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Abstract

Quantum information-theoretic models of secret source-sharing are developed using a
general LOCC scheme, i.e. a protocol involving only local operations and classical com-
munication. This is in order to generate a common random key from a shared quantum
state at two terminals without allowing an eavesdropper to obtain information about this
key. Coding theorems for special separable states are obtained, and bounds to secret key
capacity are also derived for more general quantum source states and other models later.
In order to prove results for secret source-sharing schemes with a quantum source state
also shared with a wiretapper, multi-user systems are studied and the capacity region for
the degraded quantum broadcast channel is started to be determined. Using the results
of the foregoing chapters, a sufficient bound on the error rate for unconditional security
of the BB84 quantum key distribution protocol is proved.
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1 Introduction

In the present thesis, problems of quantum information theory are discussed, mainly in
the context of coding problems for secret key capacity and broadcast channels. Thus we
follow a line of research initiated by Shannon [33] in 1948, where informational-operational
meaning was lent to terms such as entropy, information, capacity and building on models of
stochastic nature. This is directly in common with quantum theory, generally understood
to be a stochastic theory (starting with Born in 1926 [11], modern textbook account e.g.
by Peres [30]). A stochastic theory however of a novel type: it was soon understood that
the statistical predictions of quantum theory cannot be described in classical stochastic
theories (compare the early discussion of Einstein et al. [18] and Bell [8]) resulting in the
necessity of a noncommutative probability theory.

These observations led physicists during the 1960s to speculate about the role of quantum
probabilism in information theory: cf. the works of Gordon [20], Levitin [26] and Forney
[19]. Holevo [23],[24] however is to be credited with founding an appropriate mathematical
theory one decade later and proving the (in our days well known) Holevo bound on
quantum channel capacities. This bound has already started reflecting the difference
from ”classical information”, which was given a qualitative distinction in the no-cloning
theorem of Wootters and Zurek [46], stating that quantum states cannot be duplicated,
whereas classical data obviously can. This has had a great impact on models for quantum
broadcast channels.

For the cryptography branch, Bennett and Brassard [9] introduced in 1984 their famous
BB84 quantum key distribution protocol, which was considered to be unconditionally
secure, i.e. the key resulting from this protocol is independent of other parameters,
especially of computational power. Finally, in 1994, two significantly novel observations
were made: the quantum algorithm of Shor [34] for factoring integers, proving the power
of quantum information processing, and by Schuhmacher [31] the successful interpretation
of von Neumann entropy as the asymptotic source coding rate for quantum information.
Both works continue to exert a great influence on the newly founded quantum information
theory research groups, starting with the proof of the coding theorem complementing the
Holevo bound (Hausladen et al. [21], Holevo [25], Schuhmacher and Westmoreland [32]),
up to multi-user quantum information theory (e.g. the coding theorem for the quantum
multiple access channel[44]). In the field of quantum cryptography, an important result
was also established: Mayers [28] proved in 1998 the security of the BB84 quantum
key distribution theorem, which has not been totally understood for a long time by the
research community. Later Shor and Preskill (2000) [35] presented an easier proof, using
recently discovered quantum error-correcting codes and privacy amplification at the same
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time. In this context it is interesting to see that the research on privacy amplification for
quantum protocols led to new results in classical information theory [38].

In this thesis we start modelling a new general local communication scheme (LOCC)
for secret sharing in a quantum setting, i.e. two terminals can measure their parts of
a commonly shared quantum state and exchange classical messages publicly in order to
establish a common secret key unknown to an adversary third terminal, who can listen to
the public messages, with high probability. Beside general lower bounds coding theorems
are proved in the special cases that the shared quantum state is classically correlated or
has an orthogonal structure. In chapter III we extend this model, such that the adversary
terminal may also be correlated to the commonly shared state, and a more sophisticated
proof for a lower bound to the secret key capacity is given.

In order to state the proofs in chapter III, we had to take totally new research steps in
quantum broadcast channel theory, where until now only research on the fundamental
No-Cloning theorem had been done. After proving achievable rate points for the asym-
metric broadcast channel, we state a coding theorem for the degraded quantum broadcast
channel. Here the new problems to be solved arose from the quantum character of the
involved channels underlying the above mentioned No-Cloning theorem.

Finally we establish a new proof for the sufficient bound on the error rate for uncondi-
tional security of the BB84 quantum key distribution protocol, using new results from the
foregoing chapters.



Chapter I

Quantum Cryptography With
Separable States I

1 Introduction

In this chapter we will start with definitions of quantum information theory, in order to
derive upper and lower bounds for the secret key capacity of a quantum source shared
between two users. In the case of a semi-classical quantum source, we will elaborate a
coding theorem which will be extended in chapter III, where a wiretapper is also allowed
to be correlated with the quantum source.

2 Basic Definitions and Theorems

A C
∗-algebra with unit is a complex Banach space U which is also a C-algebra with

unit 1 and a C-antilinear involution ∗ , such that

‖AB‖ ≤ ‖A‖‖B‖ and ‖A∗‖2 = ‖A‖2 = ‖AA∗‖.

Quantum systems will be modelled by these algebras, quantum subsystems consequently
by ∗ − subalgebras. We will assume that all algebras are finite. It is known that in this
case those algebras are isomorphic to a direct sum of L(Hi). This includes as extremal
cases the algebras L(H), and the commutative algebras CX over a finite set X . In
particular we have on every such algebra a well defined and unique trace functional,
denoted Tr , that assigns trace one to all minimal positive idempotents. A state on a
C
∗-algebra U is a positive C-linear functional ρ with ρ(1) = 1. Positivity here means

that its values on the positive cone are nonnegative. Clearly the states form a convex set
S(A) whose extreme points are called pure states, all others are mixed. One can easily
see that every state ρ can be represented uniquely in the form ρ(X) = Tr (ρ̂X) for

6
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a positive, selfadjoint element ρ̂ of U with trace one (such elements are called density
operators). In the sequel we will make no distinction between ρ and its density operator
ρ̂.

2.1 Quantum Operations and Observables

A C-linear map φ : U2 → U1 is called quantum operation, if it is completely positive
(i.e. positive, so that positive elements have positive images, and also the ρ ⊗ 1n are
positive with 1n being the identity of the n×n-matrices) and unit preserving. There is
a 1-1 correspondence with their adjoints φ∗ by the trace form, mapping states to states,
and being completely positive and trace preserving.

Let F be a σ− algebra on some set Ω, X a C∗− algebra. A map X : F→ X is called
a positive operator valued measure (POVM), or an observable, with values in X (or on
X), if:

1) X(∅) = 0, X(Ω) = 1

2) E ⊂ F implies X(E) ≤ X(F )

3) If (En)n is a countable family of pairwise disjoint sets in F then X(∪nEn) =∑
nX(En) in the weak topology.

If the values of the observable are projection operators, and Ω is the real line one speaks
of a spectral measure or a von Neumann observable. An observable X, together with
a state ρ, yields a probability measure PX on Ω via PX(E) = Tr (ρX(E)). In this
way we may view X as a random variable with values in X, its distribution we denote
PX (note that PX may not be isomorphic to PX : if X takes the same value on
disjoint events, which means that X introduces randomness by itself). From now on,
all observables will be countable, i.e. w.l.o.g. they are defined on a countable Ω with
σ− algebra. This means that we may view an observable X as a resolution of 1 into a
countable sum 1 =

∑
j∈ΣXj of positive operators Xj.

Two observables X,Y are said to be compatible, if they have values in the same algebra
and XY = Y X elementwise, i.e. for all E ∈ FX , F ∈ FY : X(E)Y (F ) = Y (F )X(E). If
U1,U2 are subalgebras of U, they are compatible if they also commute elementwise.

2.2 von Neumann Entropy

The von Neumann entropy of a state ρ (introduced by von Neumann [39]) is defined
as H(ρ) = −Tr (ρ log ρ), which reduces to the usual Shannon entropy for a commutative
algebra, because in this case a quantum state is equivalent to a probability distribution.
Further, we introduce the I-divergence D(ρ‖σ) = Tr (ρ(log ρ − log σ)) for states ρ, σ
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with supp(ρ) ≤ supp(σ) , otherwise D(ρ‖σ) = ∞. (This useful functional was first
defined by Umegaki [36]).

Let X, Y, Z be compatible observables on a C∗− algebra U and ρ a fixed state on U.
In the previous subsection, these are then random variables with a joint distribution, and
one defines entropy H(X), conditional entropy H(X|Y ), mutual information I(X∧Y ),
and conditional mutual information I(X ∧ Y |Z) for these observables as the respective
quantities for them interpreted as random variables. Since this depends on the underlying
state ρ we will often add this state as an index, i.e. Hρ(X) = H(X), etc.

Now let X,X1,X2,Y be compatible *-subalgebras of the C
∗-algebra U, i.e. they com-

mute elementwise. With the completely positive inclusion map i : X→ U and its adjoint
i∗ : U∗ → X∗, we define

H(X) = Hρ(X) , H(i∗ρ)

(where the von Neumann entropy appears on the right hand side). Now conditional
entropy, mutual information, and conditional mutual information are defined by reducing
them to entropy quantities:

H(X|Y) , H(XY)−H(Y)

I(X1 ∧ X2) , H(X1) +H(X2)−H(X1X2)

I(X1 ∧ X2|Y) , H(X1|Y) +H(X2|Y)−H(X1X2|Y)

We may now form hybrid expressions involving observables and subalgebras at the same
time: let i : X→ U, j : Y→ U be ∗− subalgebra inclusions, and X, Y observables on
U, all compatible. Then we can for example define

H(X|Y ) = H(iY )−H(Y ),

which can be evaluated by

H(X|Y ) =
∑
j

Tr (ρYj)Hρj
(X), with ρj =

1

Tr (ρYj)

√
Yjρ
√
Yj.

A further possible formula is given by

I(X ∧Y) = H(i) +H(Y )−H(iY ).

Define for a (measureable) map ρ∗ : X → S(Y) and a probability distribution P on
X

I(P ; ρ∗) , Iγ(CX ∧Y)

with the channel state γ =
∑

x∈X P (x)[x]⊗ ρ∗(x). It is easy to verify that

I(P ; ρ∗) = H(Pρ∗)−H(ρ∗|P ),

where Pρ∗ = Tr CXγ =
∑

x∈X P (x)ρ∗(x) and H(ρ∗|P ) =
∑

x∈X P (x)H(ρ∗(x)).

In the rest of this thesis, we will always use compatible *-subalgebras of some C
∗ −

algebra U, if not otherwise noted. For the language of observables and further definitions
and proofs regarding the entropy used in this thesis, we mainly refer to Winter [41].
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2.3 Quantum Entropy Inequalities

For the following facts, we refer to Ohya & Petz [29] and Wehrl [40].

Theorem 2.1 (Dilation) Let φ : U → L(H) be a linear map of C
∗-algebras. Then

φ is completely positive if and only if there exists a representation α : U → L(K), with
Hilbert space K and a bounded linear map V : H → K such that

∀A ∈ U : φ(A) = V ∗α(A)V.

The well known Kraus representation φ(A) =
∑

iB
∗
iABi with U = L(U) and linear

maps Bi : L(H)→ L(U), where
∑

iB
∗
iBi = 1H, is a useful corollary.

Theorem 2.2 (Klein inequality) For positive operators ρ, σ

D(ρ‖σ) ≥ 1

2
Tr (ρ− σ)2 + Tr (ρ− σ).

Further if ρ, σ are states then D(ρ‖σ) ≥ 0 and D(ρ‖σ) = 0 if and only if ρ = σ .

Theorem 2.3 (Monotonicity) Let ρ, σ be states on a C∗ − algebra U , and φ∗ a
trace preserving, completely positive linear map from states on U to states on B. Then

D(φ∗ρ‖φ∗σ) ≤ D(ρ‖σ).

Theorem 2.4 ((Strong) Subadditivity) For compatible ∗− subalgebras U1,U2,U3 one
has:

H(U1U2) ≤ H(U1) +H(U2) (Subadditivitiy) and

H(U1U2U3) +H(U2) ≤ H(U1U2) +H(U2U3) (Strong Subadditivity).

A proof of the strong subadditivity was first done by Lieb & Ruskai. The first inequality
can be proved by setting U2 = C.

Theorem 2.5 (Data Processing Lemma) Let U1,U2,U
′
1,U

′
2 be compatible subalge-

bras of U and φi : Ui → U, ψi : U′i → Ui for i ∈ {1, 2} quantum operations. Then we
obtain the most general form of a data processing inequality

I(φ1 ◦ ψ1 ∧ φ2 ◦ ψ2) ≤ I(φ1 ∧ φ2).

This is still true in the case that we condition over commutative subalgebras.
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Proof: Consider the following diagram

U′1
φ1−→ U1

ψ1−→ U

↓ ↓ ‖
U′1 ⊗ U′2

φ1⊗φ2−→ U1 ⊗ U2
ψ=ψ1ψ2−→ U

↑ ↑ ‖
U′2

φ2−→ U2
ψ2−→ U

and apply the Lindblad-Uhlmann monotonicity theorem 2.3 twice, with φ∗(ρ) and the
map (ψ1 ⊗ ψ2)∗. The rest follows from the strong subadditivity theorem 2.4.

�

Define h(x) , −x log x− (1− x) log(1− x).

Theorem 2.6 (Quantum Fano-inequality) Let X be a commutative *-subalgebra com-
patible with Y, and X the uniquely determined maximal observable on X. Then for
any observable Y with values in Y the probability that ”X 6= Y ”, i.e. pe = 1 −∑

j Tr (ρXjYj), satisfies

H(X|Y) ≤ h(pe) + pe log(Tr supp(ρ|X)− 1)

Proof: This can be easily reduced to the classical Fano-inequality.

2.4 Discrete Memoryless Quantum Channel

A (discrete memoryless) quantum channel (q-DMC) is a completely positive, trace pre-
serving mapping φ∗ from the states on a C∗− algebra U into the states on L(H), where
d = dimH is assumed to be finite. A nonstationary q-DMC is a sequence (φn∗)n∈N of
q-DMC’s, with a global Hilbert space H. An n− block code is a pair (f,D), where f
is a mapping from a finite set M into S(U1)×· · ·×S(Un), and D is an observable on
L(H)⊗n indexed by M′ ⊂ M. We call (f,D) an (n, λ)− code, if the maximum error
probability

e(f,D) = max{1− Tr (φ⊗n∗ (f(m))Dm) : m ∈M}
is less or equal λ.

Theorem 2.7 Let (W1,W2, . . . ) be a nonstationary q-DMC, and

C(Wi) = supP p.d. on WI(P ; Wi). Then for every λ ∈ (0, 1)∥∥∥∥∥ 1

n
logN(n, λ)− 1

n

n∑
i=1

C(Wi)

∥∥∥∥∥ n→∞→ 0,

where N(n, λ) denotes the maximal size of M.
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This theorem was independently proved in 1997 by Holevo [25] and Schumacher & West-
moreland [32]. For a more elegant proof, see Winter [42].

3 Typical Sequences

Definition 3.1 (Variance Typical Sequences) Let P be a probability distribution on
the set X , with |X | <∞, δ > 0. Define N(x|xn) = |{i : xi = x}|. Then we call the set

T nV,P,δ = {xn ∈ X n : ∀x ∈ X |N(x|xn)− nP (x)| ≤ δ
√
n
√
P (x)(1− P (x))}

the set of variance-typical sequences with constant δ (cf. Wolfowitz [45]).

The empirical distribution Pxn on X is called type of X n, defined by Pxn(x) =
1
n
N(x|xn). The following set of all types for a given block length n over X denoted as

P(n,X ) is upper bounded by (n+1)|X | , known as type counting. Note that T nP , T nV,P,0
is the set of sequences of the same type P. Defining K , 2(log e/e) we get

Lemma 3.2 [45] For every probability distribution on X and δ > 0

P⊗n(T nV,P,δ) ≥ 1− |X |
δ2

|TV,P,δ| ≤ exp{nH(P ) +K|X |δ
√
n}.

Proof: T nV,P,δ is the intersection of |X | events, namely for each x ∈ X it is the mean
of the independent Bernoulli variables Xi with value 1 iff xi = x has a deviation
from its expectation P (x) at most α

√
P (x)(1− P (X))/

√
n. According to Chebyshev’s

inequality each of these has probability at least 1 − 1/δ2 . The second inequality is a
known fact from type counting (cf. Wolfowitz [45]).

�

Further, let PX|U be a stochastic matrix (giving a classical channel U : U → X ). The
set of sequences xn ∈ X n is called PX|U -variance-typical under the condition un ∈ Un
with constant δ :

TV,PX|U ,δ(u
n) , {xn ∈ X n : ∀u ∈ U , x ∈ X :

|N(u, x|un, xn)−N(u|un)PX|U(x|u)| ≤ δ
√
N(u|un)PX|U(x|u)(1− PX|U(x|u))},

where N(u, x|un, xn) , |{i ∈ {1, . . . , n} : ui = u and xi = x}|.
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Lemma 3.3 For every stochastic matrix PX|U on X ,U , un of type PU and δ > 0

P⊗nX|U(T
n
V,PX|U

(un)|un) ≥ 1− |U||X |
δ2

,

|T nV,PX|U ,δ(u
n)| ≤ exp{nH(PX|U |PU) +K ′(2|X |+ δ)|U||X |

√
n}

for some K ′ > 0 independent of |X |, |U|, δ, n.

Proof: For each u ∈ U the mean of the independent Bernoulli variables Xi with
distribution PXi

= PX|U(·|ui) has a deviation from its expectation N(u|un)PX|U(x|u)
and variance N(u|un)PX|U(x|u)(1−PX|U(x|u)). The rest again follows from Chebyshev’s
inequality.

�

Definition 3.4 ( η-shadow of B ) B is said to be an η-shadow of a state ρ , if
0 ≤ B ≤ 1 and Tr ρB ≥ η .

Lemma 3.5 [42] (Shadow Bound Lemma) Let 0 ≤ Π ≤ 1 and let ρ be a state such
that for some λ, µ1, µ2 > 0

Tr ρΠ ≥ 1− λ (3.1)

µ1Π ≤
√

Πρ
√

Π ≤ µ2Π. (3.2)

Then
1− λ
µ2

≤ Tr Π ≤ 1

µ1

. (3.3)

If further B is an η-shadow of ρ, one has

Tr B ≥ η − γ
µ2

,

where γ = λ if ρ and Π commute and γ =
√

8λ otherwise.

Proof: Equation (3.3) can be archived by taking traces in (3.2) and using (3.1), noting
that Tr ρΠ ≤ 1 . For the η− shadow B observe that

µ2Tr B ≥ Tr µ2ΠB ≥ Tr
√

Πρ
√

ΠB

= Tr (ρB)− Tr ((ρ−
√

Πρ
√

Π)B ≥ η − ||ρ−
√

Πρ
√

Π||1.

If ρ and Π commute, we can bound the trace norm by λ , otherwise
√

8λ can be
archived by lemma 3.6.
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�

Lemma 3.6 [[44], Lemma 9] (Gentle Operator Lemma) Let ρ be a state, and X
a positive operator with X ≤ 1 and 1− Tr (ρX) ≤ λ ≤ 1. Then

‖ρ−
√
Xρ
√
X‖1 ≤

√
8λ.

Lemma 3.7 (Gentle Double Operator Lemma) Let ρ be a state, and X, Y ≤ 1

positive operators such that 1− Tr (ρX) ≤ λ1 ≤ 1, 1− Tr (ρY ) ≤ λ2 ≤ 1. Then

‖ρ−
√
Y
√
Xρ
√
X
√
Y ‖ ≤

√
8λ1 +

√
8λ2.

Proof: Let ρ̄ , ρ−
√
Xρ
√
X and observe that ‖ρ̄‖1 ≤

√
8λ1 by lemma 3.6. Furthermore

‖ρ−
√
Y
√
Xρ
√
X
√
Y ‖1 = ‖ρ−

√
Y (ρ− ρ̄)

√
Y ‖1

≤ ‖ρ−
√
Y ρ
√
Y ‖1 + ‖

√
Y ρ̄
√
Y ‖1

≤
√

8λ2 + ‖ρ̄‖1‖Y ‖∞ ≤
√

8λ2 +
√

8λ1,

where we used the triangle and Hölder inequality and lemma 3.6 again.

�

Let H be a finite dimensional Hilbert space of dimension d and X , L(X ), with X a
finite set.

Now we construct variance-typical projectors Πn
V,ρ,δ using typical sequences: for a diag-

onalization ρ =
∑

i qiπi let si =
√
qi(1− qi) and

T nV,ρ,δ = {(i1, . . . , in) : ∀i : |N(i|in)− nqi| ≤ siδ
√
n},

and define
Πn
V,ρ,δ =

∑
(i1,...,in)∈T n

V,ρ,δ

πi1 ⊗ · · · ⊗ πin .

Lemma 3.8 [[43], Lemma 3] For every state ρ on H and n > 0

Tr ρ⊗nΠn
V,ρ,δ ≥ 1− d

δ2

Πn
V,ρ,δ exp{−nH(ρ)−Kdδ

√
n} ≤ Πn

V,ρ,δρ
⊗nΠn

V,ρ,δ ≤ Πn
V,ρ,δ exp{−nH(ρ) +Kdδ

√
n}

Tr Πn
V,ρ,δ ≤ exp{nH(ρ) +Kdδ

√
n}.

Every η-shadow B of ρn satisfies

Tr B ≥
(
η − d

δ2

)
exp{nH(ρ)−Kdδ

√
n}.
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Proof: The first estimate is the Chebyshev inequality: the trace is the probability of a
set of variance-typical sequences of eigenvectors of the ρi in the product of the measures
given by the eigenvalue lists. The second estimate was proved by Winter [43] lemma 3
and the shadow bound estimate follows from the shadow bound lemma 3.5.

�

Now fix a diagonalization ρx =
∑

j qj|xπxj (where qj|x becomes a stochastic matrix by
definition of ρ). Then define the conditional variance-typical projector of ρ given xn

with constant δ to be
ΠV,ρ,δn(xn) ,

⊗
x∈X

ΠIx
V,ρx,δ

where Ix , {i ∈ {1, . . . , n} : xi = x}. With the convention ρxn , ρx1 ⊗ · · · ⊗ ρxn we
now have

Lemma 3.9 [[43], Lemma 5] (Conditional typical projector) For all xn ∈ X n of
type PX

Tr (ρxnΠn
V,ρ,δ(x

n)) ≥ 1− d|X |
δ2

Tr Πn
V,ρ,δ(x

n) ≤ exp{nH(ρ|PX ) +Kd
√
|X |δ
√
n}

Tr Πn
V,ρ,δ(x

n) ≥
(

1− d|X |
δ2

)
exp{nH(ρ|PX )−Kd

√
|X |δ
√
n}

Every η-shadow B of ρxn satisfies

Tr B ≤
(
η − d|X |

δ2

)
exp{nH(ρ|PX )−Kd

√
|X |δ
√
n}.

Proof: The first estimate follows simply by applying lemma 3.8 |X | times. The sec-
ond formula is by piecing together the corresponding formulas from lemma 3.8, using∑

x∈X

√
P (x) ≤

√
|X |. The rest follows immediately from lemma 3.5.

�

Definition 3.10 (Constant typical sequences) The set of constant typical sequences
is defined by

TC,P,δ = {xn ∈ X n : |N(x|xn)− nP (x)| ≤ δ
√
n for all x ∈ X}.

For δ = 0 we again get the type class T nP , TC,P,0 consisting of sequences of the same
type.
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Lemma 3.11 Let P be a probability distributions and α such that 0 < α ≤ 1
2

. Then

for all β , −α log α
|X |

lim
n→∞

P⊗n({T nC,Q : Q a p.d. such that |H(Q)−H(P )| < β with ||P −Q||1 ≤ α) = 1

Proof: Using the Pinsker inequality D(P ||Q) ≥ 1
2ln2
||P −Q||21 and |H(P )−H(Q)| ≤ β

(which is valid since ||P−Q||1 ≤ α ≤ 1
2
) we get D(P ||Q) ≤ α2

2ln2
, if |H(P )−H(Q)| ≥ β .

Hence, ∑
Q∈P(n,X ):|H(Q)−H(P )|≥β

P n(T nC,Q) ≤ (n+ 1)|X |maxQ:|H(Q)−H(P )|≥β exp{−nD(Q||P )}

= (n+ 1)|X | exp{−n minQ:|H(Q)−H(P )|≥βD(Q||P )}

≤ (n+ 1)|X | exp{−n α2

2ln2
} n→∞−→ 0.

�

4 The Secret Sharing Source Model

Definition 4.1 (Multiple Quantum Sources)

i) A (discrete memoryless) multiple (s-fold) quantum source (q-DMMS) is
a tuple (X1, . . . ,Xs,Π,P) of finite C∗− algebras Xi, a finite set Π of pure states
on X = X1 ⊗ · · · ⊗ Xs and a probability distribution P on Π .

ii) The average state of the source is the state PΠ of X. Its marginal, restricted to
X⊗I = ⊗i∈IXi, is denoted PΠ |I .

iii) If all states π ∈ Π are product states with respect to X1, . . . ,Xs :

π = π1 ⊗ · · · ⊗ πs, πi ∈ S(Xi),

the source is denoted classically correlated. Then we obtain for each J ∈
{1, . . . , n} a multiple source ((Xj|j ∈ J),Π|J ,P) by restricting the π ∈ Π to
X⊗J , i.e. replacing π by π|J. W.l.o.g. Π = Π1 × · · · × Πs.

Definition 4.2 (Secret Sharing Source Model) We are given a q-DMMS (X,Y,Π,P)
with two component sources. Terminal X (Y) can use arbitrary quantum operations on
source outputs X⊗n = X1 ⊗ · · · ⊗ Xn (resp. Y⊗n = Y1 ⊗ · · · ⊗Yn) .

Further, a noiseless public quantum channel of unlimited capacity is available for com-
munication between X and Y enabling them to send commutative subalgebras (i.e. they
can send classical information only).
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If the two terminals communicate, they can exchange messages or codewords over the
public channel. Codewords generated by Terminal X are denoted by Mi , CMi , and
by Terminal Y by Ni , CNi for instances i = 1, . . . , k.

For written abbreviation, we define M[k] , M1⊗ · · ·Mk for k ∈ N. Note that Mi and
Ni are commutative algebras generated by finite sets Mi and Ni.

Definition 4.3 (Secret Sharing Strategy)

init) In the beginning ρ⊗n is a quantum state on X⊗n ⊗Y⊗n . Let Ri,Li be finite di-
mensional subalgebras of U , furthermore let Mi = CMi, Ni = CNi commutative
subalgebras of U for i ∈ {1, · · · , k}.

1st step) Terminal X uses a completely positive map

φ1 : X⊗n → X⊗n ⊗R1 ⊗M1

and sends M1 to Y . Terminal Y uses the completely positive map

ψ1 : Y⊗n → Y⊗n ⊗ L1 ⊗N1

and sends N1 to X , i.e. on the common state ρ⊗n the action ρ⊗n
φ1⊗ψ1−→ ρ1 takes

place giving a state on X⊗n ⊗Y⊗n ⊗R1 ⊗ L1 ⊗N1 ⊗M1 such that

ρ1 =
∑
i,j,k,l

p1(i, j, k, l)ρ
X
1 ⊗ ρY1 ⊗Ri ⊗ Lj ⊗ [k]⊗ [l].

i-th step: Terminal X uses the following completely positive map

φi : X⊗n ⊗R[i−1] ⊗N[i−1] → X⊗n ⊗R[i] ⊗N[i−1] ⊗Mi

and sends Mi to Y . Terminal Y uses the analogous completely positive map

ψi : Y⊗n ⊗ L[i−1] ⊗M[i−1] → Y⊗n ⊗ L[i] ⊗M[i−1] ⊗Ni.

I.e. together they perform the action ρi−1
φi⊗ψi−→ ρi such that (after trivial reordering)

ρi is a state on X⊗n ⊗Y⊗n ⊗R[i] ⊗ L[i] ⊗N[i] ⊗M[i]

k-th step: After the last communication terminal X measures their states using a POVM on
X⊗n⊗R[k]⊗N[k] which is indexed by {1, . . . ,M} giving a probability distribution
K. Bob also uses a POVM on Y⊗n⊗L[k]⊗M[k] with the same indexing, resulting
in a probability distribution L.

Observe that X uses mathematically a quantum operation K : X⊗n ⊗R[k] ⊗N[k] → K

in the last step, where K is a commutative *-subalgebra of dimension M. The same
holds analogously for Y .
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Remark 4.4 Note that this Secret Sharing Strategy is a general LOCC (Local Operations,
Classical Communication) scheme. Each terminal can apply an arbitrary quantum oper-
ation, where we think of R,L as being ”full quantum registers” for storage of quantum
information (or, more precisely, states) for later computation, and M,N being ”classical
registers” storing classical data (e.g. from measurements) for communication.

If ρ is a separable state, i.e. the entanglement of formation is 0, then from the previous
remark no entanglement can be achieved between the two terminals X and Y by this
scheme. More precisely, the entanglement of formation can not change by this strategy
for a given start state ρ.

Let f : A → B be a function between finite sets and A a POVM indexed by elements
in A. In the direct part of the following proofs, we will only use quantum operations of
the following form:

Φ : X⊗n → X⊗n ⊗R⊗M

ρ →
√
Aiρ
√
Ai ⊗ [i]⊗ [f(i)] (4.1)

Remark 4.5 Since A is a POVM the map (4.1) is clearly completely positive according
to theorem 2.1. Further observe that we deal only with commutative *-subalgebras R,L.

Definition 4.6 A number R will be called an achievable secret key rate for the Secret
Sharing Source Model if for every ε > 0 and sufficiently large n there exists a Secret
Sharing Strategy such that K and L satisfy

Pr{K 6= L} < ε (4.2)

1

n
I(M[k],N[k] ∧K) < ε (4.3)

1

n
H(K) > R− ε (4.4)

1

n
log |K| <

1

n
H(K) + ε (4.5)

The maximal achievable secret key rate is denoted by the secret key capacity CS.

Here (4.2) assures that the two terminals have indeed generated a common key (with
a small probability of error). With (4.3) we have a secrecy constraint: No information
about the key has been given away by communication over the public channel. The last
inequality assures that the distribution of the key is nearly uniform in an entropy sense,
i.e. we have a ”good” key for encryption.

Without loss of generality, let K = {1, . . . ,M} and m ∈ {1, . . . ,M} a message, which
should be transmitted securely form terminal X to terminal Y . X sends the ciphertext
c = m+K mod M to Y , who can decode c with small probability of error. We will
show that the wiretapper, who has full access to the public channel, gets no information
concerning m :
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Lemma 4.7 (Secure Transmission) For a random variable m with values in {1, . . . ,M}
and independent of (M[k],N[k], K),

1

n
I(M[k],N[k],m⊕K ∧m) ≤ 2ε,

if (4.3), (4.5) are valid and ⊕ defines calculation mod M .

Proof: First note that M, N are commutative subalgebras.

I(M[k],N[k], (m⊕K) ∧m)
(i)
= I(m⊕K ∧m|M[k],N[k])

= H(m⊕K|M[k],N[k])−H(m⊕K|m,M[k],N[k])

≤ logN −H(K|m,M[k],N[k])

Eq.(4.5)

≤ H(K) + nε−H(K|m,M[k],N[k])

= I(K ∧m,M[k],N[k]) + nε

Eq.(4.3)

≤ 2nε

Since m is independent of the state on (M[k],N[k]), (i) is correct.

�

Definition 4.8 (Source States) Let (X,Y,Π,P) be a q-DMMS with X = L(HX ) and
Y = L(HY) ∗ −subalgebras over finite dimensional Hilbert spaces.

i) The Secret Sharing Source Model is called fully quantum, if Π is a set of arbitrary
quantum states.

ii) The Secret Sharing Source Model is denoted separable, if Π is a set of separable
quantum states, i.e. the average state PΠ is given by ρ̂ =

∑
i piσ̂i ⊗ τ̂i.

iii) The Secret Sharing Source Model is called semi-classical, if beside ii) there is also
an orthogonal basis |i〉 of HX such that σi = |i〉〈i|. Thus, X can be modelled by
CX .
Now we define recursively a special orthogonal class of states, denoted oc-type states,
representing the special orthogonal-channel character :

iv) ρ is called a oc-type state if the following is true:

1) ρ̂ =
∑

i pi|i〉〈i| ⊗ τ̂i or
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2) If the states ρ̂1, . . . , ρ̂l are oc-type states and λi ≥ 0, 1 ≤ i ≤ l,
∑l

i=1 λi = 1
such that

for all i, j ∈ {1, . . . , l} and all Z ∈ {X,Y} : Tr Zρ̂i⊥Tr Zρ̂j

then ρ̂ =
∑l

i=1 λiρ̂i is also an oc-type state.

Observe that the semi-classical states are involved in the oc-type states. The
Secret Sharing Source Model is denoted oc-type if the average state PΠ = ρ̂.

5 Secret Key Capacity Theorem for Semi-Classical

States

Theorem 5.1 (Main Theorem) The secret key-capacity CS for the semi-classical Se-
cret Sharing Source Model equals the quantum mutual information and is attainable by
using a single forward transmission, i.e.

CS,semi−classical,→ = I(X ∧Y).

Before we prove this theorem, we need the following lemma due to Ahlswede and Körner
(see [4]):

Lemma 5.2 (Code Partition Lemma) Consider the q-DMC W : X → S(Y), P a
probability distribution on X , λ, δ, η ≥ 0 . Then for n ≥ n0(|X |, dim H, λ, δ, η) there
exists N ≤ exp{n(H(P ) − I(P ;W ) + 3δ)} many (n, λ)− codes with pairwise disjoint
”large” codebooks Ci : M , |Ci| ≥ exp{n(I(P ;W ) − 2δ)} such that P n(

⋃N
i=1 Ci) ≥ η.

This is also true for the constant type sequences with same type.

Proof: Choose α > 0 such that P⊗n(T nV,P,α) ≥ 1 − η/2 and n large enough such
that for every A ⊂ T nV,P,α with P⊗n(A) ≥ η/2 there is a (n, λ)-code with codebook
C ⊂ A and |C| ≥ exp(n(I(P ;W ) − 2δ)) from theorem 2.7. Choosing such a codebook
C1 ⊂ A∞ = T nV,P,α and inductively Ci ⊂ Ci−1 ⊂ Ai = Ai−1\Ci−1 until P⊗n(Ai) < η/2,
we have from lemma 3.2 |T nV,P,α| ≤ exp{n(H(P ) + δ)} for large n. So we get

N exp{n(I(P ;W )− 2δ)} ≤
N∑
i=1

|Ci| ≤ |T nV,P,α|.

Next we will show that there exists a subcode with constant type property and all code-
words in the codebooks of the same type. This is easily seen by type counting but we will
give a more precise proof here:
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Fix i ∈ {1, . . . , N} and define for β > 0

C̄i(β) , Ci ∩ T nC,P,β.

Now for sufficiently large n we have P⊗n(C̄i(β)) ≥ η
4
. According to the pigeonhole

principle, there exists a constant type Q with |H(P )−H(Q)| ≤ β and P⊗n(Ci∩T nQ ) ≥
η
4
· P⊗n(T nQ ). Since all the sequences in T nQ are of the same type, they are equiprobable,

and we get

|Ci ∩ T nQ | ≥
η

4
|T nQ | ≥

η

4(n+ 1)|X |
exp{nH(Q)}

≥ η

4

1

(n+ 1)|X |
exp{n(H(P )− β)}.

This applies to all β ≥ 0, and especially to β = H(X|Y) + 3δ − log η
4(n+1)|X|

, where n

can be made sufficiently large to ensure the positivity restriction. Now

|Ci ∩ T nQ | ≥ exp{n(I(P ;W ))− 3δ}.

giving a new codebook C ′i , Ci ∩ T nQ . This method will be used several times, denoted
by type counting.

�

Now we will prove the achievability in the semi-classical case.

Proof of theorem 5.1: (cf. [2], Proposition I) The idea can be divided into two parts:

• At first terminal X transmits a code of X⊗n of rate ≈ H(X|Y), determining a
codebook Ci.

• Y can then decode with small probability of error, since he can measure Y, given
the codebook Ci.

Since ρ =
∑

x |x〉〈x| ⊗Wx we can establish a q-DMC W : X → Y∗ with same type,
and each of size

M = dexp{n(I(P ;W )− 3δ}e. (5.1)

from lemma 5.2. For this (n, ε) -codes (gi, Di) we use the identity mapping as an encod-
ing, so the message sets are coincident with the codeword sets.

Let {Eij}i,j, 1 ≤ i ≤ N, 1 ≤ j ≤ M be orthogonal projection measurements acting on
X⊗n for the i-th codebook Ci regarding the j-th codeword xni,j randomly chosen in Ci
and {Dij}i,j, 1 ≤ i ≤ N, 1 ≤ j ≤M the decoding measurements of the i-th codebook Ci
regarding the j-th codeword Wxn

i,j
, respectively.
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Extending the encoding measurement to a POVM E, by adjoining an encoding error
E0 = 1 −

∑N
i=1

∑M
j=1Eij , we further define a ”codebook distinguishing” POVM Ē by

Ēi ,
∑M

j=1Eij with encoding error Ē0 . Notice that the POVM E is a refinement of

Ē .

In the first step, terminal X uses the quantum operation

φ1 : ρX →
N∑
i=0

√
ĒiρX

√
Ēi ⊗ [i]⊗ [i] +

√
Ē0ρX

√
Ē0 ⊗ [0]⊗ [0],

i.e. the encoding POVM Ē produces a random variable described by M1 without
making a real measurement. A short calculation shows that M1 = [i] if xn ∈ Ci was
the source input for terminal X . Now terminal X sends M1 to Y . Terminal Y does
nothing in the first step (i.e. he applies the quantum operation ψ1 : ρY → ρY ⊗ 1⊗ 1.)

In the end-round terminal X uses the POVM K on X⊗n ⊗R[1] ⊗N[1] given by Kj =∑N
i=1Eij ⊗ [i]⊗ 1 and K0 = 1⊗ [0]⊗ 1 , giving an error.

Now terminal Y uses the decoding POVM D defined by Dj ,
∑N

i=1Dij ⊗ i for j =

1, . . .M and D0 , 1−
∑M

j=1Dj as the decoding error. Observe that
∑M

j=0Dj = 1⊗1 ,
fulfilling the POVM property.

Applying this POVM on Y⊗n⊗M1 terminal Y gets L = j if M1 = [i] and codebook
Ci was used for encoding. Otherwise 0 was measured and we set L to a random value
in {1, . . . ,M} independent of ρ⊗n in X⊗n,Y⊗n.

Since for the q-DMC W we have (n, ε) -codes, we get

Pr(L 6= K|M1 = [i]) = 1−
M∑
j=1

Tr (ρ⊗nEij ⊗Dij) ≤ ε, i = 1, . . . , N.

Observing that Pr(M1 = [0]) = Pr(X n\
⋃N
i=1 Ci) ≤ η we get

Pr(L 6= K) =
N∑
i=1

Pr(M1 = [i])Pr(L 6= K|M1 = [i]) + Pr(M1 = [0])Pr(L 6= K|M1 = [0])

≤ ε
N∑
i=1

Pr(M1 = [i]) + Pr(M1 = [0]) ≤ ε+ η.

Since each Ci, 1 ≤ i ≤ N, consists of sequences of the same type, i.e. for all xn ∈ Ci :
1
n
N(x|xn) = Pi and P n(xn) = Πx∈XP (x)N(x|xn) = Πx∈XP (x)nPi for all x ∈ X , we get

for 1 ≤ i ≤ N :
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Pr(K = j|M1 = [i]) =
Pr(K = j, M1 = [i])

Pr(M1 = [i])

=
Tr ρ⊗n(Eij ⊗ 1)

Tr ρ⊗n(Ēi ⊗ 1)

=
P⊗n(xni,j)∑
xn∈Ci P

⊗n(xn)

=
Πx∈XP (x)nPi∑

xn∈Ci Πx∈XP (x)nPi
=

1

M
,

where xni,j ∈ Ci is the j-th codeword in the codebook Ci.

For M1 = [0] (encoding error) terminal X and Y set K randomly in {1, . . .M} ,
achieving a uniform distribution on {1, · · · ,M} (see definition 4.5). Checking definition
4.4 now gives

1

n
H(K) =

1

n
I(K ∧M1) +H(K|M1) =

1

n
logM,

since I(K ∧M1) = 0 . Immediately we get

1

n
H(K) ≥ I(P ;W )− 3δ

by (5.1) achieving the secret key-rate I(P ;W ) = I(X ∧ Y). Definition 4.3 can also be
granted since the quantum subsystems M1 and N1 are independent of K. The converse
follows from the general upper bound theorem 5.3.

�

The following theorem will provide a general upper bound to 1
n
H(K), implying a converse

to theorem 5.1 and theorem 6.2.

Theorem 5.3 (General Upper Bound) Let X⊗n,Y⊗n,Ri,Li,Ni,Mi,K,L be compat-
ible *-subalgebras of the C∗ -algebra U given by the Secret Sharing Strategy and ρu a
appropriate fixed overall state on U. Let ρ⊗nX = ixρu, ρ

⊗n
Y = iyρu , i.e. ρ⊗n = ρ⊗nX ⊗ρ

⊗n
Y =

ixρ⊗ iyρ, where ix and iy are the inclusion maps of X⊗n in U and Y⊗n in U , re-
spectively. Further let K : X⊗n ⊗ R[i] ⊗ N[i], L : Y⊗n ⊗ L[i] ⊗M[i] be the observables
defined by the Secret Sharing Strategy. Then for every ε > 0 and arbitrary separable
Secret Sharing Model state ρ

1

n
H(K) ≤ Iρ(X ∧Y)
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X⊗n
ix−→ U

iy←− Y⊗n

↓ φ1 ↘ ϕ ↑ µ ↙ ϕ̂ ↓ ψ1

X⊗n ⊗R1 ⊗M1 X⊗n ⊗Y⊗n Y⊗n ⊗ L1 ⊗N1

...
...

X⊗n ⊗R[i−1] ⊗N[i−1] Y⊗n ⊗ L[i−1] ⊗M[i−1]

↓ φi ↓ ψi

X⊗n ⊗R[i] ⊗N[i−1] ⊗Mi Y⊗n[i] ⊗ L[i] ⊗M[i−1] ⊗Ni

...
...

↓ K ↓ L
K L

This scheme will help to understand the dynamics in the Secret Sharing
Strategy used by the proofs for the general upper bound.

Proof: With ρ0 , ρ⊗n we get the following inequality chain, using the notation of the
above diagram:

Iρ0(X
⊗n ∧Y⊗n) + nε = D(µ∗(ρ0)||ϕµ∗(ρ0)⊗ ϕ̂µ∗(ρ0)) + nε

Th. 2.3

≥ Dρ1((φ1 ⊗ 1)∗µ∗(ρ0)||φ1ϕµ(ρ0)⊗ ϕ̂µ∗(ρ0)) + nε

Th. 2.3

≥ Dρ1((1⊗ ψ1)∗(φ1 ⊗ 1)∗µ∗(ρ0)||φ1ϕµ(ρ0)⊗ ψ1ϕ̂µ∗(ρ0)) + nε

= Iρ1(X
⊗n ⊗R1 ⊗M1 ∧Y⊗n ⊗ L1 ⊗N1) + nε

≥ Iρ1(X
⊗n ⊗R1 ∧Y⊗n ⊗ L1 ⊗N1|M1) + nε

≥ Iρ1(X
⊗n ⊗R1 ∧Y⊗n ⊗ L1|M1,N1) + nε

≥ Iρ1(X
⊗n ⊗R1 ⊗N1 ∧Y⊗n ⊗ L1 ⊗M1|M1,N1) + nε

Lem. 5.5

≥ Iρk
(X⊗n ⊗R[k] ⊗N[k] ∧Y⊗n ⊗ L[k] ⊗M[k]|M[k],N[k]) + nε

Lem. 2.5

≥ Iρk
(K ∧ L|M[k],N[k]) + nε (5.2)

Eq. (4.3)

≥ Iρk
(K, M[k],L[k] ∧ L)

≥ Iρk
(K ∧ L) (5.3)
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Since with i.i.d sources Iρ⊗n(X⊗n∧Y⊗n) = nIρ(X∧Y) and H(K) = Hρk
(K), we obtain

the result using the Fano-inequality theorem 2.6 and definition 4.2:

1

n
Hρk

(K) =
1

n
Iρk

(K ∧ L) +
1

n
Hρk

(K|L)

Eq.(5.3)

≤ Iρ(X ∧Y) + ε+
1

n
Hρk

(K|L)

Fano ineq. 2.6

≤ Iρ(X ∧Y) + ε+ h(ε)/n+ ε log(|K| − 1)/n.

Observe that the two rightmost terms tend to zero for n sufficiently large.

�

Remark 5.4 We conjecture that the upper bound derived here is also true in the full
quantum Secret Sharing Source Model.

We still have to prove the following recursion lemma used in the previous proof dealing
with the recursive structure of the Source Sharing Model protocol.

Lemma 5.5 With the assumptions of theorem 5.3, the following recursive expression for
the Secret Sharing Strategy is valid for arbitrary separable states ρ1 :

Iρ1(X
⊗nR1N1 ∧Y⊗nL1M1|M1,N1) ≥ Iρk

(X⊗nR[k]N[k] ∧Y⊗nL[k]M[k]|M[k],N[k])

Proof: We state the proof by induction starting with k=2:

Iρ1(X
⊗n ⊗R1 ⊗N1 ∧Y⊗n ⊗ L1 ⊗M1|M1,N1)

Lem. 2.5

≥ Iρ2(X
⊗n ⊗R2 ⊗N1 ⊗M2 ∧Y⊗n ⊗ L2 ⊗M1 ⊗N2|M1,N1)

(i)

≥ Iρ2(X
⊗n ⊗R[2] ⊗N1 ∧Y⊗n ⊗ L[2] ⊗M1 ⊗N2|M1,N1,M2)

(ii)

≥ Iρ2(X
⊗n ⊗R[2] ⊗N1 ⊗N2 ∧Y⊗n ⊗ L[2] ⊗M1 ⊗M2|M1,N1,M2,N2)

Definition
= Iρ2(X

⊗n ⊗R[2] ⊗N[2] ∧Y⊗n ⊗ L[2] ⊗M[2]|M[2],N[2])

Here (i),(ii) are simple exchange rules considering the commutativity of M[k],N[k].

Now for k − 1→ k we obtain:
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Iρk−1
(X⊗n ⊗R[k−1] ⊗N[k−1] ∧Y⊗n ⊗ L[k−1] ⊗M[k−1]|M[k−1],N[k−1])

(i)

≥ Iρk
(X⊗n ⊗R[k] ⊗N[k−1] ⊗Mk ∧Y⊗n ⊗ L[k] ⊗M[k−1] ⊗Nk|M[k−1],N[k−1])

(ii)

≥ Iρk
(X⊗n ⊗R[k] ⊗N[k−1] ∧Y⊗n ⊗ L[k] ⊗M[k−1] ⊗Nk|M[k−1],N[k−1],Mk)

(iii)

≥ Iρk
(X⊗n ⊗R[k] ⊗N[k−1] ∧Y⊗n ⊗ L[k] ⊗M[k−1]|M[k−1],N[k−1],Mk,Nk)

(iv)

≥ Iρk
(X⊗n ⊗R[k] ⊗N[k−1] ⊗Nk ∧Y⊗n ⊗ L[k] ⊗M[k−1] ⊗Mk|M[k−1],N[k−1],Mk,Nk)

(v)
= Iρk

(X⊗n ⊗R[k] ⊗N[k] ∧Y⊗n ⊗ L[k] ⊗M[k]|M[k],N[k])

Here, (i) is given by the data processing lemma 2.5, (ii)-(iv) by simple exchange rules, ob-
serving that M[k],N[k] are commutative *-subalgebras and (v) by definition of M[k],N[k].
Now we can reduce the inequality inductively, in order to get the result.

�

6 Secret Key Capacity for oc-type States

Definition 6.1 The Recursion Deepness of an oc-type state is the maximal number
of rounds used to build the state by the recursive definition 4.8, starting from a standard
semi-classical state.

Notice that, for example, the state ρ =
∑

i |i〉〈i| ⊗ Wi has Recursion Deepness 1 by
definition. Let X = L(HX ),Y = L(HY).
With I , {1, . . . , |I|},J , {1, . . . , |J |} finite sets we define

ρ̂ ,
∑
i∈I

pi
∑
j∈J

qjieji ⊗ |ji〉〈ji| on X∗ ⊗Y∗

with pi, qji ≥ 0 for all i ∈ I,
∑

i∈I pi =
∑

j∈J qji = 1, eji states in X∗ and the following
properties

i) for all i ∈ I, j ∈ J : |ji〉⊥|ki〉 for all k ∈ J \{j}
ii) for all j, k ∈ J : eji⊥ekl

for all l ∈ I\{i}

Notice that the eji are defined on X∗, and |ji〉〈ji| are pure states in Y∗. Using the
definition it is easy to see that ρ is of Recursive Deepness 2 and it is not difficult to
prove that all other oc-type states of the same Recursive Deepness are isomorph to ρ
with respect to degeneration, i.e the size of I and J . (I.e. for another oc-type state τ
there exists a completely positive map c : X⊗Y→ X⊗Y which maps ρ̂ to τ̂ and the
inverse c.p. map, respectively.)
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Theorem 6.2 (oc-type Secret Sharing Capacity) For oc-type states of Recursive Deep-
ness 2, the secret key capacity is given by CS,2−oc−type = I(X ∧ Y). One forward and
backward public communication is sufficient.

Proof: From the foregoing it is sufficient to prove that CS,2−oc−type = Iρ(X ∧ Y). To
shorten the notation, we define for all i ∈ I, j ∈ J

ρX , Tr Yρ and ρY , Tr Xρ

ρji , eji ⊗ |ji〉〈ji| (6.1)

ρi ,
∑
j∈J

qjiρji

ρXi , Tr Yρi =
∑
j∈J

qjieji and ρYi , Tr Xρi

ρin , ρi1 ⊗ · · · ⊗ ρin .

Since ρXk ⊥ρXl for k, l ∈ I, k 6= l there exists a projective measurement Ā where Āi is
the projection onto ρXi for all i ∈ I such that ρi = 1

Tr ρAi⊗1
√
Ai ⊗ 1ρ

√
Ai ⊗ 1, which

can distinguish all states ρXi . Without loss of generality, let us assume that this gives a
POVM A on X (otherwise define an error A0 , 1 −

∑
i∈I Ai ) which we extend to an

POVM An on X⊗n.

Now terminal X starts with a pre-encoding quantum operation

Φ1 : σ →
∑
in∈In

√
Aninσ

√
Anin ⊗ [in]⊗ [in].

where M1 , (CI)⊗n. Notice that we can now apply theorem 5.1 for the state ρ̄ =∑
i∈I pi[i] ⊗ ρYi on (CI)∗ ⊗ (Y)∗, achieving the secret key capacity I(I ∧ Y), with

I , CI.
Since all information concerning the secret key K can be stored in the quantum system,
we can wait w.l.o.g. for the end measurement (”step k”) and use the stored quantum
state for a backward-transmission of Y to X . Observe that lemma 3.6 assures us that
the state on X⊗n ⊗ Y⊗n ⊗M1 is not disturbed very much: Let D∗ be the decoding
observable defined in the proof of theorem 5.1. For all in ∈ Cj, 1 ≤ k ≤ N we have
1− Tr ρ̄Yin ⊗ [k]Dk

in ≤ ε. Hence we use a gentle measurement argument (i.e an extension
of lemma 3.6, cf. [44]) to obtain

‖ρ̄Yin ⊗ [k]−D∗(ρ̄Yin ⊗ [k])‖1 ≤
√

8ε+ ε. (6.2)

Now fix i ∈ I. Terminal Y can use the state ρi =
∑

j∈J qjieji ⊗ |ji〉〈ji| to set up

a backward q-DMC Wi : j → ρXi since Tr X(eki
⊗ |ki〉〈ki|)⊥Tr X(eli ⊗ |li〉〈li|) for all
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k, l ∈ J , k 6= l. Again using theorem 5.1 and (6.2) we can achieve a secret key capacity
Iρi

(X ∧Y|I = [i]). It is easy to see how to set up one completely positive map in order
to use only one step/public transmission for all evaluations of i ∈ I . Hence we achieve
the secret key capacity

I(XI ∧Y) = I(I ∧Y) + I(X ∧Y|I)

using a forward and a backward transmission given ρ. Further with (6.1)

H(Tr Xρi) = H(ρYi ) = H(qji) (6.3)

H(Tr Yρji) = H(eji) = H(eji ⊗ |ji〉〈ji|), since H(|ji〉〈ji|) = 0 (6.4)

H(ρX) = H(pi) +
∑
i∈I

piH(ρXi ) = H(pi) +
∑
i∈I

piH(qji) (6.5)

= H(pi) +
∑
i∈I

piH(qji) (6.6)

we get

I(XI ∧Y) = H(Tr Xρ)−
∑
i inI

piH(Tr Xρi) +
∑
i∈I

pi

[
H(Tr Yρi)−

∑
j∈J

qjiH(Tr Yρji)

]
(6.3)
= H(ρY )−

∑
i∈I,j∈J

piqjiH(Tr Yρji)

(6.4)
= H(ρY )−

∑
i∈I,j∈J

piqjiH(eji ⊗ |ji〉〈ji|)

= H(ρY )− [H(piqji) +
∑

i∈I,j∈J

piqjiH(eji)⊗ |ji〉〈ji|)] +H(piqji)

(6.6)
= H(ρY )−H(ρ) +H(ρX)

= H(Y)−H(XY) +H(X) = I(X ∧Y).

Since we used theorem 5.1 twice, the definitions (4.2)-(4.5) can be checked in the same
way as in the proof of the corresponding theorem giving some weaker bounds by (6.2), e.g.
Pr(K 6= L) ≤ 2ε+

√
8ε+ 2η if (n, ε)-codes were used in both communication directions,

and the probability of the codeword sets given by the Code Partition Lemma 5.2 were
greater than or equal to η. For the converse theorem 5.3 is still true.

�

Corollary 6.3 For oc-type states of Recursion Deepness m ∈ N we get the secret key
capacity CS,m−oc−type = I(X∧Y), achievable with 2m communication rounds (”steps” in
the Secret Sharing Source Model)). For general oc-type states, we get the same capacity
perhaps applying an infinite number of communication rounds.
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Proof The proof is clear already from the 2-oc-type states, using the same recursive
structure.

�

7 General Bounds for Secret Key Capacity

In the semi-classical Secret Sharing Source Model we were able to achieve a Coding
Theorem using only a single public-forward-transmission. For backward communication
the upper bound can not be achieved in all cases, as we shall now show.

Let ρY = Tr Xρ =
∑

x pxWx be the average state seen by terminal Y given by the
source output {px,Wx}, with non-commuting states Wx. W.l.o.g Terminal Y has to
use a pre-encoding measurement A given by a POVM (A1, · · · , Al) on Y in the first
step (in order to distinguish the states) (Otherwise we can wait till the end-round, where
a measurement has to be applied in order to get a classical key). Maximizing over the
involved measurement, with fixed ensemble, yields the accessible information at fixed
ensemble Iacc(p ∧W ), which is a stronger version of the usual presented measurement
independent Holevo bound. It was shown in [23] that the accessible information reaches
the Holevo bound H(ρY ) −

∑
i pxH(Wx) = Hρ(Y) − H(Y|X) if and only if all the

states that compose the ensemble commute, being strictly less otherwise. Furthermore,
this difference remains even asymptotically when one considers measurements on many
independent states emitted by the source, because (see [22])

Iacc(p
n ∧W⊗n) = nIacc(p ∧W ).

Hence the inequality (5.2) in the proof of the general upper bound in theorem 5.3 becomes
a strict inequality, i.e. there exists a constant K > 0 only depending on the fixed
ensemble {px,Wx} such that

Iρ⊗n(X⊗n ∧Y⊗n) ≥ Iρk
(K ∧ L|M[k],N[k])− nK. (7.1)

Thus
1

n
H(K) ≤ Iρ(X ∧Y)−K + ε

for sufficiently large n.

Theorem 7.1 The secret key capacity CS,semi−classical,← using only one backward trans-
mission is strictly less than I(X∧Y) if the fixed ensemble states of ρY do not commute.

Now let the source state ρ be arbitrary separable. If terminal X uses a maximal pre-
encoding measurement A given by a POVM (A1, . . . , Al) on X in the first step (i.e.
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Φ1 : ρ→
∑l

i=1

√
Aiρ
√
Ai⊗ [i]⊗ [0]) we obtain a new semi-classical Secret Sharing Source

Model with the following properties:

λi , Pr(i) = Tr (ρ(Ai ⊗ 1))

ρi ,
1

λi

√
Ai ⊗ 1ρ

√
Ai ⊗ 1

Now with Wi , Tr Xρi we get a new semi-classical state ρ̄ ,
∑l

i=1 λi[i]⊗Wi.

Theorem 7.2 The secret key capacity CS,arbitrary for the Secret Sharing Source Model
with arbitrary separable states ρ is lower bounded by

H

(
l∑

i=1

λiWi

)
−

l∑
i=1

λiH(Wi) +
l∑

i=1

CS,arbitrary(ρi),

where CS,arbitrary(ρi) denotes the secret key capacity for the not used states. As an upper
bound we still have I(X ∧Y) from lemma 5.3.

Since we can apply the theorem recursively on the states ρi we could even derive a better
bound, but it is still unknown how a possible maximizing pre-encoding measurement A is
given. Further questions are: is it better to extract as much secrecy in one step using one
good pre-encoding A , or is it better to use several recursive pre-encodings A1, A2, . . .
in an adaptive way? This may depend very much on the source state itself (cf. orthogonal
channel state model). It is not known, however, how many rounds terminals X and Y
have to take. We conjecture that there exist source states which need an infinite number
of communication rounds.

8 Open Problems

1) Try to extend theorem 5.1 to the full separable case. We conjecture that the capacity
for non-oc-type states is strictly less than I(X ∧Y).

2) Analyse the full quantum Secret Sharing Model and state bounds.

3) We used only quantum operations to describe and analyse the Secret Sharing Source
Model. Extend this also to other cryptographic problems like BB84 ([9], for an
approach see chapter IV).



Chapter II

Quantum Broadcast Channels

1 Introduction

There are many problems regarding quantum broadcast channels, unknown to classical
broadcast channels. One problem already appears when we think of the easiest known
broadcast channel, the copy-machine. Since it is not possible by linearity to copy an
unknown, non-orthogonal state [46], there exists no quantum operation φ such that
φ(ρ) = ρ ⊗ ρ. Recently, great steps have been made in cloning a tensor product of an
unknown state, i.e. finding a quantum operation φ such that φ(ρ⊗n) = ρ⊗n ⊗ ρ⊗n with
high fidelity, but we will restrict ourselves to orthogonal input states. With this, the input
state of a broadcast channel can be copied and then also sent physically to two different
receivers (mathematically described by two quantum operations acting on the classical
input).

Already, in the classical case, the rate region for broadcast channels is only known for
special cases, e.g. the degraded broadcast channel. This special channel network problem
was raised in 1972 by Cover [14], and he conjectured a result where the direct part of the
coding theorem was proven by Bergmans [10] one year later. The corresponding strong
converse was established by Ahlswede, Gacs and Körner [5] in 1976.

In this chapter, we will first prove a main lemma concerning two q-DMC’s, on which
the proof of special rate points for the quantum asymmetric broadcast channel and the
achievable rate region of the quantum degraded broadcast channel relies. Further, we
will give an upper bound for the rate region of the quantum degraded broadcast channel,
provided one of the receivers also has a classical channel. Finally, we finish with a code
stuffing lemma (using ideas mainly established by Ahlswede [4] in the classical case) which
will be needed in chapter III.

The proofs of this chapter are mainly motivated by the book of Ciszar and Körner [15]
where these theorems were partly proved for the classical case.

30
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2 Definitions

For the further chapters, let X ,U be finite sets with probability distributions PX , PU
and conditional probability PX|U , Y,Z ∗− subalgebras. Define two q-DMC W,V by
completely positive maps

W∗ : X → Y∗

V∗ : X → Z∗

which can be generalized uniquely by linearity to

W∗ : (CX )∗ → Y∗

V∗ : (CX )∗ → Z∗.

From now on, we will often suppress ∗ for convenience, if the situation is clear. Let n
be a positive integer, and consider sequences xn = x1 · · ·xn ∈ X n. Then the channel
output of xn is given by Wxn , Wx1 ⊗ · · · ⊗ Wxn where Wx , W (x). Further, let
X , CX , U , CU .

This gives us an a priori overall channel state

ρ⊗n =
∑
xn∈Xn

PX (xn)[xn]⊗Wxn ⊗ Vxn

on X⊗n ⊗Y⊗n ⊗ Z⊗n.

Definition 2.1 A quantum broadcast channel (q-BC) is a quadruple (PX ,X ,W, V )
given by two q-DMC’s

W : X → Y

V : X → Z

where X,Y,Z are compatible *-subalgebras, X = CX a commutative *-subalgebra, X a
finite set with a priori probability distribution PX , and an a priori state on X⊗Y⊗Z :

ρ =
∑
x

PX (x)[x]⊗Wx ⊗ Vx. (2.1)

Let M1,M0,M2 be the message sets of the encoder, where M1 should be sent from
input 1 to Y , M2 by input 2 to Z , respectively, and M0 should be decodeable by
both.
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Definition 2.2 (Broadcast Condition) Let (PX ,X ,W, V ) be a quantum broadcast-
channel. Let U = CU be a commutative helper *-subalgebra with a probability distribution
PU and a fixed a priori conditional distribution PX|U (simulating a classical channel
U : U → X ), defining a mapping

Ŵ : U → Y, V̂ : U → Z

defined by Ŵu ,
∑

x∈X PX|U(x|u)Wx and V̂u in the analogous way. Thus

Ŵun =
∑
xn∈Xn

PX|U(x1|u1)Wx1 ⊗ · · · ⊗ PX|U(xn|un)Wxn

=
∑
xn∈Xn

P n
X|U(x

n|un)Wxn .

If further on U⊗ X⊗Y⊗ Z an a priori channel state ρ with I(U ∧YZ|X) = 0 and

Tr UZρ =
∑
x∈X

PX (x)[x]⊗Wx

Tr UYρ =
∑
x∈X

PX (x)[x]⊗ Vx

Tr XZρ =
∑
u∈U

PU(u)[u]⊗Wu

Tr XYρ =
∑
u∈U

PU(u)[u]⊗ Vu

exists, then the broadcast condition is fulfilled. If further I(X∧ Z|Y) = 0 the strong
broadcast condition is valid.

Note that this definition is equivalent to the desired Markov-conditions in the classical
case.

Lemma 2.3 (Main Lemma) For every ε, δu, η ∈ (0, 1) , every quantum broadcast chan-
nel (PX ,X ,W, V ) satisfying the broadcast condition with (U , PX|U , PU) , for every typical
sequence un ∈ T nPU ,δu and set A ∈ X n satisfying

P n
X|U(A|un) ≥ η

there exists a constant K ′(|X |, |U|, dim Y, dim Z, δu, ε) , and (n, ε)− codes (f,DY ) and
(f,DZ) for the q-DMC W : X → Y (resp. V : X → Z) having the same encoder
f :M→A such that

1

n
log |M| ≥ min[I(X ∧Y|U), I(X ∧ Z|U)]−K ′/

√
n

and

∀m ∈M f(m) ∈ A, and [Tr DY
m ≤ Tr Πn

V,W,δw(f(m)) or Tr DZ
m ≤ Tr Πn

V,V,δv(f(m))]
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Proof: Let A′ = A ∩ T n
PX|U ,
√

2|X ||U|/η
(un) (thus P n

X|U(A′|un) ≥
η
2

for un ∈ T ⊗nPU ,δu
and

A′ ⊂ T ⊗nPX ,δx
with δx , δx(δu, |X |, |U|, η) > 0.) and (n, ε)-codes (f,DY ), (f,DZ) for

the two q-DMC with codewords f(m) ∈ A for all m ∈M such that

Tr Dm ≤ Πn
V,W,δw(f(m)) or Tr DZ

m ≤ Tr Πn
V,V,δv(f(m))

with δw ,
√

2|X | dim Y/ε, δv ,
√

2|X | dim Z/ε. Define

B ,
∑
m∈M

Dm, C ,
∑
m∈M

Em.

Let γ = min{1− ε, ε2/32}. We claim that

for all xn ∈ A : Tr WxnB ≥ γ or Tr VxnC ≥ γ. (2.2)

This is clear, if xn is a codeword, and true else. Otherwise we could extend our code
with the word xn and decoding observable

DY
xn =

√
1Y −BΠn

V,W,δ1
(xn)

√
1Y −B or DZ

xn =
√
1Z − CΠn

V,V,δ2
(xn)

√
1Z − C.

Assume the first inequality (the latter goes in the same way).

Note that B+DY
xn ≤ 1 . Apply Lemma 3.6 to the assumption Tr Wxn(1−B) ≥ 1− ε2

32
:

||Wxn −
√

1Y −BWxn

√
1Y −B||1 ≤

√
8γ ≤ ε

2
.

Thus

Tr (WxnDY
xn) = Tr (Wxn

√
1Y −BΠn

V,W,δw

√
1Y −B)

= Tr (WxnΠn
V,Wxn ,δW

)− ||(Wxn −
√

1Y −BWxn

√
1Y −B)Πn

V,W,δw(xn)||1

≥ (1− ε

2
)− ε

2
= 1− ε

Let A1 resp. A2 be the set of those xn ∈ A′ for which the first resp. second inequality
or (2.2) applies. We have

P n
X|U(A1|un) ≥

1

2
η or P n

X|U(A2|un) ≥
1

2
η.

In the first case Tr WunB ≥ 1
2
ηγ for un ∈ TV,PU ,δu . Hence

Tr (PUWu)
⊗nB ≥ 1

2
ηγ(1− |U |

δ2
u

) , τ. (2.3)
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Thus (PUWu)
⊗n is in the τ -shadow of B, and by lemma 3.8 we get

Tr B ≥ (τ − dim Y

δ2
0

) exp{nH(PUWu)−Kdδw
√
n}

≥ (τ − dim Y

δ2
0

) exp{nH(Wu|PU)−Kdδw
√
n}.

Choosing δ0 ,
√

2 dim Y/τ and observing by lemma 3.9 that

Tr B ≤
∑
m∈M

DY
m ≤ |M| exp{nH(Wx|PX ) + (K dim Y

√
|X |δw +K|X |δx log dim Y)

√
n)

the proof is complete.

�

Remark 2.4 Observe from the proof of lemma 2.3 that the decoder for channel code
W (resp. V ) may be chosen as a von Neumann observable (i.e. all its operators are
mutually orthogonal projectors). This is because if the code (f,DY ) is of this type,
then B ,

∑
m∈MDm is a projector, and this means that we may use the projector

D′xn , suppDxn instead of the constructed Dxn ≤ 1−B : this is still bounded by 1−B ,
only decreases the error probability, and obeys the size condition:

Tr suppDxn = dim imDxn ≤ dim imΠn
V,W,δ(x

n) = Tr Πn
V,W,δ(x

n).

The same applies analogously to the second channel V and its decoding observable DZ .

Corollary 2.5 For ε, η ∈ (0, 1) and for every set A ∈ X n satisfying P n
X (A) ≥ η there

exist K > 0 and (n, ε)-codes for the q-DMC’s W : X → Y and V : X → Z having
the same encoder f :M→A and rate

1

n
log |M| ≥ min[I(X ∧Y), I(X ∧ Z)]−K/

√
n

for n ≥ n0(|X |, dim Y, dim Z, ε, η,K).

3 Quantum Asymmetric Broadcast Channel

A quantum asymmetric broadcast channel (q-ABC) is a quantum broadcast channel where
either of the inputs 1 and 2 is idle, i.e. messages from the message set M1 and M0

are to be encoded, and then decoded, by two receivers, where the first decoder is able to
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decode the messages of the message set M1 and M0, whereas the other decoder may
only decode the message set M0 :

[1] [0]
↘ ↓

[X]
↙ ↓

[10] [0]

Definition 3.1 A n-block code for the q-ABC is a triple (f,DY , DZ) with the encoder
f : M0 ×M1 → X n and a POVM DY on Y⊗n indexed by M′

0 ×M′
1 ⊂ M0 ×M1

(resp. a POVM DZ on Z⊗n indexed by M′′
0 ⊂M0) .

Definition 3.2 The probability of (maximal) error is defined by

e10 = max(m0,m1)∈M0×M1{1− Tr Wf(m0,m1)D
Y
m0,m1

}

e0 = max(m0,m1)∈M0×M1{1− Tr Vf(m0,m1)D
Z
m0
}

(f,DY , DZ) is denoted a (n, ε)-code, if e10(f,D
Y ), e0(f,DZ) ≤ ε.

Remark 3.3 Let xn = (x1, . . . , xn) ∈ X n. Then the encoding will be done by Wxn =
Wx1 ⊗ · · · ⊗Wxn defining a product state. There may be better rates possible by encoding
in superpositions and using entanglement, but this is a still unexplored area of quantum
information theory already for the common quantum-DMC in the general case.

Definition 3.4 A rate tuple (R10, R0) is defined by R10 = 1
n

log |M0||M1|, R1 =
1
n

log |M0|.

Theorem 3.5 (Quantum Asymmetric Broadcast Channel) For the quantum asym-
metric broadcast channel which fulfills the broadcast condition, the rate point

R10 = I(X ∧Y|U), R0 = I(U ∧ Z) (3.1)

and
R10 +R0 ≤ I(X ∧Y) (3.2)

is achievable regarding an average channel state ρ.

Proof: Note that from (3.1) and (3.2), we obtain

I(U ∧ Z) ≤ I(U ∧Y), (3.3)
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otherwise

R10 +R0 = I(X ∧Y|U) + I(U ∧ Z)

> I(X ∧Y|U) + I(U ∧Y)

= I(XU ∧Y)

≥ I(X ∧Y),

which is in conflict with (3.2). Fix some K > 0, ε ∈ (0, 1/2
√

2). Let Ŵ : U → Y and V̂ :
U → Z be two q-DMC. By (3.3) and corollary 2.5 to every n ≥ n1(|U|, dim Y, dim Z), ε,K
there exist (n, ε) -codes (f̂ , D̂Y ) resp. (f̂ , D̂Z) for the q-DMC Ŵ and V̂ with a
common encoder of rate

1

n
log |Mf̂ | ≥ I(U ∧ Z)−K/

√
n.

For every m ∈Mf̂ we have, by definition, the inequalities

Tr Ŵf̂(m)D̂
Y
m =

∑
xnXn

P n
X|U(x

n|f̂(m))Tr WxnD̂Y
m ≥ 1− ε (3.4)

Tr V̂f̂(m)D̂
Z
m =

∑
xnXn

P n
X|U(x

n|f̂(m))Tr VxnD̂Z
m ≥ 1− ε (3.5)

Let A(m) be the largest subset of X n such that

Tr WxnD̂Y
m ≥ 1− 2ε and Tr VxnD̂Z

m ≥ 1− 2ε for every xn ∈ A(m). (3.6)

W.l.o.g the sets A(m) are disjoint (otherwise use remark 2.4 changing the decoding
observables to achieve this, noting that ε < 1/2

√
2 ). With A(m)C being the complement

of A(m), we get for every m ∈ Mf̂ :

P n
X|U(A(m)|f̂(m)) ≥

∑
xn∈A(m)

P n
X|U(x

n|f̂(m))Tr WxnD̂Y
m

= Tr Ŵf̂(m)D̂m −
∑

xn∈A(m)C

P n
X|U(x

n|f̂(m))Tr WxnD̂Y
m

Eq. (3.4)

≥ 1− ε−
∑

xn∈AC(m)

P n
X|U(x

n|f̂(m))Tr WxnD̂Y
m

≥ 1− ε− (1− 2ε)(1− P n
X|U(A(m)|f̂(m))),

so by easy calculus:

P n
X|U(A(m)|f̂(m)) ≥ 1

2
.
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Using Lemma 2.3, to every m ∈Mf̂ we can construct an (n, ε)-code (fm, D
Y,m) for the

q-DMC W with the codewords in A(m), each code having the same message set M1,
where

1

n
log |M1| ≥ I(X ∧Y|U)−K/

√
n

Define now the encoding mapping f : M1 ×M0 → X n as f(m1,m0) , fm0(m1) for
every m1 ∈M1, m0 ∈M0 ,Mf̂ . The decoding observable for Z is defined as follows:

DZ := D̂Z

For the decoding observable on Y, we have to solve to following problem: How can Y
decode the message (m1,m0)?

To be brief, we define Wm0
m1

, Wf(m1,m0) = Wfm0 (m1) and suppress Y in DY,m and D̂Y ,

i.e. D̂b , D̂Y
b . Now observe that we can define two quantum decoding operations

∆m0 : Y⊗n → M0 ⊗Y⊗n

ρ →
∑
b∈M0

[b]⊗
√
D̂bρ

√
D̂b

where
∀m0 ∈M0 : Tr Wm0

m1
D̂m0 ≥ 1− 2ε ∀m1 ∈M1 (3.7)

by (3.6). Since for fixed m0 ∈M0 we have further

Tr Wm0
m1
Dm0
m1
≥ 1− ε (3.8)

by lemma 2.3. We define for given m0 ∈M0 and for all m1 ∈M1

∆m1 : M0 ⊗Y⊗n → M1 ⊗M0 ⊗Y⊗n

ρ →
∑
c∈M1

[c]⊗
√
Dcρ

√
Dc

where Dm1 is a POVM element defined by Dm1 =
∑

d∈M0
[d]⊗Dd

m1
. That this D is a

POVM can easily be checked, since
∑

m1∈M1
Dm1 ≤ 1. Further observe that

√
Dm1 =

√ ∑
m0∈M0

[m0]⊗Dm0
m1 =

∑
m0∈M0

[m0]⊗
√
Dm0
m1 ,

since we get a block structure in the full matrix algebra.
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Now fix m0 ∈ M0,m1 ∈ M1 and assume that f(m1,m0) was sent, i.e. Wm0
m1

was

received. Then we get with M̄i :=Mi\{mi}, i = 0, 1 and Wm , m1 ⊗m0 ⊗Wm0
m1∥∥[m1]⊗ [m0]⊗Wm0

m1
−∆m1∆m0(Wm0

m1
)
∥∥ (3.9)

=

∥∥∥∥∥Wm −∆m1

(∑
b∈M0

[b]⊗
√
D̂bW

m0
m1

√
D̂b

)∥∥∥∥∥
=

∥∥∥∥∥∥Wm −
∑
c∈M1

[c]⊗
√
Dc

 ∑
[b]∈M0

[b]⊗
√
D̂bW

m0
m1

√
D̂b

√Dc

∥∥∥∥∥∥
=

∥∥∥∥∥Wm −
∑
c∈M1

[c]⊗

(∑
e∈M0

[e]⊗
√
De
c

)(∑
b∈M0

[b]⊗
√
D̂bW

m0
m1

√
D̂b

)(∑
f∈M0

[f ]⊗
√
Df
c

)∥∥∥∥∥
=

∥∥∥∥∥[m1]⊗ [m0]⊗Wm0
m1
−

∑
c∈M1, b∈M0

[c]⊗ [b]⊗
√
Db
c

√
D̂bW

m0
m1

√
D̂b

√
Db
c

∥∥∥∥∥ (3.10)

≤
∥∥∥∥[m1]⊗ [m0]⊗Wm0

m1
− [m1]⊗ [m0]⊗

√
Dm0
m1

√
D̂m0W

m0
m1

√
D̂m0

√
Dm0
m1

∥∥∥∥ (3.11)

+
∑

c∈M̄1,b∈M̄0

∥∥∥∥[c]⊗ [b]⊗
√
Db
c

√
D̂bW

m0
m1

√
D̂b

√
Db
c

∥∥∥∥ (3.12)

+
∑
b∈M̄0

∥∥∥∥[m1]⊗ [b]⊗
√
Db
m1

√
D̂bW

m0
m1

√
D̂b

√
Db
m1

∥∥∥∥ (3.13)

+
∑
c∈M̄1

∥∥∥∥[c]⊗ [m0]⊗
√
Dm0
c

√
D̂m0W

m0
m1

√
D̂m0

√
Dm0
c

∥∥∥∥ , (3.14)

(3.15)

where the last triangle inequality gives 4 terms:

Term 1: [Equation (3.11)] By lemma I.3.7 we can immediately bound (3.11) by

(
√

8 + 4)
√
ε ≤
√

47ε.

Term 2: [Equation (3.12)] Since (1−Db
m1

) ≤ 1 for all b ∈M0 , we get∑
c∈M̄1,b∈M̄0

∥∥∥∥√Db
c

√
D̂bW

m0
m1

√
D̂b

√
Db
c

∥∥∥∥ =
∑
b∈M̄0

Tr

√
D̂bW

m0
m1

√
D̂b

∑
c∈M̄1

Db
c

=
∑
b∈M̄0

Tr

√
D̂bW

m0
m1

√
D̂b(1−Db

m1
)

≤
∑
b∈M̄0

Tr Wm0
m1
D̂b ≤ 1− Tr Wm0

m1
D̂m0

≤ 2ε
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Term 3: [Equation (3.13)] Since Db,
√
Db
m1
≤ 1 using the Hölderlin inequality we have

∑
b∈M̄0

‖
√
Db
m1

√
D̂bW

m0
m1

√
D̂b

√
Db
m1
‖ ≤

∑
b∈M̄0

‖
√
Db
m1
‖∞‖

√
D̂bW

m0
m1

√
D̂b‖1‖

√
Db
m1
‖∞

≤
∑
b∈M̄0

Tr Wm0
m1
D̂b ≤ 1− Tr Wm0

m1
D̂m0

≤ 2ε.

Term 4: [Equation (3.14)] Using a similar technique as in the latter case, we get

∑
c∈M̄1

‖
√
Dm0
c

√
D̂m0W

m0
m1

√
D̂m0

√
Dm0
c ‖1, ≤

∑
c∈M̄1

‖
√
D̂m0‖∞‖Wm0

m1

√
D̂m0D

m0
c ‖1,

≤
∑
c∈M̄1

‖
√
D̂m0‖∞‖Dm0

c Wm0
m1
‖1,

≤ 1− Tr Wm0
m1
Dm0
m1
≤ ε.

So we can finally bound (3.9) by ε′ , 5ε+
√

47ε. Using the partial trace operation Tr Y,
we get

‖[m1]⊗ [m0]− Tr Y∆m1∆m0(Wm0
m1

)‖1 ≤ ε′, (3.16)

so we have shown that there exists a decoding POVM indexed by M1 ×M0 with a
maximal error ε′ :

DY
(m1,m0)∗ , Tr Y∗ ◦∆m1

∗ ◦∆m0
∗

�

Remark 3.6 Using Lemma 4.2 of [15] it is possible to show that the rate points given
above are also valid if we assume an average error for the two channels. This is not true
in every multi user case (cf. the multiple access channel).

4 Degraded Broadcast Channel

Definition 4.1 A quantum broadcast channel (PX ,X ,W, V ) is called degraded if there
exists a quantum operation

φ : Y→ Z

such that for all x ∈ X
φ(Wx) = Vx.
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Observe that for xn ∈ X n we get φ⊗n(Wxn) = Vxn .

An n-block code for the quantum degraded broadcast channel is a collection (f,DY , DZ)
of maps f :M1 ⊗M2 → X⊗n and decoding observables

DY ⊂ Y⊗n DZ ⊂ Z⊗n

index by M1 (resp. M2), i.e.

DY = {DY
m ∈ Y : m ∈M1}

DZ = {DZ
m ∈ Z : m ∈M2}

such that DY
m, D

Z
m ≥ 0,

∑
mD

Y
m ≤ 1,

∑
mD

Z
m ≤ 1

There are two average error probabilities of the code, the probability that the receiver
Y (resp. Z) guesses incorrectly any one of the sent words, taken over the uniform
distribution on the message set:

ē1(f,D
Y ) = 1− 1

|M1||M2|
∑

(m1,m2)∈M1×M2

Tr (W n
f(m1,m2)D

Y
m1

),

and ē2(f,D
Z) analogously.

Definition 4.2 (f,DY , DZ) is an (n, ε̄) -code if the error probabilities ē1(f,D
Y ), ē2(f,D

Z)
do not exceed ε̄. The rates of the code are the Ri , 1

n
log |Mi|, i = 1, 2.

Definition 4.3 (R1, R2) is achievable, if for any ε̄, δ > 0 there exists for any large
enough n an (n, ε) -code with i-th rate at least Ri − δ .

Theorem 4.4 (Quantum Degraded Broadcast Channel) Let U be an auxiliary com-
mutative subalgebra with dim |U| ≤ min{dim |X| + 2, dim |Y| dim |Z|} and fixed a priori
probability distribution PU on U . Let R1, R2 be nonnegative real numbers, satisfying
for some a priori distribution PU and conditional probability distribution PX|U on X
and U the constraints

R1 ≤ I(X ∧Y|U),

R2 ≤ I(U ∧ Z),

R1 +R2 ≤ I(X ∧Y)

and fulfilling the strong broadcast condition. Then the rate (R1, R2) is achievable.

Before we can prove this theorem we shall prove the following lemma concerning quantum
degraded channels:
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Lemma 4.5 Let (PX ,X ,W, V ) be a quantum degraded broadcast channel. Then for
every n-length block-code (f,DZ) for the q-DMC V there exists a block code (f,DY )
for W with the same encoder such that ē(W, f,DY ) ≤ ē(V, f,DZ).

Proof: Let the codeword set be given by C and define the decoding observable DY =
(Dcn)cn∈C such that

0 ≤
∑
cn∈C

[DY
cn − φ⊗n∗ (DZ

cn)] ≤ 1 and
∑
cn∈C

DY
cn ≤ 1 (4.1)

where φ∗ : Z → Y is the adjoint to the channel φ which connects Y and Z (e.g.
set DY

cn , φ⊗n∗ (DZ
cn) and observe that

∑
cn∈C D

Y
cn =

∑
cn∈C φ

⊗n
∗ (DZ

cn) ≤ φ⊗n∗ (1) = 1.)
W.l.o.g. this will give the decoding POVM DY (otherwise extend this with an error
observable).

Since φ⊗n∗ (DZ
cn) ≥ 0, Wcn ≥ 0 for all cn ∈ C we get from equation (4.1)∑

cn∈C

WcnD
Y
cn ≥

∑
cn∈C

Wcnφ
⊗n
∗ (DZ

cn).

Hence, the result follows immediately:

ē(W, f,DY ) = 1− 1

|C|
∑
cn∈C

Tr WcnD
Y
cn

≤ 1− 1

|C|
∑
cn∈C

Tr Wcnφ
⊗n
∗ (DZ

cn)

= 1− 1

|C|
∑
cn∈C

Tr φ⊗n(Wcn)DZ
cn

= 1− 1

|C|
∑
cn∈C

Tr VcnD
Z
cn = ē(V, f,DZ)

�

Proof of theorem 4.4: Fix some K > 0, ε ∈ (0, 1/2
√

2). Let Ŵ : U → Y and
V̂ : U → Z be two q-DMC. From theorem I.2.7 to every n ≥ n1(|U|, dim Z), ε,K there
exist (n, ε̂) -codes (f̂ , D̂Z) for the q-DMC V with encoder of rate

1

n
log |Mf̂ | ≥ I(U ∧ Z)−K/

√
n.

and average error rate ε̂.
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Further, according to lemma 4.5 there exists for every (n, ε̂)-code (f̂ , DZ) a n-block
code (f̂ , DY ) with the same encoder f̂ and ē(Ŵ , f̂ , DY ) ≤ ē(V̂ , f̂ , DZ) , ε̄. For every
m ∈Mf̂ we have, by definition, the inequalities

1− 1

|Mf̂ |
∑
m∈Mf̂

Tr Ŵf̂(m)D̂
Y
m = 1− 1

|Mf̂ |
∑
m∈Mf̂

∑
xnXn

P n
X|U(x

n|f̂(m))Tr WxnD̂Y
m ≤ ε̄, (4.2)

1− 1

|Mf̂ |
∑
m∈Mf̂

Tr V̂f̂(m)D̂
Z
m = 1− 1

|Mf̂ |
∑
m∈Mf̂

∑
xnXn

P n
X|U(x

n|f̂(m))Tr VxnD̂Z
m ≤ ε̄. (4.3)

Let A(m) be the largest subset of X n such that

Tr WxnD̂Y
m ≥ 1− 2ε̄ and Tr VxnD̂Z

m ≥ 1− 2ε̄ for every xn ∈ A(m). (4.4)

Using the same argument as in the proof of theorem 3.5 the sets A(m) are disjoint.
Hence, ∑

m∈Mf̂

P n
X|U(A(m)|f̂(m)) ≥ 1

2
|Mf̂ |.

Throwing away half of the codewords, and reducing the rate slightly, we can still get

P n
X|U(A(m)|f̂(m)) ≥ 1

2

for every m ∈ M′
f̂
⊂ Mf̂ . Using Lemma 2.3, to every m ∈ M′

f̂
we can construct

an (n, ε)-code (fm, D
Y,m) for the q-DMC W with the codewords in A(m), each code

having the same message set M1, where

1

n
log |M1| ≥ I(X ∧Y|U)−K ′/

√
n

and the average error is ε̄. Define now the encoding mapping f : M1 ×M0 → X n as
f(m1,m0) , fm0(m1) for every m1 ∈ M1, m0 ∈ M0 ,Mf̂ . The decoding observable
for Z is defined as follows:

DZ := D̂Z

For the decoding observable on Y we observe from the proof of theorem 3.5, that there
exists a decoding POVM DY

m1∗ such that

1

|M1||M2|
∑

m1∈M1,m2∈M2

∥∥[m1]⊗ [m2]−DY
m1∗(Wf(m1,m2))

∥∥
1
≤ 5ε̄+

√
47ε̄ , ε̄′.

Observe that equation (3.9) in the averaged version is still valid with all the terms.
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�

Theorem 4.6 (Converse to Degraded Broadcast Channel I) The capacity region
of the quantum degraded broadcast channel with a classical receiver Y is contained in the
closure of the set of all nonnegative (R1, R2) satisfying

R1 ≤
∑
u

quIγu(X ∧Y|U)

R2 ≤
∑
u

quIγu(U ∧ Z)

R1 +R2 ≤
∑

quIγu(X ∧Y)

for some channel states γu and qu ≥ 0,
∑

u qu = 1.

Proof: Observe that Y is a commutative *-subalgebra since Y is a classical receiver.
Supposing that (R1, R2) is an achievable rate pair, consider a sequence of n-length block
codes (fn, D,E) achieving (R1, R2). Let M1 = CM1 and M2 = CM2 be independent
and uniformly distributed *-subalgebras over the corresponding message sets, i.e. the
underlying state on M1 ⊗M2 is given by

∑
m1∈M1,m2∈M2

1
|M1||M2| [m1] ⊗ [m2], and let

f∗ : M1 ⊗M2 → X⊗n. Further, observe by the q-DMC’s W and φ

V : X⊗n
W⊗n

−→ Y⊗n
Φ⊗n

−→ Z⊗n.

We have

R2 − δ ≤
1

n
H(M2) =

1

n
I(M2 ∧ Z⊗n) +

1

n
H(M2|Z⊗n)

and

R1 − δ ≤
1

n
H(M1|M2) =

1

n
I(M1 ∧Y⊗n|M2) +

1

n
H(M1|Y⊗nM2)

≤ 1

n
I(X⊗n ∧Y⊗n|M2) +

1

n
H(M1|Y⊗n).

By Fano’s Inequality (theorem I.2.6) the right most term is converging to zero. Further

I(M2 ∧ Z⊗n) = H(Z⊗n)−H(Z⊗n|M2)

Th. I.2.4

≤
n∑
i=1

H(Zi)−H(Z⊗n|M2)

Definition
=

n∑
i=1

H(Zi)−
n∑
i=1

H(Zi|M2Z
⊗(i−1))

≤
n∑
i=1

[H(Zi)−H(Zi|M2Z
⊗(i−1)Z⊗(i−1))].
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Here for every fixed value m2 ∈ M2 on M2 the output Vf(· ,m2),i ∈ Zi of the q-DMC
Φ is conditionally independent of the previous outputs V i−1

f(· ,m2) ∈ Zi−1 , if W i−1
f(· ,m2) ∈

Y⊗(i−1) and the value of M2 are given (Note that we only use block-encoding without
entanglement at the encoder!) . Thus we have

H(Zi|M2Z
⊗(i−1)Y⊗(i−1)) = H(Zi|M2Y

⊗(i−1)),

whence

I(M2 ∧ Z⊗n) ≤
n∑
i=1

I(M2Y
⊗(i−1) ∧ Zi). (4.5)

Further

I(X⊗n ∧Y⊗n|M2) = H(Y⊗n|M2)−H(Y⊗n|M2X
⊗n)

=
n∑
i=1

[H(Yi|M2Y
⊗(i−1))−H(Yi|M2XiY

⊗(i−1))]

=
n∑
i=1

I(Xi ∧Yi|M2Y
⊗(i−1)). (4.6)

Defining Ui , M2Y
⊗(i−1) we can bound (4.6)

1

n
Iγ(X

⊗n ∧Y⊗n|M2) ≤
1

n

n∑
i=1

Iγ(Xi ∧Yi|Ui) ≤
∑
u

quIγu(X ∧Y|U)

and (4.5) becomes

1

n
Iγ(M2 ∧ Z⊗n) ≤ 1

n

n∑
i=1

Iγ(M2 ∧ Zi) ≤
∑
u

quIγu(U ∧ Z)

where we denote γ as the average state on M2(UXYZ)⊗n , and γu the u-th tensor-copy
of the channel state.

�

If the receiver Y is not classical, we have the following conjecture:

Conjecture 4.7 (Converse to Degraded Broadcast Channel II) The capacity re-
gion of the quantum degraded broadcast channel is contained in the closure of the set all
nonnegative (R1, R2) satisfying

R1 ≤
∑
u

quIγu(X ∧Y|U)

R2 ≤
∑
u

quIγu(U ∧ Z)

R1 +R2 ≤
∑

quIγu(X ∧Y)
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for some channel states γu and qu ≥ 0,
∑

u qu = 1.

5 Code Stuffing Lemma

Lemma 5.1 (Code Stuffing Lemma I) For every τ, η, δu > 0, ε ∈ (0, 1) and n ≥
n0(X , dim Y, dim Z, τ, η, ε), to every quadruple of *-subalgebras (X,U,Y,Z) with channel
state ρu satisfying the broadcast-constraint and

I(X ∧Y|U) ≥ I(X ∧ Z|U),

to every set A ∈ X n and sequence un ∈ T nV,PU ,δu
with P n

X|U(A|un) ≥ η there exists a

subset Ã of A such that

1) all xn ∈ Ã have the same type;

2) Ã is the codeword set of an (n, ε)-code for the q-DMC W ;

3) Ã is the disjoint union of sets Ã(m),m = 1, . . . ,M where∣∣∣∣ 1n log |Ã(m)| − I(X ∧ Z|U)

∣∣∣∣ ≤ τ,∣∣∣∣ 1n logM − (I(X ∧Y|U)− I(X ∧ Z|U))

∣∣∣∣ ≤ τ

and Ã(m) is the codeword set of an (n, ε)-code for the q-DMC V.

Proof: We extend an idea of Ahlswede’s reported in [6] by applying the maximal code
construction of lemma 2.3 in two cycles. In this proof, consider only such codes for which
the encoder is the identity mapping on the codeword set. In such cases the code will be
defined by the codeword set and the decoder POVMs. Write τ ′ , τ

4
and suppose that

ε ≤ 1
2
√

2
. In lemma 2.3, there exist (n, ε)-codes with common codeword set Ā ∈ A for

the q-DMC’s W and V such that∣∣∣∣ 1n log |Ā| − I(X ∧ Z|U)

∣∣∣∣ ≤ 2τ ′ (5.1)

and the corresponding decoding projectors DY
xn , DZ

xn satisfy

Tr DY
xn ≤ Tr Πn

V,W,δ(x
n) and Tr DZ

xn ≤ Tr Πn
V,V,δ(x

n) for all xn ∈ Ā,

if n is large enough for some δ > 0. For any such code write

B̄ ,
∑
xn∈Ā

DY
xn , C̄ ,

∑
xn∈Ā

DZ
xn .
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Considering a family of such pairs of codes, with disjoint codeword set A(m),m =
1 . . . , M̂−1, such that the corresponding decoding projectors B̄ , denoted by B(m), m =
1, . . . M̂ − 1, also commute pairwise.

Observe from remark 2.4 that the decoder for the channel code W may be chosen as a
von Neumann observable (i.e. all its operators are mutually orthogonal projectors).

Now, we claim that for large enough n such a family exists with

1

n
log M̂ ≥ I(X ∧Y|U)− I(X ∧ Z|U)− 4τ ′. (5.2)

In fact, consider a maximal family of code pairs as above. This means that if a pair of
(n, ε)-codes with common codeword set Ā ∈ A satisfies (5.2), further Â is disjoint from⋃
m<M̂ A(m) and B̄ is orthogonal to

∑
m<M̂ B(m), then it cannot meet (5.1).

Let the (possibly empty) set A(M̂) be such an Ā which is not properly contained in any

set with the same properties; let B(M̂) and C(M̂) be the corresponding set B̄ resp. C̄.
Then

1

n
log |A(M̂)| < I(X ∧ Z|U)− 2τ ′. (5.3)

Further, setting

B ,
M̂∑
m=1

B(m),

it follows that with γ = min{1− ε, ε/32}

Tr WxnB ≥ γ or Tr VxnC(M̂) ≥ γ (5.4)

for every xn ∈ A\
⋃M̂
m=1A(m). By definition we already have Tr WxnB ≥ 1 − γ for all

xn ∈
⋃M̂
m=1A(m) and with γ ≤ 1/2

√
2 (5.4) is true for every xn ∈ A.

Denoting A1 resp. A2 the set of those xn ∈ A for which the first resp. second
inequality of (5.4) holds, the assumption P n

X|U(A|un) ≥ η gives

P n
X|U(A1|un) ≥

η

2
or P n

X|U(A2|un) ≥
η

2
.

As in the proof of (2.3), it follows for n ≥ n2 that

1

n
log

∣∣∣∣∣∣
M̂⋃
m=1

A(m)

∣∣∣∣∣∣ ≥ I(X ∧Y|U)− 2τ ′ or
1

n
log |A(M̂)| ≥ I(X ∧ Z|U)− 2τ ′.

But the second possibility is ruled out by (5.3). Thus, with (5.1) and (5.3) we obtain
(5.2). The commutativity of the (codebook) decoding projectors B(m) means exactly
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that the union of the sets A(m) is the codeword set of an (n, ε)-code for the q-DMC
W .

Further, by type counting, for every m < M̂ there is a type Pm such that∣∣∣∣ 1n log |A(m) ∩ TPm| − I(X ∧ Z|U)

∣∣∣∣ ≤ 3τ ′

if n ≥ n3. For an exact calculation see also the proof of theorem I.5.1. Denote Ã(m) ,
A(m)∩TPm . Similarly, denote for every type P by M(P ) the set of those indices m for
which Pm = P. Then, again with type counting, there exists a type P̃ such that

1

n
log |M(P̃ )| ≥ I(X ∧Y|U)− I(X ∧ Z|U)− τ ′

if n ≥ n4. Restricting the original codes to the codeword sets Ã(m),m ∈ M(P̃ ), the
result follows.

�



Chapter III

Quantum Cryptography with
Separable States and Wiretapper

In chapter I we derived a coding theorem for semi-classical and oc-type states where
a wiretapper was allowed to listen to the public channel. In this chapter we will use
results of the quantum multi-user communication theory in chapter II in order to prove
the existence of a Secret Sharing Strategy with positive rate even if the wiretapper Z is
(semi-classically) correlated with the quantum source state of X and Y .
Again, we will extend results of [2] to the quantum case, i.e. we will especially construct
so called wiretap-channel-codes.

1 Code Stuffing

In order to prove the main results, we will first prove a slight variation of the Code Stuffing
Lemma II.5.1:

Lemma 1.1 (Code Stuffing Lemma II) Given compatible *-subalgebras U,X,Y,Z such
that the broadcast condition is fulfilled, Z commutative and

I(X ∧Y|U)− I(X ∧ Z|U) , H ≥ 0,

and arbitrary small η > 0, ε > 0, τ > 0, for sufficiently large n every set A ∈ X n with
P⊗nX (A) ≥ η contains a subset Ā with the following properties:

i) Ā consists of sequences of the same type, and it is codeword set of an (n, ε) -code
for the q-DMC W : X→ Y with channel state ρV =

∑
xn∈Xn [xn]⊗Wxn .

ii) Ā is the union of M = exp{n(H−ε)} mutually disjoint sets Ā(m) of size |Ā(m)| =
| exp{n(I(X ∧ Z|U)− ε)}, m = 1, . . . ,M.

48
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iii) If ˆX⊗n denotes a ∗ -subalgebra of X⊗n such that a measurement on X̂⊗n gives
a uniform distribution on Â and Ẑ⊗n denotes the corresponding output of the
q-DMC V : X→ Z, then for a POVM K̂ with values

K̂ = m if X̂⊗n ∈ Ã(m), 1 ≤ m ≤M,

we have
I(K̂ ∧ Ẑ⊗n) < τn. (1.1)

Proof: In lemma II.5.1 we already proved that if A ∈ X n satisfies PX|U(A|un) > η for

some un ∈ TPU ,δ, then A contains a subset Ã with the properties 1), 2) and further,
Ã(m) is the codeword set of an (n, ε) -code for the DMC V. Now we can copy the proof
of [2], Lemma A, where I(K̂ ∧ Ẑ⊗n) can be upper-bounded using classical information
theory (note that X and Z are commutative algebras), explicitly bounding the three
terms of I(K̂ ∧ Ẑ⊗n) :

I(K̂ ∧ Ẑ⊗n) = H(Ẑ⊗n)

−H(Ẑ⊗n|X̂⊗n)
−I(X̂⊗n ∧ Ẑ⊗n|K̂)

≤ 1 + n(H(Ẑ|U) + ε) + εn log dim Z

+n((H(X̂) + ε)

+(1− ε)nI(X ∧ Z|U)− ε)− 1

≤ τn

provided ε/τ is sufficiently small by classical methods of Csiszar and Körner [16].

�

2 Source-Type Model with Wiretapper

We are again given a q-DMMS with a three-component source (X,Y,Z,Π, P ). Terminal
X can apply quantum operations on X⊗n, (resp. terminal Y on Y⊗n and terminal Z
on Z⊗n).

The Secret Sharing Strategy is the same as in chapter I, except that besides listening to
the public communication between terminal X and Y , terminal Z can also apply a
POVM onto its part of the common state (output Z⊗n). We will again prove the lower
bounds by restricting the quantum operations to the standard form (cf. (I.4.1)).

We have to modify definition I.4.6 for our model by replacing (I.4.3) by

1

n
I(M[k],N[k],Z

⊗n ∧K) < ε. (2.1)
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Definition 2.1

1) The Source-Type Model with Wiretapper is called fully quantum, if the average state
ρ is arbitrary.

2) The Source-Type Model with Wiretapper is called separable, if the average state is
given by ρ =

∑l
i=1 P (i)σi ⊗Wi ⊗ Vi, i.e. separable by itself.

3) The Source-Type Model with Wiretapper is called 1-semi-classical, if besides 2) X =
CX and 2-semi-classical if, further, Z = CZ .

We will restrict ourselves to the 2-semi-classical case, i.e. a multiple source (CX ,Y,CZ, {[x]⊗
π ⊗ [z]}, P (x, π, z)). Cai and Yeung [12] also recently solved the analogous quantum
wiretap-channel problem in the 1-semi-classical case, so there might be a possible im-
provement here.

Theorem 2.2 For the Secret Sharing Source Model with Wiretapper, the forward key-
capacity for the 2-semi-classical source is lower bounded by

maxPU ,PX|U I(X ∧Y|U)− I(X ∧ Z|U),

for a commutative, finite helper subalgebra U = CU such that the broadcast condition
definition II.2.2 is fulfilled.

Proof: If suffices to show that for any (U , PX ,U) fulfilling the broadcast condition

H , I(X ∧Y|U)− I(X ∧ Z|U)

is a forward-achievable key rate.

The proof follows the same lines as the proof of theorem I.5.1, but now X n will be
partitioned into sets Ci of more complex structure. Let P n

Z|X be the distribution of
the classical DMC V : X → Z and assume H > 0. W.l.o.g. we apply lemma 1.1 to
consecutively selected mutually disjoint sets Ci ⊂ X n such as Ã in that lemma (following
the idea of the Code Partition Lemma 5.2). Then, if this process can not be continued
after having picked CN , we obtain

P n
X (

N⋃
i=1

Ci) > 1− η. (2.2)

By definition, each Ci consists of sequences of the same type and is the codeword set
of an (n, ε′)− code for the q-DMC W : X → Y (which can be extended uniquely by
linearity to W : X → Y.) Further, Ci is the disjoint union of M = dexp{nH − nε}e
subsets Ci,m of equal size, such that the following holds: If a maximal measurement X̂n
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on a subalgebra X̂⊗n of X⊗n gives a uniform distribution on Ci and the support of the
channel output of X̂⊗n is given by Ẑ⊗n such that the classical channel distribution of
the channel V : X̂ → Ẑ is PẐn|X̂n = P n

Ẑ|X̂ then, defining a POVM K̂ setting K̂ = m

if a maximal measurement on the average state ρ⊗n restricted to X̂⊗n determines an
element xn ∈ Ci,m, we have I(Ẑ⊗n ∧ K̂) < τn.

Let Eim , 1 ≤ i ≤ N, 1 ≤ m ≤ M be the orthogonal encoding measurement projecting
ρ⊗n|X⊗n to the m-th sub-code of the i-th codebook Ci,m. Extending this to a POVM E
in the normal way (extend an error POVM element E0) we further define the codebook
separating POVM Ê by Êi =

∑M
m=1Eim and Ê0 = E0.

Now, let terminal X apply the quantum operation

Φ : ρX →
N∑
i=0

√
ÊiρX

√
Êi ⊗ [i]⊗ [i]

and sending M1 to terminal Y , who again does nothing in the first step. Further X
uses the POVM K ′ defined by

K ′m ,

{ ∑N
i=1Eim ⊗ [i]⊗ 1, if 1 ≤ m ≤M,

1−
∑M

j=1Kj, if m = 0.

Let Di be the decoding POVM of the channel W : X → Y related to the codebook Ci,
i.e Dij is the decoding element concerning the j−th element of the i-th codebook. Then

define a further decoding mesurement D̂i to the codebook Ci by D̂im =
∑

xij
∈Ci,m Dij

and extend this to an overall decoding POVM L′ on Y⊗n ⊗ L1 ⊗M1 given by

L′m ,

{ ∑N
i=1 D̂i,m ⊗ 1⊗ [i], if 1 ≤ m ≤M,

1−
∑M

j=1 Lj, if m = 0.

If X measures K ′ = [0] an error occurred and w.l.o.g. we can extend the measure-
ment K ′ to a quantum operation K, such that K becomes uniformly distributed over
{1, . . . ,M} independent of the source if K ′ = [0]. The same is valid for Y measuring
L′ = [0] (which denotes an encoding or decoding error) extending this to a POVM L in
the same way. Now, since there is only a single forward transmission M1, (2.1) reduces
to

1

n
I(M1,Z

⊗n ∧K) < ε (2.3)

We want to check the definition I.4.6 with (2.3) in the case of (I.4.3) (for more details see
also the proof of of theorem I.5.1)
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1) Equation (I.4.2): Clearly

1

n
Pr(K 6= L) ≤ η + ε′ ≤ ε

with ε , η + ε′ by (2.2) and the fact that we used (n, ε′)-codes for the encoding.

2) Equation (I.4.5): Since Ci consists of sequences of the same type, and each Ci,m
has the same size, we get for 1 ≤ i ≤ N :

Pr(K = [m]|M1 = [i]) =
Tr ρ⊗n(Eim ⊗ 1Y⊗n ⊗ 1Z⊗n)

Tr ρ⊗n(Ei ⊗ 1Y⊗n ⊗ 1Z⊗n)
=

1

M

For M1 = [0] we already have this by definition. Thus K is uniformly distributed
on {1, · · · ,M} and it is independent of M1. Hence,

1

n
log |K| < 1

n
H(K) + ε′

is trivially fulfilled.

3) Equation (I.4.4): Since M = dexp{nH − nε′}e we easily get from 2)

1

n
H(K) >

1

n
logM − ε′ ≥ H − ε′

for sufficiently large n.

4) Equation (2.3): Now, observing that only commutative subalgebras are involved,
we obtain

I(M1,Z
⊗n ∧K)

(i)
= I(Z⊗n ∧K|M1)

(ii)
=

N∑
i=1

P n
X (Ci)I(Z⊗n ∧K|M1 = [i])

(iii)
= I(Ẑ⊗n ∧ K̂) < τn.

Here (i) follows by the independence of K and M1, and (ii) holds because of
the definition of the POVM K I(Z⊗n ∧ K|Mi = [0]) = 0. Since Ci consists of
sequences of the same type, we get Pr(X⊗n = [xn]|M1 = [i]) = 1/|Ci|, given the
state Φ(ρ⊗nX ). It follows that

Pr(Z⊗n = [zn], K = [m]|M1 6= [0]) = Pr(Ẑ⊗n = [zn], K̂ = [m]),

thus (iii) is valid and the result follows with τ in the role of ε by (1.1).

�

Corollary 2.3 If there exists a maximal measurement Y such that with the uniquely
defined maximal measurement X and Z I(X ∧ Y ) > I(X ∧ Z), a secret key can be
achieved with positive rate.
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3 Open Problems

1) Try to prove the converse to theorem 2.2 using the construction of Ahlswede and
Ciszar [2] and properties of the quantum mutual information.

2) Use the result of Cai and Yeung [12] to extend the theorem to the 1-semi-classical
case (maybe giving other bounds).



Chapter IV

Quantum Cryptography With
Entangled States

1 Quantum Key Distribution Protocol

Quantum key distribution (QKD) is a provably secure secret sharing protocol by which
private key bits can be created between two terminals X and Y using a public channel.
The key bits can then be used to implement a classical private key cryptosystem, to enable
both terminals to communicate securely. The only requirement for the QKD protocol is
that qubits can be communicated over the public channel, with an error rate lower than
a certain threshold. In this chapter we shall present an easy approximation of this bound
for the BB84 QKD protocol introduced 1984 by Bennett and Brassard [9].

A large number of proofs for the security of various quantum key distribution protocols,
under different circumstances, have been presented. Of particular note is a complete (and
complicated) proof of the security of QKD with BB84 given by Mayers [28] in 1998. A
simpler proof, which uses EPR states and requires perfect quantum computation, was
given by Lo and Chau [27] one year later. An even simpler (and nice) proof of Shor and
Preskill [35] in 2000 reduces a perfect EPR protocol to a simplified Lo/Chau-protocol,
and then further to the BB84 protocol, using error-correcting codes (producing privacy
amplification and error-correction at the same time). For an overview of this reduction-
proof see also the recent textbook account of [13].

Let |0〉, |1〉 be an orthogonal qubit basis, denoted as X − basis , and define |+〉 ,
(|0〉+ |1〉)/

√
2, |−〉 , (|0〉 − |1〉)/

√
2, which gives the corresponding Z − basis.

Let terminals X and Y try to calculate a common secret key, which should be unknown
to a third terminal Z, as in the last two chapters. In order to achieve this we will use

The BB84 QKD protocol [9]

1: Terminal X chooses (4 + δ)n random data bits.

54
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2: Terminal X chooses a random (4 + δ)n-bit string b. It encodes each data bit as
{|0〉, |1〉} if the corresponding bit of b is 0 or {|+〉, |−〉} if b is 1.

3: Terminal X sends the resulting state to terminal Y .

4: Terminal Y receives the (4 + δ)n qubits, announces this fact, and measures each
qubit in the X or Z basis using the corresponding observables σx (resp. σz ) at
random.

5: Terminal X announces b.

6: Terminal X and Y discard any bits where terminal Y measured a different basis
than that which terminal X prepared. With high probability, there are at least
2n bits left (if not, abort the protocol). They keep 2n bits.

7: Terminal X selects a subset of n bits that will serve as a check on terminal Z’s
interference, and tells terminal Y which bits it selected.

8: Terminal X and Y announce and compare the values of the n check bits. If more
than an accepted number disagree, they abort the protocol.

9: Terminal X and Y perform information reconciliation and privacy amplification
on the remaining n bit-string k to obtain m shared key bits.

Definition 1.1 Let pe be the probability of error for the quantum qubit channel from X
to Y , under the constraint, that X and Y choose the same measurement basis, i.e.

pe ,
Nw

Nr +Nw

,

where Nw denotes the number of wrong bits even when the same measurement basis was
chosen, and Nr = 2n−Nw is the number of right decoded bits.

Let (P,X⊗Π) consist of a probability distribution P on a finite set of states [i]⊗ρi on
CX ⊗ L(H) in X⊗ Π with commutative X. By the Holevo bound [23] we know that

Iρ(X ∧ Y ) ≤ Iρ(X ∧Y),

with ρ =
∑

i Pi[i]⊗ ρi, X the uniquely defined maximal measurement on X and Y an
arbitrary measurement on Y. This can easily be extended to the form

Iρ(X ∧ Y1) + Iρ(X ∧ Y2) + · · · ≤ Jρ(X,Y1, Y2, . . . )

for observables Y1, Y2, . . . giving a nontrivial upper bound J. This is known as an
information-exclusion principle in the literature. Observe that a non-ideal measurement
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Ỹ of an observable Y cannot give more information than a measurement of A itself,
thus Iρ(X ∧ Ỹ1) + Iρ(X ∧ Ỹ2) + · · · ≤ Jρ(X, Y1, Y2, . . . ,Y).

Now let DY and DZ be two observables in an N− dimensional Hilbert space H with
eigenstates |dYj 〉, |dZj 〉, 1 ≤ j ≤ N and define

d = maxi,j|〈dYi ||dZj 〉|

giving the maximal possible overlap of eigenstates of DY and DZ . For non-degenerate
DY , DZ we immediately get

Hρ(D
Y ), Hρ(D

Z) ≤ logN. (1.1)

while
−2 log d ≤ Hρ(D

Y ) +Hρ(D
Z) (1.2)

was derived by [37]. Observe further that (1.1) is tight for ρ∗ = 1
N
1H.

Now we get (suppressing the state ρ )

I(X ∧DY ) + I(X ∧DZ) = [H(DY ) +H(DZ)]− [
∑
i

PiHρi
(DY ) +

∑
i

PiHρi
(DZ)]

≤ 2 logN + 2 log d ≤ 2 logNd. (1.3)

Further note that this inequality is also valid for degenerated DY and DZ , since
each observable can be regarded as corresponding to a non-ideal measurement of a non-
degenerated observable.

Definition 1.2 Two non-degenerated observables are called complementary, if the distri-
bution of one is uniform for any eigenstate of the other, and vice versa.

Remark 1.3 The maximum logN of (1.3) can only be achieved by using complementary
measurements DY , DZ .

2 Sufficient Bound on the Error Rate for Uncondi-

tional Security

Theorem 2.1 If h(pe) ≤ 1
2
, terminal X and Y can distribute a secret key using the

BB84 protocol and privacy amplification/error correction.

Proof: Assume that X has sent (4 + δ)n qubits and n qubits were measured by Y
in the correct basis, eliminating the check bits. We assume further that Z knows the
position of these bits in the (4 + δ)n -qubit stream (since this was publicly announced).
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Hence we can reduce the observation to ρkey in a finite Hilbert space of dimension
N = 2n, where ρkey is the a priori state of the system after throwing away the check bits
from ρsb, where ρsb denotes the state ρ restricted to the case that X and Y chose
the same measurement basis.

W.l.o.g. let ρkey =
∑

kn∈{0,1}n |kn〉 ⊗ Wkn , i.e. X has encoded the full key in the

X-basis. and Y has used the product observable DY = (σxn)xn∈Xn for his measurement
with σxn , σx1 ⊗ · · · ⊗ σxn .

From (1.3) we have

Iρkey
(X ∧ σxn) + Iρkey

(X ∧ Z) ≤ 2 logNd. (2.1)

Using remark 1.3 the (maximal) upper bound logN can be achieved by using the com-
plementary measurement to σxn : DZ = (σzn)zn∈Zn . Thus d = 2−n/2 and (2.1) becomes

1

n
Iρkey

(X ∧ σxn) +
1

n
Iρkey

(X ∧ σzn) ≤ 1. (2.2)

From corollary III.2.3 we deduce for the case that a secret key is achievable with positive
rate

Iρkey
(X ∧ σxn) >

n

2
.

Since 1
n
Iρkey

(X ∧ σxn) = h(pe), the result follows.

�

Thus for pe ≥ 0.11 there might be a protocol, such that terminal Z can gain information
Iρsb

(X ∧ Z) > 0 using a special measurement Z. Hence Z may gain information over
the key. This bound was already shown by Shor and Preskill [34] using another proof.
For pe ≥ 0.15 there are special known protocols such that Z gains information about
the key distributed between X and Y .



Chapter V

List of Notations

A, B, . . . Finite sets
X,Y, . . . C∗−algebras/*-subalgebras
H Finite Hilbert space
ρ State (as C-linear functional or density operator)
ρ̂ Density operator
S(X) Convex set of states in X

φ : X→ Y Quantum operation/completely positive map
M : X→ Y Positive operator valued measure with values in an commutative Y

Wxn A tensor product of states Wx1 ⊗ · · · ⊗Wxn

X⊗Y Tensor product of subalgebras X and Y

Tr Trace function
H(ρ) von Neumann entropy of the state ρ
H(X), Hρ(X) von Neumann entropy of a state ρ

reduced to the ∗ − (sub)algebra X

H(X), Hρ(X) von Neuman entropy of a state ρ
with respect to the observable X (giving a probability distribution)

I(X ∧Y), Iρ(X ∧Y) I-divergence over ∗ − (sub)algebras X,Y
with respect to an underlying state ρ

I(X ∧ Y ), Iρ(X ∧ Y ) I-divergence with respect to the observables X, Y
with respect to an underlying state ρ
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