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Preface

Stochastic models play an important part in many fields of science like physics and biology.
In this thesis the influence of randomness in two such models is considered. It is therefore
divided into two parts.

The first part deals with diffraction. Starting from a deterministic model we analyze the
influence of randomness. The main result is the proof of the absence of singular continuous
parts in the diffraction measure of particle gases with short range interaction.

The second part deals with recognition in the immune system. In this part the main focus
lies in the probabilistic modeling itself, preparation of the mathematical tools, and the
analysis to show the ability of the models to explain the reliable recognition of foreign
invaders by certain white blood cells.

Outline

Due to better and better measuring techniques, deterministic models often do not suffice
to describe the reality. During the last years an improvement of measuring techniques
also occured in the framework of diffraction experiments. Within the framework of
experiments concerning T-cell recognition, the observations in the last decades have
shown that deterministic models are highly idealized. Therefore, stochastic methods
become more and more important and are hence used in this thesis.

The Chapters 1 to 3 are concerned with the mentioned problem from physics, namely
(kinematic) diffraction. Chapter 1 explains why the Fourier transform of an autocorrela-
tion function is the relevant quantity. We start with a short derivation of an approximation
of the scattering amplitude of a single unit which is then expanded to a bounded object
consisting of many units. After that, we show that the practically observed scattering in-
tensity is given by the Fourier transform of the autocorrelation of the function (or measure)
which describes the object.

In the second chapter, the standard deterministic model for kinematic diffraction is con-
sidered. We start with the recapitulation of the essential mathematical tools in order to
expand our consideration to unbounded objects. Then, we state the important results for
the diffraction of pointlike scatterers, particularly of crystals.

The third chapter is the main part with the new results. There, we are concerned with the
influence of randomness on the diffraction. We consider particle gases on fixed point sets
and certain dynamical systems. In the first instance, we prove general results concerning
the diffraction. Afterwards, we construct Gibbs measures. These are employed to ensure
ergodicity which we need for more explicit results concerning the diffraction.
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Chapters 4 to 6 are concerned with the biological problem. The problem itself is presented
in Chapter 4. As already mentioned, it deals with the recognition of foreign invaders by
certain white blood cells called T-cells. In Chapters 5 and 6, probabilistic models are
analyzed to show that they make recognition possible.

In Chapter 5, the problem is considered without taking into account a learning process
of the T-cells. We start with a model proposed by van den Berg, Rand and Bourroughs
and then present a generalized version. Since the relevant events are rare, we need large
deviation results. These are recapitulated and used to derive approximations, which later
are applied to the analysis of the generalized model. At last we look at a reduced model
in order to get exact results. The bottom line is that, in all three models, recognition is
possible but only if there are many invaders present.

In the last chapter, the afore mentioned learning process is included. Again we start from
the model proposed by van den Berg, Rand and Bourroughs and pass on to the generalized
version. We then draw on novel insights into the learning process, leading to presenting
and analyzing an alternative model.
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6.5 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 77



List of Figures

1.1 Phase difference between two emitted waves . . . . . . . . . . . . . . . . . . 9

2.1 The two approximations of kinematic diffraction . . . . . . . . . . . . . . . 14

4.1 A sample of different T-cells and APCs . . . . . . . . . . . . . . . . . . . . 44
4.2 An immunological synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Average stimulation rate as a function of the average waiting time . . . . . 49
5.2 The ω-distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Comparison of approximated activation curves with their simulations . . . . 57
5.4 Activation curves for two different distributions of the mean binding time . 58
5.5 Illustration of the bounds resulting from cutting of the convolution . . . . . 60
5.6 Illustration of the lower bound for the foreign-self distinction . . . . . . . . 61
5.7 Bounds for the original distribution . . . . . . . . . . . . . . . . . . . . . . . 61
5.8 Activation curves for the reduced model . . . . . . . . . . . . . . . . . . . . 62
5.9 Bounds for scaled Bernoulli distributions . . . . . . . . . . . . . . . . . . . . 63
5.10 Supremum bounds for scaled Bernoulli distributions . . . . . . . . . . . . . 63

6.1 Simulated activation curves with negative selection . . . . . . . . . . . . . . 67
6.2 Activation curves of the variable and the thymical changed components . . 70
6.3 Bounds for the foreign-self distinction in the emulation model for the ω-

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Bounds for the foreign-self distinction in the emulation model for aBerppq . 71
6.5 Bounds for the foreign-self distinction in the emulation model for an expo-

nential distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72





Introduction

Mathematical models in general describe systems in a mathematical way (i.e., with the
help of mathematical language). They are used with great success in the natural sciences,
particularly in physics and biology.

The first requirement for mathematical modeling is the extraction of the essential aspects
of the system. Then, one has to choose the appropriate mathematical methods to analyze
the model. In the end, one must check whether the results are in agreement with the
experimental observations.

Mathematical models may be classified in various ways. One possibility is to distinguish
between deterministic and probabilistic (stochastic) models. In the former the states of
the system are uniquely determined by parameters. In contrast, in the latter randomness
is allowed. The states of the systems are then described by probability distributions.

It is clear that stochastic models are more realistic than deterministic ones since real
systems can never be exactly determined. However, one often uses deterministic models
(as a start) since they are easier to deal with. This may be done since the discrepancy
of the results is often lower than the precision of measurements. (For example, quantum
mechanics is exact. However, the discrepancy between forecasts of quantum mechanics
and those of classical mechanics is often less than the precision of measurements; therefore
one may also use classical mechanics.)

In this thesis we are concerned with mathematical models for two different systems, one
arising in physics, the other in biology.

In the first part (devoted to the physical problem) we start with a deterministic model
and then introduce randomness. This corresponds to the development sketched above. In
the second part (concerning the biological problem) we directly consider a probabilistic
model but vary the degree of randomness.

Part I

The considered system in physics is an arbitrary solid (given by its atoms) and one is
interested in its diffraction. As we will see in the first chapter, kinematic diffraction may
be described by the Fourier transform of the autocorrelation of the solid.

In mathematical diffraction theory (i.e., the mathematical model for diffraction), the ob-
jects are no longer described by functions but by measures and distributions, respectively.
The reason is that one can generalize the considerations of the first chapter to unbounded
objects. This will be done for deterministic objects in the second chapter.
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However, objects are never perfect (for instance due to impurities and other random
influences). Therefore, the influence of disorder (i.e., a random object) is analyzed
afterwards (in Chapter 3).

In practice, one usually observes only a slight modification of the Bragg peaks (i.e., the
pure point part of the diffraction measure) and additional diffuse scattering (i.e., an
absolutely continuous part) compared to the diffraction predicted by deterministic models.
(For some examples of diffuse scattering compare [61].) A probabilistic modeling should be
in agreement with this observation. In particular, it is interesting to investigate whether
a stochastic description will predict the absence of singular continuous components. This
is the aim of the first part of this thesis.

We consider so-called particle gases with finitely many different scatterers. These are
objects defined by point sets and measures specifying the occupation of the individual
points by the possible particles. In this context, we have to distinguish between particle
gases defined by a fixed point set and those defined by a dynamical system of point sets.
Both cases are considered in this thesis.

One interesting class of particle gases are those where the different types of particles
occupy the points according to some random process described by a Gibbs measure. The
relevance of Gibbs measures, in turn, stems from the assumption that the structure under
consideration is in thermal equilibrium. Clearly, this need not always be the case, but we
only consider equilibrium systems here since the equilibrium assumption is good for many
solids.

The special case of a particle gas where the underlying point set is a lattice is called a lattice
gas. In two recent publications [8, 36], it was shown that certain binary lattice gases, such
as those based upon a ferromagnetic Ising model with short range interaction, additionally
inherit an absolutely continuous spectral component, but no singular continuous one. The
natural question arises whether this situation is more general.

The answer to this question is affirmative, and it is the aim of this contribution to extend
the results of [8] to increase the evidence for the rather natural conjecture that non-trivial
singular continuous diffraction spectra are the exception, at least as the result of stochastic
deviations from systems with a strongly ordered ground state, which are of special interest
(see [26]).

The extension refers on the one hand to the generalization of binary lattice gases to those
with finitely many types of particles (compare [9]). On the other hand we generalize the
theorems to a broader class of point sets than lattices. The beginning may be found in [9].
However, in this case we have to consider certain dynamical systems (each of them arising
from a fixed point set) instead of the point sets themselves.

This is the reason why we have to construct Gibbs measures on dynamical systems (see
Sect. 3.3). In the end we get the main result in Corollary 5.

Result. In the case of a regular model set, a translation invariant finite or short range
potential and sufficiently high temperature there occurs no singular continuous part in the
diffraction spectrum of the particle gas given by the corresponding Gibbs measure.

This has already been stated in [9, Cor. 5.5], but without correct proof and restricted to
a finite range potential.
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Part II

The biological system considered here is the immune system, particularly the set of encoun-
ters between so-called T-cells and antigen-presenting cells (two kinds of white blood cells).
The task of the T-cells is the recognition of foreign invaders like bacteria or viruses (into
an individual) and, in succession, the initiation of an immune response that eliminates the
intruders. The recognition takes place on the occasion of the mentioned encounters and
this is what we are going to look at. It is clear that two properties have to be guaranteed.

On the one hand, at least one T-cell has to be activated if there is a foreign invader
present. On the other hand, no activation should occur if no invader is present.

In practice, T-cells are normally (in a healthy individual) able to recognize invaders in the
sense that they successfully distinguish between foreign and self-molecules. As in the first
part, a realistic modeling should be in agreement with this observation.

In Chapter 4 it will become clear that the set of encounters cannot be modeled determin-
istically without severe limitations. We therefore directly start with probabilistic models.
The aim of the second part of this thesis then is the analysis of these models in order to
show that they are able to explain a reliable recognition.

The starting point is a model of van den Berg, Rand and Burroughs [11] (henceforth re-
ferred to as BRB) which is able to perform this task. In the leading sections of Chapter 5
this model is reconsidered and its analyis refined (compare [65]). In particular, the analysis
is put on a solid mathematical basis by stating and applying the necessary large devia-
tion result. This is an asymptotic result for the limit of an infinite system, which leads
to an approximation for the true finite system. Moreover, we put forward and analyze
numerically a generalization of the model, which is biologically more realistic.

We then complement these results for exact bounds for the finite system in order to
understand which features ensure the reliable recognition of foreign invaders. This is
developed in the last section of Chapter 5 for a reduced model, which consists of the
essential features of the BRB model.

As in the original model, for both the generalization and the reduced model, a reliable
recognition is guaranteed only under certain assumptions on the abundance of the invader.
But in reality, these assumptions are not always fulfilled. Therefore, we have to take into
account an additional learning process called negative selection.

This was already done in the context of the original model. There, it was shown that the
recognition then already works under less restrictive assumptions. In the first section of
Chapter 6 (compare [65]) we show that the same is true in the generalized version, too.
However, we have to resort to simulations.

The desire for analytical results, in combination with novel insights into immunobiology,
have been the reasons to develop a new (so-called emulation) model for negative selection
which is introduced in the second section of Chapter 6. For the analysis of this model we use
the bounds developed for the reduced model. As in the previous model of negative selection,
recognition now works under less restrictive assumptions. However, in both models the
invader has to be present in an adequate amount.

A model that does not even require this assumption is presented in the third section of
Chapter 6. In contrast to the above models it relies on a highly idealized all-or-none law
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of stimulation.

In the end we get the following result.

Result. Either an abundance of the invader is required or an all-or-none law of stimula-
tion.

In the latter case the question remains whether enough T-cells survive negative selection.
We shortly comment on this in the fourth section of Chapter 6.



Part I

Mathematical diffraction theory





Chapter 1

Physical background

The term diffraction is used in different ways in the literature. In general, one means a
form of scattering which occurs whenever electromagnetic radiation interacts with matter.
Following, we restrict ourselves to the kinematical approximation of diffraction in the
far field. Our goal is to derive the relevant formulas for diffraction phenomenons in the
presence of objects consisting of several scattering units.

1.1 Scattering from a single unit

We start from the fact that monochromatic plane waves hit a scattering unit. Since for our
purposes the vector nature of the wave amplitudes is not important (the only consequence
is a polarization factor; compare [20, Sect. 1.2.2]), we consider them as scalar.

Under the assumption that the scattering unit is described by a potential field ϕ P L1pRdq,
we have to consider scattering of particles by such a field (compare [63, Chap. 4]). This
can be done starting with the time-independent Schrödinger equationr▽2 � 4π2

λ2
� µϕprqsψ � 0 ,

where λ is the wavelength and µ the parameter specifying the strength of the interaction
with the potential field. Alternatively, one may consider the (equivalent) integral equation

ψkin
prq � exp p�2πikinrq � µ

»
exp p�2πi|r � r1|{λq

4π|r � r1| ϕpr1qψkin
pr1qdr1 ,

where the first part represents the incident wave with wavevector kin (|kin| � 1{λ) and the
second one the scattered radiation resulting from the spherical waves emitted from all the
points in the scattering field. The spherical waves are given by the Green function

exp p�2πi|r � r1|{λq
4π|r � r1| .

For the first Born approximation one assumes that the amplitude of the scattered wave is
much less than the incident wave amplitude. Therefore one sets

ψkin
pr1q � exp

��2πikinr
1� .
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This scenario, in which the scattered wave is made up of contributions scattered directly
from the incident wave, is known as kinematical approximation1 . It is good for weakly
scattering fields such as that from X-rays or neutrons.

On the Fraunhofer condition that the overall dimensions of the scattering field are much
smaller than the distances to the observation point (|r1| ! |r|), one yields the so-called far
field approximation

ψkin
prq � exp p�2πikinrq � exp p�2πi|r|{λq|r| µ

4π

»
expp�2πipkin � koutqr1qϕpr1qdr1�: exp p�2πikinrq � exp p�2πi|r|{λq|r| fpkin, koutq .

Here, we used the approximation

exp p�2πi|r � r1|{λq|r � r1| � exp
��2πi|r|a1� 2rr1{|r|2 � |r1|2{|r|2{λ	|r|� exp p�2πi|r|{λq exp

�
2πi r|r|λr1	|r|�:

exp p�2πi|r|{λq expp2πikoutr
1q|r| .

Thus, in the end, we get a formula for the scattering amplitude (also called factor) of a
unit (e.g., an atom) defined by the potential field ϕ (in the case of an atom defined by its
electrons or its nucleus – depending on the matter of radiation):

fpqq � fpkin, koutq � µ

4π

»
expp�2πipkin � koutqr1qϕpr1qdr1� µ

4π

»
expp�2πiqr1qϕpr1qdr1 .

We see that the scattering amplitude is given by a constant times the Fourier transform
of the potential field (well-defined due to integrability of the potential). Such factors are
tabulated in the international tables of crystallography (see e.g. [60]).

1.2 Scattering from an object consisting of several units

We proceed with an object consisting of two scattering units (unit 1 at the origin and 2
at position r2).

Let us figure the object as a new unit with potential ϕprq � ϕ1prq � ϕ2pr� r2q, where ϕ1

and ϕ2 are the potentials of the two single units if they were located at the origin. Here,
one assumes once more that the dimensions of the scattering field are much smaller than
the distances to the observation point.

1 alternatively called single or elastic scattering
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This results in the scattering amplitude

F pqq � µ

4π

»
expp�2πiqrqϕprqdr� µ

4π

»
expp�2πiqrqϕ1prqdr � µ

4π

»
expp�2πiqrqϕ2pr � r2qdr� µ

4π

»
expp�2πiqr1qϕ1pr1qdr1 � µ

4π

»
expp�2πiqr1qϕ2pr1qdr1 expp�2πiqr2q .

The obtained equation may be written as

F pqq � f1pqq � f2pqq expp�2πiqr2q . (1.1)

We will shortly illustrate how this comes about. Let f1pkin, koutq be the factor of the
scattering unit at the origin and analogously f2pkin, koutq the one of the second unit. In
order to derive the scattering amplitude for the whole object one has to calculate the
phase difference between the emitted waves (see Fig. 1.1).

0

x

y

kin

kout

r2

Figure 1.1: Phase difference between two emitted waves

The distance x is given by the scalar product of kin and r2 divided by the norm of kin. In
analogy, y is given by the negative scalar product of kout and r2 divided by the norm of
kout. Therefore the phase difference is

2π

λ
px� yq � 2π

λ
λpkin � koutqr2 � 2πpkin � koutqr2 ,

and setting kin � kout � q, one gets (1.1).

Generalization to an object consisting of n units yields

F pqq � ņ

j�1

fjpqq expp�2πiqrjq � µ

4π

»
expp�2πiqrqϕprqdr, (1.2)

where ϕprq � °n
j�1 ϕjpr � rjq.
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1.3 Scattering intensity of bounded objects

We have seen that the scattering amplitude is given by the Fourier transform of the
potential describing the object.

However, in diffraction experiments, one only observes the scattering intensity. It is propor-
tional to the product of the complex amplitude with its complex conjugate (see [20, 33]),
i.e.,

Ipqq � F pqqF pqq .
Applying the convolution theorem (compare [54, Thm. 1.2.4]) yields

Ipqq � {ϕ � rϕ ,
with rϕprq � ϕp�rq � ϕ � ιprq where ιprq � �r.
Up to now, we considered only real functions ϕ. Since in this case rϕprq � ϕ � ιprq, the
convolution ϕ � rϕ complies with the autocorrelation

P psq � »
ϕprqϕpr � sqdr . (1.3)

In this way, we realize the significance of the Fourier transform of the autocorrelation.

In the case of an object consisting of n units we have

Ipqq � � µ

4π

	2
»

expp�2πiqr1qϕpr1qdr1 » expp2πiqrqϕprqdr� � µ

4π

	2
» »

expp�2πiqpr1 � rqqϕprqϕpr1qdrdr1� � µ

4π

	2
» �»

ϕpr1qϕpr1 � sqdr1
 expp�2πiqsqds� � µ

4π

	2
»
P psq expp�2πiqsqds .

Due to (1.2), this is the same as

Ipqq � ņ

j�1

ņ

k�1

fjpqqfkp�qq exp p�2πiqprj � rkqq . (1.4)

The latter form of the scattering intensity illustrates in a clearer way that it is the intensity
of an object consisting of n units with scattering factors fj at the positions rj , 1 ¤ j ¤ n,
n P N.



Chapter 2

Mathematical model for

deterministic objects

We start with a mathematical description of deterministic objects. For this reason we
recapitulate the essential aspects of measure and distribution theory (compare [25, Sect. 13]
and [40]).

2.1 Measure and distribution theory

Let K � K
�
R

d
�

be the space of complex-valued continuous functions with compact sup-
port.

Definition 1. 1. A (complex) measure µ on R
d is a linear functional on K which fulfills

the condition that for every compact subset K � R
d there is a constant aK such that|µpgq| ¤ aK‖g‖8 for all g P K with support in K.

2. The measure µ defined by µpgq :� µpgq is the conjugate of µ. In an analogous wayrµ is defined by rµpgq :� µprgq.
3. A measure µ is positive if µpgq ¥ 0 for all g ¥ 0.

4. The smallest positive measure |µ| such that |µpgq| ¤ |µ|pgq for all non-negative g P K
is the total variation (or absolute value) of µ.

5. A measure is finite if |µ|pRdq is finite, and translation bounded if for every compact
set K � R

d there is a constant bK such that supxPRd |µ|pK � xq ¤ bK (which means
that the measure is pbK ,Kq-translation bounded).

Remark. 1. The vector space of measures on R
d is denoted by M

�
R

d
�
. It is given

the vague topology, i.e., a sequence of measures µn converges vaguely to µ if
limnÑ8 µnpgq � µpgq for all g P K.

2. Taking Lebesgue’s measure as a reference, a measure µ admits a unique decomposi-
tion into three parts,

µ � µpp � µsc � µac ,

where pp, sc and ac stand for pure point, singular continuous and absolutely contin-
uous.
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3. The convolution µ�ν of two measures µ and ν with at least one of the two measures
having compact support or being finite, while the other is translation bounded, is
given by pµ � νqpgq :� » »

gpx� yqdµpxqdνpyq . (2.1)

It is well-defined due to [10, Prop. 1.13].

The advantage of a description by distributions is the possibility to define the Fourier
transform of infinite objects. Since all the objects in our context can be described by
translation bounded measures, we may restrict ourselves to a special subclass of distri-
butions, the so-called tempered distributions. They are linear functionals on the space
S � S

�
R

d
�

of Schwartz functions. These are rapidly decreasing C8 functions (for an
exact definition see Sect. VII.3 in [56]).

Definition 2. The Fourier transform of a Schwartz function Φ P S is given bypΦpkq :� »
Rd

Φpxqe�2πikxdx ,

where kx denotes the Euclidean inner product in R
d.

Remark. The Fourier transform of a Schwartz function is again a Schwartz function and
the inverse operation qΦpxq :� »

Rd

Φpkqe2πixkdk

exists, meaning that
qpΦ � pqΦ � Φ for all Φ P S.

On the basis of these facts, a tempered distribution and its Fourier transform can be
defined.

Definition 3. A tempered distribution T is a continuous linear functional on S. The
Fourier transform pT of a tempered distribution T is given by pT pΦq :� T ppΦq for all Φ P S.

Theorem 1. If there exists some ℓ P N such that»
d|µ|pxqp1� |x|qℓ   8 ,

the measure µ is a tempered distribution.

Proof. See [56, Thm. VII.VII].

Corollary 1. Every translation bounded measure defines a tempered distribution.

This corollary is the reason why objects in our context can be described by tempered dis-
tributions. However, the Fourier transform of a tempered distribution is again a tempered
distribution but it need not be a measure. And since the product of two tempered distri-
butions is not defined in general (compare [58, §3.IV]), the scattering intensity cannot be
calculated by the product of the scattering amplitude and its complex conjugate. Instead,
one can calculate the Fourier transform of the autocorrelation.

Theorem 2. If µ is positive definite in the sense that µpΦ � rΦq ¥ 0 for all Φ P S then pµ
is a positive measure.
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Proof. By Bochner’s theorem (see e.g. [56, Thm. VII.XVIII]), the existing inverse Fourier
transform qµ is a positive measure. SincepµpΦq � ppqµpΦq � qµpppΦq � qµpΦ � ιq ,
the Fourier transform is a positive measure, too.

Since every autocorrelation measure is translation bounded (see [35, Prop. 2.2]), it is again
a tempered distribution, and, therefore, its Fourier transform is defined. Moreover, every
autocorrelation is positive definite and due to the last theorem we have

Corollary 2. The Fourier transform of an autocorrelation measure exists and is a positive,
translation bounded measure on R

d, with a unique decompositionpγ � pγpp � pγsc � pγac

into its pure point, singular continuous and absolutely continuous parts, relative to
Lebesgue measure as reference pbeing the Haar measure of R

dq.
2.2 Change from bounded to unbounded objects

Returning to the considerations of Chapter 1, the (potential of an) object consisting of n
units can be described by the absolutely continuous measure

ϑpgq � »
gpxqϕpxqdx

or by the discrete (pure point) measure

ϑpgq � ņ

j�1

fjδrj
pgq

with scattering factors fj of the individual units at the positions rj , 1 ¤ j ¤ n, n P N.
Here, δx0

is the Dirac measure which assigns the function value at x0 to each (continuous)
function. However, the measure can also be understood as a tempered distribution. The
only difference is the space, in which g lies.

The autocorrelation measure (analogous and due to (1.3) and (2.1)) is then given bypϑ � rϑqpgq � »
gpzq » ϕpxqϕpx � zqdxdz

and pϑ � rϑqpgq � ņ

j�1

ņ

k�1

fjfkδrj�rk
pgq , (2.2)

respectively.

Fourier transformation of the latter results inz
ϑ � rϑ � ņ

j�1

ņ

k�1

fjfk exp p�2πiqprj � rkqq
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(compare p1.4q), and thus gives the scattering intensity.

Up to now, we considered objects consisting of finitely many scattering units. In this
context we used a first approximation, namely the kinematical far-field one, assuming that
the distance to the observation point is very large (see Subsection 1.1). From now on, we
use a second approximation. Since the objects analyzed in diffraction experiments consist
of many units, it is common practice to model these objects in the limit of increasing
number of scattering units (compare Fig. 2.1).

large distance

point
far−field approximation

object

many units
average scattering

observation

Figure 2.1: The two approximations of kinematic diffraction

For the purpose of convergence one is interested in the scattering intensity per unit or unit
volume (compare [20, 35]). That is the reason why one is interested in the vague points of
accumulation of

γR :� 1

volpBRqϑR � �ϑR , (2.3)

the normalized autocorrelation measures for bounded regions. Here, BR denotes the closed
ball of radius R with centre 0, volpBRq its volume and µR the restriction of a measure
µ to the ball BR. If only one point of accumulation exists, the autocorrelation is unique
and called the natural autocorrelation. As we have seen above, its Fourier transform (in
the sense of distributions) is defined. In our model, this is the scattering intensity measure
of the considered object. It can be decomposed in pure point, absolutely and singular
continuous parts. The pure point part represents the so-called Bragg peaks. The absolutely
continuous part describes the diffuse scattering, and the singular continuous part represents
the rest (compare [26]).

2.3 Diffraction of pointlike scatterers

In the idealization of pointlike scatterers we may restrict ourselves to measures that are
concentrated on discrete point sets Γ . In order to derive general results, we consider FLC
point sets, characterized in the following (compare [55]).

Definition 4. 1. A point set Γ � R
d is uniformly discrete if r ¡ 0 exists such that,

for all x P Γ , px�Brq X Γ � txu.
2. A point set Γ � R

d is locally finite (closed and discrete) if for any compact set
K � R

d the intersection Γ XK is a finite set.
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3. A point set Γ � R
d is of finite local complexity (FLC) if and only if Γ �Γ is locally

finite.

Proposition 1. For a discrete point set Γ � R
d, the following are equivalent:

1. Γ is of finite local complexity.

2. For every compact set K � R
d, there is a compact set K 1 � R

d such that, for every
x P R

d, there is some x1 P K 1 with px� Γ q XK � px1 � Γ q XK 1.
Proof. See [55, Prop. 2.3].

Remark. 1. A point set of finite local complexity is locally finite.

2. A point set of finite local complexity is uniformly discrete (since 0 is an isolated
point of Γ � Γ ).

3. A point set Γ is of finite local complexity if for any compact set K � R
d there

are only finitely many clusters Γ X px � Kq, x P R
d, up to translations (due to

Proposition 1).

A fixed unbounded object with underlying FLC point set is then modeled by the measure

δ
pfq
Γ :�

x̧PΓ fxδx

and we have

Proposition 2. Let Γ � R
d be an FLC point set and ΓR the restriction of Γ to the ball

BR. If the autocorrelation coefficients

η
pfq
Γ pzq :� lim

RÑ8 1

volpBRq ¸
xPΓR

x�zPΓ fxfx�z

exist for all z P Γ � Γ , the natural autocorrelation is given by

γ
pfq
Γ � ¸

zPΓ�Γ

η
pfq
Γ pzqδz . (2.4)

Proof. Due to p2.3q,
γ
pfq
ΓR

� 1

volpBRq ¸
x,yPΓR

fxfyδx�y ,

compare p2.2q. If we choose N ¡ 0 and g P K with support in BN , we have

γ
pfq
ΓR
pgq � 1

volpBRq ¸
x,yPΓR

x�yPBN

fxfyδx�ypgq � 1

volpBRq ¸
zPpΓ�Γ qminpN,2Rq ¸

xPΓR
x�zPΓ fxfx�zδzpgq .

Since the number of terms in the summation over z is finite due to the FLC property (see
3. in Definition 1), the assumption gives

lim
RÑ8 γpfqΓR

pgq � ¸
zPpΓ�Γ qN ηpfqΓ pzqδzpgq .

Because N and g were arbitrary, p2.4q is proven (see [4, 5]).
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In the following, we assume the scattering factors fx to be the same for all units. Thus,
we consider measures of the form

δΓ :�
x̧PΓ δx .

Proposition 3. Let Γ � R
d be an FLC set for which the frequencies of finite patterns

exist uniformly. Then the autocorrelation γΓ as well as the diffraction measure exist. The
latter is a positive, translation bounded measure on R

d, with a unique decompositionxγΓ � �xγΓ

�
pp
� �xγΓ

�
sc
� �xγΓ

�
ac

into its pure point, singular continuous and absolutely continuous parts, relative to
Lebesgue measure as reference pbeing the Haar measure of R

dq.
Proof. Due to the frequency property,

ηΓ pzq :� lim
RÑ8 1

volpBRq ¸
xPΓR

x�zPΓ 1 ,

the frequency of the finite pattern K � t0,�zu, exists. The claim now follows from Corol-
lary 2.

Proposition 4. Let Γ � R
d be an FLC set, and consider the complex measure

ϑ :� ¸
zPΓ�Γ

gpzq δz .
If

°
zPΓ�Γ |gpzq|   8, ϑ is a finite measure, and the Fourier transform pϑ is a bounded,

uniformly continuous function that defines an absolutely continuous measure on R
d.

Proof. ϑ is a pure point measure because Γ�Γ is discrete and closed by the FLC property,
so that |ϑ|pRdq � °

zPΓ�Γ |gpzq|   8 implies that ϑ is finite.

By the general properties of the Fourier (or Fourier-Stieltjes) transform, compare [54,
Theorem 1.3.3], pϑ is then a bounded and uniformly continuous function on R

d. It is
thus locally integrable, and hence defines an absolutely continuous measure on R

d by the
Radon-Nikodym theorem.

The best studied objects in our setting are lattice periodic ones, so-called crystals. In this
case, both Γ and Γ � Γ are lattices, for example Z

d. The autocorrelation coefficients

ηΓ pzq � lim
RÑ8 1

volpBRq ¸
xPΓR

x�zPΓ 1 � lim
RÑ8 1

volpBRq card pΓR X pΓR � zqq � denspΓ q
are the same for all z P Γ � Γ � Γ , and the autocorrelation is given by

γΓ � denspΓ q
z̧PΓ δz � denspΓ qδΓ .

In order to calculate the Fourier transform of the autocorrelation in the lattice case,
Poisson’s summation formula (PSF) plays an important part.
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Theorem 3 (General PSF). If Γ is a lattice in R
d, with dual lattice

Γ � :� ty P R
d |xy P Z, for all x P Γ u ,

and if Φ P S, one has

m̧PΓ Φpmq � denspΓ q ¸
ℓPΓ� pΦpℓq .

Moreover, xδΓ � denspΓ qδΓ� .
Proof. See [45, Thm. 2.6 ff].

Corollary 3. The scattering intensity measure in the lattice periodic case is given byxγΓ � denspΓ q2δΓ� ,
which is a pure point measure that describes the Bragg peaks of the crystal.

This can easily be generalized to any measure of the form

ϑ � ρ � δΓ
with ρ some finite measure. Since the autocorrelation is well-defined, it can be calculated
by

γ
pρq
Γ � denspΓ qpρ � rρq � δΓ

and the diffraction then gives y
γ
pρq
Γ � |pρ|2 � pdenspΓ qq2 � δΓ�

by an application of the convolution theorem. The finite measure ρ can accomodate the
distribution of finitely many possibly different atoms over the unit cell of Γ as well as
characteristic profiles of the atoms. The result shows up as the continuous modulation
factor |pρ|2 in the diffraction measure, see [20] for various applications.

Remark. Besides lattices there are other examples of pure point diffractive systems as
regular model sets, also called cut and project sets [51]. In general, however, other spectral
types, or mixtures, can occur [4, 36, 39, 61].





Chapter 3

Influence of randomness

In the last chapter, we analyzed the diffraction (scattering intensity) of fixed pointlike
scatterers as for example crystals. However, in reality, the objects are never perfect. All
systems are thermally, chemically or otherwise disturbed, which results in an uncertainty
of the location or the occupation with the different scatterers. This can be modeled by a
stochastic modification of perfect structures. (With respect to the location this has been
done for example in [34].)

In this context, one is interested in the influence of the randomness (disorder) on the
diffraction. In practice, one observes only a slight modification of the pure point part and
the diffuse scattering. A realistic modeling should be in agreement with this observation.
In particular, it is interesting to investigate whether a stochastic description will predict
the absence of singular continuous components.

In this chapter, we will be concerned with the random occupation of point sets by different
scatterers, so-called particle gases. Let W :� tc1, . . . , cnu, n P N, with ci P C, 1 ¤ i ¤ n,
be the set of possible scattering strengths representing the different scatterers.

We start with particle gases on fixed FLC point sets. They may be modeled by random
fields.

3.1 Particle gases on fixed point sets

We go on with the crystals considered at the end of the last chapter. Let Γ :� Z
d (which

results in Γ � Γ � Z
d), and consider the random field pHxqxPΓ with Hx : W Γ Ñ C,

Hxpωq � ωx. Since Γ is a lattice, the particle gas is a lattice gas and we have

Lemma 1. Let µΓ be a Z
d-ergodic measure on pW Γ ,WΓ q. Then, the autocorrelation of

the lattice gas exists µΓ -a.s. and is given by

γ
pHq
Γ � |µΓ pH0q|2 γΓ � denspΓ q ¸

zPΓ�Γ

covµΛ
pH0,H�zq δz . (3.1)

Proof. Let Tx denote the shift map, i.e., let TxpH0H�zq :� HxHx�z. Due to Birkhoff’s
ergodic theorem [41, Chapter 2], one has µΓ -a.s.:

η
pHq
Γ pzq � lim

rÑ8 1

volpBrq x̧PΓr
zPΓ TxpH0H�zq � lim

rÑ8 cardpΓrq
volpBrq µΓ pH0H�zq� denspΓ q µΓ pH0H�zq .
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Then, by using the fact that µΓ pH�zq � µΓ pH0q for all z P Γ , one has

γ
pHq
Γ � ¸

zPΓ�Γ

denspΓ q µΓ pH0H�zq δz� ¸
zPΓ�Γ

denspΓ q |µΓ pH0q|2 δz � ¸
zPΓ�Γ

denspΓ q �
µΓ pH0H�zq � |µΓ pH0q|2� δz� |µΓ pH0q|2 γΓ � denspΓ q ¸

zPΓ�Γ

covµΓ
pH0,H�zq δz ,

which establishes the claim.

Theorem 4. Let µΓ be a Z
d-ergodic measure on pW Γ ,WΓ q. If¸

zPΓ�Γ

|covµΓ
pH0,H�zq|   8 ,

the diffraction of the lattice gas µΓ -a.s. exists, is Z
d-periodic and consists of a pure point

part and an absolutely continuous part with continuous density. No singular continuous
part is present.

Proof. Due to Lemma 1, the autocorrelation measure is given by

γ
pHq
Γ � |µΓ pH0q|2 γΓ � denspΓ q ¸

zPΓ�Γ

covµΓ
pH0,H�zq δz .

This holds for µΓ -almost all elements of our lattice gas ensemble (respectively for µΓ -
almost all realisations of the corresponding stochastic process).

The first part of the autocorrelation gives, under Fourier transform, the pure point part
of the diffraction measure, by means of the Poisson summation formula for lattice Dirac
combs (compare Section 2.3). This part is clearly Z

d-periodic.

Furthermore, due to the assumption and Proposition 4, the second part of the autocor-
relation, under explicit Fourier transform, gives the absolutely continuous part of the
diffraction measure. It is again Z

d-periodic (compare [5, 8] for a more general explanation
of this phenomenon), and our claim follows.

We have to note that the stated theorem is limited to the lattice case. It can be extended
to general periodic objects but periodicity has to be ensured. An exception is the case
of independent variables, i.e., µΓ being the product measure. In this case, Γ may be any
FLC set since one may use the law of large numbers (compare [3, 9]). However, in general,
one has to consider particle gases on dynamical systems. These will be introduced in the
following.

3.2 Particle gases on dynamical systems

A particle gas on a dynamical system can be defined by a random measure.

Definition 5. A random measure with phase space R
d is a measurable mapping from a

probability space into
�
MpRdq,BpMpRdqq�.

In the following we will consider random measures with respect to different probability
spaces. These are specified before we finally determine the diffraction of the random mea-
sures.
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3.2.1 Dynamical systems

At first, we consider a dynamical system of FLC sets. This is the base of the larger
dynamical system of marked FLC sets, considered afterwards.

Proposition 5. For a point set Γ � R
d the following are equivalent:

1. Γ is of finite local complexity.

2. The orbit tx� Γ |x P Rdu is precompact in the local topology (LT), where two point
sets are close if, after a small translation, they agree on a large ball around 0 P R

d.

Proof. See [55, Prop. 2.3].

Due to Proposition 5, for each FLC set Γ � R
d, the hull

XpΓ q :� tx� Γ |x P RduLT

is compact, and pXpΓ q,Rdq forms a topological dynamical system, on which one can define
translation invariant probability measures, see [55] for details. The latter, at this point,
need neither be unique nor ergodic.

This can be seen by combining 2Z with an arbitrary (e.g., random) subset of 2Z�1, which
always produces an FLC set. When using a standard Bernoulli process (e.g., coin tossing)
to decide on the occupation of the sites from 2Z� 1, the hull XpΓ q almost surely contains
the set 2Z as well as the set Z (since there are 0- and 1-sequences of arbitrary length in
almost all realisations of the Bernoulli process). Therefore different probability measures
on XpΓ q clearly exist.

However, in the following, we fix an FLC set Λ such that pXpΛq,Rdq is uniquely ergodic and
denote XpΛq by X. Due to unique ergodicity, we then have a unique translation invariant
probability measure ν on X and may consider the measurable dynamical system pX,Rd, νq.
Moreover, we may now consider certain marked FLC point sets, more precisely, the space

Y :� ¤
ΓPX

W Γ .

In accordance to [55] we denote by D the set of all closed and discrete subsets of R
d.

Instead of these point sets themselves, we consider marked point sets, i.e., the space
DW � �

ΓPDW Γ . Our first task is to define a topology, more specifically a uniformity on
DW which makes it a complete uniform Hausdorff space. Analogously to the pure point set
case, where two point sets Γ1 and Γ2 are close if, after a small translation, they coincide on a

large compact region, two marked point sets ω1 � �
xPΓ1

tx, ωp1qx u and ω2 � �
xPΓ2

tx, ωp2qx u
are close if this holds also for the marks.

We use the following notation:

• ω � y :� �
xPΓ tx� y, ωxu for y P R

d

• ωK :� ω XK � �
xPΓXKtx, ωxu is the restriction to a compact set K � R

d

• ω �: ωK b ωK̄ with K̄ � R
dzK (the complement of K) and K � R

d

• Γ pωq denotes the underlying point set of ω (Γ pωKq alike)
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A sequence ωpnq, n P N, converges to ω if for all ε ¡ 0 and K � R
d there exists an N P N

such that for all n ¡ N ω̃
pnq
K � ωK , where ω̃pnq � ωpnq � εpnq with |εpnq|   ε.

As in the pure point set case in [55], the set

UK,V :� tpω1, ω2q P DW �DW | Ds P V : ω1 XK � ps� ω2q XKu (3.2)

forms a base of a uniform structure U on DW . The topology on DW (LT’) induced by this
uniformity is given by taking the sets UK,V rωs as a base of neighbourhoods of ω P DW .
The uniformity and likewise the topology are chosen such that we are able to generalize
the main theorems of the pure point set case. First of all, the uniform structure separates
points. Hence DW becomes a uniform Hausdorff space. Moreover, we have the two following
statements.

Proposition 6. DW is complete in the uniformity defined by p3.2q.
Proof. Clear, since every Cauchy net in DW has an equivalent in D; D is complete due to
[55, Prop. 2.1] and the limit point with all possible marks is in DW .

Proposition 7.

Y � ¤
ΓPtx�Λ | xPRduW Γ

LT’

Proof. Clear, since ω P DW is an accumulation point with respect to LT’ if and only if
the underlying point set is an accumulation point with respect to LT.

It follows

Theorem 5. If Λ is of finite local complexity, Y is a compact Hausdorff space.

Proof. Analogously to the proof of Proposition 5, one can show that
�

ΓPtx�Λ | xPRduW Γ is
precompact since Λ is of finite local complexity and W is finite. Due to Propositions 6 and
7, Y is complete as a closed subset of DW , and precompact. Thus, Y is compact (compare
[42, Chap. 6, Thm. 32]).

Remark. The critical part in the compactness analysis is the compactness of X (shown in
[55]). The compactness of Y then follows immediately.

Proposition 8. DW with the uniformity defined by p3.2q is metrizable.

Proof. We define an alternative base of the uniform structure given by (3.2):

ŨB1{ε,Bε :� tpω1, ω2q P DW �DW | Ds, t P Bε : pω1 � sq XB1{ε � pω2 � tq XB1{εu
Analogously to the arguments in [55], one can prove that the ŨB1{ε,Bε , ε P NY 1{N, form

a countable base of U since for any UK,V there is a ŨB1{ε,Bε such that ŨB1{ε,Bε � UK,V

(compare [42, Chap. 6]). In combination with the Hausdorff property of DW , this results in
the applicability of the metrization theorem (see [42, Chap. 6, Thm. 13]). Hence, pDW ,Uq
is metrizable.

So far we have defined the dynamical systems pX,Rdq as well as pY,Rdq. Moreover we have
fixed the measure ν such that pX,Rdq is uniquely ergodic. We now consider a measure on
the second dynamical system.
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Theorem 6. Let B denote the Borel sets. Every translation invariant measure µ onpY,BpYqq can be disintegrated with respect to pX,BpXq, νq and therefore has the repre-
sentation

µpAq � »
Y

1Apωqdµpωq � »
X

»
W Γ

1ApωqdµΓ pωqdνpΓ q .
Proof. pY,BpYq, µq is a regular measure space since Y is a compact metric space (due
to Proposition 8 and Theorem 5) and BpYq consists of all Borel sets in Y (compare [28,
Def. 5.5]). Moreover, the function Γ : Y Ñ X which maps each marked point set on its
underlying point set defines a homomorphism from pY,BpYq, µq to pX,BpXq, νq since the
image measure given by µ

�
Γ�1pAq� equals νpAq for all A P BpXq. This follows from the

fact that the image measure is translation invariant (due to the translation invariance of
µ) and there is only one translation invariant probability measure on pX,BpXqq due to the
unique ergodicity of ν. (Compare [28, Chap. 5].) Due to the disintegration theorem (see
[28, Thm. 5.8]) we get the representation.

We have now defined two probability spaces. In the following we consider the diffraction
of random measures with respect to these probability spaces.

3.2.2 Diffraction of particle gases

At first, the diffraction of a random measure with respect to pX,BpXq, νq is analyzed.

We allow the scattering strengths at the various positions of the objects to be different but
fixed. They are defined by functions fx with certain restrictions. The restrictions ensure
that

δpfq : pX,BpXq, νq Ñ �
MpRdq,BpMpRdqq	 , Γ ÞÑ

x̧PΓ fxpΓ q δx ,
is a random measure. We are interested in the autocorrelation of this random measure.

Proposition 9. Let pfxqxPRd be a family of functions fx : X Ñ C such that for all z P R
d

δpf,zq : pX,BpXq, νq Ñ �
MpRdq,BpMpRdqq	 , Γ ÞÑ ¸

x,x�zPΓ fxpΓ qfx�zpΓ q δx
are stationary random measures. Then, the autocorrelation of δpfq exists ν-a.s. and is given
by the coefficients

ηpfqpzq � »
X

¸
xPΓXU

d

x�zPΓ fxpΓ qfx�zpΓ q dνpΓ q ,
where U

d is the unit cube in R
d.

Proof. We may apply the ergodic theorem ([21, Cor. 12.2.V]):

ηpfqpzq � lim
rÑ8 1

volpBrq x̧PΓr
x�zPΓ fxfx�z � »

X

¸
xPΓXU

d

x�zPΓ fxpΓ qfx�zpΓ q dνpΓ q ν-a.s.

One can easily show that the assumptions of Proposition 9 are fulfilled if the scattering
strengths are the same at all positions. Moreover, one has
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Proposition 10. Each Γ P X has the same autocorrelation and diffraction.

Proof. Due to [55, Cor. 3.3], pX,Rdq is uniquely ergodic if and only if the frequencies of
finite patterns exist in every Γ P X and are independent of the particular choice of Γ .

Remark. The existence of the frequencies of finite patterns in every Γ P X and the inde-
pendence of the choice of Γ is tantamount to uniform frequencies for a fixed point set.

From now on, the diffraction of a random measure with respect to pY,BpYq, µq is analyzed.
In this case, the scattering strengths at the various positions of the objects are no longer
fixed. Instead, we are concerned with a random occupation of the positions with the
scattering strengths. The resulting particle gas is defined by

δpHq :�
x̧PΓ Hx δx

with random variables Γ specifying the point set (i.e., Γ : Y Ñ X, ω ÞÑ Γ pωq) and Hx, x P
R

d, specifying the scattering strengths at the various positions (i.e., �x P R
d, Hx : Y Ñ C,

Hxpωq � ωx).

Lemma 2. The function δpHq : Y Ñ MpRdq, ω ÞÑ °
xPΓ pωq ωx δx is BpYq-measurable and

thus defines a random measure (compare Definition 5).

Proof. We show the continuity of δpHq, i.e., for any ε ¡ 0 there must be found an N P N

such that for all n ¥ N����� ¸
yPsupp fXΓ pωpnqqωpnqy fpyq � ¸

xPsupp fXΓ pωqωxfpxq�����   ε

with
�
ωpnq�

nPN
a sequence of marked point sets converging to ω and f P K with support

supppfq.
Due to convergence of

�
ωpnq�

nPN
, for arbitrary ε̃ ¡ 0 and K � supp f there exists an N P N

such that for all n ¡ N ω̃
pnq
K � ωK , where ω̃pnq � ωpnq � εpnq with |εpnq|   ε̃. Moreover,����� ¸

yPsupp fXΓ pωpnqqωpnqy fpyq � ¸
xPsupp fXΓ pωqωxfpxq����������� ¸

xPsupp fXΓ pωq�ω̃pnqx f
�
x� εpnq�� ωxfpxq������������ ¸

xPsupp fXΓ pωq�ω̃pnqx

�
f
�
x� εpnq�� fpxq	� fpxq�ω̃pnqx � ωx

�	����������� ¸
xPsupp fXΓ pωq ω̃pnqx

�
f
�
x� εpnq�� fpxq	����� .

Since f is continuous and the sum is finite, for any ε ¡ 0, ε̃ can be chosen such that����� ¸
xPsupp fXΓ pωq ω̃pnqx

�
f
�
x� εpnq�� fpxq	�����   ε .

Measurability then follows from continuity.
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Furthermore, ergodicity of the measure µ ensures the existence of the autocorrelation (as
we will see in the next proposition).

Proposition 11. Let µ be an R
d-ergodic measure on pY,BpYqq. Then, the autocorrelation

measure of δpHq exists µ-a.s. and is given by the coefficients

ηpHqpzq � »
X

¸
xPΓXU

d

x�zPΓ µΓ pHxHx�zqdνpΓ q .
Moreover, if (for all z P R

d) δpE,zq, δpEq : X ÑMpRdq, Γ ÞÑ °
x,x�zPΓ µΓ pHxqµΓ pHx�zq δx

and Γ ÞÑ °
xPΓ µΓ pHxq δx, respectively, are stationary random measures,

ηpHqpzq � ηpEqpzq � »
X

¸
xPΓXUd

x�zPΓ covµΓ
pHx,Hx�zqdνpΓ q

with ηpEqpzq the autocorrelation coefficients of δpEq.
Proof. The function δpH,zq : Y ÑMpRdq, ω ÞÑ °

x,x�zPΓ pωq ωxωx�z δx is BpYq-measurable
and hence defines a random measure (analogously to Lemma 2). It is clearly station-
ary (compare [21, Def. 12.1.II]). Therefore, we may apply the ergodic theorem ([21,
Cor. 12.2.V]):

ηpHqpzq � lim
rÑ8 1

volpBrq x̧PΓr
x�zPΓ HxHx�z � µ

� ¸
xPΓXU

d

x�zPΓ HxHx�z

	
µ-a.s.

Due to the structure of disintegration (see Theorem 6) this results µ-a.s. in

ηpHqpzq � »
Y

¸
xPΓ pωqXUd

x�zPΓ pωq ωxωx�z dµpωq � »
X

»
W Γ

¸
xPΓXUd

x�zPΓ ωxωx�z dµΓ pωqdνpΓ q� »
X

¸
xPΓXUd

x�zPΓ »
W Γ

ωxωx�z dµΓ pωqdνpΓ q � »
X

¸
xPΓXUd

x�zPΓ µΓ pHxHx�zqdνpΓ q
Under the additional assumption that (for all z P R

d) δpE,zq and δpEq are stationary random
measures, the autocorrelation of δpEq exists ν-a.s. due to Proposition 9 and

ηpHqpzq � »
X

¸
xPΓXUd

x�zPΓ µΓ pHxHx�zqdνpΓ q� »
X

¸
xPΓXUd

x�zPΓ µΓ pHxqµΓ pHx�zqdνpΓ q � »
X

¸
xPΓXUd

x�zPΓ covµΓ
pHx,Hx�zqdνpΓ q� ηpEqpzq � »

X

¸
xPΓXU

d

x�zPΓ covµΓ
pHx,Hx�zqdνpΓ q µ-a.s.
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Moreover, under additional assumptions, we can show the absence of a singular continuous
part in the diffraction of the particle gas δpHq.
Theorem 7. Let µ be an R

d-ergodic measure on pY,BpYqq. If δpEq and δpE,zq (for all
z P R

d) define stationary random measures and there is no singular continuous part present
in the diffraction of δpEq and¸

zPΓ�Γ

���»
X

¸
xPΓ 1XUd

x�zPΓ 1 covµΓ 1 pHx,Hx�zqdνpΓ 1q���   8 ,

for all Γ P X, no singular continuous part will occur in the diffraction of δpHq.
Proof. Due to Propositions 2 and 11, the autocorrelation of δpHq is µ-a.s. given by

γpHq � ¸
zPΓ�Γ

ηpEqpzq δz � ¸
zPΓ�Γ

»
X

¸
xPΓ 1XU

d

x�zPΓ 1 covµΓ 1 pHx,Hx�zqdνpΓ 1q δz .
Since the diffraction is given by the Fourier transform of γpHq, it consists of the diffraction
of δpEq in addition to the Fourier transform of the second sum. The latter, however, de-
fines an absolutely continuous measure on R

d (due to the assumption and Proposition 4).
Therefore, the diffraction of δpHq equals the diffraction of δpEq except for an additional
absolutely continuous part, but there is no singular continuous part present.

Hence, under the assumptions of Theorem 7, the stochastic description predicts the ab-
sence of singular continuous components. In order to get some examples satisfying the
assumptions we will consider so-called Gibbs measures.

3.3 Gibbs measures

A Gibbs measure is “a mathematical idealization of an equilibrium state of a physical
system which consists of a very large number of interacting components” ([31, p. 5]).
Such a measure is appropriate to define the random occupation of point sets by different
scatterers. In order to deal with the corresponding particle gases, it is necessary to define
Gibbs measures on the dynamical system of FLC sets. Therefore, we will recapitulate the
theory of Gibbs states (compare [31, 53]) and use it to construct ergodic measures onpY,BpYqq.
Remark. In general, Gibbs measures arise as limits of Boltzmann distributions. However,
due to possible ambiguity, a powerful formalism is required. This is already the case for
Gibbs measures on point sets and becomes more extensive in the case of Gibbs measures
on dynamical systems.

Let Ω be a set representing the basic phase space and A a σ-field of subsets of Ω rep-
resenting the observables. Moreover, let I be a partially ordered index set such that the
sub-σ-fields tTKuKPI are decreasing, i.e., TK2

� TK1
whenever K1 ¤ K2, and tAKuKPI

are increasing.

Definition 6. A collection V � tκKuKPI of probability kernels is a specification if

• κKpA | �q is TK-measurable for all A P A, K P I,
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• κKpC | �q � 1C for all C P TK , K P I,

• κK2
κK1

� κK2
whenever K1 ¤ K2.

The Gibbs states GpV q with respect to a given specification V are then given due to the
following definition.

Definition 7. Let V be a specification. GpV q is the set of all measures on pΩ,Aq for which
the following condition holds. For all K P I, A P A and C P TK ,

µpAX Cq � »
C

κKpA |ωqdµpωq . (3.3)

In the following, we consider Gibbs states on different phase spaces. We start with the
phase space pΩ,Aq :� pW Γ ,WΓ q � pW,WqΓ defined by the finite discrete state spacepW,Wq and a countably infinite set of sites Γ . Later on we consider the phase spacepΩ,Aq :� pY,BpYqq.
In both cases I is the set of compact subsets of R

d. Moreover, we consider a special class
of Gibbs states. They are given by an interaction potential Φ.

Definition 8. Let F be the set of all non-empty finite subsets of R
d. An (interaction)

potential Φ � pΦSqSPF is a family of WS-measurable functions ΦS : Ω ÞÑ R such that, for
all ω P Ω and K P I, the total energy

HΦ
Kpωq �

ŞPF
SXK�∅,S�Γ pωqΦSpωq

of ω in K for Φ exists. The partition function for a subsystem K is given by

ZΦ
Kpωq � ¸

λPW Γ pωK q e�HΦ
K
pλbωK̄q .

Regarding the phase space pW,WqΓ , for all K P I, AK :� WΓ
K :� WΓXK is the sigma

field consisting of those events which only depend on the coordinates of Γ in K and T Γ
K :�

WΓ
RdzK the sigma field consisting of those events which only depend on the coordinates of

Γ outside of K.

Proposition 12. Let Φ be a potential and Γ a point set such that ZΦ
Kpωq is finite for all

K P I and ω P W Γ . The family V Φ,Γ � pκΦ
KqKPI , defined by

κΦ
KpAΓ |ωq :� 1

ZΦ
Kpωq ¸

λPW Γ pωKq 1AΓ pλ b ωK̄q e�HΦ
K
pλbωK̄q

is a specification.

Proof. Due to [31, Prop. 2.5 and Remark 1.32].

Remark. The measures µΦ
Γ satisfying µΦ

Γ pAΓ XCΓ q � ³
CΓ κ

Φ
KpAΓ |ωqdµΦ

Γ pωq for all AΓ P
WΓ and CΓ P T Γ

K (for any K P I) are the Gibbs states on pW,WqΓ with respect to the
potential Φ (compare Definition 7).

The next proposition gives a condition on the potential which ensures the uniqueness of
the Gibbs measure.
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Proposition 13. Let V Φ,Γ be a specification. For S P F , let diampSq denote the diameter
of S with respect to any metric dpx, yq and

DpΦSq � sup
ζ,λPW Γ

|ΦSpζq � ΦSpλq| .
On the condition that

sup
uPΓ ¸

SPFXΓ
uPS ediampSqp|S| � 1qDpΦSq   2 , (3.4)

the corresponding Gibbs measure µΦ
Γ is unique. Moreover, for all x P Γ , and functions

Hx,Hx : W Γ Ñ C, Hxpωq � ωx and Hxpωq � ωx,

y̧PΓ ��covµΦ
Γ
pHx,Hyq�� ¤ �

supi,j |ci � cj |�2
4p1� αq

with

0 ¤ α ¤ sup
uPΓ ¸

SPFXΓ
uPS ediampSqp|S| � 1qDpΦSq{2   1 . (3.5)

Proof. Due to (3.4) and [31, Prop. 8.8], V Φ,Γ satisfies Dobrushin’s condition. From Do-
brushin’s uniqueness theorem ([31, Thm. 8.7]), the uniqueness of µΦ

Γ follows. This is the
reason why we may apply [31, Prop. 8.34] which states that| covµΦ

Γ
pf, gq| ¤ 1

4

¸
u,vPΓ DupfqDΓ

uvDvpgq , (3.6)

where f and g are bounded quasilocal functions on W Γ ,

Dupfq � supt|fpζq � fpλq| | ζ � λ off uu
and DΓ

uv :� �°8
n�0

�
CΓ

�n�
uv

with Dobrushin’s interaction matrix CΓ defined by

CΓ
uv � sup

AΓ PWΓ

!
|κΦ

BεpuqpAΓ | ζq � κΦ
BεpuqpAΓ |λq| | ζ � λ off v

)
for all u, v P Γ and ε such that Γ X Bεpuq � tuu. Recall that a measurable function is
called quasilocal when

lim
FPF sup

ζ,λPW Γ

ζ|F �λ|F |fpζq � fpλq| � 0 .

Here, the notation limFPF means that the limit is taken along sets, where more and more
points are added, so that |F | Õ 8.

Let fpωq � ωx and gpωq � ωy. This results in

Dupωxq � #
supi,j |ci � cj |, if u � x,

0, otherwise,
and Dvpωyq � #

supi,j |ci � cj |, if v � y,

0, otherwise.
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Then, (3.6) implies

y̧PΓ | covµΦ
Γ
pf, gq| ¤

y̧PΓ �
supi,j |ci � cj|�2

4
DΓ

xy ¤ �
supi,j |ci � cj |�2

4p1 � αq ,

since [31, Remark 8.26] states that, for all x P Γ ,
°

yPΓ DΓ
xy ¤ 1{p1 � αq with

α :� sup
uPΓ v̧PΓ CΓ

uve
dpu,vq ¤ sup

uPΓ ¸
SPFXΓ

uPS ediampSqp|S| � 1qDpΦSq{2   1

(due to the proof of [31, Remark 8.26]).

In order to get examples of potentials satisfying the assumptions of the last theorem we
now restrict ourselves to potentials of finite or short range.

Definition 9. A potential pΦSqSPF � pβ Φ�SqSPF with β :� 1{pkBT q (the inverse tempera-
ture) is called a finite range potential if for each point x P R

d there is a ball with radius R
such that ΦS � 0 unless S � BRpxq. The smallest R fulfilling this condition is called the
range of the potential.

Definition 10. A short range (pair) interaction potential for a point set Γ � R
d is given

by

ΦSpωq � #
βφpω|tx,yuqJpx� yq, if S � tx, yu,
0, otherwise,

with φ : W �W Ñ R and bounded function J satisfying either¸
zPΓ�Γ

et‖z‖|Jpzq| � const   8 or
¸

zPΓ�Γ

‖z‖p|Jpzq| � const   8 (3.7)

for some positive constant t and p ¡ 1.

Remark. It can be shown that Condition (3.7) holds if Γ � Γ is uniformly discrete and|Jpzq| � O
�
e�s‖z‖

�
for ‖z‖ Ñ 8 and some positive constant s or |Jpzq| � O

�
‖z‖�p̃

�
for

‖z‖Ñ8 and some p̃ ¡ d� 1.

Proposition 14. In the case of a finite or short range potential and sufficiently high
temperature, Condition (3.4) holds for all Γ P X. Therefore, µΦ

Γ is unique (for all Γ P X).
Moreover, α in (3.5) may be chosen independently of the point set.

Proof. We start with the finite range potential. For sufficiently small β, we have

sup
xPΓ ¸

SPFXΓ
xPS ediampSqp|S| � 1q DpΦSq ¤ eR sup

xPΓ ¸
SPFXΓ

xPS p|S| � 1q DpΦSq ¤ cβ   2 ,

where c is a constant. Indeed, the finite number of S Q x with ΦS � 0 results in a
finite sum. Moreover, because of the finite range, there is a maximum of |S| and DpΦSq
for all S with diampSq ¤ R. Thus, for sufficiently high temperatures, Condition (3.4) holds.
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In the short range potential case we fix the metric dpx, yq :� t‖x�y‖^ tpu logp1�‖x�y‖q
with some constants t ¡ 0 and p ¡ 1, where a ^ b means the minimum of a and b. It is
not difficult to check that this is indeed a metric. Then, (3.7) results in the estimates

sup
xPΓ ¸

SPFXΓ
xPS ediampSqp|S| � 1qDpΦSq ¤ β sup

xPΓ p|φpζ|x,0
q � φpλ|x,0

q|q ¸
zPΓ�Γ

et‖z‖|Jpzq|¤ β sup
xPΓ p|φpζ|x,0

q � φpλ|x,0
q|q ¸

zPΛ�Λ

et‖z‖|Jpzq| ¤ cβ

and

sup
xPΓ ¸

SPFXΓ
xPS ediampSqp|S| � 1qDpΦSq ¤ c̃β sup

xPΓ p|φpζ|x,0
q � φpλ|x,0

q|q ¸
zPΓ�Γ

‖z‖p|Jpzq|¤ c̃β sup
xPΓ p|φpζ|x,0

q � φpλ|x,0
q|q ¸

zPΛ�Λ

‖z‖p|Jpzq| ¤ cβ .

Note that, in addition to diampSq ¤ t‖x � y‖, one has diampSq ¤ tpu logp1 � ‖x � y‖q in
this metric, which implies the estimate

ediampSq ¤ p1� ‖z‖qtpu � tpu̧
k�0

�tpu
k



‖z‖tpu ¤ tpu̧

k�0

�tpu
k



‖z‖p � c̃ ‖z‖p.

Thus, for sufficiently high temperatures, cβ is bounded away from 2 such that α   1
independent of the point set.

Moreover, we have

Theorem 8. Let µΦ
Γ be a unique Gibbs measure on pW Γ ,WΓ q given by a finite or short

range potential Φ and sufficiently high temperature. Then,

µΦ
Γ pAΓ q � lim

KnÕRd
κΦ

Kn
pAΓ |ωq

holds for all ω PW Γ .

Proof. See [31, Prop. 7.11].

After defining Gibbs states on pW,WqΓ for a fixed FLC set Γ we now consider Gibbs
states on the larger phase space pY,BpYqq. We suppose

κ
Φ,Y
K pA |ωq :� 1

ZΦ
Kpωq ¸

λPW Γ pωK q 1Apλ b ωK̄q e�HΦ
K
pλbωK̄q � κΦ

K

�
AXW Γ pωq |ω	

to act as specification (with A P BpYq, ω P Y). Therefore, we have to define sub-σ-fieldstTKuKPI and tAKuKPI . In contrast to the afore considered case, we cannot define the
sub-σ-fields consisting of those events, which only depend on the inside and outside of
K, respectively. The reason is that, in this case, the TK-measurability is not ensured. In
order to show this, we consider ω1 and ω2 matching on the complement of K but living
on different point sets inside K and satisfying

a � κ
Φ,Y
K pA |ω1q � κ

Φ,Y
K pA |ω2q � a� c
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with c � 0. Then, the preimage of ra, a�c�εs (for arbitrary ε ¡ 0) is a set, which contains
ω1 but not ω2. However, such a set is not contained in the assumed sigma field.

Therefore, we have to define other sigma fields such that the TK-measurability is guaran-
teed. At first, we choose

T̃K :� #¤
ΓPX

CΓ |CΓ P T Γ
K

+
.

The reason is the next lemma.

Lemma 3. κ
Φ,Y
K pA | �q is T̃K-measurable for all A P BpYq.

Proof. It is clear that for any intervall I � R

κ
Φ,Y
K pA | �q�1pIq � ¤

ΓPX

 
ω PW Γ |κΦ

K

�
AXW Γ |ω� P I(

lies in T̃K since
 
ω PW Γ |κΦ

K

�
AXW Γ |ω� P I( P T Γ

K .

Remark. It is easy to check that T̃K as well as

Ã :� #¤
ΓPX

AΓ |AΓ PWΓ

+
are sigma fields.tT̃KuKPI are sub-σ-fields of Ã, and it is clear that BpYq � Ã since every neighborhood
UK,V rωs is contained in Ã. Therefore, every A P BpYq has a representation

�
ΓPX

AΓ and
AXW Γ � AΓ . However, it is not ensured that tT̃KuKPI are sub-σ-fields of BpYq. This is
the reason why we define the sigma fields

TK :� #¤
ΓPX

CΓ |CΓ P T Γ
K

+X BpYq � T̃K X BpYq ,
which are well-defined since the intersection of two sigma fields is again a sigma field. In
order to show that κΦ,Y

K pA | �q is TK-measurable for all A P BpYq, we have to show the
BpYq-measurability. If we restrict ourselves to translation invariant finite or short range
potentials and sufficiently high temperature, this follows from the next proposition. But,
first, we note a statement about the continuity of the potential.

Lemma 4. Let Φ be a finite or short range potential and β large enough. Moreover, let
ωpnq P Y be a sequence of elements converging to ω P Y. Then, for each ε ¡ 0, and

K1 � R
d, there exist K2 � K1, ε̃ ¡ 0 and N P N such that for all n ¡ N ω̃

pnq
K2

� ωK2
,

where ω̃pnq � ωpnq � εpnq with |εpnq|   ε̃ and��HΦ
K1

�
λ b ω

K̄1

��HΦ
K1

�
λ b ω̃

pnq
K̄1

���   ε for all λ PW Γ pωK1
q .

Proof. In the case of a finite range potential this is clear, since one may choose K2 ��
xPK1

BRpxq (with R the range of the potential). This results in��HΦ
K1

�
λ b ωK̄1

��HΦ
K1

�
λ b ω̃

pnq
K̄1

��� � 0 for all λ PW Γ pωK1
q .
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In the case of a short range potential��HΦ
K1

�
λ b ωK̄1

��HΦ
K1

�
λ b ω̃

pnq
K̄1

��������� ¸
xPΓ pωK1

q� ¸
yPΓ pωK̄2

q βφ�ω|tx,yu�Jpx� yq � ¸
zPΓ pω̃pnq

K̄2
qβφ�ω̃pnq|tx,yu�Jpx� yq������

becomes arbitrarily small for growing sets K2 and all λ P W Γ pωK1
q since the inner differ-

ences converge, and the outer sum is finite.

Proposition 15. For a translation invariant finite or short range potential Φ and suffi-
ciently high temperature, κΦ,Y

K : BpYq � Y Ñ R, with

κ
Φ,Y
K pA |ωq � κΦ

K

�
AXW Γ pωq |ω	 ,

is a probability kernel.

Proof. For any ω P Y, κΦ,Y
K p� |ωq is a probability measure. Moreover, for each A P BpYq

κ
Φ,Y
K pA | �q is BpYq-measurable as we will show in the following.

Let f : Y Ñ R, ω ÞÑ fpωq be continuous. We first show the continuity of

κ
f
K : Y Ñ R, ω ÞÑ 1

ZΦ
Kpωq ¸

λPW Γ pωKq f�λ b ωK̄

�
e�HΦ

K
pλbωK̄q .

Let ωpnq be a sequence of elements converging to ω. Then, for each ε ¡ 0, and K � R
d,

there exist K̃ � K and N P N such that for all n ¡ N ω̃
pnq
K̃

� ω
K̃

, where ω̃pnq � ωpnq� εpnq
with |εpnq|   ε.
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Due to the translation invariance of the potential, we have���κf
Kpωq � κ

f
K

�
ωpnq���������� 1

ZΦ
Kpωq ¸

λPW Γ pωKq f�λ b ωK̄

�
e�HΦ

KpλbωK̄q� 1

ZΦ
Kpωpnqq ¸

λPW Γ pωpnq
K

q f�λ b ω
pnq
K̄

�
e�HΦ

Kpλbω
pnq
K̄

q�����¤����� 1

ZΦ
Kpωq ¸

λPW Γ pωKq f�λ b ωK̄

�
e�HΦ

K
pλbωK̄q� 1

ZΦ
Kpω̃pnqq ¸

λPW Γ pωKq f ��λ� εpnq� b ω
pnq
K̄

	
e�HΦ

K
pλb ω̃

pnq
K̄

q�����¤ 1

ZΦ
Kpωq ����� ¸

λPW Γ pωKq �f�λ b ωK̄

�
e�HΦ

K
pλbωK̄q � f

��
λ� εpnq� b ω

pnq
K̄

	
e�HΦ

K
pλb ω̃

pnq
K̄

q	 ������
1

ZΦ
Kpωq ����� ¸

λPW Γ pωKq f ��λ� εpnq� b ω
pnq
K̄

	
e�HΦ

K
pλb ω̃

pnq
K̄

q������
1

ZΦ
Kpω̃pnqq ����� ¸

λPW Γ pωKq �e�HΦ
K
pλb ω̃

pnq
K̄

q � e�HΦ
KpλbωK̄q	 �����¤ sup

λPW Γ pωKq ���f�λ b ωK̄

�� f
��
λ� εpnq� b ω

pnq
K̄

	
eH

Φ
KpλbωK̄q�HΦ

K pλb ω̃
pnq
K̄

q����
sup

λPW Γ pωKq ���f ��λ� εpnq� b ω
pnq
K̄

	
eH

Φ
KpλbωK̄q�HΦ

Kpλb ω̃
pnq
K̄

q����
sup

λPW Γ pωKq ���1� eH
Φ
Kpλb ω̃

pnq
K̄

q�HΦ
KpλbωK̄q��� ,

which becomes arbitrarily small for growing K̃ and N since f is continuous and

|HΦ
K

�
λ b ωK̄

� �HΦ
K

�
λ b ω̃

pnq
K̄

�
| becomes small due to Lemma 4. Due to continuity, κf

K

is BpYq-measurable.

The indicator function 1A for a closed set A may be approximated by continuous functions
fn, n P N (compare [14, Thm. 1.2]). Since

κ
Φ,Y
K pA |ωq � 1

ZΦ
Kpωq ¸

λPW Γ pωKq 1Apλ b ωK̄q e�HΦ
KpλbωK̄q� 1

ZΦ
Kpωq ¸

λPW Γ pωKq lim
nÑ8 fn pλ b ωK̄q e�HΦ

KpλbωK̄q� lim
nÑ8 1

ZΦ
Kpωq ¸

λPW Γ pωKq fn pλ b ωK̄q e�HΦ
K
pλbωK̄q� lim

nÑ8κfn

K pωq ,
for all closed sets A, κΦ

KpA |ωq is BpYq-measurable as a limit of BpYq-measurable functions
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κ
fn

K pωq.
Next, we show that

D :� tA P BpYq |κΦ,Y
K pA |ωq is BpYq-measurableu

is a Dynkin system.

Y is closed and therefore lies in D. Moreover, for a closed set A P BpYq,
κ

Φ,Y
K

�
Ā |ω� � 1

ZΦ
Kpωq ¸

λPW Γ pωK q�1� 1Apλ b ωK̄q� e�HΦ
KpλbωK̄q � 1� κ

Φ,Y
K pA |ωq

is BpYq-measurable and, for a disjoint union of elements of D,

κ
Φ,Y
K

�¤
nPN

An |ω� � 1

ZΦ
Kpωq ¸

λPW Γ pωKq lim
mÑ8 m̧

n�1

1Anpλ b ωK̄q e�HΦ
K
pλbωK̄q� lim

mÑ8 m̧

n�1

1

ZΦ
Kpωq ¸

λPW Γ pωKq 1Anpλ b ωK̄q e�HΦ
K pλbωK̄q� lim

mÑ8 m̧

n�1

κ
Φ,Y
K pAn |ωq

is BpYq-measurable as a limit of BpYq-measurable functions.

Let E be the set of all closed sets. On the one hand, we have E � D � BpYq. Since
E is closed under intersections, the generated Dynkin system DpEq equals the generated
sigma field σpEq. Therefore, on the other hand, BpYq � σpEq � DpEq � D. It follows that
D � BpYq, i.e., κΦ,Y

K pA |ωq is BpYq-measurable for all A P BpYq.
Due to this lemma we get

Proposition 16. For a translation invariant finite or short range potential Φ and suffi-

ciently high temperature the collection V Φ � �
κ

Φ,Y
K

	
KPI of probability kernels is a specifi-

cation.

Proof. We have to verify the three points of Definition 6.

• κ
Φ,Y
K pA | �q is TK-measurable for all K P I, A P BpYq, since it is T̃K-measurable due

to Lemma 3 and BpYq-measurable due to Proposition 15.

• κ
Φ,Y
K pC | �q � 1C for all C P TK since

κ
Φ,Y
K pC |ωq � κΦ

K

�
C XW Γ pωq |ω	 � κΦ

K

�
CΓ pωq |ω	 � 1CΓ pωqpωq � 1Cpωq

• For all A P BpYq
κ

Φ,Y
K2

κ
Φ,Y
K1

� κ
Φ,Y
K2



3.3 Gibbs measures 35

if K1 � K2, since

κ
Φ,Y
K2

κ
Φ,Y
K1
pA |ωq � »

Y

κ
Φ,Y
K1
pA | ω̃qκΦ,Y

K2
pdω̃ |ωq� »

Y

κΦ
K1

�
AXW Γ pω̃q | ω̃	 κΦ

K2

�
dω̃ XW Γ pωq |ω	� »

W Γ pωq κΦ
K1

�
AXW Γ pωq | ω̃	 κΦ

K2
pdω̃ |ωq � κΦ

K2

�
AXW Γ pωq |ω	� κ

Φ,Y
K2
pA |ωq .

Theorem 9. Let Φ be a translation invariant finite or short range potential and the
temperature sufficiently high. The measure µΦ on pY,BpYqq defined by

µΦpAq � »
A

dµΦpωq :� »
X

»
AΓ

dµΦ
Γ pωqdνpΓ q � »

X

»
W Γ

1AXW Γ pωqdµΦ
Γ pωqdνpΓ q (3.8)

is well-defined. It is a Gibbs measure given by the specification V Φ from Proposition 16.

Proof. In order to prove that µΦ is well-defined, we have to show that the well-defined
map

f : X Ñ C, Γ ÞÑ »
W Γ

1AXW Γ pωqdµΦ
Γ pωq � µΦ

Γ pAXW Γ q �
lim

KnÕRd
κΦ

Kn
pAXW Γ |ωpΓ qq � lim

KnÕRd
κ

Φ,Y
Kn
pA |ωpΓ qq

(compare Theorem 8) is BpXq-measurable where ω: X Ñ Y is the function which maps
Γ to the marked point set living on Γ and having (arbitrary) identical marks c P W at
all positions. Since the function ω is BpXq-measurable and κ

Φ,Y
Kn

is BpYq-measurable due
to Proposition 15, the latter is also BpXq-measurable as the composition of measurable
functions. It follows that Γ ÞÑ µΦ

Γ pA XW Γ q is BpXq-measurable as a limit of measurable
functions.

µΦ fulfills (3.3) since

µΦpAX Cq � »
X

»
W Γ

1AXCpωqdµΦ
Γ pωqdνpΓ q � »

X

»
CΓ

1AΓ pωqdµΦ
Γ pωqdνpΓ q� »

X

»
CΓ

κΦ
K

�
AΓ |ω� dµΦ

Γ pωqdνpΓ q � »
C

κ
Φ,Y
K pA |ωqdµΦpωq .

Theorem 10. For a translation invariant finite or short range potential Φ and sufficiently
high temperature the measure µΦ defined by (3.8) is R

d-ergodic.

Proof. Let Tx, x P R
d, denote the R

d-translations. First of all, µΦ is translation invariant,
since

µΦpTxpgqq � »
X

µΦ
Γ pTxpgqqdνpΓ q � »

X

µΦ
Γ�xpTxpgqqdνpΓ q � »

X

µΦ
Γ pgqdνpΓ q � µΦpgq
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because of the translation invariance of the potential and the stationarity of ν.

Due to Theorem 6, any translation invariant Gibbs measure µ̃Φ with respect to the po-
tential Φ may be represented by

µ̃ΦpAq � »
Y

1Apωqdµ̃Φpωq � »
X

»
W Γ

1Apωqdµ̃Φ
Γ pωqdνpΓ q .

However there is only one such measure possible since the Gibbs measures µΦ
Γ are unique

(due to Proposition 14). Therefore, µΦ is the unique translation invariant Gibbs measure
with respect to the potential Φ.

Tx, x P R
d, separates I since BpYq is the smallest sigma field containing¤

n¥1

ABn :� ¤
n¥1

#¤
ΓPX

AΓ
Bn
|AΓ

Bn
PWΓ

Bn

+
,

and for any n ¥ 1, K P I, there exists a translation Tx, x P R
d, with TxpABnq � TK

(compare [53, Chap. 4]). With [53, Thm. 4.1] (which states that, under the assumption of
separability, uniqueness is equivalent to ergodicity) the claim follows.

3.4 Examples of particle gases using Gibbs measures

In Theorem 4 of Section 3.1 and Theorem 7 of Section 3.2 it was shown that there is
no singular continuous part present in the diffraction of certain particle gases fulfilling
some conditions. The main assumption refers to ergodicity of the relevant measure. In the
last section we have proven ergodicity for some Gibbs measures. These will be used in
the following in order to give some examples of particle gases satisfying the mentioned
assumptions. We start with particle gases on fixed point sets (considered in Section 3.1).

3.4.1 On fixed point sets

Let Γ :� Z
d. We consider the lattice gas defined by a measure on pW Γ ,WΓ q.

Corollary 4. If Φ is a translation invariant finite or short range potential and the tem-
perature sufficiently high, there is no singular continuous part present in the diffraction of
the lattice gas defined by the corresponding Gibbs measure.

Proof. Due to Proposition 14, µΦ
Γ is unique. Moreover it is Z

d-translation invariant. Thus
it is Z

d-ergodic and the result follows from Proposition 13 together with Theorem 4.

We proceed with the particle gases on dynamical systems (considered in Section 3.2).

3.4.2 On dynamical systems

Let us first look at an interaction-free particle gas, i.e., for a randomly chosen point set
Γ P X, the scattering strengths at the various points are i.i.d. random variables. It is clear
that, analogously to the construction in the last section one may define an ergodic Gibbs
measure on Y such that the measures on the various point sets Γ P X are the product
measures.



3.4 Examples of particle gases using Gibbs measures 37

Let Ep :� °n
i�1 pici and Vp :� °n

i�1 pi|ci|2 � |Ep|2.
Clearly, δpEq :� Ep

°
xPΓ δx and (for all z P R

d) δpE,zq :� |Ep|
2
°

x,x�zPΓ δx define stationary

random measures. Due to Proposition 11, the autocorrelation of δpHq is therefore given by
the coefficients

ηpHqpzq � ηpEqpzq � »
X

¸
xPΓXU

d

x�zPΓ covµΓ
pHx,Hx�zqdνpΓ q

with ηpEqpzq � |Ep|2ηΛpzq (due to independence and Proposition 10). Moreover, due to
independence, we have»

X

¸
xPΓXU

d

x�zPΓ covµΓ
pHx,Hx�zqdνpΓ q � #

denspΛqVp, z � 0,

0, otherwise.

This results in

γpHq � ¸
zPΛ�Λ

|Ep|
2 ηΛpzq δz � denspΛqVp δ0� |Ep|

2 γΛ � denspΛqVpδ0

(compare Prop. 2) and since pδ0 � 1, the Fourier transform is given bypγpHq � |Ep|
2 xγΛ � denspΛqVp ,

where the second term on the right hand side is a constant and hence a contribution to
the absolutely continuous part of pγpHq.
We now extend our analysis to more interesting types of disorder, namely dependent
random variables controlled by a non-trivial Gibbs measure.

Lemma 5. Let Φ be a translation invariant finite or short range potential and the temper-
ature sufficiently high. Then, the functions δpE,zq (for all z P R

d) and δpEq: X Ñ MpRdq,
Γ ÞÑ °

x,x�zPΓ µΦ
Γ pHxqµΦ

Γ pHx�zq δx and Γ ÞÑ °
xPΓ µΦ

Γ pHxq δx, respectively, are continuous
and hence BpXq-measurable.

Proof. We show the continuity of δpEq, i.e., for any ε ¡ 0 there must be found an N P N

such that for all n ¥ N����� ¸
yPsupp fXΓ pnq µΦ

Γ pnqpHyqfpyq � ¸
xPsupp fXΓ

µΦ
Γ pHxqfpxq�����   ε

with
�
Γ pnq�

nPN
a sequence of point sets converging to Γ and f P K with support supppfq.

Due to convergence of
�
Γ pnq�

nPN
, for arbitrary ε̃ ¡ 0 and K � supp f with x P K, there

exists an N P N such that for all n ¡ N Γ̃
pnq
K � ΓK , where Γ̃ pnq � Γ pnq � εpnq with
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|εpnq|   ε̃. Moreover, we have����� ¸
yPsupp fXΓ pnq µΦ

Γ pnqpHyqfpyq � ¸
xPsupp fXΓ

µΦ
Γ pHxqfpxq����������� ¸

xPsupp fXΓ

�
µΦ

Γ̃ pnqpHxqf�x� εpnq�� µΦ
Γ pHxqfpxq	����������� ¸

xPsupp fXΓ

�
µΦ

Γ̃ pnqpHxq�f�x� εpnq�� fpxq	� fpxq�µΦ
Γ̃ pnqpHxq � µΦ

Γ pHxq�	����� .
Since f is continuous, and the sum is finite, we only have to show that µΦ

Γ̃ pnqpHxq�µΦ
Γ pHxq

becomes arbitrarily small.

Let Ac � tω |Hxpωq � ωx � cu, ω̃pnq � ω
�
Γ̃ pnq�, and ω � ωpΓ q. We have���κΦ,Y

K pAc | ω̃pnqq � κ
Φ,Y
K pAc |ωq��������� 1

ZΦ
Kpω̃pnqq ¸

λPW Γ pωK q 1Acpλ b ω̃
pnq
K̄
q e�HΦ

K pλb ω̃
pnq
K̄

q�
1

ZΦ
Kpωq ¸

λPW Γ pωK q 1Acpλ b ωK̄q e�HΦ
K
pλbωK̄q�����¤����� 1

ZΦ
Kpω̃pnqq ¸

λPW Γ pωK q �1Acpλ b ω̃
pnq
K̄
q e�HΦ

K
pλb ω̃

pnq
K̄

q � 1Acpλ b ωK̄q e�HΦ
K
pλbωK̄q	 ������

1

ZΦ
Kpωq ��� ¸

λPW Γ pωKq 1Acpλ b ωK̄q e�HΦ
KpλbωK̄q����

1

ZΦ
Kpω̃pnqq ��� ¸

λPW Γ pωK q �e�HΦ
KpλbωK̄q � e�HΦ

K
pλb ω̃

pnq
K̄

q	 ���¤ sup
λPW Γ pωK q 2 ���1� eH

Φ
K pλb ω̃

pnq
K̄

q�HΦ
KpλbωK̄q��� ,

(where the last inequality holds due to the assumption x P K) and hence���µΦ
Γ̃ pnqpAcq � µΦ

Γ pAcq���¤ ���µΦ
Γ̃ pnqpAcq � κΦ

KpAc | ω̃pnqq���� ���κΦ,Y
K pAc | ω̃pnqq � κ

Φ,Y
K pAc |ωq���� ��κΦ

KpAc |ωq � µΦ
Γ pAcq��¤ ¸

yPΓ̃ pnqzKDxy � sup
λPW Γ pωK q 2 ����1� e

HΦ
K
pλb ω̃

pnq
K̄

q�HΦ
K
pλbω|

K̄
q����� ¸

yPΓ zK Dxy ,

where the last inequality holds due to [31, Thm. 8.23].

Altogether, with [31, Remark 8.26], this results in���µΦ
Γ̃ pnqpHxq � µΦ

Γ pHxq��� � ����� ņ

i�1

ci

�
µΦ

Γ̃ pnqpAci
q � µΦ

Γ pAci
q	����� ¤ ņ

i�1

ci

���µΦ
Γ̃ pnqpAci

q � µΦ
Γ pAci

q���¤ ņ

i�1

ci

�
e
�min

yPΓ̃ pnqzK dpx,yq
1� α

� sup
λPW Γ pωKq 2 ���1� eH

Φ
K
pλb ω̃

pnq
K̄

q�HΦ
K
pλbωK̄q���� e�minyPΓ zK dpx,yq

1� α

�
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which becomes arbitrarily small. The reason is that, firstly, there exists an N P N such
that, for all n ¡ N ,

e
�min

yPΓ̃ pnqzK dpx,yq
1� α

  ε�
3

and
e�minyPΓ zK dpx,yq

1� α
  ε�

3

for arbitrary ε� ¡ 0. Moreover, due to convergence of
�
Γ pnq�

nPN
, N and K̃ � K may be

chosen such that Γ̃
pnq
K̃

� Γ
K̃

for all n ¡ N and

sup
λPW Γ pωKq 2 ���1� eH

Φ
Kpλb ω̃

pnq
K̄

q�HΦ
KpλbωK̄q���   ε�

3

due to Lemma 4. This results in���µΦ
Γ̃ pnqpHxq � µΦ

Γ pHxq���   ε� .
Analogously, the continuity of δpE,zq can be shown.

Theorem 11. Let Φ be a translation invariant finite or short range potential and the
temperature sufficiently high. Then, the autocorrelation of δpEq exists. If there is no singular
continuous part present in the diffraction of δpEq, there occurs no singular continuous part
in the diffraction spectrum of δpHq.
Proof. Due to Lemma 5 both δpEq and δpE,zq (for all z P R

d) define random measures.
Clearly, they are stationary. Therefore, Proposition 9 ensures the existence of the auto-
correlation.

Moreover, the measure µΦ is R
d-ergodic due to Theorem 10. By the dominated convergence

theorem as well as Propositions 13 and 14, we have¸
zPΓ�Γ

���»
X

¸
xPΓ 1XU

d

x�zPΓ 1 covµΓ 1 pHx,Hx�zqdνpΓ 1q���¤ ¸
zPΓ�Γ

»
X

��� ¸
xPΓ 1XUd

x�zPΓ 1 covµΓ 1 pHx,Hx�zq���dνpΓ 1q� »
X

¸
zPΓ�Γ

¸
xPΓ 1XUd

x�zPΓ 1 |covµΓ 1 pHx,Hx�zq|dνpΓ 1q ¤ const

�
supi,j |ci � cj |�2

4p1 � αq   8 .

Due to Theorem 7, the result follows.

On the basis of this result we are able to rectify the proof of [9, Cor. 5.5]. There we used the
strong law of large numbers although the considered random variables are not identically
distributed. However, we can now prove the result (for the particle gas with probability
space pY,BpYq, µq).
Corollary 5. Let Φ be a translation invariant finite or short range potential and the
temperature sufficiently high. In the case of a regular model set there occurs no singular
continuous part in the diffraction spectrum of δpHq.
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Proof. We define XpδpEqpΓ qq :� Xp°xPΓ µΦ
Γ pHxq δxq as the orbit closure of δpEqpΓ q in the

vague topology. Due to continuity of δpEq (compare Lemma 5), δpEqpXq � XpδpEqpΓ qq (due
to [15, Chap. I.2, Thm. 1]).

In the case of FLC sets and maxi ci   8 it suffices to consider MC,V pRdq, the set of
all pC, V q-translation bounded measures (for appropriately chosen C and V ), instead of
MpRdq. Due to [6, Thm. 2] MC,V pRdq is a compact Hausdorff space. Since, furthermore,
X is a compact metrizable space, δpEqpXq is closed in MC,V pRdq (compare [25, 12.3.6]).
Since δpEqpXq already contains tδpEqpΓ � xq|x P R

du, we have δpEqpXq � XpδpEqpΓ qq.
Hence, together with the translations in R

d, δpEqpXq is a factor of X. The latter has a pure
point diffraction spectrum since Λ is a regular model set (compare [55, Thm. 4.5]). This is
inherited by δpEqpXq due to [7, Prop. 1 and Thm. 2]. Together with Theorem 11 the result
follows.

3.5 Résumé

As already mentioned, in reality, objects are never perfect, and due to an improvement of
measuring techniques, stochastic methods become more and more important. This is the
reason why we were interested in the influence of randomness on the diffraction.

In practice, one observes only a slight modification of the pure point part and the
diffuse scattering. A realistic modeling should be in agreement with this observation. In
particular, it is interesting to investigate whether a stochastic description predicts the
absence of singular continuous components.

We have therefore considered particle gases with finitely many different scatterers. The
starting point was the paper of Baake and Sing [8], where the absence of a singular con-
tinuous part in the diffraction of certain binary lattice gases was shown.

By means of some results concerning Gibbs measures we extended this result to the case
of finitely many types of particles (see Corollary 4).

Via the introduction of particle gases on dynamical systems (including Gibbs measures on
dynamical systems) the results were also extended to a broader class of point sets than
lattices (see Theorem 11).

Altogether, this increases the evidence for the rather natural conjecture that singular
continuous diffraction spectra are the exception.



Part II

Theoretical immunobiology





Chapter 4

Biological background

The object of immunobiology is the body’s own defense against pathogens like bacte-
ria, viruses or fungi. If one catches a flu for example, the immune system recognizes the
pathogen (in this case, the virus) and starts an immune response that finally eliminates
the foreign intruder.

The defense mechanisms in the context of such an immune response can be classified into
unspecific and specific ones.

Unspecific defense mechanisms recognize the intruders by means of certain surface
molecules common to many pathogens (therefore unspecific). In this case, the recogni-
tion motifs which recognize the surface molecules of the foreign invaders are genetically
determined.

Specific defense mechanisms, however, recognize specific pathogens. It is known that this
recognition is the task of so-called T-cells. In this case, the question arises how the recogni-
tion works. The reason is that the recognition motifs which recognize the foreign invaders
are not genetically determined. Instead, they are randomly composed of various parts and
can, a priori, recognize either foreign or self-components since there is no inherent dif-
ference between foreign and self-molecules (like some fundamental difference in molecular
structure; see below).

As we will see in the following chapters there are two possibilities to give an answer to
the arised question, i.e., to explain how T-cells can distinguish between self-components
and foreign invaders. On the one hand, an additional learning process (so-called negative
selection) could introduce a difference between foreign and self. On the other hand, the
additional assumption of a high abundance of the invader could make the recognition
possible.

At first, we briefly describe the essential facts about recognition by T-cells; for more details,
see the textbook by Janeway et al. [38].

T-cells. T-cells are produced in the bone marrow and subsequently migrate to the thymus1,
where they mature (see below). On leaving the thymus, each T-cell is characterized by
a specific type of T-cell receptor (TCR), which is displayed in many identical copies on
the surface of the particular T-cell (see Fig. 4.1). These TCRs play an important part
in the recognition of intruders (see below). It is important to note that all TCRs on one

1 a lymphatic organ
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T-cell are of the same type. However, a large number (roughly 107 up to 108; see [2, 50])
of different receptors, and hence different T-cell types, are present in an individual.

APC 1

T−cell 1 APC 2

T−cell 2

APC 3

T−cell 3

Figure 4.1: A sample of different T-cells and APCs: Each T-cell shows many identical copies of
its specific TCR; each APC a large variety of pMHCs - some (e.g., the three circles on APC 2)
occuring in many and some (e.g., the hexagon on APC 2) in few copies

Antigen-presenting cells. The partners of the T-cells are the antigen-presenting cells
(APCs), each producing so-called MHC molecules of different types. These molecules can
be classified into MHC I and MHC II2 molecules. (Within the two classes further discrim-
ination is possible.) MHC I molecules are important for the activation of cytotoxic T-cells
(also called CD8 T-cells due to their CD8 coreceptor). MHC II molecules are important
for the activation of CD4 T-cells3.

An APC absorbs antigens4 from its vicinity and breaks them down. In the cell the emerg-
ing fragments, so-called peptides (short sequences of amino acids), are bound to the MHC
molecules. The resulting complexes, composed of an MHC molecule and a peptide (ab-
breviated by pMHC), are displayed on the surface of the cell (compare Fig. 4.1; the MHC
molecules serve as “carriers” or “anchors” to the cell surface). Since most of the peptides
in the vicinity of an APC are the body’s own peptides, every APC displays a large va-
riety of different types of self-peptides and, possibly, one (or a small number of) foreign
types. The various types of peptides occur in various copy numbers, as will be detailed
below. For the moment, we merely note that foreign peptides are often present at elevated
copy numbers. This is because pathogens multiply within the body and flood it with their
antigens, before an immune response is initiated.

Interactions between T-cells and APCs. The presentation of peptides on the surface of
the APCs is of great importance for the immune system, because T-cells will only be
activated when they recognize foreign peptides on the surface of an APC. The contact
between a T-cell and an APC is established by a temporary bond between the cells,
through which a so-called immunological synapse (see Fig. 4.2) is formed, in which the
TCRs and the pMHCs interact with each other. If a T-cell recognizes a foreign peptide

2 denoted by MHC without addition
3 denoted by T-cell without addition
4 derived from antibody generating; substances (in our case proteins) which can elicit an immune reaction
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through its receptors, then it is activated to reproduce, and the resulting clones of T-cells
will initiate an immune reaction against the intruder.

T−cell

APC

MHC
molecule

TCR

peptide

Figure 4.2: An immunological synapse (with a variety of pMHCs on the surface of the APC and
many identical TCRs on the surface of the T-cell)

Maturation. During the maturation of a T-cell, several processes take place in the thymus.
Initially, the T-cell starts to display the TCRs on its surface. After this, two selective
processes take place. During positive selection, those T-cells that hardly interact with the
MHC molecules of the individual are removed. Furthermore, negative selection causes the
removal of those T-cells that react too strongly to self-peptides (see Chapter 6). Thus,
both useless and dangerous T-cells are removed.

Recognition. As mentioned above, the main task of T-cells is the recognition of intruders
in the form of foreign peptides presented by APCs. The recognition takes place during
the lifetime of an immunological synapse in the periphery5. The question is which event
causes the activation of the T-cell. The answer is unknown up to now because there are
many different models and experimental results. Textbooks like [38] and also recent papers
avoid to go into this question. But there are two possibilities:

(A1) Activation depends on a single (or few) pMHC(s).

(A2) Activation depends on all pMHCs in an immunological synapse.

Problem. There cannot be an a priori difference between foreign and self-peptides (like
some fundamental difference in molecular structure). After all, even tissues of a different
individual of the same species are recognized as foreign (this is the basic problem of trans-
plant rejection). Therefore, the question comes up how the T-cells can distinguish between
foreign and self. At first sight, the task seems hopeless, since there are vastly more different
peptides (roughly 1013; see Mason [49]) than TCRs (roughly 107, as noted earlier), which
makes specific recognition (where one TCR recognizes exactly one pMHC) impossible; this
is known as the Mason paradox. However, there are possibilities to explain the so-called
foreign-self distinction (the ability of the T-cells to distinguish between foreign and self).
This is shown in the next chapters.

5 the entire body except for the thymus





Chapter 5

Recognition without negative

selection

In the last chapter we have presented two hypotheses, how a T-cell may become activated,
namely (A1) and (A2).

If one proceeds on assumption (A1), foreign-self distinction cannot be explained without
taking into account negative selection (which will be done in the next chapter). The reason
is that foreign and self-peptides do not differ a priori. A T-cell therefore cannot, without
any previous learning process, distinguish between a single (or few) foreign and a single
(or few) self-peptide(s). However, if one proceeds on assumption (A2), the foreign-self
distinction is possible without taking into account negative selection (as we will see in the
following). Certainly, in this case, another difference between foreign and self-peptides has
to be assumed. This could be the copy number of the foreign peptides in the immunological
synapse as we will see on the basis of a model proposed in 2001.

We start with this model and then analyze a generalized version. In order to do so we need
a result from large deviation theory. It is a limit theorem that will be stated and applied
in terms of an approximation. However, we do not know how good this approximation
is. Therefore we additionally consider exact results for a reduced model containing the
essential components.

5.1 The original BRB model and a generalized version

One possibility to explain how foreign-self distinction of T-cells works can be given on the
basis of a model by van den Berg, Rand and Burroughs [11] (henceforth referred to as
BRB).

Instead of the individual quantities characterizing the TCR-pMHC complexes (which
would be decisive under assumption (A1)), the relevant quantities are the sums of the
individual quantities. More precisely, the relevant quantities are the sums of the indi-
vidual stimulation rates of all complexes in the immunological synapse. The individual
stimulation rates might, in principle, be determined experimentally. However, owing to
the diversity of complexes, it is neither possible nor necessary to specify all these quanti-
ties (as in statistical physics). Therefore, a probabilistic approach is required. The BRB
model is the first such approach. There, the total stimulation rates characterizing the



48 RECOGNITION WITHOUT NEGATIVE SELECTION

encounters between an APC and a T-cell are assumed to be i.i.d. random variables; the
distribution of these is the essential quantity. It will be derived in the following.

5.1.1 The total stimulation rate

As we have seen in the last chapter, an immunological synapse (formed during an encounter
between a randomly chosen APC and a randomly chosen T-cell) consists of various types of
self-pMHCs on the side of the APC (if there is no foreign invader present). We assume that
the number ns of different types of self-peptides is fixed for all immunological synapses.

Let us consider a randomly chosen immunological synapse. We assume that each of the
ns different pMHC types in the synapse occurs in a certain number Zj (j P t1, . . . , nsu)
of copies such that the expected number of pMHCs in an immunological synapse is fixed,
i.e.,

nM � E

�
nş

j�1

Zj

�
.

Moreover, each pMHC type is characterized by its individual stimulation rate (with respect
to the TCR of the chosen T-cell). It is assumed to be a random variable denoted by Wj ,
where j characterizes the pMHC type. (In principle, Wj depends also on the TCR type.
However, we suppress additional notation due to the i.i.d. assumption of all individual
stimulation rates.) Thus, the total stimulation rate in the immunological synapse reads

Gpzf q � �
nş

j�1

qZjWj

�� zfWns�1 . (5.1)

It depends on the number zf of foreign peptides in the synapse, and the factor

q � nM � zf

nM

appears here since the expected number of peptide molecules on the APCs is assumed to
be constant (nM ).

The total stimulation rate G (a random variable) is the relevant quantity. A T-cell is
assumed to be activated if G exceeds a certain threshold gact. The probability of T-cell
activation is therefore given by

P pGpzf q ¥ gactq .
We now specify (5.1), strictly speaking, the distribution of the individual stimulation rates
Wj, 1 ¤ j ¤ ns � 1, and the distribution of the copy numbers Zj, 1 ¤ j ¤ ns.

5.1.2 Individual stimulation rates

The binding and unbinding of a TCR and a pMHC may, in chemical shorthand notation,
be symbolized as

TCR� pMHC
λé
ρ

TCR-pMHC complex ,

where λ and ρ are the association and dissociation rates, respectively. Due to the theory of
elementary reaction kinetics, the duration T of a contact between a TCR and a pMHC is
then exponentially distributed with mean binding time τ � 1{ρ. Hence, the probability of
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T to exceed t� is e�t�{τ , which we refer to as the stimulation probability (of the TCR-pMHC
complex).

It is assumed that the T-cell receives a stimulus every time a complex dissociates that has
existed for at least time t� � 1. (The reason is that certain reactions of signal transduction
have to be completed.) Therefore, the average stimulation rate of a randomly chosen
complex is given by

ρPpT ¡ 1q � wpτq with wpτq � 1

τ
e� 1

τ . (5.2)

In Fig. 5.1, wpτq is depicted as a function of τ . This curve can be interpreted as follows.

1. If τ ! 1, then the complex will typically dissociate before stimulation.

2. If τ " 1, then the TCR and the pMHC will typically be associated for a long time.
Therefore, the T-cell will get a stimulus through practically every binding event,
but the pMHC keeps the receptor occupied for a long time, so only few stimuli are
expected per time unit.

0 2 4 6 8 10
0

0.1

0.2

0.3

Τ

wHΤL

Figure 5.1: Average stimulation rate as a function of the average waiting time

The dissociation rates of the TCR-pMHC complexes in a randomly chosen immunological
synapse are assumed to be i.i.d. random variables. (Of course, the same holds for the
mean binding times Tj, j P t1, . . . , ns � 1u.) This is justified by the same rationale as in
statistical physics - the huge amount of complexes. Note: We make the i.i.d. assumption
both for foreign and self-peptides. In particular, this assumption means that no distinction
between foreign and self is built into the interaction between receptors and antigens. This
reflects the fact that there is no a priori difference between the peptides.

The individual stimulation rates are then given by Wj :� wpTjq, j P t1, . . . , ns � 1u,
(compare (5.2)).

In the original BRB model, the mean binding times Tj, 1 ¤ j ¤ ns � 1, are i.i.d. ex-
ponentially distributed with mean τ̄ :� 0.04 t� � 0.04. The resulting distribution of the
individual stimulation rates (i.e., the distribution of W1) is called ω-distribution. Note
that there are two exponential distributions involved here. First, Tj (1 ¤ j ¤ ns � 1),
the mean binding times of the pMHCs and the TCR are exponential random variables.
Second, the duration of the individual bindings of a pMHC and the TCR is Expp1{Tjq
distributed (compare [47]).
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Remark. The exponential distribution of the mean binding times is poorly founded. To
show that the qualitative behavior does not rely on this particular probability distribution,
we will, as an alternative, use the log-normal distribution (with parameters µ � �3.3 and
σ � 0.5) in Subsection 5.3.3. This has a justification in terms of binding/unbinding kinetics
(see BRB [11] and Zint [64]).

The density f of W1 is obtained via the transformation function for densities and de-
picted in Fig. 5.2 (on a logarithmic scale). Due to the missing monotonicity of w,
one has to consider the two branches r0, 1s and p1,8q, separately. However, since
PpT1 ¥ 1q � 1.34 � 10�11, only the first branch is relevant. This becomes clear by plotting
its contribution to f . The resulting curve does not differ visibly from f itself.

Figure 5.2: Density and activation curve of W1

The density has two singularities (at 0 and 1{e) since w1p0q � 0 and w1p1{eq � 0 with
much mass (Pp0 ¤ W1 ¤ 0.01q � 0.98) close to the first singularity and little mass
(Pp1{e� 0.01 ¤W1 ¤ 1{eq � 2.17 � 10�9) close to the second singularity. We also depicted
the so-called activation curve 1 � FW1

pxq with FW1
pxq :� 1 � PpW1 ¥ xq. On the loga-

rithmic scale it has a very similar form as the density. The reason is that the density is
approximately linear on the logarithmic scale in the central range. The same holds for the
activation curve since the activation curve of an exponentially distributed random variable
(density fpxq � λe�λx) is an exponential function (PpX ¥ xq � e�λx). The only difference
is the constant (λ) which results in the vertical shift of the curve.

Remark. As we stated in the last remark, the distribution of the mean binding time is not
so decisive. The reason is the well founded function w resulting from the reaction kinetics.
It ensures that for many distributions of the mean binding time the density and activation
curve of W1 is similar to that in Fig. 5.2.

Note that the flat central part of the activation curve of W1 suggests an approxima-
tion by a scaled Bernoulli distribution. This is done in [12]. Instead of the ω-distribution
for the individual stimulation rates, the authors choose Wj � aBerppq with a � 1{e
(j P t1, . . . , ns � 1u). However, the choice of the parameters remains debatable. We get
back to this below. But first we look into the distribution of Zj , j P t1, . . . , nsu.
5.1.3 Presentation of antigens

The genes of an organism can be classified as constitutive ones and inducible ones. The
former encode proteins that are always present in every cell (e.g., proteins of the basic
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metabolism). In contrast, the latter encode proteins that only exist in some cells (like for
example muscle proteins) and/or occur only temporarily, i.e., they are variable.

Accordingly, in the original BRB model, the types of self-peptides on each APC are par-
titioned into constitutive and variable ones. The constitutive types are the same on each
APC, whereas there is a different sample of variable types on each APC (depending on
the tissues the APC has seen).

It is assumed that there are constant numbers nc and nv of constitutive and variable
types of peptides, respectively, on each APC (such that nc�nv � ns). Moreover, the copy
numbers Zj, 1 ¤ j ¤ nc and nc � 1 ¤ j ¤ nc � nv, respectively, of the constitutive and
variable types are fixed (zc and zv, respectively). The parameter values nM � 105, nc � 50,
nv � 1500, zc � 500 and zv � 50 have been chosen on the grounds of experimental data
(see BRB [11] and Zint [64]).

Due to (5.1), the total stimulation rate with respect to a conjunction of a randomly chosen
T-cell and a randomly chosen APC is then given by

Gpzf q � �
nç

j�1

qzcWj

���
nc�nv¸
j�nc�1

qzvWj

�� zfWnc�nv�1 (5.3)

with Wj, 1 ¤ j ¤ nc � nv � 1, i.i.d. ω-distributed. (5.3) is the original BRB model. But
let us now consider a generalized version of the model.

5.1.4 Generalized BRB model

As a generalization of BRB [11] and Zint [64], in [65] we allowed the copy numbers of the
individual types within each class (constitutive and variable, respectively) to vary. That
is, we assume the random variables Zj (1 ¤ j ¤ ns) to be i.i.d. within each of the two

classes (referred to as Z
pcq
j , 1 ¤ j ¤ nc, and Z

pvq
j , nc � 1 ¤ j ¤ nc � nv).

Remark. The i.i.d. assumption is made for simplicity; we do not model a particular bio-
logical mechanism here. Realistic models would be based on an explicit consideration of
how antigens are loaded onto MHC molecules (cf. BRB [11, Appendix C]).

Due to (5.1), the total stimulation rate with respect to a conjunction of a randomly chosen
T-cell and a randomly chosen APC is then given by

Gpzf q � �
nç

j�1

qZ
pcq
j Wj

���
nc�nv¸
j�nc�1

qZ
pvq
j Wj

�� zfWnc�nv�1 . (5.4)

For ease of exposition we maintain the ω-distribution as in the original model as well
as the parameter values for nM , nc and nv. Furthermore, we use binomial distributions

Binpmc, pq and Binpmv, pq for Z
pcq
j , 1 ¤ j ¤ nc, and Z

pvq
j , nc � 1 ¤ j ¤ nc � nv, with

parameters mc � 1000, mv � 100 and p � 0.5, so that the means EpZpcq1 q � 500 and

EpZpvq1 q � 50 correspond to the values zc{nM � 0.005 and zv{nM � 0.0005 in the BRB-
model. (Apart from the expectation, the probability distribution is an ad-hoc choice.)
It should be mentioned that moderate changes of the values of the parameters (like for

example nc, nv, EpZpcq1 q and EpZpvq1 q) do not qualitatively alter the results.
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5.1.5 Foreign-self distinction

As already seen in Chapter 4, for the immune system to work, two conditions are essential:
(a) if a foreign antigen is present, then at least one T-cell will be activated; (b) there will
be no activation when only self-antigens are present.

It is helpful to recast this into a hypothesis testing framework, in the following way. The
immune system performs a test of the null hypothesis

H0 : zf � 0 (5.5)

against the alternative hypothesis

HA : zf ¡ 0 . (5.6)

The test is performed via N independent encounters between a T-cell and an APC. H0 is
then rejected (and HA assumed) if at least one encounter leads to the event tG ¥ gactu;
otherwise, H0 is retained. The type I error is therefore

α � PpHA assumed | H0 trueq � 1� p1� P pGp0q ¥ gactqqN ,

and the type II error is

β � PpH0 assumed | HA trueq � p1� P pGpzf q ¥ gactqqN .

Here, Gpzf q is as in Equation (5.1). In particular, Gp0q denotes the total stimulation rate
in the absence of foreign peptides.

Remark. The parameter gact can be fine-tuned by the cell; for more on activation threshold
tuning, see van den Berg and Rand [13].

Clearly, α is the probability of an autoimmune response, whereas β is the probability that
a foreign antigen goes unnoticed. By (b) and (a) above, both α and β must be small for
foreign-self distinction to work.

Both tGp0q ¥ gactu and tGpzf q ¥ gactu are rare events (since at most a tiny fraction of
the T-cell population reacts to a given APC). Therefore, α is close to 0 (close to 1) and
β is close to 1 (close to 0) for N small (N very large). We have no good knowledge of the
value of N (except that it is bounded above by the number of T-cell types). But it is clear
that a necessary condition for distinction is that gact can be chosen in such a way that,
for physiologically realistic values of zf ,

(C1) PpGpzf q ¥ gactq " PpGp0q ¥ gactq.
Consequently, there is a region of intermediate values of N for which both α and β are
small.

In order to prevent an autoimmune reaction, the probability PpGp0q ¥ gactq has to be tiny
(roughly 10�7). Since the normal approximation becomes too crude, this requires large
deviation theory which is the subject of the next section.
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5.2 Large deviations

For many families of random variables, large deviation principles (LDP’s) are available to
characterize their atypical behaviour. Here, we will be concerned with sums of random
variables, i.e.,

Sn � ņ

i�1

Xi,

where pXiqi¥1 is a sequence of independent (but not necessarily identically distributed)
random variables (like those in Eq. (5.1)). An LDP characterizes the probability of a large
deviation of Sn from its expectation; a large deviation is a deviation of order n (in contrast
to a normal deviation of order

?
n, as covered by the central limit theorem). A basic result

is Cramér’s theorem, which says the following. For a sequence pXiqi¥1 of i.i.d. real-valued
random variables whose moment-generating function φpϑq � EpexppϑX1qq is finite for all
ϑ P R, one has, for all a ¡ EpX1q,

lim
nÑ8 1

n
log PpSn ¥ anq � �Ipaq, (5.7)

where Ipaq � aϑa � ψpϑaq, ψpϑq � log φpϑq, and ϑa is the (unique) solution of ψ1pϑq � a.
That is, for large n, the probability that Sn is larger than an decays exponentially with
n, with decay rate Ipaq. The value ϑa is known as the “tilting” parameter. It is used for
an exponential reweighting (or “tilting”) of the distribution of the Xi (and hence of Sn)
that inflates the right-hand tail of the probability distribution in such a way that the rare
event tSn ¥ anu turns into a typical one; this is a crucial step in the analysis. For a review
of large deviation theory, see e.g. [24, 37]; Cramér’s theorem and its proof are found in
[37, Chap. I.3], for example.

Note, however, that the knowledge of the exponential decay rate Ipaq alone does not suffice
to provide meaningful leading-order estimates of the probabilities of the rare event itself.
This is because (5.7) is compatible with PpSn ¥ anq � fpnq exp p�nIpaqp1� op1qqq for
any prefactor fpnq � Opnαq, with arbitrary α. More accurate information is obtained
from so-called exact asymptotics. For the situation at hand, this is given by a refinement
of Cramér’s theorem due to Bahadur and Rao (cf. [24], Chap. 3.7). Namely, under the
assumptions of Cramér’s theorem and the additional requirement that the distribution of
X1 be non-lattice (which is always fulfilled if X1 has a density), one has

PpSn ¥ anq � 1?
2πnσϑa

e�nIpaqp1� op1qq as nÑ8 (5.8)

for all a that satisfy EpX1q   a   supϑ ψpϑq. Here, Ipaq and ϑa are as above, and σ2 �
ψ2pϑaq is the variance of 1

n
Sn after “tilting” with the exponential parameter ϑa. (The

condition a   supϑ ψpϑq ensures that only those events tSn ¥ anu are considered that are
actually possible; the condition is void if X1, and hence Sn{n, take values in all of R¥0.)

What we need to tackle our stimulation rates (5.1) is the generalization of (5.8) to sit-
uations in which the pXiqi¥1 are not identically distributed. Fortunately, a very general
result is available, which does not even require independence. This is the result of Cha-
ganty and Sethuraman [19], which plays a crucial role in our analysis, and which we will
now formulate.
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Let pSnqnPN be a sequence of R-valued random variables, with moment generating functions
φnpϑq � E pexppϑSnqq, ϑ P R. Suppose that there exists a ϑ� P p0,8q such that

sup
nPN

sup
ϑPBϑ� φnpϑq   8 , (5.9)

where Bϑ� � tϑ P C : |ϑ|   ϑ�u. Define

ψnpϑq � 1

n
log φnpϑq , (5.10)

and let panqnPN be a bounded sequence in R such that for each n the equation

an � ψ1npϑq (5.11)

has a solution ϑn P p0, ϑ��q for some ϑ�� P p0, ϑ�q. This solution is unique by strict
convexity of ψn. Define

σ2
n � ψ2npϑnq ,

Inpanq � anϑn � ψnpϑnq . (5.12)

Theorem 12 (Chaganty-Sethuraman). If infnPN σ
2
n ¡ 0, limnÑ8 ϑn

?
n � 8 and

lim
nÑ8?n sup

δ1¤|t|¤δ2ϑn

����φnpϑn � itq
φnpϑnq ���� � 0 � 0   δ1   δ2   8 , (5.13)

then

P pSn ¥ nanq � e�nInpanq
ϑnσn

?
2πn

p1� op1qq as nÑ8 . (5.14)

Proof. See [19].

In analogy with the previous discussion, ϑn is the “tilting parameter” for the distribution
of 1

n
Sn, σ2

n is the variance of the “tilted” 1
n
Sn, and Inpanq is the large deviation rate

function.

The stated theorem is now applied to the situation of the generalized BRB model.

5.3 Activation curves

In order to investigate whether Condition (C1) can be fulfilled for physiologically realistic
values of zf , we consider the activation curves of Gpzf q in (5.4) for different values of zf .

5.3.1 Approximation

We begin by deriving an approximation based on Theorem 12. Consider a sequence of
models defined by increasing numbers of constitutive and variable peptide types. Let

n � #
nc � nv, if zf � 0,

nc � nv � 1, otherwise,
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and consider the limit nÑ8 with limnÑ8 nc{nv � C1 P p0,8q; note that the number of
foreign peptides remains 1 throughout. Let Sn in Theorem 12 be

Gnpzf q � �
nç

j�1

qnZ
pcq
j Wj

���
nc�nv¸
j�nc�1

qnZ
pvq
j Wj

�� zfWnc�nv�1

where

qn � ncmc p� nv mv p� zf

ncmc p� nv mv p
,

and let Mc, Mv and M be the moment generating functions of Z
pcq
j Wj, Z

pvq
j Wj and Wj ,

respectively, i.e., for γ P tc, vu,
Mγpϑq � 1

τ

mγ

ķ�0

�» 8
0

exp

�
kϑ

expp�t�{τq
τ

� τ

τ



dτ



Binmγ ,ppkq , (5.15)

and

Mpϑq � 1

τ

» 8
0

exp

�
ϑ

expp�t�{τq
τ

� τ

τ



dτ . (5.16)

Choose an � a and gactpnq � an. Let ϑn be the unique solution of

a � nc

n
qn

�
d

dϑ
logMcpϑq� ���

ϑ�qnϑn� nv

n
qn

�
d

dϑ
logMvpϑq� ���

ϑ�qnϑn

� 1

n
zf

�
d

dϑ
logMpϑq� ���

ϑ�zf ϑn

.

(5.17)

We further define

σ2
n � nc

n
q2n

�
d2

dϑ2
logMcpϑq� ���

ϑ�qnϑn� nv

n
q2n

�
d2

dϑ2
logMvpϑq� ���

ϑ�qnϑn

� 1

n
z2
f

�
d2

dϑ2
logMpϑq� ���

ϑ�zf ϑn

(5.18)

and

Inpaq � aϑn � nc

n
logMcpqnϑnq � nv

n
logMvpqnϑnq � 1

n
logMpzfϑnq . (5.19)

Since we have only finitely many different types of random variables, all independent, it
is straightforward to check

Lemma 6. The conditions for Theorem 12 are satisfied.

Proof. The moment generating function φnpϑq is given by

φnpϑq � #pMcpϑqqnc pMvpϑqqnv , if zf � 0,pMcpqnϑqqnc pMvpqnϑqqnv Mpzfϑq, otherwise.

Let zf be fixed. If a is chosen such that gactpnq ¡ EpGnp0qq and gactpnq ¡ EpGnpzf qq for
all n (in which case the strict inequalities are in fact uniform in n), then limnÑ8 ϑn �
C2 P p0,8q. Consequently, limnÑ8 ϑn

?
n � 8, and also infnPN σ

2
n ¡ 0. It thus remains to
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verify Condition (5.13). Let Fcpxq, Fvpxq and F pxq be the distribution functions of Z
pcq
j Wj ,

Z
pvq
j Wj and Wj , respectively. Since

νpnqγ ptq � Mγpqnpϑn � itqq
Mγpqnϑnq � »

R

exppiqntxq exppqnϑnxq
Mγpqnϑnq dFγpxq, γ P tc, vu ,

and

νpnqptq � Mpzf pϑn � itqq
Mpzfϑnq � »

R

exppizf txq exppzfϑnxq
Mpzfϑnq dF pxq

are characteristic functions of random variables that are not constant nor are lattice valued,
and ϑn and qn converge as nÑ8, there exists an ε ¡ 0 and an n0   8 such that, for all

t � 0 and n ¥ n0, |ν
pnq
c ptq| ¤ 1 � ε, |ν

pnq
v ptq| ¤ 1 � ε and |νpnqptq| ¤ 1 � ε (see Feller [27,

Chapter XV.1, Lemma 4]). From this it follows that����φnpϑn � itq
φnpϑnq ����� ����pMcpqnpϑn � itqqqnc pMvpqnpϑn � itqqqnv Mpzf pϑn � itqqpMcpqnϑnqqnc pMvpqnϑnqqnv Mpzfϑnq ����� ����νpnqc ptq	nc

�
νpnqv ptq	nv

νpnqptq���� op1{?nq
as n Ñ 8 for all t � 0 (compare the argument leading to [27, Chapter XVI.6, Equation
(6.6)]), which guarantees (5.13).

In view of Lemma 6, we may approximate the probability of T-cell activation as

P pGpzf q ¥ gactq � e�nInpaq
ϑnσn

?
2πn

, (5.20)

where Gpzf q is the stimulation rate of (5.4), gact � gactpnq � an, and we assume that n is
large enough for a good approximation. (Note that the threshold gact is not known; but we
do know that reactions of T-cells are rare events. Especially, if there is no foreign peptide
present, the probability of T-cell activation has to be smaller than 10�7 since there are
roughly 107 up to 108 T-cells present in a day (which should not be activated), compare
[2, 50]. The probabilities we are interested in are therefore so small that they do not lie in
the range of the central limit theorem (compare Fig. 5.3 below). Rather gact is such that
large deviations results are applicable, as will also be confirmed by our simulations below.)
The expression on the right-hand side of (5.20) must be evaluated numerically (we used
MathematicaR© [62]), since already the moment generating functions in (5.15) and (5.16)
are unavailable analytically, and this carries over to ϑn, σ2

n, and Inpaq in (5.17)-(5.19).

Remark. Rather than taking the limit in the way described above, we could as well consider
a sequence of models with nf different foreign peptides and let n Ñ 8 such that nc{n,
nv{n and nf{n each tend to a constant; the approximation of our given finite system by
(5.17)-(5.20) would remain unchanged.

The number of foreign peptides remains 1 in the limit considered. So, the influence of the
foreign part fades away and one should be critical whether the approximation is adequate.
Therefore we compare the approximation with simulations in the next subsection.
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5.3.2 Comparison with simulations

Let us consider the activation curves for two extreme cases, namely, the self-background
(zf � 0), and a very large number of foreign peptides (zf � 2500).

(a) zf � 0, linear scale (b) zf � 0, logarithmic scale
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gact
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PHGHzfL ³ gactL

(c) zf � 2500, logarithmic scale

Figure 5.3: PpGpzf q ¥ gactq as a function of gact, for the self background (zf � 0), and a very large
number of foreign peptides (zf � 2500). The thick curve and the points, respectively, form the
simulated activation curve resulting from two million [(a),(b)] and twenty million [(c)] sampling
points. The dashed curve is the normal approximation, and the thin curve is the large deviation
approximation (5.20). The simulation in (c) was kindly provided by F. Lipsmeier.

Fig. 5.3 shows the simulated curve in comparison to the normal approximation and the
approximation in (5.20). As was to be expected, the normal approximation describes the
central part well, whereas for the right tail (the relevant part of the probability distribution
for the problem at hand) the large deviation approximation is appropriate. For zf � 0,
the latter describes the simulated activation curve in an excellent way; for zf � 2500, it
still gives correct approximations beyond gact � 550.

An improved approximation of the entire curve is obtained in BRB [11] (for the original
model) by combining the normal and the large deviation approximations, applying them
to the self-peptides only, and performing a convolution with the single foreign one. We
prefer the direct approach (5.20) here, because it makes the large deviation aspect more
transparent.
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5.3.3 Approximated activation curves

As we have seen in the last subsection, the approximation in (5.20) is suitable for the
calculation of the activation curves for various values of zf . Fig. 5.4 shows the curves as
a function of gact for exponentially (a) and log-normally (b) distributed mean binding
times. The results in (a) and (b) are qualitatively the same. Namely, we observe that the

curves for zf � 250 and zf � 500 (both ¤ EpZpcq1 q � 500) do not differ visibly from
the curve for the self-background; but, for zf ¡ 1000 and gact ¡ 500, Condition (C1)
is fulfilled. Therefore, the model can indeed explain how T-cells are able to distinguish
between foreign and self. Comparison with Fig. 3 of BRB [11] shows that the separation
of the activation curves is indeed similar to that in the original model. In terms of the
cartoon in Fig. 4.1, the threshold value gact can be chosen so that T-cell 2 will be activated
when it encounters APC 2 with three foreign peptides (the circles), while the other APCs
without foreign peptides (the non-circles) will not activate any T-cell.
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(a) exponential distribution
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(b) log-normal distribution

Figure 5.4: Activation curves for values of zf ranging from 0 to 2500, calculated according to
approximation (5.20) for two different distributions of the mean binding times. The horizontal axis
is chosen to start at a value of gact that yields a probability close to 1 in this approximation.

The intuitive reason behind the foreign-self distinction is an elevated number of presented
foreign peptides in comparison with the copy numbers of individual types of self-peptides.
Indeed, this increases the variability of G (which is reminiscent of the fact that for n ¥ 2
i.i.d. random variables with positive variance, nY1 has a larger variance than

°n
i�1 Yi).

So far, the number of presented foreign peptides has to be fairly large: at least as large
as the copy number of constitutive ones, which are, in turn, more abundant than the
variable ones (one might actually reformulate the hypotheses pair (5.5) and (5.6) so as to
test whether the foreign antigen is more abundant than the constitutive peptides or not).
However, this restriction vanishes when we take the training phase of the young T-cells
into account, as will be done in the next chapter.

Moreover, a second problem arises. For our analysis we used large deviation approxi-
mations. However, we do not have any error bounds. (In principle, error estimates (of
Berry-Esséen type) can be obtained but in practice these are useless.) As we have seen
in Fig. 5.3, the approximation fits in with the simulations in a large range. But there
are parts where the distinction is overestimated. As one may see in Fig. 5.4, these parts
are also relevant. This is the reason why exact results and error bounds, respectively, are
desirable. Another reason is that the comparison of the results for different probability
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distributions (as in Fig. 5.4 (a) and (b)) is difficult since one does not know how good the
approximations are.

Therefore, we aim at exact results. But before we embark on these, let us again simplify
the model.

5.4 Reduced model

The simplest case of (5.1) is the one where Zj � z is constant for all j P t1, . . . , nsu. Then,
the total stimulation rate with respect to a conjunction of a randomly chosen T-cell and
a randomly chosen APC is given by

Gpzf q � �
nş

j�1

qzWj

�� zfWns�1 . (5.21)

This random variable will be considered in the following. In order to derive results com-
parable to those of the last section we use the same parameter value for nM as well as
the intermediate values ns � 1000 (i.e., nc   ns   nv) and z � 100 (i.e., zv   z   zc).
Moreover we maintain the ω-distribution for Wj, 1 ¤ j ¤ ns � 1.

We are interested in bounds for the activation curves. Since G is a sum we work out
inequalities for the probability that a sum exceeds a threshold.

5.4.1 Inequalities for sums

The first upper bound goes back to the Markov inequality applied to the exponential of a
sum, i.e., for all ϑ ¥ 0,

P pX � Y ¥ zq ¤ E
�
eϑpX�Y q�
eϑz

.

This is also called “exponential Chebyshev” and results in the large deviation upper bound

log P pX � Y ¥ zq ¤ �Ipzq (5.22)

with

Ipzq � sup
ϑ¥0

�
ϑz � log E

�
eϑpX�Y q		

(compare [24, Chap. 1.2]).

A second upper bound and a lower bound may be derived by truncation of the convolution

P pX � Y ¥ zq � » 8
z

» 8�8 fXpsqfY pt� sqdsdt� » c�8 fXpsqP pY ¥ z � sq ds� » 8
c

fXpsqP pY ¥ z � sq ds .
The splitting into two integrals may be done for arbitrary values of c. If we bound the two
terms from above or from below, the best bounds are obtained by taking the infimum or
supremum over all c. Hence, we get the upper bound

P pX � Y ¥ zq ¤ inf
c
pP pX ¤ cqP pY ¥ z � cq � P pX ¡ cqq
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and the lower bound

P pX � Y ¥ zq ¥ sup
c
pP pX ¥ cqP pY ¥ z � cqq (5.23)

(compare the illustration in Fig. 5.5). These bounds only make sense if they capture the
dominant terms in the convolution. They will be optimal if all mass is concentrated in the
areas which are hatched or blank in both Fig. 5.5 (a) and (b).

Y

z

zc X

z−c

(a) upper bound

Y

z

zc X

z−c

(b) lower bound

Figure 5.5: Illustration of the bounds resulting from cutting of the convolution

Remark. The supremum in (5.23) (for a distribution which possesses a density) is reached
where the hazard function (the density divided by the activation function describing the
activation curve) of X at z � c equals the hazard function of Y at c. The reason is thatpP pX ¥ cqP pY ¥ z � cqq1 � fY pz � cqP pX ¥ cq � fXpcqP pY ¥ z � cq .
5.4.2 Lower bounds for the foreign-self distinction

In order to account for the possibility of a discrimination of foreign and self, the distinction
between the activation curves for zf � 0 and zf ¡ 0 has to be high enough. Therefore, we
develop a lower bound for this distinction. This can be done by applying the bounds of the
last subsection to G. Having a lower bound for the foreign activation curve and an upper
bound for the background, the distinction between the activation curves is ensured to be
greater or equal to the difference of the bounds (compare the illustration in Fig. 5.6).

We start with the calculation of a lower bound for the foreign activation curve. It is derived
from (5.23) by choosing c � EpXq. The logarithmic quantity is given by

log P pGpzf q ¥ gactq � log P

�
nş

j�1

qzWj � zfWns�1 ¥ gact

�¥ log

�
sup

c

�
P

�
nş

j�1

qzWj ¥ c

�
P pzfWns�1 ¥ gact � cq��¥ log p� log P

�
zfWns�1 ¥ gact � E

�
nş

j�1

qzWj

��
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Figure 5.6: Illustration of the lower bound for the foreign-self distinction on a logarithmic scale

with

p � 1

2
� 0.7975

°ns

j�1 E
�|Wj � EpWjq|3��°ns

j�1 E ppWj � EpWjqq2q	3{2
due to the Berry-Esséen inequality (cf. [27], Chap. XVI).

In order to bound the background activation curve we use the large deviation upper bound
(see (5.22)). The logarithmic probability is then given by (minus) the rate function

logP pGp0q ¥ gactq ¤ �Ipgactq � � sup
ϑ¥0

�
ϑgact � log E

�
eϑGp0q		 .

The bounds are shown in Fig. 5.7. One can see that in the relevant range, where the

Figure 5.7: An upper bound of the background activation curve (dotted; zf � 0), lower bounds for
the foreign activation curves (thin; zf � 500 for the left and zf � 1000 for the right curve) as well
as the simulation (thick and points; zf � 1000) and the large deviation approximation (dashed)
for the ω-distribution

probability of an immune response (i.e., PpGp0q ¥ gactq) is very small (e.g. 10�8), there
is a distinction of several orders of magnitude for the parameter value zf � 1000. For
comparison, we have depicted the simulation result and the large deviation approximation,
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too. This shows that the upper bound underestimates the real activation curve but it is
good enough to explain the foreign-self distinction.

However, already for the parameter value zf � 500 (� 5z) the foreign-self distinction
cannot be reasonably bounded this way since the lower bound of the foreign activation
curve lies below the upper bound of the background. The reason is the fact that the
bounds become too crude in that case. As shown in Fig. 5.8 (a) the foreign-self distinction
for zf � 500 given by the large deviation approximation is much larger. The same is true
for the simulated curves (see Fig. 5.8 (b)). However, the distinction becomes small even
for zf � 300.
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(a) large deviation approximation (b) simulation

Figure 5.8: Activation curves for values of zf ranging from 0 to 1000, calculated according to the
large deviation approximation for the reduced model and simulated, respectively

As already mentioned in Section 5.1, the ω-distribution may, as a first approximation, be
described by a scaled Bernoulli distribution. We therefore further consider the alternative
distribution aBerppq and let �Wj i.i.d. � aBerppq, 1 ¤ j ¤ ns � 1, take the role of Wj .
Here, p is the relevant (free) parameter. a (scaling the axis) is chosen so that a p � EpW1q
for comparison with the distribution of W1. We consider two choices: (a) p � 8.89 � 10�4e
and a � 1{e as well as (b) p � 8.89 � 10�4 and a � 1. In the first case the maximal value
is the same as that of Wj . The second case corresponds to a smaller value of p (an ad-hoc
choice).

Our bounds together with the true activation curves (which may be exactly calculated in
this case) and the large deviation approximation are depicted in Fig. 5.9.

As we may see in Fig. 5.9 (a), the result is similar to that in the case of the ω-distribution
if we use the scaled Bernoulli distribution with a � 1{e. However, as we may see in Fig. 5.9
(b), the lower bound for the foreign-self distinction in the relevant range becomes larger
if we use a scaled Bernoulli distribution with larger maximal value (a � 1), i.e. smaller p.

In the scaled Bernoulli case, the lower bounds can be optimized by really taking the
supremum in (5.23). It is given by

szf
pgactq :� max

�
pP

�
nş

j�1

qzWj ¥ gact � zfa

�
,P

�
nş

j�1

qzWj ¥ gact

��
. (5.24)

The true activation curves together with szf
are shown in Fig. 5.10. Obviously, szf

is a
very good lower bound for the activation curves.
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(b) p � 8.89 � 10�4, a � 1

Figure 5.9: The true background activation curve (gray; zf � 0), its upper bound (dotted), lower
bounds for the foreign activation curves (thin; zf � 500 for the left and zf � 1000 for the right
curve) as well as the true foreign activation curve (black, thick; zf � 1000) and the large deviation
approximation (dashed) for scaled Bernoulli distributions with two different values of p

(a) p � 8.89 � 10�4e, a � 1{e (b) p � 8.89 � 10�4, a � 1

Figure 5.10: The true activation curves (black) for zf � 0, zf � 500 and zf � 1000 from left to
right as well as szf

for zf � 500 and zf � 1000 (gray) for scaled Bernoulli distributions for two
values of p (and a, respectively)

Altogether, we have to remark that fairly high copy numbers of the foreign peptides are
necessary to ensure an adequate foreign-self distinction (in the Figures at least five times
as much as self-peptides of a particular type). This is the reason why we take into account
negative selection in the following.





Chapter 6

Inclusion of negative selection

Up to now, we have considered T-cell recognition neglecting the thymus, where negative
selection takes place and induces the so-called central tolerance (i.e., tolerance toward
self-peptides induced by negative selection). We have seen that the recognition process
under assumption (A2) can work even without negative selection, but only under certain
assumptions, namely fairly high copy numbers of the foreign peptide. These assumptions
may be attenuated if we take into account the events in the thymus. This will be done in
two different ways.

We start with the model proposed in [11] and analyze its effect on the BRB model and
the generalized version. However, some problems arise. We will therefore put forward an
alternative model.

The experimental literature (compare [23]) shows that it is not yet known how exactly the
negative selection process works. In particular, the presentation of antigens by the thymical
APCs may be modeled in different ways. On the one hand a thymical APC could present
antigens of different tissues of the body; on the other hand it could present antigens of a
particular tissue. In our new model we proceed on the latter assumption that the thymical
APCs emulate the various locations (tissues) of the body; it is therefore called emulation
model. The results are similar to those of the first model; but further insight is gained.

After that, we will come back to a model under assumption (A1).

6.1 Effect in the BRB model and the generalized version

For a long time, no active transport of antigens from the periphery into the thymus
(except for circulation in the blood stream) has been described. Moreover, it has been
assumed that there are only thymical antigens (i.e., constitutive and variable thymical
peptides) present on the thymical APCs. Therefore, one proceeds on the assumption
that the thymical APCs only present self-peptides, and it is assumed that all APCs (also
the thymical ones) present the constitutive peptides together with a variable part which
depends (amongst other conditions) on the location of the APC.

In order to model the process called negative selection, one postulates a second threshold
gthy with a similar role as gact. As in the periphery, the T-cells encounter APCs (in this case
thymical ones) in the thymus. If the stimulation rate of a young T-cell in its maturation
phase in the thymus exceeds the threshold gthy, the T-cell is induced to die.
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For a caricature version of the negative selection process, let us assume that T-cell types
present in the thymus exist in one copy each and encounter exactly one APC there.

The model then consists of two parts: first, the maturation phase is modeled to characterize
the T-cell repertoire surviving negative selection; second, activation curves are calculated
for this surviving repertoire. In the first step, we have to calculate the probability to
survive negative selection conditional on the type of the T-cell. For a randomly chosen
T-cell we have

Ppsurvivalq � P

�
nç

j�1

Z
pcq
j Wj � nc�nv¸

j�nc�1

Z
pvq
j Wj   gthy

�
.

Now, the conceptual difference between constitutive and variable peptides has an effect,
which is essential. As already mentioned, it is assumed that the constitutive types of
peptides are the same on each APC, both in the thymus and in the periphery. Only these
can be “learnt” as self by negative selection – the variable types, being a fresh sample
for every APC, are entirely unpredictable. Therefore the constitutive stimulation rates
characterize a T-cell type, and we have

Ppsurvival of a certain T-cellq � Ppsurvival |W1, . . . ,Wncq .
In the case of fixed constitutive copy numbers zc (as in the original BRB model), the
constitutive part of the stimulation rate reads Gpcq � °nc

j�1 zcWj , which is constant for a
certain T-cell type. Therefore we have

Ppsurvival |W1, . . . ,Wncq � Ppsurvival |Gpcqq .
This simplifies the second step, the calculation of the activation curves conditional on
survival: only a single integration step is required. Numerically, it turns out that (C1) is

already fulfilled for zf ¤ 500 (� EpZpcq1 q), see [11, 64]. Actually, the detection threshold
for foreign antigens is reduced drastically (to about a third of the original value).

In the generalized version (where the copy numbers vary from APC to APC), the constitu-

tive part Gpcq � °nc

j�1 Z
pcq
j Wj varies from encounter to encounter. Indeed, whereas the Wj ,

1 ¤ j ¤ nc, are fixed for each T-cell, the copy numbers are tied to the APCs. Therefore°nc

j�1Wj is not sufficient to determine Gpcq, and hence the survival probability; rather, the
entire collection of the individual stimulation rates Wj for the constitutive types must be
known to calculate the probability of the young T-cell to survive negative selection. The
corresponding convolution required in the second step involves high-dimensional integrals,
which appear to be computationally infeasible. In van den Berg and Molina-Paris [12] this
difficulty is tackled by choosing Wj � aBerppq (1 ¤ j ¤ nc � nv � 1). In [65] and here we
resort to simulations.

To this end, we assume that each mature T-cell encounters the same number (in our
simulation 1) of APCs in the rest of the body. For gthy � 140 (which for our choice of
parameters corresponds to thymic deletion of about 5% of the young T-cells) the activation
curves are shown in Fig. 6.1.
As in the case of fixed copy numbers, we observe an incipient separation of the activation
curves for zf � 0 and zf � 500. All in all, the above shows that the reduced detection
threshold for foreign antigens occurs in the case of random copy numbers, too. However,
it seems that the separation of the activation curves is less pronounced here than in the
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Figure 6.1: Simulated activation curves with gthy � 140 for zf � 0 (black curve) and zf � 500
(gray curve)

original BRB model. This is plausible because the copy numbers of several constitutive
peptides could be large (comparable to the copy number of the foreign peptide) and
therefore the recognition does not work equally well.

As explained above, in the generalized version of the BRB model we had to resort to
simulations since the emerging high-dimensional integrals were computationally infeasible.
The desire for analytical results, in combination with novel insights into immunobiology
(which will be presented in the next section), have been the reasons for designing a new
model.

6.2 Emulation model

For a long time it was assumed that negative selection affects only the distribution of
the constitutive peptides since they were thought to be present on all APCs, whereas the
variable peptides were thought to vary dependent on the locations (tissues) that have been
traveled by the APCs. This was the reason for the distinction between constitutive and
variable peptides in the BRB model. Moreover, one thought that the variable peptides in
the thymus were typical of the thymus.

However, it has been found recently that, in the thymus, tissue-restricted antigens1 (TRAs)
are expressed (i.e., produced) and presented, too (see [23, 43, 44, 48]). This finding extends
the scope of central tolerance to virtually all tissues of the body.

6.2.1 Novel insights into immunobiology

The expression of TRAs is a physiological property of medullary thymic epithelial cells2

(mTECs), which present the antigens on MHC I and II molecules [23, 46]. However,
although mTECs can autonomously delete CD8 T-cells, crosspresentation by dendritic
cells3 (DCs) is required for the deletion of CD4 T-cells (see [29, 44]). Crosspresentation
means that DCs have to absorb the peptides expressed by the mTECs and present them
on their surface. The absorption of the antigens can be realized by different means. First

1 from anywhere of the body
2 cells located in the so-called thymical medulla
3 special APCs
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of all, DCs can engulf apoptotic (dying) mTECs. Moreover, the antigens can be taken
up from viable mTECs via secreted exosomes (membrane-enclosed vesicles) or a process
referred to as nibbling. The latter means that DCs take membrane-enclosed blebs from the
surface of mTECs. At last, antigens can be transferred through gap junctions4.

Not much is known about the expression patterns of the various antigens. Gallegos and
Bevan [30] observed that mTECs expressing low levels of MHC II together with a co-
stimulatory molecule (CD80) express a narrow range of TRAs, representing one or a
few tissues, while mTECs expressing high levels express the broadest range of TRAs.
Moreover it has been found that the genes encoding the TRAs are often regulated in
clusters (compare [22, 32, 44]) which are not necessarily cell type specific [23]. Altogether
the expression is highly variable (see [57]). But at the same time a seemingly minuscule
change of the amount of antigen expression can have a dramatic effect on tolerance [1,
44]. One possible way of antigen presentation is therefore that the various tissues of the
periphery are emulated in the thymus.

Numerically, Kyewski et al. [44] state that a particular TRA is expressed in 1� 3% of all
mTECs. Moreover, in the medulla, T-cells could potentially interact with 5000 APCs per
hour [30, 44] and they stay in the medulla for about 5 days. Therefore, the T-cells encounter
a great many APCs. Furthermore, expression of certain chemokines (signal proteins) by
mTECs are likely to promote encounters (see [43]).

So far we have been concerned with the presentation of self-antigens in the thymus. We
have seen that possibly all self-antigens could be represented in the thymus. However, the
innocuous external antigens derived from commensal flora or food remain problematic if
they are assumed not to be expressed by the thymical cells (as done in Section 6.1). But the
following finding helps on. Bonasio et al. [16, 44] found that DCs with extrathymic origin,
which collect antigens in the periphery, are recruited to the thymic medulla. Therefore,
tolerance to the broad range of innocuous external antigens can be induced, too.

6.2.2 The model

The experimental findings explained in the last subsection allow us to consider a classifi-
cation of the peptides on an APC that is different from the original BRB model and its
generalization. Strictly speaking, the new model exceeds the former insofar as the variable
part can be specified.

We have seen that not much is known about the antigen presentation in the thymus
(the same holds for the antigen presentation in the periphery). As already mentioned,
one possibility is that the thymical APCs represent (i.e., emulate) various locations (e.g.,
tissues) of the body; in addition to this “local part”, the APCs in the periphery present
a variable part including all imponderabilities as varying copy numbers and exchanged,
additional or missing antigens.

We assume that each T-cell encounters at least one representative of every location in the
thymus. This is again in line with the findings summarized in the last subsection where we
saw that the T-cells encounter a great many APCs in the thymus. If the total stimulation
rate during such an encounter exceeds the threshold gthy, the T-cell is induced to die.
Therefore, the local stimulation rates of the T-cells leaving the thymus lie below gthy. The
random variable with the modified (a posteriori) probability distribution (representing

4 connections between cells
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the local stimulation rate in the periphery) is denoted by Gthy (for thymically changed).
The stimulation rate during an encounter in the periphery then consists of the variable
stimulation rate in addition to the thymically changed local stimulation rate and eventually
the foreign part, i.e.,

Gpzf q � qpGthy �Gvarq � zfW ,

with factor q as before and W �W1.

The distribution of the variable partGvar is assumed to be a normal distribution with mean
µ and variance σ2. (The assumption is made due to the multitude of factors constituting
the variable part.) As we will see, the variance of Gvar is an important quantity. The
goodness of the foreign-self distinction depends critically on this parameter. We choose
µ � 0 and σ2 � 10.

Furthermore, we assume that the local component Gloc before negative selection is dis-
tributed according to the stimulation rate Gp0q given by (5.21):

Gloc � nş

j�1

zWj . (6.1)

The important fact that the local stimulation rate is cut off at the threshold gthy has the
consequence that the tail of the probability distribution is cut off. We may assume that it
is cut off at the median. (This is an ad-hoc choice; its consequences are discussed below.)
In this way we get the distribution of Gthy. The density is given by

fthypxq � #
flocpxq

Flocpgthyq , x ¤ gthy,

0, otherwise.

In the following we analyze this distribution and the resulting activation curves for various
distributions of the Wj , 1 ¤ j ¤ ns � 1. We start with the ω-distribution given by the
function wpτq with exponentially distributed τ (compare Section 5.1). (In the following,
the resulting mean EpWjq � 8.89 � 10�4 is fixed for all distributions.)

We then proceed with two differently scaled Bernoulli distributions aBerppq with a � 1{e
and a � 1, respectively. As already mentioned, a scaled Bernoulli distribution shows some
relevant features of the ω-distribution. In this context, it is a matter of discussion how a

has to be chosen. In [12] a � 1{e has been assumed; but in Fig. 5.2 it becomes clear that
a smaller value of a would eventually fit better. However, decreasing p (i.e., increasing a)
improves the foreign-self distinction, as we will see.

In the end, we also consider Wj � Exp
�
1{p8.89 � 10�4q�, 1 ¤ j ¤ ns � 1.

In the case of the ω-distribution for the Wj , 1 ¤ j ¤ ns � 1, the central part of the
distribution of Gloc may be approximated by a one-sided truncated normal distribution.
(The truncation on the left is the consequence of the fact that negative values cannot
appear.) The density function of Gloc is therefore given by

flocpxq � $''&''% 1

z
?

nsVpW1qϕ�x�nM EpW1q
z
?

nsVpW1q 

1�Φ

�
0�nM EpW1q
z
?

nsVpW1q 
 , x ¥ 0,

0, otherwise,
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with EpW1q � 8.89 � 10�4, VpW1q � 4.28 � 10�5 and ϕ the density of the standard normal
distribution. Due to the truncation by negative selection we then get a two-sided truncated
normal distribution for the thymically changed local part. Thus, the density function of
Gthy is given by

fthypxq � $''&''% 1

z
?

nsVpW1qϕ�x�nM EpW1q
z
?

nsVpW1q 

Φ

�
gthy�nM EpW1q

z
?

nsVpW1q 
�Φ

�
0�nM EpW1q
z
?

nsVpW1q 
 , 0 ¤ x ¤ gthy,

0, otherwise.

In the case where Wj � aBerppq (1 ¤ j ¤ ns � 1), the probability distribution before
negative selection is a scaled binomial one (zaBinpns, pq as a consequence of (6.1)). For
a � 1, p � 8.89 �10�4, truncation at the first median (gthy � z) results in a scaled Bernoulli
distribution of the thymically changed local part, i.e., Gthy � zBerp0.47q. However, for
a � 1{e, p � 8.89 � 10�4e, the first median is gthy � 2z{e, and there remain three atoms at
0, z{e and 2z{e.
The activation curves of the thymical and the variable components with the ω-distribution
and aBerppq for the Wj are shown in Fig. 6.2 for the case where gthy equals the median.

0 20 40 60 80 100
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PHGthy ³ gactL

PHGvar ³ gactL

Figure 6.2: Activation curves of the variable component and the thymical component for the ω-
distribution as well as aBerppq for a � 1, p � 8.89 � 10�4 (dotted) and a � 1{e, p � 8.89 � 10�4e
(dashed)

The background activation curve is then given by convolution of the local and the variable
part. First, we consider the case of the ω-distribution for the Wj, 1 ¤ j ¤ ns � 1. The
background curve is the dashed curve in Fig. 6.3.

Moreover, lower bounds for the foreign activation curves for 2z ¤ zf ¤ 10z are shown in
Fig. 6.3. They are given by

P pGpzf q ¥ gactq �P pqpGthy �Gvarq � zfW ¥ gactq¥P pqpGthy �Gvarq ¥ qEpGthy �Gvarqq�
P pzfW ¥ gact � qEpGthy �Gvarqq (6.2)

(due to (5.23)). As we may see, in addition to the highest copy number (zf � 1000) for
which a foreign-self distinction could be explained by means of our bounds even in the
absence of negative selection (compare Sect. 5.4), the distinction by means of our bounds
now also succeeds for the next lower copy number (zf � 500). However, for the smallest
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Figure 6.3: Background activation curve (dashed) and lower bounds for the foreign activation
curves for zf � 200, zf � 500 and zf � 1000 from left to right in the case of the ω-distribution

copy number (zf � 200), the distinction is not ensured. But it possibly exists for the real
curves (as for zf � 500 without negative selection), see Subsection 5.4.2.

We now again consider Wj � aBerppq, 1 ¤ j ¤ ns� 1, for a � 1{e and a � 1, respectively.
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(a) a � 1{e, p � 8.89 � 10�4e
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(b) a � 1, p � 8.89 � 10�4

Figure 6.4: Background activation curve (dashed) and lower supremum bounds for the foreign
activation curves for zf � 200, zf � 500 and zf � 1000 from the left-most to the right-most curve
(recall that z � 100 throughout) for the choice Wj � aBerppq, 1 ¤ j ¤ ns � 1, with various values
of p (and a, respectively)

The background activation curves in both cases (shown in Fig. 6.4) look similar to that
in the case of the ω-distribution.

The lower bounds for the foreign activation curves are given by the supremum in (5.23)
and read

szf
pgactq :� max ppP pqpGthy �Gvarq ¥ gact � zfaq ,P pqpGthy �Gvarq ¥ gactqq .

They are plotted for zf � 1000, zf � 500 and zf � 200 in Fig. 6.4. As we may see, in
addition to the two highest copy numbers for which a foreign-self distinction by means of
our bounds could already be explained without negative selection (compare Sect. 5.4),
the distinction now also succeeds for the lowest copy number (zf � 200). Moreover it is
already evident for zf � z and the foreign-self distinction in the relevant range is larger
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than for the ω-distribution.

Thus, we have seen that for the ω-distribution of the individual stimulation rates a foreign-
self distinction is only ensured for copy numbers larger than the copy number of the self-
peptides. However, using the scaled Bernoulli distributions, a foreign-self distinction can
already be explained for zf � z (see Fig. 6.4). Note that for smaller p the distinction
is slightly improved since the variance of zfWns�1 is increased while the variance of the
variable part remains unchanged.

Altogether, we arrive at the conclusion that for a scaled Bernoulli distribution and the
ω-distribution of the Wj , 1 ¤ j ¤ ns� 1, the foreign-self distinction can be explained. For
comparison we have done the calculations for an exponential distribution with the same
mean, too (see Fig. 6.5). Obviously, the foreign-self distinction does not exist since the
true activation curves for zf � 200, zf � 500 and zf � 1000 do not differ visibly from
the background activation curve and therefore, needless to say, the distinction cannot be
explained by means of our lower bounds in this case.
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Figure 6.5: Background activation curve (dashed) and lower bounds for the foreign activation curves
for zf � 200, zf � 500 and zf � 1000 from left to right in the case of an exponential distribution
(the true foreign activation curves do not differ visibly from the background)

Up to now we have analyzed two models of negative selection proceeding on assumption
(A2). In the process, we proceed to some extent on the assumption of a scaled Bernoulli
distribution. In this case we can establish a link to a model under assumption (A1). It
is called individual model since it relies on individual pMHCs instead of the sum of the
individual stimulation rates.

6.3 Individual model

A scaled Bernoulli distribution for the individual stimulation rates stands for an all-or-
none law. Either a certain pMHC (of type j) stimulates with a fixed rate (i.e., Wj � a)
or it does not (i.e., Wj � 0). This may be interpreted in the following way: A pMHC is
either suitable for the TCR or it is not.

Recall that (A1) states that the activation of a T-cell depends on a single (or few)
pMHC(s). This may be modeled in the following way: If there is at least one (or few)
pMHC(s) suitable for the TCR, the T-cell will be activated.
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Let prec be the recognition probability (i.e., the probability that a certain pMHC is suitable
for a particular TCR). The probability of T-cell activation is then given by

1� p1� precqns

since p1� precqns is the probability that no pMHC in the randomly chosen immunological
synapse is suitable for the TCR. (The recognition probability in the case when activation
depends on a few pMHCs can be calculated in an analogous way.)

As in the models under assumption (A2) we suppose that elimination in the thymus
(in the context of the negative selection process) occurs in the same way as activation
in the periphery. Thus, in the individual model a T-cell is eliminated if it encounters a
thymical APC carrying a suitable pMHC. Therefore, the pMHCs presented in the thymus
are unsuitable for the T-cells in the periphery, i.e., the background probability is 0. The
probability of T-cell activation in the periphery, where one foreign peptide is present, is
then given by prec.

Remark. The individual model has already been discussed in [64] on the basis of works
by Borghans, de Boer et al. [17, 18]. There, it has been advised of the weak point that all
self-peptides would have to be presented in the thymus. At that time, the novel insights
into immunobiology stated in Subsection 6.2.1 were not yet available. Therefore it was
assumed that the TRAs were not presented in the thymus. However, now we know that
they are still present. Hence the weak point does not exist anymore.

In the emulation model with Wj � aBerppq, 1 ¤ j ¤ ns � 1, truncation of the Binomial
distribution results in a scaled Bernoulli distribution (or a distribution with three atoms).
This means sorting out of T-cells if there is more than one (or two) type(s) of stimulating
peptides present (at a certain location). Then, it is clear that the foreign-self distinction
is guaranteed if the variance of the variable part is small enough and a stimulating foreign
peptide is present in the periphery.

If the threshold gthy has been chosen smaller than za, the choice Wj � aBerppq, 1 ¤ j ¤
ns � 1, in the emulation model would have been equivalent to the individual model.

Therefore, in the end, our model under assumption (A2) together with the scaled Bernoulli
distribution equals a model under assumption (A1). The reason is that in the Bernoulli
case a pMHC either stimulates or it is irrelevant. But the question remains whether any T-
cell survives negative selection in this case. This is not discussed in the biological literature
but we will shortly analyze this problem in the following.

6.4 Problem

We have to distinguish between two survival probabilities. Let psurv be the probability
of a T-cell to survive an encounter with a thymical APC and Psurv the probability to
survive negative selection, i.e., all the encounters with APCs in the thymus. If we assume
independence of the survivals of encounters with different APCs, the relation between the
two survival probabilities is given by

Psurv :� ppsurvqnenc ,

where nenc is the number of encounters. It is clear that for small psurv and large nenc the
probability Psurv is very small, i.e., the fraction of T-cells which survives negative selection
is tiny.
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In particular, this problem arises in every emulation model with relatively small psurv (in
our case psurv :� PpGloc ¤ gthyq � 0.5 due to the cut-off at the median) since nenc is
high due to the emulation of the various tissues. We assumed that the thymical APCs are
exact images of the various tissues. If we additionally assume that each T-cell encounters
all these representatives, nenc equals the number of different tissues. A reasonable value
could be 200 as the approximate number of different cell types (compare [52]). Then, Psurv

would really be tiny.

Remark. Potentially, nenc could be assumed to be smaller (e.g., 4 as the number of major
types of tissues5, see [59]) in order to ensure that adequately many T-cells survive the
thymus. However, then the variance of the variable part has probably to be enlarged.

Since the individual model (with psurv � p1 � precqns) is a special case of the emulation
model (with scaled Bernoulli distribution and appropriate cut-off; compare Section 6.3),
the problem arises there, too. In this case it is obvious that the independence assumption
(see above) is bad. The reason is that the various APCs representing the different tissues
do not carry completely different peptides. Therefore,

Psurv � p1� precqns�nenc

does not hold.

The way out for relatively small psurv together with large nenc is the introduction of
dependencies. This line of thought is confirmed by experimental statements. Borghans
and De Boer [17] estimate that there are 105 different self-antigens present in a mouse.
Therefore, a large overlap of the presented antigens on the various APCs is inevitable.
Thus, dependencies have to occur.

6.5 Résumé

We have analyzed various models for T-cell recognition under different assumptions about
when a T-cell may become activated. Recall that (A1) states that activation depends on a
single (or few) pMHC(s). In contrast, (A2) states that activation depends on all pMHCs
in an immunological synapse.

In Section 6.3 we have shown that a model under assumption (A1) is able to explain the
foreign-self distinction (if one takes into account negative selection). However, this model
relies on a scaled Bernoulli distribution of the stimulation of the single pMHCs, but this
all-or-none law is biologically unrealistic. The reason is the following:

A T-cell is unable to discriminate between different pMHCs at the level of individual
stimulation rates. The stimulation rates may only be considered as a sum. Therefore, in
a model under assumption (A1) it has to be guaranteed that the sum reveals something
about the individual pMHCs. This is guaranteed only if the stimulation rates follow an
all-or-none law. (Due to the resulting binomial distribution, the number of stimulating
pMHCs is revealed.) This means that a pMHC (if present in the immunological synapse)
is either suitable for the TCR (Wj � wmax ¥ gact) and therefore activates the particular
T-cell or it is unsuitable (Wj � 0) and therefore does not activate the T-cell on its own.
In the case when activation depends on a few pMHCs, the value of gact has to be altered

5 epithelial, muscular, connective and nervous
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(e.g., wmax ¤ gact ¤ 2wmax). However, it is unclear how such an all-or-none law may be
realized biologically. As we have seen at the beginning of Chapter 5, stimulation occurs in
a probabilistic way.

Therefore, the analyzed models under assumption (A2) are biologically more realistic. As
a start, they were considered without negative selection (compare Chapter 5).

For the analysis of the models we have stated a large deviation result due to Chaganty
and Sethuraman and applied it. The results are compared with simulations. Moreover,
appropriate bounds are developed.

We have seen that recognition under assumption (A2) even works in the absence of negative
selection. However, this must be compensated by other assumptions (like a high abundance
of the invader).

Afterwards (compare Section 6.1 and 6.2), negative selection was included. We have
shown that the foreign-self distinction in this case even works for lower numbers of the
invader. However, the invader has to be present in an adequate amount.

Altogether, for all considered models, the ability to explain a reliable recognition was
shown.
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