
Su�x Arrays in Theory and Practice

Klaus-Bernd Schürmann

Thesis submitted to the
Faculty of Technology of Bielefeld University, Germany

for the degree of Dr. rer. nat.

Supervised by
Prof. Dr. Jens Stoye

Referees
Prof. Dr. Jens Stoye, Prof. Dr. Enno Ohlebusch

Defense on
September 24, 2007

Gedru
kt auf alterungsbeständigem Papier � ISO 9706

for Anja

Abstra
tThe su�x array of a string is a permutation of all starting positions of the string's su�xesin lexi
ographi
al order. In this thesis, we investigate mathemati
al and algorithmi
alaspe
ts of su�x arrays.The �rst part mainly deals with
ombinatorial properties of su�x arrays and theirenumeration. For a �xed alphabet size and string length, we divide the set of all strings intoequivalen
e
lasses of strings that share the same su�x array. For ea
h su
h equivalen
e
lass, we
ount the number of strings
ontained in it and enumerate those strings. Wealso give exa
t formulas for
omputing the number of equivalen
e
lasses and e�
ientalgorithms for enumerating them. Alternatively, we
ount the number of su�x arrays andenumerate them. Our methods yield lower bounds for the
ompressibility of su�x arraysand build the foundation for the e�
ient generation of appropriate test data sets for su�x-array-based algorithms. We also show that summing up the elements of all equivalen
e
lasses forms a parti
ular instan
e for some summation identities of Eulerian numbers.The se
ond part of the thesis deals with su�x array
onstru
tion. We �rst present a new
lassi�
ation of su�x array
onstru
tion algorithms and provide an in-depth review of the
lassi�ed algorithms. We
lassify the algorithms regarding two di�erent
ategories: theprogress in the su�x sorting pro
ess and the usage of dependen
ies among su�xes. Afterthe survey of the previous algorithms, we present our new pra
ti
al algorithm for su�xarray
onstru
tion that
onsists of two easy-to-implement
omponents. It �rst sorts thesu�xes with respe
t to a �xed length pre�x; then it re�nes ea
h bu
ket of su�xes sharingthe same pre�x using the order of already sorted su�xes. Other su�x array
onstru
tionalgorithms follow more
omplex strategies. We a
hieve a very fast
onstru
tion for
ommonstrings as well as for worst-
ase strings by enhan
ing our algorithm with further te
hniques;this is shown by an in-depth experimental study that
ompares our algorithm to otherfast su�x array
onstru
tion algorithms.

i

Abstra
t

ii

A
knowledgementsForemost, I would like to thank my supervisor Jens Stoye for en
ouraging me to developand to follow my own ideas. He has been a great boss over these past years; I
ould alwaysrely on his support.Thanks to the working group Genome Informati
s in Bielefeld for the ni
e workingatmosphere. In parti
ular, thanks to Hans-Mi
hael Kaltenba
h (Mit
h) and ConstantinBannert (Conni) for various fruitful dis
ussions, breakfast sessions, and
o�ee breaks.Karla and Sergio Carvalho showed me the �Brasilian way of life�. Sven Rahmann was ani
e room mate at some
onferen
e trips. Veli Mäkinen and Katharina Jahn were ni
eo�
e mates; from Veli I learned a lot about text
ompression and
ompressed indi
es.Together with Zsuzsanna Lipták and Ferdinando Ci
alese, we had many ni
e experien
eson life with
hildren. Spe
ial thanks to Heike Samuel for her kind help on dealing withadministrative subtleties. Basi
ally, thanks to all former and
urrent members of the groupfor many relaxing lun
h and
o�ee breaks.Many thanks to Hans-Mi
hael Kaltenba
h, Sergio Carvalho, Katharina Jahn, WolfgangGerla
h, Mar
el Martin, and Manuela S
hürmann for proofreading parts of this thesis andto Peter Husemann for being a helping hand.Finally, I would like to thank my parents and my family. My parents Maria and Bern-hard S
hürmann have been supporting me through all my life. I parti
ularly thank mywife, Anja S
hürmann, for her love and patien
e over these past years and my
hildren,Alexander and Niklas, for showing me the most important things in life.

iii

A
knowledgements

iv

ContentsAbstra
t iA
knowledgements iii1 Introdu
tion 11.1 Su�x arrays . 21.1.1 Su�x array
onstru
tion . 21.1.2 Using su�x arrays . 41.1.3 Su�x array
ompression and su�x arrays in theory 51.2 Organisation of the thesis . 52 Basi
 De�nitions and Terminology 7I COMBINATORICS OF SUFFIX ARRAYS 93 Ba
kground, De�nitions, and Basi
 Observations 113.1 Equivalen
es on strings . 123.2 The +R-array . 133.3 Chara
terising strings sharing the same su�x array 143.3.1 Proving the
hara
terisation . 154 Counting and Enumerating the Strings per Su�x Array 194.1 Foundations . 204.2 Counting strings
omposed of up to σ distin
t
hara
ters 214.3 Counting strings
omposed of exa
tly κ distin
t
hara
ters 264.4 Enumerating the strings . 264.4.1 Strings
omposed of up to σ distin
t
hara
ters 274.4.2 Strings
omposed of exa
tly κ distin
t
hara
ters 285 Counting and Enumerating the Su�x Arrays 315.1 Counting su�x arrays . 315.2 Enumerating the su�x arrays . 386 Appli
ation of the String and Su�x Array Counting 476.1 Appli
ations to
ompressed su�x arrays 476.2 Summation identities . 50v

ContentsII SUFFIX ARRAY CONSTRUCTION 537 Introdu
tion 557.1 De�nitions and notations . 568 Classi�
ation and Survey of Previous Su�x Array Constru
tion Algorithms 598.1 Classifying su�x array
onstru
tion algorithms 598.1.1 Progression of the su�x sorting pro
ess 598.1.1.1 Bu
ket re�nement . 598.1.1.2 Redu
ed string sorting . 608.1.2 Dependen
y among su�xes . 618.1.2.1 Push method . 628.1.2.2 Pull method . 628.2 Bu
ket re�nement algorithms . 638.2.1 Breadth-�rst bu
ket re�nement � pre�x-doubling algorithms 638.2.1.1 The pre�x-doubling algorithm of Manber and Myers . . . 638.2.1.2 The qsufsort algorithm of Larsson and Sadakane 648.2.2 Depth-�rst bu
ket re�nement . 658.2.2.1 The two-stage algorithm of Itoh and Tanaka 658.2.2.2 The
opy and the
a
he algorithms of Seward 668.2.2.3 The deep�shallow algorithm of Manzini and Ferragina . . 678.3 Redu
ed string sorting algorithms . 688.3.1 The di�eren
e-
over algorithm of Burkhardt and Kärkkäinen . . . 698.3.2 Su�x array
onstru
tion in linear time 708.3.2.1 The skew algorithm of Kärkkäinen and Sanders 718.3.2.2 The odd�even algorithm of Kim et al. 738.3.2.3 The smaller�larger algorithm of Ko and Aluru 789 The Bu
ket-Pointer Re�nement Algorithm 839.1 The basi
 algorithm . 839.2 Analysis . 869.2.1 Worst-
ase time bound . 869.2.2 Expe
ted-
ase time bound . 899.2.3 Spa
e requirements . 909.3 Engineering and implementation for fast speed 919.3.1 Computing the initial bu
ket segmentation 919.3.2 Re
ursively re�ning the bu
kets . 929.3.3 Double pushing . 959.4 Use
ases . 96vi

Contents10 Experimental Results 9710.1 Des
ription of the experiments . 9710.1.1 Implementation of the algorithms 9710.1.2 Methods . 9810.1.3 Investigated sequen
e data . 9910.2 Results . 10110.2.1 Performan
e on very large-s
ale data sets 10510.2.2 Spa
e
onsumption . 10510.2.3 Detailed runtime analysis . 10610.3 Dis
ussion of the experimental results . 11311 Con
lusion 117A Appendix 121

vii

Contents

viii

1 Introdu
tionThe most
ommon type of information is a written text as we �nd it in books, newspapers,and in other printed media. We treat su
h a text as a sequen
e of symbols and
all itstring, sequen
e, word, or text. Su
h strings play a fundamental role in many softwareappli
ations: Word pro
essing systems provide advan
ed fa
ilities for the modi�
ation oftexts, e-mail tools are used to send text messages and other data, and Internet browsersallow to retrieve and to read texts from the Internet, among many other appli
ations.There are other sequen
es that are used in the ba
kground of software appli
ations. Thedata that are inter
hanged via the Internet, for example, are �rst translated into a sequen
eof binary digits (bits). Then the real transmission is
arried out by a sequen
e of digitalsignals that
orresponds to the binary sequen
e. In mole
ular biology, we en
ounter DNA,RNA, or amino a
id sequen
es (peptides), and there are many other types of sequen
es.In sequen
e analysis, we are interested in the development of e�
ient data stru
tures andalgorithms to pro
ess all types of sequen
es. A fundamental problem in sequen
e analysisis pattern mat
hing, whi
h deals with the following question: Does a query pattern o

urexa
tly or approximately in a given sequen
e, and if so, where in the sequen
e does ito

ur?Full-text indi
es are data stru
tures used to pro
ess di�erent kinds of sequen
es for su
happli
ations. In
ontrast to other text indi
es, su
h as inverted �les [27℄, full-text indi
esallow the e�
ient a

ess to every substring, or subword, of a given input string. The su�xtree is arguably the best known full-text index, whi
h
an be
omputed and stored in O(n)time and spa
e for an input string t of length n. It was introdu
ed by Weiner [143℄ in 1973,who presented a linear-time
onstru
tion algorithm. Further linear-time algorithms weregiven by M
Creight [104℄ in 1976, Ukkonen [141, 142℄ in 1993, and Fara
h [45℄ in 1997.M
Creight's algorithm is
onsidered to be simpler and more spa
e e�
ient than Weiner'salgorithm, Ukkonen's algorithm
onstru
ts su�x trees online, and Fara
h's algorithm runsin linear time even for alphabets of arbitrary size. For an in-depth study of the
onne
tionsbetween the former three algorithms, we refer to a study of Giegeri
h and Kurtz [53℄.There are many appli
ations of su�x trees. The
lassi
al one is the exa
t patternmat
hing: For a query string of length m, we use a su�x tree of another database string tode
ide in time O(m) if the query appears as a substring in the indexed string. But the realvirtue of su�x trees
omes from their use in solutions of more
omplex string problems [8℄(for example, repeat �nding); Gus�eld presents more than twenty in his book about stringpro
essing algorithms [58℄. Unfortunately, those
onstru
tion and query algorithms do notexpli
itly
onsider the lo
ality of memory referen
e, whi
h is very important on
urrent
omputer ar
hite
tures with a memory hierar
hy of multi-level
a
he and main memory.Hen
e, the pra
ti
al run time of those algorithms, whi
h is often asymptoti
ally optimal,1

1 Introdu
tionsu�ers from many
a
he misses. These problems have been approa
hed by representingthe su�x tree data stru
ture in di�erent ways [88, 54, 129℄ for parti
ular appli
ations. Ingeneral, it remains an open problem.Further drawba
ks of su�x trees are their large spa
e requirements, whi
h ex
eed thespa
e requirements of the input string by an order of magnitude. Until the early 1990s,the most spa
e-e�
ient implementation of M
Creight's algorithm required 28n bytes fora string of length n in the worst
ase (for 4-byte integer words). Manber and Myers [96,fourth
olumn in Table 1 on page 946℄ state that their own implementation requires be-tween 14.2n and 27.8n bytes in pra
ti
e. Even today, the most spa
e-e�
ient implemen-tation of M
Creight's algorithm by Kurtz [88℄ still uses between 8n and 14n bytes intotal. These large spa
e requirements of su�x trees are in
ompatible with the in
reasingamount of a

essible sequen
e data that needs to be indexed. Typi
al data mainly
omefrom the Internet and from several genome sequen
ing proje
ts, whi
h produ
e long DNAsequen
es. In the 1990s, two te
hnology proje
ts stressed the requirement of string indi
esfor huge amounts of sequen
e data: Google and the Human Genome Proje
t. Google at-tempts to index the human readable information available through the Internet, and theHuman Genome Proje
t provides the genomi
 sequen
e data for the human spe
ies.As a result, spa
e-e�
ient alternatives to su�x trees have been developed: In the early1990s, Manber and Myers [96℄ and Gonnet et al. [55℄ introdu
ed the su�x array (Gonnet etal. under the name PAT array), whi
h is the most popular alternative to su�x trees. Otherspa
e-e�
ient full-text indi
es are the su�x
a
tus of Kärkkäinen [70℄, the fa
tor ora
leof Allauzen et al. [4℄, and the su�x ve
tor of Monostori et al. [108℄ (ordered histori
ally).Unlike su�x arrays, however, these developments have not found their way into the main-stream of resear
h on full-text indi
es. This is presumably so be
ause the su�x arraywith its spa
e requirements of 5n bytes (in
luding the input string) is more spa
e e�
ientthan those indi
es. Furthermore, its simple one-dimensional stru
ture is easy to handle insoftware implementations.1.1 Su�x arraysIn their seminal arti
le [96℄, Manber and Myers gave the �rst algorithm to dire
tly
on-stru
t su�x arrays in O(n log n) time. In addition, they enhan
ed the su�x array withan auxiliary array, the LCP array, that stores the length of the longest
ommon pre�x ofadja
ent su�xes in the su�x array. Based on the su�x array and the
orresponding LCParray, they present an algorithm for the exa
t pattern mat
hing problem, whi
h de
ides in
O(m+log n) time whether a query string of length m is a substring of the indexed string.1.1.1 Su�x array
onstru
tionThe further interest in su�x arrays was then initially attra
ted by the
lose relationto the Burrows�Wheeler transform [32℄ (presented in 1994), whi
h is often used as thebasis for text
ompression algorithms. This interest
an be explained by the fa
t that
omputing the Burrows�Wheeler transform by blo
k-sorting the input string is equivalent2

1.1 Su�x arraysto
onstru
ting a su�x array. Therefore, most of the resear
h on su�x arrays regard their
onstru
tion. But although Fara
h et al. [47℄
orrelated su�x sorting and linear-time su�xtree
onstru
tion in 2000, up until 2003 all known algorithms rea
hing this bound took adetour over su�x tree
onstru
tion and afterwards derived the su�x array from the su�xtree (see [58, Se
tion 7.14.1℄), instead of dire
tly
onstru
ting su�x arrays. In 2003, theproblem of dire
t linear-time
onstru
tion of su�x arrays was solved independently byKärkkäinen and Sanders [71, 73℄, Kim et al. [79, 80℄, and Ko and Aluru [84, 85℄. Shortlyafter, Hon et al. [63℄ gave a linear-time algorithm that needs O(n) bits of working spa
e.Apart from these more theoreti
al results, there has also been mu
h progress in pra
ti
alsu�x array
onstru
tion. Larsson and Sadakane [90℄ presented a fast algorithm,
alledqsufsort, running in O(n log n) worst-
ase time using 8n bytes. Kim et al. [78℄ introdu
eda divide-and-
onquer algorithm based on [80℄ with O(n log log n) worst-
ase time
om-plexity, but with faster pra
ti
al running times than the previously mentioned linear-timealgorithms.Other viable algorithms mainly
onsider spa
e requirements. They are
alled lightweightalgorithms due to their small spa
e requirements. Itoh and Tanaka [67℄, Seward [135℄, andManzini and Ferragina [102℄ proposed algorithms using only 5n bytes and little additionalauxiliary spa
e. In theory, their worst-
ase time
omplexity is Ω(n2). However, they arevery fast in pra
ti
e if the average LCP is small. The most re
ent lightweight algorithm,developed by Burkhardt and Kärkkäinen [31℄ (see also [73℄), is
alled di�eren
e-
overalgorithm. Its worst-
ase running time is O(n log n), and it uses sublinear extra spa
e.For
ommon real-life data, though, the algorithm is on average slower than Manzini andFerragina's [102℄ algorithm. These are the major developments in the �eld of in-memorysu�x array
onstru
tion algorithm. Other approa
hes are presented by Lee and Park [91℄,Baron and Bresler [15℄, Manis
al
o and Puglisi [98, 99℄, and Ahlswede et al. [3℄.Besides the in-memory su�x array
onstru
tion algorithms, there are several others thataddress spe
i�
 sub-bran
hes of pra
ti
al su�x array
onstru
tion, namely distributed al-gorithms and external memory algorithms: Distributed or parallel su�x array
onstru
tionalgorithms were studied by Navarro et al. [112℄ and Kulla and Sanders [86℄, among oth-ers. External memory su�x array
onstru
tion algorithms were proposed, for example,by Crauser and Ferragina [39℄ and Dementiev et al. [42℄.We observe that the previous in-memory su�x array
onstru
tion algorithms eitherperform well for
ommon strings with short LCPs or for degenerated strings with largeLCPs. Based on our experien
e with biologi
al sequen
e data, we believe that furtherproperties are required. There are many appli
ations where very long sequen
es withmainly small LCPs, interrupted o

asionally by very large LCPs, are investigated. Ingenome
omparison, for example,
on
atenations of similar sequen
es are indexed to �nd
ommon subsequen
es, repeats, and unique regions. Thus, to
ompare genomes of
loselyrelated spe
ies, one has to build su�x arrays for strings with highly variable LCPs. Webelieve that the
hara
teristi
s as observed in this
ontext
an also be found in otherappli
ation areas. These fa
ts stress the importan
e of e�
ient ubiquitous su�x array
onstru
tion algorithms. 3

1 Introdu
tion1.1.2 Using su�x arraysBeyond the development of su�x array
onstru
tion algorithms, there has been progresson algorithmi
al appli
ations of su�x arrays. In 2001, Kasai et al. [76℄ presented analgorithm that
onstru
ts the LCP array from the su�x array in linear time, and theyshow how every bottom-up traversal of a su�x tree
an be simulated on those two arrays.Manzini [101℄ later presented more spa
e-e�
ient algorithms for the
onstru
tion of theLCP array from the su�x array. The LCP information, however, only allows the simulatedtraversal of su�x trees from
hild nodes to parent nodes. Abouelhoda et al. [1, 2℄ enhan
edthe su�x array with additional auxiliary arrays that further allow the traversal from parentnodes to
hild nodes. Based on their enhan
ed su�x array, they established the
on
ept ofl
p-interval trees. These
on
eptual trees, whi
h do not need to be
onstru
ted in pra
ti
e,are equivalent to su�x trees. Furthermore, the enhan
ed su�x array
ontains informationallowing su�x link traversal. Chang and Lawler [33℄, for example, use su�x links for
omputing mat
hing statisti
s. Hen
e, basi
ally every algorithm working on su�x trees
anbe ported to an equivalent algorithm on enhan
ed su�x arrays with identi
al asymptoti
time bound. Abouelhoda et al. showed how to do that for algorithms performing di�erenttypes of su�x tree traversals.The enhan
ed su�x array has many pra
ti
al advantages
ompared to su�x trees.Firstly, it is possible to store it on se
ondary memory without serialising the data stru
ture,whi
h would be ne
essary for su�x trees. Se
ondly, the di�erent auxiliary arrays areindependent su
h that for parti
ular appli
ations only a subset of arrays has to be a

essed,whi
h de
reases main memory load. Finally, additional annotations are easily added(see [121℄ for example annotations). We believe that virtually all algorithms that wereoriginally designed for su�x trees
an be implemented more e�
iently on enhan
ed su�xarrays. Hen
e, (enhan
ed) su�x arrays have the potential to fully repla
e su�x trees forpra
ti
al appli
ations.Su�x arrays are already used in many bioinformati
s appli
ations. We give some ex-amples: Burkhardt et al. [30℄ applied su�x arrays for sear
hing similar DNA sequen
esand Malde et al. [95℄ for EST
lustering. Kurtz's [87℄ implementation of enhan
ed su�xarrays is used in several other bioinformati
s tools and proje
ts. Höhl et al. [60℄ used itfor multiple sequen
e alignment and Be
kstette et al. [16℄ for the mat
hing of positionspe
i�
 s
oring matri
es, see [87℄ for a longer list. Apart from su�x array appli
ationsin bioinformati
s, there are other appli
ation areas: Su�x sorting algorithms have beenapplied for the
omputation of the Burrows�Wheeler transform, for example, in the bzip2
ompressor [134℄. Moreover, in linguisti
s Yamamoto and Chur
h [144℄ used them to
ountterm frequen
ies.In brief, the various time-e�
ient algorithms on su�x trees
an be ported to enhan
edsu�x arrays, and these algorithms have proved their pra
ti
al e�
ien
y on su�x arrays.At the moment, we see no room for signi�
ant improvements regarding algorithmi
alappli
ations of su�x arrays.4

1.2 Organisation of the thesis1.1.3 Su�x array
ompression and su�x arrays in theoryThe task of full-text index
ompression emerged after Grossi and Vitter introdu
ed the
ompressed su�x array [57℄ that redu
es the spa
e requirements to a linear number ofbits. Other
ompressed indi
es of that type are: Ferragina and Manzini's FM-index [49℄based on the Burrows�Wheeler transform, a
ompressed-su�x-array-based index by Sada-kane [123℄ that does not use the text itself, and Mäkinen's
ompa
t su�x array [94℄. Thereare various subsequent developments; most of them improve upon the
ompressed indi
esof Grossi and Vitter [57℄, Ferragina and Manzini [49℄, or Sadakane [123℄. For an in-depthstudy of
ompressed full-text indi
es and their spa
e requirements, we refer to the surveyof Navarro and Mäkinen [113℄. Moreover, Sadakane [125℄ re
ently presented a
ompressedfull-text index providing the full fun
tionality of su�x trees, although not with the sameasymptoti
 time bounds.All these developments on
ompressed indi
es trade spa
e o

upan
y for querying time.Experimental results of Ferragina and Manzini [50℄ show that su�x arrays use 8 to 13 timesas mu
h spa
e as their FM-index. For the exa
t pattern mat
hing with the reporting ofo

urren
es, however, the running times on their FM-index are by a fa
tor between 3 and33 higher than the running times on their su�x array implementation. The reason for thegreater running times on
ompressed indi
es is that redundant information, whi
h wouldhave been ne
essary for more e�
ient querying, is lost when
ompressing an original baseindex, like the su�x array. We believe that a profound knowledge of the algebrai
 and
ombinatorial properties of su�x arrays is essential to develop su�x-array-based, su

in
tindi
es that allow e�
ient querying.Besides those pra
ti
al aspe
ts, su�x arrays are also interesting from the purely theoret-i
al perspe
tive. They are represented as permutations, whi
h are widely studied in grouptheory and
ombinatori
s. Nevertheless, in that regard, they have been less studied thanwe expe
ted. Duval and Lefebvre [44℄
hara
terised the set of strings that share the samesu�x array. A
ombinatorial approa
h that partly in
ludes su�x arrays was presented byHohlweg and Reutenauer [61℄. Hen
e, further resear
h on the theoreti
al aspe
ts of su�xarrays was required.1.2 Organisation of the thesisThroughout the thesis, we investigate the fun
tion sa that maps ea
h string to its su�xarray. The thesis
onsists of two major parts: In the �rst part (Chapters 3�6), we in-vestigate the fun
tion sa from a more theoreti
al point of view. In parti
ular, we study
ombinatorial aspe
ts of strings and their su�x arrays. In the se
ond part (Chapters 7�10), we deal with the e�
ient implementation of the fun
tion sa, namely, the
onstru
tionof su�x arrays.We �rst give the basi
 de�nitions and notations regarding su�x arrays in Chapter 2.Chapter 3
ontains the preliminaries for the subsequent investigations: We de�ne di�erentequivalen
es of strings regarding their stru
ture. In parti
ular, for a �xed alphabet size andstring length, we divide the set of all strings into equivalen
e
lasses of strings that share the5

1 Introdu
tionsame su�x array. We also de�ne the data stru
tures for the subsequent reasoning on su
hequivalen
e
lasses and
hara
terise the strings in ea
h
lass. In Chapter 4, we
ount thenumber of parti
ular strings in any equivalen
e
lass and present enumeration algorithmsfor those strings. Chapter 5
ontains exa
t formulas for the number of equivalen
e
lassesor, alternatively, for the number of respe
tive su�x arrays; we also present an e�
ientenumeration algorithm for those equivalen
e
lasses, or rather, for their representatives.We then apply the
ounting results to more pra
ti
al problems in Chapter 6: From theexa
t number of su�x arrays, we derive lower bounds on the
ompressibility of su�x-array-based
ompressed indi
es. Apart from that (also in Chapter 6), we show that summingup the elements of all equivalen
e
lasses forms a parti
ular instan
e for some summationidentities of Eulerian numbers.In the se
ond part of the thesis, we study the problem of e�
ient su�x array
onstru
-tion. Chapter 7
ontains the su�x-array-
onstru
tion-spe
i�
 de�nitions and notations.In Chapter 8, we provide new
omprehensive
lassi�
ations of previous su�x array
on-stru
tion algorithms and survey those algorithms. In Chapter 9, we present our newbu
ket-pointer re�nement algorithm, show a runtime analysis and provide implementa-tion details. Experimental results on the pra
ti
al performan
e of our algorithm and thepreviously fastest su�x array
onstru
tion algorithms are given in Chapter 10.We
on
lude and give an outlook to future resear
h in Chapter 11.Parts of Chapters 3�6 have been published in a te
hni
al report [130℄, in a refereed
onferen
e pro
eeding [131℄, and are to appear in a refereed journal arti
le [128℄. Partsof Chapters 7�10 have been published in a refereed
onferen
e pro
eeding [132℄ and in arefereed journal arti
le [133℄.

6

2 Basi
 De�nitions and TerminologyThe interval [l, r] = {z ∈ Z : l ≤ z ≤ r with l, r ∈ Z} denotes the set of all integersgreater than or equal to l and less than or equal to r. The set of natural numbers startingwith 1 is denoted by N, and N0 further
ontains the additional 0, that is, N0 := N ∪ {0}.Alphabet and strings. Let Σ be a �nite set of size |Σ|, the alphabet, and t ∈ Σn a stringover Σ of length n, the text. For i ∈ [1, n], t[i] denotes the ith
hara
ter of t, and for allpairs of indi
es (l, r), 1 ≤ l ≤ r ≤ n, t[l, r] = t[l], t[l + 1], . . . , t[r] denotes the substringof t starting at position l and ending at position r. Substrings t[i, n] ending at position
n are su�xes of t; t[i, n] is
alled the su�x i. The starting position i of a su�x t[i, n] is
alled its su�x number. For 1 ≤ i < n, t[i + 1, n] is
alled the su

essor su�x of t[i, n],and
onversely, t[i, n] the prede
essor su�x of t[i + 1, n]. For more distant su�xes t[i, n]and t[i + ℓ, n] with ℓ ∈ N and i + ℓ ≤ n, t[i + ℓ, n] is
alled the ℓ-su

essor of t[i, n] and
t[i, n] the ℓ-prede
essor of t[i + ℓ, n]. Σ(t) := {t[i] : 1 ≤ i ≤ n} ⊆ Σ is the subset of
hara
ters a
tually o

urring in t and is
alled the
hara
ter set of t. We usually use σ forthe alphabet size |Σ|, but if the strings are required to use all
hara
ters su
h that their
hara
ter set equals the alphabet, we use κ.Permutations and su�x arrays. Let Pn denote the set of all permutations of [1, n], andlet P ∈ Pn. Then i ∈ [1, n−1] is a permutation des
ent of P if P [i] > P [i+1]. Conversely,a non-extendable as
ending segment P [l, r] of P with P [l] < P [l + 1] < . . . < P [r] of Pis
alled a permutation run. Ea
h permutation run of P begins right after a permutationdes
ent or at the leftmost position 1 of P , and ends at the next permutation des
ent orat the last position n of P . Hen
e, the permutation runs de�ne the permutation des
entsand vi
e versa. Figure 2.1 shows the permutation des
ents and permutation runs for thepermutation P = (5, 6, 3, 2, 4, 8, 9, 1, 7).5 6 3 2 4 8 9 1 7Figure 2.1: Permutation des
ents and permutation runs for P = (5, 6, 3, 2, 4, 8, 9, 1, 7). Theen
ir
led entries mark the positions of the permutation des
ents, and the underlinedsegments mark the permutation runs. 7

2 Basi
 De�nitions and TerminologyThe fun
tion
sa :

{

Σn −→ Pn

t 7−→ P,
(2.1)maps ea
h string t of length n ∈ N to its su�x array, where the su�x array sa(t) of t isa permutation of the su�x numbers [1, n] a

ording to the lexi
ographi
 ordering of the

n su�xes of t. More pre
isely, a permutation P of [1, n] is the su�x array for a string
t of length n, P = sa(t), if for all pairs of indi
es (i, j), 1 ≤ i < j ≤ n, the su�x withsu�x number P [i] is lexi
ographi
ally smaller than the su�x with su�x number P [j].Moreover, the sequen
e t[P [1]], t[P [2]], . . . , t[P [n]], whi
h is formed of the �rst
hara
tersof the ordered su�xes, is
alled the First sequen
e for t (similar to the �rst
olumn usedfor the Burrows�Wheeler transform [32℄).The rank array RP for the permutation P (further on simply denoted by R), sometimes
alled the inverse permutation or the inverse su�x array, is de�ned as follows: For allindi
es i ∈ [1, n] the rank of i is j, R[i] = j, if i o

urs at position j in the permutation,
P [j] = i. We extend the rank array by R[n + 1] = 0, indi
ating that the empty su�x,not
ontained in the su�x array, is always the lexi
ographi
ally smallest. R[i] = j impliesthat the su�x t[i, n] is the lexi
ographi
ally jth among all su�xes of t. The rank arrayand also other rank fun
tions are an important tool throughout the rest of this thesis.The rank array allows to dire
tly determine the lo
ation of a su�x number in the su�xarray and de�nes the relative lexi
ographi
al order of the su�xes:

t[i, n] < t[j, n]⇐⇒ R[i] < R[j] for all (i, j) ∈ [1, n]2,where t[i, n] < t[j, n] a

ords to the lexi
ographi
al order of the su�xes and R[i] < R[j]to the order of the natural numbers.Further de�nitions. Besides the binomial
oe�
ient (xy) = x!
y!(x−y)! , the Stirling numbersand the Eulerian numbers are important for this work. Although these numbers have avenerable history, their notation is less standard. We follow the notation of Graham etal. [56, Chapter 6℄ where the Stirling number of the se
ond kind {n

k

} is the numberof ways to partition a set of n elements into k non-empty subsets, and the Euleriannumber 〈nd〉 gives the number of permutations of [1, n] having exa
tly d permutationdes
ents, also de�ned through the re
ursion (i) 〈n0〉 = 1, (ii) 〈nd〉 = 0 for d ≥ n, and(iii) 〈nd〉 = (d + 1)
〈

n−1
d

〉

+ (n− d)
〈

n−1
d−1

〉 for 0 < d < n.

8

Part ICOMBINATORICS OF SUFFIXARRAYS

9

3 Ba
kground, De�nitions, and Basi
ObservationsFor
ertain appli
ations, we are not always interested in the total number of strings.Instead, we are interested in equivalen
e
lasses of strings sharing the same stru
turalproperties. A su�x array
onstru
tion algorithm, for example, produ
es the same su�xarray for ABBAA and ACCAA, but a di�erent one for CBBCC. Therefore, we would
ounttwo
lasses of strings: the �rst
lass
ontaining ABBAA and ACCAA, and the se
ond one
ontaining CBBCC.A di�erent notion of equivalen
e on strings arises from the prepro
essing phase of thesubstring sear
h algorithm of Knuth et al. [83℄ (Knuth-Morris-Pratt algorithm). It returnsa pre�x fun
tion (also
alled failure fun
tion or border array) for the query string thaten
apsulates information about how the su�xes of the query mat
h against the pre�xes(see also [38, Se
tion 32.4℄). Our example strings ABBAA, ACCAA, and CBBCC share the samepre�x fun
tion. Hen
e, we
onsider them equivalent and only
ount one equivalen
e
lass.Moore et al. [109℄
ounted the number of su
h distin
t pre�x fun
tions.To the best of our knowledge, there are no previous studies
ounting the number ofpermutations that are the su�x arrays for a parti
ular set of strings. Although the
om-binatori
s of permutations is a resear
h �eld that has been widely studied (see, for exam-ple, [28℄), there are only a few
ombinatorial results for su�x arrays. In 2002, Duval andLefebvre [44℄
hara
terised the set of strings that share the same su�x array. Re
ently,Cro
hemore et al. [40℄ presented
ombinatorial properties of the related Burrows�Wheelertransform, but these properties are unassignable to su�x arrays. They rely on the fa
t thatthe Burrows�Wheeler transform is based on the order of
y
li
 shifts of the input sequen
e,whereas the su�x array is based on the order of su�xes
ut at the end of the string, whi
hdestroys that ni
e group stru
ture. A
ombinatorial approa
h that partly in
ludes su�xarrays was presented by Hohlweg and Reutenauer [61℄. They study
onne
tions betweenbinary planary trees, Lyndon words, and su�x arrays.This
hapter provides the basi
 de�nitions and tools for
ounting the strings and su�xarrays in the subsequent
hapters. In Se
tion 3.1 we de�ne di�erent equivalen
es of stringsregarding their various stru
tural properties and further
ombinatorial stru
tures relatedto su�x arrays in Se
tion 3.2. Although the given general de�nition of su�x arrays inChapter 2 is quite
on
ise, we need a more spe
i�
, �handy� proposition for the subsequentreasoning, whi
h is given in Se
tion 3.3, Theorem 3.2. 11

3 Ba
kground, De�nitions, and Basi
 Observations

Figure 3.1: The relationships among the di�erent equivalen
es on strings.3.1 Equivalen
es on stringsWe use three di�erent kinds of equivalen
es on strings. The natural de�nition is thatstrings are (string-)equivalent if they are equal, and (string-)distin
t otherwise. In orderto de�ne the other two equivalen
es, we �rst introdu
e a bije
tive mapping rk of the
hara
ters of a string t onto the �rst |Σ(t)| integers, rk : Σ(t) −→ [1, |Σ(t)|]. We
all rkorder-preserving if c1 < c2 ⇔ rk(c1) < rk(c2) for all pairs of
hara
ters (c1, c2) ∈ Σ(t) ×
Σ(t). The mapped string rk(t) is then de�ned by rk(t) := rk(t[1]), rk(t[2]), . . . , rk(t[n]).We
all two strings t and t′ order-equivalent if there exists an order-preserving bije
tion
rk for t and another su
h bije
tion rk′ for t′ su
h that rk(t) = rk′(t′); otherwise the stringsare order-distin
t. If bije
tive mappings rk and rk′ exist su
h that rk(t) = rk′(t′) (notne
essarily order-preserving), we
all t and t′ pattern-equivalent ; otherwise the strings arepattern-distin
t. String-equivalent strings are also order-equivalent and order-equivalen
eimplies pattern-equivalen
e. The strings ABBAA and ACCAA, for example, are string-distin
tbut order-equivalent, and the strings ABBAA and CBBCC are order-distin
t but pattern-equivalent.Additionally, we de�ne the equivalen
e of strings sharing the same su�x arrays. Twostrings t and t′ are su�x-array-equivalent or, alternatively, sa-equivalent if they share thesame su�x array, sa(t) = sa(t′); otherwise the strings are sa-distin
t. Order-equivalen
eimplies sa-equivalen
e sin
e the order of su�xes is not a�e
ted through an order-preservingmapping of the
hara
ters.If two strings are order-distin
t, they
an either be sa-equivalent or pattern-equivalent,but not both. Let t and t′ be two order-distin
t strings. Then either there are no bi-je
tive
hara
ter mappings rk and rk′ su
h that rk(t) = rk′(t′) or the bije
tive mappingsare not order-preserving. If there are no su
h bije
tive
hara
ter mappings, then t and t′are pattern-distin
t, but
an still be sa-equivalent. Otherwise, if su
h bije
tive mappingsexist but are not order-preserving, then t and t′ are yet pattern-equivalent; a rearrange-ment of the alphabet that
hanges the relative alphabeti
al order, however, indu
es adi�erent relative order of the su�xes, whi
h implies su�x array distin
tness. The order-12

3.2 The +R-arraydistin
t strings ABBAA and BDCAA, for example, are sa-equivalent but pattern-distin
t, andthe order-distin
t strings ABBAA and CBBCC are pattern-equivalent but sa-distin
t. Therelationships among the mentioned four equivalen
es on strings are shown in Figure 3.1.The regarded equivalen
es of strings are obviously re�exive, symmetri
, and transitive.Hen
e, they are equivalen
e relations and thus indu
e a partitioning of the set of stringsinto equivalen
e
lasses. Our main fo
us is on the sa-equivalen
e
lasses. We re
all thefun
tion sa that maps ea
h string of length n ∈ N to its su�x array P ,
sa :

{

Σn −→ Pn(⊃ Pn
Σ)

t 7−→ P,where Pn
Σ is the image of Σn under sa. Alternatively, Pn

Σ is
alled the set of su�x arrays of
Σn. For large n and �xed small alphabet Σ of size σ, sa is not surje
tive; hen
e Pn

Σ $ Pn.Moreover, it is not inje
tive for σ > 1. We de�ne the fun
tion sa−1 that maps ea
hpermutation P to its preimage under sa

sa−1 :

{

Pn −→ 2(Σn)

P 7−→ TP,Σ = {t ∈ Σn : sa(t) = P}.The fun
tion sa−1 maps ea
h permutation to the sa-equivalen
e
lass of su�xes sharingthe same su�x array P , sa−1(P) = TP,Σ. If P ∈ Pn
Σ, then the preimage of P under sa isnot empty; otherwise sa−1(P) = ∅. Hen
e, the fun
tion sa−1 partitions the set of strings

Σn into |Pn
Σ| non-empty equivalen
e
lasses. In Chapter 4, we
ount the number of spe
i�
elements in an equivalen
e
lass sa−1(P) for any P ∈ Pn. The number |Pn

Σ| of non-emptyequivalen
e
lasses is
ounted in Chapter 5.3.2 The +
R-arrayWe de�ne the +R-array, the basi
 data stru
ture for the subsequent analysis of the su�xarray equivalen
es.De�nition 3.1 (+R-array). Let P ∈ Pn be a permutation of [1, n]. The +R-array of Pis de�ned as

+R[i] := R[P [i] + 1] for all i ∈ [1, n].In the
ompressed indexing literature the +R-array is usually
alled Ψ-array or Ψ-fun
tion. We de�ne the +R-des
ents and the +R-runs of P similar to the permutation de-s
ents and the permutation runs respe
tively: A position i ∈ [1, n−1] is
alled a +R-des
entif +R[i] > +R[i + 1]. For l ≤ r, a non-extendable as
ending segment +R[l] < +R[l + 1] <
. . . < +R[r] is
alled a +R-run; it will be denoted +R[l, r]. The set of +R-des
ents {i ∈
[1, n− 1] : +R[i] > +R[i + 1]} is denoted by +R-des
(P). If the ordered set of +R-des
entsof P equals {i1, i2, . . . , id} with ij < ij+1 for all j ∈ [1, d − 1], then ij is
alled the jth

+R-des
ent. The list of +R-runs is +R[1, i1],
+R[i1 +1, i2], . . . ,

+R[id−1 +1, id],
+R[id +1, n],where +R[ij−1 + 1, ij] is
alled the jth +R-run. Note that +R-runs
an be of length 1.13

3 Ba
kground, De�nitions, and Basi
 ObservationsTable 3.1: The permutation P , whi
h is the su�x array for the string ABBAA, the sortedsu�xes of the string t[P [i], n], the rank array R, the +R-array, and the +R-des
ent atposition 3.
i P [i] t[P [i], n] R[i] +R[i] +R-des
(P)0 6 ε1 5 A 3 02 4 AA 5 13 1 ABBAA 4 5 ←−4 3 BAA 2 25 2 BBAA 1 46 0Moreover, let di be the number of +R-des
ents in the pre�x P [1, i] of the permutation P ,

di := |{j ∈ +R-des
(P) : j < i}|.If P = sa(t) is the su�x array of a string t, then the +R-array re�e
ts the
onne
tionbetween
onse
utive su�xes of t. +R[i] = j has the following interpretation: The su

essorsu�x t[P [i] + 1, n] of the lexi
ographi
ally ith su�x t[P [i], n] is the lexi
ographi
ally jthamong all su�xes of t. Sin
e there does not exist a prede
essor for the su�x number 1,the position j in the su�x array P with P [j] = 1 never appears in the +R-array. If aposition i is a +R-des
ent, then the su

essor su�xes of t[P [i], n] and t[P [i + 1], n] arein des
ending lexi
ographi
al order: t[P [i] + 1, n] > t[P [i + 1] + 1, n]. A +R-run +R[l, r]
orresponds to a
ontinuous su�x array segment, in whi
h also the respe
tive su

essorsu�xes are in as
ending lexi
ographi
al order.For the permutation P = (5, 4, 1, 3, 2), whi
h is the su�x array of the string ABBAA, Ta-ble 3.1 shows the +R-annotations. The
olumns show the array indi
es i, the permutation
P , the sorted su�xes of the string t[P [i], n], the rank array R, the +R-array, and the only
+R-des
ent at position 3. The su�x array P is extended with the number 6 at position
0 and the R-array with the number 0 at position 6, indi
ating that the empty su�x,whi
h does not appear in P , is always the smallest. Note that P
ontains a +R-des
ent atposition 3. Hen
e, +R[1, 3] and +R[4, 5] are the +R-runs.3.3 Chara
terising strings sharing the same su�x arrayThe following theorem was �rst given, without proof, by Burkhardt and Kärkkäinen [31℄and equivalent results were proved by Duval and Lefebvre [44℄.Theorem 3.2. Let P ∈ Pn be any permutation of [1, n] and t a string of length n. Then
t ∈ sa−1(P) if and only if the following two
onditions hold for all i ∈ [1, n − 1]:(a) t[P [i]] ≤ t[P [i + 1]] and(b) +R[i] > +R[i + 1]⇒ t[P [i]] < t[P [i + 1]].14

3.3 Chara
terising strings sharing the same su�x arrayTable 3.2: The permutation P , the +R-array, the +R-des
ent at position 3, and the Firstsequen
es for the strings t1 = ABBAA, t2 = BDCAA, t3 = BDDBB, and t4 = CDDCA thatshare the same su�x array P . Strings with su�x array P

t1 = ABBAA t2 = BDCAA t3 = BDDBB t4 = CDDCA
i P [i] +R[i] +R-des
(P) t1[P [i]] t2[P [i]] t3[P [i]] t4[P [i]]1 5 0 A A B A2 4 1 A A B C3 1 5 ←− A B B C4 3 2 B C D D5 2 4 B D D DTheorem 3.2 has the following interpretation. Condition (a) states that the First se-quen
e for t is non-de
reasing, and
ondition (b) states: if the su

essor su�xes of t[P [i], n]and t[P [i + 1], n] are in des
ending lexi
ographi
al order, that is, if t[P [i] + 1, n] >

t[P [i + 1] + 1, n], then the relative order of t[P [i], n] and t[P [i + 1], n] is determined bytheir �rst
hara
ter, t[P [i]] < t[P [i + 1]].Table 3.2 shows the permutation P = (5, 4, 1, 3, 2) and the strings t1 = ABBAA, t2 =BDCAA, t3 = BDDBB, and t4 = CDDCA in the respe
tive sa-equivalen
e
lass sa−1(5, 4, 1, 3, 2).The leftmost four
olumns show the array indi
es i, the permutation P , the +R-array, andthe +R-des
ent; the remaining
olumns show the First sequen
es for t1, t2, t3, and t4. Fromreading ea
h of the First sequen
es top down, it be
omes evident that Theorem 3.2(a)holds for ea
h of the four strings. Moreover, for the +R-des
ent 3, the
hara
ter tk[P [3]]is smaller than tk[P [3 + 1]] for ea
h k ∈ [1, 4], satisfying Theorem 3.2(b).3.3.1 Proving the
hara
terisation � Proof of Theorem 3.2We �rst prove two auxiliary lemmas (Lemma 3.3 and Lemma 3.4), whi
h are eventuallyused in the main proof of Theorem 3.2. First of all, Lemma 3.3 generalises a propositionabout
onse
utive elements in a permutation to arbitrary pairs of elements.Lemma 3.3. Let P ∈ Pn be any permutation of [1, n] and t a string of length n.If for all i ∈ [1, n − 1] we have that(a) t[P [i]] ≤ t[P [i + 1]] and(b) t[P [i]] = t[P [i + 1]] ⇒ R[P [i] + 1] < R[P [i + 1] + 1],then we also have that for all pairs (i, j), 1 ≤ i < j ≤ n,
t[P [i]] = t[P [j]]⇒ R[P [i] + 1] < R[P [j] + 1]. 15

3 Ba
kground, De�nitions, and Basi
 ObservationsProof. Due to (a), the sequen
e of
hara
ters t[P [i]], t[P [i+1]], . . . , t[P [j]] is non-de
reas-ing. Combining this property with t[P [i]] = t[P [j]] implies that t[P [i′]] = t[P [i′+1]] for all
i′ ∈ [i, j−1]. Then applying (b) on t[P [i′]] = t[P [i′ +1]] leads us to R[P [i′]+1] < R[P [i′ +
1]+1] for all i′ ∈ [i, j− 1]. By transitivity, we �nally obtain R[P [i]+ 1] < R[P [j]+ 1].Before we
an prove the main result of this se
tion, we
ontinue with a further gener-alisation. We extend our proposition from elements of the permutation referring to equal
hara
ters in the string to elements referring to starting positions of equal substrings.Lemma 3.4. Let P ∈ Pn be any permutation of [1, n] and t a string of length n. If forall pairs (i, j) with 1 ≤ i < j ≤ n we have that

t[P [i]] = t[P [j]] ⇒ R[P [i] + 1] < R[P [j] + 1], (3.1)then we also have that for all pairs (i, j) with 1 ≤ i < j ≤ n and for all k > 0 with
P [i] + k − 1 ≤ n and P [j] + k − 1 ≤ n

t[P [i], P [i] + k − 1] = t[P [j], P [j] + k − 1]⇒ R[P [i] + k] < R[P [j] + k]. (3.2)Proof (Indu
tion over k). For k = 1, the equation t[P [i], P [i] + 1− 1] = t[P [j], P [j] +
1−1] a

ords to t[P [i]] = t[P [j]]; and hen
e, impli
ation (3.2) a

ords to impli
ation (3.1).We now perform the indu
tion step starting with

t[P [i], P [i] + k] = t[P [j], P [j] + k],whi
h is obviously equivalent to
t[P [i], P [i] + k − 1] = t[P [j], P [j] + k − 1] (3.3)and t[P [i] + k] = t[P [j] + k]. (3.4)Applying the indu
tion hypothesis (3.2) to (3.3) gives R[P [i] + k] < R[P [j] + k]. Then we
hoose i′ and j′ su
h that P [i′] = P [i] + k and P [j′] = P [j] + k. Sin
e R is the inverse of

P , we obtain
i′ = R[P [i′]] = R[P [i] + k] < R[P [j] + k] = R[P [j′]] = j′. (3.5)Combining equation (3.4) with P [i′] = P [i] + k and P [j′] = P [j] + k implies

t[P [i′]] = t[P [i] + k] = t[P [j] + k] = t[P [j′]].By (3.5) i′ is smaller than j′, so impli
ation (3.1) is appli
able and leads to
R[P [i′] + 1] < R[P [j′] + 1].Substituting P [i′] by P [i]+k and P [j′] by P [j]+k results in R[P [i]+k+1] < R[P [j]+k+1],
ompleting the proof.16

3.3 Chara
terising strings sharing the same su�x arrayWe are now ready for proving Theorem 3.2.Proof of Theorem 3.2. If t ∈ sa−1(P) or, alternatively, if the permutation P is thesu�x array for the string t, then the
onditions (a) and (b) of the theorem
learly hold.The opposite dire
tion is more intri
ate. Assume that both
onditions (a) and (b) hold.If P is not the su�x array of t, then there must be two in
orre
tly ordered su�xes in P .Let i and j be the positions of these su�xes in P su
h that i < j and t[P [i], n] > t[P [j], n].Negating
ondition (b) and using the de�nition of +R gives for all i ∈ [1, n− 1]

t[P [i]] ≥ t[P [i + 1]]⇒ R[P [i] + 1] ≤ R[P [i + 1] + 1],and by (a) and by the fa
t that both R and P are di�erent at unequal positions, we obtainfor all i ∈ [1, n − 1] that
t[P [i]] = t[P [i + 1]]⇒ R[P [i] + 1] < R[P [i + 1] + 1].We apply Lemma 3.3 and Lemma 3.4 to obtain for all i, j ∈ [1, n], i < j,

t[P [i], P [i] + k − 1] = t[P [j], P [j] + k − 1]⇒ R[P [i] + k] < R[P [j] + k]. (3.6)Now let ℓ be the length of the longest
ommon pre�x of t[P [i], n] and t[P [j], n], then wedistinguish between two
ases.(i) If ℓ = 0, the su�xes di�er in their �rst position. Sin
e t[P [i], n] > t[P [j], n], the�rst
hara
ter t[P [i]] of t[P [i], n] must be greater than the �rst
hara
ter t[P [j]] of
t[P [j], n], whi
h
ontradi
ts (a).(ii) If ℓ > 0, the su�xes t[P [i], n] and t[P [j], n] share a longest
ommon pre�x of length
ℓ, that is, t[P [i], P [i] + ℓ − 1] = t[P [j], P [j] + ℓ − 1]. Then impli
ation (3.6) leadsto R[P [i] + ℓ] < R[P [j] + ℓ]. We
hoose i′ and j′ su
h that P [i′] = P [i] + ℓ and
P [j′] = P [j] + ℓ. Sin
e R is the inverse of P , we have i′ = R[P [i′]] = R[P [i] + ℓ] <
R[P [j] + ℓ] = R[P [j′]] = j′. Therefore, using (a) we obtain

t[P [i] + ℓ] = t[P [i′]] ≤ t[P [j′]] = t[P [j] + ℓ]. (3.7)This
ontradi
ts the assumption that t[P [i], n] > t[P [j], n] with longest
ommonpre�x of length ℓ su
h that t[P [i] + ℓ] > t[P [j] + ℓ].Sin
e both
ases lead to
ontradi
tions, all su�xes represented in P must be in the
orre
torder; hen
e t ∈ sa−1(P).
17

3 Ba
kground, De�nitions, and Basi
 Observations

18

4 Counting and Enumerating the Stringsper Su�x ArrayEnumerative
ombinatori
s is a major sub�eld of
ombinatori
s (see, for example, [138,103, 34, 29℄). For any parti
ular
ombinatorial stru
ture, it poses the following questions:How many
ombinatorial obje
ts of a parti
ular type are there (Counting), and how
anwe list all these obje
ts (Enumeration). To the best of our knowledge, su
h questionsrelating to su�x arrays have not been studied before. In this and the next
hapter, weare the �rst providing answers on that.In this
hapter, we
ount and enumerate, for any permutation P ∈ Pn and a �xed-sizedalphabet Σ, the strings in the sa-equivalen
e
lass TP,Σ of all strings in Σn with P as theirsu�x array (see page 13),
onsidering parti
ular subsets of strings: string-distin
t strings
omposed of up to |Σ| distin
t
hara
ters (not all
hara
ters of the alphabet must appear)and string-distin
t strings
omposed of exa
tly |Σ| distin
t
hara
ters (all
hara
ters mustappear). We pro
eed as follows: We �rst present the number of the di�erent sets of
ounted strings, espe
ially Theorem 4.1 and Theorem 4.2. Then, after introdu
ing thefoundations for the subsequent string
ounting in Se
tion 4.1, we prove Theorem 4.1 inSe
tion 4.2 and Theorem 4.2 in Se
tion 4.3. Finally, we give enumeration algorithms forboth sets of
ounted strings in Se
tion 4.4.The main results of this
hapter are the following two theorems.Theorem 4.1. Let P ∈ Pn be any permutation of length n with d +R-des
ents and Σan alphabet of σ = |Σ| ordered symbols. Then the number of string-distin
t strings in the
sa-equivalen
e
lass TP,Σ is given by (n+σ−d−1

σ−d−1

).Theorem 4.2. Let P ∈ Pn be any permutation of length n with d +R-des
ents and Σ analphabet of κ = |Σ| ordered symbols. Then the number of string-distin
t strings
omposedof exa
tly κ distin
t
hara
ters in the sa-equivalen
e
lass TP,Σ is given by (n−d−1
κ−d−1

).For the various settings, Table 4.1 summarises the number of string-distin
t, order-distin
t, and pattern-distin
t strings of length n. Some of the results were previouslyproven by other authors or are given by Theorems 4.1 and 4.2. We dis
uss the resultspresented in Table 4.1 row-wise, beginning with the �rst row. Moore et al. [109℄ showedthat the number of pattern-distin
t strings
omposed of exa
tly κ distin
t
hara
ters is
{

n
κ

}. For ea
h pattern-distin
t string, we permute the alphabet in κ! di�erent ways toget a total of {n
κ

}

κ! order-distin
t strings. These are already all the string-distin
t stringssin
e we have no �exibility to
hoose di�erent
hara
ters to produ
e string-distin
t stringsthat are yet order-equivalent. 19

4 Counting and Enumerating the Strings per Su�x ArrayTable 4.1: Summary of the previous and new results on the number of string-distin
t,order-distin
t and pattern-distin
t strings of length n. In the analyses d is always thenumber of +R-des
ents for the respe
tive su�x array P . Moreover, Σ is the underlyingalphabet of κ = σ = |Σ| ordered symbols.Number of string-distin
t order-distin
t pattern-distin
tstrings
omposed ofexa
tly κ distin
t letters {

n
κ

}

· κ!
{

n
κ

}

· κ!
{

n
κ

} [109℄strings
omposed ofup to σ distin
t letters σn
∑σ

κ=1

{

n
κ

}

· κ!
∑σ

κ=1

{

n
κ

}strings in TP,Σ
omposed of ex-a
tly κ distin
t letters (n−d−1
κ−d−1

) [Thm. 4.2℄ (n−d−1
κ−d−1

) �strings in TP,Σ
omposed of upto σ distin
t letters (n+σ−d−1
σ−d−1

) [Thm. 4.1℄ ∑σ
κ=d+1

(n−d−1
κ−d−1

) �The numbers of all strings over a given alphabet of size σ are shown in the se
ond row.There are σn string-distin
t strings. For the order- and pattern-distin
t strings, we sumup the number of strings for all possible κ.The number of string-distin
t strings
omposed of exa
tly κ distin
t
hara
ters in the
sa-equivalen
e
lass TP,Σ for any permutation P with d +R-des
ents and an alphabet
Σ of �xed size κ is given in Theorem 4.2. These strings are again order-distin
t. Forpattern-distin
t strings, we
annot ne
essarily determine a unique su�x array. This fa
thas already been investigated in Chapter 3.1 and a graphi
al representation is shown inFigure 3.1. It is indi
ated by a dash in the table.The number of string-distin
t and order-distin
t strings in the sa-equivalen
e
lass TP,Σfor any permutation P and an alphabet Σ of size σ are given in the fourth row. Theorem 4.1gives the number of string-distin
t strings; to
ount the order-distin
t strings, we sum upover all possible κ. Again, the dash denotes that we
annot ne
essarily determine a uniquesu�x array for pattern-distin
t strings.4.1 FoundationsBefore we prove Theorem 4.1 in Se
tion 4.2 and Theorem 4.2 in Se
tion 4.3, we �rst repeatan observation of Bannai et al. [14℄ that links the minimal alphabet size of the strings inthe sa-equivalen
e
lass TP,Σ to the number of +R-des
ents of P : For a permutation Pwith d +R-des
ents, the number of di�erent
hara
ters in a string t ∈ TP,Σ is at least thenumber of +R-des
ents plus one, |Σ(t)| ≥ d + 1. Furthermore, Bannai et al. presentedan algorithm to
onstru
t a unique string bP ∈ TP,Σ
onsisting of exa
tly d + 1 di�erent20

4.2 Counting strings
omposed of up to σ distin
t
hara
tersAlgorithm 4.1.BaseString(P, n)

c← 1for i← 1 to n do
bP [P [i]]← cif i ∈ +R-des
(P) then

c← c + 1end ifend forreturn bP

Table 4.2: Constru
tion of the base string bP of thepermutation P having the +R-des
ent 3.
i P [i] +R[i] bP [P [i]] bP1 5 0 A ____A2 4 1 A ___AA3 1 5 A A__AA4 3 2 B A_BAA5 2 4 B ABBAA
hara
ters, |Σ(bP)| = d + 1. Note that bP is only de�ned for non-empty sa-equivalen
e
lasses TP,Σ with P ∈ Pn

Σ.Without loss of generality, we assume that the
hara
ter set of bP
ontains the �rstnatural numbers, Σ(bP) = [1, d+1], and
all bP the base string of the sa-equivalen
e
lass
TP,Σ, its lexi
ographi
ally smallest representative. Nevertheless, we synonymously use the
hara
ters {A, B, . . .} for illustrations. The algorithm suggested in [14℄ works as follows.It starts with the initial
hara
ter c = 1. For ea
h index position i ∈ [1, n] in as
endingorder, the algorithm pro
eeds through all su�x numbers from P [1] to P [n] by assigning
c to bP [P [i]]. If i is a +R-des
ent, c is in
remented by one to satisfy
ondition (2) ofTheorem 3.2, su
h that bP [P [i]] = di + 1; we re
all that di is the number of +R-des
entsin the pre�x P [1, i] of the su�x array P (see page 14). The pseudo-
ode is given inAlgorithm 4.1. Note that the algorithm
an only
onstru
t a
orre
t base string if the sizeof the underlying alphabet ex
eeds the number of +R-des
ents of the input permutation,and fails otherwise. For the permutation P = (5, 4, 1, 3, 2) with +R-des
ent 3, Table 4.2shows the su

essive assignment of
hara
ters to the base string bP . The
olumns showthe array indi
es i, the permutation P , the +R-array, the First sequen
e for the base string
bP [P [i]], and the assignment of
hara
ters to the base string bP .Proposition 4.3. Let P be a permutation with d +R-des
ents, then the base string bP hasthe properties(a) bP [P [1]] = 1 and bP [P [n]] = d + 1,(b) bP [P [i + 1]] = bP [P [i]] if i ∈ [1, n − 1] is not a +R-des
ent of P ,(
) bP [P [i + 1]] = bP [P [i]] + 1 if i ∈ [1, n − 1] is a +R-des
ent of P .Note that ea
h +R-run +R[l, r] of the base string
orresponds to an interval of equal
hara
ters of the First sequen
e for the base string, bP [P [l]] = bP [P [l+1]] = . . . = bP [P [r]].4.2 Counting strings
omposed of up to σ distin
t
hara
tersFor a permutation P ∈ Pn

Σ, the strings
ontained in the respe
tive sa-equivalen
e
lass TP,Σ
an be derived from the base string bP of TP,Σ by applying a
ertain sequen
e of rewrite21

4 Counting and Enumerating the Strings per Su�x ArrayTable 4.3: The permutation P , the +R-array, the �rst
hara
ters of the ordered su�xes ofthe base string bP = ABBAA, and the m-in
remented strings tP,m = BDCAA, tP,m′ = BDDBBand tP,m′′ = CDDCA over the alphabet {A, B, C, D}.
m-in
remented string

tP,m = BDCAA tP,m′ = BDDBB tP,m′′ = CDDCA
i P [i] +R[i] bP [P [i]] m tP,m[P [i]] m′ tP,m′ [P [i]] m′′ tP,m′′ [P [i]]1 5 0 A +0 A +1 B +0 A2 4 1 A +0 A +1 B +2 C3 1 5 A +1 B +1 B +2 C4 3 2 B +1 C +2 D +2 D5 2 4 B +2 D +2 D +2 Doperations to the base string after whi
h the order of su�xes remains untou
hed. Thesequen
e of rewrite operations starts with the largest su�x. In
reasing the �rst
hara
terof the largest su�x by any number a ∈ N does not
hange the order of su�xes. Then the�rst
hara
ter of the se
ond largest su�x
an be in
reased by at most a without
hangingthe order of su�xes, and so on.We pro
eed as follows: We �rst de�ne the sequen
e of rewrite operations (De�nition 4.4),establish a bije
tion between a parti
ular set of rewrite operations and the sa-equivalen
e
lass TP,Σ for any permutation P ∈ Pn

Σ (Lemma 4.5),
ount the number of these rewriteoperations (Lemma 4.6), and �nally derive the size of TP,Σ, whi
h gives the proof ofTheorem 4.1.De�nition 4.4. Let Σ be the underlying alphabet, P ∈ Pn
Σ a permutation of [1, n] and bPthe base string of the sa-equivalen
e
lass TP,Σ. Moreover, let m be an integer sequen
e oflength n, m ∈ Zn (usually m is a sequen
e of non-negative integers). The m-in
rementedstring tP,m of bP is de�ned as

tP,m[P [i]] := bP [P [i]] + m[i] for all i ∈ [1, n].That is, the ith smallest
hara
ter of bP is in
reased by m[i]. Note that we assume
Σ = [1, |Σ|] and allow m-in
remented strings tP,m with Σ(tP,m) * Σ. In parti
ular, the m-in
remented strings span the set of integer strings of length n: Zn = {tP,m ∈ Zn : m ∈ Zn}for any permutation P ∈ Pn

Σ. We use this property in Lemma 4.5.For the permutation P = (5, 4, 1, 3, 2), Table 4.3 shows the
onne
tion between the basestring ABBAA and three m-in
rement sequen
es over the alphabet {A, B, C, D}. The leftmostfour
olumns show again the array indi
es i, the permutation P , the +R-array, and theFirst sequen
e for the base string. Ea
h of the following three pairs of
olumns show themodi�
ation of the base string bP , or rather, the modi�
ation of the
orresponding �rstarray by non-de
reasing sequen
es to produ
e m-in
remented strings: m-in
rementing22

4.2 Counting strings
omposed of up to σ distin
t
hara
tersthe base string by m = 0, 0, 1, 1, 2 produ
es tP,m = BDCAA, m′ = 1, 1, 1, 2, 2 produ
es
tP,m′ = BDDBB, and m′′ = 0, 2, 2, 2, 2 produ
es tP,m′′ = CDDCA. Like the base string ABBAA,the m-in
remented strings BDCAA, BDDBB, CDDCA are
ontained in T(5,4,1,3,2),{A,B,C,D}.Lemma 4.5. Let Σ be an ordered alphabet of size σ := |Σ|, P ∈ Pn

Σ a permutation of
[1, n] with d +R-des
ents. Moreover, let MP,σ be the set of non-de
reasing sequen
es oflength n over the ordered alphabet [0, σ − d− 1].Then there exists an isomorphism between TP,Σ andMP,σ, TP,Σ ≃MP,σ.Proof. Let bP be the base string of the sa-equivalen
e
lass TP,Σ. Without loss of gen-erality, we assume Σ = [1, σ]. We show: (i) ea
h non-de
reasing sequen
e m ∈ MP,σ,generates an m-in
remented string tP,m ∈ TP,Σ and (ii) ea
h other sequen
e o ∈ Zn oflength n, o /∈MP,σ, generates a string tP,o /∈ TP,Σ.(i) Let m ∈ MP,σ, su
h that m[i] ≤ m[i + 1] for all i ∈ [1, n − 1]. We verify the
onditions of Theorem 3.2 for tP,m:(i.1) For all i ∈ [1, n− 1], we obtain bP [P [i]] ≤ bP [P [i + 1]] from Proposition 4.3 (b)and (
). That implies

tP,m[P [i]] = bP [P [i]] + m[i] ≤ bP [P [i + 1]] + m[i + 1] = tP,m[P [i + 1]],verifying Theorem 3.2(a).(i.2) If +R[i] > +R[i+1], then i ∈ +R-des
(P). Proposition 4.3(
) gives bP [P [i]]+1 =
bP [P [i + 1]], whi
h leads to

tP,m[P [i]] = bP [P [i]] + m[i]

< (bP [P [i]] + 1) + m[i]

≤ bP [P [i + 1]] + m[i + 1] = tP,m[P [i + 1]],verifying Theorem 3.2(b).Therefore, sa(tP,m) = P .Moreover, for ea
h position j of tP,m with j = P [i] for some i ∈ [1, n],
tP,m[j] = tP,m[P [i]] = bP [P [i]] + m[i] ≤ (d + 1) + (σ − d− 1) = σand analogously 1 ≤ tP,m[j]. Hen
e, ea
h m ∈ MP,σ generates a sequen
e tP,m ∈

TP,Σ (⊂ Σn).(ii) For o /∈ MP,σ
ontaining a des
ending adja
ent index pair su
h that o[i] > o[i + 1]for some i ∈ [1, n − 1], we
on
ern ourselves with two
ases:(ii.1) If i is not a +R-des
ent of P , then Proposition 4.3(b) states bP [P [i]] = bP [P [i+
1]]. Hen
e,

tP,o[P [i]] = bP [P [i]] + o[i] > bP [P [i + 1]] + o[i + 1] = tP,o[P [i + 1]],whi
h
ontradi
ts Theorem 3.2(a). 23

4 Counting and Enumerating the Strings per Su�x Array(ii.2) If i is a +R-des
ent of P , then Proposition 4.3(
) states bP [P [i]] = bP [P [i+1]]−1and, be
ause of o[i] > o[i + 1], also o[i] ≥ o[i + 1] + 1 is true. This results in
tP,o[P [i]] = bP [P [i]] + o[i]

≥ (bP [P [i + 1]]− 1) + (o[i + 1] + 1)

= bP [P [i + 1]] + o[i + 1]

= tP,o[P [i + 1]],whi
h
ontradi
ts Theorem 3.2(b).Therefore, only the non-de
reasing sequen
es m produ
e a string tP,m su
h that
sa(tP,m) = P .The non-de
reasing sequen
es o /∈ MP,σ, for whi
h Σ(o) * [0, σ − d − 1], remain.For all these strings, we show that tP,o /∈ Σn. If o is non-de
reasing, but not in
MP,σ, it must
ontain a
hara
ter greater than σ− d− 1 or smaller than 0 at someposition i. Sin
e o is non-de
reasing, su
h a
hara
ter appears at position n or 1.That is, o[n] > σ− d− 1 or o[1] < 0. Combining o[n] > σ− d− 1 with the fa
t fromProposition 4.3(a) that bP [P [n]] = d + 1 implies

tP,o[P [n]] = bP [P [n]] + o[n] > (d + 1) + (σ − d− 1) = σ.Using bP [P [1]] = 0 for o[1] < 0 analogously implies tP,o[P [1]] < 0. Thus, tP,o /∈ Σn,
ompleting the proof.Finally, we prove that the number of sequen
es in the sa-equivalen
e
lass TP,Σ forany permutation P is the same as the number of non-de
reasing sequen
es over σ − d
hara
ters. To
ount the number of non-de
reasing sequen
es of length n
omposed of µelements, we observe the following:Lemma 4.6. Let M(n, µ) be the number of non-de
reasing sequen
es of length n of ele-ments in [0, µ− 1]. For any positive integers n and µ

M(n, µ) =

(

n + µ− 1

µ− 1

)

.Proof. The non-de
reasing sequen
es of length n
omposed of µ symbols
an be modelledas a sequen
e of two di�erent operations. Initially, the
urrent symbol is set to 0. Thenwe apply a sequen
e of operations to generate non-de
reasing sequen
es of length n. Onepossible operation is to write the
urrent symbol behind the so far written symbols andthe other one is to in
rement the symbol by 1. To generate a non-de
reasing sequen
e,we apply n + µ− 1 operations, n to write down the non-de
reasing sequen
e and µ− 1 toin
rement the
urrent symbol until µ− 1 is rea
hed. For this sequen
e of length n+µ− 1,we have (n+µ−1
µ−1

) possibilities to
hoose the µ−1 positions of the in
rement operations.The respe
tive representation of the sequen
e 2, 2, 2, 2, 4, 5, 5 is shown in Figure 4.1.24

4.2 Counting strings
omposed of up to σ distin
t
hara
ters
⊕ ⊕ W W W W ⊕ ⊕ W ⊕ W W2 2 2 2 4 5 5Figure 4.1: Representation of the non-de
reasing sequen
e 2,2,2,2,4,5,5 for µ = 6, where

⊕ denotes an in
rement operation and W denotes a write operation.When applying this observation to Lemma 4.5, we get the number of strings in an
sa-equivalen
e
lass.Proof of Theorem 4.1. For ea
h permutation P ∈ Pn

Σ, the
laim follows dire
tly fromthe bije
tion shown in Lemma 4.5 and the equality |MP,σ| = M(n, σ − d) =
(n+σ−d−1

σ−d−1

)from Lemma 4.6. For ea
h other permutation P ∈ Pn with P /∈ Pn
Σ, we have d ≥ σ andthus (n+σ−d−1

σ−d−1

)

= 0.Remark. There are further instan
es for the number (n+σ−d−1
σ−d−1

). We have, for example,
(n+σ−d−1

σ−d−1

)

=
((

n+1
σ−d−1

))

= (n, σ − d− 1)!, where ((x
y

)) denotes the number of distin
tmultisets of size y on x symbols and (a, b)! is a multinomial
oe�
ient that denotes thenumber of ways of depositing a+ b distin
t obje
ts into two sets, the �rst set of size a andthe se
ond of size b. Hen
e, for the strings
ounted in Theorem 4.1, there exist furtherbije
tions to other
ombinatorial obje
ts: a bije
tion to the family of multisets of size
σ− d− 1 on n + 1 symbols and a bije
tion to the ways of depositing n + σ− d− 1 distin
tobje
ts into two sets, the �rst set of size n and the se
ond of size σ − d− 1.For n = 2, σ = 4, and d = 1, Table 4.4 shows a spe
i�
 instan
e for ea
h of the bije
tive
ombinatorial obje
ts: The set of strings T(2,1),{A,B,C,D} over the alphabet {A, B, C, D} sharingthe su�x array (2, 1), the family of multisets (({a,b,c}

2

)) of size 2 on the symbols {a, b, c},and the ways ({a,b,
,d}2,2) of depositing the symbols {a,b,
,d} into two sets both of size 2.Table 4.4: The three bije
tive sets T(1,2),{A,B,C,D}, (({a,b,c}
2

)), and ({a,b,
,d}2,2).
T(1,2),{A,B,C,D} AB AC AD BC BD CD
((

{a,b,c}
2

))

{a, a} {a, b} {a, c} {b, b} {b, c} {c, c}

({a,b,
,d}2,2) {a,b},{
,d} {a,
},{b,d} {a,d},{b,
} {b,
},{a,d} {b,d},{a,
} {
,d},{b,
}
25

4 Counting and Enumerating the Strings per Su�x Array4.3 Counting strings
omposed of exa
tly κ distin
t
hara
tersSo far, we have
ounted all strings of the sa-equivalen
e
lass TP,Σ for a permutation P .Now, we
ount the subset T κ
P,Σ of strings
omposed of exa
tly κ (= σ = |Σ|) distin
tsymbols or, alternatively, the isomorphi
 set of non-de
reasing sequen
es Mκ

P,σ := {m ∈
MP,σ : tP,m ∈ T κ

P,Σ}; obviously T κ
P,Σ ≃Mκ

P,σ.We have to determine the non-de
reasing sequen
es m ∈ MP,σ for whi
h tP,m
onsistsof exa
tly κ letters. To assure that none of the κ
hara
ters [1, κ] is left out, it is su�
ientthat tP,m[P [1]] = 0, tP,m[P [n]] = κ, and
onse
utive
hara
ters in the resulting sequen
e
tP,m are not di�ering by more than one.Proposition 4.7. Let Σ be an ordered alphabet of size κ := σ = |Σ| and P ∈ Pn apermutation of [1, n] with d +R-des
ents. Moreover, let m ∈MP,σ.Then m ∈Mκ

P,σ, if and only if, for all i ∈ [1, n − 1](a) m[1] = 0 and m[n] = κ− d− 1,(b) m[i + 1] = m[i] or m[i + 1] = m[i] + 1 if i /∈ +R-des
(P), and(
) m[i + 1] = m[i] if i ∈ +R-des
(P).We are now prepared to prove Theorem 4.2.Proof of Theorem 4.2. The proof works similar as for Theorem 4.1. We again representthe non-de
reasing sequen
es of m ∈ Mκ
P,σ as n write operations and µ − 1 in
rementoperations, as it has been modelled above. Here, for the pla
ement of the κ − d − 1in
rement operations, we are restri
ted by the mentioned
onditions of Proposition 4.7.In order not to break these
onditions, (a) an in
rement operation must not appear beforethe �rst or after the last write operation, (b) at most one in
rement operation must appearbetween two write operations, and (
) the d +R-des
ent positions are forbidden for thein
rements. We are thus left with n − d − 1 mutually ex
lusive positions from whi
h we
hoose the κ− d− 1 in
rement operations.Table 4.3 shows that among the three non-de
reasing sequen
es m, m′, and m′′ only mgenerates an m-in
remented string tP,m that ful�lls the three
onditions of Proposition 4.7;

m′ violates
onditions (a) and (
), and m′′ violates
ondition (b).4.4 Enumerating the stringsIn
ombinatori
s, we are mainly interested in
ounting
ombinatorial obje
ts of a parti
ulartype. As
omputer s
ientists, we are further interested in the e�
ient enumeration of thoseobje
ts. This se
tion presents two new algorithms enumerating the strings that we havepreviously
ounted. For a �xed alphabet Σ of size σ and a permutation P ∈ Pn
Σ, the �rstalgorithm enumerates all strings of TP,Σ, and the se
ond enumerates the subset T κ

P,Σ ofsu
h strings
omposed of exa
tly κ = σ distin
t
hara
ters.26

4.4 Enumerating the stringsAlgorithm 4.2.EnumP,σ(m, t, i, µ, enum)1: menum ← m2: tenum ← t3: enum← enum + 14: if i>0 then5: for h← 1 to µ− 1 do6: m[i]← m[i] + 17: t[P [i]]← t[P [i]] + 18: EnumP,σ(m, t, i− 1, h + 1, enum)9: end for10: m[i]← m[i]− (µ− 1)11: t[P [i]]← t[P [i]]− (µ− 1)12: end if

Table 4.5: Enumeration of the strings tenumthat share the su�x array P = (5, 4, 1, 3, 2)with base string bP = ABBAA.
enum menum tenum1 00000 ABBAA2 00001 ACBAA3 00011 ACCAA4 00111 BCCAA5 01111 BCCBA6 11111 BCCBB7 00002 ADBAA8 00012 BDBAA...4.4.1 Strings
omposed of up to σ distin
t
hara
tersThe non-de
reasing sequen
es of length n over [0, σ−d−1]
an be enumerated in-pla
e byapplying one
hange operation at a time, beginning with the sequen
e 0n. The bije
tiondes
ribed by De�nition 4.4 suggests to apply these enumeration steps dire
tly to the basestring bP of the sa-equivalen
e
lass TP,Σ.Algorithm 4.2 shows the simultaneous enumeration of the non-de
reasing sequen
es

m ∈ MP,σ and the strings t ∈ TP,Σ for a permutation P ∈ Pn
Σ; menum denotes the

enumth enumerated non-de
reasing sequen
e and tenum the respe
tive m-in
rementedstring, tenum = tP,menum. The parameters of the algorithm are the
urrent non-de
reasingsequen
e m, the
orresponding m-in
remented string t, the position i a

ording to whi
hthe modi�
ations are performed, the
urrent upper bound µ for the value m[i] su
h that
m[i] < µ, and the
urrent enumeration number enum. The enumeration is invoked withEnumP,σ(0n, bP , n, σ−d, 1). Starting with the sequen
e m = 0n, the algorithm in
rements
m[n] and re
ursively enumerates all (n − 1)-length non-de
reasing pre�xes of m = 0n−11over the numbers {0, 1}. Then it in
rements m[n] again and enumerates the (n − 1)-length non-de
reasing pre�xes of 0n−12 over {0, 1, 2}. The re
ursive
all is repeated forea
h sequen
e 0n−1h with 1 ≤ h < µ. Moreover, ea
h modi�
ation operation of m[i] issimultaneously applied to t[P [i]] su
h that the strings in TP,Σ are enumerated in parallel.In this way, the algorithm enumerates all |TP,Σ| strings of the sa-equivalen
e
lass TP,Σover an alphabet Σ for the su�x array P in optimal O(n+ |TP,Σ|) time, where n steps areused to
onstru
t the initial non-de
reasing sequen
e 0n and the base string. Moreover, ithas further features: It works in-pla
e. After ea
h single step of the algorithm, the
urrentsequen
e m ∈ MP,σ is non-de
reasing and t ∈ TP,Σ. Moreover, the enumeration works
orre
tly for
ountable ordered alphabets.Table 4.5 shows the �rst eight enumerated non-de
reasing sequen
es and the respe
-27

4 Counting and Enumerating the Strings per Su�x Arraytive enumerated strings of TP,Σ for the permutation P = (5, 4, 1, 3, 2) and the alphabet
Σ = {A, B, . . .}. The
olumns show the enumeration number enum, the enumerated non-de
reasing sequen
es menum, and the enumerated strings tenum, where t1 is the base stringof T(5,4,1,3,2),{A,B,...} with t1 = bP = ABBAA.4.4.2 Strings
omposed of exa
tly κ distin
t
hara
tersWe modify the previous algorithm to enumerate only the subset T κ

P,Σ(⊂ TP,Σ) of strings
omposed of exa
tly κ distin
t
hara
ters for any permutation P ∈ Pn
Σ or, alternatively,the elements of the bije
tive set of non-de
reasing sequen
esMκ

P,σ.For ea
h non-de
reasing sequen
e m ∈ Mκ
P,σ, Proposition 4.7(
) states that m[i] =

m[i + 1] if i is a +R-des
ent of the input permutation P . That is, some positions of m,or rather some non-in
rements, are pre-determined by the +R-des
ents of P . We skip theredundant entries at the +R-des
ent positions and
on�ne ourselves to the isomorphi
 set
Mκ,∗

P,σ of non-de
reasing sequen
es of length n− d over µ = (κ− d) distin
t symbols thatful�ll Proposition 4.7(a) and (b), but ignore the +R-des
ents.Re
all that di is the number of +R-des
ents in the pre�x P [1, i] of the su�x array
P (see page 14). We obtain the sparse permutation P ∗ of length n − d by erasing the
+R-des
ent positions from the permutation P :

P ∗[i− di] := P [i] for all i ∈ [1, n] with i /∈ +R-des
(P).The set of values in P ∗ and the set of values at the +R-des
ent positions of P form apartitioning of the set of su�x numbers: [1, n] = {P ∗[i] : 1 ≤ i ≤ n − d} ⊎ {P [j] : j ∈
+R-des
(P)}, where ⊎ denotes the disjoint union of two sets.For m∗ ∈ Mκ,∗

P,σ (of length n − d), the sparse m∗-in
remented string t∗P,m∗ of bP (both
t∗P,m∗ and bP have length n) is de�ned by:

t∗P,m∗[P ∗[i]] := bP [P ∗[i]] + m∗[i] for all i ∈ [1, n − d],

t∗P,m∗[P [j]] := '-' for all j ∈ +R-des
(P).Let T κ,∗
P,M∗ denote the set of m∗-in
remented strings for P , m∗ ∈Mκ,∗

P,σ.Algorithm 4.3 re
ursively enumerates the strings m∗ ∈ Mκ,∗
P,σ and the m∗-in
rementedstrings t∗P,m∗ ∈ T κ,∗

P,Σ in parallel, in the same order as in Algorithm 4.2, while skipping theinvalid sequen
es. Besides the sparse permutation P ∗, the parameters of the algorithmare the
urrent non-de
reasing sequen
e m∗, the respe
tive m∗-in
remented sparse string
t∗, the position i a

ording to whi
h the modi�
ations are performed, the
urrent upperbound µ for the number of distin
t symbols in the pre�x of the
urrent non-de
reasingsequen
e, and the
urrent enumeration number enum. The enumeration is invoked withEnumκ

P ∗,σ(minit∗, t∗P,minit∗ , n−(κ−d−1), κ−d, 1), where minit∗ = 0n−d−µ, 0, 1, 2, . . . , µ−
1, and t∗P,minit∗ is the minit∗-in
remented base string bP . Starting with the sequen
e
m∗ = minit∗ = 0n−d−µ, 0, 1, 2, . . . , µ− 1, the algorithm in
reases m∗[n − d − µ + 1] su
hthat m∗ = 0n−d−µ, 1, 1, 2, . . . , µ − 1 and re
ursively enumerates the (n − d − µ)-length28

4.4 Enumerating the stringsAlgorithm 4.3.Enumκ
P ∗,σ(m∗, t∗, i, µ, enum)1: t∗enum ← t∗2: m∗
enum ← m∗3: enum← enum + 14: if i > 1 then5: for h← 1 to µ− 1 do6: m∗[i + h− 1]← m∗[i + h− 1] + 17: t∗[P ∗[i + h− 1]]← t∗[P ∗[i + h− 1]] + 18: Enumκ

P ∗,σ(m∗, t∗, i− 1, h + 1, enum)9: end for10: for h← µ− 1 down to 1 do11: m∗[i + h− 1]← m∗[i + h− 1]− 112: t∗[P ∗[i + h− 1]]← t∗[P ∗[i + h− 1]] − 113: end for14: end if

Table 4.6: Enumeration of the sparsestrings representing the strings
om-posed of exa
tly the four distin
t sym-bols A, B, C, and D sharing the suf-�x array P = (6, 5, 1, 2, 4, 3) with basestring bP = AABBAA.
enum m∗

enum t∗enum1 00012 AB-DCAA2 00112 BB-DCAA3 01112 BB-DCBA4 00122 BC-DDAA5 01122 BC-DDBA6 01222 CC-DDBAproper non-de
reasing pre�xes
omposed of the numbers {0, 1}. Then m∗[n − d − µ + 2]at the position to the right is in
remented su
h that m∗ = 0n−d−µ, 1, 2, 2, . . . , µ − 1,and the proper pre�xes
omposed of {0, 1, 2} are re
ursively enumerated. The re
ursiveenumeration is repeated for ea
h sequen
e m∗ = 0n−d−µ, 1, 2, . . . , h, h, h+1, . . . , µ−1 with
1 ≤ h < µ. Moreover, ea
h modi�
ation operation of m∗[i] is simultaneously applied to
t∗[P ∗[i]] su
h that the strings in T κ,∗

P,M∗ are enumerated in parallel.We now show how T κ
P,Σ derives from T κ,∗

P,M∗. The
hara
ters at the blank positions ofthe enumerated sparse strings are impli
itly de�ned. We
onstru
t tenum ∈ T κ
P,Σ from

t∗enum ∈ T κ,∗
P,M∗ by assigning

tenum[P [i]] =

{

t∗enum[P [i]] if i /∈ +R-des
(P)
tenum[P [i + 1]]− 1 if i ∈ +R-des
(P),

(4.1)for ea
h i ∈ [1, n], where tenum[P [i]] depends on the previous assignment of tenum[P [i+1]]for ea
h +R-des
ent i. Equation (4.1) obviously de�nes an isomorphism between T κ,∗
P,M∗and T κ

P,Σ, T κ,∗
P,M∗ ≃ T κ

P,Σ. Hen
e, the enumeration of the sparse strings in T κ,∗
P,M∗ indu
esthe enumeration of the strings in T κ

P,Σ. In this way, we impli
itly enumerate all |T κ
P,Σ|strings
omposed of exa
tly κ distin
t
hara
ters
ontained in the sa-equivalen
e
lass

TP,Σ for a permutation P ∈ Pn
Σ in optimal O(n + |T κ

P,Σ|) time, where O(n) steps are usedto
onstru
t bP , P ∗, minit∗, and t∗P,minit∗ .Table 4.6 shows the enumerated non-de
reasing sequen
es and the enumerated sparsestrings over the alphabet {A, B, C, D} for the permutation P = (6, 5, 1, 2, 4, 3) with basestring bP = AABBAA. The only +R-des
ent of P is 4, whi
h is marked by a
ir
le in thetable
aption (P [4] = 2). Deleting the en
ir
led value 2 from P results in the sparsepermutation P ∗ = (6, 5, 1, 4, 3). The
olumns show the enumeration numbers enum, the29

4 Counting and Enumerating the Strings per Su�x Arrayenumerated non-de
reasing sequen
es m∗
enum, and the enumerated sparse strings t∗enum.Moreover, the blank
hara
ter t∗enum[2] (P [4] = 2) of ea
h enumerated sparse string isannotated with the impli
itly de�ned
hara
ter t∗enum[4] − 1 (P [4 + 1] = 4) forming the
omplete string tenum, as it has been de�ned by equation (4.1).

30

5 Counting and Enumerating the Su�xArrays for Strings with a FixedAlphabetIn this
hapter, we en
ounter two other
lassi
al
ounting problems: the
ounting ofequivalen
e
lasses and the
ounting of permutations of a parti
ular type. We
ount andenumerate the non-empty sa-equivalen
e
lasses TP,Σ for a �xed-sized alphabet Σ with
P ∈ Pn

Σ or, alternatively, the bije
tive set of su�x arrays for strings over that �xed-sizedalphabet. We �rst
on
entrate on the equivalent problem of
ounting the number of su�xarrays with a �xed number of +R-des
ents and then use the result to
ount the distin
tsu�x arrays for strings over a given alphabet.Bannai et al. [14℄ stated that the number of su�x arrays of length n with exa
tly d
+R-des
ents is equal to the Eulerian number 〈nd〉. In their explanation, they interpretEulerian numbers as the number of permutations of length n with d permutation des
entsand explain how their algorithm
he
ks for these permutation des
ents. In fa
t, theiralgorithm
ounts the number of +R-des
ents, but the +R-array is not a permutation.Nevertheless, as we show in this
hapter, their proposition is true.Theorem 5.1. Let A(n, d) be the number of permutations of length n with d +R-des
ents,then

A(n, d) =

〈

n

d

〉

.Bannai et al. [14℄ also showed that ea
h su�x array with d +R-des
ents
an be asso
iatedwith a string of at least d + 1 di�erent
hara
ters. Therefore, for strings over an alphabetof size σ, we sum up the su�x arrays with up to σ − 1 +R-des
ents to obtain the numberof non-empty sa-equivalen
e
lasses.Corollary 5.2. For a �xed alphabet Σ of size σ, the number |Pn
Σ| of non-empty sa-equivalen
e
lasses for permutations of length n is given by ∑σ−1

d=0

〈n
d

〉

.5.1 Counting su�x arrays � Proof of Theorem 5.1Our
ounting or, alternatively, our enumeration s
heme for su�x arrays of length n startswith the permutation (1), whi
h is the su�x array of every string of length 1. Then itgradually extends the su�x arrays in a parti
ular way until the maximum length n isrea
hed. 31

5 Counting and Enumerating the Su�x ArraysWe �rst have a look at the re
ursive de�nition of the Eulerian number 〈nd〉 that de-notes the number of permutations of [1, n] with exa
tly d permutation des
ents. For su
hpermutations, Graham et al. [56, Se
tion 6.2℄ presented a
ounting s
heme that in fa
tworks for permutation as
ents, but
an be adapted for permutation des
ents by readingthe permutations from right to left. There are n ways to insert the element n into apermutation of [1, n−1] with d permutation des
ents, leading to n permutations of length
n: d + 1 with d permutation des
ents and (n − 1) − d with d + 1 permutation des
ents.The desired re
ursion for the Eulerian numbers be
omes evident from the reverse per-spe
tive: The 〈nd〉 permutations of length n with d permutation des
ents are
onstru
tedfrom (d + 1)

〈n−1
d

〉 permutations of length n − 1 with d permutation des
ents and from
((n − 1) − (d − 1))

〈n−1
d−1

〉 permutations of length n − 1 with d − 1 permutation des
ents,whi
h implies 〈nd〉 = (d + 1)
〈n−1

d

〉

+ (n − d)
〈n−1

d−1

〉 for 0 < d < n.Although the
ounting s
heme of Graham et al. works for the permutations with a
ertain number of permutation des
ents, it does not work for the permutations with a
ertain number of +R-des
ents. In general, there is a signi�
ant di�eren
e between thenumber of permutation des
ents and the number of +R-des
ents of a permutation. Anextreme
ase is the permutation P = (n, n − 1, . . . , 1), whi
h is the su�x array for thestring An. It has the maximum number of n − 1 permutation des
ents, but not a single
+R-des
ent. Nevertheless, the
ounting s
heme of Graham et al. and also the re
ursionformula for Eulerian numbers suggest a re
ursive
ounting s
heme: A permutation shouldbe extended by one element, thereby the number of +R-des
ents should either be retainedor in
reased by one.Theorem 3.2 revealed a
lose
onne
tion between the +R-array of a permutation P andthe strings in the sa-equivalen
e
lass for P . Therefore, we do not
on�ne ourselves to theinvestigation of permutations only, but rather study the modi�
ation of strings and theindu
ed e�e
t on the +R-arrays of the a�e
ted su�x arrays instead, yielding the desired
ounting s
heme.The �rst promising modi�
ation is to append a
hara
ter at the end of the string.Ukkonen [142℄ follows this approa
h for the online
onstru
tion of su�x trees. This ex-tension of the string, however, a�e
ts the relative order of the su�xes and thus inappro-priately rearranges the +R-array. If we start, for example, with BCCAA having the su�xarray (5, 4, 1, 3, 2) with the only +R-des
ent at position 3 (see Tables 4.6 and 3.2) andappend D, the resulting string BCCAAD has the su�x array (4, 5, 1, 3, 2, 6) with +R-array
(2, 6, 5, 1, 4, 0), whi
h has three +R-des
ents. The re
ursive formula for the Eulerian num-bers, however, suggests that the number of +R-des
ents d should not in
rease by morethan one during a single extension step. Hen
e, this is apparently not the appropriateextension s
heme.A se
ond possibility is to atta
h a
hara
ter to the front of a string t. Let t⊳ denotesu
h a front-extended string, t⊳ = c t for some
hara
ter c ∈ Σ. We transfer the
on
ept ofthe upper triangle ⊳ to the other data stru
tures that are a�e
ted by the front extension:If x is an instan
e of a data stru
ture related to the string t, then x⊳ is an instan
e of thesame data stru
ture related to t⊳.32

5.1 Counting su�x arraysTable 5.1: The extension of the string t = ABBAA by adding the
hara
ter A to the front,and the e�e
t on the su�x array and the +R-array.
t = ABBAA t⊳ = AABBAA

j P [j] +R[j] t[P [j], n] j⊳ P ⊳
3 [j⊳] +R

⊳
[j⊳] t⊳[P ⊳

3 [j⊳], n]1 5 0 A 1 6 0 A2 4 1 AA 2 5 1 AA3 1 4 AABBAA3 1 5 ABBAA 4 2 6 ABBAA4 3 2 BAA 5 4 2 BAA5 2 4 BBAA 6 3 5 BBAATable 5.1 shows su
h an extension of ABBAA by A. For the string t = ABBAA, the �rstfour
olumns show the array indi
es i, the permutation P , the +R-array, and the sortedsu�xes. The remaining four
olumns show the respe
tive data for the front-extended string
t⊳ = AABBAA. The front extension of ABBAA by A shifts the existing su�xes by one positionto the right, while keeping the relative order of the su�xes and the interdependen
iesamong su�xes and their su

essors. Only the su�x number 1 of the new su�x AABBAA isinserted at the position 3 (or rather between positions 2 and 3) of the su�x array P , butthe number of +R-des
ents remains one. This is an appropriate extension s
heme.Based on our observations, we de�ne an extension of a permutation P of length n − 1to a set P

⊳ of extended permutations, ea
h of length n. This de�nition is the key for thefurther reasoning throughout Lemmas 5.4�5.8, ultimately leading to Theorem 5.1.De�nition 5.3. Let P ∈ Pn−1 be a permutation of length n − 1. A set of extendedpermutations P
⊳ of P is de�ned as P

⊳ = {P ⊳
i : i ∈ [1, n]} ⊂ Pn where the extendedpermutation P ⊳

i evolves from P by in
rementing ea
h element of P by one and insertingthe missing 1 at position i, su
h that ea
h index position j of P
orresponds to an indexposition j⊳ of P ⊳
i :

j⊳ := j if j < iand j⊳ := j + 1 if j ≥ i,and
P ⊳

i [j⊳] := P [j] + 1 if j⊳ 6= iand P ⊳
i [j⊳] := 1 if j⊳ = i.

R⊳ analogously denotes the rank array and +R
⊳ the +R-array of an extended permutation

P ⊳, alternatively with an additional subs
ript i for an extended permutation with insertionposition i. 33

5 Counting and Enumerating the Su�x ArraysThe insertion at position i shifts the elements at positions j with j ≥ i to the right,resulting in an in
reased rank for the respe
tive elements of P ⊳
i . In this way, the insertionposition i determines the rank array of the extended permutation.Lemma 5.4. Let P ∈ Pn−1 be a permutation of length n − 1 and P ⊳ ∈ P

⊳ an extendedpermutation with insertion position i. Then we have for all e ∈ [1, n − 1] that(a) R⊳[e + 1] = R[e] if R[e] < i,(b) R⊳[e + 1] = R[e] + 1 if R[e] ≥ i, and(
) R⊳[1] = i.Proof. Let e be an arbitrary element of the permutation P o

urring at position j, e =
P [j] and R[e] = j.(a) If R[e] < i, then j = R[e] < i. Therefore, a

ording to De�nition 5.3, j⊳ equals j andhen
e P ⊳[j⊳] = P [j] + 1 = e + 1. Altogether, this implies R⊳[e + 1] = R⊳[P ⊳[j⊳]] =

j⊳ = j = R[e].(b) If R[e] ≥ i, then j = R[e] ≥ i. Therefore, j⊳ = j + 1 and P ⊳[j⊳] = P [j] + 1 = e + 1.This implies R⊳[e + 1] = R⊳[P ⊳[j⊳]] = j⊳ = j + 1 = R[e] + 1.(
) R⊳[1] = i holds be
ause 1 is inserted at position i, P ⊳[i] = 1.Furthermore, mapping P to P ⊳ basi
ally preserves the +R-order, ex
ept for the insertionposition i:Lemma 5.5. Let P ∈ Pn−1 be a permutation of length n − 1 and P ⊳ ∈ P
⊳ an extendedpermutation. Then, for all indi
es g, h ∈ [1, n − 1],

+R[g] < +R[h] =⇒ +R
⊳
[g⊳] < +R

⊳
[h⊳].Proof. Let g and h be two positions of P su
h that +R[g] < +R[h]. Then, a

ording tothe de�nition of +R, R[P [g] + 1] < R[P [h] + 1]. Moreover, let i be the insertion positionof P ⊳. We distinguish two
ases.(i) If R[P [g] + 1] < i, then Lemma 5.4 (a and b) gives

R⊳[P [g] + 1 + 1] = R[P [g] + 1] < R[P [h] + 1] ≤ R⊳[P [h] + 1 + 1].Combining this with De�nition 5.3 and the de�nition of +R
⊳ yields

+R
⊳
[g⊳] = R⊳[P ⊳[g⊳] + 1] < R⊳[P ⊳[h⊳] + 1] = +R

⊳
[h⊳].(ii) If R[P [g] + 1] ≥ i the proof works analogously using the fa
t that R[P [h] + 1] >

R[P [g] + 1] ≥ i. Hen
e, Lemma 5.4(b) has to be used for R[P [g] + 1] as well as for
R[P [h] + 1], and then the rest of the proof pro
eeds as before.Lemma 5.5
onsiders the +R-order of P ⊳, but leaves out the insertion position i. Thenext lemma states that the +R-order at position i just depends on the position R[1] ofelement 1 in the permutation P .34

5.1 Counting su�x arraysLemma 5.6. Let P ⊳ ∈ P
⊳ be an extended permutation of P ∈ Pn−1 with insertion position

i ∈ [1, n], and let g be an index of P , then
+R[g] < R[1]⇐⇒ +R

⊳
[g⊳] < +R

⊳
[i] for all g ∈ [1, n − 1].Proof. We �rst show that +R[g] < R[1] =⇒ +R
⊳
[g⊳] < +R

⊳
[i].If +R[g] < R[1], then using the de�nition of +R leads to R[P [g]+1] < R[1]. We
onsidertwo
ases.(i) If R[P [g] + 1] < i, then R⊳[P [g] + 1 + 1] = R[P [g] + 1] by Lemma 5.4(a). Moreover,Lemma 5.4 (a and b) implies R[1] ≤ R⊳[1 + 1]. This together leads to

R⊳[(P [g] + 1) + 1] < R⊳[1 + 1]. (5.1)A

ording to De�nition 5.3, P ⊳[g⊳] = P [g] + 1 and P ⊳[i] = 1. Combining this withinequality (5.1) leads to
+R

⊳
[g⊳] = R⊳[P ⊳[g⊳] + 1] = R⊳[(P [g] + 1) + 1] < R⊳[1 + 1] = R⊳[P ⊳[i] + 1] = +R

⊳
[i].(ii) If R[P [g] + 1] ≥ i, then the proof pro
eeds analogously by
onsidering R[1] >

R[P [g] + 1] ≥ i.In order to show the opposite dire
tion +R[g] < R[1] ⇐= +R
⊳
[g⊳] < +R

⊳
[i], we observethat +R[g] > R[1] =⇒ +R

⊳
[g⊳] > +R

⊳
[i]. Sin
e, for all g ∈ [1, n − 1], +R[g] 6= R[1] and

+R
⊳
[g⊳] 6= +R

⊳
[i], we obtain the stated equivalen
e.After
hara
terising the +R-order of extended permutations, we now prove that thenumber of +R-des
ents is either preserved or in
reased by exa
tly one through the mappingfrom P to an arbitrary extended permutation P ⊳.Lemma 5.7. Let P ∈ Pn−1 be a permutation of length n − 1 with d +R-des
ents and

P
⊳ the set of extended permutations of P , then we have, for all extended permutations

P ⊳
i ∈ P

⊳,
|des
(P)| ≤ |des
(P ⊳

i)| ≤ |des
(P)|+ 1.Proof. A

ording to Lemma 5.5, the mapping with respe
t to the insertion position idoes not tou
h the +R-order of
onse
utive positions not adja
ent to i. More pre
isely, forall j ∈ [2, n − 1] with j 6= i,
+R[j − 1] > +R[j]⇐⇒ +R

⊳
i [(j − 1)⊳] > +R

⊳
i [j

⊳].This means that ea
h +R-des
ent at position j− 1 with j 6= i
orresponds to a +R-des
entat position (j−1)⊳ in P ⊳
i and vi
e versa. Therefore, we only have to examine the +R-orderof the remaining pair of positions (i− 1, i) in P and the respe
tive interval [(i− 1)⊳, i⊳] in

P ⊳
i . Note that [(i− 1)⊳, i⊳] = {i− 1, i, i + 1}. We distinguish whether position i− 1 of Pis a +R-des
ent or not. 35

5 Counting and Enumerating the Su�x Arrays(i) If i− 1 is a +R-des
ent of P su
h that +R[i − 1] > +R[i], then applying Lemma 5.5leads to
+R

⊳
i [(i− 1)⊳] > +R

⊳
i [i

⊳]. (5.2)Sin
e R[1] 6= +R[g] for all g ∈ [1, n − 1], we
onsider three sub
ases:(i.1) If R[1] > +R[i−1], then Lemma 5.6 implies +R
⊳
i [i] > +R

⊳
i [(i−1)⊳] and togetherwith inequality (5.2) +R

⊳
i [i] > +R

⊳
i [(i− 1)⊳] > +R

⊳
i [i

⊳] follows. That is, +R
⊳
i [i−

1] = +R
⊳
i [(i − 1)⊳] < +R

⊳
i [i] and +R

⊳
i [i] > +R

⊳
i [i

⊳] = +R
⊳
i [i + 1]. Hen
e, i is a

+R-des
ent of P ⊳
i and the number of +R-des
ents of P ⊳

i equals the number of
+R-des
ents of P .(i.2) If +R[i − 1] > R[1] > +R[i], then Lemma 5.6 implies +R

⊳
i [(i − 1)⊳] > +R

⊳
i [i] >

+R
⊳
i [i

⊳]. Hen
e, (i−1)⊳ and i are +R-des
ents of P ⊳
i . The number of +R-des
entsin P ⊳

i is thus one more than in P .(i.3) If +R[i] > R[1], then +R
⊳
i [(i − 1)⊳] > +R

⊳
i [i] < +R

⊳
i [i

⊳]. Hen
e, the number of
+R-des
ents in P ⊳

i equals the number of +R-des
ents in P .(ii) If i − 1 is not a +R-des
ent of P , then an argument similar to (i)
an be used toshow that the number of +R-des
ents is retained or in
reases by one.Combining all these
ases shows, for ea
h i, that the number of +R-des
ents is preservedby the mapping from P to P ⊳
i or is in
reased by one.Lemma 5.8. Let P be a permutation of length n−1 with d +R-des
ents and P

⊳ the set ofextended permutations of P ; then the number of extended permutations with d +R-des
entsis d + 1,
|{P ⊳ ∈ P

⊳ : |des
(P ⊳)| = d}| = d + 1.Proof. We assign to ea
h +R-run +R[l, r] of P a proper insertion position i ∈ [l, r + 1]that preserves the number of +R-des
ents through the mapping from P to P ⊳
i and showthat the number of +R-des
ents in
reases for the other, non-proper insertion positions.Let +R[l, r] be a +R-run de�ned by a pair of
onse
utive +R-des
ents, (l − 1, r), su
hthat +R[l−1] > +R[l] < +R[l+1] < . . . < +R[r] > +R[r+1]. Remember that, a

ording toLemma 5.5, the +R-des
ents not adja
ent to the insertion position are preserved throughthe mapping to P ⊳

i . Therefore, it su�
es to investigate the +R-order of positions tou
hedby the insertion. Sin
e R[1] 6= +R[g] for all g ∈ [1, n − 1], we
onsider three mutuallyex
lusive
ases.36

5.1 Counting su�x arrays(i) For R[1] < +R[l], the proper insertion position is i, i = l, su
h that
+R[l − 1] > R[1] < +R[l] < . . . < +R[r] > +R[r + 1].A

ording to Lemmas 5.5 and 5.6, we obtain the series of inequalities

+R
⊳
i [(l − 1)⊳] > +R

⊳
i [i] < +R

⊳
i [l

⊳] < . . . < +R
⊳
i [r

⊳] > +R
⊳
i [(r + 1)⊳].Hen
e, for the insertion position l, there exist exa
tly as many +R-des
ents in therespe
tive interval [l − 1, r + 1] of P as in the interval [(l − 1)⊳, (r + 1)⊳] of P ⊳

i ,and, a

ording to Lemma 5.5, the other +R-des
ents are not a�e
ted through themapping. Thus, | +R -des
(P)| = | +R -des
(P ⊳
i)|.For the insertion positions i ∈ [l + 1, r],

+R[l] < +R[l + 1] < . . . < +R[i− 1] > R[1] < +R[i] < . . . < +R[r] (5.3)holds. Then applying Lemmas 5.5 and 5.6 leads to
+R

⊳
i [l

⊳] < +R
⊳
i [(l + 1)⊳] < . . . < +R

⊳
i [(i− 1)⊳] > +R

⊳
i [i] < +R

⊳
i [i

⊳] < . . . < +R
⊳
i [r

⊳].(5.4)Therefore, the number of +R-des
ents in
reases through the mapping.The bordering insertion position r + 1 remains to be investigated, for whi
h we
onsider two spe
ial
ases.(i.1) If R[1] < +R[r + 1], then r + 1 would be the proper insertion position for thenext +R-run +R[r + 1, h] for some h, like in
ase (i).(i.2) If R[1] > +R[r + 1], then the insertion position r + 1 in
reases the number of
+R-des
ents through the mapping from P to P ⊳

i .(ii) For +R[l] < R[1] < +R[r], the proper insertion position is i ∈ [l+1, r] with +R[i−1] <
R[1] < +R[i]. The other insertion positions j, j ∈ [l + 1, r] with j 6= i, in
rease thenumber of +R-des
ents. The bordering insertion positions l and r +1 either in
reasethe number of +R-des
ents analogously to (i.2), or they are proper insertion positionsfor the adja
ent +R-runs.(iii) For +R[r] < R[1], the proof works analogously to (i) by handling the borderinginsertion position l like (i.2).So far, we
on
entrated on the inner +R-runs +R[l, r] with l 6= 1 and r 6= n − 1. For thebordering +R-runs +R[l, r] with l = 1 or r = n − 1, the proper insertion positions arede�ned in the same way, but the proof is a bit simpler be
ause the insertion positions atthe borders 1 and n are both not a�e
ted by adja
ent +R-runs.Finally, for ea
h of the d + 1 +R-runs in P , there exists a unique insertion position ithat preserves the number of +R-des
ents through the mapping from P to P ⊳

i . All otherinsertion positions in
rease the number of +R-des
ents. 37

5 Counting and Enumerating the Su�x ArraysProof of Theorem 5.1. For the number of permutations of length n having d +R-des
ents, A(n, d), we a
hieve the following re
ursive de�nition with the two base
ases(i) and (ii) and the re
ursion step (iii).(i) Sin
e the permutation (n, n − 1, . . . , 1) is the only one without any +R-des
ent,
A(n, 0) = 1.(ii) Obviously, the number of +R-des
ents is bounded by n − 1. Hen
e, there is nopermutation of length n with more than n−1 +R-des
ents, and thus A(n, d) = 0 for
d ≥ n.(iii) As mentioned before, mapping ea
h permutation P of length n − 1 to P ⊳

i leads to
n extended permutations, ea
h of length n (one for ea
h possible insertion position
i). If P
ontains d +R-des
ents, then Lemma 5.8 implies: There exist exa
tly d + 1extended permutations with d +R-des
ents, and, a

ording to Lemma 5.7, the other
n−d extended permutations
ontain d+1 +R-des
ents. Combining these observationsleads to the re
ursion A(n, d) = (d+1)A(n−1, d)+(n−d)A(n−1, d−1) for 0 < d < n.The propositions (i), (ii), and (iii) yield the same re
ursion as for the Eulerian numbers.Hen
e, A(n, d) =

〈n
d

〉.5.2 Enumerating the su�x arraysWe present the �rst enumeration algorithm for the su�x arrays of the strings up to length nover an alphabet of size σ or, alternatively, for the
orresponding non-empty sa-equivalen
e
lasses represented by their base strings. Our enumeration s
heme exploits the
loserelationship between su�x arrays and the Burrows�Wheeler transform. We would like toenumerate only the su�x arrays of (exa
tly) length n, just as Corollary 5.2
ounts them,but we are
urrently not able to do so. Our enumeration s
heme generates the su�x arraysfrom small to long arrays su
h that the generation of the su�x arrays of length n dependson the previous generation of all shorter su�x arrays.We �rst observe that the atta
hment of a
hara
ter at the front of a string
auses anindex shift of the starting positions of the su�xes: Ea
h index number in
reases by one,and the newly atta
hed
hara
ter re
eives the freed index number 1. For our enumerationalgorithm of the base strings up to length n, whi
h also uses su
h a front extension, weavoid the unfavourable index shift by using a di�erent indexing of the strings: For a string
t′ of length n′ with n′ ≤ n, we use the indexing n − n′ + 1, n − n′ + 2, . . . , n. If a new
hara
ter is atta
hed to the front of t′, then it is assigned to the new front index n − n′without in
reasing the previously existing index numbers n− n′ + 1, n − n′ + 2, . . . , n. Amore elegant solution would be to repla
e the left-to-right indexing with a right-to-leftindexing n′, . . . , 2, 1, whi
h is independent of the �nal string length. Nevertheless, to be
onsistent with the literature, we keep the traditional left-to-right indexing throughoutthe thesis, but start with the index front = n− n′ + 1 in the remainder of this
hapter.38

5.2 Enumerating the su�x arraysThe modi�ed indexing is only used for strings. Nevertheless, it requires an adjustmentof De�nition 5.3. First of all, the indexing of the su�x arrays is not
hanged. Hen
e, westill have
j⊳ := j if j < iand j⊳ := j + 1 if j ≥ i.The modi�ed indexing of the strings, however, avoids the shift of the su�x numbers.Therefore,

P ⊳
i [j⊳] := P [j] if j⊳ 6= iand P ⊳
i [j⊳] := front⊳ if j⊳ = i,where front⊳ := front − 1.Furthermore, the proposition of Lemma 5.4
hanges; we now have for all e ∈ [1, n − 1]that(a) R⊳[e] = R[e] if R[e] < i,(b) R⊳[e] = R[e] + 1 if R[e] ≥ i, and(
) R⊳[front⊳] = i.Nevertheless, the +R-array is essentially not altered by the di�erent indexing sin
e it re-�e
ts the
onne
tions between
onse
utive su�xes, whi
h is independent of the
urrentindexing; only the start index of the string
hanges from 1 to front . Therefore, Lem-mas 5.5�5.8 are essentially retained, only R[1] in Lemma 5.6
hanges to R[front].Before we
an formulate the enumeration algorithm, we �rst de�ne the Burrows�Wheelertransform (BWT) and further terms that are frequently used in the
ompressed indexingliterature. Let $ be a
hara
ter not
ontained in Σ with $ < c for all c ∈ Σ. For applyingthe BWT, we append $ to the end of t, forming the $-extended string t$. The su�x array

P of t is essentially kept through the extension. Only the new su�x number n + 1, whi
hrefers to the smallest su�x $, is impli
itly atta
hed to the front of P , P [0] = n + 1, butit does not expli
itly appear in P . The BWT string bwt of t, or rather the BWT stringof the $-extended string t$, is formed of the
hara
ters to the �left� of the su�x numbersin their su�x array order, basi
ally giving the left
ontext of the lexi
ographi
ally sortedsu�xes of t$.De�nition 5.9. Let Σ be the underlying alphabet, P ∈ Pn
Σ a permutation of [1, n], and

t ∈ TP,Σ a string of the respe
tive sa-equivalen
e
lass. Moreover, let P [0] = n + 1. Wede�ne the BWT string bwt of t as
bwt[i] :=

{

t[P [i]− 1] if P [i] > 1'$' if P [i] = 1,for i ∈ [0, n]. 39

5 Counting and Enumerating the Su�x ArraysNote that, di�erent from the string t, the BWT string in
ludes the $, starts at position
0 and has length n+1. Moreover, our de�nition is only equivalent to the original de�nitionof Burrows and Wheeler [32℄ for $-extended strings.We further de�ne some tools that are frequently used in the
ompressed text index-ing literature, starting with the fun
tions rank and select. For the BWT string bwt,
rankc(bwt, j) is the number of o

urren
es of the
hara
ter c in the pre�x bwt[0, j] of bwt:

rankc(bwt, j) := |{g ∈ [0, j] : bwt[g] = c}| for all j ∈ [0, n]. (5.5)Conversely, selectc(bwt, k) gives the position of the kth o

urren
e of the
hara
ter c in
bwt:

selectc(bwt, k) := j if bwt[j] = c and rankc(bwt, j) = k, (5.6)for all c ∈ Σ, j ∈ [0, n], and k ∈ [1, n]; selectc(bwt, k) is unde�ned if the number ofo

urren
es of the
hara
ter c in bwt is less than k.Re
all the First sequen
e f = t[P [1]], t[P [2]], . . . , t[P [n]] for a string t ∈ TP,Σ, whi
h issimply
omposed of the alphabeti
ally ordered
hara
ters of t. Without loss of generality,we assume that the underlying alphabet
onsists of the �rst natural numbers, Σ = [1, |σ|].Then we de�ne the array C storing in C[c] the frequen
y of
hara
ters in t that are smallerthan c, C[c] := |{j ∈ [1, n] : t[j] < c}| for all c ∈ Σ. Moreover, f [C[c] + 1] = f [C[c] + 2] =
. . . = f [C[c + 1]] for all c ∈ Σ. Hen
e, C uniquely determines the First sequen
e f .For a string t with BWT string bwt and First sequen
e f , the LF -mapping links ea
hpositions of bwt to a position of f :

LF (j) :=

{

C[bwt[j]] + rankbwt[j](bwt, j) if bwt[j] 6= '$'
0 if bwt[j] = '$',for all j ∈ [0, n]. If bwt[j] = c is the kth o

urren
e of the
hara
ter c in bwt, then

f [LF (i)] = c is the kth o

urren
e of c in f . The inverse mapping LF−1 is realised via asele
t query:
LF−1(h) = selectf [h](bwt, j −C[h]) for all h ∈ [1, n].Additionally, we maintain a referen
e p$ to the position of $ in bwt su
h that bwt[p$] = $.There exists a one-to-one
orresponden
e between the su�x arrays with d +R-des
entsand the base strings of the respe
tive sa-equivalen
e
lasses, whi
h are
omposed of exa
tly

d + 1 distin
t
hara
ters (see Chapter 4.1). For the proper insertion position 3, Table 5.2shows the extension of the permutation P = (6, 5, 2, 4, 3), the respe
tive front extension ofthe $-extended base string ABBAA$ by A and the adjustment of the BWT string bwtP . Thesymbol '_' is a sentinel for the index position 1, whi
h does not belong to the string. Thereal start index is front = 2. The leftmost �ve
olumns of the table show the array indi
es
j, the su�x array P , the +R-array, the BWT string bwtP , and the First sequen
e for the$-extended base string bP$, bP $ = _ABBAA$. The right part shows the respe
tive
olumnsfor the extended permutation P ⊳

3 with the $-extended base string bP ⊳
3
$ = AABBAA$. Thelines between the BWT
olumn and the
olumn for the First sequen
e represent the LF -mapping for the As. If A is atta
hed to the front of ABBAA$, then we �nd the proper40

5.2 Enumerating the su�x arraysTable 5.2: The extension of the base string bP = ABBAA by adding the
hara
ter A to thefront and the e�e
t on the su�x array and the +R-array.
bP $ = _ABBAA$ bP ⊳

3
$ = AABBAA$

j P [j] +R[j] bwtP [j] bP $[P [j]] j⊳ P ⊳
3 [j⊳] +R

⊳
3[j

⊳] bwtP ⊳
3
[j⊳] bP ⊳

3
$[P ⊳

3 [j⊳]]0 A $ 0 A $1 6 0 A A 1 6 0 A A2 5 1 B A 2 5 1 B A3 1 4 $ A3 2 5 $ A 4 2 6 A A4 4 2 B B 5 4 2 B B5 3 4 A B 6 3 5 A BTable 5.3: The extension of the permutation P with base string bP = ABBAA a

ording tothe insertion positions 4 and 2.
bP ⊳

4
$ = BACCAA$ bP ⊳

2
$ = ABCCBA$

j⊳ P ⊳
4 [j⊳] bwtP ⊳

4
[j⊳] bP ⊳

4
$[P ⊳

4 [j⊳]] j⊳ P ⊳
2 [j⊳] bwtP ⊳

2
[j⊳] bP ⊳

2
$[P ⊳

2 [j⊳]]0 A $ 0 A $1 6 A A 1 6 B A2 5 C A 2 1 $ A3 2 B A 3 5 C B4 1 $ B 4 2 A B5 4 C C 5 4 C C6 3 A C 6 3 B Cinsertion position 3 by moving the $ at position 3 of bwtP towards the funnel that isformed by the lines representing the LF -mapping for the As. The $ in bwtP is thenrepla
ed by the atta
hed A, A is inserted at position 3 of the �rst sequen
e, and the $ tothe �left� of the atta
hed A is inserted at position 3 of bwtP . The other positions of theBWT string and the First sequen
e remain untou
hed. Moreover, the new su�x with thesu�x number front⊳ = 1 is inserted at position 3 of the su�x array P . The inserted row
3 is printed in bold fa
e.For the insertion positions 4 and 2, Table 5.3 shows the respe
tive extended permuta-tions of P = (6, 5, 2, 4, 3), the modi�
ations of the $-extended base string _ABBAA$ of therespe
tive sa-equivalen
e
lass and the adjustment of the Burrows�Wheeler transform;4 and 2 are non-proper insertion positions. For the insertion position 4, the leftmost four41

5 Counting and Enumerating the Su�x Arrays
olumns show the array index j⊳, the extended su�x array P ⊳
4 , the respe
tive BWT string

bwtP ⊳
4
, and the First sequen
e for the modi�ed $-extended base string bP ⊳

4
$ = BACCAA$.The rightmost four
olumns show the respe
tive data for the insertion position 2. Thevalues of the inserted rows are again printed in bold fa
e. The solid lines show the part ofthe LF -mapping tou
hing the insertion position i of the First sequen
e, and the dashedlines show the part of the LF -mapping tou
hing the First sequen
e at the positions j⊳with j⊳ > i. We observe that the
hara
ters after the insertion position i of the Firstsequen
e are in
reased by one, bP ⊳

i
[j⊳] = bP [j⊳ − 1] + 1 for ea
h j⊳ > i.Based on our observations, we de�ne the modi�
ation of the base string bP of the

sa-equivalen
e
lass TP,Σ.De�nition 5.10. Let Σ be the underlying alphabet, P ∈ Pn−1
Σ a permutation of length

n − 1, bP the base string of the respe
tive sa-equivalen
e
lass TP,Σ, and PropP the setof proper insertion positions for P . Moreover, let i be a non-proper insertion position,
i ∈ [1, n] with i /∈ PropP . Then we de�ne the modi�ed base string bi,P of length n by(a) bi,P [P [j⊳]] := bP [P [j]] if j⊳ < i,(b) bi,P [P [j⊳]] := bP [P [j]] + 1 if j⊳ > i, and(
) bi,P [front ⊳] := prop i + 1,where front is the start index of the base string bP and prop i denotes the number of properinsertion positions in the pre�x P [1, i− 1] of P , prop i = |{j ∈ PropP : j < i}|.Lemma 5.11. Let Σ be the underlying alphabet, P ∈ Pn−1

Σ a permutation of length n− 1,
bP the base string of the respe
tive sa-equivalen
e
lass TP,Σ, and i a non-proper insertionposition of P , i ∈ [1, n] with i /∈ PropP . Then bi,P is the base string of the sa-equivalen
e
lass TP ⊳

i ,Σ
a

ording to the extended permutation P ⊳

i , bi,P = bP ⊳
i
.Proof. Lemmas 5.5 and 5.6 imply that the extension with respe
t to the insertion position

i only in�uen
es the relative order of the +R-values tou
hed by the insertion position. Sin
e
i is a non-proper insertion position, the extension of P either produ
es a new +R-des
entat position i− 1 with +R

⊳
i [i− 1] > +R

⊳
i [i] or a new +R-des
ent at position i with +R

⊳
i [i] >

+R
⊳
i [i+1], implying the following. If d⊳

j⊳ is the number of +R-des
ents in P ⊳
i that are smallerthan j⊳ and dj is the number of +R-des
ents in P that are smaller than j, then we have

dj = d⊳
j⊳ for j⊳ < i and dj + 1 = d⊳

j⊳ for j⊳ > i. Hen
e, a

ording to De�nition 5.10 (a andb) and the de�nition of the base strings, we have bi,P [P [j⊳]] = bP [P [j]] = dj +1 = d⊳
j⊳ +1 =

bP ⊳
i
[P ⊳

i [j⊳]] for j⊳ < i and bi,P [P [j⊳]] = bP [P [j]] + 1 = (dj + 1) + 1 = d⊳
j⊳ + 1 = bP ⊳

i
[P ⊳

i [j⊳]]for j⊳ > i, verifying the equality for the positions j⊳ ∈ [1, n] with j⊳ 6= i.For De�nition 5.10(
), we exploit the relationship between the +R-runs and the properinsertion positions. Let +R[l, r] be the +R-run with l ≤ i ≤ r, and assume it is the
kth +R-run, so di = k − 1. Moreover, in the proof of Lemma 5.8, we have assignedthe kth proper insertion position iprop to the kth +R-run +R[l, r], l ≤ iprop ≤ r + 1 and
k = |{i ∈ PropP : i ≤ iprop}|. We distinguish two
ases:42

5.2 Enumerating the su�x arrays(i) If i < iprop, then
. . . < +R[i− 1] < R[front] > +R[i] < . . . < +R[iprop − 1] < R[front] . . . ,where we have +R[iprop − 1] < R[front] < +R[iprop] sin
e iprop is a proper insertionposition (see the series of inequalities (5.3) and (5.4) in the proof of Lemma 5.8).Then applying Lemmas 5.5 and 5.6 leads to
. . . < +R

⊳
i [(i− 1)⊳] < +R

⊳
i [i] > +R

⊳
i [i

⊳] < . . .Hen
e, the insertion at position i produ
es a new +R-des
ent i. We have k−1 properinsertion positions of P smaller than i and as many +R-des
ents of P ⊳
i smaller than

i, propi = d⊳
i . Moreover, the new su�x number front⊳ is inserted at position i su
hthat P ⊳

i [i] = front⊳. Therefore, a

ording to De�nition 5.10(
) and the de�nition ofthe base strings, bi,P [P ⊳
i [i]] = bi,P [front⊳] = prop i +1 = d⊳

i +1 = bP ⊳
i
[P ⊳

i [i]], verifyingthe equality for the insertion position i.(ii) If i > iprop, then we have
R[front] < +R[iprop] < < +R[i− 1] > R[front] < +R[i] < . . .Applying Lemmas 5.5 and 5.6 again leads to

. . . < +R
⊳
i [(i− 1)⊳] > +R

⊳
i [i] < +R

⊳
i [i

⊳] < . . .Hen
e, the insertion at position i produ
es a new +R-des
ent at position i − 1. Wehave k proper insertion positions that are smaller than or equal to i: k − 1 for thepre
eding +R-runs and in addition the proper insertion position iprop. Moreover, wehave the same number k of +R-des
ents of P ⊳
i that are smaller than i: We have the

k − 1 pre
eding +R-runs ea
h terminated by a +R-des
ent and in addition the +R-des
ent i−1 that is produ
ed by the insertion. That is, propi = d⊳
i . Hen
e, a

ordingto De�nition 5.10 (
) and the de�nition of base strings, bi,P [P ⊳

i [i]] = bi,P [front⊳] =
propi +1 = d⊳

i +1 = bP ⊳
i
[P ⊳

i [i]], verifying the equality for the insertion position i.We are now prepared to formulate the desired enumeration algorithm. The main pro
e-dure EnumSa (Algorithm 5.1) intera
ts with the pro
edures EnumProp (Algorithm 5.2),EnumNoProp (Algorithm 5.3), and InsRe
Del (Algorithm 5.4). Let P [1,n]
σ be the setof su�x arrays of strings
omposed of up to σ distin
t
hara
ters with length up to n.EnumSa simultaneously enumerates the base strings up to length n that are
omposed ofup to σ distin
t
hara
ters and the
orresponding su�x arrays P ∈ P [1,n]

σ . It starts withthe su�x array (1) of the base string A and gradually extends the su�x arrays P ∈ P [1,n]
σemanating from (1) until the maximum length n is rea
hed.Without loss of generality, we assume again that the
hara
ter set of a base string bPequals the �rst natural numbers [1, |Σ(bP)|]. In ea
h step, the BWT string is adjusted tothe
urrent base string. The parameters of the algorithm are the
urrent permutation P ,43

5 Counting and Enumerating the Su�x ArraysAlgorithm 5.1.EnumSan,σ(P, bP , bwtP , p$, enum)1: Penum ← P2: benum ← bP3: enum← enum + 14: if length(bP) < n then5: PropP ← EnumPropn,σ(P, bP , bwtP , p$, enum)6: if |Σ(bP)| < σ then7: EnumNoPropn,σ(P, bP , bwtP , p$,PropP , enum)8: end if9: end if
Algorithm 5.2.EnumPropn,σ(P, bP , bwtP , p$, enum)1: PropP ← ∅2: for c← |Σ(bP)| down to 1 do3: i← C(c) + rankc(bwtP , p$ − 1) + 14: PropP ← PropP ∪ {i}5: InsRe
Deln,σ(P, bP , bwtP , p$, enum, i, c)6: end for7: return PropPAlgorithm 5.3.EnumNoPropn,σ(P, bP , bwtP , p$, enum,PropP)1: c← |Σ(bP)|+ 12: if length(bP) + 1 ∈ PropP then3: c← c− 14: else5: InsRe
Deln,σ(P, bP , bwtP , p$, enum, length(bP) + 1, c)6: end if7: for i← length(bP) down to 1 do8: bwtP [LF−1(i)] = bP [P [i]] + 19: bP [P [i]]← bP [P [i]] + 110: if i ∈ PropP then11: c← c− 112: else13: InsRe
Deln,σ(P, bP , bwtP , p$, enum, i, c)14: end if15: end for44

5.2 Enumerating the su�x arraysAlgorithm 5.4.InsRe
Deln,σ(P, bP , bwtP , p$, enum, i, c)1: front ← n− length(bP)2: bP [front]← c3: bwtP [p$]← c4: p$ ← i5: insert(bwtP , i, '$')6: insert(P, i, front)7: EnumSan,σ(P, bP , bwtP , p$, enum)8: p$ ← LF−1(p$)9: bwtP [p$]← '$'10: bP [front]← '_'11: delete(bwtP , i)12: delete(P, i)

Table 5.4: Enumeration of base strings
benum up to length 4 over alphabet {A, B}and the respe
tive su�x arrays Penum.

enum benum Penum1 __A 32 _AA 3, 23 AAA 3, 2, 14 ABA 3, 1, 25 ABB 1, 3, 26 _AB 2, 37 AAB 1, 2, 38 BAB 2, 3, 1the base string bP of the respe
tive sa-equivalen
e
lass TP,Σ, the BWT string bwtP for the$-extended base string bP$, the index p$ with bwtP [p$] = $, and the
urrent enumerationnumber enum. It is invoked with EnumSan,σ((1), A, A$, 1, 1), where (1) is the smallestnon-empty su�x array, A is the base string of the sa-equivalen
e
lass T(1),{A,B} and A$ isthe BWT string for the $-extended base string A$. The re
ursion terminates if the maximalstring length n is rea
hed (line 4). Otherwise, EnumProp is
alled, whi
h enumerates theextended permutations for the proper insertion positions. Moreover, if bP is
omposed ofless than σ distin
t
hara
ters, EnumNoProp is
alled, whi
h enumerates the extendedpermutations for the non-proper insertion positions.EnumProp and EnumNoProp both use InsRe
Del. In lines 2�6, InsRe
Del at-ta
hes the
hara
ter c at the front of the base string bP , updates the BWT string bwtP ,and inserts the new su�x number front at position i of the permutation P , produ
ingthe extended permutation P ⊳
i . Then EnumSa is
alled, whi
h re
ursively enumerates thebase strings emanating from bP ⊳

i
= c bP and the su�x arrays emanating from P ⊳

i (line 7).Lines 8�12 reverse the modi�
ations of lines 2�6, re
onstru
ting the original data.For ea
h
hara
ter c
ontained in the base string bP , EnumProp determines the properinsertion position i that a

ords to the front extension of bP by c (line 3), stores theinsertion position in PropP (line 4), and
alls InsRe
Del (line 5), whi
h produ
es thebase string bP ⊳
i
of the extended su�x array P ⊳

i and re
ursively enumerates the su�x arraysemanating from P ⊳
i . Finally, EnumProp returns the set of proper insertion positions

PropP . Note that we assume C is impli
itly updated during ea
h insert or delete operation.For all non-proper insertion positions i in des
ending order, EnumNoProp in
ombi-nation with InsRe
Del su

essively produ
es the base strings bP ⊳
i
of the sa-equivalen
e
lasses for the extended permutations P ⊳

i , realising De�nition 5.10, and re
ursively enu-merates the base strings emanating from bP ⊳
i
and the su�x arrays emanating from P ⊳

i .EnumNoProp �rst assigns the smallest not yet used
hara
ter to c, (line 1). It passesthrough all the insertion positions i, starting with the largest, whi
h is handled separately45

5 Counting and Enumerating the Su�x Arrays(lines 2�6). When it moves over the position i, then the
hara
ter bP [P [i]] at position
i of the First sequen
e and the
orresponding
hara
ter in bwtP are in
reased a

ordingto De�nition 5.10(b) (line 8�9). If i moves over a proper insertion position, then c is de-
reased to
onform with De�nition 5.10(
) (lines 2+3 and lines 10+11). Otherwise, if i isa non-proper insertion position, InsRe
Del is
alled (lines 4+5 and lines 12+13), whi
hatta
hes c to the front of bP , updates bwtP , produ
es the permutation P ⊳

i , and re
ursivelyenumerates the base strings emanating from bP ⊳
i

= c bP and the su�x arrays emanatingfrom P ⊳
i . Table 5.4 shows the enumerated base strings benum up to length 4
omposed ofup to 2 distin
t
hara
ters and the
orresponding su�x arrays Penum.Rank and select fun
tions for the implementation of the BWT have been widely studiedin the
ompressed indexing literature, but most of these data stru
tures are rather stati
.For an in-depth study of the rank and select data stru
tures and their
onne
tion to theBurrows�Wheeler transform, we refer to the survey of Navarro and Mäkinen [113℄. For thetime-e�
ient implementation of our enumeration s
heme, dynami
 data stru
tures repre-senting the Burrows�Wheeler transform are required. We may use the dynami
 rank indexof Mäkinen and Navarro [93℄, whi
h performs rank and select as well as insert and deletequeries in O(log n) time. In this way, the algorithm enumerates the base strings of thenon-empty sa-equivalen
e
lasses and the
orresponding su�x arrays in O(log n |P [1,n]

σ |)time, where P [1,n]
σ is the set of su�x arrays of strings
omposed of up to σ distin
t
hara
-ters with length up to n. We have |P [1,n]

σ | =∑n
j=1

∑σ−1
d=0

〈j
d

〉, whi
h follows from summingup the su�x array
ount of Corollary 5.2 for all strings up to length n. Furthermore, weanti
ipate Lemma 6.1 of Chapter 6.1. It states∑σ−1
d=0

〈j
d

〉

=
∑σ−1

k=0

(j
k

)

(−1)k(σ−k)j , whi
himplies |P [1,n]
σ | = ∑n

j=1

∑σ−1
d=0

〈

j
d

〉

=
∑n

j=1

∑σ−1
k=0

(

j
k

)

(−1)k(σ − k)j . We thus a
hieve thetime bound ofO(log n
∑n

j=1

∑σ−1
k=0

(

j
k

)

(−1)k(σ−k)j) for the enumeration of the non-empty
sa-equivalen
e
lasses, represented by their base strings, and the parallel enumeration ofthe
orresponding su�x arrays, whi
h is exponential for σ > 1.The te
hnique used in InsRe
Del (Algorithm 5.4) for the extension of the Burrows�Wheeler transform
an also be used for the right-to-left online
onstru
tion of the BWTor the su�x array: Lippert et al. [92℄ used it for the
onstru
tion of the BWT for ge-nomi
 sequen
e data. Moreover, Gerla
h [52℄ presented a spa
e-e�
ient implementationof Mäkinen and Navarro's [93℄ dynami
 rank index for the
onstru
tion of a
ompressedindex that in
orporates the Burrows�Wheeler transform.

46

6 Appli
ation of the String and Su�xArray CountingMany
ompressed full-text indi
es are based on su�x arrays: the
ompressed su�x ar-ray of Grossi and Vitter [57℄, the
ompressed-su�x-array-based index by Sadakane [123℄,Mäkinen's
ompa
t su�x array [94℄, and several others that improve upon these three (seeNavarro and Mäkinen [113℄).We are interested in the
ompressibility of su
h indi
es, in parti
ular of those basedon su�x arrays. Lower bounds for the size of full-text indi
es are known: Demaineand López-Ortiz [41℄ proved a lower bound for indi
es providing substring sear
h, andMiltersen [107℄ showed lower bounds for sele
tion and rank indi
es (see equations (5.5)and (5.6) on page 40).In this
hapter, we apply the result of Corollary 5.2 to prove new tight lower boundson the
ompressibility of su�x arrays in Se
tion 6.1. Se
tion 6.2 leaves the
ompressedindexing �eld; it
ombines the
ounting s
hemes of the previous two
hapters to provesummation identities of Eulerian numbers.6.1 Appli
ations to
ompressed su�x arraysBefore formally stating and proving the results on the
ompressibility of su�x arrays, we�rst perform some preliminary work. At �rst sight, the
ounting formula for the numberof su�x arrays of Corollary 5.2 looks quite
ompa
t. The Eulerian numbers, however, arere
ursively de�ned, whi
h is unfavourable in
onsideration of the subsequent reasoning.We rather
onvert the formula into a
losed form.Lemma 6.1. Let σ and n be �xed positive integers, then
σ−1
∑

d=0

〈

n

d

〉

=
σ−1
∑

k=0

(

n

k

)

(−1)k(σ − k)n.Proof. An equality rule for the Eulerian numbers [56, Se
tion 6.2, eq. 6.38℄, equality rules47

6 Appli
ation of the String and Su�x Array Countingfor binomial
oe�
ients, and some arithmeti
s lead to
σ−1
∑

d=0

〈

n

d

〉

=
σ−1
∑

d=0

d
∑

k=0

(

n + 1

k

)

(−1)k(d + 1− k)n (6.1)
=

σ−1
∑

d=0

d
∑

k=0

((

n

k

)

+

(

n

k − 1

))

(−1)k(d + 1− k)n (6.2)
=

σ−1
∑

d=0

d
∑

k=0

(

n

k

)

(−1)k(d + 1− k)n

+
σ−1
∑

d=0

d
∑

k=0

(

n

k − 1

)

(−1)k(d + 1− k)n (6.3)
=

σ
∑

d=1

d
∑

k=1

(

n

k − 1

)

(−1)k−1(d + 1− k)n

−
σ−1
∑

d=1

d
∑

k=1

(

n

k − 1

)

(−1)k−1(d + 1− k)n (6.4)
=

σ
∑

k=1

(

n

k − 1

)

(−1)k−1(σ + 1− k)n (6.5)
=

σ−1
∑

k=0

(

n

k

)

(−1)k(σ − k)n, (6.6)where equality (6.1) follows from 〈n
d

〉

=
∑d

k=0

(n+1
k

)

(−1)k(d + 1 − k)n [56, eq. 6.38℄,equality (6.2) from (n+1
k

)

=
(

n
k

)

+
(

n
k−1

), equality (6.3) from the distributivity, equality (6.4)from shifting d and k with respe
t to the �rst sum and from (

n
k−1

)

= 0 for k ≤ 0,equality (6.5) from subtra
ting both sums, and �nally equality (6.6) from shifting k again.Many appli
ation areas for su�x arrays handle small alphabets like the DNA, aminoa
id, or ASCII alphabet. Corollary 5.2 thus limits the number of distin
t su�x arrays forsu
h appli
ations. For example, for a DNA alphabet of size 4, the number of distin
t su�xarrays of length 16 is 3 614 083 520 =
∑3

d=0

〈16
d

〉; whereas the number of possible permu-tations of length 16 is 20 922 789 888 000 = 16!, whi
h is about 5 789 times larger. Thisdi�eren
e in
reases rapidly for larger n. We a
hieve a lower bound on the
ompressibilityof the whole information
ontent of su�x arrays.Corollary 6.2. Let Σn be the set of strings of length n over an alphabet Σ of size σ. Thenthe lower bound for the
ompressibility of the respe
tive su�x arrays in the Kolmogorovsense is log(
∑σ−1

k=0

(

n
k

)

(−1)k(σ − k)n).48

6.1 Appli
ations to
ompressed su�x arraysTable 6.1: Number of strings of length n over alphabets of size 4 and 20, and the respe
tivenumber of su�x arrays.Alphabet size 4 Alphabet size 20
n Strings Su�x arrays Strings Su�x arrays4 256 24 160 000 246 4 096 662 64 000 000 7208 65 536 20 160 25 600 000000 4032010 1 048 576 504 046 ≈ 1.0 · 1013 3 628 80012 16 777 216 10 670 040 ≈ 4.1 · 1015 479 001 60014 268 435 456 202 964 470 ≈ 1.6 · 1018 87 178 29120016 4 294 967296 3 614 083520 ≈ 6.6 · 1020 ≈ 2.1 · 101318 68 719 476736 61 786 015150 ≈ 2.6 · 1023 ≈ 6.4 · 1015Proof. There are ∑σ−1

d=0

〈n
d

〉 distin
t su�x arrays. Among them, there exists at least onebinary representation with Kolmogorov
omplexity not less than log
∑σ−1

d=0

〈n
d

〉. Due toLemma 6.1 this equals log
∑σ−1

k=0

(n
k

)

(−1)k(σ − k)n.We pose a further question: How is the
onne
tion between the number of strings andthe number of su�x arrays? For in
reasing string length, Table 6.1 shows the numberof strings over alphabets of size 4 and 20 (DNA and amino a
id alphabet size) and therespe
tive number of su�x arrays. The �rst
olumn shows the string lengths, the se
ond
olumn the number of strings over an alphabet of size 4, the third
olumn the numberof su�x arrays for these strings, and the fourth and the �fth
olumn show the respe
tivenumbers for an alphabet of size 20. For a �xed alphabet of size σ and in
reasing stringlength n, the number of strings σn and the number of respe
tive su�x arrays ∑σ−1
d=0

〈n
d

〉diverge, but we do not immediately see whether the ratio between these numbers divergesor
onverges. As seen below, it does, in fa
t,
onverge.Theorem 6.3. Let σ be �xed, then
lim

n→∞

∑σ−1
d=0

〈n
d

〉

σn
= 1.Proof. We obtain

lim
n→∞

∑σ−1
d=0

〈n
d

〉

σn
= lim

n→∞

∑σ−1
k=0

(n
k

)

(−1)k(σ − k)n

σn
(6.7)

= lim
n→∞

(

σn

σn
+

σ−1
∑

k=1

(

n

k

)

(−1)k
(σ − k)n

σn

) (6.8)
= 1 +

σ−1
∑

k=1

(−1)k lim
n→∞

((

n

k

)(

1− k

σ

)n) (6.9)
= 1, (6.10)49

6 Appli
ation of the String and Su�x Array Countingwhere equation (6.7) follows from Lemma 6.1, equations (6.8) and (6.9) from basi
 arith-meti
s, and equation (6.10) from the fa
t that limn→∞

(

(n
k

) (

1− k
σ

)n
)

= 0 for 0 < k
σ < 1:The exponential term (

1− k
σ

)n
onverges to 0 and dominates the polynomial term (n
k

),
(n
k

)

≤ nk.Note that Theorem 6.3 only holds if the alphabet is of a
onstant size. If the alpha-bet size grows proportionally to the string length, it is not true anymore. For σ = n,
limn→∞

Pσ−1
d=0 〈nd〉
σn = limn→∞

n!
nn = 0.6.2 Summation identitiesWe present
onstru
tive proofs for two long known summation identities of Eulerian num-bers dedu
ed by summing up the number of di�erent su�x arrays for a �xed alphabet sizeand string length. We believe that our
onstru
tive proofs are simpler than previous ones.Worpitzki's identity. The identity σn =

∑

i

〈

n
i

〉(

σ+i
n

), as given in [56, eq. 6.37℄, wasproven ba
k in 1883 by J. Worpitzki. We prove it by summing up the number of string-distin
t strings of length n over a given alphabet of size σ for ea
h su�x array:
σn =

σ−1
∑

d=0

〈

n

d

〉(

n + σ − d− 1

σ − d− 1

) (6.11)
=

σ−1
∑

d=0

〈

n

n− 1− d

〉(

n + σ − d− 1

n

) (6.12)
=

n−1
∑

i=n−σ

〈

n

i

〉(

σ + i

n

) (6.13)
=

∑

i∈N0

〈

n

i

〉(

σ + i

n

)

. (6.14)Equality (6.12) follows from the symmetry rule for Eulerian and binomial numbers, equal-ity (6.13) from substituting i = n − d − 1, and equality (6.14) from 〈n
i

〉

= 0 for all i ≥ nand (σ+i
n

)

= 0 for all i < n− σ.Summation of Eulerian numbers to generate the Stirling numbers of the se
ond kind.The se
ond summation identity is the summation rule for Eulerian numbers to generatethe Stirling numbers of the se
ond kind [56, eq. 6.39℄: κ!
{

n
κ

}

=
∑

i

〈

n
i

〉(

i
n−κ

). To prove thisidentity, we
ount the κ!
{

n
κ

} strings
omposed of exa
tly κ di�erent
hara
ters. Summing50

6.2 Summation identitiesup these strings for ea
h su�x array gives
κ!

{

n

κ

}

=
κ−1
∑

d=0

〈

n

d

〉(

n− d− 1

κ− d− 1

) (6.15)
=

∑

d∈N0

〈

n

d

〉(

(n− κ) + (κ− d− 1)

κ− d− 1

) (6.16)
=

∑

d∈N0

〈

n

n− 1− d

〉(

n− d− 1

n− κ

) (6.17)
=

∑

i∈N0

〈

n

i

〉(

i

n− κ

)

. (6.18)Equality (6.16) holds sin
e 〈nd〉 = 0 for d ≥ κ, equality (6.17) follows from the symmetryrule for Eulerian and binomial numbers, and equality (6.18) from substituting i = n−d−1.

51

6 Appli
ation of the String and Su�x Array Counting

52

Part IISUFFIX ARRAYCONSTRUCTION

53

7 Introdu
tionThere are several approa
hes to
onstru
t a su�x array. We
an, for example,
onstru
ta su�x tree and derive the su�x array by traversing the
onstru
ted su�x tree �from leftto right� (see [58, Se
tion 7.14.1℄). In this se
ond part of the thesis, we mainly fo
us ondire
t su�x array
onstru
tion algorithms, i.e., not taking the detour over su�x trees.We re
all the su�x array
onstru
tion algorithms mentioned in the introdu
tion of thethesis. Besides the O(n log n) time pre�x-doubling algorithm of Manber and Myers [96℄,there are mainly three groups of algorithms: linear-time algorithms, other algorithmsparti
ularly designed for fast pra
ti
al speed, and lightweight algorithms that try to min-imise the auxiliary spa
e during su�x array
onstru
tion. The linear-time algorithms arethe skew algorithm of Kärkkäinen and Sanders [71℄, the linear-time odd�even algorithmof Kim et al. [80℄, and the smaller�larger algorithm of Ko and Aluru [85℄. Algorithmsparti
ularly designed for fast pra
ti
al speed are qsufsort by Larsson and Sadakane [90℄and the O(n log log n) time odd�even algorithm of Kim et al. [78℄ based on [80℄, but withfaster pra
ti
al running times. Lightweight algorithms are Itoh and Tanaka's two-stagealgorithm [67℄, the
opy and the
a
he algorithms of Seward [135℄, deep�shallow sort-ing of Manzini and Ferragina [102℄, and the di�eren
e-
over algorithm of Burkhardt andKärkkäinen [31℄. We
reated the name smaller�larger ourselves and took the others fromthe literature. The three groups of algorithms are summarised in Table 7.1.The above mentioned su�x array
onstru
tion algorithms meet some of the followingrequirements for pra
ti
al su�x array
onstru
tion:� Fast
onstru
tion for
ommon real-life strings (small average LCP): qsufsort [90℄,two-stage [67℄,
opy and
a
he [135℄, deep�shallow [102℄, and odd�even [78℄;� Fast
onstru
tion for degenerate strings (high average LCP): pre�x-doubling [96℄,qsufsort [90℄, skew [71℄, odd�even [80℄, smaller�larger [85℄, di�eren
e-
over [31℄, andodd�even [78℄;� Small spa
e requirements: two-stage [67℄,
opy and
a
he [135℄, deep�shallow [102℄,and di�eren
e-
over [31℄.As we have mentioned in Chapter 1, we believe that further properties are required.Espe
ially in biologi
al sequen
e data, there are many long sequen
es with mainly smallLCPs, interrupted by o

asional very large LCPs. Hen
e, one has to build su�x arraysfor strings with highly variable LCPs.We present a new algorithm that satis�es these requirements. Before that, we reviewthe above mentioned previous su�x array
onstru
tion algorithms. These algorithms use55

7 Introdu
tionTable 7.1: Summary of the su�x array
onstru
tion algorithms.Su�x array
onstru
tion algorithmslinear-time fast pra
ti
al lightweightskew (Kärkkäinen qsufsort (Larsson two-stageand Sanders [71℄) and Sadakane [90℄) (Itoh and Tanaka [67℄)odd�even odd�even
opy(Kim et al. [80℄) (Kim et al. [78℄) (Seward [135℄)smaller�larger
a
he(Ko and Aluru [85℄) (Seward [135℄)deep�shallow (Manziniand Ferragina [102℄)di�eren
e-
over (Burkhardtand Kärkkäinen [31℄)various auxiliary data stru
tures that we de�ne in Se
tion 7.1. Chapter 8
lassi�es thete
hniques used and surveys the algorithms. Chapter 9 then presents our new bu
ket-pointer re�nement algorithm, and Chapter 10 provides experimental results.7.1 De�nitions and notationsLet $ be a
hara
ter not
ontained in the alphabet Σ, and assume $ < c for all c ∈ Σ. Weoften
onsider the $-padded extension t$n of a string t of length n, whi
h we impli
itlyassume in the subsequent des
ription of the su�x array
onstru
tion algorithms. Thus, ifan algorithm uses a
hara
ter at a position greater than n, then it is a $.In the following, sa denotes the not ne
essarily sorted su�x array sa(t) of a string tof length n. That is, it is not lexi
ographi
ally sorted before the
ompletion of the su�xsorting pro
ess. A bu
ket sa[l, r] = sa[l], sa[l + 1], . . . , sa[r] with 1 ≤ l ≤ r ≤ n is a
ontiguous su�x array segment of su�xes with equal, non-empty pre�x su
h that, for allindi
es g, i, h ∈ N with 1 ≤ g < l ≤ i ≤ r < h ≤ n,
t[sa[g], n] < t[sa[i], n] < t[sa[h], n].We disregard the order of su�xes in a bu
ket; bu
kets
ontaining the same set of su�xes,but in a di�erent order, are
onsidered to be equal. An ℓ-bu
ket
ontains su�xes allsharing the same pre�x of length ℓ, where ℓ is
alled the re�nement level of the bu
ket.Note that ℓ is not ne
essarily the longest
ommon pre�x of all su�xes in an ℓ-bu
ket, andan ℓ-bu
ket is also an ℓ′-bu
ket for ℓ′ ≤ ℓ. A bu
ket sa[i, j] is termed a sub-bu
ket of asuper-bu
ket sa[l, r] if l ≤ i ≤ j ≤ r. Bu
ket re�nement de
omposes a bu
ket sa[l, r] intoa list of re�ned sub-bu
kets sa[l1, r1], sa[l2, r2], . . . , sa[lβ , rβ] for some β ∈ [1, r− l+1] su
h56

7.1 De�nitions and notations1 4 5 2 35 1 4 2 3 4 5 1 2 3 1 4 5 3 25 4 1 2 3 5 1 4 3 2 4 5 1 3 25 4 1 3 2Figure 7.1: A Hasse diagram representing the partial order of the bu
ket segmentationsfor the string ABBAA, whi
h has the su�x array (5, 4, 1, 3, 2). The verti
al bars betweenthe su�x numbers denote the bu
ket boundaries.that l = l1, rβ = r, lk ≤ rk for all k ∈ [1, β], and rk + 1 = lk+1 for all k ∈ [1, β − 1].Likewise, a bu
ket segmentation is a de
omposition of the whole su�x array into a list ofbu
kets with re�nement level ℓ > 0, sa[l1, r1], sa[l2, r2], . . . , sa[lβ , rβ] for some β ∈ [1, n],su
h that 1 = l1, rβ = n, lk ≤ rk for all k ∈ [1, β], and rk + 1 = lk+1 for all k ∈ [1, β − 1],where sa[lk, rk] is the kth bu
ket; k is
alled the bu
ket number for all su�x numbers in
sa[lk, rk]. An ℓ-bu
ket segmentation
onsists of ℓ-bu
kets, ℓ > 0.A bu
ket segmentation is
alled re�ned bu
ket segmentation or, alternatively, sub-bu
ketsegmentation of a super-bu
ket segmentation if ea
h bu
ket of the sub-bu
ket segmentationis a sub-bu
ket of a bu
ket in the super-bu
ket segmentation. Repeated bu
ket re�nementultimately leads to the bu
ket segmentation
onsisting of singleton bu
kets only, whi
h
orresponds to the sorted su�x array.For a given string, the sub-bu
ket�super-bu
ket relation de�nes a partial order on the setof all possible bu
ket segmentations. The 1-bu
ket segmentation is the super-bu
ket seg-mentation of every other bu
ket segmentation, and hen
e, the largest in the partial order.The bu
ket segmentation only
onsisting of singleton bu
kets is the smallest. Figure 7.1shows a Hasse diagram representing the partial order of the bu
ket segmentations for theinput string ABBAA.The intermediate result of many su�x array
onstru
tion algorithms is the sorted orderof su�xes regarding their pre�xes of a
ertain length ℓ, the ℓ-order. It is de�ned by theorder relation ≤ℓ:

t[u, n] ≤ℓ t[v, n] :⇐⇒ t[u, u + ℓ− 1] ≤ t[v, v + ℓ− 1]for any two su�x numbers u, v ∈ [1, n]. The relations <ℓ and =ℓ are de�ned analogously.Some algorithms represent the ℓ-order by storing the bu
ket number bnr for ea
h su�x.Let sa[lk, rk] be the kth bu
ket of a bu
ket segmentation into β bu
kets, k ∈ [1, β]. Re
allthat, for ea
h su�x number u that is an element of the kth bu
ket sa[lk, rk], we have
bnr[u] := k. More pre
isely,

bnr[sa[i]] := k for ea
h i ∈ [lk, rk] and for ea
h k ∈ [1, β]. (7.1)57

7 Introdu
tionAlternatively, a bu
ket pointer bptr[u] is stored for ea
h su�x number u ∈ [1, n]. For allsu�x numbers u and v in the same bu
ket sa[lk, rk], we have bptr[u] = bptr[v] = i forsome i ∈ [l, r]. We may use the rightmost position of a bu
ket as bu
ket pointer su
h that
bptr[sa[i]] := rk for ea
h i ∈ [lk, rk] and for ea
h k ∈ [1, β]. (7.2)For ea
h su�x number u, both bu
ket number and bu
ket pointer
ombine the lexi
ograph-i
ally sorted order of the respe
tive su�x t[u, n] with respe
t to the leading
hara
ters intoa single sort key. For an ℓ-bu
ket segmentation, there is the following
onne
tion betweenthe ℓ-order, bu
ket numbers, and bu
ket pointers:
t[u, n] ≤ℓ t[v, n]⇐⇒ bnr[u] ≤ bnr[v]⇐⇒ bptr[u] ≤ bptr[v]for all su�x numbers u, v ∈ [1, n]. If all bu
kets are singletons, then the arrays bnr and

bptr
orrespond to the rank array R or, alternatively, to the inverse su�x array.A radix step denotes the part of an algorithm in whi
h strings are sorted a

ording tothe
hara
ters at a
ertain o�set ℓ in the string; ℓ is
alled radix level. A radix step is likea single iteration of most-signi�
ant-digit (MSD) radix sort (see [82, Se
tion 5.2.5℄). Thatis, the sorting pro
edure orders any two su�xes t[u, n] and t[v, n] sharing the same pre�xof length ℓ by their
hara
ters t[u + ℓ] and t[v + ℓ] (note the equality of radix level andre�nement level).The length of the longest
ommon pre�x of two strings t and t′ is referred to by lcp(t, t′).For two su�x numbers u, v ∈ [1, n], lcp(u, v) denotes the length of the longest
ommonpre�x of t[u, n] and t[v, n]. For a su�x array sa of a string t of length n, the LCP array
lcp of length n − 1 is de�ned by the length of the longest
ommon pre�x of
onse
utivesu�xes in the su�x array, lcp[i] := lcp(t[sa[i], n], t[sa[i + 1], n]) for all i ∈ [1, n − 1]. Fortwo positions g, h ∈ [1, n] with g < h, we obtain the length of the longest
ommon pre�xof the su�xes t[sa[g], n] and t[sa[h], n] by lcp(sa[g], sa[h]) = min{lcp[i] : i ∈ [g, h − 1]}.

58

8 Classi�
ation and Survey of PreviousSu�x Array Constru
tion AlgorithmsIn the last years, many su�x array
onstru
tion algorithms have been invented usingvarious te
hniques. Puglisi et al. [120℄ re
ently
ategorised the su�x array
onstru
tionalgorithms into three di�erent
lasses: pre�x-doubling, re
ursive, and indu
ed
opying.Some algorithms, however, are not uniquely assignable to a single
lass and are thus
lassi�ed as hybrid.In Se
tion 8.1, we present two new orthogonal
lassi�
ations. In both, ea
h su�x array
onstru
tion algorithm surveyed is uniquely assignable to only one of two possible
lasses.After that, Se
tions 8.2 and 8.3 review the
lassi�ed algorithms: we survey ea
h algorithm,give the worst-
ase and expe
ted-
ase time bounds, and analyse the spa
e requirements.8.1 Classifying su�x array
onstru
tion algorithmsWe
ategorise the su�x array
onstru
tion algorithms with respe
t to two orthogonal
lassi�
ation types: The �rst
lassi�es the algorithms regarding their progress in the su�xsorting pro
ess, Se
tion 8.1.1, and the se
ond regarding the use of dependen
ies amongsu�xes, Se
tion 8.1.2.8.1.1 Progression of the su�x sorting pro
essThis
lassi�
ation groups the algorithms based on two questions: Whi
h su�xes are �rstpro
essed, and how does the su�x sorting pro
ess advan
e? The algorithms are
lassi�edinto two groups: bu
ket re�nement and redu
ed string sorting.8.1.1.1 Bu
ket re�nementMany of the pra
ti
al su�x array
onstru
tion algorithms order su�xes regarding theirleading
hara
ters into bu
kets, whi
h are then re
ursively re�ned. These algorithms are
lassi�ed as bu
ket re�nement algorithms. The �rst type of bu
ket re�nement te
hniquesfound in the literature is formed by string sorting methods without using the dependen
iesamong su�xes. Most representatives of this
lass sort the su�xes regarding their leading
hara
ters and then re�ne the groups of su�xes with equal pre�xes by re
ursively perform-ing radix steps with in
reasing radix level until unique pre�xes are obtained. Algorithmsthat fall into this
ategory are the MSD radix sort implementation of M
Ilroy et al. [106℄and Multikey Qui
ksort of Bentley and Sedgewi
k [23℄. 59

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion AlgorithmsThe se
ond type of bu
ket re�nement algorithms use the order of previously
omputedsu�xes in the re�nement phase. If two su�xes t[u, n] and t[v, n] share a
ommon pre�xof length ℓ, then their ordering
an be derived from the ordering of their ℓ-su

essors
t[u + ℓ, n] and t[v + ℓ, n]. We further divide these algorithms into two subgroups: al-gorithms performing breadth-�rst re�nement, as the pre�x-doubling algorithm of Manberand Myers [96℄ and the qsufsort algorithm of Larsson and Sadakane [90℄, and algorithmsperforming depth-�rst re�nement, as Itoh and Tanaka's two-stage algorithm [67℄, the
opyand the
a
he algorithms of Seward [135℄, and deep�shallow sorting of Manzini and Fer-ragina [102℄. The breadth-�rst re�nement algorithms iteratively
ompute ℓ-bu
ket seg-mentations for an in
reasing ℓ su
h that all bu
kets share the same re�nement level afterea
h iteration, whereas the depth-�rst re�nement algorithms follow the re�nement s
hemeof methods of the �rst type: Before starting with the next bu
ket, they re�ne a singlebu
ket until all its sub-bu
kets are singletons. Many pra
ti
al algorithms that use thiste
hnique also apply methods of the �rst type to fall ba
k upon if the order of su�xes atthe o�set ℓ is not yet available.Figure 8.1 shows stages of the bu
ket re�nement pro
ess for the string AAABBABBBAAABBAB.We represent ea
h su�x by a verti
al bar, where the length of the bar represents itsrelative lexi
ographi
al order: short bars for lexi
ographi
ally small su�xes and long barsfor lexi
ographi
ally large su�xes. The top pi
ture shows the su�xes ordered by theirstarting positions in the string from left to right. The pi
tures in the middle show a bu
ketsegmentation after some steps of bu
ket re�nement algorithms. The middle pi
ture tothe left shows an intermediate bu
ket segmentation for a breadth-�rst bu
ket re�nementalgorithm, and the middle pi
ture to the right shows an intermediate bu
ket segmentationof a depth-�rst bu
ket re�nement algorithm. The bottom pi
ture represents the
ompletelysorted su�x array.8.1.1.2 Redu
ed string sortingOther su�x array
onstru
tion algorithms sele
t a spe
i�
 subset sub of su�x numbers,sort the
orresponding su�xes with respe
t to their pre�xes of a parti
ular length, assign asort key to ea
h su
h su�x that represents the lexi
ographi
al order with respe
t to thosepre�xes, and form a redu
ed string tsub of length |sub|
onsisting of the previously assignedsort keys su
h that the su�x array sa(tsub) of tsub re�e
ts the lexi
ographi
ally sortedorder of all su�xes in sub. The algorithms then
onstru
t the su�x array sa(tsub) of tsub,and derive therefrom the lexi
ographi
ally sorted order of the original su�xes in sub. Fi-nally, the lexi
ographi
ally sorted su�xes in sub are used as an
hors for the sorting of theremaining su�xes, and the
omplete su�x array is
omputed. Burkhardt and Kärkkäi-nen's di�eren
e-
over algorithm [31℄, Kärkkäinen and Sanders's skew algorithm [71℄, theodd�even algorithm of Kim et al. [80℄ (also [78℄), and the smaller�larger algorithm of Koand Aluru [85℄ follow this s
heme. We
all them redu
ed string sorting algorithms.Figure 8.1 shows stages of a redu
ed string sorting algorithm, again for the stringAAABBABBBAAABBAB. The su�xes with their relative lexi
ographi
al order are again rep-resented by verti
al bars of di�erent lengths. The top pi
ture shows the su�xes ordered60

8.1 Classifying su�x array
onstru
tion algorithms

breadth-�rst depth-�rst
Figure 8.1: Stages of bu
ket re�ne-ment algorithms for the stringAAABBABBBAAABBAB. Figure 8.2: Stages of a redu
ed stringsorting algorithm for the stringAAABBABBBAAABBAB.by their starting positions in the string from left to right, where the bars for the su�xesstarting at the odd positions are printed in bold fa
e. The middle pi
ture represents thelexi
ographi
ally sorted su�xes with odd starting position. The bottom pi
ture againrepresents the
ompletely sorted su�x array.8.1.2 Dependen
y among su�xesAnother
lassi�
ation s
heme groups the su�xes regarding their use of dependen
iesamong su�xes. If two su�xes t[u, n] and t[v, n] share a
ommon pre�x of length ℓ, thentheir order
an be derived from the order of su�xes t[u + ℓ, n] and t[v + ℓ, n]. We distin-guish two te
hniques: the push method and the pull method. The terms push and pull areadopted from the terminology of information systems: They are
ommuni
ation strategiesbetween information
arrier and information re
eiver. The push method refers to a styleof
ommuni
ation where the information inter
hange originates with the information
ar-rier. It is
ontrasted with the pull method, where the information re
eiver requests for thetransmission of information. 61

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion AlgorithmsTable 8.1: Summary of the
lassi�
ations.Su�x sorting Using dependen
ies among su�xespro
ess push pullBu
ket re�nement pre�x-doubling qsufsort(breadth-�rst) (Manber and Myers [96℄) (Larsson and Sadakane [90℄)Bu
ket re�nement two-stage
a
he(depth-�rst) (Itoh and Tanaka [67℄) (Seward [135℄)
opy(Seward [135℄)deep�shallow(Manzini and Ferragina [102℄)Redu
ed string skew di�eren
e-
oversorting (Kärkkäinen and Sanders [71℄) (Burkhardt and Kärkkäinen [31℄)odd�even(Kim et al. [80℄, also [78℄)smaller�larger(Ko and Aluru [85℄)8.1.2.1 Push methodThe push method uses the ordering of previously determined groups of su�xes (informa-tion
arrier) and passes this ordering on to undetermined groups of prede
essor su�xes(information re
eiver). This te
hnique is used in many algorithms. Manber and Myers'spre�x-doubling algorithm [96℄, Itoh and Tanaka's two-stage algorithm [67℄, Seward's
opyalgorithm [135℄, and deep�shallow sorting of Manzini and Ferragina [102℄ are examplesof bu
ket re�nement algorithms that use this method. It is also used in the linear-timealgorithms: skew of Kärkkäinen and Sanders [71℄, odd�even of Kim et al. [80℄ (also [78℄),and smaller�larger of Ko and Aluru [85℄.8.1.2.2 Pull methodThe pull method is used for the
omparison-based sorting. Algorithms look up the or-der of su

essor su�xes t[u + ℓ, n] and t[v + ℓ, n] to determine the order of t[u, n] and
t[v, n] (information request). Some representatives that use this te
hnique are: Larssonand Sadakane's qsufsort [90℄, Seward's
a
he algorithm [135℄, and the di�eren
e-
overalgorithm of Burkhardt and Kärkkäinen [31℄.62

8.2 Bu
ket re�nement algorithmsTable 8.1 summarises the
lassi�
ation of the su�x array
onstru
tion algorithms thatuse dependen
ies among su�xes; ordinary string sorting algorithms are not shown. The�rst
olumn shows the
lasses regarding the progress of the su�x sorting pro
ess. These
ond
olumn shows algorithms using the push method and the third
olumn algorithmsusing the pull te
hnique. We
ontinue with a survey of the
ategorised algorithms: bu
ketre�nement algorithms in Se
tion 8.2 and redu
ed string sorting algorithms in Se
tion 8.3.8.2 Bu
ket re�nement algorithmsWe
on�ne ourselves to the bu
ket re�nement algorithms utilising the dependen
ies amongsu�xes. Se
tion 8.2.1 reviews the algorithms performing breadth-�rst bu
ket re�nementand Se
tion 8.2.2 the algorithms performing depth-�rst bu
ket re�nement. The algo-rithms are analysed regarding their
onstru
tion time and spa
e requirements, where theexpe
ted
onstru
tion times are given for a Bernoulli sequen
e model (i.e., symbols fromthe alphabet are generated independently).8.2.1 Breadth-�rst bu
ket re�nement � pre�x-doubling algorithmsThe pre�x-doubling algorithms of Manber and Myers [96℄ and Larsson and Sadakane [90℄both use ideas of Karp et al. [75℄. They �rst sort the su�xes with respe
t to their leading
hara
ter, produ
ing a 1-bu
ket segmentation. Then they iteratively double the pre�xlength with respe
t to whi
h the su�xes are sorted, produ
ing a 2i-bu
ket segmentationin the ith iteration. The iteration loop terminates when all bu
kets are singletons.At the beginning of the ith iteration step, the su�xes are ℓ-ordered with ℓ = 2i−1.For any two su�xes t[u, n] and t[v, n] with u, v ∈ [1, n], we obtain their relative 2ℓ-orderby
ombining the relative ℓ-order of t[u, n] and t[v, n] with the relative ℓ-order of theirsu

essor su�xes t[u + ℓ, n] and t[v + ℓ, n]:
t[u, n] ≤2ℓ t[v, n]⇐⇒

{

t[u, n] <ℓ t[v, n] or
t[u, n] =ℓ t[v, n] and t[u + ℓ, n] ≤ℓ t[v + ℓ, n]

(8.1)for u, v ∈ [1, n − ℓ]. Alternatively,
t[u− ℓ, n] ≤2ℓ t[v − ℓ, n]⇐⇒

{

t[u− ℓ, n] <ℓ t[v − ℓ, n] or
t[u− ℓ, n] =ℓ t[v − ℓ, n] and t[u, n] ≤ℓ t[v, n],

(8.2)for u, v ∈ [ℓ + 1, n].8.2.1.1 The pre�x-doubling algorithm of Manber and MyersThe algorithm of Manber and Myers [96℄ �rst performs a bu
ket sort of the su�xes a
-
ording to their leading
hara
ters. Then it repeats the pre�x-doubling pro
ess, whi
huses equivalen
e (8.2), until all bu
kets are singletons.Ea
h pre�x-doubling iteration assumes an ℓ-bu
ket segmentation sa[l1, r1], sa[l2, r2], . . . ,
sa[lβ , rβ] with ℓ = 2i for some i ∈ [1, ⌈log2 n⌉]. Moreover, frontk refers to the front63

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion Algorithmsposition of the kth bu
ket sa[lk, rk] for all k ∈ [1, β], initially frontk = lk. The algorithms
ans sa bu
ket-wise from left to right. For ea
h bu
ket sa[lk, rk], it starts with the su�xnumber sa[lk], lo
ates its ℓ-prede
essor sa[lk] − ℓ
ontained in some ℓ-bu
ket sa[lg, rg],moves sa[lk]− ℓ to the
urrent front of sa[lg, rg] (i.e., sa[frontg]← sa[lk]− ℓ) and advan
esthe front of sa[lg, rg] by one position to the right (i.e., frontg ← frontg + 1). Thenthe algorithm
ontinues with the next su�x number sa[lk + 1] in sa[lk, rk], moves its ℓ-prede
essor sa[lk + 1]− ℓ to the front of its bu
ket and advan
es that front by one. Thispro
edure is repeated for all su�x numbers in sa[lk, rk] from left to right. After s
anningthe whole bu
ket sa[lk, rk], the
ontiguous segments of su�xes at the leftmost positions ofea
h ℓ-bu
ket that have been moved to the front during the s
an form a 2ℓ-bu
ket. Thepro
edure is repeated for all bu
kets sa[lk, rk] with 1 ≤ k ≤ β in as
ending order, resultingin a 2ℓ-bu
ket segmentation of sa.Time and spa
e
onsumption. Ea
h pre�x-doubling iteration
an be performed in O(n)time and there are at most log n pre�x-doubling iterations until the string length is rea
hed,whi
h together gives an O(n log n) worst-
ase time bound for the whole algorithm. Manberand Myers further enhan
ed the �rst stage of their algorithm su
h that it generates a
(log|Σ(t)| n)-bu
ket segmentation in linear time, resulting in an O(n) expe
ted-
ase timebound.The algorithm
an be implemented using 2n words of spa
e: the su�x array and anauxiliary array handling the bu
kets, ea
h
onsuming n words. The input string needsnot to be kept in main memory during the
onstru
tion of the su�x array. An e�
ientimplementation is given by M
Ilroy [105℄.8.2.1.2 The qsufsort algorithm of Larsson and SadakaneLike Manber and Myers's algorithm, the qsufsort algorithm of Larsson and Sadakane [90℄�rst sorts the su�xes with respe
t to the leading
hara
ter. After that, however, thepre�x-doubling iteration of qsufsort uses equivalen
e (8.1) instead of equivalen
e (8.2).Ea
h iteration again takes an ℓ-bu
ket segmentation and produ
es a 2ℓ-bu
ket segmenta-tion, but here, ea
h bu
ket is re�ned lo
ally. The algorithm maintains a bu
ket pointer
bptr[u] for ea
h su�x number u ∈ [1, n] representing the relative ℓ-order of the suf-�xes. Let sa[l1, r1], sa[l2, r2], . . . , sa[lβ, rβ] be the
urrent ℓ-bu
ket segmentation. For ea
h
k ∈ [1, β], the re�nement pro
edure sorts the su�x numbers in sa[lk, rk] with respe
t tothe bu
ket pointers of their ℓ-su

essors sa[lk] + ℓ, sa[lk + 1] + ℓ, . . . , sa[rk] + ℓ. That is,
bptr[sa[lk] + ℓ], bptr[sa[lk + 1] + ℓ], . . . , bptr[sa[rk] + ℓ] are the
orresponding sort keys.Bentley and M
Ilroy's Ternary-Split Qui
ksort is applied to sort ea
h ℓ-bu
ket. Afterall bu
kets have been pro
essed, the algorithm
omputes the splitting positions betweennon-equal sort keys for ea
h bu
ket. Together with the previous splitting positions, whi
hhave determined the ℓ-bu
ket segmentation, these new splitting positions determine the
2ℓ-bu
ket segmentation. Finally, the algorithm updates the bu
ket pointers. As before,the pre�x-doubling pro
ess is repeated until all bu
kets are singletons.64

8.2 Bu
ket re�nement algorithmsTime and spa
e
onsumption. As the algorithm of Manber and Myers, Larsson andSadakane's algorithm rea
hes anO(n log n) worst-
ase time bound and requires 2n words ofspa
e: n words for the su�x array and n words for the bu
ket pointer array. Nevertheless,in terms of pra
ti
al running time, it is signi�
antly faster (see Larsson and Sadakane [90,page 18℄ for running times of the two algorithms).8.2.2 Depth-�rst bu
ket re�nementWe begin the review of the depth-�rst bu
ket re�nement algorithms with the two-stagealgorithm of Itoh and Tanaka [67℄ and
ontinue with
opy and
a
he by Seward [135℄. Theformer two implement the push te
hnique and
a
he uses the pull te
hnique. Finally, wereview deep�shallow sorting of Manzini and Ferragina [102℄, whi
h is based on the te
h-nique used by
opy. For the analysis of these algorithms, we assume that the underlyingalphabet of the input strings is of
onstant size σ.8.2.2.1 The two-stage algorithm of Itoh and TanakaItoh and Tanaka [67℄
lassify ea
h su�x as type s or type l (smaller or larger). We insteaduse the notation � for the su�xes of type s, and ≻ for the su�xes of type l. A su�x
t[u, n] with u ∈ [1, n − 1] is of type � if its �rst
hara
ter is smaller than or equal to the�rst
hara
ter of its su

essor t[u + 1, n], t[u] ≤ t[u + 1]. Otherwise it is of type ≻.The algorithm su

essively performs three phases. The su�xes are �rst bu
ket sortedwith respe
t to their leading
hara
ter and su�x type (� or ≻). That is, there are 2σbu
kets, where a bu
ket sa[lc,τ , rc,τ]
ontains all su�xes of type τ ∈ {�,≻} with leading
hara
ter c ∈ Σ. Furthermore, the su�x number n of the last su�x t[n, n] is moved tothe front of its bu
ket.The se
ond phase sorts all bu
kets
ontaining su�xes of type �: Large bu
kets arere�ned byMSD radix sort, medium bu
kets are sorted by Bentley and Sedgewi
k'sMultikeyQui
ksort [23℄, and small bu
kets by Insertion Sort.The third phase determines the order of all su�xes of type ≻ and assigns them to their�nal position: The algorithm s
ans the su�x array sa from left to right. For ea
h position
i ∈ [1, n], if the prede
essor t[sa[i]−1, n] of su�x t[sa[i], n] is of type ≻, then the algorithmassigns sa[i]− 1 to the
urrent front of the bu
ket sa[lt[sa[i]−1],≻, rt[sa[i]−1],≻] and advan
esthe front of the bu
ket by one position to the right. The su�x sorting pro
ess is
ompletedafter s
anning the whole su�x array sa.Time and spa
e
onsumption. The bu
ket sorting in phase one and the assignmentof su�xes of type ≻ to their �nal positions in phase three
an be performed in lineartime. The most time-
onsuming part is the MSD radix sort in phase 2. Its runningtime is bounded by the
omparison-based sorting
omplexity O(n log n) multiplied bythe maximum longest
ommon pre�x length of two su�xes of the input t, where themaximal longest
ommon pre�x length is n− 1 ∈ O(n) and the expe
ted longest
ommon65

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion Algorithmspre�x length is O(log n) for di�erent string models, a simple
onsequen
e of results byApostoli
o and Szpankowski [9℄ and Szpankowski [139℄. Hen
e, O(n2 log n) is the worstand O(n log2 n) the expe
ted
onstru
tion time of the two-stage algorithm.The auxiliary spa
e requirements are negligible: In addition to the su�x array and theinput string, only 2σ words are required to store the bu
ket boundaries.8.2.2.2 The
opy and the
a
he algorithms of SewardSeward [135℄ presented some te
hniques for the
onstru
tion of the Burrows�Wheelertransform, whi
h are used in the program bzip2 [134℄. These te
hniques
an also beapplied for su�x array
onstru
tion, be
ause of the equivalen
e to the
onstru
tion ofthe Burrows�Wheeler transform. Here, the
opy method, whi
h was earlier mentioned byBurrows and Wheeler [32℄, and the
a
he method are reviewed.Before applying one of these te
hniques, the su�xes are bu
ket sorted a

ording to theirleading two
hara
ters, generating a 2-bu
ket segmentation of the su�x array. Bu
kets
onsisting of all su�xes with the leading
hara
ter b and se
ond
hara
ter c, (b, c) ∈ Σ2,form the 2-bu
ket sa[lb,c, rb,c], and the
onse
utive 2-bu
kets
onsisting of su�xes sharingthe leading
hara
ter b form the 1-bu
ket sa[lb, rb]
onsisting of all su�xes with leading
hara
ter b.The
opy algorithm. The
opy algorithm pro
eeds similarly to the two-stage algorithm.After the initial bu
ket sort,
opy performs the following steps for ea
h 1-bu
ket sa[lc, rc],
c ∈ Σ. An ordinary string sorting algorithm sorts ea
h 2-bu
ket sa[lb,c, rb,c], (b, c) ∈ Σ2,that has not yet been sorted, ex
ept for the bu
ket sa[lc,c, rc,c] that
onsists of su�xes withequal �rst and se
ond
hara
ter. Let sa[lb1,c, rb1,c], sa[lb2,c, rb2,c], . . . , sa[lbσ ,c, rbσ ,c] be the2-bu
kets of su�xes with se
ond
hara
ter c, bk ∈ Σ for all k ∈ [1, σ]. The algorithm passesthe ordering of su�xes in sa[lc, rc] on to the spe
i�ed 2-bu
kets: It performs a left-to-rights
an over sa[lc, lc,c − 1] and over the �left part� of sa[lc,c, rc,c], and then a right-to-lefts
an over sa[rc,c + 1, rc] and over the �right part� of sa[lc,c, rc,c], e�e
tively s
anning thewhole 1-bu
ket sa[lc, rc]. For ea
h su�x number u en
ountered in the left-to-right s
an,if sa[lt[u−1],c, rt[u−1],c] is not already sorted, then the prede
essor su�x number u − 1 isassigned to the front of the bu
ket sa[lt[u−1],c, rt[u−1],c], and that front is advan
ed by oneposition to the right. The left-to-right s
an stops if it rea
hes a position of sa[lc,c, rc,c] thathas not been assigned during the
urrent left-to-right s
an, or if the rightmost position rc,cof sa[lc,c, rc,c] is rea
hed. The right-to-left s
an pro
eeds analogously, the only di�eren
ebeing that the su�x numbers are assigned to the end of the bu
kets. Afterwards, all
2-bu
kets sa[lb,c, rb,c] with c ∈ Σ are
orre
tly sorted, in
luding sa[lc,c, rc,c].The
a
he algorithm. The
a
he algorithm
an be used in
ombination with
opy. Ituses an additional
a
he array RC of length n, whi
h is a sort of �partial rank� of thesu�x array.The 1-bu
kets (or rather their sub-bu
kets) are sorted with an ordinary string sortingalgorithm as before. After a 1-bu
ket sa[lc, rc] with v ∈ Σ is
ompletely re�ned, RC is66

8.2 Bu
ket re�nement algorithmsupdated su
h that RC [sa[i]] := i − lc for all i ∈ [lc, rc]. Afterwards, the relative order ofany two su�xes t[u, n] and t[v, n] that share the same leading
hara
ter c (= t[u] = t[v])is represented by the order of their RC values. That is, t[u, n] < t[v, n] if and only if
RC [u] < RC [v]. This property is used by the string sorting algorithm. Whenever it
ompares two su�xes t[u, n] and t[v, n] (u, v ∈ [1, n]) that share the same leading
hara
ter
c for whi
h the
orresponding 1-bu
ket sa[lc, rc] has been previously sorted, it uses thesort key RC [u] for t[u, n] and RC [v] for t[v, n].Time and spa
e
onsumption. The time bounds for
a
he and
opy are the same.The bu
ket sorting in phase one, the
opying of su�x numbers, and the maintenan
e ofthe
a
he array
an be performed in linear time. The most time-
onsuming part is thestring sorting of bu
kets, whi
h is bounded by the
omparison-based sorting
omplexity
O(n log n) multiplied by the maximum longest
ommon pre�x length of two su�xes, whi
his again O(log n) in the expe
ted
ase and O(n) in the worst
ase. Hen
e, O(n log2 n) isthe expe
ted and O(n2 log n) the worst
onstru
tion time.The auxiliary spa
e requirements of
opy are negligible, as those of the two-stage algo-rithm: It requires σ2 additional words for the bu
ket boundaries and σ words for the frontpositions of the respe
tive 2-bu
kets during the
opying.The bu
ket boundaries are also used for
a
he. In addition,
a
he requires spa
e for the
n integers of the RC array. However, only values up to the size of the largest 1-bu
kethave to be stored. Hen
e, 16 or 8 bit integers are enough if no 1-bu
ket ex
eeds the sizeof 216 or 28, respe
tively. Even for larger 1-bu
kets, redu
ed word lengths are possible: Ifthe word size of entries in RC is �xed to w bits and the size of a 1-bu
ket sa[lc, rc] ex
eedsthe 2w limit, then RC is de�ned by RC [sa[i]] := 2w(i− lc)/(rc − lc − 1) for all i ∈ [lc, rc].8.2.2.3 The deep�shallow algorithm of Manzini and FerraginaManzini and Ferragina developed the deep�shallow algorithm [102℄, whi
h improves uponSeward's
opy algorithm [135℄. The algorithm applies di�erent sorting routines for ℓ-bu
kets of di�erent size and di�erent
ommon pre�x length ℓ, as follows. The ℓ-bu
ketsare primarily re�ned by Bentley and Sedgewi
k's Multikey Qui
ksort if ℓ ≤ L, where L isa prede�ned threshold (shallow sorting). For larger ℓ (> L), the algorithm swit
hes to asorting routine for su�xes sharing a long
ommon pre�x (deep sorting). The deep sorterdetermines the sorting routine depending on the size of the sub-bu
kets. If the bu
ket sizeis smaller than a prede�ned threshold B, then Blind Sort is used, whi
h is based on theblind trie data stru
ture used within the String B-tree [48℄. If the bu
ket size ex
eeds B,Ternary-Split Qui
ksort of Bentley and M
Ilroy [22℄ with some enhan
ements re�nes thebu
kets until the sub-bu
ket size drops below the threshold B; then Blind Sort is used.A ni
e feature of
a
he is that some su�xes with equal pre�x are not dire
tly
ompared.They are rather sorted by deriving their order from previously sorted su

essor su�xes.The indu
tion sort sub-pro
edure generalises this te
hnique. If an ℓ-bu
ket sa[l, r] ofsu�xes sharing the
ommon pre�x p = p1, . . . , pℓ has to be sorted, then p is sear
hed67

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion Algorithmsfor the �rst position k ∈ [1, ℓ − 1] su
h that the 2-bu
ket of su�xes with �rst
hara
ter
pk and se
ond
hara
ter pk+1 has been previously sorted. Let sa[g, h] be the respe
tive2-bu
ket. Then the su�x number sa[l] + k is looked up in sa[g, h] and the pre
edingand following su�x numbers of sa[l] + k in sa[g, h] are s
anned. Ea
h s
anned su�xnumber u with (u − k) in sa[l, r] is marked. The s
anning terminates when all r − l + 1
k-prede
essor su�xes that appear in sa[l, r] have been marked. Finally, the su�x numbersin sa[g, h] are s
anned from left to right. For ea
h marked su�x number u en
ountered,the k-prede
essor (u − k) is assigned to the
urrent front of sa[l, r], and that front isadvan
ed by one position to the right.Manzini and Ferragina employ a sparse index to e�
iently determine the position of
sa[l] + k in sa[g, h]. As well as the RC array of the
a
he method, this index
an beregarded as a partial rank of the su�x array. Note that we
lassify this as a push methodsin
e the algorithm s
ans the su�xes in sa[g, h] and passes their ordering on to sa[l, r].The request, however, was initiated by the bu
ket sa[l, r]. Hen
e, this te
hnique
ould beregarded as a pull method just as well.Time and spa
e
onsumption. The time bounds are the same as for the algorithms two-stage,
a
he, and
opy. O(n log2 n) is the expe
ted and O(n2 log n) the worst
onstru
tiontime. The auxiliary spa
e requirements are negligible, as for the depth-�rst bu
ket re�ne-ment algorithms: Only σ2 additional words for the bu
ket boundaries and some words forthe sparse index are needed.8.3 Redu
ed string sorting algorithmsThe next four algorithms �rst
onstru
t a sparse su�x array sasp of size nsp
ontain-ing a parti
ular subset of su�x numbers sp ⊂ [1, n], nsp = |sp|, where sasp is sim-ply a subsequen
e of the lexi
ographi
ally sorted
omplete su�x array. We transferthe
on
ept of bu
kets and bu
ket segmentations to sparse su�x arrays: An ℓ-bu
ket
sasp[l, r] of a sparse su�x array sasp is a
ontiguous segment of sasp
ontaining su�xeswith an equal, non-empty pre�x of length ℓ. Furthermore, an ℓ-bu
ket segmentation ofthe sparse su�x array is a de
omposition of the sparse su�x array into ℓ-bu
kets with
sasp[l1, r1], sa

sp[l2, r2], . . . , sa
sp[lβ, rβ] for some β ∈ [1, nsp] su
h that 1 = l1, rβ = nsp,

lk ≤ rk for all k ∈ [1, β], and rk + 1 = lk+1 for all k ∈ [1, β − 1], where sa[lk, rk] is the
kth bu
ket; k is
alled the sparse bu
ket number for all su�x numbers in sasp[lk, rk]. Thesparse bu
ket number array bnrsp is a

ordingly de�ned. The sparse rank array Rsp isde�ned su
h that Rsp[s] := i if sasp[i] = s. Note that the sparse bu
ket number array
bnrsp and the sparse rank array are only de�ned for the su�x numbers s in sasp; the otherpositions remain unde�ned: bnrsp[s] = Rsp[s] =⊥ if s is not among the su�x numbersin sp. For a sparse su�x array sasp, the LCP array lcp of length nsp − 1 is de�ned by
lcpsp[i] := lcp(t[sasp[i], n], t[sasp[i + 1], n]) for all i ∈ [1, nsp − 1].68

8.3 Redu
ed string sorting algorithms8.3.1 The di�eren
e-
over algorithm of Burkhardt and KärkkäinenA set D with D ⊆ [0, ℓ − 1] is a di�eren
e-
over modulo ℓ if [0, ℓ − 1] = {(d − d′) mod ℓ :
(d, d′) ∈ D2}. The di�eren
e-
over algorithm of Burkhardt and Kärkkäinen [31℄ �rstsele
ts an appropriate value for ℓ and
omputes a di�eren
e-
over D modulo ℓ with D =
{d1, d2, . . . , dδ} of size δ := |D|. Without loss of generality, we assume that the stringlength n is a multiple of ℓ and that 0 /∈ D. The algorithm
onstru
ts the sparse su�xarray saD of length nD = n · δ/ℓ of su�xes s ∈ [1, n] with s mod ℓ ∈ D. Then it usesthe su�x numbers of the sparse su�x array saD, whi
h represent the lexi
ographi
allysorted order of the
orresponding su�xes, as an
hors for the
omparison-based sorting ofall su�xes, yielding the
omplete su�x array sa.Constru
ting the sparse su�x array. The sparse su�x array saD is
onstru
ted in threesu

essive phases. Multikey Qui
ksort of Bentley and Sedgewi
k [23℄ �rst lexi
ographi
allysorts the su�xes with su�x number in saD with respe
t to their ℓ leading
hara
ters,resulting in an ℓ-bu
ket segmentation of saD. A

ording to the ℓ-bu
ket segmentation,the algorithm assigns the respe
tive sparse bu
ket number bnrD[s] to ea
h su�x s in
saD. Note that, for ea
h su�x number s in saD, its bu
ket number bnrD[s]
ombines thelexi
ographi
ally sorted order of t[s, n] with respe
t to the ℓ leading
hara
ters t[s, s+ℓ−1]into a single sort key.In the se
ond phase, a redu
ed string tD of length nD is
omputed su
h that the lexi
o-graphi
al order of the su�xes of tD
orresponds to the lexi
ographi
al order of the su�xes
ontained in saD. The partial fun
tion µD bije
tively maps the su�x numbers in saD ontothe positions [1, nD] of tD su
h that, for all k ∈ [1, δ] and for all s ∈ [1, n],

µD(s) =
(k − 1)n

ℓ
+
⌈s

ℓ

⌉ if s mod ℓ = dk.That is, the su�x numbers s ∈ [1, n] with s mod ℓ = dk are monotoni
ally in
reasinglymapped onto a
ontiguous segment of natural numbers: The n/ℓ su�x numbers dk, dk +
ℓ, dk +2ℓ, . . . , dk +n−ℓ are mapped onto [(k−1)n/ℓ+1, k ·n/ℓ] for all k ∈ [1, δ]. Moreover,let µD(−1) be the inverse mapping, whi
h maps the positions [1, nD] of the redu
ed string
tD onto the su�x numbers s ∈ [1, n] with s mod ℓ ∈ D.The algorithm
onstru
ts the redu
ed string tD of length nD,

tD[i] := bnrD[µD(−1)(i)] for all i ∈ [1, nD].Then one of the pre�x-doubling algorithms presented in Se
tion 8.2.1 is used to
omputethe su�x array sa(tD) of the redu
ed string tD. After that, the di�eren
e-
over algorithmderives the sparse su�x array saD from sa(tD),
saD[i] = µD(−1)(sa(tD)[i]) for all i ∈ [1, nD]. 69

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion AlgorithmsConstru
ting the
omplete su�x array. The
omplete su�x array sa is
omputedas follows. Multikey Qui
ksort is used to sort all su�xes a

ording to their ℓ lead-ing
hara
ters, generating an ℓ-bu
ket segmentation. Finally, a
omparison-based sort-ing of ea
h ℓ-bu
ket �nishes the
onstru
tion of sa: For any pair of su�x numbers
(u, v) ∈ [1, n]2, ∆(u, v) ∈ [0, ℓ − 1] gives an o�set su
h that (u + ∆(u, v)) mod ℓ ∈ Dand (v + ∆(u, v)) mod ℓ ∈ D. Two su�xes t[u, n] and t[v, n] with u, v ∈ [1, n] are then
ompared by using the sort keys RD[u + ∆(u, v)] and RD[v + ∆(u, v)], respe
tively. Thatis, t[u, n] < t[v, n] if and only if RD[u + ∆(u, v)] < RD[v + ∆(u, v)].Time and spa
e
onsumption. For ℓ = log n and
onstant alphabet size, the algo-rithm
omputes the su�x array in O(n log n) time, as follows. A di�eren
e-
over of size
O(
√

log n) is
omputed in sub-logarithmi
 time. Then the
onstru
tion of the sparse su�xarray requires O(n log n) time: O(n log n) steps for Multikey Qui
ksort, O(n) steps for the
onstru
tion of the redu
ed string, again O(n log n) steps for a pre�x-doubling algorithm,and O(n) steps for deriving the sparse su�x array from the su�x array of the redu
edstring. The
onstru
tion of the
omplete su�x array from the sparse su�x array alsorequires O(n log n) time: O(n log n) steps for Multikey Qui
ksort, O(log n) steps for the
omputation of a lookup table to implement the fun
tion ∆, and again O(n log n) stepsfor the
omparison-based sorting.The spa
e requirements are less than for the previous O(n log n) time algorithms of Man-ber and Myers [96℄ or Larsson and Sadakane [90℄. The input string again requires n bytesand the su�x array n words, but the auxiliary spa
e requirements are only O(n/ log n)words, whi
h are used for the sparse su�x array, the sparse rank array, and for the
on-stru
tion of these data stru
tures.8.3.2 Su�x array
onstru
tion in linear timeThe development of the three linear-time algorithms seems to be inspired by di�erent previ-ous algorithms. The skew algorithm of Kärkkäinen and Sanders [71℄ uses a di�eren
e-
overlike the di�eren
e-
over algorithm of Burkhardt and Kärkkäinen; the odd�even algorithmof Kim et al. [80℄ adopts the odd-and-even s
heme that has been previously used by Fara
hand Muthukrishnan [46℄, Fara
h [45℄, and Fara
h et al. [47℄ for su�x tree
onstru
tion;and the smaller�larger algorithm of Ko and Aluru [85℄
lassi�es ea
h su�x as type S or L,similar to the
lassi�
ation of Itoh and Tanaka's two-stage algorithm (see Se
tion 8.2.2.1).All three algorithms follow di�erent divide-and-
onquer s
hemes, but share the basi
framework. They divide the su�xes into two groups, re
ursively
onstru
t the su�x arrayof the redu
ed string of the �rst group, derive the sparse su�x array of su�xes in the�rst group, use that sparse su�x array to determine the sparse su�x array of the othersu�xes, and �nally merge the two sparse su�x arrays to obtain the total ordering of allsu�xes, namely the su�x array.70

8.3 Redu
ed string sorting algorithms8.3.2.1 The skew algorithm of Kärkkäinen and SandersThe skew algorithm of Kärkkäinen and Sanders [71℄ uses a di�eren
e
over D modulo3 with D = {1, 2}. It �rst
onstru
ts the sparse su�x array sa(1,2) of su�x numbers
s ∈ [1, n] with s mod 3 ∈ {1, 2}. Then it passes the ordering of su�xes s in sa(1,2) with
s mod 3 = 1 on to the sparse su�x array sa(0) that
ontains the prede
essor su�xes
s(0) with s(0) mod 3 = 0 (all su�xes not
ontained in sa(1,2)), and �nally merges sa(0)and sa(1,2). For k ∈ [0, 2], let n(k) be the number of su�xes at the modulo k positions:
n(0) = ⌈n/3⌉, n(1) = ⌈(n− 1)/3⌉, and n(2) = ⌈(n− 2)/3⌉. The size of sa(1,2) is n(1) + n(2),and the size of sa(0) is n(0).Constru
ting the sparse su�x arrays. The
onstru
tion of the sparse su�x array sa(1,2)pro
eeds similar to the di�eren
e
over algorithm. It �rst sorts the su�xes in sa(1,2) withrespe
t to their three leading
hara
ters, resulting in a 3-bu
ket segmentation of sa(1,2).A

ording to the 3-bu
ket segmentation, the algorithm assigns the sparse bu
ket number
bnr(1,2)[s] to ea
h su�x s in sa(1,2).The redu
ed string t(1,2) of length n(1) + n(2) is
omputed su
h that the relative lexi-
ographi
al order of the su�xes of t(1,2)
orresponds to the relative lexi
ographi
al orderof the su�xes in sa(1,2). The partial fun
tion µ(1,2) bije
tively maps the su�x num-bers in sa(1,2) onto the positions [1, n(1) + n(2)] of t(1,2) su
h that, for all s ∈ [1, n] with
s mod 3 ∈ {1, 2},

µ(1,2)(s) =











s + 2

3
if s mod 3 = 1,

⌈n

3

⌉

+
s + 1

3
if s mod 3 = 2.That is, the su�x numbers s ∈ [1, n] with s mod 3 = 1 are monotoni
ally in
reasinglymapped onto [1, n(1)], and the su�x numbers s ∈ [1, n] with s mod 3 = 2 are monotoni
allyin
reasingly mapped onto [n(1) + 1, n(1) + n(2)]. Moreover, let µ(1,2)(−1) be the inversemapping, whi
h maps the positions [1, n(1) + n(2)] of the redu
ed string t(1,2) onto thesu�x numbers s ∈ [1, n] with s mod 3 ∈ {1, 2}.The algorithm
onstru
ts the redu
ed string t(1,2) of length n(1) + n(2),

t(1,2)[i] := bnr(1,2)[µ(1,2)(−1)(i)] for all i ∈ [1, n(1) + n(2)].That is, t(1,2) = bnr(1,2)[1], bnr(1,2)[4], . . . , bnr(1,2)[3n(1) − 2], bnr(1,2)[2], bnr(1,2)[5], . . . ,
bnr(1,2)[3n(2) − 1]. Then it re
ursively
onstru
ts the su�x array sa(t(1,2)) of the redu
edstring t(1,2) and derives the sparse su�x array sa(1,2) from sa(t(1,2)),

sa(1,2)[i] = µ(1,2)(−1)(sa(t(1,2))[i]) for all i ∈ [1, n(1) + n(2)].The se
ond sparse su�x array sa(0) is
onstru
ted in linear time by a pro
edure likeCounting Sort : The su�xes i ∈ [1, n] with i mod 3 = 0 are sorted a

ording to the primarysort key t[i] and se
ondary sort key R(1,2)[i + 1], resulting in sa(0). 71

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion AlgorithmsMerging both sparse su�x arrays. The two sorted sparse su�x arrays sa(0) and sa(1,2)are merged from left to right, yielding the
omplete su�x array sa. Let front (0) be the
urrent front of sa(0), front (1,2) the
urrent front of sa(1,2), and front the
urrent frontof sa, initially front (0) = front (1,2) = front = 1. The merging pro
edure
ompares thesu�xes that
orrespond to the su�x numbers sa(0)[front (0)] and sa(1,2)[front (1,2)], assignsthe su�x number of the lexi
ographi
ally smaller su�x to sa[front], and advan
es therespe
tive front positions. This pro
edure is repeated until the end of sa(0) or sa(1,2) isrea
hed. Then the remaining su�x numbers of the other sparse su�x array are dire
tly
opied to the not yet determined positions at the end of sa.Let s(0) = sa(0)[front (0)] and s(1,2) = sa(1,2)[front (1,2)] be the su�xes at the
urrentfront positions. The merging pro
edure distinguishes two
ases:(i) If s(1,2) mod 3 = 1, then t[s(0), n] < t[s(1,2), n] if and only if (t[s(0)], R(1,2)[s(0) +1]) <
(t[s(1,2)], R(1,2)[s(1,2) + 1]);(ii) If s(1,2) mod 3 = 2, then t[s(0), n] < t[s(1,2), n] if and only if (t[s(0)], t[s(0) + 1],
R(1,2)[s(0) + 2]) < (t[s(1,2)], t[s(1,2) + 1], R(1,2)[s(1,2) + 2]).Thereby the �rst element of a tuple is the primary sort key, the se
ond is the se
ondarysort key, and the third is the ternary sort key, where appli
able.Time and spa
e
onsumption. For an integer alphabet [1, n], the following steps allrequire linear time: the initial sorting of the su�xes with respe
t to their three leading
hara
ters, the assignment of the sparse bu
ket numbers, the
onstru
tion of the redu
edstring t(1,2), the derivation of the sparse su�x array sa(1,2) from sa(t(1,2)), the
onstru
tionof sa(0) from sa(1,2), and the merging of sa(0) and sa(1,2). Combined with the re
ursive
onstru
tion time of sa(t(1,2)), we obtain Tskew(n) = O(n)+Tskew(⌈2n/3⌉) running time for

n ≥ 3, and Tskew(n) = O(1) for n < 3. This re
ursion
an be solved to Tskew(n) = O(n).Kärkkäinen and Sanders's implementation of the skew algorithm [72℄ requires a signif-i
ant amount of working spa
e. The input sequen
e is a string over an integer alphabet.It requires n words, instead of n bytes for a standard ASCII input. Additionally, in ea
hre
ursive
all, two auxiliary arrays of length 2n/3 are allo
ated, one for the redu
ed string
t(1,2) and one for the sparse su�x array sa(1,2). The other auxiliary data stru
tures are onlyused temporarily; their spa
e requirements are negligible
ompared to the re
ursively
ol-le
ted spa
e. Therefore, the algorithm a

umulates up to Sskew(n) = 2n + Sskew(⌈2n/3⌉)words of working spa
e for n ≥ 3, and Sskew(n) = O(1) for n < 3. We unroll thisre
ursion and observe that it terminates after at most log3/2 n re
ursive
alls. This im-plies a maximum spa
e
onsumption of Sskew(n) =

∑log3/2 n

i=0 2n(2/3)i words. For large
n, this
an be approximated by Sskew(n) ≈ 2n

∑∞
i=0(2/3)

i. Sin
e 0 ≤ 2/3 < 1, we
an use ∑∞
i=0 xi = 1/(1 − x), a
ommon equation for the geometri
 series, and obtain

Sskew(n) ≈ 2n
∑∞

i=0(2/3)
i = 2n/(1 − 2/3) = 6n. Therefore, the total spa
e requirementsare up to 6n words.Na [111℄, however, presented a variant of the skew s
heme that allows the linear-time
onstru
tion of su�x arrays in o(n log n) bits of auxiliary spa
e.72

8.3 Redu
ed string sorting algorithms8.3.2.2 The odd�even algorithm of Kim et al.The odd�even algorithm of Kim et al. [80℄ �rst
onstru
ts the sparse su�x array of theodd su�x numbers, passes the ordering of the odd su�xes onto the sparse su�x arrayof the prede
essor su�xes starting at the even positions, and �nally merges both sparsesu�x arrays.We �rst present some notations and tools for the implementation of the algorithm. Thesparse odd su�x array sao of length no = ⌈n/2⌉ represents the lexi
ographi
ally orderedsu�xes starting at the odd positions, and the
orresponding LCP array lcpo of length
no− 1
ontains the longest
ommon pre�x information of
onse
utive su�xes in sao. Thesparse even su�x array sae of length ne = ⌊n/2⌋ analogously represents the orderedsu�xes starting at the even positions, and lcpe is the respe
tive LCP array of length
ne − 1. Let lcp(sao[lo, ro]) denote the length of the longest
ommon pre�x of all su�xes
t[sao[i], n] with i ∈ [lo, ro] and lcp(sae[le, re]) analogously the length of the longest
ommonpre�x of all su�xes t[sae[j], n] with j ∈ [le, re]. Let lcp(sao[lo, ro], sae[le, re]) denote thelength of the longest
ommon pre�x of all su�xes with a su�x number in one of the twobu
kets sao[lo, ro] or sae[le, re], lcp(sao[lo, ro], sae[le, re]) = min{lcp(sao[i], sae[j]) : i ∈
[lo, ro] and j ∈ [le, re]}.An important tool for the odd�even algorithm is a data stru
ture that supports
onstanttime range minimum queries. Given an array A of size n whose elements are integers in
[0, n − 1] and any two indi
es l, r ∈ [1, n] with l ≤ r, then a range minimum query
rangeMinAt(A, l, r) �nds the smallest index i su
h that A[i] = minl≤j≤r A[j]. This
analso be used to �nd the smallest value rangeMin(A, l, r) within a given range [l, r] of
A, rangeMin(A, l, r) = A[rangeMinAt(A, l, r)]. The odd�even algorithm uses the rangeminimum query to
ompute the length of the longest
ommon pre�x for a range of su�xesin the odd or, alternatively, in the even su�x array in
onstant time, lcp(sao[lo, ro]) =
rangeMin(lcpo, lo, ro − 1) and lcp(sae[le, re]) = rangeMin(lcpe, le, re − 1).A simple solution for the range minimum query problem was given by Bender andFara
h-Colton [18℄, and Sadakane [124℄ uses range minimum queries to
ompute longest
ommon pre�xes of su�xes in
ompressed su�x arrays. For the odd�even algorithm,Kim et al. [80℄ use a modi�
ation of the range minimum algorithm of Berkman andVishkin [24℄. For an in-depth study, we refer to Alstrup et al.'s survey of the least
ommonan
estor problem [5℄, whi
h is intimately
onne
ted with the range minimum problem.Constru
ting the odd and the even su�x array. The odd su�x array is re
ursively
onstru
ted. The algorithm �rst sorts the su�xes of sao with respe
t to their two lead-ing
hara
ters, resulting in a 2-bu
ket segmentation of sao. A

ording to the 2-bu
ketsegmentation, it assigns the sparse bu
ket number bnro[s] to ea
h su�x s ∈ [1, n] with
s mod 2 = 1.The redu
ed string to of length no is
omputed su
h that the relative lexi
ographi
alorder of the su�xes of to
orresponds to the relative lexi
ographi
al order of the su�xes in
sao. The partial fun
tion µo bije
tively maps the su�x numbers in sao onto the positions73

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion Algorithms
[1, no] of the redu
ed string to su
h that

µo(s) =
s + 1

2
for all s ∈ [1, n] with s mod 2 = 1.That is, the odd su�x numbers are monotoni
ally in
reasingly mapped onto [1, no]. More-over, let µo(−1) be the inverse mapping, whi
h maps the positions [1, no] of the redu
edstring to onto the su�x numbers s ∈ [1, n] with s mod 2 = 1.The algorithm
onstru
ts the redu
ed string to of length no:

to[i] := bnro[µo(−1)(i)] (= bnro[2 i− 1]) for all i ∈ [1, no].That is, to = bnro[1], bnro[3], . . . , bnro[2no − 1]. Then it re
ursively
onstru
ts the su�xarray sa(to) of the redu
ed string and the
orresponding LCP array lcp(to), and �nallyderives sao from sa(to) and lcpo from lcp(to) su
h that, for all i ∈ [1, no],
sao[i] = µo(−1)(sa(to)[i]) (= 2(sa(to)[i]) − 1)and, for all i ∈ [1, no − 1],

lcpo[i] =

{

2 lcp(to)[i] + 1 if t[sao[i] + 2 lcp(to)[i]] = t[sao[i + 1] + 2 lcp(to)[i]]
2 lcp(to)[i] otherwise.Finally, sae and lcpe are
onstru
ted from sao and lcpo. The su�xes se ∈ [1, n] witheven su�x number, se mod 2 = 0, are sorted a

ording to the primary sort key t[se] andse
ondary sort key Ro[se + 1], resulting in sae. Afterwards, the
orresponding LCP array

lcpe of length ne − 1 is
omputed:
lcpe[i] =

{

0 if t[sae[i]] 6= t[sae[i + 1]]
1 + lcp(t[sae[i] + 1, n], t[sae[i + 1] + 1, n]) otherwise,for all i ∈ [1, ne − 1], where sae[i] + 1 and sae[i + 1] + 1 are odd su�x numbers. Let

go = Ro[sae[i] + 1] and ho = Ro[sae[i + 1] + 1] be the positions of these su�x numbers in
sao, then the algorithm
omputes lcp(t[sae[i] + 1, n], t[sae[i + 1] + 1, n]) = lcp(sao[go, ho])by a range minimum query on lcpo, lcp(sao[go, ho]) = rangeMin(lcpo, go, ho − 1).Merging the odd and the even su�x array. A brief explanation of the general mergingstrategy
an be given based on the l
p-interval trees of Abouelhoda et al. [1, 2℄: Themerging of the two sparse su�x arrays is a kind of breadth-�rst merging of their impli
itl
p-interval trees.The odd�even algorithm only pro
esses non-extendable bu
kets. A non-extendable ℓ-bu
ket sao[lo, ro] of the odd su�x array
ontains all odd su�x numbers s ∈ [1, n] with
t[s, s + ℓ − 1] = t[sao[lo], sao[lo] + ℓ − 1], and a non-extendable ℓ-bu
ket sae[le, re] ofthe even su�x array
ontains all even su�x numbers s ∈ [1, n] with t[s, s + ℓ − 1] =
t[sae[le], sae[le]+ℓ−1]. The non-extendable ℓ-bu
kets sao[lo, ro] and sae[le, re] are ℓ-
oupledif all su�xes of both bu
kets share the same pre�x of length ℓ; (sao[lo, ro], sae[le, re]) is74

8.3 Redu
ed string sorting algorithms
alled an ℓ-
oupled pair. Otherwise the bu
kets are ℓ-un
oupled. If sao[lo, ro] and sae[le, re]are ℓ-
oupled, then their su�x numbers form an ℓ-bu
ket sa[lo + le − 1, ro + re] of the
omplete su�x array. The length of the longest
ommon pre�x of all su�xes in an ℓ-
oupled pair (sao[lo, ro], sae[le, re]) is denoted by λ := lcp(sao[lo, ro], sae[le, re]). Moreover,
θ := min{lcp(sao[lo, ro]), lcp(sae[le, re])} is an upper bound for λ,
alled the LCP limit ofthe
oupled pair (sao[lo, ro], sae[le, re]). Note that ℓ ≤ λ ≤ θ.There are two further auxiliary data stru
tures: the array ptro of length no and thearray ptre of length ne. For ea
h io ∈ [1, no], ptro[io] is de�ned if sao[io] is an entry of anun
oupled bu
ket or the last entry of a
oupled bu
ket:� If sao[io] is an entry of an un
oupled bu
ket sao[lo, ro], io ∈ [lo, ro], then ptro[io]stores the rightmost position re of a bu
ket sae[le, re] su
h that

lcp(sao[io], sae[re]) ≥ lcp(sao[io], sae[je]) for all je ∈ [1, ne].Among all su�xes in the even su�x array, t[sae[re], n] shares the longest
ommonpre�x with t[sao[io], n].� If sao[io] is the last entry of a bu
ket sao[lo, ro] (io = ro)
oupled with sae[le, re],then ptro[io] := re.The array ptre is analogously de�ned.The merging pro
edure. For ea
h position io ∈ [1, no], the
orre
t target position i of thesu�x number sao[io] in the lexi
ographi
ally sorted
omplete su�x array sa is
omputed.That is, i is the target position of io if and only if sao[io] = sa[i]. The target positionsof sae are analogously de�ned. In fa
t, the algorithm determines the target positionsfor
omplete un
oupled bu
kets. Coupled bu
kets are repeatedly subdivided a

ording tolarger
ommon pre�xes until the sub-bu
kets be
ome un
oupled su
h that the targets
anbe determined.The algorithm su

essively performs up to n stages until the
omplete su�x array is
onstru
ted. In stage θ, it pro
esses all
oupled pairs with LCP limit θ. It starts withthe
oupled pair (sao[1, no], sae[1, ne]), formed of the
omplete odd and even su�x array,in stage 0. For an ℓ-
oupled pair (sao[lo, ro], sae[le, re]) with LCP limit θ and longest
ommon pre�x of length λ, the algorithm determines the target positions in sa, where λ is
omputed in
onstant time, as we will show later. The algorithm distinguishes two
ases:(i) If λ < θ, then all su�xes with a su�x number in sao[lo, ro] are lexi
ographi
allysmaller than the su�xes with a su�x number in sae[le, re], or vi
e versa. The bu
ketsare un
oupled.(i.1) If t[sao[lo] + λ] < t[sae[le] + λ], then sao[lo, ro]
ontains the smaller su�xes.The respe
tive target segments of the
omplete su�x array are determined by
sa[lo + le − 1, ro + le − 1] = sao[lo, ro] and sa[ro + le, ro + re] = sae[le, re]. The75

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion Algorithms
orresponding segment in the LCP array is determined by lcp[lo+le−1, ro+le−
2] = lcpo[lo, ro−1], lcp[ro+le−1] = λ, and lcp[ro+le, ro+re−1] = lcpe[le, re−1].The algorithm also assigns re to ptro[io] for all io ∈ [lo, ro] and ro to ptre[je] forall je ∈ [le, re].(i.2) If t[sao[lo] + λ] > t[sao[le] + λ], then the targets are determined analogously.(ii) If λ = θ, then the λ-
oupled bu
kets sao[lo, ro] and sae[le, re] are subdivided into

(λ + 1)-bu
kets. The right boundaries of the sub-bu
kets of sao[lo, ro] are the po-sitions io ∈ [lo, ro − 1] with lcpo[io] = λ, and the right boundaries of the sub-bu
kets of sae[le, re] are the positions je ∈ [le, re − 1] with lcpe[je] = λ. Thepositions are
omputed by range minimum queries on the respe
tive LCP arrays.Let sao[lo1, ro1], sao[lo2, ro2], . . . , sao[loβ , roβ] be the respe
tive sub-bu
kets of sao[lo, ro](lcpo[rog] = λ for all g ∈ [1, β − 1]), and let sae[le1, re1], sae[le2, re2], . . . , sae[leγ , reγ] bethe respe
tive sub-bu
kets of sae[le, re] (lcpe[reh] = λ for all h ∈ [1, γ − 1]). For all
g ∈ [1, β], let cog be the (λ + 1)st
hara
ter of all su�xes in sao[log, rog], and let coh bethe (λ + 1)st
hara
ter of all su�xes in sae[leh, reh] for all h ∈ [1, γ].The algorithm merges the lists of odd and even sub-bu
kets from left to right startingwith sao[lo1, ro1] and sae[le1, re1]. We des
ribe a step of the merging pro
edure, whi
his iterated until one sub-bu
ket list be
omes empty. Let the bu
kets sao[log , rog] with
g ∈ [1, β] and sae[leh, reh] with h ∈ [1, γ] be the
urrent heads of the sub-bu
ket lists.The algorithm
ompares cog and ceh.(ii.1) If cog = ceh, then the pair of bu
kets (sao[log , rog], sae[leh, reh]) is (λ + 1)-
oupledand its target pro
essing is postponed to stage θg,h, where θg,h is the LCP limitof (sao[log , rog], sae[leh, reh]). The algorithm assigns λ to lcp[rog + reh] if g < β or

h < γ, reh to ptro[rog] if g < β, and rog to ptre[reh] if h < γ. The bu
ket sao[log , rog]is removed from the list of odd sub-bu
kets and sae[leh, reh] from the list of evensub-bu
kets.(ii.2) If cog < ceh, then sao[log, rog] is (λ + 1)-un
oupled and sa[log + leh− 1, rog + leh− 1] =
sao[log, rog]. The
orresponding LCP values are lcp[log + leh − 1, rog + leh − 2] =
lcpo[log , rog − 1] and lcp[rog + leh − 1] = λ. The algorithm also assigns reh toptro[io] for all io ∈ [log, rog]. The bu
ket sao[log, rog] is removed from the list ofodd sub-bu
kets.(ii.3) If cog > ceh, then sa[leh + log − 1, reh + log − 1] = sae[leh, reh]. The
orresponding LCPvalues are lcp[leh+log−1, reh+log−2] = lcpe[leh, reh−1] and lcp[reh+log−1] = λ. Thealgorithm also assigns rog to ptre[je] for all je ∈ [leh, reh]. The bu
ket sae[leh, reh]is removed from the list of even sub-bu
kets.If one sub-bu
ket list be
omes empty, then the merging pro
edure stops and thealgorithm
opies the remaining bu
kets in the non-empty list to the respe
tive targetsegment of sa.76

8.3 Redu
ed string sorting algorithmsThe longest
ommon pre�x of a
oupled pair. We now show how the algorithm
om-putes the longest
ommon pre�x λ of all su�xes in a
oupled pair (sao[lo, ro], sae[le, re])with LCP limit θ in stage θ. We have two base
ases: θ = 0 implies λ = 0, and θ = 1 im-plies λ = 1 if the input string t is
omposed of at least two distin
t
hara
ters. For θ > 1,a

ording to the de�nition of the LCP limit (θ := min{lcp(sao[lo, ro]), lcp(sae[le, re])}),we have θ = lcp(sao[lo, ro]) or θ = lcp(sae[le, re]). Without loss of generality, we assume
θ = lcp(sao[lo, ro]).The key of the algorithm is to redu
e the
omputation of λ to the
omputation of thelength of the longest
ommon pre�x of two su�xes in sao, whi
h is then performed in
onstant time by a range minimum query:

λ = lcp(sao[lo, ro], sae[le, re]) (8.3)
= min(θ, lcp(sao[lo], sae[re])) (8.4)
= min(θ − 1, lcp(sao[lo] + 1, sae[re] + 1)) + 1 (8.5)
= min(θ − 1, lcp(sae[lo+], sao[re+])) + 1, (8.6)where lo+ = Re[sao[lo]+1] is the position of sao[lo]+1 in sae, and re+ = Ro[sae[re]+1] isthe position of sae[re]+1 in sao. Equality (8.3) holds from the de�nition of λ, equality (8.4)sin
e lcp(sao[lo], sae[re]) < θ implies lcp(sao[lo, ro], sae[le, re]) = lcp(sao[lo], sae[re]) and

lcp(sao[lo], sae[re]) ≥ θ implies lcp(sao[lo, ro], sae[le, re]) = θ, equality (8.5) sin
e thesu�xes in the
oupled pair share at least the �rst
hara
ter, and equality (8.6) from
sao[lo] + 1 = sae[lo+] and sae[re] + 1 = sao[re+]. Note that Re[sao[.] + 1] de�nes a kind ofsparse +R-array (see De�nition 3.1): For ea
h su�x number sao[io] in the odd su�x array,
io ∈ [1, no], Re[sao[io] + 1] stores the position of the su

essor su�x number sao[io] + 1 inthe even su�x array. It is a
ross-link between the two sparse su�x arrays. The statementanalogously holds for Ro[sae[.] + 1].For sae[lo+], the algorithm �nds a position φ of sao su
h that the su�xes sae[lo+] and
sao[φ] share a su�
iently long
ommon pre�x su
h that

min(θ − 1, lcp(sae[lo+], sao[re+])) = min(θ − 1, lcp(sao[φ], sao[re+])). (8.7)Let sae[xe, ye] be the bu
ket
ontaining sae[lo+] after stage θ − 1, lo+ ∈ [xe, ye]. Then
φ = ptre[ye] satis�es equation (8.7) (see [80℄ for a proof). The algorithm
omputes

lcp(sao[φ], sao[re+]) =







rangeMin(lcpo, φ, re+ − 1) if φ < re+
n− re+ + 1 if φ = re+
rangeMin(lcpo, re+, φ− 1) if φ > re+.Finally, a

ording to equations (8.3)�(8.7), we obtain λ = lcp(sao[φ], sao[re+]) + 1.The algorithm �nds the rightmost position ye of the bu
ket sae[xe, ye]
ontaining thesu�x number sae[lo+] in
onstant time. The
omplete merging pro
edure runs in lineartime sin
e the algorithm pro
esses at most n
oupled bu
kets and n su�xes. 77

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion AlgorithmsTime and spa
e
onsumption. For the
onstru
tion of the su�x array of an input stringof length n over an integer alphabet [1, n], the running time Todd�even(n) of the algorithmis
omposed of the O(n) + Todd�even(n/2)
onstru
tion time of the odd su�x array, thelinear-time
onstru
tion of the even su�x array, and the linear-time merge of the twosparse su�x arrays. This together leads to Todd�even(n) = O(n) + Todd�even(n/2) = O(n)for the
omplete su�x array
onstru
tion.The spa
e requirements of the algorithm depend on the implementation. Besides n bytesfor the input string and n words for the su�x array, a straightforward implementationwould require auxiliary spa
e for the arrays sao, sae, lcpo, lcpe, ptre, for the redu
ed string
to, and for the data stru
ture providing
onstant time range minimum
omputations.There are, however, more spa
e-e�
ient implementations of the odd-even su�x array
onstru
tion s
heme. Kim et al.'s [78℄ approa
h works on �xed-sized alphabets and requiresless spa
e, but O(n log log n)
onstru
tion time. In pra
ti
e, though, it is faster thanthe linear-time odd�even algorithm. Moreover, Hon et al. [63℄ manage the su�x array
onstru
tion with the odd�even s
heme using only O(n) auxiliary bits.8.3.2.3 The smaller�larger algorithm of Ko and AluruThe smaller�larger algorithm of Ko and Aluru [85℄ also
lassi�es the set of su�xes into twotypes, like the skew algorithm and the odd�even algorithm. The smaller�larger algorithm,however, partitions the su�xes based on the relative order of
onse
utive su�xes andnot based on their starting positions. Similar to the two-stage algorithm of Itoh andTanaka [67℄, whi
h
lassi�es the su�xes as type s or type l, the smaller�larger algorithm
lassi�es the su�xes either as type S or type L. Alternatively, the su�x numbers are
lassi�ed either as type S or type L.Let S := {s ∈ [1, n − 1] : t[s, n] < t[s + 1, n]} of size nS = |S| be the set of su�xnumbers of type S that
ontains ea
h su�x number s ∈ [1, n − 1] if and only if the su�x
t[s, n] is lexi
ographi
ally smaller than its su

essor su�x t[s + 1, n]. Let L := [1, n] \ Sof size nL = |L| be the set of su�x numbers of type L
ontaining the su�x number ofea
h su�x that is lexi
ographi
ally larger than its su

essor. The algorithm uses a lo
alproperty to e�
iently determine the type of ea
h su�x: A su�x number s ∈ [1, n] is oftype S if t[s] < t[s + 1] or if t[s] = t[s + 1] and the su

essor su�x number s + 1 is of typeS ; otherwise it is of type L. The algorithm uses this property to assign all su�x numbersto either S or L by a right-to-left s
an of the string.Let saS be the sparse su�x array of size nS of all su�x numbers of type S, and let
saL be the sparse su�x array of size nL of all su�x numbers of type L. The algorithm�rst
onstru
ts the smaller of the two sparse su�x arrays. Without loss of generality, weassume that there are fewer type S su�xes than type L su�xes, or rather, nS ≤ nL. Thealgorithm �rst
onstru
ts the sparse su�x array saS and then the
omplete su�x array
sa from saS.Constru
ting the sparse su�x array of type S su�xes. Let s1, s2, . . . , s(nS) be thesorted list of type S su�x numbers with s1 < s2 < . . . < s(nS) (sorted with respe
t78

8.3 Redu
ed string sorting algorithmsto the numbers, not lexi
ographi
ally). For ea
h su
h su�x number si of type S with
i ∈ [1, nS− 1], the pre�x t[si, si+1] is
alled the S-pre�x of si and t[s(nS), n] the S-pre�x of
s(nS). The algorithm sorts the type S su�xes with respe
t to their S -pre�xes, resultingin a bu
ket segmentation of saS su
h that two type S su�xes si, sj ∈ S with i, j ∈ [1, nS]are element of the same ℓ-bu
ket if and only if they share the same S -pre�x of length
ℓ, t[si, si+1] = t[sj, sj+1] with ℓ = si+1 − si + 1 = sj+1 − sj + 1. Note that the bu
ketsegmentation
ontains ℓ-bu
kets for di�erent ℓ. We will show later how the S -pre�xesare sorted. A

ording to the bu
ket segmentation of saS, the algorithm assigns the sparsebu
ket number bnrS[s] to ea
h su�x s ∈ S, representing the relative order of type S su�xeswith respe
t to their S -pre�xes: t[si, si+1] ≤ t[sj, sj+1] if and only if bnrS[si] ≤ bnrS[sj]for all i, j ∈ [1, nS].Then a redu
ed string tS of length nS is
omputed su
h that the relative lexi
ographi
alorder of the su�xes of tS
orresponds to the relative lexi
ographi
al order of the su�xesin saS. The partial fun
tion µS bije
tively maps the su�x numbers in S onto the positions
[1, nS] of the redu
ed string tS su
h that

µS(si) = i for all i ∈ [1, nS].That is, the su�x numbers of type S are monotoni
ally in
reasingly mapped onto [1, nS].Moreover, let µS(−1) be the inverse mapping. The algorithm
onstru
ts the redu
ed string
tS of length nS:

tS[i] := bnrS[µS(−1)(i)] (= bnrS[si]) for all i ∈ [1, nS].That is, tS = bnrS[s1], bnrS[s2], . . . , bnrS[s(nS)].Then it re
ursively
onstru
ts the su�x array sa(tS) of the redu
ed string tS and derivesthe sparse su�x array saS from sa(tS),
saS[i] = µS(−1)(sa(tS)[i]) for all i ∈ [1, nS].Sorting the S-pre�xes. The algorithm sorts the S -pre�xes in three phases, using a pro-
edure similar to MSD radix sort.1. First of all, the S-distan
e distS(u) of a su�x number u is the distan
e to the
losestprede
essor su�x number of type S, distS(u) := min{u − s : s < u and s ∈ S}.The algorithm
omputes the S -distan
e for ea
h su�x number u ∈ [1, n], leaving itunde�ned if there is no type S su�x number smaller than or equal to u, distS(u) :=⊥for u ∈ [1, s1].2. For ea
h en
ountered S -distan
e ∆, a list list∆ stores the su�x numbers u ∈ [1, n]with distS(u) = ∆. Ea
h list is ordered by the �rst
hara
ter of the respe
tivesu�xes.3. The algorithm starts with the sparse su�x array saS = s1, s2, . . . , s(nS). It repeatedlyperforms bu
ket re�nement steps for ea
h S -distan
e ∆, starting from 1 up to the79

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion Algorithmsmaximal S -distan
e. In the ∆th bu
ket re�nement step, it s
ans list∆ from left toright. For ea
h su�x number u en
ountered, it moves the ∆-prede
essor u −∆ tothe front of its bu
ket and advan
es the front by one. After s
anning list∆, thesu�xes of type S with the same pre�x of length ∆ are grouped together, resultingin a ∆-bu
ket segmentation of saS. After pro
essing all lists, we obtain the desiredbu
ket segmentation of saS, representing the order of the type S su�xes with respe
tto their S -pre�xes.Constru
ting the
omplete su�x array from the sparse su�x array of type S su�xes.Ko and Aluru
onstru
t the
omplete su�x array sa from saS in three phases, as follows.1. All su�xes are �rst sorted a

ording to their leading
hara
ter, produ
ing a 1-bu
ketsegmentation of the su�x array sa. Furthermore, the su�x number n of the lastsu�x t[n, n] is moved to the front of its bu
ket.2. The sparse su�x array saS is s
anned from right to left. For ea
h su�x in saS, thealgorithm moves its
ounterpart in sa to the
urrent end of its bu
ket and shifts the
urrent end by one position to the left. After s
anning saS, all su�xes of type S arein their �nal positions.3. The third phase determines the order of the L su�xes and moves them to their �nalposition. The su�x array sa is s
anned from left to right. For ea
h su�x number
v ∈ [1, n] of type L, the algorithm moves the prede
essor v − 1 to the
urrent frontof its bu
ket and advan
es the front by one position to the right. The su�x sortingpro
ess is
ompleted after s
anning the whole su�x array sa.So far, we have shown how to build the
omplete su�x array sa via the sparse su�xarray saS of the su�xes of type S. If the su�xes of type S are fewer than the su�xes oftype L, however, the sparse su�x array saL of the type L su�x numbers and �nally the
omplete su�x array is
onstru
ted using a symmetri
 pro
edure.Time and spa
e
onsumption. Let TSL(n) denote the total running time of the smaller�larger algorithm for input strings of length n over an integer alphabet [1, n]. TSL(n)de
omposes into the running time of the separate phases. The following steps all requirelinear time: the
omputation of the su�xes of type S, the sorting with respe
t to their S -pre�xes, and the mapping to the redu
ed string tS. In addition, the re
ursive
onstru
tionof the su�x array sa(tS) takes TSL(nS) ≤ TSL(⌊n/2⌋) time. The derivation of the sparsesu�x array saS from sa(tS) and the three phases for the
onstru
tion of the
ompletesu�x array from sa(tS) again require linear time. Altogether, this leads to TSL(n) ≤

O(n) + TSL(⌈n/2⌉) for n ≥ 2 and TSL(n) = O(1) for n < 2, whi
h
an be solved to
TSL(n) = O(n).The algorithm has di�erent spa
e requirements for the separate sub-pro
edures. Amongall mentioned subroutines, the sorting of the S -pre�xes, parti
ularly the
onstru
tion ofthe S -distan
e lists, is the most spa
e-
onsuming part of Ko and Aluru's implementation.80

8.3 Redu
ed string sorting algorithmsTherefore, the spa
e analysis
on
entrates on that sub-pro
edure, as follows. For an integeralphabet with Σ = [1, n], the
onstru
tion of the S -distan
e lists requires 3n words: theinteger array for the S -distan
es, an integer array for the S -distan
e lists, and a temporaryarray for a stable
ounting sort of the lists, ea
h
onsume n words. Moreover, Ko andAluru suggest to use bit arrays to mark the bu
ket boundaries and the su�x numbers oftype S : two bit arrays of size n and one of size n/2. Hen
e, the overall spa
e requirementsare 3n words plus 5n/2 bits. This
ould be further redu
ed to 3n words if the mostsigni�
ant bit of the integer words is used for the marker bits. Moreover, for a small �xed-sized alphabet, Ko and Aluru redu
e the spa
e requirements to 2n words and 1.25n bitsor, alternatively, to 2n words if the most signi�
ant bit of ea
h integer word
an be usedas a marker bit.

81

8 Classi�
ation and Survey of Previous Su�x Array Constru
tion Algorithms

82

9 The Bu
ket-Pointer Re�nementAlgorithmWe observed that the bu
ket re�nement algorithms, in parti
ular the deep�shallow algo-rithm, show faster pra
ti
al running times for
ommon real-world strings than the redu
edstring sorting algorithms (see also [7, 119℄). For degenerated strings with large LCPs, how-ever, deep�shallow performs poorly (see [31℄).Our aim was to design a new algorithm that is fast for
ommon strings with smallLCPs and for strings with highly variable LCPs, but it should also
onstru
t su�x arraysof degenerated strings in reasonable time. Our algorithm follows the depth-�rst bu
ketre�nement s
heme, whi
h proved its e�
ien
y for
ommon strings, and
ombines it witha pull te
hnique (see Chapter 8.1) using the following fa
t for an input string t of length
n:

(t[sa[i], n] =ℓ t[sa[j], n] ∧ bptr[sa[i] + ℓ] < bptr[sa[j] + ℓ]) =⇒ t[sa[i], n] < t[sa[j], n]for i, j, ℓ ∈ [1, n]. That is, if two su�xes with the same ℓ-length pre�x are
ontained inthe same ℓ-bu
ket, then their order is determined by the order of their ℓ-su

essors. Ourstrategy is to use the information of subdivided bu
kets as early as possible. We alternatere�nement steps and updates of the bu
ket pointers su
h that the information about thesubdivided bu
kets is used in the bu
ket re�nement pro
ess as soon as this informationbe
omes available.In Se
tion 9.1, we des
ribe the basi
 algorithm, whi
h is analysed regarding asymptoti
running time
omplexity in Se
tion 9.2. In Se
tion 9.3, we present the implementationdetails in
luding an advan
ed push method that enhan
es the basi
 algorithm. Se
tion 9.4
ontains use
ases of our algorithm.9.1 The basi
 algorithmOur new bu
ket-pointer re�nement (bpr) algorithm mainly
onsists of two simple phases.Given a parameter q (usually less than log n), the su�xes are lexi
ographi
ally sorted inthe �rst phase, so that su�xes with the same q-length pre�x are grouped together, form-ing a q-bu
ket segmentation sa[l1, r1], sa[l2, r2], . . . , sa[lβ , rβ] for some β ∈ [1, n]. Beforeentering the se
ond phase, a pointer to its bu
ket bptr[i] is
omputed for ea
h su�x withsu�x number i ∈ [1, n], su
h that su�xes with the same q-length pre�x share the samebu
ket pointer. In our des
riptions and in our implementation, we use the position of therightmost su�x in ea
h bu
ket as bu
ket pointer. Re
all the de�nition of bu
ket pointers83

9 The Bu
ket-Pointer Re�nement Algorithmfrom Chapter 7.1, equation (7.2). We have
bptr[sa[i]] = rk for ea
h i ∈ [lk, rk] and for ea
h k ∈ [1, β]. (9.1)In the se
ond phase, the bu
kets
ontaining su�xes with equal pre�x are re
ursivelyre�ned. Let sa[l, r] be an ℓ-bu
ket of the su�x array sa. Then the re�nement pro
edureapplies the ternary partitioning s
heme of Bentley and M
Ilroy's Ternary-Split Qui
k-sort [22℄. The bu
ket sa[l, r] is partitioned into three sub-bu
kets a

ording to the bu
ketpointers at o�set ℓ: a left, a middle, and a right sub-bu
ket. That is, for ea
h su�x sa[i]with i ∈ [l, r], bptr[sa[i] + ℓ] is used as the sort key. The re�nement pro
edure �rst sele
tsa pivot sort key p = bptr[sa[j] + ℓ] for some j ∈ [l, r]. Then the su�xes sa[i] in sa[l, r]with smaller sort key, bptr[sa[i] + ℓ] < p with i ∈ [l, r], are assigned to the left sub-bu
ket

sa[l<, r<], the su�xes with sort key equal to the pivot, bptr[sa[i] + ℓ] = p, to the middlesub-bu
ket sa[l=, r=], and the su�xes with larger sort key, bptr[sa[i] + ℓ] > p, to the rightsub-bu
ket sa[l>, r>] (l = l<, r< + 1 = l=, r= + 1 = l>, and r> = r).After partitioning the su�xes of sa[l, r], the bu
ket pointers for the su�xes in sa[l, r]are updated to
onform with the re�ned bu
ket segmentation. For ea
h su�x sa[i] with
i ∈ [l, r], bpr assigns the right-most position of its re�ned sub-bu
ket to its bu
ket pointer
bptr[sa[i]], su
h that

bptr[sa[i]] =







r< for all i ∈ [l<, r<]
r= for all i ∈ [l=, r=]
r> for all i ∈ [l>, r>].Then ea
h of the three sub-bu
kets that is not empty or singleton is partitioned re
ursivelyby
alling the re�nement pro
edure. We use the unmodi�ed o�set ℓ for the left and forthe right sub-bu
ket sin
e both remain ℓ-bu
kets, but use the in
reased o�set ℓ + q forthe middle sub-bu
ket sa[l=, r=] sin
e its su�xes share a
ommon pre�x of length (ℓ + q)and thus form an (ℓ + q)-bu
ket. After termination of the algorithm, all bu
kets aresingletons, sa is the lexi
ographi
ally sorted su�x array, and bptr re�e
ts the rank arrayor, alternatively, the inverse su�x array.An example of the re�nement pro
edure for the string t = DEBDEBDEA with parameter

q = 2 is shown in Figure 9.1. The top of the �gure, below the input string, shows thesu�x array sa segmented into bu
kets and the bu
ket pointer array bptr after phase 1 andafter ea
h further re�nement step. The verti
al lines in sa denote the bu
ket boundaries.The bu
ket that is going to be re�ned in the next step is overlined, and the bu
ketpointers that are used as sort keys during that next re�nement step are drawn in boldfa
e. Initially, there are three non-singleton bu
kets, whi
h are then re�ned from left toright: the bu
ket sa[2, 3]
ontaining the su�x numbers of su�xes with the pre�x BD, sa[4, 6]
ontaining the su�x numbers of su�xes with the pre�x DE, and sa[8, 9]
ontaining thesu�x numbers of su�xes with the pre�x EB. We �rst re�ne the bu
ket sa[2, 3]
ontainingthe su�x numbers 3 and 6 with respe
t to ℓ = 2. The sort keys (drawn in bold fa
e) aresortkey(3) = bptr[3 + 2] = 9 and sortkey(6) = bptr[6 + 2] = 7, where the sort key 9 issele
ted as pivot. After the partitioning, the bu
ket pointer for the su�x 3 is updated to84

9.1 The basi
 algorithm
Input string: t = D E B D E B D E A1 2 3 4 5 6 7 8 9A BD DE EA EB

sa after initial sorting (q = 2): 9 3 6 1 4 7 8 2 51 2 3 4 5 6 7 8 9
bptr after initial sorting: 6 9 3 6 9 3 6 7 1
sa after sorting bu
ket sa[2, 3]: 9 6 3 1 4 7 8 2 51 2 3 4 5 6 7 8 9
bptr after updating positions 3, 6: 6 9 3 6 9 2 6 7 1
sa after sorting bu
ket sa[4, 6]: 9 6 3 7 4 1 8 2 51 2 3 4 5 6 7 8 9
bptr after updating positions 1, 4, 7: 6 9 3 5 9 2 4 7 1
sa after sorting bu
ket sa[8, 9]: 9 6 3 7 4 1 8 5 21 2 3 4 5 6 7 8 9
bptr after updating positions 2, 5: 6 9 3 5 8 2 4 7 1

9 3 6 4 5 7 8 2 5
ℓ = 26 3 ℓ = 27 4 1 ℓ = 25 2Figure 9.1: The bu
ket segmentation of the su�xes of the input string DEBDEBDEA andthe respe
tive bu
ket pointer array bptr after the initial sorting of the su�xes regardingpre�xes of length q = 2 (2-bu
ket segmentation) and after ea
h re�nement step (top).Moreover, the
orresponding ternary re
ursion tree (bottom).

85

9 The Bu
ket-Pointer Re�nement Algorithm
bptr[3] = 3 and the bu
ket pointers for the su�x 6 to bptr[6] = 2. Then the re�nementof the bu
kets sa[4, 6] and sa[8, 9] follows. The pivot is always the median sort key if thebu
kets are of odd size, or the next larger sort key if the bu
kets are of even size.The bottom of Figure 9.1 shows the ternary re
ursion tree
orresponding to the
ompletebu
ket re�nement pro
ess. The inner nodes of the tree are the non-singleton bu
ketsthat have to be re�ned. The
hildren of ea
h su
h bu
ket
orrespond to the sub-bu
ketsafter a re�nement step: a left
hild
orresponds to a left sub-bu
ket, a middle
hild to amiddle sub-bu
ket, and a right
hild to a right sub-bu
ket. Note that the �rst level ofthe re
ursion tree
orresponds to the 2-bu
ket segmentation after the initial sorting of thesu�xes regarding their pre�xes of length q = 2.Properties. The main improvement of our algorithm,
ompared to earlier algorithmsperforming bu
ket re�nements, is that it bene�ts from the immediate use of subdividedbu
ket pointers after ea
h re�nement step. With in
reasing number of subdivided bu
kets,it be
omes more and more likely that di�erent bu
ket pointers
an be used as sort keysduring the re�nement steps, su
h that the expe
ted re
ursion depth de
reases for thebu
kets re�ned later. The �nal position of a su�x number u in the
urrent bu
ket isrea
hed at the latest when bptr[u + ℓ] is unique for the
urrent o�set, that is, when thesu�x number u + ℓ is
ontained in a singleton bu
ket sa[bptr[u + ℓ], bptr[u + ℓ]] and thushas rea
hed its �nal position.Another improvement of our algorithm is that, in ea
h re
ursive re�nement step of amiddle sub-bu
ket, ℓ
an be in
reased by q. Hen
e, the re
ursion depth de
reases by afa
tor of q,
ompared to algorithms performing
hara
terwise radix steps.Note that the algorithm
an be applied to arbitrary ordered alphabets sin
e it just uses
omparisons to perform su�x sorting.9.2 AnalysisSo far we were not able to determine tight time bounds for our algorithm. The problemis that the algorithm quite arbitrarily uses the dependen
ies among su�xes. Hen
e, weonly present lower and upper limits for the worst-
ase and expe
ted-
ase time bounds.The �rst phase of the algorithm
an simply be performed in optimal linear time (seeSe
tion 9.3 for more details). For the se
ond phase, we assume throughout the analysisthat the algorithm �nds the true median sort key in linear time, whi
h
an be performedby algorithms of Blum et al. [26℄, S
hönhage et al. [126℄, or Dor and Zwi
k [43℄. Thesemethods, however, are not desirable for pra
ti
al implementations sin
e they in
rease the
onstant running time fa
tors. Our implementation rather uses a pivot
hoi
e methodthat is dire
ted to fast pra
ti
al running time, instead of good worst-
ase time
omplexity.9.2.1 Worst-
ase time boundWe �rst negle
t that the expe
ted re
ursion depth de
reases for the bu
kets re�ned later.86

9.2 AnalysisTheorem 9.1. Let t be a string of length n, and let q with q ≤ log n be the
ommonpre�x length with respe
t to whi
h our algorithm sorts the su�xes in phase 1. Then ouralgorithm
onstru
ts the su�x array of t in O(n2/q) time.Proof. We assume that phase 1 is
omputed in linear time. The re
ursive re�nementin phase 2 de�nes an impli
it ternary re
ursion tree similar to the ternary sear
h treeof Bentley and Sedgewi
k [23℄, whi
h they used for the analysis of their string sortingalgorithm. In the stri
t sense, we have one ternary re
ursion tree for ea
h bu
ket generatedby phase 1, but we in
lude phase 1 to have only one re
ursion tree. Hen
e, the root isthe only inner node that may have more than three
hildren; it has as many
hildren asthere are bu
kets generated by phase 1 (see Figure 9.1). The re�nement pro
edure startswith the o�set ℓ = q for ea
h bu
ket generated by phase 1. The ternary re
ursion treebran
hes into a left
hild for a left sub-bu
ket, a middle
hild for a middle sub-bu
ket, anda right
hild for a right sub-bu
ket. The middle
hild exists for ea
h internal node sin
e the
orresponding middle sub-bu
ket
ontains at least the su�x that has the pivot sort key,but the left or the right
hild may not exist: The left
hild is empty if the
orrespondingleft sub-bu
ket is empty, and the right
hild is empty if the
orresponding right sub-bu
ketis empty.We present a limit for the re
ursion depth by
ounting the number of edges, or bran
hes,to
hild nodes on a path from the root to any leaf, where we distinguish between themiddle bran
hes and the left or right bran
hes. Middle bran
hes
orrespond to re
ursivere�nements of middle sub-bu
kets, while the o�set ℓ is in
remented by q in ea
h re
ursive
all, starting with ℓ = q. Re
all that ℓ re�e
ts the length of a
ommon pre�x of all su�xesin an ℓ-bu
ket, whi
h is bounded by n − 1. That is, ℓ has rea
hed its maximum n − 1after en
ountering at most ⌈n/q⌉ middle bran
hes on the path from the root to any leaf,
n−1 < ⌈n/q⌉q. For ea
h left or right bran
h, we observe that the size of its
orrespondingsub-bu
ket is at most half of the size of its father's bu
ket sin
e the su�xes with themedian sort key fall into the middle sub-bu
ket. Hen
e, the bu
kets are split up intosingleton bu
kets after at most ⌈log2 n⌉ left or right bran
hes. Together, the total lengthof a path from the root to any leaf is bounded by ⌈n/q⌉+ ⌈log2 n⌉ ∈ O(n/q).Moreover, the partitioning of a bu
ket takes linear time in the size of the bu
ket, andthe bu
kets at any depth of the tree sum up to at most n sin
e ea
h su�x appears at moston
e in a bu
ket at any depth of the re
ursion tree. We multiply the linear partitioningtime at any depth of the re
ursion tree by the maximum re
ursion depth of O(n/q) andadd the linear
omputation time of phase 1 to get the O(n2/q) worst-
ase time bound.Now, we fo
us on espe
ially bad instan
es for our algorithm, in parti
ular, strings max-imising the re
ursion depth. Sin
e the re
ursion depth is limited by the LCPs of su�xesto be sorted, periodi
 strings maximising the average LCP are espe
ially hard strings forour algorithm.A string An
onsisting of one repeated
hara
ter maximises the average LCP and istherefore analysed as a parti
ularly di�
ult input string. In the �rst phase of our algorithmthe last q − 1 su�xes {Aq−1, Aq−2, . . . , AA, A} are mapped to singleton bu
kets. One large87

9 The Bu
ket-Pointer Re�nement AlgorithmA A A A A A A A A A A $1 2 3 4 5 6 7 8 9 10 11 12
12 11 10 1 2 3 4 5 6 7 8 9

ℓ = 37 8 9
ℓ = 39 8 7 1 2 3 4 5 6

ℓ = 64 5 6
ℓ = 66 5 4 3 2 3

ℓ = 62 1Figure 9.2: Re
ursion tree of the bu
ket re�nements for the $ extended input stringAAAAAAAAAAA$.bu
ket
ontaining all the other su�xes with pre�x Aq remains to be re�ned. We assumethat after partitioning in phase 2 the three sub-bu
kets are re�ned in as
ending orderof their size. In a re
ursive re�nement step with o�set ℓ, if the remaining large bu
ket
ontains at least 2ℓ su�xes, then it is subdivided into a left sub-bu
ket of size ℓ
ontainingonly su�xes with unique sort keys and into one larger middle sub-bu
ket
ontaining theother su�xes with pre�x Aℓ+q, while ℓ is in
remented by q for the re
ursive re�nementof the middle sub-bu
ket, starting with ℓ = q. If the remaining large bu
ket is of sizebsize with bsize < 2ℓ, then it is subdivided into a left sub-bu
ket of size ⌊bsize/2⌋, asingleton middle sub-bu
ket, and a right sub-bu
ket of size ⌈bsize/2⌉− 1. We assume thatthe left sub-bu
ket is re
ursively re�ned before the middle sub-bu
ket (small sub-bu
ketsare re�ned �rst) su
h that, before the ith re
ursive re�nement of the middle sub-bu
ket,
ℓ = q · i su�xes are partitioned into a left sub-bu
ket and further into singleton bu
kets.For q = 3, Figure 9.2 shows the ternary re
ursion tree of the re�nement pro
ess for thestring A11 extended with $. Here, $ belongs to the string. The su�xes 10, 11, and 12 aremapped to singleton bu
kets by the initial sorting and thus have unique bu
ket pointers:
bptr[10] = 3, bptr[11] = 2, and bptr[12] = 1. Hen
e, for the o�set ℓ = 3, the su�xes
7, 8, and 9 have unique sort keys after the initial sorting: sortkey(7) = bptr[7 + 3] =
3, sortkey(8) = bptr[8 + 3] = 2, and sortkey(9) = bptr[9 + 3] = 1. Both groups aremarked in the string. The bu
ket
ontaining the su�xes [1, 9] is then re�ned into the leftsub-bu
ket of su�xes 7, 8, 9 and the middle sub-bu
ket of su�xes [1, 6]. Then, in onefurther re�nement step, the su�xes 7, 8, and 9 are subdivided into singleton bu
kets. Theremaining large bu
ket of su�xes [1, 6] is re�ned with respe
t to the o�set ℓ = 6 su
h thatthe respe
tive sort keys are the bu
ket pointers of the su�xes [7, 12], whi
h are unique:88

9.2 Analysissortkey(k) = bptr[k +6] = 7− k for all k ∈ [1, 6]. Finally, the two remaining non-singletonsub-bu
kets are re�ned: the left sub-bu
ket of su�xes 4, 5, 6 and the right sub-bu
ket ofsu�xes 1 and 2.In the following, we separately analyse the so
alled middle re�nement thread
orre-sponding to the path of the re
ursion tree that always follows the middle sub-bu
ket untilit is singleton, and the threads bran
hing from the middle re�nement thread. In Fig-ure 9.2, the middle re�nement thread is drawn in bold fa
e. Without loss of generality,we assume that in the ith re
ursive re�nement of a middle sub-bu
ket on the middle re-�nement thread ℓ = q · i su�xes are partitioned into a left sub-bu
ket. The repeatedre
ursive re�nement of the middle sub-bu
kets on the middle re�nement thread pro
eedsuntil all su�xes are split o� into left sub-bu
kets or until the middle sub-bu
ket is singleton,that is, until a re
ursion depth re
depth for the middle sub-bu
kets is rea
hed, su
h that
n ≤ q−1+

∑re
depth
i=1 q · i = q−1+q(re
depth(re
depth+1)/2). Therefore, for the string An,the re
ursion depth re
depth of the repeated middle sub-bu
ket re�nement on the middlere�nement thread is in Θ(

√

n/q). Immediately after bran
hing from the middle re�nementthread, all sort keys of the su�xes in the
orresponding sub-bu
kets are unique. Sin
e thebu
ket size is limited by n, these bu
kets are split up into singleton bu
kets after at most
⌈log2 n⌉ further bran
hes in the re
ursion tree. Together, the total length of a path fromthe root to any leaf in this re
ursion tree is bounded by Θ(

√

n/q) + ⌈log2 n⌉ = Θ(
√

n/q)for q ≤ log n. We multiply the O(n) time for the re�nement at any depth of the re
ursiontree by the re
ursion depth Θ(
√

n/q) and add the linear time
omplexity of phase 1 toget the time bound Θ(n
√

n/q) of our algorithm for the string An. By setting q = log n,we a
hieve a running time of O(n
√

n/logn) = O(n3/2/
√

log n).In general, sin
e the partitioning time of a bu
ket is linear in its size, the runningtime of our algorithm is essentially given by summing up the sizes of the di�erent non-singleton bu
kets that appear in the whole re�nement
omputation. We identify twomain parameters of the input strings that in�uen
e this sum: the initial distributionof q-length substrings (q-gram pro�le) and the average LCP. The initial distribution of
q-length substrings in�uen
es the size and the number of bu
kets at the lower re�nementlevels with small o�set ℓ = q, where a few large bu
kets in
rease the requirement of furtherre�nements. The average LCP is an indi
ator for the average re
ursion depth and thus forthe total number of a

umulated non-singleton bu
kets. The string An maximises both,the size of the initial bu
kets and the average LCP. Hen
e, we believe that the worst-
asetime bound for An also holds for all other strings.Conje
ture 9.2. Let t be a string of length n, and let q with q ≤ log n be the
ommonpre�x length with respe
t to whi
h our algorithm sorts the su�xes in phase 1. Then ouralgorithm
onstru
ts the su�x array of t in O(n3/2/

√
q) time.9.2.2 Expe
ted-
ase time boundIn pra
ti
e, worst-
ase strings like An rarely appear. We are rather interested in the average
onstru
tion time of our algorithm. Therefore, we analyse its expe
ted
onstru
tion time89

9 The Bu
ket-Pointer Re�nement Algorithmfor strings that are generated a

ording to a Bernoulli model (i.e., symbols from thealphabet are generated independently) or a �rst order Markov model (i.e., the next symboldepends in a probabilisti
 sense only on the previous one).Theorem 9.3. Let t be a string of length n generated a

ording to a Bernoulli model ora

ording to a �rst order Markov model, and let q with q ≤ log n be the
ommon pre�xlength with respe
t to whi
h our algorithm sorts the su�xes in phase 1. Then our algorithm
onstru
ts the su�x array of t in O(n log n) expe
ted time.Proof. We again use the impli
it ternary re
ursion tree and follow the same line of argu-ment as the proof of Theorem 9.1. The number of left or right bran
hes on a path fromthe root to any leaf in the re
ursion tree is again bounded by log n. Re
all further thatthe number of middle bran
hes is bounded by the maximal length of the
ommon pre�xof two su�xes of the input string divided by the parameter q. A simple
onsequen
e ofa result by Apostoli
o and Szpankowski [9℄ and Szpankowski [139℄ is that the expe
tedmaximal length of su
h a longest
ommon pre�x is bounded by O(log n). Hen
e, ℓ hasrea
hed its expe
ted maximum after at most O(log n/q) middle bran
hes. Altogether, theexpe
ted maximal re
ursion depth is bounded by O(log n): O(log n) left or right bran
hesand O(log n) middle bran
hes. We multiply the O(n) time for the re�nement at any depthof the re
ursion tree by the expe
ted maximal re
ursion depth of O(log n) and add thelinear
omputation time of phase 1 to get the O(n log n) expe
ted-
ase time bound of ouralgorithm, independent of the parameter q.We further
hoose q = log|Σ| n. There exist |Σ|q = n potential bu
kets, one for ea
hpossible pre�x of length log|Σ| n over the alphabet Σ. If we assume that the su�xes areindependently assigned to the n bu
kets, then an expe
ted-
ase analysis analogous tothe analysis of bu
ket sort in [38, Se
tion 8.4℄ would give a linear expe
ted
onstru
tiontime for the Bernoulli model. The su�xes of a string are, however, not independent.Nevertheless, we believe that the expe
ted
onstru
tion time is linear for q = log n.Conje
ture 9.4. Let t be a string of length n over an alphabet Σ of
onstant size σgenerated a

ording to a Bernoulli model or a �rst order Markov model, and let q = logσ nbe the
ommon pre�x length with respe
t to whi
h our algorithm sorts the su�xes in phase1. Then our algorithm
onstru
ts the su�x array of t in O(n) expe
ted time.9.2.3 Spa
e requirementsBpr requires more spa
e than the lightweight algorithms deep�shallow,
a
he,
opy, anddi�eren
e-
over. The su�x array and the bu
ket pointer array ea
h
onsume n integerwords, and the input string n bytes. For an alphabet Σ of size σ, σq additional integerwords are used for the bu
ket pointers of the initial bu
ket sort. Hen
e, for reasonable
q, the total spa
e requirements of bpr are between 9n and 10n bytes on
omputers with
4 byte integer words. However, for
ertain appli
ations, su
h as the
omputation of theBurrows�Wheeler transform [32℄, the
onstru
tion of the su�x array is just a byprodu
t,and the
omplete su�x array does not need to remain in memory.90

9.3 Engineering and implementation for fast speed9.3 Engineering and implementation for fast speedIn this se
tion, we present more detailed des
riptions of the two phases of the algorithmand enhan
e the se
ond phase with a push method that is used in
ombination with there
ursive re�nement pro
edure.9.3.1 Computing the initial bu
ket segmentationWe �rst de�ne two spe
i�
 terms: range redu
tion and multiple
hara
ter en
oding. Let
t be a string of length n with
hara
ter set Σ of size σ. Range redu
tion realises anorder-preserving
hara
ter mapping rk onto a
ontiguous segment of natural numbers. Itis a monotone, bije
tive fun
tion, rk : Σ → [0, σ − 1]. The range redu
ed string rk(t) isde�ned by rk(t) := rk(t[1]), rk(t[2]), . . . , rk(t[n]). A multiple
hara
ter en
oding for stringsof length q is a monotone bije
tive fun
tion codeq : Σq → [0, σq − 1] su
h that for twostrings w and w′ of length q, codeq(w) < codeq(w

′) if and only if w is lexi
ographi
allysmaller than w′. For a given range redu
tion, su
h an en
oding
an easily be de�nedas codeq(w) :=
∑q

i=1 σq−i rk(w[i]). The en
oding
an be generalised to strings of lengthgreater than q, by just en
oding the �rst q
hara
ters. Given the en
oding codeq(u) forthe su�x t[u, n], 1 ≤ u < n, the en
oding for the su

essor su�x t[u+1, n]
an be derivedby shifting away the �rst
hara
ter of t[u] and adding the range redu
ed value rk(t[u+ q])of
hara
ter t[u + q]:
codeq(u + 1) = σ

(

codeq(u) mod σq−1
)

+ rk(t[u + q]). (9.2)We are now prepared to formulate phase 1. Our algorithm performs the initial sortingregarding the q-length pre�xes of the su�xes by bu
ket sort, using codeq(u) as the sortkey for su�x u ∈ [1, n] (assuming that t is extended with multiple $s).The bu
ket sorting is performed using two s
ans of the sequen
e, thereby su

essively
omputing codeq(u) for ea
h su�x using equation (9.2), or rather, the equivalent equation
codeq(u + 1) = σ

(

codeq(u)− σq−1 · rk(t[u])
)

+ rk(t[u + q]) (9.3)to avoid the modulo operations, whi
h are possibly time
onsuming.There are σq bu
kets, one for ea
h possible codeq . In the �rst s
an, the size of ea
hbu
ket is determined by
ounting the number of su�xes for ea
h possible codeq . Theout
ome of this is used to
ompute the starting position for ea
h bu
ket. These positionsare stored in the array bkt, whi
h is of size σq. During the se
ond s
an, the su�x numbersare mapped to the bu
kets, where su�x number u is mapped to bu
ket number codeq(u).After the bu
ket sort, the bu
ket pointer table bptr
an be
omputed by another s
an ofthe sequen
e. Re
all our de�nition of bu
ket pointers, equation (9.1). For ea
h su�x u ∈
[1, n], the bu
ket pointer bptr[u] is simply the rightmost position of the bu
ket
ontaining
u, bptr[u] = bkt[codeq(u) + 1]− 1. 91

9 The Bu
ket-Pointer Re�nement Algorithm9.3.2 Re
ursively re�ning the bu
ketsWe now give a more in-depth des
ription of the three steps of the re�nement pro
edureand present improvements to the basi
 approa
h.Partitioning. In the re�nement pro
edure, the su�xes are �rst partitioned with respe
tto a
ertain o�set ℓ using the bu
ket pointer bptr[u + ℓ] as the sort key for the su�xnumber u. Our ternary partitioning algorithm is adapted from Lomuto's binary partition-ing s
heme [21, Column 10℄ (see also [38, Se
tion 7.1℄). We further tried other ternarypartitioning algorithms that were suggested by Kiwiel [81℄, but ours performs best. Algo-rithm 9.1 (TernaryPartition) shows our partitioning pro
edure for an ℓ-bu
ket sa[l, r]around the pivot p. The algorithm partitions the su�xes into three segments: a left, amiddle, and a right segment. The su�xes with sort key equal to the pivot p are �rstmoved to the middle segment and then further to the left segment, the su�xes with sortkey smaller than p to the middle segment, and the su�xes with sort key larger than pto the right segment. The numbers end=, end<, i refer to the rightmost positions of therespe
tive segments and are appropriately updated when the su�xes are moved: end=refers to the rightmost position of the left segment, end< to the rightmost position of themiddle segment, and i to the rightmost position of the right segment. The movements areperformed by swapping the su�xes as in the original Qui
ksort. Finally, Ve
torSwap(Algorithm 9.2) moves the su�xes of the left segment, with sort key equal to the pivot, totheir �nal position by swapping them with the rightmost su�xes of the middle segment,ultimately produ
ing the desired three sub-bu
kets. Figure 9.3 sket
hes the segments ofthe array immediately before and after the movement of su�xes by Ve
torSwap.Our Ve
torSwap pro
edure improves upon the ve
tor swap used by Bentley andM
Ilroy [22℄ for the ternary partitioning. Their pro
edure swaps the elements of twoarrays A and B, ea
h of length m, elementwise for ea
h position i ∈ [1,m]: It assigns
A[i] to an auxiliary variable tmp, B[i] to A[i], and tmp to B[i], altogether performing 3massignment operations. The ordering of the elements is kept during the ve
tor swap. Ourve
tor swap redu
es the number of assignment operations. Although it is quite simple, wehave not seen that it has been previously used for the ternary partitioning. It �rst assignsthe last element of the se
ond array B[m] to tmp. Then it performs the following stepsfor ea
h i ∈ [2,m] from m down to 2: A[i] is assigned to B[i] and B[i− 1] to A[i]. Finally,
A[1] is assigned to B[1] and tmp to A[1]. Our ve
tor swap keeps the order of elementsthat are moved from A to B, but alters the order of elements that are moved from B to
A: The last element B[m] is moved to the �rst position A[1]. The number of assignmentoperations, however, is only 2m + 1, instead of 3m for Bentley and M
Ilroy's ve
tor swap.Moreover, we want to �nd a pivot sort key, hopefully near the true median, in
onstanttime. Hoare [59℄ proposed using the median of a small sample of sort keys. We
hoosethe pivot to be the median of nine sort keys for bu
kets larger than 10 000 su�xes andthe median of three sort keys for smaller bu
kets. The median of three was proposed bySingleton [137℄, who suggested the median of the leftmost, the middle, and the rightmostelement. We, however, observed that his sele
tion sometimes
auses a signi�
ant in
rease92

9.3 Engineering and implementation for fast speedAlgorithm 9.1.TernaryPartition(sa, ℓ, l, r, p)

i← end= ← end< ← l − 1while i < r do
i← i + 1
sortkey ← bptr[sa[i] + ℓ]if sortkey ≤ p then

end< ← end< + 1
tmp← sa[i]
sa[i]← sa[end<]
sa[end<]← tmpif sortkey = p then

end= ← end= + 1
sa[end<]← sa[end=]
sa[end=]← tmpend ifend ifend while

swapsize← min{end= + 1− l, end< − end=}Ve
torSwap(l, l + swapsize− 1, end<)

Algorithm 9.2.Ve
torSwap(g, h, z)

tmp← sa[z]while g < h do
sa[z]← sa[h]
z ← z − 1
sa[h]← sa[z]
h← h− 1end while

sa[z]← sa[h]
sa[h]← tmp

end=

?

end<

?

i

?
= < >

6
g

6
h

6
z

< = >
6

g, h
6
zFigure 9.3: Partitioning su�xes before and after ve
tor swap.in running time for inputs with long repeated substrings. This is presumably due tothe dependen
ies among su�xes in the re�nement pro
ess su
h that the same su�xesare repeatedly en
ountered at the leftmost or rightmost bu
ket positions in su

essivere�nement steps and are thus overrepresented in the
hoi
e of the median sort key. Hen
e,we
hoose the sort key of the middle element and the sort keys of the two elements that areone-fourth of the bu
ket size away from the bu
ket boundaries, preventing the mentionede�e
t. For the median of nine, we
hoose the sort keys analogously: at positions everyone-tenth of the bu
ket size away from ea
h other and away from the bu
ket boundaries.For small bu
kets, our re�nement algorithm falls ba
k upon simple sorting routines:Bu
kets of size 2 or 3 are re�ned into singleton bu
kets by dire
tly
omparing the sort93

9 The Bu
ket-Pointer Re�nement Algorithmkeys, while ℓ is in
remented by q. Insertion Sort is used for bu
kets of size up to 15.Updating bu
ket pointers. The used pro
edure for the bu
ket pointer update dependson the re�nement algorithm. If the su�xes in a small bu
ket of size 2 or 3 are dire
tly
ompared and re�ned into singleton bu
kets, then the updated bu
ket pointer of a su�x
sa[i] is simply a ba
kward link, bptr[sa[i]] = i.After sorting the su�xes via Insertion Sort, the update is performed by a right-to-lefts
an of the
urrent bu
ket. As long as the sort keys of
onse
utive su�xes are equal, theyare lo
ated in the same re�ned bu
ket, and the bu
ket pointer is set to the rightmost posi-tion of the re�ned bu
ket. Note that the re�ned bu
ket positions are impli
itly
ontainedin the bu
ket pointer table bptr. The left pointer l of a bu
ket is the right pointer of thebu
ket dire
tly to the left in
reased by one, and the right pointer r is simply the bu
ketpointer for the su�x sa[l] at position l, r = bptr[sa[l]], sin
e the bu
ket pointer bptr[u] ofea
h su�x u points to the rightmost position of its bu
ket.The ternary partitioning generates the sub-bu
kets in
luding the leftmost and right-most position of ea
h su
h bu
ket. The strategy that we would follow to meet the bestasymptoti
 running time is the following: In one s
an of ea
h of the three sub-bu
kets,the update pro
edure assign the rightmost position to the bu
ket pointers of all
ontainedsu�xes. During the pra
ti
al engineering of our algorithm, however, we observed thatthe memory referen
es to the bu
ket pointer array follow a quite arbitrary a

ess pattern,resulting in many
a
he misses. Espe
ially the write operations during the updates
ausea delay in data a

ess. Hen
e, in our pra
ti
al implementation that re�nes the sub-bu
ketsfrom left to right, we postpone the update of bu
ket pointers of su�xes in the left or rightsub-bu
kets until they are singletons. We update the respe
tive bu
ket pointers for themiddle sub-bu
ket after the left sub-bu
ket has been
ompletely re�ned.Re
ursive Re�nement. The re
ursive re�nement pro
edure is usually
alled with anin
remented o�set ℓ + q for the middle sub-bu
ket. Note that, for a middle sub-bu
ket
sa[l=, r=] of sa[l, r]
ontaining ea
h su�x t[sa[i], n], i ∈ [l=, r=], for whi
h the ℓ-su

essorsu�x t[sa[i] + ℓ, n] is also
ontained in sa[l, r], the o�set
an be doubled. This is sobe
ause all su�xes
ontained in sa[l, r] share a
ommon pre�x of length ℓ, and for ea
hsu�x t[sa[i], n] in the middle sub-bu
ket, i ∈ [l=, r=], there is also the ℓ-su

essor su�x
t[sa[i] + ℓ, n] in its super-bu
ket sa[l, r]. Hen
e, all su�xes
ontained in sa[l=, r=] share apre�x of length 2ℓ.We add a further heuristi
 to avoid the unne
essary repeated sorting of bu
kets. For abu
ket
onsisting of su�xes that all share a
ommon pre�x mu
h larger than the
urrento�set, many re�nement steps may be performed without a
tually re�ning the bu
ket. Thismay
ontinue until ℓ rea
hes the length of the
ommon pre�x. Therefore, if a bu
ket is notre�ned during a re
ursion step, we sear
h for the lowest o�set dividing the bu
ket. This isperformed by just iteratively s
anning the bu
ket pointers of the
ontained su�xes withrespe
t to ℓ and in
rementing ℓ by q after ea
h run. As soon as a bu
ket pointer di�erentfrom the others is met, the
urrent ℓ is used to
all the re�nement pro
edure.94

9.3 Engineering and implementation for fast speed9.3.3 Double pushingWe use a push te
hnique in
ombination with the re
ursive re�nement pro
edure. Ourdouble push method that we present in this se
tion is based upon Seward's
opy te
hnique(see Se
tion 8.2.2.2). It is used in
ombination with the previously des
ribed re
ursivepartitioning of the bu
kets after the initial sorting in the �rst phase. Re
all that the
opymethod passes the order of su�xes in a 1-bu
ket on to the order of the
orrespondingprede
essor su�xes in some 2-bu
kets (pushing on
e). Double push further passes thesorted order of these just
opied su�xes on to prede
essor su�xes in some 3-bu
kets(pushing twi
e).We assume a �xed, small alphabet Σ of size σ. For all (a, b, c) ∈ Σ3, we denote a3-bu
ket
ontaining all su�xes with pre�x a, b, c by sa[la,b,c, ra,b,c], a 2-bu
ket
ontainingall su�xes with pre�x a, b by sa[la,b, ra,b], and a 1-bu
ket
ontaining all su�xes with pre�x
a by sa[la, ra]. Note that
onse
utive 3-bu
kets
onsisting of su�xes sharing the pre�x
a, b form a 2-bu
ket sa[la,b, ra,b] and that
onse
utive 2-bu
kets of su�xes with leading
hara
ter a form a 1-bu
ket sa[la, ra].After the �rst phase of our algorithm that generates a q-bu
ket segmentation for q ≥ 3,our program pro
esses the 1-bu
kets sa[lc, rc], c ∈ Σ, in as
ending order with respe
t tothe number of su�xes, |sa[lc, rc]| − |sa[lc,c, rc,c]| = rc − lc − (rc,c − lc,c). The re
ursivere�nement pro
edure, des
ribed in Se
tion 9.3.2, sorts all sub-bu
kets of sa[lc, rc] thathave not yet been sorted, ex
ept for the bu
kets with equal �rst and se
ond
hara
ter c.Then the
opy algorithm of Seward [135℄ passes the ordering of su�xes in sa[lc, rc] onto the not previously re�ned bu
kets among sa[lb1,c, rb1,c], sa[lb2,c, rb2,c], . . . , sa[lbσ ,c, rbσ ,c],where bk ∈ Σ is the kth
hara
ter of the alphabet, k ∈ [1, σ]. Finally, the su�xes in ea
hof these 2-bu
kets are pushed further. Let sa[lbk,c, rbk,c] with k ∈ [1, σ] be any of these
2-bu
kets and sa[la1,bk,c, ra2,bk,c], sa[la2,bk,c, ra2,bk,c], . . . , sa[laσ ,bk,c, raσ ,bk,c] the bu
kets ofsu�xes with �rst
hara
ter aj ∈ Σ (j ∈ [1, σ]), se
ond
hara
ter bk, and third
hara
ter
c. Then sa[lbk,c, rbk,c] is s
anned from left to right. For ea
h su�x number sa[i] with
i ∈ [lbk ,c, rbk ,c] and sa[i] > 1, en
ountered in the s
an, if the bu
kets of su�xes with the�rst
hara
ter t[i− 1] are not already re�ned, then the prede
essor su�x number sa[i]− 1is assigned to the front of the bu
ket sa[lt[i−1],bk,c, rt[i−1],bk,c], and the front is advan
ed byone.Figure 9.4 shows an example of the double push pro
edure for the input string t =CEBDEBDEBDEA. The topmost part below the input string shows the bu
ket segmentationof the su�x array sa before applying the double push pro
edure to the bu
ket of su�xeswith leading
hara
ter B. All shown su�x numbers are already in their �nal position.The double push pro
edure applied to the bu
ket of su�xes with leading
hara
ter A,whi
h only
ontains the su�x number 12, has previously assigned the su�x numbers 11(prede
essor of 12) and 10 (prede
essor of 11) to their �nal positions. The bu
kets thatare going to be determined by the
urrent double push are left empty (bu
kets of su�xeswith se
ond or third
hara
ter B). For ea
h su�x that is involved in the
urrent pushingpro
edure, the �rst
hara
ter of its prede
essor su�x (the
hara
ter to the �left�) is printedbelow its su�x number. E is, for example, the
hara
ter at the positions 8, 5, and 2 to95

9 The Bu
ket-Pointer Re�nement AlgorithmString to build su�x array for: t = C E B D E B D E B D E A1 2 3 4 5 6 7 8 9 10 11 12
sa before double push A12 B9E 6E 3E CEB DEA10 DEB EA11 EB

? ? ?
sa after pushing on
e 12 9 6 3 10 11 8D 5D 2C

? ??
sa after pushing twi
e 12 9 6 3 1 10 7 4 11 8 5 2Figure 9.4: Double pushing the bu
ket of lexi
ographi
ally sorted su�xes with leading
hara
ter B of the string CEBDEBDEBDEA.the left of 9, 6, and 3. The middle part of the �gure shows sa after pushing on
e, andthe bottom part shows sa after the
omplete double pushing. We �rst push the bu
ket ofsu�x numbers 9, 6, and 3. Their order is passed on to the bu
ket of prede
essor su�xnumbers 8, 5, and 2 for whi
h the
orresponding su�xes share the pre�x EB. Then theorder of the su�x numbers 8, 5, and 2 is further passed on to the bu
kets of su�xes withthird
hara
ter B. The su�x numbers 7 and 4, whi
h
orrespond to su�xes with
ommonpre�x DEB, form a bu
ket, and the su�x number 1, whi
h
orresponds to a su�x withpre�x CEB, forms another bu
ket.9.4 Use
asesA previous version of the here presented bu
ket-pointer re�nement algorithm is publishedin [132℄ and [133℄. Its implementation proved its e�
ien
y in several bioinformati
s appli-
ations. Paarmann [116℄ as well as Twardziok and S
hwientek [140℄ integrated bpr in theirtools for the design of oligo nu
leotides (see also [121℄). They applied bpr for the
on-stru
tion of their su�x-array-based index, whi
h is then pro
essed further. Kemena [77℄and Holthaus [62℄ use bpr for the
onstru
tion of Abouelhoda et al.'s enhan
ed su�xarray [1, 2℄, upon whi
h they implemented several query algorithms. Moreover, Huse-mann [64℄ applied bpr for text
ompression. He implemented Manzini and Ferragina's
ompression boosting s
heme [51℄ based on su�x arrays.96

10 Experimental ResultsIn this
hapter, we investigate the pra
ti
al
onstru
tion times and the spa
e requirementsof our algorithm and
ompare it to the fastest previous su�x array
onstru
tion algorithms.Se
tion 10.1
ontains the settings of the experiments. In Se
tion 10.2, we present theresults of the experiments and dis
uss them in Se
tion 10.3.10.1 Des
ription of the experiments10.1.1 Implementation of the algorithmsWe
ompared our bpr implementation [127, version 2.0.0℄ to eight other pra
ti
al imple-mentations: deep�shallow by Manzini and Ferragina [102℄,
a
he and
opy by Seward [135℄,qsufsort by Larsson and Sadakane [90℄, di�eren
e-
over by Burkhardt and Kärkkäinen [31℄,odd�even by Kim et al. [78℄, and skew by Kärkkäinen and Sanders [71℄. We retrieved theimplementations of deep�shallow,
a
he,
opy, and qsufsort from Manzini's homepage [100℄,the
ode for di�eren
e-
over and skew via Kärkkäinen's homepage [69℄, and the implemen-tation of odd�even was kindly provided by Dong Kyue Kim. We further added the re
entmsufsort implementation of Manis
al
o (version 2.0.1), whi
h we retrieved from his home-page [97℄ (see also [98, 118, 120℄). Manis
al
o's msufsort, however, only
onstru
ts theinverse su�x array, although Puglisi et al. [120℄ stated that the su�x array is
onstru
tedfrom the inverse su�x array in-pla
e. Hen
e, we added a pro
edure that derives the su�xarray by a single s
an of the inverse su�x array, but not in-pla
e. The msufsort pro
edurefollows the depth-�rst bu
ket re�nement s
heme and uses a pull te
hnique. The generalframework is quite similar to our bpr algorithm: Similar to our bu
ket pointer array,msufsort uses an array that stores the lexi
ographi
al order of previously sorted su�xesin the su�x sorting pro
ess. This array ultimately be
omes the inverse su�x array (asour bu
ket pointer array). Beyond that, msufsort manages to store further information inthe same array: For ea
h non-singleton bu
ket, it stores a
hain of all su�xes lo
ated inthe bu
ket. Hen
e, msufsort does not need the su�x array. It is thus more spa
e e�
ientthan bpr. Furthermore, msufsort uses a tandem repeat dete
tion for su�xes with equalpre�x. On
e su
h a tandem repeat is dete
ted, the su�xes
an be dire
tly sorted (see [118℄for a detailed explanation).Table 10.1 shows the worst-
ase asymptoti
 time
omplexities of the investigated algo-rithms. 97

10 Experimental ResultsTable 10.1: Worst-
ase time
omplexities of the investigated su�x array
onstru
tion al-gorithms. deep di�eren
e oddbpr msufsort shallow
a
he
opy qsufsort
over even skew
O

“

n2

log n

”

O(n2 log n) O(n2 log n) O(n2 log n) O(n2 log n) O(n log n) O(n log n) O(n log log n) Θ(n)10.1.2 MethodsThe experiments were performed on four di�erent
omputers: three
omputers with x86ar
hite
ture and one Sun UltraSPARC
omputer. We refer to the x86
omputers bySmall S
ale x86, Medium S
ale x86, and Large S
ale x86 regarding their main memorysize, and to the Sun UltraSPARC
omputer by UltraSPARC :� Small S
ale x86 � A 1.3 GHz Intel Pentium� M (Klamath) pro
essor, running aGNU/Linux operating system. The memory hierar
hy is
omposed of separate L1instru
tion and data
a
he, ea
h of size 32 Kbyte and 3
y
les laten
y, a 1 Mbyte L2
a
he with 10
y
les laten
y, and 512 Mbytes of main memory. Ea
h
a
he is 8-wayasso
iative with 64 byte line size.� Medium S
ale x86 � A SunFire V20z with two 1.6 GHz AMD Opteron� 242 pro
es-sors running the Solaris 10 operating system. The memory hierar
hy is
omposed ofseparate L1 instru
tion and data
a
he, ea
h of size 64 Kbyte, a 1 Mbyte L2
a
he,and 2 Gbytes of main memory. The L1
a
hes are 2-way asso
iative, and the L2
a
he is 16-way asso
iative.� Large S
ale x86 � A Xen-DomU with three virtual CPUs (mapped onto 3 realOpteron
ores) running a GNU/Linux operating system. The real hardware is aSunFire X4100 with two 2.6 GHz AMD Dual-Core Opteron� 285 SE pro
essorsrunning a GNU/Linux operating system. The memory hierar
hy is
omposed ofseparate L1 instru
tion and data
a
he, ea
h of size 64 Kbyte and 3
y
les laten
y,a 1 Mbyte L2
a
he with 12
y
les laten
y, and 8 Gbytes of main memory. TheL1
a
hes are 2-way asso
iative with 64 byte line size, and the L2
a
he is 8-wayasso
iative with 64 byte line size.� UltraSPARC � A SunFire V440 with four 1.3 GHz UltraSPARC IIIi pro
essorsrunning the Solaris 10 operating system. The memory hierar
hy is
omposed ofseparate L1 instru
tion and data
a
he, the instru
tion
a
he of size 32 Kbyte andthe data
a
he of size 64 Kbyte, a 1 Mbyte L2
a
he, and 16 Gbytes of main memory.All programs were
ompiled with the g

ompiler, respe
tively g++
ompiler, with opti-misation options `-O3 -fomit-frame-pointer -funroll-loops'. For Small S
ale x86 and LargeS
ale x86 both running a GNU/Linux operating system, we used the same exe
utable thatwas generated with the g

ompiler version 3.3.6. For the Medium S
ale x86 and for theUltraSPARC, we used the g

ompiler version 4.1.1.98

10.1 Des
ription of the experiments10.1.3 Investigated sequen
e dataWe en
ounter two main types of sequen
es that are indexed by full-text indi
es: DNAsequen
es and other
ommon real-world strings, like natural language texts or softwaresour
e
ode. In the analysis of genomes, for example, individual DNA sequen
es or,alternatively,
on
atenations of similar DNA sequen
es are indexed to �nd repeats, uniqueregions, and
ommon subsequen
es (see, for example, [58, 87, 89℄). Moreover, Joy andLu
k [68℄ observed that in programming
ourses, where the assessment is often
arriedout by means of programming assignments, there is a temptation among some studentsto
opy and modify the work of others. Baker [13℄ and Mozgovoy et al. [110℄, for example,use full-text indi
es to dete
t su
h plagiarism in program sour
e
odes as well as in naturallanguage texts.Hen
e, our test data set
onsists of two major groups of sequen
es: DNA sequen
es and
ommon real-world strings. Beyond that, we investigated a third group of arti�
ially gen-erated sequen
es, mainly to examine degenerated strings with large LCPs. The maximumLCP of a string is a good indi
ator for the re
ursion depth of bu
ket re�nement algo-rithms, and the average LCP further in
orporates information of the sizes of the bu
ketsat di�erent re�nement levels: Many large ℓ-bu
kets for a high re�nement level ℓ imply ahigh average LCP. The investigated data �les are listed in Table 10.2 and are basi
allyordered by average LCP. The
olumns show the name of the sequen
e, the average andmaximum values in the respe
tive LCP array, the length of the sequen
e, its
hara
ter set,and a short des
ription of the
ontent. Due to the memory
onstraints of our Small S
alex86 test
omputer, several of the investigated algorithms
ould not
onstru
t su�x arraysfor text �les that ex
eeded the 50 million
hara
ter limit. Hen
e, we took the last 50 mil-lion
hara
ters of those text �les and added them to our
olle
tion of
ommon real-worldstrings. These trun
ated sequen
es are annotated with 50M. The
omplete test data setis available through the bpr homepage [127, bpr-strings.tar.bz2℄.DNA sequen
es. For the DNA sequen
es, we sele
ted genomi
 DNA from di�erentspe
ies: the whole genome of the ba
teria Es
heri
hia
oli (E.
oli), the fourth
hro-mosome of the �owering plant Arabidopsis thaliana (A. thaliana), the �rst
hromosomeof the nematode Caenorhabditis elegans (C. elegans), and the human (H. sapiens)
hro-mosome 22. Moreover, we investigated the
onstru
tion times for di�erent
on
atenatedDNA sequen
es of
ertain families. For this we used six Strepto
o

us genomes, fourgenomes of the Chlamydophila family, and three di�erent E.
oli genomes. We retrievedthe Es
heri
hia
oli sequen
e from the Canterbury Large Corpus [10, 17℄, the human
hro-mosome 22 from the
orpus of test �les provided by Manzini and Ferragina [102, 100℄, andthe other sequen
es from GenBank [20, 115℄.Text. For the evaluation of
ommon real-world strings, we used the King James bible(bible) and the CIA world fa
t book (world), both from the Canterbury Large Corpus [10,17℄, and the suite of test �les provided by Manzini and Ferragina [102, 100℄. The strings ofManzini and Ferragina's
orpus are usually
on
atenations of text �les or, alternatively, tar99

10 Experimental ResultsTable 10.2: Des
ription of the data set.LCP String AlphabetData set average maximum length size Des
riptionE.
oli genome 17 2 815 4 638 690 4 Es
heri
hia
oli genomeA. thaliana
hr. 4 58 30 319 12 061 490 7 A. thaliana
hromosome 4H. sapiens
hr. 22 1 979 199 999 34 553 758 5 H. sapiens
hromosome 22C. elegans
hr. 1 3 181 110 283 14 188 020 5 C. elegans
hromosome 16 Strepto
o

i 131 8 091 11 635 882 5 6 Strepto
o

us genomes4 Chlamydophila 1 555 23 625 4 856 123 6 4 Chlamydophila genomes3 E.
oli 68 061 1 316 097 14 776 363 5 3 E.
oli genomesbible 13 551 4 047 392 63 King James bibleworld 23 559 2 473 400 94 CIA world fa
t booksprot 89 7 373 109 617 186 66 SwissProt databaserf
 93 3 445 116 421 901 120 Texts from the RFC proje
thowto 267 70 720 39 422 105 197 Linux Howto �lesreuters 282 26 597 114 711 151 93 Reuters news in XMLlinux 478 136 035 116 254 720 256 Linux kernel sour
e �lesjdk 678 37 334 69 728 899 113 JDK 1.3 do
 �lesetext 1 108 286 352 105 277 340 146 Proje
t Gutenberg textsg

 8 603 856 970 86 630 400 150 g

 3.0 sour
e �lesw3
 42 299 990 053 104 201 579 256 HTML �les of www.w3
.orgsprot 50M 91 2 665 50 000 000 66 SwissProt databaserf
 50M 87 3 445 50 000 000 110 Texts from the RFC proje
treuters 50M 280 24 449 50 000 000 91 Reuters news in XMLlinux 50M 766 136 035 50 000 000 256 linux kernel sour
e �lesjdk 50M 654 34 557 50 000 000 110 JDK 1.3 do
 �lesetext99 50M 1 845 286 352 50 000 000 120 Proje
t Gutenberg textsg

 50M 14 745 856 970 50 000 000 121 g

 3.0 sour
e �lesw3
 50M 478 29 752 50 000 000 255 HTML �les of www.w3
.orgrandom 4 9 20 000 000 26 Bernoulli stringperiod 500 000 9 506 251 19 500 000 20 000 000 26 Repeated Bernoulli stringperiod 1000 9 999 001 19 999 000 20 000 000 26 Repeated Bernoulli stringperiod 20 9 999 981 19 999 980 20 000 000 17 Repeated Bernoulli stringFibona

i 5 029 840 10 772 535 20 000 000 2 Fibona

i stringar
hives: the Swiss prot database version 34.0 in �at �le format (sprot), HTML �les fromthe Request for Comments database (rf
), text �les of the Linux Howto (howto), Reutersnews in XML format (reuters), the C sour
e
ode of the Linux kernel 2.4.5 (linux), javado
pages
onsisting of HTML and Java �les for JDK 1.3 (jdk), text �les from the Proje
tGutenberg (etext), sour
e
ode of the GNU Compiler Colle
tion version 3.0 (g

), andHTML �les from the homepage of the World Wide Web
onsortium (w3
).100

10.2 ResultsTable 10.3: Su�x array
onstru
tion times for di�erent DNA sequen
es and generalisedDNA sequen
es by di�erent algorithms on the Large S
ale x86
omputer, with q = 7for bpr. The programs were
ompiled with the g

ompiler version 3.3.6.Constru
tion time (s)deep di�eren
e oddDNA sequen
es bpr msufsort shallow
a
he
opy qsufsort
over even skewE.
oli genome 1.00 1.57 1.14 2.08 1.73 1.51 2.47 4.07 8.58A. thaliana
hr. 4 3.00 4.57 3.51 6.99 5.99 4.63 7.87 12.17 25.26H. sapiens
hr. 22 9.88 14.36 11.76 24.64 20.35 16.31 27.49 39.95 80.91C. elegans
hr. 1 3.52 15.69 4.51 11.84 9.80 7.76 10.58 14.37 28.646 Strepto
o

i 3.25 6.28 4.86 8.98 7.45 8.32 9.21 12.04 25.384 Chlamydophila 1.32 8.09 2.44 8.32 8.28 4.85 3.52 4.70 9.823 E.
oli 4.01 782.43 9.79 234.04 675.04 24.24 13.55 16.54 34.28Arti�
ial strings. The arti�
ial �les were generated as des
ribed by Burkhardt andKärkkäinen [31℄: a random string made out of Bernoulli-distributed
hara
ters and pe-riodi
 strings
omposed of an initial random string that is repeated until a length of20 million
hara
ters is rea
hed. We used initial random strings of length 20, 1000 and500 000 to generate the periodi
 strings. We also investigated a string
onsisting of the �rst20 million
hara
ters of a Fibona

i string (see [25℄). Fibona

i strings have the reputationfor being parti
ularly bad instan
es for non-linear su�x tree
onstru
tion algorithms (see,for example, [54, 129, 122℄) sin
e they have many long repeats (see [65℄).10.2 ResultsThe
omplete running time results on the four di�erent
omputers are shown in the ap-pendix, Tables A.1�A.5. In this se
tion, we parti
ularly examine the results on the LargeS
ale x86
omputer. The su�x array
onstru
tion times are given in Tables 10.3�10.5.Table 10.3
ontains the
onstru
tion times for the DNA sequen
es. Our bpr algorithm isthe fastest su�x array
onstru
tion algorithm for all investigated DNA sequen
es. Therunning times of the se
ond fastest algorithm, deep�shallow, are by a fa
tor between 1.14and 2.44 greater than the running times of bpr. The other investigated depth-�rst bu
ketre�nement algorithms, msufsort,
a
he, and
opy, show greater but still reasonable runningtimes if the average LCP is relatively small. For the
on
atenated sequen
e of three E.
oligenomes with average LCP 68 061, however, their running times are signi�
antly greaterthan the running times of the other algorithms. The breadth-�rst bu
ket re�nement algo-rithm qsufsort is more stable regarding variations of the average LCP. Nevertheless, thedi�eren
e between the running time of bpr and qsufsort is again maximal for the
on-
atenated sequen
e of the E.
oli genomes (a fa
tor of 6.04). The redu
ed string sortingalgorithms are slower than all bu
ket re�nement algorithms if the average LCP is small,but signi�
antly faster than the depth-�rst bu
ket re�nement algorithms msufsort,
a
he,101

10 Experimental ResultsTable 10.4: Su�x array
onstru
tion times for various texts by di�erent algorithms on theLarge S
ale x86
omputer, with q = 3 for bpr. The programs were
ompiled with theg

ompiler version 3.3.6. Constru
tion time (s)deep di�eren
e oddText bpr msufsort shallow
a
he
opy qsufsort
over even skewbible 0.90 1.12 0.93 1.57 1.29 1.72 2.07 4.10 7.44world 0.55 0.73 0.48 0.84 0.66 1.12 1.30 2.56 4.41sprot 41.06 56.66 59.16 111.89 97.84 108.26 145.42 200.61 335.47rf
 40.93 56.23 55.15 100.25 84.06 115.24 125.82 204.20 350.76howto 11.87 15.68 15.02 22.83 25.63 27.54 30.27 62.43 110.32reuters 46.26 66.89 110.99 189.74 212.52 136.83 212.49 217.17 342.13linux 37.23 48.61 48.69 106.21 120.04 99.43 114.86 187.28 345.21jdk 24.19 39.71 63.30 110.25 183.89 83.64 130.65 114.71 186.37etext 41.74 51.36 60.28 101.44 221.22 110.94 106.60 217.79 397.12g

 29.62 35.33 60.75 1148.78 7153.44 72.67 84.29 123.56 237.12w3
 38.31 55.32 94.65 124.41 3618.65 148.65 143.83 176.27 285.70sprot 50M 15.59 23.31 23.16 41.74 39.67 41.33 55.20 79.80 129.96rf
 50M 15.34 21.35 20.16 34.91 32.22 40.49 45.81 76.99 128.37reuters 50M 17.20 25.64 40.21 66.69 81.86 50.26 76.55 83.44 129.90linux 50M 15.83 19.06 18.18 29.59 47.28 42.27 42.17 71.84 130.25jdk 50M 15.46 24.65 35.54 59.02 112.07 49.34 75.48 77.00 129.07etext 50M 17.15 21.47 25.23 41.05 119.60 43.88 41.27 88.00 141.30g

 50M 17.77 18.88 49.39 1402.91 7756.83 39.83 47.36 60.55 118.93w3
 50M 15.95 23.42 40.77 49.77 75.31 46.39 66.37 76.41 121.65and
opy for the
on
atenated sequen
e of the E.
oli genomes. The running times of bpr,however, are as stable as the running times of the quasi-linear odd�even algorithm: bpr is
ontinuously around 4 times faster than odd�even for every DNA sequen
e.For the other real-world strings, the running times of the investigated algorithms areshown in Table 10.4. Our bpr is the fastest su�x array
onstru
tion algorithm for allbut one string: deep�shallow is faster for the CIA world fa
t book (world). The depth-�rst bu
ket re�nement algorithms deep�shallow and msufsort show the next best runningtimes: deep�shallow is often faster than msufsort for strings with small average LCP,but slower for strings with large average LCP. The other depth-�rst bu
ket re�nementalgorithms
a
he and
opy are only
ompetitive for strings with small average LCP. Forsu
h strings, they are faster than the breadth-�rst bu
ket re�nement algorithm qsufsortand the redu
ed string sorting algorithms di�eren
e-
over, odd�even, and skew. For stringswith large average LCP, however, they are signi�
antly slower than qsufsort and theredu
ed string sorting algorithms. A strange result is that the running times of
a
he and
opy for the string g

 are less than the running times for its shorter su�x g

 50M. Forthe strings
onsisting of exa
tly 50 million
hara
ters, we observe that the running timesof bpr and msufsort as well as the running times of qsufsort, di�eren
e-
over, odd�even,102

10.2 ResultsTable 10.5: Su�x array
onstru
tion times for arti�
ial strings by di�erent algorithms onthe Large S
ale x86
omputer, with q = 3 for bpr. The programs were
ompiled withthe g

ompiler version 3.3.6. Constru
tion time (s)Arti�
ial deep di�eren
e oddstrings bpr msufsort shallow
a
he
opy qsufsort
over even skewrandom 5.60 7.08 6.73 9.23 7.88 8.08 13.30 27.01 36.19period 500 000 6.95 224.85 562.60 43 370.14 � 47.32 29.89 21.20 43.94period 1000 7.98 15.21 651.68 20 998.25 � 50.83 55.16 13.00 35.01period 20 4.71 3.36 31 807.89 � � 39.14 35.14 6.10 36.78Fibona

i 15.75 232 585.62 547.49 � 176 968.97 44.01 48.44 21.71 27.08and skew are quite stable regarding varying average LCP, although the stated worst-
asetime
omplexities of bpr and msufsort are
onsiderably worse than those of qsufsort andthe redu
ed string sorting algorithms.The
onstru
tion times for the arti�
ial strings are shown in Table 10.5. Wherever analgorithm used more than 6 days of
omputation time, we stopped the
omputation. Thisis indi
ated by a dash in the table. For the random string with small average LCP, thebu
ket re�nement algorithms are faster than the redu
ed string sorting algorithms. Forthe periodi
 strings, however, the depth-�rst bu
ket re�nement algorithms deep�shallow,
a
he, and
opy are signi�
antly slower than the other algorithms. Here, bpr performsvery well, even
ompared to msufsort, whi
h has a tandem repeat dete
tion, and
omparedto the algorithms qsufsort, di�eren
e-
over, odd�even, and skew with good worst-
ase time
omplexities. Our algorithm is by far the fastest algorithm for strings with period 1000 and500 000. For strings with period 20, msufsort with its repeat dete
tion is slightly faster.The repeat dete
tion of msufsort, however, seems only to work for �simple� short repeats.For the su�x array
onstru
tion of the repetitive Fibona

i string, msufsort needs almost3 days. Here, bpr is the fastest algorithm. It is even faster than the linear-time skewalgorithm and the quasi-linear odd�even algorithm.Puglisi et al. [120℄ presented an experimental study of di�erent su�x array
onstru
-tion algorithms, in
luding msufsort, deep�shallow, and our �rst version of bpr. In theirevaluation, msufsort is always faster than bpr, and deep-shallow is in most
ases fasterthan bpr. These results seem to
ontradi
t previous results that we have presented in [132℄and [133℄. Thus, we performed experiments on
omputers of di�erent s
ale and observedourselves that the relative running time of the �rst version of bpr
ompared to the runningtime of other su�x array
onstru
tion algorithms depend on the used
omputer with itsparti
ular
a
he and even on the version of the g

ompiler. The improved bpr algorithmthat we investigate in this thesis is mu
h faster than the �rst version, but the runningtimes
ompared to the other algorithms still depend on the used
omputer and on theused
ompiler. Table 10.6 shows the running times of the investigated su�x array
on-stru
tion algorithms for the string jdk 50M on the four di�erent
omputers. The msufsort103

10 Experimental ResultsTable 10.6: Su�x array
onstru
tion times for the string jdk 50M by di�erent algorithmson four di�erent
omputers, with q = 3 for bpr. The programs were
ompiled withdi�erent g

ompiler versions. Constru
tion time (s)deep di�eren
e oddComputer bpr msufsort shallow
a
he
opy qsufsort
over even skewSmall S
ale x86 19.73 35.10 45.55 85.34 206.63 75.36 98.20 98.29 162.65Medium S
ale x86 33.49 28.55 56.02 117.31 146.06 69.42 82.92 82.37 147.82Large S
ale x86 15.46 24.65 35.54 59.02 112.07 49.34 75.48 77.00 129.07UltraSPARC 36.84 � 85.31 145.99 344.27 123.18 192.99 137.53 247.80implementation aborts unexpe
tedly for every input on the UltraSPARC
omputer. Thisis indi
ated by a dash in the table. All programs have the shortest running time on theLarge S
ale x86
omputer, but bpr, ds, and
a
he run faster on the Small S
ale x86
om-puter than on the Medium S
ale x86
omputer, while the other programs run faster onthe Medium S
ale x86
omputer than on the Small S
ale x86
omputer. Also, the relativerunning times between the algorithms vary greatly: On the Small S
ale x86
omputer,for example, the running time of msufsort is by a fa
tor of 1.78 greater than the runningtime of bpr, but by a fa
tor of 0.85 smaller on the Medium S
ale x86
omputer.In addition, we run experiments on the Large S
ale x86
omputer, where the algorithmswere
ompiled with the g

ompiler version 4.0.3, instead of version 3.3.6. The resultsare shown in the appendix, Table A.4. Here, bpr is still the fastest algorithm for theDNA sequen
es and among the two fastest algorithms for the other sequen
es, but bpr 'sadvantage de
reases. The g

ompiler version 4.0.3, however, generates
ode that uses64-bit pointers, and we were not able to turn that o�. Unlike the other investigatedprograms, whi
h mainly use integer values for most of their data stru
tures, the bu
ketpointer array used by bpr is based on real C pointers. It thus requires twi
e as mu
h spa
eas would be ne
essary for a 32-bit implementation. This
ertainly leads to more
a
hemisses. Hen
e, the running times of these
ompiled programs are not dire
tly
omparable.In summary, one
an say that bpr is always among the two fastest of the investigatedalgorithms on every of the four investigated
omputers. In most
ases, and spe
i�
ally forall DNA sequen
es, it is the fastest algorithm. Unlike the other depth-�rst bu
ket re�ne-ment algorithms, it shows stable running times for all investigated sequen
es, regardlessof the average LCP. Even for the Fibona

i string, bpr performs well
ompared to thealgorithms qsufsort, di�eren
e-
over, and odd�even with good worst-
ase time
omplexity,whereas the
onstru
tion times for msufsort, deep�shallow,
a
he, and
opy es
alate. Therunning times of the di�erent algorithms, however, also depend on the used
omputer andon the used
ompiler. We should thus be
areful with general statements regarding thepra
ti
al performan
e of the di�erent algorithms.104

10.2 ResultsTable 10.7: Des
ription of the genomi
 DNA sequen
es and the su�x array
onstru
tiontimes for these sequen
es by bpr, with q = 7.LCP String Alphabet bprGenomes average maximum length size
onstru
tion time (s)Human (H. Sapiens) 518 611 29 999 999 3 096 521 113 7 4978.11Mouse (M. mus
ulus) 37 338 3 049 999 2 482 869 215 5 3968.57Dog (C. lupus) 69 485 3 000 010 2 531 673 953 5 3856.9910.2.1 Performan
e on very large-s
ale data setsIn a separate experiment, we took the
onstru
tion times for the human [36℄, mouse [37℄and dog genome [35℄ (all downloaded from [11℄) on a Sun Fire V1280 server running twelve900 MHz UltraSpar
-III pro
essors. Its memory hierar
hy is
omposed of 32 Kbyte L1instru
tion and 64 Kbyte L1 data
a
he, 8 Mbyte L2
a
he, and 96 Gbyte main memory.The genomes are
on
atenated DNA sequen
es of all their
hromosomes where the humangenome
onsists of about 3.09 billion nu
leotides, the mouse genome of about 2.48 bil-lion, and the dog genome of about 2.53 billion, in total. The three genome sequen
es areavailable through the bpr homepage [127, bpr-genomes.tar.bz2℄. We
ompiled the imple-mentations of su�x array
onstru
tion algorithms with the g

ompiler version 4.1.1 andfurther 64-bit options '-m64 -mptr64'.Bpr with q = 7 needs about 1 h 23 min for the human genome, 1 h 6 min for the mousegenome, and 1 h 4 min for the dog genome. The other algorithms abort unexpe
tedly.It seems that their parti
ular implementations are limited to 32 bit address spa
e. Notethat, at the time we were performing the experiments, the server ran multiple
on
urrentpro
esses, su
h that the times may vary in di�erent runs.10.2.2 Spa
e
onsumptionBesides the running times, we measured the spa
e
onsumptions of the di�erent su�xarray
onstru
tion algorithms over all data �les. We used memtime [19℄ to get the peakvirtual memory
onsumption tra
ed by the linux operating system. Table 10.8 shows theresults in average number of bytes per
hara
ter of the used input sequen
es. The givenvirtual memory
onsumption of msufsort in
ludes only the spa
e for the
onstru
tion ofthe inverse su�x array, not the additional spa
e that we used for deriving the su�x arrayfrom its inverse.With 5.04n to 6.04n bytes, the lightweight algorithms
opy, deep�shallow, msufsort,di�eren
e-
over, and
a
he use slightly more spa
e than the theoreti
al minimum of 5nbytes,
onsisting of 4n bytes for the su�x array and n bytes for the input string. Qsufsort's8.03n and bpr's 9.30n bytes are still under the limit of 10n bytes, while odd�even and skewusing 16.03n and 23.92n bytes, respe
tively,
onsume signi�
antly more spa
e. 105

10 Experimental ResultsTable 10.8: Average virtual memory spa
e
onsumption per input
hara
ter for the di�erentsu�x array
onstru
tion algorithms.Bytes per input
hara
terdeep di�eren
e oddbpr msufsort shallow
a
he
opy qsufsort
over even skew9.30 5.29 5.06 6.04 5.04 8.03 5.93 16.03 23.9210.2.3 Detailed runtime analysisFor a more detailed performan
e analysis of the su�x array
onstru
tion algorithms, weused the pro�ler and
a
he simulator valgrind [136, 114℄ to
ount the number of exe
utedinstru
tions and to simulate the
a
hing behaviour on the Large S
ale x86
omputer. Theprograms were
ompiled with the g

ompiler version 3.3.6.The number of exe
uted instru
tions per input
hara
ter of the di�erent algorithms isshown in Table 10.9, the L1 data referen
es per input
hara
ter in Table 10.10, the L1misses or, alternatively, L2 referen
es per input
hara
ter in Table 10.11, and the numberof L2 misses per input
hara
ter in Table 10.12. We stopped the
omputation whenever asimulation used more than 24 hours. This is indi
ated by a dash in the tables. In addition,Figures 10.1 and 10.2 exemplarily show bar
harts for H. sapiens
hromosome 22 and thelinux sour
e
ode. Note that, besides the instru
tions and
a
he referen
es of the puresu�x array
onstru
tion algorithms, valgrind also
ounts those of the di�erent IO routinesfor reading the input strings from the disk.It is impressive that the instru
tion
ounts for bpr
learly outperform all other algo-rithms for all strings. For real-world strings, the se
ond best algorithm, msufsort, exe
uteson average more than twi
e as many instru
tions. For the Fibona

i string, msufsort exe-
utes an enormous number of instru
tions, although it shows reasonable instru
tion
ountsfor the arti�
ial strings with shorter periods. In
ontrast, the instru
tion
ounts of bpr arestable with respe
t to strings of varying average LCP. Even for the Fibona

i string, theaverage instru
tion
ount of bpr (345 instru
tions per input symbol) is
omparable withthe linear-time algorithm skew (396 instru
tions per input symbol) and the quasi-linearodd�even algorithm (533 instru
tions per input symbol).We additionally
ounted the exe
uted instru
tions for the algorithms on the Large S
alex86
omputer
ompiled with the g

ompiler version 4.0.3, instead of version 3.3.6. Theresults are shown in the appendix (Table A.6). Here, the instru
tion
ounts for bpr stilloutperform all the other algorithms for all but one string, the string g

 50M for whi
hmsufsort takes fewer instru
tions. The di�eren
e to msufsort, however, is not as large asfor the algorithms
ompiled with the g

ompiler version 3.3.6.The
a
hing behaviour of bpr is also quite good. The number of L1
a
he referen
es is
orrelated with the number of exe
uted instru
tions, whi
h
an be seen in Figures 10.1and 10.2. Thus, bpr takes the smallest number of L1
a
he referen
es for all strings. Itsinferior miss ratio, however, often leads to more
a
he misses. For all DNA sequen
es, bpr106

10.2Results

Table 10.9: Number of exe
uted instru
tions on the Large S
ale x86
omputer (g

ompiler version 3.3.6).Exe
uted instru
tions per input
hara
terdeep di�eren
e oddSequen
e type Sequen
e bpr msufsort shallow
a
he
opy qsufsort
over even skewDNA sequen
e E.
oli genome 138 404 231 678 603 304 798 382 397A. thaliana
hr. 4 149 480 236 879 865 334 856 383 406H. sapiens
hr. 22 152 414 247 849 749 337 987 391 409C. elegans
hr. 1 144 2879 302 1749 1727 405 1054 395 4066 Strepto
o

i 151 809 401 1161 926 428 953 386 4014 Chlamydophila 156 4457 918 5710 5092 538 978 384 4043 E.
oli 169 150 398 1280 54 382 169 118 701 1029 386 408Text bible 160 316 248 635 582 364 839 415 378world 161 331 253 603 624 348 979 414 378sprot 178 406 471 1589 1937 445 1329 440 400rf
 171 382 420 1077 1252 470 1171 460 395howto 171 377 347 744 1590 421 928 430 412reuters 186 459 1077 3281 5599 487 1530 472 400linux 167 379 412 2055 3429 454 1144 447 409jdk 185 488 1107 2889 10215 491 1680 475 397etext 178 385 459 1087 7206 466 925 438 412g

 281 386 1574 � � 459 1250 451 410w3
 185 600 1839 2178 � 606 1557 466 405sprot 50M 173 396 466 1369 1995 427 1298 433 395rf
 50M 169 371 381 962 1399 446 1129 453 396reuters 50M 180 447 969 2525 5101 470 1469 464 401linux 50M 167 376 403 942 3298 486 1109 439 409jdk 50M 182 476 971 2341 9548 478 1617 468 398etext 50M 174 381 449 947 9365 454 901 432 413g

 50M 359 387 3457 � � 468 1312 452 409w3
 50M 184 452 1724 1766 5770 474 1583 465 399Arti�
ial random 153 267 263 521 464 250 667 332 291period 500 000 211 18 600 100 750 � � 785 2070 335 395period 1 000 176 452 149 789 � � 794 2214 349 398period 20 201 275 � � � 880 2467 418 384Fibona

i 345 � 83 378 � � 815 2469 533 386

107

10ExperimentalResults

Table 10.10: Number of L1
a
he referen
es on the Large S
ale x86
omputer (g

ompiler version 3.3.6).L1 data
a
he referen
es per input
hara
terdeep di�eren
e oddSequen
e type Sequen
e bpr msufsort shallow
a
he
opy qsufsort
over even skewDNA sequen
e E.
oli genome 81.80 200.17 91.27 306.28 257.24 138.75 405.41 243.11 250.53A. thaliana
hr. 4 87.76 241.33 93.01 385.14 344.14 149.60 436.21 243.26 255.83H. sapiens
hr. 22 89.36 203.32 97.16 375.40 311.57 151.78 514.01 243.99 257.62C. elegans
hr. 1 85.08 1610.44 119.59 723.83 618.63 187.99 552.16 244.86 255.686 Strepto
o

i 89.02 428.45 152.74 495.16 362.49 200.00 474.67 244.37 252.584 Chlamydophila 91.77 2499.99 351.48 2283.86 1719.18 261.70 476.53 242.92 254.493 E.
oli 98.13 85601.40 495.72 21418.43 55169.62 348.70 505.13 244.21 257.19Text bible 93.26 155.92 100.69 291.71 250.05 164.65 423.21 237.54 238.95world 94.75 165.00 103.57 275.14 257.33 160.80 507.66 238.15 238.48sprot 102.50 200.41 183.82 668.76 697.61 199.57 717.39 242.69 252.12rf
 98.96 190.21 171.27 465.55 472.15 209.90 612.82 246.73 249.13howto 99.51 187.84 136.47 338.20 583.15 190.20 470.43 241.63 259.80reuters 106.35 224.90 459.09 1336.21 1900.02 219.46 840.07 248.85 251.75linux 97.62 188.98 161.70 853.01 1183.30 205.22 594.99 244.61 257.71jdk 106.29 241.72 479.19 1179.01 3398.94 225.70 935.72 248.94 249.67etext 102.60 190.29 181.35 478.35 2424.53 207.44 471.28 243.02 260.07g

 151.13 191.54 611.68 � � 208.31 662.31 245.14 258.19w3
 106.21 305.88 814.64 899.71 � 287.50 846.47 247.78 254.55sprot 50M 100.17 195.87 183.61 580.71 713.44 193.05 700.57 241.59 248.66rf
 50M 97.94 184.69 153.55 419.28 517.28 200.49 590.30 245.54 249.53reuters 50M 103.41 219.93 407.00 1037.04 1733.24 213.46 804.76 247.32 252.24linux 50M 98.26 189.20 157.92 413.92 1137.07 219.92 574.32 243.31 258.13jdk 50M 104.77 236.34 411.98 962.88 3179.78 220.26 896.54 247.72 250.25etext 50M 100.14 188.98 177.90 422.47 3125.29 203.95 458.69 241.74 260.51g

 50M 187.43 192.45 1286.20 � � 213.68 702.39 245.22 257.63w3
 50M 106.33 224.87 846.42 735.18 1945.90 218.90 868.91 247.36 251.17Arti�
ial random 89.35 129.86 103.61 255.23 213.68 119.41 333.19 214.56 185.25period 500 000 114.87 10251.72 38942.08 � � 371.74 1191.01 218.09 247.45period 1 000 100.02 224.44 52875.36 � � 365.66 1275.53 221.70 248.02period 20 115.32 129.62 � � � 393.94 1426.58 260.75 240.05Fibona

i 185.17 � 32225.18 � � 387.25 1425.79 314.04 241.49

108

10.2Results

Table 10.11: Number of L1
a
he misses (L2
a
he referen
es) on the Large S
ale x86
omputer (g

ompiler version 3.3.6).L1
a
he misses per input
hara
terdeep di�eren
e oddSequen
e type Sequen
e bpr msufsort shallow
a
he
opy qsufsort
over even skewDNA sequen
e E.
oli genome 3.10 5.22 4.54 7.03 5.41 6.59 12.84 15.32 31.54A. thaliana
hr. 4 4.78 5.31 4.99 7.72 5.96 7.82 15.12 15.59 32.38H. sapiens
hr. 22 4.49 5.25 5.72 8.81 6.89 8.21 17.19 15.39 31.78C. elegans
hr. 1 4.01 8.39 4.87 13.70 10.45 9.82 14.91 14.47 29.946 Strepto
o

i 4.75 5.83 5.95 10.04 7.23 11.75 16.00 15.73 31.724 Chlamydophila 5.87 11.44 7.69 29.90 21.65 17.43 14.87 15.41 31.723 E.
oli 6.63 218.99 11.23 336.98 835.38 23.02 17.24 15.90 32.50Text bible 3.74 4.44 4.34 6.61 4.98 9.42 12.20 18.81 30.27world 4.03 4.75 3.61 5.55 4.01 9.16 11.00 18.76 29.72sprot 5.91 6.11 8.60 11.73 8.84 15.79 26.08 21.50 32.06rf
 5.03 5.62 6.58 10.70 7.99 15.86 20.82 20.93 31.15howto 4.77 5.30 5.87 8.26 10.09 12.74 15.83 21.27 34.01reuters 6.24 7.60 16.22 18.18 16.21 19.22 35.01 22.35 31.40linux 5.66 5.08 6.14 11.53 12.55 14.33 18.23 20.39 32.38jdk 5.93 7.89 16.69 18.84 25.77 19.22 34.20 21.36 30.18etext 5.42 5.36 8.22 11.70 32.34 15.74 18.54 21.81 34.77g

 11.37 5.26 19.18 � � 15.25 19.75 19.13 31.85w3
 6.83 6.79 12.49 16.07 � 23.43 28.34 22.43 31.60sprot 50M 5.53 6.03 7.92 11.48 8.16 14.60 23.87 21.11 31.42rf
 50M 4.76 5.49 6.17 9.50 7.54 14.40 18.90 20.39 31.29reuters 50M 5.92 7.34 14.01 17.46 14.41 17.88 32.67 21.72 31.46linux 50M 5.55 4.90 5.47 8.62 15.41 15.18 16.29 19.79 32.42jdk 50M 5.55 7.50 13.82 16.28 24.17 18.22 31.31 20.83 30.36etext 50M 5.06 5.18 7.65 10.78 43.51 14.76 17.10 21.37 34.78g

 50M 15.87 5.16 28.81 � � 15.46 19.47 17.95 30.84w3
 50M 5.99 6.71 10.74 13.77 16.55 17.51 29.60 22.17 30.74Arti�
ial random 3.79 4.51 5.30 6.87 5.81 6.81 14.02 19.72 24.33period 500 000 5.61 63.94 604.75 � � 46.53 23.37 17.21 30.85period 1 000 9.12 12.64 720.25 � � 51.35 62.05 13.36 26.19period 20 7.44 4.01 � � � 56.17 34.54 5.19 24.40Fibona

i 22.61 � 550.58 � � 47.32 40.78 10.89 21.37

109

10ExperimentalResults

Table 10.12: Number of L2
a
he misses on the Large S
ale x86
omputer (g

ompiler version 3.3.6).L2
a
he misses per input
hara
terdeep di�eren
e oddSequen
e type Sequen
e bpr msufsort shallow
a
he
opy qsufsort
over even skewDNA sequen
e E.
oli genome 2.10 3.76 2.45 4.00 2.63 4.88 5.75 11.63 27.58A. thaliana
hr. 4 2.22 4.01 3.01 4.91 3.41 5.18 8.06 13.00 29.80H. sapiens
hr. 22 2.24 4.15 3.67 5.92 4.37 6.11 10.16 13.56 30.06C. elegans
hr. 1 2.28 5.69 3.04 8.02 4.89 7.95 8.36 12.14 27.466 Strepto
o

i 2.69 4.49 3.83 6.94 4.42 9.19 8.89 13.18 29.324 Chlamydophila 3.44 8.27 4.62 20.72 11.94 14.98 7.26 11.69 27.353 E.
oli 4.36 170.12 8.40 299.50 724.25 21.21 10.28 13.57 30.06Text bible 2.08 2.92 1.81 3.11 1.88 5.67 5.03 13.59 26.78world 2.00 2.71 1.16 2.15 1.15 5.89 3.60 12.15 24.04sprot 3.08 4.05 4.36 7.09 4.86 10.46 14.84 17.60 30.18rf
 3.01 3.81 4.06 6.30 4.71 10.74 12.57 17.15 29.70howto 2.70 3.38 3.28 4.90 4.17 8.11 9.10 17.54 32.01reuters 3.75 5.25 8.40 11.30 8.78 14.06 24.70 18.37 29.87linux 3.14 3.25 3.47 5.28 4.68 9.50 10.89 16.35 30.64jdk 3.32 4.74 5.78 9.62 9.79 14.18 17.16 16.57 28.56etext 3.10 3.77 5.32 7.84 16.19 10.58 11.80 18.95 33.29g

 2.88 3.42 6.86 � � 10.48 11.28 15.05 30.19w3
 3.76 4.27 7.51 8.67 � 18.18 15.89 17.09 29.87sprot 50M 2.79 3.85 3.59 5.94 4.05 9.66 12.28 16.82 29.37rf
 50M 2.74 3.55 3.42 5.32 3.98 9.46 10.58 16.45 29.60reuters 50M 3.30 4.97 6.82 9.07 7.13 12.85 20.47 17.52 29.74linux 50M 3.04 3.03 2.90 4.33 4.23 10.35 9.22 15.71 30.35jdk 50M 3.09 4.33 4.95 7.97 8.04 13.30 14.67 16.03 28.63etext 50M 2.79 3.63 4.71 6.70 17.14 9.47 10.43 18.41 33.11g

 50M 2.84 3.31 5.45 � � 10.70 10.72 13.64 28.95w3
 50M 3.28 4.09 5.04 6.75 5.87 12.52 14.48 16.25 28.77Arti�
ial random 2.10 3.40 2.30 3.49 2.46 5.74 8.13 17.55 21.69period 500 000 4.08 44.54 318.75 � � 44.76 17.10 14.81 28.42period 1 000 7.14 11.00 694.15 � � 45.17 46.25 11.00 24.67period 20 5.93 3.57 � � � 51.72 29.47 5.13 24.10Fibona

i 16.25 � 544.01 � � 44.54 33.99 10.02 20.83

110

10.2 Results

409

391

987

337

749

849

247

414

152

0 100 200 300 400 500 600 700 800 900 1000

skew

odd-even

difference-cover

qsufsort

copy

cache

deep-shallow

msufsort

bpr

Instructions per input character

84.87

198.07

91.44

366.58

304.68

143.57

496.82

228.60

225.84

0 100 200 300 400 500

skew

odd-even

difference-cover

qsufsort

copy

cache

deep-shallow

msufsort

bpr

L2 misses

L2 hits

L1 hits

Data references per input character

30.06

13.56

10.16

2.24

4.15

3.67

5.92

4.37

6.11

1.73

1.84

7.03

1.1

2.24

2.05

2.90

2.52

2.10

0 5 10 15 20 25 30 35

skew

odd-even

difference-cover

qsufsort

copy

cache

deep-shallow

msufsort

bpr

L2 misses

L2 hits

L1 hits

Data references per input character (zoom)

Figure 10.1: Instruction counts and cache references for H. sapiens chr. 22, with q = 7 for bpr.

111

10 Experimental Results

409

447

1144

454

2055

412

379

167

3429

0 200 400 600 800 1000 1200 1400

skew

odd-even

difference-cover

qsufsort

copy

cache

deep-shallow

msufsort

bpr

Instructions per input character

225.33

224.22

576.76

190.89

1170.76

841.48

155.55

183.90

91.96

0 200 400 600 800 1000 1200

skew

odd-even

difference-cover

qsufsort

copy

cache

deep-shallow

msufsort

bpr

L2 misses

L2 hits

L1 hits

Data references per input character

3.25

3.47

5.28

4.68

9.50

10.89

16.35

30.64

3.14

1.74

4.04

7.34

4.83

7.87

6.24

2.67

1.83

2.52

0 5 10 15 20 25 30 35

skew

odd-even

difference-cover

qsufsort

copy

cache

deep-shallow

msufsort

bpr

L2 misses

L2 hits

L1 hits

Data references per input character (zoom)

Figure 10.2: Instruction counts and cache references for the linux �le, with q = 3 for bpr.

112

10.3 Discussion of the experimental results

still has the fewest L1 and L2 cache misses, but for other real-world strings, msufsort often
has less L1 cache misses, and deep-shallow has sometimes less L2 cache misses. Although
the L1 cache miss ratio of bpr is often worse than msufsort 's, its L2 cache miss ratio is
usually better. The reason is probably the di�erent granularity of the respective data
access patterns.
For degenerated strings, the caching behaviour of bpr is also quite good. It takes the

fewest cache misses for strings with periods of length 500 000 and 1 000. For the string
with a period of length 20 and for the Fibonacci string, however, other algorithms have
fewer cache misses, but bpr is still among the three algorithms with the fewest number of
cache misses.

10.3 Discussion of the experimental results

We �rst believed that the practical speed of our algorithm was mainly due to the combina-
tion of di�erent techniques with good locality behaviour. However, the simulations showed
that, compared to the other su�x array construction algorithms, bpr mainly gains its fast
running time from the fewer executed instructions rather than from its good locality be-
haviour. With respect to the number of executed instructions, bpr is the algorithmically
best algorithm.
The few executed instructions are apparently due to the di�erent strategies of the two

phases of the bpr algorithm. First of all, if the q-length substrings are uniformly dis-
tributed, phase 1 equally divides all su�xes into small buckets by just scanning the input
string twice. This, however, does not explain its speed for the periodic strings. Here, the
su�xes are just partitioned into a few large buckets. For such strings, our algorithm basi-
cally bene�ts from the use of relations among the su�xes in phase 2. By using the bucket
pointers as sort keys, the method incorporates information about the subdivided buckets
into the bucket re�nement process as soon as this information becomes available. In the
bucket-re�nement process, each bucket is re�ned recursively until it consists of singleton
sub-buckets. This technique of dividing su�xes from small to smaller buckets is similar
to Quicksort for original sorting, which is known to be fast in practice. The combina-
tion of these techniques and further heuristics in the re�nement procedure (Section 9.3),
in particular the double push method (Section 9.3.3), results in the �nal low instruction
count. This stably low instruction count also supports Conjecture 9.2, which assumes a
subquadratic worst-case time bound of the bpr algorithm.
In our �rst assumption that the good locality behaviour was mainly responsible for the

speed of bpr, we were misled by some elements of the algorithm that have good locality
behaviour with respect to the data structure, but this is not always the case. The data
structure can be divided into four parts: the input string, the su�x array, the bucket
pointer array, and the bucket array storing the boundaries for all buckets. Phase 1, for
example, just scans the sequence twice. It has a good locality of memory access with
respect to the input string and the bucket pointer array, whereas the bucket array and the
su�x array are arbitrarily accessed. In contrast, phase 2 has a good locality of memory

113

10 Experimental Results

access with respect to the bucket array and the su�x array. The bucket array is accessed
from left to right and the su�x array is divided into increasingly smaller buckets. The
bucket pointer array is again arbitrarily accessed. Therefore, bpr 's cache miss ratio is
often worse than that of the other depth-�rst bucket re�nement algorithms msufsort,
deep�shallow, cache, and copy. Nevertheless, thanks to its fewer total cache accesses and
its fewer executed instructions, bpr is generally faster than the other algorithms.
The instruction counts for the di�erent real-world strings reveal further interesting facts.

The linear-time skew, the quasi-linear odd�even, and the O(n log n) time qsufsort algo-
rithms show little variance of instruction counts, indicating little dependence on the se-
quence structure. In contrast, the instruction counts of msufsort, deep�shallow, cache,
and copy vary greatly. Deep�shallow, for example, executes less than 400 instructions per
input character for the howto and the rfc 50M �les, but more than 1500 instructions per
input character for the w3c and the gcc �les. For the gcc �les and for the longer w3c
�le, the very high average and maximum LCP values account for the high instruction
count, whereas for w3c 50M this is not so. The string has even lower LCP values than
the linux 50M string, nevertheless, deep�shallow needs more than four times the number
of executed instructions. Therefore, other structural properties of the text also seem to
be important for the instruction count and thus for the performance of those algorithms.
Msufsort, for example, shows worse instruction counts for the DNA sequences than for the
other real-world strings, even if the average and maximum LCPs of the DNA sequences are
smaller. One reason could be the particular structure of the DNA sequences with highly
variable LCPs, or simply the relatively small DNA alphabet. Apart from that, msufsort
shows relatively low instruction counts for the strings with periods of length 1000 and 20,
which is presumably due to its repeat detection. The e�ciency of their repeat detection,
however, decreases with increasing period length since msufsort detects a period of length
` not until the bucket re�nement process has reached the re�nement level `. Hence, the
instruction count is very high for the string with a period of length 500 000 and for the
Fibonacci string.
Comparing the instruction counts for the real-world strings shows that deep�shallow

often executes many more instructions than, and msufsort often about as many as, qsuf-
sort, odd�even, or skew, even though the execution times of deep�shallow and msufsort are
always signi�cantly faster. The higher number of L2 cache misses for qsufsort, odd�even,
and in particular skew reveal that the fragmented memory access slows down their su�x
array construction. Therefore, the practically fastest algorithm does not need to have the
lowest instruction count or the lowest number of cache misses, but as with bpr, it must
possess the optimal combination of both properties.
Bpr is generally the fastest among the investigated su�x array construction algorithms

on the four di�erent computers, but the relative running times between the algorithms vary
greatly. Responsible for that are mainly the di�erent compiler versions and the di�erent
memory facilities of the computers with their multiple levels of cache and their main
memory. The used compiler is mainly responsible for the number of executed instructions.
Di�erent compilers, respectively di�erent compiler versions, may generate machine code
of di�erent quality (e.g., �faster� or �slower�) depending on the computer architecture,

114

10.3 Discussion of the experimental results

the used processor, and the implementation of the algorithm. The particular memory
hierarchy is responsible for the number of cache misses at di�erent cache levels and for the
cache latencies. The performance of a cache is mainly determined by three parameters:
cache size, line size, and degree of associativity. Note that the cache miss ratio is usually
negatively correlated with the cache latency: A larger cache usually leads to a lower cache
miss ratio, but a higher latency. Moreover, on modern computers, a �clever� compiler
can insert prefetch instructions to request the data before they are needed to avoid cache
misses (compiler prefetching), and there are several further techniques to improve the
caching behaviour (see, for example, [117, Chapter 5]). Therefore, we should be careful
with general statements regarding the practical performance of our algorithm, even though
it is the fastest su�x array construction algorithm on our four test computers.
However, the space requirements of bpr are higher than the space requirements for

msufsort, deep�shallow, cache, and copy. In practice, bpr takes between 9n and 10n bytes,
the su�x array and the bucket pointer table each consume 4n bytes, and the input string
n bytes. Additional space is used for the bucket pointers of the initial bucket sort and for
the recursion stack, even though the recursion depth decreases by a factor of q.
Therefore, if one is concerned about space, the msufsort algorithm or the deep�shallow

algorithm might be the best choice. If there are no major space limitations, we believe
that the bpr algorithm is an attractive alternative. Maniscalco and Puglisi [99], however,
recently presented a su�x array construction algorithm that seems to be faster than the
version of msufsort that we analysed in this thesis (see [120]), but that algorithm was
not available when we performed our experiments. Its practical running time should be
investigated further.

115

10 Experimental Results

116

11 Conclusion

We have discussed two major aspects of su�x arrays, namely their combinatorics and their
construction. We have been the �rst presenting an in-depth study on the combinatorics of
su�x arrays. Our work dealt with the classical combinatorial counting problem and with
the related algorithmical enumeration problem: We have presented constructive proofs to
count the strings sharing the same su�x array as well as the distinct su�x arrays for �xed
size alphabets. Beyond that, based on the construction schemes used in the proofs, we
developed e�cient algorithms to enumerate those strings and those su�x arrays, respec-
tively. For alphabets of size σ, (n+σ−d−1

σ−d−1

) strings of length n share the same su�x array
(with d +R-descents) among which (n−d−1

σ−d−1

) are composed of exactly σ distinct characters.
For these strings, we have given a bijection into the set of non-decreasing sequences over
σ−d integers and presented optimal-time enumeration algorithms. The number of distinct
su�x arrays is ∑σ−1

d=0

〈
n
d

〉
=
∑σ−1

k=0

(
n
k

)
(−1)k(σ − k)n. This has yielded lower bounds for

the compressibility of such su�x arrays. Moreover, summing up the number of strings for
each su�x array yields constructive proofs for Worpitzki's identity and for the summation
rule of Eulerian numbers to generate the Stirling numbers of the second kind. One could
also say the number of su�x arrays and their strings form a particular instance of these
identities.
Unlike the combinatorics of su�x arrays, their e�cient construction has been widely

studied before. We have introduced new classi�cations of su�x array construction algo-
rithms and have surveyed the previous algorithms. On the one hand, we have classi�ed the
su�x array construction algorithms regarding their progress in the su�x sorting process:
either bucket re�nement or reduced string sorting. On the other hand, we have classi�ed
them regarding the use of dependencies among su�xes: either the push method or the
pull method. We have presented our new bucket-pointer re�nement algorithm, proved
an O(n2/ log n) worst-case time bound and an O(n log n) expected-case time bound, and
enhanced the basic algorithm with some further techniques for fast practical su�x ar-
ray construction. Due to its simple structure, it is easy to implement. Finally, we have
extensively evaluated the practical performance of our algorithm and other su�x array
construction algorithms for real-world input sequences of di�erent type and for degenerated
input sequences that were arti�cially generated. The results show that our bucket-pointer
re�nement algorithm is usually the fastest among all investigated su�x array construction
algorithms, even for worst-case strings. Therefore, we believe that it can be widely used
in all kinds of su�x array applications.

117

11 Conclusion

Open problems
Some problems regarding the combinatorics and the construction of su�x arrays remain
unsolved or have been opened up by the thesis.
For the lower bound of the compressibility of the information content of su�x arrays in

the Kolmogorov sense, we have counted all possible su�x arrays for strings over a �xed
sized alphabet. The Kolmogorov complexity considers the information content of a se-
quence independent of any particular probability model, but if the underlying probability
model for a sequence is known, Shannon entropy is often used as a measure of the infor-
mation content. In terms of Shannon entropy, however, we are so far not able to give such
lower bounds for the compressibility of su�x arrays.
Moreover, the running time of our enumeration algorithm for the su�x arrays or, al-

ternatively, for the corresponding equivalence classes of strings sharing the same su�x
array could possibly be reduced further. The running time of our algorithm is O(log n)
multiplied by the number of enumerated su�x arrays. The O(log n) factor is used for the
update of the dynamic auxiliary data structure for the implementation of the Burrows-
Wheeler transform, or rather for the corresponding Last-to-First mapping. With a more
advanced dynamic data structure it could possibly be reduced to a constant factor. As
we mentioned, our right-to-left extension scheme for the enumeration can also be used for
the su�x array construction or for the construction of the Burrows-Wheeler transform.
Hence, with a dynamic data structure that would allow the constant time extension to the
left, we could solve two problems at once: the optimal-time enumeration of su�x arrays
and the optimal linear-time right-to-left online construction of su�x arrays. For su�x tree
construction, there is Weiner's optimal linear-time algorithm that also adds the su�xes of
the input string from right to left. So maybe we can use some of Weiner's techniques. A
straightforward approach could use his algorithm for the construction of su�x trees and
keep track of the sorted list of su�xes at the leaves of the su�x tree. Weiner's algorithm,
however, requires quite a bit of working space, which we would like to save. Hence, we
would not like to simply port that algorithm to su�x arrays.
For the right-to-left online construction of su�x arrays or, alternatively, for the construc-

tion of the Burrows-Wheeler transform, a practical approach could abandon the optimal
time criterion and search for the proper insertion positions of the new su�x into the su�x
array in another way. Table 5.2 shows, for example, how the Burrows-Wheeler trans-
form is updated when the character A is added to the front of the string ABBAA. In the
Burrows-Wheeler transform, the character $ is simply replaced by the new character A.
The crucial and also most time-consuming part is to �nd the insertion position of the A
in the corresponding First sequence. We could simply search for the �rst A preceding the
newly inserted A in the Burrows-Wheeler transform and follow a link (corresponding to
the LF -mapping, described by the dashed line in the table) to the corresponding A in the
First sequence. The correct insertion position in the First sequence is then directly behind
this A, which is also the new position of the $ in the Burrows-Wheeler transform. This
method works for every front extension of the input string. The preceding character in
the Burrows-Wheeler transform that equals the new character at the front of the string

118

is, however, possibly far away. Moreover, such an algorithm would require traversals of
dynamic lists and links between these lists, which usually has a bad locality of memory
reference. Hence, we doubt that such an algorithm performs well in practice.
Also questions regarding our bucket-pointer re�nement algorithm remain. We were so

far unable to prove a better worst-case time complexity than O(n2/ log n) while at the
same time we are not aware of an example showing that this bound is tight. For certain
periodic strings, we veri�ed an O

(
n

3
2 /
√

log n
)
time bound, but for general strings �nding

a non-trivial upper bound seems to be hard since our algorithm quite arbitrarily uses the
dependence among su�xes. We have further proved an O(n log n) expected time bound,
but suppose that it is linear.
Beyond the construction of the complete su�x array, we may be interested in sparse

su�x arrays that only contain a particular subset of su�xes. There are sparse su�x
trees [12, 74] with linear time construction algorithms [6, 66] using space proportional
to the number of su�xes in the sparse index. To the best of our knowledge, linear-time
construction algorithms using space proportional to the number of su�xes in the sparse
su�x array do not exist. A promising approach to solve that problem could be to modify
one of the reduced string sorting algorithms since these algorithms also use sparse su�x
arrays in intermediate steps.

119

11 Conclusion

120

A Appendix

Tables A.1�A.5 contain the running times of the di�erent su�x array construction pro-
grams on the four di�erent test computers: Table A.1 for the Small Scale x86 computer
(gcc compiler version 3.3.6), Table A.2 for the Medium Scale x86 computer (gcc compiler
version 4.1.1), Table A.3 for the Large Scale x86 computer where the programs were com-
piled with the gcc compiler version 3.3.6, Table A.4 for the Large Scale x86 computer
where the programs were compiled with the gcc compiler version 4.0.3, and Table A.5 for
the UltraSPARC computer (gcc compiler version 4.1.1). A dash in a table denotes that
the running time experiment of the respective algorithm could not be carried out success-
fully for the corresponding string: a dash for cache and copy denotes that we terminated
the experiment after 6 days of computation, a dash for odd�even or skew in Table A.2
denotes that the programs aborted with a memory allocation error on the Medium Scale
x86 computer, and a dash for msufsort in Table A.5 denotes that the program aborts
unexpectedly on the UltraSPARC computer.
The number of executed instructions per input character of the di�erent algorithms on

the Large Scale x86 computer compiled with the gcc compiler version 4.0.3 is shown in
Table A.6. We stopped the computation whenever a simulation used more than 24 hours,
which is indicated by a dash in the table. Note that Table 10.9 shown in Section 10.2.3
shows the respective results on the same computer, but the programs were compiled with
the gcc compiler version 3.3.6.

121

A Appendix

Ta
ble

A.
1:

Su
�x

arr
ay

co
ns
tru

cti
on

tim
es

on
th
eS

ma
llS

cal
ex

86
co
mp

ut
er

(gc
cc

om
pil

er
ve
rsi
on

3.3
.6)

.
C
on

st
ru
ct
io
n
ti
m
e
(s
)

de
ep

di
�
er
en
ce

od
d

Se
qu

en
ce

ty
pe

Se
qu

en
ce

bp
r

m
su
fs
or
t

sh
al
lo
w

ca
ch
e

co
py

qs
u
fs
or
t

co
ve
r

ev
en

sk
ew

D
N
A

se
qu

en
ce

E
.
co
li
ge
no

m
e

1
.4
0

3
.0

0
1
.6

9
3
.6

5
2
.8

1
3
.0

3
4
.5

3
6
.1

0
1
4
.0

9
A
.
th
al
ia
n
a
ch
r.
4

4
.0
8

8
.6

2
5
.0

2
1
1
.7

2
9
.3

7
9
.1

7
1
4
.3

2
1
7
.5

4
4
0
.0

9
H
.
sa
pi
en
s
ch
r.
22

1
1
.7
7

2
4
.0

3
1
5
.6

3
3
7
.6

7
2
8
.9

7
2
7
.6

0
4
6
.1

8
5
2
.5

1
1
1
2
.5

9
C
.
el
eg
an

s
ch
r.
1

4
.3
8

2
6
.2

5
5
.8

7
1
7
.8

5
1
5
.2

1
1
3
.3

6
1
7
.0

6
1
8
.6

0
4
0
.8

5

6
S
tr
ep
to
co
cc
i

4
.0
7

1
0
.1

8
5
.9

4
1
3
.1

1
9
.6

9
1
4
.1

6
1
4
.7

1
1
6
.5

4
3
6
.7

2
4
C
hl
am

yd
op
hi
la

1
.8
2

1
2
.6

6
3
.6

3
1
3
.9

6
1
1
.6

5
8
.5

8
5
.8

0
6
.4

1
1
4
.6

5
3
E
.
co
li

6
.2
7

1
0
6
9
.0

0
1
4
.6

2
3
2
7
.6

8
9
7
7
.0

4
3
6
.6

7
2
1
.2

4
2
2
.1

2
4
8
.9

7

T
ex
t

bi
bl
e

1
.2
5

2
.0

6
1
.3

7
2
.8

1
2
.1

6
3
.3

1
3
.8

2
6
.4

2
1
1
.7

2
w
or
ld

0
.7

5
1
.2

3
0
.7
2

1
.4

0
1
.1

5
1
.9

4
2
.2

9
3
.5

7
6
.4

0
ho
w
to

1
4
.7
5

2
3
.9

8
1
8
.8

5
3
5
.6

1
4
1
.7

4
4
2
.4

4
4
8
.9

7
8
4
.2

0
1
4
1
.6

2

sp
ro
t
50
M

1
9
.7
9

3
2
.9

8
2
8
.4

2
6
1
.8

6
6
2
.0

6
6
1
.8

0
8
2
.3

0
1
0
4
.3

6
1
6
9
.8

7
rf
c
50
M

1
8
.9
4

3
1
.0

0
2
5
.2

9
5
0
.7

4
4
9
.1

5
5
9
.7

3
7
1
.5

8
1
0
1
.7

4
1
6
9
.3

0
re
u
te
rs

50
M

2
0
.8
9

3
7
.4

8
5
0
.0

1
9
4
.0

4
1
2
8
.7

0
7
4
.6

7
1
0
9
.2

7
1
0
8
.5

4
1
7
0
.4

7
li
n
u
x
50
M

1
8
.8
9

2
7
.6

1
2
3
.4

1
4
5
.0

5
8
1
.5

4
6
2
.9

4
6
6
.3

0
9
9
.1

7
1
7
3
.7

0
jd
k
50
M

1
9
.7
3

3
5
.1

0
4
5
.5

5
8
5
.3

4
2
0
6
.6

3
7
5
.3

6
9
8
.2

0
9
8
.2

9
1
6
2
.6

5
et
ex
t
50
M

2
0
.1
0

3
2
.4

9
3
1
.6

1
5
9
.0

0
2
1
2
.2

9
6
2
.9

8
6
6
.5

8
1
1
0
.6

8
1
9
0
.9

7
gc
c
50
M

2
3
.1
0

2
8
.1

1
8
7
.6

2
2
1
2
2
.0

8
1
6
2
5
6
.3

7
6
1
.0

7
7
4
.1

0
8
4
.5

2
1
6
2
.5

3
w
3c

50
M

2
0
.7
5

3
2
.3

9
6
1
.6

1
7
0
.7

8
1
3
3
.9

9
7
0
.7

3
9
6
.5

3
1
0
6
.2

3
1
6
3
.6

7

A
rt
i�
ci
al

ra
nd

om
6
.5
2

1
1
.0

7
7
.7

6
1
3
.7

5
1
0
.7

8
1
4
.7

6
2
0
.3

6
3
6
.9

6
4
6
.9

2
pe
ri
od

50
0
00
0

8
.9
5

2
7
5
.1

7
8
7
0
.5

2
8
6
2
4
2
.1

1
�

8
8
.9

3
4
6
.4

5
3
0
.5

8
6
0
.8

1
pe
ri
od

10
00

1
1
.8
0

1
8
.7

0
1
2
8
2
.9

1
3
5
6
8
1
.5

6
�

8
6
.9

5
7
8
.7

8
2
1
.7

8
5
2
.3

6
pe
ri
od

20
7
.2

8
5
.7
4

6
2
8
8
6
.3

1
�

�
7
4
.9

7
5
9
.1

0
1
0
.1

2
4
3
.7

1
F
ib
on

ac
ci

2
3
.4

2
3
2
2
9
7
7
.7

4
7
8
4
.4

1
�

2
6
5
0
6
1
.1

2
8
2
.4

1
7
0
.0

2
2
2
.0
5

3
8
.2

9

122

Ta
ble

A.
2:

Su
�x

arr
ay

co
ns
tru

cti
on

tim
es

on
th
eM

edi
um

Sc
ale

x8
6
co
mp

ut
er

(gc
cc

om
pil

er
ve
rsi
on

4.1
.1)

.
C
on

st
ru
ct
io
n
ti
m
e
(s
)

de
ep

di
�
er
en
ce

od
d

Se
qu

en
ce

ty
pe

Se
qu

en
ce

bp
r

m
su
fs
or
t

sh
al
lo
w

ca
ch
e

co
py

qs
u
fs
or
t

co
ve
r

ev
en

sk
ew

D
N
A

se
qu

en
ce

E
.
co
li
ge
no

m
e

1
.3
7

2
.0

1
1
.5

9
3
.0

0
2
.3

3
2
.2

1
3
.5

5
4
.3

0
1
0
.3

9
A
.
th
al
ia
n
a
ch
r.
4

4
.2
0

6
.0

0
4
.8

8
1
0
.7

3
7
.8

3
7
.0

9
1
1
.0

6
1
3
.2

0
3
0
.1

4
H
.
sa
pi
en
s
ch
r.
22

1
5
.4
8

2
0
.8

5
1
6
.1

5
3
3
.8

9
2
5
.0

5
2
7
.3

3
3
7
.6

1
4
4
.1

1
1
1
3
.1

9
C
.
el
eg
an

s
ch
r.
1

4
.7
1

1
9
.8

4
5
.7

8
2
4
.7

4
1
2
.2

8
1
1
.0

4
1
3
.8

2
1
5
.0

6
3
3
.4

3

6
S
tr
ep
to
co
cc
i

4
.1
9

7
.4

6
5
.7

9
1
4
.6

0
8
.2

7
1
0
.1

2
1
1
.7

5
1
3
.0

7
2
8
.5

8
4
C
hl
am

yd
op
hi
la

1
.6
4

9
.2

3
3
.3

6
2
6
.4

4
8
.6

2
5
.5

8
4
.5

5
4
.6

6
1
1
.0

7
3
E
.
co
li

6
.3
3

8
4
1
.8

2
1
3
.3

6
7
5
3
.8

2
7
2
9
.9

3
2
6
.1

8
1
6
.8

6
1
7
.3

8
3
9
.2

6

T
ex
t

bi
bl
e

1
.1
8

1
.3

8
1
.3

6
2
.2

3
1
.7

9
2
.5

4
2
.9

5
4
.5

4
8
.7

9
w
or
ld

0
.7

1
0
.8

6
0
.6
9

1
.2

1
0
.9

3
1
.5

3
1
.7

6
2
.6

5
4
.9

4
sp
ro
t

5
8
.9
7

6
6
.9

9
8
4
.4

4
1
9
9
.5

6
1
2
0
.5

1
1
5
4
.9

5
2
0
2
.6

4
�

�
rf
c

5
8
.6
5

6
6
.9

2
7
3
.9

7
1
4
9
.2

0
1
0
5
.4

9
1
5
4
.5

6
1
7
2
.7

9
�

�
ho
w
to

1
6
.7
4

1
8
.8

5
2
0
.8

2
3
0
.6

8
3
3
.2

9
3
9
.1

9
4
0
.0

7
7
1
.7

4
1
3
4
.7

5
re
u
te
rs

6
5
.0
5

7
3
.7

5
1
6
9
.4

4
4
0
7
.4

0
2
6
0
.0

3
1
8
4
.7

1
2
7
7
.8

6
�

�
li
n
u
x

5
2
.8
2

5
6
.0

2
6
5
.2

7
2
2
8
.1

7
1
5
5
.0

3
1
3
2
.8

0
1
5
0
.6

7
�

�
jd
k

3
3
.4
9

4
3
.9

7
9
4
.9

3
2
0
5
.3

4
2
2
0
.2

6
1
0
5
.7

2
1
3
6
.6

1
1
2
3
.8

3
�

et
ex
t

6
1
.4
7

6
5
.1

3
8
8
.5

7
1
5
0
.3

0
2
9
2
.9

5
1
6
3
.2

6
1
5
1
.3

0
�

�
gc
c

4
1
.6

1
4
1
.4
1

8
2
.7

3
4
1
9
9
.9

4
9
7
8
6
.2

4
1
0
0
.1

8
1
1
1
.3

0
1
4
4
.0

2
�

w
3c

5
1
.9
3

6
1
.4

7
1
6
8
.8

8
2
3
4
.2

8
5
0
6
2
.0

9
1
9
1
.4

2
1
8
4
.8

9
�

�

sp
ro
t
50
M

2
3
.8
2

2
8
.1

2
3
1
.6

8
7
2
.3

4
5
0
.0

2
5
9
.7

5
7
1
.8

0
8
9
.4

3
1
7
0
.4

4
rf
c
50
M

2
1
.4
3

2
5
.6

1
2
7
.0

1
5
1
.6

7
4
1
.0

2
5
7
.0

9
6
0
.3

0
8
6
.0

7
1
7
0
.1

1
re
u
te
rs

50
M

2
4
.7
2

3
0
.0

2
6
1
.4

5
1
3
4
.4

8
9
9
.0

8
7
3
.0

0
9
3
.0

4
9
4
.1

2
1
6
3
.6

3
li
n
u
x
50
M

2
1
.5
5

2
2
.2

0
2
4
.2

5
4
5
.7

2
6
2
.2

6
5
7
.5

4
5
4
.4

4
8
2
.4

5
1
6
4
.3

5
jd
k
50
M

3
3
.4

9
2
8
.5
5

5
6
.0

2
1
1
7
.3

1
1
4
6
.0

6
6
9
.4

2
8
2
.9

2
8
2
.3

7
1
4
7
.8

2
et
ex
t
50
M

2
5
.5
3

2
8
.7

0
3
4
.1

8
5
8
.5

9
1
6
1
.7

7
6
6
.9

0
5
6
.3

6
9
5
.9

9
1
9
6
.4

7
gc
c
50
M

2
5
.6

4
2
1
.8
5

6
8
.2

9
4
7
2
4
.6

0
1
0
8
9
5
.4

2
5
3
.5

1
6
4
.5

3
6
9
.6

4
1
4
8
.4

0
w
3c

50
M

2
2
.4
1

2
6
.0

9
9
2
.9

9
8
8
.7

8
9
8
.2

3
6
4
.3

4
8
1
.2

9
8
6
.5

2
1
4
8
.8

7

A
rt
i�
ci
al

ra
nd

om
8
.0
1

9
.0

7
8
.5

2
1
0
.4

6
9
.9

2
1
1
.8

4
1
6
.8

7
3
0
.2

4
5
0
.5

5
pe
ri
od

50
0
00
0

9
.1
0

1
7
0
.1

6
5
4
8
.2

5
2
0
2
4
1
0
.1

0
�

7
8
.6

9
3
7
.2

9
2
2
.4

5
5
3
.7

6
pe
ri
od

10
00

1
0
.4
4

1
4
.1

1
8
7
3
.9

7
7
9
4
0
8
.4

6
�

7
1
.8

6
6
2
.5

0
1
5
.3

6
4
5
.4

5
pe
ri
od

20
5
.8

2
4
.1
1

4
4
0
8
2
.2

3
�

�
5
0
.3

9
4
4
.2

2
8
.3

4
3
2
.6

8
F
ib
on

ac
ci

2
5
.0

0
2
9
6
7
8
0
.7

4
5
2
8
.7

0
�

2
0
1
2
1
1
.4

4
7
8
.9

9
5
2
.2

1
2
4
.4
0

3
4
.8

6

123

A Appendix
Ta

ble
A.
3:

Su
�x

arr
ay

co
ns
tru

cti
on

tim
es

on
th
eL

arg
eS

cal
ex

86
co
mp

ut
er

(gc
cc

om
pil

er
ve
rsi
on

3.3
.6)

.
C
on

st
ru
ct
io
n
ti
m
e
(s
)

de
ep

di
�
er
en
ce

od
d

Se
qu

en
ce

ty
pe

Se
qu

en
ce

bp
r

m
su
fs
or
t

sh
al
lo
w

ca
ch
e

co
py

qs
u
fs
or
t

co
ve
r

ev
en

sk
ew

D
N
A

se
qu

en
ce

E
.
co
li
ge
no

m
e

1
.0
0

1
.5

7
1
.1

4
2
.0

8
1
.7

3
1
.5

1
2
.4

7
4
.0

7
8
.5

8
A
.
th
al
ia
n
a
ch
r.
4

3
.0
0

4
.5

7
3
.5

1
6
.9

9
5
.9

9
4
.6

3
7
.8

7
1
2
.1

7
2
5
.2

6
H
.
sa
pi
en
s
ch
r.
22

9
.8
8

1
4
.3

6
1
1
.7

6
2
4
.6

4
2
0
.3

5
1
6
.3

1
2
7
.4

9
3
9
.9

5
8
0
.9

1
C
.
el
eg
an

s
ch
r.
1

3
.5
2

1
5
.6

9
4
.5

1
1
1
.8

4
9
.8

0
7
.7

6
1
0
.5

8
1
4
.3

7
2
8
.6

4

6
S
tr
ep
to
co
cc
i

3
.2
5

6
.2

8
4
.8

6
8
.9

8
7
.4

5
8
.3

2
9
.2

1
1
2
.0

4
2
5
.3

8
4
C
hl
am

yd
op
hi
la

1
.3
2

8
.0

9
2
.4

4
8
.3

2
8
.2

8
4
.8

5
3
.5

2
4
.7

0
9
.8

2
3
E
.
co
li

4
.0
1

7
8
2
.4

3
9
.7

9
2
3
4
.0

4
6
7
5
.0

4
2
4
.2

4
1
3
.5

5
1
6
.5

4
3
4
.2

8

T
ex
t

bi
bl
e

0
.9
0

1
.1

2
0
.9

3
1
.5

7
1
.2

9
1
.7

2
2
.0

7
4
.1

0
7
.4

4
w
or
ld

0
.5

5
0
.7

3
0
.4
8

0
.8

4
0
.6

6
1
.1

2
1
.3

0
2
.5

6
4
.4

1
sp
ro
t

4
1
.0
6

5
6
.6

6
5
9
.1

6
1
1
1
.8

9
9
7
.8

4
1
0
8
.2

6
1
4
5
.4

2
2
0
0
.6

1
3
3
5
.4

7
rf
c

4
0
.9
3

5
6
.2

3
5
5
.1

5
1
0
0
.2

5
8
4
.0

6
1
1
5
.2

4
1
2
5
.8

2
2
0
4
.2

0
3
5
0
.7

6
ho
w
to

1
1
.8
7

1
5
.6

8
1
5
.0

2
2
2
.8

3
2
5
.6

3
2
7
.5

4
3
0
.2

7
6
2
.4

3
1
1
0
.3

2
re
u
te
rs

4
6
.2
6

6
6
.8

9
1
1
0
.9

9
1
8
9
.7

4
2
1
2
.5

2
1
3
6
.8

3
2
1
2
.4

9
2
1
7
.1

7
3
4
2
.1

3
li
n
u
x

3
7
.2
3

4
8
.6

1
4
8
.6

9
1
0
6
.2

1
1
2
0
.0

4
9
9
.4

3
1
1
4
.8

6
1
8
7
.2

8
3
4
5
.2

1
jd
k

2
4
.1
9

3
9
.7

1
6
3
.3

0
1
1
0
.2

5
1
8
3
.8

9
8
3
.6

4
1
3
0
.6

5
1
1
4
.7

1
1
8
6
.3

7
et
ex
t

4
1
.7
4

5
1
.3

6
6
0
.2

8
1
0
1
.4

4
2
2
1
.2

2
1
1
0
.9

4
1
0
6
.6

0
2
1
7
.7

9
3
9
7
.1

2
gc
c

2
9
.6
2

3
5
.3

3
6
0
.7

5
1
1
4
8
.7

8
7
1
5
3
.4

4
7
2
.6

7
8
4
.2

9
1
2
3
.5

6
2
3
7
.1

2
w
3c

3
8
.3
1

5
5
.3

2
9
4
.6

5
1
2
4
.4

1
3
6
1
8
.6

5
1
4
8
.6

5
1
4
3
.8

3
1
7
6
.2

7
2
8
5
.7

0

sp
ro
t
50
M

1
5
.5
9

2
3
.3

1
2
3
.1

6
4
1
.7

4
3
9
.6

7
4
1
.3

3
5
5
.2

0
7
9
.8

0
1
2
9
.9

6
rf
c
50
M

1
5
.3
4

2
1
.3

5
2
0
.1

6
3
4
.9

1
3
2
.2

2
4
0
.4

9
4
5
.8

1
7
6
.9

9
1
2
8
.3

7
re
u
te
rs

50
M

1
7
.2
0

2
5
.6

4
4
0
.2

1
6
6
.6

9
8
1
.8

6
5
0
.2

6
7
6
.5

5
8
3
.4

4
1
2
9
.9

0
li
n
u
x
50
M

1
5
.8
3

1
9
.0

6
1
8
.1

8
2
9
.5

9
4
7
.2

8
4
2
.2

7
4
2
.1

7
7
1
.8

4
1
3
0
.2

5
jd
k
50
M

1
5
.4
6

2
4
.6

5
3
5
.5

4
5
9
.0

2
1
1
2
.0

7
4
9
.3

4
7
5
.4

8
7
7
.0

0
1
2
9
.0

7
et
ex
t
50
M

1
7
.1
5

2
1
.4

7
2
5
.2

3
4
1
.0

5
1
1
9
.6

0
4
3
.8

8
4
1
.2

7
8
8
.0

0
1
4
1
.3

0
gc
c
50
M

1
7
.7
7

1
8
.8

8
4
9
.3

9
1
4
0
2
.9

1
7
7
5
6
.8

3
3
9
.8

3
4
7
.3

6
6
0
.5

5
1
1
8
.9

3
w
3c

50
M

1
5
.9
5

2
3
.4

2
4
0
.7

7
4
9
.7

7
7
5
.3

1
4
6
.3

9
6
6
.3

7
7
6
.4

1
1
2
1
.6

5

A
rt
i�
ci
al

ra
nd

om
5
.6
0

7
.0

8
6
.7

3
9
.2

3
7
.8

8
8
.0

8
1
3
.3

0
2
7
.0

1
3
6
.1

9
pe
ri
od

50
0
00
0

6
.9
5

2
2
4
.8

5
5
6
2
.6

0
4
3

3
7
0
.1

4
�

4
7
.3

2
2
9
.8

9
2
1
.2

0
4
3
.9

4
pe
ri
od

10
00

7
.9
8

1
5
.2

1
6
5
1
.6

8
2
0

9
9
8
.2

5
�

5
0
.8

3
5
5
.1

6
1
3
.0

0
3
5
.0

1
pe
ri
od

20
4
.7

1
3
.3
6

3
1

8
0
7
.8

9
�

�
3
9
.1

4
3
5
.1

4
6
.1

0
3
6
.7

8
F
ib
on

ac
ci

1
5
.7
5

2
3
2

5
8
5
.6

2
5
4
7
.4

9
�

1
7
6

9
6
8
.9

7
4
4
.0

1
4
8
.4

4
2
1
.7

1
2
7
.0

8

124

Ta
ble

A.
4:

Su
�x

arr
ay

co
ns
tru

cti
on

tim
es

on
th
eL

arg
eS

cal
ex

86
co
mp

ut
er

(gc
cc

om
pil

er
ve
rsi
on

4.0
.3)

.
C
on

st
ru
ct
io
n
ti
m
e
(s
)

de
ep

di
�
er
en
ce

od
d

Se
qu

en
ce

ty
pe

Se
qu

en
ce

bp
r

m
su
fs
or
t

sh
al
lo
w

ca
ch
e

co
py

qs
u
fs
or
t

co
ve
r

ev
en

sk
ew

D
N
A

se
qu

en
ce

E
.
co
li
ge
no

m
e

1
.0
9

1
.3

7
1
.1

7
1
.9

8
1
.6

7
1
.4

4
2
.3

7
3
.7

2
8
.3

5
A
.
th
al
ia
n
a
ch
r.
4

3
.0
9

3
.6

4
3
.2

1
6
.2

1
5
.3

8
4
.0

5
7
.2

6
9
.7

9
2
1
.0

2
H
.
sa
pi
en
s
ch
r.
22

1
0
.9
2

1
2
.2

4
1
1
.7

6
2
2
.2

4
1
8
.7

0
1
4
.5

5
2
5
.3

0
3
3
.7

0
7
0
.7

5
C
.
el
eg
an

s
ch
r.
1

3
.5
5

9
.8

1
3
.7

7
1
0
.6

4
8
.8

8
5
.9

5
8
.9

1
1
1
.0

5
2
3
.2

5

6
S
tr
ep
to
co
cc
i

3
.2
4

4
.2

9
3
.7

5
7
.5

8
5
.7

0
5
.8

3
7
.6

7
9
.6

2
2
0
.1

6
4
C
hl
am

yd
op
hi
la

1
.3
5

4
.5

6
2
.0

0
9
.3

8
6
.7

5
3
.4

6
3
.0

0
3
.5

8
7
.8

9
3
E
.
co
li

5
.0
9

3
6
3
.9

5
7
.7

7
2
4
5
.8

5
5
6
6
.6

7
1
5
.2

3
1
0
.9

4
1
2
.5

7
2
6
.5

2

T
ex
t

bi
bl
e

0
.8
8

0
.9

3
0
.8
8

1
.4

0
1
.1

6
1
.5

3
1
.8

4
3
.5

9
6
.8

0
w
or
ld

0
.5

4
0
.5

7
0
.4
3

0
.7

4
0
.6

2
0
.9

0
1
.0

8
2
.0

2
3
.7

5
sp
ro
t

4
1
.3
3

4
3
.3

6
5
1
.4

0
9
5
.7

0
8
8
.0

0
8
5
.3

3
1
1
9
.0

0
1
6
2
.2

7
2
7
5
.9

1
rf
c

3
9
.9
2

4
1
.3

9
4
6
.1

9
8
1
.4

5
7
1
.7

7
8
9
.4

9
1
0
4
.8

0
1
6
0
.6

9
2
8
2
.5

9
ho
w
to

1
1
.7

3
1
1
.6
1

1
2
.4

9
1
9
.6

6
2
4
.1

7
2
1
.7

6
2
5
.0

4
5
2
.4

8
8
5
.1

8
re
u
te
rs

4
5
.7
6

5
0
.7

6
9
2
.1

8
1
7
0
.6

7
1
9
6
.6

7
1
0
5
.4

1
1
6
8
.8

7
1
7
6
.4

4
2
7
4
.9

1
li
n
u
x

3
6
.0
8

3
6
.3

7
3
9
.8

3
9
9
.2

1
1
1
6
.3

0
7
4
.9

7
9
2
.5

9
1
4
8
.2

2
2
7
5
.9

8
jd
k

2
2
.4
9

2
6
.5

5
4
9
.0

2
8
8
.5

3
1
7
6
.7

9
5
5
.6

9
8
2
.0

3
8
6
.3

4
1
4
1
.4

0
et
ex
t

4
1
.7

0
3
9
.2
8

5
4
.5

2
9
0
.7

0
2
2
6
.6

0
8
6
.3

6
9
0
.6

8
1
5
6
.7

2
2
9
0
.3

0
gc
c

3
0
.6

8
2
5
.9
1

5
2
.6

0
1
3
4
2
.5

3
8
1
8
0
.6

8
5
5
.4

3
6
9
.6

2
9
7
.3

4
1
9
4
.7

8
w
3c

3
7
.1
9

3
8
.1

5
7
5
.1

9
1
0
5
.5

9
4
0
3
3
.9

6
1
0
7
.7

4
1
1
6
.3

8
1
4
0
.9

9
2
2
8
.1

8

sp
ro
t
50
M

1
6
.7
6

1
7
.7

8
1
9
.7

8
3
7
.2

9
3
6
.8

3
3
2
.8

9
4
4
.2

6
6
4
.0

0
1
0
6
.5

6
rf
c
50
M

1
5
.2
9

1
5
.7

2
1
6
.9

0
2
9
.0

2
2
8
.8

6
3
2
.6

3
3
7
.9

1
6
1
.0

8
1
0
4
.1

3
re
u
te
rs

50
M

1
7
.3
3

1
9
.2

4
3
3
.6

9
5
9
.8

8
7
4
.5

3
4
1
.3

2
6
0
.2

0
6
5
.5

1
1
0
4
.5

4
li
n
u
x
50
M

1
4
.8

6
1
3
.7
5

1
4
.8

6
2
5
.0

4
4
6
.7

4
3
2
.1

1
3
4
.1

1
5
9
.1

8
1
0
4
.2

0
jd
k
50
M

1
4
.9
8

1
7
.1

8
3
0
.3

9
5
3
.8

2
1
1
7
.5

4
3
6
.0

9
5
1
.8

5
5
7
.6

2
9
7
.1

8
et
ex
t
50
M

1
7
.8

0
1
6
.4
0

2
1
.6

4
3
4
.0

9
1
2
3
.6

3
3
4
.2

8
3
5
.6

2
6
6
.5

0
1
1
7
.8

3
gc
c
50
M

1
8
.9

8
1
3
.9
3

4
0
.4

6
1
6
0
5
.1

9
9
1
7
8
.2

2
2
9
.9

3
3
8
.2

7
5
0
.0

4
9
5
.2

7
w
3c

50
M

1
6
.3
1

1
7
.0

6
3
5
.2

2
4
4
.3

0
7
6
.7

5
3
5
.6

0
5
1
.9

5
6
1
.8

1
9
7
.9

7

A
rt
i�
ci
al

ra
nd

om
5
.4

6
5
.4
4

5
.7

2
7
.3

8
6
.4

5
6
.3

9
1
0
.6

0
2
1
.0

2
2
8
.7

8
pe
ri
od

50
0
00
0

7
.5
7

8
5
.3

9
3
0
6
.3

5
5
1

3
1
5
.4

7
�

3
8
.7

0
2
2
.8

7
1
7
.6

0
3
9
.7

6
pe
ri
od

10
00

8
.0
1

1
0
.5

8
4
2
0
.8

2
2
4

9
1
0
.4

0
�

3
9
.5

4
4
3
.7

4
1
0
.9

6
3
2
.6

9
pe
ri
od

20
3
.8

7
2
.9
3

1
9

9
1
3
.8

7
�

�
3
2
.1

6
2
9
.9

9
5
.3

5
2
4
.9

0
F
ib
on

ac
ci

st
ri
ng

1
6
.8
1

1
6
1

2
3
0
.8

1
2
8
0
.5

7
3
4
7

3
8
4
.6

6
1
5
3

1
5
0
.2

6
3
5
.2

2
3
6
.2

4
1
6
.8

9
2
2
.5

7

125

A Appendix
Ta

ble
A.
5:

Su
�x

arr
ay

co
ns
tru

cti
on

tim
es

on
th
eU

ltr
aS
PA

RC
co
mp

ut
er

(gc
cc

om
pil

er
ve
rsi
on

4.1
.1)

.
C
on

st
ru
ct
io
n
ti
m
e
(s
)

de
ep

di
�
er
en
ce

od
d

Se
qu

en
ce

ty
pe

Se
qu

en
ce

bp
r

m
su
fs
or
t

sh
al
lo
w

ca
ch
e

co
py

qs
u
fs
or
t

co
ve
r

ev
en

sk
ew

D
N
A

se
qu

en
ce

E
.
co
li
ge
no

m
e

1
.8
6

�
2
.8

3
4
.8

4
3
.6

3
4
.0

1
7
.4

3
9
.6

1
2
1
.9

3
A
.
th
al
ia
n
a
ch
r.
4

6
.6
0

�
8
.7

0
1
6
.2

6
1
2
.7

5
1
1
.5

4
2
4
.0

2
2
6
.9

9
5
9
.9

6
H
.
sa
pi
en
s
ch
r.
22

1
9
.3
7

�
2
9
.2

4
5
1
.4

0
3
9
.7

4
3
9
.7

5
8
2
.6

2
7
8
.8

5
1
7
4
.8

5
C
.
el
eg
an

s
ch
r.
1

7
.9
2

�
1
0
.6

3
3
6
.2

2
2
5
.9

7
2
0
.4

1
3
2
.0

3
3
0
.7

7
6
7
.2

6

6
S
tr
ep
to
co
cc
i

7
.2
7

�
1
0
.9

3
2
1
.9

3
1
5
.1

3
1
7
.8

9
2
5
.8

5
2
5
.9

3
5
7
.1

9
4
C
hl
am

yd
op
hi
la

3
.6
0

�
7
.3

6
3
5
.1

0
2
2
.8

7
1
0
.9

4
9
.5

0
9
.9

3
2
3
.5

6
3
E
.
co
li

1
3
.9
6

�
3
4
.4

6
1
2
5
8
.8

8
3
0
1
8
.0

4
4
8
.6

8
3
7
.5

8
3
4
.2

7
7
4
.5

2

T
ex
t

bi
bl
e

2
.2
4

�
2
.2

8
3
.7

9
2
.7

0
4
.7

1
6
.1

1
9
.3

2
1
8
.5

3
w
or
ld

1
.3

7
�

1
.1
0

1
.7

4
1
.4

4
2
.7

8
3
.4

7
5
.1

5
1
0
.9

2
sp
ro
t

8
0
.1
0

�
1
2
3
.9

0
2
4
5
.5

1
2
0
8
.6

5
2
1
5
.5

9
3
8
6
.6

6
3
2
3
.0

3
5
5
7
.4

4
rf
c

8
2
.1
0

�
1
2
4
.6

4
2
0
2
.0

3
1
7
4
.9

5
2
3
8
.4

8
3
4
7
.9

5
3
3
5
.1

7
5
8
7
.3

8
ho
w
to

2
6
.4
1

�
3
3
.4

0
4
9
.6

2
6
4
.9

7
6
2
.9

3
8
7
.6

8
1
1
2
.1

8
2
1
2
.3

9
re
u
te
rs

9
7
.3
4

�
2
7
7
.6

1
4
7
1
.1

5
5
3
1
.2

5
2
9
5
.0

2
6
1
8
.8

6
3
5
2
.2

4
5
8
6
.5

5
li
n
u
x

7
6
.7
6

�
1
0
9
.3

2
2
6
4
.3

3
3
2
0
.2

9
2
1
3
.5

1
3
2
3
.5

9
3
1
7
.2

6
6
0
3
.2

8
jd
k

5
4
.5
4

�
1
4
3
.3

2
2
4
7
.5

7
5
2
5
.9

2
1
8
0
.3

2
2
9
9
.6

8
1
9
7
.3

6
3
4
2
.2

8
et
ex
t

7
7
.7
0

�
1
3
6
.4

7
2
0
8
.0

0
7
4
4
.1

7
2
1
5
.9

4
2
8
2
.6

5
3
2
1
.2

3
5
8
1
.1

2
gc
c

7
2
.6
3

�
1
9
6
.3

4
4
3
8
1
.8

6
2
3
9
0
3
.7

4
1
7
2
.4

3
2
5
4
.3

9
2
2
1
.5

4
4
4
4
.1

1
w
3c

8
2
.3
6

�
3
1
9
.4

0
3
0
0
.2

9
2
0
3
1
9
.6

8
3
2
0
.2

3
4
0
7
.9

0
3
0
0
.2

2
5
3
5
.6

8

sp
ro
t
50
M

3
4
.0
7

�
4
9
.2

9
9
3
.8

4
9
0
.5

4
9
0
.6

9
1
5
5
.6

8
1
4
0
.2

0
2
5
0
.5

5
rf
c
50
M

3
2
.7
8

�
4
5
.4

5
7
4
.8

1
7
2
.7

4
9
0
.1

8
1
3
5
.1

1
1
3
8
.4

3
2
5
0
.5

5
re
u
te
rs

50
M

3
8
.2
4

�
1
0
0
.6

2
1
6
1
.5

7
2
0
4
.7

8
1
1
8
.0

6
2
2
9
.4

2
1
4
5
.3

7
2
5
3
.1

1
li
n
u
x
50
M

3
2
.3
9

�
4
1
.7

9
6
5
.7

7
1
3
7
.0

0
9
8
.6

7
1
2
0
.0

4
1
3
1
.9

4
2
5
5
.6

5
jd
k
50
M

3
6
.8
4

�
8
5
.3

1
1
4
5
.9

9
3
4
4
.2

7
1
2
3
.1

8
1
9
2
.9

9
1
3
7
.5

3
2
4
7
.8

0
et
ex
t
50
M

3
4
.6
9

�
5
8
.9

7
8
5
.0

6
4
3
5
.2

6
9
0
.8

6
1
2
2
.6

0
1
4
9
.7

6
2
7
6
.0

9
gc
c
50
M

4
6
.1
2

�
1
7
1
.3

2
5
0
0
8
.7

0
2
6
5
6
2
.7

0
9
9
.4

6
1
4
6
.0

5
1
1
7
.0

5
2
4
8
.2

2
w
3c

50
M

3
8
.7
7

�
1
4
9
.0

1
1
1
5
.0

7
2
1
6
.1

0
1
1
5
.9

1
1
8
8
.4

1
1
3
7
.3

7
2
4
8
.4

7

A
rt
i�
ci
al

ra
nd

om
1
0
.7
4

�
1
2
.1

6
1
7
.2

8
1
3
.8

5
2
0
.4

6
3
9
.0

0
5
2
.7

5
7
2
.6

1
pe
ri
od

50
0
00
0

1
8
.4
2

�
2
7
9
6
.7

4
3
4
9
8
8
1
.2

5
�

1
4
6
.2

6
8
8
.9

3
4
7
.0

7
9
7
.9

7
pe
ri
od

10
00

2
2
.0
6

�
3
9
4
2
.2

8
1
1
5
6
3
7
.8

2
�

1
5
8
.7

9
1
6
6
.0

9
3
4
.5

9
8
7
.9

0
pe
ri
od

20
2
4
.2

3
�

1
9
7
1
2
2
.9

6
�

�
1
8
2
.4

4
1
4
8
.6

7
2
2
.6
2

8
7
.3

6
F
ib
on

ac
ci

5
8
.1

5
�

2
8
8
9
.3

3
�

�
1
5
4
.0

3
1
6
1
.9

2
4
1
.7
7

7
9
.0

7

126

Ta
ble

A.
6:

Ex
ecu

ted
ins

tru
cti

on
so

nt
he

La
rge

Sc
ale

x8
6
co
mp

ut
er

(gc
cc

om
pil

er
ve
rsi
on

4.0
.3)

.
E
xe
cu
te
d
in
st
ru
ct
io
ns

pe
r
in
pu

t
ch
ar
ac
te
r

de
ep

di
�
er
en
ce

od
d

Se
qu

en
ce

ty
pe

Se
qu

en
ce

bp
r

m
su
fs
or
t

sh
al
lo
w

ca
ch
e

co
py

qs
u
fs
or
t

co
ve
r

ev
en

sk
ew

D
N
A

se
qu

en
ce

E
.
co
li
ge
no

m
e

1
1
6

2
9
1

2
3
6

6
4
0

6
1
7

2
6
6

5
9
9

3
8
9

4
3
0

A
.
th
al
ia
n
a
ch
r.
4

1
4
0

3
3
3

2
4
1

8
7
5

9
5
5

2
8
8

6
4
4

3
9
2

4
4
0

H
.
sa
pi
en
s
ch
r.
22

1
4
3

2
9
8

2
5
5

8
2
2

7
8
6

2
9
1

7
3
5

3
9
9

4
4
3

C
.
el
eg
an

s
ch
r.
1

1
3
6

1
9
1
8

2
8
4

1
9
3
2

2
1
0
1

3
6
2

7
8
3

4
0
2

4
3
9

6
S
tr
ep
to
co
cc
i

1
4
1

5
5
3

3
5
9

1
2
1
5

1
0
3
9

3
8
7

7
3
3

3
9
4

4
3
3

4
C
hl
am

yd
op
hi
la

1
4
4

2
8
6
5

7
4
6

6
6
1
3

6
4
7
1

5
2
2

7
6
4

3
9
2

4
3
7

3
E
.
co
li

1
5
4

9
9
0
3
3

9
8
5

6
4
3
3
5

2
2
0
2
4
4

6
8
4

8
0
4

3
9
4

4
4
2

T
ex
t

bi
bl
e

1
5
0

2
3
1

2
4
9

5
8
4

5
8
8

3
1
6

6
3
1

4
2
9

4
0
9

w
or
ld

1
5
2

2
3
8

2
5
0

5
7
1

6
6
6

3
0
9

7
2
4

4
2
9

4
0
8

sp
ro
t

1
6
3

2
8
7

4
4
8

1
6
9
8

2
3
3
4

3
8
1

9
6
1

4
5
0

4
3
2

rf
c

1
5
7

2
7
2

3
9
4

1
1
0
0

1
4
5
0

4
0
4

8
6
8

4
6
9

4
2
7

ho
w
to

1
5
9

2
7
3

3
2
8

6
9
3

1
8
8
5

3
6
8

6
9
6

4
4
0

4
4
7

re
u
te
rs

1
6
9

3
1
7

1
0
3
1

3
6
8
0

7
0
7
8

4
1
7

1
0
9
3

4
7
9

4
3
1

li
n
u
x

1
4
1

2
7
1

3
8
2

2
2
4
8

4
2
8
0

3
9
5

8
5
1

4
5
2

4
4
3

jd
k

1
6
9

3
2
6

1
0
6
0

3
2
3
6

1
3
1
1
2

4
2
3

1
1
9
5

4
8
0

4
2
7

et
ex
t

1
6
4

2
8
0

4
3
8

1
0
5
9

9
1
6
5

4
0
1

6
9
4

4
5
1

4
4
8

gc
c

2
5
3

2
7
7

1
2
3
9

�
�

3
9
7

9
1
8

4
6
1

4
4
4

w
3c

1
5
5

4
0
3

1
5
9
1

2
3
9
3

�
5
5
0

1
1
2
9

4
6
8

4
3
6

sp
ro
t
50
M

1
5
9

2
7
9

4
4
7

1
4
4
8

2
4
2
1

3
6
8

9
3
8

4
4
5

4
2
6

rf
c
50
M

1
5
5

2
6
4

3
6
2

9
7
2

1
6
5
0

3
8
5

8
3
7

4
6
3

4
2
8

re
u
te
rs

50
M

1
6
5

3
0
7

9
2
1

2
7
9
7

6
4
4
3

4
0
5

1
0
5
2

4
7
2

4
3
2

li
n
u
x
50
M

1
4
2

2
6
9

3
6
9

9
4
0

4
1
2
1

4
2
1

8
2
6

4
4
6

4
4
4

jd
k
50
M

1
6
7

3
1
9

9
2
9

2
5
9
1

1
2
2
4
8

4
1
3

1
1
5
4

4
7
5

4
2
8

et
ex
t
50
M

1
6
0

2
7
7

4
2
6

9
0
2

1
1
9
8
8

3
9
4

6
7
6

4
4
5

4
4
9

gc
c
50
M

3
2
1

2
7
7

2
5
7
5

�
�

4
0
4

9
5
6

4
6
1

4
4
2

w
3c

50
M

1
7
0

3
0
7

1
6
4
9

1
9
1
8

7
3
3
4

4
1
4

1
1
3
5

4
6
6

4
3
0

A
rt
i�
ci
al

ra
nd

om
1
4
2

2
0
7

2
7
1

4
2
2

4
2
1

2
2
6

4
9
1

3
5
1

3
1
2

pe
ri
od

50
0
00
0

1
9
8

8
0
3
1

6
7
5
1
2

�
�

6
6
1

1
4
5
2

3
4
8

4
2
1

pe
ri
od

10
00

1
5
9

2
8
2

1
0
5
2
2
9

�
�

6
4
4

1
5
2
9

3
6
1

4
2
0

pe
ri
od

20
1
7
7

2
0
7

�
�

�
7
0
3

1
6
9
2

4
0
8

4
0
9

F
ib
on

ac
ci

2
9
1

�
5
5
9
4
9

�
�

6
9
8

1
7
0
2

5
0
4

4
1
1

127

A Appendix

128

Bibliography

[1] Mohamed I. Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing su�x trees
with enhanced su�x arrays. Journal of Discrete Algorithms, 2(1):53�86, March 2004.

[2] Mohamed I. Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Handbook on Com-
putational Molecular Biology (Chapman & All/Crc Computer and Information Sci-
ence Series), chapter Enhanced Su�x Arrays and Applications, pages (7�1)�(7�27).
Chapman & Hall/CRC Press, December 2005.

[3] Rudolf Ahlswede, Bernhard Balkenhol, Christian Deppe, and Martin Fröhlich. A
fast su�x-sorting algorithm. In General Theory of Information Transfer and Com-
binatorics (GTIT-C), volume 4123 of Lecture Notes in Computer Science, pages
719�734. Springer Verlag, 2006.

[4] Cyril Allauzen, Maxime Crochemore, and Mathieu Ra�not. Factor oracle: a new
structure for pattern matching. In Proceedings of the 26th Conference on Current
Trends in Theory and Practice of Informatics on Theory and Practice of Informatics
(SOFSEM 1999), volume 1725 of Lecture Notes in Computer Science, pages 295�310.
Springer Verlag, November 1999.

[5] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common
ancestors: a survey and a new distributed algorithm. In Proceedings of the 14th
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 2002),
pages 258�264. ACM Press, August 2002.

[6] Arne Andersson, N. Jesper Larsson, and Kurt Swanson. Su�x trees on words.
Algorithmica, 23(3):246�260, March 1999.

[7] Antonitio, Patrick J. Ryan, William F. Smyth, Andrew Turpin, and Xiaoyang Yu.
New su�x array algorithms � linear but not fast? In Proceedings of the 15th
Australasian Workshop on Combinatorial Algorithms (AWOCA 2004), pages 148�
156, July 2004.

[8] Alberto Apostolico. Combinatorial Algorithms on Words, chapter The myriad
virtues of subword trees, pages 85�96. Springer Verlag New York, 1985.

[9] Alberto Apostolico and Wojciech Szpankowski. Self-alignments in words and their
applications. Journal of Algorithms, 13(3):446�467, September 1992.

129

Bibliography

[10] Ross Arnold and Timothy C. Bell. A corpus for the evaluation of lossless compression
algorithms. In Proceedings of the Data Compression Conference (DCC 1997), pages
201�210. IEEE Computer Society, March 1997.

[11] Genome Bioinformatics Group at the University of California, Santa Cruz, USA.
UCSC genome browser. http://hgdownload.cse.ucsc.edu/downloads.html. Last
visited: April 1, 2007.

[12] Ricardo A. Baeza-Yates and Gaston H. Gonnet. E�cient text searching of regular
expressions. In Proceedings of the 16th International Colloquium on Automata, Lan-
guages and Programming (ICALP 1989), volume 372 of Lecture Notes in Computer
Science, pages 46�62. Springer Verlag, July 1989.

[13] Brenda S. Baker. Parameterized duplication in strings: Algorithms and an appli-
cation to software maintenance. SIAM Journal on Computing, 26(5):1343�1362,
October 1997.

[14] Hideo Bannai, Shunsuke Inenaga, Ayumi Shinohara, and Masayuki Takeda. Inferring
strings from graphs and arrays. In Proceedings of the 28th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2003), volume 2747 of
Lecture Notes in Computer Science, pages 208�217. Springer Verlag, August 2003.

[15] Dror Baron and Yoram Bresler. Anti-sequential su�x sorting for bwt-based data
compression. IEEE Transactions on Computers, 54(4):385�397, April 2005.

[16] Michael Beckstette, Dirk Strothmann, Robert Homann, Robert Giegerich, and Ste-
fan Kurtz. PoSSuMsearch: Fast and sensitive matching of position speci�c scoring
matrices using enhanced su�x arrays. In Proceedings of the German Conference on
Bioinformatics (GCB 2004), Lecture Notes in Informatics, pages 53�64. Gesellschaft
für Informatik, October 2004.

[17] Tim Bell, Matt Powell, Jo�re Horlor, and Ross Arnold. The canterbury large corpus.
http://corpus.canterbury.ac.nz/resources/large.tar.gz. Last visited: June
18, 2007.

[18] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Pro-
ceedings of the 4th Latin American Symposium on Theoretical Informatics (LATIN
2000), volume 1776 of Lecture Notes in Computer Science, pages 88�94. Springer
Verlag, April 2000.

[19] Johan Bengtsson. memtime. http://freshmeat.net/projects/memtime. Last vis-
ited: June 18, 2007.

[20] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and
David L. Wheeler. Genbank. Nucleic Acids Research, 31(1):23�27, 2003.

[21] Jon Bentley. Programming pearls. ACM Press, 1986.

130

Bibliography

[22] Jon L. Bentley and M. Douglas McIlroy. Engineering a sort function. Software:
Practice and Experience, 23(11):1249�1265, November 1993.

[23] Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching
strings. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA 1997), pages 360�369. Society for Industrial and Applied Mathe-
matics, January 1997.

[24] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM
Journal of Computing, 22(2):221�242, April 1993.

[25] Jean Berstel. The Book of L., chapter Fibonacci words�a survey, pages 11�26.
Springer Verlag, 1986.

[26] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and
Robert Endre Tarjan. Time bounds for selection. Journal of Computer and Systems
Sciences, 7(4):448�461, August 1973.

[27] Anselm Blumer, Janet A. Blumer, David Haussler, Ross M. McConnell, and Andrzej
Ehrenfeucht. Complete inverted �les for e�cient text retrieval and analysis. Journal
of the ACM, 34(3):578�595, July 1987.

[28] Miklos Bona. Combinatorics of Permutations, volume 29 of Discrete Mathematics
and Its Applications. McGraw-Hill, June 2004.

[29] Miklos Bona. Introduction to Enumerative Combinatorics. Walter Rudin Student
Series in Advanced Mathematics. McGraw-Hill, September 2005.

[30] Stefan Burkhardt, Andreas Crauser, Paolo Ferragina, Hans-Peter Lenhof, Eric Ri-
vals, and Martin Vingron. q-gram based database searching using a su�x array
(QUASAR). In Proceedings of the 3rd Annual International Conference on Research
in Computational Molecular Biology (RECOMB 1999), pages 77�83. ACM Press,
April 1999.

[31] Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight su�x array construction
and checking. In Proceedings of the 14th Annual Symposium on Combinatorial Pat-
tern Matching (CPM 2003), volume 2676 of Lecture Notes in Computer Science,
pages 55�69. Springer Verlag, June 2003.

[32] Michael Burrows and David J. Wheeler. A block-sorting lossless data compression
algorithm. Technical Report � Research Report 124, Digital System Research Center,
May 1994.

[33] William I. Chang and Eugene L. Lawler. Sublinear approximate string matching
and biological applications. Algorithmica, 12(4�5):327�344, October 1994.

[34] Charalambos A. Charalambides. Enumerative Combinatorics, volume 19 of Discrete
Mathematics and Its Applications. Chapman & Hall / CRC Press, 2002.

131

Bibliography

[35] Dog Genome Sequencing Consortium. Genome sequence, comparative analysis and
haplotype structure of the domestic dog. Nature, 438(7069):803�819, December
2005.

[36] International Human Genome Sequencing Consortium. Finishing the euchromatic
sequence of the human genome. Nature, 431(7011):931�945, October 2004.

[37] Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis
of the mouse genome. Nature, 420(6915):520�562, December 2002.

[38] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli� Stein. Intro-
duction to Algorithms. MIT Press, second edition, 2001.

[39] Andreas Crauser and Paolo Ferragina. A theoretical and experimental study on the
construction of su�x arrays in external memory. Algorithmica, 32(1):1�35, January
2002.

[40] Maxime Crochemore, Jacques Désarménien, and Dominique Perrin. A note on the
Burrows-Wheeler transformation. Theoretical Computer Science, 332(1�3):567�572,
February 2005.

[41] Erik D. Demaine and Alejandro López-Ortiz. A linear lower bound on index size for
text retrieval. Journal of Algorithms, 48(1):2�15, August 2003.

[42] Roman Dementiev, Juha Kärkkäinen, Jens Mehnert, and Peter Sanders. Better
external memory su�x array construction. In Proceedings of the 7th Workshop on
Algorithm Engineering and Experiments and the 2nd Workshop on Analytic Algo-
rithmics and Combinatorics (ALENEX/ANALCO 2005), pages 86�97. Society for
Industrial and Applied Mathematics, January 2005.

[43] Dorit Dor and Uri Zwick. Selecting the median. In Proceedings of the 6th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 1995), pages 28�37. Society
for Industrial and Applied Mathematics, January 1995.

[44] Jean-Pierre Duval and Arnaud Lefebvre. Words over an ordered alphabet and su�x
permutations. RAIRO � Theoretical Informatics and Applications, 36(3):249�259,
July�September 2002.

[45] Martin Farach. Optimal su�x tree construction with large alphabets. In Proceedings
of the 38th Annual Symposium on the Foundations of Computer Science (FOCS
1997), pages 137�143. IEEE Computer Society, October 1997.

[46] Martin Farach and S. Muthukrishnan. Optimal logarithmic time randomized su�x
tree construction. In Proceedings of the 23rd International Colloquium on Automata,
Languages and Programming (ICALP 1996), volume 1099 of Lecture Notes in Com-
puter Science, pages 550�561. Springer Verlag, July 1996.

132

Bibliography

[47] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-
complexity of su�x tree construction. Journal of the ACM, 47(6):987�1011, Novem-
ber 2000.

[48] Paolo Ferragina and Roberto Grossi. The String B-tree: A new data structure
for string search in external memory and its applications. Journal of the ACM,
46(2):236�280, March 1999.

[49] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with appli-
cations. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS 2000), pages 390�398. IEEE Computer Society, November 2000.

[50] Paolo Ferragina and Giovanni Manzini. An experimental study of a compressed
index. Information Sciences, 135(1�2):13�28, June 2001.

[51] Paolo Ferragina and Giovanni Manzini. Compression boosting in optimal linear
time using the burrows-wheeler transform. In Proceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2004), pages 655�663. Society for
Industrial and Applied Mathematics, January 2004.

[52] Wolfgang Gerlach. Dynamic FM-index for a collection of texts with applications to
space-e�cient construction of the compressed su�x array. Diplomarbeit, Technische
Fakultät, Universität Bielefeld, Germany, February 2007.

[53] Robert Giegerich and Stefan Kurtz. From Ukkonen to McCreigth and Weiner: A
unifying view of linear-time su�x tree constructions. Algorithmica, 19(3):331�353,
November 1997.

[54] Robert Giegerich, Stefan Kurtz, and Jens Stoye. E�cient implementation of lazy
su�x trees. Software: Practice and Experience, 33(11):1035�1049, September 2003.

[55] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Timsu� Snider. New indices for
text: Pat trees and pat arrays. In W. B. Frakes and Ricardo A. Baeza-Yates, editors,
Information retrieval: data structures and algorithms, pages 66�82. Prentice-Hall,
1992.

[56] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley, second edition, 1994.

[57] Roberto Grossi and Je�rey Scott Vitter. Compressed su�x arrays and su�x trees
with applications to text indexing and string matching. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing (STOC 2000), pages 397�406.
ACM Press, May 2000.

[58] Dan Gus�eld. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, 1997.

133

Bibliography

[59] Charles A. R. Hoare. Quicksort. The Computer Journal, 5(1):10�16, 1962.
[60] Michael Höhl, Stefan Kurtz, and Enno Ohlebusch. E�cient multiple genome align-

ment. In Proceedings of the 10th International Conference on Intelligent Systems for
Molecular Biology (ISMB 2002), Bioinformatics, volume 18 (Supplement 1), pages
S312�S320, August 2002.

[61] Christophe Hohlweg and Christophe Reutenauer. Lyndon words, permutations and
trees. Theoretical Computer Science, 307(1):173�178, September 2003.

[62] Patrick Holthaus. String algorithms on enhanced su�x arrays. Bachelor thesis,
Technische Fakultät, Universität Bielefeld, Germany, August 2006.

[63] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a time-and-space
barrier in constructing full-text indices. In Proceedings of the 44th Symposium on
Foundations of Computer Science (FOCS 2003), pages 251�260. IEEE Computer
Society, October 2003.

[64] Peter Husemann. Kompressionsverstärkung für Textdaten unter Benutzung der
Burrows-Wheeler-Transformation (in german). Diplomarbeit, Technische Fakultät,
Universität Bielefeld, Germany, May 2006.

[65] Costas S. Iliopoulos, Dennis Moore, and William F. Smyth. A characterization of
the squares in a Fibonacci string. Theoretical Computer Science, 172(1�2):281�291,
February 1997.

[66] Shunsuke Inenaga and Masayuki Takeda. On-line linear-time construction of word
su�x trees. In Proceedings of the 17th Annual Symposium on Combinatorial Pattern
Matching (CPM 2006), volume 4009 of Lecture Notes in Computer Science, pages
60�71. Springer Verlag, July 2006.

[67] Hideo Itoh and Hozumi Tanaka. An e�cient method for in memory construction of
su�x arrays. In Proceedings of the 6th International Conference on String Process-
ing and Information Retrieval and the 5th International Workshop on Groupware
(SPIRE/CRIWG 1999), pages 81�88. IEEE Computer Society Press, September
1999.

[68] Mike Joy and Michael Luck. Plagiarism in programming assignments. IEEE Trans-
actions on Education, 42(2):129�133, May 1999.

[69] Juha Kärkkäinen. Home page. http://www.cs.helsinki.fi/u/tpkarkka/. Last
visited: January 9, 2007.

[70] Juha Kärkkäinen. Su�x cactus: A cross between su�x tree and su�x array. In
Proceedings of the 6th Annual Symposium on Combinatorial Pattern Matching (CPM
1995), volume 937 of Lecture Notes in Computer Science, pages 191�204. Springer
Verlag, July 1995.

134

Bibliography

[71] Juha Kärkkäinen and Peter Sanders. Simple linear work su�x array construction.
In Proceedings of the 30th International Colloquium on Automata, Languages and
Programming (ICALP 2003), volume 2719 of Lecture Notes in Computer Science,
pages 943�955. Springer Verlag, June 2003.

[72] Juha Kärkkäinen and Peter Sanders. Source code for the skew algorithm.
http://www.mpi-inf.mpg.de/�sanders/programs/suffix, 2003. Last visited:
January 9, 2007.

[73] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work su�x array
construction. Journal of the ACM, 53(6):918�936, November 2006.

[74] Juha Kärkkäinen and Esko Ukkonen. Sparse su�x trees. In Proceeding of the
2nd Annual International Conference on Computing and Combinatorics (COCOON
1996), volume 1090 of Lecture Notes in Computer Science, pages 219�230. Springer
Verlag, June 1996.

[75] Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg. Rapid identi�cation
of repeated patterns in strings, trees and arrays. In Proceedings of the 4th ACM
Symposium on Theory of Computing (STOC 1972), pages 125�136. ACM Press,
May 1972.

[76] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-pre�x computation in su�x arrays and its applications. In Proceedings
of the 12th Annual Symposium on Combinatorial Pattern Matching (CPM 2003),
volume 2089 of Lecture Notes in Computer Science, pages 181�192. Springer Verlag,
July 2001.

[77] Carsten Kemena. Algorithms on enhanced su�x arrays and their application in
bioinformatics. Bachelor thesis, Technische Fakultät, Universität Bielefeld, Ger-
many, August 2006.

[78] Dong K. Kim, Junha Jo, and Heejin Park. A fast algorithm for constructing su�x
arrays for �xed-size alphabets. In Proceedings of the 3rd International Workshop on
Experimental and E�cient Algorithms (WEA 2004), volume 3059 of Lecture Notes
in Computer Science, pages 301�314. Springer Verlag, May 2004.

[79] Dong K. Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construc-
tion of su�x arrays. In Proceedings of the 14th Annual Symposium on Combinatorial
Pattern Matching (CPM 2003), volume 2676 of Lecture Notes in Computer Science,
pages 186�199. Springer Verlag, June 2003.

[80] Dong K. Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Constructing su�x
arrays in linear time. Journal of Discrete Algorithms, 3(2�4):126�142, June 2005.

135

Bibliography

[81] Krzysztof C. Kiwiel. Partitioning schemes for quicksort and quickse-
lect. Computing Research Repository (CoRR), cs.DS/0312054, December 2003.
http://arxiv.org/abs/cs.DS/0312054.

[82] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching,
volume 3. Addison�Wesley, second edition, 1998.

[83] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching
in strings. SIAM Journal on Computing, 6(2):323�350, June 1977.

[84] Pang Ko and Srinivas Aluru. Space e�cient linear time construction of su�x arrays.
In Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching
(CPM 2003), volume 2676 of Lecture Notes in Computer Science, pages 200�210.
Springer Verlag, June 2003.

[85] Pang Ko and Srinivas Aluru. Space e�cient linear time construction of su�x arrays.
Journal of Discrete Algorithms, 3(2�4):143�156, June 2005.

[86] Fabian Kulla and Peter Sanders. Scalable parallel su�x array construction. In
Proceedings of the 13th European User's Group Meeting: Recent Advances in Parallel
Virtual Machine and Message Passing Interface (PVM/MPI 2006), volume 4192 of
Lecture Notes in Computer Science, pages 22�29. Springer Verlag, September 2006.

[87] Stefan Kurtz. The vmatch homepage. http://www.vmatch.de. Last visited: June
18, 2007.

[88] Stefan Kurtz. Reducing the space requirements of su�x trees. Software: Practice
and Experience, 29(13):1149�1171, November 1999.

[89] Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher, Jens
Stoye, and Robert Giegerich. REPuter: the manifold applications of repeat analysis
on a genomic scale. Nucleic Acids Research, 29(22):4633�4642, November 2001.

[90] N. Jesper Larsson and Kunihiko Sadakane. Faster su�x sorting. Technical
Report LU-CS-TR:99-214, LUNDFD6/(NFCS-3140)/1�20/(1999), Department of
Computer Science, Lund University, May 1999.

[91] Sunglim Lee and Kunsoo Park. E�cient implementations of su�x array construction
algorithms. In Proceedings of the 15th Australasian Workshop on Combinatorial
Algorithms (AWOCA 2004), pages 64�72, July 2004.

[92] Ross A. Lippert, Clark M. Mobarry, and Brian P. Walenz. A space-e�cient construc-
tion of the burrows-wheeler transform for genomic data. Journal of Computational
Biology, 12(7):943�951, September 2005.

[93] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences and full-text
indexes. In 17th Annual Symposium on Combinatorial Pattern Matching (CPM

136

Bibliography

2006), number 4009 in Lecture Notes in Computer Science, pages 306�317. Springer
Verlag, July 2006.

[94] Veli Mäkinen. Compact su�x array � a space-e�cient full-text index. Fundamenta
Informaticae, 56(1�2):191�210, January 2003.

[95] Ketil Malde, Eivind Coward, and Inge Jonassen. Fast sequence clustering using a
su�x array algorithm. Bioinformatics, 19(10):1221�1226, July 2003.

[96] Udi Manber and Eugene W. Myers. Su�x arrays: A new method for on-line string
searches. SIAM Journal on Computing, 22(5):935�948, October 1993.

[97] Michael A. Maniscalco. http://www.michael-maniscalco.com/msufsort.htm.
Last visited: January 9, 2007.

[98] Michael A. Maniscalco and Simon J. Puglisi. An e�cient, versatile approach to
su�x sorting. ACM Journal of Experimental Algorithms, to appear.

[99] Michael A. Maniscalco and Simon J. Puglisi. Faster lightweight su�x array construc-
tion. In Proceeding of the 17th Australasian Workshop on Combinatorial Algorithms
(AWOCA 2006), pages 16�29, July 2006.

[100] Giovanni Manzini. A lightweight su�x array and bwt construction algorithm.
http://www.mfn.unipmn.it/�manzini/lightweight/. Last visited: January 9,
2007.

[101] Giovanni Manzini. Two space saving tricks for linear time LCP array computation. In
Proceedings of the 9th Scandinavian Workshop on Algorithm Theory (SWAT 2004),
volume 3111 of Lecture Notes in Computer Science, pages 372�383. Springer Verlag,
July 2004.

[102] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight su�x array con-
struction algorithm. Algorithmica, 40(1):33�50, June 2004.

[103] George E. Martin. Counting: The Art of Enumerative Combinatorics. Undergrad-
uate Texts in Mathematics. Springer Verlag, 2001.

[104] Edward M. McCreight. A space-economical su�x tree construction algorithm. Jour-
nal of the ACM, 23(2):262�272, April 1976.

[105] M. Douglas McIlroy. http://cm.bell-labs.com/cm/cs/who/doug/ssort.c, 1997.
Last visited: June 18, 2007.

[106] Peter M. McIlroy, Keith Bostic, and M. Douglas McIlroy. Engineering radix sort.
Computing Systems, 6(1):5�27, 1993.

[107] Peter Bro Miltersen. Lower bounds on the size of selection and rank indexes. In Pro-
ceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2005), pages 11�12. Society for Industrial and Applied Mathematics, January 2005.

137

Bibliography

[108] Krisztián Monostori, Arkady Zaslavsky, and Heinz Schmidt. Su�x vector: space-
and time-e�cient alternative to su�x trees. In Proceedings of the 25th Australasian
Conference on Computer Science (ACSC 2002), pages 157�165. Australian Com-
puter Society, January 2002.

[109] Dennis Moore, William F. Smyth, and Dianne Miller. Counting distinct strings.
Algorithmica, 23(1):1�13, April 1999.

[110] Maxim Mozgovoy, Kimmo Fredriksson, Daniel R. White, Mike Joy, and Erkki Su-
tinen. Fast plagiarism detection system. In Proceedings of the 12th International
Conference on String Processing and Information Retrieval (SPIRE 2005), volume
3772 of Lecture Notes in Computer Science, pages 267�270. Springer Verlag, Novem-
ber 2005.

[111] Joong Chae Na. Linear-time construction of compressed su�x arrays using o(n log
n)-bit working space for large alphabets. In Proceedings of the 16th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2005), volume 3537 of Lecture
Notes in Computer Science, pages 57�67. Springer Verlag, June 2005.

[112] Gonzalo Navarro, Joao Paulo Kitajima, Berthier A. Ribeiro-Neto, and Nivio Ziviani.
Distributed generation of su�x arrays. In Proceedings of the 8th Annual Symposium
on Combinatorial Pattern Matching (CPM 1997), pages 102�115. Springer Verlag,
June 1997.

[113] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1), April 2007.

[114] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision frame-
work. Electronic Notes in Theoretical Computer Science, 89(2), July 2003.

[115] National Center of Biotechnology Information (NCBI). Genbank genomes.
ftp://ftp.ncbi.nih.gov/genbank/genomes/. Last visited: January 9, 2007.

[116] Daniel Paarmann. Oligo Designer � Berechnung von Oligonukleotiden (in german).
Diplomarbeit, Technische Fakultät, Universität Bielefeld, Germany, 2005.

[117] David A. Patterson and John L. Hennessy. Computer architecture: a quantitative
approach. Morgan Kaufmann Publishers Inc., second edition, 1996.

[118] Simon J. Puglisi. Exposition and analysis of a su�x sorting algorithm. Technical Re-
port CAS-05-02-WS, Department of Computing and Software, McMaster University
Hamilton, Ontario, Canada, May 2005.

[119] Simon J. Puglisi, William F. Smyth, and Andrew Turpin. The performance of linear
time su�x sorting algorithms. In Proceedings of the Data Compression Conference
(DCC 2005), pages 358�367. IEEE Computer Society, March 2005.

138

Bibliography

[120] Simon J. Puglisi, William F. Smyth, and Andrew Turpin. A taxonomy of su�x array
construction algorithms. ACM Computing Surveys, to appear, 39(2), June 2007.

[121] Sven Rahmann. Rapid large-scale oligonucleotide selection for microarrays. In Pro-
ceedings of the 1st IEEE Computer Society Bioinformatics Conference (CSB 2002),
pages 54�63. IEEE Press, August 2002.

[122] Wojciech Rytter. The structure of subword graphs and su�x trees of Fibonacci
words. Theoretical Computer Science, 363(2):211�223, October 2006.

[123] Kunihiko Sadakane. Compressed text databases with e�cient query algorithms
based on the compressed su�x array. In Proceedings of the 11th International Sympo-
sium on Algorithms and Computation (ISAAC 2000), volume 1969 of Lecture Notes
in Computer Science, pages 410�421. Springer Verlag, December 2000.

[124] Kunihiko Sadakane. Succinct representations of lcp information and improvements
in the compressed su�x arrays. In Proceedings of the 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2002), pages 225�232. Society for Industrial
and Applied Mathematics, January 2002.

[125] Kunihiko Sadakane. Compressed su�x trees with full functionality. Theory of Com-
puting Systems, in press, 2007.

[126] Arnold Schönhage, Mike Paterson, and Nicholas Pippenger. Finding the median.
Journal of Computer and Systems Sciences, 13(2):184�199, October 1976.

[127] Klaus-Bernd Schürmann. Bpr. http://bibiserv.techfak.uni-bielefeld.de/bpr.
Last visited: June 18, 2007.

[128] Klaus-Bernd Schürmann and Jens Stoye. Counting su�x arrays and strings. Theo-
retical Computer Science, to appear.

[129] Klaus-Bernd Schürmann and Jens Stoye. Su�x tree construction and storage with
limited main memory. Technical Report 2003-06, Technische Fakultät, Universität
Bielefeld, Germany, August 2003.

[130] Klaus-Bernd Schürmann and Jens Stoye. Counting su�x arrays and strings. Tech-
nical Report 2005-04, Technische Fakultät, Universität Bielefeld, Germany, August
2005.

[131] Klaus-Bernd Schürmann and Jens Stoye. Counting su�x arrays and strings. In Pro-
ceedings of the 12th International Conference on String Processing and Information
Retrieval (SPIRE 2005), volume 3772 of Lecture Notes in Computer Science, pages
55�66. Springer Verlag, November 2005.

[132] Klaus-Bernd Schürmann and Jens Stoye. An incomplex algorithm for fast su�x
array construction. In Proceedings of the 7th Workshop on Algorithm Engineering

139

Bibliography

and Experiments and the 2nd Workshop on Analytic Algorithmics and Combina-
torics (ALENEX/ANALCO 2005), pages 77�85. Society for Industrial and Applied
Mathematics, January 2005.

[133] Klaus-Bernd Schürmann and Jens Stoye. An incomplex algorithm for fast su�x
array construction. Software: Practice and Experience, 37(3):309�329, March 2007.

[134] Julian Seward. The bzip2 homepage. http://www.bzip.org. Last visited: June 18,
2007.

[135] Julian Seward. On the performance of BWT sorting algorithms. In Proceedings
of the Data Compression Conference (DCC 2000), pages 173�182. IEEE Computer
Society, March 2000.

[136] Julian Seward, Nicholas Nethercote, Jeremy Fitzhardinge, and other people. Val-
grind. http://www.valgrind.org. Last visited: June 18, 2007.

[137] Richard C. Singleton. ACM Algorithm 347: an e�cient algorithm for sorting with
minimal storage. Communications of the ACM, 12(3):185�187, March 1969.

[138] Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University
Press, April 1997.

[139] Wojciech Szpankowski. Asymptotic properties of data compression and su�x trees.
IEEE Transactions on Information Theory, 39(5):1647�1659, September 1993.

[140] Sven Twardziok and Patrick Schwientek. Largescale oligo nucleotide design for mi-
croarrays (in german). Bachelor thesis, Technische Fakultät, Universität Bielefeld,
Germany, September 2006.

[141] Esko Ukkonen. On-line construction of su�x-trees. Technical Report A-1993-1,
Department of Computer Science, University of Helsinki, Finland, 1993.

[142] Esko Ukkonen. On-line construction of su�x-trees. Algorithmica, 14(3):249�260,
September 1995.

[143] Peter Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, pages 1�11. IEEE Computer
Society, October 1973.

[144] Mikio Yamamoto and Kenneth W. Church. Using su�x arrays to compute term
frequency and document frequency for all substrings in a corpus. Computational
Linguistics, 27(1):1�30, March 2001.

140

