Fault Tolerance

Owing to the effects of partial failure and the existence ptd@htine errors due to the partly prototyp-
ical status of research software that is integrated in thissiemed systems, fault tolerance needs to be
taken into account in the design of an integration architectFault tolerance in a distributed system
is comprised of availability, reliability, safety and m&mability [ASTMvS02].

An individual failure is a single cause out of a potential larger number of failtihasis responsible
for the temporary failing of a distributed system. This meyly that all or parts of the regular
functionality are notavailableto human users or other system components. Within this xprite
difference between availability and reliability is impamt, because a highly available system need not
necessarily be extremely reliable.

Fault tolerance and failure transparency deal with erradhiag techniques in order to increase both
properties. While safely is naturally extremely importiomtinstance in control systems in the broader
context of machine automation, safety can become an equafigrtant concern in the context of
cognitive systems that are autonomously acting in the realdwike mobile robots. Maintenance
is important in order to allow for autonomous recovery withbuman intervention and is therefore
equally important in the application domain once such systare leaving the experimental state and
non-expert users become dependant.

Failures can be classified according to their occurrenapuéecy, e.g. temporary, periodic, permant
and their characteristics. For instanBgzantinefailures that may leave components in an undefined
state are often the result of erroneous software compoaedtare hard to track down. Furthermore,
there are simpléalting errors where a software component aborts and is no longéalaleaor fail-
stopfailures where a component cleanly aborts by being ableagiquisly notify the rest of the system
of its malfunctional state. Besides these, a number of imthadit models of failures have been defined
in the literature, e.q.[TASTMvS02] that need to be treatedlifferent levels of abstraction and with
specialized methodologies.

As we cannot assume user code to perform correctly, theratteg architecture needs to detect
and notify the halting as well as fail-stop errors withoujuiging modifications of user code. The
inspection of Byzantine errors needs to be supported by d gmirumentation within the resulting

framework to track the state of affairs between involvedvgafe components.

In order to overcome the effects of partial failure diffareathniques can be applied that often impose
further limitations, e.g. non-standard extensions to netwprotocols or other constraints_[Bif05]
that are not generally applicable, for instance annotaingethod agdempotentwhich conveys the
information that a method call can be repeated in case of\aguerror without side effects.
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In any case, it is important for software developers utiligithe integration architecture to know
the exact semantics of a provided functionality, e.g., Wwhepoint-to-point interactions feature at-
most-once or best-effort semantics and if in broadcast conication the ordering of the messages is
preserved in receiving processes. If this information isavailable, both the development process of
a system can be cumbersome as well as it will be hard to comathphighly reliable system in the
end.

Concerning the level of error transparency that can be aetién a distributed system, let us
note that it is theoretically and practically infeasibletttally mask out failure in such environ-
ments [WWWK9T]. Thus, the concept followed within this tiseis that errors are an exceptional
but regular system state that needs to be made explicit bgsnding mechanisms to be exposed
by the integration architecture to software developergdeioto handle errors in application specific
ways on a higher level of abstraction. Thus, error transparés not a primary goal of the integration
architecture. Providing a high degree of error transparénadevelopment situations may make
matters even worse, e.g. by masking out coding errors, liiggmoring the principles of defensive

programming[[Lad94].

Requirement 4.6: Error Handlingn contrast to providing a high level of error transpareracyjntegration
architecture shall explicitly accept errors as a centraityeand provide functionalities that allow to assess the
possible cause of failure, actively handle them and evdigittecover from them at runtime by reconstruction
of a corrected system state without human intervention.

The questions how fault tolerance and error transparencgi@a with the software design of the
resulting systems or components, provides a starting fointhe subsequent section on software
architecture in the context of the envisioned distributgstesm.

4.3. The Relevance of Architecture

Complexity in software development usually arises from different sources. On the one hand there
is unavoidableinherentcomplexity in the domain of cognitive and distributed syste This type
of complexity needs to be handled on the level of the funetiar integration architecture of the
resulting software system.

On the other handaccidentalcomplexity [Bro9%] is non-essential for solving the furmctal chal-
lenges. This type of complexity may emerge in this integrattontext from heterogeneous devel-
opment processes, a varying level of cooperativeness batpmject partners and from architectural
mismatch between sub-systems. To cope with the resultingathcomplexity and the technological
peculiarities of parallel and distributed systems, a cehieintegration architecture is critical.

The goal of architecture-centric software and systemsldpreent is to raise the level of abstraction
in order to reduce the overall problem complexity. In thédieing, we shall discuss what additional
requirements origin from this perspective for the envistintegration approach, particularly why
modularity is on a more abstract level the most importantofator reducing overall complexity.
Linked to the aspects of modularity, the reasons for aiming Eosely coupled service approach
within this work will be explained. To commence this chaptgrestions of architectural style will be
discussed in the context of an integration architecture.
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4.3.1. Modularity as a Key to Software Quality

Modularity is a fundamental principles that is often foundcbmplex technical and organizational
structures as well as in nature. Looking at the definition cbmplex system, one approach to deal
with the challenges arising therefrom is to reduce the nurobdistinct parts by aggregating elements
into more coarse grained subsystems. As a consequencéntlieta build larger systems by com-
bining thesemodulesand focusing at the interactions between them on a highéaakien level than
one would otherwise do. Decomposing a large number of imeed elements into a smaller set of
less interdependant modules is the general aim of moduiiavase development approaches.

Parnas introduced the classical definition of modularity #e concept of information hiding already
in the Seventies as he states that every modsleHaracterized by its knowledge of a design decision
which it hides from all others. Its interface or definition svehosen to reveal as little as possible
about its inner workings'[Par72].

While the ideas of Parnas and others are still influentiatderdesign of programming languages, it
will be necessary for the envisioned integration approacillow for modularity and reduced inter-
dependencies on a higher level of abstraction than thaiogframming language elements. Examples
for more abstract information important on this level areatvfunctional roles and interdependen-
cies an individual module, what interface specificationadheres to or what rules prescribing the
development and integration it needs to conform to.

In order to assess modularity in the context of softwareigecture, let us take on the perspective
that Bertrand Meyer introduced [Mey97]. He gives a more itktadescription for the notion of
modularity that can be summarized by the following six prtipe of a modular approach, which
we will adopt and consider as refinements for the call to ¥olep modular approach as stated in
Requiremeni2]1:

e Modular Decomposability A software architecture yields modular decomposabilityew it
facilitates the comprehensible decomposition of a probietm a smaller number of easier
subproblems that are still manageable by the integratiohitacture. In order to satisfy this
constraint, the resulting partitioning should allow fod@pendent, parallel development and
interconnection through a structure as simple as possible.

e Modular Composability This property of modularity relates to reusability of ady existing
building blocks of functionality in different contexts. Aarchitecture satisfying composabil-
ity shall allow to freely integrate existing building blazkn novel applications that were not
foreseen during the initial development of these modules.

e Modular Understandability If a software favors modular understandability, it shaldompar-
atively easy for humans to understand the system-levetibmadity of a software module. It
needs to be possible to understand the interactions of almadthout getting to know all other
modules within an architecture. In order to allow for betiaderstandability, our assumption
is that traceability of the dynamic behavior of modules ignoally important requirement.

e Modular Continuity The aim of this property is to limit the impact of change. Ata@re
architecture conforms to modular continuity when a chamgerie of the domain modules
yields only a minimal number of changes in other modules.s Poperty poses questions of
versioning and backward compatibility of interfaces.
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e Modular Protection While continuity is concerned with the impact of changés froperty is
concerned with the impact of failure. It states that the neindd modules of an architecture
that are affected by an abnormal condition within one modhkdl be minimal. This challenge
relates to the question of combined critical dependencigsduced previously and the aim to
achieve a high degree of robustness.

These attributes need to be carefully considered whenmagi@ software architecture as they pro-
vide a fundamental basis to allow problem decompositionhenl¢vel of the integration and the
functional architecture. Even so, the question how modtylaan be achieved in the reality of larger
systems must not be answered in this analysis but in latgrtefsaof this thesis. However, an archi-
tectural property that is closely related to the attribuiesodularity is the degree of coupling that a
system exhibits at different levels of abstraction.

4.3.2. Software Coupling and Granularity

Coupling in a software system is ¢gheé strength of association established by a connectian fsoe
module to anothér[EMC99]. While a minimal amount of coupling is needed for adnlarized sys-
tem to perform a meaningful tasfight andloose couplinglefine the extreme ends of this continuum.
From the perspective of software architecture, couplinglminterpreted as the fragility exposed by
module interdependencies.

Tight coupling induces a high fragility in the relation betn a number of components, which often
implies negative effects on the aspects of modularity eéspthabove. Aiming at loose coupling in
contrast, acknowledges the benefits of a modular approaitl grianting the fact that a problem may
not necessarily be fully decomposable in a modular manaeim$tance due to performance require-
ments. Realizing a loosely coupled architecture focusea oeduction of the number of external
interdependencies between modules, hiding internal peteamthat are only important for the con-
crete implementation behind the module’s interface. Lamseling is particularly beneficial given
the characteristics of the integration context, e.g., tectindependent component development and
improved changeability of individual modules.

Coupling can be induced along several orthogonal dimesqlem06]. The critical source of coupling
for the context of this work is coupling on the component iifatee level. This type of coupling is
comprised of aspects like data and interface formats asasgjtanularity, version resilience, transport
independence and the granularity of expected interactteqms. Furthermore, stateful interactions
and implicit as well as explicit correlations, the ability inediate data between components through
proxies or routers and dynamicity are concerns that inflaehe degree of interface coupling.

Acknowledging the benefits of loose coupling and the desitestraction level of an integration ar-
chitecture, the question of interface granularity quicktises. Considering this aspect in the context
of software integration, boils down to the question of whasteaction level shall be targeted when
modules in the functional level of the system'’s architetare to be integrated with the services an
integration approach provides.

From the viewpoint taken on in this thesis, the assumptidhas it is beneficial to focus on rather
coarse-graineccomponent interfaces for two reasons. Firstly, a decontipasnto modules that offer
their functions through a coarse-grained interface forneslule developers to design system-level
interactions on a higher level of abstraction, which redumeerall complexity.
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Secondly, the introduction of coarse-grained interfacas ppositive impacts on the overall perfor-
mance in distributed systems as fewer message exchangesebetomponents are necessary. Fur-
thermore, this strategy promotes modular protection,ereusl changeability, e.g., because coarse
grained interfaces at the same time exhibit smaller intedavith fewer methods.

Another argument in favor of coarse grained componentsfegration within a loosely coupled ar-
chitecture is that some fine-grained modules need to be righitéytclustered within a larger building
block to cope with specific requirements, e.g. real-timergnizes for the visual servoing of a robotic
arm or control algorithms that need to be executed with fikedh intervals.

If these building blocks are encapsulated in coarse-glagmenponent interfaces, they can still be
integrated without inducing unnecessary complexity orotrerall integration what would be the case
if, for instance, real-time would be a first class requiremétor the reasons outlined in this chapter
taking into account the integration environment and thé&idigedness requirement, we state that a
suitable integration approach needs to support the devednpand integration of loosely coupled

software modules:

Requirement 4.7: Loose Couplifige integration architecture shall primarily promote leasupling on the
interface level for the services it provides, thereby alfayfor reduced coupling on the level of the functional
components. The goals are to foster independent develdpanenevolution of components as well as to
increase testability, which are all important softwarelifies in the context of the given integration context.

4.3.3. Architectural Styles and Software Integration

An important aspect for finding dependable solutions to tialenges described previously and par-
ticularly in the context of distributed systems and loosepting is the concept ddirchitectural style
Similar to idioms on the level of programming languagg¢s [Cop91, Tan01] design patternsn
object-oriented softwar& [GHJVO5], architectural styd@sode design decisions which are applied to
the construction of systems [SC97]. Each style promoteéitigsathat are of special interest under
certain conditions. For instance, the C2 style, depictdeignrelZ.2, was developed with a particular
focus on the development of GUI systerhs [TN®8]. Architectural styles are a critical concept in
achieving reuse of structures, relations and interactiona high abstraction level.

According to this understanding, architectural styles deecribing the structural organization and
interaction of software entities, remaining completelgapendent of specific domains. Examples for
these domain-independent architectural stylegpgre-and-filter request-reply shared repositonpr
object-request-brokeas well as many moré [SG96. AZ05]. These styles are extremmglgrtant in
order to describe, model and communicate the high-levettires of software architectures. While
the border lines between patterns and styles are yet uniléanowadays very well recommended
practice to design and describe software systems using tudsling blocks. Specifying and applying
well-known architectural styles is not only useful for tiealization of an integration framework itself
but is particularly beneficial for the services it provideslf to its clients.

Styles that map to software patterns allow to codify prova@dt®ns that encapsulate large fractions
of the accidental complexity in distributed componentriatéion. An integration approach featuring
anintentionalarchitecture, shall make the rules governing the compwsdf design elements explicit
and document them in one or more architectural styles oesy#tvel patterns.
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The quality of resulting system in-
stances and software architectures compa
can greatly benefit from distin-
guished styles that are followed pre-
cisely during system construction at | Conna |
the same time making it easier to
communicate about the structural as-

requests ] notifications
pects of a larger system. CompB Compe
As functional and technological di- ‘ ‘
mensions are not orthogonal, it will | Conne |
be important to provide a set of ar- \
chitectural styles or patterns on a Compp &)

system level that matches well with
the functional and non-functional re-

quirements identified in the previous Figure 4.2.: !Exemplary C2 architecture with four components
in three layers and two connectors, which actu-

chapters. However, It is 'mpOSS'bIe ally isolate higher-level from lower-level compo-
to assess in preface possible future nents [AZ0B).

styles needed in an integration archi-

tecture and as it is hard to assess at the beginning of a plisE¥AMPIRE which architectural styles

will be best suited for integration, the focus of this worklwiegard to architectural style is to not be
fixed on a single style but rather provide an extensible, @udtware architecture providing build-

ing blocks for easy extension, yielding a further requiratmaainly derived from the technological

perspective:

Requirement 4.8: Architecture Extensibilityegration architectures must allow for extension ofttfigic-
tionality in terms of provided styles with a reasonable gffe.g. by offering predefined extension points.

4.4, Summary

The main matter of this chapter was to detail some of the t@olgical challenges involved and sug-
gest strategies for reducing their impact, with a partictdaus on parallel and distributed computing.
The goal here is to encapsulate the accidental complexityowi constraining architectural choice
for system developers. The previous sections describadresgents that have to be fulfilled in an
integration architecture for experimental cognitive eyss to realize this.

Following a modular approach is a key requirement for iraégn and directly leads to the question

of interface design and coupling. While a certain amountoofpting between modules is inevitable,

loose coupling is especially important here due to the bolative nature of software development
in research projects as described in Chajpter 3. To a certéemte the aim of encapsulating com-

plexity and providing guidance for the design of distrilmlisoftware architectures conflicts with the

required freedom of architectural choices. Hence, thermatlapproach strives at a balance which
hides accidental complexity while exposing inherent canity.
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5. Requirements and Architectures for
Integration of Cognitive Systems

Throughout the past decade, several frameworks for vigjstems have been proposéd [FB€,
PUVO3 [DKRH94[ KR94, TWT94]. Most of these frameworks weaidred to certain project specific
requirements and thus are of limited applicability for therengeneral challenges of cognitive systems.
However, there are common needs in traditional computesrvas well as in cognitive systems which
this thesis tries to address in order to provide a suitalfievace integration approach that increases
the efficiency of research aiming at real-world prototypstems. In the previous chapters, these
needs were identified through consideration of three petisps for a holistic integration approach
in this context: the project, the collaborative and the tedbgical perspective. This presentation may
suggest that these perspectives are orthogonal. Howhbigeis fortunately not true. The aim of this
chapter is to provide a condensed set of key aspects refirestite essential thematic priorities within
this thesis, thus laying a basis for comparing selecteda@laork against these general requirements.
Additionally, this will provide an avenue for the transiiido Part two of this thesis that presents the
approach introduced with this dissertation.

The first section of this chapter further analyzes the ifiedtrequirements by clustering them into an
evaluation scheme. This is subsequently used for estignttastrengths and weaknesses of other ap-
proaches compared to the key aspects important withintteg@g. This catalogue extends a report that
prepared for the EC Vision network of excellence [PYWB04] anesented at ICPRO4 [WPBA]. It

was requested due to the fact that only less comparative @neery recent reports [CCB4, RRH99]
were available at that time. While this report mainly foaise computer vision toolkits, the analysis
in this section is geared towards approaches to softwaggration, explicitly considering approaches
supporting cognitive vision and robotics systems.

The resulting compact catalogue of the most important aspewd requirements shall provide an
avenue for a brief introduction to related research a@wifrom the domains of cognitive systems
science. Subsequently, three exemplary architecturegn@from object-oriented middleware and
cognitive vision research to an integration architectarecbgnitive robotics will be reviewed along
the identified criteria. The chapter ends with a short disicusand brief conclusion of Part I, de-
scribing how the existing approaches differ from the prtéperone would expect for the envisioned
integration approach that is presented in the second p#hrisathesis.

5.1. Synopsis of Requirements

The aim of this section is to develop a conceptual frameworkcbmparing existing related work
against the requirements identified in the previous chapsimilar to what was done for agent archi-
tectures[[EMOR] or mobile robotic5 [0red9, K$07], but camsly keeping in mind the three perspec-
tives explained before.
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Requirements engineering usually separates individuglirements into so-callefunctional and
non-functionalrequirements, which has not been done for the requiremdaitifiied so far. While
functional requirements (FR) specifg function that a system [...] must be able to perfifiEeE90],

the latter are less clearly defined. Within this thesis, wieadiopt the definition of non-functional re-
quirements (NFR) according to Sommervil[e [SK98] as a dfmation of cross-cutting system aspects
placing restrictions on the artifact to be developed, theskigment process or representing external
constraints that must be considered. Thus, the first stepalyzing the discovered requirements is to
assign them to either one of these two categories.

As a second step, each individual requirement shauldbe taken care of is assigned to one larger
aspect representing an aggregated requirement winictbe addressed in some way by an integration
approach applicable for conducting research on cogniigéof) systems as in the VAMPIRE project.

Figure[51 depicts the results of this process. Each keycaspginates either directly from a previ-
ously discovered requirement like the need faligtribution infrastructureor is denoted by a newly
introduced term that better describes its aim as a wholgéhi&ambition to supposoftware engineer-
ing methodologies. Furthermore, requirements were adaptebadened, for instance the computer
vision requirement. Looking from the more general perspeatf cognitive systems, the relevant
question is whether candidate approaches provide some fasypport for the functions needed in
one of the domains of cognitive systems research, not sbkihyg restricted to computer vision. In
addition to discussing the aspects introduced subseguéntll shortly argue why, e.g., a rather typ-
ical requirement such as security is of less importanceérgitien context and explain the resulting
scheme used for subsequent assessment of related aproache

5.1.1. Functional Aspects

The functional requirements that are motivated by the ideavisual active memory as well as the
interactions within such an architecture yield a set of keyeats an integration solution must sup-
port. These aspects abata Representatiginformation ManagemenDistribution Infrastructure
Adaptive Coordinatiorand Domain Supporivith regard to computer vision functionality. The con-
siderations behind each of these key aspects are the folbjowi

Data Representation  Finding a common representation for the data processed isualhactive
memory was considered important from the very beginninghefgroject. One of the fundamen-
tal ideas about the functional architecture of a VAM systertoilet various interpretation processes
operate directly on a set of shared information in order ftitdbal history of the visual events in its
environment. While this idea is conceptually close to thdél Wwgown style of blackboard architec-
tures [SG95], which we shall revisit later in this thesisisitonsiderably different from procedural
integration where services invoke each other directly artspecific interfaces.

Acknowledging the importance of shared data representédtibecomes clear that the chosen type
of representation must be extensible (HEgl 2.6) in ordeope evith the data variability inherent to
cognitive systems, for instance the different types of mmatidal sensor information like visual and
audio information as well as more abstract information pssed in a VAM system. Therefore, the
data types an integration architecture offers must therasdde extensible, e.g., by using service or
data definition languages.
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Figure 5.1.: Key aspects for software integration in cognitive systegsearch projects consituted by aggre-
gation of related requirements identified in the previouaptlrs.

Moreover, representations should be interpretable (B&yb¥ software modules without knowledge
of the source and types as well as ideally understandablerghs (Red-316) to facilitate communi-
cation between system developers.

Concerning other functional requirements for the intégratpproach, questions of data represen-
tation are usually linked to the data formats used for seriiteraction within a distributed sys-
tems architecture and can affect the coupling between coemts, e.g., when comparing document-
oriented interactions versus programming language-taieparameter passing. Additionally, the
induced overhead of a specific data representation natura#l implications on the performance of
the overall integration approach. Last but not least, tteseh representations should be accessible
for external implementations to offer a certain level of pess.

Information Management  The memory metaphor is an important conceptual cornersibtiee
VAMPIRE project’s vision and for cognitive vision systeniRgq[ZF). Thus, an integration approach
must feature substantial support for an active managenfentti-modal information, providing a
robust basis for cognitively motivated architectures.

Beyond the application of potentially suitable statetwf-airt data management technology like active
databases or techniques like distributed shared memoiigtegration architecture needs to provide
additional means for an active self-management of the nmétion contained within the repository

(Req[ZID), induced for instance by the idea to model a fongeprocess (Ref—2Z111) that maintains
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consistency and performs an automatic garbage collectithirvthe stored multi-modal information.
In traditional databases, similar functionality is oftealized with rule-based triggells [DBM88] and
stored procedures. In addition to these features, it sHmfabssible to provide flexible means for the
interlinking of multi-modal information by inserting refences between elements within the different
memory instances.

Looking from a technological perspective, this aspectss atlated to the chosen data representation
as it can become cumbersome to provide the necessary comgeithe data model of the infor-
mation management service does not match the one chosdrefdata representation. ldeally, both
models shall be equal or shall complement each other in dodit the information management
system directly operate on model instances. To the samateagefor the data representation, it is
necessary to consider the question of extensibility witfard to the large variability of data types
that need to be handled by the information management aecthie. Furthermore, the information
management aspect needs to be integrated seamlessly aftintttions and patterns provided by the
distributed processing architecture in order to be acoles#iiroughout a networked system and to
improve usability factors.

Distribution Infrastructure In order to support the functional architecture with the essary
computational resources and account for the inherentlpbisel as a fundamental requirement of
cognitive systems (Refl.2.2), an integration architeatust offer the possibility to distribute multi-
ple computations in parallel over standard networks (R&d). 2

While a general purpose middleware has to deal with a lang@uat of requirements, still several of
the identified requirements contribute to this aspect:

e Asynchronous communication patterns (Req.12.12)

e Support for inherent concurrency issues (Reg. 4.1)

e Partial distribution transparency, at least location pefelence (Re@.4.5)
e Preference for a loosely coupled distributed architectRieq [4.7)

Looking at the interdependencies with other aspects, Iérstsnote that we can identify a conflict

with the usability requirement: once a distributed aratiiiee is envisioned, the level of expertise that
is needed by software developers due to intricate techiwalbignplications raises. Thus, it is not only

importantwhat methods for parallel processing are offered, but Alswthese are provided and how

they affect the overall usability. For instance, ACETSHal$ws users to provide per-thread memory
allocators to reduce latency induced by per-request memitogation within the marshaling step of

the network input/output, but this shifts the burden of aectrimplementation of these allocators to
the end users. Other functional aspects related to theigneastdistribution are representation and
information management as well as adaptive coordinatigoacdllel processes if carried out across
network boundaries.

Avoiding a discussion about non-functional aspects, thestijon of how to design a programming
interface and provide an architecture for distributed pssing is related to almost all of the non-
functional requirements. For instance, it must clearlyl @ath the aspect of product utility: while

reactivity in terms of low response times is one examplegubhput, scalability and reliability are

other examples that need to be considered in realizing #teldition functions of the integration

approach.
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Adaptive Coordination The need for coordination in the context of interactive dtigm sys-
tems inevitably arises from the contradicting need to perfmultiple computations carried out asyn-
chronously in parallel (Red—2.2) and the necessity to predu meaningfully sequenced behavior.
Additionally, it shall be possible to fuse information fradfifferent input sources that is generated at
different points in time with these models. As soon as someo$oobotic actuator or other means for
interaction are needed, more advanced arbitration prabbeiee that can only be handled by an ex-
plicit sequencing and coordination strategy taking intcoant the overall system context (REQ2.3).
While these functions can be encoded in the implementatéribe individual components, a de-
sirable quality from the point-of-view of software enginieg is that models for coordination and
control are encoded externally and controlled by the irtiigm architecture.Considering adaptive co-
ordination mechanisms in the integration architecturdl sivaplify the implementation of software
components, resulting in an modular and maintainable tahitecture, thus improving testability
as well as reuse of individual components.

However, in order to put coordination into effect, featunegst be provided that allow to dynami-
cally change the behavior of individual components, e gmbdifying their orchestration at runtime
(ReqZ}), for instance by activation and dynamic intengmtion of components in a specific system
context. Furthermore, dynamic configuration as a new requént shall be introduced here, which
can be exploited for carrying out adaptive changes, e.gchlbyging the algorithmic or other param-
eters at runtime or prior startup without changing impletaton code.

Another requirement is to allow for extension either of @rig integration abstractions (R€q.14.8) or
by introducing complete new patterns, which allow for babrawnodification of individual compo-
nents, once more ideally without changing the componentésmal implementation.

While coordination mechanisms can be very domain specifita#ienge is to find models for spec-
ifying system-wide coordination behaviors in a generic \aaylifferent levels of abstraction which
also incorporate environment information and system statethermore, potential errors during the
execution of a coordination model need to be taken into adcooo. Thus, functionality for handling
these anomalies must be provided by a meaningful approadéptive coordination can additionally
relate to declarative specification if the coordination eledcan be specified in a declarative syntax
as it can be done, for instance, when using hierarchicakfatite machine5 JRHS07].

Domain Support  From the perspective of the VAMPIRE project, the relevanmndm specific
support that is primarily required considers computerovisand pattern recognition related function-
ality (Req.L2Zb). Considering the field of experimental dtge systems, different or even multiple
domain specific functions need to be encapsulated, whichraraye from robotics to artificial intel-
ligence or even other areas in order to develop and integraifly fledged cognitive system like an
interactive robot. Support for a specific domain commonlyifests itself by providing all or a subset
of the following functionalities:

e Datatypes Abstract data types representing domain structures,segne objects.
e Algorithms Implementations of typical algorithms like object deteat

e Adapters Wrappers for directly re-usable building blocks of domsapecific functionality, for
instance a software component that is wrapping a specifecolgarning implementation.
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e Visualization Visualization functions for domain-specific informatidBoth generic or specific
for certain data structures or applications.

e Simulation Support for specific hardware (e.g., Player/Stage [GVH68Environment (e.g.,
Vortex [SImO8]) simulation or combinations thereof (elSRS [Jac0r7]).

Obviously, all these functions are requirements an integrarchitecture should consider as impor-
tant functionality with regard to its domain support. Urtorately, it is well beyond the scope of the
work carried out in this thesis and may not even be possiblarger projects to provide the level of
domain-specific functionality needed within an integmatarchitecture itself. Also, this functionality
is often readily available by experts in the field or providedlarger organizations in feature-rich
libraries like OpenCV for computer vision research. Whitkrmowledging the importance of this
aspect, in this thesis the availability of adapters forvae software packages, cf. Chadier 3, with
a particular focus on computer vision and pattern recagmitoolkits is a desired characteristic of
a suitable integration approach. If corresponding apfiinaadapters are not readily available, it
must be easily possible to increase the level of domain stipgaleveloping additional adapters that
encapsulate already existing software packages.

From a functional viewpoint, this aspect relates to almost af the other ones, simply because
developing adapters is itself an integration task. Nalyrelriting adapters which are subject to the
constraints defined by the VAMPIRE project’s scenario aredahproach developed in this thesis is
after all at least related to the representation and dig&t architecture aspects. Furthermore, an
approach supporting a set of relevant domain functionsooisly improves the efficiency of software
development in a research project, e.g. through contrigut the overall agile development process,
permitting reuse and incremental development.

5.1.2. Non-Functional Aspects

Practical experience from many larger research projeetisvilere carried out in the past shows that
if cognitive systems prototypes are being integrated (bsbs teams of researchers from different
institutes, backgrounds and countries as explained in€Ha8p, one has to consider not only domain
specific requirements but always will face problems of paogming in the large. Therefore, non-
functional requirements have to be taken into account, too.

Figure[5.1 depicts three asped®pduct Utility, Collaborative Complexitynd support foSoftware
Engineeringmethodologies that represent non-functional requireseritich need to be considered
in a suitable integration approach. The individual aspagtin cluster several related requirements
that were identified in the previous chapters. Each maps ¢ogeneral kind of NFR as defined by
Summerville [Som01], which are quality attributes on th@liementation level like high availability
and external as well as process constraints, e.g., withddégdegal requirements or the development
process. The three main non-functional aspects in thissgbate as follows:

Product Utility = Compared to the functional aspects, non-functional asgalece constraints on
the realization or feasibility of certain conceptual desilgcisions within the integration architecture
with regard to, e.g., performance, reliability or scalgil For instance, it is important to note that
within the VAMPIRE project’s scenarios the degree of utilin online assistance system provides is
largely dependant on its overall performance. An exempkguirement that needs to be fulfilled with
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regard to this aspect is that the round-trip cycle from imeggeturing, image processing and object
recognition to scene augmentation must allow for an adegal@inment between the visualizations
of detected scene objects and the scene the user sees imatheéisplay. The latency between
visualization and head movement must match the user’s t&tjmts with regard t@omfortablein-
teraction speed, because otherwise the utility of the progill diminish regardless of its functional
attributes.

Unfortunately, it is extremely hard to define a set of congblt parameters with regard to the overall
responsivityof a system and the reactivity requirement (Regl 2.9) witlromsidering a specific in-
stance of an integrated system. In addition, it is obvioastte framework overhead shall be minimal
compared to the time that is allocated to processing in thetional layer. Unfortunately, it seems
impossible to compare the performance of other approaches atandard test sets are available and
the semantics of integration are often not comparable tb eti@r. In order to get a coarse estimate
for the utility of an approach, either reported performanocenbers or the complexity of published
systems integrated with a specific framework must be coreside

Another requirement for the utility of an integration appech is the level of scalability (Ref—4.4)
for the provided integration serviceReliability is an additional requirement introduced here that is
obviously important, even in the context of experimentajritive systems research, cf. Chaylier 4.
As a non-functional aspect, it relates to almost any of timetional aspects outlined in the previous
section.

In contrast to software architectures for other domainsyrsty is not that important in the context
of research systems. This is due to the fact that collalmrathould not be obstructed by unnec-
essary security precautions. This is justifiable as theldped prototype systems, operate rather in
isolation than in cooperation with possibly external hdpas services. That said, security needs at
least be considered to a certain extent in order to avoidooisvabuse of, e.g., the service execution
functionality of an integration framework. One way to hanttis generally is to shift the respon-
sibility for authorization to the underlying operating /s and utilize the secure protocols and its
corresponding tools for externally applying security meas.

Collaborative Complexity Recalling the three types of NFRs as introduced above, gpsa
represents a sort of external constraint that must be mesbifable integration approach. This aspect
is largely concerned with requirements that are rootederniritegration context in terms of research
projects, heterogeneous stakeholders and user structdréha lack of standards in the cognitive
systems domain as described in Chalpker 3 yielding an acaatibest oligarchic integration situation.

In order to deal with the challenges of collaboration anddodte, for instance, geographically dis-
tributed development situations, usability and commuivoaare primary concerns. Addressing ease-
of-use (Reqgl=314), an integration approach needs to felwrentry requirements and avoid a steep
learning curve. Furthermore, questions of how users candteqted from or overcome errors in using
an approach as well as the convenience to work with an irtiegrarchitecture are important usabil-
ity factors. Usability in the context of an integration atebture may span across several dimensions
including installation, software development, configimat deployment, distribution and operation.
Therefore, usability additionally calls for sophistichtsupport tools, e.g., for system management.

As discussed in ChaptEl 3, the need to embrace changel{Bm 8very phase of a software devel-
opment process is essential for successful integratia@guent changes of requirements on the level
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of the functional architecture are assumed to be ratheralatua dynamically evolving collaborative
research project that aims at an integrated software sydRatated to the call for a loosely coupled
distributed processing architecture, this requiremertiadgo be considered by an integration archi-
tecture, e.g., by avoiding the need for re-compilation dvgare artifacts if interfaces are extended or
when an information source in a system architecture is exgddh by a different module.

Another requirement identified upon looking at the develeptrprocess in collaborative research
projects is the necessity to embrace reuse (Beh. 3.5) im twdeenefit from already existing legacy
components. This is even more important as not every nowetifunality may exist at the beginning
of a project although higher-level software modules mayedéon it. This requirement is related to
the aspect of domain support, particularly in terms of satiah functionality and existing adapters.

Last but not least, well maintaind@locumentatiorand technical support must be available. Introduc-
ing this requirement here comes from the observation thetcially in software frameworks resulting
from research projects this point is often neglected. Damntation must not be limited to an appendix
in a corresponding PhD thesis. It at least necessitates-tmdgte reference manual focusing on the
concepts and a complete programming-oriented documentafior successful use of any approach
this is critical. Looking at documentation and opennesmfeodifferent perspective, these qualities
are critical for the probability that external collabong@ommit themselves to a specific platform or
integration architecture. Following an open approactviites political reasons for not using existing
software in joint projects as external partners feel ndtédokin to a closed platform.

Software Engineering  Although software development and software integratienséightly dif-
ferent tasks, it is beneficial to perform both tasks accardinprinciples adapted from software engi-
neering. This aspect summarizes different requiremeiggating from this viewpoint.

In software engineering, a frequent goal is to find abswastthat provide generic solutions applicable
to a class of similar problems. This is similar to what is estpd from an integration approach in the
context of this thesis. It shall provide a generic desigrcefdar functional architectures relevant in

the domain of cognitive systems. The additional requiramarich derives from that is to what extent

an approach is neutral with regard to domain-specific spegitihitectural styles and what limits are
imposed by the integration approach on the space of podsitidéional architectures.

Albeit not being used frequently (as shown in Chapler 3),yndrthe methodologies in software en-
gineering can be useful for the development of integratephitive systems. In order to facilitate their
use, an integration architecture needs to support thedeodwet One of these concepts is to support
incremental development (Rdg.13.3). Combined with a madaparoach (Red.2.1), integration can
start early with a basic design to evolve over time.

Another way of reducing complexity in software integratierio support a (declarative) specification
(Req.[3) of the relevant abstractions used in a system,by.g@@mploying a generic modeling lan-
guage like UML. At least, it must be possible (literally) taite down the application of integration
concepts for a given system in order to maintain models @fgiattion-related properties as com-
plete as possible for all project participants. Ideallysiain executable specification as aimed for in
model-driven engineering approaches.

Support for system analysis at runtime must allow for trgdime dynamics of module interactions
and global system state, e.g. to inspect the data flow betimel@ndual components, which is also
important for system testing and evaluation (Heg. 3.2).
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5.1.3. Implementation-specific and Economic Aspects

So far, we mostly considered criteria, which are importaotfa functional or non-functional point
of view. Some features, however, are less important fronctmeeptual viewpoint but need to be
considered from a technological or economic perspectivegtware:

Platform Support This aspect describes for which hardware and softwareoptatf (operating sys-
tem) implementations of an integration concept are availab

Language Bindings In addition to platform support, this point addresses wipicigramming lan-
guages are supported by a specific approach. Regarding@thisement, support for C/C++ is
critical as this has been the language used by most domaéntexi the time of writing of this
thesis.

Standard Compliance The standards compliance of an integration approach tescwhat stan-
dards are defined or supported by an integration approads.ashect also relates to the open-
ness of an approach.

Dependencies A small dependency graph regarding external libraries sralele for reasons of
software complexity and maintainability.

Licensing As within European union research projects a strategioalsio support the open source
idea, questions of licensing are naturally important.

All aspects outlined above will be used in the following teess related work aiming at similar goals
as the approach presented within the remainder of thissthesi

5.2. Software Architectures and Middleware for Cognitive
Systems

Recalling the different architectural layessy/étemintegration functiona) that constitute a cognitive
system instance as introduced in Chapler 1 and taking imtouat both the aspects identified in the
previous section as well as the large number of possiblécgioin scenarios for these systems, one of
the initial challenges is to get an overview of related wafkthin the context of this thesis, relevant
related work either stems from application-independeldteivare approaches focussed on the innate
problems of software integration such as object-orientéddieware or from one of the research
areas that are domain specific but related to cognitive s\stike pattern recognition or cognitive
modelling. Figurd5]2 gives a graphical overview of the vete areas where research is conducted
related to software integration in cognitive systems. Tvisrview and the following descriptions of
each activity do not make any claims about completenessragifrd to cognitive systems research in
general, but nevertheless describe which areas were eoeditb be relevant for the task of integration
in the VAMPIRE project.
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Artificial
Intelligence

¥

Human-
Computer-
Interaction

Pattern
Recognition

Cognitive
Modelling

;

.

v

Robotics

Multi-Agent
Architectures

Knowledge
Representation

Augmented
Reality

Vision
Systems

Cognitive
Architectures

Robotics

Middleware

Robotics
Architectures

N

VAMPIRE
specific

L

Cognitive
Vision

N

;

X

Cognitive
Robotics

Research
Areas

Research
Activities

Scientific

Domains

Figure 5.2.: Overview of selected research areas in cognitive systehs@mesponding research activities
relevant for software integration. Additionally, theirlagion to cognitive vision and cognitive
robotics as scientific application domains is shown.

5.2.1. Domain-specific Architectures

Artificial intelligence (Al) is clearly related to cognivvision researcH [NeuD4]. Within the many
subfields of Al, two activities are relevant from the pointvidw in this thesis. Firstly, multi-agent

architectures (MAA) are the primary way of building multient systems (MAS) in Al research. A
MAS usually consists of interacting agents that coopegtigolve a given task. Approaches like
ADE [KS0€], MicroPSI [BBV06] or Jade [BCG07] are generalijtéresting due to the fact that they
need to solve related challenges of integration, too, a@daplied in similar domains. However, the
properties of a single agent differ significantly from theadtional model of an individual process in
a visual active memory architecture in terms of autonomgess to information and the fact that a
classical MAS features no central coordination.

Secondly, knowledge representation (KR) is another ldageing area of Al research that is con-
nected to cognitive systems research. KR is, for instanoecarned with the formal encoding of
knowledge in a way that it becomes accessible to computdtiomcesses like inference engines,
which in turn may generate hypotheses, validate rules, Et@amples for techniques in this area
are KL-ONE [BS85], ERNEST[NSSK90] or the web ontology laaga [MvHO4]. Overlaps exist
between KR and MAA research in the area of agent communicéaioguages that aim at defining
the interactions between software agents in a distribugstem like KQML [EEMM94] or FIPA-
ACL [CEP99]. While much can be learned from Al research indhea of KR and agent communica-
tion languages, many approaches suffer from their spegigstic structures for representing natural
language constructs or high-level task descriptions. KGthproaches like FIPA employ a specialized
syntax for message encoding, which requires the presenpsopfietary message parsers in every
component, effectively increasing coupling between safeaAcomponents.

Another area that is important for the work carried out in WM PIRE project is human-machine-
interaction research. Within this again rather broad fildymented reality systems in particular need
to be considered as they often exhibit a high degree of iatiegr. Furthermore, AR systems are
the primary application scenario within VAMPIRE. It turnstahat in the context of AR research
indeed specific frameworks for software integration areettgped, e.g. the Distributed Wearable
Augmented Reality Framework (DWARK) [MRBO3] or the Studiebe Augmented Reality Frame-
work [SEHT0d]. While the latter provides limited functionality forsdiibuted processing, the former
features an event-driven integration concept allowingnietwvork communication.
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Both projects provide domain-specific AR functionalityt fall short on other required aspects, e.g.,

by supporting only very specific styles of interaction betwéhe components in a system architecture
or not providing any data management functionality. Theesfwe refrained from using one of these

frameworks as a basis for integration in VAMPIRE.

Research on pattern recognition algorithms and compugtorvisystems was naturally central to
the VAMPIRE project since it was defined as a cognitive visgoject. Although a huge num-
ber of libraries encapsulating domain-specific functigpdike OpenCV [Inf08], RAVL [CVS08] or
VXL [\ZxI08] exist in this area and even MATLAB (with extensis like the Image Processing Tool-
box [The08]) is commonly used for software development, allennumber of approaches explicitly
target the modular construction of vision systems.

Selected approaches that address this goal explicitly are:

e HALCON Providing a huge number of image processing operators forynareas of com-
puter vision and pattern recognition and featuring an natiegl development environment,
HALCON [ES99] is a commercial toolkit especially desigriater the development of machine
vision systems used in industrial environments. Figurkesb@vs an exemplary screenshot of
the included development environment.

e IceWing The aim of IceWing[[L604] is to provide a toolkit for the déepment and prototyping
of real-time vision algorithms. It supports typical useasmi the development process of a
vision system like grabbing and recording of image streasissialization of intermediate data
and dynamic parameterization. However, it featured a nittmolarchitecture by the time the
VAMPIRE project started.

e VisiQuest With Khoros [KR94] being one of its ancestors, VisiQuésEEA8] provides a large
set of libraries implementing vision algorithms, 3D visj@UI construction and visualization.
It can be utilized for image analysis and ships with its owsuai programming environment
for developing computer vision systems. Even so, resuftitngotypes are usually restricted to
a to pipeé&filter style architecture.

The strength of these toolkits, which is their domain-sfieeision functionality is at the same time
their critical drawback, because almost all of them lacKisieht support for building larger systems
in a heterogeneous environment as is the case here.

Nevertheless, the computer vision-specific functionalitghese toolkits is an important feature that
must in some way be available in an integration architedimre cognitive vision system. We shall
revisit this aspect later on in this thesis.

The last research area directly related to the goals of tHdRMRE project are computational models
of human-like cognition. Within this area, particularly skoon cognitive architectures and corre-
sponding toolkits like SOARTWJI05] or ACT-R_[AndP3] is impant when looking, for instance,
at arbitration and coordination in cognitive systems. Ehapproaches provide strong support for
instantiating a particular cognitive model within a specgoftware architecture. However, this con-
flicts with the general aims of the work done here. In fact,dbecept is to provide an integration
layer allowing for a space of possibly different functiomathitectures, with the primary use case to
support the development of a visual active memory.
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Figure 5.3.: Exemplary screenshot of the HALCON development envirolhmen

In addition, it seems rather impractical to build largelscategrated systems acting in real-time
with those toolkits. This is due to limited support for thenAoinctional aspects defined earlier as
well as the specific representations module developers adhrgre to when using such an approach.
However, cognitive models provide many of the functionguieements for an integration architecture
for cognitive systems similar to the role the VAM architeetplays for the approach described in this
thesis.

Another area that turned out to be related to cognitive systnd integration of such systems is cog-
nitive robotics research. This is mainly due to two reasd@hs:the one hand, a sophisticated vision
system is a critical constituent for robots resembling tognitive system. On the other hand, many of
the requirements that were identified in the previous thhegiers are important for robotics research,
too. Forinstance, the need for concurrent and asynchrgmagsssing as well as methods for coordi-
nation and arbitration appear as well, not to mention thetfet robotics projects are usually carried
out by a larger number of people, thereby posing many of tiestipn described in Chapfdr 3. Recent
initiatives particularly address the problems of softwiategration in robotics[[TS08, RoS08] and a
large number of toolkits exist that support robotics sofavdevelopment [KS07] by encapsulation
of domain specific functionality like mapping, localizatior navigation. These and other function-
alities like grasping objects and higher level symbolicgessing are often based on cognitive vision
techniques.
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Therefore, the requirements for a cognitive robotics dauglent environment need to incorporate
many cognitive vision-related aspects and vice versa - thighnotable exception of the low-level

control aspects in robotics. Looking at the state-of-ttigrarobotics integration, two overlapping

research activities can be identified that need to be carsldesre: work on robotics middleware and
work on robotic architectures.

Research on robotics middleware focuses on providing te@extions between the modules in a
robotic system and offers device abstractions as well aglation environments for sensors and actu-
ators of one or more robotics platforms. Typical example®bbtics middleware are the Player/Stage
project [CMGUO%] or MIRO [USEKUOR] for mobile robotics, YARFEMNOE] for humanoid robotics
or the recently introduced Microsoft Robotics Studio [JAcMSRS) as a generic and easy-to-use
robotics development environment. Despite their focus ather low-level robotic functionality,
robotic middleware is qualifying as related work here asispecifically addressing communica-
tion and system integration. Unfortunately, many of thgg@@aches lack the necessary extensibility,
usability and flexibility that would be needed in order toilgaapply them for the integration of a
cognitive vision system. However, much of the functiomalit robotic middleware is related to the
concepts considered in this thesis, e.g. the componentlrimo@&ROCOS or the Decentralized Soft-
ware Service Protoco[ [NC0D7] (DSS) specifying the intemact of services in a distributed MSRS
architecture.

Research on robotic architectures is usually either baseédmof an existing robotics middleware or
subsumes those aspects and adds an architectural modgiehdies how sequencing and deliberative
processes act in a coordinated manner towards the goals tlodbotic system pursues. Examples
for approaches at the borderline between robotics midatvaad a robotics architecture are the
Open Robot Control Software[Brud8b] (OROCOS) project oiBJfBai05]. Both introduce features
for robotic control and modeling of basic robot behaviors.hi/ OROCOS focuses on real-time
robotic control, URBI provides an event-driven scriptimmduage that addresses the challenges of
concurrency and asynchronous programming.

A prominent example of a more holistic robotics architeettivat features a sound integration toolkit
is CLARAty [VNEF0Q], which is developed by the NASA Jet Propulsion Labosatwithin the
Mars Technology Program and serves as technological basihd different Mars rover prototypes.
CLARALty, which is an acronym for Coupled-Layer Architectuior Robotic Autonomy excels be-
yond robotics middleware in that it introduces a coupleetay architecture featuring a deliberative
decision layer and a functional layer that provides loweldunctionality for hardware access up to
higher level features for e.g. navigation realizing alseadd-level autonomy capabilities.

The decision layer interacts with the functional layer anavules a framework for global reasoning
taking into account system resources and mission contstrdirmonitors the execution of behavior in
the functional layer and can interrupted or preempt its biehalepending on mission priorities and
constraints.

While the open source release of CLARAty in 2007 will almosttainly incite developments in
software integration in robotics, it equally conflicts witie goal of architecture neutrality aimed at
in this thesis. In contrast, it solely allows for a specifiskidbased functional architecture and does
not explicitly address the challenges of collaboration disttibuted processing. Similar to the above
mentioned models of cognitive architectures, the intégmaarchitecture introduced by this thesis
shall allow for the development of the higher-level funngdound in functional robotics architectures
like the task-based coupled-layer approach that CLARApuisuing.
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Figure 5.4.: Use of stubs and skeletons in operation-oriented middlewammunication.

5.2.2. General Middleware Architectures

Recalling the introduction, a second domain-independessof approaches exists that explicitly tar-
gets software integration from a purely software-engimgeviewpoint, often providing the techno-
logical basis for the above mentioned domain-specific natiggn toolkits. As the field of middleware
is extremely broad and a detailed overview of the field is beythe scope of this work, the follow-
ing description focuses on three organizational prinsiglet allow for clustering a larger number
of approaches that can be used for the integration of cegnilystems:operation; messageand
resourceeriented middleware.

Operation-oriented Middleware The main concept of operation-oriented middleware is to en-
able interprocess communication across network bourglayiproviding means for calling individual
functions of independent software modules. Operatioandeid middleware approaches like remote
procedure call (RPC) as introduced by SUN Microsystems énetdirly 1980s impose a client-server
style of distributed computing. A server program offersgmaeterized functions to its clients that can
call these functions via the network with the support of arCRiBrary and marshalling code that is
generated at compile time from an interface definition laggfile as shown in Figute®.4. This func-
tionality is encoded in so-callestubsandskeletons Despite the transparent marshalling and unmar-
shalling of function parameters into a network repres@nathey often provide proxie§ [SSRE00]
that are local representatives allowing transparent adodsinctionality in remote address spaces.

With the advent of the object-orientated programming pigrad operation-oriented middleware ex-
tended towards a remote method invocation approach, whhssto remotely call member functions
of individual objects, e.g. in Java using the Java RMI[MvNM] approach. While Java RMI as well
as other approaches are focusing on supporting a singledgeg the CORBA standard [Si¢00] ad-
dresses a greater audience, envisioning a language irdlpenbject-oriented middleware model.
Due to the great importance of this standard and the factntlaaty of the aforementioned domain-
specific integration architectures like MIRO or OROCOS auét lon top of CORBA toolkits, we
will evaluate an instance of this approach subsequentlyaatgr detail. Recent additions that try to
address different shortcomings of this class of middleveqmeroaches are XML-RPC or the SOAP
protocol.

Although operation-oriented middleware has been useditd bery large-scale and mission critical
systems, it is not directly applicable for integration givthe required aspects introduced in Chap-
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Figure 5.5.: Message-oriented middleware architectures focus on teahplecoupling of participants uti-
lizing indirect communication models.

ter[R]. First and foremost, the fine-grained per-methashiaition approach in a point-to-point archi-
tecture can lead to a high degree of coupling. Another asgestiupling is that interface changes in
classical RPC architectures often involves recompilatibboth clients and servers. Thus, version-
ing and the goal to embrace change is not supported. Funtimerradvanced functionality like data
management and asynchronous coordination or the genekabfescalability in operation-oriented
middleware is only addressed in vendor specific ways.

Message-oriented Middleware Compared to operation-oriented middleware, messagetede
middleware (MOM) architectures directly address the e@mges of distribution, taking into account
a decreased level of transparency in their programming oMM is a concept which emerged in
the mid 80s as a way of decoupling processes over existingl®RGs. This de-coupling is achieved
in MOM architectures through the introduction of self-ained messages. In contrast to the auto-
matic marshaling of RPC communication, encoding and dacpali messages in MOM architectures
need to be implemented by module developers.

Using message passing instead of RPC for communicationaltaygs for greater flexibility as the
message’s content is not bound to the signature of a spep#i@ton. On the downside, all modules
connected in an architecture must share compatible mepaaggrs. In addition to direct communica-
tion through message passing, MOM systems support indigamunication through intermediary
message brokers and message queues. The resulting levekofidling can vary greatly and span
over referential and temporal dimensiohs [ASTMVvIS02]. MOfMature message brokers enabling
deferred asynchronous communication where de-couplirignia is critical due to the fact the life-
cycle of the message producing components may be indepeoidire consumer’s lifecycle. MOM
systems allow for point-to-point or broadcast communarati

Figure[5.b shows the data flow in a typical MOM system. Message sent from a producer process
to a message broker containing various queues, often temmaddoxes which are usually identified
by name. After the message is reliably received by a queeentssage can lpaishedto or pulled

by a receiver. Publish-/Subscride TBMR$96] models of comication are extensions to MOM ar-
chitectures where interested clients are able to substwibpecific subjects, so-calledpics After
subscription, clients will receive all messages that asdgabto a queue and conform to a given topic
specification.
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Message-oriented middleware provides good support fddibgi loosely coupled systems and of-
ten features good database integration yielding in higiab#ity. However, they are not directly
applicable to cognitive systems integration for a numbeeagons. Firstly, the focus on temporal de-
coupling very likely prevents their application for thedgtation of systems that need to act at least
in soft real-time conditions. Secondly, many of the burdeidistributed programming are pushed to
the module developers.

For instance, it is comparatively challenging to realizdtirtbreaded request-reply communication
on top of a MOM architecture. Last, but not least there exisly few overarching standards in this
area and many technologies are thus proprietary to spec@idMrchitectures like IBM’s MQSeries,
TIBCO Rendezvous or XMLBIlaster. Nevertheless, many aspeEFdlOM match well to the required
aspects defined earlier. The concept of message-orientetiawiare evolved recently into the concept
of event-based middleware, which is a central cornerstdribecapproach that will be described in
the remainder of this thesis. Thus, we will not discuss tlweseepts now but revisit them later on.

Resource-oriented Middleware Middleware architectures that focus msourcesas central ab-
straction and allow the referencing of individual entitiesing a global identifier system shall be
denoted here as resource-oriented approaches. Resotgaepi@senting specific sources of infor-
mation, e.g. database items or files served by a web applicafrhis concept is the basis of the
web architecture (WWW), which is following an architectustyle denoted as Representational State
Transfer (REST) introduced by Roy Fieldidg [RTF00]. Fielglidescribes the externally visible be-
havior of a REST-based distributed system as follows:

“Representational State Transfer is intended to evoke agerof how a well-designed
Web application behaves: a network of web pages (a virtwkgnachine), where the
user progresses through an application by selecting liskaté transitions), resulting in
the next page (representing the next state of the applicabeing transferred to the user
and rendered for their use[RTEQQ]

The fundamental concept of a resource in this sense is tipitaion state and functionality are
divided into separate resources. That said, REST differs the previously introduced middleware
architectures in a sense that it proposes and enforces Hispechitectural style for building dis-
tributed systems. However, this style turned out to be mitg scalable, which is obviously proven
by the World Wide Web, and is recently considered to be a mereigl model for designing dis-
tributed systems. As every resource is identified by unigaeldressable through unique uniform
resource identifiers (URI), it is possible in a REST-basestesy to navigate from one resource to
another, which is what we use all day in a web browser. As g depicts, another fundamental
difference to, e.g., RPC concepts is that all resourcegshaniform interface for the necessary state
transfer, consisting of a limited set of well-defined opers. Furthermore, the message format is
bound to a constrained set of content types.

Additional important properties of REST-based systemstaethe communication between two par-
ties follows a client-/server model and is usually statldhis implies that the server does not keep
track of the identity of its clients and the possibility todachches in such an architecture to increase
scalability. Despite its scalability, REST promotes loaseipling due to the document-based data
exchange and the uniform interfaces concept. Due to ther latid the hyperlinking of resources with
URIs, modules within a REST-based system only need a veiieliwiew of the overall system and
can traverse a link network to get access to required sexvigkhile URIs, uniform interfaces, state-
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Figure 5.6.: Overview of a client-server interaction according to repgatational state transfer based on
the HTTP protocol and uniform resource identifiers.

lessness and document-based data exchange support lamdiag,oclients still need to understand
the format of the exchanged representations. Another drekvbf the statelessness of REST archi-
tectures is the fact that the communication between clirdtsrver always follows a pull puttern,
not allowing for pushing notification of representation mhes to subscribed clients as it is possible
in MOM systems. However, REST approaches are drawing isetkattention. A recent domain-
specific example that follows this approach is the DecdantdlSoftware Services Protocbl [NC07]
(DSS) used in the Microsoft Robotics Studio architecturecdntrast to MOM approaches, a large
number of middleware tools for building generic REST-basgstems following WWW standards
like HTTP [EIG99] or MIME [EB98] are freely available. Howey; the level of integration in these
tools differs from the aforementioned systems due to thetfet REST is constituted by different
standards, which are supported by individual productsvike servers or HTTP libraries.

Given the number of approaches to software integrationgaarch and industry, it is impossible to
review all facets that are somehow related to what is in teadmf this work. For instance, work on
transactional middleware technologies, the specificatairthe web services stack were intentionally
omitted as they are not used much for software integratiadgheérgiven domain. In contrast to these,
the other approaches outlined in the previous paragraghsiare closely related to what is presented
in this thesis and are directly important for the integnatiallenge in cognitive systems research.

5.3. Evaluation of Selected Approaches

The previous section concentrated on a presentation ofviilbfields and approaches that can be
considered important with regard to the identified coarsérgd functional aspects. However, neither
individual approaches nor their level of fulfillment comedragainst the more fine-grained require-
ments were discussed. While this is clearly impossible fotha areas mentioned, the subsequent
sections will assess three state-of-the-art instancaegagriation architectures in greater detalil.

The assessment of the individual approaches shall be gbigléde aspects and requirements iden-
tified in Section[&ll. In the following, an evaluation schemi#t be applied that rates the effort
needed and the difficulties to get support for a single aspeet 5-point likert scale-{=aggravated;
-=difficult; o=neutral; +=supported; ++=strongly supportd). While most of these levels are rather
self-explanatory, an aspect that is aggravated by an agipnogans that it is even made harder to
achieve its requirements following the approach underuayimn. A caveat is that especially for the
non-functional aspects the assessment is based on thetstdhgxperiences of the author.
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For these reasons, all assessments will be explained faraabe ratings due to the fact that it is
very hard to measure them quantitatively. Neverthelessgthphical visualization of the individual
strength’s and weaknesses compared to the defined aspalttslisiv for a quick assessment of the
focus of each evaluated approach.

Given the number of approaches in this area, three appreactie selected due to theglevancy
recencyandavailability. Relevancy implies that at least one instance of an intedraystem must
haven been built on that basis and reported on in a scientifiiqation, where recency calls at least
one software release during the last two years at the timeritihgs this thesis. Last but not least,
availability implies that the software license must allaw free usage for non-commercial purposes
and academic research.

Applying only these criteria, still too many approaches {ddwave to be considered. Therefore, the
selection is based on the areas outlined in Figude 5.2 anu/#heiew in the foregoing section: On the
one hand, a popular representative of the object-orieniddleware paradigm will be reviewed. This
is based on the frequent use of object-request brokers tiegriation in cognitive systems. Recent
examples where object-request brokers are used have beddetiman service robotics initiative’s
project DESIRE[[DES08] and as a basis for approaches like OB MIRO, SmartSof{[Sch0ba]
or ORCA [BKMT05]. On the other hand, two approaches from the scientifitiGgtipn domains of
cognitive vision and cognitive robotics will be reviewed the reasons mentioned at the beginning
of this paragraph and the fact that not only the targetediadjuin domains are similar, but also the
goals these integration architectures are addressindmaig well to the aspects defined earlier. The
individual selection of an approach within these subfieldkhe argued in the beginning of each of
the following three subsections.

5.3.1. Object-oriented Middleware

Object-oriented middleware approaches extend remoteeduoe call systems at least with regard to
three conceptual elements from the object-oriented pnogriag model: inheritance, object refer-
ences and exceptions. Operations are no longer called cagm®s but on individual objects. Despite
proprietary approaches like Microsoft's DCOM [Mid08] orelérom ZeroC[[HSO8b], the main stan-
dard in this area is the Common Object Request Broker Arcthite [Sie0D] (CORBA), which is a
set of specifications that is being maintained by the Objegbh&gement Group (OMG). Due to the
openness of the CORBA specifications, a large number of guoreling toolkits implementing them
exist, including several open-source variants. The CORBAdard is completely independent from
hardware or operating system environments, thus manyréliffeplatforms are supported. Another
claim of CORBA is interoperability in a way that a CORBA pragr shall be able to invoke methods
on objects in any other CORBA environment.

The most important architectural concepts of an objectesgoroker architecture usually supported
by compliant CORBA middleware are shown in Figlirel 5.7. WIgigtain aspects are similar to
general operation-oriented middleware as describedegasthme additional elements are introduced
with this approach:

e ORB Core The core of the ORB handles the transparent communicagbmnden networked
processes. It manages object identity through so-calkeddperable Object References (IORS)
that are used for transparent access to objects regardilbssrghysical location in a distributed
system.
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Figure 5.7.: Overview of a standard CORBA architecture.

e IDL: The CORBA interface definition language is used for desugilobject-oriented interfaces
and data structures. Additionally, specifications for lzexge mappings allow for the generation
of standardized stubs and skeletons.

e Servant The domain functionality that needs to be provided in otdeserve the request on
an object interfaces are usually implemented by moduleldpges in servant classes, which
provide the implementations for one or more IDL specifiedotnobjects.

e Object Adapter The (portable) object adapter is an abstraction, whichsnodgject requests to
corresponding skeletons and servant implementations.

e IIOP: The Internet Inter-ORB Protocol is the standard netwoittgmol for communication
between instances of object request brokers. Supporit®ig, different ORB implementations
are able to communicate with each other. Additionally, tli@RBA specification allows for
custom transport protocol implementations.

In addition to these basic features of a CORBA architectarrge number of advanced concepts
was introduced into the standard. The more important exesngl these are the Dynamic Invoca-
tion Interface (DII), which allows to invoke methods of refmbjects without having access to the
IDL-compiled stubs for a remote object, thus removing tlimpile time dependency. Using DI, a
client needs to explicitly specify the operation to be perfed and the types of parameters that must
be encoded in a request. Client objects may query the detiadsremote interfaces at runtime by
accessing so-called Interface Repository (IR) services.

Analogous to the DIl concept, the Dynamic Skeleton Intexféi@Sl) allows dynamic dispatching of
requests according to operation name and type parametdte @erver side without using a stati-
cally compiled IDL skeleton. The DSI concept is often reqdiin scripting languages and similar
applications, which may dynamically instantiate new resmaitjects.

Another server side concept is the Implementation Repysitmpl.-Rep.), which provides a service
that permits to dynamically instantiate required servamse requested by a remote object. Based
upon this functionality, the OMG defined a larger number ahowon CORBA services that can be
used in a system architecture if provided by a concrete imetgation.
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Frequently used services that provides location trans- Distribution Infrastructure
parency in CORBA systems are the naming service, which P O
allows to bind IORs to symbolic names or trading services,»omaien .~
allowing client objects to lookup an IOR based on pub- '
lished properties of the offered services.

-, Adaptive
... Coordination

, Domain
7! Support

One of the approaches that defines the state-of-the-aff,;
in this field is The ACE ORB [[Sch06b], a CORBA- L
implementation based on the Adaptive Communication
Environment[[SHO1]. The concepts of TAO are undergo- ...’ | " eommore

ing constant development, which is lead by the Distributed ~ “" . T Egineering
Object Computing (DOC) Group of Douglas C. Schmidt.

Collaborative Complexity

TAQ is used at many unlversmgs and companies mcludng,,,am,rm Support TS R———
Boeing/McDonnell Douglas, Siemens and Motorola and i§tanguage sinaings cre
available in a fregesearchversion that includes experi- | >@ndards compliance CORBA2:6/3.0,110P 1.2

3™ Party Dependencies ACE

mental features and as a commercially supported stabtg..;
version. The target group of TAO are developers of dis-
tributed and embedded applications. As TAO is the basigjgyre 5.8.: Aspect assessment for TAO.
of, e.g., OROCOS and additionally features real-time ca-

pabilities important in specific cognitive systems appiara domains (e.g., robotics) we will review
this ORB as a representative for high-end CORBA approaches.

Open Source / Commercial

Figure[E.8 shows the qualitative assessment of TAO whercirigpared against the required aspects
as defined in Sectidn3.1. Not surprisingly for a high-pearfance distribution middleware, the dis-
tributed processing aspects and the product utility asipetetrms of performance, latency, etc. are
rated as very well supported by TAO. The reasons for thesssisgents and the considerations that
lead to the score for the remaining aspects are as follows:

Data RepresentationThe CORBA IDL allows for an object-oriented data model, feiag on op-
eration interfaces and not on data representation. Theiglatherent modeled in type signatures of
method parameters. A conceptual drawback of CORBA IDL iddbk of a sound concept to support
extensibility and versioning of object interfacEs [SVOIherefore and due to the natural consequence
of method orientation the exchanged information is onlylioiy available and understandable.

Information ManagementWhile TAO certainly allows for the implementation of a netked infor-
mation repository geared towards an active memory, it doedinectly support any kind of database
or data management related technology. However, the RersiState Service (PSS), which is the
successor of the persistent object service and supportdd®ymay be a basis for a realization of
this aspect.

Distribution Infrastructure: This aspect is fully supported by TAO. It offers functiomalfor all the
identified requirements either through its internal aettiire, its API, or external services as is the
case for the question of location transparency, which ikzesh by TAO’s naming service. Loose
coupling is not directly supported by the operation-ogehand fine-granular object interface but is
achievable with TAO’s notification service realization.

Adaptive Coordinationfollowing its object-oriented programming model, anoeskre reported to
communicating parties as exceptions. Concerning extiéihgiFAO provides different interception
points for developers to add extensions to the functionalftthe ORB core. Even so, advanced
features for modeling the interactions between objectsi@rsupported.
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Domain SupportAs a pure middleware solution, TAO does not support domagtifip features for
cognitive systems research. However, a notable excepidimat TAO supports an OMG CORBA
specification for control and management of audio and vitdeass [SMI9].

Software EngineeringTAO (and the underlying ACE framework) are built with manyyen soft-
ware engineering-related principles in mind and genegdliyw for a modular approach by enforcing
an object-oriented programming model without furtherrie§bns on possible architectural styles in
the functional layer. Concerning system specificatiomadad techniques used for object-oriented
modeling like UML can be applied. However, CORBA impleme¢iatas such as TAO usually do not
feature concepts or tools for incremental development.thEumore, tools for runtime analysis or
debugging on a system level need to be realized by systentogevs.

Collaborative ComplexityA drawback of CORBA-based solutions is that frequent charge rather
complicated to incorporate in an IDL-based CORBA architextdue to the reasons described above.
The necessity to use an IDL precompiler adds further conitglexthe development process for mod-
ule developers, not mentioning the complex concepts oftyn& ORBA (e.g., DII/DSI). Despite the
openness of the CORBA specifications, they are nowadaysiggedi disadvantage of the CORBA
concept. Since the OMG defined an overarching standard fddlevware integration, the CORBA
specifications embrace a large number of different requérgmin integration and communication.
Therefore, the amount of available functionality (and #pgtions) is enormous which dramatically
decreases usability. Another rather problematic aspgeQdRBA is that other implementations might
not adhere completely to defined standards. Thus, the atigiea to provide one interoperable stan-
dard for distributed systems was foiled and typical advgegaof a standards-based solution are lost.

Product Utility: In contrast to the collaborative aspects, the performanckeudility characteristics
of TAO is superior, which is not suprising as TAO was devetbpad specified as high performance
real-time object request broker.

5.3.2. Cognitive Vision Middleware

As introduced in Chaptérd.1, the paradigm that guided rekea the VAMPIRE project was the de-

velopment of cognitive vision systems. Looking at the ressof the other eight collaborative projects
that were funded in this research area by the European Uititumns out that only two of these

projects addressed questions of software developmennggtation either in scientific publications
or publicly available integration architectures.

From these two, the software integration approach of théPhet [The05] project on interpreting and
understanding activities of expert operators featuresvgpoment-based software architecture termed
ZWork [PVZ05], which focuses on dynamic service selectiooaading to quality of service parame-
ters, e.g., describing the performance of an object retiogrélgorithm under certain environmental
constraints. However, the software has not been publitdased at the time of writing of this thesis.
Similar to the goals of this approach, but with completelffedlent concepts, a central aim of the
CAVIAR [CAVQOY7] project on image-based active recognitiomswto achieve adaptation in cognitive
vision systems. Thus, the CAVIAR architectufe TLBET05] aiat partly autonomic coordination re-
quiring self-describing, self-regulating and self-ogtimg modules. Relying on this information, a
global controller orchestrates data-flow and paramet@rizan a system instance according to con-
textual information.
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Image Processing Modules Tracking Modules Behaviour Modules
Grabber -
Sannat) Rawimage =
Whiteboard: Image Data yd Ty Tracker Whiteboard: Tracked Objects Y
N / / (
—|
TrackedObject
|| Rawlmage Storage [ / ‘ Whiteboard: Behaviour
oo Y ( I Storage
. | / Role Storage
/ Storage ) Movement Storage . // »
/) [/
/ [ Context Storage ‘
o SparseFeatures - S ‘
Storage -
) | Context |
i I~ | /
/ Movement2 3 Y,

Figure 5.9.: Software architecture of an exemplary Psyclone cognitisien system for person tracking and

scene interpretation (from [LBFO3)).

While both approaches provide concepts for different kiofdslaptive coordination, they lack support
for many of the other aspects that are important for the wedcdbed in this thesis. Interestingly, an
additional integration approach was developed during these of the CAVIAR project that already
addresses many of the aforementioned aspects in a moréchoky. Due to the fact that this approach
was applied in a cognitive vision scenario and that it haslainaims as what is envisioned in this
thesis, the following section shall review the Psyclondiecture in greater detail.

Psyclone

Psyclone is a an integration architecture that shall fatdithe development of integrated artificial
intelligence systems following theonstructionist desigmethodology[[LBE0F]. This software ar-
chitecture has been applied for the development and iritegraf cognitive vision systems as well
as recently to humanoid robotids [TPLI)04]. The main intégraabstraction provided by Psyclone
is the so-calledvhiteboard named in analogy to the concepts of a blackboard archigsctuhich
we will discuss in the next chapter. While the authors clasnmtroduce this term, it can be traced
back to early work in mobile robotics architectures [SST&6}eported in a reference book of soft-
ware engineerind [SG96]. Figukeb.9 depicts a cognitiveomisystem instance as developed in the
CAVIAR project performing a scene interpretation task tisaintegrated according to the Psyclone
concepts. The basic idea of Psyclone is to mediate all datatAmugh central server instances,
i.e. scheduling blackboards [TLPDO05] that featurgemeric data formata type ontologyfor mes-
sages and data streams as welt@ging specificationsllowing for a declarative setup of module
interconnections. Whiteboards act as publish-/subsadpeices for registered modules. The system
architecture shown in Figufe®.9 consists of three whitabosstances that dispatch data of different
system layers, namely images, tracked objects and higt+lele and context information to modules
in higher layers. Thus, Psyclone systems are conceptuatljas to classical bottom-upipe-and-
filter [SG96] software architectures as no top-down links betwkemlifferent layers are established.

Whiteboards allow to store the exchanged information fagasonable amount of time (the authors
do not provide any further information about the capaletitof their approach in that respect). While
the stored information is made globally available via a gueterface, it is not possible to update this
information. However, whiteboards supp@ush (publish) andpull (query) communication styles,
which will be discussed in more detail in subsequent chaptétsyclone uses a protocol termed
OpenAlIR [Min01], whose specifications are freely availaioten the author’s web page.
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<sequence nane="Fi ght _OneManDown" >
<frame nunber="192">
<entitylist>
<entity id="1">
<orientation>151</orientati on>
<box x="81" y="101" w="31" h="21" />
<appear ance>vi si bl e</ appear ance>
<nmovenent >wal ki ng</ novenent >
<rol e eval uation="1.0">wal ker</rol e>
<event eval uation="1.0"></event >
<scenari o eval uation="1.0"> nmpbi | e</ scenari 0>
<situation eval uation="1.0">novi ng</situation>
</entity>
</entitylist>
<grouplist>
<orientation>103</orientation>
<box x="228" y="110" w="55" h="126" />
<entities>4,5</entities>
<appear ance>appear </ appear ance>
<nmovenent >acti ve</ novenent >
<rol e evaluation="1.0">fighter</rol e>
<event eval uation="1.0"></event >
<scenari o eval uation="1.0">fighting</scenari o>
<situation eval uation="1.0">nerge</situation>
</ group>
</ grouplist>
</frame>
</ sequence>

Listing 5.1: Exemplary instance of a Computer Vision Markup Language Xibttument.

Psyclone employs theéomputer Vision Markup LanguadeF04] (CVML) as a general purpose mes-
sage format encoding the data exchange between componemtgsion system. Figule 3.1 shows
an excerpt of a CVML document, encoded high-level infororatibout a scene that is observed by a
system as shown in Figure’b.9. In contrast to special dases avithin the whiteboards, the exchanged
messages are additionally tagged with information abait tiique identity, individual priority and
framework-generated timestamps.

In order to subscribe to different types of data, interestedules connect to a whiteboard and register
their interest in a specific message type. These types amletidn a dot-delimited list yielding

a straightforward type hierarchy. For instance, the exgioes‘Input.Perc.UniM.Hear.Voice.Speak
describes a message type that was generated by speechitienogrodule. In Psyclone, this type
ontology serves as the basis for routing of new data thatb$igfhed on a whiteboard.
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While Psyclone supports the concept of continuous datarssgethis type of exchanged information
is not mediated via whiteboards. Stream-based connectindgheir datatypes must be defined at
compile-time due to certain technical restrictions [TLBD0As the authors do not elaborate further
on this issue, it appears that the sole purpose of the wiatdbdor stream communication is to act as
a nameservice for the clients of a streaming service.

Distribution Infrastructure

In contrast to other approaches, Psyclone offers both a li- e
brary for the integration of external processes and a loggematier L o Adapve
cal runtime environment for modules, which allows for N

a more efficient coupling between a set of modules that
feature more sophisticated timing constraints. However,,,,
integrating internal modules via so-calledanksis done " *
by calling aC-function with a specific signature that must
be exported within dynamically loaded libraries, acting as yas
a hook for these modules to get called by the Psyclone "ot ol Tootware
runtime. Through this mechanism, the Psyclone runtime

provides a proxy to the actual whiteboard object, and, in
turn, the individual module may access any of the whitep2rm support Unix, Windows, Mac05
board’s functions. Last but not leastcantextmechanism e 22 -

Standards Compliance XML, CVML, OpenAIR

is supported that allows to switch module configurations - rarty bependencies Core Library

Domain
' Support

Collaborative Complexity

dependant on this single system-level string-value parame" Commercial
ter. The context can be set by any module that is part of a
Psyclone system. Figure 5.10.: Psyclone assessment.

The psyclone runtime environment is realized in C++ and mmd&Jnix, Windows and Macintosh
operating systems. Language bindings for remote integraif process are available for C++, Java
and Lisp. Psyclone is freely available for non-commercga in a closed-source version with certain
restrictions. Additionally, the version that, at the tinfewiting this is available for download appears
to be a limited evaluation version. Figure .10 shows a tatale assessment of Psyclone compared
against the previously identified aspects. The reason$ifostibjective evaluation are as follows:

Data RepresentationPsyclone itself does not make any assumption about thesudzd model and
does not prescribe any, except that all information mustibeerted to character data (or well-formed
XML elements) due to the fact that it is embedded within OpihAessages, which ultimately are
XML [BPSMT04] documents. Consequently, Psyclone suggests to uNAdL for data exchange
between the modules within a vision system'’s architectimes providing at least some guidance for
module developers. However, no advanced features of XML\GVIC are exploited or specifically
supported within Psyclone and the data model for strearaebesmmunication as a binary protocol
is independent from the textual format used for whiteboammunication.

Information Managementin contrast to blackboard systems that resemble databasegement
systems, Psyclone lacks most of this functionality andasel to publish-/subscrib& [BMRS96] ar-
chitectures for distributed systems. Therefore, no gletsk can be updated through the whiteboards,
except by distributing state information across all cotegenodules. The question remains how this
is handled across different whiteboards. However, thétaldl recall information within whiteboards
and a so-calledatalogfunction that serves as a persistent data storage for iafitomto be reloaded
after a system shutdown outside the whiteboards providesstta limited level of information man-
agement support.
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Distribution Infrastructure: Psyclone offers networking functionality following a pidhl-/subscribe
pattern utilizing an XML-based protocol that shall yiel@$® coupling between system modules. Ad-
ditionally, media streams are provided allowing for a mdfecient way of dealing with audio and
video data although no detailed information about theilizafion is available and the benefits of a
document-oriented approach are decreased due to the lpr@ocol used here. Equally opposed to
the idea of loose coupling is the fact that whiteboards andianstreams must be defined prior to
system startup and location independence is only providedfiteboard-based interactions. While
asynchronous integration is naturally supported by thigdehd®syclone offers no asynchronous pro-
cessing API for the attached whiteboard clients and no éuritfiteraction semantics than messaging
via publish-/subscribe.

Adaptive Coordination:The Psyclone architecture supports a basic level of coatidim in a sense
introduced earlier due to the ability to fully configure thestem architecture and its dataflow in a
central point of configuration. However, no dynamic recamfgion is supported by way of this
mechanism. Nevertheless, modules can be dynamicallyninstied and connected to whiteboard
instances at runtime. Coordination in Psyclone systemssed)on a simple type ontology for the
module’s message subscriptions, no further functions kerifig, matching or the based on module
identity are available for subscription specification. Taiely simple context mechanism provides
a very limited system coordination facility compared toestapproaches developed in the CAVIAR
project [CAVQT]. It is neither possible to model the coomtion dynamics in a meaningful way nor
to change this at runtime. Furthermore, there exists ndlgbigsfor framework extension or features
for intercepting the data flow between modules and the wb#ebfor system integrator’s or module
developers.

Domain Support:Psyclone offers no special domain-specific extensions aptads, except that the
author’s propose to encode vision system related infoomati CVML. However, on the one hand it
is questionable whether this proposal fits to a larger clagsion systems and on the other hand, no
further support seems to be publicly available for the gaid defined in this domain-specific XML
dialect.

Software EngineeringDespite its similarity to a blackboard architecture, Psgel allows for dif-
ferent functional architectures. It offers a limited lewélmodularity as it permits to decompose a
problem into several different whiteboard clients or whdard servers to the extent this is possible
within a blackboard architecture. However, advanced feattor a modular development like hierar-
chies or subsystems are not available. As far as this couth&idered by reading publications and
looking at the documentation, the main feature of Psyclbia¢ matches this aspect is a tool called
PsyProbe. It provides a web-based mechanism for analyzighboards at runtime and allows for
manual modification of system behavior.

Collaborative ComplexityPsyclone scores with regard to collaborative complexist ind foremost
with regard to its good documentation and the openness aigbe networking protocol and of the
CVML specification. Unfortunately, the whiteboard implemegion itself is closed source and there-
fore contradicts the idea of providing an open integratimmidecture. Furthermore, it remains unclear
how change is handled in the Psyclone messaging architgeatut whether OpenAlIR or CVML ac-
tually are endorsed by a standards body.
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Product Utility: As all communication is usually mediated via whiteboard/ees based on a textual
protocol over a standard network, the overall performaneg decrease. In order to overcome this,
Psyclone offers the ability to integrate modules within mstance of a whiteboard, thereby avoiding
the overhead of hetwork communication. While this is in geha useful feature for a close coupling
of modules, the Psyclone approach leaves many questiomswaeed, e.g. about the life-cycle of
cranks, timing issues if a module blocks within a hook andenegal the error handling procedures
Psyclone implements here.

5.3.3. Cognitive Robotics Middleware

Research conducted in the domain of cognitive robotics imamy ways related to what is done in

the area of cognitive vision systems. First and foremost,gbal to enhance a robotic system by
cognitive abilities implies a strong need for building ategrated system. Secondly, a cognitive robot
usually consists of several interacting components, wagdin are developed in an inherently inter-
disciplinary approach. Last but not least, cognitive visionctions can be considered as important
subsystems of cognitive robots.

Although the distinction between robotics middleware aoblotics architectures on the one hand
and cognitive robotics approaches on the other hand astddpicFigurd 5P is sometimes arbitrary,
a number of approaches define this intersection due to tpetific support for the needs of soft-
ware development in cognitive robotics. Examples of thggeaaches are the component-oriented
approach that is used for the development of cognitivetasliat the Honda-Research-Institute Eu-
rope [CID 0€], the CAST/BALT integration architecturg [HZWO7] thaherged in the context of the
Cosy [COS04] European Union collaborative research projeMARIE, which is an integration ap-
proach that explicitly targets the re-use of larger buidiocks of domain-specific software needed
for the development of cognitive robots.

In contrast to the aforementioned approaches that provétieintegration functionality based on a
fine-grained component-model, requiring researchersdptatieir software modules to specific con-
straints imposed by the integration architecture, MARIEsat integrating more coarse-grained soft-
ware modules. Similar to what is in the focus of the approasstdbed in this thesis, MARIE aims
at allowing for aminimally invasivantegration strategy, connecting software modules withange
modifications to their internal structure to a system aetttitre. Therefore, MARIE’s concepts shall
subsequently be compared against the aspects, which vesified as important for integration in
the context of the VAMPIRE project.

MARIE

MARIE [CBL06] (Mobile and Autonomous Robotics Integration Enviromt)és a middleware-
oriented approach that is geared towards applicationratieg in robotics. The specific motivation of
the developer’s of MARIE has been to overcome the lack oftsteds in the robotics domain [Ore99]
by a unifying abstraction and integration layer. The MAR}ipBach has for instance been used to
develop Spartacus, which is a socially interactive molaikot [MBCC'05] that features localization
and mapping, a certain level of visual processing and diedagteraction integrated on the functional
level according to a behavior based approach called metiMa¢havioral architecture.
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Figure 5.11.: Software architecture of Spartacis [CBQ€], integrated utilizing MARIE.

The fundamental ideas behind the concept of MARIE are tditiae reuse in the domain of robotics
research to foster the development in the field. Therefbig,approach aims at supporting multiple
concepts as well as abstractions for integration as diffezgperts expect a different set of specific
functionality on varying levels of abstraction.

Another vision of MARIE is to support a wide range of diffet@@mmunication and integration plat-
forms in robotics. The architectural concept is based orndibe of a so calledomponent mediation
layer, which is a network- and system-wide implementation of treiator pattern as known from
object-oriented desigh [GHJVO5] on the level of a distrdalisoftware architecture. The design ratio-
nale for the chosen approach are to support loose couplishg¢oamde the internal implementation of
each individual component.

In order to support modules developers and system integraftARIE provides a component frame-
work that shall allow for the management of integrated ajapilbns with regard to component lifecycle
(e.g. initialization, (re-)starting, ...) as well as dyriaroonfiguration. Apart from that, MARIE itself
does not provide a component execution container or a rergimironment. The concept of MARIE
introduces four fundamental functions that are respoadin the desired abstraction from individual
applications and their specific communication protocolwelbas their integration with the mediation
layer, which in the end carries out the necessary intenmactio

The notion of anapplication adapteris used in similar ways as the term adapter is defined in ap-
plication integration or software engineering. It adaptd aonnects the local interface of a specific
application to the mediation layer, thereby integratirig &pplication into a larger system. In contrast
to the concept of an application adapter, the idea cbmmunication adapteis to apply protocol
transformations necessary for interconnection of otreswicompatible components.
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While adapters can become specific for each software apiplicathe following general types of
communication adapters were used in the Spartacus intaymabject as shown in Figute5l11:

Mailbox a data buffer for interactions between asynchronous coes.

Splitter. forwards incoming data to multiple outputs.

Switch sends only one of its inputs to an output port.

SharedMap a push-in/pull-out key-value data structure accessiplellbcomponents.

Both types of adapters are useddnmmunication managegrocesses, which are responsible for the
orchestration and management of the communication linkgdsn components. One instance of a
communication manager needs to be run on any single nodis et of a MARIE system. However,
at the time of this writing, no implementation of the comnuation manager concept was published
that demonstrates this feature. Last but not legstlication manageimstances control the execution
of the different components that run in the overall systenmcéOmore, an instance of this type of
manager must be running on each node participating in aldiséd system setup. Although in a
prototypical state, implementations of this function arailable.

An implementation of MARIE’s concepts is available under @PL and LGPL open-source software
licenses. It is based on ACEJSHO1] that provides portablgrabtions from low-level operating
system functionality like threads, memory access or secaetwell as many more. Therefore, the
framework is usable on recent Microsoft and Unix operatipstesms. On the downside, no other
language bindings than those for C++ are available. AlthoMARIE implements a Port concept,
which shall in principle allow to change the underlying commitation strategy, it turned out that only
ACE sockets are used for network data exchange in the mewliayer [CBLF06]. Furthermore, all
data exchange in this layer is solely based on text-only XMtwhents, binary data is not supported
in these mediated interactions.

One of MARIE's strengths, which is the available supporttfa robotics domain, leads to the qual-
itative suitability rating of this approach shown in Figlitd2 and its available implementation com-
pared to the aspects summarized in Sedfioh 5.1. The coasates that lead to this assessment are as
follows:

Data RepresentationThe MARIE concept does not prescribe the use of a specifi hatdel for
software integration. In fact, it suggests to use XML foradsgrialization in network communication
without making further use of XML concepts, thus not addiatue with regard to software integration
except a possibly improved understandability on the padtlevel. While the data types that can be
used with MARIE are extensible, corresponding factoried parsers must be provided by the users
of the framework. In general, questions of data representdiave little impact on the integration
concepts of this approach.

Information ManagementExcept for the fairly simple SharedMap communication aeliatbtat allows
to store text data in a map-like structure, no advanced ifumealities for this aspect are available.

Distribution Infrastructure: With regard to distributed systems functionality, MARIE®ength is its
support for the integration of heterogeneous infrastmestwvia the Port concept. On the downside,
this capability comes at the prize of added complexity, vidh regard to the necessary configuration.
While asynchronous processing is supported and parafleliswell as concurrency are addressed by
the underlying ACE framework, location independence isaootsidered. For example, concepts for
hiding the physical location of a component are not avadlaliespite that, MARIE supports loose
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coupling to a certain extent, mainly by decoupling compomaeraction through the mediation layer.
Nevertheless, some questions remain, e.g., with regane fatt that for fast exchange of multi-modal
data the mediation layer is circumvented and direct networkmunication is applied [CBI0E].

Adaptive Coordination:Concerning features for adaptive Drbaton rastrocture
coordination, only dynamic configuration of components is T

supported, which fully depends on the implementation 0‘;’:5‘;;2252%? I o
the application adapter with regard to relevant adaptation T
While the communication manager may very well be a
concept for flexible orchestration, no working examples ofD P
this idea are available. Application managers are supposeré”ilff e
to provide a limited support for fail-stop errors but degeri P
tions of how these are handled are not available. Neither

other types of coordination functions, nor extension Eint  rroauct<".

Domain
+ ' Support

. “Software

. Utility Engineering
on the framework level are considered here. However, at
least the additional RobotFlow software toolkit interface Collaborative Complexity
with MARIE and thus allows for graphical modelling of [ ratrorm support Microsoft Windows, Linux
the data flow in a robot architecture and the specificatiop:re 2o sindnos G Ci+
Standards Compliance XML

of coordinated robot behaviors.

3" Party Dependencies ACE, adapter dependencies
Licensing GPL, LGPL

Domain Support: The aspect of domain support is a
strength of MARIE, but limited to robotics functionality.

Besides a number of robotics related datatypes, adapters
for a number of relevant robotics software packages suchegePStagel[GVHO3] are available.

Figure 5.12.: MARIE assessment.

Software EngineeringMARIE’s mediation layer and integration concepts do notuieza specific
functional architecture. Modularity is supported by thenpmnent concept although no further guide-
lines for conducting software development in a modular nearam how to achieve incremental de-
velopment are provided. MARIE provides a straightforwastiaf abstractions describing component
interactions, but does not suggest any way of modelingriast of integrated systems. It features a
tool for inspecting system interactions, thereby allowingtime analysis. Beyond advertising unit
testing and available benchmarks there is no additiona@tifior system debugging or testing.

Collaborative ComplexityWhile it remains unclear how change is addressed in thigiaten archi-
tecture the already available application adapters uimgeMARIE’s aim to provide a framework that
allows re-use of existing software packages. Concerniagility, an observation is that integrating
additional components needs the module developer to ddabwiumber of abstract classes that must
be used to build a novel application adapter, which can beaaimbersome.

Moreover, the invocation of target methods needs to be kdrul} the framework user and that com-
ponent configuration is everything but a trivial task. Thieiohangeable protocol implementation on
the one hand, but the incomplete (design) documentatioheather hand, a limited level of usability
and openness can be attributed.

Product Utility: Unfortunately, this aspect cannot be assessed given tlilatdganformation. None
of the desired features is evaluated by the author’s of sradivork. In particular, nothing is reported
on the scalability of the mediation layer. The only avaiafact is that MARIE has been applied for
the integration of several robotic systems, which are abbet in the real world.
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Figure 5.13.: Level of support for the defined functional and non-fun@l@spects. The green line repre-
sents the desired minimum level of support for all of thepeets.

5.4. Conclusion

The domain-specific integration architectures reviewetthénprevious two sections represent related
research that emerged in parallel to the approach presiamteid thesis. However, it turned out that
no single approach sufficiently considers all of the requnésts as depicted in Figure 5113.

TAO representshe state of the art in real-time CORBA and scores in performantaed aspects as
well as all other areas of distributed processing. Howeaviile TAO may be a basis for an integration
architecture in cognitive systems, its direct applicatioan interdisciplinary integration context as is
the case for cognitive systems projects is prohibited malok to its complexity and missing support
for an iterative development process with constant chaegegla central reality.

Looking at Psyclone and MARIE as integration approachegldped in related scientific projects
and with similar goals in mind, it is natural that they alreambnsider many of the aspects defined
as requirements. Psyclone offers an approach that shaitsscate many similarities with publish-
/subscribe systems and less similarities with classi@dkidoards. On a functional level it addresses
most of the aspects that could be useful for the integratienario within VAMPIRE, but in a way that
many functional requirements are only briefly addressed Ri2has good support for the domain of
socially interactive robotics and provides at least on threceptual level a sophisticated architecture
for integrating coarse grained software components. Owtiiner hand, it introduces overly complex
abstractions for functions that are even unused up to nomraanication manager) or in its early
stages (application manager). Finally, it remains undie&v component interfaces can be specified
and how the considerable additional effort of maintaininguenber of additional infrastructures can
be managed with MARIE’s concepts.

However, particularly the aspect of information managetme&hich is central for the realization of a
visual active memory is not directly support by Psyclone apMARIE. To commence this chapter, |
would assess that Psyclone represents the approach thes ctmeest to the architecture described in
this thesis. Even so, despite the fact that there are cextaiceptual similarities, the two approaches
feature important differences. As none of these architest@ompletely match the requirements
identified for the VAMPIRE project, the remainder of this sisewill bear this challenge and explain
how these aspects are supported by the architectural aypptode introduced subsequently.
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Part Il.

The Information-Driven Integration
Approach

Information-Driven integration describes an event-basgoioach for the collaborative development
of complex software architectures as needed to realizeiexpatal cognitive systems. The following

part consists of two concerted chapters that in conjunatestribe the models of information-driven
integration.

Chaptefb describes the models that consitute the coreeatirie, which is primarily adopting con-
cepts of event-based systems yielding a versatile commtimicenvironment for software compo-
nents that operate in a distributed system architecturee afistractions presented in this chapter
provide the conceptual and technological basis for adwhimtegration functions.

Chapter ¥ explains extensions built on these basic modatsréfalize the additional requirements
prevalent for software integration in experimental cogaisystems. Exemplary models that partic-
ularly support the software development in this domain heerhemory model, which provides a
foundation for a visual active memory as envisioned in th&NARE project or a coordination model
for flexible perception-action linking in an asynchronoushitecture.
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6. Adopting Event-Based System Models

Developing an architecture for software integration tisatised right from the beginning of a new
project is a challenging endeavor for the component andrdradwork developers. This is partic-
ularly true in the given integration context because chamgéquirements not only yield challenges
for the individual functional services within a complex ®rm but also progress of the attributes and
structures of the overall system architecture towardsdahkzation of a project’s scenario. Therefore,
it is a necessity that the integration architecture meedselthanging requirements. Consequently,
the approach that will be introduced in this chapter is theashlined result of an evolutionairy de-
velopment process, particularly conceived during its ipfibn in the VAMPIRE and COGNIRON
EU projects. However, the evolution of the subsequenthsgmeed approach once more confirms
Lehman’s first law[[ERO3], which states that a system thasédwill be changed. And since the fact
that it actuallyis used is good, change shall be appreciated here.

Setting out from a first implementation of a visual active neegnwhich was based on a rather fixed
client-server architecture, the whole approach develapeda generic and extensible integration
architecture comprised by a set of stable methods repiegdiie core of information-driven inte-

gration. This chapter presents the first part of these casgearily considering event-based com-
munication. They represent the foundation all other mottelswill be described in the next chapter
are built upon. In terms of the functional aspects introduicethe previous chapter, the following
sections mainly addreskata representatigrdistribution and features foadaptive coordination

This chapter starts with a manifesto of information-drisiegration. It highlights a number of strate-
gic aims that are considered important for the given taskatmlto weight conflicting requirements. It
also discusses well-known architectural styles like sengriented architecture, which provide valu-
able insights adopted for the concepts of informationairiintegration. The assumption in this work
is that in particular elements from event-driven architeet match best with the stated requirements.
Thus, the remaining sections in this chapter shall explancbre features of information-driven in-
tegration along the lines of event-based systems modeksdifierent models are described from an
architectural viewpoint focusing on their concepts. Sjeainplementation aspects are explained in
excerpts that describe technology-agnostic featuresniedevel of detail.

6.1. The Manifesto of Information-Driven Integration

The transition from the vision of a visual active memory d@estture to an actual implementation of
a system-level software architecture that facilitatesn@og systems research needs careful consid-
eration. The first step in doing so has been requirementdifidation and analysis. However, as
indicated in Sectioh’Bl1 some of the stated requirements\vame contradicting. Thus, the first step to
move from analysis to design is to highlight some aspectsstiall be particularly accentuated by the
architecture, which helps in selecting and developingablet software engineering concepts.
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6.1.1. Strategic Aims

While the overaching aim of this dissertation is to suppaitaborative research projects on ex-
perimental cognitive systems by providing a software aechire that is broadly applicable across
different application scenarios, the following list pretespecific strategic aims resulting from this
integration context, which represent a kind ahanifestdor the core architecture to be developed:

1. Loose Coupling Reducing the dependencies between functional moduleseosystem level
in terms of temporal, spatial and referential coupling igiepry concern of the information-
driven integration architecture, see Chapler 4 for a detadiscussion. While coupling is nec-
essary for meaningful systems, the decisiafs®ere what and how to couple software arti-
facts must be made explicit and be supported by the architectn general, loose coupling is
paramount for handling oligarchical or anarchical intéigracontexts, cf. Chapté&l 3 in business
enterprises or in collaborative cognitive systems researc

2. Explicit Boundaries In contrast to operation-oriented middleware that aimsnakimizing
distribution transparency, cf. Chaptér 4 this approactedaén the position of Waldo et
al. [WWWZK9/] that it is undesirable to hide too much of thetféitat an interaction with
a software artifact executed in a different execution cxdrekes place. The message sent to or
received from a module, its contract, and a representafiti,eademote communication partner
itself should all be first-class constructs within the imé&gpn architecture. Hence, the resulting
programming models shall provide an API that exposes thaseepts to the module developer.

3. Increase Autonomyinteracting modules such as those integrated in the VANERERStems, cf.
ChaptelR, should in general not rely on a specific executimtext, due to the fact that the
loose coupling principle mandates that dependence ondinpisumptions should be as small
as possible. In contrast to operation-oriented infratiines that require synchronized evolution
of client and server program code and interface descrigtitre interaction between modules in
this architecture shall not be based on class types butithste sharing of interaction contracts,
which shall facilitate an agile, independent developmeatgss as envisioned in Chagdier 3.

4. Focus on Usability Despite the stated aim to make application boundariesaitxghe pro-
gramming models that allow developers to make use of funality offered by other modules
should naturally be as easy as possible. However, this is mge important in the given in-
terdisciplinary context, cf. ChaptEl 3, due to the fact tmtally only few middleware experts
will be among the users of this architecture. The goal is¢& people up whatever they already
know about distributed systems technology, making sintglegs easy while still allowing ex-
perienced users to develop complex functionality. Thus,vilewpoint taken in this thesis is
that the architecture shall focus on a minimal core of imgtrfunctions needed for the design
and integration of distributed cognitive systems, expgsinly a small set of recurring patterns
in its external API for use by regular module developers.

In addition to these non-functional aims which influencedbeceptual architecture, a secondary but
nevertheless important aim that constraints the actualvacé development is to endorse the ideas
of free and open source softwaas this is often a requirement for collaboration betweerl@cac
institutions. By endorsement, the reuse of existing paekamd the free provisioning of the resulting
software toolkit according to an open-source license isnhea
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This work’s ambition is to become actually used in largelescasearch projects, thus the resulting
software architecture needs to be developed from a holstiepoint, aiming at supporting most
stages in an iterative development cycle of cognitive systedesign, construction, integration, test
and operation. In order to achieve this aim to a certain ¢éxfmagmatism is preferred over evan-
gelism, rendering useful concepts from otherwise orthagparadigms such as service-oriented and
event-driven architectures or tuplespaces into a cohemml architectural concept.

Apparently, the reader could ask why the domain specifictianal support for a cognitive vision
project like VAMPIRE is not prominently considered in theoab list. The answer is two-fold: on
the one hand, many of the above mentioned aims extend to eéogenent of individual functional
processing modules and from a functional viewpoint alraadyy well designed libraries for domain
specific tasks exist. On the other hand, the proposed actinigeprovides domain support by easily
integrating itself into existing domain specific toolkits explained in Section—4.5. The challenge
as it is understood in this thesis is to support the developrokexperimental systems for cognitive
interaction which exhibitomposite behaviobased on the sum of all individual functional modules
in a software architecture.

Given the aforementioned aims and the requirements fronpt€H&, the question arises what con-
cepts eventually can be adopted to find a solution for the sagpahallenges. From a high-level
perspective, a first answer is to draw inspiration from sergriented architectures.

6.1.2. The Service-Oriented Viewpoint

Nowadays,Service-Oriented Architectuf®©AS06] (SOA) represents a popular approach that com-
poses systems of autonomous services. The vision is to peamtegration to become a forethought
rather than an afterthought, which is not only importanteioterprise application integration but also
for software architectures of experimental research systeNaturally, not all of the SOA concepts
are new but rather evolved out of the experiences assoaidtiedesigning and developing distributed
systems based on technologies explained in Chhpter 5. &iyninany service principles have their
roots in earlier techniques from object-oriented analgsid design such as encapsulation, abstraction
and clearly defined interfaces.

A service can be defined as a high-level application functi@t can be interacted with via well-
defined message exchanges. Services shall be designedhavadability and stability. The basic
interaction model of web services is request-reply, whichiinilar to what standard operational mid-
dleware provides with remote procedure calls. However, $&ges the level of abstraction in these
interactions and focuses on the semantic functions of a laodihile the granularity of request-
reply in SOAs is usually more coarse-grained than in claggarational middleware, the interaction
is still identity-based, leading to a stateful couplingvibegn caller and calleE IMEP06]. While usually
applied in business contexts, the assumption of this thesigmat some of the general SOA concepts
implemented on a loosely-coupled infrastructure can aklesd to much more open and changeable
software architectures in experimental cognitive syssepairticularly compared to the development
of systems based on operational middleware.

So, the question arises what actually differentiates aiciriented architecture from a distributed
system that is integrated utilizing well known techniques.
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The characteristics of a SOA primarily are the same as theafipects of modularity that were intro-
duced by Bertrand Meyedécomposability, composability, understandability, tomurity, protection

cf. ChaptefHl), but with distinguishing extensions [Pera8je following list interprets these from the
perspective of service development as these propertiasoam@nly dependant on the capabilities of
the integration architecture but also of the design of thé/idual modules:

e Introspection Services must be able to query the structure of moduleshaiddommunication
at runtime.

e Remotability Services in an architecture should be designed and plafuneskistence in a
distributed and heterogeneous computing environment.

e Asynchronicity Services shall not assume an immediate response fromeradétibn and take
into account latency either in the transport mechanismectilee.

e Document OrientationServices must not implicitly share state across singkeraations and
shall explicitly communicate via well defined messages.

e Standardized Protocol Envelop8ervice share a common envelope message format for module
communication.

e Decentralized AdministrationServices should be designed and planned for decentradided
ministration, which allows their reuse in different orgeational contexts, e.g., projects.

All these aspects contribute to the central goal of loos@ligion the level of an integration architec-
ture. This list partially overlaps with the functional regaments that deal with distribution and some
of the desired non-functional requirements. However, tBé $aradigms are not necessarily bound
to any specific implementing software technology, even iAS3©frequently reported to be linked to
web service standards [NLI04]. Fortunately, gaining insfgbm the principles of SOA is not coupled
to the use of these overly complex stack of standardizedifsgaions. Nevertheless, the abstract
characteristics of a service and its underlying designidenstions can provide an avenue for the
collaborative integration of experimental cognitive gyss, which will be detailed in the remainder
of this thesis.

Acknowledging these considerations, the following secaod the models of the IDI approach ex-
plain the realization of a software integration architeetthat take into account the SOA paradigms
and realizes these as well as further functions suitabledgnitive systems engineering by adopting
concepts from event-driven architectures, which shalhtrduced next.

6.1.3. The Event-Driven Perspective

While the focus of SOA is on decomposing system functions @o@mmand-and-control style, the
general ambition oEvent-Driven ArchitecturéEDA) as interpreted here is to support the exchange
of events that contain information about semantically intgoat observations. This notion of an event
matches well with the natural characteristics of the apfii;m domain. The real world provides many
good examples of occurrences that can easily be descrilib@vénts like a person entering a scene,
a robot that hits a wall with its bumpers or even better, tretaddle avoidance that detected this barrier
already some seconds in preface.
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send MTFs DCs send

Figure 6.1.: Functional components of an event-based integration stfrecture.

The architectural concepts that define the informatiowedriintegration approach are largely based
upon the ideas of event-based systems research. Thisrsbatdly introduces the abstract key con-
cepts of event-driven architectures in order to lay the flation for the explanation of the adopted
event-based model in the IDI architecture.

The largest difference to other approaches is the invertadkehof interaction[[MEPU6]. The initiator
of communication in event-based systems is the provideata,dhe so-callethformer, which sends
event messages, termadtifications to other participants. However, notifications are usualthy
addressed to any specific setisfenermodules. Instead, listeners receive notifications by esgimg
their interest through so-called subscriptions. If a ngdiion matches a subscription, it is delivered
to its listener. The nature of the event-based interactaambe described as follows IMEEO06]:

The essential characteristics of this model is that produde not know any con-
sumers. They send information about their own state ongglpding any assumptions
on consumer functionality. A componerkriows$ how to react to incoming notifications
and it publishes changes to its own state, but it must notighulal notification with the
intention of triggering other activity.

This definition underlines the aforementioned aim of inseghautonomy by explicitly calling for the
design ofself-focusedservices from a technical perspective, yielding cohereodlutes that solely
process information restricted to their own task and egercontrol only over their own implementa-
tion. No implicit knowledge about the state of other modutasst be used. Following this paradigm,
the overall behavior of the system arises from the implitieiaction between the event-based sys-
tem modules. Withdrawing control of interaction from thetjgdpating components, the necessary
coordination has to be handled externally.

Many different realizations of EDAs, ci_I[MEPD6] for a re¢averview, were developed in industry
and research over the last decade, however, all with difféoeus and with just only a few gaining
wide acceptance. Reasons for this may have been that sefawehitectures were only retrofitted
with event-based extensions that introduced this ardhitelcstyle into otherwise operational middle-
ware [Sie0D["HS08b]. Thereby, they share many of their deak&h, e.g, such as fine-granular event
structures.

The integration architecture presented in this thesis Ismiéar aim that actually adopts many meth-

ods from event-driven architectures to provide an envireminthat combines the suitable aspects of
both approaches in a coherent architecture usable witkigitien integration context. The assumption
is that the functional composition from SG#d the event-based interaction form EDA is a promis-
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ing foundation for the development of reusable system nmesdil an agile development process as
needed for efficient research on experimental cognitiveesys. With regard to SOA, recently the bor-
derlines between SOA and EDA are beginning to diminish, mésim the web services community
that introduced standards such as WS-Notification.

From these concepts, particularly the notion of documeietation is of capital importance in the
context of information-driven integration. As documentsually encode all necessary information
about interactions theommunicated messages are the loci of state chiwie the basis of infor-
mation processing in a distributed IDI architecture. Thidband communication paradigm will be
fully exploited to design an architecture that targets ttoeesmentioned strategic aims, utilizing the
concepts of service-oriented and event-driven architestwith specific extensions for memory, co-
ordination and domain support.

6.1.4. Guide to the Reader

Several attempts to describe event-based styles and &ifglasent-based architectures according
to well-defined frameworks have been proposed. The effetgnted in[[BCTWYI6] will be used in
the following sections as a common vocabulary for refertmthe core functional components of an
event-based infrastructure, which are depicted in Figille 6

According to this schemearticipantscan either acts as an-
former that sends messages encoding the occurrence of so
event or as distener, which is receives event notifications. Be- LS X
fore sending or receiving any message, a participant mayrinf Event Mode! |
some kind ofregistrar of its intention to do so. The actual deliv- 7

ery of event messages is in the responsibility ofrthéer com- Document Mode! |
ponent. It may contain additional elements, e.g. so-catied-

sage transforming functionfMTFs) anddelivery constraints Figure 6.2.:The adopted event-
(DCs). While MTFs are in charge of transforming, e.qg., filigy based models.
messages on behalf of some listener, DCs define some exuld@ions with regard to event delivery,
e.g., on the order in which events are received.

rLO&servation Model I | Notification Model I

The explanation of the information-driven architecturethie following two chapters is loosely in-
formed along the lines of the general of event-based systepoped in [[CNEJ1]. While not all of
those models are applicable to the presented approacithe.gubscription model is subsumed by the
observation model, and the document model is introduced asdditional model, this still provides a
coarse framework for the following sections as shown in E@fi2. This notion of introducing mod-
els for describing coherent building blocks of conceptstaatinology will be continued in Chapf@r 7
with the extensions that are geared towards facilitatitggiration in a collaborative research project
on cognitive systems like VAMPIRE.

In this and the following chapter, the different models amttions of the IDI architecture will mainly
be explained from a conceptual viewpoint. Neverthelesthiwieach of these sections, interesting or
important details of the architectural realization will &eplained in an excerpt-like style. If imple-
mentation details are reported, they describe a generatbbjiented design of an available imple-
mentation independent of a specific programming languaget ibtherwise stated.
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In order to visualize the different aspects of the softwachitecture from different viewpoints, class
and composite structure diagrams are used for describatig siepoints and activity diagrams for
dynamic aspects. All diagrams utilize the notations of thfied Modeling LanguagéJML). All
depicted diagrams restrict the visibility of classifierghin the shown part of the software model to
the absolute minimum necessary to understand a particsfi@ct This is needed, because otherwise
the resulting visual complexity of the UML diagrams wouldpiede the communication of the main
matters.

In order to get a grip on the concepts behind the IDI apprdatiis now turn to the document model,
which yields already an important technical and concegdtuaidation for the overall architecture.

6.2. Document Model

The document model is fundamental for many of the advancedegts in the information-driven
architecture as event notifications are encoded in accoedaiith its principles. For instance, the
chosen representation in the document model has a largectiropathe available functionality in
the observation model which allows content-based matchimgnformation elements encoded in
accordance with the document model. Hence, it serves asdamlyimg theme used across almost all
models of the information driven integration architecture

The IDI architecture actually employesdacumented-orientedata-model for semi-structured infor-
mation. Document-orientation is an important mean thatates loose coupling due to the fact that
the documents shall be self-contained and encode idehihf@mation that is needed by a participant
to process a received document-based event notificatioichvid well suited for the asynchronous
interactions in an event-driven architecture. Taking uptlen point of loose coupling, document-
orientated messages that follow the ideas stated in theseexibn, represent a variant of thielue
objectpattern for distributed systems, which recommends to conicate objects that are immutable
and that can be identified based on their state rather thamegrobject identity.

Guided by the requirements definedn 5 regarding data rept&son in an integration architecture
and given the desired application independence and doduoniemtation, the use of thExtensi-
ble Markup LanguaggBPSM'04] (XML) as the underlying basis for data description noaslis

a quite natural choice. Using XML documents instead of a\waedl binary protocol, plain text,
ASN/1 [Dub08], or JSON, which is used in web environments $everal benefits for integration
such as extensibility, declarativity and standardizatidine latter fostered the development of ex-
cellent tools and programming APIs for processing of XML wiments. In conjunction with addi-
tional XML standards likeXPath XSLT, XML Schemaand XLink [BDGO1] it provides a domain-
and programming language independent representationlwddeh is widely known and promotes
openness. If XML is used as proposed in the subsequent 8gittidso contributes to the understand-
ability of system-level interactions. Ultilizing XML allosvto store, retrieve and process information
from different abstraction levels and semantic domairedding aunified data model

Using XML structures such as the object document shown iting&.] certainly yields performance

penalties for its textual encoding and verbosity. Howethax, hypothesis with regard to this point is
that the performance loss is outweighed by the positive @hgamany of the introduced requirements
and that XML construction and access is fast enough for preifig system-level integration in real-

world cognitive systems as shall be substantiated in Raof this thesis.
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98 6.2. Document Model

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<OBJECT>
<HYPOTHESI S>
<CGENERATOR>Obj ect Recogni zer BU(N) </ GENERATOR>
<RATI NG
<RELI ABI LI TY val ue="0.6"/>
<RELEVANCE val ue="0.5"/>
</ RATI NG
</ HYPOTHESI S>
<CLASS>Cup</ CLASS>
<REG ON i mage="ing_office210703_122">
<RECTANGLE x="335" y="245" w="65" h="80"/>
</ REG ON>
<CENTER x="32" y="44"]>
</ OBJECT>

Listing 6.1: Example of a basic object recognition event as used in theRIRHE systems.

Even so, as cognitive computer vision systems make widefisdeymbolic information, binary data
like images would need to be encoded in an XML document byitrgé numerically and translating
it into abase64epresentation, which is unacceptable. Thus, the evenehio8ectior 68 introduces
the notion of arattachmentwhich handles this class of data more efficiently and bintisthe event
notification concepts.

From a collaborative perspective, XML schemas help to ctexckanged XML documents for their
validity. XML Schema files define a grammar that a valid XML dowent has to conform to and can
be used in collaborative project to formally define messagiontracts between interacting partici-
pants. Excerdigll briefly highlights the use of schemasarG®GNIRON project.

Since XML only specifies the syntax of a document, let us dis@ugeneral strategy for how informa-
tion shall be encoded in the IDI architecture and what thaltieg implications for the information
exchange in integrated cognitive systems are if exteiityilisl taken into account.

6.2.1. Information-oriented Representation

In contrast to other approaches likeple-, record-or objectbased event models [MEEO06], the XML
data model as defined by té\ML Information SeflCT04] (XIS) specification is a hierarchical tree-
structured data model. The XIS recommendation defines a euoflinformation items, primarily
thedocumeninformation item as the single root node as welesmentandattribute items that can
be used as nodes in a tree to model hierarchically structweudt information like the availability of
object recognition information as exemplarily displayad.isting[6.1.

A hierarchical model was supposed to be well suited for tromdimg of scene information and other
important data in the context of the VAMPIRE project. Whited-models lack the expressiveness
of graphs, they were chosen as a compromise for the sake rify @dad simplicity while already
allowing for greater flexibility in describing events thatuple- or record-based approach.
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Exemplary XML-RPC encoding

<nmenber >
<nanme>CENTER</ nane> Information-oriented XML encoding
<val ue> <OBJECT>
<struct> <REG O\>
<nmenber > <RECT x="13" y="27"
<nane>y</ nane> W="80" h="80"/>
<val ue><i nt >44</ i nt ></ val ue> </ REG O\>
</ menber > €——P[<CENTER x="32" y="44"/>
<menber > <CLASS>CUP</ CLASS>
<name>x</ nane> </ OBJECT>
<val ue><i nt >32</i nt ></ val ue>
</ menber >
</ struct>
</ val ue>
</ menber >

Figure 6.3.: Contrasting XML-RPC with document/literal informationcexing.

The document model assumes that the different functionalutes of a cognitive systems generate
symbolic information from sensing their environment, whigermits them to encode these results,
i.e. object percepts, as XML documents. These include testifor instanceobject localizations
spatial relationsof objects, andactions As different sensors often share the same attributess phrt
the knowledge fragments are common for different docurmemissome are specific for the respective
type. Theseshared representatioradlows processes to handle different types of knowledgmiients
transparently, since they can only consider the data neldeatheir processing.

An example of a shared representation that was widely usetersoftware architecture of the
VAMPIRE project is theHypothesis[HBS04]. Since perceptive modules typically do not provide
complete accurate results, cognitive systems should waeps information as irrevocable facts but
as hypotheses with a giveReliability. This common data structure describing the uncertainty of a
knowledge fragment are called tivetadataof the hypothesis. Listing—8.1 shows an example of a
hypothesis containing a common metadata part. As this ratetaslavailable for any kind of hypoth-
esis, processes are developed that only consider thisriatan and can therefore handle any kind of
hypothesis, as for instance the “forgetting”-process ithdescribed in Sectidn4.3 in more detail.

Information-oriented representations conform to guidedi on the design of interactions in service-
oriented architectures to enforce loose coupling. Ideallgssages in the IDI architecture shall be:

e Reference freeRepresentations containing reference types to datastascthat are in the state
space of other distributed participants shall be limitethoextent possible.

e Feature a coarse granularityMessages should at best be of coarse granularity making it n
necessary to issue a sequence of fine-granular messagengeshaln general, they should
contain all information that is needed to process them ingaitive system architecture.

e Free of technological detailsThe encoded information must not contain details abousfiee
cific component implementation that generated the message.
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The use of the XML Infoset as the unifying data model for thé dixhitecture enforces the desired
document-orientation and contributes to the requirednsitdity of event interaction. Please note
that XML is used here differently as in data exchange prdsotike XML-RPC |[KAUO4]. Those
protocols are often designed from a programming languag®lely from a marshaling perspective
and usually result in a lot of overhead through text-baspdesentation of binary data and parameter
encoding rules which in turn leads to poor understandgholithe textual XML representation.

Looking at the object recognition example shown in Fiduig yoou see two alternative encodings
of a “"CENTER’ element. The example shows arformation-orientedencoding of the center item
(embedded in an object recognition result) on the right dbagea serialization of the same item in
XML-RPC encoding on the left. Itis not only this obvious oead induced by a naive serialization
of data to XML that is not desirable, but even worse is the wfssomprehensibility at all process-
ing levels that is imposed by this type of encodﬂ@sing XIS as a unifying data model and XML
as the publication language in the IDI architecture not gidyds great flexibility in event notifica-
tion encoding, but at the same time provides a programnaingtlage independent representation of
information.

Excerpt 6.1: Event Specification and Validation

Meta-information, e.g., about allowable data types, ig keparate in corresponding XML schema files
and is not encoded in the instance documents themselvesify®pg data types with XML schema has

several advantages in contrast to traditional programiaimguage constructs.

First of all, the data types are independent from specifigianmming languages. Even so, tools for using
them are available on almost every platform. FurthermoiL>chemas are able to specify content
models and ranges of allowed values in great detail. Progitine grained sets of semantically grouped
declarations in separate schemas with associated XML m@nes makes them reusable throughod
different systems. Complex schemas for individual moda#es then easily be composed out of thesg
basic type libraries, only adding specific complex typesaken into account, extensibility of data types
is possible with schema evolution. Even complex grammarcdonponents capable of interpreting
and validating XML documents originating from differenbi@ modules are easy to compose and we
understandable with a sophisticated schema hierarchyprniation-oriented encoding of XML event
notifications and the use of XML schemas for validation of éxehanged information are both very
useful for system integration in interdisciplinary resgmprojects. The focus on simple XML messages
to describe exchanged information helps during projecjtion as almost every developer will be ablg
to contribute to the discussion about the data flow in theesystl ater on, XML grammars like XML
schema allow for a rigid specification and validation of tlaadypes a project consortium has agreed
upon. For example, schemas have been defined in the Europgant@®COGNIRON [[CogU6] to ease
the integration of the partner’s contributions in the raadi robot prototypes.

=

1%

The idea to directly encode information and not data in XMk hecently gained more interest even in the Web Services
community where SOAP-RPC encoding (which is somewhat aimhdl XML-RPC encoding) is being more and more
replaced by the document/literal encoding as favored byppeoach presented here.
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Object
Person Tracker Recognition
<TRACK ...3] <OBJECT3]
|[<CENTER x="345" y="12"/>| |<CENTER x="122" y="347"/>|
<REGION>
</TRACK> [<RECT x="80" y="387" w="80" h="80"/>]
</REGIONS]

Y <ldéJECT> V

Hardware Control Visualization
Robot Base Camera

Figure 6.4.: Accessing common information at arbitrary locations witPaXh.

6.2.2. XML Processing and Extensibility

To promote the goal of loose coupling by using self-cont@iK&IL documents, the policies for han-
dling XML structures are critical. In the IDI architectur@two-fold strategy is proposed. On the one
hand, modules that receive an event notification must nobverimformation they do not understand.
In contrast to the must-understand policy, the IDI architex proposes enust-ignorepolicy, which
means that unknown document structures are not interpastedtoneous but are left in place but pos-
sibly changed or augmented by additional information ketbey are communicated to other system
components. On the other hand, the answer comes from theneeonded way of accessing the infor-
mation in an event document. In contrast to template-baseglsa like in tuple-based approaches or
the direct reference to a field in a record-based data stejciuselection of XML information items
through XPath expressions [C99] helps in building extalessystems that will not break as soon
as modifications of the event encodings occur. Carefullygtesl XML vocabularies and path-based
access therefore are important methods to overcome pn¢vaesioning problems[SV01].

An example that explains the benefit of the XPath-based tg@mbeof XML information items for
system integration is depicted in Figlirel6.4. Four modutesgssing partially equivalent XML data
structures are shown. This allows a component (e.g. “Ham\@antrol” for adjusting the robot base
and the pan-tilt camera) to process information from déffeérother system modules. Only the part in
the XML document that contains information about centenfs{‘<CENTER>") has to be present in
an exchanged data item. Starting with a simple partial paicialization to access the context node,
e.g. in this example as simple ak+/ CENTER”, the extraction of contained information is easily
possible although the context node itself might appear iiying places of different XML structures.
Thus, this path expression works on both documents showigirdfc.2.

As long as no necessary information is removed, this styayegids loose coupling and facilitates

interoperability between separately developed modulégs Jerves as an initial example of how the
XML infoset-based representation of event notificationstibutes to the goals of the requirements
identified earlier. The path-based access to informatidnbeirevisited as a fundamental part of the
content-based observation model in Sedfioh 6.4.
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6.2.3. Exploiting Reflection

Reflectionis a general programming language concept, realized ftarine in Java and Smalltalk,
which allows applications to query information about objeand classes at runtime. In terms of
middleware, e.g., dynamic CORBASIE00] supports reflectd runtime using, e.g., the dynamic
invocation facilitates as explained in Chadier 3. Howegeen CORBA advocates admit that these
reflection facilities arelard and tediousto use. Even so, they argue that this is a rather small prob-
lem in practice for CORBA applications, because most of teghibit a static character utilizing stubs
and skeletons generated by an IDL compiler. Hence, CORB#diand servers generally already
know all necessary type information to evaluate received dad issue calls on remote objects. In
fact, theymustbe aware of this information as CORBAZeneral Inter-ORB ProtocdlGIOP) omits
type information from requests, requiring participant&mow messages types a priori.

Excerpt 6.2: A Content-based Similarity Metric

Exploiting reflection in the XML-based document model, wereleped a similarity measure that in-
cludes a data integration mechanism and can thus procesfrdat a variety of sources coherently. It
uses the label information in XML document trees, the eldmame, to identify comparable values and
to transparently handle missing, repeated or re-orderearmnces of an element or sub-tree.

In any data integration task, care must be taken not to miatgo\dith different semantics. E.g., in object
recognition, the coordinates of an object and its label ateon the same abstraction level. Therefore),
the hierarchicahestingas a generic indicator of semantic differences is explotiing advantage of
an existing and established way of formulating this cruligbf information.

Hence, the similarity measure constitutes a kernel. It Fgenlshown that many machine-learning
methods can beernelizedin a straightforward manner, either by using the kernel iacel of
the scalar product or through a distance measure condlrdicten the kernel, e.g. d(z,y) =

VE(z,x) — 2K(z,y) + K(y, y)[Hau99].

Kernel Over XML Documents  An XML documentis a labeled tree rooted at ttecument node

In the following, for a noden, let L(n) be its labelV (n) its value and”(n) be the set of children and
attributes. In the XML infoset, only attributes and text medhave a value assigned but for the purposes
of this paper, we take element value to be composed of the diatestext nodes:

Definition 6.1 (Element Value) The value of an element with levell is the concatenation of all text
nodes with root: and levell + 1.

For the kernel definition, two cases are special: The emptypesison and non-matching labels. For
thesek(0,0) = 1 respectivelyL(s) # L(t) : k(s,t) = 0.

For nodes, we adopt the idea of Gartner etlal_[GILF04] to explussible functional dependencies by
combining the similarity of parent and children:

k(s,t) = kris)(V(s), V(£)K(C(s), C(#))

Nodesets, despite the name, have document order but magdiedras both a set or a list, with the
corresponding kernels (and using the above). For &étsw) = 3, ; Ky (ui, vx) and for lists:k(u, v) =
S k(us, v;). Last, but not least, for basic numeric values, a Gaussién:b) = e~*~*/"* and for
strings, a Hamming similarityk (m, n) = 1/k Zle d(my,n;) is applied.

While this can be extended with kernels for domain-speaifiarimation, the mapping of the basic XML
infoset items already yields a variant of a similarity methat can be applied in a general manner. How
this can be used for the purpose of clustering similar XMLutnents will be explained in Exceilpi®.3.

Sebastian Wrede



6. Adopting Event-Based System Models 103

While in CORBA and other operational middleware, this infiation is typically used to perform
dynamic invocations, the main utility of reflection for thetégration architecture is different. As
event-based systems do not feature operational semahgcfcus is set on the dynamic interpreta-
tion of event notifications. With regard to that, the selscibing nature of XML documents yields a
kind of type reflection, which allows to develop generic mieduvhich would, e.g., in CORBA only
be possible by exploiting its full complexity.

Excerp{&2 gives an example how the reflective charadteyisf the XML approach can be exploited
to design an XML kernel for measuring the similarity betw&®o documents in a generic way.

6.3. Event Model

The IDI architecture introduces a generic event model towalbarticipants in a system to signal
relevant event occurrences independent of a specific abistrdevel, content and operational context.
An event describes any occurrence of a happening of intdrasan informer in a cognitive system
wants to communicate instantaneously to listener pawicip Types of events in the systems that
are discussed here range from the presence of new sensdéoiahation like the availability of new
laser scanner data sets to the detection of an unknown pergering a scene, which is visually
observed by a surveillance system or the encoding of actstdte changesEventsrepresent the
central abstraction that is used by module or system deseddp model their domain objects in an
IDI-based system.

However, not only developers but also the proposed arc¢hiteds itself fundamentally based on
event concepts in order to provide higher-level integrafimctions like the services offered by the
memory model that will be described in Sectionl 7.3. The hidgneel components of the architecture
and the application specific modules in an IDI system comuoaigiby generating and receiviegent
notifications which actually are physical representations of eventsrim$ of programming language
constructs, e.g., an object instance in an object-oriecigss hierarchy.

Figurel®&) depicts the structure of an event notificatiotagundamental mean of communication in
an IDI architecture. As in many other event-based systemsyent encodeisformationthat conveys

the semantic information associated with an event. Basdti@principles of the document model,
each natification shall be self-contained to facilitatecégfit asynchronous communication, which is
a key characteristic of event-based systems. Therefaaendssage content is represented according
to the document model in exactly one underlying instancendflélL document.

Rephrased in terms of the event-based system paradigm, XM&ed here gsublication language
for event notifications. An individual notification is thus constituted by a set of attributes ..., a,
available through the event documentwhere the value of information items in the underlying tree
model is accessible through associated péitsns;) of XPath expressions. The corresponding
nodesetsis are returned by evaluating XPath expressions with theegygnforming to the XPath
1.0 data mode[[CD99]. This generic accessibility allowstif@ introduction expressive content-based
filtering functions in the observation model of the IDI artelaiture.

Besides the message and the underlying document, an indivégtent is consituted hyetadataand
a number of optionahttachmentswhich are explained in the following before the introdoatiof
user-definable event notification types in object-orieqgezjramming languages will be explained.
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package Architecture| [iFj Event Modelj

AN

Event

Examples for typical event
metadata:

: Metadata :] get/ set
- Event ID

= > wiw e - Sender URI

- Receiver URI

- Runtime Type Information
getDocument - Timing Information

- Action / Operation

- Delivery Constraints

L8

get / set [

: Document [1]

: Attachment [0..*]

Figure 6.5.: Composite structure diagram for the document-orientedien®sdel. An event object is consti-
tuted by domain-specific information, referenced binatg@iments and metadata. Attributes
in italics are examples for optional metadata elements.

6.3.1. Event Metadata

Apart from the basic data model that module developers usaitode information in event notifi-
cations, the architecture itself inserts an extensib&tadatablock into the event representation as
exemplarily shown in Listing®812. Conceptually, this mettadis a dictionary featuring an additional
set of predefined information-oriented attributes thateargmented to event notifications by the inte-
gration architecture in order to facilitate advanced fiow@lities like scoping, which is a feature of
the notification model explained in Sectionl6.5, which iietrvisibility of notifications or to enforce
other constraints such as delivering only recent hyposhesa listener.

The metadata elements are located in a separate XML naneef§1aG01] (sedine 4 of Listing[6.2),
thereby protecting them from other information encodedhieent representation.

Typical metadata attributes are identity information floe tevent itself, which is represented as a
Universally Unique IDentifie(UUID) that serves as Bniform Resource NamBLEMO5] (URN)

for individual event notificationdife 4). The identity of informer and optionally listener parfiants

is encoded in accordance to the URI scheme of the resourcel thatiwill be explained in Secti¢gnT.1
(lines 5 and §. Furthermore, the time of event publication and retri€liak 7) is added by the IDI
architecture as it is fundamental for synchronization is #rchitecture. Adding up to this, specific
delivery constraintslifie 8) like the Time-To-Live(TTL) information that specifies a lease time in
which an event remains valid or runtime type informatitings 9—1) are represented in the metadata
structures.

By integrating this metadata into the documents itself tlobitecture complies with the goal to in-
teract through self-containend event notifications. Tlis the advantage that the core architecture
may largely use similar processing strategies as they &eedfto module developers. Details about
the use of different metadata attributes will be explainethe subsequent sections along with the
description of the higher level functionalities they cdmite to.
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<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<OBJECT>

<xcf: meta ei d="d96f80c9-clb2-4519- abbc-d7b250490af 5" xm ns: xcf="http://xcf.sf.net/">
<sender uri="xcf://or.vanpire. agai/boost"/>
<receiver uri="xcf://vanpire.agai"/>
<timng pub="1209295281648" rec="1209295294015"/ >
<dc ttl="100" tineunit="ns" />
<event type="xcf.event. PublishEvent">

<i sa type="xcf.event. Xcf Event"/>

</ event >

</ xcf: meta>

</ OBJECT>

Listing 6.2: Exemplary XML metadata element that is transparently &gado each event notifications by
the integration architecture.

6.3.2. Optimized Packaging of Binary Data

As pointed out in the beginning of this section, a regulamtetargument against the use of XML is
the inefficiency of its textual serialization. The IDI artdtture extends over the purely infoset-based
model along two dimensions in order to provide improvedgantince while keeping most of the ben-
efits: on the one hand, an optimized packaging of binary de¥ML documents is used to increase
the efficiency of serializing event notifications and to shaadwith on the transport medium. On the
other hand, the notification model, cf. sectionl 6.5, int@tua transparent optimization scheme that
allows transport-layer specific serialization strategiglsich may dramatically increase efficiency of
marshalling event notifications. As part of the event molé¢lis now focus on the efficient handling
of binary data.

As document-orientation and XML encoding is fundamentahfiany aspects of the IDI models, the
decision was taken to keep this scheme for as much informasopossible but tre&inary Large
OBjects(BLOBS) like image data or general array-like data typefediitly. Thus, as depicted in
Figure[@&5, BLOBs can be added to an event notification aithchmentshat can be referenced and
described in the event document and are transmitted in themacoding of the underlying transport
layer implementation. This style of adding attachments kdLdocuments is inspired by th&ML
Optimized PackaginfGMNR99] recommendation.

Marshaling of attachments is directly supported for a nunadbg@redefined vectorial data structures,
e.g. vectors for floating point types. Additionally, a can& type for unsigned character data is
provided which may be used to communicate any user-definedstiacture efficiently in an event

notification. However, this implies that the module develoglready serialized domain specific ob-
jects into a byte vector representation as besides bytaiogdeo further operation on the data is
carried out by the implemented serialization strategy.

However, as binary data formats re-introduce versionisgeas and are not accessible in a generic
manner, it is recommended to limit the use of binary-encoelechents and better describe relevant
event data either in an information-oriented symbolic ¢wd@scription or to extend the metadata
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dictionary. More details about attachments and the marghalf events in one specific transport
implementation will be briefly presented along the explamedf the notification model in Sectidn®.5.

6.3.3. Domain Events

The IDI architecture defines a logical taxonomy of event $ypailored to its own functional needs,
e.g., defining event types for system management and theTlike taxonomy is realized in an object-
oriented class hierarchy, which wraps the domain inforomathat is contained in an the event no-
tification document into a programming language specifierfate. In comparison to the generic
XML-based document interface, these wrapper objects aser@isability and allow for polymorphic
dispatch of event notifications in object-oriented progmany languages, cf. Sectign 6.5. Besides
usability concerns, the strategy that is presented in tfi@fimg, dramatically increases the efficiency
of read access to event data due to the fact that it is cartieda language specific operation on
cached data value objects.

In order to be extensible for module developers, implentemta for domain specific event types
can be added to the event taxonomy. As event marshallingndlét in the transport laydr .5,

the necessary mechanisms to deal with user defined evers hgye to be provided there. Event
notifications are converted in language-specific objeatasmtations if serializers for the received
event or one of its super types are available in the used gmuging language. Even though it is in
general possible to use different technologies to redliedransport layer, it is mandatory to provide
the backing XML document that encodes the data of the evaification, because this is used as a
fallback information source if a specific function of any b&tIDlI models cannot be mapped to an
optimization, e.g., in the transport layer. For instancepg or identity information are supported to
a very different extent by underlying middleware implenations.

The IDI architecture’s standard implementation of the ¢vearshalling mechanism in the transport
layer uses a rather simple XML plus binary object serialimato transport the event notification.

As event type as well as its super types are encoded in thedatatalock of the document, this

allows to instantiate the most specialized type that islalbls upon unmarshaling of a serialized
event notification. User defined event types can be dynalyicagistered with the transport layer

in order to be serializable, but since all events have to bisatbfrom a base type provided by the
IDI architecture, deserialization of the event base typahisays possible. This yields an important
difference to stubs and skeletons as known from operatimiddileware because event notifications
can be interpreted in a language specific way but particgpean communicate even if no specific
type information is available.

The native event implementations usleation-based data-binding concept to access parts of docu-
ment passed to them, therefore no further marshalling isgsaey. Locations provide type-safe and
cached access to their values. They also allow for optimozatin the transport layer as it will often
be possible to determine certain values, usually metadaiag native mechanisms of the underlying
communication technology. Values that have been cacheddsation either because they have al-
ready been extracted from the document or because they kavedet in a more efficient way will
not be extracted again. Based on the assumption that woitas tvent structure occur much less
frequent than reads, the underlying document and the camradnt of a location are both updated
during the setting of a value. This representation of evetification provides an avenue for efficient
but expressive filtering in the observation model that dhalintroduced next.
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6.4. Observation Model

The observation model describes the concepts that allstesér component to express its interest in
specific events produced by informer components and theanéxhs that are involved in the process

of propagating incoming notifications to listeners. A cansu specifies the events it is interested in

through asubscription[MEPQOE], which is in this approach registered at the localteo component

of the IDI middleware stack in the address space of the fjaatit and evaluated against all incoming

notifications. If a subscription matches a notification ia #valuation process, the contained event is
dispatched to the callbacks of the listener componentsatieaissociated with this subscription.

Event-based architectures usually support a subset offdhe fmllowing mechanisms for subscribing

to event notificationd [MEP06, Fai06, BCTW96]:

e Type Matching based on runtime type information. In many aedtiires the event type refers
to the type of data that is contained in an event notifications

e Channel Subscription matching based on a physical or an abstraontremication channel.
Different event types can be published without further c@a.

e Group Event matching based on group memberships. Subscribknsdireg to a group will
receive the same set of event notifications.

e Subiject Instead of operating on the payload of an event notificati@tern matching opera-
tions are applied to event descriptors.

e Filter: Subscription models that utilize filters allow listenepsréstrict published notifications
to a suitable subset.

Filter-based approaches provide high flexibility as thdgvalto narrow down the received set of
notifications for arindividual listener. In event-driven architectures that supporte¢biscept, listeners
can specify subscriptions as stateless boolean-vdiltedfunctions operating on a single notification.
By applying a test on specific properties of the incomingfigatiions let alone whether this is based
on the whole content, certain attributes or an expectedesegU[Fai0b], they return eithérue or
false representing the success of the filtering operation.

The IDI architecture permits all the aforementioned wayswiscribing to events by introducing
a number of predefined but generally applicable filter typas afiltering subsystem that transpar-
ently optimizes the matching step if possible by exploitpigtform specific operations. In cases
where this is not possible a content-based filtering apprasa@pplied that is based on the intro-
duced information-oriented representations introduceithé previous sections. This strategy will be
explained in more detail in the following.

6.4.1. A Hybrid Subscription Model

A central question from the viewpoint of the observation elagl what elements actually comprise a
subscription. At this point, the notion of a filter is exteddewards a more generinessage trans-
forming function(MTF).
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An MTF differs significantly from a traditional filter in a ssa that it is stateful and (optionally)
applies a transformation to the notification message iivesas input. An MTF shall in this approach
be defined by

transform(X, m;, ¢;) = ({miy1}, dit1) (6.1)

where X is an individual participantin; is a message delivered to componentgXjs the state of
the transform function before processingrof. If an MTF is not able to apply a transformation a
message, it returns an empty set as result of this trangfigratéep.

While the abstract concept of a transforming function inné\@ased systems was originally intro-
duced by Barret et alC [BCTW96], the definition introducedehdiffers in that the individual MTFs
are not directly associated with individual listener imstas and are defined here in a sense that pro-
vides a generalization of the non-mutating filter concepintbin the aforementioned subscription
models of event-based systems. While this constraint doesllow, e.g., to re-route messages to
other listeners, it enhances the observation model withliéfes that provide the basis for advanced
integration functionality.

Particularly MTFs that are stateful and the ability to nassture event messages allow to encapsulate
integration functionality like simple frequency filtersmiore advanced concepts like a novelty detec-
tion as described in Excerp$.3 in re-usable software corapis that can neatly be integrated into
the observation model of the IDI architecture.

In order to observe specific events that occurred in a systam that the interaction partner’s face was
detected in front of the VAMPIRE AR gear's cameras with aaearprobability, listener components
can register expressive subscriptions that specify theitons that describe a listener’s interest in
observing specific state changes in an information-driyesiesn architecture.

In this example, the subscription would possibly featungpe fiilter matching representation of faces,
which would be linked to a reliability filter in order to dischnotification messages containing de-
tections with low probability. One could even imagine to sider this request only if a number of
occurrences of observations matching the previous filteppénend during a short time interval in
order to be sure that someone is interested in attractingptia’s attention.

The subscription process in an event-driven architectiommsituted by all steps necessary for a lis-
tener to become subscribed at runtime to event notificatgseed by an informer. From a developers
perspective, the above mentioned example can be exprasdeegistered in the IDI architecture with
a composite subscription as shown in Listingl 6.3. This stbisen basically represents a mapping
of the stated functional condition to instances of avadafiter types. While theTypeFi | t er
(line 3) usually is a programming language-optimized filter, ely.,exploiting polymorphic dis-
patch [BCH"96], the reliability checkingline 4) yields an example of content-based matching with
a generic filter that is based on XPath expressions on thentleraiuthat is contained in each event
notification. If all filters match, in this example an instaraf the matching face event notification is
pushed into a type-safe queue for face events.
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Synchroni zedQueue<FaceEvent > faces = new FaceQueue();

Subscription s = new Subscription();

s. append(new TypeFil ter(FaceEvent. cl ass));

s. append(new XPat hFi | t er (new XPat h("// HYPOTHESI S/ RATI NG RELI ABI LI TY[ @al ue>=0.95]")));
s. append(new FrequencyFilter (10,1, Ti meUni t. SECONDS) ) ;

/1 add subscription to router object

r.subscribe(s, new QueueAdapt er <FaceEvent >(faces));

Listing 6.3: Java example of a filter chain representing an event subtsoniior faces detected with a high
reliability and frequency. If it matches, the event is dispad to the registered callback handler,
which is here a generic adapter that appends detected et@atgueue.

6.4.2. Transformation-based Event Filtering

In the spirit of this example, a subscription can more fotynlaé specified as filter function, which
is defined here as a concatenation of multiple transformingtfons operating on a single message

filter (X, my) = transform(X, mq, ¢1) o ... o transform(X, my, ¢r) (6.2)

where I denotes the number of MTFs that constitute the subscriptiahcomponentX. As for a
single transformation functions, a filter returns an emptyifsa message is either not matched by any
of the registered functions or if it is intentionallgdnsumey what is for instance actually done in
the frequency filter implementation.

As in most event-based infrastructures, a router actua&ijopms the matching of incoming notifi-
cations. It maintains the list of active subscriptions fariadividual listener and needs to decide
whether one of these matches a received notification. Thiie in the IDI architecture for an
individual subscription by an evaluation of the followingnttion

match(X;, Dx) = filter(Xs,n1) o ... ofilter(Xs,ns) |Vn € Dx (6.3)

where Dy is the set of notifications that are received by comporénh an event-based system in
the given time interval. If this function evaluates to an é&rget, this indicates that the notifications
were discarded and the conditions expressed through tteergpion were not fulfilled during the
observation interval.

If a subscription matches a received notification an optigrieansformed message is returned. In
turn, the IDI architecture dispatches the representedtdvehe registered local callback handler as
shown in Figur€®l6. These handlers bind application lofandndividual component either directly
to the integration architecture or insert events in syneized queues, cf. Listirlg8.3, that allow for an
subsequent retrieval of information by the componentcéffely inverting the local event notification
semantics.
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Name Description Optimization

XPath Content-based matching with XPath expressions. Content
XSLT Generic message transformation using XSLT scripts. Content
Reliability Evaluates notifications against a certain probability threshold. Content
Compacting | Compares novelty of received notifications against previous ones. Content
Identity Matches on unique identity information. Content
Scope Reduces the visibility of events by introducing scopes. Transport

Type Matches on event types and sub-types defined in the event model. Language

Frequency | Filter that outputs only every n-th received notification. Language

Table 6.1.: MTFs supported in the IDI architecture and their layer of iopized execution, e.g. whether they
can be evaluated on the content level or on the network level.

These two different styles of interaction between softwacalules are often refereed to @msshand
pull communication[[Eaid6]. While in the former model, the safte/framework calls the component
(in conformance with the HoIIywo&dprincipIe as known in software engineering), which coaple
the temporal behavior of informer and listener, the lattglesallows the component to perform an
asynchronous event processing in accordance with itsnténformation processing architecture,
actually pulling events from corresponding queues.

The independence of the individual MTFs allows to optimtzetransformation and matching process
within the router component. In the IDI architecture, therent realization of the matching strategy
is based on a direct acyclic graph structure (containedamthFTreeas shown in FigurE8.7 whose
current implementation is explained in greater detail ic&tpt{G.}H).

It currently supports grouping of identical filters as lorsglaose are equal or covering the same subset
of notifications, which implies that the filter instances mpioduce exactly the same matchings as
well as the same transformations results. If stateful foangng functions want to be grouped, this is
only possible if they feature the same state at the time ofjmgr Covering or merging is supported
only for a subset of these filters and is possible future work.

2Don't call us, we call you.
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Subscriptions
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Figure 6.6.: Simple event natification matching and transformation. ibéification message is successfully
matched, the event is dispatched to an event sink, e.g.etedfistered local callback handler.
MTFstf4 3 andt f4 4 are not executed agfy o did not match the event notification.

Excerpt 6.3: The Compacting Filter

To reduce the burden of redundant and/or bad results in emsyatchitecture, the aim is to filter elementsg
based on their level of similarity. Firstly, the amount ofanaformation present will be estimated
utilizing the XML kernel as introduced in Excefpi®.2 andyifla change ishig enoughelements will
be forwarded for further processing. Secondly, elememslastered When a close group is found, it is
updated, otherwise a new group will be created. This is dalbenpacting

Compacting at the level of the integration architecturevedl to take advantage of global information,
e.g. when two redundant recognizers are present. For tredager, it is beneficial to have a dedicated
component for relevancy detection that can be changed ot &anl@ew challenges. Last, but not least,
our approach allows components to selectively bypass cotiopeo receive all elements.

Detecting Relevant Elements  Detection of relevant elements requires an indication ef th
amount of new information contained, relative to the eletsafready present in the memory. We use
the violation of the present clustering to determine sigaiice: New clusters are considered relevant.
To determine this, we observe the minimum distance betwaewaelement and the existing clusters
over time and estimate the change using a moving averagbdquarameters of a normal distribution
pr ~ N,.-. LetI be the current number of elements, ahdhe minimum distance observed at element
numberi, then the sample meanjg = % Zle_k d; and sample variance analogous. A new clustg
is created ifp;(d;+1) < t. The parametek allows for adaption to the result rate of the system, in ou
experiments it is based on frame ratdas been chosen constant (0.05), with the variability irsjtstem
captured by the density;.

= =

Online Clustering  E.g., in the VAMPIRE system events about detected objectgeaone-by-
one, not batched and due to user interaction stationanityody be assumed short-term. The relevancy
detection determines creation of new clusters but aimsatdéaction time more than at clustering quality]
and it has to, because of the limited amount of informatiod #re strictly limited processing time.

Fortunately, over time good clusters will acquire more srppvhile outliers won't and this can be

used to achieve good clustering quality in an online settingletermining cluster size and removing
unreasonably small ones. The exact cut-off to choose demenithe variance in the input. In experiments
the mean has proven a good choice.
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package Architecture [ [fjj| Observation Modelj

<<component>> =l
IDI Listener

Router <<Component Level>>
Listener

notify
: Dispatcher [1] : Callback [1..*]

0%
:DTM [1]

receive [

Figure 6.7.: The conceptual architecture of the event observation mdded names of the composite classi-
fiers were chosen in accordance with the framework of Batraet. §BCTW96].

Although the matching strategy can be treated as a blackeboxponent that can be realized in a
number of different ways, its interface must at least pefanidynamic (de-)registration of subscrip-
tions and callbacks at runtime as this is necessary for tip@ned level of dynamism that is needed
in the IDI architecture for adaptation and orchestratiorsydtem components. A further benefit of
this IDI concept is that MTFs can externally be injected ia thuter components of participants,
which allows for the ex-post adaption of integrated comptsmavithout the necessity to change the
underlying source code.

The local callbacks that allow a particpant to actually awirits application code to the IDI archi-
tecture represent thevent sinksn the observation model. These sinks finally receive théication
that matches a specific subscription.

On the contrary, thevent sources shown in FigurEZ8.7 is the source of notifications. Thuggles
subscription is solely a logical connection from an eventse to an event sink. Viewing an individual
matching process as a transformation of a notification fronevaent source to an event sink is the
basis for abstraction from the concretennectortypes for sources (and sinks as we will see in the
next chapter), e.g., network communication, shared memoiry-process communication.

The IDI architecture defines a number of filters that are tiyeeusable by system integrators. Ta-
ble[&1 gives an overview of these MTFs and summarizes theatibnality. Some of these will be
explained in more detail in later sections as they are usétinvihe architecture to permit further
integration functions. Users of the framework can trarspidy enhance the observation model by
providing additional event types as well as filter functitimat operate on these.

Last but not least, the dispatcher component as shown indf§d is responsible for multi-threaded
invocation of the callback functions that are associatetth wiatching subscriptions within listener
components. As part of the technology mapping, the multpatch-based design of the dispatcher
will be described in the next chapter.
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Excerpt 6.4: Dynamic Tree Matching For Efficient Event Notification Transformation

The current implementation of subscription matching oigesithe transforming function chains of the
registered event sinks, e.g. event listeners, into a treetate. In the most basic case, where subscrif
tions do not have any filter elements in common, this treeespwnds to the organization depicted in
Figure [636. Each subscription’s transforming functioresattached to the tree’s root node as a separate
branch, the event sink forming the leaf. An overview of thenants involved in the implementation is
given in the class diagram shown in Figurel6.8.

Transformation ~ When an event notification becomes available athent Sour ce connected to
the observation chain, it is picked up by theent Pr ocessor which provides the necessary processt
ing threads to perform the transformation. The processssgmthe notification to tHer eeMat cher
that implements the tree-based matching algorithm. lteiises theMTFTr ee structure recursively,
depth-first, handing the result of the last step to the \MDE&. If a node returns an empty result, the
recursion stops for the current branch. A subscription haghed when the recursion reaches a leg
node. TheEvent Si nk contained in the leaf is then stored together with the redtitie transformation
as returned by the corresponding branch into a lidtaifch objects. Once th&r eeMat cher has tra-
versed the whol®MTFTr ee, the resulting list of sink-event pairs is returned to Bvent Pr ocessor
using thelterator pattern [GHJV95]. The final dispatching of the transformeifitations to the corre-
sponding sinks is then done by tkgent Di spat cher, allowing to implement a different threading
strategy to process user-implemented event handlers.

—

Isolation  Since the incoming event notification may be transformedriyyaf the tree nodes, it has
to be copied before applying changes in order to preventeffdets in sibling nodes. In order to reduce
the complexity of implementing theTF’s transform function, copying is done by tfie eeMat cher
before passing the event to tMFF. This step only has to be applied where the tree branchegsnod
without siblings may be passed the event without copyingfibte. For reasons of efficiency binary datg
contained in the event notification is not copied, in cas®fBif needs to transform attachments, it mus
therefore handle the copying of these by itself before a@pplgny changes.

Optimization  Organizing subscriptions into a tree structure opens rampérformance optimiza-
tions by collapsing common parts of different subscripgioBollapsedTFs have to be processed only
once. Such optimizations can only be applied to subscript{or a prefix of the transforming function
lists) that apply exactly the same transformations to ewetifications. Especially statefTFs have
to be treated with great care. Analysis of a given tree in ot@eautomatically find pairs of collapsible
branches is not covered by this thesis and may be exploredunsfwork.

It is nevertheless important to note that the evaluationubkeriptions and their contained message
transformation functions is executed locally in the pracekthe listener components. How a router
as presented here is connected to its informers, the evertes)y will be explained in the following
section that shall explain the notification model.
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6.5. Notification Model

package dtm{ [ Event Transformation and Matchingﬂ
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! +event : XcfEvent
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+match( XcfEvent ) : Iterator 0 +append( MTF )
+add( Subscription, EventSink ) | +getlterator()
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+transform( XcfEvent ) : XcfEvent
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‘ TypeFilter
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‘ IdentityFilter
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‘ ScopeFilter

EventSinkAdapter
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Figure 6.8.: Class diagram for the tree-based event matching and tramsftion model.

6.5. Notification Model

The fundamental paradigm for communication between ppatnts in an IDI architecture is event-
based interaction. Following up on the event and documentets@s well as the primarily content-
based features for specifying event subscriptions, thie&rpiece missing to provide the basic func-
tionality of an EDA are methods for distributing event natfiions from informer to listener partici-

pants.

Thus, the aim of this section is to describe the abstracti@egssary for communicating event notifi-

cations and to explain how events shall generally be dibpatto application code.

Sebastian Wrede



6. Adopting Event-Based System Models 115
E -
= | & v
3 °r
& S5
o N VI v vI lv| v [a] |a
§ Port Port Port Port
g <out> <in> <in> <in>/ <out>
| Informer P, | Listener p, | Listener Py | Participant p,

Figure 6.9.: Participants connect via ports to a global, logically unifievent bus that guarantees the de-
livery of event notifications to observing listeners. By @ttty a scopeconcept, this bus is
internally channelizegwhich is mapped to the capabilities of the underlying tgors by port
implementations for reasons of efficiency.

In order to get started, let us recapitulate the requiresenery event-based system architecture
must comply with, concerning its delivery policy for notditions. Satisfyindivelinessand safety
conditions [MEPOB], a listener participant shall receive:

Only event notifications it is subscribed to at a given pairtirne.

Only notifications that were previously actually publisih®dan informer.

Each single event notification at most once.

o All further notifications that match one of its active sulistions.

It is in the responsibility of the observation and the nodificn models that the fulfillment of these
requirements is guaranteed for each participant in an éased system.

While the observation model already addresses the regeirethat are necessary on the listening end
of an interaction, it leaves open how these notificationg@uéed to their destination. In accordance
with the event-based model of interaction, the style of camigation between participants in the IDI
architecture follows gushbased paradigm, which implies that informers in a systechitacture
initiate event transmission. Sectibnl7.2 describes a numibeommunication patterns that allow to
overcome this on the next higher level of abstraction if eeledn general, the fact that informers are
not aware of their associated listeners contributes toéseel loose-coupling of participants.

6.5.1. Implicit Invocation

The push-based architecture and the decision to colloeatevient observation model functions with
each listener instance allows for realizingiarplicit invocationarchitecture. Informers and listeners
are connected via so-callgdrtsto an event bus as shown in Figlrel6.9.

The sole responsibility of this bus on a conceptual levebidistribute all event notifications to all
connected ports. Models for propagating event notificatiarevent-based systems range from direct
communication between participants, over centralizedidtrviduted and broadcast architectures or
mixtures thereof [MCO5]. In order to decide on a particulaathod for event propagation, scalability
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concerns must be considered, because they have a larget iompthe design of the notification rout-
ing facility in an event-based system. If internet-levedlability is desired, this prevents the use of
centralized (single broker) or broadcast (flooding) eveaoppgation models.

However, as explained during the discussion of the teclyyoperspective in Sectidn 4.2, the level
of geographic scalability needed for the integration tasteldoes not exceed over the boundaries of
a set of interconnected local area networks. While thisgts/the application of broadcast models,
the use oflP multicastgroups [Bir05] is a favorable alternative for distributiegent notifications
over IP-based networks. In contrast to architectures tteenuse of intermediate components ei-
ther distributed as it is done in JedLICNFO01] or centralizedin many other approachés [MEPO06],
this multicast model has the advantage that subscriptieasrhe immediately effective at the local
observation models and that latency from event generatiowtification retrieval is minimized.

The actual interaction between participants is carriedb@asted on the port concept either over a
networking layer or some other kind of serialized commutidcamedia as indicated in Figuke™b.9.
By utilizing in-band signaling]Fai08], control flow is not separated from the event nottfaa and
thus no additional control channels are necessary. Partsecbthe observation to the communication
functions of the notification model and logically offer a bogerface to the higher-level components
of the IDI architecture. For listeners, ports act as locahtsources whereas they serve as event sinks
for associated informer components as shown in Fifurd 6Mich of the functionality that deals
with the networking and low-level infrastructure issude lefficient marshaling of event content or
metadata is encapsulated in middleware or transportfgpeoirt implementations.

In the current implementation of the IDI software architeet the multicast-based event bus is re-
alized on top of a group communication framework as expthimeExcerpf &b which allows for
efficientand reliable process communication based on unica$P multicast. Ports serve as an ab-
straction layer decoupling higher level code of the intégraarchitecture and thus also application
code from the concrete low-level technology that is useca¥@nt transmission.

The router component of each individual listener partictiibereby acts as a registrar connecting new
subscriptions to its inbound port and as a local event ditigatwhich forwards event notifications
received from an associated port to the matching algorithinits observation model. The locality of
the notification model with regard to individual participsiand the missing direct connection between
informer and listener actually effects the claim for an iimiplinvocation architecture. A port in the
IDI architecture shall thus be defined as follows:

Definition 6.2 (Port) An DI port is a bi-directional communication endpoint atasiting from a con-
crete transport infrastructure. Its responsibility is tealize a software bus for the exchange of event
notifications. If possible, it maps concepts of the evesguece and observation models on its specific
technology, thereby allowing for an orthogonal optimiratiof event processing.

This definition highlights an additional benefit gained by thtroduction of ports, which is that a port
implementation may optimize event processing along diffedimensions, e.g., in terms of notifica-
tion marshaling.

Excerptl&b contains a brief explanation how this is perfmtnm the current software architecture.
Another examples is the evaluation of event notificatiorferieethey are written on the network layer.
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package Architecture [ Notification Mode\y

<<Component Level>>
<<Event Source>>
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Figure 6.10.: Architecture of the basic event-based communication model

Thereby, ports may send messages directly to specific ipamis, which is made possible by ana-
lyzing the sender / receiver metadata. Another example éntorce specific delivery constraints as
encoded in the metadata of an event notification with cootstrof a specific underlying technology
infrastructure.

Even more important with regard to port behavior than mdirspand delivery constraints is that ports

can act as observers of MTFs that are registered for incoamigigoutgoing events in its associated
router component. This allows for an optimized mapping efgbftware bus concept to the properties
of the underlying technical infrastructure. If a subsédptregisters a new MTF that is known by a
port implementation, it is registered with the port and dyiwally reconfigures the behavior of the

corresponding port instance, e.g., in terms of what evergsaetually received from the network.

While the filters in the observation model are designed tokveoiely on the event content and its

metadata, port implementations can dramatically incréaseerformance of filters if their semantics
are natively supported.

If an event is received by a port that already satisfies a’§iltmatching rule, the router skips the
subsequent content-based matching for this filter instamckevent notification. The marking of
individual events as being already filtered is termédtelistingin the IDI architecture. Whitelisting
is a generic functionality available for all IDI filters. Rdyased optimizations must be dynamic as
filters are usually dynamically (de-)registered at runtirtfea specific port type does not support an
optimization, content-based matching is applied as adakb Obviously, port implementations must
comply with the general requirements for the notificationdelcas described in the beginning and
must not change the semantics of a transformation function.

6.5.2. Visibility and Scopes

Operational middleware (see Chayier 5) does not concehiliysin the first place due to the fact that
participants are explicitly addressed. Within an eveitedr architecture that connects participants
through a unified notification bus without explicit substidop routing, things are different as event
notifications are logically accessible by every participan
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While the effected traffic overhead on a network link may beligéle if IP multicast is utilized as
done in the proposed IDI architecture, the overhead in gmantessing can not simply be avoided.
Thus, a concept of event-driven architectures for limitimg visibility of event notifications is adopted
that decreases the overhead of the broadbast-style eviitatimn model without breaking its se-
mantics by utilizing the introduced port-based optimizas.

Excerpt 6.5: A Event-Bus Based on a Group Communication Sysin

Notification routing in the IDI software architecture ovearsdard IP network layers is based on the
Spread group communication toolKit [AS98]. Spread is a tpghformance (it allows for communica-

tion of over 8,000 1Kbytes messages a second in local aresries), fault-tolerant messaging service
that provides a unified message bus for distributed apmitsitbased on network-level multicast and
group communication suppoff[BirD5]. The Spread toolkipiglicly available and is being used by
several organizations in both research and productioimgsitThe system consists of a per-host daeman
architecture and a client library that is linked to applicas. It supports cross-platform applications and
has been ported to several Unix platforms as well as to Wisdamd Java environments. It featureg
different language bindings, in particular for C and Javhiclv was essential for using it as a basis fo
the realization of the IDI software architecture.

Spread offers messaging guarantees ranging from reliabsage passing to fully ordered messages
with additional delivery guarantees. It supports multiGasd unicast connections across the boundaries
of local area networks. While in LANs (IP) multicast groups aised, unicast connections are established
between Spread daemons for routing between LANs. Theradfeitts a distributed [Fai06] routing of
event notifications up to the level of the IDI port structurkile keeping up the unified messaging bug
semantics. It features a simple but rather low-level APt tioes not offer much functionality above
pure group-based messaging. Thus, it provides almostgottad features compared to the high-leve
functions introduced by the IDI architecture yielding a donatch for the reference implementation of
a multicast-based IDI port.

Group Communication The central abstraction concept in Spread gr@up, which is a logi-
cal representation of a set of processes that communictawlticast in an asynchronous environment
where failures can occur. Besides ordered message dels@ngad basically features a group memy
bership service[[Bir05]. This service provides all membsfra group with information about the list
of currently connected and alive group members and notifiespggmembers about every group changg
either when members voluntarily join or leave the group attéaoccur, e.g., if a process crashes. Sprea
offers a many-to-many communication paradigm where anygneember can be both a sender and a reg
ceiver. Messages can be send by processes to groups evereéfitier is not a member of the destination

group.

o P

Event Notification Marshaling Marshaling is a process that transfers data structures droen
address space into another. As Spread ultimately is abawbriéng over of a serialized connection,
the marshaling process also serializes the data struethike, the unmarshaler deserializes them on th
other end[[Faid6]. However, Spread comes only with verytiohisupport for marhaling. Actually, it
solely accepts structures that are already broken dowrais&muence of bytes.

Thus, the IDI software architecture comes with a simple ralamg algorithm, which translates event
notifications into a vector of unsigned characters whichstgmsequently be processed by spread. Each
serialized event notification message starts with of a frdaldek that contains the event ID, the event
type, its timestamp as well as sender and receiver URIs. altos for the port-based optimization of
certain filtering operations, e.g., identity filtering. TXBIL documentis marshalled subsequently to this
metadata block, followed by all binary attachments assediwith this event. All binary data types are
encoded utilizing a simple scheme that is inspired bybih&ic encoding ruleas known from the ASN/1
standard[[Dub0U8].
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Scopesre abstract means of restricting the visibility of notifioas to the participants in event-based
system. While observation and notification principles amgiad in the same way as described earlier,
the interaction between the members of a scope with paatitspoutside of the scope can be limited

or completely prohibited [MEP06].

Scoping is complementary and connected upstream of thergoten-based filtering proceE;sIf a
notification is not visible to a participant, which meanshie tDI architecture that it does not match
any of its scope filters, it needs not to be further procesgetedlocal observation model. Despite this
obviously positive impact on the processing load of pgréais, the introduction of scopes promotes
good software engineering principles like informationihgd abstraction and the specification of
component interfaces in an event-based architecture. e/gibscriptions govern the local actions
that are executed in a participant if its conditions matcbpss govern the system-level interactions
between participants. As these interactions are defineuireatty in the participants configuration by
developers or system architects, no source-level compiledependencies are introduced. Scopes in
the IDI architecture can thus be defined as follows:

Definition 6.3 (Scope)A scope is an abstract concept that limits the visibility wér notifications
in the global event space. Scopes logically bundle a setmicgents and allow for optimizing the
routing of event messages in the notification model.

This definition highlights an additional benefit of scopisgbpes may serve as a structuring principle
for grouping of physically or logically coupled particigan This provides an avenue for advanced
optimization steps, e.g., the use of more efficient trartspantocols within a single scope. Other
advantages of introducing scopes will be explained dutregdiscussion of the resource models and
in SectioZ1L.

Scoped Notification Dissemination

As each scope itself can recursively be a member of higher-
level scopes, a hierarchical graph structure, the soetatiepe
graphcan be constructed. A abstract example of a simple tree-
like scope graph is shown in Figure 8.11.

The delivery policy for scoped natification disseminatiorttie D
IDI architecture is that event notifications sent by inforse
are delivered to the specified scoged to all children of this
scope. This is exemplified in Figure®l11. A notification tisat
published from an informep, in scopeG.C. A to listeners in
scopeE. B. A is visible in the target scopes and for participants
belonging to a scope below, henggin scopeHd.E.B.A and
p3 in scopel.F.B.A. However, the notification must not be
visible anywhere else, particularly not for participantin the
D.B.A scope.

.........

Figure 6.11.: Scopes restrict the vis-
ibility of notifications.

SWhile not visible in the external subscription interfacertdmplementations guarantee that scope filtering is cotedl
in preface of any notification matching.
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The semantics of scope membership shall deng@rof relationship between the participants in a
scope. For instancey andp, are parts of the scopds.E.B.A as well as/.E.B.A and thus also
of £.B.A. While scopes are defined in the IDI architecture up to now émm a receiving per-
spective, scope control concepts can additionally bezatlifor, e.g., defining intra-scope delivery or
inter-scope transformation policies I[MER06]. However ttaes benefits of doing so were less clear
compared to the added complexity, the use of scopes in tbistacture is primarily to elicit per-
formance benefits by reducing the set of unfitting notificatithat are to be evaluated by the local
observation model of each participant and for structuriagppses.

Scope membership is specified individually for each paudict and is evocative of a direct addressing
scheme. Even so, the scope information is in this approatlemeoded in the components but is
configured externally. Thus, it delivers the benefits ofhilgy restriction and grouping on the basis of
a much more loosely coupled communication model withoutadditional compile time references.
Figure[ZB that will be explained during the introductiortiie resource model in Sectibnl7.1 depicts
an example of a scope tree for the components of the VAMPIREtasce system, which is described
in greater detail in Chapt&l 8. Based on this logical scopdahaisibility control can be enforced in
a system architecture.

Scope Architecture

While the previous paragraphs described the aims and sesdathind scopes, the following will
explain how these concepts are mapped to the implicit inimtarchitecture of the IDI approach.
Due to the lack of intermediate event brokering componemdisfar performance reasons, the chosen
strategy is based on amplicit but instantiated scope implementation in conjunction \&itlollapsed

filters [MEPOE] approach.

An implicit scope implementation shifts the responsipitif scope management and thus of visibility
control into the individual participants that are connddie the event bus. While such an approach
is infeasible in domains that require strong security pxenﬂ; it is well suited for an architecture that
aims at availability of information for all participatingystem components. Due to the fact that no
explicit administrative scope components are used, thgs®aches often lack flexibility if the scope
assignment for participants change. Following up on tths,IDI software architecture features an
explicit instantiated scope implementation that mairgdire scope attributes for all participants and
allows for changing these at runtime if needed.

In general, the IDI scope architecture requires a bi-latmvaperation between informer and listener
participants with regard to their way of sending and recgj\évent notifications from the event bus.

Regarding receipt of event notification, a collapsed filtgoraach is followed where visibility con-
straints are enforced by merging these as an upstream fileiso-calledScopeFi | t er, in the
subscriptions of the listening participants. This leada tflat” notification model where enhanced
filters implicitly enforce the visibility constraints. Ftine scenario in Figule&1l1 this means that the
notification send by, is physically transmitted directly via the event bus to tk&ehing participants
that are members of the. B. A scope. Scope filtering in the IDI architecture is based oraiseimp-
tion that each fully qualified scope name, which is the caratied list of scopes from bottom to top,
e.g.D.B. A in Figure[&11, is unique in a single system.

“Participants not adhering to these conventions couldyeesihpromise visibility constraints.
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Figure 6.12.: Multi-threaded event dispatch is realized in a variant af fbb queue patterri [PefD5].

Secondly, informers must annotate event notifications aditlitional scope information. As partici-
pants must be members of a scope, the receiver informatiset i® the root scope if not otherwise
specified, which would make a notification visible for all f@pants in the system. This scope in-
formation is encoded as a fully qualified scope name in theivec metadata in the form of an URI
scheme that will be introduced in Sectionl7.1. Thus, infosw®ntrol the visibility of information in
the event-based system architecture.

If expressive content-based matching functions are dlaikes provided by the previously introduced
observation model, scope filtering is possible solely byluatang the metadata of received event
notifications. Scope filters are always evaluated beforeth#r filters that are registered in a sub-
scription. However, while this would already prevent thenptete evaluation of subsequent filters in
a subscription, still all received events would be fed it ibocal observation model of participants.

Fortunately, the abstraction of low-level communicatibrotigh the port concept allows for shifting
the scope evaluation functionality into the network layes.explained previously, ports may observe
the registration of filters. Thus, the addition of a scopeffilb an observation model allows it to recon-
figure itself and fetch only those notifications from the conmication layer that match its visibility
constraints. By whitelisting the received event identitythe scope filter instance, its content-based
matching process is circumvented, which shall yield theeetgd performance gain.

A consequence of scoping is that the broadcast style everisbhogically and physically partitioned
into many-to-many communication channels that emerge gentding a message from an informer
to a number of listeners in a specific scope. If a port impldaten supports a mapping to an
underlying middleware or communication technology thatvedy facilitates these concepts, ports
act aschannelizerfEai0g@] for the event notification. Excerpi 6.6 describew libe presented scope
concept is mapped to the Spread-based port implementatioick are used for network distribution
at the time of writing this thesis.

The idea of using scopes is essential for large parts of theisymanagement functionality that is
available in the integration architecture as scopes djracipport group addressing and anonymous
requests based on the naming concept that is introducec:tioSI€.5.
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Excerpt 6.6: Mapping Scopes to a Group Communication System

Since all communication in the current realization of thé #bchitecture is carried out on top of the
Spread toolkit as described in Excefpfl6.5, a technologypingdor the scope concepts was develope
that maps scopes to spread groups. By doing so, the Spre#dt ab@ady enforces in conjunction with
the spread-based port implementation the visibility c@ists in its low-level messaging subsystem
Only matching messages are delivered by a spread-daemioa teguesting process.

=

Dynamic Mapping  To achieve this mapping, a scope name is translated to adsgreap. The
fully qualified name of the scope is used as a unique group ndfaeh message is sent only to the
group of the receiving scope. Upon registration of a scoper fithe port of a listener participant joins
its own group as encoded in the scope filter instance as wéleagroups of all parent scopes of this
specific scope. This way participants in sub-scopes widl Bisable to see messages that are send to Jts
super-scopes as it is intended.

Let us consider again FiguEe®l11 as an example. Accordirigeshown configuration, the port of
participantp; is configured through the registration of filters as a memtiehe D.B.A scope. In
addition to joining the corresponding spread groupd¥oB. A, the port has joined groups for the scopes
B.A and A. Thus, it receives messages send to its own scopes as wdlllodists super-scopes. This
easily allows to address composite parts of a larger systesemding a message to a super-scope. The
message send fropy, that is targeted ak’. B. A is not visible to this port as it is not a member of the
corresponding spread groups. Thus, the visibility coimsisaare already enforced through spread an
need not be evaluated through the content-based matchihg observation model.

[N

Whitelisting  Even so, whitelisting of single events is necessary to aomfo the safety condition of

an event-based system as an individual port can be a memivargfscope groups. Thus, the individual
scope filter within a subscription must be notified about #at that the received message has already
been successfully evaluated in terms of its visibility dosists.

Additionally, using scopes for grouping and structuringyatem, allows for re-configuration and
re-use of individual participants or whole sub-scopes ffedng application scenarios as the actual
scope configuration can be configured externally.

Instead of hiding interactions between cooperating coraptmin the source code, their collaboration
is made explicit. Thus, scopes are not only a technical opgition within the observation model but
additionally positively impact on the non-functional ditrites of the IDI architecture.

6.5.3. Dynamic Dispatch of Event Notifications

While scoping is an abstract concept that has technologigalications, the final missing link for the
notification model to become effective is the question hosal@allback handlers of participants are
invoked. While this is closely related to the observatiordelpit shall be briefly discussed now as the
aforementioned functions of the notification model are meglfor it to perform its tasks.

The dispatching model in the IDI architecture is informedtbg job queue and worker pool pat-
tern [Pet0b] as depicted in Figure 8.12. It realizes theirtlutfeaded dynamic dispatching of matching
event notifications to locally callback handlers that agestered in the observation model.
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If an event natification is received from a port it is matchedthie observation model against its
subscriptions by the event processor, cf. Fidurel6.10. Thtemng pairs of event data and the
callback handler that is attached to the correspondingcsipions are inserted into the job queue,
which is part of the dispatcher component. In turn, the ralet\ivorker thread processes this pair and
actually invokes the local callback handler with the giveard.

The worker pool pattern allows to separate event matchiogn ftallback invocation. Thus, long-
running event handlers do not stall the event matching goéer pending events.  The worker
pool is externally configurable as the optimal paramet&draof thread pool sizes can be application
specific. In contrast to the standard job-queue and leadleisfer pattern, an individual worker has
no possibility to return job’s to the queue and does not holg retwork connections or locks for
low-level devices. Instead, this is handled by the indigichigher-level patterns as will be explained
in Sectior’ZP. In the current realization of the IDI softevarchitecture, the dispatcher component is
based on generic synchronized queues and the dynamic wbrked pools.

6.5.4. Port-based Optimization

Adding up on scoping and port-based optimization, anoti@ortant aspect of the notification model
in the IDI architecture is that similar to the registratidhnoessage transformation functions through
subscriptions in the inbound event processor of the rouierponent in the observation model, an
outward set of (optional) transformation functions candmistered that allows for filtering of outgo-

ing events before they are broadcasted by associated poftgt, it is the same concept except that
now informers are the event source and a transformatiornrisrpeed to ports that act as event sinks.

Recalling Figuré 610 the basic concepts of the notificatmdel and its connection with the obser-
vation model can be summarized as follows: Events are pndaidy an informer to its local router
component that processes it in its outward event processtarice, which transforms or filters a
published event still within the informer component. If teeent notification is dispatched by the
matching algorithms to a specific port, it is marshalled anddmitted according to the port-specific
transport strategies that are optimized according to thectistate of the outward set of MTFs in
its event processor component and its event metadata iafamm From the perspective of the lis-
tener, the process is reversed. Ports dynamically entememication with other ports according to
the semantics of the underlying technology, ideally alyefitering for scope or other selective in-
formation according to the current set of subscriptionssteged in the inbound event processor of
its associated router. If a subscription matches the natific as described in the previous section,
the corresponding event handling methods of associatézhclobjects are invoked dynamically in
a separate thread of control.

Many of the aforementioned mechanisms, e.g. scoping orenatetadata serialization in conjunction
with whitelisting explain the notion adrthogonal optimizatiorthat was mentioned in the port defini-
tion. While the layering in the overall architecture is ntained, ports introduce low-level optimiza-
tions that have effects at higher architectural levels euittbreaking encapsulation. By transparently
introducing these optimizations, the overhead of the g@riers architecture can be alleviated while
keeping its benefits. Compatibility across different pamplementations is ensured as all concepts
can be mapped to content-based methods if necessary.
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6.6. Summary

This chapter introduced the core architecture of the IDIra@gh, which is largely adopting mod-

els of event-based systems, that are typical choices ftatdeaand modifiable architecturds [SG96].
Modules in an EDA are self-focused, thereby contributingsneaely to the strategic aims stated in the
beginning of this chapter. Loose coupling is facilitatebtigh a consistent application of document-
orientation on the natural basis of the XML data model, wlatthe same time allows for the devel-
opment of generic message transforming functions sucheadstifoduced compacting filter.

However, extensions for efficient handling of binary lardgeats have been added to the introduced
event model. The event types and the introduced expressatarés of the observation model in
conjunction with the optimizations introduced by the noéfion model such as the channelized event-
bus yield pre-selection mechanisms that reduce the priogebarden on components and allow to
build scalable and efficient cognitive systems architestur

While the core features of the IDI architecture describethis chapter are rather generic, the next
chapter introduces domain-specific IDI models particyl&atilitating the design and construction of
experimental cognitive systems.
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7. From Event-based to Cognitive Systems

A common prejudice about asynchronous even

document-oriented event model already allow fof
expressive logical connections between interactin
services, this chapter describes explicit domai
specific functionality which shall aid researchers in
constructing cognitive systems.

based system architectures is that they are designep Domain Model
from a purely architectural viewpoint, which may Z% i
lead to minimal coupling between participants
. . . | Memory Model o
but at the same time complicates their devel; K
opment due to the lack of pre-defined higher; 4 %
level structures[[Hoh07]. While the features of | Interaction Model S
the observation model in conjunction with the 4 g
)
S

Resource Model

Figure 7.1.: Domain-specific integration models.

A number of higher-level models are introduced in the follugvsections, added on the IDI architec-
ture’s fundamental event-based integration layer, the¢ lpsoven substantial for the domain. Some
of the models, e.g., the resource model break to a certagnentith strict event-based principles,
but they do this for good reason. They are focused at thelfidfiit of real-world requirements,
which in this case was to be able to structure a system ing@idaieusable services that represent
coarse-grained named building blocks of functionalitynpieting to assign functional responsibilities
to clearly separated components in a cognitive systemtaathre.

In addition to functional concerns, modularization fdaties collaborative work through independent
but parallel development, thus additionally assigningaaigational responsibilities to individual col-
laborators for clearly defined parts of a software architect

These additional models provide still generic but at theesime already more specific functionality.
The structural dependencies between these models andrteepmnding organization of this chapter
is shown in Figur&7]1, starting with thesourceandinteractionmodels, which introduce higher-level
abstractions and extensions to the event-driven modettef@loping experimental cognitive systems.
Thememory coordinationanddomainmodels explained subsequently, represent central fursctio
the IDI approach that were used as major building blocks gnitive systems research projects.

7.1. Resource Model

The resource model describes concepts and terminologytriartsring and referencing the partici-
pants in an event-driven architecture. However, in syrietlent-based systems, direct referencing of
resources is considered harmful as a source of coupling amidipants are solely defined in terms of
generated and observed events. Even so, the need for nitdatad composition of resources needs
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to be addressed in an event-based system. In the IDI artthigedunctions for resource structuring
are primarily defined from an abstract perspective thatdses on modularization of domain func-
tions. In order to prevent source-code coupling based odifsp&lentifiers, the overall approach is
highly configurable. The resource model as presented inallening fuses ideas from two current
methods in software integration of distributed systemeSérvice Component ArchitectU@®AS0/]
(SCA) and the previously introduced scope concept. Botkcisare merged into a URI scheme that
allows participants to refer to each other individually,aiastract services or to groups of services
contained in a scope.

An additional benefit of re-introducing identity informaiti in an event-based system is that this fur-
ther increases the expressiveness of the observation mddeh is particularly useful for, e.g., event
correlation and other situations where the identity of digigant is critical for interaction. Further-
more, the need for the actual naming, management and miogitof individual participants within
an integrated cognitive system suggests the re-intraatucti resource identifiers. Besides these mo-
tives, another important aspect originating from usabitibnsiderations is that identity information
helps system developers to communicate about a systemeatcine and assign responsibilities for
specific services or components. Therefore, a consisteningaterminology and resource model is
crucial.

Necessary for the realization of a resource model are defisitfor the structuring elements to be

used, a coherent syntax and semantics for resource nanaihgefipect the aforementioned aims and
the introduction of a federated naming service. The folfmywaragraphs introduce definitions that
are used subsequently to refer to certain types of resoim¢ks IDI architecture.

7.1.1. Services, Interfaces, and Components

While the lower-level layers in the IDI architecture are qetely based on the adopted event-driven
foundations, the provided higher-level functions areiinfed by high-level concepts of tt&ervice-
Oriented Architectur SOA) paradigms. In particular, the logical modularizatishall be guided
by service-oriented concepts. Hence, the notion ekvicein the information-driven integration
approach is inspired by the corresponding OASIS servicaitiefi [OAS06]:

Definition 7.1 (Service) A service represents a mechanism to effect access to onerethigb-level,
usually coarse-grained functionalities on the level of thctional architecture of a cognitive sys-
tem. Access is provided using a prescribed informatiomedriinterface and is exercised with the
constraints and policies specified in a service description

The eventual consumers of a service may not be known to thiesgrovider and may use the service
beyond to what was originally conceived by the provider. WesIDI architecture was developed with
loose-coupling in mind, so shall services consider thisnaisngortant prerequisite for getting reused
and combined in new experimental system contexts.

The service definition is purely conceptual and must not déms any implementation details. Ser-
vices do not necessarily map one-to-one any component iingpigation. However, this definition
promotes the use of interfaces for describing access taceefunctionality. While in the general
SOA concept, the actual technology this access is basedimteigionally omitted, the IDI architec-
ture defines it in terms of its event-based foundation:
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Definition 7.2 (Interface) The interface of a service is a named set of event types tpaivgled or
requested by a participant in addition to a specificationtsfdynamic interaction behavior indepen-
dent of any actual implementation.

In order to describe the dynamics of interactions in an fater specification, the IDI architecture
introduces a set of generinteraction patterns such as request-reply, which will be explained in
the Sectio7]J2. They actually determine - and realize - #tpe@ed dynamics in accessing the
underlying capabilities of a service that is exposed usimgatéern-based interface. As this set of
interaction patterns is easily extensible, new interacticenarios can be defined to be used in interface
descriptions. However, the introduction of new patterradldie limited as these interaction strategies
must be available for the service consumer.

Interfaces represent the boundaries between functiombindegration architecture, concept and im-
plementation. While services are purely abstract bundiésnationality, their actual realization and
exposition on a system level is realized with interfacesuttanmately map to pattern-specific instances
of the event-based participants introduced in the previtiapter. While consumers of a service need
to fully comply with individual interfaces, services mayeftheir functionality on different interfaces
that may be used independently.

Nevertheless, interfaces are defined separately as thegecagalized by different implementation
artifacts that contribute to service functionality. Tordlathis, the following definition of &component
shall be used in the IDI architecture:

Definition 7.3 (Component) A component represents a descriptor of a software artifzat tealizes
any number of interfaces, which can actually be executed defmed system context. Execution
of a component yields instantiation of participants thapiement the specified interfaces, thereby
contributing to or fully realizing services.

Components are thus logical capsules for executablesriiegitan independent configuration. This

allows to free their underlying source code from applicatipecific properties and static dependen-
cies, which again promotes to the goal of loose coupling. irl$eenario-specific deployment may

vary through different system instances.

A coherent understanding of service, interface and comparmcepts facilitate the collaboration in
experimental cognitive systems research and promoteslaradhiion. Furthermore, these up to now
rather abstract definitions are the basis for the actual gariion management functions of the IDI
architecture, which allow to orchestrate and demonstsattes instances.

Let us consider a person anchoring service as an examplertordtrate these concepts. Person an-
choring is an important basis for stable human-robot-auon as is realized in the robot companion
developed in the COGNIRON EU project, which is described a@e®. Such a service may be
realized internally with many different strategies and make use of different types of event infor-
mation in a system if available. Even so, the interface o $leirvice is quite abstract as it states that it
solely publishes person hypotheses in the system and @sseseful lower-level event perceptions,
which may or may not be available. Such a high-level servidéich makes minimal assumptions
about its environment is easily reusable in a differentiappbn context with a similar requirement.
In contrast, the component specification binds realizatimfithis service to a functional architecture
and allows for their actual execution in a running prototggstem.
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Figure 7.2.: Exemplary resource reference as used in the IDI architectund description of its constituting
elements as specified in the introduced URI scheme.

7.1.2. Naming Resources

A naming scheme for the envisioned integration architechaeds to support modularity, scalabil-
ity, transparency and shall additionally promote undedbility while not conflicting with the aim
of loose coupling. In order to find a suitable compromise leetwthese partly contradictory re-
quirements, the resource model utilizes two concepts friffi@reint domains: théJniform Resource
Identifier (URI) and hierarchical scoping as introduced with the neaifion model in Sectioli 8.5.

In contrast to other resource schemes abstracting sotaty d& specific physical location in a system
architecture, e.g., @niform Resource LocatdBLEMOY] (URL) referencing a web server available
under a specific port on a given domain name address, the @dhe resource model in the IDI

architecture is to permit a logical structuring of servieegording to their domain function. This
is possible as most aspects of the required location tra@spa are inherently available using the
broadcast communication style. Hence, the IDI functioieottuce a higher abstraction level for
resource modeling.

Compared to URLs, &niform Resource ldentifiefBLEMO5] (URI) as introduced by th&Vorld
Wide Wel(WWW) global information initiative in the 1990s is defined ‘@ compact sequence of
characters that identifies an abstract or physical resolrcehis definition underlines the ability to
addressbstractresources and the featured declarative text represamtatfoch is exactly why URIs
are used to describe logical resources in the IDI architectu

Figure[Z2 exemplifies the URI scheme developed for refémgnesources in the IDI architecture
following the recommendations for the general syntax of £JRAn IDI URI scheme starts with
the name of the scheme (hexef ). Following up on the protocol specifier, tlathoritative part

of the URI describes in this URI scheme the logical locatiérihe referenced resource through a
hierarchical specification of its scope. As discussed ini@d8.3 scopes provide the basis for efficient
communication in the event-based layer of the IDI architext The resource model takes up on the
idea of scopes and utilizes these for the logical struajuoina system architecture on the functional
level. While scopes are a very general concept, the URI selastshown in Figude_4.2 proposes at
least three hierarchical scope levels, which were intreddtom a practical standpoint in accordance
to the integration context in cognitive systems research:

e Organization Defines an institutional scope for participants.
¢ Instance Defines a project or system scope for participating compisne

e Functions One or more scope representing logically or physicallypbed functionality.
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Figure 7.3.: Utilizing the scope-based URIs, a tree can be constructedifioactual system architecture
that quickly summarizes available services as shown hetdéoszampire system. Parent-nodes
represent scopes while leafs are services. Althoughsservice is used in three scopes, name
clashes are avoided by the locality of identifiers.

Even so, a servicenustbe contained in at least one enclosing scope to allow foraaféng with

a valid URI. A service is encoded as the first element of an §Jpdth constituent by specifying its
symbolic name, which is then local to the context defined giitclosing scope. This path component
of an IDI URI can be extended by a single additional name thatifies a single interface within a
service.

In the depicted URI example, it is tivé dget interface that is responsible for distributing informa-
tion about the augmentations displayed in the video sertfir glasses to other system components.
Further refinement of a URI is possible by appending opti@ttion and query information to the
interface or service identifier. While this can be usefulitierally encode queries on participants, the
introduced hierarchical scoping and the path element ofDh&RIs already allow for a transparent
referencing of the scopes, services and service interfagedistributed system architecture.

Additionally, integrating the hierarchical scope in the [URncept facilitates the locality of service

and interface identifiers. This not only prevents name eadiut also fosters re-use of application
code if individual participants are designed to minimakyyron information about their enclosing

scopes. This is enforced by the architecture as scope iatamis usually injected externally by a
system designer and is not necessary for the developmentgdanent functionality. Summarizing,

a URI in the IDI approach can be defined as follows:

Definition 7.4 (URI) An IDI URI encodes an abstract reference to a logical entitghsas a service
or a service interface in a system. It uses hierarchical ssdfer modularization in its authority part
and thereby allows for referencing of functional sets of/g®s or interfaces in a system architecture.

To exemplify this, let us once again look at the URI depictedFigure[ZR, which is taken from the
software architecture of a VAMPIRE system. It referencesvths service, which is located in the

| oop scope that contains the participants responsible forziaglthe human-in-the-loop interaction
exploiting the hardware and software of the AR-gear. Thep scope again is part of theanpi r e
system and thagai organizational scopes. The consequent application oétbescepts leads to
clear and understandable service references, which carsti@ized as a tree structure. Figlrel 7.3
shows an example of a resulting URI tree for the VAMPIRE darise system that is described in
greater detail in Chaptéi 8. The information contained ichsa tree can in turn be used in system
management tools that allow for configuring, deploying draspecting a system at different levels
of granularity, namely scopes, services or at an interfeeel .|
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7.1.3. The Federated Naming Service

While IDI URIs encode informationvherea component is logically placed in a system and how its
services or interfaces can be referenced, an additionatiqunahat must be dealt with in the resource
model is how URIs translate to physical resources and hoguenhames can be guaranteed. Both
is usually realized in centralized or distributed naming/ees [Bir05], e.g., the InternetBomain

Name SysterfiNetf81] or Jini's trading servicé [SunP9].

The IDI architecture realizes naming in a federated approdde realized naming service is itself
largely based on the introduced event-based paradigmxplaits additional mechanisms.

The implementation of this service makes use of the advalwedevel features of the group com-
munication framework that is currently used for the implatagon of the notification model as intro-
duced in Excerdi®l5. For instance, guaranteed orderingl@lingry as well as the group membership
management functions are exploited for its efficient redin.

However, from a high-level perspective, the following pedjes of the nameservice realized in the
IDI architecture are important for the realization of highevel functionality that is introduced in
subsequent sections:

e Local uniguenessThe name service guarantees that the chosen servicdiigiesndre unique in
their enclosing scopes.

e Component mappinglhe name service resolves URIs to process identities #ratipaccess
to the actual component that implements a service interface

e System modellhe name service gives participants runtime access ta@synodel maintain-
ing a list of all active participants and scopes of the ovesatem.

e Failure detection Based on group membership, the name service can checkeavlzetervice
is still available or has been disconnected for some reasgn,due to a crash.

The scoped URI model and the federated naming service asgluted here are inevitable corner-
stones of the integration architecture to support devesoipemanaging the complexities of setting up
and running a complex distributed system. How these coaaapttribute to the realization of higher
level interaction patterns is in the focus of the followiragtons.

7.2. Interaction Model

In the same manner as the resource model proposes a hieghmchiming mechanism for logical
structuring of service components, tiieraction modebpecifies and enforces modes of interaction
between participants. These modes and the accepted epest yield the specification of service
interfaces. The aim of this model is to provide a set of brpaniiderstoodnteraction patterndike
synchronousRequest-Replgommunication between two system participants, which eaéized on
top of the asynchronous event-based core of the IDI ardhitec
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An interaction pattern (also commonly referred tocasnmunicatiorfSch06&] ormessage exchange
patterr) shall be defined here as follows:

Definition 7.5 (Interaction Pattern) Interaction patterns provide reusable solutions for raating
types of communication that require the exchange of messagences between software components
in an asynchronous, event-based system architecture.ara@efined on an abstract level and relieve
developers from the error-prone details of interactionigesn concurrent and distributed systems.

These patterns come in particularly handy when realizitgractions more complex than publishing
a single event, resembling tacanversatior{Fai0€]. Often, certain extra conditions shall be assured,
e.g., the availability of an interaction partner, which desupplementary coding in an asynchronous
architecture. In addition to the aspect of reusing thesemdinable functions and the higher abstrac-
tion level of interaction patterns compared to single evatifications, the available set of patterns
defines a common vocabulary for software integration. ItyigHese patterns that developers may
compose the overall architecture of a cognitive system bsgiwices and components, which realize
them by exposing pattern-based interfaces.

Recalling the integration context, interdisciplinary rsseften simply expect certain broadly under-
stood interaction styles to be available in an integratimhigecture. For instance, it must be possible
for them to interrogate a component for certain data by usimghronous request-reply - although
extensive use of this pattern is not the central idea of evased system integration. In addition
to this, the available set of patterns shall in conjunctiathwhe previously introduced models of

the IDI architecture lead to modular, well understood sdinamf event-based interactions between
participants.

For these reasons, the IDI architecture itself providesxaensible set of interaction patterns that
are utilizing all the concepts introduced so far to provide heeded abstractions, thereby hiding
for instance threading, protocol, synchronization orchfde details of distributed and concurrent
interaction. Excerdf_711 reports on some of these commoigriésues that are considered here for
all pattern objects taking into account for instance thi#gcycle.

7.2.1. Connectors and Service Interfaces

An interaction pattern usually consists of two complemigngarts with distinct roles in an interaction
that further describe their relationship, eRublisherandSubscriber(with the exception of the event
channelwhere there are no separate roles for the interaction pajtrierom the software architecture
viewpoint, an interaction pattern provides an absttacihectorbetween two or more components that
is independent from a concrete transport infrastructucketiaat can be used to model and structure the
software architecture of a complex system.

Mary Shaw defines a connector as thei of relations among componer8G96]. Connectors shall
decouple application from communication code as far asilpless'he difference between the purely
architectural viewpoint on connectors and interactiortguas is that the latter shall provide actual
assistance for typical integration situations that may main-specific or introduce additional se-
mantics in an interaction like thective memoryattern explained in the next section.
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Figure 7.4.: Architecture of a simple vision system exemplifying theofilee Channel, Request-Reply (Reg-
Rep) and Publish-Subscribe (Pub-Sub) interaction pagtern

Instead of introducing new labels for already establisheitlcepts, the names for the patterns and
supporting functions of the interaction model were choseaccordance with well known terms from
service-oriented and event-driven architectures. Thidt $he interaction patterns realized on the
basis of the core models which are directly supported byBheuchitecture are:

e Channel (N:M communicationParticipants can act at the same time asynchronouslytes-lis
ers and informers on the event bus that may be channelizad.isTthe basic communication
pattern that is directly supported by the core IDI models.

e Publish - Subscribe (1:NYOnly publisher objects are allowed to send information eirtaally
separated event bus they originally created. Subscrilwtrasalisteners that are connected to
the publisher’s bus. This a restriction of the channel patte

e Request - Reply (1:1)Classical client / server point-to-point remote-methodocation with
at-most once semantics and support for asynchronous teojpjests. Excerpi—zl12 describes
the event-based realization of this pattern in greateiildeta

e Anonymous Request - Reply (L:ompared to the request-reply pattern, a participarizutil
ing this pattern may send a request to an unknown server a@npoAny number of server
particpants may reply to this optionally asynchronous estju

All of these assume that the interaction patterns are dlailat runtime, resembling to a kind of
meeting-oriented communication JASTMvS302]. While thetfixgo patterns clearly origin from the
domain of event-driven architecture, the latter are examypbatterns that realize a command-and-
control type of communication as attributed primarily tovdee-oriented architectures. The semantics
of interaction that are usually associated with these pettecan be easily described in analogy to
natural language [FaiD6]. While channel and publish-stilbsdear similarity to a declarative type
of interaction, (anonymous) request-reply can be primaniierpreted as imperative or interrogative,
which may give at the same time some initial advice when tdyappich pattern.

Recalling the aim of loose coupling, the position taken uphis thesis is to use the EDA pattern
to the extent possible, while the SOA patterns should beiepplith caution and without making

assumptions about the context of a request with regard tedled service, e.g. the state of the
component or its specific environment.

Figure[Z# depicts a simple vision application utilizingske patterns in an architecture diagram, re-
stricting the model solely to the high level architecturspects of a system in terms of components and
connectors. The diagram exemplifies that image events anencaoicated via the Publish-Subscribe

Sebastian Wrede



7. From Event-based to Cognitive Systems 133

try {
Xcf Manager xm = Xcf Manager . cr eat eXcf Manager () ;

/] scope is set externally
Server s = xm createServer (new XcfUri ("xcf://vis/w dget"));
s. addLi st ener (new Request Adapt er <FaceEvent >("create") {
@verride
public XcfEvent handl eRequest (FaceEvent fe) {
/1 augnment video and return status info

return vis. highlight(fe.getNanme(),fe.getRegion());;

1)
s.run(fal se);
} catch (XcfException e) {

/1 ignored here for reasons of brevity

Listing 7.1: Minimalist but complete example for server instantiatiordacallback registration using the
request-reply pattern in Java. While request adapters dsm lae registered in Java with annota-
tions, the example depicts regular callback registratigritds most similar to the programming
model realized in C++.

pattern from the image service to the pair of recognitiorcpsses, which in turn publish results and
retrieve arbitration info via the general event channelgoatfrom a specific arbitration component.
Finally, the visualization component is connected to thisteation component via a Request-Reply
pattern.

Please note that the connection between the arbitrationttendisualization component is more
closely coupled as it depends on mutual identity infornmati®esides their actual functionality, inter-
action patterns additionally contribute to the aim of impng communication between the collabo-
rators in a research project due to their mapping to conregtalesign-time, which allows to model
their run-time system architectures.

Listing[Z] gives an impression on how a (fully functionathwiegard to the IDI architecture) simple
realization of a visualization service may look like fronettieveloper’s perspective. After the con-
struction of aSer ver object that processes incoming requekite (4) with a scope-independent URI,
a callback is registered as a local listener at the routdrieftattern objectifie 5-11J that is automat-
ically bound to a subscription matching this request andhietygoe. Upon instantiation, this service
would be available under the URI explained in the resourcdehihat was shown in FiguEeT.2 given
that the scope is configured correctlyltoop. vanpi r e. agai .
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Excerpt 7.1: State-Based Design of Interaction Patterns

Allinteraction patterns that are provided by the IDI arebture implement an object structure as shown
in Figure[Zb that combines a number of software design iettend aggregates different framework
objects that provide commonly used supporting functiortse @ssential parts responsible for the basic
pattern functionality are the following:

e ActiveQbj ect: This class is the common base of all pattern objects thatifedheir own
thread of control. In general, these objects are said tackigeas indicated in Figude_4.5 for the
Subscri ber class. Active objects must (de-)allocate used threadstaraperating system
resources cleanly upon activation or deactivation. To efdhis contract, it is specified in the
generalXcf Obj ect interface that all active objects must implement. T i veCbj ect

class additionally provides access to the typical collatws of a higher-level IDI object, which
are:

— Xcf Manager : The manager class utilizesBuilder pattern [GHIV95] and hides con-
struction and implementation details of pattern objeateftheir usage. Client objects are
thereby solely bound to the generic interfaces of specifiepainstances.

— Xcf Uri : As patterns instantiateesourcesn the sense of the IDI architecture, this clasg
encodes an URI according to the resource model introduc8ddtiorZ1L.

— Xcf Confi gur at or : Configuration is an important requirement for the actuglogment
and use of software artifacts in different contexts, thusrdiguration strategy is needed as
will be explained in the next chapter. This class provide®as to the configuration object
that is necessary to dynamically modify parameters of dqijaaint.

— Fi nder : This interface encapsulates access to the federatedgradivice and therefore
to the current state of the resource model for a specific IBtesy. It allows to register
and retrieve meta-information about resources, e.g.,tghetstate of a Publisher, which is
needed for the correct realization of the different pattern

e Subscri ber: The interface of this class represents the actual funalignof a spe-
cific interaction pattern, here the subscriber role of th®dlBh/Subscribe pattern. All pat-
tern objects are modelled according to t8tate pattern [GHIVIb] where the main pattern
class, here theéSsubscri ber class, serves as the context object, which only implements
bridge methods for the external interface and state-inudget functionality. It delegates all
other calls to the corresponding method of the currentlyaimsated state object, which is
in this example one oSubscri ber St at eActi ve, Subscri ber St at eCorrupt ed or
Subscri ber St at ePassi ve. The state pattern allows to cleanly encode a finite statdimac

in an object-oriented structure where the current stathetbntext objects changes dynamically
at runtime.

Applying this pattern-based approach for the design ofgireston classes with their usually complex
internal structure has important benefits for the softweskitecture in terms of clarity of realization, e.g.
by encapsulating a finite set of capabilities that is st&getident in an individual class and the ability tg
handle the whole lifecycle of active objects cleanly at et contributing generally to the correctness
of a software design. It provides a straightforward strradtand functional basis for extension and
introduction of additional patterns.
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package net.sf.xcf [ Pattern Objeclj
XctObject ()

+activate()

| XcfManager | 4 ? SubscriberStateActive

0.* =
Xeion ActiveObject L Subscriber 1_| SuscriberState () -
ri . - -
|:‘J: J+addListener( SystemEventListener )r :;Z%T‘il;gner( EventListener -state +receive()
XcfConfigurator SubscriberStatePassive

| [ —

Figure 7.5.: The general software design of interaction patterns in Diedrchitecture exemplified using the
classes responsible for ttibscri ber realization. Besides collaborating with implementa-
tions for the IDI models, the pattern objects implement daeSpattern [GHIVIb].

7.2.2. Event-based Realization

The described patterns realize their conversationalesfies utilizing the event-based core of the IDI
architecture. Thus, they use the features of the obsenvatindel, e.g. for dynamic registration of
subscriptions in order to add guarantees to the commuaithttween participants like the exchange
of acknowledgements for received events or utilize supsoris in conjunction with the functionality
of the resource model to allow for patterns that re-intr@digentity information.

Taking up on the previous examples, it is therefore posdiniehe IDI architecture to cancel the
publishing of request events to a server and to throw an &eceff it is not available at that time.
This not only eases system development as failures are nxpdieite but also simplifies their use
from a developers perspective.

Not only event types and their serialization methods carehesed by module developers across dif-
ferent patterns but at the same time it is for instance plessilzombine filters with a method handler
callback that is registered atSer ver object in order to further constrain the set of events that is
dispatched to this method handler. Similarly, it is possitd register the same event listener or a
clone of a complex subscription at different interactiomttgras to achieve code re-use and combine
information from different interaction patterns in a cahfplace. This underlines that the same con-
cepts were consequently applied across the different phtte integration architecture, which shall
further increase usability.

If specific timing or quality-of-service constraints must bnforced, this is generally handled by
adding corresponding MTFs to the inbound or outbound olasierv models of the patterns, cf. Chap-
ter[6:4 and must not necessarily be part of the pattern imgiation. In order to better assess the
implementation aspects of the IDI patterns, ExcErdt 7.2nieess the realization of the Request-Reply
pattern in greater detail.

It is important to note that in contrast to middleware apphes that are based on static stubs and
skeletons as outlined in Chapfér 5, all patterns introduoe@ and their parts, e.g. the exposed
methods of &er ver interfaces, are per-se dynamically instantiated andtergia at the architecture
runtime without the involvement of a meta-compiler. Thikwabk for the dynamicity necessary to
adapt the orchestration of a system architecture as ne¢dedtizne and reduces the complexity of
the resulting toolchain for module developers thereby miimg to the overall usability.
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Excerpt 7.2: An Event-based Request-Reply Pattern

Realization of the Request-Reply pattern using the evaséth IDI core models requires to solve two
tasks. On the one hand both participants need to directlseaddheir partner, on the other hand delivery
needs to be guaranteed, respectively errors detectedverpithe client side from blocking infinitely.

Identity Evaluation In order to allow for identity based message observation, dn
I dentityFilter is needed, which can be parameterized with either the ssnderthe re-
ceiver's URI. In contrast to the concept of a scope filter,ahiig on identity is based on the whole
URI and does not consider scoping mechanisms. The currgiémentation applies transport layer
optimizations to thé dent i t yFi | t er by encoding the sender’s and receiver’s URIs into the binary
message protocol, thus allowing for more efficient filterimghout the need to deserialize or match
message content.

Roles and Responsibilities The Request-Reply pattern defines two distinct roles reglin
separate classes, tBer ver and theRenot eSer ver . The latter role represents the client side as it
initiates the communication by sending a request and egpeaeply from the server. As multiple requests
may be sent in parallel, the client needs to match incomiptie®to the corresponding requests. The
event correlator pattern described in Secfion¥.2.3 isiegppd achieve this. In Java, tiget method of
theFut ur e interface, which is the basis of the asynchronous callbatiem is used to block the thread
that sent the request until the reply becomes availableioreut occurs.

On the server side, identity filtering is applied to incommgjifications as the server only answers re
quests directed to its method URIs. Incoming requests apatiihed to registered event listeners which
implement the different methods. The generated replieawtmmatically augmented with the correlation
id of their request, sender and receiver URI are transfeasedell but swapped. Therefore the reply ig
directed to the scope of the client participant.

On the client side, identity filtering narrows notificatiodgwn to those sent by the server. Events ar
then handed to the event correlator which looks up the cporeding request and notifies the waiting
requester thread of the reply.

9]

7.2.3. Adaptation Patterns

Instead of the interaction patterns that deal mainly witlssage exchange protocols, the following list
of patterns is generally applied locally. While not beingtficlass interaction patterns, they represent
auxiliary functions dealing with synchronization and at@ddipn of the programming model semantics.
Due to the fact that they are very important from a componentkbpers perspective and are even
frequently used within the IDI architecture itself, they @dditionally supported at this level of the
integration architecture and explained in the following:

Active Queues Queues are versatile and generic communication adaptéey dan be used to
reverse APIl semantics with regard to handling of incomingneéwotifications. While usually a push
model is realized by the IDI architecture, queues permittez@ss events according to the pull model.
By attaching them to multiple informers using providgdeue adaptersseveral subscriptions can
be attached to one queue. As all queue implementations eradtsafe, they can be easily used
as synchronization points in multi-threaded applicatiofdueues can also realize temporal event
handling schemes. E.g., a queue type is provided that sboigsthe n most recent events, which
allows to couple a listener to an informer with incompatielent production / consumption ratios.
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Active queues additionally register request handlers énli architecture, allowing to access them
not only locally but also remotely via Request-Reply comioation. Therefore, they can also be seen
as a special type of connector from an architectural viemtpand thus partially share the semantics
of an interaction pattern.

Asynchronous Callbacks Synchronous calls to API functions have the obvious drawlbiaat
processing is suspended until the thread of control refuonsthe called function. However, a benefit
of this synchronous model is that failures can be directhored to the caller, usually in the form of
an exception in object-oriented programming. In contrasgnchronous invocation allows to directly
continue processing instead of waiting for the result of asfidy long-lasting request to a service
with the drawback that errors can not be easily fed back tcaktier.

The IDI architecture provides an asynchronous callbactepathat can be used in conjunction with
most of the functions of the pattern objects. Within the JaRd, this class is based on tiit ur e
interface, thus allowing for synchronous as well as asyorobus retrieval of results. This object is
also notified in case that a message has been discarded bereobr occurred.

Thereby, the programming model allows developers to degldgher to make use of an asynchronous
processing without losing the benefits of a synchronousaioer.

Event Correlators  Whenever bi-directional communication occurs, for examiplthe Request-
Reply pattern, a mechanism is needed to find event notifitebielonging to the same communicative
act. Considering the Request-Reply pattern, a client mag aeumber of requests and expect a reply
for each of them. A single communicative act consists of a@stjand the corresponding reply. Butin
event based systems notifications are independent of otieesntherefore the client implementation
is faced with the task to correlate the set of open requesfl tncoming replies in order to match
them up.

Hence, the IDI architecture offers an implementation ofeaant correlationpattern to handle this
matching. The mechanism is based on adding correlatiortifiges to any event which is meant to be
answered by the communication partner. Each opponent aingwke event must augment the reply
with the identifier. This allows the sender of the initial e¢o filter for the correlation ids of open
requests and thus find the corresponding reply.

As it implements theéEvent Si nk interface as introduced in Sectibnl6.4, the event correlzan
be linked into the observation model. This way it is possiolaise the pattern with independent
subscriptions and it is possible for other patterns to makeotfithis functionality. Access to correlated
events is provided through the aforementioned asynchsonallback objects.

While the basic but fundamental interaction patterns hgfpesn designers to identify the core struc-
ture of applications in terms of integration, the adaptafiatterns help developers to use the pro-
gramming API in a way that suits their needs in a specific 8dna The presented set of interaction
patterns shall avoid mixing interaction and implementatissues and is easily extensible towards
specific scenarios. An exemplary pattern that was adoptddaed in the DESIRE[DESD8] context
is a Taskpattern that permits monitoring of the completion state rofaaynchronous request. The
next section will introduce additional patterns at thistedation level that realize a specific connector
based on an active memory, already utilizing the pattertnedaced in this section.
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7.3. Memory Model

The aim of the wsua! actlve_memory

(VAM) as proposed in Section 2.2.2 A
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system. However, even with these
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straints) neither feasible nor meaning-
ful to process all data immediately and then discard it. Tiags us to the centerpiece of the
information-driven integration approach and the archited basis of the aforementioned visual ac-
tive memory paradigm, thememory model

Figure 7.6.: An exemplary cognitive vision system utilizing a
single instance of an active memory.

7.3.1. Concepts

A unifying property of many cognitive vision systems is tlk@iowledge is generated, which is to
be inspected later on, made available to other systems (ourttans) or re-examined when other
relevant information becomes available. Learning praeesged access to results generated earlier if
conducted over longer time periods implying persistentagte of information, knowledge or data for
later retrieval. Therefore, the function of memory is esiséfor cognitive systems.

Conceptually, the memory model introduceemporaldimension in the otherwise transient commu-
nication patterns provided by the IDI architecture. It exte the referential (identities) and spatial
(distribution) decoupling of participants as supportedHtsy event-based integration functions intro-
duced so far by a temporal decoupling.

In close analogy to the ideas presented during the disecussithe VAM concepts in Chaptél 2, the
memory model bases its terminology on that architecturetickk which is used later on to discuss the
characteristics of this rather complex integration patteithin the general IDI approach.

The memory model introduces the concept offative Memorythat maintains dynamic represen-
tations of the world by correlating and consolidating esemer time, e.g., to track the interaction
state of cognitive system instances as will be exemplifiechepter§18 andl 9. Information is stored
dynamically, organized hierarchically and accessed byadled Memory Processed hese processes
perform the actual computations on the memory content degureasoning, fusion and learning.
They also gather new knowledge from perceptions or alloaraution with the user.

Within this model, general events are mappedviemory Elementas atomic information entities.
The actual memory content at a given point in time is theeeftefined as aiew that contains the
newest “generation” of correlated events. This virtualdsppace that is shared between otherwise
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independent components is actively controlled by the mgriteelf and can be accessed by so-called
intrinsic as well asextrinsic memory processed/hile the latter are external processes, the former are
executed synchronously within active memory instancegure[Z® gives an informal example for a
system that is integrated using the concept of an active memo

The memory model features an architecture that is inspisethé concepts of tuple spaces, pio-
neered two decades ago by David Gelernter during researitie bimda TupleSpacesystem|[[Gel85].
Linda [CG89] is the precursor of a generation of languagasatm at modeling and describing paral-
lel algorithms without reference to any specific computehecture. The basic idea is that different
participants cooperate by reading or writing informatibrotigh a virtual shared memory, which is
termed auple spaceData exchanged via spaces is in general represented as Wipich are essen-
tially ordered collections of primitive data types.

Apart from a large variety of prototypes, SUN Microsystemsdduced a commercially supported
software architecture called JavaSpates [WAO01] as paneadini [Sun08, Sun99] networking infras-

tructure utilizing tuple space concepts for integrationl anordination in distributed systems. The
term JavaSpaces already suggests that this implemenistiargeted at the Java programming lan-
guage and runtime environment. The JavaSpaces as well ASgaees[[WMLE98] architecture by

IBM enhance the Linda approach by adding a subscription atitiaation mechanism.

Functional Characteristics

Besides other aspects, the memory model introduced heradsxthose approaches by consequently
applying the event-driven features introduced earliertlier design of a space-based active memory
architecture. In the following description of the fundan@drfeatures of the memory model, both
differences and similarities to the JavaSpaces condeAts98] are outlined as a closely related ap-
proach to the memory model. The architecture of the Activeldiy has the following characteristics:

e Memory elementsThetuplesin the memory model are in fact event messages encoded accord
ing to an information driven representation as describestation§ 612 anldd.3. Thus, each ele-
ment is a tree-structured hierarchical document with otibinary attachments. This serves as
a basis for dealing with versioning and extensibility of noeynelements in very much the same
way as described in the document mddel 6.2. Aiming to supggmtentially long-running cog-
nitive vision systems, the latter is particularly impottémenable visual memories for recalling
of, e.g., memaorized views of objects or actions. For an efficuse of binary attachments, it is
possible to link multiple memory elements to a single copg ofference-counted attachment.

e Shared repositoryAs within JavaSpaces, active memory instances allowiliged processes
to interact with them concurrently. The active memory aegiure deals with all details of dis-
tributedness, concurrent access and multi-threading ifigrghcomponent developers to focus
on the design of the abstract semantic interaction betwemoegses.

e Generative communicatiorhe communication model realized through the active mgrisor
generative. As valid for general tuple spaces, events g@teby attached memory processes
feature an independent “existence” in the active memoraintes. This is achieved by map-
ping transient events to memory elements. Any other memm@ggss may remove generated
elements as they are not bound to any individual process.s,Tibaking of elements is not
supported in the memory model.
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e Persistence An active memory instance provides reliable storage ficdntained elements.
Once a new memory element is generated, it will remain thedefinitely until it is removed.
In the JavaSpaces architecturdeasetime can be specified [FAHD9] for each tuple indicating
how long an object shall be stored, whereas the active memtpduces the general concept
of extensibleintrinsic processes Among other things, these intrinsic processes are capable
of performing a garbage collection in the space of memoryetds. This concept will be
explained in more detail later in this section.

e Atomic operations The active memory guarantees that any single operationnogleanent
is atomic, which means that either the operation can beechout successfully as a whole
or not at all. In contrast to JavaSpaces that make use of Imihsaction servicé TSuf99],
the active memory intentionally not supports distributethsactions across multiple memory
instances and operations of extrinsic memory processexgefidie, the memory model shares
the benefits of a state-less distributed system architedBir05] as the memory server does
not keep track of the state of its clients.

e Associative lookupA key feature of most tuple spaces is that tuples are lodayeal kind of
associative lookup, not by a concrete memory location odantifier. In contrast to the JavaS-
paces approach where templates with wildcards are usedatelduples, the active memory
concept applies content-based selection methods. Basthe cilocument-oriented data model,
XPath queries realize the associative lookup in the actiemory. This allows a memory pro-
cess to find required documents based on their content inwecp the same way as described
during the introduction of the observation model in SecEof, without having to know the
type name of a memory element or the identity of the processgeerated it.

e Executable contentAs long as a memory element is contained in a shared repgsites just
passive data. It is not possible to modify it or remotely kev@ny of its methods. However,
when an element is retrieved from a memory server, a locarproming language specific
value object is created, whose fields and methods can be ssesdial if their type is registered
at the runtime of the IDI architecture. However, even if ac#petype is unknown, the general
event model as described in Sectiod 6.3 permits accessitaythie generic event interface.

The modification of an active memory space is carried out bgmaef a small set of basic memory
operations, which arimsert, replace queryandremoveas well agake The methods behave as one
can expect from their names and as illustrated in Figulel@seértstores a tuple, whilemovedeletes

one or more of themReplaceaxchanges an existing memory element with a new Queryretrieves
tuples from the memory. Finally, thekemethod deletes a tuple and, in contrast to remove, returns
it. Both queryandremoveuse a content-based selection statement to select tugiessémantics of
these five methods will be explained in greater detail lateindhis section.

Observing the Dynamics of an Active Memory

In addition to these fundamental operations and the afandomed general characteristics, which are
- despite their different semantics - still comparable tiesbf-the-art databases, the memory is not
limited to these rather passive functions for managing tements contained in a memory space.
Instead, the active memory itself acts as an informer.
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Figure 7.7.: Interaction between memory processes is mediated viagatidmory instances.

Upon any modification or assessment of memory elements ghrother system patrticipants, the
memory becomes active and publishes new events that caitlaér the original event notification or
the modified memory element augmented with memory speciftadaéa information.

Figure[Z¥ exemplifies this idea. All participants act canently on the elements that are contained
in two active memory spaces. In this situation, participdris notified if and only if elementnes

is queried and participarit' is informed as soon ase, was removed from the second active mem-
ory shown. While these new events do not technically manifesnselves in a separate event type
as introduced in the event model, the following definitionaofemory event is developed from a
conceptual point of view:

Definition 7.6 (Memory Event) A memory event is generated upon the application of any of the
basic operations provided by the active memory (insertnygueke, replace, remove) executed on a
specific element within a memory container. It containskielived element and additional metadata,
e.g., about the type of operation carried out or the corielatdentifier.

In contrast to the template-based registration of listeata JavaSpace instance, listener participants
interested in being notified about state changes in an ati@raory can use all the concepts that were
introduced in the observation model. Thus, subscriptioesnat limited to specifying all of the dif-
ferent types of memory actions (which was not possible, dayaSpaces only allowed notification
upon insertion of new tuples matching a given template bubndheir removal). Instead, interested
listeners may use all the expressive power of the observatiodel in conjunction with these opera-
tions. For instance, it is easily possible to specify andstega subscription as shown in Listibgl7.2
that statesa notification shall be issued if a memory element of typeeaent with a recognition
probability of 95% has been inserted or updated at least @4 within a secondih the observation
model of an active memory listener.

There is another difference to the notification models of tniggle space architectures: the under-
lying event-based infrastructure guarantees that aligigants which registered their interest in an
information will eventually receive it. Within the IDI ardlcture, the notification and observation
models ensure that all events are distributed to all sulsdtisteners via the multicast event bus.
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Synchroni zedQueue<FaceEvent > faces = new FaceQueue();

Subscription s = new Subscription();

s. append(new TypeFil ter(FaceEvent. cl ass));

s. append(new MenmoryFil ter (MemoryAction. | NSERT || MenoryActi on. UPDATE) ) ;

s. append(new XPat hFi | t er (new XPat h("// HYPOTHESI S/ RATI NG RELI ABI LI TY[ @al ue>=0.95]")));
s. append(new FrequencyFilter (10,1, Ti meUnit. SECONDS) ) ;

/1 add subscription to | ocal am pattern object

am subscri be(s, new QueueAdapt er <FaceEvent >(faces));

Listing 7.2: Extension of the plain Java subscription from Sedfioh 6.4 byemory filter. This subscription,
cf. Listingl&.8, only matches if face events were actuaigiited in a memory.

To achieve similar functionality in a space-based apprp#uh producer of an information would
need to take care of this, e.g., by inserting a single tupl@ffanterested parties or checking against
another global state information whether an element mayafedysremoved because all subscribers
already received a copy. [CNHO1]. Due to the use of the esemen core layer of the IDI architecture
and the fact that extrinsic memory processes register ptisns for memory content at their local
observation models, the server component of the active menetains a stateless characteristic.
Consequently, there is no need in the IDI architecture tchttease times to subscriptions as it is
done in the JavaSpaces model. If a listening memory proceses, it is able to reconnect at any
point in time to the event bus of the core architecture, gistering its memory-related subscriptions
at its local observation model.

Activating and Extending the Memory by Intrinsic Processes

In general, memory is a limited resour¢e [CHr03], not only domputer systems but also for bio-

logical cognitive systems. Thus, some kind of garbage ciilie needs to be a basic quality of this
memory model for cognitive systems. However, it is not ckbat there is an optimal garbage col-
lection strategy, as there might be other constraints ord#t® most of which cannot be foreseen,
in particular not by individual component developers. Thusm a system-level engineering per-
spective it seems counterproductive to annotate everyesinfprmation in a system with a specific

time-to-live information.

In contrast to these lease-based approaches, the memos} allogvs users to extend its core func-
tionality by introducing so-callet¢htrinsic Memory Processebat co-exist with the memory data in
close coupling. As explained in Excelpf]7f8rgettingis the prototypical example of an intrinsic
process. It discards memory elements from the active mempnsitory based on metadata informa-
tion. This metadata is available in almost every type of eeschanged within the IDI architecture,
e.g., the time when an element has been updated last by éohelctomponent of a system. As a
consequence, other memory processes (either externaieonal) can indirectly cause a hypothesis
to be removed by changing relevant metadata. Due to the clmgaling of this task to large parts
of the memory content, processes such as forgetting canabize as an IMP. The combination of
forgetting and memory events is additionally useful forigrg requests in a space-based architecture
because otherwise requests would remain in the systemeforev
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Another example of an IMP is the compacting filter that wa
introduced in Section 8.4, originally developed as an IM&R th
conditionally inserts new memory elements. The insertion
only takes place if the calculated change to existing simila
elements is significant enough, otherwise an already Bgisti
element will be updated. e 0o 00 O
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Figure[Z8 provides an example of the interaction between |>~ N(S\“Q’
extrinsic and intrinsic memory processes. In order to under\\S— ~
stand this example, let us shortly recall the hypothesisepn
as introduced in Sectidn Z.2.2, which is a domain-specific eX memory |nterfac¥

tension of a general memory element that turned out to be

a fundamental concept for a visual active memary [HES04]. y /

The hypothesis type adds additional meta data like reiigbil | Memory Server| | Forgetting
or conflict values to each event exchanged and mapped to a reliability < 0.5
memory element. This allows memory processes to transpar= 4

ently deal with any kind of hypothesis. One of these inténsi - ---+{---{-- !
memory processes is the aforementioned forgetting proce
that is supported through consistency validation by evalga
the added reliability information as explained in Exc&rfd. 7

VS~

<OBJECT>
<HYPOTHESI S>

<RELI ABLI TY val ue="0. 6"/ >

On the basis of the hypothesis concept, contextual reagoni E&nggg%g; d</ CLASS>
is an important example for the utility of the memory model.
It provides functionalities like scenery classificationomn-

sistency validation. Instead of being specialized to aerta

</ CBJECT>

contexts and tasks, the realization of this component eppliFigure 7.8.: EMP/IMP coupling
Bayesian network$ [SSP00] for the interpretation and galid (from [WWHBUS5]).

tion of memory content as well as model learning. It intesagith other perception and maintenance
processes that feed new hypotheses into the memory or ddapteamory content, respectively, by
observing the status of the corresponding memory eleméntsder to actually perform the consis-

tency validation, so-callefunctional dependency conceffSDCs) are defined by the structure and
parameterization of a Bayesian network, which can be |e&inoen relevant memory content.

For example, in FigurE—A.8 the FDC expects the user to bedddatfront of a computer and occa-
sionally performing the action "typing”. Itis rather imgrable to perform the action "typing” without
having a computer in the scene. If this situation occursjrihalved hypotheses have to be doubted,
since they are not expected by the underlying model in thengbontext. Action and object hypothe-
ses are interrelated by FDCs so that actions define a fuattemmtext for objects and vice versa.
Conflicts between hypotheses are detected by calculatingfaat value as defined in_[HBSD4].

In active memory systems built according to this hypothesigcept, consistency validation modules
provide important cues for higher-level processes evemeifdriginal event source is not able to rate
the reliability or contextual suitability of its generatedormation. The added reliability values in this
scenario are used to guide the removal of conflicting hymathe¢hrough a forgetting process, which
is illustrated in Figur&Z718.
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Excerpt 7.3: An IMP Example: The Forgetting Process

Intrinsic memory processes can be declared using so callédspecifications that consist of an ini-
tialization block, one or more memory event listeners amddbrresponding algorithms expressed in a
scripting language, which is Python in the current protasgpimplementation of the virtual machine.
A trigger specification is constituted by a content-basedtkRondition that selects among the set of
incoming events, e.g., hypothesis elements, as well as #meary action type.

Specification  An example of such a declarative IMP specification for thegédting process is
shown in ListingZB. It consists of three trigger listenaral some initialization code, which are de-
fined for the insert and replace actions within the memory el as for a specialimer event that is
generated by the runtime environment in the given interVéle provided conditions match every hy-
pothesis element inserted or updated by the memory instahice respective algorithms of the IMP
listeners are thus executed upon creation or modificatiamphypothesis memory elements.

The Actual Forgetting In the process shown, forgetting is performed based onhibtia
information and a timestamp indicating when the element wadated last. Upon insertion of a new
hypothesis, its reliability and updated timestamps areestan an IMP internal dictionary utilizing
the memory element identifier as a key attribuiees 6-13. If the reliability value of a hypothesis is
modified, the stored value in the internal dictionary is updas well ines 14-20. Correspondingly, a
dictionary entry is updated if its timestamp informatiorsfthanged or if the observed memory elemen
has simply been removed (not shown here). The main task dbthetting IMP is performed by the
time-based listenetifies 21-33. It compares the updated timestamp with the current tim@oves a
memory element if it is older than 5 seconds and if its relighis below a certain threshold (hetes).

—

Through the IMP concept, extension and adaptation prosdiseforgetting can easily be defined in
a declarative way. The IMPs themselves can be reconfigurédsimned as an element in the mem-
ory model. Through the execution of IMPs in the virtual maeharchitecture of the active memory,
processes that are dependant on vast amounts of data c@ndffibe realized.

At the time of this writing, contextual reasoning was readizas an extrinsic memory process. The
active memory server triggers a single consistency vatidatep through implicit invocation of event
listener while the evidential nodes of the prototypical Bsign network are instantiated by memory
hypotheses retrieved by using associative lookup duringastrapping phase. After this single
consistency validation step, the reliability value of themory hypothesis is updated. This in turn may
trigger the intrinsic forgetting process to clean up the mgnby removing the potentially doubted
memory element.

From the perspectives of long-running cognitive systenpraistent memory is important for tem-
poral decoupling of producers (e.g., a process that acuimvs of objects for training) from re-
ceivers of information (e.g., a long-running object clfigsitraining process). From the viewpoint of
information-driven integration a memory is important, &dese the responsibility for keeping state is
shifted in event-driven architectures from informer taodiser participantd [Hoh06)].

The principle that informers must not maintain state foirtlisteners promotes loose coupling and
scalability again. Even though listeners may know about théormer’s identity in the IDI archi-
tecture, they shall not make use of this knowledge, e.g.rdrieval of state information through a
request-reply interaction as this would re-introduce theanted unnecessary coupling.
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<imp name="forgetting" |ang="python">
<init>
objects =[]
reliabilities = {}

</[init>
<trigger type="insert" xpath="/HYPOTHESI S">
<code>
ts = int(get_xpath(’//TlI MESTAMPS/ UPDATED @al ue’))
rel = float(get_xpath(’//RATI NG RELI ABI LI TY/ @al ue’))
reliabilities[vamd] = rel

obj ects. append((ts, vam d))
</ code>
</trigger>
<trigger type="update"
xpat h="/ HYPOTHESI S/ RATI NG RELI ABI LI TY" >
<code>
reliabilities[vamd] =
float (get_xpath(’//RATI NG RELI ABI LI TY/ @al ue’))
</ code>
</trigger>
<trigger type="timer" interval ="2">
<code>
current _tinme = time.tinme()
for o in objects:
tinmestanp, vamd = o
if timestanp > (current_time - 5000):
br eak
if reliabilities[vam d] < 0.5:
m . renove(vani d)
del reliabilities[vam d]
obj ects. renove(0)
</ code>
</trigger>

</inmp>

Listing 7.3: An IMP specification for a reliability-based forgetting joess.

Nevertheless, it is often important for a participantrégall past events in order to adapt their lo-

cal state to the overall system state, e.g. for bootstrgppimposes during component initialization.

Thus, a memory instance must have all data available, evet dll of it is stored. In such cases, the
active memory is able to guarantee that all event-genegralita is actually stored for later reference.
In contrast to request-reply interaction between diffecemponents in a system to retain state infor-
mation, the memory approach reduces coupling to a small auwfidentities, which represent the

memory instances themselves, if a boostrapping phase dedee
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package Architecture [ [Ej| Memory Model ﬂ

<<component>> ]
Memorylinterface [J) Active Memory Server

+insert( XcfEvent ) : MemoryElement

::’srﬁzfé('fweer"m%?yizrne;:‘)) <<boundary>> [n] <<control>> 5] <<boundary>>
+query( XPath ) : ResultSet k- — — 4 — Server Active Memory Publisher — 4 — — — —p| MemoryEvent O
+getAttachment( MemoryElement ) —
+addIMP() |
+removelMP(
0 d publish add / remove IMP
| | A
| Event Manager <<Virtual Machine>> C""’l‘(o‘a‘:f:hEvef‘;S
| Process Manager A::otinSIem;:;g
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| P |
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Figure 7.9.: Conceptual architecture of the event-based memory mobtelvishere is the server part of the
active memory pattern.

7.3.2. The ActiveMemory Architecture

The conceptual basis for the software architecture reglithe tuple space-inspired memory model
follows data-centered opposed to task-centered paradigsa consequence, the architecture of the
active memory is largely based on recent database technthiag realizes the overall functionality
of the memory model in conjunction with the functionality thie IDI architecture. The following
paragraphs describe the conceptual software architeafitiie memory server and its client processes
in terms of general architectural styles, including theégrats and concepts introduced in the previous
models.

The system architecture of the memory model is comprisedeoaforementioned extrinsic memory
processes, a database management system and an evensipgosabsystem, which shares com-
monality with therouter component of the observation model as introduced in Se&dras well

as a runtime environment for intrinsic processes. Usutibfe is exactly one database per memory,
which is accessed by an arbitrary number of memory procesaésle these may also communi-
cate directly via the communication patterns introducethéprevious section, this is usually due to
reasons that are conceptually independent of the memomreidre, the memory and its processes
form a hub-and-spoke topology as indicated in Fiduré 7.@mFa software engineering viewpoint,
however, participants are still loosely coupled as the nigmakes extensive use of the event-driven
patterns introduced so far and does not keep track of the atéls external clients.

In accordance with the other patterns presented in theqrs\dection, the memory model is based
on the principles and services of the resource model. Thgitetffers location transparency through
its client interface used by extrinsic memory processe® dient part of the active memory pattern
provides an implementation of tidenor yI nt er f ace and encapsulates the communication logic
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between client and server, currently based on a Requesy-Batpern, which is non-trivial, e.qg., for
query processing or the retrieval of binary attachmentauefigd elements. Additionally, it provides
shortcuts for subscribing client-side listeners at theeolation model that match specific memory
events. As most of the used functions have already beeniegglan the previous section, we now
shall concentrate on the server part of the pattern as ituatsdor the advanced features of the
memory model. These functions are located and realized ingescomposite component, the so-
calledactive memory serveFirst of all, it must be noted that multiple instances o$ttbmponent can
be executed as regular operating system processes thaltyaotpresent instances of active memories
in order to partition the overall event space for scalabildasons. Each memory may additionally
feature specific semantics as exemplified in the VAMPIREesystexplained in ChaptE} 8.

The Communication Layer - An Event-based Service Interface

Figure[Z® shows the composite structure of the active mgs@nvice component featuring a three-
layer architecture. Event and process manager constlietedre layer of the memory. They are
sandwiched between the database management below andntineuo@ations management layer
above. The latter is composed of two boundary componentsctimnect the memory service with
external IDI participants and the main control class fordtierall active memory component.

In order to invoke the fundamental operations that can bédieappn the data space of an active
memory as exemplified in Figufe_T.7, a request-reply patteused here. The remotely callable
event request handlers in this server interface are:

e Insert The insert request handler is equivalent to pemethod in the tuplespace concept. It
allows to store any type of IDI event persistently in an activemory as long as it is encoded
in accordance with the document model explained in SeEidn 6

e Replace The replace handler allows to exchange the content of a meeiement with the
contents of a new event. Since events represent a singlevatiea, and thus a single point in
time, the elements in a memory instance are not correlateadeohasis of their event identity
but on an additional memory-specific correlation identif@nce an element in the memory has
successfully been correlated, its predecessor is usuatipved for resource reasons.

e Take: Similar to tuplespaces, the take request handler readseameat and removes it from
an active memory within a single transaction. This requéstks if no matching element is
available, but can also be combined with an asynchronoltsacél object.

e Query: The query request handler realizes the associative lookugemory elements. It re-
turns a list of elements that conform to a given content-thapgery statement and thereby
corresponds to the read operation in the tuplespace concept

e RemoveThe sole purpose of the remove operation is to delete one tg elements from the
active memory that conform to a content-based selectidgarstant.

In addition to these fundamental methods, further requastliers for intrinsic memory process and
database management are exposed in this remote API thaesthe externaMemoryinterface
Requests accepted by the corresponding server patteandgestre delegated to the main control
component. This internahctiveMemorycontroller further dispatches them. Besides exposing the
memory interface, aublisherpattern is used in this layer to realize the informer parhdf service.
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Figure 7.10.: Activity diagram showing the fundamental processing sieffse memory model.

Applying a publisher instance ensures that a unique eveanirah is created for each single mem-
ory instance. Each memory event can be multicasted by thishab on the event bus of the IDI
architecture, which in turn allows listeners to subscribetividual events as exemplified earlier.

The Core Layer - Event Manager and Intrinsic Processes

The internal architecture of the active memory was largefluénced by performance and usability
concerns. A usual issue with regard to distributed archites and in particular with tuplespace
approaches is inter-process communication delay. Largaiats of data, as they routinely occur in
vision systems, aggravate this problem. The answer in theanearchitecture is two-fold: first,
detached notificatiomnd secondntrinsic processes

The core layer of the active memory as shown in Fifurk 7.@featarEventManagecomponent that

is fundamental for the realization of these two concept® ifiteraction between event manager, com-
munication layer and database management layer is perfoviaeso-calledcomposite actionsnd
intrinsic memory evenfi t04]. Composite actions encode an arbitrary sequencgefations to be
carried out on the memory content. For instance, a memoeyfatte operation such &splace con-
stituted by a query operation is followed by an update of gtieaved target element. Each action runs
within its own transactional context and is executed by ti&@ memory controller in its own thread
of control. FigurdZTl0 shows the processing steps caruéfbo handling a received request. Upon
successful completion of an action performed on the dagglihe actions themselves create intrinsic
memory events about the operation and the affected infeemathis allows the memory to publish
fine-grained events as for instance in the case of an assea®mnovethat affects a larger number of
elements. In this situation, a single notification is sentadter each deletion of an individual memory
element.
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As actions should not be aware of higher-level functionfefactive memaory, the actual responsibility
for forwarding events to other architectural layers is eored in the event manager component. The
event manager augments and forwards each intrinsic eventagmpletion of its transaction to the
publisher instance of the active memory where it leaves thigeamemory component and is placed
on the general event bus. The published memory event in éaaslto an event notification in the
extrinsic memory processes, subscribed to this specifict @teheir local observation model.

From the perspective of the active memory servergditached notificationealized by its publisher is
vital. It allows processing in the memory component to auri without having to wait for event re-
ceipt, thus minimizing delay. Conversely, the same apfitiethe processing in the extrinsic listeners
as they can already begin to react even if a complex memoryfitetttbn may not have been finished
yet. Taking up the deletion example again, it might be mongairtant for an extrinsic listener to get
notified about the removal of a specific memory element asfapbssible than about the fact that the
overall removal operation was completed successfullyattio be stated that its in the responsibility
of the IDI publisher pattern to perform an asynchronousfigation, which actually detaches event
distribution in the active memory from its listeners. Moren the IDI publisher pattern guarantees
that each subscribed process will eventually be notifieditati® occurrence of the event given with
a short delay after the successful completion of the oprati

If a transaction fails, memory events are not sent via thdighdr instance. Otherwise, the overall
system state could quickly become corrupted due to paaiiaké. Furthermore, detached notification
provides an avenue for a stateless implementation of theameserver component, because it does
not need to track the subscription status of its clients. ddreept of detached notification is crucial
for successful operation of active memory systems. It ezaphrticipants to react to changes in
the observed memory content with low latency and exchamge-tiritical information via the active
memory patterns.

In addition to detached notification, the second mechandsibetintroduced to increase the perfor-
mance of the memory model are the so-calfednsic memory process€bVIP). These are extensible
programs that can be registered in an active memory at rardimd executed under certain constraints
directly in the memory component. The specification of c@msts and the matching of events against
the resulting subscriptions is similar to what is done inrtheer component of the observation model.
In this case, the active memory uses the same content-bageting strategy that takes the given doc-
ument model as a basis; supporting equal expressivenestat#l¢ss) conditions as provided by the
general observation model. As the name suggests, the eagriger assumes the role of the observa-
tion model in the active memory. In order to achieve this injanction with a database backend, the
design of the event manager follows the Event-Conditiotighic(ECA) model [DBM88], which is a
common pattern in active databases, realizing conditiemaht processing. Local action callbacks,
which are intrinsic listeners attached to IMPs as shown guie[Z.® can be registered at the event
manager and will be invoked if their condition matches aririsic memory event. The ECA pattern
is applied here to allow for a flexible execution binding oé tintrinsic memory processes and for
supporting undo and rollback of intrinsic naotifications.i§ pattern coordinates access to a database
in a transaction-oriented way, which has a different fotimntthat of an observation and notification
component in a distributed event-driven architecture.

Summarized in Table.1, intrinsic and extrinsic procesi#féar in several ways. Considering the data
flow within the active memory and the semantics of IMPs, th& fimportant difference is that IMPs
are executed bymmediatenotification. In contrast to detached notification, intitnprocesses are
executed within the transaction context of the enclosinghorg operation that triggered an intrinsic
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Attribute Intrinsic Memory Processes Extrinsic Memory Processes
Transaction Inside Outside

Access Full DBMS backend Client API

Coupling Strong Low

Execution Synchronous Asynchronous
Environment Virtual machine Any (with client API)
Examples Forgetting, Statistics Object recognition, Information fusion

Table 7.1.: Characteristics of intrinsic (internal) and extrinsic texnal) memory processes.

listener of the IMP. A second distinguishing feature is te callbacks of IMPs are invoked syn-
chronously. When an immediate notification is performed,ttemory passes control to the intrinsic
listener that is to be notified and waits for it to return befproceeding. This ensures that an event
was received and, if necessary, processed.

It is for these reasons that IMPs permit to change the beha¥ithe memory by, e.g., updating

statistics, updating referenced documents or perform mgoptimizations. For external processes,
this constitutes a transparent change in the behavior ahtraory model in a specific system con-
text. Thus, intrinsic processes are a generic mechanisraoge memory behavior and to provide
modifiability.

The basis for intrinsic processes is a virtual machine gachire [SG96] running inside a memory
operating system context as indicated in Fiduré 7.9. Thiatess execution of IMPs reduces noti-
fication delay and enables access to the full functionafithe database backend. The close coupling
between the database and the fact that no network or inbeegs communication is necessary makes
it additionally practical to work on large amounts of binalata that can be stored in an active mem-
ory. Additionally, the virtual machine architecture sesve isolate data structures, thus protecting the
memory from malicious behavior of erroneous intrinsic j@Eses. Besides being possibly erroneous,
a much more common problem of IMPs can be that certain datadzt®ons, which are executed by
an IMP within the provided transactional context may faitlsat the enclosing operation fails as well.
In this situation, the state of the underlying database &anteed to be consistent even if modifica-
tions through intrinsic processes were already effectedtdthe complete rollback performed by the
database layer.

However, the same does not apply for the internal state dhgit processes. If IMPs received a
number of notifications within a complex transaction, theternal state might may have become
inconsistent. In order to handle this situtation, the megnwaill notify all previously involved IMP
listeners about this exceptional occurrence. All memomnéy within a transaction are therefore
recorded by the event manager, which allows to dispatch theeverse order to the undo operation of
subscribed intrinsic listeners. Itis then the respongjlilf the intrinsic processes to react accordingly
to these situations and adjust their internal process.statiether details about the realization of a
Python-based Virtual Machine for IMP’s can be found in Ex¢tEE4.
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Excerpt 7.4: A Virtual Machine Architecture for Python-bas ed Intrinsic Processes

The memory model supports the execution of intrinsic menpoocesses. Listing—4.3 shows an ex-
emplary forgetting process based on Python. Python is amdignabject-oriented, high-level language
that provides both a compiler and a virtual machine to runpited bytecode[[vR04]. The virtual ma-
chine architecture of the active memory actually embedhd?yand connects it to the event manage
component, performs lifecycle management for IMPs, bintErhal objects to IMPs and schedules their
execution. As shown in Listinlg—4.3, IMP specifications arersitted to the active memory at runtime by
extrinsic processes in the form of an XML document.

=

Activation  Theprocess activatoof the virtual machine component features a built-in listesub-
scribed for the insertion of new process specificationséreittive memory by matchirigrp on the root
tag of the process specification messages. Upon notificitealuates the specification in order to cre-
ate a python object from the provided python scriptlets. iThet block becomes a Python constructor,
all other actions are translated into member functions.prbeess activator will then proceed to compile
that class and instantiate an object. The intrinsic ligteage actually bound with their subscription to the
generated member functions and wrapped in a local C++ c&ilblject registered at the event manager
of the memory. This wrapping is carried out using the Pyth6%RT [VROd] and Boost.Pythoh [AGK08].
The process is commonly denominateceasbeddind?ython [VRO#%]. Wrapping and registration of in-
trinsic callbacks complete the instantiation of an immesliadispatchable IMP listener from Python
code.

Binding The primary usecase executed within IMP listeners is memmagfification. It is the only

meaningful way of changing the externally visible behawiba memory system. In order to facilitate
this, IMPs can use the same basic memory operations as arsesk{p extrinsic processes via a python;t
based memory interface that wraps a corresponding C++. classontrast to embedding python into
C++, this is the reverse situation. It is commonly referredas extending Python and is integrateg
through a loadable module (shared object), dynamicallgiedaat runtime by the Python interpreter.

Execution For reasons of transactional control and usability, a ezfee to the instantiated C++
memory interface is bound to a predefined variable at eactation of an IMP listener. Please note thal
thesel f pointer can regularly be used as internal object referemoeder to share variables between
the various actions. The C+Htvent class has been wrapped for Python, and is made available|as
another predefined variable in order to reference the eVvextjtist happened from within a python
listener method. While an action has no return value, it naggeran error, which is passed through to thg
calling C++ code in the event manager. Like other eventrists, intrinsic processes are called when a
event matches a specified subscription. Due to the intrablwcapping procedure, this becomes a simpl¢
method call into the Python virtual machine. When all reggistl listeners have successfully complete
their computations, the XML information is written to thepository backend.

For more information on the virtual machine architectureted active memory and more details on
extending/embedding and the rationale behind the choiBeo$t.Pythoms a wrapper generator, please
see the corresponding technical report[Liit04].

oD

The Database Management Layer

The lowest layer of the active memory is a persistent stoeag@e for multi-modal information. The

data management subsystem wraps two individual databases$or XML-encoded textual data and
another one for binary-encoded attachments such as crappge patches which are stored for long-
running subsequent classifier training. Besides realiaimgference counting and linking strategy
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for binary attachments of memory elements, the databasegearserves as a wrapper facade that
encapsulates database management functions like opeming@sing of data containers, deadlock
exception handling etc. from higher-level layers. Most arigntly, it is responsible for creating
transactional contexts provided to the aforementionedidaste actions, which access the underlying
database natively and support potential database rokback

Coherently with the other models in the IDI architectures ttocument-oriented data model was
adopted in the memory model, too. Integrability and modifiighwere a deciding factor that also had
to be taken into account for the technical design and evaluaf the data management component of
the active memory. It quickly became clear that databaspastivas needed for the sake of re-use,
e.g., with regard to the aforementioned support of traimsast and the available resources for the
project in order to be able to realize the concepts of the nmgmadel.

A native XML database concept was chosen as the technice bthe memory model. This has
been beneficial for several reasons:

e Document model Native XML databases directly supported the XML-basedadabdel as
XML documents are fundamental units of (logical) storagkiclv means that there is no com-
plex and potentially resource consuming mapping betwesnaitdhical and, e.g., relational data

models [MKO2] necessary.

e Schema independenc&iven the free data model as described in Sedfich 6.2, wdiitis at
general applicability for cognitive systems, it would beunterproductive if the information
mediated via an active memory was required to conform to &icepredefined structure in
order to get persisted. Luckily, native XML databases uUgualpport schema independence,
which frees developers from the burden to provide datatzwnsata for every type of informa-
tion exchanged via the memory model. This greatly improkesactual usability of the active
memory by minimizing knowledge and effort needed for daselrmanagement.

e Query languagesTaking up the general concept used in the observation modahory ele-
ments that match a particular set of content-based condittan be retrieved in native XML
databases either by XPath or XQuery statements. This sufggatontent-based declarative
queries already realizes the required associative lookupemory elements within an active
memory space.

As the Berkeley DBXML supports all of these requirements &gmtures high performance, this
database was selected as backend storage for the activeynérsimg this database had the additional
benefit that the handling of binary attachments was fawlitdoy the Berkeley DB non-relational data
store, which is itself a dependency of the Berkely DBXML ahdrefore represents no additional
dependency for the active memory. The active memory realizéinking mechanism for binary
attachments that is based on RDF descriptions [KC04]. Asnabedded database, the Berkeley
database libraries link directly into an application, kin contrast no complete database server. Its
therefore small footprint permits an efficient implemeiatatof the active memory server, based on
the introduced event-driven networking infrastructuréheaut any additional unwanted client/server
communication. Excerii.5 details on some of the advansgelcss of the Berkeley DBXML chosen
as repository backend.
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Excerpt 7.5: An Embedded XML Database as a Basis for Active Mmory Spaces

The Sleepycd Berkeley DBXML [SIEO6] (BDBXML) is an open-source datababat provides the
technological backend for the memory part of the IDI arditee. It is packaged as an embedded C+
library and supports transactions as well as multi-thrd@h@ironments. In contrast to classical databage
servers it offers only core features and is not a completeesapplication. The Berkeley DBXML stores
XML documents directly, without mapping them to anotheradaiodel. Queries are made using XPatl
1.0, an additionally included query optimizer utilizes mdefined indices. Indices are specified using
the names of tags, without reference to a schema and can bd,adthoved or modified dynamically at
runtime. While for the implementation of the memory model Berkeley DBXML was used in version
1.2, recent versions support the full XQuery recommenda®query language on XML data - besides
other improvements.

Although a number of different database approaches wetedtehiring the initial evaluation phase,
which was performed in early 2003, e.qg., also relationadlbases such as MySQL, it turned out that the

BDBXML provided an excellent match for the realization oétbersistence features of the active mem
ory. Besides taking credit for the active memory concepthigynhakers of the DBXML databdkéurther
usability experiments were carried out, which we additiiyr@ported to the broader public [LWD4] that
underlined the suitability of this approach.

However, utilizing an embedded database comes with cectasts. For instance, with the Berkeley
DBXML, the developer is responsible for reacting to dealifocThese can occur when two concurrent
actions each hold a lock on a database page the other actals mext. When encountering such g
dead-lock, DBXML will throw an exception and the typical otian is to retry the action immediately,
giving up after a certain number of retri€s [Ber04]. Thishis approach taken by the active memory. I
is transparent to the client developer, who will only sdeaé abaseExcept i on after all retries have
been failed.

=+

U

aSleepycat Inc. was acquired by Oracle in 2007.
The active memory concept won Sleepycat's DBXML innovagiovard in 2004.

The memory model extends the set of interaction patterrsepted in the previous section in two
directions: on the one hand, a set of interaction operafimyEred by tuplespaces permit distributed
coordination through generative communication. On therwktand, this paradigm is coherently in-
tegrated with the so far presented models of the IDI approbchddition to the regular event-based
communication, it providemediatedevent-driven communication, resulting in a new type of ¢éven
that extending regular ones by additional semantics basetieostate of the corresponding mem-
ory elements. Therefore, distributed interactions candoeldly composed out of the set of memory
actions and the corresponding events. While this is stilesample of implicit coordination, the
following section introduces a method for external coaation of participants.

7.4. Coordination Model

In addition to providing patterns for interactions betwémdividual components on an architectural
level and utilizing functions of the observation model fewvdloping implicit coordination strategies,
an explicit coordination model for event-based componenteeded on a system level. The avail-
ability of a system-level coordination mechanism that peyrmodeling of complex component or
service interactions yields functional component impletatons that are easier to develop, integrate,
test and reuse.
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The coordination model thus not only contributes to the fiana@l requirement of modeling and syn-
chronizing high-level system interactions but also suggptre fulfillment of some non-functional

requirements originating from the software engineeringeas cf. Chaptefl5 such as modularity,
declarativity and testability.

Additionally, explicit coordination facilitates the irgeation of modular event-based cognitive systems
for the following reasons:

e Control of Asynchronous InteractiofVhile in general, control flow is highly asynchronous and
decoupled, arbitration and hardware access demand foesegd and coordinated execution.
Realization of such arbitration processes is eased by aigawreisable coordination model.
In the VAMPIRE project, an exemplary use cases is multi-rhggeraction control as will be
exemplified in Chaptdd 8.

e Complex Event Processingvhile this term denotes a complete field of research in its oght,
the proposed coordination model yields a simple but yet iggrariant for evaluating complex
event sequences. The coordination model excels in thisddéggond what is possible with the
introduced observation model due to its ability to combimgiviidual subscriptions exploiting
the full expressiveness of Petri net semantics. Thus, aagihteful event sequences can be
matched and new higher-level events generated.

e Component Adaptatiorinstead of developing components which are very specifctduheir
coupling to expected system states, often mirroring higblyplex system state models, com-
ponents can be further decomposed if their applicationiipeiaptation is done externally.
Hence, it is possible for component implementations to nfaker assumptions about their
operational execution context as the responsibility fapkeg track of complex stateful inter-
actions is separated. While a flexible configuration systeay permit this with regard to static
properties, the coordination model achieves this in terhtisedr runtime dynamics.

Therefore, this section introduces a simple, yet expresgiproach based on Petri néts [Pet81] for the
modeling, analysis and execution of complex tasks or adimtegies, which seamlessly integrates
into the IDI architecture. Petri nets are well suited as falromderpinning of the coordination model.

They extend classic state machines by the ability to reptesencurrency. Thus, they are well
suited for modeling structure and behavior of parallelritisted systems such as discrete event-driven
architectures. Within robotics research, petri nets wieeady widely used for different purposes, e.g.
to model tasks and actions under temporal constraints [MP®iOfor behavior selection [KCKPKD5].
Utilizing Petri nets, a formal model can be developed thatlmaindependently tested, which permits
a declarative specification improving changeability arat tims at high utility in terms of execution
performance.

7.4.1. Formalizing Coordination with Petri Nets

The coordination model utilizes marked petri nets that atereled by guards, which couple state
transitions in the petri net to external events that are mkseutilizing the features of the IDI obser-
vation model.
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In general, a petri net is a bi-partite, directed graph, Witiensists oplacesthat may contain tokens,
transitionsand directedrcsthat connect places with transitions. The so-caffedkingdescribes the
current system state by the number of tokens which are prasére places at a given point in time.
The current marking of a petri-net corresponds to the actiaé of, e.g., a modeled action sequence,
robot behavior or other dynamics aspects in a cognitiveegystComputations are triggered by the
firing of transitions

In the subsequently introduced variant of Petri nets, tivggfiof a transition is made dependant on the
evaluation of ayuard function.

Definition [ZT proposes a formal description for the type ighHevel petri net developed for the
coordination model that integrates ordinary petri netwiite match function of the observation
model through the aforementioned guard function.

Definition 7.7 (Guarded Petri Net) A guarded petri net in the IDI coordination model is a six{aip
GPN = (P, T,1,0,g,My) where

e P ={p1,p2,...,pn} is afinite, non-empty set of places;
o T = {t,to,...,ty} is afinite, non-empty set of transitions;

e [ = P x T represent arc connections from places to transitions wittaasigned weigh; if
an arc exists fronp; to t;, theni;; = w, otherwisei;; = 0;

e O =T x P represent the arc connections from transitions to placdh am assigned weight
w; if an arc exists from; to p;, thenoj;; = w, otherwiseo;; = 0;

true, iffi;; =0
e g: 1 — {true, false}, whereg((p;,t;)) = { true, iff i;; > 0 A match(s;j, Dx) # @ and

false, iffi;; >0 Amatch(s;j, Dx) =@
p € P, tj eT,

o M. = (mey,Mme,,...,m,) represents the marking of a petri nef\/. is a vector in non-
negative integefP|-space. The-th element of a markingn.,, specifies the number of markers
in placep; at time instant.. M is the initial marking of the net;

and P N'T = @ while match(s;j, Dx) represents the matching of a trace of received event notifica
tions Dx against a subscriptios;; registered at the observation model. The flow relatioean be
defined agd” C 1 U O.

In contrast to colored petri nets_[Jen91], which featureilsinguard functions that are defined on
data available within an associated place, the approaahdoemples petri net execution to external
information through the binding of input ar¢g;, ¢;) € I to regular IDI event subscriptions.

Input arcs,(p;, t;) € I, of transitions areatisfiedif the marking of the input place corresponds to the
weighti;; of the arc which specifies the number of tokens that this answmes from its input place.
In ordinary petri nets, the fulfillment of this condition faHl input arcs of a transition wouldnable

it, eventually yielding its firing.

However, the IDI petri net model features a slightly more ptanx firing rule. It changes semantics
of enabling a transition and adds a precondition to this lemadnt. This additional step is termed
activationand is described in Definitidn1.8.
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Definition 7.8 (Extended Firing Rule) IDI guards add an additional condition to the process that
decides whether a transitiat) € T'is firable or not:

1. Anindividual arc(p;,t;) € I with p; € P is activated by some markint/., denoted)..
(pl,tj) iff Z'lj <=My,

2. A individual transitiont; may then subsequently be enabled by some markingdenoted
M. w» t;iff ij; <=me, ANg((p1,t;)) = true|p € P,1 <1 <n.

3. Iff M. » t; thent; may fire.

This definition formally describes that once a sufficient kivag is available in a place that is attached
to an input arc of a transition, this arc is activate&ktivationin this context means that the guard
function for this arc is constantly evaluated in each prsicgscycle. Thus, the subscription that is
attached to this guard is itself dependant on the markinigarPetri net.

Only the set of notification® x that is retrieved since arc activation and as long as thesponding
place is satisfied is matched for this listener. This is paldirly important as not all listeners are
context-free and often only provide meaningful semantidhé context of a modeled state.

Thus, the corresponding transition can only be enabled thecplace’s condition is fulfilled and the
specified subscription has matched one of the events thatreegived in the observation model since
its activation, fulfilling the additional guard conditiolf.a transition is enabled and subsequently fired,
it executes a list of registered action callbacks, which majude the generation of new events that
are sent to other system components. Thus, the effectedjebam system behavior is bound to the
observation of external events, which are evaluated indinéegt of the current system state.

This is the fundamental concept that couples the execufitmeaspecified high-level petri-net model

to the overall state of a system. If all input arcs of a tramsitire satisfied, the attached transition is
enabled and the marking can be propagated to following btatgplying the equation described in

Definition[Z3.

Definition 7.9 (State Transition) If a transitiont; < T fires, then the marking/. is changed to
M. by the iterative application of the state transition eqoati

Mey1), =Me, — i+ 0|1 <1 <n

7.4.2. Development, Analysis, and Execution

Figure[ZTll depicts how a petri net-based coordination ipdeess is coupled to the overall system.
In terms of the IDI architecture, an instantiated petri netsi represents a complex service compo-
nent that observes events by subscriptions which are eegtstlynamically upon evaluation of guard

specifications and that generates new events as soon dsdrenfire.
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Figure 7.11.: Observed events yield in firing transitions, which in turnyng@nerate new events that modify
system behavior. By utilizing a petri-net based approache@ent-based control loop from
perception to action can be modeled and directly instaatat

These events result from the aforementioned action segqaehat can be attached to any transition.
The library that realizes the coordination model providesumber of reusable basic actions based
on the patterns provided in the interaction and memory nsosleth as (a-)synchronous request-reply
communication, or active memory access.

Additionally, it is possible to exchange generic data itemesoded according to the document model
through a pre-defined local blackboard or to perform anyoacti their implementing classes are
derived from a basiéct i on interface.

An example of reusable actions generally applicable amciamions of the service management func-
tionality available in the IDI architecture. This allows finstance to restart or reconfigure a compo-
nent, which realizes these management event handlers.

Figure[ZIP shows a screenshot depicting a fragment of thiergd model that handles user inter-
action in the VAMPIRE assistance system, which will be diésdt in more detail in Chaptél 8. The
screenshot shows a session in erkflow Petri Net Designdiho05] (WoPed). A tool like Woped
facilitates the interactive development and testing ofi mets, even without other system components
running. Besides invoking transitions manually or througplaying of observed events, petri nets can
be analyzed for their logical soundness, e.g., with regarddchability or liveliness IMFEP06].

The realization of the coordination model permits a fornmal declarative specification of net struc-
ture and guards as well as the attached actions in an ajppticaitthe XML-based PNML document

format [WKO3].

This provides an avenue for extending petri-net coordimathodels at runtime by new places and
transitions. The memorization of PNML models in an activentogy space permits a dynamically
reconfiguration of instantiated petri-net execution eagin

Further examples for the utility of modeling system behawiith petri-nets will be given in Chaptgl 8
along the explanation of the VAMPIRE system architecture.
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Figure 7.12.: Interactive modelling and simulation of Petri nets with \WdThao0%]

7.5. Domain Model

Whereas the memory and coordination models provide essénictions geared at cognitive systems
developed according to the visual active memory paradigey &re still rather generic and domain
independent as the other IDI models, too. Due to the facttti@atDI architecture shall be usable
across the broad range of scenarios in cognitive interadgohnology systems, a one-size-fits-all
approach is neither desirable nor feasible. Thus, the okigrg aim of the integration architecture is
to easily support the development of different domain dpegiodels.

Even so, the functional services already integrated weHEh architecture, supporting specific func-
tions in the domain of cognitive systems, e.g., a face reitogrservice [Lan07], represent a type of
domain support available for reuse in other system instanéde aforementioned face recognition
component can be easily integrated into both a robotics dsaweognitive vision system, which
further eases the development and prototyping of novebktgbeomposite services.

However, domain-specific functions from the perspectivamfintegration architecture and as ex-
plained in Chaptell5 must rather provide features on a téobival level, e.g., reusable datatypes
and algorithms or support for computer vision toolkits. Wt is non-entertaining to describe all
functionality that has been integrated in a reusable wayherbasis of the IDI Architecture, the fol-
lowing sections shall highlight some prototypical exarsgta available domain support in this sense,
each of which can coarsely be classified in one of three typéparticular interest in the context of
the VAMPIRE project was to support different computer uistoolkits, which is the reason that the
adapterplugins developed for the lceWing [LNWWHEO6] prototyping @omment are briefly described
as an example for this class of domain support, wiyite librariesand otheidomain specific libaries
shall only be mentioned shortly.
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SCEME_STATE {1+

Figure 7.13.: Graphical visualization of an XML schema used in the VAMP[R&ect. It specifies the
syntax of valid XML documents which describe memorizecdessiartes.

7.5.1. XML Type Libraries

As introduced in the document model, cf. Secfiod 6.2, XMLuloent types are the basis to describe
event content transmitted, stored, and processed by th@usaservices in an IDI-based cognitive

system. In order to facilitate the integration process,s §itep is thus to develop XML vocabularies

such as the Computer Vision Markup Langudge [[IF04] (CVMLhjeh represents a similar approach
developed in the context of Psyclone, cf. Seclion’.3.2.

A suitable formalism - among other approaches like Relax¥s specifying an XML language such
as CVML areXML SchemdBDGUO1] specifications. Figule—ZIl3 visualizes an XML scldior the
description of a scene state at a given point in time as dpegdlearly within the VAMPIRE project.
Schemas were defined for events generated by individuatesrsuch as head pose tracking, action
recognition and many others. Similarly, in the COGNIRON Eigdject a large number of different
schemas for symbolic robotic data (e.g., states, evenjsctsb etc.) were developeﬂ
yielding a formal data model and permitting runtime validat

While XML schemas are useful to specify and validate impletagon-independent interfaces with
regard to certain document and thus event types, diffeamigiulage-specific libraries are available that
contain these event types, thus their XML marshaling andiplysadditional utility functions. These
libraries often translate events with binary attachmemits & domain specific API that is accessible
for developers and beyond what is generalizable in the IBhigecture. A typical examples for an
event type that is commonly provided by XML type librariee anage events, which encapsulate one
or more images grabbed by an image service and translatavttaata into the specific representation
needed in a particular technical environment.

'See alsoht t p: // WWw. cogni ron. or g/ W Ki / Dat aStruct ures
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These libraries are usually shared across single org@msabr between a smaller number of col-
laborators in a more closely controlled integration coptek Chaptel 3. Even so, in contrast to
the mandatory use of IDL libraries with stubs and skeletankreown from operational middleware,

developers are not obliged to use the XML type libraries oteotto access event information. Thus,
a different process may interpret an event notification iiffarént, possibly more suitable way, e.g.
by evaluating only specific fragments of the document caetiin a event notification, which allows

for developing very generic and loosely coupled proceskescbordination, forgetting or anchoring

processes, which do feature any compile-time dependengpetcific event types and corresponding
libraries.

Due to the fact that the exchanged information between imak services in a system architecture
is often application specific, no extra effort was made topnath functionality that is available in a
complex domain specific library such as OpenCV. Howeverhasffort to encode a necessary type
according to the IDI document model is rather low, necestgrgs were added on a case-by-case
basis to the domain model of a particular application whexded.

7.5.2. Application Adapters for Computer Vision Tools

Application adapters retrofit otherwise monolithic stdoda applications into a larger system archi-
tecture. Due to the anarchical or at best oligarchical nattign context in experimental cognitive
systems research, cf. Chagiér 3, the development of adaptarcommon task in collaborative re-
search projects. Adapters permit the integration of ajreadsting legacy applications that are not
based on the IDI architecture by means of, e.g., source-gumtéfication, buddy processes, library
replacements and other approactes [Bir05]. Most of thesethamésms are tied to certain applica-
tions, sometimes even to particular component configuratimcreasing coupling and leading to poor
reusability in other scenarios. In contrast, the IDI amttiire supports the development of reusable
adapters.

In order to extend the ideas of information-driven inteigrataind provide reusable adapters in the do-
main of computer vision and pattern recognition, a previoasonolithic computer vision toolkit was
refactored. This toolkit, IceWind TL6m08], was originatiigveloped as an infrastructural contribution
of a dissertation on object learniig [Ld04]. Thus, whileastmodular toolkits like Ned[Rit], which
has its roots in neural networks research, are well integnaith the IDI concepts, too, the following
paragraphs sketch the approach we realized for the modeNatabment of computer vision services
using a plugin-based architecture.

The Graphical Plugin Environment IceWing

IceWing is a graphical plugin shell optimized for the spkn&eds arising in the field of vision system
development. In contrast to the desired level of loose dngpmin the system level, vision components
may often need to run in a closely coupled execution cont€irespondingly, encapsulation and
communication overhead should only have a negligible ihpacthe overall execution speed. Largely
the same as for the overall architecture, a vision toolkdgusth help to develop and optimize the
single components as well as integrated subsystems. Bherefasy and fast introspection of any
intermediate results as well as easy and flexible modificaifalgorithm parameters at any time are
key points. As will be explained subsequently, these requénts are well covered by IceWing.
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Figure 7.14.: Exemplary screenshot of the IceWing image processingitasitypical representative for
a domain specific software development environment. lagW@lows for flexible local cou-
pling of image processing plugins and interactive protatgp Generic infrastructure plugins
are provided by the IDI architecture, yielding versatiledareusable application adapters for
computer vision subsystems.

Plugin Interaction  Figure[ZI¥# shows a typical runtime session with the graphplugin shell.
IceWing itself provides solely an administrative core, @itially minimal user interface and a variety
of support functions for tasks like user interface cregt@mmmunication and introspection. The real
functionality for the task the user wants to solve with Icae@vis provided by dynamically loaded plu-
gins, which are realized as standard shared libraries.hearamponent designer, plugin development
is as easy as deriving from an abstract base class and immtiegn@processmethod that carries out
computations on data passed to the method by IceWing. Dthigge computations plugins can take
advantage of other external libraries, for example Open€RAVL for enhanced image processing
functionality. Plugin development can be done in C and C+ddifionally, bindings for the scripting
languages Python and MLAB are available.

For interaction between plugins two distinct communigapatterns are provided, which actually fea-
ture similar semantics as the patterns introduced in SH€Zil, but operate on an in-process level in-
stead of the system levé[[SSRBO0OQ]. On the one hand, a réatizaf the Observer pattern [GHJVI95]
implements a process local variant of the Publish-Subsquditern while on the other hand a func-
tion storage and retrieval interface for procedural comigation realizes a form of local request-reply
pattern.

Data items communicated via the observer pattern are exs in lceWing by a reference to the
actual data and a stringified identifier. This allows to exg®any data without any restrictions and
without the need of any preprocessing. Howewgepperative pluginLWHFEQE] are developed ac-

cording to the information-driven paradigms introducedhwhe document model in Sectibnl.2 and
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thus technically process XML documents with binary attaehts. Plugins observe the storage of any
number of such data items. If an observed data item is stoyeal different plugin, the observing
plugin gets called with the new data after the storing pluwis finished its work. The data itself is
not copied during the complete process, but managed byerefercounting, allowing a fast commu-
nication between plugins even for large images. The nowingnplugin may again store any number
of new data items with equal or different identifiers and mtagréby itself invoke other observing
plugins. In contrast to the IDI system-level concepts tr@ANing architecture does not provide a
sophisticated observation model due to the stated goal ginm@ng performance. However, filter-
ing and transformation of data is easily possible as plugiag insert a transformed data item in the
processing loop.

Besides the data driven observer pattern plugins can mavrig number of C functions under different
identifiers. After registration other plugins can retriewal freely call these functions from within their
processing steps.

While plugins are executed sequentially, they are free aat stew threads and thus perform any
calculations in parallel. At the same time more advancedmaoiie dynamical distributed interaction
patterns are possible utilizing the generic IDI infrastaue plugins.

Transparent Distribution and Integration with IDI Plugins A library of cooperative plugins
not only pays off in reusability of plugin implementationsttalso facilitates smooth collaboration
between vision researchers on the one hand and systemsitaiesgon the other hand.

This is achieved through a small set of generic infrastmagblugins that extend IceWing transparently
by the different interaction patterns described in Sedfigh With those plugins events can, e.g., be
observed from or published to several different IceWinganses running on an arbitrary number of
network nodes or any other service utilizing the IDI arottitee.

Listener plugins such as the subscriber plugin only needdnéigured with the subscription that
matches the corresponding informer and the identifier undech the imported data shall be made
available to other locally registered IceWing plugins. &/ieersa, informer plugins like the publisher
plugin must be configured with the specific internal identifer the data to be exported. Neither
a special meta-compiler or data-description is necessamamy implementation change of existing
plugins is needed to make use of those plugins if the data¢aerted conforms to the IDI document
model.

Following this concept, vision subsystems can be quickiggrated into larger loosely coupled sys-
tems but locally executed in a closely coupled processimiy@mment as well as transparently dis-
tributed for boosting overall performance if available ggssing resources are an issue.

Mosaicing as Exemplary Application A wide variety of plugins have been developed in the
course of the different applications, ranging from fundatakplugins that allow reading of image
streams from sources like multiple disk files, movie fileg] &arious grabbers and cameras to filter
plugins for, e.g., image smoothing, image cropping, oricotmversion, etc. Besides these, a number
of higher-level plugins for object- and action recognitamwell as visual tracking were provided by
partners in different research projects.
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Figure 7.15.: Exemplary lceWing application for generating mosaics frarnitrary stereo video camera
sequence$ [GHE04] using the presented IDI plugins. Besides providing #gitting mosaics
to other components, the IDI architecture is used here faalelizing processing to increase
the overall performanceé [LWHED6] of this service.

Figure[ZIb depicts how IceWing was used for a vision subsysh the VAMPIRE project that
generates mosaics from an arbitrarily moving stereo capwraThis use case underlined the benefits
of distributed processing and comprised individual akionis developed by different partners in the
project, which were integrated as cooperative lceWingipkigDetails of the underlying algorithms
can be found in[[GHE04]. The architectural sketch of the three stage systemawrstalong with
some results of each stage. The image service publishegredstereo images from two cameras
mounted to the VAMPIRE augmented reality device [SP04],clvhwill be described in more detall
in ChapteB.

The Feature Point Trackeplugin detects feature points in the left image of the stex@mera pair
request from the image service on demand and tracks thedmuatt A5Hz frame rate. ThBlane
Detectorplugin computes stereo matches from the tracked featurégpand the corresponding right
images. In terms of IceWing interactions, the plane daiactibserves tracking result data (via a
corresponding subscription for tracking events) and egfeed binary stereo images to compute new
planes whenever the required data is pending.

As this correspondence matching can not be done at framepatallel processing of tracking and

plane detection is essential. Once planes are detecteceimosinatching, tracking feature points

indeed allows to track the individual planes. Finally, indual mosaics are asynchronously computed
and published whenever new plane information becomesadlail

Summarizing, lceWing itself is a development tool for a mhstributed low-level image processing
which is highly extensible and already widely used withinesal research projects such as the VAM-
PIRE project. As up-to-date documentation and the softugafieeely available, IceWing facilitates
real-time image processing on several platforms. In cartjon with the IDI infrastructure plugins,
cooperative plugins are integrated transparently in fesgstem architectures utilizing the presented
infrastructure plugins.

7.5.3. Application Specific Libraries

In contrast to modular and domain specific application astapir type libraries, application specific

libraries encode a complete domain model in a target largyasged at a particular scenario. Thereby
it not only encodes the used data types but additionallygndates services behind a usually appli-
cation specific programming interface.
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An example of this class of available domain support isBeaSAIl (BirON Sensor Actuator Inter-
face)which is a high-high level Java AE’bncapsulating complex services running on the BIRON
mobile robotics platform for training and teaching purposé/hile all of these services are natively
using the various functions of the presented integrati@hitacture, BonSAI makes them available
in domain specific primitives such as sensor and actuataraaiions on different competence levels.
It provides a very robust and easy to use layer comprised bgfethe-box usable implementations
of COGNIRON functions (CF) for simple implementation of atlibehaviors, picking up concepts of
traditional behavior-based robotics or behavior-oridrdesign. It thereby eases the implementation
of sophisticated robot behaviors by young researchers eipdtsts even if they are unexperienced
in robotics systems. The goal is to allow easy access to CBGNIfunctions that enables these re-
searchers to also more easily contribute their interdiseify experience and knowledge and quickly
pour it into prototype systems that can actually be usedvialuation.

The BonSAl release has been successfullé)used and pogitiveluated by interdisciplinary students
of a winter school on human robot interaction

To commence this section on domain support, let us recabbeél@éning. As no single domain model
up to now exists for cognitive (interaction) systems, théneantribution towards domain functions is
usability of the core models yielding in different models that are jfed by users of the architecture.
The infrastructure plugins for the Neo toolkit may serve ag®ample here. As these toolkits can
then easily be integrated by others, the available domgipatishall be steadily increasing.

7.6. Summary

While the previous chapter presented the core layer of tenration-driven integration approach,
this chapter introduced five additional models. Togethey tiefine the information-driven integration
architecture that supports the actual development an@aatintegration of experimental cognitive
systems.

The resource model provides a vocabulary for conductireghation from a higher-level of abstrac-
tion. This is on the one hand beneficial for a logical problescaiposition; the introduced URI
scheme also permits to assign responsibilities for cledefinable parts of a system architecture on
different abstraction levels. Thereby, it implicitly sups a feature-driven integration approach as
presented in Chapt&f 3. For the integration architectsedfjtthe naming model provides essential
features for realizing higher-level interaction patterns

The interaction model maps well known message exchangerpafirom service-oriented and event-
driven architectures into a consistent programming mokial ts solely based on the introduced
information-driven core layer. Thus, it allows architetisuse both functional and event-based de-
composition for system design. The introduced adaptatidtems harmonize the expected interaction
profile from the viewpoint of an individual component, eig.terms of synchronous or asynchronous
programming models, thus promoting usability and flextipitif the resulting programming interface.

2sednt t pS:// code. al . t echf akK. uni - bi el ef el d. de/ bonsail |for documentation regarding the Bon-
SAI API
3the COGNIRON winter school on human robot interaction (CVRBHook place at Lausanne, Jan. 21st to 25th, 2008
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The memory model is a core feature of the information-driw@agration architecture. Besides re-
using the patterns of the event-based integration modekté&nds the basic interaction patterns in
many respects. It provides a simple but powerful model todioate distributed processes of a cog-
nitive system inspired by the tuplespace concept. How¢wersemantics of memory operations are
less strict and therefore more flexible. The active memory isodular, event-driven service with

clear communication and synchronization semantics. hjiersubscribers to rely on the additional

guarantees associated with memory events. For instan@vean is forwarded only after successful
memorization, which in turn allows subsequent synchrahizecess to this element by other partic-
ipants. In conjunction with the concept of synchronouslgaed intrinsic memory processes this
provides an extensible and effective integration servile in an event-based architecture partic-
ipants are typically not synchronized, in the memory, imiatdnotification provides an additional

form of synchronization for intrinsic processes.

From the perspective of event-based architectures, theeatiemory realizes a distributed event
infrastructure using a separated multiple middleware @ggr [MCO5]. The server part follows a
multiple intermediate broker pattern, yielding poteryial number of memory servers that partition
the overall event space into smaller fractions for whiclythet as central message brokers. Events
are only forwarded to subscribers of the memory model if they brokered via an instance of the
active memory service.

Although state-of-the-art database technology is fundaaheor the realization of this memory
model, important conceptual differences to pure databgsterss can be stated. On the one hand,
databases deal with events primarily internally insteafbafissing on communication and coordina-
tion of loosely coupled distributed processes. Thus, ththaus used in the database domain differ
greatly from the concepts applied for distributed scersd@NFQ1]. On the other hand, the semantics
attached with the externally visible interfaces diffemfrthe operations defined on tuplespaces.

The persistence mechanism of the memory also bears sonmhlasee to a data-centered architec-
ture like the blackboard. However, the memory itself doesne@d a central control component, as
is usually assumed with blackboards [BMR596]. Other diffiees are more important: Where in
classical blackboards the topology is rather fixed, it isaghgit in active memory systems. Also, the
memory uses the more scalalsignal/querymechanism to pass data instead of direct access, which
was one of the critiques of the naive implementation of tiseiai active memory concept. In black-
board architectures, data sharing for controlled compisnisremphasized, whereas in the memory
the emphasis is put on notification betweérdependentomponents and on persistent storage. The
envisioned linear scalability of the active memory modeklgnt space partitioning, detached noti-
fications and the IMP virtual machine architecture provideagenue for a scalable implementation.
If state-of-the-art database technology and the prinsipliethe event-based IDI approach are also
considered, the objective of an efficient virtual shared wsnarchitecture for cognitive systems is
achieved.

Furthermore, within the different research projects whkesactive memory has been applied so far
for integration and coordination of cognitive systems, e@tandard patterns emerged on the basis
of the introduced memory model and its fundamental oparati®lthough many of those might be
specific, a current research hypotheSis [H508a] is that ediese are applicable to a broader range
of systems and scenarios.
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However, many complex event-based architectures suffen the fact that component coordination
is implicit. To compensate for this, the coordination modéloduces a standard method for dealing
with the asynchronicity inherent to the information exapparn the IDI architecture, permitting the
modeling of controlled arbitration in cognitive systemsieTaim of this model is to permit a declar-
ative and testable specification of the coordination sjiate Hence, an extension of Petri nets has
been presented that integrates coherently with the IDI tsodtenot only permits to develop expres-
sive coordination strategies but also yields a form of caxgvent processing component. Last but
not least, an external coordination service eases the ingoigation of components, which permits
the development of reusable generic services that are sirated in a scenario-specific manner by
coordination models.

As the final contribution of the IDI architecture to the regments identified in the first part of this
thesis, the available types of domain support were exglainvghile XML type libraries are useful
but not necessarily needed for integration in collaboegpikojects, the main contribution of this thesis
in terms of domain support was to provide generic infrastmec plugins for an existing computer
vision toolkit. While this toolkit can be used for the devahoent of high-performance, real-time
computer vision services, the infrastructure pluginsmdses versatile application adapters that allow
to integrate developed applications into larger systems.

To commence this section, let me briefly refer to the requaspects as introduced in Chapér 5.
The IDI architecture largely fulfills most of the requirent®nwith a particular focus on functions

for information management, distributedness and cootidimaHow these functionalities have been
applied to research systems is the main focus of the follpwart of this dissertation.
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Part Ill.

Experimental Evaluation

The main contribution that is presented in the third parthd thesis is the augmented reality assis-
tance system that the author cooperatively developed iWAMPIRE EU project.

The various other VAMPIRE systems developed prior to thisvex as an iterative testbed for the
presented information-driven approach. Besides expigitie utility of taking “the human in the
loop”, this chapter further argues for the usefulness ofpifesented approach for coordination and
integration of experimental, distributed cognitive sysse

In order to underline the claim that information-driveneigtation is a more general concept and can
be applied to different application scenarios, the secdwagbi@r in this part will briefly report on the
application of the framework and the design concept in otheearch projects, particularly in the
domain of cognitive robotics.
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8. The VAMPIRE System

The vision of the VAMPIRE research project has been to dgvsystems capable of understanding
what they see based on what they have previously memoriflediiog the concept of a visual active
memory as introduced in chapfdr 2. Throughout the projectinaber of prototype systems were co-
operatively constructed involving several partners in@ggaphically distributed and scenario-driven
research process (cf., Chagdikr 3). This integration psooastributed at the same time to the iterative
improvement of the integration approach described in tigésis. All demonstration systems, e.g. the
office assistan{]BHWS04], combined several perceptuatgsses in a coherent and usable system.
In addition to perceptual features, techniques for théengdt and interactive learning of new visually
perceivable artifacts have been prototyped in the VAMPIREdnstration systems.

Those systems were primarily build along the lines of twdili$ scenarios: sports video annota-
tion [KCKO7] and wearable AR-based assistarice [SHWPO07¢ fbbus of the following sections is

on the assistance scenario as it served as the fundamesitalsie for the introduced IDI approach.
At the same time, the software design and integration of #meices used in the final demonstra-
tion system within the VAMPIRE project is one of the main adnitions of this dissertation (cf.

[WHWSO086,[WWHO06]). The developed assistance system andqu®\prototypes were demon-
strated at various occasions, e.g., the EU IST Event 2004 Hague, NL as well as on other
international research workshops and conferences sutte &6Y¥S 2006 in New York City, USA.

The software architecture of the assistance system wasregotesl according to the concepts of the
introduced information-driven integration approach amtiased on the initial implementation of the
corresponding software framewofkK [WEB$04]. It combinespkrceptual processes that were coop-
eratively developed by the various project partners as agethe ones that were created at Bielefeld
University into a coherent architecture based on the gplasiof the different IDI models introduced
in the foregoing chapters. The IDI approach and the undeglgoftware framework provided an
avenue for the efficient collaborative construction of d-mearld visual active memory instance.

This chapter first introduces the scenario of the augmemntelity based context-aware assistance
system. In order to manifest the concepts introduced sthiasubsequent section explains the imple-
mented instance of a visual active memory focusing on theotidee information-driven integration
models. Last but not least, some results of a user study @illiscussed that was conducted based on
the available integrated system which also allows to dramclesions on the utility of the software
architecture when applied in a systemic context.

8.1. Augmented-Reality for Context-Aware Assistance

The aim of mobile assistance technologies is to supporsusgrerforming complex tasks or provide
them with additional information either previously leadniy the system or dynamically retrieved
from external knowledge sources.
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«— Hybrid tracking unit consisting of an inertial sensor
(XSens MT9) and a custom CMOS camera for pose
tracking.

— Custom stereo video see-through set combining two
Fire-i firewire webcams and a head-mounted display
(I-visor 4400VPD HMD). The webcams are also used
for scene analysis as well as object and action recogni-
tion.

Figure 8.1.: The assistance system: Hardware setup of the AR gear. Itdesdesigned and assembled by
Graz University of Technolog/ TSP04].

Information relevant for a particular situation must be madailable to the user in a context dependent
and unobtrusive manner. Future real world applicationshimigclude industrial assembly, remote
teaching, multi-user collaboration and prosthetic mendewjces for personal assistance. Prototypical
guestions answered by such assistants are for instaiberé have | put my keyser "How do

| construct this assembly? In the VAMPIRE mobile assistant scenario the user wearsodile
device that - by means of Augmented Reality (AR) - integrdties in the processing loop to close
the perception-action cycle as explained in Sediion . Phereby, human-computer interaction and
visual processing is tightly coupled and it is beneficiat $yatem and user share the same view. By
this means, the AR device’s sensory equipment enables stensyo take the perspective of an acting
human as well as to provide feedback.

In order to exemplify these concepts and to demonstrate haswevaluate the ideas of a visual active
memory and the presented integration architecture, wadenasl an interactive scenario that is easily
explained: the VAMPIRE cocktail assistantPrior to the presentation of the resulting information-
driven software architecture, the utilized AR platformseg as the hardware basis for integrating
the human-in-the-loop and the desired functional propertif the cocktail assistant system will be
introduced.

8.1.1. An Augmented-Reality Interface for Human-Machine |  nteraction

The first requirement for a mobile augmented reality (AR)ickewseful within the VAMPIRE appli-
cation contexts is tprovide informatiorabout its environment to the active memory components. As
the system shall be able to assume the perspective of thenhuses, video images from his or her
perspective need to be recorded and forwarded to othettectimial components. Furthermore, as the
system is not stationary, information about the directibthe user’s view for (self-) localization and
head pose recovery need to be made available, which can levedhe.g., by applying vision-based
tracking methods or by using inertial tracking devides [SIPIWY].
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Last but not least, the system shall allow for natural lagguanderstanding, hence, a microphone is
needed to facilitate speech recognition.

The second requirement for an interactive device géoide feedbacto the users of the system. This
is usually done via a head mounted display (HMD) in mobilenaeigted reality. In such a scenario, the
perceived or simulated environment together with additidextual or graphical information overlays
is projected into the user’s field of view. Additionally, atixe feedback can be provided to users
via some sort of sound output in order to achieve multi-maa&raction. Through these functions,
an AR-based human computer interface effects a rich bétiingal communication channel between
man and machine.

Visualization is carried out on a laptop that features anr@iegraphic chip (nVidia Quadro) with
hardware supplied stereo graphics rendering for highigualigmented reality. The custom stereo
video see-through head mounted display (HMD) utilizes lostcoff-the-shelf components such as
two Fire-i firewire webcams and an I-visor 4400VPD HMD. Adlitally, attached earphones account
for the desired non-distracting audio output.

Hybrid tracking is performed with a custom CMOS camera anihartial tracker. This tracking sub-
system is run on a custom mobile single board computer (SB€&3ides the SBC itself, the tracking
unit includes a power supply (AC / DC) serving all the perigthérardware of the mobile AR sys-
tem such as HMD, firewire cameras, CMOS camera and inertiedose It utilizes a custom-made
Fuga 1000 based CMOS camera (‘i:nex’) featuring an USB2faxde for extremely fast acquisition
of small, arbitrarily positioned image portions typicaliged for tracking of corners or other local
features with small support regions [SHWP07].

Figurd8.1 depicts the prototypical realization of suchralvare device as designed for the VAMPIRE
project. It was made available to all project partners argl ieen usable even for unexperienced
persons during the evaluation studies. This device as ojgzelby TU Graz[[SP04] consists of a
visualization and a tracking subsystem.

A wireless mouse may be used as an additional input deviaefarolling the system besides giving
speech commands via the attached microphone. Laptop anat&Bke mounted on a backpack and
connected via (W)LAN to the other parts of the system.

8.1.2. The Assistance Scenario

In the course of the project, we considered a scenario timeetchat the realization of an interaction loop
providing context aware assistance to users carrying aryday tasks in real-world environments.

In this scenario a user is sitting in front of a table and isnvgpthe AR-gear as introduced above. The
user inspects or manipulates objects, e.g. beveragespcuiser rigid objects, which are placed on
the table. Based on the multimodal interface of the AR-geasudlined above, different capabilities

were integrated that allowed us to design a number of assistase cases.

Exemplary high-level capabilities are object recognitemmd learning, visual tracking and action
recognition as well as task models for the supervision abacequences. Visualization capabili-
ties were developed allowing the system not only to disphasyriictions but also to highlight objects
and even guide the user to referenced objects outside thenttield of view through visual markers.
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(c) Assistance: The system guides the user to the next (d) Action recognition: The blue box indicates the
ingredient (arrow on the right) tracked object.

Figure 8.2.: Screenshots of the user’'s augmented view while performiigtgpical use cases.

The following use cases were realized that exemplify thieyutf this visual active memory system:

e Interactive LearningAs shown in Figur€ 8:2(R) it is possible to teach the visetiva memory
new objects in order to achieve the desired flexibility of gritive vision system. To assist
in the interactive learning procedure, snapshots of therded views subsequently used for
training are displayed as augmentations that can be deddrd the user. Furthermore, only
the object focussed by the user is considered in the captatéap.

e Object MemorizationThe system is context- and situation-aware in its visaélin and infor-
mation presentation. Figufe 8:2(b) shows a prototypicgh@nted view of a scene including
detected objects on a table. Two objects were correcthsifiad and thus highlighted by a
green box. Perceptions with a reliability below a certaireshold are not displayed to the user.
If an object hypothesis is constantly reliable over a lontyae interval it is considered as a
stable hypothesis and memorized for later retrieval. Aodlly, the displayed augmentations
depend and vary according to the overall operational comtethe system. For instance, no
other object recognition results than the relevant oneslaoen if step-wise instructions are
presented to the user.
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e Object Retrieval Based on a computation of the three-dimensional positiwrrécognized
objects and the beneficial properties of taking the humaheroop through augmented reality,
the system is able to direct the user’s attention in the saadeyuide her or him to a referenced
object that may reside outside the current field of view asedeith the three-dimensional
arrow-like augmentations in Figufe 8.3(c). However, astanahprecondition the object that
is searched for must have been previously memorized by stersy This serves as the basic
interactive retrieval functionality of the visual activeemory and allows to provide an answer
to the questions raised in the beginning of this section.

e Step-wise Assistance and Supervisibhe system provides context-aware assistance for simple
object manipulation tasks, here the exemplary task is tobmeixerages according to a given
recipe. It guides the user to memorized ingredients, prerfgatthe necessary next step as
shown in Figurg 8.2(¢) and observes and recognizes thenaatarried out by the user, which
is depicted in Figurg 8. 2(d). As a possibly complex recipkréken down into a sequence of
actions that are carried out with specific objects and asthes stored in corresponding task
models, the system is able to dynamically check the coresstof an individual action and the
involved objects.

On the one hand, the scenario highlights the purpose of alvésiive memory. At the same time,
it demonstrates the concepts of placing the human insidprdeessing loop of a vision system that
would otherwise lack the necessary embodiment to modifyetiironment for its purposes, e.g. to
acquire views from different perspectives in order to leamew object. On the other hand, the im-
mediate feedback on visual processing results is prevaldis scenario making the ongoing system
behavior transparent to the user and augmenting his or hétyravith the results of an interactive

retrieval process.

These are the basic functionalities our demonstratioresysieeds to provide in order to qualify as an
instance of a visual active memory. However, which comptsermere used for the actual realization
of this system and how all this is designed and integrateddas the concepts of the information-
driven integration approach shall be explained in the falhgy section.

8.2. An Information-Driven Software Architecture

The following sub-sections describe the architecture efrésulting context-aware assistance system
from a functional viewpoint, a development perspectivegraise oriented and a physical viewpoint.
Subsequently, a number of interaction scenarios will begireed that combine different aspects of
these views. This style of presentation is loosely inspingdhe 4+1 model of software architecture
introduced by Kruchten et. al[Kru®5] but stays on a rathghhtével of abstraction in order to provide
a good architectural overview.

The developed assistance system serves as a proof of cdocepé integration architecture pre-
sented in this thesis. While the functional building blottkat allowed the realization of the different
use cases for the context-aware assistance system wepeinti#tly developed by the partners in
the VAMPIRE project, they were incrementally integratedhathe IDI approach. The overall sys-
tem functionality results from the interplay of the diffat&eomponents managed by the coordination
functions of the introduced architecture as will be expgdiim Sectiofi 8.2]15. Implicit and explicit co-
ordination is thus an important raison d’étre for the pregbimformation-driven integration approach.
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Figure 8.3.: lllustration of the functional architecture of the VAMPIRESsistance system. Processes coarsely
map to different layers of the visual active memory. Absimadevel of information is increas-
ing from bottom to top layers and higher-level componentsmially make use of lower-level
information while this is not the case vice versa.

However, before entering this discussion we shall have secltmok on the individual components
that were integrated into the overall system.

8.2.1. Functional View

Figure[8:B depicts the functional architecture of the #&ste system. The depicted processes can
be classified into object recognition and learning procgstte 3D vision and hybrid tracking sub-
system, visualization and multimodal interaction proesssaction recognition modules as well as
hypothesis anchoring processes. All processes are magingfithe functions of the IDI architecture,
on this level in particular of the coordination and the meymaodels. While the former, e.g., manages
the aforementioned task models used for supervision anstasse, the latter is the central method
of integration as most of the processes interact via theeantemory.

According to the conceptual layers of a visual active menmemghitecture as introduced in Sec-
tion ZZ2, the software architecture is structured siryiléeaturing three different active memory
spaces and a transient event space for sensorial data as shéigure[8B. Each of the memory
spaces features an independent forgetting process widralit parameterization. Hence, informa-
tion is usually more durable in the conceptual and epis@dierts than in the perceptual layer.

As the active memory and the intrinsic forgetting processegsundamental features of the integration
architecture and have been introduced in the previous efgphey shall not be explained here once
again. Contextual analysis is not explained here eithet has been discussed as an example for
the coupling of IMPs and EMPs in Sectibnl7.3. The functionah#decture presented in Figure8.3
permits the realization of all features important for thestouction of a cognitive assistance system.
Please note that each of these processes usually reflectsanf eesearch for itself. However, in order
to assess the capabilities of the integrated system, theimpsrtant building blocks for this scenario
will be outlined briefly. For further information, the intsted reader is referred to the corresponding
publications that describe each approach in greater detail
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Object Recognition & Learning

Objects, e.g., ingredients for recipes, play a crucial ke presented scenario of a cognitive assis-
tant. The system needs to know which object is located whedtendnich objects are manipulated by
the user. The assistance system features two differenoaiethith distinct characteristics for object
recognition: one that is robust and domain-driven but néedse trained in preface and an object
recognition and learning component that allows fast onlgieaining of classifiers. The latter repre-
sents an appearance based object recogn[fion [BBHR04] @eemp that is motivated by biological
information processing principles which are believed tdertie early visual processing in the brain.
It is constituted by a two-step procedure consisting of segation and classification.

The first step is based on the integration of different salianeasures such as local entropy, symme-
try and Harris’ edge-corner-detection into an attentiorpmdased on this map, objects on the table
are distinguished and segmented. Each segment is norohatiz&rientation and scale and a com-
bination of vector quantization and local Principal ComgainAnalysis (PCA) is applied to achieve
a dimension reduction of the input data. The final classiboatlecision is realized on the basis of
Local Linear Maps.

These classifiers can be trained with only few (about fiveedéht views of an object acquired in-
teractively by the user. The training set is automaticakteeded by including rotated and scaled
versions of the captured views. The VPL classification fiteelforms at real-time on recent com-
puters, which makes the approach feasible in online reasigtems and particularly useful for the

envisioned scenarig [BBHRD4].

For robust domain-specific object detection, we integratackll known cascaded weak classifier ap-
proach as introduced by Viola & Jonés [VJ01]. In order to mea basis for higher-level processes
such as action recognition, several cascaded classifiergrastrained. Therefore, objects typically
found in everyday environments would be recognizable upemtiisg the system. In long running cog-

nitive systems featuring a visual active memory, cascatzsgifiers could even be trained a posteriori,
e.g., if the system is not being used and thus in an idle state.

As both object recognition components typically do not gateeperfect recognition results, the visual
active memory considers their outputs as hypothesis datdraduced earlier.

3D Vision Sub-System & Hybrid User Tracking

As explained in the scenario description the system neekisaw the position of objects in the real
world to guide the user and to be aware of the current sitmat®nce the environment is perceived
only from (visual) sensors mounted to the AR gear their pmsitvith respect to the environment
must be known. Accordingly, a component for user pose eitmand tracking is integrated into the
system making use of the calibrated CMOS camera depictedjindf8.1.

The three-dimensional pose is computed from artificial taacks [CSP03] as depicted in Fig-
ure[8:4(d). By knowing the precise location of at least fmplanar but not collinear reference points
(or at least six arbitrary points) in the 3D environment aetedting their corresponding 2D image
points, one can calculate the position and orientationetdmera. The applied targets provide excel-
lent landmarks as they contain seven coplanar points ddfindte corners of the target. To overcome
deficits in visual tracking of these points, an inertial kexcaids the tracking process [RBP04].
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Landmark .
Tpose gﬂ——‘
Tobject Pioble ‘ !

(a) The position of objects on the table can be (b) Absolute trajectory of the manipulated object in a redned “pour-
computed from the tracked 3D position of the ing” action. Image coordinates of previous frames are nmatiampen-
user. sated.

Figure 8.4.: Examples of 3D pose tracking and action recognition in thegrated system.

By means of this pose estimation, the precise position aigthtation of the userg,,s. is known
(cf. B:4(@)), allowing the system to determine where the isdéooking. Hence, the 3D position
Topject Of Objects located on the table (or any other known planeearomputed by the intersection
of the view ray determined by the object position in the imag# the known table plané, .,
which allows the 3D context augmentation component to atichated 3D locations to generated 2D
object hypotheses.

Visualization & Multimodal Interaction

The AR gear realizes the interface between the user and #tensy It can guide the user visually
to certain places and provides feedback about the systéatisssand processing results by means of
visualization, e.qg., object recognition results as shawRigurg8.2(0). Since the system and the user
share the same view, the scene is really augmented by visnatets like semi-transparent rectangles,
three dimensional arrows, etc. This allows for an efficiamport of the user by the system, as for
instance instructions can be directly displayed in the fafldiew and relevant places are visually
referenced.

Furthermore, the system is able to receive input and regjfiesh the user. The underlying software
component is designed for multimodal interaction [S¢h08Javigate the GUI and control the system.
It is decoupled through the active memory from arbitraryuinand command sources. The scroll
wheel of a wireless mouse can be used to choose buttons irsraadwialogs. Furthermore, speech
input [EIn99] for labeling and more natural control, as wedl head gestures [HBS05] to express
confirm or decline in various communication situations amegdrated. By this means, it enables
interactive learning and labeling of objects, informatietrieval and overall control of the system by
the user.

An additional responsibility of the visualization and nimlbdal interaction layer is to connect the
available sensors and feedback devices to other systemocamis. In that sense, e.g., the image
server is not a memory processes but a regular IDI processéhds image events as soon as a new
frame has been captured from the AR gear’s webcams to shbdguerceptual processes.
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Hypothesis Anchoring

Components as, for instance, object recog- VPL Boost
nition only provide instant percepts of the
environment that describe the current visual X] P/

appearance of the scene. These percepts are

fed into the active memory and are trans- Fusion § ------ to Memory
parently available to other components for
further processing using information-driven
integration principles. As indicated by Fig-
ure[B5, the producer of information is not
relevant for the anchoring implementation.

e

Time

Inspired by the work of Coradeschi and Saf-
fiotti [CS0O1] a component calledypothesis
anchoringhas been developed which is de-
scribed in [Han0B] that maps these perceptsigure 8.5.: Anchoring maps percepts to reliable sym-

to reliable symbols (anchors). This is es- bols in a memory space.

sential for representing episodes over an ex-

tended period of time. For objects, anchoring compares EherZD position of a percept to assign

it to existing anchored hypotheses. This position can himestd based on a self-localization of the
cameras as described previously. Object hypotheses a@ ¢wer time if the 3D positions are close
enough to each other as illustrated in Figlrd 8.5. A Gaussiave models the probability that two
hypotheses refer to the same object (see the superimposadictrigurd 8.4(3)). For the final clas-
sification result the labels provided by the object recagnicomponent are integrated over a short
period of time. If there is no anchored hypothesis that mestch new one is created. Thus, hypotheses
are anchored over time and a specific hypothesis gains sextealiability if many matching percepts
support it. The reliability factor is included in the hype#is representations in the active memory.

>

Action Recognition

As the system should not only guide the user but also sugehitsactions, a component for action
recognition is integrated. It has to answer the questionthereghe user has correctly performed the
requested action or not. We utilize a classification apgrdssed on the two dimensional trajectory
of the manipulated object in the video sequerice [FFS04]s ttained with model trajectories of
the respective actions and copes with variations of theseldssifying them using a condensation
algorithm.

Since objects cannot be reliably recognized by the objecgm®ition component when being manip-
ulated, visual object tracking IBGDD5] is integrated toypde the trajectory of the object as input for
the action recognition itself. Whenever an object is rdjiabcognized, visual tracking is initialized
and follows the object. The robustness of the approach wiand to occlusion allows to track the
object even when being manipulated. But since the sceneadsipged by the head mounted cameras
only, it is necessary to compensate for camera movementnipueie the absolute trajectory of the
manipulated object. Based on the fact that this object ooleis a minor area of the field of view of
every frame we compute the global motion of the image frormtbgement of tracked feature points

in the background [ZGN04].
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This visual background model permits to estimate the absdtajectory by compensating the user’s
own movement. Figure 8.4{b) shows an estimated absolyjéetnay of an object when performing a
“pouring’ action. Note, that the trajectory started on the right haiak in a part of the scene that is
not visible anymore in the current frame.

Coordination and Arbitration

While the interplay of many of the presented component fonetities is based on the event-based
implicit invocation patterns in the IDI architecture as kxped later on, more complex behaviors of
the system like those necessary for supervision and assisteeed to be coordinated explicitly.

Due to this requirement, an arbitration componént [WHWS08&$ developed as part of this thesis
that is based on the concepts of the coordination model esdinted in Sectiofi.4. Utilizing ex-

tended Petri net$ [PeiB1], the functions of the coordimatmmdel allowed to develop a component
that controls the overall behavior of the context-awaréstmsce system. Its main responsibilities are:

e Assistance modelfRepresentation of step-wise task models that consisttafrasequences,
parallel actions with or without involved objects and cespending user interactions, which
permits the system to guide and supervise user actions. nBtanice, it has to answer the
guestion whether the user has performed the requestedh acta specific task step with the
correct object or not.

e Interaction modelingModeling of the interaction options that the system ofterds user in a
particular situation. Petri-nets easily permit to set uptert-dependent models that define the
space of possible actions that may be invoked through any dfirevent, with the additional
possibility to transform low-level events sequences, @itp higher-level interaction events.

e Exception handlingExceptions not only occur on a programming language lélmay also
be raised due to hardware defects or unexpected user behHEvis, the system needs to react
and adapt accordingly in order to continue its operatiom.kfown exceptions, this component
defines system level handling strategies to deal with thiasations. Sectioh 8.2.5 will give an
example that models the recovery strategy for situationsrgvthe head pose of the user is not
availabe.

e Component controlin order to embed components into a specific system coritegt,must be
dynamically reconfigured according to the overall systemtest This is an additional respon-
sibility of the control component that achieves this eitttepugh the general service control
interface or by specific means that are encoded in custondicabion model actions. An
exemplary use of this feature is the reconfiguration of tisealization components in the as-
sistance system, which provide differing visual feedbaag&dnl on the interaction context, cf.,

Figured 8.2(3) and 8.2(b).

In order to execute the various system-level actions a nurmbedditional generic and domain-
specific actions were developed, e.g., for object learnimgf, perform necessary operations such as
image transformations or the like and actually generate@a@mts in the system. Extending the sys-
tem behavior is easily possible with this approach as hagbtipetri-nets can make use of structured
transactions that are itself executed in instances of abntmponents. Concluding, the petri-net
based control component allows for easy realization oédiffit assistance scenarios.
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8.2.2. Development View

The software development process for the context-awaredstnation system was carried out iter-
atively at different geographical locations distributdbdcaer Europe with only a small number of
intermediate technical meetings that were attended sblelyesearchers who were involved in the
actual software development. Those meetings were usedd¢asd the overall architecture and find
sustainable agreements, cf. Secfion 3.3. The declayasimid the high abstraction level of the service
interfaces explained in the next section were quickly agibly participants.

Besides using the AR-gear as a common hardware platforntebigito all participants, only the
used operating system, which was Linux, and the IDI architedtself were adopted as project-wide
standards. With these exceptions, a number of differerkitecand libraries for signal processing
introduced earlier such as IceWing, Matlab, Nessy or RAVIengsed by the institutions. Due to this
technical and organizational environment, the challemigssribed in chaptél 3 had to be dealt with
in the integration process in the VAMPIRE project.

In order to permit the use of the integration architecturéhese platforms a number of specific appli-
cation adapters - in addition to the IceWing infrastructpitegins [[WHFEO0®] described in Sectién¥.5
- were developed as part of the integration effort. As othiejaat participants interfaced these with
further system components, the implementation and quigration of the different services was
facilitated, which will be explained next.

8.2.3. Service View

As introduced in chaptdd 7, the IDI architecture defines s@iseras a logical unit that represents a
high-level functionality. Every service that can actuddyused in a concrete system architecture con-
sists of at least one component implementation that previdets of or a complete functional service
interface. In the assistance system, a component implaeti@mtfeatures an external control inter-
face handling system events like start, reconfigure, ang reiquests. These services communicate
via the introduced set of event-based communication méstmariike publish-subscribe or memory-
based interaction. Individual services must be designet that they avoid assumptions about their
collocation in the same process or processing node.

A service interface is characterized by consumed and pedvayent types, the patterns they use for
interaction as provided by the interaction and memory no@efl section§712 ar{d—1.3) and their
explicit references to other system components. Whilelapdcification of a service interface would
need to state which schemas are used for event types andxgigedescriptions of subscriptions,
this information shall be omitted here for reasons of byeMiistead, this section gives an overview
of the different services which were instantiated in theésé@sce system’s architecture as shown in
Figure[8.6. However, some more detailed examples for ceutsg-cases will be given later on.

Naturally, a research system’s software architecture foeidiroken down into smaller sets of inde-
pendent services not only for functional but also for orgational reasons (cf. Chap{dr 3). During
the development of the context-aware assistance systenmben of services were developed that
can coarsely be classified in five groups according to theralvfunction. Each of these groups and
their consituting processes will be shortly described sgbently.
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Service Patterns | Roles| Provides Observes References

Hybrid Tracking PS I PoseEvents None

Visualization and RR,AM | I, L VisEvents PoseEvents, Hybrid Tracking

Interaction Service VisRequests Conceptual Memory

Image Services PS,RR | I,L ImageEvents ImageRequests | Visualization and
Interaction Service

Table 8.1.: Service interfaces for the integrated visualization andss®y components. The abbreviations
represent the different high-level interaction pattermslahe component role as follows: PS =
Publish-Subscribe, RR = Request-Reply, AM = Active Menterynformer, L = Listener.

Visualization and Sensing

Table[B.1 lists the three services that are directly rel&desknsing and visualization. Each of these
services needs hardware access to the augmented realitg ded its sensors. While this is obviously
necessary, the three services thereby violate the staedhat an individual service shall not make
assumptions about its execution environment.

The hybrid tracking component sends information about tientation of the user’'s head observing
system components via a publish-subscribe pattern. Itactn informer and does not reference
any other system components. Due to the fact that the poseriafion is almost transient, it is not

inserted in an active memory space but solely distributathesliable event notifications via multicast

to other subscribed services like the 3D context service.

The visualization and interaction service (VIS) componealizes the multi-modal interaction as
explained in the previous section. In order to receive evdrat need to be executed synchronously, it
provides specific request handlers. Results of visuatimattquests are put in the conceptual memory
and thus are persistently available for other system comtsne.g., to analyze the interaction history
of a user with the system. The VIS component references theepbual memory but is otherwise
not bound to the existence of the remaining system compsnést an additional feature, it permits
to grab regions of interest from the visualized video streahich can be used for the asynchronous
training of view-based object recognition services.

The most obvious component in a distributed cognitive visigstem architecture is an image service
that distributes grabbed images to other system procelds$iéiging the introduced publisher pattern,
image events that solely contain metadata about the imsgJéadre sent as unreliable messages via IP
multicast to the perceptual services in the system. Theeémpagdlisher is for efficiency and historical
reasons co-located with the VIS component mainly becausdatter performs the actual grabbing
and places the current images in a shared memory bufferstifiather used by both processes.

The image service features an additional request handlentdemand retrieval of images in a short-
term buffer as explained in the previous section returnirec@ding image events asynchronously
to the calling component. If needed and if supported, thegareervice transforms grabbed images
according to colorspace, resolution or region of interpst#ications contained in the request events.
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Service Patterns | Roles| Provides Observes References
3D Context PS,AM | I, L ObjectEvents PoseEvents, PerceptualMemory
ObjectEvents
Object Anchoring AM I, L ObjectEvents ObjectEvents Perceptual Memory,
(Anchored) Episodic Memory,
Conceptual Memory
Contextual Analysis | AM I, L ObjectEvents, ContextEvents, Perceptual Memory,
ActionEvents ObjectEvents Episodic Memory
Perceptual Memory | AM,PS | |, L Perceptual MemoryEvents None
Episodic Memory AM,PS | I, L Episodic MemoryEvents None
Conceptual Memory | AM,PS | I, L Conceptual MemoryEvents None

Table 8.2.: Service interfaces for information fusion and memory comepds.

Information Fusion and Memory

The services in Tab[e 8.2 represent actual instantionseai¢live memory components that realize the
necessary partitioning of the overall space for memory el@mand closely related functionality. The
three active memory services are set up with individuallapeeterized memory processes reflecting
the different semantic profile of the corresponding memaygis. For instancégrgettingdiscards in
the perceptual memory all hypotheses older than 2 secoriiswviconsideration of their reliability
while in the conceptual memory only doubted hypothesesiaoadied and no time-based forgetting
at all is used. As for the active memory, the role of forgettand intrinsic memory processes were
already introduced in Sectidn ¥.3 as core concepts of theafiproach and at the same time their
interplay with the contextual analysis service was exgldinThus, | refer the interested reader to
these pages for further information.

In addition to permit memorization, recalling of memoryraknts and the publishing of correspond-
ing memory events through the active memory instances, a08Ext service is part of this group of
services that is a rather scenario specific component. #rex@s the object hypotheses inserted in the
perceptual memory with their estimated 3D position basethem@pproach introduced in the previous
section. From an interaction point of view, it subscribepése events as published by the hybrid
tracking service in order to accomplish this task.

In contrast to the other services discussed so far, the hgpist anchoring service is realized as an
extrinsic memory processes that exclusively works on alibdl memory spaces (and even as more
general listener participant), not referencing any predsiof the information that is to be anchored.

It can thus be realized as a very generic process that onllyagga common metadata elements making
no assumptions about specific event types, similar to tlgefting and contextual analysis processes,
and can thus be applied in other memory-based systems, too.

The fact that this interface is not referencing any specifa@pcer of events and just subscribes to
the event types its implementation can process allows itge fnformation as sketched in Figlirel8.5
without further configuration, regardless of whether, ,eame or both object recognition services
are available in the system or whether a different infororagource is providing information about

objects.
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Service Patterns | Roles| Provides Observes References
Object Recognition | PS I, L ObjectEvents ImageEvents None
(V&J Approach)
Object Recognition | PS I, L ObjectEvents ImageEvents None
(VPL Classifier)
Online Learning of | RR I,L TrainEvents TrainRequests Object Recognition
Objects (VPL) (VPL Classifier)
Action Recognition AM,PS | I, L ActionEvents, ImageEvents, Episodic Memory,

TrackingEvents | ObjectEvents Conceptual Memory

Speech Recognition | AM I PhraseEvents Episodic Memory

Table 8.3.: Service interfaces for recognition and learning composent

In the present scenario it was mainly needed for trackingledravise independent percepts. In addi-
tion to that, it provides two other important functions: ritproves the quality and stability of object
recognition results and it judges whether an anchored thygothesis shall be memorized in the con-
ceptual space of the memory. The anchoring component shiesdor any modification or insertion
of object events in the perceptual and episodic memoriesssigns them to new or existing anchors
that are managed in the episodic memory space. Anchoredtshjsually feature an improved reli-
ability and are less transient than perceptual object ewghich is useful, e.g., to compensate scarce
errors in an otherwise stable stream of object recognisults. If 3D information is available in an
object hypothesis, its reliability is further increased.

This effects an improved visualization quality in the headunted display preventing, e.g., a flick-
ering of augmentations. If an object hypothesis is highliabée over a certain time interval and is
thus considered to be correct, it is copied from the episodimory and inserted into the conceptual
memory for later interactive retrieval.

Recognition and Learning

For a cognitive vision system, services for recognition laagdning as shown in Talle 8.3 are essential
to provide its functionality and consequently all of thesevice process incoming sensor data, either
some kind of image or audio data. According to the image selwiuse of the publisher pattern
for distribution of the captured live images, action andegbjrecognition components subscribe to
the corresponding image events like the object recogng@nice that was realized according to the
weak-classifier concept.

In general, both object recognition components realizes#tmee service interface, which allows other
services to handle object events in a uniform manner. Regattle VPL-based object recognition
component, however, integration was slightly more conapdid. In order to deal with the unnecessary
high rate of new object hypotheses the underlying algorigigmerates, which was much higher than
the expected rate of change in the scene, we wanted to aslghiivior concerning this matter.

As internal change would have resulted in a significant gffme made use of the possibility to
register message transforming functions in the outgoingeraf the components object publisher as
described in Sectidn@.5.

Sebastian Wrede



8. The VAMPIRE System 183

Service Patterns | Roles| Provides Observes References
Context-Aware Visu- | AM, PS, | I, L VisRequests ObjectEvents, Interaction Service,
alization RR TrackingEvents Episodic Memory
CASA Control and AM,RR | I, L CmdRequests, ObjectEvents, Episodic Memory,
Coordination VisRequests, ActionEvents, Conceptual Memory,
TrainRequests VisEvents, Interaction Service,
TrainEvents Object Learning

Table 8.4.: Service interfaces for coordination and interaction comegiots.

This permitted us to modify its behavior without changing tinderlying source code. Additionally,

it was possible to register a transformation function thertglated internally used coordinates into the
globally used coordinate system. In addition to this, tleerdag capability of this component needed
to be integrated by an additional wrapper as the necessacyidnality was only available as a set
of legacy shell scripts. Thus, a new high-level servicerfate was introduced that features an event
handler for training requests. Observed events contaiecbiojetadata and the image patches to be
used for subsequent training processes that are carriesputhronously. Further request event han-
dlers allow to control the operation of the legacy compon@nshared memory. The learning adapter
references the VPL-based object recognition service notdgns of the IDI architecture but is closely
coupled via the filesystem and the shared memory regionstiiglcomponent, yielding in a legacy
service that violates the stated goals of not making assangabout its execution environment.

The action recognition service interface is consituted puylaisher that provides events about tracked
objects to other system components, which is, for instameeq to provide user feedback. It is based
on active memory access as it subscribes to reliable objpcthesis available in the episodic memory
space, which allows to trigger the actual action recognificocess as will be explained later. Last but
not least, the speech recognition service provides infoomabout recognized phrases and submits
these events to the episodic memory, which may, e.g., benausdy the interaction service that
can be configured to scan, dependant on its own interactintexip the phrase events for matching
commands allowing for verbal system control.

Interaction and Coordination

The services that belong to the final group of components insé# described instance of the assis-
tance system are shown in TabIel8.4. Their main resporigbikre to control the interaction with the

user and the overall coordination of the system as well agmmip context-dependant augmentation
and to provide visual feedback of the internal system statlee user.

The context-aware visualization service(s) observe olgeents in the episodic memory layer and
tracking events generated by the publisher of the actioogr@tion services. Events are visualized
according to the overall system state. Visualization igiedrout by asynchronously sending cor-
responding visualization requests to the interactionisereomponent. While the components that
implement this service interface are rather simple, theyeasential for the usability of the overall
system. Separating this functionality from other compasetiowed for parallel development and
independent testing.
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The CASAl control and coordination service as explained in the previsection is a component
that coordinates and supervises the behavior of the sysdemelhas the actions of the human user.
Thus, it makes use of almost all of the available interacpatterns and observes many events that
are exchanged via the conceptual and episodic memoriestdllioig the interaction of the user with
the system, it is closely coupled with the visualizationvasr using its request-reply interface. It
communicates changes in the Petri net encoded interadtd® Synchronously to this service and
thus permits an online synchronization between the interaservice visualized state and the state
of the corresponding part of the Petri net.

The control component also makes use of asynchronous tsdgieedong-running actions such as
object learning, which involves a query for recent snapslimthe episodic memory space and the
triggering of the object learning adapter. This concure@cution can directly be mapped to corre-
sponding petri-net structures and may therefore be endadééd coordination models.

Despite its semantic coupling to the higher-level layerthef VAMPIRE assistance system, it refer-
ences only the two components explicitly that do not allotheotinteractions, which are interaction
and learning. However, as requests to these componentemtreising the IDI request-reply pat-
tern, requests are dynamically constructed and therefloeee is no compile or sequence coupling
that imposes specific startup ordering between these cangoifor the control service to become
operational.

Infrastructure Components

The service architecture of the assistance system feaauramber of additional services that permit
an efficient development and seamless operation of the lbggséem such as distributed application
logging, introspection and visualization of memory cotgeor the control of the process life-cycles.
Despite their importance from a collaborative and techgickd perspective as motivated in Chahller 3,
they are not going to be further explained here as they do ffettahe core functionality of the
assistance system. Thus, they are also not depicted indfQ@ifor reasons of brevity.

The introduced service interfaces provide an avenue forghkzation of the functional architecture
with regard to component interaction and coordination. ®terall functionality of the resulting
software architecture allows an efficient realization @& tise cases to be handled by the assistance
system. Not anticipating the conclusion, most of the dbsdrservice interfaces based on the concepts
of IDI approach yield loosely coupled services that couldeipendently be developed and reused in
different scenarios. In order to gain further insights dlibe software integration of the VAMPIRE
system using the IDI architecture, the next section dessribchosen deployment situation to briefly
underline the distribution capabilities of the developetggration architecture.

8.2.4. Physical View

Figure[86 depicts a deployment of our assistance systeim.running on four standard Linux PCs
(Pentium 4, 2.4GHz, 512MB) connected via a switched Fastriagt network infrastructure, a visu-
alization laptop and the tracking subsystem as explain&eatio 8. 111. Images are captured from
the fire-I firewire cameras and distributed with a resoluté820 x 200 pixels.

1CASA has been the working title for the assistance system.
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Figure 8.6.: Architectural sketch of the cognitive assistant

Services presented in the previous section that realizeliftigbuted assistance system’s software
architecture run on each of these nodes. The componentsishdhe active memory and the signal
processing partition can be distributed freely as they nmakassumptions about co-located services
and are not dependant on specific hardware.

However, this is naturally not true for all of the shown coments. For instance, the hybrid tracking
process runs on the single board computer due to the locasaito the CMOS camera of the AR gear
via USB2.0 and the RS232-based local interface to the at@récker. Similar to this component, the
visual interaction service must be run on the visualizatagtop for accessing the webcams via the
local firewire interface and the availability of the specti@phics hardware, which in turn restricts
the image service to be run co-located with this componeimhages are transferred between the two
components via shared memory.

While this kind of hardware-induced execution couplingasngtimes inevitable, this already exem-
plifies how coupling limits flexibility, which for instance ithis case lead to an unusable system if the
visualization laptop was broken. Another example of suclkexatution coupling are the VPL-based
object recognition and its learning adapter. If a systentufea many of these coupled components,
its combined accidental complexity imposes problems omlévelopment process, yields a brittle op-
eration and will finally make it unusable and unattractiveaaesearch platform over a longer period
of time.

8.2.5. Interaction Scenarios

The functionality of the system certainly depends on théviddal components, their correct com-

position as services and the physical deployment of thecgecomponents as well as their coherent
development, but even more on their adequate and efficiesmpiay. In the presented assistance
system, the implicit and explicit coordination featuresha IDI approach are applied for the integra-
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flow of data in the specific cases. Much of the data flow is mediidrough the active memory.

tion of the different components. Three different rathemge usecases that are fundamental for the
system shall exemplify how components are coordinateddbasehe concepts introduced with the
information-driven integration approach with regard tis #ispect in a distributed system architecture.

Augmenting the User’s Perspective

Since a central idea of the information-driven integra@mohitecture is to coordinate involved com-
ponents by events, a usecase can be explained by analyeifiguhof these events in a system.

Figure[8-7(3) outlines the processing path of an object fperception to augmentation. It starts with
image frames that are captured from the user’s perspeatidgablished as image events. As the
object recognition component is subscribed to these evim@s observation triggers its recognition
algorithm. Detected objects itself yield new events andserted as 2D object hypotheses into an
active memory space. The 3D context component is directhgaibed to the insertion of new 2D
hypotheses which it extends with 3D information based onctiveent headpose of the user that is
frequently updated by a corresponding listener registiredublished pose events. The received 2D
percept is updated and its memory element replaced.

Because the hypothesis anchoring component has subsdisietfdon the insert or replace action
carried out on such percepts it in turn gets triggered, nestthe percept to anchored hypotheses and
assigns a reliability factor. The hypothesis is then onceemeplaced in the active memory.

Continuing along its path, the hypothesis triggers the exirdware visualization component only
if the hypothesis is reliable, since the user should not kbdved with unreliable information. In

the memory concept this filtering is realized by registerihg corresponding listener with a more
restrictive XPath condition as in this example®BJECT[ RELI ABI LI TY@al ue >= 0. 9].
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Thus, the data is already interpreted by the IDI architectiself. Finally, the visualization sends an
asynchronous request to the visualization service toaljsiiie anchored, reliable object hypothesis
to the user.

By accepting and executing the visualization commandsinfleemation is displayed to the user and
by this means, it closes the interaction cycle. Note, tHaifahe described activities are carried out
asynchronously, which, e.g., allows for continuous augatémns even if for a certain amount of time
no new stable hypotheses are detected by the object relcogpibcesses.

Outdated or unreliable hypotheses are discarded at reigtdavals from the active memory through
the forgetting processes as explained in Se¢fioh 7.3.

Triggering Action Recognition

As a second case study, we consider the way action recagrgitriggered. We follow the idea
that a user usually focuses an object before starting topukaie it. Therefore, the action recog-
nition component registers itself on reliableGBJECT[ RELI ABI LI TY@al ue >= 0. 9] ) and
centered (. . [ @>160 and @<240]...) hypotheses that are available in the active memory
space.

Figure[8-7(0) illustrates the complete flow of data in thisaase. The action recognition component
starts tracking the object in the video stream when its sifiigan gets triggered by its local observa-
tion model due to the availability (either insert or replaoga suitable memory element. Publishing
tracked regions to the context-aware visualization prewid visual feedback to the user and allows
him to seize the system behavior. A recognized action isexpntly inserted into the memory and
may trigger further processing steps.

Coordinating complex behaviors

Implicit notification for component coordination is oftenfficient for control of individual compo-
nents. To realize more complex context-dependent codrdmaf several components running in
parallel, the CASA control and coordination component twkedeatures of the coordination model.

To exemplify this, Figur€8l8 shows a small module of our Higyel petri-net that models an exem-
plary part of system behavior: The handling of self-locatiian errors of the 3D vision subsystem.
When the user is mixing a beverage, the system guides himawibkvs to the next ingredient as shown
in Figure[8:2(d). For this task, a correct 3D-pose is necgs#ft gets lost, e.g., due to occlusion of
the landmark, the system copes with this situation and fegqumes several system components, e.g.,
the 3D guide widget in the visualization server. In partcyit instructs the user explicitly to re-focus
the target. When the pose is available again, the systermessnormal operation.

Figure[8:8(d) shows the system working when the pose isadblaibind the 3D object guide is acti-
vated. The event listener associated with the guard of éimsition’s input arGargetLost is triggered

in this state, if the 3D context module has inserted inforomaabout an illegal pose in the specified
memory instance. Thus, the transition fires, which leadsrecanfiguration of the system compo-
nents and petri-net model state as shown in Fijure 8.8(b)s&puently, the transitioBtopGuide is
now fireable.

Bielefeld University



188 8.2. An Information-Driven Software Architecture

RestartGuide PoseAvailable  avcuarginser,  TargetLost RestartGuide PoseAvailable  avguargunser,  TargetLost
D JPOSE_LOSTY...] D O JPOSE_LOSTY...] D
User User
Follow: Follow:
= = GuidePaused = . O GuidePaused
Guide

AMGuard[Insert,

"INIEWCONTEXT/..."] D

Guide
‘AMGuard[Insert,
D O VIEWCONTEXT!...] D

StopGuide NoPose TargetFound StopGuide NoPose TargetFound
@)
RestartGuide PoseAvailable  avguarginser,  TargetLost
D JPOSE_LOSTY...] D
FolIows,O .
= = GuidePaused
Guide

AMGuard[Insert,
'/VIEWCONTEXT/..."]

# system stariup o
# or results on
# target lost

StopGuide NoPose TargetFound

(© (d)

Figure 8.8.: Active Petri net transitions when 3D pose is lost during obpuidance and resulting system
feedback. Rectangles depict transitions, circles placesfdled circles tokens in places. Rel-
evant model elements of each step are drawn in bold face tifitxiguard specifications are
annotated at corresponding input arcs.

After this transition fires, the guide is paused, which iedily reflected in the model as illustrated
in Figure[8:8(d). The system now waits for reacquisitiontaf 8D pose and in case one is inserted,
TargetFound and RestartGuide would be fired and their set of actions be executed. This @hang
would result in the original marking as showr{n 8.8(a).

As described in Section 1.4, a sequence of actions is exkeuten a transition fires. To give an
example, a dynamically constructed request event is athiththeTargetLost transition to deactivate
the 3D object guide on the interaction service component.

While these usecases shall have underlined the suitabfiitie proposed models for coordination
and integration of a distributed cognitive vision systehg following section considers the evalua-
tion of the introduced system with user studies, which igithi also evaluates the proposed system
architecture.
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8.3. System Evaluation

Evaluating the presented integrative system includes ddfgrent aspects. On the one hand, the

applicability of the realized integration infrastructureterms of performance has to be evaluated.

As the IDI patterns play a central role in the assistanceegystarchitecture, criteria such as access
performance are fundamental to ensure the reactivity gitbposed system. On the other hand, these
numbers are generally of little use as a meaningful evalnateeds to be carried out in system context.

Thus, we shall put our emphasis on the latter type of evalnatven so, the subsequent section starts
by discussing central product utility aspects with regartypical performance considerations.

8.3.1. Performance Considerations

From a user’s perspective, the main programming interfaesides the use of XML tools) of the IDI
architecture are the different patterns that are providetthd interaction and the memory model. Be-
sides ease of use, performance is another important fastosébility. Thus, the following paragraphs
briefly report selected performance considerations to destnate that the chosen XML document
model in conjunction with the interaction patterns and tleamry model are fast enough to allow for
the integration of a reactive cognitive vision systems sagthe VAMPIRE assistance system.

Interaction Patterns

The performance of the basic interaction patterns provéd@st rough estimate for the utility of the
architecture in the given context. The version of the IDh#texture that has been used in the VAM-
PIRE project features a port implementation that is basett®fiZer06]. As this is an operational
middleware with strong support for network-wide objecerehces, patterns involving identity infor-
mation are performing extremely well. For instance, theray of a request-reply interaction carried
out in C++, sending an object hypothesis as shown in Lidfidho® a 100MBit ethernet amounts
approximately to 0.20.5ms [WEBS04]. Optional schema validation takekms for typical object
hypotheses as shown in Listihgl.1 in Secfiod 6.3.

Evaluation of the native datatype transmission showed piediormance is also sufficient to pub-

lish image data to a limited number of subscribers. Howemgoeriments with this implementation

yielded that if the number of subscribers is raised, the aveerformance drops quickly. This is

due to the fact that in 2004 the Ice-based solution did nopedpnulticast and thus each subscriber
received an individual copy of the event.

This was one of the technical reasons that an additional ipgslementation on the basis of the
Spread Group Communication Toolkit was carried out, cftise@.3. As Spread supports network-
level multicast, e.g., image data can be very efficiently mamicated to a potentially large number
of listeners.

On the basis of the Spread-port implementation, publigis&ibe using multicast communication
can be very efficiently realized as shown in Figlird 8.9. Theestshot shows the results of applying
the Netbealﬂsprofiler to a simple publisher application.

2seealshttp: // profil er.netbeans. or g
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Figure 8.9.: Runtime profile of the current Java implementation using @&g-based Port implementation.

While the quantitative results of the profiler obviously lude measurement overhead and are thus
quantitatively too high, some insights can be gained byzamglthe shown behavior qualitatively:

e The XML serialization that converts the Document Object Flddto a byte array consumes a
significant amount of time as indicated in the call tree beg linn Figure[8.P.

e Asingle synchronous multicast of a reliable message withli@ady serialized XML document
of 1KB size and a 0KB attachments takes only about 1ms to send (bne

e The dynamic dispatch approach, cf. secfion 6.4, takes onggégible amount of timel(9%)
that is very well acceptable given the increase in usalfiiie c).

Profiling the subscriber, it appeared that while each inldial subscriber is able to receive messages
in full speed with a cycle time of 0.8ms, the limiting factors to perform load tests with an insesh
number of subscribers is supposed to be the local loopbdekfane of the receiving machine and
the consumed CPU time. However, as it seems rather impmlbiadl individual processes exchange
messages at the rate of several kHz, this overhead is stdptable. From a system-level perspective,
the combined number of interactions is very well expecteekfmoit full network bandwith.

Memory Model

While features for XML processing are widely supported iner databases, it still has to be en-
sured that information processing within the memory modewes for the necessary reactivity of
a real-world cognitive system. Therefore, we conductedriopaance analysis of the XML-based
repository. Of foremost interest was the question how gperjormance scales with larger datasets
which are to be expected in cognitive vision systems.

Our evaluation method resembles the application indepgridizhigan micro-benchmark procedure
for XML databases[[RPD3] but was adapted to our own dataset consisting of memeiyesits
similar to the standard example as introduced in Se€fidn 6.2
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Figure 8.10.: Query performance of the used DBXML database backend foionyesfements.

Figure [BID exemplarily depicts the mean performance of tiib@e equality query such as

/ CBJECT/ REGI ON/ RECTANGLE/ COORDS[ @v=225] / @v (gs3 that will return a set of XML nodes matching
the given condition, described by an XPath statement. Apam the size of the dataset the size of
the result set is also of interest. A typical query might metiess than one percent of the whole dataset
(low selectivity, no query is expected to exceed a result set size of five pefugh selectivity.

Looking at indexed and non-indexed queries, the latter @mesvery expensive in terms of time.
Also, in that case, selectivity of a query is irrelevant askdiO for a sequential scan of the repos-
itory seems to be the limiting factor. In contrast, indexegmes with low selectivity show almost
constantly excellent performance regardless of repgsgime. Even better, the performance of the
indexedqgs3 query with high selectivity is also sufficient for our applion as it takes e.g~0.57
seconds to retrieve about 1000 XML hypotheses from a repgsitith 20000 memory elements (see
Figure[81ID).

However, as this are results collected in-process, thetigneseemains how well this is supported
on the system level. TableZ8.5 suggests that these remotatiops obviously come with a certain
overhead due to network transmission of event payloaduRately, the fact that in the functional ar-
chitectures of VAMPIRE and COGNIRON rather small documemésexchanged definitely facilitates
the reactivity of this software architecture.

In addition to the performance of the memory interface dji@ma, an evaluation of the latency be-
tween the initiation of a memory action such as an insert haddétrieval of the memory event has
been carried out. For instance, in Java, this latency ammdantifferent memory events te 1.5ms
that must be added to the duration of the corresponding tiperiavolved.

These and other results frequently gathered dur- pocument Size | Java C++
ing practical integration underline that the use of

o 1 KB .82 1.322
XML-encoded memory elements with binary at- 3.825 ms 322 ms
tachments, the multicast-based event distribution_10 KB 16.798 ms | 7.528 ms
and the ability of indexing the underlying database 100 KB 164.324 ms | 64.66 ms

provide a fast and reliable basis for the informa-

tion processing in the IDI architecture. However,1able 8.5.:Active memory insert performance on
as such an evaluation is only partially useful and a 100MBit network (Ice).

within VAMPIRE the user’s are part of the processing loopha system, they provide an implicit but
more meaningful evaluation of the concepts, how well thigraach works in a real-world context.
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Figure 8.11.: Annotation of user actions and system activities taken foor of the user study sessions
conducted for evaluation.

8.3.2. User Studies

The availability of the integrated system allowed us to @enf comprehensive user experiments to
gather insights about how humans collaborate with suclesystn the context of scenarios and ded-
icated tasks.

First of all, this permits to qualitatively assess the apptoof a cognitive assistant and furthermore
provides valuable hints for future development not onlyhef $ystem itself but also of the underlying
integration architecture as its utility is evaluated in al+world systemic context. This is particularly
important as the human user is part of the processing lodpeditstem and thus he or she can clearly
judge the performance of the overall system. In the follgyiresults of a user study are presented,
which evaluates certain aspects of the described cogmrisisistant system.

In contrast to performance figures about the framework owitidal components, we focused this
study on the question whether the human-in-the-loop pgnad beneficial for users and which im-

plications it induces on HCI and augmented reality assigtaystems. Thus, our evaluation of the
system in the assistance scenario covers important naridnal aspects like usability, comfortabil-

ity, and reactivity of such a system as well as the providedtionality for user-assistance itself.

A total of eleven computer-literate subjects who had neeforle used an augmented reality system
attended in this series of our evaluation study. To guaeaetgiivalent knowledge about usage of the
system, a short instruction video was shown to each paatitipvhich explained basic interaction
primitives, e.g., how to present an object to the systemdaiming.

The task the users had to carry out was two-fold: Firstlyy thad to train two previously unknown
ingredients like orange juice or champagne to the systerichativolved both labeling of the objects
by speech and additional system interaction by using thesmadneel. Secondly, they had to follow
system commands in an assistance mode without prior instngdn order to mix a specific cocktail.
This step has been carried out twice with different recipesviluate the familiarization of the user
with the assistance system. During the experiments all ingenaction has been recorded by video
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Figure 8.12.: Selected results of overall system evaluation

cameras for later analysis. Afterwards, the subjects wskedato fill out a questionnaire yielding
both quantitative and qualitative results regarding thesented system, which can be found in the
appendix of this thesis. Faced with questions like “How wlogdu rate the overall collaboration with
the system?” they ranked their assessments on a scale freenylgood) to 5 (poor).

Our basic goal during this evaluation has been to prove venditle concept of the human-in-the-loop
is suitable for users of the presented cognitive assistatéis and whether the overall performance
of the system is sufficient. As a basic pre-requisite to anshie question, we asked the subjects
several questions about the AR gear prototype from an ergmnerspective. Not surprisingly, most
users experienced the bulky hardware device itself in i$opype state as heavy and uncomfortable
but were able to complete the requested task with it. Besdgsthe participants had a good overall
orientation when looking through the HMD at the augmenteldeistream as shown in Figlire 8.IP(a).
Most comments we received indicate that the chosen sensgeaaent overlay with additional infor-
mation is usually convenient for users of the system.

The hypothesis that quality and richness of human-compnteraction in the cognitive assistance
scenario can significantly benefit from the concept of the dmin-the-loop has been verified with
good results in our study. The evaluation underlined ousqraal experiences that system feedback is
of highest importance to achieve this result, e.g., bectnesaser needs to be informed about how he
can collaborate with the system in order to accomplish aipeoal.
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Within the evaluated scenario, an example for the assessofi@ystem feedback are the ratings
for the clarity of action sequences carried out by the subjex perform a specific task, which are
rather positive as shown in Figyre 8.12(b). Furthermoreregeived positive comments for the clear
indication of error states, e.g., when the 3D pose is losts Brshown in Figur§ 8.8(H) in the upper-
right corner of the augmented image. A different examplere/e can improve the system feedback
is e.g. for the tracking initialization. As shown in Figlire’@®] no additional information is given to
the user that he or she might now start interaction with tfjeabbAn improved solution would be to
indicate this clearly as it is done during object learnireg Bigurd 8.2(3).

An interesting finding of our study is the correlation of tigpe of system feedback, system reactivity
and user adaptation. During the execution of a single steperaction sequence, e.g., pouring an
ingredient into a cup, the visualized tracking highliglge $Figurd 8. 7(®), has not been able to follow
the modified object in real-time. As a consequence, 77% obtingects reduced the speed of their
motions during the action sequences, thus adapting to trelspf the system, which in turn lead to a
lower recognition rate due to the fact that the action rettamnclassifier was trained with faster mo-
tions. Nevertheless, comments from the subjects showttbaiverall speed of the system with regard
to object and speech recognition as well as visualizatios sufficient for a seamless interaction.

While the ability of the system to present its internal statéhe human is important for productive
modalities, the question of which perceptive modalitieside for interaction is equally relevant for
the overall collaboration with the system. To that effeceé allowed the users to interact via the
mouse wheel and a speaker independent speech recognitgqures{8.12(¢) anfl 8.12(d) show the
individual interaction quality as reported by our subject$e results for mouse-wheel interaction
indicate that this interaction primitive seems convenfentmost people. The familiarity of mouse-
based interaction and the fact that the subjects were alflgtteer concentrate on the given task by
only using the scroll wheel for interaction have been reggbets main reasons for this assessment. As
all of the subjects were non-native English speakers, thaltsefor speech recognition quality vary
greatly since our speech recognizer has been trained onrieidan English Wall-Street Journal
corpus.

The marks for the overall usability of the system have be#rerayood as 44% of the subjects rated
it as moderate while the majority of 56% of the participantied that the system has been easy to
use. This is underlined by a steep learning curve as theitaindtion time shown in Figuifg 8.12]e)
indicates and additionally confirmed as all of the subjeetsded significantly less time for the training
of the second object and the preparation of the second dbckta

Finally, all of the subjects involved in the study managee tfiven tasks and really liked to play
around with the system. From subjects comments and ansitvees) be concluded that the ability
of the system to learn about its environment, see Fifure(} Ehd the direct feedback resulted in
a high motivation of the participants during the experimnserthe ability to interact and collaborate
with the system has been directly exploited by the subjects, to separate objects spatially in order
to get better detection results. In our opinion all theseeplaions underline the fact that the idea of
the human-in-the-loop is suitable and useful for visiosdsthHCI and assistance systems. Further-
more, memorization and learning were appealing for usatstamperformance of the overall system
was good and not distracting people when looking aroundérstiene or gazing at objects with the
exception of the above mentioned action tracking visutitiina
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8.4. Conclusion

The aim of this chapter was to underline the applicabilitg anility of the introduced approach
by explaining the software architecture of the contexttanassistance system that was developed
collaboratively with the partners in the VAMPIRE EU project

While the evaluation with naive users that was reportedemtievious section showed that the system
fulfilled the envisioned usecases, it showed on the othed lizat the software architecture of the
overall system was able to perform fast enough for runnirgpative system for an augmented reality
scenario, thereby proving its utility in a systemic context

In addition to that, the explanations on the developed médion-driven software architecture and the
introduced service interfaces for the functional compdsevithin the VAMPIRE assistance system
prove that the applied IDI approach yields - among otherg fttlowing beneficial characteristics
when applied to research systems engineering:

e Modularity: The IDI approach clearly supports a modular developmersgoftivare services
for cognitive systems in heterogeneous research envinotsnoa the pattern, information and
service level.

e Understandability The resulting integrated software architectures are seigjard to their coor-
dination characteristics easy to understand and compsidterms implicit invocation is applied
for simpler situations whereas petri-nets allow for the gitbdg of complex integration scenar-
ios.

e Parallelism To allow for simple distributed, parallel operation wagafi the basic motivations
behind the development of this approach. Thus, the inh@aeallelism in cognitive systems is
well supported through the various integration patterns.

e Asynchronous operationWith parallelism inevitably comes asynchronicity — atde# one
wants to exploit the benefits of the former. Thus, asynchusremmmunication is supported in
all models of the information-driven integration archttee.

e Low coupling The resulting software architecture and the underlyiniggration approach fo-
cus on promoting loose coupling between components whempeasible. This implies refer-
ential decoupling, distribution and temporal decouplifig.support this concept, services shall
make no assumptions about their execution environmentastiapping sequence.

e Improved testabilityModular testing is possible based on the event profilesrofaeinterfaces
and the possibility to record and replay document-basedteaifications.

While these benefits already suggest that many of the retjaspects are met by the introduced
approach, the next chapter shall shortly describe how thapproach has been applied in the domain
of cognitive robotics.
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9. Interactive Cognitive Robots - A New
Domain

In recent years an increased interest arised on buildirgppal robots that are capable of a human-like
interaction. In addition to multi-modal interaction skilkobots must also be able to adapt to unknown
environments as they are recently moving out of restricd®dehvironments into less constrained hu-
man environments. Therefore, a robot has to be capable @flekdge acquisition through embodied
perception in a lifelong learning process. Furthermoragctiee control of the robot’s hardware is
important as humans are around.

Consequently, researchers aiming to realize a personat have to integrate a variety of features

considering aspects such as social rules, interactiomgmesid usability factors. Hence, interactive

robotics research is a truly interdisciplinary challenge anatches well with the stated aims for the

introduced integration architecture, cf. Chajifler 3. Natyrthe question arises whether the proposed
approach can also be applied in this new domain.

Not anticipating the conclusion, this question has indeeenbanswered positively/ [FWO07] as the
integration architecture has been applied to a number tdrdift research projects on robotics. In
the following, the BIRON mobile robot companion develop&wperatively under the involvement
of seven international research teams in the context of Keyetment 1 of the COGNIRON EU
project [CogOp] is shortly explained. It shall serve as thienpry example for the utility of the
integration architecture in this domain. As the BIRON roand its software architecture are a truly
collaborative system’s project and its detailed desaiptiery well beyond the scope of this text, a
particular focus will be set on a recent extension of the relmapabilities.

Instead of discussing BIRON’s interaction capabilitiasjolved algorithms, and the system archi-
tecture comprehensively, a case study of a face menhory [HW] ®r improved human-robot-
interaction is presented as the main contribution of thiptdr. It vividly illustrates how concepts
of an active memory and the information-driven architeetaire applied to collaborative robotics re-
search. In addition to this, further applications of thesprged approach in collaborative robotics
research will be briefly presented with a short summary.

9.1. The Cognitive Robot Companion

The robot BIRON (Blelefeld Robot companiON, see Fiduré & Bquipped with several sensors that
allow an assessment of the current situation as a basis timagtion. Recent versions of BIRON
feature already quite impressive interaction capatslifleHWT05]. For instance, it is able to pay
attention to different persons and engage in a one-to-aeeaiction with one user as illustrated in
Figure[9:1(@) if this user greets the robot by saying “HellbB”. From this point on, the robot
focuses on this communication partner and engages in agdiatb him.
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<—— Pan tilt camera
(at height 142cm)
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~=—gesture camera (iSight)
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Fast Ethernet
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\

Overall height approx. 145cm

g~ Laser range finder
A (at height 30cm)

(a) Two persons interacting with BIRON (b) Hardware

Figure 9.1.: The BIRON robot companion engaged in social interactiortsnhometour environment and
sketched from a technological viewpoint. Its hardware fplath is a Pioneer PeopleBot from
Mobilerobots Inc. with two on-board laptops for control aftaators and on-board sensors as
well as for sound and image processing. A third externaldaps used for speech processing
and dialog control linked via WLAN. A pan-tilt-zoom colomeera (Sony EVI-D31) is mounted
on top of the robot at a height of 141 cm for acquiring imagethefupper body part of humans
interacting with the robot. Two AKG far-field microphoneg anounted right below the touch
screen display. A SICK laser range finder is attached to thetfr As additional interactive
device a 12" touch screen is provided on the robot.

BIRON features extensive speech processing capabilitestiow it to understand instructions, ques-
tions, and statements in a flexible manrier [[WO07]. For examghle command “Follow me” results
in the robot following the human around. The user can teaehaigects to the robot by pointing at
them while giving additional information. For example, igiy an instruction like “This<gesture- is

my blue cup” enables the robot to focus its attention on tfereaced object and acquire an image of
it for later recognition. Components for localization araVvigation enable the user to teach the robot
places and locations as well as to enable the robot to automslyngo to verbally specified locations
(e.g., ‘Go to the kitchen’).

The development of these capabilities is framed by the Beechome-tour scenario which is driven
by the vision of future household robots being introducedtif@ first time use after purchase. A
robot needs to get to know its new working environment whiehinot be pre-programmed, but which
can be explored together with inexperienced users in amactiee manner. Hence, human-robot
interaction about the spatial and functional environmsiin ithe focus of research in such home-tour
scenarios. Capabilities a home-tour robot must revealdtural interaction comprise understanding
of spoken utterances, co-verbal deictic reference, verttaut, referential feedback, as well as person
attention and following. The sketched functionality hagmeachieved by integrating modules for
robot control, person tracking, person attention, speechgnition, speech understanding, dialog,
gesture recognition, object recognition and object attent
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Figure 9.2.: System architecture of the BIRON robot companion basedeitDthapproach (from[[Sied8]).
All componentinteraction is based on the introduced intéom patterns utilizing three different
instances of an active memory. Green and red rectangleshathto components indicate
memory access while request-reply and publish-subsdaiinelicated by the different line types.

Following up on a brief explanation of BIRON's system arebttre, the novel face memory part will
be explained and the activities of the system when a usetésieg a discourse with this robot aiming
at natural human-robot-interaction are exemplified as tagration scenario.

9.1.1. System Architecture

From a functional viewpoint, the original architecture dRB®N was inspired by a three-layer hybrid
architecture[[EKH.03], as it yielded a flexible way to organize a system whicgrates autonomous
control and human-robot-interaction capabilities. Inesrtb further enhance the robot companion
with additional functional features, we adapted the pnesfip realized integration and control archi-
tecture towards an extended use of the principles of infaomalriven integration and the memory
model concepts. This refactoring of BIRON’s software aeatture was carried out in the course of
the COGNIRON project]Sie08] with the aim to exploit concepf information-driven integration to
ease collaborative research and software developmenisopl#tform.

Figure[3.2 depicts a current sketch of the BIRON system tacthire. It integrates over twenty dif-
ferent services that are realized by about twice the numbeomponent implementations ranging
from reactive processes such as obstacle avoidance (oedtai the NAV service, see FiguieP.2)
over arbitration functions (ACMI) to high-level procesgesinteraction and dialog control (DLG).
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The extension of BIRON's capabilities by a face memory taisa robot capable of improved social
interaction serves as a case study for the usefulness aiftireniation-driven integration in cognitive
robotics. Thereby, it demonstrates the interplay of pat@d@and deliberative processes according to
the introduced models.

9.1.2. A Face Memory for a Sociable Robot

Considering the ability to get to know and re-recognize huingerlocutors by means of their face as
a core cognitive function for a social robot we need to aslkginestion, how the mutual introduction
and the recalling of faces is embedded into the generalactien scheme. Different sources of
information are available, as the identity of a person mighthe result of the current conversation
(“What is your name?”) or obtained from analyzing the peis@ppearance. Which knowledge
source to combine is depending on the current contenfadeamemonrand the conversational state.

The memory here serves as a central aggregator of releviantmation. It allows the system to
determine whether a person is known or not. In case the péssalnready known and the robot is
certain about her identity it can just activate its knowkeddpout this person, while in the other case it
has different options. First, it can take initiative and #s new person for her name. Alternatively,
it may continue conversation with an implicit but not yet rehuser model and wait for the name
of the person to be mentioned sometime. Currently, the rabké for the human’s hame whenever
a yet unknown persons is engaged in conversation, hencernmeplting a certain curiosity in the
robot behavior. However, it should be noted that the robefsdwt require to know every person in
its vicinity. Besides recognizing and memorizing peopfaises the system also comprises a person
tracking and attention functionality called person anaigthat is similar to the anchoring process
explained in the previous chapter. It establishes andgranknymous hypotheses about surrounding
persons. Storing face views of these persons of interesgsilde in a memory allows to immediately
compute a new face representation an the basis of the lasfam® patches. This is in accordance
to human behavior, as we do not start looking at someoneés dfter hearing the respective name.
Instead, we already memorize the appearance when inffiiienconversation.

Figure[@.B shows the part of BIRON’s system architectur¢ ihaesponsible for the realization of
the face memory functionality. Utilizing the informatiairiven integration approach no changes have
been necessary to reuse the already existing dialog sebsy$he coordination between the different
processes is solely event-driven as explained in ChEbi&th@ie the perceptual memory is configured
for short-term memorization of hypotheses generated fitwenstream of low-level sensor data, the
episodical memory stores and processes higher-level digribformation which is valid for longer
periods of time. In the following, we will shortly describleet functionality of the different integrated
services as depicted in Figurel9.3.

Perceptual Processing

Within BIRON's system architecture a number of differentmgmnents performing bottom-up pro-
cessing of incoming sensor data provide large parts of theepwal capabilities of our interactive
robot. For the face memory functionality we focus on thretheke processes. Firstly, a voice detec-
tion component analyzes the cross-power spectrum phasériage the relative locations of multiple
speakers. As soon as a speaker is detected, this and thal spigfin of the corresponding audio
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Figure 9.3.: Relevant parts of BIRON's architecture for an interactised memory shown in the notation
introduced earlier. The face memory utilizes two memoryaimses and several perceptual
services on different functional levels.

signal is submitted to the perceptual memory. A second psoiea “leg” detector, which scans the
surrounding of the robot for pairs of legs by analyzing thia@evailable from the attached laser scan-
ner in order to generate hypotheses about possible hunmemadtibn partners standing or moving in
front of the system. The face detection component as tha finocess in this extracts for each video
frame the detected facial regions and inserts these in ticepteal memory of our robot together with
a referring face hypothesis for subsequent processing.

Person Anchoring

A key component facilitating a face memory for an interaetigbot is a multi-modal person anchor-
ing process. Our realization is inspired by the approaadiodiiced by Coradeschi & Safiotfi [CS01]
similar to the anchoring service used in the VAMPIRE assistasystem. Anchoring in general can
be interpreted as a process that links perceptual infoomabout real world entities, e.g., faces, to
symbols that reliably represent the found entity over aageeriod of time. Anchoring processes in
active memory architectures are employed to populate tls®dip layer with information generated
from the data available in the perceptual layer. Within BNROface memory, information generated
by the individual modalities in the perceptual layer (falegis and speakers) is anchored separately
in the person anchoring component itself and is afterwasdigyaed to a person-of-interest (POI) hy-
pothesis. A new POI will be created iff one of the input petsejpes not match any of the existing
modality anchors. Existing POI hypothesis are maintairseldiag as at least one of its three modality
anchors can be tracked continuously. New POI hypothesethaitdipdates are submitted as episodic
information to the corresponding active memory instancddifionally, the person anchoring com-
ponent frequently updates the face information in the getoeé memory with a reference link to the
corresponding POI for subsequent use through the facemgimogcomponent.
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Dialog

For a social robot it is important to be capable of social cemitation, e.g., by speech understand-
ing. These features are realized in our robot by a dialogystias [[WOT]. The currently realized
model is inspired by the grounding-principle_[CIa92], whistates that within a conversation the
communication partners need to coordinate their mentedsstaased on their mutual understanding.

Adding up on the actual dialog functionality, a social robaist be able to distinguish between dif-
ferent persons communicating actively in its surroundind # identify as well as align its commu-
nication to a human interaction partner focusing its aitendn the robot itself.

While the former function is in the responsibility of the pen anchoring module, the latter is an
additional service that is provided by the dialog subsystém soon as the dialog is triggered by a
specific initiation phrase‘fello Biron!” ) from a person that is registered as a POI in the episodic
memory, the dialog selects this person as its interactiom@a(IP) and in turn submits this new
information with the preserved ID from the POI hypothesishi® episodic memory.

The identification of its communication partners withoypettive asking the human for his name,
significantly improves the interaction experience. Thiglig to the fact that the dialog manages
individual user models stored in the episodic memory. Inseguence, it is possible to, e.g., adapt
the speech recognition component to speaker dependenleprbéifore a conversation starts or to
optimize its interaction by not repeating instruction atig known by the respective person.

Face Identification

Within this architecture, the face recognition componemlich is described in greater detail in

[Can04], makes use of several sources of information géeeray other components, e.g., the IP
hypotheses and their corresponding face patches. Thignaf@n is utilized to perform the classi-

fication of the robots’ communication partners. When the e been trained previously and the
classification is successful, the information available¢hie episodic memory is updated by the cor-
responding class name. Otherwise the face patches areaitmihta new classifier as soon as the
name of the communication partner has been acquired thrihegtialog subsystem. While the POI

anchors and the name of the current interaction partneret iby the dialog component - is retrieved
through event notifications from the episodic memory, ayoerthe perceptual memory is performed
to retrieve recent face patches that correspond to thertunteraction partner.

9.1.3. Interaction Scenario

Figure[3.3 exemplifies the dynamic interactions betweerctdmponents of the system in terms of
activities that are carried out in the face memory when a luoser enters the robots’ interaction
area, looks at BIRON and finally starts the interaction byeting it with the initiation phrase.

As soon as the human approaches the robots sensors andshardeatgtected, the episodic memory
notifies the person anchoring component about the new “legfgpts. In turn, a local modality anchor
is set up and a new POI hypothesis is submitted to the episoéinory. While possible in parallel,
let us assume for this example that the face of the user istéetas he further approaches the robot.
As a consequence of this activity, two things happen coeatigr. the detected faces and their views

Sebastian Wrede



9. Interactive Cognitive Robots - A New Domain 203

Human Person Anchoring Dialog Face Recognition

Approaches Robot Fusion of Percepts

Register new POI

<<Memory Action>>
Memorize POI

Looks at Robot

Y - <<Memory Action>>
Hello BIRON! Update POI Facing

I j
Starts Interaction

Face Detected

<<Memory Action>>
Memorize Views

P—

<<Memory Action>> =
Update POI Talking [Speech Unllerstandmg]

‘ Initiation Phrase

N

>Select Interacting POI]

<<Memory Action>>
Query Views

Classfiy Person

<<Memory Action>>

Update IP

<<Memory Action>>
Memorize IP

[name is
known]

Tells her Name k [ Ask ] [ Greet ]

[unknown]

<<Memory Action>>
Query User Model

®
<<Memory Action>> N )
Update IP ame o
Retrain Classifiers
<<Memory Action>>
[Generate JSE Model] [Memorize Classifiers]

: ;

Figure 9.4.: Activities carried out by the human communication partred the robot system when initiating
a conversation utilizing a face memory. Interactions withivee memory instances are shown
in green boxes, while other relevant data flow is shown in Gretangles.
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are submitted to the perceptual memory and the previousipkshed POI profile is extended by the
information that the person is now “facing” the robot.

The next action the human carries out to start a new discomitbteBIRON is to address him by
speech using the initiation phrase. This leads to an updatieeocorresponding POI hypothesis,
which is enhanced by the information that this person idriglkAdditionally, the dialog component
selects this POI as its interaction partner iff the speedatersianding result provides the symbol for
the initiation phrase.

Dependant on this decision, the information about the sald® is submitted to the episodic memory.
Once the IP hypothesis is available, the face recognitionpoment is activated by a corresponding
event and starts to query the recent face patches corrasgaondhis interaction partner. These views
are used for the following classification step that yieldsipdate of the IP hypothesis in the episodic
memory. It is enhanced either by the name of the communitatartner in case of a successful
classification or it just left empty to indicate that this hamis so far unknown.

The following activity, once more triggered by the updatetaf IP hypothesis is carried out within
the dialog component in two different ways based on the nafoemation updated previously by the
face recognition available within the IP hypothesis. WhHendystem does already know the name of
its communication partner, the final activities in this exdenare the retrieval of the corresponding
user model from the episodic memory as well as the adaptafitihe dialogs’ interaction strategy and
the greeting of the IP using its name. In case the user coulthenclassified successfully from the
set of recent face patches, the dialog subsystem asks théouseis information and uses the label
retrieved from its speech recognition module to update Ehéyipothesis with the given name. In
this case the face recognition is triggered by the updatdy/p@theses and starts to train a classifier
for this previously unknown person. Finally, the dialog gexies a new user model that is used in
subsequent interactions when this communication parsiaopefully recalled by the robots’ face
memory system.

The previous sections present a unique face memory thabteptually well integrated into a larger
architecture of robot companion using the IDI architectutdinks interactive introduction of inter-

locutors with an online learning face classification schefitee results presented i [HWLS08] not
only confirm that the face memory facilitates a way of mutuatool necessary for a socially ac-
ceptable interaction and the adequacy of the chosen paetepethods, but also elicit the benefits of
the information-driven integration approach and henceetpids its suitability as a basis for building

Before we are going to discuss some of the insights gainedglapplication of the IDI architecture in
the COGNIRON project for the collaborative development (RBN’s software layers, let us briefly
look at two other robotic research systems that make usee@proach presented in this thesis.

9.2. An Anthropomorphic Robot for HRI Research

In contrast to the aforementioned mobile robot, BARTHOCr isaathropomorphic robot, cf. Fig-
ure[@B, that is able to show facial expressions and userits and hands for deictic gestures for
effecting more natural interaction with humans. On the otfzand the robot can also recognize point-
ing gestures and also coarsely the mood of a human, achievirgguivalence in production and
perception of different communication modalities.
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Taking advantage of these communication abilities a systasnbeen developed where BARTHOC
provides information retrieval services acting similaratweceptionist. As a first intermediate step
towards this scenario research on the task of introduciegabot to its environment has been carried
out [SHSOY]. This scenario already covers a broad rangeroframication capabilities. The interac-

tion mainly consists of an initialization by e.g. greetig trobot and introducing it to new objects,

which are lying on a table, by deictic gestures of a humansadyi

Once more software integration is necessary to inte-
grate all the perceptual and deliberative componen
needed for an experimental realization of this scenarig
The software architecture of BARTHOC lends itself ta
a good example for supporting effective research wit
the information-driven integration architecture. Fo
BARTHOC, basically the same set of services could b
reused as are running in the BIRON systems due thg
loosely coupled software design applying the IDI mod
els. Mainly, hardware control and a scenario specifi
component needed to be added or replaced. All othéi®
services like dialog or perceptual processes are further®#
more able to operate in both scenarios. Thus, efficient

. o . Figure 9.5.
research on experimental cognitive systems is effected”
as the duplicated development of similar functionalties loa avoide

: The head of BARTHOC without
(ijls artificial skin.

In the scenarios addressed with the BARTHOC robot, all appitns avoid the usage of human-
unlike wide range sensors like laser range finders or onedtlonal cameras. However, in order

to avoid loosing track of interaction partners due to thetkoh area covered by the given sensors,
recently a short time person memory was developed that @éstdre existing anchoring of people,

which once more underlines the general utility of memoryctioms for cognitive systems aiming at

interaction [SHSQ7]. Furthermore, a long time memory wateddo store person specific data, which
can be recalled to improve tracking results.

9.3. A Control Architecture for Manual Intelligence

As motivated by Ritter et al. in[JRHSD7], the study of manuskiligence, e.g., how human-like
grasping capabilities can be transferred to an artificightove system, may serve as a key problem
for the design of cognitive robotics architectures that @renmanageable than the design of a com-
plete functional cognitive architecture. Even so, thepdipesis is that grasping is a sufficiently rich
problem to provide essential insights into the architedtprinciples enabling natural cognition.

Manipulative acts involve the structuring of a complex pbgkinteraction between a highly redun-
dant, articulated manipulator and a physical object as shiowFigure[3.b, which can be highly

variable. Dextrous manipulation is a form of mechanicaltaarthat is pervaded by frequent dis-
continuous changes of the contact topology between thatactand the object. As a result, dextrous
manipulation calls for an unusually tight coupling betwesmtinuous control and more discrete,
symbol-like representations that can deal with issues asdopology-switching and encapsulation
of parameter uncertainty.
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Figure 9.6.: Grasping as a “rosetta stone” for research on cognitive misdérom [RHSOF]).

According to Ritter et al[[RHS07], it is the level of cougibetween continuous, sensorimotor control
loops and discrete, symbol-like representations that sderbe a prerequisite for realizing system
structures and corresponding architecture, which shalllyitead to improved cognitive capabilities.

In order to conduct experimental research on the aspectsanfiah intelligence, a software archi-
tecture was developed that features a tight interconneeti@ coordination between subprocesses
as well as a highly structured and modular design of the systed its state representation. In or-
der to achieve this, dynamically configuraligerarchical State Machine§HSM) are used, which
reflect high-level system states encoded symbolicallys&i¢SM’s coordinate several behavior con-
trollers that directly interfacing on a subsymbolic levahtlevel hardware controllers of a bi-manual
hand/arm robotic system. For the interested redder [RHf@¥jdes further details about the tech-
nological and algorithmic properties of this approach.

However, even in this tightly coupled system which is noedily the primary target domain of the
presented approach, the IDI architecture could be suadbsapplied to integrate the different HSM
services. In the realized system the modality- and corgpatific interaction patterns of a significant
number of low-level subsymbolic processes are bound toexiesiprovided by the HSM model. These
elements feature a semantic interface on a symbolic lewval.tHe event interchange between these
individual HSM elements, event publishing and matchingfioms of the IDI architecture are used in
this scenario. For the interaction with a number of extepnatesses, e.g. to integrate perception and
interaction services, the features of the memory and ictieramodels are applied.

Due to the fact that grasping and the interaction betweerehedeiments in this architecture represents
a task that is much more sensitive to timing issues than #héqarsly introduced examples, the utility
of the IDI architecture with regard to this aspect is undexdi.
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9.4. Summary

The emphasis of this chapter was to demonstrate that theptmnof the IDI architecture were trans-
ferable to the new domain of interactive cognitive robotiés one of the primary application areas
of cognitive systems, robotic systems and correspondisggareh projects represent important oppor-
tunities for further studies on software integration anfiveare architecture.

In contrast to rather low-level robotics middlewares whive been described in Chaplér 5, the
previous sections outlined that the use of the presentethagip even in robotics is geared at a higher
level of abstraction. Even so, its performance is still sidfit to coordinate system components
that directly deal with reactive services or to interfacéhwdiomponents that are closely coupled to
actuators.

Furthermore, all of the presented systems make use of ésathat are part of the interaction and in
particular the memory model. This underlines that memoaguiees are an important generalizable
function in cognitive systems and that the chosen approashversatile enough to become applicable
across different scenarios. In the BARTHOC and BIRON sdesathe active memory additionally
provides an avenue for dynamic adaptation and reconfigurai$, e.g., behavioral specifications are
stored in the memory and automatically distributed to retype control components as soon as those
are updated by other processes. On the basis of the memosl fundtions, current research [HS08a]
is concerned with the identification of reusable domain igeiniteractions patterns that facilitate
integration on an even higher level of abstraction.

The previous examples underlined that the IDI architectureonly provides the profound techno-
logical basis for software integration of experimental mitige robotics but additionally facilitates
collaborative work and software reuse.
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Part IV.

Synopsis

A brief conclusion that summarizes and reviews the benefitsfarmation-driven integration in the
context of collaborative research projects on cognitivideans shall commence this dissertation.

Bielefeld University






211

10. Conclusion

| rarely end up where | was intending to go, but
often | end up somewhere that | needed to be.
—Douglas Adams

Douglas Adams saying is a good metaphor for research onatengla software architecture for
experimental cognitive systems. The presented approaelngenh by iteratively identifying require-
ments on software integration in cognitive systems reseawaluating related work and successively
integrating and testing generalizable relevant functignaEvolution occurred not only by adding
new functionalities like the active memory but also withaetjto the conceptual foundations of the
IDI architecture. The architectural core evolved from asel approach based on remote-procedure
call techniques to a generic and extensible event-drivehitacture with strong support for service-
oriented principles.

This conclusion summarizes the key aspects of the infoamatiiven integration approach, relates
the developed concepts and insights found to the three gxtigps spanned at the beginning of this
thesis, to the identified requirements and finally to theaesdequestion posed in the beginning. To
commence this dissertation an outlook is provided on ptes§ilbure research directions.

10.1. Information-driven Integration in a Nutshell

The IDI architecture is a middleware with particular suggdor the integration tasks in experimental
cognitive systems research. It enables efficient commtioicdetween applications and devices in
a network of heterogeneous standard computers and opesytitems by combining methods from
service-oriented and event-driven architectures as weliglespaces into a coherent approach.

It directly supports publish-subscribe as well as reqoesly and channel-based group communica-
tion patterns, virtually shared memory services, URL-Oas@ming services, and permits expressive
matching of extensible events, effected by a hybrid supori model operating on XML documents.
Event matching utilizes an extended message transformagiproach that permits the use of stateful
filters such as a compacting filter, which can, e.g., be agpberetrofit the interaction behavior of
legacy applications. A coordination feature for modelimgl @xternal control of discrete event-based
system components and universal adapter plugins for a rothdlkit focused at the development of
real-time computer vision algorithms round out the sewijgmvided through the core architecture.

Based on this core, a set of tools are offered that ease qahstistem development, which, for in-
stance, permit a distributed and transparent monitoriigeoflynamics in a cognitive system architec-
ture. The architecture has so far been implemented in C+davaland thus provides a good level of
platform independence, which makes it for instance diyagshble in Matlab[[TMO8] environments.

Bielefeld University



212 10.1. Information-driven Integration in a Nutshell

System System Development and Management System
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. v/ \v/ N ,é
Network Network and System Abstraction Network
Level Ports, Scoping, Event-Dispatch, Naming, Reflection, ... Events

Figure 10.1.: Overview of the information-driven integration archite from a system-engineering per-
spective. The layers correspond to functionality avaigfiol component developers and sys-
tem architects. While the former primarily deal with the gamment and integration level, the
latter usually additionally exploit services in the uppayérs. Enhancements are possible
across all layers, including transport-specific extensianthe lowest layer.

The different models that were introduced in Part Il of thissdrtation largely fulfill the needs that

were identified during the requirements analysis carrigdroChapteib, yielding a layered stack of
functionality as shown in Figufe_I0.1 that supports themegjiing of experimental cognitive systems.
A particular focus of this work has been how to foster sofevdevelopment in collaborative research
projects on experimental cognitive systems.

10.1.1. Facilitating Collaborative Development

While collaboration has been studied in software engingeaind social sciences in great detalil, cf.
ChapteB, software architectures for cognitive systemsdt credit this issue first class importance.
In contrast, the work in this thesis treats this aspect éisalrfor project success not only in large-scale
projects from business information technology but alsddayer collaborative, usually international,
research projects. Recently, Ceravola and Goefick [CGigblettognize this aspect, too. However,
their approach is focused at application in a rather closganizational integration context and might
thus not be transferable to an oligarchic or anarchic enuirent as defined by collaborative research
projects.

Acknowledging the importance of this perspective, striategms were derived that directly reflect
this insight and have huge impact on subsequent designiaezis-irst and foremost, the resulting
emphasis on loose coupling influenced many other softwatetactural aspects such as to choose an
event-based integration style.
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Considering the collaborative aspects and thus loose iogua$ primary aims leads to many conflict-
ing requirements. For instance, a compromise had to be fbatahcing fast component interactions
with low latency on the one hand and programming models tb@aafly implement these interac-
tions in a loosely coupled manner and on a high abstractiei t& the other hand. If in doubt, the
approach taken in this thesis was to prefer usability, merityl and abstraction over performance,
because it was unclear whether up front optimization woalkteen of any real benefit.

Due to the performance requirements and particularly th kef usability required, general purpose
middleware or commercial solutions that provide similaeeen more features were no suitable al-
ternatives to the partially simpler, partially more comppeoblems of the given domain. Despite the
non-commercial research background of the presentedtectinie it certainly resembles to a kind of
novel enterprise service busnown from enterprise integration admittedly with a strdnas towards
cognitive systems research environments.

10.2. Insights and Observations

The information-driven integration model has been sudubgsutilized for the design, develop-
ment and operation of several instances of experimentahitbog systems in the VAMPIRE and
COGNIRON EU projects as outlined in the previous two chaptéurthermore, the IDI architecture
has been used for the integration of several other systerdifefent sizes, e.g.,[IVAMO€, CogD6,
IDESO8/WKEQV["SHS07], ranging from small student projeats jprojects with educative purposes
to further individual projects embedded in larger natiomslearch programs and large-scale projects
on service robotics.

Besides the iterative refinement of the integration archite’s core functionality and concepts, this
broad application allows to reflect - from the three viewpmidefined in the introduction - on how
different developers and architects actually used the Dtepts and permits to discuss some lessons
learned during the course of these projects.

10.2.1. The Functional Viewpoint

Successful integration and demonstration of many reguftirstem instances and the ability to eval-
uate those in real-world experiments with naive users dgtsarves as a proof for the suitability of
the chosen system architecture for interactive cognitjgtesns. Besides that, the concepts of the
IDI architecture that contributed most to the differentjpots from a functional perspective will be
explained in the following and contrasted with popular ralétives:

e Asynchronous vs. Synchronous Interactiddtilizing an event-driven architecture for asyn-
chronous integration of many independent processes rgmmiparallel in a distributed system
actually increased the modular protection between indalidcomponents. In contrast to the
synchronous, operation-oriented model, the failure ofviddal components is less critical as
components in an EDA shall make only minimal assumptionsiastate of other participants.
In contrast, components using a synchronous architectayefi@eze a complete system due to
resource starvation whereas in event-driven architesttine components simply do not receive
new events and may still be able to react on exceptional tondi
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10.2. Insights and Observations

Document- vs. Object-oriented Representatidhe use of XML helped in defining data types
which were suitable for every involved project partnertipatar if it was acted upon the guide-
lines of the document model, e.g., tmeist-ignoreprinciple. In contrast to object-oriented class
hierarchies, information-oriented representationdifateéd the design of coarse grained service
interactions, effecting loose coupling, improved undardability and performance.

Unified vs. Domain-specific Data Acced3ased on the document-oriented data model and
the global event bus, both subscriptions evaluated on dmsignt event-based conversations as
well as queries on the memory content expressed with XPatérsents allowed components
to freely retrieve information in a standardized fashiomgsdeclarative specifications. To
achieve similar functionality based on, e.g., objectiage data structures much more specific
infrastructure and programming models like OQL[OBbj00] \eblave been necessary.

Active Memories vs. Component-specific Data Managenidr active memory has been crit-
ical for the overall architecture and function of many of fystems developed so far for many
reasons. Through extension of a native XML database towaxitigually shared memory, in-
formation becomes easily accessible for components iatilideclarative XPath expressions.
Hence, it prevents the emergence of component spelcfasilosin cognitive system architec-
tures. Interpreting the memory as an extended event-dtiygaspace architecture allows the
design of high-level interaction protocols composed byngos set of atomic operations.

Active Forgetting vs. Lease Timellodeling forgetting as an autonomic process frees devel-
opers from keeping track of memory element lifecycle. Thises component implementation,
allows to associate memory element types with differentpmna semantics and permits for-
getting processes to evaluate meta information not coresidey individual components prior
to removing any memory elements.

Explicit Coordination vs. Stateful Interactiomhe development of guarded Petri nets permits
rigorous modeling and simulation of system behavior on & hégel of abstraction even with-
out the actual components at hand. The concept of guardarthabnnected to the observation
model provides a generic semantic coupling of this modettmas executed in an integrated
system in order to effect a specific task behavior. The eatization of control from compo-
nents to federations of domain specific controllers peeaitb further reduce the complexity
of individual components and limit their use of statefukirdctions with other services.

Generic vs. Application Specific AdapteWithin computer vision projects, partners expected
support for the development of corresponding algorithmg.efBecting the modularization of
IceWing and the provisioning of generic infrastructuregohs, developers were able to use a
well suited and efficient vision toolkit while system areits did benefit from an easy integra-
tion of processing results by the introduced set of gendugips. This approach was far more
useful than integrating each application manually withcéfieapplication adapters.

While these points were all beneficial, some aspects netigbfiinvestigation. Forinstance, itis rather
straightforward to define some heuristics when to apply Win¢eraction pattern. In contrast, it is

pretty hard to give generally applicable guidelines forataposing individual components or services
in terms of their dynamic coordination, e.g. when to use astiition inside of a component and

when to externalize stateful interactions with other congmis with the features of the coordination
model.
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10.2.2. The Collaborative Viewpoint

Besides fulfilling the functional requirements, the IDIfaitecture was designed right from the begin-
ning towards facilitating collaborative software devetmmt as highlighted in the beginning of this
section. Hence, one of the actual outcomes in this regarayis sability of the different features
through a clear and straightforward programming model.

On the one hand, this is facilitated through the use of adichitet of recurring object-oriented building
blocks, e.g., the possibility to register event-basedeaks with the same interface at different inter-
action patterns or the integration of a polymorphic evespaiching method. The Java API sketched
in Part 1l represents the state of the current iteration efdbrresponding framework implementa-
tion as a result of this joint effort. On the other hand, the abstandards based XML technologies
throughout the whole framework, e.g., by using XPath bottsfdecting memory content as well as
for the specification of content-based event subscriptémkthe consideration of developer feedback
further promotes usability and extensibility. Besidesiagrat high usability, the following observa-
tions could be made during the different projects with rddarthe proposed integration methods and
questions of collaboration (again briefly contrasted witpydar alternatives):

e Pattern-based vs. Object-Oriented Vocabulaihe definition of a common vocabulary for
interaction patterns and integration entities sucd@simentsevents subscriptionsservices
componentsindinterfacesfosters efficient communication between developers abssergial
structures of cognitive systems on the level of the intégmadrchitecture. In contrast to describ-
ing software on the level of object-oriented structuresnplexity can be reduced by omitting
irrelevant detail in compact architectural descriptiosese Figur§ 8.7(b) for an example.

e Dynamic vs. Static Interface§ he consequent focus on dynamic middleware techniques and
the reflective properties of the document, notification aachimg models eased the develop-
ment of generic monitoring tools that were highly valuableidg system development and
for controlling the correct processing of data at the sysitgiegration level at runtime. For
instance, central logging of participant interactions IRBN eased the tracing of typical pro-
cessing paths usually found in complex robot architectures

e Simulation vs. Live OperatiorThe event-driven approach facilitates debugging anduetiain
of integrated cognitive systems Bplayingrecorded event notifications. As the event metadata
provides time as well as sender and receiver informatianSettiol6.B), architectural layers
can with certain limitations be replaced by components dnatsimulated by a generic emula-
tion service. Development and evaluation of different atgms or system configurations on
comparable data has been much easier with this feature.

Though many of these assessments are truly subjectivee¢hadlogy foundation has been laid by
this work and its appropriateness has been substantiatétebyumerous systems built. A possible
area of future research could be to provide factual evidendbe performance of chosen engineering
methods as done in software engineering by developer aiigamn/PPV0OD[ Sea%9], e.g., encoding
what amount of time is consumed by certain types of tasks, eegiewing the documentation or
system testing, during a coding or integration sessions digicretization allows a kind of quantitative
evaluation of the achieved usability. Besides that, sitimiaand testing imposes unsolved challenges
with regard to emulation of complex and non-discrete corepts
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10.2.3. The Engineering Viewpoint

The first observation in this context was that due to the ahogerface granularity and the separation
of structured and binary data contents, the transport asakpsing of XML data in distributed system
architectures has up to now been no critical bottleneckyfstesn reactivity. Furthermore, through the
use of XML- and pattern-based service interfacesfléxbility requirement was fulfilled. This results
in changeability, easier adaptation and integration of nevdules. As an example taken from the
COGNIRON project, an existing localization and mapping oiedvas replaced by a different module
from other project partners in just one day [SSS08]. Utiligthe information-driven approach, even
after this modification, the previous module could be instaeously reactivated as no specific identity
or reference type information was part of the service iatmé. Let us consider some additional
lessons learned from the engineering viewpoint:

e Interaction Patterns vs. Remote-Method Invocatidn contrast to object-oriented remote
method invocations, the abstraction level of integrati®maised through the introduction of
interaction patterns to that of architectural styles. Addip on that, the defined interaction be-
havior is kept separate from the exchanged data messagexliait distribution boundaries
are enforced by the programming model. All these aspectsibote to the aim of encapsulat-
ing accidental but exposing essential complexity, cf. Cédg.

e Loose vs. Tight Couplind-oose coupling is achieved through the event-based cocejrdent-
orientation and external configurability. A refactoringtbe BIRON architecture on the ba-
sis of the IDI approach yielded in a dramatically reduced berof point-to-point connec-
tions [SSS08]. However, the ability to integrate visionagithms in a tightly coupled fashion
using the IceWing development environment, was essewtiddilding real-time computer vi-
sion subsystems out of tightly coupled image processingimu Hence, the answer is not loose
or tight coupling but to support both in a coherent way.

e Declarative vs. Procedural Specificatiofn contrast to burying relevant architectural detalil
in programming language constructs, most properties aateon the level of the integration
architecture can be declaratively specified in a way thaasdyeunderstandable by developers,
if an information-oriented representation was chosen,Sdction[G.R. Interpretability of the
exchanged XML data types directly payed off in shorter dgwelent cycles during integration,
because of the ability to vieandto understand messages at runtime.

e Schema Independence vs. Relational Schenrstather aspect useful both for development
of the system and the runtime architecture is the abilityntegrate new information types
without having to physically restart any servers or to réofepny database schema’s as known
from relational databases. The absence of fixed data schdrmakgs also in restructuring of
content and allows for storing of completely new informatitructures which is useful, e.g.,
for learning architectures.

e Independence vs. Vendor Lock-Iihrough the increased level of abstraction and the Port-
based design of the core architecture, cf. Sedfioh 6.5pentdence of a specific middleware
technology or vendor is achieved. For instance, while previversions of the resulting IDI
architecture were based on the Internet Communicationrer{eiS08b], which is an innovative
object-oriented middleware, the current implementat®obdsed on Spread, which is a group
communication framework and thus promoting completelyedint concepts. Even so, the
basic principles of the IDI architecture remained stableis Tndependence increases flexibility
and avoids critical dependencies on a single technology.
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From an engineering perspective, further work must be pilynearried out on scalability aspects
with regard to the active memory implementation and the hiagcalgorithms in the observation
model. Regarding the latter, many approaches for optimizatthing of multiple XPath statements,
e.g., [CEGR02], exist that are well suited for evaluatiod anssible extension. The replacement of
the request-reply based event handlers for the memorycssriy fully event-driven interfaces paves
the way towards linear scalability of the memory model based flexible partitioning of the overall
event space.

A disadvantage of the XML-based data exchange, which addilly impedes usability at first sight
is that due to the call for information-driven represemtatimost methods for automatic data binding
from abstract data types in programming languages to XMlud@nts are not applicable. However,
despite the fact that the position taken in this thesis it ¢thgeful design of shared data structures
and corresponding domain specific accessor classes iswbiletin software integration, a template-
based XML parsing and serialization librafy [FW07] was deped in the context of this dissertation
project, which dramatically eases this task and providesudien to this problem.

10.3. Some Answers and New Questions

In the introduction of this thesis, a number of questionsenmrsed that were addressed throughout
this dissertation. Let us for the conclusion shortly rettadl primary research question that guided my
work in the different projects and on the development of tiegration architecturewhat are archi-
tectural concepts and paradigms suitable for handling tiveate complexity of software development
in cognitive systems research projec¢ts?

Not surprisingly, this thesis does not answer this quedtidits full extent and with universal valid-
ity. In order to do so, even more systems of different kinddneebe developed, although already
quite a number of examples exist that utilities the preskafproach. Thus, the introduced models
of information-driven integration and their concepts asspnted in Part Il of this thesis may pave the
way towards further investigation on this question. Forghaects the architecture has been applied
in so far, the combination of functional and event-basedpmsition, the exploitation of the in-band
information for component coordination, and an increasedllof abstraction for the design of these
interactions in cognitive systems architectures are itambraspects of an answer. This thesis pre-
sented a novel, holistic perspective on an emerging topéxjrerimental cognitive systems research,
introducing an architecture that considers the integnationtext as an important source for specific
complexity and adopting state-of-the-art methods fromemirsoftware engineering research on soft-
ware integration and distributed systems into a cohereshtiramovative approach, thus making them
easily usable for cognitive systems domain experts.

Picking up on the introduction, the specific challenge of thork has been to findworkingdefinition

of an integration architecture that puts users and the refseaon software architectures in cognitive
systems both in a position where they can explore new issukask questions they simply could not
have asked earlier. Emphasizing the temarkingis of particular importance here as this beneficial
situation can only be achieved if a technically sound ptatf@s available, which inevitably is a huge

engineering and dissemination challenge.
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New Opportunities

However, as this state has been reached for the IDI architeeind stable implementations of the
presented concepts are available, this yields an excelpgdrtunity for further research on advanced
architectural functions. A promising trait for further essch is to analyze the resulting dynamics
of component interactions in these systems in an autonoorigoating approach applying pattern
recognition and data mining techniques in order to autonmtyoclassify the situational context of
a cognitive system. On the long run, this may lead to a mef-fer system self-awareness. Other
examples are questions of adaptive coordination, whesligent coordination models can be learned
from data available at an architectural level or to furtmmestigate the question what the specifics of
the visual active memory are with regard to architectusdesind cognitive architectures.

Finally, it should be mentioned that all the lessons leacwdd only be learned by a research policy
that aims to actually build systems for the real world and ayig great collaborators in the differ-

ent projects the presented concepts were applied in. Leharktthem here for their commitment,

patience and dedication to support the development of fisoach.
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