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Chapter 1

Introduction

Fullerenes are spherically shaped molecules composed entirely of carbon, where each atom is
directly bonded to three others in a way that only hexagonal and pentagonal rings occur. The
first fullerene was discovered in 1985 by Kroto, Curl, and Smalley [31], who were awarded
the 1996 Nobel Prize in chemistry for their discovery. That fullerene is still the most famous
member of the family: It consists of 60 atoms and is called the Buckminster fullerene —
named after the architect Richard Buckminster Fuller because its structure reminded of the
geodesic domes that were popularized by Fuller. Later, the term fullerene was used for
the whole class of molecules. In 1990, Krdtschmer and Huffman [30] developed a technique
that enabled fullerene synthesis in a large amount. Since then, these molecules and their
promising chemical and physical properties (see e.g. [41], [42]) have been the topic of many
studies.

Research in the field of fullerenes and related forms of carbon provides opportunities for
collaboration between both chemists and mathematicians, since those molecules can be
modeled as discrete mathematical structures where the application of graph theory can
yield new insights. In mathematical terms, a fullerene is a trivalent convex polyhedron with
pentagonal and hexagonal faces, which is commonly interpreted as a graph with the vertices
standing for the atoms and the edges representing the bonds. Therefore in graph theory,
the term fullerene refers to any 3-regular, plane graph with all faces of size 5 or 6. Its
3-dimensional representation can immediately be transferred into a 2-dimensional drawing
where one of the faces becomes the unbounded outer face. Applying Euler’s polyhedron
formula to the graph of a fullerene, it follows that there are always exactly 12 pentagons.
The smallest fullerene is the dodecahedron with 20 vertices. For larger n, the number of
mathematically possible, non-isomorphic fullerenes C,, on n atoms grows extremely fast as
a high power of n — for instance, the number of conceivable isomers Cyq is 40, for Cg it is
1812, for Cgg there are already 31924 possible isomers and for Cgo even 285913.

However, only few of these mathematically possible structures have already been found in
experiment, and an important task in theoretical chemistry is to find criteria to determine
which of the many theoretically possible fullerenes are actually stable enough to exist [18].
One factor is the so-called isolated-pentagon-rule: The isolated-pentagon fullerenes, that are
fullerenes where none of the pentagonal faces are adjacent, typically show a greater chemical
stability. The smallest isolated-pentagon fullerene — and the only one with 60 vertices — is
the Buckminster fullerene; all others have at least 70 vertices.
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Graph theory offers various concepts of stability. For instance, a graph is defined as connected
if there exists a path between any two vertices, as k-(vertex-)connected if at least k vertices
have to be removed to obtain a non-connected graph, and as k-edge-connected if at least k
edges must be removed to destroy the connectivity. Since all fullerenes are 3-vertex- and
3-edge-connected but not 4-vertex- and 4-edge-connected, this concept does not enable us
to distinguish different fullerenes due to their degrees of connectivity. However, there exists
another, more complex measure of connectivity which is particularly reasonable for k-regular
graphs and might provide a further criterion for the stability of a fullerene: the expander
constant, also known as Cheeger constant or isoperimetric constant (see e.g. [1], [13], [33],
[40]). In this work we use the term expander constant since it is fairly compatible with its
meaning.

The computation of the expander constant of a graph requires for each subset of vertices to
determine the ratio of the number of edges running between this set and its complement,
and the size of the set or its complement (depending on which is smaller); then the minimal
ratio over all subsets is determined. The idea behind this is that — in contrast to the
common definition of connectivity — the number of edges running between two vertex sets is
considered in relation to the size of these sets: If the expander constant is small, then there
exists a ‘bottleneck’ where only a few edges join two large subsets of vertices, which makes
the graph quite ‘unstable’, whereas in case of a large expander constant, every vertex set has
many neighbours outside the set (hence the name ‘expander’). The problem to determine
the expander constant of a graph is also common as the sparsest cut problem. Since so
many subsets have to be considered, it is a very difficult problem — in fact it is known to be
NP-hard (see e.g. [34]).

One aim of this thesis is to develop an approach for the computation of the expander constant
of fullerenes. It is not known yet whether the expander constant has actually an influence
on the chemical stability of a fullerene, but it might give a further hint for identifying the
stable fullerenes (see also [18]). In particular, it would be interesting to know the fullerenes
with the largest expander constant among all fullerenes with a fixed number of n vertices,
and to compare them with the respective isolated-pentagon fullerenes in case they exist.

Besides these possible chemical results, the concept of the expander constant has applications
in various fields, for instance in theoretical computer science, because it measures the quality
of a network: A graph with a small expander constant is not suitable as a network since a
large portion of the network can be removed by cutting only a few edges, while a network
corresponding to a graph with a large expander constant cannot be ‘destroyed’ that easily.
Since fullerenes are 3-regular, they are ‘sparse’ in the sense that for a fixed number of
vertices, the number of edges is not too large. Therefore they are appropriate candidates for
good networks, and it would be helpful to be able to determine and compare the expander
constants of fullerenes in order to have a measure for their connectivity and pick out the
‘best’ ones.

As many other topics that are related with the mathematics behind carbon molecules,
this also leads immediately to the theory of patches, that are 2-connected plane graphs
which typically have all faces of the same size except the unbounded face and possibly some
‘defective faces’, and all vertices of the same degree except those lying in the unbounded
face (these are called boundary vertices) and possibly some ‘defective vertices’. Although
fullerenes contain patches with hexagonal and pentagonal faces, the main focus of the present
thesis will lie on triangle-patches. The reason for this is that sometimes — and in particular
in the context of the expander constant — it is easier to consider the dual graph of a fullerene,



which is defined to be the plane graph that is obtained by drawing a vertex in each face
and inserting an edge between two vertices lying in neighbouring faces for each edge the
faces have in common. In the case of a fullerene, the dual is a triangulation of the plane
with vertices of degree 5 and 6 (those of degree 5 correspond to the pentagons and so their
number is also 12) — and this is exactly the definition of a geodesic dome, the structure for
which the architect Fuller became famous, as already mentioned above.

Figure 1.1: The Buckminster fullerene Cgo (left figure), and its dual (right figure)

All topics and results of this thesis have in common that the boundaries of patches — mainly
triangle-patches — are analysed, in particular in relation to their numbers of faces. One ap-
plication of these studies consists in the investigation of the expander constant of fullerenes,
since the ratio that has to be calculated for vertex sets in fullerenes becomes simply the
quotient of boundary length divided by face number in triangle-patches when considering
the dual. However, computing expander constants is not the only aim of this work. The
results that are presented in the separate chapters have different applications and all are of
mathematical interest on their own.

The number of faces of a triangle-, hexagon- or quadrangle-patch (the three cases that
correspond to the Euclidean lattices of the plane) with respect to its boundary sequence,
that is the cyclic sequence of vertex degrees in the outer face, has already been examined in
several studies: In [26] and [5] it was shown for patches without disorder (that is, without
defective faces or vertices) that the boundary sequence — although it does in general not
determine the interior of a patch uniquely — does determine its number of faces. Furthermore,
in [29] and [9] this result was extended to patches with exactly one defective face whose size
is not a multiple of the regular face size, applying a technique based on the observation
that when embedding the boundary of such a patch into the regular lattice, the disorder
corresponds to a non-trivial rotation. The proof was carried out for quadrangle-patches but
can be transferred to triangle- and hexagon-patches. Moreover, by translation to the dual
it can be seen that a similar theorem holds if a defective vertex instead of a defective face
exists. But it is also known that the statement is not true anymore if more than one defective
face or vertex is allowed. However, if a fixed subpatch is given that determines the position
of the defective faces or vertices, this might change again. In chapter 2 it is shown that
indeed the number of faces of a triangle-patch with defective vertices is uniquely determined
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by its boundary sequence and a fixed subgraph that contains all defective vertices in case
the disorder does not correspond to a trivial rotation. This generalizes the previous results
since the case of no or one disorder is of course included. The corresponding result for
the dual implies that two hexagon-patches with the same boundary and p pentagons as
defective faces, where p mod 6 # 0, can only have a different number of faces if they do not
contain isomorphic subpatches containing the pentagons. As two hexagon-pentagon-patches
with the same boundary can be used to construct one fullerene from another by a patch
replacement operation (see [7] and [8]), which enables fullerene growth in case the patches
have different numbers of faces, one consequence of this outcome is that in such growth
patches with p # 6 pentagons, the positions of the pentagons relative to each other must
differ.

In chapter 3, various results on the minimality of the boundary length of patches with respect
to their numbers of faces are provided. These will be helpful for the determination of the
expander constant, but are also of mathematical interest on their own. There have already
been several studies in this area (see e.g. [27], [3], [22], [15]) that deal mainly with hexagon-
patches. Here we present first some explicit formulas on the minimal boundary lengths of
disordered hexagon-patches containing triangles, quadrangles, and pentagons as defective
faces in terms of their numbers of faces that extend [15]; afterwards these results are used
to develop similar formulas for the duals, that are triangle-patches with defective vertices
of degrees 3, 4, and 5. While [27] contains such a formula for triangle-patches without
disorder, this study provides a complete list of formulas for minimal boundary lengths of all
triangle-patches with t defective vertices of degree 3, s defective vertices of degree 4, and p
defective vertices of degree 5 that fulfill p + 2s 4+ 3¢t < 6. This includes the cases with p < 6
vertices of degree 5, which are the dual results to [3], but also other possible combinations
of defective vertices that yield the curvature of a half-tube or a cone and hence allow the
construction of arbitrarily large patches. Moreover, we prove that these minimal boundaries
are attained when arranging the faces in a certain spiral way.

With these results, we are able to determine triangle-patches with a certain number of de-
fective vertices that obtain a minimal boundary length for a fixed number of faces. However,
sometimes patches with minimal boundary lengths are wanted which fulfill the additional
requirement that the defective vertices have certain positions relative to each other. For this
we consider disordered subpatches containing the defective vertices exactly as in chapter 2,
and examine which patches with a given number of faces and containing that subpatch have
minimal boundary length. This is the subject of the last two sections of chapter 3, and an
approach for developing respective boundary formulas is presented that is applied later in
chapter 5.

The technique demonstrated in chapter 2, together with some results of chapter 3, can be
used for a further application that is of interest for chemists, which is contained in chapter
4: An important result in theoretical chemistry was the classification of halftubes, that are
infinite hexagon-patches with exactly 6 pentagons. They describe the caps of nanotubes, a
tube-type class of fullerenes which is very promising for various applications (see e.g. [41],
[42], [46]). The classification of halftubes was enabled due to two results: On the one hand it
was known that the boundary of a cap can be chosen in a certain way that can be described
by special parameters [14], on the other hand one result of [3] is that such a boundary can
only be filled with a finite number of patches. Now chemists are interested in classifying
nanocones, that are in mathematical terms infinite hexagon-patches with p < 6 pentagons.
Due to [3] there is also only a finite number of patches with p < 6 pentagons that correspond
to a given boundary, but a parameterization of the boundary of such cones was still missing.



Here we prove — at first for triangle-cones with p < 5 vertices of degree 5 — that the boundary
can be chosen in a certain way such that it can be described with two parameters (in case
p = 5 even one parameter is sufficient). This result then is transferred to hexagon-cones
which enables the desired classification.

Finally, chapter 5 contains several results regarding the determination of the expander con-
stant of fullerenes. It is shown that the whole problem can be transferred to the dual — a
geodesic dome with n faces — where the task is to find a patch with minimal ratio of bound-
ary length and face number among all subpatches in the geodesic dome that contain at most
5 faces. We will call such a patch optimal and derive some properties of optimal patches.
Eventually we conclude with two different approaches to determine the expander constant
of a fullerene: At first we present a technique of how to verify the expander constant of
a class of symmetric fullerenes ‘by hand’, making use of the results on minimal boundary
lengths developed in chapter 3. Afterwards we describe an algorithm that is based on the
results of chapter 5 and can be used to calculate the expander constants of fullerenes by
computer. A program has been implemented which enables us in particular to compute the
maximal expander constant of all fullerenes with a certain number of faces. We present
the results of that program, including a complete list of the maximal expander constants of
fullerenes with up to 140 vertices and of the maximal expander constants of the respective
isolated-pentagon fullerenes. Appendix A contains some figures of geodesic domes where
the maximal expander constants are attained.
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Chapter 2

Numbers of faces in disordered
triangle-patches

2.1 Introduction

A patch without disorder is usually defined as a 2-connected plane graph with all faces of size
k except one outer face, and all vertices of degree m except the vertices lying in the outer face
which have degree at most m. In a disordered patch, additional faces of sizes different from
k (defective faces) or vertices of degrees different from m (defective vertices) are allowed.
The cases (m, k) € {(3,6),(4,4),(6,3)} correspond to the three Euclidean lattices of the
plane; we call all three of them the Fuclidean cases and distinguish between the hexagonal,
quadrangular, and triangular case, respectively.

In this chapter, we deal with the question whether the boundary of a patch, that is the
sequence of vertex degrees in the outer face, determines its number of faces. For the non-
Euclidean cases it follows easily with the help of Euler’s formula that this is always true (see
[29]). The three remaining cases are more interesting; in particular the case (m, k) = (3, 6)
has applications in Chemistry, but however all three Euclidean cases can be treated similarly.

In the Euclidean cases, patches without disorder are known to have the property that the
number of faces is uniquely determined by the boundary. This has first been shown by Guo,
Hansen and Zheng [26] for the hexagonal case, while the triangular case has been treated
in [5] and the quadrangular case in [29]. Furthermore, the case of exactly one disorder is
examined in [29] and [9]: It is proven that in case there exists one defective face whose size
is not a multiple of k, the number of faces is still determined by the boundary of a patch.
The proof is carried out for the quadrangular case but can easily be transferred to the two
other cases. Moreover, transferring the outcome to the dual, it can be shown that the same
holds in case of one defective vertex with a degree that is not a multiple of k.

Here we are generalizing these results further. We investigate disordered triangle-patches,
which we define to be triangular patches with an arbitrary number of defective vertices.
This includes disordered triangle-patches with defective vertices of degree 5, as they occur
in geodesic domes, the duals of fullerenes. In case there are exactly p defective vertices of
degree 5 and no other defective vertices, such a patch will be denoted as a p-patch. With

11
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this notation, the already mentioned results imply that in a O-patch as well as in a 1-patch,
the number of faces is uniquely determined by the boundary sequence.

For 2 or more defective vertices this is generally not the case, as can be seen in figure 2.1:
The two 2-patches, which have been constructed as duals of the Endo-Kroto patches (see
[16]), have the same boundary sequence, while the right one has two more faces than the left
one. But we also observe that comparing the patches, the two degree 5 vertices — which will
usually be emphasized by fat dots in this work — have different distances from each other.
So the question that arises is: Would it also be possible to find two 2-patches with the
same boundary sequence but a different number of faces where both contain, for instance,
two neighbouring vertices of degree 57 Or more general, two disordered triangle-patches
with the same boundary sequence and a different number of faces both containing the same
‘configuration’ of defective vertices?

Figure 2.1: Two 2-patches with the same boundary but a different number of faces

In order to describe the ‘configuration’ of the defective vertices, we consider fixed subgraphs
that contain all the defective vertices of the patch, which we will also call (disordered)
subpatches. So the general question that we deal with is whether two disordered triangle-
patches have the same number of faces if they have the same boundary sequence and contain
isomorphic subpatches which in turn contain all defective vertices of the patches.

This investigation includes all cases considered before and hence generalizes the work from
[29] and [9]; in particular, we re-prove the result for the case of one defective vertex, since
for two patches with one defective vertex of the same degree we can always find isomorphic
subgraphs containing that defective vertex.

The observation that the number of faces is not uniquely determined by the boundary in
case there is one defective vertex with a degree that is a multiple of the ‘regular’ degrees must
now be extended to more cases — for instance to all 6-patches: We can easily construct two
patches with the same boundary sequence and a different number of faces, both containing
the same small 6-patch; for an example see figure 2.2.

Nevertheless we will show in this chapter that in most of the cases — depending on a value
that can immediately be computed from the defective vertex degrees — the number of faces
of a disordered triangle-patch P with a given subgraph ) that contains all defective vertices
is indeed determined by its boundary sequence. The proof adapts ideas of the proof that
has been applied in [9] and [29] for single defective faces:

We define a closed directed cycle in P along the boundary of the outer face such that the
outer face lies on its left hand side, add a path to one vertex in the boundary of @, a path
along the boundary of @ such that @ lies on its left hand side, and the same path back
to the outer face using the inverse edges. This cycle ‘cuts out’ the patch @ in a way that
all faces in P — @) are enclosed on its right hand side. If we embed it into the triangular
lattice, it forms a closed cycle and the number of faces in its interior can easily be counted
(see figure 2.3 for an example). We will show that this method yields the same number of
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L

Figure 2.2: Two patches containing the same subgraph — in this case with p = 6 vertices of
degree 5 — that have the same boundary but a different number of faces

faces for any disordered triangle-patch with the same boundary that contains @ by using
that the boundary corresponds to a non-trivial rotation. (In the cases where the statement
is not true, e.g. for 6 degree 5 vertices, we have a trivial rotation here.)

/\
NN\
AVAV 4

Figure 2.3: Cutting out a small patch containing the defective vertices and embedding the
result into the lattice

Although this approach uses some techniques from the previous proofs, the essential step
that was carried out in [9] and [29] does not work any more in this more general context,
because it was based on the symmetry of the single disorder, which does not apply here.
Therefore new techniques had to be found in order to prove the general theorem that we
present here.
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2.2 Disordered triangle-patches

We start with the definition of disordered triangle-patches and the notation that will be
used in this context.

Definition 2.2.1 A disordered triangle-patch is a 2-connected plane graph P where all
faces have size 3 (these will be called triangles) except one face that is called the outer face,
and all vertices that lie in the outer face have degree at most 6. Vertices that do not lie in
the outer face and have a degree different from 6 are called defective vertices.

Any face in P that is not the outer face is called bounded face. We usually draw P such
that the unbounded area is the outer face. The set of vertices will be denoted by V(P),
the set of edges by E(P), and the set of bounded faces by F(P). If there is no possibility
of misunderstanding we also use just V, E, and F, respectively, and write P = (V, E, F).
Moreover, we define v(P) := |V (P)|, e(P) := |E(P)|, and f(P) := |F(P)]|.

The vertices and edges lying in the outer face are called boundary vertices and boundary
edges, respectively. Edges that are no boundary edges are called inner edges, vertices that
are no boundary vertices are called inner vertices. The set of boundary vertices in P will be
denoted by Vi,(P), the set of inner vertices by V;(P).

The boundary cycle of P is a directed cycle consisting of the boundary edges directed in a
way such that the outer face lies on their left hand side. The boundary length of P is the
number of boundary edges or vertices and denoted by b(P). The cyclic sequence of vertex
degrees in the boundary cycle is called the boundary sequence of P. Two patches are said to
have the same boundary sequence (or simply the same boundary ) if one boundary sequence
can be obtained from the other by a cyclic reordering or inversion.

For i € N we denote the number of inner vertices in P that have degree i by D;(P). With
this we define:

D(P):= (6 —1i) Di(P) (2.1)

i€EN

A disordered triangle-patch with exactly p defective vertices of degree 5 and no other defective
vertices is called p-patch.

Remark 2.2.2 If P is a p-patch, (2.1) implies D(P) = p.

Lemma 2.2.3 For any disordered triangle-patch P we have

> (4—deg(v)) = 6-D(P).
vEVy(P)
PROOF:

Let e := e(P), f := f(P), v := v(P), and b := b(P). By counting every vertex v exactly
deg(v) times we get every edge twice, so

2e = ) deg(v)+ Y deg(v) = Y Di(P)-i+ Y  deg(v) (2.2)

veV;(P) veEVL(P) ieN vEVy(P)
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holds. Similarly, if we count every bounded face three times we get boundary edges once
and all other edges twice, so we have

3f = 2e—-b 22 ZDZ( i+ Z deg(v (2.3)
i€N UEV[, )
Furthermore we have by definition:

= [Vi(P) + [Vo(P)| = D Di(P)+b (2.4)

i€EN

Now Euler’s formula yields v — e + f = 1 (note that F'(P) does not include the outer face),

or equivalently
6v—6e+6f = 6. (2.5)

Inserting (2.2), (2.3), and (2.4) into (2.5) we get

6 = 6()_Di(P)+b) — 3(D_Di(P)-i+ > deg(v
ieN ieN UEVb P)
+2() Di(P)-i+ Y deg(v
i€EN UEV[,(P)
= 6 Di(P) — > Di(P)-i +4b — > deg(v)
ieN i€N vEV,(P)
= Y (6—i)Di(P) + 4[Vs(P)| — Y deg(v
iEN vEVL(P)
= D(P) + Y (4—deg(v))
UGVb(P)

which immediately implies the statement of the lemma.

O

Corollary 2.2.4 If P and P' are disordered triangle-patches with the same boundary, then
we have D(P) = D(P').

PROOF:

If P and P’ have the same boundary, they must in particular fulfill

Y (A—deg(v)) = Y (4-deg(v))
vEV, (P) vEV,(P')
from which we get with lemma 2.2.3
6—D(P) = 6— D(P)
and hence D(P) = D(P’).
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2.3 The triangular lattice

In this section we specify what we mean by ‘the lattice’, introduce further useful definitions,
and prove some results that are essential for the later main proof of this chapter.

At first we define the Cozeter coordinates, a helpful notation which was applied by Coxeter
in [12] in order to describe the construction of geodesic domes.

Definition 2.3.1 By the triangular lattice (or simply also the lattice) we mean the infi-
nite plane graph with all faces triangles and all vertices of degree 6. We usually draw the
triangular lattice such that all triangles are equilateral.

A segment in the triangular lattice is a pair of two vertices {v,w} of the lattice which is
visualized by the straight line between them.

As described e.g. in [20], we assign Coxeter coordinates Cox({v,w}) = (p,q) to a segment
{v,w} which does not coincide with a line of the lattice as follows: Take one of the vertices
— w.l.0.g. v — as the origin, the edge that lies right of the segment as the unit vector in the
p direction, and the edge left of the segment as the unit vector in the q direction. Then the
Cozeter coordinates of the segment {v,w} are given by the coordinates of the second vertex
w. In case the segment coincides with a line of the lattice, its Coxeter coordinate is simply
(p) where p is the number of edges of the segment. Figure 2.4 shows some examples of the
Cozeter coordinates of different segments.

Figure 2.4: Segments in the triangular lattice with the respective Coxeter coordinates; note
that the vertices x, y and z form an equilateral triangle

Note that if we start with the vertex w as the origin, we obtain the same coordinates (p, q).
If the segment {v,w} does not coincide with a line of the lattice and we draw the straight
lines that correspond to their coordinates starting at both vertices we obtain a parallelogram
that we will call the parallelogram corresponding to v and w.
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The following lemma is of a geometrical type, so it is important to consider a drawing of the
triangular lattice in the plane where indeed all basic triangles of the lattice are equilateral.
Then it is guaranteed that if we have vertices z,y,z in the lattice with Cox({z,y}) =
Cox({y, z}) = Cox({z, z}), they form an equilateral triangle, too.

Additionally we assume the length of the side of one basic triangle to be 1. Then by a point
in the lattice we just mean a point in the plane — not necessarily a vertex of the lattice — and
by the distance between two points we mean the length of the straight line joining them.

Lemma 2.3.2 Let x,y,z be vertices in the triangular lattice which fulfill Cox({z,y}) =
Cox({y, z}) = Cox({z,2}) = (p,q), and c the center of the equilateral triangle formed by
them, that is the point c in the lattice with equal distance to x, y, and z. Then c coincides
with a vertex of the lattice if and only if |p — ¢| mod 3 = 0; otherwise, it lies in the center
of a face.

PROOF:

At first we consider the case p = 0, that means Cox({z,y}) = Cox({y,z2}) = Cox({z, z}) =

(q)- Then all lines of the triangle formed by z, y, and z coincide with lines of the lattice,

and the sides are all of length ¢q. The length of its altitude is a = §q2 and it is known that

¢ divides a into parts of lengths %a and %a; so since @ is the altitude of a single face we

obtain that c lies in a vertex of the lattice if and only if ¢ mod 3 = 0. In case ¢ mod 3 # 0
we can check in a similar way that ¢ lies exactly in the center of a face of the lattice.

In case p,q # 0 we insert the parallelograms with sides of lengths p and ¢ as can be seen in
figure 2.5. Then we observe that ¢ lies in the center of an equilateral triangle whose sides
again coincide with lines of the lattice and have lengths |p — ¢|. With the result from above
we obtain the statement of the lemma.

O

Figure 2.5: Two regular triangles in the lattice: In the left case we have [p — ¢| mod 3 =0,
in the right |p — ¢| mod 3 # 0.
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In the following we will always consider the triangular lattice together with a coordinate
system. The next definitions and results already occur in a similar way in [29] for the
quadrangular case and have now just been transferred to the triangular case.

Definition 2.3.3 By L we denote the triangular lattice equipped with a coordinate system
such that the vertices are pairs (z,y) with x,y € Z and there is an edge between (x,y) and
(', y") if and only if one of the following cases applies (see figure 2.6):

L |lz—2'|=1and y =y
2.x=x"and ly—y'|=1
. |le—d|=ly—-y|=1andx+y=2"+7y .

In the first case we will call the edge horizontal, in the second vertical and in the third case
diagonal. For a vertez v = (a,b) we set z(v) = a and y(v) = b.

We will also consider directed edges in L, that are directed pairs (v, w) of adjacent vertices v
and w. The set of directed edges in L is partitioned into siz disjoint sets (see again figure 2.6):

Ey := {(v,w) | z(v) + 1 =z(w), y(v) =y(w)}
E; = {(v,w) | z(v) + 1 = z(w), y(v) — 1 = y(w)}
Ey = {(v,w) | z(v) = z(w), y(v) — 1 =y(w)}
B = {(v,w) | z(v) — 1 = z(w), y(v) = y(w)}
Ey = {(v,w) | 2(v) = 1 = z(w), y(v) + 1 = y(w)}
E; = {(v,w) | z(v) = z(w), y(v) +1=y(w)}

Figure 2.6: The triangular lattice of the plane with a coordinate system and examples of
directed edges lying in Ey, ..., E5
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Definition 2.3.4 Let M be a finite multiset of directed edges in L. For any directed edge
e = (v,w) in L we set y(e) := y(v), i.e. the y-coordinate of an edge is defined as the
y-coordinate of its starting point. Then we define:

Su(M):= Y 2yle) = Y )+ D (ye)-1) - D (2ye)+1)

eeEMNEy eEMNE3 ec MNE, e€eMNE,4

The index ‘rl’ stands for ‘right left’ — we will later see that this has to do with counting
faces lying on the right resp. left hand side of closed cycles in the lattice.

Remark 2.3.5 (1) If we denote the disjoint union of multisets by ‘+°, for two multisets
M, M’ of directed edges in L we obviously have Sy (M + M") = S,y (M) + Sy (M").

(2) Furthermore, if M' consists of the same edges as M only with opposite direction,
i.e. M' = {(v,w) € L | (w,v) € M}, definition 2.3.4 immediately implies

Srl(M/) = _Srl(M) .

Definition 2.3.6 Given a disordered triangle-patch P = (V, E, F) with boundary cycle C
and a vertex v in C. By C, we denote the directed path starting and ending at v and
following the edges of C, such that P lies on its right hand side. Furthermore we denote
€g,...,€en_1 as the succeeding directed edges, and v; as the ending point of e;_1 and starting
point of e; fori=1,....n— 1.

An embedding of C, into the lattice L is a mapping @ that maps the directed edges eq, . . . ,en_1
onto directed edges in L such that the following holds:

e The ending point of p(e;_1) is equal to the starting point of p(e;) foralli=1,... ,n—1;

e if p(ei1) € Ej then ¢(ei) € Ej_qeg(v;)+4 mod 6 for all i =1,...,n —1.

For an embedding ¢ of C, we define the closure as a mapping ¢' of e into L such that the
starting point of ¢'(eq) is the ending point of (en—1), and if p(en—1) € E; holds then we
have ¢'(€0) € Ej_deg(v)+4 mod 6-

The second part of the definition of the embedding makes sure that for two succeeding edges
we have the same number of edges lying in the angle right of them in the embedding as in
the patch (compare also figure 2.7). In particular, for two patches with the same boundary
sequence there are always embeddings that map the boundary cycles onto the same image
in L.

The closure is a kind of continuation of the embedding with which we can determine its
degree of rotation with respect to D(P):

Lemma 2.3.7 Given a disordered triangle-patch P with boundary cycle C, a boundary ver-
tex v and an embedding o of C, into L with closure ¢'. Let ey be the first edge in C,. Then
we have for any l € {0,...,5}:

wleo) € B = ¢'(e0) € Ei_p(p) mod 6 (2.6)
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Figure 2.7: A 2-patch with boundary cycle and its embedding into the lattice

PROOF:
Let vg,...,v,—1 and eg,...,e,_1 as in definition 2.3.6, and define d; := deg(v;) for i =
0,...,n —1. Then we have Z?;()l (4 —d;) =6— D(P) (lemma 2.2.3) and hence
n—1
dn -6+ D((P)= d;. (2.7)
i=0

If p(eg) € E; then the definition of the embedding yields

v(e1) € Ei_gq,44 mod 6

plea) € E(l7d1+4)7d2+4 mod 6

plen1) € B st g4 4(n—1) mod 6
(

L

2.7)
‘10’(60) € El*Z:-l:_ol di+4n mod 6 El—(4n—6+D(P))+4n mod 6
= Ei16-D(P) mod6 = Ei_D(P) mod 6

O

Lemma 2.3.8 Given a disordered triangle-patch P with D(P) mod 6 # 0, boundary cycle
C, a boundary vertex v, and eq the first edge in C,. Let ¢ be an embedding of C, into L
with closure ¢'. Then '(eg) is the image of a D(P)-60 degree counterclockwise rotation of
p(eo) around a point ¢ in L which is uniquely determined.

In case D(P) mod 6 € {1,5}, the center ¢ is a vertex of L, in case D(P) mod 6 € {2,4} it
can be a vertex or the center of a face, and in case D(P) mod 6 = 3 it can be a vertex or
the center of an edge.

PROOF:

Lemma 2.3.7 implies that in case of D(P) mod 6 = 0, the edge ¢'(ep) is in the same class as
p(eo); in the other cases, ¢'(eg) and ¢(eg) will be in different classes, so they will definitely
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be different edges. More exactly, the formula (2.6) together with the definition of the classes
Ey, ..., Es means that in the cases D(P) mod 6 # 0, the directed edge ¢'(eg) is the image of
a D(P)-60 degree counterclockwise rotation of ¢(eg) (or equivalently, of a (D(P) mod 6)-60
degree counterclockwise rotation). Since it is a non-trivial rotation, the position of its center
¢ is uniquely determined.

The type of ¢ can be determined by geometrical means (see figure 2.8): Let u be the
starting vertex of ¢(eg) and v the starting vertex of ¢'(eg). In case D(P) mod 6 = 1 or
D(P) mod 6 = 5, the vertices u and v together with ¢ form a regular triangle in the lattice.
Hence, ¢ has to be a vertex, too. In case D(P) mod 6 = 2 or D(P) mod 6 = 4, ¢ is the
center of a regular triangle formed by w, v, and a third vertex w of the lattice, so ¢ might be
a vertex or the center of a face (compare lemma 2.3.2). Finally, in case of D(P) mod 6 = 3,
¢ lies exactly in the center of the line joining the vertices u and v, and hence it is either a
vertex (this is the case if Cox({u,v}) = (p,q) with p and ¢ even), or the center of an edge
(in any other case).

O

Figure 2.8: Different cases for the center of rotation (see lemma 2.3.8) with respect to
D(P) for the cases D(P)mod 6 = 1, D(P)mod 6 = 2, and D(P) mod 6 = 3. For
D(P) mod 6 = 4 the situation is similar to D(P) mod 6 = 2, and for D(P) mod 6 = 5
similar to D(P) mod 6 = 1.

In case D(P) mod 6 = 0, ¢'(eg) is obtained from ¢(eg) by translation, so in general we do
not have a rotation (and if so, it will be a trivial one, i.e. the edges are the same). We will
return to this case later on.
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2.4 General disordered triangle-patches

The idea of ‘cutting out’ a smaller patch leads us to patches that are connected but not
necessarily 2-connected anymore, so we define:

Definition 2.4.1 A general disordered triangle-patch is a connected plane graph P where
all faces are triangles except one face called the outer face, and all vertices that lie in the
outer face have degree at most 6. Vertices that do not lie in the outer face and have a degree
different from 6 are called defective vertices. In case there are p defective vertices of degree
5 and no other defective vertices, P is called a general p-patch.

Given a general disordered triangle-patch P with a combinatorial embedding in the plane
(i.e. for every vertex we have a rotational order of the incident edges, which we will interpret
as clockwise — see e.g. [25]), we define the set of angles of a vertexv € V as

A(v) :={(e1,e2) | e2 follows ey in the rotational order around v} ,

and A := Uyev A(v) as the set of angles in P. The face corresponding to an angle is the
face that lies between the two edges in the order given.

A labeling of P is a mapping l that assigns an integer l(a) € {0,1,2,3,4,5} to every angle
a € A such that l(a) = 0 holds for every angle a not corresponding to the outer face, and
for every vertex v € V. we have

Z I(a) + deg(v) mod 6 =0 .
a€A(v)

Figure 2.9 gives an example of a possible labeling of a general triangle-patch.

Figure 2.9: A general triangle-patch with angles and a labeling

The boundary cycle of a general disordered triangle-patch P is defined to be the directed
cycle of the edges in the outer face such that the outer face lies on its left hand side, where
bridges occur twice. Furthermore we define an enclosing cycle of P as a directed cycle that
has the same underlying undirected edges as the boundary cycle.
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Note that, in contrary to the boundary cycle, an enclosing cycle may cross itself at a cutver-
tex — see for instance figure 2.10.

Figure 2.10: A general triangle-patch with boundary cycle (left) and the same patch with
an enclosing cycle

It can be shown (see [29] and [9]) that edges of an enclosing cycle whose corresponding
undirected edges form a simple cycle (that is, they lie in the boundary of a 2-connected
component of the patch) form a directed subcycle. So given a general disordered triangle-
patch P with an enclosing cycle C, for every bounded face of the patch there is a unique
simple cycle surrounding it, such that it lies either on the right or left hand side of these
edges. We call such a face right resp. left with respect to the patch and the enclosing cycle
and denote the set of right faces as F,.(P, C) and the set of left faces as F;(P,C"). With this
we define

Fu(P,C) = |F.(P,C)| = |Fi(P,C)]
as the number of right minus the number of left faces.

Note that in case C' is the boundary cycle, F,;(P,C) is equal to the number of faces |F(P)|,
because then all faces are right faces.

Definition 2.4.2 Given a general disordered triangle-patch P = (V, E, F) with a labeling
and an enclosing cycle C. Then let eg,e1,-..,e,—1 be the directed edges of C such that the
starting point of e; is equal to the ending point of €;_1 mod n for i =0,1,...n — 1.

A labeling of C' is a mapping lc that assigns an integer from {0,....5} to every pair
(€i—1 mod n, €i) of succeeding edges in C (i =0,...n— 1), such that

k—1
lo(€i1 mod ns€i) = Zl(ej-,ej-ﬂ) + (k—1) mod 6,
j=0
where €;_1 mod n = €5, €%, ..., 62 = ¢; denote the edges in rotational order around the

common vertex of €;—1 mod n and e; that lie between e;_1 mod n and e;, including €;—1 mod n
and e; themselves; that means, lc(€;—1 mod n, €i) @5 the number of edges plus the sum of
labels between e;_1 moa n and e; (see figure 2.11 for an example).
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Figure 2.11: The general triangle-patch from figure 2.9 with an enclosing cycle and a labeling
of the enclosing cycle (with respect to the angle labels given in figure 2.9)

In the following we consider a general triangle-patch without any defective vertices, i.e. a
general O-patch.

Definition 2.4.3 Given a general 0-patch P with an enclosing cycle C' consisting of edges
€0,---,en—1 as above, and a labeling lc of C. With respect to its labeling, an embedding of
C into the lattice L is a mapping @ that maps eq,...,en—1 onto directed edges in L such
that the following holds:

e Foralli=0,...,n—1, the ending point of ©(€;—1 mod n) i equal to the starting point
of ple);

e iffori=1,....,n—1 we have Y(€i—1 mod n) € Ej, then ¢(e;) € Ej, with

k= j+ic(ei-1 modn,€) —2 mod6.

Figure 2.12 shows an embedding of the enclosing cycle from figure 2.11 into L.

Figure 2.12: An embedding of the enclosing cycle from figure 2.11 with the given labels into
the lattice.
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Remark 2.4.4 Definition 2.4.3 is an extension of definition 2.3.6: Assume the enclosing
cycle C' consists of disjoint subpaths C1,Cy. Then an embedding ¢ of C induces embeddings
of C1 and Csy. In case C is also equal to the boundary cycle C, of some patch P cut at a
vertex v, then ¢(C1) is also an embedding of Cy according to definition 2.3.6, because then
all succeeding edges correspond to angles of the outer face and will get the label that was
assigned to these angles in P. In particular, an angle a corresponding to a vertex v that
occurs only once in the boundary cycle and hence has only one angle in the outer face will
get a label with l(a) + deg(v) mod 6 = 0; so if P is 2-connected, the labels of the outer face
can be determined by the boundary degrees and vice versa. The definitions make sure that
there is the same number of edges between two succeeding edges in both cases.

The following lemma is essential for the main proof. A similar lemma can be found in [29]
and [9] for the case of quadrangle-patches, but since in the triangular case we have a different
lattice and a different definition of S,;, we carry out the proof here for the present case.

Lemma 2.4.5 Given a general 0-patch P with an enclosing cycle C and a labeling. Then
there exists an embedding ¢ of C' into L, and for each such ¢ we have:

F.(P,C) = S.u(e(C))

PROOF:
We proceed by induction in the number of bounded faces |F'(P)| =: n.

If n = 0 the patch is a tree, and F,.,(P,C) = 0 holds. This case can be proven by induction
in the number of edges:

In case there is just one edge, the enclosing cycle consists of two opposite directed edges
eo, e1, and at each of the two vertices we have one angle with label 5. By definition,
any embedding ¢ of C' into L must fulfill p(eq) € E; = ¢(e1) € Ejt3 modas- Then
we automatically have p(e;) € E,. = ¢(e9) € Ek+3 mod 6, s0 the second item of the
definition is fulfilled. If (and only if) we choose ¢(eg) and ¢(e1) to be two arbitrary opposite
directed edges in L that correspond to the same undirected edge, also the first item applies
and we have an embedding of C into L. Then the definition of S,; immediately implies
Sr(p(C)) =0 = Fu(P,C).

Now suppose there is more than one edge in the tree. Then consider a leaf v and its
neighbouring vertex w; then C' must contain the two succeeding edges (v, w), (w,v). So if
we delete v and the edge {v,w}, we easily obtain an enclosing cycle C' of the resulting tree
by removing (v, w), (w,v) from C and assigning the label (a + b+ 1) mod 6 to the new angle
at w, where a and b denote the labels of the former angles. By induction, this enclosing cycle
has an embedding ¢’ into L, and it fulfills S,;(¢'(C")) = 0. Now ¢’ can easily be extended
to an embedding ¢ of C' by just inserting two opposite directed edges at the angle with label
(a+b+1) mod 6, producing the correct angles corresponding to a and b, which ensures the
existence of ¢. On the other hand, reducing an embedding ¢(C) by ¢(v,w) and p(w,v)
yields an embedding of C’, so any embedding of C' can be interpreted as an extension of
¢'(C"). Furthermore, since the label of the angle next to v must be 5, any embedding must
map (v, w) and (w,v) onto opposite directed edges, so Sy (p(C)) stays 0.

With this we have proven the lemma for the case of no bounded face. Now assume we have
a general O-patch P with enclosing cycle C' and n > 1 bounded faces, and the lemma is true
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for any general O-patch with n — 1 bounded faces. W.l.o.g. we may assume there exists a
right face in P. So consider a directed edge e in C' that has a bounded face f on its right
hand side. Then we remove e (and with this, f) and adapt the enclosing cycle and its labels
as sketched in figure 2.13.

2 “

/ /7

(b+1) >
" o 6%
e [> 0

A
& e
Y mod 6-\

\ \

\ \
\ \
\ \

Figure 2.13: Removing a face in a general O-patch

We obtain a general 0-patch P’ with enclosing cycle C' and n—1 bounded faces. By induction
there exists an embedding ¢’ of C' into L, and any such embedding fulfills S,;(¢'(C")) =
F.(P',C"). Again it can be extended to an embedding ¢ of C by inserting the edge between
the two vertices in L that are the images of the endpoints of e (this is possible because the
new label in P’ is 0, so the two vertices are indeed neighbours in L). On the other hand a
given embedding of C' can be restricted to one of C’; again implying that any embedding of
C' can be interpreted as an extension of ¢'(C").

Since we removed a right face we obviously have F,;(P’,C") = F,(P,C) — 1. Now it can
be checked that S, (¢'(C')) = Sr(p(C)) — 1 holds: Let ey, ez be the new edges in C' as
depicted in figure 2.13, and assume ¢’ (&) = @(€) for all edges € € C'—{e}. Then if p(e) € E;
for some j € {0,1,...,6}, we must have ¢’(e1) € E(j;11) moa 6 and ¢'(€2) € E(j_1) mod - In
the different cases for j = 0,...,5 this implies, together with the definition of S,;:

e j=0: With y(p(e)) = y(¢'(e1)) we get

S(e(C)) = Su(e'(C") = 2y(e(e)) — (2y(¢'(e1)) — 1)
= 2y(p(e)) — (2y(ple)) —1) = 1

e j =1: Then we have y(p(e)) = y(¢'(e1)) = y('(e2)) + 1 and hence

S(e(C)) = Su(e'(C") = (2y(p(e)) — 1) — 2y(¢' (e2))
= 2y(p(e)) —1-2(y(p(e)) —=1) = 1

e j=2: Then y(¢(e)) = y(¢'(e1)) = y(p'(e2)) holds, and with this we get

Sru(p(C)) = Su('(C"))

(=2 (e0) + (20 (e2)) — 1) )
2y(¢'(e1)) — 2y(p'(e2)) +1 = 1
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e j = 3: Because of y(p(e)) = y(¢'(e1)) we have

Sr((C)) = Su(¢'(C") = —2y(p(e)) + (2y(¢'(e1)) + 1)
= —2y(p(e)) + (2y(ple)) +1) = 1

e j =4: Then we have y(p(e)) = y(¢'(e1)) = y(¢'(e2)) — 1 and therefore

Sn(@(C)) = Sul(e'(C") = —(2y(p(e)) +1) + 2y(¢'(e2))
= —2y(ple)) —1+2(y(p(e)) +1) = 1

e j=25: Then y(p(e)) = y(¢'(e1)) = y(¢'(e2)) holds, and we obtain

Su(@(C)) = Su(@(C") = —(2y(#(en) - (2y(¢(e2)) +1))
~2y(@'(e1) +2y(¢(e2)) + 1 = 1

So in all cases we have shown S,;(¢(C)) — Sn(¢’'(C")) = 1, and hence
Sr(@'(C") = Sn(p(C)) — 1.
Together with F.,(P',C") = F,;(P,C) — 1 and the induction we obtain
Sr(p(C)) = Su(¢'(C")) +1 = Fu(P',C") + 1= Fu(P,C)

and with this we have shown the lemma also for the patch P with n > 0 bounded faces.

Lemma 2.4.6 Given a closed directed cycle Cp in L. Then there exists a general 0-patch
P and an enclosing cycle C' of P with a labeling such that Cp, is the image of an embedding
of C into L.

PROOF:

This can be proved by composing the cycle Cr, into simple cycles and taking the interior
of those cycles to construct the patch P. A detailed proof of the corresponding lemma for
quadrangle-patches can be found in [29] (Satz 4.20), which can easily be transferred to the
present case of triangle-patches.

O

Corollary 2.4.7 For a given enclosing cycle C' of a general 0-patch P with an embedding
into L, the value of Syi(¢(C)) does not depend on ¢, so we may define Sy (C) := Sp(p(C))
for any embedding .

Furthermore, given two closed cycles Cr,, C} in the lattice where C} is a rotation or trans-
lation of Cr, Syi(Cr) = Sn(CY) holds.
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PROOF:

By lemma 2.4.5 we have S,;(¢(C)) = F(P,C). Since F,;(P,C) does not depend on ¢, this
implies that indeed S;;(¢(C)) does not depend on ¢, either.

By lemma 2.4.6 we know that for any cycle Cp, in the lattice we can find a general 0-patch
P with an enclosing cycle C' such that Cf, is the image of an embedding of C' into L. If U7,
is a rotation or translation of C'r, then it must also be the image of an embedding of C' into

L, so we have embeddings ¢ and ¢’ with C, = ¢(C) and C7 = ¢'(C). But then we have
with the first part of this lemma:

Sr(CrL) = Sr(e(C)) = 5:(C) = Su(¢'(C)) = Su(Cr)

O

Corollary 2.4.8 The number of faces of a general 0-patch is uniquely determined by its
labeled boundary cycle.

PROOF:

Given a general O-patch P with enclosing cycle C' and a labeling of C. By lemma 2.4.5,
F. (P, C) is equal to Sy(p(C)) for any embedding ¢ of C into L. Since Sy;(¢(C')) does not
depend on the patch P but only on the labeled enclosing cycle C, this means that F,.;(P,C)
actually does not depend on P, either.

Now the boundary cycle of a general O-patch is a special enclosing cycle where all faces are
right faces. So if C is the boundary cycle, then — as we have noted before — F}, (P, C) is also
equal to the number of bounded faces |F'(P)|. Consequently we have

|F(P)| = Fu(P,C) = Snu(e(C))
for any embedding ¢ of C into L — so indeed the number of faces of P is uniquely determined
by C.
O

2.5 Patches with disordered subpatches

Now we come back to the original problem: We consider a disordered triangle-patch P and
want to determine its number of faces with respect to its boundary and a fixed subgraph
that contains all defective vertices.

In case D(P) mod 6 # 0, an embedding of the boundary cycle of P does not form a closed
cycle in the lattice. But if we add a path that cuts out the defective vertices, we obtain the
boundary cycle of a general 0-patch, which has an embedding into L due to lemma 2.4.5.
So we define:

Definition 2.5.1 Let P be a disordered triangle-patch and @ a 2-connected subgraph of P
such that all defective vertices of P lie in the interior of Q. We call such a subgraph Q a
disordered subpatch of P.
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A cutpath in P relative to @), a vertex v in the boundary of P, and a vertex w in the
boundary of Q) is a directed path XY Z in P consisting of subpaths X, Y, and Z with the
following properties:

o X is a path starting at v and ending at w;

e Y is the path starting and ending at w and consisting of the boundary edges of )
directed such that ) lies on its left hand side;

e 7 is the path starting at w and ending at v using the same edges as X with opposite
direction.

A disordered triangle-patch P with (labeled) boundary cycle C, disordered subpatch @,
and cutpath XY Z relative to (), v and w as described above can be cut along XY Z to
obtain a general O-patch P’ with boundary cycle C, XY Z, where again C, denotes the path
consisting of the edges of C' starting and ending at v (see figure 2.14).

Figure 2.14: An example of a disordered triangle-patch P with disordered subpatch @ and a
cutpath XY Z (left), and the corresponding general 0-patch P’ with boundary cycle C, XY Z
(right)

Since C, XY Z is the boundary cycle of a general 0-patch, it can be embedded into L and
forms a closed cycle there. By construction, the number of bounded faces F,.,(C, XY Z) in
P’ is equal to the number of faces in P — ). What is left to show is that this number is
the same for any disordered triangle-patch with the same labeled boundary cycle C' and the
same disordered subpatch Q.

For this we need the following lemma which is based on the results on the rotation of em-
bedded paths that were developed in the last section:

Lemma 2.5.2 Given a disordered triangle-patch P with D(P) mod 6 # 0, boundary cycle
C, disordered subpatch Q, and cutpath XY Z relative to Q, a vertex v in the boundary of
P and a verter w in the boundary of Q. Let P’ be the corresponding general 0-patch with
boundary cycle C, XY Z, and ¢ an embedding of C, XY Z into L. Then the inverse path
of (Z) (that is, p(Z) with opposite orientation of the edges) is the image of a clockwise
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rotation of ¢(X) by D(P) - 60 degrees around a center ¢, which can be a vertex, the center
of a face, or the center of an edge in L. Its position is uniquely determined by o(C)).

PROOF:

Let eq be the first edge in C,, and ¢’ the closure with respect to the embedding ¢ of
C,. Then by lemma 2.3.8, there is a point ¢ in L (a vertex, the center of a face, or the
center of an edge) such that ¢'(eg) is the image of a counterclockwise rotation of p(eg) by
D(P) - 60 degrees, and it is uniquely determined by ¢(C,). We show that this point is
also the requested center of rotation for the paths. Let o denote the clockwise rotation by
D(P) - 60 degrees around c.

At first some simple remarks concerning the orientation of directed edges in L:

1. For any edge e € E; we have a(e) € Ej; p(p) mod 6-
2. If e€ E; and e’ is inverse to e, we must have e’ € Eji3 mods-

3. Let e;—1, e; be succeeding edges in some enclosing cycle with labeling [ and embedding
. Then by definition 2.4.3 we have

(P(eifl) S Ej = 90(61) S Ej+l(ei_17ei)—2 mod 6
and vice versa

w(ei)) € Ej = w(ei1) € Ej_i(e;_1,e:)+2 mod 6 -

Now let v = wv1,...,v; = w be the vertices in X such that X = (vq,v2),..., (vVk—1, VL)
and Z = (vg, Vg—1),-- -, (va,v1). Furthermore let x1,...,zx, 21, .., 2; be the corresponding
vertices of the embedding in L, i.e. p(vs,vir1) = (x4, 1) and @(vir1,v;) = (2441, 2;) for
i=1,...k—1.

Using this notation we have to show a(z;) = z; for i = 1,..., k. We proceed by induction
in i (showing that provided that it holds for s — 2 and i — 1, we get the statement for 7).

First we have to show a(z1) = 2. If we let eq be the first edge of C,, e,_1 the last one,
and ¢’ the closure of the embedding, then the starting point of ¢’(eg) is the ending point of
@(en—1) (that is 21), and if p(e, 1) € Ej then ¢'(e0) € Ej_deg(v)+4 mod 6- By lemma 2.3.8
we have ¢'(eg) = a1 (p(eq)), hence a(¢'(eg)) = ¢(eg) and in particular a(z;) = z;.

Now we show a(z2) = z2: Let ¢(eg) € E;. Then the definition of the embedding yields
(22,21) = ©(v2,V1) € Ej_i((v2,01),e0)+2 mod 6 (remark 3) and hence (with remark 2):

(21722) € Ej—l((v27v1)7eo)+5 mod 6 (28)

Furthermore, due to lemma 2.3.7 and remark 1 we have ¢'(eg) = a ™ *(p(eg)) € E;_p(P) mod 6
so again with remark 3 and the definition of ¢'(eq) we get

(P(enfl) € Ej—D(P)—l(en_17eo)+2 mod 6 -

This again implies (21,72) € Ej_p(P)—i(en_1.c0)+l(en_1,(v1,v2)) mod 6 and therefore (with re-
mark 1)

a(l‘l,l'z) € Ej—l(en_l7eo)+l(en_1,(vl7v2)) mod 6 - (29)
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Figure 2.15: An embedding of the boundary cycle C, XY Z of P’ from figure 2.14 into the
lattice with the notation used in the proof of lemma 2.5.2, demonstrating the idea of the
proof (for simplification we denote the embeddings in the same way as the respective paths)

Now we have by definition of the labeling l(e,,—1, (v1,v2)) = l(en—_1,€0) + 1 + m, where m
denotes the number of edges in rotational order between eg and (vy,v2). Then we also have
I((va,v1),e0) + m+ 2 =6 and hence m = 4 — I((va,v1), €o)- Inserting m we obtain

l(@n_l,eo) = l(en_l, (’1)1,’1)2)) + l((’l)g,’l)l),eo) —9. (210)
If we insert (2.10) into (2.9) we get

a(.’El,Z‘g) € Ej—l((v2,01)7€0)+5 mod 6

- 80 a(r1,r9) and (21, 22) (compare (2.8)) are in the same class. Since we already know that
a(z1) = z; this implies also a(zs) = 2z5.

Now assume we have a(z;—2) = z;—2 and a(z;—1) = z;—1 for some i € {2,...,k —1}. We
have to show a(z;) = z;.

Let (2;—1,2;) € E;. Then we have by remark 3
(Tim2,%i21) € Ej_i((v;_s,vi_1),(vi1,0:))+2 mod 6
so it follows by induction and remark 2:
(2i—2,2i-1) € Ej4D(P)—i((vi_2.vi-1),(vi—1,v:))+2 mod 6

k 3
e (2i-1,2i) € Ej4D(P) mod 6
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Because of a(x;—1) = z; this implies that we also have a(z;) = z;.

O

Now consider two disordered triangle-patches P and P with the same boundary sequence
and isomorphic disordered subpatches @ and @, and let v resp. ¥ be boundary vertices
that correspond to each other in the two respective boundary sequences. In order to show
that the patches have the same number of faces, it would be helpful if we could choose the
cutpaths such that there are embeddings that map not only the boundary cycles C, and C;
onto the same paths, but also the paths Y and Y around the disordered subpatches. Indeed
we use such an argument in [9]: There the disordered subpatch consists of a single face, so
w.l.o.g. we may assume that the images of the paths around that face are equal (otherwise
we extend one of the paths by an appropriate number of edges).

However, this argument cannot be applied anymore in case of an arbitrary disordered sub-
patch because in general its boundary does not have the appropriate rotational symmetry.
Hence it can occur in different positions relative to the boundary symmetry, as e.g. in figure
2.16. In this case it is not possible to determine cutpaths such that the embedded paths
corresponding to the boundary of P and P as well as those corresponding to the boundary
of @ and @Q are equal: Then the paths Y and Y around the boundaries of @ and Q would
have to be chosen such that their starting points w and w correspond to each other with
respect to the symmetry of the boundary, which means in this case that choosing a starting
point of Y determines the one in Y. But then their embeddings do not coincide, as we see
in figure 2.17, where the paths from figure 2.16 are embedded.

Figure 2.16: Two patches P, P with the same boundary (actually they are even the same
patches) containing two isomorphic disordered subpatches @, @, with cutpaths XY Z and
XY Z, where the ending points w and @ of X and X are chosen such that they correspond
to each other with respect to the boundary of @ (in this case both are the only degree 2

vertices)



2.5. PATCHES WITH DISORDERED SUBPATCHES 33

Figure 2.17: Embeddings of the paths from figure 2.16 into the lattice (again the embedded
paths are denoted in the same way as the respective origin paths), where the embeddings of
Y and Y do not coincide

For this reason, the proof of the following theorem requires some new ideas extending the
approach that has been applied in the corresponding proof from [29] resp. [9].

Theorem 2.5.3 Given two disordered triangle patches P and P with the same bound-
ary sequence and disordered subpatches @), @ that are isomorphic, where D(Q)) mod 6 =

D(Q) mod 6 # 0. Then P and P have the same number of faces.

PROOF:

Let v be a vertex in the boundary of P, w a vertex in the boundary of @), and XY Z a
cutpath in P relative to @, v, and w. Then we choose v and w as vertices in the boundary
of P resp. () that correspond to v resp. w in the boundary sequence of the patches, and let

XY Z be a cutpath relative to Q, ¥, and @ (see figure 2.18).

Figure 2.18: The patches P and P with cutpaths XY Z and XY Z

Furthermore let 1_3’_ and P’ be the corresponding general 0-patches with boundary cycles
CyXYZ and C3 XY Z. By definition of F, their numbers of faces are Fy/(C, XY Z) and
F.(C3 XY Z) (because all faces are right faces), and these are also the numbers of faces in

P —Q resp. P— Q. But since @ and @ are isomorphic they have the same number of faces,
so it is sufficient to show that P’ and P’ have the same number of faces, or equivalently

Fo(C,XYZ) = F(CoXY Z) . (2.11)
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Now let ¢ and ¢ be embeddings of C, XY Z and C3 XY Z such that ¢(C,) = ¢(Cy) — this
is possible because P and P have the same boundary sequences and v and # are chosen as
corresponding vertices, so C, and Cj are the same labeled paths.

In order to simplify notation, we denote the embedded paths equal to the paths in the patch,

so we have cycles C, XY Z and C, XY Z in L.

By lemma 2.4.5 we have F,,(C,XYZ) = $,,(C,XY Z) and F (C,XYZ) = S (C, XY Z),
so instead of (2.11) we may show:

Su(CoXY Z) = S(Co XY 2) (2.12)

In the lattice L we define the following vertices (see figure 2.19):

- v; as the starting point of X and X;

- vy resp. Uz as the ending point of X resp. X and starting point of Y resp. Y
- v3 resp. U3 as the ending point of Y resp. Y and starting point of Z resp. Z;
- and vy as the ending point of Z and Z.

Due to lemma 2.5.2, the inverse path of Z is the image of a clockwise rotation of X by
D(P)-60 degrees around a center ¢ — and since D(P) mod 6 # 0 and Z and Z have the same
endpoints, the inverse path of Z is the image of a clockwise rotation of X by D(P)-60 degrees
around the same point c. So if a denotes this rotation, we have a(v;) = v4, a(ve) = vs, and
CM('U_2) = 0U3.

Figure 2.19: Embeddings of the cutpaths XY Z and XY Z (compare figure 2.18) into L

As noted before, it is not always possible to ensure Y = Y in the lattice. But in any case
we have (Y) = Y for a rotation 3 around the center c: Let dist(z,y) denote the distance
between two points z and y in the lattice (not necessarily vertices), i.e. the length of the
straight line joining them. Because of a(vy) = v3 and «a(v2) = 03 we have dist(ve,c) =
dist(vs, ¢) and dist(vz2,c¢) = dist(v3,¢). On the other hand dist(vs,v3) = dist(va, v3) holds,
since the paths Y from vs to vs and Y from v to v3 in the lattice are embeddings of the same
labeled path. So vs,vs, ¢ and 02,03, ¢ form congruent triangles (both are isosceles, have the
same angle o and the same length of the opposite side). But this means in particular that



2.5. PATCHES WITH DISORDERED SUBPATCHES 35
we have dist(vz,c) = dist(vs, ¢) = dist(v3,c) = dist(v2, ¢), so there is a rotation 4 around ¢
with B(vq) = va, B(vs) = U3, and hence (V) =Y.

At first consider the case where 3 is the trivial rotation, that means Y = Y indeed holds
(and hence vy = U2 and v3 = 03) — see figure 2.20. Then the proof works similarly to the
one in [9]: Because the cycle Z~1Z is just a rotation under a of X X ~! we have by corollary
2.4.7 and remark 2.3.5 (2)

Srl(XX"l) = Srl(Zilz) = —Srl(ZZ’l)
and therefore with the additivity of S,; (remark 2.3.5 (1))
S (CoXYZ) = Sp(Co XY Z) + Sy(XX ™Y+ S4(ZZ7") = S, (C. XY Z)

which is what we wanted to show.

/Y VVV WAVAVAV AVAVA
AVAVAVAVAVYAY, W/ VAVAVAVAVA
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY

Figure 2.20: An example of the case Y =Y

Now assume that ¥ = Y is not the case, that means v, # U5 and v3 # U3. Then we have
B(Y) = Y for a non-trivial rotation 3 around ¢ (in particular f(vs) = v» and S(v3) = v3).
Because of the symmetry of the triangular lattice, the degree of rotation must be a multiple
of 60 degrees. W.l.o.g. we may assume that 3 is a clockwise rotation of at most 180 degrees;

otherwise define XY Z and XY Z the other way around.
For simpler notation we will use o and 8 also as the size of the corresponding angle.

Let v be the greatest common divisor of @ and . Since the vertices vs, v3, U2, U3 have the

same distance to ¢, we may define a directed cycle H in the lattice with ¢ on its left hand side,

symmetry group C'seo (with ¢ as rotation center) and containing the vertices vo, v3, U2, 03. H
il

can be chosen as a regular hexagon in case of 7 = 60 and as a hexagon with the appropriate
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symmetry otherwise (see figure 2.21). Note that ¢ is not always a vertex; if v = 120, it might
also be the center of a face and if v = 180, it might be the center of an edge.

Figure 2.21: The possible configurations of vs,v3, U2, v3 in the lattice and the corresponding
hexagon

The idea is now to replace the paths Y and Y by the appropriate paths along the hexagon.
So we define Y7 as the path from vy to v along H, and Yy as the path from 5 to 03 along
H (see also ﬁgure 2.22). By construction of H, Yz and Yp are the same labeled paths and
we have B(Y;'Y) = Y'YV, so by corollary 2.4.7 we get

Su(Yu YY) = Su(V;'Y) .

Because of S, (Y~ 'Y) = =S, (YgY ") and Srl( V) = —8,(YgY '), this implies also
S (YY) + sr,( 1Y) = 0 and Su(YgY 1) + S”(YH 1Y) = 0. With this and the
additivity of S,; we get
S”(C XYZ) - S (CyXYrZ)
Sr(Co XY Z) + Srl(YHY YN+ Su(Y;'Y) = Su(C XYrZ)
rl(C XYHZ)+S( ) —Srl(CvXYHZ)
(Yir

= Su(V;'Y)
and
Su(CoXYZ) — 8(CoXYn Z)
= Su(CoXYZ)+ Su(YuaY ™) + Su(Yu™Y) — Su(Co XY Z)
= Su(CoXYuZ) + Su(Y;'Y) — Su(Co XYy Z)
= Su(Y;'Y)
= Su(Vi'Y),
and hence

S1(Co XY Z) = Su(CoXYyZ) = Sp(CoXY Z) — Su(CoXVi Z) .
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AVAVAVAVAVATAVAVAVAVAVAVAVAVA
\VAVAVAVAVAV.. VAVAVAVAVAV,
AVAVAVAVAVAVA,  VAVAVAVAVA
VAVAVAVAPAVA:  VAVAVAVAV)
WVAVAY . | | NANAVAVA
VAVAY /%A .  NNAVAV
W7AY ATAVATANA '  VAVAVA
VAV AVAN'YAYES . NAYAY
AV AVAVAYLON & - VAYA
VAVAAVAVAVANA, & | VAW
UVAVAVAVAUAYAT AY. - ' AVA
\VAVAVAVAYAVAY oY - AVAV
IAVAVAVAVAAVAVAY  AVAVA
\VAVAVASAVAVAVAY  AVAVAV
WVAVAVAVAY . ANAVAV
\VAVAVAVAV..VAVAVAVAVAVAVAVAVAY

Figure 2.22: An example of two cutpaths with V' # Y; the paths Y and ¥ may be replaced
by Yy and Yy (the red area is a rotation of the blue area by 3!)

Therefore it is sufficient to show
S(CoXYyZ) = S(C, XYy Z) (2.13)
instead of S,4(C, XY Z) = S,4(C, XY Z), because with (2.13) we obtain

S(CoXYZ) = Su(CoXYZ) = Sp(CoXYirZ) + Sui(Co XY Z)
= Srl(CvXYZ) - STI(CUXYHZ) + STI(CUXYHZ)
= S.u(C,XYZ).

So in the following we may w..o.g. assume Y = Yy and Y = Y. For the proof we
distinguish whether a + 8 < 360, a + 8 = 360, or a + 5 > 360.

1. a+ 3 < 360:

Because of v3 = a(v2) = a(f(v2)) this means that vz is a clockwise rotation of s
around ¢ of less than 360 degrees. Hence, since Y is the (counterclockwise) path along
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the hexagon from v to v d Y is the esponding path f om v to v3, they must
have a segment in common, namely th bp th from vy to W de ﬁ Y; as the
subpath of Y from 5 to Y Y] a th ommo bp ath f om vs to and Y5 a

the subpath of ¥ from v: t v3 (see also ﬁg e 2. 23) of th ymm t ry of H

also Y7 and Y5 are the same labeled paths.

(NNINNINSNAN/ NN NN NN/
\VAVAVAVAVAYi.  NAVANAVAYAV
AVAVAVAVAVAVA.  VaAVAVAVAVAN
\VAVAVAVAUAVA? ~ NavaAvaAvav:
AVAVAVAVAVAVAVA . - NAVAVAYA
VAVAY S YaVAVIN'SS .\ AV AV AN VAV,
0 TAVAVAVAVAVAVAVL . - NAVAVA
NVAVAVAVAV N AYSvava - - NAVAv4
VAV YAVAVAVE YAVAN, 7 AV VAN A VAVAN
\VAVAVAVAVIVAVAVAY -~ " Va4
AVAVAVAVAVAVAVAY (= " ANAN
\VAVAVAVAVAVAVAV . -~ " ANaV4
VAVAVAVAY 5 ANANAVA AL AVAVA
VAVAVAVAVAVAVAVAVAVAVAVAVAVAV
WAVAVAVA: = = . AVavavi

Figure 2.23: An example where o+ 3 < 360. Then Y and Y can be partitioned into Y;Y5

resp. Y1Y3 such that ¥; = ¥5, and it can be seen that Z7YY, 17 is a rotation under a
X}/'lle—l

of

Now the situation is similar to the first case yvhere Y =Y: Due to the delfiniti(}n of o
and the symmetry of H, the cycle Z’IYQ_IZ is a rotation under a of XYI_IX*I, SO

we have
S(XY'X ™YY +5(Z2Y.Z27) =0
d theref
S(C,XYZ) = S(C,XVY>22)
= S(C,XNY22Z) + S(XY'X Y +8(2Y,Z71)
= S(C,XY2Y22)
= S(C,XYZ).
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2. a+ f = 360:
Then we have v3 = a(v2) = a(f(v2)) = v, i.e. the ending point of ¥ is the starting
point of Y (see also figure 2.24). This means there are cycles Z~'Y ' Z and XY ' X",
where (XY 1 X~1) = Z71Y~1Z so it follows that
S(XY'X"Y+S(zvyZ ) =0
and hence

S(C,XYZ) = S(C,XYZ)+S(XY'X™ Y+ 8(2YZ™") = S(C,XYZ).

AVAVAVAVAVAVAT AVAVAVAVAVAVAVA
\VAVAVAVAVAVAVs.  VAVAVAVAYV
VAVAVAVAVAVAVAVA,  VAVAVAVA
VAVAVAVAV;VAVAT? ~  NAYAYAY
VAVAVAVAVAVAVAVAVA " VAVAVA
\VAVAVAVAVAVAVAVAVA .  -NAV
VAVAVAVAVAVAVATAVAYA - VAVA
\VAVAVAVAVAV-VANAVAVA - YAV
JAVAVAVAVAVAVAV/VAVAY - VAN
\VAAVAVAVAVIVAVAVAY ' W

AVAVAVA  NVEVAVAVAY 2\ 5L A
\VAVAVAVAVAY/ \WVAVAVAVAVAY
JAVAVAVAVAV .. /A0 A0 L AV
\VAVAVAVANVA L A0ATE 1 ANV

AVAVAVAVAVA. = . " AVavi
VAVAVAVAVAVLVAVAVAVAVAVAVAVAN

Figure 2.24: Here we have a + 8 = 360 and hence 03 = vy. Then we get (XY 1X 1) =
VD G/

3. a+ 4> 360:

Then Y and Y,d,o not intersect, so we define a path A from v3 to vy following H and
obtain cycles XYAX ! and Z1AY Z (see figure 2.25). Because of the symmetry of
H,Y A and AY are also the same labeled paths only rotated by «, so

A XTAX ) = 2714V Z
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holds. Therefore we have
S(X W HAIX)+S(Z TAYZ) =0

and
S(C,XVZ) = S(C.XYZ)+S(X™'V'A™'X) + S(Z7' AV Z)
= S(C,XYZ).

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
\VAVAVAVAVA 7AVAVAVAVAVAVAVAVAV/
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
\VAVAVAVAVAVAAVAVAVAVAVAVAVAV/
VAVAVA' JAVAVAVAVAVAVAVAVA
\VAVAVAVAVAVZVAVAVAVAY VAVAVAV
VAVAVAVAVAVATAVAVAV.Y  VAVAVA
IVAVAVAVAV WA VATV T4 VAV
VAVAVAVAVAVYAVAVAY V. VAN
\VAVAVAVAVAVAVAVAY . YAVl
VAVAVAVAVATAVAVAY /- " AN
\VAVAVAVAVAVAVAY " AVAVU
VAVAVAVAY - 72 VAVAVAY /- AVAVAN
VAVAVAS S A ANANAVY
UVAVAVAVA,  AVAVAVAN
\VAVAVAVAY. .VAVAVAVAVAVAVAVAVAV,

Figure 2.25: An example with a + 8 > 360; then we define a path A from v3 to v

With this we have S(C,XYZ) = S(C,XY Z) for all possible cases, which was what we
wanted to show.
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2.6 Further questions

There are several further interesting questions in this context that will not be investigated
in this work but should be raised here:

In this chapter we have shown that two disordered triangle patches P and P with the
same boundary sequence and disordered subpatches @) and () that are isomorphic have the

same number of faces if D(Q) mod 6 = D(()) mod 6 # 0. But what about the cases with
D(Q) mod 6 =07

We know that the number of faces is also uniquely determined in case of D(Q)) = 0 [26].
For D(Q) = 6 we know that this is not the case (see figure 2.2). However, in these kind of
examples the closure of the embedding corresponds to a translation in the lattice and never
to a rotation. But it can also happen that the image of the closure and the image of the first
edge are equal such that we have a closed cycle in the lattice — figure 2.26 shows an example
where this is the case. So the question is: Is the number of faces uniquely determined in
this case?

Figure 2.26: A patch with 6 degree 5 vertices whose boundary forms a closed cycle in the
lattice

Finally, what about D(Q) = 12, for example 12 degree 5 vertices? If the patch is a subgraph
of a geodesic dome this should be easy because the number of faces in the other cap with 0
degree 5 vertices is uniquely determined by the boundary, and the whole geodesic dome is
uniquely determined by its signature which is obtained by the Coxeter coordinates between
the degree 5 vertices ([19]). But what if the patch is not such a subgraph?
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Chapter 3

Minimal boundary lengths of
disordered patches

3.1 Introduction

In this chapter we investigate patches that have minimal boundary length while containing
a fixed number of faces. We determine formulas for lower bounds on the boundary length in
terms of the number of faces, and furthermore construct patches that indeed assume these
minimal boundary lengths.

Harary and Harborth have already discussed similar problems in [27], but only for patches
without disorder, that means patches where all bounded faces have the same size and all
inner vertices the same degrees. This includes triangle-patches where all inner vertices have
degree 6. We are basically interested in results on triangle-patches that allow also defective
vertices with degrees different from 6 — in particular we are interested in the cases with inner
vertices of degree 5 and 6, since these triangle-patches occur in geodesic domes, the duals of
fullerenes.

Indeed there have already been investigations on the boundary lengths of the dual patches,
that are hexagon-patches with pentagons as defective faces [3], and in [15] also with triangles
and quadrangles. We discuss and extend these results in the first main section of this chapter
(section 3.2). In section 3.3, we turn to disordered triangle-patches with a limited number
of defective vertices. Using the results on hexagonal patches, we prove lower bounds on
the boundary length of these patches with respect to their numbers of faces. Afterwards we
define spirals and show that their boundary lengths are equal to the lower bounds computed
before. This way we have determined disordered triangle-patches with minimal boundary
lengths for a given number of certain defective vertices. However, the positions of the
defective vertices are variable, and for application we are also interested in triangle-patches
with minimal boundary lengths for a given configuration of defective vertices (e.g. with
certain distances), or more general with a fixed subpatch containing the defective vertices.
These problems are discussed in the sections 3.3.4 and 3.3.5, making use of the results
established before.

43
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3.2 The boundary length of disordered hexagon-patches

Since the duals of disordered triangle-patches are hexagonal patches with inner vertices of
degree 3 where the disorder consists in faces whose sizes deviate from 6, we examine these
patches in this section.

In [3], Bornhoft, Brinkmann, and Greinus consider pentagon-hexagon-patches, that are 2-
connected plane graphs with all bounded faces pentagons or hexagons, all interior vertices
of degree 3 and all boundary vertices of degree 2 or 3. They show that for a given number
of pentagons and hexagons a minimal boundary length is reached by arranging the faces
in a spiral way starting with the pentagons, and give explicit formulas for the boundary
length of these spirals. This result is extended by Anke Egging in her diploma thesis [15] to
patches where not only hexagons and pentagons, but also squares and triangles are allowed.
Analogously to the disordered triangle-patches we introduce the following definitions for
hexagonal patches:

Definition 3.2.1 A disordered hexagon-patch is a 2-connected plane graph P with one
distinguished face called the outer face where all vertices not lying in the outer face have
degree 3, and all vertices that lie in the outer face have degree 2 or 3. Any face that is
not the outer face is called bounded face, and a bounded face with size different from 6 is
called defective face. We call a bounded face of size 6 a hexagon, a bounded face of size
5 a pentagon, a bounded face of size 4 a square, and a bounded face of size 3 a triangle.
The vertices and edges in the outer face are called boundary vertices and boundary edges,
respectively. The boundary length of P is defined as the number of boundary edges (or
equivalently, boundary vertices) and denoted by b(P).

A disordered hexagon-patch with exactly p pentagons, s squares, t triangles and no further
defective faces will be called (p, s,t)-hexagon-patch. Moreover, we define for p,s,t € Ny:

D(p,s,t) :==p+2s+ 3t

We are particularly interested in (p, s, t)-hexagon-patches with D(p,s,t) < 6 because only
these cases allow to construct patches with an arbitrary number of hexagons. Due to [15],
there are 23 different possibilities to choose p, s,t € Ny such that D(p, s,t) < 6 holds (see also
table 3.1). For these cases, a (p, s,t)-hexagon-spiral is defined as a (p, s, t)-hexagon-patch
where the faces are arranged in a spiral way, starting with the triangles and continuing with
the squares, pentagons and finally the hexagons. We will denote a (p, s, t)-hexagon-spiral
with h hexagons by S ,]l‘f;’fs’t. The detailed definition as well as the existence and uniqueness
of such a spiral can be looked up in [15].

Furthermore, it is proven in [15] with the help of the technique applied in [3] that the spiral
S,i‘;’fs’t has minimal boundary length among all (p, s,t)-hexagon-patches with h hexagons.
The boundary length of S,ﬁ‘jo’f&t for given (p, s,t) is computed in terms of the number h of
hexagons — however, with a few errors. In subsection 3.2.1 we give the correct formulas and

the proofs for those that differ from [15].

Afterwards, in subsection 3.2.2, we introduce general disordered hexagon-patches — disor-
dered hexagon-patches that are not necessarily 2-connected — which will be needed in section
3.3 for transferring the results to the dual. We show that general disordered hexagon-patches
with minimal boundary length are 2-connected, which means that the proven formulas on
the minimal boundary length of disordered hexagon-patches also hold for general disordered
hexagon-patches.
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3.2.1 Lower bounds on the boundary length of hexagon-patches

We start with a basic formula for hexagon-patches:

Lemma 3.2.2 Let P be a (p,s,t)-hezagon-patch, and dy resp. ds the number of boundary
vertices of P with degree 2 resp. 3. Then we have

d2—d3 = 6—D(p,8,t) .

PROOF:

This follows by summing up on the one hand the vertices and on the other hand the edges
for all the bounded faces, and inserting the obtained equations into Euler‘s formula (see [15],
Lemma 2.11).

O

The following theorem corresponds to Theorem 4.1 and Lemma 4.4 in [15], where the incor-
rect formulas from Theorem 4.1 have been corrected in this place (see table 3.1). We give
the proof only for these cases.

Theorem 3.2.3 For given h,p,s,t € Ny with D(p, s,t) < 6, the spiral S,f;fs’t has minimal
boundary length among all (p, s,t)-hexagon-patches with h hexagons. Its boundary length
can be found in table 3.1. Thus, these formulas give lower bounds on the boundary length of
any (p, s, t)-hexagon-patch.

PROOF:
The proof of the minimality can be found in [15], lemma 4.4.

The formulas for the cases with s = ¢ = 0 appear in [3] and are proven in detail in [22].
The proofs of the cases (p, 5,t) € {(0, 1,0), (2, 1,0), (4, 1,0), (0,2,0), (2,2,0), (0,3,0), 0,0, 1),
(3,0,1),(0,1,1),(1,1,1),(0,0,2)} are contained in [15]. Left are the formulas for

(p’ S’t) E {(]" 170)’ (37 1’0)7 (1’270)’ (]‘70’ ]‘)7 (2’ 07 1)}

which are not correct in [15] and will be proven in the following.

For each of the five cases for (p,s,t) that we consider, we define a basic patch as shown in
figure 3.1. These patches are contained in any of the corresponding (p, s, t)-hexagon-spirals
S,}l‘f;’fs’t and form the first faces in the spiral order — for the cases (p,s,t) = (3,1,0) and
(p,s,t) = (2,0,1) we have to assume h > 1, but this is no problem since the formulas can
easily be checked by hand for the case h = 0.

The set of faces with minimal distance d to one of the faces in the basic patch will be called
the dth layer of the spiral. The dth layer is called complete if the unbounded face has a
distance of more than d from any of the faces in the basic patch.
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(pa S, t) D(pa 5, t) b (S}Ll,(;))fs,t)
(0,0,0) 0 2[v/12h — 3]
(1,0,0) 1 2[4/10h+ 2 + 11 -1
(2,0,0) 2 2[/8h + 16]
(3,0,0) 3 2[1/6h+ 8L 4+ 17 -1
(4,0,0) 4 2[\/4h + 25]
(5,0,0) 5 2[1/2h + 12 4 11 -1
10 if2eNy
(6,0,0) 6 12 else
(0,1,0) 2 2[/8h + 4]
(1,1,0) 3 2[/6h+ 2 +17 -1
(2,1,0) 4 2[/4h + 16]
(3,1,0) 5 2[\/2h+74—3+%]—1
8 if % € Ny
(4,1,0) 6 10 else
(0,2,0) 4 2[v/4h + 9]
(1,2,0) 5 2[4 /2h+ 2+ 17 -1
(2,2,0) 6 8
6 if % €Ny
(0,3,0) 6 8 else
(0,0,1) 3 2[\/6h+ 5+ 311
(1,0,1) 4 2[/4h + 8]
(2,0,1) 5 2[y/2h+ 4 +17 -1
6 ifleN
(3,0,1) 6 8 else
(0,1,1) 5 2[4 /2h+ B +171-1
(1,1,1) 6 6
4 if % €Ny
(0,0,2) 6 6 else

Table 3.1: The 23 combinations of p, s,t € Ny with D(p, s,t) < 6, and the boundary length

b(Spex, ;) of the spiral Sy, with h hexagons in each case.
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E®@o®

(1,1,0) (3,1,0) (1,2,0) (1,0,1) (2,0,1)

Figure 3.1: The basic patches for the cases (p,s,t) = (1,1,0), (p,s,t) = (3,1,0), (p,s,t) =
(1,2,0), (p,s,t) = (1,0,1), and (p, s, 1) = (2,0,1)

Now we insert a small lemma: Let S be a spiral consisting of a basic patch, I > 1 complete
layers and no further faces, and let S be the spiral consisting of the same basic patch,
l — 1 complete layers and no further faces. Then in case I > 2, the lth complete layer
contains 6 — D(p, s,t) more faces than the (I — 1)st complete layer. Furthermore, we have
b(S) = b(S) +2(6 — D(p, s,1)).

Proof: For j = 2,3, let d; resp. Jj be the number of boundary vertices with degree j in S
resp. S. Since in each layer every face has exactly two neighbouring faces, d» = ds gives
the number of faces in the [th layer, while d3 is the number of faces in the (I — 1)st layer.
Furthermore, by lemma 3.2.2 we have dy — d3 = ds — d3 = 6 — D(p, s,t). We obtain

dg—Jg = d_Q—d_g = 6—D(p,s,t)

and

b(S) = do+ds = do+ds+dy—ds+dz—ds
(dy + d3) + (da — do) + (d3 — d3)
(da + d3) + (dz — d3) + (da — d3)

= b(S)+2(6 - D(p,s,1)) .

The case (p,s,t)=(1,1,0)

At first we want to determine the boundary length of the spiral S,ﬁ"effl’o with respect to its
number of hexagons h € N (see figure 3.2). For this assume it has [ complete layers, and let
a be the number of additional hexagons that do not lie in a complete layer.

Since the first layer contains 5 faces and for d > 2, the dth complete layer contains 6 —
D(1,1,0) = 3 more faces than the (d — 1)st layer, we have

Il
MN

(3i+2) +a
i=1

10+1)
2

3, T
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Figure 3.2: The spiral S}l‘f’l’fm — here with [ = 3 layers and a = 3 additional faces

hex

In case a = 0 we have b(ShJ’LO) = 6/ + 7, since the basic patch has boundary length 7, and
with each complete layer the boundary length grows by 2(6 — D(1,1,0)) = 6. On the other
hand, we get by inserting h into the stated formula:

/ 49 1 / 49 1
=2 i _ 2 I I
2[4/ 6h + 1 +2] 1 2[4/912 + 211 + 1 +2] 1

= 2[(3l+;)+%1—1

= 6l+7 = b(Sp¥y,)

Now let a # 0. Then we have

N

, 1<a<i+1
, 1+2<a<2l+3
6 , 20+4<a<3l+4.

>~

b(Spye) = 6L+ T+

Incase 1 <a<Il+1 we get:

3 7 9

124 < 24z
21 +21+1 < h 21 +21+1
73 49 73
N 912+2U+Z < 6h+z < 912+27I+Z
49 49 81
= 924211+ — < 6h+— < 9?4271+ —
4 4 4
7 49 9
— . < —
= 3l+2 < 6h+4 < 31+2
49 1
& 3l+4 < 6h+z+§ < 3145
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/ 49 1
[ 6h+z+§1 = 3l+5

49 1
& 2[\f6h+ T +1-1 = 61+9 = b(SiT)

This implies:

In case I + 2 < a < 2] + 3 we have

3, 9 3, 11
— “1+2 < < = —
2l+2l+ < h 2l+2l+3
97 49 121
N 9l2+27l+Z < 6h+z < 9l2+331+T
81 49 121
= 9l2+27l+Z < 6h+z < 9l2+331+T
9 49 11
Z - < -
= Bl+5 < [6h+ - < Bl+ 3
/ 49 1
& 8l+5 < 4f6h++5 < 346
and therefore we get:
[ 6h+49+11 = 3l+6
4 "2 T
49 1
& 2[f6h+ £ +31-1 = 6l+11 = b(Sp o)

Finally, if 21 + 4 < a < 3] + 4 we have

3, 11 3, 13
= —l+4 < < = —“l+4
2l+2l+ < h 2l+2l+
145 49 145
& 912+331+T < 6h+z < 912+391+T
121 49 169
= 912+331+T < 6h+z < 912+391+T
11 49 13
- - < i
= 3+ 5 < 6h + T < 31+ 5
/ 49 1
& 3+6 < 6h+z+§ < 3l+7
so it follows that: o1
h+—+=] = 3l
[1/6h + 1 +21 3+7
49 1
& 2[f6h+ £ +31-1 = 6+13 = b(Sp0)

Hence we have shown in all cases:

x 49 1
b(Sl?,el,l,O) = 2[4/6h+ 4 + §-| -1

49
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The case (p,s,t)=(3,1,0)

hex

Now consider S;'% o with h € N (see figure 3.3). Assume S has I complete layers, and let
a be the number of additional faces not lying in a complete layer (nor in the basic patch).

Figure 3.3: The spiral S,}l‘g’fm — here with [ = 2 layers and a = 5 additional faces

Note that the basic patch contains one hexagon, the first layer contains 5 faces and for
d > 2, the dth complete layer contains 6 — D(3,1,0) = 1 more face than the (d — 1)st layer.
Therefore the number of hexagons is

l
h o= 1+) (i+4)+a
i=1

I(l+1
= 1+ (;- )+4l+a

1 9
1+ =012+ 21 .
+2 +2 +a

In case a = 0 we have b(S,i"%”‘LO) = 2]+ 9, since the basic patch has boundary length 9, and
with each complete layer the boundary length grows by 2(6 — D(3,1,0)) = 2. On the other
hand, we get by inserting h into the stated formula:

31 / 31
— iy 2 — i
2[1/2h + 1 +2] 1 2[h/2+ 02491+ 4 +2] 1

2[(1+§)+%1—1

20+9 = b(sl};,es)fl,o)

Now let a # 0. Since the dth complete layer contains d + 4 hexagons, the (I 4+ 1)st layer
would contain [ + 5 faces if it was complete, so 1 < a <[+ 4 must hold. For any such a we
have

b(Sp%h0) =20 +9+2=2+11.
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With 1 <a <1+ 4 we get:

1, 9 1, 11
— — < — -
P gl+2 ho <SPt Sl+s

2
89 73 113
o P49+ — < 2+ — < P+1l+—
4 4 4
81 73 121
= < 2h+—= < 12+111+T

4 4

9 / 73 11

z 9 2 < _—
= l+2 < h+ 7 = I+ 5
& 1+5 < \/2h+1—3+% < 146

IN

A

This implies:

31
2h+—+=] = I
[ +4+21 +6
31
& 22+ THS1-1 = A1 = BSPT )

So we have proven
/ 73 1
b(Si}zl,%}fl,o) = 2[4/2h 4 51 - 1.

The case (p,s,t)=(1,2,0)

a1

Now we determine the boundary length of the spiral SP9%, ; with h € N (see figure 3.4).

h,1,2,

Assume it has [ complete layers and a additional faces not lying in a complete layer or the

basic patch.

Figure 3.4: The spiral ¥, ; — here with I = 3 layers and a = 5 additional faces
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Since the first layer contains 4 faces and for d > 2, the dth complete layer contains 6 —
D(1,2,0) = 1 more face than the (d — 1)st layer, the number of hexagons is

In case a = 0 we have b(S,}l‘7‘°'1”‘270) = 2l + 7, because the basic patch has boundary length 7,
and with each complete layer the boundary length grows by 2(6 — D(1,2,0)) = 2. On the
other hand, we get by inserting h into the stated formula:

49 1 / 49 1
- iy = 2 - 21 =
2[ 2h+4+2] 1 2[ l+7l+4+2] 1

2[(1+%)+%1—1

2047 = b(SpT50)

Now let a # 0. Since the dth complete layer contains d + 3 hexagons, the (I + 1)st layer
would contain [ + 4 faces if it was complete, so 1 < a <[+ 3 must hold. For any such a we
have

b(SpS0) =2A+T+2=21+9.

With 1 <a <1+ 3 we get:

1, 7 1,9
- “l+1 < < = =
21 +2l+ < h < 21 +2l+3
57 49 73
& P4+T7l+— < 2h+— < P+9+—
4 4 4
49 49 81
= P47+ — < 2h+— < P49+ —
4 4 4
7 / 49 9
— - < he
= l+2 < 2h+4 < l+2
4 1
&S 1+4 < 2h+—9+— < I+5
4 2
This implies:
49 1
2h+ —+-=] = [1+5
[ +4+21 +
49 1
s 2 2h+Z+§]—1 = 20+9 = 5(51};,91’:2,0)

Hence we have shown
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The case (p,s,t)=(1,0,1)

Now consider S,ﬁ"ef"o’l with h € N as shown in figure 3.5. Assume S,ﬁ"ef"o’l has I complete

layers and a additional faces not lying in a complete layer.

Figure 3.5: The spiral S,}l‘fffm — here with [ = 3 layers and a = 7 additional faces

Since the first layer contains 4 faces and for d > 2, the dth complete layer contains 6 —
D(1,0,1) = 2 more faces than the (d — 1)st layer, the number of hexagons is

l

h = ) (2i+2) +a
i=1

= (l+1)+2l+a

= ?+3l+a.

In case a = 0 we have b(S}'¥%, ;) = 4146, because the basic patch has boundary length 6, and
with each complete layer the boundary length grows by 2(6 — D(1,0,1)) = 4. Furthermore

we have
VA2 + 121+ 8
VA4l + 81+ 4

21+ 2

v4h + 8

\Y

and on the other hand

VA2 + 121+ 8
< VA2 +12049

= 21+3

v4h + 8

which implies

2[VAL +8] = 220+3) = 4+6 = b(SP%,,) .

Now let a # 0. Then we have

2, 1<a<l+2

hex _
b(sh,1,0,1)—4l+6+{ 4 , 14+43<a<2+3.
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In case 1 < a <[+ 2 we get:

2+3l+1 h < P+4l+2
& 47 +121+ 12 4h+8 < 41> +161+16
= 424+1214+9 < 4h+8 < 4124161+ 16
= 214+3 < V4h+8 < 2+4

This implies:

[Vih+8] = 2l+4
& 2[VAh+8] = 41+8 = b(SPTo.)

If I 4+ 3 <a <2+ 3 we obtain

12+41+3 h < PP+51+3
& 412 +161 + 20 4h+8 < 412 +201+20
= 42 +161+16 < 4h+8 < 41>+200+25
= 214+4 < V4h+8 < 20+5

IN N

and hence we have

Vih+8] = 20+5
& 2[VAh+8] = 4+10 = b(SPT.) -

With this we have proven

b(SyTo1) = 2[VAh+8]

for all cases.

The case (p,s,t)=(2,0,1)

Finally we consider the spiral S,}l‘g’fm for some h € N (see figure 3.6). We assume it has
l complete layers and let a denote the number of additional faces not lying in a complete
layer or the basic patch.

The basic patch contains one hexagon, the first layer contains 4 faces and for d > 2, the
dth complete layer contains 6 — D(2,0,1) = 1 more face than the (d — 1)st layer. Hence the
number of hexagons is

l
h = 1+) (i+3)+a
i=1

= 1+ +3l+a

1(1+1)
2

1 7
= 14+ -P+-l+a.
+2 +2 +a
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©)

Figure 3.6: The spiral S)'%%, | — here with I = 2 layers and a = 4 additional faces

In case a = 0 we have b(S) = 2] + 7, since the basic patch has boundary length 7, and with
each complete layer the boundary length grows by 2(6 — D(2,0,1)) = 2. On the other hand,
we get by inserting h into the stated formula:

41 1 / 41 1
i R 2 kit [
2[1/2h + 1 +2] 1 2M/2+02 471+ +2] 1

= 2[(l+;)+ 1-1

1
2
20+7 = b(SyToq)

Now let a # 0. Since the dth complete layer contains d + 3 hexagons, the (I + 1)st layer
would contain [ + 4 faces if it was complete, so 1 < a <[+ 3 must hold. For any such a we
have

b(Sl?,%)fO,l) =2l+7+2=21+9.

Now 1 < a <1+ 3 implies:

1, 7 1, 9
_ _ < _ _
SPtgl+2 < b SEH gl
57 41 73
& l2+7l+z < 2h+Z < P49+ —
49 41 81
= P47+ — < 2h+— < P49+ —
4 4 4
7 41 9
— - < —
= l+2 < 2h+4 < l+2
/ 41 1
&S 1+4 < 2h+Z+§ < I+5
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We get:
41 1
2h+ —+-=] = [1+5
[ +4+21 +
41 1
< 2] 2h+Z+§]—1 = 2149 = b(SI};,ez)fo,l)

Thus we have shown

3.2.2 General disordered hexagon-patches

In the second main section of this chapter, we are going to investigate minimal boundary
lengths of triangular patches. There we want to make use of the ‘duality’ between triangle-
and hexagon-patches and apply the formulas for disordered hexagon-patches that were given
in the previous subsection to the inner duals of triangle-patches in order to derive new
relations for triangle-patches. However, the inner dual of a triangle-patch is not necessarily
2-connected. For this reason we want to show now that the established bounds on the
boundary length of disordered hexagon-patches are still correct if we omit the requirement
to be 2-connected. Therefore we define disordered hexagon-patches that are connected but
not necessarily 2-connected:

Definition 3.2.4 A general disordered hexagon-patch is a connected plane graph P with
one distinguished face (the outer face), all vertices not lying in the outer face (inner vertices)
of degree 3, and all vertices that lie in the outer face (boundary vertices) of degree 2 or 3.
Again all faces different from the outer face are called bounded faces, and all bounded faces
that are no hexagons are called defective faces. FEdges lying in the outer face are called
boundary edges, and the set of boundary edges in P is denoted by Ey(P). A bridge in P is
an edge e € E(P) such that P — {e} is not connected.

We define the boundary length of a general disordered hexagon-patch P as the number of
boundary edges but with bridges counted twice, and denote it by b(P):

b(P) = |{e € Ex(P)}| + |{e € Ey(P) : e is bridge in P}|

A general disordered hexagon-patch with exactly p pentagons, s squares, t triangles and no
other defective faces will be called general (p, s, t)-hexagon-patch. A general (p, s,t)-hexagon-
patch with h hexagons is called boundary-minimal if it has minimal boundary length among
all general (p, s,t)-hezagon-patches with h hexagons.

The following lemma implies that the bounds on the boundary length of (p, s, t)-hexagon-
patches that we obtain from table 3.1 also hold for general (p, s, t)-hexagon-patches.
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Lemma 3.2.5 A general (p, s,t)-hexagon-patch with D(p, s, t) < 6 that is boundary-minimal
s 2-connected.

PROOF:

Assume that P is a general (p,s,t)-hexagon-patch with D(p,s,t) < 6 that is boundary-
minimal but not 2-connected. Since all vertices have degree at most 3, the existence of a
cutvertex implies the existence of a bridge; so P contains at least one bridge. Let b be the
number of bridges in P and remove all these bridges. Then the resulting graph consists only
of 2-connected patches. Choose two of them and denote them by C! and C?. Suppose that
C'is a (p, s',t")-hexagon-patch for i = 1,2, and let d; be the number of boundary vertices
with degree j in C*. By lemma 3.2.2 we have:

d% - d% =6— D(piasiati)

In case D(p?,s?,t!) < 5 this implies that there must be two succeeding vertices of degree 2
in the boundary cycle of C?. If this holds for both i = 1 and i = 2, we may glue C' and C?
together by choosing two succeeding boundary vertices of degree 2 for both and identifying
the two edges between the degree 2 vertices.

Otherwise we must have w.l.o.g. D(p',s',t!) = 6 and D(p?,s2,t?) = 0, and may assume
that in C' the boundary vertices of degree 2 and 3 are alternating. Then C? consists only
of hexagons. We take all these hexagons of C? and arrange them around C! in rings (see
figure 3.7) — this extends the boundary length of C! by at most 2, while the boundary length
of C? must have been at least 6.

e i <

Figure 3.7: An example of the case where the boundary of C' contains the same number of
degree 2 and degree 3 vertices such that the vertices are alternating (left) and C? consists
only of hexagons (middle); then the faces can be rearranged to one patch whose boundary
length is smaller than the sum of the boundary lengths of C* and C? (right).

In both cases the total boundary length has been reduced. Now we may join the single
components by inserting one bridge between two different components again (this is possible
since each component contains at least two vertices of degree 2) — the total boundary length
is still smaller than in the beginning. Hence P could not have been boundary-minimal.

O
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3.3 The boundary length of disordered triangle-patches

This section contains various results on the boundary length of disordered triangle-patches.
Basically we are interested in disordered triangle-patches where, apart from the inner vertices
of degree 6, only p defective vertices of degree 5 are allowed — that means, with the notation
introduced in chapter 2, p-patches.

At first we deduce formulas for lower bounds on the boundary length of a p-patch with p < 6
relative to its number of faces by applying the known formulas for the hexagonal case to the
dual (subsection 3.3.1). Afterwards, we define spirals as special disordered triangle-patches
(subsection 3.3.2) and compute their boundary lengths (subsection 3.3.3), which turn out
to be exactly the lower bounds established before, implying that spirals are triangle-patches
with minimal boundary length for a given number of faces.

With this we have completely solved the dual cases to those investigated in [3]: We are able
to determine the smallest possible boundary length of any p-patch with p < 6 and n faces —
we will provide the exact formulas with respect to n for each p = 0, ..., 6, which will also be
helpful later in this work — and moreover, we may even construct a respective p-patch with
n faces where this minimal boundary length is achieved. We will see that in such a patch,
the p vertices of degree 5 lie close together in the interior of the patch.

However, for some applications p-patches with minimal boundary length (or the respective
boundary formulas) are needed where the vertices of degree 5 may not be placed arbitrarily
in the patch, but must lie in fixed positions relative to each other. Then the lower bounds
on the boundary lengths that hold for all p-patches may not be precise enough, so we want
to determine patches with minimal boundary and derive formulas for the boundary length
using the additional information on the ‘configurations’ of the degree 5 vertices. Similarly
to chapter 2, we deal with these configurations by considering fixed subpatches that contain
the defective vertices. Hence the task that arises is to determine p-patches with minimal
boundary length that contain a certain number of faces and a given p-patch as a subgraph.

In subsection 3.3.4 we solve this task in case the subgraph has a boundary of a particular
type; subsection 3.3.5 contains a further generalization, where also parts of chapter 2 are
used. The proof of the main theorem in subsection 3.3.4 can be reduced to the results from
the subsections before by replacing the subgraph by a different subgraph where the defective
vertices lie ‘closer together’. But it turns out that for the cases p =2, p = 3 and p = 4, not
all subgraphs can be replaced by an appropriate p-patch such that the previous results can
be applied, because there exist two different types of boundaries. This problem can be solved
by proving the first mentioned results on the minimal boundary length of triangle-patches
(subsections 3.3.1 and 3.3.3) not only for the cases with p defective vertices of degree 5, but
also for three further cases — representing the respective other boundary type — where also
defective vertices with degree 4 are allowed.

For this reason, we consider in the following not only p-patches, but in a more general
way disordered triangle-patches with p defective vertices of degree 5, s defective vertices of
degree 4, and t defective vertices of degree 3, and carry out the computations in the next
subsections for the cases with s =t = 0 as well as for the three further cases. For the sake
of completeness we even give in table 3.2 all formulas of minimal boundaries for all possible
cases that allow to build spirals of unlimited size (these are the cases with p+ 2s + 3t < 6
that occur already in the last section — compare also table 3.1).
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3.3.1 Lower bounds on the boundary length of triangle-patches

One result of [27] is that a 2-connected patch with all bounded faces triangles and all
inner vertices of degree 6 which is subgraph of the triangular lattice (a so-called t¢riangular
animal) has a minimal number of edges — and with this also a minimal boundary length — if
the triangles are arranged in a spiral fashion. This follows with the help of a formula that
determines a lower bound on the number of edges, which in turn is proven by applying a
similar formula for hexagonal patches to the inner dual of the triangular animal.

In this subsection we are using a similar technique to transfer the results on the boundary
length of disordered hexagon-patches that have been discussed in the previous section to
the dual, that is to triangle-patches which may contain inner vertices of degree 3, 4, 5 and
6 and are not necessarily subgraph of a lattice.

The following pages deal with triangle-patches that contain only inner vertices of degree 5
and 6 (p-patches), and hence can be seen as a translation of the results of [3] to the dual.
We develop bounds on the boundary length of such patches for each of the different cases
with p =0, ...,6 vertices of degree 5 that are summarized in theorem 3.3.2; later on we will
show that these inequations are fulfilled as equalities if the patches are also of a spiral type.

Of the more general cases that allow also inner vertices of degree 3 and 4, we actually need
only three for the later application, where defective vertices of degree 5 and 4 occur. We
also establish bounds on the boundary length for these cases, which can be found in theorem
3.3.5. Again, we will see later that certain spirals fulfill these formulas as equalities.

A disordered triangle-patch has already been defined in section 2.2 to be a 2-connected
plane graph P where all faces are triangles except the outer face, and all vertices that lie in
the outer face have degree at most 6. Arbitrary inner vertices with degree different from 6
(defective vertices) have been allowed.

Now we focus on those disordered triangle-patches where only defective vertices of degree
5, 4, and 3 occur — similarly to the sizes of the defective faces in the previous section. For
these we continue applying the notation that has already been introduced in definition 2.2.1.

Definition 3.3.1 A disordered triangle-patch with exactly p inner vertices of degree 5, s
inner vertices of degree 4, and t inner vertices of degree 3 is called a (p, s, t)-triangle-patch,
or just (p, s, t)-patch.

In accordance to definition 2.2.1, a (p,0,0)-patch is also denoted as p-patch.

For p,s,t € Ny we let
D(p,s,t) :==p+2s+3t.

The inner dual of P is defined as the dual of P with the vertex corresponding to the outer
face removed. It will be denoted as P*.

In the following we will deduce some formulas establishing connections between different
sizes that occur in (p,s,t)-patches, which will prove helpful afterwards when determining
lower bounds on the boundary lengths for the different cases of (p, s, t) with the help of the
dual results.
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We let P be a (p, s, t)-patch with n bounded faces. If ¢ denotes the number of inner edges
and e the total number of edges in P, we get by summing up the edges of all bounded faces
separately

3n = e+q (3.1)
and hence for the boundary length of P:

b(P) = e—q = 3n—2q (3.2)

Now consider the inner dual P* of P. Then P* is a general (p, s,t)-hexagon-patch with n
vertices and g edges. Let h be its number of hexagons, and ¢; the number of edges that lie
in ¢ bounded faces. Then we have

¢ = GQo+q+aq, (3.3)

b(P*) = 2q+aq, (3.4)
and by counting the edges of the bounded faces:
6h+5p+4s+3t = q1+ 2¢ (3.5)
With this we get
)

b(P*) Y 200 + a1 “ 20 — (@1 +242) X 2g — (61 + 5p + 45+ 30) . (3.6)
Euler’s formula applied to P* yields
n—q+h+p+s+t =1 < h=1-n+q—p—s—t. (3.7)

From (3.2) we get ¢ = 3n — 1b(P); inserting this into (3.7) we obtain

1
h = 1—n+(gn—§b(P))—p—s—t
1 1
= Ip——b(P)—p—s—t+1 :
5" 2b() p—s—t+ (3.8)

and furthermore by inserting (3.7) into (3.6):

b(P*) 2q—-6(1l—-n+q—p—s—1t)—5p—4s—3t
6n—49g—6+p+2s+ 3t

= 6n—4q— (6 —D(p,s,t)) (3.9)

Now inserting (3.2) into (3.9) yields:

b(P7) = 20(P)~ (6 D(p,s.1)) (3.10)
= %b(P*)Q — (b(P)_G_Dépasat))2

(6 — D(p, s,t))2

1 (3.11)

o bP? = %b(P*)2+ (6 = D(p, s, 1)) b(P) -
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At first we let P be a (p,s,t)-patch P with s = ¢ = 0, that means P is a p-patch. We
distinguish the different cases p = 0,1,...,6 and determine a lower bound on the boundary
length relative to the number n of bounded faces for the respective case.

The case p=0

Assume we have a 0-patch P with inner dual P*. According to [3] (see also theorem 3.2.3
and table 3.1), the boundary length of the spiral Sl?,%}fo,o consisting of h hexagons is given
by

b(SI?,%)fo,o) = 2[V12h-3].

Since this is the minimal boundary length that a (0,0, 0)-hexagon-patch can obtain, the
formula gives us a bound on the boundary length of any (0, 0, 0)-hexagon-patch. By lemma
3.2.5, a general (0, 0,0)-hexagon-patch that is not 2-connected cannot be boundary-minimal,
so the bound holds also for general (0, 0, 0)-hexagon-patches — in particular for P*. We obtain

b(P*) > 2[V12h-3]

= bP*) > 2V12h-3
@5 9\ /6n—6b(P) 1 9 (3.12)

and hence
pp)? 2 %b(P*)Q +6b(P) — %
(3;) (61 — 6b(P) +9) + 6 b(P) — 9
= 6n

= bP) > Veén (3.13)

This can even be improved by using (3.2) and the fact that certain variables are integers:
We have

_ (3.13) 1
2(2n—¢q)—n = 3n—2q @.2) b(P) > +6n = 2(§(n+v6n))—n,

and since ¢,n € N (and hence 2n — g € N) this implies

b(P) > 2 [%(n +v6n)] —n . (3.14)

The case p=1

Now consider a 1-patch P with inner dual P*. Then P* is a general (1,0, 0)-hexagon-patch.
The boundary length of the spiral S,?’effo’o consisting of h hexagons and 1 pentagon is

2 1
> Ly

b(SiTo0) = 2[\/10h+ -+ 5
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With the minimality and lemma 3.2.5 this gives us a bound on the boundary length of P*,

so we have
/ 2 1
b(P*)y > 2] 10h+15+§]—1
25 1
* > - _ _
= P > 2(,/10h+4+2) 1
/ 25
=  24/10h+ —
0 +4

@5 5 \/5n — 5b(P) + % (3.15)

and hence, by inserting this into (3.11):

. 1 2
p(Py? 20 b(PY 4 50(P) - ZS
(3.15) 2 2
> (5n—5b(P)+ 15)+5b(P) - T5
= 5n
S P > Vn (3.16)

. (3.16) 1
2(2n—¢q¢)—n = 3n—2q (%2 b(P) > +in = 2(§(n+\/5n))—n

which yields because of ¢g,n € N

bP) > 2 [%(n +VEm)] —n. (3.17)

The case p=2

Now let P be a 2-patch and P* its inner dual, a general (2,0, 0)-hexagon-patch. The
boundary length of the spiral S}?E’fo,o with h hexagons and 2 pentagons is

b(sl?,e;fo,o) = 2[V8h +16],

and this is the minimal boundary length that a (2, 0,0)-hexagon-patch with h hexagons —
and by lemma 3.2.5 also a general (2,0, 0)-hexagon-patch with h hexagons — can obtain.
Hence we have

bP*) >  2[VRh+16]
= b(P*) > 2V3h+ 16
(

i o /In (P 78 (3.18)

w
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which implies

p(p)? LY % b(P*)? + 4b(P) — 4
(328) (4n — 4b(P) + 8) + 4b(P) — 4
= dn +4
= bP) > in+4

With this we get

(3.19)
2(2n—q)—n = 3n—2q @2 b(P) > Vin+4 = 2(%(n+\/4n+4))—n

and hence because of ¢g,n € N:

MP)22[;n+VMﬁ4ﬂ—n.

The case p=3

63

(3.19)

(3.20)

hex

If P is a 3-patch, the inner dual P* is a general (3,0, 0)-hexagon-patch. For the spiral ;' o

with h hexagons and 3 pentagons we have the boundary length

o 81 1
b(si};,&o,o) = 2[4/6h + T + 5] -1,

and with the minimality of the boundary length and lemma 3.2.5 we get:

81 1
P > 2[y[6h+— 4511

81 1
* > ) i
= P > 2(,/6h+4+2) 1
81
= 2y/6h+ =
6h+

Sl \/3n — 30(P) + %
This implies
pp)? 2 %b(P*)Q +3b(P) — Z
“3Y an - 3n(p) + %) +3b(P) — g
= 3n+6

= bP) > 3n+6

Hence we have

(3.2) (3.22

2(2n—¢q)—n = 3n—2q =" b(P) Z)\/3n+6:2(%(n+\/3n+6))—n

(3.21)

(3.22)
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and with ¢,n € N

b(P) > 2 [%(n VBN F6)] —n. (3.23)

The case p=4

Now let P be a 4-patch with dual P*  a general (4,0,0)-hexagon-patch. The boundary
length of the spiral S, is
b(Sp00) = 2[VAh+25] .

Since the spiral has minimal boundary length, we get with lemma 3.2.5 a bound for the
boundary length of P*:

b(P*) > 2[V4h+25]
= bP*) > 2V4h+25
@5 5 /on — 20(P) + 13 . (3.24)
We obtain
ppy G4V %b(P*)2+2b(P)—1
(3.24)
> (2n—2b(P)+13)+2b6(P) -1
= 2n 4+ 12
= bP) > V2n+12 (3.25)
and

. (3.25) 1
2(2n—q)—n = 3n—2q 2 b(P) > \/2n+12:2(§(n+\/2n+12))—n
which yields because of ¢,n € N:

b(P) > 2 [% (n+v2n+12)] —n (3.26)

The case p=5
If P is a 5-patch, its inner dual P* is a general (5,0, 0)-hexagon-patch. We have

113 1
b(Sp%o0) = 2[\/2h+ -t 51 -1,

and by using the minimality of the spiral’s boundary length and applying again lemma 3.2.5
we get the corresponding bound for the inner dual P*:

11 1
b(P*) > 27 2h+—3+—-|—1
4 2
" 113 1
= b(P) > 2( 2h+T+§)—1
113
= 2 2h+T
(3.8) 81

22y n—bp) + (3.27)
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This implies

o(P)? LV B 4 b(P) -
@27 s1 1
> (n=bP)+ ) +b(P) -7
4 4
= n+20
= bP) > Vn¥20 (3.28)

and hence

(3-28)

. 1
2@n—q)—n = 3n-2¢ = pp) > ViF20 = 2(5(n+ vV +20) —n.
With ¢,n € N we obtain

bP) > 2 [%(n VAT 20)] —n. (3.29)

The case p=6

Finally let P be a 6-patch and P* its inner dual, a general (6,0, 0)-hexagon-patch. We have
for the spiral S}?,%)fo,o with h hexagons and 6 pentagons:

¢ h
DS 0) = { 0 i 3eN

12 else
Due to the minimality of its boundary length and lemma 3.2.5 we get

10 if2eN
12 else .

This yields

and hence

202n—q)—n = 3n-2¢ = ypP) > 5 = 2(%(n+5))—n.

Since ¢,n € N we get 1
b(P) > 2 [E(n +5)] —n. (3.30)

In case n is even, n + 5 is odd so we have

[3(n+5)] = 5(n+6)

and hence (3.30) implies
1
b(P) > 2(§(n+6))—n = 6.
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Now assume we have b(P) = 5. Then £ € Ny must hold, that means there is k € N with
h =5(k —1). In that case we get with (3.8)

. 1 1 1 1
@9 -n—zb(P)—-5 = —n——5

5k—-1) = h 5 2 2 2

& no= 5410k
and hence n € {5+ 10k | k € N}.

Consequently, in case n is odd and n ¢ {5+ 10k |k € N} we cannot have b(P) = 5. So
b(P) > 6 must hold and we get
. 1
2@n—q)—n = 3n-2¢ = pP) > 6 = 2(5(n+6)) —n

and because of g,n € N 1
b(P) > 2 [E(n +6)] —n. (3.31)

For odd n (and hence odd n + 6) we have
1 1
[E(n +6)] = E(n +7)
so (3.31) implies
1
b(P) > 2(§(n+7))—n =7.
We obtain:

6 if n is even
b(P) > 7 if nis odd and n ¢ {5+ 10k |k € N} (3.32)
5 else .

Summing up all cases we get the following theorem:

Theorem 3.3.2 Given a p-patch P with n faces. Then we have

e incasep=0: b(P) > 2[%(n+\/6_n)]—n

5 else .

e incasep=1: b(P) > 2 [%(n +Vvbhn)] —n
e incasep=2: b(P) > 2[%(n+\/4n+4)-| —-n
e incasep=3: b(P) > 2[%(n+\/3n+6)-| -n
1
e incasep=4: b(P) > 2[5 (n+v2n+12)] —n
1
e incasep=>5: b(P) > 2[§(n+\/n+20)—| -n
6 if n is even
o incasep==6: b(P) > 7 if n is odd and n ¢ {5+ 10k | k € N}
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The improvement of the first obtained inequations for each p with the help of the ceiling
function to the formulas listed in theorem 3.3.2 is important because, as we will see in the
next subsection, these formulas are sharp for certain patches. However, for other applications
the weaker inequations will be useful (they have the advantage that the formulas on the right
hand side are monotonously increasing in the number of faces), so we want to sum them up
here as well:

Corollary 3.3.3 For any p-patch P with 0 < p <5 we have
e b(P) > +/6f(P) in case p=10 (3.13);
e b(P) > +/5f(P) in case p=1 (3.16);

b(P) > \/Af(P)+4 > \/Af(P) in case p=2 (3.19);

b(P) > \/3f(P)+6 > \/3f(P) in case p=3 (3.22);

e b(P)>+\/2f(P)+12 > /2f(P) in case p =4 (3.25);

e b(P) > \/f(P)+20 > \/f(P) in case p=5 (3.28).

Moreover, we obtain the following useful corollary:

Corollary 3.3.4 For any p-patch P with 0 < p < 5 we have

b(P) = V(6-p)f(P) (3.33)

=
V)

(P)
6—p

and f(pP

IA

(3.34)

PROOF:

While (3.33) follows immediately from the formulas given in corollary 3.3.3, the second
inequation (3.34) is obtained from (3.33) by taking the square.

O

Thus, we have not only proven lower bounds on the boundary length of a given p-patch with
respect to its number of faces, but with (3.34) — at least for the cases 0 < p < 5 — also upper
bounds on the number of faces relative to a given boundary length. This result will prove
useful later on.

Now, as already explained in the beginning of this section, for the application in subsection
3.3.4 we have to extend the investigation of the boundary length of disordered triangle-
patches to cases where not only defective vertices of degree 5, but also of degree 4 are
allowed. Therefore we will now consider (p, s, t)-triangle-patches for three further cases — we



68 CHAPTER 3. MINIMAL BOUNDARY LENGTHS OF DISORDERED PATCHES

will see later that they correspond to the boundary types that are missing so far — and that
are the cases (p, s,t) = (0,1,0), (p,s,t) = (1,1,0), and (p, s,t) = (2,1,0).

For this, we need the following formulas for a general (p,s,t)-hexagon-patch P* with h
hexagons that follow by theorem 3.2.3 and lemma 3.2.5:

1. In case (p,s,t) =(0,1,0):
b(P*) > 2[V/Sh + 4] (3.35)

2. In case (p,s,t) = (1,1,0):

b(P*) > 2[1/6h+ %9 + %1 -1 (3.36)

3. In case (p,s,t) = (2,1,0):
b(P*) > 2[V4h + 16 (3.37)

The case (p,s,t)=(0,1,0)

At first consider a (0,1,0)-patch P with inner dual P*. Then P* is a general (0,1,0)-
hexagon-patch, so we have by (3.35)

b(P*) > 2[VRh+4]
= bP*) > 2/8h+4

@5 9\ /An —4b(P) + 4 (3.38)
and hence
pp)? LY %b(P*)Q + 4b(P) — 4
> (4n — 4b(P) +4) + 4b(P) — 4
= an
= bP) > Van. (3.39)

It follows that
. 1
2(2n—q)—n = 3n—2q @2 b(P) > +4n = 2(§(n+ Vdn)) —n,
and as ¢,n € N holds, this implies

b(P) > 2 [%(n +V4n)] —n . (3.40)
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The case (p,s,t)=(1,1,0)

Now assume P is a (1,1, 0)-patch and P* its inner dual. Then we have with (3.36)

9 1
bP*) > 2[,/6h+—9+—]—1
1472
= b(P*) > 2,/6h+%9

(3.8) 2\/3n - 30(P) + % (3.41)
and hence
pp)? LY %b(P*)Q +36(P) g
2 (3n—3b(P) + %) +3b(P) — %
= 3n+4
> oP) > VEard (3.4
So we get

(3.42)

. 1
2(2n—¢)—n = 3n—2q (%2 b(P) > \/3n+4:2(§(n+\/3n+4))—n,
and with ¢,n € N

bP) > 2[%(n+\/3n+4)] - (3.43)

The case (p,s,t)=(2,1,0)
Finally suppose we have a (2, 1,0)-patch P with inner dual P*. Then by (3.37) we have
b(P*) > 2[VAh+16]
= bP*) > 2/4h+16

(3.8)

w

= 2v/2n —2b(P) + 8 (3.44)
and hence
ppy2 G4V %b(P*)Q +2B(P) — 1
> (2n—-26(P)+8)+2b(P)—1
= 2n+7
= bP) > Von+T (3.45)
We obtain

(3.2) (3.45

2(2n—q)—n = 3n—2q = b(P) 2)\/2n+7:2(%(n+\/2n+7))—n,
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and since ¢,n € N

b(P) > 2 [%(m VI ET) ] =n. (3.46)

So we have proven the following theorem:

Theorem 3.3.5 Given a (p,s,t)-patch P with n faces. We have
1
e in case (p,s,t) = (0,1,0): b(P) > 2 [§(n+ Vdn)] —n
1
e in case (p,s,t) = (1,1,0): b(P) > 2 [§(n+ V3n+4)]—n

e in case (p,s,t) = (2,1,0) : b(P) > 2 f%(n—# V2n+T7)]—-n

3.3.2 Spirals

In the previous subsection we have established lower bounds on the boundary length of
disordered triangle-patches in terms of their numbers of faces. However, we do not know
yet if these bounds can still be improved or if there exist patches that fulfill the proven
inequations as equalities. In the following we will show that the latter is the case: There are
indeed (p, s, t)-triangle-patches whose boundary lengths are equal to the given lower bounds,
which implies that they have minimal boundary length among all (p, s, t)-patches with the
same number of faces.

Similar to the hexagonal case, those patches are obtained by arranging the faces in a spiral
way; however, the situation is a bit different because now we do not have defective faces,
but defective vertices. The spirals that we will define consist of a fixed basic patch that
contains the defective vertices, and further triangles that are built around that patch in a
certain spiral way.

In this section, we will first show some helpful properties of (p, s, t)-patches, then we come
to the spiral definition. In the section afterwards we will determine the boundary length of
certain spirals which will turn out to be minimal.

Definition 3.3.6 Given a (p, s,t)-triangle-patch P. As before, we denote the set of vertices
by V(P), the set of edges by E(P), and the set of bounded faces by F(P). The set of boundary
vertices in P is denoted by V,,(P), the set of inner vertices by V;(P), and the number of inner
vertices by v;(P) := |V;(P)].

A boundary face is defined as a face that contains at least one boundary vertex. We denote
the set of boundary faces of P by Fy(P), and the number of boundary faces in P by fy(P) :=
|EFy(P)|. A face that is no boundary face and not the outer face is called inner face. The set
of inner faces of P is denoted by F;(P) and the number of inner faces by f;(P) := |F;(P)|.
We say two faces are neighbouring or neighbours if they share a common edge.
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Lemma 3.3.7 For any (p, s, t)-triangle-patch P we have

Z (4 —deg(v)) = 6—D(p,s,t) .

vEVy(P)

PROOF:

Since for any (p, s,t)-triangle-patch P we have by definition D(P) = D(p,s,t) (compare
formula (2.1)), this lemma follows immediately from lemma 2.2.3.

O

Definition 3.3.8 Given a (p, s, t)-patch P. If there are only boundary vertices of degree 3
and 4, we say P has a nice boundary. In case of at least one vertex of degree 3 we call a
(possibly closed) path v, ...,v, (n > 1) of succeeding vertices in the boundary cycle a side
of P if deg(vg) = deg(v,) =3 and deg(v;) =4 for0<i<n .

Remark 3.3.9 Applying lemma 3.3.7, we observe that a (p, s,t)-patch with a nice boundary
can only exist for 0 < D(p,s,t) < 6, and that its boundary contains exactly 6 — D(p, s, t)
vertices of degree 3 and 6 — D(p, s,t) sides. In case D(p,s,t) = 6 it has no degree 3 vertices
and no sides at all.

The following lemma implies that in patches with a nice boundary, all faces can only occur
once in the boundary cycle:

Lemma 3.3.10 Let P be a (p, s,t)-patch with a nice boundary. Then any edge {v,w} €
E(P) with v,w € Vy(P) must be a boundary edge of P (i.e. lies in the outer face).

PROOF:

For two boundary vertices z,y we denote by dy(z,y) the length of the path from z to y
following the boundary cycle, and define dy{z, y} := min{dy(z,y), dp(y, z)}.

Now assume the contrary of the statement: Let {v,w} € E(P) with v,w € V,(P) be an
edge that does not lie in the outer face. W.l.o.g. we may choose {v,w} with this property
such that dy{v, w} is minimal, that means any edge {v’,w'} € E(P) with v',w’ € V;(P) and
dp{v',w'} < dp{v, w} must be a boundary edge.

Since {v,w} does not lie in the outer face, it must lie in two bounded faces which we denote
by fi and f as shown in figure 3.8. Let w’ be the third vertex in f; and v’ the third vertex
in fo. Both faces must have further bounded faces as neighours because v’ or w' would have
degree 2. So let f3 be a further face neigbouring to f1, w.l.o.g. such that it contains v. Since
v is a boundary vertex it has at most degree 4, so it cannot lie in a further bounded face
apart from fo, f; and f3. Hence the neighbouring face f4 of fo must contain the vertex w
(see again figure 3.8). Then we have deg(v) = deg(w) = 4, so the edges {w,w'} and {v,v'}
must be boundary edges, and consequently w' and v’ are boundary vertices. But then we
have dy(v', w) < dp(v,w) and dp(w',v) < dp(w,v).

In case min{d, (v, w), dy(w,v)} = dp(v,w) this implies

min{d,(v', w), dy(w,v")} < min{dy(v, w), dp(w,v)}
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and in case min{dy(v, w), dp(w,v)} = dp(w, v) we get
min{db(va ’LU’), db(wla ’U)} < min{db(va w): dy (’LU, ’U)} ;

that means either dp{v', w} < dp{v,w} or dp{v,w'} < dp{v,w} holds. Then by assumption,
one of the edges {v',w} and {v,w’} must be a boundary edge. But this is a contradiction
since by construction, {v', w} lies in the bounded faces f» and f4, {v, w'} lies in the bounded
faces fi and f3. Consequently, the assumption was wrong and such an edge {v, w} cannot
exist.

Figure 3.8: The situation in a hypothetical counterexample

Definition 3.3.11 Let P be a (p, s,t)-patch with a nice boundary. A (p,s,t)-patch Q is
called the extension of P if it contains P, if F,(Q) = F(Q) — F(P) holds, and if every
boundary face in Q has exactly two boundary faces as neighbours (see figure 3.9 for an
example). Then we write Q = Pt and say Q has been obtained by adding a ring around P.

Furthermore, if for k > 2 we have (p, s,t)-patches Py, Py,..., P with P; = Pitl for all
i =1,...,k, we define P(f"' = Py and say P(f"' has been constructed by adding k rings
around Py. For consistent notation we let P°t := P and Pt := P*. The set of faces in
Pk — p=U+ (k> 1) is called the kth ring around P.

Figure 3.9: An example of a (p, s,t)-patch @) obtained by adding a ring around a (p, s, t)-
patch P (in this case we have (p, s,t) = (2,0,0))
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Remark 3.3.12 For any (p,s,t)-patch P with a nice boundary, the extension Q with the
properties from definition 3.3.11 exists and is uniquely determined, so the notation Q = P+
is justified. Furthermore, QQ has a nice boundary, which implies that P*t is well-defined for
any k € N, too.

PROOF:

The extension ) can be constructed in the following way: At first, we add a triangle to
each boundary edge of P by inserting one new vertex for each boundary edge and joining
it with both vertices incident to that edge. This way we obtain b(P) new vertices of degree
2 which are alternating in the boundary cycle with the former boundary vertices of P. Let
Fy denote the set of the new faces. The boundary vertices of P with degree 3 now have
degree 5, those with degree 4 have degree 6. In a second step, we insert one triangle at every
boundary vertex v of degree 6 — making the degree 6 vertex an inner vertex — by joining the
two degree 2 vertices that are adjacent to v, and furthermore we add two new triangles at
every boundary vertex w of degree 5 by inserting a new vertex and joining it with w and
the two degree 2 vertices adjacent to w, such that the degree 5 vertex obtains degree 6 and
becomes also an inner vertex. We denote the set of faces that have been constructed in this
second step by F5, and the new constructed patch by Q.

Then () has a nice boundary because by construction, the boundary vertices of P lie in
the interior of (), so the boundary vertices of () have all been inserted by the operation —
and those inserted in step 1 have (after carrying out step 2) degree 4, while those inserted
in step 2 have degree 3. The boundary faces of P are no boundary faces of @) as they do
not contain any of the new inserted vertices, and since each face in F} contains exactly one
boundary edge of P and one boundary vertex of () while each face in F5 contains exactly
one boundary vertex of P and one boundary edge of @), we have

Fy(Q)=FUF, =F(Q) - F(P),
and every boundary face in () has exactly two boundary faces as neighbours.

Furthermore, @ is the only patch fulfilling the required properties: Suppose there is a (p, s, t)-
patch Q' with Q' = P*. By definition it must contain P, and since F}(Q') = F(Q') — F(P)
all faces in P must be inner faces in @' — in particular all boundary vertices of P must be
inner vertices of ()'. This means (' has to contain all faces in F; and F5 that lie in Q) by
construction. Consequently, () must be subgraph of (). But on the other hand, if there was
a face in @)’ that does not lie in @, this would be a boundary face of @’ (since it cannot lie in
P) while all faces in () — P must remain boundary faces — hence there would be at least one
boundary face in Q' with three neighbouring boundary faces, which is a contradiction to the
definition. We obtain Q' = @, so consequently the patch = PT is uniquely determined.

O

Lemma 3.3.13 Given a (p, s,t)-patch P with a nice boundary, and consider P** for some
k € Ny. Then the following equations hold:

(i) b(P*) = b(P)+ k(6 — D(p,s,1))
(i) fo(P*F) = 2b(P)+ (2k = 1)(6 — D(p, s,1))
(iii)  f(P*) = f(P)+2kb(P)+k*(6 — D(p,s,1))
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PROOF:

Denote the number of boundary vertices of P¥* that have degree 3 by ds, and the num-
ber of those with degree 4 by ds. Then we have d3 + dy = b(P*t) and by lemma 3.3.7
d3 = 6 — D(p,s,t). If every boundary vertex with degree 4 is counted 3 times and every
boundary vertex with degree 3 twice, we obtain each boundary face with x boundary vertices
z times. By lemma 3.3.10, any edge between two boundary vertices must be a boundary
edge. Consequently there are no faces with three boundary vertices, and all faces with two
boundary vertices must contain a boundary edge. This means that there exist only bound-
ary faces with one boundary edge and two boundary vertices, which are counted twice, and
boundary faces with no boundary edge and one boundary vertex, which are counted once.
So the number of boundary faces is

fb (Pk+)

3dy + 2d3 — b(P*T)
3(ds + dy) — d3 — b(P*T)
20(P*) — (6 — D(p, s,t)) . (3.47)

This already proves (ii) for the case k¥ = 0. Since (i) and (iii) are clear in case k = 0, we
may from now on assume that & > 1 holds. Then by definition, each boundary face in P¥+
is neighbouring to exactly two other boundary faces, so a boundary face that contains only
one boundary vertex must have one neighbour that is not the outer face nor a boundary
face, that means that lies in P. Hence each boundary face must contain either exactly one
boundary edge of P**, or exactly one boundary edge of P(*~1)+ . Therefore we obtain:

b(P*T) + (PP VYY) = (P
BAD ob(P*Y = (6 — D(p, 5,1))
& bP* VY4 (6—D(p,s,t) = b(P*) (3.48)

By induction in £, (3.48) immediately implies (7).
Inserting () into (3.47) we get

fb(Pk+) = 2(b(P)+k’(6—D(p,S,t))) _(G_D(pasat))
= 2b(P)+ (2k—1)(6 — D(p, s, t))

so we have proven (ii).

Finally, the number of faces in P** can be determined by summing up the faces in P and
the rings around P separately:

k

fPry = f(P)+Zfb(P"+)
k

EFP)+ Y (20(P) + (20—~ 1)(6 - D(p. 5,1))

i=1

= f(P)+2kb(P) + k*(6 — D(p, s,1))
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Definition 3.3.14 Let P be a (p, s,t)-patch with a nice boundary, D(p,s,t) < 5, and let
50y -+ -38m—1 (with m := 6 — D(p, s,t)) be the sides of P such that fori =0,...,m — 1 the
sides s; and $(; 1) mod m have a vertex in common. Furthermore letl; (i =0,...,m — 1)
be the length of side s;. Then the boundary segmentation of P is defined as

B(P) = (lo,...,lm_l) .

The boundary segmentations (lo, ... ,lm—1) and (I{,...,1,,_1) are identified with each other
if there is a cyclic reordering or inversion (If,..., 10 1) of (Iy,...,11,_1) such that l; =1}

foralli=0,...,m—1.
For a (p, s, t)-patch P with nice boundary and B(P) = (lo, - .. ,lm—1) we denote the mazimal

length of the sides by
max g(P) := max{lp,...,lm-1}

and the minimal length of the sides by

min g(P) := min{ly, ..., lm_1} .

Furthermore we define
A(P) := max g(P) — min g(P) .

Definition 3.3.15 Let P be a (p, s, t)-patch with a nice boundary, and B(P) = (lg,- - ,lm—1)
in case D(p,s,t) < 5. Then P is called regular if one of the following cases applies:

e D(p,s,t) € {5,6}
e 0< D(p,s,t) <4 and A(P)=0

e 2< D(p,s,t) <4 and Z?igl(maxB(P) —-1)=1

That means either all sides of the boundary have the same length, or — for 2 < D(p, s,t) < 4
— we have one side of length maxp(P) — 1 and all others have length maxp(P) (then in
particular, A(P) =1 holds).

We will see later that it makes sense to allow only these two cases (and not, for instance,
also the case with one side of length maxpg(P) and all others have length maxg(P) — 1)
because every patch with a nice boundary can be extended to such a regular patch.

Remark 3.3.16 Consider a (p, s,t)-patch P with a nice boundary. In case D(p,s,t) <5 let
B(P) = (lp,---,lm-1). Then with the help of the construction described in remark 3.3.12,
we notice that B(PY) = (lo +1,...,l,,_1 + 1) and hence B(P**) = (lo + ky...,l;m_1 + k)
for all k € N. In particular we have A(P*T) = A(P), so P** is regular if and only if P is
reqular. In case of D(p,s,t) = 6, all boundary vertices in P have degree 4, so the described
construction yields b(P*+) = b(P*) = b(P).
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Definition 3.3.17 Given a reqular (p, s,t)-patch P and some n € Ny. Then we define a
spiral with respect to P and n as a (p, s,t)-patch S = S(P,n) consisting of P and n further
faces which can be numbered with 1,...,n such that the following holds:

e Fori=1,...,n—1, face i and i + 1 are neighbours.

e Ifn > 1, face number 1 contains a boundary edge e of P and a degree 3 vertex v of
P in case there is one; furthermore, for D(p,s,t) < 5 the edge e lies in a side of P
which has length maxg(P), and if there is also a side of length maxg(P) — 1 then it
contains the vertex v, too. In case n > 2, face number 2 does not contain the vertex v.

e For 2 < i <n—1, face i + 1 either contains a boundary vertex of P, or — in case
all boundary vertices of P are inner vertices in the subgraph S; induced by P and the
faces 1,... i — it shares a vertex with the face which has the lowest number among the
boundary faces of S; that have a common vertex with face i.

Figure 3.10: A spiral S(P,n) with respect to a regular (p,s,t)-patch P (here (p,s,t) =
(2,0,0)) and n € N

We make sure that for any regular (p, s,t)-patch P and any n € Ny, a spiral S(P,n) exists:

Obviously the faces of P¥* can be labeled in the desired spiral way (start with face 1 and
2 as the definition requires, and continue with the respective neighbouring faces in the first
ring, then in the second ring, and so on). So given a regular (p,s,t)-patch P and n € Ny,
we choose k maximal with

n > f(P) = f(P) PR 2kb(P) + k26— D(p,s, 1) = m
and label the faces in P** with 1,...,m in the way described above. Then we add a@ := n—m
additional faces with labels m + 1,...,n such that face ¢ and ¢ + 1 are neighbours for
i=m,...,n—1 and all faces m + 1,...,n have a vertex with P*¥* in common. This is

possible because k was chosen maximal, so together with the (k + 1)st ring we would have
more than n faces.
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Furthermore, the last item of the spiral definition implies that for a given boundary of P —
disregarding its interior — the position of the faces in S(P,n) — P is uniquely determined up
to the symmetry of the boundary.

However, note that with respect to the same n and P, there may exist non-isomorphic spi-
rals if the symmetry of the patch P itself is lower than the symmetry of its boundary (see
for instance figure 3.11). Nevertheless, by abuse of language we will use the term the spiral
S(P,n), meaning one arbitrary of the possible spirals; this is justified since the properties
we discuss are invariant under reflections and rotations of the interior of P.

Figure 3.11: Two pairs of non-isomorphic spirals with respect to the same P and n. In the
left case, one spiral can be transferred into the other by a rotation of the interior of P, in
the right case by a reflection.

The uniqueness implies that any spiral can be constructed in the way described before: If
n > f(P*t) — f(P) =: m, the patch P** must be subgraph of S(P,n). So we may choose k
maximal such that P** is subgraph of S(P,n) and get S(P,n) = S(P**, a) witha =n—m
additional faces, where 0 < a < f,(P*+V+) = p(P**+) + (6 — D(p, 5,t)) (lemma 3.3.13(ii)).
Figure 3.12 shows again the spiral S(P,n) from figure 3.10; we observe that in this case, P?*
is subgraph of S(P,n) and a = n—m additional faces are left, such that S(P,n) = S(P*",a).

Figure 3.12: The spiral S(P,n) from figure 3.10, which can also be written as S(P?", a).
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3.3.3 The boundary length of spirals

In this section we determine formulas giving the boundary length of some spirals in terms
of their number of faces. For this we consider certain regular (p, s, t)-patches that we denote
by P, s as shown in figure 3.13.

Furthermore we denote the spiral containing P, s ; and a total number of n > f(P, s ) faces

by
Sn,p,s,t = S(Pp,s,ta n— f(Pp,s,t)) .
Pooo Pioo Proo P3op Psoo
Psoo Psop Po1o Pi1o Poio
P30 Piio Poso Piap Po3p
P, Pio Poo Pso Poi,1

Figure 3.13: Some (p, s, t)-patches that are denoted by P, 5. Inner vertices of degree 5 are
marked by a dot, inner vertices of degree 4 by a small square, and inner vertices of degree
3 by a small triangle.
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We will see later that in our context it is sufficient to consider the spirals with respect to
the first 10 patches of the figure, that are the cases (p, s, t) = (p,0,0) for p=0,1,...,6, and
the cases (p,s,t) = (p,1,0) for p = 0,1,2. The reason is that the boundary of each of these
patches represents a special boundary type of a regular patch: By adding rings around F g0,
P00, FPo1,0, P3,00, Pa0,0 and Ps g0 we obtain regular patches with boundary segmentations
of the types (1,1,1,1,1,1), (1,1,1,1,1), (1,1,1,1), (1,1,1), (1,1) and (1), respectively; and on the
other hand, adding an appropriate number of rings around P g9, Pi,1,0 and P51 yields
the boundary segmentations (I,1,1,1 — 1), (,1,l — 1) and (I, — 1).

Since (p, s, t)-patches with D(p, s,t) = 6 have the property that adding rings does not change
the boundary length, we may not construct such patches with arbitrary boundary length by
building rings around Fg,0. However, this is the 6-patch with shortest boundary length,
which forms a special case, for we will later see that all other cases with p = 6 can be solved
with the help of the case p = 5.

For these 10 cases we will now determine the boundary length and thereby prove that they
have minimal boundary length among all respective (p, s, t)-patches with the same number
of faces. Nevertheless, we will later also give the formulas for the boundary lengths of the
other spirals, which are minimal, too.

Spirals with p inner vertices of degree 5
At first we consider the different p-patches, i.e. the (p, s, t)-patches with s = ¢ = 0, and show

that the corresponding spirals fulfill the inequations from theorem 3.3.2 as equalities.

The case p=0

Lemma 3.3.18 For n > 6 consider the spiral S,0,0,0 containing Py o0 and a total number
of n faces. Its boundary length is given by

b(Sn.0.00) =2 f%(n +V6n)] —n.

PROOF:

The case of this spiral (see figure 3.14), where all inner vertices have degree 6, has already
been examined in [27]. There it is stated that the number e of edges in the spiral with n
faces is given by

e =n+ [%(n+\/6_n)1. (3.49)

Now if ¢ denotes the number of inner edges, we have for the boundary length b(P) of any
triangle-patch P with n faces and e edges:

bP) =e—q X e (Bn—¢) = 2¢—3n (3.50)

In case of P = Sy, 0,0,0, we get by inserting (3.49) into (3.50):

b(Sn0,00) = 26—3n = 2(n+ f%(n—%—\/@)]) —3n = 2[%(n+\/@)—| -n
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Figure 3.14: The spiral Sy 0,0,0

The case p=1

Lemma 3.3.19 For n > 5, the boundary length of the spiral Sy 10,0 which contains the
1-patch Py o0 and has a total number of n faces is given by

b(S) :2[%(n+\@)1 .

PROOF:

Let £ € N be maximal such that the patch Pl(’%’_ol)'i_ with boundary length 5k and 5k faces
is contained in Sy, 1,0,0, and let @ be the number of additional faces. We observe that in case
a is even, the boundary length is obtained by

, a=0

, 0<a<d4k
dk+2<a<8k+2
, 8k+4<a<10k+4

b(Sn,l,O,O) =5k +

SN O

and in case a is odd we have

1, 1<a<2k—1
b(Sn,l,O,O) = 5k + 3 s 2k + 1 S a S 6k + 1
5 ., 6k+3<a<10k+3.

Note that since n = 5k2 + a, one of the following four cases applies:

1. a even, k even, n even;
2. a even, k odd, n odd;
3. a odd, k even, n odd;
4. a odd, k odd, n even.
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Figure 3.15: The spiral S;.1,0,0

Now we confirm the formula for the different cases:

o In case a = 0 we have n = 5k2 and hence

2 [%(n VA = = 2 [%(5/@2 +5k)] — 5K

5k = b(Sn,1,0,0)
since 5k? + 5k = 5k(k + 1) is even for all k € N! — so the lemma is correct in this case.

e If g is even and 0 < a < 4k we have:

5k < n < 5kX+4k
& 25k < Bm 25k% + 20k
= 25k < 5n 25k + 20k + 4
= 5k < Vin < 5k+2

1 5 1 1 5
& —n+ = —(n+ vV < -n+-k+1
5 2k < 2( 5n) 2n 2k

Since a is even we have that either n and k are both even, or both are odd — in any
case n + 5k is even and hence in + 2k = 2(n + 5k) € N, so we get:
5

[%(n+\/5_n)1 = %n+§k+1

1
s 2 I—E(n + \/S_n)] —-n = bk + 2 = b(Sn,l,U,O)

<
<

e Now let a be even and 4k + 2 < a < 8k + 2. Then we have

5k +4k+2 < n < 5kK*+8k+2
& BE+20k+10 < 5n < 25k%+40k+ 10
= 25k +20k+4 < 5n < 25k% 440k + 16
= 5k+2 < Vbin < b5k+4
1 5 1 1 5
“n+-k+1 Z v < Zn+-k+2
& 2n+2k+ < 2(n+ 5n) < 2n+2k+



82 CHAPTER 3. MINIMAL BOUNDARY LENGTHS OF DISORDERED PATCHES
and again $n + 2k = 1(n + 5k) € N because a is even, so we obtain:
1 5
it 2k 42
5" + 2k +
1
& 2 [E(n + v5n)] -n = bk+4 = b(Sn,LO,O)

T+ Van)]

e If a is even and 8k + 4 < a < 10k + 4 holds, we have:

5> +8k+4 < n < 5kE*+10k+4
o 2Bk +40k+20 < 5n < 25k* 450k + 20
= 25k +40k+16 < 5n < 25k>+ 60k + 36
= 5k+4 < Vin < 5k+6
1 5 1 1 5
Z b Z < Z b
& 2n+2k+2 < 2(n—+-\/5n) < 2n+2k—+-3

With in + 5k = 1(n + 5k) € N we get:
1 1 )
[z(n+V5n)] = —-n+-k+3
2 2 2
1
& 2 [E(n + VvV 577/)-| -n = 5k+6 = b(Sn,l,O,O)

e Now assume a is odd and 1 < a < 2k — 1. Then we get:

5k24+1 < n < 5k*+2k—1
& k245 < 5n < 25k +10k—5
= 25k —10k+2 < 5n < 25k*4+10k+1
= 5k—1 < Vbn < B5k+1
1 5 1 1 1 5 1
Z S Z < = — Z
& 2n+2k 5 < 2(n+\/5n) < 2n+2k+2

Since a is odd we have either k even and n odd, or k odd and n even. In both cases

n+ k is odd and hence in+ 3k + 1 = L(n+k+ 1) € N, so we have

1 1 5 1

1
s 9 [§(n+ Vin)]-n = 5k+1 = b(Sn,1,0,0) -

e If ais odd and 2k + 1 < k < 6k + 1 we have

5k +2k+1 < n < Bk>+6k+1
& 252 +10k+5 < 5n < 25k +30k+5
= 25K+ 10k+1 < 5n < 25k>+30k+9

= 5k+1 < vbn < B5k+3

1 5 1 1 1 5 3
& —n+§k+— < Z(n+vdn) < —n+§k+—

2 2 2 2

[\
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and as before, n + k is odd and hence in + 2k + 2 = 2(n + k + 3) € N, so we obtain

1n+§k+§
2 2 2

1
o 9 [§(n+ von)l—n = 5k+3 = b(Sn100) -

[5(n+ Van)]

e Now let a be odd and 6k + 3 < k < 10k + 3. Then we have:

5k 4+6k+3 < n < 5kX+10k+3
& 25k24+30k+15 < 5n < 25k +50k+ 15
= 25k +30k+9 < 5n < 25k%+50k+25
= b5k+3 < Vbn < 5k+5
1 5 3 1 1 5 5
_ — — _ < - — —
& 2n+2k+2 < 2(n+\/5n) < 2n+2k+2

With n + k odd we have +n + 2k + 2 = 2(n+ k + 5) € N and hence

1 1 ) )

1
o 9 [§(n+ von)l—n = 5k+5 = b(Sn100) -

The case p=2

Lemma 3.3.20 For n > 11, let Sp.2,0,0 be the spiral with respect to P oo that contains n
faces. Then the boundary length of Sy 20,0 s given by

b(Sn’270’0) =2 [%(n + vV 4’I’L + 4)—| —-Nn.

PROOF:

Let k£ € N be maximal such that PQ(’IE)TOQ)+ — the 2-patch consisting of P» o and k£ — 2 rings,
whose boundary has three sides of length k£ and one of length k¥ — 1 —is subgraph of .S, 2 ¢.0-
Obviously its boundary length is b(Pz(ff]T02)+) = 4k — 1, and its number of faces can be
determined with lemma 3.3.13 as

FPEDTY = f(Pogg) +2(k — 2)b(Pag) + 4(k — 2)°
= 11+ 14(k — 2) + 4k* — 16k + 16

4k> — 2k — 1.

Now let a be the number of additional faces. Then we have in case a is even

0, a=0
b(S)=4k—14< 2 , 0<a<dk
4 , 4k+2<a<8k
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Figure 3.16: The spiral Sy.2,0,0

and in case a is odd
1, 1<a<2k-1
b(S)=4k—14¢ 3 , 2k+1<a<6k+1
5 , 6k+3<a<8k+1.

Since n = (4k* — 2k — 1) + a holds, n is even (odd) if and only if a is odd (even).

e In case a = 0 we have n = 4k®> — 2k — 1. This implies
1 1
5(n +VAn +4) = 5(41:2 — 2k — 1+ \/16k2 — 8k)
1
5(4lc2 —2k—1+V16k? — 8k +1)

= %(4k2—2k—1+(4k—1))

IN

= 2k +k-1
and on the other hand

%(n+\/4n+4)

1
5(41:2 — 2k — 1+ \/16k2 — 8k)
1
> 5(4k2—2k—1+\/16k2—24k+9)
1
= 5(4k2—2k—1+(4k—3))
= 2k +k—2,
which means we have
[%(n+\/4n+4)1 = 2k +k—1

N 2[%(n+\/—4n+4)]—n 222 + k — 1) — (4% — 2k — 1)
= 4k—1 = b(Sn2,00) -
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e If ¢ is even and 2 < a < 4k we have:

4k —2%k+1 < n < 4k®+2k-1
& 16k —8k+8 < 4n+4 < 16k*+8k
= 16k>—-8k+1 < 4dn+4 < 16k*+8k+1

= 4k—1 < Vin+4 < 4k+1

1 1 1 1 1
& §n+2k—§ < §(n+\/4n+4) < §n+2k+§

Since a is even, n must be odd and hence %n +2k+ % = %(n +1)+ 2k € N, so we get:

1

1 1
f§(n+\/4n+4)—| = §n+2k+§

1
& 2 |—§(’n + vV4dn + 4)—| -n = 4k+1 = b(Sn’270’0)

e Now let a even and 4k + 2 < a < 8k. Then

42 +2k+3 < n < 4k +6k—-1
o 16k*+8k+16 < 4dn+4 < 16k>+ 24k
= 16k +8k+1 < 4n+4 < 16k>+24k+9
= 4k+1 < Vin+4 < 4k+3
1 1 1 1

and since a is even, n is odd, so we have $n + 2k + 2 = 1(n+ 3) + 2k € N and hence

3

1 1
[§(n+\/4n+4)] §n+2k+§

1
& 2 [E(n + V4n + 4)-| -n = 4k+3 = b(Sn’Q’O’U) .

e In case a is odd and 1 < a < 2k — 1, we have:

4 =2k < n < 4k* -2
& 16k —8k+4 < 4n+4 < 16k* -4
= 16k>—16k+4 < 4n+4 < 16k*
= 4k—-2 < VAn+4 < 4k
1 1 1
& §n+2k—1 < §(n+\/4n+4) < §n+2k

Since a is odd, n is even and hence %n + 2k € N, which implies

[%(n+\/4_n+4)—| - %n+2k
& 2[%(n+\/4n+4)]—n

4]€ = b(5n72’070).
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e If ¢ is odd and 2k + 1 < a < 6k + 1, we have:

4k < n < 4k? 44k
& 16k°4+4 < 4n+4 < 16k* +16k+4
= 16k < 4n+4 < 16k*+16k+4
= 4k < Vin+4 < 4k+2
1 1 1

Since a is odd, n is even, so we have %n + 2k 4+ 1 € N and therefore
1 1

1
& 2 [E(n + In + 4)-| -n = 4k +2 = b(5n72’070) .

e Finally consider the case where a is odd and 6k + 3 < a < 8%k + 1. Then

42 +4k+2 < n < 4K 4+12k+1
& 16k*+16k+12 < 4n+4 < 16k*> +48k+8
= 16k>+16k+4 < 4n+4 < 16k> + 48k + 16
= 4k+2 < Vin+4 < 4dk+4
1 1 1

and again n is even, so %n + 2k + 2 € N holds, and hence

1 1

1
& 2 [E(n + v4n + 4)-| —n 4k +4 = b(5n72’070) .

The case p=3

Lemma 3.3.21 For n € N, n > 10, let Sy 30,0 be the spiral with respect to P3¢ that
contains n faces. Then the boundary length of S, 30,0 45 given by

b(Sn’g’U’o) =2 [%(TL + vV 3n + 6)—| —-—n.

PROOF:

Let k € N be maximal such that Pégf”, the 3-patch consisting of P; 0,0 and k — 2 rings
whose boundary has three sides of length k, is subgraph of S), 3.0,0. Its boundary length is

b(P?’(ﬁ]’_gH) = 3k and its number of faces

PR DT) = f(Pyoo) +20k = 2)b(Pso.0) + 3(k — 2)°
= 10+ 12(k — 2) + 3k* — 12k + 12
= 3k*2-2.
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Figure 3.17: The spiral Sy, 30,0

Furthermore let a be the number of additional faces. Then we have in case a is even

0 , a=0
b(Sn300) =3k+< 2 , 0<a<4k
4, 4k+2<a<6k+2

and in case a is odd

1, 1<a<2k—1
b(Sn,3,0,0)_3k+{3 , 2k+1<a<6k+1.

Since n = 3k% — 2 + a holds, one of the following cases must apply:

1. a even, k even, n even;
2. a even, k odd, n odd;
3. a odd, k even, n odd;

4. a odd, k odd, n even.

o In case a = 0 we have n = 3k? — 2 and hence
1 1
2[§(n+\/3n+6)]—n = 2[5(3k2—2+\/9k2)]—3k2+2
= 2[g(k2+k)—1]—3k2+2

3
2 (5(14:2 +k)—1)—3k*+2 (k*+k is always even)

- 3k - b(Sn’g’O’U).
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e If ¢ is even and 2 < a < 4k we have:

3k < n < 3k’4+4k-2
& 9246 < 3n+6 < 9k 412k
= 9k < 3n4+6 < 9K*+12k+4
= 3k < V3n+6 < 3k+2
1 3 1 1 3
& §n+§k < §(n+\/3n+6) < §n+§k+1

Since a is even, k and n must be either both even or both odd — in any case n + 3k is
even and hence 3n + 2k = 1(n+ 3k) € N, so we get

1 1 3
[§(n+\/3n+6)] = -n+ §k+1

2
1
& 2 [E(n + v3n + 6)-| —-n 3k+2 = b(Sn,S,O,O) .

e If ¢ is even and 4k + 2 < a < 6k + 2 we have:

3k> + 4k
& 9K+ 12k +6
= 9k +12k+4
= 3k+2

n < 3k®+6k
3In+6 < 9k*2+18k+6
In+6 < 9K+ 24k+ 16

V3n+6 < 3k+4

1 1 3

AN AN IN A

1 3
—= -k+1
= 2n+2 +

Again n + 3k must be even and hence %n + %k € N, so we obtain:

1 1 3

1
& 2 |—§(’n +V3n + 6)-| -n = 3k+4 = b(Sn’370’0)

e Now let a be odd and 1 < a < 2k — 1. Then we have:

32 -1 < n < 3k*+2k-3

& 9%k°+3 < 3n+6 < 9k*4+6k-—3
= 9k —6k+1 < 3n+6 < 9k2+6k+1
= 3k—-1 < V3n+6 < 3k+1
o L3l o 1(’n+\/m) < L3l
27 T 2" 2 2 = 27727 "2

Since a is odd, either k is even and n odd, or k is odd and n even. In both cases n+ 3k
is odd and hence fn+ 3k + 1 =1(n+3k+1) € N. We get:

1 1 3 1

1
PR [§(n +vV3n+6)]—-n = 3k+1 = b(Sn3,00)
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e In case g is odd and 2k + 1 < a < 6k + 1 we have:

3k*+2k—-1 < n < 3k*+6k—1
& 9K*+6k+3 < 3n+6 < 9K*4+18k+3
= 9k’ +6k+1 < 3n+6 < 9k*+18k+9
= 3k+1 < V3In+6 < 3k+3
& 1n+§k+1 < 1(n+\/3n+6) < 1n+§k+§
2 2 2 2 - 2 2 2
Again n + 3k is odd in any case, so we have $n + 3k + 2 = 1(n + 3k + 3) € N and
obtain
1 1 3 3
[§(n+\/3n+6)] = §n+§k+§

1
o 2[§(n+\/3n+6)]—n = 3k+3 = b(Sn3.00) -

The case p=4

Lemma 3.3.22 For n > 12, the boundary length of the spiral Sy 40,0 with respect to Py
that contains n faces is

b(S) = 2 [%(n VIR T2 —n.

! 40,0

Figure 3.18: The spiral Sy, 4,0,0

PROOF:

Let £ € N be maximal such that PAI(’IB’_03)+ — the 4-patch consisting of P40 and k — 3 rings
with two sides of length k — is subgraph of S, 4,0,0. Its boundary length is b(le(f]’_()gH) =2k
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and its number of faces

FPEDT) = f(Pioo) + 20k — 3)b(Pio0) + 2(k — 3)°
= 12+ 12(k — 3) + 2k* — 12k + 18
= 2k*—6.

Furthermore let a be the number of additional faces. Then we have in case a is even

0, a=0
b(Sn,4,0,0)—2k+{ 2, 0<a<d4k

and in case a is odd

1, 1<a<2k-1
b(Sn,4,U,0)_2k+{3 2k+1<a<4k+1.

Because of n = 2k? — 6 + a, n is even (odd) if and only if a is even (odd).

o In case a = 0 we have n = 2k? — 6 and hence

2 [%(n+v2n+ 12)] —n

2 [%(2192 — 6+ V4k2)] — 2k* + 6
= 2[k*—3+k] -2k +6
2(k*—3+k)—2k>+6

= 2](? = b(Sn’470’0).

e If g is even and 2 < a < 4k we have:

262 —4 < n < 2k°+4k—6
S 4k 44 < 2m+12 < 4K* 48k
= 4k < m+12 < 4k +8k+4
= 2% < V2n+12 < 2k+2
1 1 1
& §n+l~c < §(n+\/2n+12) < §n+k+1

Since a — and hence n — is even, we have %n € N and therefore

1 1

1
& 2 |—§(’n + Vv 2n + 12)—| -n = 2k +2 = b(Sn’470’0) .

e Ifaisodd and 1 <a < 2k — 1 we get:

2% —-5 < n < 2k*+42%-7T
& 4k +2 < 2m+12 < 4KP 44k -2
= 4k’ —4k+1 < 2n+12 < 4k®+4k+1
= 2%k—1 < V2n+12 < 2k+1
1 1 1 1 1
& §n+k—§ < §(n+\/2n+12) < §n+k+§
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Since n is odd, 3n + 1 = 2(n + 1) € N holds and hence

[%(n+\/2n+12)] 1 1

-n+k+ -
1
& 2 |—§(’n + Vv 2n + 12)—| -n = 2k +1 = b(Sn’470’0) -

2 2

e Let a odd and 2k +1 < a <4k + 1. Then

2k24+2k—-5 < n < 2k*+4k-5
& 4k +4k+2 < 2412 < 4k +8k+2
= 4k 44k+1 < 2n+12 < 4K +12k49
= 2%+1 < V2n+12 < 2k+3
1 1 1 1 3
S -nt+k+z < s(n+vV2n+12) < -ndk+ -
2 2 2 2 2
and since n is odd, in + 2 = 1(n +3) € N. We get:
1 1 3
[§(n+\/2n+12)] = §n+k+§

1
& 2 [E(n +vV2n+12)] —n = 2k+3 = b(Sn40,0)

The case p=5

Lemma 3.3.23 For n > 16 let S, 50,0 be the spiral with respect to Ps o that contains n
faces. Then the boundary length of Sy 50,0 is given by

b(Sn,S,O,O) =2 [%(n +Vvn+ 20)-| —-n

PROOF:

Let k£ € N be maximal such that Péi{oﬁ)"_ — the 5-patch consisting of P50 and k£ — 6 rings,
which has boundary length k — is subgraph of \S;, 5,0,0. Its number of faces is

FEEDY) = f(Pso0) +2(k — 6)b(Ps00) + (k —6)?
= 16+ 12(k —6) + k* — 12k + 36
k% —20.

If a denotes the number of additional faces, we have in case a is even

0, a=0
b(Sn,s,o,o)—k+{ 2 , 0<a<2k

and in case a is odd (and hence 1 < a < 2k —1):

b(Sn,5,00) = k+1
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Figure 3.19: The spiral Sy, 50,0

Because of n = k% — 20 + a, one of the following cases applies:

1. a even, k even, n even;
2. a even, k odd, n odd;
3. a odd, k even, n odd;
4. a odd, k odd, n even.

e In case a = 0 we have n = k? — 20 and hence
1 1
2[5+ Vn+20)] -n = 2[§(k2—20+\/k_2ﬂ—k2+20

1
- 2[§(k2+k)—10]—k2+20

1
2 (5(14:2 +k)—10) —k* +20 (k® + k is always even)

= k = b(Sn’gj’o’o).

e If ais even and 2 < a < 2k we have:

E—-18 < n < kK +2k-20
S E+2 < n+20 < K +2k
= k2 < n+20 < kK +4k+4
= k < Vvn+20 < k+2
1 1 1 1 1
& —n+§k < §(n+\/n+20) < §n+§k+1

2
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Since a is even, k and n are either both even, or both odd. In both cases we have
in+ 1k =1(n+k) €N, and therefore

[%(aHM)] = %n+%k+1
o 2[%(n+\/n+20)-|—n

k + 2 - b(Sn’570’0) .

e If gis odd and 1 < a < 2k — 1 we get:

E—-19 < n < kK +4+2%k-21
& 4+1 < n4+20 < K +2k-1
= K2-2k+1 < n+20 < k+4+2k+1
= k-1 < Vn+20 < k+1
o Inalpol oo 1(n+m) < Inglpyl
2 T 27 2 2 = 2 "2 "2

Since a is odd, we have either k£ even and n odd, or k£ odd and n even. In both cases
in+3k+1=1(n+k+1) € Nholds, and hence

1 1 1 1

1
& 2 [E(n +vn+ 20)-| -n = k+1 = b(Sn’570’0) .

The case p=6

Lemma 3.3.24 Forn > 15, let Sy, 6,0,0 be the spiral with respect to Ps 0 which has a total
number of n faces. Its boundary length is given by

6 if n is even
b(Sn6,00) = 7 if n is odd and n ¢ {5+ 10k | k € N}
5 else .

PROOF:

Let £ € N be maximal such that P(f’fio, the 6-patch consisting of Fs 0,0 and k rings, is
subgraph of Sy, 6,0,0. It has, without respect to k, boundary length 5, and its total number
of faces is

f(Pé,%,_USH) = f(Ps0,0) + 2kb(Ps,0,0)
= 15+ 10k.

If a denotes the number of additional faces, we have in case a is even

0 ., a=0
b(Sn,e,o,o)—5+{2 , 0<a<s$
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Figure 3.20: The spiral S;.6,0,0

and in case a is odd (and hence 1 < a <9)

b(Sn,G,O,O) - 6 .

Because of n = 10k + 15 + a, n is even if and only if a is odd, so b(Sp,6,0,0) = 6 holds if n is
even. If n is odd and n ¢ {5+ 10k |k € N}, we have a # 0 and hence b(S,6,00) =5+2=T7;
otherwise we have n = 5 + 10k, a = 0 and b(Sp.6,0,0) = 5. So the stated formula is correct
in all cases.

O

Spirals with p inner vertices of degree 5 and s inner vertices of degree 4

Now we consider the three (p, s, t)-patches Py 1,0, P10, and P10 with (p,s,t) = (0,1,0),
(p,s,t) = (1,1,0), and (p,s,t) = (2,1,0), respectively (see figure 3.13), and examine the
boundary lengths of the corresponding spirals.

The case (p,s,t)=(0,1,0)

Lemma 3.3.25 For n > 4, let S,0,1,0 be the spiral with respect to Py 1,0 that contains n
faces. Then its boundary length is given by

b(Sn.0,1,0) = 2 [%(n +Vian) —n.

PROOF:

Let k € N be maximal such that Po(’kljolH — the (0,1, 0)-patch consisting of Py 19 and k — 1
rings with four sides of length k — is subgraph of S. Obviously it has boundary length 4k,
and its number of faces is

R = 4k
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Figure 3.21: The spiral Sy0,1,0

If a denotes the number of additional faces, we have in case a is even

0
b(Sn,O,l,O) =4k + 2
4
and in case a is odd
1
b(Sno10) =4k+< 3
5

b

b

b

a
0

=0
<a<4k

dk+2<a<8k+2

1<a<2k-1
2k+1<a<6k+1
6k+3<a<8k+3.

Because of n = 4k* + a, n is even (odd) if and only if a is even (odd).

e In case a = 0 we have n = 4k> and hence

2[%(11—%—\/@)1 -n

e If ais even and 0 < a < 4k we get:
4k
& 1647

= 16k>
= 4k

AN AN NN

1

4n

4n

= 2 [%(41@2 + 4k)] — 4k*

= 2(2k* 4+ 2k) — 4k?

= 4k

= b(Sn,O,l,O) .

< 4k* + 4k

<
<

Vin < 4k+2

—_

2

(n + V4n)

<

16k2 + 16k
16k + 16k + 4

1

95
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Since a is even, n is also even, so %n € N and hence

[%(n+\/ﬁ)] = %n+2k+1

1
s 2 |—§(n + \/ZR)—| -n = 4k+2 = b(Sn,U,l,U) .

e If ¢ is even and 4k + 2 < a < 8k + 2 we have:

42 +4k+2 < n < 4k +8k+2
& 16k2+16k+8 < 4n < 16k*> +32k+8
= 16k>+16k+4 < 4n < 16k>+ 32k + 16
= 4k+2 < Vin < 4k+4
1 1 1
& §n+2k+1 < §(n+\/4n) < §n+2k+2

Again n is even, so %n € N holds and we have

[%(m—\/ﬁ)] = %n+2k+2

1
o 2[§(n+mﬂ_n = 4k+4 = b(Sn01,0) -

e In case a is odd and 1 < a < 2k — 1 we have:

4k +1 < n < 42 +2%k-1
& 16k2+4 < 4n < 16k*+8k—4
= 16k* —8k+1 < 4n < 16k*+8k+1
= 4k—1 < Vin < 4dk+1
1 1 1 1 1
—n42k— = - Van) < Zn+2k+ -
& 2n+k 5 < 2(n+ n) < 57+ k+2

Now n is odd, so we have %n + % € N and hence

1 1 1
[E(n—I- Vdn)] = §n+2k+ B

1
N 2[§(n+\/4nﬂ—n = 4k+1 = b(Sno1,0) -

e In case a is odd and 2k + 1 < a < 6k + 1 we have:

42 +2%k+1 < n < 4k®+6k+1
& 16k +8k+4 < 4n < 16k*+24k+4
= 16k>+8k+1 < 4n < 16k*+24k+9
= 4k+1 < ViAn < 4k+3
1 1 1 1 3
“n42k+ = - V4 < n+4+2k+=
& gnt k+2 < 2(n+ n) < 57+ k+2
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Since n is odd, we have 3n + 2 € N and hence

1 1 3
[§(n+ Vin)] = §n+2k+ 3

1
@ 2[5+ VAl —n = 4k+3 = b(Sno10)-

e Now let a is odd and 6k + 3 < a < 8k + 3. Then we have:

4> +6k+3 < n < 4k*+8k+3
o 16k*+24k+12 < 4n < 16k>+32k+ 12
= 16k>+24k+9 < 4n < 16k>+40k+ 25
= 4k+3 < Vin < 4k+5
& 1n+2k+§ < 1(n—+—\/éﬁ) < 1n+2k+§
2 2 2 = 2 2

Since n is odd, we have in + 2 € N and therefore

1 5
z 2% + =
2n+ +2

1
& 2[5+ Vi) -n = 4k+5 = b(Sno10)-

[%(n +V/4n)]

The case (p,s,t)=(1,1,0)

Lemma 3.3.26 For n > 7 consider the spiral S, 11,0 with respect to Pj 1o that contains n
faces. Then the boundary length of Sp.1.1.0 s given by

sty

b(Smit0) =2 [%(n +VEnFd)] —n.

PROOF:

Let £ € N be maximal such that Pl(’kl’_OQH — the (1,1, 0)-patch consisting of P 1,0 and k — 2
rings, which has two sides of length k£ and one of length k¥ — 1 — is subgraph of S. It has
boundary length 3k — 1, and its number of faces is

FPEDTY = f(Prio) + 20k — 2)b(Pr0) + 3(k — 2)°
= T74+10(k—2) +3k*> — 12k + 12

3k —2k—1.
If a denotes the number of additional faces, we have in case a is even
0, a=0

b(Spi1,0)=3k—-1+< 2 , 0<a<d4k
4, 4k+2<a<G6k
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Figure 3.22: The spiral S, 11,0

sl

and in case a is odd

1, 1<a<2k—1
b(Sn,l,l,O)_3k_1+{3 2% +1<a<6k+1.

Because of n = 3k* — 2k — 1 + a, one of the following cases applies:

1. a even, k even, n odd;
2. a even, k odd, n even;
3. a odd, k even, n even;
4

. a odd, k odd, n odd.

e In case a = 0 we have n = 3k%> — 2k — 1 and hence
2[%(n+\/3n—+4ﬂ—n = 2[%(3k2—2k—1+\/M)]—3k2+2k+1
= 2[%(3k2+k—2)]—3k2+2k+1
= 2(%(3k2+k)—1)—3k2+2k+1 (3k% + k is always even)

= 3k-1 = b(Sn,l,l,O)-

e If ais even and 0 < a < 4k we get:
3k -2k—-1 < n < 3K 4+2k-1
& 9k2—6k+1 3In+4 < 9kZ+6k+1
= 3k-—1 V3In+d < 3k+1
1

1 3.1 1 1 3
& —n+§k—— §(n+\/3n+4) < §n+§k+§

2 2

VANVANRWAN
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Since a is even, either n is even and k odd, or n is odd and k even. In both cases we
have n+ 3k + 1 =1(n+3k+1) € N. We get
1 3 1

1
[§(n+\/3n+4)] = En—%— §k+§

1
PN 2[§(n+\/3n+4ﬂ -n 3k+1 = b(Sh11,0) -

e If a is even and 4k + 2 < a < 6k we have:

32 +2k+1 < n < 3k*+4k-1
& 9KP+6k+7 < 3n+4 < 9K+12k+1
= 9k2+6k+1 < 3n+4 < 9k2+18k+9
= 3k+1 < V3n+4 < 3k+3
o Inalrel < 1(n+m) < Iagdkgd
27 27 2 2 = 27272

Again either n is even and k odd, or n is odd and k even. In both cases we have
in+3k+2=1(n+3k+3)eNand get

1 1 3 3
[§(n+v3n+4)] = §n+§k+§

1
& 2 [E(n + 3n + 4)-| -n = 3k+3 = b(5n71’170) .

e Now assume @ is odd and 1 < a < 2k — 1. We get:

32 -2k < n < 3k?-2
& 9k2—6k+4 < 3n+4 < 9k2-2
= 9k’ —12k+4 < 3n+4 < 9k
= 3k—-2 < V3n+4 < 3k
1 3 1 1 3

Since a is odd, n and k& must be both even or both odd. In both cases we have
in+ 3k =1(n+3k) €N, so we get

1 1 3
[§(n+ V3n+4)] = En—%— §k

1
& 2 |—§(n + vV3n+ 4)-| -n = 3k = b(Sn,l,l,O) .

e If ais odd and 2k +1 < a < 6k + 1, we have:

3k < n < 3k2+4k
& 9k°+4 < 3n+4 < 9K +12k+4
= 9k < 3n+4 < 9K +12k+4
= 3k < V3n+4 < 3k+2
1 3 1 1 3
& §n+§k < §(n+\/3n+4) < §n+§k+1
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Again we have in + 2k = 2(n + 3k) € N and therefore obtain
1 1 3
[§(n+\/3n+4)] = -n+ §k+1

2
1
& 2 [E(n + v3n +4)-| —-n 3k+2 = b(Sn,l,l,O) .

The case (p,s,t)=(2,1,0)

Lemma 3.3.27 Letn > 9 and Sy, 2,10 be the spiral with respect to P> 10 containing n faces.
Its boundary length is

B(S) = 2 [%(n VI ET)] —n.

Figure 3.23: The spiral S,.2,1,0

PROOF:

Let £ € N be maximal such that PQ(’IC;O3)+ — the (2,1, 0)-patch consisting of P> 1,0 and k — 3
rings, which has one side of length k and one of length £ —1 — is subgraph of S. Its boundary
length is 2k — 1 and its number of faces

FREDTY = f(Pong) +2(k — 3)b(Pa0) + 2(k — 3)?
= 9+ 10(k—3) +2k* — 12k + 18
2% — 2k — 3.

If a denotes the number of additional faces, we have in case a is even

0, a=0
b(Sn,2,1,0)—2k_1+{2 , O<a<d4k—2

and in case a is odd
1, 1<a<2k-1
b(Sn,2,1,o)—2k—1+{3 2k+1<a<4k—1.

b
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Because of n = 2k? — 2k — 3 + a, n is even (odd) if and only if a is odd (even).

o In case a = 0 we have n = 2k? — 2k — 3 and hence
1 1
2[§(n+\/2n+7)]—n = 2[5(2k2—2k—3+\/4k2—4k+1ﬂ—2k2+2k+3

1
= 2{5(21&—4)1 -2k +2k+3
= 2(k*-2)—2k>+2k+3

= 2k - ]. = b(Sn’Q’l’U) .

e If ais even and 0 < a < 4k — 2 we get:
22 —2k—-3 < n < 282+2%-5
& 4k —4k+1 < 2n+7 < 4k*+4k-3
= 4k —4k+1 < 2n+7 < 4> +4k+1
= 2k—-1 < V2n+7 < 2k+1
1
<

1 1 1

1
Z A
== 2n+ 5

Since a is even, n is odd, so we have %n +k+ % = %(n +2k+1) e N. We get
1 1 1
[§(n+\/2n+7)] = -n+k+-

2 2
1
& 2 [§(n+\/2n+7)] —-n 2k+1 = b(Sp21,0) -

e In case a is odd and 1 < a < 2k — 1 we have:

2k —2k—2 < n < 2k*>—4
& 4k2 —4k+3 < 47 < 4k* -1
= 4k —8k+4 < 2 +7 < 4k?
= 2%k-2 < V247 < 2k
1 1 1
& §n+k—1 < §(n+\/2n+7) < §n+k

Since a is odd, n is even and hence %n € N. We get

[%(n FVIRF D] = in+k

2
& 2[%(n+\/2n+7)] —-n

Qk = b(5n72’170).

e In case a is odd and 2k + 1 < a < 4k — 1 we have:

22 -2 < n < 282 +2k—4
& 4k°+3 < 47 < 4k +4k-1
= 4k < 247 < 4k>+8k+4
= 2k < V2n+7 < 2k+2
1 1 1
& §n+k < §(n+\/2n+7) < §n+l~c+1
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Again n is even and hence 1n € N, so we get

[%(n+\/2_n+7)] - %n+k+1
& 2[%(n+\/2n+7)]—n

2k+2 - b(5n72’170).

With the previous results we obtain now:

Theorem 3.3.28 Let (p,s,t) € {(0,0,0),(1,0,0),(2,0,0),(3,0,0),(4,0,0),(5,0,0),(6,0,0),
(0,1,0),(1,1,0),(2,1,0) } and n € N with n > f(P, s+). Then the spiral Sy, p s+ which con-
tains Pp s and a total number of n faces has minimal boundary length among all (p,s,t)-
patches with n faces.

PROOF:

This follows from theorem 3.3.2, theorem 3.3.5, and the lemmas 3.3.18 to 3.3.27, since
the lemmas show that the respective spirals fulfill the inequations from the theorems as
equalities.

O

As mentioned before, we studied only the special cases for (p, s,t) which occur in theorem
3.3.28 because these are the cases we need for the application in the next section.

However, it is possible to solve the other cases for p, s, ¢ with D(p, s,t) < 6 in the same way:
Deduce lower bounds on the boundary of a (p, s,t)-patch by applying the respective result
on hexagonal patches to the inner dual, then determine the correct spiral and show that its
boundary length fulfills the obtained formula as an equality. For the sake of completeness
we give all the formulas that can be obtained this way in table 3.2.

In order to check the correctness of the formulas, we have confirmed independently with a
computer program building the respective spirals with up to 100000 faces (following defi-
nition 3.3.17) that their boundary lengths are indeed given by the formulas listed in table
3.2.

Note that in figure 3.13, there do not occur (p, s, t)-patches for all 23 cases of (p, s,t) with
D(p,s,t) < 6 — the cases (p,s,t) = (2,2,0), (p,s,t) = (1,1,1), and (p,s,t) = (0,0,2) are
missing. The reason for this is that for these cases, no reqular patches exist from which spirals
with minimal boundary length can be built. Instead, the patches with minimal boundary
for the cases (p,s,t) = (2,2,0) and (p,s,t) = (1,1,1) can be constructed as indicated in
figure 3.24 — actually the faces are also arranged in a spiral way, but since none of the
subgraphs is regular these are no spirals in the sense of our definition. By abuse of notation
we nevertheless denote these structures by Sy 22,0 and S, 1,1,1 and complete table 3.2 with
the corresponding boundary formulas.

The case (p,s,t) = (0,0,2) is special in a different way: There we have the problem that
starting with two neighbouring vertices of degree 3, as the result on the dual suggests, yields
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Figure 3.24: The ‘spirals’ Sy, 22,0 and Sy.1,1.1

a double edge (see figure 3.25). If we nevertheless define this structure to be P2 and build
a spiral around it which allows double edges (see figure 3.26), we find that it has minimal
boundary length among all plane graphs (possibly with double edges) with two inner vertices
of degree 3, all other inner vertices of degree 6, and all inner faces triangles. So we include

this case into table 3.2 as well.

Figure 3.25: The patch Py 0,2 which contains a double edge

Figure 3.26: The ‘spiral’ Sy 00,2
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(pa S, t) -D(pv S, t) b(Sn,p,s,t)
(0,0,0) 0 2[3(n +v6n)]
(1,0,0) 1 2T4(n+V3m)] —n
(2,0,0) 2 2[5 (n+VAn +4)] -
(3,0,0) 3 2[5(n+V3n+6)] -
(4,0,0) 4 2[i(n+V2n +12)] -
(5,0,0) 5 f (n++vn+20)] —
6 if nis even
(6,0,0) 6 7 ifnisodd and n ¢ {5+ 10k |k € N}
5 else
(0,1,0) 2 2 [%(n +v4n)] —
(1,1,0) 3 2[3(n+VBn+4)] -
(2,1,0) 4 2[s(n+vV2n+7)] —
(3,1,0) 5 2[i(n++vn+12)] —
5 ifnis odd
(4,1,0) 6 6 ifnisevenandn ¢ {4+ 8k|k € N}
4 else
(0,2,0) 4 2[3(n+v2n+4)] -
(1,2,0) 5 2[3(n++vn+8)]—n
4 if nis even
(2,2,0) 6 5 ifnisodd
4 if nis even
(0,3,0) 6 5 ifnisodd and n ¢ {1+ 6k|k € N}
3 else
(0,0,1) 3 2[3(n+V3n)] -
(1,0,1) 4 2[3(n+v2n+3)] —
(2,0,1) 5 2[i(n+vn+6)] —n
4 if nis even
(3,0,1) 6 5 ifnisoddandn ¢ {3+ 6k|k € N}
3 else
(0,1,1) 5 2[i(n+vn+4)] —n
3 ifnisodd
(1,1,1) 6 4 if n is even
3 ifnisodd
(0,0,2) 6 4 if niseven and n ¢ {4k |k € N}
2 else

Table 3.2: Different cases for p,s,t € N with D(p,s,t) < 6, and the boundary length
b(Spp,s,t) of the spiral Sy, , 5+ with n faces
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3.3.4 Triangle-patches with fixed regular subgraphs

So far we know that for 0 < p < 6 and n > f(Pp0,0), we obtain a p-patch with n faces
and minimal boundary length by arranging the appropriate number of faces in a spiral way
around the patch P, . Table 3.2 gives the boundary lengths of these spirals with respect
to their numbers of faces and therefore lower bounds for the boundary lengths of arbitrary
p-patches. However, in those spirals the degree 5 vertices lie close together in the center,
and if we consider p-patches where the degree 5 vertices lie further apart, the given formulas
are bad estimations for the boundary length. Indeed we will see in chapter 5 that sometimes
it is desirable to have a sharper bound on the boundary length that takes the respective
positions of the degree 5 vertices into account.

In this subsection we will at first show that given a fixed regular p-patch P, the spiral with
respect to P has minimal boundary length among all p-patches containing P. Moreover, the
idea of the proof provides a very useful method how a formula for the boundary length of
such a spiral — that means for the minimal boundary length of a p-patch containing P — can
be developed. With that technique we are able to determine lower bounds for the boundary
length of p-patches containing any fixed regular p-patch P which improve those in table 3.2
for the respective case.

The cases p < 5

At first we consider triangle-patches with p < 5 inner vertices of degree 5. With the already
proven results, we are able to show that given a regular p-patch P with p < 5, the spiral
S(P,n) has minimal boundary length among all p-patches containing P and n further faces
(theorem 3.3.32): The idea is to replace the patch P by a certain (p, s, t)-patch with the
same boundary. For this we need lemma 3.3.31, which states that we can always find a
patch with the same boundary segmentation that consists of one of the examined patches
P, s+ from the previous section and possibly a number of rings built around it, which in
turn requires the following:

Lemma 3.3.29 Any p-patch P with p € {2,3,4,5} fulfills b(P) > 5.

PROOF:

Let n := f(P). Then the existence of at least two inner vertices with degree 5 already
implies n > 8, since one degree 5 vertex must lie in 5 faces and the second one can only have
at most two common faces with the first one, so there must be at least 3 further faces.

With n > 8 we obtain in the different cases p = 2, 3,4, 5:

o If p =2 we get with (3.19) b(P) > v4n + 4> /4-8+ 4 = /36 = 6.

e In case p = 3, (3.22) implies b(P) > v/3n+6 > /3-8 + 6 = /30 > 5.

e For p =4 we have with (3.25) b(P) > v2n + 12 > /2-8 + 12 = /28 > 5.

e Finally, if p = 5 then by (3.28) we have b(P) > v/n + 20 > /& + 20 = /28 > 5.
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Corollary 3.3.30 Given a p-patch P.
(1) In case 2 < p <5 we have b(P) > 6.
(i1) B(P) = (I,1,1) implies | > 2.
(i1i) B(P) = (I,1) or B(P) = (I,1 — 1) implies | > 3.

PROOF:

Because of b(P) € N, item (i) follows immediately from lemma 3.3.29. The items (i7) and
(#41) in turn are direct consequences of (7). O

Lemma 3.3.31 For any regular p-patch P with 0 < p < 5, there exists k € Ny and
(p,s,t) € {(0,0,0),(1,0,0),(2,0,0),(3,0,0), (4,0,0), (5,0,0),(0,1,0),(1,1,0),(2,1,0) }
such that B(P) = B(P*T)).

p,s,t

PROOF:
Let B(P) = (lo,.-.,lm—1)- By the definition of regular patches, we have either A(P) = 0,
or2<p<4and Z?:Ol(maxB(P) —1;) = 1= A(P). This leads to the following cases:

1. p=0and A(P) =0, i.e. B(P) = (I,1,1,1,1,1) for some [ € N:
Then we may choose k =1 — 1 to obtain B(P) = B(P(ﬁ}']"o).

2. p=1and A(P) =0, ie. B(P)=(l,11,1,1) for somel € N:
Again we choose k =1—1 and get B(P) = B(Plk’fio).

3. p=2and A(P) =0, i.e. B(P) = (I,1,1,1) for some | € N:
Then with k =1 — 1 we have B(P) = B(P(ﬁr,o)-

4. p=2and A(P)=1,ie B(P)=(l,1,1,1—1) for somel € N, [ > 2:
Then we choose k =1 — 2 and obtain B(P) = B(P2k,?)—,0)-

5. p=3 and A(P) =0, ie. B(P) = (l,1,1) for somel € N, [ > 2 (corollary 3.3.30 (i1)):
Then with k = — 2 we have B(P) = B(PX{,).

6. p=3 and A(P)=1,ie. B(P)=(l,1,1—1) for somel €N, | > 2:
Then let k = [ — 2 — this implies B(P) = B(Pf,io)-

7. p=4and A(P) =0, i.e. B(P) = (l,1) for some l € N, I > 3 (corollary 3.3.30 (ii3)):
Then choose k =1 — 3 to obtain B(P) = B(Pfj{’o)-

8 p=4and A(P)=1,i.e. B(P) = (I,l—1) for somel € N, [ > 3 (corollary 3.3.30 (7i7)):
Then choose k =1 — 3 such that B(P) = B(P;io).

9. p=5,ie B(P)= () for some ! € N, [ > 6 (corollary 3.3.30 (i)):
Then we let k = [ — 6 and get B(P) = B(Pgﬁfio)-
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Theorem 3.3.32 Let P be a regular p-patch with 0 < p <5, and n € Ny. Then the spiral
S(P,n) has minimal boundary length among all p-patches containing P and n further faces.

PROOF:
By lemma 3.3.31 we know that there is a (p, s, t)-patch P’ = Pﬁ:t with the same boundary

S
segmentation as P, where k € Ny and (p, s,t) € {(¢,0,0)|qg € No,0< ¢ <5}U{(q,1,0)|q €
No,0 < ¢ <2}. Now let @ be an arbitrary p-patch containing P and n further faces. Then
we may replace P in @) by the (p, s,t)-patch P’ with the same boundary segmentation. The

result is a (p, s,t)-patch Q'. Let m := f(Q") = f(P') + n be the number of faces in Q.

Due to theorem 3.3.28, the spiral Sy, , s+ has minimal boundary length among all (p, s, t)-
patches with m faces — in particular this means b(Sp, p,s,t) < b(Q'). Sm,p,s,t €ven contains
the patch P' = Pyt because f(Sp ps1) = m = f(P') +n > f(P'), so we have Sy, pst =
S(P',n). Hence we may replace P' in Sy, p s by P and obtain the spiral S(P,n) consisting

of P and n further faces. With this we have shown:

) @ b(Q")

Figure 3.27: An example which demonstrates the idea of the proof of theorem 3.3.32
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Following the technique applied in the proof of theorem 3.3.32, for a given regular p-patch
P with p < 5 we may even deduce formulas for the boundary length of the respective spiral
(and hence also bounds on the boundary length of all j-patches containing P) with the help
of the known formulas from table 3.2: We only need to determine the patch P’ = Pﬁj’t with
the same boundary segmentation as P — which exists by lemma 3.3.31 — and compute the
difference C := f(P') — f(P) of the number of faces. In detail this works as follows:

Let S := S(P,n — f(P)) be the spiral containing P which has a total number of n > f(P)
faces. If we replace P by P’, the number of faces grows by C' while the boundary length
stays the same. The resulting spiral is Sy p s With n’ = n + C, whose boundary length in
terms of n' can be looked up in table 3.2. If we just replace n' in the formula by n + C, we
obtain the desired formula for b(S) depending only on the number of faces n in S.

We demonstrate this technique with the help of an example: Let P be the regular 2-patch
shown in figure 3.28 on the left. It has boundary segmentation B(P) = (3,3,3,3) and we
determine P’ = POQIO as the corresponding (p, s, t)-patch with the same boundary segmen-
tation (see figure 3.28, right).

Figure 3.28: A 2-patch P (left) and the patch P’ = P(?,T,o (right) which has the same
boundary segmentation

We observe that f(P) = 28, f(P') = 36, and hence C = f(P') — f(P) = 8.

Now let S := S(P,n — f(P)) be the spiral containing P and a total number of n > 28 faces.
Replacing P by P’ yields the spiral Sy 01,0 with n’ =n + 8.

We apply the respective formula from table 3.2 to Sy 0,1,0 and obtain:

2[%(n'+\/4_n’)—| -n'
_ 2[%(n+8+\/4(n+8))]—(n+8)
= 2[%(n+\/4n+32)-|—n (3.51)

b(S) = b(Sn.,0.1,0)

With this we have developed a formula for b(.S) in terms of the total number n of faces in S.
Moreover, since S has minimal boundary length among all 2-patches containing P, (3.51)
serves also as a lower bound for the number of faces in an arbitrary 2-patch that contains
P and has a total number of n > 28 faces.
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The case p=6

The problem in this case is that adding rings around Fs o, or any other 6-patch does
not change the boundary length. Therefore we cannot replace an arbitrary 6-patch by an
extension of Fs 0, so the whole idea does not work. Instead, we solve the case p = 6 with
the help of the already proven case p = 5.

Lemma 3.3.33 If P is a regular 6-patch that does not contain Ps o0, then we have b(P) > 6.

PROOF:

Suppose there is a counterexample with b(P) < 6. Then we must have b(P) = 5 because
of the minimality of the boundary length of the spiral Sy, 60,0 which fulfills 5(Sy 6,0,0) > 5
(theorem 3.3.28).

W.l.o.g. we may assume that P cannot be reduced to a smaller regular 6-patch by removing
rings, because in case there is a 6-patch Py and k € N with P = PS™, we have b(P) = b(P)
by lemma 3.3.13, so we could consider P, instead of P.

So we have five boundary edges such that the five inner vertices vy, ..., vs which lie opposite
to the boundary edges (see figure 3.29) do not all have degree 6 — otherwise we could remove
the outer ring of boundary faces to obtain a smaller patch. Hence at least one of these
vertices must have degree 5.

If we consider the subgraph P of P with v1,...,V5 in its boundary, which is obtained by
removing the five boundary vertices (and with this, the 10 boundary faces) of P, we conclude
that it has 1 < p < 5 vertices of degree 5 in its interior. On the other hand P has boundary
length 5, and this is only possible in case of p = 1, since the boundary length of any p-patch
with 2 < p < 5 is at least 6 (corollary 3.3.30 (i)). This implies deg(v;) =5 fori =1,...,5
in P, and consequently deg(v;) =3 fori=1,...,5in P. But then we must have P = Pioo
and hence P = Fs 9,0, in contradiction to our assumption.

O

V4

Figure 3.29: The proof of lemma 3.3.33: If P has boundary length 5, consider the patch P
obtained by removing the boundary vertices of P. It has also boundary length 5, and if at
least one of the vertices vy, ...,v5 has degree 5 in P, the subgraph P turns out to be equal
to PLO,O-
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Lemma 3.3.34 Let P be a 6-patch and P' a 5-patch with b(P) = b(P'). Furthermore let
neN, S:=S(P,n), and S' := S(P',n). Then we have

b(S) < b(S") .

PROOF:

Since P is a 6-patch, b(P**) = b(P) holds for any k € N (lemma 3.3.13), so if we let k
maximal such that P** is contained in S and define a := f(S) — f(P**) we have b(S) = b(P)
if a=0,b(S) =b(P)+1if ais odd, and b(S) = b(P) + 2 if a is even and a # 0. Hence we
have b(S) < b(P) + 2.

Furthermore, lemma 3.3.13 implies b(P'") = b(P') + 1 and fi(P'") = 2b(P') + 1, that
means P'T = S(P',2b(P’) + 1). So in case n > 2b(P') + 1 = 2b(P) + 1 we must even have
b(S’) > b(P') + 1, or equivalently

b(S') > b(P') +2 = b(P) +2 > b(S) .

For n < 2b(P) + 1, it is easy to check that b(S) < b(S’) holds, too: If n < 2b(P) — 1 we have
b(S) = b(S’) (both is equal to b(P) + 1 in case n is odd, and b(P) + 2 in case n even and
n # 0); for n = 2b(P), we have b(S) = b(P) and b(S") = b(P') + 2 = b(P) + 2 > b(S); and
in case n = 2b(P) + 1 we have b(S) = 2b(P) + 1 = 2b(P") + 1 = b(S").

So b(S) < b(S’) applies in all cases, and the lemma is proven.

Theorem 3.3.35 Let P be a regular 6-patch and n € Ny. Then S(P,n) has minimal
boundary length among all 6-patches containing P and n further faces.

PROOF:

In case of P = Fs0 or P = Pé“"&o for some k € N, the theorem already follows from
theorem 3.3.28. Otherwise, we have b(P) > 6 by lemma 3.3.33, so we may assume b(P) =
for some | > 6. We let (Q be an arbitrary 6-patch containing P and n further faces, and
define S := S(P,n) — then we have to show b(S) < b(Q).

A regular 5-patch P’ with boundary length b(P') = [ exists for any ! > 6: Just add the
appropriate number of rings around Ps 0.

1. At first we assume V,(P)NV,(Q) # 0, i.e. there exists a boundary vertex of ) which lies
also in the boundary of P. Then we may always replace P by the regular 5-patch P’
with b(P') = b(P): Just make sure that the degree 3 vertex of P’ lies in the boundary
(see figure 3.30). This way we obtain a 5-patch Q' with b(Q’) = b(Q).

If we define S’ := S(P',n) we have by lemma 3.3.34 b(S) < b(S’); and since P’ is a
5-patch containing P’ and n further faces, theorem 3.3.32 implies b(S’) < b(Q'). All
together we obtain:

b(S) < b(S') < b(Q') = b(Q)
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Q’ v

Figure 3.30: An example to demonstrate the proof of theorem 3.3.35, case 1.: If P has a
boundary length of at least 6 and is subgraph of ) such that a boundary vertex v of P lies
also in the boundary of (), we may replace P by a regular 5-patch P’ (here P’ = P; o) with
the same boundary length.

2. In case of V,(P)NV,(Q) = 0, let k be maximal such that P** is subgraph of Q. Then
we have V,(P*t) NV, (Q) # 0, so the first case applies: If m := f(Q) — f(P**) denotes
the number of faces in Q that do not lie in P¥*, then

b(S(P**,m)) < b(Q)
holds. But since S = S(P,n) = S(P**+,m) this means b(S) < b(Q).

3.3.5 Triangle-patches with fixed non-regular subgraphs

In the previous subsection we have shown that given a regular p-patch P with 0 < p < 6,
the spiral S(P,n) has minimal boundary length among all p-patches containing P and n
further faces. If P is not regular, it is hard to show a similar statement because it may not
be possible to extend P arbitrarily (for instance, if the boundary contains two neighbouring
vertices of degree 6). But we could ask the following question: Given a p-patch P that is not
regular but has at least a nice boundary (this can happen for 0 < p < 4), which is the p-patch
with minimal boundary length containing P and a given number of n further faces? We will
answer this question for the case where n is large enough such that P can be extended to a
spiral. At first we show that each patch with a nice boundary can be extended to a regular
patch (lemma 3.3.40). For the cases p = 0 and p = 1 we need also lemma 3.3.37.

Definition 3.3.36 A p-patch is called convex if its boundary contains only vertices of degree
2, 3, and 4.

In particular, a patch with a nice boundary is also convex. In the following we denote the
infinite triangular lattice with one vertex of degree 5 and all others of degree 6 by L;, and
the triangular lattice with all vertices of degree 6 by L.
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Lemma 3.3.37 For p € {0,1}, any p-patch P that is convez is subgraph of the lattice Ly.

PROOF:

We proceed by induction in the boundary length b. The patch with minimal boundary
length in case p = 0 is the one consisting of only one face, which is obviously subgraph of
Lg and fulfills b = 3, and in case p = 1 the patch P o, which is subgraph of L, and fulfills
b = 5. All other patches have a longer boundary, so now assume b > 3 resp. b > 5.

In case there is a degree 2 vertex z in the boundary of P, remove z, and by this the
corresponding face. Let z and y be the vertices adjacent to z; then {z, y} is now a boundary
edge, w.l.o.g. such that the unbounded face lies on the left hand side of the directed edge
(z,y). By removing z, the degrees of x and y have been reduced by 1. Because of b > 3
none of them could have had degree 2, so the result is still a patch, and since no other vertex
degrees have changed it is still convex. Also, all inner vertices remain inner vertices, so in
case of p = 1 we still have a 1-patch. The boundary length has been reduced by 1 so by
induction the patch is subgraph of the lattice Lg resp. L;. Consider the position of z and y
in the lattice and let z be the vertex adjacent to both of them which lies on the left hand
side of (z,y). If we follow the boundary cycle starting with (z,y), we do not make any left
turns because the boundary contains no vertices of degree 5 and 6. Hence z does not belong
to the patch which is subgraph of the lattice, which means we may extend this subgraph by
z and thus obtain the origin patch P as a subgraph in Lg resp. L.

Now assume there is no degree 2 vertex in the boundary, that means we have exactly 6 (in
case p = 0) resp. 5 (in case p = 1) vertices of degree 3 and all others of degree 4. Then
choose one side vg, v1,...,v, of P such that the unbounded face lies left of the directed path
Vg, U1, - - -, Upn, and in case p = 1 such that none of the vertices vg, vy, - . ., v, is adjacent to the
degree 5 vertex (this is possible because of b > 5). We delete these vertices and with them
the corresponding faces, which again reduces the boundary length by 1. Let wg resp. w41
be the boundary vertices adjacent to vy resp. v, in P; then the degrees of wg and w1 are
reduced by 1, the new boundary vertices wy, ..., w, on the boundary segment between them
have degree 4. Therefore we have again constructed a convex patch, which still contains the
inner vertex of degree 5 in case p = 1 since it was not adjacent to the removed vertices. By
induction this patch is subgraph of the respective lattice. The vertices wy, ..., wp4+1 form
a straight line and we consider the vertices vy, ..., v, lying left of them such that v; lies in
one face with w; and w; 1. Then again, since the boundary cycle starting with wq, w; does
not make any left turns we may add these vertices to the patch, obtaining the patch P as a
subgraph in Lg resp. L.

O

Now we define a simple operation of adding faces to a p-patch with p € {0,...,4} which has
a nice boundary:

Definition 3.3.38 Let P be a p-patch with p € {0,...,4} and a nice boundary, and s a
side of the boundary with length k > 2, consisting of the path vg,v1,...,v;. By adding a
row to side s we mean constructing a new p-patch P’ with a nice boundary which consists
of P and 2k — 1 further faces, such that all further faces contain at least one of the vertices
V1,...,Uk—1 (See figure 3.31).

Applied to a side with length & in a p-patch with p < 3 and hence three or more sides, this
operation obviously yields a new side of length k—1 while the lengths of the two neighbouring
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Figure 3.31: Adding a row to a side of length &

sides are extended by 1 and all other sides remain the same. In case of p = 4 the length of
the side to which the operation is applied is reduced by 1 while the length of the other side
grows by 2.

For an easier notation of the changes of the boundary segmentation when adding rows we
define the following mapping:

Definition 3.3.39 Let P be a p-patch with p € {0,...,4}, a nice boundary and boundary
segmentation B(P) = (lg,...,lm—_1), where m = 6 — p denotes the number of sides.

If m > 3 (or equivalently, p < 3), we define @; for i = 0,...,m — 1 as the mapping that
maps (lo,...,lm—1) onto (Ij,...,1,,_1) where

-1 ifj=i
=4 lj+1 if j € {(: — 1) mod m, (i +1) mod m}
l; else .

In case m = 2 and p = 4, P has only two sides of lengths ly and 1, and we define ; for
i = 0,1 such that 1i(lo, 1) = (lg, 1) with l; =1; =1 and I; = I + 2 for j # i.

This way, @;(lo, -, lm—1) resp. ¥;(lo,11) gives the boundary segmentation of the patch we
obtain after adding a row to the side corresponding to the (i + 1)st entry, in this case the
side of length ;.

With the help of this operation we can extend p-patches with nice boundaries to other p-
patches with nice boundaries and different boundary segmentation, and finally to regular
patches, which will be realized in the proof of the following lemma.

Lemma 3.3.40 For any p-patch P with 0 < p < 6 and a nice boundary there is a regular
p-patch P containing P.

PROOF:

For p =5 and p = 6 there is nothing to show, because in these cases a p-patch with a nice
boundary is regular by definition, so we may choose P = P. We distinguish the different
cases for p=0,1,2,3,4:

e Assume P is a 0-patch. By lemma 3.3.37 P is subgraph of the lattice Lo, so consider
its embedding into the lattice. Choose an arbitrary vertex v in Lo and let d be the
maximal distance of any vertex in P to v. Then define P as the subgraph of Lg
containing all vertices whose distance to v is at most d; this yields a regular 0-patch

with B(P) = (d,d,d,d,d,d) which contains P.
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e If P is a 1-patch, it is by lemma 3.3.37 subgraph of the lattice L. Let v be the vertex

with degree 5 in Lo and let d be the maximal distance of any vertex in P to v. Now
we define P as the subgraph of L; that contains all vertices with distance to v of at
most d and obtain a regular 1-patch with B(P) = (d,d, d,d, d) containing P.

Now consider the case p = 2, where the boundary of P consists of 4 sides. Let
B(P) = (a,b,c¢,d) and w.l.o.g. maxg(P) = a > 1. We proceed by induction in
A(P) = maxp(P) —ming(P). For A(P) = 0 we have four sides of the same length, so

we may choose P = P. In case A(P) = 1 there is k € N such that one of the following
cases applies:

— B(P) = (k,k,k,k —1): Then we may choose P = P as well.
— B(P) = (k,k,k — 1,k —1): Apply ¢ and afterwards ¢, so we obtain P with

B(P) =1(po(k, k,k—1,k—1))=p1(k—1,k+ 1,k —1,k) = (k, k, k, k) .
— (k,k —1,k,k —1): Again we apply (o and obtain P with

B(P) = @olk,k — 1,k,k—1) = (k — 1,k, k., k).

— (k,k—1,k— 1,k —1): Apply ¢ and afterwards ¢, to get P with

B(P)=p1(po(k,k—1,k—1,k—=1)) =1(k— 1,k k—1,k) = (k,k — 1,k k).

Hence in all cases, we may add faces in order to obtain a p-patch P with the required
boundary segmentation, which of course contains P.

Now let A(P) > 2. The idea is to strictly reduce A by applying a finite number of
adding-a-row operations.

For this, we first add a row to the side of length a and obtain a patch P’ with boundary
segmentation
B(PI) = wo(aabacad) = (a - 15b+ 1,C,d+ 1) -

(i) Assume that a side with minimal length lies opposite of the side of length a, that
means ming(P) = ¢. Then we have A(P) = a — ¢ and hence (because A(P) > 2
holds) a > ¢ + 2. Furthermore, for symmetry reasons we may assume b > d.

This yields ming(P') = ¢ and

b+1 ifb>a—2

maXB(P’) - { a—1 else .

In case b < a — 2 this implies A(P') = (a—1) —c = A(P) — 1.
Otherwise, if b > a — 2 or equivalently b > a — 1 holds, we have
AP)Y=(b+1)—c>a—-c=A(P).
But then we apply a further operation ; and obtain a p-patch P with
B(P"Y=¢i(a—1,b+1,¢c,d+ 1) = (a,b,c+1,d+1).
We have

d+1 ifd+1>a

maxB(P") - { a else
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and ming(P") = ¢+ 1, for in this case ¢+ 1 < a —1 < b holds.
In case d + 1 < a we have

AP")Y=a—(c+1)=A(P)—1.

Because of a > b > d, the condition d + 1 > a, or d > a, can only be fulfilled if
a =b=d. Then we apply @3 to (a,b,c+1,d+1) = (a,a,c+ 1,a+ 1) and obtain
P"" with

B(P") = ps(a,a,c+1,a+ 1) = (a+1,a,c+ 2,a)

and
AP"Y=(a+1)—(c+2)=(a—c)—1=A(P) —1.

(ii) Now assume that ¢ is not minimal among {a,b, ¢, d}, and w.l.o.g. d = ming(P).
Then ¢ > d holds, and we have A(P) = a — d and hence a > d + 2. Furthermore
we may assume a > b, because otherwise (i.e. a = b) we may choose B(P) =
(b,¢,d,a) and case (i) applies.

This yields ming(P') =d + 1 and

b+1 ifb>a—2
max g(P') =< ¢ ifc>a—landb<a-—2
a—1 else .

Because of a > b we have b > a — 2 only in case b = a — 1. This implies
APY=0b+1)—(d+1)=a—-(d+1)=A(P)-1.

In the second case, ¢ > a — 1 is only possible if ¢ = a (because of a > ¢), which
means we have

AP Y=c—(d+1)=a—(d+1)=A—-1.
Finally, if b4+ 1 <a—1and ¢ <a — 1, we even have
AP)Y=(a—-1)—(d+1)=(a—d)—2=A(P) —2.

So in all cases there exists a 2-patch P with a nice boundary which contains P and
fulfills A( P) < A(P). By induction, this means there is a 2-patch P containing
P which has ‘a nice boundary and the required boundary segmentation. Since P is
subgraph of P it is also contained in P, so the statement is proven for the case p = 2.

e Now consider the case p = 3. We let B(P) = (a, b, c) and proceed again by induction
in A(P). If A(P) = 0 we already have B(P) = (k,k:,k) S0 there is nothing left to
show. In case A(P) =1 we could have elther B(P) = (k, 1), which allows us to
choose P = P again, or B(P) = (k,k — —1). In the latter case we apply o to
obtain P with

B(P) = ok, k— 1,k —1) = (k- 1,k, k).

Now let A(P) > 2. W.lLo.g. we may assume a > b > ¢, which implies A(P) = a—¢
and hence a > ¢+ 2. We apply ¢p and obtain P’ with

B(P') = po(a,b,¢) = (a— L,b+ L,c+1).
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Observe that ming(P) = ¢+ 1 and

maxB(P):{b+1 fo+1>a—1

a—1 else .

In case b+ 1 < a — 1 this implies A(P') = (a—1) — (c+ 1) = A(P) — 2.

If b+ 1> a—1 holds, we can have (with a > b) either b=a — 1 or b = a. In the first
case,

AP)Y=0b+1)—(c+1)=a—(c+1)=A(P) -1
holds. In case of b = a we apply ¢; to (a—1,b+1,c¢+1) =(a—1,a+1,c+ 1) and
obtain P" with
B(P")=¢i(a—1,a+1,¢+1) = (a,a,¢c+2) .

Then we have maxg(P") = a, ming(P") = ¢+ 2, and hence

A(P)=a—(c+2)=A(P)-2.

With this we have shown that in any case there exists a 3-patch P containing P with
a nice boundary and A(P) < A(P). By induction, there is a 3-patch P containing
P and hence also P with a nice boundary and the required boundary segmentation,
which proves the statement for p = 3.

e Now let p = 4, B(P) = (a,b), and w.l.o.g. @ > b. Again we proceed by induction in
A(P).

Obviously there is some k € N with B(P) = (k, k) in case of A(P) = 0, and with
B(P) = (k,k — 1) if A(P) =1, such that we may choose P = P.

So let A(P) > 2 — then a > b+ 2 holds. We apply o to obtain a p-patch P’ with

B(P') = o(a,b) = (a—1,b+2). In case a > b+ 3 we have
AP)Y=(a—1)—(b+2)=(a—b) —3=A(P)-3.

Otherwise b+ 2 < a < b+ 3 holds, that means a = b + 2, and hence
APY=0b+2)—(a—1)=a—(a—1)=1<A(P).

So in both cases A(P') is strictly smaller than A(P). Hence by induction there exists
a 4-patch P containing P’ and therefore also P with a nice boundary and the required
boundary segmentation, which proves the statement for p = 4.

A further fundamental observation is that each of the patches P, ;; that we considered
before stands for one particular boundary type, such that for p < 4, any p-patch P with a
nice boundary can be replaced by another patch containing one of the patches P, ;. We
will prove this in lemma 3.3.42.

For the case p = 3, the following small lemma turns out to be helpful:
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Lemma 3.3.41 Let P be a 3-patch with a nice boundary. Then it cannot contain two sides
of length 1.

PROOF:

Assume that there exists a counterexample, which we choose minimal with respect to its
number of faces. Since there are only three sides, the two of length 1 must be adjacent,
which means that the three vertices of degree 3 which lie in the boundary follow upon each
other — all other boundary vertices have degree 4.

Let u, v, and w denote the boundary vertices with degree 3, such that {u, v}, {v,w} € E(P).
Let  be the third vertex adjacent to v. Since all faces are triangles it must also be adjacent
to u and v. Furthermore let y be the third vertex adjacent to u, and z the third vertex
adjacent to w. These in turn must also be neighbours of z since the respective faces form
triangles, and both lie in the boundary because of deg(u) = deg(w) = 3, such that we have
deg(y) = deg(z) = 4. Now assume deg(xz) = 6. Then we may remove u, v, and w to obtain
a smaller counterexample where y, z, and z have degree 3 (see figure 3.32, left picture).

This is a contradiction to the assumption, so we must have deg(z) = 5. But then — again
with the requirement that all faces have to be triangles — we conclude that the edge {y, 2}
must exist. Since y and z both have degree 4 this means they can only have one further
neighbour which must be the same for both vertices because it has to form a triangle with
x and y (see figure 3.32, right picture). But then this vertex either has degree 2 or is a
cutvertex, both yielding a contradiction. Hence the counterexample does not exist.

O

Y 4 y Z

Figure 3.32: The situation in the proof of lemma 3.3.41: Left the case deg(x) = 6, right the
case deg(z) =5

Lemma 3.3.42 Let P be a p-patch with a nice boundary, and 0 < p < 4. Then there ex-
ists (p,,1) € {(0,0,0),(1,0,0). (2,0,0),(3,0,0), (4,0,0), (0, 1,0), (1,1,0). (2,1,0)} such that
D(p,s,t) = p, and a (p, s,t)-patch P' with a nice boundary and the same boundary segmen-
tation as P that contains the (p, s,t)-patch P, s as a subgraph.

PROOF:

For p = 0 and p = 1, the lemma is obviously true, for in these cases the patch P itself has
to contain Py 0,0 or P 0,0, respectively. The cases p = 2, p = 3, and p = 4 are going to be
solved separately:
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e The case p = 2:

Let P be a 2-patch, that means it contains two degree 5 vertices ¢ and y. Since P is
convex, the set of shortest paths between x and y spans a ‘parallelogram’ as depicted
in figure 3.33 which is a subgraph of the triangular lattice and has only boundary
vertices of degree 4 except two of degree 2 (that are z and y) and two of degree 3,
inducing four boundary segments where the respective opposite lying segments have
the same length. This way, we may transfer the concept of Coxeter coordinates (see
definition 2.3.1) also to this case and assume that z and y have ‘Coxeter coordinates’
(p,q) or (q,p), meaning the lengths of the sides of the parallelogram induced by them.

q

Figure 3.33: A parallelogram spanned by x and y

W.lo.g. we assume ¢ > p; otherwise we just exchange the parts of p and ¢ in the
following.

In case (¢ — p) mod 3 = 0, that means =2 € Ny, we may construct a (0,1,0)-patch

P with a nice boundary and boundary segmentation B(P) = (p,q,p,q): Start with
Péﬁ’_ol)"_, where k = %p—k %q = 22 4+ p, and add 5 rows to two opposite lying sides.
Then these sides obtain length k — 452 = p, the other two k + 2452 = q. We replace
the parallelogram in P by P. Note that in P the vertices where two sides meet have
degree 3 and not 2, so the replacement increases the degrees of z and y by 1. Hence we
obtain a (0,1, 0)-patch P’ with the same boundary segmentation as P that contains
Fy.1,0 as a subgraph.

In case (¢—p) mod 3 = 1, we have qufl € Ny and choose Péf;OQH with k = % =
190l 4 p 4 L Tt fulfills B(Pyyo)") = (k,k — 1,k k — 1). To both sides of length
k—1 we add % rows. Then these sides obtain length k£ — 1 — % = p while the
other two sides get length k + 2‘171‘3';71 = ¢. Thus we have constructed a (2,0, 0)-patch
P with a nice boundary which contains P>, and has the boundary segmentation
B(P) = (p,q,p,q). Again we replace the parallelogram in P by P and obtain the
desired patch P’ with B(P') = B(P).

Finally let (¢ — p) mod 3 = 2 — then we have “2*1 ¢ N. Consider P " with
ko= 2ttt — amptl g fulfills B(PY 1) = (k k — 1,k k — 1). To both sides of
length k& we add =2 rows. Then these sides obtain length &k — % = p, the other

3
two sides length &k — 1 + 2‘1_’%1 = ¢q. Again we have a (2,0,0)-patch P containing

P o with B(f’) = (p,q,p,q) and replace the parallelogram in P by P, obtaining a
patch P’ with the boundary segmentation B(P') = B(P).
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e The case p = 3:

Now let P be a 3-patch with a nice boundary. Let B(P) = (a, b, c) be its boundary
segmentation, w.l.o.g. with a < b < ¢. By lemma 3.3.41 we cannot have a = b =1 so
b > 2 must hold.

At first we show that in case a,b,c are all even or odd, we can construct a 3-patch
P’ containing Ps 0 with B(P') = (a,b,c): Let k = “t2. Since a,b are both even or
both uneven, we have k € N, and k£ > 2 holds because of b > 2. So P:,’(f]TOQH is well-

defined and fulfills B(Py ;') = (k,k, k). Then we add <% € Ny rows to one side,
obtaining the new boundary segmentation (k + %b, k— %b, k+ %b) Afterwards we
add 5% € Ny rows to one of the sides with length £+ %b The boundary segmentation
of the resulting patch P’ is:

c—b c¢—a c—b c¢c—a c—b c¢c—a
B(P) = (k - — k- k
(P") (k+—5 5 gt k)
(a+b+c—b_c—a a+b_c—b+c—a a+b+c—b+c—a)
2 2 2 7 2 2 2 7 2 2 2

= (a,b,c) = B(P)

Now consider the other case where not all of a, b, c are even neither odd. Then we
show that there exists a (1, 1,0)-patch P’ containing P; ; o with B(P') = (a,b,¢):
First assume we have either a and b even (and hence c odd), or a and b odd (and c even).
Then let k = %% € N and consider P )", which fulfills B(P{X ") = (k, k. k — 1).
We add % € N rows to one of the sides with length k£ and obtain the boundary
segmentation (k + <2t | — b 1 4 <L) Next we add <4 € N rows to
the side of length £k + %, yielding a patch P’ with boundary segmentation

c—b+1 c—a+1 c—b+1 c—a+1

B(P) =
(P) = k+ =N L
c—b+1 c—a+1
k—1
+ 2 + 2 )
a+b c¢c—-b+1 c—a+1 a+b c—b+1 c—a+1
( + - ) - + 3
2 2 2 2 2 2
a+b 1+c—b+1+c—a+1)
2 2 2

= (a,b,c) = B(P) .

Secondly, let either a odd, b and ¢ even, or a even, b and ¢ odd. Then we define
b+l ¢ N and start with P 7", again with B(P, )¥) = (k, k,k—1). Adding
> € Ny rows to one of the sides with length k yields the boundary segmentation
(k+ St k— Stk — 14 S2). Afterwards we add <=2=! rows to the side of length
k + <t and obtain a patch P’ with boundary segmentation

B(P) = (k+c;b_c—;—l’k_c§b+c—;—l’k_l+c;b+c—;—l)
_a+b+1 ¢—=b c—a-1 a+b+1 c—-b c—a-1
L T R 2 2 T o
a+b+1_1+c—b+c—a—1)
2 2 2

(a,b,c) = B(P) .
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e The case p = 4:

Finally we assume that P is a 4-patch with a nice boundary. Let B(P) = (a,b) be its
boundary segmentation and w.l.o.g. a < b. By lemma 3.3.29 we have b(P) = a+b > 6.
At first let (b — a) mod 3 = 0, that means b_T“ € No. Then we define k = 2a + £b =
b_T“ + a, which must be in Ny. Furthermore we have k = 2a+ 3b = s(a+b)+ 3a > I
because a + b > 6 and a > 1, and hence k > 3. Consequently, the patch Pél(’li)’_03)+ is

well-defined and we have B(le(,li),_o3)+) = (k, k). If we add b_T“ rows to one side we get
the desired 4-patch P’ with boundary segmentation

B(P) = (k—b_T“,mzb;“)
_ (2a+b_b—a 2a+b+2b—a)
3 3 3 3
= (a,b) = B(P) .

Now suppose that (b —a) mod 3 = 1 holds, and hence b_‘;—_l € Ny. Then we define

k = W, which is equal to HT_I 4+ a + 1 and thus in N. With @ > 1 and

a+b > 6 we have k = “"'(‘ISM > 2 =3, so P;ﬁ}f’” is well-defined. Obviously

B(PQ(’kl’_03)+) = (k —1,k) holds. We add b_‘;—_l rows to the side of length £ — 1 and
obtain a (2,1, 0)-patch P’ with the boundary segmentation

a1 —a—1
B(P) = (h-1-" ‘; L g )
2a +b+2 b—a—-1 2a+b+2 b—a-—1
= (F——=—1- , +2 )
3 3 3 3
= (a,b) = B(P) .

Finally let (b—a) mod 3 = 2, that means =2+ € Ny. Then we choose k = 2¢£+L —

b=atl g € N. Because of a+b > 6 and a > 1 we have k = a-l—(agﬂ > % and
hence even k > 3, which means PéﬁTOSH is well-defined. Again B( P2(7'“1T03)+) =(k—-1,k)
holds. Adding I’_"T'H rows to the side of length k yields a (2,1,0)-patch P’ with the

boundary segmentation

OOC»J

b—a+1 b—a+1

B(P) = (k—%,k—lm%)
B (2a+b+1_b—a+1 2a+b+1_1+2b—a+1)
- 3 3 7 3 3
= (a,b) = B(P)

Lemma 3.3.43 Let P be a regular (p,s,t)-patch with D(P) = D(p,s,t) € {2,3,4}, v a
vertex in the boundary of P with degree 3 that lies in a side of P with minimal length, C,
its boundary cycle split up at the vertex v, and ¢ an embedding of C, into the triangular
lattice L (see definition 2.3.6).

Furthermore let x be the starting point of ¢(C,) and y the ending point. Then if o is a
clockwise rotation by D(P) - 60 degrees around a center ¢ such that a(y) = z, ¢ is a vertex
of the lattice if and only if A(P) = 0.
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PROOF:
We distinguish the different cases for D(P) and A(P).

(1)

D(P) =2, A(P) = 0: Then we have B(P) = (k,k, k, k) for some k € N. Considering
the embedding of C, we observe that in this case, Cox({z,y}) = (k, k) must hold (see
also figure 3.34,(1)). Since a is a rotation by 120 degrees, ¢ can be determined as the
center of the regular hexagon with all sides of length & that is obtained by extending
the embedding of C,,, or equivalently, as the center of a regular triangle where = and
y are two vertices. Due to lemma 2.3.2 this means that ¢ is a vertex of the lattice.

D(P) =2, A(P) = 1: Then there is k € N with B(P) = (k — 1,k, k, k). Extending
¢(Cy) to a hexagon, we obtain one further side of length k¥ — 1 and one of length &k + 1,
such that Cox({z,y}) € {(k -1,k +1),(k+ 1,k — 1)} (figure 3.34,(2)). Since ¢ must
have equal distances to x and y and the angle formed by the lines joining ¢ with z
and ¢ with y must be of 120 degrees, ¢ can be determined as the center of a regular
triangle with the line joining = and y as one side. Then the Coxeter coordinates of x
and y imply that ¢ lies in the center of a face of the lattice (lemma 2.3.2) — so it is not
a vertex of the lattice.

D(P) =3, A(P) = 0: Then B(P) = (k,k, k) holds for some k € N. This means for
the embedding of C, that 2 and y lie on a straight line that coincides with a line of
the lattice and have distance 2k (see figure 3.34,(3)), so we have Cox({z,y}) = (2k).
Since the angle corresponding to « is now of 180 degrees, ¢ must lie on the center of
the line joining x and y, which is obviously the vertex with distance k£ to both x and
y — so ¢ is a vertex of the lattice.

D(P) =3, A(P) = 1: Then we have B(P) = (k — 1,k, k) with k¥ € N. We observe
that Cox({z,y}) € {(k—1,k+1),(k+ 1,k —1) (figure 3.34,(4)), and again ¢ must lie
on the center of the straight line joining = and y, which is the center of an edge in this
case — meaning that ¢ does not coincide with a vertex of the lattice.

D(P) = 4, A(P) = 0: Then B(P) = (k,k) holds for k € N, which obviously means
Cox({z,y}) = (k, k). Now the angle formed by « is of 240 degrees, implying that ¢ lies
again in the center of a regular triangle where z and y form one side (figure 3.34,(5)),

and since Cox({z,y}) = (k, k) this means that ¢ must be a vertex of the lattice (lemma
2.3.2).

D(P) = 4, A(P) = 1: Then we have B(P) = (k — 1,k) and hence Cox({z,y}) €
{(k—1,k),(k,k—1)}. As in the previous case c lies in the center of a regular triangle
with = and y as vertices (figure 3.34,(6)), and now the Coxeter coordinates of z and y
imply that ¢ lies in the center of a face (lemma 2.3.2) and therefore does not coincide
with a vertex of the lattice.

O

Lemma 3.3.44 Let (p,s,t) € {(2,0,0),(3,0,0), (4,0,0),(0,1,0),(1,1,0),(2,1,0)}, and con-
sider two regular (p, s,t)-patches P and P’', where P' is subgraph of P. Then we have

A(P) = A(P') .
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Figure 3.34: Determining the position of ¢ in the cases (1) to (6) that are discussed in the
proof of lemma 3.3.43 (for the picture we chose k = 2)

PROOF:

Let v be a vertex in the boundary of P with degree 3 that lies in a side of P with minimal
length, and w a vertex in the boundary of P’ with degree 3 that lies in a side of P with
minimal length. We consider a cutpath in P with respect to P, v, and w (see definition
2.5.1). Let C, be the boundary cycle split up at the vertex v, and ¢ an embedding of
Cy XY Z into the triangular lattice L.

Then by lemma 2.5.2 (note that D(P) mod 6 # 0 applies) we have that the inverse path of
p(Z) is the image of a clockwise rotation a of ¢(X) by D(P) - 60 degrees around a uniquely
determined center c.

In particular, if v; denotes the starting vertex of ¢(X), v2 the ending vertex of ¢(X) and
starting vertex of p(Y'), vs the ending vertex of p(Y') and starting vertex of p(Z), and vy
the ending vertex of ¢(Z), this means a(v1) = v4 and a(vy) = vs (see figure 3.35).

Since the inverse path of p(Y") (with starting vertex vz and ending vertex v9) is an embedding
of the boundary cycle of P’ split up at w, lemma 3.3.43 can be applied: « is a clockwise
rotation by D(P) - 60 degrees around a center ¢ which fulfills a(v2) = v3 — so by lemma
3.3.43 we get that ¢ is a vertex of the lattice if and only if A(P') = 0.

On the other hand, v, is the starting vertex and v; the ending vertex of ¢(C,), and we have
a(v1) = vs. So again by lemma 3.3.43, ¢ is a vertex of the lattice if and only if A(P) = 0.

But this means that in case ¢ is a vertex of the triangular lattice we must have A(P') =
0 = A(P), and in case it is no vertex of the lattice A(P') = 1 = A(P); so in any case
A(P") = A(P) holds.

O
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Figure 3.35: The sketch of a cutpath in P with respect to P’, v, and w, and its embedding
into the lattice

Now we have prepared everything to prove the main theorem of this section:

Theorem 3.3.45 Given a p-patch P with a nice boundary, 0 < p < 4, and a reqular p-patch
P containing P. Furthermore let n € N withn > f(P)— f(P), and m := n— (f(P) — f(P)).
Then the spiral S(P,m) has minimal boundary length among all p-patches containing P and
n further faces.

PROOF:

Since P is a subgraph of P, the spiral S(P,m) contains P and has m + f(P) = n + f(P)
faces in total, and hence n faces apart from the faces in P.

By lemma 3.3.42 there exists a (p', s, t)-patch P’ with
(¥',s,t) € {(0,0,0),(1,0,0),(2,0,0),(3,0,0), (4,0,0), (0,1,0), (1,1,0), (2, 1,0)}
that contains Py s: as a subgraph and fulfills B(P') = B(P).

Hence we may replace P in P by P'. This yields a regular (p’, s, t)-patch P containing Py s
(see figure 3.36). Then by lemma 3.3.44, P fulfills

A(P) = A(Py s4) = A(PET )

p',s,t

for any k € N. Hence there is k € N with B(P) = B(P;“,;Q. By theorem 2.5.3 from chapter
2, this implies

F(P)=F(PSL) - (3.52)

Since we replaced P in P by P’ to obtain P, the number of faces in P that do not lie in P
is equal to the number of faces in P that do not lie in P’, so we have:

f(P) = f(P) = f(P) - £(P") (3.53)
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P

Figure 3.36: An example of a p-patch P with a nice boundary which is subgraph of a regular
p-patch P (here p = 2), and the patch P obtained by replacing P in P by a patch P’ that
contains Py s+ (here Py 1,0) as a subgraph.

Now let () be an arbitrary p-patch containing P and n further faces, that means we have
f(@) = f(P)+ n. Replacing P in () by P’ yields a (p', s,t)-patch Q'.

Since Q' contains P’ and n further faces, its number of faces is given by
f@Q) = f(P')+n=f(Pysi)+ (f(P) = f(Pyst)+n).
Therefore the spiral
S’ =S (Pp’,s,t; f(P’) - f(Pp’,s,t) + TL)

containing P, ;; and f(P') — f(Ppy ) + n further faces has the same number of faces as
Q', that means f(S') = f(Q') = f(P') + n. Then by theorem 3.3.28 we have b(S") < b(Q").
Moreover, S" does not only contain Py s; but even Plf,jrs,t: We have

f(SY = f(P)+n
B0 f(P) — (F(P) - F(P)) +n
= f(P)+m (by definition of m)
R COMERE

and since m > 0 this implies S" = S(P,m).
Now replace P:,""S,t in S’ by P. We obtain the spiral S(P,m) with

b(S(P,m)) = b(S") < bQ) =b(Q) -

Figure 3.37 visualizes the main ideas of the proof of this theorem.
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Step 3

Figure 3.37: The idea of the proof of theorem 3.3.45. Step 1: Replace P in @ by P’ to
obtain @'. Step 2: Define S’ as the spiral with respect to Py 5, that has the same number
of faces as )’ (then a former theorem implies b(S’) < b(Q')), and show that it contains even
Ppk/,t,t with B(Plf,t,,t) = B(P) and that m is the number of additional faces. Step 3: Replace

Ppk,fs’t by P to obtain S(P,m).

So we have now shown that given a p-patch P with a nice boundary and 0 < p < 6 (the
cases p = 5 and p = 6 have already been examined in the previous subsection because
then having a nice boundary is equivalent to being regular), a minimal boundary length
for a fixed number of faces is obtained by extending P to a regular patch and afterwards
adding faces around it in a spiral way as before — if the number of faces is large enough such
that this construction is possible. In case the desired total number of faces is smaller than
the number of faces in the respective regular patch, we have not proven how a patch with
minimal boundary length containing P looks like.

However, formulas giving a lower bound on the boundary length can be developed in the
same way as in the section before, even if the given number of faces is small: Just replace
P by the patch P’ with the same boundary containing a patch of the type P, ;:, whose
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existence is guaranteed by lemma 3.3.42, and apply the known formula for (p’,s,t). This
method does even work for arbitrary p-patches with 0 < p < 5 and the property that a
patch P’ with the same boundary and containing a patch of the type Py s : exists! We give
an example:

Let P be the 3-patch that is shown in figure 3.38 on the left. There exists a (1, 1,0)-patch
P' with the same boundary that contains P ;¢ (figure on the right). We have f(P) = 11
and f(P') = 13.

Figure 3.38: A 3-patch P (left) and a (1,1,0)-patch P’ with the same boundary that contains
P171’0 (rlght)

Now let @ be an arbitrary 3-patch containing P which has n := f(Q) faces. Then we
may replace P by P’ and obtain a (1,1, 0)-patch Q' with b(Q') = b(Q) and n' := f(Q') =
f(Q) +2 =n+ 2. Applying the boundary formula for (1,1, 0)-patches given in table 3.2 to
Q' yields:

=
)
I
=
Q
v

25 (' + VI D)

- 2[%((n+2)+ S+ +4)] — (n+2)
21+ S n+ VB0 + T0)] —n —2
2[%(n+M)]—n

Note that this lower bound we obtained for the boundary length of @) is better than the
bound we obtain from table 3.2 for general 3-patches, which would be

Q) > 2[%(n+\/3n+6)] .



Chapter 4

Possible boundaries of cones

4.1 Introduction

A nanotube is a special fullerene with a tubetype shape that consists of two caps, both
containing hexagons and exactly six pentagons, and a long body consisting only of hexagons,
which can be imagined like a sheet of graphite lattice rolled up into a seamless cylinder.
While a nanotube has a diameter of only a few nanometers, its length can be many thousands
of times longer.

Nanotubes were first discovered by Sumio Ilijima in 1991 [28] and since then, they have
been the subject of many studies. Their remarkable electrical properties and extraordinary
strength make them useful in many applications in nanotechnology, electronics, optics and
other fields of materials science (see e.g. [41], [42], [46]).

Considering the graph of a nanotube, it is of course not exactly determined where the cap
‘ends’ and the body ‘begins’. But it has been shown that the body can be cut into two parts —
each containing one cap — in a certain way: There is always a patch with exactly 6 pentagons
where all boundary vertices have, alternately, degrees 2 and 3 except possibly two places
where once two vertices of degree 2 and once two vertices of degree 3 follow upon each other
(see [14] and [17]). More precisely, there exist k,I € Ny such that the boundary sequence
of the patch is given by (2,3)*,(3,2)!. These numbers k and [ are uniquely determined and
already define the structure of the body (except its length).

Since adding a ring of hexagons around such a patch does not change the boundary sequence,
the boundary path can be ‘shifted’ along the body of the tube; so in particular, we may
choose a boundary of this kind such that it includes at least one edge which lies in a pentagon.
Now one application of [3] is that there is only a finite number of caps that can fill out such
a boundary — provided that at least one pentagon lies in the boundary of the cap. This way
a classification of all nanotubes is enabled. As a result, in [10] an algorithm is presented
to construct all non-isomorphic nanotube caps for given parameters k and [ describing the
structure of the body.

If we just consider a halftube, that is a single cap together with an infinite body — or in
mathematical terms an infinite 3-regular plane graph with six pentagons and all other faces
hexagons — the result mentioned above implies that we can always find a finite subgraph

127
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of such a halftube containing the six pentagons with a boundary of the described type (see
examples in figure 4.1). This gives us the possibility to classify these infinite graphs with
the help of a finite number of patches.

Figure 4.1: Two half-tubes with caps that have a boundary sequence of the type
(2,3)%,(3,2)": In the left figure we have k = 5,1 = 0, in the right figure k¥ = 2,1 = 4.
The pentagons in both figures are shaded grey.

Now the question arises whether a similar classification is possible for nanocones, that are
infinite 3-regular plane graphs with p < 6 pentagons and all other faces hexagons. If we
were able to find parameters that describe the boundary of a patch in such a nanocone, it
would be possible to represent all nanocones by finite structures as well, because [3] implies
also that for a given boundary of a p-patch with p < 6 there is only a finite number of
non-isomorphic patches with that boundary.

What we will show here is that for a given cone with p pentagons, there is always a subpatch
containing the pentagons which has a boundary sequence where vertices of degree 2 and 3
are alternating, except 6 — p places where two vertices of degree 2 follow each other. We will
even prove that the distances between these succeeding vertices of degree 2 can be chosen
in a certain way such that it is the inner dual of a triangle-patch that does not only have a
nice boundary, but is even regular — then we will call the hexagon-pentagon-patch regular,
too. We will see that this allows us to describe the boundary with only two parameters.

In particular, in case p = 5 we always have a patch with a boundary sequence (3,2)*,2 and
we may choose k£ minimal with the property that such a patch exists. Therefore in this
case, even a single parameter (k, or just the boundary length of the patch) is sufficient to
characterize the structure of the cone (see figure 4.2). Note that in contrast to the case
p = 6, we do not have to allow succeeding vertices of degree 3.

At first, we will solve the corresponding question in the dual, since useful techniques for
this have already been developed in the previous chapters: We will show that an infinite
triangle-cone, that is an infinite triangulation with 0 < p < 5 vertices of degree 5 and all
others of degree 6, always contains a p-patch which is regular. In the section afterwards, we
will transfer this result to hexagon-cones.
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Figure 4.2: An infinite cone with p = 5 pentagons, and a subgraph containing all pentagons
that has the boundary sequence (3,2)8,2. If we could find a patch with boundary sequence
(3,2)*,2 (where we choose k minimal) for any cone with 5 pentagons, then this would
provide a possibility to classify these cones with the help of that parameter.

4.2 Boundaries of triangle-cones

Definition 4.2.1 An infinite triangle-cone is an infinite triangulation of the plane with
0 < p < 5 vertices of degree 5 and all others of degree 6.

Theorem 4.2.2 Given an infinite triangle-cone C with 0 < p < 5 vertices of degree 5.
Then C contains a reqular p-patch P as a subgraph.

PROOF:

The cases p = 0 and p = 1 are obvious, since we may choose P = P, or P = P, respectively.
So assume 2 < p < 5.

We start with an arbitrary finite 2-connected subgraph P’ of C that contains all p vertices
of degree 5 in its interior (i.e. P' is a p-patch).

Let v be a boundary vertex of P’, and C, the directed path starting and ending at v which
consists of the boundary edges of P’ directed in a way that P’ lies on their right hand side.
Then we consider an embedding ¢ of C,, into the regular triangular lattice L equipped with
a standard coordinate system (compare chapter 2, definitions 2.3.3 and 2.3.6).

As before, we note that it is important to consider a drawing of the triangular lattice in the
plane where all basic triangles are equilateral.

Now we let ey denote the starting edge of C,, and ¢'(eg) the closure of the embedding (see
again definition 2.3.6). Then according to lemma 2.3.8, ¢'(eq) is the image of a p- 60 degree
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counterclockwise rotation a of p(eg) around a center ¢ which is uniquely determined. In
particular, if = denotes the starting vertex of ¢(C,) (that is the starting vertex of ¢(eg))
and y the ending vertex of ¢(C,) (that is the starting vertex of ¢'(eg)), we have y = a(z).
Moreover we know (also due to lemma 2.3.8) that in case p € {2,4} ¢ can be a vertex or the
center of a face, in case p = 3 it can be a vertex or the center of an edge, and in case p =5
it must be a vertex.

Now we determine a hexagon H in L (that is a subgraph with a nice boundary, i.e. exactly
6 boundary vertices of degree 3 and all others of degree 4) that contains all vertices of
¢(Cy), has a special rotational symmetry with ¢ as rotation center, and a special boundary
segmentation: In case ¢ is a vertex of the lattice, we may choose a regular hexagon with
¢ in the center, i.e. H has symmetry group Cg and six sides of the same length. In case ¢
lies in the center of a face, we choose H to be of symmetry C3 with boundary segmentation
B(H) = (k,k—1,k,k—1,k,k—1) for some k € N, and in case ¢ coincides with the center of an
edge, we may construct H such that it has symmetry group C5 and boundary segmentation
B(H) = (k,k,k—1,k,k, k — 1) for some k € N (see figure 4.3).

Figure 4.3: Given the position of a point ¢ in the lattice, we may construct a hexagon H with
B(H) = (k,k,k, k, k., k) and symmetry group Cs with respect to ¢ in case ¢ is a vertex (left
figure), with B(H) = (k,k—1,k,k—1,k,k— 1) and symmetry group C3 with respect to ¢ in
case ¢ is the center of a face (figure in the middle), and with B(H) = (k, k, k—1,k, k, k—1)
and symmetry group Co with respect to ¢ in case c is the center of an edge (right figure).

W.l.o.g. we may choose H small enough such that at least one vertex of ¢(C,) lies in its
boundary — otherwise all boundary faces can be removed to obtain a smaller hexagon with
the same symmetry group and a boundary segmentation of the same type (only with & — 1
instead of k) which also contains ¢(C,). Moreover, we may w.l.o.g. even assume that z,
the starting vertex of ¢(C,), lies in the boundary of H: If this is not the case, let u be a
vertex in the boundary of P’ such that ¢(u) lies in the boundary of H. Then if A denotes
the subpath of ¢(C,) from x to ¢(u), and B the subpath of ¢(C,) from ¢(u) to y, we have
that B a(A) forms an embedding of C,,. Because of the symmetry of H, the path a(A) lies
still in H. Consequently we may choose u as the boundary vertex of P’ instead of v and get
the desired property that x, the starting vertex of ¢(C,), lies in the boundary of H.
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This means that the ending vertex y = a(z) of ¢(C,) has to lie in the boundary of H, too:
Since a is a rotation of p - 60 degrees, i.e. a multiple of 60 degrees, this is obvious if H has
symmetry group Cg, which is the case if ¢ is a vertex in L. In case c is the center of a face
we must have p = 2 or p = 4, so « is a rotation of 120 or 240 degrees, and H is chosen to be
of symmetry group Cjs, implying that y lies in the boundary of H. Finally, if ¢ is the center
of a face we must have p = 3 such that « is a rotation of 180 degrees, and H has symmetry
group Cy, again yielding that y is a boundary vertex of H.

So if we orientate the edges of H such that o(C,) lies on their right hand side, there exists
a directed path £ = vg,v1,...,v, =y in L from z to y using only these directed edges. We
now define a mapping ¢ from this path onto a path in the cone: First, we let v := 9 (z).
Furthermore, if ¢(eo) = (z,2) is the first directed edge in ¢(C,), consider the edges (z,v1)
(the first edge in the path along H) and (z,z) in the rotational system of z, which we
interpret as clockwise, and assume that there are I edges between them (that means, if
(z,v1) € Ej then (x,2) € E(j4141) mod 6)- Then we choose ¢(v;) in the cone such that in
the rotational system of v, there are I edges between (v, ¥ (v1)) and eq.

If for 1 < i < n—1 the edge (¥(vi—1),%(v;)) is determined, we choose ©¥(v;11) as a
neighbouring vertex of 1 (v;) such that the number of edges between (¢(v;), ¥ (v;—1)) and
(¥(v;),¥(vir1)) in the rotational system of ¢ (v;) is equal to the number of edges between
(vi,vi—1) and (v;,v;41) in the rotational system of v;. This way — according to the definition
of ‘embedding’ — the vertices v = ¥ (vp), ¥ (v1), . ..,¥(v,) form a directed path in the cone,
which we will denote by P, such that the directed path wvg,v1,...,v, is an embedding of
P into L. Because of the way we choose the vertex v(v;), we even have that the cycle
o(Cy) Y01, ...,v, in L is an embedding of C;!P. But since this cycle only encloses ver-
tices of degree 6, it must form a cycle in the cone, too, so we conclude that v is not only the
starting vertex of the path P, but also its ending vertex, meaning that P is a closed cycle
in the cone.

Now we show that P encloses a p-patch P with a nice boundary, which is even regular
except if p =2 and c lies in a face (then we have to make a slight adjustment to obtain a
regular patch): Since we chose the corresponding path in L to be a path on a hexagon, we
get by construction of P that in the rotational system of any interior vertex ¢(v;) of the
path, there are either one or two edges between (¢¥(v;), ¥ (vi+1)) and (¢ (vi), ¥ (v;—1)) (that
means in the angle on the ‘right hand side’ of two succeeding directed edges).

Furthermore we know due to the size of the angle corresponding to « that the path from z
to y contains exactly 6 — p or 6 —p — 1 vertices with degree 3 in H (the first case applies if z
and y are vertices with degree 4 in H, the second if they have degree 3 in H). So the number
of vertices in P where there is only one edge in the respective angle is 6 — p or 6 — p — 1,
respectively. Now by construction, P’ and hence all vertices with degree 5 lie on the right
hand side of P. Since we already know that P is a closed cycle, it must enclose a p-patch
P, and by formula 3.3.7 the vertex v must have degree 4 in P in the first case and degree 3
in the second. Hence all boundary vertices of P have degree 3 or 4, and consequently it has
a nice boundary.

Then the lengths of succeeding sides in P correspond to the lengths of succeeding sides in
H. This means that in case ¢ is a vertex in the lattice, all sides of P have the same length,
so it is definitely regular. If we have p = 3 and c lies in the center of an edge, we must
have — due to the way we choose the boundary segmentation of H — two sides of length &
and one of length &k — 1, so P is regular, too (but with A(P) = 1). In case p = 4 and ¢
lies in a face we have only two sides which must have length k£ and k — 1, again implying
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that P is regular with A(P) = 1. Ouly in case p = 2 and c¢ lying in a face we obtain
B(P) = (k,k — 1,k,k — 1), such that P is not regular at first. But then we just add a
row of faces to one side of length & (i.e. we include all faces containing interior vertices of
the respective boundary segment between the two degree 3 vertices to P) which yields the
boundary segmentation (k, k, k, k — 1), such that the resulting patch is regular.

O
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Figure 4.4: Example of the proof: A part of a cone with p = 2 degree 5 vertices and a 2-patch
P' that is subgraph of that cone (top); then embedding the boundary cycle C, (where v is
chosen as in the proof) into the lattice (bottom) determines the rotation center ¢ — in this
case a vertex — as described. Since c is a vertex, a regular hexagon H can be constructed
in the lattice such that a path along its boundary is the embedding of a path P in the cone
which is the boundary of a regular patch.

Note that the theorem is not true for tubes with p = 6 vertices of degree 5: Trying to apply
the proof for that case, we observe that we would have to choose a path from x to y without
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any turns — which is not always possible. Figure 4.5 shows an example of a half-tube where
indeed no regular subpatch (or — in this case equivalently — with a nice boundary) exists.

Figure 4.5: A cap with p = 6 degree 5 vertices where it is not possible to find a subgraph
that is a 6-patch with a nice boundary

Now a result of theorem 4.2.2 is that to a given triangle-cone C' with 0 < p < 5 vertices of
degree 5, we may always assign a pair (k, A) with £ € N, A € {0, 1} as follows:

We know that C contains a regular p-patch. Among all possible regular p-patches that
are subgraphs of C, we choose one where the maximal length of the sides is minimal, that
means we choose P with k := maxp(P) such that for all other regular p-patches P’ that are
subgraphs of C' we have maxg(P’) > k. Furthermore we let A := A(P). (Then we have
even A = A(P') for all other regular p-patches P’ that are subgraphs of C' due to lemma
3.3.44.)

On the other hand, the pair (k,A) also describes the boundary sequence of a ‘cap’ in a
unique way if p is known. And for given p < 6 and (k, A), there is only a finite number of p-
patches with exactly the respective boundary sequence — this follows from the computations
in chapter 3:

By corollary 3.3.4 we have an upper bound for the number of faces of P with respect to its
boundary length (3.34), namely

Since for each n there is only a finite number of patches with n faces this means that there
is only a finite number of p-patches with p < 6 that have a certain boundary length. In
particular, for a given boundary sequence that belongs to a p-patch with p < 6, there is only
a finite number of p-patches with the same boundary sequence.

Consequently, the parameters (k, A) can be used for the classification of infinite triangle-
cones. Note that in the cases p =0, p = 1, and p = 5 we must have A = 0, such that the
structure of these cones can even be described by one single parameter k.
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4.3 Boundaries of hexagon-cones

Transferring the result of theorem 4.2.2 to the dual, we obtain a similar result for hexagonal
cones:

Definition 4.3.1 An infinite hexagon-cone is a plane 3-regular graph with 0 < p < 5
pentagons and all other faces hexagons.

For easier notation, a (p,0,0)-hexagon-patch (see section 3.2) will now be referred to as a
hexagon-p-patch. A hexagon-p-patch is called regular if it is the inner dual of a regular
(triangle- )p-patch.

Remark 4.3.2 Due to the definition of ‘reqular’ for triangle-patches, the definition above
implies that a hexagon-p-patch P is reqular if there is k € N such that the boundary sequence
of P is either

((3,2)%,2)°77

or (only in case p € {2,3,4})

((3,2)%,2)°7F7 (3,2)F1 2

— see also figure 4.6.

Figure 4.6: Two examples of regular hexagon-p-patches: A regular hexagon-2-patch with
boundary sequence ((3,2)2,2)4 (left), and a regular hexagon-3-patch with boundary se-
quence ((3,2)%,2)°,(3,2)2,2

Theorem 4.3.3 Given an infinite hexagon-cone with 0 < p < 5 pentagons. Then it contains
a hexagon-p-patch that is regular.

PROOF:

By definition, the dual of a hexagon-cone with p pentagons is a triangle-cone with p vertices
of degree 5. According to theorem 4.2.2, that triangle-cone contains a regular p-patch P. So
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we consider the set of faces F' in the hexagon-cone that are dual to the set of inner vertices
Vi(P) of P in the triangle-cone. Let P’ be the patch in the hexagon-cone that consists of
exactly that set of faces, i.e. F(P') = F (see figure 4.7.) Then by construction, P’ is the
inner dual of P and contains p pentagons, and since P is regular this means by definition
4.3.1 that P’ is a regular hexagon-p-patch.

O

Figure 4.7: A hexagon-cone (here with p = 5 pentagons) and its dual, a triangle-cone (dotted
lines), containing a regular p-patch; then the faces in the hexagon-cone corresponding to the
inner vertices of that p-patch form a regular hexagon-p-patch.

Again we note that this theorem does not hold for a hexagon-tube with p = 6 pentagons —
for a counterexample see figure 4.1, right picture.

Now similar to the triangular case, theorem 4.3.3 implies that we may characterize hexagon-
cones with the help of two parameters (k, A): We choose a regular hexagon-p-patch P’ in a
given hexagon-cone with a boundary length as small as possible, that means the parameter
k that occurs in remark 4.3.2 is as small as possible, and we define A to be 0 in the first case
and to be 1 in the second case of remark 4.3.2. (Then if P denotes the regular triangle-patch
whose inner dual is P', we have maxg(P) = k+ 1 and A(P) = A))

According to [3], there is an upper bound for the number of faces of a hexagon-p-patch
with p < 6 depending only on its boundary length (compare also table 3.1), such that
there is also only a finite number of hexagon-p-patches (with p < 6) for a given boundary
sequence. So again, the parameters k and A can be the foundation for a classification of
infinite hexagon-cones.
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Chapter 5

The expander constant of
fullerenes

5.1 Introduction

For many applications, graphs are wanted that are highly connected yet sparse. These
apparently contradictory properties make such graphs very useful. Their main applications
lie in theoretical computer science where they are important for various problems concerned
with information transmission and network design [38], complexity theory [43], coding theory
[44], derandomization [36] and many more; even in pure mathematics, see e.g. [32], they are
of interest (references taken from [39]).

The ‘connectivity’ of a graph G = (V, E) can be measured by the ezpander or Cheeger
constant, which traces back to a similar value for Riemannian manifolds by Jeff Cheeger
[11]. It is defined as

10U
h(G) = 5.1
(@) = min (O n = O] (5.1)
where n := |V| denotes the number of vertices, and
oU = {{u,v} |ueUweV -U} (5.2)

the set of all edges connecting U with V' — U, i.e. those with exactly one endpoint in U.
If G represents a network, then ch(G) measures its quality: If ch(G) is small, we have a
large subset of vertices with relatively few edges leading out, which means that a large part
of the network can easily be cut from the rest — so the network is of bad quality. On the
other hand, if ¢h(G) is high, large subsets must be connected with the rest by many edges,
implying that the network is ‘stable’; and moreover, if we view it for instance as a network
transmitting information, then information propagates well. Davidoff, Sarnak and Valette
demonstrate this observation in [13] with the help of two extreme examples:

First, consider the complete graph K, on n vertices (see figure 5.1 for n = 5). In order to
determine its expander constant, we can w.l.o.g. restrict to those subsets U with |U| < &,
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because the quotient in (5.1) is always equal for U and V(K ,)—U. For any such U C V(K,)
we have

10U _ [U]-(n = |U])

- —n—|U]
U U
which is minimal for |U| = [ 3], so we get ch(K,) = n — |U| = [§]. In our example with
n = 5, we choose an arbitrary vertex set U with |U| = 2, and obtain ch(K5) = % =3.

Figure 5.1: The complete graph K5 with a vertex set U such that % = 3 = ch(K3); the
six fat edges are the ones in OU.

The second example is the cycle C), on n vertices; see figure 5.2 for n = 6. For any non-
trivial vertex set ) C U C V(C),,) we have |0U| > 2. So if we choose U as the vertices of a

path in C), with |U| = | §], we have |0U| = 2 and hence the quotient % must be minimal

under the restriction |U| < §. Therefore we obtain ch(Cy) = L?TJ In case n = 6 we have
2
ch(Cg) = 2, as indicated in the figure.

Figure 5.2: The cycle Cg with U such that % = ch(Cs) holds, and the two fat edges lying
in OU.

Now if we let the number n of vertices grow, we observe that the expander constant of
the complete graph grows proportionately in n, while the expander constant of the cycle
decreases to zero. In this sense, the complete graph is ‘highly connected’ while the cycle is
not. So if we want to have a graph with a large expander constant, we could just choose the
respective complete graph.

But the problem is that the complete graph is not ‘sparse’: For n vertices we have e(K,,) =
@, so the number of edges grows quickly with the number of vertices, which makes the
network become very expensive. In contrary to this, the cycle on n vertices has e(Cy) =n

edges, so with every vertex we have to add only one single edge, which makes it very ‘sparse’.
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Consequently, the complete graph is, although ‘highly connected’, not desirable for networks
because it is too expensive. On the other hand the cycle is ‘sparse’ but not suitable either,
since it has a small expander constant. For this reason we are looking for graphs that are
both highly connected and sparse.

The property to be ‘sparse’ can be guaranteed by restricting to k-regular graphs, that are
graphs with all vertices of the same degree k: The number of edges of a k-regular graph G
n-k

is e(G) = %" and hence grows linearly with the number of vertices.

It is known that the expander constant of a graph is connected with the eigenvalues of its
adjacency matrix. A main result is the following (see Alon/Milman [2] and Tanner [45]):
If G is k-regular and A denotes its adjacency matrix, then k is an eigenvalue of A, all
eigenvalues of A are real and lie in the interval [—k, k]; and if A;(A) denotes the second
largest eigenvalue of A, then the following inequality holds:

oA < ene) < vERGE— 2 A)
Obviously both bounds are large if k — A;(A), the gap between the largest and the second
largest eigenvalue, is large. Research focuses on algebraic constructions of graphs where this
is the case (see e.g. [33], [35], [37]). In case A\1(A) < 2v/k — 1 the graph is called Ramanu-
jan ([1], [33]); these graphs are optimal as far as the spectral gap measure of expansion is
concerned. However, all results connecting eigenvalues and expander constants provide only
bounds and do not give precise values. Therefore, in this thesis we disregard this algebraic
aspect and choose a different, combinatorial approach that concentrates on definition (5.1)
of the expander constant.

We define a fullerene as a 3-regular plane graph with all faces of sizes 5 or 6, where due
to Euler’s formula this requires the number of pentagons to be 12. Since fullerenes are 3-
regular and therefore ‘sparse’, it makes sense to apply the concept of the expander constant
to these graphs. On the one hand, we have in mind that for given n there is typically a large
number of mathematically possible fullerenes with n vertices, so a criterion to distinguish
these fullerenes due to their connectivity would be desirable and might give a hint regarding
the stability of the — possibly existing — corresponding chemical molecules. On the other
hand, expander graphs have so many applications and fullerenes are not only sparse but
have such an interesting structure that they are mainly ‘highly connected’, so that their
graphs might serve for instance as good networks.

It has already been managed to compute the expander constants of single, highly symmetri-
cal fullerenes as the one with 80 vertices (see [40]) which is shown in figure 5.3: The shaded
area indicates a subset U that minimizes
U]
min(|U], n —|U])

with |U] = 40 and |0U| = 10, which implies that the expander constant of that graph is 1.

However, in general it is very difficult to compute the expander constant of a graph because
a priori one has to consider a large number of subsets to find the minimum of the quotient
over all U. Therefore, in order to be able to determine the expander constant of a given
fullerene without checking all those subsets, which is too expensive even for a small number
of vertices, we first investigate the structure of the subgraphs that determine the expander
constant of a fullerene.
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Figure 5.3: A fullerene with 80 vertices and expander constant 1 (taken from [40])

The section 5.2 of this chapter provides some basic results that suggest to focus on the duals
of fullerenes, the geodesic domes, and examine triangle-patches in geodesic domes instead of
vertex sets in fullerenes. This is what we do in section 5.3: We deduce some properties on
those triangle-patches in a geodesic dome that have a minimal ratio of boundary length and
face number and thus determine the expander constant of the dual fullerene.

Finally, in section 5.4 we apply the obtained knowledge for actually determining the expander
constants of fullerenes. In 5.4.1 we present a method that allows to verify the expander con-
stant of classes of symmetrical fullerenes by hand. The arguments that we apply are mainly
based on the theoretical results about the boundary lengths of triangle-patches that we de-
veloped in chapter 3. This way, we determine and prove in detail the expander constants of
all fullerenes that are of the same type as the Buckminster fullerene, that are all fullerenes
with icosahedral symmetry where two pentagons that are adjacent in the signature graph
have Coxeter coordinates (g, q) for some g € N.

Furthermore, in section 5.4.2, we present a very different approach to determine the ex-
pander contant of a fullerene: We describe an algorithm that is based on results obtained
in the sections 5.2 and 5.3 and has been implemented as a computer program. This pro-
gram is not only able to determine the expander constant of single fullerenes, but can even
compute the expander constants of e.g. all 1812 fullerenes on 60 vertices in a few seconds
and thus determine the fullerenes with the best expander constants — and hence the highest
connectivity — among all fullerenes with a given number of vertices. We present a complete
list of the maximal expander constants of fullerenes with up to 140 vertices that have been
calculated by that program. For instance we will see that the highly symmetrical fullerene
shown in figure 5.3 with its expander constant % is actually not optimal since there are
other fullerenes on 80 vertices with a strictly larger expander constant. Moreover, we list
the maximal expander constants of isolated-pentagon fullerenes with certain numbers of
vertices, and compare them with the data obtained for all fullerenes. As a surprising result
we obtain that there is not always an isolated-pentagon fullerene among the fullerenes with
highest expander constant.
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5.2 First results

Definition 5.2.1 A fullerene is a 3-regular plane graph where all faces have size 5 or 6.
We denote a fullerene by G = (V, E, F), where V stands for the set of vertices, E for the
set of edges, and F for the set of faces.

Note that in contrast to the definition of patches, we do not distinguish one outer face, and
we let now F' be the set of all faces in a fullerene!

In the following, we consider a fullerene G = (V, E, F') with |V| = n. Euler’s formula implies
that it consists of exactly 12 pentagons and 4 — 10 hexagons. So n must be even and the
smallest fullerene is the dodecahedron with n = 20 vertices, 12 pentagons and no hexagon.
It is known [23] that for any even n > 20 with the exception of n = 22 there exists a fullerene
with n vertices — at least one that is mathematically possible.

We let ch(G) denote the expander constant of G (see (5.1)), U the set of edges with exactly
one endpoint in U C V (see (5.2)), and define the ratio
0]
win(0T, 7= 0]

r(U) = (5.3)

for any subset U of V with § Z#U £ V.

Note that there is always a subset U with 7(U) = ch(G) and |U| < %, since r(U) = r(V -U).

In this case, we just have ch(G) = r(U) ‘la—U, and we say ‘U determmes the expander

constant of G°.

Lemma 5.2.2 Let G = (V, E, F) be a fullerene with |V| =n, and let U C V with [U| < &
such that r(U) = ch(G). Then

(i) ch(G) <

(i) ‘IU\ lk ‘3[7" for all integers 0 < I < k;

(i1i) OU is an independent edge set.

PROOF:

(i) Let U’ be the set of vertices of two adjacent faces. Then |U’'| < 10 < & and [9U'| =
|U'| =2, s0 r(U') = |fgl“ < 1. But since the ratio is minimal for U we get ch(G) =

r(U)<rU') <1
(ii) Now let k,l € N with 0 <! < k. Due to (i) we have |U| > |0U| > 0 and hence

k|U| > 110U
& —k|U|+|0U| U] < =119U]| + |dU| |U|
< (loU] - k) U < (Ul -1)|oU]
U]~k _ |oU]
Ul -1 U]
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(iii) Suppose QU is not independent, i.e. there are edges {u,v1},{u,v2} € OU. Let vz be
the third vertex adjacent to U.

a) In case u € U we must have vy,v3 € V — U. Define U’ := U — u, so obviously
|U'| = U] — 1 holds. If v3 € U, we have OU' = U — {{u, v}, {u,v2}} U {u,vs}
and hence |0U'| = |0U| — 1. If vz ¢ U we even get |0U'| = |0U| — 3 since
oU' = 90U — {{u,v1},{u,v2},{u,v3}}. So in any case there is some k > 0 with
|oU'| = |0U| — k, so we obtain with (i)

_ vl _oul—k _|oU| _

!
"= T oot <

r(U)

which is a contradiction to 7(U) = ch(G).

b) In case v ¢ U, the vertices v; and vy must lie in U. If |U| < § we define
U':=UU{u}; then |U'| = |U| +1 < % and

_|ov'| _jou|—k _|au] _

!
"= T e S

r(U)

with ¥ = 1if v3 ¢ U and k = 3 if v3 € U — again a contradiction. If |U| = &
consider U" :=V —U’, which fulfills |[U"| = |U|—1 and |0U"| = |0U'|, so we get
r(U") < r(U) just like in a).

Sometimes it is useful to consider the dual of a fullerene rather than the fullerene itself. We
denote the dual of a fullerene G = (V, E, F) as G* = (V*, E*, F*), and ¢ as the mapping
that maps the vertices, edges and faces of G on the respective dual faces, edges and vertices
of G*. Then G* is a triangulation with all vertices of degree 5 or 6 (see figure 5.4) which is
also called geodesic dome.

Given a fullerene G = (V, E, F') and its dual G* = (V*, E*, F*), we say that a set of vertices,
edges or faces corresponds to the respective set of dual faces, edges or vertices it is mapped

on by 1 or ¢1.
For a vertex set U C V in G we define U* := ¢(U) C F* as the corresponding set of faces
in G*, and furthermore OU* := ¢(0U) C E* as the set of edges in G* that corresponds to
the edge set QU in G. Then we have

|oU| _ |oU*|

ol v

The following lemma provides useful information on the set of faces U* corresponding to a
vertex set U that determines the expander constant of a fullerene:

Lemma 5.2.3 Let G be a fullerene with n vertices, G* its dual, and U C V with [U| < &
such that r(U) = ch(G). Then

(i) the subgraph S of G* that is spanned by the edges of OU* consists of disjoint elementary
cycles;

(ii) U may be selected such that S forms a single elementary cycle.
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Figure 5.4: The fullerene Cso (grey lines — see also figure 5.3) with its dual graph (black

lines)

PROOF:

(i)

(i)

In order to show that S consists of disjoint cycles, we show that all vertices in S have
degree 2:

Due to lemma 5.2.2(iii), there cannot be any two edges in U that share a common
vertex. This means for the dual that there are no edges in U™ lying in the same
triangle. So for each vertex v € V*, there can be at most 3 edges in QU* adjacent to
v (at most 3 in case it has degree 6 and at most 2 in case it has degree 5).

But since every edge e € QU has one endpoint in U and one endpoint in V — U, the
corresponding edge 1(e) € OU* lies between one face in U* and one face in F* — U*.
So considering the edges around one vertex v € V*, we ‘change sides’ with every edge
in OU™*, which means there must be an even number of those edges. Since there are
at most 3, there can either be 0 or 2 edges of OU* adjacent to v — so all vertices in S
must have degree 2.

At first we prove the following observation: Let a,ay,as,b,by,bs > 0 with a = a1 + as,
b="by + by, and § < 3£ for i = 1,2; then

a ay as

= == 5.4

b b by (5:4)
Proof: We have a-b; < b-a; fori = 1,2, hence (a1 +a2)-b1 < (b1+b2)-a1 & asb1 < baay
and on the other hand (a; 4+ a2) - by < (b1 + b2) - a2 < a1by < byas, so it follows that
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a1bs = byas. Furthermore we get a-b; = (a1 + a2) - by = a1b1 + a2by = a1b1 + a1bs =
ay - (by +b2) = a1 - b and therefore § = ‘Z—ll = ‘Z—j

Now suppose that S consists of two or more elementary cycles. Each cycle has faces
of U* on one side and faces of F* — U* on the other, so U* or F* — U* (maybe even
both) must consist of at least two isolated components.

At first assume that U* = U; UU; such that the faces in U7 and U, have no common

vertices and w.l.o.g. U5 has a simple boundary cycle oU;'. Because of ch(G) = r(U) =
% = —“Bg*‘l we have
ou*| _ |0 ]

L% B L%

for i = 1,2. (Note that |Uy| < |U*| < 3!)
With [0U*| = |0U7| + |0U3| and |U*| = |U7| + |U3] it follows from (5.4) that

oU*| _ [auz] _ |aU3]
R

This means that with U; as the vertex set in G corresponding to Uy, we have ch(G) =
r(U) = r(Uy), so instead of U we may choose U;, which corresponds to a single cycle
in the dual.

Now consider the case where F* — U* consists of two or more components and U™ of
only one. Let F* —U* = W} U...UW}. Assume that an arbitrary non-trivial subset
of those components W* C {W¢,..., W} with W* # {W¢,..., W/} contains more
than ¢ faces. Then U} := F* — W* contains less than ¢ faces and fulfills |Uy| > |U*|
and |0Uf| = |[0W*| < |0U*|, hence

0UT| _ |9U”|
LC5 B (%

holds in contradiction to the minimality of U resp. U*.

Therefore we may assume F* — U* = Wy U Wy with |[W;| < § for i = 1,2 where W}
is a single component with an elementary boundary cycle and W5 the set consisting
of the other components of F* — U*. Then we have

oU| _ oW
TS Ty
o= = w7l

for i = 1,2, so again with (5.4) we get

oU*| _ [owy| _ |ows]
CENE T

So instead of U we may now choose Wy, the vertex set in G that corresponds to W'
which has a single boundary cycle.
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5.3 Triangle-patches and geodesic domes

In order to determine the expander constant of a fullerene G = (V, E, F') with n vertices,
we need to find a vertex set U C V with |U| < & and r(U) = ch(G). According to lemma
5.2.3, among all U C V with |U| < § and r(U) = ch(G) there is at least one where in the
dual G* = (V*, E*, F*), the edge set OU* C E* corresponding to U C E forms a simple
cycle. Since we have
_ lou] _ |ouT|

(A

r(U)

this implies that we may restrict ourselves to subgraphs of the dual that are bounded by a
single elementary circuit (that means that are 2-connected).

Hence the task to find a vertex set U C V with |U| < % and minimal ratio of % can

be modified into the task to find a face set U* C F* with |U*| < % and minimal ratio of
|oU” |
U]
boundary length.

. The face set U* then forms a triangle-patch in the dual, and |0U*| is nothing but its

Since the boundary length of a patch is easier to handle than the edge set OU relative to a
vertex set U, we now switch from investigating vertex sets in fullerenes to patches in geodesic
domes. Because we need to examine the ratio of boundary length and face number of these
patches, the results from the previous chapters will prove helpful.

5.3.1 Optimal patches

As we are now dealing with patches in geodesic domes, we apply the term ‘p-patch’ as
introduced in chapter 2. We will stick to the definitions and notations made in definition
2.2.1. Moreover, since no other types of disordered patches occur in this chapter, by abuse
of notation a p-patch is sometimes simply referred to as a patch in case the number p of
vertices with degree 5 is not important in that context.

Definition 5.3.1 A geodesic dome is a triangulation T = (V,E,F) of the plane (i.e. a
2-connected plane graph with all faces triangles) where all vertices have degree 5 or 6.

For a geodesic dome T with n faces, we define the expander quotient of T' as
b(P)
min(f(P),n — f(P))

where b(P) denotes the boundary length (see definition 2.2.1) and f(P) the number of faces
of P.

q(T) = min{ | P is patch in T}

A patch P that is subgraph of a geodesic dome T with |V| = n faces is called optimal with

respect to T if f(P) < § and % = q(T); that means for any other patch P' in T with
f(P') < & we have WP b(P)
> —= .
f(P') = f(P)

Remark 5.3.2 Since a geodesic dome is the dual of a fullerene, it contains — due to Fuler’s
formula — exactly 12 vertices with degree 5. Furthermore, if n is its number of faces, the

number of vertices with degree 6 must be 3 — 10.
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Remark 5.3.3 The expander constant of a fullerene G is equal to the expander quotient of
the geodesic dome T that is dual to the fullerene; in particular, if P is optimal with respect
to T, then the set of vertices U in G that corresponds to F(P) determines the expander
constant of G, i.e.

ohlG) = 1Tl = 23 = ).

Definition 5.3.4 A boundary labeling of P with respect to T is a mapping L that assigns
integers (boundary labels) to the boundary vertices of P such that for every boundary vertex
v € V3(P) we have

L(v) = degp(v) — degp(v) .
that means L(v) is the number of edges in T — P that are incident to v (see figure 5.5).

Figure 5.5: An example of a geodesic dome T' containing a p-patch P (here with p = 1) and
a boundary labeling of P with respect to T'. Note that the labels are not determined by the
degrees of the boundary vertices in P, since the boundary vertices of P may have degree 5
or 6in T.

The following lemma already provides very useful information on the boundary of optimal
patches: It says that it cannot contain any vertices with degree 2 or 6, nor any with label 0
or 4. This means that the boundary cycle does not make any ‘sharp turns’, i.e. if we consider
two succeeding edges in the boundary cycle, there must always be at least one edge between
them in the rotational system of the common vertex.

Lemma 5.3.5 Let P be a p-patch that is subgraph of a geodesic dome T'. Then possible
boundary degrees of P are 2,3,4,5,6, and possible boundary labels with respect to T are
0,1,2,3,4. In case P is optimal with respect to T, its only possible boundary degrees are
3,4,5, and the only possible boundary labels are 1,2,3.



5.3. TRIANGLE-PATCHES AND GEODESIC DOMES 147

PROOF:

Since P is 2-connected, there are no vertices with degree 1, which implies already the first
statement.

Now let G denote the fullerene which is dual to 7', and U the set of vertices in G that
corresponds to F(P). Then according to lemma 5.2.2(iii), the edge set QU in G consists
of independent edges. Since the dual edges of OU are the boundary edges of P, this means
there cannot be any two boundary edges of P lying in the same face of T. Consequently
there cannot exist any boundary vertices of P with degree 2 or degree 6, and furthermore
no boundary labels 0 and 4; so the only possible degrees are 3,4,5 and the only possible
labels 1, 2, 3.

O

5.3.2 Bounds on the expander constant

In lemma 5.2.2 it has already been shown that the expander constant of a fullerene is always
smaller than 1. This can even be improved by %, which also gives us a bound on the
boundary length of an optimal patch:

Lemma 5.3.6 Let P be an optimal patch in a geodesic dome T that consists of n faces.
Then we have

_xp) 2
AT =5 < 3 (5.5)
and
b(P) < g (5.6)
PROOF:

We may choose a patch P’ in T consisting of exactly three inner vertices which form a
triangle and among them at least one degree 5 vertex (see figure 5.6).

Figure 5.6: Three possible patches with 3, 2 or 1 degree 5 vertex

Then P’ contains at most § faces: The smallest possible n is n = 20, where the geodesic
dome consists of 12 degree 5 vertices forming an icosahedron. In this case P’ must have
3 inner vertices of degree 5 and hence contains exactly 10 = 3 faces. Otherwise we have
n > 24, since n must be even and n = 22, i.e. one degree 5 vertex, is not possible (this
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follows from the possible number of vertices in a fullerene, see 5.2). But in any of the three
cases P’ contains not more than 12 faces, so it fulfills f(P’) < 2.

Now if we consider the three possible patches for P’ we get that the boundary length divided

by the number of faces is either =, L or £ = 2 and hence in any case smaller than Z. So
if P is optimal, it has to fulfill
!
) P 2
f(P)y = fp) — 3

|3
w3

O

The bound % is of great importance for the later computer program. Also, (5.7) in the
following remark will be very helpful:

Remark 5.3.7 Similarly to the proof of lemma 5.3.6, we may even deduce a better bound

on the boundary length of an optimal patch in case a patch with a smaller quotient than % 18

already known: If in a geodesic dome T with n faces, P is an arbitrary patch with f(P) < 35
then an optimal patch P must fulfill
HP) _ WP)

(P) =~ f(P

and with f(P) < 4 this particularly implies:

[~

b

~
SN—r

b(P)
b(P) < 7P

|3

(5.7)

So we have shown that % is one upper bound for the expander constant of a fullerene. On
the other hand it is easy to see that the expander constant of a fullerene — which is clearly
strictly larger than 0 — can yet be arbitrarily small, i.e. smaller than any ¢ > 0:

A nanotube is a tube-type fullerene which consists of two caps each containing six pentagons,
and one body consisting of hexagonal rings (see chapter 4). If we maintain the caps and
enlarge the body of a nanotube, the expander constant becomes smaller, because the same
cut can be used to split more vertices. So in order to achieve an expander constant smaller
than a given € > 0, we just have to add sufficiently many hexagonal rings.

Of course this can easily be transferred to the dual, where the tubes contain two 6-patches
as caps and a body of triangles and all vertices with degree 6. For an example we study the
dual of the nanotube whose caps consist of just the six pentagons:

We start with the patch that contains exactly six interior vertices of degree 5 and add rings
of 10 triangles each (see figure 5.7). The boundary length stays 5, not depending on how
many rings we add. Eventually we complete with a cap again, such that the number of rings
is even. Then we can split the tube half-and-half by a cycle of length 5, which obviously
yields an optimal patch since a smaller boundary length than 5 is not possible except for
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patches consisting only of one or two faces. So the optimal patch has boundary length 5 and

contains half the number of faces. For 2k rings we have in total 30 + 20k faces, i.e. 15+ 10k
1

342k

faces in the optimal patch and hence an expander quotient of
quotient becomes arbitrarily small.

For k large enough this

Figure 5.7: The construction of a patch of arbitrary size with boundary length 5 (left), and
an example of a geodesic dome with 50 faces constructed in the described way (right) where
an optimal patch with 25 faces and boundary length 5 is marked

5.3.3 The boundary of optimal patches

In this section we collect further information on the boundary of optimal patches, apart
from the information contained in lemma 5.3.5.

At first remember the following formula concerning the boundary degrees in p-patches:

Remark 5.3.8 For any p-patch P we have
S (4-deg(v)) = 6-p (5.8)
UEV{,(P)

due to lemma 2.2.3 and remark 2.2.2.

Corollary 5.3.9 Let P be a p-patch where all boundary vertices have degree 3, 4 or 5, and
D;(P) the number of boundary vertices with degree i. Then formula (5.8) implies

D3(P) = Ds(P) = 6—p. (5.9)

Lemma 5.3.10 Let P be a p-patch that is subgraph of a geodesic dome T with a boundary
labeling L, and pp the number of boundary vertices of P that have degree 5 in T. Then we
have

> (L) -2) = 6—(p+pB). (5.10)

vEVy(P)
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PROOF:

Consider P’ := T — P and assume it is a p’-patch. Since in total there must be 12 vertices of
degree 5 in T, which distribute over the interior of P, the interior of P’, and the boundary
of P, we have

p=12— (p+pgB). (5.11)

Furthermore, for every boundary vertex v € V,(P) of P (which is obviously also boundary
vertex of P') we have degp (v) + degp(v) = degr(v) + 2, because by adding the incident
edges in the respective patches we obtain the two boundary edges twice; therefore we get
with the definition of boundary labeling:

degp (v) = degr(v) —degp(v) +2 = L(v) + 2 (5.12)

Now we apply formula (5.8) to P':

Y (d—degp(v) =67

vEVy(P)
(5.12),(5.11) 3 @ (L) +2) =6 - (12— (p+pp))
vEVL(P)
o > (@2-L()=-6+(p+ps)
vEVL(P)
& > (L(v)-2)=6-(p+ps)
vEVL(P)

O

Corollary 5.3.11 Let P be a p-patch in a geodesic dome T that has only boundary labels
1, 2 and 3, pp the number of boundary vertices of P that have degree 5 in T, and L; the
number of boundary vertices with label i. Then we have by formula (5.10)

L3(P) = Li(P) =6 — (p+pB) - (5.13)

In the following we will have a closer look on the number and order of the labels 1, 2 and 3
in the boundary of an optimal patch.

Remark 5.3.12 Let P be an optimal patch in a geodesic dome T and p := p + pp the
number of both inner and boundary vertices of P with degree 5. By remark 5.3.5, P contains
only boundary labels 1, 2 and 3, so corollary 5.3.11 can be applied and yields that we have
Ly(P)=L3(P) iff D=6, L1(P) < L3(P) iff D <6, and L1(P) > L3(P) iff D> 6. Because
of 0 <P <12 we know especially that —6 < L3(P) — L1(P) < 6 holds.

Definition 5.3.13 Given a p-patch P that is subgraph of a geodesic dome T, and L a
labeling of its boundary. The cyclic sequence of vertex labels as they occur in the boundary
cycle of P is called the boundary label sequence of P. Two boundary label sequences are
identified with each other if one can be obtained from the other by a cyclic reordering or
inversion. If the boundary label sequence contains a subsequencel,l, ... 1 of equal succeeding
labels | occurring i times, we also write I* instead of 1,1,...,1.
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The visual meaning of the following lemma is that the boundary cycle of an optimal patch
(if we view it as a directed cycle where the patch lies on its right hand side) cannot contain
two succeeding ‘left turns’ (i.e. a label subsequence 1,2%,1) and two succeeding ‘right turns’
(i.e. a label subsequence 3,27, 3), unless there are only these four ‘turns’ and the right and
left follow immediately upon each other.

Lemma 5.3.14 Let P be an optimal patch in a geodesic dome T. If its boundary label
sequence contains a subsequence 1,2,1 as well as a subsequence 3,27,3, where i,j € Ny,
then the whole boundary label sequence is given by 1,2¢,1,3,27,3.

PROOF:

Assume there are the subsequences 1,2%,1 and 3,27,3, but not both follow immediately
upon each other — w.l.o.g. there is a vertex following on the second label 1 vertex of the first
subsequence which is different from the first label 3 vertex of the second subsequence.

Let vo,v1,..+,Vk,- -, V5., U, Ums+1 denote the succeeding boundary vertices such that
L(vy) = L(v;) =1, L(v)) = L(vy) =3, and L(vp) =2for h=2,...,k—1,14+1,...,m—1,
as indicated in figure 5.8 (where k =i+ 2 and m —1 = j+1). Then by assumption we have
{vk,vg11} # {vi—1, v}, while the case {vg,v1} = {Um, Vm+1} cannot be excluded.

i -2

T-P AN
B
Vo A Vi+1 Vi-1 Vim+1
Z__ ) P
Vi Vi

Figure 5.8: The subsequences 1,2¢,1 and 3,27,3 in the boundary of P

Now we let
A:={fe F(T—P):3i€{l,...,k} such that v; € f}

be the set of triangles in 7' — P that lie ‘between’ v; and vy, and
B:={feF(P):3ie{l,...,m} such that v; € f}

the set of triangles in P lying ‘between’ v; and v,,, (see also figure 5.8). Then A contains an
odd number of triangles (namely 2k + 1), while |B| can be even or odd, depending on the
number of vertices with degree 5 among the label 2 vertices.

First we assume that |A| > |B|. Then we may remove all the triangles in B from P and add
the same number of triangles of A to P, starting with the one that contains {vj, vg4+1} and
continuing with the neighbours. (Note that because of {vg, vg+1} # {vi—1, v}, the triangle
in P that contains {vg,vj41} remains !)

If the boundary of the resulting graph still forms a simple cycle, we obtain a patch P’ where
the length of the boundary segment between v;—; and v;,+1 is reduced by at least 1. The
length of the segment between vy and vg41 stays either the same (in case |B| even) or grows
by 1 (in case |B| odd) — compare figure 5.9. In the first case, P’ has a smaller quotient of
boundary length divided by face number, which is a contradiction to the assumption that P



152 CHAPTER 5. THE EXPANDER CONSTANT OF FULLERENES

was optimal. In the second case, the boundary length (and hence the quotient) of P’ might
be the same as in P, but then P’ has a vertex of degree 2 which means that P’ cannot be
optimal and neither can P.

4

V(N/\/\/{\ Vi+1 le—l V;l+1
P

Vi Vi

Figure 5.9: The situation |A| > |B| in the proof of lemma 5.3.14, where the |B| faces are
removed from P and the same number of faces from A are included. In the upper figure we
see the case where |B| is odd, in the lower case |B| is even.

Now it might be the case that either removing the faces in B results in a graph that is
not 2-connected anymore, or that by adding faces in A we touch the boundary somewhere
else, so that the new boundary consists of distinct cycles. But its boundary length is even
smaller, so the quotient is reduced again and because of lemma 5.2.3, there is a 2-connected
patch with the same (or even smaller) quotient.

Finally consider |A| < |B|. Then we include all faces of A to P and delete |A| faces in B,
starting with the one that contains {v;_1,v;} and continuing with the neighbours. Hence
the length of the boundary segment between vy and vy is reduced by 1, and the length of
the segment between v;_; and v,,4+1 might be less or equal, which reduces the quotient, or
grows by 1, but then we have again a vertex of degree 2 — see also figure 5.10. (This holds
again even if the new boundary does not form a simple cycle, as demonstrated in the case
before.) So again P cannot be optimal.

O

A similar technique can be applied in order to exclude a boundary label sequence containing
two succeeding ‘right turns’, that means a subsequence 3,2* 3, and at the same time a label
1 vertex with ‘too many’ label 2’s next to it, that means a subsequence 1,2**! or 2¢+1 1,
unless the label 1 vertex is adjacent to one of the label 3 vertices.

Lemma 5.3.15 Given a geodesic dome T containing an optimal patch P. If the boundary
label sequence of P contains a subsequence 3,2% 3, and additionally there exists a vertex
with label 1, then either the label 1 vertex is adjacent to one of the two label 3 vertices of
the subsequence, or there are at most k vertices with label 2 next to the label 1 vertex in both
directions of the boundary cycle.
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VO“\\g//“\\9/43\\2//“\ﬁ‘//'vk+1 Vil Vil
P

Figure 5.10: The situation |A| < |B| in the proof of lemma 5.3.14: Remove |A| faces from
B and include all faces of A. In the upper figure this induced a boundary vertex of degree
2, in the lower figure the boundary length is strictly reduced.

PROOF:

Assume the contrary, i.e. the label 1 vertex is not adjacent to one of the label 3 vertices,
and there are at least k + 1 label 2 vertices next to the label 1 vertex, that means there
is a boundary label subsequence 2¥t1 1. Then we may remove all the faces ‘between’ the
two label 3 vertices (i.e. all that contain one of the respective vertices — that are at most
2k + 3 faces) and add the same number of faces at the 2¥+1 1 subsequence next to the label
1 vertex, that means we include the appropriate number of those faces to P that lie in T — P
but contain one of the vertices corresponding to the 28*1 1 subsequence, starting with the
face that contains only the label 1 vertex and continuing with its neighbours. It is possible
to add up to 2k + 4 faces this way. Then in case the number of faces is odd, we obtain a
degree 2 vertex while the boundary length stays the same or is even reduced, so the new
patch and therefore also the original one cannot be optimal; and in case the number of faces
is even, the boundary length is strictly reduced so the original patch could not have been
optimal either (compare also the proof of lemma 5.3.14). Figure 5.11 gives an example of
either case. Hence we have a contradiction and the lemma is proved.

O

Combining the two previous lemmas, we immediately obtain the following corollary:

Corollary 5.3.16 Given a geodesic dome T containing an optimal patch P. Then the
boundary label sequence of P cannot contain a subsequence of one of the types
1,241,2,...,3,2/,3
3,24,3,z,...,1,27.1
3,283, 2,...,1,2k1
3,283,281 1 ¢

where i,7,k € Ny, x denotes an arbitrary boundary label, and . .. may be filled by an arbitrary
sequence of boundary labels but may also be empty.



154 CHAPTER 5. THE EXPANDER CONSTANT OF FULLERENES
Y Y 3

3 R
s e AM
- - N g
Y

1

k +
/_L\Z/ 3/\

A J

~
k+1

Figure 5.11: The situation in a counterexample to lemma 5.3.15: If there is a subsequence
3,2% 3 and additionally a vertex with label 1 which appears in a subsequence 2¥+1,1 and
is not adjacent to one of the considered label 3 vertices, we may shift faces such that either
we obtain a degree 2 vertex while the boundary length does not grow (upper figure), or the
boundary length is strictly reduced (lower figure).

5.3.4 Numbers of faces in optimal patches

The question that we discuss in this section is: How close is the number of faces in an

optimal patch to half of the number of faces in the geodesic dome? (Note that the number

of faces in the geodesic dome is always even since it is the number of vertices in the dual

fullerene.) If we were able to show that an optimal patch in a geodesic dome with n faces
n

always has to contain 7, or maybe 7 — 1 faces, this would simplify the task to find optimal

patches a lot. Unfortunately we will see that this is not the case and that we also have to

consider patches whose numbers of faces are remarkably smaller than 3.

However, the following lemma implies that for a geodesic dome with n faces, an optimal
patch often contains ¢ or § —1 faces; otherwise its boundary label sequence must not contain
any label 1.

Lemma 5.3.17 Let P be an optimal patch with respect to a geodesic dome T, and let n be
the number of faces in T. If the boundary of P contains a vertex with label 1, then

n n
5—1§f(P)S§-

PROOF:

Let v be the vertex with label 1. Then we either have degp(v) = 5 and degy(v) = 6, or
degp(v) = 4 and degy(v) = 5. In any case there are two triangles adjacent to v that are
lying in T" but not in P.

—2.

Now f(P) < % already holds by definition of an optimal patch; so assume that f(P) < %
— P (see

Then if we define a patch P’ as the patch P together with the two triangles from T'
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figure 5.12), it still fulfills f(P') < &. Obviously we have b(P') = b(P) and f(P') = f(P)+2,

and hence
b(P') _ b(P)

FP) S F@)

So P was not optimal, that means the assumption was wrong and we must have f(P) > —1.

v/

G JAAN

Figure 5.12: Two label 1 vertices in P — one with degree 6 and one with degree 5 in 7. In
both cases, one can add two triangles without changing the boundary length

If P does not contain a label 1 vertex, i.e. there are only boundary labels 2 and 3, it is not
possible to establish a bound on the number of faces in a similar way, since we cannot add any
faces without changing the boundary length: Adding 3 faces at a label 2 vertex will for ex-
ample extend the boundary length by 1 (see figure 5.13). This might not be enough to reduce

the quotient %: If 3b(P) < f(P), the new pitch P’ still fulfills % = ;((};))TS > %.

So an optimal patch might consist of less than § — 2 faces in this case.

Figure 5.13: Adding 3 triangles to a regular patch at a label 2 vertex with degree 6

We will now demonstrate that indeed the difference between 4 and the number of faces in an
optimal patch can even be arbitrary large by constructing an appropriate class of geodesic
domes.

At first we choose a 6-patch P; where all boundary vertices have degree 4. Such a patch can
be constructed fulfilling b(P;) > m for any given m € N — for example in the following way:

Let s := [%] and consider the subgraph of the triangular lattice which forms a regular
hexagon with boundary length 6s and 6s? triangles. Then add further faces around it such
that the six boundary vertices of degree 3 get degree 5 in the patch (see figure 5.14). The

resulting patch P; fulfills b(P;) = 6s > m, and all boundary vertices have degree 4.

Now we take two such patches as caps and insert k additional rings of 2b(P;) faces each,
such that we obtain a tube with n = 2f(P;) + 2kb(Py) faces and hence & = f(Py) + kb(P}).
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Figure 5.14: A patch with boundary length 6s (here s = 3), and only degree 4 vertices in
the boundary

If k is even, the tube can be cut into two equal-sized halves, both containing 3 faces and
having the same boundary length b(P;) as the two caps (compare also section 5.3.2).

However, this is not possible if & is odd. In this case consider the patch P consisting of
one cap and 5! rings. It has the boundary length b(P) = b(P;) and contains f(P) =
f(P1) + (k= 1)b(P) = § — b(P) faces. Nevertheless P could already be an optimal patch:
Since all boundary labels are 2, no faces can be added without changing the boundary
length. However, we may add an odd number of up to b(P) faces to this patch such that
the boundary length is extended by 1. Then the quotient of boundary length divided by

face number of the resulting patch P’ is at least ;((];I,)) =7 }I;SJ Jzzbl( B

Supposing that this quotient is strictly larger than the respective quotient % of P, we
develop the following condition:
b(P)+1 S b(P)
f(P)+kb(P) ~ f(P1) + (k= 1)b(P)

& b(P)f(P1) + (k= 1)b(P)* + f(Pr) + (k= 1)b(P) > b(P)f(P1) + kb(P)?

& f(P)+ (k=1)b(P) > b(P)?

f(P)
& b(P) +Ek—-1 > b(P)
e k>up) L)y

b(P)

That means if relative to the boundary length b(P) = b(P;) and the number of faces f(P;)
of the cap P;, we choose the number of rings k large enough such that k& > b(P) — % +1
holds, adding more faces to P does not reduce the quotient of boundary length divided by
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face number. And since there is no other possibility to split the body of such a tube such
that the boundaries of the resulting patches are strictly smaller than b(P;), we conclude
that the patch P with § — b(P) faces indeed must be an optimal patch in the constructed
geodesic dome. Because the starting patch P; can be chosen with b(P;) arbitrarily large,
this gives us a way to construct a geodesic dome with n faces and an optimal patch whose
number of faces is arbitrarily far from 3.

An example: A geodesic dome with n faces where an optimal patch contains § — 5 faces can
be constructed by choosing a cap P; with boundary length b(P;) = 5 like in figure 5.7. We

add k rings of 2b(P;) = 10 faces such that k is odd and k > b(P,)+1— {fﬁ;; =5+1-L =3,
e.g. k = 5. Then we have in total 2- 15+ 5-10 = 80 faces, and the patch P consisting of one
cap with 2 rings contains 35 faces and is optimal: Any patch that contains more faces has
a longer boundary and even adding 5 more faces does not reduce the quotient ( 35—5 < % N

— see figure 5.15.

Figure 5.15: A geodesic dome with 80 faces and an optimal patch consisting of 35 faces

So this way we can construct tube-type geodesic domes where the difference between the
number of faces f(P) in an optimal patch P and half of the number of total faces & is
arbitrarily large. However, in order to obtain a larger difference we have to construct a
larger geodesic dome. So a further interesting question, which we do not discuss here, would

be whether the difference between f(P) and & can be determined by the number of faces n.
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5.4 Determination of expander constants of fullerenes

Now we want to apply the established results in order to determine the expander constant
of a given fullerene. We offer two different approaches: At first we demonstrate how to
prove the expander constant of a class of symmetrical fullerenes by hand; afterwards we
introduce a computer program that is able to compute the expander constant if the graph
of the geodesic dome is given, and present some of its results.

5.4.1 A theoretical approach

In this section we develop some useful techniques of how one can verify the expander constant
of a given fullerene (or the expander quotient of the corresponding geodesic dome), preferably
with a high symmetry, with the help of results from chapter 3. We proceed such that at first
an optimal patch in the given geodesic dome must be guessed, and then we prove that it is
optimal by showing that no other patches with a smaller quotient of boundary length and
face number exist, where we distinguish between the different possible numbers of degree 5
vertices. For this, the formulas that have been derived for the boundary lengths of patches
with respect to their number of faces in chapter 3 will be essential, as well as the method
introduced in 3.3.4 and 3.3.5 to determine such formulas in case a fixed subpatch is given.

We demonstrate the approach by determining and discussing the expander constant of a
certain group of fullerenes with icosahedral symmetry, including the famous Buckminster
fullerene.

The following lemmas are based on results from chapter 3 and provide a very simple and

effective possibility to exclude p-patches with small p (and also with very large p) from being
candidates for optimal patches in a given geodesic dome.

Lemma 5.4.1 For any p-patch P with 0 < p <5 we have:

bp) 6—p
f(P)
PROOF:
By corollary 3.3.4 we have b(P) > /(6 — p) f(P). This implies:

b(P) (6 6 — 6-p
1)~ \/ 7(P)

Lemma 5.4.2 Let T be a geodesic dome with 2n faces, and P’ a patch in T with f(P') <n
and a = ;((};,)). Then if there exists p € {0,1,...,5} with

> a, (5.14)

all optimal patches in T must be p-patches with p < p < 12 — p.
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PROOF:

At first assume there is an optimal p-patch P with p < p. Then we have 6 —p > 6 — p,
f(P) < n, and with lemma 5.4.1 and the assumption (5.14) we get:

b(P) 6—p 6—p 6-p _ , _ &)
i@ =\ 7@ 2\/ n Z\/ n T P

But this is a contradiction to the assumption that P was optimal.

Now suppose P is an optimal p-patch with p > 12 — p. Then it fulfills f(P) < n. Moreover,
Q := T — P is a g-patch with ¢ < 12—p = p < 5, that means also 6 —q > 6 — p ; furthermore
b(Q) =b(P) and f(Q) =2n— f(P) >n > f(P) =2n — f(Q). All together we obtain with
corollary 3.3.4:

WP) @) 43 E-9i@

)" mf@ i@
(G
2~ Q)

VE—n _ [6-p __ uP)

. n ‘\/n 7T P

This means again that P could not have been optimal.

O

In [12], Coxeter classifies highly symmetric geodesic domes that have the full rotational group
of the icosahedron. These geodesic domes can be obtained by filling each of the 20 faces of
the icosahedron with an equilateral triangle that is subgraph of the regular triangular lattice
of the plane. In [19], Graver extends Coxeter‘s approach to other geodesic domes. He uses a
plane signature graph which consists of the icosahedron together with a labeling of the edges
and angles, such that the vertices correspond to the 12 vertices of degree 5 in the geodesic
dome and the filling of the 20 faces can be reconstructed by the labeling. In [21] and [20] he
uses this approach to give a full parameterization of all fullerenes resp. geodesic domes with
ten or more symmetries. In particular, the signature graph of a geodesic dome is supposed
to give information about how far two vertices of degree 5 lie apart. Such a distance can be
expressed by the Cozeter coordinates (see definition 2.3.1).

For instance, all geodesic domes with icosahedral symmetry have the icosahedron as signa-
ture graph where all edges are equipped with the same label. According to [21] we distin-
guish between three cases: In the first case, all edges of the signature graph have Coxeter
coordinates (r), in the second (g, ¢), and in the third case (¢ + r, q) for arbitrary ¢, € N.

The second of the mentioned groups contains the dual of the Buckminster fullerene (case
g = 1), which we will call Buckminster dome. In the following, we will examine the members
of that group with regard to their expander quotient and as a result show:

Theorem 5.4.3 Let ¢ € N, and consider the geodesic dome whose signature graph is the
icosahedron with all labels being (q,q). Then its expander quotient, and hence the expander
constant of the corresponding fullerene, is qu in case q is even, and 1%} + ﬁ in case q 1s
odd. In particular, the expander constant of the Buckminster fullerene (with ¢ =1) is %
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Figure 5.16 shows the graph of the Buckminster dome; in order to obtain the graph of
another geodesic dome of this group with ¢ > 1, we may just insert vertices such that each
edge in the Buckminster dome is replaced by a path of length ¢, and replace each triangle
in the Buckminster dome by a large triangle consisting of ¢ small triangles, as indicated in
the figure on the right.

q=2
q=3
q=4

Figure 5.16: The graph of the Buckminster dome (left), and operations that can be applied
to its faces in order to obtain the respective dome with ¢ = 2, ¢ = 3, and ¢ = 4 (right)

In the following we will denote the geodesic dome of this group where all labels in the
signature graph are (g, q) by T, relative to the given parameter ¢ € N. Since the Buckminster
dome T} contains 60 faces, the geodesic dome T}, obviously has 60g¢” faces.

In figure 5.16 we also indicated one possible split (the fat grey line) of the graph into two
equal halves — for general g they contain 30q? faces each — which seems likely to produce
a small quotient of boundary length and face number for the corresponding patches. The
boundary length of such a patch is 10¢ and hence its quotient is 3100(1(12 = 31—(1. Therefore 31—q
can be established as an upper bound for the expander constant of the dual of 7,. In case
of ¢ = 1 we will see that the expander constant is %, such that the patch with the boundary
drawn in figure 5.16 is indeed optimal for the Buckminster dome; however, for ¢ > 1 this is

not the case, as we will see in the following.

In case ¢ is even, all triangles of ¢> faces can be obtained from the triangle consisting of
4 small triangles (case ¢ = 2) by drawing further lines. Hence, T with ¢ even can be
constructed from 75 by the replacements described above. In particular, each path in T5
can be transferred to a path in T,, where the path in 7, is k times as long if ¢ = 2k.

Now in T, there exists a 6-patch with boundary length 18 which contains 120 = % f(I)
faces, as can be seen from figure 5.17.

The corresponding quotient is {5 = 55 which is strictly smaller than § = 5. We will show

that this patch is optimal in T5. Moreover, if we consider the corresponding path in T}, with
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Figure 5.17: The geodesic dome T5 with an optimal patch (shaded area)
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q = 2k it has the length 18% = 9¢ and still splits the graph half-and-half, and hence leads

to the quotient
99 _ 3
302 10q

We will prove that this is indeed the expander constant of the dual of T in case ¢ is

even.

Figure 5.18 shows again the optimal patch in T5 resp. T, with ¢ even: It contains 21 triangles
of ¢* faces each, and the faces around it — that are Z rings of 18¢ faces each — can be

rearranged to form 9 further triangles.

AVAVASS

C

(SIS

9q2 faces

Figure 5.18: A 6-patch that is optimal with respect to T
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In case ¢ is odd, it is not possible to build a number of rings around the patch consisting of
21 triangles such that exactly 30¢> faces are contained. We may only take % rings — then
the boundary length is still 9¢ but the number of faces is 21¢* + q;—IISq = 30¢%> — 9q. It is
also possible to add 9¢q more faces of the next ring and thereby extend the boundary length
by 1; then the quotient is

99+1 3 1

30¢2  10q + 30¢2

This is smaller than 30(12—‘1_9(1 for any ¢ € N, and we will prove that in case ¢ is odd, the
corresponding patch is even optimal. Figure 5.19 shows that patch for the case ¢ = 3 and
indicates how the other cases can be constructed; however, note that now the figures for the
other cases can not be obtained by some triangle replacements.

9q faces

Figure 5.19: A 6-patch that is optimal with respect to T3

Moreover, note that the case ¢ = 1 is a special case: We may construct the patch as
described, but — since no ring is added — then we obtain either a 4- or a 5-patch as a result

(see figure 5.20). Indeed all these patches lead to the quotient % + 31—0 = % = %

In order to prove for all cases that the constructed patches are optimal in T}, we will proceed
as follows: The idea is to distinguish between the number p of degree 5 vertices in possible
optimal patches. If we are able to show that for certain p, all possible p-patches would have
a quotient larger than the quotient of an existing patch with not more than 30¢> faces, then
we conclude that no p-patches can be optimal in 7,. The existing patch with the quotient
to compare could be the one which we claim to be optimal, or sometimes (for easier com-
putation) also the one with quotient %.
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Lo

Figure 5.20: A 6-, a 5- and a 4-patch that are all subgraph of 7%, have boundary length 10
and contain 30 faces, where the 5- and the 4-patch can be constructed in the way described
above by adding 9 faces around the shaded patch consisting of 21 triangles; as we will show
that % is the expander constant of the Buckminster fullerene, all these patches turn out to
be optimal in the Buckminster dome.

The cases p < 3 and p > 9:

First, with the help of lemma 5.4.2, we are able to exclude all p-patches with p < 3 and
p > 9 from being optimal in T}, for ¢ even as well as for ¢ odd:

1

We already know that in any case T, contains a patch with 30¢> faces and a quotient a, := 35

of boundary length divided by face number. Now for p = 2 we have

=5 _ [4 _ 2 _ 1 _,
n V302  30¢q 3g 1
which implies by lemma 5.4.2 that all optimal patches in T, must be p-patches for some
2 <p<10.

Moreover, if ¢ is even there is a patch with quotient b, := 1%1, and if g is odd there exists a
patch with quotient ¢, := % + ﬁ. For p = 3 we get

[6-5 3—1>i—b-
n V30¢2 ~ Vi0g 10¢ 1’

furthermore, for ¢ > 3 we have (30 — 9v/10)¢? > 3(30 — 9v/10)q > v/10¢ and hence

1 _%+1_ 3 1
V10¢q 302 10  30g2

=cy.

That means by lemma 5.4.2 that we may also exclude all 3-and 9-patches in case ¢ is even,
and in case g is odd with the exception ¢ = 1.

The case ¢ = 1 can be considered separately: We know that there exists a patch in T} with 30
faces and boundary length 10. Now if there was a 3-patch with up to 30 faces and a strictly
smaller quotient, it could only have boundary length 9 or less. It is easy to see that such
a patch would have to contain 3 degree 5 vertices with pairwise Coxeter coordinates (1,1),
since all other configurations of degree 3 vertices require longer boundaries; but the largest
3-patch with boundary length 9 contains only 21 faces, and 5 = 2 > £. Furthermore, if
there was an optimal 9-patch in 77, it would have to contain at most 30 faces; however, any
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9-patch in T has to contain at least 45 faces, because for each of the inner degree 5 vertices
it has to contain 5 faces, since no two degree 5 vertices are adjacent. So this leads to a
contradiction, too, and we get that also for ¢ = 1 there cannot be any optimal 3- or 9-patch
in T,.

The case p = 4:

Unfortunately we cannot apply lemma 5.4.2 for this case, since

2 _ 1 _ 3
V302~ 15¢  10q°

The reason for this is that the lemma is based only on the inequations holding for all p-
patches, where the minimal boundary length is obtained when the degree 5 vertices are close
together, and does not make use of the information we have on the special configurations of
degree 5 vertices for the current class of geodesic domes, where no adjacent degree 5 vertices
exist. Therefore we have to investigate the boundary length of 4-patches that do actually
occur in Tj,. A further argument which becomes useful now is that the existing patches in
T, already provide an upper bound for the boundary length of an optimal patch:

We already know that in case ¢ is even, there exists a patch with boundary length 9q
containing 30¢> faces, and in case ¢ is odd, there is one with boundary length 9¢ + 1 and
30¢? faces. Hence if there was a patch with a strictly smaller quotient, it would have to have
a boundary length strictly smaller than 9¢ or 9¢ + 1, respectively.

There are only two possible configurations of 4 degree 5 vertices which allow such a boundary
length for a 4-patch containing them; these are shown in figure 5.21. It is easy to check that
all other configurations of degree 5 vertices that occur in T}, require that 4-patches containing
them must have a boundary length of at least 9¢ + 1.

Figure 5.21: Two possible configurations of 4 degree 5 vertices in T}, (the dotted lines indicate
the case ¢ = 2 as an example)

At first we consider the left configuration of 4 degree 5 vertices where one pair has Coxeter
Coordinates (3¢) and all other (g,q). We let P, be the smallest regular 4-patch containing
such a configuration, which has the boundary length 8¢ + 2 (see figure 5.22 on the left for
the case ¢ = 2). It contains 14¢® inner faces (the interior consists of 14 triangles with ¢*
faces each) and 16¢ + 2 boundary faces, such that

f(P)) =14¢> + 16qg + 2 .
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4g+1

Figure 5.22: A regular 4-patch P, which occurs in T}, (left picture), and the 4-patch Pq with
the same boundary that contains Py g0 (right picture)

Note that f(P,) = 14¢> + 16¢ +2 > 30q> for ¢ > 2, but not for ¢ = 1. Therefore we consider
the case ¢ = 1 separately: We know that in that case there exists a patch with boundary
length 10 and 30 faces. Furthermore we observe that already the smallest patch containing
the four degree 5 vertices (figure 5.23 left picture) has a boundary length of 10 and that
adding any faces cannot reduce the boundary length; hence there can be no 4-patch with
that configuration of degree 5 vertices which has a quotient strictly smaller than % However,
there is indeed a 4-patch in 77 which has boundary length 10 and contains 30 faces; it can
be obtained from the regular patch with 32 faces by removing two faces adjacent to one of
the degree 3 vertices (see figure 5.23 middle and right picture). This is the same patch that
we constructed in figure 5.20, right picture, and indeed it will turn out to be optimal in 77.

*e S

Figure 5.23: A configuration of four degree 5 vertices as it occurs in 77 (left); the smallest
regular patch P, containing the configuration, which has 32 faces (mlddle) and a patch with
a total number of 30 faces and boundary length 10 (right)
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Now let ¢ > 2; then we may assume that if there was an optimal 4-patch containing that
configuration of degree 5 vertices, then it contains even P,, because otherwise we could
always add faces without enlarging the boundary length.

So suppose there exists an optimal 4-patch P, in T, which contains Pq. In order to develop
a lower bound on the boundary length of P, with respect to its number of faces that is
sharper than the one obtained from corollary 3.3.3, we proceed exactly as demonstrated in
section 3.3.4: We replace the 4-patch P, in P, by a 4-patch Pq with the same boundary that

contains Py (see figure 5.22, right picture). Now we determine the number of faces in P,
with respect to f(P,;): With f(P,) = 14¢> 4+ 16q + 2 we get that the number of faces in P, is

f(P) = 2(4g+1)> =6 = 32¢> +16¢—4 = f(P,) +18¢> - 6.

So applying corollary 3.3.3 to P,, we get the following formula for P;:

b(P) = b(F) > \[2f(F})+ 12

V2(F(P) +18¢2 — 6) + 12
= \/2f(P,) + 36¢2 (5.15)

Furthermore, since P, was assumed to be optimal, we have f(P,) < 30¢%. It follows that

bP,) G 2f(P) + 3641
f(Py) - f(Py)
B 2 364>
B f@) B2
J(Py)<30¢° 2 3642
> - -

= 302 (30¢7)°

96¢> _ V96q _ V96 1
(30¢2)2  30¢2 30 ¢

(5.16)

Now we have % > %, and for ¢ # 1 we even have %9;‘ > %. That means P, cannot
be optimal — neither if ¢ is even, nor if ¢ is odd, with the exception ¢ = 1 which has been

examined above.

Note that even if a patch contained the four degree 5 vertices but not the whole regular
graph P, we could have replaced the patch by a patch with the same boundary containing
Py 0,0 and this way obtained the same results.

Next we consider the second possible configuration of 4 degree 5 vertices, where two pairs
have Coxeter Coordinates (3¢q) and the four other (g,q). Again we let P, be the smallest
regular 4-patch containing such a configuration, which has also boundary length 8¢ + 2 (see
figure 5.24 for the case ¢ = 2). As before we may assume that if there was an optimal
4-patch containing these degree 5 vertices, then it contains P,.

Now the 4-patch I3q contains only 10¢? inner faces and 16¢ + 2 boundary faces, such that
f(P,) =10¢* + 16q + 2.
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Figure 5.24: A regular 4-patch P, which occurs in 7, (here with ¢ = 2 as an example)

If 13,1 denotes the same 4-patch containing Py, as in the first case, we now have
f(P) = 324 +16¢g —4 = f(P,) +22¢° —6.

Hence, if P, contains P, and Pé is obtained by replacing P, by Pq, we get:

WP, = b(P) > J2f(P))+12

= /2(£(P,) +22¢2 - 6) + 12

= 2f(P,) +44¢> > 1/2f(P,) + 36¢>

So with f(P,) < 30g? it follows from (5.16) that ;((1;‘2)) > @ . %.

Since %’qﬁ > 930q2 > 10 for ¢ # 1, we get again that P, cannot be optimal except in case

g = 1. But if p = 1 we have again that the smallest possible patch has already boundary
length 10, so there can be no patch with a quotient strlctly smaller than 1 3. For this con-
figuration, there is even no patch with a quotient equal to 1 3, since the regular patch from

figure 5.24 contains only 28 faces, and adding more faces increases the boundary length.

The case p = 8:

Suppose there exists an optimal 8-patch P, in T,. In particular we must have f(P;) < 30¢°.
But this is already a contradiction in case ¢ = 1, because such a patch would have to contain
at least 8 - 5 = 40 faces (5 faces for each inner vertex of degree 5). So assume ¢ # 1. Now
P, := T, — P, must be a p-patch with p < 4 and f(P,;) > 304>

By (3.33) we have b(P;) > /(6 —p)f(P,), so in particular for p < 3 we have b(P,) >
3f(P,) and hence:

b(Fy) _ b(pq) > \/3f( \/9011 V10 3

f(Pq)_f(Pq)_ f(Pq) — 30¢? _10q 10q
This is an immediate contradiction in case ¢ is even. In case ¢ is odd we can assume
q > 3 since we already excluded ¢ = 1; but then we have even % > %%'521 , SO we get a

contradiction, too. Left is the case p = 4. Then by (5.15) we have b(P,) > \/2f(P,) + 3642

and hence B
b(Py) _ b(Py)  V2f(Py) +36¢° _ \/96¢> _ V6 3
f(P) f(P) f(Fy) = 30¢2 30q 10g -
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In case ¢ # 1 we even have %9;‘ > %%'('1'21 , so in any case we obtain that P, cannot be optimal
in T,.
The case p =5:

Considering all possible configuration of degree 5 vertices in 7, we see that all have a bound-
ary length of at least 10q. Since 10q > 9¢ + 1 > 9q for all ¢ € N, we obtain immediately
that there can be no 5-patch in T, with a quotient strictly smaller than 93%? For q # 1 we
even have 10g > 9¢ + 1 so there can be no optimal 5-patch at all; in case ¢ = 1 we have
10g = 9¢ + 1 and there exists indeed a 5-patch with quotient i, which is the one in figure

3
5.20 (middle).

The case p=T:

Now we assume that there is an optimal 7-patch P, in T,. Again f(P,) < 30¢? is already a
contradiction in case ¢ = 1 since the patch would have to contain at least 7 -5 = 35 faces.
Now P, := T, — P, must be a p-patch with p < 5 and f(P,) > 30¢>. But p < 4 has already
been excluded in case p = 8, and p = 5 cannot be the case because then the boundary length
of P, and hence also of P, would be 9g + 1 or larger.

The case p = 6:

In T, there exists only one configuration of degree 5 vertices where a 6-patch containing it
may have boundary length 9¢, and one where the boundary length 10q is possible. Figure
5.25 shows the respective patches in case ¢ = 1.

All other configurations require even longer boundaries. Now as we already discussed at
the beginning of this section, the first mentioned configuration is contained in a 6-patch
with boundary length 9¢ and 30g¢? faces only in case ¢ is even; if ¢ is odd, we have either
boundary length 9¢ and 30¢> — 9¢ faces, or boundary length 9¢ + 1 and 30¢> faces, where
the latter leads to a smaller quotient. Patches containing the other configuration have even
a longer boundary, except in case ¢ = 1, where the patch in the figure indeed shows an
optimal patch.

9q
30q2

Consequently there are no 6-patches in Ty with a quotient strictly smaller than in case

9q+1
30q2

q even and in case q odd.

Figure 5.25: Two 6-patches that occur in Tj
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5.4.2 A program and its results

We conclude the study on the expander constant of fullerenes with presenting an algorithm
for computing the expander constant of any given fullerene, using some of the results that
were proven in this chapter. A program based on this algorithm has been implemented in
C and independently tested by a second program.

An interesting question for application is: For a given number n of vertices, which are the
fullerenes on n vertices with a maximal expander constant? This would give us candidates
for particularly stable fullerenes of the respective size. And moreover, do all fullerenes that
have a maximal expander constant fulfill the isolated-pentagon rule? Or at least, is there
always an isolated-pentagon fullerene among those that have a maximal expander constant?

We will at first describe the algorithm, then we present and discuss the results of the program.

The basic algorithm

For the input we use a generator for planar polycyclic hydrocarbons CaGe [4] that provides
the adjacency lists as well as images of the geodesic domes. All figures of geodesic domes
that occur in this section and in the appendix are generated with CaGe.

So assume we have a geodesic dome T with n faces. We will use the adjacency list in order
to build paths in T' that yield the boundary of a patch in case they close to a cycle. We are
looking for a patch P with minimal quotient

b(P)
min(f(P),n — f(P))

Now due to lemma 5.3.6, an optimal patch P must have a quotient ¢(P) < ; so at the
2

beginning we may set gmin := 5 as a starting value for the minimal quotient. Also by
lemma, 5.3.6 we have b(P) < % for the boundary length of an optimal patch P in T, so in
the beginning we only have to construct paths with up to % edges in order to find optimal
patches. Therefore we set bnax := % as a first upper bound on the length of any path that
we construct in the current fullerene. We will see that this bound can be improved during

the execution whenever a smaller quotient is found.

q(P) =

Moreover, lemma 5.3.5 states that the boundary of an optimal patch cannot contain degrees
2 and 6, nor labels 0 and 4. Consequently we may exclude the possibility that our path
contains succeeding vertices z,y, z with {z,z} € E(T) because such a ‘sharp turn’ yields
one of the cases from above. So if the previous vertices in the path are z and y, we may,
when choosing the next vertex of the path, restrict to those neighbours of y that are not
adjacent to z and not z itself. This leaves only three possibilities for succeeding vertices in
case of deg(y) = 6, and even only two if deg(y) = 5. In the following we will denote all
vertices that are adjacent to a vertex v in T by N (v).

The algorithm proceeds as follows: Choose a starting vertex vg. The set of possibilities for
the next vertex in the path is denoted by S; and can be set to be N(vp) in the beginning.
If a vertex v; € S; is chosen, remove it from S;. The set of possibilities for the vertex vy is
then defined as

52 = N(’Ul) — N(Uo) — {Uo} 5

where the vertices in N(vp) may be excluded due to the observation on ‘sharp turns’ men-
tioned above.
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Now for ¢ > 2, where a path vy, ...,v;—1 is already constructed and the set .S; determined,
the following steps are carried out:

1. In case S; = (), reduce i by 1 and go back to 1.
2. Choose a vertex v; € S; and afterwards, delete it from S;.

3. Check if v; already lies in the interior path vy,...,v; o — if so, it does not have to
be considered further because we only want to construct paths that close again at
the starting vertex without crossing the already constructed path. Therefore we may
immediately go back to 1.

4. Check if v; = vg — if so, a cycle has been found. Then we let P denote the patch in T
that lies left of the cycle and has that cycle as boundary cycle.

e At first determine the number of faces in P. For this, we compute the degrees of
the boundary vertices in P and determine all vertices that lie in the interior of
P. Now we have

ZveV(P) degp(v) — b(P)
3

3f(P)+b(P) = ) degp(v) & f(P) =

vEV(P)

because counting each vertex with respect to its degree yields each bounded face
three times and the outer face b(P) times. Hence we are able to determine f(P)
with respect to the boundary length — which is simply the length of the cycle —
and the vertex degrees in P and its boundary. Then we compute the quotient

e Now remark 5.3.7 yields
_ n

bP) < a(P) 5
for any optimal patch P. Therefore we may make use of the new information and
adjust the bound on the boundary length of optimal patches in order to accelerate
further computation:
If ¢(P) < gmin we set

gmin = q(P)

and
n

bmax = {min * § .
e Afterwards go back to 1. without changing 1.
5. Check if the boundary length is exceeded: If i > by ax, we decrease i by 1 and go to 1.

6. Determine the possible vertices for the next step: The set of possibilities for the vertex
vi+1 is defined as

Sit1 := N(v;) = N(vi—1) — {vi—1},

where again N(v;—1) can be excluded in order to avoid ‘sharp turns’. Then increase i
by 1 and continue with 1.
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These steps are carried out for the starting edge (vo, v1) as long as ¢ > 2. If i < 2 is reached,
all cycles containing (vg,v1) have been constructed. Then we choose the next vertex in Sy,
delete it from S; and proceed in the same way. If S; = (), all cycles containing vo have been
constructed.

Now one after another, we choose the other vertices of the graph as starting vertices and
proceed as described. Additionally, if vi,vZ,..., v} have already been chosen as starting
vertices, we exclude these vertices in the computations for all following starting vertices of
the graph, since all cycles containing them have already been constructed. So we add the
following step:

3.b) Check if v; has already been chosen as a starting vertex — if so, go back to 1.

This way, the later starting vertices can be examined in a very short time, because on the
one hand b,,,x has usually been decreased, and furthermore there are not many vertices left
that can be chosen for the path.

When all vertices have been chosen as starting vertices, the program stops. Then the current
value of ¢y gives the minimal quotient of the geodesic dome, that is the expander quotient,
and hence the expander constant of the corresponding fullerene. All closed paths for which
the quotient ¢min was computed indicate the possible optimal patches.

Further improvements

Further improvement of the program has been achieved by considering the following items:

e The set of possibilities for the second vertex in the path can even be set as
Sl = N(UO) - {-T:,y}

where z,y are chosen as two arbitrary vertices in N(vg) with {z,y} € E(T). The
reason why we may exclude x and y is that we do not care about the direction of the
cycles — actually the algorithm described above constructs each cycle twice, namely
once for each direction — so all cycles starting with (v, z) or (vg,y) and ending with
(z,v0) for any z ¢ {x,y} can be excluded because the cycles with opposite directions
are already constructed when z is chosen as second vertex. The only cycles that are
completely left out are those starting with (vg,z) resp. (vo,y) and ending with (vg,y)
resp. (vg, ) — but they can be excluded because they contain a ‘sharp turn’ at vg since
z and y have been chosen as neighbouring vertices.

e Furthermore, we observe that sometimes it is not possible for a path to return to the
starting vertex because none of its neighbours can be chosen anymore, or that the only
possibility to return yields a sharp turn at the starting vertex. Then we can stop the
construction of the current path. So if vg,v; are the first two vertices of a path, we
determine the set of ‘possible return vertices’ as N(vg) — N(v1) — {v1}. In step i we
investigate — after checking if v; = vy — whether the path vy,...,v;_1 contains all of
these return vertices, and if this is the case, we go back to 1.

e Moreover, even if it is still possible to choose neighbours of the starting vertex, it might
be the case that the path cannot return to the starting vertex in a number of steps such
that the total bound of the path length is not exceeded. Therefore we assign, after the
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starting edge (v, v1) has been chosen, ‘returning distances’ to certain directed edges
in the graph: For 1 < k < byax, a directed edge e gets distance k if the shortest path
from e to (vo,v1) edge without sharp turns has length k, where by length we mean
the number of inner vertices of the path including e and (vg, v1) — see also figure 5.26.
Then, whenever a vertex v; is chosen, we determine the sum of the path length up to
vi—1, that is ¢ — 1, and the distance of (v;—1,v;) to the starting vertex, and in case it
exceeds the current bound by,,x, we return to 1.

Figure 5.26: An example of how to assign distances up to 2 to directed edges with respect
to the starting edge (vo, v1)

e Finally, corollary 5.3.16 can be used to exclude paths with certain labels: When con-
structing a path we compute a label for each vertex in the path after its successor has
been chosen, giving the number of edges in the angle left of the vertex. With the help
of variables that count the number of succeeding labels we may stop the construction
of a path whenever a label sequence of one of the types listed in corollary 5.3.16 occurs.

The algorithm that is described here computes the expander constant of a single fullerene.
However, it can of course also be used to compute the expander constants of a large set of
fullerenes, for instance all fullerenes on n vertices. CaGe also produces such lists of fullerenes
that can be used for a repeated application of the described procedure.

In case we have such a list and are only interested in the fullerenes with largest expander
constant, we may simplify the program further by immediately stopping the whole compu-
tation for one fullerene where a quotient has been detected that is strictly smaller than the
current maximal expander constant of the already examined fullerenes.

Results

The question that we focus on is: If we consider all fullerenes on n vertices, which of
them have the largest expander constants and are hence the ‘most stable’ in the sense of
the expander constant? A program based on the described algorithm has been used to
determine all maximal expander constants for all fullerenes with up to 140 vertices, where
a second program validated the figures for up to 100 vertices.
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Furthermore, we are interested in the expander constants of the isolated-pentagon fullerenes;
since chemists consider them to be particularly stable, it would be interesting to compare
them with other fullerenes with the same number of atoms in order to see if the isolated-
pentagon fullerenes are most stable in the sense of the expander constant, too.

As a first result, we computed the expander constants of all fullerens with 60 vertices. We
obtained that the largest possible expander constant among them is %, and that there are
exactly two fullerenes on 60 vertices with that expander constant — the Buckminster fullerene
and one further fullerene. The dual graphs of both with examples of optimal patches can
be seen in figure 5.27. In table 5.1, the numbers of the Cgg fullerenes with the respective

expander constants are given.

Figure 5.27: The two geodesic domes with 60 faces whose duals have the maximal expander
constant % (the left one is the Buckminster dome).

The main results of our program can be found in tables 5.2 and 5.3: For each possible n until
140, we determined the largest expander constant that occurs among all fullerenes with n
vertices.

For easier notation we define
Chmax(n) := max{ch(G) | G is a fullerene on n vertices}

as the maximal expander constant of all fullerenes with n vertices. In the tables we give
the expander constants as values rounded to 4 digits. Furthermore, we let byax(n) and
fmax(n) denote the boundary length and number of faces of an optimal patch in one of the
respective geodesic domes, such that chmax(n) = bmax(n)/ fmax(n); in case chmax(n) is
obtained by patches of different sizes, we choose the quotient such that fiax(n) is maximal.
Additionally, we give the number of fullerenes with n vertices whose expander constant is
maximal, denoted as fullpmax(n) := |[{G|ch(G) = chmax(n)}|, and in comparison the total
number of fullerenes full(n) with n vertices, which can be found in [6].

The table indicates that larger graphs tend to have a smaller expander constant, although
the expander constant is not monotonously decreasing. Consequently, among two fullerenes
with the same expander constant we could interpret the one with the larger number of faces
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Expander constant Number of Cgg fullerenes with that expander constant
10~ 0.3333 2
5% ~ 0.3103 665
> ~ 0.3077 164
& =~ 0.2857 146
= ~ 0.2666 736
% ~ 0.2593 16
& &~ 0.2414 77
> ~ 0.2143 2
= = 02 4

Table 5.1: The expander constants that occur when considering fullerenes with 60 vertices,
and the number of these fullerenes that have the respective expander constant

as ‘more stable’. In other words, we view a fullerene with n vertices as ‘particularly stable’
if it has not only a maximal expander constant among all fullerenes on n vertices, but also
among all fullerenes with n or more vertices. The maximal expander constants where — at
least in the table — no larger fullerenes with the same or a larger expander constant occur
are marked with a star.

Considering bmax(n) and fmax(n), we observe that both the boundary lengths and the num-
bers of faces of the optimal patches seem to increase monotonously.

A further interesting observation is that the number fullyax(n) of fullerenes with maximal
expander constant seems to follow a special pattern: It is monotonously increasing within a
certain range where it reaches a comparatively high value, followed by a very small number
which marks again the beginning of a new increasing process.

Moreover, we applied the same program to the subset of all isolated-pentagon fullerenes
with the same number of vertices n until n = 140 and thus determined the largest expander
constant that occurs among all isolated-pentagon fullerenes with n vertices, which exist for
n = 60 and each even n > 70. The results can be found in the tables 5.4 and 5.5, where the
maximal expander constants are denoted by ch 'L (n) and the numbers of isolated-pentagon

fullerenes with n vertices whose expander constant is maximal by fullF_(n).

We immediately see that there exist non-isolated-pentagon fullerenes which have a strictly
larger expander constant than certain isolated-pentagon fullerenes with the same number of
vertices: For instance we have that in case n = 76, only one of the two possible isolated-
pentagon fullerenes has the maximal expander constant %, while there are in total 10
fullerenes with 76 vertices and that expander constant — consequently, 9 of them must be
non-isolated pentagon fullerenes with a better expander constant than one of the isolated-

pentagon fullerenes.
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Above that, comparing the maximal expander constants chmax(n) for n vertices with the
maximal expander constants chlf (n) of isolated-pentagon fullerenes with n vertices, we

observe that in the cases n = 90 and n = 108, we have
Chmax(n) > chl¥ (n)

which means that in these cases, none of the fullerenes with expander constant chmax(n)
does fulfill the isolated-pentagon-rule. In all other case up to n = 140 we have chmax(n) =
chl (n), so the set of isolated-pentagon fullerenes with maximal expander constant must
be a subset of all fullerenes with maximal expander constant of the same number of vertices.

Thus we have shown that it is not true that there is always an isolated-pentagon fullerene
among the fullerenes with maximal expander constant — although it seems to hold in most of
the cases. Figure 5.28 shows the duals of the two only Cgq fullerenes with maximal expander

12
constants 77,

where it can easily be verified that both are no isolated-pentagon fullerenes.

Figure 5.28: The two geodesic domes with 90 faces whose duals have the maximal expander
constant ﬁ; both contain adjacent vertices of degree 5 (marked with cycles), so the corre-
sponding fullerenes do not fulfill the isolated-pentagon-rule.

For application it is also of interest which fullerenes actually are those with the largest
expander constants. Considering the values of fullpyax(n) and full (n), it is obvious that
we cannot depict all of them here. Instead, we chose for each n < 100 one isolated-pentagon
fullerene with maximal expander chF_(n) constant among all isolated-pentagon fullerenes
with n vertices, and additionally for each n < 100 one fullerene with maximal expander

constant chmax(n) among all fullerenes with n vertices.

The corresponding geodesic domes of these fullerenes can be found in appendix A, where
we also depicted one optimal patch for each geodesic dome.
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n chmax(n) bmax(n) | fmax(n) fullpax(n) full(n)
20 0.6 x 6 10 1 1
24 0.5 6 12 1 1
26 0.5 6 12 1 1
28 0.5385 * 7 13 1 2
30 0.4667 7 15 1 3
32 0.4667 * 7 15 3 6
34 0.4118 7 17 4 6
36 0.4118 7 17 10 15
38 0.4444 = 8 18 1 17
40 0.4 8 20 9 40
42 0.4 * 8 20 9 45
44 0.3636 8 22 40 89
46 0.3636 8 22 60 116
48 0.3636 = 8 22 1 199
50 0.36 9 25 7 271
52 0.36 9 25 23 437
54 0.3333 9 27 93 580
56 0.3333 9 27 211 924
58 0.3103 9 29 368 1205
60 0.3333 10 30 2 1812
62 0.3333 10 30 3 2385
64 0.3125 10 32 31 3465
66 0.3125 = 10 32 75 4478
68 0.2941 10 34 475 6332
70 0.2941 10 34 799 8149
72 0.2777 10 36 2501 11190
74 0.2973 11 37 2 14246
76 0.2973 * 11 37 10 19151
78 0.2821 11 39 52 24109
80 0.2821 = 11 39 225 31924

Table 5.2: The maximal expander constants chmax(n) = bmax(1)/ fmax(n) of all fullerenes
with n < 80 vertices, the number fullyax(n) of fullerenes with n vertices whose expander
constant is maximal, and the total number of fullerenes full(n) with n vertices (taken from
[6]). Cases where these fullerenes are ‘particularly stable’ are marked with *.
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n chmax(n) bmax(n) | fmax(n) fullpax(n) full(n)
82 0.2683 11 41 1325 39718
84 0.2683 11 41 2910 51592
86 0.2558 11 43 7798 63761
88 0.2727 12 44 1 81738
90 0.2727 * 12 44 2 99918
92 0.2609 12 46 55 126 409
94 0.2609 =* 12 46 120 153493
96 0.25 12 48 1220 191 839
98 0.25 = 12 48 3220 231017
100 0.24 12 50 12700 285914
102 0.24 12 50 22222 341658
104 0.2308 12 52 51920 419013
106 0.2308 12 52 79491 497529
108 0.2453 * 13 53 2 604217
110 0.2364 13 55 136 713319
112 0.2364 * 13 55 835 860161
114 0.2281 13 57 6014 1008 444
116 0.2281 = 13 57 14 654 1207119
118 0.2203 13 59 44209 1408553
120 0.2203 13 59 79165 1674171
122 0.2131 13 61 176 894 1942929
124 0.2258 14 62 4 2295721
126 0.2258 * 14 62 11 2650 866
128 0.2186 14 64 273 3114236
130 0.2186 * 14 64 1412 3580637
132 0.2121 14 66 10088 4182071
134 0.2121 14 66 22921 4787715
136 0.2059 14 68 80038 5566 948
138 0.2059 14 68 148782 6 344 698
140 0.2174 =« 15 69 1 7341204

Table 5.3: The maximal expander constants chmax(n) = bmax(1)/ fmax(n) of all fullerenes
with 82 < n < 140 vertices, the number fullyax(n) of fullerenes with n vertices whose
expander constant is maximal, and the total number of fullerenes full(n) with n vertices
(taken from [6]). Cases where these fullerenes are ‘particularly stable’ are marked with *.
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n P (n) bmax(n) | fmax(n) | fullyi(n) full™ (n)
60 0.3333 10 30 1 1
70 0.2941 10 34 1 1
72 0.2777 10 36 1 1
74 0.2973 11 37 1 1
76 0.2973 11 37 1 2
78 0.2821 11 39 2 5
80 0.2821 11 39 3 7
82 0.2683 11 41 4 9
84 0.2683 11 41 10 24
86 0.2558 11 43 14 19
88 0.2727 12 44 1 35
90 0.2444 11 45 38 46
92 0.2609 12 46 8 86
94 0.2609 12 46 4 134
96 0.25 12 48 25 187
98 0.25 12 48 52 259
100 0.24 12 50 209 450
102 0.24 12 50 299 616
104 0.2308 12 52 525 823
106 0.2308 12 52 784 1233
108 0.2222 12 54 1457 1799
110 0.2364 13 55 36 2355
112 0.2364 13 55 83 3342
114 0.2281 13 57 334 4468
116 0.2281 13 57 695 6063
118 0.2203 13 59 1967 8148
120 0.2203 13 59 3263 10774
122 0.2131 13 61 5686 13977
124 0.2258 14 62 3 18769
126 0.2258 14 62 5 23589
Table 5.4: The maximal expander constants chlY (n) = blY (n)/fIF (n) of all isolated-

pentagon fullerenes with n < 126 vertices, the number fulllF (n) of isolated-pentagon

fullerenes with n vertices whose expander constant is maximal, and the total number of
isolated-pentagon fullerenes full'F(n) with n vertices (taken from [6]).
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n Py (1) bmax () | Frmiax(n) | fullp,(n) full ' (n)
128 0.2188 14 64 72 30683
130 0.2188 14 64 240 39393
132 0.2121 14 66 1252 49878
134 0.2121 14 66 2659 62372
136 0.2059 14 68 7943 79362
138 0.2059 14 68 13483 98541
140 0.2174 15 69 1 121354

Table 5.5: The maximal expander constants chIE (n) = bIF_(n)/fIF (n) of all isolated-

max max max
pentagon fullerenes with 128 < n < 140 vertices, the number full L _(n) of isolated-pentagon
fullerenes with n vertices whose expander constant is maximal, and the total number of

isolated-pentagon fullerenes full'f(n) with n vertices (taken from [6]).
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Chapter 6

Conclusions and outlook

Here we shortly summarize the main outcomes of the present work and point out some
possibilities for further research.

In this thesis, we have developed a number of results concerning the boundaries of patches.
We have shown that the number of faces of a disordered triangle-patch P is uniquely deter-
mined by its boundary sequence and a fixed subpatch ) that contains all defective vertices
in case D(Q) mod 6 # 0, that means the disorder of () does not correspond to a trivial
rotation. The proof works similarly for hexagon- and quadrangle-patches and even in case
the disorder consists also in defective faces, where the condition that describes the degree
of rotation has to be adjusted appropriately. With this we have found a general approach
that includes previous results which have been achieved in this context ([26], [5], [29], [9])-
For the cases corresponding to trivial rotations it is known that the result is generally not
true; however, it would be desirable to understand these cases better and see whether under
certain circumstances, similar results could hold (compare also section 2.6). This could be
the subject of future research.

A further contribution of this work is the systematic investigation of patches with minimal
boundaries. The tables 3.1 and 3.2 provide formulas for the minimal boundaries of hexagonal
and triangular patches with defective vertices resp. faces of degree 3, 4 and 5 relative to
their numbers of faces. While for the hexagonal case it has already been shown that the
minimal boundaries are attained when arranging the faces in a certain spiral way, we have
shown similar results for the triangular case. Furthermore, we have extended the problem
to triangle-patches where the defective vertices may not be arbitrarily placed but are given
in a fixed subpatch. We have proven that in case the boundary of that subpatch is regular,
minimal boundaries are again obtained by appropriate spiral constructions. Moreover, we
have shown that patches with nice boundaries can always be extended to regular patches,
and that patches with minimal boundary lengths containing a given subpatch with nice
boundary and a given face number which is large enough can be built by first extending
the nice boundary patch to a regular patch, and then constructing spirals around that
regular patch. We also have introduced a method of how to develop optimal formulas for
minimal boundaries of patches when such a fixed subpatch is given. Further research could
concentrate on allowing disordered subpatches with more general boundaries, where one
problem is that some boundaries do not allow to add an unlimited number of faces in a
spiral way. Also, it would be interesting to examine patches with minimal boundaries and
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a fixed number of n faces that contain a nice boundary subpatch in case n is too small to
enable the extension to a regular patch. We conjecture that a construction of such patches
could be based on adding rows of faces to the respective longest sides of the patch.

These investigations form also the basics for the chapters 4 and 5 which provide results
with immediate applications. We have shown that in triangle- and hexagon-cones, that are
infinite triangle- and hexagon-patches with p < 6 degree 5 vertices resp. pentagons, always
a boundary of a certain type can be chosen: In a triangle-cone we always have a regular
subpatch containing the degree 5 vertices, in a hexagon-cone there is always a subpatch
containing the pentagons with a boundary sequence where vertices of degree 2 and 3 are
alternating except 6 — p places with two succeeding vertices of degree 2. Similarly to the
boundary of regular triangle-patches, the subpatch in the hexagon-cone can also be chosen
such that either all segments between succeeding degree 2 vertices are of the same length,
or one is by 1 shorter than the others. If we choose the patch with minimal boundary
length, we conclude that the boundary can be described by two parameters (for p € {0,1,5}
even by only one). This enables a parameterization of possible ‘caps’ of cones and hence a
classification of the cones themselves, since such a cap boundary can only be filled with a
finite number of patches. Of course this result can easily be generalized to cones with other
defective vertex degrees or faces. However, the case with hexagons and pentagons is most
interesting for application in chemistry.

Finally, one of the main results of the present thesis consists in the determination of the
expander constants of fullerenes. We translated the problem to the duals, that are geodesic
domes, where the task can be formulated as follows: Given a geodesic dome with n faces,
determine among all subpatches with at most § faces one where the ratio of boundary
length and number of faces is minimal. We have presented two different approaches of how
to deal with that problem. The first one allows to verify the expander constants of classes of
symmetric fullerenes by hand and is essentially based on the results on minimal boundaries
obtained in this thesis. This way we proved the expander constant of the fullerene with
icosahedral symmetry where all edges of the signature graph have Coxeter coordinates (g, q)
to be 1%} in case ¢ is even, and 1%} + ﬁ in case q is odd — obviously decreasing to 0 for
q going to infinity. We assume that with similar arguments, the expander constants of the
other two classes of fullerenes with icosahedral symmetry can be determined. An interesting
task for future work could also be to apply the technique to other symmetric classes of
fullerenes listed in [21], where all parameters for fullerenes with 10 or more symmetries can

be found.

A second approach regarding the determination of the expander constant of fullerenes is
based on an algorithm and its implementation. With the help of a computer program we
obtained many interesting results and answers to questions posted in the beginning: We
list for each n < 140 the maximal expander constant among all fullerenes with n vertices
and the number of fullerenes where this constant is reached (tables 5.2 and 5.3). Examples
of such fullerenes can be found in the appendix. The numbers of fullerenes with maximal
expander constants show a pattern for which we cannot offer any explanation, but which
could be the subject of further research. Also, it would be interesting to see whether the
boundary length and face number of optimal patches is indeed monotonically increasing,
as our outcome suggests, and how the expander constant develops for larger n. For this it
would be helpful to continue the list even further.

Moreover, we analyzed the maximal expander constants for isolated-pentagon fullerenes (see
tables 5.4 and 5.5). An important outcome is that not only there exist fullerenes which do
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not fulfill the isolated-pentagon-rule and have a larger expander constant than isolated-
pentagon fullerenes of the same size, but that there are even cases (n = 90 and n = 108)
where none of the fullerenes with highest expander constant is an isolated-pentagon fullerene.
This is rather surprising because in chemistry, isolated-pentagon fullerenes are considered
to be most stable. It would surely be worthwhile to investigate further in this context and
compare the computed values and the particular fullerenes with findings from chemistry in
order to see whether a connection between the expander constant and the chemical stability
of fullerenes exist.

A further direction for future research could lie in combining the precise values that we com-
puted with the results connecting the expanding properties of a graph with the eigenvalues
of its adjacency matrix. An interesting task could be to consider the spectral gap of the
fullerenes that we determined to have particularly large expander constants, or the other
way around to compute with our program the expander constants of fullerenes for which the
spectral gap has been shown to be particularly large. We hope that the results from this
thesis could provide new insights in this very interesting and applicable research field.
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Appendix A

Figures

In the following, geodesic domes can be found whose duals are fullerenes with maximal
expander constants. The figures are created with CaGe and are results of the program
described in section 5.4.2. In most cases, there is more than one fullerene with that expander
constant (compare the tables in section 5.4.2); then we chose an arbitrary one.

First, the figures A.1 and A.2 show duals of isolated-pentagon fullerenes with n vertices
— one for each n < 100 for which isolated-pentagon fullerenes exist — where each is one
with a maximal expander constant among all isolated-pentagon fullerenes of the same size.
Actually, in all cases except n = 90 the expander constant is even maximal among all
fullerenes with n vertices.

Furthermore, in the figures A.3 until A.7 one geodesic dome is given for each number n of
faces with n < 100 where a geodesic dome exists, such that the dual fullerene on n vertices
has a maximal expander constant among all fullerenes of the same size. There we chose, if
possible, one where the respective fullerene does not fulfill the isolated-pentagon rule; this
was always possible except in case n = 88, where the only fullerene with maximal expander
constant is an isolated-pentagon fullerene.

In every geodesic dome pictured here, one cycle is indicated by fat lines, which determines
one possible, arbitrarily chosen optimal patch on its bounded side. The respective expander
constant is given as a fraction such that its numerator is the boundary length of that patch
and its denominator the number of faces.
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Figure A.1: Geodesic domes with n < 84 faces whose duals are isolated-pentagon fullerenes
with maximal expander constants. The value ch gives the expander constant as a fraction
which indicates the boundary length and face number of an optimal patch, and for each
geodesic dome, one possible optimal patch is shown.
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ch=12/48

Figure A.2: Geodesic domes with 86 < n < 100 faces whose duals are isolated-pentagon
fullerenes with maximal expander constants. The value ch gives the expander constant as a
fraction which indicates the boundary length and face number of an optimal patch, and for
each geodesic dome, one possible optimal patch is shown.
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Figure A.5: Geodesic domes with 58 < n < 74 faces where the corresponding fullerenes have
maximal expander constants. The value ch gives the expander constant as a fraction which
indicates the boundary length and face number of an optimal patch, and for each geodesic
dome, one possible optimal patch is shown.
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Figure A.6: Geodesic domes with 76 < n < 92 faces where the corresponding fullerenes have
maximal expander constants. The value ch gives the expander constant as a fraction which
indicates the boundary length and face number of an optimal patch, and for each geodesic
dome, one possible optimal patch is shown.
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ch=12/48

k{}ﬁﬁp

S N

Figure A.7: Geodesic domes with 94 < n < 100 faces where the corresponding fullerenes
have maximal expander constants. The value ch gives the expander constant as a fraction
which indicates the boundary length and face number of an optimal patch, and for each
geodesic dome, one possible optimal patch is shown.
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in a disordered hexagon-patch, 44
boundary face, 70
boundary labeling, 146
boundary label sequence, 150
boundary length
of a disordered triangle-patch, 14
of a disordered hexagon-patch, 44

of a general disordered hexagon-patch,

56
boundary segmentation, 75
boundary sequence, 14
boundary vertex
in a disordered triangle-patch, 14
in a disordered hexagon-patch, 44
bounded face
in a disordered triangle-patch, 14
in a disordered hexagon-patch, 44

Cheeger constant, 137
closure of an embedding, 19
Coxeter coordinates, 16
cutpath, 28

defective vertex, 14
disordered subpatch, 28
disordered hexagon-patch, 44
disordered triangle-patch, 14

embedding of C,, 19

embedding of an enclosing cycle, 24
enclosing cycle, 22

expander constant, 137

expander quotient, 145

extension, 72

fullerene, 141

general disordered hexagon-patch, 56
general disordered triangle-patch, 22
general p-patch, 22
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general (p, s, t)-hexagon-patch, 56
geodesic dome, 145

hexagon-p-patch, 134
horizontal edge, 18

infinite hexagon-cone, 134
infinite triangle-cone, 129
inner dual, 59

inner edge, 14

inner face, 70

inner vertex, 14

labeling of angles, 22
labeling of enclosing cycle, 23
lattice, 16

left face, 23

neighbouring faces, 70
nice boundary, 71

optimal patch, 145

regular
triangle-patch, 75
hexagon-patch, 134
right face, 23

side, 71
spiral, 76

triangular lattice, 16
with coordinate system, 18



