
Exploration based on Neural Networks
with Applications in Manipulator Control

Ján Jockusch

Dipl.-Phys. Ján Jockusch
Universität Bielefeld
Arbeitsgruppe Neuroinformatik
Technische Fakultät

http://www.techfak.uni-bielefeld.de
mailto:jan@techfak.uni-bielefeld.de

Vollständiger Abdruck der
von der Technischen Fakultät der Universität Bielefeld
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften
genehmigten Dissertation

Prüfungsausschuß:
Prof. Dr. Helge Ritter
Prof. Dr. Christopher Brown
Prof. Dr.-Ing. Gerhard Sagerer
Dr. Gunther Heidemann

Die Dissertation wurde am 9. Februar 2000 bei der Universität Bielefeld eingereicht und
durch die Technische Fakultät am 19. Mai 2000 angenommen.

Exploration based on Neural Networks
with Applications in Manipulator Control

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

der Technischen Fakultät der Universität Bielefeld

vorgelegt von Ján Jockusch am 9. Februar 2000

i

Contents

1 Introduction 1

1.1 Robotics Lab Setup . 2

1.2 Human-Machine Interfacing . 3

1.3 Exploration and Control . 3

1.4 Previous Work on Robotic Control . 5

1.5 Introduction to a Novel Approach . 6

I The Controller Architecture 9

2 Manipulator and Sensor Hardware 11

2.1 Mechanical Construction . 11

2.2 Basic Sensory Equipment . 12

2.3 The Tactile Sensor System . 13

2.4 The Fingertip Sensors . 16

2.4.1 Construction Principle . 17

2.4.2 Amplification Circuitry . 19

2.4.3 Experimental Results . 20

3 A Layered Controller Architecture 23

3.1 Design Fundamentals . 23

3.2 Levels of Timing and Abstraction . 25

4 The Controller Layer 29

4.1 The Controller Structure . 30

4.2 Mechanisms for Safety and Reliability 33

4.3 Interfacing with Other Processes . 34

ii Contents

4.4 Implementation Details . 36

4.5 A Visual Controller Interface . 37

4.6 Performance Evaluation . 40

5 The State Machine Layer 43

5.1 The Programming Principle . 43

5.2 States and State Transitions . 45

5.3 Implementation Details . 46

5.4 An Example State Graph . 47

5.5 Interleaving State Machines . 48

5.6 Conclusions . 50

II Exploration with Vector Quantization Networks 53

6 Approaching Intertwined Tasks 55

6.1 Introduction . 55

6.2 Literal Interpretation of Topological Maps 56

6.3 Evaluation of Existing Models . 57

6.4 Critical Aspects in Robotics . 60

6.5 Preparation of Input Data . 61

6.6 Adaptive Metrics for Input Rescaling . 63

6.7 Expansive Adaptation . 65

7 The Instantaneous Topological Map 67

7.1 Improving the GNG for Correlated Stimuli 67

7.2 The Instantaneous Topological Map (ITM) 71

7.3 Results . 74

7.4 Statistical Distributions . 76

7.5 Architectural Comparison . 77

7.6 Dimensionality of Input Data . 79

7.7 Conclusions . 81

8 Path Finding and Obstacle Avoidance with the ITM 83

8.1 Graph Distance Labeling . 83

8.2 Trajectory Generation . 84

8.3 Experimental Validation . 86

Contents iii

9 An Active Exploration Engine 91

9.1 Basic Ingredients . 91

9.2 Results . 93

10 Discussion and Outlook 95

10.1 Uses Beyond Robotics . 95

10.2 Future Perspectives of the Control Architecture 96

10.3 Future Perspectives for the ITM . 98

10.4 Closing Remarks . 99

v

List of Figures

1.1 Laboratory Setup . 2

1.2 Typical Action Sequence in a Communication Scenario 4

1.3 System Structure Comparison . 7

2.1 The TUM Hydraulic Hand . 12

2.2 Finger Kinematics . 13

2.3 Oil Hydraulics Actuation System . 14

2.4 Hardware Setup . 15

2.5 First Fingertip Design . 16

2.6 New Fingertip Design . 18

2.7 Differential Amplification Principle . 19

2.8 Tactile Sensor Amplification Circuit . 20

2.9 Experimental Setup for Tactile Sensor Evaluation 20

2.10 Oil Pressure vs. Applied Force . 21

2.11 Tactile Sensor Readout vs. Applied Force 21

3.1 Layered Architecture Diagram . 24

3.2 Time Scales and Abstraction Levels . 28

4.1 Controller Layer Diagram . 30

4.2 Outlier Filtering . 31

4.3 Example Maintenance Procedure . 35

4.4 Interfacing Mechanism . 36

4.5 Visual Controller Interface . 38

4.6 Startup Controller Behavior . 40

4.7 Mixed Feedback Controller Response Without Contact 41

4.8 Mixed Feedback Controller Response With Contact 42

4.9 Compliant Control . 42

vi List of Figures

5.1 Example State Machine Code . 47

5.2 State Graph for Grasping . 48

5.3 Communication with State Machines . 49

5.4 Photo Series of a Grasping Action . 51

6.1 Interplay of Different Tasks . 56

6.2 Topological Warping in SOMs . 58

6.3 Mean and Deviation Estimation . 64

6.4 Expansive Adaptation . 66

7.1 Random Walk Example . 69

7.2 Adaptation of a Standard GNG with Correlated Stimuli 70

7.3 Improved GNG Using an Error Threshold 70

7.4 Edge Update in the ITM . 72

7.5 Node Update in the ITM . 73

7.6 Reference Vector Adaptation in the ITM 74

7.7 Adaptation Phases of the ITM . 75

7.8 Error Comparison of Three Network Models 76

7.9 Graph Comparison of Three Network Models 77

7.10 Non-Uniform Stimulus Density . 78

8.1 Graph Distance and Path Generation . 85

8.2 Cluster Identification . 85

8.3 Two-Dimensional Robot Simulation . 86

8.4 Trajectory Generation Example . 88

8.5 Trajectory Reinforcement Experiment 88

9.1 Active vs. Random Walk Exploration 94

vii

List of Tables

4.1 Controller Parameter Set . 38

7.1 Statistical Input Sequence Evaluation . 78

7.2 Network Parameterization for the Dimension Test 79

7.3 Dimension Tests on the ITM and the GNG 80

1

that
man
very

the
In the
, but

otic
f its
tacle

are
ment
this

, far
nta-
data

com-
rfac-
t this
nip-
the
Chapter 1

Introduction

An old dream of cybernetics has motivated the work reported on in this thesis. It is
of the creation of a robotic system which would at first glance be perceived by its hu
operators as a living being rather than a cold machine. While this may not sound
scientific, it is an idea that can inspire many new constructions and algorithms.

Naturally, one must first stand back from such an idealistic view and contemplate
adequate methods to at least come close to achieving such an outstanding goal.
course of developing the system presented here, we followed several different trails
only very few ideas survived the test of time.

That which survived is a novel layered system that performs robust control of a rob
hand, behavior simulation in a state machine of arbitrary complexity, exploration o
surroundings with the aid of a vector quantization network, and path planning and obs
avoidance with the topological map represented by that network.

The most remarkable features of this system are its flexibility and simplicity. Much c
was taken to make it complete in the sense that it can be used without further develop
efforts, and expandable in the sense that it can function as a basis for further work in
fascinating research area.

The system’s overall design is generic and therefore applicable to different situations
beyond the field of robotics, and the algorithms developed, especially the ITM (Insta
neous Topological Map), have potential applications even reaching into the realm of
mining.

This introductory chapter first presents the laboratory setup which has evolved to ac
modate various research efforts in the fields of computer vision, human-machine inte
ing and tactile exploration. Later sections cast more light on the research topics tha
work focuses on, human-machine interfacing and exploratory control of a robotic ma
ulator. A subsequent overview of previous related work on robotic control motivates
introduction of a new approach, based on the notion of reactive motion control.

2
 Introduction
late
ra

omi-
ith a
e end

fitted
d as

kable
com-

ied out
].

ject
the

ok at

tem
ithms,
tion.
m of

rent
epart
Figure 1.1:Laboratory Setup: A standard PUMA robot arm carries a force/torque sensor, a
wrist camera, and the hydraulic hand that this work focuses on. The robot is used to manipu
objects lying on the table, possibly in cooperation with a human operator. A binocular came
head provides vision capabilities with depth perception.

1.1 Robotics Lab Setup

Our robotics laboratory offers several research facilities (see figure 1.1). The most pr
nent is an industry standard robot arm with six degrees of freedom. It is equipped w
wrist force/torque sensor and a wrist camera as feedback sensors for maneuvering th
effector to a designated work area. The end effector is a three-fingered robotic hand
with custom-designed fingertip sensors. Throughout this work, this manipulator is use
a testing ground for the new ideas and methods presented.

Several cameras are installed to allow computer vision experimentation. One remar
camera setup in the lab is the binocular camera head consisting of two cameras with
mon pan and tilt, and separate vergence control. Extensive research has been carr
with this device concerning the simulation of human visual attention mechanisms [33

Clearly, this setup lends itself to host different research fields, like gesture and ob
recognition, robotics and control, visual and tactile exploration, among others. Since
main work areas of our group are neural networks and adaptive systems, we try to lo
the aforementioned fields from our own perspective.

As far as computer vision is concerned, a very robust holistic object recognition sys
has been developed [12], as well as neural networks based camera calibration algor
face and eye tracking [35], zero disparity tracking [34], and saccadic scene explora
All of these research efforts contribute to a human-machine communications syste
remarkable complexity [22].

In the field of robotic control, our neuro-informatics perspective means taking a diffe
starting point than most other robotics research, which gives us the opportunity to d
from traditional methods in the hope to reach our ambitious goals.

3
1.2 Human-Machine Interfacing
lties
ator.
sign

for
es a
e scene
ng at
uring
inary
stem

h has
ree-
pre-

sitive
must
e by

ic
rom
s.

hieve
oach
der-
of the
r no

h a
grees
Especially, the work presented here was originally triggered by the enormous difficu
that classical positional control brought up when applied to our three-fingered manipul
Replacing this traditional approach completely with a system conforming to strict de
goals of simplicity, flexibility, and robustness proved to be remarkably productive.

1.2 Human-Machine Interfacing

In a scenario involving the facilities just described, we wish to study new possibilities
intuitive human-machine interfacing. A human operator talks to the system, describ
task and makes according natural gestures. The system observes the operator and th
with its binocular camera head and other cameras, and reacts by picking up or pointi
objects using its robotic arm. Together, the human and the machine perform a task, d
which the human occasionally teaches the machine and corrects its actions. A prelim
result of these efforts can be appreciated in figure 1.2 on the next page. This subsy
already contains the controller architecture introduced in the present work.

A whole special research project has been devoted to this demanding task, whic
inspired many new ideas already. Robotic control, though, especially that of the th
fingered hand, has so far only been performed using positional control and trajectory
calculation.

But for our robotic hand this is not a very useful approach. We humans are so sen
and careful with our own hands, that a numb robotic hand executing planned motions
seem awkward. At the very least, it does not make communicating with it, for exampl
touching it while in operation, very attractive.

In this work, we will never switch a controller from or to a “compliant mode”. The robot
hand will always be compliant to some extent, and it will always be ready to depart f
an intended motion if, for instance, the human interferes to adjust the fingers’ position

We hope that by making the end effector extremely compliant and sensitive we can ac
a much more natural behavior of the robotic system. One beneficial effect of this appr
is that we may learn which behavior patterns humans find natural and intuitively un
standable. The other is that a technical device that has so far been viewed as one
most hazardous in our laboratory may now be used by many researchers with little o
special knowledge.

1.3 Exploration and Control

Apart from simulating natural behavior to enhance interaction with humans, we wis
robotic system to explore its surroundings and at the same time learn about its own de

4
 Introduction
d
ine
and
ny
ong
1. scene exploration:the insert
shows the attention map and
the fixation point.

2. skin and motion detection:
several feature maps are used
to focus on moving hands.

3. ZDF tracking: the insert
shows the edge detectors and
the disparity filter.

4. gesture recognition: the
pointer direction defines a ma-
nipulation cone.

5. object fixation:the object’s
position is estimated by fixat-
ing it in the camera foveae.

6. robot positioning:the wrist
camera object recognition pre-
pares a corrective motion.

7. coordinated grasping:the
arm and hand synchronize via
the state machine.

8. picking up and holding:the
insert shows the controller ac-
tivity for one finger.

9. object deployment:another
state machine coordinates the
robot arm and the hand.

Figure 1.2:Typical Action Sequence in a Communication Scenario:Simulated visual atten-
tion, real-time tracking based on zero disparity filtering (ZDF), holistic object recognition, an
the control architecture described in this thesis join forces to build a simple human-mach
communication system. The operator points at an object in the scene, and the robot h
picks it up and puts it back on the table. This system is the result of the cooperation of ma
researchers (Robert Rae, Nils Jungclaus, Gunther Heidemann, and Christof Dücker, am
others).

5
1.4 Previous Work on Robotic Control
rab
e on
om

mory
plo-

is to
antage
loped

hm
more

s to
ce, to
int

y to
hods

a-
ions,

ap-
here

e is a
ions
alto-

ec-
for
of freedom. Like a small child first learning how to move his fingers, then how to g
and manipulate objects, the robotic system should start out with no special knowledg
the geometry and joint limits of its manipulator but instead acquire this knowledge fr
exploratory motions.

The two major design issues for this project are the data representation, i.e., the me
which stores the knowledge gained from exploring, and the control algorithm for ex
ration. As far as data representation is concerned, the most fundamental decision
use vector quantization networks as a storage medium. This enables us to take adv
of many neural network architectures and learning algorithms that have been deve
based on this representation.

As far as exploration is concerned, we will first use a simple random walk algorit
to evaluate the performance of different neural network architectures, and develop
intelligent active exploration techniques based only on one special network type.

1.4 Previous Work on Robotic Control

The traditional approach to making a robot move from one position to the other i
calculate a set of points along the desired path in either Cartesian or joint angle spa
smooth this path, e.g. with spline interpolation, and, finally, to move the robot from po
to point along this pre-calculated path with a given speed [11].

Since the joint motors can only deliver a finite force, much calculation is necessar
ascertain whether a calculated path can physically be realized. Many different met
are employed to limit joint angles, velocities and torques.

The major focus of this type of robotic control is precision. The properties of robotic m
nipulators are carefully recorded and simulated in kinematics and dynamics calculat
thus allowing complex motions to be planned and evaluated in advance. This is the
proach of choice in most of today’s robotics applications, e.g. in assembly lines, w
positioning and welding of parts must be achieved with high accuracy.

But adding compliance to motions planned and executed in the way described abov
complex problem. Most approaches involve adjusting the trajectory by small deviat
according to sensor signals, which usually does not cover changing the trajectory
gether to steer clear of a sudden obstruction.

Endowing this type of system with the ability to recalculate its planned trajectory if n
essary involves much overhead. Additionally, it is difficult to find a formal description
path recalculation simple and predictable enough to be truly useful.

6
 Introduction
cus
tics.
dis-
one
in
rce
ant

l of
ented
natu-

h in-
eural
fig-

one
vel
hich
pre-
[29].
novel
neu-

. The
ly, and

otic
and

en to

force
still

troller
stics
ingly
ed.
The overall reason for this difficulty in producing a reactive system is the strong fo
on motion precision common to most path planning and execution research in robo
As a result of enforcing a pre-calculated trajectory and formulating compliance as a
turbance to this trajectory, force control (e.g. in force sensor guided motions) is d
indirectly through positional control (the trajectory disturbance), which in turn results
force control of the joint motors (the current passing through the coils). Performing fo
control directly, without an intermediate stage of positional control, may have signific
advantages in typical compliance scenarios, most notably grasping of objects.

For a long period of time, traditional positional control was the basis for motion contro
our robotic hand. Due to the disadvantages inherent to this mechanism, we implem
a novel control scheme which incorporates reactive changes in behavior much more
rally and easily than would be possible in the former approach.

1.5 Introduction to a Novel Approach

The topic of this thesis is a complete control system based on neural networks whic
corporates path planning, obstacle avoidance, and exploration. To implement the n
networks approach, though, extensive infrastructural work had to be done first (see
ure 1.3 on the facing page). Therefore, this thesis is divided into two parts, the first
of which capitalizes on the design of the overall control architecture and its lower le
components. The second part is devoted exclusively to the neural network layer, w
builds on some of the properties of the underlying controller architecture. The system
sented in the first part has been especially designed to suit the TUM hydraulic hand
It is a complete and versatile control package for use by other researchers, and it is a
interactive communication element for use in a larger human-machine interface. The
ral networks layer presented in the second part is formulated in a more general way
emphasis lies on a concise solution to a series of problems usually treated separate
this approach leads to a new perspective on topographic mapping networks.

The controller architecture must enable us to communicate and work with the rob
system in an efficient and natural way. Therefore, it needs to be highly responsive
sensitive to many forms of feedback. The system layout and the design goals chos
guide its development are the topics of chapter 3.

To achieve these goals, a new controller was implemented which is based solely on
control with a feedback mixture delivered by several sensors. Positional control can
be programmed as a special case, but doing so is generally discouraged. The con
contains several safety measures and plausibility checks that greatly simplify diagno
and maintenance of the hardware equipment. This also includes blocking exceed
jerky motions of the manipulator to ensure that the human operator will not be harm
The controller layer will be the topic of chapter 4.

7
1.5 Introduction to a Novel Approach
a-
ike
left
oint
d
te
tor,

ec-
ral
act
the

rol.
tem
traditional robotics
�

proposed system design

hardware
high reliability and precision

hardware
low precision, time drifts

low-level control
target position or joint angles

low-level control
all errors translate to target force

no reflex behaviour
simulation

no programmed
kinematics

reflex behaviour simulation
based on state machine
allows external interfacing

programmed kinematics
fixed joint limits

trajectory generation
�

interpolation in cartesian or
joint coordinates

trajectory generation
�

closest path in graph

world representation�

neural network with high adaptivity
and low interference

world representation�

fixed or geometrically constructed
from measurements

obstacle avoidance�

potential field principle
geometrical methods

exploration�

random walk
active learning approaches

obstacle avoidance�

automatic for static obstacles

exploration�

target position generation and
network adaptation

in
te

rf
ac

in
g

in
te

rf
ac

in
g

in
te

rf
ac

in
g

sensor�

signals

sensor�

signals

Figure 1.3:System Structure Comparison:Traditional robotic systems usually interact with
clients through inverse and forward kinematics. This implies the use of interpolation for tr
jectory generation and the use of precise positional control at the lowest level. Tasks l
exploration and obstacle avoidance are considered substantially different and are therefore
for external systems to solve. The approach presented in this thesis assumes a different p
of view. Starting out from imperfect hardware which defies positional control, we are force
to find another method of interfacing. Our force controlled system is equipped with a sta
machine which reacts on sensor patterns and external commands. This behavior simula
which is missing in standard systems, gives us intuitive access to the manipulator. Still, traj
tory generation requires some representation of the manipulator’s “world”. We turn to a neu
network to find that seemingly unrelated tasks can be jointly solved. Because of the abstr
world representation, kinematics calculations are unnecessary in this approach. Note that
two systems are not fundamentally different, but only stress different aspects of robotic cont
The traditional system needs precision and repeatability of motions, while the proposed sys
provides permanent interactivity and compliance.

8
 Introduction
of a
ch-
sired
this

hich
this

novel
ort.
e of

ple
ctory
ion in

as a
s its
way
hms
rted

tion,
this
nce,

ered
sed

e an
The next step was to implement a “reflex” behavior in the sense that sensory input
specific pattern would trigger a certain behavior within a short reaction time. This me
anism is not very intelligent, but it makes the system responsive and produces the de
behavior in most situations. A detailed account of the state machine used to realize
idea will be given in chapter 5.

In the second part of the thesis, a topological mapping mechanism is presented w
allows the system to gain knowledge about its surroundings. The requirements of
special un-supervised learning scenario, accounted for in chapter 6, lead us to a
type of vector quantization network, the Instantaneous Topological Map, or ITM for sh
Chapter 7 gives a detailed account of the algorithms, possible applications, and som
the more esoteric properties of the ITM.

Using an ITM as a literal road map for a manipulator can easily be achieved with a sim
graph distance calculation and trajectory generation routine. We implement this traje
generation scheme using our state machine formalism and demonstrate its operat
chapter 8.

As the ITM originates from un-supervised learning, a system using such a network
memory device may passively absorb stimuli from the outside world and use this a
only source of information. But sometimes, active exploration is a more appealing
of acquiring knowledge. With the state machine system and the ITM learning algorit
at hand, we are able to build a simple active scheme for exploring previously uncha
areas, which will be introduced in chapter 9.

At first sight, this design may appear to have two distinctly separate modes of opera
one for reflexes, the other for exploration. But this is not the case. To our knowledge,
is the first system to incorporate reflex-like behavior, path planning, obstacle avoida
and active exploration in a relatively straightforward way.

Much of the material developed in later chapters builds on the experiences we gath
with one special robotic manipulator in our laboratory. Since this manipulator is also u
as a proving ground for many of the algorithms presented, the next chapter will giv
introduction and brief analysis of our three-fingered robotic hand.

Part I

The Controller Architecture

11

plat-
arm
n the
e is a

l and
s.

gers
the

s oil
nly

three
ss oil

2.3

The
other

t. We
ately
Chapter 2

Manipulator and Sensor Hardware

As shown in the introductory chapter, our laboratory can be used as an experimental
form for human-machine interfacing. Among other equipment, it features a robot
with a wrist force/torque sensor, a wrist camera, and a three-fingered manipulator. I
present chapter, we will concentrate on the manipulator and its sensors, which alon
nine degrees-of-freedom robotic system.

The mechanics of the hand as well as its sensor electronics will be shown in detai
evaluated to motivate the control methods which are the topic of subsequent chapter

2.1 Mechanical Construction

The hand consists of a variable number of equal fingers [29]. In our case, three fin
are mounted in an equilateral triangle, pointing in parallel directions (see figure 2.1 on
next page). In contrast to other anthropomorphic robotic hands, the TUM hand use
hydraulics to drive the joints, and is therefore remarkably small. Each of its fingers is o
about ten percent larger than a human’s index finger.

Figure 2.2 on page 13 shows front and side views of one finger, demonstrating the
degrees of freedom and the approximate action radius. Three motor pistons pre
through a long conduit into the finger pistons to move the finger, as sketched in figure
on page 14.

For direct interaction with a human, the small scaling factor is a strong advantage.
hand is mounted on a robot arm as an end effector, which also contrasts to some
experimental robotic hands which are too bulky to be put on a reasonably sized robo
are thus in the favorable position to have an arm and hand combination of approxim
human size, ideal for human-machine communication.

12
 Manipulator and Sensor Hardware
er

n of
urce
stons
hich

erted
it’s

or the
t and
orce
[42].

mea-
, and
ent
sys-
ted

sical
oc-

stical
only

dard
bot
re-
Figure 2.1:The TUM Hydraulic Hand: The hand consists of three fingers, arranged in an
equilateral triangle. The wrist camera (left) and the cylindrical force-torque sensor (top) deliv
additional feedback for the motion of the robot arm.

2.2 Basic Sensory Equipment

In terms of sensory feedback, the small size of the fingers disallows the incorporatio
position detectors like joint angle encoders. In their basic configuration, the only so
of information on the state of the fingers are the oil pressure sensors at the driver pi
and the driver piston position sensors. All sensing is thus done at the driver pistons, w
are separated from the joint pistons by long oil conduits. Any feedback pressure ex
at the joints is damped and filtered by friction, the oil’s compressibility, and the condu
elasticity.

Former work has attempted to use only the pressure sensors at the driver pistons f
measurement of external forces at the fingertips. Knowing the oil pressure at the join
the joint position, the net force at the joint lever can be calculated by subtracting the f
exerted by the spring inside the joint piston from the oil pressure times the action area

Sadly, the oil pressure at the joint piston cannot be deduced easily from pressure
surements at the driver piston, because oil compressibility, mechanical hysteresis
stick-slip effects form a low-pass filter with some additional random or history-depend
components. In an attempt to obtain useful results, a mathematical model of the oil
tem, which covered the variable compressibility of oil depending on the amount of dilu
air and the elasticity of the oil conduit, was created and carefully adjusted to the phy
system [42]. But because the model had to be carefully readjusted when oil leaks
curred (which they often did and still do), and the mechanical hysteresis and the stati
stick-slip effects were not yet accounted for, the fingertip force measurements were
possible with huge errors.

The physical limitations of the basic equipment also overshadows the use of the stan
positional control algorithms for posture control, like those that were taken from the ro
control software RCCL [26]. Without proper joint angle encoders or other similarly p
cise instruments, attempting to perform reproducible posture control is rather futile.

13
2.3 The Tactile Sensor System
t,
nd

ated
m-
angle

s on

have
f use,
, we

close

ith
to

ng
tries

r
p-
(b)
�

(a)�

1

2

3
�

Figure 2.2:Finger Kinematics: Each finger is actuated by three pistons, two at the base join
and one inside the first segment which drives the coupled second and third joints. The left a
right pistons bend the finger sideways (arrow1) in differential mode, and inward (arrow2) in
common mode. Together with the flexing motion produced by the middle piston (arrows3),
the finger thus obtains three degrees of freedom.

The topmost necessity to improve control performance for these hydraulically actu
fingers is to short-circuit the filtering effect of the oil conduit and the mechanical co
ponents by placing sensors as close to the action as possible. And because joint
encoders are exceedingly difficult to construct for the TUM hand, we chose to focu
tactile sensors instead.

2.3 The Tactile Sensor System

Several design goals for the construction of a tactile sensor system for the TUM hand
been established. These are high robustness and flexibility, simplicity and ease o
high performance, and low cost. After a short description of the different components
will go through these aspects and show how each requirement has been met.

The hardware infrastructure consists of two devices, a multi-channel analog sampler
to the sensors (MASS), and a random-access ring buffer (BRAD) attached to a VME bus
(see figure 2.4 on page 15).MASS collects sensor data by sampling up to 64 channels w
an amplitude resolution of 8 Bits in turn and immediately transferring the digital data
BRAD via a serial line.BRAD stores the data in a history buffer 127 entries deep, putti
timestamps on all entries. A workstation attached to the VME bus may then retrieve en
at random and post-process data as required.

This system has already proven itsrobustness, as it has been continuously running fo
the last thirty months. The Motorola controllers obviously live up to their excellent re
utation, and the peripheral components seem to do equally well. The software onMASS

14
 Manipulator and Sensor Hardware
s
,
nt

ctly
alted

d
e fast
tly of

ation
ules
. Our
ertip
uated

-
he

list,
imple
that

ur
ared
sed at
ance
(a)� (b)
�

(c)� (d)�

M
�

potentiometer�

motor� pressure�
sensor

long oil�
conduit

spring-loaded
driver piston

Figure 2.3:Oil Hydraulics Actuation System: As a force transmission, a closed hydraulic
system connects the motor at the base(a) to the driver piston at the finger(d). The motor piston
position sensor and the oil pressure sensor(b) reside at the base, separated from the actor by a
long conduit(c), which acts as a complex low-pass filter. The spring-loaded driver piston move
slowly inside its cylinder, which additionally gives rise to frequent sticking-sliding transitions
difficult to predict or even to identify from the motor piston motion and pressure measureme
alone.

andBRAD has been extensively optimized and tested. Since information flow is stri
uni-directional, there are no protocols by which either controller can be crashed or h
by the other one or by the workstation. If, for example,MASS crashes or is restarted in
the middle of transmitting a packet,BRAD will resynchronize to match the data stream an
leave the faulty packet untouched. So, although being tied closely together to ensur
information transmission, the components of this system operate totally independen
each other.

To allow experimentation with new sensing techniques,flexibility is needed.MASS has
four slots with connectors for 16 analog channels each. These slots hold amplific
and pre-processing circuitry for different sensors. By replacing the amplification mod
along with the sensors, a large variety of detectors can be interfaced to the system
research work has already seen the benefits of this modular construction. The fing
sensors now in use are the third generation of tactile sensors which were built and eval
with this infrastructure.

Using the system issimple from the point of view of an applications programmer. In
terfacing withBRAD involves nothing but reading the appropriate memory cells of t
VME bus. The most recent measurements need not be located in the ringlike history
a copy is always present at the same location. This allows the user to choose a s
measurement routine if it suffices, or he may write a time series analysis algorithm
uses the history buffer to its full potential.

In terms ofperformance, the system is capable of delivering data at up to 3.6 kHz (fo
sensors sampled), with a typical value being around 500 Hz. This may seem low comp
to other sampling devices, but since the data must also be retrieved and further proces
higher levels, where the usual update frequency is about 100 Hz, the system’s perform

15
2.3 The Tactile Sensor System
t
ep-
ter
nal

olt-
the
sen-
he
sed
ch
m.
dif
�

ferential amplifiers
CATS

dual-port buf
�

fer
BRAD

watchdog�

oscillator

digital/analog
�

converter

motor current
generator

piston position
amplifiers

oil pressure�

amplifiers

analog/digital�

converter

TUM hand actuation system
�

tactile sensor system
�

MASS & modules

power electronics

VME bus
�

base piston set
(one finger shown)

di
sa

bl
e

sampler/transmitter�

MASS

digital i/o
�

networking
workstation(a)

�
(b)

�

Figure 2.4: Hardware Setup: The hardware structure consists of the tactile sensor system
developed by the author(a) and the components of the hydraulic hand built by Pfeiffer et.al. a
TUM (b). The TUM hand’s actoric and sensoric components are all mounted on a base s
arated from the hand by oil conduits. The motor currents are controlled via the d/a conver
board. They are shut down by a watchdog circuit unless the controller program toggles a sig
bit regularly. The motors drive pistons whose positions can be determined by reading the v
age of a set of potentiometers attached to an a/d converter. Additionally, the oil pressure at
base is measured by silicon sensors mounted at the far end of the driver pistons. The tactile
sors(a), in contrast, are mounted directly at the fingertips, providing feedback that bridges t
filtering effect of the oil and the mechanical structure. The sensors’ signals are pre-proces
electronically, then sampled and transmitted from the robot arm to a dual-ported buffer whi
can be read out in the same simple fashion as the other components of the VME bus syste

16
 Manipulator and Sensor Hardware
. A

ould

nt is
lest
this

s and

ndard
e case
9].

re or
stantly
s for

for
14mm

24
m

m

t
�

U�

U�

1/R�

1/R� t
�

t
�

t
�

dynamic
sensor

dynamic
sensor

force/pos
sensor

force/pos
sensor

elastic padding�

(a)
�

(b)
�

(c)
�

(d)
�

Figure 2.5:First Fingertip Design: Here, fourFPSRpads were placed on an aluminum body,
then covered with an elastomer and a rubber membrane with knobs for slippage sensing
cut view(a) shows the layer structure, and(b) shows the manufacturing steps. The two sensor
types employed in this sensor are able to detect both static pressure (with theFPSRresistors,
(c)) and sliding motions (withPVDF foil attached to the membrane,(d)).

is sufficient. In case the detection of short pulses below the millisecond range sh
become necessary, edge detectors are available which can fill this need.

The maximum delay between sampling and data arrival in the VME memory segme
only about 35µs, which is approximately one order of magnitude lower than the smal
possible reciprocal sampling frequency. Therefore, client applications may ignore
latency and treat the sensor values as if they were immediate measurements.

An experimentation platform is often subject to higher-than-average stress, and repair
changes are costly. We had to constructMASS andBRAD, because similar commercially
available products did simply not match our requirements. Thecostaspect came naturally,
because all development had to be done in our lab. The use of simple circuitry and sta
components shortens the development time and makes spare parts affordable. In th
of this system, the burden of hardware development turned out to be an advantage [1

This is particularly true for the sensors themselves, which emerged from several mo
less successful development steps. The latest model, which has been in use con
since about twelve months before the time of writing, has many appealing propertie
daily use, like easy servicing and automatic calibration.

2.4 The Fingertip Sensors

Force sensors shaped like fingertips may be easily imagined, but force sensorsthe size of
human fingertips pose a difficult problem of miniaturization. Searching the literature

17
2.4 The Fingertip Sensors
istive

so spe-

terial
s still

-
e was

ing
etects
res

lab-

ty
for

.

ertip
e of
with
ich

screw.

resis-
dows
different sensor materials turned up two kinds of pressure sensitive foil, one piezo-res
(FSR, [15]), and one piezo-electrical (PVDF, [1]) kind.

These sensor types are prolific among tactile sensing researchers. Some groups al
cialize on the miniaturization of strain gauges [5, 4], but many use theFSR sensors in
tactile imaging [13, 25], and thePVDF foils for dynamic sensing [47, 3]. A brilliant and
unusual approach to tactile sensing based on ultrasound transmission in elastic ma
has been developed by Shinoda et. al. [45, 44, 43]. Sadly, this ingenious technology i
too difficult to implement in our laboratory.

Initially, the literature suggested that theFSRfoil would be useful only for sensing slowly
changing pressure profiles, while thePVDF would yield much better response to fast pres
sure changes [28, 16]. Since both measurements are desirable, a layering techniqu
first employed which stacked thePVDF sensor on top of anFSR basis (see figure 2.5 on
the preceding page). The fastPVDF sensor acts like a microphone membrane respond
to the characteristic noise made by moving rubber knobs on the surface, and thus d
sliding motions. The inner layer ofFSRsensors locates the center of mass and measu
the amount of applied force.

The construction was quite successful, but not durable enough for long term use in the
oratory. The intricate wiring and difficult resistor fabrication for theFPSRs (the position-
sensitive variant of theFSR) raised the manufacturing time for one fingertip to over twen
hours. Additionally, after filling in the rubber padding, there were no more possibilities
repair. Several fingertips were ruined by the capillary suction of theFPSRsensors, which
flooded the sensitive electrodes with hydraulic oil.

A newer, much more durable design emerged based only onFSRsensors. Surprisingly, our
measurements indicate that the frequency range of theFSR is much greater than assumed
It may even suffice to perform successful slippage detection.

2.4.1 Construction Principle

Figure 2.6 on the following page shows the fingertip design currently in use. Each fing
is equipped with fourFSRsensor pads. The electrodes are etched onto one small piec
PCB in a square layout, covered by just one piece of piezo-resistive foil. A rubber pad
four protruding fields ensures an even force distribution from the aluminum stick wh
presses on the sensors with a pre-loading force determined by tightening the bracket
This screw also holds the whole construction together.

Five wires need to be connected to the PCB, one common current source and four
tance measurement wires. A rubber cover gives the fingertip its natural shape and en
it with a small amount of additional compliance.

18
 Manipulator and Sensor Hardware
ve
ur

ng
the

ically
the

le the
four

nt ex-
ternal

ading
face,
uch

ristics.
electrodes�

FSR foil

rubber
pads

aluminum�

stick

base

rubber
ring

bracket screw

force distribution principle

common mode�

force along z
dif

�
ferential mode

torques along x and y

x
y�

z

(a)
�

(b)
�

(c)
�

Figure 2.6: New Fingertip Design: The exploded view(a) shows the construction of the
sensor. It consists of a rigid stick attached to a rigid base by elastic pads, allowing it to mo
independently by a small amount. This construction distributes an external force to the fo
pressure sensing fields as shown in(b). Three degrees of freedom can be discriminated in this
way (c): one force component, perpendicular to the electrode plane, and two torques alo
that plane. The normal force results in common sensor responses in all four fields, while
torques result in differential sensor responses in two facing fields.

The rubber pad covering the sensors and rubber rings in the aluminum base mechan
decouple the stick and the base. In this way an additional force in the direction of
bracket screw can be detected in the common mode reaction of all four sensors, whi
two torque components perpendicular to the axis of the screw affect only two of the
sensors in differential mode.

Each finger thus delivers four sensors values and can detect a total of three independe
ternal actions: two components of the external torque, and one component of the ex
force.

The reasons for choosing this construction are mostly practical. Because of the pre-lo
of the FSRsensors, the electrodes are in constant contact with the piezo-electric sur
keeping the omnipresent hydraulic oil at bay. Experience shows that this works m
better than trying to shield or duct the fingertips to make them oil-proof.

The main reason fornotchoosing this construction would be that the pre-loading of theFSR

sensors lessens their sensitivity, since they have logarithmic force response characte

19
2.4 The Fingertip Sensors
e
of

ain
nd,

t this

the
atic

d by
the
ents.

s
tering
n to
Rh

Rp

Rl

Fl Fp Fh

se
ns

or
 fo

il
re

si
st

an
ce

applied normal force

preloading force

approximate characteristics of an FSR

Figure 2.7:Differential Amplification Principle: The figure shows the typical characteristics
of an FSR foil sensor. Its sensitivity is largest for small forces, but because of the surfac
properties of the foil the measurements vary considerably. For large forces, the sensitivity
the foil steadily decreases. Using a moderate pre-loading force and a differential high-g
measurement circuit, we can still produce adequate sensitivity with better repeatability, a
additionally, the ability to measure small negative forces as well.

We address this issue by providing special amplification electronics which counterac
effect.

2.4.2 Amplification Circuitry

The resistance of anFSR sensor varies over four orders of magnitude depending on
applied force. Much of this change takes place at low forces, according to the schem
plot in figure 2.7. Measuring forces applied to a pre-loaded sensor can be achieve
centering the amplification around the static resistance. The amplification factor for
differential resistance is then chosen to match the sensitivity and force range requirem

The Centering Amplifiers for Tactile Sensors (CATS) amplify a small current flowing
through theFSR. A low-pass filter with a very long relaxation time of about 5 minute
draws the amount of current representing the static resistance, thereby correctly cen
the total amplification, which has a large enough gain to reliably measure forces dow
about 50 mN (see figure 2.8 on the following page).

20
 Manipulator and Sensor Hardware
tes

, be-
there
d out

sen-
gers
ddi-
plied
R1

R2
�

R3
�

T1

R4

C1� R6
�

R5
B�

A

U� 0 U� 0output�
offset�

sensor pad�

(a)� (b)� (c)	 (d)

Figure 2.8:Tactile Sensor Amplification Circuit: Differential amplification is implemented
in a current amplifier(a) with a current drain through T1, which draws the offset current. This
offset current is generated by the low-pass filter(b), which accumulates an offset voltage across
C1 until the average output voltage at A becomes approximately U0. Finally, the offset voltage
is amplified into a readable range(c) for additional information.(d) Four such amplifiers are
bundled in the PCB for one fingertip sensor.

Figure 2.9:Experimental Setup for Tactile Sensor Evaluation:A balance with strain gauges
is used to measure the applied force at the fingertip while the middle motor current oscilla
at 1 Hz. Only the two outer coupled joints move in this experiment.

This measurement technique allows large tolerances for tightening the bracket screw
cause each sensor pad locks in to its individual static pre-loading force, and therefore
is no need for further calibration. The static force of each pad can be separately rea
by the sensor sampler, albeit with lower precision than the differential measurement.

2.4.3 Experimental Results

In an attempt to find the characteristic frequencies of the oil system and the fingertip
sors, one motor was driven with a sinusoidal signal to periodically bend one of the fin
inward, while the corresponding oil pressure and fingertip response where recorded. A
tionally, we used an electronic balance to simultaneously measure the actual force ap

21
2.4 The Fingertip Sensors
lot.

The
0

50

100

150

200

250

300

350

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

oi
l p

re
ss

ur
e

/ A
D

 u
ni

ts

�

balance readout / N

samples
mean over 20 runs

Figure 2.10:Oil Pressure vs. Applied Force:During a motion induced by a sinusoidal motor
current at 1 Hz, the large hysteresis of the oil hydraulics system becomes apparent in this p
It shows the oil pressure sensor value while a given force is exerted at the fingertip.

−200

−150

−100

−50

0

50

100

150

200

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

fin
ge

rt
ip

 s
en

so
r

re
ad

ou
t /

 A
D

 u
ni

ts

�

balance readout / N

samples
mean over 20 runs

Figure 2.11: Tactile Sensor Readout vs. Applied Force:The measured hysteresis of the
fingertip sensor during the same motion as in figure 2.10 shows no significant hysteresis.
statistical variations are generally larger than the hysteresis gap.

22
 Manipulator and Sensor Hardware
ffect
age).
ical
otion

y the
tifies
and

the
d for
ck of

ess,
t to
sors
tics

nse-
lling
the
to the fingertip to ascertain the quality of theFSRsensor and of the amplification circuitry
(see figure 2.9 on page 20).

The comparison of the actual force and the oil pressure reveals the drastic filtering e
of the oil conduit and the mechanical components (see figure 2.10 on the preceding p
Due to the highly repetitive motion, the hysteresis plot exhibits relatively small statist
variation. Still, the gap is so large that reliable measurements are impossible if the m
history is unknown.

In contrast, the hysteresis of the fingertip sensor in relation to the force measured b
balance is smaller than the noise level (see figure 2.11 on the page before). This jus
the use of the sensors to bridge the filtering effect of the hydraulic actuation system
build more sensitive control loops.

Because of its realistic dimensions and its high sensitivity, which compares well to
human role model, the fingertip sensor presented in this chapter is very well suite
interaction scenarios. It adds a substantial component to the total sensory feedba
the low-level controller, which will be described in chapter 4 on page 29. Nonethel
one fundamental detail should be pointed out already. It is technically very difficul
add joint angle sensors to the TUM hand, which has led us to focus on force sen
instead. Therefore, control will take place in terms of forces, in contrast to most robo
applications, which are based on positional control modulated with force feedback.

These two concepts may seem similar at this point, but they have very different co
quences and ramifications. This will become clear as we further develop the contro
system for the robotics hardware just described. The following chapter will reveal
overall concept of this control architecture.

23
hich
ning,

e con-

ion is
rison
stem
ing it

pre-
l ap-
ints

itec-
and,
h the

The
p.

rror
me
Chapter 3

A Layered Controller Architecture

The controller mechanisms we create for the TUM hand shall perform several tasks w
are usually treated separately. These are behavior simulation, exploration, path plan
and obstacle avoidance. These tasks are to be solved with one common architectur
sisting of few, well-defined elements with narrow interfaces.

In this chapter, we motivate the choice of these elements and show how their interact
organized. An analysis of the time scale domain of each layer pairs up with a compa
of the scope of each layer’s action and error recovery responsibility. The resulting sy
is modular and expandable, and still simple enough to make both using and maintain
as easy as possible.

There are only few previously reported control architectures comparable to the one
sented here. Fagg et. al. present a promising biologically motivated low-level contro
proach which already takes into account that a higher level layer might supply via po
for the generation of trajectories [6]. The resulting system would be similar to the arch
ture presented here. The account of a remarkable control infrastructure for a robotic h
which encompasses stable grip control and hand-arm coordination, but does not touc
exploration and obstacle avoidance topics, can be found in [48].

3.1 Design Fundamentals

Figure 3.1 on the next page shows the overall system layout for the present work.
detailed descriptions of the ingredients follow this illustration from the bottom to the to

The most fundamental task a low-level controller can perform is to zero a given e
function by building an output signal which will reach the target position in as short a ti

24
 A Layered Controller Architecture
yer
Its

ir
sensors�

potentiometers
oil pressure sensors
fingertip sensors

interaction
with the
outer world

actuators�

3 fingers with
3 motors each

plausibility
checker

filter target state
�

evaluator
net error
calculator PID loop

controller layer
parameter set

filtered
sensor
values

state with�

parameter set

transition
�

criterion

additional states�

input space representation in graph
exploration�

stimulation�

adaptation
path finding

IT
M

 n
eu

ra
l n

et
w

o
rk

 la
ye

r
st

at
e

m
ac

h
in

e
la

ye
r

co
n

tr
o

lle
r

la
ye

r
h

ar
d

w
ar

e
la

ye
r

edge target�

position choice

GRIP

LOST�

START
�

STOP�
NEW

TARGET

HOLD�

WAIT
�

trajectory
�

generation

external
trigger

Figure 3.1:Layered Architecture Diagram: The hardware and the controller layer form a
closed control loop which is influenced and reacted upon by the state machine. This la
implements both an autonomous behavior simulator and a universal interfacing engine.
expandability allows higher-level layers, like the ITM neural network layer, to integrate the
algorithms into the state machine by contributing new states and state transitions.

25
3.2 Levels of Timing and Abstraction
can
ably

our
sure,

um-
, the

and
This
a set

h to

the
rget

avior
due
is no
both

her
state
tate
ther

first
most
strac-
ent in
and with as few oscillations as possible. This is a well-understood problem which
often be solved with carefully parameterized standard control algorithms, most not
PID (proportional/integral/differential) control.

The error function is simple in most cases, usually the joint position error, but in
robotics setup feedback comes from many sensors (driver piston position, oil pres
fingertips), each of which becomes more or less relevant in different situations.

Because of this, the parameterization of the low-level controller can easily become c
bersome. The target position no longer suffices to define the controller’s behavior
weight of each component needs to be specified, too.

A further simplification of the parameterization task can be achieved with templates,
switching from one template to another can be achieved with sensor-driven criteria.
motivates the addition of a state machine layer, where each state is represented by
of controller parameters, and a set of criteria that indicate the conditions under whic
switch to a new state.

This constellation is not unlike separating a spline-based trajectory generator from
underlying controller, but it is slightly more general. Here, we can choose both the ta
sensor value constellationand the corresponding amount of compliance.

Client applications use labels attached to the individual states to force certain beh
patterns. Nevertheless, the machine will still switch from state to state automatically
to sensory feedback. This produces quite an unusual programming paradigm. There
clear distinction between input channels and output channels. The current state can
be set to trigger an action, or queried to find out the result of the triggered behavior.

Additionally, we gain an open architecture which allows the implementation of hig
levels of abstraction, like path planning or active exploration. These interface to the
machine, allowing them to run concurrently with client programs. For example, the s
machine may trigger active exploration via an idle timeout. If a client issues ano
command by forcing a state change, the exploration is temporarily abandoned.

3.2 Levels of Timing and Abstraction

Although dividing the system into layers in the manner shown may seem artificial at
glance, the construction follows a hierarchical design in several aspects. The two fore
of these are the separation of time scales, and the separation of different levels of ab
tion. Notably, the same type of time scale separation has also been shown to be pres
the perception-action cycle in humans [32, 2, 37].

26
 A Layered Controller Architecture
sent.
they
t, the

ies
ent

-
are

iven
ust

ures to

tion
n the
cted

e, do
raph
kage,

his
r, so

me is
tem
z.

nging
ia is
umber
stract
riate

thus
avior

ater
by the
The number of layers itself affects the number of distinct time scales that are pre
Special attention was given to choosing the timing properties of each layer so that
blend harmoniously into the time environment of the sensors, actors, and not leas
human operator.

An additional benefit of splitting the system in this way is an isolation of responsibilit
and of error recovery mechanisms. In the following, we will characterize the differ
elements along these lines (see figure 3.2 on page 28).

The hardware interfacing layer is thecontroller , which is responsible for reading the sen
sors, for pre-processing or filtering these signals, for performing plausibility and hardw
protection checks, and, finally, for delivering motor current output signals to reach a g
target position with specified weighting of the feedback components. The controller m
be stable under all circumstances, so that higher level engines need no special meas
avoid spontaneous oscillations of the motor currents.

The controller runs at 100 Hz, which is still much faster than the hydraulics actua
system can react. The reaction times of all sensors included so far are shorter tha
controller’s, with the exception of the oil pressure sensors, which are adversely affe
by the hydraulic system’s filtering effect.

Other hardware dependent time scales, most notably the typical self-calibration tim
not have as much relevance for the controller process itself. They are included in the g
because there are code segments in the controller layer which compensate for oil lea
for example.

Thestate machineruns roughly one order of magnitude slower than the controller. T
ensures that its dynamics are well decoupled from the dynamics of the controller laye
that oscillations between the two should not happen. Since the actuator’s reaction ti
still slightly longer than the state machine’s loop duration, the reactivity of the total sys
is not significantly deteriorated by the seemingly low update frequency of about 10 H

The foremost task of the state machine is managing controller templates and cha
the controller settings according to a set of criteria. A template along with these criter
denominated a “state”. The set of states creates a behavior pattern which handles a n
of fixed reflexes and fallback action patterns. The states are labeled to provide an ab
interface in which client applications or users trigger an action by naming the approp
state.

The set of states can be dynamically expanded by layers in higher levels, which can
add to the set of possible actions or reactions of the system without affecting the beh
already implemented.

All higher-level layers should run in time scales of at least one order of magnitude gre
than that of the state machine, because otherwise spontaneous oscillations caused

27
3.2 Levels of Timing and Abstraction
ges
,
stated

nd
erties
find

on of
ation

y fast
date

con-
as a
ctive
chine
lgo-

ssive

pical
state

will

ip-
tively
The
hine,
ce of
uired

ine’s
gered
ically

ained
terface

the
eflex
immediate coupling could confuse the system. This limitation applies only if state chan
are regularly triggered by higher-level layersand the state machine itself. In most cases
however, state changes issued by either party are sporadic, and the consideration
above becomes less critical.

Thepath planning layer is one such high-level engine. Its task is to watch the motion a
sensor feedback pattern and use it to build a representation of the manipulator’s prop
and its surroundings. It should be able to reproduce a given motion pattern and to
new paths, or shortcuts, from one manipulator state to the other. The representati
the manipulator state space and its surroundings is implemented in a vector quantiz
neural network, which addresses the special requirements of this problem with a ver
training algorithm, efficient graph generation methods, and the ability to accommo
external graph modifications.

The network is trained with a feature vector composed of the sensor signals from the
troller and other state encoding data. This data is not statistically distributed, but h
trajectory-like structure. Therefore, special measures must be taken to avoid destru
interference during the learning process. The path planning layer drives the state ma
when triggered to find a path to a given node. In that case, it uses a path finding a
rithm on its internal map of the surroundings, feeding the state machine with succe
intermediate stages to reach the given target.

The characteristic frequency of the path finding mechanism varies considerably, but ty
values are about one order of magnitude lower than the sensor probing loop inside the
machine. Interference of these two layers is thus unlikely, and even if it happens it
only abort the path finding process, instead of producing spurious oscillations.

Finally, thetarget chooserlayer enables the total system to actively explore the man
ulator’s workspace. It has access to the current map of the surroundings and tenta
invents a new node which it then attempts to reach with the aid of the path planner.
target chooser is activated externally by the usual interfacing method of the state mac
or automatically after a given idle time. The target chooser observes the performan
the path finder and forces graph alterations to the map to accommodate the newly acq
knowledge.

The higher level layers can be thought of as small additional parts of the state mach
transition graph. Because they add criteria to the current states, their logic can be trig
automatically, and because they provide fallback state switches, they can automat
abort their actions if anything unexpected happens.

External clients can always query and modify the current state, as has been expl
above. These clients need not be human operators. Other programs may use this in
just as well.

In the following chapters, we will examine the two basic layers, the controller and
state machine, in more detail. Together, they endow the robot hand with elementary r
behavior along fixed programmed patterns.

28
 A Layered Controller Architecture
is
ing

han
s,
ple
1ms

10ms

0.1s
�

1s

10s�

100s

1kHz

100Hz�

10Hz

1Hz

0.1Hz

0.01Hz

piston position
sensors

fingertip sensors

oil pressure sensors�

hydraulic system

human operator*

state transitions*�

fingertip calibration

controller layer�
actor/sensor
coordination

state machine�
basic behaviour,
reflexes

path planning
sensoric/motoric
patterns

target position
�
choice
active exploration

compliance�
filtering
pre-processing
hardware protection

intuitive programming
abstract interfacing

topological mapping
�
efficient adaptation
graph modification

graph evaluation	
long-term sensor
signal evaluation

reaction time level of abstraction
layer

typical tasks
�period

frequency

Figure 3.2:Time Scales and Abstraction Levels:The choice of the segmentation into layers
is motivated by distinct tasks that correspond to different time scales. The controller layer
placed close to the typical reaction time of its associated sensors. To provide natural interfac
for the human, the state machine has to be placed in the 10 Hz domain, which is still faster t
the hydraulic system can react. All further layers are not strictly tied to external time scale
but they are separated from each other by approximately one order of magnitude, to decou
them and thus prevent spontaneous oscillations.

29
hich
only
ller,
nt of
main
cts.
level
und

46,
with

hap-
than

d the
age, oil

lost,

ng up

s that
or to
ecial
Chapter 4

The Controller Layer

To maneuver the robotic hand introduced in chapter 2, a controller process is used w
operates independently from all other related layers. From a technical viewpoint, the
difference of this controller when compared to other robotic systems’ low-level contro
is that it uses direct force control. As stated in the chapter on the sensory equipme
our laboratory, one reason for this is the absence of reliable positional sensors. The
reason, though, is that we aim at performing intelligent compliant grasping of obje
A logical consequence is to leave the problem of reproducing positions to a higher-
process and perform reliable force control at the low level. Other works, centered aro
controlling flexible manipulators or adaptively generating gaits for walking machines [
14, 20], indicate that unreliable positional control properties can be compensated
reliable adaptive force control, which encourages this approach.

The controller layer is the backbone of the whole system introduced in the previous c
ter. It interfaces directly with the motors and sensors and is thus responsible of more
just reaching a defined target position in as short a time as possible.

It has to provide diagnostics and failsafe procedures to protect both the machinery an
human operator from the consequences of erroneous sensor feedback, cable break
leaks, and so forth.

It must take into consideration that the output it gives to the hardware may itself be
either because of broken parts or because an operator switched the motors off.

It must even expect to be temporarily stopped itself, because of other processes taki
CPU time, and be prepared to compensate for such timing glitches.

These few examples clarify the essence of the problem: we want a controller proces
can safely run at all times and which is watchful enough to prevent harm to the users
the machines. For example, expecting the operator to change the controller into a sp

30
 The Controller Layer
ith

of
ed

ntial
ajor

ssary

op-
roller
e next
ure of
ram-
lizes

cess-
00th
filters &
�

failure checks
boundary
check

Fx

Fp

Ft

int

1

dif
�

f

comp�

target
�

values
error�

weights
target

�

reached pid constants

motor
current

piston
position

oil�

pressure

tactile
�

sensors

net error
calculation

pid control boundary
check

error

interface
filtered

�

values

(a)
�

(b)
�

(c)
�

(d)
�

Figure 4.1:Controller Layer Diagram: In each iteration of the controller process,(a) the
sensor signals are first pre-processed and checked for plausible signals, and(b) the individual
errors (possibly partly blocked by the failure checkers) are calculated and superimposed w
a given weight vector.(c) A PID controller provides the motor current, which is first passed
through a limiter that may also block the integrator.(d) External processes may influence
the controller’s behavior by supplying target values and error weights. The convergence
the controller can be rudimentarily queried with a “target reached” signal. The pre-process
sensor signals are made available to other applications as well.

“maintenance mode” before being able to work on the hydraulics is a source of pote
problems, because the human might forget to follow this regulation. Therefore, one m
design aim while producing the controller program was to reduce the number of nece
steps in maintenance and in normal operation to an absolute minimum.

This chapter first gives a structural overview of the controller and explains its basic
eration. It then introduces the many small safety mechanisms that make the cont
remarkably reliable and presents a small maintenance operation as an example. Th
section explains the interfaces with other processes and shows the detailed struct
the shared data. Finally, after treating miscellaneous topics like the choice of prog
ming language and operating system, an example application is shown which visua
the controller’s operation and allows interactive parameterization.

4.1 The Controller Structure

The controller as shown in figure 4.1 consists of three sections, sensor signal prepro
ing, error superposition, and output calculation, which are called in turn once every 1

31
4.1 The Controller Structure
g
ng
d

ens

TUM
dy-
ge of
ing

oten-
ring.
adout
tark

y, but
n. A

plau-
from
rtip
0

5

10

0 1 2

se
ns

or
 in

pu
t /

 fi
lte

r
ou

tp
ut

time

regular value change
approx. same reaction

strong change (outlier)
rolling average follows
improved filter ignores

input
rolling average

outlier damping

Figure 4.2:Outlier Filtering: The addition of a damping term to the rolling average formula
yields much better rejection of outliers. This is due to the statistical distribution underlyin
the two filters. While the rolling average filter in based on Gaussian statistics, the dampi
term formula emerges from a Cauchy distribution, which has larger “tails” toward positive an
negative infinity. The damping term therefore considers outliers more probable and less
their influence on the current filter output.

of a second. One such processing chain exists for each of the nine motors of the
hand. As shown before, the seemingly low frequency is in fact well adapted to the
namics of the hydraulic actuation system to be controlled. We can even take advanta
the low-pass filtering effect of this system to make the controller resistant to small tim
glitches.

During the first stage, the latest valid sensor values are retrieved. In the case of the p
tiometers the value is reliable and far less than 1 ms old, so there is no need for filte
The only preparation needed is an offset equalization, because the potentiometer re
is subject to drifting due to oil leaks. Still, the sensor’s speed and reliability stand in s
contrast to their de-facto unreliability for positional control, as explained in chapter 2.

The oil pressure sensors are equally frequently sampled, so filtering is unnecessar
they are much more likely to fail because of cable breakage or membrane destructio
plausibility check has been introduced here which detects both conditions.

The fingertip sensors are by far the most fragile parts in the ensemble, which makes
sibility checks a must. Because of the constant oil leaks, the sensors need cleaning
time to time; the checks indicate the need for this simple servicing task. The finge

32
 The Controller Layer
s old.
nsors

ed
ed
finite
tter

ion.

vari-

.
ce the
in the

idual
ound-
ffect

ce of
ing

lator

uce

g can
s can

um
ppli-

ven
r has
sensors are sampled at roughly 600 Hz, which means the samples are at most 1.7 m
To reduce the effect of noisy data around the neutral position, the output of these se
is passed through a low-pass filter with a cut-off frequency of about 50 Hz.

As a filtering algorithm, we use a promising approach by Liano [24], originally intend
for improving neural network training algorithms by minimizing the mean log squar
error (MLSE) rather than the mean squared error (MSE). Instead of using a standard
impulse response low-pass filter, we use a slight modification known to provide be
outlier rejection. This is achieved with a quadratic damping term in the influence funct
The new filter outputxt+1 is thus calculated from the previous outputxt and the inputy as
follows:

∆ = y − xt

xt+1 = xt + λ
1 + γ∆2 ∆ (4.1)

This approach emerges from a mathematical analysis of the formula given a random
able as input. The statistics of the standard version (γ = 0) follow an assumed Gaussian
distribution of the input values, whileγ 6= 0 results in an assumed Cauchy distribution
The consequence is that outliers are considered more likely and thus cannot influen
filter output as much as if underlying Gaussian statistics were expected, as depicted
small experiment in figure 4.2 on the preceding page.

The current sensor values are subtracted from target values yielding a set of indiv
errors, which are subsequently combined in a weighted sum and passed through a b
ary limiter to produce the net error. The boundary checker has the same beneficial e
on the controller’s performance as a sigmoid transfer function has on the performan
a perceptron. It allows high sensitivity of the system in a defined area, while avoid
extreme reactions outside this area.

In a final step, the net error is passed through an integrator and a first derivative calcu
to produce PID control inputs. These are superimposed with weight constantsKP , KI ,
andKD to produce the output, which again passes through a boundary limiter to prod
the motor current.

The sections overlap to some extent, i.e., the plausibility checks during preprocessin
block error components in the superposition section, and the output boundary check
block the integrator’s operation.

To obtain an approximate calibration of the piston position sensors, an internal minim
value is kept for each potentiometer. These minimal values are hidden from client a
cations, which can only use the calibrated sensor readings.

The controller additionally provides a flag which it sets if the net error drops below a gi
threshold. This flag can be used by clients to trigger an action as soon as the controlle

33
4.2 Mechanisms for Safety and Reliability
riza-

te
cuss

et of
-

re-
f the

ere
annot
tions
ables,

into
rror

inds
ction
row

e in-
alue
the

use
huts
s. If

ller

de,
is no
reached its equilibrium. Clients reset this flag upon changing the controller paramete
tion.

It is a trivial fact that this controller can zero a given mix of errors with the appropria
parameterization. But how does it behave under partial failure conditions? We will dis
this topic in the next section by examining some of the most likely hazards.

4.2 Mechanisms for Safety and Reliability

The controller layer features a few additions which combine to protect against a s
potential dangers. These additions are(i) the filters and plausibility checkers in the pre
processing section,(ii) the boundary limiter for the net error, and(iii) the boundary checker
for the motor current output. The controller loop itself runs in real time with a loop f
quency of 100 Hz. An overload detector detects and reports timing faults. Some o
most common dangers to smooth control are:

Sensor failure: A broken cable or a defective electronic component can inflict sev
damage on the total system, because the net error contains large artifacts that c
be compensated by the output. Some of the most common sensor failure situa
are broken membranes of oil pressure sensors, broken fingertip sensor ribbon c
and oil-soaked fingertip sensors. Special diagnostic logic has been incorporated
the controller to gracefully react in those situations by switching the appropriate e
channel off and notifying client applications.

But it is infeasible to produce detector code that correctly diagnoses all possible k
of erroneous sensor behavior. The above detectors are only the first stage of prote
against feedback failure. If the net error cannot be compensated, the output will g
indefinitely because of the integrator component controlled byKI . The last boundary
checker therefore not only limits the motor current to a safe level, but also stops th
tegrator from further increasing the accumulated error. The integrator’s internal v
is left unchanged, though, so that it will smoothly re-enter normal operation once
feedback channels are repaired.

Motor failure: This error condition is similar to the one previously discussed, beca
the controller cannot zero the net error anymore. The output current limiter s
down the integrator as described above, and the controller’s internal state freeze
the motor is switched back on, it will initially receive a safe current and the contro
will operate normally with no further intervention.

Wrong parameterization: Many internal parameters can be changed from the outsi
and some of them can cause undesirable controller behavior. Although there

34
 The Controller Layer
figu-
nal

onta-
l setup
h a

can

nd
lues,
lec-
ns,
on-
ver
itial

rwise
r all

lution
oil

ile
e to

order

main
ents
tor

which
con-
lica-
warning against erroneous parameterization, the net error limiter makes the con
ration of the error mixture much easier. The motor current limiters provide additio
protection against mis-configuration.

Controller oscillations: The controller parametersKP , KI , andKD are not part of the
standard client interface structure, because wrong configuration can produce sp
neous oscillations. Instead, these parameters have been preset to a near-optima
which cannot easily be made to oscillate. Still, if the external force is varied wit
frequency near the controller’s characteristic frequency, small damped oscillations
be observed.

Timing glitches: If the controller process itself is temporarily halted or if it crashes a
needs to be restarted, the output current values freeze, possibly with high va
which would result in a sudden contraction of the respective finger joints. An e
tronic watchdog circuit, which has to be disarmed periodically with write operatio
switches off all motors if the controller program crashes. Upon restarting, the c
troller will recover, either with default parameters or with the parameter set left o
by the previous instance. The internal error limiter helps to smooth out the in
motion.

Note that in all the situations described above, there is no need to configure or othe
change the controller logic from the outside. The process continues running unde
circumstances, partly shutting down and restarting automatically as the need arises.

This design makes maintenance exceedingly easy, especially compared to the so
previously in use [36]. As an example, consider the operation of refilling one or more
pistons (see figure 4.3 on the next page).

Formerly, it was necessary to shut down the controller software, fill the oil piston wh
the motors were disabled, then start a special helper program to reduce the oil volum
a defined value, restart the controller, and go through a series of calibration steps in
to use the potentiometers as replacements for joint angle encoders.

Since we do not use positional control anymore, the last step is unnecessary. The
advantage of the new software system is that it is sufficient to switch off the motor curr
with the hardware watchdog blocking switch, refill the oil pistons, and switch the mo
currents back on. The controller will recover and re-calibrate automatically.

4.3 Interfacing with Other Processes

The controller layer communicates with other processes through a set of parameters
reside in a UNIX shared memory segment. Almost all controller state variables are
tained in this segment, which serves as a fast communication channel with client app
tions (see figure 4.4 on page 36).

35
4.3 Interfacing with Other Processes
ake
oil

next
e over

d and

ions
ly of

tion.
erally

riods
meter
ves the
11
2

2

3

4

block motor currents

stretch fingers�

refill oil at base

enable motor currents�

disable controller process
�

block motor currents

stretch fingers�

refill oil at base

enable motor currents�

start refilling program�

drain oil from fingers until stretched
�

run calibration procedure

restart controller process

3
4
5
6
7
8
9

former procedure
�

new simplified procedure

Figure 4.3:Example Maintenance Procedure:With the new controller, there is no need to
start special software for maintenance operations. Switching the motors off is enough to m
the controller degrade into an idle state. The formerly necessary calibration procedure after
refills is obsoleted by an automatic internal calibration which is part of the control loop.

The shared memory segment survives controller process crashes, thus allowing the
controller process to use the same data as the defunct process and use it to tak
smoothly.

Because all entries in shared memory are atoms, i.e., small data types which are rea
written by the kernel in an uninterruptable operation, there is no need for mutexes1 or
other signaling mechanisms which would potentially enable malignant client applicat
to block the controller. Instead, the controller process runs completely independent
its clients, which may change parameters at any time.

Therefore, clients have no control over transitional behavior during re-parameteriza
But because, as a consequence of the hydraulic system’s inertia, the controller gen
has loose timing restrictions, such precise control of transitionals is unnecessary.

1This POSIX synchronization method relies on applications to only allocate resources for short pe
of time. Thus, errors in the allocation and release scheme may block the controller from reading its para
set. Double buffering or other more refined methods were abandoned because the use of atoms achie
same goal.

36
 The Controller Layer
re
and
s-

olete
eg-
he

only
tions
the
nd the
meter

me of

m-
ork-
ica-
with

level
local client local client

DACS interface
local client

shared memory segment�

data kept if clients crash

critical application�

e.g. controller, state machine
respawn

local distribution network distribution
DACS
client

DACS
client

Figure 4.4: Interfacing Mechanism: To ensure reliable operation of a critical application
(e.g. the controller), it is detached from its communication interfaces. All vital variables a
kept in a shared memory segment which survives crashes of both the underlying program
of client applications. The main application is re-spawned automatically, allowing the succe
sor to take over smoothly. Wherever possible, kernel atoms are used for data storage to obs
the use of mutexes, since they might destroy the decoupling effect of the shared memory s
ment. One local client implements a DACS communications host, providing clients across t
network with access to the current data.

Accessing the parameter set by means of the shared memory segment is naturally
possible on the same host. For access over the network, we rely on the communica
tool DACS [21]. One special local client has been implemented which interfaces
shared memory data to a DACS demand stream and a message port. Clients arou
network may query the parameter set by tapping the stream, and may feed new para
sets by sending an appropriate message.

4.4 Implementation Details

The construction of the controller layer made many design decisions necessary, so
which shall be discussed in this section.

Choice of host machine:Former controller software has been implemented on an e
bedded controller board, while this system runs entirely on a general-purpose w
station. One reason for choosing an embedded controller is reliability of commun
tion channels: embedded controllers should communicate much more intensely
the hardware they are attached to than with the outside world, i.e., the higher-

37
4.5 A Visual Controller Interface
r be-
with

spe-
bout
uter
the

of the
e sim-
lifies

s and
, al-

n-
k.

oned
rfac-

to
oved
the

ro-
re of
s the

otic
l is
with
roller
oth

tion
nged
client applications. In our case, the advantage of using an embedded controlle
comes marginal in this respect, because communication with the hardware and
the higher-level applications are almost equally intense.

Another reason is the added reliability of a dedicated computer for just one task, e
cially if close attachment to real time is necessary. Luckily, we can be a bit loose a
keeping track of time, as shown above. Our control program may share the comp
resources with other processes since it will only put a small amount of load on
processor.

The advantages of using a general-purpose machine are many. Development
software is much easier because debuggers are available and the hardware can b
ulated. The same development system can be used for all the layers, which simp
project management. Finally, standard UNIX system resources such as signal
shared memory are available, making the finished product at least partly portable
though it is specialized for one specific hardware setup.

Choice of programming language: The programming language used for the impleme
tation of the controller is ANSI-C. The graphical user interfaces were written in Tcl/T
At the beginning of this project, Java was already in the discussion, but we aband
it because of its lack of performance and the necessity to build new hardware inte
ing components. User interfacing with Tcl/Tk loadable modules is straightforward
write, and the GUIs produced are appealing and responsive. This combination pr
so powerful and fast in terms of development time, that we kept it throughout
project.

NEO compatibility: Being the most frequently used and most intensely developed p
gramming tool in our team, NEO deserves special attention. The data structu
the DACS interface has been chosen in such a way that DACS_NEO can acces
controller layer easily using the standard units.

One aim of this work is to provide a usable system for communicating with the rob
hand. With respect to client applications, the quality of the communication channe
crucial. The interfaces presented here provide different programming environments
the controller parameter set as shown in table 4.1 on the next page. The visual cont
front-end introduced in the next section shows the Tcl/Tk interface, which works b
locally, i.e. on the same host, and network-wide, using DACS.

4.5 A Visual Controller Interface

As an example application for experimenting with the controller, we provide an applica
which visualizes the internal state of the finger controllers. Target values can be cha

38
 The Controller Layer
l and
re

int).

ts”
Ad-
per finger (×3):

per piston (×3: L,M,R):
PID controller (KP , KI , KD)
feedback mixer (~m)

targets and errors:
potentiometer (target, error, zero calibration)
pressure (target, error, zero calibration, failure flag)

fingertip:
targets (Tx,Ty,Fz)
errors (Tx,Ty,Fz)
z axis zero calibration, failure flag, outlier filter

target reached flag
motors active flag, currents attenuation filter

Table 4.1:Controller Parameter Set: All state variables listed are present in the local shared
memory segment, although some are hidden by standard application interfaces, e.g. the Tc
DACS interface used for the controller GUI (see figure 4.5). Among those hidden variables a
the PID parameters, the sensor filters, and the zero calibration entries (shown in slanted pr

Figure 4.5:Visual Controller Interface: The sensor values, the current target configuration,
and the error mixture settings are shown in this interactive panel. With the “send targe
option, the targets and the mixer settings can be changed and sent to the controller layer.
ditionally, the complete target set can be printed for later use, e.g. in the state machine.

39
4.5 A Visual Controller Interface
ure

and a

(left
ton
, the

orre-
lue,

from
far

d the

bar,
s an

otal
r, the

hed”

of the
ck-

the
to the

warn-
out,
ostic
nance

n ex-
e in
interactively and subsequently printed out in a format compatible with the Tcl proced
for target setting (see figure 4.5 on the facing page).

The display panel shows three equal sections in the upper area, one for each finger,
few control switches in the lower area.

Each finger panel consists of mixer settings (upper portion), fingertip sensor readouts
bar gauge), and three oil piston displays (lower right portion). The left and right pis
displays of each finger belong to the first joint flexing and bending degrees of freedom
middle piston belongs to the coupled second and third joint flexing motion.

Each of the colored bars on the panel shows an error. When a bar is invisible, the c
sponding error is zero. The thick protruding line on one end of the bar is the target va
the other end is the current sensor value.

The piston displays show the potentiometer error to the left, the motor current output
the controller in the middle, and the oil pressure error to the right. The sliders to the
left and right of each piston display snap to the target value of the potentiometer an
oil pressure respectively, serving as both input and output devices.

The fingertip displays show the torque in the inward flexing direction as a vertical
in the sideways bending direction as a horizontal bar, and the pulling/pushing force a
extra vertical bar.

The mixer sliders in the top portion show the influence of each individual error on the t
error reported to the PID controller of each motor. These are the potentiometer erro
oil pressure error, the fingertipx or y component, and the fingertipz component.

As soon as the net errors of all controllers reach zero, the field labeled “Target Reac
lights up. It is switched off automatically when a new target is sent to the controller.

Each slider in the displays described above can be used to alter the target settings
controller. To prevent the casual user from unwillingly disturbing the controller, the che
box labeled “Send Targets” must be activated before any changes can take place.

The other global controls switch the periodical display updating on and off, transfer
current sensor value profile into the target values, and print the current target setup
standard output.

The current condition of the fingertips and the oil pressure sensors is shown as small
ing “lamps”. If one of these lamps lights up and the corresponding error bar is grayed
the corresponding sensor value is not being used for error calculation. Further diagn
tools can then be used to spot the problem, but in most cases the necessary mainte
work is rather obvious.

This simple program helps to understand the behavior of the controller and has bee
tensively used in the course of programming the state machine, which we will examin
the following chapter.

40
 The Controller Layer
ar
is is
w.

ring
blish
n be

t the
the

ssure

ertip
ation
the
d by
ger

e 4.8
the

um
0 2 4 6 8 10 12 14 16

time / s

motor output

current/target pressure

current/target tip torque

target reached flag

piston position

Figure 4.6:Startup Controller Behavior: The trace shows the first 16 seconds after switching
the controller on, during which it zeroes only the oil pressure error. The oil system’s peculi
behavior produces a time-lag larger than would be expected from the hysteresis alone. Th
due to the stick/slip transitions in the finger piston, which are frequent because motion is slo

4.6 Performance Evaluation

Figures 4.6, 4.7, and 4.8 show the behavior of the controller in different situations. Du
the startup phase, depicted in figure 4.6, the driver piston slowly moves inward to esta
a safe oil pressure. The finger piston reacts by moving in several small jerks, which ca
recognized in the non-monotonic trace of the oil pressure. The controller must not le
motor current output reflect the oil pressure pattern, or spurious oscillations may be
result. The trace shows that the controller successfully generates the desired oil pre
with a smooth, conservative motor current output.

Compliant gripping can easily be achieved by letting both the oil pressure and the fing
pressure influence the net error. Figure 4.7 on the facing page shows this configur
if no object can be found. The equilibrium state of the controller is determined by
fingertip force. If no object touches, the error remains large and is only compensate
raising the oil pressure proportionally. The result is that, like a virtual spring, the fin
will bend inward by a small amount.

Using the same configuration with an object produces a different outcome (see figur
on page 42. The net error is still reduced to zero, but the sensor configuration in
equilibrium state is different. In this way, client applications can examine the equilibri

41
4.6 Performance Evaluation
ure
ns
ller

ate the

bject
e 4.9
p to
as we
20 22 24 26 28 30 32 34 36

time / s

motor output

current/target pressure

current/target tip torque

mixed error

target reached flag

piston position

Figure 4.7:Mixed Feedback Controller Response Without Contact:The controller zeroes
the mixed error from the fingertip and the oil pressure. The sudden changes in oil press
are due to stick/slip transitions, and the unsteady signal from the fingertip is due to vibratio
of the robot arm with a moderate amount of superimposed noise. Nevertheless, the contro
configuration produces a sufficiently steady motor current output.

state as soon as the target reached flag is activated by the controller layer, and evalu
sensor pattern to take the appropriate action.

The controller configuration shown in the traces suffices to make the hand hold an o
compliantly, also tolerating some degree of intervention by a human, as shown in figur
on the following page. The nine virtual springs implemented by the controller can hel
grasp objects in a robust manner. Higher level processes profit from this robustness,
shall see in the evaluation of the state machine.

42
 The Controller Layer
etter
the
he
ntact

-
ject
fore
iate
39 40 41 42 43 44 45 46 47 48

time / s

motor output

current/target pressure

current/target tip torque

mixed error

target reached flag

piston position

Figure 4.8:Mixed Feedback Controller Response With Contact:With contact to a rigid
surface, the same controller configuration as in figure 4.7 on the preceding page obtains a b
match for the oil pressure and the fingertip torque, but this is purely coincidental, because
controller ignores the individual errors and only zeroes the mixed error. The difference in t
sensory response patterns can instead be used by higher-level processes to discriminate co
and non-contact situations.

Figure 4.9:Compliant Control: The controller layer alone already creates some degree of in
teractivity, because the immediate force control produces virtual springs which grasp an ob
compliantly, as shown above. Higher-level processes can rely on this robustness and there
operate on coarser time scales. The total behavior is still perceived as smooth and immed
in its reactions.

43
pli-
ingly
force
able

cific
basic

even
ther

ncor-
ility
and

loses
ance

n of a
ller
ntrol
t and
Chapter 5

The State Machine Layer

At this stage we have a controller layer which allows us to determine the level of com
ance of the manipulator, a target posture, or a mixture of both. The controller seem
shows some degree of action, but this is purely due to the inherent compliance of
control. The controller can do nothing more than simulate a set of springs of vari
toughness around a target sensor feedback profile.

To implement active motion changes triggered either by client applications or by spe
sensor feedback patterns, we present a state machine formalism which is simple in its
structure but can be expanded to arbitrary complexity if required. This engine can
become a universal communication platform for integrating the robotic hand into o
applications.

The present chapter first discusses the formal principle of the state machine, which i
porates simultaneous communication with several client applications along with its ab
to encode behavior patterns. The following sections detail the definition of a state
of a state transition, the basic building blocks of a complete system. The chapter c
with details on the actual implementation, an example state graph, and its perform
evaluation.

5.1 The Programming Principle

The most obvious task that has to be accomplished after the successful implementatio
controller which can drive the manipulator hardware is to switch from one set of contro
parameters to another according to a set of pre-defined rules. Many other robotics co
systems use a trajectory generation program which interpolates between the curren
the target positions and feeds the intermediate steps into the controller.

44
 The State Machine Layer
codes
irely
ewed
bsent

and
ctile
er the
ensor
tact
x and

ove-
bitual
med
ent

itions
and

ods,
with

utions
the set
ach.

ns in
erly

hid-
ctive
ible,

ction

loped
his

e to
ple
f the
hese
We choose a different approach which does not generate trajectories, but instead en
a certain behavior pattern. The aim is to be able to program reflex-like reactions ent
without trajectory generation. In some respects, the state machine layer might be vi
as an intermediate step between low-level control and trajectory generation which is a
in most other systems (see figure 1.3 on page 7).

Consider a typical robotics control problem for the TUM hand: an external comm
signals the hand to grasp an object. A guarded motion follows, during which the ta
sensors must constantly be watched to determine when to end the motion and wheth
object was in fact successfully grasped. Once the object is in position, checking the s
values is still necessary. If the object is slipping, fast re-gripping with stronger con
forces may be necessary. If the object is lost altogether, the hand may as well rela
notify other applications.

This scenario shows that especially for the robotic hand there are virtually no m
ments that can be done without constant sensor surveillance. This contrasts to the ha
robotics scenario where guarded motions are an exception to the rule of pre-program
trajectories. It is therefore a straightforward step to define a programming environm
in the manner of a Turing machine, with states and state transitions. The state trans
need not partition time into equidistant slices. The time between one state transition
the next may vary widely depending on the amount of external disturbances.

Naturally, the above toy problem can be solved with conventional programming meth
but the state machine formalism makes the code much clearer. As is often the case
programming languages, a given goal can be reached in many ways, but some sol
look neater and are more easily understandable than others. In this case, extending
of situations that the program can handle is rather complicated in the traditional appro
The state machine paradigm facilitates the implementation of new behavior patter
a purely additive way. Formerly written code remains unchanged as well as form
designed behavior patterns.

By programming only in terms of states and state transitions, the actual control flow is
den. Therefore, a dynamic implementation is possible, in which states and their respe
transitions may be added during operation. The removal of transitions is equally poss
while removing states requires some provisions. We will turn to these topics in the se
about implementation details.

The state machine model is a general programming paradigm, although we have deve
it with a very special problem in mind. Naturally, only a small family of problems uses t
method to its full potential. For example, loops and counters are extremely cumbersom
implement in this framework. States and state transitions have to fit into a relatively sim
pattern, because otherwise the problem’s complexity is only deferred into the design o
states and the programming task does not become significantly simpler. In view of t
restrictions, the analogy (if not equivalence) of the Turing machine becomes evident.

45
5.2 States and State Transitions
Each
f some
place.
rent

state

aded
state
laced

x-

her
nsory
tain

trig-
n error

his is
ut its
hines

f this
5.2 States and State Transitions

The state machine knows a dictionary of states, one of which is the current state.
state owns a set of possible transitions to other states, and each transition happens i
criteria are met. Note that as long as the state does not change, no action is taking
The main loop only periodically checks the transition criteria corresponding to the cur
state.

A stateconsists of the following elements:

Name: This is a universal identifier for the state. State transitions address the target
by its name.

Parameter Set: Each state corresponds to a set of controller parameters, which are lo
into the controller layer when the state is activated. In more general uses of the
machine formalism, such an attached data structure may either be omitted or rep
with a generic action taken upon entering the state.

State Transitions: A list of possible state transitions. This list may be dynamically e
panded or reduced.

Eachstate transition contains:

Target State Name: The identifier of the state that can be activated by this transition.

Switching Criterion: An expression which returns a boolean value, determining whet
the state switch should take place or not. This expression has access to all se
information from the controller layer and can use this information to respond to cer
feedback patterns.

In our scenario, transition templates are provided for some typical situations, where
gers are needed at a certain timeout, upon reaching a target, or after surpassing a
threshold. These templates can be parameterized and used in several states.

The state machine can also accept state transitions from outside its own graph. T
necessary for creating a user interface in which states may be switched by hand, b
more universal use comes into play when other complex programs, possibly state mac
themselves, introduce new state transitions. We will discuss this topic at the end o
chapter.

46
 The State Machine Layer
cept
(see
ntly
irly
eem

the
se it
ost

n of
hich is

-in
urrent

use
tifier

ar in-
lient

CS
emory
ob-
s to
nected

each
the

achine
ilities
s to
even
tates.

ected
5.3 Implementation Details

The state machine implementation has to take the exceptional flexibility of the con
into account and still offer adequate performance for the task. The timing diagram
figure 3.2 on page 28) shows that a polling loop frequency of about 10 Hz is sufficie
fast in view of the reaction time of the hydraulic actuation system. It also compares fa
well to the reaction time of a human, which makes the state machine’s behavior s
natural to the operator.

This timing restriction is easily met even in script languages. We chose Tcl/Tk for
implementation of the state machine because of its remarkable flexibility and becau
was already in use for other parts of the project. One of the benefits of using Tcl (or alm
any other interpreted language) is that it is relatively easy to implement the additio
states and state transitions because program code can be contributed as a text w
then evaluated by the interpreter.

The interfacing code for inter-process communication consists of an ANSI-C Tcl plug
which handles a shared memory segment. This segment contains the name of the c
state as a string, a mutex1 for this string, and a set of flags which other processes may
as signals for change notifications. Because of the state machine principle, the iden
string suffices for all external communication. Because the state changes at irregul
tervals, a change notification mechanism is necessary to eliminate polling loops in c
applications.

As in the controller layer, network-wide communication is handled by DACS. The DA
interfacing code is executed in a separate process, which attaches to the shared m
segment described above. It provides two functions, “getState” and “setState”, with
vious meanings, and a demand stream, “newState”, which allows client application
receive event triggers as soon as a state change takes place. Even several intercon
state machines can be implemented in this way, which work totally independent of
other most of the time, but still synchronize and react to each other depending on
situation. We will return to this in a later section.

The example code snippet (see figure 5.1 on the next page) shows that the state m
can in fact be very easily programmed. The versatile expression evaluation capab
of any modern high-level programming language are also available in Tcl, allowing u
formulate complex condition expressions for the state transitions. And the scripting
allows the complete state execution mechanism to be re-implemented for individual s

Let us now examine the performance of the state machine in a real-world scenario.

1A mutex is a standard POSIX mechanism for controlling distributed simultaneous access to sel
memory areas.

47
5.4 An Example State Graph
es
on
of
ure

hap-
, the
sti-

The
po-

ge 4).

. The
ipping
sim-
ld be

then

cture
riety

muni-
ich

e can
set states(Stretch) {
State_run $targets(Stretch) {

{Crit_timeout 3000 Loosen}
{Crit_targetReached Loosen}

}
}
set states(Loosen) {

State_run $targets(Loosen) {
{Crit_pressureErrorIn 4 Wait}

}
}
set states(Wait) {

State_run [copyTarget "$currentProfile"] {
{Crit_potErrorOut -300 Grip}

}
}

Figure 5.1:Example State Machine Code:The Tcl implementation of the three preparatory
states shown graphically in figure 5.2 on the following page consists of the definition of entri
in an array called “states”, each of which is a script starting with the generic state evaluati
command “State_run”. This command takes the controller parameterization and the list
transition criteria as arguments. The criteria use templates for watching a timer, the press
sensors and potentiometers, and the controller’s target reached flag.

5.4 An Example State Graph

In the human-machine communication scenario described briefly in the introductory c
ter, the robot hand shall pick up an object pointed at by the human. In this example
vision algorithms for gesture recognition and object fixation deliver an approximate e
mate of the object’s position, and trigger the first approach motion of the robot arm.
wrist camera then performs object recognition in its own right to correct the approach
sition for grasping, and commands the hand to grasp the object (see figure 1.2 on pa

Figure 5.2 on the next page shows the hand’s state graph for this simple application
two commonly traversed threads are shown, one preparatory sequence, and one gr
sequence. The hand obtains no orientation or size information on the object, which
plifies the state diagram. For different grasping strategies, different state threads cou
designed. A classification algorithm, which decides which strategy to adopt, would
replace the simple gripping trigger used now.

This minimal state graph already proves the usefulness of the layered control archite
concept. The compliance of the controller allows the hand to grasp and hold a large va
of objects, and the state machine identifies exceptional situations and handles com
cation with client applications. A typical grasping sequence is shown in figure 5.4, wh
demonstrates the coupling of robot motion and hand reflexes. A simple user interfac

48
 The State Machine Layer
a
ch–
ing
is
g’–
to

ing
ilure

itions

forc-
ex-

orced
ll in
, be-
old”

at it
STRETCH

LOOSEN
���

WAIT

GRIP

LOST�

STRONG
�

STRONG
�

'

HOLD�

>3sec or target reached� all pressure errors small

any piston�
moving
inward

one finger
touches

controller target�
reached

all fingers�
touch

>1sec�
>8sec�

>8sec�

any piston moving inward

any piston�
moving
outward

>3sec�

Figure 5.2:State Graph for Grasping: The figure shows frequent state transitions in thicker
lines than infrequent ones, which exhibits two sequences, one for moving the hand into
defined waiting position, and one for grasping an unknown object. The top sequence, stret
loosen–wait, moves the fingers outward quickly, then contracts into a relaxed posture, wait
for a signal to grasp an object. This signal either comes from a client application, or it
triggered by an operator bending a finger inward. The bottom sequence, grip–strong–stron
hold, first carefully establishes contact with at least one finger, then raises the gripping force
safely hold the object with all three fingers. If successful, the mechanism stays in the hold
state. At several stages there are fallback transitions to the state “lost”, which serves as a fa
signal to outside applications.

be used to monitor the inner workings of the state machine, and to force state trans
externally.

5.5 Interleaving State Machines

Being able to communicate with the state machine by querying the current state and
ing state transitions has some noteworthy implications. In the above toy problem, an
ternal application may command the state machine to grasp an object by issuing a f
state transition to a state labeled “Grip”. This may well be compared to a function ca
common programming languages. The return value is not delivered instantly, though
cause it cannot be. After some time, the state machine might enter a state labeled “H
or a state labeled “Relax”. The external application will register this change and tre

49
5.5 Interleaving State Machines
te
and
on a
ly

tuation

in

ve
well
alue
ce of

wered
ques-

ation

.g.,
call
ation

use
rs no
state machine�

user interface

other program� other program�

(e.g. neural layer)

or�

controller layer�

trigger
�

trigger
�

query�

trigger
�

Figure 5.3:Communication with State Machines: The trigger mechanism of the state ma-
chine’s communication interface allows complex interaction with other applications and sta
machines. Many entities can operate independently, reacting on triggers from other entities
triggering state changes in those entities. The result is a much more complex state machine
higher level of abstraction, possibly yielding a surprisingly versatile system based on relative
simple components.

as a return value, because it reflects the current situation as a consequence of the si
triggered by “Grip”.

In this way, the state machine blurs the distinction betweenfunction callsor inputs, and
return valuesor outputs. Several restrictions of conventional function calls are absent
this model:

Ambiguous Responses:Which return value should the “Grip” command described abo
deliver, if the object was successfully picked up after one second? It could just as
be lost in two seconds. How long should the function wait to be sure the return v
is correct? In an environment of constant external disturbances, e.g., in the presen
a human operator who may interfere at any time, these questions cannot be ans
satisfactorily. In contrast, the state machine approach does not even ask these
tions. The current state may change several times, and it is up to the client applic
how to react to those changes.

Interfering Commands: The system may receive commands from several sources, e
its own transition set, the user interface, and a client application. With a function
interface, one source of commands may block the other, resulting in a degrad
of the total robustness and reactivity of the system. The question arises when to
blocking calls, and when to use non-blocking ones. Since the state machine delive

50
 The State Machine Layer
een

h
am-
tate

ough.
ow, it
nes,
avoid
m.

ibits
ome

engi-
cture
large

f pre-

er of
the

many
ul.

ot
ory
mati-
ssed
conventional return values, all commands are non-blocking, and interference betw
command sources cannot erode the system’s performance.

Busy Loops and Events:Client applications can decide individually whether they wis
to poll the state machine or rather be notified of any changes. This allows progr
ming environments with different underlying paradigms to communicate with the s
machine in the fashion they prefer.

One considerable drawback of the state machine technique should be mentioned, th
Because the problem formulation with states and state transitions hides the control fl
is difficult to exactly predict the behavior of a state machine. With coupled state machi
the danger of deadlocks becomes more prominent. There is no simple scheme to
deadlocking, and loop identification itself can become difficult in the running syste
There are provisions in the state machine to introduce a relaxation time which inh
external state transitions if they follow up on another too fast. This at least can make s
deadlocks visible for the human eye.

5.6 Conclusions

In the past chapters, we have introduced a control and behavior simulation system
neered to fit the special hardware equipment in our laboratory. Nevertheless, the stru
of the system has been formulated in a general way, and it is thus applicable to a
number of control problems.

Especially in cases where fast reactions are valued higher than the exact tracing o
programmed trajectories, this system can provide a powerful and simple solution.

The system further offers an interfacing scheme which enables an arbitrary numb
clients to command the control system and to query its state, all without impairing
overall performance or increasing the reaction delays. In distributed systems, where
components work asynchronously and simultaneously, this feature is extremely usef

In the following chapters, we will turn to the topic of trajectory planning, which cann
be solved efficiently by the state machine alone. We will find that, along with traject
planning, obstacle avoidance and exploration, both passive and active, almost auto
cally come into play. The close relationship between these disciplines shall be discu
first.

5.6 Conclusions 51

stretch loosen, wait

grip, strong hold

lost

Figure 5.4: Photo Series of a Grasping Action: The top row shows pictures during the
preparatory state sequence stretch–loosen–wait (see figure 5.2 on page 48). In the middle
row, the sequence grip–strong–hold can be seen when grasping a simple object. In this case,
the robot arm is controlled by a second state machine. When the operator touches a finger, this
machine lowers the arm onto the object and triggers the grasping sequence. If the human steals
the object or the manipulator loses it, the hand’s state machine signals this condition (bottom
row) and then re-enters the sequence with a stretching motion.

Part II

Exploration with Vector Quantization
Networks

55

ters,
vior

ble to
efly

nal
osi-
ition
ac-
cing

en-
dered

and
m is
(see

er to
spa-
its,
ance
Chapter 6

Approaching Intertwined Tasks

6.1 Introduction

With the low-level controller and state machine layers described in the previous chap
we have built a system with reflex capabilities and fixed, albeit re-programmable, beha
patterns. The system so far has no knowledge about its surroundings and is una
perform long-term planned motions. Since we wish to change this, let us first bri
recall the most commonly used method of trajectory generation.

In traditional robotics control systems, the natural thing to do after having built a positio
controller for a manipulator is to make the manipulator move from one designated p
tion to another. This is achieved by interpolating between a starting and a target pos
while taking position, velocity and acceleration limitations into account. Especially the
celeration limits pose some problems in hitting the target position, sometimes produ
oscillating or orbiting trajectories.

This task of trajectory generation is surprisingly intricate in itself, and is therefore g
erally treated independently of obstacle avoidance or exploration. These are consi
higher level tasks which themselves take control over the trajectory generation.

But viewed from a different angle, the tasks of trajectory generation, exploration,
obstacle avoidance in fact form a group of strongly coupled problems. What joins the
the fact that they all work with some representation of the manipulator’s workspace
figure 6.1 on the following page).

Trajectory generation requires knowledge about the manipulator’s state space in ord
find a path which is optimal in some given respect, like short execution time, or short
cial distance. Exploration provides this knowledge, for instance about joint angle lim
long-term obstacles, or even information about manipulator dynamics. Obstacle avoid

56
 Approaching Intertwined Tasks
ract
b in
tisfies
trol

ons to
.

t of
f their

ce, a
r the
twork
us
this

ing
has
state space�
representation

path�
planning

obstacle
avoidance

(active)�
exploration

learning

add�
knowledge

find paths around�
forbidden areas

remove illegal�
pathways

find via points�
to a target

identify
uncharted

areas

set path�
target

identify blocked paths�

Figure 6.1: Interplay of Different Tasks: Although they may at first seem unrelated, state
space mapping through learning, path planning, obstacle avoidance, and exploration inte
closely through their knowledge of the state space, which then acts as a communication hu
the star-shaped structure shown. Choosing the state space representation in a way that sa
the requirements of each of these tasks can provide a simple and powerful high-level con
architecture.

is a special case of trajectory generation. It uses knowledge about possible obstructi
find the best path to a given target position while at the same time avoiding collisions

The motivation for the research presented in the following chapters is to find a se
algorithms which enables us to solve these tasks in a way that takes advantage o
close relationship.

To this end, we first propose a vector quantization representation of the workspa
“map” which some algorithms expand and modify, and which others use to maneuve
manipulator. One consequence of this approach is the creation of a novel neural ne
type, the ITM, which is especially tailored for trajectory control problems. But let
first review the most prominent vector quantization network types which inspired
development [17].

6.2 Literal Interpretation of Topological Maps

Neuro-informatics offers a wide variety of vector quantization and topological mapp
networks, most notably, of course, Kohonen’s Self-Organizing Map (SOM), which
inspired an astounding number of scientific publications.

57
6.3 Evaluation of Existing Models
tract,
ells,
tion
ning

e
in the
ode to
des

flexi-
ful

eans
ctors.
y way
efore
ced

he
eir

hibit

ged
the

us

mat-
”, is
fast
ge.
The interpretation of the mapping produced by such a network is usually rather abs
indicating a close relationship between the vectors corresponding to neighboring c
or proposing a lower-dimensional ordering of the input data. This abstract interpreta
has led to simple and effective means of data analysis. We will return to the data mi
aspects of topological maps in chapter 7.

But from a roboticist’s point of view, interpreting a topological map literally can provid
a score of new possibilities. The nodes represent selected (quantized) positions
manipulator’s state space, while the edges represent possible pathways from one n
the other. This viewpoint also allows us to benefit from graph theory, which provi
efficient path finding algorithms, for example.

This approach requires the use of a vector quantization network with considerable
bility and adaptability in its graph structure. We will examine several potentially use
network types in the next chapter.

Note that keeping a “list” of vectors that span the state space we wish to map m
that we have to accept a quantization error introduced by the spacing of those ve
Geometrical state space descriptions do not have this drawback, but there is no eas
of building such descriptions for arbitrary state spaces. The quantization error is ther
a small price to pay for the simple and general formulation of topological maps produ
by the networks described.

6.3 Evaluation of Existing Models

We need to find a network model which will perform well in a robotics scenario. T
following list introduces the most prominent existing network types and outlines th
adaptation algorithms. The list is not complete, but focuses on algorithms which ex
different operation principles.

The Self-Organizing Map (SOM)

First introduced by Kohonen [23], the SOM consists of a fixed number of nodes arran
in a fixed topological order, e.g., a grid or a chain. The adaptation consists of moving
weight vector closest to the stimulus and its topological neighbors toward the stimulξ
by a small fraction, the learning rateε. The learning rate and the smoothness termσ, which
defines the topological radius of the influence of a single stimulus, are lowered syste
ically throughout the learning process. This procedure, called “simulated annealing
crucial for the quality of the final map. Especially lowering the smoothness term too
is likely to produce unwanted topological warps, as shown in figure 6.2 on the next pa

58
 Approaching Intertwined Tasks
ri-
ost

in

cess
SOM
topo-

ning
sed
OM
n of

he

, be-
. Its
lity of

9],
still
ially
hich
l to
the
Figure 6.2:Topological Warping in SOMs: This two-dimensional square SOM grid exactly
matches the topology underlying the stimuli, a square two-dimensional uniform random dist
bution. Nevertheless, the resulting mapping does not necessarily be ideal, as in the rightm
example. Fast annealing of the smoothness termσ and the learning rateε results in topological
warps, shown in the left and middle pictures. The relationship between the neighborhood
the feature space and in the grid becomes locally disrupted.

The Parameterized Self-Organizing Map (PSOM)

The PSOM, introduced by Ritter [41], does not require a long iterative adaptation pro
like the SOM. Based on assumptions about the smoothness of the input space, the P
generates an interpolation map based on a fixed number of nodes arranged in a fixed
logical order. Because of its interpolation capabilities, the PSOM can be used for lear
smooth transformations with few input samples. Like the SOM, the PSOM can be u
as a simple associative memory to fill in missing entries in an input vector, but the PS
generates missing entries by evaluating the interpolation of all nodes at the positio
the stimulus. The quality of the input stimuli during training is therefore crucial for t
resulting map.

The PSOM has been successfully applied in learning geometrical transformations
cause its interpolation feature blurs the quantization effect visible in standard SOMs
major drawbacks are the strong dependency on reliable samples, and the impossibi
incremental learning.

The Hyperbolic Self-Organizing Map (HSOM)

Yet another variant of Kohonen’s SOM, the hyperbolic SOM, introduced by Ritter [3
presents an elegant way of circumventing the dimensionality problem. Its topology is
fixed, but it is hyperbolical in that the neighborhood of a single node rises exponent
with the neighborhood radius (as opposed to Euclidean neighborhood relations, w
rise by the power of the dimension). In theory, hyperbolic SOMs adapt equally wel
data of arbitrary dimensionality, if the available neighborhood is sufficiently large, i.e.,
network contains enough nodes.

59
6.3 Evaluation of Existing Models
arps
bolic

ces
ins
ed,
be

g too

s by
ral
orks,

dex,
ss

ation
. The
gas.
head
ical

es,
the
the
cture
When used to map Euclidean input spaces, the hyperbolic SOM always produces w
to some extent. If a hierarchical structure of the input space is to be found, the hyper
SOM can provide that information due to its neighborhood structure.

The Growing Grid

Endowing an SOM with the ability to insert new rows or columns of neurons produ
this network type [7, 9]. It is especially useful if the dimensionality of the map rema
fixed, but its optimal size is unknown. The growing grid must be carefully parameteriz
just like the SOM, to avoid topological warps. The growth speed of the grid must also
tuned to match the overall adaptation speed of the network, because a grid growin
fast becomes increasingly susceptible to topological warping.

The Neural Gas

In some situations, a topological graph structure is not necessary. The Neural Ga
Martinetz [27] is a collection of nodes which adapt to a set of input stimuli. This neu
network type has been the basis for many newer variants of vector quantization netw
like the Growing Neural Gas.

The Locally Linear Map (LLM)

Since vector quantization networks generally map the input stimulus onto a node in
they always deliver a quantization error. The LLM, introduced by Ritter [38], is a cro
between the error-prone vector quantization approach and the simple linear interpol
approach. Each node of an LLM carries a linear equation instead of a constant vector
adaptation rules for the LLM are only slightly more complex than those of the neural
The LLM has proven its usefulness in many real-world mapping tasks, e.g. in hand or
posture recognition [30, 35, 40]. Like the neural gas, the LLM does not carry topolog
knowledge in the form of a graph connecting its nodes.

The Growing Neural Gas (GNG)

This network type by Fritzke [8] starts out with a minimal connected graph of two nod
and builds an arbitrarily complex graph by periodically inserting new nodes where
potential of lowering the error is considered highest. During this growing process,
nodes’ weight vectors are adapted as in the SOM, but using the current graph stru

60
 Approaching Intertwined Tasks
des
.

ing
test

for
path
rized

aving
sary.
rks

di-
dels
ot
less

term
want

st be
rid

tion,
tible
of a
to

next

ge
f all
this
opti-
instead of a fixed grid. The graph structure itself is built by connecting the two no
closest to a stimulus and by removing edges that have not been rebuilt for some time

The number of nodes in a GNG grows linearly with the number of input stimuli, mak
the appropriate timeout parameter critical in almost any application. The GNG’s grea
advantage is its ability to map almost any topological arrangement efficiently.

6.4 Critical Aspects in Robotics

In a robotics setting, the neural network’s adaptation algorithm defines its suitability
the exploration aspect, while the quality of the generated graph is crucial for the
planning aspect. The critical requirements for a suitable neural network are summa
below.

Flexible number of neurons: Topologically rigid networks need much a-priori knowl-
edge about the problem at hand. Finding the optimal number of nodes means h
to run many tests. Therefore, we require a network able to grow or shrink as neces
Nevertheless, we shall carefully observe the features of topologically rigid netwo
to find ways to further improve the flexible networks.

Local topological flexibility: The state space we wish to map can have varying local
mensionality, and the mapping must be able to reflect this fact. Therefore, mo
with uniform dimensionality, like the SOM, the PSOM, and the Growing Grid, do n
qualify. The HSOM can cope with variable dimensions more easily, but neverthe
has a fixed topological arrangement.

Insensitivity to short-term correlations: The input data originating from a real-world
manipulator is not uniformly distributed across the input space. The strong short-
correlation must be accounted for in the adaptation process, because we do not
to employ special measures to reduce the correlation. The network model mu
able to handle the data and still adapt efficiently. The SOM and the Growing G
need a lower setting for the learning rate to produce useful mappings in this situa
and thus adapt less efficiently. All network models introduced here are suscep
to correlations in the input stimuli, because they are based on the assumption
statistical input distribution. But in the GNG, this shortcoming can be alleviated
some extent with a node generation enhancement which we will introduce in the
chapter.

Fast adaptation: The network shall deliver a useful representation of the knowled
gathered from input signals from the very beginning of the learning process. O
the models presented here, the GNG is the only one which can be optimized to
end, but the high number and interaction of the necessary parameters makes this
mization cumbersome and fragile.

61
6.5 Preparation of Input Data
uit-
the

rable
ngu-
this

for
able
the

, i.e.,
node
t the
must

s,
n
state
ly for
difica-

g a
e con-
new

re-
type

ent.

iza-
dard
the

the

many
Graph usefulness: The graph constructed by the network during adaptation must be s
able for path finding. Too many stray or missing edges can severely deteriorate
quality of the paths represented in the graph. Generally, stray edges are less favo
than an equal number of missing edges, with respect to a perfect Delaunay tria
lation. With its edge aging mechanism, the GNG has a major disadvantage in
respect, which we will discuss in comparison with the ITM.

Incremental learning capability: Because a manipulator may stay in the same area
a long time, and then move on to totally uncharted areas, the network must be
to incorporate this new knowledge without prior changes to its parameters, like
learning rate. The network must also be immune against destructive interference
mapping a new area must not destroy the mapping already established. The
generation enhancement provides the GNG with the necessary capabilities, bu
parameterization introduces a typical time scale for the adaptation process which
be known in advance.

Simple overall structure: The network will be embedded in a larger set of algorithm
which will also modify the graph structure. The network algorithms’ simplicity ca
help to improve the robustness of the total system. The GNG has many internal
variables, including age counters and error accumulators which are kept separate
each edge and node, respectively. This disadvantage has led us to search for mo
tions and simplifications of this algorithm.

Of all the network types outlined here, the GNG is the most promising for deliverin
state space representation from short-term correlated input data. But its cumbersom
figuration and the large number of internal state variables motivates the design of a
network type, the Instantaneous Topological Map, which is tailored to fulfill all of the
quirements specified above. In the next chapter, we will introduce this novel network
and compare it with its strongest competitor, the GNG with node generation enhancem

Before turning to the ITM, let us consider two problems found when using vector quant
tion networks on ill-prepared, serially correlated data. One is input preparation, a stan
discipline in neuro-informatics, the other is the well-known contraction effect found in
SOM and other related network types.

6.5 Preparation of Input Data

It is a well-established fact that careful preparation of input data is an integral part of
training process. This involves(i) choosing a suitable subset of the available data,(ii)
transforming the data into feature vectors of a chosen dimension, and(iii) rescaling the
data so that a chosen metric provides meaningful distance information necessary for
learning algorithms.

62
 Approaching Intertwined Tasks
reless

most
nate
learn-
put
look”
most

es of
d, re-
lowly
ple.

ocess
pace
a

, the
tim-

bove.
ibits

tors’
olor
s, all
ction
ents

g the
dom

ptron
fore

cause
put
to

ound
calar
nents
typ-
tric,
The preparation of input data has a strong impact on the training process, and ca
preparation can easily inhibit convergence.

The choice of a data subset is the logical starting point in most applications, because
machine learning algorithms are rooted in statistics while only few data sets origi
from statistical processes. This discrepancy has led to some “recipes” to enable the
ing algorithms to cope with such data. These involve randomizing the order of the in
data and feeding a set of data repeatedly. Randomizing the order makes the data “
more statistically distributed than the sorted version of the same data set, because
learning algorithms contain hidden low-pass filters, and therefore ordered sequenc
slow-changing input data produce strong destructive interference. On the other han
peated presentation of a set of data allows the learning algorithm to converge more s
to a local minimum of its error function, by choosing a smaller learning rate, for exam
This results in a better overall stability of the learning process.

In a control scenario like the one presented in this thesis, we wish the adaptation pr
to be as fast as possible, in order to obtain a useful topological map of the input s
from the very beginning of the training. Additionally, we do not wish to implement
special “training” phase which we would have to stop to begin using the map. Instead
neural network shall continue to adapt incrementally using a steady stream of input s
uli. Therefore, we will not use re-ordering or repeated presentation as described a
Instead, we will change the adaptation algorithm to cope with input data which exh
strong serial correlation and is thus far from the statistical ideal.

Another key to successful machine learning is the wise choice of the feature vec
components. In computer vision, most notably, Gabor filters and jets, blob analysis, c
transformations, and many others form a huge arsenal of feature extraction method
designed to produce meaningful components for the input vectors. The feature extra
phase often drastically reduces the dimensionality of the data and focuses on elem
in the data known (or supposed) to be necessary for successful training. Reducin
dimension of the input vectors also helps to reduce the number of degrees of free
of the associated neural network (e.g., the number of neurons in a multi-layer perce
(MLP), or the size of the weight vectors in vector quantization networks), and there
speeds up the adaptation process considerably.

An astounding amount of knowledge has been gathered about feature extraction, be
algorithms in machine learning are generally sensitive to rising dimensionality of in
data. In this thesis, we will look at this problem from the network’s perspective, trying
make the network itself less susceptible to the omnipresent dimensionality problem.

The final aspect of input preparation mentioned above is data rescaling. The backgr
for this aspect is that many learning algorithms use a chosen metric to calculate a s
distance between pairs of input vectors. On the other hand, the input vector compo
often have diverse origins and interpretations, and sometimes differ widely in their
ical scales. Using these vectors in a typical distance metric, like the Euclidean me
generally does not produce meaningful output.

63
6.6 Adaptive Metrics for Input Rescaling
mean
qually
each
input

ata,
. Be-
, we

sted
evia-
ls of

and

de-
ual
ector
etric

ather

ge

ap-
of the
Typically, the input vectors are rescaled to center each component around zero with a
deviation of one. This step ensures that the distance measure reacts approximately e
to changes in any component of the feature vectors. The mean and the deviation of
component are calculated over all input vectors, and subsequently used to rescale the
data.

The scenario depicted in this thesis disallows such an a-priori rescaling of input d
because learning shall take place continuously over an indeterminate amount of time
cause we still want to perform component equalization in the manner just described
implement a new metric with a built-in component rescaling vector. This vector is adju
using a slow rolling average filter, which performs essentially the same mean and d
tion calculation as in the a-priori method above. The following section gives the detai
this input preparation technique.

6.6 Adaptive Metrics for Input Rescaling

Consider the following modification of the Euclidean distance formula.

D2(a, b) :=
1

n

n∑
i=1

(ai − bi)2

di

(6.1)

Each component’s square difference is divided by a distinctdi. Were this equal to the
square deviationσ2

i over all existing input vectors’i components, then this division would
produce the same result as an a-priori rescaling of the input vectors to mean zero
deviation one (ξi = 0, σ2

i = 1).

The additional factor1/n makes the average distance value delivered by this metric in
pendent of the dimensionality of the input vectors. This factor is irrelevant for individ
learning scenarios, but because some parameters for the GNG, the ITM, and other v
quantization networks are formulated in terms of typical distance values, a distance m
with a universally constant scaling is of great practical value.

Note that the Euclidean metric can be formulated as a scalar product:D2(a, b) = (a− b)2.
Because the scalar product formulation is more practical and more general, we r
redefine the scalar product to use the above metric:

a · b :=
1

n

n∑
i=1

aibi
di

(6.2)

To calculate the estimatesdi for the square deviations, we employ several rolling avera
filters1 which are adjusted with the input vectorsξ. One set of filters,ci, approaches the

1A rolling average filter is a simple discrete low-pass finite impulse response (FIR) filter, which
proaches a fixed target value exponentially with a decay constant defined by the amount of influence
previous filter value (Γ in the examples given here).

64
 Approaching Intertwined Tasks
ost

h
by

the
less.
ng

ata
tion

ce

tes,
6.3, as
20 samples 1000 samples

Figure 6.3: Mean and Deviation Estimation: The presentation of only 20 input samples
results in the convergence of theci anddi estimates shown in the left panel. At this pointΓ is
almost at its final level, and a much slower correction takes place. The estimates exhibit alm
no further change even after 1000 input samples, as shown in the right panel.

mean of each componentξi, the other set of filters,di, approaches the deviation of eac
component(ξi − ξi)

2. The amount of influence of each new input vector is determined
Γ, resulting in the following set of adaptation formulae.

∆i ← ξi − ci
ci ← ci + Γ ·∆i

(6.3)

δi ← ∆2
i − di

di ← di + Γ · δi
(6.4)

The factorΓ introduces a typical time scale into the system. A large value will make
di fluctuate wildly, rendering the metric from equation 6.1 on the preceding page use
A small value ofΓ will produce the desired result in the long run, but at the beginni
of the metrics adaptation much depends on the initial values ofci anddi. To obtain the
desired behavior, we modify the value ofΓ itself, starting with 1, then lowering it down to
a desired target value ofγ using a decay constant ofλ.

Γ← Γ + λ(γ − Γ) (6.5)

This method makes the initialization of theci and thedi less critical. It can be interpreted
as an alternative to initialization. In settings where the a-priori knowledge of the input d
is sufficient, we may supply that knowledge by properly initializing the mean and devia
estimates, and by settingΓ to an initial value close toγ. If no a-priori knowledge can be
supplied in this way,Γ can be initialized to a higher value to reflect the lack of confiden
in the initial ci anddi.

A large value ofΓ gives the first few samples more influence on the intermediate estima
and therefore those samples should be chosen with care. As can be seen in figure

65
6.7 Expansive Adaptation
lmost
The
g the

antly

or a
meter
les
rium

as
rd the
rest
ce is

ode
ge
.

than-

ut on
ions

lem.
limi-
rate

tions,
s are

ber of
few as 20 well-chosen samples suffice to kick-start the adaptive metrics system into a
perfect operation. The choice of initial samples is recommended, but it is not vital.
rolling average filters converge to the same estimates regardless of the behavior durin
initial phase. But since even a mediocre, automated initial sample choice can signific
improve the transitional phase, this method can be viewed as a favorable tradeoff.

6.7 Expansive Adaptation

When mapping an input space using a vector quantization network, like an SOM
GNG, one of the notable effects is that nodes stand off the edges by about half the dia
of a typical Voronoi cell. This is the natural equilibrium state in which as many samp
fall to each side of a single node. In fact, there are generally several stable equilib
states, with edge node positions influencing all other node positions2. Figure 6.4 shows
this effect for the GNG and the SOM.

The border left by the nodes is, naturally, optimal in terms of entropy maximization
performed by the SOM. Therefore, any measure taken to make the nodes move towa
border results in a slight deterioration of the mapping quality. But since our main inte
lies in using topological maps literally as road maps, total coverage of the input spa
more relevant than strict entropy maximization.

The method proposed here involves an additional weight vector manipulation of the n
n closest to the stimulusξ. If the winner node has more than zero, but less than avera3

number of neighbors, the weight vector is modified according to the following formula

g ← 1
#N(n)

∑
i∈N(n)wi

wn ← wn + εη (wn − g),
(6.6)

whereN(n) is the set of neighbors of the nearest noden, andg is the center of gravity of
that node’s neighbors’ weight vectors. The adaptation step moves nodes with less-
average number of neighbors farther away from their neighborhood.

On one hand this produces approximately the desired coverage of the input space, b
the other hand it introduces a strong distortion of the map at the edge. In two dimens
the distortion is limited, but in higher-dimensional spaces this may become a prob
Further tests and a thorough analysis of this technique must be made to pinpoint its
tations in more detail. We anticipate, though, that the algorithm is robust given mode

2For the special case of a linear SOM, Kohonen has presented a solution to the equilibrium equa
which exhibits an intricate periodic spacing of the nodes. For higher dimensional grids, the solution
expected to be much more complex.

3The average number of neighbors equals two times the total number of edges over the total num
nodes.

66
 Approaching Intertwined Tasks
and
e.
s in
ing

nsion
nver-
GNG

SOM

normal adaptation expansive adaptation

Figure 6.4: Expansive Adaptation: The panels show typical equilibrium states of a GNG
and an SOM on the left hand side. Both models adapt the vectors in the same manner
therefore result in a map with a border about half the typical diameter of a Voronoi cell wid
The addition of a simple expansion scheme yields the maps on the right hand side. Node
exposed positions, especially in the corners, move farther away from their neighbors, produc
a distortion of the map with better border coverage.

values ofη, because it affects only at most half of the nodes, and because the expa
motion can always be compensated and damped by the normal adaptation rule. Co
gence should therefore still be guaranteed.

67
has
this
ng

sys-
input

we
rms
oved
n-

oc-
osed
alk

69).
Chapter 7

The Instantaneous Topological Map

Our search for a neural network type capable of representing arbitrary topologies
turned up the Growing Neural Gas as the most promising model. But aside from
topological flexibility, the network must also be able to adapt well even with a stro
serial correlation in the stimuli. Such correlations are found in robotics and in control
tems in general, where stimuli are most naturally generated along trajectories in the
space.

In this chapter, we will first introduce the standard GNG algorithm by Fritzke, which
will enhance with a more flexible node creation mechanism. This network type perfo
acceptably well in a random walk testing scenario, but the performance can be impr
drastically with the introduction of a different set of learning rules which form the Insta
taneous Topological Map.

7.1 Improving the GNG for Correlated Stimuli

Our main interest is in situations where exploration of the state or feature space
curs along continuous trajectories, possibly with some moderate amount of superimp
noise. As our data model to mimic that situation we consider a (discrete) random w
with small step sized, given by

~x(t+ 1) = ~x(t) + ~p(d, α(t)) and
α(t+ 1) = α(t) + η,

(7.1)

where~p(d, α) is the polar coordinate representation of a step of lengthd in the angular
directionα, andη is a random variable. The step lengthd remains constant while the angle
α changes by uniformly distributed random amountsη. Workspace limits are implemented
by simply forbidding steps that lead outside of the allowed area (see figure 7.1 on page

68
 The Instantaneous Topological Map
istri-
nt to
ns,
sh to

h to
the

r

r
ll.

nen’s
M

Collecting a large number of samples in this way produces an approximately even d
bution of stimuli in the workspace area. The problem can therefore be made equivale
an even distribution of stimuli by raising the typical timescale of the network’s reactio
which in most cases can be achieved by lowering the learning rate. But since we wi
make the most of the incoming samples we need to performfastadaptation, and therefore
this simple trick is not an option here.

Before demonstrating the consequence of serial correlation in input stimuli, we wis
briefly recall the main ingredients of the GNG in order to provide the background for
following discussion and for the design of the ITM.

The basic GNG algorithm works on a set of nodesi, each represented by a weight vecto
wi and an accumulated errorei, and a set of edgesj with an age valueaj. The adaptation
with a new stimulusξ consists of four distinct steps [8].

1. Matching: Find the noden nearest to the stimulusξ and the second-nearest nodes.

2. Reference vector adaptation:Given adaptation ratesε1 andε2, adapt the nearest node
and its topological neighbors as follows:

∆wn = ε1 (ξ − wn), ∆wi = ε2 (ξ − wi) ∀ i ∈ N(n), (7.2)

whereN(n) denotes the set of neighbors ofn.

3. Edge update: (i) Create an edge connectingn ands if it does not already exist. Set
that edge’s age to zero.(ii) Increment the age of all other edges emanating fromn and
delete any whose age surpasses a givenamax. When deleting an edge, check the othe
referenced node for emanating edges; if there are none, remove that node as we

4. Node update: (i) Increment the error measure of the nearest node:

∆en = ‖ξ − wn‖2. (7.3)

(ii) Add a new node everyλ adaptation steps by finding the nodeq with maximum
accumulated error and its neighborr with maximum accumulated error:

q = arg max
i
ei, r = arg max

j∈N(q)
ej. (7.4)

Make a new units with ws = 1
2
(wq + wr) and initialize its error witheq. Decrease the

errors ofq, r, ands by a given factorα. (iii) Multiply the errors of all nodes with a
decay factord, so that they cannot grow indefinitely.

The familiar matching and reference vector adaptation steps are the heritage of Koho
SOM. The vector adaptation differs slightly from the SOM algorithm in that in the SO
everyvector in the network is changed using a Gaussian centered aroundn as an influence

69
7.1 Improving the GNG for Correlated Stimuli
tely
e

s).

n-

on.

eight
mulus,
noi cell

or if
uitable
any

istri-
uch
com-
unay

error
f the
random walk uniform distribution

Figure 7.1: Random Walk Example: The figure to the left shows a typical random walk
sequence produced by equation 7.1 on page 67 limited to a square play-field. An approxima
uniform statistical stimulus distribution can be seen in the right panel. In the long term, th
random walk sequence and the uniform distribution become nearly equivalent (lower panel

function. Due to the GNG’s topological complexity, this method would be computatio
ally very expensive here. Therefore, the GNG adapts onlyn and its immediate topological
neighbors. We will discuss the changing role of the vector adaptation in the ITM later
Let us instead consider the topological adaptation steps in more detail.

The edge creation rule builds an edge of the Delaunay triangulation, given that the w
vectors of the nearest and second-nearest nodes are on opposite sides of the sti
because in this case, the nearest and second-nearest nodes always share a Voro
border. An edge created in this way may become obsolete if new nodes are created
the nodes move. The aging mechanism erases such edges eventually, but finding a s
age limit can be difficult. The same limit may delete useful edges and still leave m
useless ones untouched.

A noteworthy fact is that the construction of a Delaunay edge does not rely on the d
bution of stimuli. Edges will be constructed in the fashion described even if stimuli to
only selected trajectories in input space. The triangulation is not guaranteed to be
plete, but that is the case for both statistical and correlated series of stimuli: the Dela
edges corresponding to shorter Voronoi borders are less likely to be constructed.

The node creation mechanism is less obvious and leaves more room for choice. The
accumulation provides a means of determining the optimum position for the creation o

70
 The Instantaneous Topological Map
ced
ally
tory

the
ed.

ads
ere
ating

algo-
fact
ior,

for

hich
ted in

tion
rnal
200 stimuli 1000 stimuli 5000 stimuli 15000 stimuli

Figure 7.2:Adaptation of a Standard GNG with Correlated Stimuli: The network has been
parameterized in such a way that the final result approximately matches that of the enhan
GNG and the ITM. The panels show intermediate stages of the training process. Especi
during the starting phase, the standard GNG leaves large portions of the presented trajec
uncharted because of interference effects.

200 stimuli 1000 stimuli 5000 stimuli 15000 stimuli

Figure 7.3:Improved GNG Using an Error Threshold: As an input, the same sequence as
in figure 7.2 was used. In the startup phase, neurons are now created much faster to learn
trajectories traversed. As the error approaches the desired value, fewer new nodes are add

next node. From a statistical point of view, this is a straightforward approach which le
to overall error minimization with a constant growth rate of the network. Notably, th
is no provision for removing nodes except though the deletion of a node’s last eman
edge.

When adapting to sequences of stimuli resembling trajectories, this node creation
rithm is not optimal, because topological disturbances can still be introduced by the
that single nodes follow the trace of stimuli for long distances. To improve this behav
we propose a modification of the node creation algorithm.

Our first approach to improving node creation works by defining a threshold value
the error,emax, with which the accumulated error measure of the nearest neuron,en, is
compared. If it is larger, a new node is created betweenn and its neighboring node with
highest error count. This small design change alone gives a dramatic improvement w
can be appreciated by comparing the intermediate stages of the mapping task depic
figures 7.2 and 7.3.

The modified algorithm proves to be more flexible than standard GNGs. Node crea
now is a reaction to certain stimulus patterns, instead of being triggered by fixed exte

71
7.2 The Instantaneous Topological Map (ITM)
find-
ithm
t low

ntal
of the
cre-

new
NG

rfer-

n age
tri-
eter

con-
mean
e
apta-
ount
very

error
. We

new

cs

ir of
clock cycles. The main advantage comes from switching from a global method, i.e.,
ing the node with highest accumulated error, to a local method. Designing the algor
to only use the neighborhood of a node for adaptation keeps the computational effor
even for very large networks.

An added benefit of the threshold-driven node creation is its suitability for increme
learning. In the former approach, nodes are created at a constant rate, regardless
stimulus pattern. In contrast, the threshold-driven approach automatically stops the
ation of nodes if the input space is well covered by the network, and starts creating
nodes if stimuli appear in previously uncharted areas. This modification enables the G
to react faster to its changing input and is therefore less sensitive to destructive inte
ence.

7.2 The Instantaneous Topological Map (ITM)

There are still two disadvantages to keeping an error measure for each node and a
counter for each edge.(i) More parameters (error decay rate, error threshold, error dis
bution factor, maximal age) make optimizing a network more cumbersome. The param
values are not very critical, but a wrong choice can still slow down the convergence
siderably, or destroy it completely. Changes in the experimental setup almost always
redesigning the parameterization of the GNG.(ii) Each slowly changing state variable (ag
and error count) introduced into the system produces some inertia, slowing down ad
tion and defining a characteristic timescale which must be accounted for. The am
of time the network needs to react to changes in the input stimulus pattern depends
much on the choice of the corresponding decay factors.

We therefore propose a new network type which does not need any edge aging or
accumulation to generate its map. In fact, it does not even require node adaptation
call it ITM, for “Instantaneous Topological Map”.

The ITM consists of a set of neuronsi with weight vectorswi, and a set of undirected
edges, represented implicitly by specifying a set of node neighborsN(i) for each nodei.1

The network starts out with only two connected nodes. The adaptation triggered by a
stimulusξ consists of the following steps:

1. Matching: Find the nearest noden and the second-nearest nodes (with respect to a
given distance measureD(a, b), e.g., the Euclidean distance or the adaptive metri
introduced in section 6.6 on page 63).

n = arg min
i
D(ξ, wi)

s = arg min
j,j 6=n

D(ξ, wj)
(7.5)

1TheN(i) are further constrained by the requirement that neighborhood relations between a pa
nodes shall always be symmetric.

72
 The Instantaneous Topological Map
).

e
.

(see

dified
s

n

edge

zone
creation

Figure 7.4: Edge Update in the ITM: Edge addition is triggered when a stimulus hits the
grey region where the Voronoi cell ofn intersects the Voronoi cell ofs if n were not present.
Removal of edges is triggered by the Thales sphere throughn and one of its neighbors. Ifs lies
inside that sphere, the corresponding edge is removed (the marked lower edge in the figure

2. Reference vector adaptation:Move the weight vector of the nearest node toward th
stimulus by a small fractionε. Below we will show that this step can even be omitted

∆wn = ε (ξ − wn) (7.6)

3. Edge adaptation: (i) Create an edge connectingn ands if it does not already exist.
(ii) For each memberm of N(n) check ifws lies inside the Thales sphere throughwn

andwm. If that is the case, remove the edge connectingn andm. When deleting an
edge, checkm for emanating edges; if there are none, remove that node as well
figure 7.4). The testing formula is

∀m ∈ N(n) : if (wn − ws) · (wm − ws) < 0 then remove edgenm (7.7)

4. Node adaptation: (i) If the stimulusξ lies outside the Thales sphere throughwn andws,
and outside a sphere aroundwn with a given radiusemax, create a new nodey with
wy = ξ. Connect nodesy andn.

if (wn − ξ) · (ws − ξ) > 0 and D(ξ, wn) > emax then create node atξ. (7.8)

(ii) If wn andws are closer than1
2
emax, removes (see figure 7.5 on the facing page)2.

2If using adaptive metrics, the scalar product in equations 7.7 and 7.8 must be replaced by the mo
version as described in section 6.6 on page 63.

73
7.2 The Instantaneous Topological Map (ITM)
he
which
are
cutes
ally
each

ts
A
nly

vector
this

ion is

eter.
ith
does

ed to
which
and
this
e max

zone

creation

node

s

n

Figure 7.5:Node Update in the ITM: Node addition and removal in the ITM is guided by the
Thales sphere through the nearest two nodes,n ands, and spheres throughn of radiusemax

and 1
2emax.

In terms ofcomputational expense, the matching step is the only step that scales with t
number of neurons. Edge adaptation scales with the average number of neighbors,
is related to the local intrinsic dimensionality of the input data. All other operations
independent of the number of neurons involved. This means that the algorithm exe
fast even for large networks. The GNG with threshold-driven node creation is equ
efficient, but the standard GNG requires searching for the optimal graph location
time a new node is created, which makes the algorithm slightly more costly.

Note that the search operations usingN(n) do not depend on the number of componen
of the feature vectors, but only on the “true” underlying dimensionality of the data.
two-dimensional distribution embedded in a higher-dimensional feature space will o
produce four to six emanating edges per node on average, regardless of the feature
size. The ITM shares this property with Fritzke’s GNG, who presents examples for
behavior in [8].

Our experience with the algorithm indicates thatreference vector adaptation(step 2) can
even be omitted because nodes are created and deleted swiftly if the node distribut
found to be too sparse or too dense. The former learning rateε, which was essential to
adjust the network to fit the input data, has now assumed the role of a smoothing param
Choosing small values ofε makes the nodes assemble slowly in a tidy arrangement w
distances between nodes approximately equal. The relaxation time of this process
not affect the network’s overall performance (see figure 7.6 on the following page).

Edge creationproduces a valid Delaunay edge, as stated before. This edge is then us
verify the other edges emanating from the nearest node. Only those edges are kept
cross the corresponding Voronoi cell border. This eliminates all non-Delaunay edges
few Delaunay edges, mainly those belonging to the convex hull. The advantage of

74
 The Instantaneous Topological Map
sult
e
e of

unay
y test
ld be
scale

and
made.

node

g a
ary, in

hbors
rion
erived

rs

67 to
. This
ε = 0.01 ε = 0

Figure 7.6: Reference Vector Adaptation in the ITM: In this experiment, a random walk
trajectory inside a square region was used to stimulate an ITM. The left panel shows the re
with ε = 0.01, and the right panel the result with no reference vector adaptation at all. Th
difference between the two can barely be perceived, which demonstrates the changing rol
the adaptation step; in the ITM,ε is an optional smoothness term which can slightly improve
the node positions.

method compared to former edge deletion techniques is that it destroys all non-Dela
edges and that it does not rely on parameter tuning to do so. An exhaustive Delauna
which detects even small eccentric Voronoi borders between connected nodes wou
computationally much more expensive, as the amount of calculations needed would
with the dimensionality of the dataand the total number of nodes.

Node creation avoids putting new nodes inside the Thales sphere through nearest
second-nearest node, because doing this would render useless the connection just
If the stimulus lies farther away from the nearest node than a given threshold, a new
is created at the position of the stimulus. The threshold,emax, therefore has the meaning
of a desired mapping resolution. This method is substantially different from providin
learning rate, as nodes are created at a maximum speed of one per stimulus if necess
which case the network stores the input data in weight vectors, and their closest neig
in its graph. Because nodes can still move by a small amount in this algorithm, a crite
is provided to remove nodes that are too close to each other. The threshold used is d
from emax.

Configuring an ITM network is exceedingly easy, since only at most two paramete
need to be found: the desired resolutionemax, and, optionally, the smoothing parameterε
(the former learning rate).

7.3 Results

We use the random walk sequence of stimuli generated by equation 7.1 on page
measure and compare the performance of the three network models just described

75
7.3 Results
room
ural

of the
spec-
ately

n more

r (i.e.,
ith

page

ring
sion.
y the
rove

g the
NG
cent,
al-
n can
ode
uency
ob-

zero
dge
200 stimuli 1000 stimuli 5000 stimuli 15000 stimuli

Figure 7.7:Adaptation Phases of the ITM:The ITM network generates a map from the same
trajectory-like stimulus sequence as in figure 7.2 on page 70. The adaptation rateε is not critical
in this method, it can safely be set to zero.

sequence is the simplest model of an autonomous robot driving randomly through a
with a square obstacle in the middle. The objective is to map this room using a ne
network.

Figures 7.2 and 7.3 on page 70, and 7.7 each show four phases in the adaptation
standard GNG, the enhanced GNG (error triggered node generation), and the ITM, re
tively. The network parameters are chosen so that each network arrives at approxim
the same number of nodes at 15000 samples; in this way the intermediate phases ca
easily be compared.

During the experiments, the number of nodes, the normalized root mean square erro
the averaged value ofD(wn, ξ)), and the number of excess edges and missing edges w
respect to the Delaunay triangulation were recorded (see figures 7.8 on the following
and 7.9 on page 77).

The ITM’s normalized root mean square error (NRMSE) stays almost constant du
training. This derives from its immediately creating nodes to achieve a desired preci
The slower error decay of the enhanced GNG originates from the inertia introduced b
error accumulators and the learning rate. The standard GNG is designed to slowly imp
its mean error by adding nodes at regular intervals.

The edge creation and deletion algorithm’s performance shows up when comparin
network’s graph to the Delaunay triangulation. The edge aging mechanism of both G
models is responsible for the high number of surplus edges, about ten to twenty per
while the extremely strict immediate removal rule of the ITM lowers this number to
most zero. The small advantage of the enhanced GNG over the standard versio
be explained with the better optimization of node placement. Each newly placed n
makes some existing edges obsolete, and since standard GNG node creation freq
stays equally high throughout the experiment, the proportion of creating and deleting
solete edges is less favorable.

The number of edges missing to complete the Delaunay triangulation cannot drop to
in our experiment because of the obstacle in the middle of the imaginary room. E

76
 The Instantaneous Topological Map
in the
200,
des
use

ost
the
rases

ry-
-
ther
es that
s and

rgence
The
ause
0.1

0.2

0.3

0 5000 10000 15000

NRMSE Comparison

Standard GNG
Enhanced GNG

ITM

0

50

100

150

0 5000 10000 15000
Number of Stimuli

Node Creation Comparison

Standard GNG
Enhanced GNG

ITM

Figure 7.8:Error Comparison of Three Network Models: The graphs show measurements
made on the three models discussed. The random walk stimulus pattern used can be seen
figures 7.2 and 7.3 on page 70, and 7.7 on the page before, which show snapshots after
1000, 5000, and 15000 samples (vertical lines in the graphs above). Although it creates no
more slowly than the enhanced GNG, the ITM achieves the desired error from the start beca
it can create new nodes outside the current scope of the network.

creation functions by the same principle in all network models, so they perform alm
equally well in this respect, with a slight disadvantage for the ITM. This is because of
simple but very strict immediate edge deletion technique used, which sometimes e
even valid Delaunay edges.

7.4 Statistical Distributions

Although we introduced and validated the ITM network model on the basis of trajecto
like series of stimuli, the ITM still performs very well in settings with statistically un
correlated stimulus distribution. In these settings, too, the ITM can outperform the o
network models in terms of convergence speed, because it has no inner state variabl
can introduce inertial effects. Each adaptation step can produce and remove node
edges immediately, with no dependency on the network’s past history.

As can be seen in the experimental example (see table 7.1 on page 78), the conve
behavior of the ITM does not degrade when using a statistical stimulus distribution.
intermediate stages show significant differences between the GNG and the ITM, bec

77
7.5 Architectural Comparison
the
nt in
e

eless

pol-
odes’
en-
ging

NG),
mall

e for
ulus

f the
ITM
0

0.1

0.2

0.3

0.4

0 5000 10000 15000

Excess Edges per Delaunay Edges

Standard GNG
Enhanced GNG

ITM

0

0.2

0.4

0.6

0 5000 10000 15000
Number of Stimuli

Missing Edges per Delaunay Edges

Standard GNG
Enhanced GNG

ITM

Figure 7.9:Graph Comparison of Three Network Models: The graphs were continuously
compared to the Delaunay triangulation to gauge the quality of the connections created by
three network models discussed. The performance advantage of the ITM becomes appare
the low number of excess edges which would carry no useful information for path finding. Th
underlying experiment is the same as in figure 7.8 on the preceding page.

the node placement principles are substantially different. The resulting map is neverth
almost the same for the GNG and the ITM.

7.5 Architectural Comparison

The ITM is in some respects complementary to the SOM. While the SOM has rigid to
ogy and relies on learning rate and smoothness parameter annealing to adjust the n
positions and map the underlying topology, the ITM has rigid node positions and g
erates the topology with adaptation rules. While the SOM does not depend on chan
topology to produce useful mappings, but can benefit from such additions (as in the G
the ITM does not depend on changing the nodes’ positions, but can benefit from a s
smoothness termε (the former learning rate).

One aspect of using the precision parameter,emax, instead of a SOM-type learning rate, is
that nodes are always approximately equally spaced. The ITM model is not suitabl
applications where the network’s node density needs to be a function of statistical stim
density. This famous property of the GNG and the SOM is rooted in the adaptation o
nearest node and its topological neighbors; therefore, it cannot be replicated in the
(see figure 7.10 on the next page).

78
 The Instantaneous Topological Map
en
G
the
to

ter
ins
G

network type 200 stimuli 500 stimuli 1000 stimuli 15000 stimuli

GNG

eGNG

ITM

Table 7.1:Statistical Input Sequence Evaluation:The table shows the performance of three
networks given uniformly distributed input vectors in a square area. Although it has be
specially designed for correlated stimuli, the ITM performs well when compared to the GN
or the GNG with enhanced node generation (eGNG). Especially in the intermediate stages
ITM is able to deliver a well-structured map of the stimuli it has seen so far, which contrasts
the relatively slowly emerging maps as formed by the other models.

SOM eGNG ITM

Figure 7.10:Non-Uniform Stimulus Density: The panels show the result of stimulation with
an input distribution which has a central region with ten times the stimulus density of the ou
area. The SOM and the GNG accumulate nodes in this central area, while the ITM rema
completely oblivious of density variations. This also demonstrates that the SOM and the eGN
perform entropy maximization, while the ITM strictly minimizes the error.

79
7.6 Dimensionality of Input Data
pa-
tion

dif-
nal

ich
ties,
t edge

esting

duce
of
r an

des to

ber
es as

. The
eter

The
mber
GNG
parameter symbol value
nearest neighbor adaptation ε1 0.1
second nearest neighbor adaptation ε2 0.01
maximal edge age amax 300
node creation interval λ 1000
error distribution factor α 0.5
error decay factor d 0.999

ITM
parameter symbol value
resolution emax 0.36
smoothness term ε 0

Table 7.2:Network Parameterization for the Dimension Test: The GNG parameterization
is very close to the defaults commonly used by Fritzke, the maximal edge age being the key
rameter. The ITM parameterization disables reference vector adaptation, and sets a resolu
which triggers the generation of sufficiently many nodes.

7.6 Dimensionality of Input Data

The experiments presented in this chapter involve two-dimensional input vectors with
ferent topological structures for the clarity of the presentation. For higher-dimensio
input data, the ITM can be expected to perform similarly well as the GNG, from wh
it is derived. It can also be expected to retain its fast and reliable mapping proper
and its advantage in terms of computational expense can even rise, because the stric
deletion mechanism produces minimal neighborhood sets and consequently shorter t
loops for the edge update.

Our experiments compare the mapping of a standard GNG, which is known to pro
faithful topological maps, and an ITM for different dimensional input stimuli in terms
the quality and completeness of the mapping. The stimuli are evenly distributed ove
N -dimensional hypercube, and the networks are configured to generate enough no
obtain some in the center of the hypercube.

With rising dimension, the ratio of nodes on a hyper-face of the cube to the total num
of nodes continuously rises, which makes it necessary to raise the number of nod
well. In our experiments, the GNG was therefore configured to generate4N nodes, to
make sure at least some nodes build the maximal number of neighborhood relations
ITM, in contrast, does not need special configuration, because its resolution param
automatically generates the required number of nodes, regardless of the dimension.

Table 7.2 shows the precise parameterization of the two networks used in the test.
parameters were left unchanged for all dimension values, except for the maximal nu

80
 The Instantaneous Topological Map
G,
ity
unt
ctly

a

stan-
tatus
ld the

(see

ut

but
ize.

gh the

ging
ood
age
ging

iden-
at it
G, in
dim network type # of # of max # of avg # of total # of
nodes edges neighbors neighbors stimuli

GNG 16 35 7 4.4 14100
2 ITM 21 47 7 4.5 6600

GNG 64 286 17 8.9 64100
3 ITM 58 228 15 7.9 49000

GNG 256 2062 29 16.1 281400
4 ITM 164 1140 29 13.9 283400

GNG 1024 12995 49 25.4 1086900
5 ITM 419 4725 49 22.6 535000

GNG 4096 73694 75 36.0 4324400
6 GNG (amax = 700) 4096 106266 100 51.9 1630900

ITM 1099 19975 96 36.4 1940600

Table 7.3:Dimension Tests on the ITM and the GNG:The networks were given an evenly
distributed input sequence in anN -dimensional unit hypercube. Although the number of nodes
generated by the ITM is generally lower than the pre-defined number of nodes for the GN
4N , the maximal number of neighbors indicates that both networks identify the dimensional
of the input space correctly. The average number of neighbors is an indicator for the amo
of edge nodes which have lower neighbor counts than inner nodes. Since this factor is dire
related to the total number of nodes, the network with higher final node count also yields
higher average neighbor count.

of nodes for the GNG. The adaptation was stopped if the network did not change sub
tially for at least 15000 steps. Some key figures that characterize the final network s
were then recorded: the number of nodes, the number of edges, which together yie
average number of neighbors, and the maximal number of neighbors to a single node
table 7.3).

In the table, data withN ranging from 2 upto 6 has been used. Higher dimensional inp
data yields rapidly growing networks, which has led to technical limitations aboveN =
6. In real-world applications, the size of the feature vectors is often much larger,
the intrinsic dimensionality is almost always much lower than the feature vector s
Therefore, the measurements have some significance for practical problems, althou
dimension range tested is somewhat limited.

The GNG experiment with six-dimensional data shows the limitations of the edge a
algorithm. While the GNG with maximal edge age of 300 yields a maximal neighborh
count of 75, the ITM shows 96 neighbors at most. A further run with a maximal edge
of 700 raised the GNG’s maximal neighborhood to 100, which confirms that edge a
is a rather fragile method of pruning unnecessary edges.

The measurements indicate that the ITM performs at least as well as the GNG when
tifying the underlying dimensionality of the input data. Its greatest advantage is th
cannot be mis-configured to produce erroneous neighborhood relations. The GN

81
7.7 Conclusions
ly too
d
hese
can
NG.

t the
on of
ns.
en
get

n the

der
ace
the

or the
ad to

is
ies

ible
sion

uro-
f di-

uch
able
ata
for-
e

ood
ality
ion,
contrast, requires more experience for the correct choice of its parameters. Especial
high or too low settings ofamax, for example, can significantly alter the neighborhoo
relations and thus indicate different underlying dimensionality for the same data. T
artifacts cannot be easily detected if the origin of the data is not known. The ITM
therefore be considered a much more reliable dimensionality analysis tool than the G

7.7 Conclusions

The Instantaneous Topological Map produces reliable charts of trajectories withou
need for special preparation of input samples. There are no delays in the constructi
the map. These factors make the ITM especially useful in robotic control applicatio
A robot exploring its surroundings can store the topological data in an ITM, which th
functions as an associative memory device. The robot can use this map literally to
from one location, represented by one node, to another: following the shortest path i
ITM’s graph leads it to the target, automatically avoiding obstacles.

Many control processes involve finding an effective way of setting input values in or
to reach a target output value with minimum effort. Using an ITM to map the state sp
while a simple controller is operating can turn up a more efficient pathway leading to
target position. Nodes along that pathway correspond to a series of target settings f
controller. Feeding that series instead of the final target values to the controller can le
better overall performance.

The ITM was specifically designed for this family of problems, and we will follow th
trail further in the following chapter. But it turns out that the ITM’s remarkable propert
may make it attractive for other areas, too.

One such area is data mining, a discipline which specializes in the retrieval of intellig
information from large unstructured data sets. One aspect of data mining is dimen
reduction, which is closely related to the problem of feature vector extraction in ne
informatics. Many projection algorithms have been devised to reduce the number o
mensions of a data set, mostly for visualization purposes.

The problem of dimensionality identification, on the other hand, has not been given m
attention, although knowledge of the true underlying dimension of data delivers valu
information. Clustering techniques can help to identify topological properties of a d
set, but the interpretation of cluster graphs alone cannot reliably deliver dimension in
mation. The ITM is, to our knowledge, the first algorithm which locally identifies th
intrinsic dimension of a data set by building a graph structure with reliable neighborh
information. The number of neighbors to a node can be correlated with the dimension
of the data set at that position. This information is local up to a given mapping resolut
which defines the granularity of the map.

82
 The Instantaneous Topological Map
any
ssary

work
ese

to
One should always bear in mind, though, that reliable dimension analysis requires m
samples, as can be appreciated in table 7.3 on page 80 in the number of stimuli nece
to reach the saturation. The number of required samples also grows with the net
size, which sets a natural limit for the granularity of the analysis. But in spite of th
drawbacks, which originate from the very nature of the problem, the ITM promises
become a useful data mining tool in its own right.

83
h

r or
ient
ered

t of
hine,
n from

ing
ec-
cally
ere are

ch
end,

lates
it as
Chapter 8

Path Finding and Obstacle Avoidance wit
the ITM

The ITM provides us with a means to map the state space of a robotic manipulato
another control system directly from the trajectory it traverses in a simple and effic
way. It is a small step to put this map to good use as a trajectory generator for the lay
control system developed before.

Designing the feature vector of the ITM to contain portions (or all) of the parameter se
the low-level controller enables us to use the ITM in the same way as the state mac
with each node representing a state, and each edge representing a possible transitio
one state to the other.

In this chapter, we will use a simple and efficient algorithm from graph theory for find
optimal pathways through the ITM’s graph. Feeding a controller with the reference v
tors of the intermediate nodes provides a simple trajectory generator which automati
performs obstacle avoidance for those obstacles present during training, because th
simply no traversable nodes in those areas.

8.1 Graph Distance Labeling

To perform efficient path finding, we will attach a “via vector” index to each node, whi
is the index of a neighboring node which takes us closer to the target node. To this
each node must know its graph distance to the target. An algorithm which calcu
these distances efficiently is readily available. In a slight modification, we implement
follows.

84
 Path Finding and Obstacle Avoidance with the ITM
of
d to

ss
e is
eigh-
loop

any

per-
sarily

ction
is

ge).

fras-
us to
work
teria
nting
ctory,
seen in

ill
Given a setM of nodesn, each with a set of neighborsN(n), where each element ofN(n)
is itself member ofM , we define a target nodet, and a graph distancedn and a viavn for
each node in the graph1.

Initialization: Initialize all via indices to point to nowhere, and the graph distances
all nodes except the target node to infinity. The target node’s distance is initialize
zero.

dn = ∞ ∀ n ∈M | n 6= t
vn = invalid ∀ n ∈M
dt = 0

(8.1)

Iterative distance construction: Scan through the nodes with a graph distance value le
than infinity, and check each neighboring node. If a neighbor’s graph distanc
greater than the originating node’s plus the length of the edge, then update the n
bor’s graph distance and its via, and set a change signal. Repeat this step until a
produces no change signal.

∀ n ∈M | dn <∞, ∀j ∈ N(n) :
if dn + ln,j < dj then

dj ← dn + ln,j,
vj ← n
set change signal.

(8.2)

This simple algorithm produces the desired distance labels and optimal pathways from
node to the target nodet (see figure 8.1 on the next page).

One notable detail about the algorithm is that it does not require the via indicators to o
ate. We introduce these to optimize path generation. Also, the graph does not neces
contain connections from or to all nodes. The distance of every node without conne
to the target remains infinity, and the via indicator points nowhere. This information
useful to identify nodes belonging to different clusters (see figure 8.2 on the facing pa

8.2 Trajectory Generation

Using the labeled graph to generate a trajectory is a simple task given the controller in
tructure presented in the first part of this thesis. The state machine formalism allows
expand the state graph with a “template” state, which takes the weight vector of a net
node and converts it into a valid set of controller parameters. One of its transition cri
is fulfilled as soon as the controller reaches its target (a via point in the path represe
the trajectory). The transition leads to a state which selects the next node on the traje
and the loop closes (see figure 3.1 on page 24, where these additional states can be
the upper portion).

1The neighborhood relationsN(n) need not be symmetrical for this algorithm to operate, but we w
employ it on the ITM, which does have symmetrical neighborhood relations.

85
8.2 Trajectory Generation
lize

y
ing
complete graph

1515

16

17

18

14

13

16

16

15

12
11

17

18

10
9

�

10

11

12

13

14
15

16

17

17

18
18

16
14

1816

15

9
�

8
�

7

6

7
�

7
8

� 9
� 10

11

10

9
� 12

11

8
�

11

8
�

9
�

9
� 12

10

7
�

6

8
�

9
�

10

11
11

12

13

14

14

12

15

13

1415

8
�

9
�

10

10

11

12 13
14

15

13

15

14
12

16

14

15

1011
1213

13

1011

11
1213

14

15
16

17
17

16 15

16

1314

15

17

14

15
16

18

18

16
17

14

17
18

16

19
15

10

11

12

13

14

15

16

17

17

15
16

16

17

18

14

5
�

4
�

3
�

5
�

5
�

4
�

2

3
� 2

�

1
0

�

2
�

3
�

6

9
�

10

11

12

13

14

14

15

16

17

16

17 1516

12

16
1

66

7
�

8
�

9
�

5
�

4

7

7

6

3
�

2
�

8
�

9
�

1
0

�

1

2

3
�

4

5
�

6

7

8
�

8
�

9
�

9
�

7
�

5
�

9
�7

�

6

1

2
�

3
�

4

4
�

5
� 6 7

� 8
�

9
�

7

7
� 10

9
�

5
�

8
�

11

6
9

�

8
�

2
�

3
�

2
�

3
�

4
�

5
�

5
�

6

7
�

8
�

8
�

6

9
�

7

8
�9

�

2

3
�

4

4

5
�

6 7
8

�

9
�

7

9
�

8
�6

10

8
�

9
�

2
�

3
�

45
�

5
�

23
�

4
5

�6

7
�

8
�

9
�

10
10

9
�

8
�

9
�

67

8
�

10

6

7
8

�

10

10

8
�

9
�

6

9
�

10

8
�

11
7

1

2
�

3
�

4

5
�

6

7

8
�

8
�

6
7

�

7
�

8
�

9
�

5
�

4
�

5
�

6

5
�

6

7
�

7

8
� 8

�

8
�

9
�

9
�

7
�

4
�

2

3
�

4

5
�

6

7

7
�

8
�

9
�

10

9
�

10 8
�9

�

5
�

9
�

9
�

upper right target center target

Figure 8.1:Graph Distance and Path Generation:The small insert shows an ITM created by
stimulating with a random walk pattern inside a star shaped region. The lower panels visua
the result of the labeling algorithm for two different target nodest. The node labels allow us to
immediately find an optimal route from any node to the target node.

nonenone

4
�

none

6

3
�

8
�

2
�

4
�

none

1

11

6

none

6

11

7

none

none

none

none

none

1

none

2
�

5
�

4 none

none
none

10

11

8
�

none

6

none

none

9
�

2
�

3
�

none

3
�

none
7

5
�

none

4
�

none

5
�

6

5
�

7
�

6

4

none

none

none

none

none

3
�

none

2
�

none
3

�

none

6

5
�

none

none

none

10

7
�

none

none

9
�

none

1

5
�

4

none

11

7

none

2

4

2
�

none

3
�

none

5
�

none

none

2
�

none

none

4

none

none

none

8
�

nonenone

5
�

none

none none

5
�

9
�

none

11

3
�

none

10

none

none

none

none

none

8
�

0
�

none

1

9
�

9
�

none

none

none

none

none

6

none

none

none

none

none

none
none

4 none

none

3
�

5
�

none

2

4
�

none

3
�

none

3
�

none

2

none

none

10

8
�

3
�

3
�

4
�

6

none

5
�

none

none

none

none

none

none

none11

none

4
�

3
�

4
�

7
�

none

none

4

7
�

8
�

3
�

10

2

8
�

3
�

none

3
�

none

none

5
�

none

none

none

9
�

2
�

none

none

1

none

none

none

2
�

5
�

none

none none

none

10

1

5
�

6

none

5
�

8
�

1313

none

5
�

none

none

none

none

none

13

none

none

none

10

none

none

none

11

10

8
�

1

9
�

none

7
�

none

none

none 13

15
13

none

none

none

6

none

11

4

none

none

none

16

none

4
�none

none

9
�

none
12

none

none

none

none

none

none

2
�

11

3
�

7

5
�

none

12

none

14
none

3
�

none

none
7

14

9
�

none

none

9
�

5
�

none

9
�

none

none

none

5
�

none

none

4

none

none

none

7

none

4
�

none

2

8
�

none

13

3
�

none

13

7
�

6

none
42

�

none

3
�

2 5
�

none

none

4
�

none

none

9
�

none

11

8
�

15

5
�

9
�

none

none

6

none

none

none

5
�

12

13

8
�

14

none

15

12

12

11

9
�

8
�6

none 12

0
�

none

none

10

none

none

7

none

7
�

none 8
�

none

3
�

6

none

none

none

none

none

none

14

none

6

6

7

5
�

11

4

1none

10

none

none

none

none

11

10

none

none

none

none

none

none

none

none

10

none

13

14

none

7

6

6

none

none

8
�

6

none

10

4
�

14

none

none

8
�

8
�

9
�

12

none

none

none

none

6

none

none

complete graph left target right target

Figure 8.2:Cluster Identification: If no path exists from a node to the target node, the length
indicates infinity (“none” in the graphs), and the via vector is invalid. This allows us to identif
clusters in the graph by selecting a target node known to belong to that cluster and then apply
the path finding algorithm.

86
 Path Finding and Obstacle Avoidance with the ITM
e

le

al
ated

walls
hich
8.3).
with
hich

e

cific

les, it
s two

ut
t0
�

t1
�

t0

t1

pi/4

pi/4

(a) (b)

Figure 8.3:Two-Dimensional Robot Simulation:A two-joint robot arm(a) with unit segment
lengths is confined by four walls 1.6 units from the robot base. The walls prohibit a larg
portion of the possible configurations(b), producing a complicated two-dimensional topology,
which can be mapped, e.g., using an ITM. The four walls translate into ellipses in joint ang
space, which repeat indefinitely along theθ0 axis (labeledt0 in the graph). Sinceθ0 is limited
to [−π . . π], we only see three ellipses and two half-ellipses.

8.3 Experimental Validation

As a toy problem, the prolific two-dimensional two-joint robot arm is simulated in re
time, including centrifugal and coriolis forces, to make the stimulus patterns gener
more realistic. The joint angles,θ0 and θ1, are both limited to the[−π . . π] range by
simulated bumpers, and the end effector is confined by four soft walls. The square of
in Cartesian coordinates translates into elliptical regions in joint angle coordinates, w
result a two-dimensional topology with three holes in joint angle space (see figure
We choose the segments of the robot to be 1 unit long, and the walls to form a square
each side measuring 3.2 units. In this way, we obtain a topology in joint angle space w
leaves only four narrow paths for a configuration change2, because the robot has to mov
into a corner to stretch out completely.

A simplified version of the controller architecture is used to maneuver the arm to spe

2When a robot can achieve the same end effector position from several different sets of joint ang
is said to have several possible “configurations”. The two-joint robot arm presented here generally ha
configurations for each end effector position, one with the elbow joint bent to the left (θ1 > 0), the other
one with the elbow bent to the right (θ1 < 0). Because of the joint angle limits, the arm needs to stretch o
completely to perform a configuration change.

87
8.3 Experimental Validation
raph
or,
alues
bor.
one
not
ode

ion
ec-
hine,
ra-

nd.

an
al.

gth

r

ilure
joint angle configurations. As an example, figure 8.4 on the next page shows the g
formed by stimulating an ITM with a random walk pattern from the robot arm simulat
and the trajectory generated by a simple algorithm, which sets the controller target v
to the weight vector of the node pointed to by the via index of the current nearest neigh
In this example, the inertia of the robot arm sometimes hits a different node than the
targeted by the controller, but since the via indices are available for all nodes, this is
a major problem. The trajectory generator simply carries on, and finds its target n
eventually.

This simple path following algorithm can be improved by tracking the manipulator mot
and altering the edge weights (ln,m) if some segments cannot be traversed with the resp
tive controller settings. We implement this trajectory generator using the state mac
by adding three states,start, used by external applications to trigger the trajectory gene
tor, traveling, used as a transitional state during the motion,arrived , to signal successful
termination, andstranded, which signals that a path to the target node cannot be fou
Details on the different states follow:

start: This state initializes an internal variable for the statetraveling, the indexi of the
last node visited, to an invalid value.start always switches totraveling.

traveling: In violation of the strict Turing principle of the state machine, this state has
internal variable,i, and uses it to check several conditions of the trajectory travers
The current best match node is denominatedc.

1. If the current node’s graph length is zero (dc = 0), switch toarrived .

2. If the graph length has decreased (dc < di), then check:

(a) If the node lies on the intended path (c = vi), enforce the appropriate edge
by decreasing its graph lengthli,c, but not below 1.

(b) If not (c 6= vi), punish the appropriate edge by increasing its graph len
li,vi

, but not above a given limitlmax. If this limit is exceeded, remove the
edge.

Seti ← c, choose the weight vector ofvc as new controller target, and re-ente
traveling.

3. If the current node indicates no pathway to the target (vc = invalid), switch to
stranded.

4. If the current nodec has not changed for more than a given amount of timetmax,
punish the appropriate edge lengthlc,vc as shown above, and re-entertraveling.

stranded, arrived: These are both terminal states, which can be used as success or fa
signals.

88
 Path Finding and Obstacle Avoidance with the ITM
of
it

tely
to

run
y
ry
Figure 8.4:Trajectory Generation Example: Here, a simple trajectory generator maneuvers
the manipulator to the target position by configuring the controller to move to the position
the node pointed to by the current node’s via vector. The inertia of the manipulator forces
to leave the intended trajectory several times, but this simple mechanism recovers immedia
because instead of one planned trajectory it knows pathways from all known configurations
the target, and therefore ultimately reaches its goal.

Figure 8.5:Trajectory Reinforcement Experiment: In the two-link robot scenario, we use
the trajectory generation state machine to perform a configuration change. During the first
(middle frame), the dynamics of the robot throw it off the intended trajectory, as indicated b
the thick lines, which show edge punishment events. After ten runs (right frame), the trajecto
has been modified so that it can be traversed without problems.

89
8.3 Experimental Validation
there-
the

ific
s, a
y, or
ling
heme

e in
ec-
ITM.
, and

s us
rating
dex
tem
ing
This mechanism can change the route chosen by the graph labeling algorithm, and
fore has limited adaptive capabilities. After a few repetitions of the same motion,
manipulator improves the trajectory slightly (see figure 8.5 on the facing page).

Obviously, the algorithm described cannot cope with “orbiting trajectories”. This prol
problem in trajectory generation arises from the fact that due to acceleration limit
manipulator usually needs to be slowed down in time before the end of the trajector
else it will oscillate around its target position for some time. Since the graph labe
procedure marks each node with its graph distance to the target, this deceleration sc
can easily be transported to the vector quantization state space representation.

Note that the trajectory generator operates with the edge lengthsln,m, which we have in-
troduced with the path labeling algorithm. These variables change slowly, and ris
number with the growth of the network. This results in a typical time scale for traj
tory changes, which stands in contrast to the immediate adaptation behavior of the
We accept this fact because of the drastic improvement we gain from edge labeling
because an acceptable alternative has not yet emerged.

In this chapter, we have introduced a simple graph labeling algorithm which enable
to use our chosen method of state space representation, an ITM network, for gene
trajectories from the current manipulator position to a target position defined by the in
of the corresponding network node. The only ingredient still missing in the control sys
is a method for state space exploration. We will investigate this topic in the follow
chapter.

91
hap-
sented
rig-

ut in
d as
will

ation

im-
d of
until
rec-
g

for
the

this

r im-
than-
. The
Chapter 9

An Active Exploration Engine

Building an input space representation with an ITM has already been performed in c
ter 7 on page 67 based on random walk stimulus sequences. The experiments pre
show that the network type chosen can adapt well with the serially correlated stimuli o
inating, for example, from a control system.

The random walk method can of course also be used with robotic manipulators, b
real-life control systems the amount of time taken for exploration is a critical issue, an
far as efficiency goes, random walk marks the bottom line. In the present chapter, we
therefore develop an active exploration mechanism based on several simple optimiz
heuristics, and evaluate its performance.

9.1 Basic Ingredients

Even without the aid of our mapping and trajectory generation mechanism, we could
prove the basic random walk approach by replacing it with a “greedy” version. Instea
randomly varying the direction of travel in each time step, we keep the same direction
no further motion in that direction is possible, and then switch to another random di
tion. A similar method is known in function minimization, where the direction switchin
condition is met when the function value cannot be lowered further.

In our scenario, implementing the greedy algorithm involves setting target positions
the controller layer and reacting on sensory feedback to determine when to switch
direction. We will employ the state machine based trajectory generator to achieve
goal.

Using the trajectory generator and the current topological map enables us to furthe
prove the algorithm. We restrict a random node choice to those nodes with less-
average number of neighbors, and then start a series of greedy steps from that node

92
 An Active Exploration Engine
lt so

the
static

ich
lly

as to
d

tory
v-

-
er of

it as a
der

st all
ode’s
reby

o the
selec-

a, and
rer is

of
nodes chosen in this way are likely to belong to the topological edge of the map bui
far, and are therefore suitable starting points for further exploration.

In the implementation of this scheme, we attach the exploration algorithm directly to
trajectory generation scheme presented in the preceeding chapter. As additional
information, we need to store the current exploration directionp, a vector of random di-
rection with a length of1.2 · emax.

arrived: We add a rather complicated transition criterion to this terminal state, wh
always switches tostart after choosing a new exploration target along a carefu
chosen direction.

1. Build a tentative target positiont by addingp to the current node’s weight vector
wc.

2. Find the noden closest tot. If it is different from c, this indicates that the
network is already present in the area to be explored, so a new direction h
be chosen by randomizingp and re-entering step 1. Repeat this only a limite
number of times to avoid deadlocks.

3. Check the validity of the new target by stimulating the network witht and ob-
serving if this produced a new tentative node which can be used as a trajec
target. If no valid targett could be found even after iterating the above steps se
eral times, choose a new edge nodec at random among those with lower-than
average number of neighbors. Repeat the search at step 1. Limit the numb
repetitions to avoid deadlocks.

4. As a last resort, choose a random edge node as described above and take
new target. This is a fallback solution, which should never be necessary un
normal conditions.

This construction produces a new node in a previously uncharted area in almo
situations. The trajectory generator subsequently attempts to maneuver to that n
position and will either reach it and re-enter this target chooser or remove it, the
entering thestrandedstate.

stranded: Entering this state in most cases means that a chosen direction has led t
edge of the allowed state space, and therefore a direction change (new random
tion of p) is forced before entering the same procedure as for thearrived condition.

This algorithm has a strong tendency to explore the edge of the already charted are
even sometimes neglects the inner regions of the map. In this respect, the explo
fundamentally different from random walk and other methods which lack knowledge
the previous moves. We shall see this in the following comparison.

93
9.2 Results
bot
im-

s the
er.

and

der-
dom
tion
find

arted
uild

flip

liable
n areas.
edges

graph
nflict
algo-
cause

stem.
ce in
.

pace
om-
will
9.2 Results

To evaluate the explorer’s performance, we experiment with the simulated two-link ro
arm confined by a square of walls, as introduced in chapter 8. The random walk is
plemented by randomizing the forces exerted on the joints, while the explorer use
controller layer and trajectory generator also introduced in the aforementioned chapt

Figure 9.1 on the following page shows a typical learning sequence with random walk
active exploration at equal numbers of stimuli presented.

In this experiment, the active exploration algorithm finds the crucial aspect of the un
lying topology, a pathway to the second configuration, considerably faster than ran
walk. Both methods have to face the difficulty that the pathways from one configura
to the other are narrow, but the greedy steps of the active explorer are more likely to
one of these paths. Additionally, since the active explorer uses its map to find unch
areas, it can also take advantage of the first pathway it finds, and use it to quickly b
thorough maps of both configurations, while the random walk still relies on luck to
from one half-space to the other.

The aggressive node placement of the explorer produces a map which is partly unre
because some nodes lie outside the allowed areas and some edges cross forbidde
The trajectory generator must compensate this effect by removing those unusable
when the need arises.

An alternative would be to mark such nodes as unreachable and leave them in the
to make the search for new uncharted areas more efficient. But this method would co
with the fact that forbidden areas may change in shape over time. The exploration
rithm must not introduce static information about reachable or unreachable areas, be
the obstruction might be temporary.

The algorithm presented here does not introduce any new static variables into the sy
Although the search for a new tentative node may take several iterations, it takes pla
an instantaneous step compared to the trajectory generation and manipulator motion

This exploration engine completes the ensemble of algorithms which work on a state s
representation with an ITM vector quantization network. But although the system is c
pleted with this step, there is some interplay of the individual elements which we
illuminate in the final chapter.

94
 An Active Exploration Engine
the
tion
an
n
to
ces
random walk

active exploration

1000 stimuli 4000 stimuli 8000 stimuli 12000 stimuli

random walk

active exploration

16000 stimuli 35000 stimuli 40000 stimuli 50000 stimuli

Figure 9.1: Active vs. Random Walk Exploration: The simulated two-dimensional robot
problem introduced in the previous chapter is used to compare random walk exploration and
novel active exploration scheme. This exploration method discovers the second configura
after about 1000 stimuli, by crossing through one of the narrow channels where the arm c
stretch out completely. The random walk algorithm, in contrast, is stuck in one configuratio
for about 35000 stimuli. The active explorer produces a network which reaches farther in
the wall areas than the one delivered by random walk, because the explorer tentatively pla
nodes in uncharted areas, and subsequently removes them if they cannot be reached.

95
or a
itec-
ory

been
this

ped,
trical
h in
trong

d in a
exten-

not
of the

been
ture

profit
Chapter 10

Discussion and Outlook

The objective of the work presented in this thesis was to provide an architecture f
robotic control system suitable for human-machine interaction, and to use this arch
tural infrastructure to provide integrated solutions for higher-level tasks like traject
generation, obstacle avoidance, and exploration.

An approach for state space representation with vector quantization networks has
presented, which is a fundamental ingredient of the higher-level tasks listed above. To
end, a novel type of neural network, the Instantaneous Topological Map, was develo
which in contrast to most other vector quantization approaches uses strict geome
rules for adaptation. This network type is exceedingly easy to configure, fast bot
terms of adaptation behavior and of computing expense, and capable of handling s
correlations in the stimuli.

As a proof of concept, the human-machine communication features were embedde
larger research context, the SFB 360, and the state space mapping algorithms were
sively tested in artificial toy problems and in a simulated two-link robot arm scenario.

There are many ramifications of the research topics touched in this work, which could
all be mentioned before. Let us take the time now to investigate the consequences
system design presented here, and the perspectives for future research work.

10.1 Uses Beyond Robotics

The controller infrastructure we have presented in the first part of this thesis has
especially developed for the TUM hand in our laboratory. Nevertheless, the architec
can be used in other settings as well. Even seemingly simple control problems may

96
 Discussion and Outlook
many
hway
ping
nics
cess

data
, pro-
much
ess

h is

prop-
sily

cts
rator,
erns.

a
would

that
ome

state
auto-
from the methods shown, e.g. if they have several control outputs. In those cases,
pathways from one set of targets to the other are possible, and finding the optimal pat
could be achieved with either the state machine formalism or the topological map
and trajectory generation method. And although examples originating from mecha
or kinematics are most easily imaginable, other control systems, e.g. chemical pro
control, can in principle possess a similar structure.

In producing distributed systems, one optimization issue is reducing the amount of
used in communication between the system’s components. In this area of research
gramming frameworks similar to the state machine shown here have already received
attention. Our motivation for the use of a state machine was simplicity and intuitiven
of the interface. The fact that this interface produces only a minimum of bandwidt
additionally beneficial.

10.2 Future Perspectives of the Control Architecture

External Trajectory Reinforcement

The trajectory planner introduced here is already capable of adapting to the dynamic
erties of the underlying system by reinforcing those trajectories which are most ea
followed by the controller layer. But the reinforcement is not restricted to inertial effe
or obstacles that forbid a certain motion. External interference, e.g. by the human ope
can also influence this mechanism, providing a simple means of teaching motion patt

Teaching Motions with Labeled Nodes

Along with the prospect of labeling nodes in an intuitive fashion, this might lead to
versatile motion teaching and reproduction system. In such a system, a target node
be labeled with a certain name, and the trajectory generator would attempt to reach
position. The human operator would distort the trajectory as intended, and after s
repetitions the system would be able to reproduce this motion.

One remarkable feature of this approach is that the individual trajectories share one
space representation, and therefore segments of individually taught motions can be
matically concatenated to build more complex motion patterns.

97
10.2 Future Perspectives of the Control Architecture
ural
om-
phs
ation

eling

the
force-
can
or-
und

time
nce
relim-
tance
pat-
three

d in
s re-
f the

the
ted

, by
is is a
Dynamics Modeling with a Directional Graph

Even the simple dynamics of the two-link robot arm used for the validation of the ne
layer suggest that the non-directional graph used in the ITM may be too limited for c
plex control systems. Some concepts for converting the ITM maps into directional gra
have been developed, and the most promising method involves symmetric edge cre
and deletion, as already implemented in the ITM, but direction-dependent edge lab
for use in path finding and trajectory generation.

Travel Time Labeling

Especially for robotic control, the interpretation of the edge lengthln,m, introduced in
chapter 8, as a traveling time from node to node may become a useful addition. In
present work, the lengths are abstract integer numbers which are used for path rein
ment. The literal meaning of travel times along with direction-dependent labeling
provide valuable additional information in the topological map. For example, this inf
mation could allow an improved trajectory generation mechanism to avoid orbiting aro
the target position by decelerating the manipulator in time.

Trajectory Comparison Metric

For trajectory planning, the graph distance and its possible interpretation as a travel
are most relevant. In comparing two trajectories and evaluating their similarity, a dista
measure for trajectories in the graph can quickly become necessary. We suggest a p
inary representation of trajectories as a series of node positions. The Levenstein Dis
Algorithm (LDA) could then be used to compare such series of nodes by performing
tern matching to find surplus, missing and differing node entries, and weighting these
classes independently to find a meaningful scalar trajectory distance.

This simple definition does not account for the identification of trajectories containe
a larger trajectory, but it suffices to evaluate a trajectory generator by comparing it
sult with a previously defined trajectory. Learning algorithms may take advantage o
metric as an error feedback or as a reinforcement critic. Therefore, we think that
well-designed definition of such a trajectory comparison metric will help to perfect rela
algorithms.

Tactile Object Recognition

The mapping procedures shown in this work perform obstacle identification indirectly
only adding traversable state space areas to the map. For permanent obstacles, th

98
 Discussion and Outlook
nt. In
the

ob-
ssful
cing
n the
acing

t
since
d of

M,
nces
cus.
at an
This
tion

sso-
tor’s
ode’s

chi-
tate
uver
nent
feasible procedure, but short-term disturbances and obstacles need special treatme
this case, the predominant problem is the distinction of objects, possibly including
human operator’s hand and other highly transitional interferences.

A trajectory recognition mechanism could be a first step to solve this identification pr
lem. Identifying an object through a certain motion sequence can become a succe
object recognition method. Especially in tactile sensing research, systematically tra
an object with a robotic finger has already been performed, but a system based o
control and exploration techniques presented here, which adapts to find suitable tr
motions to discriminate a set of objects, would require much less a-priori knowledge.

10.3 Future Perspectives for the ITM

Graph Visualization for the ITM

The ITM’s capability of reliably identifying the underlying dimensionality of the inpu
data can inspire the use of graph construction techniques in data visualization. But
the graph itself becomes complex in higher dimensions, there is no obvious metho
intuitively visualizing the graph structure.

Helge Ritter has introduced a very practical and intuitive projection method for his HSO
which “zooms in” on one node and its immediate neighbors, and contracts the dista
of nodes farther away, so that the infinite horizon lies on a circle around the current fo
This projection technique may be modified to accommodate arbitrary graphs, so th
abstract visualization of the connected clusters formed by an ITM could be designed.
would make it easier for researchers to use the ITM both as a dimensionality identifica
and as a clustering method, as shown in figure 8.2 on page 85.

Associative Completion

One widespread application of vector quantization networks involves their use as a
ciative memory devices. This is commonly done by masking some of the input vec
components when calculating the distances to find the best matching node. This n
weight vector can then be used to complete the input vector.

The same approach can become useful in the ITM in conjunction with the control ar
tecture. In a setting where the controller output is only indirectly coupled to the s
variables comprising the ITM’s feature vector, the present architecture cannot mane
along intended trajectories reliably. Adding the controller output as a feature compo

99
10.4 Closing Remarks
the
can

delay
rises.

sis in
map-
erent

n er-
vector
pes
hap-

ing
bove.
n the
y on
ing

rving
tough
d we
vice
s and

pe-
that
et to

eady
can eliminate this shortcoming. During training, the additional information is fed into
ITM along with the normal feature vector, and during matching the controller output
be found by associative completion as described above.

One should bear in mind, though, that adding more entries to the feature vector can
the adaptation process considerably, because the dimensionality of the feature space
The drastic consequences of this move can be appreciated in the dimension analy
chapter 7. But since this analysis also indicates that the ITM stands good chances of
ping higher dimensional feature spaces faster than comparable algorithms, the inh
risk of raising the feature vector’s dimensionality is relatively low.

Eliminating Quantization Effects

When using associative completion in a vector quantization network, the quantizatio
ror becomes especially apparent, because even the known components of the input
“snap” to those of the closest weight vector stored in the network. Some network ty
which alleviate this problem with interpolation approaches have been mentioned in c
ter 6.

Transferring the LLM algorithm to the ITM may prove beneficial, for instance in a sett
where controller outputs must be delivered by the neural network, as described a
The linear maps attached to each node would require more training examples tha
plain ITM, but the subsequent ability to produce output which reacts more sensitivel
input vector changes, i.e., without visible quantization, could make the longer train
phase worthwhile.

10.4 Closing Remarks

Previous robotics research was a strong inspiration for the present work. But obse
the developments of the past years, a slight stagnation becomes apparent. Many
problems have been successfully solved, while others remain out of our reach, an
may consider ourselves lucky if we at least find out why they are so elusive. A no
researcher might feel discouraged at the sight of both the remarkable achievement
the seemingly impossible unsolved problems.

With this work, we hope to prove that robotics research still has much to offer. Es
cially in joining neuro-informatics and robotics there are many architectural designs
have yet to be tested in the real world, and probably at least as many that have y
be invented. And, as this thesis shows, the challenge lies not only in employing alr

100
 Discussion and Outlook
ther

ds in
bled
our

ate
is
The
earch

be
under-
inter-
available algorithms in a new area, e.g. by transferring neural networks to robotics or o
control tasks, but also in advancing new developments inbothareas to find new solutions.

The neural networks community makes a considerable effort to test emerging metho
real-life settings. The standardization of typical neural networks problems has ena
us to compare many algorithms impartially. But this standardization can also narrow
view, keeping us from considering a special problem, although it might well stimul
the development of an algorithm which is generally useful. In our opinion, the ITM
an example of a general algorithm which emerged from a very special design goal.
departure from standard paradigms favored this development, which benefits both res
fields involved.

This work took us on a journey through many fields, and many thoughts could only
touched very briefly. We hope that the reader may accept this open-endedness and
stand it as an encouragement and as an invitation which robotics, human-machine
facing, and neuro-informatics hold for all of us.

101

Bibliography

[1] AMP Incorporated, Valley Forge, PA 19482.Piezo Film Sensors Technical Manual,
Dec. 1993.

[2] D. H. Ballard, M. M. Hayhoe, and P. K. Pook. Deictic codes for the embodiment of
cognition. Technical report, University of Rochester, 1995.

[3] G. Canepa, M. Campanella, and D. De Rossi. Slip detection by a tactile neural
network. InProceedings of the ICIROS’94, volume 1, pages 224–231, 1994.

[4] P. Dario. Tactile sensing: Technology and applications.Sensors and Actuators,
A(25-27):251–256, 1991.

[5] P. Dario, A. Sabatini, B. Allotta, M. Bergamasco, and G. Buttazzo. A fingertip
sensor with proximity, tactile and force sensing capabilities. InProceedings of the
ICIROS’90, pages 883–889, 1990.

[6] A. Fagg, N. Sitkoff, A. Barto, and J. Houk. Cerebellar learning for control of a
two-link arm in muscle space. InProceedings of the ICRA’97, volume 3, pages
2638–2644, 1997.

[7] B. Fritzke. Growing cell structures — a self-organizing network for unsupervised
and supervised learning.Neural Networks, 7(9):1441–1460, 1994.

[8] B. Fritzke. A growing neural gas network learns topologies.Advances in Neural
Information Processing Systems, 7:625–632, 1995.

[9] B. Fritzke. A self-organizing network that can follow non-stationary distributions.
In Proceedings of ICANN’97, pages 613–618. Springer, 1997.

[10] B. Fritzke.Vektorbasierte Neuronale Netze. Shaker Verlag, 1998.

[11] K. S. Fu, R. C. Gonzales, and C. S. G. Lee.Robotics, Control, Sensing, Vision, and
Intelligence. McGraw-Hill International Editions, 1987.

[12] G. Heidemann.Ein flexibel einsetzbares Objekterkennungssystem auf der Basis neu-
ronaler Netze. PhD thesis, Technische Fakultät, Universität Bielefeld, 1998.

102 Bibliography

[13] R. D. Howe and M. R. Cutkosky. Dynamic tactile sensing: Perception of fine surface
features with stress rate sensing.IEEE Transactions on Robotics and Automation,
9(2):140–150, April 1993.

[14] W. Ilg, T. Mühlfriedel, and K. Berns. A hybrid learning architecture based on neural
networks for adaptive control of a walking machine. InProceedings of the ICRA’97,
volume 3, pages 2626–2631, 1997.

[15] Interlink Electronics, Europe, Echternach, G.D. de Luxemburg.The Force Sensing
Resistor, Feb. 1990.

[16] J. Jockusch. Taktile Sensorik für eine Roboterhand. Master’s thesis, Technische
Fakultät, Universität Bielefeld, 1996.

[17] J. Jockusch and H. Ritter. An instantaneous topological mapping model for corre-
lated stimuli. InProceedings of the IJCNN’99, 1999. paper #445.

[18] S. Jockusch.Modellierung und Manipulation von Bild- und Grafikdaten mit neu-
ronalen Netzen. Dissertation, Technische Fakultät, Universität Bielefeld, 1995.

[19] J. Jockusch et. al. A tactile sensor system for a three-fingered robot manipulator. In
Proceedings of the ICRA’97, volume 4, pages 3080–3086, 1997.

[20] S. Jung, T. C. Hsia, and R. G. Bonitz. On robust impedance force control of robot
manipulators. InProceedings of the ICRA’97, volume 3, pages 2057–2062, 1997.

[21] N. Jungclaus.Integration verteilter Systeme zur Mensch-Maschine-Kommunikation.
Dissertation, Technische Fakultät, Universität Bielefeld, 1998.

[22] N. Jungclaus, R. Rae, and H. Ritter. An integrated system for advanced human-
computer interaction. InUCSB-Workshop on Signals and Images (SIPL), pages 93–
97, 1998.

[23] T. Kohonen. Self-organized formation of topologically correct feature maps.Biolog-
ical Cybernetics, 43:59–69, 1982.

[24] K. Liano. Robust error measure for supervised neural network learning with outliers.
IEEE Transactions on Neural Networks, 7(1):246–250, 1996.

[25] H. Liu, P. Meusel, and G. Hirzinger. A tactile sensing system for the DLR three-
finger robot hand. InProceedings of the ISMCR’95, pages 91–96, 1995.

[26] J. Lloyd and V. Hayward.RCCL/RCI System Overview. McGill Research Centre for
Intelligent Machines, McGill University, Aug. 1988.

[27] T. M. Martinetz and K. J. Schulten. Topology representing networks.Neural Net-
works, 7(3):507–522, 1994.

Bibliography 103

[28] B. H. Mehler. Entwicklung eines taktilen ortsauflösenden Sensorsystems zur Un-
terstützung des Greifens mit Robotern. Master’s thesis, Lehrstuhl für elektrische
Meßtechnik, TU München, 1994.

[29] R. Menzel, K. Woelfl, and F. Pfeiffer. The development of a hydraulic hand. In2nd
Conf. on Mechatronics and Robotics, pages 225–238, 1993.

[30] A. Meyering and H. Ritter. Learning 3D-shape perception with local linear maps. In
International Joint Conference on Neural Networks ’92, Baltimore, 1992.

[31] W. T. Miller, III, R. S. Sutton, and P. J. Werbos, editors.Neural Networks for Control.
MIT Press, 1990.

[32] A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

[33] R. Rae, M. Fislage, and H. Ritter. Visuelle Aufmerksamkeitssteuerung zur Unter-
stützung gestikbasierter Mensch–Maschine Interaktion.KI – Künstliche Intelligenz,
Themenheft Aktive Sehsysteme, 99(1):18–24, March 1999.

[34] R. Rae and H. Ritter. 3d real-time tracking of points of interest based on zero-
disparity filtering. In S. Posch and H. Ritter, editors,Workshop Dynamische Perzep-
tion, Proceedings in Artificial Intelligence, pages 105–111, 1998.

[35] R. Rae and H. Ritter. Recognition of human head orientation based on artificial
neural nets.IEEE Transactions on Neural Networks, 9(2):257–265, March 1998.

[36] S. Rankers. Steuerung einer hydraulisch betriebenen Roboterhand unter Echtzeitbe-
dingungen. Master’s thesis, Technische Fakultät, Universität Bielefeld, 1994.

[37] R. P. N. Rao and D. H. Ballard. An active vision architecture based on iconic repre-
sentations. Technical report, University of Rochester, 1995.

[38] H. Ritter. Learning with the self-organizing map.Artificial Neural Networks, 1:379–
384, 1991.

[39] H. Ritter. Self-organizing maps in non-euclidean spaces. InWSOM’99 Conference
Proceedings, 1999. (invited paper).

[40] H. Ritter, T. M. Martinetz, and K. J. Schulten.Neural Computation and Self-
Organizing Maps. Addison-Wesley, 1992.

[41] H. J. Ritter. Parametrized self-organizing maps. InProceedings of ICANN’93, pages
568–575. Springer, 1993.

[42] D. Selle. Realisierung eines Simulationssystems für eine mehrfingerige Roboterhand
zur Untersuchung und Verbesserung der Antriebsregelung. Master’s thesis, Technis-
che Fakultät, Universität Bielefeld, 1994.

104 Bibliography

[43] H. Shinoda, K. Matsumoto, and S. Ando. Acoustic resonant tensor cell for tactile
sensing. InProceedings of the ICRA’97, volume 4, pages 3087–3092, 1997.

[44] H. Shinoda, N. Morimoto, and S. Ando. Tactile sensing using tensor cell. InPro-
ceedings of the ICRA’95, volume 1, pages 825–830, 1995.

[45] H. Shinoda, M. Uehara, and S. Ando. A tactile sensor using three-dimensional struc-
ture. InProceedings of the ICRA’93, volume 1, pages 435–441, 1993.

[46] S. Sur and R. M. Murray. An experimental comparison of tradeoffs in using com-
pliant manipulators for robotic grasping tasks. InProceedings of the ICRA’97, vol-
ume 2, pages 1807–1814, 1997.

[47] M. E. Tremblay and M. R. Cutkosky. Estimating friction using incipient slip sensing
during a manipulation task. InProceedings of the ICRA’93, volume 1, pages 429–
434, 1993.

[48] G. Wöhlke. The Karlsruhe dextrous hand: Grasp planning, programming and real-
time control. InProceedings of the ICIROS’94, volume 1, pages 352–359, 1994.

	Introduction
	Robotics Lab Setup
	Human-Machine Interfacing
	Exploration and Control
	Previous Work on Robotic Control
	Introduction to a Novel Approach

	The Controller Architecture
	Manipulator and Sensor Hardware
	Mechanical Construction
	Basic Sensory Equipment
	The Tactile Sensor System
	The Fingertip Sensors
	Construction Principle
	Amplification Circuitry
	Experimental Results

	A Layered Controller Architecture
	Design Fundamentals
	Levels of Timing and Abstraction

	The Controller Layer
	The Controller Structure
	Mechanisms for Safety and Reliability
	Interfacing with Other Processes
	Implementation Details
	A Visual Controller Interface
	Performance Evaluation

	The State Machine Layer
	The Programming Principle
	States and State Transitions
	Implementation Details
	An Example State Graph
	Interleaving State Machines
	Conclusions

	Exploration with Vector Quantization Networks
	Approaching Intertwined Tasks
	Introduction
	Literal Interpretation of Topological Maps
	Evaluation of Existing Models
	Critical Aspects in Robotics
	Preparation of Input Data
	Adaptive Metrics for Input Rescaling
	Expansive Adaptation

	The Instantaneous Topological Map
	Improving the GNG for Correlated Stimuli
	The Instantaneous Topological Map (ITM)
	Results
	Statistical Distributions
	Architectural Comparison
	Dimensionality of Input Data
	Conclusions

	Path Finding and Obstacle Avoidance with the ITM
	Graph Distance Labeling
	Trajectory Generation
	Experimental Validation

	An Active Exploration Engine
	Basic Ingredients
	Results

	Discussion and Outlook
	Uses Beyond Robotics
	Future Perspectives of the Control Architecture
	Future Perspectives for the ITM
	Closing Remarks

