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Introduction

Background

It was Friedel in 1911 who first recognized the usefulness of coincidence site lattices
(CSLs) in describing and classifying grain boundaries of crystals [25]. Since then,
CSLs have been an indispensable tool in the study of grain boundaries, twins, and
interfaces [50, 15, 14, 76, 61]. This prompted various authors to examine the CSLs
of specific lattices, for instance, cubic and hexagonal crystals [65, 39, 33, 34, 35,

37, 40].
The advent of quasicrystals in 1984 triggered a renewed interest in CSLs. This

is because experimental evidence showed that quasicrystals, like ordinary crystals,
exhibit multiple grains, twin relationships, and coincidence quasilattices [75, 77,

63, 79]. A need for a more general and mathematical treatment of the coincidence
problem ensued, and this was dealt with in [4]. Known results for lattices were
again considered and reformulated so that they may be readily extended to aperiodic
situations. This was necessary since the first stage in solving the coincidence problem
for quasicrystals involves calculating the coincidence site modules (CSMs) of the
underlying translation modules, such as modules with 5, 8, 10, and 12-fold symmetry
(see [59, 4] and references therein, see also [62]). Of equal mathematical interest are
the sets of (linear) coincidence isometries of a lattice or module, since these sets form
a subgroup of the orthogonal group and they contain the point symmetry group of
the lattice or module, respectively.

Today, many results are known about the coincidences of lattices and modules
in dimensions d ≤ 4. The coincidence problem for certain planar lattices and mod-
ules was solved in [59, 4] using factorization properties of cyclotomic integers. For
lattices and modules in dimensions three and four, quaternions have proven to be
an appropriate tool. Results on the coincidences of three-dimensional cubic lattices
and modules can be found in [4, 81, 10], while the coincidences of four-dimensional
lattices and modules were investigated in [78, 68, 4, 82, 13, 7, 44, 45].

Several authors also considered the CSL problem from a different perspective. In
[23, 24, 21], a matrix theory for CSLs was developed via factorizations of rational
and integer matrices. Based on these results, a formula for the coincidence indices
of certain coincidence isometries of the hypercubic lattice Zd was derived [87]. In
addition, the decomposition of coincidence isometries of lattices and modules in Eu-
clidean d-space as a product of at most d coincidence reflections was considered in
[88, 47]. Another approach to the coincidence problem for lattices using geometric
algebra was established in [67, 2].
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2 INTRODUCTION

Connections of the coincidence problem for lattices and modules to other related
topics have also been explored. The relationship between the sets of coincidence and
similarity isometries of lattices and modules were examined in [30, 28, 29]. Also,
in [29], the generalized dihedral subgroups of the set of coincidence rotations of the
cubic lattices and the standard icosahedral modules were considered. On the other
hand, an extension of CSLs to multiple coincidence site lattices (MCSLs) has been
carried out in [6, 12, 84]. Interest in MCSLs has been motivated not only by the
study of triple junctions and quadruple points, and more generally, multiple junctions
of grains, and other multicrystal assemblies [26], but also by the problem of optimal
lattice quantizers in [72] wherein a lattice is expressed as the intersection of simpler
lattices.

Similar to CSLs, a revived interest on color symmetries of (quasi)crystals and
tilings in recent years was brought upon by the discovery of quasicrystals, see [58, 51,
3, 8, 9, 5, 19, 54, 55, 16]. Despite being two different problems, the enumeration and
classification of color symmetries of lattices come hand in hand with the identification
of CSLs [69, 70, 59, 3, 54, 55].

Outline of the thesis

The first chapter gives all the essential definitions, notations, and results for this
thesis. It starts with a discussion of the coincidence problem for an arbitrary lattice
or Z-module. A summary of the results on the coincidences of the square lattice,
some n-planar modules, cubic lattices, and hypercubic lattices follows the general
treatment. Notions on colorings of lattices and Z-modules end the chapter.

It is well-known that a lattice and its sublattices have the same set of coincidence
isometries. In fact, not only are the coincidence isometries for the three cubic lattices
the same, but also are the coincidence indices for a given coincidence isometry. This
is due to a particular shell structure of the lattice points: points at the corners of
a cube and those in the center or on the faces of the cube lie on different shells,
and thus cannot be mapped onto each other by an isometry [39]. On the other
hand, aside from having different point groups, the two four-dimensional hypercubic
lattices do not share the same set of coincidence indices (the coincidence indices of
the centered type are all odd while those of the primitive type are odd or twice an
odd number) [4, 82]. This motivates the following questions: Under which conditions
does a sublattice have the same coincidence indices as the lattice itself? Is it possible
to calculate the coincidence indices of a sublattice once the coincidence indices of its
parent lattice are already known? Chapter 2 gives some answers to these questions
by looking at certain colorings of lattices.

A method of computing the coincidence index of a coincidence isometry of a lattice
with respect to a sublattice is formulated in Theorem 2.4 via properties of the coloring
of the lattice determined by the sublattice. This result motivates a generalization of
the idea of color symmetry to that of a color coincidence. Theorem 2.8 shows that the
color coincidences of a coloring of a lattice induced by some sublattice are precisely
those coincidence isometries of the lattice that fix the sublattice. This allows an
association between the property of being a color coincidence and the relationship
between the coincidence indices with respect to the lattice and to its sublattice. In
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particular, if R is a coincidence isometry that is a color coincidence of the coloring
of the lattice (induced by a sublattice), then the coincidence index of R with respect
to the lattice is divisible by the coincidence index of R with respect to the sublattice
(Corollary 2.10). Attention is also given to the set formed by the color coincidences
of a coloring of a lattice. Examples, including one involving the set of vertices of
the Ammann-Beenker tiling, and other general results are provided to illustrate these
ideas.

The mathematical treatment of the coincidence problem is very often restricted
to linear coincidence isometries, that is, rotations and improper rotations, whereas
isometries containing a translational part are ignored. Nevertheless, general (affine)
isometries are important in crystallography. Indeed, the situation where one shifts
the two component crystals against each other has been investigated in [27, 22] and
references therein. It was shown that these shifts are needed to minimize the grain
boundary energy, thus they are often referred to as “rigid relaxations”. However,
some authors claim that minimizing the energy may require shifts that destroy all
coincidence sites.

Even though the idea of introducing a shift after applying a linear coincidence
isometry has already been dealt with in the physical literature, not much can be
found in the mathematical literature where a systematic treatment of the subject is
still missing. Some steps in this general direction have actually been made in the
appendix of [59]. There, the authors considered coincidence isometries about certain
points which are not lattice or module points. For instance, they determined the set
of coincidence isometries about the center of a Delauney cell of the square lattice and
calculated the corresponding indices.

In Chapter 3.1, the notion of a CSL and CSM is extended to intersections of two
lattices and Z-modules, respectively, that are related by any isometry. Such intersec-
tions are referred to as affine coincidence site lattices/modules (ACSLs/ACSMs), and
the isometries that generate these intersections as affine coincidence isometries. Theo-
rem 3.3 identifies the affine coincidence isometries of a lattice or Z-module, while (3.1)
gives the resulting intersection. In the event that the set of affine coincidence isome-
tries of a lattice or Z-module forms a group, then it must be the symmetry group of
the lattice or Z-module.

The rest of Chapter 3 covers a related and special case: the coincidence problem
for shifted lattices and shifted Z-modules. That is, after translating the lattice orZ-module Γ by some vector x, and upon application of a linear isometry R to the
shifted lattice or shifted Z-module x+Γ (with respect to the origin), its intersection
with x+Γ is considered. Equation (3.2) states that the said operation corresponds to
shifting the intersection of Γ with the image of Γ under the affine isometry (Rx−x,R)
by x. Note that the effect of the affine isometry (Rx,R) on Γ is equivalent to applying
the linear isometry R on Γ about a different point (−x), thus keeping at least one
point (−x) fixed. Theorem 3.8 asserts that the (linear) coincidence isometries of x+Γ
are those coincidence isometries R of Γ that satisfy Rx − x ∈ Γ + RΓ. Moreover,
the CSLs/CSMs of the shifted lattice/Z-module are merely translates of CSLs/CSMs
of the original lattice/Z-module. Hence, no new values of coincidence indices are
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obtained by shifting the lattice, with some values disappearing or their multiplicity
changed.

Similar to the approach in [59, 4], an extensive analysis of the coincidences of a
shifted square lattice in Chapter 3.4 is achieved by identifying the lattice with the
ring of Gaussian integers. The coincidence problem is completely solved when the
shift consists of an irrational component (Theorem 3.26). For the remaining case,
that is, when the shift may be written as a quotient of two Gaussian integers that
are relatively prime, one computes for the set of coincidence rotations of the shifted
square lattice using some divisibility condition involving the denominator of the shift
(Lemma 3.28). In both instances, the set of coincidence rotations of a shifted square
lattice form a group. An example is given where the set of coincidence isometries of a
shifted square lattice is not a group. This shows that in general, the set of coincidence
isometries of a shifted lattice does not form a group. Corresponding results and an
example for planar modules conclude the chapter.

The final chapter of this thesis is concerned with the coincidences of sets of points
formed by the union of a lattice with a finite number of shifted copies of the lattice.
Such sets are referred to as multilattices. This idea should be useful in the context of
bicrystallography, and in general, to crystals having multiple atoms per primitive unit
cell [31, 60]. The chapter starts with an analysis of the coincidences of the simplest
multilattice, that is, of the union of a lattice and a shifted lattice. This leads to the
solution of the coincidence problem for the diamond packing given in Theorem 4.6.
The main result of the chapter is Theorem 4.15, which gives the solution of the
coincidence problem for general multilattices. Simply put, the (linear) coincidence
isometries of a multilattice are exactly the coincidence isometries of the lattice that
generates the multilattice - only the resulting intersections and corresponding indices
may vary.

The main problem in Chapter 2 is then revisited, where the reverse condition is
now considered. More accurately, if the coincidence problem for a sublattice of a
given lattice has already been solved, then what can be deduced about the CSLs and
corresponding coincidence indices of the original lattice? This question is resolved in
Theorem 4.17 by regarding the lattice as a multilattice formed by the union of the
sublattice with the cosets of the sublattice. This perspective establishes a connection
among the relationship between the coincidence indices of a lattice and a sublattice,
color coincidences of the coloring of the lattice determined by the sublattice, and
coincidences of shifted lattices, which is encapsulated in Propositions 4.19 and 4.20.
The chapter ends with a full description of the case when a sublattice is of prime
index in a lattice, and the solution of the coincidence problem for certain primitive
and centered rectangular lattices.



CHAPTER 1

Preliminaries

Let us recall the necessary background and results for this thesis first.

1.1. Coincidences of lattices and Z-modules

We start with the basic definitions and general results on coincidence isometries
of lattices and Z-modules. A detailed discussion of these can be found in [4, 83].

A discrete subset Γ of Rd is a lattice (of rank and dimension d) if it is the Z-span
of d linearly independent vectors v1, . . . , vd ∈ Rd over R. The set {v1, . . . , vd} is called
a basis of Γ, and Γ = Zv1⊕ . . .⊕Zvd. As a group, Γ is isomorphic to the free abelian
group of rank d. Alternatively, one can characterize a lattice as a discrete co-compact
subgroup of Rd.

A subset Γ′ of the lattice Γ is a sublattice of Γ if Γ′ is a subgroup of Γ of finite
index, that is, if [Γ : Γ′] < ∞. Hence, Γ′ is itself a lattice and is of the same rank and
dimension as Γ. Here, the index of Γ′ in Γ may also be interpreted geometrically –
[Γ : Γ′] is the quotient of the volume of a fundamental domain of Γ′ by the volume of
a fundamental domain of Γ.

The dual of a lattice Γ in Rd is the lattice

Γ∗ :=
{
x ∈ Rd : 〈x, y〉 ∈ Z for all y ∈ Γ

}
,

where 〈·, ·〉 denotes the standard scalar product in Rd. If B = {v1, . . . , vd} is a basis
for Γ, then {v∗1, . . . , v∗d}, where

〈
v∗j , vk

〉
= δj,k for 0 ≤ j, k ≤ d, is a basis for Γ∗ and

is referred to as a dual basis for B. Given a sublattice Γ′ of Γ, Γ∗ is a sublattice of
(Γ′)∗ with [(Γ′)∗ : Γ∗] = [Γ : Γ′] and (Γ′)∗/Γ∗ ∼= Γ/Γ′.

Two lattices Γ1 and Γ2 are said to be commensurate, denoted Γ1 ∼ Γ2, if Γ1 ∩ Γ2

is a sublattice of both Γ1 and Γ2. Commensurateness between lattices defines an
equivalence relation. Given two commensurate lattices Γ1 and Γ2, their sum

Γ1 + Γ2 := {x1 + x2 : x1 ∈ Γ1, x2 ∈ Γ2}
is also a lattice and the following equations are true: (Γ1 ∩ Γ2)

∗ = Γ∗
1 + Γ∗

2 and
(Γ1 + Γ2)

∗ = Γ∗
1 ∩ Γ∗

2.
An orthogonal transformation R ∈ O(d) := O(d,R) is a (linear) coincidence

isometry of the lattice Γ in Rd if Γ ∼ RΓ. The sublattice Γ(R) := Γ ∩ RΓ is called
the coincidence site lattice (CSL) of Γ generated by R, while the index of Γ(R) in Γ,
ΣΓ(R) := [Γ : Γ(R)] = [RΓ : Γ(R)], is called the coincidence index of R with respect
to Γ. Geometrically, ΣΓ(R) gives the ratio of the volume of a fundamental domain
of the CSL Γ(R) with the volume of a fundamental domain of Γ or of RΓ. If no
confusion arises, we simply write Σ(R) to denote the coincidence index of R. Clearly,

5



6 1. PRELIMINARIES

symmetries in the point group of Γ, P (Γ) = {R ∈ O(d) : RΓ = Γ}, are precisely those
coincidence isometries R of Γ with Σ(R) = 1.

The set of (linear) coincidence isometries of a lattice Γ is denoted by OC(Γ) while
the set of coincidence rotations of Γ, that is, OC(Γ) ∩ SO(d), is written as SOC(Γ).
Since commensurateness of lattices is an equivalence relation, the set OC(Γ) forms a
group having SOC(Γ) as a subgroup.

Example 1.1: Consider the square lattice Γ = Z2. Let R ∈ O(2) be the rotation
about the origin by θ = tan−1(3

4
) in the counterclockwise direction. Figure 1(a) shows

points on the lattice Γ (white dots) and on the rotated copy of Γ, RΓ (black dots).
One also sees a fundamental domain for Γ (white square) and for RΓ (gray square),
both having the same volume. The points where the white dots and the black dots
coincide correspond to points in Γ ∩ RΓ. Since the points of intersection of Γ and
RΓ form a sublattice of Γ (and RΓ), R is a coincidence rotation of Γ. The CSL
generated by R is precisely these points of intersection, shown in Figure 1(b) as the
lattice formed by the blue dots. Figure 1(b) also shows a fundamental domain of
Γ(R) (blue square) which is five times larger than that of the fundamental domains
of Γ and RΓ. This indicates that Γ(R) is of index 5 in Γ (and RΓ), and so Σ(R) = 5.

(a) lattices Γ and RΓ (b) CSL Γ(R) with Σ(R) = 5

Figure 1. The lattices Γ (white dots), RΓ (black dots), and Γ(R)
(blue dots), where Γ = Z2 and R ∈ OC(Γ) is the counterclockwise
rotation about the origin by θ = tan−1(3

4
) ≈ 37·. The white, gray, and

blue squares correspond to fundamental domains for Γ, RΓ, and Γ(R),
respectively. The origin is the common vertex of the fundamental do-
mains.

The following are immediate.

Proposition 1.2: Let Γ ⊆ Rd be a lattice and R ∈ OC(Γ). Then R−1 ∈ OC(Γ) with
Σ(R−1) = Σ(R) and R[Γ(R−1)] = Γ(R).
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Theorem 1.3: Let Γ be a lattice in Rd.

(i) If λ ∈ R+ then OC(λΓ) = OC(Γ) with ΣλΓ(R) = ΣΓ(R) for all R ∈
OC(λΓ).

(ii) If S ∈ O(d) then OC(SΓ) = S[OC(Γ)]S−1 = {SRS−1 : R ∈ OC(Γ)} ∼=
OC(Γ) with ΣSΓ(R) = ΣΓ(S

−1RS) for all R ∈ OC(SΓ).

Theorem 1.3 implies that the groups of coincidence isometries of similar lattices
are conjugate subgroups of O(d). Moreover, corresponding coincidence isometries
(under conjugation) of similar lattices have equal coincidence indices.

The next theorem shows that dual lattices share the same group of coincidence
isometries and the same set of coincidence indices.

Theorem 1.4: Let Γ ⊆ Rd be a lattice. Then OC(Γ) = OC(Γ∗) and ΣΓ(R) = ΣΓ∗(R)
for all R ∈ OC(Γ).

Theorem 1.5: Let Γ2 be a sublattice of the lattice Γ1 in Rd. Then OC(Γ1) = OC(Γ2).

Remark 1.6: Given an R ∈ OC(Γ1) = OC(Γ2), we shall denote by Σ1(R) and Σ2(R)
the coincidence indices of R with respect to Γ1 and Γ2, respectively.

Even though the groups of coincidence isometries of a lattice and sublattice are
the same, the coincidence indices and corresponding multiplicities with respect to the
two lattices are in general different. The following proposition states the known result
on this issue.

Proposition 1.7: Let Γ1 be a lattice in Rd, Γ2 be a sublattice of Γ1 of index m, and
R ∈ OC(Γ1). Then Σ1(R) | mΣ2(R).

Remark 1.8: Suppose Γ2 is a sublattice of Γ1 in Rd of index m. Since Γ∗
1 is a

sublattice of Γ∗
2, it follows from Proposition 1.7 and Theorem 1.4 that Σ2(R) | mΣ1(R)

for all R ∈ OC(Γ1).

The following result about the coincidence index of the product of two coincidence
isometries can be found in [7, 86].

Proposition 1.9: Let Γ ⊆ Rd be a lattice and R1, R2 ∈ OC(Γ).

(i) Then Σ(R2R1) divides Σ(R2) · Σ(R1).
(ii) If Σ(R1) and Σ(R2) are relatively prime, then Σ(R2R1) = Σ(R2) · Σ(R1),

Γ(R2R1) = Γ ∩ R2Γ ∩ R2R1Γ, and R2Γ = Γ(R2) +R2Γ(R1).

In the quasicrystallographic setting, it is necessary to consider the coincidence
problem for certain Z-modules in Rd. If r linearly independent vectors over Z spanRd over R, then the subset M of Rd spanned by these r vectors over Z is called aZ-module (of rank r and dimension d). Since the said r vectors span Rd, r ≥ d. A
module M of rank r and dimension d that is discrete (and hence, r = d) is a lattice.

Remark 1.10: A Z-module of rank r and dimension d forms a group that is isomor-
phic to the free abelian group of rank r. This means that as a group, a Z-module
can be thought of as a lattice in Rr. Therefore, results for lattices that were obtained
using only properties of lattices as a group must also hold for Z-modules.
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Hence, the notions of submodule, commensurateness, and that of a (linear) coin-
cidence isometry are well-defined and are defined analogously as in the lattice case.
In this instance, the set of coinciding points forms a submodule and is thus called
a coincidence site module (CSM). However, a bit more care is needed in defining
the coincidence index of a coincidence isometry R of a Z-module M. It is assumed
throughout this thesis that if M(R) := M∩RM then [M : M(R)] = [RM : M(R)].
This value is then defined as the coincidence index of R with respect to M, denoted
by ΣM(R) or simply Σ(R). This requirement is easily satisfied by lattices in Rd, but
is not trivial for Z-modules [85]. Nonetheless, the said requirement is equivalent to
Σ(R) = Σ(R−1), a condition satisfied by, among others, certain planar n-modules (see
Subsection 1.2.2). Furthermore, in general, the dual of a Z-module is not defined.

Since the results above for lattices (except for Theorem 1.4 and Remark 1.8,
because they involve the dual lattice) were obtained via some group-subgroup rela-
tionship, corresponding results for Z-modules are also true.

1.2. Solution of the coincidence problem for certain lattices andZ-modules

Results on coincidence isometries and CSLs of the square, cubic, and hypercu-
bic lattices shall be discussed in this section. The coincidence problem for certainZ-modules of cyclotomic integers is also examined.

1.2.1. Square lattice. Let us look at the square lattice Z2 first (see [4, 59]
for details). Since O(2) is the semidirect product of SO(2) and the cyclic group C2

generated by the reflection in the x-axis, the discussion is restricted to coincidence
rotations at the outset and later on extended to coincidence reflections.

The group of coincidence rotations of Z2 is SOC(Z2) = SO(2,Q). To determine
the structure of this group, the square lattice is identified with the ring of Gaussian
integers Γ = Z[i] = {

m+ ni : m,n ∈ Z, i = √
−1

}
, embedded in the set of complex

numbers C. In this setting, every rotation in SO(2) by an angle of θ in the counter-
clockwise direction corresponds to multiplication by the complex number eiθ on the
unit circle. Because the ring Z[i] is a Euclidean domain and thus a unique factoriza-
tion domain (see [43]), a coincidence rotation R of Γ is equivalent to multiplication
by a complex number

ε ·
∏

p≡1(4)

(
ωp

ωp

)np

, (1.1)

where np ∈ Z and only a finite number of np 6= 0, ε is a unit in Z[i], p runs over
the splitting primes in Z[i], that is, rational primes p ≡ 1 (mod 4), and ωp, and its
complex conjugate ωp, are the Gaussian prime factors of p = ωp · ωp. If one denotes
by z the numerator of (1.1), that is,

z =
∏

p≡1(4)
np>0

ωp
np ·

∏

p≡1(4)
np<0

(ωp)
−np, (1.2)

then the coincidence index of R is equal to the number theoretic norm of z, Σ(R) =
N(z) := z · z = |z|2. In addition, the CSL obtained from R is the principal ideal
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Γ(R) = (z) := zZ[i]. Consequently, the group of coincidence rotations of the square
lattice is given by SOC(Z2) = SO(2,Q) ∼= C4×Z(ℵ0), where C4 is the cyclic group of
order 4 generated by i, and Z(ℵ0) is the direct sum of countably many infinite cyclic
groups each of which is generated by ωp

ωp
.

Every coincidence reflection T ∈ OC(Γ) \ SOC(Γ) can be written as T = R · Tr,
where R ∈ SOC(Γ) and Tr is the reflection along the real axis (corresponding to
complex conjugation). Since Tr leaves Γ invariant, Σ(T ) = Σ(R) and Γ(T ) = Γ(R).
Finally, one obtains that OC(Z2) = O(2,Q) = SOC(Z2)⋊ 〈Tr〉 (where ⋊ stands for
semidirect product).

The coincidence indices and the number of CSLs for a given index m are described
by means of a generating function. Let fZ2(m) be the number of CSLs of Z2 of
index m. Then fZ2 is multiplicative (that is, fZ2(1) = 1 and fZ2(mn) = fZ2(m)fZ2(n)
whenever m, n are relatively prime), and for primes p and r ∈ N,

fZ2(pr) =

{
2, if p ≡ 1 (mod 4)

0, otherwise.

The generating function for fZ2 as a Dirichlet series ΦZ2(s) is given by

ΦZ2(s) =
∞∑

m=1

fZ2(m)

ms
=

∏

p≡1(4)

(

1 +
2

ps
+

2

p2s
+ . . .

)

=
∏

p≡1(4)

1 + p−s

1− p−s

= 1 + 2
5s

+ 2
13s

+ 2
17s

+ 2
25s

+ 2
29s

+ 2
37s

+ 2
41s

+ 2
53s

+ 2
61s

+ 4
65s

+ 2
73s

+ · · · .

(1.3)

Observe from (1.3) that the coincidence indices of the square lattice are positive inte-
gers all of whose prime factors are splitting primes in Z[i]. The number of coincidence

rotations of Z2 for a given index m is given by f̂Z2(m) = 4fZ2(m), where the factor 4
stems from the fact that Z2 has four symmetry rotations. Thus, the Dirichlet series
generating function for f̂Z2(m) is 4ΦZ2(s).

Remark 1.11: Observe from (1.1) and (1.2) that each coincidence rotation R of
Γ = Z2 can be associated to a numerator z and unit ε, and this shall be written as
Rz,ε. Note however that this correspondence is not unique: one can take any associate
of z as numerator and the unit ε will change accordingly. Nonetheless, throughout this
thesis, Rz,ε ∈ SOC(Γ) stands for multiplication by the complex number ε z

z
. Here, the

fraction z
z
is assumed to be reduced, that is, z and z have no common prime factors.

Also, we set z = 1 whenever Rz,ε ∈ P (Γ).
Similarly, Tz,ε ∈ OC(Γ) \ SOC(Γ) shall be understood to be the coincidence

reflection Tz,ε = Rz,ε · Tr.

1.2.2. Certain planar n-modules. The approach used to solve the coincidence
problem for the square lattice can be generalized to certain planar n-modules.

In the complex plane, the standard planar n-module is identified with

Mn = Z⊕ Zξn ⊕ Zξ2n ⊕ . . .⊕ Zξn−1
n ,

where ξn = e2πi/n, an nth root of 1 (see [56]). The set Mn is a Z-module of rank φ(n)
that exhibits N -fold rotational symmetry, where φ(n) is Euler’s totient function and
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N = lcm(n, 2). In fact, Mn is simply the ring of integers Z[ξn] of the cyclotomic fieldQ(ξn) [80]. SinceM2n = Mn whenever n is odd, values of n for which n ≡ 2 (mod 4)
are excluded. Furthermore, we only consider the cases when Mn has class number 1,
that is, for the following twenty-nine values of n:

n = 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24,

25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84.

The reason for this is that for these values of n, Mn is a principal ideal domain, and
thus, unique factorization up to units holds.

Let L := Q(ξn+ξ−1
n ) = Q(cos 2π

n
) be the maximal real subfield ofK := Q(ξn), and

OL be the ring of integers of L. Since SOC(Mn) ∼= {γ ∈ K : |γ| = 1}, a coincidence
rotation R of Mn corresponds to multiplication by a complex number

γ = ε ·
∏

k∈C

(
ωk

ωk

)nk

,

where ε is a root of unity in K (of the form ±ξjn for 0 ≤ j ≤ n − 1), nk ∈ Z and
only a finite number of nk 6= 0, C is the set of splitting primes of OL over Mn, and
ωk, ωk are the prime factors of k ∈ C. Here, the CSM generated by R is the ideal
Mn(R) = (z) = zMn, where

z = num(γ) =







1, if R ∈ P (Mn)
∏

k∈C
nk>0

wk
nk ·

∏

k∈C
nk<0

(wk)
−nk , otherwise,

and the coincidence index of R with respect to Mn is equal to the absolute norm
of z.

Thus, SOC(Mn) ∼= CN×Z(ℵ0), where CN is the cyclic group of order N generated
by ξn and Z(ℵ0) is the direct sum of countably many infinite cyclic groups each of which
is generated by ωk

ωk
. In addition, OC(Mn) = SOC(Mn)⋊〈Tr〉, where Tr again denotes

complex conjugation.
The details of the discussion here can be found in [59, 4, 11].

Remark 1.12: An Rz,ε ∈ SOC(Mn) shall denote the coincidence rotation corre-
sponding to multiplication by ε z

z
, while Tz,ε ∈ OC(Mn) \ SOC(Mn) stands for the

coincidence reflection Tz,ε = Rz,ε · Tr.

1.2.3. Quaternions. Linear isometries in three and four dimensions can be
parametrized by quaternions, which turns out to be a very useful tool in the so-
lution of the coincidence problem for lattices and Z-modules in both dimensions. We
thus recall some essential properties of the quaternion algebra H(R) here. Extensive
treatments on quaternions can be found in [49, 18, 48, 43, 20].

Let {e, i, j,k} be the standard basis of R4 where e = (1, 0, 0, 0)T , i = (0, 1, 0, 0)T ,

j = (0, 0, 1, 0)T , and k = (0, 0, 0, 1)T . The quaternion algebra is the algebra H :=H(R) = Re+Ri +Rj +Rk ∼= R4 where multiplication is defined by the relations

i2 = j2 = k2 = ijk = −1.
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Elements of H are called quaternions, and a quaternion q is written as either q =
q0e + q1i + q2j + q3k or q = (q0, q1, q2, q3). Given two quaternions q = (q0, q1, q2, q3)
and p = (p0, p1, p2, p3), their product is given by the quaternion

q p = (q0p0 − q1p1 − q2p2 − q3p3)e+ (q0p1 + q1p0 + q2p3 − q3p2)i+

(q0p2 − q1p3 + q2p0 + q3p1)j+ (q0p3 + q1p2 − q2p1 + q3p0)k.

Multiplication of quaternions is associative but not commutative. The inner product
of q and p is defined as the standard scalar product of q and p as vectors in R4, that

is, 〈q, p〉 =
3∑

j=0

qjpj .

The conjugate of a quaternion q = (q0, q1, q2, q3) is q = (q0,−q1,−q2,−q3), and its

norm is |q|2 = q q = q20 + q21 + q22 + q23 ∈ R. It is easy to verify that q p = p q and
|q p|2 = |q|2|p|2 for any q, p ∈ H. Every nonzero quaternion q has a multiplicative
inverse given by q−1 = q

|q|2 , which makes H an associative division algebra.

A quaternion whose components are all integers is called a Lipschitz quaternion
or Lipschitz integer. The set of Lipschitz quaternions shall be denoted byL = {(q0, q1, q2, q3) ∈ H : q0, q1, q2, q3 ∈ Z} .
A primitive quaternion q = (q0, q1, q2, q3) is a quaternion in L whose components
are relatively prime, that is, gcd(q0, q1, q2, q3) = 1. On the other hand, a Hurwitz
quaternion or Hurwitz integer is a quaternion whose components are all integers or
all half-integers. The set J of Hurwitz quaternions is given byJ =

{
(q0, q1, q2, q3) ∈ H : q0, q1, q2, q3 ∈ Z or q0, q1, q2, q3 ∈ 1

2
+ Z}

= L ∪ [(1
2
, 1
2
, 1
2
, 1
2
) + L].

The set J is in fact a maximal order in the division ringH(Q) = {(q0, q1, q2, q3) ∈ H : q0, q1, q2, q3 ∈ Q} .
The following theorem, which appears in [48, page 37], describes the factorization

of a Hurwitz quaternion whose norm is even, and will be of use in later calculations.

Theorem 1.13: If q ∈ J and j is the highest power of 2 such that 2j divides |q|2,
then q = (1 + i)jp for some p ∈ J of odd norm.

For a quaternion q = (q0, q1, q2, q3), its real part and imaginary part are defined
as Re (q) = q0 and Im (q) = q1i + q2j + q3k, respectively. The imaginary space of H
is the three-dimensional vector subspace

Im (H) = {Im (q) : q ∈ H} = Ri+Rj +Rk ∼= R3,

of H. Thus, H can be written as the direct product H = Re ⊕ Im (H). Given an
R ∈ SO(Im (H)) ∼= SO(3), there exists a quaternion q so that for all x ∈ Im (H),
R(x) = qxq−1. In such a case, we denote R by Rq. In the same manner, a quaternion
q can be associated to every T ∈ O(Im (H)) \ SO(Im (H)) so that T (x) = qxq−1 =
−qxq−1 for all x ∈ Im (H), in which case, T shall be written as Tq.
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As an element of SO(3), a rotation R parametrized by the quaternion q =
(q0, q1, q2, q3) corresponds to the matrix

Rq =
1

|q|2





q20 + q21 − q22 − q23 −2q0q3 + 2q1q2 2q0q2 + 2q1q3
2q0q3 + 2q1q2 q20 − q21 + q22 − q23 −2q0q1 + 2q2q3
−2q0q2 + 2q1q3 2q0q1 + 2q2q3 q20 − q21 − q22 + q23



 .

This defines a group homomorphism from H to SO(3) given by q 7→ Rq, called
the Cayley parametrization of SO(3). Similarly, a reflection T parametrized by the
quaternion q corresponds to the matrix Tq = −Rq in O(3).

Elements of O(4) can also be parametrized via quaternions. For every rotation
R ∈ SO(H) ∼= SO(4) and reflection T ∈ O(H) \ SO(H), there exists a pair of
quaternions (q, p) so that R(x) = 1

|q p|qxp and T (x) = 1
|q p|qx p for all x ∈ H. From

this point onwards, Rq,p ∈ SO(H) and Tq,p ∈ O(H) \SO(H) means that R and T are
parametrized by the pair (q, p) of quaternions.

The rotation Rq,p ∈ SO(H) with q = (k, ℓ,m, n) and p = (a, b, c, d) corresponds
to the matrix

Rq,p = 1
|q p|









ak + bℓ+ cm+ dn −aℓ+ bk + cn− dm −am− bn+ ck + dℓ −an+ bm− cℓ+ dk

aℓ− bk + cn− dm ak + bℓ− cm− dn −an+ bm+ cℓ− dk am+ bn+ ck + dℓ

am− bn− ck + dℓ an+ bm+ cℓ+ dk ak − bℓ+ cm− dn −aℓ− bk + cn+ dm

an+ bm− cℓ− dk −am+ bn− ck + dℓ aℓ+ bk + cn+ dm ak − bℓ− cm+ dn









in SO(4). Also, the rotoreflection T ∈ O(H)\SO(H) parametrized by the quaternion
pair (q, p) corresponds to the matrix Tq,p = Rq,p · T1,1, where

T1,1 =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







.

1.2.4. Cubic lattices. Coincidences of cubic lattices are the most studied case
because of their relevance to crystallography, see [33, 34, 39, 36, 38, 4, 81]. It
suffices, however, to look at the primitive cubic lattice when studying the coincidences
of the three-dimensional cubic lattices, namely, the primitive cubic, face-centered
cubic, and body-centered cubic lattices, because of the following well-known result
[39, 4].

Theorem 1.14: Let ΓP = Z3, ΓB = ΓP ∪ [(1
2
, 1
2
, 1
2
) + ΓP ], and ΓF = Γ∗

B denote
the primitive cubic, body-centered cubic, and face-centered cubic lattice, respectively.
Then OC(ΓP ) = OC(ΓF ) = OC(ΓB) = O(3,Q). Moreover, if R ∈ O(3,Q), then
ΣΓP

(R) = ΣΓF
(R) = ΣΓB

(R).

Note that it is enough to take the primitive cubic lattice Γ to be Z3 because any
other primitive cubic lattice is similar to Z3. As in the planar case, the analysis of
OC(Γ) = O(3,Q) starts with the set of coincidence rotations of Γ, SO(3,Q), since
O(3) is the direct product of SO(3) and {±13}, where 13 is the 3×3-identity matrix.
To this end, Cayley’s parametrization of rotations in SO(3) by quaternions is used [4].

Since Rtq = Rq for every t ∈ R \ {0}, every R ∈ SOC(Γ) = SO(3,Q) can be
parametrized by a primitive quaternion. Even though this method exhausts SO(3,Q),
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each element of SO(3,Q) is encountered twice because R−q = Rq. The coincidence

index of Rq ∈ SOC(Γ), with q primitive, is equal to the odd part of |q|2, that is,

Σ(Rq) =
|q|2
2ℓ
, where ℓ is the largest power of 2 that divides |q|2 [39, 38, 4].

Write Tq ∈ O(3) \ SO(3) as T = Rq · (−13), where Rq ∈ SO(3). Then the
quaternion q can also be chosen such that it is primitive whenever Tq ∈ OC(Γ),
because the inversion −13 fixes Γ. In addition, Σ(Tq) = Σ(Rq) and Γ(Tq) = Γ(Rq).

Let fZ3(m) be the number of CSLs of Z3 of index m. Once again, fZ3 is multi-
plicative and is given by

fZ3(pr) =

{
0, if p = 2

(p+ 1)pr−1, otherwise,

where p is prime and r ∈ N [38, 4]. From this, one obtains the Dirichlet series
generating function for fZ3 , namely,

ΦZ3(s) =
∞∑

m=1

fZ3(m)

ms
=

∏

p 6=2

(

1 +
p+ 1

ps
+

(p+ 1)p

p2s
+ . . .

)

=
∏

p 6=2

1 + p−s

1− p1−s

= 1 + 4
3s

+ 6
5s

+ 8
7s

+ 12
9s

+ 12
11s

+ 14
13s

+ 24
15s

+ 18
17s

+ 20
19s

+ 32
21s

+ 24
23s

+ · · · .

(1.4)

One sees from (1.4) that the set of coincidence indices of the cubic lattices is the set
of odd natural numbers. Since Z3 has twenty-four symmetry rotations, the number
of coincidence rotations of index m is given by f̂Z3(m) = 24fZ3(m), and the Dirichlet

series generating function for f̂Z3(m) is 24ΦZ3(s).

1.2.5. Hypercubic lattices. The discovery of quasicrystals sparked interest on
the coincidence problem for higher-dimensional lattices. The coincidences of the
hypercubic lattices are described in this part, based on the discussion in [4, 82, 13].
In the following, elements of O(4) are parametrized by pairs of quaternions.

There are only two distinct types of hypercubic lattices in four dimensions, namely
the primitive hypercubic lattice Z4 and the centered hypercubic lattice D4. Even
though OC(Z4) = OC(D4) = O(4,Q), the coincidence indices of a coincidence isom-
etry with respect to the two lattices are not necessarily equal. This is evident from
the fact that the point symmetry group of D4 is three times larger than that of Z4.
Thus, we deal with the coincidences of the two lattices separately.

A rotation Rq,p ∈ SOC(D4) = SO(4,Q) if and only if q and p are primitive
quaternions satisfying |q p| ∈ Z. Such pairs of quaternions shall be called admissi-
ble. Note that R−q,−p = Rq,p, and thus each element of SO(4,Q) is obtained twice
when all admissible pairs of quaternions are considered. The coincidence index of

Rq,p ∈ SOC(D4) is given by ΣD4(Rq,p) = lcm
(

|q|2
2k

, |p|2
2ℓ

)

, where k and ℓ are the high-

est powers such that 2k and 2ℓ divide |q|2 and |p|2, respectively. It follows that the
set of coincidence indices of D4 is the set of all odd numbers.

Since the reflection T1,1 leaves D4 invariant, every reflection in OC(4,Q) can also
be parametrized by an admissible pair of quaternions. Furthermore, if Tq,p = Rq,p ·
T1,1 ∈ OC(4,Q) \ SOC(4,Q) then ΣD4(Tq,p) = ΣD4(Rq,p) and D4(Tq,p) = D4(Rq,p).
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The denominator of a matrix R ∈ O(d) is defined as

den(R) = gcd {k ∈ N : k R is an integral matrix} . (1.5)

With this on hand, one can now compute for the coincidence index of Rq,p ∈ SO(4,Q)
with respect to Z4. Since Z4 is a sublattice of D4 of index 2, either ΣZ4(Rq,p) =
ΣD4(Rq,p) or ΣZ4(Rq,p) = 2ΣD4(Rq,p). Both situations in fact occur, and explicitly
one has

ΣZ4(Rq,p) = lcm(ΣD4(Rq,p), den(Rq,p)). (1.6)

The same result holds true for coincidence reflections Tq,p of Z4.

1.3. Lattice colorings

Various equivalent definitions and notions involving colorings of lattices abound
in the literature, see [74, 70, 41, 71, 69, 58]. Here we focus on the definitions and
relevant results that will be used in this thesis.

Let Γ1 be a lattice in Rd. A coloring of Γ1 by m colors is an onto mapping
c : Γ1 → C, where C is the set of m colors used in the coloring. Of particular interest
in this thesis are colorings of Γ1 by m colors wherein two points of Γ1 are assigned
the same color if and only if they belong to the same coset of some sublattice Γ2 of
index m in Γ1. Such a coloring shall be referred to as a coloring of Γ1 determined by
the sublattice Γ2. Here, the set of colors C can be identified with the quotient group
Γ1/Γ2 so that the color mapping c is just the canonical projection of Γ1 onto Γ1/Γ2

whose kernel is Γ2. Subsequently, we simply take C = {c0 = 0, c1, . . . , cm−1} to be a
complete set of coset representatives of Γ2 in Γ1, and say that the coset cj + Γ2 has
color cj .

Denote by G the symmetry group of Γ1 and fix a coloring c of Γ1. A symmetry in
G is called a color symmetry of the coloring if it permutes the colors in the coloring,
that is, all and only those points having the same color are mapped by the symmetry
to a fixed color. The set H of all color symmetries of the coloring, that is,

H = {h ∈ G : ∃ σh ∈ SC such that ∀ ℓ ∈ Γ1, c(h(ℓ)) = σh(c(ℓ))} ,
where SC is the set of permutations on the set of colors C, forms a group and is called
the color group or color symmetry group of the coloring. The mapping P : H → SC

with h 7→ σh defines a group homomorphism, and thus the group H acts on C. The
kernel of P ,

K = {k ∈ H : c(k(ℓ)) = c(ℓ), ∀ ℓ ∈ Γ1} ,
is the subgroup of H whose elements fix the colors in the coloring. In other words, K
is the symmetry group of the colored lattice. For this reason, the group K is referred
to as the color preserving group or the color fixing group of the coloring. By the
first isomorphism theorem, the group of color permutations of the coloring, P (H), is
isomorphic to H/K. The short exact sequence

0 −→ K −→ H −→ H/K −→ 0

summarizes the relationship of the groups H , K, and H/K.



CHAPTER 2

Coincidence indices of sublattices and colorings of lattices

In this chapter, we examine the relationship between the coincidence indices of
a lattice Γ1 and the coincidence indices of a sublattice Γ2 of Γ1 via the coloring of
Γ1 determined by Γ2. In addition, the idea of color symmetry, originally defined for
symmetries of lattices, is extended to coincidence isometries of lattices. Some of the
results in this chapter, including examples involving lattices and Z-modules in the
plane, can be found in [52].

Unless otherwise stated, Γ1 is taken throughout this chapter to be a lattice having

Γ2 as a sublattice of index m. We write Γ1 =
m−1⋃

j=0

(cj + Γ2) with c0 = 0, and consider

the coloring of Γ1 determined by Γ2.

2.1. Coincidence index with respect to a sublattice

Fix an R ∈ OC(Γ1) = OC(Γ2). Consider the following subgroups of Γ1/Γ2 :

J :=
{
cj + Γ2 : (cj + Γ2) ∩ Γ1(R

−1) 6= ∅
}
,

K := {ck + Γ2 : (ck + Γ2) ∩ Γ1(R) 6= ∅} (2.1)

The sets J and K are nonempty because both sets have c0 + Γ2 = Γ2 as an element.
These sets induce partitions of Γ1(R

−1) and Γ1(R), respectively, given by

Γ1(R
−1) =

⋃

cj+Γ2∈J
(cj + Γ2) ∩ Γ1(R

−1) and

Γ1(R) =
⋃

ck+Γ2∈K
(ck + Γ2) ∩ Γ1(R).

(2.2)

The partitions in (2.2) correspond to colorings of Γ1(R
−1) and Γ1(R), respectively,

wherein the colors are inherited from the coloring of Γ1 determined by Γ2. We shall
refer to these colorings as the colorings of Γ1(R

−1) and Γ1(R) determined by Γ2. The
set of colors in the colorings of Γ1(R

−1) and Γ1(R) are

CR−1 := {cj : cj + Γ2 ∈ J} and CR := {ck : ck + Γ2 ∈ K} , (2.3)

respectively. The coincidence isometry R determines a relation σ from CR−1 to CR

given by

σ =
{
(cj , ck) ∈ CR−1 × CR : R[(cj + Γ2) ∩ Γ1(R

−1)] ∩ [(ck + Γ2) ∩ Γ1(R)] 6= ∅
}
. (2.4)

That is, (cj , ck) ∈ σ means that some of the points colored cj in the coloring of Γ1(R
−1)

are brought by R to points with color ck in the coloring of Γ1(R). Since all points
of Γ1(R

−1) are mapped bijectively by R to points of Γ1(R) by Proposition 1.2, the

15
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relation σ is never empty. In fact, (c0, c0) ∈ σ because the lattices R[Γ2 ∩ Γ1(R
−1)] =

RΓ2 ∩ Γ1(R) and Γ2 ∩ Γ1(R) are commensurate.

Remark 2.1:

(i) From each cj +Γ2 ∈ J , we can always choose a suitable coset representative
c̃j such that c̃j + Γ2 = cj + Γ2 with c̃j ∈ Γ1(R

−1). Similarly, for every
ck + Γ2 ∈ K, there exists

≈
ck satisfying

≈
ck + Γ2 = ck + Γ2 with

≈
ck ∈ Γ1(R).

(ii) Given a coset cℓ + Γ2 6= Γ2 that is both in J and K, it may happen that
(cℓ + Γ2) ∩ Γ1(R

−1) ∩ Γ1(R) = ∅. In such a case, it is not possible to find
a coset representative cℓ

′ of cℓ + Γ2 having the property cℓ
′ + Γ2 = cℓ + Γ2

with cℓ
′ ∈ Γ1(R

−1) ∩ Γ1(R).

The following lemma tells us that Γ2(R) consists of those points colored c0 in the
coloring of Γ1(R) whose preimages under R are also points colored c0 in the coloring
of Γ1(R

−1).

Lemma 2.2: Let Γ2 be a sublattice of Γ1 and R ∈ OC(Γ1). Then the lattices
Γ2 ∩ Γ1(R) and RΓ2∩Γ1(R) are commensurate with intersection Γ2(R). In particular,
if RΓ2 ∩ Γ1(R) = Γ2 ∩ Γ1(R) then Γ2(R) = RΓ2 ∩ Γ1(R) = Γ2 ∩ Γ1(R).

Proof : One has [Γ2 ∩ Γ1(R)] ∩ [RΓ2 ∩ Γ1(R)] = (Γ2 ∩ RΓ2) ∩ Γ1(R) = Γ2(R).

Γ2

Γ1

Γ2 ∩ Γ1(R)

Γ2(R)

Γ1(R)

RΓ2 ∩ Γ1(R)

RΓ2

RΓ1

m m

Σ1(R) Σ1(R)

Σ2(R)Σ2(R)

t s

u v

Figure 2. Lattice diagram of the lattices Γ1, RΓ1, Γ2, RΓ2, Γ1(R),
Γ2(R), Γ2 ∩ Γ1(R), and RΓ2 ∩ Γ1(R) (as groups) and corresponding
indices

Figure 2 exhibits the relationships among the various lattices. The following
notations shall be used to indicate the corresponding lattice indices (see Figure 2):

s := [Γ1(R) : RΓ2 ∩ Γ1(R)] , u := [Γ2 ∩ Γ1(R) : Γ2(R)]

t := [Γ1(R) : Γ2 ∩ Γ1(R)] , v := [RΓ2 ∩ Γ1(R) : Γ2(R)]
(2.5)

The next lemma is a consequence of the second isomorphism theorem and will be
used repeatedly in the proof of the succeeding theorem.
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Lemma 2.3: Let Γ2 and Γ′
2 be sublattices of the lattice Γ1. Then the following holds.

(i) [Γ′
2 : Γ2 ∩ Γ′

2] = |{ℓ+ Γ2 ∈ Γ1/Γ2 : (ℓ+ Γ2) ∩ Γ′
2 6= ∅}|,

(ii) [Γ′
2 : Γ2 ∩ Γ′

2] divides [Γ1 : Γ2],

(iii) If (ℓ+ Γ2) ∩ Γ′
2 6= ∅ then (ℓ+ Γ2) ∩ Γ′

2 is the coset ℓ̇+ (Γ2 ∩ Γ′
2) of Γ2 ∩ Γ′

2

in Γ′
2 whenever ℓ̇ ∈ (ℓ+ Γ2) ∩ Γ′

2.

Proof : From the second isomorphism theorem,

Γ′
2/(Γ2 ∩ Γ′

2)
∼= (Γ2 + Γ′

2)/Γ2 = {ℓ+ Γ2 ∈ Γ1/Γ2 : (ℓ+ Γ2) ∩ Γ′
2 6= ∅} ,

and this proves (i).
Since Γ2 + Γ′

2 is a sublattice of Γ1, (Γ2 + Γ′
2)/Γ2 is a subgroup of Γ1/Γ2. Thus,

[Γ2 + Γ′
2 : Γ2] = [Γ′

2 : Γ2 ∩ Γ′
2] divides [Γ1 : Γ2] by Lagrange’s Theorem.

The last statement is clear by replacing ℓ+ Γ2 by ℓ̇+ Γ2.

Using Lemma 2.3, one can now give restrictions on the values of s, t, u, and v,
as well as interpretations of these values in relation to the colorings of Γ1(R

−1) and
Γ1(R) determined by Γ2. These results are explicitly stated in the following theorem.

Theorem 2.4: Consider the coloring of a lattice Γ1 determined by a sublattice Γ2 of
Γ1 of index m where each coset cj + Γ2 is assigned the color cj for 0 ≤ j ≤ m − 1,
with c0 = 0. If R ∈ OC(Γ1), then

Σ2(R) =
t · u · Σ1(R)

m
=

s · v · Σ1(R)

m
, (2.6)

where s and t are the number of colors in the coloring of Γ1(R
−1) and Γ1(R), respec-

tively, determined by Γ2; u is the number of colors cj with the property that some
points of Γ1(R

−1) colored cj are mapped by R to points colored c0 in the coloring of
Γ1(R); and v is the number of colors in the coloring of Γ1(R) that is intersected by
the images under R of those points of Γ1(R

−1) colored c0. Moreover, s | m, t | m,
u | s, and v | t.
Proof : Comparing indices in Figure 2 gives the formula for Σ2(R) in terms of Σ1(R)
in (2.6).

Take the sublattices Γ2 and Γ1(R) of Γ1. Applying Lemma 2.3, one readily obtains
that t = |K| = |CR| (see (2.1) and (2.3)) and t | m. Corresponding statements for s
are similarly proved by looking at the sublattices RΓ2 and Γ1(R) of RΓ1. Lemma 2.3
also implies that for all cj + Γ2 ∈ J and ck + Γ2 ∈ K,

R[(cj + Γ2) ∩ Γ1(R
−1)] = Rc̃j + [RΓ2 ∩ Γ1(R)] and

(ck + Γ2) ∩ Γ1(R) =
≈
ck + [Γ2 ∩ Γ1(R)],

(2.7)

for some c̃j ∈ (cj + Γ2) ∩ Γ1(R
−1) and

≈
ck ∈ (ck + Γ2) ∩ Γ1(R) (see Remark 2.1).

To complete the proof, consider the following sets:

D := {Rc̃j + [RΓ2 ∩ Γ1(R)] : cj + Γ2 ∈ J with (Rc̃j + [RΓ2 ∩ Γ1(R)]) ∩ [Γ2 ∩ Γ1(R)] 6= ∅}
E :=

{≈
ck + [Γ2 ∩ Γ1(R)] : ck + Γ2 ∈ K with

(≈
ck + [Γ2 ∩ Γ1(R)]

)
∩ [RΓ2 ∩ Γ1(R)] 6= ∅

}
.

(2.8)
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The sets D and E are never empty because the lattices RΓ2 ∩ Γ1(R) and Γ2 ∩ Γ1(R)
are commensurate. From (2.4) and (2.7), one obtains |D| = |{cj : (cj, c0) ∈ σ}| and
|E| = |{ck : (c0, ck) ∈ σ}|.

Finally, consider the sublattices Γ2 ∩ Γ1(R) and RΓ2 ∩ Γ1(R) of Γ1(R). Invoking
Lemma 2.3 twice gives u = |D| with u | s, and v = |E| with v | t.

Remark 2.5: Lemma 2.3, when applied to the sublattices Γ2∩Γ1(R) and RΓ2∩Γ1(R)
of Γ1(R), also implies that

(Rc̃j + [RΓ2 ∩ Γ1(R)]) ∩ [Γ2 ∩ Γ1(R)] = Rc̃j + Γ2(R), and
(
≈
ck + [Γ2 ∩ Γ1(R)]

)
∩ [RΓ2 ∩ Γ1(R)] =

≈
ck + Γ2(R),

for all Rc̃j+[RΓ2∩Γ1(R)] ∈ D whenever Rc̃j ∈ Γ2∩Γ1(R), and
≈
ck+[Γ2∩Γ1(R)] ∈ E

whenever
≈
ck ∈ RΓ2 ∩ Γ1(R).

An immediate consequence of Theorem 2.4 are the following divisibility condi-
tions on the value of Σ2(R): Σ1(R) | mΣ2(R) and Σ2(R) | mΣ1(R) (see Proposi-
tion 1.7 and Remark 1.8). Both conditions imply the well-known bound on Σ2(R):
1
m
Σ1(R) ≤ Σ2(R) ≤ mΣ1(R). Also, observe that s = t if and only if u = v.
One should note that the divisibility condition Σ2(R) | mΣ1(R), and hence, the

inequality Σ2(R) ≤ mΣ1(R), was obtained here without going through the dual
lattices of Γ1 and Γ2 (see Remark 1.8). This means that the said divisiblity condition
is true not only for lattices but also for Z-modules by Remark 1.10. This fact was
not known to hold for all Z-modules, because the dual of a Z-module is not always
defined (see end of Section 1.1).

Example 2.6: Consider the square lattice Γ1 = Z[i], and the sublattice Γ2 of index
6 in Γ1 generated by 6 and 2 + i, denoted as Γ2 = 〈6, 2 + i〉Z. Take R = R1+2i,−i ∈
SOC(Γ1) (see Remark 1.11), which corresponds to the rotation about the origin
by tan−1(3

4
) ≈ 37◦ in the counterclockwise direction. It is known that Σ1(R) =

N(1 + 2i) = 5. Choose the coset representatives cj = j for 0 ≤ j ≤ 5 so that

Γ1 =
5⋃

j=0

(cj + Γ2). Colorings of Γ1, Γ1(R
−1), and Γ1(R) determined by Γ2 are shown

in Figures 3, 4(a), and 4(b). They were obtained by designating the colors black,
yellow, blue, red, gray, and green to the cosets c0 + Γ2, c1 + Γ2, c2 + Γ2, c3 + Γ2,
c4 + Γ2, and c5 + Γ2, respectively.

Since all six colors appear in both colorings of Γ1(R
−1) and Γ1(R), s = t = 6 in

(2.5). Observe that half of the black dots in the coloring of Γ1(R
−1) are sent by R

again to black dots in the coloring of Γ1(R), while the other half of the black dots are
sent to red dots. This implies that u = 2. Therefore, by (2.6), Σ2(R) = 6·2·5

6
= 10. By

Lemma 2.2, Γ2(R) is the intersection of Γ2 ∩ Γ1(R) (the black dots in the coloring of
Γ1(R)) and R[Γ2∩Γ1(R

−1)] (the resulting dots when the black dots in the coloring of
Γ1(R

−1) are rotated by R). Points on the CSL Γ2(R) is shown in Figure 4(c) (black
dots).
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Figure 3. Coloring of the square lattice Γ1 = Z[i] determined by the
sublattice Γ2 = 〈6, 2 + i〉Z(= black dots). The encircled dot indicates
the origin.

2.2. Color coincidence

We have seen from the previous section how the interaction of the colors in the
colorings of Γ1(R

−1) and Γ1(R) determined by Γ2 affects the formation of the lattice
Γ2(R) and thus, the value of Σ2(R). This motivates the following definition.

Definition 2.7: Let Γ2 be a sublattice of Γ1 and write Γ1 =
m−1⋃

j=0

(cj + Γ2), with

c0 = 0. A coincidence isometry R of Γ1 is said to be a color coincidence of the
coloring of Γ1 determined by Γ2 if R defines a bijection between the partitions
{(cj + Γ2) ∩ Γ1(R

−1) : cj + Γ2 ∈ J} of Γ1(R
−1) and {(ck + Γ2) ∩ Γ1(R) : ck + Γ2 ∈ K}

of Γ1(R) given by

R[(cj + Γ2) ∩ Γ1(R
−1)] = (ck + Γ2) ∩ Γ1(R). (2.9)

Condition (2.9) means that all points, and only those points, colored cj in the
coloring of Γ1(R

−1) are mapped by R to points colored ck in the coloring of Γ1(R).
Whenever (2.9) is satisfied, R is said to send or map color cj to color ck. Furthermore,
if R maps a color cj onto itself, R is said to fix the color cj. An R ∈ OC(Γ1) is
then a color coincidence of the coloring of Γ1 if the associated relation σ from CR−1

to CR in (2.4) is a bijection. In particular, σ is a permutation on CR−1 for color
coincidences R with CR−1 = CR. Thus, a color coincidence R ∈ P (Γ1) (that is, when
Γ1(R

−1) = Γ1(R) = Γ1) is a color symmetry of the coloring of Γ1.
The next theorem, which is a generalization of the first result in [19, Theorem 2]

on color symmetries of colorings of square and hexagonal lattices, provides a charac-
terization of color coincidences of lattice colorings determined by some sublattice.

Theorem 2.8: Let Γ2 be a sublattice of Γ1 with Γ1 =
m−1⋃

j=0

(cj + Γ2) where c0 = 0.

Then R ∈ OC(Γ1) is a color coincidence of the coloring of Γ1 determined by Γ2 if
and only if R fixes color c0.
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(a) Coloring of Γ1(R
−1) (white dots corre-

spond to points of Γ1 \ Γ1(R
−1))

(b) Coloring of Γ1(R)

(c) Γ2(R) (= black dots) as a sublattice of Γ1.

Figure 4. Colorings of Γ1(R
−1) and Γ1(R) determined by the sublat-

tice Γ2 of Figure 3, where R is the counterclockwise rotation about the
origin by tan−1(3

4
) ≈ 37◦. The CSL Γ2(R) of index 10 in Γ2 is obtained

by taking all black points of Γ1(R) whose preimages under R are also
colored black.

Proof : Let R be a color coincidence of the coloring of Γ1. The color c0 appears in
the coloring of Γ1(R

−1) and R sends color c0 to exactly one color ck in the coloring
of Γ1(R). Hence, R[Γ2 ∩ Γ1(R

−1)] = (ck + Γ2) ∩ Γ1(R). Since 0 ∈ Γ2 ∩ Γ1(R
−1) and

R(0) = 0, 0 ∈ (ck + Γ2) ∩ Γ1(R) which implies that ck = c0. Thus, R fixes color c0.
In the other direction, suppose R fixes color c0, that is, R[Γ2 ∩ Γ1(R

−1)] =
Γ2 ∩ Γ1(R). This means that Γ2(R) = RΓ2 ∩ Γ1(R) = Γ2 ∩ Γ1(R) by Lemma 2.2.
Hence, u = v = 1 and s = t (refer to (2.5)). From Theorem 2.4, the colorings of
Γ1(R) and Γ1(R

−1) must have the same number of colors. Now, for each cj +Γ2 ∈ J ,
choose c̃j ∈ (cj + Γ2) ∩ Γ1(R

−1). Then Rc̃j + Γ2 ∈ K with Rc̃j ∈ Γ1(R), and

R[(cj+Γ2)∩Γ1(R
−1)] =

(2.7)
Rc̃j+[RΓ2∩Γ1(R)] = Rc̃j+[Γ2∩Γ1(R)] =

(2.7)
(Rc̃j+Γ2)∩Γ1(R).
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This means that Rc̃j + Γ2 must be one of the cosets ck + Γ2 ∈ K. Therefore, R is a
color coincidence of the coloring of Γ1.

It follows from Theorem 2.8 that it is sufficient to verify whether R[Γ2∩Γ1(R
−1)] =

Γ2 ∩ Γ1(R) is satisfied or not to conclude whether R ∈ OC(Γ1) is a color coincidence
of the coloring of the lattice Γ1 induced by the sublattice Γ2 of Γ1.

Remark 2.9: Let R be a color coincidence of the coloring of Γ1 determined by Γ2.
It follows from (2.7), Lemma 2.2, and Theorem 2.8 that for all cj + Γ2 ∈ J and
ck + Γ2 ∈ K,

R[(cj + Γ2) ∩ Γ1(R
−1)] = Rc̃j + [RΓ2 ∩ Γ1(R)] = Rc̃j + Γ2(R), and

(ck + Γ2) ∩ Γ1(R) =
≈
ck + [Γ2 ∩ Γ1(R)] =

≈
ck + Γ2(R),

for some c̃j ∈ (cj + Γ2) ∩ Γ1(R
−1) and

≈
ck ∈ (ck + Γ2) ∩ Γ1(R). This, together with

(2.2), yields the following coset decompositions of Γ1(R) with respect to Γ2(R):

Γ1(R) =
⋃

cj+Γ2∈J
[Rc̃j + Γ2(R)] =

⋃

ck+Γ2∈K

[
≈
ck + Γ2(R)

]

Hence, a color coincidence R determines a permutation on the set of cosets of Γ2(R)
in Γ1(R). Here, Rc̃j + Γ2(R) =

≈
ck + Γ2(R) if and only if R sends color cj to ck.

The following corollaries link the property that a coincidence isometry R of Γ1

is a color coincidence of the coloring of Γ1 determined by Γ2 with the relationship
between Σ1(R) and Σ2(R).

Corollary 2.10: If R is a color coincidence of the coloring of the lattice Γ1 determined
by the sublattice Γ2, then Σ2(R) | Σ1(R).

Proof : By Theorem 2.8 and Lemma 2.2, R[Γ2 ∩ Γ1(R
−1)] = Γ2 ∩ Γ1(R) = Γ2(R).

Thus, u = v = 1 (see (2.5)). By Theorem 2.4, Σ1(R) = m
t
Σ2(R) and t | m, and this

implies that Σ2(R) | Σ1(R).

Corollary 2.11: Let Γ1 be a lattice having Γ2 as a sublattice of index m. If s = t = m
in (2.5), then R ∈ OC(Γ1) is a color coincidence of the coloring of Γ1 induced by Γ2

if and only if Σ2(R) = Σ1(R).

Proof : It follows from the previous proof that Σ2(R) = Σ1(R) whenever R is a color
coincidence of the coloring of Γ1 with t = m. Conversely, if Σ2(R) = Σ1(R) then
[Γ1(R) : Γ2(R)] = t · u = s · v = m and thus, u = v = 1. Hence, R[Γ2 ∩ Γ1(R

−1)] =
Γ2(R) = Γ2 ∩ Γ1(R), that is, R fixes color c0. By Theorem 2.8, R must be a color
coincidence of the coloring of Γ1.

The condition s = t = m in Corollary 2.11 means that all m colors of the coloring
of Γ1 are present in both colorings of Γ1(R

−1) and Γ1(R) determined by Γ2.

Example 2.12: Take the rectangular sublattice Γ2 = 〈3, i〉Z that is of index 3 in
the square lattice Γ1 = Z[i], and the coincidence rotation R in Example 2.6. Both
colorings of Γ1(R

−1) and Γ1(R) include three colors (see Figure 5), and thus, s = t = 3
in (2.5). Observe that R fixes the color black (corresponding to the coset c0+Γ2 = Γ2),
which means that R is a color coincidence of the coloring of Γ1 by Theorem 2.8.
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Indeed, R fixes the color black, and interchanges the colors blue and red. Moreover,
by Corollary 2.11, Σ2(R) = Σ1(R). The CSL Γ2(R) is made up of all black dots in
the coloring of Γ1(R).

(a) coloring of Γ1(R
−1) (b) coloring of Γ1(R)

Figure 5. The coincidence rotation R (the same as in Figure 4) is
a color coincidence of the coloring of Γ1 = Z[i] determined by the
sublattice Γ2 = 〈3, i〉Z because the color black (corresponding to Γ2) is
fixed by R. The blue and red colors are interchanged by R. The CSL
Γ2(R) consists of all black dots in the coloring of Γ1(R).

For a given lattice Γ1 and sublattice Γ2 of Γ1, denote by H the set of all color
coincidences of the coloring of Γ1 determined by Γ2. Clearly, the identity isometry is
in H. In addition, it follows from the definition of a color coincidence that if R ∈ H,
then so is R−1. The question of whether the product of two color coincidences is again
a color coincidence, and in effect, whether H forms a group, is yet to be resolved. A
step in answering this question is the following proposition.

Proposition 2.13: Let Γ2 be a sublattice of Γ1 of index m, and R1, R2 ∈ H. If
Σ1(R1) is relatively prime to Σ1(R2), then R2R1 ∈ H.

Proof : Since Σ1(R1) and Σ1(R2) are relatively prime, Γ1(R2R1) = Γ1∩R2Γ1∩R2R1Γ1

by Proposition 1.9(ii). Applying Theorem 2.8 and Lemma 2.2 to R1 ∈ H, one obtains
R1Γ2 ∩ Γ1 = R1Γ2 ∩ Γ1(R1) = Γ2 ∩ Γ1(R1) = Γ2 ∩ R1Γ1. Similarly, for R2 ∈ H, one
has R2Γ2 ∩ Γ1 = Γ2 ∩R2Γ1. It follows from these results that

R2R1Γ2 ∩ Γ1(R2R1) = R2R1Γ2 ∩ Γ1 ∩R2Γ1

= R2(R1Γ2 ∩ Γ1) ∩ Γ1

= R2(Γ2 ∩ R1Γ1) ∩ Γ1

= (R2Γ2 ∩ Γ1) ∩ R2R1Γ1

= Γ2 ∩ R2Γ1 ∩ R2R1Γ1

= Γ2 ∩ Γ1(R2R1).
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Thus, R2R1 fixes color c0 +Γ2 = Γ2, which means that R2R1 ∈ H by Theorem 2.8.

2.3. Further examples

We are now going to implement the theory developed in the previous two sections
to some special cases. Examples involving the cubic and hypercubic lattices are also
presented in this section.

The next lemma considers the situation where at least one of the CSLs Γ1(R) and
Γ1(R

−1) lies in the sublattice Γ2.

Lemma 2.14: Let Γ2 be a sublattice of Γ1 with [Γ1 : Γ2] = m, and R ∈ OC(Γ1). If
Γ1(R) or Γ1(R

−1) is a sublattice of Γ2, then Σ2(R) | Σ1(R). In particular, both Γ1(R)
and Γ1(R

−1) are sublattices of Γ2 if and only if Σ2(R) = 1
m
Σ1(R).

Proof : If Γ1(R) is a sublattice of Γ2 then Γ2 ∩ Γ1(R) = Γ1(R), that is, t = 1 in (2.5).
Since v | t by Theorem 2.4, v = 1. Equation (2.6) yields Σ1(R) = m

s
Σ2(R), and thus,

Σ2(R) | Σ1(R) because s | m.
Similarly, if Γ2 contains Γ1(R

−1) then s = u = 1. This, with (2.6), implies that
Σ2(R) | Σ1(R).

Finally, both Γ1(R) and Γ1(R
−1) are sublattices of Γ2 if and only if s = t = u =

v = 1. Applying (2.6) completes the proof.

The possibilities are quite limited when the sublattice Γ2 is of prime index in Γ1,
as can be seen in the next proposition.

Proposition 2.15: Suppose Γ2 is a sublattice of Γ1 of index p, where p is prime, and
R ∈ OC(Γ1).

(i) If both Γ1(R) and Γ1(R
−1) are sublattices of Γ2 then Σ2(R) = 1

p
Σ1(R).

(ii) If either Γ1(R) or Γ1(R
−1) is a sublattice of Γ2 then Σ2(R) = Σ1(R).

(iii) If neither Γ1(R) nor Γ1(R
−1) is a sublattice of Γ2, then Σ2(R) = Σ1(R)

whenever R is a color coincidence of the coloring of Γ1 induced by Γ2, and
Σ2(R) = pΣ1(R) otherwise.

Proof : Statements (i) and (ii) are immediate from Lemma 2.14 and its proof.
If neither Γ1(R) nor Γ1(R

−1) lie in Γ2 then s, t > 1 (see (2.5)). Then, s = t = p
because both s and t divide the prime p by Theorem 2.4. Note that R is a color
coincidence of the coloring of Γ1 if and only if u = v = 1 by Theorem 2.8 and
Lemma 2.2. Thus, Σ2(R) = Σ1(R) whenever R is a color coincidence of the coloring
of Γ1 by (2.6). Otherwise, u = v = p because u | s and v | t, and it follows from (2.6)
that Σ2(R) = pΣ1(R).

The next proposition looks at the instance when the coincidence index of a coin-
cidence isometry of a lattice Γ1 is relatively prime to the index of the sublattice Γ2

in Γ1.

Proposition 2.16: Let Γ2 be a sublattice of Γ1 with [Γ1 : Γ2] = m, and R ∈ OC(Γ1).
If Σ1(R) and m are relatively prime, then all colors in the coloring of Γ1 determined
by Γ2 appear in both colorings of Γ1(R) and Γ1(R

−1), that is, s = t = m in (2.5).
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Proof : From (2.6), t
m
Σ1(R) = 1

u
Σ2(R) ∈ N because u | Σ2(R) (see Figure 2). Since

Σ1(R) is relatively prime to m, m | t. However, t | m as well by Theorem 2.4 and so
t = m.

Similar arguments, where the second equality in (2.6) is used, yield s = m.

In the next two examples, we compute for the set of color coincidences H of
colorings of cubic lattices. The cubic lattices are embedded in the Hurwitz ring J
of integer quaternions and Cayley’s parametrization of SO(3,Q) is employed (see
Subsections 1.2.3 and 1.2.4).

Example 2.17: Let Γ1 be the body-centered cubic lattice Γ1 = Im (J) and Γ2 its
maximal primitive cubic sublattice Γ2 = Im (L). Here, [Γ1 : Γ2] = 2 and so the
coloring of Γ1 determined by Γ2 consists of two colors. For each R ∈ OC(Γ1) =
OC(Γ2), one has Σ2(R) = Σ1(R) (see Theorem 1.14).

Since all the coincidence indices of Γ1 are odd numbers, both colorings of Γ1(R)
and Γ1(R

−1) induced by Γ2 include two colors by Proposition 2.16. It follows then
from Corollary 2.11 that all coincidence isometries of Γ1 are color coincidences of the
coloring of Γ1 that fix both colors. Hence, H is the entire group OC(Γ1).

Example 2.18: Now, take the primitive cubic lattice Γ1 = Im (L) to be the parent
lattice and the body-centered cubic lattice Γ2 = 2 Im (J) to be the sublattice of Γ1 of

index 4. Write Γ1 =
3⋃

j=0

(cj + Γ2) where c0 = 0.

Arguments analogous to Example 2.17 yield that all four colors in the coloring of
Γ1 determined by Γ2 show up in the coloring of Γ1(R) and Γ1(R

−1), and H = OC(Γ1).
Let R = Rq ∈ SOC(Γ1), where q = (q0, q1, q2, q3) is a primitive quaternion. For

sure, R is a color coincidence that fixes color c0 because of Theorem 2.8. We shall now
determine how R acts on the other colors c1, c2, c3, and thus, the color permutation
that R generates.

Since R is a color coincidence, it suffices to consider a representative from each
coset of Γ2 in Γ1 that is in Γ1(R

−1), and afterwards identify to which coset of Γ2

the representative is sent by R. Take c1 = Σ1(R)i, c2 = Σ1(R)j, and c3 = Σ1(R)k.
Indeed, for j ∈ {1, 2, 3}, cj /∈ Γ2 since Σ1(R) is odd, and cj ∈ Γ1(R

−1) because
Σ1(R) = den(R) ([4], see (1.5)). One obtains

R(c1) =
Σ1(R)

|q|2 qiq , R(c2) =
Σ1(R)

|q|2 qjq , R(c3) =
Σ1(R)

|q|2 qkq,

where Σ1(R)

|q|2 = 1
2ℓ

with ℓ ∈ {0, 1, 2}. This gives rise to three different cases.

Before we proceed, we take note of the following lemmas that will be used in the
computations thereafter.

Lemma 2.19: The quaternion algebra H acts on Im (H) via qxq, where q ∈ H and
x ∈ Im (H).
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Lemma 2.20: The sets

(1, 1, 0, 0)J := {(1, 1, 0, 0)q : q ∈ J} =
{
q ∈ J : 2 | |q|2

}
,

2J := {2q : q ∈ J} =
{
q ∈ J : 4 | |q|2

}
, and

(1, 1, 0, 0)2J := {(1, 1, 0, 0)2q : q ∈ J} =
{
q ∈ J : 8 | |q|2

}

are ideals of J.
Proof : This is a consequence of Theorem 1.13.

Lemma 2.21: Let Γ2 = 2 Im (J) = 2 Im (L) ∪ [(0, 1, 1, 1) + 2 Im (L)]. Then the
following holds:

(i) 2J ∩ Im (H) = 2 Im (L) ⊆ Γ2

(ii) If q ∈ J then q − q ∈ Γ2.

Proof : Statement (i) is trivial. If q ∈ L then q− q ∈ 2J∩ Im (H) ⊆ Γ2 by (i). On the
other hand, if q ∈ J \ L then q − q ∈ (0, 1, 1, 1) + 2 Im (L) ⊆ Γ2. This proves (ii).

The three possible ratios of Σ1(R)

|q|2 are investigated below.

Case I:
Σ1(R)

|q|2 = 1, that is, |q|2 ≡ 1 (mod 4) and either one or three among the

components of q is/are odd.
For instance, suppose q0 is odd while q1, q2, q3 are even, or q0 is even while q1, q2,

q3 are odd. In both instances, one can write q = r + s, where r ∈ 2J and s = e. One
obtains

R(cj) = qxjq = rxjr + rxjs + sxjr + sxjs

where xj = i, j,k if j = 1, 2, 3, respectively. Lemmas 2.19, 2.20, and 2.21(i) imply
that rxjr ∈ Γ2, and rxjs + sxjr = rxjs − rxjs ∈ Γ2 by Lemma 2.21(ii). Hence,
R(cj) ∈ sxjs+ Γ2 = xj + Γ2 = cj + Γ2 for j ∈ {1, 2, 3}.

Similarly, for the other three possibilities, R(cj) ∈ cj+Γ2 for j ∈ {1, 2, 3} since for

s, x ∈ {i, j,k}, sxs =
{
x, if s = x

− x, if s 6= x.
Therefore, in all instances, R fixes all colors.

Case II:
Σ1(R)

|q|2 = 1
2
, that is, |q|2 ≡ 2 (mod 4) and exactly two components of q are

odd.
Consider the instance when both q0 and q1 are odd, or when both q2 and q3 are

odd. Either way, one can express q as q = r + s where r ∈ 2J and s = (1, 1, 0, 0).
One has in this case

R(cj) =
1
2
(rxjr + rxjs+ sxjr + sxjs)

where xj = i, j,k if j = 1, 2, 3, respectively. Now, 1
2
rxjr ∈ 2J because 4 divides

∣
∣1
2
rxjr

∣
∣2. This, with Lemmas 2.19 and 2.21(i), implies that 1

2
rxjr ∈ Γ2. Since

1
2
rxjs ∈ J, one obtains that 1

2
rxjs+

1
2
sxjr ∈ Γ2 by Lemma 2.21(ii). Therefore,

R(cj) ∈ 1
2
sxjs + Γ2 =







c1 + Γ2, if j = 1

c3 + Γ2, if j = 2

c2 + Γ2, if j = 3.
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Thus, R induces the permutation (c2c3) of colors. Similar computations for the
other two possibilities (where one only needs to calculate the product 1

2
sxs for s ∈

{(1, 0, 1, 0), (1, 0, 0, 1)} and x ∈ {i, j,k}) yield that if q0 and qj are of the same parity,
where j ∈ {1, 2, 3}, then R fixes both colors c0 and cj and swaps the other two colors.

Case III:
Σ1(R)

|q|2 = 1
4
, that is, |q|2 ≡ 0 (mod 4) and all components of q are odd.

Suppose an even number of components of q are congruent to 1 modulo 4. Then,
one can write q = r + s, where r ∈ (1, 1, 0, 0)2J and s = (1, 1, 1, 1). Thus,

R(cj) =
1
4
(rxjr + rxjs+ sxjr + sxjs)

where xj = i, j,k if j = 1, 2, 3, respectively. Since 4 divides
∣
∣1
4
rxjr

∣
∣2, one has

1
4
rxjr ∈ 2J and together with Lemmas 2.19 and 2.21(i), 1

4
rxjr ∈ Γ2. Also, by

Lemma 2.21(ii) one concludes that 1
4
rxjs+

1
4
sxjr ∈ Γ2 because 1

4
rxjs ∈ J. Finally,

R(cj) ∈ 1
4
sxjs + Γ2 =







c2 + Γ2, if j = 1

c3 + Γ2, if j = 2

c1 + Γ2, if j = 3.

Hence, R generates the permutation (c1c2c3) of colors. On the other hand, if an odd
number of components of q are congruent to 1 modulo 4, then similar arguments
(where one only needs to compute for 1

4
sxs with s = (1, 1, 1,−1) and x ∈ {i, j,k})

show that R induces the permutation (c1c3c2) of colors.

Given a coincidence reflection Tq ∈ OC(Γ1), the color permutation that it ef-
fects is the same as that of the coincidence rotation Rq. This follows from the
fact that Σ1(Tq) = Σ1(Rq) and from the following choice of coset representatives:
c1 = −Σ1(Rq)i, c2 = −Σ1(Rq)j, and c3 = −Σ1(Rq)k.

In conclusion, if a coincidence isometry R ∈ OC(Γ1) is parametrized by the prim-
itive quaternion q, then

(i) R fixes all the colors if and only if |q|2 ≡ 1 (mod 4),
(ii) R fixes two of the colors (one of the fixed colors is c0) if and only if

|q|2 ≡ 2 (mod 4), and

(iii) R fixes only color c0 if and only if |q|2 ≡ 0 (mod 4).

Moreover, the set of color permutations generated by the color coincidences of the
coloring of Γ1 forms a group that is isomorphic to S3.

The following example examines the set of color coincidences H of the coloring of
D4 determined by Z4. In this case, H forms a proper subgroup of OC(D4) = O(4,Q).
In the process, a simpler formula giving the coincidence index of an R ∈ OC(Z4) that
does not involve den(R) arises (see (1.6)). As before, D4 and Z4 are identified with
the set of Hurwitz quaternions J and the set of Lipschitz quaternions L, respectively.
Also, coincidence isometries of D4 (and Z4) are parametrized by admissible pairs of
primitive quaternions (refer to Chapters 1.2.3 and 1.2.5).

Example 2.22: Take Γ1 to be the centered hypercubic lattice Γ1 = J and Γ2 to be
the primitive hypercubic lattice Γ2 = L of index 2 in Γ1. Let R = Rq,p ∈ SOC(Γ1)
be parametrized by the admissible pair (q, p) of primitive quaternions.
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Since [Γ1 : Γ2] = 2 and Σ1(R) is always odd, s = t = 2 by Proposition 2.16.
It follows then from Theorem 2.4 that Σ2(R) = uΣ1(R) with u = 1 or u = 2. In
particular, Σ2(R) = Σ1(R) if and only if R ∈ H by Corollary 2.11. The following
looks at the conditions that the quaternion pair (q, p) should satisfy so that R ∈ H.

Going through the different possible admissible quaternion pairs (q, p) results in
the following cases. In each case, the sets RΓ2 ∩ Γ1(R) and Γ2 ∩ Γ1(R) are compared
in order to ascertain whether R ∈ H or not (see Theorem 2.8).

Case I: |q|2 and |p|2 are odd
Suppose v ∈ Γ2 ∩ Γ1(R) and write v = qwp

|q p| for some w ∈ J. This means that

|q p| v = qwp ∈ L. Since |q|2 and |p|2 are odd, one can express q = r1 + s1 and
p = r2 + s2, where r1, r2 ∈ 2J, and s1, s2 ∈ {e, i, j,k}. With this, one obtains

qwp = r1wr2 + r1ws2 + s1wr2 + s1ws2 ∈ L.
By Lemma 2.20, r1wr2 + r1ws2 + s1wr2 ∈ 2J ⊆ L, which implies that s1ws2 ∈ L and
hence, w ∈ L. Thus, v = Rw ∈ RΓ2 and Γ2 ∩ Γ1(R) ⊆ RΓ2 ∩ Γ1(R). It follows then
that RΓ2 ∩ Γ1(R) = Γ2 ∩ Γ1(R) because s = t = 2, and so R ∈ H.
Case II: |q|2 is odd and |p|2 ≡ 0 (mod 4), or |q|2 ≡ 0 (mod 4) and |p|2 is odd

Consider x = 1
2
|q p| ∈ L. One has R(x) = qxp

|q p| = 1
2
q p ∈ J. Thus, R(x) ∈

RΓ2 ∩ Γ1(R). However, the first component of q p, which is equal to 〈q, p〉, is odd.
This implies that 1

2
q p /∈ L and R(x) /∈ Γ2∩Γ1(R). Hence, RΓ2∩Γ1(R) 6= Γ2∩Γ1(R)

and R /∈ H.
Case III: |q|2 ≡ |p|2 ≡ 2 (mod 4)

Write q = r1 + s1 and p = r2 + s2 where r1, r2 ∈ 2J and

s1, s2 ∈ {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)} .
Note that 〈q, p〉 is even if and only if s1 = s2.

Consider again x = 1
2
|q p| ∈ L so that R(x) = 1

2
q p ∈ RΓ2∩Γ1(R). Now, 1

2
q p /∈ L

if and only if 〈q, p〉 is odd. Since 1
2
q p /∈ L implies that RΓ2 ∩ Γ1(R) 6= Γ2 ∩ Γ1(R),

R /∈ H whenever 〈q, p〉 is odd.
It remains to check the case s1 = s2. Take v ∈ Γ2 ∩ Γ1(R). Write v = qwp

|q p| for

some w ∈ J. One has
1
2
|q p| v = 1

2
(r1wr2 + r1ws1 + s1wr2 + s1ws1) ∈ L.

Now, 1
2
r1wr2 ∈ 2J ⊆ L and 1

2
r1ws1,

1
2
s1wr2 ∈ (1, 1, 0, 0)J ⊆ L by Lemma 2.20.

Hence, 1
2
s1ws1 = s1ws1

−1 ∈ L meaning w ∈ s1
−1Ls1 = L for all three possible values

of s1. It follows then that v ∈ RΓ2 and RΓ2 ∩ Γ1(R) = Γ2 ∩ Γ1(R). Thus, R ∈ H if
〈q, p〉 is even.
Case IV: |q|2 ≡ |p|2 ≡ 0 (mod 4)

Write q = r1 + s1 and p = r2 + s2 where r1, r2 ∈ (1, 1, 0, 0)2J and

s1, s2 ∈ {(1, 1, 1, 1), (1, 1, 1,−1)} .
Note that 4 | 〈q, p〉 if and only if s1 = s2.
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Take x = 1
4
|q p| ∈ L. One obtains R(x) = 1

4
q p =

(
1
2
q
) (

1
2
p
)
∈ J. Hence,

Rx ∈ RΓ2 ∩ Γ1(R). Observe however that 1
4
q p /∈ L if and only if 4 ∤ 〈q, p〉. Since

1
4
q p /∈ L means that RΓ2 ∩ Γ1(R) 6= Γ2 ∩ Γ1(R), 4 ∤ 〈q, p〉 implies R /∈ H.
Again, it remains to check the instance when s1 = s2. Let v ∈ Γ2 ∩ Γ1(R). If one

writes v = qwp
|q p| for some w ∈ J, one gets

1
4
|q p| v = 1

4
(r1wr2 + r1ws1 + s1wr2 + s1ws1) ∈ L.

By Lemma 2.20, 1
4
r1wr2,

1
4
r1ws1, and

1
4
s1wr2 ∈ (1, 1, 0, 0)J ⊆ L. Therefore, 1

4
s1ws1 =

s1ws1
−1 ∈ L or w ∈ s1

−1Ls1 = L for both possible values of s1. Hence, v ∈ RΓ2

which implies that RΓ2 ∩ Γ1(R) = Γ2 ∩ Γ1(R). Therefore, R ∈ H whenever 〈q, p〉 is
divisible by 4.

The results above also hold for coincidence reflections Tq,p = Rq,p · T1,1 ∈ OC(Γ1)
since Σ1(Tq,p) = Σ1(Rq,p), w ∈ L if and only if w ∈ L, and x = x when Im (x) = 0.

We now show that H in this instance forms a group. From above, one sees that
H = {R ∈ OC(Γ1) : Σ2(R) = Σ1(R)}. Moreover, because either Σ2(R) = Σ1(R)
or Σ2(R) = 2Σ1(R), and Σ1(R) is odd for all R ∈ OC(Γ1), one can write H =
{R ∈ OC(Γ1) : Σ2(R) is odd}. Now, if R1, R2 ∈ H then Σ2(R2R1) | Σ2(R2) · Σ2(R1)
by Proposition 1.9(i). This implies that Σ2(R2R1) must also be odd, and hence
R2R1 ∈ H. This proves that the product of two color coincidences of the coloring of
Γ1 is again in H, and hence, H is a subgroup of OC(Γ1).

Finally, all of these yield the following result about the coincidence index of a
coincidence isometry of Z4 (compare with (1.6)).

Proposition 2.23: Let Rq,p ∈ SOC(Z4) where (q, p) is an admissible pair of primi-
tive quaternions. Then either

ΣZ4(Rq,p) = ΣD4(Rq,p) = lcm
(

|q|2
2k

, |p|2
2ℓ

)

or ΣZ4(Rq,p) = 2ΣD4(Rq,p),

where k and ℓ are the highest powers such that 2k and 2ℓ divide |q|2 and |p|2, respec-
tively. In particular, ΣZ4(Rq,p) = ΣD4(Rq,p) holds if and only if one of the following
conditions are satisfied:

(i) |q|2 and |p|2 are odd,

(ii) |q|2 ≡ |p|2 ≡ 2 (mod 4) with 〈q, p〉 even,
(iii) |q|2 ≡ |p|2 ≡ 0 (mod 4) with 4 | 〈q, p〉.

The same holds for Tq,p ∈ OC(Z4) \ SOC(Z4).

Note that Proposition 2.23 is consistent and similar to the conditions set forth in
[82] on how to identify which of the 576 pure symmetry rotations of D4 are also pure
symmetry rotations of Z4.

2.4. Application to quasicrystals

Even though the results in this chapter were explicitly stated for lattices, they also
hold for Z-modules in Rd (see Remark 1.10). This suggests that the same techniques
are applicable when dealing with quasicrystals. In fact, the coincidence problem
for the set of vertex points of a quasicrystalline tiling breaks into two parts: the
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coincidence problem for the underlying limit translation module, and the computation
of the window correction factor [59, 4]. The latter depends on the geometry of the
window and is equal to 1 if the window is circular. In such a case, results for the
underlying module are exactly the same as that for the set of vertex points of the
tiling. We illustrate with the following example how the results in this chapter are
adapted to the quasicrystal setting.

Example 2.24: Consider the set of vertex points P1 of the eightfold symmetric
Ammann-Beenker tiling (see Figure 6). Here, one needs to consider the coincidence
problem for the underlying module M1 which is the standard eightfold planar module
M8 = Z[ξ] of rank 4, where ξ = ξ8 = eπi/4 (refer to Chapter 1.2.2). That is, P1 is
treated as a discrete subset of M1 embedded in the complex plane. Even though the
discussion of the window correction factor is omitted here, notice that the acceptance
factor for the Ammann-Beenker tiling is anyway very close to 1 [59].

Figure 6. The set of vertices P1 of the Ammann-Beenker tiling and
the subset P2 (colored black) of P1

Let P2 be the set of points of P1 colored black in Figure 6. The subset P2 can be
obtained as the intersection of the submodule M2 = 〈1 + ξ2〉 (of index 4 in M1) and
P1. Choose the coincidence rotation R = R1+ξ+ξ3,1 of M1 (and P1) (see Remark 1.12)
which corresponds to the counterclockwise rotation about the origin at an angle of
tan−1

(
−2

√
2
)
≈ 109.5◦. The coincidence index of R with respect to M1 is 9.

A coloring of P1 with four colors determined by P2 is shown in Figure 7(a) (see
also [16, Fig. 1]). Denote by P1(R

−1) and P1(R) the set of coinciding points of P1 and
R−1P1, and of P1 and RP1, respectively. Figures 7(b) and 7(c) show the colorings of
P1(R

−1) and P1(R) induced by the coloring of P1. Observe that all four colors appear
in both colorings. Since M1 and M2 are similar modules, the coincidence index of R
with respect to M2 is also 9 by Theorem 1.3 (applied to similarity modules). Hence,
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R is a color coincidence of the coloring (with all colors being fixed), and the set of
coinciding points, P2(R), includes all points of P2 in the coloring of P1(R).

(a) Coloring of P1 determined by P2

A B
C D

E

(b) Coloring of P1(R
−1)

A′B′

C′

D′

E′

A B
C D

E

(c) Coloring of P1(R)

Figure 7. Colorings of P1(R
−1) and P1(R) determined by P2 (see

Figure 6), where the coincidence rotation R corresponds to a rotation
about the origin by tan−1

(
−2

√
2
)
≈ 109.5◦ in the counterclockwise

direction. The points labeled A, B, C, D, and E are mapped by
R to the points labeled A′, B′, C ′, D′, and E ′, respectively. R is a
color coincidence of the coloring of P1 that fixes all the colors. The
intersection of P2 and RP2, P2(R), is made up of all black dots in the
coloring of P1(R).



CHAPTER 3

Coincidences of shifted lattices

The chapter starts with an investigation of how points on a lattice and points on
the image of the lattice under a general (affine) isometry may coincide. A closely
related subject, and the main topic of this chapter, is subsequently discussed: the
coincidence problem for shifted lattices. That is, upon translating the lattice by some
vector and afterwards applying a linear isometry on the shifted lattice (with respect to
the origin), its intersection (if any) with the shifted lattice is considered. An extensive
analysis of the coincidences of a shifted square lattice follows the general discussion.
Remarks on how general results for lattices extend to Z-modules, as well as several
results on the coincidences of shifted planar modules based on the solution of the
coincidence problem for a shifted square lattice, conclude the chapter.

3.1. Affine coincidences

Let Γ ⊆ Rd be a lattice. A subset of Γ will be called a cosublattice of Γ if
it is a coset of some sublattice Γ′ of Γ. One can think of a cosublattice of Γ as
a shifted copy of Γ′ by some vector of Γ. Since all cosets of a group have the
same order by Langrange’s Theorem, the index of a cosublattice ℓ + Γ′ of Γ, de-
noted by [Γ : ℓ + Γ′], is defined as the (group) index of the sublattice Γ′ in Γ, that
is, [Γ : ℓ+ Γ′] = [Γ : Γ′] < ∞. This definition of index makes sense geometrically for
lattices (as oppose to Z-modules): a translation does not change the volume of fun-
damental domains of Γ and Γ′, and so [Γ : Γ′] = [ℓ + Γ : ℓ+ Γ′] = [Γ : ℓ+ Γ′].

Denote by E(d) the group of isometries of Rd. An f ∈ E(d) shall be written as
f = (v, R), where f : x 7→ v+R(x), with R ∈ O(d) (the linear part of f) and v ∈ Rd

(the translational part of f). The next definition generalizes the concept of a linear
coincidence isometry to an affine coincidence isometry.

Definition 3.1: Let Γ be a lattice in Rd and f ∈ E(d). Then f is an affine coinci-
dence isometry of Γ if Γ ∩ fΓ contains a cosublattice of Γ.

The set of affine coincidence isometries of Γ shall be denoted by AC(Γ). Clearly,
AC(Γ) contains the symmetry group of Γ and the group OC(Γ) = AC(Γ) ∩ O(d) =
{(v, R) ∈ AC(Γ) : v = 0}.

The following lemma describes the intersection of two lattices that are related by
some isometry.

Lemma 3.2: Let Γ ∈ Rd be a lattice and (v, R) ∈ E(d). If v ∈ ℓ + RΓ for some
ℓ ∈ Γ, then Γ ∩ (v, R)Γ = ℓ+ (Γ ∩ RΓ).

Proof : Since v ∈ ℓ + RΓ, (v, R)Γ = (ℓ, R)Γ and so Γ ∩ (v, R)Γ = Γ ∩ (ℓ, R)Γ. It
remains to show that Γ ∩ (ℓ, R)Γ = ℓ+ (Γ ∩ RΓ).

31
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Take x ∈ Γ∩ (ℓ, R)Γ and write x = ℓ+Rℓ′ for some ℓ′ ∈ Γ. Then x ∈ ℓ+(Γ∩RΓ)
because Rℓ′ = x− ℓ ∈ Γ ∩ RΓ. The opposite inclusion is clear.

Lemma 3.2 brings about the following characterization of an affine coincidence
isometry of a lattice.

Theorem 3.3: Let Γ be a lattice in Rd. Then (v, R) ∈ E(d) is an affine coincidence
isometry of Γ if and only if R ∈ OC(Γ) and v ∈ Γ +RΓ.

Proof : It follows from Lemma 3.2 that if R ∈ OC(Γ) and v ∈ Γ+RΓ then Γ∩(v, R)Γ
is a coset of the CSL Γ(R). Hence, (v, R) ∈ AC(Γ).

In the other direction, let (v, R) ∈ AC(Γ). Because Γ ∩ (v, R)Γ 6= ∅, there exist
ℓ, ℓ′ ∈ Γ with ℓ = v + Rℓ′, and so v = ℓ − Rℓ′ ∈ ℓ + RΓ ⊆ Γ + RΓ. By Lemma 3.2,
one obtains Γ ∩ (v, R)Γ = ℓ+ (Γ ∩ RΓ). Thus,

[Γ : Γ ∩RΓ] = [Γ : ℓ+ (Γ ∩ RΓ)] = [Γ : Γ ∩ (v, R)Γ] < ∞,

which means that Γ ∩ RΓ is a sublattice of Γ. Therefore, Γ is commensurate to RΓ,
and R ∈ OC(Γ).

The set of affine coincidences of a lattice Γ ⊆ Rd is now given by

AC(Γ) = {(v, R) ∈ E(d) : R ∈ OC(Γ) and v ∈ Γ +RΓ} .
Moreover, if (v, R) ∈ AC(Γ) with v ∈ ℓ+RΓ for some ℓ ∈ Γ, then

Γ ∩ (v, R)Γ = ℓ+ Γ(R) (3.1)

by Lemma 3.2. Thus, Γ ∩ (v, R)Γ is a coset of the CSL Γ(R). This means that the
intersection Γ∩(v, R)Γ does not only contain a cosublattice of Γ but is in fact a cosub-
lattice of Γ. For this reason, we shall refer to Γ∩ (v, R)Γ as an affine coincidence site
lattice (ACSL) of Γ. In addition, each R ∈ OC(Γ) corresponds to Σ(R) = [Γ : Γ(R)]
distinct possible ACSLs.

Remark 3.4: Another lattice of interest in the study of grain boundaries is the so-
called displacement shift complete (DSC) lattice. It is the lattice formed by all possible
displacement vectors that preserve the structure of the grain boundary. In this setting,
given a linear coincidence isometry R of the lattice Γ, the corresponding DSC lattice
is {v : (v, R) ∈ AC(Γ)} = Γ + RΓ by Theorem 3.3. This conclusion is in agreement
with the main result of [35], which states that the DSC lattice formed by Γ and RΓ is
the dual lattice of the CSL formed by Γ∗ and (RΓ)∗, that is, [Γ∗ ∩ (RΓ)∗]

∗
= Γ+RΓ.

Observe that the identity isometry 1d ∈ AC(Γ) for any lattice Γ in Rd. In
addition, the inverse of every isometry in AC(Γ) is also in AC(Γ). Indeed, if (v, R) ∈
AC(Γ), then it follows from Theorem 3.3 that (v, R)−1 = (−R−1v, R−1) ∈ AC(Γ)
since R−1 ∈ OC(Γ) and −R−1v ∈ Γ + R−1Γ. However, the product of two affine
coincidence isometries of Γ may or may not be an element of AC(Γ). Thus, the set
AC(Γ) does not always form a group. The next proposition tells us exactly when
AC(Γ) is a group.

Proposition 3.5: Let Γ ⊆ Rd be a lattice. Then AC(Γ) is a group if and only if it
is the symmetry group G of Γ.
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Proof : Suppose AC(Γ) is a group and take (v, R) ∈ AC(Γ). By Theorem 3.3,
R ∈ OC(Γ), and thus, (0, R−1) = R−1 ∈ OC(Γ) ⊆ AC(Γ). Seeing that AC(Γ) is
a group, the product (v, R)(0, R−1) = (v,1d) ∈ AC(Γ). It follows then from Theo-
rem 3.3 that v ∈ Γ. Furthermore, Γ+RΓ = Γ, for if w ∈ Γ+RΓ then (w,R) ∈ AC(Γ),
and so w ∈ Γ. Hence, R ∈ P (Γ). Since G is symmorphic, that is, G is the semidirect
product of P (Γ) with its translation subgroup T (G) = Γ, one obtains (v, R) ∈ G.

3.2. The coincidence problem for a shifted lattice

We now turn our attention to lattices Γ in Rd that are shifted by some vector
x ∈ Rd. By a cosublattice of the shifted lattice x + Γ, we mean a subset of x + Γ
of the form x + Γ′ where Γ′ is a cosublattice of Γ. In addition, the index of the
cosublattice x + Γ′ in x + Γ is understood to be [x + Γ : x + Γ′] := [Γ : Γ′]. There
is no ambiguity here - relabeling x as the origin gives back the original lattice Γ. Of
particular interest in this section, and the remainder of the chapter, are intersections
of the form (x+ Γ) ∩ R(x+ Γ), where R ∈ O(d).

Definition 3.6: An R ∈ O(d) is said to be a (linear) coincidence isometry of the
shifted lattice x+ Γ if (x+ Γ) ∩ R(x+ Γ) is a cosublattice of x+ Γ.

The intersection (x+Γ)∩R(x+Γ) will also be referred to as a CSL of the shifted
lattice x + Γ, while the coincidence index of R with respect to x + Γ is taken to be
Σx+Γ(R) := [x+Γ : (x+Γ)∩R(x+Γ)]. The set of all coincidence isometries of x+Γ
shall be denoted by OC(x+Γ). Likewise, we take SOC(x+Γ) := OC(x+Γ)∩SO(d).

Remark 3.7: Observe that applying a linear isometry R on the shifted lattice x+Γ
is equivalent to applying the same isometry R but with center at −x on the original
lattice Γ. Hence, just as OC(Γ) is an extension of P (Γ), one may interpret OC(x+Γ)
as a generalization of the site-symmetry group of the point −x.

We now aim to characterize a coincidence isometry R of x + Γ and identify the
CSL of x+ Γ generated by R. To do this, write (x+ Γ) ∩R(x+ Γ) as

(x+ Γ) ∩ R(x+ Γ) = (x,1d)Γ ∩ (Rx,R)Γ = (x,1d)[Γ ∩ (Rx− x,R)Γ]. (3.2)

That is, (x+Γ)∩R(x+Γ) may be obtained by shifting Γ∩ (Rx− x,R)Γ by x. This
means that (x+Γ)∩R(x+Γ) is a cosublattice of x+Γ if and only if Γ∩ (Rx−x,R)Γ
is a cosublattice of Γ, which is equivalent to saying that (Rx − x,R) ∈ AC(Γ). It
now follows from Theorem 3.3 that R ∈ OC(x + Γ) if and only if R ∈ OC(Γ) and
Rx−x ∈ Γ+RΓ. Furthermore, the CSL (x+Γ)∩R(x+Γ) of x+Γ can be expressed as
a shifted copy of the CSL Γ(R) of Γ by applying (3.1) to (3.2). All of these constitute
the proof of the following theorem.

Theorem 3.8: Let Γ be a lattice in Rd and x ∈ Rd. Then

OC(x+ Γ) = {R ∈ OC(Γ) : Rx− x ∈ Γ +RΓ} .
In addition, if R ∈ OC(x+ Γ) with Rx− x ∈ ℓ+RΓ for some ℓ ∈ Γ, then

(x+ Γ) ∩R(x+ Γ) = (x+ ℓ) + Γ(R). (3.3)
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Equation (3.3) indicates that the CSL of x+ Γ obtained from R ∈ OC(x+ Γ) is
just a translate of some coset of the CSL Γ(R) in Γ by x. Consequently,

Σx+Γ(R) = ΣΓ(R) (3.4)

for all R ∈ OC(x + Γ). This means that shifting a lattice does not yield any new
values of coincidence indices.

Let S ∈ P (Γ). If R ∈ OC(Γ) then RS ∈ OC(Γ) and the CSLs generated by R
and RS are the same, that is, Γ(RS) = Γ(R). However, the corresponding statement
for coincidence isometries of a shifted lattice does not always hold, as can be seen in
the next proposition.

Proposition 3.9: Let Γ ⊆ Rd be a lattice and x ∈ Rd, and suppose that R,RS ∈
OC(x+ Γ) with S ∈ P (Γ). Then (x + Γ) ∩ RS(x + Γ) = (x + Γ) ∩ R(x + Γ) if and
only if Sx− x ∈ Γ.

Proof : It follows from Theorem 3.8 that

Rx− x ∈ ℓ1 +RΓ and RSx− x ∈ ℓ2 +RSΓ = ℓ2 +RΓ

for some ℓ1, ℓ2 ∈ Γ. In addition, (3.3) yields

(x+Γ) ∩RS(x+ Γ) = ℓ1 +Γ(RS) = ℓ1 +Γ(R) and (x+Γ) ∩R(x+Γ) = ℓ2 +Γ(R).

Hence, (x+ Γ) ∩ RS(x+ Γ) = (x+ Γ) ∩ R(x+ Γ) if and only if ℓ2 − ℓ1 ∈ RΓ. Now,
R(Sx− x) = RSx−Rx ∈ (ℓ2 − ℓ1) +RΓ. This implies that ℓ2 − ℓ1 ∈ RΓ if and only
if Sx− x ∈ Γ, which proves the claim.

Proposition 3.9 will prove to be useful when counting the number of CSLs of a
shifted lattice of a given index.

For a given lattice Γ ⊆ Rd, it is enough to consider values of x in a fundamen-
tal domain of Γ to compute for all the different possible sets OC(x + Γ), because
OC(x+ Γ) = OC[(x+ ℓ) + Γ] for all ℓ ∈ Γ. The next proposition asserts even more;
it suffices to look at values of x in a fundamental domain of the symmetry group of Γ.

Proposition 3.10: Let Γ ⊆ Rd be a lattice and S ∈ P (Γ). If x ∈ Rd, then

OC(Sx+ Γ) = S[OC(x+ Γ)]S−1.

Proof : This is a consequence of Theorem 3.8 because SRS−1 ∈ OC(Γ) if and only if
R ∈ OC(Γ), and SRS−1(Sx)− Sx ∈ Γ + SRS−1Γ if and only if Rx− x ∈ Γ +RΓ.

Furthermore, one has the following inclusion property.

Proposition 3.11: If Γ is a lattice in Rd and x, y ∈ Rd, then for all a, b ∈ Z,
OC(x+ Γ) ∩OC(y + Γ) ⊆ OC[(ax+ by) + Γ].

Proof : Let R ∈ OC(x + Γ) ∩ OC(y + Γ). It follows from Theorem 3.8 that R ∈
OC(Γ) and Rax − ax,Rby − by ∈ Γ + RΓ for any a, b ∈ Z. This implies that
R(ax+ by)− (ax+ by) ∈ Γ +RΓ and hence, R ∈ OC[(ax+ by) + Γ].

Corollary 3.12: Let Γ be a lattice in Rd and x = ℓ
n
, where ℓ ∈ Γ and n ∈ N. Then

OC(ax+ Γ) = OC(x+ Γ) for all a ∈ Z that are relatively prime to n.
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Proof : The inclusion OC(x+Γ) ⊆ OC(ax+Γ) follows directly from Proposition 3.11.
Since a and n are relatively prime, there exist integers b, c such that ab + nc = 1.
Applying again Proposition 3.11 yields

OC(ax+ Γ) ⊆ OC(abx+ Γ) = OC[(ab+ nc) ℓ
n
+ Γ] = OC(x+ Γ).

The next proposition compares the sets of coincidence isometries of shifts of similar
lattices and is the analogue of Theorem 1.3 for shifted lattices.

Proposition 3.13: Let Γ be a lattice in Rd and x ∈ Rd.

(i) If λ ∈ R+ then OC(λx+ λΓ) = OC(x+Γ) with Σλx+λΓ(R) = ΣΓ(R) for all
R ∈ OC(λx+ λΓ).

(ii) If S ∈ O(d) then OC(Sx + SΓ) = S[OC(x + Γ)]S−1 with ΣSx+SΓ(R) =
ΣΓ(S

−1RS) for all R ∈ OC(Sx+ SΓ).

Proof : Both statements follow from Theorem 3.8, Theorem 1.3 and Equation (3.4).
One obtains that R(λx) − λx ∈ λΓ + R(λΓ) if and only if Rx − x ∈ Γ + RΓ and
(SRS−1)(Sx)− Sx ∈ SΓ + (SRS−1)SΓ if and only if Rx− x ∈ Γ +RΓ.

Note that Theorem 3.8 shows that OC(x + Γ) is a subset of OC(Γ). The set
OC(x+ Γ) is certainly nonempty because the identity isometry 1d ∈ OC(x + Γ).
It also follows from Theorem 3.8 that OC(x + Γ) is closed under inverses, that is,
R−1 ∈ OC(x+ Γ) whenever R ∈ OC(x+ Γ) because R−1 ∈ OC(Γ) and R−1x− x ∈
Γ+R−1Γ. However, given R1, R2 ∈ OC(x+Γ), the product R2 ·R1 is not necessarily
in OC(x+ Γ). Thus, one obtains the following result.

Proposition 3.14: For a given lattice Γ ⊆ Rd and x ∈ Rd, OC(x+ Γ) is a group if
and only if it is closed under composition, that is, for all R1, R2 ∈ OC(x + Γ), the
product R2 · R1 ∈ OC(x+ Γ).

As was the case for color coincidences of a coloring of Γ determined by some
sublattice of Γ (refer to Proposition 2.13), the product of two coincidence isometries
of x+Γ whose coincidence indices are relatively prime is again a coincidence isometry
of x+ Γ. This is stated in the next proposition.

Proposition 3.15: Let Γ ⊆ Rd be a lattice and x ∈ Rd. If R1, R2 ∈ OC(x+Γ) with
Σ(R1) and Σ(R2) relatively prime, then R2R1 ∈ OC(x+ Γ).

Proof : From Theorem 3.8, Rj ∈ OC(Γ) and Rjx − x ∈ Γ + RjΓ for j ∈ {1, 2}. The
product R2R1 ∈ OC(Γ) because OC(Γ) is a group. In addition,

R2R1x− x = (R2R1x− R2x
︸ ︷︷ ︸

∈R2(Γ+R1Γ)

) + (R2x− x
︸ ︷︷ ︸

∈Γ+R2Γ

) ∈ Γ +R2Γ +R2R1Γ.

However, by Proposition 1.9, R2Γ = Γ(R2) +R2Γ(R1) because Σ(R1) and Σ(R2) are
relatively prime. Since Γ(R2) ⊆ Γ and R2Γ(R1) ⊆ R2R1Γ, Γ + R2Γ + R2R1Γ =
Γ +R2R1Γ and so R2R1 ∈ OC(x+ Γ).
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3.3. The sets H, AC(Γ), and OC(x+ Γ) as groupoids

Let Γ be a lattice in Rd and x ∈ Rd, and consider a coloring of Γ induced by some
sublattice Γ′ of Γ. The sets H, AC(Γ), and OC(x+Γ) share the following properties:

(i) They are subsets of some group G (for H and OC(x+Γ), G = OC(Γ), while
G = E(d) for AC(Γ)).

(ii) They contain the identity isometry 1d.
(iii) They are closed under inverses.
(iv) They are not necessarily closed under composition.

These properties suggest that these sets might be algebraic structures more general
than groups, such as groupoids. The following (algebraic) definition of a groupoid
comes from [66, 42], and is equivalent to the one used in [64].

Definition 3.16: Let G be a set and G(2) ⊆ G × G, together with a product map
∗ : G(2) → G, (a, b) 7→ a ∗ b, and inverse map −1 : G → G. Then G is a groupoid if
for all a, b, c ∈ G, the following axioms are satisfied:

A1. (a−1)
−1

= a
A2. If (a, b), (b, c) ∈ G(2) then (a∗b, c), (a, b∗c) ∈ G(2) with (a∗b)∗c = a∗ (b∗c).
A3. (a−1, a), (a, a−1) ∈ G(2)

A4. If (a, b) ∈ G(2) then a−1 ∗ (a ∗ b) = b and (a ∗ b) ∗ b−1 = a.

The set G(2), referred to as the set of composable pairs, is the set of all ordered
pairs in G × G for which the product ∗ is defined. Clearly, a group G is a groupoid
(with G(2) = G×G). Conversely, a groupoid G with G(2) = G×G must be a group.

Given a groupoid G and a ∈ G, the domain and range of a is defined as d(a) :=
a−1 ∗ a and r(a) := a ∗ a−1, respectively. The set UG := d(G) = r(G) is called the
unit space of G. Elements of UG are called units for the reason that u ∗ d(u) =
u ∗ (u−1 ∗ u) = u and r(u) ∗ u = (u ∗ u−1) ∗ u = u for all u ∈ UG.

Lemma 3.17: A groupoid G is a group if and only if |UG| = 1.

Proof : If G is a group then UG consists of only the identity element of G. In the other
direction, assume UG = {u} and take (a, b) ∈ G×G. It follows from A3, A4, and A1

that a∗u = a∗d(a) = (a−1)
−1∗(a−1∗a) = a and u∗b = r(b)∗b = (b∗b−1)∗(b−1)

−1
= b.

Thus, (a, u), (u, b) ∈ G(2) and by A2, (a ∗ u, b) = (a, b) ∈ G(2). Hence, G(2) = G× G
and G is a group.

Now, if one views the sets H, AC(Γ), and OC(x+Γ) as a groupoid, then the iden-
tity isometry 1d is the only unit of these sets. The following result is now immediate
from Lemma 3.17.

Proposition 3.18: Let Γ ⊆ Rd be a lattice and x ∈ Rd, and consider a coloring of
Γ determined by some sublattice of Γ. Then the sets H, AC(Γ), and OC(x+ Γ) are
groupoids if and only if they are groups.

3.4. Coincidences of a shifted square lattice

This entire section is devoted to the solution of the coincidence problem for a
shifted square lattice. Some of the results here can be found in [53]. For the rest
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of the section, Γ is taken to be the square lattice viewed as the ring of Gaussian
integers Z[i] (see Subsection 1.2.1), and x ∈ C. In addition, as mentioned in Re-
mark 1.11, Rz,ε ∈ SOC(Γ) corresponds to multiplication by the complex number ε z

z
,

while Tz,ε = Rz,ε · Tr ∈ OC(Γ) \ SOC(Γ), where Tr stands for complex conjugation.
The following lemma gives a criterion when Rz,ε ∈ SOC(Γ) and Tz,ε ∈ OC(Γ) \

SOC(Γ) are coincidence isometries of x+ Γ.

Lemma 3.19: Let Γ = Z[i], x ∈ C, R = Rz,ε ∈ SOC(Γ), and T = R · Tr.

(i) R ∈ SOC(x+ Γ) if and only if (εz − z)x ∈ Γ.
(ii) T ∈ OC(x+ Γ) if and only if εzx− zx ∈ Γ.

Proof : Since Γ is a principal ideal domain, ε is a unit in Γ, and z, z are relatively
prime, one has

Γ +RΓ = Γ + ε z
z
Γ = 1

z
gcd(z, z)Γ = 1

z
Γ.

By Theorem 3.8, R ∈ SOC(x + Γ) if and only if ε z
z
x − x ∈ 1

z
Γ, that is, whenever

(εz − z)x ∈ Γ.
Because Tr leaves Γ invariant, Γ + TΓ = 1

z
Γ. Applying again Theorem 3.8 proves

the corresponding result for T .

3.4.1. The sets SOC(x + Γ) and OC(x + Γ). It turns out that the set of
coincidence rotations of x+ Γ forms a group, as stated in the next theorem.

Theorem 3.20: If Γ = Z[i] then SOC(x+Γ) is a subgroup of SOC(Γ) for all x ∈ C.
Proof : By Proposition 3.14, it is enough to show that SOC(x + Γ) is closed under
composition to prove the claim. Let Rj = Rzj ,εj ∈ SOC(x + Γ) for j ∈ {1, 2} and

g := gcd(z1, z2). Then (εjzj − zj)x ∈ Γ from Lemma 3.19. Write z1 = h1g and

z2 = h2g, so that h1 and h2 are relatively prime. Now,
(
ε2ε1h2h1 − h2h1

)
x = 1

g

(
ε2ε1z2h1 − h2z1

)
x

= 1
g

[
ε1h1 (ε2z2 − z2)x

︸ ︷︷ ︸

∈ Γ

+h2 (ε1z1 − z1)x
︸ ︷︷ ︸

∈ Γ

]
∈ 1

g
Γ.

Similarly, one obtains that
(
ε2ε1h2h1 − h2h1

)
x ∈ 1

g
Γ. Together, they imply that

(
ε2ε1h2h1 − h2h1

)
x ∈ 1

g
Γ ∩ 1

g
Γ = 1

gg
lcm (g, g)Γ = Γ.

This is because Γ is a principal ideal domain and g is relatively prime to g. Hence,
R2 · R1 = Rh2h1,ε2ε1 ∈ SOC(x+ Γ) by Lemma 3.19.

However, the situation is more complicated for OC(x+Γ). One has the following
results.

Lemma 3.21: Let Γ = Z[i] and x ∈ C. Then OC(x + Γ) is a subgroup of OC(Γ)
if and only if for any coincidence reflections T1, T2 ∈ OC(x + Γ), the coincidence
rotation T2 · T1 ∈ SOC(x+ Γ).

Proof : It follows from Proposition 3.14 and Theorem 3.20 that it suffices to show
that the product of a coincidence reflection and a coincidence rotation of x + Γ is
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again a coincidence reflection of x+ Γ. To this end, the same technique employed in
the proof of Theorem 3.20 is used.

Let Rj = Rzj ,εj ∈ SOC(Γ) for j ∈ {1, 2}. Suppose R2, T1 = R1 · Tr ∈ OC(x+Γ).
Then (ε2z2 − z2 )x, ε1z1x − z1x ∈ Γ from Lemma 3.19. Take g := gcd(z1, z2), and
express z1 = h1g and z2 = h2g. One has

ε2ε1h2h1x− h2h1x = 1
g
(ε2ε1z2h1x− h2z1x)

= 1
g

[

−ε2ε1h1(ε2z2 − z2 )x+ h2(ε1z1x− z1x)
]

∈ 1
g
Γ.

In the same manner, one obtains ε2ε1h2h1x− h2h1x ∈ 1
g
Γ. This means that

ε2ε1h2h1x− h2h1x ∈ 1
g
Γ ∩ 1

g
Γ = Γ.

Thus, R2 · T1 = Rh2h1,ε2ε1 · Tr ∈ OC(x + Γ) by Lemma 3.19. Moreover, one has
T1 · R2 = R2

−1 · T1 ∈ OC(x+ Γ).

Remark 3.22: Let Γ = Z[i], x ∈ C, and Tj = Tzj ,εj ∈ OC(x + Γ) \ SOC(x + Γ)
for j ∈ {1, 2}. Applying the same procedure used in the proofs of Theorem 3.20 and
Lemma 3.21 to the product T2 · T1 only leads to

(
ε2ε1h2h1 − h2h1

)
x ∈ 1

g
Γ, (3.5)

where g := gcd(z1, z2) and zj = hjg for j ∈ {1, 2}. It follows then from Lemma 3.19
that if z1 were relatively prime to z2, that is, if g = 1, then T2 · T1 = Rh2h1,ε2ε1

∈
SOC(x+Γ). This fact can also be deduced from Proposition 3.15, because if z1 and
z2 were relatively prime, then so are N(z1) = Σ(R1) and N(z2) = Σ(R2). However, it
is not always the case that the numerators z1 and z2 are relatively prime (an example
of which will be given later). Thus, in general, OC(x+ Γ) is not a group.

Proposition 3.23: Let Γ = Z[i] and x ∈ C.
(i) If OC(x+ Γ) contains a reflection symmetry T ∈ P (Γ) then OC(x+ Γ) is

a subgroup of OC(Γ). Moreover, OC(x+ Γ) = SOC(x+ Γ)⋊ 〈T 〉.
(ii) Suppose that OC(x+Γ) does not contain any reflection symmetry T ∈ P (Γ).

Then the coincidence reflection Tz,ε /∈ OC(x+Γ) for all units ε of Γ whenever
R = Rz,ε′ ∈ SOC(x+ Γ) for some unit ε′.

Proof :

(i) Because T ∈ P (Γ), T = T1,ε for some unit ε of Γ. Thus, x ∈ εx + Γ by
Lemma 3.19. Let Tj = Tzj ,εj ∈ OC(x+ Γ) \ SOC(x+ Γ) for j ∈ {1, 2}. If
g := gcd(z1, z2) and zj = hjg for j ∈ {1, 2}, then it follows from Lemma 3.19
that

g
(
ε2ε1h2h1 − h2h1

)
x = ε2ε1z2h1x− h2z1x

= ε1h1(ε2z2x− z2x)− ε1h2(ε1z1x− z1x) ∈ Γ.

Since x ∈ εx+ Γ,
(
ε2ε1h2h1 − h2h1

)
x ∈ 1

g
Γ. This, together with (3.5), im-

plies that
(
ε2ε1h2h1 − h2h1

)
x ∈ 1

g
Γ∩ 1

g
Γ = Γ, and thus T2 ·T1 ∈ OC(x+ Γ).

From Lemma 3.21, OC(x+ Γ) is a subgroup of OC(Γ).
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In addition, any coincidence reflection T ′ = Tz′,ε′ ∈ OC(x + Γ) can be
written as T ′ = R′ · T where R′ = Rz′,εε′ ∈ SOC(x+Γ). Hence, OC(x+Γ)
is the semidirect product of SOC(x+ Γ) and 〈T 〉.

(ii) Assume otherwise, that is, Tz,ε ∈ OC(x + Γ) for some unit ε of Γ. Since
R ∈ SOC(x+ Γ), so is R−1. Then R−1 · Tz,ε ∈ OC(x+ Γ) by Lemma 3.21,
which is a contradiction because R−1 · Tz,ε = T1,ε′ε ∈ P (Γ).

It can be surmised from Proposition 3.23 that when computing for OC(x + Γ),
it is advantageous to determine at the outset whether there is a reflection symmetry
T that is in OC(x + Γ). If such a T exists, then OC(x + Γ) is a group and it is
the semidirect product of SOC(x + Γ) and 〈T 〉. Otherwise, once SOC(x + Γ) has
already been identified, only those coincidence reflections Tz,ε ∈ OC(Γ) for which
Rz,ε′ /∈ SOC(x+ Γ) for all units ε′ of Γ may be elements of OC(x+ Γ).

The following corollary describes exactly when a reflection symmetry is a coinci-
dence isometry of x+ Γ, and thus, gives an explicit version of Proposition 3.23(i).

Corollary 3.24: Let Γ = Z[i] and x ∈ C. Then OC(x+ Γ) is a subgroup of OC(Γ)
if one of the following conditions on x is satisfied: Re (x) ∈ 1

2
Z, Im (x) ∈ 1

2
Z, or

Re (x)± Im (x) ∈ Z. Furthermore, OC(x+ Γ) = SOC(x+ Γ)⋊ 〈T1,ε〉 where

ε =







1, if Im (x) ∈ 1
2
Z

−1, if Re (x) ∈ 1
2
Z

i, if Re (x)− Im (x) ∈ Z
−i, if Re (x) + Im (x) ∈ Z.

Proof : At least one of the given conditions on the components of x is satisfied if and
only if εx− x ∈ Γ for some unit ε of Γ. The latter implies that T1,ε ∈ OC(x+ Γ) by
Lemma 3.19. The claim now follows from Proposition 3.23(i) since T1,ε ∈ P (Γ).

3.4.2. Determination of SOC(x + Γ) and OC(x + Γ). We now turn to the
actual computation of OC(x+Γ) for specific values of x. Given Rz,ε ∈ SOC(Γ), one
sees from Lemma 3.19 the significance of the expression

εz − z =







2i Im (z) , if ε = 1

−2Re (z) , if ε = −1

−[Re (z) + Im (z)](1− i), if ε = i

−i[Re (z)− Im (z)](1− i), if ε = −i .

(3.6)

Observe also that εzx− zx = ε (zx)− (zx). Hence, (3.6) can also be used to compute
for εzx− zx for a given Tz,ε ∈ OC(Γ) \ SOC(Γ).

Remark 3.25: Let Γ = Z[i]. Then the following holds for all Rz,ε ∈ SOC(Γ) and
Tz,ε ∈ OC(Γ) \ SOC(Γ) on account of the choice of z (see (1.2) and Remark 1.11):

(i) The rational integers Re (z) and Im (z) are relatively prime and are of dif-
ferent parity (that is, one is odd and the other is even).

(ii) Re (z) 6= 0, and z = 1 whenever Im (z) = 0.
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The following theorem states the complete solution to the coincidence problem
for x+ Γ when x has an irrational component.

Theorem 3.26: Let Γ = Z[i] and x = a+bi ∈ C, with a, b ∈ R. If a or b is irrational
then OC(x+ Γ) is a group of at most two elements. In particular, if

(i) a is irrational and b is rational then OC(x+ Γ) =

{ 〈Tr〉, if 2b ∈ Z
{1} , otherwise.

(ii) a is rational and b is irrational then OC(x+ Γ) =

{ 〈T1,−1〉, if 2a ∈ Z
{1} , otherwise.

(iii) both a and b are irrational, and
(a) 1, a, and b are rationally independent then OC(x+ Γ) = {1}.
(b) a = p1

q1
+ p2

q2
b where pj, qj ∈ Z, and pj is relatively prime to qj for

j ∈ {1, 2}, with

(i) p2q2 even, then OC(x+ Γ) =

{〈
Tp2+q2i,1

〉
, if q1 | 2q2

{1}, otherwise.

(ii) p2q2 odd, then OC(x+ Γ) =







〈

T p2+q2
2

− p2−q2
2

i,i

〉

, if q1 | q2

{1}, otherwise.

Proof : Suppose either a or b is irrational. If Rz,ε ∈ SOC(x+ Γ) then it follows from
Lemma 3.19 that εz − z = 0, else, x = a + bi ∈ Q(i). This means that z = ε = 1 by
(3.6) and Remark 3.25. Thus, SOC(x+ Γ) = {1}, where 1 is the identity isometry.

Assume OC(x+Γ) includes two distinct reflections Tj = Thjg,εj for j ∈ {1, 2}, with
h1 and h2 relatively prime. Since 1

g
Γ ⊆ Q(i) and x /∈ Q(i), one obtains from (3.5)

that ε2ε1h2h1 − h2h1 = 0. This implies that ε2ε1
h2h1

h2h1
= 1, and hence, T2 · T1 = 1.

Thus, T1 = T2
−1 = T2 and OC(x+Γ) contains at most one reflection. That is, either

OC(x + Γ) = {1} or OC(x + Γ) = {1, Tz,ε} = 〈Tz,ε〉 for some coincidence reflection
Tz,ε.

Let Tz,ε ∈ OC(Γ) \ SOC(Γ). One has

zx = [aRe (z) + bIm (z)] + [aIm (z)− bRe (z)]i.

It follows from Remark 3.25 that if a is irrational and b is rational, then the real
numbers 2Re (zx), Re (zx) + Im (zx), Re (zx) − Im (zx) /∈ Z. This means that
εzx− zx ∈ Z[i] if and only if ε = 1 and 2Im (zx) ∈ Z, that is, if ε = z = 1 by
(3.6) and Remark 3.25. If z = 1, one has 2Im (x) = −2b ∈ Z and (i) now follows from
Lemma 3.19. The proof of (ii) proceeds analogously.

Suppose now that both a and b are irrational and take Tz,ε ∈ OC(Γ). From
Lemma 3.19 and (3.6), one obtains that Tz,ε ∈ OC(x+ Γ) if and only if
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a =







t
2Im(z)

+ Re(z)
Im(z)

b, if ε = 1

t
2Re(z)

− Im(z)
Re(z)

b, if ε = −1

t
Re(z)+Im(z)

+ Re(z)−Im(z)
Re(z)+Im(z)

b, if ε = i

t
Re(z)−Im(z)

− Re(z)+Im(z)
Re(z)−Im(z)

b, if ε = −i,

(3.7)

for some t ∈ Z. Note that Im (z) 6= 0, otherwise, b is rational. Also, Re (z) + Im (z)
and Re (z)− Im (z) are both odd and relatively prime by Remark 3.25. In each case,
one is able to write a as a = c + d · b where c, d ∈ Q. This representation of a is
unique, that is, if a = e+ f · b where e, f ∈ Q, then c = e and d = f , because b /∈ Q.

Assume that a = p1
q1

+ p2
q2
b where pj, qj ∈ Z with pj and qj relatively prime for

j ∈ {1, 2}. If p2q2 is even then a is expressible in the form (3.7) if and only if ε = ±1
and q1 | 2q2. In this instance, one can simply take ε = 1 and z = p2 + q2i so that
Tz,ε ∈ OC(x + Γ). On the other hand, if p2q2 is odd then a may be put in the
form (3.7) if and only if ε = ±i and q1 | q2. This time, one may set ε = i and
z = p2+q2

2
− p2−q2

2
i, in order that Tz,ε ∈ OC(x+ Γ). This completes the proof.

Example 3.27:

(i) Suppose x = 1√
2
+ 1√

3
i. One cannot write 1√

2
as c + d 1√

3
, where c, d ∈ Q,

since
√
2 /∈ Q (√

3
)
. Hence, OC(x+ Γ) = {1}.

(ii) Let x =
√
2 −

√
2
2
i. Since

√
2 = 0

1
+

(−2
1

) (

−
√
2
2

)

and 1 | (2 · 1), one has

OC(x+ Γ) = 〈T−2+i,1〉.
(iii) It is easy to verify that if x = (e−2)+ 1

7
(25−9e)i then OC(x+Γ) = 〈T1+8i,i〉.

It only remains to consider the case when both components of x are rational.
Suppose that x = a + bi ∈ Q(i) and write x = p

q
, where p, q ∈ Z[i] with p and q

relatively prime. The following lemma indicates that SOC(x+Γ) ultimately depends
on the denominator q of x.

Lemma 3.28: Let Γ = Z[i], x = p
q
where p, q ∈ Γ with p and q relatively prime,

and R = Rz,ε ∈ SOC(Γ). Then R ∈ SOC(x + Γ) if and only if q divides εz − z.
Consequently, SOC(x+ Γ) = SOC(1

q
+ Γ).

Proof : By Lemma 3.19, R ∈ SOC(x+Γ) if and only if (εz − z)x = (εz−z)p
q

∈ Γ. The

latter is equivalent to q | (εz − z), because p and q are relatively prime.

The following properties that relate SOC(x+Γ) for different rational values of x
are consequences of the divisibility condition set forth in Lemma 3.28.

Corollary 3.29: If q1, q2 ∈ Γ = Z[i] such that q1 | q2, then
SOC( 1

q2
+ Γ) ⊆ SOC( 1

q1
+ Γ).

Proof : If R = Rz,ε ∈ SOC( 1
q2
+ Γ) then q2 | (εz − z) by Lemma 3.28. Hence, q1 also

divides εz − z and R ∈ SOC( 1
q1
+ Γ).
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Corollary 3.30: Suppose q1, q2 ∈ Γ = Z[i]. Then

SOC( 1
q1
+ Γ) ∩ SOC( 1

q2
+ Γ) = SOC

(
1

lcm(q1,q2)
+ Γ

)
.

In particular, if q1 and q2 are relatively prime then

SOC( 1
q1
+ Γ) ∩ SOC( 1

q2
+ Γ) = SOC

(
1

q1q2
+ Γ

)
.

Proof : The backward inclusion follows from Corollary 3.29 because q1 and q2 divide
lcm(q1, q2). Suppose that R = Rz,ε ∈ SOC( 1

q1
+ Γ) ∩ SOC( 1

q2
+ Γ). It follows from

Lemma 3.28 that q1 | (εz − z) and q2 | (εz − z). Since Γ is a principal ideal domain,
lcm(q1, q2) also divides εz − z and so R ∈ SOC

(
1

lcm(q1,q2)
+ Γ

)
. Note that if q1 is

relatively prime to q2, then lcm(q1, q2) = q1q2.

One can generalize Corollary 3.30. That is, if the denominator q of x factorizes
as q =

∏

j

qrkj where the qj
′s are primes in Γ = Z[i], then

SOC(1
q
+ Γ) =

⋂

j

SOC

(

1
q
rk
j

+ Γ

)

.

Corollary 3.31: If q ∈ Γ = Z[i] then SOC(1
q
+Γ) = SOC(1

q
+Γ) = SOC

(
1

lcm (q,q)
+Γ

)
.

Proof : Since εz − z = −ε(εz− z) where −ε is a unit of Z[i], q | (εz− z) if and only if
q | (εz − z). The first equality then follows from Lemma 3.28. This now implies that
SOC(1

q
+ Γ) ∩ SOC(1

q
+ Γ) = SOC(1

q
+ Γ), and hence, the second equality is now a

consequence of Corollary 3.30.

The next proposition provides additional sufficient conditions when OC(x + Γ)
forms a group.

Proposition 3.32: Let x = p
q
where p, q ∈ Γ = Z[i] with p and q relatively prime.

If none of the prime factors of N(q) is a splitting prime of Γ, then OC(x + Γ) is a
group.

Proof : Again, it follows from Lemma 3.21 that it is sufficient to show that the product
of any two coincidence reflections T1 = Tz1,ε1 and T2 = Tz2,ε2 of x+Γ is in SOC(x+Γ)
to prove that OC(x+ Γ) forms a group.

Since none of the prime factors of N(q) splits in Γ, the prime factorization of q
consists only of powers of (1 − i) and of inert primes of Γ. This means that q = uq
for some unit u of Γ. It follows from Lemma 3.19 that for j ∈ {1, 2},

εjzj
p
q
− zj

p
q
=

uεjzjp−zjp

q
∈ Γ.

Hence, q | (uεjzjp − zjp). Set g := gcd(z1, z2) and zj = hjg for j ∈ {1, 2}. Then q

divides uε2z2z1p−uε1z2z1p = uε1ggp
(
ε2ε1h2h1 − h2h1

)
. However, u and ε1 are units,

and q is relatively prime to g, g and p, and so q |
(
ε2ε1h2h1 − h2h1

)
. Finally, because

T2 · T1 = Rh2h1,ε2ε1
∈ SOC(Γ), the product T2 · T1 ∈ SOC(x+ Γ) by Lemma 3.28.

The next proposition renders useful results about coincidence rotations of x + Γ
and their corresponding coincidence indices whenever the denominator q of x is an
odd rational integer.
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Proposition 3.33: Let Γ = Z[i] and q 6= 1 be an odd positive rational integer. If
R = Rz,ε ∈ SOC(1

q
+ Γ) then the following holds.

(i) For all units ε′ 6= ε, Rz,ε′ /∈ SOC(1
q
+ Γ).

(ii) The coincidence index Σ(R) is not divisible by q.
(iii) If in addition q is prime and q ≡ ±1 (mod 8), then Σ(R) is a quadratic

residue modulo q.

Proof : By Lemma 3.28, q | (εz − z).

(i) Assume to the contrary that Rz,ε′ ∈ SOC(1
q
+ Γ) for some unit ε′ 6= ε

of Γ. Then q | (ε′z − z) from Lemma 3.28. This implies that q divides
(εz − z)− (ε′z − z) = (ε− ε′)z. Since q is odd and ε′ 6= ε, q and ε − ε′ are
relatively prime. Thus, q | z and because q is a rational integer, q divides
both real and imaginary parts of z. This is impossible by the choice of z
(see Remark 3.25(i)).

(ii) Assume otherwise, that is, q divides Σ(R) = N(z) = zz. Since q divides
z(εz− z) = εz2− zz, the rational integer q also divides z2. This contradicts
Remark 3.25(i).

(iii) If ε = ±1 then q divides exactly one of Re (z) and Im (z) by (3.6) and

Remark 3.25(i). This means that Σ(R) = [Re (z)]2+[Im (z)]2 is a quadratic
residue modulo q. On the other hand, if ε = ±i then Σ(R) ≡ 2[Im (z)]2 6≡
0 (mod q) by (3.6) and Remark 3.25(i). The claim now follows, because
2 is a quadratic residue of a prime q if and only if q ≡ ±1 (mod 8) [43,
Theorem 95] and the product of two quadratic residues is still a quadratic
residue [43, Theorem 85].

The ring of Gaussian integers Γ = Z[i] is a Euclidean domain. That is, for any
a, b ∈ Γ with b 6= 0, there exist k, r ∈ Γ such that a = kb+ r and N(r) ≤ 1

2
N(b) [43,

Theorem 216]. The next proposition makes use of this fact.

Proposition 3.34: Let q be an odd rational integer and write z = kq + r where
k, r ∈ Γ = Z[i] and N(r) < 1

2
N(q). Then there is a unique unit ε of Γ such that

Rz,ε ∈ SOC(1
q
+ Γ) if and only if r = εr, that is, r and r are associates in Γ.

Proof : Note that εz − z =
(
εk − k

)
q + (εr − r).

Suppose Rz,ε ∈ SOC(1
q
+Γ) for some unit ε of Γ. Then by Lemma 3.28, q | (εz−z)

and hence, q | (εr − r). Since q is odd, (1− i)q still divides εr − r (see (3.6)). Thus,
N((1 − i)q) = 2N(q) | N(εr − r). However, (3.6) implies that N(εr − r) ≤ 4N(r) <
2N(q). Therefore, N(εr − r) = 0 and so r = εr.

Conversely, suppose r = εr for some unit ε of Γ. Then εr − r = 0 which implies
that q | (εz − z ). Hence, Rz,ε ∈ SOC(1

q
+ Γ) by Lemma 3.28. The uniqueness of ε

follows from Proposition 3.33(i).

Let R = Rz,ε ∈ SOC(Γ) and q be an odd rational integer. Express z as z = kq+r,
where k, r ∈ Γ and N(r) < 1

2
N(q). Observe that r and r are associates in Γ if and

only if r is a (rational integer) multiple of 1, i, 1 + i, or 1− i. If this is the case, then
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it follows from Proposition 3.34 that R ∈ SOC(1
q
+ Γ) with

ε =







1, if r ∈ Z
−1, if r ∈ iZ
i, if r ∈ (1− i)Z

−i, if r ∈ (1 + i)Z.
Proposition 3.34 leads to the following lower bound on the coincidence index of a
coincidence rotation of 1

q
+ Γ, where q is an odd rational integer.

Corollary 3.35: Let Γ = Z[i] and q be an odd rational integer. If R = Rz,ε ∈
SOC(1

q
+ Γ) \ P (Γ) then Σ(R) > 1

2
q2.

Proof : Write z = kq+ r where k, r ∈ Γ and N(r) < 1
2
N(q). Suppose Σ(R) = N(z) ≤

1
2
q2 = 1

2
N(q). Then k = 0 and r = z. Since z

z
is not a unit, R /∈ SOC(1

q
+ Γ) for all

units ε of Γ by Proposition 3.34.

3.4.3. Some examples. We now explicitly compute OC(x+Γ) for some values
of x ∈ Q(i). It follows from Proposition 3.10 that it is enough to compute OC(x+Γ)
only for values of x in some fundamental domain of the symmetry group G of Γ (a
crystallographic group of type ∗442). We choose this fundamental domain to be the
triangular region

{
x ∈ C : 0 ≤ Im (x) ≤ Re (x) ≤ 1

2

}
(see Figure 8).

1
2

1
2

Figure 8. A fundamental domain of the symmetry group G of Γ

Remark 3.36: Let Γ = Z[i] and x ∈ C.
(i) For values of x in the fundamental domain of G in Figure 8, OC(x + Γ)

contains a reflection symmetry if and only if Re (x) = 1
2
, Im (x) = 0, or

Re (x) = Im (x) by Lemma 3.19. It follows then from Corollary 3.24 that
OC(x+ Γ) is a subgroup of OC(Γ) whenever x lies on the boundary of the
fundamental domain.

(ii) The number of possible coincidence rotations and CSLs for a given index

m of the shifted lattice x + Γ shall be denoted by f̂x+Γ(m) and fx+Γ(m),
respectively.
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Example 3.37: x = 1
2
+ 1

2
i = 1

1−i

1
2

1
2

bc x

The denominator of x is q = 1 − i. One sees from (3.6) that q | (εz − z) for
all numerators z and units ε of Γ. Lemma 3.28 and Corollary 3.24 imply that
SOC(x+ Γ) = SOC(Γ) and OC(x+Γ) = OC(Γ). Since Sx−x ∈ Γ for all S ∈ P (Γ),

it follows from Proposition 3.9 that f̂x+Γ(m) = f̂Z2(m) and fx+Γ(m) = fZ2(m).

The results in Example 3.37 agree with those obtained in [59, Appendix A] (simply
shift the center of a Delaunay cell into the origin, see also Remark 3.7). Observe that
(S)OC(x+Γ) = (S)OC(Γ) if and only if x = m

2
+ n

2
i, where m and n are integers of

the same parity.

Example 3.38: x = 1
2

1
2

1
2

bc x

Here, x has denominator q = 2. Since the sum of Re (z) and Im (z) is odd by
Remark 3.25(i), one obtains from (3.6) that for all numerators z, q | (εz − z) if and
only if ε = ±1. Hence, by Lemma 3.28,

SOC(x+ Γ) = {Rz,ε ∈ SOC(Γ) : ε = ±1} ∼= C2 × Z(ℵ0).

By Corollary 3.24, OC(x+ Γ) = SOC(x+ Γ)⋊ 〈Tr〉 and is a subgroup of OC(Γ) of
index 2. Note that R1,−1 ∈ P (Γ) and R1,−1x−x = −1 ∈ Γ. Hence, by Proposition 3.9,

fx+Γ(m) = fZ2(m) but f̂x+Γ(m) = 2fx+Γ(m) = 1
2
f̂Z2(m).

Example 3.39: x0 =
1
3
and x1 =

1
3
+ 1

3
i

1
2

1
2

bc

bc

x0

x1

Both x0 and x1 have denominator q = 3. Observe that if r ∈ Γ lies inside the

disk with center at 0 and radius
√

1
2
N(q) = 3

2

√
2, then r and r are associates in Γ.

Hence, by Proposition 3.34, there is a unique unit ε of Γ for each numerator z so that
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Rz,ε ∈ SOC(1
3
+ Γ). Hence, SOC(xj + Γ) ∼= Z(ℵ0) for j ∈ {0, 1}. In addition, by

Corollary 3.24, OC(xj + Γ) = SOC(xj + Γ) ⋊ 〈T1,ij〉 and it is a subgroup of OC(Γ)

of index 4. Finally, f̂xj+Γ(m) = fxj+Γ(m) = fZ2(m).

Example 3.40: x0 =
1
4
, x1 =

1
4
+ 1

4
i = 1

2(1−i)
, and x2 =

1
2
+ 1

4
i

1
2

1
2

bc

bc bc

x0

x1 x2

The denominator of x0 and x2 is q = 4 while the denominator of x1 is q′ = 2(1 − i).
Note that 2 divides both q and q′ which means that SOC(xj +Γ) ⊆ SOC(1

2
+Γ) for

j ∈ {0, 1, 2}. Lemma 3.28, together with (3.6), yields

SOC(xj + Γ) =
{
Rz,ε ∈ SOC(Γ) : ε = (−1)Im(z)

} ∼= Z(ℵ0).

It follows from Corollary 3.24 that OC(xj + Γ) = SOC(xj + Γ) ⋊ 〈T1,ij〉 and is a

subgroup of index 4 in OC(Γ). Moreover, f̂xj+Γ(m) = fxj+Γ(m) = fZ2(m).

Example 3.41: x0 =
1
5
, 2

5
and x1 =

1
5
+ 1

5
i, 2

5
+ 2

5
i

1
2

1
2

bc bc

bc

bc bc

bc

x0

x1

The denominator here is q = 5. Write z = 5k + r where k, r ∈ Γ and N(r) < 25
2
. For

all possible remainders r, r and r are not associates in Γ exactly when N(r) = 5 or
N(r) = 10. The latter condition is equivalent to 5 | N(z), because N(z) = 25N(k) +
10Re (kr) + N(r). Therefore, r and r are associates in Γ if and only if 5 ∤ N(z). It
follows then from Proposition 3.34 that for all numerators z with 5 ∤ N(z), there is a
unique unit ε of Γ such that Rz,ε ∈ SOC(1

5
+Γ). This means that SOC(xj+Γ) ∼= Z(ℵ0)

for j ∈ {0, 1}. Moreover, OC(xj + Γ) is a subgroup of OC(Γ) with OC(xj + Γ) =
SOC(xj + Γ)⋊ 〈T1,ij〉 by Corollary 3.24. Furthermore,

f̂xj+Γ(m) = fxj+Γ(m) =

{
fZ2(m), if 5 ∤ m

0, otherwise.
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The function fxj+Γ(m) is still multiplicative and the Dirichlet series generating func-
tion for fxj

(m) is given by

Φxj+Γ(s) =
∞∑

m=1

fxj+Γ(m)

ms
=

∏

p≡1(4)
p 6=5

1 + p−s

1− p−s

= 1 + 2
13s

+ 2
17s

+ 2
29s

+ 2
37s

+ 2
41s

+ 2
53s

+ 2
61s

+ 2
73s

+ 2
89s

+ 2
97s

+ 2
101s

+ 2
109s

+ 2
113s

+ 2
137s

+ 2
149s

+ 2
157s

+ 2
169s

+ 2
173s

+ 2
181s

+ 2
193s

+ 2
197s

+ 4
221s

+ 2
229s

+ · · · .
The next example gives an instance when the set of coincidence isometries of a

shifted lattice does not form a group.

Example 3.42: x = 2
5
+ 1

5
i = i

1+2i

1
2

1
2

bcx

The denominator of x is q = 1 + 2i. Since 5 = lcm(q, q),

SOC(x+ Γ) = SOC(1
5
+ Γ) ∼= Z(ℵ0)

by Corollary 3.31. Note that OC(x+Γ) does not include a reflection symmetry since
x lies in the interior of the fundamental domain of G in Figure 8 (see Remark 3.36(i)).
Recall from Example 3.41 that there is a unique unit ε of Γ for each numerator z with
5 ∤ N(z) such that Rz,ε ∈ SOC(1

5
+ Γ). This fact, together with Proposition 3.23(ii),

implies that 5 | N(z) whenever Tz,ε = Rz,ε · Tr ∈ OC(x+ Γ).
Given a numerator z with 5 | N(z), either 1 + 2i or 1 − 2i (and not both) ap-

pears in the factorization of z into primes of Γ. If (1 − 2i) | z then zx ∈ Γ and
εzx− zx = εzx− zx ∈ Γ for all units ε of Γ. On the other hand, if (1 + 2i) | z then

εzx − zx = i(−εy−y)
5

, where y = (1 + 2i)z. Note that y is also a possible numerator
corresponding to some coincidence rotation of Γ. This implies that εzx − zx /∈ Γ
for all units ε of Γ. Otherwise, 5 would divide −εy − y and thus, by Lemma 3.28,
Ry,−ε ∈ SOC(1

5
+Γ). This is impossible because 5 | N(y). Therefore, by Lemma 3.19,

OC(x+ Γ) = SOC(x+ Γ) ∪ {Tz,ε : (1− 2i) | z} .
We claim that OC(x + Γ) is not a group. Indeed, let Tj = Tz,εj ∈ OC(x + Γ) \
SOC(x+Γ) for j ∈ {1, 2} with ε1 6= ε2. Then T2 · T1 = R1,ε2ε1 ∈ P (Γ) with ε2ε1 6= 1,
which means that T2 ·T1 /∈ SOC(x+Γ). It follows from Lemma 3.21 that OC(x+Γ)
is not a subgroup of OC(Γ).

Since SOC(x+Γ) = SOC(1
5
+Γ), we conclude that f̂x+Γ(m) = f̂ 1

5
+Γ(m). Denote

by F̂x+Γ(m) the number of coincidence isometries of x + Γ of index m. Note that
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Sx − x /∈ Γ for each non-identity rotation S ∈ P (Γ). Therefore, by Proposition 3.9,

fx+Γ(m) = F̂x+Γ(m). Here, fx+Γ(m) is also multiplicative and is given by

fx+Γ(p
r) =







2, if p ≡ 1 (mod 4) and p 6= 5

4, if p = 5

0, otherwise,

for primes p and r ∈ N. The Dirichlet series generating function for fx+Γ(m) reads

Φx+Γ(s) =
∞∑

m=1

fx+Γ(m)

ms
=

1 + 3 · 5−s

1− 5−s
·
∏

p≡1(4)
p 6=5

1 + p−s

1− p−s

= 1 + 4
5s

+ 2
13s

+ 2
17s

+ 4
25s

+ 2
29s

+ 2
37s

+ 2
41s

+ 2
53s

+ 2
61s

+ 8
65s

+ 2
73s

+ . . . .

Example 3.43: x1 =
1
6
+ 1

6
i = 1

3(1−i)
and x2 =

1
2
+ 1

6
i = 2−i

3(1−i)

1
2

1
2

bc bc
x1

x2

The denominator of both x1 and x2 is q = 3(1− i). Since 3 and 1− i are relatively
prime, one obtains from Corollary 3.30 and Examples 3.37 and 3.39 that

SOC(xj + Γ) = SOC(1
3
+ Γ) ∩ SOC( 1

1−i
+ Γ) = SOC(1

3
+ Γ) ∼= Z(ℵ0),

for j ∈ {1, 2}. In addition, OC(xj + Γ) = SOC(xj + Γ) ⋊ 〈Tz,ij〉 is a group by

Corollary 3.24. Finally, f̂xj+Γ(m) = fxj+Γ(m) = fZ2(m).

Example 3.44: x0 =
1
6
, x1 =

1
3
+ 1

6
i, and x2 =

1
2
+ 1

3
i

1
2

1
2

bc

bc

bc

x0

x1

x2

The denominator of xj is q = 6 = 2 · 3 for j ∈ {0, 1, 2}. Hence, by Corollary 3.30,

SOC(xj + Γ) = SOC(1
2
+ Γ) ∩ SOC(1

3
+ Γ).

From Example 3.38, SOC(1
2
+ Γ) = {Rz,ε ∈ SOC(Γ) : ε = ±1}. Write z = 3k + r,

where k, r ∈ Γ and N(r) < 9
2
. Note that N(z) = 9N(k) + 6Re (kr) + N(r) ≡

N(r) (mod 3). Also, for all possible remainders r, ε = r
r

= ±1 if and only if
N(r) ≡ 1 (mod 3). It follows from Proposition 3.34 that if z is a numerator with
N(z) ≡ 1 (mod 3), then Rz,ε ∈ SOC(xj + Γ) for some unique ε ∈ {1,−1}. Thus,
SOC(xj + Γ) ∼= Z(ℵ0).
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For j ∈ {0, 2}, OC(xj +Γ) = SOC(xj +Γ)⋊ 〈T1,ij〉 is a group by Corollary 3.24.

Also, f̂xj+Γ(m) = fxj+Γ(m) where

fxj+Γ(m) =

{
fZ2(m), if m ≡ 1 (mod 3)

0, otherwise.

In this instance, fxj+Γ(m) is not multiplicative. For example, fxj+Γ(85) = 4 but
fxj+Γ(5) · fxj+Γ(17) = 0.

Because x1 lies in the interior of the fundamental domain of G in Figure 8,
OC(x1 + Γ) does not contain a reflection symmetry (refer to Remark 3.36). It follows
then from Proposition 3.23(ii) that if the coincidence reflection Tz,ε ∈ OC(x1 + Γ),
then N(z) ≡ 2 (mod 3). Conversely, suppose that z is a numerator with N(z) ≡
2 (mod 3). Note that the numerator of the shift x1, p = 2 + i, is a factor of a split-
ting prime in Γ. Hence, π := zp is also a numerator corresponding to some coincidence
rotation of Γ. In fact, because N(π) = N(z) ·N(p) ≡ 1 (mod 3), Rπ,ε ∈ SOC(1

6
+Γ)

for some unique ε ∈ {1,−1}. This means that 6 divides επ − π by Lemma 3.28.
One obtains then that εzx1 − zx1 = 1

6
(επ − π) ∈ Γ. Thus, Tz,ε ∈ OC(x1 + Γ) by

Lemma 3.19. All in all, one has

OC(x1 + Γ) = SOC(x1 + Γ) ∪
{

Tz,ε ∈ OC(Γ) \ SOC(Γ) : N(z) ≡ 2 (mod 3) and ε =
{ 1, if Im(zp)≡0 (mod 3)

−1, if Re(zp)≡0 (mod 3)

}

.

Since the factorization of N(q) = 36 consists only of powers of inert and ramified

primes of Γ, OC(x1 + Γ) is again a group by Proposition 3.32 . Lastly, f̂x1+Γ(m) =

f̂ 1
6
+Γ(m) while F̂x1+Γ(m) = fx1+Γ(m) = fZ2(m), where F̂x1+Γ(m) counts the number

of coincidence isometries of x1 + Γ of a given index m.

3.5. Corresponding results for Z-modules

The concepts of cosubmodule, index of a cosubmodule, and affine coincidence isom-
etry of Z-modules in Rd, as well as cosubmodule, (linear) coincidence isometry, co-
incidence site module, and coincidence index of a coincidence isometry of shiftedZ-modules are defined in exact analogy to Sections 3.1 and 3.2. In addition, by
Remark 1.10, all results stated in both sections also hold for Z-modules.

Moreover, general results obtained in Section 3.4 about the coincidences of a
shifted square lattice are also true for planar n-modules with class number 1 (see
Section 1.2.2). To be more exact, we write explicitly the corresponding results for
planar n-modules Mn = Z[ξn] without proof. Recall that coincidence rotations and
coincidence reflections of Mn are also written as Rz,ε and Tz,ε, respectively (refer to
Remark 1.12).

Lemma 3.45: Let x ∈ C, R = Rz,ε ∈ SOC(Mn), and T = R · Tr.

(i) R ∈ SOC(x+Mn) if and only if (εz − z)x ∈ Mn.
(ii) T ∈ OC(x+Mn) if and only if εzx− zx ∈ Mn.
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Theorem 3.46: Let x ∈ C.
(i) The set SOC(x+Mn) is a subgroup of SOC(Mn).
(ii) The set OC(x + Mn) is a subgroup of OC(Mn) if and only if for any

coincidence reflections T1, T2 ∈ OC(x + Mn), the coincidence rotation
T2 · T1 ∈ SOC(x+Mn).

(iii) If OC(x+Mn) contains a reflection symmetry T ∈ P (Mn), then

OC(x+Mn) = SOC(x+Mn)⋊ 〈T 〉
and is a subgroup of OC(Mn).

(iv) If OC(x+Mn) does not contain any reflection symmetry T ∈ P (Mn), then
the coincidence reflection Tz,ε /∈ OC(x+Mn) for all units ε of Mn whenever
Rz,ε′ ∈ SOC(x+Mn) for some unit ε′.

Theorem 3.47: Let x ∈ C.
(i) If x /∈ Q(ξn) then SOC(x+Mn) = {1}.
(ii) Let x = p

q
∈ Q(ξn) where p, q ∈ Mn with p and q relatively prime, and

R = Rz,ε ∈ SOC(Mn). Then R ∈ SOC(x +Mn) if and only if q divides
εz − z. Consequently, SOC(x+Mn) = SOC(1

q
+Mn).

Corollary 3.48:

(i) If q1, q2 ∈ Mn such that q1 | q2, then SOC( 1
q2
+Mn) ⊆ SOC( 1

q1
+Mn).

(ii) If q1, q2 ∈ Mn then

SOC( 1
q1
+Mn) ∩ SOC( 1

q2
+Mn) = SOC

(
1

lcm(q1,q2)
+Mn

)
.

In particular, if q1 and q2 are relatively prime then

SOC( 1
q1
+Mn) ∩ SOC( 1

q2
+Mn) = SOC

(
1

q1q2
+Mn

)
,

and in general, if q =
∏

j

q
rj
j where the qj’s are primes in Mn, then

SOC(1
q
+Mn) =

⋂

j

SOC

(

1

q
rj
j

+Mn

)

.

(iii) If q ∈ Mn then SOC(1
q
+Mn) = SOC(1

q
+Mn) = SOC

(
1

lcm(q,q)
+Mn

)
.

The proofs of these results proceed in the same fashion as the proofs of corre-
sponding results in the square lattice case.
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Example 3.49: Consider the tenfold module M = M5 = Z[ξ], where ξ = ξ5 = e2πi/5.
Denote the golden ratio by τ = 1

2

(
1+

√
5
)
. For z = a+ bξ + cξ2 + dξ3 ∈ M, one has

εz − z =







ξ2(1− ξ)[(c− d) + bτ ], if ε = 1

(−2a + b) + (−b + c+ d)τ, if ε = −1

(1− ξ)[−a+ (d− b)τ ], if ε = ξ

ξ3[(b+ d− 2c) + (a− b− d)τ ], if ε = −ξ

ξ3(1− ξ)[(b− c) + (a− d)τ ], if ε = ξ2

ξ[(a+ d) + (b+ c− a− d)τ ], if ε = −ξ2

ξ(1− ξ)[d+ (c− a)τ ], if ε = ξ3

ξ4[(a− 2b+ c) + (−a− c+ d)τ ], if ε = −ξ3

ξ4(1− ξ)[(a− b)− cτ ], if ε = ξ4

ξ2[(c− 2d) + (a+ b− c)τ ], if ε = −ξ4.

(3.8)

In particular, if z = 1,

εz − z =







0, if ε = 1

− 2, if ε = −1

− (1− ξ), if ε = ξ

ξ3τ, if ε = −ξ

ξ3(1− ξ)τ, if ε = ξ2

ξ(1− τ), if ε = −ξ2

− ξ(1− ξ)τ, if ε = ξ3

ξ4(1− τ), if ε = −ξ3

ξ4(1− ξ), if ε = ξ4

ξ2τ, if ε = −ξ4.

(3.9)

One sees from (3.9) that if z = 1, then εz−z is a unit of M for ε = −ξj for 1 ≤ j ≤ 4.
It follows from Lemma 3.45 that whenever x /∈ M, SOC(x+M) must be a proper
subgroup of SOC(M).

Set x = 1
2
(1 + i cot π

5
) = 4+3ξ+2ξ2+ξ3

5
= 1

1−ξ
∈ Q(ξ). The denominator of x is

q = 1 − ξ. We claim that for all numerators z, q | (εz − z) if and only if ε = ξj

for 0 ≤ j ≤ 4. The reverse direction is clear from (3.8). Conversely, assume that
q | (εz − z) for ε = −ξj with 0 ≤ j ≤ 4. Then by Lemma 3.45, Rz,ε ∈ SOC(x+M).
Take R′ = Rz,1 ∈ SOC(x + M). Since SOC(x + M) is a group, R · R′ = R1,ε ∈
SOC(x +M). A look at (3.9) shows that this is impossible and this completes the
proof of our claim.

Hence, by Lemma 3.45,

SOC(x+M) =
{
Rz,ε ∈ SOC(M) : ε = ξj, 0 ≤ j ≤ 4

} ∼= C5 × Z(ℵ0)



52 3. COINCIDENCES OF SHIFTED LATTICES

and is a subgroup of SOC(M) of index 2. Furthermore, −x − x = −1 ∈ M.
This means that the reflection symmetry T1,−1 ∈ P (M) is a coincidence reflection
of x +M by Lemma 3.45. It follows then from Theorem 3.46(iii) that OC(x +M)
forms a subgroup of OC(M) of index 2 and is given by

OC(x+M) = SOC(x+M)⋊ 〈T1,−1〉.



CHAPTER 4

Coincidences of multilattices

The last chapter of this thesis deals with the solution of the coincidence problem
for multilattices. By a multilattice, we mean the union of a lattice and a finite number
of translated copies of the lattice. The first section considers the simplest case: the
coincidences of a multilattice that includes only two distinct copies of a lattice. This
leads to the solution of the coincidence problem for the diamond packing as well as
for the 2 × 1–primitive rectangular lattice. The results are then extended to general
multilattices in the following section. By treating a lattice as a multilattice consisting
of some sublattice and all of its cosets, connections among color coincidences, the
coincidence indices of the sublattice, and the coincidences of the cosets (viewed as
shifted copies of the sublattice) are established. Examples involving primitive and
centered rectangular lattices are given at the end of the chapter to illustrate all of
these ideas.

4.1. The union of a lattice and a shifted copy of the lattice

Let Γ be a lattice in Rd, and x ∈ Rd with x /∈ Γ. Consider the union L of Γ and
the shifted lattice x + Γ, that is, L := Γ ∪ (x + Γ). An R ∈ O(d) is said to be a
(linear) coincidence isometry of L if L(R) := L ∩RL contains a cosublattice of Γ or
x+ Γ. The coincidence index of R with respect to L, denoted by ΣL(R), is the ratio
of the density of points in L with the density of points in L(R). Note that L is in
general not a lattice and ΣL(R) < ∞ is not necessarily an integer.

4.1.1. Solution of the coincidence problem for L. The following lemma
characterizes the intersections Γ ∩R(x+ Γ) and (x+ Γ) ∩RΓ. It is a special case of
Lemma 4.13, which will be stated and proved in the next section.

Lemma 4.1: Let Γ be a lattice in Rd, and x ∈ Rd \ Γ. Then

(i) Γ∩R(x+Γ) is a cosublattice of Γ if and only if R ∈ OC(Γ) and Rx ∈ Γ+RΓ.
In addition, if Rx ∈ ℓ+RΓ where ℓ ∈ Γ, then Γ∩R(x+Γ) = ℓ+Γ(R) with
ℓ /∈ Γ(R).

(ii) (x + Γ) ∩ RΓ is a cosublattice of x + Γ if and only if R ∈ OC(Γ) and
x ∈ Γ + RΓ. In addition, if x ∈ ℓ + RΓ where ℓ ∈ Γ, then (x+ Γ) ∩ RΓ =
(x− ℓ) + Γ(R).

With the help of Lemma 4.1, one can now describe the various instances when
R ∈ O(d) is a coincidence isometry of L, as well as the resulting intersection L(R)
and the coincidence index ΣL(R).

53



54 4. COINCIDENCES OF MULTILATTICES

Theorem 4.2: Let L = Γ∪ (x+Γ), where Γ is a lattice in Rd and x ∈ Rd \Γ. Then
R ∈ O(d) is a coincidence isometry of L if and only if R ∈ OC(Γ). Moreover, if
R ∈ OC(Γ) with

(i) x, Rx, and Rx− x /∈ Γ +RΓ, then L(R) = Γ(R) and ΣL(R) = 2Σ(R).
(ii) Rx− x ∈ ℓ+RΓ for some ℓ ∈ Γ, and x /∈ Γ +RΓ, then

L(R) = Γ(R) ∪ [(x+ ℓ) + Γ(R)]

and ΣL(R) = Σ(R).
(iii) Rx ∈ ℓ+RΓ for some ℓ ∈ Γ, and x /∈ Γ+RΓ, then L(R) = Γ(R)∪ [ℓ+Γ(R)]

with ℓ /∈ Γ(R), and ΣL(R) = Σ(R).
(iv) x ∈ ℓ+RΓ for some ℓ ∈ Γ, and Rx /∈ Γ +RΓ, then

L(R) = Γ(R) ∪ [(x− ℓ) + Γ(R)]

and ΣL(R) = Σ(R).
(v) x ∈ ℓ1 +RΓ and Rx = ℓ2 +RΓ for some ℓ1, ℓ2 ∈ Γ, then

L(R) = Γ(R) ∪ [ℓ2 + Γ(R)] ∪ [(x− ℓ1) + Γ(R)] ∪ [(x+ ℓ2 − ℓ1) + Γ(R)]

with ℓ2 /∈ Γ(R), and ΣL(R) = 1
2
Σ(R).

Proof : Write L(R) = L ∩RL as

L(R) = (Γ ∩ RΓ) ∪ [Γ ∩R(x+ Γ)] ∪ [(x+ Γ) ∩ RΓ] ∪ [(x+ Γ) ∩ R(x+ Γ)].

The claim now follows directly from Theorem 3.8 and Lemma 4.1

Thus, the set of coincidence isometries of L is precisely OC(Γ). Furthermore, for
any coincidence isometry R of L, the intersection L(R) is the union of cosublattices
of Γ and x+ Γ, one of which is always the CSL Γ(R).

4.1.2. Coincidences of the diamond packing. The diamond packing or tetra-
hedral packing is made up of two face-centered cubic (f.c.c.) lattices, wherein one of
the f.c.c. lattice is a translate of the other by 1

4
(a, a, a), with a being the length of the

edges of a conventional unit cell of the f.c.c. lattice (see Figure 9). It is also known as
the packing D+

3 and is not a lattice [17]. An equivalent way of constructing the dia-
mond packing as a motif of vertices of tetrahedrons and their barycenters can be found
in [73]. The diamond packing occurs in nature as the crystal structure of certain ma-
terials such as diamond (hence, the name), tin, silicon, and germanium. Even though
studies on grain boundaries of diamond appear in the literature [46, 32, 57, 1], no
systematic study of the coincidences of the diamond packing has been done. Here, we
use the results of the previous subsection to compute for the coincidence isometries,
coincidence indices, and the resulting intersections of the diamond packing.

Take Γ = ΓF to be an f.c.c. lattice. We identify R3 with Im (H), and we associate
Γ with Γ = 2Im (L) ∪ [(1, 1, 0) + 2Im (L)] ∪ [(0, 1, 1) + 2Im (L)] ∪ [(1, 0, 1) + 2Im (L)]
(see Subsection 1.2.3). The dual lattice of Γ is the body-centered cubic lattice
Γ∗ = ΓB = Im (J), and the diamond packing is given by D+

3 = Γ ∪ (x + Γ), where
x = 1

2
(1, 1, 1). Hence, the group of coincidence isometries of D+

3 is OC(Γ) = OC(Γ∗)
by Theorems 4.2 and 1.4. Thus, a coincidence rotation R = Rq of D

+
3 is parametrized

by a primitive quaternion q = (q0, q1, q2, q3) so that R(x) = qxq−1 for all x ∈ Im (H)
(see Subsection 1.2.4).
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Figure 9. A unit cell of the diamond packing. The white and gray
dots are part of the f.c.c. lattice while the black dots belong to the
shifted f.c.c. lattice

Theorems 4.2 and 3.8 suggest that it is imperative that we compute for OC(x+Γ)
to determine the coincidence index of a coincidence isometry of D+

3 . To this end, note
that Γ+RΓ = (Γ∗ ∩ RΓ∗)∗ = [ΓB(R)]∗, that is, Γ+RΓ is the dual of the CSL ΓB(R).
The next lemma, stated in [81] without proof, gives a spanning set for ΓB(R) over Z.
Lemma 4.3: Let ΓB = Im (J) be the body-centered cubic lattice and R = Rq ∈
SOC(ΓB) where q = (q0, q1, q2, q3) is a primitive quaternion. Denote by

r0 := Im (q) = (q1, q2, q3), r2 := Im (qj) = (−q3, q0, q1),

r1 := Im (qi) = (q0, q3,−q2), r3 := Im (qk) = (q2,−q1, q0).
(4.1)

Then the CSL ΓB(R) is the Z-span of the following vectors:

(i) r0, r1, r2, r3,
1
2
(r0 + r1 + r2 + r3) if |q|2 is odd

(ii) r0,
1
2
(r0 + r1),

1
2
(r0 + r2),

1
2
(r0 + r3) if |q|2 ≡ 2 (mod 4)

(iii) 1
2
r0,

1
2
r1,

1
2
r2,

1
2
r3 if |q|2 ≡ 0 (mod 4)

Proof : Note that

R(r0) = r0, R(q0,−q3, q2) = r1, R(q3, q0,−q1) = r2, and R(−q2, q1, q0) = r3.

Hence, rj ∈ ΓB(R) for 0 ≤ j ≤ 3. This means that for 0 ≤ j ≤ 3, the lattice

Γj generated by the vectors rk with k 6= j is a sublattice of ΓB of index 2qj|q|2,
whenever qj 6= 0 (see [4, proof of Proposition 3.2]). Beyond Γj, consider the lattice
Γ′ generated by all vectors rj , that is, Γ

′ = 〈r0, r1, r2, r3〉Z. Then Γ′ contains each Γj

as a sublattice, and is itself a sublattice of ΓB(R).
Now, observe that q0r0 − q1r1 − q2r2 − q3r3 = 0. This implies that each vector rj

may be written as a rational linear combination of rk, with k 6= j, as long as qj 6= 0.
Since q is primitive, trj with t ∈ Z is an integer linear combination of rk, k 6= j,
if and only if qj | t. Consequently, if qj 6= 0, then Γj is of index qj in Γ′. Thus,

[ΓB(R) : Γ′] = 2|q|2
Σ(R)

.

If |q|2 is odd then Σ(R) = |q|2 (see Subsection 1.2.4), and so [ΓB(R) : Γ′] = 2.
Taking the vector 1

2
(r0 + r1 + r2 + r3) ∈ ΓB(R) \ Γ′ proves (i). On the other
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hand, [ΓB(R) : Γ′] = 4 whenever |q|2 ≡ 2 (mod 4). Statement (ii) follows be-
cause 1

2
(r0 + rj) ∈ ΓB(R) \ Γ′ for j ∈ {1, 2, 3}. Finally, if |q|2 ≡ 0 (mod 4) then

[ΓB(R) : Γ′] = 8. In this instance, consider the lattice Γ′′ = 〈1
2
r0,

1
2
r1,

1
2
r2,

1
2
r3〉Z.

Since Γ′ = 2Γ′′, Γ′ is a sublattice of Γ′′ of index 8. However, 1
2
rj ∈ ΓB(R) for

0 ≤ j ≤ 3 because |q|2 ≡ 0 (mod 4). Hence, Γ′′ is contained in ΓB(R), and thus,
Γ′′ = ΓB(R). This proves (iii).

Remark 4.4: In the succeeding calculations, we embed Im (H) in H via the canonical
projection. That is, vectors in Im (H) shall be treated as quaternions whose real part
is 0.

We now proceed to determine OC(x+ Γ). First, observe that for u ∈ {e, i, j,k},
R = Rq ∈ SOC(Γ), and x ∈ Im (H),

〈Rx, Im (qu)〉 =
〈
x,R−1[Im (qu)]

〉
=

〈
x, q−1[Im (qu)]q

〉
= 〈x, uq〉 . (4.2)

Hence,
〈Rx− x, Im (qu)〉 = 〈uq, x〉 − 〈qu, x〉 = 〈uq − qu, x〉 .

Denote by × the usual vector (cross) product of two vectors in Im (H) ∼= R3. Given
a, b, c ∈ Im (H), one has a × b = 1

2
(ab − ba) and 〈a× b, c〉 = 〈a, b× c〉 (see for

instance, [49]). Since uq − qu = uIm (q)− Im (q) u for u ∈ {i, j,k},
〈Rx− x, Im (qu)〉 = −2 〈Im (q)× u, x〉 = −2 〈Im (q) , u× x〉 = −2 〈q, u× x〉 .

Therefore, taking the vectors in (4.1) yields

〈Rx− x, r0〉 = 0, 〈Rx− x, r2〉 = −2 〈q, j× x〉 ,
〈Rx− x, r1〉 = −2 〈q, i× x〉 , 〈Rx− x, r3〉 = −2 〈q,k× x〉 . (4.3)

Let ℓ ∈ ΓB(R). Consider the following three possibilities:

Case I: |q|2 is odd
By Lemma 4.3, ℓ = ar0 + br1 + cr2 + dr3 + 1

2
e(r0 + r1 + r2 + r3), for some

a, b, c, d, e ∈ Z. It follows from (4.3) that

〈Rx− x, ℓ〉 = −2 〈q, (0, b, c, d)× x〉 − e 〈q, (0, 1, 1, 1)× x〉 .
Substituting x = 1

2
(0, 1, 1, 1) gives

〈Rx− x, ℓ〉 = −〈q, (0, b, c, d)× (0, 1, 1, 1)〉 ∈ Z
for all a, b, c, d, e ∈ Z. This means that Rx − x ∈ [ΓB(R)]∗ = Γ + RΓ, and so
Rq ∈ SOC(x+ Γ) whenever |q|2 is odd by Theorem 3.8.

Case II: |q|2 ≡ 2 (mod 4)
Write ℓ = ar0 +

1
2
b(r0 + r1) +

1
2
c(r0 + r2) +

1
2
d(r0 + r3), for some a, b, c, d ∈ Z.

Thus,
〈Rx− x, ℓ〉 = −〈q, (0, b, c, d)× x〉 .

Set x = 1
2
(0, 1, 1, 1). Since |q|2 ≡ 2 (mod 4), q = r + 2s for some s ∈ J and

r ∈ {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}. Then
〈Rx− x, ℓ〉 = −1

2
〈r, (0, b, c, d)× (0, 1, 1, 1)〉 − 〈s, (0, b, c, d)× (0, 1, 1, 1)〉

︸ ︷︷ ︸

∈Z /∈ Z
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for some values of b, c, d ∈ Z, because
1
2
〈r, (0, b, c, d)× (0, 1, 1, 1)〉 =







1
2
(c− d), if r = (1, 1, 0, 0)

1
2
(d− b), if r = (1, 0, 1, 0)

1
2
(b− c), if r = (1, 0, 0, 1).

Therefore, Rx− x /∈ Γ +RΓ and hence, Rq /∈ SOC(x+ Γ) if |q|2 ≡ 2 (mod 4).

Case III: |q|2 ≡ 0 (mod 4)
One can express ℓ as ℓ = 1

2
ar0 +

1
2
br1 +

1
2
cr2 +

1
3
dr3 for some a, b, c, d ∈ Z. This

means that
〈Rx− x, ℓ〉 = −〈q, (0, b, c, d)× x〉 .

Take x = 1
2
(0, 1, 1, 1) and write q = r + 2s where s ∈ L and r = (1, 1, 1, 1), which is

possible because |q|2 ≡ 0 (mod 4). This yields

〈Rx− x, ℓ〉 = −〈s, (0, b, c, d)× (0, 1, 1, 1)〉 ∈ Z,
for all a, b, c, d ∈ Z. Consequently, Rx−x ∈ Γ+RΓ and Rq ∈ SOC(x+Γ) whenever

|q|2 ≡ 0 (mod 4).
Therefore, SOC(x+ Γ) =

{
Rq ∈ SOC(Γ) : |q|2 6≡ 2 (mod 4)

}
.

It remains to identify those coincidence reflections T = Tq ∈ OC(Γ) that are also
in OC(x+ Γ) for x = 1

2
(1, 1, 1). Since T = −R, where R = Rq ∈ SOC(Γ), it follows

from Theorem 3.8 that T ∈ OC(x+ Γ) if and only if −Rx− x ∈ Γ +RΓ.
By (4.2), one has 〈−Rx − x, Im (qu)〉 = −〈uq + qu, x〉, for u ∈ {e, i, j,k}. Thus,

the following holds (see (4.1)):

〈−Rx− x, r0〉 = −2 〈q, x〉 , 〈Rx− x, r2〉 = −2[Re (q)] 〈j, x〉 ,
〈−Rx− x, r1〉 = −2[Re (q)] 〈i, x〉 , 〈Rx− x, r3〉 = −2[Re (q)] 〈k, x〉 . (4.4)

Consider an arbitrary element ℓ ∈ ΓB(R). We take a look at the three different
cases, as before. Note that Lemma 4.3 still holds for T , since T and R generate the
same CSL.

Case I: |q|2 is odd
If follows from (4.4) that

〈−Rx − x, ℓ〉 = −2a 〈q, x〉 − 2[Re (q)] 〈(0, b, c, d), x〉
− e(〈q, x〉+ [Re (q)] 〈(0, 1, 1, 1), x〉)

for some a, b, c, d, e ∈ Z.
Set x = 1

2
(0, 1, 1, 1). Since |q|2 ≡ 1 (mod 4), one may write q = r + 2s where

s ∈ J and r ∈ {e, i, j,k}. Then
〈−Rx − x, ℓ〉 = −a 〈q, (0, 1, 1, 1)〉 − [Re (q)](b+ c+ d)

− e[3Re (s) + 〈s, (0, 1, 1, 1)〉
︸ ︷︷ ︸

∈Z ]− 3
2
eRe (r)− 1

2
e 〈r, (0, 1, 1, 1)〉 /∈ Z

for odd values of e. Therefore, −Rx− x /∈ Γ+RΓ, and so Tq /∈ OC(x+Γ) whenever

|q|2 ≡ 1 (mod 4).
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Case II: |q|2 ≡ 2 (mod 4)
Here,

〈−Rx− x, ℓ〉 = −2a 〈q, x〉 − (b+ c+ d) 〈q, x〉 − [Re (q)] 〈(0, b, c, d), x〉 ,
where a, b, c, d ∈ Z.

Let x assume the value 1
2
(0, 1, 1, 1). Express q as q = r + 2s for some s ∈ J and

r ∈ {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}. Then
〈−Rx− x, ℓ〉 = −a 〈q, (0, 1, 1, 1)〉 − (b+ c+ d)[1 + Re (s) + 〈s, (0, 1, 1, 1)〉

︸ ︷︷ ︸

∈Z ] ∈ Z
for all a, b, c, d ∈ Z. Hence, −Rx − x ∈ Γ + RΓ, which implies that Tq ∈ OC(x+ Γ)

if |q|2 ≡ 2 (mod 4).

Case III: |q|2 ≡ 0 (mod 4)
In this instance, one has

〈−Rx− x, ℓ〉 = −a 〈q, x〉 − [Re (q)] 〈(0, b, c, d), x〉
for some a, b, c, d ∈ Z.

Substitute x = 1
2
(0, 1, 1, 1) and write q = r + 2s, where s ∈ L and r = (1, 1, 1, 1).

This yields

〈−Rx− x, ℓ〉 = −a 〈s, (0, 1, 1, 1)〉 − (b+ c+ d)Re (s)− 1
2
(3a+ b+ c+ d) /∈ Z

whenever 3a + b + c + d is odd. Thus, −Rx − x /∈ Γ + RΓ, and consequently,
Tq /∈ OC(x+ Γ) whenever |q|2 ≡ 0 (mod 4).

Hence, OC(x+Γ) = SOC(x+Γ) ∪
{
Tq ∈ OC(Γ) \ SOC(Γ) : |q|2 ≡ 2 (mod 4)

}
.

We summarize the results for OC(x+ Γ) in the next lemma.

Lemma 4.5: Let Γ be the f.c.c. lattice Γ = 2Im (L)∪ [(1, 1, 0)+2Im (L)]∪ [(0, 1, 1)+
2Im (L)] ∪ [(1, 0, 1) + 2Im (L)], and x = 1

2
(1, 1, 1). Then (S)OC(x+ Γ) is a subgroup

of (S)OC(Γ) of index 2 given by

SOC(x+ Γ) =
{
Rq ∈ SOC(Γ) : |q|2 6≡ 2 (mod 4)

}
, and

OC(x+ Γ) = SOC(x+ Γ) ∪
{
Tq ∈ OC(Γ) \ SOC(Γ) : |q|2 ≡ 2 (mod 4)

}
.

If fx+Γ(m), f̂x+Γ(m), and F̂x+Γ(m) denote the number of CSLs, coincidence rotations,
and coincidence isometries of x+Γ of index m, respectively, then fx+Γ(m) = fZ3(m),

f̂x+Γ(m) = 12fx+Γ(m), and F̂x+Γ(m) = 24fx+Γ(m).

Proof : The explicit expressions for (S)OC(x+ Γ) were obtained from the computa-
tions preceding the lemma.

It follows from Theorem 1.13 that R ∈ SOC(x+Γ) if and only if R is parametrized
by a quaternion q with |q|2 = 2tα, where t is an even integer and α is odd. Similarly,
the coincidence reflection T ∈ OC(x + Γ) if and only if T is parametrized by a

quaternion q with |q|2 = 2tα, where t and α are odd integers. With these two criteria,
one concludes by going through all possible cases that (S)OC(x+Γ) is closed under
composition. Hence, by Proposition 3.14, (S)OC(x+ Γ) is a group.

Now, Sx − x ∈ Γ for all S ∈ P (Γ) ∩ OC(x + Γ). Thus, by Proposition 3.9,

fx+Γ(m) = fZ3(m). Furthermore, expressions for f̂x+Γ(m) and F̂x+Γ(m) follow from
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the fact that there are 12 rotations Rq ∈ P (Γ) with |q|2 ≡ 1 (mod 4) or |q|2 ≡
0 (mod 4), and 12 rotoreflection symmetries Tq ∈ P (Γ) with |q|2 ≡ 2 (mod 4).

Finally, we show that both x and Rx are not in Γ +RΓ. To do this, it suffices to
show that 〈x, ℓ〉 /∈ Z and 〈Rx, ℓ〉 /∈ Z, respectively, for some ℓ ∈ ΓB(R).

Given a, b ∈ H, one has 〈a, b〉 = 1
2

(
ab+ ba

)
[49]. Thus, for u ∈ {e, i, j,k}, (with

Remark 4.4 still in effect),

〈x, Im (qu)〉 = 〈x, qu〉 = 1
2
(xqu+ qux) = 〈xu, q〉 .

This means that (refer to (4.1))

〈x, r0〉 = 〈x, q〉 , 〈x, r2〉 = −〈xj, q〉 ,
〈x, r1〉 = −〈xi, q〉 , 〈x, r3〉 = −〈xk, q〉 . (4.5)

Again, we look at the following three possibilities for an arbitrary ℓ ∈ ΓB(R).

Case I: |q|2 is odd
It follows from (4.5) that

〈x, ℓ〉 = a 〈x, q〉 − b 〈xi, q〉 − c 〈xj, q〉 − d 〈xk, q〉+ 1
2
e 〈x, q(1, 1, 1, 1)〉 ,

for some a, b, c, d, e ∈ Z.
Take x = 1

2
(0, 1, 1, 1) and write x = r + 2s for some s ∈ J and r ∈ {e, i, j,k}.

Since
1
2
e 〈x, q(1, 1, 1, 1)〉 = e[1

4
〈(0, 1, 1, 1), r(1, 1, 1, 1)〉+ 〈(0, 1, 1, 1), s′〉],

where s′ = 1
2
s(1, 1, 1, 1) ∈ J, 〈x, ℓ〉 /∈ Z if a = b = c = d = 0 and e 6≡ 0 (mod 4).

Therefore, x /∈ Γ + RΓ. Also, since Rx − x ∈ Γ + RΓ whenever |q|2 is odd,
Rx /∈ Γ +RΓ.
Case II: |q|2 ≡ 2 (mod 4)

Here,

〈x, ℓ〉 = a 〈x, q〉+ 1
2
b 〈x(1,−1, 0, 0), q〉+ 1

2
c 〈x(1, 0,−1, 0), q〉+ 1

2
d 〈x(1, 0, 0,−1), q〉

for some a, b, c, d ∈ Z.
Substitute x = 1

2
(0, 1, 1, 1), and express q = r + 2s where s ∈ J and r ∈

{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}. Several subcases arise.
(i) If s ∈ L then

a 〈x, q〉 = 1
2
a+ a 〈(0, 1, 1, 1), s〉 .

Hence, 〈x, ℓ〉 /∈ Z if b = c = d = 0 and a is odd.
(ii) If s ∈ 1

2
(1, 1, 1, 1) + L and r ∈ {(1, 0, 1, 0), (1, 0, 0, 1)}, then

1
2
b 〈x(1,−1, 0, 0), q〉 = b+ 1

4
b 〈(1, 1, 0, 2), r + 2t〉 ,

for some t ∈ L. Hence, 〈x, ℓ〉 /∈ Z if a = c = d = 0 and b 6≡ 0 (mod 4).
(iii) If s ∈ 1

2
(1, 1, 1, 1) + L and r = (1, 1, 0, 0), then

1
2
c 〈x(1, 0,−1, 0), q〉 = c+ 1

4
c 〈(1, 2, 1, 0), r+ 2t〉 ,

for some t ∈ L. Hence, 〈x, ℓ〉 /∈ Z if a = b = d = 0 and c 6≡ 0 (mod 4).
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In all instances, x /∈ Γ+RΓ. Also, Rx /∈ Γ+RΓ because −Rx−x ∈ Γ+RΓ whenever
|q|2 ≡ 2 (mod 4).
Case III. |q|2 ≡ 0 (mod 4)

For this case, one obtains

〈x, ℓ〉 = 1
2
a 〈x, q〉 − 1

2
b 〈xi, q〉 − 1

2
c 〈xj, q〉 − 1

2
d 〈xk, q〉

for some a, b, c, d ∈ Z.
Set x = 1

2
(0, 1, 1, 1). Upon writing q = r + 2s for some s ∈ L and r = (1, 1, 1, 1),

one has
1
2
a 〈x, q〉 = 1

4
a[3 + 2 〈(0, 1, 1, 1), s〉].

Thus, 〈x, ℓ〉 /∈ Z when b = c = d = 0 and a 6≡ 0 (mod 4). Hence, x /∈ Γ +RΓ. Since
Rx− x ∈ Γ +RΓ if |q|2 ≡ 0 (mod 4), Rx /∈ Γ +RΓ.

If T = −R ∈ OC(Γ), then Γ + TΓ = Γ + RΓ and Tx ∈ Γ + TΓ if and only if
Rx ∈ Γ +RΓ. This implies that x and Tx are also not in Γ + TΓ.

Applying Theorem 4.2, together with Lemma 4.5 and the preceding computations,
yields the following solution of the coincidence problem for the diamond packing.

Theorem 4.6: Let Γ be the f.c.c. lattice Γ = 2Im (L)∪[(1, 1, 0)+2Im (L)]∪[(0, 1, 1)+
2Im (L)] ∪ [(1, 0, 1) + 2Im (L)]. Consider the diamond packing D+

3 = Γ ∪ (x + Γ),
where x = 1

2
(1, 1, 1). Then the group of coincidence isometries of D+

3 is OC(Γ). In
particular, R = Rq ∈ SOC(Γ) is a coincidence rotation of D+

3 with

(i) D+
3 (R) = Γ(R) and ΣD+

3
(R) = 2ΣΓ(R) = |q|2 if |q|2 ≡ 2 (mod 4).

(ii) D+
3 (R) = Γ(R) ∪ [(x+ ℓ) + Γ(R)], where Rx− x ∈ ℓ +RΓ with ℓ ∈ Γ, and

ΣD+
3
(R) = ΣΓ(R) =

{

|q|2, if |q|2 is odd

1
4
|q|2, if |q|2 ≡ 0 (mod 4).

Also, T = Tq ∈ OC(Γ) \ SOC(Γ) is a coincidence isometry of D+
3 with

(i) D+
3 (T ) = Γ(T ) and ΣD+

3
(T ) = 2ΣΓ(T ) =

{

2|q|2, if |q|2 is odd

1
2
|q|2, if |q|2 ≡ 0 (mod 4).

(ii) D+
3 (T ) = Γ(T ) ∪ [(x + ℓ) + Γ(T )], where Tx − x ∈ ℓ + TΓ with ℓ ∈ Γ, and

ΣD+
3
(T ) = ΣΓ(R) = 1

2
|q|2 if |q|2 ≡ 2 (mod 4).

If fD+
3
(m) is the number of resulting intersections formed by coincidence isometries

of D+
3 of index m, then fD+

3
(m) is multiplicative and for primes p and r ∈ N,

fD+
3
(pr) =







1, if pr = 2

0, if p = 2, r > 1

(p+ 1)pr−1, otherwise.

The Dirichlet series generating function for fD+
3
(m) reads (see (1.4))

ΦD+
3
(s) =

∞∑

m=1

fD+
3
(m)

ms
= (1 + 2−s) · ΦZ3(s)

= 1 + 1
2s

+ 4
3s

+ 6
5s

+ 4
6s

+ 8
7s

+ 12
9s

+ 6
10s

+ 12
11s

+ 14
13s

+ 8
14s

+ 24
15s

+ 18
17s

+ · · · .
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Remark 4.7: A related structure to the diamond packing is the zincblende. The
crystal structure of some multi-element compounds like sphalerite, gallium arsenide,
and cadmium telluride, take the form of the zincblende structure. The only difference
between the zincblende structure and the diamond packing is that the former consists
of two different types of atoms, one for each copy of the f.c.c. lattice, whereas in the
latter all atoms are of the same type. In other words, one may view a zincblende
structure as a coloring of the diamond packing where points belonging to the same
f.c.c. lattice are assigned the same color.

Consider now the coincidence problem for the zincblende structure. Theorem 4.6
still gives the coincidences of the zincblende structure. The only difference is that
coincidence isometries R ∈ OC(Γ) for which ΣD+

3
(R) = ΣΓ(R) involve a coincidence

in both types of atoms, whereas for those with ΣD+
3
(R) = 2ΣΓ(R), a coincidence

occurs only for one type of atom (those located on Γ).

4.1.3. Application to lattice-sublattice relations. Suppose Γ2 is a sublattice
of index 2 in Γ1 ⊆ Rd. If c1 ∈ Γ1\Γ2, then one may treat Γ1 as the union of the lattice
Γ2 and the shifted copy c1 + Γ2 of Γ2. This means that Theorem 4.2 is applicable
in such a setting. Recall that H denotes the set of color coincidences of the coloring
of Γ1 determined by Γ2 (see Section 2.2). Let E = {R ∈ OC(Γ1) : Σ2(R) = Σ1(R)}.
The following corollary identifies the sets E , H, and OC(c1 + Γ2).

Corollary 4.8: Let Γ1 be a lattice in Rd, Γ2 a sublattice of Γ1 of index 2, c1 ∈ Γ1\Γ2,
and R ∈ OC(Γ1). Then

(i) R ∈ E if and only if exactly one of c1, Rc1, and Rc1 − c1 is in Γ2 +RΓ2.
(ii) R ∈ H if and only if both c1 and Rc1 are not in Γ2 +RΓ2.
(iii) OC(c1 + Γ2) = (E ∩ H) ∪ [OC(Γ2) \ (E ∪ H)]. In particular, if E = H then

OC(c1 + Γ2) = OC(Γ2).

Proof :

(i) This is a consequence of Theorem 4.2.
(ii) By Theorem 2.8 and Lemma 2.2, R ∈ H if and only if Γ2 ∩ Γ1(R) =

RΓ2 ∩ Γ1(R) = Γ2(R). Theorem 4.2 shows that the latter is true exactly
when c1, Rc1 /∈ Γ2 +RΓ2.

(iii) By Theorem 3.8, R ∈ OC(c1+Γ2) if and only if Rc1− c1 ∈ Γ2+RΓ2. If the
latter is true, then either both c1 and Rc1 are not in Γ2 +RΓ2, or both are
elements of Γ2+RΓ2. It now follows from Theorem 4.2, (i), and (ii) that the
former is true if R ∈ E∩H while the latter occurs when R ∈ OC(Γ2)\(E∪H).
For the opposite inclusion, suppose R ∈ (E ∩ H) or R ∈ OC(Γ2) \ (E ∪ H).
In both instances, Rc1 − c1 ∈ Γ2 +RΓ2 by Theorem 4.2, (i), and (ii). Thus,
R ∈ OC(c1 + Γ2).

The Venn diagram in Figure 10, wherein the roman numerals represent the differ-
ent cases in Theorem 4.2, shows the relationship among the sets E , H, and OC(x+Γ2)
as described in Corollary 4.8. Note that E ∪ H ∪ OC(c1 + Γ2) = OC(Γ1).
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(ii)(iii)

(iv)
(i)

(v)

E H

OC(c1 + Γ2)

Figure 10. The sets E , H, and OC(c1 + Γ2) for a sublattice Γ2 of
Γ1 = Γ2 ∪ (c1 + Γ2) of index 2. The numbers signify the corresponding
cases in Theorem 4.2.

Example 4.9: Let Γ1 be a 2 × 1–primitive rectangular lattice. Identify Γ1 with theZ-span of 1
2
and i in the complex plane, that is, Γ1 = 〈1

2
, i〉Z. Consider the square

sublattice Γ2 = Z[i] of index 2 in Γ1. Thus, Γ1 = Γ2 ∪ (c1 + Γ2) with c1 =
1
2
.

Recall from Example 3.38 that SOC(c1 + Γ2) = {Rz,ε ∈ SOC(Γ2) : ε = ±1} and
OC(c1 + Γ2) = SOC(c1 + Γ2) ⋊ 〈Tr〉. Let R = Rz,ε ∈ SOC(Γ2). Then c1, Rc1 /∈
Γ2 +RΓ2 =

1
z
Z[i] because 2 ∤ z and 2 ∤ εz for all numerators z and units ε of Γ2.

Therefore, by Theorem 4.2,

(i) Σ1(R) = 2Σ2(R) and Γ1(R) = (z) = zZ[i] if R = Rz,ε ∈ SOC(Γ2) with
ε = ±i.

(ii) Σ1(R) = Σ2(R) and Γ1(R) = (z) ∪ [c1 + ℓ+ (z)], where Rc1 − c1 ∈ ℓ+ RΓ2

with ℓ ∈ Γ2, if R = Rz,ε ∈ SOC(Γ2) with ε = ±1.

The same results hold for coincidence reflections T = Tz,ε since Γ2 + TΓ2 = Γ2 +RΓ2

and Tc1 = Rc1. Hence, H = OC(Γ2) and E = OC(c1 + Γ2) by Corollary 4.8.

Let fΓ1(m) and f̂Γ1(m) be the number of CSLs and coincidence rotations of Γ1 of

index m, respectively. Then f̂Γ1(m) = 2fΓ1(m), and fΓ1(m) is multiplicative given by

fΓ1(p
r) =







1, if pr = 2

2, if p ≡ 1 (mod 4)

0, otherwise,

for primes p and r ∈ N. The Dirichlet series generating function for fΓ1(m) is then
(see (1.3))

ΦΓ1(s) =

∞∑

m=1

fΓ1(m)

ms
= (1 + 2−s) · ΦZ2(s)

= 1 + 1
2s

+ 2
5s

+ 2
10s

+ 2
13s

+ 2
17s

+ 2
25s

+ 2
26s

+ 2
29s

+ 2
34s

+ 2
37s

+ 2
41s

+ 2
50s

+ 2
53s

+ 2
58s

+ 2
61s

+ 4
65s

+ 2
73s

+ · · · .
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Example 4.10: This time, take Γ1 to be the square lattice Z[i] and Γ2 to be the
2× 1–primitive rectangular sublattice 〈1, 2i〉Z = 2〈1

2
, i〉Z of Γ1.

Recall from (1.3) that Σ1(R) is odd for all R ∈ OC(Γ1). It follows from Propo-
sition 2.16 and Corollary 2.11 that H = E . Using the results from Example 4.9 and
Theorem 1.3, one has H = E = {Rz,ε ∈ SOC(Γ1) : ε = ±1}⋊ 〈Tr〉. Observe that H is
a group. Also, if c1 ∈ Γ1\Γ2 then OC(c1+Γ2) = OC(Γ2) = OC(Γ1) by Corollary 4.8.

The following example provides an alternative method of obtaining the result in
Example 3.37.

Example 4.11: Let Γ2 = Z[i] and c1 = 1
2
+ 1

2
i. Note that Γ1 = Γ2 ∪ (c1 + Γ2) is

again a square lattice. It follows then from Theorem 1.3 that E = OC(Γ2). Since
[Γ1 : Γ2] = 2 is relatively prime to Σ1(R) for all R ∈ OC(Γ2), H = E . Therefore, by
Corollary 4.8, OC(c1 + Γ2) = OC(Γ2).

Example 4.12: Let Γ1 = J be the centered hypercubic lattice, and Γ2 = L be the
primitive hypercubic lattice that is a sublattice of Γ1 of index 2. It has been shown in
Example 2.22 that E = H (see Proposition 2.23). Therefore, OC(c1 + Γ2) = OC(Γ2)
for all c1 ∈ Γ1 \ Γ2 by Corollary 4.8.

4.2. Multilattices

We now aim to generalize the results obtained in the previous section to finite
unions of shifted copies of a lattice.

A subset L of Rd shall be called a multilattice generated by the lattice Γ in Rd if L

is the union of Γ and a finite number of translated copies of Γ, that is, L =
m−1⋃

j=0

(xj+Γ)

where xj ∈ Rd, m ∈ N, and x0 = 0. An orthogonal transformation R ∈ O(d) is a
(linear) coincidence isometry of L if L(R) := L∩RL includes a cosublattice of some
shifted lattice xj + Γ, 0 ≤ j ≤ m − 1. The intersection L(R) shall be referred to as
a coincidence site multilattice (CSML) of L generated by R. The density of L(R) in
L, that is, the ratio of the density of points in L with the density of points in L(R),
is the coincidence index of R with respect to L, denoted by ΣL(R) < ∞.

4.2.1. The coincidence problem for a multilattice. The next lemma de-
scribes exactly when the intersection of a shifted lattice xk + Γ and the image of a
shifted lattice xj + Γ under a linear isometry forms a cosublattice of xk + Γ.

Lemma 4.13: Suppose Γ is a lattice in Rd, R ∈ O(d), and xj , xk ∈ Rd. Then
(xk + Γ) ∩R(xj + Γ) contains a cosublattice of xk + Γ if and only if R ∈ OC(Γ) and
Rxj − xk ∈ Γ +RΓ. Moreover, if Rxj − xk ∈ ℓj,k +RΓ with ℓj,k ∈ Γ, then

(xk + Γ) ∩ R(xj + Γ) = (xk + ℓj,k) + Γ(R). (4.6)

Proof : Write (xk+Γ)∩R(xj+Γ) = (xk,1d)[Γ∩(Rxj−xk, R)Γ]. Then, the intersection
(xk+Γ)∩R(xj +Γ) contains a cosublattice of xk+Γ if and only if Γ∩ (Rxj −xk, R)Γ
includes a cosublattice of Γ, that is, when (Rxj − xk, R) ∈ AC(Γ). By Theorem 3.3,
the latter is equivalent to saying that R ∈ OC(Γ) and Rxj − xk ∈ Γ+RΓ. It follows
from (3.1) that (xk + Γ) ∩R(xj + Γ) = (xk,1d)[ℓj,k + Γ(R)] = (xk + ℓj,k) + Γ(R).



64 4. COINCIDENCES OF MULTILATTICES

Lemma 4.1 now follows directly from Lemma 4.13 by taking xk = 0, xj = x, and
vice versa. Theorem 3.8 is also a special case of Lemma 4.13 with xk = xj = x.

Equation (4.6) indicates that if R ∈ OC(Γ) with Rxj − xk ∈ Γ + RΓ, then the
intersection (xk + Γ) ∩ R(xj + Γ) does not only contain a cosublattice of xk + Γ,
but is itself a cosublattice of xk + Γ. Furthermore, the index of the cosublattice
(xk + Γ) ∩ R(xj + Γ) in xk + Γ is Σ(R).

Remark 4.14: Let Γ ⊆ Rd be a lattice, R ∈ O(d), and xj , xk ∈ Rd. It can be shown
that (xk +Γ) ∩R(xj +Γ) is a cosublattice of xk +Γ if and only if it is a cosublattice
of Rxj +RΓ. In fact, if Rxj − xk ∈ Rtj,k + Γ with tj,k ∈ Γ then

(xk + Γ) ∩ R(xj + Γ) = (Rxj − Rtj,k) + Γ(R). (4.7)

Since Σ(R) = [Γ : Γ(R)] = [RΓ : Γ(R)], the cosublattice (xk + Γ) ∩ R(xj + Γ) is also
of index Σ(R) in Rxj +RΓ.

The next result generalizes Theorem 4.2.

Theorem 4.15: Let Γ be a lattice in Rd and L =
m−1⋃

j=0

(xj + Γ) be a multilattice

generated by Γ with xj ∈ Rd for 0 ≤ j ≤ m− 1, x0 = 0, and xj − xk /∈ Γ for j 6= k.

(i) Then the set of coincidence isometries of L is OC(Γ).
(ii) Given an R ∈ OC(Γ), define σ := {(xj , xk) : Rxj − xk ∈ Γ +RΓ}. Then

ΣL(R) = m
|σ|Σ(R). In addition, if Rxj − xk ∈ ℓj,k +RΓ with ℓj,k ∈ Γ, then

L(R) =
⋃

(xj ,xk)∈σ
[(xk + ℓj,k) + Γ(R)]. (4.8)

Alternatively, if Rxj − xk ∈ Rtj,k + Γ with tj,k ∈ Γ, then

L(R) =
⋃

(xj ,xk)∈σ
[(Rxj − Rtj,k) + Γ(R)]. (4.9)

Proof : For j 6= k, (xj + Γ) ∩ (xk + Γ) = ∅ and R(xj + Γ) ∩ R(xk + Γ) = ∅ since
xj − xk /∈ Γ. This implies that L(R) may be written as the disjoint union

L(R) = L ∩ RL =

m−1⋃

j=0

m−1⋃

k=0

[(xk + Γ) ∩R(xj + Γ)]. (4.10)

Suppose R is a coincidence isometry of L such that L(R) includes a cosublattice of
the shifted lattice xk + Γ. This cosublattice must lie entirely in some intersection
(xk +Γ) ∩R(xj +Γ). Hence, R ∈ OC(Γ) by Lemma 4.13. Conversely, if R ∈ OC(Γ)
then L(R) contains the sublattice Γ(R) of Γ. Thus, R is a coincidence isometry of L.
This proves (i).

In (ii), |σ| 6= 0 because (x0, x0) ∈ σ. Note that (xk + Γ) ∩ R(xj + Γ) 6= ∅ if and
only if (xj , xk) ∈ σ. Then, applying (4.6) and (4.7) to each term in (4.10) yields (4.8)
and (4.9), respectively. Now, each (xj , xk) ∈ σ contributes a different shifted copy
of Γ(R) to L(R). This means that L(R) is made up of |σ| distinct shifted copies of
Γ(R), each of which is of index Σ(R) in the respective shifted copy of Γ or RΓ. Since
L consists of m different shifted copies of Γ, the formula for ΣL(R) follows.
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Therefore, the set of coincidence isometries of the multilattice L generated by Γ
is still OC(Γ), albeit the coincidence indices of an R ∈ OC(Γ) with respect to Γ and
L are not necessarily equal. The CSML L(R) is the union of cosublattices of shifted
lattices in L, one of which must always be the CSL Γ(R).

4.2.2. Lattices viewed as a multilattice generated by some sublattice.

In general, a multilattice is not a lattice. However, a lattice Γ can always be treated
as a multilattice generated by some sublattice of Γ, where the cosets of the sublattice
of Γ play the role of shifted copies of the sublattice. Essentially, the situation here
is the same as that in Section 2.1 (see also Figure 2). The difference, however, is
that what are known in this setting are the coincidence indices and CSLs of the
sublattice, and not those of the original lattice. From this perspective, we are able to
see the connections among color coincidences of a coloring of Γ determined by some
sublattice, the relation between the coincidence indices with respect to the lattice and
the sublattice, and the coincidences of the cosets of the sublattice.

For the rest of this subsection, we take Γ2 to be a sublattice of Γ1 ⊆ Rd with

[Γ1 : Γ2] = m. Write Γ1 =
m−1⋃

j=0

(cj + Γ2), where {0 = c0, c1, . . . , cm−1} is a complete

set of coset representatives of Γ2 in Γ1. Given an R ∈ OC(Γ2), consider the sets

M := {cj + Γ2 : Rcj ∈ Γ2 +RΓ2} and N := {ck + Γ2 : ck ∈ Γ2 +RΓ2} . (4.11)

Both sets are clearly nonempty because c0 + Γ2 = Γ2 ∈ M,N . The next lemma
computes for the intersections Γ2 ∩ Γ1(R) and RΓ2 ∩ Γ1(R) using the sets M and N .
Also, the sets J and K in (2.1) are formulated under this setting.

Lemma 4.16: Suppose Γ1 is a lattice in Rd having Γ2 as a sublattice of index
m, Γ2 = c0 + Γ2, c1 + Γ2, . . . , cm−1 + Γ2 are the distinct cosets of Γ2 in Γ1, and
R ∈ OC(Γ1) = OC(Γ2).

(i) Given cj+Γ2 ∈ M and ck+Γ2 ∈ N , let Rcj ∈ ℓj+RΓ2 and −ck ∈ Rtk+RΓ2

with ℓj , tk ∈ Γ2. Then

Γ2 ∩ Γ1(R) =
⋃

cj+Γ2∈M
[ℓj + Γ2(R)] and

RΓ2 ∩ Γ1(R) =
⋃

ck+Γ2∈N
[−Rtk + Γ2(R)].

(4.12)

(ii) The sets J and K in (2.1) are given by

J = {cj + Γ2 : ∃ ck with Rcj − ck ∈ Γ2 +RΓ2} and

K = {ck + Γ2 : ∃ cj with Rcj − ck ∈ Γ2 +RΓ2} .
(4.13)

Proof : If σ = {(cj , ck) : Rcj − ck ∈ Γ2 +RΓ2} then by (4.8) and (4.9),

Γ1(R) =
⋃

(cj ,ck)∈σ
[(ck + Γ2) ∩R(cj + Γ2)] =







⋃

(cj ,ck)∈σ
[(ck + ℓj,k) + Γ2(R)]

⋃

(cj ,ck)∈σ
[(Rcj − Rtj,k) + Γ2(R)]

(4.14)
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where Rcj − ck = ℓj,k +Rtj,k for some ℓj,k, tj,k ∈ Γ2.

(i) Each coset (ck + ℓj,k) + Γ2(R) of Γ2(R) in Γ1(R) is contained in exactly one
coset of Γ2 in Γ1. Thus, the union of the cosets of Γ2(R) in Γ1(R) with
ck = c0 contains all elements of Γ1(R) in Γ2. That is,

Γ2 ∩ Γ1(R) =
⋃

(cj ,c0)∈σ
[(c0 + ℓj,0) + Γ2(R)] =

⋃

cj+Γ2∈M
[ℓj + Γ2(R)].

Similarly, each coset (Rcj −Rtj,k) + Γ2(R) of Γ2(R) in Γ1(R) is a subset of
the coset Rcj +RΓ2 of RΓ2 in RΓ1. Hence, the coset (Rcj −Rtj,k) + Γ2(R)
lies in RΓ2 whenever cj = c0, and

RΓ2 ∩ Γ1(R) =
⋃

(c0,ck)∈σ
[(Rc0 −Rt0,k) + Γ2(R)] =

⋃

ck+Γ2∈N
[−Rtk + Γ2(R)].

(ii) One obtains from (4.14) that (ck+Γ2)∩Γ1(R) 6= ∅ if and only if (cj , ck) ∈ σ
for some cj, 0 ≤ j ≤ m − 1. On the other hand, (cj + Γ2) ∩ Γ1(R

−1) 6= ∅,
or equivalently, R(cj + Γ2) ∩ Γ1(R) 6= ∅ if and only if (cj , ck) ∈ σ for some
ck, 0 ≤ k ≤ m− 1. The claim now follows from the definition of σ.

The following theorem interprets the values of s, t, u, and v defined in (2.5) in
this situation. In addition, explicit expressions for Γ1(R) and Σ1(R) are specified.

Theorem 4.17: Let Γ2 be a sublattice of Γ1 ⊆ Rd, and {0 = c0, c1, . . . , cm−1} be a
complete set of coset representatives of Γ2 in Γ1.

(i) The following holds:

u := [Γ2 ∩ Γ1(R) : Γ2(R)] = |M |
v := [RΓ2 ∩ Γ1(R) : Γ2(R)] = |N |
s := [Γ1(R) : RΓ2 ∩ Γ1(R)] = |{cj + Γ2 : ∃ ck with Rcj − ck ∈ Γ2 +RΓ2}|
t := [Γ1(R) : Γ2 ∩ Γ1(R)] = |{ck + Γ2 : ∃ cj with Rcj − ck ∈ Γ2 +RΓ2}|

(ii) If σ = {(cj , ck) : Rcj − ck ∈ Γ2 +RΓ2} then Σ1(R) = m
|σ|Σ2(R), where |σ| =

t · u = s · v satisfying s | m, t | m, u | s, and v | t.
(iii) For each ck + Γ2 ∈ K, take

≈
ck = ck + ℓj,k, where Rcj − ck ∈ ℓj,k + RΓ2 for

some cj, 0 ≤ j ≤ m− 1, with ℓj,k ∈ Γ2. Then

Γ1(R) =
⋃

ck+Γ2∈K

(
≈
ck + [Γ2 ∩ Γ1(R)]

)
.

Similarly, for each cj+Γ2 ∈ J , take c̃j = cj−tj,k, where Rcj−ck ∈ Rtj,k+Γ2

for some ck, 0 ≤ k ≤ m− 1, with tj,k ∈ Γ2. Then

Γ1(R) =
⋃

cj+Γ2∈J
(Rc̃j + [RΓ2 ∩ Γ1(R)]).

Proof : The expressions for u and v in (i) follow directly from Lemma 4.16(i), while
those of s and t are consequences of Theorem 2.4 and Lemma 4.16(ii).
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The formula for Σ1(R) in (ii) is a restatement of Theorem 4.15(ii). This, together
with (2.6), yields |σ| = t · u = s · v. The divisibility conditions are already known
from Theorem 2.4.

By (4.14),
≈
ck ∈ (ck + Γ2) ∩ Γ1(R) 6= ∅ for each ck + Γ2 ∈ K. It follows from

Lemma 2.3 that

Γ1(R) = Γ1 ∩ Γ1(R) =

m−1⋃

k=0

[(ck + Γ2) ∩ Γ1(R)] =
⋃

ck+Γ2∈K

(
≈
ck + [Γ2 ∩ Γ1(R)]

)
.

Similarly, for each cj +Γ2 ∈ J , Rc̃j = Rcj −Rtj,k ∈ (Rcj +RΓ2)∩Γ1(R) 6= ∅. Hence,

Γ1(R) = RΓ1 ∩ Γ1(R) =
m−1⋃

j=0

[(Rcj +RΓ2) ∩ Γ1(R)] =
⋃

cj+Γ2∈J
(Rc̃j + [RΓ2 ∩ Γ1(R)])

by Lemma 2.3. This proves (iii).

Remark 4.18: Let Γ2 be a sublattice of Γ1 ⊆ Rd of index m. Write Γ1 =
m−1⋃

j=0

(cj+Γ2)

with c0 = 0. For a fixed R ∈ OC(Γ1), consider the colorings of Γ1, Γ1(R), and Γ1(R
−1)

determined by Γ2 (see Section 2.1). Since (ck + Γ2) ∩ R(cj + Γ2) ∩ Γ1(R) 6= ∅ if and
only if Rcj − ck ∈ Γ2 + RΓ2, then the σ defined in (2.4) is exactly the same as the
σ stated in Theorem 4.17(ii). Moreover, if D and E are the sets as defined in (2.8),
and the sets M and N are those given in (4.11), then D ∼= M and E ∼= N .

A close look at Theorem 4.17 reveals that it is not necessary to determine the
set σ, that is, to check whether Rcj − ck ∈ Γ2 + RΓ2 is satisfied or not for every
possible ordered pair (cj, ck) of coset representatives in order to reckon |σ|, and con-
sequently Σ1(R). It is enough to compute for both u and t, or both v and s using
Theorem 4.17(i). Furthermore, by choosing suitable coset representatives of Γ2 in Γ1

as specified in Theorem 4.17(iii), Γ1(R) can be expressed as the union of cosets of
Γ2 ∩ Γ1(R) or RΓ2 ∩ Γ1(R) in Γ1(R).

Consider the coloring of Γ1 determined by Γ2. The next proposition describes the
effect of a color coincidence of the coloring of Γ1 on the colors in this setting.

Proposition 4.19: Let Γ1 ⊆ Rd be a lattice, Γ2 be a sublattice of Γ1 of index m, and
{0 = c0, c1, . . . , cm−1} be a complete set of coset representatives of Γ2 in Γ1. If R is
a color coincidence of the coloring of Γ1 determined by Γ2, then R maps color cj to
ck if and only if Rcj − ck ∈ Γ2 + RΓ2. In particular, R fixes color cj if and only if
R ∈ OC(cj + Γ2).

Proof : Let cj + Γ2 ∈ J . By (2.9), R[(cj + Γ2) ∩ Γ1(R
−1)] = (ck + Γ2) ∩ Γ1(R)

for some ck + Γ2 ∈ K whenever R sends color cj to color ck. This means that
(ck + Γ2) ∩ R(cj + Γ2) 6= ∅, and so Rcj − ck ∈ Γ2 +RΓ2.

In the other direction, suppose that (cj, ck) ∈ σ = {(cj, ck) : Rcj − ck ∈ Γ2 +RΓ2}.
Since R is a color coincidence, σ must be a permutation. It follows then from (4.14)
that

R[(cj+Γ2)∩Γ1(R
−1)] = R(cj+Γ2)∩Γ1(R) = (ck+Γ2)∩R(cj+Γ2) = (ck+Γ2)∩Γ1(R).
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Hence, R maps the color cj to ck. The particular case follows from Theorem 3.8.

Recall thatH denotes the set of color coincidences of the coloring of Γ1 determined
by Γ2, while the set E consists of all R ∈ OC(Γ1) = OC(Γ2) for which Σ1(R) = Σ2(R).
Given a coset cj + Γ2 of Γ2 in Γ1, the subgroup (of the factor group Γ1/Γ2) that it
generates shall be written as 〈cj + Γ2〉. The next proposition characterizes the sets
H and E . It also specifies how the various sets OC(cj + Γ2) are related.

Proposition 4.20: Let Γ2 be a sublattice of Γ1 ⊆ Rd, {0 = c0, c1, . . . , cm−1} be a
complete set of coset representatives of Γ2 in Γ1, and R ∈ OC(Γ1).

(i) R ∈ E if and only if |σ| = m, where σ = {(cj, ck) : Rcj − ck ∈ Γ2 +RΓ2}.
(ii) R ∈ H if and only if none of cj and Rcj, 1 ≤ j ≤ m− 1, are in Γ2 +RΓ2.
(iii) If cj + Γ2 ∈ 〈ck + Γ2〉, then OC(ck + Γ2) ⊆ OC(cj + Γ2). In particular, if

〈cj + Γ2〉 = 〈ck + Γ2〉, then OC(cj + Γ2) = OC(ck + Γ2).

Proof :

(i) This is immediate from Theorem 4.17(ii).
(ii) It follows from Theorem 2.8 and Lemma 2.2 that R ∈ H if and only if

Γ2 ∩ Γ1(R) = RΓ2 ∩ Γ1(R) = Γ2(R). The latter is satisfied if and only if
M = N = {c0 + Γ2 = Γ2} by Theorem 4.17(i). This proves the claim.

(iii) If cj +Γ2 ∈ 〈ck+Γ2〉, then cj = nck+ ℓ for some n ∈ N and ℓ ∈ Γ2. Take an
R ∈ OC(ck +Γ2). Then Rck − ck ∈ Γ2 +RΓ2 by Theorem 3.8. This implies
that R ∈ OC(cj +Γ2) because Rcj − cj = n(Rck − ck) +Rℓ− ℓ ∈ Γ2 +RΓ2.

Results in this subsection allow the following detailed description of the case when
the index of the sublattice Γ2 in Γ1 is prime (compare with Proposition 2.15).

Proposition 4.21: Let Γ1 ⊆ Rd be a lattice, Γ2 be a sublattice of Γ1 of index
prime p, {0 = c0, c1, . . . , cp−1} be a complete set of coset representatives of Γ2 in Γ1,
and R ∈ OC(Γ1). Then exactly one of the following holds:

(i) If u = 1 and t = p, then Σ1(R) = Σ2(R) and Γ1(R) =
p−1⋃

k=0

[
≈
ck + Γ2(R)

]
,

where for each 0 ≤ k ≤ p− 1,
≈
ck = ck + ℓj,k with Rcj − ck ∈ ℓj,k + RΓ2 for

some cj, 0 ≤ j ≤ p − 1, and ℓj,k ∈ Γ2. In addition, R ∈ H if and only if
v = 1.

(ii) If u = p and t = 1, then Σ1(R) = Σ2(R) and Γ1(R) =
p−1⋃

j=0

[ℓj +Γ2(R)] where

ℓj ∈ Γ2 and Rcj ∈ ℓj +RΓ2 for each j, 0 ≤ j ≤ p− 1. Also, R /∈ H.
(iii) If u = t = 1, then R ∈ H, Σ1(R) = pΣ1(R), and Γ1(R) = Γ2(R).
(iv) If u = t = p, then Σ1(R) = 1

p
Σ2(R) and R /∈ H. Let Rcj ∈ ℓj + RΓ2 with

ℓj ∈ Γ2 for each j, 0 ≤ j ≤ p − 1, and for each k, 0 ≤ k ≤ p − 1, take
≈
ck = ck + ℓj,k with Rcj − ck ∈ ℓj,k + RΓ2 for some cj, 0 ≤ j ≤ p − 1, and
ℓj,k ∈ Γ2. Then

Γ1(R) =

p−1
⋃

k=0

[

≈
ck +

( p−1
⋃

j=0

[ℓj + Γ2(R)]

)]

.
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Furthermore, OC(cj + Γ2) = OC(ck + Γ2) for all j, k with 1 ≤ j, k ≤ p− 1.

Proof : The divisibility conditions t | p, s | p, and u | s from Theorem 4.17(ii) justify
the four possible conditions set forth above. One obtains M = {Γ2}, M = Γ1/Γ2,
K = {Γ2}, and K = Γ1/Γ2 when u = 1, u = p, t = 1, and t = p, respectively, by
Theorem 4.17(i). Applying Theorems 4.17(ii) and (iii), (4.12), and Theorem 2.8 with
Lemma 2.2 yields (i)–(iv).

Since Γ1/Γ2 is an abelian group of order prime p, Γ1/Γ2
∼= Zp. This means that

〈cj + Γ2〉 = 〈ck + Γ2〉 for each j, k with 1 ≤ j, k ≤ p − 1. Thus, OC(cj + Γ2) =
OC(ck + Γ2) by Proposition 4.20(iii).

4.3. Some examples

We end this thesis by looking at several examples that make use of the results
from Subsection 4.2.2.

4.3.1. Primitive rectangular lattices. Identify the square lattice Γ2 with Z[i]
and them×1–primitive rectangular lattice Γ1 with the lattice generated by 1

m
and i in

the complex plane, that is, Γ1 = 〈 1
m
, i〉Z with m ∈ N \ {1}, . Then Γ2 is a sublattice

of Γ1 of index m. Write Γ1 =
m−1⋃

j=0

(cj + Γ2) where cj := j
m

for 0 ≤ j ≤ m − 1.

Let R = Rz,ε ∈ SOC(Γ1), where Rz,ε corresponds to multiplication by the complex
number ε z

z
(see Remark 1.11).

Theorem 4.17 suggests that one should start by computing for the values of
u = |M | and v = |N | (refer to (4.11)). Now, it follows from Remark 3.25(i) that
t does not divide εz and z whenever t ∈ N\{1}. This implies that z j

m
, εz j

m
/∈ Z[i] for

1 ≤ j ≤ m−1. Consequently, cj , Rcj /∈ 1
z
Z[i] = Γ2+RΓ2, and hence, M = N = {Γ2}.

Thus, u = v = 1.
Let T = Rz,ε · Tr ∈ OC(Γ1). Then Γ2 + TΓ2 = Γ2 +RΓ2 and Tcj = Rcj for each

j, 0 ≤ j ≤ m− 1. The results above then also hold for T .
Therefore, by Theorem 2.8 and Lemma 2.2, all coincidence isometries of Γ1 are

color coincidences of the coloring of Γ1 induced by Γ2. That is, H = OC(Γ1). More-
over, for all R ∈ OC(Γ1), Σ1(R) = m

t
Σ2(R) where t | m by Theorem 4.17(ii).

For the rest of the subsection, take m to be an odd rational prime p. Then,
t ∈ {1, p}, and so Σ1(R) ∈ {Σ2(R), pΣ2(R)} for all R ∈ OC(Γ1).

It follows from Proposition 4.21 (also from Lemma 3.28 together with Proposi-
tion 3.23(i)) that OC(c1+Γ2) = · · · = OC(cp−1+Γ2). Thus, if R ∈ OC(c1+Γ2) then
Rcj − cj ∈ Γ2 + RΓ2 for all 0 ≤ j ≤ p− 1 by Theorem 3.8. Hence, in this instance,
t = s = p by Theorem 4.17(i), and so Σ1(R) = Σ2(R). Furthermore, it follows from
Proposition 4.19 that R fixes all colors in the coloring of Γ1.

Take R = Rz,ε ∈ SOC(Γ1). For 1 ≤ j ≤ p− 1,

Rcj − c1 ∈ Γ2 +RΓ2 ⇐⇒ ε z
z
j
p
− 1

p
∈ 1

z
Z[i] ⇐⇒ p | (εjz − z). (4.15)
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One has

εjz − z =







(j − 1)Re (z) + (j + 1)Im (z) i, if ε = 1

− (j + 1)Re (z)− (j − 1)Im (z) i, if ε = −1

− [Re (z) + jIm (z)] + [jRe (z) + Im (z)]i, if ε = i

[−Re (z) + jIm (z)] + [−jRe (z) + Im (z)]i, if ε = −i.

Since Re (z) and Im (z) are relatively prime (see Remark 3.25(i)), p ∤ (εjz − z) for
each ε whenever 2 ≤ j ≤ p− 2.

Let k = p− 1. Observe that p | [ε(p− 1)z − z] if and only if p | (−εz − z ). This
means that Rcp−1 − c1 ∈ Γ2 +RΓ2 if and only if Rz,−εc1 − c1 ∈ Γ2 +Rz,−εΓ2. Hence,
by Theorem 3.8, if Rz,−ε ∈ SOC(c1 + Γ2) then t > 1 by Theorem 4.17(i). Since
t ∈ {1, p}, t = s = p and Σ1(R) = Σ2(R).

Altogether, for all R = Rz,ε ∈ SOC(Γ1), t = p if and only if R ∈ SOC(c1 + Γ2)
or Rz,−ε ∈ SOC(c1 + Γ2). Note that at most one of the latter two conditions can be
true because of Proposition 3.33(i).

These results also hold for Tz,ε ∈ OC(Γ1) \ SOC(Γ1). The above calculations,
together with Proposition 4.19 and Theorem 4.17(iii), yield the following theorem.

Theorem 4.22: Let m ∈ N \ {1} and Γ be the m × 1–primitive rectangular lattice
viewed as the lattice Γ = 〈 1

m
, i〉Z in the complex plane. Consider the coloring of Γ

determined by its square sublattice Z[i].
(i) Then H = OC(Γ) = OC(Z[i]) and ΣZ[i](R) | ΣΓ(R) for all R ∈ OC(Γ).
(ii) Suppose that m is an odd rational prime p and R = Rz,ε ∈ SOC(Γ). Set

cj =
j
p
, for 0 ≤ j ≤ p− 1, so that the coloring of Γ has colors c0, . . . , cp−1.

(a) If R or Rz,−ε ∈ SOC(c1+Z[i]) then ΣΓ(R) = N(z) = z ·z. In addition,
(i) if R ∈ SOC(c1 + Z[i]) where Rc1 − c1 ∈ ℓ + RZ[i] with ℓ ∈ Z[i],

then Γ(R) =
p−1⋃

k=0

[
≈
ck + (z)

]
, where

≈
ck = ck + kℓ. Also, R fixes all

colors.
(ii) if Rz,−ε ∈ SOC(c1 + Z[i]) where Rcp−1 − c1 ∈ ℓ + RZ[i] with

ℓ ∈ Z[i], then Γ(R) =
p−1⋃

k=0

[
≈
ck + (z)

]
, where

≈
ck = ck + kℓ. Also,

R induces the permutation (c1 cp−1)(c2 cp−2) . . .
(

c p−1
2

c p+1
2

)

of

colors.
(b) Otherwise, ΣΓ(R) = pN(z), Γ(R) = (z), and R is a (trivial) color

coincidence, that is, R fixes the only color c0.
Let T = R ·Tr ∈ OC(Γ). Then T satisfies the same properties as its rotation
part R.

Example 4.23: Let Γ be a 3 × 1– primitive rectangular lattice. Identify Γ with the
lattice 〈1

3
, i〉Z in the complex plane. Recall from Example 3.39 that OC(1

3
+ Z[i]) =

SOC(1
3
+Z[i])⋊ 〈Tr〉, where SOC(1

3
+Z[i]) ∼= Z(ℵ0). This is because for each possible

numerator z, a unique unit ε of Z[i] exists so that Rz,ε ∈ SOC(1
3
+Z[i]). Theorem 4.22,

together with this result, solves the coincidence problem for Γ.
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Let fΓ(m) and f̂Γ(m) be the number of CSLs and coincidence rotations of Γ of

index m, respectively. Then f̂Γ(m) = 2fΓ(m), where fΓ(m) is multiplicative with

fΓ(p
r) =







2, if p ≡ 1 (mod 4)

1, if pr = 3

0, otherwise,

for primes p and r ∈ N. The Dirichlet series generating function for fΓ(m) is given
by (see (1.3))

ΦΓ(s) =
∞∑

m=1

fΓ(m)

ms
= (1 + 3−s) · ΦZ2(s)

= 1 + 1
3s

+ 2
5s

+ 2
13s

+ 2
15s

+ 2
17s

+ 2
25s

+ 2
29s

+ 2
37s

+ 2
39s

+ 2
41s

+ 2
51s

+ 2
53s

+ 2
61s

+ 4
65s

+ 2
73s

+ · · · .
4.3.2. Certain centered rectangular lattices. Let Γ2 = Z[i]. Consider the

lattice Γ1 =
〈
1, 1

m
(1 + i)

〉Z in the complex plane, where m ∈ N \ {1}. Then Γ2 is a

sublattice of Γ1 of index m. Let cj :=
j
m
(1+i) for 0 ≤ j ≤ m−1 so that {c0, . . . , cm−1}

is a complete set of coset representatives of Γ2 in Γ1. Take R = Rz,ε ∈ SOC(Γ1).
If t ∈ N \ {1} then t ∤ z(1 + i) and t ∤ εz(1 + i) by Remark 3.25(i). Hence,

z j
m
(1+ i), εz j

m
(1+ i) /∈ Z[i], for 1 ≤ j ≤ m− 1. This implies that cj, Rcj /∈ Γ2+RΓ2,

and thus, u = v = 1 by Theorem 4.17(i).
Let T = Tz,ε ∈ OC(Γ1) \ SOC(Γ1). If one writes T as T = Rz,−iεT1,i, then

Γ2+ TΓ2 = Γ2+Rz,−iεΓ2 and Tcj = Rz,−iεcj for 0 ≤ j ≤ m− 1. This means that the
results above are also true for T .

It follows from Theorem 2.8 and Lemma 2.2 that H = OC(Γ1), that is, all coinci-
dence isometries of Γ1 are color coincidences of the coloring of Γ1 determined by Γ2.
In addition, for all R ∈ OC(Γ1), Σ1(R) = m

t
Σ1(R), where t | m, by Theorem 4.17(ii).

From this point until the end of the subsection, assume that m is an odd prime
p. In such a case, Γ1 is a centered rectangular lattice. Here, t ∈ {1, p} which implies
that Σ1(R) ∈ {Σ2(R), pΣ2(R)} for all R ∈ OC(Γ1).

Note that OC(c1 + Γ2) = · · · = OC(cp−1 + Γ2) by Proposition 4.21 (or by
Lemma 3.28 and Proposition 3.23(i)). It follows then from Theorem 3.8 that if
R ∈ OC(c1 + Γ2) then Rcj − cj ∈ Γ2 + RΓ2 for all 0 ≤ j ≤ p − 1. Thus, by
Theorem 4.17(i), t = s = p and so Σ1(R) = Σ2(R) for all such R. Also, R fixes all
the colors in the coloring of Γ1 by Proposition 4.19.

Let R = Rz,ε ∈ SOC(Γ1). Keep in mind that t ∈ {1, p}. For 1 ≤ j ≤ p− 1,

Rcj−c1 ∈ Γ2+RΓ2 ⇐⇒ ε z
z
j(1+i)

p
− 1+i

p
∈ 1

z
Z[i] ⇐⇒ (1+i)(εjz−z)

p
∈ Z[i] ⇐⇒ p | (εjz−z),

since p is relatively prime to 1 + i. Observe that what we have here is exactly the
same condition as in (4.15), wherein we were looking at the coincidences of the p×1–
primitive rectangular lattice. Thus, results obtained from the previous subsection
must still hold.
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Given T = Tz,ε = Rz,−iεT1,i ∈ OC(Γ1), one has Tcj − c1 ∈ Γ2 + TΓ2 if and only
if Rz,−iεcj − c1 ∈ Γ2 +Rz,−iεΓ2. This means that the results for Tz,ε are the same as
that of the corresponding rotation Rz,−iε.

All these information yield the next theorem. The CSL Γ(R) and the color per-
mutation that the color coincidence R effects were computed using Theorem 4.17(iii)
and Proposition 4.19, respectively.

Theorem 4.24: Let m ∈ N \ {1} and Γ be the lattice with basis
{
1, 1

m
(1 + i)

}
in the

complex plane. Consider the coloring of Γ induced by the square sublattice Z[i] of Γ.
(i) Then H = OC(Γ) = OC(Z[i]) and ΣZ[i](R) | ΣΓ(R) for all R ∈ OC(Γ).
(ii) Suppose m is an odd rational prime p and R = Rz,ε ∈ SOC(Γ). Take

cj = j
p
(1 + i), for 0 ≤ j ≤ p − 1, so that the coloring of Γ consists of the

colors c0, . . . , cp−1.
(a) If R or Rz,−ε ∈ SOC(c1 + Z[i]) then ΣΓ(R) = N(z). In addition,

(i) if R ∈ SOC(c1 + Z[i]) where Rc1 − c1 ∈ ℓ + RZ[i] with ℓ ∈ Z[i],
then Γ(R) =

p−1⋃

k=0

[
≈
ck + (z)

]
, where

≈
ck = ck + kℓ. Also, R fixes all

colors.
(ii) if Rz,−ε ∈ SOC(c1 + Z[i]) where Rcp−1 − c1 ∈ ℓ + RZ[i] with

ℓ ∈ Z[i], then Γ(R) =
p−1⋃

k=0

[
≈
ck + (z)

]
, where

≈
ck = ck + kℓ. Also, R

effects the permutation (c1 cp−1)(c2 cp−2) . . .
(

c p−1
2

c p+1
2

)

of colors.

(b) Otherwise, ΣΓ(R) = pN(z), Γ(R) = (z), and R fixes the only color c0.
Let Tz,ε ∈ OC(Γ) \ SOC(Γ). Then Tz,ε has exactly the same properties as
the rotation Rz,−iε.

The following corollary follows directly from Theorems 4.22, 4.24, and 1.3.

Corollary 4.25: Let ΓP and ΓC be p× 1–primitive and centered rectangular lattices,
respectively, where p is an odd prime. If fΓP

(m) and fΓC
(m) count the number of

CSLs of ΓP and ΓC of index m, respectively, then fΓP
(m) = fΓC

(m) for all m ∈ N.

Example 4.26: Let Γ be the centered rectangular lattice
〈
1, 1

5
(1 + i)

〉Z in the complex

plane. In Example 3.41, it was shown that OC(1+i
5

+Z[i]) = SOC(1
5
+Z[i])⋊ 〈T1,i〉,

where SOC(1
5
+ Z[i]) ∼= Z(ℵ0) because for each possible numerator z with 5 ∤ N(z),

there exists a unique unit ε of Z[i] such that Rz,ε ∈ SOC(1
5
+Z[i]). With this result,

Theorem 4.24 can be applied to solve the coincidence problem for Γ.
Denote by fΓ(m) and f̂Γ(m) the number of CSLs and coincidence rotations of Γ

for a given index m, respectively. Then

f̂Γ(m) =

{
2fΓ(m), if 25 ∤ m

4fΓ(m), if 25 | m.
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Also, fΓ(m) is multiplicative, and for primes p and r ∈ N,

fΓ(p
r) =







2, if p ≡ 1 (mod 4) and pr 6= 5

1, if pr = 5

0, otherwise.

The Dirichlet series generating function for fΓ(m) is given by

ΦΓ(s) =

∞∑

m=1

fΓ(m)

ms
=

1 + 5−2s

1− 5−s

∏

p≡1(4)
p 6=5

1 + p−s

1− p−s

= 1 + 1
5s

+ 2
13s

+ 2
17s

+ 2
25s

+ 2
29s

+ 2
37s

+ 2
41s

+ 2
53s

+ 2
61s

+ 2
65s

+ 2
73s

+ · · · .
4.3.3. Other examples. Theorem 4.22 gives the complete solution of the coin-

cidence problem for an m×1–primitive rectangular lattice only if m is an odd prime.
The following example examines the case when m = 4.

Example 4.27: Consider the 4 × 1–primitive rectangular lattice identified with the
lattice Γ1 = 〈1

4
, i〉Z in the complex plane. Then Γ2 = Z[i] is a sublattice of Γ1 of

index 4. Let cj :=
j
4
for 0 ≤ j ≤ 3, so that Γ1 =

3⋃

j=0

(cj + Γ2). Consider the coloring

of Γ1 determined by Γ2 with colors c0, c1, c2, and c3.
Theorem 4.22 indicates that H = OC(Γ1) = OC(Γ2). Since t | 4, t ∈ {1, 2, 4},

and so Σ1(R) ∈ {Σ2(R), 2Σ2(R), 4Σ2(R)}. Recall from Examples 3.40 and 3.38 that

OC(c1 + Γ2) = OC(c3 + Γ2) =
{

Rz,ε ∈ SOC(Γ2) : ε = (−1)Im(z)
}

⋊ 〈Tr〉

and OC(c2 + Γ2) = {Rz,ε ∈ SOC(Γ2) : ε = ±1}.
Since OC(c1 + Γ2) ⊆ OC(c2 + Γ2), Rcj − cj ∈ Γ2 + RΓ2 for 0 ≤ j ≤ 3 whenever

R ∈ OC(c1 + Γ2) by Theorem 3.8. Here, t = s = 4 by Theorem 4.17(i) and thus,
Σ1(R) = Σ2(R). Furthermore, R fixes all colors in the coloring of Γ1 by Proposi-
tion 4.19.

Before proceeding, note that if j, k ∈ N then

εjz − kz =







(j − k)Re (z) + (j + k)Im (z) i, ε = 1

− (j + k)Re (z)− (j − k)Im (z) i, ε = −1

− [jIm (z) + kRe (z)] + [jRe (z) + kIm (z)]i, ε = i

[jIm (z)− kRe (z)] + [−jRe (z) + kIm (z)]i, ε = −i.

(4.16)

Let R = Rz,ε ∈ SOC(c2 + Γ2) \ SOC(c1 + Γ2), that is, ε = (−1)Re(z). In this
instance, Rcj−cj ∈ Γ2+RΓ2 if and only if j ∈ {0, 2} by Theorem 3.8. It follows then
from Theorem 4.17(i) that s = t = 4 if Rc3− c1 ∈ Γ2+RΓ2, and s = t = 2 otherwise.

By (4.16),

(−1)Re(z)3z − z

4
=

{
1
2
Re (z) + Im (z) i, if Re (z) is even

− Re (z)− 1
2
Im (z) i, if Im (z) is even.
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Hence, (−1)Re(z)3z−z
4

∈ Z[i], or equivalently, Rc3 − c1 ∈ Γ2 +RΓ2. Therefore, Σ1(R) =
Σ2(R). Also, by Proposition 4.19, R fixes both colors c0 and c2, and interchanges the
colors c1 and c3, in the coloring of Γ1.

The only remaining case is when R = Rz,ε ∈ SOC(Γ2) \ SOC(c2 + Γ2), that is,
when ε = ±i. Suppose first that ε = i, and consider the following possibilities:

Case I: j, k ∈ {1, 3} with j 6= k
By (4.16) and Remark 3.25(i),

Re (εjz − kz) · Im (εjz − kz) = −
[
Re (z)2 + Im (z)2

]
jk − Re (z) Im (z) (j2 + k2)

≡
[
Re (z)2 + Im (z)2

]
(mod 4) ≡ 1 (mod 4).

This implies that 4 ∤ (εjz − kz), and equivalently, Rcj − ck /∈ Γ2 +RΓ2.
Case II: j, k ∈ {1, 2, 3} with j 6= k and j · k even

It follows from (4.16) that

Re (εjz − kz) + Im (εjz − kz) = [Re (z)− Im (z)](j − k) ≡ 1 (mod 2).

Again, 4 ∤ (εjz − kz), and equivalently, Rcj − ck /∈ Γ2 +RΓ2.
Hence, s = t = 1 by Theorem 4.17(i) and Σ1(R) = 4Σ2(R). Also, R fixes the only

color c0. Analogous arguments yield the same result for ε = −i.
The same results are true for coincidence reflections T = R ·Tr, where R = Rz,ε ∈

SOC(Γ1). This is because TΓ2 = RΓ2 and Tcj = Rcj for 0 ≤ j ≤ 3. The following
proposition summarizes these results.

Proposition 4.28: Let Γ be the 4 × 1–primitive rectangular lattice with basis
{

1
4
, i
}

in the complex plane. Suppose R = Rz,ε ∈ SOC(Γ) = SOC(Z[i]). Take cj =
j
4
, for

0 ≤ j ≤ 3, so that the coloring of Γ determined by Z[i] has colors c0, c1, c2, c3.

(i) If ε = ±1 then ΣΓ(R) = N(z). In addition,

(a) if ε = (−1)Im(z) where Rc1 − c1 ∈ ℓ+RZ[i] with ℓ ∈ Z[i], then Γ(R) =
3⋃

k=0

[
≈
ck + (z)

]
, where

≈
ck = ck + kℓ. Also, R fixes all colors.

(b) if ε = (−1)Re(z) where Rc2 − c2 ∈ ℓ1 + RZ[i], Rc3 − c1 ∈ ℓ2 + RZ[i],
with ℓ1, ℓ2 ∈ Z[i], then

Γ(R) = (z) ∪ [c1 + ℓ2 + (z)] ∪ [c2 + ℓ1 + (z)] ∪ [c3 + 3ℓ2 + (z)].

Also, R induces the permutation (c1 c3) of colors.
(ii) If ε = ±i then ΣΓ(R) = 4N(z), Γ(R) = (z), and R is a (trivial) color

coincidence, that is, R fixes the only color c0.

If T = R · Tr ∈ OC(Γ), then T has exactly the same properties as its rotation part R.

Let fΓ(m) and f̂Γ(m) denote the number of CSLs and coincidence rotations of Γ

of index m, respectively. Then f̂Γ(m) = 2fΓ(m), and fΓ(m) is multiplicative given by

fΓ(p
r) =







2, if p ≡ 1 (mod 4)

1, if pr = 4

0, otherwise,
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for primes p and r ∈ N. The Dirichlet series generating function for fΓ(m) reads
(see (1.3))

ΦΓ(s) =

∞∑

m=1

fΓ(m)

ms
= (1 + 4−s) · ΦZ2(s)

= 1 + 1
4s

+ 2
5s

+ 2
13s

+ 2
17s

+ 2
20s

+ 2
25s

+ 2
29s

+ 2
37s

+ 2
41s

+ 2
52s

+ 2
53s

+ 2
61s

+ 4
65s

+ 2
68s

+ 2
73s

+ · · · .
The next example illustrates how Proposition 4.19 provides an alternative method

of calculating the set of coincidence isometries of a shifted lattice.

Example 4.29: Let Γ1 = Im (L) and Γ2 = 2Im (J). Then Γ1 is a primitive cubic
lattice and Γ2 is a body-centered cubic lattice contained in Γ1 of index 4. Write

Γ1 =
3⋃

j=0

(cj + Γ2) where c0 = 0, c1 = i, c2 = j, and c3 = k, and consider the coloring

of Γ1 determined by Γ2.
It was shown in Example 2.18 that H = OC(Γ1) and for every R ∈ OC(Γ1),

s = t = 4. Hence, by Proposition 4.19, OC(cj + Γ2) consists of all R ∈ OC(Γ1) that
fix color cj , for j ∈ {1, 2, 3}. If r1 = (1, 1, 0, 0), r2 = (1, 0, 1, 0), and r3 = (1, 0, 0, 1),
then one obtains from Example 2.18 that

OC(cj + Γ2) =
{
Rq ∈ OC(Γ1) : |q|2 is odd or |q|2 ≡ 2 (mod 4) with q ∈ rj + 2J} .

It can be verified that OC(cj +Γ2) is closed under composition, and hence is a group
by Proposition 3.14.

Finally, suppose fcj+Γ2(m) and f̂cj+Γ2(m) count the number of CSLs and coin-
cidence rotations of cj + Γ2 of index m, respectively. Since Scj − cj ∈ Γ2 for all
S ∈ P (Γ2) ∩ OC(cj + Γ2) and j ∈ {1, 2, 3}, it follows from Proposition 3.9 that

f̂cj+Γ2(m) = 8fcj+Γ2(m) and fcj+Γ2(m) = fZ3(m).





Outlook

The question of whether the set of color coincidences of a coloring of a lattice
determined by some sublattice forms a group or not is yet to be resolved. A negative
answer is highly suspected, and a counterexample will not only confirm this fact, but
should also shed more light on the coincidence index of a product of two coincidence
isometries. On the other hand, the set of affine coincidence isometries of a lattice,
and the set of coincidence isometries of a shifted lattice are not groups in general.
Although, an example where the set of coincidence rotations of a shifted lattice fails
to form a group is still lacking. Such an example might be found in three-dimensions,
where O(d) is not anymore Abelian. Furthermore, it could be worthwhile to take a
closer look at the algebraic structures of all these new subsets of O(d) and E(d).

The generalization of a color symmetry to color coincidences is not only interest-
ing in its own right, but it also provides a further connection between the relationship
of the coincidence indices of a lattice and sublattice. Moreover, Theorem 2.8 permits
a simpler way of determining the color groups of colorings of lattices and Z-modules,
many of which are yet to be determined. It would also be helpful if a similar connec-
tion between similar sublattices (SSLs) and colorings of lattices can be set up. This
would give a more unified perspective among SSLs, CSLs, and colorings of lattices.

From the results of this thesis, it is foreseeable that the coincidence indices of
other types of lattices may be calculated, as long as the lattices can be treated as
sublattices (or parent lattices) of other lattices for which the coincidence problem has
already been completely solved. Most of the worked-out examples in this thesis was
done for planar lattices. It should be beneficial to implement the results of this thesis
to compute for the coincidence indices of various lattices and Z-modules in higher
dimensions.

The purpose of this thesis is to shed further light on the geometry of CSLs and
CSMs. It would certainly be productive to explore the implications of the results in
this thesis to the actual study of grain boundaries of crystals and quasicrystals.
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25. G. Friedel, Leçons de Cristallographie, Hermann, Paris, 1911.
26. V.Y. Gertsman, Coincidence site lattice theory of multicrystalline ensembles, Acta Crystallogr.

Sect. A 57 (2001), no. 6, 649–655.
27. H. Gleiter and B. Chalmers, High-angle grain boundaries, Progress in materials science, vol. 16,

ch. 1, Pergamon, Oxford, 1972.
28. S. Glied, Similarity and coincidence isometries for modules, Canad. Math. Bull., in press.
29. , Coincidence and similarity isometries of modules in Euclidean space, Ph.D. thesis,

Universität Bielefeld, 2010.
30. S. Glied and M. Baake, Similarity versus coincidence rotations of lattices, Z. Krist. 223 (2008),

no. 11-12, 770–772.
31. D. Gratias and R. Portier, General geometrical models of grain boundaries, J. Phys. Colloques

43 (1982), no. C6, 15–24.
32. D. Gratias, R. Portier, M. Fayard, and M. Guymont, Crystallographic description of coincidence-

site lattice interfaces in homogeneous crystals, Acta Crystallogr. Sect. A 35 (1979), no. 6, 885–
894.

33. H. Grimmer, Coincidence rotations for cubic lattices, Scripta Metall. 7 (1973), no. 12, 1295–1300.
34. , Disorientation and coincidence rotations for cubic lattices, Acta Crystallogr. Sect. A

30 (1974), no. 6, 685–688.
35. , A reciprocity relation between the coincidence site lattice and the DSC lattice, Scripta

Metall. 8 (1974), 1221–24.
36. , Coincidence site lattices: new results and comments on papers by Fortes and Woirgard-

de Fouquet, Scripta Metall. 10 (1976), no. 5, 387–391.
37. , A unique description of the relative orientation of neighbouring grains, Acta Crystallogr.

Sect. A 36 (1980), no. 3, 382–389.
38. , The generating function for coincidence site lattices in the cubic system, Acta Crystal-

logr. Sect. A 40 (1984), no. 2, 108–112.
39. H. Grimmer, W. Bollmann, and D.H. Warrington, Coincidence-site lattices and complete

pattern-shift lattices in cubic crystals, Acta Crystallogr. Sect. A 30 (1974), no. 2, 197–207.
40. H. Grimmer and D.H. Warrington, Coincidence orientations of grains in hexagonal materials,

J. Phys. Colloques 46 (1985), no. C4, 231–236.
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57. H.-J. Möller, 〈011〉 tilt boundaries in the diamond cubic lattice, Phil. Mag. A 43 (1981), no. 4,

1045–1055.
58. R.V. Moody and J. Patera, Colourings of quasicrystals, Can. J. Phys. 72 (1994), 442–452.
59. P.A.B. Pleasants, M. Baake, and J. Roth, Planar coincidences for N -fold symmetry, J. Math.

Phys. 37 (1996), no. 2, 1029–1058.
60. R.C. Pond and D.S. Vlachavas, Bicrystallography, Proc. Roy. Soc. London Ser. A 386 (1983),

no. 1790, 95–143.
61. P.H. Pumphrey, Special high angle grain boundaries, Grain boundary structure and properties

(G.A. Chadwick and D.A. Smith, eds.), Academic Press, London, 1976, pp. 139–200.
62. O. Radulescu and D.H. Warrington, Arithmetic properties of module directions in quasicrystals,

coincidence modules and coincidence quasilattices, Acta Crystallogr. Sect. A 51 (1995), no. 3,
335–343.

63. O. Radulescu, D.H. Warrington, and R. Lück, Phason flips and reconstruction of grain bound-

aries in quasicrystals, Aperiodic ’97 (Singapore) (M. de Boissieu, J.-L. Verger-Gaugry, and
R. Currat, eds.), World Scientific, 1998, pp. 783–788.

64. A. Ramsay, Virtual groups and group actions, Adv. Math. 6 (1971), 253–322.
65. S. Ranganathan, On the geometry of coincidence-site lattices, Acta Crystallogr. 21 (1966), no. 2,

197–199.
66. J. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Mathematics, vol. 793,

Springer, Berlin, 1980.
67. M.A. Rodŕıguez, J.L. Aragón, and L. Verde-Star, Clifford algebra approach to the coincidence

problem for planar lattices, Acta Crystallogr. Sect. A 61 (2005), no. 2, 173–184.
68. J. Roth and R. Lück, Icosahedral coincidence rotations, Z. Krist. 212 (1997), no. 7, 473–477.
69. R.L.E. Schwarzenberger, N -dimensional crystallography, Res. Notes in Math., vol. 41, Pitman,

London, 1980.
70. , Colour symmetry, Bull. Lond. Math. Soc. 16 (1984), no. 3, 209–240.
71. M. Senechal, Color symmetry, Comput. Math. Appl. 16 (1988), no. 5-8, 545–553.
72. N.J.A Sloane and B. Beferull-Lozano, Quantizing using lattice intersections, Discrete and com-

putational geometry (B. Aronov, S. Basu, J. Pach, and M. Sharir, eds.), Algorithms Combin.,
vol. 25, Springer, Berlin, 2003, pp. 799–824.

73. T. Sunada, Crystals that nature might miss creating, Notices Amer. Math. Soc. 55 (2008), no. 2,
208–215.

74. B.L. van der Waerden and J.J. Burckhardt, Farbgruppen, Z. Krist. 115 (1961), no. 3-4, 231–234.
75. D.H. Warrington, Coincidence site lattices in quasicrystal tilings, Mater. Sci. Forum 126-128

(1993), 57–60.
76. D.H. Warrington and P. Bufalini, The coincidence site lattice and grain boundaries, Scripta

Metall. 5 (1971), no. 9, 771–776.
77. D.H. Warrington and R. Lück, The use of the Wieringa roof to examine coincidence site quasi-

lattices in icosahedral quasicrystals, Aperiodic ’94 (Singapore) (G. Chapuis and W. Paciorek,
eds.), World Scientific, 1995, pp. 30–34.

78. , Rotational space and coincidence site lattices for icosahedral symmetry, Mater. Sci.
Forum 207-209 (1996), 825–828.

79. , Healing of slip planes and interfaces in quasiperiodic patterns, Ferroelectrics 250 (2001),
no. 1, 357–360.

80. L.C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics,
vol. 83, Springer, New York, 1997.



82 BIBLIOGRAPHY

81. P. Zeiner, Symmetries of coincidence site lattices of cubic lattices, Z. Krist. 220 (2005), no. 11,
915–925.

82. , Coincidences of hypercubic lattices in 4 dimensions, Z. Krist. 221 (2006), no. 2, 105–114.
83. , Diskrete Mathematik 2 lecture notes, Universität Bielefeld, 2006.
84. , Multiple CSLs for the body centered cubic lattice, J. Phys.: Conf. Ser. 30 (2006), 163–

167.
85. , private communication, 2010.
86. , Multiplicativity in the theory of coincidence site lattices, J. Phys.: Conf. Ser. 226 (2010),

012025.
87. Y.M. Zou, Indices of coincidence isometries of the hypercubic lattice Zn, Acta Crystallogr. Sect.

A 62 (2006), no. 6, 454–458.
88. , Structures of coincidence symmetry groups, Acta Crystallogr. Sect. A 62 (2006), no. 2,

109–114.


