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Abstract 
 
Many methods have been developed to search for homologous members of a 

protein family in data bases, and the reliability of results and conclusions may be 

compromised if only one method is used, neglecting the others. This thesis 

introduces an integrative approach to homology search and shows that an 

effective combination of homology search methods reveals superior results (Alam 

et al., 2004). Two protein sequence database search methods (called CHASE 

(Comparative Homology Agreement SEarch) and GenCHASE (Genomic 

CHASE)) were developed, which serve as a major step to improve the detection 

of remote homology. CHASE combines methods that search proteins in protein 

databases. We implemented some improvements in CHASE that we now call 

CHASE2. An evaluation based on the SCOP data base reveals that, on average, 

a coverage of 55% and 49% can be obtained by CHASE2 and CHASE 

respectively, in searches for distantly related homologues (i.e. members of the 

same superfamily, but not the same family – the most difficult task), accepting 

only 10 false positives, while the individual methods obtain a coverage of 31 to 

44%. GenCHASE combines methods that search proteins in genomic sequences 

and predict gene structure. Using GenCHASE we have found several candidates 

for ABC, S100, and Cadherin proteins. Experimental verification of some of these 

candidates is underway. CHASE can be downloaded at 

http://www.mathematik.uni-bielefeld.de/~intikhab/chase-release1.0.tar.gz . 
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1 Introduction 
 

1.1. Overview and Problem Statement 
 
Sequence database search, finding homologous sequences that are related to a 

given single sequence (or a set of sequences) by common evolutionary descent, 

is one of the most important tasks in computational biology. Any improvement in 

this field is of high relevance to phylogeny and function prediction because by 

discovering how sequences are related to known proteins we can make 

predictions of their structural, functional and evolutionary features (Lindahl and 

Elofsson, 2000). A number of homology search methods are available, as 

described in section 2.4. Different methods report different results and the 

growing number of database search methods poses a major problem to wet-lab 

users, as it is difficult to decide which method should be used and which not. 

Thus, the question arises whether it may be possible to combine methods, and 

how a combination may be accomplished. 

 

In this thesis, I present two consensus protein database search methods, or, 

more precisely, combination schemes for homology search (called CHASE 

(Comparative Homology Agreement SEarch) and GenCHASE (Genomic 

CHASE)), which improve the coverage of remote homologues and give better 

performance than any of their component methods. CHASE combines methods 

that search proteins in protein databases while GenCHASE combines methods 

that search proteins in genomic sequences and predict gene structure. We 

combine only those protein database search methods in CHASE and 

GenCHASE that report confidence estimates. 

 

Chapter 2 describes the background of homology search. The PHASE4 system 

(Rehmsmeier, 2002) that evaluates homology search methods is explained as 

well. In chapter 3, I describe the CHASE scheme that combines several protein 
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database search methods. In this chapter the evaluation of CHASE and its 

component methods, using PHASE4, is also explained. Chapter 4 explains 

several improvements on the basic version of CHASE (now called CHASE2) 

such as the implementation of a modular structure and re-calculation of E-values 

that significantly improved the performance of CHASE in detecting close and 

distant homologues. An evaluation of CHASE2, CHASE1, and all of the 

component methods, using the PHASE4 system, is also explained in detail.  

 

 Chapter 5 of the thesis explains the development of GenCHASE and its 

application on the human genome in finding hitherto unknown members of 

several protein families. 

 

1.2. Publications, Posters, Application Notes, Case Studies 
 
CHASE (chapter 3 of the thesis) was published in Proceedings of the National 

Academy of Sciences in 2004 (PNAS). Previously this work appeared as a 

technical report at the FSPM. This work was also presented as posters at ECCB 

2002 and RECOMB 2003. Improvements on CHASE (chapter 4) will soon be 

submitted to an appropriate journal.  

 

The development of GenCHASE and its application to the human genome to find 

members of several protein families (as case studies) was presented as posters 

at ISMB/ECCB 2004 and GCB 2004. Drafts for two separate publications on 

GenCHASE (one explaining its development and elucidation of ABC transporters 

in the human genome, the other explaining its application on the human genome 

in finding members of protein families such as S100s and Cadherins) will soon be 

submitted to appropriate journals. 
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2. Background --Concepts in Protein Homology Search 

 

2.1. DNA and Proteins 

 

All living things are based on information written in the universal language of 

DNA (DeoxyriboNucleic Acid). A nucleotide is a subunit of DNA consisting of a 

nitrogenous base (adenine, guanine, thymine, or cytosine), a phosphate, and a 

sugar molecule. DNA attains its double helical structure due to the hydrogen 

bonding between purine (adenine or guanine) and pyrimidine (thymine, or 

cytosine) bases, where adenine bonds with thymine, and guanine with cytosine 

(Watson and Crick, 1953). A gene is a sequence of bases, usually located at a 

specific position on a chromosome in a cell's nucleus. During transcription, 

nuclear genes render a messenger called “messenger RNA” that travels to the 

cytoplasm of the cell and gets translated into a specific protein by assembling a 

polypeptide chain of amino acids according to its code of nucleotides, where 

three nucleotides (also known as a triplet) encode one amino acid. There are 20 

standard amino acids. Any protein can be represented as a sequence of amino 

acids, varying in length from around 50 to over 5000. Proteins are of scientific 

interest because they perform many of the tasks that a cell needs to carry out at 

the molecular level. And many diseases can be traced back to malfunctioning 

proteins.  

 

Mutation, selection and recombination are the basis of evolution. Organisms pass 

on their genes from one generation to another; this requires the replication 

(identical duplication) of DNA, which is made possible by the unambiguous 

association of adenine with thymine, and guanine with cytosine. This replication 

of DNA can be erroneous, for example it may cause substitutions. Such  

mutations (that are fixed in the population) can be the change of one nucleotide 

to another. Deletion or insertion of nucleotide(s) is also possible. There could 

also be changes of more global nature such as meiotic recombination, 

transpositions or reversals of segments of DNA. Some of the changes remain 
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less significant as they do not change the function of a gene product while others 

result in the loss of its function (Rehmsmeier, 2002).  

 

To understand the molecular machinery of the cell it is important to understand 

the meaning, or function, of each protein encoded in the genome. Let us mention 

three different means for inferring or predicting the function of a protein. It can be 

inferred directly through wet-lab experiments, or indirectly by elucidating and 

investigating the three-dimensional structure of the protein. Another way to 

predict the function of a protein is to find one or more homologous (see below) 

proteins through sequence similarity. If the function of such homologues is 

already known it provides hints to determine the function of the protein in 

question. One goal of sequence analysis is to make inferences about the 

structure and function of a protein based on its primary amino acid sequence. 

 

2.2. Sequence Homology, Similarity, and Alignment 
 

Sequence homology and similarity are basic concepts of sequence analysis. 

Proteins that share a common evolutionary ancestor are said to be homologous. 

A set of homologous proteins, all of which descended from a common ancestor, 

is called a protein (sub)family. Because the overall three-dimensional structure, 

or fold, of a protein remains fairly constant over evolutionary time, various 

members of a protein family typically share a common fold. This similarity of fold 

implies a similarity of function, with the degree of functional similarity depending 

upon the degree of evolutionary divergence that has occurred within the family. 

Unfortunately, the only way to conclusively prove that two sequences are 

homologous would be to trace their descent from a common ancestral sequence 

(Grundy 1998b). In practice, this common ancestor is not available. Nevertheless 

homology can be deduced from similarity with a restricted amount of certainty 

that, however, increases with the degree of similarity. Sequence similarity can be 

investigated, detected, and quantified. Protein homology inference is a core 
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problem and one goal in sequence analysis is the deduction of homology from 

similarity. 

 

A)   

B)  

 

Figure 1. Standard scoring (or substitution) matrices:  
A) PAM250, B) BLOSUM62. PAM (percent accepted mutation) and BLOSUM 

(blocks substitution matrix) are matrices that define scores for each of the 

possible amino acid substitutions. The PAM250 matrix is appropriate for 

searching for sequences that have strongly diverged (250 PAM means 250 

mutations per 100 amino acids of sequence). The BLOSUM62 matrix is 

calculated from gap-free protein sequence alignments of sequences that are 
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more than 62% identical. BLOSUM62 is best for detecting the majority of weak 

protein similarities. 

 

 

The concept of sequence similarity usually implies a similarity score - a statement 

of quantitatively how similar we judge two sequences to be. For comparative 

sequence analysis, we first need to compile the similarity scores that we give to 

different amino-acid pairs into a matrix; this is frequently called a scoring matrix. 

In other words, a scoring matrix is a two-dimensional matrix that contains all 

possible pair-wise amino acid scores. Scoring matrices are evolution in a 

nutshell. In the context of sequence comparison, scoring matrices are also called 

substitution matrices because the scores represent relative rates of evolutionary 

substitutions (Korf et al., 2003). Well-known substitution matrices are for example 

Dayhoff's Percent Accepted Mutations 250 or PAM250 (Dayhoff et al., 1978) or 

BLOcks SUbstitution Matrix 62 or BLOSUM62 (Henikoff and Henikoff, 1991), see 

Figure 1.  

 

If we are investigating a new sequence, then our first task is to find out whether it 

shares similarities with other protein sequences that are known. If we render 

each amino acid of a protein sequence (the query sequence), position-by-

position, comparable to at most one amino acid of another protein sequence (the 

target sequence), considering a scoring matrix, the procedure is called alignment 

(or more precisely an alignment trace). Comparing just two sequences is known 

as pairwise alignment, as shown in Figure 2, while comparing more than two 

sequences is called multiple sequence alignment, as shown in Figure 3. 

Nowadays various heuristic algorithms are available for multiple sequence 

alignment. Some of the well-known algorithms among many are ClustalW 

(Higgins, 1994), Dialign (Morgenstern, 1999) and Mafft (Katoh et al., 2002). An 

example of multiple sequence alignment, generated using ClustalW, is shown in 

Figure 3. When scanning a database of target sequences the query sequence is 
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heuristically compared, or aligned pairwise, with each sequence present in the 

database. 

 

 
 

Figure 2. An example Pairwise alignment  
A part of a pairwise alignment is shown. The middle row shows the conservation 

of amino acids for a particular column. The “:” symbol means an amino acid is 

identical in both sequences, “.” means that a similar amino acid is aligned and the 

“-“ means the gap character. 

 

 
Figure 3. An example Multiple Alignment  
A part of an alignment, generated using ClustalW, is shown. The last row shows 

the conservation of amino acids for a particular column. The “*” symbol means an 

amino acid is identical in all sequences, “:”means that the amino acids are 

strongly conserved, and "." means that the amino acids are weakly conserved. 

Note the gap towards the end of the forth sequence. 

 

 

2.3. Sequence Databases  
 

Given the growing number of sequenced genomes, along with the completion of 

the human genome project, the amount of accumulated DNA sequence data 

keeps growing at an accelerated rate. There are about 37,893,844,733 bases in 
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32,549,400 sequence records as of February 2004 at GenBank, an annotated 

collection of all publicly available DNA sequences (Benson et al., 2004). The 

SWISS-PROT protein knowledgebase (Boeckmann et al., 2003), on the other 

hand, connects amino acid sequences with the current knowledge in the life 

sciences. It is the leading universal curated protein sequence database. SWISS-

PROT Release version 43.1 as of 13-Apr-2004 contains 148516 entries. TrEMBL 

(Translation from EMBL) is another database that consists of computer-

annotated entries derived from the translation of all coding sequences in the 

EMBL/ GenBank nucleotide sequence database that are not yet included in 

Swiss-Prot. TrEMBL Release version 26.1 as of 13-Apr-2004 contains 1067463 

entries. (For a review on protein sequence databases see Apweiler et. al., 2004).  

 

More specialized are the protein signature databases that describe structures of 

specific amino acids typical for a certain protein family. These databases are 

based on several different methods that evolved with the need for efficient 

automatic methods of protein sequence classification and characterisation. 

Recently, the major signature databases such as PROSITE (Falquet et al., 2002), 

PRINTS (Attwood et al., 2002), Pfam (Bateman et al., 2002), and ProDom 

(Corpet et al., 2000) formed a Consortium and agreed to integrate their data into 

a new database that became known as InterPro (Apweiler et al., 2001). 

Subsequently SMART (Letunic et al., 2002) and TIGRFAMs (Haft et al., 2001) 

have joined the Consortium. The Structural Classification of Proteins (SCOP) 

database (Andreeva et al., 2004) is another specialized database built on 

comprehensive ordering of all proteins of known structure, according to their 

evolutionary and structural relationships. Protein domains in SCOP are 

hierarchically classified into families, superfamilies, folds, and classes. The 

accumulation of sequence and structural data allows more rigorous analysis and 

provides important information for understanding the protein world and its 

evolutionary repertoire. 
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2.4. Sequence Database Searching 

 

In bioinformatics we apply information technology systems and strategies to 

store, organize and analyze the vast amount of biological data. This data is 

available on the one hand in the form of sequence databases of nucleic acids 

(the information carrier) and on the other hand it is available as sequence and 

structure databases of proteins (the building blocks of cells and organisms). 

Aside from maintaining the large databases, mining useful information from these 

is also very important. It is the search tools that integrate the user and the 

databases. 

 
Every pairwise comparison yields a raw score of a heuristic alignment, where 

large scores usually indicate higher degree of similarity. The discovery of a 

statistically significant similarity (see section 2.5) between two proteins is 

frequently used, therefore, to justify inferring homology and a common functional 

role for the two proteins (Liao et al., 2002). 

 
Sequence-homology search algorithms are important computational tools in 

molecular biology. Lots of efficient algorithms have been developed for sequence 

database searching. These algorithms are sometimes computationally intensive 

and need swift and parallel computing facilities for handling multiple queries 

simultaneously. There exist at least three general classes of techniques 

employed in searches for protein homologues, namely pairwise sequence 

comparisons such as Blast, profile-based searches such as HMMsearch, and 

motif- or pattern- based analyses such as PHI-Blast (see Altschul et al., 1990, 

Bork & Gibson 1996, Eddy 1998, Grundy 1998, Zhang et al., 1998). A detailed 

description of five search techniques, including PHI-Blast and HMMsearch, is 

given in section 2.4.4. 
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2.4.1. Pairwise Sequence Comparison 

 
In a pairwise search, a query sequence is compared to a database sequence, 

yielding a confidence estimate (see section 2.5) that is supposed to indicate the 

chance of finding a comparably similar sequence in a database of random 

sequences, of the same size. The comparison is done for every sequence in the 

database, and the sequences with highest confidence (“the hits”) are reported. 

The most popular pairwise-search tool so far is Blast (Basic Local Alignment 

Search Tool) (Altschul et al., 1990). FASTA (Pearson, 1990) is another example 

of a pairwise database search tool. 

 

2.4.2. Profile-based Sequence Comparison 

For most pairwise alignment programs, the twilight zone of very uncertain 

homology inference falls between 20-25% sequence identity (Chung and 

Subbaih, 1996). Additional information is needed in order to discover even more 

remote homologues to push back the twilight zone. Individual members might be 

missed by pairwise search analysis, in a diverse family of proteins, if they have 

very low pairwise similarity (Grundy 1998b). However, using a representative set 

of sequences from the family can uncover such missed relationships (Altschul, 

1997).  

 

Simple profile searches like PSI-Blast make use of position-specific scoring 

matrices based on a set of sequences and are usually more sensitive than 

pairwise comparisons. The introduction of Hidden Markov Models (HMMs) 

appears to provide a firmer statistical basis for profile search. The majority of 

currently available profile tools use HMMs, for example the HMMER package 

(Eddy, 1996). 
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2.4.3. Motif/Pattern-based Sequence Comparison 

 

Kinship between protein sequences can also lead to (and, thus, be recognized 

by) the occurrence of particular amino-acid patterns (also known as motifs, 

signatures, or fingerprints) that were conserved throughout the evolution of the 

protein family in question and are believed to correlate with specific structural 

features and function. Motif analysis, therefore, can also be used for identifying 

new members of a protein family (Bairoch et al., 1997, Hudak et al., 1999, 

Jonassen et al., 1995). Motifs are the backbone of homology-search methods 

such as PHI-Blast (Zhang et al., 1998). In contrast to profiles, motifs are usually 

short, they include a short stretch of very specific amino acids deemed relevant 

for function, and they are denoted by specific regular expressions (Falquet et al., 

2002) designed to represent a family-specific pattern. 

 

2.4.4. Sequence-based Homology Search Methods: 5 Examples 
 

The ultimate task of all homology search methods is the same, namely, to identify 

related sequences from a database, given a single or a set of sequences. 

However, they differ in the technique they use to accomplish this task. As 

described, three main techniques on the basis of which homology search 

methods can be classified are a) pairwise sequence comparisons, b) profile 

based sequence comparison, and c) Motif/pattern based sequence comparisons. 

Among many available homology search methods, we will combine only those 

five methods known to use a collection of sequences as search input and to 

report a confidence estimate, such as an E-value, for each hit. The first two 

methods perform profile-based searches by using a Hidden Markov Model 

(HMM). PSI-Blast and PHI-Blast are profile-based and pattern-based, 

respectively. MAST is also pattern-based.  
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o HMMsearch (Eddy, 1998) tries to align a Hidden Markov Model (HMM) 

with every database sequence and reports the matches. Methods such as 

hmmbuild (Eddy, 1998) can turn a multiple sequence alignment into the 

necessary HMM. Here, a carefully defined nonredundant set of sequences 

that belong to the protein family in question results in a better HMM and 

ultimately better detection of remote homologues. Because sequence 

families preferentially conserve certain critical residues and motifs, and 

this information can be incorporated accurately into an HMM, HMMs can 

often allow very sensitive database searches to be done (Eddy 1998b). 

HMMs generated using hmmbuild are calibrated using hmmcalibrate that 

automatically estimates some parameters needed for calculating accurate 

E-values by HMMsearch in database searches (Eddy 1998b). The run-

time of HMMsearch is approximately proportional to the product of the 

lengths of the query sequence and the database searched (see Eddy, 

1998). 

 

o Treesearch (Rehmsmeier & Vingron, 2001) requires a multiple alignment 

of the query sequences and a phylogenetic tree based on this alignment, 

in addition to an HMM. Treesearch then compares the HMM with the 

database sequences one by one, as HMMsearch does, and temporarily 

inserts the database sequence into the given phylogenetic tree, adding a 

new edge to the existing tree. Homology between the given family of 

proteins and this sequence is then judged from the length of this edge (the 

tree augmentation). Treesearch is based on phylogenetic trees and it 

shows that phylogenetic information improves the detection of distant 

homologies. Treesearch runs, under certain assumptions, proportional to 

the product of the lengths of the query sequence, of the HMM, and of the 

database searched, see (Rehmsmeier & Vingron, 2001). 
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o PSI-Blast (Altschul et al., 1997) can be started using a profile, read off 

from the multiple sequence alignment of the input sequences. Usually, 

PSI-Blast is run iteratively, each new run being based on the output of the 

previous one, though we will use only one iteration step of this algorithm. 

The PSI-BLAST program runs at approximately the same speed per 

iteration as gapped BLAST, that is proportional to the product of the 

lengths of the query sequence and the database searched, but in many 

cases it is much more sensitive to weak but biologically relevant sequence 

similarities (Altschul et al., 1997). However, much care should be taken 

when selecting the set of sequences to be given to PSI-Blast before the 

iteration step, because one unrelated sequence may pollute the search 

profile and result in irrelevant hits with significant E-values (Eddy 1998b).  

 

o For PHI-Blast (Zhang et al., 1998), that combines matching of regular 

expressions with local alignments surrounding the match, we need a motif 

in the form of a "regular expression" (Falquet et al., 2002) designed to 

represent a family-specific pattern. An example pattern for Serpins, 

extracted from the PROSITE (Falquet et al., 2002) database is shown 

below: 

 
(LIVMFY)-x-(LIVMFYAC)-(DNQ)-(RKHQS)-(PST)-F-(LIVMFY)-(LIVMFYC)-x-(LIVMFAH) 

 

It says that any one of ‘LIVMFY’ amino acids is allowed at position 1. The 

dash “-“ character coming next means what follows is the specification of 

the amino acid at the next position. The “x” character that follows means 

any amino acid is allowed at this position, etc. 

 

Such an expression can be derived from the input sequences using 

PRATT (Jonassen, 1997). PHI-BLAST then searches a protein database 

for other instances of the input pattern, and uses those found as seeds for 

the construction of local alignments to the query sequence. The 
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distribution of PHI-BLAST alignment scores has been studied analytically 

and empirically. In many instances, the program is able to detect 

statistically significant similarity between homologous proteins that are not 

recognizably related using traditional single-pass database search 

methods (Zhang et al., 1998). Finally, following a suggestion from the 

Blast software README for improving the competitiveness of PHI-Blast, 

we will apply PSI-Blast just once, using a profile derived from the PHI-

Blast result. No information could be found on the run-time of PHI-Blast, 

except for empirical data listing run-time in seconds (Zhang et al., 1998). 

o Finally, Mast (Bailey & Gribskov, 1998) searches biological sequence 

databases for sequences that contain one or more of a group of known 

motifs. Motifs are provided in a specific format, derived using a tool called 

MEME (Multiple EM for Motif Elicitation), available with the MEME-Mast 

package. Mast compares the MEME-derived group of motifs with each of 

the sequences in the database and reports the matches. Mast considers 

each piece of evidence (for a motif match) in the form of a p-value, and 

then uses the product of these p-values as the measure of membership in 

the family. For calibration, it uses an algorithm (QFAST) for calculating the 

statistical distribution of the product of n independent p-values. Mast 

demonstrates that sorting sequences by this p-value effectively combines 

the information present in multiple motifs, leading to highly accurate and 

sensitive sequence homology searches (Bailey & Gribskov, 1998). No 

information could be found on the run-time of MAST. 

 

 

2.5. Significance Of Database Search Results 

Sequence database search, given a single sequence or a set of sequences as 

query to find out similar sequences, is a widely used tool in bioinformatics. 

Sequence homology search tools report a list of matched sequences or hits that 

are aligned with the query either locally (in case of pairwise methods) or semi-

globally (in case of profile based methods). Each hit is assigned a numerical 
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score and only the significant hits are reported that give a score greater than 

some threshold (Pagni et al., 2001). The value of such a numerical score is 

usually based on an alignment score.  

 

2.5.1. Alignment Score or Raw Score 

 

Sequence homology search algorithms usually are heuristics for finding the 

highest-scoring alignment of segments from the two sequences being compared. 

A typical alignment score (also called raw score) is determined either by using a 

substitution matrix such as BLOSUM50 or PAM250 --, and if gaps are allowed, 

the gap opening or gap extension penalties, -- or by a position specific scoring 

matrix. More precisely, an alignment score is calculated by summing up the 

substitution score, defined for each aligned pair of letters, and gap scores for 

each run of letters in one segment aligned with gap characters inserted into the 

other (Altschul et al., 2001). A specific type of normalized alignment score is 

called the bit score.  

 

2.5.2. Expect (E)-value 

 

The result of a database search can be classified into true and false positive hits. 

The hits related to the query sequence(s) are called true positives and others 

(where the observed similarity is attributable to chance) are the false positives 

(ones that have not been found are the negatives). It is important to know that 

only biological arguments can let one distinguish if a sequence can be regarded 

as a true or false positive, though in terms of computational sequence analysis, a 

statistical analysis based on sound principles can also help in distinguishing the 

true from the false positives (Pagni et al., 2001). The E-value is the most 

frequently used such statistical estimate to represent the significance of database 

search results. In the simplest pairwise case of standard Blast searches, given a 

normalized pairwise-comparison score S, the E-value estimates the expected 

number of distinct local matches with normalized score at least S in an equally 
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large database of random sequences (see (Altschul et al., 1997)). This concept 

can be generalized to other search methods, with different degrees of 

mathematical rigor. 

 

2.6. Evaluating Database Search Methods 

 
There exist many methods that search databases to find out homologous 

members of a protein family. An evaluation of such methods is necessary in 

order to figure out their performance in comparison to each other. Usually the 

evaluation of homology search methods is done in four steps (Rehmsmeier 

2002b). As a first step, a sequence database of known relationships is divided 

into the training and test set of sequences where each test set is associated with 

a training set of homologous sequences. Database search methods are 

executed, given the training set of sequences, as a second step. The more test 

sequences (i.e. homologs of the training sequences) are found, the better a 

search method performs. In the third step in evaluating the methods, their result 

reports are read to split the scores into ones for homologues and ones for non-

homologues. A particular search method is designated better if it assigns better 

scores/E-values to homologs than to non-homologs.  In the final step, further 

statistical analysis based on the scores for homologues and non-homologues can 

be shown in tables or figures in a variety of ways. One such system that 

evaluates the performance of homology search methods is Phase4 (Rehmsmeier 

2002b), where all above-mentioned steps are automated. 

 

2.6.1. Phase4 

 

Phase4 is a system for the automatic evaluation of database search methods. It 

offers the logical structure of the framework in which evaluations are usually 

accomplished. Automatically, a benchmark (e.g. SCOP (Murzin et al., 1995)) 

database is split into test and training sets, methods are executed, their 

performances evaluated and presented in selected tables and diagrams 
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(Rehmsmeier 2002b). The performance of a method is evaluated by its ability to 

find a test set of sequences in a target database, using a training set of 

sequences for “learning” e.g. for calculating an HMM. To construct test and 

training sets, Phase4 relies on target databases like SCOP that classify proteins 

according to membership in families (of closely related sequences) and in 

superfamilies (of not so closely related sequences). It should be noted that 

Phase4 does not claim to offer its own or any new way to evaluate the homology 

search methods but it is an interface that offers the usual evaluations in an 

automatic way. Phase4 has already been used to evaluate the "Jumping 

Alignment" method (Spang et al., 2002). 

 

2.6.2. Phase4 Evaluation Scenarios 

 
In Phase4, an evaluation scenario is defined by specifying a training and a test 

set of sequences in the target database. For example, the scenario “Distant 

Family One Model” is used to evaluate a homology search method for its ability 

to report distant relationships in protein superfamilies by splitting off one family 

from a given superfamily to provide the test sequences, and keeping the rest of 

the superfamily as training sequences. Such a test is executed, for each family in 

turn, for every superfamily (see Table 1 and Figure 4 for commonly used 

scenarios, and (Rehmsmeier 2002b) for more details). As noted, the more test 

sequences (i.e. homologs of the training sequences) are found, the better a 

search method performs.   
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Table 1.  Evaluation scenarios defined by Phase4, given a sequence 

database that is organized into families and superfamilies*. 

Scenario Description 
“Distant relationship” 

(Distant Family One Model 

(DFOM)) 

From a superfamily, each family in turn is chosen to provide 

the test sequences. The remaining families within that 

superfamily provide the training sequences. 

“Close relationship”  

(Family Halves One Model 

(FHvOM)) 

For each superfamily, half of the sequences of each of its 

families are chosen as training, the remaining ones as test 

sequences.  

“Very close relationship” 

(Family Half One Model 

(FHfOM)) 

For each superfamily: For each family, half of its sequences 

are chosen as test, the remaining ones as training 

sequences. The sequences of the surrounding superfamily 

are ignored in the evaluation. 

*Note that training sequences are always ignored in the evaluation, and that the division 

into test and training sequences as described above is performed for each superfamily in 

turn. For the last model, average performance is calculated over an additional inner loop 

that considers each family in turn. 
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Figure 4. Three Evaluation Scenarios are visualized: A) Distant Relationships, 

B) Close Relationships, and C) Very Close Relationships. Big green circles 

represent a SCOP superfamily, blue (parts of) circles represent the test set of 

sequences to be found by a method using the training set of sequences which 

are represented as white (parts of) circles (See table1 for definitions of evaluation 

scenarios). Numbering of circles shows that, for example in case of A) “1” is the 

first test protein family while “2” and “3” are used for training. In the second round 

“2” will be the test protein family while the others are used for training, and so on.  

 
 

2.6.3. Phase4 Performance Plots 

 
To evaluate the performance of any method numerically, Phase4 offers 

evaluators. These make use of the lists of sequences found that are ranked 

according to a confidence estimate, e.g. an E-value (as shown in Table 2), or 

according to a score. (E-values are reported by each of the search methods we 

want to combine, and our combination scheme will report a combined E-value.) 
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We now need to formalize our statement “The more test sequences (i.e. 

homologs of the training sequences) are found, the better a search method 

performs”. We already noted the following variant: “A particular search method is 

designated better if it assigns better scores/E-values to homologs than to non-

homologs”. Accordingly, the “coverage versus false positive counts” evaluator, 

provided by Phase4, does the desired formalization. For a given test, this 

evaluator compares the “good” and the “bad” guys as follows: It calculates the 

percentage P(k) of true positives (relative to the set of all true positives in the 

database) with an E-value smaller than or equal to that threshold value for which 

exactly k false positives are found, thus rendering the percentage coverage P as 

a function P=P(k) of the absolute number k of misclassifications considered 

acceptable. Finally, results are averaged over all tests executed, They are then 

presented, for example, as a coverage versus false positive counts plot shown in 

Figure 5. 

 

Figure 5. Coverage vs. False Positives Count Plot, an Evaluation Plot For 
Sequence Database Search Methods Produced Using PHASE4 System. 
A plot showing average percent coverages of true positives, accepting 0 to 200 

false positives, obtained by Treesearch, PSIBlast, PHI-Blast, Mast, and 

HMMsearch. Generally speaking, the faster a curve goes up, the better. Thus, 

HMMsearch and Treesearch perform best. For example, considering 50 false 
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positives acceptable, HMMsearch and Treesearch achieve true positives average 

coverage of 27%, PHI-Blast achieves 24%, PSI-Blast achieves 21%, and Mast 

17%. This evaluation was performed under the distant relationship scenario (for 

more detail on evaluation scenarios see Table 1) for all protein superfamilies in 

one half of the SCOP database.  

 

Table 2 A list of hits from different methods, sorted on the basis of HMMsearch 

E-values. The search was started with a set of sequences from superfamily 3.3.1 

(SCOP version 1.53), featuring the FAD/NAD(P)-binding domain. 

 

No 2 Description HMMsearch Treesearch PSIBlast PHIBlast Mast 

1 3.3.1.2.2 Cholesterol oxidase  1E-113 2E-22 7E-65 1E-154 2E-86 
2 3.3.1.2.7 Glucose oxidase 2E-137 2E-22 2E-82 1E-19 2E-95 
3 3.3.1.2.8 Glucose oxidase  2E-136 2E-22 3E-84 6E-12 5E-94 
4 3.3.1.2.1Cholesterol oxidase 5E-106 2E-22 3E-65 1E-146 2E-91 
5 3.3.1.2.9 Polyamine oxidase 2E-100 1E-19 3E-81 3 0.00009 
6 3.3.1.4.2 Fumarate reductase  5E-98 1E-22 2E-56 5E-67 1E-61 
7 3.3.1.4.3 Fumarate reductase 1E-97 1E-22 2E-61 4E-16 4E-57 
8 3.3.1.4.4 Flavocytochrome 5E-95 2E-22 7E-56 0.000000003 1E-64 
9 3.3.1.4.5 Flavocytochrome 2E-94 2E-22 1E-53 0.0001 5E-62 
10 3.3.1.4.1 L-aspartate oxidase 2E-93 2E-22 8E-57 2E-61 5E-53 
11 3.3.1.3.1 Guanine nucleoase 7E-88 5E-21 2E-71 4 0.12 
12 3.3.1.2.3 p-Hydroxybenzonate 1E-69 2E-20 5E-46 0.2 0.0007 
13 3.3.1.2.5 Sarcosine oxidase 1E-66 3E-21 3E-46 0.008 0.0002 
14 3.3.1.2.6 Phenol hydroxylase 5E-45 4E-19 1E-33 0.0005 0.00000003
15 3.3.1.1.3 Adrenodoxin reductas  8E-23 7E-20 1E-18 1000 3.5 
16 3.3.1.1.2 Trimethylamine dehyd  0.003 2E-16 0.0000009 10 1000 
17 3.32.1.13.8 HslU {Bacteria  4 18 1000 1000 280 
18 3.3.1.5.8 Dihydrolipoamide 5.9 22 0.3 0.8 0.01 
19 3.3.1.5.8 Dihydrolipoamide 19 15 0.4 0.9 0.0003 
20 3.3.1.5.10 Dihydrolipoamide 51 34 1000 1000 0.01 
21 5.8.1.3.1 T7 RNA polymerase  77 23 50 1000 90 
22 1.111.5.1.1 70 KDa soluble lytic  90 1000 6 300 1000 
23 3.3.1.2.6 Phenol hydroxylase  110 2E-16 0.002 700 96 
24 3.3.1.5.1 Glutathione reductase 110 27 8 1000 0.0002 
25 3.3.1.5.9 Dihydrolipoamide 130 22 0 3 0.12 
26 1.119.1.1.2 Fumarase Escherichia  200 700 50 20 72 
27 3.3.1.5.3 Trypanothione reductase 250 91 30 700 0.56 
28 3.68.1.1.1 Ribokinase {Escherichia  330 88 1000 9 10 
29 3.84.1.1.1 Asparaginase type II  610 1000 0.002 100 1000 
30 3.62.1.3.3 Cystathionine gamma-  650 270 3 400 1000 
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31 3.3.1.5.4 Trypanothione reductase 710 120 20 4 0.005 
32 3.3.1.5.8 Dihydrolipoamide 740 45 1000 100 0.005 
33 3.3.1.5.5 Thioredoxin reductase 920 97 7 300 7.2 
34 3.2.1.5.15 Lactate dehydrogenase  1000 1000 4 30 0.09 
35 3.4.1.2.1 D-amino acid  1000 290 20 6 0.41 
36 3.3.1.5.7 NADH peroxidase  1000 1000 3 60 0.52 
37 3.4.1.1.2 Trimethylamide 1000 440 1 1000 1.2 
38 3.3.1.5.2 Glutathione reductase 1000 480 40 9 8.2 
39 3.3.1.5.6 Thioredoxin reductase 1000 1000 200 1000 0.03 
40 3.2.1.2.1 Uridine diphosphogala  1000 5 200 30 1000 
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3. CHASE (Comparative Homology-Agreement SEarch) 

 
3.1.1. Related Work on Methods Combination 

 

The combination of methods is an advanced form of a meta-study. Important 

medical questions are typically studied more than once, and a meta-study 

compiles and analyses the results of all relevant studies. InterPro (Apweiler et al., 

2001) and Metafam (Silverstein et al., 2001) present such compilations in protein-

family research. Combining methods directly to generate a consensus result is 

also practiced in some areas of bioinformatics. Unfortunately, combining methods 

on a large scale is complicated by the fact that different programs often have 

different input requirements and output formats. Nevertheless, algorithms that 

efficiently combine different methods and standardise their input and output 

requirements can improve the accuracy of results considerably. Examples of 

such algorithms in the area of structure prediction, fold recognition, phylogenetic 

tree reconstruction and gene prediction are Jpred (Cuff et al., 1998), Pcons 

(Lundström et al., 2001), Hybrid (Huson et al., 2000) and Combiner (Allen et al., 

2004), respectively. Jpred is a simple majority-wins based consensus predictor 

for secondary structure. Pcons is a neural-network-based consensus predictor for 

fold recognition. Hybrid is a method for combining outputs of different tree 

reconstruction methods (thus producing a ``hybrid'' method), and the authors 

have shown experimentally how one such hybrid method has better performance 

than its constituent parts (Huson et al., 2000). Combiner uses the output from 

gene finders, splice site prediction programs and sequence alignments to predict 

gene models. In the following section, Jpred and Combiner are explained in more 

detail. 

 

3.1.1.1. Jpred  

 
Jpred is a system that provides a consensus secondary structure prediction. It 

accepts two input types, a family of aligned protein sequences or a single protein 
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sequence. If a single sequence is submitted, an automatic process creates a 

multiple sequence alignment, prior to prediction (Cuff & Barton, 1998). To 

automatically generate the multiple sequence alignment, if a single query 

sequence is given, the OWL (Bleasby et al., 1994) database is searched with 

BLAST (Atschul et al., 1990). This returns a number of sequences that are then 

filtered using a Smith Waterman dynamic programming implementation, 

SCANPS (Barton, 1993), and then aligned. 

 

 
 

Figure 6. An outline of Jpred 
Given a single sequence, similar sequences are extracted from a database using 

Blast, filtered using SCANPS, aligned using ClustalW, and provided as an input 

to six different structure prediction methods. At the end the results from each 

method are combined into a simple file format (java, html or postscript) along with 

a simple majority wins based consensus prediction (Clamp and Cuff, 1999). 
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Six different prediction methods (DSC (King & Sternberg, 1996), PHD (Rost & 

Sander, 1993), NNSSP (Salamov & Solovyev, 1995), PREDATOR (Frishman & 

Argos, 1997), ZPRED (Zvelebil et al., 1987), and MULPRED (Barton, 1988, 

unpublished) are then run, and the results from each method are combined into a 

simple file format along with a simple majority wins based consensus prediction. 

An outline of Jpred is shown in Figure 6.  

 

3.1.1.2. Combiner  

 
Combiner is a computational method to construct gene models by using evidence 

generated from a diverse set of sources. It takes as input a genomic sequence 

and the locations of gene predictions from ab initio gene finders, protein 

sequence alignments, expressed sequence tag and cDNA alignments, splice site 

predictions, and other evidence. Three different algorithms for combining 

evidence in the Combiner were implemented namely the simple Linear Combiner 

(LC1), the second combiner (LC2), and the Statistical Combiner (SC). LC1 uses 

a voting function to combine multiple gene prediction programs. Gene models 

predicted by any of the gene prediction programs are considered. For each 

position, each gene finder must vote for either coding or non-coding, and the 

highest-scoring combination of intervals of consecutive coding (or non-coding) 

positions of the gene is pieced together to form a gene model. Each gene finder 

is given equal weight, that is, one vote, in LC1. 

 

The second Combiner (LC2) uses a similar algorithm to LC1, but with two 

significant enhancements. First, it adds sequence alignments (both DNA and 

protein) and splice site prediction program output to the inputs. Second, it uses 

different weights for the different forms of evidence. Finally, the Statistical 

Combiner (SC) uses decision trees to correlate evidence patterns with candidate 

gene models. SC also uses the confidence scores returned by the gene finders 

themselves (when available) to combine outputs from gene finders. In other 

words, instead of a simple linear function combining all the inputs, SC builds a 
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non-linear model based on a decision tree including confidence scores. (See 

Allen et al., 2004 for more details on Combiner and Mathe et al., 2002 for a 

detailed review on gene prediction methods). 

 

 

3.1.2. Combining Sequence-based Homology-Search Methods 
 
In the version of CHASE presented, we are dealing with the following five 

homology search methods, described in section 2.4.4: HMMsearch (Eddy, 1996), 

Treesearch (Rehmsmeier & Vingron, 2001), PSI-Blast (Position-Specific Iterated 

Blast) (Altschul et al., 1997), PHI-Blast (Pattern-Hit Initiated Blast) (Zhang et al., 

1998), and Mast (Motif Alignment and Search Tool) (Bailey & Gribskov, 1998).  

 

These methods display a significant difference in their performance (see Figures 

8, 9, and 10 below). In this study, we will show that the overall performance of 

homology searches can be improved if these methods are combined 

appropriately. To date, to the best of our knowledge, there is no method available 

that produces a consensus over sequence-based homology-search methods.  

 

We developed a system called CHASE (Comparative Homology-Agreement 
SEarch) that combines the five different methods (from now on called CHASE 

component methods; described in section 2.4.4 above) as follows: First, given a 

collection of query sequences, method-specific input queries structured 

according to the specific requirements of the individual search algorithms are 

automatically derived for each of the five component algorithms. Then, after 

these have been applied using their respective input queries, we compute and 

report a “consensus hit list”. An outline of CHASE is shown in Figure 7. 
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Figure 7. An outline of CHASE 
CHASE uses input processors that transform a set of sequences into inputs for 

various homology-search methods, namely HMMsearch, Treesearch, Mast, PSI-

Blast, and PHI-Blast. CHASE executes the underlying homology-search 

methods, the results of which are combined by the CHASE scheme to get a 

consensus. 

 

 

We present a comparative evaluation of the performance of CHASE in section 

3.4. It is needless to say that the evaluation of CHASE is of course performed on 

a database that is disjoint from the database used to calibrate this tool. 
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3.1.2.1 Input Processing 
 

All of the 5 homology-search methods that we combine provide confidence 

estimates for their results. To perform their task, they require a query and a target 

database such as SWISSPROT or SCOP. The exact query format requirements, 

however, vary from method to method. We developed scripts called input 

processors (IPs) that take a collection of sequences and process these as follows 

to obtain the specific type of input for each of these homology-search methods. 

o HMMsearch IP: We use ClustalW (Higgins et al., 1994) to generate a 

multiple alignment that in turn is used by HMMbuild, available with the 

HMMER package, to build a Hidden Markov Model. We calibrate the 

required HMM using hmmcalibrate, also available as part of HMMER. 

o Treesearch IP: We use build_compound, available with Treesearch, to 

generate, as required, a sequence alignment (using ClustalW), a 

phylogenetic tree (using fitch (Felsenstein, 1998)), and an HMM (using 

HMMbuild).  

o PSI-Blast IP: We use ClustalW to align the input sequences, and format 

the alignment such that it can be used to “jumpstart” a "single run" PSI-

Blast search. A multiple alignment that is used to jumpstart PSI-Blast must 

include the query sequence as one of the sequences, but it need not be 

the first sequence. PSI-Blast further requires that the jumpstart alignment 

does not contain some of the headers and trailers that are usually present 

in ClustalW-based alignments.  

o PHI-Blast IP: We use PRATT to generate a Prosite-like pattern from given 

un-aligned sequences, and a ClustalW alignment to generate a consensus 

sequence (by relative majority rule) for starting a PHI-Blast search, 

followed by a “single run” of PSI-Blast. 

o Mast IP: We use MEME (Multiple EM for Motif Elicitation) (Bailey, 1994), 

given un-aligned sequences, to generate motifs that are used to run Mast.  
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3.2. A Scheme for Combining Homology Search Methods 
 
We describe a scheme to combine several homology search methods based on 

the numbers such as E-values that they report for every hit. As shown in Figure 

7, in our scheme for combining different homology-search methods we run them 

one after the other. Since they use various kinds of input information we provide 

this information automatically, employing input processors as described above. 

Once the searches are complete, the results of each method are parsed to 

extract specific information such as the unique sequence identifiers of the hits 

and the corresponding E-values. Tallying data for all methods, we obtain a 

preliminary list of all hits, each row containing one sequence identifier and the 

corresponding E-values reported by the different methods. Such a list was 

already presented in Table 2 (section 2.6.3).  

  

Our basic idea of combining methods works in three steps. (a) Evaluating the 

performance of CHASE component methods, (b) placing methods on a common 

scale based on E-values, (c) calculating the combined E-value (called C-value). 

 

3.2.1 Evaluating the Performance of CHASE Component 
Methods 

 

We used the Phase4 system to evaluate, only once, the individual homology-

search methods (to be combined in CHASE) to derive a weighting scheme that is 

based on their performance. Before starting the evaluation the SCOP database is 

split into two databases: the odd database, containing every second SCOP 

superfamily starting with the first one, and the even database, containing the rest. 

Among several available scenarios offered by Phase4 that define training and 

test sequences using the SCOP database as described before, we choose one 

for detecting distant, one for detecting close, and one for detecting very close 

relationship (see Table 1 on page 25 for details). To get a long list of hits an E-

value cut-off as large as EC = 1,000 was set for all individual homology-search 
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methods; sequences with a larger E-value than the cut-off are not listed. Before 

the implementation of modular structure of CHASE (described in chapter 4), we 

used only ClustalW-based alignments for alignment-based methods such as 

HMMsearch, Treesearch, PSI-Blast, and PHI-Blast. 

 

As a result of the evaluation of CHASE component methods, we got three 

performance plots i.e. coverage versus false positive count plots, one for each of 

the evaluation scenarios mentioned above. 

 
Figure 8      Figure 9 

 
Figure 10 

Figures 8, 9, 10: Coverage versus false positive counts for CHASE 

component methods as in Distant (DFOM), Close (FHvOM), and Very Close 

Relationships (FHfOM) scenarios, respectively, in the odd half of SCOP.  
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For each CHASE component method i=1, …, 5 (i.e. HMMsearch, Treesearch, 

PSI-Blast, PHI-Blast, and MAST), the average percentages Pi(k) of true positive 

coverages (from the protein super-families present in a particular evaluation 

scenario, i.e., distant, close, and very close relationship scenarios, respectively) 

are plotted on the Y-axis while accepted misclassifications (false positives) k from 

0 to 200 are plotted on the X-axis in Figure 8, 9, and 10. See section 2.6.3 for 

detailed explanations of these plots. Further, to measure the performance of 

component method i, we plot its average percent coverage for k=50 false 

positives, for each evaluation scenario mentioned above, in a histogram as 

shown in Figure 11. 

 
Figure 11. Average percent coverages permitting k=50 false positives. Data are 

based on the odd half of SCOP. 

 

 

 

3.2.1.1. Weighting Scheme Based on the Performance of 
Methods  

 

Based on the odd half of SCOP, we considered average percent coverages for 

k=50 false positives (see Figure 11) to calculate method weights W=W1, …, Wn, 

where n is the number of methods, and the weight Wi of method i is set to Pi/(P1 + 
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... Pn), the average coverage Pi divided by the total sum of the average coverages 

of all n methods so that 
1

1
n

i
i

W
=

=∑ holds, as shown in Table 3. 

Table 3. Weights for CHASE component methods (see Table 1, section 2.6.2, for 

evaluation scenarios) 

Evaluation Scenarios HMMsearch Treesearch PSI-Blast PHI-Blast Mast 

Sum of 

Total 

Coverages

       

Distant Relationships 27.1429 26.9762 21.2381 23.3095 17.5714  

Close Relationships 77.5778 73.6667 73.1333 69.4222 60.9111  

Very Close 
Relationships 

89.2791 81.2558 85.0465 82.1628 78.4884  

       

Total Coverages 193.9997 181.8987 179.4179 174.8945 156.9709 887.1818 

       

Wi=Total Coverages /  

Sum of Total 

Coverages 

0.2187 0.2050 0.2022 0.1971 0.1769 
1

1
n

i
i

W
=

=∑

 

 

3.2.1.2. Limits on The Performance Of Homology Search 
Methods   

 

We will briefly describe some possible explanations for the performance 

differences that give rise to the different method weights. We choose methods, to 

be combined in CHASE, that employ different techniques to search databases. 

HMMsearch reports matches to the Hidden Markov Model used. Treesearch 

searches the database using an HMM and in addition it utilizes phylogenetic 

information. PSI-Blast searches a database using a profile, generated from a 

multiple alignment. PHI-Blast uses a pattern or regular expression and a query 
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sequence that has this motif. Mast uses multiple motifs, generated using MEME, 

to search the database.  

 

Naturally, these different approaches have their own specific advantages/ 

disadvantages or limits influencing the coverage of possible homologs reported 

by these methods. HMMsearch and Treesearch are HMM based methods and 

generally perform better, shown in figures 8, 9, and 10. A large number of 

sequences, or more precisely a non-redundant set of as many sequences as 

possible which belong to the protein family in question, is required to build a good 

HMM (Eddy 1998b). These methods reveal better results if a good HMM is 

applied otherwise using irrelevant sequences to build an HMM adversely effects 

the performance of these methods. Similarly, an obvious problem with PSI-

BLAST is that if a unrelated chance similarity is mistakenly included in the profile 

training set, the search algorithm picks up relatives of the unrelated sequence 

rather than members of the query family (Holms, 2000). A Prosite like pattern or 

a regular expression constructed either manually or automatically, is the 

backbone of methods like PHI-Blast. A large number of sequences are required 

to build a good pattern. Weak motifs are not very sensitive and reveal a limited 

number of possible homologs. Mast is also a motif-based method and its 

performance is often worse, as shown in Figures 8, 9, and 10, since it is the only 

method that does not use the whole sequence but multiple motifs considering the 

intervening region between motifs as random (Eddy 1998b). 

 

3.2.2. Placing Methods on a Common Numerical Scale  
 

A major problem in combining confidence estimates is the variability in the size of 

the E-values estimated by different homology-search methods. We rescale E-

values to homogenize the confidence estimates in order to combine them. More 

precisely, to construct a consensus hit list from these data, we first rescale the E-

values Ei(s) obtained by the individual methods i=1, …, n, for each sequence s, to 

produce E-values Ei*(s) of comparable size. We then use the weights (as 
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described above) to obtain a weighted average E-value. These two steps are 

now described in detail.  

 

It is relatively easy to compare the scores that a particular method assigns to 

distinct data sets rather than scores assigned by different methods. To compare 

scores that are assigned by different methods, for each method i=1, …, n, and 

each sequence s in the database, we report the sequence provided its E-value 

Ei(s) is below or equal to a cut-off value EC of 1,000. Then, we choose one 

method as the reference method, on the basis of which the E-values of the other 

methods are rescaled (Yona et al., 2000). In CHASE, we use HMMsearch as our 

reference method. Next, before doing any E-value manipulation, we take the 

logarithm to the base 10 to transform the E-values for all methods. This 

transformation is necessary since E-values may be very close to zero for good 

database hits, and we must avoid rounding problems. This way, we obtain, for 

each sequence s taken into consideration and each method i=1,…, n, a number 

ei(s):=log10Ei(s) that we call the “e-value” of the sequence (with a small e), for 

conciseness. Next, we use a regression procedure such as the Ordinary Least 

Square (OLS) regression (Gujarati, 1988), yielding the slopes and the intercepts 

for HMMsearch versus Treesearch, PSI-Blast, PHI-Blast, and Mast, to rescale 

their e-values. OLS is described in section 3.2.2.1. The slope a, and the intercept 

b depend on the specific data under consideration - there is no universal data-

independent regression line for the various methods. For each sequence s we 

then put 

ePSI*(s):= min { a • ePSI(s) + b, e0 } in case ePSI(s) < e0,             (1) 

and ePSI*(s):=ePSI(s) else. 

   

For a small scaling threshold e0, the formula rescales small e-values according to 

the regression line, and keeps large e-values as they are. Keeping large e-values 

as they are may be useful, because they may be “downscaled” otherwise, 

suggesting a significance that is not there. In the rare case that rescaled e-values 

exceed the threshold, they are set to precisely this threshold in order to keep the 
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ranking as is. For larger e0, fewer e-values are kept as they are. If we set e0 = 

log10(EC) = 3, no hits are considered for which the E-value exceeds the E-value 

cut-off EC = 1000, and all values are rescaled in this case. Nevertheless, results 

improve slightly for smaller e0, as discussed later on. 

 

The same scaling procedure is applied to the e-values reported by the other 

three methods. For notational consistency, we set e*HMM(s):=eHMM(s) for our 

reference method HMMsearch. 

 

3.2.2.1. Using Ordinary Least Square (OLS) Regression to 
Rescale E-values 

 
In many problems, two or more variables are inherently related, and it is 

necessary to explore the nature of this relationship. Regression analysis is a 

statistical technique for modelling and investigation of the relationship between 

two or more variables. The principal objective in a simple regression analysis is 

to establish a quantitative relationship (in the form of an equation) between two 

variables. Simple linear regression is the modelling of n pairs of data (Xi, Yi) in a 

linear relationship, where i=1, …,n. The relationship between Xi and Yi is 

represented in the form Yi = aXi + b. The estimates of regression coefficients i.e. 

the slope ‘a’ and the intercept ‘b’ should result in a line that is a “best fit” to the 

data. Ordinary Least Squares or OLS, proposed by German scientist Karl Gauss, 

is a method that estimates the regression coefficients such that the sum of 

squared errors is minimized (For the derivation of linear regression equations see 

Kirchner, 2001). 
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Table 4. Example Data showing e-values for 22 sequences reported by PSI-Blast 

and HMMsearch. The column SeqID represent the sequence identifiers while X 

(PSIBlast) and Y (HMMsearch) present e-values reported by PSI-Blast and 

HMMsearch, respectively. E-values are transformed using log10 and we call 

these ‘e-values’ (i.e. with a small e). X**2 is the square of PSI-Blast e-values and 

X*Y is the product of PSIBlast and HMMsearch e-values.  

 

No SeqID X 
(PSIBlast)

Y 
(HMMsearch) X**2 X*Y 

1 d1b4va1 -64.39794 -113.221849 4147.095 7291.254 
2 d1coy_1 -64.69897 -105.522879 4185.957 6827.222 
3 d1cf3a1 -82 -137 6724 11234 
4 d1gpea1 -83.69897 -136 7005.518 11383.06 
5 d1fuma2 -56 -97.522879 3136 5461.281 
6 d1chua2 -56.30103 -93 3169.806 5235.996 
7 d1qlaa2 -61 -97.221849 3721 5930.533 
8 d1qjda2 -55.39794 -94.522879 3068.932 5236.373 
9 d1d4ca2 -53.09691 -94 2819.282 4991.11 
10 d1b37a1 -80.69897 -100.045757 6512.324 8073.59 
11 d1gnd_1 -71 -87.39794 5041 6205.254 
12 d1b3ma1 -45.69897 -66.221849 2088.396 3026.27 
13 d1pbe_1 -45.52288 -69.221849 2072.332 3151.178 
14 d1foha1 -33.09691 -44.522879 1095.405 1473.57 
15 d1cjca1 -18.09691 -22.30103 327.4982 403.5797 
16 d1djna2 -6.30103 -2.69897 39.70298 17.00629 
17 d1foha2 -0.69897 1.78533 0.488559 -1.24789 
18 d3lada1 -1 0.518514 1 -0.51851 
19 d1lpfa1 -3 1.041393 9 -3.12418 
20 d3grs_1 0.69897 1.799341 0.488559 1.257685 
21 d1ebda1 -0.221849 1.857332 0.049217 -0.41205 
22 d1aoga1 1 2.60206 1 2.60206 
      
Sum  -880.2293 -1350.81863955166.27 85939.83 
Sum/n -40.01042 -61.40084723  

 

 

Given the sample e-values for sequences s where s=1, …, n (n=22) for PSI-Blast 

(Xs= ePSI(s)) and for HMMsearch (Ys= eHMM(s))  i.e )},(,),,{( 11 nn YXYX � , as shown 

in Table 4, Ordinary Least Square (OLS) estimates the slope a and the intercept 
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b by the following steps, such that the sum of squared errors 

∑
=

•
n

s 1

2
PSI(s)(s)HMM b)-e a-(e  is minimized and we get a straight regression line: 

 

1. Using data from the Table 4, calculate mean: -40.01042
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3. Calculate slope a and intercept b as:  

 

1.598813

19947.929/31893.008

=

==
XX

XY

SS
SSa

   

 

2.5683354
)(-40.01042 * (1.598813) - 23-61.400847

=
=−= XbYb   
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If we plot the regression line for the e-values on the log-log scale from data used 

in the example above, we get a straight line as shown in Figure 12. Once such a 

relationship between variables is established, by finding out the slope and 

intercept, it is possible to predict the value of one of the variables, if the value of 

the other is known. 

 

 
Figure 12. Scatter Diagram showing a straight regression line for HMMsearch 

and PSIBlast E-values on log-log scale. This diagram was produced using the 

Demo Version 7.3.0.0 of MedCalc Software, http://www.medcalc.be. 

 

  
In the example shown above, ordinary least-squares regression applied to 

HMMsearch e-values eHMM(s) and corresponding PSI-Blast e-values ePSI(s) 

provides the slope a and the intercept b for which the sum 

∑
=

•
n

s 1

2
PSI(s)(s)HMM b)-e a-(e is minimized. Here, the sum is taken over all sequences 

s with both e-values eHMM(s) and ePSI(s) below or equal to a certain threshold e0. 
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3.2.3. Calculating Combined E-value or the C-value 
 

Once we have got the rescaled e-values e*1,…,e*n for all n methods, we calculate 

the c-value for each sequence s as the W-weighted sum: 

*

1
- ( ) : ( )

n

i i
i

c value s e s W
=

=∑ • .   (2) 

The final C-value (on the original E-value scale) is then obtained as C-value(s): = 

10 c-value(s). This yields a consensus over individual homology-search methods. 

“Missing E-values” arise if a homology search method finds a sequence not 

found by another, given the E-value cut-off EC. In the c-value formula, these are 

set to the cut-off e-value (log10 of EC). 

 

3.3. CHASE Evaluation Methodology 
 

As noted above, our tool CHASE implements the above scheme using five 

homology-search methods. Using the weights W1, …, Wn of the component search 

algorithms calculated once and for all, we compute the regression lines and the 

resulting C-values of the sequences in each database search. Treating the C-

values as E-values, we can use Phase4 again to evaluate the performance of 

CHASE and to compare its performance with that of the component algorithms. 

Clearly, the weights that are incorporated in (and thus the performance of) 

CHASE depends on the database that was used for determining these weights. 

In particular, if a component algorithm does very well on that database, it will get 

a high weight implying that it will strongly influence the outcome of the consensus 

method, making it look good on that particular database, too.  

 

To avoid this kind of circularity, we have split the SCOP database (version 1.53) 

into two separate databases: the odd database, containing every second SCOP 

superfamily starting with the first one, and the even database, containing the rest. 

We used the odd database to compute the weights, W1, …, Wn, as listed in Table 

2, and the even database to evaluate the performance of the resulting consensus 
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method and to compare this performance with that of its component algorithms, 

using again the three scenarios offered by Phase4 as described in Table 1. As 

before, we used “coverage versus false positive count” in Phase4 as a 

performance evaluator, and sorting of CHASE hits was based on the C-value. 

Sequences with a C-Value exceeding EC = 1000 are not listed. By default, 

CHASE sets the E-value cut-off EC to 1,000, and the e-value threshold used for 

rescaling e0 to 3 (=log101000) so that all values are rescaled. However, other cut-

off values can also be specified. 
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3.4. CHASE Evaluation, Results and Discussion 
 
We conducted a comparative evaluation of five homology-search methods and 

our consensus method Comparative Homology Agreement Search (CHASE). We 

used three different scenarios offered by Phase4, as listed in Table 1, to define 

distant, close, and very close relationship between SCOP database entries. If 

one considers the averaged coverage of true positives at the cost of zero false 

positives, as shown in Figure 13, and ranks the methods according to their ability 

to find distant homologous proteins, CHASE obtains a coverage of 34%, and 

HMMsearch comes next with a coverage of 28%. Then come Mast, PSI-Blast, 

Treesearch, and PHI-Blast, with coverages between 27 and 21%. It is important 

to note that we do not claim to conduct a valid comparison of these individual 

methods. Such a comparison would need to do more justice to their different 

input requirements. The comparative analysis of the individual methods, starting 

with the same training data of sequences for each, suffers from the application of 

the Input Processors (described above) by which some of the input information 

may be lost. It is also worth noting that methods that do not perform well on 

average can still give excellent results in specific instances - a remarkable fact 

that clearly needs to be investigated further. 

 

If we plot coverages of true positives at the cost of 10 false positives, 

performance of CHASE goes up, covering 47% on average in case of distant 

relationship, compared to 38% coverage by HMMsearch. Permitting 50 false 

positives, as presented in Figure 13, these numbers go up to 59% and 49%, 

respectively. 
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Fig. 13. Average coverage of CHASE and its component algorithms 

The averaged coverage of true positives permitting zero and fifty false positives 

using SCOP (even half) as the target database and evaluation scenarios 

provided by Phase4 (as described in Table 1) 

 

 

The advantage of CHASE is smaller in case of close, and very close relationship 

scenarios, but it still outperforms all component methods by a good margin. The 

“Coverage versus false positive count” plots in Figure 14, 15, and 16 for the 

various Phase4 scenarios give a more detailed picture of the coverage of true 

positives, for up to 200 false positives. 
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Figure 14.    Figure 15.  

 
Figure 16.  

 

Figures 14, 15 & 16: Coverage versus false positive counts 

This figure shows the Phase4 evaluation in the form of “coverage versus false 

positive counts” for CHASE as well as for the five component algorithms, using 

three different scenarios (as described in Table 1) offered in Phase4. Averaging 

is done over all SCOP families included in the even half of the database. (The 

odd half was used to determine the weights used by the CHASE combination 

scheme.) It is notable that CHASE achieves a remarkable coverage, better than 

any one of its component methods, of 47% for just 10 false positives as shown in 

Figure 14. CHASE exploits the fact that most of the true positives above the 

twilight zone are, usually, reported by all methods but within the twilight zone 

these are not reported by all methods.  CHASE gives a higher weight to hits 

which are reported by a highly weighted method. A lower E-value assigned by 



 51

any CHASE component method further places such a hit at a higher ranking in 

the list. 

 
Figure 17. Sample CHASE result 
CHASE result for superfamily 3.3.1 (SCOP version 1.53), featuring the 

FAD/NAD(P)-binding domain are shown. The hits are sorted by C-value. 

Rescaled E-values (as calculated by the scaling formula (2) in the text, but 
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displayed in terms of the original E-value scale not taking the logarithm) are 

presented in the 5 columns on the right. The first 24 CHASE hits are all true 

positives. The false positives (numbers 25, 28-30, 33-41) and the respective 

minima of their E-values in each column are marked in red. E-values in the first 

24 rows and the last 5 columns that are larger (and, hence, "worse") than these 

respective minima are marked in orange. They indicate where forming consensus 

C-values was more successful than the corresponding single method. (Consider, 

for example, the HMMsearch E-values presented in the first of the last 5 

columns. The minimum of these values taken over all false positives is 43, and 

the values in rows 17, 20, 21, 22, and 24 are larger than 43 and, hence, marked 

in orange.) Apparently, each single method addresses different aspects of 

(super) family membership, and a strong showing for some method(s), not 

counterbalanced by very poor showings for others, seems to be a good 

membership indication that is (independently of which single method is involved) 

picked up by our consensus approach. 

 

 

If the e-value threshold used for rescaling is set to -1 instead of 3, not all values 

are rescaled anymore in the c-value formula (2).  Remarkably, CHASE appears 

to perform even slightly better in this case, for example, it obtains 36% coverage 

of distant relatives at a cost of zero false positives (+ 2%), 50% permitting 10 

false positives (+ 1%) and 60% coverage permitting 50 false positives (+ 1%). 

 

The results of running CHASE for the SCOP superfamily featuring the FAD/NAD 

(P)-binding domain are shown in Figure 17. C-values along with rescaled E-

values from different methods are printed. The names of the sequences from the 

given family are printed in black (in the “description” column), the others (the 

names of the false positives) in red. We consider a family member to be 

classified correctly by method i if its rescaled E-value is smaller than the rescaled 

E-value of the first false positive. For the false positives listed by method i, the 

minimum rescaled E-value is printed in red. Rescaled E-values of family 
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members that would not be classified correctly using method i alone are marked 

in orange. They are larger than the smallest rescaled E-value of the false 

positives for method i (printed in red) so that the false positives with the smallest 

rescaled E-Value would precede the family members in the ranking based on 

method i. In the twilight zone of rows 15 to 24, CHASE performs well, triggered 

by the rescaled E-values marked in green that indicate success for at least one 

method. Inspecting the consensus hit lists for all protein families under 

consideration in the "Distant relationship" scenario, we noted that each method 

detects specific true positives that would not be detected if we had restricted 

ourselves to combining the other four. 
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4. Improvements on CHASE 
 

CHASE performed very well in finding the remote homologs of protein families, 

as shown in figure 14, 15, and 16. However, only one alignment scheme i.e. 

ClustalW was used wherever required. To further improve CHASE in terms of its 

performance on the one hand and its generality (for example to accommodate 

new homology search method(s) or alignment scheme(s)) on the other hand, we 

made some enhancements resulting in CHASE2. These enhancements, 

discussed in detail in the following sections, include the implementation of a 

modular structure, use of optimum input processors (based on testing the effect 

of different alignment schemes) and re-calculation of E-values, an approach that 

is theoretically more sound than the regression scheme but not applicable to all 

component methods. We re-evaluated CHASE after the implementation of these 

enhancements and got a better performance than before. 

 

4.1. Modular Structure of CHASE 
 

Separate module files, namely IPs.pm, Run_Parse.pm and DBreader.pm were 

written for CHASE2. In addition, a driver script was written that reads an XML 

(eXtensible Mark-up Language) (Achard et al., 2001) configuration file and calls 

these modules to carry out one complete CHASE run. In the following section all 

these are discussed in detail. 

 

4.1.1. CHASE Modules 
o IPs.pm 
 

The input set of sequences is first validated by the CHASE driver script and then 

passed on to the Input Processors (IPs.pm) module. The Input Processors 

module, as shown in Figure 18, transforms the given set of sequences into a 

specific data format (for example an alignment, an HMM, a phylogenetic tree, a 
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Prosite like pattern or a MEME motif profile) that is required by a particular 

homology search method, as discussed in section 3.1.3. All of the homology 

search methods, except Mast, use an alignment in one way or the other. For 

example, PSI-Blast requires an alignment in a specific format. An HMM is 

required by HMMsearch and Treesearch, a phylogenetic tree is required by 

Treesearch, and a consensus sequence is required by PHI-Blast. These all are 

based on an alignment scheme. Before the implementation of modular structure 

of CHASE it required a significant amount of changes in the CHASE script in 

order to use an alignment scheme other than the default ClustalW. Further, 

build_compound, an input processor for Treesearch input, was not compatible 

with any other alignment scheme.  

 
Figure 18. An outline of Input Processors (IPs.pm) Module 

Input processors are used to generate specific inputs required by different 

homology search methods. Pattern and pattern profile are generated directly 
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from the input set of sequences, while the HMM, the phylogenetic tree, and the 

consensus sequence are based on an alignment.  

 

 

The newly implemented input processors module, as shown in Figure 18, made it 

possible to easily use any of the ClustalW, Dialign or Mafft alignment schemes, 

whenever it is required to generate an HMM, a phylogenetic tree or a consensus 

sequence. (Pratt/PS_Scan and MEME produce a pattern or a pattern profile, 

directly using the input set of sequences.) To save time and computing 

resources, once a specific input such as an alignment is produced that is used by 

a particular method, it is not generated again if it is required by another homology 

search method. 

 

In this module we also overcome the limitations of build_compound to use 

alignments other than ClustalW. The function of build_compound was to 

generate a ClustalW alignment, an HMM using HMMbuild and a phylogenetic 

tree, using proteindist (available with the Phylip or the Treesearch package) and 

the “Fitch” program, based on the ClustalW alignment. To get rid of 

build_compound, we make direct use of proteindist that calculates the 

phylogenetic distances among protein sequences, given as an alignment, and 

“Fitch” to generate a phylogenetic tree. Now, we can handle any of the above-

mentioned alignment algorithms using IPs.pm. We implemented a version of the 

“Fitch” program that has the functionality to use input on the command-line and 

generate user-defined filenames for the output phylogenetic tree.  

 

As a specific example of the PERL module IPs.pm, a subroutine from the PHI-

Blast IP, called “construct_pattern”, is shown in Figure 19. This subroutine is 

implemented to construct a pattern in a format that is compatible with PHI-Blast, 

given a set of sequences and a pattern finding program (i.e. PS_Scan or 

PRATT).   
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Figure 19. The PHI-Blast IP subroutine “construct_pattern” is shown. It 

explains that, given a set of sequences and a pattern finding tool (e.g. PRATT or 

PS_Scan), how the PROSITE-like pattern is generated. Such a pattern is 

required to execute a PHI-Blast search. 
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Figure 20. The subroutine “refo_pspat_2_prospat” showing the perl script 

that reformats the pattern extracted using Ps_Scan, to be used to run PHI-Blast. 

 

The first part of the main subroutine (lines 5-20), shown in Figure 19, deals with 

obtaining the Prosite like pattern using PS_Scan. The standard version of the 

Ps_Scan program scans a protein sequence against the Prosite database to 

report the occurrence of a pre-defined pattern. As an output PS_Scan reports 

only the pattern id from the Prosite database and the matching region but not the 

actual regular expression pattern. Therefore, the PS_Scan program was modified 

so that it reports the regular expression pattern in the following form: 
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>serpin : PS00284 SERPIN Serpins signature.

396 - 406 LfFNKPFLFlI

PA ([LIVMFYX])(.)([LIVMFYACX])([DBNBQZX])([RKHQZSX])([PSTX])([FX])

([LIVMFYX])([LIVMFYCX])(.)([LIVMFAHX])

 

To reformat such a pattern into Prosite format, a subroutine was implemented, 

called “refor_ps_2_Prosite” which is marked in blue colour in Figure 19 and 

shown in detail in Figure 20.  Lines 11-19 of this subroutine, shown in Figure 20, 

reformat the above-mentioned pattern into Prosite pattern format that is 

compatible with PHI-Blast, as shown here: 

 
AC PS00284

ID SERPIN

PA [LIVMFY]-x-[LIVMFYAC]-[DNQ]-[RKHQS]-[PST]-F-[LIVMFY]-[LIVMFYC]-x-

[LIVMFAH] 
 

The second part of the main subroutine (lines 21-35) in Figure 19 prepares the 

Prosite like pattern based on a given set of sequences using the PRATT 

program. A lot of information is reported in the standard output of PRATT, part of 

which is shown in Figure 21.  

 

 
Figure 21. Part of PRATT output showing the patterns and related information 

extracted from a set of sequences.  
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Figure 22. The subroutine “extract_prattpat” showing the perl script that 

extracts the Prosite like pattern from the PRATT program output, to be used to 

run PHI-Blast. 

 

A subroutine was implemented called “extract_prattpat”, marked in blue colour in 

Figure 19 and shown in detail in Figure 22, which extracts the required pattern 

from the PRATT output.  Pattern extracted from the PRATT output looks like the 

following, and it is compatible with PHI-Blast. 

ID PRATT_serpin1

PA K-[FL]-S-I-x(1,2)-T-x(3,4)-K-[EPS]-[LV]-[FL]-[GV]-[EHK]-L-G-I-T
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o RunParse.pm 
 

This module as shown in Figure 23, deals with the execution of homology search 

methods, given the required inputs. One method is executed at a time. When a 

particular database search is completed its report is parsed, using the parsing 

scripts implemented in RunParse.pm, to extract some specific information such 

as the sequence identifiers and the E-values of hits. This information is returned 

in the form of a method-specific table to the driver script for further analysis.  

 
Figure 23. An outline of the Run and Parse (Run_Parse.pm) Module 

Given the specific method input, prepared using input processors, homology 

search methods are executed one by one and their output is parsed to get the 

specific information that is used later by the CHASE driver script for further 

analysis.  

 

 

The Run_Parse module contains a subroutine for each of the database search 

methods that extracts the specific information mentioned above. Such a 

subroutine, as shown in Figure 24, requires the output of a database search 
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method, the name of the database search method and the regular expression to 

extract the lines containing the required information. 

 

 
Figure 24: A subroutine showing the parsing of database search reports to 

extract the sequence identifiers and the E-values of hits. 

 

As shown in Figure 24, given the name of the output filename, the regular 

expression and the name of the database search method, this subroutine 

initialises a perl hash to store the sequence identifier and a hits counter to count 

the number of hits, as shown in lines 2-3. The subroutine opens the database 

search report file, as shown in line 4, and exits if the file cannot be opened. Once 

the file is opened, it starts a while loop to read through the lines of the report file 

(line 5) and searches for the given regular expression (line 6). If a line containing 

the given regular expression is reached, it splits the line on the basis of the tab 
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delimiter and stores the resulting text into an array variable (line 7). This example 

subroutine stores the first element of such an array as a sequence identifier and 

the last element as an E-value in the result hash, as shown in line 10 of the 

subroutine in Figure 24. In line 11, the hits counter is incremented. Once the loop 

through all the required lines of the database search report is completed, this 

subroutine returns the hash (containing the sequence identifiers and E-values of 

all the hits) and the number of hits, as shown in line 14, to the CHASE driver 

script. 

 

 
Figure 25: An outline of Database Reader (DBreader.pm) Module 

The database Reader module reads the sequence database, given in Fasta 

format, to extract some specific information that is then passed back to the 

CHASE driver script.  
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o DBreader.pm 
 

The database reader (DBreader.pm) module, as shown in Figure 25, is written to 

read the Fasta formatted database such as SWISSPROT or SCOP to report its 

size and extract the information such as the sequence identifiers, description 

lines and the sequences of all the entries. This information is then stored in a 

table that is later used by the driver script.  

 

4.1.2. CHASE Configuration File  
 

In modular CHASE we make use of a configuration file so that one may be able 

to apply the user-defined configurations without changing the CHASE main 

script. The configuration file contains information such as the path to several 

tools, databases and directories, and method specific information such as the 

name of the method, its class (e.g. whether it is classified as an alignment based 

method), the alignment scheme that it may use and its weight, etc.  

 

The CHASE configuration file, as shown in Figure 26, follows the conventions of 

the eXtensible Mark-up Language (XML). In XML format one has to place the 

contents enclosed in a specific opening and a closing tag, in a hierarchical 

fashion. For example we start the CHASE configuration file with a main opening 

tag ‘<CHASECONF>’. We have a section for paths tagged ‘<Paths>’ and a 

section for the method-specific information, one per component method, tagged 

‘<Method>’. Within the paths or the method section each element has its own 

opening and closing tags. At the end of each section it has its closing tag and the 

whole document ends with the main closing tag ‘</CHASECONF>’. A particular 

browser, such as Internet explorer or Mozilla, that recognizes the XML syntax, 

highlights the tags and differentiates the actual data that is enclosed within these 

tags. In an example XML document (opened in the Mozilla browser) as shown in 

Figure 26, sections or subsections start with a negative sign (-) where the data is 
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shown and the ones where the data is hidden start with a positive sign. Clicking 

on the positive sign of a section or subsection shows the actual data inside the 

tags. 

 

 
Figure 26: CHASE configuration file, an example 

The CHASE configuration file is implemented in XML format. It starts with a main 

opening tag and within that the user-defined paths to several tools, databases 

and directories can be implemented. User-defined method specific information is 

placed in the methods section. 

 
4.1.3. CHASE Driver Script 
 

Given a set of sequences as input and the user-defined/default options, it is the 

CHASE driver script that integrates all of the above mentioned modules to get the 

information that is processed further to carry out a complete CHASE run, as 
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shown in Figure 27. The CHASE driver script works in stages S0-S6. In the initial 

stage (S0), it validates the input set of sequences and user-defined/default 

options. It then reads the configuration file in stage S1 and verifies that all the 

tools, databases and the directories are accessible. In the second stage (S2), it 

instructs the input processing or the IPs.pm module, as mentioned above, to 

reformat the input data into a format that is required by the homology search 

methods.  

 

 
Figure 27. An outline of the CHASE driver script 
CHASE driver script validates the input data and utilizes all modules to perform 

one complete CHASE run in stages S0 to S6. 

 

 

The third stage (S3) in the CHASE driver script deals with calling the run and 

parse module to execute the homology search methods and parse their reports, 
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one by one, to report the sequence ids and the E-values of the hits. In stage 4 

(S4) it reads the target database to report sequences and their descriptions 

required for CHASE output, as explained in the database reader module section. 

The Stage 5 (S5) is the point where CHASE combines the homology search 

methods using the C-value formula that requires the method performance 

weights and the scaled E-values, as discussed above. The last stage (S6) of the 

CHASE driver script deals with reporting the CHASE results either in HTML, XML 

or in a simple text format.  

 

Using modular CHASE has several advantages. Modular CHASE is general 

enough to easily accommodate a new homology search method, given its 

required configuration in XML, the code to run the method and to parse its report. 

It is now possible to use different IPs (e.g. different alignment schemes) for the 

same homology search method, one just need to update the configuration in the 

XML file.  

 

4.2. Effect of Different Alignment Schemes 
 

All homology search methods combined in CHASE, called the CHASE 

component methods, make use of alignments in one way or the other, except 

MAST. Using the modular version of CHASE it is quite easy to use different 

alignment schemes for the same homology search method. Previously our 

results were based only on the ClustalW alignment scheme and now we test the 

effect of two additional alignment schemes i.e. Dialign (REF) and Mafft (REF) on 

the performance of all alignment-based CHASE component methods. 

 

We calculate composite weights, considering the performance of CHASE 

component methods on the odd half of the SCOP database, at k=50 false 

positives, as explained in section 3.2.1, using three alignment schemes namely 

ClustalW, Dialign, and Mafft, shown in Table 5.  
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Table 5. Composite weights for CHASE component method performances in 

the odd half of the SCOP database at k=50 false positives (FPs). See Table 1 in 

section 2.6.2 for evaluation scenarios. 

 
 

We run CHASE and its component methods, for distant relationship scenario, 

using ClustalW, Dialign, and Mafft alignment schemes, as shown in Figures 28, 

29, and 30, respectively, to see if any improvement in their performance can be 

achieved. Looking at the results, it can be seen that some of the alignment-based 

CHASE component methods achieved their best performance in terms of 

coverage of true positives using Dialign and others using Mafft, in comparison to 

using the ClustalW alignment, except PSI-Blast that did not improve much. The 

overall coverage of true positives can be increased even further, through 

CHASE, using the best alignment scheme suitable for a particular CHASE 

component method. 
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Figure 28       Figure 29   

 
Figure 30 

Figures 28, 29, and 30:  Coverage versus False positive counts are shown for 

CHASE and its component methods, for Distant Relationships scenario, using 

ClustalW, Dialign, and Mafft Alignment, respectively.  
 

 
 

Since the performance of PSI-Blast did not improve much by using different 

alignment schemes, we changed its input parameters by adding an additional 

iteration (i.e setting option –j 2) and CHASE component methods were run again 

using ClustalW, Dialign, and Mafft as shown in Figures 31, 32, and 33, 

respectively. 
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Figure 31      Figure 32   

 

 
Figure 33   

 

Figures 31, 32, and 33:  Coverage versus False positive counts plot is shown in 

Distant Relationships scenario, using ClustalW, Dialign, and Mafft Alignment, 

respectively. An additional iteration (-j 2) was used to improve the performance 

of PSI-Blast.  
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Figure 34: Coverage versus False positive counts are shown in the Distant 

Relationships scenario, permitting zero and 50 false positives, using different 

alignment schemes. An additional iteration (-j 2) was used to improve the 

performance of PSI-Blast. Searches were done in the odd half of the SCOP 

database. 

 

To see which method performs at its best using which alignment scheme, 

coverages allowing zero or fifty false positives, for each alignment scheme used, 

were plotted as shown in Figure 34. Looking at the coverages obtained by 

CHASE component methods for the cost of 50 false positives, it is seen that 

HMMsearch achieves its best performance using Dialign alignment, while all 

other alignment based CHASE component methods show their best coverage of 

true positives using Mafft alignment. The average percent coverage of true 

positives at the cost of either zero or fifty false positives, however, represents the 

facts imprecisely and therefore we calculate the area under the curve for zero to 

fifty false positives, as described in the next section, for a more precise analysis.  
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4.2.1 Choosing the best Input Processors for Alignment-based 

CHASE Component Methods 
 

CHASE and its component methods were run on the odd half of the SCOP 

database using either ClustalW, Dialign or the Mafft alignment scheme as shown 

in Figures 35, 36, and 37, respectively. For a more comprehensive analysis of 

the performance of each alignment-based CHASE component method in 

response to a particular alignment scheme used, the area under the curve, as 

shown in Figure 38, was measured. This was done by first summing up the 

average percent coverages at the cost of zero until fifty false positives, obtained 

by a particular CHASE component method in response to the particular 

alignment scheme used, and then dividing that sum by 51. This served as the 

basis to choose the best input processor (i.e. an alignment scheme in this case) 

for a particular alignment-based CHASE component method.  



 73

 

     
Figure 35       Figure 36   

 
Figure 37 

Figures 35, 36, and 37:  Coverage versus False positive counts are shown in 

the Distant Relationships scenario on the odd half of the SCOP database using 

ClustalW, Dialign, and Mafft Alignments respectively. An additional iteration (-

j 2) was used to improve the performance of PSI-Blast. 
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Figure 38    Figure 39 

 
Figure 40 

Figures 38, 39, and 40: The area under the curve is shown for the average 

percent coverages of true positives at the cost of zero to fifty false positives in 

distant, close, and very close relationship scenarios, respectively. 

 

 

The area under the curve for the distant relationship scenario, as shown in Figure 

38, designates Dialign alignment scheme as the best input processor for 

HMMsearch, Mafft for Treesearch, and PHI-Blast, and ClustalW for PSI-Blast. A 

similar analysis was done for close and very close relationship scenarios as 

shown in Figures 39 and 40, respectively. In the close relationship scenario, the 

area under the curve assigns Mafft alignment scheme as the best input 

processor for HMMsearch and PSI-Blast, Dialign for PHI-Blast and ClustalW for 

Treesearch. In the very close relationship scenario the Dialign alignment scheme 

is shown to be the best input processor for HMMsearch and PHI-Blast while Mafft 

for Treesearch and PSI-Blast. 
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To test the performance of CHASE for the distant relationship scenario, in the 

light of the results from the odd half of SCOP database, we applied the best input 

processors to all the alignment based CHASE component methods (i.e. Dialign 

alignment scheme for HMMsearch, Mafft for Treesearch and PHI-Blast, and the 

ClustalW alignment scheme for PSI-Blast). The results are shown in Figure 41.  

 

 
Figure 41:  Coverage versus False positive counts is shown for CHASE and its 

component methods, on even half of SCOP database, for Distant Relationships 

scenario, using best Input Processors.  

 

The performance of CHASE, based on using best input processors for its 

alignment based component methods as shown in Figure 41, depicts that it 

achieves a better average percent coverage of true positives until the cost of 60 

false positives however the performance of HMMsearch is competitive from 60 to 

100 false positives. Furthermore the performance of HMMsearch becomes better 

than CHASE after 100 false positives. The reason for inferior CHASE 

performances seems to be the significant difference among the overall 

performance of CHASE component methods. One may break down the range of 

overall performances achieved by CHASE component methods into three 

categories: similar performances, different performances and very different 

performances. In the first category methods perform similarly. In such a case the 

performance of CHASE may be similar to that of its component methods, 
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because there are not so many cases where evidence can be combined to yield 

a better estimate, by outvoting the outliers. In the second category methods may 

perform differently to some extent, as shown in Figure 28, and there are many 

cases where a strong showing for some method(s), not counterbalanced by very 

poor showings for others, seems to be a good membership indication that is 

(independently of which single method is involved) picked up by our consensus 

approach. In the last category, component methods perform significantly 

different, as shown in figures 29 and 41 and there may be too many cases 

dominated by very poor showings. 

 

4.3. Improving C-value by Recalculating E-values 
 

To further improve the performance of CHASE, we decided not to use E-values 

provided by individual methods. Instead we wish to recalculate E-values in a 

standard way. More precisely, we calculate P-values for CHASE component 

methods in a standardized fashion, combine them and derive one combined E-

value or C-value from the combined P-values, as discussed below. This 

concludes the development of the CHASE2. The P-value is the probability of an 

alignment occurring by chance with a score equal or better than the observed 

similarity score while searching a database of randomly generated sequences of 

the same size as the actual database. P-values and E values are different ways 

of representing the significance of an alignment or a database hit. The maximum 

P-value is 1.0 while the maximum E-value can be equal to the total number of 

sequences in a database. 

 
As discussed in chapter 4, an E-value, based on the distribution of sequence 

similarity scores (for example the alignment scores of unrelated sequences) is a 

frequently used statistical estimate to represent the significance of database 

search results. Accurate measures of the statistical significance of alignment 

scores greatly enhance the usefulness of similarity searches. Knowing the 

distribution of the alignment scores of unrelated sequences allows the estimation 
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of the expected number of false positives at a given threshold. The E-value also 

depends on the size of the searched database that is the number of its 

sequences or the total number of residues that it has. 

 

It has been shown that the gapped alignment scores (that allow indels) 

approximately follow an extreme value distribution that has certain computable 

parameters i.e K and lambda, as long as the gap penalties are severe enough 

(Altschul et al., 1997). The parameters K and lambda can be thought of simply as 

natural scales for the search space size and the scoring system (scoring matrix 

and the gap penalties) respectively.  

 

There is more than one way to calculate an E-value, and different methods can 

produce values that differ by several orders of magnitude (Pagni et al., 2001). 

Currently, most sequence similarity algorithms estimate alignment score 

significance in one of two basic ways (Bailey et al., 2002). One type is a lookup 

table approach, such as the one implemented in Blast, which precalculates the 

parameters of the distribution for a variety of scoring table/gap penalty 

combinations (Altschul and Gish, 1996, Altschul et al., 1997). The other type is 

sometimes referred to as the ‘empirical’ approach because it estimates the 

parameters of the distribution function directly from the scores observed in the 

database search, such as the one implemented in FASTA (Pearson, 1990) or 

HMMER (Eddy, 1998).  

 

4.4.2. “fitevd” 
 

CHASE component methods calculate E-values each in a different way and 

instead of combining their original E-values in CHASE, it would be more 

meaningful if we recalculate E-values, where possible, using a uniform approach. 

Recently (Bailey et al., 2002) a novel algorithm, called “fitevd”, based on 

maximum likelihood has been presented for estimating the distribution of 

alignment scores using the scores of unrelated sequences from a database 



 78

search. It has been shown (Bailey et al., 2002) that this algorithm is more 

accurate and better than the existing lookup table approach. This algorithm also 

has an advantage, especially with databases containing relatively few 

sequences, in reducing the limitation concerning the number of unrelated 

sequences required by empirical methods. Furthermore, a specialty of this 

algorithm is a technique for stratifying the target sequences into length groups 

and estimating score distributions for each of the length groups.  

 

Given a list of hits, each with an alignment score, the length of the query and of 

the hit, this algorithm, known as fitevd, reports the corresponding P-values. 

These P-values are based on the parameters that fitevd estimates from the score 

distribution of each of the length groups of target sequences. We empirically set 

the query length divided by 10 as our standard value for the length group size, 

however if the query length is very small the value for length group size becomes 

so small that the fitevd program reports arbitrary P-values. To circumvent this 

problem we estimate a weight, W, using a sigmoid activation function (Fuellen et 

al., 2001), given the query length, Q, by using the following formula: 

W= 1/(1+ exp(-(Q-100)/100)). 

 

 Such a weight, W, is then used to smoothen the value for the length group size, 

S, as follows: 

S= ((W*(Q/10))+((1-W)*1000)). 

 

HMMsearch, PSI-Blast, and PHI-blast report alignment scores in their search 

reports so it is fairly easy to use fitevd to calculate P-values for their hits. 

However, it is not possible to extract the alignment score from the results of 

Treesearch or Mast, so the fitevd approach is not applicable here. To get the P-

values for Treesearch, and Mast hits, we divide their E-values by the size of the 

database. In turn, Treesearch calculates the E-values by multiplying the 

augmentation score with the size of the database and Mast calculates the E-

values by multiplying the product of P-values, from the non-overlapping motifs 
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found in a hit sequence, by the size of the database (MEME-Mast “README”). 

To place the P-values of Treesearch and Mast on a common numerical scale, 

these are rescaled in reference to the P-values of HMMsearch using ordinary 

least square regression.  

 

In the context of the fitevd algorithm, the P-value of a score x for a target 

sequence of length t, is defined as the probability of an unrelated sequence of 

length t having the observed score x or greater. The E-value is then defined as 

the P-value times the number of target sequences in the database search. So, in 

CHASE, if we multiply the P-value with the size (total number of sequences) of 

the searched database, it represents an E-value. Before we multiply, we use the 

P-values as they are in our C-value formula (described in section 6.2.3.). For a 

particular hit sequence the P-values of all CHASE-based component methods 

are combined using the C-value formula. This combined P-value is later 

multiplied with the size of the database to get a better combined E-value or C-

value.  

 
4.5. CHASE2 Results and Discussion 
 

We run CHASE2, with fitevd-based E-values where possible, on the even half of 

SCOP database along with CHASE1 and all CHASE component methods using 

the best input processors in distant, close, and very close relationship scenarios. 

For a fair comparison the component methods of CHASE2 and CHASE1 are 

using the same alignment schemes. As shown in Figure 42 for distant 

relationship scenario, CHASE2 easily outperforms CHASE1 and all of its 

component methods by a reasonable margin and it is the best performance for a 

consensus homology search method, achieved to date.  Particularly, accepting 

just 10 false positives, 55% coverage of true positives was obtained by CHASE2 

and 49% by CHASE. Individual methods obtained coverage of true positives 

between 31 to 44% for same number of false positives. 
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Figure 42       Figure 43  

 
Figure 44  

Figures 42, 43, and 44:  Coverage versus False positive counts plot is shown for 

CHASE2, CHASE1, and all CHASE component methods using the best input 

processors in distant, close, and very close relationship scenarios, respectively  

 

4.5.1. Evaluation of CHASE & CHASE2 on Three Different 
Databases 

 
Previously, CHASE and its component methods were evaluated only on one 

“odd” and one “even” database, derived from SCOP. To show that the 

performance of CHASE is not just a chance product of using these particular two 

databases, we now evaluate CHASE and its component methods on three 

different “odd” and “even” databases. To derive these databases we split up the 

SCOP database randomly, into three odd and three even databases by using a 

function available with the PHASE4 package. We call these databases A-odd 

and A-even, B-odd and B-even, C-odd and C-even.  
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To evaluate the performance of CHASE1, CHASE2, and their component 

methods on these odd and even databases in distant relationship scenario, we 

first run CHASE component methods on the “odd” halves of the SCOP database 

to derive their performance weights and best IPs as described previously. 

Performance of CHASE component methods is shown in the form of average 

coverage of true positives versus false positive count plots in A-odd, B-odd and 

C-odd of SCOP database in Figures 45, 46 and 47, respectively.  

  
Figure 45      Figure 46  

 

 
Figure 47 

Figure 45, 46, and 47: Performance of CHASE component methods in distant 

relationship scenario is shown on A-odd, B-odd and C-odd half of SCOP 

database, respectively 

Once we estimate the weights for CHASE component methods on each of A-odd, 

B-odd and C-odd half of SCOP database, we run CHASE1, CHASE2, and their 
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component methods on each A-even, B-even, C-even half of SCOP database. 

Performance of all methods on these three even halves of SCOP database is 

shown in Figures 48, 49, and 50.  

 

   
Figure 48      Figure 49 

 

 
Figure 50  

 

Figures 48, 49, and 50: Performance of CHASE1, CHASE2, and CHASE 

component methods in distant relationship scenario is shown on A-even, B-even 

and C-even half of SCOP database. 

 

These results show that the performance of CHASE1 and CHASE2, in terms of 

average percent coverage of true positives in distant relationship scenario was 

not dependent on the specific odd/even split of SCOP that we used up to now. It 

is still better than any of their component methods and further the performance of 

CHASE2 is far better than CHASE1. This evaluation supports the claim that a 
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good combination of methods performs better than any of their component 

methods.  

 

4.5.2. Run-Time Experiment 
Since the run-time (proportional to input size) is not known for all component 

methods, and since it is not known for many of the steps employed by the input 

processors, some empirical data on run-time is given in this section. To compare 

the speed of CHASE and its five component methods, namely HMMsearch, 

Treesearch, PSI-Blast, PHI-Blast, and Mast, we timed these methods to search 

members of protein families, as shown in Table 6, in the even half of the SCOP 

database (containing 2734 sequences). Zhang et al., 1998, did a similar timing 

experiment for PHI-Blast. Here, we choose a representative set of sequences 

with different sequence lengths as input to our methods, from the ten protein 

families as shown in the Table 6. Run-time for each method was recorded in 

seconds, using the time function in Perl.  

 
Table 6. Dataset for run-time experiment: Details of protein family sequences, 
sorted on the basis of average query length.  

Query 
No. Query Name 

No. of 
Sequences 

in query 
Average Query 

Length 
Maximum Query 

Length 

1 S100 27 44 44 
2 1.36.1.2 6 71 87 
3 1.41.1.2 6 92 100 
4 1.23.1.1 7 103 125 
5 1.73.1.1 6 126 151 
6 1.128.1.1 8 127 292 
7 1.27.1.1 10 170 189 

8 ABC 
Transporters 4 300 345 

9 3.3.1.no5 17 300 392 
10 Serpins 42 415 423 
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This timing experiment was run on an UltraSparc computing machine with 96 

Gbytes of RAM, running the operating system Solaris, version Generic_117171-

07, release 5.9, which is an implementation of UNIX. All of the methods used the 

same set of sequences as an input and the method-specific inputs, e.g. the 

HMMs required by HMMsearch, were prepared using the input processors. Thus, 

the run-time of individual methods includes the time spent on preparing their 

specific inputs. Since a load unbalance at the computing machine could increase 

the execution time of a user application (Liu et.al., 2003), resulting in different 

run-times, we replicated our experiment three times (see Appendix A) to get an 

average run-time for each method. 

 

Table 7. Running time experiment; Results of the timed searches conducted 
using HMMsearch, Treesearch, PSI-Blast, PHI-Blast, Mast and CHASE in the 
even half of SCOP database, using members of 10 protein families (shown in 
table5). Results are sorted on the basis of average query length. 

Query 
No. 

Query 
Name HMMseach Treeseach PSIBlast PHIBlast Mast Sum Sum W/O 

HMMsearch CHASE

1 S100 8 83 3 8 20 122 114 106 

2 1.36.1.2 14 39 2 4 21 80 66 61 

3 1.41.1.2 15 49 6 3 17 90 75 69 

4 1.23.1.1 18 52 3 3 19 95 77 79 

5 1.73.1.1 24 63 4 4 41 136 112 109 

6 1.128.1.1 34 104 4 5 33 180 146 142 

7 1.27.1.1 26 79 4 6 58 173 147 153 

8 ABCs 43 106 6 8 21 184 141 145 

9 3.3.1.no5 49 199 9 27 213 497 448 454 

10 Serpins 50 373 11 68 1026 1528 1478 1428 
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As shown in Table 7, Treesearch consumes more time, on average, in  

conducting its database searches than the time consumed by any of the  

other CHASE component methods. Usually, Mast is faster than Treesearch but it  

takes much longer if the number of input sequences and their length is larger  

than average. This is due to MEME (part of the Mast package) that  

extracts motifs, from the input set of sequences, required by Mast to  

conduct the database search. Time taken by HMMsearch, on average, is  

less than that of Treesearch and Mast. The Blast family of methods namely  

PSI-Blast and PHI-Blast turns out to be very fast, as expected. The time taken in  

conducting database searches by PHI-Blast is similar to that of  

PSI-Blast but PHI-Blast can take longer if the number of input sequences  

and their length is larger than average. This happens because PRATT  

may then take long to construct the PROSITE-like pattern that is required to run 

PHI-Blast. Analysis of the results from Table 7 shows that, on average, CHASE  

run-time is less than the total run-time of all of its component  

methods. Time taken by CHASE to complete a particular search includes  

steps like input processing, running of its individual homology  

search methods, their output processing, C-value calculation and the  

CHASE output report preparation. One advantage for CHASE is that during  

its input processing stage, some of the inputs required by its component  

methods, e.g. the HMM required by HMMsearch and Treesearch, are generated  

only once and this saves some run-time. In fact, since HMM generation 

dominates HMMsearch, and since CHASE takes about as long as all the other 

methods except HMMsearch taken together (see “sum without  

HMMsearch” in table 7), it seems that the time that the CHASE script itself needs 

is about equal to the other savings, in particular the savings due to generating 

the multiple alignment only once.  
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4.5. Conclusions, and CHASE Future Work 
 
Regarding the future development of CHASE, the following issues are 

noteworthy. 

 

o Inclusion of more homology search methods in CHASE, such as jumping 

alignments (Spang et al., 2002) and THMM (Qian et al., 2003). 

o Improving memory consumption of modular CHASE, by improving the 

handling of the database by the database reader module. 

o Implementation of a parallel version of CHASE using Biopipe (Hoon et al., 

2003). 

o It is future work to use CHASE for searching protein databases to find 

missing members to improve databases such as Pfam. 

o One should use CHASE to search in translated genomic databases to find 

novel proteins. 

 
GenCHASE was developed to handle the last issue. It is the topic of the next and 

last chapter. Further conclusions can be found in the last section of that chapter. 
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5. GenCHASE (Genomic Comparative-Homology Agreement SEarch) 

5.1. Overview 
 
Genomes of many organisms have been sequenced over the last few years 

resulting in an enormous amount of sequence data. About 206 genomes have 

been completely sequenced (and published), while the sequencing of 506 

prokaryotic and 418 eukaryotic genomes is underway (see 

http://www.genomesonline.org/) as of July 09, 2004. Unfortunately, the 

annotation of such huge datasets is not keeping pace, considering that 

annotating a genomic sequence is not an easy task (Claverie et al., 1997). 

Further, if no good annotation is available, it is difficult to find out whether any 

members of a protein family of interest exist in a newly sequenced genome. 

Many methods have been developed (for a review see: Mathe et al., 2002) to find 

genes along a genomic sequence using either intrinsic (ab initio) or extrinsic 

(homology-based) approaches (Borodovsky et al., 1994, Rouzé et al., 1999). On 

one hand, ab initio gene prediction methods do not give precise predictions of all 

the genes in a given sequence without false negative or false positive errors. On 

the other hand only about half of the genes can be found using the extrinsic 

approach alone (Mathe et al., 2002).  

 

 

Following the success of CHASE (Alam et al., 2004), using the same basic idea, 

we combine extrinsic (homology-based gene finding) and intrinsic (ab initio gene 

structure prediction) approaches in a tool called GenCHASE (Genomic 

Comparative Homology Agreement Search). An outline of GenCHASE is shown 

in Figure 51. GenCHASE finds a maximum number of possible homologues in a 

single genomic sequence, for example a chromosome, given a set of protein 

sequences.  
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Figure 51.  An outline of GenCHASE  
Given a set of protein sequences, specific inputs are prepared for homology 

search methods. GenCHASE then combines the results from different methods 

in 5 steps, given the co-ordinates and E-values for the High Scoring segment 

pairs (HSPs; as shown in Figure 52). 

 

 

To run GenCHASE on all the genomic sequences of a particular genome such as 

the human genome, one by one, and to analyse its results we have developed 

another program on top of GenCHASE called GenCHASE-Analyser. Here we 

present our approach in detail as well as results for the search of ATP Binding 

Cassette (ABC), S100, and Cadherin proteins (described below) in the human 

genome, as an evaluation of GenCHASE.  
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5.2. GenCHASE Component Methods 
 
In GenCHASE we combine homology-based gene finding methods such as 

PHI/PSI-TblastN (Altschul et al., 1997), TfastY (Pearson, 1990), and Mast (Bailey 

& Gribskov, 1998), homology-based gene structure prediction methods like 

Genewise (Birney et al., 2004) and ab initio gene structure prediction methods 

like Genscan (Burge et al., 1997). We call them GenCHASE component 

methods. The ultimate goal of these methods is to find out or predict genes in a 

genome, given a single or a set of protein or DNA sequences. However, they 

differ in the technique they use to accomplish this task. All similarity search 

methods that we combine in GenCHASE use a collection of protein sequences 

as search input, translate the target genomic sequence into six reading frames 

on the fly, take care of frameshifts (except Mast) and report a confidence 

estimate such as an E-value, for each of the hits they find. Genewise and 

Genscan are gene structure prediction methods that we apply to the genomic 

regions where we find potential genes using homology-based gene finding 

methods. Following are the details of these methods: 

 

o PSI-TblastN is a similarity-based gene finding method that searches a 

protein query sequence against a nucleotide sequence database (target 

database) using a position specific scoring matrix created by PSI-BLAST. 

A single genomic or chromosomal sequence can also be used as the 

target database. To save the results as a position specific scoring matrix, 

in the first step, we run a normal PSI-Blast search against a protein 

database such as SCOP (Andreeva et al., 2004) or SWISSPROT 

(Boeckmann et al., 2003), given the input set of protein sequences as a 

jumpstart alignment and a query sequence. The query sequence can be 

any sequence from the jumpstart alignment. In the second step we use 

the position specific scoring matrix we saved and the query sequence to 

run a PSI-TblastN search in a nucleotide/genomic sequence database. 
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PSI-TblastN translates the target genomic sequence into six reading 

frames on the fly, so that the given query sequence can be aligned to the 

translated genomic region.  
 
o PHI-TblastN is similar to PSI-TblastN, except in the first step, where a 

consensus sequence and a motif (in the form of a regular expression) are 

used instead of the jumpstart alignment. 

 

o TfastY compares a protein sequence to a DNA sequence database, 

translating the DNA sequence in six reading frames and aligning the 

protein sequence to each sequence of the database, allowing gaps and 

frameshifts. We use the consensus sequence of the input set of 

sequences to start the TfastY search. 

 

o Mast searches biological sequence databases for sequences that contain 

one or more of a group of known motifs that we provide in a specific 

format derived using a tool called MEME (Multiple EM for Motif Elicitation; 

available in MEME-MAST package). Mast also translates the genomic 

database into six reading frames on the fly. 
 
o Genewise is a homology-based gene structure prediction method. In 

Genewise, we use a consensus sequence that is calculated from the input 

set of protein sequences, to predict the possible gene structure of the 

regions in a genomic sequence that show sufficient similarity. Genewise is 

a very slow method and it takes very long if we apply it on the complete 

genomic sequences. So we restrict ourselves to applying Genewise on 

genomic region(s) that we find, using homology-based gene finding 

methods, as described in section 5.4.3. We use the program “genewise” if 

we need to run Genewise on one genomic region, however if there are 

more then one regions, we apply the program “genewisedb”. 
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o Genscan is an ab initio gene structure prediction method. It uses an 

organism specific parameter file (available with the Genscan package) to 

predict the gene structure of all possible genes that a given genomic 

sequence may have. As we do not want Genscan to predict the gene 

structure of regions of a genomic sequence that are not homologous to 

the query, we apply it only on regions of a genome that we find similar 

using homology-based gene finding methods. Genscan gene structures in 

the flanking region are deleted because they are not supported by any of 

the homology-based gene-finding methods. 
 

5.3. Input Processing 
 

All of the homology-based gene-finding methods (i.e PHI/PSI-TblastN, TfastY 

and Mast) that we combine return confidence estimates, usually E-values, for 

their results. To perform their task, they require a single or a set of protein 

sequences as query and a genomic/DNA sequence(s) as a target database. 

These methods translate the target genomic sequence into six reading frames 

and all except Mast are capable of detecting frame-shift errors. The exact query 

format requirements, however, vary from method to method. As for CHASE, we 

developed scripts called input processors (IPs) that take a collection of 

sequences and process these as follows to obtain the specific type of input for 

each of these similarity-based gene-finding methods. 

 

o PSI-TBlastN IP: In the first step, we use Mafft (Katoh et al., 2002) to align 

the input sequences, and we format the alignment such that it can be 

used, together with a single query sequence, to “jumpstart” a "single run" 

PSI-Blast search in a protein database such as SCOP or SWISSPROT. 

(The multiple alignment that is used to jumpstart PSI-Blast must contain 

the query sequence. PSI-Blast further requires that the jumpstart 

alignment does not contain some of the headers and trailers that are 

usually present in alignments). In the second step, that is, the search in 
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the target genomic sequences, PSI-TblastN requires that the single query 

sequence must be the same as the one used in the first step for creating a 

position specific scoring matrix. As described in the README, by default, 

the filtering (or masking of low complexity regions) is off (-F F) in the 

protein-protein blast while it is on (-F T) in the protein-DNA blast. To 

ensure consistent usage of the protein-protein and protein-DNA blast 

combination, the -F option should be explicitly set in one or the other run. 

Since we use already masked sequences, we turn filtering off in our 

second step of the PSI-TblastN search. 

 

o PHI-TBlastN IP: We use PRATT to generate a Prosite-like pattern from 

the given un-aligned sequences. A ClustalW (Higgins, 1994) alignment is 

used to generate a consensus sequence by relative majority rule for 

starting a PHI-Blast search with the Prosite-like pattern, followed by a 

“single run” of PSI-Blast, to save the position specific scoring matrix that is 

required in the second step of the PSI-TblastN search that follows. 
 

o TfastY IP: We use the Mafft alignment to generate a consensus 

sequence, by relative majority rule, for starting the TfastY search. 
 
o Mast IP: We use MEME (Multiple EM for Motif Elicitation) (Bailey and 

Elkan, 1994), given un-aligned sequences, to generate motifs that are 

used to run Mast. 
 

5.4. GenCHASE; A Scheme for Combining Homology and 
Gene-Finding Methods 

 
We describe a scheme to combine several extrinsic gene-finding methods, 

namely PSI-TblastN, PHI-TblastN, TfastY, and Mast, based on the confidence 

estimates such as E-values that they report for every hit or high-scoring segment 

pair (HSP; local alignments with no gaps that achieve one of the top alignment 
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scores in a given search (Blast Glossary)). As shown in Figure 51, in our scheme 

for combining different homology-based gene finding methods, we run them one 

after the other. Since they use various kinds of input information we provide this 

information automatically, employing input processors as described above. Once 

these homology-based gene searches are completed, to combine these methods 

GenCHASE carries out the steps explained in sections (5.4.1-5.4.6) below. 

 

5.4.1. Extract HSPs 
 

Results of each method are parsed to extract specific information, such as the 

co-ordinates or the start and stop positions of the HSPs (high-scoring segment 

pairs) and the corresponding E-values. We assign an identifier to each HSP, 

which consists of the name of the chromosome, the frame information (i.e. 

forward or reverse) and its start position. For example, given a set of ATP 

Binding Cassette (ABC) transporter protein sequences PHI-TblastN reports a 

particular HSP in the reverse frame of human chromosome X starting at position 

73149064 until 73148969 with an E-value of 2e-07. We assign the identifier 

chrX_reverse_73149064 to such an HSP and extract the information as shown in 

Table 8. 

 
Table 8: HSP Co-ordinates, an example: This table shows the information such 

as an identifier (that we assign), name of the method, start and end positions and 

the corresponding E-value of an HSP which we extract from the output of 

homology search methods.  

HSP Identifier Method  Start – End E-value 

chrX_reverse_73149064 PHI-TBlastN 73149064 - 73148969 2e-07 

 

5.4.2. Cluster HSPs 
 

Based on overlap criteria, described in 5.4.3, we then assemble the HSPs (that 

we get from different methods) into clusters using the Bit::Vector module (Beyer, 
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2004). Identifiers are assigned to such clusters. E-values of many HSPs, 

reported by a particular method, that belong to the same cluster are multiplied, 

since the E-values below 0.01 are similar to P-values (Koonin and Galperin, 

2003). For example the HSPs from PSI-TblastN (PS), PHI-TblastN (PH), and 

TfastY (TF) are considered overlapping and placed into a cluster as shown in 

Figure 52 and Table 9. 

 

 
Figure 52. An example of HSP cluster  
HSPs are placed into a single cluster if they overlap e.g. HSPs from PSI-TblastN, 

PHI-TblastN, and TfastY are placed into one cluster (e.g. a cluster for reverse 

frame HSPs is shown, right to left). 

 
Table 9: An example of HSP Co-ordinates placed into a cluster  

Cluster Identifier HSP Identifier Method Start-End E-value 
ChrX_reverse_73149064 ChrX_reverse_73149064 PS 73149064 - 73148951 3e-08 

 ChrX_reverse_73149064 PH 73149064 - 73148969 2e-07 

 ChrX_reverse_73149064 TF 73149064 - 73148877 2.2e-06 

 

5.4.3. Formulate Temporary HSP Super-Cluster(s) and Predict 
Gene Structure 

 
Next we cluster the HSPs. We do not consider single-HSP “clusters”; empirically, 

we noted too many false positives if we support single-HSP “clusters” that do not 

overlap with HSPs from another method. In the human genome only about 

5.24% of introns are more than 200 kilo base pairs (kbps) long (Sakharkar et al., 

2004). Thus we assemble all HSP clusters into a temporary super-cluster if these 

are located at a distance of less than 200 kbps from each other. The user can 
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provide this threshold called the maximum intron length. These temporary super-

clusters are combined into a gene if a gene structure prediction method identifies 

the gap(s) between such clusters as introns.  

For example, extending the above-mentioned HSP cluster, 

chrX_reverse_73149064, from human chromosome X, we assemble a temporary 

“super-cluster”, as shown in Figure 53 and Table 10 (HSPs are sorted by 

method). 

 

 
Figure 53. An example of temporary HSP super cluster  
A temporary HSP super cluster is formed if two or more HSPs (or HSP clusters) 

are close enough, considering a distance of some, user-defined, length in base 

pairs. Gene structure prediction methods are then applied to the genomic region 

(including some flanking region) represented by such a temporary super-cluster. 

 

Table 10: Co-ordinates for an example HSP super cluster  
Cluster Identifier HSP Identifier Method Start End E-value 

 ChrX_reverse_73156047 ChrX_reverse_73146941   PS 73146941 73146843 0.007 

 ChrX_reverse_73149064   PS 73149064 73148951 3e-08 

 ChrX_reverse_73156047   PS 73156047 73155916 5e-05 

 ChrX_reverse_73149064   PH 73149064 73148969 2e-07 

 ChrX_reverse_73156032   PH 73156032 73155916 0.001 

 ChrX_reverse_73149064   TF 73149064 73148877  2.2e-06 

 

GenCHASE further extends the super-cluster to both sides of the genomic 

region, if possible, employing a user-defined flanking region length (default 10 

kbps). GenCHASE then applies gene structure prediction methods such as 

Genewise and Genscan to predict the structure of possible genes in such a 

super cluster. Genewise provides the gene structure in the genomic region where 
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certain similarity, in relation to the query, is found. However, Genscan is not a 

similarity-based, but an ab initio method, and it predicts the gene structure in the 

given genomic region, as complete as possible. Once the possible gene structure 

of such regions has been established, all the HSPs and predicted introns and 

exons are assembled to represent a particular gene. For example Genewise 

(GW) and Genscan (GS) predicted introns and exons and HSPs reported by 

homology-based gene finding methods, such as PSI-TblastN (PS), PHI-TblastN 

(PH), and TfastY (TF), assemble a gene with the co-ordinates shown in Figure 

54 and Table 11. Please note the PSI-TblastN, PHI-TblastN or TfastY do not 

return complete exons but may return partial exons; Intron-exon boundaries are 

usually predicted by gene structure prediction methods.  

 

 
Figure 54.  Visualization of a GenCHASE assembled gene 
HSPs and introns/exons found for a particular ABC gene found in human 

chromosome X are shown. HSPs found using homology-based gene finding 

methods have a white background while the introns and exons found using gene 

prediction methods have a grey background.  

 

Table 11: Co-ordinates of a gene assembled by GenCHASE 
Cluster ID HSP ID Method Start Stop E-value 

chrX_reverse_73163280 chrX_reverse_73146941 PS 73146941 73146843 0.007 

 chrX_reverse_73149064 PS 73149064 73148951 3e-08 

 chrX_reverse_73156047 PS 73156047 73155916 5e-05 

 chrX_reverse_73149064 PH 73149064 73148969 2e-07 

 chrX_reverse_73156032 PH 73156032 73155916 0.001 

 chrX_reverse_73149064 TF 73149064 73148877 2.2e-06 
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 chrX_reverse_73140211 GSex 73140211 73139996 - 

 chrX_reverse_73146848 GSint 73146848 73140212 - 

 chrX_reverse_73146956 GSex 73146956 73146849 - 

 chrX_reverse_73148953 GSint 73148953 73146957 - 

 chrX_reverse_73149057 GSex 73149057 73148954 - 

 chrX_reverse_73151695 GSint 73151695 73149058 - 

 chrX_reverse_73151867 GSex 73151867 73151696 - 

 chrX_reverse_73155632 GSint 73155632 73151868 - 

 chrX_reverse_73155762 GSex 73155762 73155633 - 

 chrX_reverse_73155916 GSint 73155916 73155763 - 

 chrX_reverse_73156080 GSex 73156080 73155917 - 

 chrX_reverse_73156990 GSint 73156990 73156081 - 

 chrX_reverse_73157148 GSex 73157148 73156991 - 

 chrX_reverse_73158134 GSint 73158134 73157149 - 

 chrX_reverse_73158309 GSex 73158309 73158135 - 

 chrX_reverse_73160314 GSint 73160314 73158310 - 

 chrX_reverse_73160402 GSex 73160402 73160315 - 

 chrX_reverse_73160493 GSint 73160493 73160403 - 

 chrX_reverse_73160582 GSex 73160582 73160494 - 

 chrX_reverse_73161987 GSint 73161987 73160583 - 

 chrX_reverse_73162256 GSex 73162256 73161988 - 

 chrX_reverse_73163147 GSint 73163147 73162257 - 

 chrX_reverse_73163280 GSex 73163280 73163148 - 

 chrX_reverse_73146935 GWex 73146935 73146843 - 

 chrX_reverse_73148954 GWint 73148954 73146935 - 

 chrX_reverse_73149057 GWex 73149057 73148954 - 

 chrX_reverse_73151696 GWint 73151696 73149057 - 

 chrX_reverse_73151881 GWex 73151881 73151696 - 

 chrX_reverse_73155713 GWint 73155713 73151881 - 

 chrX_reverse_73155762 GWex 73155762 73155713 - 

 chrX_reverse_73155917 GWint 73155917 73155762 - 

 chrX_reverse_73156032 GWex 73156032 73155917 - 

 

 

5.4.4. Visualize HSPs 
 

GenCHASE visualizes the HSPs, reported by different homology-based gene 

finding methods, and the introns/exons, predicted by gene prediction methods, 

that belong to a particular gene, using the Bio::Graphics module from the Bioperl 
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package (Stajich et al., 2002). GenCHASE component methods search for genes 

in one chromosome at a time and GenCHASE provides two visualizations; one 

for the genes found in the forward frame of a particular chromosome and the 

other for the genes found in reverse direction. For example, a visualization using 

the co-ordinates for a predicted gene, in Table 11, is shown in Figure 54. In 

GenCHASE visualizations, the background for the intron/exons predicted by 

gene prediction methods is shown in grey while the background for the HSPs 

from homology-based gene finding methods is shown in white. Each particular 

track in GenCHASE visualizations represents all the co-ordinates for a particular 

gene, reported by a single method. For the purpose of visualization, all the genes 

found in a frame of a particular chromosome using GenCHASE are shown next 

to each other not showing the original gap between them, as shown (see reverse 

frame) in Figure 56. 

 

5.4.5. Calculate C-value 
 

Just as in the case of CHASE, we transform E-values using log 10, before doing 

any further manipulation, and denote them as e-values with a “small e”, for 

conciseness. Once we have got e-values e1,…,en and method performance 

weights W1,…,Wn for all n methods, we calculate the c-value for each cluster of 

HSPs s (see page 93) as the W-weighted sum: 

. 

The final C-value (on the original E-value scale) is then obtained as:  

C-value(s): = 10 c-value(s) 

Since it is difficult to estimate the method performance weights for GenCHASE 

homology-based gene finding methods, due to a lack of a generally accepted 

standard of truth, we use equal weights for all these methods. “Missing E-values” 

arise if a homology-search method finds a sequence not found by another, given 
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the E-value cut-off (EC =2). In the c-value formula, these are set to the log to the 

base 10 of cut-off E-value EC. 

 

5.4.6. Visualization of the Gene Translation 
 
The translations for the gene(s) that GenCHASE predicts, are visualized using a 

tool called VisCoSe (Spitzer et al., 2004). VisCoSe first aligns the sequences 

using an alignment tool, Mafft, and then displays the alignment where the amino 

acids are coloured according to conservation. VisCoSe also displays a 

consensus sequence beneath the alignment. We visualize the translations of the 

genes that GenCHASE finds, together with the query set of proteins, so that one 

can quickly find out whether the characteristic motifs of the protein family in 

question are present in the translations.  

 
Figure 55.  Visualization of GenCHASE gene translations using VisCoSe 
Partial translations of two GenCHASE genes (chrX_forward_151466982 and 

chrX_reverse_73163280), along with some of the query sequences, are 

visualized using the tool VisCoSe. This tool first uses Mafft to align the 

sequences and then displays the alignment in colour according to the 

conservation of amino acids. Here in this Figure the conserved ABC motifs are 
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visible in red, both in query and the gene translations, which tells that these 

GenCHASE predictions are candidate ABC genes. 

 

One such visualization is shown in Figure 55 displaying, along with some of the 

query sequences, the translations of two ABC genes (chrX_forward_151466982 

and chrX_reverse_73163280) that we found in human Chromosome X using 

GenCHASE. In this Figure, the characteristic motifs of ABC transporters (namely 

ATP/GTP binding or Walker A motif (PROSITE: PDOC00017), ABC signature 

motif (PROSITE: PDOC00185) and the Walker B motif) are visible. 
 

When these steps (5.4.1-5.4.6) are completed, GenCHASE writes its output in a 

report as shown in Figure 56. Please note that Mast is not compatible with larger 

genomic sequences, such as whole human chromosomal sequences, so its 

results are not available for human genome analysis. 



 101

 
Figure 56.  Example GenCHASE report 
A GenCHASE report can be divided into three sections where the first section 

shows the input information, the second section displays the visualization of 

HSPs (and the gene structure) and the last section provides links to individual 

method reports, and to the visualization of translations. GenCHASE hits are 

sorted on the basis of C-value.  
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5.5. GenCHASE-Analyser (GCA) 
 

The GenCHASE-Analyser (or GCA) is used to run GenCHASE on all 

chromosomes, of for example the human genome, one by one and to analyse 

the results given an annotation file (that can be obtained from Ensembl using 

Ensmart, see: http://www.ensembl.org/Multi/martview), representing the co-

ordinates of all known genes of the protein family in question and given the 

parameters to run GenCHASE. This is particularly helpful in looking at all the 

GenCHASE genes, from all the chromosomes of one complete genome, and 

separating the known genes from new or unknown genes for further analysis. For 

example we use GCA to compare the co-ordinates of the above-mentioned 

chrX_reverse_73163280 gene with the Ensembl-based annotation of all known 

human genes of the ABC protein family, and we found that 

chrX_reverse_73163280 is a known ABC Transporter gene namely, ABCB7, as 

shown in the example GCA report in Figure 57.  
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Figure 57.  A (truncated) GCA report 
A part of a GCA report is shown where all the GenCHASE hits are sorted on the 

basis of their combined E-value (or C-value). Cluster IDs (or GenCHASE gene 

IDs) are hyperlinked to the individual GenCHASE reports, while the co-ordinates 

of these genes are hyperlinked to UCSC and Ensembl genome browsers. Length 

of GenCHASE genes (with introns) and their translations are listed in nucleotide 

base pairs and amino acids, respectively. Available annotation for each of the 

GenCHASE genes is shown in the last column. Annotation for our example gene, 
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chrX_reverse_73163280 i.e ABCB7 is marked with an arrow. Where no 

annotation is available, we write ‘Not Available’. 

 
 

GCA enlists all the genes that we find using GenCHASE, ranked on the basis of 

their C-values, along with their annotations and hyperlinks to the University of 

California Santa Cruz (UCSC) (and from there on to NCBI) and the Ensembl 

genome browsers. This helps to further explore the existing evidence at the NCBI 

or Ensembl genome browsers, and to focus on the GenCHASE genes that are, 

for example, unknown according to Ensembl annotations. To track down every 

detail, gene Ids of genes enlisted in the GCA report are further hyperlinked to 

individual GenCHASE reports, which contain HSP visualizations and the reports 

of individual GenCHASE component methods.  

 

5.6. Modular Structure of GenCHASE 
 

Separate module files namely GenIPs.pm, GenRunParse.pm and 

GenDBreader.pm were written for GenCHASE. In addition, a driver script was 

written that reads an eXtensible Mark-up Language (XML) (Achard et al., 2001) 

configuration document file and calls the modules to carry out one complete 

GenCHASE run. In the following section all these are discussed in detail. 

 
5.6.1. GenCHASE Modules 
o GenIPs.pm 
 

The input set of sequences is first validated by the GenCHASE driver script and 

then passed on to the GenCHASE Input Processors (GenIPs.pm) module. The 

Input Processors module, as shown in Figure 58, transforms the given set of 

sequences into a specific format (for example an alignment, a Prosite-like pattern 

or a MEME motif profile) that is required by a particular GenCHASE component 

method, as discussed before. All homology search methods, except Mast, use an 
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alignment scheme in one way or the other. For example PSI-TblastN requires an 

alignment in a specific format and the consensus sequence required by PHI-

TblastN and TfastY is also based on an alignment scheme.  

 

 
Figure 58. An outline of GenCHASE Input Processors (GenIPs.pm) Module 

Input processors are used to generate specific inputs required by different 

homology search methods. The Pattern or pattern profile is generated directly 

from the input set of sequences while the consensus sequence is based on an 

alignment.  
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A newly implemented input processors module, as shown in Figure 58, made it 

possible to easily use any of the ClustalW, Dialign or Mafft alignment schemes, 

whenever it is required to generate the PSI-TblastN specific alignment or the 

consensus sequence. Pratt/PS_Scan and MEME produce a pattern or a pattern 

profile, directly using the input set of sequences. To save time and computing 

resources, once a specific input such as an alignment is produced that is 

required by a particular method, it is not generated again if the same is required 

by another homology search method. 

  

o GenRunParse.pm 
 

This module, as shown in Figure 59, deals with the execution of GenCHASE 

component methods given the required inputs. One method is executed at a 

time. When a particular database search is completed, its report is parsed using 

the parsing scripts implemented in GenRunParse.pm to extract some specific 

information as mentioned in section 5.4.1. This information is returned (in the 

form of a method specific table) to the driver script for further analysis.  
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Figure 59. An outline of the GenCHASE Run and Parse (GenRunParse.pm) 
Module 

Given the specific method input, prepared using input processors, GenCHASE 

component methods are executed one by one and their output is parsed to get 

the specific information that is used later by the GenCHASE driver script for 

further analysis.  

 

 

o GenDBreader.pm 
 

The database reader or the DBreader.pm module, as shown in Figure 60, is 

written exclusively to read the Fasta formatted database of DNA/genomic 

sequence(s). This module reads the target database to report its size (total 

number of nucleotides) and extracts information such as the sequence 

identifier(s), description lines and the sequence(s). This information is then 

stored in a table that is later used by the driver script.  
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Figure 60. An outline of GenCHASE Database Reader (GenDBreader.pm) 
Module 

The database reader module reads the sequence database (usually a single 

chromosome of a genomic sequence), given in Fasta format, to extract some 

specific information that is then passed back to the GenCHASE driver script.  

 

5.6.2. The Configuration File 
  
In modular GenCHASE we make use of a configuration file so that one may be 

able to apply the user-defined configurations without changing the GenCHASE 

main script, similar to the one we used for modular CHASE. This configuration 

file contains information such as the path to several tools, databases and 

directories, and the method specific information such as the name of the method, 

its class (e.g. if it is classified as an alignment based method), the alignment 

scheme that it may use, its weight, etc.  

 

The GenCHASE configuration file, as shown in Figure 61, follows the 

conventions of the eXtensible Mark-up Language (XML). In XML format one has 

to place the actual contents enclosed in a specific opening and a closing tag, in a 

hierarchical fashion. For example we start the GenCHASE configuration file with 
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a main opening tag ‘<GENCHASECONF>’, then we have a section for paths 

tagged ‘<Paths>’ and one for the method-specific information tagged ‘<Method>’. 

Within the Paths or the Method section each element has its own opening and 

closing tags. At the end, each section has its closing tag and the whole document 

ends with the main closing tag ‘</GENCHASECONF>’.  

 
 

Figure 61. GenCHASE configuration file, an example 

GenCHASE configuration file is similar to the one used for CHASE and it is 

implemented in XML format. It starts with a main opening tag and within that the 

user-defined paths to several tools, databases and directories can be specified. 

User-defined method-specific information is placed in the methods section. 
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A particular browser, such as Internet explorer or Mozilla, that recognizes the 

XML syntax, highlights the tags and differentiates the actual data that is enclosed 

within these tags, as shown in Figure 61 for an example XML document (opened 

in the Mozilla browser). Sections or subsections start with a negative sign (-) 

where the data is shown. The subsections where the data is hidden start with a 

positive sign. Clicking on the positive sign of a section or subsection shows the 

actual data inside the tags. 

 

5.6.3. GenCHASE Driver Script 
 

Given the set of sequences as an input and the user-defined or default options, 

the GenCHASE driver script integrates, as shown in Figure 62, all of the above 

mentioned modules to get the information that is processed further to carry out a 

complete GenCHASE run. The GenCHASE driver script works in stages S0-S6. 

In the initial stage (S0), it validates the input set of sequences, user-defined (or 

default) options and reads the configuration file in stage S1 to validate if all the 

tools, databases and directories are accessible. In the second stage (S2), it 

instructs the input processors (GenIPs.pm) module, as mentioned above, to 

reformat the input data into a format that is required by the GenCHASE 

component methods.  
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Figure 62. An outline of the GenCHASE driver script 
Given a set of protein sequences (validation in stage S0) and user-

defined/default options (validation in stage S1), the Input-processing module 

(stage S2) prepares the information used by the homology search methods. The 

GenRunParse module (stage S3) runs these methods and parses their output to 

report the co-ordinates and E-values of the High-Scoring Segment Pairs (HSPs). 

After reading the genomic database (stage S4) to retrieve sequences 

corresponding to the HSPs, in stage S5 the GenCHASE driver script clusters the 

overlapping HSPs, extends those genomic regions where these HSPs are found 

and predicts the gene structure using homology-based methods and the ab-initio 

methods. Finally in Stage S6, GenCHASE prepares a report that shows all the 

predicted genes, sorted on the basis of their C-values.  
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The third stage (S3) of the GenCHASE driver script calls the GenCHASE 

RunParse module to execute the homology-based gene finding methods and 

parses their reports, one by one, to report the HSP ids and the E-values, as 

described in section 5.4.1. After reading the genomic database (stage S4) to 

retrieve the sequence data corresponding to the HSPs, In Stage 5 (S5) 

GenCHASE combines the homology-based gene finding and ab initio gene 

structure prediction methods in five steps, as shown in Figure 62. E-values of the 

homology-based search methods are combined into a C-value as described in 

section 5.4.5. The last stage (S6) of the GenCHASE driver script deals with 

reporting the GenCHASE results as shown in Figure 66.  
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5.7. Case Studies 

5.7.1. Overview 
 
GenCHASE finds as many members as possible of a given protein family, in 

genomes, by combining homology search methods and ab initio gene structure 

prediction methods. To test the performance of GenCHASE we carried out case 

studies on test protein families. More precisely, using GenCHASE we find 

members of ABC, Cadherins and S100 protein families in the human genome.  

 
5.7.2. Test Protein Families 

5.7.2.1. ABC Proteins 
 
The ATP-binding cassette (ABC) proteins constitute a large family, mostly 

membrane proteins responsible for the translocation of a wide variety of 

substances across extra/intracellular membranes (Stefkova et al., 2004; Schmitt 

and Tampe, 2002). ABCs are found in both prokaryotes and eukaryotes (Quentin 

and Fichant, 2000; Dassa and Bouige, 2001). Most ABC proteins contain two 

highly conserved domains, namely the ATP-Binding Cassette (ABC) domain 

(also known as the Nucleotide Binding Domain (NBD)) and the ABC 

transmembrane domain (TMD), (See PF00005 for ABC domain and PF00664 for 

the ABC transmembrane domain of the protein family from the PFAM database: 

http://www.sanger.ac.uk/Software/Pfam/). The eukaryotic ABC genes are mostly 

organized either as full transporters containing two TMDs and two NBDs, or as 

half transporters (Hyde et al., 1990). The ABC domains contain characteristic 

motifs such as the Walker A motif (PROSITE: PDOC00017), the ABC signature 

motif (PROSITE: PDOC00185) and the Walker B motif. The ABC signature motif 

is located just upstream of the Walker B site (Hyde et al., 1990).  
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5.7.2.2. Cadherin Proteins 

Cadherins are a family of Ca2+-dependent cell-cell adhesion receptors that 

mediate cell adhesion and play a fundamental role in normal development (Yagi 

et al., 2000). They participate in the maintenance of proper cell-cell contacts. 

Cadherins depend on calcium for their function: removal of calcium abolishes 

adhesive activity and renders cadherins vulnerable to proteases. Their cell-

adhesive property also makes them likely candidates for tumor suppressor genes 

(Kremmidiotis et al., 1998).  

Cadherins typically consist of five tandem repeated extracellular domains or 

ectodomains, a single membrane-spanning segment and a cytoplasmic region 

(Wu et al., 1999). In addition to being homologous among each other, these 

repetitive cadherin ectodomains contain characteristic sequence motifs LDRE 

and DXDNDN in the C-terminal part and a DXD motif in the N-Terminal part, 

which participates in the formation of calcium binding pockets linking 

neighbouring cadherin ectodomains (Wu et al., 1999). The multiple repetitive 

domain organization of Cadherins and their crucial biological role make them an 

important candidate for identification and analysis with bioinformatics tools (Julia 

et al., 2004). 

5.7.2.3. S100 Proteins 
 
S100 proteins form one of the largest subfamilies of the EF-hand protein 

superfamily. These proteins feature Calcium-binding motifs composed of two 

helixes (E and F) joined by a loop. These are small, acidic calcium binding 

proteins that contain two distinct EF-hand calcium-binding motifs. The S100-

specific EF-hand (PF01023) is located at the N-terminus, followed by a classical 

Ca2+-binding EF-hand (PF00036). In addition to Ca2+ many S100 proteins, of 

currently 20 known members in human, display high affinities towards Zn2+ and 

Cu2+ ions (Marenholz et al., 2004). These proteins regulate a variety of cellular 
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processes via interaction with different target proteins. Several diseases, 

including cancer and melanoma, are related to the abnormal expression of S100 

proteins, which are expressed in a cell- and tissue-specific manner (Kanamori et 

al., 2004).  
 

5.8. Application of GenCHASE on the Human Genome to Find 
Test Protein Families 

 

We use the GenCHASE analyser (GCA) to apply GenCHASE on a particular 

genome to find members of our test protein families. GCA applies GenCHASE to 

all genomic sequences of a particular genome, one by one, and analyses the 

results as mentioned in section 5.5. To apply GenCHASE on a particular 

genome, we start with a training set of sequences taken from the protein family in 

question. Further, where possible, we compile the knowledge of already known 

genes into an annotation file using the Ensmart tool from Ensembl, as mentioned 

in section 5.5. Such an annotation of known genes serves as a basis to evaluate 

the performance of GenCHASE (i.e., how many of the known genes are picked 

up by GenCHASE, given a training set of sequences from a particular protein 

family) and to separate the known genes from the unknown. Hyperlinks to UCSC 

(and thereby to NCBI) and Ensemble genome browsers, applied to the co-

ordinates of the genes found by GenCHASE, in the GCA report, further help to 

explore the existing evidence about the genes, which are unknown according to 

Ensembl annotations. 

 

To find ABC proteins in the human genome, we used a refined dataset of all 

known human ABC proteins (Spitzer 2004b). There are two kinds of ABC 

transporters, full transporters containing two ABC domains and half transporters 

containing one ABC domain. This dataset contained only the conserved part of 

the original complete sequences. Full ABC transporters were split into two 

sequences, each containing one ABC domain so that the conserved parts of all 

the sequences can be aligned to each other. The co-ordinates of the known ABC 
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genes in the human genome were collected from the Ensembl database using 

the tool Ensmart. 

 

To find Cadherins and S100s in the human genome, we took their seed 

alignment sequences, from the PFAM database and prepared annotation files 

containing co-ordinates for all of their known genes, using Ensmart. 
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5.9. GenCHASE Results and Discussion 
 

We run GenCHASE to find the members of our test protein families in the human 

genome. As an evaluation of GenCHASE, the results show, as described below, 

that we have successfully found all the known genes for our test protein families, 

according to the Ensembl annotations with which we compare our results. In 

addition, GenCHASE found several hits where no Ensembl annotations were 

available. We use HMMsearch, based on query sequences, to search the 

GenCHASE-found gene translations. In the GCA report all those hits are 

displayed in bold, where the HMMsearch E-value is below a certain threshold 

(the same as the E-value cut-off, EC=2) and no Ensembl annotations are 

available. In this way, interesting and un-annotated genes are separated from the 

known genes automatically. All such interesting genes are subjected to further 

analysis, such as the comparison with any further available annotation(s) (at, for 

example, NCBI) and an InterProScan analysis (Zdobnov et al., 2001). In an 

InterProScan analysis, the given protein sequence is searched against the 

InterPro database, an integrated resource of several motif databases. Such 

analysis helps to figure out whether these interesting hits are in fact new 

members of our test protein families, pseudo-genes or simply false positives.  

 

5.9.1. ABC Proteins in The Human Genome 
 

In response to the use of human ABC protein sequences as a training dataset for 

GenCHASE, we found all the 48 known human ABC proteins, as shown in Figure 

63, according to the Ensembl annotations with which we compared our results. 

Apart from these 48 known ABC proteins, 29 additional hits (shown in bold in 

Table 12) were considered interesting since their HMMsearch E-values were 

below a certain threshold and no Ensembl annotation was available. 

InterProScan analysis revealed that 12 out of these 29 interesting hits show 

characteristic ABC motifs; the hits lacking motifs are called “partial”. 



 118

 

 
Figure 63: Summary of the search for ABC proteins in the human genome, 
using GenCHASE  
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 Table 12: A table that show
s the G

enC
H

ASE result for AB
C

 protein searches in the hum
an genom

e.  
E

nsem
bl, N

C
B

I analysis and InterP
roS

can analysis is also show
n. A

ll those hits are show
n in bold w

here the H
M

M
search 

E
-value w

as below
 a certain cut-off and no annotation w

as available from
 E

nsem
bl.  

 N
o. 

C
lusterID

 
C

-value 
H

M
M

-E-value 
PSITblastN

 
PH

ITblastN
 

TfastY
34 

C
luster Length 

Ensem
bl A

nnotation 
N

C
B

I  
InterProScan

1 
chr17_reverse_67894547 

1e-59 
2.7e-154 

2e-109 
7e-63 

2e-06 
222310 bp, 2746 aa 

67735261-67671970 A
B

C
A

6 

67818622-67741272 A
B

C
A

10 

67839914-67920413 A
B

C
A

5 

 
 

2 
chr7_reverse_86795277 

1e-59 
4.2e-130 

2e-66 
2e-94 

1e-17 
78625 bp, 953 aa 

86716818-86643395 A
B

C
B4 

86954599-86745209 A
B

C
B1 

 
 

3 
chr7_reverse_86704202 

1e-58 
5.3e-128 

9e-68 
2e-98 

6e-10 
60935 bp, 1171 aa 

86716818-86643395 A
B

C
B4 

 
 

4 
chr7_forw

ard_20427123 
7e-57 

2e-121 
7e-60 

3e-93 
2e-17 

112440 bp, 1131 aa 
20412600-20539563 A

B
C

B5 
 

 

5 
chr2_reverse_170045338 

1e-56 
3.1e-124 

2e-59 
1e-88 

1e-21 
62662 bp, 964 aa 

170090377-169981993 A
B

CB
11 

 
 

6 
chr10_forw

ard_101228363 
3e-39 

3.6e-127 
2e-51 

1e-52 
2e-13 

47612 bp, 1160 aa 
101207158-101276168 A

B
CC

2 
 

 

7 
chr16_reverse_16253058 

6e-39 
3e-08 

3e-52 
1e-59 

7e-05 
42714 bp, 127 aa 

16283668-16210344 A
B

C
C6 

 
 

8 
chr16_forw

ard_16131853 
5e-35 

100 
1e-51 

4e-49 
0.0002 

69639 bp, 36 aa 
16009884-16202628 A

B
C

C1 
 

 

9 
chr3_reverse_185016325 

1e-33 
7.9e-121 

1e-42 
2e-46 

7e-12 
56324 bp, 1001 aa 

185056590-184958632 A
B

CC
5 

 
 

10 
chr15_reverse_20246491 

2e-33 
9.5e-18 

1e-42 
3e-52 

2e-05 
7843 bp, 351 aa 

N
ot A

vailable 
A

B
C

B
10P 

 

11 
chr16_reverse_47958295 

4e-33 
1.8e-129 

3e-45 
2e-49 

7e-05 
62709 bp, 1293 aa 

47958521-47895218 A
B

C
C12 

 
 

12 
chr6_forw

ard_43442572 
5e-32 

9.2e-107 
2e-43 

3e-43 
3e-09 

22112 bp, 1522 aa 
43442147-43465018 A

B
C

C10 
 

 

13 
chr16_reverse_2298543 

2e-31 
1.2e-84 

2e-53 
8e-39 

0.04 
40563 bp, 1652 aa 

2319649-2266599 A
B

C
A

3 
 

 

14 
chr12_reverse_121871991 

1e-29 
3.3e-59 

1e-31 
1e-44 

2e-12 
20007 bp, 528 aa 

121888566-121851067 A
B

C
B

9 
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15 
chr16_reverse_48028197 

3e-29 
5.3e-127 

5e-42 
3e-42 

0.001 
49052 bp, 1030 aa 

48056093-47978782 A
B

C
C11 

 
 

16 
chr21_forw

ard_14593630 
5e-28 

1.6e-20 
8e-39 

5e-41 
0.0004 

67910 bp, 607 aa 
14567991-14656967 A

B
C

C13 
 

 

17 
chr17_forw

ard_49215680 
3e-27 

1.9e-123 
2e-40 

1e-38 
0.006 

27519 bp, 1195 aa 
49186866-49243700 A

B
C

C3 
 

 

18 
chr2_reverse_216058297 

3e-25 
5.6e-82 

4e-40 
2e-28 

3e-07 
56953 bp, 1357 aa 

216205693-215998809 A
B

C
A

12 
 

 

19 
chr3_forw

ard_88287207 
3e-25 

2e-06 
2e-49 

2e-20 
1e-05 

1866 bp, 287 aa 
N

ot A
vailable 

A
B

C
F2P 

 

20 
chr7_forw

ard_150119974 
5e-25 

1.2e-63 
3e-26 

2e-36 
2e-12 

14203 bp, 745 aa 
150117278-150134393 A

B
C

B
8 

 
 

21 
chr6_reverse_32868374 

1e-23 
4.5e-55 

3e-26 
2e-34 

3e-10 
12677 bp, 966 aa 

32868712-32859948 TA
P1 

 
 

22 
chr6_reverse_32852970 

1e-23 
3.4e-51 

3e-25 
4e-34 

9e-12 
9327 bp, 686 aa 

32852970-32837030 TA
P2 

 
 

23 
chr7_forw

ard_116734728 
2e-22 

1e-86 
1e-30 

1e-26 
3e-10 

126937 bp, 998 aa 
116674520-116863218 C

FTR
 

 
 

24 
chr19_forw

ard_992361 
5e-22 

1.1e-84 
3e-39 

9e-25 
0.06 

24063 bp, 2235 aa 
992361-1016424 A

B
C

A
7 

 
 

25 
chr12_reverse_21919944 

3e-21 
3e-58 

8e-27 
2e-26 

2e-10 
74699 bp, 763 aa 

21980875-21845245 A
B

C
C9 

 
 

26 
chr1_reverse_226636549 

1e-20 
1.2e-64 

3e-22 
7e-37 

0.01 
21412 bp, 337 aa 

226655653-226613541 A
B

CB
10 

 
 

27 
chr7_forw

ard_48173425 
2e-20 

2.8e-67 
8e-34 

1e-21 
7e-06 

228897 bp, 1363 aa 
47982644-48431892 N

M
_152701 

 
 

28 
chr17_reverse_67534139 

3e-19 
3.7e-91 

2e-36 
4e-19 

0.03 
72790 bp, 1164 aa 

67535298-67461349 A
B

C
A

8 
 

 

29 
chr9_reverse_102973946 

5e-19 
1.5e-82 

2e-34 
1e-20 

0.05 
47512 bp, 1740 aa 

103070274-102923121 A
B

C
A

1 
 

 

30 
chr17_reverse_67654889 

6e-19 
2.8e-47 

4e-34 
6e-19 

0.001 
85710 bp, 1270 aa 

67644390-67568108 A
B

C
A

9 
 

 

31 
chr1_reverse_93994179 

9e-19 
1.3e-98 

5e-34 
4e-20 

0.04 
58991 bp, 1448 aa 

94058489-93933466 A
B

C
A

4 
 

 

32 
chr11_reverse_17418100 

2e-17 
3.2e-90 

4e-23 
2e-26 

0.01 
39253 bp, 1119 aa 

17462632-17378847 A
B

C
C8 

 
 

33 
chrX

_reverse_73163454 
7e-17 

5.6e-58 
1e-14 

1e-29 
2e-06 

23458 bp, 601 aa 
73242910-73139907 A

B
C

B7 
 

 

34 
chr7_reverse_23345133 

2e-15 
4.6e-12 

2e-25 
9e-17 

0.0005 
664 bp, 204 aa 

N
ot A

vailable 
A

B
C

E
1P 

 

35 
chr13_reverse_93545192 

2e-14 
6.5e-64 

6e-21 
2e-19 

0.01 
36785 bp, 432 aa 

93651684-93370091 A
B

C
C4 

 
 

36 
chr2_reverse_220289469 

5e-14 
3.6e-61 

2e-12 
6e-21 

1e-08 
12270 bp, 1136 aa 

220285934-220277033 A
B

CB
6 

 
 

37 
chr21_forw

ard_42579314 
1e-13 

6.8e-20 
1e-18 

2e-17 
7e-05 

26610 bp, 559 aa 
42533403-42611488 A

B
C

G
1 
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38 
chr1_reverse_189504876 

5e-13 
7.3e-09 

3e-23 
1e-13 

0.04 
781 bp, 204 aa 

N
ot A

vailable 
A

B
C

E
1P 

 

39 
chr7_reverse_150315285 

4e-12 
1.8e-55 

3e-21 
2e-10 

6e-05 
18587 bp, 771 aa 

150316058-150296664 A
B

C
F2 

 
 

40 
chr13_reverse_93466287 

9e-12 
1.2e-28 

1e-15 
6e-17 

0.008 
81427 bp, 565 aa 

93651684-93370091 A
B

C
C4 

 
 

41 
chr4_forw

ard_146603165 
1e-10 

3.1e-37 
4e-17 

1e-08 
3e-06 

23187 bp, 608 aa 
146597108-146627958 A

B
C

E1 
 

 

42 
chr11_forw

ard_118553483 
2e-10 

1e-28 
1e-14 

3e-12 
0.0003 

15985 bp, 674 aa 
118557402-118571024 A

B
C

G
4 

 
 

43 
chr9_reverse_135271051 

2e-09 
1.9e-102 

4e-18 
6e-08 

0.03 
11377 bp, 2021 aa 

135280033-135258979 A
B

C
A

2 
 

 

44 
chr4_reverse_410752 

1e-08 
1.3e-22 

2 
3e-19 

6e-06 
1200 bp, 288 aa 

N
ot A

vailable 

(FL
J14297) 

H
ypothetical 

A
B

C
A

10L
 

A
B

C
 

dom
ain 

45 
chr3_forw

ard_185224909 
3e-07 

4.3e-45 
2e-13 

7e-05 
0.002 

7490 bp, 709 aa 
185224799-185232706 A

B
C

F3 
 

 

46 
chr12_reverse_38287763 

1e-06 
5.9e-20 

2e-12 
0.003 

0.0003 
34987 bp, 288 aa 

38300237-38232814 A
B

C
D

2 
 

 

47 
chr4_reverse_89519561 

1e-06 
2.4e-24 

3e-08 
1e-05 

3e-06 
25057 bp, 322 aa 

89538117-89471235 A
B

C
G

2 
 

 

48 
chrX

_forw
ard_151466982 

2e-06 
2.1e-12 

3e-11 
0.0005 

0.0003 
10111 bp, 560 aa 

151458227-151478120 A
B

C
D

1 
 

 

49 
chr16_forw

ard_21910566 
2e-06 

2.3e-12 
2e-10 

8e-07 
0.06 

12311 bp, 237 aa 
N

ot A
vailable 

(L
O

C
342293) 

H
ypothetical 

A
B

C
A

3L
 

A
B

C
 

sign
atu

re, 

W
alker B

 

50 
chr1_forw

ard_189504906 
3e-06 

0.01 
9e-12 

2e-06 
2 

326 bp, 108 aa 
N

ot A
vailable 

A
B

C
E

1P 
 

51 
chr14_reverse_72757012 

5e-06 
2.3e-17 

5e-11 
1e-06 

2 
22518 bp, 778 aa 

72759736-72742190 A
B

C
D

4 
 

 

52 
chr6_forw

ard_30651340 
8e-06 

2.4e-42 
2e-08 

0.0002 
0.0001 

13284 bp, 752 aa 
30645327-30665235 A

B
C

F1 
 

 

53 
chr16_forw

ard_2366164 
1e-05 

0.078 
3e-09 

3e-07 
2 

56815 bp, 781 aa 
N

ot A
vailable 

A
B

C
A

3L
 

A
B

C
 

signature, 

W
alker B

 

54 
chr2_forw

ard_228869943 
0.0002 

100 
2e-05 

0.007 
5e-05 

245 bp, 81 aa 
N

ot A
vailable 

 
 

55 
chr7_reverse_23345637 

0.0008 
0.15 

1e-08 
0.02 

2 
374 bp, 124 aa 

N
ot A

vailable 
A

B
C

E
1P 
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56 
chr20_reverse_25899975 

0.001 
100 

0.0002 
0.0001 

0.09 
4840 bp, 93 aa 

N
ot A

vailable 
 

 

57 
chr1_forw

ard_94427082 
0.001 

3.5e-18 
8e-08 

0.009 
2 

16941 bp, 230 aa 
94355799-94455889 A

B
C

D
3 

 
 

58 
chr15_forw

ard_67030820 
0.007 

68 
5e-05 

0.07 
0.09 

224 bp, 74 aa 
N

ot A
vailable 

 
 

59 
chr2_reverse_44040353 

0.009 
1.3e-26 

7e-06 
0.06 

2 
23603 bp, 543 aa 

44040493-44014146 A
B

C
G

5 
 

 

60 
chr2_forw

ard_44040728 
0.01 

5e-22 
0.004 

0.03 
0.01 

13814 bp, 322 aa 
44040638-44080139 A

B
C

G
8 

 
 

61 
chr2_forw

ard_99340004 
0.01 

0.0093 
0.003 

0.0002 
2 

611 bp, 203 aa 
N

ot A
vailable 

 
 

62 
chr6_reverse_90486909 

0.02 
23 

0.002 
2 

0.003 
9051 bp, 115 aa 

N
ot A

vailable 
 

 

63 
chr5_forw

ard_132049030 
0.03 

0.1 
0.9 

0.03 
0.001 

5242 bp, 286 aa 
N

ot A
vailable 

 
 

64 
chr5_forw

ard_98092285 
0.06 

100 
0.3 

2 
0.0005 

182 bp, 60 aa 
N

ot A
vailable 

 
 

65 
chr3_forw

ard_52349099 
0.06 

0.03 
0.3 

0.06 
0.01 

17140 bp, 1232 aa 
N

ot A
vailable 

 
 

66 
chr11_forw

ard_102577201 
0.08 

0.11 
0.2 

0.04 
0.07 

18831 bp, 741 aa 
N

ot A
vailable 

 
 

67 
chr7_reverse_23345851 

0.08 
100 

0.002 
0.1 

2 
83 bp, 25 aa 

N
ot A

vailable 
 

 

68 
chr10_forw

ard_112022582 
0.1 

0.0046 
0.3 

0.003 
2 

13675 bp, 505 aa 
N

ot A
vailable 

 
 

69 
chr19_forw

ard_48914551 
0.2 

0.24 
0.06 

0.1 
2 

1391 bp, 463 aa 
N

ot A
vailable 

 
 

70 
chr11_reverse_6707420 

0.2 
1.5 

0.08 
2 

0.09 
7269 bp, 2296 aa 

N
ot A

vailable 
 

 

71 
chr22_forw

ard_35565149 
0.3 

100 
2 

0.1 
0.08 

12425 bp, 898 aa 
N

ot A
vailable 

 
 

72 
chr2_reverse_17709362 

0.3 
100 

2 
0.8 

0.01 
5651 bp, 273 aa 

N
ot A

vailable 
 

 

73 
chr8_reverse_27954740 

0.3 
0.083 

0.8 
0.6 

0.07 
14885 bp, 374 aa 

N
ot A

vailable 
 

 

74 
chr22_forw

ard_15242951 
0.3 

4.7e-06 
0.005 

2 
2 

4007 bp, 273 aa 
N

ot A
vailable 

A
B

C
D

1P 
 

75 
chr5_forw

ard_68685588 
0.4 

0.59 
0.03 

1 
2 

12662 bp, 295 aa 
N

ot A
vailable 

 
 

76 
chr7_reverse_43662076 

0.4 
0.17 

0.6 
2 

0.06 
12734 bp, 972 aa 

N
ot A

vailable 
 

 

77 
chr7_reverse_149836626 

0.5 
68 

2 
2 

0.04 
744 bp, 207 aa 

N
ot A

vailable 
 

 

78 
chr7_random

_forw
ard_186310 

0.5 
100 

2 
1 

0.07 
8807 bp, 181 aa 

N
ot A

vailable 
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79 
chrX

_reverse_52417216 
0.6 

0.12 
2 

2 
0.07 

10381 bp, 299 aa 
N

ot A
vailable 

 
 

80 
chr16_forw

ard_21924694 
0.9 

100 
0.2 

2 
2 

116 bp, 38 aa 
N

ot A
vailable 

 
 

81 
chr2_forw

ard_91511626 
0.9 

1.5e-06 
0.2 

2 
2 

5755 bp, 291 aa 
N

ot A
vailable 

A
L

D
PL

 / 

A
B

C
D

1L
 

A
B

C
 

signature, 

W
alker B

 

82 
chr3_forw

ard_161462126 
1 

0.1 
0.5 

2 
2 

10384 bp, 564 aa 
N

ot A
vailable 

 
 

83 
chr18_random

_forw
ard_3936 

1 
100 

2 
0.8 

2 
26 bp, 8 aa 

N
ot A

vailable 
 

 

84 
chr16_forw

ard_48073295 
1 

0.51 
0.5 

2 
2 

16055 bp, 220 aa 
N

ot A
vailable 

 
 

85 
chrU

n_random
_forw

ard_1375793 
1 

100 
0.4 

2 
2 

8501 bp, 215 aa 
N

ot A
vailable 

 
 

86 
chr1_forw

ard_225302635 
1 

45 
2 

0.4 
2 

8394 bp, 320 aa 
N

ot A
vailable 

 
 

87 
chr12_reverse_110611937 

1 
100 

1 
0.8 

2 
140 bp, 44 aa 

N
ot A

vailable 
 

 

88 
chr5_forw

ard_175773490 
1 

4.6 
0.4 

2 
2 

6331 bp, 260 aa 
N

ot A
vailable 

 
 

89 
chr22_forw

ard_37346525 
1 

0.91 
0.5 

2 
2 

18959 bp, 501 aa 
N

ot A
vailable 

 
 

90 
chr17_forw

ard_41087806 
1 

0.48 
2 

0.5 
2 

8980 bp, 815 aa 
N

ot A
vailable 

 
 

91 
chr19_forw

ard_34499568 
1 

100 
2 

0.4 
2 

95 bp, 31 aa 
N

ot A
vailable 

 
 

92 
chr4_reverse_109073989 

1 
100 

2 
0.4 

2 
7443 bp, 113 aa 

N
ot A

vailable 
 

 

93 
chr15_random

_forw
ard_1107893 

1 
100 

2 
0.8 

2 
7380 bp, 291 aa 

N
ot A

vailable 
 

 

94 
chrU

n_random
_reverse_1831714 

1 
100 

0.6 
2 

2 
89 bp, 28 aa 

N
ot A

vailable 
 

 

95 
chr16_reverse_33521908 

1 
0.2 

0.8 
2 

2 
3199 bp, 198 aa 

N
ot A

vailable 
 

 

96 
chr16_reverse_32525868 

1 
0.16 

0.8 
2 

2 
3199 bp, 198 aa 

N
ot A

vailable 
 

 

97 
chrM

_forw
ard_7327 

1 
100 

2 
0.3 

2 
53 bp, 17 aa 

N
ot A

vailable 
 

 

98 
chr12_forw

ard_38982858 
1 

0.044 
1 

1 
2 

11384 bp, 402 aa 
N

ot A
vailable 

 
 

99 
chr9_random

_forw
ard_1203048 

1 
100 

0.6 
2 

2 
329 bp, 109 aa 

N
ot A

vailable 
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100 
chr5_forw

ard_143209343 
1 

100 
2 

0.5 
2 

185 bp, 61 aa 
N

ot A
vailable 

 
 

101 
chr18_random

_forw
ard_3124 

1 
100 

0.6 
2 

2 
32 bp, 10 aa 

N
ot A

vailable 
 

 

102 
chr3_reverse_42383665 

2 
100 

2 
2 

2 
116 bp, 37 aa 

N
ot A

vailable 
 

 

103 
chr17_reverse_80346796 

2 
100 

1 
2 

2 
167 bp, 55 aa 

N
ot A

vailable 
 

 

104 
chr20_forw

ard_38283153 
2 

33 
2 

2 
2 

4105 bp, 120 aa 
N

ot A
vailable 

 
 

105 
chr13_random

_forw
ard_109059 

2 
100 

1 
2 

2 
56 bp, 18 aa 

N
ot A

vailable 
 

 

106 
chr17_forw

ard_5102208 
2 

4.6 
2 

2 
2 

9194 bp, 536 aa 
N

ot A
vailable 

 
 

107 
chr14_forw

ard_67540156 
2 

6.3 
1 

2 
2 

1506 bp, 411 aa 
N

ot A
vailable 

 
 

108 
chr7_random

_reverse_285443 
2 

100 
2 

2 
2 

14699 bp, 161 aa 
N

ot A
vailable 

 
 

109 
chr22_reverse_36256210 

2 
100 

2 
2 

2 
122 bp, 40 aa 

N
ot A

vailable 
 

 

110 
chr13_forw

ard_33989332 
2 

100 
2 

2 
2 

80 bp, 26 aa 
N

ot A
vailable 

 
 

111 
chr10_forw

ard_38898558 
2 

4.5e-05 
0.9 

2 
2 

3194 bp, 201 aa 
N

ot A
vailable 

A
B

C
D

1P 
 

112 
chr11_reverse_64421296 

2 
12 

2 
2 

2 
9274 bp, 208 aa 

N
ot A

vailable 
 

 

113 
chrX

_random
_forw

ard_280685 
2 

61 
0.9 

2 
2 

8607 bp, 757 aa 
N

ot A
vailable 

 
 

114 
chr10_random

_forw
ard_172083 

2 
100 

2 
1 

2 
3407 bp, 122 aa 

N
ot A

vailable 
 

 

115 
chr8_forw

ard_41360328 
2 

100 
2 

1 
2 

5716 bp, 173 aa 
N

ot A
vailable 

 
 

116 
chr13_random

_forw
ard_28064 

2 
100 

2 
1 

2 
29 bp, 9 aa 

N
ot A

vailable 
 

 

117 
chr5_reverse_53490264 

2 
100 

0.9 
2 

2 
6776 bp, 79 aa 

N
ot A

vailable 
 

 

118 
chr2_random

_forw
ard_404995 

2 
100 

1 
2 

2 
10474 bp, 141 aa 

N
ot A

vailable 
 

 

119 
chr6_random

_reverse_1002576 
2 

2.4 
2 

1 
2 

6917 bp, 1315 aa 
N

ot A
vailable 
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Following the hyperlinks to NCBI, from GenCHASE reports, 8 out of these 12 

candidate ABC proteins were found to be pseudogenes, as shown in Table 12. 

The remaining 4 hits are our candidate ABC proteins. These are hits number 44, 

49, 53 and 81in Table 12.  

 

Experimental verification of these ABC genes is underway (Lorkowski, 2004). As 

a first result, the mRNA of chr4_reverse_410752 (which we call ABCA10 like (or 

ABCA10L)) has been found, as shown in Figure 64. A specific intron-spanning 

region of mRNA was detected using primers designed specifically for ABCA10L. 

ABCA10 is thought to be involved in lipid homeostasis (Wenzel et al., 2003), 

ABCA10L might have a similar role. Cloning and sequencing are the next steps. 

Similar analysis will be done in due time for all other candidate ABC genes.  

 

 
Figure 64: ABCA10L, experimental results (Lorkowski 2004) 
Specific primers were designed to detect part of the mRNA for our ABCA10 like 

(or ABCA10L), chrr4_reverse_410752, GenCHASE hit. To avoid any bias, 3 

experiments were done where in the first experiment part of ABCA10 mRNA was 

detected, in the second ABCA10L (intron-spanning) part of mRNA was detected 

and in the third experiment ABCA10L (not intron-spanning) part of mRNA was 

detected as shown in the gel lanes 1, 2, and 3, respectively. In the first lane 50 

base pairs (bp) marker ladder was loaded.  
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5.9.2. Cadherins in The Human Genome 
 

There are 70 cadherin genes that are known so far, according to an analysis 

carried out using Ensmart at Ensembl. However, Höng et al., 2004 claim that 

there are 182 known genes. Using GenCHASE we have identified all known 70 

cadherin genes and in addition we find 16 candidates for cadherin genes, as 

shown in Table 13. 

 
Table 13.  InterProScan and NCBI/Ensembl analysis is shown for the 

candidate Cadherin genes in the human genome, found by GenCHASE. Please 

note that PF means a family from Pfam database while SSF means a family from 

Superfamily database (Pandit et al., 2002).  
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5.9.3. S100 Proteins in The Human Genome 
 

In response to the use of S100 sequences from the Pfam seed alignment, as a 

training dataset for GenCHASE, we found all the 20 known human S100 

proteins, according to the Ensembl annotations with which we compared our 

results. A summary for the search for S100 proteins in the human genome is 

presented in Figure 66.  

 

 
 
Figure 66: Summary of the search for S100 proteins in the human genome, 
using GenCHASE 

 
Apart form the 20 known S100s, 9 additional hits were considered interesting 

since their HMMsearch E-values were below our threshold (which is the same as 

GenCHASE C-value threshold) and no Ensembl annotations were available. 

InterProScan analysis revealed that 6 out of these 9 interesting hits show 

characteristic S100 motifs while the rest (3 hits) show partial or no motifs, as 

described in Table14.  
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Table 14. InterProScan and NCBI/Ensembl analysis is shown for the 

candidate S100 genes found in the human genome. Please note that in the 

InterProScan analysis, PF means a family from Pfam database, SSF means a 

family from Superfamily database and PS means a motif/pattern entry from the 

Prosite database.  
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6. Conclusions 
 
In this thesis, I try to improve database searches, as explained in the beginning 

of this thesis. Different methods report different results (see Figures 8, 9, and 10) 

and the increasing number of database search methods poses a major problem 

to wet-lab users, as it is difficult to decide which methods should be used and 

which not. Approaches that provide a consensus over several methods may ease 

the work of wet-lab users and enable them to see the overall picture of results by 

all of the methods in one go. CHASE and GenCHASE are such approaches in 

the area of protein database and genomic searches. 

 

CHASE results show that combining homology-search methods provides 

improved performance over an entire set of scenarios, ranging from the detection 

of distant to very close relationships between protein sequences. This 

corroborates, in the context of protein family research, the frequent claim that 

appropriately designed consensus methods can be more reliable than any of 

their component algorithms.  

 

CHASE software version 1.0 was released with Alam et al., 2004 and is being 

used by a number of people particularly at The Howard Hughes Medical Institute, 

USA, Pasteur Institute, France, Wageningen University, the Netherlands, 

Massachusetts Institute of Technology (MIT), USA, Indian Institute of Chemical 

Biology, Kolkuta-India, Washington University, USA, and Institute of 

Biotechnology, Lithuania. This version of CHASE software is available at 

http://www.mathematik.uni-bielefeld.de/~intikhab/chase-release1.0.tar.gz The 

modular structure of CHASE makes it very easy to integrate a new homology 

search method. The programmer just needs to update the configuration file and 

add a run_parse module for the corresponding method. 
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Overall, the performance of GenCHASE is also very good as it identifies all the 

known genes from our test protein families and furthermore finds several new 

candidate genes. The unique feature of GenCHASE is its ability to predict the 

gene structure of genomic regions supported by a consensus of homology 

search methods, reducing the rate of false positives. The performance of 

GenCHASE can be further enhanced, given gene prediction methods such as 

Augustus (Stanke et al., 2003). The benefit of methods such as Augustus is its 

ability to predict genes in the genomic regions where some similarity information 

(such as the co-ordinates of Genewise predicted exons) is available. If no 

similarity information is provided Augustus still predicts genes with better 

accuracy than Genscan. It would be a task of the near future to integrate 

methods such as Augustus in GenCHASE. 

 

Since searches for proteins in genomic databases are done more frequently than 

searches in protein databases, GenCHASE could be very useful in finding novel 

proteins that may even turn out to be useful drug targets. CHASE can also be 

used to search such targets in genomic sequences if a particular genome could 

be 6-frame translated into a database of small chunks. 

 

An improvement in results often comes at a price. In general, the profile HMM 

software packages are very sensitive and specific, but they are far slower than 

other methods (Eddy 1998b). The same is true for CHASE (for a run-time 

analysis see section 4.4.2) and GenCHASE. If you search a large database of 

protein sequences using HMMsearch, it will take some time but the results are 

useful. Similarly, some of the methods combined in CHASE and GenCHASE 

such as HMMsearch, Treesearch, TfastY, and Genewise are slower than Blast- 

like methods. Due to this fact the overall time taken to run CHASE and 

GenCHASE is larger than Blast, in particular when searching larger databases. 

The amount of time taken by CHASE and GenCHASE to complete searches in 
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large databases could be reduced if a parallel version could be implemented, a 

task of the near future.  

 

Approaches combining homology search methods such the CHASE are highly 

successful and the same seems true for approaches that combine homology 

search and gene-finding methods such as GenCHASE. The impact of 

GenCHASE remains to be seen where it can be applied to a large number of un-

annotated genomes, a task of the near future.  
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7. A
ppendix A: R

unning Tim
e Analysis For C

H
A

SE A
nd Its C

om
ponent M

ethods 
 A

 running tim
e experim

ent w
as conducted to m

easure the tim
e consum

ed by C
H

A
S

E
 com

ponent m
ethods and C

H
A

S
E 

itself in the even half of S
C

O
P

 database to find the m
em

bers of 10 protein fam
ilies (show

n in Table 6). This experim
ent 

w
as replicated 3 tim

es, as show
n in the tables below

, to estim
ate an average running tim

e, as show
n in Table 7, for all the 

m
ethods. S

um
 of the running tim

e for all m
ethods is show

n in the colum
n headed Sum

 w
hile sum

 of running tim
e for 

C
H

A
S

E
 com

ponent m
ethods except H

M
M

search is show
n in the colum

n headed Sum
 W

/O
 H

M
M

search.  
   R

eplication1 

Q
uery 

N
o. 

Q
uery 

N
am

e 
N

o. of 
Sequences 

A
verage 

Q
uery 

Length 
H

M
M

seach
Treeseach

PSIB
last 

PH
IB

last
M

ast
Sum

Sum
 W

/O
 

H
M

M
search

C
H

A
SE

1 
S100 

27 
44 

9 
81 

3 
5 

18 
116 

107 
113 

2 
1.36.1.2 

6 
71 

14 
42 

2 
5 

24 
87 

73 
63 

3 
1.41.1.2 

6 
92 

16 
48 

3 
4 

19 
90 

74 
79 

4 
1.23.1.1 

7 
103 

19 
55 

4 
4 

19 
101 

82 
85 

5 
1.73.1.1 

6 
126 

27 
64 

5 
5 

42 
143 

116 
118 

6 
1.128.1.1 

8 
127 

39 
116 

4 
5 

35 
199 

160 
153 

7 
1.27.1.1 

10 
170 

29 
88 

4 
6 

63 
190 

161 
166 

8 
ABC

s 
4 

300 
48 

111 
7 

9 
22 

197 
149 

146 

9 
3.3.1.no5 

17 
300 

56 
223 

9 
27 

228 
543 

487 
463 

10 
Serpins 

42 
415 

57 
391 

9 
62 

1103
1622

1565 
1513 
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R
eplication2 

Q
uery 

N
o. 

Q
uery 

N
am

e 
N

o. of 
Sequences 

A
verage 

Q
uery 

Length 
H

M
M

seach
Treeseach

PSIB
last 

PH
IB

last
M

ast
Sum

Sum
 W

/O
 

H
M

M
search

C
H

A
SE

1 
S100 

27 
44 

9 
97 

4 
17 

26 
153 

144 
117 

2 
1.36.1.2 

6 
71 

18 
42 

3 
4 

20 
87 

69 
67 

3 
1.41.1.2 

6 
92 

17 
53 

12 
3 

16 
101 

84 
72 

4 
1.23.1.1 

7 
103 

21 
54 

3 
4 

20 
102 

81 
82 

5 
1.73.1.1 

6 
126 

26 
69 

3 
5 

45 
148 

122 
113 

6 
1.128.1.1 

8 
127 

38 
110 

4 
5 

37 
194 

156 
152 

7 
1.27.1.1 

10 
170 

28 
80 

5 
6 

57 
176 

148 
163 

8 
ABC

s 
4 

300 
49 

119 
7 

9 
23 

207 
158 

168 

9 
3.3.1.no5 

17 
300 

53 
197 

11 
29 

221 
511 

458 
499 

10 
Serpins 

42 
415 

56 
415 

14 
82 

1102
1669

1613 
1516 
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 R
eplication3 

Q
uery 

N
o. 

Q
uery 

N
am

e 
N

o. of 
Sequences 

A
verage 

Q
uery 

Length 
H

M
M

seach
Treeseach

PSIB
last 

PH
IB

last
M

ast
Sum

Sum
 W

/O
 

H
M

M
search

C
H

A
SE

1 
S100 

27 
44 

6 
70 

3 
3 

15 
97 

91 
87 

2 
1.36.1.2 

6 
71 

10 
34 

2 
3 

18 
67 

57 
54 

3 
1.41.1.2 

6 
92 

12 
45 

4 
2 

15 
78 

66 
56 

4 
1.23.1.1 

7 
103 

13 
47 

3 
2 

19 
84 

71 
70 

5 
1.73.1.1 

6 
126 

18 
57 

3 
3 

35 
116 

98 
95 

6 
1.128.1.1 

8 
127 

26 
85 

3 
5 

28 
147 

121 
122 

7 
1.27.1.1 

10 
170 

20 
70 

3 
5 

53 
151 

131 
130 

8 
ABC

s 
4 

300 
32 

88 
5 

7 
18 

150 
118 

120 

9 
3.3.1.no5 

17 
300 

37 
176 

6 
25 

191 
435 

398 
400 

10 
Serpins 

42 
415 

38 
314 

9 
60 

872 
1293

1255 
1256 
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