Exploration based on Neural Networks
with Applications in Manipulator Control

Jan Jockusch

Dipl.-Phys. Jan Jockusch
Universitat Bielefeld
Arbeitsgruppe Neuroinformatik
Technische Fakultat

http://www.techfak.uni-bielefeld.de
mailto:jan@techfak.uni-bielefeld.de

Volistandiger Abdruck der

von der Technischen Fakultat der Universitat Bielefeld
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

genehmigten Dissertation

Prufungsausschul3:

Prof. Dr. Helge Ritter

Prof. Dr. Christopher Brown
Prof. Dr.-Ing. Gerhard Sagerer
Dr. Gunther Heidemann

Die Dissertation wurde am 9. Februar 2000 bei der Universitat Bielefeld eingereicht und
durch die Technische Fakultat am 19. Mai 2000 angenommen.

Exploration based on Neural Networks
with Applications in Manipulator Control

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

der Technischen Fakultat der Universitat Bielefeld
vorgelegt von Jan Jockusch am 9. Februar 2000

Contents

T Infroduction! 1

[T RoboficSLab SEIUP .« . . e
[[7ZHuman-Machine Interlacmg
3 EXplorationand Contjol

o g1 W ow N

[The Confroller Archifecture] 9

anipulator and Sensor Hardwar 11

P T _Mechanical CONSIAICTIDN o . v v e e e e e e e e e e e e 11

PZ BasSiCSensory Equipment 12

3 _TheTaclileSensorsysiem 13

B4 TheFINQEMP SENSOIS v v v v e e e e e e e e e e e e e 16
4T Construction Principle, 17
E4Z Amplificalion Circuitry v o v v v i e e e 19
43 EXperimentalResUlts 0., 20

ayere ontroller Architecture 23

BT Design Fundamenthls e 23

. €vels of 11ming an stractupn00 o000 s s s 25

B The Controller Layer] 29

T The Confroller SITUCTUre o o o o e e s, 30

FZ Mechanismsfor Safety and Reliability 33

. nterfacing wi € PTOCESBES v v o e e e e e e e e e 34

Contents

36
37
40
b The State Machine Layer 43
BT TheProgramming PrincCiple 43
BZ Shafesand STAfe Transifions & v v v e e e e e e e 45
b3 TmplementationDetails, 46
b4 AnExampleState Graph 47
b5 TInterleaving State Machines o v v v i v v e 48
BB _CONCIOSIONS o v v e e e e e e e e e e e e e 50
(I EXploraton with Vector Quantization Networks | 53
b__Approaching Infertwined Taskg 55
................................. 55
B6.Z_Literal Tnterpretation of TopologicalMaps« v v v v v v v v 56
6-3__Evalualion of EXistingModels, 57
B4 CriticalASpectsin Robofics o o 60
B5 Preparationof InpuibData o v it 61
6.6 Adapiive MefricsforInpuiRescaling 63
b7 EXpansive Adapialipn 65
[[—_TheTnstantaneous Topological Map 67
[-I_Tmproving the GNGfor Correlated stimuli 67
i € Instantaneous TopologicalMap (TTM) 71
3 RESHIS o o e e e e e e e e e e 74
[Z4—SIafsiucal DISIDOonS o 0 o e e e e e e e e e 76
[5 _ArchitecturalComparispn o o v v i e 77
[[6__Dimensionalityof InputData v v v v 79
Z—CONCISIONS v o v e e e e e e e e e e e e e 81
B_Path Finding and Obstacle Avoidance with the TTM 83
BT GraphDistanceLabeling o e 83
BZ Trajeciory Generatipn o e e e 84

B3 EXperimental Validation 86

Contents

P__An Active EXploration Enging

[0.T UsesBeyond Robotics

[[0.Z Future Perspectives of the Control Architegture
0.3 Future Perspectivesforthe IfM

0.4 ClosingRemarks

List of Figures

[T Taboratlony SETUP o v v e e e e e e e e e e e e e e e 2
[[:Z__Typical’/Aclion Sequence in a Communication Scepario 4
(3 SysStem Structure CoOomparson v v v v o v e e e e e 7
I The TUMHydraulicHand 12
EZ FINGETKINEMATES v v v o et e e e e e e e e e e e e 13
-3 OilHydraulicSActuation Systéem 14
B4 HardwWare SEtlp v v v o e e e e e e e e e e e e 15
PS5 FrSTFNGEMPDESIGN o o o o e e e e e e e 16
6 NewFingertipDeSIgn o v o e e e e e e e 18

i ifferential Amplification Principle 19
g8 Tactile Sensor Amplification Circuit 20
2.9 EXperimental Setup for Taclile Sensor Evaluation 20
EI0 OilPressure vsS. Applied Fojce o o i i it i e 21
P-IT Taciile Sensor Readoutvs. Applied Fprce 21
BI TayeredArchifecture Diagram v v v v v i i v e 24
37 Time Scales and AbSfracfionTevels 28
BT ControllerCayerDiagram v v v v v e e e e e e e e 30
BZ OullierFilternng v o o e e e e e 31
F3 Example Maintenance Procequre o oo h e 35
B4 Interfacing Mechanigm e 36
Eh VisualConfrollerInferfate v v v v v e e e e 38
A6 Startup ConfrollerBehavjor o 40
BE.7__Mixed Feedback Controller Response Without Contact 41
B8 Mixed Feedback Coniroller Response With Contact 42

F9 CompliantControl 42

Vi

List of Figures

BT EXxample State MachineCode 47
bZ State GraphforGrasping« v v v v i e e e e 48
h 3 Communication With State MAachinesS v v v v v v v e e e e 49
6.4 Photo Seriesof a GraspingAction 51
B.I InterplayofDifferent Tasks i 56
B-Z _TopologicalWarping inSOMS v v v e e e e e e e e e e 58
53 __Mean and Deviation FSimal 64
B4 EXpansive Adapialipn e 66
I RandomWalkExample 69
[7-Z_Adaptation of a Standard GNG with Correlated Stimuli 70
[7-3_Tmproved GNG UsSing an Error Thresfjold 70
74 EdgeUpdate inthe M i it 72
;5 NodeUpdate InTthe TTM o i ittt e 73
[7-6__Reference Vector AdaptationintheIfM 74
aptation PhasesofthelJM 75
[7-8_Error Comparison of Three NetworkModels 76
[7.9_Graph Comparison of Three Network Models 77
IO Non-Uniform STMUluS DENSjty o v v v v i 78
B-1I Graph Distance and Path Generation 85
BZ _CIOSIerIdentifiCation v v v e e e e e e e 85
83 Two-DimensionalRobof Simulafion 86
B4 Trajeciory GenerafionExample 88
B5 __Trajeciory Reinforcement EXperiment 88

P. T Aciive vS. Random Walk EXploration v v v v v v v v .. 94

vii

List of Tables

Chapter 1

Introduction

An old dream of cybernetics has motivated the work reported on in this thesis. It is that
of the creation of a robotic system which would at first glance be perceived by its human
operators as a living being rather than a cold machine. While this may not sound very
scientific, it is an idea that can inspire many new constructions and algorithms.

Naturally, one must first stand back from such an idealistic view and contemplate the
adequate methods to at least come close to achieving such an outstanding goal. In the
course of developing the system presented here, we followed several different trails, but
only very few ideas survived the test of time.

That which survived is a novel layered system that performs robust control of a robotic
hand, behavior simulation in a state machine of arbitrary complexity, exploration of its
surroundings with the aid of a vector quantization network, and path planning and obstacle
avoidance with the topological map represented by that network.

The most remarkable features of this system are its flexibility and simplicity. Much care
was taken to make it complete in the sense that it can be used without further development
efforts, and expandable in the sense that it can function as a basis for further work in this
fascinating research area.

The system’s overall design is generic and therefore applicable to different situations, far
beyond the field of robotics, and the algorithms developed, especially the ITM (Instanta-
neous Topological Map), have potential applications even reaching into the realm of data
mining.

This introductory chapter first presents the laboratory setup which has evolved to accom-
modate various research efforts in the fields of computer vision, human-machine interfac-
ing and tactile exploration. Later sections cast more light on the research topics that this
work focuses on, human-machine interfacing and exploratory control of a robotic manip-
ulator. A subsequent overview of previous related work on robotic control motivates the
introduction of a new approach, based on the notion of reactive motion control.

Introduction

Figure 1.1:Laboratory Setup: A standard PUMA robot arm carries a force/torque sensor, a
wrist camera, and the hydraulic hand that this work focuses on. The robot is used to manipulate
objects lying on the table, possibly in cooperation with a human operator. A binocular camera
head provides vision capabilities with depth perception.

1.1 Robotics Lab Setup

Our robotics laboratory offers several research facilities (see figyre 1.1). The most promi-
nent is an industry standard robot arm with six degrees of freedom. It is equipped with a
wrist force/torque sensor and a wrist camera as feedback sensors for maneuvering the end
effector to a designated work area. The end effector is a three-fingered robotic hand fitted
with custom-designed fingertip sensors. Throughout this work, this manipulator is used as
a testing ground for the new ideas and methods presented.

Several cameras are installed to allow computer vision experimentation. One remarkable
camera setup in the lab is the binocular camera head consisting of two cameras with com-
mon pan and tilt, and separate vergence control. Extensive research has been carried out
with this device concerning the simulation of human visual attention mechariisms [33].

Clearly, this setup lends itself to host different research fields, like gesture and object
recognition, robotics and control, visual and tactile exploration, among others. Since the
main work areas of our group are neural networks and adaptive systems, we try to look at
the aforementioned fields from our own perspective.

As far as computer vision is concerned, a very robust holistic object recognition system
has been developed]12], as well as neural networks based camera calibration algorithms,
face and eye trackindgI35], zero disparity tracking [34], and saccadic scene exploration.
All of these research efforts contribute to a human-machine communications system of
remarkable complexity [22].

In the field of robotic control, our neuro-informatics perspective means taking a different
starting point than most other robotics research, which gives us the opportunity to depart
from traditional methods in the hope to reach our ambitious goals.

1.2 Human-Machine Interfacing 3

Especially, the work presented here was originally triggered by the enormous difficulties
that classical positional control brought up when applied to our three-fingered manipulator.
Replacing this traditional approach completely with a system conforming to strict design
goals of simplicity, flexibility, and robustness proved to be remarkably productive.

1.2 Human-Machine Interfacing

In a scenario involving the facilities just described, we wish to study new possibilities for
intuitive human-machine interfacing. A human operator talks to the system, describes a
task and makes according natural gestures. The system observes the operator and the scene
with its binocular camera head and other cameras, and reacts by picking up or pointing at
objects using its robotic arm. Together, the human and the machine perform a task, during
which the human occasionally teaches the machine and corrects its actions. A preliminary
result of these efforts can be appreciated in figure 1.2 on the next page. This subsystem
already contains the controller architecture introduced in the present work.

A whole special research project has been devoted to this demanding task, which has
inspired many new ideas already. Robotic control, though, especially that of the three-
fingered hand, has so far only been performed using positional control and trajectory pre-
calculation.

But for our robotic hand this is not a very useful approach. We humans are so sensitive
and careful with our own hands, that a numb robotic hand executing planned motions must
seem awkward. At the very least, it does not make communicating with it, for example by
touching it while in operation, very attractive.

In this work, we will never switch a controller from or to a “compliant mode”. The robotic
hand will always be compliant to some extent, and it will always be ready to depart from
an intended motion if, for instance, the human interferes to adjust the fingers’ positions.

We hope that by making the end effector extremely compliant and sensitive we can achieve
a much more natural behavior of the robotic system. One beneficial effect of this approach
is that we may learn which behavior patterns humans find natural and intuitively under-
standable. The other is that a technical device that has so far been viewed as one of the
most hazardous in our laboratory may now be used by many researchers with little or no
special knowledge.

1.3 Exploration and Control

Apart from simulating natural behavior to enhance interaction with humans, we wish a
robotic system to explore its surroundings and at the same time learn about its own degrees

Introduction

1. scene exploratiorthe insert 2. skin and motion detection:3. ZDF tracking: the insert
shows the attention map andseveral feature maps are useghows the edge detectors and
the fixation point. to focus on moving hands. the disparity filter.

RGB left / right skin segmentation left / right

A 5

3D detection: hand cluster, manipulation cone

ar

4. gesture recognition: the 5. object fixation:the object's 6. robot positioning:the wrist
pointer direction defines a ma-position is estimated by fixat- camera object recognition pre-
nipulation cone. ing it in the camera foveae. pares a corrective motion.

Stase Machine Interface
Stretch
Loosen

Wait
Grip
& Stong
Hold
Lost

7. coordinated grasping:the 8. picking up and holdingthe 9. object deploymentanother
arm and hand synchronize viansert shows the controller ac-state machine coordinates the
the state machine. tivity for one finger. robot arm and the hand.

Figure 1.2:Typical Action Sequence in a Communication ScenarioSimulated visual atten-

tion, real-time tracking based on zero disparity filtering (ZDF), holistic object recognition, and
the control architecture described in this thesis join forces to build a simple human-machine
communication system. The operator points at an object in the scene, and the robot hand
picks it up and puts it back on the table. This system is the result of the cooperation of many
researchers (Robert Rae, Nils Jungclaus, Gunther Heidemann, and Christof Dlcker, among
others).

1.4 Previous Work on Robotic Control 5

of freedom. Like a small child first learning how to move his fingers, then how to grab
and manipulate objects, the robotic system should start out with no special knowledge on
the geometry and joint limits of its manipulator but instead acquire this knowledge from
exploratory motions.

The two major design issues for this project are the data representation, i.e., the memory
which stores the knowledge gained from exploring, and the control algorithm for explo-
ration. As far as data representation is concerned, the most fundamental decision is to
use vector quantization networks as a storage medium. This enables us to take advantage
of many neural network architectures and learning algorithms that have been developed
based on this representation.

As far as exploration is concerned, we will first use a simple random walk algorithm
to evaluate the performance of different neural network architectures, and develop more
intelligent active exploration techniques based only on one special network type.

1.4 Previous Work on Robotic Control

The traditional approach to making a robot move from one position to the other is to
calculate a set of points along the desired path in either Cartesian or joint angle space, to
smooth this path, e.g. with spline interpolation, and, finally, to move the robot from point
to point along this pre-calculated path with a given spéed [11].

Since the joint motors can only deliver a finite force, much calculation is necessary to
ascertain whether a calculated path can physically be realized. Many different methods
are employed to limit joint angles, velocities and torques.

The major focus of this type of robotic control is precision. The properties of robotic ma-
nipulators are carefully recorded and simulated in kinematics and dynamics calculations,
thus allowing complex motions to be planned and evaluated in advance. This is the ap-
proach of choice in most of today’s robotics applications, e.g. in assembly lines, where
positioning and welding of parts must be achieved with high accuracy.

But adding compliance to motions planned and executed in the way described above is a
complex problem. Most approaches involve adjusting the trajectory by small deviations
according to sensor signals, which usually does not cover changing the trajectory alto-
gether to steer clear of a sudden obstruction.

Endowing this type of system with the ability to recalculate its planned trajectory if nec-
essary involves much overhead. Additionally, it is difficult to find a formal description for
path recalculation simple and predictable enough to be truly useful.

Introduction

The overall reason for this difficulty in producing a reactive system is the strong focus
on motion precision common to most path planning and execution research in robotics.
As a result of enforcing a pre-calculated trajectory and formulating compliance as a dis-
turbance to this trajectory, force control (e.g. in force sensor guided motions) is done
indirectly through positional control (the trajectory disturbance), which in turn results in
force control of the joint motors (the current passing through the coils). Performing force
control directly, without an intermediate stage of positional control, may have significant
advantages in typical compliance scenarios, most notably grasping of objects.

For a long period of time, traditional positional control was the basis for motion control of
our robotic hand. Due to the disadvantages inherent to this mechanism, we implemented
a novel control scheme which incorporates reactive changes in behavior much more natu-
rally and easily than would be possible in the former approach.

1.5 Introduction to a Novel Approach

The topic of this thesis is a complete control system based on neural networks which in-
corporates path planning, obstacle avoidance, and exploration. To implement the neural
networks approach, though, extensive infrastructural work had to be done first (see fig-
ure[L.B on the facing page). Therefore, this thesis is divided into two parts, the first one
of which capitalizes on the design of the overall control architecture and its lower level
components. The second part is devoted exclusively to the neural network layer, which
builds on some of the properties of the underlying controller architecture. The system pre-
sented in the first part has been especially designed to suit the TUM hydraulicchand [29].
It is a complete and versatile control package for use by other researchers, and it is a novel
interactive communication element for use in a larger human-machine interface. The neu-
ral networks layer presented in the second part is formulated in a more general way. The
emphasis lies on a concise solution to a series of problems usually treated separately, and
this approach leads to a new perspective on topographic mapping networks.

The controller architecture must enable us to communicate and work with the robotic
system in an efficient and natural way. Therefore, it needs to be highly responsive and
sensitive to many forms of feedback. The system layout and the design goals chosen to
guide its development are the topics of chapter 3.

To achieve these goals, a new controller was implemented which is based solely on force
control with a feedback mixture delivered by several sensors. Positional control can still
be programmed as a special case, but doing so is generally discouraged. The controller
contains several safety measures and plausibility checks that greatly simplify diagnostics
and maintenance of the hardware equipment. This also includes blocking exceedingly
jerky motions of the manipulator to ensure that the human operator will not be harmed.
The controller layer will be the topic of chapter 4.

1.5 Introduction to a Novel Approach

exploration exploration
random walk target position generation and
active learning approaches network adaptation N
obstacle avoidance obstacle avoidance
potential field principle automatic for static obstacles N
geometrical methods
world representation world representation / ;‘
fixed or geometrically constructed neural network with high adaptivity 'g
from measurements and low interference <
£
[Sensor
‘/g; programmed kinematics signals no programmed
'g fixed joint limits kinematics
95’ trajectory generation trajectory generation %
- interpolation in cartesian or closest path in graph
joint coordinates I
| |
I /\
| no reflex behaviour reflex behaviour simulation o
5ensor . ; : k=
Lignals simulation based on state machmg S
i allows external interfacing 5
| E
low-level control low-level control
target position or joint angles all errors translate to target force
| |
hardware hardware
high reliability and precision low precision, time drifts
traditional robotics proposed system design

Figure 1.3:System Structure Comparison: Traditional robotic systems usually interact with
clients through inverse and forward kinematics. This implies the use of interpolation for tra-
jectory generation and the use of precise positional control at the lowest level. Tasks like
exploration and obstacle avoidance are considered substantially different and are therefore left
for external systems to solve. The approach presented in this thesis assumes a different point
of view. Starting out from imperfect hardware which defies positional control, we are forced
to find another method of interfacing. Our force controlled system is equipped with a state
machine which reacts on sensor patterns and external commands. This behavior simulator,
which is missing in standard systems, gives us intuitive access to the manipulator. Still, trajec-
tory generation requires some representation of the manipulator’s “world”. We turn to a neural
network to find that seemingly unrelated tasks can be jointly solved. Because of the abstract
world representation, kinematics calculations are unnecessary in this approach. Note that the
two systems are not fundamentally different, but only stress different aspects of robotic control.
The traditional system needs precision and repeatability of motions, while the proposed system
provides permanent interactivity and compliance.

Introduction

The next step was to implement a “reflex” behavior in the sense that sensory input of a
specific pattern would trigger a certain behavior within a short reaction time. This mech-
anism is not very intelligent, but it makes the system responsive and produces the desired
behavior in most situations. A detailed account of the state machine used to realize this
idea will be given in chaptdi 5.

In the second part of the thesis, a topological mapping mechanism is presented which
allows the system to gain knowledge about its surroundings. The requirements of this
special un-supervised learning scenario, accounted for in ch@pter 6, lead us to a novel
type of vector quantization network, the Instantaneous Topological Map, or ITM for short.
Chaptelr[]7 gives a detailed account of the algorithms, possible applications, and some of
the more esoteric properties of the ITM.

Using an ITM as a literal road map for a manipulator can easily be achieved with a simple
graph distance calculation and trajectory generation routine. We implement this trajectory
generation scheme using our state machine formalism and demonstrate its operation in
chaptefB.

As the ITM originates from un-supervised learning, a system using such a network as a
memory device may passively absorb stimuli from the outside world and use this as its
only source of information. But sometimes, active exploration is a more appealing way
of acquiring knowledge. With the state machine system and the ITM learning algorithms
at hand, we are able to build a simple active scheme for exploring previously uncharted
areas, which will be introduced in chapfér 9.

At first sight, this design may appear to have two distinctly separate modes of operation,
one for reflexes, the other for exploration. But this is not the case. To our knowledge, this
Is the first system to incorporate reflex-like behavior, path planning, obstacle avoidance,
and active exploration in a relatively straightforward way.

Much of the material developed in later chapters builds on the experiences we gathered
with one special robotic manipulator in our laboratory. Since this manipulator is also used
as a proving ground for many of the algorithms presented, the next chapter will give an
introduction and brief analysis of our three-fingered robotic hand.

visual Controller Interface

I'{_*rlsn T Ma Right

| pot °

|
PP
"’""“r—"_‘r—"""r——"\\
"““"’“’f:_—.'—"r———"r—-—'—l‘l

Part |

The Controller Architecture

11

Chapter 2

Manipulator and Sensor Hardware

As shown in the introductory chapter, our laboratory can be used as an experimental plat-
form for human-machine interfacing. Among other equipment, it features a robot arm
with a wrist force/torque sensor, a wrist camera, and a three-fingered manipulator. In the
present chapter, we will concentrate on the manipulator and its sensors, which alone is a
nine degrees-of-freedom robotic system.

The mechanics of the hand as well as its sensor electronics will be shown in detail and
evaluated to motivate the control methods which are the topic of subsequent chapters.

2.1 Mechanical Construction

The hand consists of a variable number of equal fingeis [29]. In our case, three fingers
are mounted in an equilateral triangle, pointing in parallel directions (see figure 2.1 on the
next page). In contrast to other anthropomorphic robotic hands, the TUM hand uses oil
hydraulics to drive the joints, and is therefore remarkably small. Each of its fingers is only

about ten percent larger than a human’s index finger.

Figure[Z:2 on pagE L3 shows front and side views of one finger, demonstrating the three
degrees of freedom and the approximate action radius. Three motor pistons press oil
through a long conduit into the finger pistons to move the finger, as sketched in[figure 2.3

on pagg 14.

For direct interaction with a human, the small scaling factor is a strong advantage. The

hand is mounted on a robot arm as an end effector, which also contrasts to some other
experimental robotic hands which are too bulky to be put on a reasonably sized robot. We

are thus in the favorable position to have an arm and hand combination of approximately

human size, ideal for human-machine communication.

Manipulator and Sensor Hardware

Figure 2.1: The TUM Hydraulic Hand: The hand consists of three fingers, arranged in an
equilateral triangle. The wrist camera (left) and the cylindrical force-torque sensor (top) deliver
additional feedback for the motion of the robot arm.

2.2 Basic Sensory Equipment

In terms of sensory feedback, the small size of the fingers disallows the incorporation of
position detectors like joint angle encoders. In their basic configuration, the only source
of information on the state of the fingers are the oil pressure sensors at the driver pistons
and the driver piston position sensors. All sensing is thus done at the driver pistons, which
are separated from the joint pistons by long oil conduits. Any feedback pressure exerted
at the joints is damped and filtered by friction, the oil's compressibility, and the conduit’s
elasticity.

Former work has attempted to use only the pressure sensors at the driver pistons for the
measurement of external forces at the fingertips. Knowing the oil pressure at the joint and
the joint position, the net force at the joint lever can be calculated by subtracting the force
exerted by the spring inside the joint piston from the oil pressure times the actionarea [42].

Sadly, the oil pressure at the joint piston cannot be deduced easily from pressure mea-
surements at the driver piston, because oil compressibility, mechanical hysteresis, and
stick-slip effects form a low-pass filter with some additional random or history-dependent
components. In an attempt to obtain useful results, a mathematical model of the oil sys-
tem, which covered the variable compressibility of oil depending on the amount of diluted
air and the elasticity of the oil conduit, was created and carefully adjusted to the physical
system [4R2]. But because the model had to be carefully readjusted when oil leaks oc-
curred (which they often did and still do), and the mechanical hysteresis and the statistical
stick-slip effects were not yet accounted for, the fingertip force measurements were only
possible with huge errors.

The physical limitations of the basic equipment also overshadows the use of the standard
positional control algorithms for posture control, like those that were taken from the robot
control software RCCLL[26]. Without proper joint angle encoders or other similarly pre-
cise instruments, attempting to perform reproducible posture control is rather futile.

2.3 The Tactile Sensor System 13

Figure 2.2:Finger Kinematics: Each finger is actuated by three pistons, two at the base joint,
and one inside the first segment which drives the coupled second and third joints. The left and
right pistons bend the finger sideways (arrbnin differential mode, and inward (arro) in
common mode. Together with the flexing motion produced by the middle piston (aBjows

the finger thus obtains three degrees of freedom.

The topmost necessity to improve control performance for these hydraulically actuated
fingers is to short-circuit the filtering effect of the oil conduit and the mechanical com-
ponents by placing sensors as close to the action as possible. And because joint angle
encoders are exceedingly difficult to construct for the TUM hand, we chose to focus on
tactile sensors instead.

2.3 The Tactile Sensor System

Several design goals for the construction of a tactile sensor system for the TUM hand have
been established. These are high robustness and flexibility, simplicity and ease of use,
high performance, and low cost. After a short description of the different components, we
will go through these aspects and show how each requirement has been met.

The hardware infrastructure consists of two devices, a multi-channel analog sampler close
to the sensorsMASS), and a random-access ring buff@R@AD) attached to a VME bus

(see figurg 2]4 on pad€]1B)ASS collects sensor data by sampling up to 64 channels with
an amplitude resolution of 8 Bits in turn and immediately transferring the digital data to
BRAD via a serial line.BRAD stores the data in a history buffer 127 entries deep, putting
timestamps on all entries. A workstation attached to the VME bus may then retrieve entries
at random and post-process data as required.

This system has already proven iithustness as it has been continuously running for
the last thirty months. The Motorola controllers obviously live up to their excellent rep-
utation, and the peripheral components seem to do equally well. The softwaressn

14

Manipulator and Sensor Hardware

(@) (b) () (d)

motor pressure
sensor

0 [

long oil spring-loaded
conduit driver piston

C———Y——
potentiometer

Figure 2.3:Oil Hydraulics Actuation System: As a force transmission, a closed hydraulic
system connects the motor at the bé@seo the driver piston at the fingéd). The motor piston
position sensor and the oil pressure serfbpreside at the base, separated from the actor by a
long conduit(c), which acts as a complex low-pass filter. The spring-loaded driver piston moves
slowly inside its cylinder, which additionally gives rise to frequent sticking-sliding transitions,
difficult to predict or even to identify from the motor piston motion and pressure measurement
alone.

andBRAD has been extensively optimized and tested. Since information flow is strictly
uni-directional, there are no protocols by which either controller can be crashed or halted
by the other one or by the workstation. If, for examm&ss crashes or is restarted in

the middle of transmitting a pack@&®RAD will resynchronize to match the data stream and
leave the faulty packet untouched. So, although being tied closely together to ensure fast
information transmission, the components of this system operate totally independently of
each other.

To allow experimentation with new sensing techniquesibility is needed.MASS has

four slots with connectors for 16 analog channels each. These slots hold amplification
and pre-processing circuitry for different sensors. By replacing the amplification modules
along with the sensors, a large variety of detectors can be interfaced to the system. Our
research work has already seen the benefits of this modular construction. The fingertip
sensors now in use are the third generation of tactile sensors which were built and evaluated
with this infrastructure.

Using the system isimple from the point of view of an applications programmer. In-
terfacing withBRAD involves nothing but reading the appropriate memory cells of the
VME bus. The most recent measurements need not be located in the ringlike history list,
a copy is always present at the same location. This allows the user to choose a simple
measurement routine if it suffices, or he may write a time series analysis algorithm that
uses the history buffer to its full potential.

In terms ofperformance, the system is capable of delivering data at up to 3.6 kHz (four
sensors sampled), with a typical value being around 500 Hz. This may seem low compared
to other sampling devices, but since the data must also be retrieved and further processed at
higher levels, where the usual update frequency is about 100 Hz, the system’s performance

2.3 The Tactile Sensor System 15

networking
@) workstation (b)
dual-port buffer analog/digital digital/analog digital i/o
BRAD converter converter
YYWYY)

/
watchdog
oscillator

) 1 — k)

. — o]
sampler/transmitter o
MASS S
'Yvyy A}H“ A HH“H
\AAl
differential amplifiers oil pressure piston position motor current
CATS amplifiers amplifiers generator
A kll
e

base piston set

A
RV
g '

—7= (one finger shown)

tactile sensor system TUM hand actuation system

Figure 2.4:Hardware Setup: The hardware structure consists of the tactile sensor system
developed by the auth¢a) and the components of the hydraulic hand built by Pfeiffer et.al. at
TUM (b). The TUM hand’s actoric and sensoric components are all mounted on a base sep-
arated from the hand by oil conduits. The motor currents are controlled via the d/a converter
board. They are shut down by a watchdog circuit unless the controller program toggles a signal
bit regularly. The motors drive pistons whose positions can be determined by reading the volt-
age of a set of potentiometers attached to an a/d converter. Additionally, the oil pressure at the
base is measured by silicon sensors mounted at the far end of the driver pistons. The tactile sen-
sors(a), in contrast, are mounted directly at the fingertips, providing feedback that bridges the
filtering effect of the oil and the mechanical structure. The sensors’ signals are pre-processed
electronically, then sampled and transmitted from the robot arm to a dual-ported buffer which
can be read out in the same simple fashion as the other components of the VME bus system.

16

Manipulator and Sensor Hardware

(c) au *
R t sensor TYMmMm/—— T ——

force/pos e e E R T EEEE R e e
t SENSOr TF — f -t -t st s s s

—_
(d) 14 N
A
R y =

t sensor

force/pos
sensor R T e

——14mm——H t

Figure 2.5:First Fingertip Design: Here, fourFPSRpads were placed on an aluminum body,
then covered with an elastomer and a rubber membrane with knobs for slippage sensing. A
cut view (a) shows the layer structure, afig) shows the manufacturing steps. The two sensor
types employed in this sensor are able to detect both static pressure (WithSReesistors,

(c)) and sliding motions (withPVDF foil attached to the membran@l)).

is sufficient. In case the detection of short pulses below the millisecond range should
become necessary, edge detectors are available which can fill this need.

The maximum delay between sampling and data arrival in the VME memory segment is
only about 35:s, which is approximately one order of magnitude lower than the smallest
possible reciprocal sampling frequency. Therefore, client applications may ignore this
latency and treat the sensor values as if they were immediate measurements.

An experimentation platform is often subject to higher-than-average stress, and repairs and
changes are costly. We had to constmugss andBRAD, because similar commercially
available products did simply not match our requirements.cls¢aspect came naturally,
because all development had to be done in our lab. The use of simple circuitry and standard
components shortens the development time and makes spare parts affordable. In the case
of this system, the burden of hardware development turned out to be an advantage [19].

This is particularly true for the sensors themselves, which emerged from several more or
less successful development steps. The latest model, which has been in use constantly
since about twelve months before the time of writing, has many appealing properties for
daily use, like easy servicing and automatic calibration.

2.4 The Fingertip Sensors

Force sensors shaped like fingertips may be easily imagined, but force stessize of
human fingertips pose a difficult problem of miniaturization. Searching the literature for

2.4 The Fingertip Sensors 17

different sensor materials turned up two kinds of pressure sensitive foil, one piezo-resistive
(FSR [18]), and one piezo-electricabyDF, [T]) kind.

These sensor types are prolific among tactile sensing researchers. Some groups also spe-
cialize on the miniaturization of strain gaugés [5, 4], but many userfiResensors in

tactile imaging [T3[-25], and thevDF foils for dynamic sensingI47] 3]. A brilliant and
unusual approach to tactile sensing based on ultrasound transmission in elastic material
has been developed by Shinoda et.[al. [45[44, 43]. Sadly, this ingenious technology is still
too difficult to implement in our laboratory.

Initially, the literature suggested that tRsrfoil would be useful only for sensing slowly
changing pressure profiles, while theDF would yield much better response to fast pres-
sure changes[28,116]. Since both measurements are desirable, a layering technique was
first employed which stacked thryDF sensor on top of aASR basis (see figurg 2.5 on

the preceding page). The fastDF sensor acts like a microphone membrane responding

to the characteristic noise made by moving rubber knobs on the surface, and thus detects
sliding motions. The inner layer ¢fSRsensors locates the center of mass and measures
the amount of applied force.

The construction was quite successful, but not durable enough for long term use in the lab-
oratory. The intricate wiring and difficult resistor fabrication for #rsrs (the position-
sensitive variant of thesR) raised the manufacturing time for one fingertip to over twenty
hours. Additionally, after filling in the rubber padding, there were no more possibilities for
repair. Several fingertips were ruined by the capillary suction of#sRsensors, which
flooded the sensitive electrodes with hydraulic oil.

A newer, much more durable design emerged based ortgrsensors. Surprisingly, our
measurements indicate that the frequency range afdRés much greater than assumed.
It may even suffice to perform successful slippage detection.

2.4.1 Construction Principle

Figure[Z.p on the following page shows the fingertip design currently in use. Each fingertip
Is equipped with foursrRsensor pads. The electrodes are etched onto one small piece of
PCB in a square layout, covered by just one piece of piezo-resistive foil. A rubber pad with
four protruding fields ensures an even force distribution from the aluminum stick which
presses on the sensors with a pre-loading force determined by tightening the bracket screw.
This screw also holds the whole construction together.

Five wires need to be connected to the PCB, one common current source and four resis-
tance measurement wires. A rubber cover gives the fingertip its natural shape and endows
it with a small amount of additional compliance.

Manipulator and Sensor Hardware

aluminum
stick

rubber
pads

force distribution principle
FSR foll

electrodes z f f T
L, b=
v

rubber

ring © common mode differential mode
bracket screw force along z torques along x and y

base

Figure 2.6: New Fingertip Design: The exploded viewa) shows the construction of the
sensor. It consists of a rigid stick attached to a rigid base by elastic pads, allowing it to move
independently by a small amount. This construction distributes an external force to the four
pressure sensing fields as showifbh Three degrees of freedom can be discriminated in this
way (c): one force component, perpendicular to the electrode plane, and two torques along
that plane. The normal force results in common sensor responses in all four fields, while the
torques result in differential sensor responses in two facing fields.

The rubber pad covering the sensors and rubber rings in the aluminum base mechanically
decouple the stick and the base. In this way an additional force in the direction of the
bracket screw can be detected in the common mode reaction of all four sensors, while the
two torque components perpendicular to the axis of the screw affect only two of the four
sensors in differential mode.

Each finger thus delivers four sensors values and can detect a total of three independent ex-
ternal actions: two components of the external torque, and one component of the external
force.

The reasons for choosing this construction are mostly practical. Because of the pre-loading
of the FSRsensors, the electrodes are in constant contact with the piezo-electric surface,
keeping the omnipresent hydraulic oil at bay. Experience shows that this works much

better than trying to shield or duct the fingertips to make them oil-proof.

The main reason farotchoosing this construction would be that the pre-loading ofire
sensors lessens their sensitivity, since they have logarithmic force response characteristics.

2.4 The Fingertip Sensors 19

approximate characteristics of an FSR =

Y

sensor foil resistance

LP

preloading force

F Fo F

applied normal force
Figure 2.7:Differential Amplification Principle: The figure shows the typical characteristics
of an FSRfoil sensor. Its sensitivity is largest for small forces, but because of the surface
properties of the foil the measurements vary considerably. For large forces, the sensitivity of
the foil steadily decreases. Using a moderate pre-loading force and a differential high-gain
measurement circuit, we can still produce adequate sensitivity with better repeatability, and,
additionally, the ability to measure small negative forces as well.

We address this issue by providing special amplification electronics which counteract this
effect.

2.4.2 Amplification Circuitry

The resistance of arsR sensor varies over four orders of magnitude depending on the
applied force. Much of this change takes place at low forces, according to the schematic
plot in figure[Z.F. Measuring forces applied to a pre-loaded sensor can be achieved by
centering the amplification around the static resistance. The amplification factor for the
differential resistance is then chosen to match the sensitivity and force range requirements.

The Centering Amplifiers for Tactile Sensorsafs) amplify a small current flowing
through thersR A low-pass filter with a very long relaxation time of about 5 minutes
draws the amount of current representing the static resistance, thereby correctly centering
the total amplification, which has a large enough gain to reliably measure forces down to
about 50 mN (see figufe 2.8 on the following page).

20

Manipulator and Sensor Hardware

sensor pad R2 C1 R6

R1 I_

A R4

offset
Uo output Uo

o R5
f%—al T1 B

(@) (b) (€) (d)

Figure 2.8:Tactile Sensor Amplification Circuit: Differential amplification is implemented

in a current amplifie(a) with a current drain through T1, which draws the offset current. This
offset current is generated by the low-pass fi{tgr which accumulates an offset voltage across
C1 until the average output voltage at A becomes approximaitglyidally, the offset voltage

is amplified into a readable range) for additional information.(d) Four such amplifiers are
bundled in the PCB for one fingertip sensor.

Figure 2.9:Experimental Setup for Tactile Sensor Evaluation:A balance with strain gauges
is used to measure the applied force at the fingertip while the middle motor current oscillates
at 1 Hz. Only the two outer coupled joints move in this experiment.

This measurement technique allows large tolerances for tightening the bracket screw, be-
cause each sensor pad locks in to its individual static pre-loading force, and therefore there
is no need for further calibration. The static force of each pad can be separately read out
by the sensor sampler, albeit with lower precision than the differential measurement.

2.4.3 Experimental Results

In an attempt to find the characteristic frequencies of the oil system and the fingertip sen-
sors, one motor was driven with a sinusoidal signal to periodically bend one of the fingers

inward, while the corresponding oil pressure and fingertip response where recorded. Addi-
tionally, we used an electronic balance to simultaneously measure the actual force applied

2.4 The Fingertip Sensors 21

i 'samples '
350 mean over 20 runs

300

250

200

150

oil pressure / AD units

100

50 |

0 1 1 1 1 1 1 1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

balance readout / N

Figure 2.10:0il Pressure vs. Applied Force:During a motion induced by a sinusoidal motor
current at 1 Hz, the large hysteresis of the oil hydraulics system becomes apparent in this plot.
It shows the oil pressure sensor value while a given force is exerted at the fingertip.

200 T T T T T

Isamples '
mean over 20 runs
150 :

100

50

_50 -

-100

fingertip sensor readout / AD units
o
T

-150 |l

_200 1 1 1 1 1 1 1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

balance readout / N

Figure 2.11: Tactile Sensor Readout vs. Applied Force:The measured hysteresis of the
fingertip sensor during the same motion as in figure] 2.10 shows no significant hysteresis. The
statistical variations are generally larger than the hysteresis gap.

22

Manipulator and Sensor Hardware

to the fingertip to ascertain the quality of therRsensor and of the amplification circuitry
(see figurg 2]9 on page]20).

The comparison of the actual force and the oil pressure reveals the drastic filtering effect
of the oil conduit and the mechanical components (see figurg 2.10 on the preceding page).
Due to the highly repetitive motion, the hysteresis plot exhibits relatively small statistical
variation. Still, the gap is so large that reliable measurements are impossible if the motion
history is unknown.

In contrast, the hysteresis of the fingertip sensor in relation to the force measured by the
balance is smaller than the noise level (see fiflurg 2.11 on the page before). This justifies
the use of the sensors to bridge the filtering effect of the hydraulic actuation system and
build more sensitive control loops.

Because of its realistic dimensions and its high sensitivity, which compares well to the
human role model, the fingertip sensor presented in this chapter is very well suited for
interaction scenarios. It adds a substantial component to the total sensory feedback of
the low-level controller, which will be described in chapfier 4 on page 29. Nonetheless,
one fundamental detail should be pointed out already. It is technically very difficult to
add joint angle sensors to the TUM hand, which has led us to focus on force sensors
instead. Therefore, control will take place in terms of forces, in contrast to most robotics
applications, which are based on positional control modulated with force feedback.

These two concepts may seem similar at this point, but they have very different conse-
guences and ramifications. This will become clear as we further develop the controlling
system for the robotics hardware just described. The following chapter will reveal the

overall concept of this control architecture.

23

Chapter 3

A Layered Controller Architecture

The controller mechanisms we create for the TUM hand shall perform several tasks which
are usually treated separately. These are behavior simulation, exploration, path planning,
and obstacle avoidance. These tasks are to be solved with one common architecture con-
sisting of few, well-defined elements with narrow interfaces.

In this chapter, we motivate the choice of these elements and show how their interaction is
organized. An analysis of the time scale domain of each layer pairs up with a comparison
of the scope of each layer’s action and error recovery responsibility. The resulting system
is modular and expandable, and still simple enough to make both using and maintaining it
as easy as possible.

There are only few previously reported control architectures comparable to the one pre-
sented here. Fagg et. al. present a promising biologically motivated low-level control ap-
proach which already takes into account that a higher level layer might supply via points
for the generation of trajectories [6]. The resulting system would be similar to the architec-
ture presented here. The account of a remarkable control infrastructure for a robotic hand,
which encompasses stable grip control and hand-arm coordination, but does not touch the
exploration and obstacle avoidance topics, can be fouridiin [48].

3.1 Design Fundamentals
Figure[3:L on the next page shows the overall system layout for the present work. The
detailed descriptions of the ingredients follow this illustration from the bottom to the top.

The most fundamental task a low-level controller can perform is to zero a given error
function by building an output signal which will reach the target position in as short a time

24

A Layered Controller Architecture

input space representation in graph
exploration

edge target
position choice

{

path finding

. .
» trajectory
*, generation !J

stimulation :
adaptation -
© n

| |

ITM neural network layer

additional states

_ :filtered
o . sensor state with
K] 1values parameter set
A P
2 ' .
= ' .
Q 1 4
© . *
4 .
- LIV} . . N
% W ‘. criterion trigger
L 1]
]
1
1
1
1
‘q; l target state net error
> !
- sy > evaluator > calculator >| PIDICS
(]
. 3
c plausibility
o
13) checker
©
© SO interaction actuators
= p_otentlometers . . |
s ol pressure sensors [TUATE | | 2 neo
;EG fingertip sensors
=

Figure 3.1:Layered Architecture Diagram: The hardware and the controller layer form a
closed control loop which is influenced and reacted upon by the state machine. This layer
implements both an autonomous behavior simulator and a universal interfacing engine. Its
expandability allows higher-level layers, like the ITM neural network layer, to integrate their
algorithms into the state machine by contributing new states and state transitions.

3.2 Levels of Timing and Abstraction 25

and with as few oscillations as possible. This is a well-understood problem which can
often be solved with carefully parameterized standard control algorithms, most notably
PID (proportional/integral/differential) control.

The error function is simple in most cases, usually the joint position error, but in our
robotics setup feedback comes from many sensors (driver piston position, oil pressure,
fingertips), each of which becomes more or less relevant in different situations.

Because of this, the parameterization of the low-level controller can easily become cum-
bersome. The target position no longer suffices to define the controller's behavior, the
weight of each component needs to be specified, too.

A further simplification of the parameterization task can be achieved with templates, and
switching from one template to another can be achieved with sensor-driven criteria. This
motivates the addition of a state machine layer, where each state is represented by a set
of controller parameters, and a set of criteria that indicate the conditions under which to
switch to a new state.

This constellation is not unlike separating a spline-based trajectory generator from the
underlying controller, but it is slightly more general. Here, we can choose both the target
sensor value constellati@ndthe corresponding amount of compliance.

Client applications use labels attached to the individual states to force certain behavior
patterns. Nevertheless, the machine will still switch from state to state automatically due

to sensory feedback. This produces quite an unusual programming paradigm. There is no
clear distinction between input channels and output channels. The current state can both
be set to trigger an action, or queried to find out the result of the triggered behavior.

Additionally, we gain an open architecture which allows the implementation of higher
levels of abstraction, like path planning or active exploration. These interface to the state
machine, allowing them to run concurrently with client programs. For example, the state
machine may trigger active exploration via an idle timeout. If a client issues another
command by forcing a state change, the exploration is temporarily abandoned.

3.2 Levels of Timing and Abstraction

Although dividing the system into layers in the manner shown may seem artificial at first
glance, the construction follows a hierarchical design in several aspects. The two foremost
of these are the separation of time scales, and the separation of different levels of abstrac-
tion. Notably, the same type of time scale separation has also been shown to be present in
the perception-action cycle in humans![B2-2, 37].

26

A Layered Controller Architecture

The number of layers itself affects the number of distinct time scales that are present.
Special attention was given to choosing the timing properties of each layer so that they
blend harmoniously into the time environment of the sensors, actors, and not least, the
human operator.

An additional benefit of splitting the system in this way is an isolation of responsibilities
and of error recovery mechanisms. In the following, we will characterize the different
elements along these lines (see figure 3.2 on page 28).

The hardware interfacing layer is thentroller, which is responsible for reading the sen-

sors, for pre-processing or filtering these signals, for performing plausibility and hardware
protection checks, and, finally, for delivering motor current output signals to reach a given
target position with specified weighting of the feedback components. The controller must
be stable under all circumstances, so that higher level engines need no special measures to
avoid spontaneous oscillations of the motor currents.

The controller runs at 100 Hz, which is still much faster than the hydraulics actuation
system can react. The reaction times of all sensors included so far are shorter than the
controller’s, with the exception of the oil pressure sensors, which are adversely affected
by the hydraulic system’s filtering effect.

Other hardware dependent time scales, most notably the typical self-calibration time, do
not have as much relevance for the controller process itself. They are included in the graph
because there are code segments in the controller layer which compensate for oil leakage,
for example.

The state machineruns roughly one order of magnitude slower than the controller. This
ensures that its dynamics are well decoupled from the dynamics of the controller layer, so
that oscillations between the two should not happen. Since the actuator’s reaction time is
still slightly longer than the state machine’s loop duration, the reactivity of the total system
is not significantly deteriorated by the seemingly low update frequency of about 10 Hz.

The foremost task of the state machine is managing controller templates and changing
the controller settings according to a set of criteria. A template along with these criteria is
denominated a “state”. The set of states creates a behavior pattern which handles a number
of fixed reflexes and fallback action patterns. The states are labeled to provide an abstract
interface in which client applications or users trigger an action by naming the appropriate
state.

The set of states can be dynamically expanded by layers in higher levels, which can thus
add to the set of possible actions or reactions of the system without affecting the behavior
already implemented.

All higher-level layers should run in time scales of at least one order of magnitude greater
than that of the state machine, because otherwise spontaneous oscillations caused by the

3.2 Levels of Timing and Abstraction 27

immediate coupling could confuse the system. This limitation applies only if state changes
are regularly triggered by higher-level layensd the state machine itself. In most cases,
however, state changes issued by either party are sporadic, and the consideration stated
above becomes less critical.

Thepath planning layer is one such high-level engine. Its task is to watch the motion and
sensor feedback pattern and use it to build a representation of the manipulator’s properties
and its surroundings. It should be able to reproduce a given motion pattern and to find
new paths, or shortcuts, from one manipulator state to the other. The representation of
the manipulator state space and its surroundings is implemented in a vector quantization
neural network, which addresses the special requirements of this problem with a very fast
training algorithm, efficient graph generation methods, and the ability to accommodate
external graph modifications.

The network is trained with a feature vector composed of the sensor signals from the con-

troller and other state encoding data. This data is not statistically distributed, but has a

trajectory-like structure. Therefore, special measures must be taken to avoid destructive
interference during the learning process. The path planning layer drives the state machine
when triggered to find a path to a given node. In that case, it uses a path finding algo-

rithm on its internal map of the surroundings, feeding the state machine with successive

intermediate stages to reach the given target.

The characteristic frequency of the path finding mechanism varies considerably, but typical
values are about one order of magnitude lower than the sensor probing loop inside the state
machine. Interference of these two layers is thus unlikely, and even if it happens it will
only abort the path finding process, instead of producing spurious oscillations.

Finally, thetarget chooserlayer enables the total system to actively explore the manip-
ulator’s workspace. It has access to the current map of the surroundings and tentatively
invents a new node which it then attempts to reach with the aid of the path planner. The
target chooser is activated externally by the usual interfacing method of the state machine,
or automatically after a given idle time. The target chooser observes the performance of
the path finder and forces graph alterations to the map to accommodate the newly acquired
knowledge.

The higher level layers can be thought of as small additional parts of the state machine’s
transition graph. Because they add criteria to the current states, their logic can be triggered
automatically, and because they provide fallback state switches, they can automatically
abort their actions if anything unexpected happens.

External clients can always query and modify the current state, as has been explained
above. These clients need not be human operators. Other programs may use this interface
just as well.

In the following chapters, we will examine the two basic layers, the controller and the
state machine, in more detail. Together, they endow the robot hand with elementary reflex
behavior along fixed programmed patterns.

28 A Layered Controller Architecture

period layer
frequency reaction time level of abstraction typical tasks
target position graph evaluation
100s 0.01Hz :
fingertip calibration choice long-term sensor
active exploration signal evaluation
10s 0.1Hz
ek path planning topological mapping
state fransitions sensoric/motoric efficient adaptation
human operator* patterns graph modification
1s 1Hz
hydraulic system
state machine intuitive programming
0.ls 10Hz basic behaviour, abstract interfacing
' reflexes
oil pressure sensors
10ms 100Hz controller layer compliance
: ; filtering
fingertip sensors actor/sensor]
gertip coordination pre-processing
1ms 1kHz hardware protection
piston position
sensors
A 4

Figure 3.2:Time Scales and Abstraction LevelsThe choice of the segmentation into layers

is motivated by distinct tasks that correspond to different time scales. The controller layer is
placed close to the typical reaction time of its associated sensors. To provide natural interfacing
for the human, the state machine has to be placed in the 10 Hz domain, which is still faster than
the hydraulic system can react. All further layers are not strictly tied to external time scales,
but they are separated from each other by approximately one order of magnitude, to decouple
them and thus prevent spontaneous oscillations.

29

Chapter 4

The Controller Layer

To maneuver the robotic hand introduced in chafter 2, a controller process is used which
operates independently from all other related layers. From a technical viewpoint, the only
difference of this controller when compared to other robotic systems’ low-level controller,
Is that it uses direct force control. As stated in the chapter on the sensory equipment of
our laboratory, one reason for this is the absence of reliable positional sensors. The main
reason, though, is that we aim at performing intelligent compliant grasping of objects.
A logical consequence is to leave the problem of reproducing positions to a higher-level
process and perform reliable force control at the low level. Other works, centered around
controlling flexible manipulators or adaptively generating gaits for walking machines [46,
14, 20], indicate that unreliable positional control properties can be compensated with
reliable adaptive force control, which encourages this approach.

The controller layer is the backbone of the whole system introduced in the previous chap-
ter. It interfaces directly with the motors and sensors and is thus responsible of more than
just reaching a defined target position in as short a time as possible.

It has to provide diagnostics and failsafe procedures to protect both the machinery and the
human operator from the consequences of erroneous sensor feedback, cable breakage, oil
leaks, and so forth.

It must take into consideration that the output it gives to the hardware may itself be lost,
either because of broken parts or because an operator switched the motors off.

It must even expect to be temporarily stopped itself, because of other processes taking up
CPU time, and be prepared to compensate for such timing glitches.

These few examples clarify the essence of the problem: we want a controller process that
can safely run at all times and which is watchful enough to prevent harm to the users or to
the machines. For example, expecting the operator to change the controller into a special

30

The Controller Layer

filtered | | target |[|error target
values || values || weights reached

pid constants (d)

piston
position

oil
pressure

motor
current

tactile

Sensors
filters & net error boundary pid control boundary
failure checks calculation check check

(@) (b) ()

Figure 4.1: Controller Layer Diagram: In each iteration of the controller procega) the
sensor signals are first pre-processed and checked for plausible signdls) tredindividual

errors (possibly partly blocked by the failure checkers) are calculated and superimposed with
a given weight vector(c) A PID controller provides the motor current, which is first passed
through a limiter that may also block the integratqd) External processes may influence

the controller’'s behavior by supplying target values and error weights. The convergence of
the controller can be rudimentarily queried with a “target reached” signal. The pre-processed
sensor signals are made available to other applications as well.

“maintenance mode” before being able to work on the hydraulics is a source of potential

problems, because the human might forget to follow this regulation. Therefore, one major

design aim while producing the controller program was to reduce the number of necessary
steps in maintenance and in normal operation to an absolute minimum.

This chapter first gives a structural overview of the controller and explains its basic op-
eration. It then introduces the many small safety mechanisms that make the controller
remarkably reliable and presents a small maintenance operation as an example. The next
section explains the interfaces with other processes and shows the detailed structure of
the shared data. Finally, after treating miscellaneous topics like the choice of program-
ming language and operating system, an example application is shown which visualizes
the controller's operation and allows interactive parameterization.

4.1 The Controller Structure

The controller as shown in figufe #.1 consists of three sections, sensor signal preprocess-
ing, error superposition, and output calculation, which are called in turn once every 100th

4.1 The Controller Structure 31

10 - M input
rolling average
outlier damping

strong change (outlier)
rolling average follows
regular value change improved filter ignores
approx. same reaction

sensor input / filter output
(62}
T

0 1 2
time

Figure 4.2:Outlier Filtering: The addition of a damping term to the rolling average formula
yields much better rejection of outliers. This is due to the statistical distribution underlying
the two filters. While the rolling average filter in based on Gaussian statistics, the damping
term formula emerges from a Cauchy distribution, which has larger “tails” toward positive and
negative infinity. The damping term therefore considers outliers more probable and lessens
their influence on the current filter output.

of a second. One such processing chain exists for each of the nine motors of the TUM
hand. As shown before, the seemingly low frequency is in fact well adapted to the dy-
namics of the hydraulic actuation system to be controlled. We can even take advantage of
the low-pass filtering effect of this system to make the controller resistant to small timing
glitches.

During the first stage, the latest valid sensor values are retrieved. In the case of the poten-
tiometers the value is reliable and far less than 1 ms old, so there is no need for filtering.
The only preparation needed is an offset equalization, because the potentiometer readout
Is subject to drifting due to oil leaks. Still, the sensor’s speed and reliability stand in stark
contrast to their de-facto unreliability for positional control, as explained in chgpter 2.

The oil pressure sensors are equally frequently sampled, so filtering is unnecessary, but
they are much more likely to fail because of cable breakage or membrane destruction. A
plausibility check has been introduced here which detects both conditions.

The fingertip sensors are by far the most fragile parts in the ensemble, which makes plau-
sibility checks a must. Because of the constant oil leaks, the sensors need cleaning from
time to time; the checks indicate the need for this simple servicing task. The fingertip

32

The Controller Layer

sensors are sampled at roughly 600 Hz, which means the samples are at most 1.7 ms old.
To reduce the effect of noisy data around the neutral position, the output of these sensors
is passed through a low-pass filter with a cut-off frequency of about 50 Hz.

As a filtering algorithm, we use a promising approach by Ligno [24], originally intended
for improving neural network training algorithms by minimizing the mean log squared
error (MLSE) rather than the mean squared error (MSE). Instead of using a standard finite
impulse response low-pass filter, we use a slight modification known to provide better
outlier rejection. This is achieved with a quadratic damping term in the influence function.
The new filter output, . ; is thus calculated from the previous outpytand the inpuy as
follows:

A = y—ux

C s A (4.1)

te S
This approach emerges from a mathematical analysis of the formula given a random vari-
able as input. The statistics of the standard versios: (0) follow an assumed Gaussian
distribution of the input values, while # 0 results in an assumed Cauchy distribution.
The consequence is that outliers are considered more likely and thus cannot influence the
filter output as much as if underlying Gaussian statistics were expected, as depicted in the
small experiment in figurg 4.2 on the preceding page.

The current sensor values are subtracted from target values yielding a set of individual
errors, which are subsequently combined in a weighted sum and passed through a bound-
ary limiter to produce the net error. The boundary checker has the same beneficial effect
on the controller’s performance as a sigmoid transfer function has on the performance of
a perceptron. It allows high sensitivity of the system in a defined area, while avoiding
extreme reactions outside this area.

In a final step, the net error is passed through an integrator and a first derivative calculator
to produce PID control inputs. These are superimposed with weight congfant&’;,
and K p to produce the output, which again passes through a boundary limiter to produce
the motor current.

The sections overlap to some extent, i.e., the plausibility checks during preprocessing can
block error components in the superposition section, and the output boundary checks can
block the integrator’s operation.

To obtain an approximate calibration of the piston position sensors, an internal minimum
value is kept for each potentiometer. These minimal values are hidden from client appli-
cations, which can only use the calibrated sensor readings.

The controller additionally provides a flag which it sets if the net error drops below a given
threshold. This flag can be used by clients to trigger an action as soon as the controller has

4.2 Mechanisms for Safety and Reliability 33

reached its equilibrium. Clients reset this flag upon changing the controller parameteriza-
tion.

It is a trivial fact that this controller can zero a given mix of errors with the appropriate
parameterization. But how does it behave under partial failure conditions? We will discuss
this topic in the next section by examining some of the most likely hazards.

4.2 Mechanisms for Safety and Reliability

The controller layer features a few additions which combine to protect against a set of
potential dangers. These additions @jehe filters and plausibility checkers in the pre-
processing sectiofij) the boundary limiter for the net error, afidl) the boundary checker

for the motor current output. The controller loop itself runs in real time with a loop fre-
guency of 100Hz. An overload detector detects and reports timing faults. Some of the
most common dangers to smooth control are:

Sensor failure: A broken cable or a defective electronic component can inflict severe
damage on the total system, because the net error contains large artifacts that cannot
be compensated by the output. Some of the most common sensor failure situations
are broken membranes of oil pressure sensors, broken fingertip sensor ribbon cables,
and oil-soaked fingertip sensors. Special diagnostic logic has been incorporated into
the controller to gracefully react in those situations by switching the appropriate error
channel off and notifying client applications.

But it is infeasible to produce detector code that correctly diagnoses all possible kinds
of erroneous sensor behavior. The above detectors are only the first stage of protection
against feedback failure. If the net error cannot be compensated, the output will grow
indefinitely because of the integrator component controlle&byThe last boundary
checker therefore not only limits the motor current to a safe level, but also stops the in-
tegrator from further increasing the accumulated error. The integrator’s internal value
is left unchanged, though, so that it will smoothly re-enter normal operation once the
feedback channels are repaired.

Motor failure: This error condition is similar to the one previously discussed, because
the controller cannot zero the net error anymore. The output current limiter shuts
down the integrator as described above, and the controller’s internal state freezes. If
the motor is switched back on, it will initially receive a safe current and the controller
will operate normally with no further intervention.

Wrong parameterization: Many internal parameters can be changed from the outside,
and some of them can cause undesirable controller behavior. Although there is no

The Controller Layer

warning against erroneous parameterization, the net error limiter makes the configu-
ration of the error mixture much easier. The motor current limiters provide additional
protection against mis-configuration.

Controller oscillations: The controller parameterS», K, and K, are not part of the
standard client interface structure, because wrong configuration can produce sponta-
neous oscillations. Instead, these parameters have been preset to a near-optimal setup
which cannot easily be made to oscillate. Still, if the external force is varied with a
frequency near the controller’s characteristic frequency, small damped oscillations can
be observed.

Timing glitches: If the controller process itself is temporarily halted or if it crashes and
needs to be restarted, the output current values freeze, possibly with high values,
which would result in a sudden contraction of the respective finger joints. An elec-
tronic watchdog circuit, which has to be disarmed periodically with write operations,
switches off all motors if the controller program crashes. Upon restarting, the con-
troller will recover, either with default parameters or with the parameter set left over
by the previous instance. The internal error limiter helps to smooth out the initial
motion.

Note that in all the situations described above, there is no need to configure or otherwise
change the controller logic from the outside. The process continues running under all
circumstances, partly shutting down and restarting automatically as the need arises.

This design makes maintenance exceedingly easy, especially compared to the solution
previously in usel[36]. As an example, consider the operation of refilling one or more oll
pistons (see figure 4.3 on the next page).

Formerly, it was necessary to shut down the controller software, fill the oil piston while
the motors were disabled, then start a special helper program to reduce the oil volume to
a defined value, restart the controller, and go through a series of calibration steps in order
to use the potentiometers as replacements for joint angle encoders.

Since we do not use positional control anymore, the last step is unnecessary. The main
advantage of the new software system is that it is sufficient to switch off the motor currents
with the hardware watchdog blocking switch, refill the oil pistons, and switch the motor
currents back on. The controller will recover and re-calibrate automatically.

4.3 Interfacing with Other Processes

The controller layer communicates with other processes through a set of parameters which
reside in a UNIX shared memory segment. Almost all controller state variables are con-
tained in this segment, which serves as a fast communication channel with client applica-
tions (see figur€ 4.4 on page 36).

4.3 Interfacing with Other Processes 35

3 stretch fingers

4 refill oil at base
5 enable motor currents

6 start refilling program

7 drain oil from fingers until stretched
8 run calibration procedure

9 restart controller process

former procedure new simplified procedure

Figure 4.3:Example Maintenance Procedure:With the new controller, there is no need to
start special software for maintenance operations. Switching the motors off is enough to make
the controller degrade into an idle state. The formerly necessary calibration procedure after oil
refills is obsoleted by an automatic internal calibration which is part of the control loop.

The shared memory segment survives controller process crashes, thus allowing the next
controller process to use the same data as the defunct process and use it to take over
smoothly.

Because all entries in shared memory are atoms, i.e., small data types which are read and
written by the kernel in an uninterruptable operation, there is no need for mfitexes
other signaling mechanisms which would potentially enable malignant client applications
to block the controller. Instead, the controller process runs completely independently of
its clients, which may change parameters at any time.

Therefore, clients have no control over transitional behavior during re-parameterization.
But because, as a consequence of the hydraulic system’s inertia, the controller generally
has loose timing restrictions, such precise control of transitionals is unnecessary.

1This POSIX synchronization method relies on applications to only allocate resources for short periods
oftime. Thus, errors in the allocation and release scheme may block the controller from reading its parameter
set. Double buffering or other more refined methods were abandoned because the use of atoms achieves the
same goal.

The Controller Layer

local distribution network distribution

u
= DACS
mEn .
local client local client . client
.
I I DACS
p " ® client
shared memory segment DACS interface
\data kept if clients crash local client

critical application respawn
e.g. controller, state machine

Figure 4.4: Interfacing Mechanism: To ensure reliable operation of a critical application

(e.g. the controller), it is detached from its communication interfaces. All vital variables are
kept in a shared memory segment which survives crashes of both the underlying program and
of client applications. The main application is re-spawned automatically, allowing the succes-
sor to take over smoothly. Wherever possible, kernel atoms are used for data storage to obsolete
the use of mutexes, since they might destroy the decoupling effect of the shared memory seg-
ment. One local client implements a DACS communications host, providing clients across the
network with access to the current data.

Accessing the parameter set by means of the shared memory segment is naturally only
possible on the same host. For access over the network, we rely on the communications
tool DACS [Z1]. One special local client has been implemented which interfaces the
shared memory data to a DACS demand stream and a message port. Clients around the
network may query the parameter set by tapping the stream, and may feed new parameter
sets by sending an appropriate message.

4.4 Implementation Details

The construction of the controller layer made many design decisions necessary, some of
which shall be discussed in this section.

Choice of host machine: Former controller software has been implemented on an em-
bedded controller board, while this system runs entirely on a general-purpose work-
station. One reason for choosing an embedded controller is reliability of communica-
tion channels: embedded controllers should communicate much more intensely with
the hardware they are attached to than with the outside world, i.e., the higher-level

4.5 A Visual Controller Interface 37

client applications. In our case, the advantage of using an embedded controller be-
comes marginal in this respect, because communication with the hardware and with
the higher-level applications are almost equally intense.

Another reason is the added reliability of a dedicated computer for just one task, espe-
cially if close attachment to real time is necessary. Luckily, we can be a bit loose about
keeping track of time, as shown above. Our control program may share the computer
resources with other processes since it will only put a small amount of load on the

processor.

The advantages of using a general-purpose machine are many. Development of the
software is much easier because debuggers are available and the hardware can be sim-
ulated. The same development system can be used for all the layers, which simplifies
project management. Finally, standard UNIX system resources such as signals and
shared memory are available, making the finished product at least partly portable, al-
though it is specialized for one specific hardware setup.

Choice of programming language: The programming language used for the implemen-
tation of the controller is ANSI-C. The graphical user interfaces were written in Tcl/TKk.
At the beginning of this project, Java was already in the discussion, but we abandoned
it because of its lack of performance and the necessity to build new hardware interfac-
ing components. User interfacing with Tcl/Tk loadable modules is straightforward to
write, and the GUIs produced are appealing and responsive. This combination proved
so powerful and fast in terms of development time, that we kept it throughout the
project.

NEO compatibility: Being the most frequently used and most intensely developed pro-
gramming tool in our team, NEO deserves special attention. The data structure of
the DACS interface has been chosen in such a way that DACS_NEO can access the
controller layer easily using the standard units.

One aim of this work is to provide a usable system for communicating with the robotic
hand. With respect to client applications, the quality of the communication channel is
crucial. The interfaces presented here provide different programming environments with
the controller parameter set as shown in t@blg 4.1 on the next page. The visual controller
front-end introduced in the next section shows the Tcl/Tk interface, which works both
locally, i.e. on the same host, and network-wide, using DACS.

4.5 A Visual Controller Interface

As an example application for experimenting with the controller, we provide an application
which visualizes the internal state of the finger controllers. Target values can be changed

38

The Controller Layer

per finger (x3):

per piston (x3: L,M,R):
PID controller (Kp, K;, Kp)
feedback mixer (m)

targets and errors:
potentiometer (target, error, zero calibration)
pressure (target, error, zero calibration, failure flag)

fingertip:

targets (1.,,7,,F~)

errors (1,,Ty,F)

Z axis zero calibration, failure flag, outlier filter
target reached flag

motors active flag, currents attenuation filter

Table 4.1:Controller Parameter Set: All state variables listed are present in the local shared
memory segment, although some are hidden by standard application interfaces, e.g. the Tcl and
DACS interface used for the controller GUI (see figure 4.5). Among those hidden variables are
the PID parameters, the sensor filters, and the zero calibration entries (shown in slanted print).

Left Mid Right Left Mid Right Left Mid Right
Pot 0.0 0.0 0.0 Pot 0.0 0.0 0.0 Pot 0.0 0.0 0.0
| P o= — | P o= —— | P =) ——
T -1.0 -1.0 -1.0 T -1.0 -1.0 -1.0 T -1.0 -1.0 -1.0
| = | " | | = | " | Jp—r—; | " F——
Tip(YXv) 0.0 0.0 0.0 Tip(YRv) 0.0 0.0 0.0 Tip(¥v) 0.0 0.0 0.0
(o=t == [t == | = ==
Tipz 0.0 0.0 0.0 Tipz 0.0 0.0 0.0 Tipz 0.0 0.0 0.0
[

I == == = == == ==t == ==

8 5 1

Fingertip I = J = J = j Fingertip = J - J ‘ = j Fingertip = J = J = i
\'; -5(0y J j l j a \'; =6{ 0 J 1 j l j \'; :5(03 J 1 j l j l

2= 106¢ 0} 2= -6(0 2= -4(0}

Pot 630{ 100) 505(1003 169(100) Pot 197¢ 100) 329(100) 918¢ 100) Pot 209¢ 100) 466{ 1003 3I96¢ 100}
Pressure 203{ 200} 203{ 2003} 200¢(200} Pressure 200{ 200} 189¢ 200} 202¢ 200 Pressure 200{ 200} 200{ 200} 200¢{ 200}
Hotor -167 49 L Hotor -98 -9 -180 Hotor -104 -14 -15

Mode: SHH Taryet Reached | i Print Targets | Copy Targets | | Update Display | Send Targets Exit |

Figure 4.5:Visual Controller Interface: The sensor values, the current target configuration,
and the error mixture settings are shown in this interactive panel. With the “send targets”
option, the targets and the mixer settings can be changed and sent to the controller layer. Ad-
ditionally, the complete target set can be printed for later use, e.g. in the state machine.

4.5 A Visual Controller Interface 39

interactively and subsequently printed out in a format compatible with the Tcl procedure
for target setting (see figufe #.5 on the facing page).

The display panel shows three equal sections in the upper area, one for each finger, and a
few control switches in the lower area.

Each finger panel consists of mixer settings (upper portion), fingertip sensor readouts (left
bar gauge), and three oil piston displays (lower right portion). The left and right piston
displays of each finger belong to the first joint flexing and bending degrees of freedom, the
middle piston belongs to the coupled second and third joint flexing motion.

Each of the colored bars on the panel shows an error. When a bar is invisible, the corre-
sponding error is zero. The thick protruding line on one end of the bar is the target value,
the other end is the current sensor value.

The piston displays show the potentiometer error to the left, the motor current output from
the controller in the middle, and the oil pressure error to the right. The sliders to the far
left and right of each piston display snap to the target value of the potentiometer and the
oil pressure respectively, serving as both input and output devices.

The fingertip displays show the torque in the inward flexing direction as a vertical bar,
in the sideways bending direction as a horizontal bar, and the pulling/pushing force as an
extra vertical bar.

The mixer sliders in the top portion show the influence of each individual error on the total
error reported to the PID controller of each motor. These are the potentiometer error, the
oil pressure error, the fingertipor y component, and the fingertipcomponent.

As soon as the net errors of all controllers reach zero, the field labeled “Target Reached”
lights up. It is switched off automatically when a new target is sent to the controller.

Each slider in the displays described above can be used to alter the target settings of the
controller. To prevent the casual user from unwillingly disturbing the controller, the check-
box labeled “Send Targets” must be activated before any changes can take place.

The other global controls switch the periodical display updating on and off, transfer the
current sensor value profile into the target values, and print the current target setup to the
standard output.

The current condition of the fingertips and the oil pressure sensors is shown as small warn-
ing “lamps”. If one of these lamps lights up and the corresponding error bar is grayed out,
the corresponding sensor value is not being used for error calculation. Further diagnostic
tools can then be used to spot the problem, but in most cases the necessary maintenance
work is rather obvious.

This simple program helps to understand the behavior of the controller and has been ex-
tensively used in the course of programming the state machine, which we will examine in
the following chapter.

40

The Controller Layer

T T
piston position
motor output

b]
current/target pressure F

- . _/N

current/target tip torque

W |
target reached flag

0 2 4 6 8 10 12 14 16
time/s

Figure 4.6:Startup Controller Behavior: The trace shows the first 16 seconds after switching
the controller on, during which it zeroes only the oil pressure error. The oil system’s peculiar
behavior produces a time-lag larger than would be expected from the hysteresis alone. This is
due to the stick/slip transitions in the finger piston, which are frequent because motion is slow.

4.6 Performance Evaluation

Figureq 46l 417, and 4.8 show the behavior of the controller in different situations. During
the startup phase, depicted in fig{irg 4.6, the driver piston slowly moves inward to establish
a safe oil pressure. The finger piston reacts by moving in several small jerks, which can be
recognized in the non-monotonic trace of the oil pressure. The controller must not let the
motor current output reflect the oil pressure pattern, or spurious oscillations may be the
result. The trace shows that the controller successfully generates the desired oil pressure
with a smooth, conservative motor current output.

Compliant gripping can easily be achieved by letting both the oil pressure and the fingertip
pressure influence the net error. Figlrg 4.7 on the facing page shows this configuration
if no object can be found. The equilibrium state of the controller is determined by the
fingertip force. If no object touches, the error remains large and is only compensated by
raising the oil pressure proportionally. The result is that, like a virtual spring, the finger
will bend inward by a small amount.

Using the same configuration with an object produces a different outcome (segTigure 4.8
on page[42. The net error is still reduced to zero, but the sensor configuration in the
equilibrium state is different. In this way, client applications can examine the equilibrium

4.6 Performance Evaluation 41

T L
M

M
e

current/target pressure ’
N

I—

current/target tip torque

mixed error Ao N Do e It N
l/ i WY ALt v i M o yrrfy Ny A v
target reached flag
1 — 1 1 1 1 1 1
20 22 24 26 28 30 32 34 36

time/s

Figure 4.7:Mixed Feedback Controller Response Without Contact:The controller zeroes

the mixed error from the fingertip and the oil pressure. The sudden changes in oil pressure
are due to stick/slip transitions, and the unsteady signal from the fingertip is due to vibrations

of the robot arm with a moderate amount of superimposed noise. Nevertheless, the controller
configuration produces a sufficiently steady motor current output.

state as soon as the target reached flag is activated by the controller layer, and evaluate the
sensor pattern to take the appropriate action.

The controller configuration shown in the traces suffices to make the hand hold an object
compliantly, also tolerating some degree of intervention by a human, as shown irffigure 4.9
on the following page. The nine virtual springs implemented by the controller can help to
grasp objects in a robust manner. Higher level processes profit from this robustness, as we
shall see in the evaluation of the state machine.

42

The Controller Layer

T . s
motor output pisS ——v—

current/target pressure

[/ N BU

current/target tip torque

_V_L\/J

R e
mixed error ,,'/\\,__
/" RS vA RSSO
target reached flag
—_ —
39 40 41 42 43 44 45 46 47 48

time/s

Figure 4.8: Mixed Feedback Controller Response With Contact: With contact to a rigid

surface, the same controller configuration as in figlutie 4.7 on the preceding page obtains a better
match for the oil pressure and the fingertip torque, but this is purely coincidental, because the
controller ignores the individual errors and only zeroes the mixed error. The difference in the
sensory response patterns can instead be used by higher-level processes to discriminate contact
and non-contact situations.

Figure 4.9:Compliant Control: The controller layer alone already creates some degree of in-
teractivity, because the immediate force control produces virtual springs which grasp an object
compliantly, as shown above. Higher-level processes can rely on this robustness and therefore
operate on coarser time scales. The total behavior is still perceived as smooth and immediate
in its reactions.

43

Chapter 5

The State Machine Layer

At this stage we have a controller layer which allows us to determine the level of compli-

ance of the manipulator, a target posture, or a mixture of both. The controller seemingly
shows some degree of action, but this is purely due to the inherent compliance of force
control. The controller can do nothing more than simulate a set of springs of variable
toughness around a target sensor feedback profile.

To implement active motion changes triggered either by client applications or by specific
sensor feedback patterns, we present a state machine formalism which is simple in its basic
structure but can be expanded to arbitrary complexity if required. This engine can even
become a universal communication platform for integrating the robotic hand into other
applications.

The present chapter first discusses the formal principle of the state machine, which incor-
porates simultaneous communication with several client applications along with its ability
to encode behavior patterns. The following sections detail the definition of a state and
of a state transition, the basic building blocks of a complete system. The chapter closes
with details on the actual implementation, an example state graph, and its performance
evaluation.

5.1 The Programming Principle

The most obvious task that has to be accomplished after the successful implementation of a
controller which can drive the manipulator hardware is to switch from one set of controller
parameters to another according to a set of pre-defined rules. Many other robotics control
systems use a trajectory generation program which interpolates between the current and
the target positions and feeds the intermediate steps into the controller.

44

The State Machine Layer

We choose a different approach which does not generate trajectories, but instead encodes
a certain behavior pattern. The aim is to be able to program reflex-like reactions entirely
without trajectory generation. In some respects, the state machine layer might be viewed
as an intermediate step between low-level control and trajectory generation which is absent
iIn most other systems (see figlirg] 1.3 on gage 7).

Consider a typical robotics control problem for the TUM hand: an external command
signals the hand to grasp an object. A guarded motion follows, during which the tactile
sensors must constantly be watched to determine when to end the motion and whether the
object was in fact successfully grasped. Once the object is in position, checking the sensor
values is still necessary. If the object is slipping, fast re-gripping with stronger contact
forces may be necessary. If the object is lost altogether, the hand may as well relax and
notify other applications.

This scenario shows that especially for the robotic hand there are virtually no move-
ments that can be done without constant sensor surveillance. This contrasts to the habitual
robotics scenario where guarded motions are an exception to the rule of pre-programmed
trajectories. It is therefore a straightforward step to define a programming environment
in the manner of a Turing machine, with states and state transitions. The state transitions
need not partition time into equidistant slices. The time between one state transition and
the next may vary widely depending on the amount of external disturbances.

Naturally, the above toy problem can be solved with conventional programming methods,
but the state machine formalism makes the code much clearer. As is often the case with
programming languages, a given goal can be reached in many ways, but some solutions
look neater and are more easily understandable than others. In this case, extending the set
of situations that the program can handle is rather complicated in the traditional approach.
The state machine paradigm facilitates the implementation of new behavior patterns in
a purely additive way. Formerly written code remains unchanged as well as formerly
designed behavior patterns.

By programming only in terms of states and state transitions, the actual control flow is hid-
den. Therefore, a dynamic implementation is possible, in which states and their respective
transitions may be added during operation. The removal of transitions is equally possible,
while removing states requires some provisions. We will turn to these topics in the section
about implementation details.

The state machine model is a general programming paradigm, although we have developed
it with a very special problem in mind. Naturally, only a small family of problems uses this
method to its full potential. For example, loops and counters are extremely cumbersome to
implement in this framework. States and state transitions have to fit into a relatively simple
pattern, because otherwise the problem’s complexity is only deferred into the design of the
states and the programming task does not become significantly simpler. In view of these
restrictions, the analogy (if not equivalence) of the Turing machine becomes evident.

5.2 States and State Transitions 45

5.2 States and State Transitions

The state machine knows a dictionary of states, one of which is the current state. Each
state owns a set of possible transitions to other states, and each transition happens if some
criteria are met. Note that as long as the state does not change, no action is taking place.
The main loop only periodically checks the transition criteria corresponding to the current
State.

A stateconsists of the following elements:

Name: This is a universal identifier for the state. State transitions address the target state
by its name.

Parameter Set: Each state corresponds to a set of controller parameters, which are loaded
into the controller layer when the state is activated. In more general uses of the state
machine formalism, such an attached data structure may either be omitted or replaced
with a generic action taken upon entering the state.

State Transitions: A list of possible state transitions. This list may be dynamically ex-
panded or reduced.

Eachstate transition contains:

Target State Name: The identifier of the state that can be activated by this transition.

Switching Criterion: An expression which returns a boolean value, determining whether
the state switch should take place or not. This expression has access to all sensory
information from the controller layer and can use this information to respond to certain
feedback patterns.

In our scenario, transition templates are provided for some typical situations, where trig-
gers are needed at a certain timeout, upon reaching a target, or after surpassing an error
threshold. These templates can be parameterized and used in several states.

The state machine can also accept state transitions from outside its own graph. This is
necessary for creating a user interface in which states may be switched by hand, but its
more universal use comes into play when other complex programs, possibly state machines
themselves, introduce new state transitions. We will discuss this topic at the end of this
chapter.

46

The State Machine Layer

5.3 Implementation Details

The state machine implementation has to take the exceptional flexibility of the concept
into account and still offer adequate performance for the task. The timing diagram (see
figure[3.2 on pagg 28) shows that a polling loop frequency of about 10 Hz is sufficiently

fast in view of the reaction time of the hydraulic actuation system. It also compares fairly

well to the reaction time of a human, which makes the state machine’s behavior seem
natural to the operator.

This timing restriction is easily met even in script languages. We chose Tcl/Tk for the
implementation of the state machine because of its remarkable flexibility and because it
was already in use for other parts of the project. One of the benefits of using Tcl (or almost
any other interpreted language) is that it is relatively easy to implement the addition of
states and state transitions because program code can be contributed as a text which is
then evaluated by the interpreter.

The interfacing code for inter-process communication consists of an ANSI-C Tcl plug-in
which handles a shared memory segment. This segment contains the name of the current
state as a string, a mufkfor this string, and a set of flags which other processes may use
as signals for change notifications. Because of the state machine principle, the identifier
string suffices for all external communication. Because the state changes at irregular in-
tervals, a change notification mechanism is necessary to eliminate polling loops in client
applications.

As in the controller layer, network-wide communication is handled by DACS. The DACS
interfacing code is executed in a separate process, which attaches to the shared memory
segment described above. It provides two functions, “getState” and “setState”, with ob-
vious meanings, and a demand stream, “newState”, which allows client applications to
receive event triggers as soon as a state change takes place. Even several interconnected
state machines can be implemented in this way, which work totally independent of each
other most of the time, but still synchronize and react to each other depending on the
situation. We will return to this in a later section.

The example code snippet (see fighre 5.1 on the next page) shows that the state machine
can in fact be very easily programmed. The versatile expression evaluation capabilities
of any modern high-level programming language are also available in Tcl, allowing us to
formulate complex condition expressions for the state transitions. And the scripting even
allows the complete state execution mechanism to be re-implemented for individual states.

Let us now examine the performance of the state machine in a real-world scenario.

1A mutex is a standard POSIX mechanism for controlling distributed simultaneous access to selected
memory areas.

5.4 An Example State Graph 47

set states(Stretch) {
State_run $targets(Stretch) {
{Crit_timeout 3000 Loosen}
{Crit_targetReached Loosen}

}
}

set states(Loosen) {
State_run $targets(Loosen) {
{Crit_pressureErrorin 4 Wait}
}
}
set states(Wait) {

State_run [copyTarget "$currentProfile"] {
{Crit_potErrorOut -300 Grip}

}

Figure 5.1:Example State Machine Code:The Tcl implementation of the three preparatory
states shown graphically in figufe]s.2 on the following page consists of the definition of entries
in an array called “states”, each of which is a script starting with the generic state evaluation
command “State_run”. This command takes the controller parameterization and the list of
transition criteria as arguments. The criteria use templates for watching a timer, the pressure
sensors and potentiometers, and the controller’s target reached flag.

5.4 An Example State Graph

In the human-machine communication scenario described briefly in the introductory chap-
ter, the robot hand shall pick up an object pointed at by the human. In this example, the
vision algorithms for gesture recognition and object fixation deliver an approximate esti-
mate of the object’s position, and trigger the first approach motion of the robot arm. The
wrist camera then performs object recognition in its own right to correct the approach po-
sition for grasping, and commands the hand to grasp the object (see[figure 1.2 §h page 4).

Figure[5:2 on the next page shows the hand’s state graph for this simple application. The
two commonly traversed threads are shown, one preparatory sequence, and one gripping
sequence. The hand obtains no orientation or size information on the object, which sim-
plifies the state diagram. For different grasping strategies, different state threads could be
designed. A classification algorithm, which decides which strategy to adopt, would then
replace the simple gripping trigger used now.

This minimal state graph already proves the usefulness of the layered control architecture
concept. The compliance of the controller allows the hand to grasp and hold a large variety
of objects, and the state machine identifies exceptional situations and handles communi-
cation with client applications. A typical grasping sequence is shown in figure 5.4, which

demonstrates the coupling of robot motion and hand reflexes. A simple user interface can

48

The State Machine Layer

>
3sec or target reached all pressure errors small

a%@ﬁgn any piston
: b moving
outward any piston moving inward M

one finger
all fingers touches
touch

controller target
reached

Figure 5.2:State Graph for Grasping: The figure shows frequent state transitions in thicker
lines than infrequent ones, which exhibits two sequences, one for moving the hand into a
defined waiting position, and one for grasping an unknown object. The top sequence, stretch—
loosen—wait, moves the fingers outward quickly, then contracts into a relaxed posture, waiting
for a signal to grasp an object. This signal either comes from a client application, or it is
triggered by an operator bending a finger inward. The bottom sequence, grip—strong—strong’'—
hold, first carefully establishes contact with at least one finger, then raises the gripping force to
safely hold the object with all three fingers. If successful, the mechanism stays in the holding
state. At several stages there are fallback transitions to the state “lost”, which serves as a failure
signal to outside applications.

be used to monitor the inner workings of the state machine, and to force state transitions
externally.

5.5 Interleaving State Machines

Being able to communicate with the state machine by querying the current state and forc-
Ing state transitions has some noteworthy implications. In the above toy problem, an ex-
ternal application may command the state machine to grasp an object by issuing a forced
state transition to a state labeled “Grip”. This may well be compared to a function call in

common programming languages. The return value is not delivered instantly, though, be-
cause it cannot be. After some time, the state machine might enter a state labeled “Hold”
or a state labeled “Relax”. The external application will register this change and treat it

5.5 Interleaving State Machines 49

other program tflgger ... ?égernzlrj?glrlaar;er)
o
trigger
AN E or
state machine i/
user interface trigger ({-

=D

B~ B

controller layer

Figure 5.3:Communication with State Machines: The trigger mechanism of the state ma-
chine’s communication interface allows complex interaction with other applications and state
machines. Many entities can operate independently, reacting on triggers from other entities and
triggering state changes in those entities. The resultis a much more complex state machine on a
higher level of abstraction, possibly yielding a surprisingly versatile system based on relatively
simple components.

as a return value, because it reflects the current situation as a consequence of the situation
triggered by “Grip”.

In this way, the state machine blurs the distinction betwiection callsor inputs and
return valuesor outputs Several restrictions of conventional function calls are absent in
this model:

Ambiguous ResponsesWhich return value should the “Grip” command described above
deliver, if the object was successfully picked up after one second? It could just as well
be lost in two seconds. How long should the function wait to be sure the return value
is correct? In an environment of constant external disturbances, e.g., in the presence of
a human operator who may interfere at any time, these questions cannot be answered
satisfactorily. In contrast, the state machine approach does not even ask these ques-
tions. The current state may change several times, and it is up to the client application
how to react to those changes.

Interfering Commands: The system may receive commands from several sources, e.g.,
its own transition set, the user interface, and a client application. With a function call
interface, one source of commands may block the other, resulting in a degradation
of the total robustness and reactivity of the system. The question arises when to use
blocking calls, and when to use non-blocking ones. Since the state machine delivers no

50

The State Machine Layer

conventional return values, all commands are non-blocking, and interference between
command sources cannot erode the system’s performance.

Busy Loops and Events: Client applications can decide individually whether they wish
to poll the state machine or rather be notified of any changes. This allows program-
ming environments with different underlying paradigms to communicate with the state
machine in the fashion they prefer.

One considerable drawback of the state machine technique should be mentioned, though.
Because the problem formulation with states and state transitions hides the control flow, it
is difficult to exactly predict the behavior of a state machine. With coupled state machines,
the danger of deadlocks becomes more prominent. There is no simple scheme to avoid
deadlocking, and loop identification itself can become difficult in the running system.
There are provisions in the state machine to introduce a relaxation time which inhibits
external state transitions if they follow up on another too fast. This at least can make some
deadlocks visible for the human eye.

5.6 Conclusions

In the past chapters, we have introduced a control and behavior simulation system engi-
neered to fit the special hardware equipment in our laboratory. Nevertheless, the structure
of the system has been formulated in a general way, and it is thus applicable to a large
number of control problems.

Especially in cases where fast reactions are valued higher than the exact tracing of pre-
programmed trajectories, this system can provide a powerful and simple solution.

The system further offers an interfacing scheme which enables an arbitrary number of
clients to command the control system and to query its state, all without impairing the
overall performance or increasing the reaction delays. In distributed systems, where many
components work asynchronously and simultaneously, this feature is extremely useful.

In the following chapters, we will turn to the topic of trajectory planning, which cannot
be solved efficiently by the state machine alone. We will find that, along with trajectory
planning, obstacle avoidance and exploration, both passive and active, almost automati-
cally come into play. The close relationship between these disciplines shall be discussed
first.

5.6 Conclusions 51

grip, strong hold

lost

Figure 5.4: Photo Series of a Grasping Action: The top row shows pictures during the
preparatory state sequence stretch—loosen—wait (see figure 5.2 off page 48). In the middle
row, the sequence grip—strong—hold can be seen when grasping a simple object. In this case,
the robot arm is controlled by a second state machine. When the operator touches a finger, this
machine lowers the arm onto the object and triggers the grasping sequence. If the human steals
the object or the manipulator loses it, the hand’s state machine signals this condition (bottom
row) and then re-enters the sequence with a stretching motion.

Part |l

Exploration with Vector Quantization
Networks

55

Chapter 6

Approaching Intertwined Tasks

6.1 Introduction

With the low-level controller and state machine layers described in the previous chapters,
we have built a system with reflex capabilities and fixed, albeit re-programmable, behavior
patterns. The system so far has no knowledge about its surroundings and is unable to
perform long-term planned motions. Since we wish to change this, let us first briefly
recall the most commonly used method of trajectory generation.

In traditional robotics control systems, the natural thing to do after having built a positional
controller for a manipulator is to make the manipulator move from one designated posi-
tion to another. This is achieved by interpolating between a starting and a target position
while taking position, velocity and acceleration limitations into account. Especially the ac-
celeration limits pose some problems in hitting the target position, sometimes producing
oscillating or orbiting trajectories.

This task of trajectory generation is surprisingly intricate in itself, and is therefore gen-
erally treated independently of obstacle avoidance or exploration. These are considered
higher level tasks which themselves take control over the trajectory generation.

But viewed from a different angle, the tasks of trajectory generation, exploration, and
obstacle avoidance in fact form a group of strongly coupled problems. What joins them is
the fact that they all work with some representation of the manipulator’s workspace (see
figure[6.1 on the following page).

Trajectory generation requires knowledge about the manipulator’s state space in order to
find a path which is optimal in some given respect, like short execution time, or short spa-
cial distance. Exploration provides this knowledge, for instance about joint angle limits,
long-term obstacles, or even information about manipulator dynamics. Obstacle avoidance

Approaching Intertwined Tasks

identify blocked paths

path
planning remove illegal
pathways
find via points

to a target state space
representation

i . aoz\
identify knowledge @
_ uncharted
areas
exploration

Figure 6.1:Interplay of Different Tasks: Although they may at first seem unrelated, state
space mapping through learning, path planning, obstacle avoidance, and exploration interact
closely through their knowledge of the state space, which then acts as a communication hub in
the star-shaped structure shown. Choosing the state space representation in a way that satisfies
the requirements of each of these tasks can provide a simple and powerful high-level control
architecture.

obstacle
avoidance

find paths around
forbidden areas

set path
target

Is a special case of trajectory generation. It uses knowledge about possible obstructions to
find the best path to a given target position while at the same time avoiding collisions.

The motivation for the research presented in the following chapters is to find a set of
algorithms which enables us to solve these tasks in a way that takes advantage of their
close relationship.

To this end, we first propose a vector quantization representation of the workspace, a
“map” which some algorithms expand and modify, and which others use to maneuver the
manipulator. One consequence of this approach is the creation of a novel neural network
type, the ITM, which is especially tailored for trajectory control problems. But let us
first review the most prominent vector quantization network types which inspired this
development17].

6.2 Literal Interpretation of Topological Maps

Neuro-informatics offers a wide variety of vector quantization and topological mapping
networks, most notably, of course, Kohonen’s Self-Organizing Map (SOM), which has
inspired an astounding number of scientific publications.

6.3 Evaluation of Existing Models 57

The interpretation of the mapping produced by such a network is usually rather abstract,
indicating a close relationship between the vectors corresponding to neighboring cells,
or proposing a lower-dimensional ordering of the input data. This abstract interpretation
has led to simple and effective means of data analysis. We will return to the data mining
aspects of topological maps in chagier 7.

But from a roboticist’s point of view, interpreting a topological map literally can provide

a score of new possibilities. The nodes represent selected (quantized) positions in the
manipulator’s state space, while the edges represent possible pathways from one node to
the other. This viewpoint also allows us to benefit from graph theory, which provides
efficient path finding algorithms, for example.

This approach requires the use of a vector quantization network with considerable flexi-
bility and adaptability in its graph structure. We will examine several potentially useful
network types in the next chapter.

Note that keeping a “list” of vectors that span the state space we wish to map means
that we have to accept a quantization error introduced by the spacing of those vectors.
Geometrical state space descriptions do not have this drawback, but there is no easy way
of building such descriptions for arbitrary state spaces. The quantization error is therefore
a small price to pay for the simple and general formulation of topological maps produced
by the networks described.

6.3 Evaluation of Existing Models

We need to find a network model which will perform well in a robotics scenario. The

following list introduces the most prominent existing network types and outlines their
adaptation algorithms. The list is not complete, but focuses on algorithms which exhibit
different operation principles.

The Self-Organizing Map (SOM)

First introduced by Kohonen]23], the SOM consists of a fixed number of nodes arranged
in a fixed topological order, e.g., a grid or a chain. The adaptation consists of moving the
weight vector closest to the stimulus and its topological neighbors toward the stignulus
by a small fraction, the learning rateThe learning rate and the smoothness termvhich
defines the topological radius of the influence of a single stimulus, are lowered systemat-
ically throughout the learning process. This procedure, called “simulated annealing”, is
crucial for the quality of the final map. Especially lowering the smoothness term too fast
Is likely to produce unwanted topological warps, as shown in fifflufe 6.2 on the next page.

58

Approaching Intertwined Tasks

Figure 6.2:Topological Warping in SOMs: This two-dimensional square SOM grid exactly
matches the topology underlying the stimuli, a square two-dimensional uniform random distri-
bution. Nevertheless, the resulting mapping does not necessarily be ideal, as in the rightmost
example. Fast annealing of the smoothness teand the learning rateresults in topological
warps, shown in the left and middle pictures. The relationship between the neighborhood in
the feature space and in the grid becomes locally disrupted.

The Parameterized Self-Organizing Map (PSOM)

The PSOM, introduced by Ritter [41], does not require a long iterative adaptation process
like the SOM. Based on assumptions about the smoothness of the input space, the PSOM
generates an interpolation map based on a fixed number of nodes arranged in a fixed topo-
logical order. Because of its interpolation capabilities, the PSOM can be used for learning
smooth transformations with few input samples. Like the SOM, the PSOM can be used
as a simple associative memory to fill in missing entries in an input vector, but the PSOM
generates missing entries by evaluating the interpolation of all nodes at the position of
the stimulus. The quality of the input stimuli during training is therefore crucial for the
resulting map.

The PSOM has been successfully applied in learning geometrical transformations, be-
cause its interpolation feature blurs the quantization effect visible in standard SOMs. Its

major drawbacks are the strong dependency on reliable samples, and the impossibility of
incremental learning.

The Hyperbolic Self-Organizing Map (HSOM)

Yet another variant of Kohonen’s SOM, the hyperbolic SOM, introduced by Rifter [39],
presents an elegant way of circumventing the dimensionality problem. Its topology is still
fixed, but it is hyperbolical in that the neighborhood of a single node rises exponentially
with the neighborhood radius (as opposed to Euclidean neighborhood relations, which
rise by the power of the dimension). In theory, hyperbolic SOMs adapt equally well to
data of arbitrary dimensionality, if the available neighborhood is sufficiently large, i.e., the
network contains enough nodes.

6.3 Evaluation of Existing Models 59

When used to map Euclidean input spaces, the hyperbolic SOM always produces warps
to some extent. If a hierarchical structure of the input space is to be found, the hyperbolic
SOM can provide that information due to its neighborhood structure.

The Growing Grid

Endowing an SOM with the ability to insert new rows or columns of neurons produces
this network typell7/19]. It is especially useful if the dimensionality of the map remains
fixed, but its optimal size is unknown. The growing grid must be carefully parameterized,
just like the SOM, to avoid topological warps. The growth speed of the grid must also be
tuned to match the overall adaptation speed of the network, because a grid growing too
fast becomes increasingly susceptible to topological warping.

The Neural Gas

In some situations, a topological graph structure is not necessary. The Neural Gas by
Martinetz [27] is a collection of nodes which adapt to a set of input stimuli. This neural
network type has been the basis for many newer variants of vector quantization networks,
like the Growing Neural Gas.

The Locally Linear Map (LLM)

Since vector quantization networks generally map the input stimulus onto a node index,
they always deliver a quantization error. The LLM, introduced by Ritter [38], is a cross
between the error-prone vector quantization approach and the simple linear interpolation
approach. Each node of an LLM carries a linear equation instead of a constant vector. The
adaptation rules for the LLM are only slightly more complex than those of the neural gas.
The LLM has proven its usefulness in many real-world mapping tasks, e.g. in hand or head
posture recognition [3@,"85,740]. Like the neural gas, the LLM does not carry topological
knowledge in the form of a graph connecting its nodes.

The Growing Neural Gas (GNG)

This network type by Fritzke[8] starts out with a minimal connected graph of two nodes,
and builds an arbitrarily complex graph by periodically inserting new nodes where the
potential of lowering the error is considered highest. During this growing process, the
nodes’ weight vectors are adapted as in the SOM, but using the current graph structure

60

Approaching Intertwined Tasks

instead of a fixed grid. The graph structure itself is built by connecting the two nodes
closest to a stimulus and by removing edges that have not been rebuilt for some time.

The number of nodes in a GNG grows linearly with the number of input stimuli, making
the appropriate timeout parameter critical in almost any application. The GNG's greatest
advantage is its ability to map almost any topological arrangement efficiently.

6.4 Critical Aspects in Robotics

In a robotics setting, the neural network’s adaptation algorithm defines its suitability for
the exploration aspect, while the quality of the generated graph is crucial for the path
planning aspect. The critical requirements for a suitable neural network are summarized
below.

Flexible number of neurons: Topologically rigid networks need much a-priori knowl-
edge about the problem at hand. Finding the optimal number of nodes means having
to run many tests. Therefore, we require a network able to grow or shrink as necessary.
Nevertheless, we shall carefully observe the features of topologically rigid networks
to find ways to further improve the flexible networks.

Local topological flexibility: The state space we wish to map can have varying local di-
mensionality, and the mapping must be able to reflect this fact. Therefore, models
with uniform dimensionality, like the SOM, the PSOM, and the Growing Grid, do not
qualify. The HSOM can cope with variable dimensions more easily, but nevertheless
has a fixed topological arrangement.

Insensitivity to short-term correlations: The input data originating from a real-world
manipulator is not uniformly distributed across the input space. The strong short-term
correlation must be accounted for in the adaptation process, because we do not want
to employ special measures to reduce the correlation. The network model must be
able to handle the data and still adapt efficiently. The SOM and the Growing Grid
need a lower setting for the learning rate to produce useful mappings in this situation,
and thus adapt less efficiently. All network models introduced here are susceptible
to correlations in the input stimuli, because they are based on the assumption of a
statistical input distribution. But in the GNG, this shortcoming can be alleviated to
some extent with a node generation enhancement which we will introduce in the next
chapter.

Fast adaptation: The network shall deliver a useful representation of the knowledge
gathered from input signals from the very beginning of the learning process. Of all
the models presented here, the GNG is the only one which can be optimized to this
end, but the high number and interaction of the necessary parameters makes this opti-
mization cumbersome and fragile.

6.5 Preparation of Input Data 61

Graph usefulness: The graph constructed by the network during adaptation must be suit-
able for path finding. Too many stray or missing edges can severely deteriorate the
guality of the paths represented in the graph. Generally, stray edges are less favorable
than an equal number of missing edges, with respect to a perfect Delaunay triangu-
lation. With its edge aging mechanism, the GNG has a major disadvantage in this
respect, which we will discuss in comparison with the ITM.

Incremental learning capability: Because a manipulator may stay in the same area for

a long time, and then move on to totally uncharted areas, the network must be able
to incorporate this new knowledge without prior changes to its parameters, like the
learning rate. The network must also be immune against destructive interference, i.e.,
mapping a new area must not destroy the mapping already established. The node
generation enhancement provides the GNG with the necessary capabilities, but the
parameterization introduces a typical time scale for the adaptation process which must
be known in advance.

Simple overall structure: The network will be embedded in a larger set of algorithms,
which will also modify the graph structure. The network algorithms’ simplicity can
help to improve the robustness of the total system. The GNG has many internal state
variables, including age counters and error accumulators which are kept separately for
each edge and node, respectively. This disadvantage has led us to search for modifica-
tions and simplifications of this algorithm.

Of all the network types outlined here, the GNG is the most promising for delivering a
state space representation from short-term correlated input data. But its cumbersome con-
figuration and the large number of internal state variables motivates the design of a new
network type, the Instantaneous Topological Map, which is tailored to fulfill all of the re-
guirements specified above. In the next chapter, we will introduce this novel network type
and compare it with its strongest competitor, the GNG with node generation enhancement.

Before turning to the ITM, let us consider two problems found when using vector quantiza-
tion networks on ill-prepared, serially correlated data. One is input preparation, a standard
discipline in neuro-informatics, the other is the well-known contraction effect found in the
SOM and other related network types.

6.5 Preparation of Input Data

It is a well-established fact that careful preparation of input data is an integral part of the
training process. This involve$) choosing a suitable subset of the available détp,
transforming the data into feature vectors of a chosen dimension(iignecescaling the

data so that a chosen metric provides meaningful distance information necessary for many
learning algorithms.

62

Approaching Intertwined Tasks

The preparation of input data has a strong impact on the training process, and careless
preparation can easily inhibit convergence.

The choice of a data subset is the logical starting point in most applications, because most
machine learning algorithms are rooted in statistics while only few data sets originate
from statistical processes. This discrepancy has led to some “recipes” to enable the learn-
ing algorithms to cope with such data. These involve randomizing the order of the input
data and feeding a set of data repeatedly. Randomizing the order makes the data “look”
more statistically distributed than the sorted version of the same data set, because most
learning algorithms contain hidden low-pass filters, and therefore ordered sequences of
slow-changing input data produce strong destructive interference. On the other hand, re-
peated presentation of a set of data allows the learning algorithm to converge more slowly
to a local minimum of its error function, by choosing a smaller learning rate, for example.
This results in a better overall stability of the learning process.

In a control scenario like the one presented in this thesis, we wish the adaptation process
to be as fast as possible, in order to obtain a useful topological map of the input space
from the very beginning of the training. Additionally, we do not wish to implement a
special “training” phase which we would have to stop to begin using the map. Instead, the
neural network shall continue to adapt incrementally using a steady stream of input stim-
uli. Therefore, we will not use re-ordering or repeated presentation as described above.
Instead, we will change the adaptation algorithm to cope with input data which exhibits
strong serial correlation and is thus far from the statistical ideal.

Another key to successful machine learning is the wise choice of the feature vectors’
components. In computer vision, most notably, Gabor filters and jets, blob analysis, color
transformations, and many others form a huge arsenal of feature extraction methods, all
designed to produce meaningful components for the input vectors. The feature extraction
phase often drastically reduces the dimensionality of the data and focuses on elements
in the data known (or supposed) to be necessary for successful training. Reducing the
dimension of the input vectors also helps to reduce the number of degrees of freedom
of the associated neural network (e.g., the number of neurons in a multi-layer perceptron
(MLP), or the size of the weight vectors in vector quantization networks), and therefore
speeds up the adaptation process considerably.

An astounding amount of knowledge has been gathered about feature extraction, because
algorithms in machine learning are generally sensitive to rising dimensionality of input
data. In this thesis, we will look at this problem from the network’s perspective, trying to
make the network itself less susceptible to the omnipresent dimensionality problem.

The final aspect of input preparation mentioned above is data rescaling. The background
for this aspect is that many learning algorithms use a chosen metric to calculate a scalar
distance between pairs of input vectors. On the other hand, the input vector components
often have diverse origins and interpretations, and sometimes differ widely in their typ-
ical scales. Using these vectors in a typical distance metric, like the Euclidean metric,
generally does not produce meaningful output.

6.6 Adaptive Metrics for Input Rescaling 63

Typically, the input vectors are rescaled to center each component around zero with a mean
deviation of one. This step ensures that the distance measure reacts approximately equally
to changes in any component of the feature vectors. The mean and the deviation of each
component are calculated over all input vectors, and subsequently used to rescale the input
data.

The scenario depicted in this thesis disallows such an a-priori rescaling of input data,
because learning shall take place continuously over an indeterminate amount of time. Be-
cause we still want to perform component equalization in the manner just described, we
implement a new metric with a built-in component rescaling vector. This vector is adjusted
using a slow rolling average filter, which performs essentially the same mean and devia-
tion calculation as in the a-priori method above. The following section gives the details of
this input preparation technique.

6.6 Adaptive Metrics for Input Rescaling

Consider the following modification of the Euclidean distance formula.

1 < (a; — by)?
D*(a,b) == =) 6.1
Each component’s square difference is divided by a distinctWere this equal to the
square deviation? over all existing input vectors’components, then this division would
produce the same result as an a-priori rescaling of the input vectors to mean zero and
deviation oneq; = 0, 0? = 1).

The additional factot /n makes the average distance value delivered by this metric inde-
pendent of the dimensionality of the input vectors. This factor is irrelevant for individual
learning scenarios, but because some parameters for the GNG, the ITM, and other vector
guantization networks are formulated in terms of typical distance values, a distance metric
with a universally constant scaling is of great practical value.

Note that the Euclidean metric can be formulated as a scalar pradtiat; b) = (a —).
Because the scalar product formulation is more practical and more general, we rather
redefine the scalar product to use the above metric:

" aibi
X

a-b:= (6.2)

To calculate the estimatels for the square deviations, we employ several rolling average
filterd] which are adjusted with the input vectars One set of filtersg;, approaches the

A rolling average filter is a simple discrete low-pass finite impulse response (FIR) filter, which ap-
proaches a fixed target value exponentially with a decay constant defined by the amount of influence of the
previous filter valueIl in the examples given here).

Approaching Intertwined Tasks

20 samples 1000 samples

Figure 6.3: Mean and Deviation Estimation: The presentation of only 20 input samples
results in the convergence of theandd; estimates shown in the left panel. At this poihis

almost at its final level, and a much slower correction takes place. The estimates exhibit almost
no further change even after 1000 input samples, as shown in the right panel.

mean of each componeay, the other set of filtersy;, approaches the deviation of each

componenté; — &,)2. The amount of influence of each new input vector is determined by
I', resulting in the following set of adaptation formulae.

A — &—q
¢ «— ¢ +ID-A; (6.3)
d; — d;+T-6, 6.4)

The factorI” introduces a typical time scale into the system. A large value will make the
d; fluctuate wildly, rendering the metric from equation] 6.1 on the preceding page useless.
A small value ofl" will produce the desired result in the long run, but at the beginning
of the metrics adaptation much depends on the initial values afdd;. To obtain the
desired behavior, we modify the valueloftself, starting with 1, then lowering it down to

a desired target value ofusing a decay constant af

I —T+Ay-T) (6.5)

This method makes the initialization of theand thed; less critical. It can be interpreted

as an alternative to initialization. In settings where the a-priori knowledge of the input data
is sufficient, we may supply that knowledge by properly initializing the mean and deviation
estimates, and by settirigto an initial value close tg. If no a-priori knowledge can be
supplied in this wayl" can be initialized to a higher value to reflect the lack of confidence
in the initial ¢; andd,.

A large value of” gives the first few samples more influence on the intermediate estimates,
and therefore those samples should be chosen with care. As can be seen infigure 6.3, as

6.7 Expansive Adaptation 65

few as 20 well-chosen samples suffice to kick-start the adaptive metrics system into almost
perfect operation. The choice of initial samples is recommended, but it is not vital. The
rolling average filters converge to the same estimates regardless of the behavior during the
initial phase. But since even a mediocre, automated initial sample choice can significantly
improve the transitional phase, this method can be viewed as a favorable tradeoff.

6.7 EXxpansive Adaptation

When mapping an input space using a vector guantization network, like an SOM or a
GNG, one of the notable effects is that nodes stand off the edges by about half the diameter
of a typical Voronoi cell. This is the natural equilibrium state in which as many samples
fall to each side of a single node. In fact, there are generally several stable equilibrium
states, with edge node positions influencing all other node pogjtidtigure[6.4 shows

this effect for the GNG and the SOM.

The border left by the nodes is, naturally, optimal in terms of entropy maximization as
performed by the SOM. Therefore, any measure taken to make the nodes move toward the
border results in a slight deterioration of the mapping quality. But since our main interest
lies in using topological maps literally as road maps, total coverage of the input space is
more relevant than strict entropy maximization.

The method proposed here involves an additional weight vector manipulation of the node
n closest to the stimulug. If the winner node has more than zero, but less than avgrage
number of neighbors, the weight vector is modified according to the following formula.
1
9 < ZIN@m 2 ieN(n) Wi (6.6)
w, — w,+en(w,—g),

whereN (n) is the set of neighbors of the nearest nagandy is the center of gravity of
that node’s neighbors’ weight vectors. The adaptation step moves nodes with less-than-
average number of neighbors farther away from their neighborhood.

On one hand this produces approximately the desired coverage of the input space, but on
the other hand it introduces a strong distortion of the map at the edge. In two dimensions
the distortion is limited, but in higher-dimensional spaces this may become a problem.
Further tests and a thorough analysis of this technique must be made to pinpoint its limi-
tations in more detail. We anticipate, though, that the algorithm is robust given moderate

2For the special case of a linear SOM, Kohonen has presented a solution to the equilibrium equations,
which exhibits an intricate periodic spacing of the nodes. For higher dimensional grids, the solutions are
expected to be much more complex.

3The average number of neighbors equals two times the total number of edges over the total number of
nodes.

66 Approaching Intertwined Tasks

GNG

SOM

normal adaptation expansive adaptation

Figure 6.4: Expansive Adaptation: The panels show typical equilibrium states of a GNG
and an SOM on the left hand side. Both models adapt the vectors in the same manner and
therefore result in a map with a border about half the typical diameter of a Voronoi cell wide.
The addition of a simple expansion scheme yields the maps on the right hand side. Nodes in
exposed positions, especially in the corners, move farther away from their neighbors, producing
a distortion of the map with better border coverage.

values ofy, because it affects only at most half of the nodes, and because the expansion
motion can always be compensated and damped by the normal adaptation rule. Conver-
gence should therefore still be guaranteed.

67

Chapter 7

The Instantaneous Topological Map

Our search for a neural network type capable of representing arbitrary topologies has
turned up the Growing Neural Gas as the most promising model. But aside from this
topological flexibility, the network must also be able to adapt well even with a strong
serial correlation in the stimuli. Such correlations are found in robotics and in control sys-
tems in general, where stimuli are most naturally generated along trajectories in the input
space.

In this chapter, we will first introduce the standard GNG algorithm by Fritzke, which we
will enhance with a more flexible node creation mechanism. This network type performs
acceptably well in a random walk testing scenario, but the performance can be improved
drastically with the introduction of a different set of learning rules which form the Instan-
taneous Topological Map.

7.1 Improving the GNG for Correlated Stimuli

Our main interest is in situations where exploration of the state or feature space oc-
curs along continuous trajectories, possibly with some moderate amount of superimposed
noise. As our data model to mimic that situation we consider a (discrete) random walk
with small step size, given by

Ft+1) = #(t)+pd a(t) and

alt+1) = a(t)+mn, (7.1)

wherep(d, «) is the polar coordinate representation of a step of ledgththe angular
directiona, andn is a random variable. The step lengthemains constant while the angle

« changes by uniformly distributed random amoupt8Vorkspace limits are implemented

by simply forbidding steps that lead outside of the allowed area (see figure 7.1 gn page 69).

68

The Instantaneous Topological Map

Collecting a large number of samples in this way produces an approximately even distri-
bution of stimuli in the workspace area. The problem can therefore be made equivalent to
an even distribution of stimuli by raising the typical timescale of the network’s reactions,
which in most cases can be achieved by lowering the learning rate. But since we wish to
make the most of the incoming samples we need to perfastadaptation, and therefore

this simple trick is not an option here.

Before demonstrating the consequence of serial correlation in input stimuli, we wish to
briefly recall the main ingredients of the GNG in order to provide the background for the
following discussion and for the design of the ITM.

The basic GNG algorithm works on a set of nodesach represented by a weight vector
w; and an accumulated errey, and a set of edgeswith an age value,;. The adaptation
with a new stimulug consists of four distinct steps [8].

1. Matching: Find the node: nearest to the stimulusand the second-nearest node

2. Reference vector adaptation:Given adaptation rates ande,, adapt the nearest node
and its topological neighbors as follows:

Aw, =€ (£ —w,), Aw;,=e(—w;) V i€ N(n), (7.2)
whereN (n) denotes the set of neighborsraf

3. Edge update: (i) Create an edge connectingand s if it does not already exist. Set
that edge’s age to zergi) Increment the age of all other edges emanating frcamd
delete any whose age surpasses a givgR. When deleting an edge, check the other
referenced node for emanating edges; if there are none, remove that node as well.

4. Node update: (i) Increment the error measure of the nearest node:
Ae, = ||€ — w,]?. (7.3)

(i) Add a new node every adaptation steps by finding the nogevith maximum
accumulated error and its neighbowith maximum accumulated error:

= argmaxe;, 7 = arg max e;. 7.4
q = argme g max ¢ (7.4)
Make a new unit with w, = 1 (w, + w,) and initialize its error witte,. Decrease the
errors ofg, r, ands by a given factorv. (iii) Multiply the errors of all nodes with a
decay factorl, so that they cannot grow indefinitely.

The familiar matching and reference vector adaptation steps are the heritage of Kohonen'’s
SOM. The vector adaptation differs slightly from the SOM algorithm in that in the SOM
everyvector in the network is changed using a Gaussian centered ancasdn influence

7.1 Improving the GNG for Correlated Stimuli 69

random walk uniform distribution

Figure 7.1: Random Walk Example: The figure to the left shows a typical random walk
sequence produced by equation 7.1 on pape 67 limited to a square play-field. An approximately
uniform statistical stimulus distribution can be seen in the right panel. In the long term, the
random walk sequence and the uniform distribution become nearly equivalent (lower panels).

function. Due to the GNG'’s topological complexity, this method would be computation-
ally very expensive here. Therefore, the GNG adapts nrgd its immediate topological
neighbors. We will discuss the changing role of the vector adaptation in the ITM later on.
Let us instead consider the topological adaptation steps in more detail.

The edge creation rule builds an edge of the Delaunay triangulation, given that the weight
vectors of the nearest and second-nearest nodes are on opposite sides of the stimulus,
because in this case, the nearest and second-nearest nodes always share a Voronoi cell
border. An edge created in this way may become obsolete if new nodes are created or if
the nodes move. The aging mechanism erases such edges eventually, but finding a suitable
age limit can be difficult. The same limit may delete useful edges and still leave many
useless ones untouched.

A noteworthy fact is that the construction of a Delaunay edge does not rely on the distri-
bution of stimuli. Edges will be constructed in the fashion described even if stimuli touch
only selected trajectories in input space. The triangulation is not guaranteed to be com-
plete, but that is the case for both statistical and correlated series of stimuli: the Delaunay
edges corresponding to shorter Voronoi borders are less likely to be constructed.

The node creation mechanism is less obvious and leaves more room for choice. The error
accumulation provides a means of determining the optimum position for the creation of the

LT

70 The Instantaneous Topological Map
(v : % . V4 /n,\‘.

P

200 stimuli 1000 stimuli 5000 stimuli 15000 stimuli

Figure 7.2:Adaptation of a Standard GNG with Correlated Stimuli: The network has been
parameterized in such a way that the final result approximately matches that of the enhanced
GNG and the ITM. The panels show intermediate stages of the training process. Especially
during the starting phase, the standard GNG leaves large portions of the presented trajectory
uncharted because of interference effects.

V= 1PRR

200 stimuli 1000 stimuli 5000 stimuli 15000 stimuli

Figure 7.3:Improved GNG Using an Error Threshold: As an input, the same sequence as
in figure[7-2 was used. In the startup phase, neurons are now created much faster to learn the
trajectories traversed. As the error approaches the desired value, fewer new nodes are added.

next node. From a statistical point of view, this is a straightforward approach which leads
to overall error minimization with a constant growth rate of the network. Notably, there
is no provision for removing nodes except though the deletion of a node’s last emanating
edge.

When adapting to sequences of stimuli resembling trajectories, this node creation algo-
rithm is not optimal, because topological disturbances can still be introduced by the fact
that single nodes follow the trace of stimuli for long distances. To improve this behavior,
we propose a modification of the node creation algorithm.

Our first approach to improving node creation works by defining a threshold value for
the error,e,.x, With which the accumulated error measure of the nearest neeypis
compared. If itis larger, a new node is created betweand its neighboring node with
highest error count. This small design change alone gives a dramatic improvement which
can be appreciated by comparing the intermediate stages of the mapping task depicted in

figures[7.R an@7].3.

The modified algorithm proves to be more flexible than standard GNGs. Node creation
now is a reaction to certain stimulus patterns, instead of being triggered by fixed external

7.2 The Instantaneous Topological Map (ITM) 71

clock cycles. The main advantage comes from switching from a global method, i.e., find-
ing the node with highest accumulated error, to a local method. Designing the algorithm
to only use the neighborhood of a node for adaptation keeps the computational effort low
even for very large networks.

An added benefit of the threshold-driven node creation is its suitability for incremental
learning. In the former approach, nodes are created at a constant rate, regardless of the
stimulus pattern. In contrast, the threshold-driven approach automatically stops the cre-
ation of nodes if the input space is well covered by the network, and starts creating new
nodes if stimuli appear in previously uncharted areas. This modification enables the GNG
to react faster to its changing input and is therefore less sensitive to destructive interfer-
ence.

7.2 The Instantaneous Topological Map (ITM)

There are still two disadvantages to keeping an error measure for each node and an age
counter for each edgéi) More parameters (error decay rate, error threshold, error distri-
bution factor, maximal age) make optimizing a network more cumbersome. The parameter
values are not very critical, but a wrong choice can still slow down the convergence con-
siderably, or destroy it completely. Changes in the experimental setup almost always mean
redesigning the parameterization of the GNiG.Each slowly changing state variable (age

and error count) introduced into the system produces some inertia, slowing down adapta-
tion and defining a characteristic timescale which must be accounted for. The amount
of time the network needs to react to changes in the input stimulus pattern depends very
much on the choice of the corresponding decay factors.

We therefore propose a new network type which does not need any edge aging or error
accumulation to generate its map. In fact, it does not even require node adaptation. We
call it ITM, for “Instantaneous Topological Map”.

The ITM consists of a set of neuronwith weight vectorsw;, and a set of undirected
edges, represented implicitly by specifying a set of node neighlé¢isfor each node.f]

The network starts out with only two connected nodes. The adaptation triggered by a new
stimulus¢ consists of the following steps:

1. Matching: Find the nearest node and the second-nearest nodéwith respect to a
given distance measute(a,b), e.g., the Euclidean distance or the adaptive metrics
introduced in section §.6 on pageg 63).

n = argminD(&,w)
s = arg min D(§, w;) (7:5)
Jg#n

1The N(i) are further constrained by the requirement that neighborhood relations between a pair of
nodes shall always be symmetric.

72 The Instantaneous Topological Map

edge
! ! creation
. zone

Figure 7.4:Edge Update in the ITM: Edge addition is triggered when a stimulus hits the
grey region where the Voronoi cell ef intersects the Voronoi cell of if n were not present.
Removal of edges is triggered by the Thales sphere throwgtd one of its neighbors. flies
inside that sphere, the corresponding edge is removed (the marked lower edge in the figure).

2. Reference vector adaptation:Move the weight vector of the nearest node toward the
stimulus by a small fraction. Below we will show that this step can even be omitted.

3. Edge adaptation: (i) Create an edge connectimgand s if it does not already exist.
(if) For each memben of N(n) check ifw, lies inside the Thales sphere through
andw,,. If that is the case, remove the edge connectirapdm. When deleting an
edge, checkn for emanating edges; if there are none, remove that node as well (see
figure[7-3). The testing formula is

Yme N(n) - if (w, —ws) - (w, —ws) <0 thenremove edgem (7.7)
4. Node adaptation: (i) If the stimulus¢ lies outside the Thales sphere throughandw,,

and outside a sphere aroung with a given radius:,,.., create a new nodg with
w, = &. Connect nodeg andn.

if (w, —¢&)-(ws—¢&)>0 and D(&,w,) > emax then create node gt (7.8)

(ii) If w, andw, are closer thag ey, removes (see figurg 7|5 on the facing pafje)

2|f using adaptive metrics, the scalar product in equatiorjs 7.7 ahd 7.8 must be replaced by the modified
version as described in sectipn|6.6 on page 63.

7.2 The Instantaneous Topological Map (ITM) 73

i > node

creation

zone

Figure 7.5:Node Update in the ITM: Node addition and removal in the ITM is guided by the
Thales sphere through the nearest two nodesnds, and spheres through of radiuse,ax
and 3 emax.

In terms ofcomputational expensethe matching step is the only step that scales with the
number of neurons. Edge adaptation scales with the average number of neighbors, which
is related to the local intrinsic dimensionality of the input data. All other operations are
independent of the number of neurons involved. This means that the algorithm executes
fast even for large networks. The GNG with threshold-driven node creation is equally
efficient, but the standard GNG requires searching for the optimal graph location each
time a new node is created, which makes the algorithm slightly more costly.

Note that the search operations usikig:) do not depend on the number of components

of the feature vectors, but only on the “true” underlying dimensionality of the data. A
two-dimensional distribution embedded in a higher-dimensional feature space will only
produce four to six emanating edges per node on average, regardless of the feature vector
size. The ITM shares this property with Fritzke’s GNG, who presents examples for this
behavior in [3].

Our experience with the algorithm indicates treference vector adaptation(step 2) can

even be omitted because nodes are created and deleted swiftly if the node distribution is
found to be too sparse or too dense. The former learningeratdhich was essential to
adjust the network to fit the input data, has now assumed the role of a smoothing parameter.
Choosing small values efmakes the nodes assemble slowly in a tidy arrangement with
distances between nodes approximately equal. The relaxation time of this process does
not affect the network’s overall performance (see figurg 7.6 on the following page).

Edge creationproduces a valid Delaunay edge, as stated before. This edge is then used to
verify the other edges emanating from the nearest node. Only those edges are kept which
cross the corresponding Voronoi cell border. This eliminates all non-Delaunay edges and
few Delaunay edges, mainly those belonging to the convex hull. The advantage of this

The Instantaneous Topological Map

A '_"' L
Wil
V4

2

AVAVaV

}""&%&‘?‘V’:ﬁ"’t&v‘g}‘%{

Naviy s o A A &
ANV ivavay B -
AP CH]

e =10.01

Figure 7.6: Reference Vector Adaptation in the ITM: In this experiment, a random walk
trajectory inside a square region was used to stimulate an ITM. The left panel shows the result
with e = 0.01, and the right panel the result with no reference vector adaptation at all. The
difference between the two can barely be perceived, which demonstrates the changing role of
the adaptation step; in the ITM,is an optional smoothness term which can slightly improve

the node positions.

method compared to former edge deletion techniques is that it destroys all non-Delaunay
edges and that it does not rely on parameter tuning to do so. An exhaustive Delaunay test
which detects even small eccentric Voronoi borders between connected nodes would be
computationally much more expensive, as the amount of calculations needed would scale
with the dimensionality of the datndthe total number of nodes.

Node creationavoids putting new nodes inside the Thales sphere through nearest and
second-nearest node, because doing this would render useless the connection just made.
If the stimulus lies farther away from the nearest node than a given threshold, a new node
is created at the position of the stimulus. The threshgld,, therefore has the meaning

of a desired mapping resolution. This method is substantially different from providing a
learning rate, as nodes are created at a maximum speed of one per stimulus if necessary, in
which case the network stores the input data in weight vectors, and their closest neighbors
in its graph. Because nodes can still move by a small amount in this algorithm, a criterion

is provided to remove nodes that are too close to each other. The threshold used is derived
from e ax.

Configuring an ITM network is exceedingly easy, since only at most two parameters
need to be found: the desired resolutign,, and, optionally, the smoothing parameter
(the former learning rate).

7.3 Results

We use the random walk sequence of stimuli generated by equation 7.1 of page 67 to
measure and compare the performance of the three network models just described. This

7.3 Results 75

200 stimuli 1000 stimuli 5000 stimuli 15000 stimuli
Figure 7.7:Adaptation Phases of the ITM: The ITM network generates a map from the same

trajectory-like stimulus sequence as in figire 7.2 on page 70. The adaptatieisnabé critical
in this method, it can safely be set to zero.

sequence is the simplest model of an autonomous robot driving randomly through a room
with a square obstacle in the middle. The objective is to map this room using a neural
network.

Figures[72 an@i 7.3 on paf€ 70, dnd 7.7 each show four phases in the adaptation of the
standard GNG, the enhanced GNG (error triggered node generation), and the ITM, respec-
tively. The network parameters are chosen so that each network arrives at approximately
the same number of nodes at 15000 samples; in this way the intermediate phases can more
easily be compared.

During the experiments, the number of nodes, the normalized root mean square error (i.e.,
the averaged value db(w,, £)), and the number of excess edges and missing edges with
respect to the Delaunay triangulation were recorded (see figures 7.8 on the following page

and[7.P on pagge 7).

The ITM’s normalized root mean square error (NRMSE) stays almost constant during

training. This derives from its immediately creating nodes to achieve a desired precision.
The slower error decay of the enhanced GNG originates from the inertia introduced by the
error accumulators and the learning rate. The standard GNG is designed to slowly improve
its mean error by adding nodes at regular intervals.

The edge creation and deletion algorithm’s performance shows up when comparing the
network’s graph to the Delaunay triangulation. The edge aging mechanism of both GNG
models is responsible for the high number of surplus edges, about ten to twenty percent,
while the extremely strict immediate removal rule of the ITM lowers this number to al-
most zero. The small advantage of the enhanced GNG over the standard version can
be explained with the better optimization of node placement. Each newly placed node
makes some existing edges obsolete, and since standard GNG node creation frequency
stays equally high throughout the experiment, the proportion of creating and deleting ob-
solete edges is less favorable.

The number of edges missing to complete the Delaunay triangulation cannot drop to zero
iIn our experiment because of the obstacle in the middle of the imaginary room. Edge

76 The Instantaneous Topological Map

NRMSE Comparison

0.3
Standard GNG ——
Enhanced GNG ——
0.2 1 M ™ ——
01 M’M
0 5000 10000 15000
Node Creation Comparison
150
50 / Standard GNG ——
/ Enhanced GNG ——
o L= ‘ ™ ——
0 5000 10000 15000

Number of Stimuli

Figure 7.8:Error Comparison of Three Network Models: The graphs show measurements
made on the three models discussed. The random walk stimulus pattern used can be seen in the
figures[7:R and 7.3 on page] 70, gnd 7.7 on the page before, which show snapshots after 200,
1000, 5000, and 15000 samples (vertical lines in the graphs above). Although it creates nodes
more slowly than the enhanced GNG, the ITM achieves the desired error from the start because
it can create new nodes outside the current scope of the network.

creation functions by the same principle in all network models, so they perform almost
equally well in this respect, with a slight disadvantage for the ITM. This is because of the
simple but very strict imnmediate edge deletion technique used, which sometimes erases
even valid Delaunay edges.

7.4 Statistical Distributions

Although we introduced and validated the ITM network model on the basis of trajectory-
like series of stimuli, the ITM still performs very well in settings with statistically un-
correlated stimulus distribution. In these settings, too, the ITM can outperform the other
network models in terms of convergence speed, because it has no inner state variables that
can introduce inertial effects. Each adaptation step can produce and remove nodes and
edges immediately, with no dependency on the network’s past history.

As can be seen in the experimental example (see [@ble 7.1 ori gage 78), the convergence
behavior of the ITM does not degrade when using a statistical stimulus distribution. The
intermediate stages show significant differences between the GNG and the ITM, because

7.5 Architectural Comparison 77

Excess Edges per Delaunay Edges

0.4
Standard GNG ——
03 | Enhanced GNG ——

M e T

0.2 1
e T T ———
0.1+
0 | .
0 5000 10000 15000
Missing Edges per Delaunay Edges
0.6
) Standard GNG ——
Enhanced GNG ——
04 r IT™M ——
02 | AT —e
0 L
0 5000 10000 15000

Number of Stimuli

Figure 7.9:Graph Comparison of Three Network Models: The graphs were continuously
compared to the Delaunay triangulation to gauge the quality of the connections created by the
three network models discussed. The performance advantage of the ITM becomes apparent in
the low number of excess edges which would carry no useful information for path finding. The
underlying experiment is the same as in figuré 7.8 on the preceding page.

the node placement principles are substantially different. The resulting map is nevertheless
almost the same for the GNG and the ITM.

7.5 Architectural Comparison

The ITM is in some respects complementary to the SOM. While the SOM has rigid topol-
ogy and relies on learning rate and smoothness parameter annealing to adjust the nodes
positions and map the underlying topology, the ITM has rigid node positions and gen-
erates the topology with adaptation rules. While the SOM does not depend on changing
topology to produce useful mappings, but can benefit from such additions (as in the GNG),
the ITM does not depend on changing the nodes’ positions, but can benefit from a small
smoothness term(the former learning rate).

One aspect of using the precision parametgr,, instead of a SOM-type learning rate, is
that nodes are always approximately equally spaced. The ITM model is not suitable for
applications where the network’s node density needs to be a function of statistical stimulus
density. This famous property of the GNG and the SOM is rooted in the adaptation of the
nearest node and its topological neighbors; therefore, it cannot be replicated in the ITM
(see figurg 7.10 on the next page).

The Instantaneous Topological Map

network type 200 stimuli 500 stimuli 1000 stimuli 15000 stimuli

SNAZN
ona| />

KA AIAA
ARG
NA AN @Y
AP
NXANKIEN

X
B
::

YaVAVR Vi
SRRSO
SRR

eGNG HRRAXY
|
KRR
NNV
IT™

Table 7.1:Statistical Input Sequence Evaluation:The table shows the performance of three
networks given uniformly distributed input vectors in a square area. Although it has been
specially designed for correlated stimuli, the ITM performs well when compared to the GNG
or the GNG with enhanced node generation (eGNG). Especially in the intermediate stages the
ITM is able to deliver a well-structured map of the stimuli it has seen so far, which contrasts to
the relatively slowly emerging maps as formed by the other models.

STt RSN
v Vw2 G B
i
B
R

SOM eGNG IT™M

Figure 7.10:Non-Uniform Stimulus Density: The panels show the result of stimulation with

an input distribution which has a central region with ten times the stimulus density of the outer
area. The SOM and the GNG accumulate nodes in this central area, while the ITM remains
completely oblivious of density variations. This also demonstrates that the SOM and the eGNG
perform entropy maximization, while the ITM strictly minimizes the error.

7.6 Dimensionality of Input Data 79

GNG

parameter symbol | value
nearest neighbor adaptation €1 0.1
second nearest neighbor adaptation €9 0.01
maximal edge age Gmax 300
node creation interval A 1000
error distribution factor « 0.5
error decay factor d 0.999
IT™

parameter symbol | value
resolution €max 0.36
smoothness term € 0

Table 7.2:Network Parameterization for the Dimension Test: The GNG parameterization

is very close to the defaults commonly used by Fritzke, the maximal edge age being the key pa-
rameter. The ITM parameterization disables reference vector adaptation, and sets a resolution
which triggers the generation of sufficiently many nodes.

7.6 Dimensionality of Input Data

The experiments presented in this chapter involve two-dimensional input vectors with dif-
ferent topological structures for the clarity of the presentation. For higher-dimensional
input data, the ITM can be expected to perform similarly well as the GNG, from which

it is derived. It can also be expected to retain its fast and reliable mapping properties,
and its advantage in terms of computational expense can even rise, because the strict edge
deletion mechanism produces minimal neighborhood sets and consequently shorter testing
loops for the edge update.

Our experiments compare the mapping of a standard GNG, which is known to produce
faithful topological maps, and an ITM for different dimensional input stimuli in terms of
the quality and completeness of the mapping. The stimuli are evenly distributed over an
N-dimensional hypercube, and the networks are configured to generate enough nodes to
obtain some in the center of the hypercube.

With rising dimension, the ratio of nodes on a hyper-face of the cube to the total number
of nodes continuously rises, which makes it necessary to raise the number of nodes as
well. In our experiments, the GNG was therefore configured to genéfatedes, to

make sure at least some nodes build the maximal number of neighborhood relations. The
ITM, in contrast, does not need special configuration, because its resolution parameter
automatically generates the required number of nodes, regardless of the dimension.

Table[7.R shows the precise parameterization of the two networks used in the test. The
parameters were left unchanged for all dimension values, except for the maximal number

80

The Instantaneous Topological Map

dim | network type # of #of | max# of avg # of | total # of
nodes edges | neighbors | neighbors stimuli

GNG 16 35 7 4.4 14100
Y 21 47 7 45| 6600
GNG 64 286 17 8.9 64100

3 IT™M 58 228 15 7.9 49000
GNG 256 2062 29 16.1 | 281400
M 164 | 1140 29 13.9 | 283400
GNG 1024 | 12995 49 25.4 | 1086900

5 IT™M 419 4725 49 22.6 | 535000
GNG 4096 | 73694 75 36.0 | 4324400

6 | GNG (amax = 700) | 4096 | 106266 100 51.9 | 1630900
IT™M 1099 | 19975 96 36.4 | 1940600

Table 7.3:Dimension Tests on the ITM and the GNG:The networks were given an evenly
distributed input sequence in attdimensional unit hypercube. Although the number of nodes
generated by the ITM is generally lower than the pre-defined number of nodes for the GNG,
4N | the maximal number of neighbors indicates that both networks identify the dimensionality
of the input space correctly. The average number of neighbors is an indicator for the amount
of edge nodes which have lower neighbor counts than inner nodes. Since this factor is directly
related to the total number of nodes, the network with higher final node count also yields a
higher average neighbor count.

of nodes for the GNG. The adaptation was stopped if the network did not change substan-
tially for at least 15000 steps. Some key figures that characterize the final network status
were then recorded: the number of nodes, the number of edges, which together yield the
average number of neighbors, and the maximal number of neighbors to a single node (see

table[7-B).

In the table, data withV ranging from 2 upto 6 has been used. Higher dimensional input
data yields rapidly growing networks, which has led to technical limitations above

6. In real-world applications, the size of the feature vectors is often much larger, but
the intrinsic dimensionality is almost always much lower than the feature vector size.
Therefore, the measurements have some significance for practical problems, although the
dimension range tested is somewhat limited.

The GNG experiment with six-dimensional data shows the limitations of the edge aging
algorithm. While the GNG with maximal edge age of 300 yields a maximal neighborhood
count of 75, the ITM shows 96 neighbors at most. A further run with a maximal edge age
of 700 raised the GNG’s maximal neighborhood to 100, which confirms that edge aging
is a rather fragile method of pruning unnecessary edges.

The measurements indicate that the ITM performs at least as well as the GNG when iden-
tifying the underlying dimensionality of the input data. Its greatest advantage is that it
cannot be mis-configured to produce erroneous neighborhood relations. The GNG, in

7.7 Conclusions 81

contrast, requires more experience for the correct choice of its parameters. Especially too
high or too low settings of,,.., for example, can significantly alter the neighborhood
relations and thus indicate different underlying dimensionality for the same data. These
artifacts cannot be easily detected if the origin of the data is not known. The ITM can
therefore be considered a much more reliable dimensionality analysis tool than the GNG.

7.7 Conclusions

The Instantaneous Topological Map produces reliable charts of trajectories without the
need for special preparation of input samples. There are no delays in the construction of
the map. These factors make the ITM especially useful in robotic control applications.
A robot exploring its surroundings can store the topological data in an ITM, which then
functions as an associative memory device. The robot can use this map literally to get
from one location, represented by one node, to another: following the shortest path in the
ITM’s graph leads it to the target, automatically avoiding obstacles.

Many control processes involve finding an effective way of setting input values in order
to reach a target output value with minimum effort. Using an ITM to map the state space
while a simple controller is operating can turn up a more efficient pathway leading to the
target position. Nodes along that pathway correspond to a series of target settings for the
controller. Feeding that series instead of the final target values to the controller can lead to
better overall performance.

The ITM was specifically designed for this family of problems, and we will follow this
trail further in the following chapter. But it turns out that the ITM’s remarkable properties
may make it attractive for other areas, too.

One such area is data mining, a discipline which specializes in the retrieval of intelligible
information from large unstructured data sets. One aspect of data mining is dimension
reduction, which is closely related to the problem of feature vector extraction in neuro-
informatics. Many projection algorithms have been devised to reduce the number of di-
mensions of a data set, mostly for visualization purposes.

The problem of dimensionality identification, on the other hand, has not been given much
attention, although knowledge of the true underlying dimension of data delivers valuable
information. Clustering techniques can help to identify topological properties of a data
set, but the interpretation of cluster graphs alone cannot reliably deliver dimension infor-
mation. The ITM is, to our knowledge, the first algorithm which locally identifies the
intrinsic dimension of a data set by building a graph structure with reliable neighborhood
information. The number of neighbors to a node can be correlated with the dimensionality
of the data set at that position. This information is local up to a given mapping resolution,
which defines the granularity of the map.

82

The Instantaneous Topological Map

One should always bear in mind, though, that reliable dimension analysis requires many
samples, as can be appreciated in table 7.3 on[page 80 in the number of stimuli necessary
to reach the saturation. The number of required samples also grows with the network
size, which sets a natural limit for the granularity of the analysis. But in spite of these
drawbacks, which originate from the very nature of the problem, the ITM promises to
become a useful data mining tool in its own right.

83

Chapter 8

Path Finding and Obstacle Avoidance with
the ITM

The ITM provides us with a means to map the state space of a robotic manipulator or
another control system directly from the trajectory it traverses in a simple and efficient

way. Itis a small step to put this map to good use as a trajectory generator for the layered
control system developed before.

Designing the feature vector of the ITM to contain portions (or all) of the parameter set of
the low-level controller enables us to use the ITM in the same way as the state machine,
with each node representing a state, and each edge representing a possible transition from
one state to the other.

In this chapter, we will use a simple and efficient algorithm from graph theory for finding
optimal pathways through the ITM’s graph. Feeding a controller with the reference vec-
tors of the intermediate nodes provides a simple trajectory generator which automatically
performs obstacle avoidance for those obstacles present during training, because there are
simply no traversable nodes in those areas.

8.1 Graph Distance Labeling

To perform efficient path finding, we will attach a “via vector” index to each node, which

is the index of a neighboring node which takes us closer to the target node. To this end,
each node must know its graph distance to the target. An algorithm which calculates
these distances efficiently is readily available. In a slight modification, we implement it as

follows.

84

Path Finding and Obstacle Avoidance with the ITM

Given a set\/ of nodesn, each with a set of neighboré(n), where each element of (n)
is itself member of\/, we define a target nodeand a graph distaneg, and a viav,, for
each node in the grafjh

Initialization: Initialize all via indices to point to nowhere, and the graph distances of
all nodes except the target node to infinity. The target node’s distance is initialized to

zero.
d, = o0 VneM|n#t
v, = invalid Vne M (8.1)
dt - 0

Iterative distance construction: Scan through the nodes with a graph distance value less
than infinity, and check each neighboring node. If a neighbor’s graph distance is
greater than the originating node’s plus the length of the edge, then update the neigh-
bor’s graph distance and its via, and set a change signal. Repeat this step until a loop
produces no change signal.

VneM]|d, <oo, VYje€ N(n)

if d, + l”hj < dj then
dj «—dp + 1y 5, (8.2)
Vj <N
set change signal

This simple algorithm produces the desired distance labels and optimal pathways from any
node to the target nodgsee figurg¢ 8]1 on the next page).

One notable detail about the algorithm is that it does not require the via indicators to oper-
ate. We introduce these to optimize path generation. Also, the graph does not necessarily
contain connections from or to all nodes. The distance of every node without connection
to the target remains infinity, and the via indicator points nowhere. This information is
useful to identify nodes belonging to different clusters (see figufe 8.2 on the facing page).

8.2 Trajectory Generation

Using the labeled graph to generate a trajectory is a simple task given the controller infras-
tructure presented in the first part of this thesis. The state machine formalism allows us to
expand the state graph with a “template” state, which takes the weight vector of a network
node and converts it into a valid set of controller parameters. One of its transition criteria

is fulfilled as soon as the controller reaches its target (a via point in the path representing
the trajectory). The transition leads to a state which selects the next node on the trajectory,
and the loop closes (see figure] 3.1 on page 24, where these additional states can be seen in
the upper portion).

1The neighborhood relation¥ (n) need not be symmetrical for this algorithm to operate, but we will
employ it on the ITM, which does have symmetrical neighborhood relations.

8.2 Trajectory Generation 85

complete graph

Wy % " I/ g S } { o‘f
G ¥ e
S 1Y V- 4 S N
o M AL 1B
ey ﬁe/‘g’? a’Jg-J =R =y 3\3»}%
¢ &g &8{} j’?ﬁ*g{%«o B LNV Vé;?‘;’\j
Lo i AN il Vs
AN R TV | g7
g % S 14
g/g/g 4 &%‘/ga % %‘%ng P i $
i e i
upper right target center target

Figure 8.1:Graph Distance and Path Generation:The small insert shows an ITM created by
stimulating with a random walk pattern inside a star shaped region. The lower panels visualize
the result of the labeling algorithm for two different target notlébhe node labels allow us to
immediately find an optimal route from any node to the target node.

complete graph left target right target

Figure 8.2:Cluster Identification: If no path exists from a node to the target node, the length
indicates infinity (“none” in the graphs), and the via vector is invalid. This allows us to identify
clusters in the graph by selecting a target node known to belong to that cluster and then applying
the path finding algorithm.

86

Path Finding and Obstacle Avoidance with the ITM

t1

pi/4 -

tl

t0

(a) (b)

Figure 8.3:Two-Dimensional Robot Simulation: A two-joint robot arm(a) with unit segment
lengths is confined by four walls 1.6 units from the robot base. The walls prohibit a large
portion of the possible configuratio(is), producing a complicated two-dimensional topology,
which can be mapped, e.g., using an ITM. The four walls translate into ellipses in joint angle
space, which repeat indefinitely along theaxis (labeledO in the graph). Sincé is limited

to [..], we only see three ellipses and two half-ellipses.

8.3 Experimental Validation

As a toy problem, the prolific two-dimensional two-joint robot arm is simulated in real
time, including centrifugal and coriolis forces, to make the stimulus patterns generated
more realistic. The joint angleg, and§,, are both limited to thé—= .. 7| range by
simulated bumpers, and the end effector is confined by four soft walls. The square of walls
in Cartesian coordinates translates into elliptical regions in joint angle coordinates, which
result a two-dimensional topology with three holes in joint angle space (see figure 8.3).
We choose the segments of the robot to be 1 unit long, and the walls to form a square with
each side measuring 3.2 units. In this way, we obtain a topology in joint angle space which
leaves only four narrow paths for a configuration ch&nbecause the robot has to move
into a corner to stretch out completely.

A simplified version of the controller architecture is used to maneuver the arm to specific

2When a robot can achieve the same end effector position from several different sets of joint angles, it
is said to have several possible “configurations”. The two-joint robot arm presented here generally has two
configurations for each end effector position, one with the elbow joint bent to theé){eft (0), the other
one with the elbow bent to the righty(< 0). Because of the joint angle limits, the arm needs to stretch out
completely to perform a configuration change.

8.3 Experimental Validation

joint angle configurations. As an example, figiirg 8.4 on the next page shows the graph
formed by stimulating an ITM with a random walk pattern from the robot arm simulator,
and the trajectory generated by a simple algorithm, which sets the controller target values
to the weight vector of the node pointed to by the via index of the current nearest neighbor.
In this example, the inertia of the robot arm sometimes hits a different node than the one
targeted by the controller, but since the via indices are available for all nodes, this is not
a major problem. The trajectory generator simply carries on, and finds its target node
eventually.

This simple path following algorithm can be improved by tracking the manipulator motion
and altering the edge weights (,) if some segments cannot be traversed with the respec-
tive controller settings. We implement this trajectory generator using the state machine,
by adding three statestart, used by external applications to trigger the trajectory genera-
tor, traveling, used as a transitional state during the motamiyed, to signal successful
termination, andtranded, which signals that a path to the target node cannot be found.
Details on the different states follow:

start: This state initializes an internal variable for the stagyeling, the index: of the
last node visited, to an invalid valustart always switches ttraveling.

traveling: In violation of the strict Turing principle of the state machine, this state has an
internal variablej, and uses it to check several conditions of the trajectory traversal.
The current best match node is denominated

1.
2.

If the current node’s graph length is zetl & 0), switch toarrived.

If the graph length has decreaséd < d;), then check:

(a) If the node lies on the intended path v;), enforce the appropriate edge
by decreasing its graph length, but not below 1.

(b) If not (¢ # v;), punish the appropriate edge by increasing its graph length
l; »,, but not above a given limi,,.. If this limit is exceeded, remove the
edge.

Seti «— ¢, choose the weight vector of as new controller target, and re-enter
traveling.

If the current node indicates no pathway to the target{ invalid), switch to
stranded.

If the current node has not changed for more than a given amount of time,
punish the appropriate edge length. as shown above, and re-enteveling.

stranded, arrived: These are both terminal states, which can be used as success or failure
signals.

88

Path Finding and Obstacle Avoidance with the ITM

Figure 8.4:Trajectory Generation Example: Here, a simple trajectory generator maneuvers
the manipulator to the target position by configuring the controller to move to the position of
the node pointed to by the current node’s via vector. The inertia of the manipulator forces it
to leave the intended trajectory several times, but this simple mechanism recovers immediately
because instead of one planned trajectory it knows pathways from all known configurations to
the target, and therefore ultimately reaches its goal.

\oi\j/, . o\%&:\.‘,{: %’f/%i‘i /"/f X{’f \oﬁf/’\% Xof.. (\'f‘& o ﬂi wff’ X{f
Do 1 PR e Ko b e T BT p oy ST 2 e bR Tty
Q| EEEEEE Rohayl
AN TN AR5 e il I A N VIR W G S TR

P e ooy A e pinc] P ey g onl] 7 =
\3%% o \:L/&\; HM,({ N \%% o ‘\g\";/o\\i’ [/’o_,%o\,f{ Nowo

o 3 - \{ 03‘3 2 0\Mi N7
N k N i

®\ 5 \ RN\ 5 \f
AN [43 RNTEAR A T RN
¥ RO T AR ¥l e N AN R PR R £
vy Par AV D A NV, L TR AN [AR ?:i:”x oJ.4
A AR RN AR R e =
R TR NS . Vorl I RS Y S e N Vs

Figure 8.5:Trajectory Reinforcement Experiment: In the two-link robot scenario, we use

the trajectory generation state machine to perform a configuration change. During the first run
(middle frame), the dynamics of the robot throw it off the intended trajectory, as indicated by
the thick lines, which show edge punishment events. After ten runs (right frame), the trajectory
has been modified so that it can be traversed without problems.

8.3 Experimental Validation 89

This mechanism can change the route chosen by the graph labeling algorithm, and there-
fore has limited adaptive capabilities. After a few repetitions of the same motion, the
manipulator improves the trajectory slightly (see figuré 8.5 on the facing page).

Obviously, the algorithm described cannot cope with “orbiting trajectories”. This prolific
problem in trajectory generation arises from the fact that due to acceleration limits, a
manipulator usually needs to be slowed down in time before the end of the trajectory, or
else it will oscillate around its target position for some time. Since the graph labeling
procedure marks each node with its graph distance to the target, this deceleration scheme
can easily be transported to the vector quantization state space representation.

Note that the trajectory generator operates with the edge lehgthavhich we have in-
troduced with the path labeling algorithm. These variables change slowly, and rise in
number with the growth of the network. This results in a typical time scale for trajec-
tory changes, which stands in contrast to the immediate adaptation behavior of the ITM.
We accept this fact because of the drastic improvement we gain from edge labeling, and
because an acceptable alternative has not yet emerged.

In this chapter, we have introduced a simple graph labeling algorithm which enables us
to use our chosen method of state space representation, an ITM network, for generating
trajectories from the current manipulator position to a target position defined by the index
of the corresponding network node. The only ingredient still missing in the control system
is a method for state space exploration. We will investigate this topic in the following
chapter.

91

Chapter 9

An Active Exploration Engine

Building an input space representation with an ITM has already been performed in chap-
ter[] on pag¢ 67 based on random walk stimulus sequences. The experiments presented
show that the network type chosen can adapt well with the serially correlated stimuli orig-
inating, for example, from a control system.

The random walk method can of course also be used with robotic manipulators, but in
real-life control systems the amount of time taken for exploration is a critical issue, and as
far as efficiency goes, random walk marks the bottom line. In the present chapter, we will
therefore develop an active exploration mechanism based on several simple optimization
heuristics, and evaluate its performance.

9.1 Basic Ingredients

Even without the aid of our mapping and trajectory generation mechanism, we could im-
prove the basic random walk approach by replacing it with a “greedy” version. Instead of
randomly varying the direction of travel in each time step, we keep the same direction until
no further motion in that direction is possible, and then switch to another random direc-
tion. A similar method is known in function minimization, where the direction switching
condition is met when the function value cannot be lowered further.

In our scenario, implementing the greedy algorithm involves setting target positions for
the controller layer and reacting on sensory feedback to determine when to switch the
direction. We will employ the state machine based trajectory generator to achieve this
goal.

Using the trajectory generator and the current topological map enables us to further im-
prove the algorithm. We restrict a random node choice to those nodes with less-than-
average number of neighbors, and then start a series of greedy steps from that node. The

92

An Active Exploration Engine

nodes chosen in this way are likely to belong to the topological edge of the map built so
far, and are therefore suitable starting points for further exploration.

In the implementation of this scheme, we attach the exploration algorithm directly to the
trajectory generation scheme presented in the preceeding chapter. As additional static
information, we need to store the current exploration diregptioa vector of random di-
rection with a length of.2 - e,,,.

arrived: We add a rather complicated transition criterion to this terminal state, which
always switches tetart after choosing a new exploration target along a carefully
chosen direction.

1. Build a tentative target positigrby addingp to the current node’s weight vector
We.

2. Find the node: closest tot. If it is different from ¢, this indicates that the
network is already present in the area to be explored, so a new direction has to
be chosen by randomizingand re-entering step 1. Repeat this only a limited
number of times to avoid deadlocks.

3. Check the validity of the new target by stimulating the network wigmd ob-
serving if this produced a new tentative node which can be used as a trajectory
target. If no valid target could be found even after iterating the above steps sev-
eral times, choose a new edge ned® random among those with lower-than-
average number of neighbors. Repeat the search at step 1. Limit the number of
repetitions to avoid deadlocks.

4. As a last resort, choose a random edge node as described above and take it as a
new target. This is a fallback solution, which should never be necessary under
normal conditions.

This construction produces a new node in a previously uncharted area in almost all
situations. The trajectory generator subsequently attempts to maneuver to that node’s
position and will either reach it and re-enter this target chooser or remove it, thereby
entering thestranded state.

stranded: Entering this state in most cases means that a chosen direction has led to the
edge of the allowed state space, and therefore a direction change (new random selec-
tion of p) is forced before entering the same procedure as foartreed condition.

This algorithm has a strong tendency to explore the edge of the already charted area, and
even sometimes neglects the inner regions of the map. In this respect, the explorer is
fundamentally different from random walk and other methods which lack knowledge of
the previous moves. We shall see this in the following comparison.

9.2 Results 93

9.2 Results

To evaluate the explorer’s performance, we experiment with the simulated two-link robot

arm confined by a square of walls, as introduced in chdpter 8. The random walk is im-

plemented by randomizing the forces exerted on the joints, while the explorer uses the
controller layer and trajectory generator also introduced in the aforementioned chapter.

Figure[J.1L on the following page shows a typical learning sequence with random walk and
active exploration at equal numbers of stimuli presented.

In this experiment, the active exploration algorithm finds the crucial aspect of the under-
lying topology, a pathway to the second configuration, considerably faster than random
walk. Both methods have to face the difficulty that the pathways from one configuration
to the other are narrow, but the greedy steps of the active explorer are more likely to find
one of these paths. Additionally, since the active explorer uses its map to find uncharted
areas, it can also take advantage of the first pathway it finds, and use it to quickly build
thorough maps of both configurations, while the random walk still relies on luck to flip
from one half-space to the other.

The aggressive node placement of the explorer produces a map which is partly unreliable
because some nodes lie outside the allowed areas and some edges cross forbidden areas.
The trajectory generator must compensate this effect by removing those unusable edges
when the need arises.

An alternative would be to mark such nodes as unreachable and leave them in the graph
to make the search for new uncharted areas more efficient. But this method would conflict
with the fact that forbidden areas may change in shape over time. The exploration algo-
rithm must not introduce static information about reachable or unreachable areas, because
the obstruction might be temporary.

The algorithm presented here does not introduce any new static variables into the system.
Although the search for a new tentative node may take several iterations, it takes place in
an instantaneous step compared to the trajectory generation and manipulator motion.

This exploration engine completes the ensemble of algorithms which work on a state space
representation with an ITM vector quantization network. But although the system is com-
pleted with this step, there is some interplay of the individual elements which we will
illuminate in the final chapter.

94

An Active Exploration Engine

random walk

BN KT Vo< Y ARV A B SRR

TR TRLTV SO, SRTOARAY SR
'l«..‘e.ﬂm‘e q

$

A A
KA ARy
RN

1000 stimuli

random walk

DR R ARy /SRR, P AN ;
R R e LR, SRR
DA IR D

44:" <] K i 45.4 H‘AA VA . 4%! gggd (] V)

&7
v

*

) D %
P @V Tavi g BN T\ DR
RS BN L%
0010G,05 52050 g A%
40000 stimuli 50000 st

Figure 9.1: Active vs. Random Walk Exploration: The simulated two-dimensional robot
problem introduced in the previous chapter is used to compare random walk exploration and the
novel active exploration scheme. This exploration method discovers the second configuration
after about 1000 stimuli, by crossing through one of the narrow channels where the arm can
stretch out completely. The random walk algorithm, in contrast, is stuck in one configuration
for about 35000 stimuli. The active explorer produces a network which reaches farther into
the wall areas than the one delivered by random walk, because the explorer tentatively places
nodes in uncharted areas, and subsequently removes them if they cannot be reached.

95

Chapter 10

Discussion and Outlook

The objective of the work presented in this thesis was to provide an architecture for a
robotic control system suitable for human-machine interaction, and to use this architec-
tural infrastructure to provide integrated solutions for higher-level tasks like trajectory
generation, obstacle avoidance, and exploration.

An approach for state space representation with vector quantization networks has been
presented, which is a fundamental ingredient of the higher-level tasks listed above. To this
end, a novel type of neural network, the Instantaneous Topological Map, was developed,
which in contrast to most other vector quantization approaches uses strict geometrical
rules for adaptation. This network type is exceedingly easy to configure, fast both in
terms of adaptation behavior and of computing expense, and capable of handling strong
correlations in the stimuli.

As a proof of concept, the human-machine communication features were embedded in a
larger research context, the SFB 360, and the state space mapping algorithms were exten-
sively tested in artificial toy problems and in a simulated two-link robot arm scenario.

There are many ramifications of the research topics touched in this work, which could not
all be mentioned before. Let us take the time now to investigate the consequences of the
system design presented here, and the perspectives for future research work.

10.1 Uses Beyond Robotics

The controller infrastructure we have presented in the first part of this thesis has been
especially developed for the TUM hand in our laboratory. Nevertheless, the architecture
can be used in other settings as well. Even seemingly simple control problems may profit

96

Discussion and Outlook

from the methods shown, e.qg. if they have several control outputs. In those cases, many
pathways from one set of targets to the other are possible, and finding the optimal pathway
could be achieved with either the state machine formalism or the topological mapping
and trajectory generation method. And although examples originating from mechanics
or kinematics are most easily imaginable, other control systems, e.g. chemical process
control, can in principle possess a similar structure.

In producing distributed systems, one optimization issue is reducing the amount of data
used in communication between the system’s components. In this area of research, pro-
gramming frameworks similar to the state machine shown here have already received much
attention. Our motivation for the use of a state machine was simplicity and intuitiveness
of the interface. The fact that this interface produces only a minimum of bandwidth is
additionally beneficial.

10.2 Future Perspectives of the Control Architecture

External Trajectory Reinforcement

The trajectory planner introduced here is already capable of adapting to the dynamic prop-
erties of the underlying system by reinforcing those trajectories which are most easily
followed by the controller layer. But the reinforcement is not restricted to inertial effects
or obstacles that forbid a certain motion. External interference, e.g. by the human operator,
can also influence this mechanism, providing a simple means of teaching motion patterns.

Teaching Motions with Labeled Nodes

Along with the prospect of labeling nodes in an intuitive fashion, this might lead to a
versatile motion teaching and reproduction system. In such a system, a target node would
be labeled with a certain name, and the trajectory generator would attempt to reach that
position. The human operator would distort the trajectory as intended, and after some
repetitions the system would be able to reproduce this motion.

One remarkable feature of this approach is that the individual trajectories share one state
space representation, and therefore segments of individually taught motions can be auto-
matically concatenated to build more complex motion patterns.

10.2 Future Perspectives of the Control Architecture 97

Dynamics Modeling with a Directional Graph

Even the simple dynamics of the two-link robot arm used for the validation of the neural
layer suggest that the non-directional graph used in the ITM may be too limited for com-
plex control systems. Some concepts for converting the ITM maps into directional graphs
have been developed, and the most promising method involves symmetric edge creation
and deletion, as already implemented in the ITM, but direction-dependent edge labeling
for use in path finding and trajectory generation.

Travel Time Labeling

Especially for robotic control, the interpretation of the edge lerigth, introduced in
chapterB, as a traveling time from node to node may become a useful addition. In the
present work, the lengths are abstract integer numbers which are used for path reinforce-
ment. The literal meaning of travel times along with direction-dependent labeling can
provide valuable additional information in the topological map. For example, this infor-
mation could allow an improved trajectory generation mechanism to avoid orbiting around
the target position by decelerating the manipulator in time.

Trajectory Comparison Metric

For trajectory planning, the graph distance and its possible interpretation as a travel time
are most relevant. In comparing two trajectories and evaluating their similarity, a distance
measure for trajectories in the graph can quickly become necessary. We suggest a prelim-
inary representation of trajectories as a series of node positions. The Levenstein Distance
Algorithm (LDA) could then be used to compare such series of nodes by performing pat-
tern matching to find surplus, missing and differing node entries, and weighting these three
classes independently to find a meaningful scalar trajectory distance.

This simple definition does not account for the identification of trajectories contained in
a larger trajectory, but it suffices to evaluate a trajectory generator by comparing its re-
sult with a previously defined trajectory. Learning algorithms may take advantage of the
metric as an error feedback or as a reinforcement critic. Therefore, we think that the
well-designed definition of such a trajectory comparison metric will help to perfect related
algorithms.

Tactile Object Recognition

The mapping procedures shown in this work perform obstacle identification indirectly, by
only adding traversable state space areas to the map. For permanent obstacles, this is a

98

Discussion and Outlook

feasible procedure, but short-term disturbances and obstacles need special treatment. In
this case, the predominant problem is the distinction of objects, possibly including the
human operator’s hand and other highly transitional interferences.

A trajectory recognition mechanism could be a first step to solve this identification prob-
lem. Identifying an object through a certain motion sequence can become a successful
object recognition method. Especially in tactile sensing research, systematically tracing
an object with a robotic finger has already been performed, but a system based on the
control and exploration techniques presented here, which adapts to find suitable tracing
motions to discriminate a set of objects, would require much less a-priori knowledge.

10.3 Future Perspectives for the ITM

Graph Visualization for the ITM

The ITM’s capability of reliably identifying the underlying dimensionality of the input
data can inspire the use of graph construction techniques in data visualization. But since
the graph itself becomes complex in higher dimensions, there is no obvious method of
intuitively visualizing the graph structure.

Helge Ritter has introduced a very practical and intuitive projection method for his HSOM,
which “zooms in” on one node and its immediate neighbors, and contracts the distances
of nodes farther away, so that the infinite horizon lies on a circle around the current focus.
This projection technique may be modified to accommodate arbitrary graphs, so that an
abstract visualization of the connected clusters formed by an ITM could be designed. This
would make it easier for researchers to use the ITM both as a dimensionality identification
and as a clustering method, as shown in figure 8.2 on [page 85.

Associative Completion

One widespread application of vector quantization networks involves their use as asso-
ciative memory devices. This is commonly done by masking some of the input vector's
components when calculating the distances to find the best matching node. This node’s
weight vector can then be used to complete the input vector.

The same approach can become useful in the ITM in conjunction with the control archi-
tecture. In a setting where the controller output is only indirectly coupled to the state
variables comprising the ITM’s feature vector, the present architecture cannot maneuver
along intended trajectories reliably. Adding the controller output as a feature component

10.4 Closing Remarks 99

can eliminate this shortcoming. During training, the additional information is fed into the
ITM along with the normal feature vector, and during matching the controller output can
be found by associative completion as described above.

One should bear in mind, though, that adding more entries to the feature vector can delay
the adaptation process considerably, because the dimensionality of the feature space rises.
The drastic consequences of this move can be appreciated in the dimension analysis in
chaptef]7. But since this analysis also indicates that the ITM stands good chances of map-
ping higher dimensional feature spaces faster than comparable algorithms, the inherent
risk of raising the feature vector’s dimensionality is relatively low.

Eliminating Quantization Effects

When using associative completion in a vector quantization network, the quantization er-
ror becomes especially apparent, because even the known components of the input vector
“snap” to those of the closest weight vector stored in the network. Some network types
which alleviate this problem with interpolation approaches have been mentioned in chap-
ter®.

Transferring the LLM algorithm to the ITM may prove beneficial, for instance in a setting
where controller outputs must be delivered by the neural network, as described above.
The linear maps attached to each node would require more training examples than the
plain ITM, but the subsequent ability to produce output which reacts more sensitively on
input vector changes, i.e., without visible quantization, could make the longer training
phase worthwhile.

10.4 Closing Remarks

Previous robotics research was a strong inspiration for the present work. But observing
the developments of the past years, a slight stagnation becomes apparent. Many tough
problems have been successfully solved, while others remain out of our reach, and we
may consider ourselves lucky if we at least find out why they are so elusive. A novice
researcher might feel discouraged at the sight of both the remarkable achievements and
the seemingly impossible unsolved problems.

With this work, we hope to prove that robotics research still has much to offer. Espe-
cially in joining neuro-informatics and robotics there are many architectural designs that
have yet to be tested in the real world, and probably at least as many that have yet to
be invented. And, as this thesis shows, the challenge lies not only in employing already

100

Discussion and Outlook

available algorithms in a new area, e.g. by transferring neural networks to robotics or other
control tasks, but also in advancing new development®thareas to find new solutions.

The neural networks community makes a considerable effort to test emerging methods in
real-life settings. The standardization of typical neural networks problems has enabled
us to compare many algorithms impartially. But this standardization can also narrow our
view, keeping us from considering a special problem, although it might well stimulate
the development of an algorithm which is generally useful. In our opinion, the ITM is
an example of a general algorithm which emerged from a very special design goal. The
departure from standard paradigms favored this development, which benefits both research
fields involved.

This work took us on a journey through many fields, and many thoughts could only be
touched very briefly. We hope that the reader may accept this open-endedness and under-
stand it as an encouragement and as an invitation which robotics, human-machine inter-
facing, and neuro-informatics hold for all of us.

101

Bibliography

[1] AMP Incorporated, Valley Forge, PA 1948Piezo Film Sensors Technical Manual
Dec. 1993.

[2] D. H. Ballard, M. M. Hayhoe, and P. K. Pook. Deictic codes for the embodiment of
cognition. Technical report, University of Rochester, 1995.

[3] G. Canepa, M. Campanella, and D. De Rossi. Slip detection by a tactile neural
network. InProceedings of the ICIROS 94olume 1, pages 224-231, 1994.

[4] P. Dario. Tactile sensing: Technology and applicatior®&nsors and Actuatqrs
A(25-27):251-256, 1991.

[5] P. Dario, A. Sabatini, B. Allotta, M. Bergamasco, and G. Buttazzo. A fingertip
sensor with proximity, tactile and force sensing capabilitiesPioceedings of the
ICIROS'9Q pages 883—-889, 1990.

[6] A. Fagg, N. Sitkoff, A. Barto, and J. Houk. Cerebellar learning for control of a
two-link arm in muscle space. IRroceedings of the ICRA'Q%olume 3, pages
2638-2644, 1997.

[7] B. Fritzke. Growing cell structures — a self-organizing network for unsupervised
and supervised learningNeural Networks7(9):1441-1460, 1994.

[8] B. Fritzke. A growing neural gas network learns topologiéslvances in Neural
Information Processing Systenrs625—-632, 1995.

[9] B. Fritzke. A self-organizing network that can follow non-stationary distributions.
In Proceedings of ICANN'9pages 613—-618. Springer, 1997.

[10] B. Fritzke. Vektorbasierte Neuronale Netz8haker Verlag, 1998.

[11] K. S. Fu, R. C. Gonzales, and C. S. G. L&nbotics, Control, Sensing, Vision, and
Intelligence McGraw-Hill International Editions, 1987.

[12] G. HeidemannEin flexibel einsetzbares Objekterkennungssystem auf der Basis neu-
ronaler Netze PhD thesis, Technische Fakultat, Universitat Bielefeld, 1998.

102

Bibliography

[13] R. D. Howe and M. R. Cutkosky. Dynamic tactile sensing: Perception of fine surface
features with stress rate sensingEE Transactions on Robotics and Automation
9(2):140-150, April 1993.

[14] W. llg, T. Munhlfriedel, and K. Berns. A hybrid learning architecture based on neural
networks for adaptive control of a walking machine Proceedings of the ICRA'97
volume 3, pages 2626—2631, 1997.

[15] Interlink Electronics, Europe, Echternach, G.D. de LuxembUrge Force Sensing
Resistor Feb. 1990.

[16] J. Jockusch. Taktile Sensorik fur eine Roboterhand. Master’s thesis, Technische
Fakultat, Universitat Bielefeld, 1996.

[17] J. Jockusch and H. Ritter. An instantaneous topological mapping model for corre-
lated stimuli. InProceedings of the IJICNN'99999. paper #445.

[18] S. Jockusch.Modellierung und Manipulation von Bild- und Grafikdaten mit neu-
ronalen NetzenDissertation, Technische Fakultat, Universitat Bielefeld, 1995.

[19] J. Jockusch et. al. A tactile sensor system for a three-fingered robot manipulator. In
Proceedings of the ICRA’9¥olume 4, pages 3080-3086, 1997.

[20] S. Jung, T. C. Hsia, and R. G. Bonitz. On robust impedance force control of robot
manipulators. IfProceedings of the ICRA'9¥olume 3, pages 2057-2062, 1997.

[21] N. Jungclausintegration verteilter Systeme zur Mensch-Maschine-Kommunikation
Dissertation, Technische Fakultat, Universitat Bielefeld, 1998.

[22] N. Jungclaus, R. Rae, and H. Ritter. An integrated system for advanced human-
computer interaction. kWCSB-Workshop on Signals and Images (S)papes 93—
97, 1998.

[23] T. Kohonen. Self-organized formation of topologically correct feature majogog-
ical Cybernetics43:59-69, 1982.

[24] K. Liano. Robust error measure for supervised neural network learning with outliers.
IEEE Transactions on Neural Network&1):246—250, 1996.

[25] H. Liu, P. Meusel, and G. Hirzinger. A tactile sensing system for the DLR three-
finger robot hand. IfProceedings of the ISMCR’9pages 91-96, 1995.

[26] J. Lloyd and V. HaywardRCCL/RCI System OvervieMcGill Research Centre for
Intelligent Machines, McGill University, Aug. 1988.

[27] T. M. Martinetz and K. J. Schulten. Topology representing netwoNsural Net-
works 7(3):507-522, 1994.

Bibliography 103

[28] B. H. Mehler. Entwicklung eines taktilen ortsauflosenden Sensorsystems zur Un-
terstitzung des Greifens mit Robotern. Master’s thesis, Lehrstuhl fir elektrische
MefRtechnik, TU Minchen, 1994.

[29] R. Menzel, K. Woelfl, and F. Pfeiffer. The development of a hydraulic han@nth
Conf. on Mechatronics and Robotjgages 225-238, 1993.

[30] A. Meyering and H. Ritter. Learning 3D-shape perception with local linear maps. In
International Joint Conference on Neural Networks '92, Baltima@92.

[31] W.T. Miller, lll, R. S. Sutton, and P. J. Werbos, editdkeural Networks for Control
MIT Press, 1990.

[32] A. Newell. Unified Theories of CognitiorHarvard University Press, 1990.

[33] R. Rae, M. Fislage, and H. Ritter. Visuelle Aufmerksamkeitssteuerung zur Unter-
stltzung gestikbasierter Mensch—Maschine Interaktidni= Kinstliche Intelligenz,
Themenheft Aktive Sehsyste8®(1):18-24, March 1999.

[34] R. Rae and H. Ritter. 3d real-time tracking of points of interest based on zero-
disparity filtering. In S. Posch and H. Ritter, editovéprkshop Dynamische Perzep-
tion, Proceedings in Atrtificial Intelligence, pages 105-111, 1998.

[35] R. Rae and H. Ritter. Recognition of human head orientation based on artificial
neural netslEEE Transactions on Neural Network¥?2):257-265, March 1998.

[36] S. Rankers. Steuerung einer hydraulisch betriebenen Roboterhand unter Echtzeitbe-
dingungen. Master’s thesis, Technische Fakultat, Universitat Bielefeld, 1994.

[37] R. P. N. Rao and D. H. Ballard. An active vision architecture based on iconic repre-
sentations. Technical report, University of Rochester, 1995.

[38] H. Ritter. Learning with the self-organizing mafutificial Neural Networks1:379—
384, 1991.

[39] H. Ritter. Self-organizing maps in non-euclidean spaceaV80OM’99 Conference
Proceedings1999. (invited paper).

[40] H. Ritter, T. M. Martinetz, and K. J. SchultenNeural Computation and Self-
Organizing Maps Addison-Wesley, 1992.

[41] H. J. Ritter. Parametrized self-organizing mapsPtaceedings of ICANN’'93ages
568-575. Springer, 1993.

[42] D. Selle. Realisierung eines Simulationssystems fur eine mehrfingerige Roboterhand
zur Untersuchung und Verbesserung der Antriebsregelung. Master’s thesis, Technis-
che Fakultat, Universitat Bielefeld, 1994.

104

Bibliography

[43] H. Shinoda, K. Matsumoto, and S. Ando. Acoustic resonant tensor cell for tactile
sensing. IrProceedings of the ICRA'9¥olume 4, pages 3087-3092, 1997.

[44] H. Shinoda, N. Morimoto, and S. Ando. Tactile sensing using tensor celPrdn
ceedings of the ICRA'9%0lume 1, pages 825-830, 1995.

[45] H. Shinoda, M. Uehara, and S. Ando. A tactile sensor using three-dimensional struc-
ture. InProceedings of the ICRA'93olume 1, pages 435-441, 1993.

[46] S. Sur and R. M. Murray. An experimental comparison of tradeoffs in using com-
pliant manipulators for robotic grasping tasks.Aroceedings of the ICRA'9¥ol-
ume 2, pages 1807-1814, 1997.

[47] M. E. Tremblay and M. R. Cutkosky. Estimating friction using incipient slip sensing
during a manipulation task. IRroceedings of the ICRA'9¥0olume 1, pages 429—
434, 1993.

[48] G. Wohlke. The Karlsruhe dextrous hand: Grasp planning, programming and real-
time control. InProceedings of the ICIROS 9¢olume 1, pages 352-359, 1994.

	Introduction
	Robotics Lab Setup
	Human-Machine Interfacing
	Exploration and Control
	Previous Work on Robotic Control
	Introduction to a Novel Approach

	The Controller Architecture
	Manipulator and Sensor Hardware
	Mechanical Construction
	Basic Sensory Equipment
	The Tactile Sensor System
	The Fingertip Sensors
	Construction Principle
	Amplification Circuitry
	Experimental Results

	A Layered Controller Architecture
	Design Fundamentals
	Levels of Timing and Abstraction

	The Controller Layer
	The Controller Structure
	Mechanisms for Safety and Reliability
	Interfacing with Other Processes
	Implementation Details
	A Visual Controller Interface
	Performance Evaluation

	The State Machine Layer
	The Programming Principle
	States and State Transitions
	Implementation Details
	An Example State Graph
	Interleaving State Machines
	Conclusions

	Exploration with Vector Quantization Networks
	Approaching Intertwined Tasks
	Introduction
	Literal Interpretation of Topological Maps
	Evaluation of Existing Models
	Critical Aspects in Robotics
	Preparation of Input Data
	Adaptive Metrics for Input Rescaling
	Expansive Adaptation

	The Instantaneous Topological Map
	Improving the GNG for Correlated Stimuli
	The Instantaneous Topological Map (ITM)
	Results
	Statistical Distributions
	Architectural Comparison
	Dimensionality of Input Data
	Conclusions

	Path Finding and Obstacle Avoidance with the ITM
	Graph Distance Labeling
	Trajectory Generation
	Experimental Validation

	An Active Exploration Engine
	Basic Ingredients
	Results

	Discussion and Outlook
	Uses Beyond Robotics
	Future Perspectives of the Control Architecture
	Future Perspectives for the ITM
	Closing Remarks

