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Chapter 1

Introduction

The space of configurations ΓX over a Riemannian manifold X consists of
all locally finite subsets of X. Such spaces play an important role in the
topology, the theory of point processes, the mathematical physics and sev-
eral other areas of the mathematics and its applications. As objects of infinite
dimensional analysis configuration spaces form a class of infinite dimensional
manifolds which are not in the well-known categories of Banach or Fréchet
manifolds. Nevertheless, they can be equipped with a natural differentiable
structure (coming from the underlying manifold X) with quite rich analytic
and geometrical properties, see [2], [3]. This leads us to the first application
in mathematical physics. Directly, the configuration space appears in appli-
cations to classical mechanical systems of infinite many particles describing
the position of indistinguishable particles. More comprehensive is the knowl-
edge about configuration spaces in the branch of general measure theory,
cf. e.g. [36], [63]. One should note that even in the stochastics there are
still many open questions related to the general theory of point processes on
configuration spaces. The general analysis and stochastics on configuration
spaces can be conditionally divided in two parts. One of them, which can be
characterized as general analysis, in particular connected with the so-called
Poissonian White Noise analysis. This analysis is a special modification of
the well-known Gaussian White Noise analysis (see, e.g., the books [10], [33],
[34], [52] for a detailed exposition of the theory and examples of applications,
and the introductory articles [51], [81], and [82]).

One of the first approaches to non-Gaussian analysis was proposed in [4]
and developed in [1]. Gaussian white noise analysis is essentially based on
the Wiener-Itô-Segal chaos decomposition of the L2-space with respect to a
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4 CHAPTER 1. INTRODUCTION

Gaussian measure on an orthogonal system of Hermite polynomials. This
has motivated the aforementioned construction. There, the orthogonal sys-
tem of Hermite polynomials is replaced by a biorthogonal Appell system –
a system first constructed by Yu. L. Daletsky [18] for a special class of mea-
sures and extending the previous system – and the chaos decomposition is
replaced by a biorthogonal decomposition. Through a slight modification on
the conditions of the probability measures used in these references, the pre-
vious construction of non-Gaussian analysis was enlarged in [49] to a class of
measures which, in particular, includes the gamma and the Poisson measures
(see also [48], [78], and [44]). This construction is supported on a general
concept of generalized Appell systems ([47], [49], [78]). All these general-
izations towards a non-Gaussian analysis are clearly based on the theory of
Appell systems. Recently, some aspects of this theory were further developed
by generalizing the theory of Appell systems to an analysis on hypergroups
[7], [11]. An alternative approach to non-Gaussian analysis including Pois-
sonian analysis and based on the spectral representation of a special family
of Jacobi fields in the Fock space was developed by Yu. M. Berezansky, see,
e.g., [8], [9], [13], [14], [59].

Poisson measures appear in several areas of mathematics and in applica-
tions to problems of physics, biology, chemistry, economics, and other fields
of modern science. In particular, Poisson measures are related to the study
of point processes in probability theory, representation theory for diffeomor-
phism groups and current algebras, models of non-relativistic quantum fields,
classical and quantum statistical mechanics. We only refer to [3] for a rea-
sonable list of applications in mathematical physics and corresponding refer-
ences. Apart from the diversity of the related topics, Poisson measures are
by themselves a subject of interest in infinite dimensional analysis, because
these, similar to the Gaussian measures, are defined on infinite dimensional
spaces whose analysis is of a constructive character and has a very rich struc-
ture.

In the Poissonian White Noise analysis are manifested the general fea-
tures of infinite dimensional analysis as well as arise new structures, related
with the specific of configuration spaces on which Poisson measures are con-
sidered (see [2], [3], [38], [39], [40], [42], [43]). The recent dissertation [66] of
M. J. Oliveira was devoted to the detailed study of relations between struc-
tures of Poissonian White Noise analysis and specific structures peculiar to
the analysis on configuration spaces.

Another part can be characterized as constructive infinite dimensional
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analysis on the configuration spaces. First of all, it is related with the
investigation of some classes of measures on configuration spaces. Among
measures, considered on the configuration spaces, one should distinguish the
class of measures constructed via potentials of interaction. These measures
are known in mathematical physics as Gibbs measures. The rigorous mathe-
matical definition of such objects came back to [61], [19], [20], [22], and [53].
There exist many equivalent description of Gibbs measures, see [27], [69],
and [65]. To the detailed study of Gibbs measures were also devoted such
papers as [68], [70], [30], [28], [29]. The aim of the following dissertation is a
construction and study of such measures, using analytical methods. Methods
of infinite dimensional analysis, used for the study of Gibbs measures, were
developed, in particular, in works of [2], [3], [27], [38], [39], [41]. This work
is a continuation of this direction.

In the sequel we describe the contents of the work chapter by chapter in
more details.

General facts and notations

Chapter 2 begins with a description of the configuration spaces used in this
work. These spaces are constructed over an Euclidean space Rd, d ≥ 1, but
without loss of generality the most of results can be transferred to the case
of a general non-compact Riemannian manifold X. In the Section 2.1 we
describe the space of finite configurations, i.e.

Γ0 = {η ⊂ Rd | |η| <∞},
where |η| denotes the number of elements of the set η. Some topological
properties of Γ0 are also considered in Section 2.1.

In Section 2.2 we consider configuration space Γ with it basic topological
properties which is defined as

Γ :=
{
γ ⊂ Rd

∣∣ |γ ∩ Λ| <∞, for all compact Λ ⊂ Rd
}
.

Classes of functions on Γ0 and Γ are also discussed in this section. Moreover,
in Section 2.2 we define and present some properties of the K-transform,
a mapping which transforms functions defined on Γ0 into functions on Γ.
The K-transform plays the role of the Fourier transform in configuration
space analysis and has purely combinatorial nature. It plays a key-role in
the construction of combinatorial harmonic analysis on configuration spaces
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introduced and developed in [38], [39], see also [42] , [43] . The operator
nature of the K-transform was first recognized and studied by A. Lenard
in a series of works, [56], [57]. A last part of Section 2.2, is devoted to the
Lebesgue-Poisson measure λzσ on Γ0, a Poisson measure πzσ on Γ and the
dual operator of the K-transform denoted by K∗. The latter operator maps
probability measures µ on Γ into correlation measures K∗µ on Γ0.

Section 2.3 is devoted to the the space of multiple configuration, its basic
topological and measure theoretical properties.

Detailed structure and some topological properties of
the configuration space Γ

In the study of problems of stochastics and mathematical physics, topolog-
ical and metrical structures on configuration spaces play an essential role.
Questions related to these structures were mostly studied on the space of
multiple configurations Γ̈ comparing with the configuration space Γ. First
of all, it concerns with the possibility to metrize vague topology on Γ̈. This
metrization is not proper for the case of simple configurations and demands
some modification.

The aim of this chapter is to order our knowledge concerning some topo-
logical properties of Γ. We would like to emphasize that the main new results
of this chapter are related with a metrical structure of configuration space
Γ. We construct a family of metrics on Γ, which makes it complete, sepa-
rable metric space and such that topologies generated by these metrics are
equivalent to the vague topology on Γ. The construction of such a metrics
is motivated by observations made by A. Skorokhod in [80]. Such metrical
structures on Γ give us a possibility to describe relatively compact sets in Γ.
In this chapter, we propose new simple proof of the Holley-Stroock criterion
for relatively compact subsets of Γ, see [35]. Using it, we introduce a family
of compact functions on Γ. Such functions are a standard tool in the study
of many problems of mathematical physics and stochastics.

On relations between a priori bounds for measures on
configuration spaces

The measure theory on configuration spaces has several specific aspects com-
paring with the well developed one in the case of linear spaces. Namely, in
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the linear case we have useful relations between such characteristics of mea-
sure as moments, the Laplace transform, support and integrability properties
for some classes of functions on linear spaces, see e.g. [10] for a review and
related historical comments and references. These characteristics need to
be modified properly in configuration space analysis. Important instructive
ideas in this area are coming from the theory of stochastic processes and
statistical physics. In these applications measures on configuration spaces
correspond to point processes and states of continuous systems respectively
and in both areas we have already many deep results concerning properties
of particular classes of such measures.

The point of view developed in Chapter 4 is motivated mainly by results
of classical statistical mechanics of continuous systems. In particular, in pi-
oneering works of R. L. Dobrushin [21] and D. Ruelle [75] dedicated to the
study of equilibrium states (Gibbs measures) in the case of pair potentials
were discovered several properties of these measures related with analysis of
their characteristics. Namely, the first characteristic of configuration space
measures is the system of correlation functions (that is the system of reduced
moments or coincidence densities in the point process theory). Correlation
functions can be considered as an analog of the moments of measures in the
linear space analysis. In the case of superstable pair potentials their sat-
isfy so-called Ruelle bound (RB) [75] which is very useful in applications.
Another important bound obtained in the same paper is related with the
density of finite volume projections of Gibbs measures (Ruelle probability
bound (RPB)) which also became a standard technical tool in the equilib-
rium statistical physics. In particular, (RPB) gives information about the
support of Gibbs measures. R.L.Dobrushin [21] proved exponential integra-
bility w.r.t. Gibbs measures of some local functions on configuration spaces
(Dobrushin exponential bound (DEB)) which also gives useful information
about these measures.

In Chapter 4 we consider measures on configuration spaces which sat-
isfy (some generalizations of) the mentioned bounds. We have shown that
these bounds, in fact, are related among each other and do not need to be
restricted to the class of Gibbs measures. This is important, in particular, in
applications to non-equilibrium problems. More precisely, in the study of the
dynamics (e.g., Hamiltonian or stochastic) of continuous systems we need,
typically, to restrict the class of initial states assuming one or another kind of
a priori bounds on them. Actually, the necessity to transport the description
of the time evolution from the traditional classical mechanics point of view
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(in terms of particle trajectories) to the evolution of states is a specific point
in the rigorous statistical physics of continuous systems. We refer the reader
to the excellent discussion of this concept in the review by R.L.Dobrushin,
Ya.G.Sinai and Yu.M.Suhov [24]. In concrete examples we can see that the
possibility to construct the time evolution of an initial state depends on the
level of the deviation from the equilibrium state (i.e., on the information
about ”how non-equilibrium is the initial state”).

Moreover, even in the case when the initial state is a Gibbs measure, the
time evolution usually does not preserve the Gibbs property (at least, in the
class of Gibbs measures with interactions of a finite order). But we can expect
that the time evolution can be realized in a class on configuration space
measures with certain a priori bounds. This hope is supported, in particular,
by recent results on the stochastic dynamics of infinite particle systems [46].
One of the aims of this chapter is to clarify which kinds of a priori bounds can
be reasonable, in principle, for measures in the configuration space analysis
and how modifications of these bounds are reflected in the properties of the
measures (e.g., support properties etc.).

Note, that even in the case of Gibbs measures with pair potentials, mod-
ifications of classical bounds are useful. For example, a generalization of
the Ruelle bound for correlation functions, which we discussed in this chap-
ter, was already used essentially in [3] for the construction of equilibrium
gradient stochastic dynamics of continuous systems with pair singular inter-
actions. An additional motivation for the analysis developed in this chapter
is related with an important class of so called fermion and boson measures,
see e.g. [60] and references therein. Such measures are defined via explicitly
given correlation functions and do not admit clear Gibbs type descriptions.
Only one way to study the properties of such measures is based on using the
bounds on correlation functions and their consequences.

Existence problem for Gibbs measures on configuration
spaces

In the first section of Chapter 5 we consider the existence problem for Gibbs
states of continuous systems with pair interactions. Such problem was in-
vestigated in the fundamental works of R. L. Dobrushin and D. Ruelle, see
[21], [76]. Ruelle’s approach was based on the concept of superstability, and
the existence result was obtained using a priori bounds on correlation func-
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tions, which are now known as Ruelle bounds. In turn, these bounds were
established with the help of the technically rather complicated use of su-
perstability. Dobrushin’s approach was based on the consideration of the
associated lattice system with further use of the general Dobrushin criterion
for lattice systems, see [21]. It was modified in the work of Pechersky and
Zhukov, where the existence problem was analyzed under condition of the
finite range interaction (see [67]). In Chapter 5 we develop the approach of
Pechersky and Zhukov for the case of interaction with an infinite range.

In the second section of Chapter 5 we use a modified approach to the
study the existence problem for Gibbs states of continuous systems with
pair interactions, using Dobrushin approach described in [21]. Namely, we
use Dobrushin existence criterion, which is proven for the lattice models in
Zd. To apply this criterion to continuous models in Rd, we reduce such a
continuous model to an equivalent one on Zd by appropriate partition of Rd

into cubes, c.f. [67].
Comparing with [21], [67], we consider a different compact function on the

spin space, that gives us more a priori information about the class of Gibbs
measures. Similar to Dobrushin, we consider the potentials with infinite
radius of the interaction but subject to the conditions close to those used in
the papers [67], [76]. For simplicity we consider from the outset of Section
5.2 a concrete class of the potentials of the (DFR)-type (Dobrushin-Fisher-
Ruelle type), although, as shown in the Theorem 5.2.2, the existence result
holds true for more general potentials. In combination with the statements
of Chapter 4 we have more a priori properties of Gibbs measures. Under the
conditions of Dobrushin’s existence criterion with some compact function,
there exist certain a priori bounds of integrability of this function, see (5.31).
As shown in the proof of Theorem 5.2.1 this implies integrability of functions
e%|γΛ|

2
for some ρ ≥ 0, where |γΛ| denotes the number of particles in a finite

volume Λ ⊂ Rd. Starting from relations between bounds on probability
measures on configuration spaces (see Chapter 4), we obtain information
about the probability of occupation of particles in a finite volume (RPB)
(Ruelle probability bound), as well as information about supports for Gibbs
measures.

Furthermore, the use of the new compact function (5.25) allows us to
avoid the consideration of multiple configurations from the outset of the
work. We introduce a new metric (5.24) on the spin space that uses explic-
itly a compact function. The corresponding metric space is complete and
separable, see Chapter 3. In the works of [21], [67] the problem of local-
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ization of Gibbs states on the simple configuration spaces was subject of
an additional analysis. Note, that comparing with [67] we do not need the
assumption of the finite range interaction.

In the third section of the Chapter 5 we consider the case of multibody
interaction. It is well known that one of the important (and essentially
open) problems of equilibrium statistical mechanics is the construction of
Gibbs states for continuous particle systems with many-body interactions.
In the pioneering works by W. Greenberg [32] and H. Moral [64] the problem
was analyzed via Kirkwood-Salsburg equations(KSE). For sufficiently small
activity parameter z they proved existence of the unique solution of KSE, but
with rather unnatural assumptions on the potentials which, in fact, take place
only for finite range and positive interactions. In [74] the convergence of the
Brydges-Federbush type cluster expansion is proved for dilute continuous
systems with n-body (n ≤ M) interaction. The proof requires a stable
potential satisfying an integrability condition and exponential decay of the
many-body potentials at large distances. In the following paper [71] the
authors consider the system of hard-core spheres interacting via infinite group
of many body potentials (for all n) which are bounded and integrable. They
prove the convergence of the Mayer series for the pressure in thermodynamic
limit and establish the region of analyticity in the activity z. In a recent
work by V. Belitsky and E. A. Pechersky [6] the problem of existence and
uniqueness of Gibbs state in Rd with finite group of n-body interactions was
investigated using the technique of Dobrushin’s type [22], [23].

In this section we give a simple proof of the existence of Gibbs state with
infinite group of many body potentials. We establish some kind of modified
Ruelle’s bound for finite volume correlation functions. It gives a possibility
to prove existence of at least one Gibbs measure in thermodynamic limit. We
consider these results as some further development in solving of the existence
problem for general potentials of interaction.
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Prof. M. Röckner for a careful reading of the manuscript and making very
useful comments and valuable suggestions. Furthermore, for fruitful dis-
cussions and suggestions I am truly thankful to Prof. G. P. Chistyakov,



11

Prof. H.-O. Georgii, Prof. G. A. Goldin, Prof. O. Yu. Konstantinov, Prof.
Y. Kozitsky, Prof. E. A. Pechersky, Prof. O. L. Rebenko, Prof. C.-M. Ringel,
Prof. A. V. Skorokhod, Prof. A. N. Tikhomirov, Dr. T. Tsikalenko, Prof.
H. Zessin. I am also indebted to my friends W. Bartsch, Dr. A. Degenhard,
C. Draeger, Dr. M. Evstigneev, Dr. D. L. Finkelshtein, Dr. M. Grothaus,
M. Heidemann, M. Hohnisch, B. Jahns, Dr. T. Kuna, H. Litschewsky, Dr.
E. W. Lytvynov, Dr. M. J. Oliveira, W. Pauls, Dr. A. Polotsky for their
collaboration and help.



12 CHAPTER 1. INTRODUCTION



Chapter 2

General facts and notations

2.1 The space of finite configurations

Let Rd be the d-dimensional Euclidean space. By O(Rd), B(Rd) we denote
the family of all open and Borel sets, respectively. Oc(Rd), Bc(Rd) denote
the system of all sets in O(Rd), B(Rd), respectively, which are bounded.

The space of n-point configuration is

Γ
(n)
0 = Γ

(n)

0,Rd :=
{
η ⊂ Rd

∣∣ |η| = n
}
, n ∈ N0 := N ∪ {0},

where |A| denotes the cardinality of the set A. In the following, the symbol
| · | may also represent Lebesgue measure or Euclidean norm in Rd but the

meaning will always be clear from the context. Analogously the space Γ
(n)
0,Λ

is defined for Λ ∈ Bc(Rd), which we denote for short by Γ
(n)
Λ .

For every Λ ∈ Bc(Rd) one can define a mapping

NΛ : Γ
(n)
0 → N0; NΛ(η) := |η ∩ Λ|.

For short we write ηΛ := η ∩ Λ.
To define topological structure on Γ

(n)
0 we may use the following natural

mapping

symn : (̃Rd)n 7→ Γ
(n)
0 , n ∈ N, (2.1)

symn((x1, . . . , xn)) := {x1, . . . , xn},
where

(̃Rd)n =
{

(x1, . . . , xn) ∈ (Rd)n
∣∣ xk 6= xl if k 6= l

}
.

13
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Using the mapping (2.1) one can identify Γ
(n)
0 with the symmetrization of

(̃Rd)n, i.e. (̃Rd)n/Sn, where Sn is the permutation group over {1, . . . , n}.
Hence Γ

(n)
0 inherits the structure of an n ·d - dimensional manifold. Applying

this we can introduce a topology O(Γ
(n)
0 ) on Γ

(n)
0 . The corresponding Borel

σ-algebra B(Γ
(n)
0 ) coincides with the σ-algebra generated by the mappings

NΛ, i.e.,

B(Γ
(n)
0 ) = σ

(
NΛ

∣∣Λ ∈ Bc(Rd)
)
,

see e.g. [56]. Moreover, it is well known (see e.g. [63]) that a basis of the

topology O(Γ
(n)
0 ) is given by the following set

U1×̂ · · · ×̂Un :=
{
η ∈ Γ

(n)
0

∣∣∣ NU1(η) = 1, . . . , NUn(η) = 1
}
,

where U1, . . . , Un ∈ O(Rd) with Ui ∩ Uj = ∅ for i 6= j.
The space of finite configurations

Γ0 :=
⊔

n∈N0

Γ
(n)
0

is equipped with the topology O(Γ0) of disjoint union. The corresponding
Borel σ-algebra is denoted by B(Γ0). A set K ∈ B(Γ0) is compact iff there

exists an N ∈ N such that K ∩ Γ
(n)
0 is compact in Γ

(n)
0 for all n ≤ N . A set

K ⊂ Γ
(n)
0 is compact iff (symn)−1K is compact in (̃Rd)n. A set B ∈ B(Γ0)

is called bounded iff there exists a Λ ∈ Bc(Rd) and an N ∈ N such that

B ⊂ ⊔N
n=0 Γ

(n)
Λ . Any compact set is bounded in this sense, but not every

closed and bounded set is compact.

2.2 Configuration space

The configuration space is defined as

Γ :=
{
γ ⊂ Rd

∣∣ |γ ∩ Λ| <∞, for all Λ ∈ Bc(Rd)
}
.

One can identify any γ ∈ Γ with the positive Radon measure

∑

x∈γ

εx ∈ M(Rd),
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where M(Rd) stands for the set of all positive Radon measures on B(Rd).
Therefore, the configuration space Γ can be endowed with relative topology
O(Γ) as a subset of the space M(Rd) with the vague topology, i.e., the
weakest topology such that all functions

Γ 3 γ 7→ 〈f, γ〉 =
∑

x∈γ

f(x) ∈ R

are continuous for all f ∈ C0(Rd) (the set of all continuous functions on Rd

with bounded support). Moreover, well known (see e.g. [56], [63]) that a
subbasis of the topology O(Γ) is given by the sets of the form

{γ ∈ Γ| |γΛ| = n, γ∂Λ = ∅} ,

where Λ ∈ Bc(Rd), n ∈ N0, and ∂Λ is the topological boundary of Λ. This
topology is separable and metrizable, see e.g. [63]. The convergence of
the sequence (γ(n))n∈N to γ in the topology O(Γ) can be described in the
following way: (γ(n))n∈N converges to γ in O(Γ) iff NΛ(γ(n)) → NΛ(γ) for all
Λ ∈ Bc(Rd) with N∂Λ(γ) = 0.

The Borel σ-algebra B(Γ) is equal to the smallest σ-algebra for which all
the mappings NΛ : Γ → N0, NΛ(γ) := |γ ∩ Λ| are measurable, i.e.,

B(Γ) = σ(NΛ

∣∣Λ ∈ Bc(Rd))

and filtration on Γ given by

BΛ(Γ) := σ(NΛ′

∣∣Λ′ ∈ Bc(Rd), Λ′ ⊂ Λ).

For every Λ ∈ Bc(Rd) the configuration space ΓΛ is defined as

ΓΛ = {γ ∈ Γ | γ ⊂ Λ}.

It is equipped with the induced topology O(ΓΛ) of the topology O(Γ). The
Borel σ-algebra generated by O(ΓΛ) is denoted by B(ΓΛ). Obviously, the
configuration space ΓΛ can be represented as

ΓΛ =
⊔

n∈N0

Γ
(n)
Λ . (2.2)

For every Λ ∈ Bc(Rd) one can define a projection

pΛ : Γ → ΓΛ; pΛ(γ) := γΛ
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and w.r.t. this projections Γ is the projective limit of the spaces {ΓΛ}Λ∈Bc(Rd).
The following classes of function are used in the following: L0(Γ0) is the set
of all measurable functions on Γ0, L

0
ls(Γ0) is the set of functions which have

additionally a local support, i.e. G ∈ L0
ls(Γ0) if there exists Λ ∈ Bc(Rd) such

that G �Γ0\ΓΛ
= 0. L0

bs(Γ0) denotes the measurable functions with bounded
support, B(Γ0) the set of bounded measurable functions. On Γ we consider
the set of a cylinder functions FL0(Γ), i.e. the set of all measurable function
G ∈ L0(Γ) which are measurable w.r.t. BΛ(Γ) for some Λ ∈ Bc(Rd). These
functions are characterized by the following relation: F (γ) = F �ΓΛ

(γΛ).
Next we would like to describe some facts from Harmonic analysis on

configuration space based on [38, 39].
The following mapping between functions on Γ0, e.g. L0

ls(Γ0), and func-
tions on Γ, e.g. FL0(Γ), plays a key role in our further considerations:

KG(γ) :=
∑

ξbγ

G(ξ), γ ∈ Γ,

where G ∈ L0
ls(Γ0), see e.g. [56, 57]. The summation in the latter expression

is extend over all finite subconfigurations of γ, in symbols ξ b γ. K is linear,
positivity preserving, and invertible, with

K−1F (η) :=
∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (2.3)

Lemma 2.2.1 For all Λ ∈ Bc(Rd), F ∈ FL0(Γ, BΛ(Γ))

K−1F (η) = 11ΓΛ
(η)K−1F (η), ∀η ∈ Γ0.

Proof.

K−1F (η) =
∑

ξ⊂η

(−1)|η\ξ|F (ξ) =
∑

ξ1⊂ηΛ

∑

ξ2⊂ηRd\Λ

(−1)|η\(ξ1∪ξ2)|F (ξ1 ∪ ξ2) =

=
∑

ξ2⊂ηRd\Λ

(−1)|ξ2|
∑

ξ1⊂ηΛ

(−1)|η\ξ1|F (ξ1) = 0|ηRd\Λ
|K−1F (ηΛ) =

= 11ΓΛ
(η)K−1F (η). �
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One can introduce a convolution

? : L0(Γ0) × L0(Γ0) → L0(Γ0) (2.4)

(G1, G2) 7→ (G1 ? G2) (η)

:=
∑

(ξ1,ξ2,ξ3)∈P3
∅
(η)

G1(ξ1 ∪ ξ2) G2(ξ2 ∪ ξ3),

where P3
∅ (η) denotes the set of all partitions (ξ1, ξ2, ξ3) of η in 3 parts, i.e., all

triples (ξ1, ξ2, ξ3) with ξi ⊂ η, ξi ∩ ξj = ∅ if i 6= j, and ξ1 ∪ ξ2 ∪ ξ3 = η. It has
the property that for G1, G2 ∈ L0

ls(Γ0) we have K (G1 ? G2) = KG1 · KG2.
Due to this convolution we can interpret K transform as Fourier transform
in configuration space analysis, see also [12].

Let M1
fm(Γ) be the set of all probability measures µ which have finite

local moments of all orders, i.e.
∫
Γ
|γΛ|nµ(dγ) < +∞ for all Λ ∈ Bc(Rd)

and n ∈ N0. A measure ρ on Γ0 is called locally finite iff ρ(A) < ∞ for all
bounded sets A from B(Γ0), the set of such measures is denoted by Mlf(Γ0).
One can define a transform K∗ : M1

fm(Γ) → Mlf(Γ0), which is dual to the
K-transform, i.e., for every µ ∈ M1

fm(Γ), G ∈ Bbs(Γ0) we have
∫

Γ

KG(γ)µ(dγ) =

∫

Γ0

G(η) (K∗µ)(dη).

ρµ := K∗µ we call the correlation measure corresponding to µ.
As shown in [38] for µ ∈ M1

fm(Γ) and any G ∈ L1(Γ0, ρµ) the series

KG(γ) :=
∑

ηbγ

G(η), (2.5)

is µ-a.s. absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and
∫

Γ0

G(η) ρµ(dη) =

∫

Γ

(KG)(γ)µ(dγ). (2.6)

Fix a non-atomic and locally finite measure σ on (Rd,B(Rd)). For any
n ∈ N the product measure σ⊗n can be considered by restriction as a measure

on (̃Rd)n and hence on Γ
(n)
0 . The measure on Γ

(n)
0 we denote by σ(n).

The Lebesgue-Poisson measure λzσ on Γ0 is defined as

λzσ :=
∞∑

n=0

zn

n!
σ(n).
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Here z > 0 is the so called activity parameter. The restriction of λzσ to ΓΛ

will be also denoted by λzσ.
The Poisson measure πzσ on (Γ,B(Γ)) is given as the projective limit of

the family of measures {πΛ
zσ}Λ∈Bc(Rd), where πΛ

zσ is the measure on ΓΛ defined
by

πΛ
zσ := e−zσ(Λ)λzσ.

A measure µ ∈ M1
fm(Γ) is called locally absolutely continuous w.r.t. πzσ

iff µΛ := µ ◦ p−1
Λ is absolutely continuous with respect to πΛ

zσ = πzσ ◦ p−1
Λ for

all Λ ∈ BΛ(Rd). In this case ρµ = K∗µ is absolutely continuous w.r.t λzσ.
We denote by

kµ(η) :=
dρµ
dλσ

(η), η ∈ Γ0.

The functions
k(n)
µ : (Rd)n −→ R+ (2.7)

k(n)
µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}), if (x1, . . . , xn) ∈ (̃Rd)n

0, otherwise

are well known correlation functions of statistical physics, see e.g [76], [75].

2.3 The space of multiple configurations

The space of multiple configurations is defined as

Γ̈ =

{
(γ, n), γ ⊂ Rd, n : γ → N

∣∣∣∣∣
∑

x∈γΛ

n(x) <∞ for all Λ ∈ Bc(Rd)

}
,

where γΛ = γ ∩ Λ, Λ ∈ Bc(Rd).
Multiple configuration can be interpreted in the following way. The set γ

is a set of positions from Rd where particles are located and for every x ∈ γ
the number n(x) is the number of particles located at the position x. In the
sequel, notation γ ∈ Γ̈ will be understood as (γ, n) ∈ Γ̈. Let Λ ∈ Bc(Rd) and
γ ∈ Γ̈. We use the following notations: γΛ = γ ∩Λ and σΛ = (γΛ, nΛ), where
nΛ = n|γΛ . For any Λ ∈ Bc(Rd) and γ ∈ Γ̈ we denote by |γΛ| or |σΛ| the
number of particles of the configuration (γ, n) in Λ, i.e

|σΛ| = |γΛ| :=
∑

x∈γΛ

n(x).
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We say that (γ1, n1) ∈ Γ̈ is included in (γ2, n2) if γ1 ⊂ γ2 and n1(x) ≤ n2(x)
for x ∈ γ1. If γ1∩γ2 = ∅, then the union (γ1, n1)∪(γ2, n2) is the configuration
(γ3, n3), where γ3 = γ1 ∪ γ2 and for x ∈ γ3

n3(x) =

{
n1(x), if x ∈ γ1

n2(x), if x ∈ γ2.

The empty configuration θ is the configuration θ = (∅, 0), i.e. γ = ∅ and
n ≡ 0. We define (γ1, n1)∩(γ2, n2) = (γ3, n3), where γ3 = γ1∩γ2 and n3(x) =
min {n1(x), n2(x)} for x ∈ γ3. If γ1 ∩ γ2 = ∅ we write (γ1, n1) ∩ (γ2, n2) = θ.
As in Section 2.2, one can identify any γ ∈ Γ̈ with the positive Radon measure

∑

x∈γ

n(x)εx ∈ M(Rd).

Therefore, the space of multiple configurations Γ̈ can be endowed with rela-
tive topology O(Γ̈) as a subset of the space M(Rd) with the vague topology.
This topology is separable and metrizable, see e.g. [63]. Moreover, since
for any Λ ∈ Bc(Rd) and σ = (γ, n), the sum

∑
x∈γ∩Λ n(x) is finite, a Borel

σ-algebra B(Γ̈) on Γ̈ is generated by

A(m)
Λ :=

{
γ ∈ Γ̈

∣∣∣ |γΛ| = m
}
,

which are called cylindrical sets. For every Λ ∈ Bc(Rd) the configuration
space Γ̈Λ is defined as

Γ̈Λ = {γ ∈ Γ̈ | γ ⊂ Λ}.
It is equipped with the induced topology O(Γ̈Λ) of the topology O(Γ̈). Ob-
viously, ΓΛ ⊂ Γ̈Λ for any Λ ∈ Bc(Rd).

The space of m-point multiple configuration is

Γ̈
(m)

0,Rd = Γ̈
(m)
0 :=

{
(η, n) ∈ Γ̈, η ⊂ Rd

∣∣∣ |σ| =
∑

x∈η

n(x) = m

}
, m ∈ N0.

Analogously, the space Γ̈
(m)
0,Λ is defined for Λ ∈ Bc(Rd), which we denote for

short by Γ̈
(m)
Λ .

The space of finite multiple configurations

Γ̈0 :=
⊔

m∈N0

Γ̈
(m)
0 .
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Obviously, the space Γ̈Λ can be represented as

Γ̈Λ =
⊔

m∈N0

Γ̈
(m)
Λ . (2.8)

The Lebesgue-Poisson measure λz for cylindrical sets is defined as

λz({σ ∈ Γ̈ | |σΛ| = m}) =
zm

m!
|Λ|m,

where z > 0 is the so-called activity parameter and the symbol | · | represents
Lebesgue measure. We are able to extend the measure λz to the whole σ-
algebra B(Γ̈) using the equality

λz(A(n1)
Λ1

∩ A(n2)
Λ2

) = λz(A(n1)
Λ1

)λz(A(n2)
Λ2

), Λ1 ∩ Λ2 = ∅.

The measure λz restricted to Γ̈Λ is also denoted by λz.



Chapter 3

Detailed structure and some
topological properties of the
configuration space Γ

3.1 Metrical structures on configuration space

It is well known from [63] that the space of multiple configurations Γ̈ is
a Polish space. Let ρ be a metric on Γ̈ such that (Γ̈, ρ) is separable and
complete.

Lemma 3.1.1 (c.f. [83]) The configuration space Γ is a Gδ-set in Γ̈.

Proof. Let {Ki}i≥1 be an increasing sequence of compact sets such that

⋃

i≥1

Ki = Rd.

Then Γ can be represented as

Γ =
⋂

i≥1

[
Γ̈ \ Γ(Ki)

]
,

where
Γ(Ki) = {γ ∈ Γ̈ | ∃x ∈ Ki : n(x) ≥ 2}.

The only thing to show now is that for any i ≥ 1 the set Γ(Ki) is vaguely
closed.

21
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Let i ∈ N be arbitrary and {γn}n≥1 be a sequence from Γ(Ki), such that
γn → γ, n → ∞ vaguely. Let f ∈ C0(Rd) be arbitrary and fixed. Then, for
every n ≥ 1 there exists xn ∈ Ki such that the following holds

〈f, γn〉 ≥ 2f(xn). (3.1)

BecauseKi is compact in Rd, there exists a convergent subsequence {xnm}m≥1

of the sequence {xn}n≥1. Moreover, the correspondent limit x ∈ Ki. There-
fore, using continuity of the function f , inequality (3.1) yields

〈f, γ〉 ≥ 2f(x).

The function f was fixed to be arbitrary, hence, the latter inequality holds
for any f ∈ C0(Rd), which implies x ∈ γ. Taking the function f ∈ C0(Rd)
such that f(x) 6= 0 and 〈f, γ〉 = n(x)f(x) we will have n(x) ≥ 2, which
means that Γ(Ki) is vaguely closed. �

Remark 3.1.1 It is well known from [17] that any Gδ-set of the Polish space
is a Polish space. Therefore, Γ is a Polish space.

Consider ψ : Rd 7→ (0, 1], ψ ∈ L1(Rd) ∩ C(Rd) and a continuous decreasing
α : R+ 7→ R+, such that

(Iα) α0 := limt→0+ α(t) = +∞;

(IIα) α+ := limt→+∞ α(t) ≥ 1;

The set of all pairs of functions (α, ψ) which satisfy the conditions above will
be denoted by F .

Let I = {Ik}k∈N
be an arbitrary collection of functions from C0(Rd) such

that Ik : Rd 7→ [0, 1], supp Ik ⊂ Λk , k ≥ 1, and for all x ∈ Λk : Ik+1(x) 6=
0, k ≥ 1. We let ψk := ψIk.

Define

Γα, ψ =



γ ∈ Γ

∣∣∣∣∣∣

∑

{x,y}⊂γ

ψ(x)α(|x− y|)ψ(y) <∞



 , (α, ψ) ∈ F

and
Eα,ψ(γ) =

∑

{x,y}⊂γ

ψ(x)α(|x− y|)ψ(y), γ ∈ Γα,ψ.
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For any k ≥ 1 we define also

Eα,ψ
k (γ) =

∑

{x,y}⊂γ

ψk(x)α(|x− y|)ψk(y), γ ∈ Γ.

Lemma 3.1.2 Let {γ(n)}n≥1 be a sequence from Γ, such that

γ(n) → γ, n→ ∞

in the vague topology. Then

∀x ∈ γ ∃ {xink
}k≥1, 1 ≤ i ≤ n(x) : xink

∈ γ(nk), k ≥ 1, 1 ≤ i ≤ n(x)

and
xink

→ x, k → ∞, 1 ≤ i ≤ n(x).

Proof. Let x ∈ γ be arbitrary. There exists N ∈ N such that

Ḃ 1
k
(x) ∩ γ = ∅, ∀k ≥ N,

where

Ḃ 1
k
(x) = B 1

k
(x) \ {x}, B 1

k
(x) =

{
y ∈ Rd

∣∣∣∣ |x− y| ≤ 1

k

}
.

Let us consider the sequence of functions fk ∈ C0(Rd), k ≥ N such that

11B 1
k+1

(x) ≤ fk ≤ 11B 1
k

(x), k ≥ N.

For any k ≥ N there exists N1 = N1(k) ∈ N such that for any n ≥ N1:

|γ(n)
B 1

k+1
(x)| − n(x) ≤ 〈fk, γ(n)〉 − 〈fk, γ〉 <

1

2
(3.2)

and N2 = N2(k) ∈ N such that for any n ≥ N2:

|γ(n)
B 1

k
(x)| − n(x) ≥ 〈fk, γ(n)〉 − 〈fk, γ〉 > −1

2
. (3.3)

Inequalities (3.29) and (3.3) give us

∀ k ≥ N + 1 ∃N ?(k) = max {N1(k − 1), N2(k)} :
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∀n ≥ N ?(k) : |γ(n)
B 1

k
(x)| = n(x).

Set
M1 = N ?(N + 1), Ml = max {Ml−1 + 1, N ?(N + l)}, l ≥ 2.

Let
γ

(Ml)
B 1

N+l
(x) = {x1

l , . . . , x
n(x)
l }, l ≥ 1.

Obviously, for any 1 ≤ i ≤ n(x)

xil → x, l → ∞. �

Lemma 3.1.3 For any (α, ψ) ∈ F and k ≥ 1 the function E α,ψ
k (γ) is

continuous on Γ.

Proof. Let γ(n) → γ ∈ Γ, n→ ∞ vaguely and let γΛk
= {x1, . . . , xp}. Set

l = min
1≤i<j≤p

|xi − xj|.

Suppose that γΛc
k
6= ∅, then we define

2r = inf
x∈γΛc

k
, y∈Λk

|x− y| > 0.

Let ε > 0 be an arbitrary and fixed. A straightforward arguments insures
that for any ε̄ > 0 function α is uniformly continuous on [ε̄, ∞). Because
function ψk is continuous with compact support, there exists δ > 0 such that
for all x, y ∈ Rd, r1, r2 ∈ [l/3, ∞) :

|x− y| < δ, |r1 − r2| < 2δ

holds
|ψk(x) − ψk(y)| < ε and |α(r1) − α(r2)| < ε. (3.4)

Denote δ? = min {δ, l/3, r}. Vague convergence of γ(n) to γ, when n → ∞
implies

∀ f ∈ C0(R
d) ∃N ∈ N : ∀n ≥ N |〈f, γ(n)〉 − 〈f, γ〉| < 1

2
. (3.5)

Define
Λk+r =

{
x ∈ Rd | distRd(x, Λk) < r

}
.
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Applying (3.5) to the functions fi ∈ C0(Rd), 1 ≤ i ≤ p+ 2 of the form

fi ≤ 11Bδ? (xi), xi ∈ supp fi, 1 ≤ i ≤ p

and
11Λk

≤ fp+1 ≤ 11Λk+r
, 11Λk+r

≤ fp+2 ≤ 11Λk+2r
,

we have
∃N? ∈ N : ∀n ≥ N ? |γΛk+r

| = |γ(n)
Λk+r

| = p.

Moreover, for any 1 ≤ i ≤ p and any n ≥ N ?

∃!xni ∈ γ(n) such that |xni − xi| < δ?. (3.6)

Therefore, for any 1 ≤ i < j ≤ p and any n ≥ N ?

|ψk(xi)α(|xi − xj|)ψk(xj) − ψk(x
n
i )α(|xni − xnj |)ψk(xnj )| ≤ (3.7)

≤ α(l)|ψk(xi)−ψk(xni )|+α(l)|ψk(xj)−ψk(xnj )|+ |α(|xi−xj|)−α(|xni −xnj |)|.
Using (3.4), (3.6) and bound

|xni − xnj | ≥ |xi − xj| − |xi − xni | − |xj − xnj | ≥ l − l/3 − l/3 = l/3, n ≥ N ?

we can estimate (3.7) by
ε(2α(l) + 1).

Finally, for any n ≥ N ?

|Eα, ψ
k (γ(n)) − Eα,ψ

k (γ)| ≤ εp(p− 1)(2α(l) + 1)

2
.

We omit the case γΛc
k

= ∅ because of its triviality. �

Consider a function ρα,ψ : Γ × Γ → R+ which is defined by

ρα,ψ(γ1, γ2) = ρ(γ1, γ2) +
∞∑

k=1

1

2k
|Eα,ψ

k (γ1) − Eα,ψ
k (γ2)|

1 + |Eα, ψ
k (γ1) − Eα,ψ

k (γ2)|
. (3.8)

Obviously, this function is a metric on configuration space Γ.

Theorem 3.1.1 For any (α, ψ) ∈ F metric space (Γ, ρα,ψ) is complete and
separable. Moreover topology on Γ generated by metric ρα,ψ is equivalent to
the vague topology on Γ.
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Proof. Let (α, ψ) ∈ F be arbitrary and let γ(n) → γ ∈ Γ, n → ∞ vaguely.
Because vague topology and topology generated by metric ρ are equivalent,
we have

ρ(γ(n), γ) → 0, n→ ∞.

Using Lemma 3.1.3, for any k ∈ N we have

|Eα, ψ
k (γ(n)) − Eα,ψ

k (γ)| → 0, n→ ∞

yielding
ρα,ψ(γ(n), γ) → 0, n→ ∞. (3.9)

Hence, the collection of all closed sets in the topology generated by ρα,ψ and
the vague topology is the same, which means that corresponding topologies
are equivalent.

It is well known from [63] that vague topology on Γ is separable. There-
fore, metric space (Γ, ρα,ψ) is separable.

Let {γ(n)}n≥1 be a Cauchy sequence in (Γ, ρα,ψ). Then, {γ(n)}n≥1 is also
a Cauchy sequence in (Γ̈, ρ). The completeness of (Γ̈, ρ) implies existence
of γ ∈ Γ̈ such that ρ(γ(n), γ) → 0, n → ∞. If γ ∈ Γ then as was shown
before we have (3.9). Suppose that there exists x ∈ γ such that n(x) > 1.
Let x ∈ Λk̂ for some k̂ ∈ N. Using Lemma 3.1.2 we obtain

∃ {xink
}k≥1, i = 1, 2 : xink

∈ γ(nk), k ≥ 1, i = 1, 2

and
xink

→ x, k → ∞, i = 1, 2.

Therefore,
|x1
nk

− x2
nk
| → 0, k → ∞. (3.10)

Let us denote
ψ? = inf

x∈Λk̂

ψ2
k̂+1

(x).

As for any x ∈ Λk̂ : ψk̂+1(x) 6= 0, the number ψ? > 0. The fact that

{γ(n)}n≥1 is a Cauchy sequence implies

∃N1 ∈ N : ∀ k ≥ N1, m ≥ N1 |Eα, ψ

k̂+1
(γ(nk)) − Eα,ψ

k̂+1
(γ(m))| < ψ?. (3.11)

We fix m ≥ N1 and define a number

C = (ψ?)−1Eα, ψ

k̂+1
(γ(m)) <∞.
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From the property (Iα) and (3.10) we conclude

∃N2 ∈ N : ∀ k ≥ N2, α(|x1
nk

− x2
nk
|) > C + 2,

which yields the following estimate

Eα,ψ

k̂+1
(γ(nk)) > ψ?(C + 2), k ≥ N2. (3.12)

Finally, with the help of (3.11), for any k ≥ max {N1, N2} we obtain

Eα, ψ

k̂+1
(γ(nk)) < ψ? + ψ?C,

which contradicts to (3.12). Hence, for any x ∈ γ : n(x) = 1. This concludes
the proof. �

We consider a function ρΛ : ΓΛ × ΓΛ → R+, Λ ∈ Bc(Rd) defined by

ρΛ(η1, η2) =

{
1

2diam(Λ)|η1|
minπ

∑|η1|
i=1 |xi − yπ(i)|, if |η1| = |η2|

1, otherwise.
(3.13)

In (3.13) minimum is taken over the set of all permutations π of the set
{1, . . . , |η1|}, configuration η1 = {x1, . . . , x|η1|} and η2 = {y1, . . . , y|η2|}. As

shown in [67] for any Λ ∈ Bc(Rd) the function ρΛ is a metric on Γ̈Λ and, hence,
on ΓΛ. Moreover, for any compact set Λ ∈ Bc(Rd) metric space (Γ̈Λ, ρ

Λ) is
complete and separable, although, metric space (ΓΛ, ρ

Λ) is not complete.
Let α : R+ 7→ R+ be an arbitrary continuous decreasing function, which

satisfies conditions Iα and IIα. One can introduce the Hamiltonian which
corresponds to potential α(|x|):

Eα(η) =
∑

{x,y}⊂η

α(|x− y|), η ∈ Γ0, |η| ≥ 2.

Consider a function dα : ΓΛ × ΓΛ → R+, Λ ∈ Bc(Rd) which is defined by

dα(η1, η2) = ρΛ(η1, η2) + |Eα(η1) − Eα(η2)| , η1, η2 ∈ ΓΛ. (3.14)

Proposition 3.1.1 For any Λ ∈ Bc(Rd) the function dα is a metric on ΓΛ.
Moreover, if Λ is a closed set then the metric space (ΓΛ, dα) is complete and
separable.
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Proof. Symmetry and triangle inequality of dα follow straightforward. If
η1 = η2 then dα(η1, η2) = 0 by the definition of dα. If dα(η1, η2) = 0 then
ρΛ(η1, η2) = 0 and η1 = η2. Therefore, (ΓΛ, dα) is a metric space.

Let {ηn}n≥1 be arbitrary Cauchy sequence in the metric space (ΓΛ, dα).
Then {ηn}n≥1 will be also a Cauchy sequence in (ΓΛ, ρ

Λ). As ΓΛ ⊂ Γ̈Λ for
any Λ ∈ Bc(Rd) and (Γ̈Λ, ρ

Λ) is a complete metric space, there exists σ ∈ Γ̈Λ

such that
ρΛ (ηn, σ) → 0, n→ 0. (3.15)

Moreover, from the definition of ρΛ follows

∃N0 ∈ N ∀n ≥ N0 : |ηn| = |σ| =: p.

Let ηn = {xn1 , . . . , xnp}, n ≥ N0. Then from (3.15) we have convergence of ηn
to σ in the following sense:

xnk → xk, n→ ∞, 1 ≤ k ≤ p,

where xk, 1 ≤ k ≤ p are all positions of particles of the configuration σ,
which may be repeated. We will show that σ ∈ ΓΛ. Suppose that this is not
true, i.e.

∃ 1 ≤ k < j ≤ p : xk = xj.

This implies
|xnk − xnj | → 0, n→ ∞. (3.16)

The sequence {ηn}n≥1 is a Cauchy sequence in (ΓΛ, dα). Hence,

∃N1 ∈ N, N1 ≥ N0 ∀n ≥ N1, m ≥ N1 :

∣∣∣∣∣
∑

1≤i<r≤p

α(|xni − xnr |) −
∑

1≤i<r≤p

α(|xmi − xmr |)
∣∣∣∣∣ < 1.

Let us fix m ≥ N1 and define number

C =
∑

1≤i<r≤p

α(|xmi − xmr |) <∞.

From the property α(0+) = +∞ and (3.16) follows

∃N2 ∈ N ∀n ≥ N2 : α(|xnk − xnj |) > C + 2. (3.17)
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Hence, ∑

1≤i<r≤p

α(|xni − xnr |) > C + 2. (3.18)

Denote N := max {N1N2}. Then for any n ≥ N

∣∣∣∣∣
∑

1≤i<r≤p

α(|xni − xnr |)
∣∣∣∣∣ ≤

∣∣∣∣∣
∑

1≤i<r≤p

α(|xni − xnr |) −
∑

1≤i<r≤p

α(|xmi − xmr |)
∣∣∣∣∣+

+
∑

1≤i<r≤p

α(|xmi − xmr |) < 1 + C.

The latter inequality contradicts to (3.18). Hence, σ ∈ ΓΛ. From the conti-
nuity of the function α follows

dα(ηn, σ) → ∞, n→ ∞.

We have proved that (ΓΛ, dα) is a complete metric space.
Obviously, the set ΓΛQ

, with ΛQ := Λ ∩ Qd, will be a countable dense
subset in ΓΛ. Therefore, (ΓΛ, dα) is also separable. �

3.2 Relatively compact sets and compact func-

tions on configuration space

The description of relatively compact subsets of the configuration space Γ
in the vague topology was obtained in the work [35]. Below, we propose an
alternative proof of the corresponding criterion which is based on the metric
structures defined before.

Theorem 3.2.1 A set S ⊂ Γ is relatively compact in the vague topology, iff
for any compact set Λ ∈ Bc(Rd) holds

sup
γ∈S

|γΛ| <∞ and inf
γ∈S

min
{x, y}⊂γΛ

|x− y| > 0. (3.19)

Proof. Let S ⊂ Γ be relatively compact in the vague topology. Then, it is
relatively compact in Γ with respect to the metric ρα,ψ. From the Hausdorff
criterion it follows that for any ε > 0 there exists a finite ε-net for S in
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(Γ, ρα, φ). Hence, S is relatively compact in (Γ̈, ρ). It is well known from
[63], that in this case, the condition

sup
γ∈S

|γΛ| <∞

is fulfilled. Assume that there exists a compact set Λ? ∈ Bc(Rd) such that

inf
γ∈S

min
{x, y}⊂γΛ?

|x− y| = 0. (3.20)

Let k? ∈ N be such that Λ? ⊂ Λk?. The condition (3.20) implies

∃ {γ(k)}k≥1 ⊂ S : ∀ k ≥ 1 ∃xk, yk ∈ γ
(k)
Λ? |xk − yk| <

1

k
.

Therefore,

Eα,ψ
Λk?+1

(γ(k)) ≥ α

(
1

k

)
ψ?, (3.21)

where
ψ? = inf

x∈Λk?
ψ2
k?+1(x) > 0.

The right hand side of (3.21) tends to infinity, when k → ∞. But Lemma
3.1.3 implies Eα,ψ

Λk?+1
is continuous on Γ and hence bounded on S. Therefore,

assumption (3.20) does not hold.
Vice versa, suppose that assumptions (3.19) are fulfilled. ¿From the

general criterion of the relative compactness on the space of multiple con-
figurations Γ̈ (see [63]) it follows that set S ⊂ Γ is relatively compact
in Γ̈. Therefore, given an arbitrary {γ(n)}n≥1 ⊂ S, we may assume that
γ(n) → γ ∈ Γ̈, n → ∞ vaguely (otherwise we will consider the subsequence
of {γ(n)}n≥1 which converge to γ due to the relative compactness of S in Γ̈).
What remains to be shown is that γ ∈ Γ. Suppose that there exists x ∈ γ
such that n(x) > 1. Let x ∈ Λk? for some k? ∈ N. Using Lemma 3.1.2 we
obtain

∃ {xink
}k≥1, i = 1, 2 : xink

∈ γ(nk), k ≥ 1, i = 1, 2

and
xink

→ x, k → ∞, i = 1, 2.

Therefore,
|x1
nk

− x2
nk
| → 0, k → ∞. (3.22)
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Moreover,
∃K ∈ N ∀k ≥ K : xink

∈ Λk?+1, i = 1, 2.

Finally, for the compact set Λk?+1 in Rd we have

inf
γ∈S

min
{x, y}⊂γΛk?+1

|x− y| ≤ inf
k≥K

|x1
nk

− x2
nk
| = 0.

This contradicts the second assumption in (3.19). Consequently, γ ∈ Γ,
which yields relative compactness of S in Γ. �

Definition 3.2.1 The measurable function F : Γ 7→ R+ ∪ {+∞} is called
compact if for any C > 0 the set

{γ ∈ Γ | F (γ) ≤ C}

is relatively compact in Γ.

Proposition 3.2.1 For any (α, ψ) ∈ F and an arbitrary D > 0 the set

{γ ∈ Γ |Eα, ψ(γ) ≤ D} (3.23)

is a relatively compact in (Γ, ρα,ψ).

Proof. Let (α, ψ) ∈ F be an arbitrary and fixed. From the definition of
function ψ for any Λ ∈ Bc(Rd) follows

∃CΛ > 0 : ψ(x) ≥ CΛ, ∀x ∈ Λ.

Therefore, for any γ ∈ Γ such that Eα,ψ(γ) ≤ D we have

C2
Λ

∑

{x,y}⊂γ

α(|x− y|) ≤
∑

{x,y}⊂γ

ψ(x)α(|x− y|)ψ(y) ≤ D,

which give us the following bounds:

|γΛ| ≤ max

{
1,

2
√
D

CΛ

}

and

∀ {x, y} ⊂ γΛ : |x− y| > α−1

(
D

C2
Λ

)
.

Hence, the conditions of Theorem 3.2.1 for the set (3.23) are fulfilled. �
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Corollary 3.2.1 Let us extend function Eα,ψ(γ) on the whole Γ setting

Eα,ψ(γ) = +∞, γ ∈ Γ \ Γα, ψ.

Then, for any (α, ψ) ∈ F the function Eα, ψ(γ) is compact on Γ.

Remark 3.2.1 Let ψ1 : Rd 7→ (0, 1], ψ1 ∈ L1(Rd)∩C(Rd). It is not difficult
to show that for any (α, ψ) ∈ F the function

V(γ) = Eα,ψ(γ) + 〈ψ1, γ〉, γ ∈ Γ

is compact on Γ.
In some dynamical models such functions are used as Lyapunov functions,

see [45].

Proposition 3.2.2 For any C > 0 and any closed Λ ∈ Bc(Rd) the set

{η ∈ ΓΛ | Eα(η) ≤ C}

is a relatively compact in ΓΛ.

Proof. Let C > 0 be fixed. First let us notice that

∀ η ∈ {η ∈ ΓΛ | Eα(η) ≤ C} : |η| ≤ max {1, 2
√
C}. (3.24)

This follows from simple inequality for η ∈ {η ∈ ΓΛ | Eα(η) ≤ C} : |η| ≥ 2

|η|2
4

≤ |η|(|η| − 1)

2
≤

∑

{x, y}⊂η

α(|x− y|) ≤ C. (3.25)

Using the Hausdorff criterion, our aim will be to show that for

{η ∈ ΓΛ | Eα(η) ≤ C}

there exists a finite ε-net in ΓΛ. Let ε > 0 be given. A straightforward
arguments insures that for any ε̄ > 0 function α uniformly continuous on
[ε̄, ∞). Therefore,

∃δ > 0 ∀x, y ∈ [α−1(C)/2, ∞), |x− y| < δ :

|α(x) − α(y)| < ε

2C
. (3.26)
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Because Λ is a compact, for any ε? > 0 there exists a finite ε?-net for Λ. In
particular, for ε? = min {diam(Λ)ε, α−1(C)/4, δ/4} we have

∃G, |G| <∞, ∀x ∈ Λ ∃ y ∈ G :

|x− y| < min {diam(Λ)ε, α−1(C)/4, δ/4}. (3.27)

Now we consider the set ΓG. Clear, that this set will be finite. Moreover,
from (3.27) we have

∀ η = {x1, . . . , xp} ∈ {η ∈ ΓΛ | Eα(η) ≤ C} ∃ {yk}1≤k≤p ⊂ G :

|xk − yk| < min {diam(Λ)ε, α−1(C)/4, δ/4}, 1 ≤ k ≤ p. (3.28)

We define η? := {y1, . . . , yp}. We will show that η? ∈ ΓG. To do this we have
to show that

∀ i, j : 1 ≤ i < j ≤ p yi 6= yj .

Suppose that ∃m, n : 1 ≤ m < n ≤ p such that ym = yn. Then

|xm − xn| ≤ |xm − ym| + |ym − yn| + |yn − xn| = |xm − ym| + |yn − xn| <

< 2 min {diam(Λ)ε, α−1(C)/4, δ/4} < α−1(C)/2. (3.29)

But
α(|xm − xn|) ≤

∑

1≤i<j≤p

α(|xi − xj|) ≤ C (3.30)

and hence |xm−xn| ≥ α−1(C). We have contradiction with (3.29). Therefore,
η? ∈ ΓG. As the conclusion to (3.29) and (3.30) we have ∀ i, j : 1 ≤ i < j ≤ p

|yi − yj| ≥ |xi − xj| − |xi − yi| − |yj − xj| ≥

≥ α−1(C) − 2 min {diam(Λ)ε, α−1(C)/4, δ/4} ≥ α−1(C)/2. (3.31)

Eventually, we have only to show that d(η, η?) < ε.

dα(η, η
?) =

1

2diam(Λ)|η|

p∑

i=1

|xi − yi| +
∣∣∣∣∣
∑

1≤i<j≤p

[α(|xi − xj|) − α(|yi − yj|)]
∣∣∣∣∣ .

Using (3.28) we have

dα(η, η
?) <

1

2diam(Λ)p
diam(Λ)εp+

∣∣∣∣∣
∑

1≤i<j≤p

[α(|xi − xj|) − α(|yi − yj|)]
∣∣∣∣∣ =



34 CHAPTER 3. TOPOLOGICAL PROPERTIES

=
ε

2
+

∣∣∣∣∣
∑

1≤i<j≤p

[α(|xi − xj|) − α(|yi − yj|)]
∣∣∣∣∣ .

Inequality (3.30), (3.31) and bound (3.28) give us

∀ i, j : 1 ≤ i < j ≤ p : |yi − yj |, |xi − xj| ∈ [α−1(C)/2, ∞). (3.32)

and

||xi − xj| − |yi − yj|| ≤ |(xi − yi) − (xj − yj)| ≤ |xi − yi| + |xj − yj| ≤

≤ 2 min {diam(Λ)ε, α−1(C)/4, δ/4} ≤ δ.

Finally, with (3.24), (3.25) and (3.26) we have

dα(η, η
?) <

ε

2
+
p(p− 1)

2

ε

2C
<
ε

2
+
ε

2
= ε.

Therefore, for any C > 0 the set

{η ∈ ΓΛ | Eα(η) ≤ C}

is relatively compact in ΓΛ. �

Corollary 3.2.2 For any closed Λ ∈ Bc(Rd) function

hα(η) = eE
α(η) (3.33)

is a compact function on ΓΛ.



Chapter 4

On relations between a priori
bounds for measures on
configuration spaces

4.1 A priori bounds

Let σ be Lebesgue measure and ‖x‖ = maxk |xk|, x ∈ Rd. For Λ ∈ Bc(Rd),
let

lΛ = sup
x, y∈Λ

‖x− y‖

and |Λ| denote the Lebesgue measure of Λ.

Let V : Γ
(2)
0 → R be a pair potential.

Definition 4.1.1 A potential V is called stable (see [76]) iff there exists a
constant B ≥ 0 such that for any Λ ∈ Bc(Rd) and any configuration γ ∈ ΓΛ

holds ∑

{x,y}⊂γ

V (x, y) ≥ −B|γ|. (4.1)

In the following we assume that all potentials under consideration are stable.

Consider µ ∈ M1
fm(Γ) locally absolutely continuous w.r.t. πzσ and three

type of bounds on it.

We will say that a measure µ satisfies the generalized Ruelle bound with
potential V if the following holds:

35
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• (GRB)V : The correlation function kµ(η) satisfies the inequality

kµ(η) ≤ C |η| exp


−

∑

{x,y}⊂η

V (x, y)


, η ∈ Γ0, (4.2)

with some C > 0.

We will say that a measure µ satisfies the Ruelle’s probability bound if
the following holds:

• (RPB): For any g > 0 there exist constants α > 0 and δ ∈ R (may be
g dependent) such that for any Λ ∈ Bc(Rd), lΛ ≥ g and N ∈ N0

µ({γ | |γΛ| ≥ N }) ≤ exp

{
−αN

2

l dΛ
+ δl dΛ

}
. (4.3)

We will say that a measure µ satisfies the Dobrushin’s exponential bound
of type λ > 0 and order p > 0 if the following holds:

• (DEB)(λ, p): For every Λ ∈ Bc(Rd) there exists a constant CΛ > 0 such
that ∫

Γ

eλ|γΛ|
p

µ(dγ) < CΛ. (4.4)

Remark 4.1.1 Obviously, for any Λ ∈ Bc(Rd) with lΛ = 0 the bound (4.4)
holds automatically. Therefore, in the sequel we will consider (DEB)(λ, p)

only for Λ ∈ Bc(Rd), lΛ > 0.

Definition 4.1.2 A potential V is called superstable in the sense of Ginibre
(see [31, 58]) iff for any g > 0 there exist A > 0 and B ≥ 0 (may be
g dependent) such that for any Λ ∈ Bc(Rd), lΛ ≥ g and any configuration
γ ∈ ΓΛ holds

∑

{x,y}⊂γ

V (x, y) ≥ A
|γ|2
l dΛ

−B|γ|. (4.5)

In the sequel, we will write sometimes αg, δg, Ag, Bg, instead of α, δ, A, B,
to emphasize that these constants depend on g.

Theorem 4.1.1
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1. For any λ > 0 and p ∈ (0, 1]
(GRB)V ⇒ (DEB)(λ, p).

2. Let V be superstable in the sense of Ginibre. Then
2.1. (GRB)V ⇒ (RPB),
2.2. for any λ > 0 and p ∈ (1, 2)

(GRB)V ⇒ (DEB)(λ, p),
2.3. for any λ > 0 and Λ ∈ Bc(Rd), 0 < l dΛ ≤ AlΛλ

−1

(GRB)V ⇒ (DEB)(λ, 2).
3. For any λ > 0 and p ∈ (0, 2)

(RPB) ⇒ (DEB)(λ, p).

4. For any λ > 0 (DEB)(λ, 2) with CΛ ≤ eδ l
d
Λ , Λ ∈ Bc(Rd), δ > 0 implies

(RPB).

Proof.
1. Using (2.3), stability of V and according to the bound on the correla-

tion functions we have
∫

ΓΛ

∣∣K−1
[
eλ|η|

p]∣∣ ρµ(dη) =

∫

ΓΛ

∣∣∣∣∣
∑

ξ⊂η

(−1)|η\ξ|eλ|ξ|
p

∣∣∣∣∣ ρµ(dη) ≤

≤
∞∑

n=0

zn

n!

∫

Λn

∑

ξ⊂{x1,...,xn}

eλ|ξ|
p

Cne−
∑

{x,y}⊂{x1,...,xn} V (x,y)dx1 . . . dxn ≤

≤
∞∑

n=0

zn

n!

∫

Λn

∑

ξ⊂{x1,...,xn}

eλ|ξ|CneBndx1 . . . dxn =
∞∑

n=0

[2zC|Λ|eλ+B]n

n!
=

= exp {2zC|Λ|eλ+B}.
Because of Lemma 2.2.1 and (2.6) we conclude

∫

Γ

eλ|γΛ|
p

µ(dγ) =

∫

ΓΛ

K−1
[
eλ|η|

p]
ρµ(dη) ≤ exp {2zC|Λ|eλ+B}.

2. Now suppose that V is superstable in the sense of Ginibre.
2.1. Define SΛ := {γ ∈ Γ| |γΛ| ≥ N}, Λ ∈ Bc(Rd). Let g > 0 be any and

given. Then, using (2.3) for any Λ ∈ Bc(Rd), lΛ ≥ g we have
∫

ΓΛ

∣∣K−1 [11SΛ
(η)]
∣∣ ρµ(dη) =
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=

∫

ΓΛ

∣∣∣∣∣
∑

ξ⊂η

(−1)|η\ξ|11SΛ
(ξ)

∣∣∣∣∣ ρµ(dη) =

∫

ΓΛ

∣∣∣∣∣∣
11SΛ

(η)
∑

ξ⊂η,|ξ|≥N

(−1)|η\ξ|

∣∣∣∣∣∣
ρµ(dη).

According to the bound on the correlation functions and the superstability
for given g, the latter expression can be estimated by

∫

ΓΛ

11SΛ
(η)C |η|

∑

ξ⊂η,|ξ|≥N

e−
∑

{x,y}⊂η V (x,y)λzσ(dη) ≤

≤
∫

ΓΛ

11SΛ
(η)(2C)|η|e−A|η|

2l−d
Λ +B|η|λzσ(dη) ≤ exp

{
−AN

2

l dΛ
+ 2zCeBl dΛ

}
.

In the last inequality we have used the fact that integration actually extends
only over all η ∈ ΓΛ : |η| ≥ N .

Finally, Lemma 2.2.1 and (2.6) give us

µ({γ| |γΛ| ≥ N}) =

∫

ΓΛ

K−1 [11SΛ
(η)] ρµ(dη) ≤ exp

{
−AN

2

l dΛ
+ 2zCeBl dΛ

}
.

2.2. Let Λ ∈ Bc(Rd), lΛ > 0 be arbitrary and fixed. Using (2.3) we have

∫

ΓΛ

∣∣K−1
[
eλ|η|

p]∣∣ ρµ(dη) =

∫

ΓΛ

∣∣∣∣∣
∑

ξ⊂η

(−1)|η\ξ|eλ|ξΛ|
p

∣∣∣∣∣ ρµ(dη) ≤

≤
∫

ΓΛ

∑

ξ⊂η

exp {λ|ξ|p}ρµ(dη).

The estimation for the correlation functions and the superstability of V for
g = lΛ imply the following bound for the latter integral

∫

ΓΛ

∑

ξ⊂η

eλ|ξ|
p−
∑

{x,y}⊂η V (x,y)C |η|λzσ(dη) ≤

≤
∫

ΓΛ

∑

ξ⊂η

eλ|ξ|
p−Al−d

Λ |η|2+B|η|C |η|λzσ(dη) ≤

≤
∫

ΓΛ

(2C)|η|eB|η|eλ|η|
p−Al−d

Λ |η|2λzσ(dη) ≤ e2zC|Λ|eB+C?
Λ, (4.6)
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where C?
Λ > 0 is some constant s.t.

λ|η|p − A

l dΛ
|η|2 ≤ C?

Λ.

Such constant exists, because p ∈ (1, 2) and limn→∞(λnp − A
|Λ|
n2) = −∞.

Therefore, using Lemma 2.2.1 and (2.6) we have

∫

Γ

eλ|γΛ|
p

µ(dγ) =

∫

ΓΛ

K−1
[
eλ|η|

p]
ρµ(dη) ≤ e2zC|Λ|eB+C?

Λ.

2.3. Doing the same as in 2.2 for any Λ ∈ Bc(Rd), 0 < lΛ ≤ AlΛλ
−1 we

obtain ∫

ΓΛ

∣∣∣K−1
[
eλ|η|

2
]∣∣∣ ρµ(dη) ≤

≤
∞∑

n=0

(zC)n

n!

∫

Λn

∑

ξ⊂{x1,...,xn}

eλ|ξ|
2−AlΛ

l−d
Λ n2+BlΛ

ndx1 . . . dxn. (4.7)

Because l dΛ ≤ AlΛλ
−1, (4.7) is bounded by

∞∑

n=0

(zC)n

n!

∫

Λn

∑

ξ⊂{x1...xn}

eλ[|ξ|2−n2]+BlΛ
ndx1 . . . dxn ≤

≤
∞∑

n=0

(2zC|Λ|eB)n

n!
≤ e2zC|Λ|e

BlΛ .

The statement is now a direct consequence of Lemma 2.2.1 and (2.6).

3. To prove this part of the theorem we need the following lemma which
follows directly from the definition of distribution function for a random
variable.

Lemma 4.1.1 For any measurable ξ : Γ → R+ and differentiable f : R+ →
R+ such that f(0) = 0 we have

∫

Γ

f ◦ ξ(γ)µ(dγ) =

∫ ∞

0

f ′(x)µ({γ ∈ Γ | ξ(γ) > x})dx.
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Proof. As

∫

Γ

f ◦ ξ(γ)µ(dγ) =

∫ ∞

0

f(x)µξ(dx)

and

µ({γ ∈ Γ | ξ(γ) > x}) = µξ((x, ∞))

where µξ(B) = µ({γ ∈ Γ | ξ(γ) ∈ B}), B ∈ B(R) we need only to show that

∫ ∞

0

f(x)µξ(dx) =

∫ ∞

0

f ′(x)µξ((x, ∞))dx.

Using theorem Tonelli we have

∫ ∞

0

f(x)µξ(dx) =

∫ ∞

0

∫ x

0

f ′(y)dyµξ(dx) =

=

∫ ∞

0

f ′(y)

∫ ∞

y

µξ(dx)dy =

∫ ∞

0

f ′(y)

(∫ ∞

y

µξ(dx)

)
dy =

=

∫ ∞

0

f ′(y)µξ((y, ∞))dy. �

Using Lemma 4.1.1 for any Λ ∈ Bc(Rd), lΛ > 0 we have

∫

Γ

eλ|γΛ|
p

µ(dγ) =

∫ ∞

0

µ(
{
γ ∈ Γ

∣∣ eλ|γΛ|p > y
}
)dy = (4.8)

∫ ∞

0

µ

({
γ

∣∣∣∣∣ |γΛ| >
(ln y)

1
p

λ
1
p

})
dy.

Due to (RPB) for g = lΛ we bound (4.8) by

∫ exp

[
(2λ2/pl d

Λα
−1)

p
2−p

]

0

1dy +

∫ ∞

exp

[
(2λ2/pl dΛα

−1)
p

2−p

] exp

{
−α(ln y)2/p

λ2/pl dΛ
+ δl dΛ

}
dy.

≤ exp [2λ2/pl dΛα
−1]

p
2−p + eδl

d
Λ

∫ ∞

exp [2λ2/pl d
Λα

−1]
p

2−p

y
−α(ln y)

2
p−1

λ2/pl d
Λ dy ≤
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≤ exp [2λ2/pl dΛα
−1]

p
2−p + eδl

d
Λ

∫ ∞

exp [2λ2/pl d
Λα

−1]
p

2−p

y−2dy ≤

≤ exp [2λ2/pl dΛα
−1]

p
2−p + exp [δl dΛ − (2λ2/pl dΛα

−1)
p

2−p ] ≤

≤ 2 exp [δl dΛ + (2λ2/pl dΛα
−1)

p
2−p ].

4. Let (DEB)(λ, 2) holds for some λ > 0 with CΛ ≤ eδ l
d
Λ , Λ ∈ Bc(Rd),

δ > 0 and g > 0 be arbitrary and given.
For every Λ ∈ Bc(Rd), lΛ ≥ g consider a function gΛ(x) = eαl

−d
Λ x2

, x ≥ 0,
0 ≤ α ≤ λgd. This function is increasing and

∫
Γ
gΛ(|γΛ|)µ(dγ) ≤ CΛ (it

follows from (DEB)(λ, 2) and inequality lΛ ≥ g). Thus, the generalized
Chebyshev inequality

P (ξ ≥ ε∗) ≤ Ef(ξ)

f(ε∗)
, (4.9)

where f be increasing and positive function, ε∗ > 0, shows that for any
Λ ∈ Bc(Rd), lΛ ≥ g:

µ({γ | |γΛ| ≥ N }) ≤
∫
Γ
gΛ(|γΛ|)µ(dγ)

eαN
2l−d

Λ

≤ CΛe
−αN2l−d

Λ ≤ e−αN
2l−d

Λ +δ l d
Λ .�

4.2 Support properties

For each i ∈ Zd, let

Qi = {r ∈ Rd| ik − 1/2 < rk ≤ ik + 1/2, k = 1, . . . , d}.

Define |γi| = |γ∩Qi|. For k ∈ N, let Λk be the hypercube of the sidelength
2k− 1 centered at the origin in Rd. Actually, Λk is then a union of (2k− 1)d

unit cubes of the form Qi. Note, that |Λk| = l dΛk
= (2k− 1)d, k ∈ N. We will

also sometimes regard Λk as a subset of Zd by letting Λk represent Λk ∩ Zd.
For i ∈ Zd let ln+ ‖i‖ = max{1, ln ‖i‖}.

Following Ruelle [76] a measure µ is called tempered if µ is supported by
the set

R∞ =
∞⋃

N=1

RN ,
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where RN = {γ ∈ Γ | ∑i∈Λk
|γi|2 ≤ N 2|Λk|, ∀ k ≥ 1}.

Consider two subsets of the configuration space:

P∞ =
∞⋃

N=1

PN ,

where PN = {γ ∈ Γ | |γΛk
| ≤ N |Λk|, ∀ k ≥ 1} and

U∞ =
∞⋃

n=1

Un,

where Un = {γ ∈ Γ | |γi| ≤ n(ln+ ‖i‖) 1
2 , ∀i ∈ Zd}.

Obviously, R∞ ⊂ P∞ and for any tempered measure µ with (RPB), it is
also possible to show that µ(U∞) = 1 (see [37, 54]).

Proposition 4.2.1 (RPB) implies µ(P∞) = 1.

Proof. Obviously,

P∞ =
∞⋃

N=1

⋂

k≥1

{γ ∈ Γ | |γΛk
| ≤ N |Λk|}

and
Γ\P∞ =

⋂

N≥1

⋃

k≥1

{γ ∈ Γ | |γΛk
| > N |Λk|}.

Note that for any k ≥ 1

{γ ∈ Γ | |γΛk
| > N |Λk|} ⊃ {γ ∈ Γ | |γΛk

| > (N + 1)|Λk|}, N ≥ 1.

Using σ - semi-additivity and monotonicity of the measure µ we have

µ(Γ\P∞) = lim
N→∞

µ

(
⋃

k≥1

{γ ∈ Γ | |γΛk
| > N |Λk|}

)
≤

≤ lim
N→∞

∑

k≥1

µ ({γ ∈ Γ | |γΛk
| > N |Λk|}) . (4.10)

Due to (RPB) one can show that the right-hand side of (4.10) can be esti-
mated by

lim
N→∞

∑

k≥1

e−(αN2−δ)|Λk| = lim
N→∞

∑

k≥1

e−(αN2−δ)(2k−1)d ≤
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≤ lim
N→∞

e−(αN2−δ)

1 − e−(αN2−δ)
= 0. �

Remark 4.2.1 Proposition 4.2.1 holds, if (RPB) is replaced by the following
weaker probability bound:

there exist constants α > 0 and δ ∈ R such that for any N ≥ N0, N0 ∈ N
and k ∈ N

µ({γ | |γΛk
| ≥ N |Λk|}) ≤ exp {−(αN − δ)|Λk|}. (4.11)

Proposition 4.2.2 (RPB) implies µ(U∞) = 1.

Proof. Define U i
n := {γ ∈ Γ | |γi| ≤ n(ln+ ‖i‖) 1

2}, i ∈ Zd. Then

U∞ =

∞⋃

n=1

⋂

i∈Zd

U i
n,

Γ\U∞ =
⋂

n≥1

⋃

i∈Zd

{γ ∈ Γ | |γi| > n(ln+ ‖i‖) 1
2}.

Note that

{γ ∈ Γ | |γi| > n(ln+ ‖i‖) 1
2} ⊃ {γ ∈ Γ | |γi| > (n+ 1)(ln+ ‖i‖) 1

2}, n ≥ 1.

Using σ - semi-additivity and monotonicity of the measure µ we have

µ(Γ\U∞) = lim
n→∞

µ

(
⋃

i∈Zd

{γ ∈ Γ | |γi| > n(ln+ ‖i‖) 1
2}
)

≤

≤ lim
n→∞

∑

i∈Zd

µ
(
{γ ∈ Γ | |γi| > n(ln+ ‖i‖) 1

2}
)
. (4.12)

Due to (RPB) we estimate (4.12) by

lim
n→∞

∑

i∈Zd

e−(αn2(ln+ ‖i‖)−δ) =

= lim
n→∞

(
e−αn

2+δ +
∞∑

i=1

[(2i+ 1)d − (2i− 1)d]e−(αn2(ln+ i)−δ)

)
≤
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≤ lim
n→∞

(
2∑

i=1

2d(2i+ 1)d−1e−(αn2−δ) +
∞∑

i=3

2d(2i+ 1)d−1e−(αn2 ln i−δ)

)
≤

≤ lim
n→∞

22d−1deδ
∞∑

i=3

id−1e−αn
2 ln i = lim

n→∞
22d−1deδ

∞∑

i=3

id−1i−αn
2 ≤

≤ lim
n→∞

22d−1deδ
∫ ∞

2

xd−1−αn2

dx = lim
n→∞

23d−1deδ
2−αn

2

αn2 − d
= 0. �

Remark 4.2.2 We will say that a measure µ satisfy (RPB)p, p > 0 if the
following holds:

• (RPB)p: For any g > 0 there exist constants α > 0 and δ ∈ R (may
be g dependent) such that for any Λ ∈ Bc(Rd), lΛ ≥ g and N ≥ N0 for
some N0 ∈ N

µ({γ | |γΛ| ≥ N }) ≤ exp

{
−αN

p

l dΛ
+ δl dΛ

}
. (4.13)

Similar to the proof of Proposition 4.2.2 one can show that for any p > 0 the
fulfillment of (RPB)p on the sets Qi, i ∈ Zd implies µ(U p

∞) = 1. Here

Up
∞ =

∞⋃

n=1

Up
n,

Up
n = {γ ∈ Γ | |γi| ≤ n(ln+ ‖i‖) 1

p , ∀i ∈ Zd}.

4.3 Stronger consequences of generalized Ru-

elle bound

In this section we describe further conclusions which follow from (GRB)V . As
before one can consider the partition of Rd on cubes, but now with sidelength
equal to g > 0. Namely, for each i ∈ Zd and any g > 0 let

Qg
i = {r ∈ Rd| g(ik − 1/2) < rk ≤ g(ik + 1/2), k = 1, . . . , d}

and |γi, g| = |γ ∩Qg
i |.
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By Jg(Rd) we denote all finite unions of cubes of the form Qg
i (such

sets are used in the construction of the Jordan measure). Sometimes we will
regard Λ ∈ Jg(Rd) as a subset of Zd by letting Λ represent {i ∈ Zd |Qg

i ⊂ Λ}.
Let W : Γ0 → R be a measurable increasing function, i.e. for γ, γ ′ ∈ Γ0

s.t. γ ⊂ γ ′ : W (γ) ≤W (γ ′).
We will say that a measure µ satisfies the (RPB)WV if the following holds:

• (RPB)WV : For any g > 0 there exist constants B > 0 and δ ∈ R (may
be g dependent) such that for any Λ ∈ Jg(Rd), any configuration γ ∈ ΓΛ

and L ∈ R+

µ({γ | W (γΛ) ≥ L}) ≤ exp {−L+ δ|Λ|}, (4.14)

and ∑

{x,y}⊂γ

V (x, y) −W (γ) ≥ −B|γ|. (4.15)

Proposition 4.3.1 Suppose that there exists a measurable increasing func-
tion W : Γ0 → R which satisfies (4.15). Then (GRB)V implies (RPB)WV .

Proof. Let g > 0 and Λ ∈ Jg(Rd) be arbitrary. Define S := {γ ∈ Γ|W (γΛ) ≥
L}. Then using (4.15) we have

11S(η)e
−
∑

{x,y}⊂η V (x,y) ≤ 11S(η)e
−W (η)+B|η| ≤ e−L+B|η|, η ∈ ΓΛ. (4.16)

Therefore, similarly to the proof of the Theorem 4.1.1(2.1) we obtain

µ({γ| W (γΛ) ≥ L}) =

∫

Γ

11S(γ)µ(dγ) =

=

∫

ΓΛ

∑

ξ⊂η

(−1)|η\ξ|11S(ξ)ρµ(dη) =

∫

ΓΛ

11S(η)
∑

ξ⊂η, ξ∈S

(−1)|η\ξ|ρµ(dη).

According to the bound on the correlation function and (4.16) the latter
expression can be estimate by

∫

ΓΛ

11S(η)C
|η|

∑

ξ⊂η, ξ∈S

e−
∑

{x,y}⊂η V (x,y)λzσ(dη) ≤

≤ e−L
∫

ΓΛ

(2C)|η|eB|η|λzσ(dη) = e−L+2zCeB |Λ|. �
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Remark 4.3.1 For any 0 ≤ ε < 1 inequality (4.14) implies
∫

Γ

eW (γΛ)1−ε

µ(dγ) < CΛ, Λ ∈ Bc(Rd)

with some CΛ > 0.
Indeed, let g > 0 be given. We increase any Λ ∈ Bc(Rd) to a set

ΛJ ∈ Jg(Rd) which is a union of all cubes Qi,g, which have nonempty inter-
section with Λ. Then using Lemma 4.1.1 and the fact that the function W
is increasing we have

∫

Γ

eW (γΛ)1−ε

µ(dγ) ≤
∫ ∞

0

µ(
{
γ
∣∣∣ eW (γΛJ

)1−ε

> y
}

)dy =

=

∫ ∞

0

µ
({
γ
∣∣∣W (γΛJ

) > (ln y)
1

1−ε

})
dy.

Inequality (4.14) implies the following bound for the latter integral:

∫ exp
[
2(1−ε)ε−1

]

0

1dy +

∫ ∞

exp [2(1−ε)ε−1]
e−(ln y)(1−ε)−1

+δ|ΛJ |dy = (4.17)

= exp
[
2(1−ε)ε−1

]
+ eδ|ΛJ |

∫ ∞

exp [2(1−ε)ε−1]
y−(ln y)ε(1−ε)−1

dy ≤

≤ exp
[
2(1−ε)ε−1

]
+ eδ|ΛJ |

∫ ∞

exp [2(1−ε)ε−1 ]
y−2dy ≤

≤ exp
[
2(1−ε)ε−1

]
+ exp

[
δ|ΛJ | −

(
2(1−ε)ε−1

)]
≤

≤ 2 exp [δ|ΛJ | + 2(1−ε)ε−1

]. �

In the literature different non-equivalent versions of the Ruelle’s probabil-
ity bound are known. The definition of (RPB) we used here can be found in
[37], [54]. Besides this bound, Ruelle in [76] used also another one. Namely,
we will say that a measure µ satisfies the strong Ruelle’s probability bound
if the following holds:

• (SRPB): For any g > 0 there exist constants α > 0 and δ ∈ R (may be
g dependent) such that for any Λ ∈ Jg(Rd) and N ∈ N

µ

({
γ

∣∣∣∣∣
∑

i∈Λ

|γi,g|2 ≥ N 2|Λ|
})

≤ exp {−(αN 2 − δ)|Λ|}. (4.18)
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As shown in [76] (SRPB) implies (RPB).

Definition 4.3.1 A potential V is called superstable in the sense of Ruelle
[76] if for any g > 0 there exist A > 0, B ≥ 0 (may be g dependent) such
that for any Λ ∈ Jg(Rd) and any γ ∈ ΓΛ

∑

{x,y}⊂γ

V (x, y) ≥
∑

i∈Λ

[A|γi,g|2 − B|γi,g|]

Lemma 4.3.1 Ruelle’s supestability implies Ginibre’s supestability.

Proof. Let g > 0 be given. We first increase, as before, any Λ ∈ Bc(Rd), lΛ ≥
g to a set ΛJ ∈ Jg(Rd) which is a union of all cubes Qi,g, which have
nonempty intersection with Λ. Then for any γ ∈ ΓΛ ⊂ ΓΛJ

, Ruelle’s su-
pestability gives

∑

{x,y}⊂γ

V (x, y) ≥
∑

i∈ΛJ

A|γi,g|2 − B|γ| ≥ A
gd|γ|2
|ΛJ |

−B|γ|.

Because lΛ ≥ g, one can show that for large κ > 1 the following inequality
holds

|ΛJ | ≤ κl dΛ

and the assertion of the lemma is now obvious. �

Proposition 4.3.2 Let V be superstable in the sense of Ruelle. Then

(GRB)V ⇒ (SRPB).

Proof. It follows immediately from Proposition 4.3.1 by choosing W (γ) =
A
∑

i∈Λ |γi,g|2. �

Proposition 4.3.3 (SRPB) implies µ(R∞) = 1.

Proof. Let, as above, Λk denote the hypercube of sidelength 2k− 1 centered
at the origin in Rd. Obviously,

R∞ =
∞⋃

N=1

⋂

k≥1

{
γ ∈ Γ

∣∣∣∣∣
∑

i∈Λk

|γi|2 ≤ N 2|Λk|
}
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and

Γ\R∞ =
⋂

N≥1

⋃

k≥1

{
γ ∈ Γ

∣∣∣∣∣
∑

i∈Λk

|γi|2 > N 2|Λk|
}
.

Note that for any k ≥ 1 and N ∈ N

{
γ ∈ Γ

∣∣∣∣∣
∑

i∈Λk

|γi|2 > N 2|Λk|
}

⊃
{
γ ∈ Γ

∣∣∣∣∣
∑

i∈Λk

|γi|2 > (N + 1)2|Λk|
}
.

Using σ - semi-additivity and monotonicity of the measure µ, we have

µ(Γ\R∞) = lim
N→∞

µ

(
⋃

k≥1

{
γ ∈ Γ

∣∣∣∣∣
∑

i∈Λk

|γi|2 > N 2|Λk|
})

≤

≤ lim
N→∞

∑

k≥1

µ

({
γ ∈ Γ

∣∣∣∣∣
∑

i∈Λk

|γi|2 > N 2|Λk|
})

. (4.19)

Due to (SRPB) for g = 1 we bound (4.19) by

lim
N→∞

∑

k≥1

e−(αN2−δ)|Λk| = lim
N→∞

∑

k≥1

e−(αN2−δ)(2k−1)d ≤

≤ lim
N→∞

e−(αN2−δ)

1 − e−(αN2−δ)
= 0. �

Remark 4.3.2 Proposition 4.3.3 holds if in (SRPB) we substitute (4.18)
by the following weaker probability bound:

for any N ≥ N0, N0 ∈ N,

µ

({
γ

∣∣∣∣∣
∑

i∈Λ

|γi,g|2 ≥ N 2|Λ|
})

≤ exp {−(αN − δ)|Λ|}. (4.20)

Corollary 4.3.1 Let V be superstable in the sense of Ruelle. Then

(GRB)V ⇒ µ(R∞) = µ(P∞) = µ(U∞) = 1.
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4.4 Examples

In this section we consider some class of examples known from the statistical
physics to which the results of this article can be applied. One of them is
related to the so-called Gibbs states (see [27] for more details) and another
with states constructed by a given family of correlation functions (see [5]).

Example 1. (Gibbs states with pair potentials).
The Hamiltonian EV : Γ0 → R which corresponds to the potential V

(even function on Rd) is defined by

EV (η) =
∑

{x,y}⊂η

V (x− y), η ∈ Γ0, |η| ≥ 2

Having in mind applications in mathematical physics, we will always assume
positivity of V for small distances. More precisely, we suppose that there
exists g, 0 < g <∞, such that V (x) ≥ 0 for |x| ≤ g.

For fixed V we will write for short E = EV and for Λ ∈ Bc(Rd), η ∈ ΓΛ

we will sometimes write EΛ(η) instead of E(η).
For a given γ̄ ∈ Γ define the interaction energy between η ∈ ΓΛ and

γ̄Λc = γ̄ ∩ Λc, Λc = Rd\Λ as

WΛ(η|γ̄) =
∑

x∈η, y∈γ̄∩Λc

V (x− y). (4.21)

Define
EΛ(η|γ̄) = EΛ(η) +WΛ(η|γ̄).

Let Λ ∈ Bc(Rd) and let γ̄ ∈ Γ. The finite volume Gibbs state with
boundary configuration γ̄ for E and z > 0 is

µΛ(dη| γ̄) =
exp {−EΛ(η| γ̄)}

ZΛ(γ̄)
λzσ(dη),

where

ZΛ(γ̄) =

∫

ΓΛ

exp {−EΛ(η| γ̄)}λzσ(dη).

This finite volume Gibbs state is well defined if for any Λ ∈ Bc(Rd), η ∈ ΓΛ

and γ̄ ∈ Γ the interaction energyWΛ(η|γ̄) does not become −∞ and partition
function ZΛ(γ̄) is finite. The assumptions, under which these conditions hold
true will be introduced later.
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When γ̄ = ∅, let µΛ(dη|∅) ≡ µΛ(dη).
Let {πΛ} denote the specification associated with z and the Hamiltonian

E (see [69]), which is defined on Γ by

πΛ(A| γ̄) =

∫

A′

µΛ(dη| γ̄)

where A′ = {η ∈ ΓΛ : η ∪ γ̄Λc ⊂ A}, A ∈ B(Γ).
A probability measure µ on Γ is called a Gibbs state for E and z if

µ(πΛ(A| γ̄)) = µ(A)

for every A ∈ B(Γ) and every Λ ∈ Bc(Rd).

This relation is well known (DLR)-equation (Dobrushin-Lanford-Ruelle
equation), see [27] for more details. The class of all Gibbs states we denote
by G(V, z).

About the potential V we will assume:

Assumption 4.4.1

1.Regularity: ∫

Rd

|1 − e−V (x)|σ(dx) <∞.

2. V is superstable in the sense of Ruelle.

3. V is lower regular, e.g. there exists a positive function ψ on the
nonnegative integers such that ψ(m) ≤ Km−λ for m ≥ 1, and for any Λ1

and Λ2 which are each finite unions of unit cubes of the form Qi, with γ ⊂ Λ1

and γ̄ ⊂ Λ2,

W (γ| γ̄) ≥ −
∑

i∈Λ1

∑

j∈Λ2

ψ(‖i− j‖)|γi||γ̄j |

where K > 0, λ > d are fixed.

Let

V +(x) = inf
x̃:0<|x̃|≤|x|

V (x̃), V −(x) = min(0, inf
x̃:|x−x̃|≤ 3

2
g
V (x̃)),

V̄ (x) = max(0, sup
x̃:|x−x̃|≤ 3

2
g

V (x̃)),
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where the symbol | · | represent Euclidean norm in Rd, and let

C1 =
1

2
(vd)

−1

∫

0<|x|<g

V +(x)[1 + g−1|x|]−d−1dx,

C2 = −nn/2
∫

Rd

V −(x)dx,

where vd is the volume of a d - dimensional sphere of radius 1.

Assumption 4.4.2 ([21])
1. The inequalities C2 < C1, C2 <∞ hold.
2. For some D <∞ :

∫
x:|x|≥D

V̄ (x)dx <∞.

It is well known from [76] that under Assumption 4.4.1 the set of tempered
Gibbs states is nonempty. Let us denote this set by Gt(V, z).

Analogous existence result for Gibbs states under Assumption 4.4.2 can
be found in [21].

The following propositions collect some known results concerning Gibbs
measures.

Proposition 4.4.1 ([3]) Suppose that Assumption 4.4.1 is fulfilled. Then

for any µ ∈ Gt(V, z) the correlation functions k
(n)
µ (x1, . . . , xn) satisfy the

following inequality

k(n)
µ (x1, . . . , xn) ≤ Cn exp

[
−
∑

i<j

V (xi − xj)

]
. (4.22)

with some C > 0.

Proposition 4.4.2 ([37]) Suppose that Assumptions 4.4.1.2, 4.4.1.3 hold.

Let Λ be a finite union of unit cubes of the form Qi. Suppose Λ̃ ⊃ Λ, Λ̃ ∈
Bc(Rd). For any µ ∈ Gt(V, z) there exist constants α > 0 and δ, depending

only on z (independent of Λ̃ and Λ), such that for any N ∈ N0

µΛ̃({γ | |γΛ| ≥ N |Λ|}) ≤ exp {−(αN 2 − δ)|Λ|}. (4.23)

Proposition 4.4.3 ([21]) Suppose that Assumption 4.4.2 holds and let ϕ(y),
0 < y < ∞, be a positive monotonically increasing convex function is such
that for some h > 0, L <∞

ϕ(m) ≤ L exp {m2(H(m) − g−dC2 − h)},m = 0, 1, . . . ,
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where

H(m) =
1

2
g−d(vd)

−1

∫

x:g(m
1
d −1)−1≤|x|≤g

V +(x)[1 + g−1|x|]−d−1dx

Then for any µ ∈ G(V, z) there exists a constant CΛ(ϕ) such that for any

Λ̃ ∈ Bc(Rd) the following inequality holds

∫

Γ
Λ̃

ϕ(|γΛ|)µΛ̃(dγ) < CΛ(ϕ), for all Λ ⊂ Λ̃, Λ ∈ Bc(Rd). (4.24)

The conditions on function ϕ are satisfied if

ϕ(m) = exp {dm2}, 0 < d < (C1 − C2g
−d).

Corollary 4.4.1 Under Assumption 4.4.1 for any µ ∈ Gt(V, z) we have:

• (RPB) (Ruelle’s probability bound (4.23)).

• Dobrushin’s bound (4.24) for all bounded Λ ⊂ Λ̃ such that lΛ ≤ gd−
1
2 ,

• Dobrushin’s bound (4.24) for function ϕ(x) = eλx
p
, λ > 0, p ∈ (0, 2) .

Under Assumptions 4.4.1.2, 4.4.1.3 for any µ ∈ Gt(V, z) we have Do-
brushin’s bound for function ϕ(x) = eλx

p
, λ > 0, p ∈ (0, 2).

The conditions of Proposition 4.4.3 imply (RPB).

Proof. We will prove only that under Assumption 4.4.1 for any µ ∈
Gt(V, z) we have Dobrushin’s bound for every bounded Λ ⊂ Λ̃ such that

lΛ ≤ gd−
1
2 and that the conditions of Proposition 4.4.3 imply (RPB). The

proof of the remaining statements in this corollary is a direct consequence of
Theorem 4.1.1 for measure µ = µΛ̃.

Using (2.3) and an estimate of the function ϕ we have

∫

ΓΛ

∣∣K−1[ϕ(|η|)]
∣∣ ρµ(dη) ≤

∫

ΓΛ

∑

ξ⊂η

ϕ(|ξ|)ρµΛ
(dη) ≤

≤ L

∫

ΓΛ

∑

ξ⊂η

exp {|ξ|2H(|ξ|) − g−dC2 − h}ρµΛ
(dη). (4.25)
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The estimate on the correlation functions implies the bound for (4.25)

L
∞∑

n=0

zn

n!

∫

Λn

∑

ξ⊂{x1,...,xn}

e|ξ|
2H(|ξ|)−

∑
i<j V (xi−xj)Cndx1 . . . dxn. (4.26)

We bound e−
∑

i<j V (xi−xj) using the following result from [21]: there exists

m0 ≥ 2d s.t. for any Λ ∈ Bc(Rd), lΛ ≤ gd−
1
2 and η ∈ ΓΛ, |η| ≥ m0 holds

EV (η) ≥ |η|2H(|η|).
Therefore, we can estimate (4.26) by

Lem
2
0H(|m0|)

m0∑

n=0

(2zC|Λ|)n
n!

+ L
∞∑

n=m0+1

(2zC|Λ|)n
n!

≤ Le2zC|Λ|+m2
0H(|m0|).

The equalities (2.2.1) and (2.6) give
∫

Γ
Λ̃

ϕ(|ηΛ|)µΛ̃(dη) =

∫

ΓΛ

K−1[ϕ(|ηΛ|)]ρµ(dη) ≤ Le2zC|Λ|+m2
0H(|m0|).

To show that conditions of Proposition 4.4.3 imply (RPB) one should
take in the proof of Theorem 4.1.1(4) the constant λ = C1 − C2g

−d and use
the fact from [21] that CΛ ≤ eδ|Λ| for some δ > 0. �

Remark 4.4.1 Let us note that the Poisson measure πzσ satisfy (4.11). Re-
ally, we have

πzσ({γ| |γΛ| ≥ N |Λ|}) =

=
∑

n≥N |Λ|

e−z|Λ| (z|Λ|)n
n!

= e−z|Λ|(z|Λ|)n0

∞∑

n=0

(z|Λ|)n
n!

n!

(n+ n0)!
, (4.27)

where n0 is the smallest integer greater than or equal to N |Λ|. Using inequal-
ity

n!

(n+ n0)!
≤ 1

n0!
, n ≥ 1,

and Stirling formula we can bound (4.27) by

zn0|Λ|n0

n0!
≤ zn0

|Λ|n0

e−n0n0
n0

≤ (ze)n0

Nn0
.

Considering N ≥ e2z the latter expression can be estimated by e−N |Λ|.
Moreover, this implies πzσ(P∞) = πzσ(U

1
∞) = 1. �
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Remark 4.4.2 The Poisson measure πzσ does not satisfy (RPB). Indeed,
suppose that (RPB) for πzσ holds. Then from Theorem 4.1.1 we have that
πzσ satisfy (DEB)(1, 2−ε), where 0 < ε < 1. But by the definition of the
Poisson measure

∫

Γ

e|γΛ|
2−ε

πzσ(dγ) = e−z|Λ|
∞∑

n=0

en
2−ε (z|Λ|)n

n!
,

where the latter series obviously diverges.
So, our assumption that the Poisson measure satisfies (RPB) is false.�

Example 2. Let V : Rd×Rd → R∪{∞} be a nonnegative pair potential
and the function kVα : Γ0 → R defined by

kVα (η) = α|η|e−E
V (η) = α|η|e−

∑
{x, y}⊂η V (x, y), η ∈ Γ0, |η| ≥ 2, (4.28)

kVα (η) = α, |η| = 1,

kVα (∅) = 1.

with some constant α > 0.
Assume that c := supx∈Rd

∫
Rd(1−e−V (x, y))dy <∞. As shown in [5] under

assumption αce < 1 there exists probability measure µ on B(Γ) s.t.

kµ(η) =
dρµ
dλσ

(η) = kVα (η), η ∈ Γ0,

where σ denotes the Lebesgue measure on Rd. Moreover, the bound 0 ≤
kµ(η) ≤ α|η|, η ∈ Γ0 implies the uniqueness (c.f. [38]).

The measure µ is not Gibbs state associated with a pair potential. More-
over, it is difficult to show that µ corresponds to a potential in an explicit
form. Even if this is true, such a potential should include interactions of
all orders. In spite of this, we know that correlation functions of µ satisfy
(GRB)V . Therefore, all results of this chapter connected with (GRB)V are
applicable to this measure. In particular, we have information about support
properties and probability bounds depending on the behavior of V on the
diagonal.



Chapter 5

Existence problem for Gibbs
measures on configuration
spaces

On Rd one can consider the following norms

‖x‖p =

(
d∑

k=1

|xk|p
) 1

p

, 1 ≤ p <∞

and
‖x‖∞ = max

1≤k≤d
|xk|, (5.1)

where x = (x1, . . . , xd) ∈ Rd.
In the whole Chapter 5 we will use only norm (5.1). Therefore, for brevity

we will use notation | · | instead of ‖ · ‖∞.
For Λ ∈ Bc(Rd), let

lΛ = sup
x, y∈Λ

|x− y|.

As in Section 4.3, for every i ∈ Zd we define a cube

Qi =

{
r ∈ Rd

∣∣ g
(
ik −

1

2

)
< rk ≤ g

(
ik +

1

2

)
, k = 1, . . . , d

}
, (5.2)

where g > 0 will be chosen later. As before, Jg(Rd) is denoted all finite
unions of cubes of the form Qi. In the Chapter 5, sometimes we will regard

55
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Λ ∈ Bc(Rd) as a subset of Zd by letting Λ represent {i ∈ Zd | gi ∈ Λ}. For a
nonnegative integer k, let Λk be the hypercube of length g(2k − 1) centered
at the origin in Rd. Λk is then a union of (2k − 1)d unit cubes of the form
Qi. For x ∈ Rd let ln+ |x| = max{1, ln |x|}.

5.1 Existence of Gibbs states for pair long-

range potentials

5.1.1 Potentials and Hamiltonians

A measurable function V̄ : Rd×Rd → R∪{∞} is called a pair potential. We
formulate the conditions on potential V which will be used in the Section
5.1:

(V1) Symmetry: V̄ (x, y) = V̄ (y, x) for all (x, y) ∈ Rd × Rd.

(V2) Translation invariance: for any (x, y) ∈ Rd × Rd and any r ∈ Rd

V̄ (x+ r, y + r) = V̄ (x, y).

We are able now introduce the function V (x), x ∈ Rd, by the equality

V (x− y) = V̄ (x, y).

(V3) There exist constants ε > 0 and L > 0 such that for any x ∈ Rd, x 6= 0

V (x) ≥ − L

|x|d+ε .

(V4) V ∈ C(Rd \ {0}).

The Hamiltonian H : Γ̈0 → R which corresponds to the potential V is
defined by

H(σ) =
∑

{x,y}⊂η

n(x)n(y)V (x− y) + V (0)
∑

x∈η

(
n(x)

2

)
, (5.3)

where σ = (η, n) ∈ Γ̈0.
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If n(x) ≡ 1 for all x ∈ η and |σ| ≥ 2 then

H(σ) =
∑

{x,y}⊂η

V (x− y).

For the case V (0) = +∞ and n(x) > 1 at least for one x ∈ η it is clear that
H(σ) = +∞. For simplicity we will write

H(σ) =
∑

x,y∈σ

V (x− y)

instead of (5.3). For Λ ∈ Bc(Rd) and σ ∈ Γ̈Λ we will sometimes write HΛ(σ)
instead of H(σ).

Having in mind applications in mathematical physics, we will always as-
sume superstability of V (see [31, 58]). More precisely,

(V5) Superstability: for any g > 0 there exist A > 0 and B ≥ 0 (may be g
dependent) such that for any Λ ∈ Bc(Rd), lΛ ≥ g and any configuration
σ ∈ Γ̈Λ holds

∑

x, y∈σ

V (x− y) ≥ A
|σ|2
l dΛ

−B|σ|. (5.4)

In the sequel, we will write sometimes Ag, Bg, instead of A, B, to emphasize
that these constants depend on g.

Remark 5.1.1 Obviously, conditions (V3) and (V5) give us

Mg = inf
0<|x|<2g

V (x) ≥ min

{
4Ag
gd

− 2Bg, −
L

gd+ε

}
.

Define |σi| = |σ ∩Qi|.

Lemma 5.1.1 Let the conditions (V3), (V5) be fulfilled. Then, there exists
a constant K > 0 such that for any i, j ∈ Zd, |i − j| > 1 and for any
x ∈ Qi, y ∈ Qj

V (x− y) ≥ − K

(g|i− j|)d+ε .
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Proof. We set
K = 2d+εL.

Let i, j ∈ Zd, |i − j| > 1 be arbitrary and fixed. Then for any x ∈ Qi, y ∈
Qj :

0 < g(|i− j| − 1) ≤ |x− y| ≤ g(|i− j| + 1).

If g|i− j| ≤ |x− y| ≤ g(|i− j| + 1) then

V (x− y) ≥ − L

|x− y|d+ε ≥ − L

(g|i− j|)d+ε . (5.5)

If 0 < g(|i− j| − 1) ≤ |x− y| ≤ g|i− j| then

V (x− y) ≥ − L

|x− y|d+ε ≥ − L

(g[|i− j| − 1])d+ε
≥ − 2d+εL

(g|i− j|)d+ε . (5.6)

In the last inequality we have used the fact that |i − j| ≥ 2. The claim of
the Lemma now follows from the representation of the constant K, bounds
(5.5) and (5.6). �

We introduce an additional assumption which will be necessary in the
following.

(g) There exists g > 0 such that

amax {2d+εL, −gd+εMg} ≤ Ag g
ε,

where

a :=
∑

j∈Zd\{0}

1

|j|d+ε <∞.

In the sequel, in this section we will consider g which satisfies condition (g).

Remark 5.1.2 It is well-known from Dobrushin-Fisher-Ruelle criterion (see
[76]) that V is superstable if V (x) ∼ C1

|x|d+δ1
, x→ 0 and |V (x)| ∼ C2

|x|d+δ2
, x→

∞ for some C1, C2, δ1, δ2 > 0. Moreover, by choosing the length of the sides
of the cubes Qi, i ∈ Zd appropriately small, assumption (g) can be fulfilled
automatically.

Indeed, one can show that in this case constant Ag = Ag−δ1 with A > 0
independent of g and, hence, assumption (g) will have the form

amax {2d+δ2L, −gd+δ2Mg} ≤ Agδ2−δ1. (5.7)

Without lose of generality, one can regard δ1 > δ2. Because −Mg decrease
when g → 0, inequality (5.7) holds for small g > 0. �
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Consider a subset in the space of multiple configurations:

Γ̈t =
∞⋃

n=1

Γ̈tn,

where Γ̈tn =
{
σ ∈ Γ̈

∣∣∣ |σi| ≤ n(ln+ |i|) 1
2 , ∀i ∈ Zd

}
.

Definition 5.1.1 Configuration σ ∈ Γ̈ is said to be tempered if σ ∈ Γ̈t.

For a given σ̄ = (γ̄, n̄) ∈ Γ̈t and Λ ∈ Bc(Rd) define the interaction energy
between σ = (η, n) ∈ Γ̈Λ and σ̄Λc = σ̄ ∩ Λc = (γ̄ ∩ Λc, n), Λc = Rd \ Λ as

WΛ(σ|σ̄) =
∑

x∈σ, y∈σ̄∩Λc

V (x− y),

where the sum at the right-hand side is a simplified notation for

∑

x∈γ, y∈γ̄∩Λc

n(x)n̄(y)V (x− y).

The interaction energy is said to be well-defined if for any Λ ∈ Bc(Rd) and
σ̄ ∈ Γ̈t it does not become −∞.

Define

HΛ(σ|σ̄) = HΛ(σ) +WΛ(σ|σ̄)

and let

ZΛ(σ̄) :=

∫

Γ̈Λ

exp {−βHΛ(σ| σ̄)}λz(dσ)

be the so-called partition function.

Lemma 5.1.2 Let conditions (V1)-(V5) be fulfilled. Then for any Λ ∈
Bc(Rd), σ ∈ Γ̈Λ and σ̄ = (γ̄, n̄) ∈ Γ̈t the interaction energy WΛ(σ|σ̄) is well
defined and partition function ZΛ(σ̄) is finite.

Proof. Using representation Γ̈Λ :=
⊔
N∈N0

Γ̈
(N)
Λ we have

ZΛ(σ̄) =

∫

Γ̈Λ

e−βHΛ(σ | σ̄)λz(dσ) =
∞∑

N=0

∫

Γ̈
(N)
Λ

e−βHΛ(σ | σ̄)λz(dσ).
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With (V5) it is not difficult to show that there exists B ≥ 0 such that for
any Λ ∈ Bc(Rd) and any σ ∈ Γ̈Λ, σ ≥ 2 holds

∑

x, y∈σ

V (x− y) ≥ −B|σ|.

In particular, potential V is bounded from below by −2B.
Define ΛJ as a union of all cubes Qi which have nonempty intersection

with Λ. Without lose of generality we will assume that for any i ∈ Λ and
j ∈ Zd \ ΛJ holds |i − j| > 1. Otherwise we will add to ΛJ all cubes with
such a numbers j ∈ Zd\ΛJ . Then, according to Lemma 5.1.1 the interaction
energy can be estimated by

WΛ(σ|σ̄) ≥ −2B|σ| |σ̄ΛJ \Λ| −K
∑

i∈Λ

∑

j∈Zd\ΛJ

|σi| |σ̄j |
(g|i− j|)d+ε ≥

≥ −|σ|


2B|σ̄ΛJ \Λ| +K max

i∈Λ

∑

j∈Zd\ΛJ

|σ̄j|
(g|i− j|)d+ε


 . (5.8)

Let i0 maximize the sum in (5.8). Then

WΛ(σ|σ̄) ≥ −|σ|


2B|σ̄ΛJ \Λ| +K

∑

j∈Zd\ΛJ

|σ̄j|
(g|i0 − j|)d+ε


 .

Since σ̄ ∈ Γt, the series

S :=
∑

j∈Zd\ΛJ

|σ̄j |
|i0 − j|d+ε

is finite.
Therefore, the interaction energy is well defined. Moreover, the partition

function can be estimated by

exp
{
z|Λ|eB[1+2|σ̄ΛJ \Λ|]+KS

}
<∞. �

Definition 5.1.2 A potential V is called stable (see [76]) iff there exists a
constant B ≥ 0 such that for any Λ ∈ Bc(Rd) and any configuration σ ∈ Γ̈Λ

it holds ∑

x,y∈σ

V (x, y) ≥ −B|σ| (5.9)



5.1. PAIR LONG-RANGE POTENTIALS 61

Remark 5.1.3 Lemma 5.1.2 holds true if instead of the condition (V5) we
assume stability of the potential V .

In the following, we will consider only tempered configurations.

5.1.2 Specifications

Let Λ ∈ Bc(Rd) and let σ̄ ∈ Γ̈t. The finite volume Gibbs state with boundary
configuration σ̄ for H, β > 0 and z > 0 on Γ̈Λ is defined by

PΛ, σ̄(dσ) =
exp {−βHΛ(σ| σ̄)}

ZΛ(σ̄)
λz(dσ).

When σ̄ = ∅, let PΛ, ∅(dσ) ≡ PΛ(dσ).
Let {πΛ} denote the specification associated with z, β and the Hamilto-

nian H (see [69]) defined on Γ̈ by

πΛ(A| σ̄) =

∫

A′

PΛ, σ̄(dσ)

where A′ = {σ ∈ Γ̈Λ : σ ∪ σ̄Λc ⊂ A}, A ∈ B(Γ̈) and σ̄ ∈ Γ̈t.
A probability measure µ on Γ̈ is called a Gibbs state for H, β and z if

µ(πΛ(A| σ̄)) = µ(A)

for every A ∈ B(Γ̈) and every Λ ∈ B(Rd).
This relation is well-known as (DLR)-equation (Dobrushin-Lanford-Ruelle

equation), see [27] for more details.
Let χ > 0. The class of all Gibbs states µ which satisfy

∫

Γ̈

eχ|σΛ|µ(dσ) <∞, Λ ∈ Bc(Rd)

will be denoted by Gχ(V, z, β).

5.1.3 Main result

Theorem 5.1.1 Let conditions (V1)-(V5) and (g) be satisfied. Then for
any χ > 0, z > 0 and β > 0

Gχ(V, z, β) 6= ∅.
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The proof of this theorem is based on the general Dobrushin’s theorem
about the existence of Gibbs states for lattice models (see [22]). The for-
mulation of this theorem can be found also in [27], [67], [79]. For reader’s
convenience we quote the theorem from [22] in the next subsection.

5.1.4 Existence theorem on Zd

Let X be a complete separable metric space. A configuration x̄ on Λ ⊆ Zd

is a map x̄ : Λ 7→ X. XΛ denote the set of all configurations on Λ. Let
{Pt,x̄} be the family of probability measures on X (a specification) indexed

by parameters t ∈ Zd and x̄ ∈ XZd\{t}.
A random field ξ(t), t ∈ Zd, taking values in X corresponds to the speci-

fication {Pt, x̄} if for every t ∈ Zd and every Borel set A ⊆ X

Pr{ξ(t) ∈ A | ξ(u) = x̄(u), u 6= t} = Pt,x̄(A).

The compact function is a non-negative measurable function h : X 7→ R+

such that for any d ∈ R+ the set

{x |h(x) ≤ d, x ∈ X}
is relatively compact in X.

Theorem 5.1.2 For the existence of the field {ξ(t), t ∈ Zd} with a prescribed
system of specification {Pt, x̄}, the fulfillment of the following two conditions
is sufficient:

1. There exist a compact function h(x), x ∈ X, and constants C, 0 ≤
C < ∞, and ct ≥ 0, t ∈ Zd \ {0}, such that the conditional mathematical
expectation ∫

X

h(x)Pt0,x̄(dx) ≤ C +
∑

t∈Zd\{t0}

ct−t0h(x̄(t))

for all t0 ∈ Zd and all x̄ ∈ XZd\{t0}, and
∑

t∈Zd\{0}

ct < 1.

2. For any t0 ∈ Zd, there exist a sequence of finite sets U 1
t0

⊂ U2
t0
· · ·,

whose union is Zd \ {t0}, constants dnt , t ∈ Zd \ {0}, n ∈ N, and constants
Dn such that ∑

t∈Zd\{0}

dnt ≤ Dn,



5.1. PAIR LONG-RANGE POTENTIALS 63

where Dn tends to 0 as n → ∞. Moreover, for any continuous function
ϕ(x), x ∈ X, with |ϕ(x)| ≤ 1 there exist functions fn(x̄(t), t ∈ Un

t0
) which

are continuous on XUn
t0 , n ∈ N such that

∣∣∣∣
∫

X

ϕ(x)Pt0,x̄(dx) − fn(x̄(t), t ∈ Un
t0
)

∣∣∣∣ ≤ Dn +
∑

t∈Zd\{t0}

dnt−t0h(x̄(t)).

The field {ξt, t ∈ Zd} with specification {Pt,x̄} can be constructed in such a
way that the mathematical expectations

sup
t∈Zd

Eh(ξt) <∞.

5.1.5 Lattice structure associated with continuous sys-
tem

In this subsection we introduce a lattice structure associated with our contin-
uous system, c.f. [67]. For any t ∈ Zd let us denote by Xt the configuration
space Γ̈Q̄t

in the closure Q̄t of the cube Qt. Let

X = ×t∈ZdXt

be the associated lattice configuration space and let B(X ) be the correspon-
dent Borel σ-algebra on it.

As in Section 3.1 we consider function ρ : Γ̈Q̄t
× Γ̈Q̄t

→ R+,

ρ(σ1, σ2) =

{
1

2g|σ1|
minπ

∑|σ1|
i=1 |xi − yπ(i)|, if |σ1| = |σ2|

1, otherwise.
(5.10)

In (5.10) the minimum is taken over the set of all permutations π of the set
{1, . . . , |σ1|}, configuration σ1 = {x1, . . . , x|σ1|} and σ2 = {y1, . . . , y|σ2|}.

As shown in [67], the function ρ is a metric on Γ̈Q̄t
. Moreover, metric

space (Γ̈Q̄t
, ρ) is a Polish space.

Having a continuous configuration σ = (γ, n) ∈ Γ̈, we construct the lattice
configuration ξ = (ξ(t), nt)t∈Zd ∈ X in the following way:

ξ(t) = σ ∩Qt, t ∈ Zd

and for x ∈ ξ(t)
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nt(x) = n(x).

Denote this correspondence by T : Γ̈ → X . For ξ = Tσ: ξ(t) ⊂ Qt ⊂ Q̄t, t ∈
Zd. Therefore

T (Γ̈) ⊂ X

and T is an injective map.

The inverse map T−1 can be constructed as follows. If ξ = (ξ(t), nt)t∈Zd ∈
T (Γ̈) then T−1ξ := σ = (γ, n) is defined by

γ =
⋃

t∈Zd

ξ(t). (5.11)

Because ξ ∈ T (Γ̈), configurations ξ(t) and ξ(s) do not intersect for t 6= s.
Therefore, for any x ∈ γ there exists only one point t ∈ Zd such that x ∈ ξ(t)
and we are able to define

n(x) = nt(x).

The map T is a measurable embedding of Γ̈ into X . Hence, every measure
on Γ̈ induces a measure on X . The inverse map T−1 can be extended to the
whole X . If ξ = (ξ(t), nt) ∈ X\T (Γ̈) then there exists t ∈ Zd with x ∈ ξ(t)
on Q̄t\Qt. To define T−1 for this case, we are able to use (5.11) for γ and

n(x) =
∑

t: x∈ξ(t)

nt(x).

Thus, the existence of the lattice model implies the existence of the contin-
uous one.

For any Λ ⊂ Zd, |Λ| < ∞, ξ ∈ T (Γ̈∪t∈ΛQt) and ξ̄ ∈ T (Γ̈t) the conditional
energy HΛ(ξ | ξ̄) is defined as

HΛ(ξ | ξ̄) = H∪t∈ΛQt((T
−1ξ)∪t∈ΛQt | (T−1ξ̄)∪t∈ΛcQt),

where Λc = Zd\Λ and (T−1ξ)G is the restriction of the T−1ξ ∈ Γ̈ to the set
G ⊂ Rd.

Using Lemma 5.1.2 we can define finite volume Gibbs states for the lattice
counterpart of the continuous model. Namely, for any Λ ⊂ Zd, |Λ| < ∞ the
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finite volume Gibbs state PΛ, ξ̄ under condition ξ̄ ∈ T (Γ̈t) is given on ×t∈ΛXt

by

PΛ,ξ̄(dξΛ) =
exp {−βHΛ(ξ| ξ̄)}

ZΛ(ξ̄)
dλz(ξΛ) =

exp {−βH∪t∈ΛQt(σ| σ̄)}
ZΛ(ξ̄)

dλz(σ),

where

ZΛ(ξ̄) =

∫

Γ∪t∈ΛQt

e−βH∪t∈ΛQt (σ | σ̄)λz(dσ) = Z∪t∈ΛQt(σ̄),

(T−1ξ)∪t∈ΛQt = σ and T−1ξ̄ = σ̄.
The corresponding specifications are defined by

πΛ(A| ξ̄) =

∫

A′

PΛ, ξ̄(dξ)

where A′ = {ξ ∈ ×t∈ΛXt : ξ× ξ̄Zd\Λ ∈ A}, A ∈ B(X ) and ξ̄Zd\Λ is projection
of ξ̄ ∈ T (Γt) on ×t∈Zd\ΛXt.

A probability measure µ on X is called a Gibbs state for z and β if

µ(πΛ(A| ξ̄)) = µ(A)

for every A ∈ B(X ) and every Λ ⊂ Zd, |Λ| < ∞. For more details, see [6],
[67].

In the Section 5.1, we will need only single point Gibbs states, i.e. {Pt,ξ̄|t ∈
Zd, ξ̄ ∈ T (Γt)}. Obviously, all spaces Xt, t ∈ Zd are isomorphic to the space
X0, which we will denote for brevity by X. We will consider for simplicity
{Pt,ξ̄ | t ∈ Zd, ξ̄ ∈ T (Γt)} on X. For more details about the associated lattice
structure, see [6], [67]

5.1.6 Proof

In this subsection we check Dobrushin’s conditions for the lattice model with
compact function (see [6], [67])

h(ξ) = eχ|ξ|, χ > 0

on X under assumptions (V1)-(V5), (g).
Because all spaces Xt, t ∈ Zd are topologically identical to the space X0,

which we have denoted by X, in proofs we drop index t, considering, instead
of Xt and ξt ∈ Xt, t ∈ Zd the space X and the configuration ξ ∈ X.



66 CHAPTER 5. EXISTENCE PROBLEM FOR GIBBS MEASURES

Lemma 5.1.3 For any χ > 0, t ∈ Zd and ξ̄ ∈ T (Γ̈t) there exists C > 0 and
cj ≥ 0, j ∈ Zd \ {0}, such that

∑

j∈Zd\{0}

cj < 1

and ∫

X

eχ|ξ|Pt,ξ̄(dξ) ≤ C +
∑

j∈Zd\{t}

cj−te
χ|ξ̄(j)|. (5.12)

Proof. For simplicity we will use the notation ξ̄j instead of ξ̄(j), j ∈ Zd \{0}.
The spin space X can be represented as

X =
∞⋃

N=0

XN , XN = {ξ ∈ X| |ξ| = N}.

Using this representation we have
∫

X

eχ|ξ|Pt,ξ̄(dξ) =
∑

N≤Nξ̄

∫

XN

eχ|ξ|Pt,ξ̄(dξ) +
∑

N>Nξ̄

∫

XN

eχ|ξ|Pt,ξ̄(dξ). (5.13)

Nξ̄ ∈ N will be chosen later. Let us estimate the second term in (5.13):

INξ̄
:=

∑

N>Nξ̄

∫

XN

eχ|ξ|Pt,ξ̄(dξ) ≤
∑

N>Nξ̄

eχN
∫

XN

e−βH(ξ|ξ̄)λz(dξ).

We have used fact that the partition function Zt(ξ̄) is greater than 1. We set

∂t =
⋃

i : |t−i|=1

Qi.

Then, using Lemma 5.1.1 and condition (V5), INξ̄
can be estimated by

∑

N>Nξ̄

zN

N !
e(χ+βB)N exp



βN


−A

gd
N −Mg|ξ̄∂t| +K

∑

j∈Zd\∂t

|ξ̄j|
(g|t− j|)d+ε






.

Denote

Dg =
max {K,−gd+εMg}

Agε
.
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Suppose that ξ̄ ∈ T (Γ̈tn) for some n ∈ N. Then

Dg

∑

j∈Zd\{t}

|ξ̄j|
|t− j|d+ε ≤ Dg

∑

j∈Zd\{t}

n(ln+ |j|)
|t− j|d+ε <∞. (5.14)

Choosing Nξ̄ as the largest integer less or equal than

Dg

∑

j∈Zd\{t}

|ξ̄j |
|t− j|d+ε ,

we have for all N > Nξ̄

A

gd
N ≥ K

∑

j∈Zd\{t}

|ξ̄j |
(g|t− j|)d+ε −Mg|ξ̄∂t|.

This implies that

INξ̄
≤
∑

N>Nξ̄

zN

N !
e(χ+βB)N ≤ exp {zeχ+βB} − 1.

To estimate the first term in (5.13) let us observe that

JNξ̄
:=

∑

N≤Nξ̄

∫

XN

eχ|ξ|Pt,ξ̄(dξ) =
∑

N≤Nξ̄

eχNPt,ξ̄(X
N) ≤ eχNξ̄ .

Hence

JNξ̄
≤ exp



χ


Dg

∑

j∈Zd\{t}

|ξ̄j |
|t− j|d+ε






. (5.15)

By the convexity of the function ex we obtain

JNξ̄
≤ exp



aDg

∑

j∈Zd\{t}

χ|ξ̄j |
a|t− j|d+ε



 ≤

∑

j∈Zd\{t}

1

a|t− j|d+ε e
aDgχ|ξ̄j |.

And again, because of the convexity of ex and property (g), we have

JNξ̄
≤

∑

j∈Zd\{t}

1

a|t− j|d+ε e
(1−aDg)0+aDgχ|ξ̄j | ≤
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≤ (1 − aDg) +Dg

∑

j∈Zd\{t}

eχ|ξ̄j |

|t− j|d+ε .

Therefore
JNξ̄

≤ C? +
∑

j∈Zd\{t}

ct−je
χ|ξ̄j |,

where

C? = (1 − aDg) ; cj =
Dg

|j|d+ε , j ∈ Zd \ {0}.

Finally, we have
∫

X

eχ|ξ|Pt,ξ̄(dξ) ≤ C +
∑

j∈Zd\{t}

ct−je
χ|ξ̄j |,

where
C = C? + exp {zeχ+βB} − 1.

From property (g) it follows that

∑

j∈Zd\{0}

cj < 1. �

Lemma 5.1.4 For any δ ∈ (0, 1), there exist bounded Λ ⊂ Zd and constants
δj, j ∈ Zd \ {0}, such that ∑

j∈Zd\{0}

δj ≤ δ

and for any ξ̄ ∈ T (Γ̈t) and a measurable function ϕ(ξ), ξ ∈ X, |ϕ(ξ)| ≤ 1,
the following inequality holds

∣∣∣∣
∫

X

ϕ(ξ)Pt,ξ̄(dξ) −
∫

X

ϕ(ξ)Pt,ξ̄Λ(dξ)

∣∣∣∣ ≤
∑

j∈Zd\{t}

δj−te
χ|ξ̄j |,

where ξ̄Λ is the projection of ξ̄ ∈ T (Γ̈t) on ×i∈ΛXi.

Proof. The proof of this Lemma is completely analogous to the arguments
occurred in Lemma 4 of [21] for constants dt of the type

dt =
K

|t|d+ε . �
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Remark 5.1.4 Lemmas 5.1.3 and 5.1.4 hold true if instead of the condition
(V5) we assume that there exists a constant C > 0 such that for any x, y ∈
Rd, 0 < |x− y| < g

V (x− y) ≥ C.

The condition (g) is replaced by the requirement K < C/2a in this case.
Indeed, the claim follows straightforward from the arguments used in

Lemma 1 of [67]. �

Proof of Theorem 5.1.1. Because of continuity of functions

f(ξ̄,Λ) :=

∫

X

ϕ(ξ)Pt,ξ̄Λ(dξ)

(see [21], [67]) and Lemmas 5.1.2, 5.1.3 and 5.1.4 (see [22] for details), there
exists at least one Gibbs measure on X and, hence, measure µ on Γ̈. More-
over, as shown in [22], for any Λ ∈ Bc(Rd) there exists CΛ < ∞ such that
the following holds ∫

Γ̈

eχ|σΛ|µ(dσ) < CΛ. (5.16)

Therefore, for any χ > 0, z > 0 and β > 0

Gχ(V, z, β) 6= ∅. �

Remark 5.1.5 Theorem 5.2.1 holds if instead of (V5) we assume that there
exists a constant C > 0 such that for any x, y ∈ Rd, 0 < |x− y| < g

V (x− y) ≥ C,

the potential V is stable, and the condition (g) is replaced by K < C/2a.

5.2 A modified approach to the existence prob-

lem and detailed properties of Gibbs states

5.2.1 The model

In the Section 5.2 we use the following conditions on the pair potential V̄ :

(V1) Symmetry: V̄ (x, y) = V̄ (y, x) for all (x, y) ∈ Rd × Rd
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(V2) Translation invariance: for any (x, y) ∈ Rd × Rd and any z ∈ Rd

V̄ (x+ z, y + z) = V̄ (x, y)

We are able now introduce the function V (x), x ∈ Rd, by the equality

V (x− y) = V̄ (x, y)

(V3) Potential V is of Dobrushin−Fisher−Ruelle (DFR) type, i.e., there
exist 0 < d1 < d2 <∞ s.t.

V (x) ≥ C1

|x|d+δ1 , |x| ≤ d1,

|V (x)| ≤ C2

|x|d+δ2 , |x| ≥ d2

for some C1, C2, δ1, δ2 > 0.

(V4) V ∈ C(Rd \ {0}).

Let V satisfy (V3) with constants d1, d2, δ1, δ2, C1, C2 > 0. Without loss of
generality, we will regard d1 ≤ min{1, ε C1} for some 0 < ε < 1 and δ1 > δ2.
In the sequel, in this section we consider g ≤ d1/2.

Lemma 5.2.1 Condition (V3) implies the following useful bounds.

1. There exist A > 0 (independent of g) and B ≥ 0 (may be g dependent)
such that for any Λ ∈ Jg(Rd) and any η ∈ ΓΛ, |η| ≥ 2 holds

∑

{x,y}⊂η

V (x− y) ≥ A
|η|2
gδ1 |Λ| −B|η|.

2. There exists constant K > 0 (independent of g) such that for all
i, j ∈ Zd, i 6= j and for any x ∈ Qi, y ∈ Qj

V (x− y) ≥ − K

(g|i− j|)d+δ2 .



5.2. A MODIFIED APPROACH TO THE EXISTENCE PROBLEM 71

Proof. It is well-known from (DFR) criterion (see [76]) that condition (V3)
implies the second statement of Lemma 5.2.1 and superstability of V , i.e.,
there exist A0 > 0, B0 ≥ 0 (may be g dependent) such that for any Λ ∈
Jg(Rd) and any η ∈ ΓΛ, |η| ≥ 2 holds

∑

{x,y}⊂η

V (x− y) ≥ A0

∑

i∈Λ

|ηi|2 −B0|η|.

Set

ᾱ(|x|) = εC111[0, d1](|x|)
(

1

|x|d+δ1 − 1

dd+δ11

)
. (5.17)

Obviously, the function ᾱ is continuous decreasing and

ᾱ0 := lim
t→0+0

ᾱ(t) = +∞.

We can represent potential V as

V (x) = (V (x) − ᾱ(|x|)) + ᾱ(|x|).

For any x : |x| ≤ d1

V (x) − ᾱ(|x|) ≥ (1 − ε)C1

|x|d+δ1 +
εC1

dd+δ11

≥ (1 − ε)C1

|x|d+δ1

and for any x : |x| ≥ d2

|V (x) − ᾱ(|x|)| = |V (x)| ≤ C2

|x|d+δ2 .

Hence, potential V (x)−ᾱ(|x|) is of (DFR) type. Then from (DFR) criterion
follows that there exists B1 ≥ 0 such that for any Λ ∈ Jg(Rd) and any
η ∈ ΓΛ, |η| ≥ 2 holds

∑

{x,y}⊂η

(V (x− y) − ᾱ(|x− y|)) ≥ −B1|η|. (5.18)

Because ᾱ ≥ 0

∑

{x,y}⊂η

ᾱ(|x− y|) ≥
∑

i∈Λ

∑

{x,y}⊂ηi

ᾱ(|x− y|). (5.19)
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For any t : 0 < t ≤ g ≤ d1/2:

ᾱ(t) ≥ εC1

(
1

gd+δ1
− 1

dd+δ11

)
≥
(

1 − 1

2d+δ1

)
εC1

gd+δ1
. (5.20)

Denote

A =
εC1

2

(
1 − 1

2d+δ1

)
.

The bound (5.20) implies

∑

i∈Λ

∑

{x,y}⊂ηi

ᾱ(|x− y|) ≥
∑

i∈Λ

2A

gd+δ1
· |ηi|(|ηi| − 1)

2
=

=
A

gd+δ1

∑

i∈Λ

|ηi|2 −
A

gd+δ1
|η|. (5.21)

Set

B = B1 +
A

gd+δ1
.

Then, inequality (5.18), (5.19) and (5.21) give us

∑

{x,y}⊂η

V (x− y) ≥ A

gd+δ1

∑

i∈Λ

|ηi|2 −B|η|. (5.22)

Because of Cauchy inequality

∑

i∈Λ

|ηi|2 ≥
1∑
i∈Λ 1

(
∑

i∈Λ

|ηi|
)2

=
gd|η|2
|Λ|

the first statement of Lemma 5.2.1 is a direct consequence of (5.22). �

The Hamiltonian EV
Λ : ΓΛ → R for Λ ∈ Bc(Rd) which corresponds to

potential V is defined by

EV
Λ (η) =

∑

{x,y}⊂η

V (x− y), η ∈ ΓΛ, |η| ≥ 2.

For fixed V we will write for short EΛ = EV
Λ .

Consider a subset of the configuration space Γ:

Γt =
∞⋃

n=1

Γtn,

where Γtn = {γ ∈ Γ | |γi| ≤ n(ln+ |i|) 1
2 , ∀i ∈ Zd}.
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Definition 5.2.1 Configuration γ ∈ Γ is said to be tempered if γ ∈ Γt.

For given γ̄ ∈ Γt define the interaction energy between η ∈ ΓΛ and
γ̄Λc = γ̄ ∩ Λc, Λc = Rd\Λ as

WΛ(η|γ̄) =
∑

x∈η, y∈γ̄Λc

V (x− y).

The interaction energy is said to be well defined if for any Λ ∈ Bc(Rd), η ∈ ΓΛ

and γ̄ ∈ Γt it is finite or +∞.
Define

EΛ(η|γ̄) = EΛ(η) +WΛ(η|γ̄)
and

ZΛ(γ̄) :=

∫

ΓΛ

exp {−EΛ(η| γ̄)}λz(dη)

the so-called partition function.

Lemma 5.2.2 Let conditions (V1)-(V4) be fulfilled. Then for any Λ ∈
Bc(Rd), η ∈ ΓΛ and γ̄ ∈ Γt the interaction energy WΛ(η|γ̄) is well defined
and partition function ZΛ(γ̄) is finite.

Proof. Using representation ΓΛ :=
⊔
N∈N0

Γ
(N)
Λ we have

ZΛ(γ̄) =

∫

ΓΛ

e−EΛ(η | γ̄)λz(dη) =
∞∑

N=0

∫

Γ
(N)
Λ

e−EΛ(η | γ̄)λz(dη).

With (V3) and Lemma 5.2.1, it is not difficult to show that there exists
B ≥ 0 such that for any Λ ∈ Bc(Rd) and any η ∈ ΓΛ, η ≥ 2 holds

∑

{x,y}⊂η

V (x− y) ≥ −B|η|.

In particular, potential V is bounded from below by −2B.
Define ΛJ as a union of all cubes Qi which have nonempty intersection

with Λ. Then, according to Lemma 5.2.1, the interaction energy can be
estimated by

WΛ(η|γ̄) ≥ −2B|η| |γ̄ΛJ \Λ| −K
∑

i∈Λ

∑

j∈Zd\ΛJ

|ηi| |γ̄j |
(g|i− j|)d+δ2 ≥
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≥ −|η|


2B|γ̄ΛJ \Λ| +Kmax

i∈Λ

∑

j∈Zd\ΛJ

|γ̄j |
(g|i− j|)d+δ2


 . (5.23)

Let i0 maximize the sum in (5.23). Then

WΛ(η|γ̄) ≥ −|η|


2B|γ̄ΛJ \Λ| +K

∑

j∈Zd\ΛJ

|γ̄j|
(g|i0 − j|)d+δ2


 .

Since γ̄ ∈ Γt, the series

S :=
∑

j∈Zd\ΛJ

|γ̄j |
|i0 − j|d+δ2

is finite.
Therefore, the interaction energy is well defined. Moreover, the partition

function can be estimated by

exp
{
z|Λ|eB[1+2|γ̄ΛJ \Λ|]+KS

}
<∞. �

In the following we will consider only tempered configurations.
Let Λ ∈ Bc(Rd) and let γ̄ ∈ Γt. The finite volume Gibbs state on the

space ΓΛ with boundary configuration γ̄ is defined by

PΛ, γ̄(dη) =
exp {−EΛ(η| γ̄)}

ZΛ(γ̄)
λz(dη).

When γ̄ = ∅, let PΛ, ∅(dη) =: PΛ(dη).
Let {πΛ} denote the specification associated with z and the Hamiltonian

E (see [69]) which is defined by

πΛ(A| γ̄) =

∫

A′

PΛ, γ̄(dη)

where A′ = {η ∈ ΓΛ : η ∪ (γ̄Λc) ∈ A}, A ∈ B(Γ) and γ̄ ∈ Γt.
A probability measure µ on Γ is called a Gibbs state for E and z if

µ(πΛ(A| γ̄)) = µ(A)

for every A ∈ B(Γ) and every Λ ∈ Bc(Rd).
This relation is well known (DLR)-equation (Dobrushin-Lanford-Ruelle

equation), see [27] for more details.
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Definition 5.2.2 A measure µ on Γ is called tempered if µ is supported by
the set Γt.

The class of all tempered Gibbs states we denote by Gt(V, z).

5.2.2 Main results

As in Section 3.1 we consider a function dα : ΓΛ ×ΓΛ → R+ which is defined
by

dα(η1, η2) = ρΛ(η1, η2) + |Eα(η1) − Eα(η2)| , η1, η2 ∈ ΓΛ. (5.24)

It is not difficult to show (see e.g. Chapter 3) that the function dα is a metric
on ΓΛ, and, if Λ is a closed set, then the metric space (ΓΛ, dα) is a Polish
space. Moreover, for any C > 0 and any closed set Λ ∈ Bc(Rd) the set

{η ∈ ΓΛ | Eα(η) ≤ C}

is a relatively compact in (ΓΛ, dα). As a consequence, for any closed set
Λ ∈ Bc(Rd) function

hα(η) = eE
α(η) (5.25)

is a compact function on ΓΛ, i.e., for any C > 0

{η ∈ ΓΛ | hα(η) ≤ C}

is compact in (ΓΛ, dα).
We introduce an additional condition on the function α:

(V5) There exist A > 0 (independent of g) and B ≥ 0 (may be g dependent)
such that for any Λ ∈ Jg(Rd) and η ∈ ΓΛ, |η| ≥ 2,

∑

{x, y}⊂η

V (x− y) −
∑

{x, y}⊂η

α(|x− y|) ≥ A(α, g,Λ)|η|2 −B|η|,

where

A(α, g,Λ) = A
1

gδ1 |Λ| −
α+

2
.

Remark 5.2.1 Condition (V5) holds, e.g., for

α(|x|) = εC111[0, d1](|x|)
(

1

|x|d+δ1 − 1

dd+δ11

)
+

εC1

dd+δ11

. (5.26)
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Indeed, function α is continuous decreasing and α0 = +∞. Because d1 ≤ εC1

α+ =
εC1

dd+δ11

≥ 1.

Set as in (5.17)

ᾱ(|x|) = εC111[0, d1](|x|)
(

1

|x|d+δ1 − 1

dd+δ11

)
.

As it was shown in Lemma 5.2.1, potential V (x) − ᾱ(|x|) is of (DFR)
type and hence there exist A > 0 (independent of g), and B ≥ 0 such that
for any Λ ∈ Jg(Rd) and any η ∈ ΓΛ, |η| ≥ 2 holds

∑

{x,y}⊂η

(V (x− y) − ᾱ(|x− y|)) ≥ A
|η|2
gδ1 |Λ| −B|η|. (5.27)

Because α(|x|) = ᾱ(|x|) + α+, bound (5.27) implies (V5). �

In the sequel we will consider function α of the form (5.26) which is
constructed by the potential V .

We choose the size g of cubes Qi, i ∈ Zd small enough, such that the
following properties hold

A(α, g) =
A

gd+δ1
− α+

2
> 0, (5.28)

K <
1

2a
min

{
Agδ2−δ1 ,

[
εC1A(α, g)gd+δ2

2

] 1
2

}
, (5.29)

where

a :=
∑

j∈Zd\{0}

1

|j|d+δ2 <∞

and A is the constant from (V5). This can be done, because δ1 > δ2 and

A(α, g)gd+δ2 = Agδ2−δ1 − α+g
d+δ2

2
→ +∞, g → 0. (5.30)

The class of all measures µ ∈ Gt(V, z) which satisfy
∫

Γ

hα(γΛ)µ(dγ) <∞, Λ ∈ Bc(Rd) (5.31)

we denote by Gαt (V, z).
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Theorem 5.2.1 Let conditions (V1)-(V4) be satisfied. Then for any z > 0

Gαt (V, z) 6= ∅.

The proof of this theorem is based on a general Dobrushin’s existence
criterion for lattice models (see [22]).

As in Section 5.1 we need to introduce a lattice structure associated with
our continuous system, c.f. [67]. The construction of such lattice structure
is very close to the construction occurred in the previous section. For the
readers convenience, we repeat it with a necessary modification in the case
of the space Γ.

For any t ∈ Zd let us denote by Xt the configuration space ΓQ̄t
in the

closure Q̄t of the cube Qt, see (5.2). The space ΓQ̄t
is endowed with the

metric dα (see (5.24)). Set

X = ×t∈ZdXt

the corresponding lattice configuration space. Having a configuration γ ∈ Γ
we construct a lattice configuration σ = (σ(t))t∈Zd ∈ X in the following way.
Set

σ(t) = γ ∩Qt, t ∈ Zd.

Denote this correspondence by T : Γ → X . For σ = Tγ we have σ(t) ⊂ Qt ⊂
Q̄t, t ∈ Zd. Therefore,

T (Γ) ⊂ X
and T is an injective map. The inverse map T−1 can be constructed as
follows. If σ ∈ T (Γ) then T−1σ := γ is defined by

γ =
⋃

t∈Zd

σ(t). (5.32)

Because σ ∈ T (Γ), configurations σ(t) and σ(s) do not intersect for t 6= s.
The map T is a measurable embedding Γ into X and a bijection between Γ
and T (Γ) = ×k∈ZdΓQk

.

Using constructed in such a way associated lattice structure and the anal-
ogous structure corresponding to the space Γ̈ in the previous section, one can
maintain that every measure on Γ induces a measure on X and vice versa,
every measure on T (Γ) (correspondingly on X ) induces a measure on Γ (cor-
respondingly on Γ̈).
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For any Λ ⊂ Zd, |Λ| < ∞, ξ ∈ T (Γ∪t∈ΛQt) and σ̄ ∈ T (Γt) the conditional
energy EΛ(ξ | σ̄) is defined as

EΛ(ξ | σ̄) = EΛ((T−1ξ)∪t∈ΛQt | (T−1σ̄)∪t∈ΛcQt),

where Λc = Zd \Λ and (T−1σ)G is the restriction of the T−1σ ∈ Γ to the set
G ⊂ Rd.

Using Lemma 5.2.2 one can define finite volume Gibbs states for the
lattice counterpart of the continuous model. Namely, for any Λ ⊂ Zd, |Λ| <
∞ the finite volume Gibbs state PΛ, σ̄ under condition σ̄ ∈ T (Γt) is given on
×t∈ΛXt by

PΛ,σ̄(dξΛ) =
exp {−EΛ(ξ| σ̄)}

ZΛ(σ̄)
dλz(ξΛ) =

exp {−E∪t∈ΛQt(η| γ̄)}
ZΛ(σ̄)

dλz(η),

where

ZΛ(σ̄) =

∫

Γ∪t∈ΛQt

e−E∪t∈ΛQt(η | γ̄)λz(dη) = Z∪t∈ΛQt(γ̄),

(T−1ξ)∪t∈ΛQt = η and T−1σ̄ = γ̄.
The corresponding specifications are defined by

πΛ(A| σ̄) =

∫

A′

PΛ, σ̄(dξ)

where A′ = {ξ ∈ ×t∈ΛXt : ξ× σ̄Zd\Λ ∈ A}, A ∈ B(X ) and σ̄Zd\Λ is projection
of σ̄ ∈ T (Γt) on ×t∈Zd\ΛXt.

A probability measure µ on X is called a Gibbs state for E, z if

µ(πΛ(A| σ̄)) = µ(A)

for every A ∈ B(X ) and every Λ ⊂ Zd, |Λ| <∞.
This relation is well known Dobrushin−Lanford−Ruelle (DLR) equa-

tion. For more details, see [6], [67]
As in previous section, in this section we will need only single point Gibbs

states, i.e. {Pt,σ̄ | t ∈ Zd, σ̄ ∈ T (Γt)}. Because, all spaces Xt, t ∈ Zd are
isomorphic to the space X0, which we will denote for short by X we will
consider for simplicity {Pt,σ̄ | t ∈ Zd, σ̄ ∈ T (Γt)} on X.

Suppose that Dobrushin’s conditions for the lattice model with compact
function

hα(η) = eE
α(η)
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on X are fulfilled. Then, there exists Gibbs measure on X (see [22], [79]) and,
hence, Gibbs measure µ on Γ̈. Using this measure later will be reconstructed
tempered Gibbs measure on Γt. Thus, the existence of the Gibbs state for
the lattice model implies the existence of the Gibbs state on the configuration
space Γ, i.e., for the continuous one.

5.2.3 Proof

In this subsection we check Dobrushin’s conditions for the lattice model with
compact function

hα(η) = eE
α(η)

on X under assumptions (V1)-(V4).

Lemma 5.2.3 For any t ∈ Zd and γ̄ ∈ T (Γt), there exist C > 0 (indepen-
dent of t) and cj ≥ 0, j ∈ Zd \ {0}, such that

∑

j∈Zd\{0}

cj < 1,

∫

X

hα(η)Pt,γ̄(dη) ≤ C +
∑

j∈Zd\{t}

cj−thα(γ̄j). (5.33)

Proof. Using representation (2.2) we have

∫

X

hα(η)Pt,γ̄(dη) = (5.34)

=
∑

N≤Nγ̄

∫

XN

hα(η)Pt,γ̄(dη) +
∑

N>Nγ̄

∫

XN

hα(η)Pt,γ̄(dη). (5.35)

The number Nγ̄ will be chosen later. First let us estimate the second term
of (5.35)

INγ̄ ≡
∑

N>Nγ̄

∫

XN

hα(η)Pt,γ̄(dη) ≤
∑

N>Nγ̄

∫

XN

hα(η)e
−E(η|γ̄)λz(dη) =

=
∑

N>Nγ̄

zN

N !
exp




∑

{x, y}⊂η

α(|x− y|) − E(η)



e

−W (η | γ̄)λz(dη) ≤
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≤
∑

N>Nγ̄

zN

N !
eBN exp



N


−A(α, g)N +K

∑

j∈Zd\{t}

|γ̄j |
(g|t− j|)d+δ2






.

In the first inequality we have used fact that the partition function Zt,γ̄ is
greater than 1 and in the last one property (V5) and the second statement
of Lemma 5.2.1.

Suppose that γ̄ ∈ T (Γtn), for some n ∈ N. Then using fact that A(α, g) >
0 (because of (5.28)) we have

K

A(α, g)

∑

j∈Zd\{t}

|γ̄j |
(g|t− j|)d+δ2 ≤ K

A(α, g)

∑

j∈Zd\{t}

n(ln+ |j|) 1
2

(g|t− j|)d+δ2 <∞. (5.36)

Choosing Nγ̄ as the largest integer less or equal then

K

A(α, g)

∑

j∈Zd\{t}

|γ̄j|
(g|t− j|)d+δ2 (5.37)

we have for all N > Nγ̄

A(α, g)N ≥ K
∑

j∈Zd\{t}

|γ̄j |
(g|t− j|)d+δ2 .

This implies

INγ̄ ≤
∑

N>Nγ̄

zN

N !
eBN ≤ exp {zeB} − 1.

Doing the same as for INγ̄ we are able to estimate the first term of (5.35) in
the following way

JNγ̄ ≡
∑

N≤Nγ̄

∫

XN

hα(η)Pt,γ̄(dη) ≤

≤
∑

N≤Nγ̄

zN

N !
eBN exp



N


−A(α, g)N +K

∑

j∈Zd\{t}

|γ̄j|
(g|t− j|)d+δ2






. (5.38)

Because A(α, g) > 0, the expression (5.38) can be estimated by

eze
B

exp



KNγ̄

∑

j∈Zd\{t}

|γ̄j |
(g|t− j|)d+δ2



 ≤
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≤ eze
B

exp





K2

A(α, g)




∑

j∈Zd\{t}

|γ̄j |
(g|t− j|)d+δ2




2
. (5.39)

Denote

C(g) :=
(Ka)2

g2(d+δ2)A(α, g)
.

Then using Cauchy inequality we bound (5.39) by

eze
B

exp




C(g)

a




∑

j∈Zd\{t}

|γ̄j|2
|t− j|d+δ2






 =

= eze
B

exp




C(g)

a




∑

j∈Zd\{t}:|γ̄j |=1

|γ̄j |2
|t− j|d+δ2 +

∑

j∈Zd\{t}:|γ̄j |≥2

|γ̄j|2
|t− j|d+δ2






 ≤

≤ eze
B+C(g) exp





∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2C(g)|γ̄j |2


,

where

ã :=
∑

j∈Zd\{t}:|γ̄j |≥2

1

|t− j|d+δ2 ≤ a <∞.

By the convexity of the function ex we obtain

JNγ̄ ≤ eze
B+C(g)

∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2 exp {C(g)|γ̄j |2}.

Let T > 0 be arbitrary positive number. Using inequality

n∏

i=1

xi ≤
1

n

n∑

i=1

xni (5.40)

with n = 2 we obtain

JNγ̄ ≤ eze
B+C(g)

∑

j∈Zd\{t}:|γ̄j |≥2

eT

ã|t− j|d+δ2 exp {C(g)|γ̄j|2 − T} ≤

≤ 1

2
eze

B+C(g)+2T
∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2 +
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+
1

2
eze

B+C(g)−2T
∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2 exp {2C(g)|γ̄j|2} =

=
1

2
eze

B+C(g)+2T +
1

2
eze

B+C(g)−2T
∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2 exp {2C(g)|γ̄j|2}.

And again because of the convexity of the function ex and the fact that

D(g) :=
8C(g)gd+δ2

εC1

< 1

which follows from (5.29) finally we have

JNγ̄ ≤ 1

2
eze

B+C(g)+2T +
1

2
eze

B+C(g)−2T×

×
∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2 exp

{
(1 −D(g))0 +D(g)

εC1|γ̄j|2
4gd+δ2

}
≤

≤ 1

2
eze

B+C(g)+2T +
1

2
(1 −D(g))eze

B+C(g)−2T+

+
1

2
exp {zeB + C(g) − 2T}D(g)

∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2 e
εC1|γ̄j |

2

4gd+δ2 .

Choosing T = (zeB + C(g))/2 we have

JNγ̄ ≤ C? +
∑

j∈Zd\{t}:|γ̄j |≥2

c?t−j e
εC1|γ̄j |

2

4gd+δ2 ,

where

C? =
1

2
(1 + e2(zeB+C(g)) −D(g)); c?j =

D(g)

2ã|j|d+δ2 , j ∈ Zd \ {0}.

Using the fact that δ1 > δ2, for |γ̄j| ≥ 2 we have

εC1|γ̄j |2
4gd+δ2

≤ εC1|γ̄j |2
4gd+δ1

≤ α(g)|γ̄j |(|γ̄j | − 1)

2
≤

∑

{x, y}⊂γ̄j

α(|x− y|).
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And now ∫

X

hα(η)Pt,γ̄(dη) ≤ C +
∑

j∈Zd\{t}

ct−jhα(γ̄j),

where

C = exp {zeB} + C? − 1, cj =

{
c?j , if |γ̄j| ≥ 2
0, otherwise.

From (5.29) follows that
∑

j∈Zd\{0} cj < 1. �

The following two lemmas maintain the same results as lemma 5.1.3 and
5.1.4 but under conditions on potentials which are considered in the Section
5.2.

Lemma 5.2.4 For any χ > 0, t ∈ Zd and γ̄ ∈ T (Γt) there exist C > 0
(independent of g) and cj ≥ 0, j ∈ Zd \ {0}, such that

∑

j∈Zd\{0}:|γ̄j |≥2

cj < 1

and ∫

X

eχ|η|Pt,γ̄(dη) ≤ C +
∑

j∈Zd\{t}:|γ̄j |≥2

cj−te
χ|γ̄j |. (5.41)

Proof. Similar to the proof of the Lemma 5.2.3 one can show that
∫

X

eχ|η|Pt,γ̄(dη) =
∑

N≤Nγ̄

∫

XN

eχ|η|Pt,γ̄(dη) +
∑

N>Nγ̄

∫

XN

eχ|η|Pt,γ̄(dη), (5.42)

and

INγ̄ :=
∑

N>Nγ̄

∫

XN

eχ|η|Pt,γ̄(dη) ≤ exp {zeχ+B} − 1,

where Nγ̄ is the largest integer less or equal then

K

A(g)

∑

j∈Zd\{t}

|γ̄j |
|t− j|d+δ2

with A(g) := Agδ2−δ1 .
To estimate the first term in (5.42) let us observe that

JNγ̄ :=
∑

N≤Nγ̄

∫

XN

eχ|η|Pt,γ̄(dη) =
∑

N≤Nγ̄

eχNPt,γ̄(X
N ) ≤ eχNγ̄ .
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Hence

JNγ̄ ≤ exp



χ


 K

A(g)

∑

j∈Zd\{t}

|γ̄j |
|t− j|d+δ2






 = (5.43)

= exp



χ

K

A(g)




∑

j∈Zd\{t}:|γ̄j |=1

|γ̄j |
|t− j|d+δ2 +

∑

j∈Zd\{t}:|γ̄j |≥2

|γ̄j|
|t− j|d+δ2






 ≤

≤ eχa
K

A(g) exp



χ

K

A(g)

∑

j∈Zd\{t}:|γ̄j |≥2

|γ̄j |
|t− j|d+δ2



.

By the convexity of the function ex we obtain

JNγ̄ ≤ eχa
K

A(g) exp




χKa

A(g)

∑

j∈Zd\{t}:|γ̄j |≥2

|γ̄j |
ã|t− j|d+δ2



 ≤

≤ eχa
K

A(g)

∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2 e
χKa|γ̄j |

A(g) .

Let T > 0 be some positive number. Using inequality (5.40) with n = 2,
analogously to the proof of the Lemma 5.2.3 we obtain

JNγ̄ ≤ 1

2
eχa

K
A(g)

+2T +
1

2
eχa

K
A(g)

−2T
∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2 exp

{
2χKa|γ̄j |
A(g)

}
.

And again because of the convexity of ex and the fact that 2aK
A(g)

< 1 which

follows from (5.29) we have

JNγ̄ ≤ 1

2
eχa

K
A(g)

+2T +
1

2
eχa

K
A(g)

−2T
∑

j∈Zd\{t}:|γ̄j |≥2

1

ã|t− j|d+δ2 e
(1− 2aK

A(g)
)0+ 2aK

A(g)
χ|γ̄j | ≤

≤ 1

2
eχa

K
A(g)

+2T +
1

2

(
1 − 2Ka

A(g)

)
eχa

K
A(g)

−2T+

+
1

2
exp

{
χa

K

A(g)
− 2T

}
2aK

A(g)

∑

j∈Zd\{t}:|γ̄j |≥2

eχ|γ̄j |

ã|t− j|d+δ2 .
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Choosing T = (χa K
A(g)

)/2 we obtain

JNγ̄ ≤ C? +
∑

j∈Zd\{t}

ct−je
χ|γ̄j |,

where

C? =
1

2
e2χa

K
A(g) +

1

2

(
1 − 2Ka

A(g)

)
; cj =

{ Ka
A(g)ã|j|d+ε , if |γ̄j| ≥ 2

0, otherwise.

Finally, ∫

X

eχ|η|Pt,γ̄(dη) ≤ C +
∑

j∈Zd\{t}

ct−je
χ|γ̄j |,

where C = C? + exp {zeχ+B} − 1.
The inequality (5.29) implies

∑
j∈Zd\{0} cj < 1. �

Lemma 5.2.5 For any δ, 0 < δ < 1 there exist bounded Λ ⊂ Zd and con-
stants δj, j ∈ Zd \ {0}, such that

∑

j∈Zd\{0}

δj ≤ δ

and for any γ̄ ∈ T (Γt) and measurable function ϕ(η), η ∈ X, |ϕ(η)| ≤ 1 the
following holds

∣∣∣∣
∫

X

ϕ(η)Pt,γ̄(dη) −
∫

X

ϕ(η)Pt,γ̄∩Λ∗(dη)

∣∣∣∣ ≤
∑

j∈Zd\{t}

δj−thα(γ̄j),

where Λ∗ =
⋃
t∈ΛQt.

Proof. Due to the Lemma 5.2.4 the proof of this Lemma is completely anal-
ogous to arguments which was occurred in Lemma 4 of [21] for constants
χ = 1

8
and

dt =
K

|t|d+δ2 . �

Proof of Theorem 5.2.1. Because of the continuity of functions

f(γ̄,Λ∗) :=

∫

X

ϕ(η)Pt,γ̄∩Λ∗(dη)
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(see [21], [67]), Lemmas 5.2.2, 5.2.3, 5.2.4 and 5.2.5 (see [22] for details),
there exists at least one Gibbs measure on X and hence measure µ on Γ̈.
Moreover, as shown in [22], for any Λ ∈ Jg(Rd) there exists CΛ < ∞ such
that the following holds

∫

Γ̈

hα(σΛ)µ(dσ) < CΛ. (5.44)

Therefore, the measure µ is supported by

{σ ∈ Γ̈ |hα(σΛk
) <∞, k ≥ 1}. (5.45)

It is not difficult to see that the set (5.45) is a subset of Γ, see e.g. Chapter
3.

For any Λ ∈ Bc(Rd) and γ ∈ Γ such that |γΛ| ≥ 2 we have

α(lΛ)|γΛ|2
4

≤ α(lΛ)|γΛ|(|γΛ| − 1)

2
≤

∑

{x, y}⊂γΛ

α(|x− y|)

and, hence, (5.44) gives us immediately bound

∫

Γ

e%|γΛ|
2

µ(dγ) < CΛ, 0 ≤ % ≤ α(lΛ)

4
, Λ ∈ Bc(Rd), (5.46)

where
lΛ = sup

x, y∈Λ
|x− y|.

Moreover, as shown in Chapter 4, in this case µ satisfies Ruelle’s prob-
ability type bound, i.e., there exist constants α > 0 such that for any
Λ ∈ Bc(Rd), lΛ ≥ g and N ∈ N0

µ({γ | |γΛ| ≥ N }) ≤ CΛ exp

{
−αN

2

l dΛ

}
. (5.47)

and, hence, supported by Γt. �

The next theorem shows that the existence result can be extended on the
class of more general potentials.

Theorem 5.2.2 Let conditions (V1), (V2), (V4) be satisfied, and addi-
tionally the following conditions are fulfilled:
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1. There exist constant K > 0 (independent of g) and δ > 0 such that
for any i, j ∈ Zd, i 6= j and for any x ∈ Qi, y ∈ Qj

V (x− y) ≥ − K

(g|i− j|)d+δ .

2. The function α satisfies:

• There exist Ag(α) > 0 and B ≥ 0 (may be g dependent) such that for
any Λ ∈ Jg(Rd) and η ∈ ΓΛ, |η| ≥ 2
∑

{x, y}⊂η

V (x− y) −
∑

{x, y}⊂η

α(|x− y|) ≥ Ag(α)
∑

i∈Λ

|ηi|2 −B|η|. (5.48)

•
lim
g→0

α(g)g2(d+δ)Ag(α) = +∞. (5.49)

Then for any z > 0
Gαt (V, z) 6= ∅.

Proof. The proof is analogous to the proof of the Theorem 5.2.1 which is
based on Lemmas 5.2.2, 5.2.3 and 5.2.4. The fulfillment of the latter Lemmas
is ensured by the conditions (5.48) and (5.49). �

5.3 The case of multibody interaction

5.3.1 Interactions and Hamiltonians

We consider a general type of many-body interaction specified by a family
of k-body potentials Vk : Rdk → R, k ≥ 2. About the potentials {Vk}k≥2 we
will assume:

A1. Finite range. There exists a constant R > 0, such that for any
k ≥ 2

Vk(x1, ..., xk) ≡ 0, if diam{x1, ..., xk} > R.

A2. Continuity.

Vk ∈ C((̃Rd)k), k ≥ 2.

A3. Symmetry. For any k ≥ 2, any (x1, ..., xk) ∈ (Rd)k, and any
permutation π of numbers {1, . . . , k}

Vk(x1, ..., xk) = Vk(xπ(1), ..., xπ(k)).
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A4. Translation invariance. For any k ≥ 2, any (x1, ..., xk) ∈ (Rd)k,
and any a ∈ Rd

Vk(x1, ..., xk) = Vk(x1 + a, ..., xk + a).

We are able now to introduce the Hamiltonian UV : Γ0 → R∪{∞}, which
corresponds to the family of potentials V := {Vk}k≥2 and which is defined by

UV (η) =
∑

k≥2

∑

{x1,...,xk}⊂η

Vk(x1, ..., xk), η ∈ Γ0, |η| ≥ 2.

For the fixed family of potentials V we will write for short U = U V and for
Λ ∈ Bc(Rd), η ∈ ΓΛ we will sometimes write UΛ(η) instead of U(η).

A5. Strong Superstability. For any k ≥ 2 the potential Vk can be
represented as

Vk = V +
k + V

(st)
k ,

where V +
k is a nonnegative function such that for any (x1, . . . , xk) ∈ (Rd)k\(̃Rd)k

V +
k (x1, . . . , xk) = +∞,

and V
(st)
k is stable, i.e. there exists a constant B ≥ 0 such that for any

configuration η ∈ Γ0 holds

UV (st)

(η) ≥ −B|η|.

Let λ ∈ R+ be arbitrary. For each r ∈ Zd we define an elementary cube

∆(r) = {x ∈ Rd | λ(ri − 1/2) ≤ xi < λ(ri + 1/2)}.

These cubes form a partition of Rd, which we denote by ∆̄λ. We will some-
times write ∆ instead of ∆(r), if a cube ∆ is considered to be arbitrary
and there is no reason to emphasize that it is centered at the concrete point
r ∈ Zd. As before, by Jλ(Rd) we denote all finite unions of cubes of the form
∆(r) (such sets are used in the construction of the Jordan measure).

Let N ∈ N and k ≥ N + 1 be arbitrary. For any XN = ∪Nj=1∆j ∈ Jλ(Rd)
we define

I
k1,...,kN |k̄
k (∆1, ...,∆N ) :=

= sup
(x)i

ki
⊂∆i, 1≤i≤N

∗∑

∆′
j
⊂Xc

N
,

1≤ j≤ k̄

sup
y1∈∆′

1,...,yk̄∈∆′
k̄

|V (st),−
k (x1

1, . . . , x
N
kN
, y1, ..., yk̄)|, (5.50)
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where k̄ ≥ 1, ki ≥ 1, i = 1, . . . , N such that k1 + · · · + kN + k̄ = k, and

vk1,...,kN

k

(
∆1, ...,∆N

)
:= inf

(x)i
ki
⊂∆i, 1≤i≤N,

V +
k (x1

1, ..., x
N
kN

), (5.51)

where ki ∈ N0, (x)iki
= {xi1, . . . , xiki

}, 1 ≤ i ≤ N such that k1 + · · ·+kN = k.

V
(st),−
k denotes the negative part of V

(st)
k , and the symbol

∑∗ means that the
sum extends only over different cubes, i.e. ∆′

i 6= ∆′
j, i 6= j, 1 ≤ i, j ≤ k̄.

A6. Attraction-Repulsion relation. There exists λ = λ0 > 0 , such
that for any N ∈ N and any XN = ∪Nj=1∆j ∈ Jλ0(R

d) (we omit dependence
on the cubes in the notations of (5.50) and (5.51)) the following holds

• for an arbitrary ∆ ∈ ∆̄λ0 and any k ≥ 2

Vk(x1, . . . , xk) ≥ 0, {x1, . . . xk} ⊂ ∆

• for an arbitrary k ≥ N + 1

vk1,...,kN

k ≥ 4Ī
(N)
k; k1,...,kN

, vk1,...,kN

N+1 ≥ 4(Ī
(N)
N+1 +B), (5.52)

and

Ī
(N)
k; k1,...,kN

=
∑

l≥1

lI
k1,...,kN | l
k+l <∞, Ī

(N)
N+1 =

∑

l≥1

lI
1,...,1|l
N+l <∞, (5.53)

k1 + · · · + kN = k.

In the sequel we write ∆̄ instead of ∆̄λ0.

Remark 5.3.1 By the definition, V st,−
k describes attractive part of k-body

interaction. Therefore, I
k1,...,kN |k̄
k (∆1, ...,∆N ) describes only attractive part

of k-body interaction of fixed particles in cubes ∆1, ...,∆N with ”dilute con-
figuration”, i.e. no more then one particle is located in any cube ∆ from
Xc
N = Rd \ XN , XN = ∪Nj=1∆j. Then, condition (5.53) means that the

energy of k-body interaction decreases sufficiently fast with k. From the as-
sumption A6 and the definition of Ī

(N)
k; k1,...,kN

therein, it is clear that at least

one cube from ∆1, ...,∆N contains more than one particle, and so vk1,...,kN

k

should be greater than contributions of all k + l-body attractive energies of
interaction (l ∈ N) for sufficiently small λ.
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Remark 5.3.2 From the definition of I
k1,...,kN |k̄
k (∆1, ...,∆N ) (see (5.50)) it

is clear that

I
k1,...,kN |k̄
k (∆1, ...,∆N ) ≤ Ckλ

−dk̄, λ→ 0,

where Ck = Ck(λ) ≥ 0 are some constants. Moreover, if V
(st),−
k is bounded

from below on (Rd)k\(̃Rd)k, then Ck(λ) has the following limit at λ→ 0:

Ck(0) =

∫

(Rd)k̄

|V (st),−
k (x1

1, . . . , x
N
kN
, y1, ..., yk̄)|dy1 . . . dyk̄,

where x1
1, . . . , x

N
kN

some fixed points in Rd. For example, if we would have only
pair potential, to satisfy (5.52) the positive part of the potential V +

2 (x1, x2)
should behave like |x1 − x2|−d−ε, |x1 − x2| → 0, for some ε > 0.

In the case of all orders of interactions, the k-body potentials, for k ≥ 3,
can be chosen in such a way that constants Ck, k ≥ 3 have behavior like Ck/k!,

for some constant C > 0. Under such condition, I
k1,...,kN |k̄
k (∆1, ...,∆N ) will

behave like λ−dCk+1eCλ
−d
/k!. Therefore, to satisfy (5.52), the positive part

of the potentials V +
k (x1, . . . , xk) should behave like

|xi − xj|−d−ε
Ck+1

k!
eC|xi−xj |−d−ε

, |xi − xj| → 0, 1 ≤ i, j ≤ k

for some ε > 0.

For a given γ̄ ∈ Γ define the interaction energy between η ∈ ΓΛ, Λ ∈
Bc(Rd) and γ̄Λc = γ̄ ∩ Λc, Λc = Rd \ Λ as

WΛ(η | γ̄) =
∑

k≥2

∑

m+n=k
m,n≥1

∑

{x1,...,xm}⊂η

{y1,...,yn}⊂γ̄Λc

Vk(x1, . . . , xm, y1, . . . , yn).

Define

UΛ(η|γ̄) = UΛ(η) +WΛ(η|γ̄).

A7. The order of interaction. For any Λ ∈ Bc(Rd), η ∈ ΓΛ and γ̄ ∈ Γ
the interaction energy WΛ(η | γ̄) does not become −∞ and the partition
function

ZΛ(γ̄) =

∫

ΓΛ

exp {−UΛ(η| γ̄)}λσ(dη) <∞.
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Remark 5.3.3 Assumption A7 is important only for the next section, where
the precise definition of the Gibbs state on the configuration space Γ will be
given. In fact, for the results of the present chapter we do not need fulfillment
of A7 for all γ̄ ∈ Γ, but only for empty boundary configurations. In turn,
this fact is automatically ensured by assumption A5.

5.3.2 Gibbs specifications and correlation functions.

Let Λ ∈ Bc(Rd) and let γ̄ ∈ Γ. The finite volume Gibbs state with boundary
configuration γ̄ for U , z > 0 and β > 0 is

µΛ(dη| γ̄) =
exp {−βUΛ(η| γ̄)}

ZΛ(γ̄)
λzσ(dη).

Under assumption A7, the finite volume Gibbs state is well defined. When
γ̄ = ∅, let µΛ(dη|∅) ≡ µΛ(dη).

The corresponding finite-volume correlation functions for boundary con-
figuration γ̄ ∈ Γ have the following form

ρΛ(η | γ̄) =
1

ZΛ(γ̄)

∫

ΓΛ

e−βU(η∪γ|γ̄)λσ(dγ), η ∈ ΓΛ. (5.54)

Let {πΛ} denote the specification associated with z, β and the Hamilto-
nian U (see [69]), which is defined on Γ by

πΛ(A| γ̄) =

∫

A′

µΛ(dη| γ̄),

where A′ = {η ∈ ΓΛ : η ∪ (γ̄Λc) ∈ A}, A ∈ B(Γ).

A probability measure µ on Γ is called a Gibbs state for U , β and z if

µ(πΛ(A| γ̄)) = µ(A)

for every A ∈ B(Γ) and every Λ ∈ Bc(Rd).

This relation is the well known (DLR)-equation (Dobrushin-Lanford-
Ruelle equation), see [27] for more details. The class of all Gibbs states
which correspond to the specifications {πΛ}Λ∈Bc(Rd) we denote by G(V, z, β).
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5.3.3 Main results.

Theorem 5.3.1 Suppose that the interaction family V satisfies the assump-
tions A1-A6. Then, for any Λ ∈ Jλ0(R

d) and any β, z ≥ 0 there exists a
constant ξ = ξ(β, z) (independent of Λ) such that the finite volume correla-
tion function ρΛ(η) = ρΛ(η | ∅) satisfies the following inequality

ρΛ(η) ≤ ξ|η|e−
1
2
U+(η), η ∈ ΓΛ. (5.55)

Remark 5.3.4 The estimate (5.55) without exponent factor at the right-
hand side is the well-known Ruelle bound [76]. We call (5.55) a generalized
Ruelle bound. For 2-body interaction it was obtained in [2], [73].

As a consequence of Theorem 5.3.1 the following theorem is fulfilled.

Theorem 5.3.2 Let the interaction family V satisfy A1-A6. Then for any
z ≥ 0 and β ≥ 0

G(V, z, β) 6= ∅.

Proof. Existence of the corresponding Gibbs state follows from the arguments
which are based on the results of the Chapter 3. Let ψ ∈ L1(Rd)∩C(Rd) be
any positive function such that ψ(x) ≤ 1, x ∈ Rd, and let α(t), t ∈ R+ be
any continuous decreasing function with the following properties:

(1) α0 := limt→0+ α(t) = +∞;

(2) α+ := limt→+∞ α(t) ≥ 1;

As shown in Chapter 3, for any 0 < D <∞ the set

{
γ ∈ Γ | |Eα, ψ(γ)| ≤ D

}

is relatively compact in Γ, which is Polish space. Let us remind that

Γα,ψ =



γ ∈ Γ

∣∣∣∣∣∣

∑

{x,y}⊂γ

ψ(x)α(|x− y|)ψ(y) <∞





and

Eα,ψ(γ) =
∑

{x,y}⊂γ

ψ(x)α(|x− y|)ψ(y), γ ∈ Γα,ψ.
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In this section we consider α as any continuous decreasing function such that

α(|x− y|) ≤ e
1
2
V +
2 (x,y).

Obviously, chosen in such a way, this function satisfies the conditions above.
Using the properties of the so-called K-transform (see [38]) and the Theorem
5.3.1, for any Λ ∈ Jλ0(R

d) we have

∫

Γ

Eα,ψ(γ)dµΛ(γ) =

∫

Λ

∫

Λ

ψ(x)α(|x− y|)ψ(y)ρ
(2)
Λ ({x, y})dxdy < C,

where C ∈ R+ is some constant.
Therefore, by Prokhorov theorem the family of measures

{µΛ |Λ ∈ Jλ0(R
d)}

is relatively compact, which implies the existence of at least one limit measure
µ when Λ ↗ Rd. We will prove that corresponding limit measure is Gibbsian.
Let µΛn, n ≥ 1, where Λn ↗ Rd, n → ∞ be the sequence which converges
(in the sense of the Prokhorov theorem) to the measure µ, and let ρΛn, ρ
be the corresponding correlation functions. It is well-known (see [27]) that
probability measure µ on Γ is Gibbs, iff µ fulfills the Georgii-Nguyen-Zessin
equation (GNZ), i.e. for all positive, B(Rd)×B(Γ) measurable functions H
the following holds

∫

Γ

∑

x∈γ

H(x, γ)µ(dγ) =

∫

Γ

∫

Rd

H(x, γ ∪ {x})e−βW ({x}|γ)σ(dx)µ(dγ). (5.56)

Moreover, using Mecke formula (see [27]), one can show that (5.56) holds for
any measure µΛn, n ≥ 1.

Let Λ ∈ Bc(Rd). The σ-algebra B(Γ) is generated by sets of the form
A ∩ Ã with A ∈ BΛ(Γ), Ã ∈ BRd\Λ(Γ) and every measure on Γ is uniquely
determined by its values on these sets.

Let us prove (5.56) for the function H(x, γ) = 11Λ(x)11A(γ)11Ã(γ). Let
n ∈ N be arbitrary. Using the properties of the K-transform (see [38]) we
have

∫

ΓΛn

∑

x∈γ

11Λ(x)11A(γ)11Ã(γ)µΛn(dγ) ≤
∫

ΓΛn

∑

x∈γ

11Λ(x)µΛn(dγ) =
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=

∫

Λ

ρΛn(x)σ(dx) ≤ zξ|Λ|. (5.57)

The right hand side of (5.56) for the measure µΛn is bounded by

∫

Rd

11Λ(x)

∫

ΓΛn

e−βW ({x}|γ)µΛn(dγ)σ(dx) =

=

∫

Rd

11Λ(x)ρΛn(x)σ(dx) ≤ zξ|Λ|, (5.58)

where we have used the definition of the correlation function and Fubini
theorem. Hence, there exists some subsequence {µΛnk

}k≥1 which ensures the
fulfillment of (5.56) for the limit measure µ. The proof for the general positive
function H follows from the fact that any positive measurable function can
be approximated by the simple functions.

5.3.4 The proof of Theorem 5.3.1

The proof is based on the expansion of the Lebesgue-Poisson integral for the
correlation functions (5.54) into the series over some kind of dense configu-
rations (see [73] and definition (3.4) therein).

5.3.5 Cluster expansion in densities of configurations.

The main idea of the construction consists in the use of the fact that if
two or more particles are in one elementary cube ∆ ∈ ∆̄ then Gibbs factor
exp[−βV2(xi, xj)] ∼ exp[−βb], where

b = inf
∆∈∆̄

inf
x1,x2∈∆

V +
2 (x1, x2) (5.59)

and b→ ∞, when λ→ 0. The configurations with this property will be called
dense configurations, as opposed to dilute configurations, in which no more
than one particle is situated in any cube. The main technical idea consists
in separation of the dilute parts of configurations from the dense parts. In
order to do this we define an indicator function for the configuration γΛ,
Λ ∈ Jλ0(R

d) in the cube ∆:

χ∆
n (γΛ) = χ∆

n (γ∆) =

{
1, for |γ∆| = n,
0, otherwise.
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Then the indicator for dilute configurations is defined as

χ∆
−(γ∆) = χ∆

0 (γ∆) + χ∆
1 (γ∆)

and for dense configurations as

χ∆
+(γ∆) =

∑

n≥2

χ∆
n (γ∆).

To obtain decomposition we use the following partition of the unity:

1 =
∏

∆⊂Λ

[
χ∆
−(γ∆) + χ∆

+(γ∆)
]

=
∑

ω

∏

∆⊂Λ

χ∆
ω(∆)(γ∆), (5.60)

where ω is the map from ∆̄ ∩ Λ := {∆ ∈ ∆̄ : ∆ ⊂ Λ} into the set {+, −},
such that ω(∆) = + or − for any ∆ ∈ ∆̄ ∩ Λ. Inserting (5.60) into (5.54)
for γ̄ = ∅, we get

ρΛ(η) =
1

ZΛ

∑

ω

∫

ΓΛ

∏

∆⊂Λ

χ∆
ω(∆)(γ∆)e−βU(η∪γ)λσ(dγ), (5.61)

where ZΛ = ZΛ(∅). Now we define the set

X =
⋃

∆⊂Λ :ω(∆)=+

∆.

Then the sum over ω can be rewritten as the sum over all possible sets X in
Λ. Namely,

ρΛ(η) =
1

ZΛ

∑

∅⊆X⊆Λ

∫

ΓΛ

χ̃X+ (γ)χ̃X
c

− (γ)e−βU(η∪γ)λσ(dγ),

where
χ̃X± (γ) =

∏

∆⊂X

χ∆
±(γ∆)

For any X ∈ Jλ0(R
d), X ⊆ Λ define graph GR(X) with vertices in the

centers of all elementary cubes ∆ ⊂ X and lines l(∆,∆′) iff dist(∆,∆′) ≤ R.
The number of lines depends on graph GR(X).

Definition 5.3.1 The set X is called R-connected if the corresponding graph
GR(X) is connected in ordinary way.
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R-connected set X is denoted by XR. Then, every set X can be represented
as some fixed partition

{X}Rn := {XR
1 , . . . , X

R
n | dist(XR

i , X
R
j ) > R, for i 6= j},

and so the sum over all possible X in Λ can be rewritten as the sum over
all possible sets {X}Rn (for n = 0, X = ∅). Furthermore, we replace the sum
over all such sets by the sum over XR

1 , . . . , X
R
n independently, and remove

the conditions dist(XR
i , X

R
j ) > R by introducing the hard-core potential

χcorR (X)n =

{
0, there exist XR

i , X
R
j , i 6= j, dist(XR

i , X
R
j ) ≤ R,

1, otherwise.

Then we get

ρΛ(η) =
1

ZΛ

∑

n≥0

1

n!

∑

XR
1 ⊆Λ

. . .
∑

XR
n ⊆Λ

χcorR (X)n×

×
∫

ΓΛ

χ̃X+ (γ)χ̃X
c

− (γ)e−βU(η∪γ)λσ(dγ). (5.62)

In the sequel, having in mind only R-connected components ofX, we drop in-
dex R in the notation XR

i , and summation
∑

X1⊆Λ . . .
∑

Xn⊆Λ, for simplicity,
will be denoted by

∑
(X)n

. Now, the last step in arranging our decomposition
is as follows. Define the set

X0 =
⋃

∆⊂Λ : dist(∆, η)≤R

∆.

This set is fixed for fixed variable of the correlation function ρΛ(η). Now, for
every n ≥ 0 we split the sum over (X)n into two sums. The first one is over
those Xj, which do not intersect the region X0 and the second one over those
which intersect X0. To distinguish the sets Xj which do not intersect and
do intersect X0, the latter sets are denoted by Yj . There are n!/k!(n − k)!
possibilities when any k sets Xj do not intersect X0 and (n − k) sets Yj
intersect X0. So the final expansion is the following:

ρΛ(η) =
1

ZΛ

∑

n≥0

n∑

k=0

1

k!(n− k)!

∑

(X)k

∑

(Y )n−k

χcorR ((X)k, (Y )n−k)×
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×
∫

ΓΛ

λσ(dγ)χ̃
X
+ (γ)χ̃X

c

− (γ)e−βU(η∪γ), (5.63)

where

X = X̃k ∪ Ỹn−k :=

[
k⋃

i=1

Xi

]
⋃
[
n−k⋃

j=1

Yj

]
.

5.3.6 The main estimates.

As the first step, let us split the exponent in (5.63) into four parts: the part
which corresponds to the positive part of the energy of the configuration
η , the interactions of the particles inside the region X0 ∪ Ỹn−k, inside Λ \
(X0 ∪ Ỹn−k) and interactions between them. Note that interaction between

X0 ∪ Ỹn−k and X̃k is zero due to the finite range of potential. Therefore,
considering γ ∈ ΓΛ : γ ∩ η = ∅ we get

e−βU(η∪γ) = e−βU
+(η)E1E2E0,

where

E1(X0 ∪ Ỹn−k) = e−βU
st(η)

n−k∏

l=1

eβW (η | γYl
)− 1

2
βU+(γYl

)−βUst(γYl
),

E2(X0 ∪ Ỹn−k | (X0 ∪X)c) = e
−βW (η | γ

X0\Ỹn−k
)
n−k∏

l=1

e−β[ 1
2
U+(γYl

)+W (γYl
| γXc)],

and
E0(Ỹ

c
n−k) = e

−βU(γ
Λ\Ỹn−k

)
.

Lemma 5.3.1

E1 ≤ eβB|η|
n−k∏

l=1

∏

∆⊂Yl

eβB|γ∆|− 1
2
βU+(γ∆). (5.64)

Proof. Using A5 we have

U (st)(η ∪ γỸn−k
) ≥ −B

(
|η| +

n−k∑

l=1

∑

∆⊂Yl

|γ∆|
)

and
W+(η | γỸn−k

) ≥ 0, U+(γYl
) ≥

∑

∆⊂Yl

U+(γ∆). �
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Lemma 5.3.2 For any γ ∈ Γ and γ̄ ∈ Γ̄Xc, X ∈ Jλ0(R
d), X ⊆ Λ

1

4
U+(γX) +W (γX | γ̄) ≥ −Ī|γX |, (5.65)

where Ī := Ī
(1)
2 (see (5.53)), and

Γ̄Xc = {γ ∈ ΓXc | |γ ∩ ∆| ≤ 1, for all ∆ ⊂ Xc}

Proof. See Appendix. �

Let us define

∂η =
⋃

∆ : η∩∆6=∅

∆.

Now using the property of infinite divisibility of measure λσ and estimate
(5.65) we can calculate the part of integral in (5.63)

e−
1
2
βU+(η)

∫

Γ
Ỹn−k

χ̃
Ỹn−k

+ (γ)E1E2λσ(dγ) ≤

≤ e−
1
4
βU+(η)+β|η|Ī

∫

Γ
Ỹn−k

χ̃
Ỹn−k

+ (γ)e
−βW (η | γ

(X0∩∂η)\Ỹn−k
)
E1×

×
n−k∏

l=1

e−β[ 1
2
U+(γYl

)+W (γYl
| γXc)]λσ(dγ). (5.66)

Assumption A6, estimate (5.64) and trivial inequality

U+(η) ≥
∑

∆⊂∂η

U+(η∆)

gives us the bound for the integral (5.66)

eβ|η|(Ī+B)+β
∑

∆⊂∂η Ī|η∆|
n−k∏

l=1

∏

∆⊂Yl

I∆,

where

I∆ =

∫

Γ∆

χ∆
+(γ∆)e−β

1
2
U+(γ∆)+β(B+Ī)|γ∆|λσ(dγ). (5.67)



5.3. THE CASE OF MULTIBODY INTERACTION 99

Focusing only on the 2-body positive part of interaction and taking into
account the definition (5.59) we can estimate the last integral by

I∆ ≤ ε1 =
1

2
z2λ2d

0 e
−β( 1

2
b−2Ī−2B) exp{zλd0e−β( 3

2
b−Ī−B)}, (5.68)

which is finite due to A6.
Now taking the maximum ofE0 in variable Ỹn−k (we denote this maximum

by Ȳn−k) and using elementary estimate

χcorR ((X)k, (Y )n−k) ≤ χcorR (X)k (5.69)

we can estimate the sum over (Y )n−k by the following lemma:

Lemma 5.3.3 (e.g. [62] )

∑

Y ∩X0 6=∅

ε
|Y |

λd

1 ≤ |η|c(d)
(
R

λ

)d
ε

1 − ε
= |η|K, (5.70)

where c(d) is a constant which depends only on d and ε = 4c(d)
(
R
λ

)d
ε1.

For the proof in our case see [73].
The last step is as follows. The expansion like (5.62) can be constructed

for partition function ZΛ1 with Λ1 ⊂ Λ. Denote it by

ZΛ1 =
∑

k≥0

1

k!
Z

(k)
Λ1
. (5.71)

Taking into account all previous estimates we get

ρΛ(η) ≤ 1

ZΛ

e−
1
2
βU+(ηΛ)+β(2Ī+B)|η|

∑

n≥0

n∑

k=0

(|η|K)n−k

k!(n− k)!
Zk

Λ\Ȳn−k
=

=
1

ZΛ

e−
1
2
βU+(ηΛ)+β(2Ī+B)|η|

∑

k≥0

1

k!

∑

l≥0

(|η|K)l

l!
Zk

Λ\Ȳl
=

= e−
1
2
βU+(ηΛ)+β(2Ī+B)|η|

∑

l≥0

(|η|K)l

l!

ZΛ\Ȳl

ZΛ

. (5.72)

The fact that ZΛ1 ≤ ZΛ2 for Λ1 ⊂ Λ2 gives the inequality

ρΛ(η) ≤ e−
1
2
βU+(η)e|η|(β(2Ī+B)+K). �
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Appendix A

Proof of the lemma 5.3.2

Let X = ∪Nj=1∆j. Consider the configuration γ with |γX | = m, |γ∆1 | =
m1, ..., |γ∆N

| = mN , mj ≥ 1 for j = 1, ..., N and m1 + · · · + mN = m. Let
in the k-body interaction be involved k̄ ≥ 1 particles from the dilute config-
uration γ̄Xc ∈ Γ̄Xc and, correspondingly, q1 particles of γX from ∆1, which
are situated in the points x

(1)
1 , ..., x

(1)
q1 ∈ ∆1, ..., qN particles x

(N)
1 , . . . , x

(N)
qN

from ∆N . It is clear that q1 + · · · + qN + k̄ = k and 0 ≤ qi ≤ mi, k̄ ≥ 1.
Then the interaction energy between m particles of the configuration γX and
k̄ particles of dilute configuration γ̄Xc can be written in the following form:

Wk(γX | γ̄Xc) =
∑

0≤qi≤mi,k̄≥1

q1+···+qN+k̄=k

∑

{x
(1)
1 ,...,x

(1)
q1

}∈γ∆1

. . .
∑

{x
(N)
1 ,...,x

(N)
qN

}∈γ∆N

×

×
∑

{y1,...,yk̄}∈γ̄Xc

Vk(x
(1)
1 , . . . , x(1)

q1
, . . . , x

(N)
1 , . . . , x(N)

qN
, y1, . . . , yk̄).

Then taking into account (5.50) we obtain

−Wk(γX | γ̄Xc) ≤
∑

0≤qi≤mi,k̄≥1

q1+···+qN+k̄=k

N∏

i=1

Cqi
mi
I
q1,...,qN |k̄
k (∆1, . . . ,∆N ), (A.1)

where Ck
m = m!/k!(m − k)!. Let in the sequence q1, . . . , qN be nonzero cor-

respondingly qli = kli particles from ∆li , i = 1, . . . ,M involved in k-body
interaction. Changing in (A.1) to the summation over kl1 , . . . , klM :

−Wk(γX | γ̄Xc) ≤ (A.2)
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≤
min{N, k−1}∑

M=1

∑

1≤l1<l2<···<lM≤N

∑

1≤kli
≤mli

,k̄≥1

kl1
+···+klM

+k̄=k

M∏

i=1

C
kli
mli

I
kl1

,...,klM
|k̄

k (∆l1, . . . ,∆lM )

Let among the cubes ∆1, . . . ,∆N be N1 cubes with only one point of γ inside.
Without loss of generality, we suppose that mj = 1, j = N −N1 + 1, . . . , N .
We suppose also that 1 ≤ N1 < N . Split the summation over 1 ≤ l1 < l2 <
· · · < lM ≤ N into the summation over 1 ≤ l1 < l2 < · · · < lS ≤ N −N1 over
cubes ∆1, . . . ,∆N−N1 and the summation over 1 ≤ l′1 < l′2 < · · · < l′S′ ≤ N1

over cubes ∆′
1, . . . ,∆

′
N1

. It is clear that S + S ′ = M and S can take integer
values from 0 to M . Therefore, we get additionally M+1 sums over S. Every
value of 1 ≤ l′1 < · · · < l′S′ ≤ N1 corresponds to the dilute configuration.
Hence, using the definition (5.50) we can apply the following formula:

∑

1≤l
′
1<l

′
2<···<l

′

S′≤N1

I
kl1

,...,klS
,1,...,1|k̄

k (∆l1, . . . ,∆lS ,∆l
′
1
, . . . ,∆l

′

S′
) ≤

≤ I
kl1

,...,klS
|k̄+S′

k (∆l1, . . . ,∆lS),

yielding
−Wk(γX | γ̄Xc) ≤

≤
min{N−N1, k−1}∑

M=1

∑

1≤l1<l2<···<lM≤N−N1

min{N1, k−M−1}∑

l=0

∑

1≤kli
≤mli

,k̄≥1

kl1
+···+klM

+k̄+l=k

M∏

i=1

C
kli
mli

×

×Ikl1
,...,klM

|k̄+l

k (∆l1, . . . ,∆lM ) +N∗

min{N1, k−1}∑

l′1=1

I
1|k−1
k (∆′

l′1
),

where N∗ = min{N, k − 1}. Collecting the terms with M = 1, kl1 = 1 in
the first sum and the last sum, and selecting also the terms with kl1 = kl2 =
· · · = klM = 1, summing up all inequalities in k ≥ 2 and taking into account
that N∗ ≤ k − 1, we get

−W (γX | γ̄Xc) ≤ Ī|γX | +W1 +W2,

where

W1 =

N−N1∑

M=2

∑

1≤l1<l2<···<lM≤N−N1

M∏

i=1

C1
mli

∑

k≥M+1

(k−M)I
1,...,1|k−M
k (∆l1, . . . ,∆lM ),
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W2 =

N−N1∑

M=1

∑

1≤l1<l2<···<lM≤N−N1

∑

k≥M+1

∑

1≤kli
≤mli

kl1
+···+klM

=k

M∏

i=1

C
kli
mli

×

×
∑

l≥1

lI
kl1

,...,klM
|l

k+l (∆l1, . . . ,∆lM ).

Using the same arguments, one can get almost the same inequality for the
positive part of energy:

U+(γX) ≥ U0,

where

U0 =

N−N1∑

M=1

∑

1≤l1<l2<···<lM≤N−N1

∑

k≥M+1

∑

1≤kli
≤mli

kl1
+···+klM

=k

M∏

i=1

C
kli
mli

×

×vkl1
,...,klM

k (∆l1, . . . ,∆lM ).

Now it is clear from the assumptions A6 that

1

4
U0 ≥W1, and

1

4
U0 ≥W2,

which gives (5.65). It is not difficult to see (using direct computation) that
condition 1 ≤ N1 < N is not essential in the proof of Lemma 5.3.2. �
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dynamics for continuous systems with singular superstable inter-
action, Submitted to Journal of Mathematical Physics 2-0317.

[47] Yu. G. Kondratiev, J. L. Silva, and L. Streit. Generalized Appel
Systems. Methods Functional Analysis and Topology, 3(2):28–61,
1997.

[48] Yu. G. Kondratiev, J. L. Silva, L. Streit, and G. F. Us. Analysis
on Poisson and Gamma spaces. Infinite Dimensional Analysis,
Quantum Probabilities and Related Topics, 1(1):91–117, 1998.

[49] Yu. G. Kondratiev, L. Streit, W. Westerkamp, and J. Yan. Gener-
alized functions in infinite dimensional analysis, Hiroshima Math.
J., 28(2):213-260, 1998.

[50] T. Kuna. Studies on configuration space analysis and applications
PhD thesis, University of Bonn, 1999.

[51] H. H. Kuo. Lectures on white noise analysis. Soochow J. Math.,
18:229–300, 1992.

[52] H. H. Kuo. White Noise Distribution Theory. CRC Press, Boca
Raton, New York, London, and Tokyo, 1996.



110 BIBLIOGRAPHY

[53] O. E. Lanford and D.Ruelle. Observables at infinity and states
with short range correlations in statistical mechanics. Comm.
Math. Phys., 13:194-215, 1969.

[54] O. E. Lanford. Time Evolution of Large Classical Systems, Dy-
namical Systems: Theory and Applications., ed. J. Moser. Lect.
notes in Phys., Vol. 38, 1975.

[55] J. Lebowitz and E. Pressuti. Statistical Mechanics of Systems of
Unbounded Spins, Commun. Math. Phys. 50:195-218, 1976.

[56] A. Lenard. States of classical statistical mechanical systems of
infinitely many particles. I, Arch. Rational Mech. Anal., 59:219-
239, 1975.

[57] A. Lenard. States of classical statistical mechanical systems of
infinitely many particles. II. Arch. Rational Mech. Anal., 59:241-
256, 1975.

[58] J.T. Lewis, J.V. Pule, and P. de Smedt. The Superstability of
Pair-Potentials of Positive Type. Journal of Statistical Physics,
35:381-385, 1968.

[59] E. Lytvynov. Multiple Wiener integrals and non-Gaussian white
noises: a Jacobi field approach. Methods of Functional analysis
and Topology, 1(1):61–85, 1995.

[60] E. Lytvynov. Fermion and boson random point processes as par-
ticle distributions of infinite free Fermi and Bose gases of finite
density, Reviews in Mathematical Physics 14(10):1073-1098, 2002.

[61] R. A. Minlos. Limiting Gibbs distribution. Funct. Anal. Appl.,
1:141-150, 1967.

[62] V. Malyshev and R. Minlos. Gibbs random fields. The cluster
expansion method. Kluwer, Dordrecht 1991.

[63] K. Matthes, J. Kerstan, and J. Mecke. Infinitely divisible point
processes. John Wiley & Sons, Chichester-New York-Brisbane
1978.



BIBLIOGRAPHY 111

[64] H. Moraal. The Kirkwood-Salsburg equation and the virial ex-
pansion for many-body potentials. Phys. Lett., 59(A):9-10, 1976.

[65] X. X. Nguyen and H. Zessin. Integral and differential characteri-
zations of the Gibbs process. Math. Nachr., 88:105-115, 1979.

[66] M. J. Oliveira. Configuration Space Analysis and Poissonian
White Noise Analysis PhD thesis, University of Lisboa, 2002.

[67] E. Pechersky and Yu. Zhukov. Uniqueness of Gibbs state for non-
ideal gas in Rd: The case of pair potentials. Journal of Statistical
Physics, 97:145-172, 1999.

[68] C. Preston. Specifications and their Gibbs states. Manuscript.
http://www.mathematik.uni-bielefeld.de/˜preston

[69] C. Preston. Random Fields. In: Lecture notes in Mathematics,
534. Berlin Heidelberg, New York: Springer 1976.

[70] C. Preston. Canonical and microcanonical Gibbs states.
Z. Wahrsch. verw. Gebiete, 46:125-158, 1979.

[71] A. Procacci and B. Scoppola. The Gas Phase of Continu-
ous Systems of Hard Spheres Interacting via n-Body Potential.
Comm. Math. Phys., 211:487-496, 2000.

[72] S. Rachev. Probability metrics and the stability of stochastic
models. John Wiley & Sons, Chichester-New York 1991.

[73] A. L. Rebenko. A New Proof of Ruelle’s Superstability Bounds.
J. Stat. Phys., 91:815-826, 1998.

[74] A. L. Rebenko and G. V. Shchepan’uk. The Convergence of Clus-
ter Expansions for Continuous Systems with Many-Body Inter-
actions. J. Stat. Phys., 88(3/4):665-689, 1997.

[75] D. Ruelle. Statistical Mechanics. New York, Benjamin 1969.

[76] D. Ruelle, Superstable interactions in classical statistical mechan-
ics, Commun. Math. Phys. 18:127-159, 1970.



112 BIBLIOGRAPHY

[77] S. B. Shlosman. The method of reflective positivity in the
mathematical theory of phase transitions of the first kind. Us-
pekhi Mat. Nauk., 41, no.3(249):69–111, 240, 1986 (in Russian).

[78] J. L. Silva. Studies in Non-Gaussian Analysis. PhD thesis, Uni-
versity of Madeira, 1998.

[79] Ya. G. Sinai. Theory of phase Transitions: Rigorous Results.
Pergamon Press, 1982.

[80] A. V. Skorokhod. On infinite system of stochastic differential
equations. J. Methods of Funct. Anal. and Topology 4, 54–61,
1999.

[81] L. Streit. Introduction to white noise analysis. In A. L. Car-
doso, M. de Faria, R. Potthoff, J. Seneor, and L. Streit, editors,
Stochastic Analysis and Applications in Physics, pages 415-440.
Kluwer Academic Publishers, Dorbrecht, 1994.

[82] W. Westerkamp. A primer in white noise analysis. In
P.Blanchard, M.Sirugue-Collin, L. Streit, and D.Testard, edi-
tors, Dynamics of Complex and Irregular Systems, pages 188-202.
World Scientific, Singapore, 1993.

[83] H. Zessin. The method of moments for random measures. Z.
Wahrsch. Verw. Gebiete 62, no. 3:395-409, 1983.


