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Chapter 1

INTRODUCTION: SCENERY
RECONSTRUCTION

The basic scenery reconstruction problem can be described as follows: suppose that to each
z ∈ Z a color from the set {0, 1, . . . , C−1} is assigned. This defines a coloration of Z which
we call “ scenery” and denote by ξ. Formally, a scenery ξ is a map ξ : Z→ {0, 1, . . . , C−1}.

Suppose a simple random walk {S(t)}t∈N starts to move on these colored integers re-
gistering the color it sees at each time t > 0 and producing a new sequence of colors. At
time t, the random walk sees the color χt := ξ(St). The color record χ0χ1χ2 . . . is denoted
by χ. The question which arises naturally, is to which extent the original coloring ξ can
be reconstructed given only one realization of the observations χ?

Under appropriate restrictions, it is often possible to reconstruct the scenery ξ when
given only one realization of the observations χ. These restrictions are:

• Two sceneries are called equivalent if one of them is obtained from the other by
translation and/or reflection. If ξ and ξ∗ are equivalent, we can in general not
distinguish whether the observations come from ξ or ξ∗.

• In [14], Lindenstrauss shows that there exist sceneries which can not be reconstructed.
So, instead one shows that typical sceneries can be reconstructed: the scenery is
taken to be the outcome of a random process and one tries to show that almost all
sceneries can be reconstructed up to equivalence.

• One can only hope to be able to reconstruct a scenery up to translation and reflection
and the reconstruction works in the best case only almost surely (a.s.)

• The reconstruction problem is impossible to solve for dimensions larger than 2 if we
use a simple random walk (or any spatially homogeneous random walk), because
when the dimension is at least 3, the random walk is transient.

We illustrate the problem with an example.
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Example 1.0.1 Take a portion of the scenery ξ and the beginning of the path from
{S(t)}t∈N as given by Figure 1.1. We observe the sequence of observations χ obtained

0 2 0 1 0 0 1...� ...

Scenery

Figure 1.1: The arrows over ξ indicate the beginning of the path taken by S.

by following the path S on ξ. The first observations from χ look as follows:

0 2 0 2 0 1 0 1 0 0 1 ...

The Scenery Reconstruction Problem consists in trying to reconstruct ξ up to equivalence,
given only the observations χ. In practice, one tries to reconstruct a finite piece of ξ close
to the origin with only a finite number of observations first. Most theoretical results are
about reconstructing the whole scenery ξ with an infinite amount of observations. These
are usually obtained by putting together finite pieces which where previously reconstructed
from finite many observations.

In the next section, we present the history of the Scenery Reconstruction problem.

There exist various theoretical results on scenery reconstruction, but almost none lead
to a practical algorithm. The proofs in [24] and [21], that a finite piece of scenery can be
reconstructed in polynomial time seem too cumbersome to be implemented.

For the first time, we present an algorithm which is easy to implement. This is the
content of chapter 2, where we show how to reconstruct a finite piece of scenery close to
the origin. For the reconstruction we only use polynomially many observations (in the
length of the piece). The scenery is taken to have 3 colors. The algorithm uses a method
which is also used for DNA-reconstruction: if first obtains micro-strings which it then
assembles. The micro-strings are of logarithmic order in the length of the piece to be
reconstructed. The algorithm reconstructing the micro-strings needs exponential time in
the size of the micro-strings. However, exponential of logarithmic leads to polynomial!
To reconstruct the micro-strings one uses a representation of the scenery ξ on a 3-regular
tree T = (ET , VT ) equipped with a non-random coloring: ψ : VT → {0, 1, 2}. For now
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assume the scenery ξ to be non-random at the origin. Assume also that our tree T has a
root v0, where the color coincides with ξ0:

ψ(v0) = ξ0.

We request that for every vertex v of the tree, the three adjacent vertexes v1, v2, v3 have
all 3-colors represented:

{ψ(v1), ψ(v2), ψ(v3)} = {0, 1, 2}.

There is unique nearest neighbor walk path R on T generating the sequence ξ on the tree
and such that R(0) = v0. In other words, there is a unique R : Z→ VT , such that

Rt+1 is adjacent to Rt, ∀t ∈ Z,

whilst
ψ(Rz) = ξz,∀z ∈ Z

and R0 = v0. The usefulness of the representation of ξ as nearest neighbor walk is as
follows: imagine a bendable (double-infinite) tube. Put marks at distance 1 length-unit
from each other in the tube. Chose one mark to be the 0-th mark. Then numerated the
marks with all the numbers from Z in the order as they appear in the tube. Color the
marks. For this let mark number z have color ξz. Hence, the color sequence in the tube
corresponds the double-infinite sequence ξ. Imagine that the edges in the tree T are of
length 1-unit. We bend the tube over the tree, so that every mark is placed over a vertex
with the same color. In this way, the tube defines a nearest neighbor path on the tree
T . This nearest neighbor walk path is exactly equal to R, the representation of ξ as such
a path. Hence, we have found an intuitive image for R. The way this is useful goes as
follows: remember that our problem starts with a random walk S“reading” the scenery ξ
and thus producing a new color record χ given by

χ = χ0χ1χ2 . . . = ξ(S0)ξ(S1)ξ(S2) . . . ,

which can also be written as
χ = ξ ◦ S. (1.0.1)

Since, R generates ξ as color record on the tree T , we have ξ = ψ ◦ R. Using the last
equation together with 1.0.1, we obtain

χ = ξ ◦ S = (ψ ◦R) ◦ S = ψ ◦ (R ◦ S). (1.0.2)

Note that R ◦ S represents the nearest neighbor path

R(S0), R(S1), R(S2), . . .

on the tree T , which is obtained by composing R and S. More intuitively, R ◦ S can be
viewed as “ the random walk S inside the tube R, when we fold the tube over the tree T
as described before”. We can thus look at the tube as a bendable referential (just like in
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general relativity! :) ). But equation 1.0.2, tells us that the nearest neighbor path R ◦ S
on the tree T , generates the color record χ. This means that given χ, we can reconstruct
R ◦ S. We have at this stage the following situation: a transparent tube R folded over
the tree T , (tube is invisible) and within the folded tube a random walk which is visible.
The tube is transient. So, there will be vertexes vx and vy which get visited only once by
R. We take the time when R ◦S goes in shortest time from vx to vy. This corresponds to
a“straight walk” by the random walk S. During such a straight walk, the observations χ
are simply a copy of the piece of the scenery ξ crossed during that time. (For the details,
see chapter 2).

This idea of a transparent folded tube serving as referential to the random walk S, is
very appealing intuitively. We could easily draw the situation with color-pencils. But it
is not clear how to implement this efficiently with a computer. In Chapter 4, we present
an essential contribution for the computer implementation: the geometric ideas are trans-
lated into an algebraic formalism, which is easy to compute. For this we identify every
vertex v of the tree T with a finite string: the string we chose is the color-record obtained
when we move in shortest way from the root v0 to v. Assume that the nearest neighbor
path R is located on the vertex v at time z > 0:

R(z) = v.

The string representing v can be obtained by taking the color record of the finite obser-
vations:

ψ(R0)ψ(R1) . . . ψ(Rz) = ξ0ξ1 . . . ξz, (1.0.3)

modulo aba = a. By “modulo aba = a”, we mean that any substring of type aba gets
replace by a. We proceed until the string can not be simplified any further. The string
thus obtained is the one representing v. For this, it is not important where we first apply
our simplification rule. The end-result is always the same. For any color record obtained
by a nearest neighbor walk on the tree marching from v0 to v, when simplified maximally
modulo aba = a, always leads to the same string. Assume that the random walk S at
time t is located at the point z:

St = z,

and as before let Rz = v. Then, the nearest neighbor walk R ◦ S at time t is located in
v. This implies applying our simplification rule to the color record made by R ◦ S up to
time t, yields the string corresponding to v. In other words, when taking the string

χ0χ1 . . . χt,

modulo aba = a, we obtain a number corresponding to the vertex at which R ◦ S is at
time t.

In chapter 3, we present a fundamental improvement for determining times when the
walker is close to the origin. Usually one takes the scenery to be i.i.d.. So, for re-
constructing the scenery ξ in the finite interval I, the observations made whilst S is
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outside I, are not helpful. In other words, to stand a chance to reconstruct the restriction
of ξ to I, we need to determine times when S is in I. A simple approach to solving this
problem is presented in [1]. But that approach fails with less than five colors. We boost
the proof to make it work with only 4 colors. The approach should also be useful in
the future for the reconstruction of sceneries with low entropy. (So, far the reconstruc-
tion methods work only with sceneries which contain a lot of entropy (i.i.d.)). It is an
important open question if by decreasing the entropy, we reach a point where scenery
reconstruction becomes impossible. Let us explain a little more of the method in chapter
3. Assume an i.i.d. scenery ξ with C equiprobable colors. Assume that S is a simple
symmetric random walk on Z. Assume further more that x is an integer number such
that |x| > 2n and let wn be the string wn = ξ0ξ1 . . . ξn−1. Let R be a nearest neighbor
path on Z of length n and starting in x. Since R takes only steps of length 1, it can not
enter the interval [0, n− 1]. So, the observations made by R are independent of wn. This
leads to

P (ξ ◦R = wn) =

(
1

C

)n
.

There are 2n nearest neighbor paths starting in x. Thus, the probability that there exists
a nearest neighbor path starting in x and generating wn is bounded from above by(

2

C

)n
. (1.0.4)

The last expression above is an exponentially small quantity in n, as soon as C > 2.
The main contribution of chapter 3, is to realize that the bound 1.0.4 can be very much
improved. For this it is noticed that the path R which should generate the word wn =
ξ0ξ1 . . . ξn−1, should produce an observation-string which reflects the distribution of wn =
ξ0ξ1 . . . ξn−1. Most paths will generate observations having a very different distribution
from ξ and can thus be excluded. In most situations reconstructing a scenery becomes
way more difficult when the entropy of the scenery is reduced. The present method
seems however still possible with low-entropy sceneries: when the entropy of ξ0ξ1 . . . ξn−1

is low, we will also be able to reduce the number of nearest neighbor paths susceptible of
generating wn. This gives us new hope for the low-entropy case.

1.1 History

The scenery reconstruction problem is part of the research area known as “Random walk
in random sceneries” (RWRS), which studies the distribution of the observations of a
random media by a random walk. Let us explain the (RWRS) problem.

Let (Xn)n∈Z be a sequence of i.i.d random variables taking values in a possible infinite
set F ∈ Zd according to a common distribution µF , with full support on F . Let (Sn)n∈Z
be a two-side simple random walk on Zd, i.e,

S0 = 0 and Sn − Sn−1 = Xn, n ∈ Z.
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The simple random walk is the case where F = {e ∈ Zd; |e| = 1} and µF (e) = 1
2d ,

for e ∈ F .

Define another sequence of i.i.d variables, but this time taking values in a finite set G
according to a common distribution µG, with full support on G. Denote them by (ξz)z∈Zd

and call G a “set of colors” and the path realization ξ a “random scenery”. Observe that
ξx represent the scenery value at the site x. Take S and ξ independent of each other.

Let (χn)n∈Z with χn = (ξ ◦ S)n be the scenery observed along the random walk. This
sequence is called “scenery record” or simply “observations” .

Random walk in random scenery is the joint process (Zn)n∈Z, where Zn = (Xn, χn).
This process register at the same time two things: the step taken by the random walk
and the scenery value at the site it visits.

Scenery reconstruction is the problem of recovering ξ given only χ+ = (χn)n≥0: with
a single realization of the scenery seen trough a random walk at nonnegative times, is it
possible to reconstruct the full scenery without knowing the walk?

The scenery reconstruction comes from the T, T−1 problem. The T, T−1-problem is a
problem from ergodic theory. The origin of this problem is a famous conjecture by Kol-
mogorov. He demonstrated that every Bernoulli shift T has a trivial tail-field (let us
call the class of all transformations having a trivial tail-field K) and conjectured that
also the converse is true. This was proved to be wrong by Ornstein, who presented an
example of a transformation which is K but not Bernoulli. Evidently his transformation
was constructed for the particular purpose to resolve Kolmogorov’s conjecture. In 1971
Ornstein, Adler, and Weiss came up with a very natural example which is K but appeared
not to be Bernoulli. This was the T, T−1-transformation, and the T, T−1-problem was to
show that it was not Bernoulli. In a famous paper Kalikow [7] showed that the T, T−1-
transformation is not even loosely Bernoulli and therefore solved the T, T−1-problem.

The T, T−1-transformation gives rise to a random process of pairs. The first coordi-
nate of these pairs can be regarded as the position of a realization of simple random walk
on the integers at time i. The second coordinate tells which color the walker would read
at time i, if the integers were colored by an i.i.d. process with black and white in advance.
In other words, that process of pairs is just the above described “Random walk in random
scenery” process (Zn)n∈Z, where Zn = (Xn, χn).

This is the original setup of the scenery distinguishing and scenery reconstruction pro-
blems. They are related to the T, T−1-problem, but actually we also consider them in-
teresting in their own rights.
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At the end of the 1970’s and during the 1980’s, several results about the ergodic properties
of the “scenery record” got published. In the mid 1980’s, Keane and den Hollander in [9]
and also Benjamini and Kesten in [3] asked themselves if a pair of non-equivalent sceneries
could be distinguished. For the “scenery distinguishing problem”, we assume a set of two
sceneries {ξa, ξb} known to us. We also assume that the observed scenery ξ is either equal
to ξa or to ξb, but we don’t know which one. From the color record ξ ◦ S, one tries to
infer whether ξ = ξa or ξ = ξb. Two sceneries are called “distinguishable sceneries” if
with only one sequence of observations χ+ it is possible to determine a.s. which of them
was observed.

In [14] Lindenstrauss constructed a countable infinite collection of one dimensional non-
equivalent sceneries that can not be distinguished by a simple random walk. The sceneries
in the collection have measure zero under an i.i.d scenery process.

In [3], Benjamini and Kesten show that almost all pairs of sceneries are distinguishable,
even when the dimension is two and only two colors in the sceneries. More recently in
[6], Howard shows that any pair of periodic non-equivalent sceneries are distinguishable.
Same thing for periodic with a single defect.

The problem of distinguishing two sceneries different only in one site is called “detecting
a single defect in a scenery”. In [10], Kesten shows that a.s. it is possible to recognize a
single defect in the case with at least five colors.

The question from Kesten about whether a single defect can be detected even if there
are only two color in the scenery, is the origin of the scenery reconstruction problem.
In [18], Matzinger answered the question proving that typical 2-color sceneries can be
reconstructed almost surely up to equivalence.

In [20], it is proven that almost every 2-color scenery can be reconstructed when seen
along the path of a simple symmetric random walk. The scenery is taken i.i.d. with
equiprobable symbols. In [19], the same result is shown for a 3-color scenery.

Later Kesten noticed that Matzinger’s method in [20] depends heavily on the one di-
mensionality of the problem and the skip-freeness of the random walk. This observation
produced intense research on the matter. During the next years Lember, Matzinger,
Merkl and Rolles worked on these questions. The techniques for solving the reconstruc-
tion problem when the random walk is not skeep-free [17], or two dimensional [16] are
very different to the approach in [20].

Scenery reconstruction problem become more difficult when the number of colors de-
crease (except in the trivial case, when there is only one color). In [12], Lember and
Matzinger consider a random walk with jumps on a 2-color scenery. Den Hollander asked
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whether the scenery reconstruction problem is possible if the jumps were unbounded. In
[13], Lenstra and Matzinger answer positively this question. In [15], Löwe and Matzinger
undertake the reconstruction problem when the scenery is not i.i.d. but contain correla-
tions between the different sites.

Some others developments are in [2], where Matzinger and Hart make a new version
of the problem working on distinguishing sceneries with error-corrupted observations. In
[28], Matzinger and Popov solve a continuous analog and in [27], Pachon and Popov get
a result on d−dimension considering a random walk with branches.
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Chapter 2

DNA-APPROACH TO SCENERY
RECONSTRUCTION

Modern DNA sequencing methods work by reconstructing small micro pieces at first and
then assembling them. In this chapter we use the same approach for scenery reconstruc-
tion and present a practical algorithm for the reconstruction of a finite piece of scenery
around the origin. It just works by reconstructing small pieces with length order log n
and then assembling them in order to retrieve a finite piece of length n. This allows us to
reconstruct a finite piece in polynomial time. (The polynomial time is take in the length
of the reconstructed piece).

This is an important break-through, since until now the existing algorithms were more of
theoretical interest since they seemed too difficult to implement in practice.

In [24], [21], [22] [24] , Matzinger and Rolles prove that in certain cases finite pieces
of a 3-color sceneries can be reconstructed in polynomial time close to the origin. How-
ever, it might be very difficult to implement their method for a computer program, hence
these are a more theoretical result.

We will prove that a simple combinatorial approach allows in the 3-color case to re-
construct a finite piece in polynomial time and show how to implement it in practice.

We restrict ourselves to 3-color i.i.d. sceneries. Thus, we consider a coloring (“scenery”)
ξ of the integers with 3 colors. This means that ξ is a map from Z to {0, 1, 2}.

We show that with high probability we can reconstruct a piece of length order n in
finite time. High probability here means one minus a term which goes to zero as n tends
to infinity. Let us formulate our main result more precisely:
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2.1 Formulation of the Problem and Theorem

Assume that the scenery {ξi}i∈Z is a double infinite i.i.d. sequence of random variables
with state space {0, 1, 2} for which:

P (ξi = 0) = P (ξi = 1) = P (ξi = 2) = 1/3.

Then, ξ will designate a path realization of {ξi}i∈Z. Let {St}t∈N be a simple symmetric
random walk starting at the origin and let χt be the observation of the random walk at
time t, i.e.

χt := ξ(St).

Theorem 2.1.1 For every n ∈ N large enough, there exists a map

A : {0, 1, 2}T n → ∪m∈[2n,8n]{0, 1, 2}m

such that

P


∃i1, i2 such that
i1 ∈ [−4n,−n]; i2 ∈ [n, 4n] and
(A(χ1χ2 . . . χT n) = ξi1ξi1+1 . . . ξi2 or
A(χ1χ2 . . . χT ) = ξi2ξi2−1 . . . ξi1)

 ≥ 1− n−β, (2.1.1)

where, T n := n6 + n9k3+9 whilst k3 > 0 and β > 0 are constants not depending on n.

In the theorem above the map A(.) represents the output of an algorithm which takes as
input the first T n observations of χ and spits out a piece of scenery. With high probability,
the piece of scenery is a piece containing the restriction of ξ to [−n, n]. The reconstructed
“piece of ξ” is contained with high probability in [−4n, 4n]. The algorithm is presented
in section 2.3. The sections 2.4 and 2.5 are there to prove that the algorithm works with
high probability. This then guaranties that theorem 2.1.1 holds true.

2.2 Main Ideas

Let us mention several ideas which are used for the reconstruction.

2.2.1 Reconstructing from pieces

Definition 2.2.1 Let s = s1s2 . . . si and let r = r1r2 . . . rj be two strings such that i < j.
Let s∗ denote the transpose s∗ := sisi−1 . . . s1.
We say that s appears in more than one location in r iff there exists x+ i−1, y+ i−1 ≤ j
with x 6= y, such that at least one of the following three conditions hold:

1. s = rxrx+1 . . . rx+i−1 and s = ryry+1 . . . ry+i−1

13



2. s = rxrx+1 . . . rx+i−1 and s∗ = ryry+1 . . . ry+i−1

3. s∗ = rxrx+1 . . . rx+i−1 and s∗ = ryry+1 . . . ry+i−1.

The idea of reconstruction from pieces is enough to reduce the problem of reconstructing
a piece of scenery of length order n, to reconstructing substrings with shorter length. This
is important since short strings can be reconstructed much quicker.

Let S be a string of length order l. The question is: How can we reconstruct S us-
ing substrings? The answer is: one first needs to show that with high probability in an
i.i.d. 3-equiprobable-color string of length order l every substring of length k ln l appears
only in one location, with k > 0 a constant large enough but not depending on l. (This
is shown in the next section). The algorithm works as follows:

1. Assume we have a collection W of substrings of the string S, and that for each
substring s of S of length K ln l + 1 there exists w ∈ W such that s is a substring
of w.

2. Then assemble the strings in W by asking if they fit on at least K ln l consecutive
letters.

Consider the following example.

Example 2.2.1 Assume we are given the words

w1 = 22321, w2 = 3212, w3 = 1212.

Assume that these three words are all substrings of a string S in which every 3-letter
substring appears at most in one location. (By substring we mean that it appears in the
string when we read it from left to right or right to left). Then we assemble w1, w2 and
w3 in order to get a bigger substring of S.

First take w1 and w2 and see on which three letter group they coincide.

w1 2 2 3 2 1
w2 3 2 1 2
w4 2 2 3 2 1 2

Now puzzle together w4 and the transpose wt3 = 2121.

w4 2 2 3 2 1 2
wt3 2 1 2 1
w5 2 2 3 2 1 2 1

Hence the string w5 = 2232121 must be a substring of S.
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2.2.2 Reconstructing a word

For the reconstruction from pieces it is assumed that a collection of substrings of the
string which we want to reconstruct is given. Of course one first needs to produce these
short substrings which later get assembled. Stopping times are used for the production
of these short words:

Assume x and y are two non-random integer numbers such that x < y. Assume that
we want to reconstruct the “word” written between x and y, i.e. we would like to recon-
struct ξxξx+1 . . . ξy. For this assume that we have the observations χ1χ2 . . . and whenever
the random walk S visits x or y.

Let νi be the i-th visit of the random walk to x and let τi be the i-th visit to y. Then,
when the random walk crosses in the shortest period of time from x to y we have that
the random walk takes only steps to the right. Hence, during such a minimal time in the
observations we are seeing a copy of the word ξxξx+1 . . . ξy.

Given that our random walk is recurrent, it will cross in the shortest period of time
from x to y infinitely often. Hence, to reconstruct the word between x and y take

χνi
χνi+1χνi+2 . . . χτj

where νi and τj satisfy
τj − νi = min

k,l
{|τk − νl|}.

Now, apriori the stopping times τj and νi are not observable. In the next subsection we
explain how often we can figure them out based solely on the observations χ.

2.2.3 The Combinatorial Tree

The idea here is to translate the problem of reconstructing a sequence of colors on the
integers to retrieve a path on a 3-regular tree. Formally the idea is as follows:

Let T = (ET , VT ) be a 3-regular tree with root v0, and let ψ : VT → {0, 1, 2} be a
(random) coloring on T such that every vertex v ∈ VT has its 3 adjacent vertices colored
in the three different colors 0, 1 and 2, i.e.

∀v ∈ VT , {ψ(w)|w ∈ {v1, v2, v3}} = {0, 1, 2}, (2.2.1)

where v1, v2, v3 are the three vertexes adjacent to v.

Let ψ0, ψ1 and ψ2 be three non-random colorations such that each one satisfies the
condition (2.2.1) and ψi(v0) = i for i = 0, 1, 2. We assume that ψ is always equal to either
ψ0, ψ1 or ψ2. When ξ(0) = 0, then ψ = ψ0, whilst when ξ(0) = 1, then ψ = ψ1 and
finally ξ(0) = 2 implies ψ = ψ2.
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So the color at the origin of ψ is the same color at the origin of ξ. Also, ψ “is only random
as far as ξ(0) is”.

We call the map R : I ∩ Z → VT (where I is an interval ) on T , a nearest neighbor
path on T , iff for all z ∈ I ∩Z we have that: R(z) and R(z + 1) are adjacent vertexs, i.e.

∀z ∈ I ∩ Z, {R(z), R(z + 1)} ∈ ET .

Let ζ : I ∩Z→ {0, 1, 2} be a 3-color scenery on I ∩Z, then we say that R generates ζ on
ψ iff ζ = ψ ◦R.

In order to represent the double infinite sequence ξ as a nearest neighbor walk R on
a colored tree ψ we need a condition of uniqueness.

Proposition 2.2.1 Let S = s1s2 . . . sj ∈ {0, 1, 2}j be a string, and let v be a vertex in VT
such that ψ(v) = s1. Then, there is a unique nearest neighbor path {Rt}t∈[1,j] on T such
that,

ψ(R1) . . . ψ(Rj) = s1s2 . . . sj,

with R1 = v. Thus, R generates S.

Proof. Suppose that {Ut}t∈[1,j] and {Wt}t∈[1,j] are two nearest neighbor paths such that

ψ(U1) . . . ψ(Uj) = s1s2 . . . sj = ψ(W1) . . . ψ(Wj),

with U1 = W1 = v. Then, at time 2, U2 and W2 will be over an adjacent vertex from v,
and also ψ(U2) = s2 = ψ(W2), so by (2.2.1) U2 = W2. Suppose now that at time k < j,
Uk = Wk = vk, then at time k + 1, Uk+1 and Wk+1 will be over an adjacent vertex from
vk, and also ψ(Uk+1) = sk+1 = ψ(Wk+1), so, one more time by (2.2.1) Uk+1 = Wk+1. Thus
by the induction argument we have that {Ut}t∈[2,j] = {Wt}t∈[2,j].

What this preposition says is that, given any sequence of colors S, there is a unique
nearest neighbor walk that generates S once we know where it starts.

Note that the representation of ξ as a nearest neighbor path R defines a simple ran-
dom walk on the graph (ET , VT ):

More precisely, for z ≥ 0, we have P ({R(z + 1) = v1|R(z) = v}) = 1/3, P ({R(z + 1) =
v2|R(z) = v}) = 1/3 and P ({R(z + 1) = v3|R(z) = v}) = 1/3, with {v1, v2, v3} designat-
ing the 3-adjacent vertexes of v. Thus {Rz}z∈N is a random walk on our tree (ET , VT )
starting at the origin. Same thing for {R−z}z∈N. Thus then let R designate the unique
nearest neighbor path R on T with R(0) = v0 and such that

ψ(R(z)) = ξ(z),
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∀z ∈ Z. We call {Rz}z∈Z the representation of the scenery {ξi}i∈Z as nearest neighbor
walk on T .

Using this representation, our problem of reconstructing ξ is translated to reconstructing
R using the observations χ. Even though, we do not know R, we can easily figure out
R ◦ S just with the observations χ.

By definition we have that ψ(R(z)) = ξ(z), then, ∀t ∈ N

ψ(R(St)) = ξ(St) = χt

hence,
ψ ◦ (R ◦ S) = χ.

Note that R◦S is also a nearest neighbor walk on T , and it is the only one who generates
χ on ψ.

In this order of ideas, if we knew R, we would also know ξ, so the problem of recon-
structing ξ is equivalent to reconstructing R given R ◦ S. Let us look at an example:

Example 2.2.2 Suppose that the scenery is

ξz = 0201001....

z = 0123456...

and over it a random walk St starts to move producing χt, then we have

S(0), . . . , S(10) = 0, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6 and

χ(0), . . . , χ(10) = 0, 2, 0, 2, 0, 1, 0, 1, 0, 0, 1.

Now observe R and R ◦ S over the tree (Figure 2.1). They are respectively the re-
presentation of ξ and χ.

2.2.4 Using the representation of ξ by R

Let v and w be two different vertexes of VT such that v, w are visited by Rz, and let
{xj, xj−1, . . . x1} and {y1, y2, . . . yi} be respectively the set of all times when Rz visits v
and the set of all times when Rz visits w. Since Rz is transient (see Lemma 5 in [19]),
then a.s. (almost sure) every vertex of VT is visited only a finite number of times, so if
v, w are far enough the next holds a.s.

xj < xj−1 < . . . < x2 < x1 < y1 < y2 < . . . < yi.
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Figure 2.1: Left and right side, respectively they are R and R ◦ S.

Thus, by the method of “reconstructing a word”, there is a simple way to reconstruct
the scenery between x1 and y1.

Take the pair of times (t, s) minimizing (s− t) under the constrains

R(St) = v and R(Ss) = w, s > t.

Then, a.s. we have that the observations during the interval of time [t, s] are equal to
the scenery between x1 and y1, i.e.

χtχt+1 . . . χs = ξx1ξx1+1 . . . ξy1 .

The reason why this works is because the random walk, when going in shortest time from
x1 to y1 goes in a straight way. While doing so reveals the piece of scenery ξ between x1

and y1. Also, we know that the recurrent random walk will cross from x1 to y1 in the
shortest period of time infinitely often.

2.3 The Algorithm

Let us describe the algorithm to reconstruct a piece of ξ which contains the string
ξ(−n)ξ(−n+1)ξ(−n+2) . . . ξ(n) and is contained in the string ξ(−4n)ξ(−4n+1)ξ(−4n+
2) . . . ξ(4n).
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Let T n := n6 + n9k3+9, where k3 > 0 is a constant not depending on n and which will get
defined subsequently. Our algorithm only takes as input the observation up to time T n.
Hence, the algorithm only uses a polynomial number of observations in the length of the
piece of scenery to be reconstructed. Let V n denote the subset of VT containing those
vertexes which have been visited by R ◦ S up to time T and are not further away from
the root than n, i.e.

V n := { R(S(t)) | d(R(S(t)), v0) ≤ n, t ∈ [0, T ] }.

1. Determine V n.

2. Build a “lexica” W of words which can be obtained by shortest passage: for any
pair (v1, v2) ∈ (V n)× (V n) such that up to time T , the nearest neighbor walk R ◦S
goes at least once from v1 to v2 in less or equal (k + 2k1) lnn+ 1 steps:
take (t, s) minimizing s− t under the constraints

R(St) = v1 and R(Ss) = v2, s > t ; s, t ≤ T .

The string χtχt+1 . . . χs is one of the reconstructed words. Keep now only those
words with length at least k lnn + 1. The set of words obtained in this way is
denoted by W .

3. Assemble the words from W . For this use the following assembling rule: in order to
“puzzle two words together”, the words or their transposes must coincide on at least
k lnn contiguous letters. ( Check out subsection 2.2.1 to see how this is done). Start
with a word which was obtained using the vertex v0. Assemble one word after the
other to the already assembled word. Produce in this manner one piece of scenery.
(Some words might not get used since they might occur in another interval which
is not connected to the reconstructed interval.)

2.4 Combinatorics

Let Alg be the event that our reconstruction algorithm works. More precisely,

Alg :=

{
the reconstructed piece contains ξ(−n)ξ(−n+ 1)ξ(−n+ 2) . . . ξ(n),
and is contained in the string ξ(−4n)ξ(−4n+ 1)ξ(−4n+ 2) . . . ξ(4n)

}
.

Now define:
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B1 :=
{
{∀z /∈ [−4n, 4n], d(Rz, v0) > n}

}
,

B2 :=


in the string ξ−4nξ−4n+1 . . . ξ4n,
there is no word of length k log n appearing
in two different places

 ,

B3 :=

{
for every z ∈ [−4n, 4n],
R(z − k1 lnn) /∈ R[z,+∞]

}
,

B4 :=

{
for every z ∈ [−4n, 4n],
R(z + (k + k1) lnn+ 1) /∈ R[−∞, z + k lnn+ 1]

}
,

B5 :=

{
every subinterval of [−4n, 4n] of length (k + 2k1) log n+ 1,
gets crossed in a straight manner by S before time n6 + n9k3+9

}
,

B6 :=
{
{R(z) 6= v0,∀z /∈ [n/2, n/2]}

}
,

Let B7 be the event that for all z ∈ [n− k1 lnn, n+ k1 lnn] we have

d(R(z), v0) ≤ n.

The main combinatorial lemma is:

Lemma 2.4.1 We have that

B1 ∩B2 ∩B3 ∩B4 ∩B5 ∩B6 ∩B7 ⊂ Alg.

Proof. Let (v1, v2) be a pair of vertices of V n which gets selected by our algorithm
and which leads to a reconstructed word w for W . Let (t, s) be the time pair minimizing
s − t under the constrain R(St) = v1 and R(Ss) = v2 whilst s > t and s, t < T . Hence,
the reconstructed word w is equal the observations χ during the time interval [t, s], that
is:

w = χtχt+1 . . . χs.

Because of B1, we have that R(z) can only be in V n, when z ∈ [−4n, 4n]. It follows that
if B1 holds, then, since v1, v2 ∈ V n, we must have that Ss, St ∈ [−4n, 4n]. Denote St by
z1 and Ss by z2. The algorithm chooses only pairs (v1, v2) for which the nearest neighbor
walk R ◦S goes in less than (k+ 2k1) lnn+ 1 steps from one to the other. It follows, that

|z1 − z2| ≤ (k + 2k1) lnn+ 1.

We have already seen that z1, z2 ∈ [−4n, 4n]. But according to the event B5, every in-
terval of [−4n, 4n] of length less or equal to (k + 2k1) lnn + 1 gets crossed in a straight
manner by S before time T . This implies that before time T , the nearest neighbor walk
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S will walk in a straight manner from z1 to z2.

Hence, if (t, s) is to minimize s − t under the constrain R(St) = v1 and R(Ss) = v2

and s − t > 0 with s, t ≤ T , then, necessarily during the time (t, s) the random walk S
must walk in a straight way from z1 to z2. (Otherwise, we would not have a minimum,
since the straight walk would be shorter).

Since, during the time interval (t, s) the random walk makes steps only in one direc-
tion, we have that the observations during that time are a copy of the scenery between
the points z1 and z2. More precisely, assume that the random walk S makes only steps
to the right during the time interval (t, s). Then the observations χtχt+1 . . . χs are equal
to ξz1ξz1+1ξz1+2 . . . ξz2 .

Hence the reconstructed word w, is equal to ξz1ξz1+1ξz1+2 . . . ξz2 and is part of the scenery ξ
restricted to [−4n, 4n]. The same conclusion holds true if the steps taken during the time
(s, t) are all to the left, but then the reconstructed word is equal to ξz1ξz1−1ξz1−2 . . . ξz2 . We
have just proven that if B1 and B5 both hold, then the collection of words W reconstructed
by our algorithm contains only words contained in the part of the scenery:

ξ−4nξ−4n+1ξ−4n+2 . . . ξ4n−1ξ4n.

We have so far that there are no “wrong words” in W . For the algorithm to work, that
is for the “puzzling together” of the words to lead to the desired reconstructed piece, we
also need to make sure that we have enough good words in W . This is what we are going
to check next:

Let z and z + k lnn+ 1 both be in [−n, n]. Let

v1 := R(z − k1 lnn)

and let
v2 := R(z + k lnn+ 1 + k1 lnn).

Let z1 be the largest z ∈ Z for which R(z) = v1. Then because of the event B3, we have
that z1 < z and hence

z1 ∈ [z − k1 lnn, z].

Let z2 be the smallest z ∈ Z such that R(z) = v2. Because of B4, we find that z2 >
z + k lnn+ 1 and hence

z2 ∈ [z + k lnn+ 1, z + k lnn+ 1 + k1 lnn].

So, the couple (z1, z2) minimizes |z1 − z2| under the constrain

R(z1) = v1, R(z2) = v2.
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By the event B5 we have that up to time T , the random walk crosses at least once from
v1 to v2 in a straight way. Let the times of such a straight crossing be denoted by (s1, s2),
hence Ss1 = v1 and Ss2 = v2 and during the time interval (s1, s2), the random walk S
takes steps only in one direction and s1, s2 ≤ T . Since z1, z2 minimizes |z1 − z2| under
R(z1) = v1 and R(z2) = v2, we have that the shortest way for the nearest neighbor walk
R ◦ S to go from v1 to v2 is in |z1 − z2| steps, and this can only occur when S walks
straight from z1 to z2. Hence, the time (s1, s2) corresponds to a straight crossing of the
random walk S from z1 to z2, so that:

χs1χs1+1 . . . χs2 = ξz1ξz1+1 . . . ξz2 .

Again, note that up to time T , the time pair (s1, s2) minimizes |s2−s1| under the constrain
R(Ss1) = v1 and R(Ss2) = v2. So, as soon (v1, v2) get picked by our algorithm, then

ξz1ξz1+1 . . . ξz2

will be a reconstructed word put by our algorithm into W . Now, we know that |s1 − s2|
are less apart then (k + 2k1) lnn + 1. This implies that the nearest neighbor walk R ◦ S
goes from v1 to v2 in less or equal to (k + 2k1) lnn+ 1 steps. This is the first criteria for
the pair of vertices (v1, v2) to get selected. The second criteria is that v1, v2 ∈ V n, this
is guarantied by the event B7. We have just proven that if all the events B3, B4, B5, B7

holds, then the substring
ξz1ξz1+1 . . . ξz2 (2.4.1)

is obtained by our reconstruction algorithm and added to W . The piece of scenery 2.4.1,
contains the piece

wz := ξzξz+1 . . . ξz+k lnn+1.

So, we have proven that for every interval

[z, z + k lnn+ 1] ⊂ [n,−n]

there is in the set of words W at least one word w containing the piece wz.
We had proven that if B1 and B5 both hold, then the collection of words W reconstructed
by our algorithm contains only words contained in the part of the scenery:

ξ−4nξ−4n+1ξ−4n+2 . . . ξ4n−1ξ4n.

The event B2 guaranties that the algorithm “puzzles” words of W together correctly, that
is the result is again a piece of

ξ−4nξ−4n+1ξ−4n+2 . . . ξ4n−1ξ4n.

The algorithm starts puzzling with a word w0 which was obtained using the vertex v0. By
B6, we have that the word w0 is part of the restriction of ξ to [−n, n]. For every [z, z +
k lnn+ 1] in [−n, n], we have at least one word in W containing ξzξz+1 . . . ξz+k lnn+1. This
implies, that the final reconstructed piece by our algorithm, must contain the restriction
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of ξ to [−n, n]. It must also be contained in the restriction of ξ to [−4n, 4n] since all the
words in W are. This finishes proving that if all the events B1, B2, B3, B4, B5, B6 and
B7 holds, then our algorithm manages to reconstruct a piece the way we want it to. This
means that the reconstructed piece is contained in the restriction of ξ to [−4n, 4n], but
contains the restriction of ξ to [−n, n]. In other words, the event Alg holds.

Proof of the main theorem Here we want to prove our main theorem, that is
theorem 2.1.1. This means that we want to prove that our reconstruction algorithm
has a probability to fail bounded by a negative power in n. Note that according to our
combinatorial lemma (that is lemma 2.4.1), we have that the reconstruction algorithm
works correctly as soon as all the events B1, B2, . . . , B7 all hold. Thus the probability
that the algorithm does not work is bounded from above by the sum:

P (Bc
1) + P (Bc

2) + P (Bc
3) + P (Bc

4) + P (Bc
5) + P (Bc

6) + P (Bc
7). (2.4.2)

But in the next section we provide for each of the probabilities:

P (Bc
1), P (Bc

2), P (Bc
3), P (Bc

4), P (Bc
5), P (Bc

6) and P (Bc
7)

upper bounds. None is larger than a negative power in n. Hence, it follows that 2.4.2 can
also be bounded by a negative power in n.

2.5 Events with high probability

Lemma 2.5.1 We have that
P (Bc

1) ≤ c1e
−c2n,

where c1 and c2 are positive constants not depending on n.

Proof. Let Dz = d(Rz, v0) be the distance between v0 and the vertex correspon-
ding to Rz. Then, {Dz}z≥0 is a simple random walk reflected at the origin, for which
P (Dz − Dz−1 = 1|Dz−1 6= 0) = 2/3 and P (Dz − Dz−1 = −1|Dz−1 6= 0) = 1/3. Hence,
{Dz}z≥0 is a random walk with positive drift reflected at the origin. We can use this to
write

B1 =
[
∩z>4n {Dz > n}

]
∩
[
∩s<−4n {D|s| > n}

]
, so

P (Bc
1) ≤ 2

∑
i>4n

P (Di ≤ n).

Let {Tz}z≥0 be a random walk with the same transition probabilities as {Dz}z≥0 and
starting at the origin. Then

P (Dz ≤ n) ≤ P (Tz ≤ n),
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thus,

P (Bc
1) ≤ 2

∑
i>4n

P (Ti ≤ n).

Writing Ti = X1 + · · · + Xi, where X1, . . . , Xi are i.i.d random variables with P (X1 =
1) = 1− P (X1 = −1) = 2

3
, we have that

P (Bc
1) ≤ 2

∑
i>4n

P (X1 + · · ·+Xi ≤ n)

= 2
∑
i>4n

P
(

(
1

4
−X1) + · · ·+ (

1

4
−Xi) ≥

i− 4n

4

)
≤ 2

∑
i>4n

P
(

(
1

4
−X1) + · · ·+ (

1

4
−Xi) ≥ 0

)
.

Let Yi be equal to

Yi :=
1

4
−Xi.

Then the right side of the very last inequality above is equal to

∞∑
i>4n

P (Y1 + Y1 + . . .+ Yi ≥ 0). (2.5.1)

Note that E[Yi] = 0.25− 0.3̄ = −0.083̄ and hence by Large Deviation Theory, expression
2.5.1 must be exponentially small in n. Let us check out the details:

Recall that P (Z ≥ 0) ≤ E[eZt] for any t ≥ 0. Taking Z equal to Y1 + Y2 + . . . + Yn,
we obtain

P (Y1 + · · ·+ Yn ≥ 0) ≤ E[eY1t]n, (2.5.2)

for any t ≥ 0.

Let f(t) be the function f(t) = E[eY1t], then if,

1. there exists an open interval I around 0 such that E[eY1t] is finite for all t ∈ I, and

2. the expectation of Y1 is negative, i.e., E[Y1] < 0,

there exists a small t ≥ 0 such that E[eY1t] ≤ 1.

The best possible exponential upper bound for (2.5.2) is the positive value for t which
minimizes E[eY1t].
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For our definition of Y1, i.e.
(
Y1 = 1

4
−X1

)
, the two above conditions hold, and E[eY1t]

reaches the minimum value for t0 = 0.091. And E[eY1t0 ] = 0.99618. It follows that

P (Bc
1) ≤ 2

∞∑
i=4n

(0.99618)i

= 2
(0.99618)4n

(1− 0.99618)

= c1e
−c2n,

with c1 = 523.56 and c2 = 0.0153.

Lemma 2.5.2 We have
P (Bc

2) ≤ 128n(2−0.5k log 3).

Proof. Let wz denote the word:

wz := ξzξz+1ξz+2 . . . ξz+k logn

and let w̄z be the word
w̄z := ξzξz−1ξz−2 . . . ξz−k logn.

Let B2,z1,z2 be the event that wz1 is not equal to wz2 . Let B̄2,z1,z2 be the event that wz1 is
not equal to w̄z2 . Clearly:

B2 = (∩z1 6=z2B2,z1,z2) ∩
(
∩z1,z2B̄2,z1,z2

)
where the intersections above are taken over z1, z2 in [−4n, 4n]. The last equation above
leads to:

P (Bc
2) ≤

(∑
z1 6=z2

P (Bc
2,z1,z2

)

)
+

(∑
z1,z2

P (B̄c
2,z1,z2

)

)
(2.5.3)

where the sums above are taken with z1, z2 ranging over [−4n, 4n]. Assume to simplify
notations that n is an even number. For z1 6= z2, we can always find at least k log n/2
letters which are “all independent of each other in wz1 and wz2”. More precisely, since
z1 6= z2, there exists an integer subset I ⊂ [0, k log n] with at least k log n/2 elements, so
that

(z1 + I) ∩ (z2 + I) = ∅.
Hence, using the fact that the scenery ξ is i.i.d. with 3 equiprobale colors, we find that if
z1 6= z2, then

P (Bc
2,z1,z2

) = P (wz1 = wz2) ≤
(

1

3

)k logn/2

. (2.5.4)

A similar argument yields:

P (B̄c
2,z1,z2

) = P (wz1 = w̄z2) ≤
(

1

3

)k logn/2

. (2.5.5)
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Applying inequalities 2.5.4 and 2.5.5 to inequality 3.2.15 yields:

P (Bc
2) ≤ 128n2

(
1

3

)k logn/2

= 128n2−0.5k log 3.

The bound on the right side of the above inequality is a negative power of n as soon as
2 − 0.5k log 3 is strictly negative. Hence, we just have to take k > 0 strictly larger than
4/ log 3 to have a negative-power-in-n upper bound for P (Bc

2).

Lemma 2.5.3 We have that
P (B3

c) ≤ c1n
1−c2k1 ,

where c1 is a positive constant not depending on n.

Proof. Let B3z be the event that {R(z − k1 log n) /∈ R( [z,+∞) )}. Then

B3 = ∩4n
z=−4nB3z. (2.5.6)

Note that the probability of B3z does not depend on z. So equation 2.5.6 implies:

P (B3
c) ≤

4n∑
z=−4n

P (Bc
3z) ≤ 9nP (Bc

3z). (2.5.7)

Taking thus z equal to k1 log n, we obtain

P (B3z) = P (R(0) /∈ R( [k1 log n,+∞) ) = P (v0 /∈ R( [k1 log n,+∞) ).

In other words, the probability of the event B3z is equal to the probability that after time
k1 log n the nearest neighbor walk R(.) does not return to v0. As in the prove of lemma
2.5.1, let the distance between R(z) and v0 be denoted by Dz so that

Dz := d(v0, R(z)).

Again, as in 2.5.1, we have that Dz is a simple random walk on N reflected at the origin.
Let {Tz}z≥0 be a random walk with the same transition probabilities as {Dz}z≥0 and
starting at the origin. We have that

P (Bc
3z) ≤

∑
z≥k1 logn

P (Tz ≤ 0) (2.5.8)

Let Xi := Ti − Ti−1. Hence, we can use large deviations to bound

P (Tz ≤ 0) = P (X1 +X2 + . . .+Xz ≤ 0).

With the same argument as in 2.5.1, we find

P (Tz ≤ 0) ≤ E(e−X1t)z,
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for any t ≥ 0 and X1 is the random variable such that

P (X1 = 1) = 1− P (X1 = −1) = 2/3,

then we have E[Xi] = +1/3.

Minimizing t→ E(e−X1t) with respect to t, we get

min
t≥0

E[e−X1t] = 0.94281

so that with inequality 2.5.8, we obtain:

P (Bc
3z) =

∑
z≥k1 logn

P (Tz ≤ 0) ≤
∑

z≥k1 logn

0.94281z.

The last inequality above with inequality 2.5.7 together imply that P (Bc
3) is less than:

=
9n(0.94281)k1 logn

1− 0.94281

= c1ne
−c2k1 logn, or

= c1n
1−c2k1 ,

where c1 = 157.37 and c2 = 0.0589 = log 0.94281. If we take the constant k1 large so that
k1 >

1
c2

, then our bound:

P (Bc
3) ≤ c1n

1−c2k1 ,

is a negative power in n and hence goes to 0 as n goes to infinity.

Lemma 2.5.4 We have that

P (B4
c) ≤ c1e

logn(1−c2k1),

where c1 > 0 is a positive constant not depending on n.

Proof. By symmetry follows the same steps as for the proof of Lemma 2.5.3.

Lemma 2.5.5 We have that B5 holds with high probability:

P (Bc
5) ≤

c5
n

where c5 > 0 is a constant not depending on n.
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Proof. Let k3 > 0 be the constant:

k3 := k + 2k1.

Let B51 be the event that the random walk S visits the points −4n and 4n before time
n6.
Let B52z be the event that the random walk S visits the point z at least

23k3 log(n) = n3k3

times within n9k3+9 time unit from the first visit to z. More precisely, let τzi be the i-th
visit by S to the point z. Hence:

τz1 := min{t|St = z}

and by induction on i:
τz(i+1) := min{t > τzi|St = z}.

The event B52z can now be described as the event that the difference

τzj − τz1

is less or equal to n9k3+9 for all j ≤ n3k3 . Let B53z be the event that within the first
n3k3 visits to z there is at least one followed immediately by a straight crossing of length
k3 log n+ 1. More, precisely, let B53z be the event that there exists i (random) such that
i ≤ n3k3 and

St+1 − St = +1

for all t ∈ [τi, τi + n3k3 ].
We have the following inclusion:

B51 ∩
(
∩z∈[−4n,4n]B52z

)
∩
(
∩z∈[−4n,4n]B53z

)
⊂ B5 (2.5.9)

The above inclusion can be explained as follows: for any z ∈ [−4n, 4n] by the event B51

we have that the first visit to z by S takes place before time n6. Then by B52z, we get
n3k3 visits to z before an additional time n9k3+9. Hence, before time

T n := n6 + n9k3+9 (2.5.10)

we have n3k3 visits to z. According to the event B53z, during those n3k3 visits to z, there is
at least one followed directly by a straight crossing of length k3 log n+ 1. These crossings
take place before time given in 2.5.10. In other words, we have just shown that when B51,
B52z and B53z all hold, then before time 2.5.10 there is a straight crossing by the random
walk S of the interval [z, z + k3 log n+ 1]. when there is such a straight crossing for each
z ∈ [−4n, 4n], then the event B5 holds. This finishes proving the inclusion 2.5.9. From
inclusion 2.5.9, we obtain:

P (Bc
5) ≤ P (Bc

51) +
∑

z∈[−4n,4n]

P (Bc
52) +

∑
z∈[−4n,4n]

P (Bc
53z) (2.5.11)
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We can now apply the probability-bounds found in the next three lemmas to inequality
2.5.11 to find

P (Bc
5) ≤

c51

n
+ 8n

c52

n3
+ 8ne−0.25nk3 .

In the sum, on the right side of last inequality above, the term with largest order is c51/n.
It follows, that there exists a constant c5 > 0 not depending on n such that for all n ∈ N,
we have

P (Bc
5) ≤

c5
n
.

Lemma 2.5.6 We have that
P (Bc

51) ≤
c51

n

where c51 > 0 is a constant not depending on n.

Proof. Let νi designate the first visit of the random walk S to the point i:

νi := min{t|St = i}.

Let τi := νi − νi−1. By the strong Markov property of the random walk, the sequence

τ1, τ2, τ3, . . .

is a sequence of i.i.d. variables. We have that the random walk reaches the point 4n
before time n6 iff we have

τ4n ≤ n6.

This and a symmetric argument for −4n leads to

P (Bc
51) ≤ 2P (τ1 + τ2 + . . .+ τ4n > n6)

and hence,
P (Bc

51) ≤ 2P
(

(τ1 + τ2 + . . .+ τ4n)1/3 > n2
)
. (2.5.12)

For positive numbers, the third power of the sum is always more than the sum of the
third powers. Hence,

τ1 + . . .+ τ4n ≤ (τ
1/3
1 + . . .+ τ

1/3
4n )3

from which it follows that

(τ1 + . . .+ τ4n)1/3 ≤ τ
1/3
1 + . . .+ τ

1/3
4n .

Applying the last inequality above to 2.5.12, we obtain

P (Bc
51) ≤ 2P (τ

1/3
1 + . . .+ τ

1/3
4n > n2)
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which with the help to the Markov inequality yields

P (Bc
51) ≤ 8

E[τ
1/3
1 ]

n
.

The above bound is useful because the (1/3)-th moment of τi is known to be finite.

Lemma 2.5.7 We have that
P (Bc

52z) ≤
c52

n3

where c52 > 0 is a constant not depending on n or z.

Proof. Note that P (Bc
52z) does not depend on z. Hence, we can find a bound for

P (Bc
520) nd this bound will be valid for all P (Bc

52z). Let Ti be the i-th visit to the origin
by S. We have

P (Bc
520) = P (T1 + T2 + . . .+ Tn3k3 > n9k3+9).

Now, the expression on the right side of the equality above is equal to

P ((T1 + T2 + . . .+ Tn3k3 )1/3 > n3k3+3). (2.5.13)

Note that for non-negative terms, the third power of the sum is always larger than the
sum of the third powers. Hence, in our case, taking the terms T

1/3
i we find:

T1 + T2 + . . .+ Tn3k3 ≤
(
T

1/3
1 + T

1/3
2 + . . .+ T

1/3

n3k3

)3

Taking the third root of the last inequality above we obtain:

(T1 + T2 + . . .+ Tn3k3 )1/3 ≤ T
1/3
1 + T

1/3
2 + . . .+ T

1/3

n3k3
. (2.5.14)

Because of inequality 2.5.14, we find that the probability in expression 2.5.13 is less or
equal to

P (T
1/3
1 + T

1/3
2 + . . .+ T

1/3

n3k3
> n3k3+3)

By the Markov inequality, we obtain

P (T
1/3
1 + T

1/3
2 + . . .+ T

1/3

n3k3
> n3k3+3) ≤ E[T

1/3
1 ]

n3

and hence

P (Bc
52z) ≤

E[T
1/3
1 ]

n3
.

The bound on the last inequality above is useful because E[T
1/3
1 ] is know to be a finite

number.
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Lemma 2.5.8 We have that
P (Bc

53z) ≤ e−0.25nk3 .

Proof. Let Yi be the Bernoulli variable which is equal to one iff we have a straight
crossing of length k3 log n+ 1 right after the stopping time τzj, where j = i(k3 log n+ 1).
Since, we take the stopping times τz. apart by at least k3 log n+ 1, we get that Y1, Y2, . . .
are i.i.d. Also, the probability of a straight crossing is:

P (Yi = 1) =

(
1

2

)k3 logn+1

=
1

2nk3
.

The event B53z holds, as soon as at least one of the Yi’s is equal to 1 for i = 1, 2, . . . , n2k3 .
Hence,

P (Bc
53z) ≤ P (

n2k3∑
i=1

Yi = 0) = (1− q)n
2k3
, (2.5.15)

where

q =
1

2nk3
.

Note that (
1− 1

2nk3

)2nk3

converges to e−1 as n→∞. Applying this to 2.5.15, yields for n large enough the bound

P (Bc
53z) ≤ e−0.25nk3 .

Lemma 2.5.9 We have that
P (B6

c) ≤ c1e
−c2n,

where c1 and c2 are positive constants not depending on n.

Proof. Let Dz = d(Rz, v0) be the same as in the proof of Lemma 2.5.1. Recall that
Dz is a simple random walk reflected at the origin with bias +1/3. We can write B6 as

B6 = {∩z>n/2Dz > 0} ∩ {∩s<−n/2Ds > 0}.

Hence,

P (B6
c) ≤ 2

∞∑
i=n/2

P (Di = 0).
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Let {Tz}z≥0 be a random walk with the same transition probabilities as {Dz}z≥0, and
let X1, . . . , Xi be independent and identically distributed random variables with P (X1 =
1) = 1− P (X1 = −1) = 2/3. Then once again:

P (B6
c) < 2

∞∑
i=n/2

P (Ti ≤ 0)

= 2
∞∑

i=n/2

P (X1+, . . . ,+Xi ≤ 0)

= 2
∞∑

i=n/2

P (−X1−, . . . ,−Xi ≥ 0)

≤ 2
∑
i=n/2

(0.94281)i,

< 2
2(0.94281)n

(1− 0.94281)

= c1e
−c2n,

where c1 = 34.971 and c2 = 0.0589
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Chapter 3

RECOGNITION OF TIMES A
WALKER IS CLOSE TO THE
ORIGIN

In this chapter we consider a simple random walker moving on a random media. Whilst
doing so, the random walker observes at each point of time the “color” of the location he
is at. This process creates a sequence of observations.

We consider the problem of determining when the walker is close to the origin. For
this we are only given, the observations made by the walker as well as a small portion of
the media close to the origin. With that information alone, we show that we can typically
construct an exponential number of stopping times, which all occur whilst the walker is
on the small piece of media available to us. The number is exponential in the size of that
small piece of media.

So far this problem could only be solved when the media contained 5 colors. In the
present chapter, we use a subtle entropy argument on the set of possible observations
given the point where the walker starts and given the media in that neighborhood. This
allows us to achieve our goal when the media contains 4 equiprobable colors.

Our present result, implies that the Scenery Reconstruction result in [1] also applies
with 4 colors as opposed to just 5 colors.

3.1 Formulation of the Problem and Theorem

Let St denote the position of a random walker at time t. We assume that St is a simple
symmetric random walk starting at the origin. Let ξ : Z → {0, 1, 2, 3} denote a coloring
of the integers with 4-colors. We call the landscape ξ a scenery. We assume that at every
time t ≥ 0, the random walker sees the color of the point he is at. This implies that at
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time t the random walker observes the color χt := ξ(St).

The problem we consider in this chapter is to figure out times when the random walker
is in a close vicinity of the origin. For this we are given only the observations

χ := χ0χ1χ2 . . .

and the restriction of ξ to [0, n− 1].

The way we try to guess when the random walk is close to the origin, is by searching
in the observations for the word

wn := ξ0ξ1ξ2 . . . ξn−1.

More precisely, consider the stopping times τ1, τ2, . . . defined as follows:

τ1 := min{t ≥ n|wn = χt−n+1χt−n+2 . . . χt}.

By induction on i, τi+1 is the next time the pattern wn appears in the observations:

τi+1 := min{t > τi|wn = χt−n+1χt−n+2 . . . χt}.

We take the scenery ξ to be i.i.d. The pattern wn will appear infinitely often in the
scenery ξ. So there is no hope that at all the times τi the walker is close to the origin,
because he will also observe the pattern wn in other locations. Instead, we will prove that
an exponential number of the times τi tell us that the walker is close to the origin.

Let Bn be the event that the walker is close to 0 for all τi with i ≤ (v2)
n. Here v2 is

a constant not depending on n satisfying

2

2H2(0.25)
> v2 > 1, (3.1.1)

where H2(x) is the entropy function:

H2(x) := x log2(1/x) + (1− x) log2(1/(1− x)).

(Note that 2/2H2(0.25) > 1, so that a constant v2 satisfying 3.1.1 really exists!). In the
event Bn, “close to the origin” is defined as in the interval [0, n− 1], so that

Bn := {Sτi ∈ [0, n− 1],∀i ≤ vn2 }.

Our main theorem states that when the scenery ξ is taken i.i.d. with four equiprobable
colors then the probability that Bn does not hold is exponentially small in n. (This is true
for any constant v2 satisfying 3.1.1 but not depending on n). Here comes the theorem:
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Theorem 3.1.1 Assume that ξz with z ∈ Z is a collection of i.i.d. variables independent
of the simple symmetric random walk St starting at the origin. We also assume that the
variables ξz are equally likely to be equal to 0,1, 2 or 3:

P (ξz = 0) = P (ξ = 1) = P (ξ = 2) = P (ξ = 3) = 1/4.

Then, all the stopping times τi up to i = vn2 stop the random walk S with high probability
in [0, n− 1]:

P (Bn) ≥ 1− e−cBn

for all n ∈ N, where cB > 0 is a constant not depending on n.

In [1], it is proven that an exponential number of times τi stop the random walk close to
the origin in the context of a 5-color scenery. However the proof in [1] fails with less than
5 colors. We introduce a subtle entropy argument for the class of observations generated
by a walker, which allows this improvement. The technique we develop here is important
and we expect it to be useful in many other situations.

The stopping time problem considered here is an essential step for scenery reconstruc-
tion. Once many stopping times are constructed, it is relatively easy to reconstruct a
large portion of the scenery around the origin. Once the stopping times are available, the
scenery reconstruction can be performed exactly as in [1]. The present result implies that
the scenery reconstruction result proven in [1] for 5 color sceneries also holds with 4-color
sceneries. We explain more details on this in the next subsection.

3.1.1 Implication of present result for scenery reconstruction

The research in this area started with people investigating the ergodic properties of the
observations made by a random walker of a random media. Kesten [10] proved that with
five colors, if one knows the scenery in every point except in one, then, it becomes possible
to reconstruct the missing color in that one location. For this purpose, the observations
ξ are “observable”. But, at that time, specialists believed that it might not be possible
to distinguish single defects with less than 5 colors in the scenery. Hence, the result in
[18] came as a surprise. Non-the-less, the general question remains open: when does it
become impossible to reconstruct a scenery? When does reducing the entropy in the
scenery whilst increasing it for the walker lead to a critical phenomena where the scenery
becomes unreconstructable?

The article [1] is the first and only, where scenery reconstruction is shown to be pos-
sible despite the increment of the random walk having a non-bounded support. In [1], a
symmetric random walk has its distribution close to a symmetric random walk, but with
small probability δ > 0 the steps can be larger than 1 unit. The conditions in [1] for the
random walk can be written as

P (|St+1 − St| 6= 1) ≤ δ (3.1.2)

35



and
P (|St+1 − St| = m | |St+1 − St| 6= 1) ≤ e−cm, ∀m ∈ N (3.1.3)

for a constant c > 0 not depending on m. Hence, the step length has an exponentially
decaying tail, but non-bounded support. Even when δ > 0 is taken very small and c > 0
very large, all other reconstruction methods fail.

The algorithm in [1] achieves reconstruction for δ > 0 small enough and c > 0 large
enough. It reconstructs the scenery on larger and larger intervals. Once it has recon-
structed the restriction of ξ to [−n, n], it proceeds in determining ξn+1 and ξ−n−1. For
this, it first obtains an exponential number of stopping times. It uses the observations χ
and the already reconstructed piece ξ−nξ−n+1 . . . ξn−1ξn. These stopping times are shown
to typically all occur whilst the walker is in [−n, n]. With the availability of these stop-
ping times, the reconstruction of ξn+1 and ξ−n−1 is relatively easy.

We can use the stopping times here constructed in the same way as in [1] to obtain
ξn+1 and ξ−n−1. The stopping times are even defined in the same way here and in [1].
The only difference is that here we prove them to work with only 4 colors instead of 5.
The fact that in [1], we do not only consider a simple random walk but also a slightly
disturbed version of a simple random walk does not matter: the proof and methods pro-
vided here does also carry over to that case. This implies that scenery reconstruction is
possible with a slightly disturbed random walk (i.e. taking δ > 0 small enough and c > 0
large and assuming that 3.1.2 and 3.1.3 holds for a symmetric random walk S), even if
there are only 4 equiprobable colors in the scenery.

The new idea used here gives us hope for sceneries with lower entropy. When entropy is
low, scenery reconstruction becomes way more difficult. However, the present technique
offers a new approach: If the string

wn := ξ0ξ1 . . . ξn−1

has low entropy, then we should also be able to very much restrict the collection of strings
generated by a walker starting in a given point x on the scenery ξ and which might lead
to wn. (See below the argument restricting path which might generate wn).

3.2 Proof of Theorem 3.1.1

3.2.1 Definition of events and combinatorics

Recall that wn designates the word obtained by restricting the scenery ξ to [0, n− 1]:

wn := ξ0ξ1ξ2 . . . ξn−1.

Note that
4

2H2(0.25)
> 2.
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In the introductory section we defined the constant v2 > 1 to be any constant not de-
pending on n and satisfying 3.1.1. We will also need the constants r and v1 which shall
not depend on n, but satisfy the equation

4

2H2(0.25)
> r > v1 > 2v2 > 2. (3.2.1)

Let q0 > 0.25 denote a constant not depending on n such that

4

2H2(0.25)
>

4

2H2(q0)
> r. (3.2.2)

Note that we can always find such a constant q0 because the entropy function H2(.) is
strictly increasing in the interval [0, 0.5].

Let us quickly give a sneaky preview of where the constants r, v1 and v2 make their
appearance:

• With high likelihood, within a radius rn of the origin there is no place where the
word wn can be read except at the origin.

• Typically at least (v1)
n visits to the origin occur before the random walk S leaves

the interval [−rn, rn].

• Typically, a number (v2)
n of stopping times all stop the random walk in [0, n− 1].

Let R be a map from the integer interval [0, n−1] into Z, i.e, R : [0, n−1]→ Z, and such
that

|R(i+ 1)−R(i)| = 1

for all i ∈ [0, n− 2]. We call R a nearest neighbor walk path of length n and say R starts
in x if R(0) = x.

Let Pnx denote the set of all nearest neighbor paths of length n starting at x and such
that the percentage of back-forth steps is less than q0 > 1/4. Hence, R : [0, n− 1]→ Z is
in Pnx iff both of the following conditions hold

1. R(0) = x, and

2. |{ i ∈ [1, n− 2] | (R(i)−R(i− 1))(R(i+ 1)−R(i)) = −1}| ≤ q0(n− 2).

Let T denote the first visit by the random walk S to the set of two points {−rn, rn}:

T := min { t | |St| = rn } .

Next we define the events which we will use:
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• Let νi denote the i-th visit after 0 by S to the origin:

νi+1 := {t > νi|St = 0},

whilst ν0 = 0. (The random walk starts at the origin). Let Cn be the event that
the random walk visits the origin at least (v1)

n times before time T :

Cn :=
{
νi ≤ T,∀i ≤ (v1)

n
}
.

• Let Dn
1 be the event that there is no path R starting in [−rn, rn] − [−2n, 2n] with

less than q0-percentage of back-forth steps and generating the word wn. In other
words, the event Dn

1 means that if

x ∈ [−rn, rn] and x /∈ [−2n, 2n]

and R ∈ Pnx then
ξ(R0)ξ(R1)ξ(R2) . . . ξ(R(n−1)) 6= wn.

• Let Dn
2 be the event that no path starting in [−2n, 2n] and ending outside [0, n− 1]

whilst having less than q0-percentage of back-forth steps can generate the word wn.
More precisely, the event Dn

2 means that ∀x ∈ [−2n, 2n] and all R ∈ Pnx , we have
that

ξ(R0)ξ(R1)ξ(R2) . . . ξ(R(n−1)) 6= wn,

if R(n− 1) /∈ [0, n− 1].

• Let En be the event that the random walk crosses the interval [0, n−1] in a straight
way at least (v2)

n times among the first (v1)
n visits to the origin. More precisely,

let En be the event the (random) set{
νi|i ≤ (v1)

n ; Sj+1 − Sj = +1,∀j ∈ [νi, νi + n− 1]
}

contains more than (v2)
n elements.

• Finally let F n denote the event that the word wn has a proportion less or equal to
q0 of letters wi such that wi = wi+2. Hence, F n is the event that

Cardinality{i ∈ [1, n− 1]|wi+1 = wi−1} ≤ q0(n− 2).

Recall that Bn stands for the event that the first (v2)
n stopping times τi all occur whilst

the random walk S is in the interval [0, n− 1].

Lemma 3.2.1 We have that

Cn ∩Dn
1 ∩Dn

2 ∩ En ∩ F n ⊂ Bn.
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Proof. With the event Cn we know that before time T , there are at least (v1)
n visits

to the origin before time T . The event En guaranties that among the first (v1)
n visits to

the origin, there are at least (v2)
n followed by a direct crossing of the interval [0, n − 1].

When, the random walk S crosses the interval [0, n−1] in a straight way, then during that
time we see the pattern wn = ξ0ξ1 . . . ξn−1 appearing in the observations. Thus, when Cn

and En both hold, we see the pattern wn appear at least (v2)
n times in the observations

χ before time T . So, there will be at least (v2)
n stopping times τi before time T :

τi ≤ T ,∀i ≤ (v2)
n.

The next question is if those stopping times really stop the random walk in the interval
[0, n− 1]. With the event F n, in the word wn there are less than q0(n− 2), letters wi such
that wi = wi+1. So, any nearest neighbor walk path with more than q0(n− 2) “back and
forth” steps can not generate wn on the scenery ξ. In other words, any nearest neighbor
walk path R : [0, n− 1]→ Z starting in x but not in Pnx can not generate wn:

ξ(R0)ξ(R1) . . . ξ(Rn−1) 6= wn.

So, when F n holds, for a nearest neighbor walk path R : [0, n − 1] → Z to generate wn,
we need to have R ∈ Pnx where x := R(0). By the event Dn

1 ∩Dn
2 , for all x ∈ [−rn, rn],

and all R ∈ Pnx , R can generate wn only if it ends in [0, n− 1]. That means that with the
event Dn

1 ∩Dn
2 , for all x ∈ [−rn, rn] and all R ∈ Pnx , we have

ξ(R0)ξ(R1) . . . ξ(Rn−1) = wn

implies R(n − 1) ∈ [0, n − 1]. Summarizing: when F n and Dn
1 ∩Dn

2 both hold, then the
only way a nearest neighbor walk R : [0, n − 1] → Z can start in [−rn, rn] and generate
wn on ξ, is when it ends in [0, n − 1], i.e. when R(n − 1) ∈ [0, n − 1]. Recall that by
definition, up to time T the random walk S remains in [−rn, rn]. So, up to time T , when
F n and Dn

1 ∩Dn
2 both hold, we can “only observe wn when the random walk S follows a

nearest neighbor walk path of length n − 1 ending in [0, n − 1]”. In other words, for all
τi ≤ T , we have that

Sτi ∈ [0.n− 1].

We have seen in the beginning of this proof, that when Cn and En both hold, then before
time T we see the pattern wn appear at least (v2)

n times in the observations χ. So, there
at least (v2)

n stopping times τi before time T . With F n and Dn
1 ∩ Dn

2 holding all these
stopping times occur when Sτi is in [0, n − 1]. Hence, all this together implies that the
first (v2)

n stopping times τi happen whilst Sτi in is in [0, n− 1]. Formally, we have proven
that when all the events

Cn, En, F n, Dn
1 , D

n
2

hold then Sτi ∈ [0, n − 1] for all i ≤ (v2)
n. This is the definition of the event Bn, so we

have that
Cn ∩ En ∩ F n ∩Dn

1 ∩Dn
2 ⊂ Bn.
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3.2.2 High probability of events

Lemma 3.2.2 We have that
P (Cn) ≥ 1−

(v1

r

)n
.

Proof. Let S1
t be a simple random walk such that S1

0 = 1. Define the stopping time

τ 1 = min
t

{
S1
t = 0 or S1

t = rn
}
.

We know that for a stopping time thus defined

E(S1
τ1

) = E(S1
0),

then
rnP

(
S1
τ1

= rn) = 1

and

P
(
S1
τ1

= rn) =
1

rn
,

but it is just the probability of S1
t visits rn before visits the origin.

For the case of a simple random walk starting at minus one, S−1
t , the probability of

it visits −rn before visits the origin is also 1
rn . So the probability of a simple random walk

to hitting rn or −rn before hitting the origin is p = 1
rn .

Let Cn
i be the event that after the i-visit to the origin, the random walk first gets back

to the origin before visiting the set {−rn, rn}.
(Recall that νi denotes the i-th visit after 0 by S to the origin:

νi+1 := min{t > νi|St = 0},

whilst ν0 = 0.) So, Cn
i is the event that

min{t > νi||St| = rn} > min{t > νi|St = 0}.

by the strong Markov property of S, we have that

P (Cnc
i ) =

1

rn
. (3.2.3)

But we have that

Cn =

(v1)n⋂
i=0

Cn
i

and hence

P (Cnc) ≤
(v1)n∑
i=0

P (Cnc
i )
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The last inequality together with 3.2.3, yields

P (Cnc) ≤
(v1)n∑
i=0

1

rn
=
(v1

r

)n
.

Note that the constants r and v1 where defined so that (v1/r) < 1, which implies that the
last bound above is exponentially small in n.

Lemma 3.2.3 We have that

P (Dn
1 ) ≥ 1− 4

(
r · 2H2(q0)

4

)n
.

Proof. Let Dn
1x denote the event that there is no nearest neaigborwalk path R in Pnx

and generating wn on ξ. In other words, Dn
1x is the event that there is no nearest neighbor

walk path R : [0, n− 1]→ Z, starting in x with less than q0-percentage of back-and-forth
steps and such that

ξ(R(0))ξ(R(1))ξ(R(2)) . . . ξ(R(n− 1)) = wn.

We have that
Dn

1 =
⋂

x∈[−rn,rn]−[−2n,2n]

Dn
1x

so that
P (Dnc

1 ) ≤
∑

x∈[−rn,rn]−[−2n,2n]

P (Dnc
1x). (3.2.4)

Then, if R starts in x (that is R(0) = x), with x /∈ [−2n, 2n] and since the nearest
neighbor walk path moving at most one unit by step, it follows that R can not enter the
interval [0, n− 1]. Assuming that R is non-random, we then obtain that the observation
generated by R, that is the string

ξ(R0)ξ(R1) . . . ξ(Rn−1)

is independent of ξ restricted to [0, n − 1]. This is because the scenery ξ is i.i.d. In
other words, we obtain that wn is independent of ξ(R0) . . . ξ(Rn−1). Since, we have 4
equiprobable colors in wn, this leads to

P (wn = ξ(R0)ξ(R1) . . . ξ(Rn−1) ) =

(
1

4

)n
, (3.2.5)

for any non-random R ∈ Pnx as soon as x /∈ [−2n, 2n]. Now,

Dn
1x = ∩R∈Pn

x
{wn 6= ξ(R0)ξ(R1) . . . ξ(Rn−1)}
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so that
P (Dnc

1x) ≤
∑
R∈Pn

x

P ( wn = ξ(R0) . . . ξ(Rn−1) ) .

Applying now 3.2.5 to the last inequality above yields

P (Dnc
1x) ≤

∑
R∈Pn

x

(
1

4

)n
, (3.2.6)

when x /∈ [−2n, 2n].

Since the number of different sequences with length n and proportion q0 of back-and-
forth steps is (

n− 2
q0(n− 2)

)
,

then using Stirling approximation for n! we get that there are less than 2H2(q0)(n−2) ele-
ments in the set Pnx , thus 3.2.6 can be written as:

P (Dnc
1x) ≤

2H2(q0)(n−2)

4n

for all x ∈ [rn, rn] − [−2n, 2n]. Applying the last equation above to inequality 3.2.4, we
obtain

P (Dnc
1 ) ≤

∑
x∈[−rn,rn]−[−2n,2n]

2H2(q0)(n−2)

4n
.

Since in the set [−rn, rn]− [−2n, 2n] there are less than 2rn elements, we find

P (Dnc
1 ) ≤ 2

(r
4

)n
2H2(q0)(n−2).

The expression on the right side of the last equation above is an exponential negative
bound, since by inequality 3.2.1, we have

r · 2H2(q0)

4
< 1.

Lemma 3.2.4 We have that

P (Dn
2 ) ≥ 1− n

4

(
2H2(q0)

4

)(n−2)

.

Proof. Let R : [0, n−1] 7→ Z be a (non-random) nearest neighbor path ending outside
[0, n− 1]. Assume first that R(n− 1) > n− 1. Then, since which each step R travels no
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more than one unit, we get that n − 1 − i < R(n − 1 − i) for all i ∈ [0, n − 1]. Hence,
since the scenery ξ is i.i.d., we find that ξn−1−i = wn−1−i is independent of

ξ(Rn−1−i)ξ(Rn−1−i+1) . . . ξ(Rn−1) (3.2.7)

Let Zi be the Bernoulli variable which is equal to 1 if ξ(Rn−1−i) = wn−1−i and Zi = 0
otherwise. Because of the independence of expression 3.2.7, we get

P (Zi = 1|Zi−1Zi−2 . . . Z0) = 1/4.

It follows that the variables Z0Z1 . . . Zn are i.i.d. so that

P (Z0 = 1, Z1 = 1, . . . , Zn = 1) =

(
1

4

)n
But having all the Zi’s equal to 1 for i = 1, 2, . . . , n is the same as saying that R generates
the word wn on the scenery ξ. Hence,

P (wn = ξ(R0)ξ(R1) . . . ξ(Rn)) =

(
1

4

)n
. (3.2.8)

The last inequality was obtained assuming R(n − 1) > n − 1. The same inequality can
be obtained for when R(n− 1) < 0 and so inequality 3.2.8 holds for all nearest neighbor
path not ending in [0, n− 1]. Now, the event Bn

2 is the event that there exits no nearest
neighbor walk path R ∈ Pnx , with x ∈ [−2n, 2n] and generating wn on ξ whilst ending
outside [0, n− 1]. Hence

Bn
2 =

⋂
R

{ wn 6= ξ(R0)ξ(R1) . . . ξ(Rn) } , (3.2.9)

where the intersection is taken over all R in⋃
x∈[−2n,2n]

Pnx (3.2.10)

ending outside [0, n − 1], i.e. such that R(n − 1) /∈ [0, n − 1]. For those paths ending
outside [0, n − 1], equation 3.2.8 applies. We can use this in conjunction with equation
3.2.9, (since in equation 3.2.9 all paths considered end outside [0, n− 1]). We obtain:

P (Bnc
2 ) ≤

∑
R

P (wn = ξ(R0)ξ(R1) . . . ξ(Rn)) =
∑
R

(
1

4

)n
. (3.2.11)

where in the last sums above, R is taken over the set 3.2.10 and such that R(n − 1) /∈
[0, n−1]. The set Pnx for given x contains less than 2(n−2)H2(q0) elements. So the set 3.2.10
contains less than 4n2(n−2)H2(q0) elements. Applying this to inequality 3.2.11, we get:

P (Bnc
2 ) ≤ 4n

2(n−2)H2(q0)

4n
.

Note that the bound on the last inequality above is exponentially small in n since by
3.2.1, we have (2H2(q0)/4) < 0.5
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Lemma 3.2.5 We have that

P (Enc) ≤ 4n

(v1/2)n
,

for all n large enough.

Proof. As before, let νi denote the i-th visit by the random walk to the origin and
define the following sequence. Let

k1 = ν1

and, for i ≥ 1, let
ki+1 := min{νj ≥ ki + n : j ∈ N},

The sequence of ki’s denotes a set of visits by S to the origin, such that two consecutive
visits are separated by at least n steps.

Let Yi be a Bernoulli variable, where Yi = 1 if after time ki, S takes n steps to the
right. and Yi = 0 otherwise. Hence Yi = 1 implies that

Sj+1 − Sj = 1 , ∀j ∈ [ki, ki + n− 1].

The variables Y1, Y2, . . . are i.i.d with

p = P (Yi = 1) =
(1

2

)n
.

Note that among the first (v1)
n visits νi to the origin, there are at least (v1)

n/n visits ki,
and hence: { vn

1 /n∑
i=1

Yi ≥ (v2)
n
}
⊆ En.

From the last inequality above it follows that

P (Enc) ≤ P
( vn

1 /n∑
i=1

Yi < (v2)
n
)

(3.2.12)

At this point we simply use the Chebycheff inequality. Put

Z :=

vn
1 /n∑
i=1

Yi

so that

E[Z] =
(v1)

n

n
E[Y1] =

(v1)
n

n

(
1

2

)n
= (1/n)

(v1

2

)n
and

V AR[Z] =
(v1)

n

n
V AR[Y1] =

vn1
n

(
1

2

)n(
1− 1

2n

)
≤ (v1)

n

n

(
1

2

)n
. (3.2.13)
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The constants v1 and v2 do not depend on n and satisfy inequality 3.2.1, so that v1/2 > v2.
It follows that for n large enough, E[Z] = (v1/2)n/n is much larger than (v2)

n. So for n
large enough, we have ∣∣∣(1/n)

(v1

2

)n
− (v2)

n
∣∣∣ ≥ (1/2n)

(v1

2

)n
and hence

|E[Z]− (v2)
n| ≥ (1/2n)

(v1

2

)n
. (3.2.14)

Applying now Chebycheff inequality to 3.2.12, we obtain

P (Enc) ≤ V AR[Z]

(E[Z]− vn2 )2
.

Applying equation 3.2.13 and inequality 3.2.14 to the last inequality above we find

P (Enc) ≤ (v1/2)n

(v1/2)2n

4n2

n
=

4n

(v1/2)n
. (3.2.15)

Since by inequality 3.2.1 we have v1/2 > 1 it follows that the bound on the right side of
inequality 3.2.15, is an exponentially small quantity in n.

Lemma 3.2.6 We have that
P (F nc) ≤ (cF )n,

where 0 < cF < 1 does not depend on n.

Proof. For any integer z ∈ [1, n− 1], define the event

Az = {ξ(z + 1) = ξ(z − 1)}.

Since the scenery-process {ξ}z∈Z is a sequence of i.i.d random variables with uniform

probability on a set of 4 colors, we get: P (Az) = 4
(

1
16

)
= 1

4
.

Let Xz be the Bernoulli variable, such that Xz = 1 iff Az holds. Note that any sequence
of colors with size n has exactly (n − 2) possible pairs of positions for to Az occurs, so
that

P (F nc) = P (X1 +X2 + · · ·+Xn−2 > (n− 2)q0)

≤ P ((X1 − q0) + · · ·+ (Xn−2 − q0) ≥ 0)

≤ E(eY1t)n−2,

where Y1 = (X1 − q0). Here we use the same argument as in the proof of lemma 3.2.5.
That is we use that any random variable Z and for any t > 0, P (Z ≥ 0) ≤ E[eZt]. Since
q0 > 0.25, it follows that

E(Y1) = E[X1]− q0 = 0.25− q0 < 0.

45



Hence, there exist a t0 ≥ 0 such that E(eY1t0) < 1. Call this value cF :

cF := E(eY1t0) < 1.

Thus we have an upper bound for P (F nc) which decrease exponentially fast to zero:

P (F nc) ≤ cnF .

3.2.3 P (Bnc) exponentially small in n

In lemma 3.2.1, we prove that

Cn ∩Dn
1 ∩Dn

2 ∩ En ∩ F n ⊂ Bn

It follows that

P (Bnc) ≤ P (Cnc) + P (Dnc
1 ) + P (Dnc

2 ) + P (Enc) + P (F nc). (3.2.16)

In the subsection 3.2.2, we get a negatively exponentially small in n upper bounds for
each of the probabilities:

P (Cnc), P (Dnc
1 ), P (Dnc

2 ), P (Enc), P (F nc).

Hence, together with inequality 3.2.16, this implies that P (Bnc) is also exponentially small
in n. Hence, there exists a constant cB > 0 not depending on n such that for all n, we
have

P (Bnc) ≤ e−cBn.
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Chapter 4

COMPUTER IMPLEMENTATION
AND SIMULATIONS

In this section, we explain how to implement practically the algorithm and present the
results of our computer simulations. It might be easy to draw a three colored tree with
color pencils and then represent by hand the path R representing the scenery. But how
should the computer represent the tree and the path R?

Once one starts programming a scenery reconstruction algorithm, things become more
difficult in practice than they are in theory. Remember that our reconstruction algorithm
first obtains words of length order O(lnn) and then assembles them. The piece of scenery
one tries to reconstruct is of length order n.

In the last chapter we take the observations χ up to time T , where T is of polyno-
mial order in the size of the piece we want to reconstruct, i.e. in n. The polynomial
bound for T is still large.

To see where the difficulty lies check the following: to reconstruct the words, one needs
the random walk S to cross them in a straight way at least once up to time T . Assume
for example that the words have length 10. The probability that the random walk crosses
a word of length 10 in a straight way, when it is located at the border of the word is
0.510 and this is 1/1024. So, for this event to have a good chance to happen, we need the
random walk to come back to the border of that word about 1024 times. But for the ran-
dom walk {St}t≥0 to come back to a given point m times, we need to wait approximately
order m2 time. In our case, this leads to a time frame of order 1000000 for a straight
crossing of a piece of length 10 to become likely. (Probably that million would need to be
multiplied by a constant larger than one, in order to get the probability very close to one...)

Here we present an algorithm, which if the random walk walks only once through the
piece it reconstructs something already close to the original scenery. With more colors it
works better. Probably with 5 colors it should already be pretty good.
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4.1 Algorithm: Reconstruction with Only One Visit

We describe different levels of precision for our reconstruction. All the reconstruction
methods enumerated below do not reconstruct a piece of scenery exactly, but only up to
a small number of missing letters. But the algebraic formalism presented here can be
directly applied to program the algorithm presented in chapter 2.

Before describing how to implement the algorithm, we need to identify the vertexes on
the tree in a way which our program can understand.

Vertexes as numbers We identify each vertexes v on the tree with a number. That
number is equal to the observations made by the shortest path which joins the origin to
v. See the Figure 4.1.

Figure 4.1: Vertexes as numbers.

Note that if the vertex v is visited at time s by R ◦ S, then the color record which
we observe when we move on the tree from the origin to v in a straight manner can be
obtained from the observations χ up to time s. More precisely, take χ0χ1 . . . χs modulo
aba = a. By this we mean that we need to replace any sub-string of the form aba by a,
until the string can not be simplified any further. The order does not matter, we always
will get the same result in the end. This “maximally simplified string” is equal to the
color record seen when moving from v0 to v in a straight manner.

Note that the vertexes visited by R ◦ S are also the vertexes visited by R.

Let χt0 be the observations from 0 to t, so that: χt0 = χ0χ1χ2 . . . χt, and denote by χ̄t0 the
string χt0 to which we applied the transformation aba = a as many times as possible until
no more. We call this transformation the rule for maximal simplification. Let us show
how the transformation works with a simple example:
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Example 4.1.1 Suppose χt0 = 131210. Here with our rule for maximal simplification we
apply the “simplification (aba = a)” twice on χt0. Hence:

χt0 = 131210
(131=1)−→ 1210

(121=1)−→ 10 = χ̄t0.

The algorithm uses the rule for maximal simplification in the following way: When the
rule is applied on χt = ψ(R(S(0)))ψ(R(S(1))) . . . ψ(R(S(t))), then it produces the skele-
ton of R ◦ S on the tree without branches. So using the rule aba = a until s < t, the
simplified observations χ−s0 , gives the number corresponding to the vertex where R ◦ S is
at time s.

Hence to get all the sequence of vertexes visited by R ◦ S up to time T , we computer for
every t ≤ T the string χ−t0 , and every time we get a new string which did not appear
before, we record it. Let us show it with the next example.

Example 4.1.2 Suppose we have the sequence of observations:

χ = 010121222020...

so that:
χ̄t0 0 01 0 01 012 01 012 0122 012 0120
t 0 1 2 3 4 5 6 7 8 9

thus
v1 = 0, v2 = 01, v3 = 012, v4 = 0122, v5 = 0120, ....

Look Figure 4.2 following the blue tube. Also observe that the vertexes will be find in order
of the first visit and besides the j-th vertex visited by R ◦ S during time [0, T ] is equal to
vj, the j-th vertex visited by R after 0. Check out Figure 4.2 following the red tube.

Figure 4.2: Representation of the vertexes as numbers on R and R ◦ S.

We use first only the observations χT0 as input for our reconstruction algorithm.
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4.1.1 First approximation

The first and worse level of the algorithm is simply apply the transformation aba = a to
the observations χT0 . For this case, the output of the algorithm will be χ−T0 . We obtain
a finite piece of the scenery with gaps, because χ−T0 equal to the simplification modulo
aba = a of the string ξ0ξ1 . . . ξy. Here we assume that ST = y.

To see this, observe that since χT0 is equal to ξ(St) for 0 ≤ t ≤ T , then

{ξy0} ⊆ {χT0 },

thus every time that any portion like aba is in {ξy0}, it should be also in {χT0 }. On the
other hand, the part of the sequence in {χT0 } which is not in {ξy0} are subsequences of
the form aba too, that is because each of these subsequences was just produced when the
random walk made a “back forth step”. Note that the rule aba = a applied on each of
these subsequences give only the first letter from each of them respectively, which corre-
sponds to a letter from the original sequence. So aba = a applied on this part gives just
{ξy0}, the original sequence.

The information “χ−T0 ” is called “fingerprint of ξy0” and does not depend on the ran-
dom walk path.

Let us look this with a numerical example.

Example 4.1.3 Take the scenery ξ between 0 and 7 be equal to:

ξ(z) ... 0 1 2 1 2 2 2 0...
z ::: 0 1 2 3 4 5 6 7...

Suppose the random walk walks twelve steps producing the sequence of observations

χ12
0 = 010121222020...

Let us process the piece of scenery ξ7
0 and the sequence the observations χ12

0 by replacing
stings aba by a, i.e,

ξ7
0 = 01212220

(aba=a)−→ 012220
(aba=a)−→ 0120

χ12
0 = 010121222020

(aba=a)−→ 0121222020
(aba=a)−→ 01222020

(aba=a)−→ 012020
(aba=a)−→ 0120.

We observe how the rule for maximal simplification gives the same result whether applied
to the original sequence and the sequence of observations.

We assemble the sequences of vertexes as number in the same order as they were appearing.
This leads to the partial reconstruction ξ̂ = 0120, which has several “wholes”.
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4.1.2 Algorithm 1

The second level is recovering two back-bones of R ◦ S on the tree. For this we not only
need to check the vertexs on the tree which get be visited by R ◦ S, but also select the
side of the tree where they come from.

In [19] Matzinger and Roles show by Lemma 5.3 that there exist two infinite connected
components from the set of vertex visited by R. We use this fact in order to make a
decision criterion to separate the vertexes in practice. The criterion is as follow:

Fix a subsequence of length h from the sequence corresponding to the color record from
each vertex, call this subsequence as “prefix”. Then separate the vertexes in groups such
that, all the vertexes from the same group have the same prefix. Finally we choose the
two biggest groups, one of both will correspond to the right backbone and the another to
the left backbone.

Look the Figure4.3. Now assume we already sorted the vertexs and obtained two se-

Figure 4.3: Right and left side, respectively represented by the blue and red group.

quences of vertexs v1r, v2r, . . . , vjr and v1l, v2l, . . . , vj l, one corresponds to the right part
of the scenery and the another to the left side. The increasing order corresponds to the
order in which the vertexes were visited by R ◦ S.

Let tir denote the first time that R ◦S visits the i−th vertex on the right subtree, that is
the time when vir appears, and let sir be the last time that R ◦ S visits the i−th vertex
before time t(i+1)r. Similarly define the times for the left subtree, i.e. til and sil.

Denote by χ
t(i+1)r
sir the observations between sir and t(i+1)r, that is

χsir
χsir+1χsir+2 . . . χt(i+1)r

,
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then for ir = 1r, . . . , (j− 1)r apply once more time the rule for maximal simplification to
each from these subsequences.

So our attempt to reconstruct the right part of the scenery is the concatenation

χt2r
s1r
χt3r
s2r
. . . χtjr

s(j−1)r
.

Similarly, for il = 1l, . . . , (j − 1)l the attempt to reconstruct the left part will be

χt2l
s1l
χt3l
s2l
. . . χ

tjl
s(j−1)l .

Of course we won’t know which one is right or left. We only put the two pieces together.
They could have some missing parts because when we apply the rule aba = a, the final
sequence could be too compressed.

4.1.3 Algorithm 2

The third possibility is similar to the second one, however here we try to solve the problem
of the missing parts.

Once more we use the representation of the vertexes as numbers and classify the ver-
texes according to the prefix criterion to find the two groups which contain most vertexes.

The new idea here is to choose the shortest path made by R◦S up to time T between two
consecutive vertexes from the same side. That is we compute the shortest paths between
each of the following couples: (v1r, v2r), (v2r, v3r), . . . and (v(j−1)r, vjr) .

Finally we concatenate these shortest paths. This can be done with both collection of
vertexes: those on the left side of the tube and those on the right side.

Note that both algorithms need to be improved at the origin because to use the pre-
fix idea to separated the vertexes in two groups and hence in most cases the vertexes near
to the origin can not be classified. Near to the origin, we do not have enough information.
That is, the sequences which identify the vertexes close to the origin are smaller than the
prefixes we consider.

4.2 Alignment between ξ̂ and ξ

Having obtained by the reconstruction algorithm a sequence which we call ξ̂. We hope
it to be a good approximation of a portion of the scenery close to the origin. We use
sequence analysis in order to compare ξ̂ and ξ.

Sequence analysis is used to identify regions of similarity between two sequences, (see
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Page. 12 in [4]). More explicitly, they are methods and algorithms to solve the problem
of deciding if the sequences are either structurally or evolutionary related and if yes how
similar they are. Sequence analysis is used in Bio-informatics for comparing biological
sequences for example DNA, RNA or protein. Also these methods are used for non-
biological sequences as financial data, natural language processing or in social sciences.
Here, we use it to compare ξ̂ with ξ

There are two general categories, global alignments and local alignments. The first one
is used to produce a global optimization: it produces an alignment in the entire length
of the two sequences. By contrast, the second one identifies regions of similarity between
subsequences. So, global alignments are more useful when the sequences are roughly of
equal size. On the other hand, local alignments are used when the sequences are dissimilar
but it is suspected they contain regions of similarity.

We will use local alignments to compare ξ̂ and ξ. We need to compare the original
sequence with the finite sequence obtained by the algorithm, which is typically only an
approximation of a portion from the first one. In [30], Smith and Waterman present an
algorithm to find a pair of segments, one from each of two long sequences producing the
best local alignment score. We explain the algorithm in the Appendix at the end of this
document.

4.2.1 Results: Alignment between ξ and ξ̂

We simulated ten random sceneries ξ’s and ten simple random walks of size 5000. We
applied Algorithm 1 and Algorithm 2 to the sequences of observations χ = ξ ◦ S in order
to produce the sequences ξ̂’s, i.e, the estimations of ξ’s around the origin.

We use the program “JAligner”, which is an open source Java implementation of Smith-
Waterman algorithm [30] with Gotoh’s improvement [5]. The author of the program is
Ahmed Moustafa and it is avalaible in [25].

This tool is used to compare two sequences when the goal is trying to find the best
region of similarity between them.

The score matrix used is the match-matrix. It gives the value equal to one when a
match holds and menus one when is a mitmatch. For the case with three colors the score
matrix is as follow:

− c1 c2 c3
− 0 0 0 0
c1 0 +1 −1 −1
c2 0 −1 +1 −1
c3 0 −1 −1 +1

The gap scoring system is an affine gap cost structure like in A.1.2, whit gap-open penalty
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o = 1 and gap-extension penalty e = 0.5.

For the biggest sequence estimated of the two sides, right and left, we present on the
next tables the proportion of matches or similarity, the proportion of gaps and the score
of the longest common subsequence LCS for each of one of the ten simulations.

Length(ξ) Length(ξ̂) Similarity(%) Gaps(%) Score
53 77 (68.83) (31.17) 38.50
34 43 (79.07) (20.93) 28.00
70 91 (76.92) (23.08) 55.50
42 48 (87.50) (12.50) 37.50
96 130 (73.85) (26.15) 74.50
34 46 (73.91) (26.09) 26.50
73 103 (70.87) (29.13) 53.00
112 138 (81.16) (18.84) 94.00
57 83 (68.67) (31.33) 41.00
72 90 (80.00) (20.00) 60.00

Table 4.1: Results obtained by Algorithm 1

Length(ξ) Length(ξ̂) Similarity(%) Gaps(%) Score
57 77 (74.03) (25.97) 44.50
38 43 (88.37) (11.63) 34.50
79 92 (85.87) (14.13) 69.00
42 48 (87.50) (12.50) 37.50
100 132 (75.76) (24.24) 79.00
36 46 (78.26) (21.74) 30.00
118 172 (68.60) (25.00) 72.50
123 143 (86.01) (13.99) 108.5
59 83 (71.08) (28.92) 44.50
78 98 (79.59) (20.41) 65.00

Table 4.2: Results obtained by Algorithm 2

In general we can observe according with the proportion of matches (similarity), the Al-
gorithm 2 obtain better results than the Algorithm 1. Only in two of the ten cases does
Algorithm 1 show higher similarities between ξ̂ and a portion of ξ close to the origin.
However they don’t overpass two percentage points, 70.87 vs 68.60 and 80.00 vs 79.59,
(see similarity for the cases 7 and 10 in 4.1 and 4.2) .

The Algorithm 2 also presents better results to see the proportion of gaps. Only in
simulation number 10 does Algorithm 1 obtain a lower proportion, but it is also 20.00 vs
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20.41, (see Gaps for the cases 10 in 4.1 and 4.2).

The length of ξ is computed up to the first match with ξ̂, thus the part around the origin
which can not be estimate by these algorithms is not taking into account the calculation
of the proportion of matches and gaps between the two sequences.

An improvement

With both algorithms we are observing paths between consecutive vertexes, consecutive
in the order they appear, i.e, paths between pairs of vertexes (vi, vi+1). When they are
consecutive on the tree, that is when the shortest path by R between them has length one,
then the estimated sequence using any of these algorithms will simply be ψ(vi), ψ(vi + 1).
These are the colors assigned by ψ to these pairs of vertexes. But, what happen if after
R has visited vi, it visits others vertexes before visiting vi+1?

For this problem the above algorithms are not equipped. We propose the follow im-
provement:

Take all the path by R ◦ S between vir, vir+3, for ir = 1, . . . , jr − 3, i.e,

{s < t < T ;R ◦ S(s) = vir, R ◦ S(t) = vir+3, R ◦ S(u) 6= vir for u ∈ [s+ 1, t− 1]} or

{s < t < T ;R ◦ S(s) = vir+3, R ◦ S(t) = vir, R ◦ S(u) 6= vir+3 for u ∈ [s+ 1, t− 1]},

then between them choose the shortest path according with the length between the first
and last time that R ◦ S visits vir+2, i.e,

min{|l − f |;R ◦ S(f) = vir+2, R ◦ S(l) = vir+2, s < f < l < t},

to obtain the word ψ(R ◦ S(f)), ψ(R ◦ S(f + 1)), . . . , ψ(R ◦ S(l)), which is the part of
R after the first visit to vir+2 and before the first visit to vir+3. This is not captured by
Algorithm 1 and Algorithm 2.

We add these subsequences between the sequences obtained by any of the algorithms
above between (vir+1, vir+2) and (vir+2, vir+3), for ir = 1, . . . , jr− 3. The same is made to
the left side.

The idea of the above process come from the expectation of the number of additional
steps that a simple random walk takes when it first enters state i until it enters state i+1.

Consider {St}t≥0 a Markov chain with space state {0, 1, 2 . . . } having the transition prob-
abilities p0,1 = 1, pi,i+1 = 2/3, pi.i−1 = 1/3, i ≥ 1. Let Ni denote the number of additional
transitions that the Markov chain takes when it first enters state i until it enters state i+1.
By the Markov property, it follows that these random variables Ni, i ≥ 0 are independent.
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Let µi = E(Ni), then upon conditioning on the next transition after the chain enters
state i, i ≥ 1,

µi = 1 +
1

3
E(Ni−1 +Ni).

Hence,

µi = 1 +
1

3
(µi−1 + µi) or

µi =
3

2
+

1

2
µi−1, i ≥ 1.

Starting with µ0 = 1, we obtain from the preceding recursion that

µi = 3− 2
(1

2

)i
.

So µ1 = 2, µ2 = 2.5, µ3 = 2.75 and µn goes to 3 when n goes to infinity. For example on
the state n, i.e, {St}t≥0 = n, we expect 3 steps before {St}t≥0 = n+ 1, for n large enough.

Suppose that at time l Sl = n, then 3 steps until S enters state n + 1 are only pos-
sible if Sl+1 = n − 1, Sl+2 = n, Sl+3 = n + 1. Let Wi = {v; |v0 − v| = i} be the subset
of vertex from VT such that, the distance from them to the origin is equal to i, then at
time l R(l) = wn with wn ∈ Wn. So 3 steps until S enters state n+ 1 are only possible if
R(l + 1) = wn−1, R(l + 2) = wn, R(l + 3) = wn+1, with wn−1 ∈ Wn−1 and wn+1 ∈ Wn+1.
Thus for any pair of consecutive vertexes on the tree, (vi, vi+1) and R = vi, we expect at
most only one back-forward step before R reaches vi+1.

That is the reason why we are choosing the paths by R ◦ S between vi, vi+3 and be-
tween them, to choose the shortest path according with the length between the first and
last time that R ◦ S visits vi+2.

Results: We used once more the program “JAligner” with the same score-matrix and
gap scoring system. The Tables 4.3 and 4.4 show the results.

We observe percentages of similarity higher and a lower percentage of gaps in comparison
with what was obtained by the algorithms without improvement. However. we note that
some cases like (5,8,10) in Table 4.4 exist, where the similarity is lower and the gaps
higher. This is because we have made the improvement for the paths between (vir, vir+3)
for ir = 1, . . . , jr − 3. What is happening here is that when the vertexes are not con-
secutive on the tree and the distance between (vir, vir+3) is too large, the added word
ψ(R ◦S(f)), ψ(R ◦S(f + 1)), . . . , ψ(R ◦S(l)) could be also too large, in this situation the
improvement does not work as we had hoped.
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Length(ξ) Length(ξ̂) Similarity(%) Gaps(%) Score
65 82 (79.27) (14.63) 50.00
40 49 (81.63) (18.37) 34.00
77 97 (79.38) (19.59) 62.50
46 48 (95.83) (4.17) 44.50
127 177 (71.75) (25.42) 93.50
36 46 (78.26) (21.74) 30.00
140 194 (72.16) (19.59) 93.50
155 213 (72.77) (19.25) 105.0
69 95 (72.63) (27.37) 53.00
106 150 (70.67) (20.00) 68.00

Table 4.3: Results obtained by the improvement of Algorithm 1

Length(ξ) Length(ξ̂) Similarity(%) Gaps(%) Score
68 82 (82.93) (9.76) 54.50
44 49 (89.80) (10.20) 40.50

86 (87.76) (11.22) 76.50
46 48 (95.83) (4.17) 44.50
130 181 (71.82) (25.97) 95.50
38 46 (82.61) (17.39) 33.50
199 333 (59.76) (31.53) 90.50
164 233 (70.39) (27.90) 115.5
71 95 (74.74) (25.26) 56.50
109 161 (67.70) (26.09) 69.00

Table 4.4: Results obtained by the improvement of Algorithm 2
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Appendix A

LOCAL ALIGNMENT

The Smith-Waterman algorithm compares segments of all possible lengths and optimizes
the similarity measure. To find the optimal local alignment it uses a scoring system, which
is composed by a substitution matrix and a gap-scoring scheme.

A.1 Scoring Model

In Biology, the basic idea of comparing sequences is looking for evidence that they come
from a common ancestor by a process of mutation and selection. We are not explain in
detail what this process mean in genetic, but what it is in terms of sequences is repre-
sented by mismatches produced by a “substitution” process, which changes letters in a
sequence and by gaps produced by either an “insertion” or “deletion” process, which add
or remove letters.

Before to explain the alignment algorithm is necessary to define a scoring model. A
scoring model is a function that assign a score to each possible pair of letters. Usually
a measure of the relative likelihood that the sequences are related as opposed to being
unrelated is used. In other words, a probability to the alignment in each of the two cases,
related and unrelated, is founded and the reason of the probabilities is considered.

Let x and y a pair of sequences of length m and n, respectively. Let xi the iTh symbol
in x and yj the jth symbol of y. These symbols come from some alphabet A, in our case
this alphabet is just the set of colors C = {0, 1, . . . , c− 1}.

The probability for the unrelated or random case R assumes that the letter a ∈ A
occurs independently with probability qa, and hence the probability of the alignment is
just the product of the probabilities of each sequence

P (x, y|R) = Πiqxi
Πjqyj

.
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The model M which assume that the sequences are related, assign join probabilities
to aligned pairs, i.e. pab, Then suppose that the letters a and b have each independently
been derived from some unknowing original letter c in their common ancestor, where c
might be the same as a or b. Thus, the probability for the whole alignment is

P (x, y|M) = Πipxiyi
.

The ratio of these two likelihoods is called odds ratio and is just

P (x, y|M)

P (x, y|R)
=

Πipxiyi

Πiqxi
Πjqyj

= Πi
pxiyi

qxi
qyi

.

To obtain an additive scoring system, the logarithm of this ratio is taken, it is call
log-odds ratio, and then produce the sore

S =
∑
i

s(xi, yi),

where
s(a, b) = log

( pab
qaqb

)
,

is the log likelihood ratio of the pair (a, b) occurs as an aligned pair, as opposed to an
unaligned pair.

The s(a, b) scores can be arranged in a matrix for each aligned pair of letters, then
at the position k, l of this matrix will correspond to the score s(ak, al), where ak, al are
the kth and lth letter of the alphabet A. This matrix is known as a score matrix or a
substitution matrix

To penalize the cost associated with a gap of length g, a linear scores can be used and
it is given by

γ(g) = −gd, (A.1.1)

where d is a penalty per unit length of gap. In some cases, when is more likely to have a
large gap, rather than many small gaps, that is when is much more likely to have one big
gap of length 10 than to have 10 small gaps of length 1, a gap opening penalty, o, and a
gap extension penalty, e are used. The score for a gap of length l is

γ(g) = −o− (l − 1)e, (A.1.2)

where o is the gap-open penalty and e the gap-extension penalty.
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The total score assigned to an alignment is the sum of terms for each aligned pair, plus
terms for each gap. This additive scoring scheme suppose that the mutations or gaps at
different sites in a sequence occurs independently.

If the interest is only to count the amount of aligned pairs, that is the longest common
subsequence (LCS), then the gap score is equal to zero and the score matrix will be the
identical matrix.

A.2 Local Alignment: Smith-Waterman Algorithm

The algorithm build recursively a matrix F , it is known by substitution matrix, where
F (i.j) is the score of the best alignment between the subsequence of x up to i, i.e. x1...i and
the subsequence of y up to j, i.e. y1...j. Let F (0, 0) = 0, then if F (i− 1, j − 1), F (i− 1, j)
and F (i, j − 1) are known, it is possible to calculate F (i, j). Note that there are three
ways to get the best score F (i, j), they are:

1. xi could be aligned to yj, in which case F (i, j) = F (i− 1, j − 1) + s(xi, yj)

2. xi is aligned to a gap, in which case using the simplest case (A.1.1),
F (i, j) = F (i− 1, j)− d, or

3. yj is aligned to a gap, in which case F (i, j) = F (i, j − 1)− d.

The best score up to (i, j) will be the largest of these three options and zero, that is:

F (i, j) = max


0,
F (i− 1, j − 1) + s(xi, yj),
F (i− 1, j)− d,
F (i, j − 1)− d.


Note that F (i, j) takes the value 0 if all other options have values less than 0, thus if
the best alignment up to some point has a negative score, then is better to start a new
alignment. For this reason, the values F (i, 0) and F (0, j) which represent alignments with
gaps in y and x respectively, take the values F (i, 0) = F (0, j) = 0, i.e, the top row and
the left column in F will be filled with 0s.

Thus, the matrix F is filling from top left to bottom right following the next process:
For each square of four cells, F (i, j), F (i− 1, j − 1), F (i− 1, j) and F (i, j − 1), F (i, j) is
obtained by the maximizing process (A.2). Observe the next diagram.

In the case of a gap structure like (A.1.2), the recurrence relation at this case is:

F (i, j) = max


0,
F (i− 1, j − 1) + s(xi, yj),
F (k, j) + γ(i− k), k = 0, . . . , i− 1
F (i, k) + γ(j − k), k = 0, . . . , j − 1.


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A dynamic programming for a gap structure (A.1.2) is implemented in order to reduce
the time of the operation, (see pag. 29 in [4]). It is called Alignment with affine gap.

A.2.1 The traceback process

The alignment find the pair of segments with maximum similarity. For that a process
known as traceback is used. The dynamic of such a process is as follow: It starts from a
fixed cell of F and follow in reverse way the pointers to build the matrix F , i.e, at each
step the traceback process, it moves back from the current cell (i, j) to the cell from it
was derived, that is to one of the cells (i− 1, j− 1), (i− 1, j) or (i, j− 1). Then if the step
was to (i − 1, j − 1) the current alignment is between xi and yj, but if the step was to
(i−1, j) the alignment is between xi and a gap ‘− , and finally if the step was to (i, j−1)
the alignment is between a gap ‘ − and yj . If at any point two of the derivations are
equal, an arbitrary choice is made.

Now we are already to explain the local alignment algorithm.

1. Find the highest value of F (i, j) over the whole matrix.

2. Start a traceback process from there, ending with an element ofF equal to zero.

The next example is showed in ([30]): In this example the parameters s(aibj) and
deletions of length k with a weight Wk were chosen on an a priori statistical basis. A
match has a value of unity while a mismatch produced a minus one-third value. The local
dynamic programming matrix for the example sequences is as follow.
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Table A.1: The underlined elements indicate the trackback path from the maximal element 3.3
g C A G C C U C G C U U A G

g 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
A 0.0 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7
U 0.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7
G 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0
C 0.0 1.0 0.0 0.0 2.0 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3
C 0.0 1.0 0.7 0.0 1.0 3.0 1.7 1.3 1.0 1.3 1.7 0.3 0.0 0.0
A 0.0 0.0 2.0 0.7 0.3 1.7 2.7 1.3 1.0 0.7 1.0 1.3 1.3 0.0
U 0.0 0.0 0.7 1.7 0.3 1.3 2.7 2.3 1.0 0.7 1.7 2.0 1.0 1.0
U 0.0 0.0 0.3 0.3 1.3 1.0 2.3 2.3 2.0 0.7 1.7 2.7 1.7 1.0
G 0.0 0.0 0.0 1.3 0.0 1.0 1.0 2.0 3.3 2.0 1.7 1.3 2.3 2.7
A 0.0 0.0 1.0 0.0 1.0 0.3 0.7 0.7 2.0 3.0 1.7 1.3 2.3 2.0
C 0.0 1.0 0.0 0.7 1.0 2.0 0.7 1.7 1.7 3.0 2.7 1.3 1.0 2.0
G 0.0 0.0 0.7 1.0 0.3 0.7 1.7 0.3 2.7 1.7 2.7 2.3 1.0 2.0
G 0.0 0.0 0.0 1.7 0.7 0.3 0.3 1.3 1.3 2.3 1.3 2.3 2.0 2.0
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