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Abstract

Many methods have been developed to search for homologous members of a
protein family in data bases, and the reliability of results and conclusions may be
compromised if only one method is used, neglecting the others. This thesis
introduces an integrative approach to homology search and shows that an
effective combination of homology search methods reveals superior results (Alam
et al., 2004). Two protein sequence database search methods (called CHASE
(Comparative Homology Agreement SEarch) and GenCHASE (Genomic
CHASE)) were developed, which serve as a major step to improve the detection
of remote homology. CHASE combines methods that search proteins in protein
databases. We implemented some improvements in CHASE that we now call
CHASEZ2. An evaluation based on the SCOP data base reveals that, on average,
a coverage of 55% and 49% can be obtained by CHASE2 and CHASE
respectively, in searches for distantly related homologues (i.e. members of the
same superfamily, but not the same family — the most difficult task), accepting
only 10 false positives, while the individual methods obtain a coverage of 31 to
44%. GenCHASE combines methods that search proteins in genomic sequences
and predict gene structure. Using GenCHASE we have found several candidates
for ABC, S100, and Cadherin proteins. Experimental verification of some of these
candidates is underway. CHASE can be downloaded at

http://www.mathematik.uni-bielefeld.de/~intikhab/chase-release1.0.tar.qz .
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1 Introduction

1.1.Overview and Problem Statement

Sequence database search, finding homologous sequences that are related to a
given single sequence (or a set of sequences) by common evolutionary descent,
is one of the most important tasks in computational biology. Any improvement in
this field is of high relevance to phylogeny and function prediction because by
discovering how sequences are related to known proteins we can make
predictions of their structural, functional and evolutionary features (Lindahl and
Elofsson, 2000). A number of homology search methods are available, as
described in section 2.4. Different methods report different results and the
growing number of database search methods poses a major problem to wet-lab
users, as it is difficult to decide which method should be used and which not.
Thus, the question arises whether it may be possible to combine methods, and

how a combination may be accomplished.

In this thesis, | present two consensus protein database search methods, or,
more precisely, combination schemes for homology search (called CHASE
(Comparative Homology Agreement SEarch) and GenCHASE (Genomic
CHASE)), which improve the coverage of remote homologues and give better
performance than any of their component methods. CHASE combines methods
that search proteins in protein databases while GenCHASE combines methods
that search proteins in genomic sequences and predict gene structure. We
combine only those protein database search methods in CHASE and

GenCHASE that report confidence estimates.

Chapter 2 describes the background of homology search. The PHASE4 system
(Rehmsmeier, 2002) that evaluates homology search methods is explained as

well. In chapter 3, | describe the CHASE scheme that combines several protein



database search methods. In this chapter the evaluation of CHASE and its
component methods, using PHASE4, is also explained. Chapter 4 explains
several improvements on the basic version of CHASE (now called CHASE2)
such as the implementation of a modular structure and re-calculation of E-values
that significantly improved the performance of CHASE in detecting close and
distant homologues. An evaluation of CHASE2, CHASE1, and all of the
component methods, using the PHASE4 system, is also explained in detail.

Chapter 5 of the thesis explains the development of GenCHASE and its
application on the human genome in finding hitherto unknown members of

several protein families.

1.2.Publications, Posters, Application Notes, Case Studies

CHASE (chapter 3 of the thesis) was published in Proceedings of the National
Academy of Sciences in 2004 (PNAS). Previously this work appeared as a
technical report at the FSPM. This work was also presented as posters at ECCB
2002 and RECOMB 2003. Improvements on CHASE (chapter 4) will soon be
submitted to an appropriate journal.

The development of GenCHASE and its application to the human genome to find
members of several protein families (as case studies) was presented as posters
at ISMB/ECCB 2004 and GCB 2004. Drafts for two separate publications on
GenCHASE (one explaining its development and elucidation of ABC transporters
in the human genome, the other explaining its application on the human genome
in finding members of protein families such as S100s and Cadherins) will soon be

submitted to appropriate journals.



1.3.Acknowledgments

Praise be to Allah (the unique God), the Cherisher and Sustainer of the Worlds
(Al Quran, Chapter 1:2), who blessed me with the ability to undertake and finally

complete this work.

| would like to thank my family for their immense support; they have been patient,

encouraging and understanding.

My sincere gratitude goes to my supervisors, Dr. Georg Fuellen, Prof. Dr.
Andreas Dress, and Prof. Dr. Ralf Hofestadt. This work would not have been
possible without their constant encouragement, interest, and guidance. | am

particularly thankful to Dr. Georg Fuellen for his intense supervision.

| pay special thanks to Professor Robert Giegerich, the dean of the faculty of
technology, for his continuous support and for allowing me to complete my

degree at the Faculty of Technology.

| would like to pay thanks to PD Dr. Klaus Prank, the executive director of the
NRW International Graduate School in Bioinformatics and Genome Research,
and his staff and the computing support at the Faculty of Technology and the

Genetics department for their immense co-operation.

| am grateful to Marc Rehmsmeier for his work and advice on using Phase4 and
reviewing the manuscript and thesis. | am particularly grateful to Dr. Stefan
Lorkowski, Institute of Arteriosclerosis Research, the University of Munster, for
scientific discussions and his experimental work on the verification of ABC

transporters.



| am thankful to Dr. Claus Kerkhoff, Institute of Experimental Dermatology,
Mdunster, and Dr. Eivind Hovig, Department of Tumor Biology, Institute for Cancer
Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway, for their
work on S100 proteins.

I am thankful to Mohammad Shahid for developing the interfaces for CHASE.I
would like to say my special thanks to all of my friends particularly Bjoern Oleson,
Leila Taher, Mark Moller, ConnKhurram Ghayas, Arshad Mahmood, Nadir
Pervez, and finally Jana for their scientific discussions, reading of my thesis, for

their love and great encouragement throughout my work.

| am sure | have forgotten some names. | assure you that this is a shortcoming

on my part and not on yours. | beg you to forgive me for my oversight.



2. Background --Concepts in Protein Homology Search

2.1.DNA and Proteins

All living things are based on information written in the universal language of
DNA (DeoxyriboNucleic Acid). A nucleotide is a subunit of DNA consisting of a
nitrogenous base (adenine, guanine, thymine, or cytosine), a phosphate, and a
sugar molecule. DNA attains its double helical structure due to the hydrogen
bonding between purine (adenine or guanine) and pyrimidine (thymine, or
cytosine) bases, where adenine bonds with thymine, and guanine with cytosine
(Watson and Crick, 1953). A gene is a sequence of bases, usually located at a
specific position on a chromosome in a cell's nucleus. During transcription,
nuclear genes render a messenger called “messenger RNA” that travels to the
cytoplasm of the cell and gets translated into a specific protein by assembling a
polypeptide chain of amino acids according to its code of nucleotides, where
three nucleotides (also known as a triplet) encode one amino acid. There are 20
standard amino acids. Any protein can be represented as a sequence of amino
acids, varying in length from around 50 to over 5000. Proteins are of scientific
interest because they perform many of the tasks that a cell needs to carry out at
the molecular level. And many diseases can be traced back to malfunctioning

proteins.

Mutation, selection and recombination are the basis of evolution. Organisms pass
on their genes from one generation to another; this requires the replication
(identical duplication) of DNA, which is made possible by the unambiguous
association of adenine with thymine, and guanine with cytosine. This replication
of DNA can be erroneous, for example it may cause substitutions. Such
mutations (that are fixed in the population) can be the change of one nucleotide
to another. Deletion or insertion of nucleotide(s) is also possible. There could
also be changes of more global nature such as meiotic recombination,

transpositions or reversals of segments of DNA. Some of the changes remain
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less significant as they do not change the function of a gene product while others

result in the loss of its function (Rehmsmeier, 2002).

To understand the molecular machinery of the cell it is important to understand
the meaning, or function, of each protein encoded in the genome. Let us mention
three different means for inferring or predicting the function of a protein. It can be
inferred directly through wet-lab experiments, or indirectly by elucidating and
investigating the three-dimensional structure of the protein. Another way to
predict the function of a protein is to find one or more homologous (see below)
proteins through sequence similarity. If the function of such homologues is
already known it provides hints to determine the function of the protein in
question. One goal of sequence analysis is to make inferences about the

structure and function of a protein based on its primary amino acid sequence.

2.2.Sequence Homology, Similarity, and Alignment

Sequence homology and similarity are basic concepts of sequence analysis.
Proteins that share a common evolutionary ancestor are said to be homologous.
A set of homologous proteins, all of which descended from a common ancestor,
is called a protein (sub)family. Because the overall three-dimensional structure,
or fold, of a protein remains fairly constant over evolutionary time, various
members of a protein family typically share a common fold. This similarity of fold
implies a similarity of function, with the degree of functional similarity depending
upon the degree of evolutionary divergence that has occurred within the family.
Unfortunately, the only way to conclusively prove that two sequences are
homologous would be to trace their descent from a common ancestral sequence
(Grundy 1998b). In practice, this common ancestor is not available. Nevertheless
homology can be deduced from similarity with a restricted amount of certainty
that, however, increases with the degree of similarity. Sequence similarity can be

investigated, detected, and quantified. Protein homology inference is a core
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problem and one goal in sequence analysis is the deduction of homology from

similarity.
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Figure 1. Standard scoring (or substitution) matrices:

A) PAM250, B) BLOSUMG62. PAM (percent accepted mutation) and BLOSUM

(blocks substitution matrix) are matrices that define scores for each of the

possible amino acid substitutions. The PAM250 matrix is appropriate for

searching for sequences that have strongly diverged (250 PAM means 250

is

The BLOSUMG62 matrix

calculated from gap-free protein sequence alignments of sequences that are

mutations per 100 amino acids of sequence).
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more than 62% identical. BLOSUMG62 is best for detecting the majority of weak

protein similarities.

The concept of sequence similarity usually implies a similarity score - a statement
of quantitatively how similar we judge two sequences to be. For comparative
sequence analysis, we first need to compile the similarity scores that we give to
different amino-acid pairs into a matrix; this is frequently called a scoring matrix.
In other words, a scoring matrix is a two-dimensional matrix that contains all
possible pair-wise amino acid scores. Scoring matrices are evolution in a
nutshell. In the context of sequence comparison, scoring matrices are also called
substitution matrices because the scores represent relative rates of evolutionary
substitutions (Korf et al., 2003). Well-known substitution matrices are for example
Dayhoff's Percent Accepted Mutations 250 or PAM250 (Dayhoff et al., 1978) or
BLOcks SUbstitution Matrix 62 or BLOSUM®62 (Henikoff and Henikoff, 1991), see
Figure 1.

If we are investigating a new sequence, then our first task is to find out whether it
shares similarities with other protein sequences that are known. If we render
each amino acid of a protein sequence (the query sequence), position-by-
position, comparable to at most one amino acid of another protein sequence (the
target sequence), considering a scoring matrix, the procedure is called alignment
(or more precisely an alignment trace). Comparing just two sequences is known
as pairwise alignment, as shown in Figure 2, while comparing more than two
sequences is called multiple sequence alignment, as shown in Figure 3.
Nowadays various heuristic algorithms are available for multiple sequence
alignment. Some of the well-known algorithms among many are ClustalW
(Higgins, 1994), Dialign (Morgenstern, 1999) and Mafft (Katoh et al., 2002). An
example of multiple sequence alignment, generated using ClustalW, is shown in

Figure 3. When scanning a database of target sequences the query sequence is

13



heuristically compared, or aligned pairwise, with each sequence present in the

database.

10 20 30 40 50

10 20 30 40 50 60

Figure 2. An example Pairwise alignment

A part of a pairwise alignment is shown. The middle row shows the conservation

“w.n

of amino acids for a particular column. The “” symbol means an amino acid is

identical in both sequences, “.” means that a similar amino acid is aligned and the

[13N1}

means the gap character.

sp_P22324 -KTERMFANVHLFELEI SGTYDLEEVLGHLGITHNWVF 2SGAADLESGITEDMPLE I SEGLHEA
sp_P22325 -ETERMFANVHLFELEI EGTYDLEEVLGHLGITHNWF SDAADLESGVTEDIPLE I SEGLHEA
sp_P23035 -EEELREVTVHFPELEI EGTYDLEPLLGELGITOWVF EDNADLEGITEQEPLEASQALHEA
sp_Q9JBF9 SNMEY GEI SV IPEF S IQTQHNIESVFVELGITDIFDENC EMESVEFDE-FEITELFVES

* ok k o=k R ER - - - - - - k-

Figure 3. An example Multiple Alignment
A part of an alignment, generated using ClustalW, is shown. The last row shows

Wk

the conservation of amino acids for a particular column. The

“w,”

amino acid is identical in all sequences, “"means that the amino acids are

symbol means an

strongly conserved, and "." means that the amino acids are weakly conserved.

Note the gap towards the end of the forth sequence.

2.3.Sequence Databases
Given the growing number of sequenced genomes, along with the completion of

the human genome project, the amount of accumulated DNA sequence data
keeps growing at an accelerated rate. There are about 37,893,844,733 bases in

14



32,549,400 sequence records as of February 2004 at GenBank, an annotated
collection of all publicly available DNA sequences (Benson et al., 2004). The
SWISS-PROT protein knowledgebase (Boeckmann et al., 2003), on the other
hand, connects amino acid sequences with the current knowledge in the life
sciences. It is the leading universal curated protein sequence database. SWISS-
PROT Release version 43.1 as of 13-Apr-2004 contains 148516 entries. TrEMBL
(Translation from EMBL) is another database that consists of computer-
annotated entries derived from the translation of all coding sequences in the
EMBL/ GenBank nucleotide sequence database that are not yet included in
Swiss-Prot. TrEMBL Release version 26.1 as of 13-Apr-2004 contains 1067463
entries. (For a review on protein sequence databases see Apweiler et. al., 2004).

More specialized are the protein signature databases that describe structures of
specific amino acids typical for a certain protein family. These databases are
based on several different methods that evolved with the need for efficient
automatic methods of protein sequence classification and characterisation.
Recently, the major signature databases such as PROSITE (Falquet et al., 2002),
PRINTS (Attwood et al.,, 2002), Pfam (Bateman et al., 2002), and ProDom
(Corpet et al., 2000) formed a Consortium and agreed to integrate their data into
a new database that became known as InterPro (Apweiler et al., 2001).
Subsequently SMART (Letunic et al., 2002) and TIGRFAMs (Haft et al., 2001)
have joined the Consortium. The Structural Classification of Proteins (SCOP)
database (Andreeva et al., 2004) is another specialized database built on
comprehensive ordering of all proteins of known structure, according to their
evolutionary and structural relationships. Protein domains in SCOP are
hierarchically classified into families, superfamilies, folds, and classes. The
accumulation of sequence and structural data allows more rigorous analysis and
provides important information for understanding the protein world and its

evolutionary repertoire.
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2.4.Sequence Database Searching

In bioinformatics we apply information technology systems and strategies to
store, organize and analyze the vast amount of biological data. This data is
available on the one hand in the form of sequence databases of nucleic acids
(the information carrier) and on the other hand it is available as sequence and
structure databases of proteins (the building blocks of cells and organisms).
Aside from maintaining the large databases, mining useful information from these
is also very important. It is the search tools that integrate the user and the

databases.

Every pairwise comparison yields a raw score of a heuristic alignment, where
large scores usually indicate higher degree of similarity. The discovery of a
statistically significant similarity (see section 2.5) between two proteins is
frequently used, therefore, to justify inferring homology and a common functional

role for the two proteins (Liao et al., 2002).

Sequence-homology search algorithms are important computational tools in
molecular biology. Lots of efficient algorithms have been developed for sequence
database searching. These algorithms are sometimes computationally intensive
and need swift and parallel computing facilities for handling multiple queries
simultaneously. There exist at least three general classes of techniques
employed in searches for protein homologues, namely pairwise sequence
comparisons such as Blast, profile-based searches such as HMMsearch, and
motif- or pattern- based analyses such as PHI-Blast (see Altschul et al., 1990,
Bork & Gibson 1996, Eddy 1998, Grundy 1998, Zhang et al., 1998). A detailed
description of five search techniques, including PHI-Blast and HMMsearch, is

given in section 2.4 4.
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2.4.1. Pairwise Sequence Comparison

In a pairwise search, a query sequence is compared to a database sequence,
yielding a confidence estimate (see section 2.5) that is supposed to indicate the
chance of finding a comparably similar sequence in a database of random
sequences, of the same size. The comparison is done for every sequence in the
database, and the sequences with highest confidence (“the hits”) are reported.
The most popular pairwise-search tool so far is Blast (Basic Local Alignment
Search Tool) (Altschul et al., 1990). FASTA (Pearson, 1990) is another example
of a pairwise database search tool.

2.4.2. Profile-based Sequence Comparison

For most pairwise alignment programs, the twilight zone of very uncertain
homology inference falls between 20-25% sequence identity (Chung and
Subbaih, 1996). Additional information is needed in order to discover even more
remote homologues to push back the twilight zone. Individual members might be
missed by pairwise search analysis, in a diverse family of proteins, if they have
very low pairwise similarity (Grundy 1998b). However, using a representative set
of sequences from the family can uncover such missed relationships (Altschul,
1997).

Simple profile searches like PSI-Blast make use of position-specific scoring
matrices based on a set of sequences and are usually more sensitive than
pairwise comparisons. The introduction of Hidden Markov Models (HMMs)
appears to provide a firmer statistical basis for profile search. The majority of
currently available profile tools use HMMs, for example the HMMER package
(Eddy, 1996).

17



2.4.3. Motif/Pattern-based Sequence Comparison

Kinship between protein sequences can also lead to (and, thus, be recognized
by) the occurrence of particular amino-acid patterns (also known as motifs,
signatures, or fingerprints) that were conserved throughout the evolution of the
protein family in question and are believed to correlate with specific structural
features and function. Motif analysis, therefore, can also be used for identifying
new members of a protein family (Bairoch et al., 1997, Hudak et al., 1999,
Jonassen et al., 1995). Motifs are the backbone of homology-search methods
such as PHI-Blast (Zhang et al., 1998). In contrast to profiles, motifs are usually
short, they include a short stretch of very specific amino acids deemed relevant
for function, and they are denoted by specific regular expressions (Falquet et al.,

2002) designed to represent a family-specific pattern.

2.4.4. Sequence-based Homology Search Methods: 5 Examples

The ultimate task of all homology search methods is the same, namely, to identify
related sequences from a database, given a single or a set of sequences.
However, they differ in the technique they use to accomplish this task. As
described, three main techniques on the basis of which homology search
methods can be classified are a) pairwise sequence comparisons, b) profile
based sequence comparison, and c) Motif/pattern based sequence comparisons.
Among many available homology search methods, we will combine only those
five methods known to use a collection of sequences as search input and to
report a confidence estimate, such as an E-value, for each hit. The first two
methods perform profile-based searches by using a Hidden Markov Model
(HMM). PSI-Blast and PHI-Blast are profile-based and pattern-based,

respectively. MAST is also pattern-based.
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o HMMsearch (Eddy, 1998) tries to align a Hidden Markov Model (HMM)
with every database sequence and reports the matches. Methods such as
hmmbuild (Eddy, 1998) can turn a multiple sequence alignment into the
necessary HMM. Here, a carefully defined nonredundant set of sequences
that belong to the protein family in question results in a better HMM and
ultimately better detection of remote homologues. Because sequence
families preferentially conserve certain critical residues and motifs, and
this information can be incorporated accurately into an HMM, HMMs can
often allow very sensitive database searches to be done (Eddy 1998b).
HMMs generated using hmmbuild are calibrated using hmmcalibrate that
automatically estimates some parameters needed for calculating accurate
E-values by HMMsearch in database searches (Eddy 1998b). The run-
time of HMMsearch is approximately proportional to the product of the
lengths of the query sequence and the database searched (see Eddy,
1998).

o Treesearch (Rehmsmeier & Vingron, 2001) requires a multiple alignment
of the query sequences and a phylogenetic tree based on this alignment,
in addition to an HMM. Treesearch then compares the HMM with the
database sequences one by one, as HMMsearch does, and temporarily
inserts the database sequence into the given phylogenetic tree, adding a
new edge to the existing tree. Homology between the given family of
proteins and this sequence is then judged from the length of this edge (the
tree augmentation). Treesearch is based on phylogenetic trees and it
shows that phylogenetic information improves the detection of distant
homologies. Treesearch runs, under certain assumptions, proportional to
the product of the lengths of the query sequence, of the HMM, and of the
database searched, see (Rehmsmeier & Vingron, 2001).
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o PSI-Blast (Altschul et al.,, 1997) can be started using a profile, read off
from the multiple sequence alignment of the input sequences. Usually,
PSI-Blast is run iteratively, each new run being based on the output of the
previous one, though we will use only one iteration step of this algorithm.
The PSI-BLAST program runs at approximately the same speed per
iteration as gapped BLAST, that is proportional to the product of the
lengths of the query sequence and the database searched, but in many
cases it is much more sensitive to weak but biologically relevant sequence
similarities (Altschul et al., 1997). However, much care should be taken
when selecting the set of sequences to be given to PSI-Blast before the
iteration step, because one unrelated sequence may pollute the search
profile and result in irrelevant hits with significant E-values (Eddy 1998Db).

o For PHI-Blast (Zhang et al., 1998), that combines matching of regular
expressions with local alignments surrounding the match, we need a motif
in the form of a "regular expression" (Falquet et al., 2002) designed to
represent a family-specific pattern. An example pattern for Serpins,
extracted from the PROSITE (Falquet et al., 2002) database is shown

below:

(LIVMFY)-x-(LIVMFYAC)-(DNQ)-(RKHQS)-(PST)-F-(LIVMFY)-(LIVMFYC)-x-(LIVMF AH)

It says that any one of ‘LIVMFY’ amino acids is allowed at position 1. The
dash “-“ character coming next means what follows is the specification of

the amino acid at the next position. The “x” character that follows means

any amino acid is allowed at this position, etc.

Such an expression can be derived from the input sequences using
PRATT (Jonassen, 1997). PHI-BLAST then searches a protein database
for other instances of the input pattern, and uses those found as seeds for

the construction of local alignments to the query sequence. The
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distribution of PHI-BLAST alignment scores has been studied analytically
and empirically. In many instances, the program is able to detect
statistically significant similarity between homologous proteins that are not
recognizably related using traditional single-pass database search
methods (Zhang et al., 1998). Finally, following a suggestion from the
Blast software README for improving the competitiveness of PHI-Blast,
we will apply PSI-Blast just once, using a profile derived from the PHI-
Blast result. No information could be found on the run-time of PHI-Blast,
except for empirical data listing run-time in seconds (Zhang et al., 1998).

Finally, Mast (Bailey & Gribskov, 1998) searches biological sequence
databases for sequences that contain one or more of a group of known
motifs. Motifs are provided in a specific format, derived using a tool called
MEME (Multiple EM for Motif Elicitation), available with the MEME-Mast
package. Mast compares the MEME-derived group of motifs with each of
the sequences in the database and reports the matches. Mast considers
each piece of evidence (for a motif match) in the form of a p-value, and
then uses the product of these p-values as the measure of membership in
the family. For calibration, it uses an algorithm (QFAST) for calculating the
statistical distribution of the product of n independent p-values. Mast
demonstrates that sorting sequences by this p-value effectively combines
the information present in multiple motifs, leading to highly accurate and
sensitive sequence homology searches (Bailey & Gribskov, 1998). No

information could be found on the run-time of MAST.

2.5.Significance Of Database Search Results

Sequence database search, given a single sequence or a set of sequences as

query to find out similar sequences, is a widely used tool in bioinformatics.

Sequence homology search tools report a list of matched sequences or hits that

are aligned with the query either locally (in case of pairwise methods) or semi-

globally (in case of profile based methods). Each hit is assigned a numerical

21



score and only the significant hits are reported that give a score greater than
some threshold (Pagni et al., 2001). The value of such a numerical score is

usually based on an alignment score.

2.5.1. Alignment Score or Raw Score

Sequence homology search algorithms usually are heuristics for finding the
highest-scoring alignment of segments from the two sequences being compared.
A typical alignment score (also called raw score) is determined either by using a
substitution matrix such as BLOSUMS0 or PAM250 --, and if gaps are allowed,
the gap opening or gap extension penalties, -- or by a position specific scoring
matrix. More precisely, an alignment score is calculated by summing up the
substitution score, defined for each aligned pair of letters, and gap scores for
each run of letters in one segment aligned with gap characters inserted into the
other (Altschul et al., 2001). A specific type of normalized alignment score is
called the bit score.

2.5.2. Expect (E)-value

The result of a database search can be classified into true and false positive hits.
The hits related to the query sequence(s) are called true positives and others
(where the observed similarity is attributable to chance) are the false positives
(ones that have not been found are the negatives). It is important to know that
only biological arguments can let one distinguish if a sequence can be regarded
as a true or false positive, though in terms of computational sequence analysis, a
statistical analysis based on sound principles can also help in distinguishing the
true from the false positives (Pagni et al.,, 2001). The E-value is the most
frequently used such statistical estimate to represent the significance of database
search results. In the simplest pairwise case of standard Blast searches, given a
normalized pairwise-comparison score S, the E-value estimates the expected

number of distinct local matches with normalized score at least S in an equally
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large database of random sequences (see (Altschul et al., 1997)). This concept
can be generalized to other search methods, with different degrees of

mathematical rigor.

2.6. Evaluating Database Search Methods

There exist many methods that search databases to find out homologous
members of a protein family. An evaluation of such methods is necessary in
order to figure out their performance in comparison to each other. Usually the
evaluation of homology search methods is done in four steps (Rehmsmeier
2002b). As a first step, a sequence database of known relationships is divided
into the training and test set of sequences where each test set is associated with
a training set of homologous sequences. Database search methods are
executed, given the training set of sequences, as a second step. The more test
sequences (i.e. homologs of the training sequences) are found, the better a
search method performs. In the third step in evaluating the methods, their result
reports are read to split the scores into ones for homologues and ones for non-
homologues. A particular search method is designated better if it assigns better
scores/E-values to homologs than to non-homologs. In the final step, further
statistical analysis based on the scores for homologues and non-homologues can
be shown in tables or figures in a variety of ways. One such system that
evaluates the performance of homology search methods is Phase4 (Rehmsmeier

2002b), where all above-mentioned steps are automated.

2.6.1. Phase4

Phase4 is a system for the automatic evaluation of database search methods. It
offers the logical structure of the framework in which evaluations are usually
accomplished. Automatically, a benchmark (e.g. SCOP (Murzin et al., 1995))
database is split into test and training sets, methods are executed, their

performances evaluated and presented in selected tables and diagrams
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(Rehmsmeier 2002b). The performance of a method is evaluated by its ability to
find a test set of sequences in a target database, using a training set of
sequences for “learning” e.g. for calculating an HMM. To construct test and
training sets, Phase4 relies on target databases like SCOP that classify proteins
according to membership in families (of closely related sequences) and in
superfamilies (of not so closely related sequences). It should be noted that
Phase4 does not claim to offer its own or any new way to evaluate the homology
search methods but it is an interface that offers the usual evaluations in an
automatic way. Phase4 has already been used to evaluate the "Jumping

Alignment" method (Spang et al., 2002).

2.6.2. Phase4 Evaluation Scenarios

In Phase4, an evaluation scenario is defined by specifying a training and a test
set of sequences in the target database. For example, the scenario “Distant
Family One Model” is used to evaluate a homology search method for its ability
to report distant relationships in protein superfamilies by splitting off one family
from a given superfamily to provide the test sequences, and keeping the rest of
the superfamily as training sequences. Such a test is executed, for each family in
turn, for every superfamily (see Table 1 and Figure 4 for commonly used
scenarios, and (Rehmsmeier 2002b) for more details). As noted, the more test
sequences (i.e. homologs of the training sequences) are found, the better a

search method performs.
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Table 1. Evaluation scenarios defined by Phase4, given a sequence

database that is organized into families and superfamilies®.

Scenario Description

“Distant relationship” From a superfamily, each family in turn is chosen to provide
(Distant Family One Model  the test sequences. The remaining families within that
(DFOM)) superfamily provide the training sequences.

“Close relationship” For each superfamily, half of the sequences of each of its

(Family Halves One Model families are chosen as training, the remaining ones as test

(FHVOM)) sequences.

“Very close relationship” For each superfamily: For each family, half of its sequences
(Family Half One Model are chosen as test, the remaining ones as training
(FHfOM)) sequences. The sequences of the surrounding superfamily

are ignored in the evaluation.

*Note that training sequences are always ignored in the evaluation, and that the division
into test and training sequences as described above is performed for each superfamily in
turn. For the last model, average performance is calculated over an additional inner loop

that considers each family in turn.
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Figure 4. Three Evaluation Scenarios are visualized: A) Distant Relationships,
B) Close Relationships, and C) Very Close Relationships. Big green circles
represent a SCOP superfamily, blue (parts of) circles represent the test set of
sequences to be found by a method using the training set of sequences which
are represented as white (parts of) circles (See table1 for definitions of evaluation
scenarios). Numbering of circles shows that, for example in case of A) “1” is the
first test protein family while “2” and “3” are used for training. In the second round

“2” will be the test protein family while the others are used for training, and so on.

2.6.3. Phase4 Performance Plots

To evaluate the performance of any method numerically, Phase4 offers
evaluators. These make use of the lists of sequences found that are ranked
according to a confidence estimate, e.g. an E-value (as shown in Table 2), or
according to a score. (E-values are reported by each of the search methods we

want to combine, and our combination scheme will report a combined E-value.)
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We now need to formalize our statement “The more test sequences (i.e.
homologs of the training sequences) are found, the better a search method
performs”. We already noted the following variant: “A particular search method is
designated better if it assigns better scores/E-values to homologs than to non-
homologs”. Accordingly, the “coverage versus false positive counts” evaluator,
provided by Phase4, does the desired formalization. For a given test, this
evaluator compares the “good” and the “bad” guys as follows: It calculates the
percentage P(k) of true positives (relative to the set of all true positives in the
database) with an E-value smaller than or equal to that threshold value for which
exactly & false positives are found, thus rendering the percentage coverage P as
a function P=P() of the absolute number k£ of misclassifications considered
acceptable. Finally, results are averaged over all tests executed, They are then

presented, for example, as a coverage versus false positive counts plot shown in

Figure 5.
40
f%% 35 et
o) ”_;_g'k
3 i
© 30 ﬂ'_;"_'wh_ﬁ *----W’F%
= " L T I oo -k
§ ull T#—JHZ )g, ,,,,,, P it N
fusk . ””i*%
& 25 £
- b
g #‘*’*’ﬁg treesearchc ——
—Psig i B
s 0¥ o b adto_phiblast ——
f e = mast —&—
- -
15 . ,
0 50 100 150 200

false positives
Figure 5. Coverage vs. False Positives Count Plot, an Evaluation Plot For
Sequence Database Search Methods Produced Using PHASE4 System.
A plot showing average percent coverages of true positives, accepting 0 to 200
false positives, obtained by Treesearch, PSIBlast, PHI-Blast, Mast, and
HMMsearch. Generally speaking, the faster a curve goes up, the better. Thus,
HMMsearch and Treesearch perform best. For example, considering 50 false
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positives acceptable, HMMsearch and Treesearch achieve true positives average
coverage of 27%, PHI-Blast achieves 24%, PSI-Blast achieves 21%, and Mast
17%. This evaluation was performed under the distant relationship scenario (for

more detail on evaluation scenarios see Table 1) for all protein superfamilies in

one half of the SCOP database.

Table 2 A list of hits from different methods, sorted on the basis of HMMsearch

E-values. The search was started with a set of sequences from superfamily 3.3.1
(SCOP version 1.53), featuring the FAD/NAD(P)-binding domain.

No 2 Description HMMsearch Treesearch PSIBlast PHIBlast Mast
1 3.3.1.2.2 Cholesterol oxidase 1E-113 2E-22 7E-65 1E-154 2E-86
2 3.3.1.2.7 Glucose oxidase 2E-137 2E-22 2E-82 1E-19 2E-95
3 3.3.1.2.8 Glucose oxidase 2E-136 2E-22 3E-84 6E-12 5E-94
4  3.3.1.2.1Cholesterol oxidase 5E-106 2E-22 3E-65 1E-146 2E-91
5 3.3.1.2.9 Polyamine oxidase 2E-100 1E-19 3E-81 3 0.00009
6 3.3.1.4.2 Fumarate reductase 5E-98 1E-22 2E-56 5E-67 1E-61
7 3.3.1.4.3 Fumarate reductase 1E-97 1E-22 2E-61 4E-16 4E-57
8 3.3.1.4.4 Flavocytochrome 5E-95 2E-22 7E-56 0.000000003 1E-64
9 3.3.1.4.5 Flavocytochrome 2E-94 2E-22 1E-53 0.0001 5E-62
10 3.3.1.4.1 L-aspartate oxidase 2E-93 2E-22 8E-57 2E-61 5E-53
11 3.3.1.3.1 Guanine nucleoase 7E-88 5E-21 2E-71 4 0.12
12 3.3.1.2.3 p-Hydroxybenzonate 1E-69 2E-20 5E-46 0.2 0.0007
13 3.3.1.2.5 Sarcosine oxidase 1E-66 3E-21 3E-46 0.008 0.0002
14 3.3.1.2.6 Phenol hydroxylase 5E-45 4E-19 1E-33 0.0005 0.00000003
15 3.3.1.1.3 Adrenodoxin reductas 8E-23 7E-20 1E-18 1000 3.5

16 3.3.1.1.2 Trimethylamine dehyd 0.003 2E-16 0.000000910 1000
17 3.32.1.13.8 HslU {Bacteria 4 18 1000 1000 280
18 3.3.1.5.8 Dihydrolipoamide 5.9 22 0.3 0.8 0.01
19 3.3.1.5.8 Dihydrolipoamide 19 15 0.4 0.9 0.0003
20 3.3.1.5.10 Dihydrolipoamide 51 34 1000 1000 0.01
21 5.8.1.3.1 T7 RNA polymerase 77 23 50 1000 90

22 1.111.5.1.1 70 KDa soluble lytic 90 1000 6 300 1000
23 3.3.1.2.6 Phenol hydroxylase 110 2E-16 0.002 700 96

24 3.3.1.5.1 Glutathione reductase 110 27 8 1000 0.0002
25 3.3.1.5.9 Dihydrolipoamide 130 22 0 3 0.12
26 1.119.1.1.2 Fumarase Escherichia 200 700 50 20 72

27 3.3.1.5.3 Trypanothione reductase 250 91 30 700 0.56
28 3.68.1.1.1 Ribokinase {Escherichia 330 88 1000 9 10

29 3.84.1.1.1 Asparaginase type Il 610 1000 0.002 100 1000
30 3.62.1.3.3 Cystathionine gamma- 650 270 3 400 1000
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31
32
33
34
35
36
37
38
39
40

3.3.1.5.4 Trypanothione reductase
3.3.1.5.8 Dihydrolipoamide
3.3.1.5.5 Thioredoxin reductase
3.2.1.5.15 Lactate dehydrogenase
3.4.1.2.1 D-amino acid

3.3.1.5.7 NADH peroxidase
3.4.1.1.2 Trimethylamide
3.3.1.5.2 Glutathione reductase
3.3.1.5.6 Thioredoxin reductase
3.2.1.2.1 Uridine diphosphogala

710

740

920

1000
1000
1000
1000
1000
1000
1000

120
45
97
1000
290
1000
440
480
1000

20
1000

200
200

100
300
30

60
1000

1000
30

0.005
0.005
7.2
0.09
0.41
0.52
1.2
8.2
0.03
1000
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3. CHASE (Comparative Homology-Agreement SEarch)

3.1.1. Related Work on Methods Combination

The combination of methods is an advanced form of a meta-study. Important
medical questions are typically studied more than once, and a meta-study
compiles and analyses the results of all relevant studies. InterPro (Apweiler et al.,
2001) and Metafam (Silverstein et al., 2001) present such compilations in protein-
family research. Combining methods directly to generate a consensus result is
also practiced in some areas of bioinformatics. Unfortunately, combining methods
on a large scale is complicated by the fact that different programs often have
different input requirements and output formats. Nevertheless, algorithms that
efficiently combine different methods and standardise their input and output
requirements can improve the accuracy of results considerably. Examples of
such algorithms in the area of structure prediction, fold recognition, phylogenetic
tree reconstruction and gene prediction are Jpred (Cuff et al., 1998), Pcons
(Lundstrédm et al., 2001), Hybrid (Huson et al., 2000) and Combiner (Allen et al.,
2004), respectively. Jpred is a simple majority-wins based consensus predictor
for secondary structure. Pcons is a neural-network-based consensus predictor for
fold recognition. Hybrid is a method for combining outputs of different tree
reconstruction methods (thus producing a "“hybrid" method), and the authors
have shown experimentally how one such hybrid method has better performance
than its constituent parts (Huson et al., 2000). Combiner uses the output from
gene finders, splice site prediction programs and sequence alignments to predict
gene models. In the following section, Jpred and Combiner are explained in more

detail.

3.1.1.1. Jpred

Jpred is a system that provides a consensus secondary structure prediction. It

accepts two input types, a family of aligned protein sequences or a single protein
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sequence. If a single sequence is submitted, an automatic process creates a
multiple sequence alignment, prior to prediction (Cuff & Barton, 1998). To
automatically generate the multiple sequence alignment, if a single query
sequence is given, the OWL (Bleasby et al., 1994) database is searched with
BLAST (Atschul et al., 1990). This returns a number of sequences that are then
fitered using a Smith Waterman dynamic programming implementation,
SCANPS (Barton, 1993), and then aligned.

Jpred - Outline

BLAST

Low probability
threshold 102

SCANPS Pairwise Align ClustalW
Smith Waterman =

0.0001 probability C'“S‘ltgr:"?g?,znove

Run methods
6 way parallel

DSC
»  PREDATOR
PHD
NNSSP
MULPRED
ZPRED

Figure 6. An outline of Jpred

Given a single sequence, similar sequences are extracted from a database using
Blast, filtered using SCANPS, aligned using ClustalW, and provided as an input
to six different structure prediction methods. At the end the results from each
method are combined into a simple file format (java, html or postscript) along with

a simple majority wins based consensus prediction (Clamp and Cuff, 1999).
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Six different prediction methods (DSC (King & Sternberg, 1996), PHD (Rost &
Sander, 1993), NNSSP (Salamov & Solovyev, 1995), PREDATOR (Frishman &
Argos, 1997), ZPRED (Zvelebil et al., 1987), and MULPRED (Barton, 1988,
unpublished) are then run, and the results from each method are combined into a
simple file format along with a simple majority wins based consensus prediction.

An outline of Jpred is shown in Figure 6.

3.1.1.2. Combiner

Combiner is a computational method to construct gene models by using evidence
generated from a diverse set of sources. It takes as input a genomic sequence
and the locations of gene predictions from ab initio gene finders, protein
sequence alignments, expressed sequence tag and cDNA alignments, splice site
predictions, and other evidence. Three different algorithms for combining
evidence in the Combiner were implemented namely the simple Linear Combiner
(LC1), the second combiner (LC2), and the Statistical Combiner (SC). LC1 uses
a voting function to combine multiple gene prediction programs. Gene models
predicted by any of the gene prediction programs are considered. For each
position, each gene finder must vote for either coding or non-coding, and the
highest-scoring combination of intervals of consecutive coding (or non-coding)
positions of the gene is pieced together to form a gene model. Each gene finder

is given equal weight, that is, one vote, in LC1.

The second Combiner (LC2) uses a similar algorithm to LC1, but with two
significant enhancements. First, it adds sequence alignments (both DNA and
protein) and splice site prediction program output to the inputs. Second, it uses
different weights for the different forms of evidence. Finally, the Statistical
Combiner (SC) uses decision trees to correlate evidence patterns with candidate
gene models. SC also uses the confidence scores returned by the gene finders
themselves (when available) to combine outputs from gene finders. In other

words, instead of a simple linear function combining all the inputs, SC builds a
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non-linear model based on a decision tree including confidence scores. (See
Allen et al., 2004 for more details on Combiner and Mathe et al., 2002 for a

detailed review on gene prediction methods).

3.1.2. Combining Sequence-based Homology-Search Methods

In the version of CHASE presented, we are dealing with the following five
homology search methods, described in section 2.4.4: HMMsearch (Eddy, 1996),
Treesearch (Rehmsmeier & Vingron, 2001), PSI-Blast (Position-Specific Iterated
Blast) (Altschul et al., 1997), PHI-Blast (Pattern-Hit Initiated Blast) (Zhang et al.,
1998), and Mast (Motif Alignment and Search Tool) (Bailey & Gribskov, 1998).

These methods display a significant difference in their performance (see Figures
8, 9, and 10 below). In this study, we will show that the overall performance of
homology searches can be improved if these methods are combined
appropriately. To date, to the best of our knowledge, there is no method available

that produces a consensus over sequence-based homology-search methods.

We developed a system called CHASE (Comparative Homology-Agreement
SEarch) that combines the five different methods (from now on called CHASE
component methods; described in section 2.4.4 above) as follows: First, given a
collection of query sequences, method-specific input queries structured
according to the specific requirements of the individual search algorithms are
automatically derived for each of the five component algorithms. Then, after
these have been applied using their respective input queries, we compute and

report a “consensus hit list”. An outline of CHASE is shown in Figure 7.
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Figure 7. An outline of CHASE

CHASE uses input processors that transform a set of sequences into inputs for
various homology-search methods, namely HMMsearch, Treesearch, Mast, PSI-
Blast, and PHI-Blast. CHASE executes the underlying homology-search
methods, the results of which are combined by the CHASE scheme to get a

consensus.

We present a comparative evaluation of the performance of CHASE in section
3.4. It is needless to say that the evaluation of CHASE is of course performed on

a database that is disjoint from the database used to calibrate this tool.
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3.1.21 Input Processing

All of the 5 homology-search methods that we combine provide confidence

estimates for their results. To perform their task, they require a query and a target

database such as SWISSPROT or SCOP. The exact query format requirements,

however, vary from method to method. We developed scripts called input

processors (IPs) that take a collection of sequences and process these as follows

to obtain the specific type of input for each of these homology-search methods.

(0]

HMMsearch IP: We use ClustalW (Higgins et al., 1994) to generate a
multiple alignment that in turn is used by HMMbuild, available with the
HMMER package, to build a Hidden Markov Model. We calibrate the
required HMM using hmmcalibrate, also available as part of HMMER.
Treesearch IP: We use build_compound, available with Treesearch, to
generate, as required, a sequence alignment (using ClustalW), a
phylogenetic tree (using fitch (Felsenstein, 1998)), and an HMM (using
HMMbuild).

PSI-Blast IP: We use ClustalW to align the input sequences, and format
the alignment such that it can be used to “jumpstart” a "single run" PSI-
Blast search. A multiple alignment that is used to jumpstart PSI-Blast must
include the query sequence as one of the sequences, but it need not be
the first sequence. PSI-Blast further requires that the jumpstart alignment
does not contain some of the headers and trailers that are usually present
in ClustalW-based alignments.

PHI-Blast IP: We use PRATT to generate a Prosite-like pattern from given
un-aligned sequences, and a ClustalW alignment to generate a consensus
sequence (by relative majority rule) for starting a PHI-Blast search,
followed by a “single run” of PSI-Blast.

Mast IP: We use MEME (Multiple EM for Motif Elicitation) (Bailey, 1994),

given un-aligned sequences, to generate motifs that are used to run Mast.
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3.2. A Scheme for Combining Homology Search Methods

We describe a scheme to combine several homology search methods based on
the numbers such as E-values that they report for every hit. As shown in Figure
7, in our scheme for combining different homology-search methods we run them
one after the other. Since they use various kinds of input information we provide
this information automatically, employing input processors as described above.
Once the searches are complete, the results of each method are parsed to
extract specific information such as the unique sequence identifiers of the hits
and the corresponding E-values. Tallying data for all methods, we obtain a
preliminary list of all hits, each row containing one sequence identifier and the
corresponding E-values reported by the different methods. Such a list was

already presented in Table 2 (section 2.6.3).

Our basic idea of combining methods works in three steps. (a) Evaluating the
performance of CHASE component methods, (b) placing methods on a common

scale based on E-values, (c) calculating the combined E-value (called C-value).

3.21  Evaluating the Performance of CHASE Component
Methods

We used the Phase4 system to evaluate, only once, the individual homology-
search methods (to be combined in CHASE) to derive a weighting scheme that is
based on their performance. Before starting the evaluation the SCOP database is
split into two databases: the odd database, containing every second SCOP
superfamily starting with the first one, and the even database, containing the rest.
Among several available scenarios offered by Phase4 that define training and
test sequences using the SCOP database as described before, we choose one
for detecting distant, one for detecting close, and one for detecting very close
relationship (see Table 1 on page 25 for details). To get a long list of hits an E-

value cut-off as large as E¢c = 1,000 was set for all individual homology-search
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methods; sequences with a larger E-value than the cut-off are not listed. Before

the implementation of modular structure of CHASE (described in chapter 4), we

used only ClustalW-based alignments for alignment-based methods such as
HMMsearch, Treesearch, PSI-Blast, and PHI-Blast.

As a result of the evaluation of CHASE component methods, we got three

performance plots i.e. coverage versus false positive count plots, one for each of

the evaluation scenarios mentioned above.
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Figures 8, 9, 10: Coverage versus false positive counts for CHASE
component methods as in Distant (DFOM), Close (FHvOM), and Very Close
Relationships (FHfOM) scenarios, respectively, in the odd half of SCOP.
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For each CHASE component method i=/, ..., 5 (i.e. HMMsearch, Treesearch,
PSI-Blast, PHI-Blast, and MAST), the average percentages P;(k) of true positive
coverages (from the protein super-families present in a particular evaluation
scenario, i.e., distant, close, and very close relationship scenarios, respectively)
are plotted on the Y-axis while accepted misclassifications (false positives) k from

0 to 200 are plotted on the X-axis in Figure 8, 9, and 10. See section 2.6.3 for

detailed explanations of these plots. Further, to measure the performance of
component method i, we plot its average percent coverage for k=50 false
positives, for each evaluation scenario mentioned above, in a histogram as

shown in Figure 11.
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HhiMzearch W Treesearch  mPSLBlast  mPHEBlast  mMast

Average Percent Coverage

Distant Relationships Close Relationships Wery Close Relationships
Evaluation Scenarios

Figure 11. Average percent coverages permitting k=50 false positives. Data are
based on the odd half of SCOP.

3.2.1.1. Weighting Scheme Based on the Performance of
Methods

Based on the odd half of SCOP, we considered average percent coverages for
k=50 false positives (see Figure 11) to calculate method weights W=w,, ..., W,
where 7 is the number of methods, and the weight 7; of method i is set to P/(P, +
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... Py), the average coverage P;divided by the total sum of the average coverages

of all » methods so that ZW =1holds, as shown in Table 3.

i=1

Table 3. Weights for CHASE component methods (see Table 1, section 2.6.2, for

evaluation scenarios)

Sum of
Evaluation Scenarios| HMMsearch |Treesearch PSI-Blast| PHI-Blast| Mast Total
Coverages
Distant Relationships 27.1429 26.9762 21.2381 23.3095 17.5714
Close Relationships [77.5778 73.6667 73.1333 69.4222 60.9111
Very Close
. . 89.2791 81.2558 85.0465 82.1628 78.4884
Relationships
Total Coverages 193.9997 181.8987 179.4179 174.8945 156.9709 887.1818
W=Total Coverages /
Sum of Total 0.2187 0.2050 0.2022 0.1971 0.1769 ZW, =1
i=1
Coverages
3.21.2. Limits on The Performance Of Homology Search

Methods

We will briefly describe some possible explanations for the performance

differences that give rise to the different method weights. We choose methods, to

be combined in CHASE, that employ different techniques to search databases.

HMMsearch reports matches to the Hidden Markov Model used. Treesearch

searches the database using an HMM and in addition it utilizes phylogenetic

information. PSI-Blast searches a database using a profile, generated from a

multiple alignment. PHI-Blast uses a pattern or regular expression and a query
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sequence that has this motif. Mast uses multiple motifs, generated using MEME,

to search the database.

Naturally, these different approaches have their own specific advantages/
disadvantages or limits influencing the coverage of possible homologs reported
by these methods. HMMsearch and Treesearch are HMM based methods and
generally perform better, shown in figures 8, 9, and 10. A large number of
sequences, or more precisely a non-redundant set of as many sequences as
possible which belong to the protein family in question, is required to build a good
HMM (Eddy 1998b). These methods reveal better results if a good HMM is
applied otherwise using irrelevant sequences to build an HMM adversely effects
the performance of these methods. Similarly, an obvious problem with PSI-
BLAST is that if a unrelated chance similarity is mistakenly included in the profile
training set, the search algorithm picks up relatives of the unrelated sequence
rather than members of the query family (Holms, 2000). A Prosite like pattern or
a regular expression constructed either manually or automatically, is the
backbone of methods like PHI-Blast. A large number of sequences are required
to build a good pattern. Weak motifs are not very sensitive and reveal a limited
number of possible homologs. Mast is also a motif-based method and its
performance is often worse, as shown in Figures 8, 9, and 10, since it is the only
method that does not use the whole sequence but multiple motifs considering the

intervening region between motifs as random (Eddy 1998b).

3.2.2. Placing Methods on a Common Numerical Scale

A major problem in combining confidence estimates is the variability in the size of
the E-values estimated by different homology-search methods. We rescale E-
values to homogenize the confidence estimates in order to combine them. More
precisely, to construct a consensus hit list from these data, we first rescale the E-
values E;(s) obtained by the individual methods i=1, ..., n, for each sequence s, to

produce E-values E;*(s) of comparable size. We then use the weights (as
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described above) to obtain a weighted average E-value. These two steps are

now described in detail.

It is relatively easy to compare the scores that a particular method assigns to
distinct data sets rather than scores assigned by different methods. To compare
scores that are assigned by different methods, for each method i=/, ..., n, and
each sequence s in the database, we report the sequence provided its E-value
Ei(s) is below or equal to a cut-off value Ec- of 1,000. Then, we choose one
method as the reference method, on the basis of which the E-values of the other
methods are rescaled (Yona et al., 2000). In CHASE, we use HMMsearch as our
reference method. Next, before doing any E-value manipulation, we take the
logarithm to the base 10 to transform the E-values for all methods. This
transformation is necessary since E-values may be very close to zero for good
database hits, and we must avoid rounding problems. This way, we obtain, for
each sequence s taken into consideration and each method i=1,..., n, a number
ei(s):=logoEi(s) that we call the “e-value” of the sequence (with a small e), for
conciseness. Next, we use a regression procedure such as the Ordinary Least
Square (OLS) regression (Gujarati, 1988), yielding the slopes and the intercepts
for HMMsearch versus Treesearch, PSI-Blast, PHI-Blast, and Mast, to rescale
their e-values. OLS is described in section 3.2.2.1. The slope «, and the intercept
b depend on the specific data under consideration - there is no universal data-
independent regression line for the various methods. For each sequence s we
then put
epsi*(s):=min { a * epsi(s) + b, ep } in case epg(s) < ey, 1)

and eps;*(s):=epsi(s) else.

For a small scaling threshold ¢, the formula rescales small e-values according to
the regression line, and keeps large e-values as they are. Keeping large e-values
as they are may be useful, because they may be “downscaled” otherwise,
suggesting a significance that is not there. In the rare case that rescaled e-values

exceed the threshold, they are set to precisely this threshold in order to keep the
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ranking as is. For larger ¢, fewer e-values are kept as they are. If we set ¢) =
logio(Ec) = 3, no hits are considered for which the E-value exceeds the E-value
cut-off E- = 1000, and all values are rescaled in this case. Nevertheless, results

improve slightly for smaller e, as discussed later on.

The same scaling procedure is applied to the e-values reported by the other
three methods. For notational consistency, we set e*uym(s):=emm(s) for our

reference method HMMsearch.

3.2.21. Using Ordinary Least Square (OLS) Regression to

Rescale E-values

In many problems, two or more variables are inherently related, and it is
necessary to explore the nature of this relationship. Regression analysis is a
statistical technique for modelling and investigation of the relationship between
two or more variables. The principal objective in a simple regression analysis is
to establish a quantitative relationship (in the form of an equation) between two
variables. Simple linear regression is the modelling of »n pairs of data (X, ¥;) in a
linear relationship, where i=1, ..,n. The relationship between X; and Y; is
represented in the form Y; = aX; + b. The estimates of regression coefficients i.e.
the slope ‘a’ and the intercept ‘6’ should result in a line that is a “best fit” to the
data. Ordinary Least Squares or OLS, proposed by German scientist Karl Gauss,
is a method that estimates the regression coefficients such that the sum of
squared errors is minimized (For the derivation of linear regression equations see
Kirchner, 2001).
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Table 4. Example Data showing e-values for 22 sequences reported by PSI-Blast

and HMMsearch. The column SeqlD represent the sequence identifiers while X
(PSIBlast) and Y (HMMsearch) present e-values reported by PSI-Blast and
HMMsearch, respectively. E-values are transformed using log10 and we call

these ‘e-values’ (i.e. with a small e). X**2 is the square of PSI-Blast e-values and
X*Y is the product of PSIBlast and HMMsearch e-values.

X

Y

%k %

No  SedlD  pggjast) (HMMsearch) 2 XY
1 d1bdval -64.39794 -113.221849 4147.095 7291.254
2 dicoy 1 -64.69897 -105.522879 4185057 6827.222
3 d1cf3al -82 137 6724 11234
4 d1gpeal -83.69897 -136 7005.518  11383.06
5 d1fuma2 -56 97522879 3136 5461.281
6 d1chua2 -56.30103 -93 3160.806 5235.996
7 diglaa2 -61 97.221849 3721 5930.533
8 d1gjda2 -55.39794 -94.522879 3068.932 5236.373
9 d1ddca2 -53.09691 -94 2819.282  4991.11
10 d1b37a1 -80.69897 -100.045757 6512.324 8073.59
11 dignd 1 -71 87.39794 5041 6205.254
12 d1b3maft -45.69897 -66.221849 2088.396 3026.27
13 dipbe_1 -45.52288 -69.221849 2072.332 3151.178
14 difohal -33.00691 -44.522879 1095405 1473.57
15  dicjcal -18.09691 -22.30103 327.4982 403.5797
16 didjna2 -6.30103 -2.69897  39.70298 17.00629
17 difoha2 -0.69897 1.78533  0.488559 -1.24789
18 d3ladal -1 0518514 1 -0.51851
19 dilpfal -3 1041393 9 -3.12418
20  d3grs 1 069897 1.799341  0.488559 1.257685
21 dlebdal -0.221849 1.857332  0.049217 -0.41205
22 dlaogal 1 260206 1 2.60206
Sum -880.2293 -1350.81863955166.27 85939.83
Sum/n 240.01042 -61.40084723

Given the sample e-values for sequences s where s=1, ..., n (n=22) for PSI-Blast

(Xis= epsi(s)) and for HMMsearch (Y,= emm(s)) i.e {(X,,Y}),--,(X,.Y,)}, as shown

in Table 4, Ordinary Least Square (OLS) estimates the slope a and the intercept
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b by the following steps, such that the sum of squared errors

n
Z(eHMM(S) -a®e,g, -b)’ is minimized and we get a straight regression line:

s=1

_ X,
1. Using data from the Table 4, calculate mean: X:Z—’ =-40.01042 and
i=1 N

— Y
mean Y =) - =-61.40084723
i=1 1

2. Calculate the sum of squares (SS):
n 1 n

SS =D (X))’ —;(ZX,)2
i=l i=l

=774803.58-1/22(55166.27)
=19947.929

And

n 1 n n
SSy = 21— QX)L Y)
i=1 i=1 i=1

=85939.83-(1/22)(-880.2293*-1350.818639)
=31893.008

3. Calculate slope a and intercept 4 as:

SS
a :Si =31893.008/19947.929

XX

=1.598813

b=Y —b X =-61.40084723 - (1.598813) * (-40.01042)
=2.5683354
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If we plot the regression line for the e-values on the log-log scale from data used
in the example above, we get a straight line as shown in Figure 12. Once such a
relationship between variables is established, by finding out the slope and
intercept, it is possible to predict the value of one of the variables, if the value of

the other is known.

Hhihlzearch

F=l Elast

Figure 12. Scatter Diagram showing a straight regression line for HMMsearch
and PSIBlast E-values on log-log scale. This diagram was produced using the

Demo Version 7.3.0.0 of MedCalc Software, http://www.medcalc.be.

In the example shown above, ordinary least-squares regression applied to
HMMsearch e-values exum(s) and corresponding PSI-Blast e-values epg(s)
provides the slope a« and the intercept b5 for which the sum
Z(eHMM(S) -a® ey, -b)’ is minimized. Here, the sum is taken over all sequences

s=1

s with both e-values emn(s) and epgi(s) below or equal to a certain threshold ey.
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3.2.3. Calculating Combined E-value or the C-value

Once we have got the rescaled e-values e*,,...,e*, for all n methods, we calculate

the c-value for each sequence s as the W-weighted sum:

c-value(s) = Zn: AN (2)

i=1
The final C-value (on the original E-value scale) is then obtained as C-value(s): =
10 <™ This yields a consensus over individual homology-search methods.
“‘Missing E-values” arise if a homology search method finds a sequence not
found by another, given the E-value cut-off E¢. In the c-value formula, these are

set to the cut-off e-value (log10 of E¢).
3.3.CHASE Evaluation Methodology

As noted above, our tool CHASE implements the above scheme using five
homology-search methods. Using the weights 7, ..., W, of the component search
algorithms calculated once and for all, we compute the regression lines and the
resulting C-values of the sequences in each database search. Treating the C-
values as E-values, we can use Phase4 again to evaluate the performance of
CHASE and to compare its performance with that of the component algorithms.
Clearly, the weights that are incorporated in (and thus the performance of)
CHASE depends on the database that was used for determining these weights.
In particular, if a component algorithm does very well on that database, it will get
a high weight implying that it will strongly influence the outcome of the consensus
method, making it look good on that particular database, too.

To avoid this kind of circularity, we have split the SCOP database (version 1.53)
into two separate databases: the odd database, containing every second SCOP
superfamily starting with the first one, and the even database, containing the rest.
We used the odd database to compute the weights, W, ..., W,, as listed in Table

2, and the even database to evaluate the performance of the resulting consensus
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method and to compare this performance with that of its component algorithms,
using again the three scenarios offered by Phase4 as described in Table 1. As
before, we used “coverage versus false positive count” in Phase4 as a
performance evaluator, and sorting of CHASE hits was based on the C-value.
Sequences with a C-Value exceeding Ec = 1000 are not listed. By default,
CHASE sets the E-value cut-off Ec to 1,000, and the e-value threshold used for
rescaling e, to 3 (=log+,7000) so that all values are rescaled. However, other cut-

off values can also be specified.
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3.4.CHASE Evaluation, Results and Discussion

We conducted a comparative evaluation of five homology-search methods and
our consensus method Comparative Homology Agreement Search (CHASE). We
used three different scenarios offered by Phase4, as listed in Table 1, to define
distant, close, and very close relationship between SCOP database entries. If
one considers the averaged coverage of true positives at the cost of zero false
positives, as shown in Figure 13, and ranks the methods according to their ability
to find distant homologous proteins, CHASE obtains a coverage of 34%, and
HMMsearch comes next with a coverage of 28%. Then come Mast, PSI-Blast,
Treesearch, and PHI-Blast, with coverages between 27 and 21%. It is important
to note that we do not claim to conduct a valid comparison of these individual
methods. Such a comparison would need to do more justice to their different
input requirements. The comparative analysis of the individual methods, starting
with the same training data of sequences for each, suffers from the application of
the Input Processors (described above) by which some of the input information
may be lost. It is also worth noting that methods that do not perform well on
average can still give excellent results in specific instances - a remarkable fact

that clearly needs to be investigated further.

If we plot coverages of true positives at the cost of 10 false positives,
performance of CHASE goes up, covering 47% on average in case of distant
relationship, compared to 38% coverage by HMMsearch. Permitting 50 false
positives, as presented in Figure 13, these numbers go up to 59% and 49%,

respectively.
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Fig. 13. Average coverage of CHASE and its component algorithms

The averaged coverage of true positives permitting zero and fifty false positives
using SCOP (even half) as the target database and evaluation scenarios

provided by Phase4 (as described in Table 1)

The advantage of CHASE is smaller in case of close, and very close relationship
scenarios, but it still outperforms all component methods by a good margin. The
“Coverage versus false positive count” plots in Figure 14, 15, and 16 for the
various Phase4 scenarios give a more detailed picture of the coverage of true

positives, for up to 200 false positives.
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Figures 14, 15 & 16: Coverage versus false positive counts

This figure shows the Phase4 evaluation in the form of “coverage versus false
positive counts” for CHASE as well as for the five component algorithms, using
three different scenarios (as described in Table 1) offered in Phase4. Averaging
is done over all SCOP families included in the even half of the database. (The
odd half was used to determine the weights used by the CHASE combination
scheme.) It is notable that CHASE achieves a remarkable coverage, better than
any one of its component methods, of 47% for just 10 false positives as shown in
Figure 14. CHASE exploits the fact that most of the true positives above the
twilight zone are, usually, reported by all methods but within the twilight zone
these are not reported by all methods. CHASE gives a higher weight to hits
which are reported by a highly weighted method. A lower E-value assigned by
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any CHASE component method further places such a hit at a higher ranking in
the list.

No  C-mhie Desenphon HMMseach Treeseawh FSI-Blast PHI-B las t hlast

1 2ells 3.3.1.2.2 Cholestew] oxidase fa-114 285 5100 Ze-1¥ 3e126

z  4e-114 3.3.1.2.1 Cholester] oxidase Ge-106 HaB0 2e- 100 Ze-14%  1e-133

3 Te-103 33127 Ghcose cuidase { Asp le-137 Ha-B6 Teld7 223 2e139

4 Fe-101 33.1.28 Ghicose cxcidase { Fen le-135 le-35 2e-129 Be-13 3e-137

£ leds 3.3.1.4.2 Famarate reductase Ga-R3 Fe7 Ge-87 le6d  ZeF0

& Sedd 33.1.4.1 L-aspatate cocidase le-23 ZeB5 le-B7  def8 578

7 leTd 3.3.1.4.3 Famarate reductase Fa-P3 Ze-B6 TeBS Bel7 SeBd

g e 3.3.1.4.4 Flavooptoclwome o3 () G35 Fe-26 2B deB le-534

9 Se72 33.1.4.5 Flaroeytockrome o5 [ la-24 SeBA Be-B3 0002 BeBl

10 lesd 3.3.1.29 Polyanure ceadase { M Se-101 Fe-TE Te-125 3 408

11 Ze-59 3.3.1.3.1 Guanme micleatide d da-53 fail 42110 003 oo

1z Z2edd 33.1.2.5 Saroosine aeddase {B Ba-f7 Te52 le71 lel5  Belm

13 led? 33.1.23 p-Hydweyhermoate by Ba-700 S=-79 Ge-71 0.1 Te-7
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17 1lel3 3.3.1.26 Phenal lyd magdase { al 400 126

1z 0008 3.3.1.5.8 Dihydrolipoanide deh ooz ooo?
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zo 004 33.1.5.1 Ghatatlione wductas a3 ooz 0
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zz 044 3.3.1.54 Twpaotuone reduct 400 0355 3

z3 171 3.3.1.5.10 Dihydrclipoantde de 0o 1 DOE+05 &00
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zg 274 58131 TP EN & pobamerase {Ba - 43 01 10 2 111

Fg 322 3.3.1.53 Tryparotuone reduct 140 0.14 4 100 on1

z7 442 3.3.1.5.5 Thiowdowin mducts 520 0.154 08 40 0471

zg 111 3.1.8.2.1 beta-dnolase | Sovbean 10E+03  3ed5 400 A0 254
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Figure 17. Sample CHASE result
CHASE result for superfamily 3.3.1 (SCOP version 1.53), featuring the
FAD/NAD(P)-binding domain are shown. The hits are sorted by C-value.

Rescaled E-values (as calculated by the scaling formula (2) in the text, but

51



displayed in terms of the original E-value scale not taking the logarithm) are
presented in the 5 columns on the right. The first 24 CHASE hits are all true
positives. The false positives (numbers 25, 28-30, 33-41) and the respective
minima of their E-values in each column are marked in red. E-values in the first
24 rows and the last 5 columns that are larger (and, hence, "worse") than these
respective minima are marked in orange. They indicate where forming consensus
C-values was more successful than the corresponding single method. (Consider,
for example, the HMMsearch E-values presented in the first of the last 5
columns. The minimum of these values taken over all false positives is 43, and
the values in rows 17, 20, 21, 22, and 24 are larger than 43 and, hence, marked
in orange.) Apparently, each single method addresses different aspects of
(super) family membership, and a strong showing for some method(s), not
counterbalanced by very poor showings for others, seems to be a good
membership indication that is (independently of which single method is involved)

picked up by our consensus approach.

If the e-value threshold used for rescaling is set to -1 instead of 3, not all values
are rescaled anymore in the c-value formula (2). Remarkably, CHASE appears
to perform even slightly better in this case, for example, it obtains 36% coverage
of distant relatives at a cost of zero false positives (+ 2%), 50% permitting 10

false positives (+ 1%) and 60% coverage permitting 50 false positives (+ 1%).

The results of running CHASE for the SCOP superfamily featuring the FAD/NAD
(P)-binding domain are shown in Figure 17. C-values along with rescaled E-
values from different methods are printed. The names of the sequences from the
given family are printed in black (in the “description” column), the others (the
names of the false positives) in red. We consider a family member to be
classified correctly by method i if its rescaled E-value is smaller than the rescaled
E-value of the first false positive. For the false positives listed by method i, the

minimum rescaled E-value is printed in red. Rescaled E-values of family
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members that would not be classified correctly using method i alone are marked
in orange. They are larger than the smallest rescaled E-value of the false
positives for method i (printed in red) so that the false positives with the smallest
rescaled E-Value would precede the family members in the ranking based on
method i. In the twilight zone of rows 15 to 24, CHASE performs well, triggered
by the rescaled E-values marked in green that indicate success for at least one
method. Inspecting the consensus hit lists for all protein families under
consideration in the "Distant relationship" scenario, we noted that each method
detects specific true positives that would not be detected if we had restricted

ourselves to combining the other four.
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4. Improvements on CHASE

CHASE performed very well in finding the remote homologs of protein families,
as shown in figure 14, 15, and 16. However, only one alignment scheme i.e.
ClustalW was used wherever required. To further improve CHASE in terms of its
performance on the one hand and its generality (for example to accommodate
new homology search method(s) or alignment scheme(s)) on the other hand, we
made some enhancements resulting in CHASEZ2. These enhancements,
discussed in detail in the following sections, include the implementation of a
modular structure, use of optimum input processors (based on testing the effect
of different alignment schemes) and re-calculation of E-values, an approach that
is theoretically more sound than the regression scheme but not applicable to all
component methods. We re-evaluated CHASE after the implementation of these

enhancements and got a better performance than before.

4.1.Modular Structure of CHASE

Separate module files, namely IPs.pm, Run_Parse.pm and DBreader.pm were
written for CHASEZ2. In addition, a driver script was written that reads an XML
(eXtensible Mark-up Language) (Achard et al., 2001) configuration file and calls
these modules to carry out one complete CHASE run. In the following section all

these are discussed in detail.

4.1.1. CHASE Modules

o IPs.pm

The input set of sequences is first validated by the CHASE driver script and then
passed on to the Input Processors (IPs.pm) module. The Input Processors
module, as shown in Figure 18, transforms the given set of sequences into a

specific data format (for example an alignment, an HMM, a phylogenetic tree, a
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Prosite like pattern or a MEME motif profile) that is required by a particular
homology search method, as discussed in section 3.1.3. All of the homology
search methods, except Mast, use an alignment in one way or the other. For
example, PSI-Blast requires an alignment in a specific format. An HMM is
required by HMMsearch and Treesearch, a phylogenetic tree is required by
Treesearch, and a consensus sequence is required by PHI-Blast. These all are
based on an alignment scheme. Before the implementation of modular structure
of CHASE it required a significant amount of changes in the CHASE script in
order to use an alignment scheme other than the default ClustalW. Further,
build_compound, an input processor for Treesearch input, was not compatible

with any other alignment scheme.

Fdlmémwa 1.1.1.1.7 Myoglokbin {Pig [3us scrofa)
GLADGENOLVLNVTGEVE ANV AGHGOEVL T RLFKGHFETLEKFDKF KHLESEDENEASED
LEEHGNTNLTALGGILEKEGHHE AELTPLACSHATEHETIPVEYLEF ISEAT I OVL Q3 KHP
GDFGADAQGAMSKALELFFMD MLAKYEELGF Q%

>dlb0k 1.1.1.1.2 Hewoglobin I {Clam {(Luzina pectinata)}
LA QFDNVESSWAKLS AAWGTAGPEFFMALFDAHD DVF AKF 3GLF SGALKGTVEN TP EM
AAQAQSFEGLVENTVINLDMAGLLEGOCETF AMHEARG IS AGOLE BAFEVL LGF MES 15
GDEGAVTAVAGLLMGMIRPDN

IP Output;

" Input Processors

ethod Inpu
ClustalW/Dialign/Maffc Alignment
| l

- HMMbuild HMM

- Proteindist + Fitch Phylogenetic Tree

Pratt / PS_Scan Pattern
MEME Pattern(s) Profile
> Consensus_Seq.pl Consensus Seq.

Figure 18. An outline of Input Processors (IPs.pm) Module
Input processors are used to generate specific inputs required by different
homology search methods. Pattern and pattern profile are generated directly
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from the input set of sequences, while the HMM, the phylogenetic tree, and the

consensus sequence are based on an alignment.

The newly implemented input processors module, as shown in Figure 18, made it
possible to easily use any of the ClustalW, Dialign or Mafft alignment schemes,
whenever it is required to generate an HMM, a phylogenetic tree or a consensus
sequence. (Pratt/PS_Scan and MEME produce a pattern or a pattern profile,
directly using the input set of sequences.) To save time and computing
resources, once a specific input such as an alignment is produced that is used by
a particular method, it is not generated again if it is required by another homology

search method.

In this module we also overcome the limitations of build_compound to use
alignments other than ClustalW. The function of build_compound was to
generate a ClustalW alignment, an HMM using HMMbuild and a phylogenetic
tree, using proteindist (available with the Phylip or the Treesearch package) and
the “Fitch” program, based on the ClustalW alignment. To get rid of
build_compound, we make direct use of proteindist that calculates the
phylogenetic distances among protein sequences, given as an alignment, and
“Fitch” to generate a phylogenetic tree. Now, we can handle any of the above-
mentioned alignment algorithms using IPs.pm. We implemented a version of the
“Fitch” program that has the functionality to use input on the command-line and

generate user-defined filenames for the output phylogenetic tree.

As a specific example of the PERL module IPs.pm, a subroutine from the PHI-
Blast IP, called “construct_pattern”, is shown in Figure 19. This subroutine is
implemented to construct a pattern in a format that is compatible with PHI-Blast,
given a set of sequences and a pattern finding program (i.e. PS_Scan or
PRATT).
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1 sub construct_pattern {
z wy (§%eqFastaFile, $PattProg, $ilnProg)=@_;
3 wy $patternfile;

# Check (-e) if the Fasta File exists
4 if (-e {ZeqFastaFile){
5 if (§PattProg = ~/ps scan/i){
3 §pacternfile = §SeqFastaFile;
7 fpatternfile = ~3/\.fasta/\ .ps scan/;

# Check if the pattern file gize is non-zero [that it already exists)

g if [-=z §patternfile) {print "IPs.p:WARNING: S$patternfile already exista\n™:}
9 elseq
10 wy §psS_scan tewppatternfilename = §SegFastaFile:
11 i{ps_scan temppatternfile = ~z/%.fasta " .ps_scantmp/:

# Bun P3 Scan program to get pattern in raw (temp) form
1z Ty Sps_sEan_temppatt.ernfile = run ps scan(iSeqFastaFile, $AlnProg,
13 Sps_scan_temppatternfilename] ;

# Reformat P3 Scan raw output to FROSITE format
14 fpatternfile = refn_pspat_Q_prnspat($ps_scan_temppatternfile, fpattenfile) ;

# Check if the pattern file sgize is zero (empty file)
15 if { -z §patternfile){
1a print "™, n'nERROR: Mo Prosite-like Pattern Found In The Input Segquence (s),".
17 " Try Prattin™:
15 H
19 I
20 H
z1 if ($PattProg = ~/pratt/i){
z2 jpatternfile = $3eqFastaFile;
23 fpatternfile = ~3/%.fastash .pratt/:
z4 if (-5 Spatternfile){print "IP=s.pm:WARNING: $patternfile already exists'n":}
Z5 else{
26 wy §fpratt temppatternfile = §S5egFastaFile;
27 §pratt_temppatternfilename = ~3/%.fasta/h\pratt_tmp/:

# Bun PRATT program to get its output
28 my $pratt_temppatternfile = run pratt (§FastaFile, $pratt_temppatternfilename):
# Extract PROIITE format pattern fromw FRATT output

z9 ipatternfile = extract prattpat (§pract temppatternfile, {patternfile, §3egFastaFile):
30 if [ -z §patternfile){ -
31 print ™ n'n\tERROR: Pratt produced no Pattern from The Input Sequence (s)W'n":
32 print "™t PHI-Blast Fun 'll Failin":
33 H
34 ¥
35 H
36 return $patternfile:
37 lelse{
35 print "IPs.pm FATAL_ERROR: construct_pattern subroutine requires”.
39 j3eqFastaFile ."that does not existin';
40 return 0O;
41
4z 3

Figure 19. The PHI-Blast IP subroutine “construct_pattern” is shown. It
explains that, given a set of sequences and a pattern finding tool (e.g. PRATT or
PS_Scan), how the PROSITE-like pattern is generated. Such a pattern is

required to execute a PHI-Blast search.
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sub refo_pspat 2 _prospat {
Z wy ($InFile, $0utFile) = @_;

3 open [(P3ISCANERE, "$InFile™) || die "Can't Open P SCAN Temp cut Filen™;

4 while (<P33CANEE>){

5 wy §line = § ;

[ if ($line = ~= /x| SS90 {

7 mwy [§ProtName, $PatlC, §PatID) = split ' ', §line;
g jPatterns—»{ iPathC} {pid} = §PatlD:

=] i

10 if (§line = ~s /fPL //o{

11 jExpression = §line:

1z jExpression = ~2 JE|B|IZ|N (NS Ao fiFemove X, B, Z, [ or )| characters
13 jExpression = ~3 /. x-/q; f#iFleformwat . to X-

14 fExpression = ~=3 SWEOdRN AN (S0 =S #Reformat e.g {8} to (8)-

15 jExpression = ~=2 MV ([A-Ea-z]+)W]/{v1ithv=/g; fReformat e.g [“FYWHP] to {FYWH}
16 jExpression = ~= V[ ([A-Za-z]{1h)%]1 /1 =Fo: #Reformat e.g [G] to G-

17 jExpression = ~=2 /1] -/ filnsert - hetween ][

18 jExpression = ~3 /fhv-§//q; f#iFemove the - at the end

19 jExpression = ~2 /W50 Fa: fifeformat - with |

zo {Patterns—>{ $PaciC}{pat} = jExpression:

21 i

22 i

23 close P3ISCANEE:

24 open OUT, "=§0utFile™ || die "..Can't Open §0utFiles ($!')4\n";

25 foreach my $key (sort keys %{iPatterns}){
Z6 print OUT "aC SkevinID §Patterns->{ikey!{pid}inPL $Patterns->{ikevi{patlinin™;

27}
28 oclose OUT:

29 return j0OutFile;
30

Figure 20. The subroutine “refo_pspat_2_prospat” showing the perl script

that reformats the pattern extracted using Ps_Scan, to be used to run PHI-Blast.

The first part of the main subroutine (lines 5-20), shown in Figure 19, deals with
obtaining the Prosite like pattern using PS_Scan. The standard version of the
Ps_Scan program scans a protein sequence against the Prosite database to
report the occurrence of a pre-defined pattern. As an output PS_Scan reports
only the pattern id from the Prosite database and the matching region but not the
actual regular expression pattern. Therefore, the PS_Scan program was modified

so that it reports the regular expression pattern in the following form:
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>serpin : PS00284 SERPIN Serpins signature.

396 - 406 LEfFNKPFLF1I
PA ([LIVMFYX]) (.) ([LIVMFYACX]) ( [DBNBQZX]) ( [RKHQZSX]) ( [PSTX]) ( [FX])
([LIVMFYX]) ( [LIVMFYCX]) (.) ([LIVMFAHX])

To reformat such a pattern into Prosite format, a subroutine was implemented,
called “refor_ps_2 Prosite” which is marked in blue colour in Figure 19 and
shown in detail in Figure 20. Lines 11-19 of this subroutine, shown in Figure 20,
reformat the above-mentioned pattern into Prosite pattern format that is

compatible with PHI-Blast, as shown here:

AC PS00284

ID SERPIN

PA [LIVMFY] -x- [LIVMFYAC] - [DNQ] - [RKHQS] - [PST] -F- [LIVMFY] - [LIVMFYC] -x-
[LIVMFAH]

The second part of the main subroutine (lines 21-35) in Figure 19 prepares the
Prosite like pattern based on a given set of sequences using the PRATT
program. A lot of information is reported in the standard output of PRATT, part of

which is shown in Figure 21.

Bezt Patterns before refinement:
fitness hits (=eqs) Pattern
i: 36.5305 4 4) F—x-23-I-xid1,2)-T-=(3,4)-K-x(5) -L-GI-T
Be=st Patternzs [(after refinement phase):
ficness hitsiseqs) Pattern
L 1 54.7170 £ 4) K-[FL]-%-I-x(1,2)-T-x(3,4)-E-[EP3]-[LV]-[FL]-[GV]-[EHE] -L-G-I-T
Best patterns with aligmments:
ficness hitsizseqs) Pattern
i 1: 54.7170 4 4] E-[FL]-3-I-x%il1,2)-T-x(3,4)-E-[EP3]-[LV]-[FL]-[GV]-[EHE] -L-G-I-T

Ooccurrences: 4(4)

=p|Pz2324 : 2959~ 318: nvhlp ELSIsgTydl-KEVLGHLGIT mvfsg
sp|PZ3035 : 300~  328: tvhfp ELSIsgTydl-KPLLGELGIT ovfsd
sp|P22325 : 301~  320: nvhlp ELSIsgTydl-KEVLGHLGIT rvfisd
=p|QOJSFS :  260- 279: sveip EFSIg-TghniKSVFVELGIT difde

Figure 21. Part of PRATT output showing the patterns and related information
extracted from a set of sequences.
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[

gub extract_prattpat |

2 my (§InFile, §S3eqFastaFile, §0utFile) = [_;
3 ny fFamilylame = SeqFastaFile:;
4 tFamilyName =-3 /\.Lasta//:
#Remove the path from the fasta file to get the protein family hame
5 tFamilyName =~ 3/.%%/ /7
o] my fpats = {}:
7
a open &fh, "gInFile™ || die "Can't Open &InFile (&!]wn":
a while (<& fh=) |
10 ny §line = §_;
#go to lines containing pattern specific symbols

11 if (5line =~ /&  1l: |B 21 |C kH |D 4: Ja)

#Lonatruct an array of elementa based on spaces in the line
12 ny BElements = zplit ™ ™, &line:

#Lonaider first element of the array as the pattern ID
13 ny §id = §Elements[0]:

#last element of the array is the required pattern
14 ny sfpattern = §Elements[-17]:
15 chonp $pattern;

#5tore the pattern and its id in the hash table
16 gpats-={§id} = gpattern:
17 1
18 1
148 clozse §fh;

#Create a new file to write the pattern stored in the hash
20 open O0UT, "»50utFile” or die "Can't Create §0utFile (§!)%vn":

zZ1 wy fcount = 1;

22 foreach mwy fkey (keys % {gpatal)] {

23 print O00UT "ID PRATT $FamilyNamefcountinPd gspats->{fkey}in\n":
24 §oountH;

25

26 olaose OUT:

a7 return f0utFile;
28 1

Figure 22. The subroutine “extract_prattpat” showing the perl script that
extracts the Prosite like pattern from the PRATT program output, to be used to
run PHI-Blast.

A subroutine was implemented called “extract_prattpat”, marked in blue colour in
Figure 19 and shown in detail in Figure 22, which extracts the required pattern
from the PRATT output. Pattern extracted from the PRATT output looks like the

following, and it is compatible with PHI-Blast.

ID PRATT serpinl
PA K- [FL]-S-I-x(1,2)-T-x(3,4)-K-[EPS]-[LV]-[FL] - [GV] - [EHK] -L-G-I-T
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0 RunParse.pm

This module as shown in Figure 23, deals with the execution of homology search
methods, given the required inputs. One method is executed at a time. When a
particular database search is completed its report is parsed, using the parsing
scripts implemented in RunParse.pm, to extract some specific information such
as the sequence identifiers and the E-values of hits. This information is returned

in the form of a method-specific table to the driver script for further analysis.

HMM HMMsearch

HMM, Alignment
& Phvlogenetic Tree ,
yios Parsed Method

Jumpstart Alignment
Reports

& Query Sequence

Pattern &
Consensus Sequence

PHI-Blast

(Sequence Ids. and
E-values of the hits)

MEME Pattern(s)

Figure 23. An outline of the Run and Parse (Run_Parse.pm) Module

Given the specific method input, prepared using input processors, homology
search methods are executed one by one and their output is parsed to get the
specific information that is used later by the CHASE driver script for further

analysis.

The Run_Parse module contains a subroutine for each of the database search
methods that extracts the specific information mentioned above. Such a

subroutine, as shown in Figure 24, requires the output of a database search
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method, the name of the database search method and the regular expression to

extract the lines containing the required information.

Sub parse databsase search report |
my ($report, Sreg expression, $method)=@_;

mwy fresult={}:
my $count hits=0;

open REP, freport or die "Can't open freport (§!'1hWn":
while (<REP>){

if (§ =~/freg expression/){

my Bitems=split / &/, § :

my $seqid=%fitewm[0]:
my fevalus=§item[-1]:

fresult->{ fseqid} {method} {evaluel=5%evalue;

foount _hits++;

b
'

return [(fcount hits, %{jresult}):
¥

Figure 24: A subroutine showing the parsing of database search reports to

extract the sequence identifiers and the E-values of hits.

As shown in Figure 24, given the name of the output filename, the regular
expression and the name of the database search method, this subroutine
initialises a perl hash to store the sequence identifier and a hits counter to count
the number of hits, as shown in lines 2-3. The subroutine opens the database
search report file, as shown in line 4, and exits if the file cannot be opened. Once
the file is opened, it starts a while loop to read through the lines of the report file
(line 5) and searches for the given regular expression (line 6). If a line containing

the given regular expression is reached, it splits the line on the basis of the tab
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delimiter and stores the resulting text into an array variable (line 7). This example
subroutine stores the first element of such an array as a sequence identifier and
the last element as an E-value in the result hash, as shown in line 10 of the
subroutine in Figure 24. In line 11, the hits counter is incremented. Once the loop
through all the required lines of the database search report is completed, this
subroutine returns the hash (containing the sequence identifiers and E-values of
all the hits) and the number of hits, as shown in line 14, to the CHASE driver

script.

arse Database

Parsed Database

(Table containing
sequence Ids. ,
description lines and
the sequences
of all the entries)

Figure 25: An outline of Database Reader (DBreader.pm) Module

The database Reader module reads the sequence database, given in Fasta
format, to extract some specific information that is then passed back to the
CHASE driver script.
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o DBreader.pm

The database reader (DBreader.pm) module, as shown in Figure 25, is written to
read the Fasta formatted database such as SWISSPROT or SCOP to report its
size and extract the information such as the sequence identifiers, description
lines and the sequences of all the entries. This information is then stored in a

table that is later used by the driver script.

4.1.2. CHASE Configuration File

In modular CHASE we make use of a configuration file so that one may be able
to apply the user-defined configurations without changing the CHASE main
script. The configuration file contains information such as the path to several
tools, databases and directories, and method specific information such as the
name of the method, its class (e.g. whether it is classified as an alignment based

method), the alignment scheme that it may use and its weight, etc.

The CHASE configuration file, as shown in Figure 26, follows the conventions of
the eXtensible Mark-up Language (XML). In XML format one has to place the
contents enclosed in a specific opening and a closing tag, in a hierarchical
fashion. For example we start the CHASE configuration file with a main opening
tag ‘<CHASECONF>'. We have a section for paths tagged ‘<Paths>" and a
section for the method-specific information, one per component method, tagged
‘<Method>’. Within the paths or the method section each element has its own
opening and closing tags. At the end of each section it has its closing tag and the
whole document ends with the main closing tag ‘</CHASECONF>’. A particular
browser, such as Internet explorer or Mozilla, that recognizes the XML syntax,
highlights the tags and differentiates the actual data that is enclosed within these
tags. In an example XML document (opened in the Mozilla browser) as shown in

Figure 26, sections or subsections start with a negative sign (-) where the data is
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shown and the ones where the data is hidden start with a positive sign. Clicking
on the positive sign of a section or subsection shows the actual data inside the

tags.

- CHASECONF=

- «Paths=
<PERLPATHz= fvolfperl-5.6.1fhinfperl</FPERLPATH
<SWISSPROT= fvolfprojectfchase-1.0/share/fbiodataffastafsprot_test.fas</SWISSPROT=
<TREMBL= fvolfproject/chase-1.0/share/biodata/ffastaftrembl_test.fas</TREMEL>
<TREMBLME'\W = fwolfproject/chase-1.0/share/biodataffastaftremblnew_test.fas<,/TREMBLMEW =
«<PROSITE=fvol/project/chase-1.0fsharefbiodata/prositefprosite.dat</PROSITE=
<SCOP=fwolfphased faddons/pdb90d_1.53.5f split.even</SCOP=
<HMMER= fvolfproject/chase-1.0/sharefhmmer-2.1.1/binariesf=/HMMER>
<BLASTPGP= fvolfprojectfchase-1.0/sharefblast/blastpgp<,/BLASTPGP=
<MEME_MAST=fvolfprojectfchase-1.0f/sharefmeme.32.0.4 fbin/f </MEME_MAST =
<TREESEARCHz fvolfproject/chase-1.0fshareftreesearch-0.4/binf</TREESEARCH>
<PRATT=fvolfprojectfchase-1.0/sharefpratt/pratt</PRATT>
<PS_SCaM=fvolfproject/chase-1.0fsharefps_scanfps_scan.pl</PS_SCaM=
<FITCH= fvolfproject/chase-1.0/share/phylip-3.5ffitch2</FITCH=
<FITEWVD= fvolfprojectf/chase-1.0/share ffitevd ffitevd < /FITEVD =
<CLUSTALW = fwol fproject/chase-1.0fsharefclustalw1.83 fclustalw</CLUSTALW =
<M&FFT= fvolfprojectf/chase-1.0/sharefmafftfscripts fiftns</MaFFT>
<READSEQ=fvolfproject/chase-1.0/sharefreadseqfreadseq-/READSE >
<SREFORMAT= fvolfproject/chase-1.0/share/hmmer-2.1.1fbinaries/sreformat-/SREFORMAT =
<DIALIGHN= fvolfprojectfchase-1.0/sharefdialign2_dir/dialign2-2<,/DIALIGH>
<COMSEMSUS: fvolfproject/chase-1.0/sharefconsensus_seqfconsensus.pl</COMNSEMSUS>
<CHASE_OUTPUT=tmp</CHASE_OUTPUT:
<TEMPztmp</TEMP =

</Paths=

- «Method=
<Mame=HMMsearch<,/Name>
<\Weight=>0.22048< " eight=
<Class»ALMN</Class>
<IParglz=mafft</IPargls
<IParg2=HMM</IParg2=
<IParg3=Mone=/IParg3z=

< /Methodz

+ <Method=

+ <Method»

+ =Method=

+ <Method>

< fCHASECOMF

Figure 26: CHASE configuration file, an example

The CHASE configuration file is implemented in XML format. It starts with a main
opening tag and within that the user-defined paths to several tools, databases
and directories can be implemented. User-defined method specific information is

placed in the methods section.

4.1.3. CHASE Driver Script
Given a set of sequences as input and the user-defined/default options, it is the
CHASE driver script that integrates all of the above mentioned modules to get the

information that is processed further to carry out a complete CHASE run, as
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shown in Figure 27. The CHASE driver script works in stages S0-S6. In the initial
stage (S0), it validates the input set of sequences and user-defined/default
options. It then reads the configuration file in stage S1 and verifies that all the
tools, databases and the directories are accessible. In the second stage (S2), it
instructs the input processing or the IPs.pm module, as mentioned above, to
reformat the input data into a format that is required by the homology search

methods.

+dlmfma_ 1.1.1.1.7 Myoglebin {Fig (Sus scrofa)}

[35] QEVLIRLFKGHPETLEKFDKEKHLK: ED
LKKHGHTHLTAL GG ILKK KL HEEALLTEL A0 SHATKHK TPVKVLEF T SEAT T (5L 05 KHE:
GIF GADAQGAMS KALELE ENDMA 2K VKEL GF 0

#dlbib__ 1.1.1.1.% Hemoglebin I {Clam (Lucina pectinata)} v 1P Owipit;

L3420KDHYKS 5 108 KA 58,40 GTA GPEFFMAL FLAHDIVFAKE 5 GLF § GA2K FTWKNTFEN Input Processors o

240405 FK FLYI WIVDHLINA GALE 6O UK TE A3 NHKAR 6T 54 GOLEAATKVLA GTMK 376 Method Inpui

GDE G0 TA A GALM 6 LREDH Chumal Biali gnd Mafft ASgnmem

»dlitha_ 1.1.1.1.45 Hemoglobin {Inrkezper womm I

GLT23QIKAT QDHATLHLKG ¢ LO&5AD 5 1 TR LTAYF GOLATTHKT 55 VELY GLES HE& " LAt L

¥KA QTLTV INYLOKWTALE 6K G LMKA KUPE HIGMG ITPKHE GOLLKLY L0 WF QEEFS o .

ATPTTVAMMCTAAGVL VAANK I e EA IS
Praw { PS_Sean Paiern

e . Driver Script

HMM

AL Afgumeat
& Piygeueic Teee - .
Jusipstan Abguesert Parsed Method
A ey Sequence
Taners &
Caustusts Sequeace

MEME Maifis)

Figure 27. An outline of the CHASE driver script
CHASE driver script validates the input data and utilizes all modules to perform

one complete CHASE run in stages SO to S6.

The third stage (S3) in the CHASE driver script deals with calling the run and
parse module to execute the homology search methods and parse their reports,
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one by one, to report the sequence ids and the E-values of the hits. In stage 4
(S4) it reads the target database to report sequences and their descriptions
required for CHASE output, as explained in the database reader module section.
The Stage 5 (S5) is the point where CHASE combines the homology search
methods using the C-value formula that requires the method performance
weights and the scaled E-values, as discussed above. The last stage (S6) of the
CHASE driver script deals with reporting the CHASE results either in HTML, XML

or in a simple text format.

Using modular CHASE has several advantages. Modular CHASE is general
enough to easily accommodate a new homology search method, given its
required configuration in XML, the code to run the method and to parse its report.
It is now possible to use different IPs (e.g. different alignment schemes) for the
same homology search method, one just need to update the configuration in the
XML file.

4.2. Effect of Different Alignment Schemes

All homology search methods combined in CHASE, called the CHASE
component methods, make use of alignments in one way or the other, except
MAST. Using the modular version of CHASE it is quite easy to use different
alignment schemes for the same homology search method. Previously our
results were based only on the ClustalW alignment scheme and now we test the
effect of two additional alignment schemes i.e. Dialign (REF) and Mafft (REF) on

the performance of all alignment-based CHASE component methods.

We calculate composite weights, considering the performance of CHASE
component methods on the odd half of the SCOP database, at k=50 false
positives, as explained in section 3.2.1, using three alignment schemes namely
ClustalW, Dialign, and Mafft, shown in Table 5.
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Table 5. Composite weights for CHASE component method performances in
the odd half of the SCOP database at k=50 false positives (FPs). See Table 1 in
section 2.6.2 for evaluation scenarios.

[ Mafft_Component Weights SCOP 0DD: 50 FPs

HrdMsearch
Treesearch
PSl-Blast
PHI-Blast
hlast

DFOM

27.9762
26.9762
236180
233095
17.5714

FHy O
0511
736667
73.6000
B9.4222
B0.5111

FHOM

§5.9302
§1.2558
87 5349
§2.1624
78.4854

Tatal

197. 4175
181.89587
1847530
1748945
1669704

§95.9356 |1.0000

WWeights
0.2203
0.2030
0.2082
0.1952
0.1752

| Dialign_Component Yeights SCOP ODD: 50 FPs

HMM=earch
Treesearch
PESl-Blast
PHI-Blast
hlast

DFOmM

30,7619
26.9762
21.8333
23.3095
175714

FHy Ol
77 5556
73.6667
B9.9111
B9.4222
B0.9111

FHOM

90.4186
§1.2558
852093
82.1628
78.4584

Tatal

193.7361
181.8357
176.9537
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We run CHASE and its component methods, for distant relationship scenario,

using ClustalW, Dialign, and Mafft alignment schemes, as shown in Figures 28,

29, and 30, respectively, to see if any improvement in their performance can be

achieved. Looking at the results, it can be seen that some of the alignment-based

CHASE component methods achieved their best performance in terms of

coverage of true positives using Dialign and others using Mafft, in comparison to
using the ClustalW alignment, except PSI-Blast that did not improve much. The

overall coverage of true positives can be increased even further, through

CHASE, using the best alignment scheme suitable for a particular CHASE
component method.
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Figures 28, 29, and 30: Coverage versus False positive counts are shown for
CHASE and its component methods, for Distant Relationships scenario, using

ClustalW, Dialign, and Mafft Alignment, respectively.

Since the performance of PSI-Blast did not improve much by using different
alignment schemes, we changed its input parameters by adding an additional
iteration (i.e setting option —j 2) and CHASE component methods were run again
using ClustalW, Dialign, and Mafft as shown in Figures 31, 32, and 33,

respectively.
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200

Figures 31, 32, and 33: Coverage versus False positive counts plot is shown in

Distant Relationships scenario, using ClustalW, Dialign, and Mafft Alignment,

respectively. An additional iteration (-j 2) was used to improve the performance
of PSI-Blast.
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Method performance inresponce to different alignment schemes
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Figure 34: Coverage versus False positive counts are shown in the Distant
Relationships scenario, permitting zero and 50 false positives, using different
alignment schemes. An additional iteration (-j 2) was used to improve the
performance of PSI-Blast. Searches were done in the odd half of the SCOP

database.

To see which method performs at its best using which alignment scheme,
coverages allowing zero or fifty false positives, for each alignment scheme used,
were plotted as shown in Figure 34. Looking at the coverages obtained by
CHASE component methods for the cost of 50 false positives, it is seen that
HMMsearch achieves its best performance using Dialign alignment, while all
other alignment based CHASE component methods show their best coverage of
true positives using Mafft alignment. The average percent coverage of true
positives at the cost of either zero or fifty false positives, however, represents the
facts imprecisely and therefore we calculate the area under the curve for zero to

fifty false positives, as described in the next section, for a more precise analysis.
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4.21 Choosing the best Input Processors for Alignment-based
CHASE Component Methods

CHASE and its component methods were run on the odd half of the SCOP
database using either ClustalW, Dialign or the Mafft alignment scheme as shown
in Figures 35, 36, and 37, respectively. For a more comprehensive analysis of
the performance of each alignment-based CHASE component method in
response to a particular alignment scheme used, the area under the curve, as
shown in Figure 38, was measured. This was done by first summing up the
average percent coverages at the cost of zero until fifty false positives, obtained
by a particular CHASE component method in response to the particular
alignment scheme used, and then dividing that sum by 51. This served as the
basis to choose the best input processor (i.e. an alignment scheme in this case)

for a particular alignment-based CHASE component method.
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Figures 35, 36, and 37: Coverage versus False positive counts are shown in
the Distant Relationships scenario on the odd half of the SCOP database using
ClustalW, Dialign, and Mafft Alignments respectively. An additional iteration (-

j 2) was used to improve the performance of PSI-Blast.
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Figures 38, 39, and 40: The area under the curve is shown for the average
percent coverages of true positives at the cost of zero to fifty false positives in

distant, close, and very close relationship scenarios, respectively.

The area under the curve for the distant relationship scenario, as shown in Figure
38, designates Dialign alignment scheme as the best input processor for
HMMsearch, Mafft for Treesearch, and PHI-Blast, and ClustalW for PSI-Blast. A
similar analysis was done for close and very close relationship scenarios as
shown in Figures 39 and 40, respectively. In the close relationship scenario, the
area under the curve assigns Mafft alignment scheme as the best input
processor for HMMsearch and PSI-Blast, Dialign for PHI-Blast and ClustalW for
Treesearch. In the very close relationship scenario the Dialign alignment scheme
is shown to be the best input processor for HMMsearch and PHI-Blast while Mafft
for Treesearch and PSI-Blast.
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To test the performance of CHASE for the distant relationship scenario, in the
light of the results from the odd half of SCOP database, we applied the best input
processors to all the alignment based CHASE component methods (i.e. Dialign
alignment scheme for HMMsearch, Mafft for Treesearch and PHI-Blast, and the

ClustalW alignment scheme for PSI-Blast). The results are shown in Figure 41.
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Figure 41: Coverage versus False positive counts is shown for CHASE and its
component methods, on even half of SCOP database, for Distant Relationships

scenario, using best Input Processors.

The performance of CHASE, based on using best input processors for its
alignment based component methods as shown in Figure 41, depicts that it
achieves a better average percent coverage of true positives until the cost of 60
false positives however the performance of HMMsearch is competitive from 60 to
100 false positives. Furthermore the performance of HMMsearch becomes better
than CHASE after 100 false positives. The reason for inferior CHASE
performances seems to be the significant difference among the overall
performance of CHASE component methods. One may break down the range of
overall performances achieved by CHASE component methods into three
categories: similar performances, different performances and very different
performances. In the first category methods perform similarly. In such a case the

performance of CHASE may be similar to that of its component methods,
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because there are not so many cases where evidence can be combined to yield
a better estimate, by outvoting the outliers. In the second category methods may
perform differently to some extent, as shown in Figure 28, and there are many
cases where a strong showing for some method(s), not counterbalanced by very
poor showings for others, seems to be a good membership indication that is
(independently of which single method is involved) picked up by our consensus
approach. In the last category, component methods perform significantly
different, as shown in figures 29 and 41 and there may be too many cases

dominated by very poor showings.

4.3.Improving C-value by Recalculating E-values

To further improve the performance of CHASE, we decided not to use E-values
provided by individual methods. Instead we wish to recalculate E-values in a
standard way. More precisely, we calculate P-values for CHASE component
methods in a standardized fashion, combine them and derive one combined E-
value or C-value from the combined P-values, as discussed below. This
concludes the development of the CHASEZ2. The P-value is the probability of an
alignment occurring by chance with a score equal or better than the observed
similarity score while searching a database of randomly generated sequences of
the same size as the actual database. P-values and E values are different ways
of representing the significance of an alignment or a database hit. The maximum
P-value is 1.0 while the maximum E-value can be equal to the total number of

sequences in a database.

As discussed in chapter 4, an E-value, based on the distribution of sequence
similarity scores (for example the alignment scores of unrelated sequences) is a
frequently used statistical estimate to represent the significance of database
search results. Accurate measures of the statistical significance of alignment
scores greatly enhance the usefulness of similarity searches. Knowing the

distribution of the alignment scores of unrelated sequences allows the estimation
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of the expected number of false positives at a given threshold. The E-value also
depends on the size of the searched database that is the number of its

sequences or the total number of residues that it has.

It has been shown that the gapped alignment scores (that allow indels)
approximately follow an extreme value distribution that has certain computable
parameters i.e K and lambda, as long as the gap penalties are severe enough
(Altschul et al., 1997). The parameters K and lambda can be thought of simply as
natural scales for the search space size and the scoring system (scoring matrix

and the gap penalties) respectively.

There is more than one way to calculate an E-value, and different methods can
produce values that differ by several orders of magnitude (Pagni et al., 2001).
Currently, most sequence similarity algorithms estimate alignment score
significance in one of two basic ways (Bailey et al., 2002). One type is a lookup
table approach, such as the one implemented in Blast, which precalculates the
parameters of the distribution for a variety of scoring table/gap penalty
combinations (Altschul and Gish, 1996, Altschul et al., 1997). The other type is
sometimes referred to as the ‘empirical’ approach because it estimates the
parameters of the distribution function directly from the scores observed in the
database search, such as the one implemented in FASTA (Pearson, 1990) or
HMMER (Eddy, 1998).

4.4.2. “fitevd”

CHASE component methods calculate E-values each in a different way and
instead of combining their original E-values in CHASE, it would be more
meaningful if we recalculate E-values, where possible, using a uniform approach.
Recently (Bailey et al.,, 2002) a novel algorithm, called “fitevd”, based on
maximum likelihood has been presented for estimating the distribution of

alignment scores using the scores of unrelated sequences from a database
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search. It has been shown (Bailey et al.,, 2002) that this algorithm is more
accurate and better than the existing lookup table approach. This algorithm also
has an advantage, especially with databases containing relatively few
sequences, in reducing the limitation concerning the number of unrelated
sequences required by empirical methods. Furthermore, a specialty of this
algorithm is a technique for stratifying the target sequences into length groups

and estimating score distributions for each of the length groups.

Given a list of hits, each with an alignment score, the length of the query and of
the hit, this algorithm, known as fitevd, reports the corresponding P-values.
These P-values are based on the parameters that fitevd estimates from the score
distribution of each of the length groups of target sequences. We empirically set
the query length divided by 10 as our standard value for the length group size,
however if the query length is very small the value for length group size becomes
so small that the fitevd program reports arbitrary P-values. To circumvent this
problem we estimate a weight, W, using a sigmoid activation function (Fuellen et
al., 2001), given the query length, Q, by using the following formula:
W= 1/(1+ exp(-(Q-100)/100)).

Such a weight, W, is then used to smoothen the value for the length group size,
S, as follows:
S= ((W*(Q/10))+((1-W)*1000)).

HMMsearch, PSI-Blast, and PHI-blast report alignment scores in their search
reports so it is fairly easy to use fitevd to calculate P-values for their hits.
However, it is not possible to extract the alignment score from the results of
Treesearch or Mast, so the fitevd approach is not applicable here. To get the P-
values for Treesearch, and Mast hits, we divide their E-values by the size of the
database. In turn, Treesearch calculates the E-values by multiplying the
augmentation score with the size of the database and Mast calculates the E-

values by multiplying the product of P-values, from the non-overlapping motifs
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found in a hit sequence, by the size of the database (MEME-Mast “README”).
To place the P-values of Treesearch and Mast on a common numerical scale,
these are rescaled in reference to the P-values of HMMsearch using ordinary

least square regression.

In the context of the fitevd algorithm, the P-value of a score x for a target
sequence of length t, is defined as the probability of an unrelated sequence of
length t having the observed score x or greater. The E-value is then defined as
the P-value times the number of target sequences in the database search. So, in
CHASE, if we multiply the P-value with the size (total number of sequences) of
the searched database, it represents an E-value. Before we multiply, we use the
P-values as they are in our C-value formula (described in section 6.2.3.). For a
particular hit sequence the P-values of all CHASE-based component methods
are combined using the C-value formula. This combined P-value is later
multiplied with the size of the database to get a better combined E-value or C-

value.

4.5. CHASE2 Results and Discussion

We run CHASEZ2, with fitevd-based E-values where possible, on the even half of
SCOP database along with CHASE1 and all CHASE component methods using
the best input processors in distant, close, and very close relationship scenarios.
For a fair comparison the component methods of CHASE2 and CHASE1 are
using the same alignment schemes. As shown in Figure 42 for distant
relationship scenario, CHASE2 easily outperforms CHASE1 and all of its
component methods by a reasonable margin and it is the best performance for a
consensus homology search method, achieved to date. Particularly, accepting
just 10 false positives, 55% coverage of true positives was obtained by CHASE2
and 49% by CHASE. Individual methods obtained coverage of true positives

between 31 to 44% for same number of false positives.
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Figures 42, 43, and 44: Coverage versus False positive counts plot is shown for
CHASEZ2, CHASE1, and all CHASE component methods using the best input

processors in distant, close, and very close relationship scenarios, respectively

4.5.1. Evaluation of CHASE & CHASE2 on Three Different

Databases

Previously, CHASE and its component methods were evaluated only on one
‘odd” and one “even” database, derived from SCOP. To show that the
performance of CHASE is not just a chance product of using these particular two
databases, we now evaluate CHASE and its component methods on three
different “odd” and “even” databases. To derive these databases we split up the
SCOP database randomly, into three odd and three even databases by using a
function available with the PHASE4 package. We call these databases A-odd
and A-even, B-odd and B-even, C-odd and C-even.
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To evaluate the performance of CHASE1, CHASEZ2, and their component
methods on these odd and even databases in distant relationship scenario, we
first run CHASE component methods on the “odd” halves of the SCOP database
to derive their performance weights and best IPs as described previously.
Performance of CHASE component methods is shown in the form of average
coverage of true positives versus false positive count plots in A-odd, B-odd and
C-odd of SCOP database in Figures 45, 46 and 47, respectively.
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Figure 45, 46, and 47: Performance of CHASE component methods in distant

relationship scenario is shown on A-odd, B-odd and C-odd half of SCOP

database, respectively

Once we estimate the weights for CHASE component methods on each of A-odd,
B-odd and C-odd half of SCOP database, we run CHASE1, CHASEZ2, and their
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component methods on each A-even, B-even, C-even half of SCOP database.
Performance of all methods on these three even halves of SCOP database is

shown in Figures 48, 49, and 50.
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Figures 48, 49, and 50: Performance of CHASE1, CHASE2, and CHASE
component methods in distant relationship scenario is shown on A-even, B-even
and C-even half of SCOP database.

These results show that the performance of CHASE1 and CHASE?2, in terms of
average percent coverage of true positives in distant relationship scenario was
not dependent on the specific odd/even split of SCOP that we used up to now. It
is still better than any of their component methods and further the performance of
CHASE?2 is far better than CHASE1. This evaluation supports the claim that a
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good combination of methods performs better than any of their component

methods.

4.5.2. Run-Time Experiment
Since the run-time (proportional to input size) is not known for all component
methods, and since it is not known for many of the steps employed by the input
processors, some empirical data on run-time is given in this section. To compare
the speed of CHASE and its five component methods, namely HMMsearch,
Treesearch, PSI-Blast, PHI-Blast, and Mast, we timed these methods to search
members of protein families, as shown in Table 6, in the even half of the SCOP
database (containing 2734 sequences). Zhang et al., 1998, did a similar timing
experiment for PHI-Blast. Here, we choose a representative set of sequences
with different sequence lengths as input to our methods, from the ten protein
families as shown in the Table 6. Run-time for each method was recorded in

seconds, using the time function in Perl.

Table 6. Dataset for run-time experiment: Details of protein family sequences,
sorted on the basis of average query length.

No. of .
Query Average Query Maximum Query
No. Query Name S?r?:ﬁreur:;s Length Length
1 S100 27 44 44
2 1.36.1.2 6 7 87
3 14112 6 92 100
4 1.23.1.1 7 103 125
5 1.73.1.1 6 126 151
6 1.128.1.1 8 127 292
7 1.27.1.1 10 170 189
8 ABC 4 300 345
Transporters
9 3.3.1.n05 17 300 392
10 Serpins 42 415 423
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This timing experiment was run on an UltraSparc computing machine with 96
Gbytes of RAM, running the operating system Solaris, version Generic_117171-
07, release 5.9, which is an implementation of UNIX. All of the methods used the
same set of sequences as an input and the method-specific inputs, e.g. the
HMMs required by HMMsearch, were prepared using the input processors. Thus,
the run-time of individual methods includes the time spent on preparing their
specific inputs. Since a load unbalance at the computing machine could increase
the execution time of a user application (Liu et.al., 2003), resulting in different
run-times, we replicated our experiment three times (see Appendix A) to get an

average run-time for each method.

Table 7. Running time experiment; Results of the timed searches conducted
using HMMsearch, Treesearch, PSI-Blast, PHI-Blast, Mast and CHASE in the
even half of SCOP database, using members of 10 protein families (shown in
table5). Results are sorted on the basis of average query length.

Query Query | umceach Treeseach PSIBlast PHIBlast Mast Sum SUmMW/O  cpasE

No. Name HMMsearch
1 S100 8 83 3 8 20 122 114 106
2 1.36.1.2 14 39 2 4 21 80 66 61
3 1.41.1.2 15 49 6 3 17 90 75 69
4 1.23.1.1 18 52 3 3 19 95 77 79
5 1.73.1.1 24 63 4 4 41 136 112 109
6 1.128.1.1 34 104 4 5 33 180 146 142
7 1.27.1.1 26 79 4 6 58 173 147 153
8 ABCs 43 106 6 8 21 184 141 145
9 3.3.1.n05 49 199 9 27 213 497 448 454
10  Serpins 50 373 11 68 1026 1528 1478 1428
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As shown in Table 7, Treesearch consumes more time, on average, in
conducting its database searches than the time consumed by any of the
other CHASE component methods. Usually, Mast is faster than Treesearch but it
takes much longer if the number of input sequences and their length is larger
than average. This is due to MEME (part of the Mast package) that
extracts motifs, from the input set of sequences, required by Mast to
conduct the database search. Time taken by HMMsearch, on average, is
less than that of Treesearch and Mast. The Blast family of methods namely
PSI-Blast and PHI-Blast turns out to be very fast, as expected. The time taken in
conducting database searches by PHI-Blast is similar to that of
PSI-Blast but PHI-Blast can take longer if the number of input sequences
and their length is larger than average. This happens because PRATT
may then take long to construct the PROSITE-like pattern that is required to run
PHI-Blast. Analysis of the results from Table 7 shows that, on average, CHASE
run-time is less than the total run-time of all of its component
methods. Time taken by CHASE to complete a particular search includes
steps like input processing, running of its individual homology
search methods, their output processing, C-value calculation and the
CHASE output report preparation. One advantage for CHASE is that during
its input processing stage, some of the inputs required by its component
methods, e.g. the HMM required by HMMsearch and Treesearch, are generated
only once and this saves some run-time. In fact, since HMM generation
dominates HMMsearch, and since CHASE takes about as long as all the other
methods except HMMsearch taken together (see “sum  without
HMMsearch” in table 7), it seems that the time that the CHASE script itself needs
is about equal to the other savings, in particular the savings due to generating

the multiple alignment only once.
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4.5. Conclusions, and CHASE Future Work

Regarding the future development of CHASE, the following issues are

noteworthy.

o Inclusion of more homology search methods in CHASE, such as jumping
alignments (Spang et al., 2002) and THMM (Qian et al., 2003).

o Improving memory consumption of modular CHASE, by improving the
handling of the database by the database reader module.

o Implementation of a parallel version of CHASE using Biopipe (Hoon et al.,
2003).

o It is future work to use CHASE for searching protein databases to find
missing members to improve databases such as Pfam.

o0 One should use CHASE to search in translated genomic databases to find

novel proteins.

GenCHASE was developed to handle the last issue. It is the topic of the next and

last chapter. Further conclusions can be found in the last section of that chapter.
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5. GenCHASE (Genomic Comparative-Homology Agreement SEarch)

5.1. Overview

Genomes of many organisms have been sequenced over the last few years
resulting in an enormous amount of sequence data. About 206 genomes have
been completely sequenced (and published), while the sequencing of 506
prokaryotic and 418  eukaryotic genomes is underway (see

http://www.genomesonline.org/) as of July 09, 2004. Unfortunately, the

annotation of such huge datasets is not keeping pace, considering that
annotating a genomic sequence is not an easy task (Claverie et al., 1997).
Further, if no good annotation is available, it is difficult to find out whether any
members of a protein family of interest exist in a newly sequenced genome.
Many methods have been developed (for a review see: Mathe et al., 2002) to find
genes along a genomic sequence using either intrinsic (ab initio) or extrinsic
(homology-based) approaches (Borodovsky et al., 1994, Rouzé et al., 1999). On
one hand, ab initio gene prediction methods do not give precise predictions of all
the genes in a given sequence without false negative or false positive errors. On
the other hand only about half of the genes can be found using the extrinsic
approach alone (Mathe et al., 2002).

Following the success of CHASE (Alam et al., 2004), using the same basic idea,
we combine extrinsic (homology-based gene finding) and intrinsic (ab initio gene
structure prediction) approaches in a tool called GenCHASE (Genomic
Comparative Homology Agreement Search). An outline of GenCHASE is shown
in Figure 51. GenCHASE finds a maximum number of possible homologues in a
single genomic sequence, for example a chromosome, given a set of protein

sequences.
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Figure 51. An outline of GenCHASE

Given a set of protein sequences, specific inputs are prepared for homology
search methods. GenCHASE then combines the results from different methods
in 5 steps, given the co-ordinates and E-values for the High Scoring segment

pairs (HSPs; as shown in Figure 52).

To run GenCHASE on all the genomic sequences of a particular genome such as
the human genome, one by one, and to analyse its results we have developed
another program on top of GenCHASE called GenCHASE-Analyser. Here we
present our approach in detail as well as results for the search of ATP Binding
Cassette (ABC), S100, and Cadherin proteins (described below) in the human

genome, as an evaluation of GenCHASE.
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5.2. GenCHASE Component Methods

In GenCHASE we combine homology-based gene finding methods such as
PHI/PSI-TblastN (Altschul et al., 1997), TfastY (Pearson, 1990), and Mast (Bailey
& Gribskov, 1998), homology-based gene structure prediction methods like
Genewise (Birney et al., 2004) and ab initio gene structure prediction methods
like Genscan (Burge et al., 1997). We call them GenCHASE component
methods. The ultimate goal of these methods is to find out or predict genes in a
genome, given a single or a set of protein or DNA sequences. However, they
differ in the technique they use to accomplish this task. All similarity search
methods that we combine in GenCHASE use a collection of protein sequences
as search input, translate the target genomic sequence into six reading frames
on the fly, take care of frameshifts (except Mast) and report a confidence
estimate such as an E-value, for each of the hits they find. Genewise and
Genscan are gene structure prediction methods that we apply to the genomic
regions where we find potential genes using homology-based gene finding

methods. Following are the details of these methods:

o PSI-TblastN is a similarity-based gene finding method that searches a
protein query sequence against a nucleotide sequence database (target
database) using a position specific scoring matrix created by PSI-BLAST.
A single genomic or chromosomal sequence can also be used as the
target database. To save the results as a position specific scoring matrix,
in the first step, we run a normal PSI-Blast search against a protein
database such as SCOP (Andreeva et al., 2004) or SWISSPROT
(Boeckmann et al., 2003), given the input set of protein sequences as a
jumpstart alignment and a query sequence. The query sequence can be
any sequence from the jumpstart alignment. In the second step we use
the position specific scoring matrix we saved and the query sequence to

run a PSI-TblastN search in a nucleotide/genomic sequence database.
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PSI-TblastN translates the target genomic sequence into six reading
frames on the fly, so that the given query sequence can be aligned to the

translated genomic region.

PHI-TblastN is similar to PSI-TblastN, except in the first step, where a
consensus sequence and a motif (in the form of a regular expression) are

used instead of the jumpstart alignment.

TfastY compares a protein sequence to a DNA sequence database,
translating the DNA sequence in six reading frames and aligning the
protein sequence to each sequence of the database, allowing gaps and
frameshifts. We use the consensus sequence of the input set of

sequences to start the TfastY search.

Mast searches biological sequence databases for sequences that contain
one or more of a group of known motifs that we provide in a specific
format derived using a tool called MEME (Multiple EM for Motif Elicitation;
available in MEME-MAST package). Mast also translates the genomic

database into six reading frames on the fly.

Genewise is a homology-based gene structure prediction method. In
Genewise, we use a consensus sequence that is calculated from the input
set of protein sequences, to predict the possible gene structure of the
regions in a genomic sequence that show sufficient similarity. Genewise is
a very slow method and it takes very long if we apply it on the complete
genomic sequences. So we restrict ourselves to applying Genewise on
genomic region(s) that we find, using homology-based gene finding
methods, as described in section 5.4.3. We use the program “genewise” if
we need to run Genewise on one genomic region, however if there are

more then one regions, we apply the program “genewisedb”.

90



o Genscan is an ab initio gene structure prediction method. It uses an
organism specific parameter file (available with the Genscan package) to
predict the gene structure of all possible genes that a given genomic
sequence may have. As we do not want Genscan to predict the gene
structure of regions of a genomic sequence that are not homologous to
the query, we apply it only on regions of a genome that we find similar
using homology-based gene finding methods. Genscan gene structures in
the flanking region are deleted because they are not supported by any of

the homology-based gene-finding methods.

5.3. Input Processing

All of the homology-based gene-finding methods (i.e PHI/PSI-TblastN, TfastY
and Mast) that we combine return confidence estimates, usually E-values, for
their results. To perform their task, they require a single or a set of protein
sequences as query and a genomic/DNA sequence(s) as a target database.
These methods translate the target genomic sequence into six reading frames
and all except Mast are capable of detecting frame-shift errors. The exact query
format requirements, however, vary from method to method. As for CHASE, we
developed scripts called input processors (IPs) that take a collection of
sequences and process these as follows to obtain the specific type of input for

each of these similarity-based gene-finding methods.

o PSI-TBlastN IP: In the first step, we use Mafft (Katoh et al., 2002) to align
the input sequences, and we format the alignment such that it can be
used, together with a single query sequence, to “jumpstart” a "single run"
PSI-Blast search in a protein database such as SCOP or SWISSPROT.
(The multiple alignment that is used to jumpstart PSI-Blast must contain
the query sequence. PSI-Blast further requires that the jumpstart
alignment does not contain some of the headers and trailers that are

usually present in alignments). In the second step, that is, the search in
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the target genomic sequences, PSI-TblastN requires that the single query
sequence must be the same as the one used in the first step for creating a
position specific scoring matrix. As described in the README, by default,
the filtering (or masking of low complexity regions) is off (-F F) in the
protein-protein blast while it is on (-F T) in the protein-DNA blast. To
ensure consistent usage of the protein-protein and protein-DNA blast
combination, the -F option should be explicitly set in one or the other run.
Since we use already masked sequences, we turn filtering off in our

second step of the PSI-TblastN search.

PHI-TBlastN IP: We use PRATT to generate a Prosite-like pattern from
the given un-aligned sequences. A ClustalW (Higgins, 1994) alignment is
used to generate a consensus sequence by relative majority rule for
starting a PHI-Blast search with the Prosite-like pattern, followed by a
“single run” of PSI-Blast, to save the position specific scoring matrix that is
required in the second step of the PSI-TblastN search that follows.

TfastY IP: We use the Mafft alignment to generate a consensus

sequence, by relative majority rule, for starting the TfastY search.

Mast IP: We use MEME (Multiple EM for Motif Elicitation) (Bailey and
Elkan, 1994), given un-aligned sequences, to generate motifs that are

used to run Mast.

5.4. GenCHASE; A Scheme for Combining Homology and
Gene-Finding Methods

We describe a scheme to combine several extrinsic gene-finding methods,
namely PSI-TblastN, PHI-TblastN, TfastY, and Mast, based on the confidence

estimates such as E-values that they report for every hit or high-scoring segment

pair (HSP; local alignments with no gaps that achieve one of the top alignment
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scores in a given search (Blast Glossary)). As shown in Figure 51, in our scheme
for combining different homology-based gene finding methods, we run them one
after the other. Since they use various kinds of input information we provide this
information automatically, employing input processors as described above. Once
these homology-based gene searches are completed, to combine these methods

GenCHASE carries out the steps explained in sections (5.4.1-5.4.6) below.

5.41. Extract HSPs

Results of each method are parsed to extract specific information, such as the
co-ordinates or the start and stop positions of the HSPs (high-scoring segment
pairs) and the corresponding E-values. We assign an identifier to each HSP,
which consists of the name of the chromosome, the frame information (i.e.
forward or reverse) and its start position. For example, given a set of ATP
Binding Cassette (ABC) transporter protein sequences PHI-TblastN reports a
particular HSP in the reverse frame of human chromosome X starting at position
73149064 until 73148969 with an E-value of 2e-07. We assign the identifier
chrX_reverse 73149064 to such an HSP and extract the information as shown in
Table 8.

Table 8: HSP Co-ordinates, an example: This table shows the information such
as an identifier (that we assign), name of the method, start and end positions and
the corresponding E-value of an HSP which we extract from the output of

homology search methods.

HSP Identifier Method Start - End E-value

chrX_reverse_73149064 PHI-TBlastN 73149064 - 73148969 2e-07

5.4.2. Cluster HSPs

Based on overlap criteria, described in 5.4.3, we then assemble the HSPs (that

we get from different methods) into clusters using the Bit::Vector module (Beyer,

93



2004). ldentifiers are assigned to such clusters. E-values of many HSPs,
reported by a particular method, that belong to the same cluster are multiplied,
since the E-values below 0.01 are similar to P-values (Koonin and Galperin,
2003). For example the HSPs from PSI-TblastN (PS), PHI-TblastN (PH), and
TfastY (TF) are considered overlapping and placed into a cluster as shown in

Figure 52 and Table 9.

(chr)(_example:Reverse Frame... ... [abcs_jcS] Gene(s) found using GenCHASE {by S. Intikhab Alam, 2004} 5
10 20 30 40 50 60 70 80 a0 100 110 120 130 140 150 160 170 180 190 200

PS:73148951 << 73149084

PH:T3148060 << 73149084

TF: 73148877 << 73140064

Figure 52. An example of HSP cluster
HSPs are placed into a single cluster if they overlap e.g. HSPs from PSI-TblastN,
PHI-TblastN, and TfastY are placed into one cluster (e.g. a cluster for reverse

frame HSPs is shown, right to left).

Table 9: An example of HSP Co-ordinates placed into a cluster

Cluster Identifier HSP Identifier Method Start-End E-value
ChrX_reverse_73149064 ChrX_reverse_73149064 PS 73149064 - 73148951 3e-08
ChrX_reverse_73149064 PH 73149064 - 73148969 2e-07

ChrX_reverse_73149064 TF 73149064 - 73148877 2.2e-06

5.4.3. Formulate Temporary HSP Super-Cluster(s) and Predict

Gene Structure

Next we cluster the HSPs. We do not consider single-HSP “clusters”; empirically,
we noted too many false positives if we support single-HSP “clusters” that do not
overlap with HSPs from another method. In the human genome only about
5.24% of introns are more than 200 kilo base pairs (kbps) long (Sakharkar et al.,
2004). Thus we assemble all HSP clusters into a temporary super-cluster if these

are located at a distance of less than 200 kbps from each other. The user can
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provide this threshold called the maximum intron length. These temporary super-
clusters are combined into a gene if a gene structure prediction method identifies
the gap(s) between such clusters as introns.

For example, extending the above-mentioned HSP cluster,
chrX_reverse 73149064, from human chromosome X, we assemble a temporary
“super-cluster”, as shown in Figure 53 and Table 10 (HSPs are sorted by
method).

<cl1r)(75upclus:Rs.k\.rerss,l Frame... ... [abcs_jc5] Gene(s) found using GenCHASE {by 5. Intikhab Alam, 2004} 5
el i i vt st i ikt i il u - Bl AN bbbttt bttt ottt
1k 2k 3k 4k 5k Bk Tk Bk 9k

PST31465941

KEY:
PS‘PSITbIastNi: Exons PH(PHITblastM): Exons TFi fasl‘l’i: Exons

Figure 53. An example of temporary HSP super cluster

A temporary HSP super cluster is formed if two or more HSPs (or HSP clusters)
are close enough, considering a distance of some, user-defined, length in base
pairs. Gene structure prediction methods are then applied to the genomic region

(including some flanking region) represented by such a temporary super-cluster.

Table 10: Co-ordinates for an example HSP super cluster

Cluster Identifier HSP Identifier Method Start End E-value
ChrX_reverse_73156047 ChrX_reverse_ 73146941 PS 73146941 73146843 0.007
ChrX_reverse_ 73149064 PS 73149064 73148951 3e-08

ChrX_reverse_73156047  PS 73156047 73155916 5e-05
ChrX_reverse_73149064 PH 73149064 73148969 2e-07
ChrX_reverse_73156032 PH 73156032 73155916 0.001
ChrX_reverse_73149064 TF 73149064 73148877 2.2e-06

GenCHASE further extends the super-cluster to both sides of the genomic
region, if possible, employing a user-defined flanking region length (default 10
kbps). GenCHASE then applies gene structure prediction methods such as
Genewise and Genscan to predict the structure of possible genes in such a

super cluster. Genewise provides the gene structure in the genomic region where
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certain similarity, in relation to the query, is found. However, Genscan is not a
similarity-based, but an ab initio method, and it predicts the gene structure in the
given genomic region, as complete as possible. Once the possible gene structure
of such regions has been established, all the HSPs and predicted introns and
exons are assembled to represent a particular gene. For example Genewise
(GW) and Genscan (GS) predicted introns and exons and HSPs reported by
homology-based gene finding methods, such as PSI-TblastN (PS), PHI-TblastN
(PH), and TfastY (TF), assemble a gene with the co-ordinates shown in Figure
54 and Table 11. Please note the PSI-TblastN, PHI-TblastN or TfastY do not
return complete exons but may return partial exons; Intron-exon boundaries are

usually predicted by gene structure prediction methods.

chrX:Reverse Frame... ... [abes_je5] Gene(s) found using GenCHASE {by S. Intikhab Alam, 2004} N
1k 2k 3k 4k 5k 6k 7k Bk 9k 10k Mk 12k 13k 14k 15k 16k 17k 18k 19k 20k 21k 22k 23k

PS:73148641

PH:73149064

TF:73149064
L
GS:7314021
GW 73148935
o &

EEESSS | ES——--eess

KEY:
PS‘PSITD\ES{NI. Exons PH(FHITblastN): Exons TFi fasiy). Exons G5({GenScan) Genes GWiGenewisel.Genes

Figure 54. Visualization of a GenCHASE assembled gene

HSPs and introns/exons found for a particular ABC gene found in human
chromosome X are shown. HSPs found using homology-based gene finding
methods have a white background while the introns and exons found using gene
prediction methods have a grey background.

Table 11: Co-ordinates of a gene assembled by GenCHASE

Cluster ID HSP ID Method Start Stop E-value
chrX_reverse_ 73163280 chrX_reverse_73146941 PS 73146941 73146843 0.007
chrX_reverse_73149064 PS 73149064 73148951 3e-08
chrX_reverse_73156047 PS 73156047 73155916 5e-05
chrX_reverse_73149064 PH 73149064 73148969 2e-07
chrX_reverse_73156032 PH 73156032 73155916 0.001

chrX_reverse_73149064 TF 73149064 73148877 2.2e-06
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chrX_reverse_73140211 GSex 73140211 73139996 -
chrX_reverse_73146848 GSint 73146848 73140212 -
chrX_reverse_73146956 GSex 73146956 73146849 -
chrX_reverse_73148953 GSint 73148953 73146957 -
chrX_reverse_73149057 GSex 73149057 73148954 -
chrX_reverse_73151695 GSint 73151695 73149058 -
chrX_reverse_73151867 GSex 73151867 73151696 -
chrX_reverse_73155632 GSint 73155632 73151868 -
chrX_reverse_73155762 GSex 73155762 73155633 -
chrX_reverse_73155916 GSint 73155916 73155763 -
chrX_reverse_73156080 GSex 73156080 73155917 -
chrX_reverse_73156990 GSint 73156990 73156081 -
chrX_reverse_73157148 GSex 73157148 73156991 -
chrX_reverse_73158134 GSint 73158134 73157149 -
chrX_reverse_73158309 GSex 73158309 73158135 -
chrX_reverse_73160314 GSint 73160314 73158310 -
chrX_reverse_73160402 GSex 73160402 73160315 -
chrX_reverse_73160493 GSint 73160493 73160403 -
chrX_reverse_73160582 GSex 73160582 73160494 -
chrX_reverse_73161987 GSint 73161987 73160583 -
chrX_reverse_73162256 GSex 73162256 73161988 -
chrX_reverse_73163147 GSint 73163147 73162257 -
chrX_reverse_73163280 GSex 73163280 73163148 -
chrX_reverse_73146935 GWex 73146935 73146843 -
chrX_reverse_73148954 GWint 73148954 73146935 -
chrX_reverse_73149057 GWex 73149057 73148954 -
chrX_reverse_73151696 GWint 73151696 73149057 -
chrX_reverse_73151881 GWex 73151881 73151696 -
chrX_reverse_73155713 GWint 73155713 73151881 -
chrX_reverse_73155762 GWex 73155762 73155713 -
chrX_reverse_73155917 GWint 73155917 73155762 -
chrX_reverse_73156032 GWex 73156032 73155917 -

5.4.4. Visualize HSPs
GenCHASE visualizes the HSPs, reported by different homology-based gene

finding methods, and the introns/exons, predicted by gene prediction methods,

that belong to a particular gene, using the Bio::Graphics module from the Bioperl
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package (Stajich et al., 2002). GenCHASE component methods search for genes
in one chromosome at a time and GenCHASE provides two visualizations; one
for the genes found in the forward frame of a particular chromosome and the
other for the genes found in reverse direction. For example, a visualization using
the co-ordinates for a predicted gene, in Table 11, is shown in Figure 54. In
GenCHASE visualizations, the background for the intron/exons predicted by
gene prediction methods is shown in grey while the background for the HSPs
from homology-based gene finding methods is shown in white. Each particular
track in GenCHASE visualizations represents all the co-ordinates for a particular
gene, reported by a single method. For the purpose of visualization, all the genes
found in a frame of a particular chromosome using GenCHASE are shown next
to each other not showing the original gap between them, as shown (see reverse

frame) in Figure 56.
5.4.5. Calculate C-value

Just as in the case of CHASE, we transform E-values using log 10, before doing
any further manipulation, and denote them as e-values with a “small e”, for
conciseness. Once we have got e-values e¢,,...,e, and method performance
weights W,,...,w, for all n methods, we calculate the c-value for each cluster of

HSPs s (see page 93) as the W-weighted sum:
n
c-value(s) = Z e, (s)Ww
i=1 .

The final C-value (on the original E-value scale) is then obtained as:

C-value(s): = 10 <"
Since it is difficult to estimate the method performance weights for GenCHASE
homology-based gene finding methods, due to a lack of a generally accepted
standard of truth, we use equal weights for all these methods. “Missing E-values”

arise if a homology-search method finds a sequence not found by another, given
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the E-value cut-off (Ec =2). In the c-value formula, these are set to the log to the

base 10 of cut-off E-value E.

5.4.6. Visualization of the Gene Translation

The translations for the gene(s) that GenCHASE predicts, are visualized using a
tool called VisCoSe (Spitzer et al., 2004). VisCoSe first aligns the sequences
using an alignment tool, Mafft, and then displays the alignment where the amino
acids are coloured according to conservation. VisCoSe also displays a
consensus sequence beneath the alignment. We visualize the translations of the
genes that GenCHASE finds, together with the query set of proteins, so that one
can quickly find out whether the characteristic motifs of the protein family in

question are present in the translations.

Walker A ABC signature Walker B
ABCCllfasta fhal i GRTGEGE (el VEPHAG-- SLIILID S It
ABCC1Zfasva_lhal : CONVGE G A QB LOKE = ki
ABCC1Z fasta Zhal : ERICECH SLGMALFRLYENA
ABCD: D LITGFEGLGH FRT GELWRTYGR-- M : CHAFHFTHR | 21
ABCDZ ¢ LITGPNGOGH PRI BCLWPVEELD-- LWEDY &0 MCM P F VHEOEYALLD A C EID-
ABCDD LICGINGEGH RV GELWR L P LA PLFTHREQFAILREC T
ARCDY LITG WTETR LFTLY TE
ARCElfasta lhalf z ; FQKIHL CAWUCT QFAD I FMEF|
ABCEltasta_Inalf IOVHLCENCTCH I BLEPMDEGC= CLGRPAL II ¥
ABCF1 fasta_Lhalf HI A== = === = FARFTLLHELE NHLDLN-
ABCFlfasta_Thalf ™ I I HL TP THG VFBLACHEF i BHLGTE-
ABCFI fasta_Lhalt ; ICLEGICH H L RPFALLLE NHLDLE
ABCFZ fasr 1§ LFTDG- VLAWONFHALTLED FHLDI
ABCF3 fasta_lhal : PG LG i KR 1 HLEVE
ABCEI fmsva_Zhall CYVEBHGASHE Whi- FLOMTMDPC NPT ILE BHLDME-
ABCGL : MG S GAG VERETGHE- LELVH FFI A~
ABCCZ t 2P TGGGE DV ARBED PEGL-- ZMELIT SLT 5E-
ABCGH : HGUOGAGH TFINT ACYRESGME-- LELVE FFI g4-
ABCGE ! CILGETGEGK DAMECRLGRAGT RQLLD 1L FI CH-
ABCGE : IGZCCCGRA 414 BCHGEHI =~ QL LA I »3F-
che),_forwvard_lEl4ee38Z: LITGUMGE GH Hi G LW TYCALY] ML FHFTHR C 1D~
che¥_reversa_73163280, : CEIGIGH TIVRL FRPYEPQHGS) LE 806 RO FRVILYE SLOETT

360 5410 EED
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Figure 55. Visualization of GenCHASE gene translations using VisCoSe

Partial translations of two GenCHASE genes (chrX_forward_ 151466982 and
chrX_reverse_73163280), along with some of the query sequences, are
visualized using the tool VisCoSe. This tool first uses Mafft to align the
sequences and then displays the alignment in colour according to the

conservation of amino acids. Here in this Figure the conserved ABC motifs are
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visible in red, both in query and the gene translations, which tells that these

GenCHASE predictions are candidate ABC genes.

One such visualization is shown in Figure 55 displaying, along with some of the
query sequences, the translations of two ABC genes (chrX_forward_151466982
and chrX_reverse_73163280) that we found in human Chromosome X using
GenCHASE. In this Figure, the characteristic motifs of ABC transporters (namely
ATP/GTP binding or Walker A motif (PROSITE: PDOCO00017), ABC signature
motif (PROSITE: PDOC00185) and the Walker B motif) are visible.

When these steps (5.4.1-5.4.6) are completed, GenCHASE writes its output in a
report as shown in Figure 56. Please note that Mast is not compatible with larger
genomic sequences, such as whole human chromosomal sequences, so its

results are not available for human genome analysis.
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Figure 56. Example GenCHASE report

A GenCHASE report can be divided into three sections where the first section
shows the input information, the second section displays the visualization of
HSPs (and the gene structure) and the last section provides links to individual

method reports, and to the visualization of translations. GenCHASE hits are

sorted on the basis of C-value.




5.5. GenCHASE-Analyser (GCA)

The GenCHASE-Analyser (or GCA) is used to run GenCHASE on all
chromosomes, of for example the human genome, one by one and to analyse

the results given an annotation file (that can be obtained from Ensembl using

Ensmart, see: hitp://www.ensembl.org/Multi/martview), representing the co-
ordinates of all known genes of the protein family in question and given the
parameters to run GenCHASE. This is particularly helpful in looking at all the
GenCHASE genes, from all the chromosomes of one complete genome, and
separating the known genes from new or unknown genes for further analysis. For
example we use GCA to compare the co-ordinates of the above-mentioned
chrX_reverse 73163280 gene with the Ensembl-based annotation of all known
human genes of the ABC protein family, and we found that
chrX_reverse_73163280 is a known ABC Transporter gene namely, ABCB7, as
shown in the example GCA report in Figure 57.
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GenCHASE-Analyser (Genome based Comparative Homology Agreement SEarch)-Analyser
version 1.0 Copyright (C) 2004 Intikhab Alam

-Please_Cite:-

a) Alem, TI., Dress, A., Rehmsmeier, M., Fuellen, G. (2004a). Comparatiwve
Homology Agreement SEarch: An effective combination of homology-search

methods. Proceedings of the National Academy of Sciences (PHAS), USA,

wvolume 101 (38) 13814-189.

b) Alam, I., Dress A., Fuellen, G. (2004b). GenCHASE, An Effectiwe

Combination of Genome based protein Homology-Search Methods. [Unpublished)
Bielefeld University, Bielefeld, Germany

Analysing [abcs _jc5] Searches in [golPwalues] set of Chromosomes/Genomes

#Important: Candidate {abcs_jc5} hits are showm in bold, wherever the Ensemhl annotation is 'Not Awvailah
search hit Evalue from GenCHASE gene translations is <£Z. To see their alignments click on HMM-Evalue

No. | ClusterIDD CWalue | HMM- Evalue | Cluster Length BPs, AAs |Pointers Ensembl Annotation

1 chrl7 smverse GTEI4547 le-59  |Z2.7e-154 223310 bp, 2746 UCSC, Ensembl | 6T735261-67671970 ABCAG 67t
2 |duT severse BETISZTT 1e-59 | 4.2e-130 TBEZS5 bp, 953 wa UCSC, Ensembl | 86716618-86643395 ABCB4 86t
3 |cheT reverse BET04202 le-58  |53e-128 60935 bp, 1171 aa UCSC, Ensembl | 86716618-86643395 ABCB4

4 |cheT forward 20427133 Te-57 | 2e-121 1124490 bp, 1131 a UCSC, Ensembl | 20412600-20539563 ABCBS

5 |chtl severse 170045338 le-56  |3.le-124 626652 bp, 964 aa UCSC, Ensembl | 170090377-169981993 ABCBL1
6 |chel0 forwaed 101238363 3e-39 | 3.8e-127 47612 byp, 1160 aa UCSC, Ensembl |101207158-101276168 ABCC2
T |chtlf sewerse 16253058 Ge-39 | 3e-08 42714 by, 127 1 UCSC, Ensembl | 162B3668-16210344 ABCCE

8  |chtlé forward 16131853 5e-35 | 100 69639 bp, 36 1a UCSC, Ensembl | 16009884 16202628 ABCCL

9 |chud severse 1B5018325 1e-33 | 79e-121 56324 bp, 1001 aa UCSC, Ensermbl | 185056590-184958632 ABCCS
10 |chrld reverse 20246491 2e-33  [9.9e-15 T843 bp, 351 1a UCSC, Ensermbl | Mot Available

11 |chzld reverse 47958295 4233 |1Be-129 62709 bp, 1293 aa UCSC, Ensembl | 47958521-47895218 ABCC12
12 |chef forward 43442572 Se-32 192107 22112 bo. 1522 aa UCSC. Ensembl | 434421 47-43455018 ABCC10
15 |cheld teverse 3208543 Ze-31 |1.32e-B4 40563 bp, 1652 aa UCSC, Ensembl | 2319649-2266599 ABCAS

14 |chel2 severse 121871991 1e-29  |33e-59 20007 bp, 528 w.a UCSC, Ensermbl | 121888566-121851067 ABCEY
15 |chzld reverse 48028197 3e-29 | 53e-127 49052 bp, 1030 aa UCSC, Ensembl | 48056093-47978782 ABCC11
16 |che2l forward 14503830 5e-28  |1.6e-20 67910 b, 607 aa UCSC, Ensembl | 14567991-14656967 ABCCI3
17 |chel7 forwaed 49215580 3e-27 |19e-133 27519 bp, 1195 aa UCSC, Ensembl | 491B6865-49243700 ABCC3

18 |che? sewerse 216058207 Be-25  |5.Ge-B2 56953 bp, 1357 aa UCSC, Ensembl | 216205693-21 5998809 ABCAILZ
19 |chrd forward 56257207 3e-25 | 2e-06 1866 bp, 287 1a UCSC, Ensembl | Not Available

20 |che¥ forward 150119974 Se-25  |1.2e-63 14303 bp, 745 UCSC, Ensernbl |150117278-150134393 ABCES
21 |chif ewerse 33BGBIT4 le-23  |4.5e-55 12677 bp, 966 10 UCSC, Ensembl | 32868712-32859948 TAPL

22 |chud sewerse 33852970 le-23  |3.de-51 9327 bp, GBG 1a UCSC, Ensemnbl | 32852970-32837030 TAPZ

23 |che7 forward 116734728 2e-22 | le-B6 126937 bp, 998 aa UCSC, Ensembl | 116674520-116863218 CFTR
24 |chel9 forward 9923651 Le-22  |1.1e-84 24063 bp, 2235 aa UCSC, Ensembl | 9923611016424 ABCAT

35 |chtl2 sewerse 31010044 Ge-2l | 3e-58 74699 bp, T63 UCSC, Ensembl | 21980875-21845345 ABCCY

26 |chel severse 226638549 le-20  |12e-64 21412 bp, 337 wa UCSC, Ensembl | 226655653-226613541 ABCBLO
27 |cht7 forurard 481734325 2220 |2Be-6T 228897 bp, 1363 aa UCSC, Ensembl | 4T982644-48431892 N M_152701
28 |chtl7 sewerse §7554139 3e-19  |3.7e-91 TZT90 bp, 1164 aa UCSC, Ensembl | 67535298-67461349 ABCAR

29 |chtd sewverse 102973946 5e-19  |1.5e-B2 47512 bp, 1740 aa UCSC, Ensermbl | 103070274-102933121 ABCAL
30 |chtl7 tewverse STE54859 Ge-19  |2Be-4T 85710 bp, 1270 aa UCSC, Ensembl | 6T644390-67568108 ABCAY

31 |chrl reverse 93994179 Ye-19 | 1.3e-96 58991 bp, 1448 aa UCSC, Ensembl | 94058489-93935466 ABCA4
32 |chell sewverse 17418100 2e-17  |3.2e-90 30253 bp, 1119 aa UCSC, Ensembl | 17462632-17378847 ABCCE

33 |cheX sewerse T3183454 Te-17  |5.Ge-58 23458 bp, 601 aa UCSC, Ensembl | 73242910-73139907 ABCR7,

34 |cha? reverse 23345133 2e-15 | 46e-12 664 bp, 204 a2 ULCSC, Ensembl | Not Available k
35 |cheld sewerse 93545192 Ze-14 | 6.5e-64 36785 bp, 432 1 UCSC, Ensembl |93651684-93370091 ABCC4H

Figure 57. A (truncated) GCA report

A part of a GCA report is shown where all the GenCHASE hits are sorted on the
basis of their combined E-value (or C-value). Cluster IDs (or GenCHASE gene
IDs) are hyperlinked to the individual GenCHASE reports, while the co-ordinates
of these genes are hyperlinked to UCSC and Ensembl genome browsers. Length
of GenCHASE genes (with introns) and their translations are listed in nucleotide
base pairs and amino acids, respectively. Available annotation for each of the

GenCHASE genes is shown in the last column. Annotation for our example gene,
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chrX_reverse 73163280 i.e ABCB7 is marked with an arrow. Where no
annotation is available, we write ‘Not Available’.

GCA enlists all the genes that we find using GenCHASE, ranked on the basis of
their C-values, along with their annotations and hyperlinks to the University of
California Santa Cruz (UCSC) (and from there on to NCBI) and the Ensembl
genome browsers. This helps to further explore the existing evidence at the NCBI
or Ensembl genome browsers, and to focus on the GenCHASE genes that are,
for example, unknown according to Ensembl annotations. To track down every
detail, gene Ids of genes enlisted in the GCA report are further hyperlinked to
individual GenCHASE reports, which contain HSP visualizations and the reports

of individual GenCHASE component methods.

5.6. Modular Structure of GenCHASE

Separate module files namely GenlPs.pm, GenRunParse.om and
GenDBreader.pm were written for GenCHASE. In addition, a driver script was
written that reads an eXtensible Mark-up Language (XML) (Achard et al., 2001)
configuration document file and calls the modules to carry out one complete

GenCHASE run. In the following section all these are discussed in detail.

5.6.1. GenCHASE Modules

o GenlPs.pm

The input set of sequences is first validated by the GenCHASE driver script and
then passed on to the GenCHASE Input Processors (GenlPs.pm) module. The
Input Processors module, as shown in Figure 58, transforms the given set of
sequences into a specific format (for example an alignment, a Prosite-like pattern
or a MEME motif profile) that is required by a particular GenCHASE component
method, as discussed before. All homology search methods, except Mast, use an
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alignment scheme in one way or the other. For example PSI-TblastN requires an
alignment in a specific format and the consensus sequence required by PHI-

TblastN and TfastY is also based on an alignment scheme.

diméma 1.1.1.1.7 Myoglobin {Pig (Sus scrofa)}
GLEDGEVOL VLNV GEVEADVASHGOEVL IRLFEGHPETLEEF DEF KHLKSEDEMEASED
LEEHGNTNLTALGGILEKEGHHE AEL TPLAQIHATKHEIFVEYLEF ISEAT IOVLOSKHE
GLFGADAOGAMSKALELFRNDMALKYEELGF QG

Fdlbfl 1.1.1.1.2 Hewoglobin I {Clamwm (Lucina pectinata)}

LS AL DNV S S WA AS A AWGTAGPFEFFMALFDAHDDVFAKF SGLFSGLAKGTVEN TREN
AAOLOSFKGLYSHIVDNLDAGLALEGQCETF AANHEARGI S AGOLEAAFEVL AGFMES TG
GDEGAWTAVAGALMGMIRPDM I|

/I/—H IP Output; |

~Input Processors I Method Inpus—
ClustalW/Diali gn / Mafft Alignment L
Pratt / PS_Scan Pattern
MEME Pattern Profiles
»  Consensus_Seq.pl Consensus Seq.

Figure 58. An outline of GenCHASE Input Processors (GenlPs.pm) Module

Input processors are used to generate specific inputs required by different
homology search methods. The Pattern or pattern profile is generated directly
from the input set of sequences while the consensus sequence is based on an

alignment.
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A newly implemented input processors module, as shown in Figure 58, made it
possible to easily use any of the ClustalW, Dialign or Mafft alignment schemes,
whenever it is required to generate the PSI-TblastN specific alignment or the
consensus sequence. Pratt/PS_Scan and MEME produce a pattern or a pattern
profile, directly using the input set of sequences. To save time and computing
resources, once a specific input such as an alignment is produced that is
required by a particular method, it is not generated again if the same is required
by another homology search method.

o GenRunParse.pm

This module, as shown in Figure 59, deals with the execution of GenCHASE
component methods given the required inputs. One method is executed at a
time. When a particular database search is completed, its report is parsed using
the parsing scripts implemented in GenRunParse.pm to extract some specific
information as mentioned in section 5.4.1. This information is returned (in the

form of a method specific table) to the driver script for further analysis.
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Jumpstart Alignment

& Query Sequence
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attertt PHI-TBlastN Parsed Method
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Consensus Sequence

(HSP Ids., Frame
MEME Pattern Profiles and E-'\-"'ElthS)

— T
<

Figure 59. An outline of the GenCHASE Run and Parse (GenRunParse.pm)
Module

Given the specific method input, prepared using input processors, GenCHASE
component methods are executed one by one and their output is parsed to get
the specific information that is used later by the GenCHASE driver script for

further analysis.

o GenDBreader.pm

The database reader or the DBreader.pom module, as shown in Figure 60, is
written exclusively to read the Fasta formatted database of DNA/genomic
sequence(s). This module reads the target database to report its size (total
number of nucleotides) and extracts information such as the sequence
identifier(s), description lines and the sequence(s). This information is then

stored in a table that is later used by the driver script.
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arse Database

Parsed Database

(Table containing
sequence Ids., size,
description lines and

the sequence(s))

Figure 60. An outline of GenCHASE Database Reader (GenDBreader.pm)
Module

The database reader module reads the sequence database (usually a single
chromosome of a genomic sequence), given in Fasta format, to extract some

specific information that is then passed back to the GenCHASE driver script.

5.6.2. The Configuration File

In modular GenCHASE we make use of a configuration file so that one may be
able to apply the user-defined configurations without changing the GenCHASE
main script, similar to the one we used for modular CHASE. This configuration
file contains information such as the path to several tools, databases and
directories, and the method specific information such as the name of the method,
its class (e.g. if it is classified as an alignment based method), the alignment

scheme that it may use, its weight, etc.

The GenCHASE configuration file, as shown in Figure 61, follows the
conventions of the eXtensible Mark-up Language (XML). In XML format one has
to place the actual contents enclosed in a specific opening and a closing tag, in a
hierarchical fashion. For example we start the GenCHASE configuration file with
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a main opening tag ‘<GENCHASECONF>’, then we have a section for paths
tagged ‘<Paths>’ and one for the method-specific information tagged ‘<Method>".
Within the Paths or the Method section each element has its own opening and
closing tags. At the end, each section has its closing tag and the whole document
ends with the main closing tag ‘</GENCHASECONF>’.

- <GEMCHASECOMNF=

- <Paths>
<PERLPATH=/vol/perl-5.6.1/bin/perl</PERLPATH>
<SWISSPROT>/vol/biodb /ffasta/sprot fas</SWISSPROT>
<5C0P=/vwolfgenchase fproject/genomic/share/scopl.65/pdb90_1.65</SCCOP>
<MTUBERCULOSIS> fvolfgenchase/project /genomic/share/genomes /fasta/mtuberculosis.fas</MTUBERCULDSIS>
<TFASTY34>/vol/genchase/project/genomic/share /fastad/tfasty34</TFASTY3I4=
<HMMER> fvwolfgenchase /project /genchase-1.0/share/hmmer-2.1.1/binaries /< /HMMER>
<BLASTPGP=/vol/genchase/project/genchase-1.0/share/blast/blastpgp«/BELASTPGP>
<BLASTALL=/volfgenchase/project/genchase-1.0/share/blast/blastall</BLASTALL>
<MEME_MAST>/wol/genchase/share/progs/test/meme.3.0.4/binf</MEME_MAST >
<PRATT=/fvol/genchase/project/genchase-1.0/share/pratt/pratt</FRATT>
<PS_SCAM=/fvolfgenchase/project/genchase-1.0/share/ps_scan/ps_scan.pl</PS_SCAN=
<FITCH=/vol/genchase/project/genchase-1.0/share/phylip-3.5/fitch2</FITCH>
<CLUSTAaLW > fvol/genchase /projectfgenomic/share/clustalw</CLUSTALW=
<MaFFT=/vol/genchase/project/genchase-1.0/share/mafft/scripts /ffitns</MAFFT=
<READSEQ>fvolfgenchase/project/genchase-1.0/share/readseq/readseq</READSED>
<DIALIGMN:=/vol/genchase/project/genchase-1.0/share/dialign2_dir/dialign2-2</DIALIGN>
<COMSENSUS>/vol/genchase/project/genchase-1.0/share/consensus_seq/consensus.pl</CONSENSUS>
<YISCOSE=/vol/genchase/project/genomic/sharefviscose-1.0/viscose.pl</VISCOSE>
<CHASE_OUTPUT:=/vwol/genchase /out/qenetik_fas/</CHASE_OUTPUT=
<INPUT=fvol/genchase/project/genchase-1.0finternal/</INPUT>
<TEMP=/fwol/genchase/project/genomic/tmp/</TEMP=

</Paths=

+ <Method=

+ «<Method=>

- «Method>
<Mame>TFASTY34</Namez
<Weight=0.25</Weight=
«Class=8PEC=/Class>
<IPargl=fasta_seq</IPargl>
<IParg2=None</IParg2:=
<IParg3=None</IParg3:

< /Method=
+ <Method=
</GENMCHASECOMNF =

Figure 61. GenCHASE configuration file, an example

GenCHASE configuration file is similar to the one used for CHASE and it is
implemented in XML format. It starts with a main opening tag and within that the
user-defined paths to several tools, databases and directories can be specified.

User-defined method-specific information is placed in the methods section.
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A particular browser, such as Internet explorer or Mozilla, that recognizes the
XML syntax, highlights the tags and differentiates the actual data that is enclosed
within these tags, as shown in Figure 61 for an example XML document (opened
in the Mozilla browser). Sections or subsections start with a negative sign (-)
where the data is shown. The subsections where the data is hidden start with a
positive sign. Clicking on the positive sign of a section or subsection shows the

actual data inside the tags.

5.6.3. GenCHASE Driver Script

Given the set of sequences as an input and the user-defined or default options,
the GenCHASE driver script integrates, as shown in Figure 62, all of the above
mentioned modules to get the information that is processed further to carry out a
complete GenCHASE run. The GenCHASE driver script works in stages S0-S6.
In the initial stage (S0), it validates the input set of sequences, user-defined (or
default) options and reads the configuration file in stage S1 to validate if all the
tools, databases and directories are accessible. In the second stage (S2), it
instructs the input processors (GenlPs.pm) module, as mentioned above, to
reformat the input data into a format that is required by the GenCHASE

component methods.
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>ABCAL.fasta_lhalf

PVAFGFGCEYFALFEEQGIGVS IQNLVKVYRDGVAVDGLALNF YEGQITSFLGHNGAGKT
TTMS ILTGLF P PTSGGVC PQHNVLE DMLTVEEHIWF YARSEKHVKAEMEQMAL § S KLKSK
TSQLS GGMORKLSVALAFVGGSKVV ILDEPTAGYD PYIWELLLKRTI ILS THHMDEADVG
DRIAIISHGKLCCVGSSLELKNQ

SABCAL.fasta Zhalf TN 10T e N
= __Input Processors | ( i
IPSTAYVVLTSVNLE IGINGLEIKELTKIYRRKPAVDRICVGIPPGECFGLLGYNGAGKS i S Method Fnput—
STFKMLTGDTTVTR FDAITE EWAIRVK YGE et
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TRMAIMVNGRERCLGSVQHLKNR ClustalW/ Dialign/Mafft Alignment
>ABCA2.fasta_lhalf
TTAFGLGSKYFALYEVAGVGVCYDK LTKVYKDDLALNKLS LNLYENQVVSFLGHNGAGKT Pratt / PS_Scan P
TTMS ILTGLF P ETSGGMCPOHNVLF DRLTVEEHLWEYS RAQEE TRREMDKMIES NKRHS L =
VQTLS GGMKRKLSVA TAFVGGSRAT ILDEPTAGVD PYIWDL LLKR TILLS THHMDEADLG
DRIAITSHGKLKCCGSPLELKGT
MEME Pattern(s)
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<L == Diver Sctipt

Jompstart Alignment ‘
& A Query Sequence

| Parsed Method

T e Cluster HSPs i
(R e Find Gene StructuresS 5 ¢

d
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Visualize HSPs
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Database r
Parsed Database |

of all the entries)

Figure 62. An outline of the GenCHASE driver script

Given a set of protein sequences (validation in stage S0) and user-
defined/default options (validation in stage S1), the Input-processing module
(stage S2) prepares the information used by the homology search methods. The
GenRunParse module (stage S3) runs these methods and parses their output to
report the co-ordinates and E-values of the High-Scoring Segment Pairs (HSPs).
After reading the genomic database (stage S4) to retrieve sequences
corresponding to the HSPs, in stage S5 the GenCHASE driver script clusters the
overlapping HSPs, extends those genomic regions where these HSPs are found
and predicts the gene structure using homology-based methods and the ab-initio
methods. Finally in Stage S6, GenCHASE prepares a report that shows all the

predicted genes, sorted on the basis of their C-values.
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The third stage (S3) of the GenCHASE driver script calls the GenCHASE
RunParse module to execute the homology-based gene finding methods and
parses their reports, one by one, to report the HSP ids and the E-values, as
described in section 5.4.1. After reading the genomic database (stage S4) to
retrieve the sequence data corresponding to the HSPs, In Stage 5 (S5)
GenCHASE combines the homology-based gene finding and ab initio gene
structure prediction methods in five steps, as shown in Figure 62. E-values of the
homology-based search methods are combined into a C-value as described in
section 5.4.5. The last stage (S6) of the GenCHASE driver script deals with
reporting the GenCHASE results as shown in Figure 66.
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5.7. Case Studies

5.7.1. Overview

GenCHASE finds as many members as possible of a given protein family, in
genomes, by combining homology search methods and ab initio gene structure
prediction methods. To test the performance of GenCHASE we carried out case
studies on test protein families. More precisely, using GenCHASE we find

members of ABC, Cadherins and S100 protein families in the human genome.

5.7.2. Test Protein Families
5.7.2.1. ABC Proteins

The ATP-binding cassette (ABC) proteins constitute a large family, mostly
membrane proteins responsible for the translocation of a wide variety of
substances across extra/intracellular membranes (Stefkova et al., 2004; Schmitt
and Tampe, 2002). ABCs are found in both prokaryotes and eukaryotes (Quentin
and Fichant, 2000; Dassa and Bouige, 2001). Most ABC proteins contain two
highly conserved domains, namely the ATP-Binding Cassette (ABC) domain
(also known as the Nucleotide Binding Domain (NBD)) and the ABC
transmembrane domain (TMD), (See PF00005 for ABC domain and PF00664 for
the ABC transmembrane domain of the protein family from the PFAM database:

http://www.sanger.ac.uk/Software/Pfam/). The eukaryotic ABC genes are mostly

organized either as full transporters containing two TMDs and two NBDs, or as
half transporters (Hyde et al., 1990). The ABC domains contain characteristic
motifs such as the Walker A motif (PROSITE: PDOCO00017), the ABC signature
motif (PROSITE: PDOC00185) and the Walker B motif. The ABC signature motif
is located just upstream of the Walker B site (Hyde et al., 1990).
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5.7.2.2. Cadherin Proteins

Cadherins are a family of Ca2+-dependent cell-cell adhesion receptors that
mediate cell adhesion and play a fundamental role in normal development (Yagi
et al., 2000). They participate in the maintenance of proper cell-cell contacts.
Cadherins depend on calcium for their function: removal of calcium abolishes
adhesive activity and renders cadherins vulnerable to proteases. Their cell-
adhesive property also makes them likely candidates for tumor suppressor genes
(Kremmidiotis et al., 1998).

Cadherins typically consist of five tandem repeated extracellular domains or
ectodomains, a single membrane-spanning segment and a cytoplasmic region
(Wu et al.,, 1999). In addition to being homologous among each other, these
repetitive cadherin ectodomains contain characteristic sequence motifs LDRE
and DXDNDN in the C-terminal part and a DXD motif in the N-Terminal part,
which participates in the formation of calcium binding pockets linking
neighbouring cadherin ectodomains (Wu et al., 1999). The multiple repetitive
domain organization of Cadherins and their crucial biological role make them an
important candidate for identification and analysis with bioinformatics tools (Julia
et al., 2004).

5.7.2.3. S100 Proteins

S100 proteins form one of the largest subfamilies of the EF-hand protein
superfamily. These proteins feature Calcium-binding motifs composed of two
helixes (E and F) joined by a loop. These are small, acidic calcium binding
proteins that contain two distinct EF-hand calcium-binding motifs. The S100-
specific EF-hand (PF01023) is located at the N-terminus, followed by a classical
Ca2+-binding EF-hand (PF00036). In addition to Ca2+ many S100 proteins, of
currently 20 known members in human, display high affinities towards Zn2+ and

Cu2+ ions (Marenholz et al., 2004). These proteins regulate a variety of cellular
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processes via interaction with different target proteins. Several diseases,
including cancer and melanoma, are related to the abnormal expression of S100
proteins, which are expressed in a cell- and tissue-specific manner (Kanamori et
al., 2004).

5.8. Application of GenCHASE on the Human Genome to Find
Test Protein Families

We use the GenCHASE analyser (GCA) to apply GenCHASE on a particular
genome to find members of our test protein families. GCA applies GenCHASE to
all genomic sequences of a particular genome, one by one, and analyses the
results as mentioned in section 5.5. To apply GenCHASE on a particular
genome, we start with a training set of sequences taken from the protein family in
question. Further, where possible, we compile the knowledge of already known
genes into an annotation file using the Ensmart tool from Ensembl, as mentioned
in section 5.5. Such an annotation of known genes serves as a basis to evaluate
the performance of GenCHASE (i.e., how many of the known genes are picked
up by GenCHASE, given a training set of sequences from a particular protein
family) and to separate the known genes from the unknown. Hyperlinks to UCSC
(and thereby to NCBI) and Ensemble genome browsers, applied to the co-
ordinates of the genes found by GenCHASE, in the GCA report, further help to
explore the existing evidence about the genes, which are unknown according to

Ensembl annotations.

To find ABC proteins in the human genome, we used a refined dataset of all
known human ABC proteins (Spitzer 2004b). There are two kinds of ABC
transporters, full transporters containing two ABC domains and half transporters
containing one ABC domain. This dataset contained only the conserved part of
the original complete sequences. Full ABC transporters were split into two
sequences, each containing one ABC domain so that the conserved parts of all

the sequences can be aligned to each other. The co-ordinates of the known ABC
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genes in the human genome were collected from the Ensembl database using

the tool Ensmart.
To find Cadherins and S100s in the human genome, we took their seed

alignment sequences, from the PFAM database and prepared annotation files

containing co-ordinates for all of their known genes, using Ensmart.
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5.9. GenCHASE Results and Discussion

We run GenCHASE to find the members of our test protein families in the human
genome. As an evaluation of GenCHASE, the results show, as described below,
that we have successfully found all the known genes for our test protein families,
according to the Ensembl annotations with which we compare our results. In
addition, GenCHASE found several hits where no Ensembl annotations were
available. We use HMMsearch, based on query sequences, to search the
GenCHASE-found gene translations. In the GCA report all those hits are
displayed in bold, where the HMMsearch E-value is below a certain threshold
(the same as the E-value cut-off, Ec=2) and no Ensembl annotations are
available. In this way, interesting and un-annotated genes are separated from the
known genes automatically. All such interesting genes are subjected to further
analysis, such as the comparison with any further available annotation(s) (at, for
example, NCBI) and an InterProScan analysis (Zdobnov et al., 2001). In an
InterProScan analysis, the given protein sequence is searched against the
InterPro database, an integrated resource of several motif databases. Such
analysis helps to figure out whether these interesting hits are in fact new

members of our test protein families, pseudo-genes or simply false positives.

5.9.1. ABC Proteins in The Human Genome

In response to the use of human ABC protein sequences as a training dataset for
GenCHASE, we found all the 48 known human ABC proteins, as shown in Figure
63, according to the Ensembl annotations with which we compared our results.
Apart from these 48 known ABC proteins, 29 additional hits (shown in bold in
Table 12) were considered interesting since their HMMsearch E-values were
below a certain threshold and no Ensembl annotation was available.
InterProScan analysis revealed that 12 out of these 29 interesting hits show
characteristic ABC motifs; the hits lacking motifs are called “partial”.
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ABC transporters in the human genome

17

48

" Known B New
M Pseudo I Partial

Figure 63: Summary of the search for ABC proteins in the human genome,
using GenCHASE
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Table 12: A table that shows the GenCHASE result for ABC protein searches in the human genome.

Ensembl, NCBI analysis and InterProScan analysis is also shown. All those hits are shown in bold where the HMMsearch

E-value was below a certain cut-off and no annotation was available from Ensembl.

No. ClusterID C-value  HMM-E-value PSITblastN PHITblastN TfastY34 Cluster Length Ensembl Annotation NCBI InterProScan
67735261-67671970 ABCA6

1 chrl7 reverse 67894547 le-59  2.7e-154 2e-109 7e-63 2e-06 222310 bp, 2746 aa 67818622-67741272 ABCA10
67839914-67920413 ABCAS

2 chr7_reverse 86795277 le-59  4.2e-130 2e-66 2e-94 le-17 78625 bp, 953 aa BO7I6818-86643395 ABCBA
86954599-86745209 ABCBI

3 chr7_reverse 86704202 le-58  5.3e-128 9e-68 2e-98 6e-10 60935 bp, 1171 aa 86716818-86643395 ABCB4

4 chr7_forward 20427123 7e-57  2e-121 7e-60 3e-93 2e-17 112440 bp, 1131 aa 20412600-20539563 ABCBS

5 chr2 reverse 170045338 le-56  3.le-124 2e-59 le-88 le-21 62662 bp, 964 aa 170090377-169981993 ABCB11

6 chrl0_forward 101228363 3e-39  3.6e-127 2e-51 le-52 2e-13 47612 bp, 1160 aa 101207158-101276168 ABCC2

7 chrl6_reverse 16253058 6e-39  3e-08 3e-52 le-59 7e-05 42714 bp, 127 aa 16283668-16210344 ABCC6

8  chrl6_forward 16131853 Se-35 100 le-51 4e-49 0.0002 69639 bp, 36 aa 16009884-16202628 ABCC1

9  chr3_reverse 185016325 le-33  7.9e-121 le-42 2e-46 Te-12 56324 bp, 1001 aa 185056590-184958632 ABCCS5

10 chrlS_reverse 20246491 2e-33 9.5e-18 le-42 3e-52 2e-05 7843 bp, 351 aa Not Available ABCB10P

11 chrl6_reverse 47958295 4e-33 1.8e-129 3e-45 2e-49 7e-05 62709 bp, 1293 aa 47958521-47895218 ABCC12

12 chr6_forward 43442572 5e-32  9.2e-107 2e-43 3e-43 3e-09 22112 bp, 1522 aa 43442147-43465018 ABCC10

13 chrl6_reverse 2298543 2e-31 1.2e-84 2e-53 8e-39 0.04 40563 bp, 1652 aa 2319649-2266599 ABCA3

14 chrl2_reverse 121871991 le-29  3.3e-59 le-31 le-44 2e-12 20007 bp, 528 aa 121888566-121851067 ABCB9
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15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

chrl6_reverse 48028197
chr21 forward 14593630
chrl7_forward 49215680
chr2_reverse 216058297
chr3_forward_88287207
chr7_forward 150119974
chr6_reverse 32868374
chr6_reverse 32852970
chr7_forward 116734728
chrl9 forward 992361
chrl2 reverse 21919944
chrl_reverse 226636549
chr7_forward 48173425
chrl7_reverse 67534139
chr9_reverse 102973946
chrl7_reverse 67654889
chrl_reverse 93994179
chrll reverse 17418100
chrX reverse 73163454
chr7_reverse_23345133
chrl3_reverse 93545192
chr2_reverse 220289469

chr21 forward 42579314

3e-29

S5e-28

3e-27

3e-25

3e-25

5e-25

le-23

le-23

2e-22

S5e-22

3e-21

le-20

2e-20

3e-19

Se-19

6e-19

9e-19

2e-17

Te-17

2e-15

2e-14

Se-14

le-13

5.3e-127

1.6e-20

1.9e-123

5.6e-82

2e-06

1.2e-63

4.5e-55

3.4e-51

le-86

1.1e-84

3e-58

1.2e-64

2.8e-67

3.7e-91

1.5e-82

2.8e-47

1.3e-98

3.2e-90

5.6e-58

4.6e-12

6.5e-64

3.6e-61

6.8e-20

Se-42

8e-39

2e-40

4e-40

2e-49

3e-26

3e-26

3e-25

le-30

3e-39

8e-27

3e-22

8e-34

2e-36

2e-34

4e-34

Se-34

4e-23

le-14

2e-25

6e-21

2e-12

le-18

3e-42

Se-41

le-38

2e-28

2e-20

2e-36

2e-34

4e-34

le-26

9e-25

2e-26

7e-37

le-21

4e-19

le-20

6e-19

4e-20

2e-26

le-29

9e-17

2e-19

6e-21

2e-17

0.001

0.0004

0.006

3e-07

1e-05

2e-12

3e-10

9e-12

3e-10

0.06

2e-10

0.01

7e-06

0.03

0.05

0.001

0.04

0.01

2e-06

0.0005

0.01

1e-08

7e-05

49052 bp, 1030 aa
67910 bp, 607 aa
27519 bp, 1195 aa
56953 bp, 1357 aa
1866 bp, 287 aa
14203 bp, 745 aa
12677 bp, 966 aa
9327 bp, 686 aa
126937 bp, 998 aa
24063 bp, 2235 aa
74699 bp, 763 aa
21412 bp, 337 aa
228897 bp, 1363 aa
72790 bp, 1164 aa
47512 bp, 1740 aa
85710 bp, 1270 aa
58991 bp, 1448 aa
39253 bp, 1119 aa
23458 bp, 601 aa
664 bp, 204 aa
36785 bp, 432 aa
12270 bp, 1136 aa

26610 bp, 559 aa

48056093-47978782 ABCC11
14567991-14656967 ABCC13
49186866-49243700 ABCC3
216205693-215998809 ABCA12
Not Available ABCF2P
150117278-150134393 ABCB8
32868712-32859948 TAP1
32852970-32837030 TAP2
116674520-116863218 CFTR
992361-1016424 ABCA7
21980875-21845245 ABCC9
226655653-226613541 ABCB10
47982644-48431892 NM_152701
67535298-67461349 ABCA8
103070274-102923121 ABCAL
67644390-67568108 ABCA9
94058489-93933466 ABCA4
17462632-17378847 ABCC8
73242910-73139907 ABCB7
Not Available ABCE1P
93651684-93370091 ABCC4

220285934-220277033 ABCB6

42533403-42611488 ABCG1
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38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

chrl_reverse_189504876
chr7_reverse 150315285
chrl3_reverse 93466287
chr4_forward 146603165
chrll forward 118553483

chr9 _reverse 135271051

chr4_reverse_410752

chr3_forward 185224909
chrl2_reverse 38287763
chr4_reverse 89519561

chrX forward 151466982

chr16_forward_21910566

chr1_forward_189504906
chrl4_reverse 72757012

chr6_forward 30651340

chr16_forward_2366164

chr2_forward 228869943

chr7_reverse_23345637

5e-13

4e-12

9e-12

le-10

2e-10

2e-09

1e-08

3e-07

le-06

le-06

2e-06

2e-06

3e-06

5e-06

8e-06

1e-05

0.0002

0.0008

7.3e-09

1.8e-55

1.2e-28

3.1e-37

le-28

1.9e-102

1.3e-22

4.3e-45

5.9e-20

2.4e-24

2.le-12

2.3e-12

0.01

2.3e-17

2.4e-42

0.078

100

0.15

3e-23

3e-21

le-15

4e-17

le-14

4e-18

2e-13

2e-12

3e-08

3e-11

2e-10

9e-12

Se-11

2e-08

3e-09

2e-05

1e-08

le-13

2e-10

6e-17

le-08

3e-12

6e-08

3e-19

7e-05

0.003

1e-05

0.0005

8e-07

2e-06

le-06

0.0002

3e-07

0.007

0.02

0.04

6¢e-05

0.008

3e-06

0.0003

0.03

6e-06

0.002

0.0003

3e-06

0.0003

0.06

0.0001

5e-05

781 bp, 204 aa

18587 bp, 771 aa
81427 bp, 565 aa
23187 bp, 608 aa
15985 bp, 674 aa

11377 bp, 2021 aa

1200 bp, 288 aa

7490 bp, 709 aa
34987 bp, 288 aa
25057 bp, 322 aa

10111 bp, 560 aa

12311 bp, 237 aa

326 bp, 108 aa
22518 bp, 778 aa

13284 bp, 752 aa

56815 bp, 781 aa

245 bp, 81 aa

374 bp, 124 aa

Not Available

150316058-150296664 ABCF2

93651684-93370091 ABCC4

146597108-146627958 ABCEI

118557402-118571024 ABCG4

135280033-135258979 ABCA2

Not Available

185224799-185232706 ABCF3

38300237-38232814 ABCD2

89538117-89471235 ABCG2

151458227-151478120 ABCD1

Not Available

Not Available

72759736-72742190 ABCD4

30645327-30665235 ABCF1

Not Available

Not Available

Not Available

ABCE1P

(FLJ14297)

ABC
Hypothetical

domain
ABCA10L

(LOC342293) ABC
Hypothetical signature,

ABCA3L Walker B
ABCE1P
ABC
ABCA3L signature,
Walker B
ABCE1P
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56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

chr20_reverse 25899975
chrl_forward 94427082
chrl5_forward 67030820
chr2_reverse 44040353
chr2_forward 44040728
chr2_forward_99340004
chr6_reverse 90486909
chr5_forward_132049030
chr5_forward 98092285
chr3_forward_52349099
chr11_forward_102577201
chr7_reverse 23345851
chr10_forward_112022582
chr19_forward_48914551
chr11_reverse_6707420
chr22_forward 35565149
chr2_reverse 17709362
chr8_reverse_ 27954740
chr22_forward_15242951
chr5_forward_68685588
chr7_reverse_43662076
chr7_reverse 149836626

chr7_random_forward 186310

0.001

0.001

0.007

0.009

0.01

0.01

0.02

0.03

0.06

0.06

0.08

0.08

0.1

0.2

0.2

0.3

0.3

0.3

0.3

0.4

0.4

0.5

0.5

100

3.5e-18

68

1.3e-26

Se-22

0.0093

23

0.1

100

0.03

0.11

100

0.0046

0.24

1.5

100

100

0.083

4.7e-06

0.59

0.17

68

100

0.0002

8e-08

5e-05

7e-06

0.004

0.003

0.002

0.9

0.3

0.3

0.2

0.002

0.3

0.06

0.08

0.8

0.005

0.03

0.6

0.0001

0.009

0.07

0.06

0.03

0.0002

2

0.03

0.06

0.04

0.1

0.003

0.1

0.1

0.8

0.6

0.09

0.09

0.01

0.003

0.001

0.0005

0.01

0.07

0.09

0.08

0.01

0.07

0.06

0.04

0.07

4840 bp, 93 aa
16941 bp, 230 aa
224 bp, 74 aa
23603 bp, 543 aa
13814 bp, 322 aa
611 bp, 203 aa
9051 bp, 115 aa
5242 bp, 286 aa
182 bp, 60 aa
17140 bp, 1232 aa
18831 bp, 741 aa
83 bp, 25 aa
13675 bp, 505 aa
1391 bp, 463 aa
7269 bp, 2296 aa
12425 bp, 898 aa
5651 bp, 273 aa
14885 bp, 374 aa
4007 bp, 273 aa
12662 bp, 295 aa
12734 bp, 972 aa
744 bp, 207 aa

8807 bp, 181 aa

Not Available
94355799-94455889 ABCD3
Not Available
44040493-44014146 ABCG5
44040638-44080139 ABCGS8
Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available ABCD1P
Not Available

Not Available

Not Available

Not Available
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79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

chrX_reverse_52417216

chrl6_forward 21924694

chr2_forward_91511626

chr3_forward_161462126

chrl8 random_forward 3936
chr16_forward_48073295
chrUn_random_forward 1375793
chrl_forward 225302635

chrl2 reverse 110611937
chr5_forward 175773490
chr22_forward_37346525
chrl7_forward_41087806

chrl9 forward 34499568
chr4_reverse 109073989
chrl5_random forward 1107893
chrUn_random_reverse 1831714
chrl6_reverse_33521908
chr16_reverse_32525868
chrM_forward 7327
chr12_forward_38982858

chr9_random_forward 1203048

0.6

0.9

0.12

100

1.5e-06

0.1

100

0.51

100

45

100

4.6

0.91

0.48

100

100

100

100

0.2

0.16

100

0.044

100

0.5

0.4

0.4

0.5

0.6

0.8

0.8

0.6

0.8

0.4

0.8

0.5

0.4

0.4

0.8

0.07

10381 bp, 299 aa

116 bp, 38 aa

5755 bp, 291 aa

10384 bp, 564 aa
26 bp, 8 aa
16055 bp, 220 aa
8501 bp, 215 aa
8394 bp, 320 aa
140 bp, 44 aa
6331 bp, 260 aa
18959 bp, 501 aa
8980 bp, 815 aa
95 bp, 31 aa
7443 bp, 113 aa
7380 bp, 291 aa
89 bp, 28 aa
3199 bp, 198 aa
3199 bp, 198 aa
53 bp, 17 aa
11384 bp, 402 aa

329 bp, 109 aa

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

ALDPL/
ABCD1L

ABC
signature,

Walker B
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100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

chr5_forward 143209343

chrl8 random forward 3124
chr3_reverse 42383665
chrl7_reverse 80346796
chr20_forward 38283153
chrl3_random forward 109059
chrl7_forward 5102208
chrl4_forward 67540156
chr7_random_reverse 285443
chr22 reverse 36256210
chrl3_forward 33989332
chr10_forward_38898558

chrll _reverse 64421296

chrX random_forward 280685
chrl0_random forward 172083
chr8_forward 41360328
chrl3_random_forward 28064
chr5_reverse 53490264
chr2_random_forward 404995

chr6_random_reverse 1002576

100

100

100

100

33

100

4.6

6.3

100

100

100

4.5¢-05

12

61

100

100

100

100

100

24

0.6

0.9

0.9

0.5

185 bp, 61 aa
32bp, 10 aa

116 bp, 37 aa
167 bp, 55 aa
4105 bp, 120 aa
56 bp, 18 aa
9194 bp, 536 aa
1506 bp, 411 aa
14699 bp, 161 aa
122 bp, 40 aa

80 bp, 26 aa
3194 bp, 201 aa
9274 bp, 208 aa
8607 bp, 757 aa
3407 bp, 122 aa
5716 bp, 173 aa
29 bp, 9 aa

6776 bp, 79 aa
10474 bp, 141 aa

6917 bp, 1315 aa

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

Not Available

ABCD1P
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Following the hyperlinks to NCBI, from GenCHASE reports, 8 out of these 12
candidate ABC proteins were found to be pseudogenes, as shown in Table 12.
The remaining 4 hits are our candidate ABC proteins. These are hits number 44,
49, 53 and 81in Table 12.

Experimental verification of these ABC genes is underway (Lorkowski, 2004). As
a first result, the mRNA of chr4_reverse_410752 (which we call ABCA10 like (or
ABCA10L)) has been found, as shown in Figure 64. A specific intron-spanning
region of MRNA was detected using primers designed specifically for ABCA10L.
ABCA10 is thought to be involved in lipid homeostasis (Wenzel et al., 2003),
ABCA10L might have a similar role. Cloning and sequencing are the next steps.

Similar analysis will be done in due time for all other candidate ABC genes.

M1 2 3

50 bp ladder

ABCA10

ABCA10L (intron-spanning)
ABCA10L (not intron-spanning

Figure 64: ABCA10L, experimental results (Lorkowski 2004)

Specific primers were designed to detect part of the mRNA for our ABCA10 like
(or ABCA10L), chrr4_reverse_410752, GenCHASE hit. To avoid any bias, 3
experiments were done where in the first experiment part of ABCA10 mRNA was
detected, in the second ABCA10L (intron-spanning) part of mMRNA was detected
and in the third experiment ABCA10L (not intron-spanning) part of mMRNA was
detected as shown in the gel lanes 1, 2, and 3, respectively. In the first lane 50

base pairs (bp) marker ladder was loaded.
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5.9.2. Cadherins in The Human Genome

There are 70 cadherin genes that are known so far, according to an analysis
carried out using Ensmart at Ensembl. However, Hong et al., 2004 claim that
there are 182 known genes. Using GenCHASE we have identified all known 70
cadherin genes and in addition we find 16 candidates for cadherin genes, as
shown in Table 13.

Table 13.

candidate Cadherin genes in the human genome, found by GenCHASE. Please

InterProScan and NCBI/Ensembl analysis is shown for the

note that PF means a family from Pfam database while SSF means a family from
Superfamily database (Pandit et al., 2002).

Mo |Hits

23 |chr11_forward 91773415
32 chr5_forward_140738753
41 chr5_forward_140607849
58 | chrd_reverse 139030648
64 chr_forward_140648408
74 |chr13_forward_ 51563347
80 |chr?_reverse_ 80832433
83 | chr11_forward 91930979
87 chrd_reverse_ 70358626
88 chr5_forward_ 69682962
90 chr5_forward_69169961
95 chr3_reverse 63701481
96 chr3_reverse_49796257
108 |chr19_reverse_ 8046295
113 | chra_reverse 127678412
115 | chr20_reverse_10868965

Interpro Analysis

Cadherin Domain PFO0028
Cadherin Domain PFO00Z8
Cadherin Domain PFO00Z8
Cadherin Domain PFO0028
Cadherin Domain PFO0028
Cadherin Domain PFO0028
Cadherin Domain PFO0028
Cadherin S5F49313
Cadherin S5F49313
Cadherin S5F49313
Cadherin S5F49313
Cadherin S5F49313
Cadherin Domain PFO0D28

Calzium hindin EFG PFO7G45.2
Calzium hindin EFG PFO7G45.2

Cadherin SSF49313

NCBI/Ensembl Annotation

LOC440062 Similar to fat3 (NCBI)

protocadherin gamma subfamily A (1-6), B (1-3)
protocadherin bet 15, protocadherin beta 19 pseudo
No Info (NCBI)

No Info (NCBI)

MGC75495 similar to Serine/threonine-protein kinase Nek1
No Info (NCBI)

LOC440062 Similar to fat3 (NCBI)

No Info (HCBI)

No Info (NCBI)

No Info (NCBI)

No Info (NCBIj

No Info (NCBI)

FEMN3 fibrillin (NCBI)

FBMNZ fibrillinZ

No Info (NCBIy
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5.9.3. S100 Proteins in The Human Genome

In response to the use of S100 sequences from the Pfam seed alignment, as a
training dataset for GenCHASE, we found all the 20 known human S100
proteins, according to the Ensembl annotations with which we compared our
results. A summary for the search for S100 proteins in the human genome is

presented in Figure 66.

S$100s in3the human genome

20

Known N New Partial

Figure 66: Summary of the search for S100 proteins in the human genome,
using GenCHASE

Apart form the 20 known S100s, 9 additional hits were considered interesting
since their HMMsearch E-values were below our threshold (which is the same as
GenCHASE C-value threshold) and no Ensembl annotations were available.
InterProScan analysis revealed that 6 out of these 9 interesting hits show
characteristic S100 motifs while the rest (3 hits) show partial or no motifs, as
described in Table14.
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Table 14. InterProScan and NCBI/Ensembl analysis is shown for the
candidate S100 genes found in the human genome. Please note that in the
InterProScan analysis, PF means a family from Pfam database, SSF means a

family from Superfamily database and PS means a motif/pattern entry from the
Prosite database.

D Interproscan Analysis (Summry) NCBI/Ensembl Annotation
chri2_foreard_B2331674 5100 domain (PF01023.7), EF Hand (S5F47473)  Mwpothetical protein FL.J32949 (MCBD)
chri_reverse_149346947 5100 domain (PF01023.7), EF Hand (S5F47473)  Hypothetical protein FLJ39117
chr¥_reverse_51693359 S100 (PSO0303), EF hand (S547473, PFO0036.15) S5X2 synovial sarcoma, X breakpoint 2 (NCBI)
chr¥_random_forward_733309 Mone Mone
chrl_farward_21564237 EF-hand (SSF47473) (NCBI) ubiquitin specific protease 48 , Ensembl: UCH-2
chri1_foreard_33430932 $100 domain (PD003407), EF Hand (SSF47473) G2 Protein (NCBI), No info. (Ensembl)

similar to hypothetical protein A430083819 (NCBI), EF HAND
chra_forward_B3595702 EF-hand_2 (P$50222), EF-hand (SSF47473)

CONTAINING PROTEIN (ENSFOD000011167) (Ensemhl)
chr3_forward_178034988 Mone Maone
chri_forward_26135713 Mone Mone
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6. Conclusions

In this thesis, | try to improve database searches, as explained in the beginning
of this thesis. Different methods report different results (see Figures 8, 9, and 10)
and the increasing number of database search methods poses a major problem
to wet-lab users, as it is difficult to decide which methods should be used and
which not. Approaches that provide a consensus over several methods may ease
the work of wet-lab users and enable them to see the overall picture of results by
all of the methods in one go. CHASE and GenCHASE are such approaches in

the area of protein database and genomic searches.

CHASE results show that combining homology-search methods provides
improved performance over an entire set of scenarios, ranging from the detection
of distant to very close relationships between protein sequences. This
corroborates, in the context of protein family research, the frequent claim that
appropriately designed consensus methods can be more reliable than any of

their component algorithms.

CHASE software version 1.0 was released with Alam et al., 2004 and is being
used by a number of people particularly at The Howard Hughes Medical Institute,
USA, Pasteur Institute, France, Wageningen University, the Netherlands,
Massachusetts Institute of Technology (MIT), USA, Indian Institute of Chemical
Biology, Kolkuta-India, Washington University, USA, and Institute of
Biotechnology, Lithuania. This version of CHASE software is available at

http://www.mathematik.uni-bielefeld.de/~intikhab/chase-release1.0.tar.gz The

modular structure of CHASE makes it very easy to integrate a new homology
search method. The programmer just needs to update the configuration file and
add a run_parse module for the corresponding method.
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Overall, the performance of GenCHASE is also very good as it identifies all the
known genes from our test protein families and furthermore finds several new
candidate genes. The unique feature of GenCHASE is its ability to predict the
gene structure of genomic regions supported by a consensus of homology
search methods, reducing the rate of false positives. The performance of
GenCHASE can be further enhanced, given gene prediction methods such as
Augustus (Stanke et al., 2003). The benefit of methods such as Augustus is its
ability to predict genes in the genomic regions where some similarity information
(such as the co-ordinates of Genewise predicted exons) is available. If no
similarity information is provided Augustus still predicts genes with better
accuracy than Genscan. It would be a task of the near future to integrate

methods such as Augustus in GenCHASE.

Since searches for proteins in genomic databases are done more frequently than
searches in protein databases, GenCHASE could be very useful in finding novel
proteins that may even turn out to be useful drug targets. CHASE can also be
used to search such targets in genomic sequences if a particular genome could

be 6-frame translated into a database of small chunks.

An improvement in results often comes at a price. In general, the profile HMM
software packages are very sensitive and specific, but they are far slower than
other methods (Eddy 1998b). The same is true for CHASE (for a run-time
analysis see section 4.4.2) and GenCHASE. If you search a large database of
protein sequences using HMMsearch, it will take some time but the results are
useful. Similarly, some of the methods combined in CHASE and GenCHASE
such as HMMsearch, Treesearch, TfastY, and Genewise are slower than Blast-
like methods. Due to this fact the overall time taken to run CHASE and
GenCHASE is larger than Blast, in particular when searching larger databases.

The amount of time taken by CHASE and GenCHASE to complete searches in
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large databases could be reduced if a parallel version could be implemented, a

task of the near future.

Approaches combining homology search methods such the CHASE are highly
successful and the same seems true for approaches that combine homology
search and gene-finding methods such as GenCHASE. The impact of
GenCHASE remains to be seen where it can be applied to a large number of un-
annotated genomes, a task of the near future.
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7. Appendix A: Running Time Analysis For CHASE And Its Component Methods

A running time experiment was conducted to measure the time consumed by CHASE component methods and CHASE
itself in the even half of SCOP database to find the members of 10 protein families (shown in Table 6). This experiment
was replicated 3 times, as shown in the tables below, to estimate an average running time, as shown in Table 7, for all the
methods. Sum of the running time for all methods is shown in the column headed Sum while sum of running time for

CHASE component methods except HMMsearch is shown in the column headed Sum W/O HMMsearch.

Replication1
Average
Query Query No. of Sum W/O
Query HMMseach Treeseach PSIBlast PHIBlast Mast Sum CHASE
No. Name Sequences HMMsearch
Length
1 S100 27 44 9 81 3 5 18 116 107 113
2 1.36.1.2 6 71 14 42 2 5 24 87 73 63
3 1.41.1.2 6 92 16 48 3 4 19 90 74 79
4 1.23.1.1 7 103 19 55 4 4 19 101 82 85
5 1.73.1.1 6 126 27 64 5 5 42 143 116 118
6 1.128.1.1 8 127 39 116 4 5 35 199 160 153
7 1.27.1.1 10 170 29 88 4 6 63 190 161 166
8 ABCs 4 300 48 111 7 9 22 197 149 146
9 3.3.1.n05 17 300 56 223 9 27 228 543 487 463
10 Serpins 42 415 57 391 9 62 1103 1622 1565 1513
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Replication2

Query Query

No.

© 00 N O O b WODN -

-
o

Name

S100
1.36.1.2
1.41.1.2
1.23.1.1
1.73.1.1
1.128.1.1
1.27.1.1
ABCs
3.3.1.no5

Serpins

No. of

Sequences

27

© oo N o O

17
42

Average

Query

Length
44
71
92
103
126
127
170
300
300
415

HMMseach Treeseach PSIBlast PHIBlast Mast Sum

18
17
21
26
38
28
49
53
56

97
42
53
54
69
110
80
119
197
415

N oW G w b

P N
A

N
~

© oo o a0 >~ W b

29
82

26 153
20 87
16 101
20 102
45 148
37 194
57 176
23 207
221 511
1102 1669

Sum W/0
HMMsearch

144
69
84
81
122
156
148
158

458

1613

CHASE

117
67
72
82
113
152
163
168
499
1516
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Replication3

Query Query
No. Name

1 S100

2 1.36.1.2
3 1.41.1.2
4 1.23.1.1
5 1.73.1.1
6 1.128.1.1
7 1.27.1.1
8 ABCs

9 3.3.1.n05
10 Serpins

No. of

Sequences

27

o oo N OO O

17
42

Average

Query

Length
44
71
92
103
126
127
170
300
300
415

HMMseach Treeseach PSIBlast PHIBlast Mast Sum

10
12
13
18
26
20
32
37
38

70
34
45
47
57
85
70
88
176
314

© O O W W W W A N O

N O oW NNDN W

DN
o O

15
18
15
19
35
28
53
18
191
872

97
67
78
84
116
147
151
150
435
1293

Sum W/0
HMMsearch

91
57
66
71
98
121
131
118
398
1255

CHASE

87
54
56
70
95
122
130
120
400
1256
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