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1. Introduction

1.1. Problems of a general theory of morphology

The goal of this thesis is to develop a comprehensive theory of the morphology of German
within the grammatical framework of Head-driven Phrase Structure Grammar (HPSG).

Thus, the feature sets, the type hierarchy of lexical signs, and the grammatical prin-
ciples that describe the morphotactics of inflection, compounding, and derivation in
German, are to be defined and well-motivated linguistically. Certain problems in the
description of German morphology, which have not been solved so far, or which have
been solved within a different grammatical framework, or have been solved without an
integration into an overall theory, will therefore be tackled in this thesis. These are,
firstly, general morphological problems of the kind that a description of the morphology
of any language faces, such as the architecture of the grammar and the situation of
the morphological component within the grammar. It must, for example, be formalised
what the interfaces to the syntax and to the phonology look like and if and how far
there is interaction between these three. A question that is connected to this is what
the expressive power of the formalism that is necessary and sufficient to describe the
morphology is on the Chomsky hierarchy (Chomsky, 1965b).

But even the question whether an independent morphological component exists at all
is controversial. In the early generative tradition represented for example by Chomsky
and Halle (1968) and later revived by Lieber (1992), it is assumed that there is no au-
tonomous morphology at all, that the syntax is responsible for arranging the formatives
of a language in phrase structure rules and transformational rules, and that the phonol-
ogy provides the spell-out of these formatives as sequences of phonemes. Those rules in
the syntactic component that may be interpreted as morphological rules (such as affiz
hopping, cf. Chomsky, 1957) interact with the purely syntactic rules in such a way that
it is not possible to draw a line between them and mark an autonomous morphological
component.

Another tradition within generative grammar indeed favours an autonomous mor-
phological component, which nevertheless uses the same formalism and rule types as
are necessary to describe the syntax while employing a different set of lexical items,
features, and principles for morphology. In these word-syntactic approaches, there is a
clear interface to the syntactic component, usually characterised by the structures that
can extend the category Word, which is used as the start symbol of a morphological
grammar. Such an approach is taken by Selkirk (1982), Di Sciullo and Williams (1987),
and Toman (1987). Later, computational word-syntactic morphologies were designed
and implemented in unification-based grammar formalisms, e.g. by Ritchie et al. (1992),
in the Generalized Phrase Structure Grammar (GPSG) formalism, and Antworth (1994),
in a feature and unfication-enriched Two-level morphology (s.b.).
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The idea that at least derivational morphology is independent from syntax was in-
troduced by Chomsky (1970) in generative grammar. He claimed that derivational
nominalisations are described in the lexicon by lexical redundancy rules. This approach
was extended to all derivational morphology by Halle (1973), who formed the term
word formation rules (WFRs) for the morphological rules that operate on the lexicon.
The nature of WFRs was subsequently further studied and specified by the proponents
of word-based, or realisational morphology, most notably in Aronoff (1986), Anderson
(1992), and Aronoff (1994). A major characteristic of the WFRs is that they operate on
existing lexemes (words), not morphemes, which play no role in realisational morphology.

The theory of Lexical Phonology and Morphology developed in Siegel (1979),
Kiparsky (1982a,b, 1985), and Mohanan (1982) stands in the tradition of this reali-
sational generative approach as well, but it postulates an extended lexicon with mul-
tiple ordered strata and restrictions on the application of the affixation rules and the
phonological rules on each stratum.

Other recent, computational linguistics-oriented directions of scholarship postulate
an independent morphology component, which must be described using an altogether
different formalism than the syntax. One of these approaches is Two-level morphol-
ogy (Koskenniemi, 1983a, 1985; Karttunen and Beesley, 1992, and cf. Section 2.2). Its
two-level rule component and system of continutation classes correspond to finite-state
automata, which are equivalent to regular grammars (type 3 grammars on the Chomsky
scale). For comparison, note that transformational grammars are unrestricted produc-
tion systems (type 0 grammars), and that feature-based grammars that employ recur-
sively defined feature structures (such as HPSG, cf. Section 3) are known to be at least
as powerful as context-free grammars (type 2 grammars).

In the 1990s, a number of approaches which describe morphology as a phenomenon
that arises from the complex hierarchical organisation of the lexicon and its interaction
with phonology have been published. Several of them employ the default inheritance lex-
ical representation formalism DATR (Evans and Gazdar, 1996) for this purpose (Gibbon
and Reinhard, 1991; Corbett and Fraser, 1993; Cahill and Gazdar, 1997, 1999; Gibbon,
1991; Bleiching, 1994), but approaches employing the formalism of strictly typed fea-
ture structures of HPSG are also available (Riehemann, 1993, 1998, 2001; Gibbon, 1997;
Koenig and Jurafsky, 1994; Koenig, 1999).

Beside the architecture of the grammar and the position of morphology, the “model
of grammatical description” (Hockett, 1954) to be employed in morphology has always
been an object of controversy. Are affixes rules or signs? Is there such a thing as morpho-
logical constituency which corresponds to syntactic constituency? Does the morpholog-
ical lexicon contain lexemes or morphemes? Is the notion of an inflectional paradigm an
independent entity within the morphology of a language, or does it arise from the organ-
isation of morphological schemata? Morphologists have come to different conclusions,
not only for different languages but even for the different areas of morphology within one
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language. Inflectional endings are not considered to be suffixes in the sense of linguistic
signs by many scholars. Instead, they are frequently regarded as phonological material
introduced for example in word formation rules (Aronoff, 1986, 1994), morpholexical
rules (Anderson, 1982, 1992), paradigm functions (Stump, 1991), or HPSG-lexical rules
(Pollard and Sag, 1987). This is motivated by the fact that substantial parts of inflection
in many languages show other phonological processes besides agglutinative affixation,
which in such approaches can be treated identically, i.e. by the same kind of rules. Con-
sequently, a combination of a stem plus an inflectional affix does not have an internal
constituent structure in these approaches. Some scholars extend this view even to deriva-
tion, most notably the proponents of word-based morphology, who claim that there are
no morphological objects other than existing words, and that each morphological rule
operates on words. Affixes, including derivational affixes, do not exist as listemes (items
listed in a lexicon) in such a theory. Again, derivational affixes can only be found as
phonological strings that are concatenated with words/stems in lexical redundancy rules
or schemata.

Contrary to inflection and derivation, it is quite uncontroversial that the area of com-
pounding involves constituency and operates on lexemes (in the form of stems or words),
which are linguistic signs and listed in the lexicon, regardless of whether compounding
is viewed as a part of syntax or of morphology/the lexicon.

1.2. Problems of a theory of German morphology

Feature percolation and headedness in syntax have been well-studied since the advent of
X-bar theory in Chomsky (1970) and Jackendoff (1977), and, consequently, the concepts
of HEAD features and HEAD feature percolation play a central role in the feature-based
grammar frameworks of GSPG (Gazdar et al. (1985), as the Head Feature Convention),
and HPSG (Pollard and Sag (1987, 1994), as the Head Feature Principle), too. Several
authors have presented a corresponding feature percolation principle for morphology,
but with surprisingly different and partly contradicting results, depending on different
factors such as the particular language and the subfield of morphology under scrutiny,
but also on the employed model of grammatical description and the assumed feature
set. (It is for example, a priori excluded that an inflectional affix may function as
the head of a word when morphological analysis is conducted in a word-and-paradigm
framework.) In this thesis, we will therefore carefully try to establish a consistent Head
Feature Principle for the morphology of German, taking into account the feature set
to be employed, and the differences of feature percolation in inflection, derivation, and
compounding.

The theory developed in this thesis comprises an HPSG subtheory on nominal inflec-
tion in German. It deals amongst other things with the hierarchy of nominal inflectional
classes (formerly examined outside HPSG in e.g. Bleiching (1992), Cahill and Gaz-
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dar (1999), and Bleiching and Gibbon (2000)), syncretism in the nominal inflectional
paradigm (Bleiching et al., 1996), and the role of umlaut in noun inflection (Wiese, 1987;
Gibbon and Reinhard, 1991).

The important fields within verbal inflection to be modelled are the hierarchy of ver-
bal inflectional classes, the description of regular (agglutinative) inflection vs. ablaut-
based, irregular inflection, the hierarchy of ablaut patterns, and the question which
grammatical categories participate in verbal inflection. Verbal inflection is also interest-
ing with respect to headedness in morphology, as the past tense forms of regular (weak)
verbs is formed by adding two separable inflectional suffixes to a stem, cf. Section 5.2.3.

For adjectival inflection, the descriptions of the set of adjectival inflectional categories
and of the inflectional syncretism is crucial, cf. e.g. Cahill and Gazdar (1997). Inflectional
class plays no role for German adjectives.

What distinguishes inflection from derivation, and what do they have in common?
We aim at answering this question for German and formalise the results. Within deriva-
tion, too, the problem of headedness needs to be solved, and many possibilities have
been explored in previous studies. William’s (1981) Right-hand Head Rule makes the
suffix the head in a derivational suffixation, but makes the base the head in a deriva-
tional prefixation. However, it is sometimes claimed that the base must be the head
in any kind of affixation. Then again, Brehmer (1985) claims that there are certain
(category-changing) prefixes which are the heads of the words derived with them. We
will analyse feature percolation in derivation closely to determine what is descriptively
adequate. Further results of previous research in derivational morphology to be incor-
porated into our HPSG theory are the morphotactic properties of native vs. nonnative
lexical roots and affixes, and the modelling of the lexical strata and the different types
of affixes from Lexical Phonology and Morphology.

The question how to treat umlaut in derivation has also been an object of research
in the past. It is well-known that the derivational relations involving umlaut are more
complex than in inflection, the difficulty lying in the fact that an umlautable base is not
always umlauted when combined with an umlaut-triggering derivational suffix (Zwicky,
1967; Reinhard, 1991). We will search for a solution to this problem within HPSG.
Furthermore, the role of derivational alternations involving ablaut and conversion has
to be clarified and properly encoded.

The description of compounding in German does not pose so many problems on
the morphological level. Still, there are areas of special interest such as the sta-
tus and proper classification of linking morphemes (Fugenmorpheme), where it has
been suggested that these are largely dependent on inflectional classes (Gibbon, 1991;
Langer, 1998), with the exception of -s with feminines (Arbeitsamt) and analog-
ical formations such as Sternenhimmel, with a dative plural link, and the con-
stituent structure of compounds, especially in so-called synthetic compounds such as
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Messebesucher or Bahn-Card-Besitzer, where compounding seemingly interacts with
derivation. A further challenge is presented by the class of phrasal compounds ((das)
Auf-Nummer-Sicher-Gehen, (die) Hin-und-Zuriick-Angelegenheit), as here, mor-
phological rules operate on syntactic phrases.

Many insights from the theories mentioned in Section 1.1 can be formalised in HPSG
in a non-contradictory and non-redundant way and will be useful in answering the ques-
tions raised in this section. We will shortly explain further why we think that HPSG is
most suitable to achieve an adequate description of the morphology of German. Let us
first provide some introductory words about the HPSG grammar framework.

1.3. Sign-based morphology

HPSG (Pollard and Sag, 1987, 1994) is a linguistic theory which emerged from the
tradition of generative grammar and uses formal devices and notions from previ-
ous unification-based theories of grammar, especially Functional Unification Grammar
(FUG, Kay, 1979), Lexical Functional Grammar (LFG, Bresnan, 1982), Generalised
Phrase Structure Grammar (GPSG, Gazdar et al., 1985), and Categorial Unification
Grammar, (CUG, Uszkoreit, 1986). HPSG models of grammar fragments are described
in terms of well-defined mathematical objects (feature structures, cf. Section 3), and are
represented using the notational formalism of attribute-value matrices (AVMs). Partly
because of this formal background, HPSG is widely used in natural language processing,
see for example the large-scale applications developed by Miiller (1999, 2000), Uszko-
reit et al. (1994, 2000), and Copestake (1999). Another reason why computational
linguists are attracted to HPSG is that contrary to current generative approaches to
grammar, it is a monostratal theory of grammar, which means there is only one stratum
for declarative representation of models of linguistic objects, i.e. there are not differ-
ent representational levels such as D-structure and S-structure, and no computationally
costly transformations to mediate between these are needed.

The central linguistic object modelled by feature structures in HPSG is the sign.
A structuralist notion of sign is adopted, i.e. a sign is a structured object which binds
together a form and a meaning component. Traditionally, a linguistic sign is identified
with a word in the sense of a lexeme or alternatively, a word form. In HPSG and related
theories, all objects modelled by feature structures with PHONOLOGY and SEMANTICS
attributes are signs, too, so that there are different types of signs. Phrases and sentences
are phrasal signs, and lexemes are lexical signs. Through the DAUGHTERS (DTRS) at-
tribute in phrasal signs, constituent structure is represented in a feature structure. There
are also lexicalised phrasal signs, which may be called idioms. Gibbon (1997) points out
that even phonemes may be regarded as a special type of sign, which have a “purely
structural ‘meaning’ ”. But also higher level linguistic units, such as utterances or texts,
are signs in that sense. These types of signs are composed of signs from a lower level (or,
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rank, after Jespersen, 1933; Halliday, 1985) of linguistic description. Signs can be syntac-
tically, semantically, and phonologically compositional. Lexical signs, and recently also
phrasal signs (cf. Sag, 1997; Ginzburg and Sag, 1999), are associated with types, which
are ordered in type hierarchies. Type restrictions can be represented as feature structure
descriptions, too, but they are not signs. Two fundamental possible relations between
signs are thus constituency (one sign may be embedded in another, more complex, sign),
and type subsumption, i.e. two signs may have a common supertype (cf. also Koenig,
1999, pp.51). The formalism of typed feature structures may be complemented by lex-
ical rules (as in Pollard and Sag, 1987), by means of which further relations between
signs can be defined. They play a role especially in morphology, but their adequacy and
necessity is has often been challenged.

Although HPSG is an established grammatical framework, which even includes sev-
eral assumptions about universal grammar (such as the structure of a linguistic sign)
and human language in general, both its formalism and its sign-based modelling con-
ventions are quite unbiased with respect to many of the design features that distinguish
the morphological theories mentioned above. It is therefore a suitable instrument for
studying the morphology of German.

In fact, several different approaches to the description of morphology in HPSG have
been put forward previously: In Pollard and Sag (1987) and Flickinger (1987), lexical
rules are introduced as the major device to describe the inflectional morphology of
English (derivation and composition are not treated in Pollard and Sag, 1987). Lexical
rules can be interpreted as an item-and-process model of morphology in the sense of
Hockett (1954), see Section 2.1. They have been criticised for being an alien element,
in the HPSG framework from a formal point of view: They are neither types nor signs
nor anything which can be modelled as a feature structure, instead, they represent
non-monotonic operations on feature structures. Moreover, their interpretation is not
unambiguous, see Section 4.3 for a formal introduction and discussion of lexical rules.

Krieger (1993) provides an item-and-arrangement account of German derivational
morphology in HPSG, using the HPSG attribute-value structures and principles to de-
scribe a classical word grammar with an integrated semantics, where morphemes are
fully-fledged linguistic signs. One of the author’s aims was to eliminate lexical rules
from the description of morphology. This approach will be discussed in Section 4.4.

Riehemann (1993, 1998, 2001) criticises this approach because of systematic redun-
dancies and introduces schemata for a description of a fragment of German derivational
morphotactics in HPSG. Schemata arise as lexical types over existing derived words,
giving morphemes no independent status. This approach (discussed in Section 4.4) is
not easily categorised in terms of Hockett’s (1954) classification.

Most current (not only HPSG-related) computational models of the lexicon and
morphology are declarative in the sense that they can serve as knowledge bases for
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any kind of morphological processing. From a computational point of view, though,
word-and-paradigm models seem to have been preferred for morphological generation
applications, since in these, the access to the lexicon is via the lemmata, and the relevant
information about inflectional affixes is stored immediately at the lemma entries, cf.
Calder (1989) and Bleiching et al. (1996).

[tem-and-arrangement approaches lend themselves more easily to morphological anal-
ysis applications, as in such tasks, morphological segmentation has to be performed first,
and lexical access is done via the morphs obtained through the segmentation. Once there
is a lexical entry for each morpheme where information about its combinatorial (mor-
photactic and morphosemantic) possibilities is stored, a point is obviously reached where
a morpheme is a concept that associates a form with a meaning and must be considered
to be a linguistic sign.

1.4. Goals
1.4.1. Linguistic adequacy

One goal of this thesis is to provide a descriptively adequate theory of the morphology
of German. Linguistic adequacy criteria for a grammar go back to (Chomsky, 1964,
p.29ff). A grammar is observationally adequate “if it presents the observed primary
data correctly”. This means that a theory of morphology is observationally adequate
if it is capable of distinguishing words and non-words in a corpus of linguistic data.
“A second and higher level of success is achieved when the grammar gives a correct
account of the linguistic intuition of the native speaker, and specifies the observed data
(in particular) in terms of significant generalisations that express underlying regularities
in the language.” A descriptively adequate morphology thus assigns lexicalised words as
well as potential words structures and expresses part of a native speaker’s morphological
competence. FEzrplanatory adequacy may be reached within a theory of grammar that
formulates criteria for picking the best theory among several descriptively adequate
theories. According to Chomsky and Halle (1968), such criteria are based on “external
evidence” from neighbouring fields such as psycholinguistics and cognitive science, e.g.
whether a morphology can explain phenomena of child language acquisition.

But we also aim at something that might be called computational adequacy. The
morphology will be described in a formalism for which several implementations exist.
Thus it can be used as lingware in a linguistic analysis or generation system, which may
be a component in a more complex system, such as an automatic speech recognition
system, or a machine translation system (see Section 1.4.2). It is in fact one of the tasks
of computational linguistics to provide linguistically well-motivated grammars for such
systems, and in turn, a successful computational implementation represents a proof of
the well-formedness of a theory.
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The theory developed in this thesis is also intended to be comprehensive, including
the areas of inflection, derivation and compounding for all word classes. With the help of
this, we will also seek an answer to the question, whether it is necessary to use a feature-
based grammar formalism for an adequate description of German morphology at all, as
it has been suggested previously, that less powerful grammar formalisms such as finite
state automata suffice for the description (of at least the main areas) of morphology
(Koskenniemi and Church (1988), but see also Carden (1983)).

The Verbmobil subproject Lexicon and Morphology (see Section 1.4.2) dealt with
a lexicon containing phonological and surface-form related morphological information
about words and sub-word units to be used in speech processing. This project, though,
is situated on the boundary between speech processing (dealing with sub-word units) and
language processing (dealing with words and linguistics units larger than words), so our
morphology is supposed to be augmentable with further types of linguistic information,
such as semantic constraints on morphological construction types.

Moreover, the thesis will provide results that have an impact on a general theory of
morphology across languages. However, we will be careful in the formulation of proposals
in that direction, as we believe that principles of universal grammar/morphology can
only be formulated as a consequence of comparing the grammars/morphologies of many
languages, which must be ideally be provided in identical frameworks and especially
formalisms first. This also implies that this thesis will provide a test for previously
made universal or typological claims within the HPSG framework.

1.4.2. Speech applications of a morphological theory

This thesis emerged from the author’s work in the automatic speech-to-speech transla-
tion project Verbmobil between 1995 and 2000, in the subprojects called Lezicon and
Morphology and Generation of pronunciation dictionaries. Verbmobil ran for eight years
between 1993-2000, in two phases 1993-1996 and 1997-2000. It is documented compre-
hensively in Wahlster (2000b). Verbmobil’s final deliverable was a “speaker-independent
and bidirectional speech-to-speech translation system for spontaneous dialogs in mobile
situations” (Wahlster, 2000a, p.3). The system is able to process a vocabulary of 10157
German words (full word forms). This is quite a high number compared with other
systems with a similar task. However, the number is very low in view of the number of
actual words and lower still with respect to the potential number of words of the Ger-
man language; it only makes sense under the condition that Verbmobil is to be used in
a limited domain, viz appointment scheduling and travel planning. Generally, the ratio
between full words form types and stem (lemma) types in German texts, varies between
3:1 and 5:1, due to inflectional variation depending on the text type. English, in con-
trast, has a word form variation factor of only slightly > 1 (Gibbon and Liingen, 2000).
German also differs from English in the higher rate of word formations (derivatives and
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compounds) in the vocabulary. In addition, these word formations are consistently tran-
scribed as single words in transcriptions of speech, whereas in English transcriptions,
they are very frequently orthographically segmented by blanks or hyphens, resulting in
some inconsistency in the available figures, cf.

e einundzwanzig vs. twenty-one
e Reisebiiro vs. travel agency
e nachzuschlagen vs. to look up

Moreover, a rather large percentage of the out-of-vocabulary items encountered by
the system in test runs are compounds, derivatives, and inflectional forms of stems that
are already included in the vocabulary. It is well-known that this percentage increases
with increasing vocabulary.!

One of the ways to cope with this fact is to inventorise the morph(eme)s instead of or
in addition to the words of a language with rich morphology in the lexica of speech recog-
nition systems and to perform morph recognition instead of word recognition. Words
are known to be composed of morphs and can therefore still serve as the interface be-
tween speech components and language components in a speech recognition architecture
enhanced by a morphological processor. The question of how to include which kind of
morphological knowledge in the speech recognition process to gain the best results is
still an object of research, and several experimental word recognition systems dealing
with this problem have been implemented and evaluated in recent years, e.g. Geutner
(1995), Berton et al. (1996), Liingen et al. (1996), Althoff et al. (1996), Althoff (1997),
Strom and Heine (1999), and Pampel (1999) in the Verbmobil context.

Whereas current word recogniser dictionaries frequently consist of simple pronun-
ciation tables, it is obvious that a more elaborately structured lexicon is needed to
include morphotactic, morphographemic, and morphophonological properties of word
forms. Such a lexicon has been developed during Verbmobil Phase I (1993-1996), see
Gibbon and Ehrlich (1995), and Bleiching et al. (1996). The extensional coverage of this
core lexicon for speech processing is the vocabulary of the transcriptions of the Verbmo-
bil German dialogue corpus, which amounted to 11398 lemmata in the year 2000. Its
intensional coverage comprises components especially needed for speech processing, i.e.
orthographic and phonemic surface form, lexical prosodic and syllable structure, mor-
phological segmentation and structure, with pointers to morphological constituents and
their properties. Its lexicon model is based on ILEX (Integrated Lexicon with Excep-
tions, Gibbon (1991, 1997)), but we will provide an HPSG model for this lexicon in
this thesis. The HPSG theory of morphology developed in this thesis was employed in
the morphological analyser and lexical acquisition program McLASS (implemented in
Prolog). The MCLASS system is presented in Section 6.

lef. e.g. Geutner (1995), Matthiesen (1999), Mengel (1999).
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1.5. Method and structure of the thesis

We will first examine the state of the art of morphological theory. Section 2 deals
with current generative models and models of computational morphology. The formal
foundations of the formalism of typed feature structures, which is used in HPSG, are
presented in Section 3. We will then have a closer look at previous approaches to
morphology and the lexicon within HPSG. The emphasis will be on studies of German
morphology (as well as syntax as far as it is relevant), but also other languages are
taken into account when it is expedient (Section 4). The central part of this thesis is
then Section 5, where the morphology of German is studied with respect to particular
sub-areas such as headedness, prefixation, or nominal inflection. We also take various
previous approaches to these topics into consideration and evaluate them critically. The
results of these evaluations are made compatible by formulating them in terms of typed
feature structures, i.e. feature appropriateness specifications, the subsumption relations
between lexical types, and principles of morphological constituency. Some principles
of HPSG such as the interaction of the Head Feature and Marking Principle, or the
structure of the attribute SYNSEM are also evaluated critically as a consequence of the
analysis of German. In Section 6, the lexical acquisition program McCLASS, which uses
the HPSG theory of German morphology for its DCG morphotactics, is presented.

As linguistic data for the analyses, we partly reuse examples from the literature,
partly provide examples introspectively, but for the most part we take words from the
Verbmobil dialogue corpora in the form of the morphologically annotated Bielefeld lexical
database (Liingen et al., 1998; Gibbon and Liingen, 2000).

1.6. Basic terminology and notes on typography

One goal of this thesis is to provide exact definitions of central terms such as morph,
morpheme, lemma, paradigm, and stem within the morphological theory to be devel-
oped. However, we want to discuss previous approaches already before the introduction
of the actual theory with the help of these concepts. In these discussions, we generally
adopt the meanings these terms have in classical structuralist studies such as Bloomfield
(1933), or as they are presented modern textbooks (Spencer, 1991, p.3ff). The following
is an overview of morphological terms and what they are supposed to denote (as well as
what they are supposed not to denote) in this thesis:

Morph: A minimal meaning-bearing unit of language. Morphs have surface rep-
resentations in terms of phoneme or grapheme strings, thus they can be segmented
in running text. We also subsume under morphemes elements which might not be
considered meaning-bearing by some scholars, such as the -ig in Helligkeit, or
the -et- in theoretisch because we consider them to have a structural meaning,
for example that a whole series of word forms shares them (cf. theoretisieren,
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pathetisch, apologetisch, Apologet), or that stress assignment is sensitive to them.
In other words, we claim that the word forms Einigkeit and Helligkeit should
have the same morphological structure, e.g. that they are constituted by a sequence
of root+suffix+suffix, although -ig seems to be an adjective-forming suffix only in
Einigkeit.

A morpheme denotes a class of morphs that share the same meaning or function
but differ in their distributional and/or surface form properties. Thus morphemes are
more abstract entities, and additional symbols that represent morphophonemes (mor-
phologically conditioned classes of phonemes) and morphographemes may be employed
to represent their phonological and graphemic underlying forms. Allomorph is then a
relational term defined with the help of morph and morpheme: A morph A which is
a realisation of the morpheme B is an allomorph of B. Thus, sprach and sprich are
orthographic allomorphs of //sprEch//.

Free morphs are those that can appear as a word form (s.b.) in their own right
(Biro, war, aber), whereas bound morphs are morphs that only appear as a subpart
of a word form (-e, -iv, werb-).

That part of a word form that is left when all affixes are stripped off, is called a root
morph. A class of root morphs with the same meaning forms a root morpheme. Not
all root morphs in German are free forms. A base is that part of a word form to which
any other morph is added. An affiz is a bound morph(eme) that must be affixed to a
base (s.b.) to form a new base. In German, an affix must always be affixed either only
from the left (a prefiz) or only from the right (a suffiz). (So-called circumfizes may be
analysed as two morphs, a prefix and a suffix.)

A form that may combine with an inflectional suffix to form a word form is called a
stem. Base and stem are not always distinguished in the literature, but (Spencer, 1991,
p.461, footnote 10), for example, makes the distinction in the sense in which we make
it here. In the discussion of previous studies of morphology, however, we sometimes use
stem in the sense it was originally used by the author(s), which often corresponds to our
base.

A lemma is a class of word forms belonging to the same paradigm. A lemma is also
viewed as a class of stems that belong to the same paradigm. We consider a lezeme to
be a lemma associated with a specific meaning.

A word form is any form that may occur freely, i.e. as a syntactic atom. The term
word is used in this thesis sometimes for [emma and sometimes for word form. Which
one is meant is either unambiguous from the context, or considered irrelevant for the
argumentation. Note that in the presentation of our HPSG morphology, word receives
the specific meaning of denoting the lexical type that subsumes word forms.

A paradigm is the set of word forms that bear certain morphosyntactic descriptions
and are associated with one lemma. (So far the definitions of ‘paradigm’ and ‘lemma’
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are cyclic, but they won’t be in the morphological theory we are going to present.)

Among the basic morphological operations, inflection is the one by means of which
certain morphosyntactic categories are marked on a stem, i.e. the declination of nominals,
and the conjugation of verbs. In derivation, however, a new base is formed from one
base, involving the modification of syntatic and semantic properties of the original base.
Finally, in compounding two bases are combined to form a new base.

All other central terms, especially those that receive a technical meaning in HPSG
and in our HPSG morphology are defined when they are introduced.

As italic font is used for type symbols in HPSG, which occur quite frequently in
this thesis, we cite word forms, stems and morphs throughout this thesis in typewriter
font. Sometimes a form may still be cited in italics, this means that it represents the
respective more abstract entity (morpheme or lemma).

Finally, note that in examples of lexical entries, we transcribe all surface orthographic
forms, phonological forms, and morphological boundaries according to the Verbmobil lex-
ical conventions for spelling and pronunciation, (see Gibbon, 1995) but in the remaining
examples (mostly those in running text) we do not make use of the TeX German um-
laut notation, i.e. we spell Fiie and not F"u"se. For phonological tanscriptions, the
Verbmobil conventions imply the use of the SAMPA phonetic symbols for German, the
relevant version of which is found in the same source.
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2. Some previous approaches to morphology

2.1. Two models of grammatical description

In the article “Two Models of Grammatical Description”, Hockett (1954) compares
Item-and-Arrangement (IA) models of grammar with Item-and-Process (IP) models of
grammar. Hockett had recognised that one or the other kind of underlying models
lay behind the work of different American structuralists. He also mentioned a third,
independent model of linguistic description called Word-and-Paradigm (WP). These
models, apart from WP, can be applied to the description of any level of grammar, though
Hockett uses examples only from the domains of morphology and morphophonology.

In an TP model, the difference between two partially similar forms is frequently
described as a process which yields one form out of the other.? Thus, the form baked
is derived from the form bake by means of a process called PAST TENSE FORMATION.
The same process is responsible for derivation of took from take. Different markers are
appropriate in this process for each of the roots bake and take, explaining the fact that
in one case the actual phonological operation is a suffixation and in the other it is an
apophony.® A grammar then consists of a list of the simple forms to which processes can
be applied, and a detailed description of all the processes. What would count as an affix
in an [A approach is not a morpheme, not even a linguistic sign in an IP approach. It
is simply a marker which has no meaning and no independent status outside a process.

In an TA model, however, the basic ingredients of the grammar are a list of morphemes
and an inventory of constructions with a detailed description of each construction. Mor-
phemes thus have an independent status, they are associated with a form and a meaning
and they are listed in a lexicon, thus, they are signs. They exist independently of the
rules (constructions), into which they are embedded.

Thus, one of the main differences between the two models is the status of morphemes,
especially affixes, which are absent in an IP model. Another crucial difference is that
an TA model seems to involve only one kind of phonological operation, which is concate-
nation; operations like mutation or deletion are excluded since functional and semantic
categories have to be associated with identifiable and segmentable items. For this reason,
in strict IA-models, additional concepts such as zero allomorphs, portmanteau morphs,
or prosodic morphemes must sometimes be introduced.

2Cf. (Harris, 1939, p.199).

3In Spencer (1991), it is falsely claimed that Hockett regards the above two different past tense forma-
tions as the outputs of two different processes. A process, as Hockett explains it, is rather defined
by the forming of one grammatical, functional or semantic category, and different phonological op-
erations involved in a process are regarded as different markers of the process, which depend on the
root that is the input to the process.
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A classical transformational grammar as presented by Chomsky (1965a) incorpo-
rates both models: the base component, characterised by phrase structure rules, follows
an item-and-arrangement model of grammar whereas the transformational component
conforms to an item-and-process model.

The Word-and-Paradigm model of morphology briefly mentioned by Hockett was
first discussed in detail by Robins (1959) and further developed in Matthews (1974). It
was designed as an answer to some shortcomings of both the TA and the TP model of
morphology. The latter are adequate in cases where there is a one-to-one correspondence
between morphological form and morphological function, i.e. in which one function can
be identified with exactly one affix or one process. However, this is probably never the
case across all morphological processes to be found in one language, though agglutinating
languages such as Finnish or Turkish can come quite close to this. Cases of one-to-
many or many-to-one correspondences between form and function have been handled by
remedies such as portmanteau morphs and zero allomorphs, or complex processes and
processes without markers in IA and IP models, but when it comes to many-to-many
correspondences as in the inflectional morphology of highly fusional languages such as
Latin (cf. Figure 1)*, TA and IP models fail to capture important generalisations.

RULE PERF 1ST-SG
r-e-k s i

Figure 1: Many-to-many correspondences between form and function in Latin rexi

(“ruled”).

The basic idea in the WP approach is to formulate these generalisations at the level
of the morphosyntactic word, i.e. in the description of fully inflected word forms where
morphosyntactic functions and phonological exponents can be stated totally indepen-
dently of each other if necessary. In order to achieve this, the notion of a paradigm as a
linguistic object is introduced.

A paradigm is the set of all declined or conjugated word forms that are associated
with one particular lemma. A paradigm class is then a class of lemmata for which the
phonological exponents for expressing the morphosyntactic categories are the identical.

Consequently, the different declension and conjugation classes characteristic of fu-
sional languages like Greek, Latin, or Sanskrit can easily be described and related to
each other. Another result is that inflectional syncretism can be described adequately
in this model, abounding also in languages like German or Old English.

In computational morphology, the WP model has been adopted and implemented in

after Spencer (1991).
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one or the other variation by Calder (1989), Bleiching et al. (1996), Cahill and Gazdar
(1997), and Cahill and Gazdar (1999).

2.2. Two-level morphology

The core of the two-level model is actually an alternative to traditional phonological
rewrite rules as used for example in the SPE (Chomsky and Halle, 1968). It had been
discovered earlier that such rewrite rules correspond to finite-state transducers, given
some additional restrictions that were linguistically perfectly acceptable (cf. Johnson,
1972; Karttunen, 1983). The operation of composing large cascades of rewrite rules
to one single transducers turned out to be computationally unfeasible in many cases,
though, because the resulting transducers would become too large. Koskenniemi’s (1983)
solution was the invention of the so-called two-level rules, which still correspond to
finite-state transducers but apply in parallel. The rules must be written such that
each surface/lexical (the two levels) character pair is seen by all transducers at the
same time. Two-level rules were successfully applied to describe morphophonological
phenomena such as Finnish consonant gradation, triggered amongst other things by
morphological border symbols in the rule contexts. The description of the morphotactics
within Two-level morphology relies otherwise on a system of continuation classes, i.e.
lexica of morph categories. Each morph entry containts a pointer to a continuation class.
Both components, the two-level rule component and the system of continuation classes,
correspond to finite-state automata.

Finnish morphotactics is relatively simple, though (e.g. all derivation and inflection
is exclusively suffixing), and the model is not designed to express morphological con-
stituency. With the German word form [un[[denk]ybar]p;]apys, for example, the
continuation class approach fails, because when un- is prefixed to denk, it is not known
that an adjective base follows as the suffix —bar is not seen in the immediate continuation
lexicon.?

The fact that it forms adjectives from adjectival bases is nevertheless an important
morphological constraint on un-prefixation, which one would want to express in the mor-
phology. The semantic interpretation of compounds, or stress assignment to compounds
in German also rely on a representation of morphological constituency (cf. Bleiching,
1991) and the two-level model is simply not designed for such tasks (cf. also Sproat,
1992, p.152f).

In a Two-level morphology, the morphotactics is described by IA means: The only
possible operation is concatenation, and other operations such as ablaut are described

SMorphological “long-distance” dependencies like this may be described by splitting the possible con-
tinuations after un—, but such a treatment fails to capture the generalisation that un- is a deadjectival
adjective-forming prefix.
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by introducing different allomorphs to be concatenated under certain conditions. The
morphophonology, expressed in the actual two-level rules relating the representations on
the surface and the lexical level, corresponds to an IP model, if we consider the items to
be the lexical forms. If we consider the feasible pairs of lexical and surface form (morpho-
J)phonemes to count as the items in question, the model conforms to an TA phonology.
The evaluation of the two-level rule model with respect to an TA vs. IP approach remains
somewhat unclear, since the rules apply always in parallel and, unlike in the case of
SPE phonological rules, it is not possible to consider the morphophonological process
described by one two-level rule isolated from the rest of the rules.

2.3. Morphology in generative grammar
2.3.1. Word syntax

Selkirk (1982) proposed an approach to morphology called Word syntaz. Adopting the
Government and Binding model of syntax by Chomsky (1981), she designed a model of
morphology using means familiar from generative syntactic theory. These means are the
formalism of context free phrase structure rules, a version of X-bar Theory to constrain
the set of possible PS-rules, and a theory of headedness in morphology. In her approach,
the maximal projection in a Word syntax is the interface to the sentence syntax, i.e. it
is identical with the zero level projection in sentence syntax, the lexical category, that
is, the Word. While syntax and morphology share the descriptive formalism and the
important principles of X-bar Theory, Selkirk emphasises the autonomy of Word Syntax,
in which categories and additional principles distinct from those to be found in sentence
syntax are employed. All Word syntax is incorporated in the lexicon, the morphological
rules serve both as lexical redundancy rules and to assign meaning and structure to
newly created words. The morphological base component consists of the PS-rule part
and of a morpheme dictionary comprising a sub-dictionary of free morphemes plus a list
of affixes. In addition to the non-terminal category Word, there are two other categories,
the non-terminal Root, and the terminal Affiz.

Lexical entries for affixes include the following (cf. Selkirk, 1982, p.64):

e Category, including type (always Affiz), syntactic category features, and diacritic
features

e Subcategorisation frame
e Semantic functions

e Phonological representation

A difference between morphology and syntax is that in morphology, recursion in
the PS-component is highly constrained in that a Root cannot dominate a Word. This
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means that no structures parallel to a V dominating an NP in syntax are possible in
morphology.®

Selkirk’s general X-bar schema for affixation looks as follows:”

(a) Word — Affix  Word
(b) Word — Word Affic

21 (¢) Root — Affit Root
(d) Root — Root Affix
(e) Word — Root

The terminal symbols ‘Root’ and ‘Affix’ may be expanded by lexical insertion. The
rules under 2.1 are to be viewed as informal versions of the following:

a) X — Y¥ X
by X — Y X
o) X' — Y¥ X"
d) X* — Yy X+
e) X — X'

2.2

NN N N N

In the latter set of rules, we can firstly see that all elements of Word syntax not only
belong to the morphological categories Word, Root, and Affixz, but also to the syntactic
categories N, A, V, and P, which is what X and Y may stand for. Thus, as in X-bar
theory for sentence syntax, more general, category-independent rule schemata replace a
larger set of single rules. The second rule under 2.2, for example, describes among other
things the following, more specific rules generating derivatives of adjectives:

(a) N — A N
23 (b) V — A V¥
() A — A A¥

Secondly, in 2.2, we can see that in an affixation according to Selkirk, the head
is always the rightmost element, as the left-hand side (LHS) of a rule is always of
the same category X as the right-hand element of the right-hand side (RHS). Selkirk
discusses headedness at length, considering arguments from derivation as well as from
compounding and inflection. The topic of headedness in morphology will be introduced
and discussed in detail in Section 5.2 in this thesis.

A third aspect of Selkirk’s general rule schemata is that they include results from
the theory of Lexical Phonology and Morphology (LPM) developed in e.g. Siegel (1979),
Mohanan (1982), Kiparsky (1982a), and Kiparsky (1985). Selkirk points out that class

6(cf. Spencer, 1991, p.198).
7(cf. Selkirk, 1982, p.95).
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Word

Affix Word

Root

Root Affix

un scrupul ous

Figure 2: Tree structure of unscrupulous according to Word syntax

I affixes from LPM are those that can only be attached to the category Root in the
Word syntax, again yielding Root. Class II affixes can be attached both to Word and
to Root, yielding Word. The latter possibility is only indirect, as Word may expand to
Root. The Word affixes and the Root affixes are in principle disjoint, and the restriction
whether they attach to Root or Word is expressed in the subcategorisation frames of
the affixes. Thus, the categories Root and Word remodel the domains of level T and
level II affixation of LPM, respectively, while level I affixation is generated before level
IT affixation, which is also in accordance with LPM. Root and Word also play a role
in compounding and inflection: English native compounding is always a concatenation
of two Word, and inflectional suffixes are generated as sisters of Word, not of Root, cf.
(Selkirk, 1982, p.53f and 71ff).

Selkirk’s Word syntax is a comprehensive item-and-arrangement morphology for En-
glish within the framework of generative grammar. Moreover, it is a demonstration of
the descriptive power of the Word-Syntax/item-and-arrangement approach to morphol-
ogy and gave rise to a number of elaborations of the theory, such as Toman (1987) and
Lieber (1992). Still, Selkirk’s Word syntax is designed to account for concatenative mor-
phology only (which seems to be sufficient for English productive morphology). Forms
like geese and goose are evidently regarded as different morphemes, the fact that they
are morphologically related is not accounted for by Word Syntax.

In view of later feature-based item-and-arrangement morphologies as e.g. in Ritchie
et al. (1992) or Krieger (1993), one can say for the that Selkirk’s approach also could
be enhanced with a more elaborate theory of morphological features and types, which
could introduce some more generalisations. Categories may be explicated as (complex)
bundles of (typed) features, for example. The rules in 2.1, for example, are not so much
informal versions of those in 2.2, rather the categories occurring in them are named
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after the values of different features appropriate for the categories Root, Word, or Affix.
Selkirk’s account of feature percolation from morphological heads (Selkirk, 1982, p. 74f.
) could be formulated as a precise Head Feature Principle (cf. Section 5.2 in this thesis).
Moreover, with a suitably large set of features, the category Root could certainly be done
away with, as all restrictions could be expressed via subcategorisation of feature-value
pairs.®

2.3.2. Deconstructing morphology

The aim of Lieber (1992) is to demonstrate that there are no independent rules or prin-
ciples of morphology but that everything that usually falls under the heading of mor-
phology can be described using the principles familiar from syntactic theory in the form
of the GB framework Chomsky (1981). Lieber therefore explicitly opposes the Lezical-
ist Hypothesis introduced in Chomsky (1970) which states that the rules of morphology
and the rules of syntax do not interact. The Lexicalist Hypothesis forms the background
of major studies in generative morphology such as Selkirk (1982), and Di Sciullo and
Williams (1987).°

The lexicon in Lieber (1992) is the inventory of so-called listemes, including the following:

o Affixes: e.g. -ize
e Roots: bound morphemes such as path (as in psychopath, pathology)
e Words: e.g. run, enter

e Lexicalised (complex) words: e.g. transmission

The following components are included in a lexical entry:

the syntactic category

a phonological representation

e the Lexical Conceptual Structure (LCS, after Jackendoff, 1990)

the Predicate Argument Structure (PAS), giving the mapping between LCS and
syntactic structure

Two sample lexical entries are given in Figures 3 and 4.

8Selkirk rejects such a “diacritic” analysis for English, though, cf. (Selkirk, 1982, p.112ff).
9(cf. Lieber, 1992, p.12).
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run [y ]

[rln]
LCS:  [Event GO([Thing I, [Path D]
PAS: x

-ize  [N,A— v

[ayz]
LCS: [ éAUSE ([Thing ], [BE (LCS of base)])]
PAS: x

Figure 4: Lexical Entry for -ize according to (Lieber, 1992, p.22).

Lieber gives the example of English possessive marking and phrasal compounding (i.e.
not exactly the core cases) to illustrate the non-separability of grammar into a syntactic
and a morphological component. In these, the morphological processes of affixation and
compounding operate on syntactic structures, as in the following examples:

2.4 [Never-come-back)-Airlines

2.5 [The Wife of Bath]’s (Tale)

On prosodic and particularly on distributional and semantic grounds, we must come
to the conclusion that in the first example, the VP never come back is compounded with
the noun airlines, and in the second example, the possessive marker -s is suffixed to the
NP Wife of Bath. In these examples, the stipulated boundary between the morphological
component and the syntactic component of grammar is disregarded. Thus it seems to
be doubtful whether there is such a partition of grammar at all. During the rest of her
study, Lieber (1992) tries to prove step by step that the GB-principles of syntax work
for morphology as well. The first of these principles is X-bar theory. The X-bar schema
of syntax is slightly revised so as to fit both syntactic and morphological constructions:

26 X* — oXxmmlo

The main innovation is that projections of X in the RHS of the schema need not
longer be one bar-level lower than the projection of X in the LHS. The schema thus
allows for direct recursion familiar from the X-bar schema devised by Selkirk (1982), cf.
Section 2.3. Closely connected to X-bar theory is Head theory, as X is the head in the
X-bar schema, occurring on both sides of the arrow in 2.6. Williams (1981) had proposed
a theory of headedness and feature percolation in morphology, known as the Right-hand
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Head Rule (RHR). This was was revised in Di Sciullo and Williams (1987) by introducing
the notion of relativised head, for which the percolation principle subsequently became
called the Relativised Right-hand Head Rule (RHR). Lieber, however, claims that heads
in morphology are predictable using the head principles from syntax, which state that
heads are either initial or final with respect to complements, specifiers, and modifiers,
(see Section 5.2 for a definition of these) according to studies by Stowell (1990) and
Travis (1990). The latter claims that the property of being head-initial or head-final is
a parameter of universal grammar which must be set one way by each language.

Lieber claims that the Licensing Conditions for Heads in English syntax are the
following (Lieber, 1992, p.49f.):

1. Heads are initial with respect to complements.
2. Heads are final with respect to specifiers.

3. Heads are final with respect to modifiers.

She claims that these conditions are met in English morphology as well. Her ar-
gumentation depends heavily on what is identified with complements, specifiers, and
modifiers in the field of morphology, the account of which seems somewhat problematic,
especially her claim that a stem in a derivation must be the specifier (p.54). Synthetic
compounds such as bus driver are obvious counterexamples to the claim that Heads are
initial with respect to complements in English word formation, as bus is the complement
of drive in the example. For synthetic compounds, Lieber claims that on the level of D-
structure, the construction of bus driver is indeed left-headed, and is only later reversed
by the transformation move-a.

With further examples from other languages such as French and Tagalog (p.64ff) it
is argued similarly that Head and X-bar theory work in morphology just as they do in
syntax.

In this study, we do not want to adopt Lieber’s line of argumentation, since she de-
velops her theory within a transformational framework, whereas we aim at a description
of morphology within a monostratal theory of grammar. Although Lieber provides inde-
pendent motivations for ascribing the correct head directionality in synthetic compounds
to D-structure, the recourse to D-structure seems arbitrary and to be done because a
desired analysis is impossible on S-structure. We do not want to decide whether there
are separate morphological and syntactic components of grammar at this point of the
present, thesis, instead we want to develop a description of the morphology of German
within a unification based theory of grammar and to judge a posteriori whether it con-
tains constraints that are to be viewed as exclusively morphological or not.

Nevertheless, Lieber’s subsequent analysis of feature percolation and inheritance will
be of great interest for the present thesis. In her analysis, she tries to make explicit what
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remains somewhat unclear in the studies of her predecessors, namely what components
lexical entries have, what (kinds of) features there are, and how and why exactly they
do or do not percolate. This can be regarded as an important step in the development
of a Head Feature Principle for Morphology in the sense of HPSG.

Firstly, Lieber (p.80ff) distinguishes between morphosyntactic and diacritic features.
Morphosyntactic features are those that play a role in syntax (in e.g. syntactic agree-
ment) and are usually provided by inflectional morphology. In German these features
would be syntactic category, case, number, gender, strong/weak adjective declension,
person, and also tense and mood for verbs. It is argued that in morphological construc-
tions, these features percolate from a head to its dominating constituent. Secondly, what
it is exactly that percolates is a so-called categorial signature which can be interpreted
as a well-typed feature structure containing the morphosyntactic specifications of a mor-
phological construction, as in it it is precisely defined for each syntactic category what
features it contains and what their possible values are.

N

+/— Plural
+/— Case;
+/— Case;j
+/— Fem
+/— Masc
+/-1
+/— 11

Figure 5: Categorial signature for nouns after (Lieber, 1992, p.89)

Inflectional suffixes “do not carry complete categorial signatures”, they just con-
tribute value specifications to categorial signatures of the stems to which they are at-
tached. Consequently, they cannot be heads.

Only stems, bound bases, and derivational affixes will have full categorial
signatures. Inflectional affixes will be marked only with individual features
for which they contain specified values. In derivational word formation the
value for a feature of a head morpheme will supersede or override that of
an inner morpheme. Features from inflectional morphemes can never over-
ride features from their bases, but can only fill in values unspecified in the
categorial signatures of their bases. Inflectional word formation is therefore
additive in a way that derivational word formation is not. A corollary of
this is that while derivational affixes may or may not be heads of their words,
inflectional affixes will never be heads. (Lieber, 1992, p.112)

This is a nice anticipation of the distinction between the Head Complement Schema
vs. the Head Marker Schema within HPSG (cf. Section 5.2.3).
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The other kind of feature, diacritics, is mentioned by both Selkirk (1982) and
Lieber (1992), but the term is never properly defined. Lieber cites [+/— strong] and
[+/— latinate| as diacritic features, and from the examples we conclude that diacritics
are those purely morphotactic features like paradigm features, which have no meaning
for syntax at all. According to (Lieber, 1992, p.80f.), diacritic features never percolate,
they are only referred to in morphological subcategorisation constraints.
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3. Formal foundations of typed feature structures

In HPSG, the modelling domain for linguistic objects are typed feature structures, or
attribute-value structures. In most introductions to feature-based theories of grammar,
such as Pollard and Sag (1994), Kiss (1995), Witt and Miiller (2002), the important
distinction between the modelling domain (the set of feature structures) and the de-
seription formalism is made. To better clarify the status of AVMs, we make a three-fold
distinction between the modelling domain, the description formalism, and its possible
notations: Feature structures are structured mathematical objects, they are defined in
terms of set and function theory (cf. Definitions 3.1 and 3.8). Descriptions of feature
structures are provided in terms of logical formulas, i.e. a feature structure is described
through a sentence in a formalism that has its own syntax and an interpretive semantics.
The latter is a mapping of descriptions onto objects or sets of objects in the domain
of feature structures. Finally, AVMs such as in Figure 6, or DAG notations such as in
Figure 7 are different notations for feature structures or descriptions of feature struc-
tures. They contain graphic elements and are supposed to be more easy to read and
write for humans than logical formulas. These notations stand in an isomorphic rela-
tionship to the descriptions of feature structures so that linguists can develop linguistic
theories using the AVM notation without needing to know details about the logics of
feature structures and their descriptions. Nevertheless reasoning is done, and proofs are
conducted usually over descriptions of feature structures, and not over AVMs.

In the following, we introduce feature structures and possible relations between them
as well as the crucial concepts of types and inheritance hierarchies. We follow Keller
(1993) in the presentation of the logical formalism for the description of feature struc-
tures, which was originally introduced by Kasper and Rounds (1986). The formal foun-
dations of typed feature systems were originally introduced by Carpenter (1992). The
view of typed feature structures as total models of linguistic objects that is prevalent in
current HPSG is based on King (1989).

3.1. Ordinary feature structures

Let L be a non-empty set of feature labels and A be a non-empty set of atomic values.

Definition 3.1 (Feature structure)'® A feature structure (over L and A) is a quadruple
(Q, qo, 0, ™) where

e () is a non-empty, finite set of states

e (q is the root state

0cf. (Keller, 1993, p.21).
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e ):(Q xL)— Q is a partial transition function

e 7m:(Q — A is a partial assignment function such that Vg € Q,VI € L :
if m(q) is defined, then §(q,1) is undefined.

Additionally, a feature structure is required to be connected, i.e. every state ¢ € () must
be reachable from ¢y via a sequence of transitions in 6.

In this definition, terminology from automata theory is partly used (state, transition
function, cf. (Hopcroft and Ullman, 1979, p.16f.)). We could just as well call the states
nodes, and the transition function the set of arcs, as is done in (Carpenter, 1992, p.36).

MORPH [SUBCAT Abj]

PHON  ?Un
SYN [CAT ApJ]

Figure 6: Feature structure in AVM notation

Adj

SUBCAT

Adj

Figure 7: Feature structure in DAG notation

Example 3.2 (A feature structure) Let PHON, MORPH, SUBCAT, SYN, CAT € L and ?Un
and Api be atomic values in A. The AVM in Figure 6 represents a feature structure

A =(Q, q, 0, ) where

1. Q={q,0,92, 00,0}

2. §(qo,PHON) = ¢y
6(go,MORPH) = ¢
d(qo,SYN) = g3
d(q2,SUBCAT) = ¢4

o(

"For a formal definition of reachability, see page 34.
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3. m(q) =?Un
7(q4) =ADJ
7(gs) =ADJ

The same feature structure is displayed in the alternative DAG notation in Figure 7.
The transitions, labelled by feature structure labels, are easily recognisable. The ‘final’
states are labelled by the atoms. The names of the states cannot be found in the graph,
but these are irrelevant anyway. Each single state is indicated by one (unnamed) node.

We would like to talk about a path and its value within a feature structure. A path
is a sequence of labels that reflects a transition from one state to another:!?

Definition 3.3 (Path, Value, reachable) Let A = (Q, qo, 0, ™) be a feature structure, and
let ¢ be a state in @, p be a sequence of labels in L*. Define 6* : (Q x L*) — @ as
follows:

e 0*(q,p) = q if p is the empty path
e *(q,p) = 0*(0(q,1),p") if p = Ip' is non-empty (I € L and p' € L* are uniquely
determined through p)

A path in A is thus an element in Paths(A) = {p € L* |3 6*(q0,p)}-

Let ¢ be another state in Q. If §*(q,p) = ¢ for some path p then the state ¢ is
reachable from state q.

The value V(A,p) of a given path p € Paths(A) is defined as V(A,p) =
(Q',0%(qo,p),d", 7"y, where Q' C Q is the subset of the states of A which are reach-
able from the new start state 6*(qo,p), and 0" and 7' are the restrictions of § and 7
respectively to states in Q.13

The value V(A, p) is thus again a feature structure. As notational device, we use ‘|’
as a delimiter for labels in a path. Thus, the feature structure shown in Figure 6 contains
the paths PHON, MORPH, MORPH|SUBCAT, SYN, and SYN|CAT. The value of the path
MORPH is a feature structure represented by the AVM ‘[SUBCAT ApJ ].” The value
of MORPH|SUBCAT is the atomic symbol ‘ApJ’, which is considered a feature structure
with only one state qg, an empty ¢, and with m being fully defined by the assignment
7(qo) = ADJ.

By definition 3.1, feature structures are distinguished from t¢rees such as the one in
Figure 2 by the fact that the transitions (arcs, edges) are labelled. A second difference
is that feature structures may be re-entrant. Informally, re-entrancy (or structure shar-
ing) describes the existence of token-identical values for different paths in one feature

2¢f. (Keller, 1993, p.23f).
Bef. (Keller, 1993, p.24).
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PHON /?Ungu:t/

AFFX [SUBCAT [scAT ADJ]]
DTRS

BASE [SCAT [1]]
Figure 8: Example of AVM notation of a feature structure with token-identical values

structure. In AVM notation, this is marked through square boxes containing indices
which are placed before the values and which are called tags. Identical tags denote
token identity. Figure 8 contains such a re-entrancy, and, to emphasise token-identity,
the respective value ‘ApJ’ is indicated only once. Figure 8 displays a typical example of
grammatical facts that are modelled by structure sharing: in a complex sign (one that
has a DTRS attribute), the subcategorisation information of one of the daughters shares
its structure with one of the other daughters present.

Formally, a feature structure A is re-entrant, if there exist ¢,q,q2 € @ in A, [y,
lo € L,l; # Iy such that 6(q1,l;) = ¢ and §(g2,ls) = ¢. In other words, a feature
structure is re-entrant if it contains a state ¢ that can be reached through transitions via
two different paths. The idea of one path with a branch that re-enters it at a particular
node is illustrated best in the DAG notation in Figure 9 of the AVM example in Figure
8.

2Ungu:t

SCAT Adj

SCAT
DTRS

Figure 9: Re-entrant feature structure in DAG notation

One view of feature structures is to regard them as partial models of linguistic objects.
If we have a feature structure A it will always be possible to find a feature structure
that contains the information modelled in A but which contains more information in
the form of additional feature-value specifications i.e. assignments for the function §. In
that case, A is said to subsume B.

Definition 3.4 (Subsumption)'. Let A = (Q, qo,d,7) and A" = (Q', ¢}, 5, 7'y be two
feature structures. Then A C A" (A subsumes A', A" extends A) just in case there exists
a mapping h : QQ — Q" which meets the following conditions:

14(Keller, 1993, p.24f.)
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® h(q) = qq
e if §(q,1) is defined, then §'(h(q),1) = h(d(q,1))
e if w(q) is defined, then 7' (h(q)) = 7(q)

In definition 3.4, A is a homomorphism from ) to " under which the structure defined
over L and A through 0 and 7 is preserved for ()'. It is not excluded that ¢’ and #’ contain
additional mapping assignments to those required by h, and this is what constitutes the
intuitive sense of feature structure subsumption: A’ is more informative than A.

Two feature structures, A and B are (subsumption-)equivalent, if A C B and B C A;
they are incomparable if neither A C B nor B C A.

(Keller, 1993, p.25) points out that equivalent feature structures are not necessarily
identical, as they may have differently named states. For some considerations it is
therefore necessary to deal with equivalence classes of feature structures, it is e.g. the
domain of equivalence classes of feature structures on which a weak partial order is
induced through ‘C’.

To introduce the operation of unification on the set of feature structures, we first
define the concepts of feature structure compatibility and minimal unifiers: Two feature
structures A and A’ are compatible just in case 3B : A C B and A' C B. B is called a
unifier of A and A’. B is called minimal just in case if B’ is another unifier then B C B'.

Definition 3.5 (Unification) Let A, A" be feature structures. Define
e AUA =B if A and A" are compatible such that B is their minimal unifier

The unification of two (compatible) feature structures AL A" is thus a feature struc-
ture that combines the pieces of information contained in A and those in A’. In HPSG,
unification of feature structure occurs when two signs are combined to form a complex
sign. This is a situation such as represented in the AVM in Figure 8. The two feature
structures that are the value of DTRS|AFFIX and DTRS|BASE are originally two differ-
ent signs. The values of DTRS|AFFIX|SUBCAT|SCAT and DTRS|BASE|SCAT are unified in
Figure 8, which is indicated through the tag .

Finally we want to point out that Definition 3.1 does not exclude feature structures
that contain cycles. A feature structure A is cyclic if it contains a non-empty path p
and a state ¢ such that 6*(q,p) = ¢, i.e. a path that leads to its own begin state.

(Karttunen, 1984, p.24) remarked on cyclic feature structures that “it has not been
shown, that there are phenomena in natural languages that involve circular structures”.
But the semantics of one reading of the sentence in Figure 10 could be modelled by a
feature structure such as represented by the AVM in Figure 10, cf. (Carpenter, 1992,
p.38).
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ARG

REL FALSE:|

Figure 10: Example of an AVM representing a cyclic feature structure

AGR - [PER 3 ]

NUM sa

Figure 11: AVM containing a negative constraint

3.6 This sentence is false.

In this thesis, we employ cyclic feature structures in the description of the kind of
mutual subcategorisation between umlauted bases and umlauting suffixes, cf. Section
5.5.4.

3.2. Feature logics

Why have a distinction between feature structures and descriptions of feature structures
at all? Feature structures, as defined above have the advantage that they can be de-
fined in terms of basic mathematical concepts, i.e. sets and ordered tuples (relations
and functions). On the other hand, according to (Carpenter, 1992, p.51), the logical
language of descriptions provides “a way to talk about feature structures; the language
can be displayed linearly one symbol after another and can thus be easily used in imple-
mentations.” Moreover, a description language is a kind of metalanguage that allows us
to formulate negative and disjunctive constraints on feature structures (the information
contained in feature structures as defined so far is conjunctive in the sense in which sets
are col-lections of objects). A description may thus denote classes of feature structures,
apart from particular feature structures. This is definitely desirable when describing
models of linguistic objects, as is illustrated by the examples in the AVMs representing
descriptions of feature structures in Figures 11 and 12. The AVM in Figure 11 describes
the class of feature structures that contain agreement information other than 3rd person
singular. Tt could thus be the specification of the agreement information provided by
the English verb form drive (as opposed to drives) which is a single word form standing
for different grammatical words (cf. Section 5). The AVM in Figure 12 could represent a
description of the agreement information of the German article die which can be alter-

AGR {GEN FEM] v [NUM pi]
NUM sac

Figure 12: AVM containing a disjunctive constraint
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natively plural or feminine singular. In these examples, it is the domain of grammatical
words that is modelled by feature structures.

The characteristics of feature structure descriptions are defined in the language of
Rounds-Kasper logic (Kasper and Rounds (1986)). Here we introduce a slightly mod-
ified version of the syntax presented in (Keller, 1993, p.26). A well-formed formula or
description with respect to the set of labels L and the set of atoms A is defined as
follows:!?

T is a description

L is a description

e if a € A, then a is a description

e if [ € L and ¢ is a description, then [ : ¢ is a description
e if ¢ and ¢ are descriptions, then (¢ A v) is a description
e if ¢ and ¢ are descriptions, then (¢ V v) is a description
e if p;,py € L*, then p; = p, is a description

In a description, the operator “:” has higher precedence than ‘v’ and ‘A’, and brackets
are omitted when this causes no ambiguities. T is the trivial description (satisfied by
any feature structure), and L is the ‘inconsistent description’ (which is never satisfiable).
A path equation p; = p, states that the values of the paths p; and py are token-identical.

Example 3.7 (A feature structure description) Let PHON, DTRS, AFFIX, SUBCAT, SCAT,
BASE be feature labels € L, ‘Apy, ‘/?7Ungu:t/’ be atomic feature values € A. The
following formulas are well-formed descriptions:

1. (pHON: /?Ungu:t/ A
(DTRS: (AFFX:SUBCAT:SCAT: ADJ A BASE:SCAT: ADJ)))
2. (DTRS:AFFX:SUBCAT:SCAT = DTRS:BASE:SCAT)

Both descriptions are satisfied by the feature structure represented by the DAG in
Figure 9. Formally, a feature structure A = (Q, ¢,, 0, 7) satisfies a description ¢ (A = ¢)
under the following conditions:'®

e AET
o AWK L
e A=Ea&7w(g)=a

15¢f. also (Carpenter, 1992, p.52).
16(Keller, 1993, p. 26).
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A=
A=
A=
A=

l:¢) < V(A,I) is defined and V(A1) E ¢
Vi) AEdor A1
AY) & AE¢and AEY

p1 = Dp2) < 6*(qo, p1) = 6*(qo, P2)

See T

The satisfaction relation ‘&’ is monotonic with respect to the subsumption relation.
That is, if A = ¢ and A C B, then B = ¢. Via the interpretation of feature structure
descriptions, it also follows that if A and B are compatible and if A = ¢ and B | 9
then AU B = (¢ A1), i.e. feature structure unification corresponds to the conjunction
of descriptions.

A whole calculus for drawing inferences over feature structure descriptions can be
defined, which is based on the proofs for equivalences that hold between expressions of
the Rounds-Kasper language, cf. (Keller, 1993, p.28f.). Algorithms for the unification
of feature structure descriptions (including disjunctive descriptions) are based on such
a calculus, cf. Kasper (1987), and Eisele and Dorre (1988).

In the definition of feature structure descriptions given above, the negation operation
occurring in Figure 11 is not included. This is because the interpretation of the negation
of feature structure descriptions poses difficulties, i.e. it is non-trivial to define the sat-
isfaction relation for negated descriptions without satisfaction becoming non-monotonic
with respect to subsumption. Monotonicity is a desirable quality of the calculus for
reasons of algorithmic efficiency, though. Several solutions have been put forward for
defining a suitable interpretation for negative descriptions, (cf. Keller, 1993, p.31ff).
One of them lies in the extension of the modelling domain with a system of types and
feature appropriateness definitions, which is desirable for several other reasons and has
thus been incorporated into the HPSG framework. With the help of these typed fea-
ture structures, it is possible to draw the linguistically relevant distinction between a
feature-value specification that is unknown in a description and an altogether irrelevant
feature.

3.3. Typed feature structures

A typed feature structure is distinguished from an ordinary feature structure through the
specification of a type symbol denoting a type in a type system. Types serve “to organise
feature structures into natural classes” (Carpenter, 1992, p.11). More precisely, the type
associated with a feature structure states what feature labels are allowed to occur in the
feature structure in so-called appropriateness conditions. A feature structure containing
feature labels that are not appropriate for it is said to be not well-typed.

A type system is simply a set Type of type symbols partially ordered by subsumption.
As types are atomic, the subsumption relation may be defined extensionally for Type.
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For instance, let sign, phrasal-sign, lexical-sign, word, morpheme € Type, and define
the subsumption relation as follows:

e sign C lexical-sign

e sign C phrasal-sign

e [exical-sign C word

e sign C word

e [exical-sign T morpheme

e sign C morpheme

e [exical-sign C lexical-sign

e phrasal-sign C phrasal-sign
e sign C sign

e word C word

e morpheme C morpheme

We say that sign subsumes lexical-sign, that sign is a supertype of lexical-sign, that
lexical-sign inherits from sign, and that lezical-sign is a subtype of sign. A type system
is alternatively called an inheritance hierarchy (of types). The inheritance hierarchy
above may be depicted as a graph (Figure 13).

stgn

phrasal-sign lexical-sign

word morpheme

Figure 13: A simple type hierarchy

(Carpenter, 1992, p.11) remarks that inheritance specifications (as well as the links
in Figure 13) resemble the ISA links in knowledge representation networks such as KL-
ONE (Brachman and Schmolze (1985)). More precisely, “the full subsumption relation
can be inferred as the transitive and reflexive closure of the relation determined by the
ISA links” (Carpenter, 1992, p.12).

An inheritance hierarchy Type is called consistent if its types share a common subtype
o, an upper bound with respect to subsumption, i.e. for every 7 € Type, 7 C o holds.
o is called the least upper bound or join of Type if additionally o C p for every upper
bound p € Type. It is required that every consistent subset of an inheritance hierarchy
have a join. The join of the empty set (which is a consistent subset of Type) is defined
as |, which is thus required to be an element of any type hierarchy.
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The join of a set of types with two elements «, 3 is written a LI (.

The definition of feature structures is extended to typed feature structures by associ-
ating each feature structure with a type in Type:

Let L be a non-empty set of feature labels and Type be an inheritance hierarchy.

Definition 3.8 (Typed feature structure)’” A typed feature structure over L and Type
is a quadruple (Q, qo, 6,0) where

e () is a non-empty, finite set of states that are reachable from qq

qo 18 the root state
§:(Q x L) — @ is a partial transition function

0 : Q — Type is a total function from states to types, the type assignment, or
typing function

In comparison with the definition of ordinary feature structures given in Figure 3.1,
the type assignment function # replaces the function 7 which assigned atomic values to
states. Moreover, 0 is a total function, assigning every state in a typed feature structure
a type. But the notion of atomic values can be preserved by identifying atomic values
with the lowest types in the inheritance hierarchy, i.e. those that have no subtypes (other
than themselves) and no appropriate feature labels (cf. Pollard and Sag, 1994, p.19). An
example of the description of a typed feature structure in AVM notation representing
the derivational suffix -keit is given in Figure 15. It is associated with the type keit, and
the values of all features contained are typed, too. The value of MORPH|DER|HEAD|LINK,
for example, is typed to be link.

Figure 14 shows a feature structure in DAG notation, whose nodes are labelled by
types and whose arcs are labelled by attributes.

2Ungu:t

m-subcat
SUBCAT

pre2 \/'0 adjective

SCAT

PHON

basePre2fixed

SCAT

DTRS headed-struc

Figure 14: DAG notation of a typed feature structure with types as nodes and feature
labels as arcs

17cf. (Keller, 1993, p. 36), (Carpenter, 1992, p.36).



3.3 Typed feature structures 42

[PHON KAIT ]

ORTH KEIT
i [FLEX n-f1e[ SUFFIXCLASS noun-frau]] 1
|'NAT + '|
DER COMB +
HEAD neder I}NTERF { }J
UML  4m[UMLB 1]
LINK [LINKED - ] J
n-morph-head | link LLINKBL s-lm-n
BND boundness
RBOUND . o
MORPH BND-ARG sufn M infl 1 stem-initial
BND toBind
MPHON LBOUND owmn
BND-ARG base-final
ADJ —
suffiz-mphon _STR - i
DER [NAT -]
MORPH |UML [UMLD —]
SUBCAT
vV UML [UMLB ]
n-morph non-uml-a-stem SYN [LOC [HEAD [MAJ (ld]}]]
I [LEX - 117
MAJ noun
GEN fem
SYN LOC HEAD CASE case
PER 3
AGR .
NUM sing J
native-n-suffiz | L loc L n-syn-head i

Figure 15: AVM for the suffix keit

The definition of the subsumption relation for typed feature structures is an exten-
sion of the subsumption definition for ordinary feature structures given in 3.4, taking
into account the corresponding subsumption of associated types, expressed in the third
condition below.

Definition 3.9 (Subsumption of typed feature structures) Let A = (Q, qo,9,0) and A
={Q', qy,0",0") be two typed feature structures over L and Type. Then A C A" (A
subsumes A', A" extends A) just in case there exists a mapping h : Q — Q" which meets
the following conditions:

® h(q) = qq
e if §(q,1) is defined, then §'(h(q),1) = h(d(q,1))
e Vg€ @:0(q) CO(h(q))
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In HPSG, where linguistic objects are modelled using typed feature structures, the
idea is that every typed feature structure must be well-typed, which comprises the notion
of appropriateness of feature labels for types. For example, a feature structure modelling
a noun may contain, or lack, a feature value specification for CASE, but with respect to a
verb it is known in advance that a CASE specification will never be appropriate. Similarly,
we want to guarantee that the value type past cannot be assigned to the feature label
CASE in a typed feature structure. (Carpenter, 1992, p.86) provides a formal definition
of feature appropriateness, which is also adopted in (Keller, 1993, p.37):

Definition 3.10 (Appropriateness) An appropriateness specification is a partial function
Appropriate : L x Type — Type from label-type pairs to types which meets the following
conditions:

e (Minimal introduction) VI € L : there is a most general type o € Type such that
Appropriate(l, o) is defined

e (Upward closure/Right monotonicity) If Appropriate(l,o) is defined and o T T
then Appropriate(l, T) is defined an Appropriate(l, o) T Appropriate(l, )

Minimal introduction requires that whenever a feature label is appropriate for two
types that have a common supertype, this feature must also be appropriate for that
supertype. The wupward closure property says that a feature label appropriate for a
given type is also appropriate for all of its subtypes. Finally, the value of a feature label
[ appropriate for a type 7 must be subsumed by the value of [ for any supertype o of 7
at which [ is defined (right monotonicity).

Now we have prepared the ground for formally introducing the notion of a well-typed
feature structure:

Definition 3.11 (Well-typed feature structure) A typed feature structure A =
(Q,qo,9,0) is well-typed if whenever 6(q,l) is defined, Appropriate(l,0(q)) is defined
and Appropriate(l,6(q)) C 0(5(L, q)).

In other words, any feature-value specification in a well-typed feature structure must
be appropriate for the type of that feature structure. In HPSG, the reversal of this
requirement must also hold: Whenever a feature is appropriate for a given type, each
feature structure that is assigned this type must actually contain a value specification
for that feature. Formally, a typed feature structure A = (Q, qo, 0, 0) is totally well-typed
if it is well-typed, and if (¢) is defined in A if for [ € L and q € Q, Appropriate(l,0(q))
is defined.

This implies that for every type an appropriate specification exists that tells us what
features are appropriate for the type, and of what type the values for these features have
to be. (Carpenter, 1992, p.77) remarks that “our appropriate specifications carry out the
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task originally delegated to co-occurrence restrictions in GPSG”. These appropriateness
specifications are also called a feature declarations.

Feature declarations may be represented in AVM notation. Figure 16 depicts the
feature declarations for the type native-n-suffiz.

SURF
surf

HEAD

MORPH

MPHON

n-morphology

n-morph-head |

[PHON phon-string
|ORTH orth-string

DER

UML

LINK

RBOUND

LBOUND

ADJ

suffiz-mphon

LSTR

n-der

uml

link

[FLEX n-lez| SUFFIXCLASS n—suﬂizclass}_

[NAT
COMB
INTERF

[UMLD boolean:|

: 1
boolean

SET—OF(inteTﬁE)J

UMLB suffiz
[LINKED boolean
LINKBL SET-OF(Im)
BND boundness
BND-ARG sufn M infl N stem-initial
BND toBind
BND-ARG base-final
boolean

SUBCAT 50se[SYN syn[LOC joea{HEAD syn-head]]]

[ [LEX -
MAJ noun
GEN gender
SYN Loc HEAD CASE case
AGR PER person
agr| NUM  number
native-n-suffiz [ L locall n-syn-head

SYN

Figure 16: AVM for type native-n-suffiz

}_

With the new definition of the subsumption relation for typed feature structures in
Definition 3.9, the definition of unification for typed feature structures remains as it
was given in Definition 3.5. It turns out that the type of the unification of two typed
feature structures A and B (written A LI B) which are associated with the types 7 and
o, respectively, equals the join of 7 and o (written 7 Ll o), cf. (Carpenter, 1992, p.47).

As to the semantics of typed feature structures, type symbols have to be accommo-
dated in the definition of the satisfaction relation for ordinary feature structures given on
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page 38. The conditions under which a typed feature structure A = (Q, qo, 9, §) satisfies
a type o are defined as follows:'®

e A=0< 0L 0(q)

(Carpenter, 1992, p.53ff) provides a calculus of equivalences which characterise the
behaviour of the description language for typed feature structures. The descriptions of
the totally well-typed feature structures are partial which permits amongst other things
an inference from a type to appropriate feature labels and from the existence of a feature
label to an appropriate value for that feature. That is, since all feature structures are
totally well-typed, some features may be omitted in a description of a feature structure,
for example, when they are not relevant for a point under discussion. In Figure 15, the
value of MORPH|SUBCAT actually has a lot more features than only SYN, but since it is
marked for the type base, the features not represented can be recovered by looking at
the appropriateness specification for base and all of its supertypes.

Finally, the feature structures employed in HPSG are supposed to be sort-resolved,
that is all the types occurring in them have to be maximal (most specific) with respect
to the type hierarchy. In the feature structure for the suffix keit (Figure 15), for ex-
ample, the value of MORPH|HEAD|FLEX is typed to n-flex, and not to flex as in Figure
16. If we had used flex in Figure 15, we would have falsely asserted that a feature
structure of type v-flex, which is another subtype of flez, were also an admissible value
of HEAD|HEAD|FLEX, which it is not. Thus, sort-resolving requires the type of the value
of MORPH|HEAD|HEAD to be of type n-flex for the suffix keit.

18cf. (Keller, 1993, p.38), (Carpenter, 1992, p.53).
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4. HPSG approaches to morphology

4.1. Empirical domain: The structure of the sign

A fundamental linguistic entity modelled by feature structures in HPSG is the sign. In
Pollard and Sag (1994), a sign is modelled as a feature structure with the attributes
PHON (phonology) and SYNSEM (syntax/semantics), representing the property of having
both a form and a meaning. Thus, in HPSG, a two-dimensional, saussurean sign concept
is proposed. In comparison with the earlier Pollard and Sag (1987), where a sign was
a feature structure with three attributes, PHON, SYN, and SEM, the structure of a sign
has been revised.

SYN syn

PHON LIST-OF(phon-string)
sign | SEM sem

Figure 17: AVM for type sign after Pollard and Sag (1987)

PHON LIST-OF (phon-string)
SYNSEM synsem

sign

Figure 18: AVM for type sign after Pollard and Sag (1994)

The collapsing of SYN and SEM into SYNSEM has been undertaken apparently for two
reasons: Firstly, to emphasize the close dependencies between the syntax and semantics
of a sign, which, unlike in transformational theories of grammar, can be represented
in parallel on one representational level, i.e. within one feature structure. The second
reason is more technical: In (Pollard and Sag, 1987, p.143f.), a language-universal locality
principle was formulated, which constrained the theory of subcategorisation over feature
structures. It said that “the SUBCAT elements of lexical signs specify values for SYNTAX
and SEMANTICS but crucially not the attribute DAUGHTERS”. In other words, a lexical
sign may constrain features of types of signs it combines with, but never features of
constituents of these. In the revised version, subcategorisation is no longer for lists of
feature structures of type sign, but for lists of feature structures of type synsem (which
is the type of the value of the attribute SYNSEM of sign). Thereby a subcategorisation
for DAUGHTERS is automatically excluded, the locality of subcategorisation follows from
the structure of the sign, it no longer needs to be explicitly formulated. Unfortunately,
this way constraints on the PHON value of a subcategorised element can no longer be
formulated, either; this issue will be discussed from the viewpoint of morphology in
Section 5.
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4.2. Lexical type hierarchies

There seems to be some inconsistency in the HPSG literature as to the use of the terms
type and sort. (Kiss, 1995, p.44f.) makes an explicit distinction between them and
defines sorts as elements of the description language (i.e. the italic labels in AVMs),
whereas he defines types to be elements of feature structures. As was explained above,
feature structures are total objects, which means that the type of a feature structure
cannot have any subtypes, and a hierarchy cannot be constructed over types. Only
the maximal (most specific) sorts in a sort hierarchy correspond to types. Thus, in the
hierarchy developed in Section 5, only the sorts directly above the morph entries (i.e.
prel, pre2, part, prenn etc.) would correspond to types according to Kiss (1995).

Pollard and Sag (1987) used the term type for the labels in feature structures and
switched to sort in Pollard and Sag (1994). Still, many current authors use type when
talking about types as they are explained above, especially a hierarchy over entries in
the lexicon is usually called a lezical type hierarchy, notably in Sag (1997), Riehemann
(1998), Sag and Wasow (1999), Miiller (1999), and not a lezical sort hierarchy. In view
of this, we will refrain from making a distinction between sort and type and usually
use type (except when talking about sort-resolvedness, as the term type-resolved is not
found in the literature). We intend a type to be a part of a feature structure, and type
symbols to represent them in AVMs. The type symbol may be found on the left of
the AVM outside the outer square brackets and justified with the bottom of the AVM,
or, alternatively, on the first line of an AVM close to and inside the leftmost square
bracket.!? Tt is always written in italics. We will call a lexical type in the sense of Kiss
(1995) (a maximal subsort) a mazimal (lexical) type.

As we have seen above, types are used to define appropriateness conditions on feature
structures, but also to define classes of feature structures. In particular, types and type
hierarchies are employed to structure the lexicon in HPSG. Words are grouped together
according to certain properties they have in common. Common properties are encoded as
feature specifications and associated with a particular type, and the actual lexical items
inherit their feature specifications from such a type. This way, redundancy is removed
from the lexical representations, as ideally each property (attribute-value specification)
needs to be stated only once in the whole hierarchy (cf. Flickinger, 1987, p.7).

In Section 5 we introduce a set of maximal types serving to model lexical entries for
German morphs and morphemes, one of which was displayed in Figure 16. The maximal
types are the types right above the dotted arcs in Figure 65. The central question
when constructing a type hierarchy over a set of maximal lexical types with feature
appropriateness specifications is how should types be grouped to common supertypes,
or conversely, how should a type be divided into subtypes. There are two possibilities:
Firstly, a type T" may be divided into the subtypes T}, 75, ..., T, according to different

¥Due to certain Latex typesetting constraints, we make use of both notations in this thesis.
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value types of one or more of the attributes appropriate for it. Such an attribute or
set, of attributes may then be called a dimension and the resulting subtypes are said to
partition the type T, since they stand in an exclusive disjunction relation to each other
and exhaust 7', i.e. an instance of type T must either be of type T}, T5, .. ., or of type T,,.
Often, a type can be partitioned along several dimensions at once, leading to multiple
orthogonal inheritance. That is, if a type T can be partitioned along the two dimensions
Dy and Ds, these partitions lead to subtypes T1,...,T, (by D;) and Sy, ..., S, (by D).
The set of maximal types under this hierarchy will then be a subset of the set of all joins
{T;uS;} where i,j € {1,...,n}. The type-partitioning dimensions Dy, D, ... are often
notated as nodes in the subsumption graph (though they are not types themselves) and
set in square boxes. An example of this is given in figure 19 where two type-dividing
dimensions, MAJOR and NAT, lead to 3 x 2 possible maximal types such as native-noun,
which corresponds to the join noun L native.

morpheme

/\

TN

noun verb adjective native nonnative

native-noun  native-verb native-adj nonnative-noun nonnative-verb nonnative-ady

Figure 19: Partial type hierarchy for morpheme

A second possibility of type dividing is the following: The types 17, T5,... and T,, may
constitute subtypes of one type T, if different sets of attributes are appropriate for them
in addition to the common set of attributes appropriate for type 7. In Figure 20, the
d(erivational)-affiz is a subtype of morph because in addition to the feature specifications
of morph, the feature MORPH|SUBCAT is appropriate for it. Thus, the partitioning of
the type morpheme into root and d-affiz is along the criterion of absence vs. presence
of the attribute MORPH|SUBCAT. (Since the absence of a feature may alternatively be
encoded by a special value of that feature, the second kind of type dividing can always
be converted into a type division of the first kind, cf. Sporleder (1999))

Both principles of subdividing a type may occur jointly and multiply; in most cases
there will be one outstanding feature which suffices as the type-discriminating dimension
but whose values may automatically entail type restrictions on some other features and
the introduction of several new features. The type of the value of MORPH|HEAD, for
example, is always covarying with the (atomic) value of syN|Loc|MA1.2® A dimension

20For remarks on the principles of subdividing types and constructing type hierarchies in the HPSG
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need thus not necessarily correspond to one single feature, but may be a conjunction
of several feature value specifications, as exemplified in Krieger’s (1993) affix hierarchy
(see Section 4.4).

morpheme

root d-affiz
[MORPH|SUBCAT base]

Figure 20: Another partial type hierarchy for morpheme

In Figure 65, we provide a more elaborate version of a morph type hierarchy with the
types motivated linguistically in this thesis. In this hierarchy, subtypes introduce con-
straints in the fashion described above. The hierarchy is not totally free of redundancy
since multiple inheritance was not employed wherever possible, (an inheritance hierarchy
of feature structures is considered to be totally free of redundancy if each feature-value
specification occurs exactly once (cf. Flickinger, 1987, p.7), as it would have become
impossible to depict such a hierarchy in a decipherable graph.

4.3. Lexical rules

A second device that has been employed in HPSG to remove redundancy from the lexi-
con are lezical rules (Pollard and Sag (1987); Flickinger (1987); Copestake and Briscoe
(1996); Sag and Wasow (1999); Miiller (1999); Briscoe and Copestake (1999)). Whereas
lexical types are used to factor out shared information between lexical entries, lexical
rules serve to state systematic dependencies between (types of) lexical entries, theoret-
ically regardless of whether these share information, or not. Typically, the inflectional
morphology of a language is encoded through lexical rules: all the forms of a morpho-
logical paradigm with their respective syntactic and semantic specifications are related
to one base form, or lexeme lexical entry, via general lexical rules. This way, e.g. all past

tense verb forms are related to their lexeme entry by the lexical rule displayed in Figure
21.

(Calcagno, 1995, p.12) examines the formal properties of lexical rules. He points
out that, while “a [HPSG| grammar seeks to describe feature structures [(...)] with
descriptions [...] a lexical rule seems to be a statement about descriptions and not
about feature structures.” More precisely, a lexical rule defines a relation between two
sets of (lexical) feature structure descriptions, i.e. a set of ordered pairs of descriptions.

literature, see e.g. (Pollard and Sag, 1987, p.198ff), (Flickinger, 1987, p.17ff), (Riehemann, 1993,
p.55f), (Miller, 1999, p.15f), (Sag and Wasow, 1999, p.4 and 174). In some of the sources, only the
first of the two principles described above is emphasised.
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[PHON  Fpyg7 (2) |
SYN [HEAD [FORM FriN]]
PHON ARG-ST ( [CASE ~owmJ, ... )
SYN [HEAD werb] — INDEX
lezeme SEM [RESTR ] SEM RELN T-PRECEDE
RESTR [1] @ < [ARGI ]>
word | ARG2 NoOw J

Figure 21: Past tense verb lexical rule (after Sag and Wasow, 1999, p.195)

The relation defined by the rule in Figure 21 is somewhat complex, as several general
assumptions about the interpretation of lexical rules are made. The rule expresses that
for all lexical entries that are subsumed by the description on the LHS of the rule, a
second lexical entry exists that is characterised by the changes in the RHS of the rule.
The RHS contains only those paths of this second entry that are either altered with
respect to the paths in the LHS, or added to the paths in the LHS of the rule. The
second entry is supposed to additionally contain all the paths of the LHS that are not
altered in the lexical rule. Thus, for every entry of type lexeme that has verbal head
features, a second entry exists,

o

whose type is subsumed by the type word

o whose phonology is a function of the phonology of the original entry

o which also has verbal HEAD features, one of which is [FORM Fin|

o whose first argument is realised by a phrase type that is specified for [CASE NoMm]

o which additionally introduces a temporal precedence relation in its semantics be-
tween the time of the state or event expressed already in the original entry and
the temporal specification ‘Now.

Lexical rules have also been applied to derivation, valence alteration (such as the stan-
dard example of passive formation) and lexical semantic type shift phenomena (see e.g.
Sehitoglu and Cem, 1996).

(Pollard and Sag, 1987, p.209) already point out two possibilities for the general
interpretation for lexical rules: “Lexical rules can be viewed from either a declarative or
a procedural perspective: on the former view, they capture generalizations about static
relationships between members of two or more word classes; on the latter view, they
describe processes which produce the output form from the input form.” Subsequent
authors have taken one or the other perspective. For example, (Flickinger, 1987, p.131)
takes the declarative/relational /symmetrical /non-directional point of view, whereas Sag
and Wasow (1999) take the procedural/functional /asymmetrical /directional perspective.
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Under the latter perspective, the second lexical entry mentioned above is meant to be
newly created by the lexical rule in Figure 21.

For the most part, morphological lexical rules correspond to an item-and-process
approach to morphology, as the procedural interpretation of lexical rules suggests. Typ-
ically, affixes are introduced in the lexical rules as additional phonological material in
RHS of the rule, e.g. in the function Fpagt in Figure 21. Fpagt may be defined differ-
ently for different input domains (e.g. regular vs. irregular verbs) and thus introduces
different markers (in the sense of Hockett, 1954, cf. Section 2.1), cf. Section 2.1 for one
and the same rule (or, process).

(Koenig, 1999, p.27ff) summarises the major drawbacks of lexical rule approaches.
Firstly, when lexical rules were introduced to unification-based approaches to generative
grammar in Bresnan (1982), they were seen as the lexical device to take over the function
of certain transformations, which were supposed to be an inadequate means of gram-
matical representation. (The other major device to replace transformations is structure
sharing.) But as lexical rules are unrestricted relations between (descriptions of) fea-
ture structures, they still resemble transformations (on lexical signs). They have all the
non-declarative characteristics of transformations: They have to be extrinsically ordered
(for example, some device has to be found to prevent the lexical rule given in Figure 21
to apply to its own output, which is not excluded intrinsically). According to (Koenig,
1999, p.43ff), sets of descriptively adequate lexical rules may even result in genuine or-
dering paradoxes. And the example of Latin verbal morphology (Koenig, 1999, p.39f.)
shows that the introduction of stem-forming suffixes each in a single lexical rule (which
is descriptively economic) leads to intermediate representation levels which do not cor-
respond to well-formed words. Moreover, in morphology, subregularities and exceptions
abound, and cases can be shown where lexical rules have to be marked with exception
features, or alternatively be themselves ordered in their own default hierarchy (Copes-
take and Briscoe (1992)). All these are arguments that demonstrate the inelegance of
lexical rules within an HPSG approach. We believe that they have been introduced in
Pollard and Sag (1987) because they seemed to be an convenient method to describe
the rather closed domain of English inflectional morphology. Meanwhile, in several ap-
proaches, complex morphological processes involving morphological constituency have
been represented without recourse to lexical rules.

4.4. Constraint-based derivation without lexical rules
4.4.1. Krieger 1993

Krieger’s (1993) study starts with a criticism of lexical rules. He points out that lexical
rules as introduced in Pollard and Sag (1987) are not feature structures, nor are they
types. If represented using AVMs, they have the form AVM; —— AVM,, i.e. they
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are mappings between feature structures. They are thus an alien element to the rest
of the HPSG formalism where operations on feature structures and relations between
linguistic types are the major devices to express grammatical information. Since lexical
rules are proposed to be the formal means for expressing morphological information,
similarities between syntax and morphology might not be obvious in the first place. An
additional procedural mechanism has to be provided to deal with lexical rule application.
Moreover, a description using lexical rules is said to lack declarativeness as these seem
to be unidirectional.?!

Alternatively, an approach to morphology using only feature structures is advocated.
Krieger proposes only two kinds of lexical signs: word and affiz, where word may be
complex or not. There is only one morphotactic rule for derivation, or rather one mor-
phological immediate dominance (ID) schema, the morphological affiz-word rule, or,
MAWR, which is displayed in Figure 22.

SYN | LOC | LEX +

AFFIX affix
DTRS
affiz-word-structure WORD part-of—speech

complex

Figure 22: The morphological affiz-word rule, MAWR according to Krieger (1993)

In the MAWR (Figure 22), we can see that derived words have a binary structure
expressed through two paths leading to the daughters DTRS|AFFIX and DTRS|WORD. It is
postulated that the feature structure under AFFIX is always the head of such a structure
though no reason is given for this setting. A morphological Head Feature Principle
(MHFP) is given, but there is no explicit enumeration of HEAD features in morphology,
but it can be concluded that the intended HEAD features are those enumerated in Pollard
and Sag (1987). There is one remark concerning headedness in (Krieger, 1993, p.22,
footnote 1):

One might argue that only suffixes can be regarded as heads and prefixes
should be given the status of a modifier (the syntactic category of the com-
pound word [sic!] is determined by the free word which is the head in this
case). However, under this assumption, we have to work with two ID rule
schemata, one for prefixes and one for suffixes.

This is indeed a problem, but certainly not sufficient for considering prefixes heads,
and on the contrary, this thesis adopts the position that prefixes are not heads in mor-
phology, cf. Section 5.2.

21Krieger thus disregards the declarative point of view mentioned already by Pollard and Sag (1987).
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SYN|LOC|HEAD
DTRS|AFFIX|SYN|LOC|HEAD

complex

Figure 23: The Morphological Head Feature Principle, MHFP, after Krieger (1993)

In the MHFP displayed in Figure 23, the syntactic HEAD features of the mother
are token-identical with the HEAD features of the affix daughter, establishing the affix
daughter as the head of a derived word. (Note that in addition to the established syntac-
tic HEAD features motivated by percolation, we propose a separate set of morphological
HEAD features equally motivated by feature percolation in Section 5.2.3).

Krieger’'s MHFP may not be very well motivated, but his morphological subcategori-
sation principle (MSCP) certainly is. Two kinds of subcategorisation are recognised in
the area of derivational morphology:

1. morphological subcategorisation: “an affix looks for the right feature structure to
bind”

2. syntactic subcategorisation: “the subcategorisation info of the new complex word
(its sentential subcategorisation) directly comes from the syntactic subcategorisa-
tion by means of structure sharing.”

The suffix -bar is a good example to illustrate this. Regularly, it combines with
transitive verbs to form adjectives, i.e. it is morphologically subcategorised for transitive
verbs, such as ausstoffen. On the other hand, the sentential subcategorisation properties
of the resulting adjectives are already present in the -bar-suffix: The subject of the
resulting adjective is the patient of the base verb, i.e. the subject of ausstofibar is the
patient of ausstofien.

Krieger later formulates a revised MSCP which allows for mutual morphological
subcategorisation of word and affixz. This way, exceptions to regular affixation can be
encoded as subcategorisation properties of the stems. It is, for example, a morphological
subcategorisation property of the transitive verb lexeme sehen not to be combinable with
-bar. A consequence of this is that word as well as affix are specified for the feature
MORPH|SUBCAT.

Another innovation in Krieger (1993) is that principles and rules, originally pre-
sented in Pollard and Sag (1987) as implications between feature structures (in the form
AVM; = AVM,), are reformulated as types which are integrated in the subsumption
lattice of the lexical type hierarchy. This stresses the identification of word formation
rules with generalisations over lexicalised complex words, a notion elaborated largely in
Riehemann (1998).

As affixes are regarded as lexical items, Krieger (1993) provides a lexical hierarchy
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sign

phase word affix

complex

headed-complex

MHFP ¢ MSCPc MSPc MCOPc MSRP C MAWR

Figure 24: Part of the type lattice for morphological complex words in Krieger (1993)

of affixes. There are five dimensions along which affixes are cross-classified and which
are particularly interesting for the present thesis.

. : encodes whether the affix is a prefix or a suffix
. : encodes the category of the base and of the result of the affixation

° : encodes how the affix operates on the subcategorisation information of
the base

° : encodes the semantics of the affix, e.g. arity of predicates/operators.
o : encodes the morphological subcategorisation information of the affix

These dimensions are not necessarily encoded in single features, but mostly by com-
binations of feature-value specifications and type restrictions on values.

4.4.2. Riehemann 1993, 1998, 2001

Riehemann (1998) introduces a new HPSG approach to derivational morphology, called
Type-Based Derivational Morphology (TBDM).?? The main motivations came from the
analysis of large morphological data, especially -bar-suffixations in newspaper corpora.

22Riehemann’s 2001 dissertation on idioms in HPSG contains a chapter on derivational morphology
largely identical to the theory presented in Riehemann (1998).
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Riehemann found that the -bar-suffixation data included regularities, subregularities,
and exceptions among the lexicalised as well as among the newly created formations.

Traditional approaches assume a productive (lexical or phrase structure) rule stating
that -bar is subcategorised for transitive verbs (cf. Toman, 1987).

Consequently, there are

1. new formations conveniently captured by the rule, such as bestellbar, faxbar

2. lexicalised words also captured by the rule. With these, the question arises,
whether they are listed in the lexicon or whether they are processed by the mor-
photactic rule each time they are used. Examples are bemerkbar, vermeidbar

3. lexicalised words not captured by the rule, e.g. sichtbar, fruchtbar. These must be
treated as exceptions and are listed in the lexicon.

4. new -bar-formations not captured by the rule, e.g. -bar-formations not based on
transitive verbs such as the notorious unkaputtbar.

Riehemann observes that almost none of the lexicalised words not captured by the
rule (mentioned under 3. above) are fully exceptional but rather have some exceptional
properties as well as other regular properties. She provides a classification of these words
on account of their exceptional properties:

1. phonologically exceptional:

e formations with dropping of -ig in the stem:
entschuldbar, from the verb entschuldigen®

2. semantically exceptional:

e formations with an additional aspect of meaning: effbar, ‘safely edible’

e formations with the intensional dimension of obligation instead of possibility:
zahlbar

e formations lexicalised in only one particular sense: haltbar

3. syntactically exceptional:

e formations from verbs with dative objects: unentrinnbar
e formations from verbs with prepositional objects verfigbar
e formations from intransitive verbs haltbar, brennbar

23Tt is not necessary to view entschuldbar as being derived from entschuldigen by the removal of -ig. We
would instead propose that the base entschuld bears the complete verbal meaning of entschuldig-
already, and that -ig is an affix that carries no meaning.
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For all of the above subregular classes of lexicalised -bar-formations, parallel non-
lexicalised examples can be found as well, i.e. formations that do not correspond to the
productive rule for new formations. “These adjectives are formed from verbs which do
not have an object in accusative case, thereby violating what is seen in traditional word-
syntactic approaches as the ‘subcategorization requirements’ of the affix.”, e.g. from
verbs with dative objects (unausweichbar, unentziehbar, unwiderstehbar), from verbs
with prepositional objects (unzweifelbar, verzichtbar, zugreifbar) from intransitive verbs
(unausbleibbar, ungerinnbar, verrottbar, verheilbar)

Riehemann wants to account for two kinds of relations that have been neglected in
previous approaches to derivational morphology: Firstly, the relations between regular
formations, and different kinds of subregular cases and exceptions. Secondly, the rela-
tions between lexicalised complex words and non-lexicalised, ad-hoc formations, more
precisely the contribution of lexicalised words to productive word formation. Riehemann
denies that Word syntax or lexical rule approaches are able to describe these relations
adequately.

In Type-Based Derivational Morphology, there is a schema expressing the fact that
there is a class of words, ending in the suffix -bar, that have transitive verbs as their
morphological basis. It also states how the syntax and semantics of the verb relates to
that of the adjective. For example, the accusative object of the verb is linked with the
subject of the adjective, and the semantics of the verb reappears within the scope of the
possibility operator in the semantics of the adjective.

[PHONOLOGY + bar
PHON

CAT | VAL | COMPS ( NP [acc]: [2] ) &
MORPH-B
SYNSEM | LOC - ACT
CONT | NUC
trans-verb UND
[ HEAD adj T
CATEGORY SUBJ ( NP:[2])
VALENCE
SYNSEM | LOCAL COMPS

RELN o
CONTENT | NUCLEUS | ARG1
ARG?2

| J

Figure 25: Schema for the fully productive, regular -bar-adjective, cf. Riehemann (1998)

reg-bar-adj | L

No morphological constituent structure is represented in such a schema but it is said
that, “although affixes are not explicitly represented as part of the structure, the stems
are, which makes the internal structure of complex words recoverable”. In TBDM,
affixes appear only in the phonology, consequently, they are not signs and have thus
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neither an independent status outside a schema, nor can they be the head of a com-
plex word.?* This is what TBDM has in common with item-and-process/ lexical rule
approaches. But whereas lexical rules cannot be modelled as single feature structures,
schemata can and are associated with lexical types which are ordered in a type hierarchy
to treat subregularities and exceptions as well. In fact “there are also schemata for the
other (subregular) patterns”, and “all schemata serve primarily to organize the existing
lexicon, and are only secondarily used to form new words”, i.e. “rules are seen as gen-
eralizations emerging from existing words.” Riehemann’s hierarchy of -bar-adjectives is
given in Figure 26.

stem

T

complex | simplex & adjective | verb | ...

T

compound | derived trans-verb | ...
compositional | ... & affized | ... ef- | ...
externalized | ... & possibility | ... prefized | ... suffized

poss-bar-adj

trans-bar-adj | dative-bar-adj | prep-bar-adjy | intr-bar-ady
reg-bar-adj effbar | ... unentrinnbar | ... verfigbar | ... brennbar | ... fruchtbar | ...

Figure 26: Hierarchy of -bar-adjectives after Riehemann (1998)

For the types in Figure 25, a closed world interpretation is assumed, i.e. there are
not any more subtypes than those that are explicitly mentioned. That is the reason why
the schema reg-bar-adj describing the fully transparent non-lexicalised words is on one
level with the various lexicalised -bar-adjectives.

It could be argued that a pure word-syntactic approach like the one by Krieger (1993)

24Riehemann (1998): “One could of course think of an entire TBDM schema as being an unusual kind
of ‘lexical entry’ for the suffix. But the proposed analysis has the advantage of generalizing readily
to non-affixal morphology.”.
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which also includes a hierarchically organised lexicon and in addition hierarchically or-
ganised morphological principles can capture the subregularities and exceptions quite as
well, and that actually no improvement is achieved through the TBDM approach. But
Riehemann points out that in Krieger’s approach, the morphological hierarchy is dupli-
cated: One the one hand, a lexical type hierarchy for complex words with their subregu-
larities and exceptions is described, one the other hand, for every lexicalised subtype of
-bar-adjectives, a separate reading of a -bar-suffix with its appropriate subcategorisation
specifications has to be introduced into the affix hierarchy, which is used in productive
and semi-productive word formation. These two separate hierarchies arise essentially
from of the same linguistic data and obscure the fact that productive derivational mor-
phology is based on analogy to existing words. Riehemann, however has incorporated
the notion of word formation as analogy in her approach in a non-redundant way.

Contrary to Krieger’s (1993) approach, which actually has been implemented, Riehe-
mann (1998) gives us almost no idea of how computational morphological processing
could be performed using a morphotactics and a lexicon as suggested by her. There is
one footnote with a hint at how a parser could proceed, “As a first approximation for
increasing robustness in an computational system one could say that if a word cannot be
found in the lexicon, all word-formation schemata with more than a number of subtypes
can be tried.”

But how do we have to conceive this ‘trying’ of schemata? The form of the affix
is the only fixed surface information in a schema, i.e. only the affix can be used as a
lookup key for a schema. For identifying -bar in an input word form like verrottbares,
morphological segmentation has to be performed first, if a bottom-up strategy is chosen.
Then the most specific schema (the one lowest in the lexical type hierarchy) containing
the concatenation of a stem with -bar and unifying with the stem werrott has to be
found. In other words, the representation bar is used to access the matching schema
in an inventory of schemata in a systematic way (considering the subsumption relation
between schemata). But we consider this being tantamount to looking up the properties
of the affix in an affix lexicon. In fact, it leads us to suspect that Krieger’s (1993)
approach is a compiled-out version of TBDM, the latter being more compact than the
former, which contains some systematic redundancies. However, these redundancies
seem to be advantageous for morphological parsing.
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5. An HPSG theory of German morphology

5.1. The structure of simplex and complex signs

We consider morphemes to be linguistic signs, which in terms of Pollard and Sag (1987)
means that they are appropriate for the feature PHON(OLOGY) as well as SEM(ANTICS).
For our theory, we follow Gibbon (1997) and Gibbon (2000) and replace PHON by the
feature SURF(ACE) which contains both phonological and orthographic information and
is structured as shown in Figure 27.

PHON phon-string
SURF
ORTH orth-string

SYN  syntaz

sign | SEM  semantics
Figure 27: The structure of a sign

We will not say much else about SURF, but we want to mention here that we believe
that for phonology, eventually representational structures that are more complex than
lists will be needed.

In the following, we will discuss amongst other things syntactic features that play a
role in morphology, but we omit semantic features, and that is one of the reasons why
in our theory, we want to keep the distinction between SYN(TAX) and SEM(ANTICS)
made in Pollard and Sag (1987). The other reason is that we want morphological
subcategorisation to be able to refer to SURF properties of signs which is excluded under
the SYNSEM approach of Pollard and Sag (1994), cf. Section 4.1.

For lexical signs, we also introduce a MORPH(OLOGY) feature as in Krieger et al.
(1993), though with slightly different implications. In the present approach, the main
idea is that everything stored under MORPH (namely morphologically combinatorial
properties) need not be known to the syntax component. For example, the syntax is
interested in the morphosyntactic specifications of a word form as a syntactic atom (cf.
Di Sciullo and Williams, 1987, p.46ff), e.g. that is is a first person singular present
indicative verb, but not whether it is a weak or a strong verb.

Likewise, the feature MORPH|MPHON is appropriate for morpheme (Figure 28). The
idea is that the two-level morphophonological rule component, which is responsible for
constructing the SURFACE attributes of morphologically complex signs, will need the
features values under MORPH|MPHON to compute the correct surface strings. The value
of MPHON is structured as shown in Figure 28.

Within mphon (the value type of MPHON), information about whether a mor-
pheme can/must/must not be bound to its right or left side is stored under the paths
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HEAD [DER [NAT boolean]]

MORPH RBOUND boundness
MPHON |LBOUND boundness

morpheme mphon| STR, boolean

Figure 28: Constraints for the type morpheme

RBOUND|BOUND and LBOUND|BOUND, and information about what morphological sub-
type of sign the morpheme must be bound to is stored under RBOUND|BND-ARG, see
Figure 29.

BOUND bound
BND-ARG morpheme

boundness

Figure 29: The structure of boundness

Consequently, the type bound is partitioned as shown in Figure 30. Boundness
features were formerly employed by Lehmann (1990). They are an extension of the
structuralist distinction between free and bound morphemes. The former are morphemes
which may occur freely as syntactic atoms, the latter are morphemes that need to be
bound to a base, i.e. can never occur freely. Originally, bound morphemes were supposed
to be only affixes, but in German, clearly bound roots can be found, too, e.g. -pliz-, or
sprech-.

Our possible values of BOUND should be interpreted as follows: toBind means that
this morpheme needs another morph to its right (left) side when occurring in a word
form. Opt(ional) means that another morpheme on its right (left) side may or may
not occur within a word form, and free means that this morph can never combine with
another morpheme on its right (left) side within the domain of a word form. Note that
many lexical roots remain underspecified (have the value bound) on the morpheme level
and can be fully specified for BOUND only on the morph level (cf. Section 5.4), which
reflects the relevance of this feature for surface linear precedence properties rather than
valency and immediate dominance properties.

bound

toBind optional  free
Figure 30: Partition of the type bound

The values of the RBOUND|BND-ARG and LBOUND|BND-ARG features are typed to
morpheme, as shown in Figure 29. Alternatively, they might be typed to base and could
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morpheme | as occurring in RBOUND | RBOUND LBOUND | LBOUND

|BOUND |BND-ARG |BOUND | |BND-ARG
gener_root | gener+at+ion toBind suffiz opt stem-final M prefiz
ier_sufnn gener+ier#+en opt suffiz M infl N stem-initial | toBind base-final
ver_prel ver+trag#+en toBind base-initial opt stem-final M prefiz
pliz_root kom+pliz+ier#+t | toBind suffiz M infl toBind prenn
sehr_root sehr free 1 free 1

Table 1: Examples of boundness specifications

be co-indexed with the MORPH|SUBCAT feature, but we want to employ these features
to encode linear precedence relations between subtypes of morpheme, i.e. continuation
classes in the sense of Koskenniemi (1983b).

RBOUND and LBOUND are used to build the dimension that divides the type affiz into
prefiz and suffiz. In contrast to MORPH|SUBCAT, they are not only appropriate for affixes,
but also for lexical roots, and in particular they describe the fact that many nonnative
lexical roots (such as gener- in Table 1) do not constitute independent stems without
the addition of an affix, cf. Section 5.3. Examples of RBOUND/LBOUND specifications of
morphemes can be found in Table 1.

In Figure 28, the next feature that is appropriate for all kinds of morphemes, is
MORPH|HEAD|DER|NAT(IVE). This boolean-valued feature models two of the lexical
strata posited in the theory of Lexical Phonology and Morphology (Siegel, 1979; Mo-
hanan, 1982)). It has also been introduced as a morphological feature in the GPSG-based
morphological theory by Ritchie et al. (1992) (called LAT(INATE)). The following kinds
of morphological behaviour in German are explained by the feature NAT in our theory:

1. Nonnative affixes do not combine with native lexical roots, cf.

Absurd+itat
In+komp+at+ibil+itat
* Falsch+itat
* Un+ver+ein+bar+itat

This is achieved by constraining nonnative prefixes and suffixes to be subcate-
gorised only for [NAT —] bases, cf. Section 5.5.1.

2. Only a certain subgroup of native suffixes can combine with nonnative bases,
namely those native suffixes specified as [COMB +].

3. Nonnative lexical roots are frequently bound morphs, they need either a nonnative
prefix or a nonnative suffix or both to form a complete stem (something that can
be inflected), cf. possible combinations with the nonnative root pliz:

kom+pliz+ier#+t
im+pliz+it
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re+pliz+ier#+en
Kom+pliz#+e

* im+pliz

* pliz+ier#+t

* pliz

(The ‘*’ here refers to potential stemhood.)

4. The positioning of lexical stress in derivations is sensitive to the difference between
native and nonnative affixation, the tendency being that the last heavy syllable is
accentuated, unless it is a, or contains a [NAT +] suffix, cf.

m’an+Saft (Mannschaft) vs.
pro:ble:m+’a:t+Ik (Problematik)

A NATIVE feature for stress assignment in words was also suggested by (Pampel,
1991, p.30).

‘ morph ‘ as in the word form ‘ NAT ‘
absurd_root | Absurd+itéat —
falsch_root | Falsch+heit +
itat_suf Absurd+itat —
kom_prenn | kom+pliz+ier#+t —
pliz_root kom+pliz+ier+#+t | —
ver_prel ver+miss#+en +

Table 2: Examples of specifications for NAT(IVENESS)

In complex lexical signs, the NAT features should of course percolate, and we chose
to group it as a (derivational) HEAD feature and let it be shared between the mother
and the head daughter constituent according to the MHFP. For one thing, the line of
argumentation in Dopke and Walmsley (2000) leads us to the conclusion that NAT must
be a HEAD feature, and moreover such a treatment has shown to yield satisfactory results
from our lexical acquisition system (Section 5).

The last feature which is supposed to be appropriate for all kinds of morphemes is
MORPH|MPHON|STR(ESS), denoting potential lexical stress. It is based on a distinction
originally drawn by Féry (1986) between stress-bearing and stress-neutral affixes, and
a similar feature is used in Steinbrecher (1995) for the classification of affixes. It is e.g.
responsible for the distinction between the class I and class IT native prefixes of German
(the types prefizrl and prefiz2 in Figure 65 in Section 5.3), i.e. the NAT dimension is
definitely not sufficient to distinguish all types of prefixes. Bleiching (1992) employs a
three-valued feature STRESS to distinguish between stress-bearing, stress-neutral, and
stress shift-causing affixes. The members of the latter class seem to be those suffixes
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(inflectional and derivational) that are appropriate to be subcategorised for nominal
stems of the noun-doktor class (which comprises nouns that end in the suffix -or and
three minor nonnative suffixes listed in (Pampel, 1991, p.46)). Since noun-doktor is
a possible value of the SUFFIXCLASS feature in our morphology (Figure 60), a third
feature value stress-shift-causing for STR would be redundant and is thus abandoned in
our theory.?

Like NAT, STR is boolean-valued.

We thus employ STR in analogy to Steinbrecher (1995), but extend it to lexical roots
and inflectional suffixes i.e. it is appropriate for all subtypes of morpheme. Root is always
[STR +] and infl is always [STR —], and the STR specifications for different derivational
affixes will be discussed in Section 5.5.1.

The value of STR for each morpheme is input to a stress assignment component, which
assigns stress values to the syllables of a morphologically complex word. (Further input
to the stress assignment component are a word form’s internal constituent structure
(cf. Bleiching, 1991, p.20f.) and its syllable structure representation (cf. Pampel, 1991,
p.38f.).

5.2. Heads and subcategorisation

Do complex words have heads, and if so, what are they? What are the HEAD features in
morphology? And does HPSG’s Head Feature Principle for syntax work for morphology
as well, or are different principles to be found in morphology?

The concept of head was introduced to generative grammar through X-bar theory
(Chomsky, 1970; Jackendoff, 1977). In this subtheory of generative grammar, the X-bar
schema?® given in 5.1 is devised as a generalisation over traditional phrase structure
rules for syntax such as displayed in 5.2.

51 X" — ..X™' ..

25In fact, the marked property of words containing the suffix -or should be that -or is unstressed
when it occurs word-finally instead of considering some suffixes which may be attached to it to be
stress shift-causing, because all non-final occurrences of -or do conform to the general rule of stress
assignment for nonnative suffixes and words which contain them.

26 Jackendoff, 1977, p.30).
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(a) NP — (Det) (A) N

() NP — N

(¢c) VP — V

(d) VP — V (NP)
52 (¢) VP —s V (NP) (PP)

(f) AP — A

(9) AP — A (AP)

(h) AP —s A (PP)

(i) PP —s PNP

In each of the rules in 5.2, there is an obligatory lexical element, which is also
responsible for the name of the phrase as a whole, e.g. an NP is called NP because N is
its obligatory element. In other words, rules like

53 NP — V VP

where no N occurs on the RHS, are linguistically impossible, but not formally ex-
cluded in traditional PS-grammars. In the X-bar schema, the obligatory element is the
X, and it is referred to as the head of the phrase. X™# is the maximal projection of X,
and, depending on the number of embedded complements and specifiers of X, there may
also be constituents that are intermediate projections X" (max > n > 0) (or intermedi-
ate bar-levels) of X (cf. Figure 31). In an instantiation of the X-bar schema, X is bound
to N, A, V, or P, and the categories NP, AP, VP, PP are replaced by the projections
X, X, and so forth. The X-bar schema thus expresses what NPs, APs, VPs, and PPs
have in common, removing redundancies from traditional phrase structure grammars.
It is important to note that things like N and NP are no longer atomic symbols of the
grammar. The idea that e.g. N as well as NP have nominal characteristics is expressed
by the fact that all kinds of NPs are projections of N and bear the feature specifica-
tions [N+, V—1].27 N is thus not a category, but a feature, and the feature specification
[N+] is not only appropriate for nouns, but also for adjectives (and, presumably, for
pronouns).”®

In general, X and X" share further feature specifications. In studies of the 1980s
such as Selkirk (1982) and Di Sciullo and Williams (1987), this sharing is called feature
percolation. Feature percolation is a reflection of the compositionality principle, i.e.
the fact that a sentence or complex word form has properties that are a function of the
properties of its parts. A Head Feature Principle is thus a generalisation that predicts for
each complex construction type what kind of constituent contributes which properties
to the construction. The term percolation (as opposed to sharing, which is generally

2TWe are aware that this is debatable, especially in the case of NPs, where alternative analyses as DPs
(e.g. Stowell, 1990) have been proposed, and cf. Netter (1994) for DP analyses for German in HPSG.

28 (Jackendoff, 1977, p.31).
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/X\
specifier XA
X complement,

Figure 31: X-bar schema after (Jackendoff, 1977, p.17)

used in feature-based grammars such as HPSG) reflects a procedural point of view in
that the features of an X (N, A, V, or P) are listed in the lexicon, and ‘percolate’ from
the X in a generated tree structure when the head is retrieved by a lexical insertion rule.
An example of feature percolation in syntax can be seen in Figure 32.

N(= NP)
[CASE gen] < -

=~ ~
N
\
\

[CASE gen]

/\

\ Termins um vierzehn Uhr
-[CASE  gen]

Figure 32: Tree structure and feature percolation in N

What is the motivation at all that an NP (i.e. N) shares feature specifications with its
head N7 In a constituent grammar (which HPSG certainly is, as opposed to a dependency
grammar), generally only maximal projections can be subcategorised for, e.g. NPs. But
in many languages certain characteristics of the NP manifest themselves only on the
head of that NP, most notably the syntactic category N itself, but also, for instance, a
case specification. Case is genuinely a morphosyntactic property pertaining to nouns,
but since it is NPs that are subcategorised for by other signs, case specifications must
be properties of NPs, too.

Note that in a dependency theory of grammar this poses no problem in the first
place, as the head (or nucleus) in a dependency structure is always found on top of a
tree (cf. Mel’cuk, 1988, p.23). Hence HEAD feature percolation may also be considered
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a device to incorporate information contained in dependency grammar analyses into
phrase structure grammar analyses.

But there are further arguments for HEAD feature percolation to maximal projections.
In several languages, e.g. German and Finnish, in NPs case must also be marked on
determiners and adjectives as a consequence of agreement which holds within the NP.
In that sense, in an NP like ‘des dringenden Termins’, we can talk about the whole NP
being marked for genitive case.

So far, we have introduced the notion of the head of a syntactic phrase as

e the obligatory element of that phrase
e the element from which grammatical features percolate to the phrase as a whole
e the element which would be considered the head in dependency theory

Hudson (1987) elaborates on the importance of the head concept in a theory of
feature percolation in syntax, reviewing an earlier article by Zwicky (1985). He also
comes to the conclusion that, in addition to being the source for feature percolation in
syntax, the head is

suited to bringing together [...] six distinct notions, which we can [...] take
as (more or less) independent properties of the head of a construction: it is
the semantic functor, the morphosyntactic locus, the subcategorizand, the
governor, the distributional equivalent and the obligatory element.??

From the viewpoint of HPSG, we can basically agree with these assumptions,®

though we think that the prominent criterion for headedness is the possibility to for-
mulate a consistent Head Feature Principle. We will use Hudson’s list as an additional
guideline in search of the heads and HEAD features in morphology and their representa-
tion in HPSG in Sections 5.2.1-5.2.3.

First, let us take a look at the syntactic Head Feature Principle (HFP) of HPSG
as introduced in (Pollard and Sag, 1987, p.58) and again in (Pollard and Sag, 1994,
p.34). In Figure 33, we present the HFP as a constraint on a construction type called
headed-phrase.

The HFP of HPSG is a declarative reformulation of earlier percolation principles,
especially the (also declarative) Head Feature Convention of GSPG (Gazdar et al., 1985,
p.94f.). Tt says that the HEAD features of a phrase are identical with the HEAD features

29(Hudson, 1987, p.124).

30We can agree with these assumptions maybe with the exception of the question whether N is actually
the obligatory element, the distributional equivalent, and the main morphosyntactic locus of an NP
(Hudson’s (1987) claims rest on a DP analysis).
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headed-phrase = SYN|LOCIHEAD

DTRS headed-stru.ctu.reI:HEAD_DTR|SYN‘LOC|HEAD ]

Figure 33: Head Feature Principle

of its head daughter, without any indication of copying and directionality. The HFP
is considered a principle of universal grammar. Much of its impact depends on the
definition of the HEAD features which have to be inventorised language-specifically. For
English, (Pollard and Sag, 1994, p.396ff) give the following partition of the type head,
which is provided here in the form of a type inheritance graph, including declarations
of appropriate features where they are introduced (Figure 34). Head is the supertype of
all types that may be values of the feature HEAD.

head
substantive functional
PRD boolean
[ SPEC  synsem ]
MOD  mod-synsem
noun verb adj prep relativizer — marker  determiner
VFORM  uform
AUX boolean [ PFORM  pform ]
INV boolean

Figure 34: Partition of the type head after (Pollard and Sag, 1994, p.396ff)

In (Pollard and Sag, 1987, p.67f.), MAJOR (the syntactic category) is also listed
among the HEAD features. In the fully typed feature system of Pollard and Sag (1994),
the feature MAJOR and its possible atomic values N,V,A,P, AND ADV, are replaced by
the possible (non-atomic) value types of HEAD, as displayed in the hierarchy in Figure
34.

Now that we have a notion of a.) what heads in syntax are and b.) what the HEAD
features in syntax are, we proceed to examine morphological constructions in German
with respect to the following questions:

e Does one of the constituents of a morphological construction bear functions similar
to the ones defining heads in syntax as well as to those listed by Hudson (1987)7

e Are some or all of the features that Pollard and Sag (1994) and others list as HEAD
features involved in morphological constructions, too? And if so, can some sort of
HFP be postulated for morphology as well?
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e Apart from the syntactic HEAD features (which may play a role in morphology, too),
are there other features that are candidates for being HEAD features in morphology?

For the following head analyses, we assume that there are four general morpholog-
ical construction types that involve concatenation in German (i.e. all other possible
morphological concatenative construction types are subtypes of these, cf. Section 5.3):

1. Compounds (Figure 37)

2. Derivational prefixations (Figure 35)
3. Derivational suffixations (Figure 36)
4. Inflectional suffixations (Figure 38)

BASE
PREFIX BASE
zer brech-
un [heim lichl]

hyper [ventil ier-]

Figure 35: Constituent structure of derivational prefixations

BASE
BASE SUFFIX
spalt bar
tapez ier-

[[ver ganglen] heit

Figure 36: Constituent structure of derivational suffixations

5.2.1. Headedness in compounding

Let us first examine the most uncontroversial construction type with respect to head-
edness, that is, compounding. The right-hand constituent in a compound is commonly
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BASE
BASE BASE
Termin kalender
rot griin
frei halt-

[[Be triebls [[[[[kom mun]ik]at]ion]s]] [semin ar]

Figure 37: Constituent structure of compounds

WORD

STEM INFL

termin e
sprach st
[spat er] es

Figure 38: Possible constituent structure of inflected words

regarded as its head, and it fulfils almost all of the criteria mentioned by Hudson (1987).
We will briefly go through them here, clarifying their meaning and applying them to
compound constructions in German.

In order to establish the left or the right constituent of a compound as its obligatory
element, one should be able to formulate a proposition like In order for a morphological
construction like the one in Figure 37 to be a compound, it must at least consist of the
left (the right) constituent. But if the constituents are simplex bases, such a proposition
can never be true, since a simplex word is not a compound by definition. If one of the
constituents is a compound itself, then either of the alternative propositions may be
true, depending on whether the compound is the left or the right constituent. Thus,
looking for the obligatory element in a compound reveals nothing about headedness in
that compound.

Whenever the two constituents of a compound are semantically a functor and one of

its arguments, the right constituent is indeed represented by the functor.3! There are two
subtypes of compounds where this can be observed. The first type of compound is where

3'Hudson (1987) uses the term functor in the sense of logical predicate.
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the right constituent is the nominalisation of a verb, such as Termin#verschiebung, or
Doktoranden#ttreffen. The functor-argument structure of this type of compound can
be represented as p(zi,...,x,) where n > 1 and p always represents the right con-
stituent, and the left constituent is represented by one of the z;. It is shown by the
fundamentally different semantic interpretations of examples like AbschluB#sitzung vs.
Sitzungs#abschluB that the right constituent is always the position to be interpreted
as the functor.

The second type of compound expressing functor-argument structures is the more
general case where the right constituent is a relational noun (not necessarily a nominal-
isation), such as e.g. Hilfte, or Ende. In the example April#hilfte, we are dealing
with a semantic structure like p(x) where p represents Halfte, x represents April, and
p(x) represents the compound Aprilhdlfte as a whole.

The strategy for identifying the head of a compound by looking for the semantic func-
tor cannot be applied, though, when the two constituents are not a functor and one of its
arguments, as is the case with many compounds, e.g. April#scherz, Espresso#bar,
Video#traum. Even if one of the constituents is a nominalisation or a relational noun,
the other constituent need not be an argument of the functor represented by the nomi-
nalisation or relational noun as e.g. in Donnerstags#treffen.

On the other hand, before coming to the conclusion that the semantic head must be
the functor in a functor-argument construction, Hudson (1987) agrees with the notion
that “in a combination X 4+ Y, X is the ‘semantic head’ if, speaking very crudely, X + Y
describes a kind of the thing described by X”, which was originally suggested by (Zwicky,
1985, p.4). This is definitely true for all determinative compounds (tatpurusa), which
form the majority of compounds in German and which are the general and productive
semantic compound type in German. Other, minor, semantic types of compounds in Ger-
man are possessive compounds (bahuvrihi, like Dumm#kopf), and copulative compounds
(dvandva, like Import-Export), these are not semantically right-headed (Spencer, 1991,
p.310ff).

When the two constituents of a compound are a subcategorisand and one its sub-
categorised elements, the right constituent is indeed always the subcategorisand. The
argumentation is quite parallel to the case of semantic functors, obviously because the
semantic functor and the subcategorisand are the semantic and the syntactic side, re-
spectively, of the same thing. Likewise, typical examples are compounds, where the right
constituent is a nominalisation.

According to Hudson (1987), government is distinct from subcategorisation in that
in government one element controls certain morphosyntactic features of another element,
i.e. a verb governs an NP by specifying that the CASE feature of that NP have accusative
as its value, for example. Subcategorisation is rather about the presence or absence of
complements and (in case of presence) the number and type of complements a verb has.
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Nevertheless, in HPSG syntax, government is realised most of the time by constraints
on subcategorisation lists.

In German compounds, nothing can be found that resembles (syntactic) government,
as the shape of one element is in no way determined by the other. The type of linking
morpheme that occurs in some compounds is determined solely by the left constituent,
i.e. the one to which it is suffixed, and never by the right (the other) constituent.

The right constituent of a compound is definitely the morphosyntactic locus i.e. the
place where morphosyntactic categories are realised. The fact that inflectional affixes
are always suffixes in German,?? is already a strong hint that the right element in a
morphological construction is the morphosyntactic locus of that construction. In ad-
dition, if morphosyntactic categories are expressed by morphological operations other
than affixation, such as vowel mutation, this also always affects the right constituent
of a compound. Even in the case of dvandvas or bahuvrihis, where there is no unique
semantic head, the morphosyntactic locus is the right constituent.

From a morphological point of view, the morphosyntactic categories are those fea-
tures specifications that are expressed by inflection and that can be enumerated in a
paradigm (see Section 5.3). They are defined differently for the different parts of speech.
We consider lexical roots such as sprach and termin as specified for the syntactic HEAD
features shown in Figure 39 on account of their behaviour as syntactic atoms. An al-
ternative analysis would be to consider morphological bases as not appropriate for the
syntactic HEAD features. The syntactic HEAD features would then have to be introduced
by a rule (a lexical rule or a null-affixing schema) for compounds and non-compounds
alike. A rule with the same kind of effect on the feature specifications on a compound
is needed anyway for combining non-null inflectional suffixes with bare stems. (Koenig,
1999, p.142ff) represents inflection along these lines, but we refrain from such a repre-
sentation lest zero affixes have to be stipulated.®?

We present the nominal and verbal morphosyntactic categories as the types s-vhead
and s-nhead in Figure 39, and we argue here, that they are HEAD features in compound-
ing.

There is a second set of potential HEAD features, which is responsible for morphotac-
tic behaviour. These features encode nativeness (NAT), umlauting properties (UML), the
property of possibly taking linking morphemes in compounding (LINK), and, most impor-
tant, inflectional class properties for inflection (STEMCLASS, SUFFIXCLASS, and VROOT,
cf. Section 5.5.2). The idea of features constraining the combinatorial potential of ele-

32Tf the participle-forming prefix ge- were considered an inflectional affix, it would be a counterexample
to this claim. On constructional and prosodic grounds, however, we treat it as a a derivational class
I prefix.

33In Koenig’s theory, zero affixes pose not so grave a problem, as inflectional morphemes are denied
the status of signs in the first place.
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MAJ verb
TENSE tense
MOOD  mood

MAJ noun
CASE case
GENDER gender

FIN finiteness
PER person
PER person AGR P
AGR agreement| NUM  number
s-vhead agreement NUM number s-nhead

Figure 39: Verbal and nominal syntactic HEAD features

ments is parallel to subcategorisation in syntax: The fact that the verbal root sprach
is specified as [VROOT: nahm] and [SUFFIXCLASS: sprechen]| licenses it to be combined
with the inflectional suffixes suitable for the past tense roots of the nehmen-verbs, but
prevents it e.g. from combining with the present suffixes for the same class. All com-
pounds formed with sprach as their right constituent (e.g. frei#sprach, los#sprach)
have the same feature specifications, thus these features are HEAD features as well.

SUFFIXCLASS wsuffizclass |
FLEX |STEMCLASS vstemelass FLEX nflez[ SUFFIXCLASS nsuffizclass]
ofies | VROOT vroot DER [NAT nat]
DER [NAT nat] UML uml
UML  uml m-noun LLINK link
mvers LLINK link J

Figure 40: Verbal and nominal morphological HEAD features

The above described compounding behaviour leads us to introducing separate feature
structures for morphological and syntactic HEAD features. This is justified for more
general reasons as well:

1. The morphological HEAD features are not relevant in syntax, i.e. in a recognition
architecture where a separate morphology component is situated before the syntax
and semantics component, all morphological sub-feature structures may be deleted
as soon as the morphology is “finished”.

2. Within the domain of morphology itself, morphological and syntactic HEAD fea-
tures have a different status in inflectional affixation: Morphological HEAD features
need not percolate at all, and syntactic HEAD features are passed according to the
Marking Principle (not the HFP), as will be more elaborately argued in Section
5.2.3.

Returning to headedness in compounding, both morphological and syntactic HEAD
features are passed from the right constituent of a compound to the compound as a
whole, as can be seen from examples frei#sprach and Arbeit#+s#termin which share
syntactic and morphological head properties with their right-hand constituents.
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[SURF|PHON /FRr’aT#SPR’’a:X/
SYN [LOC [HEAD ]]
MORPH [HEAD [2]]

[NONHEAD-DTR [SURF|PHON /Fr’al/]
[SURF|PHON Spr’a:x

MAJ verb
TENSE past
MOOD  indicative
SYN LOC [HEAD FIN finite
AGR PER 1M3 ]
DTRS ;
HEAD-DTR i i sohead| cgreement NUM singular J 1

[SUFFIXCLASS sprechen]

FLEX [STEMCLASS nehmen
MORPH HEAD vflex [ VROOT nahm
DER [NAT nat]
UML  uml
L m-vhead | LINK  link 1] J

Figure 41: HEAD feature percolation in the compound freisprach

Note that these feature percolation properties hold as well for compounds where the
right constituent is not the semantic head.

As a corollary of feature percolation of such features as the major class feature
MAJOR, the right constituent is certainly the distributional equivalent of the compound
as a whole, syntactically speaking. But we have to be careful since we are looking for
morphological distributions and environments of compounds. One (and this is the only
one that we can think of) would be the kind of inflectional suffixes that go with the
compound. Again as a corollary of inflectional class feature percolation, a compound
takes the same inflectional suffixes as its right constituent does.

The essence of the preceding paragraphs is that according to the different criteria
that have previously been considered defining criteria of heads, the right constituent in a
compound s the head. None of these criteria leads to the idea that the left constituent
could be the head of a compound in German. By looking at feature percolation in
compounding, we have established the feature structures defined in Figures 39 and 40
as syntactic and morphological HEAD features. In the following section, we will see that
these are HEAD features in derivation, too.
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[SURF|PHON /7aRB’AIT#+S#TERM’’1:N/
SYN [LOC [HEAD ]]

MORPH [HEAD [2]]

[NONHEAD-DTR [SURF|PHON /?ARB’AIT#+5/]

[SURF|PHON /TE6.M'L:N/

B MAJ noun
CASE nom I dat M acc
NUMBER singular

SYN LOC |HEAD GEN masculine

DTRS
- PER 3
HEAD-DTR AGR .
NUM singular

L s-nhead agreement

FLEX [SUFFIXCLASS abend]
DER [NAT nat]

UML uml
i | rnoun LLINK link | J

MORPH HEAD

Figure 42: HEAD feature percolation in the compound Arbeitstermin

5.2.2. Headedness in derivation

Let us next examine derivational suffixation constructions as shown in Figure 36.

The obligatory element in a derivational construction is the base rather than affix,
as the result of a combination of a base with an affix yields a new base (and not a new
affix). The distributional equivalent is the base for much the same reason.

In a derivation, the derivational affix has traditionally been regarded as a functor
whose semantic argument is realised by the base. Consequently, the derivational af-
fix is often regarded as being subcategorised for particular bases (cf. Selkirk (1982),
Lieber (1992), and Krieger (1993)), thus, as a subcatorisand. In HPSG representations
of derivations, typically the affix operates on the representation of the base, making
such changes as altering its MAJOR category, its subcategorisation requirements, and
deleting or adding semantic features (cf. Sehitoglu and Cem (1996), Krieger (1993),
and Riehemann (1998)). But we have mentioned alternative analyses already: Krieger
(1993) proposes mutual subcategorisation of base and affix in derivations in the case of
certain subregularities (discussed in Section 4.4), and we also regard the representation
of umlaut properties suggested in Trost (1993) as a form of mutual subcategorisation of
base and affix. Finally, Riehemann (1998) denies affixes the status of linguistic signs,
and consequently they do not have subcategorisation properties at all. In her theory,
constraints between affixes and bases are expressed in the word formation schemata
which represent generalisations over lexicalised complex bases, see Section 4.4.
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Again, as concatenative inflection is realised through suffixation only (i.e. from the
right), the morphosyntactic locus in derivational suffixation is the suffix, since it is the
right element by definition.

The element that determines certain morphosyntactic features of a derivation as
a whole is also the suffix. It is well-known (e.g. among learners of German) that a
derivational suffix determines part of speech (MAJOR), gender (in case of a nominal
derivation), and the inflectional class of words formed with them. All words formed with
the suffix —ung, for example, are feminine nouns that inflect like the simplex word Frau.
Likewise, umlaut properties are determined by the suffix. The nominal suffix -tum,
for example, forms neuter nouns that inflect like the simplex noun Fach, complete with
umlaut in the plural. The features that percolate are thus the same as in compounding
with the exception of ablaut features, which play no role in concatenative derivation
(there are no ablauted variants of suffixes).

There is a way in which the suffix affects the shape of the base, in the case of
derivational suffixes that go with umlauted or ablauted bases. But describing umlaut
using governing of bases by the suffix alone leads to many exceptions and is not sufficient
as Gibbon and Reinhard (1991) and Trost (1993) have shown. As for ablaut, ablauted
bases that occur with particular suffixes in derivations e.g. gang in the word gangbar,
are always exceptional, and a corresponding government specification using the VROOT
feature (cf. Section 5.5.2) in the subcategorisation requirements of the suffix would lead
to numerous incorrect predictions.

In sum, three of seven criteria point to the suffix as the head of a derivation (semantic
functor, morphosyntactic locus, feature percolation), two point to the base (obligatory
element, distributional equivalent), and two remain ambiguous (subcategorisand, gover-
nor). From the viewpoint of HPSG (and the cited previous work in generative morphol-
ogy), though, we consider the morphosyntactic locus and feature percolation, especially
of the MAJOR feature, more important criteria to determine heads. We have already
seen that the criteria of obligatory elements and distributional equivalents do not distin-
guish between the two constituents of a compound, and thus we assume that they play
a less important role in determining heads in derivation, too. Thus, like compounds,
derivational suffixations are right-headed in German. Let us next check derivational
prefixation constructions for headedness.

The base is the obligatory element and the distributional equivalent in derivational
prefixations for the same reason the suffix is the obligatory element and the distributional
equivalent in derivational suffixations. On the other hand, the prefix is the semantic
functor and the subcategorisand in derivational prefixations for the same reason the suffix
is the semantic functor and the subcategorisand in derivational suffixations. There is no
government in derivational prefixations, i.e. no cases where the prefix chooses allomorphic
variants of the base, and (morphologically conditioned) allomorphs of prefixes do not
exist.
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Again, as in German inflectional affixes are affixed from the right to a base, the base
is the morphosyntactic locus in derivational prefixations.

Morphosyntactic feature percolation is also from the base in derivational prefix-
ations. For example, the derived words er+brechen, zer+brechen, ab+brechen,
unter+brechen are all verbs and inflect exactly like the simplex verb brechen (i.e. they
have the same MAJOR, VROOT, STEMCLASS and SUFFIXCLASS feature specifications).
Prefixations with the nominal class II-prefix un- and the semi-prefixes haupt- and erz-
such as Un#mensch, Haupt#stadt, Erz#rivale reveal that the feature GENDER also
percolates from the base, in these cases from Mensch, Stadt, and Rivale.

A significant group of verbal prefixations, though, which result in a change of the
major class category to verb, seem to involve no feature percolation from the base at
all (cf. Figures 43, 44, and 45). There is also no obvious source of the inflectional
class specifications of the derived verbs, which are always characterised as weak verbs
([STEMCLASS fragen| and [SUFFIXCLASS sagen|, [SUFFIXCLASS warten], [SUFFIXCLASS
begeistern], or [SUFFIXCLASS fassen)).

BASE
MAJOR verb
STEMCLASS fragen

SUFFIXCLASS  sagen

PREFIX BASE
[MAJOR noun]

ent gleis-

Figure 43: Absent feature percolation in the constituent structure of entgleis-

However, an alternative analysis of these prefixations is available, by regarding
gleis—, dumm-, and antrag as (non-lexicalised) bases that have been converted by
the morphology from nominal or adjectival to verbal before the actual prefixation.

In an analysis as exemplified by the alternative tree structure of ent+gleis- in Figure
46, on the level of the ent-prefixation, the verbal features percolate from the base just
like in the examples in Figure 35 and an RHR can be established for prefixations in
German as well. Such an analysis involving conversion has previously been proposed
e.g. by Liideling (1999), who mentions further arguments in favour of it (cf. Liideling,
1999, p.76f.):

1. A conversion analysis is independently required for a substantial number of de-
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BASE
[MAJOR verb '|
STEMCLASS fragen
[ SUFFIXCLASS  sagen J

PREFIX BASE
[MAJOR adjective]

ver dumm-—

Figure 44: Absent feature percolation in the constituent structure of verdumm-

BASE
[MAJOR verb '|
STEMCLASS fragen
[ SUFFIXCLASS  sagen J

PREFIX BASE
[MAJOR noun]

be [an tragl-

Figure 45: Absent feature percolation in the constituent structure of beantrag-

nominal and de-adjectival simplex verbs in German (like haus-, 16ffel-, griin-),
thus no additional rule is required in the morphology..

2. If we rejected a conversion analysis, what about the ‘normal’ verbal prefixations
such as those in Figure 357 Certainly the base should be the head in these, for
the reasons given above. But then we would get different head assignments in
derivations like those in Figure 35 and those in Figures 43-45. This would divide
prefixations into two fundamentally different morphological construction types,
which is not desirable.

3. If the base were not the head in Figure 46, the verbal information types would have
to come from the prefix (the same way they percolate from suffixes in derivational
suffixations), but no evidence for this can be found in German morphology.

In sum, we propose a Right-hand Head Rule for word formation in German. This
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BASE
[MAJOR verb '|
STEMCLASS fragen
[ SUFFIXCLASS  sagen J

PREFIX BASE

MAJOR verb
STEMCLASS fragen
SUFFIXCLASS  sagen

ent BASE
[MAJOR = noun]

gleis
Figure 46: Alternative constituent structure of entgleis-

means that the HFP basically remains as it is has been introduced by Pollard and Sag
(1994), only, as we have argued for distinguishing syntactic vs. morphological (HEAD)
features, we must make sure that it applies to both (Figure 47). Henceforth it will be
called the Morphological Head Feature Principle (MHFP).

SYN|LOC|HEAD

MORPH|HEAD
baseCompler =

[ SYN|LOC|HEAD ]
DTRS HEAD-DTR
[ .. |MORPHHEAD J
headed-structure ase

Figure 47: The Morphological Head Feature Principle (MHFP, final version)

The Continuation Schema to be introduced in Section 5.3.4 ensures that the head
appears indeed as the right-hand constituent in derivation and in compounding con-
structions. A conversion schema naturally inherits neither from a continuation schema,
nor from the MHFP (it does not have a HEAD-DTR).
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5.2.3. The non-headedness of inflection

Contrary to the lexical rule approaches by Pollard and Sag (1987, 1994) and the paradig-
matic approaches by Erjavec (1993) and Kathol (1999), all conducted within the HPSG
framework, we assume that inflectional morphemes are signs, as they have segmentable
and classifiable PHON and sYN properties. We thus follow Selkirk (1982), Lieber (1992),
Di Sciullo and Williams (1987), and van Eynde (1994), who likewise propose item-
and-arrangement approaches to inflectional morphology, the latter also using the HPSG
framework. In Section 5.5.3, however, we will show how a paradigm theory is part of
our morphology through the organisation of the type hierarchy over stems and inflected
words. (We talk about stems and not bases in this section, as we have pointed out that
stems are exactly those bases that may be combined with an inflectional suffix.)

While Di Sciullo and Williams (1987) come to the conclusion that the inflectional
affix is always the head in a Stem-Infl construction, Selkirk (1982) (cf. Section 2.3), and
van Eynde (1994) claim that the stem must be the head.

Let us review their arguments and check the potential head property assignments
in inflected words. We define inflected words as words that are morphosyntactically
fully specified and can thus freely occur, i.e. can serve as input to the syntax, such
as Termin#+e, be+sprach, Vater, Vater. The concept of inflectedness is thus in-
dependent of the presence of an inflectional suffix, the criterion is the presence of full
morphosyntactic feature specifications (Figures 41, 42). The lexical type subsuming
all inflected words is called word, and according to the internal structure of inflected
words, it has the two subtypes stem-free, and inflected (Figure 48). Stem-free subsumes
those inflected words that are bare morphological stems at the same time, i.e. that do
not need an inflectional suffix to form a syntactic atom, such as be+sprach, Termin,
Vater, Vater. The other subtype, inflected, comprises those inflected words that bear
an inflectional suffix. In the former, head assignment is clear, i.e. is according to the
head principles for complex bases as discussed above. The latter will be examined in
the following.

The obligatory element in an inflected word has to be the stem. This claim rests on
the fact that bare stems can easily be syntactic atoms in German (cf. Figures 41 and
42). The distributional equivalent of an inflected word is the stem for the same reason.

The stem may also be viewed as the governor of the inflectional suffix, governing the
shape of it according to its own inflectional class. We may formulate that e.g. the stem
termin governs the plural morpheme in that it demands that its shape be -e and not
e.g. —er. At the same time, the inflectional suffix may be viewed as the governor of the
stem, constraining the shape of the stem either to be the base stem or an umlauted or
ablauted variant. Note that both kinds of conditioning would be purely morpho-lexical
(and not phonological).

It probably makes no sense to look for the morphosyntactic locus in a Stem-Infl
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word
stem-free inflected
besprach bespfachst
Vater Termine

Vater

Figure 48: Part of the type hierarchy for word

combination as its only point is the realisation of morphosyntactic categories anyway. If
anything has to be decided on, the stem is the morphosyntactic locus.

As for feature percolation, the features that have been identified as HEAD features
so far percolate partly only from the stem, partly only from the suffix, partly they
may be percolating from either. In the example of Termin#+s in Figure 49, GENDER
definitely percolates from the stem, CASE definitely percolates from the suffix, and umL,
LINK, MAJOR, SUFFIXCLASS, NUMBER may be percolating from the stem or the suffix.
(The GENDER feature in Figure 49 is unambiguously percolating from the stem, as
the masculine/neuter distinction is not a type-dividing dimension in the hierarchy of
inflectional paradigms, cf. Section 5.5.3, and thus is not appropriate for suffixes that go
with masculine or neuter nouns in German.) The question of HEAD feature percolation
in inflection will be discussed in detail in the following.

It is typical of past tense inflected weak verbs that two inflectional suffixes occur
in one inflected word. Here, the verbal HEAD feature TENSE percolates from the first
inflectional suffix -t-, and the agreement features PERSON and NUMBER percolate from
the second inflectional suffix, regardless of whether such constructions are analysed as one
ternary branching structure (Figure 51), or as a binary branching structure embedded
in another binary branching structure (Figure 52).

These cases of percolation of morphosyntactic features from multiple sources are
exactly those that led Selkirk (1982) to reject inflectional affixes the status of heads
in English and define feature percolation conventions for non-heads instead (pp.74ff).
(Di Sciullo and Williams, 1987, p.26) reacted by revising their earlier RHR and formu-
lating the Relativised Right-hand Head Rule (RRHR):

Definition of headp (read: head with respect to the feature F):
The headr of a word is the rightmost element of the word marked for the
feature F.
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WORD
MAJOR noun
-~ " | surrixcrass  abend | T~
T __ - »[ GENDER masc | S
e 7 [ cas  genitive |« - - _ _ N
7 P __ [ NUM  singular | < T~ AN
7/ s _ - >~ ~ \
// 4 ’ e g - B h ~ ) > N \\
/ / ’ e g > N h N \
/ / . Ve N o N \\
// // , 7/ AN N \\ \
/ / / \ \ \
| - STEM INFL L |
\ Y- [ NUMBER  singular ] [ NUMBER  singular ] -7 B ! /'
N e [ GENDER  masc ] [ CAS  genilive ] -7 !
S~ MAJOR noun MAJOR noun 7
| SUFFIXCLASS  abend ] [ SUFFIXCLASS abend |
[ CAS non-gen ] [ GENDER  non-fem ]
[ uMLB L | ‘
[ LNk — |
[ NAT 4+ ]
Termin s

Figure 49: Potential paths of feature percolation in inflection

This Revised RHR is needed for English and German because of the facts of multiple
sources of feature percolation in inflection, but (Di Sciullo and Williams, 1987, p.26f.)
also cite the example of the Spanish diminutive suffix -ita which “can attach to almost
any part of speech and [...] the resulting word belongs to the same category as the word
to which the diminutive attaches”.

Let us see what arguments Selkirk (1982) and van Eynde (1994) have for regarding
the stem as the head of a Stem-Infl construction. (Selkirk, 1982, p.77) simply says that
“li)f the inflectional affix is not the head, then its sister category is”. As no contradiction
between the MAJOR feature of the sister category (the stem) and the inflected word as a
whole arises, she deems this a sufficient criterion for the time being. She remarks that a
more precise characterisation of the notion of inflection is needed to settle this question

(p.77).

In (van Eynde, 1994, p.77), the argumentation runs as follows: Italian participles
take adjectival inflectional suffixes but as a whole they are verbs when for example used
to express perfect tense. Therefore the category (major class) feature must percolate
from the stem, where it is always compatible. Consequently, the stem must be the head.
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WORD
__ - TENSE past |
7 PER 2
e NUM  singular T
/ g > ~
/ N

/ AN

/ \
/ \
! \
‘\ STEM INFL /

T~ [ TENSE  past ] PER 2 o

1 P NUM  singular

spr‘ach st

Figure 50: Morphosyntactic feature percolation from two sources, stem and inflectional
suffix

However, this argumentation cannot be carried over to German, because participles do
not inflect for gender and number when they function as verbs.

Some authors consider participles in German (or English) as a proof that inflectional
suffixes can be major class/category-changing and must therefore be heads just like
derivational suffixes, but again, we think that a conversion analysis for participles rep-
resents a higher generalisation about the behaviour of both present and past participles
in German.

In sum, we agree with the view that inflectional suffixes cannot be heads, but we are
not convinced, either, that stems must be the heads in inflectional suffixations, because
no uniform principle of feature percolation can be formulated for inflection. But instead
of claiming multiple headedness (like in the RRHR), we suspect that we are not dealing
with heads in inflection at all, but have HEAD feature percolation from different (non-
head) elements instead, i.e. contrary to Di Sciullo and Williams (1987), we believe that
only elements from which all the HEAD features percolate at the same time, should be
called heads.

To illustrate this, we would like to discuss two further aspects at this point: Firstly,
is a Head Feature Principle the right way of describing feature percolation in inflection,
and, having answered this question to the negative, is inflection about feature percolation
from a single source at all? Or is it about different kind of compositionality of feature
specifications?

We have mentioned that feature percolation is a reflection of the compositionality
principle, i.e. a word form has properties that are a function of the properties of its
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WORD

PER 2
. <«
NUM  singular N

»| TENSE past ] N

/
STEM INFL INFL \
; /

! PER 2 !
~[ TENSE past | . -
1 NUM  singular

wa&*t —ét —e:st
Figure 51: Ternary branching structure for past tense inflection of weak verbs

parts. But how do we decide in the first place which properties (feature specifications) a
complex construction bears? The answer is that we check to which properties reference
is made when the construction in question is embedded in higher level constructions.

For example, a form like Arbeit#+s#platz has the morphological properties of in-
flectional suffixclass, umlauting behaviour and suitability of linking morphemes, which
are identical to those of the root Platz. Similarly, the syntactic properties of number,
gender, and case that manifest themselves when Arbeitsplatz is embedded in an NP,
are identical with those of Platz. But an inflected form like Arbeit#+s#platz#+es
is no longer available to the morphology, it can only serve as an input to the syntax.
Thus, there is neither a reason nor a discovery procedure for morphological HEAD fea-
ture specifications for words inflected by an inflectional suffix. We believe that it is the
lack of a possibility for Stem-Infl constructions to be directly or indirectly embedded in
themselves (nor even to be embedded in morphological constructions of any kind) that
makes it difficult to talk about morphological headedness in such constructions.

The next question is whether inflection is always about feature percolation at all.
Claiming that a word form like Platz#+es is specified for/bears/has the feature specifi-
cation CASE=genitive, because the suffix —es is specified for it/has it/bears it is counter-
intuitive when that is the only point of the existence of -es, i.e. the only point of the
affixation of -es is to provide this specification for a lexeme like Platz. In the least it is
a different sense of being specified for certain features. Rather than saying these feature
specifications percolate from -es, we would want to formulate that -es marks Platz for
CASE=genitive. Lieber (1992) and van Eynde (1994) have developed their theories along
these lines. Van Eynde (1994) claims that affixal inflection is best described in terms
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WORD
_» [ TENSE past |
L, PER 2 ]
K NUM  singular T .
// \ ) h
/ N
!’ \ ’ h
\\ STEM INFL R
N PER 2 )
- [ TENSE  past ] <« . NUM  singular |
\\ :
\
\ :
| s
STEﬁd INFL | -est

[ TENSE  past ]//

wa&t —ét
Figure 52: Embedded binary branching structure for past tense inflection of weak verbs

of the head-marker schema which was originally introduced in (Pollard and Sag, 1994,
p.45f.) for S constructions (Figure 53).

Pollard’s and Sag’s motivation for markers in syntax lies in the ability of matrix verbs
to select for verbal inflectional features of the S, which only works if S is the head of
S. For example, in the sentence I demand that John leave immediately, the subjunctive
form of leave is selected by the matrix verb demand. On the other hand, demand also
selects the complementiser that as such, and that in turn constrains the S it combines
with to be finite.

A complementiser like that or for is therefore considered a marker, and S the head
in S constructions. Markers have head-like properties: first, they select features of
the constituents they combine with, formulated as the SPEC principle for functional
parts of speech given in 5.4, and second, they share certain features with their mother

constituents, formulated as the Marking Principle given in 5.5.

5.4 Specifier Principle In a headed phrase whose non-head daughter has a

SYNSEM|LOCAL|CATEGORY|HEAD walue of sort ‘functional’, the SPEC value
of that value must be token-identical with the phrase’s DAUGHTERS|HEAD-
DAUGHTER|SYNSEM value (van Eynde, 1994, p.50).
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5.5 Marking Principle In a headed phrase, the MARKING value is token-
tdentical with that of the MARKER-DAUGHTER if any, and with that of the
HEAD-DAUGHTER otherwise (van Eynde, 1994, p.51).

[uEAD
SYNSEM|LOC|CAT |SUBCAT

| MARKING

HEAD mark[SPEC ]

MARKER-DTR|SYNSEM|LOC|CAT [supcar ()

DTRS MARKING marked

HEAD
HEAD-DTR|SYNSEM lLOCCAT [ ]
2

SUBCAT

head-marker-struc L 44

Figure 53: AVM notation of the Head-marker schema after (Pollard and Sag, 1994,
p.46) and (van Eynde, 1994, p.50)

In the head-marker schema (Figure 53), firstly, properties of the HEAD-DTR are
constrained by the SPEC specification of the MARKER-DTR (Specifier Principle, cf. tag
). Secondly, the phrase shares the MARKING features with its MARKER-DTR (Marking
Principle, cf. tag ) In addition, the HFP applies as usual (tag ) The SUBCAT
lists of the HEAD-DTR are shared (tag ), although the Subcategorisation Principle
applies as usual. This is because the phrase has no COMP-DTR, i.e. it is specified for
[DTRS|COMP-DTR<>]. The Marking principle is thus a kind of Head Feature Principle
for markers, and ”the specifier principle can be seen as the functional counterpart of the
subcategorisation principle” (van Eynde, 1994, p.40).

Pollard and Sag (1994) give no other examples of markers, but (van Eynde, 1994,
p.54f.) identifies further types of markers in syntax, such as case-marking prepositions,*
the to-infinitive marker, and auxiliaries. According to (van Eynde, 1994, p.78), inflec-
tional suffixes are markers as well, and the stems they are suffixed to are the heads of
Stem-Infl structures which are thus classified as head-marker structures.

In the Marking Principle two cases are distinguished, one special case for head-marker
structures, and one default case for all other headed structures. It is thus different in
character from other principles in HPSG such as the HFP or the subcategorisation
principle, which are not formulated in terms of default and exceptional cases. It has the
same logical structure as the RRHR introduced by Di Sciullo and Williams (1987), and
head and backup percolation introduced by Lieber (1992) (cf. Section 2.3.2) to describe
inflection. Thus, van Eynde (1994) is right in regarding the head-marker schema a good

34i e. prepositions in PPs that serve as prepositional objects, and which were formerly supposed to bear

a feature named PFORM, cf. Bresnan (1982); Pollard and Sag (1994).



5.2 Heads and subcategorisation 86

[PrON (SPRACH,ST)
[HEAD
SYNSEM|LOC|CAT | SUBCAT <>
| MARKING [4]
[ PHON (SPRACH+) i
HEAD vhead
HEAD-DTR

SYNSEM|LOC|CAT | syBCAT <Np>

MARKING unmarked
PHON (+ST)

DTRS _
HEAD [SPEC verb]

FIN  finite
MARKER-DTR TENSE present
SYNSEM|LOC|CAT P

MARKING MOOD indicative
PER 2 ]

AGR .
NUM sing
|l head-marker-struc L L o i

Figure 54: Head-marker analysis of sprach+st in the line of van Eynde (1994)

candidate to describe Stem-Infl structures i.e. in regarding Stem-Infl structures as a
subtype of head-marker structures.

But the Marking Principle also seems to redundantly include the effect of the HFP
for structures that are not head-marker structures, i.e. the default case: For these it
does not matter whether a feature is a HEAD feature or a MARKING feature, in either
case it will be shared with the head of the structure.

Let us have a closer look at the interaction between the Marking Principle and
the HFP in Stem-Infl constructions. The stem is supposed to be the head in such
constructions, but the HFP would hardly have any effect since the morphosyntactic
features PERSON, TENSE, MOOD, NUMBER, CASE would have to be MARKING features
and would be passed by the Marking Principle. The remaining, morphological HEAD
features STEMCLASS, SUFFIXCLASS, VROOT, UMLAUT, LINK, and NAT, which we have
identified in Sections 5.2.2 and 5.2.1, may still fall under the HFP, but their percolation
is totally dispensable at this stage of the morphology, as we have argued above. The only
nominal feature that could be a HEAD feature and must percolate, since it is needed in
the syntax, is GENDER, but it could easily be a MARKING feature as well and be passed
by the Marking Principle.

If we now accept the marking analysis for inflection, we are in a situation where we
claim the morphosyntactic features PERSON, TENSE, MOOD, NUMBER, CASE, GENDER
to be HEAD features in word formation, MARKING features in inflection, and again HEAD
features in syntax. Van Eynde (1994) deems these features MARKING features in word
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formation and in syntax, too, but the latter makes it difficult to define an interface to
much of the other work on syntax in HPSG, where they are the typical HEAD features.

In other words we face the following dilemma:

1. We want to keep the definition of STEMCLASS, SUFFIXCLASS, VROOT, UML, LINK,
NAT as morphological HEAD features and MAJOR, PERSON, TENSE, MOOD, NUM-
BER, CASE, GENDER as syntactic HEAD features, since that fits well with the
analyses in word formation and syntax described so far.

2. We want to have a marker analyses for the provision of morphosyntactic HEAD
features by inflectional suffixes in Stem-Infl constructions.

As already indicated, the solution is to reject the idea that Stem-Infl constructions
are headed structures. In the Stem-Infl marker constructions, morphosyntactic HEAD
features are “collected” from multiple sources, some are marked by the markers, some
are passed from the non-marker. The stem in these constructions is the outstanding
constituent in terms of syntactic (major class, subcategorisation requirements) and se-
mantic properties, which might lead some to call it the head, but it cannot be the head
on account of HFP feature percolation, which we consider as crucial. (Pollard and Sag,
1994, p.397, footnote 6) leave open the question whether there are un-headed structures
other than coord-struc, thus we feel free to suggest here such an un-headed structure
called marker-struc, representing Stem-Infl construction where the MARKER-DTR is the
inflectional suffix and the NONMARKER-DTR is the stem. The head-marker-struc as in-
troduced by Pollard and Sag (1994) for S with complementisers may be a subtype of
marker-struc.

The following modifications to the Head-Marker Schema yield our new Inflectional
Marking Principle shown in Figure 55:

1. The Inflectional Marking Principle states that the marker’s MARKING features
mark (i.e. specify, insert) values of syntactic HEAD features on the mother con-
stituent, thus all MARKING features will be HEAD features (but not the other way
round). The IMP also states that the nonmarker’s NONMARKING features are
shared with those of the mother constituent. Thus the domains of the HFP and
the IMP are properly distinguished.

2. Instead of the Specifier Principle, which is defined for headed structures, we need
only employ morphological subcategorisation (Section 5.2.4).

3. As before, we employ only SYN and not SYNSEM and CAT.

A new marker schema for the lexical type inflected, comprising the effect of all prin-
ciples relevant in inflectional suffixation, will be presented in Section 5.5.2.



5.2 Heads and subcategorisation 88

SYN|LOC|HEAD

|:MARKING }
inflected = s-head

NONMARKING

MARKER-DTR|SYN|LOC|HEAD|MARKING

DTRS
[NONMARKER—DTR|SYN|LOCHEADNONMARKING
marker-struc

Figure 55: The Inflectional Marking Principle (IMP)

TENSE tense
MOOD  mood

MARKING | FIN finiteness
AGR PER person
agreement NUM number

v-marking

s-vhead _NONMARKING v-nonmarking[MAJ 'Uerb}

Figure 56: Verbal syntactic marking and nonmarking HEAD features

Which are the MARKING features, eventually? As we said above, they are the mor-
phosyntactic HEAD features FIN, TENSE, MOOD, CASE, AGR, i.e. PERSON and NUMBER,
and DECL for strong vs. weak adjective declension. GENDER seems to be a NONMARK-
ING feature with nouns but a MARKING feature with adjectives. Also TENSE may be a
NONMARKING feature with most strong verbs (cf. Figure 54), but since verbal suffixa-
tion is determined by verbal root selection through the VROOT feature, it is sufficient
to regard TENSE as a marking feature always provided by the inflectional suffix. Ide-
ally we would need a default unification where HEAD|MARKING features always override
HEAD|NONMARKING features in case of conflicts, and in order to mirror the RRHR
more directly in HPSG feature structure terms; this would also obviate the need to
explicitly inventorise the NONMARKING features. But note that in the original head-
marker approach by van Eynde (1994) we would have to explicitly sort out the HEAD
and MARKING features, too, thus this is not a disadvantage of our non-HFP account of
inflectional suffixation. For the time being, GENDER will have a different status in the
feature declarations of the different subtypes n-marking, a-marking and n-nonmarking,
a-nonmarking, i.e. the value types of MARKING and NONMARKING, respectively.

CASE case
MARKING AGR PER person
n-marking agreement NUM number
MAJ noun
NONMARKING
s-nhead n-nonmarking GENDER gender

Figure 57: Nominal syntactic marking and nonmarking HEAD features
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5.2.4. Subcategorisation

A morphology that considers affixes as lexical signs involves two kinds of subcategorisa-
tion information, cf. Section 4.4.

1. Morphological subcategorisation: All affixes, and only affixes, are subcategorised
for morphological bases in that they select morphological, syntactic, semantic, or
sometimes phonological features of these.

2. Syntactic subcategorisation: lexical stems have a syntactic subcategorisation frame
that they share with all their inflected forms. This is what is known as the SUBCAT
list of lexical entries in HPSG grammars. They may also play a role in morphology:
Firstly, one of the elements of a head’s subcategorisation list might be satisfied by
the modifier in a compound, examples of this have been discussed in Section 5.2.1.
Secondly, the SUBCAT list of a morphological base might be altered through deriva-
tion or compounding, i.e. the syntactic SUBCAT list of the complex structure is a
function of the SUBCAT list of the base. The nature of that function might be
specified in the feature structure representing the affix or modifier, or in the mor-
phological construction type that describes the Affix-Base or the Head-Modifier
combination (e.g. according to Riehemann’s (1993, 1998, 2001) schema-approach).
The function might imply only modifications of the syntax, but not the semantics,
as is frequently the case in compounding (compare Treffen and Donnerstagstref-
fen), but also, for example, in agent noun derivations (lehren — Lehrer).

Within the confines of this thesis, we will deal with morphological subcategorisation
only. All types of affixes are appropriate for the feature MORPH|SUBCAT, whose value
is a single feature structure description (not a list of feature structure descriptions)
and which is typed to base (see the collection of feature declarations in Section 5.6
for the complete system). There is no equivalent to the cancelling of elements from a
subcategorisation list as in the HPSG subcategorisation principle for syntax, instead,
morphological subcategorisation requirements must always be completely satisfied in
one Affix-Base combination, thus a lexComplexr construction is never appropriate for the
feature MORPH|SUBCAT.

Consequently, our Morphological Subcategorisation Principle (MSP) looks like the
following:

$BASE-DTR 1
affized = DTRS
+roo| SAFFIX-DTR|MORPH|SUBCAT

Figure 58: The Morphological Subcategorisation Principle (MSP)
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$BASE-DTR ranges over HEAD-DTR (in case the affix is a prefix), NONHEAD-DTR
(in case the affix is a derivational suffix), and MARKING-DTR (in case the affix is an
inflectional suffix). The conditions for the respective instantiations will be clarified in
Section 5.5.1.

5.3. The hierarchy of morphological types

In this chapter, we present the organisation of lexical objects into an HPSG type hi-
erarchy according to the morphological properties discussed so far. Several partial in-
heritance hierarchies covering various aspects of morphology that were proposed earlier
have been discussed in this thesis. Pollard and Sag (1987) classify English word forms
according to their morphosyntactic properties, Riehemann (1998) and Krieger et al.
(1993) contain classifications of German bar-adjectives, Bleiching (1994) and Cahill and
Gazdar (1999) classify nouns according to inflectional classes in German. In Liingen
and Sporleder (1999) a morpheme type hierarchy for German is presented, and Fis-
cher (1993) and Gibbon (1997) present different hierarchies of English compound noun
classes. It has not been quite clear, however, how such hierarchies could be integrated
into one large, comprehensive hierarchy, or whether they can or should be integrated
at all for the purpose of describing the morphology of one language completely. Since
that is one of the enterprises of this thesis, the lexicon suggested here is organised into
different morphological subhierarchies, the top-levels of which are shown in Figure 59.

The immediate partition of the type sign is into the subtypes complex, morpheme,
lemma, and word. 1t is different from the partition into phrasal and lexical put forward
in Pollard and Sag (1987) and Pollard and Sag (1994), as we postulate the existence of
complex lexical signs, which means that phrasal and lezical together no longer exhaust
the type sign. Instead, we propose that phrasal is a subtype of complex which explicitly
denotes a type subsuming syntactically complex signs such as NPs and VPs. The types
morpheme, lemma, word, as well as lexComplex are appropriate for our MORPH feature,
so these are the ones subsumed under lexical-sign. Lexical-sign thus denotes lexical ob-
jecthood, not to be confused with lexicalisedness. The constructions in our morphology
describe lexicalised and non-lexicalised complex words alike, the original LEX feature
from HPSG should serve to distinguish complex words according to lexicalisedness. We
do not employ this feature in our present morphology, though.

The actual morphology hierarchy (i.e. the one under lezical-sign) consists of four main
subhierarchies: the lemma hierarchy, the word hierarchy, the lexComplez hierarchy, and
the morpheme hierarchy.
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sign

lezical-sign

MORPH

morpheme lemma word

phrasal lexComplex root affiz noun-lemma verb-lemma adjective-lemma noun-word verb-word adjective-word

baseComplex inflected

Figure 59: The hierarchy of morphological types

5.3.1. The lemma hierarchy

A lemma contains all the morphological information that is common to the word forms
belonging to one morphological paradigm. For example, the stems (represented by the
orthographic string that is left when the inflectional suffix is stripped off, i.e. preceding
the #+) of the word forms schreib#+e, schreib#+st, schreib#+t, schreib#+en,
schrieb, schrieb#+e, schrieb#+st, schrieb#+en, geschrieb#+en are all appro-
priate for the features STEMCLASS and SUFFIXCLASS that are also found under a more
abstract type called schreiben-lemma, which is one of the subtypes of lemma. Note that
we reserve the term lexeme for an extended notion of lemma. Further syntactic and
semantic types of information are associated with e.g. a lexeme called schreiben-lexeme,
e.g. that it is a transitive verb, that the present and past perfect analytical tense con-
structions are formed with the auxiliary haben, that its semantics is a binary relation
represented by '"WRITE(WRITER,WRITTEN)’ etc. These other types of information are
organised similarly in different hierarchies, from which the lexeme node then multiply
inherits, that is, lezeme implies a partition of lemmata along syntactic and semantic
dimensions. The type lemma, on which we focus here, however, is appropriate only for
morphological types of information, and in turn, only morphological information is used
to distinguish between individual homonymic lemmata. There is for example only one
noun lemma type called schloffi-lemma even though two different lexemes will eventu-
ally be subsumed by it. On the other hand, there will be two lemmata bank-lemma-1
and bank-lemma-2, as these are morphologically distinguished by their SUFFIXCLASS
specifications (noun-kraft and noun-frau, respectively).

The feature SUFFIXCLASS induces a nominal paradigm class hierarchy on noun lem-
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mata, through partitions and re-partitions of its value type n-suffizclass (Figures 60-62).

n-suffizclass

fem-suffizclass nonfem-suffizclass

Figure 60: Partition of n-suffizclass

fem-suffixclass

fem-scl-n-pl femescl-uml-pl fem-scl-s-pl fem-scl-nonnative

noun-frau
noun-idee
noun-famili-e
noun-feder

noun-no-pl-eil_e

noun-no-pl-mitarbeit

noun-kraft noun-mutter noun-kamera noun-mens_a

Figure 61: Partition of fem-suffizclass

The top-level division of the n-suffizclass hierarchy is into feminine and non-feminine
suffixclasses. The non-feminine noun classes are basically cross-classified according to
genitive and plural formation properties encoded as values of SUFFIXCLASS. Feminine
noun classes are differentiated only on account of plural formation properties (for all
feminine nouns, the singular formation is identical). The types that go out in bundles
under the second-lowest level in Figures 61 and 62, named after prototypical individual
lemmata, are supposed to induce the maximal lexical noun lemmata types, from which
individual lemmata inherit their attributes. The SUFFIXCLASS feature values of one
bundle are differentiated further on possible phonological properties of morphological
stems as well as on the (semantic or statistical) non-existence of plural or singular forms
for certain lemmata. (Phonological properties will be ultimately inherited from the base-
Complex and root types). Thus, when a two-level morphophonology rule component
dealing with umlaut, e-deletion and e-insertion is integrated, most of the class types in
one bundle need not be differentiated at all.

Note that though the nominal SUFFIXCLASS feature value types are named after
possible inflectional suffixes, at this point we are dealing with morphological properties
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non-fem-suffixclass

nf-scl-er-pl nf-scl-n-pl nf-scl-s-pl nf-scl-n-gen nf-scl-s-gen

noun-gott
noun-irrtrum
noun-kind
noun-gesicht

nf-scl-n-pl-n-gen nf-scl-n-pl-s-gen

nf-scl-s-pl-s-gen nf-scl-e/0-pl-s-gen

noun-auto noun-pn_s

noun-mensch noun-staat
noun-bauer noun-doktor nf-scl--e/0-pl-s-gen-uml nf-scl-e/0-pl-s-gen-numl
noun-elter_n noun-aug_e
noun-griech_e noun-see
noun-herr noun-bau_t_en

noun-schampus
noun-ni

noun-service

noun-anfang noun-abend
noun-fall noun-jahr

noun-vater noun-treffen noun-no-pl-mais
noun-garten noun-kas e noun-no-pl-norden
noun-fehler  noun-no-pl-kram

Figure 62: Partition of non-fem-suffizclass

of lemmata, which are to be inherited by individual stems. Stems are selected by in-
flectional suffixes by virtue of morphological subcategorisation. Stems and inflectional
suffixes are combined in the construction type inflected (see Section 5.5.2).

5.3.2. The word hierarchy

The next main subhierarchy in the hierarchy of morphological types is the word hier-
archy. It represents the classification of word forms according to the morphosyntactic
features, i.e. syntactic HEAD features, such as the famous one proposed for English verbs
by (Pollard and Sag, 1987, p.202). The words at the bottom of this hierarchy are the
syntactic atoms in the sense of Di Sciullo and Williams (1987). Thus, in the partitioning
of this hierarchy, it does not play a role whether a word includes a complex or a simple
stem, whether it bears an inflectional suffix or whether inflection is indicated by some
other phonological process.

The verbal word hierarchy for German, for example, is induced through the parti-
tioning of s-vhead, which is the value type of the feature SYN|LOC|HEAD, according to
the dimensions indicated in Figure 63.

In Section 4.2, we have seen that parallel partitioning of one type according to dif-
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s-vhead
s-finite-vhead s-nonfinite-vhead

FIN

s-infinitive-vhead s-participle-vhead

s-indicative-vhead s-past-vhead NUMBER PERSON s-past-participle-vhead o
s-conjunctive-vhead P s-pres-vhead | | | S-pres-participle-vhead
s-sing-vhead s-1st-vhead s-3rd-vhead
9 s-plur-vhead s-2nd-vhead

Figure 63: Partition of s-vhead, which induces the verbal word hierarchy

ferent dimensions leads to a cross-classification of maximal lexical types by multiple
inheritance. Thus the dimensions in Figure 63 are those features that occur in the fea-

ture declarations of s-vhead and its subtype s-finite-vhead which are shown in Figure
64.3°

TENSE tense

TENSE tense MOOD mof’d

MARKING [MOOD  mood MARKING |FIN finite
s-vhead v-marking | FIN  finiteness AGR PER per
s-finite-vhead v-marking agreement NUM num

Figure 64: Feature declarations for s-vhead and s-finite-vhead

Multiple inheritance from each partition of this multi-dimensional hierarchy means
that each maximal type is a join of types where each conjunct is taken from exactly
one partition, and also each partition conversely provides exactly one conjunct.?® This
yields the following set of maximal types under the s-vhead hierarchy:

Set of maximal types under the s-vhead hierarchy, according to the dimensions FIN,
MOOD, TENSE, NUMBER, PERSON:

35The top-level branching is a partition along the feature FIN(ITENESS), which is actually a reflection
of the appropriateness of the AGR(EEMENT) feature for subtypes of s-vhead. That is, lexical objects
that are finite require the AGR feature. FIN serves to encode a partition in terms of different values
for one feature (FIN), which originally arises on from the presence or absence of another feature (AGR)
and is therefore actually redundant. See Liingen and Sporleder (1999) for a further discussion of
type divisions.

36This technique is extensively used in Koenig’s (1999) approach.
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s-indicative-vhead LI s-present-vhead LI s-sing-vhead U s-1st-vhead,
s-indicative-vhead U s-present-vhead U s-sing-vhead U s-2nd-vhead,
s-indicative-vhead LI s-present-vhead U s-sing-vhead U s-3rd-vhead,
s-indicative-vhead LI s-present-vhead U s-plur-vhead L s-1st-vhead,
s-indicative-vhead LI s-present-vhead LI s-plur-vhead U s-2nd-vhead,
s-indicative-vhead U s-present-vhead U s-plur-vhead U s-3rd-vhead,
s-indicative-vhead LI s-past-vhead U s-sing-vhead U s-1st-vhead,
s-indicative-vhead U s-past-vhead U s-sing-vhead U s-2nd-vhead,
s-indicative-vhead LI s-past-vhead Ll s-sing-vhead Ll s-3rd-vhead,
s-indicative-vhead U s-past-vhead L s-plur-vhead U s-1st-vhead,
s-indicative-vhead LI s-past-vhead U s-plur-vhead L1 s-2nd-vhead,
s-indicative-vhead LI s-past-vhead U s-plur-vhead L1 s-3rd-vhead,
s-subjunctive-vhead U s-present-vhead U s-sing-vhead U s-1st-vhead,
s-subjunctive-vhead U s-present-vhead U s-sing-vhead U s-2nd-vhead,
s-subjunctive-vhead U s-present-vhead L s-sing-vhead U s-3rd-vhead,
s-subjunctive-vhead U s-present-vhead U s-plur-vhead U s-1st-vhead,
s-subjunctive-vhead U s-present-vhead L s-plur-vhead U s-2nd-vhead,
s-subjunctive-vhead U s-present-vhead U s-plur-vhead U s-3rd-vhead,
s-subjunctive-vhead U s-past-vhead U s-sing-vhead U s-1st-vhead,
s-subjunctive-vhead U s-past-vhead LI s-sing-vhead LI s-2nd-vhead,
s-subjunctive-vhead U s-past-vhead U s-sing-vhead U s-3rd-vhead,
s-subjunctive-vhead U s-past-vhead LI s-plur-vhead LI s-1st-vhead,
s-subjunctive-vhead U s-past-vhead LI s-plur-vhead L s-2nd-vhead,
s-subjunctive-vhead U s-past-vhead U s-plur-vhead Ul s-3rd-vhead,
s-infinitive-vhead,

s-pres-participle-vhead,

s-past-participle-vhead

The set of the PHON and ORTH values of the word forms which belong to these
types and share a common stem make up the inflectional paradigm, in this case a verbal
paradigm. We will discuss the mappings from lemmata to paradigms (i.e. paradigm
functions) in Section 5.5.3, after having discussed the features appropriate for the type
inflected.

5.3.3. The morpheme hierarchy

The morpheme is the only subtype of sign that is definitely lezicalised in that the
maximal types subsumed under it have to be ‘listed’. Instances of other types, such as
lexComplex, are not necessarily lexicalised, i.e. the type lexComplex subsumes lexicalised
as well as non-lexicalised words. The type morpheme is the type complementary to
complex in the partitioning of the type sign (Figure 59).

Morpheme is partitioned twice, first, along the boolean-valued dimension
MORPH|HEAD|DER|NAT(IVE).  Second, along the appropriateness of the feature
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morpheme

T T

NAT MORPH |SUBCAT

derivational-affiz
native nonnative root derivational-prefiz derivational-suffiz Im interfiz inflectional-suffiz
native-root nonnative-root native-prefiz prenn native-d-suffiz nonnative-d-suffiz

bieg pliz prel pre2 part in el ier en
haus ' : : ung
schén : : : lich

ver un aus

Figure 65: The morpheme hierarchy for German

MORPH|SUBCAT into root (which have no morphological subcategorisation properties)
and affiz. Affiz is partitioned into d(erivational)-prefix and suffiz, which in turn is par-
titioned into d-suffiz, inflectional-suffiz, plus the two minor types interfir and linking-
morpheme (Ilm). The partitioning dimension for the first three is a conjunction of the
appropriateness of MORPH|SUBCAT and the MPHON|LBOUND and MPHON|RBOUND fea-
tures. Since this complex dimension leads to three disjunctive subtypes only, there must
must be a gap in the set of possible resulting subtypes, and in fact, German is lacking
morphemes of a potential type that might be called inflectional-prefiz. D-prefix is parti-
tioned into part (verbal particles),?” prel (class I prefixes), pre2 (class IT prefixes), and
prenn (nonnative prefixes).

5.3.4. The lexComplex Hierarchy

The lexzComplex hierarchy classifies morphological bases according to their construc-
tional make-up, i.e. according the type of the value of the feature pTRS. (The type
lexComplex is distinguished from the type morpheme by the presence of the DTRS at-
tribute, cf. the hierarchy in Figure 59.) LezComplez subsumes complex lexical signs. The

37In the Verbmobil lexicon context, we considered verbal particles prefixes, but this is of course highly
controversial. Cf. Liideling (1999) and Miiller (2000) for recent comprehensive studies of verbal
particles.
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top-level distinction is between baseComplex and inflected. The latter has marker-struc
as a value of the feature DTRS.

lexComplex
/\
baseComplex affixed
baseCompound baseDerived suffixed
basePrefixed baseDSuffixed baseLm baselnterfixed inflected

basePartfixed basePrelfixed basePre2fixed basePrennfixed  baseSQuffnfixed  baseSuffnnfixed

Figure 66: Hierarchy of complex lexical signs

Thus, the type inflected is responsible for the combination of stems and inflectional
suffixes, where the IMP ensures the marking of syntactic HEAD features on the resulting
word, and MSP licenses and constrains only the correct combinations by specifying
values of the morphological HEAD features STEMCLASS, SUFFIXCLASS, and VROOT on
the stem.

The type baseComplex subsumes all types that describe concatenative word forma-
tion constructions, i.e. combinations of one base and one affix (baseDerived) or com-
binations of two bases (baseCompound). A base is thus a type of sign on which a
morphological operation can be performed, or, in HPSG terms, that can function as a
base daughter in baseComplez or the stem daughter in infiected constructions. A base
may be complex (baseComplez), or simplex (root). A base construction is thus defined
recursively, and the recursion is grounded by the possibility for bases to be simplex. How
do we distinguish bases from stems then? A stem is supposed to be a base which is at the
same time subsumed by the type lemma, i.e. a base that additionally bears inflectional
class specifications, i.e. which can be selected by inflectional suffixes through morpholog-
ical subcategorisation. We want to distinguish between stems and bases as there seem
to be bases that are not stems, but still play a role in word formation. For example,
words like re+par+ier#+en, Re+par+at+ur, re+par+abel contain the complex base
re+par-, which in turn contains the simplex base (i.e. root) par- (which also occurs in
the word Kom+par+at+ist+ik). The bases par- and repar- do not bear STEMCLASS
and SUFFIXCLASS specifications (they do not even seem to be specified for a specific
MAJOR syntactic category) and thus cannot be combined with inflectional suffixes. Pro-
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ponents of realisational morphology might argue that morphological relations exist only
between the stems reparier- and Reparatur and that things like par-, -at-, -ier
are not lexical objects. But creative word formation does operate on such objects, if we
consider for example the language of advertising or science, where new words seem to
be formed from such elements without involving lexical bases that correspond to true
lexemes.

The type baseDerived is further subdivided into basePrefized and baseDSuffized.
Their subtypes are derivations whose DTRS|SAFFIX-DTR value is part, prel, pre2, prenn,
sufn, and sufnn, respectively. The baseDerived hierarchy is thus induced by the d-affix
hierarchy presented above.

[PHON 2LEvVEL (,) ]
SURF

|ORTH 2LEVEL (@,)

RBOUND
MORPH |MPHON

LBOUND
r i [PHON [1]] 17
SURF 0
|lORTH [2]]
HEAD-DTR - )
RBOUND
MORPH |MPHON
[LBOUND
DTRS - - &) -
PHON [5
SURF

|lORTH [6]]
NONHEAD-DTR -

MORPH |MPHON

[RBOUND ]

[LBOUND [3]

basePrefized headed-struc

Figure 67: Continuation Schema for basePrefized

The concatenation of morphs has to be taken care of within lexComplexr and its
subtypes, too. For this, we provide three schemata in Figures 67, 68, and 69. The
schemata make sure that the RBOUND and LBOUND features of a complex base are shared
with those of the constituent that is to appear to the right and to the left, respectively.
Thus, in each Continuation Schema, an interface to a concatenating function called
2LEVEL is defined. Only such a schema ensures that a prefix is actually pre-fixed, and a
suffix suf-fixed. And from the schema in Figure 68, it follows that heads are right-headed
in German derivation and compounding.

The Continuation Schemata remain tentative at this stage, because they do not
say anything about how the MPHON information is used in the 2LEVEL function, and
because they lack a description of the way the actual RBOUND and LBOUND continuation
class requirements are satisfied (in the schema, there is only an account of the way
the information not to be satisfied in the schema itself is shared between mother and



5.3 The hierarchy of morphological types

[PHON 2LEVEL (,)

SURF
ORTH 2LEVEL(,@)
RBOUND
MORPH |MPHON
LBOUND
[ i [PHON [1]] 17
SURF [0
|lORTH [2]
HEAD-DTR - i
RBOUND
MORPH |MPHON
[LBOUND
DTRS - - B N
PHON [5
SURF
|lORTH [6]]
NONHEAD-DTR - i
RBOUND
MORPH |MPHON
ILBOUND [8]

baseDSuffized M baseCompound headed-struc

Figure 68: Continuation Schema for baseDSuffixed M baseCompound

[PHON 2rEvEL (,)

SURF
ORTH 2LEVEL (,@)
[ RBOUND [4]
MORPH MPHON [
LBOUND [7]
[ i [PHON [1]] 17
SURF ]
|ORTH [2]]
MARKER-DTR _ i
RBOUND [3]
MORPH |MPHON
[LBOUND [4]
DTRS - - & -
PHON [5
SURF
|ORTH [6]]
NONMARKER-DTR - )
RBOUND [7]
MORPH |MPHON
inflected | marker-struc L L L -LBOUND E 11

Figure 69: Continuation Schema for inflected
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daughters).

5.4. Root allomorphy

The maximal lexical types of the morpheme hierarchy are morphs in the sense of mor-
phologically and lexically conditioned allomorphs of morphemes (as opposed to phono-
logically conditioned allomorphs). This means that differently ablauted roots like sing-
morph, sang-morph, and sung-morph are subtypes of sing-morpheme, since they are its
different morphologically conditioned allomorphs. Sing-morpheme represents a class of
morphs which is higher up in the type hierarchy. Every sort-resolved feature structure
of type morpheme is thus a morph, signs that are just morphemes but not morphs do
not exist.

Forms such as bleib as occurring in the word forms bleib#+st and bleib#+e are
classified as one single morph with the underlying phonological representation blalIb.
The distribution and combination of these morphs in actual morphological constructions
(represented in the lezComplez hierarchy, cf. Sections 5.5.1 and 5.5.2) is driven by (mor-
phological) features. In Figure 70, the morpheme-morph relation and the type-dividing
dimensions for the morpheme sing-morpheme are shown. The values of the SURF(ACE)
attributes are underspecified in a morpheme. Phonological underspecification techniques
for typed feature structures are described in Bird and Klein (1994) and Koenig (1999).

g//l/Ing-root

STEMCLASS schreiben
SUFFIXCLASS finden

sing-root sang-root sang-root sung-root
[VROOT find] [VROOT fand] [VROOT fand] [VROOT fund]

Figure 70: Morpheme-morph relation as type subsumption

Incidentally, the inventory of German morphs in the sense of morphologically and
lexically conditioned allomorphs is very close to the minimal units of meaning rep-
resented by orthography (thus we would like to call them orthographic morphs). In
general, German orthography is close to the morphemic level, i.e. cases of orthographic
allomorphy are fairly restricted. The main cases where orthography represents allomor-
phy in German are the said morphological alternations of lexical roots involving umlaut
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and ablaut, and the different inflectional suffixes representing the same kind of mor-
phosyntactic specifications, i.e. those alternations that are rather difficult to represent
in a classical Two-level morphology, since they are controlled by interactions of mor-
phological (i.e. not phonological) properties such as inflectional class and parametrised
umlautability, which would have to be encoded as diacritic markers in the lexical form
(i.e. the underlying phonological representation) of the morphemes in question. The
alternative is to use feature specifications and the operation of unification not only in
the description of morphotactics but also of morphophonology.

Other cases of morphologically conditioned allomorphy that is also reflected in or-
thography involve schwa-elision in stems (dunkel vs. dunkl#+es), in inflectional suffixes
(Frau#t+en vs. Feder#+n), and schwa-epenthesis in inflectional suffixes (sag#+te vs.
wart#+ete).

There are three cases of purely phonologically conditioned orthographic allomorphy.
The first is the alternative ss/8-spelling after short vowels (ss before vowels, 8 elsewhere),
where no morphological conditioning is involved.®® The second is doubling of stem-
final single consonants in orthography after short vowels and before unstressed vowels
(Lehrer+in vs. Lehrer+inn#+en). The third is the merger of a stem-final consonant
with a suffix beginning with the same consonant e.g. in verbal inflection: sag#+st vs.
fax#+t (the value of SYN|LOC|HEAD of either is typed to indicative LI present LI sing LI
2nd).

Other purely phonologically conditioned allomorphy, such as final devoicing, is not
reflected in spelling, i.e. orthography generally represents the archiphonemic, underlying
level, over which the morpheme hierarchy is constructed. An overview of the morpho-
logically conditioned allomorphies in German is shown in Table 3.

The morpheme-morph/allomorph relation is thus interpreted as type subsumption
in our HPSG morphology. The features named in Table 3 are the dimensions that
distinguish between the different morph types that are allomorphs of one morpheme.

Note that the definition of the types lemma and stem is analogous: a lemma is a
just class of stems, and every sort-resolved lemma automatically corresponds to a stem,
because a stem is the realisation of a lemma. A stem is either identical with a root morph,
or has a root morph as its head. A lemma is underspecified in that it corresponds to a
root morpheme or has a root morpheme as its head. Note also that we want to avoid to
call the word forms that make up a paradigm the realisations of a lemma. They are not
realisations in the same sense (the sense of type subsumption), because being a member
of the paradigm of one lemma involves constituency as well (Section 5.5.3).

38In the new German orthography introduced in 1999 (not employed in the Verbmobil transcriptions),
the s/B-based allomorphy has been eliminated (ss is now always used after short vowels).
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Allomorphy Partitioning of types in | Example of morph types | as in the word forms
morpheme hierarchy by
features
Ablaut in verbal roots STEMCLASS, VROOT {sprech~sprach~sproch} | sprechen, sprach,
gesprochen
i/e alternation in verbal roots STEMCLASS, VROOT sprich~sprech} sprichst, sprechen
Umlaut in nominal inflection UMLD, UMLB, haus~héus} Haus, Hauser
SUFFIXCLASS
Umlaut in derivation UML, UMLB, UMLD wort~wort } Wort, Wortchen
Stress shift in nonnative nouns | SUFFIXCLASS J-o:r/~/-"0:r/} Doktor, Doktoren
with suffix -or
Schwa-epenthesis in inflection | SUFFIXCLASS {-t~-et} sagt, wartet
of weak verbs
Schwa-elision in nominal and | SUFFIXCLASS {-en~-n} Frauen, Federn; fragen,
verbal inflectional suffixes weigern
Schwa-elision in adjectival and | MAJOR {dunkel~dunkl} dunkel, dunkles; gammeln,
verbal stems {gammel~gamml} gammle

Table 3: Morphologically conditioned allomorphy in German

5.5.

5.5.1.

Derivational affix classification

More specific morphological construction types

Before embarking on the examination of types of morphological constructions in German,
we want to examine more closely the affix hierarchy for German and the dimensions that
distinguish between different types of affixes. As we have seen above, the dimension
that distinguishes affixes from other types of morphemes is the appropriateness of the
MORPH|SUBCAT attribute, which has a (morphological) base as its value. Prefixes are
distinguished from suffixes through their RBOUND and LBOUND values, cf. Table 4.

[ TYPE | CONSTRAINTS [ TSA |
r [ SEP boolean
RBOUND BOUND toBind
: BND-ARG base-initial
prefiz MORPH|MPHON d-affiz
LBOUND BOUND opt
: BND-ARG stem-final M prefiz
B B RBOUND BOUND opt
) BND-ARG suffiz M infl M stem-initial
suffiz MORPH|MPHON affiz
LBOUND BOUND toBind
: BND-ARG base-final M prefiz

Table 4: Feature declarations for prefiz and suffiz

In Section 5.1,

the two affix-distinguishing dimensions MORPH|MPHON|STR

and MORPH|HEAD|DER|NAT were introduced, but to distinguish all different
types of affixes shown in Figure 65, we additionally employ the dimensions
MORPH|MPHON|ADJ(ACENCY) and MORPH|MPHON|SEP(ARABILITY ), after Fleischer and
Barz (1992), and Steinbrecher (1995). ADJ is boolean-valued and describes the property
of being affixable only directly adjacent to a simplex base ([ADJ +]) as opposed to being
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affixable to any kind of base (complex or simplex, [ADJ —]). SEP is needed to distinguish
separable native prefixes (SEP +) from inseparable native prefixes (SEP —).

We can thus characterise the derivational affixes with the help of four boolean features
as shown in Table 5.

NAT | STR | SEP | ADJ | Examples
part + + + - an-, auf,- uber-, zu-
pre2 | + + — — mifi-, un-, erz-, haupt-
prel + - - + be-, er-, ent- ver-, zer-
prenn | — + — + in-, hyper-, kon-, re-, sub-
sufn + — - — -er, -ig, -heit, -keit, -lich, -ung
sufnn | — + - — -ier, -iom, -itat, -1

Table 5: Affix classification after Steinbrecher (1995)

(Steinbrecher, 1995, p.11) notes that the feature ADJ (a property considered distinc-
tive by Hoeppner, 1980) is actually redundant in the above scheme, as its value can be
predicted by the values of the remaining features. In Table 6, the specific subcategori-
sation requirements of the suffix -keit are shown.

[ TYPE | CONSTRAINTS [ ISA |

[ PHON kalt ]
SURF

ORTH keit

native-n-suffic native-n-suffic

MORPH|DER|NAT: +
MORPH SUBCAT

SYN|LOC|HEAD: adj
U noun-frau-lemma
LI noun-nom-fem-word

Table 6: Feature declarations for the suffix keit

The remaining feature specifications of keit_sufn are inherited from the relevant maxi-
mal types under the three hierarchies morpheme, lemma, and word, namely native-suffix,
noun-frau-lemma (providing the morphological HEAD features), and noun-nom-fem-word
(responsible for the syntactic HEAD feature specifications).

Our hierarchy of derivational affixes induces the hierarchy of morphological deriva-
tional bases, whose most general supertype is baseDerived (cf. Figure 59). In other
words, the baseDerived hierarchy is subdivided along the dimension of the DTRS at-
tribute, as either the value of DTRS|HEAD-DTR is a subtype of suffiz, or the value of
DTRS|NONHEAD-DTR is a subtype of prefiz. The different subtypes of prefiz, for exam-
ple, yield the subtypes of basePrefized as shown in Table 7. Every kind of derivational
affixation must be licensed by one Continuation Schema (Section 5.3.4), the MHFP,
(Section 5.2), the MSP (Section 5.2.4), and by the individual lexical entries for affixes.

As we have seen above, the base Complex hierarchy serves to organise the lexicon along
morphological construction types, therefore it subsumes the actual, lexicalised bases, and
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serves as well as the grammar (morphotactics) which describes non-lexicalised, potential
words. The following sections are meant to explain in more detail how binary phrase
structure word formation rules with annotated equations are expressed as HPSG feature
structures denoting lexical construction types. The focus is firstly on more general
types of bases (basePrefized, baseDsuffized, baseCompound) and the type inflected. Later
sections are devoted to the more specific morphotactic problems such as umlauting in
derivation, and linking morphemes in compounding. Some additional morphological
features and thus some new subtypes in the baseComplexr hierarchy are needed to treat
these phenomena.

[HEAD
MORPH LBOUND
MPHON
base-morphology | RBOUND
SYN LOC : HEAD : 3]
MPHON [LBOUND [4]]
NON-HEAD-DTR |[MORPH
prefiz affiz-morphology SUBCAT
DTRS
MPHON |RBOUND
MORPH [ .]
HEAD-DTR base-morphology HEAD
basePrefized | headed-struc L base SYN LOC : HEAD : 4]

Figure 71: The construction type basePrefized

For an example of a lexical construction type cf. the specifications for basePrefized in
Figure 71. The tags in the AVM notation are inherited from the respective morphological
principles:

1. The prefix is subcategorised for the base, i.e. it constrains the set of bases that
can appear in a basePrefized structure (expressed through the tag , inherited
from the MSP). These constraints can be phonological (the prefix im_prenn, for
example, attaches only to roots beginning with a labial consonant), morphological
(e.g. constraints on nativeness), syntactic (e.g. constraints on the major syntactic
category) or semantic (e.g. constraints on the arity of the valence of the base).

2. The HEAD-DTR shares its morphological HEAD features with the basePrefized struc-
ture as a whole (expressed through the tag , inherited from the MHFP).

3. The HEAD-DTR shares its syntactic HEAD features with the basePrefized structure
as a whole (expressed through the tag [3], also inherited from the MHFP).

4. The value of MORPH|MPHON|LBOUND is that of the MORPH|MPHON|LBOUND fea-
ture of the base (tag[4], inherited from a Continuation Schema).

5. The value of MORPH|MPHON|RBOUND is that of the MORPH|MPHON|RBOUND fea-
ture of the prefix (tag , also inherited from the Continuation Schema).
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[ TYPE | CONSTRAINTS [ TSA |
basePrelfized NON-HEAD-DTR. : prefirl basePrefized
basePre2fized NON-HEAD-DTR : prefiz2 basePrefized
basePartfized NON-HEAD-DTR : part ] basePrefized
basePrennfized NON-HEAD-DTR : prenn ] basePrefized

Table 7: Feature declarations for subtypes of basePrefized

Compare this with the AVM for type baseDsuffized shown in Figure 72 where

1. the suffix is subcategorised for a base, i.e. it constrains the set of bases that can
appear in the baseDsuffized structure (expressed through the tag , inherited
from the MSP).

2. the HEAD-DTR shares its morphological HEAD features with the baseDsuffized
structure as a whole (expressed through the tag[2], inherited from the MHFP).

3. The HEAD-DTR shares its syntactic HEAD features with the baseDsuffized structure
as a whole (expressed through the tag , also inherited from the MHFP).

4. the Value of MORPH|MPHON|LBOUND is token-identical with that of the
MORPH|MPHON|LBOUND feature of the base (tag [5], inherited from a Continu-
ation Schema).

5. the Value of MORPH|MPHON|RBOUND is token-identical with that of the

MORPH|MPHON|RBOUND feature of the suffix (tag[4], also inherited from a Con-
tinuation Schema).

[HEAD
MORPH LBOUND
MPHON
base-morphology | RBOUND
SYN LOC : HEAD : [3]
NONHEAD-DTR {Mb()RPH . [MPHON [LBOUND ]H
base ase-morphology
MPHON [RBOUND [5
DTRS [ 5]
MORPH
HEAD-DTR HEAD
affiz-morphology SUBCAT
baseDsuffized | headed-struc L suffiz SYN LOC : HEAD : J J
Figure 72: The construction type baseDSuffized
Thus, apart from the linear precedence distinctions formulated under

MORPH|MPHON, the difference between prefixes and suffixes is that prefixes can-
not syntactically and morphologically head a morphological base, but suffixes can



5.5 More specific morphological construction types 106

FBASE-DTR basel ]

SAFFIX-DTR, E[MORPH wffis-morphology| SUBCAT ]]

[DTRS
baseDerived headed-struc

Figure 73: AVM for type baseDerived

(this is a characteristic that they share with morphological roots). On the other
hand, prefixes share with suffixes the property of being subcategorised for (subtypes
of) morphological bases. Note that the NONHEAD-DTR is in both cases not required
to be specified for HEAD features. This accounts firstly for prefixes, which are never
appropriate for HEAD features (cf. Section 5.2.2), and secondly, for lexical roots, since
some lexical roots are not subtypes under the lemma hierarchy, as was pointed out in
Section 5.3.

In Figure 66 it is shown that there is a supertype baseDerived subsuming both base-
Prefized and baseDsuffized. The associated feature structure, whose AVM is given in
Figure 73, states the fact that in a derivation, the affix (AFFIX-DTR) is subcategorised
for the base (BASE-DTR, cf. tag [1]).

The following holds for the instantiations of $BASE-DTR and $AFFIX-DTR:

1. The $AFFIX-DTR is the HEAD-DTR of a baseDerived if and only if its
MORPH|MPHON value is shared with that of the $AFFIX-DTR and its
MORPH|MPHON|LBOUND value is shared with that of the $BASE-DTR, which is
then the NONHEAD-DTR (this implies that the $AFFIX-DTR is a suffiz).

2. The $BASE-DTR is the HEAD-DTR of a baseDerived if and only if its
MORPH|MPHON|RBOUND value is shared with that of the $BASE-DTR and its
MORPH|MPHON|LBOUND value is shared with that of the $AFFIX-DTR, which is
then the NONHEAD-DTR (this implies that the $AFFIX-DTR is a prefiz).

Let us now turn to compounds. These are distinguished from derivations by the
fact that two bases are involved. The type of the first element is baseLm, i.e. a base
that may occur as the first constituent of a compound (depending of the obligatoriness
of a Linking morpheme (Fugenelement)). As with derivational construction types, we
assume that the right element must always bear HEAD feature specifications, both syn-
tactic and morphological, which are shared with the compound as a whole. Neo-classical
compounds (cf. Bauer, 1983, p.213ff) such as Pathologie might pose a problem with
respect to this claim. In the Verbmobil corpus, 10 neo-classical compound constructions
(partly occurring as sub-constituents of even more complex words) could be found,
whose right-hand elements were always one of the nonnative roots -log, -skop,
or —-fon/phon, namely in the word forms "oko#log+isch, Horo#skop, Tele#fon,
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[HEAD
MORPH LBOUND |3
MPHON
base-morphology | RBOUND
SYN LOC : HEAD :
NONHEAD-DTR |MORPH [MPHON [LBOUND ]H
baseLm | base-morphology
DTRS MPHON |RBOUND [4
MORPH [ ]
HEAD-DTR stem-morphology HEAD
baseCompound | headed-struc L stem _SYN LOC : HEAD : 1

Figure 74: AVM for type baseCompound

Tele#fon+at, Tele#fon+ats, Tele#fon#nummer, Xylo#phon, bio#log+isch#+er,
chrono#log+isch#+en, tele#fon+isch. These roots are definitely specified for HEAD
features, as they may be (optionally, or in the case of -log-, obligatorily) combined
with an inflectional suffix to the right.*® Until further examinations of corpora with
neo-classical compounds, the HEAD-DTR of a compound construction will be typed to
stem.

The morphological structure sharing that holds for the type baseCompound, i.e. for
compound stems, can be explained as follows (cf. Figure 74):

1. There are no morphological or syntactic subcategorisation requirements to be sat-
isfied in a baseCompound structure. Of course, the NONHEAD-DTR may be an
element from the SYN|SYN|LOC|SUBCAT-list of the HEAD-DTR, and is very often
so, e.g. in the most prominent readings of the lemmata Doktorandentreffen and
Terminvereinbarung. These compounds form a special, syntactically and seman-
tically motivated subtype, but not a morphologically motivated subtype of base-
Compound.

2. The HEAD-DTR shares its morphological HEAD features with the baseCompound
structure as a whole (expressed through the tag[1], inherited from the MHFP).

3. The HEAD-DTR shares its syntactic HEAD features with the baseCompound struc-
ture as a whole (expressed through the tag , also inherited from the MHFP).

4. The Value of MORPH|MPHON|LBOUND is token-identical with that of the
MORPH|MPHON|LBOUND feature of the NONHEAD-DTR (tag [5], inherited from a
Continuation Schema).

39 Any compound ending in -Llog- is specified as MORPH|HEAD|FLEX|SUFFIXCLASS griech-e, so that even
the word Chronologe is correctly described as a potential word of German.
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[HEAD

MORPH LBOUND |3
MPHON

base-morphology | RBOUND

SYN LOC : HEAD :

NONHEAD-DTR |MORPH [MPHON [LBOUND ]H
basel base-morphology
DTRS MPHON |RBOUND [4
MORPH [ ]
HEAD-DTR morphology HEAD
baseComplex | headed-struc L base M suffiz _SYN LOC : HEAD : J h

Figure 75: AVM for type baseComplex

5. The Value of MORPH|MPHON|RBOUND is token-identical with that of the
MORPH|MPHON|RBOUND feature of the HEAD-DTR (tag [4], inherited from a Con-
tinuation Schema).

Finally, there is a supertype for all kinds of word formation constructions, subsum-
ing both baseDerived, and baseCompound. The properties that are shared by these
constructions are a.) that they are appropriate for the DTRS attribute, b.) the morpho-
logical Head Feature Principle in connection with the Right-Hand Head Rule, which
distinguishes them from Stem-Infl constructions (cf. Section 5.2.3). This can be seen in
the feature structure given as the AVM in Figure 75.

5.5.2. Inflectional suffixation

As discussed elaborately in Sections 5.2.3 and 5.3, constructions that consist of a stem
and an inflectional suffix are licensed by the schema associated with the type inflected
and are constrained by the Inflectional Marking Principle (IMP), which describes the
contributions of the stem and of the inflectional suffix to the syntactic HEAD feature
information of a full word form. Stems are selected by the suffixes through morpho-
logical subcategorisation of the stems’ inflectional class features. Another property that
distinguishes inflection from derivation is that a Stem-Infl construction usually shares its
syntactic subcategorisation information with that of its stem®’. The structure sharing
described in Figure 76 has the following effects:

1. The inflectional suffix (MARKER-DTR) is morphologically subcategorised for the

40Not in the passive and past participle formations; since our theory does not treat syntactic subcate-
gorisation, we do not provide a principle for this.
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MARKING
HEAD
SYN|LOC| s-head | NONMARKING
| SUBCAT
sYN|LoC [HEAD s_hmd[MARKING ]]
MARKER-DTR

infl| MORPH|SUBCAT ]

DTRS

HEAD [NONMARKING ]

SUBCAT

NONMARKER-DTR

SYN|LOC [

L
—_
L
L

inflected | marker-struc L stem

Figure 76: AVM for type inflected

TENSE present
MOOD indicative
SYN LOC |HEAD |MARKING |FIN finite

PER 3rd
NUM singular

AGR

agreement

SUFFIXCLASS schreiben
MORPH |SUBCAT

MORPH |HEAD |FLEX [STEMCLASS schieben
VROOT schieb

vinfl | SYN [LOC [MAJ wverb]]

stem m

Figure 77: AVM for the suffix e-vinfi

stem, cf. the tag , inherited from the MSP. In particular, the constraints on the
stem’s SUFFIXCLASS, STEMCLASS, and VROOT are formulated here.

2. Those syntactic agreement features that are HEAD|MARKING features for inflected
are provided by the MARKER-DTR, cf. the tag , inherited from the IMP.

3. Those syntactic agreement features that are HEAD|NONMARKING features for in-
flected are provided by the NONMARKER-DTR, cf. the tag , inherited from the
IMP.

4. The value of SYN|LOC|SUBCAT is shared with that of the NONMARKING-DTR, cf.
tag , expressing that all inflected forms of one lexeme have the same syntactic
valency.

In order to illustrate how inflectional suffixation works, consider the example of the
feature structure modelling the inflectional suffix e-vinfl in the AVM in Figure 77. It
marks verbal word forms as 3rd singular present indicative and is subcategorised for
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stems that are specified as [SUFFIXCLASS schreiben] and [VROOT schieb]. (The other
specifications [STEMCLASS schieben] and [MAJ verb| are actually predictable from the
first two, but we include them in our description for explicitness.) Inflectional suffixes
are also appropriate for the MORPH|HEAD|DER|NAT feature, as there are nonnative in-
flectional suffixes such as -um, which combine with nonnative stems only, e.g. in the
word forms Dat#+um and Praktik#+um. Nevertheless, the NAT values for inflectional
suffixes are inferable from the MORPH|SUBCAT|HEAD|FLEX|SUFFIXCLASS values.

One could argue whether inflectional suffixes have their own SYN|LOC|MAJ specifi-
cations or whether they only select these on stems, cf. (van Eynde, 1994, 90ff). In the
present description, the latter is the case.

5.5.3. Paradigms

The speech-oriented lemma lexicon in the Verbmobil phase IT work package 1.3.1 was
originally implemented in Prolog and DATR according to the theory developed in Ble-
iching (1994), Bleiching et al. (1996), and Bleiching and Gibbon (2000). As their theory
is based on paradigmatic morphology, we want to clarify at this point if and how far
their theory is equivalent to ours: we have pointed out in Section 5.3 that the backbone
of their theory corresponds to our lemma hierarchy, but there are two main differences
to note:

First, in Bleiching et al. (1996), different ablauted or umlauted roots and inflectional
endings do not have the status of lexical signs, they are listed in the lemma entries as
strings and serve as parameters in the complex paradigm functions (which also incor-
porate the stem syncretism relations in inflections). In our theory, however, they are
lexical signs that are subtypes of the more abstract root morpheme types.

Second, their lemma hierarchy is based on a hierarchy of classes of paradigm func-
tions, whereas our type hierarchy is partitioned along dimensions derived from the ap-
propriateness of value types for the features SUFFIXCLASS and STEMCLASS (cf. Section
4.2). Still, their theory is weakly equivalent to our theory, because the morphological
features that we employ arise from the same morphological combinatorics that lead to
the paradigm function classes.

In Bleiching et al. (1996), stem syncretism classes and suffix syncretism classes for
German are presented. Verbs are cross-classified under these, nouns belong only to suf-
fix classes. In our theory, the stem classes and suffixes classes appear as morphological
features of lemmata (stems), justified by the fact that inflectional suffixes are subcat-
egorised for them (Section 5.5.2). These inflectional class features induce the lemma
hierarchy over all stems in our theory, and there would be a strong equivalence between
Bleiching’s paradigm class hierarchy and our hierarchy of lemma types, were it not for
the default inheritance employed in Bleiching’s hierarchy, which allows her to stipulate
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fewer intermediate types/classes. But default inheritance might be regarded as a mere
abbreviation device in the case of inflectional classes.

As umlauted and ablauted verbal roots are lexical signs in our theory, we need an
additional feature that partitions a root morpheme into root morphs. This is the VROOT
feature (Section 5.4), which percolates to complex stems by virtue of the MHFP, and
verbal inflectional suffixes are subcategorised for VROOT values of stems (see Section
5.5.2). This subcategorisation information corresponds to the possible positions of the
inflectional suffix string parameters in a paradigm function.

Thus, the STEMCLASS/VROOT and the SUFFIXCLASS specifications of the verbal stem
and the subcategorisation specifications of the inflectional suffixes account for the occur-
rence of a particular stem or inflectional suffix at a particular position in a morphological
paradigm.

The actual paradigm function, which is indispensable in paradigmatic morphology,
has no direct equivalent in our theory. The forms that occur in a paradigm are sim-
ply licensed by the feature structure description associated with the type word. As a
word may be a bare stem or inflected, the relation between a word form and its lemma,
distinguishes two cases:

1. Immediate type subsumption: The word form is identical with a bare stem (ver-
mied), which is subsumed by the corresponding lemma node.

2. Type subsumption of a constituent: The word form contains a stem as the value
of NONMARKING-DTR, whose type is subsumed by the corresponding lemma node.

Thus, a stem and its inflected forms are systematically related in our theory, though
not through one particularly distinguished paradigm function. It is nevertheless possible
to explicitly define classes of feature structures in the description language that denote
paradigms.

5.5.4. Umlaut

Umlaut in modern German is a morphophonological alternation triggered by non-trivial
morphological context conditions. Certain roots, but also some derivational suffixes
(tum~tim), undergo umlaut (change a possible [+back] feature of their final major
vowel to [—back]) when certain suffixes are attached). That is, only morphemes with a
[—back] major vowel may umlaut, but not all of them do (cf. the word Bagger). Within
inflection, umlaut appears in certain nominal roots in the plural, and in the subjunctive
forms of strong verbs. In our morphology, the inflectional umlaut is implicitly encoded
in the SUFFIXCLASS and VROOT features, but it would be easy to devise alternative
verbal and nominal inflectional class hierarchies that do not take into account umlaut
as a partitioning dimension. These hierarchies would then have to be supplemented by
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an umlaut hierarchy, and roots and suffixes would have to be cross-classified along the
respective inflectional class and the umlaut hierarchy. As we do not count adjective
gradation as inflection, umlaut does not play a role in adjectival inflection.

héind-n-root

PHON  hEnd
SURFE [ ORTH  hind ]
UMLD +
MORPH [ HEAD [ UML [ UMLB  chen-sufn M el-sufn M ... ] :| ]

Figure 78: Umlaut specifications appropriate for the nominal root hand

hand-n-root

PHON  hand
SURK [ ORTH hand ]
UMLD -
MORPH [ HEAD [ UML [ UMLB  chen-sufn M el-sufn M ... ] ] ]

Figure 79: Umlaut specifications appropriate for the nominal root hand

termin-n-root

PHON  tErmi:n
SURF [ ORTH  termin
UMLD —
MORPH [ HEAD [ UML [ UMLB L ] ] ]

Figure 80: Umlaut specifications appropriate for the nominal root termin

The very tricky umlaut conditions in derivation arise from the fact that it is not the
case that there are a set of umlaut-triggering suffixes and a set of umlautable roots, and
umlaut simply occurs every time two of these are combined, cf. the studies by Zwicky
(1967), Wiese (1987), and Reinhard (1991). A counterexample to this hypothesis is the
morpheme hand. The two suffixes -chen and -lich are in general umlaut-triggering, but
in hand, only -chen causes umlaut, cf. Hindchen, handlich, *h&ndlich.

In Trost (1993), it is suggested that all umlautable bases must be specified for the set
of suffixes that cause umlaut in them. We follow this general idea but deviate from his
proposal in the following respects. In Trost (1993), feature structures in which attribute
names such as CHEN-UMLAUT, ER-UMLAUT occur are employed. These attributes take
boolean values and are appropriate for lexical bases. We consider the appearance of
suffixes as attributes names as linguistically undesirable and prefer them to appear as
feature structures associated with a type that represent lexical entries, just like in other
contexts in our morphology. Thus, we introduce two features, UMLAUT|UMLAUTED
(short UML|UMLD) and UMLAUT|UMLAUTABLE (UML|UMLB), which are appropriate for
the type base-final, a subtype of morpheme which exactly comprises the class of roots
and derivational suffixes (see the feature declarations in Section 5.6). As our morphology
is morph-based, and umlaut is one dimension along which morphemes are partitioned
into morphs (Section 5.4), there are [UMLD +] and [UMLD —] morph subtypes for each
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chen-sufn

SURF ORTH  chen

UML [ UMLD + ] ]

|: PHON x@n :|

UMLB  chen-sufn

MORPH|SUBCAT|MORPH|HEAD
v UML [ UMLB L ]

Figure 81: Umlauting specifications appropriate for the suffix ~chen

umlautable morpheme, which can be seen in the specifications for the morphs hand-
n-root and hdnd-n-root given in Figures 79 and 78. At the same time, umlautable
morphemes (and thereby their umlauted as well as their non-umlauted allomorphs) have
a disjunction of those suffix types that require their umlauted alternant as the value of
UMLB. Morphemes that have no umlauted allomorphs are simply specified as [UMLB L],
see Figure 80.

Every potentially umlauting suffix is then subcategorised for bases that are umlauted
and have the suffix itself as a possible value of their UMLB specification, or alternatively,
are not umlautable at all, see the example of the suffix -chen in Figure 81.

The general umlauting subcategorisation specifications for umlauting suffix such as
chen-sufn can be seen in Figure 82. The mutual subcategorisation requirements of the
umlauting suffix and an umlauted base are mirrored in the feature structure’s cyclicity
brought about by the tag . By contrast, every non-umlauting suffix looks for a non-
umlauted morph, or a morpheme that is not umlautable at all (Figure 83).

umlauting-suffiz

UML UMLD +
MORPH|SUBCAT|MORPH|HEAD UMLB
v UML UMLB L ]

Figure 82: Umlauting specifications appropriate for umlauting suffixes

UML [ UMLD — ]

v UML [UMLB J_]

nonumlauting-suffiz
MORPH|SUBCAT|MORPH|HEAD

Figure 83: Umlauting specifications appropriate for non-umlauting suffixes

Thus the correct combinations are licensed, and the wrong combinations are ruled
out by the MSP. The same treatment may also be applied in a morpheme-based mor-
phology. The umlaut vowel of a root must then be represented as a morphophoneme,
and the feature UMLD will be instantiated to + or — through the unification with the
subcategorisation information of a suffix. The value must then be available as an MPHON
feature to the two-level rule component, too.

Note that UML is a HEAD feature which percolates from a base-final morph to any
baseComplex construction where it functions as the head daughter, thus accounting for
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the fact that e.g. the umlaut properties of the complex base Morgenzug are those of the

simplex base Zug.

5.6. Feature declarations and principles for the types of lexical

signs

We close the description of our theory of German morphology by listing the feature
declarations, type constraints, principles, and continuation schemata for all types of

lexical signs that have been presented.

5.6.1. Top level types

[ TYPE | CONSTRAINTS ISA
PHON  phon-string
SURF ;
. ORTH  orth-string
sign T
SYN(TAX) syntaz
SEM(ANTICS)  semantics
) ) [ [ RBOUND  boundness | | ]
lezical-sign MORPH MPHON sign
| | | LBOUND  boundness | |
complex-sign DTRS  struc ] sign
simplex-sign absence of DTRS) sign

phrasal-sign

(absence of MORPH)

complex-sign

word

[ SYN|LOCAL|HEAD  s-head ]

lezical-sign




5.6 Feature declarations and principles for the types of lexical signs

115

5.6.2. Morpheme types
[ TYPE | CONSTRAINTS ISA
i i [ ADJ(ACENCY)  boolean T 7
MPHON . )
morpheme MORPH | STR(ESS) boolean simplex-sign
HEAD DER|NAT(IVE)  boolean ]
root absence of MORPH|SUBCAT morpheme
native-root MORPH|HEAD|DER|NAT  + ] root
nonnative-root MORPH|DER|NAT — ] root
nomanal-root SYN|LOC|HEAD|NONMARKING|MAJ  noun ] root
verbal-root SYN|LOC|HEAD|NONMARKING|MAJ  verb ] root
adjectival-root SYN|LOC|HEAD|NONMARKING|MAJ  adjective ] root
affiz MORPH|SUBCAT  base ] morpheme
d-affiz /[ MORPH|SUBCAT  stem ] affiz
r SEP boolean
BOUND toBind
RBOUND N
BND-ARG  base-initial
prefiz MORPH|MPHON d-affiz
BOUND opt
LBOUND BND-ARG  stem-final
L m prefiz
B BOUND opt
BND-ARG  suffix
RBOUND y
M infl
suffiz MORPH|MPHON M stem-initial affiz
BOUND toBind
LBOUND BND-ARG  base-final
L M prefiz
d-suffix d-affiz U suffiz
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5.6.3. Affix subtypes
I [ UMLD  boolean T
base-final MORPH|HEAD|UML morpheme
| | UMLB  suffiz ]
i i ADJ  + T 7
MPHON SEP  —
prefizl (prel) MORPH | STR  — | prefiz
HEAD [ DER|NAT + ]
L L SUBCAT rkernel 4
i i AD]  — T T
MPHON SEP  —
fia2 (pre2) e fi
MORPH - -
prejize (pre HEAD [ DER|NAT  + ] prej
SUBCAT  rkernel
L L M basePrelfired 1
i i ADJ  + T 7
MPHON SEP  —
nonnative-prefiz (prenn) MORPH | STR  — prefiz
HEAD [ DER|NAT  — ]
L L SUBCAT rkernel 1
i i AD]  — T T
MPHON SEP  +
STR  +
particle (part) MORPH HEAD [ DER|NAT  + ] prefiz
SUBCAT  rkernel
M basePre2fized
M basePrelfized
L L M basePrennfized | |
i i ADJ  — T 7
MPHON SEP  —
native-suffiz (sufn) MORPH | STR  — ] suffiz
HEAD [ DER|NAT  + ]
L L suBcaT  lkernel 1
i i ADJ  — T 7
MPHON SEP  —
nonnative-suffiz (sufnn) MORPH | STR  + | suffiz
HEAD [ DER|NAT  — ]
L L SUBCAT lkernel 4
UMLD  +
UML
umlauting-suffiz MORPH|SUBCAT|MORPH|HEAD UMLB suffiz
V UML [ uMLB L ]
nonumlauting-suffiz MORPH|SUBCAT|MORPH|HEAD ML | OMED = suffiz
g V UML UMLB L
infl(ection) [ MORPH|SUBCAT  stem ] suffiz
interfic 1] I MORPH|SUBCAT|MORPH|HEAD|DER|INTERF suffiz
linking-morpheme (Im) |1]|| MORPH|SUBCAT|MORPH|HEAD|LINK|LINKBL ] suffiz
5.6.4. Lemma types
[ TYPE [ CONSTRAINTS [ TSA
lemma MORPH|HEAD|FLEX  flez ] lexical-sign
noun-lemma MORPH|HEAD |[FLEX SUFFIXCLASS  n-suffizclass lemma
[ SUFFIXCLASS  v-suffizclass
verb-lemma MORPH|HEAD|FLEX lemma
I | STEMCLASS v-stemclass
adj-lemma MORPH|HEAD|FLEX  adjectival ] lemma
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5.6.5.

5.6.6.

5.6.7.

LexComplex types

[ TYPE | CONSTRAINTS | ISA
lexComplex DTRS  marker-struc M headed-struc ] complex U lexical-sign
baseComplex DTRS  headed-struc ] lexComplex
baseDerived i DTRS i ggi:g::ﬁf I(f(;zf% ] baseComplex
baselnterfized DTRS $AFFIX-DTR  interfiz suffized
baseLm DTRS $AFFIX-DTR  Im ] ] suffized
baseCompound DTRS E](E);I';;E[LTDITDTR zzzZLm | baseComplex
affized i DTRS i gii;ifs;; 2%22 || lexComplex
suffized DTRS $AFFIX-DTR  suffiz ] affized
baseDsuffized DTRS HEAD-DTR  d-suffiz ] ] baseDerived U suffized
baseSuffnfized DTRS HEAD-DTR  native-suffic ] ] baseDsuffized
baseSuffnnfized DTRS HEAD-DTR  nonnative-suffic ] ] baseDsuffized
basePrefized DTRS E](E);I';;E[LTDITDTR f)(;'z;im | baseDerived
basePrelfized I DTRS ] NON-HEAD-DTR preﬁml_ basePrefized
basePre2fized DTRS NON-HEAD-DTR  prefiz2 basePrefized
basePartfized DTRS NON-HEAD-DTR  part ] basePrefized
basePrennfized DTRS NON-HEAD-DTR  prenn ] ] basePrefized
inflected DTRS  marker-struc ] suffized L1 word

Types described by join or meet of other types

[ TYPE | CONSTRAINTS [ TSA |
base root M baseComplex lezical-sign
stem 0 lemma U base
stem-simple | () lemma U root
stem-free 0 stem U word
base-initial prefir M root morpheme
base-final suffix M interfiz M root | morpheme
stem-initial | prefiz M stem-simple morpheme
stem-final stem-simple M d-suffiz morpheme
rkernel root M baseDsuffized base
lkernel root M basePrefized base

Principles and Continuation Schemata

baseComplexr =

SYN|LOC|HEAD
MORPH|HEAD

DTRS

headed-structure

SYN|LOC|HEAD

HEAD-DTR
base

MORPH|HEAD

Figure 84: The Morphological Head Feature Principle (MHFP)
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affized = TRS $BASE-DTR
$AFFIX-DTR|MORPH|SUBCAT

struc

Figure 85: The Morphological Subcategorisation Principle (MSP)

SYN|LOC|HEAD

|:MARKING }
inflected = s-head

NONMARKING

MARKER-DTR|SYN|LOC|HEAD|MARKING
DTRS
NONMARKER-DTR|SYN|LOC|HEAD|NONMARKING

marker-struc

Figure 86: The Inflectional Marking Principle (IMP)

[PHON 2LEVEL (,)

SURF
ORTH 2LEVEL(@,)
RBOUND
MORPH |MPHON
LBOUND
[ i [PHON [1]] 17
SURF [0
|lORTH [2]]
HEAD-DTR - )
RBOUND
MORPH |MPHON
[LBOUND J
DTRS - - B -
PHON [5
SURF
|lORTH [6]]
NONHEAD-DTR - i
RBOUND

MORPH |MPHON

basePrefized | headed-struc L L o

[LBOUND [3] J

Figure 87: Continuation Schema for basePrefized
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[PHON 2LEVEL (,)

SURF
ORTH 2LEVEL(,@)
RBOUND
MORPH |MPHON
LBOUND
[ i [PHON [1]] 17
SURF [0
|lORTH [2]
HEAD-DTR - i
RBOUND
MORPH |MPHON
[LBOUND
DTRS - - B N
PHON [5
SURF
|lORTH [6]]
NONHEAD-DTR - i
RBOUND
MORPH |MPHON
ILBOUND [8]

baseDSuffized M baseCompound headed-struc

Figure 88: Continuation Schema for baseDSuffixed 1 baseCompound

[PHON 2rEvEL (,)

SURF
ORTH 2LEVEL (,@)
[ RBOUND [4]
MORPH MPHON [
LBOUND [7]
[ i [PHON [1]] 17
SURF ]
|ORTH [2]]
MARKER-DTR _ i
RBOUND [3]
MORPH |MPHON
[LBOUND [4]
DTRS - - & -
PHON [5
SURF
|ORTH [6]]
NONMARKER-DTR - )
RBOUND [7]
MORPH |MPHON
inflected | marker-struc L L L -LBOUND E 11

Figure 89: Continuation Schema for inflected
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6. The Mclass system

In the preceding chapters we have described what could be part of the requirement
specifications for a morphological processing component: a comprehensive and consistent
theory of the morphology of German, covering lexical construction types for inflection,
derivation, and compounding. In order to operationally evaluate at least parts of the
theory, it was employed in the design of a spoken language lexicon acquisition component
in the Verbmobil project.

6.1. The lexical acquisition task

In the Verbmobil project, the aim of morphological corpus processing was to automatise
the acquisition of the word lemma background lexicon, from which the speech-oriented
Verbmobil lexical database was subsequently generated. The background lexicon had
to be acquired from the orthographic transcriptions of the Verbmobil dialogue corpora,
which look like the following:%!

gll4axx0_010_JAK_021040: oh , das w"ar’ ja sch"on<Z> , -/das w"ar’
ja/- <A> also <P> da w'"urde sich der August ja ideal f'"ur eignen .
so<Z> . <P> <#Klopfen> so langsam ausklingen lassen des Sommers ,
<A> also <:<#Klopfen> das:> w'"ar’ romantisch . <hm> ’n Termin <P>
w'"urde mir ganz gut passen <Schmatzen> <"ah> <P> Montag , der
#achte , <A> bis Freitag , der #zw"olfte , da h"att’ ich dann
irgendwann Zeit . <#Klopfen>

In this narrow transcription, numerous features of spontaneously spoken language are
transcribed as well as extralinguistic acoustic events (see Burger (1997) for an account
of the so-called ‘transliteration’ format). The preprocessor trlfilter (Gibbon and
Steinbrecher, 1995) filters out all tags and comments and normalises the orthography,
and the tokeniser trl2wl provides a file containing a list of orthographic word forms
according to the spelling conventions defined in Gibbon (1995).

This is the interface to our lexical acquisition system, the task of which thus consists
of constructing a lexical lemma entry out of a word form and link the entry the right
place in the hierarchy of lemma and stem types. We have dubbed this morphological
corpus analysis system for the Verbmobil lexical acquisition task MCLASS because one
of its central tasks is automatic morphological classification. On the level of the feature
structure descriptions of our theory of morphology, the input to MCLASS corresponds to
the value of the SURF|ORTH attribute of a lexical object of the type word, and the output
corresponds to one or more feature structures representing a lemma entry as in Figure

“1Verbmobil CDROM 02, Dialog g114a01.trl.
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noun-lemma

SURF PHON tE6.m’’i:n#f6.+7’’’aln+ba:.r+UN
ORTH Termin#ver+ein+bar+ung

MORPH | HEAD | FLEX | SUFFIXCLASS frau

MAJ  noun
SYN|LOC| HEAD GEN  feminine

Figure 90: Noun entry in the lemma lexicon

90. A lemma entry may correspond to more than one node in the hierarchy of lexical
stems if the rightmost morpheme in the stem is a root that has ablauted or umlauted
variants. Then a small hierarchy of stems must be constructed, consisting of a node
representing an underspecified stem (=the lemma), and several sub-nodes representing
stems fully specified for the features SURF|PHON, SURF|ORTH, MORPH|HEAD|VROOT,
MORPH|HEAD|DER|UML|UMLD, as described in Section 5.4. An example of such a lexical
entry comprising a sub-hierarchy of stems is given in Figure 91.

verb-lemma
PHON //mA1d//

SURF ORTH  //mAId// ]
STEMCLASS bleiben
MORPH|HEAD|FLEX SUFFIXCLASS  bicten ]
SYN|LOC|HEAD [ MAJ  verb ]
PHON  fer
DTRS|NONHEAD-DTR|SURF [ ORDH e ]
verb-stem verb-stem
PHON  mald PHON  mi:d
[SURF ORTH  meid ] [SURF ORTH  mied ]
MORPH|HEAD|FLEX|VROOT biet MORPH|HEAD|FLEX|VROOT bot

Figure 91: Verb lemma entry for vermeiden

Figure 92 shows the data flow between McLASs and McLASS-external modules.

Once the information about the words from the Verbmobil dialogue corpora has been
acquired and been inserted into the lemma lexicon as described above, the vocabulary
is extended and completed through automatic paradigm extension. The model and
implementation of the Bielefeld paradigm generator, which generates a lexical database
for all projected word forms, is documented in Bleiching et al. (1996).

Subdatabases of this lexical databases have served as the dictionaries of word recog-
nition and prosodic analysis systems within Verbmobil, as it contains consistent phono-
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{ VM -dialogue transcriptions J/

hierarchical lemma lexicon }

trlfilter
MPARA: paradigm gener ator
trlawl P gmd

whole paradigm

wor dform lexical database }
MCLASS

lexical lemma entry

Figure 92: Lexical acquisition in Verbmobil: MCLASS and external modules

speech applications

logical surface representations and prosodic information such as syllable structure and

lexical stress patterns of words (which are largely determined by morphological structure,
as shown in e.g. Pampel (1991), Wothke (1993), and Bleiching (1994)).

In addition, the lexical infrastructure provides lingware and and processing tech-
niques for speech recognition with meaning-bearing subunits of words, and parts of it
been actually been employed in the development of such systems by Berton et al. (1996),
Liingen et al. (1996), Althoff (1997), Strom and Heine (1999), and Pampel (1999).

6.1.1. Components of Mclass

The lexical classification requires morphological parsing of the input word form. That
is, segmenting the input string into its constituent stems and morphs and assigning
it a feature structure description according to our morphology, which, via the DTRS
attributes, includes descriptions of the attribute values of all its constituents. From the
information obtained, a fully-fledged lexical lemma entry may then be constructed by
consulting the stem hierarchy once more. Therefore, the central component of MCLASS
is its morphological parser.
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Morphotactics:
The stem hiearchy
The word hierarchy

Morph lexicon
The morpheme hierarchy

' Attraktives b@+ mErk+ UN#+ @n
| Aufenthaltes | ]

| Aufhebens | SILLY
Bemerkungen | —— Morphological parser Syllabification

b@.+ mEr .k+U.N#+ @nl

] MP_RULES
M orphophonol ogy

. ORTH:PHON
g)gwhg merk METK b@.+mMEG.k+U.N#+ @nl
REST:
ungen I ORTH: Betmerk+ung#+en

i ORTH_STEM: Be+ merk+un
oy

| : .+mME6.k+
NIMETON . MCAT- word

Grapheme . SCAT: N

-phoneme " UFFIXCLASS Nomen Frau |
transducer for " FLEX: akk,pl; dat,pl; gen,pl; nom;pl |
lexical roots ' GEN: fem ) ‘
1 MCAT: prel+root+sufr#+ ninfl

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 93: Lexical acquisition in Verbmobil: Internal modules of McLASS

A parsing system traditionally uses a grammar and a lexicon as knowledge
bases. In the case of morphological parsing, this would correspond to a word gram-
mar/morphotactics and a morpheme/morph lexicon. To be more precise with respect
to our morphological theory, the morphotactics consists of all possible morphological
construction types and their descriptions, that is, types under the morphological base
and stem hierarchies (describing derivatives and compounds) and types under the word
hierarchy (describing inflections). Figure 93 shows the internal knowledge bases and
processing modules of McLASS. In addition to grammar, lexicon, and parser, there
are other components which relate not directly to an evaluation of our morphological
theory, but nevertheless serve functionalities in the Verbmobil lexical acquisition task:
MP-RULES, and SILLY (Matthiesen, 1998) and a (so far unrealised) stress assignment,
component are employed to compute the PHONOLOGY values complete with prosodic
information. For improving the robustness of the system, the component NIMETON is
invoked (Matthiesen, 1996), when a part of the input string does not match any lexical
string. NIMETON checks whether the respective substring starts with a potential root
morph, and if so, its phonology is computed. NIMETON uses a finite state transducer
representing a grapho-phonological root network for German. The MCLASS parser con-
tinues the analysis under the assumption that it has just retrieved a root morph entry
from the lexicon (underspecified for certain features). This procedure is justified because
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all other morph classes are closed and exhaustively inventorised in our morph lexicon.

6.2. Data structures
6.2.1. DCG terms and typed feature structures

We chose Prolog for implementing the M CLASS parser, because it is a logical program-
ming language widely used for grammar representation and natural language parsing.
The Prolog interpreter is a theorem prover for Horn Clause Logic and employs term
unification as one built-in operation, which is about the closest thing to feature struc-
ture unification offered by a general programming language. The formalism of Definite
Clause Grammar (DCG, Pereira and Warren, 1980) has been developed basically for easy
implementation of NLP grammars in Prolog, but in principle it is an implementation-
independent grammar formalism like PATR-IT (Shieber, 1986), although not a fully-
fledged grammar framework and linguistic theory like HPSG. In the following, we show
how our abstract data structures such as feature structure descriptions and type hierar-
chies and their interrelations in our morphological theory are rendered in a DCG.

With some modifications, our feature structure descriptions are represented as flat
term structures in a DCG, i.e. as predicate-argument structures such as p(al, a2, ..., a,)
which in comparison with feature structure descriptions have the following properties.

1. Features do not appear as attribute-value pairs. Instead, a value is either an atom
or a variable in certain argument position, and the feature is represented by that
position.

2. Term structures do not appear as the value of a variable i.e. no feature paths
are represented in flat terms. (This is the property of being flat, which we have
imposed on the terms ourselves. It is not an original property of Prolog, where
nested (‘compound’) terms can be represented without problems).

3. The number (i.e. arity of a predicate) and order (i.e. argument positions) of features
in a term is fixed. Each time reference is made to a term, all its arguments have
to be represented, if only by anonymous variables.

4. The type symbol of a typed feature structure appears as the functor of a term.

Figure 94 illustrates the principle how our feature structure descriptions were mapped
onto flat DCG terms, by the example of the AVM depicted earlier in Figure 16: In a
first step, all substructuring is converted by spelling out each path (similar to DATR or
PATR notation). Then each path is assigned a position in a term, filled by a variable (if
the value of the path was a type that has some subtypes) or an atom (if the value was
one of the lowest possible types).
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native-n-suffix

[ [PHON phon-string 1
SURF
surf _ORTH orth-string
[FLEX n-flez| SUFFIXCLASS n—suﬁ‘ixclass}_
[NAT +
DER COMB boolean
nder INTERF  sET-OF(interfiz)
HEAD -
UMLD boolean
UML
wmi| UMLB suffiz :|
[LINKED  boolean
MORPH LINK . |LINKBL SET—OF(lm)j|
n-morph-head |_ link L
_RBOUND BND boundness :| 1
BND-ARG sufn M infl 11 stem-initial
MPHON LBOUND | BND toBind ]
BND-ARG base-final
ADJ boolean
suffiz-mphon | STR - ]
n-morphology | SUBCAT 445 [SYN syn[LOC 1oq[HEAD  syn-head]]] ]
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Figure 94: Mapping feature structure descriptions on DCG flat terms
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In the terms that we actually used, the argument order is different, and there are more
variables than there are attribute names in the original AVM, as all attributes ever
occurring in any feature structure description of our HPSG morphology are represented
in each DCG term. Each DCG term used in our theory thus has the same arity, namely
38 argument positions, cf. the terms in the example DCG rule in Figure 96. This is
because we want to exploit the above mentioned term unification, or list unification,
respectively, in our Prolog implementation. Two Prolog terms 77,75 unify only if their
functors and their arity are identical. Then, the i-th argument of 77 unifies with the
i-th argument of 75. Prolog list unification works accordingly, only lists do not have a
functor.

By having feature structure descriptions represented as flat Prolog terms in the fash-
ion described above, the term/list unification operation of the Prolog interpreter can be
employed to fulfil the essential functions of feature structure unification. The gain is im-
proved efficiency: “Generally, the time complexity of term unification is linear on size of
the terms, whilst for DAGs it is O(n?) in the worse due to the need to search the DAGs
for corresponding feature labels and recursively traverse the structures.” (Schéter, 1993,

p.6).

6.2.2. DCG rules and feature structure descriptions for complex signs

In principle, for all feature structure descriptions that represent maximal lexical types
in our theory, there is a corresponding term in the DCG, appearing on the RHS or the
LHS of a DCG rule.*? But in addition, the binary DCG rules themselves represent the
feature structure descriptions for complex signs, i.e. those that have a DTRS attribute,
i.e. all maximal types under the lexComplex hierarchy. The term on the LHS of a DCG
rule represents the actual complex sign, and the terms on the RHS of the DCG rule
represent its daughters. In our theory, feature structures that represent complex signs
are re-entrant. That is, feature structure unification occurs in descriptions of these,
inherited from the MHFP, the IMP, the MSP, or a Continuation Schema, appearing as
tags in the corresponding AVM notations.

In our DCG rules, the re-entrancies are rendered as unificational annotations, result-
ing in a PATR-II-like notation. Note that in principle, the sources of such annotated
equations may only be one of the three morphological principles, the MHFP, the IMP,
the MSP, or a Continuation Schema.*® Compare the AVM for the morphological con-
struction type basePartfized given in Figure 95 with the DCG rule derived from it given

#2In our discussion, we avoid the terms head and body, which are generally used for the parts of a
Prolog rule.

43There may be a fifth set of annotational statements, where restrictions on feature values of daughters
(RHS categories) are encoded. But these annotations are redundant, as the respective features
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[HEAD
MORPH LBOUND
MPHON
base-morphology | RBOUND
SYN LOC : HEAD : [3]
[ MPHON [LBOUND [4]] -I
NON-HEAD-DTR | MORPH
vpa'r‘t[ affiz-morphology SUBCAT J
DTRS
MPHON |RBOUND |5
MORPH [ ]
HEAD-DTR base-morphology HEAD
basePrefized | headed-struc L base SYN LOC : HEAD : 4]

Figure 95: The construction type basePartfized

in Figure 96:* Since in the DCG flat terms, reference cannot be made to whole sub-
structures, there are groups of unificational annotations, each group corresponding to
one pair of tags in the AVM.

In DCG rules, like in PS rules and unlike in HPSG feature structures, the order of
the categories on the RHS represents the linear precedence of constituents. The order in
our DCG rules is derived from the values of RBOUND and LBOUND and the unifications
according to the Continuation Schema for the respective type of complex lexical sign
(Section 5.3.4). All our DCG rules representing our feature structure descriptions of
morphological complex signs are documented in Appendix B. They were, however, never
intended for direct parsing with the Prolog interpreter. Instead, we have implemented
the BUP parser (Matsumoto et al., 1983; Matsumoto and Kiyono, 1985), which requires
a different rule format that is not so convenient for a grammar writer, though. The BUP
rule format is automatically compiled from our DCG, this is the reason why our DCG
rules are slightly insufficient for direct parsing with the Prolog interpreter. Apart from
the fact that they contain left-recursive rules, two components are missing:

1. Each rule would need to have the orthographic and phonological string append
relations annotated:
append (X1_ORTH, X2_ORTH, XO_ORTH),
append (X1_PHON, X2_PHON, XO_PHON).
Alternatively, variables representing open lists could have been introduced; this is
what was done in the BUP implementation (see Section 6.4).

are already type-checked in the morph lexicon, as explained in Section 6.2.3. These type-checking
annotations in DCG rules annotations stem from a former stage of the implementation and have
been retained as a kind of safety check.

44 A morphological base (cf. Section 1.6) is called a “stem” in the DCG.
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% Rule3a stemPrefixed --> part rkernel
% Example anbrenn --> an brenn
% Example "uberinterpretier --> "uber interpretier

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO0_UMGL,

XO_UMLB, X0_UMLD,X0_ABGL,X0O_ABLB,X0_ABLD,X0_ABL_SUF_MID, XO_PRET,X0_REG,X0_INTERF,
XO_INTERF_ARG,XO_GEN,XO_HEAD_MID,XO_ARG_MID,XO_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,
XO_FLEX,XO0_PARTSTEM, X0O_PSTEMS, XO_0STEMS) : -

part (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,
X1_UMLB,X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,
X1_INTERF_ARG,X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,
X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS),

rkernel(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,
X2_INTERF_ARG,X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,
X2_FLEX,X2_PARTSTEM, X2_PSTEMS, X2_0STEMS) ,

=

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Category instantiation
X0_MCAT=stemPrefixed,

MSP Morphological Subcategorisation Principle
X1_BCAT=X2_SCAT,

% Type checking of X1 instantiations
% not(X1_LBND==’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’+’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Type checking of X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,

% CS Continuation Schema
X1_LBND=X0_LBND,
X2_RBND=X0_RBND,

% MHFP Morphological Head Feature Principle
X2_BCAT=XO_BCAT,
X2_SCAT=XO0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=XO_PRET,
X2_REG=XO0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=XO0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=XO_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=XO_PSTEMS,
X2_0STEMS=X0_0STEMS.

Figure 96: DCG-rule for basePartfized
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2. The morph lexical entries would have to be available in DCG format as part of
the DCG, too. However, they are stored in our morph database format described
in Section 6.2.3.

We have stressed that the DCG contains rules that represent the base types of our
HPSG morphology. But where are the feature structure descriptions associated with
types higher up in the baseComplex, stem and word hierarchies, and how is the inheri-
tance of features, value type appropriateness specifications, and morphological principles
implemented? The answer is, indirectly. For the implementation, we have introduced
DCG rules for the lowest types of our lexComplex, stem and word hierarchies, such as
basePrelfized. That means that horizontally, the DCG covers the whole morphological
theory developed in this thesis, i.e. all morphological construction types for German,
i.e. the lowest types of the hierarchy in Figure 66. Some vertical information, however,
i.e. abstract types such as stem or baseDerived, are not represented, and the inheritance
of features introduced at these types in our theory is not implemented. Instead, each
possible feature is spelt out as a variable name in each DCG term, as described above.
Since the higher construction types are not represented in the DCG version, the morpho-
logical principles had to be introduced separately and multiply in each DCG rule by the
DCG writer. This could be done in a systematic way, though, as our theory provides the
consistent guidelines. The appropriateness of features and the typing and type checking
of feature values is guaranteed by the method the morph lexicon was acquired.

6.2.3. Simplex signs and the morph database

The morph lexicon is first stored as a UNIX database in the form of a large ASCII table
with newline as record delimiter and space as the field delimiter, where each field in a
record represents one attribute appropriate for the types of morph signs according to our
theory. There is one field for each attribute that may occur, plus an identifier, an example
and a source field, these make up 41 fields. The second field contains the type symbol
of a morph, and only those fields that are associated with attributes appropriate for
the morph type specified in the type symbol are filled with appropriate values, whereas
the remaining fields contain the “empty” symbol ‘*’. This way, the flattened morph
lexical entries for the DCG are encoded. The bottom-up part of the parser ensures that
features not appropriate for a construction, or values not appropriate for a feature are
never instantiated during the parsing process.

There is an independent lexicographic tool for the interactive acquisition of morph
database records called IAMW (Interactive Acquisition of Morphological Knowledge),
see Liingen et al. (1998) and Ehlebracht (1999). TAMW is implemented in Prolog, too,
and uses the type/feature appropriateness specifications of our theory of morphology in
the form of implicational statements (i.e. like the feature co-occurrence restrictions of
GSPG) implemented as Prolog rules. Field value acquisition for a database record is
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schutz_root_n root S’Uts schutz ~ 1lbndOpt d,c rbndOpt d,c,f ~ n nat+ ~ \

str+ 7 linkImp ~ umgl- umlb+ ~ ~ ° ° © 7 7 interf- “m ~ © © 7 Nomen_Jahr \

akk,sg;nom,sg S’Uts schutz ~ ~ Schutzbehauptung cd01

morf (root,[115,99,104,117,116,122|X],X, [83,39,39,85,116,115|Y],Y,
[schutz_root_n,root,_,’lbndOpt’,[’d’,’c’], ’rbnd0pt’,[’d’,’c’,’f’],_,n,’+7,

’akk,sg;nom,sg’,_,_,_1,[’S?’Uts’], [schutz], [’SUts’], [schutz]) .

Figure 97: Morph database entry and generated BUP lexical morph entry

viewed as a classification task and is guided by the traversal of a decision tree. Starting
from the root of the tree, at each node it is first attempted to infer the next feature value
from the knowledge base, and if this is impossible, the lexicographer is requested to
choose a feature value from the set of appropriate values, which is presented to him/her.
The value obtained then determines which arc starting from the present node must be
traversed to reach the next node, i.e. the next field value acquisition. When a final leaf
of the tree is reached, a morph is fully classified, and all the feature appropriateness
specifications for the corresponding morph type as well as the type restrictions on the
feature values have been observed.

The morph lexicon presently contains value specifications of 5700 morphs, including
405 different combinatorial readings of derivational affixes, which are fully inventorised,
and the about 3600 lexical roots from the Verbmobil corpora. TAMW is thus mainly
used to classify new root morphs, as this is the the only open class of morphs.

The entries for inflectional suffixes, though, i.e. specifications for their orthographic
and phonological form, morphosyntactic feature values, and morphological subcategori-
sation specifications for the STEMCLASS, SUFFIXCLASS, and VROOT features, were ac-
quired independently and fully automatically from the existing paradigm class hierarchy
knowledge base described in Section 5.5.3.

From this morph database, the lexical entries used by the morphological parser are
subsequently generated by converting a database record into a Prolog term, where the
the predicate is morf/38, and the arguments are derived from the field values. These
Prolog terms match the BUP format used in the parser, i.e. are not directly compatible
with the DCG rules described so far.

6.3. The left corner parsing algorithm
The Prolog inference machine may be directly employed for parsing using a regular

DCG. However, Prolog’s standard procedure calling and backtracking strategy result
in a simple top-down parser with depth-first search, which is known to have several
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drawbacks: It may take a large number of rule expansions before it can be established
that an input substring matched in the lexicon does not belong to the expected terminal
category and thus that one of the rules that led to it was chosen wrongly. Moreover,
in different processing states the same expansions may be tried over and over again,
because no bookkeeping about intermediate results is provided. When the input string
is processed from left to right (which it typically is), the DCG must not contain left-
recursive rules, as then the parsing process might not terminate.

Likewise, bottom-up parsers using the Prolog interpreter and its backtracking strat-
egy can be devised, (cf. e.g. Naumann and Langer, 1994, p.63ff), which permit processing
of regular left-recursive rules in the DCG. Still, the basic shift-reduce parser may require
massive backtracking because wrong partial analyses may be built up and rejected only
at a relatively late stage of the analysis. The possibility to store intermediate results is
not given, either, and numerous analyses may have to be made multiply.

As an alternative, we have implemented the so-called left-corner algorithm (described
e.g. in Naumann and Langer, 1994, p.83ff), which provides a combination of the two basic
parsing approaches. The left corner of a context-free phrase structure rule is the first
category symbol (be it a terminal or non-terminal category) of its RHS. Defining the
left corner relation on the category set of a grammar, a left corner of a category C' is
a category which is the first symbol on the RHS of a rule whose LHS is C'. The basic
idea is that a rule is invoked for top-down parsing only when its left corner category
parse tree has already been built bottom up, in that case the categories following the
left-corner in the rule become the new top-down goal categories. In the beginning, the
goal is initialised with the start symbol of the grammar. There are three basic operations
(cf. Arnold, 2001):

Scan: Try to analyse an initial portion of the current input string as the current goal
by retrieving the category of the first word of the input string from the lexicon.
Then check, which rules have this category as their left corner.

Predict: The categories following the left corner on the RHS of one of the found rules
become the next current goals for Scan one after the other, and the remainder of
the string the current input string. When all categories of the RHS have been
successfully scanned, you can look up (i.e. scan or succeed with) the LHS of the
current rule.

Succeed: When the LHS category found in Predict matches the current goal, this goal
succeeds (is removed from the list of goal categories). (Alternatively, when all

possible Scans for the goal have been tried out without success, the current goal
fails).

The algorithm has the following attractions:
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e Though its worst case behaviour is exponential just like that of ordinary bottom-
up algorithmes, it is in practice remarkably more efficient through the combination
of data-driven and expectation-driven parts.

e For the same reason, it has some psychological plausibility (cf. Arnold, 2001).

e [t can still be implemented straightforwardly in Prolog, using the Prolog back-
tracking strategy to ensure the pursuit of all alternatives.

e The performance can be improved through the introduction of a reachability look-
ahead (the link relation, also called the oracle). The link relation is the reflex-
ive and transitive closure of the left corner relation on the category set and pre-
computed from the grammar. It is then used as an additional knowledge base for
the parser (cf. Naumann and Langer, 1994, p.93) to be consulted at the beginning
of each Predict: Before a next goal is analysed (becomes the new current goal),
it is checked whether the target LHS for this next goal is actually ‘linked’ to the
current goal, i.e. whether it is a left corner of the left corner of the ... of the current
goal.

e The performance can be even more improved through maintaining a well-formed
substring table (WFST) during the parsing process, which makes the worst case
behaviour equal to that of a chart parser, namely cubic. A lookup in the WFST is
performed at the beginning of each Predict, and when an analysis of the current goal
at the current position in the input string is found in it, Predict is already completed
(and information found earlier re-used). Otherwise, the processing continues with
the original Predict. The WFST is filled, naturally, after each Succeed (or fail),
with the the goal, the analysis of the goal, and the current position in the input
string.

6.4. Implementation: The BUP parsing system

All of the above features are included in Matsumoto’s Prolog left-corner parser called
BUP (Matsumoto et al., 1983; Matsumoto and Kiyono, 1985). (BUP stands somewhat
misleadingly for Bottom-Up Parser.) We have adapted and enhanced it for the process-
ing of our feature-based morphotactic DCG. The basic idea is to convert the DCG rules
into a different Prolog format where the calling part of a rule actually is its left corner.
That way, the step of explicitly consulting the rule knowledge base to look up a rule
via its left corner is omitted. The actual parser then consists only of the the central
goal-predicate.

In the following smallish example, we illustrate how the BUP clauses are obtained
from the DCG after (Matsumoto et al., 1983, p.148). (We have adapted the example
to morphology and added the link lookup and the treatment of feature unificational
statements.)
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Suppose that we have the following DCG morphotactics:

word (FSO) : - stem(FS1), suffix(FS2), % rulel
{rulel unificational equations}

stem(FS0) : - morf (bild,FSO0) . % rule2

suffix(FS0) :-  morf (ung,FS0) . % rule3
They correspond to the following BUP clauses:

%% (1) BUP rule

stem(G,X,Z,FSZ) : -
link(word,G),
goal(suffix,X,Y,FSY),
word(G,Y,Z,FSY,FSZ) .

%% (2) Dictionary entries
morf (stem, [98,105,108,100(X],X,FS).
morf (suffix, [117,110,103[X],X,FS).

%% (3) Termination clauses
word (word,X,X,FS,FS).
stem(stem,X,X,FS,FS).
suffix(suffix,X,X,FS,FS).

Consequently, the goal predicate looks like the following:

goal(G,X,Z,FSZ) :-
morf (C,X,Y,FSX),
P =.. [C,G,Y,Z,FSX,FSZ],
call(P).

Every DCG rule is converted into a clause such as in (1), henceforth called a BUP
rule. (For unary rules, the goal part is simply omitted). Note that the rule is to be called
by the predicate that represents the left corner of the original DCG rule (stem). First, it
is checked whether there is a link relation between the target LHS of the original DCG
rule (word), and the current goal G. Then the goal predicate is called with the category
of the second category of the RHS of the original DCG rule (suffix) as the goal for
a new Predict. The final clause invokes a new BUP rule with the LHS category of the
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original DCG rule (word). (Alternatively, a fact such as under (3) may be found and
lead to Succeed.)

For every morph in the lexicon, a morf clause such as the ones under (2) is included.
The BUP morf clauses are generated directly from the morph database described in
Section 6.2.3. Note that e.g. the orthographic string bild appears as the open list of
ASCII characters in decimal code, [98,105,108,100(|X]. This is an approach differing
from Matsumoto’s system (devised for syntactic parsing), where the lexical entries are
represented by open lists of atoms which represent whole words, e.g. [elapsed|X].
An input string for the original BUP system is represented as a lists of words, where
the words are already separated by commas, which makes sense because in English
running text the words usually occur delimited from each other. However, the input to
a morphological parser are word forms, and these are usually not already segmented into
morph atoms in running texts, thus we cannot start out with a list of morphs (which
would be the equivalent to a list of words in syntactic parsing). The PC-KIMMO-2
system by Antworth (1994), for example, therefore operates in two phases. The first one
is the segmentation phase, where a Two-level morphology is employed, and the second
one the actual parsing phase, where a feature-based word grammar is employed. The
latter is as we know more powerful and can describe hierarchical structures and feature
constraints on these. But word grammars include the linear precedence morphotactic
information contained in the continuation class network of a Two-level morphology, thus
the feature grammar should actually replace (not supplement) the continuation class
network, as exemplified in Ritchie et al. (1992), and also applied in our implementation:

When in our BUP parser the string “bildung” is looked up in the dictionary, it
matches [98,105,108,100(X], i.e. the orthography given in the entry for bild. The
analysis then continues with the tail list, i.e. the string “ung”. Thus the dictionary
lookup of the parser constitutes the morphological segmentation in our system, using
the feature grammar which is the one and only morphotactics in the parser. And as
we have defined the base level of our morph hierarchy to correspond to orthographic
morphs (Section 5.4), we need not apply two-level rules at this point. The algorithm
can however be extended such that two-level rules are invoked exactly at this lexicon
lookup and segmentation stage, should it be necessary, e.g. for a different language.

With the termination clauses under (3), the condition for Succeed is implemented,
i.e. that the tail input string is empty and the freshly analysed category is identical to
the current goal. (Absence of a matching termination clause causes a fail).

The central BUP goal predicate invokes a new Scan phase. The category of a newly
found lexicon entry is the argument represented by the variable C in the morf call. To
call a new BUP rule by it, the ‘univ’ operator =.. has to be applied (Prolog does not
allow for variables to range over functors).

The (meta-)variables FS0, FS1, and FS2 in the DCG example represent the arguments
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representing the sets of morphological features; and FS, FSX, FSY, and FSZ, in the BUP
code represent those features, collected in a list (we chose to store all features derived
from a DCG term in one list for easier reference to the whole set of features). The
unificational equations annotated to a DCG rule are expressed by identical variable
names in the BUP implementation (this cannot be seen in the example above, but cf.
the DCG and BUP codes in the appendices to this thesis).

In the following, we explain briefly the enhancements we made to the original BUP
code, which are not shown in the example above.

Structure Building For structure building, we have introduced additional arguments
in the terms representing the morphological categories. The structures built are:

1. morphologically segmented orthography strings (An#stell+ung#+en)

2. morphologically segmented phonology strings (e.g. ?’an#St’E.1+U.N#+0n, with
morphological border characters)

3. labelled bracketing structures with morphological categories and ortho-
graphic morph strings (e.g. [word, [stemSuffixed, [stemPrefixed, [part,
an], [root, stelll]l,[sufn, ung]] ,[n infl, en]])

4. labelled bracketing structures with morphological categories and phono-
logical morph strings (e.g. [word, [stemSuffixed, [stemPrefixed, [part,
?an], [root, StE1]], [sufn, UN]], [n_infl, @nl])

i.e. altogether four types of structure. For every type of structure, two argument po-
sitions are introduced in each term in each rule. They represent the substructure for
the category of the string prefix of the current input string which could be retrieved
from the lexicon, and the substructure found, or to be found, for the category of the
respective tail string. Thus, they are used in parallel with the X,Y, and Z variables in the
BUP rules, which represent the current strings and tail strings. New string-operative
structure building predicates (constrStruct and constrSeg) are then called within the
goal predicate.

Split of the goal predicate As a consequence, the goal predicate had to be split into
two clauses, one where right-bracketing structures are built (to be built before goal is
called), and one where left-bracketing structures are built (these can only be built after
goal has succeeded).

6.4.1. Compiling BUP from DCG

To compile this morphological parser following Matsumoto’s BUP system from our mor-
phological DCG described in Section 6.2, theoretically also Prolog could have been used.
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We do not, however, have a debugging system as presented in Matsumoto and Kiyono
(1985) available for the BUP parser, i.e. we had to use the Sicstus Prolog built-in de-
bugging tools. During a trace session, it is quite important for the programmer to be
able to interpret the feature variables by their “speaking” names such as X1_CASE or
X2_STEMCLASS, as it is far too tiresome to figure out every feature by verifying its po-
sition in the very large feature list. It is however not at all straightforward to compile
the BUP code out of the DCG using Prolog without all variables being changed into
internal variables (which are identified only by numbers). Hence, we have implemented
the compiler in Perl, which makes it easier to treat Prolog variable names as strings.

The BUP rules are generated directly from the DCG rules. The main steps of pro-
cessing one DCG rule are given in the following:

e Store the parts of the DCG rule in the arrays @lhs, @rhs_left, and @rhs_right.
(The latter is omitted if the DCG rule is unary).

e Read the annotational equations into a two-dimensional array.

e Substitute and instantiate the variables in @lhs, @rhs_left, and @rhs_right ac-
cording to the annotational equations, such variables unified by ‘=" receive identical
names, and the remaining become the anonymous variable *_’.

e Print out @1lhs, @rhs_left, and O@rhs_right such that they form a BUP rule (i.e.
Orhs_left first etc.).

Furthermore, for each functor (morphological category) occurring in the DCG, a
BUP termination clause is generated. The goal predicate is inserted independently at
the end of the BUP code file (i.e. it need not be derived from the DCG). The BUP
morf clauses are generated from the morph database and stored in a different .pl file.
The link relation knowledge base is generated by a different compiler written in Prolog,
following (Naumann and Langer, 1994, p.280)

In the appendices to this thesis, the following source files and generated file are
provided as a reference:

1. The morphological DCG (Appendix B)

2. Perl source code of the BUP parser compiler (Appendix C)
3. The BUP parser (generated code, cf. Appendix D)

4. Morph database sample (Appendix E)

6.5. Pre- and Post-processing components

Apart from the parser that forms the core of MCLASS, it contains a pre-processor (writ-
ten in Prolog) in which the input is pre-processed and certain facts are asserted that may
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be consulted during parsing, or by the post-processor (s.b.). The pre-processor mainly
treats the parameters that are passed in the call of the top-level predicate mclass/9:

1. Nimeton (on|off): Analysis of unknown substrings in the input by the component
NIMETON (see Section 6.1.1).

2. Number-of-hypotheses (integer): The desired maximum number of alternative anal-
yses per word.

3. Output-format (lemma|matrix|eval):
Lemma formats the an output analysis like a Prolog lemma entry for the Verbmobil
lemma lexicon (Section 6.1).
Matrix shows an analysis as (flat) attribute-value pairs.
Eval formats an analysis as one database line per input word, containing those
types of lexical information that were relevant in the Verbmobil project, see Section
6.6 and Appendix F.

4. Case-sensitive (on]off:) When analysing a word form with an initial capital letter,
the variable SCAT is instantiated to *n’ (noun), which then functions as a top-down
constraint for all analyses of this word form.*’

5. Analyse-subwords (onloff): In word forms containing one or more hyphens (like
Vier-Tages-Reise), analyses for the subparts are given in addition to the analyses
of the whole word.

6. Include-POS (on|off:) The input format must be a list with two columns, the
first one containing word forms in VM-orthography, the second one Part-of-speech
(POS) tags for the word. The POS tag is then used by McCLASS as a top-down
constraint on the Variable SCAT in the analysis.

The two top-level predicates mclass/9 and start/9 process a whole wordlist or one
single word form, respectively, the latter e.g. for testing or debugging purposes.

The Post-processor, also written in Prolog, deals with

1. the syllabification and narrow transcription of the (archi-)phonemic representation
found for the input string by passing it to the components SILLY and MP-RULES
(Matthiesen, 1998, and see Section 6.1.1).

2. formatting the analyses according to the parameters asserted during pre-
processing.

45 According to the Verbmobil spelling conventions, only nouns are transcribed with initial capitals.
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6.6. Evaluation

Below, we present the results of two test runs with wordlists from the Verbmobil cor-
pora. For the test runs, the eval output mode was selected, and an evaluation script
then matched the results against the Bielefeld Lexicon Database, which contains nu-
merous types of lexical information for all Verbmobil word forms and lemmata. Until
the year 2000, the database has undergone several phases of manual and automatic
consistency checks and correction suites, and furthermore, feedback from its application
in the Verbmobil speech recognition and speech synthesis systems has continually been
included in its updates. Therefore the lexical information in the database has a very
high consistency and correctness (cf. Gibbon and Liingen, 2000).

The McrLAss evaluation script evaluates those types of lexical information that are
crucial for the Verbmobil context:

1. OrthSeg: Orthography with morphological boundaries, e.g. Dienst#reis#+e

2. PhonSeg: Phonology with morphological and syllable boundaries, e.g.
di:nst#ral.z#+0

Phon: Plain phonology, e.g. di:nstralz@
Lemma: Citation form, e.g. Dienstreise

Suffixclass: Name of the suffixclass for verbs and nouns, e.g. Nomen _Famili-e

A

Stemclass: Name of the stemclass for verbs e.g. SCHIEBEN

Information types such as the major syntactic category were omitted simply because
they were not included in the evaluation script.

In our two test runs, we have varied the input word form list, otherwise M CLASS
was run with the following settings: Nimeton=on, Number-of-hypotheses=5, Output-
format=eval, Case-sensitive=on, Analyse-subwords=o0ff, Include-POS=o0ff. The tests
have been run using the complete morph lexicon and the complete morphotactics. The
input word lists are characterised as follows:

VMCD15: 1379 words, comprising all the word forms types found on the Verbmobil
CDROM 15. CDROM 15 was published in late 1996 and is one of the first to
contain dialogues in the extended scenario of appointment scheduling and travel
planning. Its material had been included in the acquisition of the M CLASS morph
database.

VMCD59: 584 words, comprising all the word forms types found on the Verbmobil
CDROM 59. CDROM 59 was published in September 2000, and was one of the
last Verbmobil CDROMs to be delivered. Its material had not been explicitly
included in the acquisition of the M CLASS morph database.
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Evaluation results for VMCD15

OrthSeg Evaluation of mclass output file
MCLASS2_0UTPUT_FILES/cd15.eval.hyp5.nim2.out.rfm

total 1379 100 %
correct 1270 92.0957 %
no_match/no_result 109 7.90428 %

PhonSeg Evaluation of mclass output file
MCLASS2_0UTPUT_FILES/cd15.eval.hyp5.nim2.out.rfm

total 1379 100 %
correct 1167 84.6265 ¥
no_match/no_result 212 15.3735 %

Phon Evaluation of mclass output file
MCLASS2_OUTPUT_FILES/cd15.eval.hyp5.nim2.out.rfm

total 1379 100 %
correct 1236 89.6302 %
no_match/no_result 143 10.3698 %

Lemma Evaluation of mclass output file
MCLASS2_0UTPUT_FILES/cd15.eval.hyp5.nim2.out.rfm

total 1379 100 %
correct 1278 92.6759 ¥,
no_match/no_result 101 7.32415 %

Suffixclass Evaluation of mclass output file
MCLASS2_0UTPUT_FILES/cd15.eval.hyp5.nim2.out.rfm

total 1379 100 %
correct 1245 90.2828 %
no_match/no_result 134 9.71719 %

Stemclass Evaluation of mclass output file
MCLASS2_0OUTPUT_FILES/cd15.eval.hyp5.nim2.out.rfm

total 1379 100 %
correct 1346 97.607 %
no_match/no_result 33 2.39304 %
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Evaluation results for VM CD59

OrthSeg Evaluation of mclass output file
MCLASS2_QUTPUT_FILES/cd59.eval.hyp5.nim2.out.rfm

total 583 100 %
correct 548 93.9966 %
no_match/no_result 35 6.00343 %

PhonSeg Evaluation of mclass output file
MCLASS2_0UTPUT_FILES/cd59.eval.hyp5.nim2.out.rfm

total 583 100 %
correct 507 86.964 ¥
no_match/no_result 76 13.036 %

Phon Evaluation of mclass output file
MCLASS2_OUTPUT_FILES/cd59.eval.hyp5.nim2.out.rfm

total 583 100 %
correct 523 89.7084 %
no_match/no_result 60 10.2916 ¥

Lemma Evaluation of mclass output file
MCLASS2_QUTPUT_FILES/cd59.eval.hyp5.nim2.out.rfm

total 583 100 %
correct 529 90.7376 %
no_match/no_result 54 9.26244 9,

Suffixclass Evaluation of mclass output file
MCLASS2_QUTPUT_FILES/cd59.eval.hyp5.nim2.out.rfm

total 583 100 %
correct 535 91.7667 %
no_match/no_result 48 8.23328 ¥,

Stemclass Evaluation of mclass output file
MCLASS2_0OUTPUT_FILES/cd59.eval.hyp5.nim2.out.rfm

total 583 100 %
correct 566 97.084 %,
no_match/no_result 17 2.91595 %



6.6 Evaluation 141

The comparison between VMCD59 and VMCD15 shows that the domain of appoint-
ment scheduling and travel planning seems to be well-covered by the morph database,
as the VMCD59 results are not significantly worse than the VMCD15 results, although
the former was a CDROM previously “unseen” by McLASS. The good results for ortho-
graphic segmentation indicate that the right rules (morphological construction types)
are found and applied. The stemclass and suffixclass results in particular confirm that
the MHFP of our theory is well-motivated and crucial for the classification task. In
sum, MCLASS works satisfactorily as a grapheme-to-phoneme converter, morphological
segmentation tool, lemmatiser, and a morphological classifier for vocabulary from the
domain of appointment scheduling and travel planning.

Note also that we have evaluated the boundary symbol and phoneme transcriptions
on the word level only, i.e. we have not applied a string distance measure for an evaluation
in terms of phoneme accuracy (cf. Gibbon et al., 1997, p.381ff). That is, if a word
contained only one phoneme or boundary insertion, omission, or substitution, this was
counted as a no_match for the entire word. Thus we would expect phoneme accuracy
rates to be higher than the transcription rates by word given above.

An error analysis revealed that many of the missing or wrong analyses are due to the
following shortcomings:

e The sequence @.r has been changed to 6.r in the lexical database, for example,
MP-RULES yields 7E6.+71.n@.r#+0, which does not match with ?E6.+7I1.n6.r#+@
in the lexical database.

e McLAss transcribes an orthographic und in numbers regularly as ?Und i.e. in-
cluding a glottal stop, whereas in the lexicon database this has been consistently
changed to a transcription without glottal stop, e.g. fYnf#Unt#tsvan.+tsIC. This
leads to several Phon and PhonSeg mitsmatches. (They are some more of such
(systematic) inconsistencies between transcriptions in the morph database and
the lexical database, which affect the phonological transcription results.)

e We have no morphotactic or morphophonological rule for t-insertion before the
suffix -1ich after an unstressed syllable ending in -n, as in the word forms
morgen+t+lich, eigen+t+lich, 6ffen+t+lich. Therefore such word forms are
regularly rejected by MCLASS.

e For the infinitive suffix —en of nominalised infinitives, MICLASS puts out the in-
flectional boundary #+, whereas in the lexicon database, it is segmented by the
derivational boundary + e.g. Flieg#+en vs. Flieg+en. This leads to several mis-
matches of OrthSeg and PhonSeg values.

e Nominalised verbs and adjectives have no suffixclass specification in the lexi-
con database,’® whereas McrLASS marks them (correctly, cf. Bleiching and Gib-

46(because they were originally generated from the respective verb and adjective lemma entries by the

Bielefeld paradigm generator).
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bon, 2000) as Nomen Treffen and Nomen_NA, respectively. This leads to some
Suffixclass mismatches.

e The implementation of the look-up of the correct stem for the citation form of an
input word form using the suffixclass information contains a bug which concerns
some rare verbal and nominal suffixclasses. This affected the lemmatisation rate
somewhat.
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7. Summary and Perspectives

7.1. Summary

In this thesis, we have presented a sign-based theory of the morphology of German. Our
morphological objects are lexical signs, comprising signs of the subtypes morpheme,
lemma, lexComplex and word. All signs under morpheme are lexicalised, but lemma,
lexComplex, and word subsume both lexicalised and non-lexicalised signs.

Our first focus was on headedness and the nature of a possible morphological Head
Feature Principle. Under the assumption that headedness must be determined on the
grounds of uniform feature percolation, those HEAD features that play a role in morphol-
ogy were inventorised. We have distinguished between syntactic HEAD features, which
are the morphosyntactic features familiar from several syntactic HPSG theories, and
morphological HEAD features, which are relevant in morphotactics, namely in morpho-
logical subcategorisation. But both syntactic and morphological HEAD features play a
role in morphology in that they are subject to the Morphological Head Feature Principle
(MHFP). The MHFP is effective in derivational and compounding structures (subsumed
under the type baseComplex in our theory), which are right-headed in German. In inflec-
tion, though, there is no percolation of morphological HEAD features, and the percolation
of syntactic HEAD features is more complex than the sharing of features by a mother
constituent and a single HEAD daughter. Moreover, the examination of previously pre-
sented principles of headedness in morphology revealed that for inflection, they generally
divide HEAD feature percolation into default and exceptional cases, i.e. do not formulate
a uniform percolation principle. As an alternative, we have put forward the Inflectional
Marking Principle (IMP) for the way the morphosyntactic features are combined in
inflectional constructions, which are subsumed under the type inflected.

Derivational as well as inflectional affixes select bases on account of their morpholog-
ical or morphosyntactic properties such as major class (i.e. part of speech), nativeness
and inflectional class. This could be summarised in terms of a Morphological Subcat-
egorisation Principle (MSP), which consequently applies to constructions of the type
affized.

We have presented three Continuation Schemata for the linearisation of morphs in a
word form. In these, it is established that prefixes are actually pre-fixed, and suffixes suf-
fixed, and that compounds and derivatives are right-headed. Otherwise, the schemata
remained somewhat preliminary as we could not specify our idea of the interface to a
two-level rule component further.

The remaining part of our theory deals with more specific morphotactic problems,
such as the role of ablaut in inflection, and the role of umlaut in derivation and inflection.
We have furthermore provided an account of how paradigms are not independent lexical
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objects, but still arise from our organisation of the type hierarchies.

Although we have in fact implemented solutions for the selection of linking mor-
phemes in compounding, of interfixes in derivation, and the role of ablaut and conversion
in derivation, we have not presented the HPSG description for them in this thesis.

In general, our approach to morphology relies much on the notion that lexical types
are induced by feature values. For example, we would assume that the possible values
types of SYN|LOC|HEAD in Pollard and Sag (1994) (e.g. noun, verb, adjective) parti-
tion lexical-sign automatically partitioned into objects like nominal-sign, verbal-sign,
adjectival-sign, and so forth. Correspondingly, in our morphology, the different affix
types that appear as values of the HEAD-DTR and NONHEAD-DTR features of com-
plex lexical signs induce construction types like basePrefized or baseSuffized. Thus the
hierarchy of lexical signs is often a duplication of the hierarchies for values types of
certain features of lexical signs. We found it however desirable to make explicit the
lexComplex hierarchy for our implementation. The lemma hierarchy, induced by the
MORPH|HEAD|STEMCLASS and MORPH|HEAD|SUFFIXCLASS corresponds to a paradigm
class hierarchy, and the word hierarchy, induced by the feature SYN|LOCAL|HEAD, is in
analogy to the lexical hierarchy presented in (Pollard and Sag, 1987, p.202).

7.2. Perspectives for Mclass

Our implementation strategy for the HPSG morphology can be summarised as follows:

1. The feature structure descriptions of the maximal types at the bottom of the
lexComplex hierarchy are manually encoded as DCG rules.

2. The morph entries at the bottom of the morpheme hierarchy are stored as morph

database entries, acquired and type-checked using the interactive classification tool
IAMW.

3. DCG and morph database are converted into a BUP parser by means of a Perl
program

The inheritance of feature-value specifications and principles from types higher up
in the lexComplex, word, and lemma hierarchies was not implemented, but those in
the morpheme hierarchy were implemented in the form of the feature co-occurrence
restrictions used by TAMW. This means that unfortunately those parts of the theory
that lack an implementation could not be operationally evaluated. Omne could argue
that a publicly available tool for constraint-based grammar development, such as Stefan
Miiller’s Babel (http://www.dfki.de/~stefan/Babel/e_babel.html), Anne Copes-
take’s LKB (http://www-csli.stanford.edu/~aac/lkb.html), or Gerald Penn’s
ALE (http://www.cs.toronto.edu/~gpenn/ale.html) should have been used for im-
plementing the theory. Unfortunately, these were not taken into consideration at the
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beginning of the project, and besides do not seem to be straightforwardly adaptable to
spoken language, i.e. employing pairs of orthographic and phonological representation.
But at least our inheritance hierarchies might be implemented and tested for consistency
in one of these formalisms, and DCG or BUP code could still be generated from these
representations. Moreover, additional constraints such as semantic features could then
be integrated more easily.

Our implementation of MCLASS and the software evaluation presented were also quite
constricted by the requirements of the lexical acquisition application in the Verbmobil
project. Some additional features for MCLASS seem to be desirable. For one thing,
one would like to see fully-fledged attribute-value matrices as its output, which is in
principle feasible but has not been fully implemented. It would also be an interesting
task to implement a morphological generator based on the theory presented.

Moreover, the performance of MCLASS in terms of speed needs improvement. The
present implementation could manage the regular Verbmobil corpus extension batches
(usually 500-2000 new word forms) in reasonable time, but is simply not suitable for
large vocabularies. This is mainly due to two factors: First, the pre- and post-processor
cause the performance to be very slow, as they were coded in a more ad-hoc fashion and
not guided by theoretical considerations as was the parser. Thus, they should be reim-
plemented. Second, the interaction of MCLASS and the component NIMETON delays an
analysis considerably since in different parsing states, the same string is tested for being
a grapho-phonological root. Therefore, a bookkeeping device for storing intermediate
results from NIMETON should be implemented. We believe that the method used for
the dictionary look-up and storage of so-called inflectional analyses results in the origi-
nal BUP parser (Matsumoto and Kiyono, 1985) is perfectly applicable to the interface
between McCLASs and NIMETON.

Finally, for more efficiency, it would be also desirable to automatically convert our
morphology into a finite-state transducer, at least for purposes such as morphological
segmentation, grapheme-phoneme conversion, morphosyntactic analysis, and lemmatisa-
tion. This is of course not a priori possible for a context-free grammar, but one direction
of computational linguistics research deals with finite-state approximations of context-
free grammars or even feature grammars, cf. Pereira and Wright (1991), Rood (1996),
and Nederhof (2000). We expect that it is feasible to approximate our morphology to an
FST, because proper center-embedding rules are fairly restricted, namely to compound-
ing construction types and to those derivational construction types where one daughter
is of the type lkernel or rkernel. Furthermore, the maximum number of actual embed-
dings in the morphological structure of any German word found in a corpus will be quite
limited. In sum, we argue that a lexicographer should ideally have a tool like the HPSG-
formalism at their disposal to be able to describe the recursive constituent structures of
morphology, while for certain kinds of morphological processing the performance could
be improved by an automatic finite-state approximation of the morphological grammar.
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Two test runs of McLASS with word lists from the Verbmobil corpus yielded satis-
factory results for the types of lexical information that were evaluated. We also pointed
out several improvements that could immediately be made to reduce the error rates. But
many more kinds of evaluations and differently parametrised test runs could have been
carried out. It would be most interesting to run M CLASS on corpora from domains other
than the appointment scheduling and travel planning dialogues. Such word lists were
however not at our disposal in the required Verbmobil orthography, but we expect the
results to be worse, because the morph database will not cover all the material. Thus,
the morph database should be completed on account of such test runs.

Practice has shown that most of the words from appointment scheduling and travel
planning dialogues that are misanalysed by McLASS are all kinds of names as well
as words from other languages that were nevertheless used in German speech. As for
names, it has been demonstrated in various studies that a morphological or pseudo-
morphological description of the structure of names is beneficial for the grapheme-to-
phoneme conversion of names, cf. e.g. Belhoula (1993) on German names and Gustafson
(1995) on Swedish names (the structures of which are similar to those of German names).
We have created an experimental version of MCLASS that is able to transcribe German
place, street and family names with surprisingly good results by making some simple
changes to the morphotactics and the grapho-phonotactic network used by NIMETON,
based on an inspection of faulty name transcriptions in the output of McrLAss. It would
thus be a possible next step to create a morphology that can deal with both names and
non-names at the same time.
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A. Table of abbreviations

ADJ
AP
AVM
CUG
DAG
DP
Det
FUG
GB
GPSG
HFP
HPSG
TA
IAMW
ILEX
IMP
P
LFG
LHS
LPM
MAWR
MHFP
MSP

N

NP

P

PP
PS-grammar
PSG
RHR
RHS
RRHR
SAMPA
SPE
TBDM
v

VP
WFST
WP

Adjective

Adjective phrase

Attribute-value matrix

Categorial Unification Grammar

Directed acyclic graph

Determiner phrase

Determiner

Functional Unification Grammar

Government and Binding

Generalised Phrase Structure Grammar

Head Feature Principle

Head-driven Phrase Structure Grammar
Item-and-arrangement

Interaktive Akquisition morphologischer Daten
Integrated Lexicon with Exceptions
Inflectional Marking Principle
Ttem-and-process

Lexical Functional Grammar

Left-hand side

Lexical Phonology and Morphology
Morphological affix-word rule

Morphological Head Feature Principle
Morphological Subcategorisaton Principle
Noun

Noun phrase

Preposition

Prepositional phrase

Phrase structure grammar

Phrase structure grammar

Right-hand head rule

Right-hand side

Relativised right-hand head rule

Speech assessment methodologies phonetic alphabet
The Sound Pattern of English (Chomsky and Halle, 1968)
Type-based derivational morphology (Riehemann 1998)
Verb

Verb phrase

Well-formed substring table
Word-and-paradigm
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B. DCG morphotactics

% Rulela stemPrefixed --> part stemPre2fixed
% Example =

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO_UMLD, XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,XO_ARG_MID,X0_VROOT,X0O_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

part (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

stemPre2fixed(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="#’,
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrefixed,

X1 <-> X2 Equational Constraints
X1_BCAT=X2_SCAT,

Constraints on X1 Instantiations
not (X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’+’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation

X2_RBND=X0_RBND,

X2_BCAT=X0_BCAT,

X2_SCAT=X0_SCAT,

X2_NAT=XO_NAT,

X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,

X2_UMLB=X0_UMLB,
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X2_PRET=XO_PRET,
X2_REG=XO_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=XO_GEN,
X2_VR0OOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=XO_FLEX,
X2_PARTSTEM=XO_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Y= m = m =
% Rulelb stemPrefixed --> part stemPrelfixed
% Example vorbehalt --> vor  behalt

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0O_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0O_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

part (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

stemPrelfixed(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrefixed,

X1 <-> X2 Equational Constraints
X1_BCAT=X2_SCAT,

Constraints on X1 Instantiations
not (X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’+’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,
not (X2_LBND==1bndFree),
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% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

% Rulelc stemPrefixed --> part stemPrelZufixed
% Example anzubehalt --> an  zubehalt

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0O_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0OSTEMS) : -

part (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VRODT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

stemPrelZufixed (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY="#’,
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrefixed,
X0_FLEX=infinitive_flex,

X1 <-> X2 Equational Constraints
X1_BCAT=X2_SCAT,

== =
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Constraints on X1 Instantiations
not (X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’+’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

=

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=X0_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=XO_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=XO_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX, % wird oben initialisiert.
X2_PARTSTEM=XO_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

==

/e
% Ruleld stemPrefixed --> pre2 stemPrelZufixed
% Example mi"szuversteh --> mi"s zuversteh

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0O_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,X0_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,XO_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO_PSTEMS,X0_0STEMS) : -

pre2(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

stemPrelZufixed (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
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X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrefixed,
XO0_FLEX=infinitive_flex,

% X1 <-> X2 Equational Constraints
% X1_BCAT=X2_SCAT,

% Constraints on X1 Instantiations
% not(X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’-’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

=

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX, % wird oben initialisiert.
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

=

Y= == == == =
% Rule2 stemPrelZufixed --> infin[zu] stemPrelfixed
% Example zuversteh -=> zu versteh

% Linear Precedence and Feature Vectors:

stemPreiZufixed (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,X0_UMLB,
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XO0_UMLD, XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,XO_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

infin(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

stemPrelfixed(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="#’,
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrelZufixed,

X1 <-> X2 Equational Constraints
X1_BCAT=X2_SCAT,

% Constraints on X1 Instantiations
X1_MID=zu_infin,

% not(X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’-’,

% X1_NAT=’+’,

% X1_STR=’-’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

=

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=X0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=XO0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
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X2_0STEMS=X0_0STEMS.

/e
% Rule3a stemPrefixed --> part rkernel

% Example anbrenn --> an brenn

% Example "uberinterpretier --> "uber interpretier

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0O_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,XO_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,X0O_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_0STEMS) : -

part (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

rkernel(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VRODT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="#’,
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrefixed,

X1 <-> X2 Equational Constraints
X1_BCAT=X2_SCAT,

Constraints on X1 Instantiations
not (X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’+’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

=

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,

X2_BCAT=X0_BCAT,

X2_SCAT=X0_SCAT,

X2_NAT=XO_NAT,

X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
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X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=XO_PRET,
X2_REG=XO_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=XO_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=XO_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_OSTEMS .

=
% Rule3b stemPrefixed --> part zuRkernel
% Example anzubrenn --> an zubrenn

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0O_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0O_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,XO_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

part (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

zuRkernel (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrefixed,
XO0_FLEX=infinitive_flex,

% X1 <-> X2 Equational Constraints
% X1_BCAT=X2_SCAT,

Constraints on X1 Instantiations
not (X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’+’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Constraints on X2 instantiations
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%

h
h
)

%

stemPrefixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0O_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,XO_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,

X

pre2(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,

X

zuRkernel (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,

X

=

not (X2_LBND==1bndFree),
X2_SCAT=v,

X1 <-> X0 Feature Percolation
X1_LBND=XO0_LBND,

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Rule3c stemPrefixed -=>
Example mi"szutrau -=>
Comment zweifelhaft

Linear Precedence and Feature Vectors:

0_PSTEMS,X0_0STEMS) : -

1_PSTEMS,X1_0STEMS),

2_PSTEMS,X2_0STEMS),

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

X0 Instantiations
X0_MCAT=stemPrefixed,
XO0_FLEX=infinitive_flex,

% wird oben initialisiert.

pre2
mi"s

zuRkernel
zutrau
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X1 <-> X2 Equational Constraints
X1_BCAT=X2_SCAT,

Constraints on X1 Instantiations
not (X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’-’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

==

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=X0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=X0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX, % wird oben initialisiert.
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

=

Y= = = m
% Rule3e zuRkernel --> infin[zu]l rkernel
% Example zuversteh --> zu nehm

% Linear Precedence and Feature Vectors:

zuRkernel (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,XO_BCAT,
XO_SCAT,XO0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,XO_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VRODT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

infin(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

rkernel (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
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X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=zuRkernel,

% X1 <-> X2 Equational Constraints
% X1_BCAT=X2_SCAT,

% Constraints on X1 Instantiations
X1_MID=zu_infin,

% not(X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’-’,

% X1_NAT=’+’,

% X1_STR=’-’,

% X1_ADJ=’-’,

% X1_BCAT=v,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

=

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO0_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=XO0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=XO0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Y e
% Rule3f stemPrefixed --> pre2 stemPrelfixed

% Example mi"sversteh  --> mi"s versteh

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0O_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,
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XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0O_ABLD,X0_ABL_SUF_MID,X0_PRET, XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

pre2(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

stemPrelfixed(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrefixed,

X1 <-> X2 Equational Constraints
X1_BCAT=X2_SCAT,

Constraints on X1 Instantiations
not (X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’-’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
% X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

=

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=X0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=XO0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
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X2_0STEMS=X0_0STEMS.

% Rule3g stemPrefixed --> stemPre2fixed

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,X0_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,X0O_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_0STEMS) : -

stemPre2fixed(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

% X0 Instantiations
X0_MCAT=stemPrefixed,

% X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=X0_RBND,
X1_BCAT=X0_BCAT,
X1_SCAT=X0_SCAT,
X1_NAT=XO_NAT,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=XO0_PRET,
X1_REG=X0_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=X0_INTERF_ARG,
X1_GEN=XO0_GEN,
X1_VROOT=X0_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=X0_FLEX,

X1 _PARTSTEM=XO_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS.

% Rule3h stemPrefixed --> stemPrelfixed

stemPrefixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0O_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

stemPreifixed(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
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X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,

X1_PSTEMS,X1_0STEMS),

% X0 Instantiations
X0_MCAT=stemPrefixed,

% X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=XO0_RBND,
X1_BCAT=X0_BCAT,
X1_SCAT=X0_SCAT,
X1_NAT=XO_NAT,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=X0_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,

X1 _INTERF_ARG=X0_INTERF_ARG,
X1_GEN=XO_GEN,
X1_VROOT=X0_VROOT,

X1 _STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=XO0_FLEX,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS.

Y mm m m
% Ruled stemPre2fixed --> pre2 rkernel

% Example mi"strau --> mi"s trau

% Example mi"sinformier --> mi"s informier

% Linear Precedence and Feature Vectors:

stemPre2fixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,X0_UMGL,XO0_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,X0O_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,

XO_PSTEMS,X0_OSTEMS) : -

pre2(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,

X1_PSTEMS,X1_0STEMS),

rkernel(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,

X2_PSTEMS,X2_0STEMS),

% Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPre2fixed,
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% X1 <-> X2 Equational Constraints
X1_BCAT=X2_SCAT,

% Constraints on X1 Instantiations
% not(X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’-’,

% X1_NAT=’+’,

% X1_STR=’+’,

% X1_ADJ=’-’,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
% X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=XO0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=X0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

% Ruleb stemPrelfixed -=>
% Example zerquetsch -->
% Example beleidig t -=>

% Linear Precedence and Feature Vectors:

prel rkernel
zer quetsch
be leidig

stemPrelfixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,XO_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,

XO_PSTEMS,X0_OSTEMS) : -

prel(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,

X1_PSTEMS,X1_0STEMS),



174

rkernel(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY=" |+,
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrelfixed,
XO_PARTSTEM="+",

% X1 <-> X2 Equational Constraints
% X1_BCAT=X2_SCAT,
% X1_NAT=X2_NAT,

Constraints on X1 Instantiations
not (X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’-’,

% X1_NAT=’+’,

% X1_STR=’-’,

% X1_ADJ=’+’,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

==

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Y = e
% Rule6 stemPrelfixed --> prenn rkernel
% Example rekapitulier --> re kapitulier

=

Linear Precedence and Feature Vectors:
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stemPrelfixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,X0_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,XO_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_0STEMS) : -

prenn(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

rkernel(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY=" |+,
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrelifixed,
XO_PARTSTEM="-’,

% X1 <-> X2 Equational Constraints
% X1_BCAT=X2_SCAT,
% X1_NAT=X2_NAT,

Constraints on X1 Instantiations
not (X1_LBND=’1bndToBind’),

% X1_RBND=rbndToBind,

% X1_SEP=’-’,

% X1_NAT=’+’,

% X1_STR=’-’,

% X1_ADJ=’+’,

% Constraints on X2 instantiations
not (X2_LBND==1bndFree),
X2_NAT=>-7,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=X0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
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X2_FLEX=XO_FLEX,
X2_PARTSTEM=XO_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

% Rule7a rkernel --> stemSuffixed

% Linear Precedence and Feature Vectors:

rkernel (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,X0_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,X0_UMLB,XO_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
X0_PSTEMS,X0_OSTEMS) : -

stemSuffixed(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

% X0 Instantiations
X0_MCAT=rkernel,

% X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=XO0_RBND,
X1_BCAT=X0_BCAT,
X1_SCAT=X0_SCAT,
X1_NAT=XO_NAT,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=X0_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=X0_INTERF_ARG,
X1_GEN=XO0_GEN,
X1_VROOT=X0_VROOT,

X1 _STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=XO0_FLEX,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS.

% Rule7b rkernel --> root

% Linear Precedence and Feature Vectors:

rkernel (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,X0_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,X0_UMLB,XO_UMLD,
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XO_ABGL,XO_ABLB,X0_ABLD,X0_ABL_SUF_MID,XO_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VRODT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

root (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

% X0 Instantiations
X0_MCAT=rkernel,

% Constraints on X1 Instantiations:
not (X1_LBND=’1bndFree’),

% X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=XO0_RBND,
X1_BCAT=X0_BCAT,
X1_SCAT=X0_SCAT,
X1_NAT=XO_NAT,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=XO0_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=XO_INTERF_ARG,
X1_GEN=X0_GEN,
X1_VROOT=X0_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=X0_FLEX,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS.

Y e
% Rule8a stemSuffixed --> stemSuffixed sufn[comb+]
% Example einheitlich --> einheit lich

% Linear Precedence and Feature Vectors:

stemSuffixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,XO_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,X0O_INTERF_ARG,
X0_GEN,X0_HEAD_MID,XO0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_0STEMS) : -

stemSuffixed(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

sufn(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
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X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY="+",
BRACKETING=left_bracket,

% X0 Instantions
X0_MCAT=stemSuffixed,

% X1 <-> X2 Equational Constraints
X1_SCAT=X2_BCAT,
X1_UMGL=X2_UMLD,
X1_UMLB=X2_UMLD,

% Constraints on X1 Instantiations
not (X1_RBND==rbndFree),

% Constraints on X2 Instantiations
X2_COMB_SUF="+",
% X2_NAT=’+’,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,
% X1_PARTSTEM=X0_PARTSTEM,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=XO_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=X0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=XO0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

=

Y = m
% Rule8b stemSuffixed --> 1lkernel[nat-] sufn[comb+]
% Example sozialistisch --> sozialist isch

% Linear Precedence and Feature Vectors:

stemSuffixed(X0_MID,X0_MCAT,X0_COMB_SUF,XO0_LBND,X0O_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO_UMLD, X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -
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lkernel(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

sufn(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY="+",
BRACKETING=left_bracket,

% X0 Instantions
X0_MCAT=stemSuffixed,

% X1 <-> X2 Equational Constraints
X1_SCAT=X2_BCAT,
X1_UMGL=X2_UMLD,

% Constraints on X1 Instantiations
not (X1_RBND==rbndFree),
X1_NAT="-7,

% Constraints on X2 Instantiations
X2_COMB_SUF="+",
% X2_NAT=’+’,

% X1 <-> X0 Feature Percolation
X0_LBND=X1_LBND,
XO_PARTSTEM=X1_PARTSTEM,

=

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO0_INTERF_ARG,
X2_GEN=XO0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

==

% Rule8c stemSuffixed -=> stemSuffixed sufnn
% Example solidarit"at -=> solidar it"at
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% Linear Precedence and Feature Vectors:

stemSuffixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0O_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,XO_ARG_MID,XO_VROOT,X0O_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

stemSuffixed(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

sufnn(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="+",
BRACKETING=left_bracket,

% X0 Instantions
X0_MCAT=stemSuffixed,

% X1 <-> X2 Equational Constraints
X1_SCAT=X2_BCAT,
X1_UMGL=X2_UMLD,

% X1_NAT=X2_NAT,

% Constraints on X1 Instantiations

not (X1_RBND==rbndFree),

X1_NAT=’-’,

X1_UMLB=X1_UMGL, %% dieser constraint besagt, dass
%% immer umgelautet wird, wenn umlautbar.

==

% Constraints on X2 Instantiations
% X2_NAT=’-’,

% X1 <-> X0 Feature Percolation
X0_LBND=X1_LBND,
XO_PARTSTEM=X1_PARTSTEM,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=XO0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,

==
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==

% Linear Precedence and Feature Vectors:

X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=XO_FLEX,
X2_PARTSTEM=XO_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Rule8d stemSuffixed -->
Example neuheit -=>
Example interessier -=>
Example verarbeitung -->

lkernel suf
neu heit
interess ier
verarbeit ung

stemSuffixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,XO_ARG_MID,X0_VROOT,X0O_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO_PARTSTEM,

X

0_PSTEMS,X0_0STEMS) : -

lkernel (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,

X

1_PSTEMS,X1_0STEMS),

suf (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,

X

==

)
X
X

%

==

==

2_PSTEMS,X2_0STEMS),

Boundary Symbol and Bracketing
BOUNDARY="+",
BRACKETING=left_bracket,

X0 Instantions
X0_MCAT=stemSuffixed,

X1 <-> X2 Equational Constraints
X1_SCAT=X2_BCAT,

X1_NAT=X2_NAT,

X1_UMGL=X2_UMLD,

Constraints on X1 Instantiations
not (X1_RBND==rbndFree),

Constraints on X2 Instantiations
2_INTERF_ARG=’-"’,
2_PRET=’-7,

X1 <-> X0 Feature Percolation
XO0_LBND=X1_LBND,
XO_PARTSTEM=X1_PARTSTEM,

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,

X2_BCAT=XO_BCAT,

X2_SCAT=X0_SCAT,

X2_NAT=XO_NAT,
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X2_LINK=XO_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=XO_PRET,
X2_REG=XO_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=XO0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=XO_FLEX,

% X2_PARTSTEM=XO_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Y= m = m = e
% Rule8e stemSuffixed -=> stemInterfixed sufnn
% Example information -=> informat ion

% Linear Precedence and Feature Vectors:

stemSuffixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,X0_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,X0O_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_0STEMS) : -

stemInterfixed(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

sufnn(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="+",
BRACKETING=left_bracket,

% X0 Instantions
X0_MCAT=stemSuffixed,

% X1 <-> X2 Equational Constraints
X1_SCAT=X2_BCAT,

X1_NAT=X2_NAT,
X1_INTERF=X2_INTERF_ARG,

% Constraints on X1 Instantiations
not (X1_RBND==rbndFree),
X1_NAT=>-7,

% Constraints on X2 Instantiations
X2_NAT="-7,
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% X1 <-> X0 Feature Percolation
X0_LBND=X1_LBND,
XO_PARTSTEM=X1_PARTSTEM,

=

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,

% X2_PARTSTEM=XO_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

=

Y
% Rule8f stemSuffixed --> stemInterfixed sufn[comb+]
% Example theoretisch -=> theoret isch

% Linear Precedence and Feature Vectors:

stemSuffixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0O_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

stemInterfixed (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

sufn(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY="+",
BRACKETING=left_bracket,

% X0 Instantions
X0_MCAT=stemSuffixed,

% X1 <-> X2 Equational Constraints
X1_SCAT=X2_BCAT,
X1_UMGL=X2_UMLD,
X1_UMLB=X2_UMLD,

===
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=

X1_INTERF=X2_INTERF_ARG,

% Constraints on X1 Instantiations
not (X1_RBND==rbndFree),

% Constraints on X2 Instantiations
X2_COMB_SUF="+",
% X2_NAT=’+’,

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,
% X1_PARTSTEM=XO_PARTSTEM,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO0_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=XO0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO0_INTERF_ARG,
X2_GEN=XO0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

==

Y= m = = e
% Rule9a stemInterfixed --=> lkernel interf

% Example theroet --> theor et

% Example chines --> chin es

% Linear Precedence and Feature Vectors:

stemInterfixed (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO0_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,XO_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

lkernel(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

interf (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

% Boundary Symbol and Bracketing
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BOUNDARY="+",
BRACKETING=left_bracket,

% X0 Instantiations
X0_MCAT=stemInterfixed,

% X1 <-> X2 Equational Constraints
X1_SCAT=X2_BCAT,
X1_NAT=X2_NAT,

% Constraints on X1 Instantiations
not (X1_RBND==rbndFree),
not (X1 _INTERF==’-’),

% Constraints on X2 Instantiations

% X1 <-> X0 Feature Percolation
X0_LBND=X1_LBND,
XO_PARTSTEM=X1_PARTSTEM,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

==

==

Y= m = -
% RulelO lkernel --> root
% Linear Precedence and Feature Vectors:

lkernel (XO_MID,XO0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,X0_BCAT,
XO_SCAT,XO0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0O_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VRODT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0OSTEMS) : -

root (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),
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% X0 Instantiations
X0_MCAT=1kernel,

% Constraints on X1 Instantiations:
not (X1_RBND==rbndFree),

% X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=XO0_RBND,
X1_BCAT=X0_BCAT,
X1_SCAT=X0_SCAT,
X1_NAT=XO_NAT,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=X0_PRET,
X1_REG=XO0_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=XO0_INTERF_ARG,
X1_GEN=XO_GEN,
X1_VROOT=X0_VROOT,

X1 _STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=XO0_FLEX,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS.

% RulelOb lkernel -—=> stemPrefixed

% Linear Precedence and Feature Vectors:

lkernel (XO_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,X0_BCAT,
XO_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0O_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,XO_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VROOT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

stemPrefixed(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

% X0 Instantiations
X0_MCAT=1kernel,

% Constraints on X1 Instantiations:
not (X1_RBND==rbndFree),

% X1 <-> X0 (Head) Feature Percolation

X1_LBND=X0_LBND,

X1_RBND=XO0_RBND,

X1_BCAT=X0_BCAT,

X1_SCAT=X0_SCAT,

X1_NAT=XO_NAT,

X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
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X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=XO_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=XO_INTERF_ARG,
X1_GEN=XO_GEN,
X1_VROOT=XO_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=XO_FLEX,
X1_PARTSTEM=XO0_PARTSTEM,
X1_PSTEMS=XO_PSTEMS,
X1_OSTEMS=X0_OSTEMS.

% Rulell stem  --> stemSuffixed

% Linear Precedence and Feature Vectors:

stem(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,X0_RBND_ARG,XO0_BCAT,
XO_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0O_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VRODT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

stemSuffixed(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

% X0 Instantiations
X0_MCAT=stem,

% X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=X0_RBND,
X1_BCAT=X0_BCAT,
X1_SCAT=X0_SCAT,

X1 _NAT=XO_NAT,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=X0_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,

X1 _INTERF_ARG=X0_INTERF_ARG,
X1_GEN=XO_GEN,
X1_VROOT=X0_VROOT,

X1 _STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=XO0_FLEX,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS.
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% Rulelilb stem  --> stemPrefixed

% Linear Precedence and Feature Vectors:

stem(X0_MID,X0O_MCAT,XO_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,X0_RBND_ARG,X0_BCAT,
XO_SCAT,XO0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,XO_ABLB,X0_ABLD,X0_ABL_SUF_MID,XO_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VRODT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

stemPrefixed(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

% X0 Instantiations
X0_MCAT=stem,

% X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=XO0_RBND,
X1_BCAT=X0_BCAT,
X1_SCAT=X0_SCAT,
X1_NAT=XO_NAT,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=X0_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=XO_INTERF_ARG,
X1_GEN=X0_GEN,
X1_VROOT=X0_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=XO0_FLEX,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_O0STEMS=X0_0STEMS.

% Rulellc stem  --> root

% Linear Precedence and Feature Vectors:

stem(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,XO_LBND_ARG,X0_RBND,X0_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,X0_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,X0O_INTERF,XO_INTERF_ARG,XO_GEN,
XO0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

root (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),
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%

% Constraints on X1 Instantiations
% not(X1_LBND==1bndToBind), % Gegenbeispiel:

% X1 <-> X0 (Head) Feature Percolation

%

% Linear Precedence and Feature Vectors:

stem(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,X0_RBND_ARG,XO_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,XO_UMLD,

X0 Instantiations
X0_MCAT=stem,

’erstaunlicherweise’:

% ist als 1bndToBind klassifiziert.
% Vielleicht f"ur -weise u.a. eine extra Regel einf"uhren.

X1_LBND=XO_LBND,
X1_RBND=XO_RBND,
X1_BCAT=XO_BCAT,
X1_SCAT=XO_SCAT,
X1_NAT=XO_NAT,
X1_LINK=XO_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=XO_UMGL,
X1_UMLB=XO_UMLB,
X1_PRET=XO_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=XO_INTERF_ARG,
X1_GEN=XO_GEN,
X1_VROOT=XO_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=XO_SUFFIXCLASS,
X1_FLEX=XO_FLEX,
X1_PARTSTEM=XO_PARTSTEM,
X1_PSTEMS=XO_PSTEMS,
X1_OSTEMS=XO_OSTEMS .

Rulelld stem -->

die adv-root

’-weise’

X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,X0O_INTERF,XO_INTERF_ARG,XO_GEN,

XO0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,

X0_PSTEMS,X0_OSTEMS) : -

stemCompound (X1 _MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,

X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

%

= =

=

X0 Instantiations
X0_MCAT=stem,

Constraints on X1 Instantiations
not(X1_LBND==1bndToBind), % Gegenbeispiel:

’erstaunlicherweise’:

% ist als 1bndToBind klassifiziert.
% Vielleicht f"ur -weise u.a. eine extra Regel einf"uhren.

X1 <-> X0 (Head) Feature Percolation

X1_LBND=XO_LBND,
X1_RBND=XO_RBND,
X1_BCAT=XO0_BCAT,

die adv-root

’-weise’
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)
h
)

%

X1_SCAT=XO_SCAT,

X1 _NAT=XO_NAT,
X1_LINK=XO_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=XO_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=XO_INTERF_ARG,
X1_GEN=XO_GEN,
X1_VROOT=X0_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=XO_FLEX,
X1_PARTSTEM=XO_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS.

Rulel2a stemSuffixed[adj] -->
Example gelaufen -=>
Example laufend -=>
Linear Precedence and Feature Vectors:

word [participle]
gelaufen
laufend

stemSuffixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0O_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

word (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

%

=

==

B

X0 Instantiations
X0_MCAT=stemSuffixed,

X0_SCAT=a,
XO_FLEX=adjective_flex,
XO_PARTSTEM=conversed_participle,
XO0_RBND=rbnd0Opt,

X0_LINK=1inkOpt,
XO_LINK_MID=[’er_lm_adv’],
XO0_SUFFIXCLASS=’ADJECTIVAL’,
XO0_FLEX=adjective_flex,

Constraints on X1 Instantiations
X1_SCAT==v,
sublistmember("non-finit-part",X1_FLEX),
not (X1_LBND==1bndToBind),

X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=X0_RBND,
X1_BCAT=X0_BCAT,
X1_SCAT=X0_SCAT,
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X1_NAT=XO_NAT,
X1_LINK=XO_LINK,
X1_LINK_MID=XO0_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=XO_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=XO_INTERF_ARG,
X1_GEN=XO_GEN,
X1_VROOT=XO_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=XO_FLEX,
X1_PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=XO_PSTEMS,
X1_OSTEMS=X0_OSTEMS.

B

B

% Rulel3a past_stem --> stem[v,PRET=+,REG=-]

% Linear Precedence and Feature Vectors:

past_stem(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,XO_BCAT,
XO_SCAT,XO0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0O_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VRODT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

stem(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

% X0 Instantiations:
XO0_MCAT=past_stem,

Constraints on X1 Instantiations
not (X1_LBND==1bndToBind),
not (X1_RBND==rbndFree),
X1_SCAT=v,
X1_PRET="+"’,
member (X1_VROOT, [’BLIEB’, ’HIE"S’,’KAM’, ’K"AM’, >SCHOB’, ’SCH"0B’, >GING’, ’FIEL’,
’FAND’,’F"AND’,’SAH’,’S"AH’ ,’FUHR’ ,’F"UHR’, ’NAHM’ , >’N"AHM’ , ’WURD’, >W"URD’ , ’RANN’,
’DARF’]),
X1_REG=’-’,
% X1_STEMCLASS=strong, % entsprechende repraesentation, aber braucht man nicht, die
% information ist schon in der X1_VROOT-Gleichung enthalten.

B

% X1 <-> X0 (Head) Feature Percolation

X1_LBND=X0_LBND,

X1_RBND=XO0_RBND,

X1_BCAT=X0_BCAT,

X1_SCAT=X0_SCAT,

X1_NAT=XO_NAT,

X1_LINK=XO_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,

X1_UMLB=X0_UMLB,
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X1_PRET=XO_PRET,
X1_REG=XO_REG,
X1_INTERF=XO_INTERF,
X1_INTERF_ARG=XO_INTERF_ARG,
X1_GEN=XO_GEN,
X1_VROOT=X0_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_FLEX=XO_FLEX,
X1_PARTSTEM=XO_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS.

Y mm e
% Rulel3a past_stem --> stem[v,REG+,PRET=-] past
% Example sagt --> sag t

% This rule won’t be used, as past and person suffixes are
% merged into one inflectional suffix.

% Linear Precedence and Feature Vectors:

past_stem(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,XO_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,X0O_INTERF,XO_INTERF_ARG,XO0_GEN,
X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO0_PARTSTEM,
XO_PSTEMS,X0_0STEMS) : -

stem(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

past (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY="#+",
BRACKETING=left_bracket,

% X0 Instantiations
X0_MCAT=past_stem,
XO_PRET="+",

% X1 <-> X2 Equational Constraints

% Constraints on X1 Instantiations
not (X1_RBND==rbndFree),
% not(X1_LBND==1bndToBind),
X1_SCAT=v,
X1_PRET="-’,
X1_VROOT="FRAG’,
% X1_REG=’reg+’,
% member (X1_SUFFIXCLASS, [?SAGEN’,’WARTEN’, ’BEGEISTERN’, ’FASSEN’]),

% Constraints on X2 Instantiations
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% X1 <-> X0 Feature Percolation
not (X1_RBND==rbndFree),
X1_LBND=X0_LBND,
X1_NAT=XO_NAT,
X1_SCAT=X0_SCAT,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_VROOT=X0_VROOT,
X1_REG=X0_REG,
X1_STEMCLASS=X0_STEMCLASS,
X1_INTERF=XO_INTERF,
X1_GEN=XO0_GEN,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS,

= =

% X2 <-> X0 Feature Percolation
X2_RBND=X0_RBND,

% X2_PRET=XO0_PRET,
X2_FLEX=X0_FLEX.

Y e
% Rulelda word --> stem inflection

% Example nimmst --> nimm st

% Example w'orter -=> w'ort er

% Example sch"oneres --> sch'"oner es

% Linear Precedence and Feature Vectors:

word (XO_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,X0_BCAT,
XO_SCAT,XO0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0O_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VRODT,XO_STEMCLASS,X0O_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0OSTEMS) : -

stem(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

inflection(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="#+",
BRACKETING=left_bracket,

% X0 Instantiations
X0_MCAT=word,

% X1 <-> X2 Equational Constraints
X1_SCAT=X2_SCAT,
X1_VROOT=X2_VROOT,
X1_SUFFIXCLASS=X2_SUFFIXCLASS,
X1_REG=X2_REG,
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X1_PARTSTEM=X2_PARTSTEM,

% Constraints on X1 Instantiations
not (X1_LBND==’1bndToBind’),
not (X1_RBND==’rbndFree’),
X1_PRET="-’,

% Constraints on X2 Instantiations
not (X2_RBND==rbndToBind),

% X1 <-> X0 Feature Percolation
X1_NAT=XO_NAT,
X1_SCAT=X0_SCAT,
X1_LBND=X0_LBND,
X1_GEN=XO_GEN,

X1 _STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=X0_PRET,
X1_VROOT=X0_VROOT,
X1_REG=X0_REG,
X1_INTERF=XO_INTERF,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS,

==

% X2 <-> X0 Feature Percolation
X2_FLEX=X0_FLEX,
X2_RBND=XO0_RBND.

% Rulel4b word --> past_stem v_infl

% Linear Precedence and Feature Vectors:

word (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,X0_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,XO_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_OSTEMS) : -

past_stem(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VRODT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

v_inf1(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

% Boundary Symbol and Bracketing
BOUNDARY="#+",
BRACKETING=left_bracket,
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% X0 Instantiations
X0_MCAT=word,

% X1 <-> X2 Equational Constraints

X1_SCAT=X2_SCAT,

X1_SUFFIXCLASS=X2_SUFFIXCLASS,

X1_VROOT=X2_VROOT,
% the constraints on STEMCLASS and SUFFIXCLASS muessen ueberdacht werden
% FLEX must be unified

% Constraints on X1 Instantiations
not (X1_LBND==’1bndToBind’),
X1_PRET="+’,

% Constraints on X2 Instantiations
not (X2_RBND==rbndToBind),

% X1 <-> X0 Feature Percolation
X1 _NAT=XO_NAT,
X1_GEN=X0_GEN,
X1 _STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_LBND=X0_LBND,
X1_SCAT=X0_SCAT,
X1_REG=XO_REG,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=XO0_PRET,
X1_VROOT=X0_VROOT,
X1_INTERF=XO_INTERF,
X1 _PARTSTEM=XO_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS,

% X2 <-> X0 Feature Percolation
X2_FLEX=X0_FLEX,
X2_RBND=XO_RBND.

/U
% Rulelba stemCompound --> stem stem
% Example Terminverschiebung --> termin verschiebung

% Linear Precedence and Feature Vectors:

stemCompound (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,XO_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,XO_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_0STEMS) : -

stem(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

stem(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
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X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

% Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=left_bracket,

% X0 Instantiations
X0_MCAT=stemCompound,

% X1 <-> X2 Equational Constraints

% Constraints on X1 Instantiations
not (X1_LINK==1ink(0bl),
not (X1_RBND==’rbndFree’),

% Constraints on X2 Instantiations
not (X2_LBND==’1bndFree’),

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=XO0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=X0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Y mm e
% Rulel5b stemCompound --> stemlLm stem
% Example arbeitsamt -=> arbeits amt

% Linear Precedence and Feature Vectors:

stemCompound (X0_MID,X0_MCAT,X0_COMB_SUF,X0O_LBND,X0_LBND_ARG,XO_RBND,X0_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0OSTEMS) : -

stemLm(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
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X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

stem(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

% Boundary Symbol and Bracketing
BOUNDARY="#’,
BRACKETING=left_bracket,

% X0 Instantiations
X0_MCAT=stemCompound,

% X1 <-> X2 Equational Constraints
% X1_SCAT=X2_SCAT,

% Constraints on X1 Instantiations
% not(X1_RBND==’rbndFree’),

% Constraints on X2 Instantiations
not (X2_LBND==’1bndFree’),

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO0_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=XO0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

/.
% Rulel6a stemLm --> stem 1lm
% Example arbeits --> arbeit s

% Linear Precedence and Feature Vectors:

stemLm(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,XO_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
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XO_PSTEMS,X0_0STEMS) : -

stem(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

1m(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="#+",
BRACKETING=left_bracket,

% X0 Instantiations
% XO_MCAT=stemLm,

% X1 <-> X2 Equational Constraints
% X1_UMGL=X2_UMLD,
% X1_SCAT=X2_BCAT,

% Constraints on X1 Instantiations
not (X1_LINK==1inkImp),
inst_member (X2_MID, X1_LINK_MID),

% Constraints on X2 Instantiations

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,
X1_SCAT=X0_SCAT,
X1_NAT=XO_NAT,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_PRET=X0_PRET,
X1_VROOT=X0_VROOT,
X1_REG=XO_REG,
X1_STEMCLASS=X0_STEMCLASS,
X1_GEN=XO0_GEN,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS,

==

% X2 <-> X0 Feature Percolation
X2_RBND=X0_RBND,
X2_FLEX=XO0_FLEX.

% what about INTERF

Y = m e
% Rulel6b stemLm[NA] -=> stem[adj] 1m[en_1lm_a]

% Example blinden --> blind en

% Examples (Blindenschule, Totensonntag, Behindertenpolitik)

% Linear Precedence and Feature Vectors:

stemLm(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,X0_UMLD,
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X
X
X

X
X
X
X

X
X
X
X

=

==

==

0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,X0_GEN,
O_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,X0_PARTSTEM,
0_PSTEMS,X0_0STEMS) : -

stem(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
1_PSTEMS,X1_OSTEMS),

1m(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
2_PSTEMS,X2_0STEMS) ,

Boundary Symbol and Bracketing
BOUNDARY="#+",
BRACKETING=left_bracket,

X0 Instantiations
X0_MCAT=stemLm,

X1 <-> X2 Equational Constraints
X1_UMGL=X2_UMLD,
X1_SCAT=X2_BCAT,

Constraints on X1 Instantiations
not (X1_LINK==1inkImp),
X1_SCAT=’a’,

Constraints on X2 Instantiations
X2_MID==’en_1lm_a’,

X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,
X1_SCAT=X0_SCAT,
X1_NAT=XO_NAT,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_PRET=X0_PRET,
X1_VROOT=XO0_VROOT,
X1_REG=XO0_REG,
X1_STEMCLASS=X0_STEMCLASS,
X1_GEN=XO0_GEN,
X1_PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS,

X2 <-> X0 Feature Percolation
X2_RBND=X0_RBND,
X2_FLEX=XO_FLEX.

what about INTERF

Rulel? word --> stem[rbndOpt/rbndFree]

Linear Precedence and Feature Vectors:
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word (XO_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,X0_BCAT,
XO_SCAT,XO0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0O_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VRODT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

stem(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

% X0 Instantiations
X0_MCAT=word,

% Constraints on X1 Instantiations
not (X1 _RBND==rbndToBind),
not (X1_LBND==1bndToBind),

% X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=XO0_RBND,
X1_SCAT=X0_SCAT,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_NAT=XO_NAT,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=XO0_PRET,
X1_VROOT=X0_VROOT,
X1_REG=XO0_REG,
X1_FLEX=X0_FLEX,

X1 _STEMCLASS=X0_STEMCLASS,
X1_INTERF=XO_INTERF,
X1_GEN=XO0_GEN,

X1 _PARTSTEM=X0_PARTSTEM,
X1_PSTEMS=X0_PSTEMS,
X1_0STEMS=X0_0STEMS.

Y e e e
% Rulel8a suf --> sufn
% Example ung --> ung

% Linear Precedence and Feature Vectors:

suf (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,XO_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,X0O_INTERF,XO_INTERF_ARG,XO0_GEN,
X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_0STEMS) : -

sufn(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

% X0 Instantiations
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X0_MCAT=suf,

% Constraints on X1 Instantiations
X1_NAT=’+’,

==

X1 <-> X0 (Head) Feature Percolation
X1 _NAT=XO_NAT,
X1_LBND=X0_LBND,
X1_RBND=XO0_RBND,
X1_BCAT=X0_BCAT,
X1_STR=X0_STR,

X1_ADJ=X0_ADJ,
X1_UMLD=X0_UMLD,
X1_ABLD=X0_ABLD,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
X1_SCAT=X0_SCAT,
X1_FLEX=XO0_FLEX,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_VROOT=X0_VROOT,
X1_REG=XO_REG,
X1_STEMCLASS=X0_STEMCLASS,
X1_GEN=XO0_GEN,
X1_INTERF=XO_INTERF.

Y = m e
% Rulel8b suf -=> sufnn
% Example ier --> ier

% Linear Precedence and Feature Vectors:

suf (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,XO_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,X0O_INTERF,XO_INTERF_ARG,XO_GEN,
XO0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO_PSTEMS,X0_0STEMS) : -

sufnn(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

% X0 Instantiations
X0_MCAT=suf,

% Constraints on X1 Instantiations
X1_NAT=’-7,

% X1 <-> X0 (Head) Feature Percolation
X1_NAT=XO_NAT,
X1_LBND=X0_LBND,
X1_RBND=XO0_RBND,
X1_BCAT=X0_BCAT,
X1_STR=X0_STR,
X1_ADJ=X0_ADJ,
X1_UMLD=X0_UMLD,
X1_ABLD=X0_ABLD,
X1_LINK=XO0_LINK,
X1_LINK_MID=XO_LINK_MID,
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X1_SCAT=XO_SCAT,
X1_FLEX=XO_FLEX,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_VROOT=X0_VROOT,
X1_REG=XO_REG,
X1_STEMCLASS=X0_STEMCLASS,
X1_GEN=XO_GEN,
X1_INTERF=XO_INTERF.

% Rulel9a inflection =--> v_infl

% Linear Precedence and Feature Vectors:

inflection(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,XO_BCAT,
XO_SCAT,XO0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,XO_ABLB,X0_ABLD,X0_ABL_SUF_MID,XO_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VROOT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

v_inf1(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

% X0 Instantiations
X0_MCAT=inflection,

% Constraints on X1 Instantiations
X1_SCAT=v,

% X1 <-> X0 Feature Percolation
X1_MID=X0_MID,
X1_PRET=XO0_PRET,
X1_FLEX=X0_FLEX,
X1_VROOT=X0_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_RBND=XO0_RBND,
X1_LBND=X0_LBND,

X1 _NAT=XO_NAT,
X1_SCAT=X0_SCAT,
X1_REG=XO_REG.

% Rulel9b inflection --> a_infl

inflection(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,X0_UMLB,XO_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,X0O_INTERF,XO_INTERF_ARG,XO0_GEN,
XO0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_OSTEMS) : -

a_infl(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VRODT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),
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% X0 Instantiations
X0_MCAT=inflection,

% Constraints on X1 Instantiations
X1_SCAT=a,

% X1 <-> X0 Feature Percolation
X1_MID=X0_MID,
X1_PRET=XO0_PRET,
X1_FLEX=X0_FLEX,
X1_VROOT=X0_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_RBND=XO0_RBND,
X1_LBND=X0_LBND,

X1 _NAT=XO_NAT,
X1_SCAT=X0_SCAT,
X1_REG=XO_REG.

% Rulel9c inflection =--> n_infl

% Linear Precedence and Feature Vectors:

inflection(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,XO_BCAT,
XO_SCAT,XO0_NAT,X0O_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,XO_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VROOT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

n_infl(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

% X0 Instantiations
X0_MCAT=inflection,

% Constraints on X1 Instantiations
X1_SCAT=n,

% X1 <-> X0 Feature Percolation
X1_MID=X0_MID,
X1_PRET=XO0_PRET,
X1_FLEX=X0_FLEX,
X1_VROOT=X0_VROOT,
X1_STEMCLASS=X0_STEMCLASS,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_RBND=X0_RBND,
X1_LBND=X0_LBND,

X1 _NAT=XO_NAT,
X1_SCAT=X0_SCAT,
X1_REG=XO0_REG.

% Rule20 stemCompound -=> stemHyphened stem
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% Example fahr-bereitschaft -=> fahr- bereitschaft

% Linear Precedence and Feature Vectors:

stemCompound (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,XO_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,XO_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

stemHyphened (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

stem(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

% Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=left_bracket,

% X0 Instantiations
X0_MCAT=stemCompound,

% X1 <-> X2 Equational Constraints

% Constraints on X1 Instantiations
not (X1_LINK==1ink0bl),

% Constraints on X2 Instantiations

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_SCAT=X0_SCAT,
X2_RBND=X0_RBND,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_NAT=XO_NAT,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_FLEX=X0_FLEX,
X2_VROOT=X0_VROOT,
X2_REG=XO0_REG,
X2_STEMCLASS=X0_STEMCLASS,
X2_INTERF=XO_INTERF,
X2_GEN=X0_GEN,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.
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% Rule21la stemHyphened -=> stem hyphen
% Example fahr- --> fahr -

% Linear Precedence and Feature Vectors:

stemHyphened (MID,X0_MCAT,COMB_SUF,LBND, LBND_ARG,RBND,RBND_ARG,BCAT,SCAT,NAT, SEP,
STR,ADJ,LINK,LINK_MID,UMGL,UMLB,UMLD,ABGL,ABLB,ABLD, ABL_SUF_MID,PRET,REG, INTERF,
INTERF_ARG,GEN,HEAD_MID,ARG_MID,VROOT,STEMCLASS, SUFFIXCLASS,FLEX , PARTSTEM, PSTEMS,
OSTEMS) : -

stem(MID,MCAT,COMB_SUF,LBND,LBND_ARG,RBND,RBND_ARG,BCAT,SCAT,NAT, SEP,STR,ADJ,LINK,
LINK_MID,UMGL,UMLB,UMLD, ABGL, ABLB, ABLD, ABL_SUF_MID,PRET,REG, INTERF, INTERF_ARG,GEN,
HEAD_MID, ARG_MID,VROOT, STEMCLASS, SUFFIXCLASS,FLEX,PARTSTEM, PSTEMS, DSTEMS) ,

=

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=left_bracket,

% X0 Instantiations
X0_MCAT=stemHyphened.

Y == = m =
% Rule2b stemHyphened -=> stemlm  hyphen

% Example arbeits- --> arbeits -

% Linear Precedence and Feature Vectors:

stemHyphened (MID,X0O_MCAT,COMB_SUF , LBND , LBND_ARG,RBND,RBND_ARG,BCAT,SCAT, NAT, SEP,
STR,ADJ,LINK,LINK_MID,UMGL,UMLB,UMLD,ABGL,ABLB,ABLD, ABL_SUF_MID,PRET,REG, INTERF,
INTERF_ARG,GEN,HEAD_MID,ARG_MID,VROOT,STEMCLASS, SUFFIXCLASS,FLEX , PARTSTEM, PSTEMS,
OSTEMS) : -

stemLm(MID,MCAT,COMB_SUF,LBND,LBND_ARG,RBND,RBND_ARG,BCAT,SCAT,NAT,SEP,STR,ADJ,
LINK,LINK_MID,UMGL,UMLB,UMLD,ABGL,ABLB,ABLD, ABL_SUF_MID,PRET,REG, INTERF, INTERF_ARG,
GEN,HEAD_MID,ARG_MID,VROOT,STEMCLASS, SUFFIXCLASS ,FLEX,PARTSTEM,PSTEMS,0STEMS) ,

=

Boundary Symbol and Bracketing
BOUNDARY="#’,
BRACKETING=left_bracket,

% X0 Instantiations
X0_MCAT=stemHyphened.

% Rule22 stem[n] --> word[v,infinitive]

% Linear Precedence and Feature Vectors:

stem(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,X0_RBND_ARG,X0_BCAT,
XO_SCAT,XO0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,XO_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
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XO0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO_PSTEMS,X0_0STEMS) : -

word (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

% X0 Instantiations
X0_MCAT=stem,
X0_SCAT=n,
XO_FLEX=’akk,sg;dat,sg;nom,sg’,
XO0_SUFFIXCLASS=’Nomen_Treffen’,
X0_GEN=’n",
X0_LINK=1inkOpt,
XO_LINK_MID=[’s_1lm_n’],
X0_RBND=rbnd0Opt,

% Constraints on X1 Instantiations
X1_RBND==rbndFree,

X1 _PARTSTEM=inf,
prefix_of_atom("non-finit-inf",X1_FLEX),
not (X1_LBND==1bndToBind),

==

==

==

X1 <-> X0 (Head) Feature Percolation
X1_MID=X0_MID,

X1_PRET=XO0_PRET,

X1_LBND=X0_LBND,

X1 _NAT=XO_NAT,

X1_VROOT=X0_VROOT,

X1_REG=XO_REG.

% Rule23a word[n] --> word[adj]

% Linear Precedence and Feature Vectors:

word (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,X0_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,XO_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,X0O_INTERF,XO_INTERF_ARG,XO_GEN,
XO0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
X0_PSTEMS,X0_0STEMS) : -

word (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

% X0 Instantiations
X0_MCAT=word,
X0_SCAT=n,
XO0_FLEX=X1_FLEX,
XO0_SUFFIXCLASS="NA’,
% XO_GEN is somewhere in the FLEX Specification
X0_LINK=1inkOpt,

% Constraints on X1 Instantiations
X1_SCAT==a,
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X1_RBND=rbndFree, % since the whole inflected word is converted.
not (X1_LBND==1bndToBind),

==

X1 <-> X0 (Head) Feature Percolation
X1_MID=X0_MID,

X1_PRET=X0_PRET,

X1_RBND=XO0_RBND,

X1_LBND=X0_LBND,

X1_NAT=XO_NAT,

X1_VROOT=X0_VROOT,

X1_REG=X0_REG.

% Rule23b word[n] --> stem[adj,unflekt]

% Linear Precedence and Feature Vectors:

word (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,XO_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,X0O_INTERF,XO_INTERF_ARG,XO_GEN,
X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_0STEMS) : -

word (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

% X0 Instantiations
X0_MCAT=word,
XO0_RBND=rbndFree,
X0_SCAT=n,
XO_FLEX=X1_FLEX,
XO_SUFFIXCLASS=’NA’,
% XO_GEN 1is somewhere in the FLEX Specification
X0_LINK=1linkOpt,

% Constraints on X1 Instantiations
X1_SCAT==a,
not (X1_RBND=rbndFree), % complementary to rule 23a
not (X1_LBND==1bndToBind),
sublistmember ("unflekt",X1_FLEX),

==

X1 <-> X0 (Head) Feature Percolation
X1_MID=X0_MID,

X1_PRET=X0_PRET,

X1_LBND=X0_LBND,

X1_NAT=XO_NAT,

X1_VROOT=X0_VROOT,

X1_REG=X0O_REG.

Y= m = m
% Rule24a stemPrefixed --> part root[CCAT==v,SCAT==n]
% Example anstand --> an stand

Linear Precedence and Feature Vectors:

=
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stemPrefixed(X0_MID,XO_MCAT,X0_COMB_SUF,X0_LBND,X0O_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0O_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

part (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

root (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

% Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrefixed,

% X1 <-> X2 Equational Constraints
X1_BCAT=X2_BCAT,

% Constraints on X1 Instantiations
% X1_SEP=’+’,
% X1_NAT=’+’,
% X1_STR=’+’,
% X1_ADJ=’-’,

% Constraints on X2 instantiations
X2_SCAT==n,
X2_BCAT==v, %
not (X2_LBND==1bndFree),

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=XO0_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=X0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=X0_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.
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Y= = =
% Rule24b stemPrefixed --> part stemPrelfixed [CCAT==v,SCAT==n]
% Example anbetracht --> an betracht

% Linear Precedence and Feature Vectors:

stemPrefixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0O_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,XO_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,X0O_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_0STEMS) : -

part (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

stemPreifixed(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="#’,
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrefixed,

% X1 <-> X2 Equational Constraints
X1_BCAT=X2_BCAT,

% Constraints on X1 Instantiations
% X1_SEP=’+’,
% X1_NAT=’+’,
% X1_STR=’+’,
% X1_ADJ=’-’,

% Constraints on X2 instantiations
X2_SCAT==n,
X2_BCAT==v, %
not (X2_LBND==1bndFree),

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_BCAT=X0_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_REG=X0_REG,
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X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=XO_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=XO_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS .

Y= = = m
% Rule24c stemPrelfixed -—> prel root[CCAT==v,SCAT==n]
% Example verstand -=> ver stand

% Linear Precedence and Feature Vectors:

stemPrelfixed(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
X0_BCAT,X0_SCAT,X0_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO0_UMGL,X0_UMLB,
X0_UMLD,X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0O_REG,XO_INTERF,X0O_INTERF_ARG,
X0_GEN,X0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
XO0_PSTEMS,X0_0STEMS) : -

prel(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

root (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

==

Boundary Symbol and Bracketing
BOUNDARY="|+’,
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPreifixed,

% X1 <-> X2 Equational Constraints
X1_BCAT=X2_BCAT,

% Constraints on X1 Instantiations
% X1_SEP=’-’,
% X1_NAT=’+’,
% X1_STR=’-’,
% X1_ADJ=’+’,

% Constraints on X2 instantiations
X2_SCAT==n,
X2_BCAT==v, A
not (X2_LBND==1bndFree),

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
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X2_BCAT=XO_BCAT,
X2_SCAT=X0_SCAT,
X2_NAT=XO_NAT,
X2_LINK=XO_LINK,
X2_LINK_MID=X0_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=XO_PRET,
X2_REG=XO_REG,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=XO_INTERF_ARG,
X2_GEN=X0_GEN,
X2_VROOT=X0_VROOT,
X2_STEMCLASS=X0_STEMCLASS,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_FLEX=XO_FLEX,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS .

S
% Rule24d stemPreifixed --> prel[ver|be] stemPrefixed[CCAT==v,
SCAT==n]

% Example verbeamten -=> ver beamten

% Example bevorzugen --> be vorzugen

% Linear Precedence and Feature Vectors:

stemPrelfixed(X0_MID,X0O_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0O_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

prel(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

stemPrefixed(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

% Boundary Symbol and Bracketing
BOUNDARY=" [+,
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemPrelfixed,
X0_SCAT=v,
XO_PRET=’-’,
XO_REG="+",
XO_PARTSTEM="+",
X0_VROOT="FRAG’,
X0_STEMCLASS="FRAGEN’,
member (XO_SUFFIXCLASS, [’SAGEN’, >WARTEN’, ’FASSEN’, >’BEGEISTERN’]),
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X1 <-> X2 Equational Constraints
X1_BCAT=X2_BCAT,

% Constraints on X1 Instantiations
inst_member (X1_MID, [be_prel_v_v,ver_prel_v_v]),
% X1_SEP=’-’,
% X1_NAT=>+’,
% X1_STR=’-’,
% X1_ADJ=’+’,

% Constraints on X2 instantiations
X2_SCAT==n,
X2_BCAT==v, A
not (X2_LBND==1bndFree),

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

=

X2 <-> X0 (Head) Feature Percolation
X2_RBND=X0_RBND,
X2_NAT=XO_NAT,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_INTERF=XO_INTERF,
X2_INTERF_ARG=X0_INTERF_ARG,
X2_GEN=X0_GEN,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

/e
% Rule25 word -=> stemInflected

% Example dabist --> dabist

% Linear Precedence and Feature Vectors:

word (XO_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,X0_RBND,XO_RBND_ARG,X0_BCAT,
XO_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,XO_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0O_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VRODT,XO_STEMCLASS,X0O_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS, X0_0STEMS) : -

stemInflected(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_OSTEMS),

% X0 Instantiations
X0_MCAT=word,

% Constraints on X1 Instantiations
X1_RBND==rbndFree,
not (X1_LBND==1bndToBind),

=

X1 <-> X0 (Head) Feature Percolation
X1_LBND=X0_LBND,
X1_RBND=X0_RBND,
X1_SCAT=X0_SCAT,
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X1_LINK=XO_LINK,
X1_LINK_MID=XO0_LINK_MID,
X1_NAT=XO_NAT,
X1_SUFFIXCLASS=X0_SUFFIXCLASS,
X1_UMGL=X0_UMGL,
X1_UMLB=X0_UMLB,
X1_PRET=XO_PRET,
X1_VROOT=XO_VROOT,
X1_REG=XO_REG,
X1_FLEX=XO_FLEX,
X1_STEMCLASS=X0_STEMCLASS,
X1_INTERF=XO_INTERF,
X1_GEN=XO_GEN,
X1_PARTSTEM=XO0_PARTSTEM,
X1_PSTEMS=XO_PSTEMS,
X1_OSTEMS=X0_OSTEMS.

/e
% Rule26 word --> part stemInflected
% Example dabist --> da bist

% Linear Precedence and Feature Vectors:

ord (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,XO_RBND_ARG,X0_BCAT,
X0_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0_LINK,X0_LINK_MID,XO_UMGL,XO0_UMLB,X0_UMLD,
X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET,X0_REG,X0O_INTERF,XO_INTERF_ARG,XO0_GEN,
XO0_HEAD_MID,X0_ARG_MID,X0_VROOT,X0_STEMCLASS,XO_SUFFIXCLASS,XO_FLEX,XO0_PARTSTEM,
X0_PSTEMS,X0_0STEMS) : -

part (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

stemInflected (X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

=

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=word,

% X1 <-> X2 Equational Constraints
X1_BCAT=X2_SCAT,

% Constraints on X1 Instantiations
% X1_SEP=’+’,
% X1_NAT=’+’,
% X1_STR=’+’,
% X1_ADJ=’-’,

% Constraints on X2 Instantiations
X2_SCAT=v,

% not(X2_LBND==1bndFree), %% auskommentiert, da ’bist’, ’warst’ derzeit alle lbndFree -> aendern.

X2_RBND=rbndFree,
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% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_SCAT=X0_SCAT,
X2_RBND=X0_RBND,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_NAT=XO_NAT,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_FLEX=X0_FLEX,
X2_VROOT=X0_VROOT,
X2_REG=X0_REG,
X2_STEMCLASS=X0_STEMCLASS,
X2_INTERF=XO_INTERF,

% X2_GEN=XO_GEN, % gen ist in dieser Regel irrelevant, da sie nur verben betrifft.

X2_PARTSTEM=XO_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Y mm m
% Rule27 stemCompound --> stem[num] stemUndNum
% Example f"unfundzwanzig --> f"unf undzwanzig

% Linear Precedence and Feature Vectors:

stemCompound (X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,X0_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0O_ABLD,X0_ABL_SUF_MID,X0_PRET,XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

stem(X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

stemUndNum(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,
X2_BCAT,X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_UMLD,X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,
X2_GEN,X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

%% rule49 and 50 are necessary, as usually the category ’word’ is not
%% allowed in compounds, neither is ’konj’.

=

Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemCompound,

% X1 <-> X2 Equational Constraints

% Constraints on X1 Instantiations
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X1_LBND=X0_LBND,

not (X1_LINK==1ink0Obl),
not (X1_RBND==’rbndFree’),
X1_SCAT==’num’,

Constraints on X2 instantiations
not (X2_LBND==’1bndFree’),
inst_member (X2_SCAT, [a,num]), %% ordinal numbers are ’a’

= =

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

==

X2 <-> X0 (Head) Feature Percolation
X2_SCAT=X0_SCAT,
X2_RBND=X0_RBND,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO0_LINK_MID,
X2_NAT=XO_NAT,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_FLEX=X0_FLEX,
X2_VROOT=X0_VROOT,
X2_REG=X0_REG,
X2_STEMCLASS=X0_STEMCLASS,
X2_INTERF=XO_INTERF,
X2_GEN=X0_GEN,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

/S
% Rule28 stemUndNum -->  word[und] stem[num/a]
% Example undzwanzig --> und zwanzig

% Linear Precedence and Feature Vectors:

stemUndNum(X0_MID,X0_MCAT,X0_COMB_SUF,X0_LBND,X0_LBND_ARG,XO_RBND,X0_RBND_ARG,XO0_BCAT,
XO_SCAT,XO_NAT,X0_SEP,X0_STR,X0_ADJ,X0O_LINK,XO_LINK_MID,XO_UMGL,XO_UMLB,XO_UMLD,
XO_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,XO_PRET,X0_REG,XO_INTERF,XO_INTERF_ARG,XO_GEN,
XO_HEAD_MID,X0_ARG_MID,XO_VROOT,XO_STEMCLASS,X0_SUFFIXCLASS,XO_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

word (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,X1_BCAT,
X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,X1_UMLD,
X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,
X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

stem(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

%% rule49 and 50 are necessary, as usually the category ’word’ is not
%% allowed in compounds, neither is ’konj’.

% Boundary Symbol and Bracketing
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BOUNDARY="#",
BRACKETING=right_bracket,

% X0 Instantiations
X0_MCAT=stemUndNum,

% X1 <-> X2 Equational Constraints

% Constraints on X1 Instantiations
% mnot(X1_LINK==1inkObl),
% not(X1_RBND==’rbndFree’),
% X1_SCAT==’konj’,
X1_MID==’und’,

% Constraints on X2 instantiations
not (X2_LBND==’1bndFree’),
inst_member (X2_SCAT, [a,num]), %% ordinal numbers are ’a’

% X1 <-> X0 Feature Percolation
X1_LBND=X0_LBND,

% X2 <-> X0 (Head) Feature Percolation
X2_SCAT=X0_SCAT,
X2_RBND=X0_RBND,
X2_LINK=XO0_LINK,
X2_LINK_MID=XO0_LINK_MID,
X2_NAT=XO_NAT,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_FLEX=X0_FLEX,
X2_VROOT=X0_VROOT,
X2_REG=XO0_REG,
X2_STEMCLASS=X0_STEMCLASS,
X2_INTERF=XO_INTERF,
X2_GEN=X0_GEN,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Y= m =
% Rule29 stemCompound --> wordHyphened stem
% Example silberner-habicht -=> silberner- habicht

% Linear Precedence and Feature Vectors:

stemCompound (X0_MID,X0_MCAT,X0_COMB_SUF,X0O_LBND,X0_LBND_ARG,XO_RBND,X0_RBND_ARG,
XO_BCAT,X0_SCAT,X0_NAT,XO_SEP,X0_STR,X0_ADJ,X0_LINK,X0O_LINK_MID,XO_UMGL,XO_UMLB,
XO0_UMLD, X0_ABGL,X0_ABLB,X0_ABLD,X0_ABL_SUF_MID,X0_PRET, XO_REG,X0O_INTERF,X0_INTERF_ARG,
XO_GEN,X0_HEAD_MID,X0O_ARG_MID,XO_VROOT,X0_STEMCLASS,X0_SUFFIXCLASS,X0_FLEX,XO_PARTSTEM,
XO_PSTEMS,X0_OSTEMS) : -

wordHyphened (X1_MID,X1_MCAT,X1_COMB_SUF,X1_LBND,X1_LBND_ARG,X1_RBND,X1_RBND_ARG,
X1_BCAT,X1_SCAT,X1_NAT,X1_SEP,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_UMLD,X1_ABGL,X1_ABLB,X1_ABLD,X1_ABL_SUF_MID,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,
X1_GEN,X1_HEAD_MID,X1_ARG_MID,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,
X1_PSTEMS,X1_0STEMS),

stem(X2_MID,X2_MCAT,X2_COMB_SUF,X2_LBND,X2_LBND_ARG,X2_RBND,X2_RBND_ARG,X2_BCAT,
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X2_SCAT,X2_NAT,X2_SEP,X2_STR,X2_ADJ,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,X2_UMLD,
X2_ABGL,X2_ABLB,X2_ABLD,X2_ABL_SUF_MID,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,
X2_HEAD_MID,X2_ARG_MID,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,
X2_PSTEMS,X2_0STEMS),

% Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=left_bracket,

% X0 Instantiations
X0_MCAT=stemCompound,

% X1 <-> X2 Equational Constraints

% Constraints on X1 Instantiations
X1_LBND=X0_LBND,

% Constraints on X2 instantiations
X2_SCAT=X0_SCAT,
X2_RBND=XO0_RBND,
X2_LINK=XO_LINK,
X2_LINK_MID=XO_LINK_MID,
X2_NAT=X0_NAT,
X2_SUFFIXCLASS=X0_SUFFIXCLASS,
X2_STEMCLASS=X0_STEMCLASS,
X2_UMGL=X0_UMGL,
X2_UMLB=X0_UMLB,
X2_PRET=X0_PRET,
X2_FLEX=XO0_FLEX,
X2_VROOT=XO0_VROOT,
X2_REG=XO0_REG,
X2_INTERF=XO_INTERF,
X2_GEN=XO0_GEN,
X2_PARTSTEM=X0_PARTSTEM,
X2_PSTEMS=X0_PSTEMS,
X2_0STEMS=X0_0STEMS.

Y mm = m
% Rule30a wordHyphened -=> word hyphen
% Example silberner- -=> silberner -

wordHyphened (MID,X0_MCAT, COMB_SUF, LBND ,LBND_ARG, RBND ,RBND_ARG,BCAT,SCAT, NAT, SEP,
STR,ADJ,LINK,LINK_MID,UMGL,UMLB,UMLD,ABGL,ABLB,ABLD,ABL_SUF_MID,PRET,REG, INTERF,
INTERF_ARG,GEN,HEAD_MID,ARG_MID,VROOT,STEMCLASS, SUFFIXCLASS ,FLEX ,PARTSTEM, PSTEMS,
OSTEMS) : -

word (MID,MCAT, COMB_SUF, LBND, LBND_ARG,RBND ,RBND_ARG,BCAT, SCAT,NAT, SEP, STR,ADJ,LINK,
LINK_MID,UMGL,UMLB,UMLD, ABGL, ABLB, ABLD, ABL_SUF_MID,PRET,REG, INTERF, INTERF_ARG,GEN,
HEAD_MID,ARG_MID,VROOT, STEMCLASS, SUFFIXCLASS ,FLEX,PARTSTEM, PSTEMS, DSTEMS) ,

g o) 1 o S PSPPSRI N

% Boundary Symbol and Bracketing
BOUNDARY="#",
BRACKETING=left_bracket,

% X0 Instantiations
XO_MCAT="wordHyphened’ .
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C. Perl grammar-to-parser converter

#!/vol/gnu/bin/perl
# konvert.prl
# Harald L"ungen

## 30.9.98:
## The variable are instantiated or renamed as far as possible,
## and the annotated equatetions are removed as as far as possible

# konvert.prl converts a dcg-grammar in a certain format (cf
# ’grammar.format.readme.txt’ into a PROLOG-left-corner-parser based on
# Matsumoto and Naumann/Langer 1994.

# open the following Streams:

open (MORPHOTACTICS,QARGV[0]); # open the grammar to read

open (LEFT_CORNER, ">QARGV[1]"); # open the left-corner.pl-file to write
open(LINK,">1link.simple.pl"); # open the link-file to write
open(TERMINATION,">termination.pl"); # open to termination-file write
open(PS_SKELETON, ">ps_skeleton.txt"); # open to write the ps-skeleton

# which is implicitly contained in
# the grammar into a separate file

# We have opened a separate file ’termination.pl’, but its contents have

# to be put into the same file as ’left_corner.pl’, since all definitions of
# one predicate have to be in the same file otherwise sicstus won’t work.

# the merging is done in the shell script konvert.sh

$flag = "begin";

# read the first line of the grammar:
while($flag eq "begin"){

$line = <MORPHOTACTICS>;
while($line =~ /~\s*$/){ # if this line contains only white spaces
# read the next line

$line = <MORPHOTACTICS>;

unless($line){last}
};
unless($line){last};
chop($line);
# ____________________________________________________________________________

## initialise the arrays for the annotations
## every time in this loop anew:
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Q@annotations=();
@not=();
Q@conditions=();

and put it into the

if($1line

$rule = $line;

$rule =" s/\%//g;
$rule =" s/ *//;
#

Qrule

}

split(/\s+/,$rule);

check if the current line is the skeletal

string $rule:

/= *\% *[RrJule.*/){

H H H

specification of a ps-rule,

# "% rule lhs --> left right"
or "% rule lhs --> rhs"

remove 'Y’ globally

remove occurences of blank

at beginning of line,

in order for @rule[0] not to be empty

split the string rule into parts definined by the separator white space

# /\s+/ are one or more occurences of

# white spaces in perl.

else { printf("Error: skeletal rule was expected\n\n");}

binary rule:
unary rule:

if (erule[4]1){
$rule_sort "binary"}
else {if(@rule[3])

check if this skeletal rule is unary or binary
It is written as a PROLOG-comment like this:

<lhs> --> <rhs_left> <rhs_right>

<lhs< --> <rhs_left>

{$rule_sort

uunaryu}

else { printf("something is wrong with the rule format,
it is neither binary nor unary\n\n")

# read the true lhs of the rule (i.e. the PROLOG) predicate

$line

$line
unless($line){last}

};
chop($line);

$1line =~ s/"\s*//;
$line

Qlhs

split(/[\s,

<MORPHOTACTICS>;
while ("\n" eq $line || $line
<MORPHOTACTICS>;

ugless($1ine){1ast};

s/\:-\.%//;

0O1+/, $line);

=" /7 #\%h.x/) {
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# ____________________________________________________________________________
# read rhs_left of rule (i.e. the PROLOG) predicate
# when rule is unary, rhs_left stand for rhs.

$line = <MORPHOTACTICS>;

while ("\n" eq $line) {
$line = <MORPHOTACTICS>;
unless($line){last}

};
unless($line){last};
chop($line);

$line =" s/"\sx//;
Qrhs_left = split(/[\s,()]+/, $line);

# read rhs_right of rule, if rule was binary
if ($rule_sort eq "binary"){

$line = <MORPHOTACTICS>;

while ("\n" eq $line) {
$line = <MORPHOTACTICS>;
unless($line){last}

}

unless($line){last};

chop($line);

$line =~ s/ \s*//;
@rhs_right = split(/[\t ,(0]1+/, $line);

# read the annotational equations,

$line = <MORPHOTACTICS>;
unless($line){last};
chop($line);

$i=0;

$n=0;

until($line =~ /\s*\/+\s*\-+\s*x/){ # i.e. until the separation line "J)------------- "
$line =~ s/(\%.*¥)+//; # remove comments

if($line =" /~\s*$/){ # keep skipping empty lines
$line = <MORPHOTACTICS>;
unless($line){last};
chop($line);

}

if($line =~ /.+\=.+/ || $line =~ /member/ || $line =" /prefix/){
# if line contains an equation

# or a prefix statement
# or a member statement (nothing else is possible):
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$line =" s/"\sx//; # cut off white spaces at begin of lime.
$line =~ s/(\%.x)+//; # remove comments
$1line =~ s/[\.,]\s*$|[\.,1\s*\%.*$//; # cut off everything after comma,

if it is white spaces
# or white spaces followed by comment
# followed by end-of-line

If the annotation contains a not(...) statement concerning an X2_Variable,

or a member statement concerning an X2_Variable,

or a ’==’ - statement concerning an X2_Variable,

it has to be placed after the call of the predicate of X2. So, here it hast to be
stored in a separate array called Cnot:

H OH H HH

if (($line="/.*not.*/ || $line="/.*member.*/ || $1line =~ /.*\=\=.%/) && $line="/.*X2.%x/){
@not [$n++]=$1line;
}

# Otherwise store the annotation in the array Qannotations:

else {
if ($line) {
Q@annotations[$i++]=$line;
}
};

$1ine=<MORPHOTACTICS>;
unless($line){last};
chop($line);

}

unless($line){last}; # otherwise $line contains %----
# and can be skipped in the next loop.

## split the annotations for instantiation and variable substitutionpurposes:#

@splarray=Q);

@lequation=();
Qrequation=();
Qsubstarray=(Q) ;

for($h=$uuu=$vvv=0;$annotations[$h] ; $h++){

$teststring=$annotations[$h];

unless(($teststring =~ /prefix/) || ($teststring =" /member/) || $teststring =~ /not/ || $teststring =~ /\=\=/){
Q@splarray=split("=",$annotations[$h]l);
$lequation[$vvv]=$splarray[0];
$requation[$vvv++]=$splarray[1];

}

## remember: the not/member/’==’/prefix/ - statements in the Qannotations
## must be kept, i.e. put into Qconditionms,
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## as only the those not-statements concerning an X2_Variable
## are in the @not -array

else {

$conditions [$uuu++]=$annotations[$h];
}

}

## substitute the variables if in lequation through requation,
## i.e. create the a substitution_table Qsubstarray[][]

## the following huge iteration checks if there is a

## substitution chain for all the variables stored now in
## Qlequation([$i].

## the variable in @lequation[$i] ist stored in

## Qsubstarray[$i][0], and the rest of the Variables or
## values in the chain are store successively in the

## columns Qsubstarray[$i][$j]; with $j > 0.

## care is taken that no variables are mentioned
## twice and it is checked with each new loop

## where the varaible in question has been

## seen before.

## the subroutine &chain_flag checks

## whether the iteration could find all
## elements of the substitution chain.
## it could miss something, if the

## chain given through the annotated

## equations in morphotaktik.pl is

## established through more than Three
## equation i.e.:

## A=B
## B=C
## C=D
## D=E

## will cause the E to be missed in the chain,

## and if that is the case,

## find_chain will print an error message to stdout!
## this was done

## since it is very very unlikely

## that such chains longer than 3 equations

## occur in a morphotactics of the kind

## of morphotaktik.pl:

for($h=%$g=0;$lequation[$h] ne "" ;$h++){
$s=0;
unless (&already_in_table($lequation[$h],@substarray)) {
$substarray[$g] [$s++]=$lequation[$h];
for($r=$h;$lequation[$r] ne "" ;$r++){
if($lequation[$h] eq $lequation[$r]){
$substarray[$g] [$s++]=$requation[$r];
unless($requation[$r] =~ /~[\’7a-z]1/){
for($t=0;$lequation[$t] ne ""; $t++){
if ($requation[$r] eq $lequation[$t] && $t !'= $r){
$substarray[$g] [$s++]=$requation[$t];
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unless($requation[$t] =~ /~[\’?a-z]/){
for($£=0;$lequation[$f] ne ""; $f++){

if ($requation[$t] eq $lequation[$f] && $f !'= $t && $f '= $r){
$substarray[$g] [$s++]=$requation[$£];

&chain_flag($substarray[$g] [$s-1],$rule);
}
for($£=0;$requation[$f] ne ""; $f++){
if ($requation[$t] eq $requation[$f] && $f !'= $t && $f !'= $r){

$substarray[$g] [$s++]=$lequation[$£];

&chain_flag($substarray[$g] [$s-1],$rule);

}
};
}
}
}
for($t=0;$requation[$t] ne ""; $t++){

if ($requation[$r] eq $requation[$t] && $t !'= $r){
$substarray[$g] [$s++]=$lequation[$t];

unless($lequation[$t] =~ /" [\’7a-z]1/){
for($£=0;$lequation[$f] ne ""; $f++){

if($lequation[$t] eq $lequation[$f] && $f != $t && $f != $r){
$substarray[$g] [$s++]=$requation[$£];

&chain_flag($substarray[$g] [$s-1],$rule);
}
for($£=0;$requation[$f] ne ""; $f++){
if($lequation[$t] eq $requation[$f] && $f !'= $t && $f !'= $r){
$substarray[$g] [$s++]=$lequation[$£];

&chain_flag($substarray[$g] [$s-1],$rule);

}
};
}
}
};
}
}

if ($lequation[$h] eq $requation[$r]){
$substarray[$g] [$s++]=$lequation[$r];

unless($lequation[$r] =~ /~[\’7a-z]1/){
for($t=0;%lequation[$t] ne ""; $t++){

if($lequation[$r] eq $lequation[$t] && $t !'= $r){
$substarray[$g] [$s++]=$requation[$t];
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unless($requation[$t] =~ /" [\’7a-z]1/){
for($£=0;$lequation[$f] ne ""; $f++){

if ($requation[$t] eq $lequation[$f] && $f !'= $t && $f !'= $r){
$substarray[$g] [$s++]=$requation[$£];

&chain_flag($substarray[$g] [$s-1],$rule);

}
}
for($£=0;$requation[$f] ne ""; $f++){
if ($requation[$t] eq $requation[$f] && $f !'= $t && $f '= $r){
$substarray[$g] [$s++]=$lequation[$£];

&chain_flag($substarray[$g] [$s-1],$rule);

}
};
}
}
}
for($t=0;%requation[$t] ne ""; $t++){

if($lequation[$r] eq $requation[$t] && $t !'= $r){
$substarray[$g] [$s++]=$lequation[$t];

unless($lequation[$t] =~ /" [\’7a-z]1/){
for($£=0;$lequation[$f] ne ""; $f++){

if($lequation[$t] eq $lequation[$f] && $f !'= $t && $f != $r){
$substarray[$g] [$s++]=$requation[$f];

&chain_flag($substarray[$g] [$s-1],$rule);
}
for($£=0;$requation[$f] ne ""; $f++){
if($lequation[$t] eq $requation[$f] && $f !'= $t && $f !'= $r){
$substarray[$g] [$s++]=$lequation[$£];

&chain_flag($substarray[$g] [$s-1],$rule);

}
}
}
}
};
}
}
}
$g++; ## this count for the array columns must be
## increased now!
}
}
## Re-order the @substarray[][]: #

HEERRERRRER R RRRR R RR R R RSB RR R R R R R ER R R R RS RS



226

for($g=0;$substarray[$g];$g++){

### first, some special cases have to be checked
### and to be kept in mind:

### BRACKETING

### BOUNDARY

### where it is known, that the second

### componenent of the array

#i## contains the atomic value.

if ($substarray[$g] [0] eq "BRACKETING"){
$bracketing = $substarray[$g] [1];

}

if ($substarray[$g] [0] eq "BOUNDARY"){
$boundary = $substarray[$g] [1];

}

### establish, what is to be substituted
### and store it as the first element of a column
### it is either an atom or the first element:

if ($v=&atom_or_listofatoms_in_column($g,@substarray)){
$lemma=$substarray[$g] [0];
$substarray[$g] [0]=$substarray[$g] [$v];
$substarray[$g] [$v]=$lemma;

}

### XO_MCAT (is to be used as a special argument in the goal predicate
### of this rule as well, see below.

for($ga=0;$substarray[$g] [$gal ; $ga++){

if ($substarray[$gl] [$gal eq "XO_MCAT"){
$x0_mcat = $substarray[$g] [0];

}
}

### a print-out of the present Qsubstarray[][]:

##

##

## for ($g=0;$substarray[$g] ;$g++){

## for($s=0;$substarray[$g] [$s];$s++){

## printf("%s\t",$substarray[$g] [$s]);

## }

## print("\n");

## }

## printf("\nDas war die Regel %d",$regelnummer++);
## printf ("\n####fttEE R R RS \D ") ;

#it#
## a processing message for the impatient user:
#it#

printf(" substituting variable names in %s: \t%s %s %s %s\n",
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$ru

le[0],$rule[1],$rule[2], $rule[3],$rule[4]);

### us
#it# Pr
### an
### su
#i#t# fo
### in

ing the substarray to substitute
olog Variable names in the @lhs, @rhs_left, and @rhs_right:
d in @not and in @conditions
bstitute the first element of a column
r all the elements of the column
the Q@lhs, @rhs_left, @rhs_right,@not and in Qconditions

#i#
##
#i#
#i#
##

fo
for(

};
};

note: In the @conditions and @not -annotations,

the variables are substituted only by string_subtitution,
since the variables are not stored componentwise in
subarrays, but are hidden in the strings:

hoping this does not lead to faulty substitutions...

r($d=0; $substarray[$d]; $d++){
$e=1; $substarray[$d] [$e]l; $e++){

Q@lhs = &substitute($substarray[$d] [0],$substarray[$d] [$e],Qlhs);

@rhs_right = &substitute($substarray[$d][0],$substarray[$d][$el,@rhs_right);
@rhs_left = &substitute($substarray[$d] [0],$substarray[$d] [$e],Crhs_left);
Qconditions = &string_substitute($substarray[$d] [0], $substarray[$d] [$e],@conditions);
@not = &string_substitute($substarray[$d][0], $substarray[$d] [$e],@not);

pizzissizsaisiaraisiaraanisariarzanii s s nni s

## For
## int
## int

all the variables not substitued,
roduce anonymous Variables ’_’:
o Q@lhs, O@rhs_left, @rhs_right

## fir
# (t
## int

st, write all the substituted variable names
o be found in $substarray[$al[0] )
o the new array Q@substitutingarray:

@substitutingarray =();
for($a=0;$substarray[$a] [0];$a++){

$subst
}

## The

itutingarray[$al=$substarray[$a] [0];

[

can be inserted, if the variable in @lhs

## is not in Q@substitutingarray,

## and

not string - contained in @not and Qconditions:

for($a=1;$1lhs[$a];$a++){

unless

(&element_strings($lhs[$al,@substitutingarray) ||
&substring_in_array($lhs[$a],@not) ||
&substring_in_array($lhs[$al,@conditions))q{

$lhs[$a] = "_";
};
}
## the same for Q@rhs_left:
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for($a=1;$rhs_left[$al;$a++){
unless(&element_strings($rhs_left[$al,@substitutingarray) ||
&substring_in_array($rhs_left[$al,@not) ||
&substring_in_array($rhs_left[$al,@conditions)) {
$rhs_left[$a] = "_";
}
}

## the same for Qrhs_right:

for($a=1;$rhs_right[$al;$a++){
unless(&element_strings($rhs_right [$al,@substitutingarray) ||
&substring_in_array($rhs_right[$a],@not) ||
&substring_in_array($rhs_right[$a],@conditions)) {
$rhs_right[$al = "_";
};
}

HEFRRERRRRRERRRRR R RRERRERR R R R R ER R R RR R ER R R R R RS R E

HHRHE HHRHE
HERER CONSTRUCTING THE OUTPUT HERER
HERHE HERHE

HERHRERRRRR R R RRERRERR R R R RER R RR R R R R R R R RS R E

# print ps-rule into a separate file as well:

printf (PS_SKELETON "%% %s\n", $rule);

# print-out der left-corner-format Regel:

# a.) printout von Qrhs_left comes first, since it’s
# the left corner:

printf (LEFT_CORNER "%% %s\n\n", $rule);
printf (LEFT_CORNER "%s(G,X,Y,\n\n",Qrhs_left[0]);
printf (LEFT_CORNER "[");
$k=1;
while(@rhs_left [$k+1]){
printf(LEFT_CORNER "s,",@rhs_left[$k++])}
printf (LEFT_CORNER "%s],\n",Q@rhs_left[$k]);
printf (LEFT_CORNER "\tFsOut,\n\n");

printf (LEFT_CORNER "PhonSegIn,PhonSegOut,OrthSegIn,OrthSeglut,PhonStructln,

PhonStructQut,0rthStructIn,OrthStructOut) :-\n\n");

# Print out the conditions (member, prefix-statements)
# stored in Qconditions:
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for($j=0;$conditions[$j];$j++){
printf (LEFT_CORNER "%s,\n",$conditions[$j]);
};

# print the link-relation-condition:

printf (LEFT_CORNER "\n");
printf (LEFT_CORNER "link(%s,G),\n",@lhs[0]);

# if the rule was binary, here the goal-predicate must follow:
if ($rule_sort eq "binary"){

printf (LEFT_CORNER "goal(%s,X,Z,\n",Q@rhs_right[0]);
printf (LEFT_CORNER "_,\n");

printf (LEFT_CORNER "[");

# printf(LEFT_CORNER "],\n\t_,\n");

$1=1;
while(@rhs_right [$1+1]){
printf (LEFT_CORNER "%s,",Q@rhs_right[$1++])3}
printf(LEFT_CORNER "s",@rhs_right[$1]);
printf (LEFT_CORNER "],\n");
printf (LEFT_CORNER "PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,
OrthStructIn,OrthStructZ,$bracketing, $boundary, $x0_mcat),\n\n");

# still if the rule was binary, here follows the printout of the @not-array (s.a.):

$p=0;

if($n!=0){ # i.e. if something exists in @not
while($p<$n){

printf (LEFT_CORNER "%s,\n",@not [$p++])

}

}

# still if the rule was binary, the Q@lhs has to follow in the following format:

printf(LEFT_CORNER "\n%s(G,Z,Y,\n",@lhs[0]);
printf (LEFT_CORNER "[");
$m=1;
while (@lhs [$m+1]){

printf (LEFT_CORNER "%s,",@lhs[$m++])3}
printf (LEFT_CORNER "%s],\n",@lhs[$m]);
printf (LEFT_CORNER "\tFsOut,\n\n");

printf (LEFT_CORNER "PhonSegZ,PhonSeg0Out,0rthSegZ,0rthSeglut,PhonStructZ,PhonStructlut,

OrthStructZ,0rthStructOut).\n\n\n");

}
# if the rule was unary, the printout of the Q@lhs follows here in the
# following format:

if ($rule_sort eq "unary"){

# if there is something in the @not-array, print it out
# here, namely after the other annotations:

$p=0;
if($n!=0){ # i.e. if something exists in @not
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while($p<$n){
printf (LEFT_CORNER "¥s,\n",@not [$p++])
}
}

printf (LEFT_CORNER "\n%s(G,X,Y,\n",@lhs[0]);
printf (LEFT_CORNER "[");

$1=1;
while(@lhs[$1+1]){
printf (LEFT_CORNER "%s,",Q@lhs[$1++]1)3}
printf (LEFT_CORNER "¥s",Q@lhs[$1]);
printf(LEFT_CORNER "]1,\n\n");
printf (LEFT_CORNER "\tFsOut,\n\n");
printf (LEFT_CORNER "PhonSegIn,PhonSegQOut,OrthSegIn,OrthSegOut,PhonStructIn,PhonStructlut,
OrthStructIn,OrthStructOut).\n\n");
}

# write simpleLink-predicates in link-file:

printf(LINK "simpleLink(%s,%s).\n",@rhs_left[0],@1hs[0]);

Printf (LEFT_CORNER, == === == == == m o oo o o e e e

# Terminierungspraedikate
# write in terminal-file:

if ($rule_sort eq "unary"){
printf (TERMINATION "%s(%s,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,O0rthSeg,PhonStruct,PhonStruct,
OrthStruct,0rthStruct).\n",@rhs_left[0],0rhs_left[0]);
printf (TERMINATION "%s(%s,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,
OrthStruct,0rthStruct).\n",01hs[0],@1hs[0]);}

if ($rule_sort eq "binary"){
printf (TERMINATION "%s(%s,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,O0rthSeg,PhonStruct,PhonStruct,
OrthStruct,O0rthStruct) .\n",@rhs_right[0],@rhs_right[0]);
printf (TERMINATION "%s(%s,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,O0rthSeg,PhonStruct,PhonStruct,
OrthStruct,0rthStruct).\n",@rhs_left[0],0rhs_left[0]);
printf (TERMINATION "%s(%s,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,O0rthSeg,PhonStruct,PhonStruct,
OrthStruct,0rthStruct).\n",@1hs[0],@1lhs[0])}

# das termination-file muss anschliessend uniq sortiert werden.

}

# __________________________________________________________________________
printf("\n\n grammar conversion finished!\n");

printf (" writing the goal-predicates...\n\n");

# __________________________________________________________________________

# goal Praedikate.

# Unlike in Naumann/Langer 1994 there have to be two different versions of the
# goal-predicate, since a bracketing structure is to be constructed, and

# the bracketing-building-predicate constrStruct/6 works differently and has
# to be embedded differently in the goal-predicate according to whether it is
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# a right-bracketing structure of a left-bracketing structure:
# write goal-predicate for left-bracketing structure-building:

printf (LEFT_CORNER "goal(G,X,Z,FsIn,FsOut,PhonSegIn,PhonSegOut,O0rthSegln,OrthSeglut,
PhonStructIn,PhonStructOut,O0rthStructIn,OrthStructOut,left_bracket,BOUNDARY,X0_MCAT):-\n
\tdict (MCAT,X,Y,_,_,FsIn,PhonSeg,0rthSeg,PhonStruct,O0rthStruct),\n
\tconstrSeg(PhonSegIn,PhonSeg,PhonSegZ,BOUNDARY),
\tconstrSeg(0rthSegIn,OrthSeg,OrthSegZ,BOUNDARY) ,

\tconstrStruct (PhonStructIn,PhonStruct,PhonStructZ,left_bracket,X0_MCAT,MCAT),
\tconstrStruct (OrthStructIn,OrthStruct,0rthStructZ,left_bracket,X0_MCAT,MCAT),\n

\tP =.. [MCAT,G,Y,Z,FsIn,FsOut,PhonSegZ,PhonSegOut,OrthSegZ,0rthSeglut,PhonStructZ,
PhonStructQut,0rthStructZ,0rthStructOut],\n

\tcall(P).\n\n\n");

#urite goal-prediccate for right-bracketing structure-building:

printf (LEFT_CORNER "goal(G,X,Z,FsIn,FsOut,PhonSegIn,PhonSegOut,O0rthSegIn,OrthSeglut,
PhonStructIn,PhonStructOut,OrthStructIn,OrthStructOut,right_bracket,BOUNDARY,X0_MCAT) :-\n
\tdict (MCAT,X,Y,_,_,FsIn,PhonSeg,0rthSeg,PhonStruct,0rthStruct),\n

\tconstrStruct ([],PhonStruct,PhonStructMCAT,_,_,MCAT),
\tconstrStruct([],0rthStruct,0rthStructMCAT, _,_,MCAT),\n

\tP =.. [MCAT,G,Y,Z,FsIn,FsOut,PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructMCAT,
PhonStructZ,0rthStructMCAT,0rthStructZz],\n\n
\tconstrSeg(PhonSegIn,PhonSeg,PhonSegZ,BOUNDARY) ,

\tconstrSeg(0rthSeglIn,OrthSeg, OrthSegZ,BOUNDARY),\n

\tcall(P),\n

\tconstrStruct (PhonStructIn,PhonStructZ,PhonStructOut,right_bracket,X0_MCAT,MCAT),
\tconstrStruct (OrthStructIn,OrthStructZ,0rthStructOut,right_bracket,X0_MCAT,MCAT).\n\n");

close();

HERHRERRRRR R R RRERRERR R R R RER R RR R R R R R R R RS R E

HHRHE HHRHE
HERER SUBROUTIDNES HERER
HHRHE HHRHE

HERBRERERBRERER B R ERER B RS ER R RR R BB ER B RR R RS R R R R R RS
## &chain_flag #
HERBRERERBRERER B R ERER B RS ER R RR R BB ER B RR R RS R R R R R RS

sub chain_flagq{
my ($value, $regel) = Q_;
printf ("\nkonvert.v.prl: WARNING:\nvariable matching chain at ¥s
could not be explored further in\n%s\n",

$value,$regel);
return;

## &already_in_tabel #
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sub already_in_tableq{
@table = ();
my ($item, Qtable) = Q_;

for ($spd=0;$table[$spd] [0];$spd++) {
for ($gr=0;$table[$spd] [$gr];$gr++) {

if ($item eq $table[$spd] [$gr]l) {
return 1;

}
}
};
return 0;
}
## &atom_or_listofatoms_in_column

sub atom_or_listofatoms_in_column{

@column=();
my ($c, @column) = Q_;

for($zl=1;$column[$c] [$z1] ;$z1++){

if ($column[$c] [$z1]1="/"\[?[a-z]1/ || $column[$c][$z11="/"\[?\"./){

## i.e. an atom or a quoted atom,
## or a list (\[) of atoms.

## if ($column[$c] [$z11="/"[a-z1/ || $column[$c][$z1]1="/"\"./){

return($zl);
}
};
return 0;
}
## &substitute

sub substituteq{
Qarray=();
my ($substituting,$substituted,Qarray) =

for ($q=0;8$array[$ql;$q++) {
if ($array[$q] eq $substituted){
$array[$q]l=$substituting;

}
}
return Qarray;
}
## &string_substitute

sub string_substitute{
Qarray=();
my ($substituting,$substituted,Qarray) =
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for ($q=0;$array[$ql;$q++) {
if ($array[$q] =~ $substituted){

$array[$q] =" s/$substituted/$substituting/g;
## print "$q $substituted $substituting $array[$ql";
}
}
return Qarray;
}
## &element_string #

sub element_strings{
Qarray=();
my ($item, Qarray) = Q_;

$element_flag = 0;

foreach $element (Q@array)q{
if($item eq $element)q{

$element_flag=1;

}
}
return $element_flag;
}
## &substring_in_array #

sub substring_in_array($item,@array) {
Qarray=();
my ($item, Qarray) = @_;

$element_flag = 0;
foreach $element (Q@array)q{
if ($element =~ $item)q{
$element_flag=1;
}
}

return $element_flag;
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D. The BUP parser (generated code)

% Rulela stemPrefixed --> part stemPre2fixed

part(G,X,Y,

Loy s XL_LBND, ., s sy oo smsmsmsm s s oo smsmsmsmsmsmsmsmsmsmsmsmss—sos-]
FsQut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemPrefixed,G),

goal(stemPre2fixed,X,Z,
[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
—+—»_»_»_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,stemPrefixed),

not (X2_LBND==1bndFree),

stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsQOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rulelb stemPrefixed --> part stemPrelfixed

part(G,X,Y,

[y s XL _LBND, s s sy msmssmsmsmsmsmsms—3msms—s—s—s—3—s—s—s—s—s—s3—s—s—s—s-1s
FsOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemPrefixed,G),

goal(stemPrelfixed,X,Z,
[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
_s—»s_s_s_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,stemPrefixed),

not (X2_LBND==1bndFree),
not (X2_LBND==1bndFree),

stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
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X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM, X2_PSTEMS,X2_0STEMS],
FsQOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rulelc stemPrefixed --> part stemPrelZufixed

part(G,X,Y,

[IPRPUIED & B P PSPPSR PRPRIPN N
FsOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemPrefixed,G),
goal(stemPrelZufixed,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
_s—»s_s_s_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,_,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,stemPrefixed),

not (X2_LBND==1bndFree),

stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,infinitive_flex,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Ruleld stemPrefixed --> pre2 stemPrelZufixed

pre2(G,X,Y,

Loy s XL_LBND, ., s sy oo smsmsmsm s s oo smsmsmsmsmsmsmsmsmsmsmsmss—sos-]
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(stemPrefixed,G),
goal(stemPrelZufixed,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
_s—_s—s—>_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,_,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructZz,
right_bracket,’#’,stemPrefixed),

not (X2_LBND==1bndFree),
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stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,infinitive_flex,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule2 stemPrelZufixed --> infin[zu] stemPrelfixed

infin(G,X,Y,
[zu_infin,_,_,X1_LBND, _, _, ) ) s mrmrmsmsmsmsmsmsmsmsmsm e s mr s s s m s s msmsm s s
P I

FsQOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemPreiZufixed,G),

goal(stemPrelfixed,X,Z,
[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
_s—»s_s_s_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,stemPrelZufixed),

not (X2_LBND==1bndFree),

stemPrelZufixed(G,Z,Y,
[_,stemPrelZufixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,

X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM, X2_PSTEMS,X2_0STEMS],
FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule3a stemPrefixed --> part rkernel

part(G,X,Y,

Loy XL _LBND, sy s s msmsmsmsmrmsmsmsmsmsmsmsmsmsmsmsmsmsms—smsrma—s—s-1s
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(stemPrefixed,G),
goal(rkernel,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
_s—_s—_s_»_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
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right_bracket,’#’,stemPrefixed),

not (X2_LBND==1bndFree),

stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsQOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule3b stemPrefixed --> part zuRkernel

part(G,X,Y,

[y s XL _LBND, s s sy mssmsmsmsmsmsms—3msms—s—s—s—3—s—s—s—s—s—3—s—s—r—s-15
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(stemPrefixed,G),
goal(zuRkernel,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
_s—_s—_s_»_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,_,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,stemPrefixed),

not (X2_LBND==1bndFree),

stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,infinitive_flex,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule3c stemPrefixed --> pre2 zuRkernel

pre2(G,X,Y,

Loy s XL_LBND, ., s sy oo smsmsmsm s s oo smsmsmsmsmsmsmsmsmsmsmsmss—sos-]
FsQOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(stemPrefixed,G),
goal(zuRkernel,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
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_s—_s—_s_»_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,_,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,stemPrefixed),

not (X2_LBND==1bndFree),

stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,infinitive_flex,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule3e zuRkernel --> infin[zu] rkernel

infin(G,X,Y,
[zu_infin,_,_,X1_LBND, _, 4y s s s s s sssmsmsmsms s smsmsmsmsmssms—s—s_s_>
I N

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(zuRkernel,G),
goal(rkernel,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
_s—_s—_s_»_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,zuRkernel),

not (X2_LBND==1bndFree),

zuRkernel(G,Z,Y,
[_,zuRkernel,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT, ,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,

X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule3f stemPrefixed --> pre2 stemPrelfixed

pre2(G,X,Y,

Loy XL LBND, ., s s s oo smsm oo s s oo smsmsmsmsmsmsmsmsmsms—soss—s—3-]
FsQut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -
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link(stemPrefixed,G),

goal(stemPrelfixed,X,Z,
[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,stemPrefixed),

not (X2_LBND==1bndFree),

stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsQOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule3g stemPrefixed --> stemPre2fixed
stemPre2fixed(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_ ,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemPrefixed,G),

stemPrefixed(G,X,Y,
[_,stemPrefixed,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,

X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rule3h stemPrefixed --> stemPrelfixed
stemPrelfixed(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_ ,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X{_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsQut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemPrefixed,G),
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stemPrefixed(G,X,Y,
[_,stemPrefixed,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,

X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_O0STEMS],
FsOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rule4d stemPre2fixed --> pre2 rkernel

pre2(G,X,Y,

[, _s_»X1_LBND, _,_,_,X1_BCAT,_, s s s sy smssmsmrmsmsmsmsmsmsmsmsmsmsmsmr—ss
PP N

FsQOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemPre2fixed,G),

goal(rkernel,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,X1_BCAT,X2_NAT,_ ,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,stemPre2fixed),

not (X2_LBND==1bndFree),

stemPre2fixed(G,Z,Y,
[_,stemPre2fixed,_,X1_LBND, _,X2_RBND,_,X2_BCAT,X1_BCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,

X2_UMGL,X2_UMLB, _,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
FsQOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Ruleb stemPrelfixed --> prel rkernel

prel(G,X,Y,

[ sy oKL _LBND, s s sy mssmsmsmsmsmsms—3msms—s—s—s—3—s—s—s—s—s—3—s—s—r—s-15
FsOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemPreifixed,G),
goal(rkernel,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,



241

X2_SUFFIXCLASS,X2_FLEX,’+’,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructZz,
right_bracket,’|+’,stemPreifixed),

not (X2_LBND==1bndFree),

stemPrelfixed(G,Z,Y,
[_,stemPrelfixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,

X2_UMGL,X2_UMLB, _,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,’+’,X2_PSTEMS,X2_0STEMS],
FsQut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule6 stemPrelfixed --> prenn rkernel

prenn(G,X,Y,

[ sy oKL _LBND, s s sy mssmsmsmsmsmsms—3msms—s—s—s—3—s—s—s—s—s—3—s—s—r—s-15
FsOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemPreifixed,G),

goal(rkernel,X,Z,
[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,X2_SCAT,’-’,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,’-’,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’|+’,stemPrelfixed),

not (X2_LBND==1bndFree),

stemPrelfixed(G,Z,Y,

[_,stemPreifixed,_,X1_LBND,_,X2_RBND,_,X2_BCAT,X2_SCAT,’-’,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,’-’,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule7a rkernel --> stemSuffixed
stemSuffixed(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_ ,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -
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link(rkernel,G),

rkernel(G,X,Y,
[_,rkernel,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,
X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

FsQOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) .

% Rule7b rkernel --> root
root(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X{_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsQut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_LBND=’1bndFree’),

link(rkernel,G),

rkernel(G,X,Y,
[_,rkernel,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,
X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

FsQut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rule8a stemSuffixed -=> stemSuffixed sufn[comb+]
stemSuffixed(G,X,Y,
[_»_»_»X1_LBND,_,X1_RBND,_, _,K1_SCAT, _, 4 s ssmsmrmsmscrmssmsms—smsos—s—s—s—s
S N

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_RBND==rbndFree),

link(stemSuffixed,G),

goal(sufn,X,Z,
[_,_,’+",_,_,X2_RBND,_,X1_SCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,_,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’+’,stemSuffixed),
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stemSuffixed(G,Z,Y,
[_,stemSuffixed,_,X1_LBND,_,X2_RBND,_,X1_SCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,_,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule8b stemSuffixed --> lkernel[nat-] sufn[comb+]

lkernel(G,X,Y,
[_,_,_,XO_LBND,_,X1_RBND,_,_,X1_SCAT,’-’, _, _,_,_,s_»X1_UMGL, _, _, sy ys—r—s—sr—>
FsQut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

not (X1_RBND==rbndFree),

link(stemSuffixed,G),
goal(sufn,X,Z,

[_,_,’+”,_,_,X2_RBND,_,X1_SCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,X1_UMGL,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VR0OOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,_,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’+’,stemSuffixed),

stemSuffixed(G,Z,Y,
[_,stemSuffixed,_,XO_LBND,_,X2_RBND,_,X1_SCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB, _,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X0_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsQut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule8c stemSuffixed -=> stemSuffixed sufnn
stemSuffixed(G,X,Y,
(_,_,_,XO_LBND,_,X1_RBND,_,_,X1_SCAT,’-’,_,_,_,_,_, X1 UMGL, _,_,_,_,_s_s_s_r_s_s

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_RBND==rbndFree),

link(stemSuffixed,G),
goal(sufnn,X,Z,
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X1_UMGL,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,_,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructZz,
left_bracket,’+’,stemSuffixed),

stemSuffixed(G,Z,Y,
[_,stemSuffixed,_,XO_LBND,_,X2_RBND,_,_,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X0_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule8d stemSuffixed --> 1lkernel suf

lkernel(G,X,Y,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

not (X1_RBND==rbndFree),

link(stemSuffixed,G),
goal(suf,X,Z,

—+_+_»_»_,’=? X2_REG,X2_INTERF,’-’ ,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,
X2_FLEX,_,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’+’,stemSuffixed),

stemSuffixed(G,Z,Y,
[_,stemSuffixed,_,X0_LBND,_,X2_RBND,_,_,X2_SCAT,X1_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,’-’,X2_REG,X2_INTERF,’-’,X2_GEN, _,_,X2_VR0OOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,XO_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule8e stemSuffixed -=> stemInterfixed sufnn
stemInterfixed(G,X,Y,
(_,_,_,XO_LBND,_,X1_RBND,_,_,X1_SCAT, =, , ;s s s s ss—smsmsms—ss—s—s—s—s—s
—s_s—s_»X0_PARTSTEM, _,_],

FsQut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -
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not (X1_RBND==rbndFree),

link(stemSuffixed,G),

goal(sufnn,X,Z,
[_._._._,_,X2_RBND,_,X1_SCAT,X2_SCAT,’-’,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
_s—»s_s_s_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,_,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructZz,
left_bracket,’+’,stemSuffixed),

stemSuffixed(G,Z,Y,
[_,stemSuffixed,_,X0_LBND,_,X2_RBND,_,_,X2_SCAT,’-’,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,XO_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule8f stemSuffixed -=> stemInterfixed sufn[comb+]

stemInterfixed(G,X,Y,

PEPTRPRRPRRPI N

FsOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

not (X1_RBND==rbndFree),

link(stemSuffixed,G),
goal(sufn,X,Z,

[_,_,’+”,_,_,X2_RBND,_,X1_SCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,_,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructZz,
left_bracket,’+’,stemSuffixed),

stemSuffixed(G,Z,Y,
[_,stemSuffixed,_,X1_LBND,_,X2_RBND,_,X1_SCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,_,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule9a stemInterfixed -—=> lkernel interf

lkernel(G,X,Y,
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FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

not (X1_RBND==rbndFree),
not (X1_INTERF==’-’),

link(stemInterfixed,G),
goal(interf,X,Z,

_s—_s—s_>_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,_,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’+’,stemInterfixed),

stemInterfixed(G,Z,Y,

[_,stemInterfixed,_,X0_LBND,_,X2_RBND,_,_,X2_SCAT,X1_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X0_PARTSTEM, X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% RulelO lkernel --> root
root(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X{_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_RBND==rbndFree),

link(lkernel,G),

lkernel(G,X,Y,
[_,lkernel,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,
X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) .

% RulelOb lkernel --=> stemPrefixed
stemPrefixed(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,
X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
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X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

not (X1_RBND==rbndFree),

link(lkernel,G),

lkernel(G,X,Y,
[_,lkernel,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,
X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

FsQOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rulell stem  --> stemSuffixed
stemSuffixed(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_ ,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stem,G),

stem(G,X,Y,
[_,stem,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,

X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsQOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rulelilb stem  --> stemPrefixed
stemPrefixed(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_ ,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X{_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsQut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stem,G),
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stem(G,X,Y,
[_,stem,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,

X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_O0STEMS],
FsOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rulellc stem  --> root
root(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_ ,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stem,G),

stem(G,X,Y,
[_,stem,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,

X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsQOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rulelild stem -—=> stemCompound
stemCompound(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_ ,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stem,G),

stem(G,X,Y,
[_,stem,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,
X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,

X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsQOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
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OrthStructOut).

Y= = =
% Rulel2a stemSuffixed[adj] --> word[participle]

word(G,X,Y,
_,_,_,X1_LBND,_,_,_,_,X1_SCAT,_,_,_,_,_,_,X1_UMGL,X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,
X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,_,_,X1_FLEX,_,X1_PSTEMS,X1_0STEMS],

FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

X1_SCAT==v,
sublistmember ("non-finit-part",X1_FLEX),

link(stemSuffixed,G),

stemSuffixed(G,X,Y,
[_,stemSuffixed,_,X1_LBND,_,rbndOpt,_,_,a,_,_,_,_,linkOpt, [’er_lm_adv’],X1_UMGL,
X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,_,

>ADJECTIVAL’ ,adjective_flex,conversed_participle,X1_PSTEMS,X1_0STEMS],
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) .

% Rulel3a past_stem --> stem[v,PRET=+,REG=-]

stem(G,X,Y,
[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,v,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
—y—s_»_s_,?+?,7=7 X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,
X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

member (X1_VROOT, [’BLIEB’, ’HIE"S’, ’KAM’, K"AM’, >SCHOB’ , *SCH"0B’ , *GING’ , >FIEL’, *FAND’ ,
’F"AND’, ’SAH’,>S"AH’, ’FUHR’ , ’F"UHR’, *NAHM’ , *N"AHM’ , "WURD’, >W"URD’ , "RANN’ , ’DARF’]),

link(past_stem,G),

past_stem(G,X,Y,
[_,past_stem,_,X1_LBND,_,X1_RBND,_,X1_BCAT,v,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,
X1_UMLB,_,_,_,_,_,’+’,’-? ,X1_INTERF,X1_INTERF_ARG,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rulel3a past_stem -=> stem[v,REG+,PRET=-] past
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stem(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,_,v,X1_NAT,_,_,_,_,_,X1_UMGL,X1_UMLB,_,_,_,_,_,’-’,X1_REG,
—s—s—s_»_, FRAG’ ,X1_STEMCLASS,X1_SUFFIXCLASS,_,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_RBND==rbndFree),
not (X1_RBND==rbndFree),

link(past_stem,G),
goal(past,X,Z,

Lsososs X2 RBND, _, sy sy msmssmsmsmsmssmsmrms—sos—sosos—s—s—»—»K2_FLEX,

PhonSegIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket, ’#+’,past_stem),

past_stem(G,Z,Y,

X1_0STEMS],
FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rulelda word --> stem inflection
stem(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,_,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
y—s—s—s—> =’ ,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VR0OT,X1_STEMCLASS,X1_SUFFIXCLASS,
_,X1_PARTSTEM, X1_PSTEMS,X1_0OSTEMS],

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_LBND=="1bndToBind’),
not (X1_RBND==’rbndFree’),

link(word,G),

goal(inflection,X,Z,

[_s_s_s_»_»X2_RBND, _,_,X1_SCAT, _, _,_y_s_s—s—s—s—s—s—s—_s_»_»X1_REG,_,_,_,_,_,X1_VROOT,
_,X1_SUFFIXCLASS,X2_FLEX,X1_PARTSTEM,_,_],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket, ’#+’,word),

not (X2_RBND==rbndToBind),

word(G,Z,Y,
[_,word,_,X1_LBND,_,X2_RBND,_,_,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,
X1_UMLB,_,_,_,_,_,_,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VR0OOT,X1_STEMCLASS,X1_SUFFIXCLASS,

X2_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsOut,
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PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Ruleldb word -—> past_stem v_infl
past_stem(G,X,Y,

[_,_,_,X1_LBND,_,_,_,_,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
y—s—s—s—, +’,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VR0OOT,X1_STEMCLASS,X1_SUFFIXCLASS,
_,X1_PARTSTEM, X1_PSTEMS,X1_0OSTEMS],

FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

not (X1_LBND==’1bndToBind’),

link(word,G),
goal(v_infl,X,Z,

_,X1_SUFFIXCLASS,X2_FLEX,_,_,_],
PhonSeglIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructZz,
left_bracket, ’#+’,word),

not (X2_RBND==rbndToBind),

word(G,Z,Y,
[_,word,_,X1_LBND,_,X2_RBND,_,_,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,
X1_UMLB,_,_,_,_,_,’+’,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,
X2_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

FsQut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rulelba stemCompound --> stem stem

stem(G,X,Y,

(_,_,_,X1_LBND, ,X1 _RBND, ,_,_,_,_»_»_,X1_LINK, ,_,_, s s s s s sosossssoscs
SRR

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_LINK==1ink0Obl),
not (X1_RBND==’rbndFree’),

link(stemCompound,G),
goal(stem,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’#’,stemCompound),
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not (X2_LBND==’1bndFree’),

stemCompound(G,Z,Y,

[_,stemCompound, _,X1_LBND,_,X2_RBND,_,X2_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rulelbb stemCompound -=> stemLm  stem

stemLm(G,X,Y,

Loy XL _LBND, sy s msmsmsmsmrmsmsmsmsmsmsmsmsmsmsmimsmsms—smsrma—s—s-1s
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(stemCompound,G),
goal(stem,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB, _,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’#’,stemCompound),

not (X2_LBND=='1bndFree’),

stemCompound(G,Z,Y,
[_,stemCompound,_,X1_LBND,_,X2_RBND,_,X2_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rulel6a stemLm -=> stem 1m

stem(G,X,Y,
[_,_,_,X1_LBND,_,_,_,_,X1_SCAT,_,_,_,_,X1_LINK,X1_LINK_MID,_,_,_,_,_,_,_,X1_PRET,
X1_REG,_,_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,_,X1_PARTSTEM,X1_PSTEMS,
X1_0STEMS],

FsQOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_LINK==1linkImp),

link(stemLm,G),
goal(lm,X,Z,
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PRI

PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket, ’#+’,stemCompound),

inst_member (X2_MID, X1_LINK_MID),

stemLm(G,Z,Y,
[_,_,_,X1_LBND,_,X2_RBND,_,_,X1_SCAT, _, _,_s_»s_s—s—s_s_s_»>_»_»_,X1_PRET,X1_REG,_,
_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X2_FLEX,X1_PARTSTEM,X1_PSTEMS,
X1_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rulel6b stemLm[NA] --> stem[adj] 1lm[en_lm_a]

stem(G,X,Y,

[_,_,_,X1_LBND,_,_,_,_,’a’,_,_,_,_,X1_LINK, ,_,_,_,_,_,_,_,X1_PRET,X1_REG,_,_,X1_GEN,
_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,_,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

FsQut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

not (X1_LINK==1linkImp),

link(stemLm,G),
goal(lm,X,Z,

PRI

PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket, ’#+’,stemLm),

X2_MID==’en_lm_a’,

stemLm(G,Z,Y,
[_,stemLm,_,X1_LBND,_,X2_RBND, _,_,’@ ", 4 —»—»—s—s—s—s—s—s—s_s_»_,X1_PRET,X1_REG,
_»—,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X2_FLEX,X1_PARTSTEM,X1_PSTEMS,
X1_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rulel7 word --> stem[rbndOpt/rbndFree]
stem(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,_,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -
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not (X1_RBND==rbndToBind),
not (X1_LBND==1bndToBind),

link(word,G),

word(G,X,Y,
[_,word,_,X1_LBND,_,X1_RBND,_,_,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,

X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,

X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) .

% Rulel8a suf -=> sufn
sufn(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,’+’,_,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,

_,_,X1_UMLD, _,_,X1_ABLD,_,_,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,_,_,_1,
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(suf,G),

suf (G,X,Y,
[_,suf,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,’+’,_,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,
_,_,X1_UMLD,_,_,X1_ABLD,_,_,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,_,_,_],

FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rulel8b suf -=> sufnn
sufnn(G,X,Y,

[_,_,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,’-’,_,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,

_,_,X1_UMLD, _,_,X1_ABLD,_,_,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,
X1_SUFFIXCLASS,X1_FLEX,_,_,_1,
FsOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(suf,G),
suf(G,X,Y,

[_,suf,_,X1_LBND,_,X1_RBND,_,X1_BCAT,X1_SCAT,’-’,_,X1_STR,X1_ADJ,X1_LINK,X1_LINK_MID,
_,_,X1_UMLD,_,_,X1_ABLD,_,_,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,



255

X1_SUFFIXCLASS,X1_FLEX,_,_,_]1,
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) .

% Rulel9a inflection =--> v_infl

v_infl(G,X,Y,

[X1_MID,_,_,X1_LBND,_,X1_RBND,_,_,v,X1_NAT, _, _,_,s_s_s_s_s—s—s_s_»_,X1_PRET,X1_REG,
_,_,_,_,_,X1_VRDDT,X1_STEMCLASS,Xl_SUFFIXCLASS,Xl_FLEX,_,_,_],

FsQOut,
PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(inflection,G),

inflection(G,X,Y,

[X1_MID,inflection,_,X1_LBND,_,X1_RBND,_,_,v,X1_NAT, ,_,_,_,_s_s_s_>—»s—_»_>_,X1_PRET,
X1_REG,_,_,_,_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,_,_,_]1,
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) .

% Rulel9b inflection --> a_infl
a_infl(G,X,Y,
[X1_MID,_,_,X1_LBND,_,X1_RBND,_,_,a,X1_NAT,_ ,_,_,_s_s—s—s>—»>—»s—s—>—,X1_PRET,X1_REG,

_s_s—s_»>_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,_,_,_],

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(inflection,G),

inflection(G,X,Y,

[X1_MID, inflection,_,X1_LBND,_,X1_RBND,_,_,a,X1_NAT, ,_,_,_+_+_»_»_»_»_»_,_,X1_PRET,
X1 _REG, _,_,_,_,_ ,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,_,_,_]1,

FsOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rulel9c inflection =--> n_infl

n_infl(G,X,Y,
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—+_s—»—»_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,X1_FLEX,_,_,_],
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -
link(inflection,G),

inflection(G,X,Y,

FsQOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) .

% Rule20 stemCompound -=> stemHyphened stem
stemHyphened(G,X,Y,

[_s_s X1 _LBND, _,_,_ s s_s_ss XL LINK, L, s sy sy sossosososossoassos
PP

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_LINK==1ink0bl),

link(stemCompound,G),
goal(stem,X,Z,

[_,_,_,_,_,X2_RBND,_,_,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,

X2_FLEX,X2_PARTSTEM,X2_PSTEMS, X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’#’,stemCompound),

stemCompound(G,Z,Y,
[_,stemCompound,_,X1_LBND,_,X2_RBND,_,_,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,_,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule21la stemHyphened -=> stem hyphen

stem(G,X,Y,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
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OrthStructOut) : -

link(stemHyphened,G),
goal (hyphen,X,Z,

PhonSegIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’#’,stemHyphened),

stemHyphened(G,Z,Y,

[_,stemHyphened, _, _, ;o s 5 s s s s s s s 53333 s 53— r 33—
-1,

FsQut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule2b stemHyphened -=> stemLm  hyphen

stemLm(G,X,Y,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(stemHyphened,G),
goal (hyphen,X,Z,

P S P PP P U PP UP PP P

PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’#’,stemHyphened),

stemHyphened(G,Z,Y,

P
FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule22 stem[n] --> word[v,infinitive]
word(G,X,Y,
[X1_MID,_,_,X1_LBND,_,X1_RBND, _,_,_,X1 _NAT,_ ,_,_s_s_s_s—_»>—»_»_s_»_,X1_PRET,X1_REG,

FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

X1_RBND==rbndFree,
prefix_of_atom("non-finit-inf",X1_FLEX),
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link(stem,G),

stem(G,X,Y,
[X1_MID,stem,_,X1_LBND,_,rbndOpt,_,_,n,X1_NAT,_,_,_,linkOpt,[’s_1m_n’],_,_,_,_,
_»_»_,X1_PRET,X1_REG,_,_,’n’,_,_,X1_VROOT,_, ’Nomen_Treffen’,’akk,sg;dat,sg;nom,
sg’,_s_»-1,

FsQOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rule23a word[n] --> word[adj]

word(G,X,Y,

[X1_MID,_,_,X1_LBND,_,rbndFree,_,_,X1_SCAT,X1_NAT, _,_,_,_,_s_s_s_»_s_»_»_»X1_PRET,
X1_REG,_,_,_,_,_,X1_VROOT,_,_,XO_FLEX,_,_,_1,

FsQOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

X1_SCAT==a,
not (X1_LBND==1bndToBind),

link(word,G),
word(G,X,Y,
FsQOut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rule23b word[n] --> stem[adj,unflekt]

word(G,X,Y,

[X1_MID,_,_,X1_LBND,_,X1_RBND,_,_,X1_SCAT,X1_NAT, _,_,_s_s—»r—s—s—s—>—s—_s_»X1_PRET,
X1_REG,_,_,_,_,_,X1_VROOT,_,_,XO_FLEX,_,_,_1,

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

X1_SCAT==a,

not (X1_RBND=rbndFree),

not (X1_LBND==1bndToBind),
sublistmember ("unflekt",X0_FLEX),

link(word,G),

word(G,X,Y,
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FsQOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) .

% Rule24a stemPrefixed --> part root[CCAT==v,SCAT==n]
part(G,X,Y,

[, s »X1_LBND, _,_,_, X1 _BCAT,_, s s s sy smssmsmrmsmsmsmsmsmsmsmsmsmsmmr—ss
P

FsQOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(stemPrefixed,G),
goal(root,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X1_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,stemPrefixed),

X2_SCAT==n,
X1_BCAT==v,
not (X2_LBND==1bndFree),

stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X1_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsQOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule24b stemPrefixed --> part stemPreifixed [CCAT==v,SCAT==n]
part(G,X,Y,

[osos s X1 _LBND, _,_, s XL _BCAT, s sms s s smsm s s s s s s s>
I N

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(stemPrefixed,G),
goal(stemPrelfixed,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X1_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
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right_bracket,’#’,stemPrefixed),

X2_SCAT==n,
X1_BCAT==v,
not (X2_LBND==1bndFree),

stemPrefixed(G,Z,Y,
[_,stemPrefixed,_,X1_LBND,_,X2_RBND,_,X1_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB, _,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN, _,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsQut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule24c stemPrelfixed -—> prel root[CCAT==v,SCAT==n]
prel(G,X,Y,

(o, ,X1_LBND, _,_, _,X1 _BCAT, , ., s s smsmsmsmsmsmsmrmrmrmr s s s s s msm s s
P I

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(stemPreifixed,G),
goal(root,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,X1_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’|+’,stemPreifixed),

X2_SCAT==n,
X1_BCAT==v,
not (X2_LBND==1bndFree),

stemPrelfixed(G,Z,Y,
[_,stemPrelfixed,_,X1_LBND,_,X2_RBND,_,X1_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,

X2_UMGL,X2_UMLB, _,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,X2_VROOT,
X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM, X2_PSTEMS,X2_0STEMS],
FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule24d stemPreifixed --> prel[ver|be] stemPrefixed[CCAT==v,
SCAT==n]

prel(G,X,Y,

[X1_MID,_,_,X1_LBND, _,_, sy s msmsmsmsmsmsmsmsmsmsm s rmsmrmsmsmsmsmsmsmsmsmsmrms
-1

FsQut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
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OrthStructOut) : -

member (XO_SUFFIXCLASS, [’SAGEN’, ’WARTEN’, ’FASSEN’, ’BEGEISTERN’]),
inst_member (X1_MID, [be_prel_v_v,ver_prel_v_v]),

link(stemPreifixed,G),

goal(stemPrefixed,X,Z,
[_,_,_,X2_LBND,_,X2_RBND,_,X2_BCAT,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’|+’,stemPreifixed),

X2_SCAT==n,
X2_BCAT==v,
not (X2_LBND==1bndFree),

stemPrelfixed(G,Z,Y,
[_,stemPreifixed,_,X1_LBND,_,X2_RBND,_,_,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,

X2_UMLB,_,_,_,_,_,’-’,’+’ ,X2_INTERF,X2_INTERF_ARG,X2_GEN,_,_,’FRAG’,’FRAGEN’ ,X0_SUFFIXCLASS,
_,’+’ ,X2_PSTEMS,X2_0STEMS],
FsQOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule25 word --> stemInflected

stemInflected(G,X,Y,
[_,_,_,X1_LBND,_,X1_RBND,_,_,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,X1_UMLB,
—»—s—3s—_»_»X1_PRET,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,
X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],

FsQut,

PhonSegIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

X1_RBND==rbndFree,
not (X1_LBND==1bndToBind),

link(word,G),

word(G,X,Y,
[_,word,_,X1_LBND,_,X1_RBND,_,_,X1_SCAT,X1_NAT,_,_,_,X1_LINK,X1_LINK_MID,X1_UMGL,
X1_UMLB,_,_,_,_,_,X1_PRET,X1_REG,X1_INTERF,_,X1_GEN,_,_,X1_VROOT,X1_STEMCLASS,X1_SUFFIXCLASS,

X1_FLEX,X1_PARTSTEM,X1_PSTEMS,X1_0STEMS],
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) .

% Rule26 word --> part stemInflected
part(G,X,Y,
Loy XL LBND, L, s 3V sy msmsmsmsmsmsms s msmsmsmsmsmsmsmsmsmsmsms—s—ss—sos-]

FsOut,
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PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(ord,G),

goal(stemInflected,X,Z,
[_,_,_,_,_,rbndFree,_,_,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,_,_,
_s_,_,X2_PRET,X2_REG,X2_INTERF,_,_,_,_,X2_VR0OOT,X2_STEMCLASS,X2_SUFFIXCLASS,X2_FLEX,
X2_PARTSTEM, X2_PSTEMS, X2_0STEMS],
PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket,’#’,word),

ord(G,Z,Y,
[_,word,_,X1_LBND,_,rbndFree,_,_,v,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
—+_»_»_»_,X2_PRET,X2_REG,X2_INTERF,_,_,_,_,X2_VROOT,X2_STEMCLASS,X2_SUFFIXCLASS,
X2_FLEX,X2_PARTSTEM,X2_PSTEMS, X2_0STEMS],

FsQOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule27 stemCompound --> stem[num] stemUndNum

stem(G,X,Y,
(_,_,_,X1_LBND,_,X1_RBND,_,_,X1_SCAT,_,_,_,_,X1_LINK, ,_,_,_ s s s_soros_soross
PSPPI

FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

not (X1_LINK==1ink0Obl),
not (X1_RBND==’rbndFree’),
X1_SCAT=='num’,

link(stemCompound,G),
goal(stemUndNum,X,Z,

[_s_s_»_>_,X2_RBND,_,_,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
X2_FLEX,X2_PARTSTEM,X2_PSTEMS, X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructZz,
right_bracket,’#’,stemCompound),

inst_member (X2_SCAT, [a,num] ),

stemCompound(G,Z,Y,
[_,stemCompound,_,X1_LBND,_,X2_RBND,_,_,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,_,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsQut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).
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% Rule28 stemUndNum -->  word[und] stem[num/a]

word(G,X,Y,

[X1_MID, _, X1 _LBND, ., s sy msms s ms s s 3 s s sm s s 3 m s s sms s msmsmsms
P

FsOut,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

X1_MID==’und’,

link(stemUndNum,G),
goal(stem,X,Z,

[_,_,_,X2_LBND,_,X2_RBND,_,_,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,X2_UMGL,X2_UMLB,
_s_s_s_s_,X2_PRET,X2_REG,X2_INTERF,_,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,X2_SUFFIXCLASS,
X2_FLEX,X2_PARTSTEM,X2_PSTEMS, X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
right_bracket, ’#’,stemUndNum) ,

not (X2_LBND==’1bndFree’),
inst_member (X2_SCAT, [a,num] ),

stemUndNum(G,Z,Y,
[_,stemUndNum,_,X1_LBND,_,X2_RBND,_,_,X2_SCAT,X2_NAT,_,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,_,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,
X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut ,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule29 stemCompound -=> wordHyphened stem
wordHyphened(G,X,Y,

Loy XL _LBND, sy s oo oo s msmsmrmsmsmsmsmsmsmsmsmsmsmimsmsms—smsrms—s—s-1s
FsOut,

PhonSeglIn,PhonSeglut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructln,
OrthStructOut) : -

link(stemCompound,G),
goal(stem,X,Z,

_s_s_s_s_,X2_PRET,X2_REG,X2_INTERF,_,X2_GEN,_,_,X2_VR0OOT,X2_STEMCLASS,X2_SUFFIXCLASS,
X2_FLEX,X2_PARTSTEM,X2_PSTEMS, X2_0STEMS],
PhonSegIn,PhonSegZ,0rthSegIn,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructZz,
left_bracket,’#’,stemCompound),

stemCompound(G,Z,Y,
[_,stemCompound, _,X1_LBND,_,X2_RBND,_,_,X2_SCAT,X2_NAT, _,_,_,X2_LINK,X2_LINK_MID,
X2_UMGL,X2_UMLB,_,_,_,_,_,X2_PRET,X2_REG,X2_INTERF,_,X2_GEN,_,_,X2_VROOT,X2_STEMCLASS,

X2_SUFFIXCLASS,X2_FLEX,X2_PARTSTEM,X2_PSTEMS,X2_0STEMS],
FsOut,
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PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

% Rule30a wordHyphened -=> word hyphen

word(G,X,Y,

PhonSegIn,PhonSegOut,0rthSegIn,OrthSeglut,PhonStructIn,PhonStructOut,OrthStructlIn,
OrthStructOut) : -

link(wordHyphened,G),
goal (hyphen,X,Z,

P S PP P U PP UP PR g

PhonSeglIn,PhonSegZ,0rthSegln,OrthSegZ,PhonStructIn,PhonStructZ,0rthStructIn,OrthStructz,
left_bracket,’#’,’wordHyphened’),

wordHyphened(G,Z,Y,

T

FsOut,

PhonSegZ,PhonSegOut,0rthSegZ,0rthSegOut,PhonStructZ,PhonStructOut,0rthStructZ,0rthStructOut).

goal(G,X,Z,FsIn,FsOut,PhonSegIn,PhonSegOut,0rthSegln,OrthSeglut,PhonStructIn,PhonStructlut,
OrthStructIn,OrthStructOut,left_bracket,BOUNDARY,X0_MCAT):-

dict(MCAT,X,Y,_,_,FsIn,PhonSeg,0rthSeg,PhonStruct,0rthStruct),
constrSeg(PhonSegIn,PhonSeg,PhonSegZ,BOUNDARY) ,
constrSeg(0rthSegln,OrthSeg,0rthSegZ,BOUNDARY),

constrStruct (PhonStructIn,PhonStruct,PhonStructZ,left_bracket,X0_MCAT,MCAT),
constrStruct (0rthStructIn,0rthStruct,0rthStructZ,left_bracket,X0_MCAT,MCAT),

P =.. [MCAT,G,Y,Z,FsIn,FsOut,PhonSegZ,PhonSeglut,0rthSegZ,0rthSeglut,PhonStructZ,
PhonStructOut,0rthStructZ,0rthStructOut],

call(P).
goal(G,X,Z,FsIn,FsOut,PhonSegIn,PhonSegOut,0rthSegln,OrthSeglut,PhonStructIn,PhonStructlut,
OrthStructIn,OrthStructOut,right_bracket,BOUNDARY,X0_MCAT):-
dict(MCAT,X,Y,_,_,FsIn,PhonSeg,0rthSeg,PhonStruct,0rthStruct),

constrStruct ([],PhonStruct,PhonStructMCAT,_,_,MCAT),
constrStruct([],0rthStruct,0rthStructMCAT, _, _,MCAT),

P =.. [MCAT,G,Y,Z,FsIn,FsOut,PhonSegZ,PhonSeglut,0rthSegZ,0rthSeglut,PhonStructMCAT,
PhonStructZ,0rthStructMCAT,O0rthStructZ],

constrSeg(PhonSegIn,PhonSeg,PhonSegZ,BOUNDARY) ,
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constrSeg(0rthSegIn,OrthSeg,O0rthSegZ,BOUNDARY) ,
call(P),

constrStruct (PhonStructIn,PhonStructZ,PhonStructOut,right_bracket,X0_MCAT,MCAT),
constrStruct (OrthStructIn,OrthStructZ,0rthStructOut,right_bracket,X0_MCAT,MCAT) .

a_infl(a_infl,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,0rthStruct,
OrthStruct).

hyphen (hyphen,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,O0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).

infin(infin,X,X,F,F,PhonSeg,PhonSeg,0rthSeg, 0rthSeg,PhonStruct,PhonStruct,0rthStruct,
OrthStruct).
inflection(inflection,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,
OrthStruct,0rthStruct).

interf (interf,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,O0rthStruct,
OrthStruct).
lkernel(lkernel,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).

1m(1m,X,X,F,F,PhonSeg,PhonSeg, OrthSeg,0rthSeg,PhonStruct,PhonStruct,O0rthStruct,
OrthStruct).
n_infl(n_infl,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,O0rthSeg,PhonStruct,PhonStruct,0rthStruct,
OrthStruct).
ord(ord,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).
part(part,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).
past(past,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).
past_stem(past_stem,X,X,F,F,PhonSeg,PhonSeg,OrthSeg,0rthSeg,PhonStruct,PhonStruct,
OrthStruct,0rthStruct).
prei(prei,X,X,F,F,PhonSeg,PhonSeg,OrthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).
pre2(pre2,X,X,F,F,PhonSeg,PhonSeg,OrthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).

prenn(prenn,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,OrthSeg,PhonStruct ,PhonStruct,O0rthStruct,
OrthStruct).
rkernel(rkernel,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,O0rthSeg,PhonStruct,PhonStruct,0rthStruct,
OrthStruct).
root(root,X,X,F,F,PhonSeg,PhonSeg,O0rthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).
stem(stem,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).

stemCompound (stemCompound, X,X,F,F,PhonSeg,PhonSeg,O0rthSeg, 0rthSeg,PhonStruct ,PhonStruct,
OrthStruct,0rthStruct).

stemHyphened (stemHyphened,X,X,F,F,PhonSeg,PhonSeg,0rthSeg, OrthSeg,PhonStruct,,PhonStruct,
OrthStruct,O0rthStruct).
stemInflected(stemInflected,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,
PhonStruct,0rthStruct,0rthStruct).
stemInterfixed(stemInterfixed,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,O0rthSeg,PhonStruct,
PhonStruct,0rthStruct,0rthStruct).
stemlm(stemlm,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,O0rthStruct,
OrthStruct).
stemPrelZufixed(stemPrelZufixed,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,
PhonStruct,0rthStruct,0rthStruct).
stemPreifixed(stemPreifixed,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,
PhonStruct,0rthStruct,0rthStruct).
stemPre2fixed(stemPre2fixed,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,
PhonStruct,0rthStruct,0rthStruct).
stemPrefixed(stemPrefixed,X,X,F,F,PhonSeg,PhonSeg,0rthSeg, 0rthSeg,PhonStruct,PhonStruct,
OrthStruct,0rthStruct).
stemSuffixed(stemSuffixed,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,
OrthStruct,O0rthStruct).
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stemUndNum(stemUndNum,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,
OrthStruct,0rthStruct).

suf (suf,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct ,PhonStruct,0rthStruct,
OrthStruct).
sufn(sufn,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).
sufnn(sufnn,X,X,F,F,PhonSeg,PhonSeg,0rthSeg, OrthSeg,PhonStruct ,PhonStruct,0rthStruct,
OrthStruct).
v_infl(v_infl,X,X,F,F,PhonSeg,PhonSeg,0rthSeg,0rthSeg,PhonStruct,PhonStruct,0rthStruct,
OrthStruct).
word(word,X,X,F,F,PhonSeg,PhonSeg,OrthSeg,0rthSeg,PhonStruct,PhonStruct,OrthStruct,
OrthStruct).

wordHyphened (wordHyphened,X,X,F,F,PhonSeg,PhonSeg,0rthSeg, OrthSeg,PhonStruct ,PhonStruct,
OrthStruct,O0rthStruct).

zuRkernel (zuRkernel,X,X,F,F,PhonSeg,PhonSeg, OrthSeg,0rthSeg,PhonStruct ,PhonStruct,
OrthStruct,0rthStruct).
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E. Morph database sample

$1_MID $2_MCAT $3_PHON $4_ORTH $5_COMB_SUF $6_LBND $7_LBND_ARG $8_RBND $9_RBND_ARG,f \
$10_BCAT $11_SCAT $12_NAT $13_SEP $14_STR $15_ADJ $16_LINK $17_LINK_MID $18_UMGL \
$19_UMLB $20_UMLD $21_ABGL $22_ABLB $23_ABLD $24_ABL_SUF_MID $25_PRET $26_REG $27_INTERF \
$28_INTERF_ARG $29_GEN $30_HEAD_MID $31_ARG_MID $32_VROOT $33_STEMCLASS $34_SUFFIXCLASS \
$35_FLEX $36_PSEG $37_0SEG $38_STEMS_ORTH $39_STEMS_PHON $40_BEISPIEL $41_ORIGIN
"a"s_root_v root ?’E:s "a"s ~ 1bndOpt d,c rbndToBind f ~ v nat+ ~ str+ ~ linkImp \

“ umgl+ umlb+ ~ 7 7 7 7 pret- reg- interf- ~ ~ ~ ~ N"AHM NEHMEN ESSEN praes-imp-sg-2 \
7’E:s "a"s e"s,i"s,a"s,"a"s,ge"s ?’Es,?’Is,?’a:s,?’E:s,g’Es "a"se generated
"ah_root_interj root ?’E: "ah ~ lbndFree ~ rbndFree ~ ~ interj nat+ ~ str+ ~ linkImp \

“ 7 umlb- * Y " 7 7 7~ interf- ~ ~ v "~ ?’E: "ah " ” "ah tuebcd6-13

"ahn_root_n root ?’E:n "ahn ~ 1bndOpt d,c rbndToBind d ~ n nat+ ~ str+ ~ linkImp \

“ umgl+ umlb+ ~ 7 7 7 T 77 interf- “n © © © ~ Nomen_Mensch ~ ?’E:n "ahn ~ ~ ~ \
eval96

"ander_root_v root 7’End@r "ander ~ lbndOpt d,c rbndToBind d,c,f ~ v nat+ ~ str+ \

“ linkImp ~ umgl+ umlb+ ~ ~ ~ ° ~ pret- reg+ interf- ~ ~ ~ ~ FRAG FRAGEN BEGEISTERN \

praes-imp-sg-2 ?’End@r "ander "ander ?’End@r ~ eval96
"appel_root_v root 7’Ep@l "appel ~ 1lbndToBind d rbndOpt d,c,f n v nat+ ~ str+ ~ \

linkImp ~ ~ umlb- =~ ~ 7 7 7 pret- reg+ interf- ~ ~ ~ ~ FRAG FRAGEN BEGEISTERN praes-imp-sg-2 \
?’Ep@l "appel "appel ?’Ep@l ver"appeln synthese

"arger_root_n root 7’Erg@r "arger ~ lbndOpt d,c rbndOpt d,c,f ~ n nat+

str+ ~ \

linkImp * “ umlb- =~ ~ =~ ~ 7 interf- " m ~ © © ~ Nomen_Fehler akk,pl;akk,sg;dat,sg;gen,pl;nom,pl;nom,sg \
?’Erg@r "arger ~ 7 7 eval96

"arger_root_v root ?’Erglr "arger ~ lbndOpt d,c rbndOpt d,c,f n v nat+ ~ str+ = \

linkImp ~ ° umlb- =~ ~ * © ~ pret- reg+ interf- ~ ~ ~ ~ FRAG FRAGEN BEGEISTERN praes-imp-sg-2 \

?’Erg@r "arger "arger ?’Erg@r ~ eval96
"arzt_root_n root ?’E6tst "arzt ~ lbndOpt d,c rbndToBind d,f ~ n nat+ ~ str+ ~ \

linkObl e_lm_n umgl+ umlb+ =~ = ~ ~ 7 =~ ~ interf- “m ~ ~ ~ ~ Nomen_Fall ~ 7?’Ertst \

"arzt © ~ "Arzteschaft tuebcd6-13

"ather_root_n root ?’Et@r "ather ~ 1bndOpt d,c rbndOpt d,c,f ~ n nat- ~ str+ ~ \

linkImp * ° umlb- =~ ~ = = ~ ~ interf- " m © © © ~ Nomen_Fehler akk,pl;akk,sg;dat,sg;gen,pl;nom,pl;nom,sg \
7’EtQ@r "ather ~ ~ "Ather cd04

"au"ser_root_v root ?’0Ys@r "au"ser ~ lbndOpt d,c rbndToBind d,c,f ~ v nat+ ~ str+ \

“ linkImp “ umgl+ umlb+ = ~ ~ ~ 7 pret- reg+ interf- ~ ~ ~ ~ FRAG FRAGEN BEGEISTERN \

praes-imp-sg-2 ?’0Ys+Q@r "aus+er "aus+er 7’0Ys+@r ~ eval96

"odi_root_n root 7’2:dj "odi ~ lbndToBind d rbndToBind d,f ~ n nat- ~ str+ ~ linkOpt \
en_lm_n ~ umlb- ~ ~ ~ ~ 7 7 7 interf- ~ f © ° ° ~ Nomen_Famili-e ~ 7’2:dj "odi \

“ ” Kom"odie hh98

"odip_root_n root ?’2:dIp "odip ~ lbndOpt d,c rbndToBind d ~ n nat- ~ str+ ~ linkImp \
“ " umlb- * T 7 7 T~ interf- "m ~ ~ " * * ~ ?72:dIp "odip © ~ "Odipus cdO5
"offen_root_a root 7’9f@n "offen ~ 1lbndOpt d,c rbndToBind d,f ~ a nat+ ~ str+ ~ \
linkOpt er_lm_adv umgl+ umlb+ = =~ = = = 7 ~ interf- -~ 7 7 7~ ADJECTIVAL unflekt \
?’9f0n "offen © " 7 eval96

"offn_root_v root ?7’9fn "offn ~ 1lbndOpt d,c rbndToBind d,f a v nat+ ~ str+ ~ linkImp \
“ umgl+ umlb+ © 7 7 7 7 pret- reg+ interf- “ “ ~ ~ FRAG FRAGEN WARTEN ~ 7’°9fn "offn \
"offn ?°9fn " eval96

"ogai_root_n root 7’2:gal "ogai ~ lbndOpt ¢ rbndOpt d,c,f “ n nat+ ~ str+ ~ linkImp \

~ % umlb- * v 7 interf- ~ £ © © ~ ~ Nomen_Kamera akk,sg;dat,sg;gen,sg;nom,sg \
?’2:gal "ogai ~ 7 7 eval96

"oko_root_a root 7’2:ko: "oko ~ lbndOpt d,c rbndToBind d,c,f ~ a nat- ~ str+ ~ \
linkOpt er_lm_adv ~ umlb- = =~ 7 = 7 7 ~ interf- =~ 7 7 7 7 ADJECTIVAL unflekt \

?’2:ko: "oko " " "okologisch cdi2
"ol_root_n root 7’2:1 "ol ~ 1bndOpt d,c rbndOpt d,c,f ~ n nat+ ~ str+ ~ linkImp \

“ % umlb- * v 7 interf- " n “ ~ Nomen_Abend akk,sg;dat,sg;nom,sg 7’2:1 \
"ol © 7 7 eval96

"ol_root_n root 7’2:1 "ol ~ 1bndOpt d,c rbndOpt d,c,f ~ n nat+ ~ str+ ~ linkImp \

~ % umlb- * * v v 7 interf- " n © © ~ ~ Nomen_Jahr akk,sg;nom,sg ?’2:1 "ol \

~ 7 7 eval96

"ort_root_n root 7’9rt "ort ~ lbndOpt d,c rbndToBind d,f ~ n nat+ ~ str+ ~ linkImp \

“ umgl+ umlb+ interf- " m ~ Nomen_Gott ~ ?’9rt "ort ~ ~ "Orter,"ortlich \
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cd04

"ost_root_n root 7’9st "ost ~ 1lbndOpt d,c rbndToBind d ~ n nat+ ~ str+ ~ linkImp \

“ T umlb- T T T T T T~ interf- "m ~ ~ 7 7 7~ ?’9st "ost © 7 "ostlich tuebcd6-13
"ub_root_v root ?’y:b "ub ~ 1lbndOpt d,c rbndToBind d,c,f ~ v nat+ ~ str+ ~ linkImp \
“ " umlb- * T 7 7 7 pret- reg+ interf- ~ ~ ~ ~ FRAG FRAGEN SAGEN praes-imp-sg-2 \

?’y:b "ub "ub ?’y:b " eval96

"ubel_root_a root ?’y:b@l "ubel ~ lbndOpt d,c rbndOpt d,c,f ~ a nat+ ~ str+ ~ linkOpt \
er_lm_adv ~ umlb- = °~ 7 7 © ° 7 interf- -~ 7 7 7~ ADJECTIVAL unflekt 7’y:b@l \

"ubel " ~ 7 eval96

"ubr_root_a root ?7’y:br "ubr ~ lbndOpt d,c rbndToBind d,f ~ a nat+ ~ str+ ~ linkOpt \

er_lm_adv “ umlb- =~ ~ ~ ~* © 7 interf- ~ * ~ 7~ ADJECTIVAL unflekt ?’y:br "ubr \
“ 7 7 eval96

$"A_root_n root ?’E: $"A ~ 1lbndOpt ¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ \
umlb- ~ ~ ~ ~ ~ ~ ~ interf- ~ ~ ~ ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg 7’E: $"A \

© 7 $A-$B-$C ADDED_HL

$"0_root_n root 7’2: $"0 ~ 1lbndOpt ¢ rbndOpt c¢,f ~ n nat+ ~ str+ ~ linkImp ~ ~ \
umlb- -~ ~ ~ 7 "~ ~ interf- ~ -~~~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg 7’2: $"0 \
“ ~ $A-$B-$C ADDED_HL

$"S_root_n root ?Ests’Et $"S ~ lbndOpt c rbndOpt cf ~ n nat+ ~ str+ ~ linkImp ~ \

~ umlb- ~ ~ 7 T 7 7 7 interf- -~ ~ ° 7 7~ Nomen_Auto akk,sg;dat,sg;nom,sg 7Ests’Et \
$"S ~ ~ $A-$B-$C ADDED_HL

$"U_root_n root ?’y: $"U ~ lbndOpt ¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ \
umlb- ~ ~ ~ ~ ~ ~ ~ interf- ~ ~ ~ ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg 7’y: $"U \

~ 7 $A-$B-$C ADDED_HL
$A_root_n root ?’a: $A ~ 1lbndOpt ¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \

""""""" interf- = © © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’a: $A ~ ~ $A-$B-$C \
ADDED_HL

$B_root_n root b’e: $B ~ 1lbndOpt ¢ rbndOpt c¢,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = © © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg b’e: $B ~ ~ $A-$B-$C \
ADDED_HL

$C_root_n root ts’e: $C ~ 1bndOpt c rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- Nomen_Auto akk,sg;dat,sg;nom,sg ts’e: $C ~ = \
$A-$B-$C ADDED_HL

$D_root_n root d’e: $D ~ 1lbndOpt ¢ rbndOpt c¢,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \

""""""" interf- = © ©  ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg d’e: $D ~ ~ $A-$B-$C \
ADDED_HL

$E_root_n root ?’e: $E ~ 1lbndOpt ¢ rbndOpt c¢,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = ©~ ©  ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’e: $E ~ ~ $A-$B-$C \
ADDED_HL

$F_root_n root 7’Ef $F ~ lbndOpt c rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- *~ © © © © ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’Ef $F ~ ~ $A-$B-$C \
ADDED_HL

$G_root_n root g’e: $G ~ lbndOpt c¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- *~ © © © © ~ Nomen_Auto akk,sg;dat,sg;nom,sg g’e: $G ~ ~ $A-$B-$C \
ADDED_HL

$H_root_n root h’a: $H ~ 1lbndOpt ¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = ©~ © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg h’a: $H ~ ~ $A-$B-$C \
ADDED_HL

$I_root_n root ?7’i: $I ~ lbndOpt c rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- ©~ © © © © ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’i: $I ~ ~ $A-$B-$C \
ADDED_HL

$J_root_n root j’0t $J ~ lbndOpt c¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- ©~ © © © © ~ Nomen_Auto akk,sg;dat,sg;nom,sg j’0t $J ~ ~ $A-$B-$C \
ADDED_HL

$K_root_n root k’a: $K ~ 1lbndOpt c¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = ° © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg k’a: $K ~ ~ $A-$B-$C \
ADDED_HL

$L_root_n root 7’El $L ~ lbndOpt c rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = © © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’EL $L ~ ~ $A-$B-$C \
ADDED_HL

$M_root_n root 7’Em $M ~ lbndOpt c¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- *~ © © © © ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’Em $M ~ ~ $A-$B-$C \

ADDED_HL
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$N_root_n root ?’En $N ~ 1lbndOpt ¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \

""""""" interf- = © © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’En $N ~ ~ $A-$B-$C \
ADDED_HL

$0_root_n root 7’0: $0 ~ lbndOpt c rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- ©~ © © © © ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’0: $0 ~ ~ $A-$B-$C \
ADDED_HL

$P_root_n root p’e: $P ~ 1lbndOpt ¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = © © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg p’e: $P ~ ~ $A-$B-$C \
ADDED_HL

$Q_root_n root k’u: $Q ~ 1lbndOpt ¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = © © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg k’u: $Q ~ ~ $A-$B-$C \
ADDED_HL

$R_root_n root 7’Er $R ~ lbndOpt c¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- *~ © © © © ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’Er $R ~ ~ $A-$B-$C \
ADDED_HL

$SZ_root_n root ?Ests’Et $SZ ~ lbndOpt c rbndOpt cf ~ n nat+ ~ str+ ~ linkImp ~ \

“ umlb- ~ * * ~* * * ~ interf- ~ ~ * * * ~ Nomen_Auto akk,sg;dat,sg;nom,sg 7Ests’Et \

$SZ - - $A-$B-$C ADDED_HL

$S_root_n root ?’Es $S ~ 1lbndOpt ¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = ©~ © ~ ~ ~ Nomen_Jahr akk,sg;nom,sg 7’Es $S ~ ~ $A-$B-$C \
ADDED_HL

$S_root_n root 7’Es $S ~ lbndOpt c¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- ~ © © © © ~ Nomen_Abend akk,sg;dat,sg;nom,sg 7’Es $S ~ ~ \
$A-$B-$C ADDED_HL

$S_root_n root 7’Es $S ~ lbndOpt c¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- ~ © © © © ~ Nomen_Jahr akk,sg;nom,sg 7’Es $S ~ ~ $A-$B-$C \
ADDED_HL

$T_root_n root t’e: $T ~ 1lbndOpt ¢ rbndOpt c¢,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = © © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg t’e: $T ~ ~ $A-$B-$C \
ADDED_HL

$U_root_n root 7’u: $U ~ lbndOpt c rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = © © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg ?’u: $U ~ ~ $A-$B-$C \
ADDED_HL

$V_root_n root f’alU $V ~ lbndOpt c¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- ©~ © © © © ~ Nomen_Auto akk,sg;dat,sg;nom,sg f’alU $V ~ ~ $A-$B-$C \
ADDED_HL

$W_root_n root v’e: $W ~ 1lbndOpt ¢ rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = © © ~ ~ ~ Nomen_Auto akk,sg;dat,sg;nom,sg v’e: $W ~ ~ $A-$B-$C \
ADDED_HL

$X_root_n root ?’Iks $X ~ lbndOpt c rbndOpt c,f “ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
""""""" interf- = °~ ©  ~ ~ Nomen_Jahr akk,sg;nom,sg ?’Iks $X ~ ~ $A-$B-$C \
ADDED_HL

$X_root_n root ?’Iks $X ~ 1lbndOpt c rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- ~ © © © © ~ Nomen_Abend akk,sg;dat,sg;nom,sg ?’Iks $X ~ ~ \

$A-$B-$C ADDED_HL

$X_root_n root ?’Iks $X ~ lbndOpt c rbndOpt c,f “ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- ~ ~ © © © ~ Nomen_Jahr akk,sg;nom,sg 7’Iks $X ~ ~ $A-$B-$C \
ADDED_HL

$Y_root_n root ?YpsIlOn $Y ~ 1lbndOpt c rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ \

~ umlb- ~ ~ 7 T 7 7~ interf- -~~~ 7 7~ Nomen_Auto akk,sg;dat,sg;nom,sg 7’Ypsi:10n \
$Y © ~ $A-$B-$C ADDED_HL

$Z_root_n root ts’Et $Z ~ 1bndOpt c rbndOpt c,f ~ n nat+ ~ str+ ~ linkImp ~ ~ umlb- \
”””””” interf- Nomen_Auto akk,sg;dat,sg;nom,sg ts’Et $Z ~ = \
$A-$B-$C ADDED_HL

a"s_root_v root ?’a:s a"s ~ lbndOpt d,c rbndOpt d,c,f ~ v nat+ ~ str+ ~ linkImp \

“ umgl- umlb+ ~ ~ 7 7 7 pret+ reg- interf- ~ ~ ~ ~ NAHM NEHMEN ESSEN praes-imp-sg-2 \
7’a:s a"s e"s,i"s,a"s,"a"s,ge"s 7’Es,?’Is,?’a:s,?’E:s,g’Es a"s generated

abend_root_n root 7’a:b@nd abend ~ lbndOpt d,c rbndOpt d,c,f ~ n nat+ ~ str+ ~ \
linkImp ~ ~ umlb- =~~~ = 7 = 7 interf- " n © ~ ° ~ Nomen_Abend akk,sg;dat,sg;nom,sg \
?’a:bOnd abend “ ~ ~ eval96

abend_root_n root ?’a:b@nd abend ~ lbndOpt d,c rbndOpt d,c,f ~ n nat+ ~ str+ ~ \
linkImp * ° umlb- =~ = ~ ~ ~ ~ ~ interf- " n © © © ~ Nomen_Jahr akk,sg;nom,sg ?’a:b@nd \
abend © © " eval96
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absurd_root_a root ?apz’Urd absurd ~ 1lbndOpt d,c rbndOpt d,c,f ~ a nat- ~ str+ \

~ linkOpt er_lm_adv ~ umlb- = = 7 = 7 = 7 interf- = ~ 7 7~ 7~ ADJECTIVAL unflekt \
?apz’Urd absurd ~ ~ absurderweise cd20

abteil_root_n root 7apt’all abteil ~ 1lbndOpt d,c rbndOpt d,c,f ~ n nat+

str+ \

” linkOpt s_lm_n ” umlb- ~ = ~ ~ * * ~ interf- “n * © © ~ Nomen_Abend akk,sg;dat,sg;nom,sg \
7ap#t’all ab#teil ~ ~ Raucherabteil ADDED_HL

abteil_root_n root 7apt’all abteil ~ 1bndOpt d,c rbndOpt d,c,f ~ n nat+ ~ str+ \

” 1linkOpt s_lm_n ~ umlb- =~ ~ 7 = 7 = 7 interf- " n ~ ~ ~ ~ Nomen_Jahr akk,sg;nom,sg \

7ap#t’all ab#teil ~ ~ Raucherabteil ADDED_HL
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F. Mclass output sample (eval mode)

"Ubernachtung "Ub+er#+ni#acht+ung ?’y:.b+6#+n#7’ax.t+UN ?y:b6n7axtUN "Ubernachtung \
_1853 Nomen_Frau "Ub+er#+n#acht+ung,n

"uber "uber ?’y:.b6 7y:b6 "uber _1793 dummy_suffixclass "uber,prep

"uberall "uber#all 7’y:.b6#7’’al 7y:b67al "uberall _1805 dummy_suffixclass "uber#all,adv
"ubermorgen "uber#morg+en ?7’y:.b6#m’’06.g+@n ?y:b6m06gOn "ubermorgen _1817 dummy_suffixclass \
"uber#morg+en,adv

"ubernachten "ub+er+n#acht#+en 7’y:.b+6+n#7’ax.t#+0n ?y:b6n%axtOn "ubernachten \

FRAGEN WARTEN "ub+er+n#acht#+en,v

$I-$C-$E $I-$C-$E 7’i:#ts’e:#7’e: 7i:tse:7e: $I-$C-$E _1843 Nomen_Auto $I-$C-$E,n
Adresse Adress#+e 7a.dr’E.s#+@ 7adrEs@ Adresse _1817 Nomen_Famili-e Adress#+e,n

Ahnung Ahn+ung ?’a:.n+UN ?a:nUN Ahnung _1811 Nomen_Frau Ahn+ung,n

Arbeit Arbeit ?7’a6.balt 7a6balt Arbeit _1811 Nomen_Frau Arbeit,n

Assistentin Assist+ent+in ?’a.sIs.t+’En.t+In PasIstEntIn Assistentin _1841 Nomen_Frau \
Assist+ent+in,n

Aufenthalt Auf#ent+halt ?’aUf#7?Ent.+h’alt ?7aUf?Enthalt Aufenthalt _1835 Nomen_Abend \
Auf#ent+halt,n

Auto Auto 7’aU.to: 7aUto: Auto _1799 Nomen_Auto Auto,n

Bahn Bahn b’a:n ba:n Bahn _1799 Nomen_Frau Bahn,n

Bahnhof Bahn#hof b’a:n#h’o:f ba:nho:f Bahnhof _1817 Nomen_Fall Bahni#hof,n

Bar Bar b’a:6 ba:6 Bar _1793 Nomen_Kamera Bar,n

Beispiel Bei#spiel b’al#Sp’i:1 baISpi:1 Beispiel _1823 Nomen_Jahr Bei#spiel,n
Berg Berg b’E6k bE6k Berg _1799 Nomen_Jahr Berg,n

Berge Bergi#+e b’E6.g#+Q bE6g@ Berg _1805 Nomen_Jahr Berg#+e,n

Buchungsbest"atigung Buch+ung#+s#be+st"at+igtung b’u:.x+UN#+s#b@.+St’E:.t+I.g+UN \
bu:xUNsb@StE:tIgUN Buchungsbest"atigung _1895 Nomen_Frau Buch+ung#+s#be+st"at+ig+ung,n
Computer Comput+er kOmp.j’u:.t+6 kOmpju:t6 Computer _1823 Nomen_Fehler Comput+er,n
Computeranlage Comput+er#an#lag#+e kOmp.j’u:.t+6#7?’an#l’a:.g#+@ kOmpju:t67anla:g@ \
Computeranlage _1859 Nomen_Famili-e Comput+er#an#lag#+e,n

D"usseldorf D"us+sel#dorf d’y:s.+zQ@l#d’06f dy:sz@ld06f D"usseldorf _1841 Nomen_Gott \
D"us+sel#tdorf,n

Dampfbad Dampf#bad d’ampf#b’a:t dampfba:t Dampfbad _1823 Nomen_Gott Dampfi#bad,n

Dank Dank d’aNk daNk Dank _1799 Nomen_No_pl_Kram Dank,n

Daten Dat#+en d’a:.t#+0@n da:t@n Datum _1805 Nomen_Dat-um Dat#+en,n

Deutschland Deutschi#land d’0YtS#l’ant d0YtSlant Deutschland _1841 Nomen_Gott Deutsch#land,n
Dienstreise Dienst#reis#+e d’i:nst#r’al.z#+@ di:nstralz@ Dienstreise _1841 Nomen_Famili-e \
Dienst#reisi#+e,n

Doppelzimmer Doppel#zimmer d’0.p@l#ts’I.m6 dOp@ltsIm6 Doppelzimmer _1847 Nomen_Fehler \
Doppel#zimmer,n

Einzelzimmer Einz+el#zimmer ?’aln.ts+Ql#ts’I.m6 7alnts@ltsIm6 Einzelzimmer _1847 \
Nomen_Fehler Einz+el#zimmer,n

Entschuldigung Ent+schuld+ig+ung ?Ent.+S’Ul.d+I.g+UN ?EntSUldIgUN Entschuldigung \

_1859 Nomen_Frau Ent+schuld+ig+ung,n

Erdgescho"s no_result

Ersatzsauna Er+satzi#saun#+a 7E6.+z’ats#z’alU.n#+a: 7E6zatszalUna: Ersatzsauna _1841 \
Nomen_Mens-a Er+satzi#saun#+a,n

Etage Etag#+e 7e:.t’a:.Z#+Q 7e:ta:ZQ@ Etage _1805 Nomen_Famili-e Etag#+e,n

Fahrkarte Fahr#kart#+e f’a:6#k’a6.t#+@ fa:6ka6t@ Fahrkarte _1829 Nomen_Famili-e \
Fahr#kart#+e,n

Fahrtzeit Fahr+t#zeit f’a:6+t#ts’alt fa:6ttsalt Fahrtzeit _1829 Nomen_Frau Fahr+t#zeit,n
Fahrzeit Fahr#zeit f’a:6#ts’alt fa:6tsalt Fahrzeit _1823 Nomen_Frau Fahr#zeit,n
Fernsehkanal Fern#seh#kanal f’E6n#z’e:#ka:.n’a:1 fE6nze:ka:na:1 Fernsehkanal _1847 \
Nomen_Anfang Fern#seh#kanal,n

Flu"s Flu"s f1’Us f1lUs Flu"s _1805 Nomen_Fall Flu"s,n

Flug Flug fl’u:k flu:k Flug _1799 Nomen_Fall Flug,n

Flugzeug Flug#zeug fl’u:k#ts’0Yk flu:ktsO0Yk Flugzeug _1823 Nomen_No_pl_Kram Flug#zeug,n
Frage Frag#+e fr’a:.g#+Q fra:g@ Frage _1805 Nomen_Famili-e Frag#+e,n

Frau Frau fr’aU fraU Frau _1799 Nomen_Frau Frau,n

Freund Freund fr’0Ynt frOYnt Freund _1811 Nomen_Jahr Freund,n

Fu"s Fu"s f’u:s fu:s Fu"s _1799 Nomen_Fall Fu"s,n
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Garage Garag#+e ga.ra:.Z#+Q gara:Z@ Garage _1811 Nomen_Famili-e Garag#+e,n

Gegend Gegend g’e:.glnt ge:glnt Gegend _1811 Nomen_Frau Gegend,n

Gl"uck Gl"uck gl’Yk glYk Gl"uck _1811 Nomen_Jahr Gl"uck,n

Hamburg Ham#burg h’a:m#b’U6k ha:mbU6k Hamburg _1874 Nomen_Frau HAM#burg,n
Hannover Hannover ha.n’o:.f6 hano:f6 Hannover _1823 Nomen_Auto Hannover,n
Hauptbahnhof Haupt#bahn#hof h’aUpt#b’a:n#h’o:f haUptba:nho:f Hauptbahnhof _1847 \
Nomen_Fall Haupt#bahn#hof,n

Hektik Hekt+ik h’Ek.t+i:k hEkti:k Hektik _1811 Nomen_Frau Hekt+ik,n

Herr Herr h’E6 hE6 Herr _1799 Nomen_Herr Herr,n

Hinfahrt Hin#fahr+t h’In#f’a:6+t hInfa:6t Hinfahrt _1823 Nomen_Frau Hin#fahr+t,n
Hotel Hotel ho:.t’El ho:tEl Hotel _1805 Nomen_Auto Hotel,n

Hotels Hotel#+s ho:.t’El#+s ho:tEls Hotel _1811 Nomen_Auto Hotel#+s,n

Thnen ihn#+en ?i:.n#+@n 7i:n@n ihn _2005 dummy_suffixclass Thn#+en,pron

Ihr ihr ?i:6 ?i:6 ihr _1997 dummy_suffixclass Ihr,det

Thre ihr#+e ?7i:.r#+Q@ 7i:r@ ihr _2001 dummy_suffixclass Ihr#+e,det

Ihrer ihr#+er 7i:.r#+6 7i:r6 ihr _2005 dummy_suffixclass Thr#+er,det

Information Int+formt+at+ion ?’In.+f’06.m+’a:.ts+j’o:n 7InfO6ma:tsjo:n Information \
_1841 Nomen_Frau In+form+at+ion,n

Jansen Jansen j’an.z@n janz@n Jansen _1868 Jahr JANSEN,n

Japan Japan j’a:.pa:n ja:pa:n Japan _1805 Nomen_Auto Japan,n

Juni Juni j’u:.ni: ju:ni: Juni _1799 Nomen_Auto Juni,n

Kasse Kass#+e k’a.s#+@ kas@ Kasse _1805 Nomen_Famili-e Kass#+e,n

Kind Kind k’Int kInt Kind _1799 Nomen_Kind Kind,n






Gedruckt auf alterungsbestandigem Papier co ISO 9706.



