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AbstratThe su�x array of a string is a permutation of all starting positions of the string's su�xesin lexiographial order. In this thesis, we investigate mathematial and algorithmialaspets of su�x arrays.The �rst part mainly deals with ombinatorial properties of su�x arrays and theirenumeration. For a �xed alphabet size and string length, we divide the set of all strings intoequivalene lasses of strings that share the same su�x array. For eah suh equivalenelass, we ount the number of strings ontained in it and enumerate those strings. Wealso give exat formulas for omputing the number of equivalene lasses and e�ientalgorithms for enumerating them. Alternatively, we ount the number of su�x arrays andenumerate them. Our methods yield lower bounds for the ompressibility of su�x arraysand build the foundation for the e�ient generation of appropriate test data sets for su�x-array-based algorithms. We also show that summing up the elements of all equivalenelasses forms a partiular instane for some summation identities of Eulerian numbers.The seond part of the thesis deals with su�x array onstrution. We �rst present a newlassi�ation of su�x array onstrution algorithms and provide an in-depth review of thelassi�ed algorithms. We lassify the algorithms regarding two di�erent ategories: theprogress in the su�x sorting proess and the usage of dependenies among su�xes. Afterthe survey of the previous algorithms, we present our new pratial algorithm for su�xarray onstrution that onsists of two easy-to-implement omponents. It �rst sorts thesu�xes with respet to a �xed length pre�x; then it re�nes eah buket of su�xes sharingthe same pre�x using the order of already sorted su�xes. Other su�x array onstrutionalgorithms follow more omplex strategies. We ahieve a very fast onstrution for ommonstrings as well as for worst-ase strings by enhaning our algorithm with further tehniques;this is shown by an in-depth experimental study that ompares our algorithm to otherfast su�x array onstrution algorithms.
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1 IntrodutionThe most ommon type of information is a written text as we �nd it in books, newspapers,and in other printed media. We treat suh a text as a sequene of symbols and all itstring, sequene, word, or text. Suh strings play a fundamental role in many softwareappliations: Word proessing systems provide advaned failities for the modi�ation oftexts, e-mail tools are used to send text messages and other data, and Internet browsersallow to retrieve and to read texts from the Internet, among many other appliations.There are other sequenes that are used in the bakground of software appliations. Thedata that are interhanged via the Internet, for example, are �rst translated into a sequeneof binary digits (bits). Then the real transmission is arried out by a sequene of digitalsignals that orresponds to the binary sequene. In moleular biology, we enounter DNA,RNA, or amino aid sequenes (peptides), and there are many other types of sequenes.In sequene analysis, we are interested in the development of e�ient data strutures andalgorithms to proess all types of sequenes. A fundamental problem in sequene analysisis pattern mathing, whih deals with the following question: Does a query pattern ourexatly or approximately in a given sequene, and if so, where in the sequene does itour?Full-text indies are data strutures used to proess di�erent kinds of sequenes for suhappliations. In ontrast to other text indies, suh as inverted �les [27℄, full-text indiesallow the e�ient aess to every substring, or subword, of a given input string. The su�xtree is arguably the best known full-text index, whih an be omputed and stored in O(n)time and spae for an input string t of length n. It was introdued by Weiner [143℄ in 1973,who presented a linear-time onstrution algorithm. Further linear-time algorithms weregiven by MCreight [104℄ in 1976, Ukkonen [141, 142℄ in 1993, and Farah [45℄ in 1997.MCreight's algorithm is onsidered to be simpler and more spae e�ient than Weiner'salgorithm, Ukkonen's algorithm onstruts su�x trees online, and Farah's algorithm runsin linear time even for alphabets of arbitrary size. For an in-depth study of the onnetionsbetween the former three algorithms, we refer to a study of Giegerih and Kurtz [53℄.There are many appliations of su�x trees. The lassial one is the exat patternmathing: For a query string of length m, we use a su�x tree of another database string todeide in time O(m) if the query appears as a substring in the indexed string. But the realvirtue of su�x trees omes from their use in solutions of more omplex string problems [8℄(for example, repeat �nding); Gus�eld presents more than twenty in his book about stringproessing algorithms [58℄. Unfortunately, those onstrution and query algorithms do notexpliitly onsider the loality of memory referene, whih is very important on urrentomputer arhitetures with a memory hierarhy of multi-level ahe and main memory.Hene, the pratial run time of those algorithms, whih is often asymptotially optimal,1



1 Introdutionsu�ers from many ahe misses. These problems have been approahed by representingthe su�x tree data struture in di�erent ways [88, 54, 129℄ for partiular appliations. Ingeneral, it remains an open problem.Further drawbaks of su�x trees are their large spae requirements, whih exeed thespae requirements of the input string by an order of magnitude. Until the early 1990s,the most spae-e�ient implementation of MCreight's algorithm required 28n bytes fora string of length n in the worst ase (for 4-byte integer words). Manber and Myers [96,fourth olumn in Table 1 on page 946℄ state that their own implementation requires be-tween 14.2n and 27.8n bytes in pratie. Even today, the most spae-e�ient implemen-tation of MCreight's algorithm by Kurtz [88℄ still uses between 8n and 14n bytes intotal. These large spae requirements of su�x trees are inompatible with the inreasingamount of aessible sequene data that needs to be indexed. Typial data mainly omefrom the Internet and from several genome sequening projets, whih produe long DNAsequenes. In the 1990s, two tehnology projets stressed the requirement of string indiesfor huge amounts of sequene data: Google and the Human Genome Projet. Google at-tempts to index the human readable information available through the Internet, and theHuman Genome Projet provides the genomi sequene data for the human speies.As a result, spae-e�ient alternatives to su�x trees have been developed: In the early1990s, Manber and Myers [96℄ and Gonnet et al. [55℄ introdued the su�x array (Gonnet etal. under the name PAT array), whih is the most popular alternative to su�x trees. Otherspae-e�ient full-text indies are the su�x atus of Kärkkäinen [70℄, the fator oraleof Allauzen et al. [4℄, and the su�x vetor of Monostori et al. [108℄ (ordered historially).Unlike su�x arrays, however, these developments have not found their way into the main-stream of researh on full-text indies. This is presumably so beause the su�x arraywith its spae requirements of 5n bytes (inluding the input string) is more spae e�ientthan those indies. Furthermore, its simple one-dimensional struture is easy to handle insoftware implementations.1.1 Su�x arraysIn their seminal artile [96℄, Manber and Myers gave the �rst algorithm to diretly on-strut su�x arrays in O(n log n) time. In addition, they enhaned the su�x array withan auxiliary array, the LCP array, that stores the length of the longest ommon pre�x ofadjaent su�xes in the su�x array. Based on the su�x array and the orresponding LCParray, they present an algorithm for the exat pattern mathing problem, whih deides in
O(m+log n) time whether a query string of length m is a substring of the indexed string.1.1.1 Su�x array onstrutionThe further interest in su�x arrays was then initially attrated by the lose relationto the Burrows�Wheeler transform [32℄ (presented in 1994), whih is often used as thebasis for text ompression algorithms. This interest an be explained by the fat thatomputing the Burrows�Wheeler transform by blok-sorting the input string is equivalent2



1.1 Su�x arraysto onstruting a su�x array. Therefore, most of the researh on su�x arrays regard theironstrution. But although Farah et al. [47℄ orrelated su�x sorting and linear-time su�xtree onstrution in 2000, up until 2003 all known algorithms reahing this bound took adetour over su�x tree onstrution and afterwards derived the su�x array from the su�xtree (see [58, Setion 7.14.1℄), instead of diretly onstruting su�x arrays. In 2003, theproblem of diret linear-time onstrution of su�x arrays was solved independently byKärkkäinen and Sanders [71, 73℄, Kim et al. [79, 80℄, and Ko and Aluru [84, 85℄. Shortlyafter, Hon et al. [63℄ gave a linear-time algorithm that needs O(n) bits of working spae.Apart from these more theoretial results, there has also been muh progress in pratialsu�x array onstrution. Larsson and Sadakane [90℄ presented a fast algorithm, alledqsufsort, running in O(n log n) worst-ase time using 8n bytes. Kim et al. [78℄ introdueda divide-and-onquer algorithm based on [80℄ with O(n log log n) worst-ase time om-plexity, but with faster pratial running times than the previously mentioned linear-timealgorithms.Other viable algorithms mainly onsider spae requirements. They are alled lightweightalgorithms due to their small spae requirements. Itoh and Tanaka [67℄, Seward [135℄, andManzini and Ferragina [102℄ proposed algorithms using only 5n bytes and little additionalauxiliary spae. In theory, their worst-ase time omplexity is Ω(n2). However, they arevery fast in pratie if the average LCP is small. The most reent lightweight algorithm,developed by Burkhardt and Kärkkäinen [31℄ (see also [73℄), is alled di�erene-overalgorithm. Its worst-ase running time is O(n log n), and it uses sublinear extra spae.For ommon real-life data, though, the algorithm is on average slower than Manzini andFerragina's [102℄ algorithm. These are the major developments in the �eld of in-memorysu�x array onstrution algorithm. Other approahes are presented by Lee and Park [91℄,Baron and Bresler [15℄, Manisalo and Puglisi [98, 99℄, and Ahlswede et al. [3℄.Besides the in-memory su�x array onstrution algorithms, there are several others thataddress spei� sub-branhes of pratial su�x array onstrution, namely distributed al-gorithms and external memory algorithms: Distributed or parallel su�x array onstrutionalgorithms were studied by Navarro et al. [112℄ and Kulla and Sanders [86℄, among oth-ers. External memory su�x array onstrution algorithms were proposed, for example,by Crauser and Ferragina [39℄ and Dementiev et al. [42℄.We observe that the previous in-memory su�x array onstrution algorithms eitherperform well for ommon strings with short LCPs or for degenerated strings with largeLCPs. Based on our experiene with biologial sequene data, we believe that furtherproperties are required. There are many appliations where very long sequenes withmainly small LCPs, interrupted oasionally by very large LCPs, are investigated. Ingenome omparison, for example, onatenations of similar sequenes are indexed to �ndommon subsequenes, repeats, and unique regions. Thus, to ompare genomes of loselyrelated speies, one has to build su�x arrays for strings with highly variable LCPs. Webelieve that the harateristis as observed in this ontext an also be found in otherappliation areas. These fats stress the importane of e�ient ubiquitous su�x arrayonstrution algorithms. 3



1 Introdution1.1.2 Using su�x arraysBeyond the development of su�x array onstrution algorithms, there has been progresson algorithmial appliations of su�x arrays. In 2001, Kasai et al. [76℄ presented analgorithm that onstruts the LCP array from the su�x array in linear time, and theyshow how every bottom-up traversal of a su�x tree an be simulated on those two arrays.Manzini [101℄ later presented more spae-e�ient algorithms for the onstrution of theLCP array from the su�x array. The LCP information, however, only allows the simulatedtraversal of su�x trees from hild nodes to parent nodes. Abouelhoda et al. [1, 2℄ enhanedthe su�x array with additional auxiliary arrays that further allow the traversal from parentnodes to hild nodes. Based on their enhaned su�x array, they established the onept oflp-interval trees. These oneptual trees, whih do not need to be onstruted in pratie,are equivalent to su�x trees. Furthermore, the enhaned su�x array ontains informationallowing su�x link traversal. Chang and Lawler [33℄, for example, use su�x links foromputing mathing statistis. Hene, basially every algorithm working on su�x trees anbe ported to an equivalent algorithm on enhaned su�x arrays with idential asymptotitime bound. Abouelhoda et al. showed how to do that for algorithms performing di�erenttypes of su�x tree traversals.The enhaned su�x array has many pratial advantages ompared to su�x trees.Firstly, it is possible to store it on seondary memory without serialising the data struture,whih would be neessary for su�x trees. Seondly, the di�erent auxiliary arrays areindependent suh that for partiular appliations only a subset of arrays has to be aessed,whih dereases main memory load. Finally, additional annotations are easily added(see [121℄ for example annotations). We believe that virtually all algorithms that wereoriginally designed for su�x trees an be implemented more e�iently on enhaned su�xarrays. Hene, (enhaned) su�x arrays have the potential to fully replae su�x trees forpratial appliations.Su�x arrays are already used in many bioinformatis appliations. We give some ex-amples: Burkhardt et al. [30℄ applied su�x arrays for searhing similar DNA sequenesand Malde et al. [95℄ for EST lustering. Kurtz's [87℄ implementation of enhaned su�xarrays is used in several other bioinformatis tools and projets. Höhl et al. [60℄ used itfor multiple sequene alignment and Bekstette et al. [16℄ for the mathing of positionspei� soring matries, see [87℄ for a longer list. Apart from su�x array appliationsin bioinformatis, there are other appliation areas: Su�x sorting algorithms have beenapplied for the omputation of the Burrows�Wheeler transform, for example, in the bzip2ompressor [134℄. Moreover, in linguistis Yamamoto and Churh [144℄ used them to ountterm frequenies.In brief, the various time-e�ient algorithms on su�x trees an be ported to enhanedsu�x arrays, and these algorithms have proved their pratial e�ieny on su�x arrays.At the moment, we see no room for signi�ant improvements regarding algorithmialappliations of su�x arrays.4



1.2 Organisation of the thesis1.1.3 Su�x array ompression and su�x arrays in theoryThe task of full-text index ompression emerged after Grossi and Vitter introdued theompressed su�x array [57℄ that redues the spae requirements to a linear number ofbits. Other ompressed indies of that type are: Ferragina and Manzini's FM-index [49℄based on the Burrows�Wheeler transform, a ompressed-su�x-array-based index by Sada-kane [123℄ that does not use the text itself, and Mäkinen's ompat su�x array [94℄. Thereare various subsequent developments; most of them improve upon the ompressed indiesof Grossi and Vitter [57℄, Ferragina and Manzini [49℄, or Sadakane [123℄. For an in-depthstudy of ompressed full-text indies and their spae requirements, we refer to the surveyof Navarro and Mäkinen [113℄. Moreover, Sadakane [125℄ reently presented a ompressedfull-text index providing the full funtionality of su�x trees, although not with the sameasymptoti time bounds.All these developments on ompressed indies trade spae oupany for querying time.Experimental results of Ferragina and Manzini [50℄ show that su�x arrays use 8 to 13 timesas muh spae as their FM-index. For the exat pattern mathing with the reporting ofourrenes, however, the running times on their FM-index are by a fator between 3 and33 higher than the running times on their su�x array implementation. The reason for thegreater running times on ompressed indies is that redundant information, whih wouldhave been neessary for more e�ient querying, is lost when ompressing an original baseindex, like the su�x array. We believe that a profound knowledge of the algebrai andombinatorial properties of su�x arrays is essential to develop su�x-array-based, suintindies that allow e�ient querying.Besides those pratial aspets, su�x arrays are also interesting from the purely theoret-ial perspetive. They are represented as permutations, whih are widely studied in grouptheory and ombinatoris. Nevertheless, in that regard, they have been less studied thanwe expeted. Duval and Lefebvre [44℄ haraterised the set of strings that share the samesu�x array. A ombinatorial approah that partly inludes su�x arrays was presented byHohlweg and Reutenauer [61℄. Hene, further researh on the theoretial aspets of su�xarrays was required.1.2 Organisation of the thesisThroughout the thesis, we investigate the funtion sa that maps eah string to its su�xarray. The thesis onsists of two major parts: In the �rst part (Chapters 3�6), we in-vestigate the funtion sa from a more theoretial point of view. In partiular, we studyombinatorial aspets of strings and their su�x arrays. In the seond part (Chapters 7�10), we deal with the e�ient implementation of the funtion sa, namely, the onstrutionof su�x arrays.We �rst give the basi de�nitions and notations regarding su�x arrays in Chapter 2.Chapter 3 ontains the preliminaries for the subsequent investigations: We de�ne di�erentequivalenes of strings regarding their struture. In partiular, for a �xed alphabet size andstring length, we divide the set of all strings into equivalene lasses of strings that share the5



1 Introdutionsame su�x array. We also de�ne the data strutures for the subsequent reasoning on suhequivalene lasses and haraterise the strings in eah lass. In Chapter 4, we ount thenumber of partiular strings in any equivalene lass and present enumeration algorithmsfor those strings. Chapter 5 ontains exat formulas for the number of equivalene lassesor, alternatively, for the number of respetive su�x arrays; we also present an e�ientenumeration algorithm for those equivalene lasses, or rather, for their representatives.We then apply the ounting results to more pratial problems in Chapter 6: From theexat number of su�x arrays, we derive lower bounds on the ompressibility of su�x-array-based ompressed indies. Apart from that (also in Chapter 6), we show that summingup the elements of all equivalene lasses forms a partiular instane for some summationidentities of Eulerian numbers.In the seond part of the thesis, we study the problem of e�ient su�x array onstru-tion. Chapter 7 ontains the su�x-array-onstrution-spei� de�nitions and notations.In Chapter 8, we provide new omprehensive lassi�ations of previous su�x array on-strution algorithms and survey those algorithms. In Chapter 9, we present our newbuket-pointer re�nement algorithm, show a runtime analysis and provide implementa-tion details. Experimental results on the pratial performane of our algorithm and thepreviously fastest su�x array onstrution algorithms are given in Chapter 10.We onlude and give an outlook to future researh in Chapter 11.Parts of Chapters 3�6 have been published in a tehnial report [130℄, in a refereedonferene proeeding [131℄, and are to appear in a refereed journal artile [128℄. Partsof Chapters 7�10 have been published in a refereed onferene proeeding [132℄ and in arefereed journal artile [133℄.
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2 Basi De�nitions and TerminologyThe interval [l, r] = {z ∈ Z : l ≤ z ≤ r with l, r ∈ Z} denotes the set of all integersgreater than or equal to l and less than or equal to r. The set of natural numbers startingwith 1 is denoted by N, and N0 further ontains the additional 0, that is, N0 := N ∪ {0}.Alphabet and strings. Let Σ be a �nite set of size |Σ|, the alphabet, and t ∈ Σn a stringover Σ of length n, the text. For i ∈ [1, n], t[i] denotes the ith harater of t, and for allpairs of indies (l, r), 1 ≤ l ≤ r ≤ n, t[l, r] = t[l], t[l + 1], . . . , t[r] denotes the substringof t starting at position l and ending at position r. Substrings t[i, n] ending at position
n are su�xes of t; t[i, n] is alled the su�x i. The starting position i of a su�x t[i, n] isalled its su�x number. For 1 ≤ i < n, t[i + 1, n] is alled the suessor su�x of t[i, n],and onversely, t[i, n] the predeessor su�x of t[i + 1, n]. For more distant su�xes t[i, n]and t[i + ℓ, n] with ℓ ∈ N and i + ℓ ≤ n, t[i + ℓ, n] is alled the ℓ-suessor of t[i, n] and
t[i, n] the ℓ-predeessor of t[i + ℓ, n]. Σ(t) := {t[i] : 1 ≤ i ≤ n} ⊆ Σ is the subset ofharaters atually ourring in t and is alled the harater set of t. We usually use σ forthe alphabet size |Σ|, but if the strings are required to use all haraters suh that theirharater set equals the alphabet, we use κ.Permutations and su�x arrays. Let Pn denote the set of all permutations of [1, n], andlet P ∈ Pn. Then i ∈ [1, n−1] is a permutation desent of P if P [i] > P [i+1]. Conversely,a non-extendable asending segment P [l, r] of P with P [l] < P [l + 1] < . . . < P [r] of Pis alled a permutation run. Eah permutation run of P begins right after a permutationdesent or at the leftmost position 1 of P , and ends at the next permutation desent orat the last position n of P . Hene, the permutation runs de�ne the permutation desentsand vie versa. Figure 2.1 shows the permutation desents and permutation runs for thepermutation P = (5, 6, 3, 2, 4, 8, 9, 1, 7).5 6 3 2 4 8 9 1 7Figure 2.1: Permutation desents and permutation runs for P = (5, 6, 3, 2, 4, 8, 9, 1, 7). Theenirled entries mark the positions of the permutation desents, and the underlinedsegments mark the permutation runs. 7



2 Basi De�nitions and TerminologyThe funtion
sa :

{

Σn −→ Pn

t 7−→ P,
(2.1)maps eah string t of length n ∈ N to its su�x array, where the su�x array sa(t) of t isa permutation of the su�x numbers [1, n] aording to the lexiographi ordering of the

n su�xes of t. More preisely, a permutation P of [1, n] is the su�x array for a string
t of length n, P = sa(t), if for all pairs of indies (i, j), 1 ≤ i < j ≤ n, the su�x withsu�x number P [i] is lexiographially smaller than the su�x with su�x number P [j].Moreover, the sequene t[P [1]], t[P [2]], . . . , t[P [n]], whih is formed of the �rst haratersof the ordered su�xes, is alled the First sequene for t (similar to the �rst olumn usedfor the Burrows�Wheeler transform [32℄).The rank array RP for the permutation P (further on simply denoted by R), sometimesalled the inverse permutation or the inverse su�x array, is de�ned as follows: For allindies i ∈ [1, n] the rank of i is j, R[i] = j, if i ours at position j in the permutation,
P [j] = i. We extend the rank array by R[n + 1] = 0, indiating that the empty su�x,not ontained in the su�x array, is always the lexiographially smallest. R[i] = j impliesthat the su�x t[i, n] is the lexiographially jth among all su�xes of t. The rank arrayand also other rank funtions are an important tool throughout the rest of this thesis.The rank array allows to diretly determine the loation of a su�x number in the su�xarray and de�nes the relative lexiographial order of the su�xes:

t[i, n] < t[j, n]⇐⇒ R[i] < R[j] for all (i, j) ∈ [1, n]2,where t[i, n] < t[j, n] aords to the lexiographial order of the su�xes and R[i] < R[j]to the order of the natural numbers.Further de�nitions. Besides the binomial oe�ient (xy) = x!
y!(x−y)! , the Stirling numbersand the Eulerian numbers are important for this work. Although these numbers have avenerable history, their notation is less standard. We follow the notation of Graham etal. [56, Chapter 6℄ where the Stirling number of the seond kind {n

k

} is the numberof ways to partition a set of n elements into k non-empty subsets, and the Euleriannumber 〈nd〉 gives the number of permutations of [1, n] having exatly d permutationdesents, also de�ned through the reursion (i) 〈n0〉 = 1, (ii) 〈nd〉 = 0 for d ≥ n, and(iii) 〈nd〉 = (d + 1)
〈

n−1
d

〉

+ (n− d)
〈

n−1
d−1

〉 for 0 < d < n.
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3 Bakground, De�nitions, and BasiObservationsFor ertain appliations, we are not always interested in the total number of strings.Instead, we are interested in equivalene lasses of strings sharing the same struturalproperties. A su�x array onstrution algorithm, for example, produes the same su�xarray for ABBAA and ACCAA, but a di�erent one for CBBCC. Therefore, we would ounttwo lasses of strings: the �rst lass ontaining ABBAA and ACCAA, and the seond oneontaining CBBCC.A di�erent notion of equivalene on strings arises from the preproessing phase of thesubstring searh algorithm of Knuth et al. [83℄ (Knuth-Morris-Pratt algorithm). It returnsa pre�x funtion (also alled failure funtion or border array) for the query string thatenapsulates information about how the su�xes of the query math against the pre�xes(see also [38, Setion 32.4℄). Our example strings ABBAA, ACCAA, and CBBCC share the samepre�x funtion. Hene, we onsider them equivalent and only ount one equivalene lass.Moore et al. [109℄ ounted the number of suh distint pre�x funtions.To the best of our knowledge, there are no previous studies ounting the number ofpermutations that are the su�x arrays for a partiular set of strings. Although the om-binatoris of permutations is a researh �eld that has been widely studied (see, for exam-ple, [28℄), there are only a few ombinatorial results for su�x arrays. In 2002, Duval andLefebvre [44℄ haraterised the set of strings that share the same su�x array. Reently,Crohemore et al. [40℄ presented ombinatorial properties of the related Burrows�Wheelertransform, but these properties are unassignable to su�x arrays. They rely on the fat thatthe Burrows�Wheeler transform is based on the order of yli shifts of the input sequene,whereas the su�x array is based on the order of su�xes ut at the end of the string, whihdestroys that nie group struture. A ombinatorial approah that partly inludes su�xarrays was presented by Hohlweg and Reutenauer [61℄. They study onnetions betweenbinary planary trees, Lyndon words, and su�x arrays.This hapter provides the basi de�nitions and tools for ounting the strings and su�xarrays in the subsequent hapters. In Setion 3.1 we de�ne di�erent equivalenes of stringsregarding their various strutural properties and further ombinatorial strutures relatedto su�x arrays in Setion 3.2. Although the given general de�nition of su�x arrays inChapter 2 is quite onise, we need a more spei�, �handy� proposition for the subsequentreasoning, whih is given in Setion 3.3, Theorem 3.2. 11



3 Bakground, De�nitions, and Basi Observations

Figure 3.1: The relationships among the di�erent equivalenes on strings.3.1 Equivalenes on stringsWe use three di�erent kinds of equivalenes on strings. The natural de�nition is thatstrings are (string-)equivalent if they are equal, and (string-)distint otherwise. In orderto de�ne the other two equivalenes, we �rst introdue a bijetive mapping rk of theharaters of a string t onto the �rst |Σ(t)| integers, rk : Σ(t) −→ [1, |Σ(t)|]. We all rkorder-preserving if c1 < c2 ⇔ rk(c1) < rk(c2) for all pairs of haraters (c1, c2) ∈ Σ(t) ×
Σ(t). The mapped string rk(t) is then de�ned by rk(t) := rk(t[1]), rk(t[2]), . . . , rk(t[n]).We all two strings t and t′ order-equivalent if there exists an order-preserving bijetion
rk for t and another suh bijetion rk′ for t′ suh that rk(t) = rk′(t′); otherwise the stringsare order-distint. If bijetive mappings rk and rk′ exist suh that rk(t) = rk′(t′) (notneessarily order-preserving), we all t and t′ pattern-equivalent ; otherwise the strings arepattern-distint. String-equivalent strings are also order-equivalent and order-equivaleneimplies pattern-equivalene. The strings ABBAA and ACCAA, for example, are string-distintbut order-equivalent, and the strings ABBAA and CBBCC are order-distint but pattern-equivalent.Additionally, we de�ne the equivalene of strings sharing the same su�x arrays. Twostrings t and t′ are su�x-array-equivalent or, alternatively, sa-equivalent if they share thesame su�x array, sa(t) = sa(t′); otherwise the strings are sa-distint. Order-equivaleneimplies sa-equivalene sine the order of su�xes is not a�eted through an order-preservingmapping of the haraters.If two strings are order-distint, they an either be sa-equivalent or pattern-equivalent,but not both. Let t and t′ be two order-distint strings. Then either there are no bi-jetive harater mappings rk and rk′ suh that rk(t) = rk′(t′) or the bijetive mappingsare not order-preserving. If there are no suh bijetive harater mappings, then t and t′are pattern-distint, but an still be sa-equivalent. Otherwise, if suh bijetive mappingsexist but are not order-preserving, then t and t′ are yet pattern-equivalent; a rearrange-ment of the alphabet that hanges the relative alphabetial order, however, indues adi�erent relative order of the su�xes, whih implies su�x array distintness. The order-12



3.2 The +R-arraydistint strings ABBAA and BDCAA, for example, are sa-equivalent but pattern-distint, andthe order-distint strings ABBAA and CBBCC are pattern-equivalent but sa-distint. Therelationships among the mentioned four equivalenes on strings are shown in Figure 3.1.The regarded equivalenes of strings are obviously re�exive, symmetri, and transitive.Hene, they are equivalene relations and thus indue a partitioning of the set of stringsinto equivalene lasses. Our main fous is on the sa-equivalene lasses. We reall thefuntion sa that maps eah string of length n ∈ N to its su�x array P ,
sa :

{

Σn −→ Pn(⊃ Pn
Σ)

t 7−→ P,where Pn
Σ is the image of Σn under sa. Alternatively, Pn

Σ is alled the set of su�x arrays of
Σn. For large n and �xed small alphabet Σ of size σ, sa is not surjetive; hene Pn

Σ $ Pn.Moreover, it is not injetive for σ > 1. We de�ne the funtion sa−1 that maps eahpermutation P to its preimage under sa

sa−1 :

{

Pn −→ 2(Σn)

P 7−→ TP,Σ = {t ∈ Σn : sa(t) = P}.The funtion sa−1 maps eah permutation to the sa-equivalene lass of su�xes sharingthe same su�x array P , sa−1(P ) = TP,Σ. If P ∈ Pn
Σ, then the preimage of P under sa isnot empty; otherwise sa−1(P ) = ∅. Hene, the funtion sa−1 partitions the set of strings

Σn into |Pn
Σ| non-empty equivalene lasses. In Chapter 4, we ount the number of spei�elements in an equivalene lass sa−1(P ) for any P ∈ Pn. The number |Pn

Σ| of non-emptyequivalene lasses is ounted in Chapter 5.3.2 The +
R-arrayWe de�ne the +R-array, the basi data struture for the subsequent analysis of the su�xarray equivalenes.De�nition 3.1 (+R-array). Let P ∈ Pn be a permutation of [1, n]. The +R-array of Pis de�ned as

+R[i] := R[P [i] + 1] for all i ∈ [1, n].In the ompressed indexing literature the +R-array is usually alled Ψ-array or Ψ-funtion. We de�ne the +R-desents and the +R-runs of P similar to the permutation de-sents and the permutation runs respetively: A position i ∈ [1, n−1] is alled a +R-desentif +R[i] > +R[i + 1]. For l ≤ r, a non-extendable asending segment +R[l] < +R[l + 1] <
. . . < +R[r] is alled a +R-run; it will be denoted +R[l, r]. The set of +R-desents {i ∈
[1, n− 1] : +R[i] > +R[i + 1]} is denoted by +R-des(P ). If the ordered set of +R-desentsof P equals {i1, i2, . . . , id} with ij < ij+1 for all j ∈ [1, d − 1], then ij is alled the jth

+R-desent. The list of +R-runs is +R[1, i1],
+R[i1 +1, i2], . . . ,

+R[id−1 +1, id],
+R[id +1, n],where +R[ij−1 + 1, ij ] is alled the jth +R-run. Note that +R-runs an be of length 1.13



3 Bakground, De�nitions, and Basi ObservationsTable 3.1: The permutation P , whih is the su�x array for the string ABBAA, the sortedsu�xes of the string t[P [i], n], the rank array R, the +R-array, and the +R-desent atposition 3.
i P [i] t[P [i], n] R[i] +R[i] +R-des(P )0 6 ε1 5 A 3 02 4 AA 5 13 1 ABBAA 4 5 ←−4 3 BAA 2 25 2 BBAA 1 46 0Moreover, let di be the number of +R-desents in the pre�x P [1, i] of the permutation P ,

di := |{j ∈ +R-des(P ) : j < i}|.If P = sa(t) is the su�x array of a string t, then the +R-array re�ets the onnetionbetween onseutive su�xes of t. +R[i] = j has the following interpretation: The suessorsu�x t[P [i] + 1, n] of the lexiographially ith su�x t[P [i], n] is the lexiographially jthamong all su�xes of t. Sine there does not exist a predeessor for the su�x number 1,the position j in the su�x array P with P [j] = 1 never appears in the +R-array. If aposition i is a +R-desent, then the suessor su�xes of t[P [i], n] and t[P [i + 1], n] arein desending lexiographial order: t[P [i] + 1, n] > t[P [i + 1] + 1, n]. A +R-run +R[l, r]orresponds to a ontinuous su�x array segment, in whih also the respetive suessorsu�xes are in asending lexiographial order.For the permutation P = (5, 4, 1, 3, 2), whih is the su�x array of the string ABBAA, Ta-ble 3.1 shows the +R-annotations. The olumns show the array indies i, the permutation
P , the sorted su�xes of the string t[P [i], n], the rank array R, the +R-array, and the only
+R-desent at position 3. The su�x array P is extended with the number 6 at position
0 and the R-array with the number 0 at position 6, indiating that the empty su�x,whih does not appear in P , is always the smallest. Note that P ontains a +R-desent atposition 3. Hene, +R[1, 3] and +R[4, 5] are the +R-runs.3.3 Charaterising strings sharing the same su�x arrayThe following theorem was �rst given, without proof, by Burkhardt and Kärkkäinen [31℄and equivalent results were proved by Duval and Lefebvre [44℄.Theorem 3.2. Let P ∈ Pn be any permutation of [1, n] and t a string of length n. Then
t ∈ sa−1(P ) if and only if the following two onditions hold for all i ∈ [1, n − 1]:(a) t[P [i]] ≤ t[P [i + 1]] and(b) +R[i] > +R[i + 1]⇒ t[P [i]] < t[P [i + 1]].14



3.3 Charaterising strings sharing the same su�x arrayTable 3.2: The permutation P , the +R-array, the +R-desent at position 3, and the Firstsequenes for the strings t1 = ABBAA, t2 = BDCAA, t3 = BDDBB, and t4 = CDDCA thatshare the same su�x array P . Strings with su�x array P

t1 = ABBAA t2 = BDCAA t3 = BDDBB t4 = CDDCA
i P [i] +R[i] +R-des(P ) t1[P [i]] t2[P [i]] t3[P [i]] t4[P [i]]1 5 0 A A B A2 4 1 A A B C3 1 5 ←− A B B C4 3 2 B C D D5 2 4 B D D DTheorem 3.2 has the following interpretation. Condition (a) states that the First se-quene for t is non-dereasing, and ondition (b) states: if the suessor su�xes of t[P [i], n]and t[P [i + 1], n] are in desending lexiographial order, that is, if t[P [i] + 1, n] >

t[P [i + 1] + 1, n], then the relative order of t[P [i], n] and t[P [i + 1], n] is determined bytheir �rst harater, t[P [i]] < t[P [i + 1]].Table 3.2 shows the permutation P = (5, 4, 1, 3, 2) and the strings t1 = ABBAA, t2 =BDCAA, t3 = BDDBB, and t4 = CDDCA in the respetive sa-equivalene lass sa−1(5, 4, 1, 3, 2).The leftmost four olumns show the array indies i, the permutation P , the +R-array, andthe +R-desent; the remaining olumns show the First sequenes for t1, t2, t3, and t4. Fromreading eah of the First sequenes top down, it beomes evident that Theorem 3.2(a)holds for eah of the four strings. Moreover, for the +R-desent 3, the harater tk[P [3]]is smaller than tk[P [3 + 1]] for eah k ∈ [1, 4], satisfying Theorem 3.2(b).3.3.1 Proving the haraterisation � Proof of Theorem 3.2We �rst prove two auxiliary lemmas (Lemma 3.3 and Lemma 3.4), whih are eventuallyused in the main proof of Theorem 3.2. First of all, Lemma 3.3 generalises a propositionabout onseutive elements in a permutation to arbitrary pairs of elements.Lemma 3.3. Let P ∈ Pn be any permutation of [1, n] and t a string of length n.If for all i ∈ [1, n − 1] we have that(a) t[P [i]] ≤ t[P [i + 1]] and(b) t[P [i]] = t[P [i + 1]] ⇒ R[P [i] + 1] < R[P [i + 1] + 1],then we also have that for all pairs (i, j), 1 ≤ i < j ≤ n,
t[P [i]] = t[P [j]]⇒ R[P [i] + 1] < R[P [j] + 1]. 15



3 Bakground, De�nitions, and Basi ObservationsProof. Due to (a), the sequene of haraters t[P [i]], t[P [i+1]], . . . , t[P [j]] is non-dereas-ing. Combining this property with t[P [i]] = t[P [j]] implies that t[P [i′]] = t[P [i′+1]] for all
i′ ∈ [i, j−1]. Then applying (b) on t[P [i′]] = t[P [i′ +1]] leads us to R[P [i′]+1] < R[P [i′ +
1]+1] for all i′ ∈ [i, j− 1]. By transitivity, we �nally obtain R[P [i]+ 1] < R[P [j]+ 1].Before we an prove the main result of this setion, we ontinue with a further gener-alisation. We extend our proposition from elements of the permutation referring to equalharaters in the string to elements referring to starting positions of equal substrings.Lemma 3.4. Let P ∈ Pn be any permutation of [1, n] and t a string of length n. If forall pairs (i, j) with 1 ≤ i < j ≤ n we have that

t[P [i]] = t[P [j]] ⇒ R[P [i] + 1] < R[P [j] + 1], (3.1)then we also have that for all pairs (i, j) with 1 ≤ i < j ≤ n and for all k > 0 with
P [i] + k − 1 ≤ n and P [j] + k − 1 ≤ n

t[P [i], P [i] + k − 1] = t[P [j], P [j] + k − 1]⇒ R[P [i] + k] < R[P [j] + k]. (3.2)Proof (Indution over k). For k = 1, the equation t[P [i], P [i] + 1− 1] = t[P [j], P [j] +
1−1] aords to t[P [i]] = t[P [j]]; and hene, impliation (3.2) aords to impliation (3.1).We now perform the indution step starting with

t[P [i], P [i] + k] = t[P [j], P [j] + k],whih is obviously equivalent to
t[P [i], P [i] + k − 1] = t[P [j], P [j] + k − 1] (3.3)and t[P [i] + k] = t[P [j] + k]. (3.4)Applying the indution hypothesis (3.2) to (3.3) gives R[P [i] + k] < R[P [j] + k]. Then wehoose i′ and j′ suh that P [i′] = P [i] + k and P [j′] = P [j] + k. Sine R is the inverse of

P , we obtain
i′ = R[P [i′]] = R[P [i] + k] < R[P [j] + k] = R[P [j′]] = j′. (3.5)Combining equation (3.4) with P [i′] = P [i] + k and P [j′] = P [j] + k implies

t[P [i′]] = t[P [i] + k] = t[P [j] + k] = t[P [j′]].By (3.5) i′ is smaller than j′, so impliation (3.1) is appliable and leads to
R[P [i′] + 1] < R[P [j′] + 1].Substituting P [i′] by P [i]+k and P [j′] by P [j]+k results in R[P [i]+k+1] < R[P [j]+k+1],ompleting the proof.16



3.3 Charaterising strings sharing the same su�x arrayWe are now ready for proving Theorem 3.2.Proof of Theorem 3.2. If t ∈ sa−1(P ) or, alternatively, if the permutation P is thesu�x array for the string t, then the onditions (a) and (b) of the theorem learly hold.The opposite diretion is more intriate. Assume that both onditions (a) and (b) hold.If P is not the su�x array of t, then there must be two inorretly ordered su�xes in P .Let i and j be the positions of these su�xes in P suh that i < j and t[P [i], n] > t[P [j], n].Negating ondition (b) and using the de�nition of +R gives for all i ∈ [1, n− 1]

t[P [i]] ≥ t[P [i + 1]]⇒ R[P [i] + 1] ≤ R[P [i + 1] + 1],and by (a) and by the fat that both R and P are di�erent at unequal positions, we obtainfor all i ∈ [1, n − 1] that
t[P [i]] = t[P [i + 1]]⇒ R[P [i] + 1] < R[P [i + 1] + 1].We apply Lemma 3.3 and Lemma 3.4 to obtain for all i, j ∈ [1, n], i < j,

t[P [i], P [i] + k − 1] = t[P [j], P [j] + k − 1]⇒ R[P [i] + k] < R[P [j] + k]. (3.6)Now let ℓ be the length of the longest ommon pre�x of t[P [i], n] and t[P [j], n], then wedistinguish between two ases.(i) If ℓ = 0, the su�xes di�er in their �rst position. Sine t[P [i], n] > t[P [j], n], the�rst harater t[P [i]] of t[P [i], n] must be greater than the �rst harater t[P [j]] of
t[P [j], n], whih ontradits (a).(ii) If ℓ > 0, the su�xes t[P [i], n] and t[P [j], n] share a longest ommon pre�x of length
ℓ, that is, t[P [i], P [i] + ℓ − 1] = t[P [j], P [j] + ℓ − 1]. Then impliation (3.6) leadsto R[P [i] + ℓ] < R[P [j] + ℓ]. We hoose i′ and j′ suh that P [i′] = P [i] + ℓ and
P [j′] = P [j] + ℓ. Sine R is the inverse of P , we have i′ = R[P [i′]] = R[P [i] + ℓ] <
R[P [j] + ℓ] = R[P [j′]] = j′. Therefore, using (a) we obtain

t[P [i] + ℓ] = t[P [i′]] ≤ t[P [j′]] = t[P [j] + ℓ]. (3.7)This ontradits the assumption that t[P [i], n] > t[P [j], n] with longest ommonpre�x of length ℓ suh that t[P [i] + ℓ] > t[P [j] + ℓ].Sine both ases lead to ontraditions, all su�xes represented in P must be in the orretorder; hene t ∈ sa−1(P ).
17
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4 Counting and Enumerating the Stringsper Su�x ArrayEnumerative ombinatoris is a major sub�eld of ombinatoris (see, for example, [138,103, 34, 29℄). For any partiular ombinatorial struture, it poses the following questions:How many ombinatorial objets of a partiular type are there (Counting), and how anwe list all these objets (Enumeration). To the best of our knowledge, suh questionsrelating to su�x arrays have not been studied before. In this and the next hapter, weare the �rst providing answers on that.In this hapter, we ount and enumerate, for any permutation P ∈ Pn and a �xed-sizedalphabet Σ, the strings in the sa-equivalene lass TP,Σ of all strings in Σn with P as theirsu�x array (see page 13), onsidering partiular subsets of strings: string-distint stringsomposed of up to |Σ| distint haraters (not all haraters of the alphabet must appear)and string-distint strings omposed of exatly |Σ| distint haraters (all haraters mustappear). We proeed as follows: We �rst present the number of the di�erent sets ofounted strings, espeially Theorem 4.1 and Theorem 4.2. Then, after introduing thefoundations for the subsequent string ounting in Setion 4.1, we prove Theorem 4.1 inSetion 4.2 and Theorem 4.2 in Setion 4.3. Finally, we give enumeration algorithms forboth sets of ounted strings in Setion 4.4.The main results of this hapter are the following two theorems.Theorem 4.1. Let P ∈ Pn be any permutation of length n with d +R-desents and Σan alphabet of σ = |Σ| ordered symbols. Then the number of string-distint strings in the
sa-equivalene lass TP,Σ is given by (n+σ−d−1

σ−d−1

).Theorem 4.2. Let P ∈ Pn be any permutation of length n with d +R-desents and Σ analphabet of κ = |Σ| ordered symbols. Then the number of string-distint strings omposedof exatly κ distint haraters in the sa-equivalene lass TP,Σ is given by (n−d−1
κ−d−1

).For the various settings, Table 4.1 summarises the number of string-distint, order-distint, and pattern-distint strings of length n. Some of the results were previouslyproven by other authors or are given by Theorems 4.1 and 4.2. We disuss the resultspresented in Table 4.1 row-wise, beginning with the �rst row. Moore et al. [109℄ showedthat the number of pattern-distint strings omposed of exatly κ distint haraters is
{

n
κ

}. For eah pattern-distint string, we permute the alphabet in κ! di�erent ways toget a total of {n
κ

}

κ! order-distint strings. These are already all the string-distint stringssine we have no �exibility to hoose di�erent haraters to produe string-distint stringsthat are yet order-equivalent. 19



4 Counting and Enumerating the Strings per Su�x ArrayTable 4.1: Summary of the previous and new results on the number of string-distint,order-distint and pattern-distint strings of length n. In the analyses d is always thenumber of +R-desents for the respetive su�x array P . Moreover, Σ is the underlyingalphabet of κ = σ = |Σ| ordered symbols.Number of string-distint order-distint pattern-distintstrings omposed ofexatly κ distint letters {

n
κ

}

· κ!
{

n
κ

}

· κ!
{

n
κ

} [109℄strings omposed ofup to σ distint letters σn
∑σ

κ=1

{

n
κ

}

· κ!
∑σ

κ=1

{

n
κ

}strings in TP,Σ omposed of ex-atly κ distint letters (n−d−1
κ−d−1

) [Thm. 4.2℄ (n−d−1
κ−d−1

) �strings in TP,Σ omposed of upto σ distint letters (n+σ−d−1
σ−d−1

) [Thm. 4.1℄ ∑σ
κ=d+1

(n−d−1
κ−d−1

) �The numbers of all strings over a given alphabet of size σ are shown in the seond row.There are σn string-distint strings. For the order- and pattern-distint strings, we sumup the number of strings for all possible κ.The number of string-distint strings omposed of exatly κ distint haraters in the
sa-equivalene lass TP,Σ for any permutation P with d +R-desents and an alphabet
Σ of �xed size κ is given in Theorem 4.2. These strings are again order-distint. Forpattern-distint strings, we annot neessarily determine a unique su�x array. This fathas already been investigated in Chapter 3.1 and a graphial representation is shown inFigure 3.1. It is indiated by a dash in the table.The number of string-distint and order-distint strings in the sa-equivalene lass TP,Σfor any permutation P and an alphabet Σ of size σ are given in the fourth row. Theorem 4.1gives the number of string-distint strings; to ount the order-distint strings, we sum upover all possible κ. Again, the dash denotes that we annot neessarily determine a uniquesu�x array for pattern-distint strings.4.1 FoundationsBefore we prove Theorem 4.1 in Setion 4.2 and Theorem 4.2 in Setion 4.3, we �rst repeatan observation of Bannai et al. [14℄ that links the minimal alphabet size of the strings inthe sa-equivalene lass TP,Σ to the number of +R-desents of P : For a permutation Pwith d +R-desents, the number of di�erent haraters in a string t ∈ TP,Σ is at least thenumber of +R-desents plus one, |Σ(t)| ≥ d + 1. Furthermore, Bannai et al. presentedan algorithm to onstrut a unique string bP ∈ TP,Σ onsisting of exatly d + 1 di�erent20



4.2 Counting strings omposed of up to σ distint haratersAlgorithm 4.1.BaseString(P, n)

c← 1for i← 1 to n do
bP [P [i]]← cif i ∈ +R-des(P ) then

c← c + 1end ifend forreturn bP

Table 4.2: Constrution of the base string bP of thepermutation P having the +R-desent 3.
i P [i] +R[i] bP [P [i]] bP1 5 0 A ____A2 4 1 A ___AA3 1 5 A A__AA4 3 2 B A_BAA5 2 4 B ABBAAharaters, |Σ(bP )| = d + 1. Note that bP is only de�ned for non-empty sa-equivalenelasses TP,Σ with P ∈ Pn

Σ.Without loss of generality, we assume that the harater set of bP ontains the �rstnatural numbers, Σ(bP ) = [1, d+1], and all bP the base string of the sa-equivalene lass
TP,Σ, its lexiographially smallest representative. Nevertheless, we synonymously use theharaters {A, B, . . .} for illustrations. The algorithm suggested in [14℄ works as follows.It starts with the initial harater c = 1. For eah index position i ∈ [1, n] in asendingorder, the algorithm proeeds through all su�x numbers from P [1] to P [n] by assigning
c to bP [P [i]]. If i is a +R-desent, c is inremented by one to satisfy ondition (2) ofTheorem 3.2, suh that bP [P [i]] = di + 1; we reall that di is the number of +R-desentsin the pre�x P [1, i] of the su�x array P (see page 14). The pseudo-ode is given inAlgorithm 4.1. Note that the algorithm an only onstrut a orret base string if the sizeof the underlying alphabet exeeds the number of +R-desents of the input permutation,and fails otherwise. For the permutation P = (5, 4, 1, 3, 2) with +R-desent 3, Table 4.2shows the suessive assignment of haraters to the base string bP . The olumns showthe array indies i, the permutation P , the +R-array, the First sequene for the base string
bP [P [i]], and the assignment of haraters to the base string bP .Proposition 4.3. Let P be a permutation with d +R-desents, then the base string bP hasthe properties(a) bP [P [1]] = 1 and bP [P [n]] = d + 1,(b) bP [P [i + 1]] = bP [P [i]] if i ∈ [1, n − 1] is not a +R-desent of P ,() bP [P [i + 1]] = bP [P [i]] + 1 if i ∈ [1, n − 1] is a +R-desent of P .Note that eah +R-run +R[l, r] of the base string orresponds to an interval of equalharaters of the First sequene for the base string, bP [P [l]] = bP [P [l+1]] = . . . = bP [P [r]].4.2 Counting strings omposed of up to σ distint haratersFor a permutation P ∈ Pn

Σ, the strings ontained in the respetive sa-equivalene lass TP,Σan be derived from the base string bP of TP,Σ by applying a ertain sequene of rewrite21



4 Counting and Enumerating the Strings per Su�x ArrayTable 4.3: The permutation P , the +R-array, the �rst haraters of the ordered su�xes ofthe base string bP = ABBAA, and the m-inremented strings tP,m = BDCAA, tP,m′ = BDDBBand tP,m′′ = CDDCA over the alphabet {A, B, C, D}.
m-inremented string

tP,m = BDCAA tP,m′ = BDDBB tP,m′′ = CDDCA
i P [i] +R[i] bP [P [i]] m tP,m[P [i]] m′ tP,m′ [P [i]] m′′ tP,m′′ [P [i]]1 5 0 A +0 A +1 B +0 A2 4 1 A +0 A +1 B +2 C3 1 5 A +1 B +1 B +2 C4 3 2 B +1 C +2 D +2 D5 2 4 B +2 D +2 D +2 Doperations to the base string after whih the order of su�xes remains untouhed. Thesequene of rewrite operations starts with the largest su�x. Inreasing the �rst haraterof the largest su�x by any number a ∈ N does not hange the order of su�xes. Then the�rst harater of the seond largest su�x an be inreased by at most a without hangingthe order of su�xes, and so on.We proeed as follows: We �rst de�ne the sequene of rewrite operations (De�nition 4.4),establish a bijetion between a partiular set of rewrite operations and the sa-equivalenelass TP,Σ for any permutation P ∈ Pn

Σ (Lemma 4.5), ount the number of these rewriteoperations (Lemma 4.6), and �nally derive the size of TP,Σ, whih gives the proof ofTheorem 4.1.De�nition 4.4. Let Σ be the underlying alphabet, P ∈ Pn
Σ a permutation of [1, n] and bPthe base string of the sa-equivalene lass TP,Σ. Moreover, let m be an integer sequene oflength n, m ∈ Zn (usually m is a sequene of non-negative integers). The m-inrementedstring tP,m of bP is de�ned as

tP,m[P [i]] := bP [P [i]] + m[i] for all i ∈ [1, n].That is, the ith smallest harater of bP is inreased by m[i]. Note that we assume
Σ = [1, |Σ|] and allow m-inremented strings tP,m with Σ(tP,m) * Σ. In partiular, the m-inremented strings span the set of integer strings of length n: Zn = {tP,m ∈ Zn : m ∈ Zn}for any permutation P ∈ Pn

Σ. We use this property in Lemma 4.5.For the permutation P = (5, 4, 1, 3, 2), Table 4.3 shows the onnetion between the basestring ABBAA and three m-inrement sequenes over the alphabet {A, B, C, D}. The leftmostfour olumns show again the array indies i, the permutation P , the +R-array, and theFirst sequene for the base string. Eah of the following three pairs of olumns show themodi�ation of the base string bP , or rather, the modi�ation of the orresponding �rstarray by non-dereasing sequenes to produe m-inremented strings: m-inrementing22



4.2 Counting strings omposed of up to σ distint haratersthe base string by m = 0, 0, 1, 1, 2 produes tP,m = BDCAA, m′ = 1, 1, 1, 2, 2 produes
tP,m′ = BDDBB, and m′′ = 0, 2, 2, 2, 2 produes tP,m′′ = CDDCA. Like the base string ABBAA,the m-inremented strings BDCAA, BDDBB, CDDCA are ontained in T(5,4,1,3,2),{A,B,C,D}.Lemma 4.5. Let Σ be an ordered alphabet of size σ := |Σ|, P ∈ Pn

Σ a permutation of
[1, n] with d +R-desents. Moreover, let MP,σ be the set of non-dereasing sequenes oflength n over the ordered alphabet [0, σ − d− 1].Then there exists an isomorphism between TP,Σ andMP,σ, TP,Σ ≃MP,σ.Proof. Let bP be the base string of the sa-equivalene lass TP,Σ. Without loss of gen-erality, we assume Σ = [1, σ]. We show: (i) eah non-dereasing sequene m ∈ MP,σ,generates an m-inremented string tP,m ∈ TP,Σ and (ii) eah other sequene o ∈ Zn oflength n, o /∈MP,σ, generates a string tP,o /∈ TP,Σ.(i) Let m ∈ MP,σ, suh that m[i] ≤ m[i + 1] for all i ∈ [1, n − 1]. We verify theonditions of Theorem 3.2 for tP,m:(i.1) For all i ∈ [1, n− 1], we obtain bP [P [i]] ≤ bP [P [i + 1]] from Proposition 4.3 (b)and (). That implies

tP,m[P [i]] = bP [P [i]] + m[i] ≤ bP [P [i + 1]] + m[i + 1] = tP,m[P [i + 1]],verifying Theorem 3.2(a).(i.2) If +R[i] > +R[i+1], then i ∈ +R-des(P ). Proposition 4.3() gives bP [P [i]]+1 =
bP [P [i + 1]], whih leads to

tP,m[P [i]] = bP [P [i]] + m[i]

< (bP [P [i]] + 1) + m[i]

≤ bP [P [i + 1]] + m[i + 1] = tP,m[P [i + 1]],verifying Theorem 3.2(b).Therefore, sa(tP,m) = P .Moreover, for eah position j of tP,m with j = P [i] for some i ∈ [1, n],
tP,m[j] = tP,m[P [i]] = bP [P [i]] + m[i] ≤ (d + 1) + (σ − d− 1) = σand analogously 1 ≤ tP,m[j]. Hene, eah m ∈ MP,σ generates a sequene tP,m ∈

TP,Σ (⊂ Σn).(ii) For o /∈ MP,σ ontaining a desending adjaent index pair suh that o[i] > o[i + 1]for some i ∈ [1, n − 1], we onern ourselves with two ases:(ii.1) If i is not a +R-desent of P , then Proposition 4.3(b) states bP [P [i]] = bP [P [i+
1]]. Hene,

tP,o[P [i]] = bP [P [i]] + o[i] > bP [P [i + 1]] + o[i + 1] = tP,o[P [i + 1]],whih ontradits Theorem 3.2(a). 23



4 Counting and Enumerating the Strings per Su�x Array(ii.2) If i is a +R-desent of P , then Proposition 4.3() states bP [P [i]] = bP [P [i+1]]−1and, beause of o[i] > o[i + 1], also o[i] ≥ o[i + 1] + 1 is true. This results in
tP,o[P [i]] = bP [P [i]] + o[i]

≥ (bP [P [i + 1]]− 1) + (o[i + 1] + 1)

= bP [P [i + 1]] + o[i + 1]

= tP,o[P [i + 1]],whih ontradits Theorem 3.2(b).Therefore, only the non-dereasing sequenes m produe a string tP,m suh that
sa(tP,m) = P .The non-dereasing sequenes o /∈ MP,σ, for whih Σ(o) * [0, σ − d − 1], remain.For all these strings, we show that tP,o /∈ Σn. If o is non-dereasing, but not in
MP,σ, it must ontain a harater greater than σ− d− 1 or smaller than 0 at someposition i. Sine o is non-dereasing, suh a harater appears at position n or 1.That is, o[n] > σ− d− 1 or o[1] < 0. Combining o[n] > σ− d− 1 with the fat fromProposition 4.3(a) that bP [P [n]] = d + 1 implies

tP,o[P [n]] = bP [P [n]] + o[n] > (d + 1) + (σ − d− 1) = σ.Using bP [P [1]] = 0 for o[1] < 0 analogously implies tP,o[P [1]] < 0. Thus, tP,o /∈ Σn,ompleting the proof.Finally, we prove that the number of sequenes in the sa-equivalene lass TP,Σ forany permutation P is the same as the number of non-dereasing sequenes over σ − dharaters. To ount the number of non-dereasing sequenes of length n omposed of µelements, we observe the following:Lemma 4.6. Let M(n, µ) be the number of non-dereasing sequenes of length n of ele-ments in [0, µ− 1]. For any positive integers n and µ

M(n, µ) =

(

n + µ− 1

µ− 1

)

.Proof. The non-dereasing sequenes of length n omposed of µ symbols an be modelledas a sequene of two di�erent operations. Initially, the urrent symbol is set to 0. Thenwe apply a sequene of operations to generate non-dereasing sequenes of length n. Onepossible operation is to write the urrent symbol behind the so far written symbols andthe other one is to inrement the symbol by 1. To generate a non-dereasing sequene,we apply n + µ− 1 operations, n to write down the non-dereasing sequene and µ− 1 toinrement the urrent symbol until µ− 1 is reahed. For this sequene of length n+µ− 1,we have (n+µ−1
µ−1

) possibilities to hoose the µ−1 positions of the inrement operations.The respetive representation of the sequene 2, 2, 2, 2, 4, 5, 5 is shown in Figure 4.1.24



4.2 Counting strings omposed of up to σ distint haraters
⊕ ⊕ W W W W ⊕ ⊕ W ⊕ W W2 2 2 2 4 5 5Figure 4.1: Representation of the non-dereasing sequene 2,2,2,2,4,5,5 for µ = 6, where

⊕ denotes an inrement operation and W denotes a write operation.When applying this observation to Lemma 4.5, we get the number of strings in an
sa-equivalene lass.Proof of Theorem 4.1. For eah permutation P ∈ Pn

Σ, the laim follows diretly fromthe bijetion shown in Lemma 4.5 and the equality |MP,σ| = M(n, σ − d) =
(n+σ−d−1

σ−d−1

)from Lemma 4.6. For eah other permutation P ∈ Pn with P /∈ Pn
Σ, we have d ≥ σ andthus (n+σ−d−1

σ−d−1

)

= 0.Remark. There are further instanes for the number (n+σ−d−1
σ−d−1

). We have, for example,
(n+σ−d−1

σ−d−1

)

=
((

n+1
σ−d−1

))

= (n, σ − d− 1)!, where ((x
y

)) denotes the number of distintmultisets of size y on x symbols and (a, b)! is a multinomial oe�ient that denotes thenumber of ways of depositing a+ b distint objets into two sets, the �rst set of size a andthe seond of size b. Hene, for the strings ounted in Theorem 4.1, there exist furtherbijetions to other ombinatorial objets: a bijetion to the family of multisets of size
σ− d− 1 on n + 1 symbols and a bijetion to the ways of depositing n + σ− d− 1 distintobjets into two sets, the �rst set of size n and the seond of size σ − d− 1.For n = 2, σ = 4, and d = 1, Table 4.4 shows a spei� instane for eah of the bijetiveombinatorial objets: The set of strings T(2,1),{A,B,C,D} over the alphabet {A, B, C, D} sharingthe su�x array (2, 1), the family of multisets (({a,b,c}

2

)) of size 2 on the symbols {a, b, c},and the ways ({a,b,,d}2,2 ) of depositing the symbols {a,b,,d} into two sets both of size 2.Table 4.4: The three bijetive sets T(1,2),{A,B,C,D}, (({a,b,c}
2

)), and ({a,b,,d}2,2 ).
T(1,2),{A,B,C,D} AB AC AD BC BD CD
((

{a,b,c}
2

))

{a, a} {a, b} {a, c} {b, b} {b, c} {c, c}

({a,b,,d}2,2 ) {a,b},{,d} {a,},{b,d} {a,d},{b,} {b,},{a,d} {b,d},{a,} {,d},{b,}
25



4 Counting and Enumerating the Strings per Su�x Array4.3 Counting strings omposed of exatly κ distintharatersSo far, we have ounted all strings of the sa-equivalene lass TP,Σ for a permutation P .Now, we ount the subset T κ
P,Σ of strings omposed of exatly κ (= σ = |Σ|) distintsymbols or, alternatively, the isomorphi set of non-dereasing sequenes Mκ

P,σ := {m ∈
MP,σ : tP,m ∈ T κ

P,Σ}; obviously T κ
P,Σ ≃Mκ

P,σ.We have to determine the non-dereasing sequenes m ∈ MP,σ for whih tP,m onsistsof exatly κ letters. To assure that none of the κ haraters [1, κ] is left out, it is su�ientthat tP,m[P [1]] = 0, tP,m[P [n]] = κ, and onseutive haraters in the resulting sequene
tP,m are not di�ering by more than one.Proposition 4.7. Let Σ be an ordered alphabet of size κ := σ = |Σ| and P ∈ Pn apermutation of [1, n] with d +R-desents. Moreover, let m ∈MP,σ.Then m ∈Mκ

P,σ, if and only if, for all i ∈ [1, n − 1](a) m[1] = 0 and m[n] = κ− d− 1,(b) m[i + 1] = m[i] or m[i + 1] = m[i] + 1 if i /∈ +R-des(P ), and() m[i + 1] = m[i] if i ∈ +R-des(P ).We are now prepared to prove Theorem 4.2.Proof of Theorem 4.2. The proof works similar as for Theorem 4.1. We again representthe non-dereasing sequenes of m ∈ Mκ
P,σ as n write operations and µ − 1 inrementoperations, as it has been modelled above. Here, for the plaement of the κ − d − 1inrement operations, we are restrited by the mentioned onditions of Proposition 4.7.In order not to break these onditions, (a) an inrement operation must not appear beforethe �rst or after the last write operation, (b) at most one inrement operation must appearbetween two write operations, and () the d +R-desent positions are forbidden for theinrements. We are thus left with n − d − 1 mutually exlusive positions from whih wehoose the κ− d− 1 inrement operations.Table 4.3 shows that among the three non-dereasing sequenes m, m′, and m′′ only mgenerates an m-inremented string tP,m that ful�lls the three onditions of Proposition 4.7;

m′ violates onditions (a) and (), and m′′ violates ondition (b).4.4 Enumerating the stringsIn ombinatoris, we are mainly interested in ounting ombinatorial objets of a partiulartype. As omputer sientists, we are further interested in the e�ient enumeration of thoseobjets. This setion presents two new algorithms enumerating the strings that we havepreviously ounted. For a �xed alphabet Σ of size σ and a permutation P ∈ Pn
Σ, the �rstalgorithm enumerates all strings of TP,Σ, and the seond enumerates the subset T κ

P,Σ ofsuh strings omposed of exatly κ = σ distint haraters.26



4.4 Enumerating the stringsAlgorithm 4.2.EnumP,σ(m, t, i, µ, enum)1: menum ← m2: tenum ← t3: enum← enum + 14: if i>0 then5: for h← 1 to µ− 1 do6: m[i]← m[i] + 17: t[P [i]]← t[P [i]] + 18: EnumP,σ(m, t, i− 1, h + 1, enum)9: end for10: m[i]← m[i]− (µ− 1)11: t[P [i]]← t[P [i]]− (µ− 1)12: end if

Table 4.5: Enumeration of the strings tenumthat share the su�x array P = (5, 4, 1, 3, 2)with base string bP = ABBAA.
enum menum tenum1 00000 ABBAA2 00001 ACBAA3 00011 ACCAA4 00111 BCCAA5 01111 BCCBA6 11111 BCCBB7 00002 ADBAA8 00012 BDBAA... ... ...4.4.1 Strings omposed of up to σ distint haratersThe non-dereasing sequenes of length n over [0, σ−d−1] an be enumerated in-plae byapplying one hange operation at a time, beginning with the sequene 0n. The bijetiondesribed by De�nition 4.4 suggests to apply these enumeration steps diretly to the basestring bP of the sa-equivalene lass TP,Σ.Algorithm 4.2 shows the simultaneous enumeration of the non-dereasing sequenes

m ∈ MP,σ and the strings t ∈ TP,Σ for a permutation P ∈ Pn
Σ; menum denotes the

enumth enumerated non-dereasing sequene and tenum the respetive m-inrementedstring, tenum = tP,menum. The parameters of the algorithm are the urrent non-dereasingsequene m, the orresponding m-inremented string t, the position i aording to whihthe modi�ations are performed, the urrent upper bound µ for the value m[i] suh that
m[i] < µ, and the urrent enumeration number enum. The enumeration is invoked withEnumP,σ(0n, bP , n, σ−d, 1). Starting with the sequene m = 0n, the algorithm inrements
m[n] and reursively enumerates all (n − 1)-length non-dereasing pre�xes of m = 0n−11over the numbers {0, 1}. Then it inrements m[n] again and enumerates the (n − 1)-length non-dereasing pre�xes of 0n−12 over {0, 1, 2}. The reursive all is repeated foreah sequene 0n−1h with 1 ≤ h < µ. Moreover, eah modi�ation operation of m[i] issimultaneously applied to t[P [i]] suh that the strings in TP,Σ are enumerated in parallel.In this way, the algorithm enumerates all |TP,Σ| strings of the sa-equivalene lass TP,Σover an alphabet Σ for the su�x array P in optimal O(n+ |TP,Σ|) time, where n steps areused to onstrut the initial non-dereasing sequene 0n and the base string. Moreover, ithas further features: It works in-plae. After eah single step of the algorithm, the urrentsequene m ∈ MP,σ is non-dereasing and t ∈ TP,Σ. Moreover, the enumeration worksorretly for ountable ordered alphabets.Table 4.5 shows the �rst eight enumerated non-dereasing sequenes and the respe-27



4 Counting and Enumerating the Strings per Su�x Arraytive enumerated strings of TP,Σ for the permutation P = (5, 4, 1, 3, 2) and the alphabet
Σ = {A, B, . . .}. The olumns show the enumeration number enum, the enumerated non-dereasing sequenes menum, and the enumerated strings tenum, where t1 is the base stringof T(5,4,1,3,2),{A,B,...} with t1 = bP = ABBAA.4.4.2 Strings omposed of exatly κ distint haratersWe modify the previous algorithm to enumerate only the subset T κ

P,Σ(⊂ TP,Σ) of stringsomposed of exatly κ distint haraters for any permutation P ∈ Pn
Σ or, alternatively,the elements of the bijetive set of non-dereasing sequenesMκ

P,σ.For eah non-dereasing sequene m ∈ Mκ
P,σ, Proposition 4.7() states that m[i] =

m[i + 1] if i is a +R-desent of the input permutation P . That is, some positions of m,or rather some non-inrements, are pre-determined by the +R-desents of P . We skip theredundant entries at the +R-desent positions and on�ne ourselves to the isomorphi set
Mκ,∗

P,σ of non-dereasing sequenes of length n− d over µ = (κ− d) distint symbols thatful�ll Proposition 4.7(a) and (b), but ignore the +R-desents.Reall that di is the number of +R-desents in the pre�x P [1, i] of the su�x array
P (see page 14). We obtain the sparse permutation P ∗ of length n − d by erasing the
+R-desent positions from the permutation P :

P ∗[i− di] := P [i] for all i ∈ [1, n] with i /∈ +R-des(P ).The set of values in P ∗ and the set of values at the +R-desent positions of P form apartitioning of the set of su�x numbers: [1, n] = {P ∗[i] : 1 ≤ i ≤ n − d} ⊎ {P [j] : j ∈
+R-des(P )}, where ⊎ denotes the disjoint union of two sets.For m∗ ∈ Mκ,∗

P,σ (of length n − d), the sparse m∗-inremented string t∗P,m∗ of bP (both
t∗P,m∗ and bP have length n) is de�ned by:

t∗P,m∗[P ∗[i]] := bP [P ∗[i]] + m∗[i] for all i ∈ [1, n − d],

t∗P,m∗[P [j]] := '-' for all j ∈ +R-des(P ).Let T κ,∗
P,M∗ denote the set of m∗-inremented strings for P , m∗ ∈Mκ,∗

P,σ.Algorithm 4.3 reursively enumerates the strings m∗ ∈ Mκ,∗
P,σ and the m∗-inrementedstrings t∗P,m∗ ∈ T κ,∗

P,Σ in parallel, in the same order as in Algorithm 4.2, while skipping theinvalid sequenes. Besides the sparse permutation P ∗, the parameters of the algorithmare the urrent non-dereasing sequene m∗, the respetive m∗-inremented sparse string
t∗, the position i aording to whih the modi�ations are performed, the urrent upperbound µ for the number of distint symbols in the pre�x of the urrent non-dereasingsequene, and the urrent enumeration number enum. The enumeration is invoked withEnumκ

P ∗,σ(minit∗, t∗P,minit∗ , n−(κ−d−1), κ−d, 1), where minit∗ = 0n−d−µ, 0, 1, 2, . . . , µ−
1, and t∗P,minit∗ is the minit∗-inremented base string bP . Starting with the sequene
m∗ = minit∗ = 0n−d−µ, 0, 1, 2, . . . , µ− 1, the algorithm inreases m∗[n − d − µ + 1] suhthat m∗ = 0n−d−µ, 1, 1, 2, . . . , µ − 1 and reursively enumerates the (n − d − µ)-length28



4.4 Enumerating the stringsAlgorithm 4.3.Enumκ
P ∗,σ(m∗, t∗, i, µ, enum)1: t∗enum ← t∗2: m∗
enum ← m∗3: enum← enum + 14: if i > 1 then5: for h← 1 to µ− 1 do6: m∗[i + h− 1]← m∗[i + h− 1] + 17: t∗[P ∗[i + h− 1]]← t∗[P ∗[i + h− 1]] + 18: Enumκ

P ∗,σ(m∗, t∗, i− 1, h + 1, enum)9: end for10: for h← µ− 1 down to 1 do11: m∗[i + h− 1]← m∗[i + h− 1]− 112: t∗[P ∗[i + h− 1]]← t∗[P ∗[i + h− 1]] − 113: end for14: end if

Table 4.6: Enumeration of the sparsestrings representing the strings om-posed of exatly the four distint sym-bols A, B, C, and D sharing the suf-�x array P = (6, 5, 1, 2, 4, 3) with basestring bP = AABBAA.
enum m∗

enum t∗enum1 00012 AB-DCAA2 00112 BB-DCAA3 01112 BB-DCBA4 00122 BC-DDAA5 01122 BC-DDBA6 01222 CC-DDBAproper non-dereasing pre�xes omposed of the numbers {0, 1}. Then m∗[n − d − µ + 2]at the position to the right is inremented suh that m∗ = 0n−d−µ, 1, 2, 2, . . . , µ − 1,and the proper pre�xes omposed of {0, 1, 2} are reursively enumerated. The reursiveenumeration is repeated for eah sequene m∗ = 0n−d−µ, 1, 2, . . . , h, h, h+1, . . . , µ−1 with
1 ≤ h < µ. Moreover, eah modi�ation operation of m∗[i] is simultaneously applied to
t∗[P ∗[i]] suh that the strings in T κ,∗

P,M∗ are enumerated in parallel.We now show how T κ
P,Σ derives from T κ,∗

P,M∗. The haraters at the blank positions ofthe enumerated sparse strings are impliitly de�ned. We onstrut tenum ∈ T κ
P,Σ from

t∗enum ∈ T κ,∗
P,M∗ by assigning

tenum[P [i]] =

{

t∗enum[P [i]] if i /∈ +R-des(P )
tenum[P [i + 1]]− 1 if i ∈ +R-des(P ),

(4.1)for eah i ∈ [1, n], where tenum[P [i]] depends on the previous assignment of tenum[P [i+1]]for eah +R-desent i. Equation (4.1) obviously de�nes an isomorphism between T κ,∗
P,M∗and T κ

P,Σ, T κ,∗
P,M∗ ≃ T κ

P,Σ. Hene, the enumeration of the sparse strings in T κ,∗
P,M∗ induesthe enumeration of the strings in T κ

P,Σ. In this way, we impliitly enumerate all |T κ
P,Σ|strings omposed of exatly κ distint haraters ontained in the sa-equivalene lass

TP,Σ for a permutation P ∈ Pn
Σ in optimal O(n + |T κ

P,Σ|) time, where O(n) steps are usedto onstrut bP , P ∗, minit∗, and t∗P,minit∗ .Table 4.6 shows the enumerated non-dereasing sequenes and the enumerated sparsestrings over the alphabet {A, B, C, D} for the permutation P = (6, 5, 1, 2, 4, 3) with basestring bP = AABBAA. The only +R-desent of P is 4, whih is marked by a irle in thetable aption (P [4] = 2). Deleting the enirled value 2 from P results in the sparsepermutation P ∗ = (6, 5, 1, 4, 3). The olumns show the enumeration numbers enum, the29



4 Counting and Enumerating the Strings per Su�x Arrayenumerated non-dereasing sequenes m∗
enum, and the enumerated sparse strings t∗enum.Moreover, the blank harater t∗enum[2] (P [4] = 2) of eah enumerated sparse string isannotated with the impliitly de�ned harater t∗enum[4] − 1 (P [4 + 1] = 4) forming theomplete string tenum, as it has been de�ned by equation (4.1).

30



5 Counting and Enumerating the Su�xArrays for Strings with a FixedAlphabetIn this hapter, we enounter two other lassial ounting problems: the ounting ofequivalene lasses and the ounting of permutations of a partiular type. We ount andenumerate the non-empty sa-equivalene lasses TP,Σ for a �xed-sized alphabet Σ with
P ∈ Pn

Σ or, alternatively, the bijetive set of su�x arrays for strings over that �xed-sizedalphabet. We �rst onentrate on the equivalent problem of ounting the number of su�xarrays with a �xed number of +R-desents and then use the result to ount the distintsu�x arrays for strings over a given alphabet.Bannai et al. [14℄ stated that the number of su�x arrays of length n with exatly d
+R-desents is equal to the Eulerian number 〈nd〉. In their explanation, they interpretEulerian numbers as the number of permutations of length n with d permutation desentsand explain how their algorithm heks for these permutation desents. In fat, theiralgorithm ounts the number of +R-desents, but the +R-array is not a permutation.Nevertheless, as we show in this hapter, their proposition is true.Theorem 5.1. Let A(n, d) be the number of permutations of length n with d +R-desents,then

A(n, d) =

〈

n

d

〉

.Bannai et al. [14℄ also showed that eah su�x array with d +R-desents an be assoiatedwith a string of at least d + 1 di�erent haraters. Therefore, for strings over an alphabetof size σ, we sum up the su�x arrays with up to σ − 1 +R-desents to obtain the numberof non-empty sa-equivalene lasses.Corollary 5.2. For a �xed alphabet Σ of size σ, the number |Pn
Σ| of non-empty sa-equivalene lasses for permutations of length n is given by ∑σ−1

d=0

〈n
d

〉

.5.1 Counting su�x arrays � Proof of Theorem 5.1Our ounting or, alternatively, our enumeration sheme for su�x arrays of length n startswith the permutation (1), whih is the su�x array of every string of length 1. Then itgradually extends the su�x arrays in a partiular way until the maximum length n isreahed. 31



5 Counting and Enumerating the Su�x ArraysWe �rst have a look at the reursive de�nition of the Eulerian number 〈nd〉 that de-notes the number of permutations of [1, n] with exatly d permutation desents. For suhpermutations, Graham et al. [56, Setion 6.2℄ presented a ounting sheme that in fatworks for permutation asents, but an be adapted for permutation desents by readingthe permutations from right to left. There are n ways to insert the element n into apermutation of [1, n−1] with d permutation desents, leading to n permutations of length
n: d + 1 with d permutation desents and (n − 1) − d with d + 1 permutation desents.The desired reursion for the Eulerian numbers beomes evident from the reverse per-spetive: The 〈nd〉 permutations of length n with d permutation desents are onstrutedfrom (d + 1)

〈n−1
d

〉 permutations of length n − 1 with d permutation desents and from
((n − 1) − (d − 1))

〈n−1
d−1

〉 permutations of length n − 1 with d − 1 permutation desents,whih implies 〈nd〉 = (d + 1)
〈n−1

d

〉

+ (n − d)
〈n−1

d−1

〉 for 0 < d < n.Although the ounting sheme of Graham et al. works for the permutations with aertain number of permutation desents, it does not work for the permutations with aertain number of +R-desents. In general, there is a signi�ant di�erene between thenumber of permutation desents and the number of +R-desents of a permutation. Anextreme ase is the permutation P = (n, n − 1, . . . , 1), whih is the su�x array for thestring An. It has the maximum number of n − 1 permutation desents, but not a single
+R-desent. Nevertheless, the ounting sheme of Graham et al. and also the reursionformula for Eulerian numbers suggest a reursive ounting sheme: A permutation shouldbe extended by one element, thereby the number of +R-desents should either be retainedor inreased by one.Theorem 3.2 revealed a lose onnetion between the +R-array of a permutation P andthe strings in the sa-equivalene lass for P . Therefore, we do not on�ne ourselves to theinvestigation of permutations only, but rather study the modi�ation of strings and theindued e�et on the +R-arrays of the a�eted su�x arrays instead, yielding the desiredounting sheme.The �rst promising modi�ation is to append a harater at the end of the string.Ukkonen [142℄ follows this approah for the online onstrution of su�x trees. This ex-tension of the string, however, a�ets the relative order of the su�xes and thus inappro-priately rearranges the +R-array. If we start, for example, with BCCAA having the su�xarray (5, 4, 1, 3, 2) with the only +R-desent at position 3 (see Tables 4.6 and 3.2) andappend D, the resulting string BCCAAD has the su�x array (4, 5, 1, 3, 2, 6) with +R-array
(2, 6, 5, 1, 4, 0), whih has three +R-desents. The reursive formula for the Eulerian num-bers, however, suggests that the number of +R-desents d should not inrease by morethan one during a single extension step. Hene, this is apparently not the appropriateextension sheme.A seond possibility is to attah a harater to the front of a string t. Let t⊳ denotesuh a front-extended string, t⊳ = c t for some harater c ∈ Σ. We transfer the onept ofthe upper triangle ⊳ to the other data strutures that are a�eted by the front extension:If x is an instane of a data struture related to the string t, then x⊳ is an instane of thesame data struture related to t⊳.32



5.1 Counting su�x arraysTable 5.1: The extension of the string t = ABBAA by adding the harater A to the front,and the e�et on the su�x array and the +R-array.
t = ABBAA t⊳ = AABBAA

j P [j] +R[j] t[P [j], n] j⊳ P ⊳
3 [j⊳] +R

⊳
[j⊳] t⊳[P ⊳

3 [j⊳], n]1 5 0 A 1 6 0 A2 4 1 AA 2 5 1 AA3 1 4 AABBAA3 1 5 ABBAA 4 2 6 ABBAA4 3 2 BAA 5 4 2 BAA5 2 4 BBAA 6 3 5 BBAATable 5.1 shows suh an extension of ABBAA by A. For the string t = ABBAA, the �rstfour olumns show the array indies i, the permutation P , the +R-array, and the sortedsu�xes. The remaining four olumns show the respetive data for the front-extended string
t⊳ = AABBAA. The front extension of ABBAA by A shifts the existing su�xes by one positionto the right, while keeping the relative order of the su�xes and the interdependeniesamong su�xes and their suessors. Only the su�x number 1 of the new su�x AABBAA isinserted at the position 3 (or rather between positions 2 and 3) of the su�x array P , butthe number of +R-desents remains one. This is an appropriate extension sheme.Based on our observations, we de�ne an extension of a permutation P of length n − 1to a set P

⊳ of extended permutations, eah of length n. This de�nition is the key for thefurther reasoning throughout Lemmas 5.4�5.8, ultimately leading to Theorem 5.1.De�nition 5.3. Let P ∈ Pn−1 be a permutation of length n − 1. A set of extendedpermutations P
⊳ of P is de�ned as P

⊳ = {P ⊳
i : i ∈ [1, n]} ⊂ Pn where the extendedpermutation P ⊳

i evolves from P by inrementing eah element of P by one and insertingthe missing 1 at position i, suh that eah index position j of P orresponds to an indexposition j⊳ of P ⊳
i :

j⊳ := j if j < iand j⊳ := j + 1 if j ≥ i,and
P ⊳

i [j⊳] := P [j] + 1 if j⊳ 6= iand P ⊳
i [j⊳] := 1 if j⊳ = i.

R⊳ analogously denotes the rank array and +R
⊳ the +R-array of an extended permutation

P ⊳, alternatively with an additional subsript i for an extended permutation with insertionposition i. 33



5 Counting and Enumerating the Su�x ArraysThe insertion at position i shifts the elements at positions j with j ≥ i to the right,resulting in an inreased rank for the respetive elements of P ⊳
i . In this way, the insertionposition i determines the rank array of the extended permutation.Lemma 5.4. Let P ∈ Pn−1 be a permutation of length n − 1 and P ⊳ ∈ P

⊳ an extendedpermutation with insertion position i. Then we have for all e ∈ [1, n − 1] that(a) R⊳[e + 1] = R[e] if R[e] < i,(b) R⊳[e + 1] = R[e] + 1 if R[e] ≥ i, and() R⊳[1] = i.Proof. Let e be an arbitrary element of the permutation P ourring at position j, e =
P [j] and R[e] = j.(a) If R[e] < i, then j = R[e] < i. Therefore, aording to De�nition 5.3, j⊳ equals j andhene P ⊳[j⊳] = P [j] + 1 = e + 1. Altogether, this implies R⊳[e + 1] = R⊳[P ⊳[j⊳]] =

j⊳ = j = R[e].(b) If R[e] ≥ i, then j = R[e] ≥ i. Therefore, j⊳ = j + 1 and P ⊳[j⊳] = P [j] + 1 = e + 1.This implies R⊳[e + 1] = R⊳[P ⊳[j⊳]] = j⊳ = j + 1 = R[e] + 1.() R⊳[1] = i holds beause 1 is inserted at position i, P ⊳[i] = 1.Furthermore, mapping P to P ⊳ basially preserves the +R-order, exept for the insertionposition i:Lemma 5.5. Let P ∈ Pn−1 be a permutation of length n − 1 and P ⊳ ∈ P
⊳ an extendedpermutation. Then, for all indies g, h ∈ [1, n − 1],

+R[g] < +R[h] =⇒ +R
⊳
[g⊳] < +R

⊳
[h⊳].Proof. Let g and h be two positions of P suh that +R[g] < +R[h]. Then, aording tothe de�nition of +R, R[P [g] + 1] < R[P [h] + 1]. Moreover, let i be the insertion positionof P ⊳. We distinguish two ases.(i) If R[P [g] + 1] < i, then Lemma 5.4 (a and b) gives

R⊳[P [g] + 1 + 1] = R[P [g] + 1] < R[P [h] + 1] ≤ R⊳[P [h] + 1 + 1].Combining this with De�nition 5.3 and the de�nition of +R
⊳ yields

+R
⊳
[g⊳] = R⊳[P ⊳[g⊳] + 1] < R⊳[P ⊳[h⊳] + 1] = +R

⊳
[h⊳].(ii) If R[P [g] + 1] ≥ i the proof works analogously using the fat that R[P [h] + 1] >

R[P [g] + 1] ≥ i. Hene, Lemma 5.4(b) has to be used for R[P [g] + 1] as well as for
R[P [h] + 1], and then the rest of the proof proeeds as before.Lemma 5.5 onsiders the +R-order of P ⊳, but leaves out the insertion position i. Thenext lemma states that the +R-order at position i just depends on the position R[1] ofelement 1 in the permutation P .34



5.1 Counting su�x arraysLemma 5.6. Let P ⊳ ∈ P
⊳ be an extended permutation of P ∈ Pn−1 with insertion position

i ∈ [1, n], and let g be an index of P , then
+R[g] < R[1]⇐⇒ +R

⊳
[g⊳] < +R

⊳
[i] for all g ∈ [1, n − 1].Proof. We �rst show that +R[g] < R[1] =⇒ +R
⊳
[g⊳] < +R

⊳
[i].If +R[g] < R[1], then using the de�nition of +R leads to R[P [g]+1] < R[1]. We onsidertwo ases.(i) If R[P [g] + 1] < i, then R⊳[P [g] + 1 + 1] = R[P [g] + 1] by Lemma 5.4(a). Moreover,Lemma 5.4 (a and b) implies R[1] ≤ R⊳[1 + 1]. This together leads to

R⊳[(P [g] + 1) + 1] < R⊳[1 + 1]. (5.1)Aording to De�nition 5.3, P ⊳[g⊳] = P [g] + 1 and P ⊳[i] = 1. Combining this withinequality (5.1) leads to
+R

⊳
[g⊳] = R⊳[P ⊳[g⊳] + 1] = R⊳[(P [g] + 1) + 1] < R⊳[1 + 1] = R⊳[P ⊳[i] + 1] = +R

⊳
[i].(ii) If R[P [g] + 1] ≥ i, then the proof proeeds analogously by onsidering R[1] >

R[P [g] + 1] ≥ i.In order to show the opposite diretion +R[g] < R[1] ⇐= +R
⊳
[g⊳] < +R

⊳
[i], we observethat +R[g] > R[1] =⇒ +R

⊳
[g⊳] > +R

⊳
[i]. Sine, for all g ∈ [1, n − 1], +R[g] 6= R[1] and

+R
⊳
[g⊳] 6= +R

⊳
[i], we obtain the stated equivalene.After haraterising the +R-order of extended permutations, we now prove that thenumber of +R-desents is either preserved or inreased by exatly one through the mappingfrom P to an arbitrary extended permutation P ⊳.Lemma 5.7. Let P ∈ Pn−1 be a permutation of length n − 1 with d +R-desents and

P
⊳ the set of extended permutations of P , then we have, for all extended permutations

P ⊳
i ∈ P

⊳,
|des(P )| ≤ |des(P ⊳

i )| ≤ |des(P )|+ 1.Proof. Aording to Lemma 5.5, the mapping with respet to the insertion position idoes not touh the +R-order of onseutive positions not adjaent to i. More preisely, forall j ∈ [2, n − 1] with j 6= i,
+R[j − 1] > +R[j]⇐⇒ +R

⊳
i [(j − 1)⊳] > +R

⊳
i [j

⊳].This means that eah +R-desent at position j− 1 with j 6= i orresponds to a +R-desentat position (j−1)⊳ in P ⊳
i and vie versa. Therefore, we only have to examine the +R-orderof the remaining pair of positions (i− 1, i) in P and the respetive interval [(i− 1)⊳, i⊳] in

P ⊳
i . Note that [(i− 1)⊳, i⊳] = {i− 1, i, i + 1}. We distinguish whether position i− 1 of Pis a +R-desent or not. 35



5 Counting and Enumerating the Su�x Arrays(i) If i− 1 is a +R-desent of P suh that +R[i − 1] > +R[i], then applying Lemma 5.5leads to
+R

⊳
i [(i− 1)⊳] > +R

⊳
i [i

⊳]. (5.2)Sine R[1] 6= +R[g] for all g ∈ [1, n − 1], we onsider three subases:(i.1) If R[1] > +R[i−1], then Lemma 5.6 implies +R
⊳
i [i] > +R

⊳
i [(i−1)⊳] and togetherwith inequality (5.2) +R

⊳
i [i] > +R

⊳
i [(i− 1)⊳] > +R

⊳
i [i

⊳] follows. That is, +R
⊳
i [i−

1] = +R
⊳
i [(i − 1)⊳] < +R

⊳
i [i] and +R

⊳
i [i] > +R

⊳
i [i

⊳] = +R
⊳
i [i + 1]. Hene, i is a

+R-desent of P ⊳
i and the number of +R-desents of P ⊳

i equals the number of
+R-desents of P .(i.2) If +R[i − 1] > R[1] > +R[i], then Lemma 5.6 implies +R

⊳
i [(i − 1)⊳] > +R

⊳
i [i] >

+R
⊳
i [i

⊳]. Hene, (i−1)⊳ and i are +R-desents of P ⊳
i . The number of +R-desentsin P ⊳

i is thus one more than in P .(i.3) If +R[i] > R[1], then +R
⊳
i [(i − 1)⊳] > +R

⊳
i [i] < +R

⊳
i [i

⊳]. Hene, the number of
+R-desents in P ⊳

i equals the number of +R-desents in P .(ii) If i − 1 is not a +R-desent of P , then an argument similar to (i) an be used toshow that the number of +R-desents is retained or inreases by one.Combining all these ases shows, for eah i, that the number of +R-desents is preservedby the mapping from P to P ⊳
i or is inreased by one.Lemma 5.8. Let P be a permutation of length n−1 with d +R-desents and P

⊳ the set ofextended permutations of P ; then the number of extended permutations with d +R-desentsis d + 1,
|{P ⊳ ∈ P

⊳ : |des(P ⊳)| = d}| = d + 1.Proof. We assign to eah +R-run +R[l, r] of P a proper insertion position i ∈ [l, r + 1]that preserves the number of +R-desents through the mapping from P to P ⊳
i and showthat the number of +R-desents inreases for the other, non-proper insertion positions.Let +R[l, r] be a +R-run de�ned by a pair of onseutive +R-desents, (l − 1, r), suhthat +R[l−1] > +R[l] < +R[l+1] < . . . < +R[r] > +R[r+1]. Remember that, aording toLemma 5.5, the +R-desents not adjaent to the insertion position are preserved throughthe mapping to P ⊳

i . Therefore, it su�es to investigate the +R-order of positions touhedby the insertion. Sine R[1] 6= +R[g] for all g ∈ [1, n − 1], we onsider three mutuallyexlusive ases.36



5.1 Counting su�x arrays(i) For R[1] < +R[l], the proper insertion position is i, i = l, suh that
+R[l − 1] > R[1] < +R[l] < . . . < +R[r] > +R[r + 1].Aording to Lemmas 5.5 and 5.6, we obtain the series of inequalities

+R
⊳
i [(l − 1)⊳] > +R

⊳
i [i] < +R

⊳
i [l

⊳] < . . . < +R
⊳
i [r

⊳] > +R
⊳
i [(r + 1)⊳].Hene, for the insertion position l, there exist exatly as many +R-desents in therespetive interval [l − 1, r + 1] of P as in the interval [(l − 1)⊳, (r + 1)⊳] of P ⊳

i ,and, aording to Lemma 5.5, the other +R-desents are not a�eted through themapping. Thus, | +R -des(P )| = | +R -des(P ⊳
i )|.For the insertion positions i ∈ [l + 1, r],

+R[l] < +R[l + 1] < . . . < +R[i− 1] > R[1] < +R[i] < . . . < +R[r] (5.3)holds. Then applying Lemmas 5.5 and 5.6 leads to
+R

⊳
i [l

⊳] < +R
⊳
i [(l + 1)⊳] < . . . < +R

⊳
i [(i− 1)⊳] > +R

⊳
i [i] < +R

⊳
i [i

⊳] < . . . < +R
⊳
i [r

⊳].(5.4)Therefore, the number of +R-desents inreases through the mapping.The bordering insertion position r + 1 remains to be investigated, for whih weonsider two speial ases.(i.1) If R[1] < +R[r + 1], then r + 1 would be the proper insertion position for thenext +R-run +R[r + 1, h] for some h, like in ase (i).(i.2) If R[1] > +R[r + 1], then the insertion position r + 1 inreases the number of
+R-desents through the mapping from P to P ⊳

i .(ii) For +R[l] < R[1] < +R[r], the proper insertion position is i ∈ [l+1, r] with +R[i−1] <
R[1] < +R[i]. The other insertion positions j, j ∈ [l + 1, r] with j 6= i, inrease thenumber of +R-desents. The bordering insertion positions l and r +1 either inreasethe number of +R-desents analogously to (i.2), or they are proper insertion positionsfor the adjaent +R-runs.(iii) For +R[r] < R[1], the proof works analogously to (i) by handling the borderinginsertion position l like (i.2).So far, we onentrated on the inner +R-runs +R[l, r] with l 6= 1 and r 6= n − 1. For thebordering +R-runs +R[l, r] with l = 1 or r = n − 1, the proper insertion positions arede�ned in the same way, but the proof is a bit simpler beause the insertion positions atthe borders 1 and n are both not a�eted by adjaent +R-runs.Finally, for eah of the d + 1 +R-runs in P , there exists a unique insertion position ithat preserves the number of +R-desents through the mapping from P to P ⊳

i . All otherinsertion positions inrease the number of +R-desents. 37



5 Counting and Enumerating the Su�x ArraysProof of Theorem 5.1. For the number of permutations of length n having d +R-desents, A(n, d), we ahieve the following reursive de�nition with the two base ases(i) and (ii) and the reursion step (iii).(i) Sine the permutation (n, n − 1, . . . , 1) is the only one without any +R-desent,
A(n, 0) = 1.(ii) Obviously, the number of +R-desents is bounded by n − 1. Hene, there is nopermutation of length n with more than n−1 +R-desents, and thus A(n, d) = 0 for
d ≥ n.(iii) As mentioned before, mapping eah permutation P of length n − 1 to P ⊳

i leads to
n extended permutations, eah of length n (one for eah possible insertion position
i). If P ontains d +R-desents, then Lemma 5.8 implies: There exist exatly d + 1extended permutations with d +R-desents, and, aording to Lemma 5.7, the other
n−d extended permutations ontain d+1 +R-desents. Combining these observationsleads to the reursion A(n, d) = (d+1)A(n−1, d)+(n−d)A(n−1, d−1) for 0 < d < n.The propositions (i), (ii), and (iii) yield the same reursion as for the Eulerian numbers.Hene, A(n, d) =

〈n
d

〉.5.2 Enumerating the su�x arraysWe present the �rst enumeration algorithm for the su�x arrays of the strings up to length nover an alphabet of size σ or, alternatively, for the orresponding non-empty sa-equivalenelasses represented by their base strings. Our enumeration sheme exploits the loserelationship between su�x arrays and the Burrows�Wheeler transform. We would like toenumerate only the su�x arrays of (exatly) length n, just as Corollary 5.2 ounts them,but we are urrently not able to do so. Our enumeration sheme generates the su�x arraysfrom small to long arrays suh that the generation of the su�x arrays of length n dependson the previous generation of all shorter su�x arrays.We �rst observe that the attahment of a harater at the front of a string auses anindex shift of the starting positions of the su�xes: Eah index number inreases by one,and the newly attahed harater reeives the freed index number 1. For our enumerationalgorithm of the base strings up to length n, whih also uses suh a front extension, weavoid the unfavourable index shift by using a di�erent indexing of the strings: For a string
t′ of length n′ with n′ ≤ n, we use the indexing n − n′ + 1, n − n′ + 2, . . . , n. If a newharater is attahed to the front of t′, then it is assigned to the new front index n − n′without inreasing the previously existing index numbers n− n′ + 1, n − n′ + 2, . . . , n. Amore elegant solution would be to replae the left-to-right indexing with a right-to-leftindexing n′, . . . , 2, 1, whih is independent of the �nal string length. Nevertheless, to beonsistent with the literature, we keep the traditional left-to-right indexing throughoutthe thesis, but start with the index front = n− n′ + 1 in the remainder of this hapter.38



5.2 Enumerating the su�x arraysThe modi�ed indexing is only used for strings. Nevertheless, it requires an adjustmentof De�nition 5.3. First of all, the indexing of the su�x arrays is not hanged. Hene, westill have
j⊳ := j if j < iand j⊳ := j + 1 if j ≥ i.The modi�ed indexing of the strings, however, avoids the shift of the su�x numbers.Therefore,

P ⊳
i [j⊳] := P [j] if j⊳ 6= iand P ⊳
i [j⊳] := front⊳ if j⊳ = i,where front⊳ := front − 1.Furthermore, the proposition of Lemma 5.4 hanges; we now have for all e ∈ [1, n − 1]that(a) R⊳[e] = R[e] if R[e] < i,(b) R⊳[e] = R[e] + 1 if R[e] ≥ i, and() R⊳[front⊳] = i.Nevertheless, the +R-array is essentially not altered by the di�erent indexing sine it re-�ets the onnetions between onseutive su�xes, whih is independent of the urrentindexing; only the start index of the string hanges from 1 to front . Therefore, Lem-mas 5.5�5.8 are essentially retained, only R[1] in Lemma 5.6 hanges to R[front ].Before we an formulate the enumeration algorithm, we �rst de�ne the Burrows�Wheelertransform (BWT) and further terms that are frequently used in the ompressed indexingliterature. Let $ be a harater not ontained in Σ with $ < c for all c ∈ Σ. For applyingthe BWT, we append $ to the end of t, forming the $-extended string t$. The su�x array

P of t is essentially kept through the extension. Only the new su�x number n + 1, whihrefers to the smallest su�x $, is impliitly attahed to the front of P , P [0] = n + 1, butit does not expliitly appear in P . The BWT string bwt of t, or rather the BWT stringof the $-extended string t$, is formed of the haraters to the �left� of the su�x numbersin their su�x array order, basially giving the left ontext of the lexiographially sortedsu�xes of t$.De�nition 5.9. Let Σ be the underlying alphabet, P ∈ Pn
Σ a permutation of [1, n], and

t ∈ TP,Σ a string of the respetive sa-equivalene lass. Moreover, let P [0] = n + 1. Wede�ne the BWT string bwt of t as
bwt[i] :=

{

t[P [i]− 1] if P [i] > 1'$' if P [i] = 1,for i ∈ [0, n]. 39



5 Counting and Enumerating the Su�x ArraysNote that, di�erent from the string t, the BWT string inludes the $, starts at position
0 and has length n+1. Moreover, our de�nition is only equivalent to the original de�nitionof Burrows and Wheeler [32℄ for $-extended strings.We further de�ne some tools that are frequently used in the ompressed text index-ing literature, starting with the funtions rank and select. For the BWT string bwt,
rankc(bwt, j) is the number of ourrenes of the harater c in the pre�x bwt[0, j] of bwt:

rankc(bwt, j) := |{g ∈ [0, j] : bwt[g] = c}| for all j ∈ [0, n]. (5.5)Conversely, selectc(bwt, k) gives the position of the kth ourrene of the harater c in
bwt:

selectc(bwt, k) := j if bwt[j] = c and rankc(bwt, j) = k, (5.6)for all c ∈ Σ, j ∈ [0, n], and k ∈ [1, n]; selectc(bwt, k) is unde�ned if the number ofourrenes of the harater c in bwt is less than k.Reall the First sequene f = t[P [1]], t[P [2]], . . . , t[P [n]] for a string t ∈ TP,Σ, whih issimply omposed of the alphabetially ordered haraters of t. Without loss of generality,we assume that the underlying alphabet onsists of the �rst natural numbers, Σ = [1, |σ|].Then we de�ne the array C storing in C[c] the frequeny of haraters in t that are smallerthan c, C[c] := |{j ∈ [1, n] : t[j] < c}| for all c ∈ Σ. Moreover, f [C[c] + 1] = f [C[c] + 2] =
. . . = f [C[c + 1]] for all c ∈ Σ. Hene, C uniquely determines the First sequene f .For a string t with BWT string bwt and First sequene f , the LF -mapping links eahpositions of bwt to a position of f :

LF (j) :=

{

C[bwt[j]] + rankbwt[j](bwt, j) if bwt[j] 6= '$'
0 if bwt[j] = '$',for all j ∈ [0, n]. If bwt[j] = c is the kth ourrene of the harater c in bwt, then

f [LF (i)] = c is the kth ourrene of c in f . The inverse mapping LF−1 is realised via aselet query:
LF−1(h) = selectf [h](bwt, j −C[h]) for all h ∈ [1, n].Additionally, we maintain a referene p$ to the position of $ in bwt suh that bwt[p$] = $.There exists a one-to-one orrespondene between the su�x arrays with d +R-desentsand the base strings of the respetive sa-equivalene lasses, whih are omposed of exatly

d + 1 distint haraters (see Chapter 4.1). For the proper insertion position 3, Table 5.2shows the extension of the permutation P = (6, 5, 2, 4, 3), the respetive front extension ofthe $-extended base string ABBAA$ by A and the adjustment of the BWT string bwtP . Thesymbol '_' is a sentinel for the index position 1, whih does not belong to the string. Thereal start index is front = 2. The leftmost �ve olumns of the table show the array indies
j, the su�x array P , the +R-array, the BWT string bwtP , and the First sequene for the$-extended base string bP$, bP $ = _ABBAA$. The right part shows the respetive olumnsfor the extended permutation P ⊳

3 with the $-extended base string bP ⊳
3
$ = AABBAA$. Thelines between the BWT olumn and the olumn for the First sequene represent the LF -mapping for the As. If A is attahed to the front of ABBAA$, then we �nd the proper40



5.2 Enumerating the su�x arraysTable 5.2: The extension of the base string bP = ABBAA by adding the harater A to thefront and the e�et on the su�x array and the +R-array.
bP $ = _ABBAA$ bP ⊳

3
$ = AABBAA$

j P [j] +R[j] bwtP [j] bP $[P [j]] j⊳ P ⊳
3 [j⊳] +R

⊳
3[j

⊳] bwtP ⊳
3
[j⊳] bP ⊳

3
$[P ⊳

3 [j⊳]]0 A $ 0 A $1 6 0 A A 1 6 0 A A2 5 1 B A 2 5 1 B A3 1 4 $ A3 2 5 $ A 4 2 6 A A4 4 2 B B 5 4 2 B B5 3 4 A B 6 3 5 A BTable 5.3: The extension of the permutation P with base string bP = ABBAA aording tothe insertion positions 4 and 2.
bP ⊳

4
$ = BACCAA$ bP ⊳

2
$ = ABCCBA$

j⊳ P ⊳
4 [j⊳] bwtP ⊳

4
[j⊳] bP ⊳

4
$[P ⊳

4 [j⊳]] j⊳ P ⊳
2 [j⊳] bwtP ⊳

2
[j⊳] bP ⊳

2
$[P ⊳

2 [j⊳]]0 A $ 0 A $1 6 A A 1 6 B A2 5 C A 2 1 $ A3 2 B A 3 5 C B4 1 $ B 4 2 A B5 4 C C 5 4 C C6 3 A C 6 3 B Cinsertion position 3 by moving the $ at position 3 of bwtP towards the funnel that isformed by the lines representing the LF -mapping for the As. The $ in bwtP is thenreplaed by the attahed A, A is inserted at position 3 of the �rst sequene, and the $ tothe �left� of the attahed A is inserted at position 3 of bwtP . The other positions of theBWT string and the First sequene remain untouhed. Moreover, the new su�x with thesu�x number front⊳ = 1 is inserted at position 3 of the su�x array P . The inserted row
3 is printed in bold fae.For the insertion positions 4 and 2, Table 5.3 shows the respetive extended permuta-tions of P = (6, 5, 2, 4, 3), the modi�ations of the $-extended base string _ABBAA$ of therespetive sa-equivalene lass and the adjustment of the Burrows�Wheeler transform;4 and 2 are non-proper insertion positions. For the insertion position 4, the leftmost four41



5 Counting and Enumerating the Su�x Arraysolumns show the array index j⊳, the extended su�x array P ⊳
4 , the respetive BWT string

bwtP ⊳
4
, and the First sequene for the modi�ed $-extended base string bP ⊳

4
$ = BACCAA$.The rightmost four olumns show the respetive data for the insertion position 2. Thevalues of the inserted rows are again printed in bold fae. The solid lines show the part ofthe LF -mapping touhing the insertion position i of the First sequene, and the dashedlines show the part of the LF -mapping touhing the First sequene at the positions j⊳with j⊳ > i. We observe that the haraters after the insertion position i of the Firstsequene are inreased by one, bP ⊳

i
[j⊳] = bP [j⊳ − 1] + 1 for eah j⊳ > i.Based on our observations, we de�ne the modi�ation of the base string bP of the

sa-equivalene lass TP,Σ.De�nition 5.10. Let Σ be the underlying alphabet, P ∈ Pn−1
Σ a permutation of length

n − 1, bP the base string of the respetive sa-equivalene lass TP,Σ, and PropP the setof proper insertion positions for P . Moreover, let i be a non-proper insertion position,
i ∈ [1, n] with i /∈ PropP . Then we de�ne the modi�ed base string bi,P of length n by(a) bi,P [P [j⊳]] := bP [P [j]] if j⊳ < i,(b) bi,P [P [j⊳]] := bP [P [j]] + 1 if j⊳ > i, and() bi,P [front ⊳] := prop i + 1,where front is the start index of the base string bP and prop i denotes the number of properinsertion positions in the pre�x P [1, i− 1] of P , prop i = |{j ∈ PropP : j < i}|.Lemma 5.11. Let Σ be the underlying alphabet, P ∈ Pn−1

Σ a permutation of length n− 1,
bP the base string of the respetive sa-equivalene lass TP,Σ, and i a non-proper insertionposition of P , i ∈ [1, n] with i /∈ PropP . Then bi,P is the base string of the sa-equivalenelass TP ⊳

i ,Σ
aording to the extended permutation P ⊳

i , bi,P = bP ⊳
i
.Proof. Lemmas 5.5 and 5.6 imply that the extension with respet to the insertion position

i only in�uenes the relative order of the +R-values touhed by the insertion position. Sine
i is a non-proper insertion position, the extension of P either produes a new +R-desentat position i− 1 with +R

⊳
i [i− 1] > +R

⊳
i [i] or a new +R-desent at position i with +R

⊳
i [i] >

+R
⊳
i [i+1], implying the following. If d⊳

j⊳ is the number of +R-desents in P ⊳
i that are smallerthan j⊳ and dj is the number of +R-desents in P that are smaller than j, then we have

dj = d⊳
j⊳ for j⊳ < i and dj + 1 = d⊳

j⊳ for j⊳ > i. Hene, aording to De�nition 5.10 (a andb) and the de�nition of the base strings, we have bi,P [P [j⊳]] = bP [P [j]] = dj +1 = d⊳
j⊳ +1 =

bP ⊳
i
[P ⊳

i [j⊳]] for j⊳ < i and bi,P [P [j⊳]] = bP [P [j]] + 1 = (dj + 1) + 1 = d⊳
j⊳ + 1 = bP ⊳

i
[P ⊳

i [j⊳]]for j⊳ > i, verifying the equality for the positions j⊳ ∈ [1, n] with j⊳ 6= i.For De�nition 5.10(), we exploit the relationship between the +R-runs and the properinsertion positions. Let +R[l, r] be the +R-run with l ≤ i ≤ r, and assume it is the
kth +R-run, so di = k − 1. Moreover, in the proof of Lemma 5.8, we have assignedthe kth proper insertion position iprop to the kth +R-run +R[l, r], l ≤ iprop ≤ r + 1 and
k = |{i ∈ PropP : i ≤ iprop}|. We distinguish two ases:42



5.2 Enumerating the su�x arrays(i) If i < iprop, then
. . . < +R[i− 1] < R[front ] > +R[i] < . . . < +R[iprop − 1] < R[front ] . . . ,where we have +R[iprop − 1] < R[front ] < +R[iprop] sine iprop is a proper insertionposition (see the series of inequalities (5.3) and (5.4) in the proof of Lemma 5.8).Then applying Lemmas 5.5 and 5.6 leads to
. . . < +R

⊳
i [(i− 1)⊳] < +R

⊳
i [i] > +R

⊳
i [i

⊳] < . . .Hene, the insertion at position i produes a new +R-desent i. We have k−1 properinsertion positions of P smaller than i and as many +R-desents of P ⊳
i smaller than

i, propi = d⊳
i . Moreover, the new su�x number front⊳ is inserted at position i suhthat P ⊳

i [i] = front⊳. Therefore, aording to De�nition 5.10() and the de�nition ofthe base strings, bi,P [P ⊳
i [i]] = bi,P [front⊳] = prop i +1 = d⊳

i +1 = bP ⊳
i
[P ⊳

i [i]], verifyingthe equality for the insertion position i.(ii) If i > iprop, then we have
R[front ] < +R[iprop] < . . . . . . < +R[i− 1] > R[front] < +R[i] < . . .Applying Lemmas 5.5 and 5.6 again leads to

. . . < +R
⊳
i [(i− 1)⊳] > +R

⊳
i [i] < +R

⊳
i [i

⊳] < . . .Hene, the insertion at position i produes a new +R-desent at position i − 1. Wehave k proper insertion positions that are smaller than or equal to i: k − 1 for thepreeding +R-runs and in addition the proper insertion position iprop. Moreover, wehave the same number k of +R-desents of P ⊳
i that are smaller than i: We have the

k − 1 preeding +R-runs eah terminated by a +R-desent and in addition the +R-desent i−1 that is produed by the insertion. That is, propi = d⊳
i . Hene, aordingto De�nition 5.10 () and the de�nition of base strings, bi,P [P ⊳

i [i]] = bi,P [front⊳] =
propi +1 = d⊳

i +1 = bP ⊳
i
[P ⊳

i [i]], verifying the equality for the insertion position i.We are now prepared to formulate the desired enumeration algorithm. The main proe-dure EnumSa (Algorithm 5.1) interats with the proedures EnumProp (Algorithm 5.2),EnumNoProp (Algorithm 5.3), and InsReDel (Algorithm 5.4). Let P [1,n]
σ be the setof su�x arrays of strings omposed of up to σ distint haraters with length up to n.EnumSa simultaneously enumerates the base strings up to length n that are omposed ofup to σ distint haraters and the orresponding su�x arrays P ∈ P [1,n]

σ . It starts withthe su�x array (1) of the base string A and gradually extends the su�x arrays P ∈ P [1,n]
σemanating from (1) until the maximum length n is reahed.Without loss of generality, we assume again that the harater set of a base string bPequals the �rst natural numbers [1, |Σ(bP )|]. In eah step, the BWT string is adjusted tothe urrent base string. The parameters of the algorithm are the urrent permutation P ,43



5 Counting and Enumerating the Su�x ArraysAlgorithm 5.1.EnumSan,σ(P, bP , bwtP , p$, enum)1: Penum ← P2: benum ← bP3: enum← enum + 14: if length(bP ) < n then5: PropP ← EnumPropn,σ(P, bP , bwtP , p$, enum)6: if |Σ(bP )| < σ then7: EnumNoPropn,σ(P, bP , bwtP , p$,PropP , enum)8: end if9: end if
Algorithm 5.2.EnumPropn,σ(P, bP , bwtP , p$, enum)1: PropP ← ∅2: for c← |Σ(bP )| down to 1 do3: i← C(c) + rankc(bwtP , p$ − 1) + 14: PropP ← PropP ∪ {i}5: InsReDeln,σ(P, bP , bwtP , p$, enum, i, c)6: end for7: return PropPAlgorithm 5.3.EnumNoPropn,σ(P, bP , bwtP , p$, enum,PropP )1: c← |Σ(bP )|+ 12: if length(bP ) + 1 ∈ PropP then3: c← c− 14: else5: InsReDeln,σ(P, bP , bwtP , p$, enum, length(bP ) + 1, c)6: end if7: for i← length(bP ) down to 1 do8: bwtP [LF−1(i)] = bP [P [i]] + 19: bP [P [i]]← bP [P [i]] + 110: if i ∈ PropP then11: c← c− 112: else13: InsReDeln,σ(P, bP , bwtP , p$, enum, i, c)14: end if15: end for44



5.2 Enumerating the su�x arraysAlgorithm 5.4.InsReDeln,σ(P, bP , bwtP , p$, enum, i, c)1: front ← n− length(bP )2: bP [front ]← c3: bwtP [p$]← c4: p$ ← i5: insert(bwtP , i, '$')6: insert(P, i, front )7: EnumSan,σ(P, bP , bwtP , p$, enum)8: p$ ← LF−1(p$)9: bwtP [p$]← '$'10: bP [front ]← '_'11: delete(bwtP , i)12: delete(P, i)

Table 5.4: Enumeration of base strings
benum up to length 4 over alphabet {A, B}and the respetive su�x arrays Penum.

enum benum Penum1 __A 32 _AA 3, 23 AAA 3, 2, 14 ABA 3, 1, 25 ABB 1, 3, 26 _AB 2, 37 AAB 1, 2, 38 BAB 2, 3, 1the base string bP of the respetive sa-equivalene lass TP,Σ, the BWT string bwtP for the$-extended base string bP$, the index p$ with bwtP [p$] = $, and the urrent enumerationnumber enum. It is invoked with EnumSan,σ((1), A, A$, 1, 1), where (1) is the smallestnon-empty su�x array, A is the base string of the sa-equivalene lass T(1),{A,B} and A$ isthe BWT string for the $-extended base string A$. The reursion terminates if the maximalstring length n is reahed (line 4). Otherwise, EnumProp is alled, whih enumerates theextended permutations for the proper insertion positions. Moreover, if bP is omposed ofless than σ distint haraters, EnumNoProp is alled, whih enumerates the extendedpermutations for the non-proper insertion positions.EnumProp and EnumNoProp both use InsReDel. In lines 2�6, InsReDel at-tahes the harater c at the front of the base string bP , updates the BWT string bwtP ,and inserts the new su�x number front at position i of the permutation P , produingthe extended permutation P ⊳
i . Then EnumSa is alled, whih reursively enumerates thebase strings emanating from bP ⊳

i
= c bP and the su�x arrays emanating from P ⊳

i (line 7).Lines 8�12 reverse the modi�ations of lines 2�6, reonstruting the original data.For eah harater c ontained in the base string bP , EnumProp determines the properinsertion position i that aords to the front extension of bP by c (line 3), stores theinsertion position in PropP (line 4), and alls InsReDel (line 5), whih produes thebase string bP ⊳
i
of the extended su�x array P ⊳

i and reursively enumerates the su�x arraysemanating from P ⊳
i . Finally, EnumProp returns the set of proper insertion positions

PropP . Note that we assume C is impliitly updated during eah insert or delete operation.For all non-proper insertion positions i in desending order, EnumNoProp in ombi-nation with InsReDel suessively produes the base strings bP ⊳
i
of the sa-equivalenelasses for the extended permutations P ⊳

i , realising De�nition 5.10, and reursively enu-merates the base strings emanating from bP ⊳
i
and the su�x arrays emanating from P ⊳

i .EnumNoProp �rst assigns the smallest not yet used harater to c, (line 1). It passesthrough all the insertion positions i, starting with the largest, whih is handled separately45



5 Counting and Enumerating the Su�x Arrays(lines 2�6). When it moves over the position i, then the harater bP [P [i]] at position
i of the First sequene and the orresponding harater in bwtP are inreased aordingto De�nition 5.10(b) (line 8�9). If i moves over a proper insertion position, then c is de-reased to onform with De�nition 5.10() (lines 2+3 and lines 10+11). Otherwise, if i isa non-proper insertion position, InsReDel is alled (lines 4+5 and lines 12+13), whihattahes c to the front of bP , updates bwtP , produes the permutation P ⊳

i , and reursivelyenumerates the base strings emanating from bP ⊳
i

= c bP and the su�x arrays emanatingfrom P ⊳
i . Table 5.4 shows the enumerated base strings benum up to length 4 omposed ofup to 2 distint haraters and the orresponding su�x arrays Penum.Rank and select funtions for the implementation of the BWT have been widely studiedin the ompressed indexing literature, but most of these data strutures are rather stati.For an in-depth study of the rank and select data strutures and their onnetion to theBurrows�Wheeler transform, we refer to the survey of Navarro and Mäkinen [113℄. For thetime-e�ient implementation of our enumeration sheme, dynami data strutures repre-senting the Burrows�Wheeler transform are required. We may use the dynami rank indexof Mäkinen and Navarro [93℄, whih performs rank and select as well as insert and deletequeries in O(log n) time. In this way, the algorithm enumerates the base strings of thenon-empty sa-equivalene lasses and the orresponding su�x arrays in O(log n |P [1,n]

σ |)time, where P [1,n]
σ is the set of su�x arrays of strings omposed of up to σ distint hara-ters with length up to n. We have |P [1,n]

σ | =∑n
j=1

∑σ−1
d=0

〈j
d

〉, whih follows from summingup the su�x array ount of Corollary 5.2 for all strings up to length n. Furthermore, weantiipate Lemma 6.1 of Chapter 6.1. It states∑σ−1
d=0

〈j
d

〉

=
∑σ−1

k=0

(j
k

)

(−1)k(σ−k)j , whihimplies |P [1,n]
σ | = ∑n

j=1

∑σ−1
d=0

〈

j
d

〉

=
∑n

j=1

∑σ−1
k=0

(

j
k

)

(−1)k(σ − k)j . We thus ahieve thetime bound ofO(log n
∑n

j=1

∑σ−1
k=0

(

j
k

)

(−1)k(σ−k)j) for the enumeration of the non-empty
sa-equivalene lasses, represented by their base strings, and the parallel enumeration ofthe orresponding su�x arrays, whih is exponential for σ > 1.The tehnique used in InsReDel (Algorithm 5.4) for the extension of the Burrows�Wheeler transform an also be used for the right-to-left online onstrution of the BWTor the su�x array: Lippert et al. [92℄ used it for the onstrution of the BWT for ge-nomi sequene data. Moreover, Gerlah [52℄ presented a spae-e�ient implementationof Mäkinen and Navarro's [93℄ dynami rank index for the onstrution of a ompressedindex that inorporates the Burrows�Wheeler transform.
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6 Appliation of the String and Su�xArray CountingMany ompressed full-text indies are based on su�x arrays: the ompressed su�x ar-ray of Grossi and Vitter [57℄, the ompressed-su�x-array-based index by Sadakane [123℄,Mäkinen's ompat su�x array [94℄, and several others that improve upon these three (seeNavarro and Mäkinen [113℄).We are interested in the ompressibility of suh indies, in partiular of those basedon su�x arrays. Lower bounds for the size of full-text indies are known: Demaineand López-Ortiz [41℄ proved a lower bound for indies providing substring searh, andMiltersen [107℄ showed lower bounds for seletion and rank indies (see equations (5.5)and (5.6) on page 40).In this hapter, we apply the result of Corollary 5.2 to prove new tight lower boundson the ompressibility of su�x arrays in Setion 6.1. Setion 6.2 leaves the ompressedindexing �eld; it ombines the ounting shemes of the previous two hapters to provesummation identities of Eulerian numbers.6.1 Appliations to ompressed su�x arraysBefore formally stating and proving the results on the ompressibility of su�x arrays, we�rst perform some preliminary work. At �rst sight, the ounting formula for the numberof su�x arrays of Corollary 5.2 looks quite ompat. The Eulerian numbers, however, arereursively de�ned, whih is unfavourable in onsideration of the subsequent reasoning.We rather onvert the formula into a losed form.Lemma 6.1. Let σ and n be �xed positive integers, then
σ−1
∑

d=0

〈

n

d

〉

=
σ−1
∑

k=0

(

n

k

)

(−1)k(σ − k)n.Proof. An equality rule for the Eulerian numbers [56, Setion 6.2, eq. 6.38℄, equality rules47



6 Appliation of the String and Su�x Array Countingfor binomial oe�ients, and some arithmetis lead to
σ−1
∑

d=0

〈

n

d

〉

=
σ−1
∑

d=0

d
∑

k=0

(

n + 1

k

)

(−1)k(d + 1− k)n (6.1)
=

σ−1
∑

d=0

d
∑

k=0

((

n

k

)

+

(

n

k − 1

))

(−1)k(d + 1− k)n (6.2)
=

σ−1
∑

d=0

d
∑

k=0

(

n

k

)

(−1)k(d + 1− k)n

+
σ−1
∑

d=0

d
∑

k=0

(

n

k − 1

)

(−1)k(d + 1− k)n (6.3)
=

σ
∑

d=1

d
∑

k=1

(

n

k − 1

)

(−1)k−1(d + 1− k)n

−
σ−1
∑

d=1

d
∑

k=1

(

n

k − 1

)

(−1)k−1(d + 1− k)n (6.4)
=

σ
∑

k=1

(

n

k − 1

)

(−1)k−1(σ + 1− k)n (6.5)
=

σ−1
∑

k=0

(

n

k

)

(−1)k(σ − k)n, (6.6)where equality (6.1) follows from 〈n
d

〉

=
∑d

k=0

(n+1
k

)

(−1)k(d + 1 − k)n [56, eq. 6.38℄,equality (6.2) from (n+1
k

)

=
(

n
k

)

+
(

n
k−1

), equality (6.3) from the distributivity, equality (6.4)from shifting d and k with respet to the �rst sum and from (

n
k−1

)

= 0 for k ≤ 0,equality (6.5) from subtrating both sums, and �nally equality (6.6) from shifting k again.Many appliation areas for su�x arrays handle small alphabets like the DNA, aminoaid, or ASCII alphabet. Corollary 5.2 thus limits the number of distint su�x arrays forsuh appliations. For example, for a DNA alphabet of size 4, the number of distint su�xarrays of length 16 is 3 614 083 520 =
∑3

d=0

〈16
d

〉; whereas the number of possible permu-tations of length 16 is 20 922 789 888 000 = 16!, whih is about 5 789 times larger. Thisdi�erene inreases rapidly for larger n. We ahieve a lower bound on the ompressibilityof the whole information ontent of su�x arrays.Corollary 6.2. Let Σn be the set of strings of length n over an alphabet Σ of size σ. Thenthe lower bound for the ompressibility of the respetive su�x arrays in the Kolmogorovsense is log(
∑σ−1

k=0

(

n
k

)

(−1)k(σ − k)n).48



6.1 Appliations to ompressed su�x arraysTable 6.1: Number of strings of length n over alphabets of size 4 and 20, and the respetivenumber of su�x arrays.Alphabet size 4 Alphabet size 20
n Strings Su�x arrays Strings Su�x arrays4 256 24 160 000 246 4 096 662 64 000 000 7208 65 536 20 160 25 600 000000 4032010 1 048 576 504 046 ≈ 1.0 · 1013 3 628 80012 16 777 216 10 670 040 ≈ 4.1 · 1015 479 001 60014 268 435 456 202 964 470 ≈ 1.6 · 1018 87 178 29120016 4 294 967296 3 614 083520 ≈ 6.6 · 1020 ≈ 2.1 · 101318 68 719 476736 61 786 015150 ≈ 2.6 · 1023 ≈ 6.4 · 1015Proof. There are ∑σ−1

d=0

〈n
d

〉 distint su�x arrays. Among them, there exists at least onebinary representation with Kolmogorov omplexity not less than log
∑σ−1

d=0

〈n
d

〉. Due toLemma 6.1 this equals log
∑σ−1

k=0

(n
k

)

(−1)k(σ − k)n.We pose a further question: How is the onnetion between the number of strings andthe number of su�x arrays? For inreasing string length, Table 6.1 shows the numberof strings over alphabets of size 4 and 20 (DNA and amino aid alphabet size) and therespetive number of su�x arrays. The �rst olumn shows the string lengths, the seondolumn the number of strings over an alphabet of size 4, the third olumn the numberof su�x arrays for these strings, and the fourth and the �fth olumn show the respetivenumbers for an alphabet of size 20. For a �xed alphabet of size σ and inreasing stringlength n, the number of strings σn and the number of respetive su�x arrays ∑σ−1
d=0

〈n
d

〉diverge, but we do not immediately see whether the ratio between these numbers divergesor onverges. As seen below, it does, in fat, onverge.Theorem 6.3. Let σ be �xed, then
lim

n→∞

∑σ−1
d=0

〈n
d

〉

σn
= 1.Proof. We obtain

lim
n→∞

∑σ−1
d=0

〈n
d

〉

σn
= lim

n→∞

∑σ−1
k=0

(n
k

)

(−1)k(σ − k)n

σn
(6.7)
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n→∞

(

σn

σn
+

σ−1
∑

k=1

(

n

k

)

(−1)k
(σ − k)n

σn

) (6.8)
= 1 +

σ−1
∑

k=1

(−1)k lim
n→∞

((

n

k

)(

1− k

σ

)n) (6.9)
= 1, (6.10)49



6 Appliation of the String and Su�x Array Countingwhere equation (6.7) follows from Lemma 6.1, equations (6.8) and (6.9) from basi arith-metis, and equation (6.10) from the fat that limn→∞

(

(n
k

) (

1− k
σ

)n
)

= 0 for 0 < k
σ < 1:The exponential term (

1− k
σ

)n onverges to 0 and dominates the polynomial term (n
k

),
(n
k

)

≤ nk.Note that Theorem 6.3 only holds if the alphabet is of a onstant size. If the alpha-bet size grows proportionally to the string length, it is not true anymore. For σ = n,
limn→∞

Pσ−1
d=0 〈nd〉
σn = limn→∞

n!
nn = 0.6.2 Summation identitiesWe present onstrutive proofs for two long known summation identities of Eulerian num-bers dedued by summing up the number of di�erent su�x arrays for a �xed alphabet sizeand string length. We believe that our onstrutive proofs are simpler than previous ones.Worpitzki's identity. The identity σn =

∑

i

〈

n
i

〉(

σ+i
n

), as given in [56, eq. 6.37℄, wasproven bak in 1883 by J. Worpitzki. We prove it by summing up the number of string-distint strings of length n over a given alphabet of size σ for eah su�x array:
σn =

σ−1
∑

d=0

〈

n

d

〉(

n + σ − d− 1

σ − d− 1

) (6.11)
=

σ−1
∑

d=0

〈

n

n− 1− d

〉(

n + σ − d− 1

n

) (6.12)
=

n−1
∑

i=n−σ

〈

n

i

〉(

σ + i

n

) (6.13)
=

∑

i∈N0

〈

n

i

〉(

σ + i

n

)

. (6.14)Equality (6.12) follows from the symmetry rule for Eulerian and binomial numbers, equal-ity (6.13) from substituting i = n − d − 1, and equality (6.14) from 〈n
i

〉

= 0 for all i ≥ nand (σ+i
n

)

= 0 for all i < n− σ.Summation of Eulerian numbers to generate the Stirling numbers of the seond kind.The seond summation identity is the summation rule for Eulerian numbers to generatethe Stirling numbers of the seond kind [56, eq. 6.39℄: κ!
{

n
κ

}

=
∑

i

〈

n
i

〉(

i
n−κ

). To prove thisidentity, we ount the κ!
{

n
κ

} strings omposed of exatly κ di�erent haraters. Summing50



6.2 Summation identitiesup these strings for eah su�x array gives
κ!

{

n

κ

}

=
κ−1
∑

d=0

〈

n

d

〉(

n− d− 1

κ− d− 1

) (6.15)
=

∑

d∈N0

〈

n

d

〉(

(n− κ) + (κ− d− 1)

κ− d− 1

) (6.16)
=

∑

d∈N0

〈

n

n− 1− d

〉(

n− d− 1

n− κ

) (6.17)
=

∑

i∈N0

〈

n

i

〉(

i

n− κ

)

. (6.18)Equality (6.16) holds sine 〈nd〉 = 0 for d ≥ κ, equality (6.17) follows from the symmetryrule for Eulerian and binomial numbers, and equality (6.18) from substituting i = n−d−1.
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7 IntrodutionThere are several approahes to onstrut a su�x array. We an, for example, onstruta su�x tree and derive the su�x array by traversing the onstruted su�x tree �from leftto right� (see [58, Setion 7.14.1℄). In this seond part of the thesis, we mainly fous ondiret su�x array onstrution algorithms, i.e., not taking the detour over su�x trees.We reall the su�x array onstrution algorithms mentioned in the introdution of thethesis. Besides the O(n log n) time pre�x-doubling algorithm of Manber and Myers [96℄,there are mainly three groups of algorithms: linear-time algorithms, other algorithmspartiularly designed for fast pratial speed, and lightweight algorithms that try to min-imise the auxiliary spae during su�x array onstrution. The linear-time algorithms arethe skew algorithm of Kärkkäinen and Sanders [71℄, the linear-time odd�even algorithmof Kim et al. [80℄, and the smaller�larger algorithm of Ko and Aluru [85℄. Algorithmspartiularly designed for fast pratial speed are qsufsort by Larsson and Sadakane [90℄and the O(n log log n) time odd�even algorithm of Kim et al. [78℄ based on [80℄, but withfaster pratial running times. Lightweight algorithms are Itoh and Tanaka's two-stagealgorithm [67℄, the opy and the ahe algorithms of Seward [135℄, deep�shallow sort-ing of Manzini and Ferragina [102℄, and the di�erene-over algorithm of Burkhardt andKärkkäinen [31℄. We reated the name smaller�larger ourselves and took the others fromthe literature. The three groups of algorithms are summarised in Table 7.1.The above mentioned su�x array onstrution algorithms meet some of the followingrequirements for pratial su�x array onstrution:� Fast onstrution for ommon real-life strings (small average LCP): qsufsort [90℄,two-stage [67℄, opy and ahe [135℄, deep�shallow [102℄, and odd�even [78℄;� Fast onstrution for degenerate strings (high average LCP): pre�x-doubling [96℄,qsufsort [90℄, skew [71℄, odd�even [80℄, smaller�larger [85℄, di�erene-over [31℄, andodd�even [78℄;� Small spae requirements: two-stage [67℄, opy and ahe [135℄, deep�shallow [102℄,and di�erene-over [31℄.As we have mentioned in Chapter 1, we believe that further properties are required.Espeially in biologial sequene data, there are many long sequenes with mainly smallLCPs, interrupted by oasional very large LCPs. Hene, one has to build su�x arraysfor strings with highly variable LCPs.We present a new algorithm that satis�es these requirements. Before that, we reviewthe above mentioned previous su�x array onstrution algorithms. These algorithms use55



7 IntrodutionTable 7.1: Summary of the su�x array onstrution algorithms.Su�x array onstrution algorithmslinear-time fast pratial lightweightskew (Kärkkäinen qsufsort (Larsson two-stageand Sanders [71℄) and Sadakane [90℄) (Itoh and Tanaka [67℄)odd�even odd�even opy(Kim et al. [80℄) (Kim et al. [78℄) (Seward [135℄)smaller�larger ahe(Ko and Aluru [85℄) (Seward [135℄)deep�shallow (Manziniand Ferragina [102℄)di�erene-over (Burkhardtand Kärkkäinen [31℄)various auxiliary data strutures that we de�ne in Setion 7.1. Chapter 8 lassi�es thetehniques used and surveys the algorithms. Chapter 9 then presents our new buket-pointer re�nement algorithm, and Chapter 10 provides experimental results.7.1 De�nitions and notationsLet $ be a harater not ontained in the alphabet Σ, and assume $ < c for all c ∈ Σ. Weoften onsider the $-padded extension t$n of a string t of length n, whih we impliitlyassume in the subsequent desription of the su�x array onstrution algorithms. Thus, ifan algorithm uses a harater at a position greater than n, then it is a $.In the following, sa denotes the not neessarily sorted su�x array sa(t) of a string tof length n. That is, it is not lexiographially sorted before the ompletion of the su�xsorting proess. A buket sa[l, r] = sa[l], sa[l + 1], . . . , sa[r] with 1 ≤ l ≤ r ≤ n is aontiguous su�x array segment of su�xes with equal, non-empty pre�x suh that, for allindies g, i, h ∈ N with 1 ≤ g < l ≤ i ≤ r < h ≤ n,
t[sa[g], n] < t[sa[i], n] < t[sa[h], n].We disregard the order of su�xes in a buket; bukets ontaining the same set of su�xes,but in a di�erent order, are onsidered to be equal. An ℓ-buket ontains su�xes allsharing the same pre�x of length ℓ, where ℓ is alled the re�nement level of the buket.Note that ℓ is not neessarily the longest ommon pre�x of all su�xes in an ℓ-buket, andan ℓ-buket is also an ℓ′-buket for ℓ′ ≤ ℓ. A buket sa[i, j] is termed a sub-buket of asuper-buket sa[l, r] if l ≤ i ≤ j ≤ r. Buket re�nement deomposes a buket sa[l, r] intoa list of re�ned sub-bukets sa[l1, r1], sa[l2, r2], . . . , sa[lβ , rβ ] for some β ∈ [1, r− l+1] suh56



7.1 De�nitions and notations1 4 5 2 35 1 4 2 3 4 5 1 2 3 1 4 5 3 25 4 1 2 3 5 1 4 3 2 4 5 1 3 25 4 1 3 2Figure 7.1: A Hasse diagram representing the partial order of the buket segmentationsfor the string ABBAA, whih has the su�x array (5, 4, 1, 3, 2). The vertial bars betweenthe su�x numbers denote the buket boundaries.that l = l1, rβ = r, lk ≤ rk for all k ∈ [1, β], and rk + 1 = lk+1 for all k ∈ [1, β − 1].Likewise, a buket segmentation is a deomposition of the whole su�x array into a list ofbukets with re�nement level ℓ > 0, sa[l1, r1], sa[l2, r2], . . . , sa[lβ , rβ ] for some β ∈ [1, n],suh that 1 = l1, rβ = n, lk ≤ rk for all k ∈ [1, β], and rk + 1 = lk+1 for all k ∈ [1, β − 1],where sa[lk, rk] is the kth buket; k is alled the buket number for all su�x numbers in
sa[lk, rk]. An ℓ-buket segmentation onsists of ℓ-bukets, ℓ > 0.A buket segmentation is alled re�ned buket segmentation or, alternatively, sub-buketsegmentation of a super-buket segmentation if eah buket of the sub-buket segmentationis a sub-buket of a buket in the super-buket segmentation. Repeated buket re�nementultimately leads to the buket segmentation onsisting of singleton bukets only, whihorresponds to the sorted su�x array.For a given string, the sub-buket�super-buket relation de�nes a partial order on the setof all possible buket segmentations. The 1-buket segmentation is the super-buket seg-mentation of every other buket segmentation, and hene, the largest in the partial order.The buket segmentation only onsisting of singleton bukets is the smallest. Figure 7.1shows a Hasse diagram representing the partial order of the buket segmentations for theinput string ABBAA.The intermediate result of many su�x array onstrution algorithms is the sorted orderof su�xes regarding their pre�xes of a ertain length ℓ, the ℓ-order. It is de�ned by theorder relation ≤ℓ:

t[u, n] ≤ℓ t[v, n] :⇐⇒ t[u, u + ℓ− 1] ≤ t[v, v + ℓ− 1]for any two su�x numbers u, v ∈ [1, n]. The relations <ℓ and =ℓ are de�ned analogously.Some algorithms represent the ℓ-order by storing the buket number bnr for eah su�x.Let sa[lk, rk] be the kth buket of a buket segmentation into β bukets, k ∈ [1, β]. Reallthat, for eah su�x number u that is an element of the kth buket sa[lk, rk], we have
bnr[u] := k. More preisely,

bnr[sa[i]] := k for eah i ∈ [lk, rk] and for eah k ∈ [1, β]. (7.1)57



7 IntrodutionAlternatively, a buket pointer bptr[u] is stored for eah su�x number u ∈ [1, n]. For allsu�x numbers u and v in the same buket sa[lk, rk], we have bptr[u] = bptr[v] = i forsome i ∈ [l, r]. We may use the rightmost position of a buket as buket pointer suh that
bptr[sa[i]] := rk for eah i ∈ [lk, rk] and for eah k ∈ [1, β]. (7.2)For eah su�x number u, both buket number and buket pointer ombine the lexiograph-ially sorted order of the respetive su�x t[u, n] with respet to the leading haraters intoa single sort key. For an ℓ-buket segmentation, there is the following onnetion betweenthe ℓ-order, buket numbers, and buket pointers:
t[u, n] ≤ℓ t[v, n]⇐⇒ bnr[u] ≤ bnr[v]⇐⇒ bptr[u] ≤ bptr[v]for all su�x numbers u, v ∈ [1, n]. If all bukets are singletons, then the arrays bnr and

bptr orrespond to the rank array R or, alternatively, to the inverse su�x array.A radix step denotes the part of an algorithm in whih strings are sorted aording tothe haraters at a ertain o�set ℓ in the string; ℓ is alled radix level. A radix step is likea single iteration of most-signi�ant-digit (MSD) radix sort (see [82, Setion 5.2.5℄). Thatis, the sorting proedure orders any two su�xes t[u, n] and t[v, n] sharing the same pre�xof length ℓ by their haraters t[u + ℓ] and t[v + ℓ] (note the equality of radix level andre�nement level).The length of the longest ommon pre�x of two strings t and t′ is referred to by lcp(t, t′).For two su�x numbers u, v ∈ [1, n], lcp(u, v) denotes the length of the longest ommonpre�x of t[u, n] and t[v, n]. For a su�x array sa of a string t of length n, the LCP array
lcp of length n − 1 is de�ned by the length of the longest ommon pre�x of onseutivesu�xes in the su�x array, lcp[i] := lcp(t[sa[i], n], t[sa[i + 1], n]) for all i ∈ [1, n − 1]. Fortwo positions g, h ∈ [1, n] with g < h, we obtain the length of the longest ommon pre�xof the su�xes t[sa[g], n] and t[sa[h], n] by lcp(sa[g], sa[h]) = min{lcp[i] : i ∈ [g, h − 1]}.
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8 Classi�ation and Survey of PreviousSu�x Array Constrution AlgorithmsIn the last years, many su�x array onstrution algorithms have been invented usingvarious tehniques. Puglisi et al. [120℄ reently ategorised the su�x array onstrutionalgorithms into three di�erent lasses: pre�x-doubling, reursive, and indued opying.Some algorithms, however, are not uniquely assignable to a single lass and are thuslassi�ed as hybrid.In Setion 8.1, we present two new orthogonal lassi�ations. In both, eah su�x arrayonstrution algorithm surveyed is uniquely assignable to only one of two possible lasses.After that, Setions 8.2 and 8.3 review the lassi�ed algorithms: we survey eah algorithm,give the worst-ase and expeted-ase time bounds, and analyse the spae requirements.8.1 Classifying su�x array onstrution algorithmsWe ategorise the su�x array onstrution algorithms with respet to two orthogonallassi�ation types: The �rst lassi�es the algorithms regarding their progress in the su�xsorting proess, Setion 8.1.1, and the seond regarding the use of dependenies amongsu�xes, Setion 8.1.2.8.1.1 Progression of the su�x sorting proessThis lassi�ation groups the algorithms based on two questions: Whih su�xes are �rstproessed, and how does the su�x sorting proess advane? The algorithms are lassi�edinto two groups: buket re�nement and redued string sorting.8.1.1.1 Buket re�nementMany of the pratial su�x array onstrution algorithms order su�xes regarding theirleading haraters into bukets, whih are then reursively re�ned. These algorithms arelassi�ed as buket re�nement algorithms. The �rst type of buket re�nement tehniquesfound in the literature is formed by string sorting methods without using the dependeniesamong su�xes. Most representatives of this lass sort the su�xes regarding their leadingharaters and then re�ne the groups of su�xes with equal pre�xes by reursively perform-ing radix steps with inreasing radix level until unique pre�xes are obtained. Algorithmsthat fall into this ategory are the MSD radix sort implementation of MIlroy et al. [106℄and Multikey Quiksort of Bentley and Sedgewik [23℄. 59



8 Classi�ation and Survey of Previous Su�x Array Constrution AlgorithmsThe seond type of buket re�nement algorithms use the order of previously omputedsu�xes in the re�nement phase. If two su�xes t[u, n] and t[v, n] share a ommon pre�xof length ℓ, then their ordering an be derived from the ordering of their ℓ-suessors
t[u + ℓ, n] and t[v + ℓ, n]. We further divide these algorithms into two subgroups: al-gorithms performing breadth-�rst re�nement, as the pre�x-doubling algorithm of Manberand Myers [96℄ and the qsufsort algorithm of Larsson and Sadakane [90℄, and algorithmsperforming depth-�rst re�nement, as Itoh and Tanaka's two-stage algorithm [67℄, the opyand the ahe algorithms of Seward [135℄, and deep�shallow sorting of Manzini and Fer-ragina [102℄. The breadth-�rst re�nement algorithms iteratively ompute ℓ-buket seg-mentations for an inreasing ℓ suh that all bukets share the same re�nement level aftereah iteration, whereas the depth-�rst re�nement algorithms follow the re�nement shemeof methods of the �rst type: Before starting with the next buket, they re�ne a singlebuket until all its sub-bukets are singletons. Many pratial algorithms that use thistehnique also apply methods of the �rst type to fall bak upon if the order of su�xes atthe o�set ℓ is not yet available.Figure 8.1 shows stages of the buket re�nement proess for the string AAABBABBBAAABBAB.We represent eah su�x by a vertial bar, where the length of the bar represents itsrelative lexiographial order: short bars for lexiographially small su�xes and long barsfor lexiographially large su�xes. The top piture shows the su�xes ordered by theirstarting positions in the string from left to right. The pitures in the middle show a buketsegmentation after some steps of buket re�nement algorithms. The middle piture tothe left shows an intermediate buket segmentation for a breadth-�rst buket re�nementalgorithm, and the middle piture to the right shows an intermediate buket segmentationof a depth-�rst buket re�nement algorithm. The bottom piture represents the ompletelysorted su�x array.8.1.1.2 Redued string sortingOther su�x array onstrution algorithms selet a spei� subset sub of su�x numbers,sort the orresponding su�xes with respet to their pre�xes of a partiular length, assign asort key to eah suh su�x that represents the lexiographial order with respet to thosepre�xes, and form a redued string tsub of length |sub| onsisting of the previously assignedsort keys suh that the su�x array sa(tsub) of tsub re�ets the lexiographially sortedorder of all su�xes in sub. The algorithms then onstrut the su�x array sa(tsub) of tsub,and derive therefrom the lexiographially sorted order of the original su�xes in sub. Fi-nally, the lexiographially sorted su�xes in sub are used as anhors for the sorting of theremaining su�xes, and the omplete su�x array is omputed. Burkhardt and Kärkkäi-nen's di�erene-over algorithm [31℄, Kärkkäinen and Sanders's skew algorithm [71℄, theodd�even algorithm of Kim et al. [80℄ (also [78℄), and the smaller�larger algorithm of Koand Aluru [85℄ follow this sheme. We all them redued string sorting algorithms.Figure 8.1 shows stages of a redued string sorting algorithm, again for the stringAAABBABBBAAABBAB. The su�xes with their relative lexiographial order are again rep-resented by vertial bars of di�erent lengths. The top piture shows the su�xes ordered60



8.1 Classifying su�x array onstrution algorithms

breadth-�rst depth-�rst
Figure 8.1: Stages of buket re�ne-ment algorithms for the stringAAABBABBBAAABBAB. Figure 8.2: Stages of a redued stringsorting algorithm for the stringAAABBABBBAAABBAB.by their starting positions in the string from left to right, where the bars for the su�xesstarting at the odd positions are printed in bold fae. The middle piture represents thelexiographially sorted su�xes with odd starting position. The bottom piture againrepresents the ompletely sorted su�x array.8.1.2 Dependeny among su�xesAnother lassi�ation sheme groups the su�xes regarding their use of dependeniesamong su�xes. If two su�xes t[u, n] and t[v, n] share a ommon pre�x of length ℓ, thentheir order an be derived from the order of su�xes t[u + ℓ, n] and t[v + ℓ, n]. We distin-guish two tehniques: the push method and the pull method. The terms push and pull areadopted from the terminology of information systems: They are ommuniation strategiesbetween information arrier and information reeiver. The push method refers to a styleof ommuniation where the information interhange originates with the information ar-rier. It is ontrasted with the pull method, where the information reeiver requests for thetransmission of information. 61



8 Classi�ation and Survey of Previous Su�x Array Constrution AlgorithmsTable 8.1: Summary of the lassi�ations.Su�x sorting Using dependenies among su�xesproess push pullBuket re�nement pre�x-doubling qsufsort(breadth-�rst) (Manber and Myers [96℄) (Larsson and Sadakane [90℄)Buket re�nement two-stage ahe(depth-�rst) (Itoh and Tanaka [67℄) (Seward [135℄)opy(Seward [135℄)deep�shallow(Manzini and Ferragina [102℄)Redued string skew di�erene-oversorting (Kärkkäinen and Sanders [71℄) (Burkhardt and Kärkkäinen [31℄)odd�even(Kim et al. [80℄, also [78℄)smaller�larger(Ko and Aluru [85℄)8.1.2.1 Push methodThe push method uses the ordering of previously determined groups of su�xes (informa-tion arrier) and passes this ordering on to undetermined groups of predeessor su�xes(information reeiver). This tehnique is used in many algorithms. Manber and Myers'spre�x-doubling algorithm [96℄, Itoh and Tanaka's two-stage algorithm [67℄, Seward's opyalgorithm [135℄, and deep�shallow sorting of Manzini and Ferragina [102℄ are examplesof buket re�nement algorithms that use this method. It is also used in the linear-timealgorithms: skew of Kärkkäinen and Sanders [71℄, odd�even of Kim et al. [80℄ (also [78℄),and smaller�larger of Ko and Aluru [85℄.8.1.2.2 Pull methodThe pull method is used for the omparison-based sorting. Algorithms look up the or-der of suessor su�xes t[u + ℓ, n] and t[v + ℓ, n] to determine the order of t[u, n] and
t[v, n] (information request). Some representatives that use this tehnique are: Larssonand Sadakane's qsufsort [90℄, Seward's ahe algorithm [135℄, and the di�erene-overalgorithm of Burkhardt and Kärkkäinen [31℄.62



8.2 Buket re�nement algorithmsTable 8.1 summarises the lassi�ation of the su�x array onstrution algorithms thatuse dependenies among su�xes; ordinary string sorting algorithms are not shown. The�rst olumn shows the lasses regarding the progress of the su�x sorting proess. Theseond olumn shows algorithms using the push method and the third olumn algorithmsusing the pull tehnique. We ontinue with a survey of the ategorised algorithms: buketre�nement algorithms in Setion 8.2 and redued string sorting algorithms in Setion 8.3.8.2 Buket re�nement algorithmsWe on�ne ourselves to the buket re�nement algorithms utilising the dependenies amongsu�xes. Setion 8.2.1 reviews the algorithms performing breadth-�rst buket re�nementand Setion 8.2.2 the algorithms performing depth-�rst buket re�nement. The algo-rithms are analysed regarding their onstrution time and spae requirements, where theexpeted onstrution times are given for a Bernoulli sequene model (i.e., symbols fromthe alphabet are generated independently).8.2.1 Breadth-�rst buket re�nement � pre�x-doubling algorithmsThe pre�x-doubling algorithms of Manber and Myers [96℄ and Larsson and Sadakane [90℄both use ideas of Karp et al. [75℄. They �rst sort the su�xes with respet to their leadingharater, produing a 1-buket segmentation. Then they iteratively double the pre�xlength with respet to whih the su�xes are sorted, produing a 2i-buket segmentationin the ith iteration. The iteration loop terminates when all bukets are singletons.At the beginning of the ith iteration step, the su�xes are ℓ-ordered with ℓ = 2i−1.For any two su�xes t[u, n] and t[v, n] with u, v ∈ [1, n], we obtain their relative 2ℓ-orderby ombining the relative ℓ-order of t[u, n] and t[v, n] with the relative ℓ-order of theirsuessor su�xes t[u + ℓ, n] and t[v + ℓ, n]:
t[u, n] ≤2ℓ t[v, n]⇐⇒

{

t[u, n] <ℓ t[v, n] or
t[u, n] =ℓ t[v, n] and t[u + ℓ, n] ≤ℓ t[v + ℓ, n]

(8.1)for u, v ∈ [1, n − ℓ]. Alternatively,
t[u− ℓ, n] ≤2ℓ t[v − ℓ, n]⇐⇒

{

t[u− ℓ, n] <ℓ t[v − ℓ, n] or
t[u− ℓ, n] =ℓ t[v − ℓ, n] and t[u, n] ≤ℓ t[v, n],

(8.2)for u, v ∈ [ℓ + 1, n].8.2.1.1 The pre�x-doubling algorithm of Manber and MyersThe algorithm of Manber and Myers [96℄ �rst performs a buket sort of the su�xes a-ording to their leading haraters. Then it repeats the pre�x-doubling proess, whihuses equivalene (8.2), until all bukets are singletons.Eah pre�x-doubling iteration assumes an ℓ-buket segmentation sa[l1, r1], sa[l2, r2], . . . ,
sa[lβ , rβ] with ℓ = 2i for some i ∈ [1, ⌈log2 n⌉]. Moreover, frontk refers to the front63



8 Classi�ation and Survey of Previous Su�x Array Constrution Algorithmsposition of the kth buket sa[lk, rk] for all k ∈ [1, β], initially frontk = lk. The algorithmsans sa buket-wise from left to right. For eah buket sa[lk, rk], it starts with the su�xnumber sa[lk], loates its ℓ-predeessor sa[lk] − ℓ ontained in some ℓ-buket sa[lg, rg],moves sa[lk]− ℓ to the urrent front of sa[lg, rg] (i.e., sa[frontg]← sa[lk]− ℓ) and advanesthe front of sa[lg, rg] by one position to the right (i.e., frontg ← frontg + 1). Thenthe algorithm ontinues with the next su�x number sa[lk + 1] in sa[lk, rk], moves its ℓ-predeessor sa[lk + 1]− ℓ to the front of its buket and advanes that front by one. Thisproedure is repeated for all su�x numbers in sa[lk, rk] from left to right. After sanningthe whole buket sa[lk, rk], the ontiguous segments of su�xes at the leftmost positions ofeah ℓ-buket that have been moved to the front during the san form a 2ℓ-buket. Theproedure is repeated for all bukets sa[lk, rk] with 1 ≤ k ≤ β in asending order, resultingin a 2ℓ-buket segmentation of sa.Time and spae onsumption. Eah pre�x-doubling iteration an be performed in O(n)time and there are at most log n pre�x-doubling iterations until the string length is reahed,whih together gives an O(n log n) worst-ase time bound for the whole algorithm. Manberand Myers further enhaned the �rst stage of their algorithm suh that it generates a
(log|Σ(t)| n)-buket segmentation in linear time, resulting in an O(n) expeted-ase timebound.The algorithm an be implemented using 2n words of spae: the su�x array and anauxiliary array handling the bukets, eah onsuming n words. The input string needsnot to be kept in main memory during the onstrution of the su�x array. An e�ientimplementation is given by MIlroy [105℄.8.2.1.2 The qsufsort algorithm of Larsson and SadakaneLike Manber and Myers's algorithm, the qsufsort algorithm of Larsson and Sadakane [90℄�rst sorts the su�xes with respet to the leading harater. After that, however, thepre�x-doubling iteration of qsufsort uses equivalene (8.1) instead of equivalene (8.2).Eah iteration again takes an ℓ-buket segmentation and produes a 2ℓ-buket segmenta-tion, but here, eah buket is re�ned loally. The algorithm maintains a buket pointer
bptr[u] for eah su�x number u ∈ [1, n] representing the relative ℓ-order of the suf-�xes. Let sa[l1, r1], sa[l2, r2], . . . , sa[lβ, rβ ] be the urrent ℓ-buket segmentation. For eah
k ∈ [1, β], the re�nement proedure sorts the su�x numbers in sa[lk, rk] with respet tothe buket pointers of their ℓ-suessors sa[lk] + ℓ, sa[lk + 1] + ℓ, . . . , sa[rk] + ℓ. That is,
bptr[sa[lk] + ℓ], bptr[sa[lk + 1] + ℓ], . . . , bptr[sa[rk] + ℓ] are the orresponding sort keys.Bentley and MIlroy's Ternary-Split Quiksort is applied to sort eah ℓ-buket. Afterall bukets have been proessed, the algorithm omputes the splitting positions betweennon-equal sort keys for eah buket. Together with the previous splitting positions, whihhave determined the ℓ-buket segmentation, these new splitting positions determine the
2ℓ-buket segmentation. Finally, the algorithm updates the buket pointers. As before,the pre�x-doubling proess is repeated until all bukets are singletons.64



8.2 Buket re�nement algorithmsTime and spae onsumption. As the algorithm of Manber and Myers, Larsson andSadakane's algorithm reahes anO(n log n) worst-ase time bound and requires 2n words ofspae: n words for the su�x array and n words for the buket pointer array. Nevertheless,in terms of pratial running time, it is signi�antly faster (see Larsson and Sadakane [90,page 18℄ for running times of the two algorithms).8.2.2 Depth-�rst buket re�nementWe begin the review of the depth-�rst buket re�nement algorithms with the two-stagealgorithm of Itoh and Tanaka [67℄ and ontinue with opy and ahe by Seward [135℄. Theformer two implement the push tehnique and ahe uses the pull tehnique. Finally, wereview deep�shallow sorting of Manzini and Ferragina [102℄, whih is based on the teh-nique used by opy. For the analysis of these algorithms, we assume that the underlyingalphabet of the input strings is of onstant size σ.8.2.2.1 The two-stage algorithm of Itoh and TanakaItoh and Tanaka [67℄ lassify eah su�x as type s or type l (smaller or larger). We insteaduse the notation � for the su�xes of type s, and ≻ for the su�xes of type l. A su�x
t[u, n] with u ∈ [1, n − 1] is of type � if its �rst harater is smaller than or equal to the�rst harater of its suessor t[u + 1, n], t[u] ≤ t[u + 1]. Otherwise it is of type ≻.The algorithm suessively performs three phases. The su�xes are �rst buket sortedwith respet to their leading harater and su�x type (� or ≻). That is, there are 2σbukets, where a buket sa[lc,τ , rc,τ ] ontains all su�xes of type τ ∈ {�,≻} with leadingharater c ∈ Σ. Furthermore, the su�x number n of the last su�x t[n, n] is moved tothe front of its buket.The seond phase sorts all bukets ontaining su�xes of type �: Large bukets arere�ned byMSD radix sort, medium bukets are sorted by Bentley and Sedgewik'sMultikeyQuiksort [23℄, and small bukets by Insertion Sort.The third phase determines the order of all su�xes of type ≻ and assigns them to their�nal position: The algorithm sans the su�x array sa from left to right. For eah position
i ∈ [1, n], if the predeessor t[sa[i]−1, n] of su�x t[sa[i], n] is of type ≻, then the algorithmassigns sa[i]− 1 to the urrent front of the buket sa[lt[sa[i]−1],≻, rt[sa[i]−1],≻] and advanesthe front of the buket by one position to the right. The su�x sorting proess is ompletedafter sanning the whole su�x array sa.Time and spae onsumption. The buket sorting in phase one and the assignmentof su�xes of type ≻ to their �nal positions in phase three an be performed in lineartime. The most time-onsuming part is the MSD radix sort in phase 2. Its runningtime is bounded by the omparison-based sorting omplexity O(n log n) multiplied bythe maximum longest ommon pre�x length of two su�xes of the input t, where themaximal longest ommon pre�x length is n− 1 ∈ O(n) and the expeted longest ommon65



8 Classi�ation and Survey of Previous Su�x Array Constrution Algorithmspre�x length is O(log n) for di�erent string models, a simple onsequene of results byApostolio and Szpankowski [9℄ and Szpankowski [139℄. Hene, O(n2 log n) is the worstand O(n log2 n) the expeted onstrution time of the two-stage algorithm.The auxiliary spae requirements are negligible: In addition to the su�x array and theinput string, only 2σ words are required to store the buket boundaries.8.2.2.2 The opy and the ahe algorithms of SewardSeward [135℄ presented some tehniques for the onstrution of the Burrows�Wheelertransform, whih are used in the program bzip2 [134℄. These tehniques an also beapplied for su�x array onstrution, beause of the equivalene to the onstrution ofthe Burrows�Wheeler transform. Here, the opy method, whih was earlier mentioned byBurrows and Wheeler [32℄, and the ahe method are reviewed.Before applying one of these tehniques, the su�xes are buket sorted aording to theirleading two haraters, generating a 2-buket segmentation of the su�x array. Buketsonsisting of all su�xes with the leading harater b and seond harater c, (b, c) ∈ Σ2,form the 2-buket sa[lb,c, rb,c], and the onseutive 2-bukets onsisting of su�xes sharingthe leading harater b form the 1-buket sa[lb, rb] onsisting of all su�xes with leadingharater b.The opy algorithm. The opy algorithm proeeds similarly to the two-stage algorithm.After the initial buket sort, opy performs the following steps for eah 1-buket sa[lc, rc],
c ∈ Σ. An ordinary string sorting algorithm sorts eah 2-buket sa[lb,c, rb,c], (b, c) ∈ Σ2,that has not yet been sorted, exept for the buket sa[lc,c, rc,c] that onsists of su�xes withequal �rst and seond harater. Let sa[lb1,c, rb1,c], sa[lb2,c, rb2,c], . . . , sa[lbσ ,c, rbσ ,c] be the2-bukets of su�xes with seond harater c, bk ∈ Σ for all k ∈ [1, σ]. The algorithm passesthe ordering of su�xes in sa[lc, rc] on to the spei�ed 2-bukets: It performs a left-to-rightsan over sa[lc, lc,c − 1] and over the �left part� of sa[lc,c, rc,c], and then a right-to-leftsan over sa[rc,c + 1, rc] and over the �right part� of sa[lc,c, rc,c], e�etively sanning thewhole 1-buket sa[lc, rc]. For eah su�x number u enountered in the left-to-right san,if sa[lt[u−1],c, rt[u−1],c] is not already sorted, then the predeessor su�x number u − 1 isassigned to the front of the buket sa[lt[u−1],c, rt[u−1],c], and that front is advaned by oneposition to the right. The left-to-right san stops if it reahes a position of sa[lc,c, rc,c] thathas not been assigned during the urrent left-to-right san, or if the rightmost position rc,cof sa[lc,c, rc,c] is reahed. The right-to-left san proeeds analogously, the only di�erenebeing that the su�x numbers are assigned to the end of the bukets. Afterwards, all
2-bukets sa[lb,c, rb,c] with c ∈ Σ are orretly sorted, inluding sa[lc,c, rc,c].The ahe algorithm. The ahe algorithm an be used in ombination with opy. Ituses an additional ahe array RC of length n, whih is a sort of �partial rank� of thesu�x array.The 1-bukets (or rather their sub-bukets) are sorted with an ordinary string sortingalgorithm as before. After a 1-buket sa[lc, rc] with v ∈ Σ is ompletely re�ned, RC is66



8.2 Buket re�nement algorithmsupdated suh that RC [sa[i]] := i − lc for all i ∈ [lc, rc]. Afterwards, the relative order ofany two su�xes t[u, n] and t[v, n] that share the same leading harater c (= t[u] = t[v])is represented by the order of their RC values. That is, t[u, n] < t[v, n] if and only if
RC [u] < RC [v]. This property is used by the string sorting algorithm. Whenever itompares two su�xes t[u, n] and t[v, n] (u, v ∈ [1, n]) that share the same leading harater
c for whih the orresponding 1-buket sa[lc, rc] has been previously sorted, it uses thesort key RC [u] for t[u, n] and RC [v] for t[v, n].Time and spae onsumption. The time bounds for ahe and opy are the same.The buket sorting in phase one, the opying of su�x numbers, and the maintenane ofthe ahe array an be performed in linear time. The most time-onsuming part is thestring sorting of bukets, whih is bounded by the omparison-based sorting omplexity
O(n log n) multiplied by the maximum longest ommon pre�x length of two su�xes, whihis again O(log n) in the expeted ase and O(n) in the worst ase. Hene, O(n log2 n) isthe expeted and O(n2 log n) the worst onstrution time.The auxiliary spae requirements of opy are negligible, as those of the two-stage algo-rithm: It requires σ2 additional words for the buket boundaries and σ words for the frontpositions of the respetive 2-bukets during the opying.The buket boundaries are also used for ahe. In addition, ahe requires spae for the
n integers of the RC array. However, only values up to the size of the largest 1-bukethave to be stored. Hene, 16 or 8 bit integers are enough if no 1-buket exeeds the sizeof 216 or 28, respetively. Even for larger 1-bukets, redued word lengths are possible: Ifthe word size of entries in RC is �xed to w bits and the size of a 1-buket sa[lc, rc] exeedsthe 2w limit, then RC is de�ned by RC [sa[i]] := 2w(i− lc)/(rc − lc − 1) for all i ∈ [lc, rc].8.2.2.3 The deep�shallow algorithm of Manzini and FerraginaManzini and Ferragina developed the deep�shallow algorithm [102℄, whih improves uponSeward's opy algorithm [135℄. The algorithm applies di�erent sorting routines for ℓ-bukets of di�erent size and di�erent ommon pre�x length ℓ, as follows. The ℓ-buketsare primarily re�ned by Bentley and Sedgewik's Multikey Quiksort if ℓ ≤ L, where L isa prede�ned threshold (shallow sorting). For larger ℓ (> L), the algorithm swithes to asorting routine for su�xes sharing a long ommon pre�x (deep sorting). The deep sorterdetermines the sorting routine depending on the size of the sub-bukets. If the buket sizeis smaller than a prede�ned threshold B, then Blind Sort is used, whih is based on theblind trie data struture used within the String B-tree [48℄. If the buket size exeeds B,Ternary-Split Quiksort of Bentley and MIlroy [22℄ with some enhanements re�nes thebukets until the sub-buket size drops below the threshold B; then Blind Sort is used.A nie feature of ahe is that some su�xes with equal pre�x are not diretly ompared.They are rather sorted by deriving their order from previously sorted suessor su�xes.The indution sort sub-proedure generalises this tehnique. If an ℓ-buket sa[l, r] ofsu�xes sharing the ommon pre�x p = p1, . . . , pℓ has to be sorted, then p is searhed67



8 Classi�ation and Survey of Previous Su�x Array Constrution Algorithmsfor the �rst position k ∈ [1, ℓ − 1] suh that the 2-buket of su�xes with �rst harater
pk and seond harater pk+1 has been previously sorted. Let sa[g, h] be the respetive2-buket. Then the su�x number sa[l] + k is looked up in sa[g, h] and the preedingand following su�x numbers of sa[l] + k in sa[g, h] are sanned. Eah sanned su�xnumber u with (u − k) in sa[l, r] is marked. The sanning terminates when all r − l + 1
k-predeessor su�xes that appear in sa[l, r] have been marked. Finally, the su�x numbersin sa[g, h] are sanned from left to right. For eah marked su�x number u enountered,the k-predeessor (u − k) is assigned to the urrent front of sa[l, r], and that front isadvaned by one position to the right.Manzini and Ferragina employ a sparse index to e�iently determine the position of
sa[l] + k in sa[g, h]. As well as the RC array of the ahe method, this index an beregarded as a partial rank of the su�x array. Note that we lassify this as a push methodsine the algorithm sans the su�xes in sa[g, h] and passes their ordering on to sa[l, r].The request, however, was initiated by the buket sa[l, r]. Hene, this tehnique ould beregarded as a pull method just as well.Time and spae onsumption. The time bounds are the same as for the algorithms two-stage, ahe, and opy. O(n log2 n) is the expeted and O(n2 log n) the worst onstrutiontime. The auxiliary spae requirements are negligible, as for the depth-�rst buket re�ne-ment algorithms: Only σ2 additional words for the buket boundaries and some words forthe sparse index are needed.8.3 Redued string sorting algorithmsThe next four algorithms �rst onstrut a sparse su�x array sasp of size nsp ontain-ing a partiular subset of su�x numbers sp ⊂ [1, n], nsp = |sp|, where sasp is sim-ply a subsequene of the lexiographially sorted omplete su�x array. We transferthe onept of bukets and buket segmentations to sparse su�x arrays: An ℓ-buket
sasp[l, r] of a sparse su�x array sasp is a ontiguous segment of sasp ontaining su�xeswith an equal, non-empty pre�x of length ℓ. Furthermore, an ℓ-buket segmentation ofthe sparse su�x array is a deomposition of the sparse su�x array into ℓ-bukets with
sasp[l1, r1], sa

sp[l2, r2], . . . , sa
sp[lβ, rβ ] for some β ∈ [1, nsp] suh that 1 = l1, rβ = nsp,

lk ≤ rk for all k ∈ [1, β], and rk + 1 = lk+1 for all k ∈ [1, β − 1], where sa[lk, rk] is the
kth buket; k is alled the sparse buket number for all su�x numbers in sasp[lk, rk]. Thesparse buket number array bnrsp is aordingly de�ned. The sparse rank array Rsp isde�ned suh that Rsp[s] := i if sasp[i] = s. Note that the sparse buket number array
bnrsp and the sparse rank array are only de�ned for the su�x numbers s in sasp; the otherpositions remain unde�ned: bnrsp[s] = Rsp[s] =⊥ if s is not among the su�x numbersin sp. For a sparse su�x array sasp, the LCP array lcp of length nsp − 1 is de�ned by
lcpsp[i] := lcp(t[sasp[i], n], t[sasp[i + 1], n]) for all i ∈ [1, nsp − 1].68



8.3 Redued string sorting algorithms8.3.1 The di�erene-over algorithm of Burkhardt and KärkkäinenA set D with D ⊆ [0, ℓ − 1] is a di�erene-over modulo ℓ if [0, ℓ − 1] = {(d − d′) mod ℓ :
(d, d′) ∈ D2}. The di�erene-over algorithm of Burkhardt and Kärkkäinen [31℄ �rstselets an appropriate value for ℓ and omputes a di�erene-over D modulo ℓ with D =
{d1, d2, . . . , dδ} of size δ := |D|. Without loss of generality, we assume that the stringlength n is a multiple of ℓ and that 0 /∈ D. The algorithm onstruts the sparse su�xarray saD of length nD = n · δ/ℓ of su�xes s ∈ [1, n] with s mod ℓ ∈ D. Then it usesthe su�x numbers of the sparse su�x array saD, whih represent the lexiographiallysorted order of the orresponding su�xes, as anhors for the omparison-based sorting ofall su�xes, yielding the omplete su�x array sa.Construting the sparse su�x array. The sparse su�x array saD is onstruted in threesuessive phases. Multikey Quiksort of Bentley and Sedgewik [23℄ �rst lexiographiallysorts the su�xes with su�x number in saD with respet to their ℓ leading haraters,resulting in an ℓ-buket segmentation of saD. Aording to the ℓ-buket segmentation,the algorithm assigns the respetive sparse buket number bnrD[s] to eah su�x s in
saD. Note that, for eah su�x number s in saD, its buket number bnrD[s] ombines thelexiographially sorted order of t[s, n] with respet to the ℓ leading haraters t[s, s+ℓ−1]into a single sort key.In the seond phase, a redued string tD of length nD is omputed suh that the lexio-graphial order of the su�xes of tD orresponds to the lexiographial order of the su�xesontained in saD. The partial funtion µD bijetively maps the su�x numbers in saD ontothe positions [1, nD] of tD suh that, for all k ∈ [1, δ] and for all s ∈ [1, n],

µD(s) =
(k − 1)n

ℓ
+
⌈s

ℓ

⌉ if s mod ℓ = dk.That is, the su�x numbers s ∈ [1, n] with s mod ℓ = dk are monotonially inreasinglymapped onto a ontiguous segment of natural numbers: The n/ℓ su�x numbers dk, dk +
ℓ, dk +2ℓ, . . . , dk +n−ℓ are mapped onto [(k−1)n/ℓ+1, k ·n/ℓ] for all k ∈ [1, δ]. Moreover,let µD(−1) be the inverse mapping, whih maps the positions [1, nD] of the redued string
tD onto the su�x numbers s ∈ [1, n] with s mod ℓ ∈ D.The algorithm onstruts the redued string tD of length nD,

tD[i] := bnrD[µD(−1)(i)] for all i ∈ [1, nD].Then one of the pre�x-doubling algorithms presented in Setion 8.2.1 is used to omputethe su�x array sa(tD) of the redued string tD. After that, the di�erene-over algorithmderives the sparse su�x array saD from sa(tD),
saD[i] = µD(−1)(sa(tD)[i]) for all i ∈ [1, nD]. 69



8 Classi�ation and Survey of Previous Su�x Array Constrution AlgorithmsConstruting the omplete su�x array. The omplete su�x array sa is omputedas follows. Multikey Quiksort is used to sort all su�xes aording to their ℓ lead-ing haraters, generating an ℓ-buket segmentation. Finally, a omparison-based sort-ing of eah ℓ-buket �nishes the onstrution of sa: For any pair of su�x numbers
(u, v) ∈ [1, n]2, ∆(u, v) ∈ [0, ℓ − 1] gives an o�set suh that (u + ∆(u, v)) mod ℓ ∈ Dand (v + ∆(u, v)) mod ℓ ∈ D. Two su�xes t[u, n] and t[v, n] with u, v ∈ [1, n] are thenompared by using the sort keys RD[u + ∆(u, v)] and RD[v + ∆(u, v)], respetively. Thatis, t[u, n] < t[v, n] if and only if RD[u + ∆(u, v)] < RD[v + ∆(u, v)].Time and spae onsumption. For ℓ = log n and onstant alphabet size, the algo-rithm omputes the su�x array in O(n log n) time, as follows. A di�erene-over of size
O(
√

log n) is omputed in sub-logarithmi time. Then the onstrution of the sparse su�xarray requires O(n log n) time: O(n log n) steps for Multikey Quiksort, O(n) steps for theonstrution of the redued string, again O(n log n) steps for a pre�x-doubling algorithm,and O(n) steps for deriving the sparse su�x array from the su�x array of the reduedstring. The onstrution of the omplete su�x array from the sparse su�x array alsorequires O(n log n) time: O(n log n) steps for Multikey Quiksort, O(log n) steps for theomputation of a lookup table to implement the funtion ∆, and again O(n log n) stepsfor the omparison-based sorting.The spae requirements are less than for the previous O(n log n) time algorithms of Man-ber and Myers [96℄ or Larsson and Sadakane [90℄. The input string again requires n bytesand the su�x array n words, but the auxiliary spae requirements are only O(n/ log n)words, whih are used for the sparse su�x array, the sparse rank array, and for the on-strution of these data strutures.8.3.2 Su�x array onstrution in linear timeThe development of the three linear-time algorithms seems to be inspired by di�erent previ-ous algorithms. The skew algorithm of Kärkkäinen and Sanders [71℄ uses a di�erene-overlike the di�erene-over algorithm of Burkhardt and Kärkkäinen; the odd�even algorithmof Kim et al. [80℄ adopts the odd-and-even sheme that has been previously used by Farahand Muthukrishnan [46℄, Farah [45℄, and Farah et al. [47℄ for su�x tree onstrution;and the smaller�larger algorithm of Ko and Aluru [85℄ lassi�es eah su�x as type S or L,similar to the lassi�ation of Itoh and Tanaka's two-stage algorithm (see Setion 8.2.2.1).All three algorithms follow di�erent divide-and-onquer shemes, but share the basiframework. They divide the su�xes into two groups, reursively onstrut the su�x arrayof the redued string of the �rst group, derive the sparse su�x array of su�xes in the�rst group, use that sparse su�x array to determine the sparse su�x array of the othersu�xes, and �nally merge the two sparse su�x arrays to obtain the total ordering of allsu�xes, namely the su�x array.70



8.3 Redued string sorting algorithms8.3.2.1 The skew algorithm of Kärkkäinen and SandersThe skew algorithm of Kärkkäinen and Sanders [71℄ uses a di�erene over D modulo3 with D = {1, 2}. It �rst onstruts the sparse su�x array sa(1,2) of su�x numbers
s ∈ [1, n] with s mod 3 ∈ {1, 2}. Then it passes the ordering of su�xes s in sa(1,2) with
s mod 3 = 1 on to the sparse su�x array sa(0) that ontains the predeessor su�xes
s(0) with s(0) mod 3 = 0 (all su�xes not ontained in sa(1,2)), and �nally merges sa(0)and sa(1,2). For k ∈ [0, 2], let n(k) be the number of su�xes at the modulo k positions:
n(0) = ⌈n/3⌉, n(1) = ⌈(n− 1)/3⌉, and n(2) = ⌈(n− 2)/3⌉. The size of sa(1,2) is n(1) + n(2),and the size of sa(0) is n(0).Construting the sparse su�x arrays. The onstrution of the sparse su�x array sa(1,2)proeeds similar to the di�erene over algorithm. It �rst sorts the su�xes in sa(1,2) withrespet to their three leading haraters, resulting in a 3-buket segmentation of sa(1,2).Aording to the 3-buket segmentation, the algorithm assigns the sparse buket number
bnr(1,2)[s] to eah su�x s in sa(1,2).The redued string t(1,2) of length n(1) + n(2) is omputed suh that the relative lexi-ographial order of the su�xes of t(1,2) orresponds to the relative lexiographial orderof the su�xes in sa(1,2). The partial funtion µ(1,2) bijetively maps the su�x num-bers in sa(1,2) onto the positions [1, n(1) + n(2)] of t(1,2) suh that, for all s ∈ [1, n] with
s mod 3 ∈ {1, 2},

µ(1,2)(s) =











s + 2

3
if s mod 3 = 1,

⌈n

3

⌉

+
s + 1

3
if s mod 3 = 2.That is, the su�x numbers s ∈ [1, n] with s mod 3 = 1 are monotonially inreasinglymapped onto [1, n(1)], and the su�x numbers s ∈ [1, n] with s mod 3 = 2 are monotoniallyinreasingly mapped onto [n(1) + 1, n(1) + n(2)]. Moreover, let µ(1,2)(−1) be the inversemapping, whih maps the positions [1, n(1) + n(2)] of the redued string t(1,2) onto thesu�x numbers s ∈ [1, n] with s mod 3 ∈ {1, 2}.The algorithm onstruts the redued string t(1,2) of length n(1) + n(2),

t(1,2)[i] := bnr(1,2)[µ(1,2)(−1)(i)] for all i ∈ [1, n(1) + n(2)].That is, t(1,2) = bnr(1,2)[1], bnr(1,2)[4], . . . , bnr(1,2)[3n(1) − 2], bnr(1,2)[2], bnr(1,2)[5], . . . ,
bnr(1,2)[3n(2) − 1]. Then it reursively onstruts the su�x array sa(t(1,2)) of the reduedstring t(1,2) and derives the sparse su�x array sa(1,2) from sa(t(1,2)),

sa(1,2)[i] = µ(1,2)(−1)(sa(t(1,2))[i]) for all i ∈ [1, n(1) + n(2)].The seond sparse su�x array sa(0) is onstruted in linear time by a proedure likeCounting Sort : The su�xes i ∈ [1, n] with i mod 3 = 0 are sorted aording to the primarysort key t[i] and seondary sort key R(1,2)[i + 1], resulting in sa(0). 71



8 Classi�ation and Survey of Previous Su�x Array Constrution AlgorithmsMerging both sparse su�x arrays. The two sorted sparse su�x arrays sa(0) and sa(1,2)are merged from left to right, yielding the omplete su�x array sa. Let front (0) be theurrent front of sa(0), front (1,2) the urrent front of sa(1,2), and front the urrent frontof sa, initially front (0) = front (1,2) = front = 1. The merging proedure ompares thesu�xes that orrespond to the su�x numbers sa(0)[front (0)] and sa(1,2)[front (1,2)], assignsthe su�x number of the lexiographially smaller su�x to sa[front ], and advanes therespetive front positions. This proedure is repeated until the end of sa(0) or sa(1,2) isreahed. Then the remaining su�x numbers of the other sparse su�x array are diretlyopied to the not yet determined positions at the end of sa.Let s(0) = sa(0)[front (0)] and s(1,2) = sa(1,2)[front (1,2)] be the su�xes at the urrentfront positions. The merging proedure distinguishes two ases:(i) If s(1,2) mod 3 = 1, then t[s(0), n] < t[s(1,2), n] if and only if (t[s(0)], R(1,2)[s(0) +1]) <
(t[s(1,2)], R(1,2)[s(1,2) + 1]);(ii) If s(1,2) mod 3 = 2, then t[s(0), n] < t[s(1,2), n] if and only if (t[s(0)], t[s(0) + 1],
R(1,2)[s(0) + 2]) < (t[s(1,2)], t[s(1,2) + 1], R(1,2)[s(1,2) + 2]).Thereby the �rst element of a tuple is the primary sort key, the seond is the seondarysort key, and the third is the ternary sort key, where appliable.Time and spae onsumption. For an integer alphabet [1, n], the following steps allrequire linear time: the initial sorting of the su�xes with respet to their three leadingharaters, the assignment of the sparse buket numbers, the onstrution of the reduedstring t(1,2), the derivation of the sparse su�x array sa(1,2) from sa(t(1,2)), the onstrutionof sa(0) from sa(1,2), and the merging of sa(0) and sa(1,2). Combined with the reursiveonstrution time of sa(t(1,2)), we obtain Tskew(n) = O(n)+Tskew(⌈2n/3⌉) running time for

n ≥ 3, and Tskew(n) = O(1) for n < 3. This reursion an be solved to Tskew(n) = O(n).Kärkkäinen and Sanders's implementation of the skew algorithm [72℄ requires a signif-iant amount of working spae. The input sequene is a string over an integer alphabet.It requires n words, instead of n bytes for a standard ASCII input. Additionally, in eahreursive all, two auxiliary arrays of length 2n/3 are alloated, one for the redued string
t(1,2) and one for the sparse su�x array sa(1,2). The other auxiliary data strutures are onlyused temporarily; their spae requirements are negligible ompared to the reursively ol-leted spae. Therefore, the algorithm aumulates up to Sskew(n) = 2n + Sskew(⌈2n/3⌉)words of working spae for n ≥ 3, and Sskew(n) = O(1) for n < 3. We unroll thisreursion and observe that it terminates after at most log3/2 n reursive alls. This im-plies a maximum spae onsumption of Sskew(n) =

∑log3/2 n

i=0 2n(2/3)i words. For large
n, this an be approximated by Sskew(n) ≈ 2n

∑∞
i=0(2/3)

i. Sine 0 ≤ 2/3 < 1, wean use ∑∞
i=0 xi = 1/(1 − x), a ommon equation for the geometri series, and obtain

Sskew(n) ≈ 2n
∑∞

i=0(2/3)
i = 2n/(1 − 2/3) = 6n. Therefore, the total spae requirementsare up to 6n words.Na [111℄, however, presented a variant of the skew sheme that allows the linear-timeonstrution of su�x arrays in o(n log n) bits of auxiliary spae.72



8.3 Redued string sorting algorithms8.3.2.2 The odd�even algorithm of Kim et al.The odd�even algorithm of Kim et al. [80℄ �rst onstruts the sparse su�x array of theodd su�x numbers, passes the ordering of the odd su�xes onto the sparse su�x arrayof the predeessor su�xes starting at the even positions, and �nally merges both sparsesu�x arrays.We �rst present some notations and tools for the implementation of the algorithm. Thesparse odd su�x array sao of length no = ⌈n/2⌉ represents the lexiographially orderedsu�xes starting at the odd positions, and the orresponding LCP array lcpo of length
no− 1 ontains the longest ommon pre�x information of onseutive su�xes in sao. Thesparse even su�x array sae of length ne = ⌊n/2⌋ analogously represents the orderedsu�xes starting at the even positions, and lcpe is the respetive LCP array of length
ne − 1. Let lcp(sao[lo, ro]) denote the length of the longest ommon pre�x of all su�xes
t[sao[i], n] with i ∈ [lo, ro] and lcp(sae[le, re]) analogously the length of the longest ommonpre�x of all su�xes t[sae[j], n] with j ∈ [le, re]. Let lcp(sao[lo, ro], sae[le, re]) denote thelength of the longest ommon pre�x of all su�xes with a su�x number in one of the twobukets sao[lo, ro] or sae[le, re], lcp(sao[lo, ro], sae[le, re]) = min{lcp(sao[i], sae[j]) : i ∈
[lo, ro] and j ∈ [le, re]}.An important tool for the odd�even algorithm is a data struture that supports onstanttime range minimum queries. Given an array A of size n whose elements are integers in
[0, n − 1] and any two indies l, r ∈ [1, n] with l ≤ r, then a range minimum query
rangeMinAt(A, l, r) �nds the smallest index i suh that A[i] = minl≤j≤r A[j]. This analso be used to �nd the smallest value rangeMin(A, l, r) within a given range [l, r] of
A, rangeMin(A, l, r) = A[rangeMinAt(A, l, r)]. The odd�even algorithm uses the rangeminimum query to ompute the length of the longest ommon pre�x for a range of su�xesin the odd or, alternatively, in the even su�x array in onstant time, lcp(sao[lo, ro]) =
rangeMin(lcpo, lo, ro − 1) and lcp(sae[le, re]) = rangeMin(lcpe, le, re − 1).A simple solution for the range minimum query problem was given by Bender andFarah-Colton [18℄, and Sadakane [124℄ uses range minimum queries to ompute longestommon pre�xes of su�xes in ompressed su�x arrays. For the odd�even algorithm,Kim et al. [80℄ use a modi�ation of the range minimum algorithm of Berkman andVishkin [24℄. For an in-depth study, we refer to Alstrup et al.'s survey of the least ommonanestor problem [5℄, whih is intimately onneted with the range minimum problem.Construting the odd and the even su�x array. The odd su�x array is reursivelyonstruted. The algorithm �rst sorts the su�xes of sao with respet to their two lead-ing haraters, resulting in a 2-buket segmentation of sao. Aording to the 2-buketsegmentation, it assigns the sparse buket number bnro[s] to eah su�x s ∈ [1, n] with
s mod 2 = 1.The redued string to of length no is omputed suh that the relative lexiographialorder of the su�xes of to orresponds to the relative lexiographial order of the su�xes in
sao. The partial funtion µo bijetively maps the su�x numbers in sao onto the positions73



8 Classi�ation and Survey of Previous Su�x Array Constrution Algorithms
[1, no] of the redued string to suh that

µo(s) =
s + 1

2
for all s ∈ [1, n] with s mod 2 = 1.That is, the odd su�x numbers are monotonially inreasingly mapped onto [1, no]. More-over, let µo(−1) be the inverse mapping, whih maps the positions [1, no] of the reduedstring to onto the su�x numbers s ∈ [1, n] with s mod 2 = 1.The algorithm onstruts the redued string to of length no:

to[i] := bnro[µo(−1)(i)] (= bnro[2 i− 1]) for all i ∈ [1, no].That is, to = bnro[1], bnro[3], . . . , bnro[2no − 1]. Then it reursively onstruts the su�xarray sa(to) of the redued string and the orresponding LCP array lcp(to), and �nallyderives sao from sa(to) and lcpo from lcp(to) suh that, for all i ∈ [1, no],
sao[i] = µo(−1)(sa(to)[i]) (= 2(sa(to)[i]) − 1)and, for all i ∈ [1, no − 1],

lcpo[i] =

{

2 lcp(to)[i] + 1 if t[sao[i] + 2 lcp(to)[i]] = t[sao[i + 1] + 2 lcp(to)[i]]
2 lcp(to)[i] otherwise.Finally, sae and lcpe are onstruted from sao and lcpo. The su�xes se ∈ [1, n] witheven su�x number, se mod 2 = 0, are sorted aording to the primary sort key t[se] andseondary sort key Ro[se + 1], resulting in sae. Afterwards, the orresponding LCP array

lcpe of length ne − 1 is omputed:
lcpe[i] =

{

0 if t[sae[i]] 6= t[sae[i + 1]]
1 + lcp(t[sae[i] + 1, n], t[sae[i + 1] + 1, n]) otherwise,for all i ∈ [1, ne − 1], where sae[i] + 1 and sae[i + 1] + 1 are odd su�x numbers. Let

go = Ro[sae[i] + 1] and ho = Ro[sae[i + 1] + 1] be the positions of these su�x numbers in
sao, then the algorithm omputes lcp(t[sae[i] + 1, n], t[sae[i + 1] + 1, n]) = lcp(sao[go, ho])by a range minimum query on lcpo, lcp(sao[go, ho]) = rangeMin(lcpo, go, ho − 1).Merging the odd and the even su�x array. A brief explanation of the general mergingstrategy an be given based on the lp-interval trees of Abouelhoda et al. [1, 2℄: Themerging of the two sparse su�x arrays is a kind of breadth-�rst merging of their impliitlp-interval trees.The odd�even algorithm only proesses non-extendable bukets. A non-extendable ℓ-buket sao[lo, ro] of the odd su�x array ontains all odd su�x numbers s ∈ [1, n] with
t[s, s + ℓ − 1] = t[sao[lo], sao[lo] + ℓ − 1], and a non-extendable ℓ-buket sae[le, re] ofthe even su�x array ontains all even su�x numbers s ∈ [1, n] with t[s, s + ℓ − 1] =
t[sae[le], sae[le]+ℓ−1]. The non-extendable ℓ-bukets sao[lo, ro] and sae[le, re] are ℓ-oupledif all su�xes of both bukets share the same pre�x of length ℓ; (sao[lo, ro], sae[le, re]) is74



8.3 Redued string sorting algorithmsalled an ℓ-oupled pair. Otherwise the bukets are ℓ-unoupled. If sao[lo, ro] and sae[le, re]are ℓ-oupled, then their su�x numbers form an ℓ-buket sa[lo + le − 1, ro + re] of theomplete su�x array. The length of the longest ommon pre�x of all su�xes in an ℓ-oupled pair (sao[lo, ro], sae[le, re]) is denoted by λ := lcp(sao[lo, ro], sae[le, re]). Moreover,
θ := min{lcp(sao[lo, ro]), lcp(sae[le, re])} is an upper bound for λ, alled the LCP limit ofthe oupled pair (sao[lo, ro], sae[le, re]). Note that ℓ ≤ λ ≤ θ.There are two further auxiliary data strutures: the array ptro of length no and thearray ptre of length ne. For eah io ∈ [1, no], ptro[io] is de�ned if sao[io] is an entry of anunoupled buket or the last entry of a oupled buket:� If sao[io] is an entry of an unoupled buket sao[lo, ro], io ∈ [lo, ro], then ptro[io]stores the rightmost position re of a buket sae[le, re] suh that

lcp(sao[io], sae[re]) ≥ lcp(sao[io], sae[je]) for all je ∈ [1, ne].Among all su�xes in the even su�x array, t[sae[re], n] shares the longest ommonpre�x with t[sao[io], n].� If sao[io] is the last entry of a buket sao[lo, ro] (io = ro) oupled with sae[le, re],then ptro[io] := re.The array ptre is analogously de�ned.The merging proedure. For eah position io ∈ [1, no], the orret target position i of thesu�x number sao[io] in the lexiographially sorted omplete su�x array sa is omputed.That is, i is the target position of io if and only if sao[io] = sa[i]. The target positionsof sae are analogously de�ned. In fat, the algorithm determines the target positionsfor omplete unoupled bukets. Coupled bukets are repeatedly subdivided aording tolarger ommon pre�xes until the sub-bukets beome unoupled suh that the targets anbe determined.The algorithm suessively performs up to n stages until the omplete su�x array isonstruted. In stage θ, it proesses all oupled pairs with LCP limit θ. It starts withthe oupled pair (sao[1, no], sae[1, ne]), formed of the omplete odd and even su�x array,in stage 0. For an ℓ-oupled pair (sao[lo, ro], sae[le, re]) with LCP limit θ and longestommon pre�x of length λ, the algorithm determines the target positions in sa, where λ isomputed in onstant time, as we will show later. The algorithm distinguishes two ases:(i) If λ < θ, then all su�xes with a su�x number in sao[lo, ro] are lexiographiallysmaller than the su�xes with a su�x number in sae[le, re], or vie versa. The buketsare unoupled.(i.1) If t[sao[lo] + λ] < t[sae[le] + λ], then sao[lo, ro] ontains the smaller su�xes.The respetive target segments of the omplete su�x array are determined by
sa[lo + le − 1, ro + le − 1] = sao[lo, ro] and sa[ro + le, ro + re] = sae[le, re]. The75



8 Classi�ation and Survey of Previous Su�x Array Constrution Algorithmsorresponding segment in the LCP array is determined by lcp[lo+le−1, ro+le−
2] = lcpo[lo, ro−1], lcp[ro+le−1] = λ, and lcp[ro+le, ro+re−1] = lcpe[le, re−1].The algorithm also assigns re to ptro[io] for all io ∈ [lo, ro] and ro to ptre[je] forall je ∈ [le, re].(i.2) If t[sao[lo] + λ] > t[sao[le] + λ], then the targets are determined analogously.(ii) If λ = θ, then the λ-oupled bukets sao[lo, ro] and sae[le, re] are subdivided into

(λ + 1)-bukets. The right boundaries of the sub-bukets of sao[lo, ro] are the po-sitions io ∈ [lo, ro − 1] with lcpo[io] = λ, and the right boundaries of the sub-bukets of sae[le, re] are the positions je ∈ [le, re − 1] with lcpe[je] = λ. Thepositions are omputed by range minimum queries on the respetive LCP arrays.Let sao[lo1, ro1], sao[lo2, ro2], . . . , sao[loβ , roβ ] be the respetive sub-bukets of sao[lo, ro](lcpo[rog ] = λ for all g ∈ [1, β − 1]), and let sae[le1, re1], sae[le2, re2], . . . , sae[leγ , reγ ] bethe respetive sub-bukets of sae[le, re] (lcpe[reh] = λ for all h ∈ [1, γ − 1]). For all
g ∈ [1, β], let cog be the (λ + 1)st harater of all su�xes in sao[log, rog ], and let coh bethe (λ + 1)st harater of all su�xes in sae[leh, reh] for all h ∈ [1, γ].The algorithm merges the lists of odd and even sub-bukets from left to right startingwith sao[lo1, ro1] and sae[le1, re1]. We desribe a step of the merging proedure, whihis iterated until one sub-buket list beomes empty. Let the bukets sao[log , rog ] with
g ∈ [1, β] and sae[leh, reh] with h ∈ [1, γ] be the urrent heads of the sub-buket lists.The algorithm ompares cog and ceh.(ii.1) If cog = ceh, then the pair of bukets (sao[log , rog ], sae[leh, reh]) is (λ + 1)-oupledand its target proessing is postponed to stage θg,h, where θg,h is the LCP limitof (sao[log , rog ], sae[leh, reh]). The algorithm assigns λ to lcp[rog + reh] if g < β or

h < γ, reh to ptro[rog ] if g < β, and rog to ptre[reh] if h < γ. The buket sao[log , rog ]is removed from the list of odd sub-bukets and sae[leh, reh] from the list of evensub-bukets.(ii.2) If cog < ceh, then sao[log, rog ] is (λ + 1)-unoupled and sa[log + leh− 1, rog + leh− 1] =
sao[log, rog ]. The orresponding LCP values are lcp[log + leh − 1, rog + leh − 2] =
lcpo[log , rog − 1] and lcp[rog + leh − 1] = λ. The algorithm also assigns reh toptro[io] for all io ∈ [log, rog ]. The buket sao[log, rog ] is removed from the list ofodd sub-bukets.(ii.3) If cog > ceh, then sa[leh + log − 1, reh + log − 1] = sae[leh, reh]. The orresponding LCPvalues are lcp[leh+log−1, reh+log−2] = lcpe[leh, reh−1] and lcp[reh+log−1] = λ. Thealgorithm also assigns rog to ptre[je] for all je ∈ [leh, reh]. The buket sae[leh, reh]is removed from the list of even sub-bukets.If one sub-buket list beomes empty, then the merging proedure stops and thealgorithm opies the remaining bukets in the non-empty list to the respetive targetsegment of sa.76



8.3 Redued string sorting algorithmsThe longest ommon pre�x of a oupled pair. We now show how the algorithm om-putes the longest ommon pre�x λ of all su�xes in a oupled pair (sao[lo, ro], sae[le, re])with LCP limit θ in stage θ. We have two base ases: θ = 0 implies λ = 0, and θ = 1 im-plies λ = 1 if the input string t is omposed of at least two distint haraters. For θ > 1,aording to the de�nition of the LCP limit (θ := min{lcp(sao[lo, ro]), lcp(sae[le, re])}),we have θ = lcp(sao[lo, ro]) or θ = lcp(sae[le, re]). Without loss of generality, we assume
θ = lcp(sao[lo, ro]).The key of the algorithm is to redue the omputation of λ to the omputation of thelength of the longest ommon pre�x of two su�xes in sao, whih is then performed inonstant time by a range minimum query:

λ = lcp(sao[lo, ro], sae[le, re]) (8.3)
= min(θ, lcp(sao[lo], sae[re])) (8.4)
= min(θ − 1, lcp(sao[lo] + 1, sae[re] + 1)) + 1 (8.5)
= min(θ − 1, lcp(sae[lo+], sao[re+])) + 1, (8.6)where lo+ = Re[sao[lo]+1] is the position of sao[lo]+1 in sae, and re+ = Ro[sae[re]+1] isthe position of sae[re]+1 in sao. Equality (8.3) holds from the de�nition of λ, equality (8.4)sine lcp(sao[lo], sae[re]) < θ implies lcp(sao[lo, ro], sae[le, re]) = lcp(sao[lo], sae[re]) and

lcp(sao[lo], sae[re]) ≥ θ implies lcp(sao[lo, ro], sae[le, re]) = θ, equality (8.5) sine thesu�xes in the oupled pair share at least the �rst harater, and equality (8.6) from
sao[lo] + 1 = sae[lo+] and sae[re] + 1 = sao[re+]. Note that Re[sao[.] + 1] de�nes a kind ofsparse +R-array (see De�nition 3.1): For eah su�x number sao[io] in the odd su�x array,
io ∈ [1, no], Re[sao[io] + 1] stores the position of the suessor su�x number sao[io] + 1 inthe even su�x array. It is a ross-link between the two sparse su�x arrays. The statementanalogously holds for Ro[sae[.] + 1].For sae[lo+], the algorithm �nds a position φ of sao suh that the su�xes sae[lo+] and
sao[φ] share a su�iently long ommon pre�x suh that

min(θ − 1, lcp(sae[lo+], sao[re+])) = min(θ − 1, lcp(sao[φ], sao[re+])). (8.7)Let sae[xe, ye] be the buket ontaining sae[lo+] after stage θ − 1, lo+ ∈ [xe, ye]. Then
φ = ptre[ye] satis�es equation (8.7) (see [80℄ for a proof). The algorithm omputes

lcp(sao[φ], sao[re+]) =







rangeMin(lcpo, φ, re+ − 1) if φ < re+
n− re+ + 1 if φ = re+
rangeMin(lcpo, re+, φ− 1) if φ > re+.Finally, aording to equations (8.3)�(8.7), we obtain λ = lcp(sao[φ], sao[re+]) + 1.The algorithm �nds the rightmost position ye of the buket sae[xe, ye] ontaining thesu�x number sae[lo+] in onstant time. The omplete merging proedure runs in lineartime sine the algorithm proesses at most n oupled bukets and n su�xes. 77



8 Classi�ation and Survey of Previous Su�x Array Constrution AlgorithmsTime and spae onsumption. For the onstrution of the su�x array of an input stringof length n over an integer alphabet [1, n], the running time Todd�even(n) of the algorithmis omposed of the O(n) + Todd�even(n/2) onstrution time of the odd su�x array, thelinear-time onstrution of the even su�x array, and the linear-time merge of the twosparse su�x arrays. This together leads to Todd�even(n) = O(n) + Todd�even(n/2) = O(n)for the omplete su�x array onstrution.The spae requirements of the algorithm depend on the implementation. Besides n bytesfor the input string and n words for the su�x array, a straightforward implementationwould require auxiliary spae for the arrays sao, sae, lcpo, lcpe, ptre, for the redued string
to, and for the data struture providing onstant time range minimum omputations.There are, however, more spae-e�ient implementations of the odd-even su�x arrayonstrution sheme. Kim et al.'s [78℄ approah works on �xed-sized alphabets and requiresless spae, but O(n log log n) onstrution time. In pratie, though, it is faster thanthe linear-time odd�even algorithm. Moreover, Hon et al. [63℄ manage the su�x arrayonstrution with the odd�even sheme using only O(n) auxiliary bits.8.3.2.3 The smaller�larger algorithm of Ko and AluruThe smaller�larger algorithm of Ko and Aluru [85℄ also lassi�es the set of su�xes into twotypes, like the skew algorithm and the odd�even algorithm. The smaller�larger algorithm,however, partitions the su�xes based on the relative order of onseutive su�xes andnot based on their starting positions. Similar to the two-stage algorithm of Itoh andTanaka [67℄, whih lassi�es the su�xes as type s or type l, the smaller�larger algorithmlassi�es the su�xes either as type S or type L. Alternatively, the su�x numbers arelassi�ed either as type S or type L.Let S := {s ∈ [1, n − 1] : t[s, n] < t[s + 1, n]} of size nS = |S| be the set of su�xnumbers of type S that ontains eah su�x number s ∈ [1, n − 1] if and only if the su�x
t[s, n] is lexiographially smaller than its suessor su�x t[s + 1, n]. Let L := [1, n] \ Sof size nL = |L| be the set of su�x numbers of type L ontaining the su�x number ofeah su�x that is lexiographially larger than its suessor. The algorithm uses a loalproperty to e�iently determine the type of eah su�x: A su�x number s ∈ [1, n] is oftype S if t[s] < t[s + 1] or if t[s] = t[s + 1] and the suessor su�x number s + 1 is of typeS ; otherwise it is of type L. The algorithm uses this property to assign all su�x numbersto either S or L by a right-to-left san of the string.Let saS be the sparse su�x array of size nS of all su�x numbers of type S, and let
saL be the sparse su�x array of size nL of all su�x numbers of type L. The algorithm�rst onstruts the smaller of the two sparse su�x arrays. Without loss of generality, weassume that there are fewer type S su�xes than type L su�xes, or rather, nS ≤ nL. Thealgorithm �rst onstruts the sparse su�x array saS and then the omplete su�x array
sa from saS.Construting the sparse su�x array of type S su�xes. Let s1, s2, . . . , s(nS) be thesorted list of type S su�x numbers with s1 < s2 < . . . < s(nS) (sorted with respet78



8.3 Redued string sorting algorithmsto the numbers, not lexiographially). For eah suh su�x number si of type S with
i ∈ [1, nS− 1], the pre�x t[si, si+1] is alled the S-pre�x of si and t[s(nS), n] the S-pre�x of
s(nS). The algorithm sorts the type S su�xes with respet to their S -pre�xes, resultingin a buket segmentation of saS suh that two type S su�xes si, sj ∈ S with i, j ∈ [1, nS]are element of the same ℓ-buket if and only if they share the same S -pre�x of length
ℓ, t[si, si+1] = t[sj, sj+1] with ℓ = si+1 − si + 1 = sj+1 − sj + 1. Note that the buketsegmentation ontains ℓ-bukets for di�erent ℓ. We will show later how the S -pre�xesare sorted. Aording to the buket segmentation of saS, the algorithm assigns the sparsebuket number bnrS[s] to eah su�x s ∈ S, representing the relative order of type S su�xeswith respet to their S -pre�xes: t[si, si+1] ≤ t[sj, sj+1] if and only if bnrS[si] ≤ bnrS[sj]for all i, j ∈ [1, nS].Then a redued string tS of length nS is omputed suh that the relative lexiographialorder of the su�xes of tS orresponds to the relative lexiographial order of the su�xesin saS. The partial funtion µS bijetively maps the su�x numbers in S onto the positions
[1, nS] of the redued string tS suh that

µS(si) = i for all i ∈ [1, nS].That is, the su�x numbers of type S are monotonially inreasingly mapped onto [1, nS].Moreover, let µS(−1) be the inverse mapping. The algorithm onstruts the redued string
tS of length nS:

tS[i] := bnrS[µS(−1)(i)] (= bnrS[si]) for all i ∈ [1, nS].That is, tS = bnrS[s1], bnrS[s2], . . . , bnrS[s(nS)].Then it reursively onstruts the su�x array sa(tS) of the redued string tS and derivesthe sparse su�x array saS from sa(tS),
saS[i] = µS(−1)(sa(tS)[i]) for all i ∈ [1, nS].Sorting the S-pre�xes. The algorithm sorts the S -pre�xes in three phases, using a pro-edure similar to MSD radix sort.1. First of all, the S-distane distS(u) of a su�x number u is the distane to the losestpredeessor su�x number of type S, distS(u) := min{u − s : s < u and s ∈ S}.The algorithm omputes the S -distane for eah su�x number u ∈ [1, n], leaving itunde�ned if there is no type S su�x number smaller than or equal to u, distS(u) :=⊥for u ∈ [1, s1].2. For eah enountered S -distane ∆, a list list∆ stores the su�x numbers u ∈ [1, n]with distS(u) = ∆. Eah list is ordered by the �rst harater of the respetivesu�xes.3. The algorithm starts with the sparse su�x array saS = s1, s2, . . . , s(nS). It repeatedlyperforms buket re�nement steps for eah S -distane ∆, starting from 1 up to the79



8 Classi�ation and Survey of Previous Su�x Array Constrution Algorithmsmaximal S -distane. In the ∆th buket re�nement step, it sans list∆ from left toright. For eah su�x number u enountered, it moves the ∆-predeessor u −∆ tothe front of its buket and advanes the front by one. After sanning list∆, thesu�xes of type S with the same pre�x of length ∆ are grouped together, resultingin a ∆-buket segmentation of saS. After proessing all lists, we obtain the desiredbuket segmentation of saS, representing the order of the type S su�xes with respetto their S -pre�xes.Construting the omplete su�x array from the sparse su�x array of type S su�xes.Ko and Aluru onstrut the omplete su�x array sa from saS in three phases, as follows.1. All su�xes are �rst sorted aording to their leading harater, produing a 1-buketsegmentation of the su�x array sa. Furthermore, the su�x number n of the lastsu�x t[n, n] is moved to the front of its buket.2. The sparse su�x array saS is sanned from right to left. For eah su�x in saS, thealgorithm moves its ounterpart in sa to the urrent end of its buket and shifts theurrent end by one position to the left. After sanning saS, all su�xes of type S arein their �nal positions.3. The third phase determines the order of the L su�xes and moves them to their �nalposition. The su�x array sa is sanned from left to right. For eah su�x number
v ∈ [1, n] of type L, the algorithm moves the predeessor v − 1 to the urrent frontof its buket and advanes the front by one position to the right. The su�x sortingproess is ompleted after sanning the whole su�x array sa.So far, we have shown how to build the omplete su�x array sa via the sparse su�xarray saS of the su�xes of type S. If the su�xes of type S are fewer than the su�xes oftype L, however, the sparse su�x array saL of the type L su�x numbers and �nally theomplete su�x array is onstruted using a symmetri proedure.Time and spae onsumption. Let TSL(n) denote the total running time of the smaller�larger algorithm for input strings of length n over an integer alphabet [1, n]. TSL(n)deomposes into the running time of the separate phases. The following steps all requirelinear time: the omputation of the su�xes of type S, the sorting with respet to their S -pre�xes, and the mapping to the redued string tS. In addition, the reursive onstrutionof the su�x array sa(tS) takes TSL(nS) ≤ TSL(⌊n/2⌋) time. The derivation of the sparsesu�x array saS from sa(tS) and the three phases for the onstrution of the ompletesu�x array from sa(tS) again require linear time. Altogether, this leads to TSL(n) ≤

O(n) + TSL(⌈n/2⌉) for n ≥ 2 and TSL(n) = O(1) for n < 2, whih an be solved to
TSL(n) = O(n).The algorithm has di�erent spae requirements for the separate sub-proedures. Amongall mentioned subroutines, the sorting of the S -pre�xes, partiularly the onstrution ofthe S -distane lists, is the most spae-onsuming part of Ko and Aluru's implementation.80



8.3 Redued string sorting algorithmsTherefore, the spae analysis onentrates on that sub-proedure, as follows. For an integeralphabet with Σ = [1, n], the onstrution of the S -distane lists requires 3n words: theinteger array for the S -distanes, an integer array for the S -distane lists, and a temporaryarray for a stable ounting sort of the lists, eah onsume n words. Moreover, Ko andAluru suggest to use bit arrays to mark the buket boundaries and the su�x numbers oftype S : two bit arrays of size n and one of size n/2. Hene, the overall spae requirementsare 3n words plus 5n/2 bits. This ould be further redued to 3n words if the mostsigni�ant bit of the integer words is used for the marker bits. Moreover, for a small �xed-sized alphabet, Ko and Aluru redue the spae requirements to 2n words and 1.25n bitsor, alternatively, to 2n words if the most signi�ant bit of eah integer word an be usedas a marker bit.
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9 The Buket-Pointer Re�nementAlgorithmWe observed that the buket re�nement algorithms, in partiular the deep�shallow algo-rithm, show faster pratial running times for ommon real-world strings than the reduedstring sorting algorithms (see also [7, 119℄). For degenerated strings with large LCPs, how-ever, deep�shallow performs poorly (see [31℄).Our aim was to design a new algorithm that is fast for ommon strings with smallLCPs and for strings with highly variable LCPs, but it should also onstrut su�x arraysof degenerated strings in reasonable time. Our algorithm follows the depth-�rst buketre�nement sheme, whih proved its e�ieny for ommon strings, and ombines it witha pull tehnique (see Chapter 8.1) using the following fat for an input string t of length
n:

(t[sa[i], n] =ℓ t[sa[j], n] ∧ bptr[sa[i] + ℓ] < bptr[sa[j] + ℓ]) =⇒ t[sa[i], n] < t[sa[j], n]for i, j, ℓ ∈ [1, n]. That is, if two su�xes with the same ℓ-length pre�x are ontained inthe same ℓ-buket, then their order is determined by the order of their ℓ-suessors. Ourstrategy is to use the information of subdivided bukets as early as possible. We alternatere�nement steps and updates of the buket pointers suh that the information about thesubdivided bukets is used in the buket re�nement proess as soon as this informationbeomes available.In Setion 9.1, we desribe the basi algorithm, whih is analysed regarding asymptotirunning time omplexity in Setion 9.2. In Setion 9.3, we present the implementationdetails inluding an advaned push method that enhanes the basi algorithm. Setion 9.4ontains use ases of our algorithm.9.1 The basi algorithmOur new buket-pointer re�nement (bpr) algorithm mainly onsists of two simple phases.Given a parameter q (usually less than log n), the su�xes are lexiographially sorted inthe �rst phase, so that su�xes with the same q-length pre�x are grouped together, form-ing a q-buket segmentation sa[l1, r1], sa[l2, r2], . . . , sa[lβ , rβ] for some β ∈ [1, n]. Beforeentering the seond phase, a pointer to its buket bptr[i] is omputed for eah su�x withsu�x number i ∈ [1, n], suh that su�xes with the same q-length pre�x share the samebuket pointer. In our desriptions and in our implementation, we use the position of therightmost su�x in eah buket as buket pointer. Reall the de�nition of buket pointers83



9 The Buket-Pointer Re�nement Algorithmfrom Chapter 7.1, equation (7.2). We have
bptr[sa[i]] = rk for eah i ∈ [lk, rk] and for eah k ∈ [1, β]. (9.1)In the seond phase, the bukets ontaining su�xes with equal pre�x are reursivelyre�ned. Let sa[l, r] be an ℓ-buket of the su�x array sa. Then the re�nement proedureapplies the ternary partitioning sheme of Bentley and MIlroy's Ternary-Split Quik-sort [22℄. The buket sa[l, r] is partitioned into three sub-bukets aording to the buketpointers at o�set ℓ: a left, a middle, and a right sub-buket. That is, for eah su�x sa[i]with i ∈ [l, r], bptr[sa[i] + ℓ] is used as the sort key. The re�nement proedure �rst seletsa pivot sort key p = bptr[sa[j] + ℓ] for some j ∈ [l, r]. Then the su�xes sa[i] in sa[l, r]with smaller sort key, bptr[sa[i] + ℓ] < p with i ∈ [l, r], are assigned to the left sub-buket

sa[l<, r<], the su�xes with sort key equal to the pivot, bptr[sa[i] + ℓ] = p, to the middlesub-buket sa[l=, r=], and the su�xes with larger sort key, bptr[sa[i] + ℓ] > p, to the rightsub-buket sa[l>, r>] (l = l<, r< + 1 = l=, r= + 1 = l>, and r> = r).After partitioning the su�xes of sa[l, r], the buket pointers for the su�xes in sa[l, r]are updated to onform with the re�ned buket segmentation. For eah su�x sa[i] with
i ∈ [l, r], bpr assigns the right-most position of its re�ned sub-buket to its buket pointer
bptr[sa[i]], suh that

bptr[sa[i]] =







r< for all i ∈ [l<, r<]
r= for all i ∈ [l=, r=]
r> for all i ∈ [l>, r>].Then eah of the three sub-bukets that is not empty or singleton is partitioned reursivelyby alling the re�nement proedure. We use the unmodi�ed o�set ℓ for the left and forthe right sub-buket sine both remain ℓ-bukets, but use the inreased o�set ℓ + q forthe middle sub-buket sa[l=, r=] sine its su�xes share a ommon pre�x of length (ℓ + q)and thus form an (ℓ + q)-buket. After termination of the algorithm, all bukets aresingletons, sa is the lexiographially sorted su�x array, and bptr re�ets the rank arrayor, alternatively, the inverse su�x array.An example of the re�nement proedure for the string t = DEBDEBDEA with parameter

q = 2 is shown in Figure 9.1. The top of the �gure, below the input string, shows thesu�x array sa segmented into bukets and the buket pointer array bptr after phase 1 andafter eah further re�nement step. The vertial lines in sa denote the buket boundaries.The buket that is going to be re�ned in the next step is overlined, and the buketpointers that are used as sort keys during that next re�nement step are drawn in boldfae. Initially, there are three non-singleton bukets, whih are then re�ned from left toright: the buket sa[2, 3] ontaining the su�x numbers of su�xes with the pre�x BD, sa[4, 6]ontaining the su�x numbers of su�xes with the pre�x DE, and sa[8, 9] ontaining thesu�x numbers of su�xes with the pre�x EB. We �rst re�ne the buket sa[2, 3] ontainingthe su�x numbers 3 and 6 with respet to ℓ = 2. The sort keys (drawn in bold fae) aresortkey(3) = bptr[3 + 2] = 9 and sortkey(6) = bptr[6 + 2] = 7, where the sort key 9 isseleted as pivot. After the partitioning, the buket pointer for the su�x 3 is updated to84



9.1 The basi algorithm
Input string: t = D E B D E B D E A1 2 3 4 5 6 7 8 9A BD DE EA EB

sa after initial sorting (q = 2): 9 3 6 1 4 7 8 2 51 2 3 4 5 6 7 8 9
bptr after initial sorting: 6 9 3 6 9 3 6 7 1
sa after sorting buket sa[2, 3]: 9 6 3 1 4 7 8 2 51 2 3 4 5 6 7 8 9
bptr after updating positions 3, 6: 6 9 3 6 9 2 6 7 1
sa after sorting buket sa[4, 6]: 9 6 3 7 4 1 8 2 51 2 3 4 5 6 7 8 9
bptr after updating positions 1, 4, 7: 6 9 3 5 9 2 4 7 1
sa after sorting buket sa[8, 9]: 9 6 3 7 4 1 8 5 21 2 3 4 5 6 7 8 9
bptr after updating positions 2, 5: 6 9 3 5 8 2 4 7 1

9 3 6 4 5 7 8 2 5
ℓ = 26 3 ℓ = 27 4 1 ℓ = 25 2Figure 9.1: The buket segmentation of the su�xes of the input string DEBDEBDEA andthe respetive buket pointer array bptr after the initial sorting of the su�xes regardingpre�xes of length q = 2 (2-buket segmentation) and after eah re�nement step (top).Moreover, the orresponding ternary reursion tree (bottom).
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9 The Buket-Pointer Re�nement Algorithm
bptr[3] = 3 and the buket pointers for the su�x 6 to bptr[6] = 2. Then the re�nementof the bukets sa[4, 6] and sa[8, 9] follows. The pivot is always the median sort key if thebukets are of odd size, or the next larger sort key if the bukets are of even size.The bottom of Figure 9.1 shows the ternary reursion tree orresponding to the ompletebuket re�nement proess. The inner nodes of the tree are the non-singleton buketsthat have to be re�ned. The hildren of eah suh buket orrespond to the sub-buketsafter a re�nement step: a left hild orresponds to a left sub-buket, a middle hild to amiddle sub-buket, and a right hild to a right sub-buket. Note that the �rst level ofthe reursion tree orresponds to the 2-buket segmentation after the initial sorting of thesu�xes regarding their pre�xes of length q = 2.Properties. The main improvement of our algorithm, ompared to earlier algorithmsperforming buket re�nements, is that it bene�ts from the immediate use of subdividedbuket pointers after eah re�nement step. With inreasing number of subdivided bukets,it beomes more and more likely that di�erent buket pointers an be used as sort keysduring the re�nement steps, suh that the expeted reursion depth dereases for thebukets re�ned later. The �nal position of a su�x number u in the urrent buket isreahed at the latest when bptr[u + ℓ] is unique for the urrent o�set, that is, when thesu�x number u + ℓ is ontained in a singleton buket sa[bptr[u + ℓ], bptr[u + ℓ]] and thushas reahed its �nal position.Another improvement of our algorithm is that, in eah reursive re�nement step of amiddle sub-buket, ℓ an be inreased by q. Hene, the reursion depth dereases by afator of q, ompared to algorithms performing haraterwise radix steps.Note that the algorithm an be applied to arbitrary ordered alphabets sine it just usesomparisons to perform su�x sorting.9.2 AnalysisSo far we were not able to determine tight time bounds for our algorithm. The problemis that the algorithm quite arbitrarily uses the dependenies among su�xes. Hene, weonly present lower and upper limits for the worst-ase and expeted-ase time bounds.The �rst phase of the algorithm an simply be performed in optimal linear time (seeSetion 9.3 for more details). For the seond phase, we assume throughout the analysisthat the algorithm �nds the true median sort key in linear time, whih an be performedby algorithms of Blum et al. [26℄, Shönhage et al. [126℄, or Dor and Zwik [43℄. Thesemethods, however, are not desirable for pratial implementations sine they inrease theonstant running time fators. Our implementation rather uses a pivot hoie methodthat is direted to fast pratial running time, instead of good worst-ase time omplexity.9.2.1 Worst-ase time boundWe �rst neglet that the expeted reursion depth dereases for the bukets re�ned later.86



9.2 AnalysisTheorem 9.1. Let t be a string of length n, and let q with q ≤ log n be the ommonpre�x length with respet to whih our algorithm sorts the su�xes in phase 1. Then ouralgorithm onstruts the su�x array of t in O(n2/q) time.Proof. We assume that phase 1 is omputed in linear time. The reursive re�nementin phase 2 de�nes an impliit ternary reursion tree similar to the ternary searh treeof Bentley and Sedgewik [23℄, whih they used for the analysis of their string sortingalgorithm. In the strit sense, we have one ternary reursion tree for eah buket generatedby phase 1, but we inlude phase 1 to have only one reursion tree. Hene, the root isthe only inner node that may have more than three hildren; it has as many hildren asthere are bukets generated by phase 1 (see Figure 9.1). The re�nement proedure startswith the o�set ℓ = q for eah buket generated by phase 1. The ternary reursion treebranhes into a left hild for a left sub-buket, a middle hild for a middle sub-buket, anda right hild for a right sub-buket. The middle hild exists for eah internal node sine theorresponding middle sub-buket ontains at least the su�x that has the pivot sort key,but the left or the right hild may not exist: The left hild is empty if the orrespondingleft sub-buket is empty, and the right hild is empty if the orresponding right sub-buketis empty.We present a limit for the reursion depth by ounting the number of edges, or branhes,to hild nodes on a path from the root to any leaf, where we distinguish between themiddle branhes and the left or right branhes. Middle branhes orrespond to reursivere�nements of middle sub-bukets, while the o�set ℓ is inremented by q in eah reursiveall, starting with ℓ = q. Reall that ℓ re�ets the length of a ommon pre�x of all su�xesin an ℓ-buket, whih is bounded by n − 1. That is, ℓ has reahed its maximum n − 1after enountering at most ⌈n/q⌉ middle branhes on the path from the root to any leaf,
n−1 < ⌈n/q⌉q. For eah left or right branh, we observe that the size of its orrespondingsub-buket is at most half of the size of its father's buket sine the su�xes with themedian sort key fall into the middle sub-buket. Hene, the bukets are split up intosingleton bukets after at most ⌈log2 n⌉ left or right branhes. Together, the total lengthof a path from the root to any leaf is bounded by ⌈n/q⌉+ ⌈log2 n⌉ ∈ O(n/q).Moreover, the partitioning of a buket takes linear time in the size of the buket, andthe bukets at any depth of the tree sum up to at most n sine eah su�x appears at mostone in a buket at any depth of the reursion tree. We multiply the linear partitioningtime at any depth of the reursion tree by the maximum reursion depth of O(n/q) andadd the linear omputation time of phase 1 to get the O(n2/q) worst-ase time bound.Now, we fous on espeially bad instanes for our algorithm, in partiular, strings max-imising the reursion depth. Sine the reursion depth is limited by the LCPs of su�xesto be sorted, periodi strings maximising the average LCP are espeially hard strings forour algorithm.A string An onsisting of one repeated harater maximises the average LCP and istherefore analysed as a partiularly di�ult input string. In the �rst phase of our algorithmthe last q − 1 su�xes {Aq−1, Aq−2, . . . , AA, A} are mapped to singleton bukets. One large87
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ℓ = 64 5 6
ℓ = 66 5 4 3 2 3

ℓ = 62 1Figure 9.2: Reursion tree of the buket re�nements for the $ extended input stringAAAAAAAAAAA$.buket ontaining all the other su�xes with pre�x Aq remains to be re�ned. We assumethat after partitioning in phase 2 the three sub-bukets are re�ned in asending orderof their size. In a reursive re�nement step with o�set ℓ, if the remaining large buketontains at least 2ℓ su�xes, then it is subdivided into a left sub-buket of size ℓ ontainingonly su�xes with unique sort keys and into one larger middle sub-buket ontaining theother su�xes with pre�x Aℓ+q, while ℓ is inremented by q for the reursive re�nementof the middle sub-buket, starting with ℓ = q. If the remaining large buket is of sizebsize with bsize < 2ℓ, then it is subdivided into a left sub-buket of size ⌊bsize/2⌋, asingleton middle sub-buket, and a right sub-buket of size ⌈bsize/2⌉− 1. We assume thatthe left sub-buket is reursively re�ned before the middle sub-buket (small sub-buketsare re�ned �rst) suh that, before the ith reursive re�nement of the middle sub-buket,
ℓ = q · i su�xes are partitioned into a left sub-buket and further into singleton bukets.For q = 3, Figure 9.2 shows the ternary reursion tree of the re�nement proess for thestring A11 extended with $. Here, $ belongs to the string. The su�xes 10, 11, and 12 aremapped to singleton bukets by the initial sorting and thus have unique buket pointers:
bptr[10] = 3, bptr[11] = 2, and bptr[12] = 1. Hene, for the o�set ℓ = 3, the su�xes
7, 8, and 9 have unique sort keys after the initial sorting: sortkey(7) = bptr[7 + 3] =
3, sortkey(8) = bptr[8 + 3] = 2, and sortkey(9) = bptr[9 + 3] = 1. Both groups aremarked in the string. The buket ontaining the su�xes [1, 9] is then re�ned into the leftsub-buket of su�xes 7, 8, 9 and the middle sub-buket of su�xes [1, 6]. Then, in onefurther re�nement step, the su�xes 7, 8, and 9 are subdivided into singleton bukets. Theremaining large buket of su�xes [1, 6] is re�ned with respet to the o�set ℓ = 6 suh thatthe respetive sort keys are the buket pointers of the su�xes [7, 12], whih are unique:88



9.2 Analysissortkey(k) = bptr[k +6] = 7− k for all k ∈ [1, 6]. Finally, the two remaining non-singletonsub-bukets are re�ned: the left sub-buket of su�xes 4, 5, 6 and the right sub-buket ofsu�xes 1 and 2.In the following, we separately analyse the so alled middle re�nement thread orre-sponding to the path of the reursion tree that always follows the middle sub-buket untilit is singleton, and the threads branhing from the middle re�nement thread. In Fig-ure 9.2, the middle re�nement thread is drawn in bold fae. Without loss of generality,we assume that in the ith reursive re�nement of a middle sub-buket on the middle re-�nement thread ℓ = q · i su�xes are partitioned into a left sub-buket. The repeatedreursive re�nement of the middle sub-bukets on the middle re�nement thread proeedsuntil all su�xes are split o� into left sub-bukets or until the middle sub-buket is singleton,that is, until a reursion depth redepth for the middle sub-bukets is reahed, suh that
n ≤ q−1+

∑redepth
i=1 q · i = q−1+q(redepth(redepth+1)/2). Therefore, for the string An,the reursion depth redepth of the repeated middle sub-buket re�nement on the middlere�nement thread is in Θ(

√

n/q). Immediately after branhing from the middle re�nementthread, all sort keys of the su�xes in the orresponding sub-bukets are unique. Sine thebuket size is limited by n, these bukets are split up into singleton bukets after at most
⌈log2 n⌉ further branhes in the reursion tree. Together, the total length of a path fromthe root to any leaf in this reursion tree is bounded by Θ(

√

n/q) + ⌈log2 n⌉ = Θ(
√

n/q)for q ≤ log n. We multiply the O(n) time for the re�nement at any depth of the reursiontree by the reursion depth Θ(
√

n/q) and add the linear time omplexity of phase 1 toget the time bound Θ(n
√

n/q) of our algorithm for the string An. By setting q = log n,we ahieve a running time of O(n
√

n/logn) = O(n3/2/
√

log n).In general, sine the partitioning time of a buket is linear in its size, the runningtime of our algorithm is essentially given by summing up the sizes of the di�erent non-singleton bukets that appear in the whole re�nement omputation. We identify twomain parameters of the input strings that in�uene this sum: the initial distributionof q-length substrings (q-gram pro�le) and the average LCP. The initial distribution of
q-length substrings in�uenes the size and the number of bukets at the lower re�nementlevels with small o�set ℓ = q, where a few large bukets inrease the requirement of furtherre�nements. The average LCP is an indiator for the average reursion depth and thus forthe total number of aumulated non-singleton bukets. The string An maximises both,the size of the initial bukets and the average LCP. Hene, we believe that the worst-asetime bound for An also holds for all other strings.Conjeture 9.2. Let t be a string of length n, and let q with q ≤ log n be the ommonpre�x length with respet to whih our algorithm sorts the su�xes in phase 1. Then ouralgorithm onstruts the su�x array of t in O(n3/2/

√
q) time.9.2.2 Expeted-ase time boundIn pratie, worst-ase strings like An rarely appear. We are rather interested in the averageonstrution time of our algorithm. Therefore, we analyse its expeted onstrution time89



9 The Buket-Pointer Re�nement Algorithmfor strings that are generated aording to a Bernoulli model (i.e., symbols from thealphabet are generated independently) or a �rst order Markov model (i.e., the next symboldepends in a probabilisti sense only on the previous one).Theorem 9.3. Let t be a string of length n generated aording to a Bernoulli model oraording to a �rst order Markov model, and let q with q ≤ log n be the ommon pre�xlength with respet to whih our algorithm sorts the su�xes in phase 1. Then our algorithmonstruts the su�x array of t in O(n log n) expeted time.Proof. We again use the impliit ternary reursion tree and follow the same line of argu-ment as the proof of Theorem 9.1. The number of left or right branhes on a path fromthe root to any leaf in the reursion tree is again bounded by log n. Reall further thatthe number of middle branhes is bounded by the maximal length of the ommon pre�xof two su�xes of the input string divided by the parameter q. A simple onsequene ofa result by Apostolio and Szpankowski [9℄ and Szpankowski [139℄ is that the expetedmaximal length of suh a longest ommon pre�x is bounded by O(log n). Hene, ℓ hasreahed its expeted maximum after at most O(log n/q) middle branhes. Altogether, theexpeted maximal reursion depth is bounded by O(log n): O(log n) left or right branhesand O(log n) middle branhes. We multiply the O(n) time for the re�nement at any depthof the reursion tree by the expeted maximal reursion depth of O(log n) and add thelinear omputation time of phase 1 to get the O(n log n) expeted-ase time bound of ouralgorithm, independent of the parameter q.We further hoose q = log|Σ| n. There exist |Σ|q = n potential bukets, one for eahpossible pre�x of length log|Σ| n over the alphabet Σ. If we assume that the su�xes areindependently assigned to the n bukets, then an expeted-ase analysis analogous tothe analysis of buket sort in [38, Setion 8.4℄ would give a linear expeted onstrutiontime for the Bernoulli model. The su�xes of a string are, however, not independent.Nevertheless, we believe that the expeted onstrution time is linear for q = log n.Conjeture 9.4. Let t be a string of length n over an alphabet Σ of onstant size σgenerated aording to a Bernoulli model or a �rst order Markov model, and let q = logσ nbe the ommon pre�x length with respet to whih our algorithm sorts the su�xes in phase1. Then our algorithm onstruts the su�x array of t in O(n) expeted time.9.2.3 Spae requirementsBpr requires more spae than the lightweight algorithms deep�shallow, ahe, opy, anddi�erene-over. The su�x array and the buket pointer array eah onsume n integerwords, and the input string n bytes. For an alphabet Σ of size σ, σq additional integerwords are used for the buket pointers of the initial buket sort. Hene, for reasonable
q, the total spae requirements of bpr are between 9n and 10n bytes on omputers with
4 byte integer words. However, for ertain appliations, suh as the omputation of theBurrows�Wheeler transform [32℄, the onstrution of the su�x array is just a byprodut,and the omplete su�x array does not need to remain in memory.90



9.3 Engineering and implementation for fast speed9.3 Engineering and implementation for fast speedIn this setion, we present more detailed desriptions of the two phases of the algorithmand enhane the seond phase with a push method that is used in ombination with thereursive re�nement proedure.9.3.1 Computing the initial buket segmentationWe �rst de�ne two spei� terms: range redution and multiple harater enoding. Let
t be a string of length n with harater set Σ of size σ. Range redution realises anorder-preserving harater mapping rk onto a ontiguous segment of natural numbers. Itis a monotone, bijetive funtion, rk : Σ → [0, σ − 1]. The range redued string rk(t) isde�ned by rk(t) := rk(t[1]), rk(t[2]), . . . , rk(t[n]). A multiple harater enoding for stringsof length q is a monotone bijetive funtion codeq : Σq → [0, σq − 1] suh that for twostrings w and w′ of length q, codeq(w) < codeq(w

′) if and only if w is lexiographiallysmaller than w′. For a given range redution, suh an enoding an easily be de�nedas codeq(w) :=
∑q

i=1 σq−i rk(w[i]). The enoding an be generalised to strings of lengthgreater than q, by just enoding the �rst q haraters. Given the enoding codeq(u) forthe su�x t[u, n], 1 ≤ u < n, the enoding for the suessor su�x t[u+1, n] an be derivedby shifting away the �rst harater of t[u] and adding the range redued value rk(t[u+ q])of harater t[u + q]:
codeq(u + 1) = σ

(

codeq(u) mod σq−1
)

+ rk(t[u + q]). (9.2)We are now prepared to formulate phase 1. Our algorithm performs the initial sortingregarding the q-length pre�xes of the su�xes by buket sort, using codeq(u) as the sortkey for su�x u ∈ [1, n] (assuming that t is extended with multiple $s).The buket sorting is performed using two sans of the sequene, thereby suessivelyomputing codeq(u) for eah su�x using equation (9.2), or rather, the equivalent equation
codeq(u + 1) = σ

(

codeq(u)− σq−1 · rk(t[u])
)

+ rk(t[u + q]) (9.3)to avoid the modulo operations, whih are possibly time onsuming.There are σq bukets, one for eah possible codeq . In the �rst san, the size of eahbuket is determined by ounting the number of su�xes for eah possible codeq . Theoutome of this is used to ompute the starting position for eah buket. These positionsare stored in the array bkt, whih is of size σq. During the seond san, the su�x numbersare mapped to the bukets, where su�x number u is mapped to buket number codeq(u).After the buket sort, the buket pointer table bptr an be omputed by another san ofthe sequene. Reall our de�nition of buket pointers, equation (9.1). For eah su�x u ∈
[1, n], the buket pointer bptr[u] is simply the rightmost position of the buket ontaining
u, bptr[u] = bkt[codeq(u) + 1]− 1. 91



9 The Buket-Pointer Re�nement Algorithm9.3.2 Reursively re�ning the buketsWe now give a more in-depth desription of the three steps of the re�nement proedureand present improvements to the basi approah.Partitioning. In the re�nement proedure, the su�xes are �rst partitioned with respetto a ertain o�set ℓ using the buket pointer bptr[u + ℓ] as the sort key for the su�xnumber u. Our ternary partitioning algorithm is adapted from Lomuto's binary partition-ing sheme [21, Column 10℄ (see also [38, Setion 7.1℄). We further tried other ternarypartitioning algorithms that were suggested by Kiwiel [81℄, but ours performs best. Algo-rithm 9.1 (TernaryPartition) shows our partitioning proedure for an ℓ-buket sa[l, r]around the pivot p. The algorithm partitions the su�xes into three segments: a left, amiddle, and a right segment. The su�xes with sort key equal to the pivot p are �rstmoved to the middle segment and then further to the left segment, the su�xes with sortkey smaller than p to the middle segment, and the su�xes with sort key larger than pto the right segment. The numbers end=, end<, i refer to the rightmost positions of therespetive segments and are appropriately updated when the su�xes are moved: end=refers to the rightmost position of the left segment, end< to the rightmost position of themiddle segment, and i to the rightmost position of the right segment. The movements areperformed by swapping the su�xes as in the original Quiksort. Finally, VetorSwap(Algorithm 9.2) moves the su�xes of the left segment, with sort key equal to the pivot, totheir �nal position by swapping them with the rightmost su�xes of the middle segment,ultimately produing the desired three sub-bukets. Figure 9.3 skethes the segments ofthe array immediately before and after the movement of su�xes by VetorSwap.Our VetorSwap proedure improves upon the vetor swap used by Bentley andMIlroy [22℄ for the ternary partitioning. Their proedure swaps the elements of twoarrays A and B, eah of length m, elementwise for eah position i ∈ [1,m]: It assigns
A[i] to an auxiliary variable tmp, B[i] to A[i], and tmp to B[i], altogether performing 3massignment operations. The ordering of the elements is kept during the vetor swap. Ourvetor swap redues the number of assignment operations. Although it is quite simple, wehave not seen that it has been previously used for the ternary partitioning. It �rst assignsthe last element of the seond array B[m] to tmp. Then it performs the following stepsfor eah i ∈ [2,m] from m down to 2: A[i] is assigned to B[i] and B[i− 1] to A[i]. Finally,
A[1] is assigned to B[1] and tmp to A[1]. Our vetor swap keeps the order of elementsthat are moved from A to B, but alters the order of elements that are moved from B to
A: The last element B[m] is moved to the �rst position A[1]. The number of assignmentoperations, however, is only 2m + 1, instead of 3m for Bentley and MIlroy's vetor swap.Moreover, we want to �nd a pivot sort key, hopefully near the true median, in onstanttime. Hoare [59℄ proposed using the median of a small sample of sort keys. We hoosethe pivot to be the median of nine sort keys for bukets larger than 10 000 su�xes andthe median of three sort keys for smaller bukets. The median of three was proposed bySingleton [137℄, who suggested the median of the leftmost, the middle, and the rightmostelement. We, however, observed that his seletion sometimes auses a signi�ant inrease92



9.3 Engineering and implementation for fast speedAlgorithm 9.1.TernaryPartition(sa, ℓ, l, r, p)

i← end= ← end< ← l − 1while i < r do
i← i + 1
sortkey ← bptr[sa[i] + ℓ]if sortkey ≤ p then

end< ← end< + 1
tmp← sa[i]
sa[i]← sa[end<]
sa[end<]← tmpif sortkey = p then

end= ← end= + 1
sa[end<]← sa[end=]
sa[end=]← tmpend ifend ifend while

swapsize← min{end= + 1− l, end< − end=}VetorSwap(l, l + swapsize− 1, end<)

Algorithm 9.2.VetorSwap(g, h, z)

tmp← sa[z]while g < h do
sa[z]← sa[h]
z ← z − 1
sa[h]← sa[z]
h← h− 1end while

sa[z]← sa[h]
sa[h]← tmp

end=
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end<
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?
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g, h
6
zFigure 9.3: Partitioning su�xes before and after vetor swap.in running time for inputs with long repeated substrings. This is presumably due tothe dependenies among su�xes in the re�nement proess suh that the same su�xesare repeatedly enountered at the leftmost or rightmost buket positions in suessivere�nement steps and are thus overrepresented in the hoie of the median sort key. Hene,we hoose the sort key of the middle element and the sort keys of the two elements that areone-fourth of the buket size away from the buket boundaries, preventing the mentionede�et. For the median of nine, we hoose the sort keys analogously: at positions everyone-tenth of the buket size away from eah other and away from the buket boundaries.For small bukets, our re�nement algorithm falls bak upon simple sorting routines:Bukets of size 2 or 3 are re�ned into singleton bukets by diretly omparing the sort93



9 The Buket-Pointer Re�nement Algorithmkeys, while ℓ is inremented by q. Insertion Sort is used for bukets of size up to 15.Updating buket pointers. The used proedure for the buket pointer update dependson the re�nement algorithm. If the su�xes in a small buket of size 2 or 3 are diretlyompared and re�ned into singleton bukets, then the updated buket pointer of a su�x
sa[i] is simply a bakward link, bptr[sa[i]] = i.After sorting the su�xes via Insertion Sort, the update is performed by a right-to-leftsan of the urrent buket. As long as the sort keys of onseutive su�xes are equal, theyare loated in the same re�ned buket, and the buket pointer is set to the rightmost posi-tion of the re�ned buket. Note that the re�ned buket positions are impliitly ontainedin the buket pointer table bptr. The left pointer l of a buket is the right pointer of thebuket diretly to the left inreased by one, and the right pointer r is simply the buketpointer for the su�x sa[l] at position l, r = bptr[sa[l]], sine the buket pointer bptr[u] ofeah su�x u points to the rightmost position of its buket.The ternary partitioning generates the sub-bukets inluding the leftmost and right-most position of eah suh buket. The strategy that we would follow to meet the bestasymptoti running time is the following: In one san of eah of the three sub-bukets,the update proedure assign the rightmost position to the buket pointers of all ontainedsu�xes. During the pratial engineering of our algorithm, however, we observed thatthe memory referenes to the buket pointer array follow a quite arbitrary aess pattern,resulting in many ahe misses. Espeially the write operations during the updates ausea delay in data aess. Hene, in our pratial implementation that re�nes the sub-buketsfrom left to right, we postpone the update of buket pointers of su�xes in the left or rightsub-bukets until they are singletons. We update the respetive buket pointers for themiddle sub-buket after the left sub-buket has been ompletely re�ned.Reursive Re�nement. The reursive re�nement proedure is usually alled with aninremented o�set ℓ + q for the middle sub-buket. Note that, for a middle sub-buket
sa[l=, r=] of sa[l, r] ontaining eah su�x t[sa[i], n], i ∈ [l=, r=], for whih the ℓ-suessorsu�x t[sa[i] + ℓ, n] is also ontained in sa[l, r], the o�set an be doubled. This is sobeause all su�xes ontained in sa[l, r] share a ommon pre�x of length ℓ, and for eahsu�x t[sa[i], n] in the middle sub-buket, i ∈ [l=, r=], there is also the ℓ-suessor su�x
t[sa[i] + ℓ, n] in its super-buket sa[l, r]. Hene, all su�xes ontained in sa[l=, r=] share apre�x of length 2ℓ.We add a further heuristi to avoid the unneessary repeated sorting of bukets. For abuket onsisting of su�xes that all share a ommon pre�x muh larger than the urrento�set, many re�nement steps may be performed without atually re�ning the buket. Thismay ontinue until ℓ reahes the length of the ommon pre�x. Therefore, if a buket is notre�ned during a reursion step, we searh for the lowest o�set dividing the buket. This isperformed by just iteratively sanning the buket pointers of the ontained su�xes withrespet to ℓ and inrementing ℓ by q after eah run. As soon as a buket pointer di�erentfrom the others is met, the urrent ℓ is used to all the re�nement proedure.94



9.3 Engineering and implementation for fast speed9.3.3 Double pushingWe use a push tehnique in ombination with the reursive re�nement proedure. Ourdouble push method that we present in this setion is based upon Seward's opy tehnique(see Setion 8.2.2.2). It is used in ombination with the previously desribed reursivepartitioning of the bukets after the initial sorting in the �rst phase. Reall that the opymethod passes the order of su�xes in a 1-buket on to the order of the orrespondingpredeessor su�xes in some 2-bukets (pushing one). Double push further passes thesorted order of these just opied su�xes on to predeessor su�xes in some 3-bukets(pushing twie).We assume a �xed, small alphabet Σ of size σ. For all (a, b, c) ∈ Σ3, we denote a3-buket ontaining all su�xes with pre�x a, b, c by sa[la,b,c, ra,b,c], a 2-buket ontainingall su�xes with pre�x a, b by sa[la,b, ra,b], and a 1-buket ontaining all su�xes with pre�x
a by sa[la, ra]. Note that onseutive 3-bukets onsisting of su�xes sharing the pre�x
a, b form a 2-buket sa[la,b, ra,b] and that onseutive 2-bukets of su�xes with leadingharater a form a 1-buket sa[la, ra].After the �rst phase of our algorithm that generates a q-buket segmentation for q ≥ 3,our program proesses the 1-bukets sa[lc, rc], c ∈ Σ, in asending order with respet tothe number of su�xes, |sa[lc, rc]| − |sa[lc,c, rc,c]| = rc − lc − (rc,c − lc,c). The reursivere�nement proedure, desribed in Setion 9.3.2, sorts all sub-bukets of sa[lc, rc] thathave not yet been sorted, exept for the bukets with equal �rst and seond harater c.Then the opy algorithm of Seward [135℄ passes the ordering of su�xes in sa[lc, rc] onto the not previously re�ned bukets among sa[lb1,c, rb1,c], sa[lb2,c, rb2,c], . . . , sa[lbσ ,c, rbσ ,c],where bk ∈ Σ is the kth harater of the alphabet, k ∈ [1, σ]. Finally, the su�xes in eahof these 2-bukets are pushed further. Let sa[lbk,c, rbk,c] with k ∈ [1, σ] be any of these
2-bukets and sa[la1,bk,c, ra2,bk,c], sa[la2,bk,c, ra2,bk,c], . . . , sa[laσ ,bk,c, raσ ,bk,c] the bukets ofsu�xes with �rst harater aj ∈ Σ (j ∈ [1, σ]), seond harater bk, and third harater
c. Then sa[lbk,c, rbk,c] is sanned from left to right. For eah su�x number sa[i] with
i ∈ [lbk ,c, rbk ,c] and sa[i] > 1, enountered in the san, if the bukets of su�xes with the�rst harater t[i− 1] are not already re�ned, then the predeessor su�x number sa[i]− 1is assigned to the front of the buket sa[lt[i−1],bk,c, rt[i−1],bk,c], and the front is advaned byone.Figure 9.4 shows an example of the double push proedure for the input string t =CEBDEBDEBDEA. The topmost part below the input string shows the buket segmentationof the su�x array sa before applying the double push proedure to the buket of su�xeswith leading harater B. All shown su�x numbers are already in their �nal position.The double push proedure applied to the buket of su�xes with leading harater A,whih only ontains the su�x number 12, has previously assigned the su�x numbers 11(predeessor of 12) and 10 (predeessor of 11) to their �nal positions. The bukets thatare going to be determined by the urrent double push are left empty (bukets of su�xeswith seond or third harater B). For eah su�x that is involved in the urrent pushingproedure, the �rst harater of its predeessor su�x (the harater to the �left�) is printedbelow its su�x number. E is, for example, the harater at the positions 8, 5, and 2 to95



9 The Buket-Pointer Re�nement AlgorithmString to build su�x array for: t = C E B D E B D E B D E A1 2 3 4 5 6 7 8 9 10 11 12
sa before double push A12 B9E 6E 3E CEB DEA10 DEB EA11 EB

? ? ?
sa after pushing one 12 9 6 3 10 11 8D 5D 2C

? ??
sa after pushing twie 12 9 6 3 1 10 7 4 11 8 5 2Figure 9.4: Double pushing the buket of lexiographially sorted su�xes with leadingharater B of the string CEBDEBDEBDEA.the left of 9, 6, and 3. The middle part of the �gure shows sa after pushing one, andthe bottom part shows sa after the omplete double pushing. We �rst push the buket ofsu�x numbers 9, 6, and 3. Their order is passed on to the buket of predeessor su�xnumbers 8, 5, and 2 for whih the orresponding su�xes share the pre�x EB. Then theorder of the su�x numbers 8, 5, and 2 is further passed on to the bukets of su�xes withthird harater B. The su�x numbers 7 and 4, whih orrespond to su�xes with ommonpre�x DEB, form a buket, and the su�x number 1, whih orresponds to a su�x withpre�x CEB, forms another buket.9.4 Use asesA previous version of the here presented buket-pointer re�nement algorithm is publishedin [132℄ and [133℄. Its implementation proved its e�ieny in several bioinformatis appli-ations. Paarmann [116℄ as well as Twardziok and Shwientek [140℄ integrated bpr in theirtools for the design of oligo nuleotides (see also [121℄). They applied bpr for the on-strution of their su�x-array-based index, whih is then proessed further. Kemena [77℄and Holthaus [62℄ use bpr for the onstrution of Abouelhoda et al.'s enhaned su�xarray [1, 2℄, upon whih they implemented several query algorithms. Moreover, Huse-mann [64℄ applied bpr for text ompression. He implemented Manzini and Ferragina'sompression boosting sheme [51℄ based on su�x arrays.96



10 Experimental ResultsIn this hapter, we investigate the pratial onstrution times and the spae requirementsof our algorithm and ompare it to the fastest previous su�x array onstrution algorithms.Setion 10.1 ontains the settings of the experiments. In Setion 10.2, we present theresults of the experiments and disuss them in Setion 10.3.10.1 Desription of the experiments10.1.1 Implementation of the algorithmsWe ompared our bpr implementation [127, version 2.0.0℄ to eight other pratial imple-mentations: deep�shallow by Manzini and Ferragina [102℄, ahe and opy by Seward [135℄,qsufsort by Larsson and Sadakane [90℄, di�erene-over by Burkhardt and Kärkkäinen [31℄,odd�even by Kim et al. [78℄, and skew by Kärkkäinen and Sanders [71℄. We retrieved theimplementations of deep�shallow, ahe, opy, and qsufsort from Manzini's homepage [100℄,the ode for di�erene-over and skew via Kärkkäinen's homepage [69℄, and the implemen-tation of odd�even was kindly provided by Dong Kyue Kim. We further added the reentmsufsort implementation of Manisalo (version 2.0.1), whih we retrieved from his home-page [97℄ (see also [98, 118, 120℄). Manisalo's msufsort, however, only onstruts theinverse su�x array, although Puglisi et al. [120℄ stated that the su�x array is onstrutedfrom the inverse su�x array in-plae. Hene, we added a proedure that derives the su�xarray by a single san of the inverse su�x array, but not in-plae. The msufsort proedurefollows the depth-�rst buket re�nement sheme and uses a pull tehnique. The generalframework is quite similar to our bpr algorithm: Similar to our buket pointer array,msufsort uses an array that stores the lexiographial order of previously sorted su�xesin the su�x sorting proess. This array ultimately beomes the inverse su�x array (asour buket pointer array). Beyond that, msufsort manages to store further information inthe same array: For eah non-singleton buket, it stores a hain of all su�xes loated inthe buket. Hene, msufsort does not need the su�x array. It is thus more spae e�ientthan bpr. Furthermore, msufsort uses a tandem repeat detetion for su�xes with equalpre�x. One suh a tandem repeat is deteted, the su�xes an be diretly sorted (see [118℄for a detailed explanation).Table 10.1 shows the worst-ase asymptoti time omplexities of the investigated algo-rithms. 97



10 Experimental ResultsTable 10.1: Worst-ase time omplexities of the investigated su�x array onstrution al-gorithms. deep di�erene oddbpr msufsort shallow ahe opy qsufsort over even skew
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O(n2 log n) O(n2 log n) O(n2 log n) O(n2 log n) O(n log n) O(n log n) O(n log log n) Θ(n)10.1.2 MethodsThe experiments were performed on four di�erent omputers: three omputers with x86arhiteture and one Sun UltraSPARC omputer. We refer to the x86 omputers bySmall Sale x86, Medium Sale x86, and Large Sale x86 regarding their main memorysize, and to the Sun UltraSPARC omputer by UltraSPARC :� Small Sale x86 � A 1.3 GHz Intel Pentium� M (Klamath) proessor, running aGNU/Linux operating system. The memory hierarhy is omposed of separate L1instrution and data ahe, eah of size 32 Kbyte and 3 yles lateny, a 1 Mbyte L2ahe with 10 yles lateny, and 512 Mbytes of main memory. Eah ahe is 8-wayassoiative with 64 byte line size.� Medium Sale x86 � A SunFire V20z with two 1.6 GHz AMD Opteron� 242 proes-sors running the Solaris 10 operating system. The memory hierarhy is omposed ofseparate L1 instrution and data ahe, eah of size 64 Kbyte, a 1 Mbyte L2 ahe,and 2 Gbytes of main memory. The L1 ahes are 2-way assoiative, and the L2ahe is 16-way assoiative.� Large Sale x86 � A Xen-DomU with three virtual CPUs (mapped onto 3 realOpteron ores) running a GNU/Linux operating system. The real hardware is aSunFire X4100 with two 2.6 GHz AMD Dual-Core Opteron� 285 SE proessorsrunning a GNU/Linux operating system. The memory hierarhy is omposed ofseparate L1 instrution and data ahe, eah of size 64 Kbyte and 3 yles lateny,a 1 Mbyte L2 ahe with 12 yles lateny, and 8 Gbytes of main memory. TheL1 ahes are 2-way assoiative with 64 byte line size, and the L2 ahe is 8-wayassoiative with 64 byte line size.� UltraSPARC � A SunFire V440 with four 1.3 GHz UltraSPARC IIIi proessorsrunning the Solaris 10 operating system. The memory hierarhy is omposed ofseparate L1 instrution and data ahe, the instrution ahe of size 32 Kbyte andthe data ahe of size 64 Kbyte, a 1 Mbyte L2 ahe, and 16 Gbytes of main memory.All programs were ompiled with the g ompiler, respetively g++ ompiler, with opti-misation options `-O3 -fomit-frame-pointer -funroll-loops'. For Small Sale x86 and LargeSale x86 both running a GNU/Linux operating system, we used the same exeutable thatwas generated with the g ompiler version 3.3.6. For the Medium Sale x86 and for theUltraSPARC, we used the g ompiler version 4.1.1.98



10.1 Desription of the experiments10.1.3 Investigated sequene dataWe enounter two main types of sequenes that are indexed by full-text indies: DNAsequenes and other ommon real-world strings, like natural language texts or softwaresoure ode. In the analysis of genomes, for example, individual DNA sequenes or,alternatively, onatenations of similar DNA sequenes are indexed to �nd repeats, uniqueregions, and ommon subsequenes (see, for example, [58, 87, 89℄). Moreover, Joy andLuk [68℄ observed that in programming ourses, where the assessment is often arriedout by means of programming assignments, there is a temptation among some studentsto opy and modify the work of others. Baker [13℄ and Mozgovoy et al. [110℄, for example,use full-text indies to detet suh plagiarism in program soure odes as well as in naturallanguage texts.Hene, our test data set onsists of two major groups of sequenes: DNA sequenes andommon real-world strings. Beyond that, we investigated a third group of arti�ially gen-erated sequenes, mainly to examine degenerated strings with large LCPs. The maximumLCP of a string is a good indiator for the reursion depth of buket re�nement algo-rithms, and the average LCP further inorporates information of the sizes of the buketsat di�erent re�nement levels: Many large ℓ-bukets for a high re�nement level ℓ imply ahigh average LCP. The investigated data �les are listed in Table 10.2 and are basiallyordered by average LCP. The olumns show the name of the sequene, the average andmaximum values in the respetive LCP array, the length of the sequene, its harater set,and a short desription of the ontent. Due to the memory onstraints of our Small Salex86 test omputer, several of the investigated algorithms ould not onstrut su�x arraysfor text �les that exeeded the 50 million harater limit. Hene, we took the last 50 mil-lion haraters of those text �les and added them to our olletion of ommon real-worldstrings. These trunated sequenes are annotated with 50M. The omplete test data setis available through the bpr homepage [127, bpr-strings.tar.bz2℄.DNA sequenes. For the DNA sequenes, we seleted genomi DNA from di�erentspeies: the whole genome of the bateria Esherihia oli (E. oli), the fourth hro-mosome of the �owering plant Arabidopsis thaliana (A. thaliana), the �rst hromosomeof the nematode Caenorhabditis elegans (C. elegans), and the human (H. sapiens) hro-mosome 22. Moreover, we investigated the onstrution times for di�erent onatenatedDNA sequenes of ertain families. For this we used six Streptoous genomes, fourgenomes of the Chlamydophila family, and three di�erent E. oli genomes. We retrievedthe Esherihia oli sequene from the Canterbury Large Corpus [10, 17℄, the human hro-mosome 22 from the orpus of test �les provided by Manzini and Ferragina [102, 100℄, andthe other sequenes from GenBank [20, 115℄.Text. For the evaluation of ommon real-world strings, we used the King James bible(bible) and the CIA world fat book (world), both from the Canterbury Large Corpus [10,17℄, and the suite of test �les provided by Manzini and Ferragina [102, 100℄. The strings ofManzini and Ferragina's orpus are usually onatenations of text �les or, alternatively, tar99



10 Experimental ResultsTable 10.2: Desription of the data set.LCP String AlphabetData set average maximum length size DesriptionE. oli genome 17 2 815 4 638 690 4 Esherihia oli genomeA. thaliana hr. 4 58 30 319 12 061 490 7 A. thaliana hromosome 4H. sapiens hr. 22 1 979 199 999 34 553 758 5 H. sapiens hromosome 22C. elegans hr. 1 3 181 110 283 14 188 020 5 C. elegans hromosome 16 Streptooi 131 8 091 11 635 882 5 6 Streptoous genomes4 Chlamydophila 1 555 23 625 4 856 123 6 4 Chlamydophila genomes3 E. oli 68 061 1 316 097 14 776 363 5 3 E. oli genomesbible 13 551 4 047 392 63 King James bibleworld 23 559 2 473 400 94 CIA world fat booksprot 89 7 373 109 617 186 66 SwissProt databaserf 93 3 445 116 421 901 120 Texts from the RFC projethowto 267 70 720 39 422 105 197 Linux Howto �lesreuters 282 26 597 114 711 151 93 Reuters news in XMLlinux 478 136 035 116 254 720 256 Linux kernel soure �lesjdk 678 37 334 69 728 899 113 JDK 1.3 do �lesetext 1 108 286 352 105 277 340 146 Projet Gutenberg textsg 8 603 856 970 86 630 400 150 g 3.0 soure �lesw3 42 299 990 053 104 201 579 256 HTML �les of www.w3.orgsprot 50M 91 2 665 50 000 000 66 SwissProt databaserf 50M 87 3 445 50 000 000 110 Texts from the RFC projetreuters 50M 280 24 449 50 000 000 91 Reuters news in XMLlinux 50M 766 136 035 50 000 000 256 linux kernel soure �lesjdk 50M 654 34 557 50 000 000 110 JDK 1.3 do �lesetext99 50M 1 845 286 352 50 000 000 120 Projet Gutenberg textsg 50M 14 745 856 970 50 000 000 121 g 3.0 soure �lesw3 50M 478 29 752 50 000 000 255 HTML �les of www.w3.orgrandom 4 9 20 000 000 26 Bernoulli stringperiod 500 000 9 506 251 19 500 000 20 000 000 26 Repeated Bernoulli stringperiod 1000 9 999 001 19 999 000 20 000 000 26 Repeated Bernoulli stringperiod 20 9 999 981 19 999 980 20 000 000 17 Repeated Bernoulli stringFibonai 5 029 840 10 772 535 20 000 000 2 Fibonai stringarhives: the Swiss prot database version 34.0 in �at �le format (sprot), HTML �les fromthe Request for Comments database (rf), text �les of the Linux Howto (howto), Reutersnews in XML format (reuters), the C soure ode of the Linux kernel 2.4.5 (linux ), javadopages onsisting of HTML and Java �les for JDK 1.3 (jdk), text �les from the ProjetGutenberg (etext), soure ode of the GNU Compiler Colletion version 3.0 (g), andHTML �les from the homepage of the World Wide Web onsortium (w3).100



10.2 ResultsTable 10.3: Su�x array onstrution times for di�erent DNA sequenes and generalisedDNA sequenes by di�erent algorithms on the Large Sale x86 omputer, with q = 7for bpr. The programs were ompiled with the g ompiler version 3.3.6.Constrution time (s)deep di�erene oddDNA sequenes bpr msufsort shallow ahe opy qsufsort over even skewE. oli genome 1.00 1.57 1.14 2.08 1.73 1.51 2.47 4.07 8.58A. thaliana hr. 4 3.00 4.57 3.51 6.99 5.99 4.63 7.87 12.17 25.26H. sapiens hr. 22 9.88 14.36 11.76 24.64 20.35 16.31 27.49 39.95 80.91C. elegans hr. 1 3.52 15.69 4.51 11.84 9.80 7.76 10.58 14.37 28.646 Streptooi 3.25 6.28 4.86 8.98 7.45 8.32 9.21 12.04 25.384 Chlamydophila 1.32 8.09 2.44 8.32 8.28 4.85 3.52 4.70 9.823 E. oli 4.01 782.43 9.79 234.04 675.04 24.24 13.55 16.54 34.28Arti�ial strings. The arti�ial �les were generated as desribed by Burkhardt andKärkkäinen [31℄: a random string made out of Bernoulli-distributed haraters and pe-riodi strings omposed of an initial random string that is repeated until a length of20 million haraters is reahed. We used initial random strings of length 20, 1000 and500 000 to generate the periodi strings. We also investigated a string onsisting of the �rst20 million haraters of a Fibonai string (see [25℄). Fibonai strings have the reputationfor being partiularly bad instanes for non-linear su�x tree onstrution algorithms (see,for example, [54, 129, 122℄) sine they have many long repeats (see [65℄).10.2 ResultsThe omplete running time results on the four di�erent omputers are shown in the ap-pendix, Tables A.1�A.5. In this setion, we partiularly examine the results on the LargeSale x86 omputer. The su�x array onstrution times are given in Tables 10.3�10.5.Table 10.3 ontains the onstrution times for the DNA sequenes. Our bpr algorithm isthe fastest su�x array onstrution algorithm for all investigated DNA sequenes. Therunning times of the seond fastest algorithm, deep�shallow, are by a fator between 1.14and 2.44 greater than the running times of bpr. The other investigated depth-�rst buketre�nement algorithms, msufsort, ahe, and opy, show greater but still reasonable runningtimes if the average LCP is relatively small. For the onatenated sequene of three E. oligenomes with average LCP 68 061, however, their running times are signi�antly greaterthan the running times of the other algorithms. The breadth-�rst buket re�nement algo-rithm qsufsort is more stable regarding variations of the average LCP. Nevertheless, thedi�erene between the running time of bpr and qsufsort is again maximal for the on-atenated sequene of the E. oli genomes (a fator of 6.04). The redued string sortingalgorithms are slower than all buket re�nement algorithms if the average LCP is small,but signi�antly faster than the depth-�rst buket re�nement algorithms msufsort, ahe,101



10 Experimental ResultsTable 10.4: Su�x array onstrution times for various texts by di�erent algorithms on theLarge Sale x86 omputer, with q = 3 for bpr. The programs were ompiled with theg ompiler version 3.3.6. Constrution time (s)deep di�erene oddText bpr msufsort shallow ahe opy qsufsort over even skewbible 0.90 1.12 0.93 1.57 1.29 1.72 2.07 4.10 7.44world 0.55 0.73 0.48 0.84 0.66 1.12 1.30 2.56 4.41sprot 41.06 56.66 59.16 111.89 97.84 108.26 145.42 200.61 335.47rf 40.93 56.23 55.15 100.25 84.06 115.24 125.82 204.20 350.76howto 11.87 15.68 15.02 22.83 25.63 27.54 30.27 62.43 110.32reuters 46.26 66.89 110.99 189.74 212.52 136.83 212.49 217.17 342.13linux 37.23 48.61 48.69 106.21 120.04 99.43 114.86 187.28 345.21jdk 24.19 39.71 63.30 110.25 183.89 83.64 130.65 114.71 186.37etext 41.74 51.36 60.28 101.44 221.22 110.94 106.60 217.79 397.12g 29.62 35.33 60.75 1148.78 7153.44 72.67 84.29 123.56 237.12w3 38.31 55.32 94.65 124.41 3618.65 148.65 143.83 176.27 285.70sprot 50M 15.59 23.31 23.16 41.74 39.67 41.33 55.20 79.80 129.96rf 50M 15.34 21.35 20.16 34.91 32.22 40.49 45.81 76.99 128.37reuters 50M 17.20 25.64 40.21 66.69 81.86 50.26 76.55 83.44 129.90linux 50M 15.83 19.06 18.18 29.59 47.28 42.27 42.17 71.84 130.25jdk 50M 15.46 24.65 35.54 59.02 112.07 49.34 75.48 77.00 129.07etext 50M 17.15 21.47 25.23 41.05 119.60 43.88 41.27 88.00 141.30g 50M 17.77 18.88 49.39 1402.91 7756.83 39.83 47.36 60.55 118.93w3 50M 15.95 23.42 40.77 49.77 75.31 46.39 66.37 76.41 121.65and opy for the onatenated sequene of the E. oli genomes. The running times of bpr,however, are as stable as the running times of the quasi-linear odd�even algorithm: bpr isontinuously around 4 times faster than odd�even for every DNA sequene.For the other real-world strings, the running times of the investigated algorithms areshown in Table 10.4. Our bpr is the fastest su�x array onstrution algorithm for allbut one string: deep�shallow is faster for the CIA world fat book (world). The depth-�rst buket re�nement algorithms deep�shallow and msufsort show the next best runningtimes: deep�shallow is often faster than msufsort for strings with small average LCP,but slower for strings with large average LCP. The other depth-�rst buket re�nementalgorithms ahe and opy are only ompetitive for strings with small average LCP. Forsuh strings, they are faster than the breadth-�rst buket re�nement algorithm qsufsortand the redued string sorting algorithms di�erene-over, odd�even, and skew. For stringswith large average LCP, however, they are signi�antly slower than qsufsort and theredued string sorting algorithms. A strange result is that the running times of ahe andopy for the string g are less than the running times for its shorter su�x g 50M. Forthe strings onsisting of exatly 50 million haraters, we observe that the running timesof bpr and msufsort as well as the running times of qsufsort, di�erene-over, odd�even,102



10.2 ResultsTable 10.5: Su�x array onstrution times for arti�ial strings by di�erent algorithms onthe Large Sale x86 omputer, with q = 3 for bpr. The programs were ompiled withthe g ompiler version 3.3.6. Constrution time (s)Arti�ial deep di�erene oddstrings bpr msufsort shallow ahe opy qsufsort over even skewrandom 5.60 7.08 6.73 9.23 7.88 8.08 13.30 27.01 36.19period 500 000 6.95 224.85 562.60 43 370.14 � 47.32 29.89 21.20 43.94period 1000 7.98 15.21 651.68 20 998.25 � 50.83 55.16 13.00 35.01period 20 4.71 3.36 31 807.89 � � 39.14 35.14 6.10 36.78Fibonai 15.75 232 585.62 547.49 � 176 968.97 44.01 48.44 21.71 27.08and skew are quite stable regarding varying average LCP, although the stated worst-asetime omplexities of bpr and msufsort are onsiderably worse than those of qsufsort andthe redued string sorting algorithms.The onstrution times for the arti�ial strings are shown in Table 10.5. Wherever analgorithm used more than 6 days of omputation time, we stopped the omputation. Thisis indiated by a dash in the table. For the random string with small average LCP, thebuket re�nement algorithms are faster than the redued string sorting algorithms. Forthe periodi strings, however, the depth-�rst buket re�nement algorithms deep�shallow,ahe, and opy are signi�antly slower than the other algorithms. Here, bpr performsvery well, even ompared to msufsort, whih has a tandem repeat detetion, and omparedto the algorithms qsufsort, di�erene-over, odd�even, and skew with good worst-ase timeomplexities. Our algorithm is by far the fastest algorithm for strings with period 1000 and500 000. For strings with period 20, msufsort with its repeat detetion is slightly faster.The repeat detetion of msufsort, however, seems only to work for �simple� short repeats.For the su�x array onstrution of the repetitive Fibonai string, msufsort needs almost3 days. Here, bpr is the fastest algorithm. It is even faster than the linear-time skewalgorithm and the quasi-linear odd�even algorithm.Puglisi et al. [120℄ presented an experimental study of di�erent su�x array onstru-tion algorithms, inluding msufsort, deep�shallow, and our �rst version of bpr. In theirevaluation, msufsort is always faster than bpr, and deep-shallow is in most ases fasterthan bpr. These results seem to ontradit previous results that we have presented in [132℄and [133℄. Thus, we performed experiments on omputers of di�erent sale and observedourselves that the relative running time of the �rst version of bpr ompared to the runningtime of other su�x array onstrution algorithms depend on the used omputer with itspartiular ahe and even on the version of the g ompiler. The improved bpr algorithmthat we investigate in this thesis is muh faster than the �rst version, but the runningtimes ompared to the other algorithms still depend on the used omputer and on theused ompiler. Table 10.6 shows the running times of the investigated su�x array on-strution algorithms for the string jdk 50M on the four di�erent omputers. The msufsort103



10 Experimental ResultsTable 10.6: Su�x array onstrution times for the string jdk 50M by di�erent algorithmson four di�erent omputers, with q = 3 for bpr. The programs were ompiled withdi�erent g ompiler versions. Constrution time (s)deep di�erene oddComputer bpr msufsort shallow ahe opy qsufsort over even skewSmall Sale x86 19.73 35.10 45.55 85.34 206.63 75.36 98.20 98.29 162.65Medium Sale x86 33.49 28.55 56.02 117.31 146.06 69.42 82.92 82.37 147.82Large Sale x86 15.46 24.65 35.54 59.02 112.07 49.34 75.48 77.00 129.07UltraSPARC 36.84 � 85.31 145.99 344.27 123.18 192.99 137.53 247.80implementation aborts unexpetedly for every input on the UltraSPARC omputer. Thisis indiated by a dash in the table. All programs have the shortest running time on theLarge Sale x86 omputer, but bpr, ds, and ahe run faster on the Small Sale x86 om-puter than on the Medium Sale x86 omputer, while the other programs run faster onthe Medium Sale x86 omputer than on the Small Sale x86 omputer. Also, the relativerunning times between the algorithms vary greatly: On the Small Sale x86 omputer,for example, the running time of msufsort is by a fator of 1.78 greater than the runningtime of bpr, but by a fator of 0.85 smaller on the Medium Sale x86 omputer.In addition, we run experiments on the Large Sale x86 omputer, where the algorithmswere ompiled with the g ompiler version 4.0.3, instead of version 3.3.6. The resultsare shown in the appendix, Table A.4. Here, bpr is still the fastest algorithm for theDNA sequenes and among the two fastest algorithms for the other sequenes, but bpr 'sadvantage dereases. The g ompiler version 4.0.3, however, generates ode that uses64-bit pointers, and we were not able to turn that o�. Unlike the other investigatedprograms, whih mainly use integer values for most of their data strutures, the buketpointer array used by bpr is based on real C pointers. It thus requires twie as muh spaeas would be neessary for a 32-bit implementation. This ertainly leads to more ahemisses. Hene, the running times of these ompiled programs are not diretly omparable.In summary, one an say that bpr is always among the two fastest of the investigatedalgorithms on every of the four investigated omputers. In most ases, and spei�ally forall DNA sequenes, it is the fastest algorithm. Unlike the other depth-�rst buket re�ne-ment algorithms, it shows stable running times for all investigated sequenes, regardlessof the average LCP. Even for the Fibonai string, bpr performs well ompared to thealgorithms qsufsort, di�erene-over, and odd�even with good worst-ase time omplexity,whereas the onstrution times for msufsort, deep�shallow, ahe, and opy esalate. Therunning times of the di�erent algorithms, however, also depend on the used omputer andon the used ompiler. We should thus be areful with general statements regarding thepratial performane of the di�erent algorithms.104



10.2 ResultsTable 10.7: Desription of the genomi DNA sequenes and the su�x array onstrutiontimes for these sequenes by bpr, with q = 7.LCP String Alphabet bprGenomes average maximum length size onstrution time (s)Human (H. Sapiens) 518 611 29 999 999 3 096 521 113 7 4978.11Mouse (M. musulus) 37 338 3 049 999 2 482 869 215 5 3968.57Dog (C. lupus) 69 485 3 000 010 2 531 673 953 5 3856.9910.2.1 Performane on very large-sale data setsIn a separate experiment, we took the onstrution times for the human [36℄, mouse [37℄and dog genome [35℄ (all downloaded from [11℄) on a Sun Fire V1280 server running twelve900 MHz UltraSpar-III proessors. Its memory hierarhy is omposed of 32 Kbyte L1instrution and 64 Kbyte L1 data ahe, 8 Mbyte L2 ahe, and 96 Gbyte main memory.The genomes are onatenated DNA sequenes of all their hromosomes where the humangenome onsists of about 3.09 billion nuleotides, the mouse genome of about 2.48 bil-lion, and the dog genome of about 2.53 billion, in total. The three genome sequenes areavailable through the bpr homepage [127, bpr-genomes.tar.bz2℄. We ompiled the imple-mentations of su�x array onstrution algorithms with the g ompiler version 4.1.1 andfurther 64-bit options '-m64 -mptr64'.Bpr with q = 7 needs about 1 h 23 min for the human genome, 1 h 6 min for the mousegenome, and 1 h 4 min for the dog genome. The other algorithms abort unexpetedly.It seems that their partiular implementations are limited to 32 bit address spae. Notethat, at the time we were performing the experiments, the server ran multiple onurrentproesses, suh that the times may vary in di�erent runs.10.2.2 Spae onsumptionBesides the running times, we measured the spae onsumptions of the di�erent su�xarray onstrution algorithms over all data �les. We used memtime [19℄ to get the peakvirtual memory onsumption traed by the linux operating system. Table 10.8 shows theresults in average number of bytes per harater of the used input sequenes. The givenvirtual memory onsumption of msufsort inludes only the spae for the onstrution ofthe inverse su�x array, not the additional spae that we used for deriving the su�x arrayfrom its inverse.With 5.04n to 6.04n bytes, the lightweight algorithms opy, deep�shallow, msufsort,di�erene-over, and ahe use slightly more spae than the theoretial minimum of 5nbytes, onsisting of 4n bytes for the su�x array and n bytes for the input string. Qsufsort's8.03n and bpr's 9.30n bytes are still under the limit of 10n bytes, while odd�even and skewusing 16.03n and 23.92n bytes, respetively, onsume signi�antly more spae. 105



10 Experimental ResultsTable 10.8: Average virtual memory spae onsumption per input harater for the di�erentsu�x array onstrution algorithms.Bytes per input haraterdeep di�erene oddbpr msufsort shallow ahe opy qsufsort over even skew9.30 5.29 5.06 6.04 5.04 8.03 5.93 16.03 23.9210.2.3 Detailed runtime analysisFor a more detailed performane analysis of the su�x array onstrution algorithms, weused the pro�ler and ahe simulator valgrind [136, 114℄ to ount the number of exeutedinstrutions and to simulate the ahing behaviour on the Large Sale x86 omputer. Theprograms were ompiled with the g ompiler version 3.3.6.The number of exeuted instrutions per input harater of the di�erent algorithms isshown in Table 10.9, the L1 data referenes per input harater in Table 10.10, the L1misses or, alternatively, L2 referenes per input harater in Table 10.11, and the numberof L2 misses per input harater in Table 10.12. We stopped the omputation whenever asimulation used more than 24 hours. This is indiated by a dash in the tables. In addition,Figures 10.1 and 10.2 exemplarily show bar harts for H. sapiens hromosome 22 and thelinux soure ode. Note that, besides the instrutions and ahe referenes of the puresu�x array onstrution algorithms, valgrind also ounts those of the di�erent IO routinesfor reading the input strings from the disk.It is impressive that the instrution ounts for bpr learly outperform all other algo-rithms for all strings. For real-world strings, the seond best algorithm, msufsort, exeuteson average more than twie as many instrutions. For the Fibonai string, msufsort exe-utes an enormous number of instrutions, although it shows reasonable instrution ountsfor the arti�ial strings with shorter periods. In ontrast, the instrution ounts of bpr arestable with respet to strings of varying average LCP. Even for the Fibonai string, theaverage instrution ount of bpr (345 instrutions per input symbol) is omparable withthe linear-time algorithm skew (396 instrutions per input symbol) and the quasi-linearodd�even algorithm (533 instrutions per input symbol).We additionally ounted the exeuted instrutions for the algorithms on the Large Salex86 omputer ompiled with the g ompiler version 4.0.3, instead of version 3.3.6. Theresults are shown in the appendix (Table A.6). Here, the instrution ounts for bpr stilloutperform all the other algorithms for all but one string, the string g 50M for whihmsufsort takes fewer instrutions. The di�erene to msufsort, however, is not as large asfor the algorithms ompiled with the g ompiler version 3.3.6.The ahing behaviour of bpr is also quite good. The number of L1 ahe referenes isorrelated with the number of exeuted instrutions, whih an be seen in Figures 10.1and 10.2. Thus, bpr takes the smallest number of L1 ahe referenes for all strings. Itsinferior miss ratio, however, often leads to more ahe misses. For all DNA sequenes, bpr106



10.2Results

Table 10.9: Number of exeuted instrutions on the Large Sale x86 omputer (g ompiler version 3.3.6).Exeuted instrutions per input haraterdeep di�erene oddSequene type Sequene bpr msufsort shallow ahe opy qsufsort over even skewDNA sequene E. oli genome 138 404 231 678 603 304 798 382 397A. thaliana hr. 4 149 480 236 879 865 334 856 383 406H. sapiens hr. 22 152 414 247 849 749 337 987 391 409C. elegans hr. 1 144 2879 302 1749 1727 405 1054 395 4066 Streptooi 151 809 401 1161 926 428 953 386 4014 Chlamydophila 156 4457 918 5710 5092 538 978 384 4043 E. oli 169 150 398 1280 54 382 169 118 701 1029 386 408Text bible 160 316 248 635 582 364 839 415 378world 161 331 253 603 624 348 979 414 378sprot 178 406 471 1589 1937 445 1329 440 400rf 171 382 420 1077 1252 470 1171 460 395howto 171 377 347 744 1590 421 928 430 412reuters 186 459 1077 3281 5599 487 1530 472 400linux 167 379 412 2055 3429 454 1144 447 409jdk 185 488 1107 2889 10215 491 1680 475 397etext 178 385 459 1087 7206 466 925 438 412g 281 386 1574 � � 459 1250 451 410w3 185 600 1839 2178 � 606 1557 466 405sprot 50M 173 396 466 1369 1995 427 1298 433 395rf 50M 169 371 381 962 1399 446 1129 453 396reuters 50M 180 447 969 2525 5101 470 1469 464 401linux 50M 167 376 403 942 3298 486 1109 439 409jdk 50M 182 476 971 2341 9548 478 1617 468 398etext 50M 174 381 449 947 9365 454 901 432 413g 50M 359 387 3457 � � 468 1312 452 409w3 50M 184 452 1724 1766 5770 474 1583 465 399Arti�ial random 153 267 263 521 464 250 667 332 291period 500 000 211 18 600 100 750 � � 785 2070 335 395period 1 000 176 452 149 789 � � 794 2214 349 398period 20 201 275 � � � 880 2467 418 384Fibonai 345 � 83 378 � � 815 2469 533 386
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Table 10.10: Number of L1 ahe referenes on the Large Sale x86 omputer (g ompiler version 3.3.6).L1 data ahe referenes per input haraterdeep di�erene oddSequene type Sequene bpr msufsort shallow ahe opy qsufsort over even skewDNA sequene E. oli genome 81.80 200.17 91.27 306.28 257.24 138.75 405.41 243.11 250.53A. thaliana hr. 4 87.76 241.33 93.01 385.14 344.14 149.60 436.21 243.26 255.83H. sapiens hr. 22 89.36 203.32 97.16 375.40 311.57 151.78 514.01 243.99 257.62C. elegans hr. 1 85.08 1610.44 119.59 723.83 618.63 187.99 552.16 244.86 255.686 Streptooi 89.02 428.45 152.74 495.16 362.49 200.00 474.67 244.37 252.584 Chlamydophila 91.77 2499.99 351.48 2283.86 1719.18 261.70 476.53 242.92 254.493 E. oli 98.13 85601.40 495.72 21418.43 55169.62 348.70 505.13 244.21 257.19Text bible 93.26 155.92 100.69 291.71 250.05 164.65 423.21 237.54 238.95world 94.75 165.00 103.57 275.14 257.33 160.80 507.66 238.15 238.48sprot 102.50 200.41 183.82 668.76 697.61 199.57 717.39 242.69 252.12rf 98.96 190.21 171.27 465.55 472.15 209.90 612.82 246.73 249.13howto 99.51 187.84 136.47 338.20 583.15 190.20 470.43 241.63 259.80reuters 106.35 224.90 459.09 1336.21 1900.02 219.46 840.07 248.85 251.75linux 97.62 188.98 161.70 853.01 1183.30 205.22 594.99 244.61 257.71jdk 106.29 241.72 479.19 1179.01 3398.94 225.70 935.72 248.94 249.67etext 102.60 190.29 181.35 478.35 2424.53 207.44 471.28 243.02 260.07g 151.13 191.54 611.68 � � 208.31 662.31 245.14 258.19w3 106.21 305.88 814.64 899.71 � 287.50 846.47 247.78 254.55sprot 50M 100.17 195.87 183.61 580.71 713.44 193.05 700.57 241.59 248.66rf 50M 97.94 184.69 153.55 419.28 517.28 200.49 590.30 245.54 249.53reuters 50M 103.41 219.93 407.00 1037.04 1733.24 213.46 804.76 247.32 252.24linux 50M 98.26 189.20 157.92 413.92 1137.07 219.92 574.32 243.31 258.13jdk 50M 104.77 236.34 411.98 962.88 3179.78 220.26 896.54 247.72 250.25etext 50M 100.14 188.98 177.90 422.47 3125.29 203.95 458.69 241.74 260.51g 50M 187.43 192.45 1286.20 � � 213.68 702.39 245.22 257.63w3 50M 106.33 224.87 846.42 735.18 1945.90 218.90 868.91 247.36 251.17Arti�ial random 89.35 129.86 103.61 255.23 213.68 119.41 333.19 214.56 185.25period 500 000 114.87 10251.72 38942.08 � � 371.74 1191.01 218.09 247.45period 1 000 100.02 224.44 52875.36 � � 365.66 1275.53 221.70 248.02period 20 115.32 129.62 � � � 393.94 1426.58 260.75 240.05Fibonai 185.17 � 32225.18 � � 387.25 1425.79 314.04 241.49
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Table 10.11: Number of L1 ahe misses (L2 ahe referenes) on the Large Sale x86 omputer (g ompiler version 3.3.6).L1 ahe misses per input haraterdeep di�erene oddSequene type Sequene bpr msufsort shallow ahe opy qsufsort over even skewDNA sequene E. oli genome 3.10 5.22 4.54 7.03 5.41 6.59 12.84 15.32 31.54A. thaliana hr. 4 4.78 5.31 4.99 7.72 5.96 7.82 15.12 15.59 32.38H. sapiens hr. 22 4.49 5.25 5.72 8.81 6.89 8.21 17.19 15.39 31.78C. elegans hr. 1 4.01 8.39 4.87 13.70 10.45 9.82 14.91 14.47 29.946 Streptooi 4.75 5.83 5.95 10.04 7.23 11.75 16.00 15.73 31.724 Chlamydophila 5.87 11.44 7.69 29.90 21.65 17.43 14.87 15.41 31.723 E. oli 6.63 218.99 11.23 336.98 835.38 23.02 17.24 15.90 32.50Text bible 3.74 4.44 4.34 6.61 4.98 9.42 12.20 18.81 30.27world 4.03 4.75 3.61 5.55 4.01 9.16 11.00 18.76 29.72sprot 5.91 6.11 8.60 11.73 8.84 15.79 26.08 21.50 32.06rf 5.03 5.62 6.58 10.70 7.99 15.86 20.82 20.93 31.15howto 4.77 5.30 5.87 8.26 10.09 12.74 15.83 21.27 34.01reuters 6.24 7.60 16.22 18.18 16.21 19.22 35.01 22.35 31.40linux 5.66 5.08 6.14 11.53 12.55 14.33 18.23 20.39 32.38jdk 5.93 7.89 16.69 18.84 25.77 19.22 34.20 21.36 30.18etext 5.42 5.36 8.22 11.70 32.34 15.74 18.54 21.81 34.77g 11.37 5.26 19.18 � � 15.25 19.75 19.13 31.85w3 6.83 6.79 12.49 16.07 � 23.43 28.34 22.43 31.60sprot 50M 5.53 6.03 7.92 11.48 8.16 14.60 23.87 21.11 31.42rf 50M 4.76 5.49 6.17 9.50 7.54 14.40 18.90 20.39 31.29reuters 50M 5.92 7.34 14.01 17.46 14.41 17.88 32.67 21.72 31.46linux 50M 5.55 4.90 5.47 8.62 15.41 15.18 16.29 19.79 32.42jdk 50M 5.55 7.50 13.82 16.28 24.17 18.22 31.31 20.83 30.36etext 50M 5.06 5.18 7.65 10.78 43.51 14.76 17.10 21.37 34.78g 50M 15.87 5.16 28.81 � � 15.46 19.47 17.95 30.84w3 50M 5.99 6.71 10.74 13.77 16.55 17.51 29.60 22.17 30.74Arti�ial random 3.79 4.51 5.30 6.87 5.81 6.81 14.02 19.72 24.33period 500 000 5.61 63.94 604.75 � � 46.53 23.37 17.21 30.85period 1 000 9.12 12.64 720.25 � � 51.35 62.05 13.36 26.19period 20 7.44 4.01 � � � 56.17 34.54 5.19 24.40Fibonai 22.61 � 550.58 � � 47.32 40.78 10.89 21.37
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Table 10.12: Number of L2 ahe misses on the Large Sale x86 omputer (g ompiler version 3.3.6).L2 ahe misses per input haraterdeep di�erene oddSequene type Sequene bpr msufsort shallow ahe opy qsufsort over even skewDNA sequene E. oli genome 2.10 3.76 2.45 4.00 2.63 4.88 5.75 11.63 27.58A. thaliana hr. 4 2.22 4.01 3.01 4.91 3.41 5.18 8.06 13.00 29.80H. sapiens hr. 22 2.24 4.15 3.67 5.92 4.37 6.11 10.16 13.56 30.06C. elegans hr. 1 2.28 5.69 3.04 8.02 4.89 7.95 8.36 12.14 27.466 Streptooi 2.69 4.49 3.83 6.94 4.42 9.19 8.89 13.18 29.324 Chlamydophila 3.44 8.27 4.62 20.72 11.94 14.98 7.26 11.69 27.353 E. oli 4.36 170.12 8.40 299.50 724.25 21.21 10.28 13.57 30.06Text bible 2.08 2.92 1.81 3.11 1.88 5.67 5.03 13.59 26.78world 2.00 2.71 1.16 2.15 1.15 5.89 3.60 12.15 24.04sprot 3.08 4.05 4.36 7.09 4.86 10.46 14.84 17.60 30.18rf 3.01 3.81 4.06 6.30 4.71 10.74 12.57 17.15 29.70howto 2.70 3.38 3.28 4.90 4.17 8.11 9.10 17.54 32.01reuters 3.75 5.25 8.40 11.30 8.78 14.06 24.70 18.37 29.87linux 3.14 3.25 3.47 5.28 4.68 9.50 10.89 16.35 30.64jdk 3.32 4.74 5.78 9.62 9.79 14.18 17.16 16.57 28.56etext 3.10 3.77 5.32 7.84 16.19 10.58 11.80 18.95 33.29g 2.88 3.42 6.86 � � 10.48 11.28 15.05 30.19w3 3.76 4.27 7.51 8.67 � 18.18 15.89 17.09 29.87sprot 50M 2.79 3.85 3.59 5.94 4.05 9.66 12.28 16.82 29.37rf 50M 2.74 3.55 3.42 5.32 3.98 9.46 10.58 16.45 29.60reuters 50M 3.30 4.97 6.82 9.07 7.13 12.85 20.47 17.52 29.74linux 50M 3.04 3.03 2.90 4.33 4.23 10.35 9.22 15.71 30.35jdk 50M 3.09 4.33 4.95 7.97 8.04 13.30 14.67 16.03 28.63etext 50M 2.79 3.63 4.71 6.70 17.14 9.47 10.43 18.41 33.11g 50M 2.84 3.31 5.45 � � 10.70 10.72 13.64 28.95w3 50M 3.28 4.09 5.04 6.75 5.87 12.52 14.48 16.25 28.77Arti�ial random 2.10 3.40 2.30 3.49 2.46 5.74 8.13 17.55 21.69period 500 000 4.08 44.54 318.75 � � 44.76 17.10 14.81 28.42period 1 000 7.14 11.00 694.15 � � 45.17 46.25 11.00 24.67period 20 5.93 3.57 � � � 51.72 29.47 5.13 24.10Fibonai 16.25 � 544.01 � � 44.54 33.99 10.02 20.83
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Figure 10.1: Instruction counts and cache references for H. sapiens chr. 22, with q = 7 for bpr.
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Figure 10.2: Instruction counts and cache references for the linux �le, with q = 3 for bpr.
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10.3 Discussion of the experimental results

still has the fewest L1 and L2 cache misses, but for other real-world strings, msufsort often
has less L1 cache misses, and deep-shallow has sometimes less L2 cache misses. Although
the L1 cache miss ratio of bpr is often worse than msufsort 's, its L2 cache miss ratio is
usually better. The reason is probably the di�erent granularity of the respective data
access patterns.
For degenerated strings, the caching behaviour of bpr is also quite good. It takes the

fewest cache misses for strings with periods of length 500 000 and 1 000. For the string
with a period of length 20 and for the Fibonacci string, however, other algorithms have
fewer cache misses, but bpr is still among the three algorithms with the fewest number of
cache misses.

10.3 Discussion of the experimental results

We �rst believed that the practical speed of our algorithm was mainly due to the combina-
tion of di�erent techniques with good locality behaviour. However, the simulations showed
that, compared to the other su�x array construction algorithms, bpr mainly gains its fast
running time from the fewer executed instructions rather than from its good locality be-
haviour. With respect to the number of executed instructions, bpr is the algorithmically
best algorithm.
The few executed instructions are apparently due to the di�erent strategies of the two

phases of the bpr algorithm. First of all, if the q-length substrings are uniformly dis-
tributed, phase 1 equally divides all su�xes into small buckets by just scanning the input
string twice. This, however, does not explain its speed for the periodic strings. Here, the
su�xes are just partitioned into a few large buckets. For such strings, our algorithm basi-
cally bene�ts from the use of relations among the su�xes in phase 2. By using the bucket
pointers as sort keys, the method incorporates information about the subdivided buckets
into the bucket re�nement process as soon as this information becomes available. In the
bucket-re�nement process, each bucket is re�ned recursively until it consists of singleton
sub-buckets. This technique of dividing su�xes from small to smaller buckets is similar
to Quicksort for original sorting, which is known to be fast in practice. The combina-
tion of these techniques and further heuristics in the re�nement procedure (Section 9.3),
in particular the double push method (Section 9.3.3), results in the �nal low instruction
count. This stably low instruction count also supports Conjecture 9.2, which assumes a
subquadratic worst-case time bound of the bpr algorithm.
In our �rst assumption that the good locality behaviour was mainly responsible for the

speed of bpr, we were misled by some elements of the algorithm that have good locality
behaviour with respect to the data structure, but this is not always the case. The data
structure can be divided into four parts: the input string, the su�x array, the bucket
pointer array, and the bucket array storing the boundaries for all buckets. Phase 1, for
example, just scans the sequence twice. It has a good locality of memory access with
respect to the input string and the bucket pointer array, whereas the bucket array and the
su�x array are arbitrarily accessed. In contrast, phase 2 has a good locality of memory
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access with respect to the bucket array and the su�x array. The bucket array is accessed
from left to right and the su�x array is divided into increasingly smaller buckets. The
bucket pointer array is again arbitrarily accessed. Therefore, bpr 's cache miss ratio is
often worse than that of the other depth-�rst bucket re�nement algorithms msufsort,
deep�shallow, cache, and copy. Nevertheless, thanks to its fewer total cache accesses and
its fewer executed instructions, bpr is generally faster than the other algorithms.
The instruction counts for the di�erent real-world strings reveal further interesting facts.

The linear-time skew, the quasi-linear odd�even, and the O(n log n) time qsufsort algo-
rithms show little variance of instruction counts, indicating little dependence on the se-
quence structure. In contrast, the instruction counts of msufsort, deep�shallow, cache,
and copy vary greatly. Deep�shallow, for example, executes less than 400 instructions per
input character for the howto and the rfc 50M �les, but more than 1500 instructions per
input character for the w3c and the gcc �les. For the gcc �les and for the longer w3c
�le, the very high average and maximum LCP values account for the high instruction
count, whereas for w3c 50M this is not so. The string has even lower LCP values than
the linux 50M string, nevertheless, deep�shallow needs more than four times the number
of executed instructions. Therefore, other structural properties of the text also seem to
be important for the instruction count and thus for the performance of those algorithms.
Msufsort, for example, shows worse instruction counts for the DNA sequences than for the
other real-world strings, even if the average and maximum LCPs of the DNA sequences are
smaller. One reason could be the particular structure of the DNA sequences with highly
variable LCPs, or simply the relatively small DNA alphabet. Apart from that, msufsort
shows relatively low instruction counts for the strings with periods of length 1000 and 20,
which is presumably due to its repeat detection. The e�ciency of their repeat detection,
however, decreases with increasing period length since msufsort detects a period of length
` not until the bucket re�nement process has reached the re�nement level `. Hence, the
instruction count is very high for the string with a period of length 500 000 and for the
Fibonacci string.
Comparing the instruction counts for the real-world strings shows that deep�shallow

often executes many more instructions than, and msufsort often about as many as, qsuf-
sort, odd�even, or skew, even though the execution times of deep�shallow and msufsort are
always signi�cantly faster. The higher number of L2 cache misses for qsufsort, odd�even,
and in particular skew reveal that the fragmented memory access slows down their su�x
array construction. Therefore, the practically fastest algorithm does not need to have the
lowest instruction count or the lowest number of cache misses, but as with bpr, it must
possess the optimal combination of both properties.
Bpr is generally the fastest among the investigated su�x array construction algorithms

on the four di�erent computers, but the relative running times between the algorithms vary
greatly. Responsible for that are mainly the di�erent compiler versions and the di�erent
memory facilities of the computers with their multiple levels of cache and their main
memory. The used compiler is mainly responsible for the number of executed instructions.
Di�erent compilers, respectively di�erent compiler versions, may generate machine code
of di�erent quality (e.g., �faster� or �slower�) depending on the computer architecture,
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the used processor, and the implementation of the algorithm. The particular memory
hierarchy is responsible for the number of cache misses at di�erent cache levels and for the
cache latencies. The performance of a cache is mainly determined by three parameters:
cache size, line size, and degree of associativity. Note that the cache miss ratio is usually
negatively correlated with the cache latency: A larger cache usually leads to a lower cache
miss ratio, but a higher latency. Moreover, on modern computers, a �clever� compiler
can insert prefetch instructions to request the data before they are needed to avoid cache
misses (compiler prefetching), and there are several further techniques to improve the
caching behaviour (see, for example, [117, Chapter 5]). Therefore, we should be careful
with general statements regarding the practical performance of our algorithm, even though
it is the fastest su�x array construction algorithm on our four test computers.
However, the space requirements of bpr are higher than the space requirements for

msufsort, deep�shallow, cache, and copy. In practice, bpr takes between 9n and 10n bytes,
the su�x array and the bucket pointer table each consume 4n bytes, and the input string
n bytes. Additional space is used for the bucket pointers of the initial bucket sort and for
the recursion stack, even though the recursion depth decreases by a factor of q.
Therefore, if one is concerned about space, the msufsort algorithm or the deep�shallow

algorithm might be the best choice. If there are no major space limitations, we believe
that the bpr algorithm is an attractive alternative. Maniscalco and Puglisi [99], however,
recently presented a su�x array construction algorithm that seems to be faster than the
version of msufsort that we analysed in this thesis (see [120]), but that algorithm was
not available when we performed our experiments. Its practical running time should be
investigated further.
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11 Conclusion

We have discussed two major aspects of su�x arrays, namely their combinatorics and their
construction. We have been the �rst presenting an in-depth study on the combinatorics of
su�x arrays. Our work dealt with the classical combinatorial counting problem and with
the related algorithmical enumeration problem: We have presented constructive proofs to
count the strings sharing the same su�x array as well as the distinct su�x arrays for �xed
size alphabets. Beyond that, based on the construction schemes used in the proofs, we
developed e�cient algorithms to enumerate those strings and those su�x arrays, respec-
tively. For alphabets of size σ, (n+σ−d−1

σ−d−1

) strings of length n share the same su�x array
(with d +R-descents) among which (n−d−1

σ−d−1

) are composed of exactly σ distinct characters.
For these strings, we have given a bijection into the set of non-decreasing sequences over
σ−d integers and presented optimal-time enumeration algorithms. The number of distinct
su�x arrays is ∑σ−1

d=0

〈
n
d

〉
=
∑σ−1

k=0

(
n
k

)
(−1)k(σ − k)n. This has yielded lower bounds for

the compressibility of such su�x arrays. Moreover, summing up the number of strings for
each su�x array yields constructive proofs for Worpitzki's identity and for the summation
rule of Eulerian numbers to generate the Stirling numbers of the second kind. One could
also say the number of su�x arrays and their strings form a particular instance of these
identities.
Unlike the combinatorics of su�x arrays, their e�cient construction has been widely

studied before. We have introduced new classi�cations of su�x array construction algo-
rithms and have surveyed the previous algorithms. On the one hand, we have classi�ed the
su�x array construction algorithms regarding their progress in the su�x sorting process:
either bucket re�nement or reduced string sorting. On the other hand, we have classi�ed
them regarding the use of dependencies among su�xes: either the push method or the
pull method. We have presented our new bucket-pointer re�nement algorithm, proved
an O(n2/ log n) worst-case time bound and an O(n log n) expected-case time bound, and
enhanced the basic algorithm with some further techniques for fast practical su�x ar-
ray construction. Due to its simple structure, it is easy to implement. Finally, we have
extensively evaluated the practical performance of our algorithm and other su�x array
construction algorithms for real-world input sequences of di�erent type and for degenerated
input sequences that were arti�cially generated. The results show that our bucket-pointer
re�nement algorithm is usually the fastest among all investigated su�x array construction
algorithms, even for worst-case strings. Therefore, we believe that it can be widely used
in all kinds of su�x array applications.
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11 Conclusion

Open problems
Some problems regarding the combinatorics and the construction of su�x arrays remain
unsolved or have been opened up by the thesis.
For the lower bound of the compressibility of the information content of su�x arrays in

the Kolmogorov sense, we have counted all possible su�x arrays for strings over a �xed
sized alphabet. The Kolmogorov complexity considers the information content of a se-
quence independent of any particular probability model, but if the underlying probability
model for a sequence is known, Shannon entropy is often used as a measure of the infor-
mation content. In terms of Shannon entropy, however, we are so far not able to give such
lower bounds for the compressibility of su�x arrays.
Moreover, the running time of our enumeration algorithm for the su�x arrays or, al-

ternatively, for the corresponding equivalence classes of strings sharing the same su�x
array could possibly be reduced further. The running time of our algorithm is O(log n)
multiplied by the number of enumerated su�x arrays. The O(log n) factor is used for the
update of the dynamic auxiliary data structure for the implementation of the Burrows-
Wheeler transform, or rather for the corresponding Last-to-First mapping. With a more
advanced dynamic data structure it could possibly be reduced to a constant factor. As
we mentioned, our right-to-left extension scheme for the enumeration can also be used for
the su�x array construction or for the construction of the Burrows-Wheeler transform.
Hence, with a dynamic data structure that would allow the constant time extension to the
left, we could solve two problems at once: the optimal-time enumeration of su�x arrays
and the optimal linear-time right-to-left online construction of su�x arrays. For su�x tree
construction, there is Weiner's optimal linear-time algorithm that also adds the su�xes of
the input string from right to left. So maybe we can use some of Weiner's techniques. A
straightforward approach could use his algorithm for the construction of su�x trees and
keep track of the sorted list of su�xes at the leaves of the su�x tree. Weiner's algorithm,
however, requires quite a bit of working space, which we would like to save. Hence, we
would not like to simply port that algorithm to su�x arrays.
For the right-to-left online construction of su�x arrays or, alternatively, for the construc-

tion of the Burrows-Wheeler transform, a practical approach could abandon the optimal
time criterion and search for the proper insertion positions of the new su�x into the su�x
array in another way. Table 5.2 shows, for example, how the Burrows-Wheeler trans-
form is updated when the character A is added to the front of the string ABBAA. In the
Burrows-Wheeler transform, the character $ is simply replaced by the new character A.
The crucial and also most time-consuming part is to �nd the insertion position of the A
in the corresponding First sequence. We could simply search for the �rst A preceding the
newly inserted A in the Burrows-Wheeler transform and follow a link (corresponding to
the LF -mapping, described by the dashed line in the table) to the corresponding A in the
First sequence. The correct insertion position in the First sequence is then directly behind
this A, which is also the new position of the $ in the Burrows-Wheeler transform. This
method works for every front extension of the input string. The preceding character in
the Burrows-Wheeler transform that equals the new character at the front of the string
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is, however, possibly far away. Moreover, such an algorithm would require traversals of
dynamic lists and links between these lists, which usually has a bad locality of memory
reference. Hence, we doubt that such an algorithm performs well in practice.
Also questions regarding our bucket-pointer re�nement algorithm remain. We were so

far unable to prove a better worst-case time complexity than O(n2/ log n) while at the
same time we are not aware of an example showing that this bound is tight. For certain
periodic strings, we veri�ed an O

(
n

3
2 /
√

log n
)
time bound, but for general strings �nding

a non-trivial upper bound seems to be hard since our algorithm quite arbitrarily uses the
dependence among su�xes. We have further proved an O(n log n) expected time bound,
but suppose that it is linear.
Beyond the construction of the complete su�x array, we may be interested in sparse

su�x arrays that only contain a particular subset of su�xes. There are sparse su�x
trees [12, 74] with linear time construction algorithms [6, 66] using space proportional
to the number of su�xes in the sparse index. To the best of our knowledge, linear-time
construction algorithms using space proportional to the number of su�xes in the sparse
su�x array do not exist. A promising approach to solve that problem could be to modify
one of the reduced string sorting algorithms since these algorithms also use sparse su�x
arrays in intermediate steps.
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A Appendix

Tables A.1�A.5 contain the running times of the di�erent su�x array construction pro-
grams on the four di�erent test computers: Table A.1 for the Small Scale x86 computer
(gcc compiler version 3.3.6), Table A.2 for the Medium Scale x86 computer (gcc compiler
version 4.1.1), Table A.3 for the Large Scale x86 computer where the programs were com-
piled with the gcc compiler version 3.3.6, Table A.4 for the Large Scale x86 computer
where the programs were compiled with the gcc compiler version 4.0.3, and Table A.5 for
the UltraSPARC computer (gcc compiler version 4.1.1). A dash in a table denotes that
the running time experiment of the respective algorithm could not be carried out success-
fully for the corresponding string: a dash for cache and copy denotes that we terminated
the experiment after 6 days of computation, a dash for odd�even or skew in Table A.2
denotes that the programs aborted with a memory allocation error on the Medium Scale
x86 computer, and a dash for msufsort in Table A.5 denotes that the program aborts
unexpectedly on the UltraSPARC computer.
The number of executed instructions per input character of the di�erent algorithms on

the Large Scale x86 computer compiled with the gcc compiler version 4.0.3 is shown in
Table A.6. We stopped the computation whenever a simulation used more than 24 hours,
which is indicated by a dash in the table. Note that Table 10.9 shown in Section 10.2.3
shows the respective results on the same computer, but the programs were compiled with
the gcc compiler version 3.3.6.
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