Universitat Bielefeld

Suffix Arrays in Theory and Practice

Klaus-Bernd Schiirmann

Thesis submitted to the
Faculty of Technology of Bielefeld University, Germany

for the degree of Dr. rer. nat.

Supervised by
Prof. Dr. Jens Stoye

Referees

Prof. Dr. Jens Stoye, Prof. Dr. Enno Ohlebusch

Defense on
September 24, 2007

Gedruckt auf alterungsbestéindigem Papier ISO 9706

for Anja

Abstract

The suffix array of a string is a permutation of all starting positions of the string’s suffixes
in lexicographical order. In this thesis, we investigate mathematical and algorithmical
aspects of suffix arrays.

The first part mainly deals with combinatorial properties of suffix arrays and their
enumeration. For a fixed alphabet size and string length, we divide the set of all strings into
equivalence classes of strings that share the same suffix array. For each such equivalence
class, we count the number of strings contained in it and enumerate those strings. We
also give exact formulas for computing the number of equivalence classes and efficient
algorithms for enumerating them. Alternatively, we count the number of suffix arrays and
enumerate them. Our methods yield lower bounds for the compressibility of suffix arrays
and build the foundation for the efficient generation of appropriate test data sets for suffix-
array-based algorithms. We also show that summing up the elements of all equivalence
classes forms a particular instance for some summation identities of Eulerian numbers.

The second part of the thesis deals with suffix array construction. We first present a new
classification of suffix array construction algorithms and provide an in-depth review of the
classified algorithms. We classify the algorithms regarding two different categories: the
progress in the suffix sorting process and the usage of dependencies among suffixes. After
the survey of the previous algorithms, we present our new practical algorithm for suffix
array construction that consists of two easy-to-implement components. It first sorts the
suffixes with respect to a fixed length prefix; then it refines each bucket of suffixes sharing
the same prefix using the order of already sorted suffixes. Other suffix array construction
algorithms follow more complex strategies. We achieve a very fast construction for common
strings as well as for worst-case strings by enhancing our algorithm with further techniques;
this is shown by an in-depth experimental study that compares our algorithm to other
fast suffix array construction algorithms.

Abstract

i

Acknowledgements

Foremost, I would like to thank my supervisor Jens Stoye for encouraging me to develop
and to follow my own ideas. He has been a great boss over these past years; I could always
rely on his support.

Thanks to the working group Genome Informatics in Bielefeld for the nice working
atmosphere. In particular, thanks to Hans-Michael Kaltenbach (Mitch) and Constantin
Bannert (Conni) for various fruitful discussions, breakfast sessions, and coffee breaks.
Karla and Sergio Carvalho showed me the “Brasilian way of life”. Sven Rahmann was a
nice room mate at some conference trips. Veli Mikinen and Katharina Jahn were nice
office mates; from Veli I learned a lot about text compression and compressed indices.
Together with Zsuzsanna Liptdk and Ferdinando Cicalese, we had many nice experiences
on life with children. Special thanks to Heike Samuel for her kind help on dealing with
administrative subtleties. Basically, thanks to all former and current members of the group
for many relaxing lunch and coffee breaks.

Many thanks to Hans-Michael Kaltenbach, Sergio Carvalho, Katharina Jahn, Wolfgang
Gerlach, Marcel Martin, and Manuela Schiirmann for proofreading parts of this thesis and
to Peter Husemann for being a helping hand.

Finally, I would like to thank my parents and my family. My parents Maria and Bern-
hard Schiirmann have been supporting me through all my life. I particularly thank my
wife, Anja Schiirmann, for her love and patience over these past years and my children,
Alexander and Niklas, for showing me the most important things in life.

iii

Acknowledgements

v

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Suffix arrays 2
1.1.1 Suffix array construction oL 2

1.1.2 Using suffix arrays o 4

1.1.3 Suffix array compression and suffix arrays in theory 5

1.2 Organisation of the thesis 5

2 Basic Definitions and Terminology 7
I COMBINATORICS OF SUFFIX ARRAYS 9
3 Background, Definitions, and Basic Observations 11
3.1 Equivalences on sfrings oo 12
3.2 The TR-array 13
3.3 Characterising strings sharing the same suffix array 14
3.3.1 Proving the characterisation 15

4 Counting and Enumerating the Strings per Suffix Array 19
4.1 Foundations 20
4.2 Counting strings composed of up to ¢ distinct characters 21
4.3 Counting strings composed of exactly x distinct characters 26
4.4 Enumerating the strings 0 L0000 26
4.4.1 Strings composed of up to ¢ distinct characters 27

4.4.2 Strings composed of exactly « distinct characters 28

5 Counting and Enumerating the Suffix Arrays 31
5.1 Counting suffix arrays oL o 31
5.2 Enumerating the suffix arrays o000 38

6 Application of the String and Suffix Array Counting 47
6.1 Applications to compressed suffix arrays 47
6.2 Summation identitieso 50

Contents

7

vi

SUFFIX ARRAY CONSTRUCTION

Introduction
7.1 Definitions and notations

Classification and Survey of Previous Suffix Array Construction Algorithms

8.1 Classifying suffix array construction algorithms

8.1.1 Progression of the suffix sorting process

8.1.1.1 Bucket refinement

8.1.1.2 Reduced string sorting

8.1.2 Dependency among suffixes o000

8121 Pushmethod

8.1.2.2 Pull method

8.2 Bucket refinement algorithmso

8.2.1 Breadth-first bucket refinement prefix-doubling algorithms
8.2.1.1 The prefiz-doubling algorithm of Manber and Myers

8.2.1.2 The gsufsort algorithm of Larsson and Sadakane

8.2.2 Depth-first bucket refinement L.

8.2.2.1 The two-stage algorithm of Itoh and Tanaka

8.2.2.2 The copy and the cache algorithms of Seward

8.2.2.3 The deep shallow algorithm of Manzini and Ferragina . .

8.3 Reduced string sorting algorithms
8.3.1 The difference-cover algorithm of Burkhardt and Kéarkkiinen

8.3.2 Suffix array construction in linear time

8.3.2.1 The skew algorithm of Kérkkdinen and Sanders

8.3.2.2 The odd-even algorithm of Kim et al.

8.3.2.3 The smaller larger algorithm of Ko and Aluru

The Bucket-Pointer Refinement Algorithm

9.1 The basic algorithmo

9.2 Analysis
9.2.1 Worst-case time boundo
9.2.2 Expected-case time bound00
9.2.3 Space requirements Lo

9.3 Engineering and implementation for fast speed
9.3.1 Computing the initial bucket segmentation
9.3.2 Recursively refining the buckets 0.
9.3.3 Double pushingo

9.4 USe CaASES

53

55
56

59
59
59
59
60
61
62
62
63
63
63
64
65
65
66
67
68
69
70
71
73
78

Contents

10 Experimental Results

10.1 Description of the experiments
10.1.1 Implementation of the algorithms
10.1.2 Methods oo
10.1.3 Investigated sequence data

10.2 Results o

10.2.1 Performance on very large-scale data sets

10.2.2 Space consumptiono
10.2.3 Detailed runtime analysis
10.3 Discussion of the experimental results

11 Conclusion

A Appendix

vii

Contents

viii

1 Introduction

The most common type of information is a written text as we find it in books, newspapers,
and in other printed media. We treat such a text as a sequence of symbols and call it
string, sequence, word, or text. Such strings play a fundamental role in many software
applications: Word processing systems provide advanced facilities for the modification of
texts, e-mail tools are used to send text messages and other data, and Internet browsers
allow to retrieve and to read texts from the Internet, among many other applications.
There are other sequences that are used in the background of software applications. The
data that are interchanged via the Internet, for example, are first translated into a sequence
of binary digits (bits). Then the real transmission is carried out by a sequence of digital
signals that corresponds to the binary sequence. In molecular biology, we encounter DNA|
RNA| or amino acid sequences (peptides), and there are many other types of sequences.

In sequence analysis, we are interested in the development of efficient data structures and
algorithms to process all types of sequences. A fundamental problem in sequence analysis
is pattern matching, which deals with the following question: Does a query pattern occur
exactly or approximately in a given sequence, and if so, where in the sequence does it
occur?

Full-text indices are data structures used to process different kinds of sequences for such
applications. In contrast to other text indices, such as inverted files |27], full-text indices
allow the efficient access to every substring, or subword, of a given input string. The suffiz
tree is arguably the best known full-text index, which can be computed and stored in O(n)
time and space for an input string ¢ of length n. It was introduced by Weiner [143] in 1973,
who presented a linear-time construction algorithm. Further linear-time algorithms were
given by McCreight [104] in 1976, Ukkonen [141, 142| in 1993, and Farach [45] in 1997.
McCreight’s algorithm is considered to be simpler and more space efficient than Weiner’s
algorithm, Ukkonen’s algorithm constructs suffix trees online, and Farach’s algorithm runs
in linear time even for alphabets of arbitrary size. For an in-depth study of the connections
between the former three algorithms, we refer to a study of Giegerich and Kurtz [53].

There are many applications of suffix trees. The classical one is the exact pattern
matching: For a query string of length m, we use a suffix tree of another database string to
decide in time O(m) if the query appears as a substring in the indexed string. But the real
virtue of suffix trees comes from their use in solutions of more complex string problems [§]
(for example, repeat finding); Gusfield presents more than twenty in his book about string
processing algorithms [58]. Unfortunately, those construction and query algorithms do not
explicitly consider the locality of memory reference, which is very important on current
computer architectures with a memory hierarchy of multi-level cache and main memory.
Hence, the practical run time of those algorithms, which is often asymptotically optimal,

1 Introduction

suffers from many cache misses. These problems have been approached by representing
the suffix tree data structure in different ways [88, 54, 129] for particular applications. In
general, it remains an open problem.

Further drawbacks of suffix trees are their large space requirements, which exceed the
space requirements of the input string by an order of magnitude. Until the early 1990s,
the most space-efficient implementation of McCreight’s algorithm required 28n bytes for
a string of length n in the worst case (for 4-byte integer words). Manber and Myers [96,
fourth column in Table 1 on page 946] state that their own implementation requires be-
tween 14.2n and 27.8n bytes in practice. Even today, the most space-efficient implemen-
tation of McCreight’s algorithm by Kurtz [88] still uses between 8n and 14n bytes in
total. These large space requirements of suffix trees are incompatible with the increasing
amount of accessible sequence data that needs to be indexed. Typical data mainly come
from the Internet and from several genome sequencing projects, which produce long DNA
sequences. In the 1990s, two technology projects stressed the requirement of string indices
for huge amounts of sequence data: Google and the Human Genome Project. Google at-
tempts to index the human readable information available through the Internet, and the
Human Genome Project provides the genomic sequence data for the human species.

As a result, space-efficient alternatives to suffix trees have been developed: In the early
1990s, Manber and Myers [96] and Gonnet et al. [55] introduced the suffiz array (Gonnet et
al. under the name PAT array), which is the most popular alternative to suffix trees. Other
space-efficient full-text indices are the suffix cactus of Karkkdinen [70], the factor oracle
of Allauzen et al. [4], and the suffix vector of Monostori et al. [108] (ordered historically).
Unlike suffix arrays, however, these developments have not found their way into the main-
stream of research on full-text indices. This is presumably so because the suffix array
with its space requirements of 5n bytes (including the input string) is more space efficient
than those indices. Furthermore, its simple one-dimensional structure is easy to handle in
software implementations.

1.1 Suffix arrays

In their seminal article [96], Manber and Myers gave the first algorithm to directly con-
struct suffix arrays in O(nlogn) time. In addition, they enhanced the suffix array with
an auxiliary array, the LCP array, that stores the length of the longest common prefix of
adjacent suffixes in the suffix array. Based on the suffix array and the corresponding LCP
array, they present an algorithm for the exact pattern matching problem, which decides in
O(m +logn) time whether a query string of length m is a substring of the indexed string.

1.1.1 Suffix array construction

The further interest in suffix arrays was then initially attracted by the close relation
to the Burrows Wheeler transform [32] (presented in 1994), which is often used as the

basis for text compression algorithms. This interest can be explained by the fact that
computing the Burrows Wheeler transform by block-sorting the input string is equivalent

1.1 Sufhix arrays

to constructing a suffix array. Therefore, most of the research on suffix arrays regard their
construction. But although Farach et al. [47] correlated suffix sorting and linear-time suffix
tree construction in 2000, up until 2003 all known algorithms reaching this bound took a
detour over suffix tree construction and afterwards derived the suffix array from the suffix
tree (see [58, Section 7.14.1]), instead of directly constructing suffix arrays. In 2003, the
problem of direct linear-time construction of suffix arrays was solved independently by
Karkkéinen and Sanders [71, 73|, Kim et al. [79, 80], and Ko and Aluru [84, 85]. Shortly
after, Hon et al. [63] gave a linear-time algorithm that needs O(n) bits of working space.

Apart from these more theoretical results, there has also been much progress in practical
suffix array construction. Larsson and Sadakane [90] presented a fast algorithm, called
gsufsort, running in O(nlogn) worst-case time using 8n bytes. Kim et al. [78] introduced
a divide-and-conquer algorithm based on [80] with O(nloglogn) worst-case time com-
plexity, but with faster practical running times than the previously mentioned linear-time
algorithms.

Other viable algorithms mainly consider space requirements. They are called lightweight
algorithms due to their small space requirements. Itoh and Tanaka [67], Seward [135], and
Manzini and Ferragina [102] proposed algorithms using only 5n bytes and little additional
auxiliary space. In theory, their worst-case time complexity is Q(n?). However, they are
very fast in practice if the average LCP is small. The most recent lightweight algorithm,
developed by Burkhardt and Kérkkéinen [31] (see also |73]), is called difference-cover
algorithm. Its worst-case running time is O(nlogn), and it uses sublinear extra space.
For common real-life data, though, the algorithm is on average slower than Manzini and
Ferragina’s [102] algorithm. These are the major developments in the field of in-memory
suffix array construction algorithm. Other approaches are presented by Lee and Park [91],
Baron and Bresler [15], Maniscalco and Puglisi [98, 99], and Ahlswede et al. [3].

Besides the in-memory suffix array construction algorithms, there are several others that
address specific sub-branches of practical suffix array construction, namely distributed al-
gorithms and external memory algorithms: Distributed or parallel suffix array construction
algorithms were studied by Navarro et al. [112] and Kulla and Sanders [86], among oth-
ers. External memory suffix array construction algorithms were proposed, for example,
by Crauser and Ferragina [39] and Dementiev et al. [42].

We observe that the previous in-memory suffix array construction algorithms either
perform well for common strings with short LCPs or for degenerated strings with large
LCPs. Based on our experience with biological sequence data, we believe that further
properties are required. There are many applications where very long sequences with
mainly small LCPs, interrupted occasionally by very large LCPs, are investigated. In
genome comparison, for example, concatenations of similar sequences are indexed to find
common subsequences, repeats, and unique regions. Thus, to compare genomes of closely
related species, one has to build suffix arrays for strings with highly variable LCPs. We
believe that the characteristics as observed in this context can also be found in other
application areas. These facts stress the importance of efficient ubiquitous suffix array
construction algorithms.

1 Introduction

1.1.2 Using suffix arrays

Beyond the development of suffix array construction algorithms, there has been progress
on algorithmical applications of suffix arrays. In 2001, Kasai et al. [76] presented an
algorithm that constructs the LCP array from the suffix array in linear time, and they
show how every bottom-up traversal of a suffix tree can be simulated on those two arrays.
Manzini [101] later presented more space-efficient algorithms for the construction of the
LCP array from the suffix array. The LCP information, however, only allows the simulated
traversal of suffix trees from child nodes to parent nodes. Abouelhoda et al. [1, 2] enhanced
the suffix array with additional auxiliary arrays that further allow the traversal from parent
nodes to child nodes. Based on their enhanced suffix array, they established the concept of
lep-interval trees. These conceptual trees, which do not need to be constructed in practice,
are equivalent to suffix trees. Furthermore, the enhanced suffix array contains information
allowing suffix link traversal. Chang and Lawler [33|, for example, use suffix links for
computing matching statistics. Hence, basically every algorithm working on suffix trees can
be ported to an equivalent algorithm on enhanced suffix arrays with identical asymptotic
time bound. Abouelhoda et al. showed how to do that for algorithms performing different
types of suffix tree traversals.

The enhanced suffix array has many practical advantages compared to suffix trees.
Firstly, it is possible to store it on secondary memory without serialising the data structure,
which would be necessary for suffix trees. Secondly, the different auxiliary arrays are
independent such that for particular applications only a subset of arrays has to be accessed,
which decreases main memory load. Finally, additional annotations are easily added
(see [121] for example annotations). We believe that virtually all algorithms that were
originally designed for suffix trees can be implemented more efficiently on enhanced suffix
arrays. Hence, (enhanced) suffix arrays have the potential to fully replace suffix trees for
practical applications.

Suffix arrays are already used in many bioinformatics applications. We give some ex-
amples: Burkhardt et al. [30] applied suffix arrays for searching similar DNA sequences
and Malde et al. [95] for EST clustering. Kurtz's [87] implementation of enhanced suffix
arrays is used in several other bioinformatics tools and projects. Hohl et al. [60] used it
for multiple sequence alignment and Beckstette et al. [16] for the matching of position
specific scoring matrices, see [87] for a longer list. Apart from suffix array applications
in bioinformatics, there are other application areas: Suffix sorting algorithms have been
applied for the computation of the Burrows Wheeler transform, for example, in the bzip2
compressor [134]. Moreover, in linguistics Yamamoto and Church [144] used them to count
term frequencies.

In brief, the various time-efficient algorithms on suffix trees can be ported to enhanced
suffix arrays, and these algorithms have proved their practical efficiency on suffix arrays.
At the moment, we see no room for significant improvements regarding algorithmical
applications of suffix arrays.

1.2 Organisation of the thesis

1.1.3 Suffix array compression and suffix arrays in theory

The task of full-text index compression emerged after Grossi and Vitter introduced the
compressed suffiz array [57] that reduces the space requirements to a linear number of
bits. Other compressed indices of that type are: Ferragina and Manzini’s FM-index [49]
based on the Burrows—Wheeler transform, a compressed-suffiz-array-based index by Sada-
kane [123] that does not use the text itself, and Mékinen’s compact suffiz array [94]. There
are various subsequent developments; most of them improve upon the compressed indices
of Grossi and Vitter [57], Ferragina and Manzini [49], or Sadakane [123]. For an in-depth
study of compressed full-text indices and their space requirements, we refer to the survey
of Navarro and Mékinen [113]. Moreover, Sadakane [125] recently presented a compressed
full-text index providing the full functionality of suffix trees, although not with the same
asymptotic time bounds.

All these developments on compressed indices trade space occupancy for querying time.
Experimental results of Ferragina and Manzini [50| show that suffix arrays use 8 to 13 times
as much space as their FM-index. For the exact pattern matching with the reporting of
occurrences, however, the running times on their FM-index are by a factor between 3 and
33 higher than the running times on their suffix array implementation. The reason for the
greater running times on compressed indices is that redundant information, which would
have been necessary for more efficient querying, is lost when compressing an original base
index, like the suffix array. We believe that a profound knowledge of the algebraic and
combinatorial properties of suffix arrays is essential to develop suffix-array-based, succinct
indices that allow efficient querying.

Besides those practical aspects, suffix arrays are also interesting from the purely theoret-
ical perspective. They are represented as permutations, which are widely studied in group
theory and combinatorics. Nevertheless, in that regard, they have been less studied than
we expected. Duval and Lefebvre [44| characterised the set of strings that share the same
suffix array. A combinatorial approach that partly includes suffix arrays was presented by
Hohlweg and Reutenauer [61]. Hence, further research on the theoretical aspects of suffix
arrays was required.

1.2 Organisation of the thesis

Throughout the thesis, we investigate the function sa that maps each string to its suffix
array. The thesis consists of two major parts: In the first part (Chapters 3-6), we in-
vestigate the function sa from a more theoretical point of view. In particular, we study
combinatorial aspects of strings and their suffix arrays. In the second part (Chapters 7—
10), we deal with the efficient implementation of the function sa, namely, the construction
of suffix arrays.

We first give the basic definitions and notations regarding suffix arrays in Chapter 2.
Chapter 3 contains the preliminaries for the subsequent investigations: We define different
equivalences of strings regarding their structure. In particular, for a fixed alphabet size and
string length, we divide the set of all strings into equivalence classes of strings that share the

1 Introduction

same suffix array. We also define the data structures for the subsequent reasoning on such
equivalence classes and characterise the strings in each class. In Chapter 4, we count the
number of particular strings in any equivalence class and present enumeration algorithms
for those strings. Chapter 5 contains exact formulas for the number of equivalence classes
or, alternatively, for the number of respective suffix arrays; we also present an efficient
enumeration algorithm for those equivalence classes, or rather, for their representatives.
We then apply the counting results to more practical problems in Chapter 6: From the
exact number of suffix arrays, we derive lower bounds on the compressibility of suffix-array-
based compressed indices. Apart from that (also in Chapter 6), we show that summing
up the elements of all equivalence classes forms a particular instance for some summation
identities of Eulerian numbers.

In the second part of the thesis, we study the problem of efficient suffix array construc-
tion. Chapter 7 contains the suffix-array-construction-specific definitions and notations.
In Chapter 8, we provide new comprehensive classifications of previous suffix array con-
struction algorithms and survey those algorithms. In Chapter 9, we present our new
bucket-pointer refinement algorithm, show a runtime analysis and provide implementa-
tion details. Experimental results on the practical performance of our algorithm and the
previously fastest suffix array construction algorithms are given in Chapter 10.

We conclude and give an outlook to future research in Chapter 11.

Parts of Chapters 3 6 have been published in a technical report [130], in a refereed
conference proceeding [131], and are to appear in a refereed journal article [128]. Parts
of Chapters 7 10 have been published in a refereed conference proceeding [132] and in a
refereed journal article [133].

2 Basic Definitions and Terminology

The interval [I,r] = {z € Z : | < z < r with [,r € Z} denotes the set of all integers
greater than or equal to [and less than or equal to r. The set of natural numbers starting
with 1 is denoted by N, and Ny further contains the additional 0, that is, Ny := N U {0}.

Alphabet and strings. Let 3 be a finite set of size |X|, the alphabet, and t € ¥™ a string
over ¥ of length n, the text. For i € [1,n], t[i] denotes the " character of ¢, and for all

pairs of indices (I,7), 1 <1 <r < mn, t[l,r] = t[l],t[l + 1],...,t[r] denotes the substring
of ¢ starting at position [and ending at position r. Substrings t[i,n| ending at position
n are suffizes of t; t[i,n] is called the suffix i. The starting position i of a suffix ¢[i, n] is
called its suffiz number. For 1 < i < n, t[i + 1,n] is called the successor suffiz of t[i,n],
and conversely, t[i,n] the predecessor suffiz of t[i + 1,n]. For more distant suffixes t[i, n]
and t[i + £,n] with £ € N and i + ¢ < n, t[i + ¢,n] is called the ¢-successor of t[i,n] and
t[i,n] the (-predecessor of tli + €,n]. X(t) := {t[i] : 1 < ¢ < n} C ¥ is the subset of
characters actually occurring in ¢ and is called the character set of t. We usually use o for
the alphabet size |X|, but if the strings are required to use all characters such that their

character set equals the alphabet, we use k.

Permutations and suffix arrays. Let P™ denote the set of all permutations of [1,n], and
let P € P". Theni € [1,n—1] is a permutation descent of P if P[i] > P[i+1]. Conversely,
a non-extendable ascending segment Pll,r] of P with P[l] < P[l+1] < ... < P[r] of P
is called a permutation run. Fach permutation run of P begins right after a permutation
descent or at the leftmost position 1 of P, and ends at the next permutation descent or
at the last position n of P. Hence, the permutation runs define the permutation descents
and vice versa. Figure 2.1 shows the permutation descents and permutation runs for the

permutation P = (5,6,3,2,4,8,9,1,7).

\5 @H@HQ v @Hl 7\

Figure 2.1: Permutation descents and permutation runs for P = (5,6, 3,2,4,8,9,1,7). The
encircled entries mark the positions of the permutation descents, and the underlined
segments mark the permutation runs.

2 Basic Definitions and Terminology

The function

sa:{ o= P (2.1)

t — P,

maps each string ¢ of length n € N to its suffix array, where the suffiz array sa(t) of t is
a permutation of the suffix numbers [1,n] according to the lexicographic ordering of the
n suffixes of ¢. More precisely, a permutation P of [1,n] is the suffix array for a string
t of length n, P = sa(t), if for all pairs of indices (i,7), 1 < i < j < n, the suffix with
suffix number P[i] is lexicographically smaller than the suffix with suffix number P[j].
Moreover, the sequence t[P[1]],¢[P[2]],...,t[P[n]], which is formed of the first characters
of the ordered suffixes, is called the First sequence for ¢ (similar to the first column used
for the Burrows—Wheeler transform [32]).

The rank array Rp for the permutation P (further on simply denoted by R), sometimes
called the inverse permutation or the inverse suffix array, is defined as follows: For all
indices ¢ € [1,n] the rank of ¢ is j, R[i] = j, if ¢ occurs at position j in the permutation,
P[j] = i. We extend the rank array by R[n + 1] = 0, indicating that the empty suffix,
not contained in the suffix array, is always the lexicographically smallest. R[i] = j implies
that the suffix t[i,n] is the lexicographically j** among all suffixes of t. The rank array
and also other rank functions are an important tool throughout the rest of this thesis.
The rank array allows to directly determine the location of a suffix number in the suffix
array and defines the relative lexicographical order of the suffixes:

t[i,n] < t[j,n] <= RJi] < R[j] for all (4,3) € [1,n)?,

where t[i,n] < t[j,n] accords to the lexicographical order of the suffixes and R[i] < R[j]
to the order of the natural numbers.

Further definitions. Besides the binomial coefficient (x) = ﬁly), the Stirling numbers
and the Eulerian numbers are important for this work. Although these numbers have a
venerable history, their notation is less standard. We follow the notation of Graham et
al. [56, Chapter 6] where the Stirling number of the second kind {}} is the number
of ways to partition a set of n elements into k& non-empty subsets, and the Eulerian
number (") gives the number of permutations of [1,n] having exactly d permutation
descents, also defined through the recursion (i) (§) = 1, (i) (}) = 0 for d > n, and

(iit) (%) = (d+1) (")) + (n—d) (37]) for 0 < d < n.

Part |

COMBINATORICS OF SUFFIX
ARRAYS

3 Background, Definitions, and Basic
Observations

For certain applications, we are not always interested in the total number of strings.
Instead, we are interested in equivalence classes of strings sharing the same structural
properties. A suffix array construction algorithm, for example, produces the same suffix
array for ABBAA and ACCAA, but a different one for CBBCC. Therefore, we would count
two classes of strings: the first class containing ABBAA and ACCAA, and the second one
containing CBBCC.

A different notion of equivalence on strings arises from the preprocessing phase of the
substring search algorithm of Knuth et al. [83] (Knuth-Morris-Pratt algorithm). It returns
a prefix function (also called failure function or border array) for the query string that
encapsulates information about how the suffixes of the query match against the prefixes
(see also [38, Section 32.4]). Our example strings ABBAA, ACCAA, and CBBCC share the same
prefix function. Hence, we consider them equivalent and only count one equivalence class.
Moore et al. [109] counted the number of such distinct prefix functions.

To the best of our knowledge, there are no previous studies counting the number of
permutations that are the suffix arrays for a particular set of strings. Although the com-
binatorics of permutations is a research field that has been widely studied (see, for exam-
ple, [28]), there are only a few combinatorial results for suffix arrays. In 2002, Duval and
Lefebvre [44] characterised the set of strings that share the same suffix array. Recently,
Crochemore et al. [40] presented combinatorial properties of the related Burrows Wheeler
transform, but these properties are unassignable to suffix arrays. They rely on the fact that
the Burrows Wheeler transform is based on the order of cyclic shifts of the input sequence,
whereas the suffix array is based on the order of suffixes cut at the end of the string, which
destroys that nice group structure. A combinatorial approach that partly includes suffix
arrays was presented by Hohlweg and Reutenauer [61|. They study connections between
binary planary trees, Lyndon words, and suffix arrays.

This chapter provides the basic definitions and tools for counting the strings and suffix
arrays in the subsequent chapters. In Section 3.1 we define different equivalences of strings
regarding their various structural properties and further combinatorial structures related
to suffix arrays in Section 3.2. Although the given general definition of suffix arrays in
Chapter 2 is quite concise, we need a more specific, “handy” proposition for the subsequent
reasoning, which is given in Section 3.3, Theorem 3.2.

11

3 Background, Definitions, and Basic Observations

/ pattern-equivalence

order-equivalence

\ string-equivalence
sa-equivalence /

Figure 3.1: The relationships among the different equivalences on strings.

3.1 Equivalences on strings

We use three different kinds of equivalences on strings. The natural definition is that
strings are (string-)equivalent if they are equal, and (string-)distinct otherwise. In order
to define the other two equivalences, we first introduce a bijective mapping rk of the
characters of a string ¢ onto the first |3(¢)| integers, rk : X(t) — [1,|X(¢)]]. We call rk
order-preserving if ¢; < co < rk(c1) < rk(eg) for all pairs of characters (c1,c2) € X(t) X
Y(t). The mapped string rk(t) is then defined by rk(¢) := rk(¢[1]),rk(¢[2]), ..., rk(¢[n]).
We call two strings ¢t and ¢’ order-equivalent if there exists an order-preserving bijection
rk for ¢ and another such bijection rk’ for ¢’ such that rk(t) = rk’(¢'); otherwise the strings
are order-distinct. If bijective mappings rk and rk’ exist such that rk(t) = rk/(#) (not
necessarily order-preserving), we call ¢ and ¢’ pattern-equivalent; otherwise the strings are
pattern-distinct. String-equivalent strings are also order-equivalent and order-equivalence
implies pattern-equivalence. The strings ABBAA and ACCAA, for example, are string-distinct
but order-equivalent, and the strings ABBAA and CBBCC are order-distinct but pattern-
equivalent.

Additionally, we define the equivalence of strings sharing the same suffix arrays. Two
strings t and t’ are suffiz-array-equivalent or, alternatively, sa-equivalent if they share the
same suffix array, sa(t) = sa(t'); otherwise the strings are sa-distinct. Order-equivalence
implies sa-equivalence since the order of suffixes is not affected through an order-preserving
mapping of the characters.

If two strings are order-distinct, they can either be sa-equivalent or pattern-equivalent,
but not both. Let ¢ and ¢’ be two order-distinct strings. Then either there are no bi-
jective character mappings rk and rk’ such that rk(t) = rk’(¢') or the bijective mappings
are not order-preserving. If there are no such bijective character mappings, then ¢ and t’
are pattern-distinct, but can still be sa-equivalent. Otherwise, if such bijective mappings
exist but are not order-preserving, then ¢ and ¢ are yet pattern-equivalent; a rearrange-
ment of the alphabet that changes the relative alphabetical order, however, induces a
different relative order of the suffixes, which implies suffix array distinctness. The order-

12

3.2 The TR-array

distinct strings ABBAA and BDCAA, for example, are sa-equivalent but pattern-distinct, and
the order-distinct strings ABBAA and CBBCC are pattern-equivalent but sa-distinct. The
relationships among the mentioned four equivalences on strings are shown in Figure 3.1.

The regarded equivalences of strings are obviously reflexive, symmetric, and transitive.
Hence, they are equivalence relations and thus induce a partitioning of the set of strings
into equivalence classes. Our main focus is on the sa-equivalence classes. We recall the
function sa that maps each string of length n € N to its suffix array P,

. { o — PO PR)
t — P,

where Pg is the image of X" under sa. Alternatively, Ps. is called the set of suffix arrays of

¥". For large n and fixed small alphabet ¥ of size o, sa is not surjective; hence Py G P".

Moreover, it is not injective for ¢ > 1. We define the function sa~' that maps each

permutation P to its preimage under sa

-1 . P — 2(En)
D N - J - Tpy = {t € ¥" : sa(t) = P}.

I maps each permutation to the sa-equivalence class of suffixes sharing

The function sa™
the same suffix array P, sa~'(P) = Tpx. If P € Pg, then the preimage of P under sa is
not empty; otherwise sa~!(P) = (). Hence, the function sa~! partitions the set of strings
" into |Pg| non-empty equivalence classes. In Chapter 4, we count the number of specific
elements in an equivalence class sa=!(P) for any P € P™. The number |PZ| of non-empty

equivalence classes is counted in Chapter 5.

3.2 The "R-array

We define the TR-array, the basic data structure for the subsequent analysis of the suffix
array equivalences.

Definition 3.1 (TR-array). Let P € P™ be a permutation of [1,n]. The TR-array of P
is defined as

*R[i] :== R[P[i] + 1] for all i € [1,n)].

In the compressed indexing literature the TR-array is usually called W-array or W-
function. We define the TR-descents and the TR-runs of P similar to the permutation de-
scents and the permutation runs respectively: A position i € [1,n—1] is called a TR-descent
if TR[i] > TR[i + 1]. For [< r, a non-extendable ascending segment TR[l] < TR[l + 1] <
... < TR[r] is called a TR-run; it will be denoted *R[l,7]. The set of TR-descents {i €
[1,n—1] : TR[i] > TR[i + 1]} is denoted by TR-desc(P). If the ordered set of TR-descents
of P equals {i1,i2,...,iq} with i; < i;1q for all j € [1,d — 1], then i; is called the ;%
TR-descent. The list of TR-runs is TR[1,41], "R[i1 + 1,42, ..., TR[ig_1 +1,i4], TR[iqg+ 1, 7],
where TR[i;_1 + 1,4;] is called the j* *R-run. Note that *R-runs can be of length 1.

13

3 Background, Definitions, and Basic Observations

Table 3.1: The permutation P, which is the suffix array for the string ABBAA, the sorted
suffixes of the string ¢[P[i], n], the rank array R, the "R-array, and the TR-descent at
position 3.

i Pli| ¢t[Pl,n] R[] *tRli] *R-desc(P)

0 6 €

1 5 A 3 0

2 4 AA 5 1

3 1 ABBAA 4 5 —
4 3 BAA 2 2

5 2 BBAA 1 4

6 0

Moreover, let d; be the number of TR-descents in the prefix P[1,1] of the permutation P,
d; := |{j € TR-desc(P) : j <i}|.

If P = sa(t) is the suffix array of a string ¢, then the *R-array reflects the connection
between consecutive suffixes of t. TR[i] = j has the following interpretation: The successor
suffix t[P[i] + 1,n] of the lexicographically i** suffix t[P[i],n] is the lexicographically j*
among all suffixes of ¢. Since there does not exist a predecessor for the suffix number 1,
the position j in the suffix array P with P[j] = 1 never appears in the TR-array. If a
position i is a TR-descent, then the successor suffixes of t[P[i],n] and ¢[P[i + 1],n| are
in descending lexicographical order: ¢[P[i| + 1,n] > ¢[P[i + 1] + 1,n]. A TRrun "R, 7]
corresponds to a continuous suffix array segment, in which also the respective successor
suffixes are in ascending lexicographical order.

For the permutation P = (5,4, 1,3,2), which is the suffix array of the string ABBAA, Ta-
ble 3.1 shows the TR-annotations. The columns show the array indices ¢, the permutation
P, the sorted suffixes of the string ¢[P[i], n], the rank array R, the TR-array, and the only
TR-descent at position 3. The suffix array P is extended with the number 6 at position
0 and the R-array with the number 0 at position 6, indicating that the empty suffix,
which does not appear in P, is always the smallest. Note that P contains a TR-descent at
position 3. Hence, TR[1, 3] and TR[4,5] are the TR-runs.

3.3 Characterising strings sharing the same suffix array

The following theorem was first given, without proof, by Burkhardt and Kérkk&inen [31]
and equivalent results were proved by Duval and Lefebvre [44].

Theorem 3.2. Let P € P" be any permutation of [1,n] and t a string of length n. Then
t € sa~Y(P) if and only if the following two conditions hold for all i € [1,n — 1]:

(a) t[P[i]] < t[P[i+ 1]] and
(b) R[] > TR[i + 1] = ¢[P[i]] < t[P[i + 1]].

14

3.3 Characterising strings sharing the same suffix array

Table 3.2: The permutation P, the TR-array, the TR-descent at position 3, and the First
sequences for the strings t; = ABBAA, ¢ = BDCAA, t3 = BDDBB, and t4 = CDDCA that
share the same suffix array P.

Strings with suffix array P

t; = ABBAA ¢, =BDCAA 3 =BDDBB t, = CDDCA
i Pl YRl “Redese(P) [Pl] 6Pl &P P[]

QU = W N =
N W = s Ot
= N Ot —m O
W W= =
O o w = >
O O w w w
O o =

Theorem 3.2 has the following interpretation. Condition (a) states that the First se-
quence for ¢ is non-decreasing, and condition (b) states: if the successor suffixes of ¢[P[i], n]
and t[P[i + 1],n] are in descending lexicographical order, that is, if ¢[P[i] + 1,n] >
t[P[i + 1] + 1,n], then the relative order of ¢t[P[i],n] and t[P[i 4+ 1],n] is determined by
their first character, t[P[i]] < t[P[i + 1]].

Table 3.2 shows the permutation P = (5,4,1,3,2) and the strings ¢t; = ABBAA, ty =
BDCAA, t3 = BDDBB, and t4 = CDDCA in the respective sa-equivalence class sa='(5,4,1,3,2).
The leftmost four columns show the array indices 4, the permutation P, the TR-array, and
the TR-descent; the remaining columns show the First sequences for ¢y, to, t3, and 4. From
reading each of the First sequences top down, it becomes evident that Theorem 3.2(a)
holds for each of the four strings. Moreover, for the TR-descent 3, the character t;[P[3]]
is smaller than ¢;[P[3 + 1]] for each k € [1,4], satisfying Theorem 3.2(b).

3

3.3.1 Proving the characterisation — Proof of Theorem 3.2

We first prove two auxiliary lemmas (Lemma 3.3 and Lemma 3.4), which are eventually
used in the main proof of Theorem 3.2. First of all, Lemma 3.3 generalises a proposition
about consecutive elements in a permutation to arbitrary pairs of elements.

Lemma 3.3. Let P € P" be any permutation of [1,n] and t a string of length n.
If for all i € [1,n — 1] we have that

(a) t[P[i]] < t[Pli+1]] and
(b) t[Pi]] =t[Pli+1]] = RI[P[i]+ 1] < R[P[i+ 1] + 1],
then we also have that for all pairs (i,7), 1 <i<j<mn,

t[P[il] = t[P[j]] = R[P[i] + 1] < R[P[j] + 1].

15

3 Background, Definitions, and Basic Observations

Proof. Due to (a), the sequence of characters t[P]i]], t[P[i+1]],...,t[P[j]] is non-decreas-
ing. Combining this property with ¢[P[é]] = ¢[P[j]] implies that t[P["] = t[P[i' +1]] for all
"€ [i,j—1]. Then applying (b) on t[P[i']] = t[P[i’ +1]] leads us to R[P[i']+1] < R[P[i +
1]+ 1] for all ¢ € [¢,j — 1]. By transitivity, we finally obtain R[P[i|+ 1] < R[P[j]+1]. O

Before we can prove the main result of this section, we continue with a further gener-
alisation. We extend our proposition from elements of the permutation referring to equal
characters in the string to elements referring to starting positions of equal substrings.

Lemma 3.4. Let P € P" be any permutation of [1,n] and t a string of length n. If for
all pairs (i,7) with 1 <1i < j <n we have that

tPll] = t[P]] = RIP[i] +1] < R[P[j] + 1], (3.1)

then we also have that for all pairs (i,7) with 1 < i < j < n and for all k > 0 with
Plil]+k—1<nand Pljl+k—1<n

t[P[i], Pli]| + k — 1] = t[P[j], Pj] + k — 1] = R[P[i] + k] < R[P[j] + k]. (3.2)

Proof (Induction over k). For k = 1, the equation t[P[i], P[i] + 1 — 1] = t[P[j], P[j] +
1—1] accords to t[P[i]] = t[P[j]]; and hence, implication (3.2) accords to implication (3.1).
We now perform the induction step starting with

t[Pl], Pi] + k] = t[P[j], P[j] + kI,
which is obviously equivalent to

t[P[i], Pli] + k — 1] = t[P[j], Plj] + Kk —1] (3.3)
and t[P[i] + K] = t[P[j] + k.

Applying the induction hypothesis (3.2) to (3.3) gives R[P[i] + k] < R[P[j] + k]. Then we
choose ¢ and j" such that P[i'| = P[i] + k and P[j'] = P[j] + k. Since R is the inverse of
P, we obtain
¥ = RIPI{') = RIP[i] + k] < R[P{j] + K] = RIP[j)] = /. (35)
Combining equation (3.4) with P[i'] = P[i| + k and P[j'] = P[j] + k implies
t[Pl)] = t[Pli] + k] = t[P[j] + k] = t[P[j']].
y (3.5) 7' is smaller than j’, so implication (3.1) is applicable and leads to
R[P[i'| +1] < R[P[j'] +1].

Substituting P[i'] by P[i]+k and P[j'] by P[j]+k results in R[P[i]+k+1] < R[P[j]+k+1],
completing the proof. O

16

3.3 Characterising strings sharing the same suffix array

We are now ready for proving Theorem 3.2.

Proof of Theorem 3.2. If t € sa~'(P) or, alternatively, if the permutation P is the
suffix array for the string ¢, then the conditions (a) and (b) of the theorem clearly hold.
The opposite direction is more intricate. Assume that both conditions (a) and (b) hold.
If P is not the suffix array of ¢, then there must be two incorrectly ordered suffixes in P.
Let i and j be the positions of these suffixes in P such that i < j and ¢[P[i],n] > t[P[j],n].
Negating condition (b) and using the definition of TR gives for all i € [1,n — 1]

t[P[i] > t[P[i + 1] = R[P[i] + 1] < R[P[i + 1] + 1],

and by (a) and by the fact that both R and P are different at unequal positions, we obtain
for all i € [1,n — 1] that

t[P[i]] = t[Pli + 1]] = R[P[i] + 1] < R[P[i + 1] + 1].
We apply Lemma 3.3 and Lemma 3.4 to obtain for all i,5 € [1,n], i < j,
t[P[i], P[i] + k — 1] = t[P[j], P[j] + k — 1] = RI[P[i] + k] < R[P[j] + k]. (3.6)

Now let £ be the length of the longest common prefix of ¢[P[i], n] and ¢[P[j], n], then we
distinguish between two cases.

(i) If £ = 0, the suffixes differ in their first position. Since t[P[i],n] > t[P[j],n], the
first character ¢[P[i]] of t[P[i],n] must be greater than the first character ¢[P[j]] of
t[P[j], n], which contradicts (a).

(ii) If £ > 0, the suffixes t[P]i],n| and t[P[j], n] share a longest common prefix of length
¢, that is, t[P[i], P[i] + ¢ — 1] = t[P[j], P[j] + ¢ — 1]. Then implication (3.6) leads
to R[P[i| + ¢] < R[P[j] + ¢]. We choose 7' and j" such that P[] = P[i] + ¢ and
P[j'] = P[j] + ¢. Since R is the inverse of P, we have i’ = R[P[i]] = R[P[i] + /] <
R[P[j] + ¢] = R[P[j']] = j'. Therefore, using (a) we obtain

P[] +] = ¢[P1{]] < ¢[PLy']) = t[PLj] + 4. (3.7)

This contradicts the assumption that ¢[P[i],n] > t[P[j],n] with longest common
prefix of length ¢ such that ¢t[P[i] 4+ ¢] > t[P[j] + /).

Since both cases lead to contradictions, all suffixes represented in P must be in the correct
order; hence t € sa™(P). O

17

3 Background, Definitions, and Basic Observations

18

4 Counting and Enumerating the Strings
per Suffix Array

Enumerative combinatorics is a major subfield of combinatorics (see, for example, [138,
103, 34, 29]). For any particular combinatorial structure, it poses the following questions:
How many combinatorial objects of a particular type are there (Counting), and how can
we list all these objects (Enumeration). To the best of our knowledge, such questions
relating to suffix arrays have not been studied before. In this and the next chapter, we
are the first providing answers on that.

In this chapter, we count and enumerate, for any permutation P € P™ and a fixed-sized
alphabet 3, the strings in the sa-equivalence class 7Tpx; of all strings in X" with P as their
suffix array (see page 13), considering particular subsets of strings: string-distinct strings
composed of up to |3| distinct characters (not all characters of the alphabet must appear)
and string-distinct strings composed of ezactly || distinct characters (all characters must
appear). We proceed as follows: We first present the number of the different sets of
counted strings, especially Theorem 4.1 and Theorem 4.2. Then, after introducing the
foundations for the subsequent string counting in Section 4.1, we prove Theorem 4.1 in
Section 4.2 and Theorem 4.2 in Section 4.3. Finally, we give enumeration algorithms for
both sets of counted strings in Section 4.4.

The main results of this chapter are the following two theorems.

Theorem 4.1. Let P € P" be any permutation of length n with d TR-descents and
an alphabet of o = |X| ordered symbols. Then the number of string-distinct strings in the
sa-equivalence class Tpy; is given by (":i;ﬁlzl)

Theorem 4.2. Let P € P" be any permutation of length n with d TR-descents and ¥ an
alphabet of k = |X| ordered symbols. Then the number of string-distinct strings composed
of exactly r distinct characters in the sa-equivalence class Tpy; is given by (Z:gj).

For the various settings, Table 4.1 summarises the number of string-distinct, order-
distinct, and pattern-distinct strings of length n. Some of the results were previously
proven by other authors or are given by Theorems 4.1 and 4.2. We discuss the results
presented in Table 4.1 row-wise, beginning with the first row. Moore et al. [109] showed
that the number of pattern-distinct strings composed of exactly k distinct characters is

"1 For each pattern-distinct string, we permute the alphabet in k! different ways to
get a total of {Z}K! order-distinct strings. These are already all the string-distinct strings
since we have no flexibility to choose different characters to produce string-distinct strings
that are yet order-equivalent.

19

4 Counting and Enumerating the Strings per Suffix Array

Table 4.1: Summary of the previous and new results on the number of string-distinct,
order-distinct and pattern-distinct strings of length n. In the analyses d is always the
number of TR-descents for the respective suffix array P. Moreover, ¥ is the underlying
alphabet of k = 0 = |X]| ordered symbols.

Number of string-distinct order-distinct pattern-distinct

strings composed of n ' n ' n
* K. © K. 109
exactly x distinct letters {“} {H} {H} [109]

strings composed of
up to o distinct letters

o PRy {Z} A Dot {:}

strings in 7p »; composed of ex- n—d—1 n—d—1
’ Thm. 4.2 —
actly x distinct letters (H*dfl) [] (Hfdfl)
strings in 7p 5, composed of up nto—d—1\ |, o n—d—1
’ T'hm. 4.1 —
to o distinct letters (o—d—1) [| Zﬁ—d-i-l (H*d*l)

The numbers of all strings over a given alphabet of size o are shown in the second row.
There are o™ string-distinct strings. For the order- and pattern-distinct strings, we sum
up the number of strings for all possible k.

The number of string-distinct strings composed of exactly distinct characters in the
sa-equivalence class Tpy, for any permutation P with d TR-descents and an alphabet
> of fixed size K is given in Theorem 4.2. These strings are again order-distinct. For
pattern-distinct strings, we cannot necessarily determine a unique suffix array. This fact
has already been investigated in Chapter 3.1 and a graphical representation is shown in
Figure 3.1. It is indicated by a dash in the table.

The number of string-distinct and order-distinct strings in the sa-equivalence class 7px;
for any permutation P and an alphabet X of size ¢ are given in the fourth row. Theorem 4.1
gives the number of string-distinct strings; to count the order-distinct strings, we sum up
over all possible k. Again, the dash denotes that we cannot necessarily determine a unique
suffix array for pattern-distinct strings.

4.1 Foundations

Before we prove Theorem 4.1 in Section 4.2 and Theorem 4.2 in Section 4.3, we first repeat
an observation of Bannai et al. [14] that links the minimal alphabet size of the strings in
the sa-equivalence class 7py to the number of TR-descents of P: For a permutation P
with d TR-descents, the number of different characters in a string ¢t € Tpy is at least the
number of TR-descents plus one, |X(t)|] > d + 1. Furthermore, Bannai et al. presented
an algorithm to construct a unique string bp € 7py consisting of exactly d + 1 different

20

4.2 Counting strings composed of up to o distinct characters

Algorithm 4.1. Table 4.2: Construction of the base string bp of the
BASESTRING (P, n) permutation P having the TR-descent 3.
C — 1 . . .
for i — 1 ton do i Pl R[] bp[Pli] bp
bP[P[iﬂ —c 1 5 0 A A
if i € R—dfsc(P) then 9 4 1 A A
cr 31 5 A A__AA
end if
4 3 2 B A_BAA
end for
return bp 5 2 4 B ABBAA

characters, |X(bp)| = d + 1. Note that bp is only defined for non-empty sa-equivalence
classes Tpyx, with P € Pg.

Without loss of generality, we assume that the character set of bp contains the first
natural numbers, X(bp) = [1,d+ 1], and call bp the base string of the sa-equivalence class
Tpy, its lexicographically smallest representative. Nevertheless, we synonymously use the
characters {A,B,...} for illustrations. The algorithm suggested in [14] works as follows.
It starts with the initial character ¢ = 1. For each index position i € [1,n] in ascending
order, the algorithm proceeds through all suffix numbers from P[1] to P[n| by assigning
¢ to bp[P[i]]. If i is a TR-descent, c is incremented by one to satisfy condition (2) of
Theorem 3.2, such that bp[P[i]] = d; + 1; we recall that d; is the number of TR-descents
in the prefix P[1,7] of the suffix array P (see page 14). The pseudo-code is given in
Algorithm 4.1. Note that the algorithm can only construct a correct base string if the size
of the underlying alphabet exceeds the number of TR-descents of the input permutation,
and fails otherwise. For the permutation P = (5,4,1,3,2) with TR-descent 3, Table 4.2
shows the successive assignment of characters to the base string bp. The columns show
the array indices 4, the permutation P, the TR-array, the First sequence for the base string
bp[Pli]], and the assignment of characters to the base string bp.

Proposition 4.3. Let P be a permutation with d TR-descents, then the base string bp has
the properties

(a) bp[P[1]] =1 and bp[P[n]] =d+1,
(b) bp[P[i + 1]] = bp[P[i]] if i € [1,n — 1] is not a TR-descent of P,
(¢) bp[Pli +1]] = bp[P[i]] + 1 if i € [1,n — 1] is a TR-descent of P.

Note that each TR-run TRJ[l,7] of the base string corresponds to an interval of equal
characters of the First sequence for the base string, bp[P[l]] = bp[P[l+1]] = ... = bp[P[r]].

4.2 Counting strings composed of up to o distinct characters

For a permutation P € Pg, the strings contained in the respective sa-equivalence class 7px,
can be derived from the base string bp of 7px; by applying a certain sequence of rewrite

21

4 Counting and Enumerating the Strings per Suffix Array

Table 4.3: The permutation P, the TR-array, the first characters of the ordered suffixes of
the base string bp = ABBAA, and the m-incremented strings ¢p,,,, = BDCAA, tp,,,» = BDDBB
and tp,,» = CDDCA over the alphabet {A,B,C,D}.

m-incremented string

tp.m = BDCAA tp.ms = BDDBB t .y = CDDCA
i Pli] R[] bp[P[i]] m tpm, [Pl m' tp s [Pli]] m" tp .y [Pli]]
1 5 0 A +0 A +1 B +0 A
2 4 1 A +0 A +1 B +2 c
3 1 5 A +1 B +1 B 12 C
4 3 2 B +1 c +2 D 12 D
5 2 4 B 12 D +2 D 12 D

operations to the base string after which the order of suffixes remains untouched. The
sequence of rewrite operations starts with the largest suffix. Increasing the first character
of the largest suffix by any number a € N does not change the order of suffixes. Then the
first character of the second largest suffix can be increased by at most a without changing
the order of suffixes, and so on.

We proceed as follows: We first define the sequence of rewrite operations (Definition 4.4),
establish a bijection between a particular set of rewrite operations and the sa-equivalence
class Tpy for any permutation P € Pt (Lemma 4.5), count the number of these rewrite
operations (Lemma 4.6), and finally derive the size of 7pyx, which gives the proof of
Theorem 4.1.

Definition 4.4. Let ¥ be the underlying alphabet, P € Pg a permutation of [1,n] and bp
the base string of the sa-equivalence class 7px. Moreover, let m be an integer sequence of
length n, m € Z™ (usually m is a sequence of non-negative integers). The m-incremented
string tp,, of bp is defined as

tpm|Pli]] == bp[P[i]] + m[i] for all i € [1,n].

That is, the 5" smallest character of bp is increased by mli]. Note that we assume
¥ = [1, |X|] and allow m-incremented strings tp,, with X(tp,,) € X. In particular, the m-
incremented strings span the set of integer strings of length n: Z" = {tp,, € Z™ : m € Z"}
for any permutation P € Pgi. We use this property in Lemma 4.5.

For the permutation P = (5,4, 1, 3,2), Table 4.3 shows the connection between the base
string ABBAA and three m-increment sequences over the alphabet {A,B,C,D}. The leftmost
four columns show again the array indices i, the permutation P, the TR-array, and the
First sequence for the base string. Each of the following three pairs of columns show the
modification of the base string bp, or rather, the modification of the corresponding first
array by non-decreasing sequences to produce m-incremented strings: m-incrementing

22

4.2 Counting strings composed of up to o distinct characters

the base string by m = 0,0,1,1,2 produces tp,, = BDCAA, m' = 1,1,1,2,2 produces
tpms = BDDBB, and m” = 0,2,2,2,2 produces tp,,» = CDDCA. Like the base string ABBAA,
the m-incremented strings BDCAA, BDDBB, CDDCA are contained in 75 41 32) a8,c,0}-

Lemma 4.5. Let ¥ be an ordered alphabet of size o := |X|, P € P{& a permutation of
[1,n] with d TR-descents. Moreover, let Mp, be the set of non-decreasing sequences of
length n over the ordered alphabet [0,0 — d — 1].

Then there exists an isomorphism between Tpy, and Mp,, Tpy ~ Mp,.

Proof. Let bp be the base string of the sa-equivalence class 7py. Without loss of gen-
erality, we assume 3 = [1,0]. We show: (i) each non-decreasing sequence m € Mp,,
generates an m-incremented string tp,, € 7Tpyx and (ii) each other sequence o € Z" of
length n, 0 ¢ Mp,, generates a string tp, ¢ Tpx.

(i) Let m € Mp,, such that m[i] < m[i + 1] for all ¢ € [1,n — 1]. We verify the
conditions of Theorem 3.2 for tp,;:

(i.1) For all i € [1,n — 1], we obtain bp[P[i]] < bp[P[i + 1]] from Proposition 4.3 (b)
and (c). That implies

tpm[Pli]] = bp[P[i]] + mli] < bp[P[i+ 1]] + m[i + 1] = tpm[Pli + 1]],
verifying Theorem 3.2(a).
(i.2) If *R[i] > *R[i+1], then i € TR-desc(P). Proposition 4.3(c) gives bp[P[i]]+1 =
bp[P[i + 1]], which leads to
tpm|Pli]] = bp[P[i]] + mli]
< (bp[P[i]] + 1) + m][i]
< bp[Pli+ 1)) +mli + 1] = tpm[Pli + 1]],
verifying Theorem 3.2(b).
Therefore, sa(tpy,) = P.
Moreover, for each position j of tp,, with j = P[i] for some i € [1,n],
tpmlj] = tpm[Pli]] = bp[Pli] + mli] < (d+ 1)+ (0 —d—-1) =0
and analogously 1 < ¢p,,[j]. Hence, each m € Mp, generates a sequence tp,, €

Tp,g (C E").

(ii) For o ¢ Mp, containing a descending adjacent index pair such that ofi] > o[i + 1]
for some i € [1,n — 1], we concern ourselves with two cases:

Y

(ii.1) If 4 is not a TR-descent of P, then Proposition 4.3(b) states bp[P[i]] = bp[P[i+
1]]. Hence,

tpo[Pli]] = bp[P[i]] 4 ofi] > bp[P[i+ 1] 4 ofi + 1] = tp[P[i +1]],

which contradicts Theorem 3.2(a).

23

4 Counting and Enumerating the Strings per Suffix Array

(ii.2) Ifiis a TR-descent of P, then Proposition 4.3(c) states bp[P[i]] = bp[P[i+1]]—1
and, because of o[i] > o[i + 1], also o[i] > o[i + 1] + 1 is true. This results in

tpolPli]] = bp[Pli]] + o]

(bp[Pli+1]] = 1)+ (o[t + 1] + 1)
bp|Pli + 1]] + ofi + 1]

= tpo[Pli +1]],

v

which contradicts Theorem 3.2(b).

Therefore, only the non-decreasing sequences m produce a string tp,, such that
sa(tpm) = P.

For all these strings, we show that tp, ¢ X". If o is non-decreasing, but not in
Mps, it must contain a character greater than o —d — 1 or smaller than 0 at some
position 7. Since o is non-decreasing, such a character appears at position n or 1.
That is, o[n] > 0 —d — 1 or o[1] < 0. Combining o[n] > ¢ —d — 1 with the fact from
Proposition 4.3(a) that bp[P[n]] = d + 1 implies

The non-decreasing sequences o ¢ Mp,, for which (o) € [0,0 — d — 1], remain.

tpolP[n]] = bp[P[n]] + on] > (d+ 1)+ (0 —d — 1) = 0.

Using bp[P[1]] = 0 for o[1] < 0 analogously implies ¢p,[P[1]] < 0. Thus, tp, ¢ X",
completing the proof. O

Finally, we prove that the number of sequences in the sa-equivalence class 7py for
any permutation P is the same as the number of non-decreasing sequences over o — d
characters. To count the number of non-decreasing sequences of length n composed of u
elements, we observe the following:

Lemma 4.6. Let M(n,u) be the number of non-decreasing sequences of length n of ele-
ments in [0, — 1]. For any positive integers n and p

n+u—1>

O

Proof. The non-decreasing sequences of length n composed of u symbols can be modelled
as a sequence of two different operations. Initially, the current symbol is set to 0. Then
we apply a sequence of operations to generate non-decreasing sequences of length n. One
possible operation is to write the current symbol behind the so far written symbols and
the other one is to increment the symbol by 1. To generate a non-decreasing sequence,
we apply n + @ — 1 operations, n to write down the non-decreasing sequence and p — 1 to
increment the current symbol until g — 1 is reached. For this sequence of length n 4 u —1,

we have (”:ﬁ;l) possibilities to choose the u—1 positions of the increment operations. [

The respective representation of the sequence 2,2,2,2,4, 5,5 is shown in Figure 4.1.

24

4.2 Counting strings composed of up to o distinct characters

D P WWWWORPREPWP W W
2 2 2 2 4 5 5

Figure 4.1: Representation of the non-decreasing sequence 2,2,2.2.4.5.5 for u = 6, where
P denotes an increment operation and W denotes a write operation.

When applying this observation to Lemma 4.5, we get the number of strings in an
sa-equivalence class.

Proof of Theorem 4.1. For each permutation P € Ps:, the claim follows directly from
the bijection shown in Lemma 4.5 and the equality |[Mp,| = M(n,0 —d) = (”;rf;i;l)
from Lemma 4.6. For each other permutation P € P™ with P ¢ P, we have d > ¢ and

thus ("17 41 = 0. O

Remark. There are further instances for the number (":i;ﬁ;l) We have, for example,

(njiﬁfl) _ ((05.&1)) = (n,0 —d —1)!, where ((‘;)) denotes the number of distinct
multisets of size y on x symbols and (a,b)! is a multinomial coefficient that denotes the
number of ways of depositing a + b distinct objects into two sets, the first set of size ¢ and
the second of size b. Hence, for the strings counted in Theorem 4.1, there exist further
bijections to other combinatorial objects: a bijection to the family of multisets of size
0 —d—1onn+1symbols and a bijection to the ways of depositing n + o —d — 1 distinct
objects into two sets, the first set of size n and the second of size 0 — d — 1.

For n =2, 0 =4, and d = 1, Table 4.4 shows a specific instance for each of the bijective
combinatorial objects: The set of strings 7(3 1) (a 5,¢,0} Over the alphabet {A,B, C,D} sharing

the suffix array (2, 1), the family of multisets <<{“’3’c})) of size 2 on the symbols {a, b, ¢},
and the ways ({a’gj;’d}) of depositing the symbols {a,b,c,d} into two sets both of size 2.

Table 4.4: The three bijective sets 71 9) fa5cp}; (({a’g’c}», and ({a’g’g’d}).

7(1.2).{a.5,c,0} AB AC AD BC BD cD

<<{a,g,c})) {a,a} {a,b} {a,¢} {b,d} {bc} {cc}

({a,g,;,d}) {a,b}, {ac}, {ad}, {bye}, {bd}, {cd},
’ {c,d} {bd} {bec} {ad} {ac} {bec}

25

4 Counting and Enumerating the Strings per Suffix Array

4.3 Counting strings composed of exactly distinct
characters

So far, we have counted all strings of the sa-equivalence class 7py; for a permutation P.
Now, we count the subset 75y, of strings composed of exactly (= o = |X|) distinct
symbols or, alternatively, the isomorphic set of non-decreasing sequences M¥% = {m €
Mps : tpm € Tﬁ,z}Q obviously 75y ~ Mf% . 7

We have to determine the non-decreasing sequences m € Mp, for which tp,, consists
of exactly k letters. To assure that none of the x characters [1, k] is left out, it is sufficient
that tp,,[P[1]] = 0, tp,[P[n]] = k, and consecutive characters in the resulting sequence
tp,m are not differing by more than one.

Proposition 4.7. Let X be an ordered alphabet of size k := 0 = |X| and P € P" a
permutation of [1,n] with d TR-descents. Moreover, let m € Mp,.
Then m € MY, _, if and only if, for all i € [1,n — 1]

(a) m[1l] =0 and m[n| =r —d — 1,

(b) m[i + 1] = mli] or m[i + 1] = mli] + 1 if i ¢ TR-desc(P), and
(c) mli +1] = m[i] if i € *R-desc(P),

We are now prepared to prove Theorem 4.2.

Proof of Theorem /.2. The proof works similar as for Theorem 4.1. We again represent
the non-decreasing sequences of m € M’ as n write operations and p — 1 increment
operations, as it has been modelled above. Here, for the placement of the k — d — 1
increment operations, we are restricted by the mentioned conditions of Proposition 4.7.
In order not to break these conditions, (a) an increment operation must not appear before
the first or after the last write operation, (b) at most one increment operation must appear
between two write operations, and (c) the d TR-descent positions are forbidden for the
increments. We are thus left with n — d — 1 mutually exclusive positions from which we
choose the K — d — 1 increment operations. O

Table 4.3 shows that among the three non-decreasing sequences m, m’, and m” only m
generates an m-incremented string ¢p,,, that fulfills the three conditions of Proposition 4.7;
m’ violates conditions (a) and (c), and m” violates condition (b).

4.4 Enumerating the strings

In combinatorics, we are mainly interested in counting combinatorial objects of a particular
type. As computer scientists, we are further interested in the efficient enumeration of those
objects. This section presents two new algorithms enumerating the strings that we have
previously counted. For a fixed alphabet X of size 0 and a permutation P € Pg, the first
algorithm enumerates all strings of 7px, and the second enumerates the subset Tﬁz of
such strings composed of exactly kK = o distinct characters.

26

4.4 Enumerating the strings

Algorithm 4.2. Table 4.5: Enumeration of the strings tepum
ENUMp s (m,t,i, p, enum) that share the suffix array P = (5,4, 1,3,2)
11 Menum — M with base string bp = ABBAA.

— t

: 75enum
:enum «— enum + 1 enum Menum tenum

. if i>0 then 00000 ABBAA
for h—1topu—1do 00001 ACBAA

2
3
4
5
0 mli] —ml] +1 00011 ACCAA
7
8
9

t[P[i]] < t[P[i]] + 1 00111 BCCAA
ENUMp,(m,t,i—1,h+1,enum)
01111 BCCBA

end for
10 mli] «— m[i] — (un—1) 11111 BCCBB
00002 ADBAA

1. P[] — t[Pi]] = (p—1)
12: end if 00012 BDBAA

0 ~J O O i W N~

4.4.1 Strings composed of up to o distinct characters

The non-decreasing sequences of length n over [0, —d — 1] can be enumerated in-place by
applying one change operation at a time, beginning with the sequence 0™. The bijection
described by Definition 4.4 suggests to apply these enumeration steps directly to the base
string bp of the sa-equivalence class 7Tp.

Algorithm 4.2 shows the simultaneous enumeration of the non-decreasing sequences
m € Mp, and the strings ¢ € Tpyx for a permutation P € Pg; Mepum denotes the
enum! enumerated non-decreasing sequence and fenqym the respective m-incremented
String, tenum = tPmenum- Lhe parameters of the algorithm are the current non-decreasing
sequence m, the corresponding m-incremented string ¢, the position ¢ according to which
the modifications are performed, the current upper bound p for the value mli] such that
m[i] < p, and the current enumeration number enum. The enumeration is invoked with
ENUMPp (0", bp,n,0—d, 1). Starting with the sequence m = 0", the algorithm increments
m[n] and recursively enumerates all (n — 1)-length non-decreasing prefixes of m = 0"~!1
over the numbers {0,1}. Then it increments m[n] again and enumerates the (n — 1)-
length non-decreasing prefixes of 0"~ 12 over {0,1,2}. The recursive call is repeated for
each sequence 0"~ 'h with 1 < h < u. Moreover, each modification operation of ml[i] is
simultaneously applied to ¢[P[i]] such that the strings in 7py are enumerated in parallel.
In this way, the algorithm enumerates all |7py| strings of the sa-equivalence class Tpy
over an alphabet ¥ for the suffix array P in optimal O(n+ |7pyx|) time, where n steps are
used to construct the initial non-decreasing sequence 0™ and the base string. Moreover, it
has further features: It works in-place. After each single step of the algorithm, the current
sequence m € Mp, is non-decreasing and t € Tpy. Moreover, the enumeration works
correctly for countable ordered alphabets.

Table 4.5 shows the first eight enumerated non-decreasing sequences and the respec-

27

4 Counting and Enumerating the Strings per Suffix Array

tive enumerated strings of 7py for the permutation P = (5,4,1,3,2) and the alphabet
¥ = {A,B,...}. The columns show the enumeration number enum, the enumerated non-
decreasing sequences Mepum, and the enumerated strings tenum, where ¢ is the base string
of 72574717372)7{1;7]37___} with £ = bp = ABBAA.

4.4.2 Strings composed of exactly distinct characters

We modify the previous algorithm to enumerate only the subset 75 (C 7pyx) of strings
composed of exactly k distinct characters for any permutation P € 7735 or, alternatively,
the elements of the bijective set of non-decreasing sequences M .

For each non-decreasing sequence m € MY . Proposition 4.7(c) states that m[i] =
mli + 1] if i is a TR-descent of the input permutation P. That is, some positions of m,
or rather some non-increments, are pre-determined by the TR-descents of P. We skip the
redundant entries at the TR-descent positions and confine ourselves to the isomorphic set

;’; of non-decreasing sequences of length n — d over u = (k — d) distinct symbols that
fulfill Proposition 4.7(a) and (b), but ignore the TR-descents.

Recall that d; is the number of TR-descents in the prefix P[1,i] of the suffix array
P (see page 14). We obtain the sparse permutation P* of length n — d by erasing the
TR-descent positions from the permutation P:

P*[i —d;] := Pli] for all 4 € [1,n] with i ¢ TR-desc(P).

The set of values in P* and the set of values at the TR-descent positions of P form a
partitioning of the set of suffix numbers: [1,n] = {P*[i] : 1 <i<n—d}W{P[j] : j €
TR-desc(P)}, where W denotes the disjoint union of two sets.

For m* € M';,’; (of length n — d), the sparse m*-incremented string ¢}, of bp (both
tpm+ and bp have length n) is defined by:

tpm P[]l = bp[P*[i]] + m*[i] foralli€ [1,n—d],
P PN =70 for all j € TR-desc(P).

Let T}/ v4- denote the set of m*-incremented strings for P, m* € M5’ .

Algorithm 4.3 recursively enumerates the strings m* € M';,’Z and the m*-incremented

strings tp .. € T;g in parallel, in the same order as in Algorithm 4.2, while skipping the
invalid sequences. Besides the sparse permutation P*, the parameters of the algorithm
are the current non-decreasing sequence m?*, the respective m*-incremented sparse string
t*, the position ¢ according to which the modifications are performed, the current upper
bound g for the number of distinct symbols in the prefix of the current non-decreasing
sequence, and the current enumeration number enum. The enumeration is invoked with
ENUMp. , (minit*, *P,mmit*,n—(/i—d—l), k—d, 1), where minit* = 0"~ 0,1,2,..., p—
1, and tp i 18 the minit™-incremented base string bp. Starting with the sequence
m* = minit* = 0" 0,1,2,..., — 1, the algorithm increases m*[n —d — u + 1] such
that m* = 0" 9#.1,1,2,...,u — 1 and recursively enumerates the (n — d — p)-length

28

4.4 Enumerating the strings

Algorithm 4.3. Table 4.6: Enumeration of the sparse
ENUMp. o (m*, t*, 4, pu, enum) strings representing the strings com-
Lot um — posed of exactly the four distinct sym-
20 ML um — M bols A, B, C, and D sharing the suf-
3: enum «— enum + 1 fix array P = (6,5, 1, 2,@3) with base
4: if ¢ > 1 then string bp = AABBAA.
5 forh« 1tou—1do
6: m*li+h—1] «—m*[i+h—-1]+1 enum Mium L num
7 t*[P*i +h —1]] « t*[P*li+ h—1]] +1 B
8 ENUMB. ,(m*, t*,i — 1,h + 1, enum) 1 00012 A};DCAA
9: end for 2 00112 B-DCAA
10: for h «— w—1 down to 1 do 3 01112 BIEDCBA
11 mi+h—1<—m*i+h—-1 -1 c
12: t [P i+ h —1)] — t*"[P*li+h—1]] -1 4 00122 B(—:DDAA
13: end for 5} 01122 B-DDBA
14: end if 6 01222 c DDBA

proper non-decreasing prefixes composed of the numbers {0,1}. Then m*[n —d — pu + 2]
at the position to the right is incremented such that m* = 0"~4# 1,2,2,....u — 1,
and the proper prefixes composed of {0,1,2} are recursively enumerated. The recursive
enumeration is repeated for each sequence m* = 0""%"#,1,2,... h,h,h+1,...,1—1 with
1 < h < p. Moreover, each modification operation of m*[i] is simultaneously applied to
t*[P*[i]] such that the strings in T};f/l* are enumerated in parallel.

We now show how Tﬁz derives from 1’;;/1* The characters at the blank positions of
the enumerated sparse strings are implicitly defined. We construct tepym € TI’;,E from
t*

enum

€ T;j\k/l* by assigning
1 — t:num[P[ZH if 4 ¢ +R—deSC(P)
tenum[P[ZH - { tenum[P[i + 1“ —1 ifie +R—desc(P), (4.1)

for each i € [1,n], where tepym[P]i]] depends on the previous assignment of ¢epym [P[i+ 1]]

for each *R-descent i. Equation (4.1) obviously defines an isomorphism between Tﬁ,f/t*
and Tgs, T;L* ~ T}hy. Hence, the enumeration of the sparse strings in Tgf/l* induces
the enumeration of the strings in 7j5y. In this way, we implicitly enumerate all |75
strings composed of exactly s distinct characters contained in the sa-equivalence class
Tpy for a permutation P € Pgt in optimal O(n + |75y]|) time, where O(n) steps are used
to construct bp, P*, minit*, and t*P’mimt*. 7

Table 4.6 shows the enumerated non-decreasing sequences and the enumerated sparse
strings over the alphabet {A,B,C,D} for the permutation P = (6,5,1,2,4,3) with base
string bp = AABBAA. The only TR-descent of P is 4, which is marked by a circle in the
table caption (P[4] = 2). Deleting the encircled value 2 from P results in the sparse
permutation P* = (6,5,1,4,3). The columns show the enumeration numbers enum, the

29

4 Counting and Enumerating the Strings per Suffix Array

* *

enumerated non-decreasing sequences m, and the enumerated sparse strings t

enum: enum:*
Moreover, the blank character t},,.,[2] (P[4] = 2) of each enumerated sparse string is
annotated with the implicitly defined character t},,,,[4] —1 (P[4 + 1] = 4) forming the

complete string tepum, as it has been defined by equation (4.1).

30

5 Counting and Enumerating the Suffix
Arrays for Strings with a Fixed
Alphabet

In this chapter, we encounter two other classical counting problems: the counting of
equivalence classes and the counting of permutations of a particular type. We count and
enumerate the non-empty sa-equivalence classes 7py for a fixed-sized alphabet ¥ with
P ¢ Pg or, alternatively, the bijective set of suffix arrays for strings over that fixed-sized
alphabet. We first concentrate on the equivalent problem of counting the number of suffix
arrays with a fixed number of TR-descents and then use the result to count the distinct
suffix arrays for strings over a given alphabet.

Bannai et al. [14] stated that the number of suffix arrays of length n with exactly d
TR-descents is equal to the Eulerian number <Z> In their explanation, they interpret
Eulerian numbers as the number of permutations of length n with d permutation descents
and explain how their algorithm checks for these permutation descents. In fact, their
algorithm counts the number of TR-descents, but the TR-array is not a permutation.
Nevertheless, as we show in this chapter, their proposition is true.

Theorem 5.1. Let A(n,d) be the number of permutations of length n with d TR-descents,

then
n
A(n,d) = <d>

Bannai et al. [14] also showed that each suffix array with d TR-descents can be associated
with a string of at least d + 1 different characters. Therefore, for strings over an alphabet
of size o, we sum up the suffix arrays with up to o — 1 TR-descents to obtain the number
of non-empty sa-equivalence classes.

Corollary 5.2. For a fized alphabet ¥ of size o, the number |Pg| of non-empty sa-
equivalence classes for permutations of length n is given by Zg;é <Z>

5.1 Counting suffix arrays — Proof of Theorem 5.1

Our counting or, alternatively, our enumeration scheme for suffix arrays of length n starts
with the permutation (1), which is the suffix array of every string of length 1. Then it
gradually extends the suffix arrays in a particular way until the maximum length n is
reached.

31

5 Counting and Enumerating the Suffix Arrays

We first have a look at the recursive definition of the Eulerian number <Z> that de-
notes the number of permutations of [1,n] with exactly d permutation descents. For such
permutations, Graham et al. [56, Section 6.2] presented a counting scheme that in fact
works for permutation ascents, but can be adapted for permutation descents by reading
the permutations from right to left. There are n ways to insert the element n into a
permutation of [1,n — 1] with d permutation descents, leading to n permutations of length
n: d+ 1 with d permutation descents and (n — 1) — d with d + 1 permutation descents.
The desired recursion for the Eulerian numbers becomes evident from the reverse per-
spective: The <Z> permutations of length n with d permutation descents are constructed
from (d + 1)<";1> permutations of length n — 1 with d permutation descents and from
(n—=1)—(d—- 1))<Zj> permutations of length n — 1 with d — 1 permutation descents,
which implies () = (d+ 1)(";") + (n — d){5}7}) for 0 < d < n.

Although the counting scheme of Graham et al. works for the permutations with a
certain number of permutation descents, it does not work for the permutations with a
certain number of TR-descents. In general, there is a significant difference between the
number of permutation descents and the number of TR-descents of a permutation. An
extreme case is the permutation P = (n,n — 1,...,1), which is the suffix array for the
string A”. It has the maximum number of n — 1 permutation descents, but not a single
TR-descent. Nevertheless, the counting scheme of Graham et al. and also the recursion
formula for Eulerian numbers suggest a recursive counting scheme: A permutation should
be extended by one element, thereby the number of TR-descents should either be retained
or increased by one.

Theorem 3.2 revealed a close connection between the TR-array of a permutation P and
the strings in the sa-equivalence class for P. Therefore, we do not confine ourselves to the
investigation of permutations only, but rather study the modification of strings and the
induced effect on the TR-arrays of the affected suffix arrays instead, yielding the desired
counting scheme.

The first promising modification is to append a character at the end of the string.
Ukkonen [142] follows this approach for the online construction of suffix trees. This ex-
tension of the string, however, affects the relative order of the suffixes and thus inappro-
priately rearranges the TR-array. If we start, for example, with BCCAA having the suffix
array (5,4,1,3,2) with the only TR-descent at position 3 (see Tables 4.6 and 3.2) and
append D, the resulting string BCCAAD has the suffix array (4,5,1,3,2,6) with TR-array
(2,6,5,1,4,0), which has three TR-descents. The recursive formula for the Eulerian num-
bers, however, suggests that the number of TR-descents d should not increase by more
than one during a single extension step. Hence, this is apparently not the appropriate
extension scheme.

A second possibility is to attach a character to the front of a string t. Let ¢ denote
such a front-extended string, t¥ = ¢t for some character ¢ € ¥. We transfer the concept of
the upper triangle < to the other data structures that are affected by the front extension:
If z is an instance of a data structure related to the string ¢, then 29 is an instance of the
same data structure related to ¢<.

32

5.1 Counting suffix arrays

Table 5.1: The extension of the string ¢ = ABBAA by adding the character A to the front,
and the effect on the suffix array and the TR-array.

t = ABBAA tY = AABBAA

i P[j] *RI[j] t[P[j],n] 7 PR TR P, n]

5 0 A 1 6 0 A

4 1 AA 2 5 1 AA

3 1 4 AABBAA

3 1 5 ABBAA 4 2 6 ABBAA

3 2 BAA 5 4 2 BAA
5 2 4 BBAA 6 3 5 BBAA

Table 5.1 shows such an extension of ABBAA by A. For the string ¢ = ABBAA, the first
four columns show the array indices ¢, the permutation P, the TR-array, and the sorted
suffixes. The remaining four columns show the respective data for the front-extended string
t¢ = AABBAA. The front extension of ABBAA by A shifts the existing suffixes by one position
to the right, while keeping the relative order of the suffixes and the interdependencies
among suffixes and their successors. Only the suffix number 1 of the new suffix AABBAA is
inserted at the position 3 (or rather between positions 2 and 3) of the suffix array P, but
the number of TR-descents remains one. This is an appropriate extension scheme.

Based on our observations, we define an extension of a permutation P of length n — 1
to a set P9 of extended permutations, each of length n. This definition is the key for the
further reasoning throughout Lemmas 5.4 5.8, ultimately leading to Theorem 5.1.

Definition 5.3. Let P € P"! be a permutation of length n — 1. A set of extended
permutations P of P is defined as PY = {P? : i € [1,n|} C P" where the extended
permutation P evolves from P by incrementing each element of P by one and inserting
the missing 1 at position ¢, such that each index position j of P corresponds to an index

position j< of P

ji=3 if j <1
and jii=j+1 if j >,
and
P59 = P[j] +1 if j9#£4
and P59 =1 if j9=1.

R analogously denotes the rank array and +tR" the TR-array of an extended permutation
P9, alternatively with an additional subscript ¢ for an extended permutation with insertion
position 1.

33

5 Counting and Enumerating the Suffix Arrays

The insertion at position ¢ shifts the elements at positions j with j > 4 to the right,
resulting in an increased rank for the respective elements of P . In this way, the insertion
position 4 determines the rank array of the extended permutation.

Lemma 5.4. Let P € P"! be a permutation of length n — 1 and P € P an extended
permutation with insertion position i. Then we have for all e € [1,n — 1] that

(a) RIe+1] = Rle] if Rle] <1,
(b) Rie+1]=R[e]+1 ifRle]>1i, and
(¢) Rl =1i.

Proof. Let e be an arbitrary element of the permutation P occurring at position j, e =
P[j] and R[e] = j.

(a) If Rle] < i, then j = Rle] < i. Therefore, according to Definition 5.3, j equals j and
hence P[5 = P[j] + 1 = e + 1. Altogether, this implies R%e 4+ 1] = R[P[j7]] =
J*=J = Rlel.

(b) If Rle] > i, then j = R[e] > i. Therefore, j9=j+ 1 and PY[j9 = P[j]+1=e+ 1.
This implies Re 4+ 1] = RY[P[j9]] = j*=j+ 1 = Rle] + 1.

(c¢) RY[1] =1 holds because 1 is inserted at position i, P[i] = 1. O

Furthermore, mapping P to P basically preserves the TR-order, except for the insertion
position i:

Lemma 5.5. Let P € P" ! be a permutation of length n — 1 and P< € P an extended
permutation. Then, for all indices g,h € [1,n — 1],

"Rlg) < *R[h) = "R"[¢g°] < "R7[A7).
Proof. Let g and h be two positions of P such that TR[g] < TR[h]. Then, according to

the definition of TR, R[P[g] + 1] < R[P[h] + 1]. Moreover, let i be the insertion position
of PY. We distinguish two cases.

(i) If R[P[g] 4+ 1] < i, then Lemma 5.4 (a and b) gives
RY[Plg] + 1+ 1] = R[P[g] + 1] < R[P[h] + 1] < RY[P[h] + 1 +1].
Combining this with Definition 5.3 and the definition of TR yields
TR[g) = BP9 + 1] < RUP[AY) + 1] = *R7[h7).
(ii) If R[P[g] 4+ 1] > i the proof works analogously using the fact that R[P[h] + 1] >

R[P[g] + 1] > i. Hence, Lemma 5.4(b) has to be used for R[P[g] + 1] as well as for
R[P[h] + 1], and then the rest of the proof proceeds as before. O

Lemma 5.5 considers the TR-order of P9, but leaves out the insertion position . The
next lemma states that the TR-order at position 7 just depends on the position R[1] of
element 1 in the permutation P.

|
+

34

5.1 Counting suffix arrays

Lemma 5.6. Let PY € P< be an extended permutation of P € P™~1 with insertion position
i € [1,n], and let g be an index of P, then

*Rlg] < R[1] < *R"[¢°] < *R"[i] for all g € [1,n — 1].

Proof. We first show that TR[g] < R[1] = "R [¢"] < TR"[i].
If TR[g] < R[1], then using the definition of TR leads to R[P[g]+1] < R[1]. We consider
two cases.

(i) If R[Plg] + 1] < i, then RY[Plg] + 1+ 1] = R[P|g] + 1] by Lemma 5.4(a). Moreover,
Lemma 5.4 (a and b) implies R[1] < RY[1 + 1]. This together leads to

RY(Plg] +1) + 1] < R +1]. (5.1)

According to Definition 5.3, P¢g“] = P[g] + 1 and P9[i] = 1. Combining this with
inequality (5.1) leads to

R[] = R[P¢"] + 1] = RY[(Plg] + 1) + 1] < R*[1 + 1] = R°[P[i] + 1] = *R[i].

(ii) If R[P[g] + 1] > i, then the proof proceeds analogously by considering R[1] >
R[P[g] + 1] > 1.

In order to show the opposite direction TR[g] < R[1] <= *R"[¢7] < TR"[i], we observe
that *R[g] > R[1] = *R"[¢] > TR[i]. Since, for all g € [1,n — 1], TR[g] # R[1] and
*tR[g%] # TR"[i], we obtain the stated equivalence. O

After characterising the TR-order of extended permutations, we now prove that the
number of TR-descents is either preserved or increased by exactly one through the mapping
from P to an arbitrary extended permutation P<.

Lemma 5.7. Let P € P"! be a permutation of length n — 1 with d TR-descents and
P9 the set of extended permutations of P, then we have, for all extended permutations
P? e Pe,

|desc(P)| < |desc(PY)| < |desc(P)] + 1.

Proof. According to Lemma 5.5, the mapping with respect to the insertion position ¢
does not touch the TR-order of consecutive positions not adjacent to i. More precisely, for
all j € [2,n — 1] with j # 4,

TR[j — 1] > *R[j] <= "R} [(j — 1)7] > "R][57.

This means that each TR-descent at position j — 1 with j # 4 corresponds to a TR-descent
at position (j —1)in P and vice versa. Therefore, we only have to examine the TR-order
of the remaining pair of positions (i — 1,7) in P and the respective interval [(: — 1)9,i9] in
P?. Note that [(i —1)9,i] = {i — 1,4,7 + 1}. We distinguish whether position ¢ — 1 of P
is a TR-descent or not.

35

5 Counting and Enumerating the Suffix Arrays

(i) If i — 1 is a TR-descent of P such that TR[i — 1] > "R[i], then applying Lemma 5.5
leads to

TR0 — 1)% > TR} [i]. (5.2)

Since R[1] # *R]g] for all g € [1,n — 1], we consider three subcases:

5

(i.1) If R[1] > *R[i — 1], then Lemma 5.6 implies TR} [i] > TR{[(i — 1)9] and together
with inequality (5.2) TR;[i] > TR;[(i — 1)9] > TR} [i] follows. That is, TR} [i —
1] = TR][(i — 1)9] < *R;[i] and *R;[i] > *R;[i"] = TR;[i + 1]. Hence, i is a
TR-descent of P and the number of *R-descents of P equals the number of

*TR-descents of P.

(i.2) If *R[i — 1] > R[1] > TR[i], then Lemma 5.6 implies *R{[(i — 1)9] > TR} [i] >
*R;[i]. Hence, (i—1)9 and i are TR-descents of P{. The number of *R-descents
in P is thus one more than in P.

(i.3) If *R[i] > R[1], then TR{[(i — 1)9] > *R;[i] < TR;[i]. Hence, the number of
*TR-descents in P equals the number of TR-descents in P.

(ii) If 4 — 1 is not a TR-descent of P, then an argument similar to (i) can be used to
show that the number of TR-descents is retained or increases by one.

Combining all these cases shows, for each 7, that the number of TR-descents is preserved
by the mapping from P to P or is increased by one. O

Lemma 5.8. Let P be a permutation of length n — 1 with d TR-descents and P the set of
extended permutations of P; then the number of extended permutations with d TR-descents
isd+1,

{P? e P : |desc(PY)|=d}| =d+1.

Proof. We assign to each TR-run "R[l,7] of P a proper insertion position i € [l,r + 1]
that preserves the number of TR-descents through the mapping from P to P and show

7
that the number of TR-descents increases for the other, non-proper insertion positions.

Let TR[l,r] be a TR-run defined by a pair of consecutive TR-descents, (I — 1,7), such
that TR[I—1] > TR[l] < TR[I+1] < ... < TR[r] > TR[r +1]. Remember that, according to
Lemma 5.5, the TR-descents not adjacent to the insertion position are preserved through
the mapping to P7. Therefore, it suffices to investigate the TR-order of positions touched
by the insertion. Since R[1] # TR|g] for all g € [1,n — 1], we consider three mutually
exclusive cases.

36

5.1 Counting suffix arrays

(1)

(iii)

For R[1] < TR][l], the proper insertion position is 4, i = [, such that
TRII-1]> R[] <'R[l] < ... < 'R[r] > "R[r + 1].
According to Lemmas 5.5 and 5.6, we obtain the series of inequalities
TRI(1—1)% > R[] < TRIIY) < ... < TR [rY] > TR [(r + 1)7).

Hence, for the insertion position [, there exist exactly as many TR-descents in the
respective interval [[— 1,7 + 1] of P as in the interval [(I — 1)9, (r + 1)9] of PZ,
and, according to Lemma 5.5, the other TR-descents are not affected through the
mapping. Thus, | TR -desc(P)| = | TR -desc(P)|.

For the insertion positions i € [l + 1, 7]

TR <*R[I+1] < ... < R[i —1] > R[1] < "R[i] < ... < TR[r] (5.3)
holds. Then applying Lemmas 5.5 and 5.6 leads to

TR < TR+ 1) < ... < *R[(i — 1) > TR[i] < TR{[i] < ... < *R}[r).
(5.4)

Therefore, the number of TR-descents increases through the mapping.

The bordering insertion position r + 1 remains to be investigated, for which we
consider two special cases.

(i.1) If R[1] < *R[r + 1], then r 4+ 1 would be the proper insertion position for the
next TR-run TR[r + 1, h] for some h, like in case (i).

(i.2) If R[1] > TR[r + 1], then the insertion position r + 1 increases the number of

3

*TR-descents through the mapping from P to P;.

For TR[l] < R[1] < TR]r], the proper insertion position is i € [[+1,7] with TR[i—1] <
R[1] < TR[i]. The other insertion positions j, j € [l + 1, 7] with j # 4, increase the
number of TR-descents. The bordering insertion positions [and r+ 1 either increase
the number of TR-descents analogously to (i.2), or they are proper insertion positions
for the adjacent TR-runs.

For *R[r] < RI[1], the proof works analogously to (i) by handling the bordering
insertion position [like (i.2).

So far, we concentrated on the inner TR-runs TR[l,r] with [# 1 and r # n — 1. For the
bordering TR-runs TR[l,7] with [= 1 or r = n — 1, the proper insertion positions are
defined in the same way, but the proof is a bit simpler because the insertion positions at
the borders 1 and n are both not affected by adjacent *R-runs.

Finally, for each of the d + 1 TR-runs in P, there exists a unique insertion position 4
that preserves the number of TR-descents through the mapping from P to PZ. All other
insertion positions increase the number of TR-descents. O

37

5 Counting and Enumerating the Suffix Arrays

Proof of Theorem 5.1. For the number of permutations of length n having d TR-
descents, A(n,d), we achieve the following recursive definition with the two base cases
(i) and (ii) and the recursion step (iii).

(i) Since the permutation (n,n — 1,...,1) is the only one without any *R-descent,
A(n,0) = 1.

(ii) Obviously, the number of TR-descents is bounded by n — 1. Hence, there is no
permutation of length n with more than n —1 TR-descents, and thus A(n,d) = 0 for
d>n.

(iii) As mentioned before, mapping each permutation P of length n — 1 to P leads to
n extended permutations, each of length n (one for each possible insertion position
i). If P contains d TR-descents, then Lemma 5.8 implies: There exist exactly d + 1
extended permutations with d TR-descents, and, according to Lemma 5.7, the other
n—d extended permutations contain d+1 TR-descents. Combining these observations
leads to the recursion A(n,d) = (d+1)A(n—1,d)+(n—d)A(n—1,d—1) for 0 < d < n.

The propositions (i), (ii), and (iii) yield the same recursion as for the Eulerian numbers.

Hence, A(n,d) = (1)) O

5.2 Enumerating the suffix arrays

We present the first enumeration algorithm for the suffix arrays of the strings up to length n
over an alphabet of size o or, alternatively, for the corresponding non-empty sa-equivalence
classes represented by their base strings. Our enumeration scheme exploits the close
relationship between suffix arrays and the Burrows—Wheeler transform. We would like to
enumerate only the suffix arrays of (exactly) length n, just as Corollary 5.2 counts them,
but we are currently not able to do so. Our enumeration scheme generates the suffix arrays
from small to long arrays such that the generation of the suffix arrays of length n depends
on the previous generation of all shorter suffix arrays.

We first observe that the attachment of a character at the front of a string causes an
index shift of the starting positions of the suffixes: Each index number increases by one,
and the newly attached character receives the freed index number 1. For our enumeration
algorithm of the base strings up to length n, which also uses such a front extension, we
avoid the unfavourable index shift by using a different indexing of the strings: For a string
t' of length n’ with n’ < n, we use the indexing n —n’ +1,n —n’ +2,...,n. If a new
character is attached to the front of ¢/, then it is assigned to the new front index n — n’
without increasing the previously existing index numbers n —n’ +1,n—n'+2,...,n. A
more elegant solution would be to replace the left-to-right indexing with a right-to-left
indexing n’,...,2,1, which is independent of the final string length. Nevertheless, to be
consistent with the literature, we keep the traditional left-to-right indexing throughout
the thesis, but start with the index front = n —n’ + 1 in the remainder of this chapter.

38

5.2 Enumerating the suffix arrays

The modified indexing is only used for strings. Nevertheless, it requires an adjustment
of Definition 5.3. First of all, the indexing of the suffix arrays is not changed. Hence, we
still have

= if j <
and =441 if § > .

The modified indexing of the strings, however, avoids the shift of the suffix numbers.
Therefore,

P[] == P[j] if 59 £
and P59 := front® if 79 =1,

)

where front® := front — 1.
Furthermore, the proposition of Lemma 5.4 changes; we now have for all e € [1,n — 1]
that

(a) RYe] = Rle] if Rle] < 1,
(b) RYe] = Rle]+1 if Rle] >, and
(c) RYfront] =i.

Nevertheless, the TR-array is essentially not altered by the different indexing since it re-
flects the connections between consecutive suffixes, which is independent of the current
indexing; only the start index of the string changes from 1 to front. Therefore, Lem-
mas 5.5 5.8 are essentially retained, only R[1] in Lemma 5.6 changes to R[front].

Before we can formulate the enumeration algorithm, we first define the Burrows—Wheeler
transform (BWT) and further terms that are frequently used in the compressed indexing
literature. Let § be a character not contained in ¥ with $ < ¢ for all ¢ € X. For applying
the BWT, we append $ to the end of ¢, forming the $-extended string t$. The suffix array
P of t is essentially kept through the extension. Only the new suffix number n + 1, which
refers to the smallest suffix $, is implicitly attached to the front of P, P[0] = n + 1, but
it does not explicitly appear in P. The BWT string bwt of ¢, or rather the BW'T string
of the $-extended string ¢$, is formed of the characters to the “left” of the suffix numbers
in their suffix array order, basically giving the left context of the lexicographically sorted
suffixes of t$.

Definition 5.9. Let ¥ be the underlying alphabet, P € Pgt a permutation of [1,n], and
t € Tpy a string of the respective sa-equivalence class. Moreover, let P[0] = n + 1. We
define the BWT string bwt of t as

L [tlPli] -1 if Pli] >1
bl .—{ $ i Pl =1,

for i € [0, n].

39

5 Counting and Enumerating the Suffix Arrays

Note that, different from the string ¢, the BWT string includes the $, starts at position
0 and has length n+1. Moreover, our definition is only equivalent to the original definition
of Burrows and Wheeler [32] for $-extended strings.

We further define some tools that are frequently used in the compressed text index-
ing literature, starting with the functions rank and select. For the BWT string bwt,
rank.(bwt, j) is the number of occurrences of the character ¢ in the prefix bwt[0, 5] of bwt:

rank.(bwt, j) := |{g € [0, 7] : bwt[g] = c}| for all j € [0,n]. (5.5)

Conversely, select.(bwt, k) gives the position of the Eth occurrence of the character ¢ in
bwt:
select.(bwt, k) := j if bwt[j] = ¢ and rank.(bwt, j) = k, (5.6)

for all ¢ € X, j € [0,n], and k& € [1,n]; select.(bwt, k) is undefined if the number of
occurrences of the character ¢ in bwt is less than k.

Recall the First sequence f = t[P[1]],t[P[2]],...,t[P[n]] for a string t € Tpy, which is
simply composed of the alphabetically ordered characters of t. Without loss of generality,
we assume that the underlying alphabet consists of the first natural numbers, ¥ = [1, |o]].
Then we define the array C storing in C|c] the frequency of characters in ¢ that are smaller
than ¢, Clc] :=|{j € [1,n] : t[j] < c}| for all ¢ € 3. Moreover, f[C[c]+1] = f[C]c]+2] =
... = f[Cle+1]] for all ¢ € ¥. Hence, C uniquely determines the First sequence f.

For a string ¢t with BWT string bwt and First sequence f, the LF-mapping links each

positions of bwt to a position of f:

| Clowt[j]] + ranky,,; (bwt, 7) if bwt[j] # '8’
LE() = { 0 if buwt[j] = $’

for all j € [0,n]. If bwt[j] = c is the k™ occurrence of the character ¢ in bwt, then
FILF(i)] = c is the k' occurrence of ¢ in f. The inverse mapping LF~! is realised via a
select query:

I

LF~Y(h) = select i) (bwt, j — C[h]) for all h € [1,n].

Additionally, we maintain a reference pg to the position of § in bwt such that bwt[pg] = $.

There exists a one-to-one correspondence between the suffix arrays with d TR-descents
and the base strings of the respective sa-equivalence classes, which are composed of exactly
d + 1 distinct characters (see Chapter 4.1). For the proper insertion position 3, Table 5.2
shows the extension of the permutation P = (6,5, 2,4, 3), the respective front extension of
the $-extended base string ABBAAS by A and the adjustment of the BWT string bwtp. The
symbol * 7 is a sentinel for the index position 1, which does not belong to the string. The
real start index is front = 2. The leftmost five columns of the table show the array indices
j, the suffix array P, the TR-array, the BWT string bwtp, and the First sequence for the
$-extended base string bp$, bp$ = _ABBAAS. The right part shows the respective columns
for the extended permutation P§' with the S-extended base string bps$ = AABBAAS. The
lines between the BWT column and the column for the First sequence represent the LF-
mapping for the As. If A is attached to the front of ABBAAS$, then we find the proper

40

5.2 Enumerating the suffix arrays

Table 5.2: The extension of the base string bp = ABBAA by adding the character A to the
front and the effect on the suffix array and the TR-array.

bp$ = _ABBAAS bps$ = AABBAAS
J P[] "R[j] bwtplj] bpS[P[j]] 7% P5l5Y) R3] bwtps[i¥] bpsS[Psli]
0 A8 0 A8
1 6 0 Ao oA 16 0 A oA
2 5 1 B A 2 5 1 B T
3 1 4 $ A
3 2 5 $ A 4 2 6 A//A
4 4 2 B . B 5 4 2 B .- B
5 3 4 I B 6 3 5 AT B

Table 5.3: The extension of the permutation P with base string bp = ABBAA according to
the insertion positions 4 and 2.

bpa$ = BACCAAS bpg$ = ABCCBAS
7% PR bwtpg 5] bpgS[P[5] 74 Ps[5°] bwtpg[i] bpg$[Ps[j]
0 A $ 0 A $
1 6 A A 1 6 B._ A
2 5 C. A 2 1 $ ~.__A
3 2 B« A 3 5 C/B
4 1 § B 4 2 A~ < B
5 4 c-.__cC 5 4 c-._.- "¢
6 3 A e 6 3 B-~ -¢C

insertion position 3 by moving the $ at position 3 of bwtp towards the funnel that is
formed by the lines representing the LF-mapping for the As. The $ in bwtp is then
replaced by the attached A, A is inserted at position 3 of the first sequence, and the $ to
the “left” of the attached A is inserted at position 3 of bwtp. The other positions of the
BWT string and the First sequence remain untouched. Moreover, the new suffix with the
suffix number front® = 1 is inserted at position 3 of the suffix array P. The inserted row
3 is printed in bold face.

For the insertion positions 4 and 2, Table 5.3 shows the respective extended permuta-
tions of P = (6,5,2,4,3), the modifications of the $-extended base string _ABBAAS of the
respective sa-equivalence class and the adjustment of the Burrows—Wheeler transform;
4 and 2 are non-proper insertion positions. For the insertion position 4, the leftmost four

41

5 Counting and Enumerating the Suffix Arrays

columns show the array index j, the extended suffix array Py, the respective BWT string
bwtpg, and the First sequence for the modified $-extended base string bp4<1$ = BACCAAS.
The rightmost four columns show the respective data for the insertion position 2. The
values of the inserted rows are again printed in bold face. The solid lines show the part of
the LF-mapping touching the insertion position ¢ of the First sequence, and the dashed
lines show the part of the LF-mapping touching the First sequence at the positions ;¢
with j9 > i. We observe that the characters after the insertion position i of the First
sequence are increased by one, bps[j<] = bp[j* — 1] + 1 for each j< > i.

Based on our observations, we define the modification of the base string bp of the
sa-equivalence class 7p .

Definition 5.10. Let % be the underlying alphabet, P € Pg_l a permutation of length
n — 1, bp the base string of the respective sa-equivalence class 7py;, and Propp the set
of proper insertion positions for P. Moreover, let ¢ be a non-proper insertion position,
i € [1,n] with ¢ ¢ Propp. Then we define the modified base string b; p of length n by

[
(a) bip[P[j] := bp[Plj]] if j <,
(b) bip[PLY] == bp[Plj]] +1 if j<> 1, and
(c) bsplfront™] := prop; + 1,

where front is the start index of the base string bp and prop, denotes the number of proper
insertion positions in the prefix P[1,i — 1] of P, prop, = |{j € Propp : j < i}|.

Lemma 5.11. Let X be the underlying alphabet, P € 'Pg_l a permutation of length n—1,
bp the base string of the respective sa-equivalence class Tpy, and i a non-proper insertion
position of P, i € [1,n] with i ¢ Propp. Then b; p is the base string of the sa-equivalence
class Tpsx, according to the extended permutation P bip= bps.

Proof. Lemmas 5.5 and 5.6 imply that the extension with respect to the insertion position
i only influences the relative order of the TR-values touched by the insertion position. Since
i is a non-proper insertion position, the extension of P either produces a new *R-descent
at position i — 1 with *R}[i — 1] > *R[i] or a new *R-descent at position 7 with *R}[i] >
*R;[i+1], implying the following. If dia is the number of TR-descents in Py that are smaller
than j< and d; is the number of TR-descents in P that are smaller than j, then we have
dj = djs for j¥ <iand d; +1 = dj. for j° > i. Hence, according to Definition 5.10 (a and
b) and the definition of the base strings, we have b; p[P[j%]] = bp[P[j]] = dj+1 = dja+1 =
bpslPEL]] for j < i and by p[P[i]] = bp[Pl]] + 1 = (d; +1) + 1 = d% + 1 = bps [PY[7]
for j< > i, verifying the equality for the positions j< € [1,n] with j< # i.

For Definition 5.10(c), we exploit the relationship between the TR-runs and the proper
insertion positions. Let *R[l,7] be the TR-run with [< 4 < r, and assume it is the
k" *R-run, so d; = k — 1. Moreover, in the proof of Lemma 5.8, we have assigned
the k' proper insertion position iynep to the k* *R-run *R[l,7], | < dprep < 7+ 1 and
k= |{i € Propp : i <'iprop}|. We distinguish two cases:

42

5.2 Enumerating the suffix arrays

(i) If i < iprep, then
... < TR[i — 1] < Rl[front] > "R[i] < ... < "R[iprop — 1] < R|front]...,

where we have TR[iprop — 1] < R[front] < TR[iprep] SinCe iprep is a proper insertion
position (see the series of inequalities (5.3) and (5.4) in the proof of Lemma 5.8).
Then applying Lemmas 5.5 and 5.6 leads to

<RG0 < TR > TR <

Hence, the insertion at position 7 produces a new TR-descent i. We have k—1 proper
insertion positions of P smaller than i and as many TR-descents of P smaller than
i, prop; = di. Moreover, the new suffix number front® is inserted at position 7 such
that P[¢] = front®. Therefore, according to Definition 5.10(c) and the definition of
the base strings, b; p[P;[i]] = bi p[front™] = prop; +1 = di +1 = bps[P;[i]], verifying
the equality for the insertion position i.

(ii) If i > ippop, then we have
R|front] < "Rliprop) < < *R[i — 1] > R[front] < "R[i] < ...
Applying Lemmas 5.5 and 5.6 again leads to
< TRIG -1 > TR < TR <

Hence, the insertion at position ¢ produces a new TR-descent at position ¢ — 1. We
have k proper insertion positions that are smaller than or equal to 7: k£ — 1 for the
preceding TR-runs and in addition the proper insertion position ipy..p. Moreover, we
have the same number k of TR-descents of P that are smaller than i: We have the
k — 1 preceding TR-runs each terminated by a TR-descent and in addition the TR-
descent i—1 that is produced by the insertion. That is, prop; = d;. Hence, according
to Definition 5.10 (¢) and the definition of base strings, b; p[P{[i]] = b; p|front"] =
prop; +1 = dj+1 = bpa[P[i]], verifying the equality for the insertion position i. [

We are now prepared to formulate the desired enumeration algorithm. The main proce-
dure ENUMSA (Algorithm 5.1) interacts with the procedures ENUMPROP (Algorithm 5.2),

ENUMNOPROP (Algorithm 5.3), and INSRECDEL (Algorithm 5.4). Let 77[[,1’”] be the set
of suffix arrays of strings composed of up to ¢ distinct characters with length up to n.
ENUMSA simultaneously enumerates the base strings up to length n that are composed of

up to o distinct characters and the corresponding suffix arrays P € P([,l’n}. It starts with

the suffix array (1) of the base string A and gradually extends the suffix arrays P € P(Ll’n]
emanating from (1) until the maximum length n is reached.

Without loss of generality, we assume again that the character set of a base string bp
equals the first natural numbers [1, |3 (bp)|]. In each step, the BWT string is adjusted to

the current base string. The parameters of the algorithm are the current permutation P,

43

5

Counting and Enumerating the Suffix Arrays

Algorithm 5.1.
ENUMSA,, »(P, bp, bwtp, pg, enum)

Pernum < P
benum < bp
enum <« enum + 1
if length(bp) < n then
Propp < ENUMPROP,, ,(P,bp, bwtp, pg, enum)
if [X(bp)| < o then
ENUMNOPROP,, (P, bp, bwtp, pg, Prop p, enum,)
end if
end if

Algorithm 5.2.
ENUMPROP,, (P, bp, bwtp, pg, enum)

1
2
3
4.
5
6
7

: Propp «— 0

. for ¢ — |3(bp)| down to 1 do

i — C(c) + rank.(bwtp,pg — 1) + 1
Propp < Propp U {i}

INSRECDELy, (P, bp, bwtp, pg, enum, i, c)
: end for

: return Propp

Algorithm 5.3.
ENuMNOPROP,, (P, bp, bwtp, pg, enum, Propp)

1
2

3:

10:
11:
12:
13:
14:
15:

44

D C < ’E(bp)‘ +1
. if length(bp) + 1 € Propp then
c—c—1
else
INSRECDEL,, (P, bp, bwtp, pg, enum, length(bp) + 1, c)
end if
for i < length(bp) down to 1 do
bwtp[LF~1(7)] = bp[P[i]] + 1
bp[Pli]) — bp[P[i]] + 1
if i € Propp then
c—c—1
else

INSRECDELy, (P, bp, bwtp, pg, enum, i, c)
end if
end for

5.2 Enumerating the suffix arrays

Algorithm 5.4. Table 5.4: Enumeration of base strings
INSRECDEL,, ,(P, bp, bwtp, pg, enum, i, c) benum up to length 4 over alphabet {A, B}
1. front < n — length(bp) and the respective suffix arrays Pepum.

2: bp[front] — ¢

3. bwtp[p$] —c enum benum Penum
4: pg «— 7 1 __A 3

5. insert(bwtp,i,’$’) 2 _AA 3,2
6: insert(P, i, front) 3 AAA 3,2,1
7. ENUMSA,, (P, bp, bwtp, pg, enum) 4 ABA 3,1,2
8: pg «— LF~Y(pg) 5 ABB 1,3,2
9: bwtp[pg] — %’ 6 _AB 2,3
10: bp[front] <’ 7 AAB 1,2,3
11: delete(bwtp, i) 8 BAB 2,3,1

—_
N

. delete(P, 1)

the base string bp of the respective sa-equivalence class 7py;, the BWT string bwtp for the
$-extended base string bp$, the index pg with bwtp[pg] = $, and the current enumeration
number enum. It is invoked with ENUMSA, »((1),4,A$,1,1), where (1) is the smallest
non-empty suffix array, A is the base string of the sa-equivalence class 7(1) 14,5 and AS is
the BWT string for the $-extended base string A$. The recursion terminates if the maximal
string length n is reached (line 4). Otherwise, ENUMPROP is called, which enumerates the
extended permutations for the proper insertion positions. Moreover, if bp is composed of
less than o distinct characters, ENUMNOPROP is called, which enumerates the extended
permutations for the non-proper insertion positions.

ENUMPROP and ENUMNOPROP both use INSRECDEL. In lines 2-6, INSRECDFEL at-
taches the character ¢ at the front of the base string bp, updates the BWT string bwtp,
and inserts the new suffix number front at position ¢ of the permutation P, producing
the extended permutation P®. Then ENUMSA is called, which recursively enumerates the
base strings emanating from bps = cbp and the suffix arrays emanating from P? (line 7).
Lines 8-12 reverse the modifications of lines 2—6, reconstructing the original data.

For each character ¢ contained in the base string bp, ENUMPROP determines the proper
insertion position i that accords to the front extension of bp by c¢ (line 3), stores the
insertion position in Propp (line 4), and calls INSRECDEL (line 5), which produces the
base string bps of the extended suffix array P? and recursively enumerates the suffix arrays
emanating from P, Finally, ENUMPROP returns the set of proper insertion positions

(2
Propp. Note that we assume C'is implicitly updated during each insert or delete operation.
For all non-proper insertion positions ¢ in descending order, ENUMNOPROP in combi-
nation with INSRECDEL successively produces the base strings bpf of the sa-equivalence
classes for the extended permutations P, realising Definition 5.10, and recursively enu-
merates the base strings emanating from bps and the suffix arrays emanating from Pe.

ENUMNOPROP first assigns the smallest not yet used character to ¢, (line 1). It passes
through all the insertion positions ¢, starting with the largest, which is handled separately

45

5 Counting and Enumerating the Suffix Arrays

(lines 2-6). When it moves over the position 4, then the character bp[P[i]] at position
i of the First sequence and the corresponding character in bwtp are increased according
to Definition 5.10(b) (line 8-9). If i moves over a proper insertion position, then c¢ is de-
creased to conform with Definition 5.10(c) (lines 2+3 and lines 10+11). Otherwise, if 7 is
a non-proper insertion position, INSRECDEL is called (lines 4+5 and lines 12+13), which
attaches c to the front of bp, updates bwtp, produces the permutation P, and recursively
enumerates the base strings emanating from bps = cbp and the suffix arrays emanating
from PZ. Table 5.4 shows the enumerated base strings bepym up to length 4 composed of
up to 2 distinct characters and the corresponding suffix arrays Pejym-

Rank and select functions for the implementation of the BWT have been widely studied
in the compressed indexing literature, but most of these data structures are rather static.
For an in-depth study of the rank and select data structures and their connection to the
Burrows—Wheeler transform, we refer to the survey of Navarro and Mékinen [113]. For the
time-efficient implementation of our enumeration scheme, dynamic data structures repre-
senting the Burrows Wheeler transform are required. We may use the dynamic rank index
of Mékinen and Navarro [93|, which performs rank and select as well as insert and delete
queries in O(logn) time. In this way, the algorithm enumerates the base strings of the
non-empty sa-equivalence classes and the corresponding suffix arrays in O(logn |77£1’n]\)

Vis the set of suffix arrays of strings composed of up to ¢ distinct charac-
ters with length up to n. We have]77([,1’"]\ =37 S2925 (4). which follows from summing
up the suffix array count of Corollary 5.2 for all strings up to length n. Furthermore, we
anticipate Lemma 6.1 of Chapter 6.1. Tt states Y293 () = DY (7) (=1)*(o — k)7, which

implies [P&"] = > i1 S () = > i1 S770 (D) (=1)k(0 — k). We thus achieve the
time bound of O(logn »>%_, ZZ;& (i) (—1)*(0—k)7) for the enumeration of the non-empty
sa-equivalence classes, represented by their base strings, and the parallel enumeration of
the corresponding suffix arrays, which is exponential for o > 1.

The technique used in INSRECDEL (Algorithm 5.4) for the extension of the Burrows—
Wheeler transform can also be used for the right-to-left online construction of the BWT
or the suffix array: Lippert et al. [92] used it for the construction of the BWT for ge-
nomic sequence data. Moreover, Gerlach [52] presented a space-efficient implementation
of Méakinen and Navarro’s [93] dynamic rank index for the construction of a compressed
index that incorporates the Burrows—Wheeler transform.

: 1,
time, where PC[T "

46

6 Application of the String and Suffix
Array Counting

Many compressed full-text indices are based on suffix arrays: the compressed suffix ar-
ray of Grossi and Vitter [57], the compressed-suffix-array-based index by Sadakane [123],
Miékinen’s compact suffix array [94], and several others that improve upon these three (see
Navarro and Mikinen [113]).

We are interested in the compressibility of such indices, in particular of those based
on suffix arrays. Lower bounds for the size of full-text indices are known: Demaine
and Lopez-Ortiz [41] proved a lower bound for indices providing substring search, and
Miltersen [107| showed lower bounds for selection and rank indices (see equations (5.5)
and (5.6) on page 40).

In this chapter, we apply the result of Corollary 5.2 to prove new tight lower bounds
on the compressibility of suffix arrays in Section 6.1. Section 6.2 leaves the compressed
indexing field; it combines the counting schemes of the previous two chapters to prove
summation identities of Eulerian numbers.

6.1 Applications to compressed suffix arrays

Before formally stating and proving the results on the compressibility of suffix arrays, we
first perform some preliminary work. At first sight, the counting formula for the number
of suffix arrays of Corollary 5.2 looks quite compact. The Eulerian numbers, however, are
recursively defined, which is unfavourable in consideration of the subsequent reasoning.
We rather convert the formula into a closed form.

Lemma 6.1. Let 0 and n be fized positive integers, then

:z;é <Z> = :é <Z> (—1)*(o — k)",

Proof. An equality rule for the Eulerian numbers [56, Section 6.2, eq. 6.38|, equality rules

47

6 Application of the String and Suffix Array Counting

for binomial coefficients, and some arithmetics lead to

B0 - EE(ne o
- §§<(2>+<))(—1) (d+1—k) (6.2)
o—1 d n
= 2. 0<k> Fld+1—k)"
_ Y Zd: kf1>(Pld 41— k)
d=1 k=1
e n k-1
_;;Q@_l)(_” (d+1—k) (6.4)
B k:1</€ﬁ1>(Do +1—k) (6.5)
— :_: (:)(—1)k(a—k)", (6.6)

where equality (6.1) follows from (%) = S4_ (")(=1)*(d + 1 — k)" [56, eq. 6.38],
equality (6.2) from ("2,'1) = (1) +(,",), equality (6.3) from the distributivity, equality (6.4)
from shifting d and k with respect to the first sum and from (kﬁl) = 0 for £ < 0,

equality (6.5) from subtracting both sums, and finally equality (6.6) from shifting & again.
O

Many application areas for suffix arrays handle small alphabets like the DNA, amino
acid, or ASCII alphabet. Corollary 5.2 thus limits the number of distinct suffix arrays for
such applications. For example, for a DNA alphabet of size 4, the number of distinct suffix
arrays of length 16 is 3614 083 520 = 23:0 <1d6>; whereas the number of possible permu-
tations of length 16 is 20922 789888000 = 16!, which is about 5789 times larger. This
difference increases rapidly for larger n. We achieve a lower bound on the compressibility
of the whole information content of suffix arrays.

Corollary 6.2. Let 3" be the set of strings of length n over an alphabet 3 of size 0. Then
the lower bound for the compressibility of the respective suffiz arrays in the Kolmogorov

sense is log(Z;é () (=1)*(o — k)™).

48

6.1 Applications to compressed suffix arrays

Table 6.1: Number of strings of length n over alphabets of size 4 and 20, and the respective
number of suffix arrays.

Alphabet size 4 Alphabet size 20

n Strings Suffix arrays Strings Suffix arrays
4 256 24 160 000 24
6 4096 662 64 000 000 720
8 65536 20160 00@®5 600000 40320
10 1048576 504 046 ~1.0-1013 3628 800
12 16777216 10670040 ~4.1-101 479001 600
14 268 435 456 202964 470 ~16-10'® 20087178291

16 20@ 294 967 528 614 083 ~ 6.6-10%0 ~2.1-10"
18 73668 719476 15061 786 015 ~2.6-10% ~6.4-10'°

Proof. There are Zg;é (") distinct suffix arrays. Among them, there exists at least one
binary representation with Kolmogorov complexity not less than log Eg;é <Z> Due to

Lemma 6.1 this equals log Y7, (D) (=D*(o = k)™ O

We pose a further question: How is the connection between the number of strings and
the number of suffix arrays? For increasing string length, Table 6.1 shows the number
of strings over alphabets of size 4 and 20 (DNA and amino acid alphabet size) and the
respective number of suffix arrays. The first column shows the string lengths, the second
column the number of strings over an alphabet of size 4, the third column the number
of suffix arrays for these strings, and the fourth and the fifth column show the respective
numbers for an alphabet of size 20. For a fixed alphabet of size o and increasing string
length n, the number of strings ¢™ and the number of respective suffix arrays g;ol <Z>
diverge, but we do not immediately see whether the ratio between these numbers diverges
or converges. As seen below, it does, in fact, converge.

Theorem 6.3. Let o be fized, then

o—1/n
lim 7d=%<d> = 1.
n— oo o
Proof. We obtain
o—1/n o—1 m\/_ 1\k _ \n
lim 7d=%<d> i 2= ()¢ j) o k) (6.7)
n—oo o n—o0 g
o—1
- 7}%0(0 +Z<k>< R) 0%
! n E\"
. HZ(_l)knan;lo«k) <1—;> > (6.9)
k=1
= 1, (6.10)

49

6 Application of the String and Suffix Array Counting

where equation (6.7) follows from Lemma 6.1, equations (6.8) and (6.9) from basic arith-
metics, and equation (6.10) from the fact that lim, . ((Z) (1- g)n> =0for 0 < g <1

The exponential term (1 — g)n converges to 0 and dominates the polynomial term (Z)
(" < nk. [l
=

Note that Theorem 6.3 only holds if the alphabet is of a constant size. If the alpha-
bet size grows proportionally to the string length, it is not true anymore. For ¢ = n,
>iso () n!

O-VL

=lim, .o =& = 0.

lim;, o0 YD

6.2 Summation identities

We present constructive proofs for two long known summation identities of Eulerian num-
bers deduced by summing up the number of different suffix arrays for a fixed alphabet size
and string length. We believe that our constructive proofs are simpler than previous ones.

Worpitzki's identity. The identity o™ = >, <1;‘>(‘7:Z), as given in [56, eq. 6.37|, was

proven back in 1883 by J. Worpitzki. We prove it by summing up the number of string-
distinct strings of length n over a given alphabet of size o for each suffix array:

= ST 619

d=0

S PR (e o2

d=0

_ ni <TZ‘><":Z> (6.13)

t=n—o

-y <TZ‘> <U:Lr Z) (6.14)

1€Np

Equality (6.12) follows from the symmetry rule for Eulerian and binomial numbers, equal-
ity (6.13) from substituting i = n — d — 1, and equality (6.14) from (%) = 0 for all i > n
and (”;'L'Z) =0foralli<n-—o.

Summation of Eulerian numbers to generate the Stirling numbers of the second kind.
The second summation identity is the summation rule for Eulerian numbers to generate
the Stirling numbers of the second kind [56, eq. 6.39]: &!{"} =3, (7)(,,",.)- To prove this

n—kKk
identity, we count the /@!{Z} strings composed of exactly k different characters. Summing

a0

6.2 Summation identities

up these strings for each suffix array gives

|

n
K

|

Z<”><Z:i§:1> o
et <Z> (BN 1)> (6.16)
> ><";f;1) o
SO0 o

Equality (6.16) holds since (') = 0 for d > &, equality (6.17) follows from the symmetry
rule for Eulerian and binomial numbers, and equality (6.18) from substituting i = n—d—1.

ol

6 Application of the String and Suffix Array Counting

92

Part |l

SUFFIX ARRAY
CONSTRUCTION

a3

7 Introduction

There are several approaches to construct a suffix array. We can, for example, construct
a suffix tree and derive the suffix array by traversing the constructed suffix tree “from left
to right” (see |58, Section 7.14.1]). In this second part of the thesis, we mainly focus on
direct suffix array construction algorithms, i.e., not taking the detour over suffix trees.
We recall the suffix array construction algorithms mentioned in the introduction of the
thesis. Besides the O(nlogn) time prefiz-doubling algorithm of Manber and Myers [96],
there are mainly three groups of algorithms: linear-time algorithms, other algorithms
particularly designed for fast practical speed, and lightweight algorithms that try to min-
imise the auxiliary space during suffix array construction. The linear-time algorithms are
the skew algorithm of Kéarkkdinen and Sanders [71], the linear-time odd even algorithm
of Kim et al. [80], and the smaller-larger algorithm of Ko and Aluru [85]. Algorithms
particularly designed for fast practical speed are gsufsort by Larsson and Sadakane [90]
and the O(nloglogn) time odd—even algorithm of Kim et al. |78] based on [80], but with
faster practical running times. Lightweight algorithms are Itoh and Tanaka’s two-stage
algorithm [67], the copy and the cache algorithms of Seward [135], deep shallow sort-
ing of Manzini and Ferragina [102], and the difference-cover algorithm of Burkhardt and
Karkkédinen [31]. We created the name smaller larger ourselves and took the others from
the literature. The three groups of algorithms are summarised in Table 7.1.

The above mentioned suffix array construction algorithms meet some of the following
requirements for practical suffix array construction:

e Fast construction for common real-life strings (small average LCP): gsufsort [90],
two-stage 67|, copy and cache [135], deep shallow [102], and odd even [78];

e Fast construction for degenerate strings (high average LCP): prefiz-doubling [96],
gsufsort [90], skew |71], odd—even [80], smaller—larger 85|, difference-cover [31], and
odd even [78];

e Small space requirements: two-stage [67], copy and cache [135]|, deep shallow [102],
and difference-cover [31].

As we have mentioned in Chapter 1, we believe that further properties are required.
Especially in biological sequence data, there are many long sequences with mainly small
LCPs, interrupted by occasional very large LCPs. Hence, one has to build suffix arrays
for strings with highly variable LCPs.

We present a new algorithm that satisfies these requirements. Before that, we review
the above mentioned previous suffix array construction algorithms. These algorithms use

a5

7 Introduction

Table 7.1: Summary of the suffix array construction algorithms.

Suffix array construction algorithms

linear-time fast practical lightweight
skew (Kérkkdinen qsufsort (Larsson two-stage
and Sanders [71]) and Sadakane [90]) (Itoh and Tanaka [67])
odd—even odd—even copy
(Kim et al. [80]) (Kim et al. [78]) (Seward [135])
smaller-larger cache
(Ko and Aluru [85]) (Seward [135])

deep shallow (Manzini
and Ferragina |102])

difference-cover (Burkhardt
and Kérkkainen [31])

various auxiliary data structures that we define in Section 7.1. Chapter 8 classifies the
techniques used and surveys the algorithms. Chapter 9 then presents our new bucket-
pointer refinement algorithm, and Chapter 10 provides experimental results.

7.1 Definitions and notations

Let $ be a character not contained in the alphabet X, and assume $ < ¢ for all ¢ € X. We
often consider the $-padded extension t$" of a string ¢ of length n, which we implicitly
assume in the subsequent description of the suffix array construction algorithms. Thus, if
an algorithm uses a character at a position greater than n, then it is a $.

In the following, sa denotes the not necessarily sorted suffix array sa(t) of a string ¢
of length n. That is, it is not lexicographically sorted before the completion of the suffix
sorting process. A bucket sall,r] = sa[l],sall + 1],...,sa[r] with 1 <[<r < nisa
contiguous suffix array segment of suffixes with equal, non-empty prefix such that, for all
indices g,i,h e Nwith 1 <g<l<i<r<h<n,

t[salg],n] < t[sali],n] < t[sa[h],n].

We disregard the order of suffixes in a bucket; buckets containing the same set of suffixes,
but in a different order, are considered to be equal. An f£-bucket contains suffixes all
sharing the same prefix of length ¢, where ¢ is called the refinement level of the bucket.
Note that £ is not necessarily the longest common prefix of all suffixes in an ¢-bucket, and
an ¢-bucket is also an ¢-bucket for ¢/ < ¢. A bucket sali,j] is termed a sub-bucket of a
super-bucket sa[l,r] if | <i < j <r. Bucket refinement decomposes a bucket sa[l,r] into
a list of refined sub-buckets sa[ly,71], sa[la, ra],. .., sa[lg, rg] for some B € [1,7—1+41] such

o6

7.1 Definitions and notations

|5]1 42 3] |4 5[1]2 3] [1 4 5[3][2]

(5[af1]2 3] [5]1 4[3]2] |4 5]1][3]2]

[(5]af1[3]2]

Figure 7.1: A Hasse diagram representing the partial order of the bucket segmentations
for the string ABBAA, which has the suffix array (5,4, 1,3,2). The vertical bars between
the suffix numbers denote the bucket boundaries.

that | = Iy, rg =7, I, < i for all k € [1,5], and rp, + 1 = [p44 for all k € [1,5 — 1].
Likewise, a bucket segmentation is a decomposition of the whole suffix array into a list of
buckets with refinement level ¢ > 0, sall1,71], sa[la, 2], ..., sallg, 5] for some 3 € [1,n],
such that 1 =1y, rg =n, [<r, forall k € [1,0], and rp + 1 = l4; for all k € [1,8 — 1],
where sa(ly, 7] is the k™ bucket; k is called the bucket number for all suffix numbers in
sa[lg,). An £-bucket segmentation consists of ¢-buckets, £ > 0.

A bucket segmentation is called refined bucket segmentation or, alternatively, sub-bucket
segmentation of a super-bucket segmentation if each bucket of the sub-bucket segmentation
is a sub-bucket of a bucket in the super-bucket segmentation. Repeated bucket refinement
ultimately leads to the bucket segmentation consisting of singleton buckets only, which
corresponds to the sorted suffix array.

For a given string, the sub-bucket—super-bucket relation defines a partial order on the set
of all possible bucket segmentations. The 1-bucket segmentation is the super-bucket seg-
mentation of every other bucket segmentation, and hence, the largest in the partial order.
The bucket segmentation only consisting of singleton buckets is the smallest. Figure 7.1
shows a Hasse diagram representing the partial order of the bucket segmentations for the
input string ABBAA.

The intermediate result of many suffix array construction algorithms is the sorted order
of suffixes regarding their prefixes of a certain length ¢, the ¢-order. 1t is defined by the
order relation <jy:

tlu,n] < tlv,n] <= tu,u+0—1] < tv,v+ £ —1]

for any two suffix numbers u,v € [1,n]. The relations <, and =/ are defined analogously.

Some algorithms represent the /-order by storing the bucket number bnr for each suffix.
Let sa[ly,] be the k™ bucket of a bucket segmentation into 3 buckets, k € [1, 3]. Recall
that, for each suffix number w that is an element of the k' bucket sally,ry], we have
bnrlu] :== k. More precisely,

bnr[sali]] := k for each i € [ly, ;] and for each k € [1, 5]. (7.1)

o7

7 Introduction

Alternatively, a bucket pointer bptr|u] is stored for each suffix number u € [1,n]. For all
suffix numbers u and v in the same bucket sa[l,rx], we have bptriu] = bptr[v] = i for
some ¢ € [I,7]. We may use the rightmost position of a bucket as bucket pointer such that

bptr(sali]] := 7, for each i € [ly, r] and for each k € [1, 3]. (7.2)

For each suffix number u, both bucket number and bucket pointer combine the lexicograph-
ically sorted order of the respective suffix ¢[u, n] with respect to the leading characters into
a single sort key. For an ¢-bucket segmentation, there is the following connection between
the f-order, bucket numbers, and bucket pointers:

tlu,n] <g tlv,n] <= bnru] < bnr{v] <= bptr{u] < bptr{v]

for all suffix numbers u,v € [1,n]. If all buckets are singletons, then the arrays bnr and
bptr correspond to the rank array R or, alternatively, to the inverse suffix array.

A radiz step denotes the part of an algorithm in which strings are sorted according to
the characters at a certain offset £ in the string; £ is called radiz level. A radix step is like
a single iteration of most-significant-digit (MSD) radiz sort (see |82, Section 5.2.5]). That
is, the sorting procedure orders any two suffixes t[u, n] and t[v,n] sharing the same prefix
of length ¢ by their characters t[u + ¢] and t[v + ¢] (note the equality of radix level and
refinement level).

The length of the longest common prefix of two strings ¢ and ¢’ is referred to by lep(¢,t').
For two suffix numbers u,v € [1,n], lep(u,v) denotes the length of the longest common
prefix of t[u,n| and t[v,n]. For a suffix array sa of a string ¢ of length n, the LCP array
lcp of length n — 1 is defined by the length of the longest common prefix of consecutive
suffixes in the suffix array, lep[i] := lep(t[sa[i], n], t[sali + 1],n]) for all ¢ € [1,n — 1]. For
two positions g, h € [1,n] with g < h, we obtain the length of the longest common prefix
of the suffixes t[sa[g],n] and t[sa[h], n] by lep(salg], sa[h]) = min{lep[i] : i € [g,h — 1]}.

o8

8 Classification and Survey of Previous
Suffix Array Construction Algorithms

In the last years, many suffix array construction algorithms have been invented using
various techniques. Puglisi et al. [120] recently categorised the suffix array construction
algorithms into three different classes: prefix-doubling, recursive, and induced copying.
Some algorithms, however, are not uniquely assignable to a single class and are thus
classified as hybrid.

In Section 8.1, we present two new orthogonal classifications. In both, each suffix array
construction algorithm surveyed is uniquely assignable to only one of two possible classes.
After that, Sections 8.2 and 8.3 review the classified algorithms: we survey each algorithm,
give the worst-case and expected-case time bounds, and analyse the space requirements.

8.1 Classifying suffix array construction algorithms

We categorise the suffix array construction algorithms with respect to two orthogonal
classification types: The first classifies the algorithms regarding their progress in the suffix
sorting process, Section 8.1.1, and the second regarding the use of dependencies among
suffixes, Section 8.1.2.

8.1.1 Progression of the suffix sorting process

This classification groups the algorithms based on two questions: Which suffixes are first
processed, and how does the suffix sorting process advance? The algorithms are classified
into two groups: bucket refinement and reduced string sorting.

8.1.1.1 Bucket refinement

Many of the practical suffix array construction algorithms order suffixes regarding their
leading characters into buckets, which are then recursively refined. These algorithms are
classified as bucket refinement algorithms. The first type of bucket refinement techniques
found in the literature is formed by string sorting methods without using the dependencies
among suffixes. Most representatives of this class sort the suffixes regarding their leading
characters and then refine the groups of suffixes with equal prefixes by recursively perform-
ing radix steps with increasing radix level until unique prefixes are obtained. Algorithms
that fall into this category are the MSD radiz sort implementation of Mcllroy et al. [106]
and Multikey Quicksort of Bentley and Sedgewick [23].

a9

8 Classification and Survey of Previous Suffix Array Construction Algorithms

The second type of bucket refinement algorithms use the order of previously computed
suffixes in the refinement phase. If two suffixes ¢[u,n| and t[v, n] share a common prefix
of length ¢, then their ordering can be derived from the ordering of their ¢-successors
tlu + £,n] and t[v + £,n]. We further divide these algorithms into two subgroups: al-
gorithms performing breadth-first refinement, as the prefiz-doubling algorithm of Manber
and Myers [96] and the gsufsort algorithm of Larsson and Sadakane [90], and algorithms
performing depth-first refinement, as Itoh and Tanaka’s two-stage algorithm [67], the copy
and the cache algorithms of Seward [135], and deep-shallow sorting of Manzini and Fer-
ragina [102]. The breadth-first refinement algorithms iteratively compute ¢-bucket seg-
mentations for an increasing ¢ such that all buckets share the same refinement level after
each iteration, whereas the depth-first refinement algorithms follow the refinement scheme
of methods of the first type: Before starting with the next bucket, they refine a single
bucket until all its sub-buckets are singletons. Many practical algorithms that use this
technique also apply methods of the first type to fall back upon if the order of suffixes at
the offset £ is not yet available.

Figure 8.1 shows stages of the bucket refinement process for the string AAABBABBBAAABBAB.
We represent each suffix by a vertical bar, where the length of the bar represents its
relative lexicographical order: short bars for lexicographically small suffixes and long bars
for lexicographically large suffixes. The top picture shows the suffixes ordered by their
starting positions in the string from left to right. The pictures in the middle show a bucket
segmentation after some steps of bucket refinement algorithms. The middle picture to
the left shows an intermediate bucket segmentation for a breadth-first bucket refinement
algorithm, and the middle picture to the right shows an intermediate bucket segmentation
of a depth-first bucket refinement algorithm. The bottom picture represents the completely
sorted suffix array.

8.1.1.2 Reduced string sorting

Other suffix array construction algorithms select a specific subset sub of suffix numbers,
sort the corresponding suffixes with respect to their prefixes of a particular length, assign a
sort key to each such suffix that represents the lexicographical order with respect to those
prefixes, and form a reduced string t**® of length |sub| consisting of the previously assigned
sort keys such that the suffix array sa(t*%?) of t*%¢ reflects the lexicographically sorted
order of all suffixes in sub. The algorithms then construct the suffix array sa(t**?) of +54,
and derive therefrom the lexicographically sorted order of the original suffixes in sub. Fi-
nally, the lexicographically sorted suffixes in sub are used as anchors for the sorting of the
remaining suffixes, and the complete suffix array is computed. Burkhardt and Kérkkai-
nen’s difference-cover algorithm [31], Karkkdinen and Sanders’s skew algorithm [71], the
odd even algorithm of Kim et al. [80] (also [78]), and the smaller larger algorithm of Ko
and Aluru [85] follow this scheme. We call them reduced string sorting algorithms.
Figure 8.1 shows stages of a reduced string sorting algorithm, again for the string
AAABBABBBAAABBAB. The suffixes with their relative lexicographical order are again rep-
resented by vertical bars of different lengths. The top picture shows the suffixes ordered

60

8.1 Classifying suffix array construction algorithms

L Rl |||

i 1l |
breadth-first depth-first
i
Figure 8.1: Stages of bucket refine- Figure 8.2: Stages of a reduced string
ment algorithms for the string sorting algorithm for the string
AAABBABBBAAABBAB. AAABBABBBAAABBAB.

by their starting positions in the string from left to right, where the bars for the suffixes
starting at the odd positions are printed in bold face. The middle picture represents the
lexicographically sorted suffixes with odd starting position. The bottom picture again
represents the completely sorted suffix array.

8.1.2 Dependency among suffixes

Another classification scheme groups the suffixes regarding their use of dependencies
among suffixes. If two suffixes t[u,n] and ¢[v,n] share a common prefix of length ¢, then
their order can be derived from the order of suffixes t[u + ¢,n] and t[v 4 ¢,n]. We distin-
guish two techniques: the push method and the pull method. The terms push and pull are
adopted from the terminology of information systems: They are communication strategies
between information carrier and information receiver. The push method refers to a style
of communication where the information interchange originates with the information car-
rier. It is contrasted with the pull method, where the information receiver requests for the
transmission of information.

61

8 Classification and Survey of Previous Suffix Array Construction Algorithms

Table 8.1: Summary of the classifications.

Suffix sorting Using dependencies among suffixes

process push pull
Bucket refinement prefiz-doubling gsufsort
(breadth-first) (Manber and Myers [96]) (Larsson and Sadakane [90])
Bucket refinement two-stage cache
(depth-first) (Itoh and Tanaka [67]) (Seward [135])

copy

(Seward [135])

deep shallow
(Manzini and Ferragina [102])

Reduced string skew difference-cover
sorting (Karkkéinen and Sanders [71]|) (Burkhardt and Kéarkkéinen [31])
odd even

(Kim et al. |80], also [78])

smaller—larger

(Ko and Aluru [85])

8.1.2.1 Push method

The push method uses the ordering of previously determined groups of suffixes (informa-
tion carrier) and passes this ordering on to undetermined groups of predecessor suffixes
(information receiver). This technique is used in many algorithms. Manber and Myers’s
prefiz-doubling algorithm [96], Itoh and Tanaka’s two-stage algorithm [67], Seward’s copy
algorithm [135], and deep shallow sorting of Manzini and Ferragina [102] are examples
of bucket refinement algorithms that use this method. It is also used in the linear-time
algorithms: skew of Kérkkdinen and Sanders [71], odd even of Kim et al. [80] (also |78])
and smaller-larger of Ko and Aluru [85].

8.1.2.2 Pull method

The pull method is used for the comparison-based sorting. Algorithms look up the or-
der of successor suffixes t[u + ¢,n] and t[v + ¢,n] to determine the order of t[u,n] and
t[v,n] (information request). Some representatives that use this technique are: Larsson
and Sadakane’s gsufsort |90], Seward’s cache algorithm [135|, and the difference-cover
algorithm of Burkhardt and Kérkkéinen [31].

62

8.2 Bucket refinement algorithms

Table 8.1 summarises the classification of the suffix array construction algorithms that
use dependencies among suffixes; ordinary string sorting algorithms are not shown. The
first column shows the classes regarding the progress of the suffix sorting process. The
second column shows algorithms using the push method and the third column algorithms
using the pull technique. We continue with a survey of the categorised algorithms: bucket
refinement algorithms in Section 8.2 and reduced string sorting algorithms in Section 8.3.

8.2 Bucket refinement algorithms

We confine ourselves to the bucket refinement algorithms utilising the dependencies among
suffixes. Section 8.2.1 reviews the algorithms performing breadth-first bucket refinement
and Section 8.2.2 the algorithms performing depth-first bucket refinement. The algo-
rithms are analysed regarding their construction time and space requirements, where the
expected construction times are given for a Bernoulli sequence model (i.e., symbols from
the alphabet are generated independently).

8.2.1 Breadth-first bucket refinement — prefix-doubling algorithms

The prefix-doubling algorithms of Manber and Myers [96] and Larsson and Sadakane [90]
both use ideas of Karp et al. [75]. They first sort the suffixes with respect to their leading
character, producing a 1-bucket segmentation. Then they iteratively double the prefix
length with respect to which the suffixes are sorted, producing a 2'-bucket segmentation
in the i*" iteration. The iteration loop terminates when all buckets are singletons.

At the beginning of the i" iteration step, the suffixes are f-ordered with ¢ = 271,
For any two suffixes t[u,n] and t[v,n] with u,v € [1,n], we obtain their relative 2¢-order
by combining the relative ¢-order of t[u,n] and t[v,n| with the relative ¢-order of their
successor suffixes t{u + ¢,n] and t[v + ¢, n]:

t{u,n] <g tlv,n] or
tusn] g tlv,n] <= { tu,n] =¢ tlv,n] and tlu + £,n] <, tlv + £,n] (8.1)
for u,v € [1,n — {]. Alternatively,
tlu —¢,n] <g tlv —¥€,n] or
tu—n] Spe tlv —£n] = { tlu — €,n] =¢ tfv — ¢, n] and t[u,n] <y tlv,n], (8:2)

for u,v € [{ + 1,n).

8.2.1.1 The prefix-doubling algorithm of Manber and Myers

The algorithm of Manber and Myers [96] first performs a bucket sort of the suffixes ac-
cording to their leading characters. Then it repeats the prefix-doubling process, which
uses equivalence (8.2), until all buckets are singletons.

Each prefix-doubling iteration assumes an ¢-bucket segmentation sally,r1], sa[la, 2], ...,
sallg,m5) with ¢ = 2' for some i € [1,[logyn]]. Moreover, front, refers to the front

63

8 Classification and Survey of Previous Suffix Array Construction Algorithms

position of the k** bucket sa[ly, 7] for all k € [1, 3], initially front, = lx. The algorithm
scans sa bucket-wise from left to right. For each bucket sa[l,ry], it starts with the suffix
number sa[ly], locates its ¢-predecessor sa[ly] — ¢ contained in some ¢-bucket sa[ly,r,],
moves sally] — € to the current front of sa[lg, ry| (i.e., sa[front] < sa[ly] —¢) and advances
the front of sally,r,] by one position to the right (i.e., front, « front, + 1). Then
the algorithm continues with the next suffix number sa[ly + 1] in sa[lg, rg], moves its ¢-
predecessor sally + 1] — ¢ to the front of its bucket and advances that front by one. This
procedure is repeated for all suffix numbers in sally, 7] from left to right. After scanning
the whole bucket sa[ly, k], the contiguous segments of suffixes at the leftmost positions of
each ¢-bucket that have been moved to the front during the scan form a 2¢-bucket. The
procedure is repeated for all buckets sa[ly, 7] with 1 < k < (3 in ascending order, resulting
in a 2¢-bucket segmentation of sa.

Time and space consumption. Each prefix-doubling iteration can be performed in O(n)
time and there are at most log n prefix-doubling iterations until the string length is reached,
which together gives an O(nlogn) worst-case time bound for the whole algorithm. Manber
and Myers further enhanced the first stage of their algorithm such that it generates a
(log|s;(4y| n)-bucket segmentation in linear time, resulting in an O(n) expected-case time
bound.

The algorithm can be implemented using 2n words of space: the suffix array and an
auxiliary array handling the buckets, each consuming n words. The input string needs
not to be kept in main memory during the construction of the suffix array. An efficient
implementation is given by Mcllroy [105].

8.2.1.2 The gsufsort algorithm of Larsson and Sadakane

Like Manber and Myers’s algorithm, the gsufsort algorithm of Larsson and Sadakane [90]
first sorts the suffixes with respect to the leading character. After that, however, the
prefix-doubling iteration of gsufsort uses equivalence (8.1) instead of equivalence (8.2).
Each iteration again takes an f-bucket segmentation and produces a 2¢-bucket segmenta-
tion, but here, each bucket is refined locally. The algorithm maintains a bucket pointer
bptr[u] for each suffix number u € [1,n] representing the relative f-order of the suf-
fixes. Let salli,r1], sa[la, 2], ..., sallg, 73] be the current £-bucket segmentation. For each
k € [1,], the refinement procedure sorts the suffix numbers in sa[lg,ri] with respect to
the bucket pointers of their ¢-successors sally] + ¢, sally + 1] + ¢, ..., sa[rg] + ¢. That is,
bptr(sally] + €], bptr[sa[ly + 1] + €],. .., bptr[salry] + €] are the corresponding sort keys.
Bentley and Mcllroy’s Ternary-Split Quicksort is applied to sort each ¢-bucket. After
all buckets have been processed, the algorithm computes the splitting positions between
non-equal sort keys for each bucket. Together with the previous splitting positions, which
have determined the f-bucket segmentation, these new splitting positions determine the
20-bucket segmentation. Finally, the algorithm updates the bucket pointers. As before,
the prefix-doubling process is repeated until all buckets are singletons.

64

8.2 Bucket refinement algorithms

Time and space consumption. As the algorithm of Manber and Myers, Larsson and
Sadakane’s algorithm reaches an O(nlogn) worst-case time bound and requires 2n words of
space: n words for the suffix array and n words for the bucket pointer array. Nevertheless,
in terms of practical running time, it is significantly faster (see Larsson and Sadakane |90,
page 18] for running times of the two algorithms).

8.2.2 Depth-first bucket refinement

We begin the review of the depth-first bucket refinement algorithms with the two-stage
algorithm of Itoh and Tanaka [67] and continue with copy and cache by Seward [135]|. The
former two implement the push technique and cache uses the pull technique. Finally, we
review deep shallow sorting of Manzini and Ferragina [102], which is based on the tech-
nique used by copy. For the analysis of these algorithms, we assume that the underlying
alphabet of the input strings is of constant size o.

8.2.2.1 The two-stage algorithm of Itoh and Tanaka

Itoh and Tanaka [67] classify each suffix as type s or type [(smaller or larger). We instead
use the notation =< for the suffixes of type s, and > for the suffixes of type [. A suffix
tlu,n] with u € [1,n — 1] is of type < if its first character is smaller than or equal to the
first character of its successor t[u + 1,n], tfu] < t[u + 1]. Otherwise it is of type >.

The algorithm successively performs three phases. The suffixes are first bucket sorted
with respect to their leading character and suffix type (<X or »=). That is, there are 20
buckets, where a bucket sa[l. ,r. | contains all suffixes of type 7 € {<, >} with leading
character ¢ € ¥. Furthermore, the suffix number n of the last suffix ¢[n,n] is moved to
the front of its bucket.

The second phase sorts all buckets containing suffixes of type =<: Large buckets are
refined by MSD radiz sort, medium buckets are sorted by Bentley and Sedgewick’s Multikey
Quicksort |23|, and small buckets by Insertion Sort.

The third phase determines the order of all suffixes of type > and assigns them to their
final position: The algorithm scans the suffix array sa from left to right. For each position
i € [1,n], if the predecessor t[sa[i| — 1, n] of suffix t[sa[i], n] is of type =, then the algorithm
assigns sa[i] — 1 to the current front of the bucket sallyjsqfi—1),-s T¢[safi]—1],>-] and advances
the front of the bucket by one position to the right. The suffix sorting process is completed
after scanning the whole suffix array sa.

Time and space consumption. The bucket sorting in phase one and the assignment
of suffixes of type > to their final positions in phase three can be performed in linear
time. The most time-consuming part is the MSD radiz sort in phase 2. Its running
time is bounded by the comparison-based sorting complexity O(nlogn) multiplied by
the maximum longest common prefix length of two suffixes of the input ¢, where the
maximal longest common prefix length is n —1 € O(n) and the expected longest common

65

8 Classification and Survey of Previous Suffix Array Construction Algorithms

prefix length is O(logn) for different string models, a simple consequence of results by
Apostolico and Szpankowski [9] and Szpankowski [139]. Hence, O(n?logn) is the worst
and O(nlog?n) the expected construction time of the two-stage algorithm.

The auxiliary space requirements are negligible: In addition to the suffix array and the
input string, only 20 words are required to store the bucket boundaries.

8.2.2.2 The copy and the cache algorithms of Seward

Seward [135] presented some techniques for the construction of the Burrows-Wheeler
transform, which are used in the program bzip2 [134]. These techniques can also be
applied for suffix array construction, because of the equivalence to the construction of
the Burrows—Wheeler transform. Here, the copy method, which was earlier mentioned by
Burrows and Wheeler [32], and the cache method are reviewed.

Before applying one of these techniques, the suffixes are bucket sorted according to their
leading two characters, generating a 2-bucket segmentation of the suffix array. Buckets
consisting of all suffixes with the leading character b and second character ¢, (b,c) € 2,
form the 2-bucket sa[ly c, 7], and the consecutive 2-buckets consisting of suffixes sharing
the leading character b form the 1-bucket sally, 7] consisting of all suffixes with leading
character b.

The copy algorithm. The copy algorithm proceeds similarly to the two-stage algorithm.
After the initial bucket sort, copy performs the following steps for each 1-bucket sa[l.,r.],
c € 3. An ordinary string sorting algorithm sorts each 2-bucket sa[ly ., 7], (b,c) € »2
that has not yet been sorted, except for the bucket sa[l. ., 7] that consists of suffixes with
equal first and second character. Let sa[lp, ¢, 7, c], 5a[lby ¢, Thoscs - - - s 8G[lb, 3T,] De the
2-buckets of suffixes with second character ¢, by, € X for all k € [1,0]. The algorithm passes
the ordering of suffixes in sa[l., r.| on to the specified 2-buckets: It performs a left-to-right
scan over sa[le,l.. — 1] and over the “left part” of sallcc,rc], and then a right-to-left
scan over sa[re. + 1,7.] and over the “right part” of sallcc, 7], effectively scanning the
whole 1-bucket sa[l.,r.]. For each suffix number u encountered in the left-to-right scan,
if saflyjy—1],c> Ttju—1],c] is not already sorted, then the predecessor suffix number u — 1 is
assigned to the front of the bucket sa[lyy—1]c; T¢ju—1),c]; and that front is advanced by one
position to the right. The left-to-right scan stops if it reaches a position of sa[l; , 7| that
has not been assigned during the current left-to-right scan, or if the rightmost position 7. .
of sallcc,7ec,.c] is reached. The right-to-left scan proceeds analogously, the only difference
being that the suffix numbers are assigned to the end of the buckets. Afterwards, all

2-buckets sa[ly ¢, rp] with ¢ € ¥ are correctly sorted, including sa[le c, 7c.c)-

The cache algorithm. The cache algorithm can be used in combination with copy. Tt
uses an additional cache array RC of length n, which is a sort of “partial rank” of the
suffix array.

The 1-buckets (or rather their sub-buckets) are sorted with an ordinary string sorting
algorithm as before. After a 1-bucket sal.,r.] with v € ¥ is completely refined, R is

66

8.2 Bucket refinement algorithms

updated such that R¢[sali]] := i — I, for all i € [l.,7.]. Afterwards, the relative order of
any two suffixes t[u,n] and t[v,n] that share the same leading character ¢ (= t[u] = t[v])
is represented by the order of their R® values. That is, t[u,n] < t[v,n] if and only if
RCu] < RC[v]. This property is used by the string sorting algorithm. Whenever it
compares two suffixes t[u,n] and t[v,n] (u,v € [1,n]) that share the same leading character
¢ for which the corresponding 1-bucket sall.,7.] has been previously sorted, it uses the
sort key RC[u] for t[u,n] and R¢[v] for t[v,n].

Time and space consumption. The time bounds for cache and copy are the same.
The bucket sorting in phase one, the copying of suffix numbers, and the maintenance of
the cache array can be performed in linear time. The most time-consuming part is the
string sorting of buckets, which is bounded by the comparison-based sorting complexity
O(nlogn) multiplied by the maximum longest common prefix length of two suffixes, which
is again O(logn) in the expected case and O(n) in the worst case. Hence, O(nlog®n) is
the expected and O(n?logn) the worst construction time.

The auxiliary space requirements of copy are negligible, as those of the two-stage algo-
rithm: It requires o additional words for the bucket boundaries and o words for the front
positions of the respective 2-buckets during the copying.

The bucket boundaries are also used for cache. In addition, cache requires space for the
n integers of the RC array. However, only values up to the size of the largest 1-bucket
have to be stored. Hence, 16 or 8 bit integers are enough if no 1-bucket exceeds the size
of 216 or 28, respectively. Even for larger 1-buckets, reduced word lengths are possible: If
the word size of entries in R” is fixed to w bits and the size of a 1-bucket sall., r.] exceeds
the 2% limit, then RY is defined by R%[sali]] := 2% (i — l.)/(re — 1. — 1) for all i € [l., 7).

8.2.2.3 The deep—shallow algorithm of Manzini and Ferragina

Manzini and Ferragina developed the deep—shallow algorithm [102], which improves upon
Seward’s copy algorithm [135]. The algorithm applies different sorting routines for ¢-
buckets of different size and different common prefix length £, as follows. The £-buckets
are primarily refined by Bentley and Sedgewick’s Multikey Quicksort if £ < L, where L is
a predefined threshold (shallow sorting). For larger ¢ (> L), the algorithm switches to a
sorting routine for suffixes sharing a long common prefix (deep sorting). The deep sorter
determines the sorting routine depending on the size of the sub-buckets. If the bucket size
is smaller than a predefined threshold B, then Blind Sort is used, which is based on the
blind trie data structure used within the String B-tree [48]. If the bucket size exceeds B,
Ternary-Split Quicksort of Bentley and Mcllroy [22] with some enhancements refines the
buckets until the sub-bucket size drops below the threshold B; then Blind Sort is used.
A nice feature of cache is that some suffixes with equal prefix are not directly compared.
They are rather sorted by deriving their order from previously sorted successor suffixes.
The induction sort sub-procedure generalises this technique. If an ¢-bucket sa[l,r] of
suffixes sharing the common prefix p = p1,...,py has to be sorted, then p is searched

67

8 Classification and Survey of Previous Suffix Array Construction Algorithms

for the first position k € [1,£ — 1] such that the 2-bucket of suffixes with first character
pr and second character pgyq has been previously sorted. Let salg, h] be the respective
2-bucket. Then the suffix number sa[l] + k is looked up in sa[g, h] and the preceding
and following suffix numbers of sa[l] + k in sag, h] are scanned. Each scanned suffix
number u with (u — k) in sa[l,r] is marked. The scanning terminates when all r — [4 1
k-predecessor suffixes that appear in sall,] have been marked. Finally, the suffix numbers
in salg, h] are scanned from left to right. For each marked suffix number u encountered,
the k-predecessor (u — k) is assigned to the current front of sa[l,r], and that front is
advanced by one position to the right.

Manzini and Ferragina employ a sparse index to efficiently determine the position of
sal] + k in safg,h]. As well as the RC array of the cache method, this index can be
regarded as a partial rank of the suffix array. Note that we classify this as a push method
since the algorithm scans the suffixes in sa[g, h| and passes their ordering on to sa[l,r].
The request, however, was initiated by the bucket sa[l,r]. Hence, this technique could be
regarded as a pull method just as well.

Time and space consumption. The time bounds are the same as for the algorithms two-
stage, cache, and copy. O(nlog?n) is the expected and O(n?logn) the worst construction
time. The auxiliary space requirements are negligible, as for the depth-first bucket refine-
ment algorithms: Only o2 additional words for the bucket boundaries and some words for
the sparse index are needed.

8.3 Reduced string sorting algorithms

The next four algorithms first construct a sparse suffix array sa®f of size n®P contain-
ing a particular subset of suffix numbers sp C [1,n], n®? = |sp|, where sa®P is sim-
ply a subsequence of the lexicographically sorted complete suffix array. We transfer
the concept of buckets and bucket segmentations to sparse suffix arrays: An ¢-bucket
sa®P[l,r] of a sparse suffix array sa®P is a contiguous segment of saP containing suffixes
with an equal, non-empty prefix of length £. Furthermore, an ¢-bucket segmentation of
the sparse suffix array is a decomposition of the sparse suffix array into ¢-buckets with
sa’P[ly,r1], sa®P[ly, 1], ..., sa°P[lg,rg] for some [€ [1,n°P] such that 1 = [;, rg = n'P,
lp <7 forall kell,p],and rp, +1 =l for all k € [1,8 — 1], where sally,rg] is the
k™ bucket; k is called the sparse bucket number for all suffix numbers in sa®[l, r;]. The
sparse bucket number array bnr®P is accordingly defined. The sparse rank array R°P is

defined such that R*P[s] := i if sa®P[i] = s. Note that the sparse bucket number array
bnr®P and the sparse rank array are only defined for the suffix numbers s in sa®?; the other
positions remain undefined: bnr*P[s] = R*P[s] =L if s is not among the suffix numbers

in sp. For a sparse suffix array sa®P, the LCP array lcp of length n®’ — 1 is defined by
lep®P[i] := lep(t[sa®Pi], n], t[sa®P[i + 1], n]) for all ¢ € [1,n*P —1].

68

8.3 Reduced string sorting algorithms

8.3.1 The difference-cover algorithm of Burkhardt and Kirkkdinen

A set D with D C [0,¢ — 1] is a difference-cover modulo £ if [0, — 1] = {(d — d') mod ¢ :
(d,d") € D?}. The difference-cover algorithm of Burkhardt and Kirkkiinen [31] first
selects an appropriate value for £ and computes a difference-cover D modulo £ with D =
{di,da,...,ds} of size 0 := |D|. Without loss of generality, we assume that the string
length n is a multiple of ¢ and that 0 ¢ D. The algorithm constructs the sparse suffix
array sa® of length n” = n - §/¢ of suffixes s € [1,n] with s mod £ € D. Then it uses
the suffix numbers of the sparse suffix array sa”, which represent the lexicographically
sorted order of the corresponding suffixes, as anchors for the comparison-based sorting of

all suffixes, yielding the complete suffix array sa.

Constructing the sparse suffix array. The sparse suffix array sa” is constructed in three

successive phases. Multikey Quicksort of Bentley and Sedgewick [23] first lexicographically
sorts the suffixes with suffix number in sa” with respect to their ¢ leading characters,
resulting in an /-bucket segmentation of sa”. According to the ¢-bucket segmentation,
the algorithm assigns the respective sparse bucket number bnrP[s] to each suffix s in
saP. Note that, for each suffix number s in sa”, its bucket number bnrP[s] combines the
lexicographically sorted order of ¢[s, n] with respect to the £ leading characters t[s, s+£—1]
into a single sort key.

In the second phase, a reduced string t” of length n” is computed such that the lexico-
graphical order of the suffixes of P corresponds to the lexicographical order of the suffixes
contained in sa”. The partial function p” bijectively maps the suffix numbers in sa®” onto
the positions [1,n”] of t” such that, for all k¥ € [1,6] and for all s € [1,n]

3

WJF P—‘ if s mod ¢ = dj,.

pP(s) = 7

That is, the suffix numbers s € [1,n] with s mod ¢ = dj are monotonically increasingly
mapped onto a contiguous segment of natural numbers: The n/¢ suffix numbers di, dj +
Cdp+2L,. .., dp+n—{ are mapped onto [(k—1)n/l+1,k-n/f] for all k € [1,0]. Moreover,
let ,uD(_l) be the inverse mapping, which maps the positions [1,n”] of the reduced string
tP onto the suffix numbers s € [1,n] with s mod ¢ € D.

The algorithm constructs the reduced string t” of length n”,

tPi] = bnrPpPED G for all i e [1,n7).
Then one of the prefix-doubling algorithms presented in Section 8.2.1 is used to compute

the suffix array sa(t?) of the reduced string t”. After that, the difference-cover algorithm
derives the sparse suffix array sa” from sa(t”)

saPli] = pPV (sa(tP)]i]) for all i € [1,nP].

69

8 Classification and Survey of Previous Suffix Array Construction Algorithms

Constructing the complete suffix array. The complete suffix array sa is computed
as follows. Multikey Quicksort is used to sort all suffixes according to their ¢ lead-
ing characters, generating an ¢-bucket segmentation. Finally, a comparison-based sort-
ing of each /¢-bucket finishes the construction of sa: For any pair of suffix numbers
(u,v) € [1,n)?, A(u,v) € [0, — 1] gives an offset such that (u + A(u,v)) mod ¢ € D
and (v + A(u,v)) mod ¢ € D. Two suffixes t[u,n]| and t[v,n] with u,v € [1,n] are then
compared by using the sort keys R”[u + A(u,v)] and RP[v + A(u,v)], respectively. That
is, tfu,n] < t[v,n] if and only if RP[u + A(u,v)] < RP[v + A(u,v)].

Time and space consumption. For / = logn and constant alphabet size, the algo-
rithm computes the suffix array in O(nlogn) time, as follows. A difference-cover of size
O(y/logn) is computed in sub-logarithmic time. Then the construction of the sparse suffix
array requires O(nlogn) time: O(nlogn) steps for Multikey Quicksort, O(n) steps for the
construction of the reduced string, again O(nlogn) steps for a prefix-doubling algorithm,
and O(n) steps for deriving the sparse suffix array from the suffix array of the reduced
string. The construction of the complete suffix array from the sparse suffix array also
requires O(nlogn) time: O(nlogn) steps for Multikey Quicksort, O(logn) steps for the
computation of a lookup table to implement the function A, and again O(nlogn) steps
for the comparison-based sorting.

The space requirements are less than for the previous O(nlogn) time algorithms of Man-
ber and Myers [96] or Larsson and Sadakane [90]. The input string again requires n bytes
and the suffix array n words, but the auxiliary space requirements are only O(n/logn)
words, which are used for the sparse suffix array, the sparse rank array, and for the con-
struction of these data structures.

8.3.2 Suffix array construction in linear time

The development of the three linear-time algorithms seems to be inspired by different previ-
ous algorithms. The skew algorithm of Kérkkéinen and Sanders [71] uses a difference-cover
like the difference-cover algorithm of Burkhardt and Kéarkk&inen; the odd-even algorithm
of Kim et al. [80] adopts the odd-and-even scheme that has been previously used by Farach
and Muthukrishnan [46], Farach [45], and Farach et al. [47] for suffix tree construction;
and the smaller larger algorithm of Ko and Aluru [85] classifies each suffix as type S or L,
similar to the classification of Itoh and Tanaka’s two-stage algorithm (see Section 8.2.2.1).

All three algorithms follow different divide-and-conquer schemes, but share the basic
framework. They divide the suffixes into two groups, recursively construct the suffix array
of the reduced string of the first group, derive the sparse suffix array of suffixes in the
first group, use that sparse suffix array to determine the sparse suffix array of the other
suffixes, and finally merge the two sparse suffix arrays to obtain the total ordering of all
suffixes, namely the suffix array.

70

8.3 Reduced string sorting algorithms

8.3.2.1 The skew algorithm of Kirkkdinen and Sanders

The skew algorithm of Kérkkdinen and Sanders [71] uses a difference cover D modulo
3 with D = {1,2}. It first constructs the sparse suffix array sa(l?) of suffix numbers
s € [1,n] with s mod 3 € {1,2}. Then it passes the ordering of suffixes s in sa(l:?) with
smod3 = 1 on to the sparse suffix array sal®) that contains the predecessor suffixes
5 with 5% mod 3 = 0 (all suffixes not contained in sa(l:?), and finally merges sa(®)
and sa(l?). For k € [0,2], let n*) be the number of suffixes at the modulo k positions:
n© = [n/3], nM = [(n —1)/3], and n® = [(n —2)/3]. The size of sa?) is n(M) + (2
and the size of sa(®) is n(0).

Constructing the sparse suffix arrays. The construction of the sparse suffix array sa(l?)

proceeds similar to the difference cover algorithm. Tt first sorts the suffixes in sa?) with
respect to their three leading characters, resulting in a 3-bucket segmentation of sa(l?).
According to the 3-bucket segmentation, the algorithm assigns the sparse bucket number
bnr1:2)[s] to each suffix s in sa(b?).

The reduced string t(12) of length n + n® is computed such that the relative lexi-
cographical order of the suffixes of ¢(12) corresponds to the relative lexicographical order
of the suffixes in sa(l?). The partial function 12 bijectively maps the suffix num-
bers in sa™?) onto the positions [1,n(1) +n®)] of t(12) such that, for all s € [1,n] with

smod 3 € {1,2},

s+ 2 if smod 3 =1,
2 (s) = s +1
{g-‘—i— if s mod 3 = 2.

That is, the suffix numbers s € [1,n| with s mod 3 = 1 are monotonically increasingly
mapped onto [1,n(M], and the suffix numbers s € [1,n] with s mod 3 = 2 are monotonically
increasingly mapped onto [n(l) +1,nM 4 n(z)]. Moreover, let ,u(172)(_1) be the inverse
mapping, which maps the positions [1,n") + n(®] of the reduced string 12 onto the
suffix numbers s € [1,n] with s mod 3 € {1,2}.

The algorithm constructs the reduced string t(2) of length n® + n(?

tO2) = bW [N ()] for all i e [1,nM) 4+ 0],

That is, 12 = bnr@2 (1), bnr(B2D (4], .. b2 [3n0) — 2], bnr (L2 (2], bnr 12 [5), ...,
bnr(12)[3n(2) — 1]. Then it recursively constructs the suffix array sa(t(1:?)) of the reduced
string t(1:2) and derives the sparse suffix array sa(l?) from sa(t(m)),

saM2[i] = pBDED (sq(tBD)a]) for all i € [1,nY + 0],

The second sparse suffix array sa(® is constructed in linear time by a procedure like
Counting Sort: The suffixes i € [1,n] with ¢ mod 3 = 0 are sorted according to the primary

sort key t[i] and secondary sort key R(2)[i + 1], resulting in sa(?).

71

8 Classification and Survey of Previous Suffix Array Construction Algorithms

Merging both sparse suffix arrays. The two sorted sparse suffix arrays sa(¥ and sa(*?)
are merged from left to right, yielding the complete suffix array sa. Let fmnt(o) be the
current front of sa(®), front(l’Q) the current front of sa?, and front the current front
of sa, initially front(o) = front(1’2) = front = 1. The merging procedure compares the
suffixes that correspond to the suffix numbers sa© [front®] and sa(t2 [front™?)], assigns
the suffix number of the lexicographically smaller suffix to sa[front], and advances the
respective front positions. This procedure is repeated until the end of sa® or sa(*?) is
reached. Then the remaining suffix numbers of the other sparse suffix array are directly
copied to the not yet determined positions at the end of sa.

Let s = sa©[front®] and s0? = sa?[front"?)] be the suffixes at the current

front positions. The merging procedure distinguishes two cases:

(i) If s02) mod 3 = 1, then t[s(9, n] < t[s(1?) n] if and only if ([s(?)], RE2)[s(O) +1]) <
(1301, R12)[s(12) 1 1))

(i) If s(52 mod 3 = 2, then t[s© n] < t[s(b? n] if and only if (¢[s©],¢[s®) + 1],
RED[sO) 4 2]) < (¢[s02], [s(12) 4 1], RED [0 4 2)).

Thereby the first element of a tuple is the primary sort key, the second is the secondary
sort key, and the third is the ternary sort key, where applicable.

Time and space consumption. For an integer alphabet [1,n], the following steps all
require linear time: the initial sorting of the suffixes with respect to their three leading
characters, the assignment of the sparse bucket numbers, the construction of the reduced
string t(1:2) the derivation of the sparse suffix array sa(l?) from sa(t(m)), the construction
of sa® from sa(®?), and the merging of sa(® and sa>?. Combined with the recursive
construction time of sa(t(1?), we obtain Tyew(n) = O(n)+Tikew([2n/3]) running time for
n > 3, and Tykew(n) = O(1) for n < 3. This recursion can be solved to Tgkew(n) = O(n).

Karkkdinen and Sanders’s implementation of the skew algorithm |72] requires a signif-
icant amount of working space. The input sequence is a string over an integer alphabet.
It requires n words, instead of n bytes for a standard ASCII input. Additionally, in each
recursive call, two auxiliary arrays of length 2n/3 are allocated, one for the reduced string
t(12) and one for the sparse suffix array sa(l»2). The other auxiliary data structures are only
used temporarily; their space requirements are negligible compared to the recursively col-
lected space. Therefore, the algorithm accumulates up to Sskew (1) = 21 + Sgkew ([21/3])
words of working space for n > 3, and Sgew(n) = O(1) for n < 3. We unroll this
recursion and observe that it terminates after at most logs/ n recursive calls. This im-

1)
plies a maximum space consumption of Sgkew(n) = Z;):gg/QHQn(Q/?))Z words. For large

n, this can be approximated by Ssew(n) ~ 2n> 50,(2/3)". Since 0 < 2/3 < 1, we
can use Y gz’ = 1/(1 — z), a common equation for the geometric series, and obtain
Sskew (1) ~ 2n.5°52,(2/3)" = 2n/(1 — 2/3) = 6n. Therefore, the total space requirements
are up to 6n words.

Na [111], however, presented a variant of the skew scheme that allows the linear-time
construction of suffix arrays in o(nlogn) bits of auxiliary space.

72

8.3 Reduced string sorting algorithms

8.3.2.2 The odd-even algorithm of Kim et al.

The odd—even algorithm of Kim et al. [80] first constructs the sparse suffix array of the
odd suffix numbers, passes the ordering of the odd suffixes onto the sparse suffix array
of the predecessor suffixes starting at the even positions, and finally merges both sparse
suffix arrays.

We first present some notations and tools for the implementation of the algorithm. The
sparse odd suffiz array sa® of length n° = [n/2] represents the lexicographically ordered
suffixes starting at the odd positions, and the corresponding LCP array lcp® of length
n® — 1 contains the longest common prefix information of consecutive suffixes in sa®. The
sparse even suffiz array sa® of length n® = |n/2] analogously represents the ordered
suffixes starting at the even positions, and lcp® is the respective LCP array of length
n® — 1. Let lep(sa®[l®, r°]) denote the length of the longest common prefix of all suffixes
t[sa®[i], n] with i € [I°,r°] and lcp(sa®[i®, r¢]) analogously the length of the longest common
prefix of all suffixes t[sa®[j],n] with j € [I°,7¢]. Let lep(sa®[l°,r°], sa®[l®,7¢]) denote the
length of the longest common prefix of all suffixes with a suffix number in one of the two
buckets sa®[l°,r°] or sa®[l¢,r¢], lep(sa®[l°,r°], sa®[l¢,r¢]) = min{lcp(sa®[i],sa®[j]) : i €
[1°,7°] and j € [I¢,r¢]}.

An important tool for the odd—even algorithm is a data structure that supports constant
time range minimum queries. Given an array A of size n whose elements are integers in
[0,n — 1] and any two indices I, € [1,n] with [< r, then a range minimum query
rangeMinAt(A,[,r) finds the smallest index ¢ such that Afi] = minj<;<, A[j]. This can
also be used to find the smallest value rangeMin(A,l,r) within a given range [I,7] of
A, rangeMin(A,l,r) = A[rangeMinAt(A,l,r)]. The odd even algorithm uses the range
minimum query to compute the length of the longest common prefix for a range of suffixes
in the odd or, alternatively, in the even suffix array in constant time, lep(sa®[l°,r°]) =
rangeMin (lep®,1°,r° — 1) and lep(sa®[l®, r¢]) = rangeMin(lep®, ¢, r¢ — 1).

A simple solution for the range minimum query problem was given by Bender and
Farach-Colton [18], and Sadakane [124] uses range minimum queries to compute longest
common prefixes of suffixes in compressed suffix arrays. For the odd—even algorithm,
Kim et al. [80] use a modification of the range minimum algorithm of Berkman and
Vishkin [24]. For an in-depth study, we refer to Alstrup et al.’s survey of the least common
ancestor problem [5], which is intimately connected with the range minimum problem.

Constructing the odd and the even suffix array. The odd suffix array is recursively
constructed. The algorithm first sorts the suffixes of sa® with respect to their two lead-
ing characters, resulting in a 2-bucket segmentation of sa®. According to the 2-bucket
segmentation, it assigns the sparse bucket number bnr°[s] to each suffix s € [1,n] with
smod 2 = 1.

The reduced string t° of length n° is computed such that the relative lexicographical
order of the suffixes of t° corresponds to the relative lexicographical order of the suffixes in
sa®. The partial function p° bijectively maps the suffix numbers in sa® onto the positions

73

8 Classification and Survey of Previous Suffix Array Construction Algorithms

[1,n°] of the reduced string ¢° such that

1
po(s) = 8—; for all s € [1,n] with s mod 2 = 1.

That is, the odd suffix numbers are monotonically increasingly mapped onto [1,n°]. More-
over, let ,uo(*l) be the inverse mapping, which maps the positions [1,n°] of the reduced
string t° onto the suffix numbers s € [1,n] with s mod 2 = 1.

The algorithm constructs the reduced string t° of length n°:

t°i] := bnr[p°Y)] (= br®[2i —1]) for all i € [1,n°].

That is, t° = bnr°[1],bnr°[3],...,bnr°[2n° — 1]. Then it recursively constructs the suffix
array sa(t°) of the reduced string and the corresponding LCP array lep(t°), and finally
derives sa® from sa(t®) and lep® from lep(t°) such that, for all i € [1,n°]

sa®li] = p*CV (sa(t)[i]) (= 2(sa(t®)[i]) - 1)

and, for all 7 € [1,n° — 1],

lepPli] = { 2Uep(t°)i] + 1 if t[sa’[i] + 21ep(t°)[i] = t[sa®[i + 1] + 21ep(t°)]i]]
21ep(t°)]d] otherwise.

Finally, sa® and lcp® are constructed from sa® and lcp®. The suffixes s¢ € [1,n] with
even suffix number, s¢ mod 2 = 0, are sorted according to the primary sort key ¢[s*] and
secondary sort key R°[s® + 1], resulting in sa®. Afterwards, the corresponding LCP array
lep® of length n® — 1 is computed:

ern) O if t[sa®[i]] # t[sa®[i + 1]]
lep"li] = { 1+ lep(t[sa®[i] + 1,n], t[sa®[i + 1] + 1,n]) otherwise,

for all ¢ € [1,n® — 1], where sa®[i] + 1 and sa®[i + 1] + 1 are odd suffix numbers. Let
g° = R°[sa’[i] + 1] and h® = R°[sa®[i + 1] + 1] be the positions of these suffix numbers in
sa®, then the algorithm computes lep(t[sa®[i] + 1, n], t[sa®[i + 1] + 1,n]) = lep(sa®[g°, h°])
by a range minimum query on lep®, lep(sa®[g°, h°]) = rangeMin(lcp®, ¢g°, h° — 1).

Merging the odd and the even suffix array. A brief explanation of the general merging
strategy can be given based on the lep-interval trees of Abouelhoda et al. |1, 2]: The
merging of the two sparse suffix arrays is a kind of breadth-first merging of their implicit
lep-interval trees.

The odd—even algorithm only processes non-extendable buckets. A non-extendable £-
bucket sa®[l°,r°] of the odd suffix array contains all odd suffix numbers s € [1,n]| with
t[s,s + € — 1] = t[sa’[l°],sa’[l°] + £ — 1], and a non-extendable L-bucket sa®[l®,r¢] of
the even suffix array contains all even suffix numbers s € [1,n] with t[s,s + ¢ — 1] =
t[sa®[l®], sa®[l°]+¢—1]. The non-extendable ¢-buckets sa®[l°, 7°] and sa®[l¢, r¢] are £-coupled
if all suffixes of both buckets share the same prefix of length ¢; (sa®[l°,r°], sa®[I®,7°]) is

74

8.3 Reduced string sorting algorithms

called an ¢-coupled pair. Otherwise the buckets are (-uncoupled. If sa®[l°,r°] and sa®[l¢, r¢]
are (-coupled, then their suffix numbers form an ¢-bucket sa[l® + ¢ — 1,7° 4 r°] of the
complete suffix array. The length of the longest common prefix of all suffixes in an /-
coupled pair (sa®[l°,r°], sa®[l¢,7°]) is denoted by A := lep(sa®[i®, 7°], sa®[l¢, 7¢]). Moreover,
0 := min{lcp(sa®[I°,r°]),lcp(sa®[i®, 7¢])} is an upper bound for A, called the LCP limit of
the coupled pair (sa®[l°,r°], sa®[l®,7¢]). Note that £ <\ < 6.

There are two further auxiliary data structures: the array ptr° of length n°® and the
array ptr® of length n® For each i® € [1,n°], ptr°[i°] is defined if sa®[i°] is an entry of an
uncoupled bucket or the last entry of a coupled bucket:

e If 5a°[i°] is an entry of an uncoupled bucket sa®[l°,r°], i® € [I°,r°], then ptr°[i°]
stores the rightmost position 7¢ of a bucket sa®[l®, 7] such that

lep(sa®[i®], sa®[r]) > lep(sa®[i®], sa®[7°]) for all ¢ € [1,n®].

Among all suffixes in the even suffix array, t[sa®[r¢],n] shares the longest common
prefix with ¢[sa°[i°], n].

e If sa°[i°] is the last entry of a bucket sa®[l°,r°] (i°® = r°) coupled with sa®[l¢,r¢],
then ptr°[i°] .= re

The array pér® is analogously defined.

The merging procedure. For each position i € [1,n°], the correct target position i of the
suffix number sa°[i°] in the lexicographically sorted complete suffix array sa is computed.
That is, ¢ is the target position of i° if and only if sa°[i°] = sa[i]. The target positions
of sa® are analogously defined. In fact, the algorithm determines the target positions
for complete uncoupled buckets. Coupled buckets are repeatedly subdivided according to
larger common prefixes until the sub-buckets become uncoupled such that the targets can
be determined.

The algorithm successively performs up to n stages until the complete suffix array is
constructed. In stage 6, it processes all coupled pairs with LCP limit 6. It starts with
the coupled pair (sa°[1,n°], sa®[1,n?]), formed of the complete odd and even suffix array,
in stage 0. For an f-coupled pair (sa®[l°,7°], sa®[l®,7¢]) with LCP limit # and longest
common prefix of length A, the algorithm determines the target positions in sa, where X is
computed in constant time, as we will show later. The algorithm distinguishes two cases:

(i) If X < 0, then all suffixes with a suffix number in sa®[l°,7°] are lexicographically
smaller than the suffixes with a suffix number in sa®[l¢, r¢], or vice versa. The buckets
are uncoupled.

(i.1) If t[sa®[l°] + A] < t[sa®[l®] 4+ A], then sa®[l°,7°] contains the smaller suffixes.
The respective target segments of the complete suffix array are determined by
sa[l° +1¢ = 1,7° +1¢ — 1] = sa°[I°,7°] and sa[r® 4 [¢,7° 4+ 7¢] = sa®[l¢,r¢]. The

75

8 Classification and Survey of Previous Suffix Array Construction Algorithms

corresponding segment in the LCP array is determined by lep[l°+1¢—1,r°+1¢—
2] = lep[l°,r°—1], lep[ro+1¢—1] = A, and lep[ro+1¢, r°4r¢—1] = lep®[l¢, r*—1].
The algorithm also assigns r¢ to ptr°[i°] for all i € [I°,r°] and r° to ptr®[j°] for
all j© € [1°,r°].

(1.2) If t[sa®[I°] + A] > t[sa®[l°] + A], then the targets are determined analogously.

(ii) If A = 0, then the A-coupled buckets sa®[l°,7°] and sa®[l¢,] are subdivided into

76

(A + 1)-buckets. The right boundaries of the sub-buckets of sa®[l°,7°] are the po-
sitions ° € [I°,r° — 1] with lcp°[i®] = A, and the right boundaries of the sub-
buckets of sa®[l¢,r¢] are the positions j¢ € [I¢,7® — 1] with lcp®[j¢] = A. The
positions are computed by range minimum queries on the respective LCP arrays.
Let sa®[l7,r{], sa®[l3,r5], ..., sa®[l3, 73] be the respective sub-buckets of sa®[l°,r°]
(lep®[rg] = A for all g € [1,8 — 1]), and let sa®[lf, 7], sa®[l5,75], ..., sa®[l5, 7S] be
the respective sub-buckets of sa®[l®,r¢] (lcp®[r;] = A for all h € [1,y — 1]). For all
g € [1,3], let ¢ be the (A 4 1)* character of all suffixes in sa°[I3,79], and let ¢ be

g
the (A + 1) character of all suffixes in sa®[l§,r§] for all h € [1,7].

The algorithm merges the lists of odd and even sub-buckets from left to right starting
with sa®[l{,r9] and sa®[l{,r{]. We describe a step of the merging procedure, which
is iterated until one sub-bucket list becomes empty. Let the buckets sa® [lg, Tg] with
g € [1,] and sa®[l;, r}] with h € [1,7] be the current heads of the sub-bucket lists.

The algorithm compares ¢y and cj.

(ii.1) If ¢§ = ¢}, then the pair of buckets (sa®[lg,rg], sa®[l;,7;]) is (A + 1)-coupled
and its target processing is postponed to stage 0, j,, where 0, 5, is the LCP limit
of (sa°[lg,rg], sa®[ly,r};]). The algorithm assigns A to lep[ry + rj] if g < 3 or
h <, ry, to ptr°[rg] if g < B, and ry to ptr[r}] if h <. The bucket sa®[ly,rg]
is removed from the list of odd sub-buckets and sa®[l}, 7] from the list of even

sub-buckets.

(ii.2) If cj < cf,, then sa®[lg, rg] is (A + 1)-uncoupled and salg +1j — 1,79 + 1} — 1] =
sa[ly,rg]. The corresponding LCP values are leplly + Ij — 1,79 + 15 — 2] =
lep®[lg,rg — 1] and lep[rg + 1 — 1] = A, The algorithm also assigns rj to
ptr°[i°] for all i® € [Ig,rp]. The bucket sa®[lg,rg] is removed from the list of
odd sub-buckets.

(ii.3) If ¢§ > cf, then sa[ly +15 — 1,7}, + 1y — 1] = sa®[l}, r};]. The corresponding LCP
values are lep[ly +15— 1,7y +15 —2] = lep®[ly , 7 — 1] and leplry +15—1] = A. The
algorithm also assigns ry to ptr®[j¢] for all j¢ € [I},r;]. The bucket sa®[l},r}]
is removed from the list of even sub-buckets.

If one sub-bucket list becomes empty, then the merging procedure stops and the
algorithm copies the remaining buckets in the non-empty list to the respective target
segment of sa.

8.3 Reduced string sorting algorithms

The longest common prefix of a coupled pair. We now show how the algorithm com-
putes the longest common prefix A of all suffixes in a coupled pair (sa®[l°,7°], sa®[l®, °])
with LCP limit # in stage 8. We have two base cases: § = 0 implies A =0, and § = 1 im-
plies A = 1 if the input string ¢ is composed of at least two distinct characters. For 6 > 1,
according to the definition of the LCP limit (6 := min{lep(sa®[l°,7°]),lep(sa®[l®, ¢])}),
we have 6 = lep(sa®[l°,7°]) or 8 = lcp(sa®[l®, 7¢]). Without loss of generality, we assume
0 = lep(sa®[l®, r°]).

The key of the algorithm is to reduce the computation of A to the computation of the
length of the longest common prefix of two suffixes in sa®, which is then performed in
constant time by a range minimum query:

A = lep(sa®[l°,7°], sa®[l®, r°]) (8.3)
= min(d,lep(sa®[l°], sa®[r?])) (8.4)
= min(d — 1,lep(sa®[l°] + 1, sa®[r*] + 1)) +1 (8.5)
= min(f — 1,1cp(sa®[I°T], sa®[r*T])) + 1, (8.6)

where [°F = R®[sa®[l°] + 1] is the position of sa®[[°] +1 in sa®, and 7¢T = R°[sa®[r] + 1] is
the position of sa®[r¢]+1 in sa®. Equality (8.3) holds from the definition of A, equality (8.4)
since lep(sa®[l®], sa®[r¢]) < 6 implies lep(sa®[l°,7°], sa®[l¢,7°]) = lep(sa®[l°], sa®[r¢]) and
lep(sa®[l°], sa®[r®]) > 6 implies lep(sa®[l®,r°], sa®[l¢, r¢]) = 6, equality (8.5) since the
suffixes in the coupled pair share at least the first character, and equality (8.6) from
5a°[l°] + 1 = sa®[l°F] and sa®[r°] + 1 = sa®[r®*]. Note that R°[sa’[.] + 1] defines a kind of
sparse TR-array (see Definition 3.1): For each suffix number sa®[i°] in the odd suffix array,
i° € [1,n°], R®[sa’[i°] 4+ 1] stores the position of the successor suffix number sa®[i°] + 1 in
the even suffix array. It is a cross-link between the two sparse suffix arrays. The statement
analogously holds for R°[sa®[.] + 1].

For sa®[l°%], the algorithm finds a position ¢ of sa® such that the suffixes sa®[[°"] and
sa°[¢] share a sufficiently long common prefix such that

min(# — 1,lep(sa®[I°T], sa®[r*"])) = min(d — 1,lcp(sa®[@], sa®[r*T])). (8.7)

Let sa®[z®,y°] be the bucket containing sa®[l°T] after stage 0 — 1, I°T € [2°,4°]. Then
¢ = ptr°[y°] satisfies equation (8.7) (see [80] for a proof). The algorithm computes

rangeMin(lcp®, ¢, r¢T — 1) if ¢ <7t
lep(sa®[@], sa®[r*T]) =< n—ret 41 if ¢ =ret
rangeMin(lcp®, r¢t, ¢ — 1) if ¢ > ret.

Finally, according to equations (8.3)—(8.7), we obtain A = lep(sa®|[¢], sa®[r®*]) + 1.

The algorithm finds the rightmost position y© of the bucket sa®[x®,y®] containing the
suffix number sa®[I°F] in constant time. The complete merging procedure runs in linear
time since the algorithm processes at most n coupled buckets and n suffixes.

77

8 Classification and Survey of Previous Suffix Array Construction Algorithms

Time and space consumption. For the construction of the suffix array of an input string
of length n over an integer alphabet [1,n], the running time Toqq-even(n) of the algorithm
is composed of the O(n) + Todd—even(n/2) construction time of the odd suffix array, the
linear-time construction of the even suffix array, and the linear-time merge of the two
sparse suffix arrays. This together leads to Tpgd—even(n) = O(n) + Todd—even(n/2) = O(n)
for the complete suffix array construction.

The space requirements of the algorithm depend on the implementation. Besides n bytes
for the input string and n words for the suffix array, a straightforward implementation
would require auxiliary space for the arrays sa®, sa® lcp®, lep®, ptr®, for the reduced string
t°, and for the data structure providing constant time range minimum computations.
There are, however, more space-efficient implementations of the odd-even suffix array
construction scheme. Kim et al.’s [78] approach works on fixed-sized alphabets and requires
less space, but O(nloglogn) construction time. In practice, though, it is faster than
the linear-time odd—even algorithm. Moreover, Hon et al. [63] manage the suffix array
construction with the odd even scheme using only O(n) auxiliary bits.

8.3.2.3 The smaller—larger algorithm of Ko and Aluru

The smaller larger algorithm of Ko and Aluru [85] also classifies the set of suffixes into two
types, like the skew algorithm and the odd—even algorithm. The smaller—larger algorithm,
however, partitions the suffixes based on the relative order of consecutive suffixes and
not based on their starting positions. Similar to the two-stage algorithm of Itoh and
Tanaka [67], which classifies the suffixes as type s or type [, the smaller-larger algorithm
classifies the suffixes either as type S or type L. Alternatively, the suffix numbers are
classified either as type S or type L.

Let S:= {s € [I,n —1] : t[s,n] < t[s + 1,n]} of size n® = || be the set of suffix
numbers of type S that contains each suffix number s € [1,n — 1] if and only if the suffix
t[s,n] is lexicographically smaller than its successor suffix t[s + 1,n|. Let L := [1,n]\ S
of size n” = |L| be the set of suffix numbers of type L containing the suffix number of
each suffix that is lexicographically larger than its successor. The algorithm uses a local
property to efficiently determine the type of each suffix: A suffix number s € [1,n] is of
type S if t[s] < t[s+ 1] or if t[s] = t[s + 1] and the successor suffix number s+ 1 is of type
S; otherwise it is of type L. The algorithm uses this property to assign all suffix numbers
to either S or L by a right-to-left scan of the string.

Let sa® be the sparse suffix array of size n¥ of all suffix numbers of type S, and let
sa® be the sparse suffix array of size n” of all suffix numbers of type L. The algorithm
first constructs the smaller of the two sparse suffix arrays. Without loss of generality, we
assume that there are fewer type S suffixes than type L suffixes, or rather, n¥ < n’”. The
algorithm first constructs the sparse suffix array sa® and then the complete suffix array

sa from sa®.

Constructing the sparse suffix array of type S suffixes. Let s1,82,...,5(,s) be the
sorted list of type S suffix numbers with s1 < 53 < ... < 50,5 (sorted with respect

78

8.3 Reduced string sorting algorithms

to the numbers, not lexicographically). For each such suffix number s; of type S with
i € [1,n% —1], the prefix t[s;, s;11] is called the S-prefiz of s; and t[s(ns), | the S-prefiz of
S(nsy- The algorithm sorts the type 5 suffixes with respect to their S-prefixes, resulting
in a bucket segmentation of sa® such that two type S suffixes s;, sj € Swith i,5 € [1,n]
are element of the same ¢-bucket if and only if they share the same S-prefix of length
l, t[Si,SiJrl] = t[Sj,Sj+1] with £ = s;41 —s; +1 = Sj+1 — S5 + 1. Note that the bucket
segmentation contains ¢-buckets for different ¢. We will show later how the S-prefixes
are sorted. According to the bucket segmentation of sa®, the algorithm assigns the sparse
bucket number bnr[s] to each suffix s € S, representing the relative order of type S suffixes
with respect to their S-prefixes: t[s;, s;41] < t[s;j, sj41] if and only if bnrS[s;] < bnr9[s)]
for all 4,5 € [1,n5].

Then a reduced string ¢% of length n° is computed such that the relative lexicographical
order of the suffixes of t° corresponds to the relative lexicographical order of the suffixes
in sa®. The partial function p® bijectively maps the suffix numbers in S onto the positions
[1,n5] of the reduced string ¢¥ such that

pwS(s;) = i forallie[l,n%].

That is, the suffix numbers of type S are monotonically increasingly mapped onto [1,n7].
Moreover, let %=1 be the inverse mapping. The algorithm constructs the reduced string
t9 of length n”:

5[] == bS5V ()] (= bnrd[s;]) for all i € [1,n5].

That is, t¥ = bnro[sy], bnr®[ss), ... ,bnrs[s(nsﬂ.
Then it recursively constructs the suffix array sa(t) of the reduced string ¢¥ and derives
the sparse suffix array sa® from sa(t”),

sa’li] = p¥TY (sa(t)[i]) for all i € [1,n%).

Sorting the S-prefixes. The algorithm sorts the S-prefixes in three phases, using a pro-
cedure similar to MSD radiz sort.

1. First of all, the S-distance dist®(u) of a suffix number u is the distance to the closest
predecessor suffix number of type S, dist®(u) := min{u —s : s < wand s € S}.
The algorithm computes the S-distance for each suffix number u € [1,n], leaving it
undefined if there is no type S suffix number smaller than or equal to u, dist®(u) :=_L
for u € [1, s1].

2. For each encountered S-distance A, a list lisia stores the suffix numbers u € [1,n]
with dist®(u) = A. FEach list is ordered by the first character of the respective

suffixes.
3. The algorithm starts with the sparse suffix array sa® = s1, s9, ..., S(ns)- 1t repeatedly

performs bucket refinement steps for each S-distance A, starting from 1 up to the

79

8 Classification and Survey of Previous Suffix Array Construction Algorithms

maximal S-distance. In the A" bucket refinement step, it scans lista from left to
right. For each suffix number u encountered, it moves the A-predecessor u — A to
the front of its bucket and advances the front by one. After scanning lisia, the
suffixes of type S with the same prefix of length A are grouped together, resulting
in a A-bucket segmentation of sa®. After processing all lists, we obtain the desired
bucket segmentation of sa®, representing the order of the type S suffixes with respect
to their S-prefixes.

Constructing the complete suffix array from the sparse suffix array of type S suffixes.
Ko and Aluru construct the complete suffix array sa from sa® in three phases, as follows.

1. All suffixes are first sorted according to their leading character, producing a 1-bucket
segmentation of the suffix array sa. Furthermore, the suffix number n of the last
suffix ¢[n,n] is moved to the front of its bucket.

2. The sparse suffix array sa® is scanned from right to left. For each suffix in sa®, the

algorithm moves its counterpart in sa to the current end of its bucket and shifts the
current end by one position to the left. After scanning sa®, all suffixes of type S are
in their final positions.

3. The third phase determines the order of the L suffixes and moves them to their final
position. The suffix array sa is scanned from left to right. For each suffix number
v € [1,n] of type L, the algorithm moves the predecessor v — 1 to the current front
of its bucket and advances the front by one position to the right. The suffix sorting
process is completed after scanning the whole suffix array sa.

So far, we have shown how to build the complete suffix array sa via the sparse suffix
array sa® of the suffixes of type S. If the suffixes of type S are fewer than the suffixes of
type L, however, the sparse suffix array sa” of the type L suffix numbers and finally the
complete suffix array is constructed using a symmetric procedure.

Time and space consumption. Let Tsr,(n) denote the total running time of the smaller—
larger algorithm for input strings of length n over an integer alphabet [1,n]. Tgsr.(n)
decomposes into the running time of the separate phases. The following steps all require
linear time: the computation of the suffixes of type S, the sorting with respect to their S-
prefixes, and the mapping to the reduced string ¢%. In addition, the recursive construction
of the suffix array sa(t”) takes Tsr,(n®) < Tsr,(|n/2]) time. The derivation of the sparse
suffix array sa® from sa(t®) and the three phases for the construction of the complete
suffix array from sa(ts) again require linear time. Altogether, this leads to Tsr.(n) <
O(n) + Tsp([n/2]) for n > 2 and Tsp(n) = O(1) for n < 2, which can be solved to
TSL(TL) = O(n)

The algorithm has different space requirements for the separate sub-procedures. Among
all mentioned subroutines, the sorting of the S-prefixes, particularly the construction of
the S-distance lists, is the most space-consuming part of Ko and Aluru’s implementation.

80

8.3 Reduced string sorting algorithms

Therefore, the space analysis concentrates on that sub-procedure, as follows. For an integer
alphabet with ¥ = [1,n], the construction of the S-distance lists requires 3n words: the
integer array for the S-distances, an integer array for the S-distance lists, and a temporary
array for a stable counting sort of the lists, each consume n words. Moreover, Ko and
Aluru suggest to use bit arrays to mark the bucket boundaries and the suffix numbers of
type S: two bit arrays of size n and one of size n/2. Hence, the overall space requirements
are 3n words plus 5n/2 bits. This could be further reduced to 3n words if the most
significant bit of the integer words is used for the marker bits. Moreover, for a small fixed-
sized alphabet, Ko and Aluru reduce the space requirements to 2n words and 1.25n bits
or, alternatively, to 2n words if the most significant bit of each integer word can be used

as a marker bit.

81

8 Classification and Survey of Previous Suffix Array Construction Algorithms

82

9 The Bucket-Pointer Refinement
Algorithm

We observed that the bucket refinement algorithms, in particular the deep—shallow algo-
rithm, show faster practical running times for common real-world strings than the reduced
string sorting algorithms (see also [7, 119]). For degenerated strings with large LCPs, how-
ever, deep shallow performs poorly (see [31]).

Our aim was to design a new algorithm that is fast for common strings with small
LCPs and for strings with highly variable LCPs, but it should also construct suffix arrays
of degenerated strings in reasonable time. Our algorithm follows the depth-first bucket
refinement scheme, which proved its efficiency for common strings, and combines it with
a pull technique (see Chapter 8.1) using the following fact for an input string ¢ of length
n:

(t[sali],n] =g t[salj], n] A bptr[sali] + €] < bptr|salj] + f]) = t[sali], n] < t[saj], n]

for i,4,¢ € [1,n]. That is, if two suffixes with the same ¢-length prefix are contained in
the same ¢-bucket, then their order is determined by the order of their ¢-successors. Our
strategy is to use the information of subdivided buckets as early as possible. We alternate
refinement steps and updates of the bucket pointers such that the information about the
subdivided buckets is used in the bucket refinement process as soon as this information
becomes available.

In Section 9.1, we describe the basic algorithm, which is analysed regarding asymptotic
running time complexity in Section 9.2. In Section 9.3, we present the implementation
details including an advanced push method that enhances the basic algorithm. Section 9.4
contains use cases of our algorithm.

9.1 The basic algorithm

Our new bucket-pointer refinement (bpr) algorithm mainly consists of two simple phases.
Given a parameter ¢ (usually less than logn), the suffixes are lexicographically sorted in
the first phase, so that suffixes with the same g-length prefix are grouped together, form-
ing a g-bucket segmentation sa[li, 1], salla, 2], ..., sa[lg,rg] for some § € [1,n]. Before
entering the second phase, a pointer to its bucket bptr[i] is computed for each suffix with
suffix number ¢ € [1,n], such that suffixes with the same g-length prefix share the same
bucket pointer. In our descriptions and in our implementation, we use the position of the
rightmost suffix in each bucket as bucket pointer. Recall the definition of bucket pointers

83

9 The Bucket-Pointer Refinement Algorithm

from Chapter 7.1, equation (7.2). We have

bptr(sali]] =, for each i € [ly, 7] and for each k € [1, G]. (9.1)

In the second phase, the buckets containing suffixes with equal prefix are recursively
refined. Let sa[l,r] be an ¢-bucket of the suffix array sa. Then the refinement procedure
applies the ternary partitioning scheme of Bentley and Mcllroy’s Ternary-Split Quick-
sort |22]. The bucket sal[l,r| is partitioned into three sub-buckets according to the bucket
pointers at offset ¢: a left, a middle, and a right sub-bucket. That is, for each suffix sa]i]
with i € [I, 7], bptr[sali] + ¢] is used as the sort key. The refinement procedure first selects
a pivot sort key p = bptr[sa[j] + ¢] for some j € [I,7]. Then the suffixes sa[i] in sa[l,r]
with smaller sort key, bptr[sali] + ¢] < p with i € [[,r], are assigned to the left sub-bucket
sall<,r<], the suffixes with sort key equal to the pivot, bptr[sa[i] + ¢] = p, to the middle
sub-bucket sa[l—,r_], and the suffixes with larger sort key, bptr[sali] + ¢] > p, to the right
sub-bucket salls,r<] (l=lc, 1« +1=Il-,r—=+1=1[s,and r~ = 7).

After partitioning the suffixes of sa[l,r], the bucket pointers for the suffixes in sa[l,]
are updated to conform with the refined bucket segmentation. For each suffix sa[i] with
i € [l,r], bpr assigns the right-most position of its refined sub-bucket to its bucket pointer
bptr([sa[i]], such that

re forall i € [lo,r<]
bptr(sali]] = ¢ r= for all i € [I—,r_]
rs for all i € [Is,rs].

Then each of the three sub-buckets that is not empty or singleton is partitioned recursively
by calling the refinement procedure. We use the unmodified offset £ for the left and for
the right sub-bucket since both remain ¢-buckets, but use the increased offset ¢ 4 ¢ for
the middle sub-bucket sa[l—,r_] since its suffixes share a common prefix of length (¢ + q)
and thus form an (¢ + ¢)-bucket. After termination of the algorithm, all buckets are
singletons, sa is the lexicographically sorted suffix array, and bptr reflects the rank array
or, alternatively, the inverse suffix array.

An example of the refinement procedure for the string ¢ = DEBDEBDEA with parameter
g = 2 is shown in Figure 9.1. The top of the figure, below the input string, shows the
suffix array sa segmented into buckets and the bucket pointer array bptr after phase 1 and
after each further refinement step. The vertical lines in sa denote the bucket boundaries.
The bucket that is going to be refined in the next step is overlined, and the bucket
pointers that are used as sort keys during that next refinement step are drawn in bold
face. Initially, there are three non-singleton buckets, which are then refined from left to
right: the bucket sa[2, 3] containing the suffix numbers of suffixes with the prefix BD, sa[4, 6]
containing the suffix numbers of suffixes with the prefix DE, and sa[8,9] containing the
suffix numbers of suffixes with the prefix EB. We first refine the bucket sa|2, 3] containing
the suffix numbers 3 and 6 with respect to £ = 2. The sort keys (drawn in bold face) are
sortkey(3) = bptr[3 + 2] = 9 and sortkey(6) = bptr(6 + 2] = 7, where the sort key 9 is
selected as pivot. After the partitioning, the bucket pointer for the suffix 3 is updated to

84

9.1 The basic algorithm

Input string: t= D E B D E B D E A
1 2 3 4 5 6 7 8 9
A BD DE EA EB
sa after initial sorting (¢ = 2): 19]3 6|1 4 7812 5|
1 2 3 4 5 6 7 8
bptr after initial sorting: | 6 9 3 9 3 7 1 |
sa after sorting bucket sa[2, 3]: l9]6[3]1 4 7]8][2 5|
1 2 3 4 5 6 7 8 9
bptr after updating positions 3, 6: | 6 9 3 6 9 2 6 7T 1 |
sa after sorting bucket sal[4, 6]: (963]7]4]1]8]2 5|
1 2 3 4 5 6 7 8

bptr after updating positions 1,4, 7: [6 9 3 5 9 2 4 7 1|

sa after sorting bucket sal8,9]: (96|37]4]1]8][5]2]
1 2 3 4 5 6 7 8 ¢
bptr after updating positions 2, 5: /6 9 3 5 8 2 4 7 1|
Lo [3 of [4 5 7] [8] [2 5]
=2 {=2 =2

KN ER RN NN [5][2]

Figure 9.1: The bucket segmentation of the suffixes of the input string DEBDEBDEA and
the respective bucket pointer array bptr after the initial sorting of the suffixes regarding
prefixes of length ¢ = 2 (2-bucket segmentation) and after each refinement step (top).
Moreover, the corresponding ternary recursion tree (bottom).

85

9 The Bucket-Pointer Refinement Algorithm

bptr[3] = 3 and the bucket pointers for the suffix 6 to bptr[6] = 2. Then the refinement
of the buckets sa[4,6] and sa[8,9] follows. The pivot is always the median sort key if the
buckets are of odd size, or the next larger sort key if the buckets are of even size.

The bottom of Figure 9.1 shows the ternary recursion tree corresponding to the complete
bucket refinement process. The inner nodes of the tree are the non-singleton buckets
that have to be refined. The children of each such bucket correspond to the sub-buckets
after a refinement step: a left child corresponds to a left sub-bucket, a middle child to a
middle sub-bucket, and a right child to a right sub-bucket. Note that the first level of
the recursion tree corresponds to the 2-bucket segmentation after the initial sorting of the
suffixes regarding their prefixes of length ¢ = 2.

Properties. The main improvement of our algorithm, compared to earlier algorithms
performing bucket refinements, is that it benefits from the immediate use of subdivided
bucket pointers after each refinement step. With increasing number of subdivided buckets,
it becomes more and more likely that different bucket pointers can be used as sort keys
during the refinement steps, such that the expected recursion depth decreases for the
buckets refined later. The final position of a suffix number u in the current bucket is
reached at the latest when bptr[u 4 ¢] is unique for the current offset, that is, when the
suffix number u + ¢ is contained in a singleton bucket salbptr|u + €], bptr[u + ¢]] and thus
has reached its final position.

Another improvement of our algorithm is that, in each recursive refinement step of a
middle sub-bucket, £ can be increased by ¢. Hence, the recursion depth decreases by a
factor of g, compared to algorithms performing characterwise radix steps.

Note that the algorithm can be applied to arbitrary ordered alphabets since it just uses
comparisons to perform suffix sorting.

9.2 Analysis

So far we were not able to determine tight time bounds for our algorithm. The problem
is that the algorithm quite arbitrarily uses the dependencies among suffixes. Hence, we
only present lower and upper limits for the worst-case and expected-case time bounds.
The first phase of the algorithm can simply be performed in optimal linear time (see
Section 9.3 for more details). For the second phase, we assume throughout the analysis
that the algorithm finds the true median sort key in linear time, which can be performed
by algorithms of Blum et al. [26], Schonhage et al. [126], or Dor and Zwick [43]. These
methods, however, are not desirable for practical implementations since they increase the
constant running time factors. Our implementation rather uses a pivot choice method
that is directed to fast practical running time, instead of good worst-case time complexity.

9.2.1 Worst-case time bound

We first neglect that the expected recursion depth decreases for the buckets refined later.

86

9.2 Analysis

Theorem 9.1. Let t be a string of length n, and let q with ¢ < logn be the common
prefix length with respect to which our algorithm sorts the suffizes in phase 1. Then our
algorithm constructs the suffiz array of t in O(n?/q) time.

Proof. We assume that phase 1 is computed in linear time. The recursive refinement
in phase 2 defines an implicit ternary recursion tree similar to the ternary search tree
of Bentley and Sedgewick [23], which they used for the analysis of their string sorting
algorithm. In the strict sense, we have one ternary recursion tree for each bucket generated
by phase 1, but we include phase 1 to have only one recursion tree. Hence, the root is
the only inner node that may have more than three children; it has as many children as
there are buckets generated by phase 1 (see Figure 9.1). The refinement procedure starts
with the offset £ = ¢ for each bucket generated by phase 1. The ternary recursion tree
branches into a left child for a left sub-bucket, a middle child for a middle sub-bucket, and
a right child for a right sub-bucket. The middle child exists for each internal node since the
corresponding middle sub-bucket contains at least the suffix that has the pivot sort key,
but the left or the right child may not exist: The left child is empty if the corresponding
left sub-bucket is empty, and the right child is empty if the corresponding right sub-bucket
is empty.

We present a limit for the recursion depth by counting the number of edges, or branches,
to child nodes on a path from the root to any leaf, where we distinguish between the
middle branches and the left or right branches. Middle branches correspond to recursive
refinements of middle sub-buckets, while the offset £ is incremented by ¢ in each recursive
call, starting with £ = ¢. Recall that £ reflects the length of a common prefix of all suffixes
in an f-bucket, which is bounded by n — 1. That is, £ has reached its maximum n — 1
after encountering at most [n/q] middle branches on the path from the root to any leaf,
n—1 < [n/q]q. For each left or right branch, we observe that the size of its corresponding
sub-bucket is at most half of the size of its father’s bucket since the suffixes with the
median sort key fall into the middle sub-bucket. Hence, the buckets are split up into
singleton buckets after at most [logyn] left or right branches. Together, the total length
of a path from the root to any leaf is bounded by [n/q| + [logyn] € O(n/q).

Moreover, the partitioning of a bucket takes linear time in the size of the bucket, and
the buckets at any depth of the tree sum up to at most n since each suffix appears at most
once in a bucket at any depth of the recursion tree. We multiply the linear partitioning
time at any depth of the recursion tree by the maximum recursion depth of O(n/q) and
add the linear computation time of phase 1 to get the O(n?/q) worst-case time bound. [

Now, we focus on especially bad instances for our algorithm, in particular, strings max-
imising the recursion depth. Since the recursion depth is limited by the LCPs of suffixes
to be sorted, periodic strings maximising the average LCP are especially hard strings for
our algorithm.

A string A" consisting of one repeated character maximises the average LCP and is
therefore analysed as a particularly difficult input string. In the first phase of our algorithm
the last ¢ — 1 suffixes {A971 A972 ... AA, A} are mapped to singleton buckets. One large

87

9 The Bucket-Pointer Refinement Algorithm

AAAAAAAAAAAS
123456’789101112
[12][11][10] [1 2 3 4 5 6 7 8 9|
=3
|7 8 9| [1 2 3 4 5 6|
=3 =6
(o Jls)[7] [4 5 6] [3] [2 3]
(=6 t=6

(o J[afle] [2][1]

Figure 9.2: Recursion tree of the bucket refinements for the $ extended input string
AAAAAAAAAAAS.

bucket containing all the other suffixes with prefix A? remains to be refined. We assume
that after partitioning in phase 2 the three sub-buckets are refined in ascending order
of their size. In a recursive refinement step with offset £, if the remaining large bucket
contains at least 2¢ suffixes, then it is subdivided into a left sub-bucket of size ¢ containing
only suffixes with unique sort keys and into one larger middle sub-bucket containing the
other suffixes with prefix A‘T9, while ¢ is incremented by ¢ for the recursive refinement
of the middle sub-bucket, starting with ¢ = ¢. If the remaining large bucket is of size
bsize with bsize < 2, then it is subdivided into a left sub-bucket of size |bsize/2]|, a
singleton middle sub-bucket, and a right sub-bucket of size [bsize/2] — 1. We assume that
the left sub-bucket is recursively refined before the middle sub-bucket (small sub-buckets
are refined first) such that, before the i*" recursive refinement of the middle sub-bucket,
{ = q - i suffixes are partitioned into a left sub-bucket and further into singleton buckets.

For ¢ = 3, Figure 9.2 shows the ternary recursion tree of the refinement process for the
string A extended with $. Here, $ belongs to the string. The suffixes 10, 11, and 12 are
mapped to singleton buckets by the initial sorting and thus have unique bucket pointers:
bptr[10] = 3, bptr[ll] = 2, and bptr[12] = 1. Hence, for the offset £ = 3, the suffixes
7, 8, and 9 have unique sort keys after the initial sorting: sortkey(7) = bptr[7 + 3] =
3, sortkey(8) = bptr[8 + 3] = 2, and sortkey(9) = bptr[9 + 3] = 1. Both groups are
marked in the string. The bucket containing the suffixes [1,9] is then refined into the left
sub-bucket of suffixes 7, 8, 9 and the middle sub-bucket of suffixes [1,6]. Then, in one
further refinement step, the suffixes 7, 8, and 9 are subdivided into singleton buckets. The
remaining large bucket of suffixes [1, 6] is refined with respect to the offset £ = 6 such that
the respective sort keys are the bucket pointers of the suffixes [7,12], which are unique:

3

88

9.2 Analysis

sortkey(k) = bptrlk+6] = 7—k for all k € [1,6]. Finally, the two remaining non-singleton
sub-buckets are refined: the left sub-bucket of suffixes 4, 5, 6 and the right sub-bucket of
suffixes 1 and 2.

In the following, we separately analyse the so called middle refinement thread corre-
sponding to the path of the recursion tree that always follows the middle sub-bucket until
it is singleton, and the threads branching from the middle refinement thread. In Fig-
ure 9.2, the middle refinement thread is drawn in bold face. Without loss of generality,
we assume that in the i*" recursive refinement of a middle sub-bucket on the middle re-
finement thread ¢ = ¢ - i suffixes are partitioned into a left sub-bucket. The repeated
recursive refinement of the middle sub-buckets on the middle refinement thread proceeds
until all suffixes are split off into left sub-buckets or until the middle sub-bucket is singleton,
that is, until a recursion depth recdepth for the middle sub-buckets is reached, such that
n<q-— 1+Z:icldemh q-i = q—1+q(recdepth(recdepth+1)/2). Therefore, for the string A",
the recursion depth recdepth of the repeated middle sub-bucket refinement on the middle
refinement thread is in ©(y/n/q). Immediately after branching from the middle refinement
thread, all sort keys of the suffixes in the corresponding sub-buckets are unique. Since the
bucket size is limited by n, these buckets are split up into singleton buckets after at most
[logon] further branches in the recursion tree. Together, the total length of a path from
the root to any leaf in this recursion tree is bounded by ©(y/n/q) + [logyn] = ©(\/n/q)
for ¢ < logn. We multiply the O(n) time for the refinement at any depth of the recursion
tree by the recursion depth ©(y/n/q) and add the linear time complexity of phase 1 to
get the time bound @(n\/n—/q) of our algorithm for the string A™. By setting ¢ = logn,
we achieve a running time of O(n+/n/logn) = O(n3/?/\/logn).

In general, since the partitioning time of a bucket is linear in its size, the running
time of our algorithm is essentially given by summing up the sizes of the different non-
singleton buckets that appear in the whole refinement computation. We identify two
main parameters of the input strings that influence this sum: the initial distribution
of g-length substrings (q-gram profile) and the average LCP. The initial distribution of
g-length substrings influences the size and the number of buckets at the lower refinement
levels with small offset £ = ¢, where a few large buckets increase the requirement of further
refinements. The average LCP is an indicator for the average recursion depth and thus for
the total number of accumulated non-singleton buckets. The string A™ maximises both,
the size of the initial buckets and the average LCP. Hence, we believe that the worst-case
time bound for A™ also holds for all other strings.

Conjecture 9.2. Let t be a string of length n, and let ¢ with ¢ < logn be the common
prefiz length with respect to which our algorithm sorts the suffives in phase 1. Then our
algorithm constructs the suffiz array of t in O(n3/2/\/§) time.

9.2.2 Expected-case time bound

In practice, worst-case strings like A” rarely appear. We are rather interested in the average
construction time of our algorithm. Therefore, we analyse its expected construction time

89

9 The Bucket-Pointer Refinement Algorithm

for strings that are generated according to a Bernoulli model (i.e., symbols from the
alphabet are generated independently) or a first order Markov model (i.e., the next symbol
depends in a probabilistic sense only on the previous one).

Theorem 9.3. Let t be a string of length n generated according to a Bernoulli model or
according to a first order Markov model, and let ¢ with ¢ < logn be the common prefix
length with respect to which our algorithm sorts the suffixes in phase 1. Then our algorithm
constructs the suffix array of t in O(nlogn) expected time.

Proof. We again use the implicit ternary recursion tree and follow the same line of argu-
ment as the proof of Theorem 9.1. The number of left or right branches on a path from
the root to any leaf in the recursion tree is again bounded by logn. Recall further that
the number of middle branches is bounded by the maximal length of the common prefix
of two suffixes of the input string divided by the parameter q. A simple consequence of
a result by Apostolico and Szpankowski [9] and Szpankowski [139] is that the expected
maximal length of such a longest common prefix is bounded by O(logn). Hence, ¢ has
reached its expected maximum after at most O(logn/q) middle branches. Altogether, the
expected maximal recursion depth is bounded by O(logn): O(logn) left or right branches
and O(logn) middle branches. We multiply the O(n) time for the refinement at any depth
of the recursion tree by the expected maximal recursion depth of O(logn) and add the
linear computation time of phase 1 to get the O(nlogn) expected-case time bound of our
algorithm, independent of the parameter q. [l

We further choose ¢ = logm n. There exist |X|? = n potential buckets, one for each
possible prefix of length logm n over the alphabet X. If we assume that the suffixes are
independently assigned to the n buckets, then an expected-case analysis analogous to
the analysis of bucket sort in |38, Section 8.4] would give a linear expected construction
time for the Bernoulli model. The suffixes of a string are, however, not independent.
Nevertheless, we believe that the expected construction time is linear for ¢ = logn.

Conjecture 9.4. Let t be a string of length n over an alphabet X of constant size o
generated according to a Bernoulli model or a first order Markov model, and let ¢ = log,n
be the common prefix length with respect to which our algorithm sorts the suffizes in phase
1. Then our algorithm constructs the suffiz array of t in O(n) expected time.

9.2.3 Space requirements

Bpr requires more space than the lightweight algorithms deep—shallow, cache, copy, and
difference-cover. The suffix array and the bucket pointer array each consume n integer
words, and the input string n bytes. For an alphabet 3 of size o, 09 additional integer
words are used for the bucket pointers of the initial bucket sort. Hence, for reasonable
q, the total space requirements of bpr are between 9n and 10n bytes on computers with
4 byte integer words. However, for certain applications, such as the computation of the
Burrows—Wheeler transform [32], the construction of the suffix array is just a byproduct,
and the complete suffix array does not need to remain in memory.

90

9.3 Engineering and implementation for fast speed

9.3 Engineering and implementation for fast speed

In this section, we present more detailed descriptions of the two phases of the algorithm
and enhance the second phase with a push method that is used in combination with the
recursive refinement procedure.

9.3.1 Computing the initial bucket segmentation

We first define two specific terms: range reduction and multiple character encoding. Let
t be a string of length n with character set 3 of size 0. Range reduction realises an
order-preserving character mapping rk onto a contiguous segment of natural numbers. It
is a monotone, bijective function, rk : ¥ — [0,0 — 1]. The range reduced string rk(¢) is
defined by rk(t) := rk(¢[1]),rk(¢[2]), ... ,rk(¢[n]). A multiple character encoding for strings
of length ¢ is a monotone bijective function code, : £¢ — [0,09 — 1] such that for two
strings w and w’ of length ¢, code,(w) < codey(w') if and only if w is lexicographically
smaller than w’. For a given range reduction, such an encoding can easily be defined
as codeq(w) := >4, 09 rk(w[i]). The encoding can be generalised to strings of length
greater than ¢, by just encoding the first ¢ characters. Given the encoding code,(u) for
the suffix t{u, n], 1 < u < n, the encoding for the successor suffix t[u+1,n| can be derived
by shifting away the first character of t[u] and adding the range reduced value rk(t[u + q])
of character t[u + q|:

codeq(u + 1) = o (codeq(u) mod o171 + rk(tu + q]). (9.2)

We are now prepared to formulate phase 1. Our algorithm performs the initial sorting
regarding the g-length prefixes of the suffixes by bucket sort, using codey(u) as the sort
key for suffix u € [1,n] (assuming that ¢ is extended with multiple $s).

The bucket sorting is performed using two scans of the sequence, thereby successively
computing codey(u) for each suffix using equation (9.2), or rather, the equivalent equation

codeg(u + 1) = o (codeq(u) — o971 - vk(t[u])) + rk(tfu + g]) (9.3)

to avoid the modulo operations, which are possibly time consuming.

There are o9 buckets, one for each possible code,. In the first scan, the size of each
bucket is determined by counting the number of suffixes for each possible code;. The
outcome of this is used to compute the starting position for each bucket. These positions
are stored in the array bkt, which is of size 9. During the second scan, the suffix numbers
are mapped to the buckets, where suffix number u is mapped to bucket number codey(u).

After the bucket sort, the bucket pointer table bptr can be computed by another scan of
the sequence. Recall our definition of bucket pointers, equation (9.1). For each suffix u €
[1,n], the bucket pointer bptr|u] is simply the rightmost position of the bucket containing
u, bptr[u] = bkt[codeq(u) + 1] — 1.

91

9 The Bucket-Pointer Refinement Algorithm

9.3.2 Recursively refining the buckets

We now give a more in-depth description of the three steps of the refinement procedure
and present improvements to the basic approach.

Partitioning. In the refinement procedure, the suffixes are first partitioned with respect
to a certain offset ¢ using the bucket pointer bptr[u + ¢] as the sort key for the suffix
number u. Our ternary partitioning algorithm is adapted from Lomuto’s binary partition-
ing scheme [21, Column 10] (see also [38, Section 7.1]). We further tried other ternary
partitioning algorithms that were suggested by Kiwiel [81], but ours performs best. Algo-
rithm 9.1 (TERNARYPARTITION) shows our partitioning procedure for an ¢-bucket sa[l,]
around the pivot p. The algorithm partitions the suffixes into three segments: a left, a
middle, and a right segment. The suffixes with sort key equal to the pivot p are first
moved to the middle segment and then further to the left segment, the suffixes with sort
key smaller than p to the middle segment, and the suffixes with sort key larger than p
to the right segment. The numbers end—, end., i refer to the rightmost positions of the
respective segments and are appropriately updated when the suffixes are moved: end—
refers to the rightmost position of the left segment, end~ to the rightmost position of the
middle segment, and ¢ to the rightmost position of the right segment. The movements are
performed by swapping the suffixes as in the original Quicksort. Finally, VECTORSWAP
(Algorithm 9.2) moves the suffixes of the left segment, with sort key equal to the pivot, to
their final position by swapping them with the rightmost suffixes of the middle segment,
ultimately producing the desired three sub-buckets. Figure 9.3 sketches the segments of
the array immediately before and after the movement of suffixes by VECTORSWAP.

Our VECTORSWAP procedure improves upon the wector swap used by Bentley and
Mcllroy [22] for the ternary partitioning. Their procedure swaps the elements of two
arrays A and B, each of length m, elementwise for each position i € [1,m]: It assigns
Ali] to an auxiliary variable tmp, Bli] to A[i], and tmp to Bl[i], altogether performing 3m
assignment operations. The ordering of the elements is kept during the vector swap. Our
vector swap reduces the number of assignment operations. Although it is quite simple, we
have not seen that it has been previously used for the ternary partitioning. It first assigns
the last element of the second array B[m] to tmp. Then it performs the following steps
for each i € [2,m] from m down to 2: Ali] is assigned to B[i] and B[i — 1] to A[i]. Finally,
A[l] is assigned to BJ[1] and tmp to A[l]. Our vector swap keeps the order of elements
that are moved from A to B, but alters the order of elements that are moved from B to
A: The last element B[m] is moved to the first position A[1]. The number of assignment
operations, however, is only 2m + 1, instead of 3m for Bentley and Mcllroy’s vector swap.

Moreover, we want to find a pivot sort key, hopefully near the true median, in constant
time. Hoare [59] proposed using the median of a small sample of sort keys. We choose
the pivot to be the median of nine sort keys for buckets larger than 10000 suffixes and
the median of three sort keys for smaller buckets. The median of three was proposed by
Singleton [137], who suggested the median of the leftmost, the middle, and the rightmost
element. We, however, observed that his selection sometimes causes a significant increase

92

9.3 Engineering and implementation for fast speed

Algorithm 9.1. Algorithm 9.2.
TERNARYPARTITION (sa, 4,1, 7,p) VECTORSWAP(g, h, z)
i«—end— —ende —1—1 tmp — salz]
while i < r do while g < h do
i—1+1 sa[z] « salh]
sortkey « bptr[sali] + {] z—2—1
if sortkey < p then sa[h] <« sa[z]
end< «— end< + 1 h«—h-1
tmp «— sali] end while
sali] < salend<] sa[z] « salh]
salend] «— tmp salh] — tmp

if sortkey = p then
end— «— end— + 1
salend.] « salend_]
salend=] < tmp
end if
end if
end while
swapsize «— min{end— + 1 —l,end- — end_}
VECTORSWAP(I,l + swapsize — 1, end.)

end— end< i
| | |
=] < | > |
f ! f
g h z
| < | =] >

f f
g,h z

Figure 9.3: Partitioning suffixes before and after vector swap.

in running time for inputs with long repeated substrings. This is presumably due to
the dependencies among suffixes in the refinement process such that the same suffixes
are repeatedly encountered at the leftmost or rightmost bucket positions in successive
refinement steps and are thus overrepresented in the choice of the median sort key. Hence,
we choose the sort key of the middle element and the sort keys of the two elements that are
one-fourth of the bucket size away from the bucket boundaries, preventing the mentioned
effect. For the median of nine, we choose the sort keys analogously: at positions every
one-tenth of the bucket size away from each other and away from the bucket boundaries.

For small buckets, our refinement algorithm falls back upon simple sorting routines:
Buckets of size 2 or 3 are refined into singleton buckets by directly comparing the sort

93

9 The Bucket-Pointer Refinement Algorithm

keys, while ¢ is incremented by ¢q. Insertion Sort is used for buckets of size up to 15.

Updating bucket pointers. The used procedure for the bucket pointer update depends
on the refinement algorithm. If the suffixes in a small bucket of size 2 or 3 are directly
compared and refined into singleton buckets, then the updated bucket pointer of a suffix
sali] is simply a backward link, bptr|sali]] = i.

After sorting the suffixes via Insertion Sort, the update is performed by a right-to-left
scan of the current bucket. As long as the sort keys of consecutive suffixes are equal, they
are located in the same refined bucket, and the bucket pointer is set to the rightmost posi-
tion of the refined bucket. Note that the refined bucket positions are implicitly contained
in the bucket pointer table bptr. The left pointer [of a bucket is the right pointer of the
bucket directly to the left increased by one, and the right pointer r is simply the bucket
pointer for the suffix sa[l] at position I, r = bptr[sa[l]], since the bucket pointer bptr{u] of
each suffix u points to the rightmost position of its bucket.

The ternary partitioning generates the sub-buckets including the leftmost and right-
most position of each such bucket. The strategy that we would follow to meet the best
asymptotic running time is the following: In one scan of each of the three sub-buckets,
the update procedure assign the rightmost position to the bucket pointers of all contained
suffixes. During the practical engineering of our algorithm, however, we observed that
the memory references to the bucket pointer array follow a quite arbitrary access pattern,
resulting in many cache misses. Especially the write operations during the updates cause

from left to right, we postpone the update of bucket pointers of suffixes in the left or right
sub-buckets until they are singletons. We update the respective bucket pointers for the
middle sub-bucket after the left sub-bucket has been completely refined.

Recursive Refinement. The recursive refinement procedure is usually called with an
incremented offset ¢ 4+ ¢ for the middle sub-bucket. Note that, for a middle sub-bucket
sa[l=,r=] of sall,r] containing each suffix t[sali],n], i € [I=,r=], for which the ¢-successor
suffix t[sali] + ¢,n] is also contained in sall,r], the offset can be doubled. This is so
because all suffixes contained in sa[l,r] share a common prefix of length ¢, and for each
suffix t[sali],n] in the middle sub-bucket, i € [I—,r_], there is also the f-successor suffix
t[sali] + £,n] in its super-bucket sa[l,r]. Hence, all suffixes contained in sa[l—, r—] share a
prefix of length 2¢.

We add a further heuristic to avoid the unnecessary repeated sorting of buckets. For a
bucket consisting of suffixes that all share a common prefix much larger than the current
offset, many refinement steps may be performed without actually refining the bucket. This
may continue until £ reaches the length of the common prefix. Therefore, if a bucket is not
refined during a recursion step, we search for the lowest offset dividing the bucket. This is
performed by just iteratively scanning the bucket pointers of the contained suffixes with
respect to £ and incrementing ¢ by ¢ after each run. As soon as a bucket pointer different
from the others is met, the current £ is used to call the refinement procedure.

94

9.3 Engineering and implementation for fast speed

9.3.3 Double pushing

We use a push technique in combination with the recursive refinement procedure. Our
double push method that we present in this section is based upon Seward’s copy technique
(see Section 8.2.2.2). It is used in combination with the previously described recursive
partitioning of the buckets after the initial sorting in the first phase. Recall that the copy
method passes the order of suffixes in a 1-bucket on to the order of the corresponding
predecessor suffixes in some 2-buckets (pushing once). Double push further passes the
sorted order of these just copied suffixes on to predecessor suffixes in some 3-buckets
(pushing twice).

We assume a fixed, small alphabet ¥ of size 0. For all (a,b,c) € X3, we denote a
3-bucket containing all suffixes with prefix a,b, ¢ by sallgp.c,Tap,c], @ 2-bucket containing
all suffixes with prefix a, b by sa[l,p,74), and a 1-bucket containing all suffixes with prefix
a by sa[lg,rq]. Note that consecutive 3-buckets consisting of suffixes sharing the prefix
a,b form a 2-bucket sa[l,p,74p] and that consecutive 2-buckets of suffixes with leading
character a form a 1-bucket sa[ly, 7).

After the first phase of our algorithm that generates a ¢-bucket segmentation for g > 3,
our program processes the 1-buckets sa[l.,r.], ¢ € ¥, in ascending order with respect to
the number of suffixes, [sallc,rc]| — |sallee, Tee]| = re —le — (ree — lee). The recursive
refinement procedure, described in Section 9.3.2, sorts all sub-buckets of sal[l.,r.] that
have not yet been sorted, except for the buckets with equal first and second character c.
Then the copy algorithm of Seward [135] passes the ordering of suffixes in sa[l.,r.] on
to the not previously refined buckets among sa[ly, c,7b, c]s $a[lby.c) Thy,c)s - - - 5 S@[lb,) Toy el
where b, € ¥ is the k*? character of the alphabet, k € [1,0]. Finally, the suffixes in each
of these 2-buckets are pushed further. Let sa[ly, c,7,.c] with & € [1,0] be any of these
2-buckets and sa(lg, b, ., Tag.bp.c)s SWllag by.cr Tag.bpoc)s - - -+ S0llag by.c> Tay by.c] the buckets of
suffixes with first character a; € ¥ (j € [1,0]), second character by, and third character
c. Then sally, ¢, 1y,] is scanned from left to right. For each suffix number sali] with
i € [lby.crThy,c] and sali] > 1, encountered in the scan, if the buckets of suffixes with the
first character ¢[i — 1] are not already refined, then the predecessor suffix number sa[i] — 1
is assigned to the front of the bucket sa[ly;_1]p,,c» Tt[i—1],b5,c), @nd the front is advanced by
one.

Figure 9.4 shows an example of the double push procedure for the input string ¢t =
CEBDEBDEBDEA. The topmost part below the input string shows the bucket segmentation
of the suffix array sa before applying the double push procedure to the bucket of suffixes
with leading character B. All shown suffix numbers are already in their final position.
The double push procedure applied to the bucket of suffixes with leading character A,
which only contains the suffix number 12, has previously assigned the suffix numbers 11
(predecessor of 12) and 10 (predecessor of 11) to their final positions. The buckets that
are going to be determined by the current double push are left empty (buckets of suffixes
with second or third character B). For each suffix that is involved in the current pushing
procedure, the first character of its predecessor suffix (the character to the “left”) is printed
below its suffix number. E is, for example, the character at the positions 8, 5, and 2 to

95

9 The Bucket-Pointer Refinement Algorithm

String to build suffix array for: t= CEBDEUBDEHUBTUDE A

A B CEB DEA, DEB EA EB
sa before double push 121 9 ‘ 6 ‘ 3 10 11
E E E
‘ |
sa after pushing once ‘12‘ 9 ‘ 6 ‘ 3 10 111 8 ‘ 5 ‘ 2
D D C
]
sa after pushing twice [12] 96 [3 |1 |w0|7[af1u1]8]5] 2]

Figure 9.4: Double pushing the bucket of lexicographically sorted suffixes with leading
character B of the string CEBDEBDEBDEA.

the left of 9, 6, and 3. The middle part of the figure shows sa after pushing once, and
the bottom part shows sa after the complete double pushing. We first push the bucket of
suffix numbers 9, 6, and 3. Their order is passed on to the bucket of predecessor suffix
numbers 8, 5, and 2 for which the corresponding suffixes share the prefix EB. Then the
order of the suffix numbers 8, 5, and 2 is further passed on to the buckets of suffixes with
third character B. The suffix numbers 7 and 4, which correspond to suffixes with common
prefix DEB, form a bucket, and the suffix number 1, which corresponds to a suffix with
prefix CEB, forms another bucket.

9.4 Use cases

A previous version of the here presented bucket-pointer refinement algorithm is published
in [132] and [133]. Its implementation proved its efficiency in several bioinformatics appli-
cations. Paarmann [116] as well as Twardziok and Schwientek |[140| integrated bpr in their
tools for the design of oligo nucleotides (see also [121]). They applied bpr for the con-
struction of their suffix-array-based index, which is then processed further. Kemena [77]
and Holthaus [62] use bpr for the construction of Abouelhoda et al.’s enhanced suffix
array [1, 2|, upon which they implemented several query algorithms. Moreover, Huse-
mann [64] applied bpr for text compression. He implemented Manzini and Ferragina’s
compression boosting scheme [51]| based on suffix arrays.

96

10 Experimental Results

In this chapter, we investigate the practical construction times and the space requirements
of our algorithm and compare it to the fastest previous suffix array construction algorithms.
Section 10.1 contains the settings of the experiments. In Section 10.2, we present the
results of the experiments and discuss them in Section 10.3.

10.1 Description of the experiments

10.1.1 Implementation of the algorithms

We compared our bpr implementation [127, version 2.0.0] to eight other practical imple-
mentations: deep shallow by Manzini and Ferragina [102], cache and copy by Seward [135],
gsufsort by Larsson and Sadakane [90|, difference-cover by Burkhardt and Kérkkéinen [31],
odd even by Kim et al. [78], and skew by Kéarkkainen and Sanders |71]. We retrieved the
implementations of deep—shallow, cache, copy, and gsufsort from Manzini’s homepage [100],
the code for difference-cover and skew via Karkkidinen’s homepage [69], and the implemen-
tation of odd even was kindly provided by Dong Kyue Kim. We further added the recent
msufsort implementation of Maniscalco (version 2.0.1), which we retrieved from his home-
page [97] (see also [98, 118, 120]). Maniscalco’s msufsort, however, only constructs the
inverse suffix array, although Puglisi et al. [120] stated that the suffix array is constructed
from the inverse suffix array in-place. Hence, we added a procedure that derives the suffix
array by a single scan of the inverse suffix array, but not in-place. The msufsort procedure
follows the depth-first bucket refinement scheme and uses a pull technique. The general
framework is quite similar to our bpr algorithm: Similar to our bucket pointer array,
msufsort uses an array that stores the lexicographical order of previously sorted suffixes
in the suffix sorting process. This array ultimately becomes the inverse suffix array (as
our bucket pointer array). Beyond that, msufsort manages to store further information in
the same array: For each non-singleton bucket, it stores a chain of all suffixes located in
the bucket. Hence, msufsort does not need the suffix array. It is thus more space efficient
than bpr. Furthermore, msufsort uses a tandem repeat detection for suffixes with equal
prefix. Once such a tandem repeat is detected, the suffixes can be directly sorted (see [118]
for a detailed explanation).

Table 10.1 shows the worst-case asymptotic time complexities of the investigated algo-
rithms.

97

10 Experimental Results

Table 10.1: Worst-case time complexities of the investigated suffix array construction al-
gorithms.

deep difference odd
bpr msufsort shallow cache copy gsufsort cover even skew

@) (10';—2") O(n*logn) O(n?logn) O(n?logn) O(n?logn) O(nlogn) O(nlogn) O(nloglogn) O(n)

10.1.2 Methods

The experiments were performed on four different computers: three computers with x86
architecture and one Sun UltraSPARC computer. We refer to the x86 computers by
Small Scale 86, Medium Scale 86, and Large Scale 86 regarding their main memory
size, and to the Sun UltraSPARC computer by UltraSPARC"

e Small Scale 286 — A 1.3 GHz Intel Pentium™ M (Klamath) processor, running a
GNU/Linux operating system. The memory hierarchy is composed of separate L1
instruction and data cache, each of size 32 Kbyte and 3 cycles latency, a 1 Mbyte L2
cache with 10 cycles latency, and 512 Mbytes of main memory. Each cache is 8-way
associative with 64 byte line size.

o Medium Scale 86 — A SunFire V20z with two 1.6 GHz AMD Opteron'™ 242 proces-
sors running the Solaris 10 operating system. The memory hierarchy is composed of
separate L1 instruction and data cache, each of size 64 Kbyte, a 1 Mbyte L2 cache,
and 2 Gbytes of main memory. The L1 caches are 2-way associative, and the L2
cache is 16-way associative.

e Large Scale 286 A Xen-DomU with three virtual CPUs (mapped onto 3 real
Opteron cores) running a GNU/Linux operating system. The real hardware is a
SunFire X4100 with two 2.6 GHz AMD Dual-Core Opteron™ 285 SE processors
running a GNU/Linux operating system. The memory hierarchy is composed of
separate L1 instruction and data cache, each of size 64 Kbyte and 3 cycles latency,
a 1 Mbyte L2 cache with 12 cycles latency, and 8 Gbytes of main memory. The
L1 caches are 2-way associative with 64 byte line size, and the L2 cache is 8-way
associative with 64 byte line size.

o UltraSPARC A SunFire V440 with four 1.3 GHz UltraSPARC IIli processors
running the Solaris 10 operating system. The memory hierarchy is composed of
separate L1 instruction and data cache, the instruction cache of size 32 Kbyte and
the data cache of size 64 Kbyte, a 1 Mbyte L2 cache, and 16 Gbytes of main memory.

All programs were compiled with the gee compiler, respectively g++ compiler, with opti-
misation options ‘~-0O3 -fomit-frame-pointer -funroll-loops’. For Small Scale 86 and Large
Scale £86 both running a GNU/Linux operating system, we used the same executable that
was generated with the gcc compiler version 3.3.6. For the Medium Scale £86 and for the
UltraSPARC, we used the gec compiler version 4.1.1.

98

10.1 Description of the experiments

10.1.3 Investigated sequence data

We encounter two main types of sequences that are indexed by full-text indices: DNA
sequences and other common real-world strings, like natural language texts or software
source code. In the analysis of genomes, for example, individual DNA sequences or,
alternatively, concatenations of similar DNA sequences are indexed to find repeats, unique
regions, and common subsequences (see, for example, [58, 87, 89]). Moreover, Joy and
Luck [68] observed that in programming courses, where the assessment is often carried
out by means of programming assignments, there is a temptation among some students
to copy and modify the work of others. Baker [13] and Mozgovoy et al. [110], for example,
use full-text indices to detect such plagiarism in program source codes as well as in natural
language texts.

Hence, our test data set consists of two major groups of sequences: DNA sequences and
common real-world strings. Beyond that, we investigated a third group of artificially gen-
erated sequences, mainly to examine degenerated strings with large LCPs. The maximum
LCP of a string is a good indicator for the recursion depth of bucket refinement algo-
rithms, and the average LCP further incorporates information of the sizes of the buckets
at different refinement levels: Many large ¢-buckets for a high refinement level ¢ imply a
high average LCP. The investigated data files are listed in Table 10.2 and are basically
ordered by average LCP. The columns show the name of the sequence, the average and
maximum values in the respective LCP array, the length of the sequence, its character set,
and a short description of the content. Due to the memory constraints of our Small Scale
286 test computer, several of the investigated algorithms could not construct suffix arrays
for text files that exceeded the 50 million character limit. Hence, we took the last 50 mil-
lion characters of those text files and added them to our collection of common real-world
strings. These truncated sequences are annotated with 50M. The complete test data set
is available through the bpr homepage [127, bpr-strings.tar.bz2|.

DNA sequences. For the DNA sequences, we selected genomic DNA from different
species: the whole genome of the bacteria Escherichia coli (E. coli), the fourth chro-
mosome of the flowering plant Arabidopsis thaliana (A. thaliana), the first chromosome
of the nematode Caenorhabditis elegans (C. elegans), and the human (H. sapiens) chro-
mosome 22. Moreover, we investigated the construction times for different concatenated
DNA sequences of certain families. For this we used six Streptococcus genomes, four
genomes of the Chlamydophila family, and three different E. coli genomes. We retrieved
the Escherichia coli sequence from the Canterbury Large Corpus [10, 17], the human chro-
mosome 22 from the corpus of test files provided by Manzini and Ferragina [102, 100], and
the other sequences from GenBank |20, 115].

Text. For the evaluation of common real-world strings, we used the King James bible
(bible) and the CIA world fact book (world), both from the Canterbury Large Corpus [10,
17], and the suite of test files provided by Manzini and Ferragina [102, 100]. The strings of
Manzini and Ferragina’s corpus are usually concatenations of text files or, alternatively, far

99

10 Experimental Results

Table 10.2: Description of the data set.

LCP String Alphabet

Data set average maximum length size Description
E. coli genome 17 2815 4638 690 4 Escherichia coli genome
A. thaliana chr. 4 58 30319 12061490 7 A. thaliana chromosome 4
H. sapiens chr. 22 1979 199999 34553758 5 H. sapiens chromosome 22
C. elegans chr. 1 3181 110283 14188020 5 C. elegans chromosome 1
6 Streptococci 131 8091 11635882 5 6 Streptococcus genomes
4 Chlamydophila 1555 23625 4856123 6 4 Chlamydophila genomes
3 E. coli 68061 1316097 14776363 5 3 E. coli genomes
bible 13 551 4047392 63 King James bible
world 23 559 2473400 94 CIA world fact book
sprot 89 7373 109617186 66 SwissProt database
rfc 93 3445 116421901 120 Texts from the RFC project
howto 267 70720 39422105 197 Linux Howto files
reuters 282 26597 114711151 93 Reuters news in XML
linux 478 136 035 116254720 256 Linux kernel source files
jdk 678 37334 69728899 113 JDK 1.3 doc files
etext 1108 286352 105277340 146 Project Gutenberg texts
gee 8603 856970 86630400 150 gee 3.0 source files
wie 42299 990053 104201579 256 HTML files of www.w3c.org
sprot 50M 91 2665 50000000 66 SwissProt database
rfc 50M 87 3445 50000000 110 Texts from the RFC project
reuters 50M 280 24449 50000000 91 Reuters news in XML
linuz 50M 766 136 035 50000000 256 linux kernel source files
jdk 50M 654 34557 50000000 110 JDK 1.3 doc files
etext99 50M 1845 286352 50000000 120 Project Gutenberg texts
gee 50M 14745 856970 50000000 121 gee 3.0 source files
w3c 50M 478 29752 50000000 255 HTML files of www.w3c.org
random 4 9 20000000 26 Bernoulli string
period 500 000 9506251 19500000 20000000 26 Repeated Bernoulli string
period 1000 9999001 19999000 20000000 26 Repeated Bernoulli string
period 20 9999981 19999980 20000000 17 Repeated Bernoulli string
Fibonacci 5029840 10772535 20000000 2 Fibonacci string

archives: the Swiss prot database version 34.0 in flat file format (sprot), HTML files from
the Request for Comments database (rfc), text files of the Linuz Howto (howto), Reuters
news in XML format (reuters), the C source code of the Linux kernel 2.4.5 (linuz), javadoc
pages consisting of HTML and Java files for JDK 1.3 (jdk), text files from the Project
Gutenberg (etext), source code of the GNU Compiler Collection version 3.0 (gcc), and
HTML files from the homepage of the World Wide Web consortium (w3c).

100

10.2 Results

Table 10.3: Suffix array construction times for different DNA sequences and generalised
DNA sequences by different algorithms on the Large Scale 86 computer, with ¢ = 7
for bpr. The programs were compiled with the gcec compiler version 3.3.6.

Construction time (s)

deep difference odd
DNA sequences bpr msufsort shallow cache copy qsufsort cover even skew
E. coli genome 1.00 1.57 1.14 2.08 1.73 1.51 2.47 4.07 8.58
A. thaliana chr. 4 3.00 4.57 3.51 6.99 5.99 4.63 7.87 12.17 25.26

H. sapiens chr. 22 9.88 14.36 11.76 24.64 20.35 16.31 27.49 39.95 80.91
C. elegans chr. 1 3.52 15.69 4.51 11.84 9.80 7.76 10.58 14.37 28.64

6 Streptococci 3.25 6.28 4.86 8.98 7.45 8.32 9.21 12.04 25.38
4 Chlamydophila 1.32 8.09 2.44 8.32 8.28 4.85 3.52 4.70 9.82
3 E. coli 4.01 782.43 9.79 234.04 675.04 24.24 13.55 16.54 34.28

Artificial strings. The artificial files were generated as described by Burkhardt and
Kérkkédinen [31]: a random string made out of Bernoulli-distributed characters and pe-
riodic strings composed of an initial random string that is repeated until a length of
20 million characters is reached. We used initial random strings of length 20, 1000 and
500 000 to generate the periodic strings. We also investigated a string consisting of the first
20 million characters of a Fibonacci string (see [25]). Fibonacci strings have the reputation
for being particularly bad instances for non-linear suffix tree construction algorithms (see,
for example, [54, 129, 122]) since they have many long repeats (see [65]).

10.2 Results

The complete running time results on the four different computers are shown in the ap-
pendix, Tables A.1-A.5. In this section, we particularly examine the results on the Large
Scale 86 computer. The suffix array construction times are given in Tables 10.3 10.5.
Table 10.3 contains the construction times for the DNA sequences. Our bpr algorithm is
the fastest suffix array construction algorithm for all investigated DNA sequences. The
running times of the second fastest algorithm, deep—shallow, are by a factor between 1.14
and 2.44 greater than the running times of bpr. The other investigated depth-first bucket
refinement algorithms, msufsort, cache, and copy, show greater but still reasonable running
times if the average LCP is relatively small. For the concatenated sequence of three E. coli
genomes with average LCP 68 061, however, their running times are significantly greater
than the running times of the other algorithms. The breadth-first bucket refinement algo-
rithm gsufsort is more stable regarding variations of the average LCP. Nevertheless, the
difference between the running time of bpr and gsufsort is again maximal for the con-
catenated sequence of the E. coli genomes (a factor of 6.04). The reduced string sorting
algorithms are slower than all bucket refinement algorithms if the average LCP is small,
but significantly faster than the depth-first bucket refinement algorithms msufsort, cache,

101

10 Experimental Results

Table 10.4: Suffix array construction times for various texts by different algorithms on the
Large Scale 86 computer, with ¢ = 3 for bpr. The programs were compiled with the
gcc compiler version 3.3.6.

Construction time (s)

deep difference odd
Text bpr msufsort shallow cache copy qsufsort cover even skew
bible 0.90 1.12 0.93 1.57 1.29 1.72 2.07 4.10 7.44
world 0.55 0.73 0.48 0.84 0.66 1.12 1.30 256 4.41
sprot 41.06 56.66 59.16 111.89 97.84 108.26 14542 200.61 335.47
rfe 40.93 56.23 55.15 100.25 84.06 115.24 125.82 204.20 350.76
howto 11.87 15.68 15.02 22.83 25.63 27.54 30.27 62.43 110.32
reuters 46.26 66.89 110.99 189.74 212.52 136.83 212.49 217.17 342.13
linuz 37.23 48.61 48.69 106.21 120.04 99.43 114.86 187.28 345.21
jdk 24.19 39.71 63.30 110.25 183.89 83.64 130.65 114.71 186.37
etext 41.74 51.36 60.28 101.44 221.22 110.94 106.60 217.79 397.12
gce 29.62 35.33 60.75 1148.78 7153.44 72.67 84.29 123.56 237.12
wic 38.31 55.32 94.65 124.41 3618.65 148.65 143.83 176.27 285.70
sprot 50M 15.59 23.31 23.16 41.74 39.67 41.33 55.20 79.80 129.96
rfe 50M 15.34 21.35 20.16 34.91 32.22 40.49 45.81 76.99 128.37
reuters 50M 17.20 25.64 40.21 66.69 81.86 50.26 76.55 83.44 129.90
linux 50M 15.83 19.06 18.18 29.59 4728 42.27 42.17 71.84 130.25
jdk 50M 15.46 24.65 35.54 59.02 112.07 49.34 75.48 77.00 129.07
etext 50M 17.15 21.47 25.23 41.05 119.60 43.88 41.27 88.00 141.30
gce 50M 17.77 18.88 49.39 1402.91 7756.83 39.83 47.36 60.55 118.93
w3c 50M 15.95 23.42 40.77 49.77 7531 46.39 66.37 76.41 121.65

and copy for the concatenated sequence of the E. coli genomes. The running times of bpr,
however, are as stable as the running times of the quasi-linear odd even algorithm: bpr is
continuously around 4 times faster than odd—even for every DNA sequence.

For the other real-world strings, the running times of the investigated algorithms are
shown in Table 10.4. Our bpr is the fastest suffix array construction algorithm for all
but one string: deep shallow is faster for the CIA world fact book (world). The depth-
first bucket refinement algorithms deep—shallow and msufsort show the next best running
times: deep shallow is often faster than msufsort for strings with small average LCP,
but slower for strings with large average LCP. The other depth-first bucket refinement
algorithms cache and copy are only competitive for strings with small average LCP. For
such strings, they are faster than the breadth-first bucket refinement algorithm g¢sufsort
and the reduced string sorting algorithms difference-cover, odd—even, and skew. For strings
with large average LCP, however, they are significantly slower than g¢sufsort and the
reduced string sorting algorithms. A strange result is that the running times of cache and
copy for the string gec are less than the running times for its shorter suffix gec 50M. For
the strings consisting of exactly 50 million characters, we observe that the running times
of bpr and msufsort as well as the running times of gsufsort, difference-cover, odd even,

102

10.2 Results

Table 10.5: Suffix array construction times for artificial strings by different algorithms on
the Large Scale ©86 computer, with ¢ = 3 for bpr. The programs were compiled with
the gec compiler version 3.3.6.

Construction time (s)

Artificial deep difference odd

strings bpr msufsort shallow cache copy gsufsort cover even skew
random 5.60 7.08 6.73 9.23 7.88 8.08 13.30 27.01 36.19
period 500000 6.95 224.85 562.60 43370.14 — 47.32 29.89 21.20 43.94
period 1000 7.98 15.21 651.68 20998.25 — 50.83 55.16 13.00 35.01
period 20 4.71 3.36 31807.89 — — 39.14 35.14 6.10 36.78
Fibonacci 15.75 232585.62 547.49 — 176 968.97 44.01 48.44 21.71 27.08

and skew are quite stable regarding varying average LCP, although the stated worst-case
time complexities of bpr and msufsort are considerably worse than those of gsufsort and
the reduced string sorting algorithms.

The construction times for the artificial strings are shown in Table 10.5. Wherever an
algorithm used more than 6 days of computation time, we stopped the computation. This
is indicated by a dash in the table. For the random string with small average LCP, the
bucket refinement algorithms are faster than the reduced string sorting algorithms. For
the periodic strings, however, the depth-first bucket refinement algorithms deep—shallow,
cache, and copy are significantly slower than the other algorithms. Here, bpr performs
very well, even compared to msufsort, which has a tandem repeat detection, and compared
to the algorithms gsufsort, difference-cover, odd even, and skew with good worst-case time
complexities. Our algorithm is by far the fastest algorithm for strings with period 1000 and
500000. For strings with period 20, msufsort with its repeat detection is slightly faster.
The repeat detection of msufsort, however, seems only to work for “simple” short repeats.
For the suffix array construction of the repetitive Fibonacci string, msufsort needs almost
3 days. Here, bpr is the fastest algorithm. It is even faster than the linear-time skew
algorithm and the quasi-linear odd even algorithm.

Puglisi et al. [120] presented an experimental study of different suffix array construc-
tion algorithms, including msufsort, deep—shallow, and our first version of bpr. In their
evaluation, msufsort is always faster than bpr, and deep-shallow is in most cases faster
than bpr. These results seem to contradict previous results that we have presented in [132]
and [133]. Thus, we performed experiments on computers of different scale and observed
ourselves that the relative running time of the first version of bpr compared to the running
time of other suffix array construction algorithms depend on the used computer with its
particular cache and even on the version of the gcc compiler. The improved bpr algorithm
that we investigate in this thesis is much faster than the first version, but the running
times compared to the other algorithms still depend on the used computer and on the
used compiler. Table 10.6 shows the running times of the investigated suffix array con-
struction algorithms for the string jdk 50M on the four different computers. The msufsort

103

10 Experimental Results

Table 10.6: Suffix array construction times for the string jdk 50M by different algorithms
on four different computers, with ¢ = 3 for bpr. The programs were compiled with
different gcc compiler versions.

Construction time (s)

deep difference odd
Computer bpr msufsort shallow cache copy qsufsort cover even skew

Small Scale £86 19.73 35.10 45.55 85.34 206.63 75.36 98.20 98.29 162.65
Medium Scale 86 33.49 28.55 56.02 117.31 146.06 69.42 82.92 82.37 147.82
Large Scale 286 15.46 24.65 35.54 59.02 112.07 49.34 75.48 77.00 129.07
UltraSPARC 36.84 — 85.31 14599 344.27 123.18 192.99 137.53 247.80

implementation aborts unexpectedly for every input on the UltraSPARC computer. This
is indicated by a dash in the table. All programs have the shortest running time on the
Large Scale 86 computer, but bpr, ds, and cache run faster on the Small Scale £86 com-
puter than on the Medium Scale £86 computer, while the other programs run faster on
the Medium Scale 86 computer than on the Small Scale 286 computer. Also, the relative
running times between the algorithms vary greatly: On the Small Scale 86 computer,
for example, the running time of msufsort is by a factor of 1.78 greater than the running
time of bpr, but by a factor of 0.85 smaller on the Medium Scale x86 computer.

In addition, we run experiments on the Large Scale 86 computer, where the algorithms
were compiled with the gcc compiler version 4.0.3, instead of version 3.3.6. The results
are shown in the appendix, Table A.4. Here, bpr is still the fastest algorithm for the
DNA sequences and among the two fastest algorithms for the other sequences, but bpr's
advantage decreases. The gcc compiler version 4.0.3, however, generates code that uses
64-bit pointers, and we were not able to turn that off. Unlike the other investigated
programs, which mainly use integer values for most of their data structures, the bucket
pointer array used by bpr is based on real C pointers. It thus requires twice as much space
as would be necessary for a 32-bit implementation. This certainly leads to more cache
misses. Hence, the running times of these compiled programs are not directly comparable.

In summary, one can say that bpr is always among the two fastest of the investigated
algorithms on every of the four investigated computers. In most cases, and specifically for
all DNA sequences, it is the fastest algorithm. Unlike the other depth-first bucket refine-
ment algorithms, it shows stable running times for all investigated sequences, regardless
of the average LCP. Even for the Fibonacci string, bpr performs well compared to the
algorithms gsufsort, difference-cover, and odd even with good worst-case time complexity,
whereas the construction times for msufsort, deep—shallow, cache, and copy escalate. The
running times of the different algorithms, however, also depend on the used computer and
on the used compiler. We should thus be careful with general statements regarding the
practical performance of the different algorithms.

104

10.2 Results

Table 10.7: Description of the genomic DNA sequences and the suffix array construction
times for these sequences by bpr, with ¢ = 7.

LCP String Alphabet bpr
Genomes average maximum length size construction time (s)
Human (H. Sapiens) 518611 29999999 3096521113 7 4978.11
Mouse (M. musculus) 37338 3049999 2482869215) 3968.57
Dog (C. lupus) 69 485 3000010 2531673953) 3856.99

10.2.1 Performance on very large-scale data sets

In a separate experiment, we took the construction times for the human [36], mouse [37]
and dog genome [35] (all downloaded from [11]) on a Sun Fire V1280 server running twelve
900 MHz UltraSparc-11I processors. Its memory hierarchy is composed of 32 Kbyte L1
instruction and 64 Kbyte L1 data cache, 8 Mbyte L2 cache, and 96 Gbyte main memory.
The genomes are concatenated DNA sequences of all their chromosomes where the human
genome consists of about 3.09 billion nucleotides, the mouse genome of about 2.48 bil-
lion, and the dog genome of about 2.53 billion, in total. The three genome sequences are
available through the bpr homepage [127, bpr-genomes.tar.bz2|. We compiled the imple-
mentations of suffix array construction algorithms with the gcc compiler version 4.1.1 and
further 64-bit options -m64 -mptr64’.

Bpr with ¢ = 7 needs about 1 h 23 min for the human genome, 1 h 6 min for the mouse
genome, and 1 h 4 min for the dog genome. The other algorithms abort unexpectedly.
It seems that their particular implementations are limited to 32 bit address space. Note
that, at the time we were performing the experiments, the server ran multiple concurrent
processes, such that the times may vary in different runs.

10.2.2 Space consumption

Besides the running times, we measured the space consumptions of the different suffix
array construction algorithms over all data files. We used memtime [19] to get the peak
virtual memory consumption traced by the linux operating system. Table 10.8 shows the
results in average number of bytes per character of the used input sequences. The given
virtual memory consumption of msufsort includes only the space for the construction of
the inverse suffix array, not the additional space that we used for deriving the suffix array
from its inverse.

With 5.04n to 6.04n bytes, the lightweight algorithms copy, deep shallow, msufsort,
difference-cover, and cache use slightly more space than the theoretical minimum of 5n
bytes, consisting of 4n bytes for the suffix array and n bytes for the input string. Qsufsort’s
8.03n and bpr’s 9.30n bytes are still under the limit of 10n bytes, while odd-even and skew
using 16.03n and 23.92n bytes, respectively, consume significantly more space.

105

10 Experimental Results

Table 10.8: Average virtual memory space consumption per input character for the different
suffix array construction algorithms.

Bytes per input character

deep difference odd
bpr msufsort shallow cache copy gsufsort cover even skew
9.30 5.29 5.06 6.04 5.04 8.03 5.93 16.03 23.92

10.2.3 Detailed runtime analysis

For a more detailed performance analysis of the suffix array construction algorithms, we
used the profiler and cache simulator valgrind [136, 114] to count the number of executed
instructions and to simulate the caching behaviour on the Large Scale 286 computer. The
programs were compiled with the gcc compiler version 3.3.6.

The number of executed instructions per input character of the different algorithms is
shown in Table 10.9, the L1 data references per input character in Table 10.10, the L1
misses or, alternatively, L2 references per input character in Table 10.11, and the number
of L2 misses per input character in Table 10.12. We stopped the computation whenever a
simulation used more than 24 hours. This is indicated by a dash in the tables. In addition,
Figures 10.1 and 10.2 exemplarily show bar charts for H. sapiens chromosome 22 and the
linuz source code. Note that, besides the instructions and cache references of the pure
suffix array construction algorithms, valgrind also counts those of the different 10 routines
for reading the input strings from the disk.

It is impressive that the instruction counts for bpr clearly outperform all other algo-
rithms for all strings. For real-world strings, the second best algorithm, msufsort, executes
on average more than twice as many instructions. For the Fibonacci string, msufsort exe-
cutes an enormous number of instructions, although it shows reasonable instruction counts
for the artificial strings with shorter periods. In contrast, the instruction counts of bpr are
stable with respect to strings of varying average LCP. Even for the Fibonacci string, the
average instruction count of bpr (345 instructions per input symbol) is comparable with
the linear-time algorithm skew (396 instructions per input symbol) and the quasi-linear
odd even algorithm (533 instructions per input symbol).

We additionally counted the executed instructions for the algorithms on the Large Scale
286 computer compiled with the gce compiler version 4.0.3, instead of version 3.3.6. The
results are shown in the appendix (Table A.6). Here, the instruction counts for bpr still
outperform all the other algorithms for all but one string, the string gec 50M for which
msufsort takes fewer instructions. The difference to msufsort, however, is not as large as
for the algorithms compiled with the gec compiler version 3.3.6.

The caching behaviour of bpr is also quite good. The number of L1 cache references is
correlated with the number of executed instructions, which can be seen in Figures 10.1
and 10.2. Thus, bpr takes the smallest number of L1 cache references for all strings. Its
inferior miss ratio, however, often leads to more cache misses. For all DNA sequences, bpr

106

L01

Table 10.9: Number of executed instructions on the Large Scale £86 computer (gcc compiler version 3.3.6).

Executed instructions per input character

deep difference odd
Sequence type Sequence bpr msufsort shallow cache copy gsufsort cover even, skew
DNA sequence E. coli genome 138 404 231 678 603 304 798 382 397
A. thaeliana chr. 4 149 480 236 879 865 334 856 383 406
H. sapiens chr. 22 152 414 247 849 749 337 987 391 409
C. elegans chr. 1 144 2879 302 1749 1727 405 1054 395 406
6 Streptococci 151 809 401 1161 926 428 953 386 401
4 Chlamydophila 156 4457 918 5710 5092 538 978 384 404
3 E. coli 169 150 398 1280 54382 169118 701 1029 386 408
Text bible 160 316 248 635 582 364 839 415 378
world 161 331 253 603 624 348 979 414 378
sprot 178 406 471 1589 1937 445 1329 440 400
rfe 171 382 420 1077 1252 470 1171 460 395
howto 171 377 347 744 1590 421 928 430 412
reuters 186 459 1077 3281 5599 487 1530 472 400
linuz 167 379 412 2055 3429 454 1144 447 409
jdk 185 488 1107 2889 10215 491 1680 475 397
etext 178 385 459 1087 7206 466 925 438 412
gec 281 386 1574 — — 459 1250 451 410
we 185 600 1839 2178 606 1557 466 405
sprot 50M 173 396 466 1369 1995 427 1298 433 395
rfe 50M 169 371 381 962 1399 446 1129 453 396
reuters 50M 180 447 969 2525 5101 470 1469 464 401
linuz 50M 167 376 403 942 3298 486 1109 439 409
jdk 50M 182 476 971 2341 9548 478 1617 468 398
etext 50M 174 381 449 947 9365 454 901 432 413
gee 50M 359 387 3457 468 1312 452 409
wdc 50M 184 452 1724 1766 5770 474 1583 465 399
Artificial random 153 267 263 521 464 250 667 332 291
period 500 000 211 18 600 100 750 — — 785 2070 335 395
period 1000 176 452 149789 794 2214 349 398
period 20 201 275 880 2467 418 384
Fibonacci 345 — 83378 — — 815 2469 533 386

SnsoY ¢ 01

80T

Table 10.10: Number of L1 cache references on the Large Scale £86 computer (gcc compiler version 3.3.6).

L1 data cache references per input character

deep difference odd
Sequence type Sequence bpr msufsort shallow cache copy gsufsort cover even skew
DNA sequence E. coli genome 81.80 200.17 91.27 306.28 257.24 138.75 405.41 243.11 250.53
A. thaeliana chr. 4 87.76 241.33 93.01 385.14 344.14 149.60 436.21 243.26 255.83
H. sapiens chr. 22 89.36 203.32 97.16 375.40 311.57 151.78 514.01 243.99 257.62
C. elegans chr. 1 85.08 1610.44 119.59 723.83 618.63 187.99 552.16 244.86 255.68
6 Streptococci 89.02 428.45 152.74 495.16 362.49 200.00 474.67 244.37 252.58
4 Chlamydophila 91.77 2499.99 351.48 2283.86 1719.18 261.70 476.53 242.92 254.49
3 E. coli 98.13 85601.40 495.72 21418.43 55169.62 348.70 505.13 244.21 257.19
Text bible 93.26 155.92 100.69 291.71 250.05 164.65 423.21 237.54 238.95
world 94.75 165.00 103.57 275.14 257.33 160.80 507.66 238.15 238.48
sprot 102.50 200.41 183.82 668.76 697.61 199.57 717.39 242.69 252.12
rfe 98.96 190.21 171.27 465.55 472.15 209.90 612.82 246.73 249.13
howto 99.51 187.84 136.47 338.20 583.15 190.20 470.43 241.63 259.80
reuters 106.35 224.90 459.09 1336.21 1900.02 219.46 840.07 248.85 251.75
linuz 97.62 188.98 161.70 853.01 1183.30 205.22 594.99 244.61 257.71
jdk 106.29 241.72 479.19 1179.01 3398.94 225.70 935.72 248.94 249.67
etert 102.60 190.29 181.35 478.35 2424.53 207.44 471.28 243.02 260.07
gec 151.13 191.54 611.68 — — 208.31 662.31 245.14 258.19
wde 106.21 305.88 814.64 899.71 287.50 846.47 247.78 254.55
sprot 50M 100.17 195.87 183.61 580.71 713.44 193.05 700.57 241.59 248.66
rfe 50M 97.94 184.69 153.55 419.28 517.28 200.49 590.30 245.54 249.53
reuters 50M 103.41 219.93 407.00 1037.04 1733.24 213.46 804.76 247.32 252.24
linuz 50M 98.26 189.20 157.92 413.92 1137.07 219.92 574.32 243.31 258.13
jdk 50M 104.77 236.34 411.98 962.88 3179.78 220.26 896.54 247.72 250.25
etext 50M 100.14 188.98 177.90 422.47 3125.29 203.95 458.69 241.74 260.51
gee 50M 187.43 192.45 1286.20 213.68 702.39 245.22 257.63
wdc 50M 106.33 224.87 846.42 735.18 1945.90 218.90 868.91 247.36 251.17
Artificial random 89.35 129.86 103.61 255.23 213.68 119.41 333.19 214.56 185.25
period 500 000 114.87 10251.72 38942.08 — — 371.74 1191.01 218.09 247.45
period 1000 100.02 224.44 52875.36 365.66 1275.53 221.70 248.02
period 20 115.32 129.62 393.94 1426.58 260.75 240.05
Fibonacci 185.17 — 32225.18 — — 387.25 1425.79 314.04 241.49

spmsey rejuouiLodxsy Of

60T

Table 10.11: Number of L1 cache misses (L2 cache references) on the Large Scale 86 computer (gce compiler version 3.3.6).

L1 cache misses per input character

deep difference odd
Sequence type Sequence bpr msufsort shallow cache copy qsufsort cover even skew
DNA sequence E. coli genome 3.10 5.22 4.54 7.03 5.41 6.59 12.84 15.32 31.54
A. thaliana chr. 4 4.78 5.31 4.99 7.72 5.96 7.82 15.12 15.59 32.38
H. sapiens chr. 22 4.49 5.25 5.72 8.81 6.89 8.21 17.19 15.39 31.78
C. elegans chr. 1 4.01 8.39 4.87 13.70 10.45 9.82 14.91 14.47 29.94
6 Streptococci 4.75 5.83 5.95 10.04 7.23 11.75 16.00 15.73 31.72
4 Chlamydophila 5.87 11.44 7.69 29.90 21.65 17.43 14.87 15.41 31.72
3 E. coli 6.63 218.99 11.23 336.98 835.38 23.02 17.24 15.90 32.50
Text bible 3.714 4.44 4.34 6.61 4.98 9.42 12.20 18.81 30.27
world 4.03 4.75 3.61 5.55 4.01 9.16 11.00 18.76 29.72
sprot 5.91 6.11 8.60 11.73 8.84 15.79 26.08 21.50 32.06
rfe 5.03 5.62 6.58 10.70 7.99 15.86 20.82 20.93 31.15
howto 4.77 5.30 5.87 8.26 10.09 12.74 15.83 21.27 34.01
reuters 6.24 7.60 16.22 18.18 16.21 19.22 35.01 22.35 31.40
linuz 5.66 5.08 6.14 11.53 12.55 14.33 18.23 20.39 32.38
jdk 5.93 7.89 16.69 18.84 25.77 19.22 34.20 21.36 30.18
etext 5.42 5.36 8.22 11.70 32.34 15.74 18.54 21.81 34.77
gce 11.37 5.26 19.18 — — 15.25 19.75 19.13 31.85
wdce 6.83 6.79 12.49 16.07 23.43 28.34 22.43 31.60
sprot 50M 5.53 6.03 7.92 11.48 8.16 14.60 23.87 21.11 31.42
rfc 50M 4.76 5.49 6.17 9.50 7.54 14.40 18.90 20.39 31.29
reuters 50M 5.92 7.34 14.01 17.46 14.41 17.88 32.67 21.72 31.46
linuz 50M 5.55 4.90 5.47 8.62 15.41 15.18 16.29 19.79 32.42
jdk 50M 5.55 7.50 13.82 16.28 24.17 18.22 31.31 20.83 30.36
etext 50M 5.06 5.18 7.65 10.78 43.51 14.76 17.10 21.37 34.78
gec 50M 15.87 5.16 28.81 15.46 19.47 17.95 30.84
wde 50M 5.99 6.71 10.74 13.77 16.55 17.51 29.60 22.17 30.74
Artificial random 3.79 4.51 5.30 6.87 5.81 6.81 14.02 19.72 24.33
period 500 000 5.61 63.94 604.75 — — 46.53 23.37 17.21 30.85
period 1000 9.12 12.64 720.25 51.35 62.05 13.36 26.19
period 20 7.44 4.01 56.17 34.54 5.19 24.40
Fibonacci 22.61 — 550.58 — — 47.32 40.78 10.89 21.37

SnsoY ¢ 01

0TI

Table 10.12: Number of L2 cache misses on the Large Scale 86 computer (gec compiler version 3.3.6).

L2 cache misses per input character

deep difference odd
Sequence type Sequence bpr msufsort shallow cache copy gsufsort cover even, skew
DNA sequence E. coli genome 2.10 3.76 2.45 4.00 2.63 4.88 5.75 11.63 27.58
A. thaeliana chr. 4 2.22 4.01 3.01 4.91 3.41 5.18 8.06 13.00 29.80
H. sapiens chr. 22 2.24 4.15 3.67 5.92 4.37 6.11 10.16 13.56 30.06
C. elegans chr. 1 2.28 5.69 3.04 8.02 4.89 7.95 8.36 12.14 27.46
6 Streptococci 2.69 4.49 3.83 6.94 4.42 9.19 8.89 13.18 29.32
4 Chlamydophila 3.44 8.27 4.62 20.72 11.94 14.98 7.26 11.69 27.35
3 E. coli 4.36 170.12 8.40 299.50 724.25 21.21 10.28 13.57 30.06
Text bible 2.08 2.92 1.81 3.11 1.88 5.67 5.03 13.59 26.78
world 2.00 2.71 1.16 2.15 1.15 5.89 3.60 12.15 24.04
sprot 3.08 4.05 4.36 7.09 4.86 10.46 14.84 17.60 30.18
rfe 3.01 3.81 4.06 6.30 4.71 10.74 12.57 17.15 29.70
howto 2.70 3.38 3.28 4.90 4.17 8.11 9.10 17.54 32.01
reuters 3.75 5.25 8.40 11.30 8.78 14.06 24.70 18.37 29.87
linuz 3.14 3.25 3.47 5.28 4.68 9.50 10.89 16.35 30.64
jdk 3.32 4.74 5.78 9.62 9.79 14.18 17.16 16.57 28.56
etert 3.10 3.77 5.32 7.84 16.19 10.58 11.80 18.95 33.29
gec 2.88 3.42 6.86 — — 10.48 11.28 15.05 30.19
wde 3.76 4.27 7.51 8.67 18.18 15.89 17.09 29.87
sprot 50M 2.79 3.85 3.59 5.94 4.05 9.66 12.28 16.82 29.37
rfe 50M 2.74 3.55 3.42 5.32 3.98 9.46 10.58 16.45 29.60
reuters 50M 3.30 4.97 6.82 9.07 7.13 12.85 20.47 17.52 29.74
linuz 50M 3.04 3.03 2.90 4.33 4.23 10.35 9.22 15.71 30.35
jdk 50M 3.09 4.33 4.95 7.97 8.04 13.30 14.67 16.03 28.63
etext 50M 2.79 3.63 4.71 6.70 17.14 9.47 10.43 18.41 33.11
gee 50M 2.84 3.31 5.45 10.70 10.72 13.64 28.95
wdc 50M 3.28 4.09 5.04 6.75 5.87 12.52 14.48 16.25 28.77
Artificial random 2.10 3.40 2.30 3.49 2.46 5.74 8.13 17.55 21.69
period 500 000 4.08 44.54 318.75 — — 44.76 17.10 14.81 28.42
period 1000 7.14 11.00 694.15 45.17 46.25 11.00 24.67
period 20 5.93 3.57 51.72 29.47 5.13 24.10
Fibonacci 16.25 — 544.01 — — 44.54 33.99 10.02 20.83

spmsey rejuouiLodxsy Of

10.2 Results

bpr] 152 ‘

msufsort 414

deep-shallow 247 |

cache 849 |

copy 749 |

gsufsort 337 |

difference-cover 987

odd-even 361 |
skew 409 |

0 100 200 300 400 500 600 700 800 900 1000
Instructions per input character

bpr

msufsort 198.07

deep-shallow

cache

copy
gsufsort

366.58
‘ | B L2 misses

L2 hits
OL1 hits

304.68

difference-cover
odd-even
skew

496.82 |

228.60 |

225.84 |

0 100 200 300 400 500
Data references per input character

bpr

msufsort

deep-shallow

cache

copy
qsufsort

difference-cover %ﬁ:ﬁﬁﬁ

odd-even
skew

B L2 misses
BEL2 hits
OL1 hits

0 5 10 15 20 25 30 35
Data references per input character (zoom)

Figure 10.1: Instruction counts and cache references for H. sapiens chr. 22, with ¢ = 7 for bpr.

111

10 Experimental Results

bor [167 ‘
meufsort | 379 |
deep-shallow | PED) |

cache | ‘ 2055

copy | ‘ 3429‘
qaufsort | 454 |

difference-cover | ‘ 1144

odd-even | a7 |

skew | 200 |

0 200 400 600 800 1000 1200 1400

Instructions per input character

bpr
msufsort

deep-shallow

cache 841.48 O L2 misses

1170.76 L2 hits
OL1 hits

copy

gsufsort

difference-cover

odd-even

skew

400 600 800 1000 1200
Data references per input character

bpr
msufsort
deep-shallow
cache O L2 misses
copy L2 hits
OL1 hits

gsufsort

difference-cover

odd-even

skew

0 5 10 15 20 25 30 35
Data references per input character (zoom)

Figure 10.2: Instruction counts and cache references for the linuz file, with ¢ = 3 for bpr.

112

10.3 Discussion of the experimental results

still has the fewest L1 and L2 cache misses, but for other real-world strings, msufsort often
has less L1 cache misses, and deep-shallow has sometimes less L2 cache misses. Although
the L1 cache miss ratio of bpr is often worse than msufsort’s, its L2 cache miss ratio is
usually better. The reason is probably the different granularity of the respective data
access patterns.

For degenerated strings, the caching behaviour of bpr is also quite good. It takes the
fewest cache misses for strings with periods of length 500000 and 1000. For the string
with a period of length 20 and for the Fibonacci string, however, other algorithms have
fewer cache misses, but bpr is still among the three algorithms with the fewest number of
cache misses.

10.3 Discussion of the experimental results

We first believed that the practical speed of our algorithm was mainly due to the combina-
tion of different techniques with good locality behaviour. However, the simulations showed
that, compared to the other suffix array construction algorithms, bpr mainly gains its fast
running time from the fewer executed instructions rather than from its good locality be-
haviour. With respect to the number of executed instructions, bpr is the algorithmically
best algorithm.

The few executed instructions are apparently due to the different strategies of the two
phases of the bpr algorithm. First of all, if the g-length substrings are uniformly dis-
tributed, phase 1 equally divides all suffixes into small buckets by just scanning the input
string twice. This, however, does not explain its speed for the periodic strings. Here, the
suffixes are just partitioned into a few large buckets. For such strings, our algorithm basi-
cally benefits from the use of relations among the suffixes in phase 2. By using the bucket
pointers as sort keys, the method incorporates information about the subdivided buckets
into the bucket refinement process as soon as this information becomes available. In the
bucket-refinement process, each bucket is refined recursively until it consists of singleton
sub-buckets. This technique of dividing suffixes from small to smaller buckets is similar
to Quicksort for original sorting, which is known to be fast in practice. The combina-
tion of these techniques and further heuristics in the refinement procedure (Section 9.3),
in particular the double push method (Section 9.3.3), results in the final low instruction
count. This stably low instruction count also supports Conjecture 9.2, which assumes a
subquadratic worst-case time bound of the bpr algorithm.

In our first assumption that the good locality behaviour was mainly responsible for the
speed of bpr, we were misled by some elements of the algorithm that have good locality
behaviour with respect to the data structure, but this is not always the case. The data
structure can be divided into four parts: the input string, the suffix array, the bucket
pointer array, and the bucket array storing the boundaries for all buckets. Phase 1, for
example, just scans the sequence twice. It has a good locality of memory access with
respect to the input string and the bucket pointer array, whereas the bucket array and the
suffix array are arbitrarily accessed. In contrast, phase 2 has a good locality of memory

113

10 Experimental Results

access with respect to the bucket array and the suffix array. The bucket array is accessed
from left to right and the suffix array is divided into increasingly smaller buckets. The
bucket pointer array is again arbitrarily accessed. Therefore, bpr’s cache miss ratio is
often worse than that of the other depth-first bucket refinement algorithms msufsort,
deep—shallow, cache, and copy. Nevertheless, thanks to its fewer total cache accesses and
its fewer executed instructions, bpr is generally faster than the other algorithms.

The instruction counts for the different real-world strings reveal further interesting facts.
The linear-time skew, the quasi-linear odd—even, and the O(nlogn) time gsufsort algo-
rithms show little variance of instruction counts, indicating little dependence on the se-
quence structure. In contrast, the instruction counts of msufsort, deep—shallow, cache,
and copy vary greatly. Deep—shallow, for example, executes less than 400 instructions per
input character for the howto and the rfc 50M files, but more than 1500 instructions per
input character for the w8c and the gcc files. For the gcc files and for the longer w3c
file, the very high average and maximum LCP values account for the high instruction
count, whereas for w8c 50M this is not so. The string has even lower LCP values than
the linuz 50M string, nevertheless, deep-shallow needs more than four times the number
of executed instructions. Therefore, other structural properties of the text also seem to
be important for the instruction count and thus for the performance of those algorithims.
Msufsort, for example, shows worse instruction counts for the DNA sequences than for the
other real-world strings, even if the average and maximum LCPs of the DNA sequences are
smaller. One reason could be the particular structure of the DNA sequences with highly
variable LCPs, or simply the relatively small DNA alphabet. Apart from that, msufsort
shows relatively low instruction counts for the strings with periods of length 1000 and 20,
which is presumably due to its repeat detection. The efficiency of their repeat detection,
however, decreases with increasing period length since msufsort detects a period of length
£ not until the bucket refinement process has reached the refinement level ¢£. Hence, the
instruction count is very high for the string with a period of length 500000 and for the
Fibonacci string.

Comparing the instruction counts for the real-world strings shows that deep—shallow
often executes many more instructions than, and msufsort often about as many as, gsuf-
sort, odd—even, or skew, even though the execution times of deep—shallow and msufsort are
always significantly faster. The higher number of L2 cache misses for gsufsort, odd—even,
and in particular skew reveal that the fragmented memory access slows down their suffix
array construction. Therefore, the practically fastest algorithm does not need to have the
lowest instruction count or the lowest number of cache misses, but as with bpr, it must
possess the optimal combination of both properties.

Bpr is generally the fastest among the investigated suffix array construction algorithms
on the four different computers, but the relative running times between the algorithms vary
greatly. Responsible for that are mainly the different compiler versions and the different
memory facilities of the computers with their multiple levels of cache and their main
memory. The used compiler is mainly responsible for the number of executed instructions.
Different compilers, respectively different compiler versions, may generate machine code
of different quality (e.g., “faster” or “slower”) depending on the computer architecture,

114

10.3 Discussion of the experimental results

the used processor, and the implementation of the algorithm. The particular memory
hierarchy is responsible for the number of cache misses at different cache levels and for the
cache latencies. The performance of a cache is mainly determined by three parameters:
cache size, line size, and degree of associativity. Note that the cache miss ratio is usually
negatively correlated with the cache latency: A larger cache usually leads to a lower cache
miss ratio, but a higher latency. Moreover, on modern computers, a “clever” compiler
can insert prefetch instructions to request the data before they are needed to avoid cache
misses (compiler prefetching), and there are several further techniques to improve the
caching behaviour (see, for example, [117, Chapter 5]). Therefore, we should be careful
with general statements regarding the practical performance of our algorithm, even though
it is the fastest suffix array construction algorithm on our four test computers.

However, the space requirements of bpr are higher than the space requirements for
msufsort, deep—shallow, cache, and copy. In practice, bpr takes between 9n and 10n bytes,
the suffix array and the bucket pointer table each consume 4n bytes, and the input string
n bytes. Additional space is used for the bucket pointers of the initial bucket sort and for
the recursion stack, even though the recursion depth decreases by a factor of q.

Therefore, if one is concerned about space, the msufsort algorithm or the deep—shallow
algorithm might be the best choice. If there are no major space limitations, we believe
that the bpr algorithm is an attractive alternative. Maniscalco and Puglisi [99], however,
recently presented a suffix array construction algorithm that seems to be faster than the
version of msufsort that we analysed in this thesis (see [120]), but that algorithm was
not available when we performed our experiments. Its practical running time should be
investigated further.

115

10 Experimental Results

116

11 Conclusion

We have discussed two major aspects of suffix arrays, namely their combinatorics and their
construction. We have been the first presenting an in-depth study on the combinatorics of
suffix arrays. Our work dealt with the classical combinatorial counting problem and with
the related algorithmical enumeration problem: We have presented constructive proofs to
count the strings sharing the same suffix array as well as the distinct suffix arrays for fixed
size alphabets. Beyond that, based on the construction schemes used in the proofs, we
developed efficient algorithms to enumerate those strings and those suffix arrays, respec-

tively. For alphabets of size o, ("ii;dil) strings of length n share the same suffix array

-1
(with d TR-descents) among which (Z:Zj) are composed of exactly o distinct characters.
For these strings, we have given a bijection into the set of non-decreasing sequences over
o —d integers and presented optimal-time enumeration algorithms. The number of distinct
suffix arrays is 5, (") = 7 (3)(=1)*(o — k)™. This has yielded lower bounds for
the compressibility of such suffix arrays. Moreover, summing up the number of strings for
each suffix array yields constructive proofs for Worpitzki’s identity and for the summation
rule of Eulerian numbers to generate the Stirling numbers of the second kind. One could
also say the number of suffix arrays and their strings form a particular instance of these

identities.

Unlike the combinatorics of suffix arrays, their efficient construction has been widely
studied before. We have introduced new classifications of suffix array construction algo-
rithms and have surveyed the previous algorithms. On the one hand, we have classified the
suffix array construction algorithms regarding their progress in the suffix sorting process:
either bucket refinement or reduced string sorting. On the other hand, we have classified
them regarding the use of dependencies among suffixes: either the push method or the
pull method. We have presented our new bucket-pointer refinement algorithm, proved
an O(n?/logn) worst-case time bound and an O(nlogn) expected-case time bound, and
enhanced the basic algorithm with some further techniques for fast practical suffix ar-
ray construction. Due to its simple structure, it is easy to implement. Finally, we have
extensively evaluated the practical performance of our algorithm and other suffix array
construction algorithms for real-world input sequences of different type and for degenerated
input sequences that were artificially generated. The results show that our bucket-pointer
refinement algorithm is usually the fastest among all investigated suffix array construction
algorithms, even for worst-case strings. Therefore, we believe that it can be widely used
in all kinds of suffix array applications.

117

11 Conclusion

Open problems

Some problems regarding the combinatorics and the construction of suffix arrays remain
unsolved or have been opened up by the thesis.

For the lower bound of the compressibility of the information content of suffix arrays in
the Kolmogorov sense, we have counted all possible suffix arrays for strings over a fixed
sized alphabet. The Kolmogorov complexity considers the information content of a se-
quence independent of any particular probability model, but if the underlying probability
model for a sequence is known, Shannon entropy is often used as a measure of the infor-
mation content. In terms of Shannon entropy, however, we are so far not able to give such
lower bounds for the compressibility of suffix arrays.

Moreover, the running time of our enumeration algorithm for the suffix arrays or, al-
ternatively, for the corresponding equivalence classes of strings sharing the same suffix
array could possibly be reduced further. The running time of our algorithm is O(logn)
multiplied by the number of enumerated suffix arrays. The O(logn) factor is used for the
update of the dynamic auxiliary data structure for the implementation of the Burrows-
Wheeler transform, or rather for the corresponding Last-to-First mapping. With a more
advanced dynamic data structure it could possibly be reduced to a constant factor. As
we mentioned, our right-to-left extension scheme for the enumeration can also be used for
the suffix array construction or for the construction of the Burrows-Wheeler transform.
Hence, with a dynamic data structure that would allow the constant time extension to the
left, we could solve two problems at once: the optimal-time enumeration of suffix arrays
and the optimal linear-time right-to-left online construction of suffix arrays. For suffix tree
construction, there is Weiner’s optimal linear-time algorithm that also adds the suffixes of
the input string from right to left. So maybe we can use some of Weiner’s techniques. A
straightforward approach could use his algorithm for the construction of suffix trees and
keep track of the sorted list of suffixes at the leaves of the suffix tree. Weiner’s algorithm,
however, requires quite a bit of working space, which we would like to save. Hence, we
would not like to simply port that algorithm to suffix arrays.

For the right-to-left online construction of suffix arrays or, alternatively, for the construc-
tion of the Burrows-Wheeler transform, a practical approach could abandon the optimal
time criterion and search for the proper insertion positions of the new suffix into the suffix
array in another way. Table 5.2 shows, for example, how the Burrows-Wheeler trans-
form is updated when the character A is added to the front of the string ABBAA. In the
Burrows-Wheeler transform, the character $ is simply replaced by the new character A.
The crucial and also most time-consuming part is to find the insertion position of the A
in the corresponding First sequence. We could simply search for the first A preceding the
newly inserted A in the Burrows-Wheeler transform and follow a link (corresponding to
the LF-mapping, described by the dashed line in the table) to the corresponding A in the
First sequence. The correct insertion position in the First sequence is then directly behind
this A, which is also the new position of the $ in the Burrows-Wheeler transform. This
method works for every front extension of the input string. The preceding character in
the Burrows-Wheeler transform that equals the new character at the front of the string

118

is, however, possibly far away. Moreover, such an algorithm would require traversals of
dynamic lists and links between these lists, which usually has a bad locality of memory
reference. Hence, we doubt that such an algorithm performs well in practice.

Also questions regarding our bucket-pointer refinement algorithm remain. We were so
far unable to prove a better worst-case time complexity than O(n?/logn) while at the
same time we are not aware of an example showing that this bound is tight. For certain

periodic strings, we verified an O <n% /+/1og n) time bound, but for general strings finding

a non-trivial upper bound seems to be hard since our algorithm quite arbitrarily uses the
dependence among suffixes. We have further proved an O(nlogn) expected time bound,
but suppose that it is linear.

Beyond the construction of the complete suffix array, we may be interested in sparse
suffix arrays that only contain a particular subset of suffixes. There are sparse suffix
trees [12, 74] with linear time construction algorithms |6, 66] using space proportional
to the number of suffixes in the sparse index. To the best of our knowledge, linear-time
construction algorithms using space proportional to the number of suffixes in the sparse
suffix array do not exist. A promising approach to solve that problem could be to modify
one of the reduced string sorting algorithms since these algorithms also use sparse suffix
arrays in intermediate steps.

119

11 Conclusion

120

A Appendix

Tables A.1-A.5 contain the running times of the different suffix array construction pro-
grams on the four different test computers: Table A.1 for the Small Scale 86 computer
(gce compiler version 3.3.6), Table A.2 for the Medium Scale 86 computer (gec compiler
version 4.1.1), Table A.3 for the Large Scale 86 computer where the programs were com-
piled with the gcc compiler version 3.3.6, Table A.4 for the Large Scale 286 computer
where the programs were compiled with the gcc compiler version 4.0.3, and Table A.5 for
the UltraSPARC computer (gcc compiler version 4.1.1). A dash in a table denotes that
the running time experiment of the respective algorithm could not be carried out success-
fully for the corresponding string: a dash for cache and copy denotes that we terminated
the experiment after 6 days of computation, a dash for odd—even or skew in Table A.2
denotes that the programs aborted with a memory allocation error on the Medium Scale
286 computer, and a dash for msufsort in Table A.5 denotes that the program aborts
unexpectedly on the UltraSPARC computer.

The number of executed instructions per input character of the different algorithms on
the Large Scale 86 computer compiled with the gcc compiler version 4.0.3 is shown in
Table A.6. We stopped the computation whenever a simulation used more than 24 hours,
which is indicated by a dash in the table. Note that Table 10.9 shown in Section 10.2.3
shows the respective results on the same computer, but the programs were compiled with
the gce compiler version 3.3.6.

121

A Appendix

6¢°8¢ g0°'¢e ¢0°0L 1v'es ¢1'T19059¢ — 78l vLLL6CCE TV'ET 190U0qtd
L€V ¢t 01°6¢ L6V L — — 1€°988¢9 ¥L'S 8¢'L 0¢ porad
9¢¢cs 8LT¢ 8L'8L G6°98 — 949'1894¢ 16°C8cl 0L°8T 08’11 0001 potzed
18°09 86°0¢ il €6°88 — 11°¢ve98 ¢S'0.L8 LT°6Le 96’8 00000¢ potrad
¢6'97 96°9¢ 9¢°0¢ 9L71 8L°0T GLET 9L°L LO°TIT g9 wmopuel [Py
L9691 €¢90T €496 €L°0L 66°€CT 8L°0L 19°19 6€°CE 9402 nog 2&m
€4°291 (4N 2] 0T'vL L0°T9 L6°99¢9T 80°CCIC ¢9'L8 11°8¢ 0T'¢¢ 0§ 296
L6°061 89°0TT 86799 86°C9 6¢°CIC 00°6¢ 19'1¢ 6V°C¢ 01'0¢C nog 17312
§9°291 6¢°86 0¢°86 9€°6.L €9°90¢ v€a8 GG Gy 0T°¢e 8L°61 0S 4pt
0L°€LT L1766 0€°99 7629 va'18 G0°G¥ 1v'€e 19°L8 6881 NG Tnur)
L¥0LT 74801 L2601 L9V L 0,821 076 10°0¢ 8¥°LE 68°0¢ nog s423mak
0€°691 VL 10T 8G'TL €L°6¢ ST'6¥ v.L0¢ 6C°4¢C 00°TE ¥6'81 0§ 244
L8691 9€ 70T 0€'¢c8 0819 9029 9819 ev'8¢ 86°CE 6L°61 OG 104ds
¢TIVl 0C78 L6°8V a4y VLTV 19°6¢ G8'81 86°€C SLVI oymoy
079 L6°¢ 6¢°C ¥6'1 ST'T 07’1 cLo €C'1 6L0 ppiom
L1l ar9 8¢ 1ee 9T'¢ 18°¢ LE°T 90°¢ gc'1 2199 XL,
L6°8% ¢lee ve1c L9°9¢ v0°LL6 89°LTE (4'h 4" 006901 429 1od "H €
G9VI 179 08¢ 86’8 G911 96°¢T €9°¢ 99°¢Cl ¢8I opydophiwnyy)
¢L9g ¥491 L1 9T'v1 69°6 IT°€l v6°¢ 8T°0T 407 199000342438 9
§8'0v 09°81 90°LT 9€°€T 1ea1 G8°LT 8¢ §¢'9¢ 88V T 1 sunbapp °H
69°CTT 16°¢S 8T9¥ 09°L¢ L6°8¢ L9°L€ €961 €0°7¢ LLTT ¢g 1o suandvs [
60°0¥ VeLT cEVL LT°6 L1676 LTl a0'¢ 98 807 ¥ o vupDY} Y
6071 019 €4V €0'e 18°¢ g9'¢ 69T 00°¢ ov'l owouad 1109 g eouenbes YN
mays U209 420,00 2408[nsh fidoo 21Yo0I mojoys 2408{nsUlL 4dq gouenbog ad £y eouenbog
ppo ouL2[J1p daap

(s) eury uorponIsuo))

"(9°¢ ¢ worsIoA Io[idurod 206) 1oyndurod 99T 9)pog JPULG 9T} UO SOUIT) UOTIONIISU0D AeIle XIPNG TV O[qe],

122

987¢ or've 1¢°cS 66°8L V¥ 112102 — 0L°8¢S ¥L°08L96¢ 00°SC 1990U09L]
89°¢CE ¥e'8 (daay 66709 — — €CC80TY TIT'V e8¢ 0¢g potswed
avav 9¢°¢l 0429 981 — 9¥'80¥6L L6°EL8 IT71 ¥ o1 000T potzad
9L°€¢ iad 6C°LE 69°8.L — 0T°0T¥¢c0c GG 8¥< 9T°0LT 01’6 000 00¢ potrad
§6°0¢ [(4U3 2891 V811 6'6 97°01 (4] L0°6 10'8 wopuel [RYIIY
L88YT ¢498 6C°18 vEv9 €C'86 8L°88 66°C6 60°9¢ I¥'2¢ nog 26m
0v'8v1 7969 €479 16°€S P 66801 09'7aLy 6¢°89 98'1¢ 79°6¢ 0§ 26
L7961 66°96 969G 06°99 LLT9T 648G 8T'v¢e 0L'8¢ 89'9C Nog 1332
8 LVT L6728 ¢6°C8 cv'69 90°971 T€LTT ¢0'9¢ gg'8¢ 6v°€¢ W0G 4pt
GETIT Gv'c8 vrve vaLs 9229 LGy Gc've 0¢°¢ce EREN K4 nog rnuy
€9°€91 ¢L'v6 ¥0°€6 00°€L 80°66 8V Ve SY°19 ¢0°0¢ cLve NG $423M34
TT°0LT L0798 0€°09 60°LS 01y L9°1¢ 10°L8 19°6¢ §V'1¢C NG ofs
¥7'0LT €768 08T GL'6S 008 vecL 89°'1¢ ¢1'8¢ ¢8'8C OG 104ds
— — 68781 ¢y 161 60°C90¢ 8C1EC 88'891 Ly'19 6'19 26m
- 07l 0€°TIT 8T°00T ¥C'98L6 76°661% €L°C8 Iv'1v 19°1v 26
— — 0€°TST 9¢°€91 §6°C6¢ 06081 1988 €1°99 L7119 #1932
— €8°6Cl 19°9¢1 ¢L 90T 9¢°0¢¢ ¥€°90¢ €676 L6°CY 67°€€ 4pL
- - L9°0GT 08¢l €0°6ST L1°8¢6 L2499 ¢0°9¢ z¢8'ce rnuy
— — 98°LLC TLP8I1 €0°09¢ 07" L0V 7691 GLEL ¢0'99 5434
GLVET VLTL L0°0¥ 61°6¢ 6C°€¢ 89°0¢ ¢8°0¢ G8'8T vL91 omoy
— — 6L°CLT 96741 67°60T 0c6v1 L6°6L 2699 99'8¢9 of4
— — ¥9°¢0¢ G6'7GT 16°0¢T 94661 Yrvs 6699 L6°8S 104ds
V67 G9°¢ 9L°T €41 €6°0 11 69°0 980 1L°0 prsom
6L°8 ey §6°C va'e 6L°T €C'C 96T 8€'T ST'T 2199 oL
9¢°6¢ 8€°LT 9891 81°9¢ €6°6CL ¢8°64. 96°¢1 ¢8'1V8 €8€'9 102 "H €
L0°TT 997 ey 86°¢ 9’8 [9¢e'¢ €C'6 79’1 opydophiwnyy)
8G'8¢C L0°€T LTI (4N LTS 0971 6L°G i) 61V 1220207d2.475 9
e€vee 90°¢1 e8¢l V01T 8¢¢Cl VLve 8L°G 7861 Ly T 1y suvbapa)
6T°€TT 1%y 19°L€ €6°LT 60°6¢ 68°€¢ ST°91 G8°0¢ 8V'ST g "Iy suddvs [
[4NUS 0C°€T 90°TT 60°L €8°L €L°01 887 009 ocy y I puD0Y; Y
6€°0T 0ev 6g'e 1ee €€'¢ 00°¢ 69T 10°¢ LT owoudd 1102 i oouenboes YNQ
mays U209 420,00 2.408fnsh fidoo 21oDI mojys 2408 nsul 4dq souenbog ad £y 9ouenboag
ppo aoua.a[J1ip daap

(s) euary woOIPONIISUO))

(1T'T'F uotsioa Ioridurod 206) 1enduiod 9@z 2)pag wnipapy 9Y) UO SOUIT) UOIIONIISU0D ARIIR XIPNG 7V 9[qR],

123

A Appendix

80°L¢ 1L°T¢ y8y 107y L6°896 9LT — 6V°L¥< ¢9'G8GcEC GL'ST 1990U0QLd

8L°9¢ 019 vree v1I'6¢ — — 68°L08TE 98¢ 1LY 0¢g poted

10°6€ 00°¢T 91494 €8°0G — G¢'8660¢ 89'1499 1¢°6T 86°L 000T potzed

(R4 0¢'1¢ 68°6¢ ce' Ly — vIoLEEYy 09°¢9¢ G8'7¢e 969 000 00¢ potrad

61°9¢ 10°L¢ 0€°€T 80'8 88°L €C'6 €L°9 80°L 09’9 wopuel [RYIIY

G9°1¢t 179 €799 66797 1€°6L LL6Y LLO0V aree 96'ST nog 26m

€6°8TT 6609 96" Ly €8°6¢ €8°9G.L. 16°¢0v1 66767 88°8T LLLT 0§ 296

0e TVl 00°88 LTV 88°CY 09°61T G0'Tv €296 Lyv'1e ST'LT nog 112

L0°6¢21 00°LL 8¥°GL ve6v L0°CIT ¢0°6¢ vaee G97¢ I'ST W0G 4pt

§c'0eT V81L L1CV LTy 8C'LV 65762 81°81 90°61 €8'G1 nog rnuy

06°6¢T ¥y°es G692 9¢°0¢ 98°18 69°99 Teov ¥9°6¢ 0T'LT NG $423M34

L6°8¢1 66°9. 18°G7 6V 0¥ (x4 16'7€ 91°0¢ Ge'1e vest 0G 244

96°6¢1 0864 029G ey L9°6¢ VLTV 91°€c 1€°€¢ 69'GT NOG 104ds

0L°68¢ LT9LT €8¢Vl 69871 §9'819¢ 17vel G976 (4R 18'8¢ R

¢l LET 9¢°€Ct 6278 L9°CL V¥ et 8L8VTI 6L°09 €€°6¢ 2962 26

¢rL6e 6L°L1C 09901 76011 ¢c'lce vy 101 8¢°09 9¢€'1¢ VLTV #1932

LE98T ILV1T G9°0¢T 79°€8 68°€8T GC0IT 0€°€9 1L°6€ 6TV 4pL

JRatin 8¢°L8T 98°V11 €7°66 ¥0°0CT 12901 69°8¥ 19°87 8T LE rnu

e€reve LT'LTe 6v°¢lc €8°9¢1T ¢§'Cle VL681 66°0TT 6899 9 9¥ 5434

¢e 0Tt €V'29 LT°0¢ v4'LT €9°4¢ €8°C¢ c0'ST 89°GT L8'TT oymoy

9L°06¢ 0¢70¢ ¢8°Gel 1A 9078 G¢ 00t G1°g¢ €¢°9¢ 8607 ofs

Lyaee 19°00¢ v avl 92801 ¥8°L6 68°T1T 9164 9994 90’1V 104ds

17y 9¢°¢ 06T 4! 99°0 780 87°0 €L0 Geo prsom

vl 0TV L0°¢C oLl 6C°1T L9°T €6°0 ¢l'l 060 2199 oL

8CTE ¥<91 Gael veve ¥0°6L9 v0¥vEe 6L°6 €V'¢8L 07 102 "H €

86 0LV c¢s'e @87 8C'8 ce'8 e 60°8 el opydophiwnyy)

8€°4¢C (4! 1¢°6 ce'8 GyL 86'8 98'v 8¢9 gc'e 1220207d2.475' 9

¥9'8¢ LETVI 8401 9L°L 086 V811 167 69°G1 ce'e T 1y sunbaga <)

16°08 G6°6¢ 6V°L¢C 1€91 G€°0¢ v97¢ 9L 11T 9e€71 886 T I suddvs [

9¢°6¢ LTet L8°L €97 66°G 669 1¢°€ LSV 00'¢ y I puD0Y; Y

84’8 L0¥ Ly'e JAS! €L 80°C V'L L9 00T owoudd 1102 i eouanbas yNQ
mays U209 420,00 2.408fnsh fidoo 21Y2DI mojys 1408fnsulL 4dq souenbog ad £y 9ouenboag

ppo aoua.a[J1p daap

(s) euary wOIPONIISUO))

(9°¢"¢ uorsIoa Joriduron 006) Teyndurod g9z 2)pog 2b4pT S WO SOUWIT) UOTIONIISUOD ARLIR XIJNG €'Y SR,

124

L6°CC 6891 ¥C9¢ [t 9C¢0ST E€ST 9978E LVE LG'08C 18°0€C 19T 1891 Surrys 10eUOqL]

067¢ 6e'g 66°6¢ 9T'ce — — L8'CT661 €6°C L8°€ 0¢g potswed

69°CE 96°01 vLEv v4'6¢ — 0¥°016¥7¢ ¢8°0c¥ 8601 10'8 000T potzed

9L°6¢ 09°LT 18°C¢ 0L°8¢ — LyeIeTS G6'90€ 6€°68 LG4 000 00¢ porrad

8L'8¢ c0'Te 09°01 6€°9 7’9 8€°L cLs vv'e 9V wopuel [RYIIY

L6°L6 18°19 G6°1¢ 09°6¢ GL9L 0e7v ¢eae 90°LT I€91 nog 26m

1266 ¥0°0¢ LT8¢ €6°6¢ ¢C'8L16 6176091 9¥° 0¥ 86°€C1 86°8T 0§ 26

€8°LTIT 0599 ¢9°4¢ 8C¥e €9°€cl 60'7¢ ¥9°'1¢ o' 91 08°LIT Nog 1332

8T°L6 ¢9°LS G8°1¢ 60°9¢ VLTI ¢8°¢6s 6¢°0¢ 8T°LT 86 VI W0G 4pt

0¢' 70T 8T°6¢ 11ve 11°ce VL9V v0°6¢ 9871 QL°8T 9871 nog rnuy

<701 16769 0209 (4NN €4VL 88°6¢ 69°€¢ vC61 88'LT NG $423M34

€101 80°T9 16°L€ €9°¢E 98°8¢ ¢0°6¢ 06791 ¢LGl 6C°ST NG ofs

94901 0079 9CTY 68°CE €8°9¢ 6C°LE 8L°61 8LLT 9491 NOG 104ds

81°8¢¢ 66071 8C'9T1 VL LOT 96°€€0¥ 64901 61°GL G1'8¢ (A 26m

8LV61 ¥E°L6 ¢9°69 €y°6¢ 89°0818 €4Crel 09°¢cs 16°G¢C 89°0¢ 26

0€°06¢ ¢L9ST 89°06 96798 09°9¢¢ 04706 (44 8268 0L TV #1932

0V IVl ¥€'98 €0°¢8 699G 6L°9LT €488 c0°6¥ G692 6¥'¢cc 4pL

86°GLC [daigt 6526 L6V L 0€9TT 1¢°66 €8°6¢ L€°9€ 80°'9¢ rnuy

16'7.¢ VP 9LT L8891 T7°GoT1 L9°961 L9°0LT 81°¢6 9L°0¢ 9L°a¥ 5434

8T°¢8 8¥'¢s ¥0°4¢ 9L'1¢ LT'VC 99°61 6v°CL I9°'TT €LTI oynoy

65°C8¢ 69°091 08701 67768 LLTL V18 6197 66TV c6'68 ofa

16°6LC L2291 00°6TT €648 00°88 0446 0y 14 9e°ey 88’1V 104ds

GLe a0'¢ 80T 06°0 90 7.0 &v°0 LS50 ¥<0 prsom

089 69°€ 81 €41 9IT'l 07’1 880 €6°0 880 2199 oL

¢59¢ LeCT ¥6°01 €C°61 L9°99G G8°GY¢C L1 §6°€9¢ 60°'G 102 "H €

68°L 8G'€ 00°¢ Ve 6L9 8€'6 00°¢ 967 R ! opydophiwnyy)

91°0¢ 96 L9°L €8¢ 0L¢ 84, GL¢ 6CY ve'e 1220207d2.475 9

e GO'TI 16°8 G6°G 888 7901 LLE 18°6 ag'e T 1y suvbapa)

GL°0L 0L°€¢ 0€°9¢ gl 0L°8T vcce 9L 11T (44! ¢6'0T g "Iy suddvs [

a0'Te 6L°6 9¢'L a0y 8€'¢G 129 1c'e v9°€ 60'¢ y I puD0Y; Y

ge's cLe LE°C W 191 86°T LT'T LET 60T owoudd 1102 i eouanbas yNQ
mays U209 420,00 2.408fnsh fidoo 21YoDI mojys 1408 nsul 4dq souenbog ad £y 9ouenboag

ppo aoua.a[J1ip daap

(s) o1y UOIPONIISUO))

(¢0"F uorstoa Ioriduron 006) Tendurod 9oz 2)pog 2b4pT S WO SOUWIT) UOTJONIISUOD ARLI® XIJNG F'Y S[(R],

125

A Appendix

L0°6L LLTY ¢6' 19T €07ST — — £€€°688¢ — G1'8¢ 1990U0QL]

9¢°L8 29'¢¢ L9871 v7'e8l — — 96°CCTL6T — €CVC 0¢g potzed

06°L8 657E 60°991 6L°8GT — C8LEISTT 8TCV6E — 90°¢cc 000T potzed

L6°L6 L0°Ly €6°88 9971 — GCI886TE VL 96LC — V8T 000 00¢ potrad

19°¢L GLcs 00°6¢ 97°0¢ G8°€T 8C'LT 9gr'ct — Y401 wopuel [RYIIY

LY'8¥¢C LE7LET 17881 16°GTIT 0T°91¢ LOCTI 10°671 — LL'8€ nog 26m

¢C'8Ve G0°LTT G091 97°66 0L°¢999¢ 0L'800¢ CETLT — (i 0§ 296

60°9L¢ 9L 671 09°¢cl 9806 9c ey 90°48 L6°8¢ — 6978 nog 112

08°L¥v¢ €4°LET 66°C61 8T°¢CT LTYVE 66°GV1 1€°68 — ¥8'9¢ W0G 4pt

§9°64C V6 1ET ¥0°0cT L9°86 00°L€T LLS9 6L TV — 68°C8 nog rnuy

11°€5¢ LEGVT (G144 90°8T1 8L70¢ LG7T91 ¢9°00T — ve'8¢ NG $423M34

467042 €V'8ECT TT°Gel 8T°06 VLTl I87L i — 8L°C¢ 0G 244

§6°04¢ 0covI 89°G4T 69°06 7406 786 6C°67 — L07¢ NOG 104ds

89°6E¢ ¢c00¢ 06°L0¥ €¢°0ce 89°61€0C 65°00¢ 0v°61¢€ — 9¢'C8 R

199y y<'1ce 66°75¢ €VCLT ¥L'€06€C 98°T8EY v€°961 — €9°CL 26

¢r'18¢ €¢'1ce §9°28¢ v6°G1¢ LTVVL 00°80¢ Ly9€T — 0444 #1932

8CCre 9€°L61 89°66¢ ¢E 08T ¢6°49¢S LGLVT e eVl — vavs 4pL

8¢°€09 IR 64°6€CE 1¢°€1e 6¢°0¢¢ €792 ¢E60T — 94°9. rnu

§G'98¢ veese 98819 ¢0°66¢ AR ST'TLY 19°LLC — Ve L6 5434

6€°¢CIC 8T°CIT 89°L8 €629 L1679 96V 0v-€ee — 1792 oymoy

8€°L8S LT°56€ G6°LVE 87"86¢ G6°7LT €0°¢0¢ 97l — 0T'zc8 ofs

Yy LGS €0°€ce 99°98¢ 69°G1¢ 49°80¢ 16°67¢ 06°¢cl — 0108 104ds

¢6°0T Srg Lyv'e 8L°C ¥l LT oT'T — LE°T prsom

€4'8T cE'6 119 Ly 0L°C 6L°€ 8C'C — vee 2199 oL

¢avL LTVE 8G°LE 89°8¥ ¥0°810€ 88841 Ve — 96'ST 102 "H €

96°€¢ €6'6 056 76°01 L8°CC 0T°6¢ 9¢€°L — 09'¢ opydophiwnyy)

61°LS €6°49¢C G8°4¢ 68°LT eral €6°'1¢ €601 — LT°L 1220207d2.476' 9

9¢'L9 LL0€ €0°¢ce 17°0¢ L6'G¢ ¢C9¢ €9°01 — c6'L T 1y sunbaga <)

G87LI G8'8. ¢9'C8 GL6¢ V.L6¢ 0v'1¢ vC6¢ — LE'6T T I suddvs [

96°64 66°9¢ a0've Va1l GLct 9291 0.8 — 09'9 y I puD0Y; Y

€6°'1¢ 19°6 Ev'L 107 €9°¢ 8V €8¢ — 98T owoudd 1102 i eouanbas yNQ
mays U209 420,00 2.408fnsh fidoo 21Y2DI mojys 1408fnsulL 4dq souenbog ad £y 9ouenboag

ppo aoua.a[J1p daap

(s) o1y wOIPONIISUO))

(1T uorstoa Iofidurod 206) 1eynduiod HY Y JSP41)) 9Y) UO SOUWIT) UOTIONIISU0D ARIIR XIJNG Gy 9[qR],

126

1847 v0¢ a0LT 869 — — 6765S — 16¢ 1200U0qtd
607 80¥ ¢691 €0 — — — L0¢ LLT 0g potd
0cy 19¢ 6¢ST 79 — — 6¢CS0T1 e8¢ 691 000T potzed
1ey 8ve (45141 199 — — ¢l8L9 1€08 861 000 00¢ potrad
¢le 1€ 167 9¢¢ 1ey (4474 1,8 L0¢ 44! wopuel [eIOgRIY
(0157 997 GeTT Vv veeL 8161 6791 L0¢€ 04T NG 26m
(4% 9% 946 V0¥ — — GLGT LLT 1ce 0§ 26
67¥ i 9.9 v6¢ 886TT ¢06 9¢¥ LLT 091 nog a3
8¢y GLy Va1t e 8¥¢cl 164¢ 626 61¢ L91 W0 4Pt
444 i 9¢8 1ey 1ety 076 69¢ 69¢ 44! nwog rnun
4574 cLy ¢s0t S0¥ €vr9 L6LT 1¢6 L0€ 991 NG s427m34
8¢V €9¥ LE8 G8¢ 0991 ¢L6 ¢9¢ ¥9¢ Get IOG 244
9¢¥ i 8€6 89¢ 1eve 8¥r1 Ly 6.2 691 0G poids
9E¥ 897 6¢TT 0s¢ — €66¢C 16GT €0v Ga1 2EM
vy 19% 816 L6¢ — — 6621 LLT €42 906
8¥¥ 167 769 0% G916 6501 8€Y 08¢ V91 Frata
LTy 087 G6TT €cy ¢lIeT 9¢6ce 0901 9¢e 691 4pL
vy (4% 168 G6¢ 08¢y 8¥¢c G8¢ 1.2 jig! anui]
1ev 6.7 €601 LTV 8L0L 089¢ 1€0T1 LT€ 691 §42]M3.4
Ly ovy 969 89¢ G881 €69 8¢¢ €LC 691 omoy
LTy 697 898 v0¥y 0Sv1T 00Tt v6¢ ¢Lt L61 ofs
(4574 0S¥y 196 18¢€ ¥6€e 8691 8V¥ 18¢ €91 pouds
80v 6¢v yalL 60€ 999 1LG 04¢ 8€¢C ¢Sl ppsom
607 6C¥ 1€9 91¢ 88¢ ¥8¢ 6V¢C 1€¢ 0sT 21949 XL,
(44 v6¢ 708 789 ¥vcoce GEET9 486 €€066 48 1ov "H €
LEY ¢6¢ Y94 ¢S TL79 €199 9L G98¢ 44! opydophiwinyy)
€ey v6¢ €64 18€ 6€0T G1ct 65€ €46 vl 1920003d2.43G 9
66V a0y €8L ¢9¢ 1012 GE61 ¥8¢ 8T61 9¢1 T 1y sunbaga)
vy 66¢ GeL 16¢ 981 (443 554 86¢ vl T "Iy suddvs [
ovy ¢6¢ 79 88¢ §66 GL8 1ve €ee 0v1 y I DUyl Y
0€y 68¢ 66¢ 99¢ L19 0v9 9¢€¢ 16¢ 911 owoudd 1102 i eouenboes YNQ
mays U909 490,00 1.408fnsh fidoo 21Ya0I mojoys 1408 nsus 4dq souenbog ad £y 9ouenboag
ppo 20ua.a[f1p daap

1jorretd jndur 10d SUOIIONIISUT PIJNIAXT]

(¢°0"F uorstoa Joriduion 006) Teynduiod g9x 2)pog 2b4nT) UO SUOTIONIISUT PIJNIOXH Q'Y O[(R],

127

A Appendix

128

Bibliography

1]

2]

3]

4]

1]

[6]

7]

18]

[9]

Mohamed I. Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53-86, March 2004.

Mohamed I. Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Handbook on Com-
putational Molecular Biology (Chapman & All/Crc Computer and Information Sci-
ence Series), chapter Enhanced Suffix Arrays and Applications, pages (7-1)—(7-27).
Chapman & Hall/CRC Press, December 2005.

Rudolf Ahlswede, Bernhard Balkenhol, Christian Deppe, and Martin Frohlich. A
fast suffix-sorting algorithm. In General Theory of Information Transfer and Com-

binatorics (GTIT-C), volume 4123 of Lecture Notes in Computer Science, pages
719-734. Springer Verlag, 2006.

Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Factor oracle: a new
structure for pattern matching. In Proceedings of the 26th Conference on Current
Trends in Theory and Practice of Informatics on Theory and Practice of Informatics
(SOFSEM 1999), volume 1725 of Lecture Notes in Computer Science, pages 295-310.
Springer Verlag, November 1999.

Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common
ancestors: a survey and a new distributed algorithm. In Proceedings of the 1jth
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 2002),
pages 258-264. ACM Press, August 2002.

Arne Andersson, N. Jesper Larsson, and Kurt Swanson. Suffix trees on words.
Algorithmica, 23(3):246-260, March 1999.

Antonitio, Patrick J. Ryan, William F. Smyth, Andrew Turpin, and Xiaoyang Yu.
New suffix array algorithms — linear but not fast? In Proceedings of the 15th
Australasian Workshop on Combinatorial Algorithms (AWOCA 2004), pages 148
156, July 2004.

Alberto Apostolico. Combinatorial Algorithms on Words, chapter The myriad
virtues of subword trees, pages 85-96. Springer Verlag New York, 1985.

Alberto Apostolico and Wojciech Szpankowski. Self-alignments in words and their
applications. Journal of Algorithms, 13(3):446-467, September 1992.

129

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

130

Ross Arnold and Timothy C. Bell. A corpus for the evaluation of lossless compression
algorithms. In Proceedings of the Data Compression Conference (DCC 1997), pages
201-210. IEEE Computer Society, March 1997.

Genome Bioinformatics Group at the University of California, Santa Cruz, USA.
UCSC genome browser. http://hgdownload.cse.ucsc.edu/downloads.html. Last
visited: April 1, 2007.

Ricardo A. Baeza-Yates and Gaston H. Gonnet. Efficient text searching of regular
expressions. In Proceedings of the 16th International Colloguium on Automata, Lan-
guages and Programming (ICALP 1989), volume 372 of Lecture Notes in Computer
Science, pages 46-62. Springer Verlag, July 1989.

Brenda S. Baker. Parameterized duplication in strings: Algorithms and an appli-
cation to software maintenance. SIAM Journal on Computing, 26(5):1343-1362,
October 1997.

Hideo Bannai, Shunsuke Inenaga, Ayumi Shinohara, and Masayuki Takeda. Inferring
strings from graphs and arrays. In Proceedings of the 28th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2003), volume 2747 of
Lecture Notes in Computer Science, pages 208-217. Springer Verlag, August 2003.

Dror Baron and Yoram Bresler. Anti-sequential suffix sorting for bwt-based data
compression. IEEE Transactions on Computers, 54(4):385-397, April 2005.

Michael Beckstette, Dirk Strothmann, Robert Homann, Robert Giegerich, and Ste-
fan Kurtz. PoSSuMsearch: Fast and sensitive matching of position specific scoring
matrices using enhanced suffix arrays. In Proceedings of the German Conference on
Bioinformatics (GCB 2004), Lecture Notes in Informatics, pages 53-64. Gesellschaft
fiir Informatik, October 2004.

Tim Bell, Matt Powell, Joffre Horlor, and Ross Arnold. The canterbury large corpus.
http://corpus.canterbury.ac.nz/resources/large.tar.gz. Last visited: June
18, 2007.

Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Pro-
ceedings of the 4th Latin American Symposium on Theoretical Informatics (LATIN

2000), volume 1776 of Lecture Notes in Computer Science, pages 88-94. Springer
Verlag, April 2000.

Johan Bengtsson. memtime. http://freshmeat.net/projects/memtime. Last vis-
ited: June 18, 2007.

Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and
David L. Wheeler. Genbank. Nucleic Acids Research, 31(1):23-27, 2003.

Jon Bentley. Programming pearls. ACM Press, 1986.

Bibliography

[22]

23]

[24]

[25]

[26]

[27]

28]

29]

[30]

[31]

[32]

[33]

[34]

Jon L. Bentley and M. Douglas Mcllroy. Engineering a sort function. Software:
Practice and Ezperience, 23(11):1249-1265, November 1993.

Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching
strings. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA 1997), pages 360-369. Society for Industrial and Applied Mathe-
matics, January 1997.

Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM
Journal of Computing, 22(2):221-242, April 1993.

Jean Berstel. The Book of L., chapter Fibonacci words—a survey, pages 11-26.
Springer Verlag, 1986.

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and
Robert Endre Tarjan. Time bounds for selection. Journal of Computer and Systems
Sciences, 7(4):448-461, August 1973.

Anselm Blumer, Janet A. Blumer, David Haussler, Ross M. McConnell, and Andrzej
Ehrenfeucht. Complete inverted files for efficient text retrieval and analysis. Journal
of the ACM, 34(3):578-595, July 1987.

Miklos Bona. Combinatorics of Permutations, volume 29 of Discrete Mathematics
and Its Applications. McGraw-Hill, June 2004.

Miklos Bona. Introduction to Enumerative Combinatorics. Walter Rudin Student
Series in Advanced Mathematics. McGraw-Hill, September 2005.

Stefan Burkhardt, Andreas Crauser, Paolo Ferragina, Hans-Peter Lenhof, Eric Ri-
vals, and Martin Vingron. g-gram based database searching using a suffix array
(QUASAR). In Proceedings of the 3rd Annual International Conference on Research
in Computational Molecular Biology (RECOMB 1999), pages 77-83. ACM Press,
April 1999.

Stefan Burkhardt and Juha Kérkkiinen. Fast lightweight suffix array construction
and checking. In Proceedings of the 1/th Annual Symposium on Combinatorial Pat-
tern Matching (CPM 2003), volume 2676 of Lecture Notes in Computer Science,
pages 55—69. Springer Verlag, June 2003.

Michael Burrows and David J. Wheeler. A block-sorting lossless data compression
algorithm. Technical Report — Research Report 124, Digital System Research Center,
May 1994.

William I. Chang and Eugene L. Lawler. Sublinear approximate string matching
and biological applications. Algorithmica, 12(4-5):327-344, October 1994.

Charalambos A. Charalambides. Enumerative Combinatorics, volume 19 of Discrete
Mathematics and Its Applications. Chapman & Hall / CRC Press, 2002.

131

Bibliography

[35] Dog Genome Sequencing Consortium. Genome sequence, comparative analysis and
haplotype structure of the domestic dog. Nature, 438(7069):803-819, December
2005.

[36] International Human Genome Sequencing Consortium. Finishing the euchromatic
sequence of the human genome. Nature, 431(7011):931-945, October 2004.

[37] Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis
of the mouse genome. Nature, 420(6915):520-562, December 2002.

[38] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein. Intro-
duction to Algorithms. MIT Press, second edition, 2001.

[39] Andreas Crauser and Paolo Ferragina. A theoretical and experimental study on the
construction of suffix arrays in external memory. Algorithmica, 32(1):1-35, January
2002.

[40] Maxime Crochemore, Jacques Désarménien, and Dominique Perrin. A note on the
Burrows-Wheeler transformation. Theoretical Computer Science, 332(1-3):567-572,
February 2005.

[41] Erik D. Demaine and Alejandro Lopez-Ortiz. A linear lower bound on index size for
text retrieval. Journal of Algorithms, 48(1):2-15, August 2003.

[42] Roman Dementiev, Juha Kérkkdinen, Jens Mehnert, and Peter Sanders. Better
external memory suffix array construction. In Proceedings of the 7th Workshop on
Algorithm Engineering and Ezperiments and the 2nd Workshop on Analytic Algo-
rithmics and Combinatorics (ALENEX/ANALCO 2005), pages 86-97. Society for
Industrial and Applied Mathematics, January 2005.

[43] Dorit Dor and Uri Zwick. Selecting the median. In Proceedings of the 6th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 1995), pages 28-37. Society
for Industrial and Applied Mathematics, January 1995.

[44]| Jean-Pierre Duval and Arnaud Lefebvre. Words over an ordered alphabet and suffix
permutations. RAIRO - Theoretical Informatics and Applications, 36(3):249-259,
July—September 2002.

[45] Martin Farach. Optimal suffix tree construction with large alphabets. In Proceedings
of the 38th Annual Symposium on the Foundations of Computer Science (FOCS
1997), pages 137-143. IEEE Computer Society, October 1997.

[46] Martin Farach and S. Muthukrishnan. Optimal logarithmic time randomized suffix
tree construction. In Proceedings of the 23rd International Colloquium on Automata,
Languages and Programming (ICALP 1996), volume 1099 of Lecture Notes in Com-
puter Science, pages 550-561. Springer Verlag, July 1996.

132

Bibliography

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[57]

[58]

Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-
complexity of suffix tree construction. Journal of the ACM, 47(6):987-1011, Novem-
ber 2000.

Paolo Ferragina and Roberto Grossi. The String B-tree: A new data structure
for string search in external memory and its applications. Journal of the ACM,
46(2):236-280, March 1999.

Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with appli-
cations. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS 2000), pages 390-398. IEEE Computer Society, November 2000.

Paolo Ferragina and Giovanni Manzini. An experimental study of a compressed
index. Information Sciences, 135(1-2):13-28, June 2001.

Paolo Ferragina and Giovanni Manzini. Compression boosting in optimal linear
time using the burrows-wheeler transform. In Proceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2004), pages 655-663. Society for
Industrial and Applied Mathematics, January 2004.

Wolfgang Gerlach. Dynamic FM-index for a collection of texts with applications to
space-efficient construction of the compressed suffix array. Diplomarbeit, Technische
Fakultit, Universitit Bielefeld, Germany, February 2007.

Robert Giegerich and Stefan Kurtz. From Ukkonen to McCreigth and Weiner: A
unifying view of linear-time suffix tree constructions. Algorithmica, 19(3):331-353,
November 1997.

Robert Giegerich, Stefan Kurtz, and Jens Stoye. Efficient implementation of lazy
suffix trees. Software: Practice and Ezperience, 33(11):1035-1049, September 2003.

Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Timsuff Snider. New indices for
text: Pat trees and pat arrays. In W. B. Frakes and Ricardo A. Baeza-Yates, editors,
Information retrieval: data structures and algorithms, pages 66-82. Prentice-Hall,
1992.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley, second edition, 1994.

Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing (STOC 2000), pages 397-406.
ACM Press, May 2000.

Dan Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, 1997.

133

Bibliography

[59]
[60]

[61]

[62]

|63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

134

Charles A. R. Hoare. Quicksort. The Computer Journal, 5(1):10-16, 1962.

Michael Hohl, Stefan Kurtz, and Enno Ohlebusch. Efficient multiple genome align-
ment. In Proceedings of the 10th International Conference on Intelligent Systems for
Molecular Biology (ISMB 2002), Bioinformatics, volume 18 (Supplement 1), pages
S312-5320, August 2002.

Christophe Hohlweg and Christophe Reutenauer. Lyndon words, permutations and
trees. Theoretical Computer Science, 307(1):173-178, September 2003.

Patrick Holthaus. String algorithms on enhanced suffix arrays. Bachelor thesis,
Technische Fakultédt, Universitdt Bielefeld, Germany, August 2006.

Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a time-and-space
barrier in constructing full-text indices. In Proceedings of the 44th Symposium on
Foundations of Computer Science (FOCS 2003), pages 251-260. IEEE Computer
Society, October 2003.

Peter Husemann. Kompressionsverstirkung fiir Textdaten unter Benutzung der
Burrows-Wheeler-Transformation (in german). Diplomarbeit, Technische Fakultit,
Universitdt Bielefeld, Germany, May 2006.

Costas S. Iliopoulos, Dennis Moore, and William F. Smyth. A characterization of
the squares in a Fibonacci string. Theoretical Computer Science, 172(1-2):281-291,
February 1997.

Shunsuke Inenaga and Masayuki Takeda. On-line linear-time construction of word
suffix trees. In Proceedings of the 17th Annual Symposium on Combinatorial Pattern
Matching (CPM 2006), volume 4009 of Lecture Notes in Computer Science, pages
60-71. Springer Verlag, July 2006.

Hideo Itoh and Hozumi Tanaka. An efficient method for in memory construction of
suffix arrays. In Proceedings of the 6th International Conference on String Process-
ing and Information Retrieval and the 5th International Workshop on Groupware
(SPIRE/CRIWG 1999), pages 81-88. IEEE Computer Society Press, September
1999.

Mike Joy and Michael Luck. Plagiarism in programming assignments. IEEE Trans-
actions on Education, 42(2):129-133, May 1999.

Juha Kérkkdinen. Home page. http://www.cs.helsinki.fi/u/tpkarkka/. Last
visited: January 9, 2007.

Juha Kérkkéinen. Suffix cactus: A cross between suffix tree and suffix array. In
Proceedings of the 6th Annual Symposium on Combinatorial Pattern Matching (CPM
1995), volume 937 of Lecture Notes in Computer Science, pages 191-204. Springer
Verlag, July 1995.

Bibliography

[71] Juha Kérkkéinen and Peter Sanders. Simple linear work suffix array construction.
In Proceedings of the 30th International Colloquium on Automata, Languages and
Programming (ICALP 2003), volume 2719 of Lecture Notes in Computer Science,
pages 943-955. Springer Verlag, June 2003.

[72] Juha Kérkkidinen and Peter Sanders. Source code for the skew algorithm.
http://www.mpi-inf .mpg.de/"sanders/programs/suffix, 2003. Last visited:
January 9, 2007.

[73] Juha Kéarkkéinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array
construction. Journal of the ACM, 53(6):918-936, November 2006.

[74] Juha Kérkkédinen and Esko Ukkonen. Sparse suffix trees. In Proceeding of the
2nd Annual International Conference on Computing and Combinatorics (COCOON
1996), volume 1090 of Lecture Notes in Computer Science, pages 219-230. Springer
Verlag, June 1996.

[75] Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg. Rapid identification
of repeated patterns in strings, trees and arrays. In Proceedings of the jth ACM
Symposium on Theory of Computing (STOC 1972), pages 125-136. ACM Press,
May 1972.

[76] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Proceedings
of the 12th Annual Symposium on Combinatorial Pattern Matching (CPM 2003),
volume 2089 of Lecture Notes in Computer Science, pages 181-192. Springer Verlag,
July 2001.

[77] Carsten Kemena. Algorithms on enhanced suffix arrays and their application in
bioinformatics. Bachelor thesis, Technische Fakultdt, Universitdt Bielefeld, Ger-
many, August 2006.

[78] Dong K. Kim, Junha Jo, and Heejin Park. A fast algorithm for constructing suffix
arrays for fixed-size alphabets. In Proceedings of the 3rd International Workshop on
Ezperimental and Efficient Algorithms (WEA 2004), volume 3059 of Lecture Notes
in Computer Science, pages 301-314. Springer Verlag, May 2004.

[79] Dong K. Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construc-
tion of suffix arrays. In Proceedings of the 14th Annual Symposium on Combinatorial
Pattern Matching (CPM 2003), volume 2676 of Lecture Notes in Computer Science,
pages 186-199. Springer Verlag, June 2003.

[80] Dong K. Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Constructing suffix
arrays in linear time. Journal of Discrete Algorithms, 3(2-4):126-142, June 2005.

135

Bibliography

[81] Krzysztof C. Kiwiel. Partitioning schemes for quicksort and quickse-
lect. Computing Research Repository (CoRR), cs.DS/0312054, December 2003.
http://arxiv.org/abs/cs.DS/0312054.

[82] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching,
volume 3. Addison—Wesley, second edition, 1998.

[83] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching
in strings. SIAM Journal on Computing, 6(2):323-350, June 1977.

[84] Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays.
In Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching
(CPM 2003), volume 2676 of Lecture Notes in Computer Science, pages 200-210.
Springer Verlag, June 2003.

[85] Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays.
Journal of Discrete Algorithms, 3(2-4):143-156, June 2005.

[86] Fabian Kulla and Peter Sanders. Scalable parallel suffix array construction. In
Proceedings of the 13th European User’s Group Meeting: Recent Advances in Parallel
Virtual Machine and Message Passing Interface (PVM/MPI 2006), volume 4192 of
Lecture Notes in Computer Science, pages 22—29. Springer Verlag, September 2006.

[87] Stefan Kurtz. The vmatch homepage. http://www.vmatch.de. Last visited: June
18, 2007.

[88] Stefan Kurtz. Reducing the space requirements of suffix trees. Software: Practice
and Experience, 29(13):1149-1171, November 1999.

[89] Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher, Jens
Stoye, and Robert Giegerich. REPuter: the manifold applications of repeat analysis
on a genomic scale. Nucleic Acids Research, 29(22):4633-4642, November 2001.

[90] N. Jesper Larsson and Kunihiko Sadakane. Faster suffix sorting. Technical
Report LU-CS-TR:99-214, LUNDFD6/(NFCS-3140)/1-20/(1999), Department of
Computer Science, Lund University, May 1999.

[91] Sunglim Lee and Kunsoo Park. Efficient implementations of suffix array construction
algorithms. In Proceedings of the 15th Australasian Workshop on Combinatorial
Algorithms (AWOCA 2004), pages 64-72, July 2004.

[92] Ross A. Lippert, Clark M. Mobarry, and Brian P. Walenz. A space-efficient construc-
tion of the burrows-wheeler transform for genomic data. Journal of Computational
Biology, 12(7):943-951, September 2005.

[93] V. Mikinen and G. Navarro. Dynamic entropy-compressed sequences and full-text
indexes. In 17th Annual Symposium on Combinatorial Pattern Matching (CPM

136

Bibliography

2006), number 4009 in Lecture Notes in Computer Science, pages 306—317. Springer
Verlag, July 2006.

[94] Veli Mékinen. Compact suffix array — a space-efficient full-text index. Fundamenta
Informaticae, 56(1-2):191-210, January 2003.

[95] Ketil Malde, Eivind Coward, and Inge Jonassen. Fast sequence clustering using a
suffix array algorithm. Bioinformatics, 19(10):1221-1226, July 2003.

[96] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string
searches. SIAM Journal on Computing, 22(5):935-948, October 1993.

[97] Michael A. Maniscalco. http://www.michael-maniscalco.com/msufsort.htm.
Last visited: January 9, 2007.

[98] Michael A. Maniscalco and Simon J. Puglisi. An efficient, versatile approach to
suffix sorting. ACM Journal of Experimental Algorithms, to appear.

[99] Michael A. Maniscalco and Simon J. Puglisi. Faster lightweight suffix array construc-
tion. In Proceeding of the 17th Australasian Workshop on Combinatorial Algorithms
(AWOCA 2006), pages 16-29, July 2006.

[100] Giovanni Manzini. A lightweight suffix array and bwt construction algorithm.
http://www.mfn.unipmn.it/ manzini/lightweight/. Last visited: January 9,
2007.

[101] Giovanni Manzini. Two space saving tricks for linear time LCP array computation. In
Proceedings of the 9th Scandinavian Workshop on Algorithm Theory (SWAT 2004),
volume 3111 of Lecture Notes in Computer Science, pages 372—-383. Springer Verlag,
July 2004.

[102] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix array con-
struction algorithm. Algorithmica, 40(1):33-50, June 2004.

[103] George E. Martin. Counting: The Art of Enumerative Combinatorics. Undergrad-
uate Texts in Mathematics. Springer Verlag, 2001.

[104] Edward M. McCreight. A space-economical suffix tree construction algorithm. Jour-
nal of the ACM, 23(2):262-272, April 1976.

[105] M. Douglas Mcllroy. http://cm.bell-labs.com/cm/cs/who/doug/ssort.c, 1997.
Last visited: June 18, 2007.

[106] Peter M. Mcllroy, Keith Bostic, and M. Douglas Mcllroy. Engineering radix sort.
Computing Systems, 6(1):5-27, 1993.

[107] Peter Bro Miltersen. Lower bounds on the size of selection and rank indexes. In Pro-
ceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2005), pages 11-12. Society for Industrial and Applied Mathematics, January 2005.

137

Bibliography

[108] Krisztian Monostori, Arkady Zaslavsky, and Heinz Schmidt. Suffix vector: space-
and time-efficient alternative to suffix trees. In Proceedings of the 25th Australasian
Conference on Computer Science (ACSC 2002), pages 157-165. Australian Com-
puter Society, January 2002.

[109] Dennis Moore, William F. Smyth, and Dianne Miller. Counting distinct strings.
Algorithmica, 23(1):1-13, April 1999.

[110] Maxim Mozgovoy, Kimmo Fredriksson, Daniel R. White, Mike Joy, and Erkki Su-
tinen. Fast plagiarism detection system. In Proceedings of the 12th International
Conference on String Processing and Information Retrieval (SPIRE 2005), volume

3772 of Lecture Notes in Computer Science, pages 267-270. Springer Verlag, Novem-
ber 2005.

[111] Joong Chae Na. Linear-time construction of compressed suffix arrays using o(n log
n)-bit working space for large alphabets. In Proceedings of the 16th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2005), volume 3537 of Lecture
Notes in Computer Science, pages 57—67. Springer Verlag, June 2005.

[112] Gonzalo Navarro, Joao Paulo Kitajima, Berthier A. Ribeiro-Neto, and Nivio Ziviani.
Distributed generation of suffix arrays. In Proceedings of the 8th Annual Symposium
on Combinatorial Pattern Matching (CPM 1997), pages 102-115. Springer Verlag,
June 1997.

[113] Gonzalo Navarro and Veli Mékinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1), April 2007.

[114] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision frame-
work. Electronic Notes in Theoretical Computer Science, 89(2), July 2003.

[115] National Center of Biotechnology Information (NCBI). Genbank genomes.
ftp://ftp.ncbi.nih.gov/genbank/genomes/. Last visited: January 9, 2007.

[116] Daniel Paarmann. Oligo Designer — Berechnung von Oligonukleotiden (in german).
Diplomarbeit, Technische Fakultit, Universitéit Bielefeld, Germany, 2005.

[117] David A. Patterson and John L. Hennessy. Computer architecture: a quantitative
approach. Morgan Kaufmann Publishers Inc., second edition, 1996.

[118] Simon J. Puglisi. Exposition and analysis of a suffix sorting algorithm. Technical Re-
port CAS-05-02-WS, Department of Computing and Software, McMaster University
Hamilton, Ontario, Canada, May 2005.

[119] Simon J. Puglisi, William F. Smyth, and Andrew Turpin. The performance of linear
time suffix sorting algorithms. In Proceedings of the Data Compression Conference
(DCC 2005), pages 358-367. IEEE Computer Society, March 2005.

138

Bibliography

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Simon J. Puglisi, William F. Smyth, and Andrew Turpin. A taxonomy of suffix array
construction algorithms. ACM Computing Surveys, to appear, 39(2), June 2007.

Sven Rahmann. Rapid large-scale oligonucleotide selection for microarrays. In Pro-
ceedings of the 1st IEEE Computer Society Bioinformatics Conference (CSB 2002),
pages 54-63. IEEE Press, August 2002.

Wojciech Rytter. The structure of subword graphs and suffix trees of Fibonacci
words. Theoretical Computer Science, 363(2):211-223, October 2006.

Kunihiko Sadakane. Compressed text databases with efficient query algorithms
based on the compressed suffix array. In Proceedings of the 11th International Sympo-
sium on Algorithms and Computation (ISAAC 2000), volume 1969 of Lecture Notes
i Computer Science, pages 410-421. Springer Verlag, December 2000.

Kunihiko Sadakane. Succinct representations of lcp information and improvements
in the compressed suffix arrays. In Proceedings of the 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2002), pages 225-232. Society for Industrial
and Applied Mathematics, January 2002.

Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory of Com-
puting Systems, in press, 2007.

Arnold Schonhage, Mike Paterson, and Nicholas Pippenger. Finding the median.
Journal of Computer and Systems Sciences, 13(2):184-199, October 1976.

Klaus-Bernd Schiirmann. Bpr. http://bibiserv.techfak.uni-bielefeld.de/bpr.
Last visited: June 18, 2007.

Klaus-Bernd Schiirmann and Jens Stoye. Counting suffix arrays and strings. Theo-
retical Computer Science, to appear.

Klaus-Bernd Schiirmann and Jens Stoye. Suffix tree construction and storage with
limited main memory. Technical Report 2003-06, Technische Fakultit, Universitat
Bielefeld, Germany, August 2003.

Klaus-Bernd Schiirmann and Jens Stoye. Counting suffix arrays and strings. Tech-
nical Report 2005-04, Technische Fakultdt, Universitit Bielefeld, Germany, August
2005.

Klaus-Bernd Schiirmann and Jens Stoye. Counting suffix arrays and strings. In Pro-
ceedings of the 12th International Conference on String Processing and Information
Retrieval (SPIRE 2005), volume 3772 of Lecture Notes in Computer Science, pages
55—66. Springer Verlag, November 2005.

Klaus-Bernd Schiirmann and Jens Stoye. An incomplex algorithm for fast suffix
array construction. In Proceedings of the Tth Workshop on Algorithm Engineering

139

Bibliography

133

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

140

and Ezrperiments and the 2nd Workshop on Analytic Algorithmics and Combina-
torics (ALENEX/ANALCO 2005), pages 77-85. Society for Industrial and Applied
Mathematics, January 2005.

Klaus-Bernd Schiirmann and Jens Stoye. An incomplex algorithm for fast suffix
array construction. Software: Practice and Ezperience, 37(3):309-329, March 2007.

Julian Seward. The bzip2 homepage. http://www.bzip.org. Last visited: June 18,
2007.

Julian Seward. On the performance of BWT sorting algorithms. In Proceedings
of the Data Compression Conference (DCC 2000), pages 173-182. IEEE Computer
Society, March 2000.

Julian Seward, Nicholas Nethercote, Jeremy Fitzhardinge, and other people. Val-
grind. http://www.valgrind.org. Last visited: June 18, 2007.

Richard C. Singleton. ACM Algorithm 347: an efficient algorithm for sorting with
minimal storage. Communications of the ACM, 12(3):185-187, March 1969.

Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University
Press, April 1997.

Wojciech Szpankowski. Asymptotic properties of data compression and suffix trees.
IEEE Transactions on Information Theory, 39(5):1647-1659, September 1993.

Sven Twardziok and Patrick Schwientek. Largescale oligo nucleotide design for mi-
croarrays (in german). Bachelor thesis, Technische Fakultit, Universitéit Bielefeld,
Germany, September 2006.

Esko Ukkonen. On-line construction of suffix-trees. Technical Report A-1993-1,
Department of Computer Science, University of Helsinki, Finland, 1993.

Esko Ukkonen. On-line construction of suffix-trees. Algorithmica, 14(3):249-260,
September 1995.

Peter Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, pages 1-11. IEEE Computer
Society, October 1973.

Mikio Yamamoto and Kenneth W. Church. Using suffix arrays to compute term
frequency and document frequency for all substrings in a corpus. Computational
Linguistics, 27(1):1-30, March 2001.

