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team with Jörn Clausen, Sven Hartmeier, Susanne Konermann, and Jan Krüger for many

helpful discussions and a nice time. Special thanks to Michael Beckstette, who not only

kept me caffeinated, but also has been great help during the data analysis for XenDB

providing his Genlight system.

Finally, I would like to thank my parents and family for their support and patience, and

Petra for putting up with me over the past years, filling my life with joy.

iii



iv



Contents

Acknowledgments iii

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I. Suffix-Array Based EST Clustering 5

2. EST Clustering 7

2.1. Expressed Sequence Tags (ESTs) . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1. cDNA Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2. EST Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3. EST Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4. EST Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5. EST Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. EST Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1. Clustering Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2. Clustering Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3. Clustering Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



2.3.1. CAP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2. d2 cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3. PaCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4. BLASTclust (megaBLAST) . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5. TGICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4. Gene Indicies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1. NCBI UniGene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2. TIGR Gene Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3. STACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Suffix Array Based EST Mapping and Clustering 31

3.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2. Enhanced Suffix Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1. Suffix Trees and Suffix Arrays . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2. Enhanced Suffix Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3. Vmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3. e2g - EST Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1. Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3. Web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5. Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4. EST Clustering using Vmatch . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1. Clustering Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2. X. laevis EST Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5. Validation of Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1. Hubert and Arabie Adjusted Rand Index . . . . . . . . . . . . . . . . 57

3.5.2. EST Clustering Benchmark Data Set . . . . . . . . . . . . . . . . . . 59

3.5.3. Quality Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.4. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4. EST Clustering Pipeline 81

4.1. Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vi



4.1.1. Data Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.2. Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.3. Repeat Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.4. Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.5. Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.6. Annotation of Contig Sequences . . . . . . . . . . . . . . . . . . . . . 86

4.1.7. Web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2. Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1. Clustering Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.2. User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

II. Applications to Xenopus laevis 107

5. XenDB: A Xenopus laevis Gene Index 109

5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2. Generation of a Xenopus laevis Gene Index . . . . . . . . . . . . . . . . . . 110

5.2.1. Sequence retrieval and Cleanup . . . . . . . . . . . . . . . . . . . . . 110

5.2.2. Repeat Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.3. Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.4. Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3. Sequence Analysis of Xenopus laevis Gene Index . . . . . . . . . . . . . . . 114

5.3.1. Identification of Chimeric Sequences . . . . . . . . . . . . . . . . . . 115

5.3.2. Gene Ontology prediction and Functional Classification . . . . . . . . 115

5.4. Clone Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.1. Identification of full length contigs . . . . . . . . . . . . . . . . . . . 117

5.4.2. Identification of full length clones . . . . . . . . . . . . . . . . . . . . 119

5.5. Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.1. User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.2. Homeobox Gene Identification . . . . . . . . . . . . . . . . . . . . . 122

5.5.3. Homologue Identification from the Cancer Genome Anatomy Project 123

5.5.4. Homologues of Drosophila Eye Development Genes . . . . . . . . . . 125

vii



5.5.5. Application of the IsoSVM classifier to X. laevis EST data . . . . . . . 127

5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6. Computational Identification of miRNAs in X. laevis EST clusters 129

6.1. microRNAs: Biogenesis and Prediction . . . . . . . . . . . . . . . . . . . . . 130

6.2. Computational Identification of miRNAs . . . . . . . . . . . . . . . . . . . . 133

6.3. Results: X. laevis miRNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7. Conclusion and Outlook 139

A. Structures of Predicted miRNA Precursors 141

Bibliography 145

viii



List of Tables

2.1. Number of GenBank and dbEST entries . . . . . . . . . . . . . . . . . . . . . 18

3.1. Vmatch clustering parameters for X. laevis data set. . . . . . . . . . . . . . . 46

3.2. Notation for contingency table representing cluster overlap . . . . . . . . . . 58

3.3. Formulae for calculating the number of object pairs for the four different

types of pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4. Number of clusters and singlets for the 16 A. thaliana benchmark data sets . 62

3.5. Vmatch clustering parameters for A. thaliana data set. . . . . . . . . . . . . 62

3.6. Maximum values of the Adjusted Rand indices for A. thaliana benchmark

data sets clustered with Vmatch option -identity and -leastscore . . . . 68

3.7. Mean Adjusted Rand Index for A. thaliana benchmark data sets, Vmatch

option -identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8. Mean Adjusted Rand Index for A. thaliana benchmark data sets, Vmatch

option -leastscore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9. Mean Adjusted Rand Index for A. thaliana benchmark data sets, Vmatch

option -leastscore and different X-Drop values . . . . . . . . . . . . . . . 74

3.10.Vmatch ’default’ parameter settings for EST clustering. . . . . . . . . . . . . 75

3.11.Friedman analysis of variance by ranks applied to the Rand Index values of

the different clustering tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



5.1. Tissue types and developmental stages in X. laevis ESTs . . . . . . . . . . . 111

5.2. Summary of X. laevis EST cleanup and clustering. . . . . . . . . . . . . . . . 113

5.3. Number of full length X. laevis contigs as derived by BLASTX and FASTY . . 119

5.4. Average length of X. laevis contigs for different BLASTX and FASTY full

length contig categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5. Homeobox genes in X. laevis . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6. Xenopus matches to Pax6/ey Regulated Genes . . . . . . . . . . . . . . . . . 126

6.1. miRNAs identified in EST clusters . . . . . . . . . . . . . . . . . . . . . . . . 135

x



List of Figures

2.1. Essential steps in the cDNA cloning procedure. . . . . . . . . . . . . . . . . . 9

2.2. Directional cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Sequence and trace file of EST CF549456 . . . . . . . . . . . . . . . . . . . . 13

2.4. NCBI’s Entrez view of an EST entry, accession BG410207. . . . . . . . . . . . 16

2.5. Alternative splicing of genes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1. Suffix tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2. Enhanced suffix array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3. Data flow in the EST mapping tool e2g . . . . . . . . . . . . . . . . . . . . . 40

3.4. Screenshot of the e2g web interface . . . . . . . . . . . . . . . . . . . . . . 43

3.5. Number of clusters and singlets for various settings of Vmatch parameters

with 94% identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6. Number of clusters and singlets for various settings of Vmatch parameters

with 96% identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7. Number of clusters and singlets for various settings of Vmatch parameters

with 98% identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8. Number of clusters and singlets for various settings of Vmatch parameters

with leastscore representing 94% identity . . . . . . . . . . . . . . . . . . . 53

3.9. Number of clusters and singlets for various settings of Vmatch parameters

with leastscore representing 96% identity . . . . . . . . . . . . . . . . . . . 54

xi



3.10.Number of clusters and singlets for various settings of Vmatch parameters

with leastscore representing 98% identity . . . . . . . . . . . . . . . . . . . 55

3.11.Adjusted Rand Index for Vmatch clustering results of data set 10k (option

-identity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.12.Adjusted Rand Index for Vmatch clustering results of data set 20k (option

-identity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.13.Adjusted Rand Index for Vmatch clustering results of data set 40k (option

-identity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.14.Adjusted Rand Index for Vmatch clustering results of data set 80k (option

-identity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.15.Adjusted Rand Index for Vmatch clustering results of data set 10k (option

-leastscore) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.16.Adjusted Rand Index for Vmatch clustering results of data set 20k (option

-leastscore) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.17.Adjusted Rand Index for Vmatch clustering results of data set 40k (option

-leastscore) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.18.Adjusted Rand Index for Vmatch clustering results of data set 80k (option

-leastscore) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.19.Adjusted Rand Index for clustering tools applied on different data sets . . . 76

3.20.Multiple comparison analysis for quality evaluation results . . . . . . . . . . 78

3.21.Running times for tools CAP3 , d2 cluster, PaCE , TGICL , BLASTclust and

Vmatch for different data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1. Design of EST clustering pipeline . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2. Full length clone selection and consensus sequence categories . . . . . . . . 89

4.3. EST clustering database schema (part 1 of 3). . . . . . . . . . . . . . . . . . 92

4.4. EST clustering database schema (part 2 of 3). . . . . . . . . . . . . . . . . . 93

4.5. EST clustering database schema (part 3 of 3). . . . . . . . . . . . . . . . . . 94

4.6. Query interface for the clustering and analysis results . . . . . . . . . . . . . 98

4.7. XenDB search result for cluster number 2341 . . . . . . . . . . . . . . . . . . 100

4.8. XenDB contig view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.9. XenDB: graphical alignment visualization . . . . . . . . . . . . . . . . . . . 102

4.10.XenDB: Result for a search for GO term eye . . . . . . . . . . . . . . . . . . 103

xii



4.11.XenDB species mapping: Identification of potential Xenopus homologues to

Drosophila genes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12.SQL code for mapping accessions of FASTY hits to cluster contigs. . . . . . . 105

5.1. Contig identified as potential chimera . . . . . . . . . . . . . . . . . . . . . 116

5.2. Comparison of a BLASTX alignment with corresponding full length FASTY

alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3. Two examples of contigs derived from clones predicted to have a full length

insert (P5P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1. miRNA biogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2. miR-17 cluster in contig 16044 . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



xiv



CHAPTER 1

Introduction

1.1. Motivation

Since its discovery by Friedrich Miescher in 1869 DNA has been the central object of re-

search for molecular biologists. It took another 84 years until in 1953 Watson and Crick

solved the molecular structure of DNA [162] and again 24 more years until the estab-

lishment of a sequencing technique by Sanger et al. [131], which allowed to determine

the nucleotide order of a given DNA fragment. Since then, the sequencing of complete

genomes has undergone an amazing development. The genome sequence of Haemophilus

influenzae was the first complete genome to be deciphered in 1995 and the first eukaryote

followed soon after in 1997 with yeast. In 2001 the completion of the human genome was

announced and recently the first megabyte of the neanderthal genome could successfully

be sequenced [55].

According to the Genomes OnLine Database (GOLD) [99], 460 complete genomes have

been sequenced and published to date, including 29 archaea, 385 bacteria, and 43 eukary-

otes. 1345 genomes projects are currently ongoing. The human genome alone consists of

3 billion nucleotides, a decent part of the more than 67 billion bases reported in the public

GenBank database. With next generation sequencing techniques like pyrosequencing and

1



1. Introduction

454 sequencing, and the cost of existing technologies continuing to decline, the amount

of data will even grow faster in the future, surpassing Moore’s law for the increase of

microprocessor computational power. Therefore, it is obvious that the need for efficient

algorithms and well organized databases to store and cross-link the information will only

increase.

Additionally, a big effort is made to determine the sequences of fragments of genes

that have been copied from DNA to RNA (Expressed Sequence Tags, ESTs). 227 ongoing

EST projects produce huge amounts of data and submit tens of thousands of sequences

to public databases each day. ESTs provide the most extensive available survey of the

transcriptome of an organism and with it evidence for the existence of genes. They are

indispensable for gene discovery, gene structure prediction, and genomic mapping. The

price of the low-cost high-throughput data is that ESTs contain high error rates and are not

very well annotated. The low quality sequence data can be improved by several processing

steps and by clustering into gene-oriented clusters, which again can be assembled to contig

sequences for further analyses.

In the first part of this thesis, we will describe an EST clustering pipeline that makes

use of enhanced suffix arrays, a data structure that has been shown to be as powerful as

suffix trees, with the advantage of a reduced space requirement and reduced processing

time. Further on, enhanced suffix arrays have been shown to be superior to other match-

ing tools for a variety of applications. We will validate the clustering results based on a

“gold-standard” EST data set of A. thaliana. The implemented clustering pipeline takes

advantage of the underlying database and enables unique batch functionality of mapping

results from other organisms to the species of interest.

For some species, EST projects provide the only information about their gene content.

One of these species is the African clawed frog Xenopus laevis. Research using this model

system has provided critical insights into the mechanisms of early vertebrate development

and cell biology. In the former, X. laevis has led the way in establishing the mechanisms

of early fate decisions, patterning of the basic body plan, and organogenesis. Contribu-

tions in cell biology include work on chromosome replication, cell cycle components, and

signaling pathways. Despite of the interest in this model organism, no genome project is

planned, and EST and cDNA sequences are the only resource available. The Trans-NIH

Xenopus Initiative therefore agreed on recommendations for future goals to further im-

prove Xenopus as a non-mammalian model system. One of the goals of highest priority

is the generation of ESTs and full length cDNA collections, as they facilitate functional

2



1.2. Structure of the Thesis

assays, one of the particular strengths of Xenopus.

We have applied the EST clustering pipeline described in the first part to X. laevis,

both to identify full length protein encoding sequences and full length cDNA clones. The

unique database system supports comparative approaches between X. laevis and other

model systems, and enables the retrieval of their potential full length clones.

1.2. Structure of the Thesis

Chapter 2 starts with an introduction into the techniques of cDNA cloning and sequenc-

ing of expressed sequence tags (ESTs), including common problems. Existing EST

databases and typical applications arising from the availability of ESTs are intro-

duced, including EST clustering. The most widely used EST clustering tools are

described together with their resulting gene indices.

Chapter 3 introduces the concept of enhanced suffix arrays and the tool Vmatch . The

application of Vmatch to EST mapping and clustering is demonstrated and clustering

results qualitatively validated and compared to other clustering tools, using a “gold-

standard” data set of A. thaliana ESTs.

Chapter 4 presents the design and implementation of a clustering pipeline including a

corresponding database schema to store clustering results in a persistent way. The

pipeline implements Vmatch as the central clustering tool.

Chapter 5 demonstrates the application of the clustering pipeline to a X. laevis EST data

set. Resulting cluster contigs undergo a comprehensive sequence analysis and the

web-based interface XenDB is presented together with a number of examples em-

phasizing the utility of the clustering and sequence analysis results.

Chapter 6 describes the computational identification of miRNA genes in the clustered

EST data set.

Chapter 7 summarizes the conclusion we draw and ends in an outlook of future work

arising from this thesis.
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CHAPTER 2

EST Clustering

When Putney et al. [125] recognized in 1983 that random cloning and sequencing could

provide rapid access to the mRNAs in the cell, they probably did not realize that this

would become one of the most widely used methods later called EST (expressed sequence

tag) sequencing. In 1990, Sydney Brenner proposed that an obvious way of finding at

least a large part of the important fraction of the human genome were to sequence the

messenger RNAs of expressed genes to provide rapid access to the genes [23]. Critics of

this idea countered that cDNA sequencing would miss the regulatory elements that could

only be found in the genomic DNA sequence.

The term ’EST’ was introduced by Adams et al. in 1991 [4] in a publication describing

the identification of 337 genes expressed in human brain. Soon after that The Institute of

Genome Research (TIGR) generated EST data on a massive scale [3, 5]. Although access

to the data was initially restricted, TIGR released more than 100,000 ESTs shortly after

to the dbEST database [18] maintained by the NCBI. Among the first large projects in the

1990ies contributing their data were The Genexpress Index [64] with 25,000 brain- and

muscle-derived sequences, Merck and Company with more than 528,000 human ESTs [62,

42, 165] and a project funded by the Howard Hughes Medical Institute which produced

216,000 mouse ESTs.
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2. EST Clustering

2.1. Expressed Sequence Tags (ESTs)

2.1.1. cDNA Cloning

One of the fundamental techniques of molecular biology is the enzymatic conversion of

mRNA to double-stranded DNA and the insertion of this DNA into vectors. After the

discovery of reverse transcriptase in 1970 [12, 150], the first clones of complementary

DNA (cDNA) were obtained in the mid 1970s. Since then, improvements have been made

to the efficiency of synthesis of double-stranded cDNA and the vector systems. The method

of cDNA cloning at the time was most widely used to synthesize and clone full-length

double stranded cDNAs. Later, Putney et al. [125] realized that random cloning and

sequencing could provide rapid access to almost all the mRNAs in the cell. Today, cDNA

cloning is within the range of any competent laboratory (Figure 2.1 shows the essential

steps in the cloning procedure). cDNA libraries can be routinely prepared and methods

to identify clones of extremely rare species of mRNAs are available. Improvements of

the protocols led to increased sizes of cloned cDNAs, so that it is now possible to isolate

full-length cDNAs from all but the longest mRNAs [130].

After isolation of the RNA from the cell, the first strand of cDNA is synthesized by an

RNA-dependent DNA polymerase reverse transcriptase using poly(A)+ mRNA as a tem-

plate. Primers used for this reaction are typically: (1) oligo(dT) 12-18 nucleotides in

length that bind to the poly(A) tract at the 3’ terminus of the eukaryotic mRNA molecules,

(2) primer-adaptors containing a homopolymeric oligo(dT) tract at the 3’ terminus and a

restriction site at the 5’ terminus, (3) oligo(dT) primers covalently linked to a plasmid and

(4) random primers.

The product of first-strand synthesis (the mRNA-cDNA hybrid) is treated with RNase

H which produces gaps in the mRNA strand of the hybrid. The resulting series of RNA

primers are used by DNA polymerase I during the synthesis of the second cDNA strand.

Next, linker molecules are ligated to the cDNA molecule termini. These molecules are

cleaved at a restriction site in the linker and ligated to a vector carrying the cohesive

termini compatible with those of the linker (see Figure 2.2).

Primer-adaptors allow for directional cloning of the cDNA as shown in Figure 2.2. In this

cloning strategy the termini in the ligation reaction are not all equivalent, but produced by

digestion with two restriction enzymes with different recognition sequences. The termini

of the cDNA fragments will not be complementary and unable to ligate to each other.

8



2.1. Expressed Sequence Tags (ESTs)

Synthesize first−strand cDNA.

Synthesize double−stranded cDNA.

Attach linkers of adapters.

Prepare cDNA library.

Sequence clones.

Prepare mRNA, poly(A) RNA, or other subset of mRNA.

Isolate RNA.

Cells containing mRNA of interest.

Figure 2.1.: Essential steps in the cDNA cloning procedure.

However, they will ligate to a vector that has been prepared by cleavage with the same

two enzymes, generating recombinants containing an insert in a predefined orientation.

If the first-strand cDNA synthesis was incomplete (e.g. in the case of very long mRNAs),

the clones will lack sequences from the 5’ end of the mRNA. If synthesis of the second-

strand cDNA was blocked, the 3’ end of the mRNA will be underrepresented. Therefore,

sometimes random oligonucleotides are used as primers in the construction of the cDNA

library.

Methods of Enrichment

Mammalian cells typically contain between 10,000 and 30,000 different transcribed se-

quences. Alternative splicing can produce even more different species of mRNA per cell.

Not all of these sequences are represented equally: genes that are actively transcribed

make a greater contribution to the pool of mRNAs than genes that are transcribed more

rarely. Bishop et al. define three frequency classes of distributions of mRNAs in a typical

somatic cell based on reassociation kinetics analysis: (1) superprevalent (10-15 mRNAs

representing 10-20% of the total mRNA mass); (2) intermediate (1,000-2,000 mRNAs;

40-45%); and (3) complex (15,000-20,000 mRNAs; 40-45%) [16, 21].
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NotI

NotI

NotI

reverse transcription

treat with T4 DNA polymerase

TTTTTTTTTT

TTTTTTTTTT

ligate EcoRI adaptor

and DNA polymerase I
treatment with RNase H

TTTTTTTTTT
AAAAAAAAAA

AAAAAAAAAA

AAAAAAAAAA
− NotI primer−adaptor 

AAAAAAAAAA

AAAAAAAAAA
TTTTTTTTTT

EcoRI adaptor

EcoRI adaptor

AAAAAAAAAA
TTTTTTTTTT

EcoRI site

NotI site

digest with NotI

clone into vector

Figure 2.2.: Directional cloning: The first strand of the cDNA is primed by oligo(dT) se-
quences linked to a primer-adaptor encoding a restriction endonuclease recognition
site (in this case, NotI). The mRNA sequence is represented by the wiggly strand, the
oligo(dT)-adaptor is shown in black. Treatment of the RNA-DNA hybrid with RNase H
and DNA polymerase I nicks the RNA moiety so that T4 DNA polymerase can complete
the second-strand synthesis. Ligation of EcoRI adaptors to the cDNA product and cleav-
age with NotI allow the product to be inserted in a directed manner into the appropriate
vector. (Adapted from [130]).
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2.1. Expressed Sequence Tags (ESTs)

The number of clones required to achieve a given probability that a low-abundance

mRNA will be present in a cDNA library is [35]:

N =
ln(1− P )

ln(1− [1/n])

where N is the number of clones required, P is the probability desired and 1/n is the

fraction of the total mRNA that is requested by a single type of rare mRNA. For exam-

ple, Williams [164] analyzed the mRNA population of human fibroblast cells that contain

12,000 different transcribed sequences. mRNAs with <14 copies/cell constitute 30%

of the total mRNA, and 11,000 different mRNAs belong to this class. To achieve a 99%

probability of obtaining a cDNA clone of an mRNA from this cell line at that low frequency

would require a library of 170,000 clones.

Unfortunately, many mRNAs are present at even lower levels (1 molecule/cell is not

unusual [130]). Therefore, methods have been developed to enrich the starting popula-

tion of mRNA molecules for sequences of interest. This allows the size of the library to be

reduced.

Subtractive cloning removes sequences from the library that are of no interest. This is

achieved by hybridizing single-stranded cDNA prepared from mRNA extracted from the

tissue of interest prepared from another source that do not express the genes of interest.

Normalized libraries bring the frequency of occurrence of clones of individual mRNAs

into a narrow range of one order of magnitude [139, 21]. The method is based on reasso-

ciation kinetics. Rarer species will anneal less rapidly and the remaining single-stranded

fraction of cDNA will become progressively normalized during the procedure, reducing

significantly the high variation in abundance among the clones of the cDNA library.

2.1.2. EST Sequencing

Expressed Sequence Tags (ESTs)

After the cDNA library has been constructed, individual clones are picked from the library

and the cDNA insert is sequenced from each end using primers that hybridize to the vector

sequence. The length of these sequences average about 500 bases, which led to the term

expressed sequence tag (EST) [4]. As the length of an mRNA is usually longer than 500

bases (for human the mean lengths are: coding sequence 1340 bases, 5’ UTR 300 bases,

and 3’ UTR 770 bases [68]), the ESTs represent only fragments of genes and not the
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complete coding sequence.

The ESTs can be classified as derived from the 5’ or 3’ end of the clone if the cDNA has

been directionally cloned into the vector. Initially, EST sequencing projects favored the

5’ end of the cDNAs because the 5’ sequences are likely to contain more protein coding

sequence than the 3’ ends. 3’ ends are mostly poly(dT) primed and therefore contain

significant untranslated regions (UTRs). Many genes have very long 5’ and 3’ UTRs, so

that single read sequencing of the 3’ end will not reveal any information about the coding

potential of the gene. On the other hand, the 3’ end of the cDNA clone is sometimes pre-

ferred because the 3’ UTR offers more unique sequence as it is the most diverse region of

the transcript [83, 129], which can be used to distinguish between individual genes and

paralogous gene family members that may be closely related in their coding sequences.

These unique sequences are better suited for the design of cDNA array-based experiments

where the cDNA and its EST are often used if the complete genome sequence is not avail-

able. Today, more and more projects sequence both ends of the cDNA.

EST sequencing is an established high-throughput method at many sequencing centers,

e.g. the Genome Sequencing Center at Washington University generates about 20,000

ESTs per week.

I.M.A.G.E. Consortium

The I.M.A.G.E. Consortium [96] was initiated in 1993 by four academic groups on a col-

laborative basis after informal discussions led to a common vision of how to achieve an

important goal in the study of the human genome: the Integrated Molecular Analysis of

Genomes and their Expression. Specifically, the consortium shares high-quality, arrayed

cDNA libraries used for EST sequencing and place sequence, map, and expression data on

the clones in these arrays into the public domain.

Today, more than half of the ESTs in GenBank are from IMAGE clones. The human and

mouse genomes were the first to be studied, and the collection now contains clones from

rat, zebrafish, Fugu, Xenopus and rhesus macaque. A majority of the clones are publicly

available and free of any royalties.
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>gnl|ti|286854524 name:15596501 CF549456

GCTGGACCGGTCCGGAATTCCCGGGATCGAGAAGAGAAGAAGGAGAGATATAGGCACAGGACAGAACTGGTTTGTGGTATGTATAATG

GCTAAGCCTTGTGGTAAGTTTACTGCAATCCTCGGGCTAATGGCTTACACTAATTGTATTAGCAATATTCTATGTATTATATAGCAAT

TATCCCATACAAAAAATGTTATTTGATCCAAATANCCGGANGAACATTTTCATCGTTTGATGTGCACATTACTTTACATTTGTAATAT

TAATAATACAAAGTCTGCACCCAAAACAAGTTTTATTGGANNAANCTATGTGTCCACGACTTATTGTATTTATAGATTCCCTGTGCAT

TATGGGTTCCCTAAGGAGCCACAAGAGCTGCTACTATAATAGAACATTTTCccctggatccaattgcaaaatgnngtccttgnanacc

ggntcacnaaaggcacacnggtataaaacgntgggtctgtngggnctnttttaaaatgtaacgatatttcaatgcagctcatttattt

taaaaccccttactagnccgttaaccagaattaagtacaatgctggcggttttcattggcgacagncatggtttaaaaccctgtccaa

tggggcaaccacataaaagnctatanggcacatggctccttgggcntttttgggggggtggcctggnccggntttcccccgggggcct

ttaaaaatttcctccangggccctnntaaaaaaaagnagccaaggaannangttnccccttttgaaaaagggggaaaaaaaacccccc

tnccttttgggggaaaaaaattnanatttttcnccctttcccccngggggnccnnnccttnaaaaccccccccaaaaaaccggnaaaa

aaaaaaannnggggggaaaaaacccccccngnannttttttgggggggggggnnccccccccccggttnttntcnnggggganaantt

ttaaggggggtgggggnnnccggnccaac

Figure 2.3.: Sequence of EST CF549456 and the corresponding trace file obtained from
NCBI’s trace archive. The sequence shows a tremendous quality drop around position
405, indicated by the dark gray background color in the trace viewer and lowercase
letters in the sequence.

2.1.3. EST Quality

Sequence Quality

ESTs are typically automatically processed, unedited, single-read sequences derived by

rapidly sequencing cDNA clones. Consequently, they have a higher error rate than se-

quences that are verified by multiple sequencing reactions. Compared to the finished

portion of the draft human genome sequence which has an error rate of less than 1 in

10,000 bases [68], ESTs have errors on the order of 3% [18]. They contain insertions,

deletions and substitutions compared to the mRNA sequence. These errors are usually

highest at the beginning and end of the reads and the highest quality portion of the EST

sequence is between 100 and 300 bases [62]. Figure 2.3 shows an example of a low qual-

ity EST sequence. Database entries sometimes contain annotations about the high quality

segments of a sequence read which, when available, can be used to clip the sequences.
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Contamination

In addition to the incorrect nucleotides within the EST sequence, parts or even the com-

plete sequence can be incorrect. ESTs can contain vector, bacterial, or mitochondrial (or

other structural or regulatory RNA) sequence contamination. Hillier et al. [62] found that

normalized libraries show comparatively low levels of contamination compared to non-

normalized, which had up to 20% bacterial contamination. All of the libraries contained

mitochondrial sequences, ranging from 1% to 16% of the ESTs.

Internal Priming

Most cDNA clones are poly(dT) primed and therefore the 3’ ESTs should represent the

3’ untranslated region of the mRNA. However, a potential problem with this approach is

the occurrence of false 3’ ends because of internal priming. This can occur as a result of

priming to an A-rich region upstream of the poly(A) tail during the reverse transcription

step. Aaronson et al. [1] and Hillier et al. [62] found that 1.5-3% of oligo(dT)-primed 3’

ESTs do not align with the known 3’ end of the mRNA.

Inverted Clones

Another source of error are inverted clones due to failures either in the directional cloning

procedure or in the association tracking between primers and sequence, that lead to misla-

beled 5’ and 3’ ESTs. Up to 6% of the ESTs match a known mRNA in an inverted orientation

[62].

Chimeric Clones

Chimeric clones are also a main concern in EST sequencing projects. They could arise

during the cloning procedure as a result of artificial fusion of cDNAs derived from different

genes. Lane tracking errors, which introduce incorrect associations between sequence

and clone, can also be perceived as chimeric clones, when 5’ and 3’ ESTs are incorrectly

assigned to the same clone. Aaronson et al. [1] and Hillier et al. [62] estimated the

frequency of chimeric clones at 1%, another study at 11% [166, 167].
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Full-length cDNAs

The only alternative to EST sequencing to circumvent the problems mentioned above and

the incomplete sequence coverage of ESTs are full-length cDNA sequencing projects [30,

149, 67]. Full-length cDNA sequences are obtained by shotgun sequencing of the cDNA

clones that have been selected for 5’ and 3’ ends. The underlying redundancy in the

shotgun sequences increases the coverage of each individual nucleotide and allows for

correcting sequencing errors. Because many reads are necessary, the costs and time for

such projects are much higher compared to EST projects.

2.1.4. EST Databases

dbEST [18, 20] is a division of GenBank that contains sequence data and other information

on Expressed Sequence Tags from a number of organisms. A brief account of the history

of human ESTs in GenBank is available in [17].

Like all sequences in GenBank, ESTs can be accessed in the databases by their unique

accession or GI number. Additional functionality can limit the search to sequences from

e.g. particular clones they have been derived from, the tissue or cell types, developmental

stages, libraries, etc. As it is not generally known in advance if the ESTs come from coding

or non-coding parts of the mRNA, sequence characterization and annotation are minimal.

Figure 2.4 shows the Entrez version of an NCBI flat file entry of an EST sequence. In

the top block, different IDENTIFIERS, including the accession number and GenBank GI,

are shown. The CLONE INFO part of the entry shows the 5’ or 3’ orientation of the EST, if

known (here, 5’) and the plate the clone is located in. The PRIMERS section specifies the

primer used for the sequencing reaction and if a poly(A) tail could be identified. Next, the

SEQUENCE of the EST is shown, in some cases along with a note supplied by the submitter

about where the high-quality sequence starts and ends (not shown here). A PUTATIVE ID

or annotation can be assigned by the submitter. The LIBRARY block tells from which library

the clone was derived (organism, tissue or cell type, developmental stage, etc.), including

which vector was used for cloning. If the cDNA was cloned directionally, the different

restriction sites are indicated. The entry ends with information about the SUBMITTER and

corresponding CITATIONS.

Since the first EST projects (see page 2) the number of ESTs in the public databases

increased dramatically. In 1995 the ESTs surpassed the number of non-EST entries and as

of November 2006 there are 39 million EST records with 21.4 billion bases in GenBank,
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IDENTIFIERS
dbEST Id: 8131787
EST name: S10-8-H10
GenBank Acc: BG410207
GenBank gi: 13506213

CLONE INFO
Clone Id: (5’)
Plate: S10-8 Row: H Column: 1
DNA type: cDNA

PRIMERS
Sequencing: SP6-22 5’ ctt gat tta ggt gac act ata g 3’
PolyA Tail: Unknown

SEQUENCE TTACTTCACTTCCACGACCATACCCTCATAGCCGTTTTTCTTATTAGTACGCTAGTTCTT
TACATTATTACTATTATAATAACTACTAAACTAACTAATACAAACTCCATAGACGCCCAA
GAGATCGAAATAGTGTGAACTATTATACCAGCTATTATCCTTATCATAATTGCCCTTCCA
TCCCTTCGTATTCTATATTTAATAGATGAAGTTAATGATCCACACTTAACAATTAAAGCA
ATCGGCCACCAATGATACTGAAGCTACGAATATACTAACTATGAGGATCTCTCATTTGAC
TCTTATATAATTCCAACTAATGACCTTACCCCTGGACAATTCCGGCTGCTAGAAGTTGAT
AATCGAATAGTAGTCCCAATAGAATCTCCAACCCGACTTTTAGTTACAGCCGAAGACGTC
CTCCACTCGTGAGCTGTACCCTCCTTAGGNGNCAAAACAGATGCAATCCCAGGACGACTT
CATCAAACATCATTTATTGNTACTCGTCCGGGAGTATTTTACGGACAATGTTCAGAAATT
TGGCGGAGNCCACCACAGCTTTATACCAATTGGAGGTGAAGCAGACCGCTAACCGACTTT
GAAACTGATCTTTATCAATACTAGAN

Entry Created: Apr 1 2001
Last Updated: Apr 1 2001

PUTATIVE ID Assigned by submitter
cytochrome c oxidase subunit II (nFL) U33552

LIBRARY
dbEST lib id: 8754
Lib Name: Stage 10+ Gastrula Library
Organism: Xenopus laevis
Develop. stage: 10 - 10.5
Lab host: DH5alpha
Vector: pDH105/CS2++
R. Site 1: Sal I
R. Site 2: Not I
Description: Weinstein,D.C., Honore,E., and Hemmati-Brivanlou,A. (1997).

Epidermal induction and inhibition of neural fate by
translation initiation factor 4AIII. Development 124,
4235-4242.

SUBMITTER
Name: Brivanlou, AH
Lab: Laboratory of Molecular Vertebrate Embryology
Institution: The Rockefeller University
Address: 1230 York Avenue, New York, NY 10021, USA
Tel: 212 327 8684
Fax: 212 327 8685

CITATIONS
PubMed ID: 11456444
Title: Microarray-based analysis of early development in Xenopus

laevis
Authors: Altmann,C.R., Bell,E., Sczyrba,A., Pun,J., Bekiranov,S.,

Gaasterland,T., Brivanlou,A.H.
Citation: Dev. Biol. 236 (1): 64-75 2001

Figure 2.4.: NCBI’s Entrez view of an EST entry, accession BG410207.

16



2.1. Expressed Sequence Tags (ESTs)

comprising 62% of all sequences. EST projects are available for a diverse collection of

organisms, currently there are ESTs from 904 different organisms in dbEST. Table 2.1

shows the number of GenBank nucleotide and dbEST entries as of November 2006 for the

top 30 organisms. ESTs provide more than 90% of all GenBank entries for some of these

organisms.

2.1.5. EST Uses

The wide range of usage of EST sequences can be seen as complement, but also as alter-

native to sequencing whole genomes:

Gene Identification

Gene identification remains the most popular use of ESTs. Although sequencing an or-

ganism’s complete genomic DNA is the only way to access all genes, it is still time con-

suming and expensive. Early examples show how useful ESTs are for cloning important

genes by ’hopping’ across taxonomic boundaries from model organisms like S. pombe or

D. melanogaster to human [154, 105, 117]. In these cases database searches provide

a more sensitive gene identification than traditional hybridization- or PCR-based gene

cloning strategies permit for evolutionary diverged organisms.

In the absence of the complete genomic sequence, cDNAs (and ESTs) remain the only

link back to the genome. Boguski et al. state that an immediate practical value of interest

to a broad range of biomedical researchers was the accelerated cloning of human genes

for which homologues in other organisms have already been functionally characterized

[18].

Physical Map Construction

PCR or hybridization essays developed from ESTs were used to identify YACs, BACs or

other large-insert clones from which genome physical maps are constructed [134]. The

mapping of the ESTs onto the physical map immediately identify the genomic regions that

contain the corresponding genes. If the genomic regions are linked to disease genes, ESTs

can help to identify mutations in the candidate genes.
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Organism GenBank dbEST %
Homo sapiens (human) 11,529,395 7,895,572 68.48%
Mus musculus + domesticus (mouse) 8,274,347 4,722,069 57.06%
Oryza sativa (rice) 1,657,455 1,211,064 73.06%
Zea mays (maize) 3,290,677 1,160,485 35.26%
Danio rerio (zebrafish) 1,487,983 1,152,269 77.43%
Bos taurus (cattle) 1,940,528 1,141,099 58.80%
Xenopus tropicalis 1,187,340 1,039,143 87.51%
Rattus norvegicus + sp. (rat) 1,960,756 871,144 44.43%
Triticum aestivum (wheat) 888,045 855,067 96.28%
Arabidopsis thaliana (thale cress) 1,427,866 734,275 51.42%
Ciona intestinalis 699,355 686,396 98.14%
Sus scrofa (pig) 1,266,196 640,034 50.54%
Gallus gallus (chicken) 967,324 599,171 61.94%
Xenopus laevis (African clawed frog) 559,409 542,288 96.93%
Drosophila melanogaster (fruit fly) 703,540 514,613 73.14%
Hordeum vulgare + subsp. vulgare (barley) 470,267 437,321 92.99%
Salmo salar (Atlantic salmon) 433,309 428,803 98.96%
Canis familiaris (dog) 2,590,947 365,909 14.12%
Glycine max (soybean) 645,342 359,402 55.69%
Caenorhabditis elegans (nematode) 384,223 346,064 90.06%
Pinus taeda (loblolly pine) 333,746 329,469 98.71%
Vitis vinifera (wine grape) 427,234 316,756 74.14%
Oryzias latipes (Japanese medaka) 676,968 309,868 45.77%
Aedes aegypti (yellow fever mosquito) 463,072 298,060 64.36%
Branchiostoma floridae (Florida lancelet) 344,718 277,538 80.51%
Gasterosteus aculeatus (three spined stickleback) 306,548 276,992 90.35%
Oncorhynchus mykiss (rainbow trout) 264,387 260,886 98.67%
Malus x domestica (apple tree) 255,763 254,422 99.47%
Pimephales promelas 250,033 249,941 99.96%
Solanum lycopersicum (tomato) 577,798 249,392 43.16%

Table 2.1.: Number of GenBank nucleotide and dbEST entries (November 2006) for the
top 30 organisms. Percentages show the fraction of EST sequences compared to all
nucleotide entries for each organism.
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Annotation of Genomic Sequence

Although ESTs are imperfect, they help predicting and confirming the intron-exon or-

ganization of genes, complementing gene prediction programs. ESTs provide valuable

experimental evidence of transcription.

Differential Expression

A central question in genomics is the identification of genes associated with tissue differen-

tiation and ontogeny by developing profiles of sequences that are differentially expressed

in particular cell types or at different developmental stages. Hybridization methods can

be applied to determine differential expression of genes by using cDNA clones as markers,

which correspond to EST sequences.

Identification of Gene Homologues

The identification of a gene homologue of a protein derived from a (different) species can

elucidate the function of the gene in a model organism. In case of human, identifying an

homologue in an animal species allows the evaluation of the potential utility as a model

organism for disease studies.

Alternative Splicing

RNA splicing is a post-transcriptional process in eukaryotes prior to mRNA translation.

During the transcription, a pre-messenger RNA (pre-mRNA) is produced as a copy of the

genomic DNA. It contains the intronic regions, which are removed during the following

processing (RNA splicing), as well as exon sequences. During RNA splicing, exons are

usually retained in the mature mRNA, but sometimes targeted for removal (see Figure

2.5).

The different combinations can create a variety of mRNAs from a single pre-mRNA, a

process referred to as alternative RNA splicing. The alternative splicing events affect the

protein coding region of the mRNA and thereby different proteins will be produced during

translation. Alternative splicing in non-coding regions of the RNA can result in changes in

regulatory elements [100]. EST analyses have shown, that among seven different eukary-

otes the amount of alternative splicing is comparable, with no large differences between

humans and other animals [24].
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5’EST

5’EST

5’EST

mRNA isoform B

mRNA isoform A

3’EST

3’EST
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genome

Figure 2.5.: Alternative splicing of genes. The exons of the gene are spliced into two
different isoforms, one including the second exon (isoform A), the other missing it (iso-
form B). The different isoforms can result in two different protein sequences, if the start
codon is located in or before the second exon. The different isoforms can be detected
by EST analysis, given that different ESTs span the boundaries of exons 1-2, 2-3, and
1-3, which is the case for the 5’ ESTs in the figure.

Single Nucleotide Polymorphisms (SNP)

ESTs can also be used as a starting point for detection of single nucleotide polymorphisms

(SNPs). A SNP occurs at a frequency of about one in 1,2 Kb between any two individual

human genomes [68, 151, 160]. SNPs are an important research tool for genetic associa-

tion studies and may be used in the development of diagnostic or therapeutic approaches

to diseases [156, 108, 98].

2.2. EST Clustering

2.2.1. Clustering Goals

Looking at the large datasets of sequences produced by EST sequencing projects it is ob-

vious that the ESTs cannot each represent a different gene. Even with methods of library

normalization abundant transcripts are overrepresented in the EST databases compared

to rare ones. The sequences are generally of poor quality with many errors and artifacts,

but for many organisms EST collections provide the only information about the coding

potential of the genome. Unfortunately, the partial nature of ESTs makes full length cDNA

discovery difficult.

Soon after the establishment of the first large EST sequencing projects it became clear
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that instead of examining all of the raw data, gene indices had to be generated to answer

questions like how many transcript groups exist in the total pool of EST sequences or in

what tissue are which genes transcribed.

Gene indices try to cluster ESTs into groups that represent the same gene or gene iso-

form. Reads which are of poor quality or show potential contamination are eliminated.

Clusters may be assembled to contig (consensus) sequences, depending on the goal of the

gene index. The resulting clusters with all useful information are stored in a query-able

database, allowing access to the underlying EST sequences and their corresponding anno-

tations. The reduction of the huge dataset to unique transcripts generates a new source of

information with much higher quality as the original input set. A gene index can provide

an organized view of the transcriptional state of the tissue and organism from which the

ESTs are derived and, hence, makes information available that cannot be derived from

sequencing a whole genome alone, but rather supports the analysis of genomic data.

2.2.2. Clustering Procedure

In general, the clustering procedure can be split into four steps: (1) quality control steps

are performed to reduce artefactual sequences, (2) pairwise comparisons of all ESTs are

conducted to group sequences based on identity, (3) clusters are assembled to contig

sequences, and (4) clusters can optionally be joined by further information such as clone

annotation.

Pre-processing

The first step in the clustering procedure is the assessment of the sequence quality. Low

quality segments of the sequences are often not clipped (see Figure 2.3) thoroughly. Se-

quencing errors do not necessarily occur as N’s but some defined nucleotide in the pub-

lished sequence. If the trace file is not available, the distinction from SNPs is extremely

difficult, unless several reads are available for the same clone.

As described earlier (Section 2.1.3, p. 14) ESTs can contain contamination. Frequently,

vector and linker sequences have not been removed properly before submission to the

public databases, especially in high-throughput projects. Also, bacterial and mitochondrial

sequences might have not been identified and removed.

Another naturally occurring sequence artifact are repeats. These repetitive sequences

include LINES (long interspersed elements), SINES (short interspersed elements), ALUs
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and satellite repeats. By virtue of the fact that multigene families exist, genes themselves

may be repetitive in nature [44]. Fortunately, many of the well-studied members of gene

families (HOX and hemoglobin genes) appear to be sufficiently divergent [119] to be

distinguished from repeat sequences.

The described sequence artifacts can cause problems during the clustering phase as they

would influence the pairwise comparison. Sequences with nearly identical parts but from

different genes would be grouped together, creating spurious clusters. Therefore, these

sequences must be masked or eliminated during the first pre-processing step.

The removal of contaminants requires a collection of sequences to screen against. Vec-

torDB1 contains annotations and sequence information for many vectors commonly used

in molecular biology. Information for more than 2600 vectors is available. A common

problem, though, is that repeats are only well known for model organisms. For those,

RepBase [74] is a comprehensive database of repetitive elements from diverse eukaryotic

organisms. Currently, it contains over 3600 annotated sequences representing different

families and subfamilies of repeats. It can be used with RepeatMasker2 to mask repeats in

the EST collection.

After identification of an artefactual sequence, a decision has to be made if the ambigu-

ous regions are removed and remaining sequences clustered or if the whole EST sequence

is discarded from the data set. Usually, a minimal length of 100 nucleotides remaining

after masking is used as cutoff for most gene indices.

Clustering

During the clustering step, the EST sequences are partitioned into subsets (or clusters)

based on sequence similarity. Depending on the particular goal of the clustering proce-

dure, two approaches can be distinguished: while stringent clustering parameters using

high sequence similarity produce clusters where different isoforms of the gene transcripts

are separated, looser clustering joins these isoforms into one cluster. Each approach has

its advantages and disadvantages: loose clustering gives a better estimation of the num-

ber of genes by grouping different isoforms of the same gene together, but has the risk of

clustering paralogous genes.

Genome-based clustering approaches map the ESTs to the genomic sequence and use

1http://seq.yeastgenome.org/vectordb/
2unpublished, A. F. A. Smit, R. Hubley, and P. Green: RepeatMasker at http://repeatmasker.org
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this information to cluster the sequences. Whenever the genomic sequence is available,

this method has the advantage that chimeric sequences and paralogous genes might be

identified more easily.

Transcript-based methods do not use genomic information, mostly because it is not

available. This approach is the most widely used. Based on a similarity function and a

suitable cutoff, sequences are compared pairwise and placed into groups by applying sin-

gle linkage clustering. The similarity functions are local alignment algorithms like BLAST

[7] or Smith-Watermann [138], others use exact substrings [27, 60, 75, 76] or co-linear

sets of these [101], or word-based distances [61, 26, 124].

Assembly

Following the clustering step, clusters can be assembled into contig sequences to recon-

struct the originating mRNA sequence. This step is not necessarily implemented in the

different public gene index databases. An advantage of an assembly is the correction of

possible sequencing errors, if enough EST sequences are in a particular cluster and cover

the mRNA in a suitable way. Also, full length cDNA sequences can be reconstructed that

again can be subject to subsequent sequence analysis or clone selection.

Assembly of EST clusters is commonly performed by genome assembly tools like CAP3

[65] or PHRAP [54]. These tools are designed for assembly of genomic contigs and have

some problems with EST clusters, especially when loose clustering is performed. Different

isoforms of the same gene result in multiple contigs of the same cluster. More recently,

specialized tools for EST assembly became available [32, 102].

Cluster joining

A last step in the pipeline is the optional cluster joining. Here, the information about the

shared clone id from 5’ and 3’ ESTs can be used to further join clusters which do not show

sequence similarity, usually because of non-overlap between the 5’ and 3’ end reads of

the clone. Linking by clone information, though, is an error-prone procedure in the EST

clustering pipeline as it relies on the accuracy of the annotation and the uniqueness of the

clone ids which are not standardized between different sources. Another problem arises

from chimeric clones: 5’ and 3’ reads have their origins in different genes and would join

clusters that should not be merged.

23



2. EST Clustering

2.3. Clustering Tools

Different tools have been used in the past for clustering EST data sets. Some of the tools

were originally developed for genome assembly. Since the two problems are related, both

EST clustering and assembly tools first try to detect similarities in pairs of sequences.

While the assembly tools generate consensus sequences as the last step, EST clustering

tools usually produce only clusters of sequences. Hence, in many cases assembly tools are

used to generate consensus sequences for the clusters as additional last step after running

the clustering tool (see Section 2.4). However, it is not always desirable to form a single

consensus for a given cluster of ESTs, as the cluster might represent different isoforms of

the same gene due to alternative splicing.

In the following sections the most widely used tools for EST clustering will be briefly

introduced. Here, we focus on tools we used in the comparison during the quality assess-

ment in Section 3.5.3. Section 2.4 describes gene indices, that use these tools for EST

clustering.

2.3.1. CAP3

CAP3 [65] was originally designed as a genome assembly program. The algorithm con-

sists of three major phases: (1) after identification and removal of poor regions of reads,

overlaps between reads are computed; (2) reads are joined to form contigs in decreasing

order of overlap scores; (3) multiple sequence alignments of the reads of a contig are used

to construct consensus sequences.

To speed up the overlap detection of sequence pairs, an overlapping alignment between

two reads is simplified as an ordered chain of ungapped parts of the alignment of sufficient

length. For the alignment, common words between the reads are identified and (gap-free)

extended as far as possible in both directions. Matches are chained and only pairs of reads

with chains scoring above a threshold are considered for the next step, where a global

alignment is generated for the pair using a banded dynamic programming approach. In

the last step, a multiple alignment of overlapping reads is used to generate a consensus as

contig sequence.
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2.3.2. d2 cluster

d2 cluster [61, 26] is the central clustering tool in the STACK pipeline (see Section 2.4.3).

It uses the d2 distance function [152] to detect overlaps between sequences. d2 is a dissim-

ilarity measure and is derived from the degree to which subsequences are shared between

two sequences. The basic distance function for two sequences v and w is defined as

d2
n(v, w) =

∑
|s|=n

(mv(s)−mw(s))2 (2.1)

where n is the length of the subsequences s and mi(s) the multiplicity of s in sequence i.

While the d2 score combines the values for d2
n(v, w) for different values of n as follows

d2(v, w) =
u∑

n=l

d2
n(v, w) (2.2)

in practice, n is fixed to a suitable value. d2 cluster performs pairwise comparisons be-

tween all sequences based on this measure and clusters sequences with distances smaller

than a given threshold.

2.3.3. PaCE

PaCE [75, 76] is a parallel EST clustering algorithm based on the generalized suffix tree

[57] data structure. It tries to avoid as many pairwise alignments as possible by first

detecting “promising pairs” based on maximal matches. Maximal matches (in contrast to

fixed-length word-based approaches) are exact matches of variable length, that cannot be

extended at either end. The idea for this approach is that pairs of ESTs with longer exact

matches are more likely to produce a suitable alignment in the next phase.

The promising pairs of ESTs are generated in parallel on demand in decreasing order

of the maximal match lengths from a distributed representation of the generalized suffix

tree. It is not mandatory to perform pairwise alignments of each generated pair, because

the sequences might have been clustered already through the agglomerative clustering

procedure. This reduces the number of pairs considered for the alignment. When aligning

two sequences, the already computed maximal exact match is extended at either end (this

time allowing for gaps and mismatches) using banded dynamic programming. The size of

the band is determined by the number of errors tolerated, controlling the quality of the

alignment.
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2.3.4. BLASTclust (megaBLAST)

BLASTclust is contained within the standalone BLAST [7, 8] package and can be used to

cluster nucleotide sequences using the megaBLAST algorithm. The program determines

pairwise matches and places a sequence in a cluster if the sequence matches at least one

sequence already in the cluster.

megaBLAST is a special version of BLAST that uses the same greedy algorithm as Vmatch

(see Section 3.2.3) for the extension of matches during the sequence alignment [170]. It

is optimized for aligning sequences that differ only slightly as a result of sequencing or

other similar ”errors”.

BLASTclust takes as input a FASTA file of sequences, produces a temporary BLAST

database, runs megaBLAST to identify matching sequences and performs the clustering.

BLASTclust has several parameters that can be used to control the stringency of clustering:

thresholds for score density, percent identity, and alignment length.

2.3.5. TGICL

The TIGR Gene Indices clustering tools (TGICL) [122] cluster and create assemblies (con-

tigs) from a set of DNA sequences given in a FASTA file. The clustering phase performs

pairwise alignments (using a slightly modified version of megaBLAST), which are then

filtered and used to build subsets of sequences by a transitive closure approach. In the

assembly phase each cluster is sent to the assembly program (CAP3) which generates

a multiple alignment of the sequences in the cluster and creates one or more contig se-

quences. Both clustering and assembly phases can be executed in parallel on multiple CPU

machines or in a PVM (Parallel Virtual Machine) environment.

2.4. Gene Indicies

After the clustering procedure, which reduces the mass of the raw low quality data into

manageable quantities, gene indices help to organize and analyze the EST datasets by

storing the results in query-able databases. While many gene indices were established

in the last years (e.g. [42, 29]), only the most popular three will be discussed further:

NCBI’s UniGene, TIGR’s Gene Indices and STACK. Most of them perform the series of steps

described earlier (see Section 2.2), although each index makes different assumptions on

what forms a cluster.
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2.4.1. NCBI UniGene

UniGene is an “experimental system for automatically partitioning GenBank sequences

into a non-redundant set of gene-oriented clusters” [19, 133, 123]. Each UniGene cluster

contains sequences that represent a unique gene, and is linked to related information, such

as the tissue types in which the gene is expressed, model organism protein similarities, the

LocusLink report for the gene and its map location. Currently, UniGene clusters ESTs from

a total of 63 organisms. UniGene databases are updated weekly with new EST sequences,

and bimonthly with newly characterized sequences.

As first step during the build procedure, sequences of foreign origin (such as E. coli) are

eliminated, and regions derived from cloning vectors or linkers and rRNAs or mitochon-

drial sequences identified. High-quality segments of each sequence are identified through

the assigned base-level error probabilities if available at NCBI’s Trace Archive3. Simple

repeats and low complexity regions are masked using DUST [58], transposable repetitive

elements by comparison with libraries of organism-specific repeats. After screening, a se-

quence must contain at least 100 high quality unmasked bases to be included in UniGene.

Builds are either transcript based or genome based, here we focus on the transcript based

procedure.

The input dataset of UniGene not only contains ESTs but also mRNA sequences. Af-

ter screening, mRNAs are clustered into gene links. Pairs that are “sufficiently similar”

are linked to form initial clusters, however, the amount of similarity has not been de-

fined exactly. Next, ESTs are compared to these initial clusters using megaBLAST [170],

and “sufficiently similar” sequences added to these clusters. Links that would join initial

mRNA-based clusters are discarded, to prevent non-biological chimeric sequences from

creating artefactual clusters. Also, EST-to-EST links are generated that either extend the

initial clusters or generate clusters containing ESTs only.

The third step adds clone-based edges to allow non-overlapping 5’ and 3’ ESTs to be as-

signed to the same cluster. Because of imperfect clone labeling, double linkage clustering

is used in this step, i. e. at least two 5’ ESTs from one cluster have to be linked to at least

two 3’ ESTs from another cluster by their clone ID.

The next step discards clusters that are not anchored at the 3’ end of a transcription

unit. Therefore, a cluster has to contain a sequence with a polyadenylation signal, a

poly(A) tail, or at least two ESTs labeled as having been derived using the 3’ primer.

3http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?
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Finally, ESTs that do not belong to a cluster are rechecked at a lower stringency and

added to the cluster that contains the sequence it best matches to. These non-stringent

parameters produce clusters that represent a single gene and may contain more than one

alternative-splice form. No attempt is made to produce contigs or consensus sequences,

one reason being that clusters can contain 5’ and 3’ sequences from the same clone, but

these sequences do not always overlap. In contrast, each cluster gets a representative

sequence assigned, which is the longest sequence within the cluster. If the cluster does

not contain a full length mRNA, the representative sequence will only be a portion of it,

losing the 5’ or 3’ information.

2.4.2. TIGR Gene Index

The TIGR Gene Index Project “creates organism specific databases aiming to provide an

analysis of publicly available EST and gene sequence data to identify transcripts” [126].

Currently, TIGR clusters ESTs from a total of 89 organisms.

For each gene index, the EST sequences are extracted from NCBI’s dbEST database.

The new sequences are screened for vector and E. coli sequences, poly(A) trimmed, and

sequences with at least 100bp and less than 3% Ns remain. Expressed Transcript (ET)

sequences are extracted from appropriate divisions of GenBank and participate in the

clustering and assembly process along with the cleaned ESTs. ESTs and ETs are clustered if

they share a minimum of 95% identity over at least 40 base pairs, identified by megaBLAST.

Additionally, a maximum unmatched overhang of 20 base pairs is allowed.

A significant difference to UniGene is that TIGR clusters are assembled into Tentative

Consensus (TC) sequences using CAP3 . These assemblies tend to represent one transcript,

i. e. alternative isoforms end up in different clusters. For that reason, several TIGR TCs

may be contained within one UniGene cluster.

TCs are searched against non-redundant protein and nucleotide databases to provide

provisional functional assignments, Gene Ontology (GO) terms are assigned based on the

best hits.

The TIGR Gene Indices are updated three times a year subject to the condition that more

than 10% or more than 25,000 new sequences became available since the last release

(ESTs or gene sequences), or the index is more than one year old.
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2.4.3. STACK

The STACK project at the South African National Bioinformatics Institute (SANBI) “aims

to generate a comprehensive representation of the sequence of each of the expressed

genes in the human genome by extensive processing of gene fragments to make accurate

alignments, highlight diversity and provide a carefully joined set of consensus sequences

for each gene. The STACK project is comprised of the STACKdb human gene index, a

database of virtual human transcripts, as well as stackPACK, the tools used to create the

database” [107, 33]. Currently, clusters are available for human ESTs only.

Unlike UniGene or TIGR Gene Indices, STACK separates ESTs by tissue type in the first

step, allowing to explore transcript expression in specific tissues. Next, sequences are

masked against human repeat sequences available at RepBase [73], vector sequences,

mitochondrial and ribosomal sequences removed once identified using cross match [54].

Sequences with less than 50 base pairs are discarded.

Clusters are formed by pairwise comparison of all sequences using the word-based,

greedy clustering algorithm d2 cluster [61, 26, 39]. Two sequences fall into the same

cluster if they share a 150 base pair segment with at least 96% identity. Clusters are

assembled using PHRAP [54].
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CHAPTER 3

Suffix Array Based EST Mapping and

Clustering

3.1. Motivation

Apart from clone pair information, sequence similarity is the main indicator for clustering

ESTs. Basically, two different approaches can be used for EST clustering: (1) genome-

based and (2) transcript-based clustering methods. Genome-based methods can be ap-

plied if (part of) the genomic sequence is available. ESTs are then mapped to genomic loci

by comparing the transcripts to the genomic sequence. This method also helps in annotat-

ing exon-intron structures of genes. If genomic sequence is not available, transcript-based

methods perform an all-against-all pairwise comparison of the ESTs, where significant

similarity in an overlap is interpreted as indication that ESTs are derived from the same

gene.

Sequence similarity can be determined by pairwise alignment algorithms using standard

dynamic programming methods allowing for insertions, deletions and mismatches. The

running time of these algorithms is quadratic in the lengths of the sequences. Applied to

all possible pairs of ESTs in an EST index this approach is too expensive for most data
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sets, especially for organism with hundreds of thousands of ESTs available. Therefore,

alternative methods of fast overlap detection are needed.

Genome assembly tools like CAP3 and PHRAP for instance use exact string matching

to identify potential pairs which will be further aligned using standard dynamic program-

ming. As a matter of fact they are frequently used to cluster ESTs and produce satisfactory

results if the sequence sets are not too large. These tools work well when the fragments

represent a random sampling of the DNA, but for ESTs the coverage is not uniform, as

it depends on the level of expression of the gene. The transitive closure clustering can

avoid an all-against-all comparison, but in the worst case, the number of overlaps is still

quadratic in the number of ESTs [76].

We use a different approach for overlap detection: enhanced suffix arrays [2]. En-

hanced suffix arrays are related to suffix trees, which were first described by Weiner [163].

Gusfield [57] devotes 120 pages of his book to the description and applications of suffix

arrays, impressively demonstrating that suffix trees are one of the most important data

structures in string processing. In this chapter we will describe the basic idea of enhanced

suffix arrays and present how they can be successfully applied to the problem of EST

mapping and clustering.

3.2. Enhanced Suffix Arrays

3.2.1. Suffix Trees and Suffix Arrays

Basic Definitions

Let S be a string of length |S| = n over a finite alphabet Σ. The special symbol $ is

an element of Σ but does not occur in S. Following [2] we suppose that the size of the

alphabet is constant, and that n < 232, which implies that an integer in the range [0, n]

can be stored in 4 bytes. If S = uvw for some strings u, v, w, we call u a prefix of S, v a

substring of S, and w a suffix of S.

Suffix Trees

A suffix tree for the string S is a rooted directed tree with n + 1 leaves numbered 0 to n.

It represents a substring index for the string S. Each internal node, other than the root,

has at least two children and each edge is labeled with a nonempty substring of S$. No
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Figure 3.1.: The suffix tree for string S = acaaacatat (adopted from [2]).

two edges out of a node can have edge-labels beginning with the same character. The

suffix tree represents all suffixes of S$, which can be retrieved by concatenating the edge-

labels on the path from the root to a leaf. Figure 3.1 shows the suffix tree for the string

S = acaaacatat.

The suffix tree can be built in O(n) time and space [163, 155] if the alphabet is assumed

to be constant. The suffix tree can then be used to solve a countless number of matching

tasks, e.g.:

• the occurrence of a string P of length m in the string S can be checked in O(m)

time, i.e. the running time is independent of the length of the string S

• all z occurrences of P in S can be found in O(m + z)

• the longest common substring of two strings S1 and S2 can be found in O(S1 + S2)

time

This time bound is not achievable by most other algorithms like BLAST or d2 cluster,

which are at most linear in the length of the text. In typical bioinformatics applications

n is usually huge compared to m, making even those algorithms impractical for some

applications. Especially if the text is a fixed set of strings (like genomic or EST sequences),

suffix trees are the favorite data structure for matching tasks.

There are, however, some practical drawbacks: although the theoretical asymptotic

space efficiency is linear, the space consumption of a suffix tree is quite large in practice.

Even improved implementations still require 20 bytes per input character in the worst
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i suftab lcptab Ssuftab[i]

0 2 aaacatat$
1 3 2 aacatat$
2 0 1 acaaacatat$
3 4 3 acatat$
4 6 1 atat$
5 8 2 at$
6 1 0 caaacatat$
7 5 2 catat$
8 7 0 tat$
9 9 1 t$

10 10 0 $

Figure 3.2.: The enhanced suffix array of the string S = acaaacatat (adopted from [2]).

case [88]. (In case of the human genome for instance, Kurtz [88] estimates the memory

requirements to build a suffix tree for the complete genomic sequence to be approximately

45 gigabytes.) Another drawback is the poor locality behavior of memory reference, caus-

ing a significant loss in efficiency on cached processor architectures and makes it difficult

to store in secondary memory [2].

Suffix Arrays

A more space efficient data structure which is highly related to suffix trees are suffix

arrays [53, 103]. A suffix array suftab of a string S is an array of integers in the

range 0 to n, specifying the lexicographic ordering of the n + 1 suffixes of S$; namely

Ssuftab[0], Ssuftab[1], . . . , Ssuftab[n] where suftab[k] denotes the start position of the kth

smallest suffix in the set of suffixes of S$, and Si = S[i..n − 1]$ is the ith suffix of S$.

Ssuftab[0] < Ssuftab[1] < . . . < Ssuftab[n], where “<” denotes the lexicographical order. See

Figure 3.2 for an example of a suffix array for the string S = acaaacatat.

A suffix array for a string of length n can be built in O(n) time [77, 80, 84] and requires

only 4 bytes per input character. All occurrences of a pattern P of length m in a string S

can be found in O(m log n) time. By adding an extra table holding the information about

the longest common prefixes (lcps), this running time can be improved to O(m + log n)

[103].
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3.2.2. Enhanced Suffix Arrays

Abouelhoda et al. [2] took the idea of adding additional tables to a suffix array a step

further and developed the idea of enhanced suffix arrays, comparable to the approach

of Manber et al. [103] of “enhancing” a suffix array by information about the lcps of

adjacent elements, which reduces the time complexity for a trivial search from O(m log n)

to O(m + log n).

An enhanced suffix array is a data structure consisting of a suffix array and additional

tables:

• lcp-table

The lcp-table is an array of integers that defines the length of the longest common

prefix of Ssuftab[i−1] and Ssuftab[i]. It can be computed as a by-product during the

construction of the suffix array and requires 4n bytes.

• lcp-interval trees

The lcp-interval tree is a conceptual (or virtual) tree that allows to simulate all kinds

of bottom-up traversals of a suffix tree.

• child-table

The child-table allows to simulate any top-down traversal of the suffix tree by means

of the enhanced suffix array. It can be computed in linear time and requires n bytes

in practice

• suffix link-table

The concept of suffix links is incorporated by the suffix link table which requires 2n

bytes in practice.

Abouelhoda et al. show that every algorithm that is based on a suffix tree data structure

can be systematically replaced with an algorithm based on an enhanced suffix array that

solves the same problem in the same time complexity [2]. E.g. the basic suffix array

enhanced with the lcp-table and the child-table allows to find all z occurrences of a pattern

P in S in optimal O(m + z) time.
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3.2.3. Vmatch

The concept of enhanced suffix arrays has been implemented in the versatile software tool

Vmatch 1, which allows for efficiently solving large scale sequence matching tasks. The

most important features of Vmatch are [89]:

• Persistent index

Often, large portions of the sequence set under consideration are static and do not

change much over time. Therefore it makes sense to preprocess and extract infor-

mation that is then stored in a data structure that allow efficient access. Vmatch

preprocesses the set of sequences into an index structure which is stored as a collec-

tion of several files constituting the persistent index. The index efficiently represents

all substrings of the preprocessed sequences and, unlike many other sequence com-

parison tools, allows matching tasks to be solved in time, independent of the size of

the index.

• Alphabet independency

Unlike other software tools, Vmatch can process sequences over any user defined

alphabet not larger than 250 symbols. Vmatch implements the concept of symbol

mappings, denoting alphabet transformations. These allow the user to specify that

different characters in the input sequences should be considered identical in the

matching process. This feature, for example, will be used to keep the sequence

information of masked repeat sequences in the input, but prevent these regions from

being matched.

• Versatility

Vmatch allows a multitude of different matching tasks to be solved using the per-

sistent index. Every matching task is basically characterized by (1) the kind of se-

quences to be matched, (2) the kind of matches sought, (3) additional constraints

on the matches, and (4) the kind of postprocessing to be done with the matches.

• Match selection and customized output

Matches can be selected according to their length, E-value, identity, or match score.

Postprocessing allows e.g. masking of substrings covered by a match, inverse output

(i.e. out put of substrings not covered by a match), or clustering of sequences

1see http://www.vmatch.de/
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according to the matches found. Several options allow for output customization,

e.g. XML output.

X-Drop Extension Strategy

The suffix array allows to rapidly identify exact matches between a query sequence and

the index. These initial matches can be extended further to produce gapped local align-

ments. Standard dynamic programming algorithms for pairwise alignments perform a

fixed amount of computations to fill the dynamic programming matrix. To further increase

the speed of the search, Vmatch can extend exact matches by either of two strategies: (1)

the maximum error extension strategy, as described in [90] for repeat detection, and (2)

the greedy extension strategy described by Zhang et al. [170].

Here, we will briefly introduce the second strategy, which can be much faster than tra-

ditional dynamic programming approaches when aligning DNA sequences that differ only

by few errors, such as sequencing errors. It is related to a banded dynamic programming

algorithm like the one described in [31] which restricts the region of the matrix to be ex-

plored. The main idea of [170] is to consider only matrix positions for which the optimal

local alignment score does not fall more than X below the best score seen so far, hence

the name X-Drop. Starting from an exact match (the seed), the alignment is calculated

forward and backward. The advantage of the X-Drop approach is the adaption of the re-

gion being explored while the alignment is being constructed. The choice of X influences

the size of the search space. When the aligned sequences are similar, the region is small,

mismatches cause the region to be expanded, depending on the value of X. The greedy

algorithm does not guarantee that the highest scoring alignment is found, but in practice

the alignments score very close to the optimal.

3.3. e2g - EST Mapping

High throughput cDNA and EST sequencing projects have generated a vast amount of data

representing the transcribed portion of the organisms in study. As soon as (parts of) the

sequence of the associated genome becomes available, the cDNA and ESTs are mapped

to the genomic sequence to e.g. detect new genes, verify the exon-intron structure of

predicted genes, and determine splice variants.

Mapping ESTs or cDNAs to a genomic sequence is a standard task in molecular biology,
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and there are several tools available for this task (see e.g. [113, 45, 158, 51, 78, 40, 93]).

Most of these tools are developed for small scale tasks, where the sensitivity was the main

design goal. The essential step is usually a costly dynamic programming method with a

running time quadratic in the size of the input. Therefore, some tools apply filtering meth-

ods first. These scan the ESTs in linear time to find regions containing highly conserved

matches to the genomic sequence. Unfortunately, none of the existing tools can efficiently

handle complete EST collections of vertebrates with millions of ESTs. This is because the

fast filtering methods (if any) still have to scan the entire EST collection. Moreover, there

are only few tools available which provide a comprehensive graphical representation of

the sometimes contradicting mappings of the ESTs or cDNAs to the genomic sequence. A

good example of such a visualization tool is SpliceNest [36], which however only allows

to visualize static datasets.

3.3.1. Design Rationale

To make use of Vmatch for efficiently mapping EST sequences to their genomic locations,

we developed the web-based tool e2g, which provides both, efficient mapping of user

provided genomic sequence and convenient visualization. e2g is conceptually different

from other mapping tools in that it provides an EST collection as target database. All

other mapping tools provide the genomic sequence as target and only a limited number

of ESTs can be uploaded for a single matching task. Especially in cases where the focus of

the application is on identifying new genes or splice variants of known genes in a genomic

region of interest, e2g allows rapid identification of ESTs for further analyses.

Figure 3.3 shows the seven phases of an e2g analysis:

1. Data import

Import ESTs and cDNAs and build index structure.

2. User upload

Users upload genomic sequence and optionally ESTs and annotation.

3. Pre-processing

Masking of simple and organism-specific repeats in genomic sequence.

4. Gene prediction

Gene prediction in genomic sequence.
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5. EST Mapping

Mapping of ESTs and cDNAs to genomic sequence.

6. Filter

A filter is applied to remove spurious hits and reduce output size.

7. Visualization

Matches are graphically visualized with further analysis options.

The first step of downloading the EST collections and building the enhanced suffix ar-

rays is only done once. These indices are then used each time a user performs steps 2

to 7 via the Web interface. EST and cDNA collections are downloaded from NCBI. The

indices allow to find highly conserved matches between the genomic sequence and the

EST collection much faster than a scanning based method. Indices are precomputed using

mkvtree and stored on disk. The user uploads a genomic sequence and either chooses an

EST collection of an existing index, or optionally uploads a custom EST/cDNA data set.

After pre-processing of the genomic sequence (repeat masking and gene prediction), it is

then matched against the index using Vmatch . Results are stored in a relational DBMS.

The web server generates overviews of the mapping, for the region chosen by the user.

The mapping of the ESTs or cDNAs is visualized as colored blocks (representing the length

and direction of the matches) relative to the genomic sequence. The user can interactively

explore the set of matches by zooming into regions of interest. Alignments of selected

ESTs are computed on demand by Vmatch or sim4 , respectively.

3.3.2. Implementation

e2g can be used in two different basic modes:

1. the user uploads a genomic DNA sequence and chooses one of the EST collections

available on the server. Currently, EST collections for H. sapiens (≈ 6 · 106 ESTs),

M. musculus (≈ 4.3 · 106 ESTs), C. elegans, C. briggsae (≈ 3 · 105 ESTs), X. laevis

contigs from EST clustering (see Chapter 5), and corresponding index structures are

available.

2. the user uploads a genomic DNA sequence as well as the cDNA/EST collection to be

mapped. In this case, the index structure for the collection is first computed by the

server.
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Figure 3.3.: Design rationale of e2g. EST and cDNA collections are downloaded from
NCBI, indices precomputed using mkvtree and stored on disk. The user uploads a ge-
nomic sequence and either chooses an EST collection, or uploads a custom EST/cDNA
set. After pre-processing of the genomic sequence (repeat masking and gene predic-
tion), it is then matched against the index using Vmatch . Results are stored in a rela-
tional DBMS. The web server generates overviews of the mapping, for the region chosen
by the user. An alignment of the matching sequences, and a spliced alignment of a se-
lected EST is computed on demand by Vmatch and sim4 , respectively.
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In both modes, RepeatMasker is optionally applied to the uploaded genomic sequence

to mask repeats. Also, GenScan [25] is run to obtain an initial ab-initio gene prediction.

Furthermore, the user can upload a file containing a gene annotation of the corresponding

genomic sequence. In the following we will assume the first mode, because we expect it

to be the standard mode.

The index structure is an enhanced suffix array stored on several files. It provides rapid

access to all substrings of the ESTs of the given collection. The enhanced suffix array is

precomputed only once, and can be used many times for different genomic sequences.

Given the enhanced suffix array, Vmatch matches the genomic DNA against the en-

hanced suffix array to obtain exact matches. These are extended using the X-drop ex-

tension strategy. This gives highly conserved matches between ESTs and the genomic

sequences. Sometimes there is a large number of spurious hits, typically caused either by

DNA contaminations in the EST library, or by repeats missed by RepeatMasker. Therefore,

a match is discarded if there is no other match in the same EST. For convenient and fast

access, the positions of the remaining matches are stored in a relational database. The

matches represent a mapping of a subset of the ESTs to specific positions on the genomic

sequence. The user can select an EST and a spliced alignment for the EST is computed on

the fly using sim4 [45]. This allows for the detection of splice site signals. Running sim4

on a single EST and a small region of the genomic sequence does not add much to the

running time of e2g.

All steps in the e2g data flow (Figure 3.3) are implemented using web services technol-

ogy. e2g is available at the Bielefeld University Bioinformatics Server2 [87]. The Vmatch

jobs run on a Sun Solaris compute server with eight 800 MHz UltraSparc III CPUs and

64 GB of RAM. The web interface and its underlying CGI framework are implemented

as messaging services. This allows to easily integrate more servers if necessary and de-

velop standalone clients which are independent of the web interface and can be used in

an automated way.

3.3.3. Web interface

Figure 3.4 shows a screenshot of a graphical overview produced by e2g when uploading

a 16.5Kbp genomic sequence from M. musculus (Genbank GI: 28515921, bases 60,000-

76,500) to compare it to 4.1 million ESTs from the same species. The overview is split

2http://bibiserv.techfak.uni-bielefeld.de/e2g/
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into five panels, arranged from top to bottom:

1. General Information Panel: The top of the window provides general information

about the current task. The user can zoom into a region of interest within the sub-

mitted genomic sequence. The positions of the highlighted matches in the EST and

the genomic sequence are displayed. This part of the overview also provides links to

download the sequences or GI numbers of matching ESTs.

2. Annotation Panel: The second section of the window shows gene predictions for

the genomic sequence, as uploaded by the user (orange colored) and delivered by

GenScan (blue colored). If the prediction refers to the forward strand, then the exons

are shown above the line representing the genome, otherwise below.

3. cDNA Mapping Panel: cDNA matches on the genomic sequence are shown as colored

blocks. Forward matches are shown in green, reverse complemented matches are

shown in red.

4. EST Mapping Panel: EST matches on the genomic sequence are shown in the same

way as cDNA matches. The two kinds of matches are separated since cDNAs are usu-

ally of higher quality and thus matches to the genomic sequence are more reliable.

5. Mapping Summary Panel: The bottom panel provides a summary of all matches,

shown as colored boxes. The color code represents the coverage of a region, i.e. the

relative number of matches in the region. For example, in Figure 3.4, regions with

high coverage are represented by red boxes and regions with low coverage by blue

boxes.

The GenScan and uploaded annotation from the annotation panel can be superimposed

to the cDNA and EST matches, by dragging a transparent image over the lower part of

the window. The transparent image conveniently allows the user to compare the gene

prediction to the matches found.

By clicking on a match, an alignment (computed by Vmatch) between this individual

region of the EST and the genomic sequence is shown in a popup window. The alignment

is supplemented by additional information such as positions in the genomic sequence and

in the EST, scores, identity values, and E-values (see Figure 3.4, bottom). Additionally,

sim4 can be invoked to produce a spliced alignment over the whole EST sequence.
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3.3. e2g - EST Mapping

Figure 3.4.: Screenshot of the e2g web interface showing the mapping of mouse
ESTs/cDNAs to mouse genomic sequence (Genbank GI: 28515921, bases 60,000-
76,500). The information is split into five panels: general information, gene annota-
tion, cDNA matches, EST matches, and mapping summary (from top to bottom). For-
ward matches are shown in green, reverse complemented in red. The transparent gray
shaded box in the middle of the image contains the annotation uploaded by the user.
It can be moved over matching ESTs to further inspect its exon/intron structure. The
popup window shows the Vmatch alignment of the blue highlighted exon in the EST
match panel.
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3.3.4. Performance Evaluation

For our performance experiments, we mapped all ESTs from M. musculus (total length

1.87 Gbp) to a 16.5Kbp genomic sequence (same as above) from the same species. Anal-

yses were run on a SUN-UltraSparc III CPU (800 MHz). To show the limits of a scanning

based approach we first applied sim4 to this data set. Since sim4 cannot handle files

larger than 2GB, we split the 2.4 GB file containing the mouse ESTs into two files. The

total running time of sim4 was 3.5 hours, which is unacceptable for a web service appli-

cation.

e2g delivers a mapping (without any spliced alignment) for the same data size in much

less time, using a pre-computed index structure. With the default parameter setting, all

3883 matches of length ≥ 30, containing exact seeds of length ≥ 20, and with identity

≥ 98% are computed in 30 seconds. This is about the same time as required for storing

the match positions in the database and generating the graphical overview.

3.3.5. Utility

As a brief example of the utility of e2g, we mention the work by Drepper et al. [41] who

successfully used e2g to identify unknown genes in the wobbler (wr) mouse, an animal

model of amyotrophic lateral sclerosis [132]. The wr mutation was mapped to mouse

chromosome 11 between markers BAC147N22 and Murr1. In this region, two new genes

could be identified using e2g: NM 172792 and Tmem17. The candidate interval for wr

was further narrowed to 0.9 Mb between D11Hjk30 and D11Hjk29. Finally, in exon 23 of

Vps54, another gene in this region, an A-T transversion in the wr/wr genomic DNA could

be identified that results in the amino acid substitution L967Q and causes motor neuron

disease and defective spermiogenesis in the wobbler mouse [132].

3.4. EST Clustering using Vmatch

Vmatch provides an option to cluster the database sequences according to the matches

found in a self comparison of the index. Based on the computed matches, single linkage

clustering is applied: starting with each EST in a single cluster, clusters are merged if

two ESTs from two clusters have significant similarity. The process is continued until no

further clusters can be merged. This procedure is also referred to as transitive closure,

which means that any two sequences above a similarity threshold will end up in the same
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cluster. Two sequences A and B are in the same cluster even if they do not overlap at all,

but there exists a third sequence C with significant similarity to both A and B.

To identify matching sequences, Vmatch first computes all maximal exact matches of

a given minimal length (seedlength) between all sequences. These seeds are extended

in both directions allowing for matches, mismatches, insertions, and deletions using the

X-Drop alignment strategy as described above (see Section 3.2.3). To speed up the identi-

fication of the initial seeds, the seed length was optimized for the type of match according

to the following formula:

seedlength =
⌊

l

l − (l · p/100) + 1

⌋
(3.1)

where l is the minimal match length and p the minimal percent identity of the match. In

case of l = 100 and p = 98 the seed can be as long as 33, whereas for l = 40 and p = 94

the minimal length of the seed is 11, which results in a significantly increased running

time, because many more initial exact matches are found and have to be extended by the

X-Drop alignment.

3.4.1. Clustering Parameters

A general problem in clustering a data set is the choice of the correct clustering parame-

ters. Often, parameters are a result of trial and error by manually inspecting the clustering

results. UniGene, one of the most widely used databases of clustered ESTs describes the

clustering procedure in a very vague statement: ”Sequence pairs which are sufficiently

similar are linked together to form initial clusters.” Neither an exact definition of ”suf-

ficiently similar” nor the exact procedure used for constructing the UniGene clusters is

satisfyingly documented to allow complete reproduction. The same holds true for most

other EST indices like TIGR Gene Indices or STACK.

In an attempt to objectively define appropriate clustering criteria, we will take advan-

tage of the speed of the Vmatch clustering approach to systematically vary the relevant

parameters: minimal match length, percent identity and X-drop value. (Remember that

the underlying index has to be constructed once and then many matching tasks can rapidly

be performed on the same index.)

It is hypothesized that the ’correct’ parameterization is inherent in the data set and will

be revealed as an abrupt change in the curve on the resulting graph: the structure of the

data becomes apparent when ESTs of the same gene cluster together, which again form
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Name Parameter Values

Percent identity -identity 94, 96, 98

Overlap length -l
30, 50, 60, 80, 100, 120,

140, 160, 180, 200

X-Drop -exdrop 1, 2, 4, 8

Table 3.1.: Vmatch clustering parameters for X. laevis data set.

clusters of gene (i.e. protein) families and then again superfamilies.

3.4.2. X. laevis EST Data Set

The first data set used for assessing appropriate clustering parameters is a set of 243,981

ESTs and mRNAs (138,405,765 nt) of the African clawed frog X. laevis. Sequences were

downloaded from GenBank and pre-processed as described in Sections 2.2.2 and 4 to

mask contaminants and repeat sequences. An enhanced suffix array is constructed for all

processed sequences and Vmatch is used for clustering the sequences using the parameters

defined in Table 3.1.

An overall of 120 different clusterings were computed, using the pipeline described

in Section 4. As will be shown in Section 3.5.4, such analyses can hardly be done for

other clustering algorithms because of the long running times. Vmatch instead allows an

exhaustive exploration of the parameter space. The results of these analyses showing the

effect of varying the minimal match length (-l), percent identity (-identity) and X-Drop

value (-exdrop) are presented in Figures 3.5 (94% identity), 3.6 (96% identity), and 3.7

(98% identity), respectively. The top part of each figure shows the number of clusters

in blue and the number of singlets in red. Each data point is annotated by the running

time (in minutes) for the corresponding parameter setting. The bottom part of each figure

again depicts the running times for each setting (logarithmic scale).

Clustering Results

The goal in this gene-oriented clustering of the EST data set was to group all sequences

from one gene into one cluster. Ideally, the sequences would have no sequencing errors or

other artifacts and a clear separation could be made by pure overlap detection of a certain
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length. In this case, the minimal overlap length has to be chosen such that matches are

unique within a gene and therefore allow a perfect separation. Unfortunately, repeats,

linker sequences and other sequencing artifacts may cause problems here.

A number of conclusions become apparent: at this level of resolution (120 independent

clusterings), a distinct point indicating the ’correct’ parameters does not become readily

apparent. The total number of clusters stays relatively constant (approx. 25,000) starting

at a minimal match length of l = 60. Decreasing the minimal match length to l = 30

(exdrop = 1) results in 12,621 clusters (identity = 94%), 14,043 clusters (identity =

96%) and 18,750 clusters (identity = 98%), respectively. For exdrop = 8 and l = 30, the

number of clusters is 22,909 (identity = 96%) and 24,148 (identity = 98%), respectively.

As expected, the number of clusters increases with a higher percent identity cutoff.

The number of singlets increases almost linearly with increasing minimal match length

from 19,072 (identity = 94%, exdrop = 1, l = 30) to 58,529 (identity = 94%, exdrop =

1, l = 200). More stringent percent identity cutoffs produce more singlets: 22,993

(identity = 96%, exdrop = 1, l = 30) up to 61,259 (identity = 96%, exdrop = 1,

l = 200) and 33,315 (identity = 98%, exdrop = 1, l = 30) up to 67,214 (identity = 98%,

exdrop = 1, l = 200), respectively.

A remarkable effect can be observed in the number of singlets while modifying the X-

Drop value: for all percent identity cutoffs, the number of clusters and singlets increases

with higher X-Drop values. Intuitively, a higher X-Drop value should allow for more errors

and therefore longer matches between the sequences. This again should result in more

sequences clustered together and thus the number of clusters and singlets should decrease

with higher X-Drop values. The observed finding could be the effect of the approach

Vmatch uses to filter the matches found: seeds are extended to both directions, until the

alignment score drops more than X from the best score seen so far. The percent identity

filter is then applied on these matches, which results in a rejection of matches with good

seeds but relatively poor extensions, although a shorter match (though longer than the

minimal match length) could have passed the filter.

Running Time

The Vmatch runs with 120 different parameter settings were conducted on a Sun Ultra-

Sparc III (900 MHz) CPU and 64GB RAM. The total run-time as a function of minimal

match length is shown in Figures 3.5 (94% identity), 3.6 (96% identity), and 3.7 (98%
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identity), respectively (bottom plots). The run-times do not include the construction of

the index, which has to be done just once and took 795 seconds. For 98% identity (Fig.

3.7) the running time stays fairly constant for minimal match lengths between 60 and 200

(approx. 40 seconds). Same holds true for an identity cutoff of 96% and X-Drop values

between 1 to 4. With smaller minimal match length (l ≤ 60) the running time increases

exponentially (50 sec for X = 1, l = 50; and 181 sec for l = 30). This effect starts earlier

(l ≤ 80) for X = 8 (993 sec for X = 8, l = 50; and 6852 sec for l = 30). For an identity

cutoff of 94%, running times grow exponentially starting at 68 sec (X = 1) and 2398 sec

(X = 8) for l = 200, increasing to 2849 sec (X = 1) and 7127 sec (X = 2) for l = 30,

respectively. Raising the X-Drop value from 1 to 8 results in an increase of the running

time of two orders of magnitudes.

The effect of exponentially increasing running time with smaller match length can be

explained by the number of seeds found in the first matching phase before the extension

of each match using the X-Drop approach: the number of matching seeds grows exponen-

tially with decreasing seed length. The seed length is chosen optimally for the match task

using Equation 3.1. In case of a 94% identity match of length 30, the maximal seedlength

is 10: in a random sequence one could expect 1 match per MB sequence data. As ESTs are

highly redundant, many more initial seeds can be expected that are extended by the costly

X-Drop alignment. The reverse effect explains the shorter running time for increasing per-

cent identity: higher identity allows for longer seeds, fewer initial matches and therefore

reduced run-time.

Percent identity vs. leastscore

The effect of having more singlets with higher X-Drop values led to the question if a

different Vmatch parameter might be more suitable for clustering ESTs than the percent

identity. In a second experiment, the leastscore (option -leastscore) was used instead

of the -identity option. The leastscore was chosen in the following way:

leastscore =
⌊

2l · identity

100

⌋
(3.2)

where l is the minimal length and identity the minimal percent identity of the match.

When using the X-Drop strategy, alignments are scored such that each mismatch has score

-1, an indel (i.e. insertion or a deletion) has score -2, and each match has score 2.

For 98% identity and length 100 the leastscore is then defined as 2 · 100 · 0.98 = 196.
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The shortest possible match has a seed of 33 nucleotides (see Eq. 3.1), 65 matches and 2

mismatches. In the worst case, a match having this score would have length 293: a seed of

length 33, 130 matches and 130 mismatches, where the matches and mismatches would

alternate perfectly. This case however is very unlikely to occur in evolutionary related

sequences and not to be expected.

Figures 3.8, 3.9, and 3.10 show the results of different parameter settings with leastscores

adjusted for 94%, 96% and 98% identity over the minimal match length l using Equation

3.2. The overall shape of the curves look very similar to those from Figures 3.5, 3.6, and

3.7. Comparable to the results of clustering using percent identity, the number of clusters

do not exceed 25,000 clusters. For exdrop = 1 and l = 100, the number of clusters is

21,629 (leastscore = 188), 21,911 (leastscore = 192), and 22,318 (leastscore = 196).

For increasing exdrop = 4 and l = 100, the number of clusters decreases to 12,386

(leastscore = 188), 16,443 (leastscore = 192), and 19,727 (leastscore = 196), respec-

tively.

The number of singlets is compared to Figures 3.5, 3.6, and 3.7 overall lower, while the

increase with higher minimal match lengths scales linear again: the number of singlets

increases from 12,751 (leastscore = 192, exdrop = 1, l = 30) to 57,247 (l = 200, Figure

3.9). Higher X-Drop values result in less singlets: 5,466 (leastscore = 192, exdrop = 4,

l = 50) up to 43,167 (l = 200).

An X-Drop value of exdrop = 8 is clearly too high, as too many sequences get clustered,

especially for low percent identities (94% and 96%, Figures 3.8 and 3.9). For l = 100 and

exdrop = 8, the 243,981 sequences get group into only 290 clusters and 6,139 singlets.

Although the leastscores of 188 and 192, respectively, are the same as for lower exdrop

values, the X-Drop approach allows for too many errors while extending the seeds.

The bottom plots of Figures 3.8, 3.9, and 3.10 depict the running times for the Vmatch

clustering when using the -leastscore parameter. The running times are almost the same

compared to the -identity based clustering.

These results suggest to use the -leastscore instead of the -identity parameter for

clustering ESTs. The behavior of producing less clusters and singlets with higher X-Drop

values is much more intuitive than the results obtained by using the percent identity filter

instead. Unfortunately, again no inherent “correct parameter setting” becomes apparent

for the parameter space shown in Figures 3.8, 3.9, and 3.10. The increase in number

of singlets and almost constant number of clusters makes a choice difficult. The next

section deals with the problem of finding a feasible parameter setting for Vmatch -based
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EST clustering and compares the results to those of different other algorithms.

3.5. Validation of Clustering Results

In the previous section we have shown that different parameters produce different parti-

tions of the data set. The degree in which the partitions differ is not apparently known,

and postulating the “best” parameter setting not feasible from the clustering alone. In

general, it is a non-trivial task to compare different partitions of a given set. Especially if

the space of all possible clusterings grows with the size of the data set, the clustering soon

becomes too complex to draw reasonable conclusions just by human intuition alone.

Once we obtained sets of clusters by different algorithms or parameters, a measure

of similarity allowing to compare and evaluate the performance is needed. An index for

cluster validity measures the adequacy of a structure through cluster analysis in terms that

can be interpreted objectively. The adequacy refers to how well the clustering structure

provides true information about the data.

Indices for attacking this question in a quantitative manner can be categorized as follows

[72]:

• An external index assesses the degree to which two partitions of n objects agree.

One partition comes from a clustering solution. The second is assigned a priori,

independent of the data and the first partition.

• Internal indices measure the degree to which a clustering obtained by a clustering

algorithm is justified in light only of the pattern or proximity matrix. They mea-

sure the fit between the partition imposed by a clustering algorithm and the data

themselves.

An external index is the index of choice, whenever the correct partition of the data is

known. In case of EST clustering, this partition can be constructed in fairly good quality

by mapping the ESTs against the genomic sequence. In Section 3.5.2 we describe a bench-

mark data set for EST clustering established by Zhu et al. [171]. We will use this data

set as an a priori classification of the ESTs. Therefore, we will use an external index to

validate the partitions obtained from different parameters and algorithms.

Several external criterion statistics have emerged in the literature:

• Jaccard [71]
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3.5. Validation of Clustering Results

• Rand [127]

• Fowlkes and Mallows [46]

• Morey and Agresti adjusted Rand [112]

• Hubert and Arabie adjusted Rand [66]

Milligan et al. [109] give a comprehensive overview of these five different external

indices. Similar to other studies [46, 110] they find that the mean Rand index value

increased as the number of clusters in the hierarchical solution increased. The Fowlkes

and Mallows index decreased as the number increased. The Jaccard index has the same

performance pattern as the Fowlkes and Mallows measure and thus, does not appear to

be a suitable measure for comparing across hierarchy levels. The Hubert and Arabie ad-

justed Rand index was particularly effective for conditions of random noise data sets and

produced mean values quite close to 0 for these cases in contrast to the other measures.

Based on empirical comparisons, Milligan et al. conclude that, for partitions having

different numbers of clusters, the Hubert and Arabie adjusted Rand index is the index of

choice. In case of EST clustering different parameters and algorithms almost always result

in different numbers of clusters, therefore we will use this index in the following sections

to validate the clusterings produced by Vmatch and other methods in contrast to other

authors, who mostly use the Jaccard index (e.g. [76, 101]) or count the number of exact

matching clusters in different partitions [26]. First, we give a formal definition of the

Hubert and Arabie Adjusted Rand Index.

3.5.1. Hubert and Arabie Adjusted Rand Index

Suppose U = {u1, . . . , uR} and V = {v1, . . . , vC} are two different partitions of a set

S = {O1, . . . , On} of n objects, i.e. the entries of U and V are subsets of S such that⋃R
i=1 ui = S =

⋃C
j=1 vj and ui ∩ ui′ = ∅ = vj ∩ vj′ for 1 ≤ i 6= i′ ≤ R and 1 ≤ j 6= j′ ≤ C.

nij denotes the number of objects that are common to clusters ui and vj . Let ni· and n·j

denote the number of objects in clusters ui and vj , respectively. The information of cluster

overlap between the two partitions U and V can be written in form of a contingency table

as in Table 3.2.

Measures of correspondence between U and V are frequently based on how object pairs

are classified in the R×C contingency matrix. Among all
(
n
2

)
distinct pairs there are four

different types:
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Partition V
Class v1 v2 · · · vC Sums
u1 n11 n12 · · · n1C n1·
u2 n21 n22 · · · n2C n2·

Partition U · · · · ·
· · · · ·
· · · · ·

uR nR1 nR2 · · · nRC nR·
Sums n·1 n·2 · · · n·C n·· = n

Table 3.2.: Notation for the contingency table representing the cluster overlap of partitions
U and V .

(a) pairs of objects placed in the same cluster in U and in the same cluster in V

(b) pairs of objects placed in different clusters in U and in the same cluster in V

(c) pairs of objects placed in the same cluster in U and in different clusters in V

(d) pairs of objects placed in different clusters in U and in different clusters in V

Types (a) and (d) can be interpreted as agreements, (b) and (c) as disagreements.

Based on the contingency table, explicit formulae can be given for calculating the number

of object pairs for each type (see Table 3.3).

Commonly used measures are the Jaccard index a
a+b+c [71] and the Rand index a+d

(n
2)

[127]. The Jaccard and the Rand indices both lie between 0 and 1. When two partitions

are identical, the index is 1. A problem is that the expected value for these indices for

two random partitions do not take a constant value, e.g. zero. (In fact, it depends on the

number of clusters.) Consequently, the relative sizes for each of these raw measures are

difficult to compare. The Hubert and Arabie adjusted Rand index [66] corrects for this by

using the general form of an index corrected for chance:

Index− Expected Index
Maximum Index− Expected Index

, (3.3)

which is bounded above by 1 and takes on value 0 when the index equals its expected

value.
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Type Formula

(a)
1
2

R∑
i=1

C∑
j=1

nij(nij − 1)

(b)
1
2

( C∑
j=1

n2
·j −

R∑
i=1

C∑
j=1

n2
ij

)

(c)
1
2

( R∑
i=1

n2
i· −

R∑
i=1

C∑
j=1

n2
ij

)

(d)
1
2

(
n2 +

R∑
i=1

C∑
j=1

n2
ij −

( R∑
i=1

n2
i· +

C∑
j=1

n2
·j

))

Table 3.3.: Formulae for calculating the number of object pairs for the four different types
of pairs.

Hubert and Arabie Adjusted Rand Index

The Hubert and Arabie adjusted Rand index has the form:

∑
i,j

(
nij

2

)
−

∑
i

(
ni·
2

) ∑
j

(
n·j
2

)
/

(
n

2

)
1
2

[∑
i

(
ni·
2

)
+

∑
j

(
n·j
2

)]
−

∑
i

(
ni·
2

) ∑
j

(
n·j
2

)
/

(
n

2

) (3.4)

Referring to the results of Milligan et al. [109], we adopt the Hubert and Arabie adjusted

Rand index as our measure of agreement between the external classes and clustering

results.

3.5.2. EST Clustering Benchmark Data Set

Different algorithms and parameters used for clustering explain the differences between

EST clusters provided by different gene indices. For species with genome sequence avail-

able, mapping of ESTs to the genomic sequence can be used as “gold standard” to compare

the algorithms and calibrate parameters.
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To assess the accuracy of the clustering results of Vmatch and other methods, the bench-

mark data set of Zhu et al. [171]3 will be used as an external measure of cluster validity.

The data set consists of 168,200 A. thaliana ESTs and was created by spliced alignment

of ESTs to their cognate locations in the Arabidopsis genome, with subsequent clustering

based on genome location.

A. thaliana EST Mapping

Zhu et al. confidently mapped 169,888 ESTs onto the Arabidopsis genome by spliced align-

ments using GeneSeqer [158, 157], a spliced alignment program incorporating sequence

similarity and splice site scoring. The mapping provides verified sets of EST clusters for

evaluation of EST clustering programs. Results were divided into three different groups of

partitions, including clusters based solely on sequence alignment, and clusters based on

sequence alignment and clone pair information.

I. Clusters (including singlets) based solely on sequence alignment (all putative cog-

nate EST locations; 172,137 pcSPAs4 from 169,888 hqESTs5)

IIa. Clusters (including singlets) based solely on sequence alignment (uniquely mapped

ESTs only; 146,527 pcSPAs from 146,527 hqESTs)

IIb. Clusters (including singlets) based on sequence alignment and clone pair informa-

tion (uniquely mapped ESTs only; 146,527 pcSPAs from 146,527 hqESTs)

IIIa. Clusters (including singlets) based solely on sequence alignment (unique putative

cognate EST locations only; 168,200 pcSPAs from 168,200 hqESTs)

IIIb. Clusters (including singlets) based on sequence alignment and clone pair informa-

tion (unique putative cognate EST locations only; 168,200 pcSPAs from 168,200

hqESTs)

Clustering was based on genomic locations: Let est1 map to region [a, b] and est2 to

region [c, d], where a ≤ c, on the same chromosome; then est1 and est2 are clustered if

c ≤ b+G+1, where G is the clustering parameter. G could be negative (overlap required)

or positive (specifying the maximal allowed gap). For ESTs giving multiple exon spliced
3available at: http://www.plantgdb.org/AtGDB/prj/ZSB03PP/ESTclustering.php
4pcSPAs: putative cognate spliced alignments
5hqESTs: high quality ESTs
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alignments, the overlap rule is superceded by the requirement for consistency of strand

orientation as indicated by GeneSeqer. Thus, ESTs from overlapping genes in opposite

transcriptional directions can be separated into different clusters. Additionally, ESTs from

the same plasmid (clone pairs) were used to join clusters independent of their local map

coordinates.

3.5.3. Quality Evaluation

As we have seen in Section 3.4, options and parameter settings can hardly be optimized in

an appropriate manner by manually exploring the parameter space. In the following we

describe the evaluation of quality and performance of EST clustering based on Vmatch .

Different Vmatch options and parameters are used to find the “best” setting, which is then

compared to other widely used EST clustering tools.

Benchmark Data Set

The accuracy of the results are assessed using the A. thaliana data set described in [158,

157] (see Section 3.5.2). This data set was chosen following Kalyanaraman et al. [76],

who used the same data set to evaluate their EST clustering tool PaCE. The data set con-

sists of 168,200 ESTs (group III, see Section 3.5.2).

The benchmark data set represents clusters based on spliced alignments of the ESTs to

their cognate locations in the A. thaliana genome. ESTs were clustered if their genomic

locations overlapped by at least 40bp. 146,527 ESTs mapped to unique locations, 21,673

ESTs mapped to multiple locations on the genome. ESTs aligning to multiple locations

were mapped to the cluster corresponding to the location with maximum alignment score

(see [76] for details). The genome based clustering results in 18,727 clusters and 10,803

singlets.

To evaluate quality and run-time performance as functions of data size, different subsets

of the 168,200 ESTs were extracted as follows: from the set of clusters represented in the

benchmark set, smaller sets of 10,000, 20,000, 40,000 and 80,000 ESTs were derived. To

achieve this, whole clusters instead of single sequences were chosen randomly from the

benchmark set until the desired number of total sequences was reached. This prevents

breaking clusters apart by possibly removing sequences that join subclusters, such as ESTs

from 5’ and 3’ ends of the same mRNA. For each of the four data sizes, 4 cluster sets were
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Set Clusters Singlets
10ka 937 544
10kb 1194 661
10kc 1199 709
10kd 1011 588
20ka 2245 1232
20kb 2198 1193
20kc 2502 1386
20kd 1961 1089

Set Clusters Singlets
40ka 4877 2872
40kb 4376 2670
40kc 4654 2751
40kd 4425 2557
80ka 8756 5137
80kb 8712 5067
80kc 8903 5170
80kd 9017 5099

Table 3.4.: Number of clusters and singlets for the 16 benchmark data sets derived from
168,200 ESTs mapped to their positions on the A. thaliana genome.

Name Parameter Values

Percent identity -identity 96, 98

Minimal overlap -l
40, 60, 80, 100, 120, 140,

160, 180, 200

X-Drop -exdrop 1, 2, 4, 8

Table 3.5.: Vmatch clustering parameters for A. thaliana data set.

derived, allowing for averaging of the results. Table 3.4 gives an overview of the data sets

and their numbers of clusters and singlets.

These data sets are used as a priori partitions in external index assessments to evaluate

the accuracy of the clustering results. The mapping to genomic positions should prevent

sequences from overclustering by spurious hits between the ESTs.

Experiments

The 16 different data sets were first clustered using Vmatch similar to the setting in Sec-

tion 3.4. Using identity cutoffs (option -identity) of 98% and 96%, the minimal match

length was varied from 40 to 200 in steps of 20. For each combination of percent identity

and minimal match length, X-Drop values of 1, 2, 4 and 8 were used. Table 3.5 gives an

overview of the parameter space. The optimal seedlength for each combination of mini-

mal match length and X-Drop value was calculated according to Equation 3.1, optimizing

the run-time of the matching step.

62



3.5. Validation of Clustering Results

Following the approach in Section 3.4, the percent identity was also simulated by the

-leastscore parameter instead of the -identity cutoff to avoid the effect seen in the

X. laevis data set, which generated more singlets with higher X-Drop values. As described

before, such an effect is not expected, because allowing for more errors in a match should

result in less singlets. An objective measure of the quality of both approaches can now be

given by the following cluster validation.

Overall, 2,304 different parameter settings have been explored for Vmatch , each setting

providing a different partition of the data set. The resulting partitions are compared to

the “gold standard” benchmark data set by calculating the adjusted Rand index as defined

in Section 3.5.1, Equation 3.4.

The results of Vmatch based EST clustering were compared to other widely used cluster-

ing programs, namely CAP3 , PaCE , d2 cluster, TGICL and BLASTclust . For this purpose,

the 16 different data sets were clustered with each tool using the default parameters. For

each resulting partition, the adjusted Rand index was determined by comparing the result

to the benchmark data set.

Results for -identity option

Figures 3.11, 3.12, 3.13, and 3.14 show the adjusted Rand indices for data sets 10k, 20k,

40k, and 80k, respectively. For each data set, eight different combinations of the options

-identity (98% or 96%) and X-Drop (X = 1, 2, 4 or 8) are plotted. The minimal match

length was varied from 40 to 200 in steps of 20. Table 3.6 shows the maximal adjusted

Rand indices achieved for all parameter settings within each data set.

It is obvious that for the -identity option of Vmatch , in the vast majority of cases

the best results are produced when using an identity cutoff of 96%. Only for very short

minimal match lengths of l = 40 or in some cases of data set 80k, an cutoff of 98% results

in better Rand indices. Especially, all maximum adjusted Rand indices (see Table 3.6)

were achieved for an identity cutoff of 96%.

For about 88% of these best cases, the best X-Drop value turned out to be X = 1, in the

remaining 12% X = 2. Minimal match lengths of l = 40 or l = 60 produced best results

in more than 62%. With increasing size of the data sets, a tendency of better Rand indices

for slightly larger l (80 to 120 instead of 40 to 60) can be observed.

Overall, the results for data sets 10k, 20k, and 40k are very similar. The adjusted Rand

index decreases within each data set for minimal match lengths of l ≥ 60. The minimal
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Figure 3.11.: Adjusted Rand Index for Vmatch clustering results of data set 10k (option
-identity)
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Figure 3.12.: Adjusted Rand Index for Vmatch clustering results of data set 20k (option
-identity)
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Figure 3.13.: Adjusted Rand Index for Vmatch clustering results of data set 40k (option
-identity)
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Figure 3.14.: Adjusted Rand Index for Vmatch clustering results of data set 80k (option
-identity)
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-identity -leastscore
Set a b c d a b c d
10k 0.8861 0.9894 0.9837 0.9908 0.8933 0.9923 0.9825 0.9959
20k 0.9675 0.9828 0.9676 0.9875 0.9643 0.9900 0.9780 0.9918
40k 0.9501 0.9504 0.9459 0.9462 0.9537 0.9525 0.9378 0.9236
80k 0.9032 0.8864 0.9370 0.8878 0.8485 0.8225 0.9189 0.8624

Table 3.6.: Maximum values of the Adjusted Rand indices for A. thaliana benchmark data
sets clustered with Vmatch option -identity (left part) and option -leastscore (right
part).

Set a b c d Mean
10k 0.83 (± 0.02) 0.88 (± 0.03) 0.91 (± 0.03) 0.92 (± 0.03) 0.89 (± 0.03)
20k 0.88 (± 0.03) 0.91 (± 0.02) 0.83 (± 0.04) 0.92 (± 0.03) 0.89 (± 0.03)
40k 0.83 (± 0.03) 0.88 (± 0.03) 0.85 (± 0.03) 0.86 (± 0.03) 0.86 (± 0.03)
80k 0.84 (± 0.04) 0.80 (± 0.05) 0.85 (± 0.06) 0.84 (± 0.02) 0.83 (± 0.04)

Table 3.7.: Mean Adjusted Rand Index for A. thaliana benchmark data sets, option
-identity used for matching. Other Parameters as specified in Table 3.5.

Rand index measured was 0.7106 for data set 20k with parameters l = 200, X = 8 and

an identity cutoff of 98%. The results for the 80k data set are different. The Rand index

increases to a maximum at l ≈ 120. For l < 120 or l > 150, the Rand index decreases

again.

Table 3.7 depicts the mean adjusted Rand index for all parameter settings within each

data set. The mean values vary from 0.80 (80kb) to 0.92 (10kd, 20kd). The standard

deviation within each data set size stays fairly constant at ≈ 0.03. Overall, the mean of

the means decreases from 0.89 to 0.83 with increasing data size. The standard deviation

increases also from 0.03 to 0.04.

Results for -leastscore option

In the next experiment, the Vmatch option -identity was replaced by the -leastscore

option. The leastscore was calculated as described in Equation 3.2 (see page 51) to sim-

ulate percent identities of 96% or 98%, respectively, over the minimal match length.

For each data set, eight different combinations of the options -leastscore and X-Drop

(X = 1, 2, 4 or 8) were used. Figures 3.15, 3.16, 3.17, and 3.18 show the adjusted Rand

indices for data sets 10k, 20k, 40k, and 80k, respectively. The minimal match length was
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Figure 3.15.: Adjusted Rand Index for Vmatch clustering results of data set 10k (option
-leastscore)
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Figure 3.16.: Adjusted Rand Index for Vmatch clustering results of data set 20k (option
-leastscore)
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Figure 3.17.: Adjusted Rand Index for Vmatch clustering results of data set 40k (option
-leastscore)
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Figure 3.18.: Adjusted Rand Index for Vmatch clustering results of data set 80k (option
-leastscore)
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Set a b c d Mean
10k 0.75 (± 0.16) 0.85 (± 0.16) 0.83 (± 0.18) 0.86 (± 0.16) 0.82 (± 0.17)
20k 0.74 (± 0.23) 0.80 (± 0.22) 0.73 (± 0.26) 0.81 (± 0.22) 0.77 (± 0.23)
40k 0.72 (± 0.23) 0.72 (± 0.23) 0.66 (± 0.22) 0.70 (± 0.24) 0.70 (± 0.23)
80k 0.58 (± 0.25) 0.56 (± 0.24) 0.62 (± 0.28) 0.60 (± 0.26) 0.59 (± 0.26)

Table 3.8.: Mean Adjusted Rand Index for A. thaliana benchmark data sets, option
-leastscore used for matching. Other Parameters as specified in Table 3.5.

varied again from 40 to 200 in steps of 20. Table 3.6 shows the maximal adjusted Rand

indices achieved for all parameter settings within each data set.

For the -leastscore option of Vmatch , a leastscore simulating an identity of 98% pro-

duces better adjusted Rand indices in all cases compared to the corresponding 96% pa-

rameter setting. The maximum adjusted Rand indices are shown in Table 3.6.

For 50% of these best cases, the best X-Drop is X = 1, for the other half X = 2. Minimal

match lengths of l = 60 or l = 80 produced best results in more than 68% of these cases.

Again, with increasing size of the data sets, a tendency of better Rand indices for slightly

larger l (100 to 150 instead of 60 to 80) can be observed.

In contrast to the -identity option, the overall shape of the adjusted Rand index plot

is highly similar in all data sets, including the largest set 80k. X-Drop values of X = 4 and

X = 8 turn out to be undesirable (black and green curves in Figures 3.15 to 3.18). Also,

a minimal match length of l = 40 combined with X-Drop values of X = 1 or X = 2 is

not suitable. Table 3.8 depicts the mean adjusted Rand indices for all parameter settings

within each data set, ranging from 0.56 (80kb) to just 0.86 (10kd). Compared to the best

results in Table 3.6, this explains the high standard deviations of up to 0.28 (4.7 times

larger compared to a maximum of 0.06 in Table 3.7). The mean of the means for each

data set size decreases from 0.82 (10k) to 0.59 (80k), the standard deviation increases

for larger data sets from 0.17 to 0.26.

It is obvious that some choice of X-Drop values lead to an extreme worsening of the

Rand indices and are undesirable for that kind of EST clustering. Using the same X-Drop

values with the -identity option can still lead to acceptable results. Although the basic

method of extending the exact seeds is the same in both cases, the identity filter removes

hits with too many errors afterwards, which leads to sufficient clustering results in the

latter case. If such a filter is not applied, too many spurious hits result in over-clustering

of the ESTs.
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Set a b c d Mean
10k 0.87 (± 0.02) 0.96 (± 0.03) 0.95 (± 0.03) 0.96 (± 0.03) 0.94 (± 0.03)
20k 0.91 (± 0.02) 0.97 (± 0.02) 0.93 (± 0.04) 0.97 (± 0.02) 0.95 (± 0.02)
40k 0.91 (± 0.03) 0.92 (± 0.03) 0.85 (± 0.03) 0.90 (± 0.02) 0.90 (± 0.03)
80k 0.81 (± 0.03) 0.78 (± 0.03) 0.87 (± 0.03) 0.82 (± 0.02) 0.82 (± 0.03)

Table 3.9.: Mean Adjusted Rand Index for A. thaliana benchmark data sets, option
-leastscore used for matching. For the calculation of the means, clusterings with
X-Drop values of X = 4 and X = 8, and minimal match length l = 40 were excluded.

Therefore, X-drop values of X = 4 and X = 8, as well as a minimal match length of

l = 40 were excluded from the analysis of the -leastscore option, and mean Rand in-

dices calculated for the remaining parameter settings again. Table 3.9 shows the results:

as can be deduced from Figures 3.15 to 3.18, the Rand indices are much more consis-

tent for the remaining settings. The indices vary from 0.78 (80kb) to 0.96 (10kb). The

mean of the means within each data size decreases now from 0.95 to 0.82. The standard

deviations show more consistency and increase slightly from 0.02 to 0.03. Compared

to the -identity option, the mean Rand indices increase by over 5% when using the

-leastscore option.

Choice of Parameters

The performance of Vmatch allowed a thorough analysis of the impact of the choice of

parameters used for EST clustering. Nevertheless, still no “best” parameter setting can be

defined, as the clustering results clearly depend on, amongst others, the size, the compo-

sition, and the quality of the data set. In most applications the latter is unknown a priori,

so that some kind of “default” setting has to be chosen.

The benchmark results suggest to prefer the -leastscore over the -identity option,

if some constraints are considered. X-Drop values of X ≥ 4 are not desirable and should

be avoided. This leads to a smaller variation in the clustering results, which are then not

as dependent on the remaining parameters. A minimal match length of l = 100, as often

defined by different other clustering tools as the default match length, turned out to be a

good choice. Therefore, for the upcoming analyses, the “default” Vmatch parameters for

EST clustering were defined as shown in Table 3.10, although for some applications these

default values might have to be adjusted.
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Vmatch Option Value
-l 100
-seedlength 33
-leastscore 196
-exdrop 2

Table 3.10.: Vmatch ’default’ parameter settings for EST clustering.

Comparison to Different Tools

To assess the quality of Vmatch based EST clustering compared to other tools widely used

for this purpose, we applied five different tools (see Section 2.3) to the same 16 data

sets described before (see page 61): CAP3 , PaCE , d2 cluster, TGICL , and BLASTclust .

All tools were used with their default parameters settings, assuming that these settings

have already been analyzed and appropriately set by the authors. As has been described

above, an optimal parameter setting can vary between different data sets, and this can

obviously hold true for the tools we compare to, here. Nevertheless, an impression of

the quality performance of the different tools should still be possible. To achieve a fair

comparison, Vmatch was used with the parameters described in Table 3.10, referred to as

’default’ here. Additionally, the Rand index for an ’optimal’ Vmatch parameter setting for

the corresponding data set is shown.

Figure 3.19 shows the Rand index values for the various algorithms on all 16 data sets.

In general, there is a clear tendency of lower quality for larger data sets. For the 10k data

sets, the 6 different tools perform almost equally well. CAP3 is in terms of quality the best

tool, it performs best in almost all cases, even for larger data sets. When using the optimal

parameter setting, Vmatch outperforms CAP3 for the 10k and 20k data sets. The ’default’

parameter setting of Vmatch is comparable to tools like PaCE , d2 cluster and TGICL in

terms of quality. The adjusted Rand index for BLASTclust drops significantly for larger

data sets, showing the lowest quality in all data sets.

Except for BLASTclust , the Rand indices for the different tools are quite similar. There-

fore, we performed a Friedman test [47] to assess whether there is a significant difference

between the scores of the different tools. Friedman’s test is (similar to classical balanced

two-way ANOVA) a nonparametric test for data having a two-way layout (data grouped

by two categorical factors). Unlike two-way analysis of variance, Friedman’s test does not

treat the two factors symmetrically and it does not test for an interaction between them.
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Figure 3.19.: Adjusted Rand Index for clustering tools Vmatch , CAP3 , PaCE , d2 cluster,
TGICL , and BLASTclust applied on A. thaliana data sets of different sizes.
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Source SS df MS χ2 P > χ2

Columns 337.3750 6 56.2292 72.2946 1.3822e-13
Error 110.6250 90 1.2292
Total 448 111

Table 3.11.: Friedman analysis of variance by ranks applied to the Rand Index values of
the different clustering tools (see Figure 3.19). The p-value of 1.3822e-13 suggests that
there is a significant (α = 0.05) difference between the Rand Index values obtained for
the 6 clustering tools.

Instead, it is a test for whether the columns are different after adjusting for possible row

differences. The test is based on an analysis of variance using the ranks of the data across

categories of the row factor, which does not depend on any distribution models.

Using Friedman’s analysis, we can test the null hypothesis that there is no significant

difference between the Rand values of the different tools. We used the Matlab function

friedman to perform the test. It returns a p-value for the null hypothesis that µi = µj for

all i 6= j. If the p-value is near zero, this casts doubt on the null hypothesis. A sufficiently

small p-value suggests that at least one column-sample median is significantly different

than the others. A 95% confidence interval was used (α = 0.05).

Table 3.11 shows the results of the Friedman test. The p-value of 1.3822e-13 suggests

that there is a significant difference between the Rand Index values obtained for the 6

clustering tools and therefore a significant difference in the quality of the resulting clus-

terings.

The rejection of H0 does not imply that the means of the Rand values of all 6 tools are

significantly different. To identify which pairs of tools are different, a multiple comparison

test was conducted using Matlab’s multcompare function. It returns a matrix of pairwise

comparison results and also displays a graph with each group mean represented by a

symbol and an interval around the symbol. Two means are significantly different if their

intervals are disjoint, and are not significantly different if their intervals overlap. The

resulting graph is shown in Figure 3.20.

The figure shows as example all tools in red (Vmatch ’def’, d2 cluster, TGICL , and

BLASTclust), whose Rand index values are significantly different from the Rand index

values of CAP3 (blue). In contrast, the Rand values of Vmatch ’opt’ and PaCE are not

significantly different, suggesting that the quality of the tools is comparable to that of

CAP3 .

77



3. Suffix Array Based EST Mapping and Clustering
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Figure 3.20.: Multiple comparison analysis of mean column ranks using the statistics of
the Friedman test (Table 3.11). Each group mean is represented by a symbol and an
interval around the symbol. Two means are significantly different if their intervals are
disjoint.

In summary, CAP3 is clearly the best tool to cluster ESTs, unfortunately its running

time makes it unusable for larger data sets (see Section 3.5.4). A parameter-adjusted

Vmatch and PaCE do not perform significantly worse. Using Vmatch with not-optimized

parameters is in terms of quality comparable to PaCE and d2 cluster.

3.5.4. Performance Evaluation

High quality results are a desired outcome of an EST clustering tool. We have seen so far,

that CAP3 is the best tool in terms of quality, but as we will show in this section, CAP3 is

not capable of clustering tens of thousands of ESTs in acceptable time. To assess the run-

time performance of each tool, we measured the running time for each tool for each of
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Figure 3.21.: Running times for tools CAP3 , d2 cluster, PaCE , TGICL , BLASTclust and
Vmatch for different data sets. Times are averaged for each of the groups 10k, 20k, 40k
and 80k.

the 16 data sets on a Sun V880 with 8 SPARC-CPUs (900 MHz) and 64GB RAM. Running

times were averaged for each of the groups 10k, 20k, 40k and 80k. For the tools PaCE

and d2 cluster, we ran the analyses with different numbers of CPUs.

Figure 3.21 shows the mean running times for the 4 different data set sizes and the 6

different tools. Vmatch is clearly the best tool in terms of performance. It outperforms

all other tools (even if ran on multiple CPUs) by up to two orders of magnitude. With

26 seconds for 10,000 ESTs, Vmatch is twice as fast as BLASTclust (68 sec) and almost

120 times faster than CAP3 (3147 sec). The parallel version of PaCE needs 1333 seconds

using 1 CPU and still 304 seconds on 6 CPUs. d2 cluster is also capable of running in

parallel mode and takes 650 seconds for 10k ESTs on 1 CPU; using 6 CPUs the running

time decreases to 106 seconds.
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For 80,000 ESTs, Vmatch is the only tool that allows for a parameter space evaluation in

reasonable time. It clusters the sequences in 4.5 minutes. The parallel versions (6 CPUs)

of PaCE and d2 cluster need 37 minutes and 2.1 hours, respectively. Even when using 6

CPUs, these tools are more than one order of magnitude slower than Vmatch . Running

d2 cluster on a single CPU is even slower than CAP3 : while d2 cluster needs 12.6 hours

to finish, CAP3 clusters the sequences in 8.1 hours.

3.6. Summary

One of the most popular applications of ESTs is the mapping to genomic sequence. It

allows gene discovery, gene structure prediction and identification of alternative splicing.

As the mapping procedure is a computationally expensive process, most genome browsers

like NCBI’s Map Viewer or the UCSC Genome Browser provide only static views of the

data. The web-based tool e2g enables users to not only map a single EST to a genomic

sequence, but instead find all matching ESTs for a region of interest. Using the high

performance of enhanced suffix arrays it allows fast identification of ESTs and provides

options to further analyze single ESTs in more detail.

For the application of EST clustering we have shown that Vmatch is a suitable and

highly efficient tool to identify matching sequences in the EST data set. The choice of

optimal parameters remains to be difficult, as results can vary significantly between dif-

ferent data sets and depend on its size, composition, and quality. Compared to 5 different

EST clustering tools, in terms of clustering quality Vmatch performs slightly worse than

CAP3 , which turned out to be the best tool for EST clustering, albeit the worst in terms of

running time. Comparing the running time, Vmatch outperforms all other tools by up to

two orders of magnitude, which makes Vmatch the tool of choice for growing EST data

sets. In the next chapter, we will describe an EST clustering pipeline using Vmatch both

for pre-processing and clustering ESTs.
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CHAPTER 4

EST Clustering Pipeline

In the previous chapters we have described the general goal of EST clustering and a very

efficient suffix array based approach of determining the clusters using Vmatch . As de-

scribed in Section 2.2.2, the EST clustering procedure comprises not only the clustering

step itself, but also a variety of pre- and post-processing steps. For an automated analysis,

a pipeline calling different tools for each step is needed, preferable using a database to

store information and data generated. In this chapter, we will describe a system which

integrates Vmatch into such a pipeline.

4.1. Design Rationale

The clustering system comprises a computational pipeline and a database which stores the

raw data, analysis results, and monitors the progress of the pipeline. A relational database

management system (RDBMS) is a central part of the system as it holds a persistent view

of the state of all tasks. Job parameters, in- and outputs are kept in the database, ensuring

data integrity and concurrent user access. New categories of data can be added to the

database without disruption to the existing system. The SQL query language allows an

efficient retrieval of the results and powerful combination of the features either imported
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or derived from the various analyses.

Figure 4.1 depicts an overview of the design of the pipeline. All data is stored in the

central RDBMS (right column the figure). In each step, the data is either retrieved from

or stored to the database. For tools working on flat or index files, data is exported to

the local file system (left column in the figure). Computationally expensive tasks can be

distributed on a compute cluster. Users can access the clustering and analysis results via a

Web frontend, which again makes extensive use of the RDBMS’ querying language.

The computational pipeline consists of the following steps, each of these will be de-

scribed in further detail in the following sections:

1. Data import

Read and validate input sequences and store data into the database.

2. Pre-Processing

Clip high quality sequence and build Vmatch index.

3. Repeat Masking

Mask repeats and remove vector and mitochondrial sequence.

4. Clustering

Build index structures, cluster sequences and store cluster information into database.

5. Assembly

Assemble clusters to contig sequences, store assembly information into database.

6. Annotation

Annotate and functionally classify contigs, derive Gene Ontologies.

7. Web Interface

Make results available via Web interface, provide extensive search capabilities.

4.1.1. Data Import

To enhance the usability and search capabilities of the system, complete GenBank flat files

are preferred as data import. In case where GenBank files are not available or sequences

have not been published yet, the pipeline also accepts simple FASTA files. If GenBank files

are imported, annotations including but not limited to library source, tissue type, cell type
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Figure 4.1.: A pipeline for EST clustering. The logical data flow is shown in the middle. Data and
meta information is stored in a PostgreSQL DBMS. Sequence data is exported to the file system
directly if efficient access is desired, e.g. in case of index files. Annotation for contig sequences
is generated externally by the Genlight system. All analysis results are accessible through a Web
interface.
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and developmental stage are extracted directly from the flat files (feature: source, quali-

fiers: clone lib, tissue type, cell type and dev stage) and imported to the database.

Where suitable, this information is used in following steps of the analysis.

While the meta information is stored in the database, FASTA files are generated and

stored in the local file system to allow several tools in the following steps easy access to

the sequence data (see Figure 4.1, left column).

4.1.2. Pre-Processing

Pre-processing is performed to remove low quality sequences. The high-throughput EST

sequencing projects produce vast amounts of sequence data but do not always trim the

sequences appropriately, instead provide information about the regions of best quality for

each sequence. If available, information about high quality start and end of sequencing

reads is used to trim sequences according to high quality regions to insure best sequence

quality.

To identify each sequence, unique keys have to be generated for each sequence. We use

SHA1 checksums [118] as identifiers, as we cannot rely on the IDs users provide in their

input data. This way, each sequence is assigned a unique SHA1 key, generated from the

description and sequence itself.

As last operation in this step, an enhanced suffix array is built for the sequence set using

mkvtree for further processing with Vmatch in the next step.

4.1.3. Repeat Masking

After removal of low quality sequence regions, vector and other contaminant sequences

have to be removed. Vector sequences are available from GenBank and VectorDB1. Vec-

torDB contains the sequences of almost all available vectors and many of these sequences

are highly similar except for the cloning sites. This high redundancy leads to very high

running times when using programs like RepeatMasker or cross match, because many

initial hits are found and extended by a costly Smith-Waterman alignment [138]. As this

again is a perfect application for a suffix array, we use Vmatch for vector and contaminant

masking. Vmatch identifies the initial seeds in all redundant sequences very rapidly and

extends the matches using the X-Drop approach described earlier. As a result the running

time of this step can be reduced significantly. If vector sequence is found at either the 5’ or
1http://seq.yeastgenome.org/vectordb/
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3’ end of the ESTs, it is trimmed in addition to additional sequence preceding or following

the vector sequence. ESTs that have vector remaining in the middle of the sequences are

discarded completely.

Repetitive elements as obtained from Repbase [73, 74] and GenBank are masked using

RepeatMasker. Here, RepeatMasker performs considerable better than Vmatch in terms

of repeat detection. Especially more distantly related repeats from related organisms are

identified better if the Smith-Waterman algorithm is used instead of the X-Drop approach.

The inclusion of related organisms’ repeats is necessary in cases where no or very few

repeats are known for the organism under consideration.

If hits against ribosomal RNA and mitochondrial sequences are found in the imported

sequence set, the corresponding sequences are removed completely. Sequences that have

less than 100 consecutive bases left after cleanup are discarded completely. Identified re-

peat sequences are masked as lower case characters to preserve the sequence information

for the assembly step. During the clustering, a special character mapping prevents to take

the lower case characters into account.

Information (including type of repeats found, rejected sequences, etc.) about the mask-

ing step as well as the processed sequences are stored in the database. Again, SHA1 keys

are generated for the processed sequences to guarantee unique access to the sequences.

4.1.4. Clustering

After pre-processing and repeat masking, the ESTs can be clustered. First, an index has

to be built for the processed sequences which can be used by Vmatch . Therefore, the

sequences that passed the masking step are exported from the database and stored in the

local file system. An index is built using mkvtree, this time using a special character map-

ping (mkvtree option -smap) that prevents lower case characters (i. e. masked regions)

within the sequences to be matched.

Next, Vmatch is used to cluster the sequences as described in Section 3.4. Although

the clustering is run on a single CPU, the pipeline allows for distributing the clustering

step on a compute grid. This is especially useful in case of attempts to define appropriate

clustering criteria. The evaluation described in Section 3.5 has been performed that way.

A batch of clustering jobs (e. g. with different clustering parameters or different sequence

sets) can be distributed on a computing grid. The process is database driven, i. e. all

parameters for each clustering job are stored in the database. Each job stores the results

85



4. EST Clustering Pipeline

of the clustering back in the database, including information about the number of clusters

and singlets, cluster membership for each sequence, running time of the clustering job, etc.

This way, a comprehensive analysis can be done on the clustering results as demonstrated

in Section 3.5.

4.1.5. Assembly

After the clustering step, clusters are assembled into contig sequences. An advantage of

the assembly is the correction of sequencing errors in the resulting consensus sequence,

given enough sequences in a cluster and sufficient coverage of the reconstructed mRNA

sequence.

We use CAP3 as assembly tool. Benchmarks have shown that CAP3 is the best tool

in terms of EST cluster assembly [97]. In agreement, our own quality assessment has

demonstrated CAP3 to be the best tool in terms of quality (see Section 3.5.3). The poor

run-time performance of CAP3 has been overcome by clustering the sequences with the

much more efficient Vmatch . Nevertheless, assembly of hundreds of clusters with large

amounts of sequences still takes a considerable amount of time. Therefore, the assembly

process can also be distributed on a computing grid. Again, Perl scripts generate the

appropriate CAP3 calls. The jobs are distributed on the compute cluster and each job

retrieves the cluster and sequence information directly from the database server.

The assembly results are stored back in the database. This includes information about

the number of contigs and singlets for each cluster, and the contig and consensus se-

quences, including the position of each EST in the consensus. The position of each EST in

the contig sequence will be important later on for identification of full length clones (see

Section 4.1.6).

4.1.6. Annotation of Contig Sequences

To enhance the suitability of the system, a variety of sequence comparisons are performed

at the protein level. The cluster consensus sequences and all singletons are subject to

extensive BLASTX [8] and FASTY [120] homology searches vs. the non-redundant protein

database (NR) from NCBI and the proteomes of various major model organisms using

the high throughput analysis pipeline of the Genlight system [14, 15]. Proteome sets

for model organisms are obtained from the International Protein Index (IPI) [79]. The

IPI provides a top-level guide to the main databases: Swiss-Prot, TrEMBL, RefSeq and
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Ensembl. It curates minimally redundant yet maximally complete sets of the indexed

organisms.

Performing separate comparisons to different organisms allows a search for matching

sequences based on the identity of any gene known from each species as well as query for

genes which have matches in some but not all databases. This aids in the discovery and

analysis of conserved and unique genes.

Functional Classification

In addition to these databases, we have included BLASTX searches in the COG and KOG

databases which are used to functionally classify the contig sequences. The collection of

Clusters of Orthologous Groups (COGs) of proteins is an approach to the identification of

orthologous protein sets based on clustering of consistent genome-specific best hits [148].

COG currently contains 66 sequenced prokaryotic genomes. The KOG (eukaryotic orthol-

ogous groups) is an extension of the COG to complex, multicellular eukaryotes. It contains

7 sequenced genomes of animals, fungi, microsporidia, and plants. Each sequence in the

COG and KOG database is assigned to at least one out of 25 functional categories, which

consist of the main classes Information Storage and Processing (5 categories), Cellular

Processes and Signaling (10 categories), Metabolism (8 categories), and Poorly Charac-

terized (2 categories).

All sequences resulting from the clustering and assembly processes are compared to

these protein sets using BLASTX and FASTY. The reason for incorporating FASTY analyses

is that ESTs are often of low sequence quality, and sequencing errors can still exist in

the assembled consensus sequences. FASTY is a version of FASTA that compares a DNA

sequence to a protein sequence database, translates the DNA sequence in three forward

(or reverse) frames and allows (in contrast to BLASTX) for frame shifts, maximizing the

length of the resulting alignments.

Gene Ontologies

The Gene Ontology (GO) project [11, 59] is an ongoing international collaborative effort

to generate consistent descriptions of gene products in different databases using a set of

three controlled vocabularies or ontologies: Biological Processes, Cellular Components,

and Molecular Functions. The GO vocabulary allows consistent searching of databases
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using uniform queries. The availability of such vocabularies can be critical to the interpre-

tation of high throughput approaches.

GO terms are imported into the system from the Gene Annotation Database (GOA)

[28]. The GOA project aims to provide high-quality GO annotations to proteins in the

UniProt/IPI database. Based on FASTY similarities with both mouse and human IPI se-

quences, GO annotations can be mapped to the contig sequences. This enriches the system

by search capabilities for GO terms.

Identification of Full Length ORF Containing Contigs

A special interest lies in full length hits of the consensus sequences vs. known proteins.

For this purpose, BLASTX and FASTY hits are categorized into four classes, representing

the quality of the full length matches (see Figure 4.2): Class 1 : Matches cover 100%

of the sequence of a known protein. Additionally, the matched protein sequence begins

with the conserved methionine and ends at a conserved STOP codon. Class 2 : Matches

covering 100% of the sequence of a known protein. Additionally, the matched protein

sequence includes the initial methionine. Class 3 : Matches capable of covering 100% of

the matched protein sequence with no additional constraints. Class 4 : Matches that cover

the protein over almost its full length, allowing the match to start or end maximal 10

amino acids after/before the start or end of the protein. (See Figure 4.9 for an example of

a Class 1 match.)

Identification of putative Full Length Insert Containing Clones

Often, biologists are interested in identifying a full length clone for further study and this

desire has been met by the establishment of a number of the Gene Collections (the Mam-

malian Gene Collection, the Xenopus Gene Collection and the Zebrafish Gene Collection).

The analysis described above has been extended to select potential full length insert con-

taining clones that are available through the IMAGE consortium [96] and provide a simple

yet powerful search tool to rapidly match homologous genes of interest to their counter-

parts in the organism under examination. The Gene Collections are an NIH initiative that

supports the production of cDNA libraries, clones and 5’/3’ sequences to provide a set of

full-length (ORF) sequences and cDNA clones of expressed genes for a variety of model

systems. Since the average length of the characterized full length vertebrate protein is

1,400 bases and the average sequence length of the consensus sequences is considerably
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Figure 4.2.: Full length clone selection (top) and consensus sequence categories (bottom). The
CAP3 contig sequence is compared to protein databases using BLASTX and FASTY, and hits
categorized in 4 categories (see text for details). Predicted 5’ contigs (P5P) have to have enough
sequence to fill up the missing 5’ end of the protein sequence. Clone selection: Clone A and B
get discarded because of missing IMAGE id. Clone 54321 does not span 5’ end of protein match.
Clone 21345 is selected as most 5’ clone fulfilling the requirements.
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smaller in most cases, many sequences which are full length will not be detected by the

previous approach. To identify additional clones that potentially carry a full length insert,

we searched the database for sequence matches which were sufficiently long to include the

start methionine but which did not have sufficient homology to be detected by the previ-

ous methods. Thus, a sequence with a query start position (Startq) which is greater than

the subject start site (Starts) is potentially a full length open reading frame (hereafter

referred to as P5P, predicted 5 prime). Clearly, the value of such a prediction decreases

as the values of Startq increases and the predictive value increases with lower values of

Starts. Full length clones predicted by this method are subject to 3’ truncations due to

mispriming in poly(A) rich regions rather than at the polyA tail. Such regions would be

characterized by the presence of the amino acid lysine (codons AAA, AAG) or asparagine

(codons AAU, AAC).

Best FASTY hits are extracted for consensus sequences from all four full length cate-

gories as well as the P5P categories as described above. For sequences matching these

categories, the most 5’ EST contributing to the CAP3 contig sequence is selected. In addi-

tion, the selected clone has to span the amino-terminal end of the FASTY protein match.

Finally, to ensure the ready availability of the clones and therefore the utility of the analy-

sis, the selected clone has to be available through the IMAGE consortium. See Figure 4.2

for an illustration of 5’ clone selection.

4.1.7. Web interface

The results of the analyses described above are incorporated into the SQL database amenable

to complex queries. The database can be accessed through a user friendly web based in-

terface which allows individual and batch queries using accession, GI, and UniGene and

TIGR cluster IDs. In addition, the user can query the sequence hits using any protein ac-

cession/GI number both singly and in batch mode. This allows a rapid identification of

consensus sequences and their corresponding clones with hits to given protein sequences.

The output of various queries displays the matching cluster(s) and links to a web page as

presented in Section 4.3.2. For each cluster, links to the best hit for a number of model or-

ganisms are provided as well as links to the assembly result, consensus sequence generated

by CAP3 , and visual alignments of all FASTY results. GenBank accession numbers for each

EST in the cluster and whether the corresponding clone has been identified as full length

are provided. Additionally, for each cluster consensus the COG and KOG classification, as
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well as the GO terms are available.

The analysis and database system provides a very powerful tool which allows users to

take advantage of a number of technical and experimental advances. We have selected a

couple of examples to illustrate possible types of queries in Section 4.3.2.

4.2. Database Schema

Figures 4.3 to 4.5 show the schema of the underlying database. Logically, it consists of

7 different sections, corresponding to the different steps in the clustering pipeline: EST

Sequence Sets, Clustering, Assembly, Sequence Analysis Data Sets, BLAST and FASTA

Analyses, Full Length Clone Prediction, COG and KOG Classification, and Gene Ontology.

In the following sections we will give a description of the information stored in each

section’s entities.

EST Sequence Sets

The central tables in the EST Sequence Sets section of the schema (yellow tables in Figure

4.3) are the entities seq sets catalog and sequences, which keep information about the

imported sequences like name, description, number of sequences, taxon, etc. and the ac-

tual sequences with clipping and masking positions. If sequences were imported from Gen-

Bank files, additional features are stored in the est source, est xref, and est seqinfo

tables. Here, among others, clones and libraries, tissue and cell types, developmental

stages, cross references to other databases and information about high quality regions of

the sequences are kept.

Clustering

The next step in the pipeline is the clustering of the EST sequences (red tables in Figure

4.3), which is based on an index structure. The parameters for building the index are

stored in the indexes table including the name and the path to the index in the local file

system. Based on these indexes, clustersets can be defined with a number of different

parameters, the most important being length, exdrop, leastscore, identity and seedlength

as described in Section 3.4. The clustering results are stored in the tables clusters and

sequences clusters. For each set id/seq id pair exactly one clusterset id/cluster id re-

lation defines the resulting clusters.
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BLAST Analysis

FASTA Analysis
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EST Sequence Sets

Assembly

est_seqinfo

PF set_id INTEGER
PF seq_id CHARACTER

type CHARACTER VARYING
division CHARACTER VARYING
length INTEGER
hq_start INTEGER
hq_stop INTEGER
description TEXT

sequences

PF set_id INTEGER
PK seq_id CHARACTER

passed_mask BOOLEAN
reason_failed CHARACTER VARYING
clip_left INTEGER
clip_right INTEGER
sequence TEXT

seq_sets_catalog

PK set_id INTEGER
name CHARACTER VARYING
description TEXT
num_of_seqs INTEGER
tax_id INTEGER
tax_name CHARACTER VARYING
source_flag BOOLEAN
cdna_info_flag BOOLEAN
protein_info_flag BOOLEAN
db_xref_flag BOOLEAN
creation_time TIMESTAMP

est_source

PF set_id INTEGER
PF seq_id CHARACTER

tissue_type CHARACTER VARYING
cell_type CHARACTER VARYING
dev_stage CHARACTER VARYING
clone_lib CHARACTER VARYING
clone CHARACTER VARYING
clone_end SMALLINT
vector CHARACTER VARYING
note TEXT
submission_date DATE

est_xref

PF set_id INTEGER
PF seq_id CHARACTER

gb_pid INTEGER
gb_pacc CHARACTER VARYING
sprot_id CHARACTER VARYING
sprot_accession CHARACTER VARYING
unigene_id CHARACTER VARYING
gene_name CHARACTER VARYING
go_assignment CHARACTER VARYING
refseq_id CHARACTER VARYING

clusters

PF clusterset_id INTEGER
PK cluster_id INTEGER

size INTEGER

repeats

PF set_id INTEGER
PF seq_id CHARACTER

sw score INTEGER
precdiv DOUBLE PRECISION
percdel DOUBLE PRECISION
percins DOUBLE PRECISION
qbegin INTEGER
qend INTEGER
qleft INTEGER
strand CHARACTER VARYING
repname CHARACTER VARYING
repclass CHARACTER VARYING
repbegin INTEGER
repend INTEGER
repleft INTEGER
flag CHARACTER VARYING

cap3

PF clusterset_id CHARACTER
PF cluster_id INTEGER

cap3_output INTEGER

blasthits

PF blast_id INTEGER
PK set_id INTEGER
PK seq_id CHARACTER
FK db_set_id INTEGER
FK db_seq_id CHARACTER

query_desc TEXT
query_len INTEGER
hit_desc TEXT
hsp_bit_score DOUBLE PRECISION
hsp_evalue DOUBLE PRECISION
hsp_score DOUBLE PRECISION
hsp_hit_seqnum INTEGER
hit_len INTEGER
hsp_identities INTEGER
hsp_positives INTEGER
hsp_gaps INTEGER
hsp_align_len INTEGER
hsp_rank INTEGER
hsp_query_from INTEGER
hsp_query_to INTEGER
hsp_hit_from INTEGER
hsp_hit_to INTEGER
hsp_query_frame INTEGER
hsp_hit_frame INTEGER

blast_analyses

PK blast_id INTEGER
FK set_id INTEGER
FK db_set_id INTEGER

description TEXT
number_of_entries INTEGER
blast_parameters TEXT
blast_prg TEXT
evalue_cutoff DOUBLE PRECISION
created TIMESTAMP
number_of_unique_entries INTEGER

fasta_analyses

PK fasta_id INTEGER
FK set_id INTEGER
FK db_set_id INTEGER

description TEXT
number_of_entries INTEGER
fasta_parameters TEXT
fasta_prg TEXT
evalue_cutoff DOUBLE PRECISION
created TIMESTAMP
number_of_unique_entries INTEGER

fastahits

PF fasta_id INTEGER
PK set_id INTEGER
PK seq_id CHARACTER
FK db_set_id INTEGER
FK db_seq_id CHARACTER

query_desc TEXT
query_len INTEGER
hit_desc TEXT
hit_bit_score DOUBLE PRECISION
hit_evalue DOUBLE PRECISION
hit_zscore DOUBLE PRECISION
hit_sw score INTEGER
hit_positives INTEGER
hit_identities INTEGER
hit_gaps INTEGER
hit_overlap DOUBLE PRECISION
hit_len INTEGER
hit_rank INTEGER
hit_query_from INTEGER
hit_query_to INTEGER
hit_hit_from INTEGER
hit_hit_to INTEGER
query_dsp_start INTEGER
hit_dsp_start INTEGER
hit_orientation CHARACTER
query_align TEXT
db_align TEXT
midline_align TEXT

taxonomy

PF db_set_id INTEGER
PF db_seq_id CHARACTER

gi INTEGER
accession CHARACTER VARYING
tax_id INTEGER
tax_name TEXT

cap3_singletons

PF clusterset_id INTEGER
PF cluster_id INTEGER
PK singlet_no INTEGER

set_id INTEGER
seq_id CHARACTER VARYING

cap3_contigs

PF clusterset_id INTEGER
PF cluster_id INTEGER
PK contig_no INTEGER

set_id INTEGER
seq_id CHARACTER

cap3_ace

PF clusterset_id INTEGER
PF cluster_id INTEGER
PF contig_no INTEGER

contig_seq_id CHARACTER
FK set_id INTEGER
FK seq_id CHARACTER

direction CHARACTER
start INTEGER

full_length_clones

PF fasta_id INTEGER
PK set_id INTEGER
PK seq_id CHARACTER
FK db_set_id INTEGER
FK db_seq_id CHARACTER

hit_desc TEXT
query_desc TEXT
read_seq_id CHARACTER
gb_gacc CHARACTER VARYING
direction CHARACTER
start INTEGER
missing_prot_5p_nt INTEGER
avail_5p_nt INTEGER
suitable BOOLEAN
clone CHARACTER VARYING

FK clusterset_id INTEGER
FK cluster_id INTEGER
FK contig_no INTEGER

functional_classes

PK fun_category CHARACTER VARYING
fun_ident CHARACTER
class CHARACTER VARYING

cog_info

PK cog_id CHARACTER
FK fun_category CHARACTER

cog_desc CHARACTER VARYING
FK org_short_name CHARACTER

seq_desc CHARACTER VARYING

cog_org

PK org_short_name CHARACTER
ncbi_taxid INTEGER
lineage CHARACTER VARYING
org_name CHARACTER VARYING

kog_info

PK kog_id CHARACTER
FK fun_category CHARACTER

fun_category2 CHARACTER
kog_desc CHARACTER VARYING

FK org_short_name CHARACTER
seq_desc CHARACTER VARYING

kog_org

PK org_short_name CHARACTER
ncbi_taxid INTEGER
lineage CHARACTER VARYING
org_name CHARACTER VARYING

go_term

PK goid INTEGER
name CHARACTER VARYING
term_type CHARACTER VARYING
acc CHARACTER VARYING
is_obsolete INTEGER
is_root INTEGER

goa_uniprot

db CHARACTER VARYING
db_oid CHARACTER VARYING
db_osym CHARACTER VARYING
qualif ier CHARACTER VARYING

FK goid CHARACTER
db_reference CHARACTER VARYING
evidence CHARACTER VARYING
w ith CHARACTER VARYING
aspect CHARACTER
db_oname TEXT

FK synonym CHARACTER VARYING
db_otype CHARACTER
taxon_id CHARACTER VARYING
date DATE
assigned_by CHARACTER VARYING

ipi_mapping

PF db_set_id INTEGER
PF db_seq_id CHARACTER
PK synonym CHARACTER

sequences_clusters

PF set_id INTEGER
PF seq_id CHARACTER
PF clusterset_id INTEGER
PF cluster_id INTEGER

db_sets_catalog

PK db_set_id INTEGER
name CHARACTER VARYING
description TEXT
num_of_seqs INTEGER

db_sequences

PF db_set_id INTEGER
PK db_seq_id CHARACTER

sequence TEXT
description TEXT

kog_mapping

PF db_set_id INTEGER
PF db_seq_id CHARACTER
PF kog_id CHARACTER

cog_mapping

PF db_set_id INTEGER
PF db_seq_id CHARACTER
PF cog_id CHARACTER

indexes

PK index_id INTEGER
FK set_id INTEGER

description TEXT
dbname TEXT
dbpath TEXT
q TEXT
smap TEXT
dna BOOLEAN
protein BOOLEAN
indexname TEXT
indexpath TEXT
pl INTEGER
tis BOOLEAN
ois BOOLEAN
suf BOOLEAN
bw t BOOLEAN
bck BOOLEAN
lcp BOOLEAN
skp BOOLEAN
sti1 BOOLEAN
rev BOOLEAN
seqnum INTEGER
totallength INTEGER
machine TEXT
started TIMESTAMP
finished TIMESTAMP
memtime TEXT

clustersets

PK clusterset_id INTEGER
FK set_id INTEGER
FK index_id INTEGER

name CHARACTER
length INTEGER
complete BOOLEAN
q TEXT
h INTEGER
e INTEGER
hxdrop INTEGER
exdrop INTEGER
leastscore INTEGER
evalue DOUBLE PRECISION
identity INTEGER
seedlength INTEGER
show desc INTEGER
d BOOLEAN
p BOOLEAN
s BOOLEAN
f BOOLEAN
dbcluster TEXT
matchfile TEXT
outdir TEXT
size INTEGER
elements INTEGER
singlets INTEGER
machine TEXT
started TIMESTAMP
finished TIMESTAMP

cap3_consensus

PF clusterset_id INTEGER
PF cluster_id INTEGER
PK contig_id INTEGER

sequence TEXT
PF contig_no INTEGER

cap3_clip

PF clusterset_id INTEGER
PF cluster_id INTEGER

description TEXT
left_clip INTEGER
right_clip INTEGER
length INTEGER
right_size INTEGER

Figure 4.3.: EST clustering database schema (part 1 of 3).
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est_seqinfo

PF set_id INTEGER
PF seq_id CHARACTER

type CHARACTER VARYING
division CHARACTER VARYING
length INTEGER
hq_start INTEGER
hq_stop INTEGER
description TEXT

sequences

PF set_id INTEGER
PK seq_id CHARACTER

passed_mask BOOLEAN
reason_failed CHARACTER VARYING
clip_left INTEGER
clip_right INTEGER
sequence TEXT

seq_sets_catalog

PK set_id INTEGER
name CHARACTER VARYING
description TEXT
num_of_seqs INTEGER
tax_id INTEGER
tax_name CHARACTER VARYING
source_flag BOOLEAN
cdna_info_flag BOOLEAN
protein_info_flag BOOLEAN
db_xref_flag BOOLEAN
creation_time TIMESTAMP

est_source

PF set_id INTEGER
PF seq_id CHARACTER

tissue_type CHARACTER VARYING
cell_type CHARACTER VARYING
dev_stage CHARACTER VARYING
clone_lib CHARACTER VARYING
clone CHARACTER VARYING
clone_end SMALLINT
vector CHARACTER VARYING
note TEXT
submission_date DATE

est_xref

PF set_id INTEGER
PF seq_id CHARACTER

gb_pid INTEGER
gb_pacc CHARACTER VARYING
sprot_id CHARACTER VARYING
sprot_accession CHARACTER VARYING
unigene_id CHARACTER VARYING
gene_name CHARACTER VARYING
go_assignment CHARACTER VARYING
refseq_id CHARACTER VARYING

clusters

PF clusterset_id INTEGER
PK cluster_id INTEGER

size INTEGER

repeats

PF set_id INTEGER
PF seq_id CHARACTER

sw score INTEGER
precdiv DOUBLE PRECISION
percdel DOUBLE PRECISION
percins DOUBLE PRECISION
qbegin INTEGER
qend INTEGER
qleft INTEGER
strand CHARACTER VARYING
repname CHARACTER VARYING
repclass CHARACTER VARYING
repbegin INTEGER
repend INTEGER
repleft INTEGER
flag CHARACTER VARYING

cap3

PF clusterset_id CHARACTER
PF cluster_id INTEGER

cap3_output INTEGER

blasthits

PF blast_id INTEGER
PK set_id INTEGER
PK seq_id CHARACTER
FK db_set_id INTEGER
FK db_seq_id CHARACTER

query_desc TEXT
query_len INTEGER
hit_desc TEXT
hsp_bit_score DOUBLE PRECISION
hsp_evalue DOUBLE PRECISION
hsp_score DOUBLE PRECISION
hsp_hit_seqnum INTEGER
hit_len INTEGER
hsp_identities INTEGER
hsp_positives INTEGER
hsp_gaps INTEGER
hsp_align_len INTEGER
hsp_rank INTEGER
hsp_query_from INTEGER
hsp_query_to INTEGER
hsp_hit_from INTEGER
hsp_hit_to INTEGER
hsp_query_frame INTEGER
hsp_hit_frame INTEGER

blast_analyses

PK blast_id INTEGER
FK set_id INTEGER
FK db_set_id INTEGER

description TEXT
number_of_entries INTEGER
blast_parameters TEXT
blast_prg TEXT
evalue_cutoff DOUBLE PRECISION
created TIMESTAMP
number_of_unique_entries INTEGER

fasta_analyses

PK fasta_id INTEGER
FK set_id INTEGER
FK db_set_id INTEGER

description TEXT
number_of_entries INTEGER
fasta_parameters TEXT
fasta_prg TEXT
evalue_cutoff DOUBLE PRECISION
created TIMESTAMP
number_of_unique_entries INTEGER

fastahits

PF fasta_id INTEGER
PK set_id INTEGER
PK seq_id CHARACTER
FK db_set_id INTEGER
FK db_seq_id CHARACTER

query_desc TEXT
query_len INTEGER
hit_desc TEXT
hit_bit_score DOUBLE PRECISION
hit_evalue DOUBLE PRECISION
hit_zscore DOUBLE PRECISION
hit_sw score INTEGER
hit_positives INTEGER
hit_identities INTEGER
hit_gaps INTEGER
hit_overlap DOUBLE PRECISION
hit_len INTEGER
hit_rank INTEGER
hit_query_from INTEGER
hit_query_to INTEGER
hit_hit_from INTEGER
hit_hit_to INTEGER
query_dsp_start INTEGER
hit_dsp_start INTEGER
hit_orientation CHARACTER
query_align TEXT
db_align TEXT
midline_align TEXT

taxonomy

PF db_set_id INTEGER
PF db_seq_id CHARACTER

gi INTEGER
accession CHARACTER VARYING
tax_id INTEGER
tax_name TEXT

cap3_singletons

PF clusterset_id INTEGER
PF cluster_id INTEGER
PK singlet_no INTEGER

set_id INTEGER
seq_id CHARACTER VARYING

cap3_contigs

PF clusterset_id INTEGER
PF cluster_id INTEGER
PK contig_no INTEGER

set_id INTEGER
seq_id CHARACTER

cap3_ace

PF clusterset_id INTEGER
PF cluster_id INTEGER
PF contig_no INTEGER

contig_seq_id CHARACTER
FK set_id INTEGER
FK seq_id CHARACTER

direction CHARACTER
start INTEGER

full_length_clones

PF fasta_id INTEGER
PK set_id INTEGER
PK seq_id CHARACTER
FK db_set_id INTEGER
FK db_seq_id CHARACTER

hit_desc TEXT
query_desc TEXT
read_seq_id CHARACTER
gb_gacc CHARACTER VARYING
direction CHARACTER
start INTEGER
missing_prot_5p_nt INTEGER
avail_5p_nt INTEGER
suitable BOOLEAN
clone CHARACTER VARYING

FK clusterset_id INTEGER
FK cluster_id INTEGER
FK contig_no INTEGER

functional_classes

PK fun_category CHARACTER VARYING
fun_ident CHARACTER
class CHARACTER VARYING

cog_info

PK cog_id CHARACTER
FK fun_category CHARACTER

cog_desc CHARACTER VARYING
FK org_short_name CHARACTER

seq_desc CHARACTER VARYING

cog_org

PK org_short_name CHARACTER
ncbi_taxid INTEGER
lineage CHARACTER VARYING
org_name CHARACTER VARYING

kog_info

PK kog_id CHARACTER
FK fun_category CHARACTER

fun_category2 CHARACTER
kog_desc CHARACTER VARYING

FK org_short_name CHARACTER
seq_desc CHARACTER VARYING

kog_org

PK org_short_name CHARACTER
ncbi_taxid INTEGER
lineage CHARACTER VARYING
org_name CHARACTER VARYING

go_term

PK goid INTEGER
name CHARACTER VARYING
term_type CHARACTER VARYING
acc CHARACTER VARYING
is_obsolete INTEGER
is_root INTEGER

goa_uniprot

db CHARACTER VARYING
db_oid CHARACTER VARYING
db_osym CHARACTER VARYING
qualif ier CHARACTER VARYING

FK goid CHARACTER
db_reference CHARACTER VARYING
evidence CHARACTER VARYING
w ith CHARACTER VARYING
aspect CHARACTER
db_oname TEXT

FK synonym CHARACTER VARYING
db_otype CHARACTER
taxon_id CHARACTER VARYING
date DATE
assigned_by CHARACTER VARYING

ipi_mapping

PF db_set_id INTEGER
PF db_seq_id CHARACTER
PK synonym CHARACTER

sequences_clusters

PF set_id INTEGER
PF seq_id CHARACTER
PF clusterset_id INTEGER
PF cluster_id INTEGER

db_sets_catalog

PK db_set_id INTEGER
name CHARACTER VARYING
description TEXT
num_of_seqs INTEGER

db_sequences

PF db_set_id INTEGER
PK db_seq_id CHARACTER

sequence TEXT
description TEXT

kog_mapping

PF db_set_id INTEGER
PF db_seq_id CHARACTER
PF kog_id CHARACTER

cog_mapping

PF db_set_id INTEGER
PF db_seq_id CHARACTER
PF cog_id CHARACTER

indexes

PK index_id INTEGER
FK set_id INTEGER

description TEXT
dbname TEXT
dbpath TEXT
q TEXT
smap TEXT
dna BOOLEAN
protein BOOLEAN
indexname TEXT
indexpath TEXT
pl INTEGER
tis BOOLEAN
ois BOOLEAN
suf BOOLEAN
bw t BOOLEAN
bck BOOLEAN
lcp BOOLEAN
skp BOOLEAN
sti1 BOOLEAN
rev BOOLEAN
seqnum INTEGER
totallength INTEGER
machine TEXT
started TIMESTAMP
finished TIMESTAMP
memtime TEXT

clustersets

PK clusterset_id INTEGER
FK set_id INTEGER
FK index_id INTEGER

name CHARACTER
length INTEGER
complete BOOLEAN
q TEXT
h INTEGER
e INTEGER
hxdrop INTEGER
exdrop INTEGER
leastscore INTEGER
evalue DOUBLE PRECISION
identity INTEGER
seedlength INTEGER
show desc INTEGER
d BOOLEAN
p BOOLEAN
s BOOLEAN
f BOOLEAN
dbcluster TEXT
matchfile TEXT
outdir TEXT
size INTEGER
elements INTEGER
singlets INTEGER
machine TEXT
started TIMESTAMP
finished TIMESTAMP

cap3_consensus

PF clusterset_id INTEGER
PF cluster_id INTEGER
PK contig_id INTEGER

sequence TEXT
PF contig_no INTEGER

cap3_clip

PF clusterset_id INTEGER
PF cluster_id INTEGER

description TEXT
left_clip INTEGER
right_clip INTEGER
length INTEGER
right_size INTEGER

Figure 4.4.: EST clustering database schema (part 2 of 3).
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Gene Ontology

COG Classification

KOG Classification

.

Clustering

Sequence Analysis Datasets

BLAST Analysis

FASTA Analysis

Full Length Clone Prediction

EST Sequence Sets

Assembly

est_seqinfo

PF set_id INTEGER
PF seq_id CHARACTER

type CHARACTER VARYING
division CHARACTER VARYING
length INTEGER
hq_start INTEGER
hq_stop INTEGER
description TEXT

sequences

PF set_id INTEGER
PK seq_id CHARACTER

passed_mask BOOLEAN
reason_failed CHARACTER VARYING
clip_left INTEGER
clip_right INTEGER
sequence TEXT

seq_sets_catalog

PK set_id INTEGER
name CHARACTER VARYING
description TEXT
num_of_seqs INTEGER
tax_id INTEGER
tax_name CHARACTER VARYING
source_flag BOOLEAN
cdna_info_flag BOOLEAN
protein_info_flag BOOLEAN
db_xref_flag BOOLEAN
creation_time TIMESTAMP

est_source

PF set_id INTEGER
PF seq_id CHARACTER

tissue_type CHARACTER VARYING
cell_type CHARACTER VARYING
dev_stage CHARACTER VARYING
clone_lib CHARACTER VARYING
clone CHARACTER VARYING
clone_end SMALLINT
vector CHARACTER VARYING
note TEXT
submission_date DATE

est_xref

PF set_id INTEGER
PF seq_id CHARACTER

gb_pid INTEGER
gb_pacc CHARACTER VARYING
sprot_id CHARACTER VARYING
sprot_accession CHARACTER VARYING
unigene_id CHARACTER VARYING
gene_name CHARACTER VARYING
go_assignment CHARACTER VARYING
refseq_id CHARACTER VARYING

clusters

PF clusterset_id INTEGER
PK cluster_id INTEGER

size INTEGER

repeats

PF set_id INTEGER
PF seq_id CHARACTER

sw score INTEGER
precdiv DOUBLE PRECISION
percdel DOUBLE PRECISION
percins DOUBLE PRECISION
qbegin INTEGER
qend INTEGER
qleft INTEGER
strand CHARACTER VARYING
repname CHARACTER VARYING
repclass CHARACTER VARYING
repbegin INTEGER
repend INTEGER
repleft INTEGER
flag CHARACTER VARYING

cap3

PF clusterset_id CHARACTER
PF cluster_id INTEGER

cap3_output INTEGER

blasthits

PF blast_id INTEGER
PK set_id INTEGER
PK seq_id CHARACTER
FK db_set_id INTEGER
FK db_seq_id CHARACTER

query_desc TEXT
query_len INTEGER
hit_desc TEXT
hsp_bit_score DOUBLE PRECISION
hsp_evalue DOUBLE PRECISION
hsp_score DOUBLE PRECISION
hsp_hit_seqnum INTEGER
hit_len INTEGER
hsp_identities INTEGER
hsp_positives INTEGER
hsp_gaps INTEGER
hsp_align_len INTEGER
hsp_rank INTEGER
hsp_query_from INTEGER
hsp_query_to INTEGER
hsp_hit_from INTEGER
hsp_hit_to INTEGER
hsp_query_frame INTEGER
hsp_hit_frame INTEGER

blast_analyses

PK blast_id INTEGER
FK set_id INTEGER
FK db_set_id INTEGER

description TEXT
number_of_entries INTEGER
blast_parameters TEXT
blast_prg TEXT
evalue_cutoff DOUBLE PRECISION
created TIMESTAMP
number_of_unique_entries INTEGER

fasta_analyses

PK fasta_id INTEGER
FK set_id INTEGER
FK db_set_id INTEGER

description TEXT
number_of_entries INTEGER
fasta_parameters TEXT
fasta_prg TEXT
evalue_cutoff DOUBLE PRECISION
created TIMESTAMP
number_of_unique_entries INTEGER

fastahits

PF fasta_id INTEGER
PK set_id INTEGER
PK seq_id CHARACTER
FK db_set_id INTEGER
FK db_seq_id CHARACTER

query_desc TEXT
query_len INTEGER
hit_desc TEXT
hit_bit_score DOUBLE PRECISION
hit_evalue DOUBLE PRECISION
hit_zscore DOUBLE PRECISION
hit_sw score INTEGER
hit_positives INTEGER
hit_identities INTEGER
hit_gaps INTEGER
hit_overlap DOUBLE PRECISION
hit_len INTEGER
hit_rank INTEGER
hit_query_from INTEGER
hit_query_to INTEGER
hit_hit_from INTEGER
hit_hit_to INTEGER
query_dsp_start INTEGER
hit_dsp_start INTEGER
hit_orientation CHARACTER
query_align TEXT
db_align TEXT
midline_align TEXT

taxonomy

PF db_set_id INTEGER
PF db_seq_id CHARACTER

gi INTEGER
accession CHARACTER VARYING
tax_id INTEGER
tax_name TEXT

cap3_singletons

PF clusterset_id INTEGER
PF cluster_id INTEGER
PK singlet_no INTEGER

set_id INTEGER
seq_id CHARACTER VARYING

cap3_contigs

PF clusterset_id INTEGER
PF cluster_id INTEGER
PK contig_no INTEGER

set_id INTEGER
seq_id CHARACTER

cap3_ace

PF clusterset_id INTEGER
PF cluster_id INTEGER
PF contig_no INTEGER

contig_seq_id CHARACTER
FK set_id INTEGER
FK seq_id CHARACTER

direction CHARACTER
start INTEGER

full_length_clones

PF fasta_id INTEGER
PK set_id INTEGER
PK seq_id CHARACTER
FK db_set_id INTEGER
FK db_seq_id CHARACTER

hit_desc TEXT
query_desc TEXT
read_seq_id CHARACTER
gb_gacc CHARACTER VARYING
direction CHARACTER
start INTEGER
missing_prot_5p_nt INTEGER
avail_5p_nt INTEGER
suitable BOOLEAN
clone CHARACTER VARYING

FK clusterset_id INTEGER
FK cluster_id INTEGER
FK contig_no INTEGER

functional_classes

PK fun_category CHARACTER VARYING
fun_ident CHARACTER
class CHARACTER VARYING

cog_info

PK cog_id CHARACTER
FK fun_category CHARACTER

cog_desc CHARACTER VARYING
FK org_short_name CHARACTER

seq_desc CHARACTER VARYING

cog_org

PK org_short_name CHARACTER
ncbi_taxid INTEGER
lineage CHARACTER VARYING
org_name CHARACTER VARYING

kog_info

PK kog_id CHARACTER
FK fun_category CHARACTER

fun_category2 CHARACTER
kog_desc CHARACTER VARYING

FK org_short_name CHARACTER
seq_desc CHARACTER VARYING

kog_org

PK org_short_name CHARACTER
ncbi_taxid INTEGER
lineage CHARACTER VARYING
org_name CHARACTER VARYING

go_term

PK goid INTEGER
name CHARACTER VARYING
term_type CHARACTER VARYING
acc CHARACTER VARYING
is_obsolete INTEGER
is_root INTEGER

goa_uniprot

db CHARACTER VARYING
db_oid CHARACTER VARYING
db_osym CHARACTER VARYING
qualif ier CHARACTER VARYING

FK goid CHARACTER
db_reference CHARACTER VARYING
evidence CHARACTER VARYING
w ith CHARACTER VARYING
aspect CHARACTER
db_oname TEXT

FK synonym CHARACTER VARYING
db_otype CHARACTER
taxon_id CHARACTER VARYING
date DATE
assigned_by CHARACTER VARYING

ipi_mapping

PF db_set_id INTEGER
PF db_seq_id CHARACTER
PK synonym CHARACTER

sequences_clusters

PF set_id INTEGER
PF seq_id CHARACTER
PF clusterset_id INTEGER
PF cluster_id INTEGER

db_sets_catalog

PK db_set_id INTEGER
name CHARACTER VARYING
description TEXT
num_of_seqs INTEGER

db_sequences

PF db_set_id INTEGER
PK db_seq_id CHARACTER

sequence TEXT
description TEXT

kog_mapping

PF db_set_id INTEGER
PF db_seq_id CHARACTER
PF kog_id CHARACTER

cog_mapping

PF db_set_id INTEGER
PF db_seq_id CHARACTER
PF cog_id CHARACTER

indexes

PK index_id INTEGER
FK set_id INTEGER

description TEXT
dbname TEXT
dbpath TEXT
q TEXT
smap TEXT
dna BOOLEAN
protein BOOLEAN
indexname TEXT
indexpath TEXT
pl INTEGER
tis BOOLEAN
ois BOOLEAN
suf BOOLEAN
bw t BOOLEAN
bck BOOLEAN
lcp BOOLEAN
skp BOOLEAN
sti1 BOOLEAN
rev BOOLEAN
seqnum INTEGER
totallength INTEGER
machine TEXT
started TIMESTAMP
finished TIMESTAMP
memtime TEXT

clustersets

PK clusterset_id INTEGER
FK set_id INTEGER
FK index_id INTEGER

name CHARACTER
length INTEGER
complete BOOLEAN
q TEXT
h INTEGER
e INTEGER
hxdrop INTEGER
exdrop INTEGER
leastscore INTEGER
evalue DOUBLE PRECISION
identity INTEGER
seedlength INTEGER
show desc INTEGER
d BOOLEAN
p BOOLEAN
s BOOLEAN
f BOOLEAN
dbcluster TEXT
matchfile TEXT
outdir TEXT
size INTEGER
elements INTEGER
singlets INTEGER
machine TEXT
started TIMESTAMP
finished TIMESTAMP

cap3_consensus

PF clusterset_id INTEGER
PF cluster_id INTEGER
PK contig_id INTEGER

sequence TEXT
PF contig_no INTEGER

cap3_clip

PF clusterset_id INTEGER
PF cluster_id INTEGER

description TEXT
left_clip INTEGER
right_clip INTEGER
length INTEGER
right_size INTEGER

Figure 4.5.: EST clustering database schema (part 3 of 3).
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4.2. Database Schema

Assembly

Following the clustering, clusters are assembled using CAP3 (pink tables in Figure 4.3).

The complete CAP3 output is parsed and stored in different tables. While cap3 holds

the textual output, cap3 contigs stores the relation between the input sequences (set id

/ seq id) and the resulting contigs and their consensus sequences (cap3 consensus) for

each cluster. The clipping information (cap3 clip) allows for selecting full length clones

in the subsequence analysis (see below).

Sequence Analysis Data Sets

The cluster consensus sequences and singletons are merged to a new sequence set and

subject to extensive sequence analyses (see below). Comparable to the EST data sets,

target datasets are imported to the database (db sequences), which are cataloged in the

db sets catalog table. taxonomy information is kept for the data sets, if available, to

allow for organism specific queries about the results (see green tables in Figure 4.4, mid-

dle).

BLAST and FASTA Analysis

The cluster consensus sequences and singletons are compared to the target datasets using

BLAST and FASTA jobs, whose parameter settings are stored in the blast analyses (green

tables in Figure 4.4, top) and fasta analyses tables (Figure 4.4, bottom). Resulting hits

are then kept in the blasthits and fastahits tables, which allow efficient queries about

the BLAST and FASTA results.

Full Length Clone Prediction

The full length clone prediction allows the identification of clones which very likely con-

tain the full open reading frame of the protein. The prediction is based on the cap3 ace

and cap3 contigs tables, which store information about the exact location of the clones

in the assembled contig sequence. Combined with the FASTA analysis, full length clones

can be identified. Results are stored in the full length clones table.
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COG and KOG Classification

COG and KOG classifications are based on BLASTX hits to proteins from the COG or KOG

databases, respectively (blue tables in Figure 4.5). The cog mapping and kog mapping

tables allow the mapping from the protein sequences to the functional categories stored

in cog info and kog info.

Gene Ontology

Gene Ontology terms are based on FASTY hits to IPI sequence sets (pink tables in Figure

4.5). ipi mapping allows to map hits to the imported IPI sequences to Gene Ontology

terms by the GO synonym. The GO terms and associated IPI sequences are imported from

the GOA database.

4.3. Implementation

4.3.1. Clustering Pipeline

The open-source object-relational DBMS PostgreSQL2 is used as the central DBMS in the

clustering pipeline. PostgreSQL was chosen because it supports a large part of the SQL

standard and offers many modern features like complex queries, foreign keys, triggers,

views and transactional integrity.

The pipeline is implemented in Perl, as its support for regular expressions makes the

handling of sequences and parsing of textual output fairly simple. At various places we

make use of BioPerl [141]. BioPerl is a collection of Perl modules that supports the devel-

opment of Perl scripts for bioinformatics applications. It provides reusable Perl modules

that facilitate writing Perl scripts for sequence manipulation, accessing of databases us-

ing a range of data formats and execution and parsing of the results of various molecular

biology programs.

Perl’s DBI module is used for access to the database. DBI is the standard database inter-

face module for Perl. It defines a set of methods, variables and conventions that provide

a consistent and transparent database interface, independent of the actual database being

used. Therefore, the scripts of the clustering pipeline will work on different database types

(e.g. MySQL, MSSQL, Oracle, Informix, Sybase, etc.) by using the API defined by DBI.

2http://www.postgresql.org
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The Perl scripts handle the data import and processing. External programs are called

from within the scripts and results parsed and stored in the database. The scripts allow to

generate a batch of clustering jobs with different clustering parameters. These clustering

jobs, as well as the assembly process, can be distributed on a computing grid.

For job distribution, the Sun Grid Engine (SGE) [145] is used as resource management

software. The Grid Engine project is an open source community effort to facilitate the

adoption of distributed computing solutions. It provides a single point of access to the

computing grid by accepting jobs submitted by users and scheduling them for execution

on appropriate systems in the grid based upon resource management policies.

4.3.2. User Interface

While the clustering pipeline is driven by command-line Perl scripts, all analysis results

can be accessed by a user-friendly web interface. The CGI-based scripts are hosted on

the Bielefeld University Bioinformatics Server (BiBiServ). The server is connected to the

underlying DBMS, which hosts the results of the clustering and all analyses. The user can

query the database in various ways and download data for further processing. In the next

sections we will give a overview of the capability of the system.

Query interface

Figure 4.6 shows the query interface of the XenDB database, which is an example of the

described pipeline applied to X. laevis ESTs. The query interface allows basic queries for

accession and GI numbers of the imported sequences, cluster IDs of the generated clusters.

UniGene or TIGR clusters can be searched if the information was available in the imported

files. This allows a comparison of clustering results to other EST databases. GO terms can

be searched for as well as description lines. These queries are available in single of batch

mode through file uploads.

Figure 4.7 shows the result of a search for cluster number 2341. As can be seen on

the result page, the cluster contains 9 contigs as well a 9 singletons. The high number of

contigs is a result of the CAP3 assembly of the cluster sequences. A reason for such a high

number of contigs can be misassembly, but much more often CAP3 splits clusters apart

that contain different transcript isoforms of the same gene.

For each contig, the best FASTY hit with the corresponding description and E-values is

shown in the overview of the results. For singletons, also links to the original GenBank
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4. EST Clustering Pipeline

Figure 4.6.: Query interface for the clustering and analysis results. Single queries as well
as batch uploads can be used to search the database. XenDB is the name of a particular
database viewed here.
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entries are provided, as well as the UniGene and TIGR clusters, if available.

Contig View

The contig view (Figure 4.8) shows detailed information about a contig of a certain cluster.

The original CAP3 output can be accessed, the contig sequence downloaded. Best FASTY

hits for the non-redundant database and for each of 9 model organisms are shown. GO

terms and COG/KOG classifications for the contig sequence are provided. A hyperlink

brings up a graphical overview of the hits. If a full length clone is available (see Section

4.1.6), the clone is highlighted in green in the Clone column of the sequence information.

Alignment Visualization and Full length clone hit

A more detailed visualization of the FASTY alignment can be generated by following the

hyperlink from the contig view. The visualization shows the start and end of the protein

match within the contig sequence. In the example (Figure 4.9), the contig has a full

length hit (class 1) against a protein sequence. The contig is also long enough, so that the

corresponding clone on the 5’ end has good chances to include the full length insert (see

Section 4.1.6).

Gene Ontology Results

Figures 4.10 (top) shows the results of the query for GO term eye. If the query is too

general, as is the case in the example, a list of all matching GO terms is shown with the

numbers of contigs matching that term. From the list, a more specific term can be chosen

and all contigs matching the term are retrieved from the database.

Species Mapping

The web interface allows also for searching for accession or GI numbers in the FASTY

hits. The comparative query allows the identification of the set of contig sequences most

related to a set from another organism. Thus, the database is designed to address many

researchers facing a critical issue: the comparison of genomic studies in one organism

and their application to studies in another model organism. This task is faced by many

laboratories attempting to extract the information gained in human, mouse, fly and worm

microarray and library sequencing studies which often consist of large tables of genes.
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4. EST Clustering Pipeline

Figure 4.7.: Search result for cluster number 2341. The overview shows all contigs and
singletons of the cluster. Links to GenBank entries, UniGene and TIGR clusters are
provided. Information about best FASTY hits are shown.
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Figure 4.8.: Contig view: Summary of clustering information including hyperlinks to CAP3
output and FASTA sequences. FASTY similarities to NR protein database and model or-
ganisms. Shown are also GO terms and COG/KOG classifications. Detailed information
about the sequences in the cluster are available, including potential full length clones.
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Figure 4.9.: Graphical visualization of a FASTY alignment. The example shows a full length
protein hit (class 1), where the contig sequence contains a clone which very likely has
a full length insert.

While other databases such as UniGene or TIGR Gene Indices also provide collections of

clustered ESTs, the unique batch functionality of mapping results from other organisms to

EST sequences of the organism in study and retrieving their potential full length clones

was not available before. Moreover, our implementation is specifically designed and fo-

cused on relating the analyzed sequence data to the major model organisms.

This way the user can perform a comparative analysis and mapping of experimental

results or other external sources from popular model organisms to the organism in study.

For example, in many instances, the outcome of e. g. a microarray type of experiment

is a variety of tables listing regulated genes and the associated expression changes. In

cases where few published array studies are available, the results of existing extensive

databases of expression studies for a variety of model organisms can possibly be mapped

to the organism of interest, if the corresponding genes could be identified.

The NCBI maintains a common database, the Gene Expression Omnibus [13], which

contains data from over 98,000 samples including over 2,800 human, 1,800 mouse and

200 Drosophila data sets. To identify likely homologues of these genes in the organism

of interest, GenBank accession numbers can be obtained from the NCBI Gene Expression
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Figure 4.10.: Result for a search for GO term eye. A list of matching GO terms is shown
if the query was too general (top). From the list, a more specific term can be chosen
(bottom).
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Figure 4.11.: Species Mapping: Identification of potential Xenopus homologues to
Drosophila genes. The page shows Xenopus contigs (column: XenDB contig) producing
the top ranked hit to the potential Drosophila homologue (column Input). Ranks are
shown for the organism in question (Organism Rank) and the for all hits found by the
FASTY analysis (Overall Rank). If the contig is identified as full insert containing clone
it will be marked as such in the output (FL clone).
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SELECT DISTINCT
tt4.gi,
COALESCE(t4.cluster_id,t5.cluster_id) AS cluster_id,
t4.contig_no,
t6.gb_gacc,
COALESCE(t7.suitable,t8.suitable) AS fl_clone,
tt4.hit_desc,
tt4.hit_evalue,
tt4.count AS rank_org,
tt4.hit_rank AS rank_all

FROM
( SELECT

tt1.query_sha1_id,
tt1.hit_sha1_id,
tt1.gi,
tt1.hit_desc,
tt1.hit_evalue,
tt1.hit_rank,
COUNT(tt2.query_sha1_id)

FROM
( SELECT

t1.query_sha1_id,
t2.hit_sha1_id,
gi,
hit_desc,
hit_evalue,
hit_rank,
taxid

FROM
fasta_obj_2032_q339_db328 t1,
( SELECT

t1.gi,
t1.hit_sha1_id,
MAX(hit_bit_score),
taxid

FROM
nr328_gis t1,
fasta_obj_2032_q339_db328 t2,
nr328_gi_tax t1a

WHERE
t1.gi IN (’607070’) AND
t1.hit_sha1_id = t2.hit_sha1_id AND
t1.gi = t1a.gi

GROUP BY
t1.hit_sha1_id,
t1.gi,
t1a.taxid

) t2
WHERE

t1.hit_sha1_id=t2.hit_sha1_id AND
t1.hit_bit_score=t2.max

) tt1,
fasta_obj_2032_q339_db328 tt2,
nr328_tax tt3

WHERE
tt2.query_sha1_id=tt1.query_sha1_id AND
tt2.hit_sha1_id=tt3.hit_sha1_id AND
tt3.taxid=tt1.taxid AND
tt2.hit_rank<=tt1.hit_rank

GROUP BY
tt1.query_sha1_id,
tt1.hit_sha1_id,
tt1.gi,
tt1.hit_desc,
tt1.hit_evalue,
tt1.hit_rank,
tt1.taxid

) tt4
LEFT OUTER JOIN

cap3_ace_1 t4 ON tt4.query_sha1_id=t4.contig_seq_id
LEFT OUTER JOIN

cap3_singletons_1 t5 ON t5.seq_id=tt4.query_sha1_id
LEFT OUTER JOIN

db_xref_2 t6 ON t6.seq_id=tt4.query_sha1_id
LEFT OUTER JOIN

cl400_5p_clones t7 ON t7.query_sha1_id=tt4.query_sha1_id AND
t7.suitable=true

LEFT OUTER JOIN
cl400_5p_clones_reverse t8 ON t8.query_sha1_id=tt4.query_sha1_id AND
t8.suitable=true

ORDER BYtt4.hit_evalue ASC

Figure 4.12.: SQL code for mapping accessions of FASTY hits to cluster contigs.
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Omnibus and used to query the database to identify potential homologues of the regu-

lated genes and predicted full length clones. As these sequences are available from com-

mercial sources, they can be readily obtained and tested using the various experimental

approaches.

Figure 4.11 shows as example the result table of a mapping from Drosophila genes to

Xenopus contigs (see Section 5.5.4 for details). It includes links to the matching cluster

and contig, the E-value and rank in the FASTY result list and whether a full length clone

has been identified. The contig web link leads to additional information including the

consensus analysis and the top FASTY hits.

The execution time of the query is extremely fast, as pre-computed FASTY hits are an-

alyzed and no sequence based matching has to be performed. We take full advantage of

the PostgreSQL DBMS and its capability of sub-queries and outer joins for performing the

query, which combines a large number of tables of the database to obtain the necessary

information. Figure 4.12 shows exemplarily such a mapping from a Drosophila gene to a

Xenopus contig. Given the right indexes on the tables, this query is executed in about 52

ms by the DBMS, outperforming any sequence similarity search by far.

4.4. Summary

We have designed and implemented a clustering pipeline with a relational database man-

agement system as a central part of the system. The data flow is controlled by status

information which is kept in the database. Several steps of the processing pipeline can be

distributed on a compute cluster. Vmatch is used as the EST clustering tool and CAP3 to

generate contig sequences for each cluster. Contig sequences undergo a comprehensive

sequence analysis, which is facilitated by the Genlight system. Functional classifications

and Gene Ontologies are derived for each contig and stored in the database. Additionally,

full length ORF containing contig sequences and full insert containing clones are identi-

fied. The system allows to query the database via a web interface and presents the results

in a user-friendly way, including the assembly results, contig sequences, best hits to major

model organisms, COG and KOG classifications, and GO terms. The system provides a

unique functionality of comparative queries to rapidly identify potential homologues to

other model organisms in the clustered EST data set.
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CHAPTER 5

XenDB: A Xenopus laevis Gene Index

5.1. Motivation

The African clawed frog Xenopus laevis is a major model organism which strongly con-

tributed in two areas of vertebrate biology: early embryonic development and cell biology.

X. laevis has led the way in establishing the mechanisms of early fate decisions, patterning

of the basic body plan, and organogenesis. Contributions in cell biology and biochemistry

include work on chromosome replication, chromatin and nuclear assembly, cell cycle com-

ponents, and signaling pathways.

Xenopus is one of the primary resources for understanding early vertebrate develop-

ment due to some unique advantages. A single female can produce hundreds of embryos

each day, whose development can easily be studied from the time of fertilization because

of external development and the large size, which again allows microsurgery and injec-

tions. All cells have an autonomous supply of nutrients which makes the embryos ideal

for experimental approaches.

Extensive research has been carried out on signaling pathways in Xenopus. Especially

gain or loss of function experiments have helped in resolution of these pathways. New

components of pathways have been identified using expression cloning approaches. Gain
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of function screens try to identify the functions of genes. In Xenopus, they are often

based on injecting RNA made from cDNA libraries, obtained from tissues or developmental

stages of particular interest. Optimally, these libraries should contain full-length cDNA

clones to guarantee the initiation at the 5’ end, which is not necessarily the case in poly-dT

primed libraries. Therefore, there is a need for full-length cDNA libraries in expression-

ready vectors.

In summer 2006, the Trans-NIH Xenopus Initiative agreed on recommendations1 for

future resources and goals which are necessary to improve Xenopus as a non-mammalian

model system. One of the goals of highest priority is the generation of ESTs and full length

cDNA collections:

“The ready availability of the sequenced clones through the IMAGE consor-

tium [. . . ] has provided new molecular markers, and full length clones for

functional analyses. Full length cDNAs are particularly important to the Com-

munity because they facilitate the generation of Unigene sets which can be

powerful for functional assays, one of the particular strengths of Xenopus, and

as a collection, made for highly efficient expression cloning assays. [. . . ] The

priority for future EST and cDNA resources is to identify, in an expression-

ready vector, a full length clone set for as large a fraction of the genes in the

X. tropicalis genome as is feasible.”

X. laevis and X. tropicalis EST sequencing projects have produced 1.5 million ESTs, with

X. tropicalis currently being seventh in the number of entries per organism in November

2006 (see Table 2.1). Many tissues have been sampled including embryonic stages and

adult tissues. We have exploited the X. laevis sequence data to address the need for

full length clones by EST clustering, extensive sequence analyses and full length clone

prediction as described in the following sections.

5.2. Generation of a Xenopus laevis Gene Index

5.2.1. Sequence retrieval and Cleanup

350,468 Sequences were downloaded from GenBank release 138 and stored in the OR-

DBMS PostgreSQL. The following divisions were included: Vertebrate Sequences (VRT,

1http://www.nih.gov/science/models/xenopus/

110



5.2. Generation of a Xenopus laevis Gene Index

Tissue Type Sequences

N/A 120653
whole embryo 105295
Egg, oocyte libraries 59533
Gastrula libraries 22490
Neurula Libraries 8164
Embryos, stages 19-26 6658
egg, subtr. by stage 13-17 animal cap 3806
embryo, animal cap 2907
head, stage 30 2761
pooled embryos (stage 10-14) 2672

Developmental Stage Sequences

N/A 127219
Adult 43436
Gastrula 42394
Neurula 30094
Embryo, Stage 19-25 40346
Embryo, Stage 31-32 20745
Metamorphosis Stage 62 13894
Metamorphosis 50-53 10648
Tadpole 1950
Embryo 60

Table 5.1.: Ten most abundant tissue types (left) and developmental stages (right) in the
X. laevis EST data set.

5,506 sequences), EST (344,747 sequences) and High Throughput cDNA (HTC, 215 se-

quences). 228,496 sequences were annotated as 5’ ESTs and 116,122 as 3’ ESTs. 245,415

different cDNA clones were represented in the data set, out of which 92,463 had both

5’ and 3’ sequences. Entries annotated as being genomic sequences were excluded from

the analysis. To enhance the usability and search capabilities of the database, complete

GenBank entries were incorporated. Annotations including library source, tissue type,

cell type and developmental stage were extracted directly from GenBank entries. Table

5.1 shows a clear bias to early developmental stages from which the libraries were col-

lected. Unfortunately, the sequences are not very well annotated in GenBank. 34% of

the sequences do not have a tissue type assigned and 36% have no developmental stage

information.

5.2.2. Repeat Masking

197,888 ESTs (57.4% of the EST sequences) had information about high quality start or

end of sequencing reads. This information was used to trim sequences according to high

quality regions to insure best sequence quality. Vector sequence was downloaded from

GenBank and VectorDB and the sequence masked using Vmatch . ESTs were trimmed

to eliminate vector sequence located at either the 5’ or 3’ end (6678 ESTs, 1.9% of to-

tal sequence set). In some cases, additional non vector sequence preceded or followed

known vector sequence. If such non-vector sequence was less than 20 bases long, it was

trimmed from the EST together with the vector sequence. ESTs that had vector sequences

left after trimming were discarded completely. Repetitive elements were obtained from
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Repbase and GenBank and masked using RepeatMasker. In addition, if hits against ribo-

somal RNA and mitochondrial sequences were found in the downloaded sequence set, the

corresponding sequences were removed. The availability of complete mitochondrial ge-

nomic and ribosomal sequences makes the inclusion of these sequences unnecessary while

masking was performed to minimize possible clustering errors arising from these common

sequences. Sequences that had less than 100 consecutive bases left after cleanup were

discarded completely (21,039 sequences, 6.0%). The resulting sequence set consisted of

317,242 sequences (90.5%) with an average length of 536 bases (see Table 5.2).

5.2.3. Clustering

The cleaned X. laevis EST sequence set was grouped into gene specific clusters using

Vmatch as described in Section 3.4. Due to the efficiency of Vmatch , we were able to

perform the clustering for a wide variety of parameters on the complete sequence set.

This allowed us to study the effect of the parameter choice on the clustering (similar to

data shown in Section 3.4.2).

For the current data set, we tried to select parameters which mimic the parameters that

were probably used for generating the UniGene clusters. Unfortunately, the algorithm

used for constructing the UniGene clusters is not sufficiently documented to allow com-

plete reproduction. We selected parameters designed to produce a stringent clustering

of the available sequences. For the described data set, sequences were clustered when a

pairwise match of at least 150 nucleotides and 98% identity was found (seedlength = 33,

exdrop = 3). The construction of the enhanced suffix array took 33 minutes on a SUN Ul-

traSparc III (900 MHz) CPU. Clustering took another 17 minutes. This resulted in 25,971

clusters containing 276,365 sequences (87.11% of the input set) and 40,877 singletons

(12.89%). The average cluster size was 10.6 (std. dev. 51.8) sequences. The distribu-

tion of cluster sizes is shown in Table 5.2. 22,834 clusters were composed of ESTs only,

61 clusters of mRNA sequences (VRT and HTC divisions) only and 3,076 clusters of both

mRNAs and ESTs. Among the singletons are 4,262 sequences which contain less than 150

nt (after sequence cleanup described above) and would therefore be incapable of being

joined in a cluster.
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Total number of ESTs and cDNAs 350,468
Number of distinct clones 245,415
Number of good sequences 317,242
Average trimmed EST length (bp) 536
Number of 3’ EST sequences 116,122
Number of 5’ EST sequences 228,496
Clones with 5’ and 3’ sequences 92,463
Number of clusters 25,971
Number of singletons 40,877
Number of CAP3 contigs 31,353
Number of CAP3 singletons 4,801
Average CAP3 contig length (bp) 1,045
Max. cluster size (no. of ESTs) 6,332
Average cluster size (no. of ESTs) 10.6

Cluster sizes #ESTs
4,097 - 8,192 1
2,049 - 4,096 1
1,025 - 2,048 2
513 - 1,024 15
257 - 512 35
129 - 256 116
65 - 128 414
33 - 64 973
17 - 32 1,755
9 - 16 2,974
5 - 8 4,571
3 - 4 6,444
2 8,670

Table 5.2.: Summary of X. laevis EST cleanup and clustering.

5.2.4. Assembly

In the next step, a consensus sequence was generated for each cluster using CAP3 . The

aim of this approach was to both refine the number of clusters and to improve the overall

sequence quality. The 25,971 clusters produced 31,353 contig sequences (avg. length:

1,045bp, std. dev.: 729 bp) and 4,801 singlets (avg. length: 664 bp, std. dev.: 424

bp). The longest contig was 13,130 bp (DNA-dependent protein kinase catalytic subunit,

accession: [GenBank:AB016434]), while the smallest contig was 154 bases long. Here, it

became obvious that CAP3 is a genome assembly program not designed to assemble EST

clusters containing potential splice variants: CAP3 assembly subsequently split a fraction

of the clusters into separate contigs and singletons. On average, a cluster was split into

1.2 (std. dev 3.0) contigs and 1.8 (std. dev 11.3) singlets by CAP3 . As illustrated in

Table 5.2, the average length of the sequences increased from 536 bp (average for input

ESTs) to 1,045 bp (average for CAP3 contig sequences) which was lower than the average

length for previously characterized Xenopus full length sequences (sequences selected as

full length by NIH’s Xenopus Gene Collection (XGC) initiative had an average length of

2,115 bp). There are many genes whose transcript is significant longer than two times the

current state of the art sequencing run of ≈ 1000 bp. This means that 5’ and 3’ sequences

derived from a >2kb transcript are unable to be joined without sequence from incomplete

cDNA clones which provide a source of nested deletions. Sequences from both ends can
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be linked by annotation, and this has been done by a variety of clustering approaches

including NCBI UniGene which uses a double linkage rule. Non-overlapping 5’ and 3’ ESTs

are assigned to the same cluster if clone IDs are found that link at least two 5’ ends from

one cluster with at least two 3’ ends from another cluster and the two clusters are merged.

We have examined the effect of double linkage joining using the clone annotation. In this

analysis, 17,588 clusters were stable and the total number of clusters was reduced from

25,971 to 21,249. Most of the joined clusters (3,122) were created from two clusters

while three clusters were combined 456 times. While the number of clusters is decreased

by this joining, our overall analysis is not affected. Potential full length clones selected as

part of the P5P group (see Section 4.1.6) are also unaffected by annotation linkage.

5.3. Sequence Analysis of Xenopus laevis Gene Index

We have performed a variety of sequence comparisons at the protein level including trans-

lation analysis. The sequences of cluster contigs and all singletons were subject to exten-

sive BLASTX and FASTY homology searches vs. the non-redundant protein database (NR)

from NCBI and the proteomes of five major model organisms using the high throughput

analysis pipeline of the Genlight system [14]. Proteome sets for H. sapiens, M. musculus

and R. norvegicus were obtained from the International Protein Index (IPI). C. elegans

and D. melanogaster protein sequences were retrieved from the UniProt database. Ad-

ditionally, all available protein sequences for X. laevis and X. tropicalis were extracted

from GenBank. In addition to these databases, we have included BLASTX searches in the

COG and KOG database and have used the results to functionally classify the Xenopus

sequences. All sequences resulting from the clustering and assembly processes were com-

pared to these protein sets using BLASTX with an E-value cutoff of 1.0e−6. ESTs are often

of low sequence quality, and sequencing errors can still exist in the assembled contig se-

quences. Therefore, all analyses against the protein databases were also done using FASTY

(E-value cutoff: 1.0e−6) a version of FASTA that compares a DNA sequence to a protein

sequence database, translates the DNA sequence in three forward (or reverse) frames and

allows (in contrast to BLASTX) for frame shifts, maximizing the length of the resulting

alignments.
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5.3.1. Identification of Chimeric Sequences

A significant issue in EST clustering methods is the presence of chimeric sequence which

inappropriately joins unrelated genes into a single cluster. While the number of chimeric

sequences is estimated at less than 1% [1, 62], their presence has disproportionate ef-

fects on the clustering outcome. To identify potential chimeric sequences, we analyzed

the FASTY hits in the protein NR database and applied the following simple procedure:

Matches of at least 100 bp in length were mapped back to the contig sequences to identify

the regions that are covered by a match. If two matches overlap, the region will be ex-

tended accordingly. If after the mapping two clearly separated regions remain, the contig

is flagged as potential chimera. Figure 5.1 shows an example of a contig identified as

chimera.

Examination of the identified chimeric sequences reveals three major classes. In the

first, two distinct FASTY hits can be identified which do not overlap and are in opposite

orientation. In the second class, the second identified FASTY hit matches retroviral or

transposable element related sequences. This suggests the possibility that these may re-

flect real transcripts in which a mobile element has been inserted into the genome. A close

evaluation of such sequences may provide some insights into the evolutionary history of

various populations of Xenopus. The final class of potential chimeric sequences identified

contains short predicted or hypothetical proteins. This class may in fact not be chimeric

at all but may reflect errors in protein coding prediction methods.

The described procedure identified 113 potential chimeric contigs (0.3% of the 33,034

sequences with matches against the protein NR database), which are flagged in the database

as such. We do not eliminate these potential chimeras, as they do not significantly affect

the results of the sequence analyses done later on, which are mainly based on the best hit

only. In fact, the analysis underestimates the number of full length sequences, as some

chimeras cover two full length protein matches. A complete identification of chimeric

sequences is practically impossible without a comparison to the underlying genome se-

quence. And even then, polycistronic transcripts which may exist cannot be separated

from chimeras perfectly [85].

5.3.2. Gene Ontology prediction and Functional Classification

The Gene Ontology (GO) project is an ongoing international collaborative effort to gener-

ate consistent descriptions of gene products using a set of three controlled vocabularies or
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Figure 5.1.: Example of a contig identified as potential chimera. The matches to two
distinct proteins do not overlap.
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ontologies: biological processes, cellular components, and molecular functions. The GO

vocabulary allows consistent searching of databases using uniform queries. The availabil-

ity of such vocabularies can be critical to the interpretation of high through put approaches

such as microarrays. Based on FASTY homologies with both mouse and human sequence,

we have mapped GO annotations to the Xenopus sequences. Of the 30,683 contigs with

matches to mouse (29,971) or human IPI sequences (29,963), 19,721 contigs have been

assigned putative GO annotations. Among the 10,500 potential full length ORF contain-

ing IMAGE clones (see Section 5.4.2), 6,886 have been assigned GO annotations. The

non-redundant X. laevis data set was then classified based on their homology to known

proteins from the KOG database (BLASTX 1.0e−5 E-value cutoff, best hit selection). 17,624

sequences (67.3 %) had a hit against the KOG database and could be assigned a functional

category.

5.4. Clone Selection

Acknowledging the special interest in full length clones, we focused during the analysis

of the contig sequences to full ORF containing contigs and full length clones [136]. The

identification of complete ORFs allows further analyses on not only the corresponding

protein sequences, but also to UTR sequences flanking the coding regions. The value of

having direct access to full length clones has been described in Section 5.1.

5.4.1. Identification of full length contigs

Table 5.3 (top) shows the number of identified full length ORF containing contigs using

BLASTX (see Section 4.1.6 and Figure 4.2). 3,942 contigs were Class 1 hits in the non-

redundant protein database. As the stringency of the full length definition was relaxed, the

number of contigs characterized as full length increases to 5,050 (Class 2), 7,792 (Class

3) and 12,389 (Class 4) contigs, respectively. As EST sequences have many sequencing

errors, and even the assembly of clusters cannot correct all of these, FASTY comparisons

were done for the same data set (Table 5.3, bottom). This way, the length of the resulting

alignments could be maximized. A comparison of BLASTX and FASTY results shows the

effect of frame shift corrections obtained by FASTY. The number of contigs having Class

1 hits could be increased to 5,139 while the less stringent categories increased similarly

by an average of 20%. The effect of frameshift correction can clearly be seen in Figure
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5.2. Table 5.4 shows the average lengths of contigs for each of the four categories. Here,

the average length of the contig is 2,210 bp for Class 1 contigs having FASTY matches

against X. laevis, corresponding very well to already known Xenopus proteins. Overall,

the average length decreases with lower quality categories as expected, especially for Class

4, where the alignment can miss 20 amino acids on both ends of the matching protein. The

only exceptions are D. melanogaster and C. elegans, where the average length increases

for Class 4 sequences.

Figure 5.2.: Comparison of a BLASTX alignment with corresponding full length FASTY
alignment, as generated by the Genlight system. Blue boxes in (a) indicate open reading
frames, green boxes start and red boxes stop codons, respectively. The assembled contig
sequence has a frameshift at position 1150 from frame 1 to 3, generating two distinct
HSPs in the BLASTX alignment (b). FASTY clearly corrects this frameshift and generates
a full length alignment (c).

Comparing the numbers of full length sequences in Table 5.3, the matches in human,

mouse, rat and X. laevis are in general agreement (2,619 full length sequences for Class 1

on average). What is striking is the deviation of both the number of full length contigs as

well as the average length of contigs (Table 5.4) having matches against D. melanogaster
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BLASTX
Class Protein NR Human Mouse Rat Fruitfly C. elegans X. laevis X. tropicalis

1 3942 1760 1765 1455 219 140 2918 495
2 5050 2067 2076 1736 311 233 3104 541
3 7792 2647 2919 2592 392 283 3898 590
4 12389 5587 5841 3078 2071 1856 5024 1033

P5P 15870 13942 14179 13113 8425 8117 9227 4334

FASTY
Class Protein NR Human Mouse Rat Fruitfly C. elegans X. laevis X. tropicalis

1 5139 2347 2337 1930 268 190 3862 660
2 6243 2692 2671 2248 383 296 4119 721
3 9576 3528 3774 3374 473 357 4967 796
4 14094 6467 6701 6341 2249 1918 5701 1241

P5P 15651 13578 13954 13085 8108 7746 9055 4159

Table 5.3.: Number of X. laevis contigs with full length BLASTX (top) and FASTY (bottom)
hits in the non-redundant protein database (NCBI), five model organisms, and available
X. laevis and X. tropicalis proteins. Lower quality categories include sequences from
higher, more stringent categories.

and C. elegans: only 268 and 190 full length sequences with average lengths of 1,659 and

1,575 bp for Drosophila and C. elegans in Class 1, respectively. Only within the Class 4

category there are 2,249 and 1,918 contigs with average lengths of 1,611 bp and 1,563 bp,

respectively. A possible explanation for this difference is the divergence of the vertebrate

species from these invertebrate model systems.

5.4.2. Identification of full length clones

Best FASTY hits were extracted for contigs from all four full length categories as well as

the P5P categories as described above. For contigs matching these categories, the most

5’ EST contributing to the CAP3 contig sequence was selected. In addition, the selected

clone had to span the amino-terminal end of the FASTY protein match. Finally, to ensure

the ready availability of the clones and therefore the utility of the analysis, the selected

clone had to be available through the IMAGE consortium. (See Figure 4.2 for an illus-

tration of 5’ clone selection.) The P5P criteria selected 15,651 potential full length insert

containing clones out of which 10,500 are distinct IMAGE clones, which represents an

additional 1,557 sequences compared to Class 4. Two examples of such predicted protein

coding sequences are presented in Figure 5.3. We have mapped these clones to 7,782
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BLASTX
Class Protein NR Human Mouse Rat Fruitfly C. elegans X. laevis X. tropicalis

1 1984 1835 1805 1788 1620 1541 2171 1743
2 1831 1806 1776 1775 1541 1391 2120 1697
3 1630 1813 1775 1834 1560 1429 1981 1693
4 1393 1680 1675 496 1638 1640 1879 1660

FASTY
Class Protein NR Human Mouse Rat Fruitfly C. elegans X. laevis X. tropicalis

1 2007 1888 1859 1843 1659 1575 2210 1807
2 1837 1856 1821 1819 1563 1440 2152 1774
3 1553 1790 1772 1804 1569 1441 2019 1768
4 1329 1683 1673 1664 1611 1563 1910 1703

Table 5.4.: Average length of X. laevis contigs for different BLASTX (top) and FASTY (bot-
tom) full length contig categories.

distinct clusters. To assess the quality of the full length (FL) prediction method, we com-

pared our set to the IMAGE clone set selected by the Xenopus Gene Collection (XGC2) for

full length sequencing. At that time, the XGC had selected 10,482 IMAGE clones for se-

quencing. Our analysis selected 3,152 IMAGE clones that were identical to clones selected

by the XGC. Of the remaining 7,348 clones from our set, 4,866 selected IMAGE clones

were found in an identical cluster as 4,465 XGC selected clones (note that some of these

clones are in the same cluster). In addition, 1,154 XGC clones did not have sequence

available to be included in our analysis. The remaining 1,711 IMAGE clones selected for

sequencing by XGC are not found in our predicted set while 2,482 clones were unique to

our set. In an effort to examine why the 1,711 sequences selected for sequencing were

not identified as full length, we compared the startq and starts values as described above.

Using the P5P prediction criteria described above, we identify 107 XGC selected IMAGE

clones that we predict are not full length but have an alternative clone which we predict

is full length. Though final confirmation of the results requires additional sequencing, our

method appears to be successful at identifying full length sequences and distinguishing

non-full length sequences identified by an independent method. The FL clones are labeled

in the XenDB web interface, allowing a rapid identification of potential FL clones for a

gene of interest.

Due to the large number of sequences, we are unable to examine each sequence in-

dividually. Since the analysis depends on the overall degree of conservation among the

2http://xgc.nci.nih.gov/
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Figure 5.3.: Two examples of contigs derived from clones predicted to have a full length
insert (P5P). The start positions in the hit suggest that the unmatched amino-terminal
protein sequence is not well conserved between X. laevis and the matched organisms,
here rabbit (top) and human (bottom), but the open reading frames (blue boxes) indi-
cate that the clones the sequences were derived from do actually contain a full length
insert. (Screenshots of the results were generated by the Genlight system.)

sequences, such an approach will not be as successful on weakly conserved genes. In gen-

eral, it seems likely that decreasing e-values correspond to higher quality predictions. On

a global basis, the results need to be carefully considered, as an independent assessment

of the distribution of conservation among the ensemble of sequences is not available.

5.5. Utility

5.5.1. User Interface

The results of the analyses described above have been incorporated into an SQL database

amenable to complex queries. The database can be accessed through the user friendly
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web based interface of XenDB3 [135]. XenDB allows individual and batch queries using

Xenopus accession, GI, and XenDB, UniGene and TIGR cluster IDs. In addition, the user

can query the Xenopus sequence hits using any protein accession/GI number both singly

and in batch mode. This allows a rapid identification of Xenopus contigs and their cor-

responding clones with hits to given protein sequences. The output of various queries

displays the matching Xenopus cluster(s) and links to a web page as presented in Section

4.3.2. For each cluster, links to the best hit for a number of model organisms are provided

as well as links to the assembly result, consensus sequence generated by CAP3 , and visual

alignments of all FASTY results. GenBank accession numbers for each EST in the cluster

and whether the corresponding clone has been identified as full length are provided. Ad-

ditionally, for each contig the COG and KOG classification, as well as the GO terms are

available.

The analysis and database system provides a very powerful tool which will enable the

Xenopus community to take advantage of a number of technical and experimental ad-

vances. We have selected a couple of examples to illustrate possible types of queries. In

considering the results, it is important to bear in mind that these examples can be com-

bined to further refine the sequence set. In the first example, we sought to identify all

the genes of a known type or class. In the second example, we wished to identify the set

of Xenopus sequences which best matched a set of genes from another species identified

using the CGAP database administered by the National Cancer Institute (NCI) [92, 143].

Another example demonstrates the ability of the system to translate results identified by

microarray technologies, or other related high throughput technologies, to identify likely

Xenopus homologues.

5.5.2. Homeobox Gene Identification

Homeobox containing proteins are a very important group of transcriptional regulators

that play key roles in developmental processes. They can be divided into a ’complex’

and a ’dispersed’ super class representing the homeotic genes and the large number of

homeodomain containing proteins dispersed (and diverged) within the genome [49]. The

homeotic (Hox) genes play key roles in the anterior-posterior patterning of both vertebrate

and invertebrate embryos and in Xenopus are often used as markers of anterior-posterior

3http://bibiserv.techfak.uni-bielefeld.de/xendb
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development [37, 168, 70]. The vertebrate homeotic genes are organized into four clus-

ters arranged in the same order in which they are expressed in the anterior-posterior axis

[49]. Of the 39 vertebrate Hox genes, we have identified 28 homologues in X. laevis, while

19 are present in the protein database (Table 5.5). For those sequences not identified, we

sought to determine whether they had been identified in the genome of X. tropicalis. To

do so, we used TBLASTX, provided as a tool on the X. tropicalis website4 to search for

the missing sequences. Strong matches were identified for all of the remaining Hox genes

except HoxD12. Using the BLASTN tool on the genome site, we confirmed that the gene or-

der was conserved within each scaffold. Interestingly, we were unable to identify HoxD12

within the predicted region though both HoxD11 and HoxD13 were recognized.

5.5.3. Homologue Identification from the Cancer Genome Anatomy Project

A second example takes advantage of the CGAP database5 administered by the National

Cancer Institute (NCI). This database and resource incorporates a large number of in-

terconnected modules aimed at gene expression in cancer. Among the modules are a

Serial Analysis of Gene Expression (SAGE) database [22]. The SAGE approach counts

polyadenylated transcripts by sequencing a short 14 bp tag at the genes 3’ end and is

a quantitative method to examine gene expression [159]. Another module is the Digi-

tal Gene Expression Displayer (DGED) which distinguishes statistical differences in gene

expression between two pools of libraries [91]. Each method generates tables of genes

based on a wide variety of selection criteria. As would be expected, the source for the vast

majority of the available data comes from either human or mouse thus demanding a tool

to cross match the results in Xenopus.

For this particular example, we selected a tissue based query (DGED) derived from

SAGE data in which we sought a set of genes that might include potential markers for

glial or astrocyte fates. For this query, we selected all brain, cortex, cerebellum and spinal

cord libraries excluding any libraries derived from cell lines. This yielded 58 potential li-

braries. From this we selected any library labeled as a glioblastoma for pool A and libraries

labeled astrocytoma for pool B while excluding the remaining libraries (which included

medulloblastomas, ependymomas, etc.). We did not distinguish between cancer grades.

This limited the total number of libraries to six glioblastoma and nine astrocytoma libraries

4http://genome.jgi-psf.org/Xentr4/
5http://cgap.nci.nih.gov/
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5. XenDB: A Xenopus laevis Gene Index

IPI Xenopus FASTY BLASTX FL Protein
Accession Gene cluster/contig e-value e-value Clone Accession

IPI00027694 HOX-A1 cluster:4123 contig:1 4e−85 1.99e−99 5536792 AAH44984
IPI00012049 HOX-A2 cluster:7495 contig:1 4.1e−130 7.64e−145 3556495 AAG30508
IPI00012050 HOX-A3 cluster:10945 contig:1 6.5e−91 2.89e−111 4683538 AAH41731
IPI00020926 HOX-A4 fgenesh.C 1023000005
IPI00302291 HOX-A5 cluster:25739 contig:1 6.9e−44 1.27e−38

IPI00010742 HOX-A6 fgenesh.C 1023000003
IPI00010743 HOX-A7 cluster:3210 contig:1 5.8e−40 1.17e−64 XL071e19 AAA49753
IPI00010744 HOX-A9 vm singlet:264323 1.2e−33 3.48e−29

IPI00010731 HOX-A10 fgenesh.C 1487000003
IPI00010754 HOX-A11 cluster:6499 contig:1 7.2e−42 Was C11 XL088b06
IPI00305850 HOX-A13 vm singlet:174355 3.8e−57 1.22e−97

IPI00294724 HOX-B1 fgenesh.C 2225000001
IPI00027261 HOX-B2 fgenesh.C 2225000002
IPI00027259 HOX-B3 fgenesh.C 2225000003
IPI00014540 HOX-B4 cluster:22503 contig:1 1.2e−27

IPI00012514 HOX-B5 vm singlet:57425 8.5e−35 3.92e−59

IPI00015075 HOX-B6 cluster:2339 contig:1 6.2e−42 2.52e−72 XL098k02
IPI00172584 HOX-B7 cluster:1985 singlet:1 2.6e−65 8.16e−77 4201615 P04476
IPI00014536 HOX-B8 cluster:16406 contig:1 2.8e−28 9.9e−43

IPI00014539 HOX-B9 cluster:8543 contig:1 4e−30 1.05e−50 XL069k06 P31272
IPI00030703 HOX-B10 cluster:24736 contig:1 5.6e−48 6.95e−74

IPI00295561 HOX-C4 fgenesh.C 202000010
IPI00022893 HOX-C5 vm singlet:33065 1.5e−41 6.14e−32

IPI00015921 HOX-C6 cluster:9871 singlet:1 4.2e−93 3.16e−109 4202432 P02832
IPI00010756 HOX-C8 cluster:11257 contig:1 5.2e−95 9.74e−118 XL045l21 AAB71818
IPI00010757 HOX-C9 fgenesh.C 202000007
IPI00020947 HOX-C10 cluster:3243 contig:1 1.3e−51 1.63e−127 4970594 AAO25534
IPI00011610 HOX-C11 fgenesh.C 202000005
IPI00010758 HOX-C12 vm singlet:240042 2.4e−46 2.75e−22

IPI00010759 HOX-C13 cluster:21388 contig:1 2e−80 5.86e−89 XL064e01
IPI00001551 HOX-D1 cluster:9419 contig:1 2.5e−50 1.68e−65 3475513 AAA49745
IPI00215882 HOX-D3 cluster:4099 contig:1 2.6e−114 3.48e−121 4684054
IPI00012390 HOX-D4 cluster:21685 contig:1 7.1e−67 7.99e−83 5571854 AAQ95789
IPI00008481 HOX-D8 cluster:11793 contig:1 5.8e−62 2.08e−74 5543040 AAH60408
IPI00292734 HOX-D9 cluster:13847 contig:1 6.5e−38 5.28e−55 XL045k22 CAC44973
IPI00292735 HOX-D10 cluster:6503 contig:1 3.8e−135 3.97e−143 4032032 CAC44974
IPI00305856 HOX-D11 fgenesh.C 1333000003
IPI00018803 HOX-D12 missing
IPI00018806 HOX-D13 cluster:13386 contig:1 1.7e−93 2.17e−112 3399571 AAO25535

Table 5.5.: Homeobox genes in X. laevis: for each HOX gene the corresponding cluster
and contig is shown, as well as the most 5’ clone in the assembly and the protein ac-
cession number, if available. When X. laevis genes were not identified, an identifier
corresponding X. tropicalis sequence is provided.

124



5.5. Utility

containing 487,197 and 863,610 SAGE tags each, respectively. Submission of the query

resulted in the identification of 395 tags with a 2x expression factor and a 0.05 significance

factor (default CGAP query values). These 395 tags represented 308 different sequences

(180 were >2 fold higher in glioblastoma and 128 were >2 fold higher in astrocytoma)

which corresponded to 278 proteins in the public database (115 glioblastoma, 163 astro-

cytoma) and were matched using the batch GenBank accession module available online

in XenDB to 100 and 142 Xenopus sequences, respectively. Among the genes identified

are vimentin (15x, P = 0.01) and sox10 (7.6x, P = 0.03), genes previously established

as markers of glial and oligodendrocyte fate respectively as well as genes downstream of

the Notch signaling pathway, known to be important for glia formation. Thus the sys-

tem developed and presented here allows ’in silico’ based tools established for the study

and analysis of other organisms, particularly human and mouse, to be easily and rapidly

applied to the Xenopus model system.

5.5.4. Homologues of Drosophila Eye Development Genes

In the final example, we take advantage of the database to perform a comparative analysis

of microarray expression data. In many instances, the outcome of an array type experi-

ment is a variety of tables listing regulated genes and the associated expression changes.

Currently, there are few published Xenopus array studies available [6, 38, 116, 153, 82,

34, 10, 121, 137] while there exist extensive databases of expression for a variety of model

organisms. The NCBI maintains a common database, the Gene Expression Omnibus [43]

which contains data from over 15,000 samples including 337 Human, 92 mouse and 12

Drosophila experiments (average 25 samples/experiment).

We selected a recent paper which examined gene expression changes induced by ec-

topic expression of the eyeless gene (ey/Pax-6) in Drosophila imaginal disks [106]. The

development of the eye is evolutionarily conserved among both vertebrates and inverte-

brates [52, 50]. Many important insights into eye development have come from studies

in Drosophila which has defined a genetic cascade of evolutionarily conserved regulatory

factors [48]. One such factor is Pax-6/eyeless which is capable of inducing ectopic eyes on

both flies and vertebrates. In the study ([106]), 371 eye-induced genes are detected using

two different oligonucleotide based array platforms (Affymetrix and Hoffmann-LaRoche)

and 73 are discussed in detail within the text ([106], Tables 1 and 2).

To identify likely homologues of these genes in Xenopus, GenBank accession numbers
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FL Protein Fly All
# Cluster Ctg clone Accession Description E-value Rank Rank

1 21344 1 YES AAA19592 Lola protein short isoform 3.9e−10 42 508
2 21344 1 YES AAA19593 Lola protein long isoform 7.0e−10 67 553
3 22774 NO AAA21879 atonal protein 1.2e−17 3 21
4 5646 1 YES AAA28528 fasciclin II 4.3e−28 5 61
5 3838 1 NO AAA28723 eyes absent 1.8e−118 1 49
6 10868 1 YES AAB61239 bunched gene product 2.0e−21 6 39
7 BJ063320 NO AAC46506 Dachshund 1.6e−16 8 44
8 10334 1 YES AAC47196 Lozenge 2.9e−56 4 77
9 7019 1 YES AAD38602 scratch 4.4e−35 15 83

10 4763 2 YES AAD38642 BcDNA.GH11415 2.9e−146 3 15
11 16925 1 YES AAD38646 BcDNA.GH11973 8.2e−14 1 14
12 18882 1 NO AAD52845 Pebble 7.4e−62 2 14
13 3666 1 YES AAF24476 Sticky ch1 1.7e−11 3 56
14 7799 2 YES AAF48990 CG12238-PA 1.7e−22 3 64
15 19264 1 YES AAF55415 CG5407-PA 6.3e−198 3 10
16 5529 1 YES AAF57639 CG15093-PA 2.2e−45 1 24
17 CD327522 NO AAK06753 roughoid/rhomboid-3 1.1e−29 8 26
18 22774 NO AAK14073 DNA-binding transcription factor 8.6e−10 11 158
19 1415 445 YES AAL86442 slamdance 5.5e−70 26 194
20 BU911996 NO AAN74533 transcription factor fruitless 7.9e−10 28 459
21 CD329851 NO BAA78210 white protein 2.2e−36 17 54
22 21321 1 YES CAA33450 glass protein 2.2e−45 21 1739
23 2426 1 YES CAA38746 neurotactin 2.4e−24 103 706
24 9209 1 YES CAA52934 Drosophila cyclin E type I 2.5e−56 2 25
25 18485 1 NO CAA76941 UNC-13 protein 2.7e−165 1 14
26 17438 1 NO NP 523928 CG7525-PA 8.7e−24 101 1508
27 570 1 YES NP 524354 CG4236-PA 0.0 1 17
28 BI349728 NO NP 573095 CG9170-PA 2.7e−17 1 7
29 1761 1 NO NP 609033 CG9536-PA 1.2e−21 1 6
30 12008 1 YES NP 609545 CG14946-PA 9.1e−25 8 63
31 440 2 YES NP 610108 CG8663-PA 5.7e−17 5 90
32 9019 1 YES NP 611013 CG11798-PA 1.4e−7 156 2411
33 10147 2 YES NP 648269 CG5653-PA 1.9e−16 5 48
34 3752 1 YES NP 649919 CG9427-PA 4.1e−13 1 32
35 20081 1 YES NP 725617 CG5522-PF 7.1e−49 1 18
36 2636 2 YES NP 729075 CG10625- 1.7e−28 16 1185
37 8386 YES O18381 Eyeless protein 3.9e−70 7 75
38 11614 1 YES P00528 Tyrosine-protein kinase Src64B 4.3e−152 3 150
39 4073 1 NO P10181 Homeobox protein rough 3.1e−14 13 165
40 919 NO P20483 String protein (Cdc25-like protein) 3.3e−40 3 43
41 1777 1 YES P36872 Twins protein (PR55) 0.0 2 41
42 9517 1 YES P48554 Ras-related protein Rac2 1e−109 1 22
43 7661 1 YES Q01070 E(spl) mgamma 5.5e−19 5 52
44 7661 1 YES Q01071 E(spl) mdelta 1.1e−15 7 63
45 4146 2 YES Q23989 Villin-like protein quail 6.3e−23 9 138
46 10061 1 YES Q27324 Derailed protein 1.2e−45 23 400
47 14903 1 YES Q27350 Sine oculis protein 3.9e−87 1 20

Sequences without significant homology
# Accession Description # Accession Description

48 O77459 transcription factor Ken 60 NP 651346 CG11849-PA
49 AAF46666 CG10527-PA 61 Q23997 Chitinase-like protein DS47 precursor
50 NP 728586 CG9134-PA 62 AAD09748 Gasp precursor
51 NP 609450 CG17124-PA 63 AAF63503 SP2523
52 CG140595 Zea mays genomic 64 AAF47412 CG13897-PA
53 NP 570064 CG10803-PA 65 AAL27368 zinc finger C2H2 protein sequoia
54 NP 650785 CG5835-PA 66 NP 730444 CG32209: CG32209-PB
55 AAF51847 CG11370-PA 67 NP 723827 CG18507-PA
56 AAG46059 SKELETOR 68 NP 611728 CG13532-PA
57 AAN61340 BcDNA:GH10711 69 NP 651343 CG13651-PA
58 NP 729183 CG10121-PA 70 NP 995997 CG12605-PA
59 AAO39528 RE22242p 71 NP 610067 CG9335-PA

Table 5.6.: Xenopus matches to Pax6/ey Regulated Genes identified by [106]

126



5.5. Utility

were obtained from the NCBI Gene Expression Omnibus (accession: GSE271) and used to

query the XenDB database to identify 47 potential homologues of the Drosophila Pax6/ey

regulated genes and included 32 predicted full length sequences (Table 5.6). As these

sequences are available from commercial sources, they can be readily obtained and tested

using the various experimental approaches available to Xenopus such as gain of function

studies by microinjection.

5.5.5. Application of the IsoSVM classifier to X. laevis EST data

The IsoSVM tool introduces an automated approach to identifying isoforms on the protein

level using a support vector machine (SVM) classifier. Based on three specific features used

as input of the SVM classifier, it is possible to automatically identify isoforms with an accu-

racy of more than 97%. As an example application IsoSVM has been used to estimate that

a subset of the XenDB EST clusters consists of approximately 81% cases where sequences

are each other’s paralogs and 19% cases where sequences are each other’s isoforms [140].

To assess whether the splitting of clusters by CAP3 into several contigs was caused by

grouping isoforms into the same cluster, or whether the splitting was due to paralogs,

we extracted 722 clusters that have multiple contigs (2,243 contigs total), and for which

each contig has a full length protein match in the protein NR database. X. laevis, as an

allotetraploid species, has undergone a genome wide duplication. Therefore, many genes

are represented by two paralogs. Isoforms of X. laevis proteins have not been studied in

any systematic way before.

Most of the 722 clusters consist of only two contigs and only a fraction features three or

more contigs. Treating each contig consensus as a sequence, 5,459 sequence pairs were

compared by IsoSVM within clusters; 986 of these samples (19.3%) were classified as

isoforms and 4,125 as paralogs (80.7%). 348 samples were left out, representing con-

tigs with almost no overlap, i.e. sequence pairs of low (<1%) similarity. These results

were also used as a further check to assess the accuracy of IsoSVM. 290 randomly chosen

samples were reviewed manually: an accuracy of 97.93% and a precision of 99.23% was

found.
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5.6. Summary

We have clustered more than 350,000 X. laevis ESTs using the previously described pipe-

line into 25,971 clusters and 40,877 singlets. The subsequent CAP3 assembly split some

clusters into several contigs, such that 31,353 contig sequences, 4,801 CAP3 singlets and

the 40,877 singlets from the first clustering step were subject to a comprehensive sequence

analysis. 19,721 sequences could be assigned a GO annotation, 17,624 were functionally

classified according to KOG categories. The identification of full length ORF containing

contigs revealed 5,139 contigs which had a FASTY match against a protein in the NR

database including start and stop codons. The FASTY analysis identified ∼20% more

full length ORF containing contigs than a similar BLASTX analysis. 10,500 IMAGE clones

could be identified as containing a full insert and therefore provide easy access to complete

cDNA clones of the corresponding genes.

In a variety of examples we have demonstrated the utility of XenDB, the resulting

database, available through a user-friendly web interface at http://bibiserv.techfak.

uni-bielefeld.de/xendb/. It allows as a unique functionality a rapid mapping of se-

quences from other model organisms to the X. laevis contig sequences and clones.
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CHAPTER 6

Computational Identification of miRNAs in

X. laevis EST clusters

In Chapter 5 we have described the construction of a X. laevis gene index and results of

a thorough sequence analysis which tried to identify homologues to most of the resulting

contigs. However, a class of sequences remains: those without significant hits to known

proteins. In our analysis we have used an E-value cutoff of 10e−6, which is of course

necessarily arbitrary. Based on this value, we remain with 43,753 sequences that neither

have a BLASTX nor a FASTY hit to a known model organism sequence. The lack of sim-

ilarity could be due to significant divergence of the sequence, the lack of an appropriate

homologue in the public dataset, sequencing errors inherent in the EST data or due to the

presence of non-coding, presumably regulatory sequences, in the EST clone set.

These unmatched sequences mirror the situation in the UniGene set for both mouse and

human with more than 4.3 and 7 million EST sequences in 65,000 and 84,000 clusters

respectively while fewer than 30,000 coding sequences have been recognized [115, 69,

144]. The source of these discrepancies are currently unclear, but may arise from non

coding RNA (ncRNA) [111], incompletely or unspliced transcripts [169]. In particular,

ncRNAs are a likely source for a large fraction of the discrepancy based on estimates of
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a 40-fold greater number of non-coding transcription units than protein coding genes in

human and mouse. In mammals, open reading frames constitute <2% of the genome, this

number being higher in less complex organisms like insects (18%), nematodes (25%), or

fungi (60-60%) [146]. It has been estimated that around 98% of transcription is non-

coding [104].

Much of the analysis and identification of ncRNA relies on the availability of genomic

sequence which is currently unavailable for X. laevis and incomplete for X. tropicalis, the

highly homologous diploid species.

6.1. microRNAs: Biogenesis and Prediction

One of the in recent years most intensively studied class of non-coding RNAs is the class

of microRNAs (miRNAs). miRNAs play an important role as gene expression regulators in

diverse organisms including animals and plants. Initially identified by Lee et al. [94] as lin-

4 RNA in C. elegans in 1993, the number of miRNAs registered in the miRBase database

[56] has grown to 4361 entries (Release 9.0, October 2006) since then, including 474 for

human and 373 for mouse.

miRNA Biogenesis

miRNAs are small (∼22 nucleotides) noncoding RNA gene products. They are derived

from long primary transcripts (pri-miRNAs), which can contain one or more miRNA pre-

cursors (pre-miRNAs). The pre-miRNAs are the products of the Drosha enzyme, which

cuts the pri-miRNAs into ∼70 nt long sequences which can form stable stem-loop (hair-

pin) structures, the mature miRNA present in one arm of the stem, which lacks large

bulges or internal loops. Sometimes the pri-miRNA transcripts contain multiple hairpins,

where different hairpins give rise to different miRNAs (polycistronic miRNA transcripts).

After transport to the cytoplasm by exportin-5, the RNase-III-type enzyme Dicer cuts the

pre-miRNA into the active ∼22 nt long mature miRNA. Dicer also initiates the formation

of the RNA-induced silencing complex (RISC), which is responsible for gene silencing.

miRNAs function as gene regulators. In animals, the mature miRNA binds to specific

sites in the 3’ UTR of the target mRNA. The binding sites are not fully complementary,
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which allows one miRNA to recognize multiple target sequences by forming imperfect du-

plexes with internal loops and bulges. These miRNA-mRNA duplexes cause either cleav-

age of the mRNA or inhibits protein translation and are crucial for the miRNA’s regulatory

activity.

miRNA Prediction

While the first miRNAs were discovered by positional cloning of sequences from RNA sam-

ples fractionated by size, nowadays a great portion of known miRNAs have been identified

by pure computational approaches or in combination with biochemical methods. Ambros

et al. [9] suggest the following annotation criteria for miRNAs:

Expression criteria (A) Hybridization of a distinct ∼22 nt RNA transcript to a size-

fractioned RNA sample.

(B) Identification of the ∼22 nt sequence in a cDNA library made

from size-fractioned RNA. Sequence must exactly match genomic

sequence of source organism.

Biogenesis criteria (C) Prediction of a potential stem-loop precursor structure, con-

taining the ∼22 nt miRNA sequence within one arm. The hairpin

must be the folding with the lowest free energy, as predicted by

mfold [172] or another conventional RNA-folding program, and

must include 16 bp involving the first 22 nt of the miRNA and the

other arm of the hairpin. It should not contain large internal loops

or bulges. These hairpins are usually ∼60-80 nt long in animals.

(D) Phylogenetic conservation of the ∼22 nt miRNA sequence and

its predicted hairpin secondary structure.

(E) Detection of increased precursor accumulation in organisms

with reduced Dicer function.

None of the above criteria on its own is sufficient for annotating a candidate gene as

miRNA, evidence of both expression and biogenesis characteristic of miRNAs are required.

However, Ambros et al. state that “homologs of previously validated miRNAs need not

meet as stringent criteria to be annotated as additional miRNA loci. Very close homologs
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Figure 6.1.: miRNA biogenesis: miRNA genes are transcribed to pri-miRNAs and then cut
by Drosha to ∼70 nt pre-miRNAs, forming stable stem-loop structures. The pre-miRNAs
are exported from the nucleus by exportin-5 and further processed in the cytoplasm.
The RNase-III-type Dicer enzyme ∼22 nt long miRNA duplexes from which one strand
is selected as mature miRNA. (Adopted from [81]).
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in other species can be annotated as miRNA orthologs without experimental validation,

provided they satisfy criterion D.”

As the time of writing, out of 4361 entries in release 9.0 of miRBase 2024 (46.4%) have

experimental evidence, 2337 entries (53.6%) have none. In the major model organisms

hundreds of miRNAs have been discovered (e.g. human: 474, mouse: 373, zebrafish: 337,

rat: 234). For X. laevis however, only 7 miRNAs are known, all identified by Watanabe

et al. [161]. In the next section, we will describe a homology based approach to identify

miRNAs in the X. laevis EST clusters described in Chapter 5.

6.2. Computational Identification of miRNAs

Following the recommendations by Ambros et al. we tried to computationally identify

miRNAs in the X. laevis XenDB data set based on similarity to known miRNA sequences.

ESTs are partial cDNA sequences of expressed genes. We count this as an expression

criteria, however, further analysis (e.g. Northern blotting) should be applied to verify the

identified genes as miRNA candidates.

We first downloaded all known metazoan mature miRNA sequences from the miRBase

database. Additionally, information about the position of the mature miRNA in the precur-

sor sequence was obtained. Next, the following strategy was used to identify homologue

miRNAs in the XenDB data set:

1. Search XenDB contigs using Vmatch to identify matches against highly conserved

mature miRNAs.

2. Shorten contig sequence to length of pre-miRNA as found in miRBase, preserving

relative position of mature miRNA in pre-miRNA sequence.

3. Perform secondary structure prediction of pre-miRNA by shape analysis using RNA-

shapes [142].

4. Filter candidate matches based on shape probability and minimum free energy (mfe)

cutoff.

Vmatch was used as matching tool as it is allows to specify the desired kind of matches

much easier as e.g. BLAST. Mature miRNAs had to match with a minimum length of 20 nt
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(forward or reverse complemented). Additionally, a seedlength of 8 and edit distance of 1

was chosen for the search.

Next, contig sequences matching mature miRNAs with the above parameters were trimmed

to a length of ∼60-80 nt, depending on the length of the corresponding pre-miRNA. The

relative position of the mature miRNA sequence in the pre-miRNA as obtained from the

miRBase entry was preserved. Assuming a high conservation of not only the mature se-

quence itself but also the position of the mature sequence in the precursor stem-loop

structure, the putative precursor sequence was cut out from the contig sequence. This

steps makes the subsequent structure analysis easier, as candidate pre-miRNAs should

fold into a stem-loop structure, containing the ∼22 nt miRNA sequence within on arm of

the hairpin.

The next step was to predict the secondary structure of the putative precursor sequence.

The secondary structure analysis was performed by a shape analysis using RNAshapes.

RNAshapes allows the analysis of shape representatives and the computation of accumu-

lated shape probabilities. An RNA shape is an abstract representation of an RNA secondary

structure. We used the most abstract representation of structure: shape type 5. It is an

abstraction from loop and stack lengths, where stacking regions are represented by a pair

of squared brackets (nested helices are combined) and unpaired regions are not included.

The probability of a shape is the sum of the probabilities of all structures that fall into

this shape. As we are especially interested in hairpin shapes, we calculate the probability

for this particular shape (RNAshapes options: -m [] and -q). For the hairpin shape we

also keep the shape representative (shrep), which is the structure with the minimum free

energy (mfe) inside this shape class.

The initial matching step returns hundreds of matches in the EST data set. The subse-

quent shape analysis folds all of the resulting precursor sequences into a hairpin, albeit

with poor probabilities. Therefore, the final step is a filter applied to the RNAshapes results

to remove sequences that have low probabilities of forming the desired hairpin structure

or only with unacceptable energy values.

6.3. Results: X. laevis miRNAs

We applied the described approach to identify miRNAs in the X. laevis XenDB data set.

We used quite stringent matching criteria for Vmatch in order to keep the number of false

positives in the predicted miRNA candidates to a minimum and ensure high sequence
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conservation (1 mismatch) in the mature sequence. The search of all metazoan miRNAs

in the X. laevis contigs resulted in 587 matches in 89 contigs, using a minimum match

length of 20 nt and a maximal edit distance of 1. These included matches to 98 distinct

metazoan miRNAs from 31 different species.

miRNA Cluster Pos Shape mfe Probability
miR-1a cluster:24915 contig:1 684..704 [] -30.00 0.9996044
miR-15a cluster:11697 contig:1 199..219 [] -34.60 0.9999891
miR-17 vm singlet:44527 94..114 [] -35.80 0.9975913
miR-18b cluster:16044 contig:1 725..747 [] -29.70 0.9996439
miR-19b cluster:16044 contig:1 424..446 [] -37.20 0.9997667
miR-20 cluster:16044 contig:1 571..592 [] -28.20 0.9999950
miR-23a vm singlet:187885 210..229 [] -25.70 0.9944582
miR-24b vm singlet:263804 95..115 [] -24.40 0.9998323
miR-27b vm singlet:263804 226..246 [] -45.60 0.9999043
miR-92 cluster:16044 contig:1 293..313 [] -29.90 0.9999795
miR-92a vm singlet:60513 69..89 [] -36.00 0.9999902
miR-106a vm singlet:44527 94..113 [] -32.50 0.9846771
miR-133a cluster:6980 contig:1 258..279 [] -33.30 0.9999983
miR-133b cluster:19810 contig:1 465..485 [] -32.70 0.9999486
miR-133d cluster:24915 contig:1 266..287 [] -30.42 0.9999716
miR-194a vm singlet:181117 38..58 [] -34.50 0.9999917
miR-205a vm singlet:196915 231..252 [] -35.52 1.0000000
miR-223 cluster:17235 contig:1 512..532 [] -36.10 0.9876003
miR-363 cluster:16044 contig:1 162..181 [] -26.40 0.9999319
miR-427 cluster:2756 contig:1 356..377 [] -25.00 0.9947582
miR-689 vm singlet:115768 194..214 [] -78.60 0.9998615

Table 6.1.: 21 X. laevis miRNAs identified in XenDB set with strong homology to known
miRNAs. All corresponding pre-miRNAs fold confidently into a stem-loop structure. The
table shows for each mature miRNA the position within the contig, mfe, and hairpin
shape probability for the pre-miRNA as computed by RNAshapes. Previously known
X. laevis miRNAs are shown in italics.

Next, the probability of the hairpin shape and the minimum free energy of the corre-

sponding shrep of each candidate precursor sequence were obtained using RNAshapes.

Again, we used stringent criteria for the following filtering: matches were discarded if

the probability for a precursor candidate to form a hairpin shape was below 95% or the

minimum free energy of the shrep was >-20 kcal/mol. 59 matches were discarded be-

cause of too low probabilities, 6 because of too high mfe values, and 101 because of both

probability and mfe.

The remaining matches included 21 distinct miRNA candidates as shown in Table 6.1.
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Only 4 of these are already known in X. laevis according to Release 9.0 of the miRBase

database, leaving 17 new candidates identified in this study. Table 6.1 includes for each

miRNA the contig containing the miRNA gene, the position of the mature sequence, the

probability of the hairpin shape and the mfe of the corresponding shrep. The structures

of the pre-miRNA candidates are shown in Appendix A, positions of the mature miRNA

highlighted.

miR-17 cluster

Several miRNA genes have been shown to exist as clusters of 2 or more genes [114],

suggesting that the transcription is controlled by common regulatory elements. If a sin-

gle promoter drives the transcription of the clustered miRNA genes, the transcript must

be polycistronic [95]. The two contigs 16044 and 24915 are examples of polycistronic

transcripts (see Table 6.1).

Figure 6.2 shows the secondary structure of the sequence of contig 16044 as predicted

by RNAfold [63]. It contains the precursor miRNAs of miR-18b, miR-19b, miR-20, miR-

92, and miR-363. This cluster appears to be the miR-17 cluster as described by Tanzer

et al. [147], who state that the miR-17 cluster had arose through a complex history of

duplication and loss of individual member as well as duplications of entire clusters. In the

case of contig 16044, miR-17 is missing, while miR-18b, miR-19b, miR-20, and miR-92

are members of the described miR-17 cluster.

6.4. Summary

The described method of a computational identification of miRNAs based on sequence

similarity and secondary structure prediction works well in the case of X. laevis EST clus-

ters. Although we used very stringent matching criteria, we successfully identified 17 new

miRNA genes in the data set. Relaxing these criteria will probably identify more candi-

dates, however one has to try to keep false positives at a minimum. It seems promising

that ESTs are an invaluable resource not only for prediction of protein coding genes but

also for noncoding RNAs, as ESTs are products of actually expressed genes. The analysis

of the X. laevis ESTs gave information which did not seem to be available for species that

lack genomic sequence.

Further analysis including a comparison to the X. tropicalis genome, which starts to
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6.4. Summary

Figure 6.2.: Polycistronic transcript containing the miR-17 cluster of miRNAs identified in
contig 16044 of clustered X. laevis EST data set.
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6. Computational Identification of miRNAs in X. laevis EST clusters

become available, seems promising as part of future work emerging from this study. This

includes the prediction of the targets for the miRNAs. The analysis of the XenDB clusters

identified more than 5,700 full length CAP3 contigs which have 3’ UTR sequences avail-

able. Even more 3’ UTR sequences are available for only partially reconstructed genes, in

consequence of the EST sequencing protocol which favours 3’ ends during the poly(dT)

priming step. The UTRs are possible targets for the predicted miRNAs and an analysis

with tools like RNAhybrid [128, 86] can be applied to predict target genes. The combi-

nation of the X. laevis and X. tropicalis data can enhance the quality of the predictions

as RNAhybrid can not only calculate the statistical significance of individual binding sites,

but also of binding sites in comparative analyses of orthologous sequences across species.
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CHAPTER 7

Conclusion and Outlook

With EST sequences remaining the only available information about the gene content of

some species, EST mapping and clustering are important applications for genome analysis.

We have shown that algorithms based on enhanced suffix arrays are well suited for the

growing amounts of data to be expected in the future. Qualitatively, the clustering results

are at least comparable to those of well known clustering tools, at the same time reducing

the running time by up to two orders of magnitude. We therefore have achieved the design

goal of being able to frequently update this aspect of the analysis.

The implemented clustering pipeline accomplished a comprehensive analysis of the

X. laevis EST data. The resulting XenDB database provides a resource of gene-oriented

EST clusters and transcript oriented contigs, enriched with various information from het-

erogeneous sources, that would be of value to the biology community and the Xenopus

community in particular. Using the XenDB system, the biologist can identify sequences of

interest using simple gene name queries, accessions, or gene ontologies. The identified

sequences have been mapped to public resources like NCBI’s UniGene and TIGR Gene In-

dices. Over 10,000 publicly available IMAGE clones were identified that maximize the 5’

sequence to provide a full length construct when possible.

All the X. laevis sequences have been compared to the human and mouse protein sets
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7. Conclusion and Outlook

to identify conserved proteins. An obvious question is how complete is the Xenopus EST

set and what percentage of genes have been identified assuming that the vast majority of

protein coding sequences have been evolutionarily conserved. Of the 40,000 sequences

in the IPI databases, more than 7,000 human and mouse sequences do not have a strong

match in our data set. Thus, there is a considerable effort remaining to develop a complete

Xenopus protein coding set. On the other hand, there are a large number of singletons

remaining in the clustered EST set, and also a number of contigs do not have a match

against any of the model organisms. These sequences are thought to represent rarely

expressed genes, which may be of great biological interest.

The identification of full-length cDNAs facilitate the production of many tools such as

microarrays that provide a wealth of gene expression data in a single experiment. Since

our first X. laevis microarray experiments [6] a number of groups have used this tool to

study gene expression patterns in both global and more focused ways. The abundance

of more full-length cDNAs enables the design of microarrays that can be used to comple-

ment existing gain of function experiments by identifying genes changing their expression

patterns. The annotation of these sequences will speed up the analysis of the microarray

data.

As with all ongoing high throughput sequencing efforts, certain aspects of the results

change in proportion to the total number of sequences. A complete gene set for Xenopus

will require additional sequencing. The difference in ploidy makes X. laevis distinct from

all of the other organisms for which similar analysis have been performed. The generation

of tetra, octo and dodecaploid species of Xenopus between 80 and 10 million years ago of-

fers opportunities in the field of evolutionary biology. For example, comparisons of 3’ UTR

regions between in-paralogs of X. laevis and their counterpart diploid tropicalis species

may improve statistical models of molecular evolution. In the course of our analysis we

note the high degree of similarity between the laevis and tropicalis Xenopus species. This

conservation may allow sequences from both species to be combined to generate a more

complete set.

At the genome level, the potential availability of genome data from the polyploid species

may provide insight into questions of chromosome segregation and silencing. The selec-

tion of Xenopus as a model organism by the NIH and the establishment of the Trans-NIH

Xenopus Initiative have directly led to the support of EST and genome sequencing efforts.

Among the priorities identified is the establishment and funding of a Xenopus Database

which will integrate sequence, expression and other Xenopus data.
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APPENDIX A

Structures of Predicted miRNA Precursors
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A. Structures of Predicted miRNA Precursors
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