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Chapter 1

Introduction

The space of configurations I'x over a Riemannian manifold X consists of
all locally finite subsets of X. Such spaces play an important role in the
topology, the theory of point processes, the mathematical physics and sev-
eral other areas of the mathematics and its applications. As objects of infinite
dimensional analysis configuration spaces form a class of infinite dimensional
manifolds which are not in the well-known categories of Banach or Fréchet
manifolds. Nevertheless, they can be equipped with a natural differentiable
structure (coming from the underlying manifold X') with quite rich analytic
and geometrical properties, see [2], [3]. This leads us to the first application
in mathematical physics. Directly, the configuration space appears in appli-
cations to classical mechanical systems of infinite many particles describing
the position of indistinguishable particles. More comprehensive is the knowl-
edge about configuration spaces in the branch of general measure theory,
cf. e.g. [36], [63]. One should note that even in the stochastics there are
still many open questions related to the general theory of point processes on
configuration spaces. The general analysis and stochastics on configuration
spaces can be conditionally divided in two parts. One of them, which can be
characterized as general analysis, in particular connected with the so-called
Poissonian White Noise analysis. This analysis is a special modification of
the well-known Gaussian White Noise analysis (see, e.g., the books [10], [33],
[34], [52] for a detailed exposition of the theory and examples of applications,
and the introductory articles [51], [81], and [82]).

One of the first approaches to non-Gaussian analysis was proposed in [4]
and developed in [1]. Gaussian white noise analysis is essentially based on
the Wiener-Ito-Segal chaos decomposition of the L2-space with respect to a
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Gaussian measure on an orthogonal system of Hermite polynomials. This
has motivated the aforementioned construction. There, the orthogonal sys-
tem of Hermite polynomials is replaced by a biorthogonal Appell system —
a system first constructed by Yu. L. Daletsky [18] for a special class of mea-
sures and extending the previous system — and the chaos decomposition is
replaced by a biorthogonal decomposition. Through a slight modification on
the conditions of the probability measures used in these references, the pre-
vious construction of non-Gaussian analysis was enlarged in [49] to a class of
measures which, in particular, includes the gamma and the Poisson measures
(see also [48], [78], and [44]). This construction is supported on a general
concept of generalized Appell systems ([47], [49], [78]). All these general-
izations towards a non-Gaussian analysis are clearly based on the theory of
Appell systems. Recently, some aspects of this theory were further developed
by generalizing the theory of Appell systems to an analysis on hypergroups
[7], [11]. An alternative approach to non-Gaussian analysis including Pois-
sonian analysis and based on the spectral representation of a special family
of Jacobi fields in the Fock space was developed by Yu. M. Berezansky, see,
e.g., [8], [9], [13], [14], [59].

Poisson measures appear in several areas of mathematics and in applica-
tions to problems of physics, biology, chemistry, economics, and other fields
of modern science. In particular, Poisson measures are related to the study
of point processes in probability theory, representation theory for diffeomor-
phism groups and current algebras, models of non-relativistic quantum fields,
classical and quantum statistical mechanics. We only refer to [3] for a rea-
sonable list of applications in mathematical physics and corresponding refer-
ences. Apart from the diversity of the related topics, Poisson measures are
by themselves a subject of interest in infinite dimensional analysis, because
these, similar to the Gaussian measures, are defined on infinite dimensional
spaces whose analysis is of a constructive character and has a very rich struc-
ture.

In the Poissonian White Noise analysis are manifested the general fea-
tures of infinite dimensional analysis as well as arise new structures, related
with the specific of configuration spaces on which Poisson measures are con-
sidered (see [2], [3], [38], [39], [40], [42], [43]). The recent dissertation [66] of
M. J. Oliveira was devoted to the detailed study of relations between struc-
tures of Poissonian White Noise analysis and specific structures peculiar to
the analysis on configuration spaces.

Another part can be characterized as constructive infinite dimensional



analysis on the configuration spaces. First of all, it is related with the
investigation of some classes of measures on configuration spaces. Among
measures, considered on the configuration spaces, one should distinguish the
class of measures constructed via potentials of interaction. These measures
are known in mathematical physics as Gibbs measures. The rigorous mathe-
matical definition of such objects came back to [61], [19], [20], [22], and [53].
There exist many equivalent description of Gibbs measures, see [27], [69],
and [65]. To the detailed study of Gibbs measures were also devoted such
papers as [68], [70], [30], [28], [29]. The aim of the following dissertation is a
construction and study of such measures, using analytical methods. Methods
of infinite dimensional analysis, used for the study of Gibbs measures, were
developed, in particular, in works of [2], [3], [27], [38], [39], [41]. This work
is a continuation of this direction.

In the sequel we describe the contents of the work chapter by chapter in
more details.

General facts and notations

Chapter 2 begins with a description of the configuration spaces used in this
work. These spaces are constructed over an Euclidean space R%, d > 1, but
without loss of generality the most of results can be transferred to the case
of a general non-compact Riemannian manifold X. In the Section 2.1 we
describe the space of finite configurations, i.e.

Lo ={n CR*||n| < oo},

where |n| denotes the number of elements of the set 7. Some topological
properties of I'y are also considered in Section 2.1.

In Section 2.2 we consider configuration space I' with it basic topological
properties which is defined as

I''={y CR! [yNA| < oo, forall compact A C R?}.

Classes of functions on I'y and I" are also discussed in this section. Moreover,
in Section 2.2 we define and present some properties of the K-transform,
a mapping which transforms functions defined on I'y into functions on T
The K-transform plays the role of the Fourier transform in configuration
space analysis and has purely combinatorial nature. It plays a key-role in
the construction of combinatorial harmonic analysis on configuration spaces
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introduced and developed in [38], [39], see also [42] , [43] . The operator
nature of the K-transform was first recognized and studied by A. Lenard
in a series of works, [56], [57]. A last part of Section 2.2, is devoted to the
Lebesgue-Poisson measure A,, on Iy, a Poisson measure 7., on I' and the
dual operator of the K-transform denoted by K*. The latter operator maps
probability measures p on I' into correlation measures K*u on I'y.

Section 2.3 is devoted to the the space of multiple configuration, its basic
topological and measure theoretical properties.

Detailed structure and some topological properties of
the configuration space I'

In the study of problems of stochastics and mathematical physics, topolog-
ical and metrical structures on configuration spaces play an essential role.
Questions related to these structures were mostly studied on the space of
multiple configurations I" comparing with the configuration space I'. First
of all, it concerns with the possibility to metrize vague topology on I'. This
metrization is not proper for the case of simple configurations and demands
some modification.

The aim of this chapter is to order our knowledge concerning some topo-
logical properties of I'. We would like to emphasize that the main new results
of this chapter are related with a metrical structure of configuration space
I'. We construct a family of metrics on I', which makes it complete, sepa-
rable metric space and such that topologies generated by these metrics are
equivalent to the vague topology on I'. The construction of such a metrics
is motivated by observations made by A. Skorokhod in [80]. Such metrical
structures on I' give us a possibility to describe relatively compact sets in I'.
In this chapter, we propose new simple proof of the Holley-Stroock criterion
for relatively compact subsets of I', see [35]. Using it, we introduce a family
of compact functions on I'. Such functions are a standard tool in the study
of many problems of mathematical physics and stochastics.

On relations between a priori bounds for measures on
configuration spaces

The measure theory on configuration spaces has several specific aspects com-
paring with the well developed one in the case of linear spaces. Namely, in



the linear case we have useful relations between such characteristics of mea-
sure as moments, the Laplace transform, support and integrability properties
for some classes of functions on linear spaces, see e.g. [10] for a review and
related historical comments and references. These characteristics need to
be modified properly in configuration space analysis. Important instructive
ideas in this area are coming from the theory of stochastic processes and
statistical physics. In these applications measures on configuration spaces
correspond to point processes and states of continuous systems respectively
and in both areas we have already many deep results concerning properties
of particular classes of such measures.

The point of view developed in Chapter 4 is motivated mainly by results
of classical statistical mechanics of continuous systems. In particular, in pi-
oneering works of R. L. Dobrushin [21] and D. Ruelle [75] dedicated to the
study of equilibrium states (Gibbs measures) in the case of pair potentials
were discovered several properties of these measures related with analysis of
their characteristics. Namely, the first characteristic of configuration space
measures is the system of correlation functions (that is the system of reduced
moments or coincidence densities in the point process theory). Correlation
functions can be considered as an analog of the moments of measures in the
linear space analysis. In the case of superstable pair potentials their sat-
isfy so-called Ruelle bound (RB) [75] which is very useful in applications.
Another important bound obtained in the same paper is related with the
density of finite volume projections of Gibbs measures (Ruelle probability
bound (RPB)) which also became a standard technical tool in the equilib-
rium statistical physics. In particular, (RPB) gives information about the
support of Gibbs measures. R.L.Dobrushin [21] proved exponential integra-
bility w.r.t. Gibbs measures of some local functions on configuration spaces
(Dobrushin exponential bound (DEB)) which also gives useful information
about these measures.

In Chapter 4 we consider measures on configuration spaces which sat-
isfy (some generalizations of) the mentioned bounds. We have shown that
these bounds, in fact, are related among each other and do not need to be
restricted to the class of Gibbs measures. This is important, in particular, in
applications to non-equilibrium problems. More precisely, in the study of the
dynamics (e.g., Hamiltonian or stochastic) of continuous systems we need,
typically, to restrict the class of initial states assuming one or another kind of
a priori bounds on them. Actually, the necessity to transport the description
of the time evolution from the traditional classical mechanics point of view
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(in terms of particle trajectories) to the evolution of states is a specific point
in the rigorous statistical physics of continuous systems. We refer the reader
to the excellent discussion of this concept in the review by R.L.Dobrushin,
Ya.G.Sinai and Yu.M.Suhov [24]. In concrete examples we can see that the
possibility to construct the time evolution of an initial state depends on the
level of the deviation from the equilibrium state (i.e., on the information
about "how non-equilibrium is the initial state”).

Moreover, even in the case when the initial state is a Gibbs measure, the
time evolution usually does not preserve the Gibbs property (at least, in the
class of Gibbs measures with interactions of a finite order). But we can expect
that the time evolution can be realized in a class on configuration space
measures with certain a priori bounds. This hope is supported, in particular,
by recent results on the stochastic dynamics of infinite particle systems [46].
One of the aims of this chapter is to clarify which kinds of a priori bounds can
be reasonable, in principle, for measures in the configuration space analysis
and how modifications of these bounds are reflected in the properties of the
measures (e.g., support properties etc.).

Note, that even in the case of Gibbs measures with pair potentials, mod-
ifications of classical bounds are useful. For example, a generalization of
the Ruelle bound for correlation functions, which we discussed in this chap-
ter, was already used essentially in [3] for the construction of equilibrium
gradient stochastic dynamics of continuous systems with pair singular inter-
actions. An additional motivation for the analysis developed in this chapter
is related with an important class of so called fermion and boson measures,
see e.g. [60] and references therein. Such measures are defined via explicitly
given correlation functions and do not admit clear Gibbs type descriptions.
Only one way to study the properties of such measures is based on using the
bounds on correlation functions and their consequences.

Existence problem for Gibbs measures on configuration
spaces

In the first section of Chapter 5 we consider the existence problem for Gibbs
states of continuous systems with pair interactions. Such problem was in-
vestigated in the fundamental works of R. L. Dobrushin and D. Ruelle, see
[21], [76]. Ruelle’s approach was based on the concept of superstability, and
the existence result was obtained using a priori bounds on correlation func-



tions, which are now known as Ruelle bounds. In turn, these bounds were
established with the help of the technically rather complicated use of su-
perstability. Dobrushin’s approach was based on the consideration of the
associated lattice system with further use of the general Dobrushin criterion
for lattice systems, see [21]. It was modified in the work of Pechersky and
Zhukov, where the existence problem was analyzed under condition of the
finite range interaction (see [67]). In Chapter 5 we develop the approach of
Pechersky and Zhukov for the case of interaction with an infinite range.

In the second section of Chapter 5 we use a modified approach to the
study the existence problem for Gibbs states of continuous systems with
pair interactions, using Dobrushin approach described in [21]. Namely, we
use Dobrushin existence criterion, which is proven for the lattice models in
Z4. To apply this criterion to continuous models in R?, we reduce such a
continuous model to an equivalent one on Z¢ by appropriate partition of R¢
into cubes, c.f. [67].

Comparing with [21], [67], we consider a different compact function on the
spin space, that gives us more a priori information about the class of Gibbs
measures. Similar to Dobrushin, we consider the potentials with infinite
radius of the interaction but subject to the conditions close to those used in
the papers [67], [76]. For simplicity we consider from the outset of Section
5.2 a concrete class of the potentials of the (DF R)-type (Dobrushin-Fisher-
Ruelle type), although, as shown in the Theorem 5.2.2; the existence result
holds true for more general potentials. In combination with the statements
of Chapter 4 we have more a priori properties of Gibbs measures. Under the
conditions of Dobrushin’s existence criterion with some compact function,
there exist certain a priori bounds of integrability of this function, see (5.31).
As shown in the proof of Theorem 5.2.1 this implies integrability of functions
2l for some p > 0, where |y4| denotes the number of particles in a finite
volume A C RY Starting from relations between bounds on probability
measures on configuration spaces (see Chapter 4), we obtain information
about the probability of occupation of particles in a finite volume (RPB)
(Ruelle probability bound), as well as information about supports for Gibbs
measures.

Furthermore, the use of the new compact function (5.25) allows us to
avoid the consideration of multiple configurations from the outset of the
work. We introduce a new metric (5.24) on the spin space that uses explic-
itly a compact function. The corresponding metric space is complete and
separable, see Chapter 3. In the works of [21], [67] the problem of local-
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ization of Gibbs states on the simple configuration spaces was subject of
an additional analysis. Note, that comparing with [67] we do not need the
assumption of the finite range interaction.

In the third section of the Chapter 5 we consider the case of multibody
interaction. It is well known that one of the important (and essentially
open) problems of equilibrium statistical mechanics is the construction of
Gibbs states for continuous particle systems with many-body interactions.
In the pioneering works by W. Greenberg [32] and H. Moral [64] the problem
was analyzed via Kirkwood-Salsburg equations(KSE). For sufficiently small
activity parameter z they proved existence of the unique solution of KSE, but
with rather unnatural assumptions on the potentials which, in fact, take place
only for finite range and positive interactions. In [74] the convergence of the
Brydges-Federbush type cluster expansion is proved for dilute continuous
systems with n-body (n < M) interaction. The proof requires a stable
potential satisfying an integrability condition and exponential decay of the
many-body potentials at large distances. In the following paper [71] the
authors consider the system of hard-core spheres interacting via infinite group
of many body potentials (for all n) which are bounded and integrable. They
prove the convergence of the Mayer series for the pressure in thermodynamic
limit and establish the region of analyticity in the activity z. In a recent
work by V. Belitsky and E. A. Pechersky [6] the problem of existence and
uniqueness of Gibbs state in R? with finite group of n-body interactions was
investigated using the technique of Dobrushin’s type [22], [23].

In this section we give a simple proof of the existence of Gibbs state with
infinite group of many body potentials. We establish some kind of modified
Ruelle’s bound for finite volume correlation functions. It gives a possibility
to prove existence of at least one Gibbs measure in thermodynamic limit. We
consider these results as some further development in solving of the existence
problem for general potentials of interaction.
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Chapter 2

General facts and notations

2.1 The space of finite configurations

Let R? be the d-dimensional Euclidean space. By O(R?), B(RY) we denote

the family of all open and Borel sets, respectively. O.(R?), B.(R¢) denote

the system of all sets in O(R?), B(R?), respectively, which are bounded.
The space of n-point configuration is

Fén):]‘—‘é?’l[éd :{UCRd‘ |77‘:TL}, n € Ny :NU{O},

where |A| denotes the cardinality of the set A. In the following, the symbol
| - | may also represent Lebesgue measure or Euclidean norm in R? but the

meaning will always be clear from the context. Analogously the space F(({L[)\

is defined for A € B.(R?), which we denote for short by Tg\n) :
For every A € B.(R?) one can define a mapping

Ny : Fén) — No;  Na(n) == |nnAl

For short we write 1y :=n NA.
To define topological structure on Fé") we may use the following natural

mapping

sym™ : (R)" — Fé"), neN, (2.1)
sym™((x1, ..., xn)) = {x1,..., 2.},

where
(RN = {(21,...,2,) € RY)"| zp £ 2y if k#1}.

13
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Using the mapping (2.1) one can identify Fén) with the symmetrization of
(R, ie. (R9)n/S,, where S, is the permutation group over {1,...,n}.
Hence F(()n) inherits the structure of an n-d - dimensional manifold. Applying

(n)
0

this we can introduce a topology (’)(F(()”)) on I'y”’. The corresponding Borel

o-algebra B(Fé”)) coincides with the o-algebra generated by the mappings
NA, i.e.,
B(r{") = o (Na|A € B.(RY)),

see e.g. [56]. Moreover, it is well known (see e.g. [63]) that a basis of the
topology O(Fé”)) is given by the following set

Uyx - xU, = {nEF(()")

Nuy(n) =1, Nu,(n) = 1]

where Uy, ..., U, € O(R?) with U; N U; = for i # j.
The space of finite configurations

Lo:= | | T§Y

n€eNg

is equipped with the topology O(Ty) of disjoint union. The corresponding
Borel o-algebra is denoted by B(Ig). A set K € B(I'y) is compact iff there

exists an N € N such that K N 1"(()") is compact in F(()n) for all n < N. A set
K c T{ is compact iff (sym™)~'K is compact in (R%)". A set B € B(I'o)
is called bounded iff there exists a A € B.(R?) and an N € N such that
B C |_|7]:f:0 FE\"). Any compact set is bounded in this sense, but not every

closed and bounded set is compact.
2.2 Configuration space
The configuration space is defined as
I''={yCR! [yNA| <oo, forall A € B.(R%)}.

One can identify any v € I' with the positive Radon measure

> e € M(RY),

xey
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where M(R?) stands for the set of all positive Radon measures on B(R?).
Therefore, the configuration space I' can be endowed with relative topology
O() as a subset of the space M(R?) with the vague topology, i.e., the
weakest topology such that all functions

Toye (fy) =) flx)eR

rey

are continuous for all f € Cy(R?) (the set of all continuous functions on R?
with bounded support). Moreover, well known (see e.g. [56], [63]) that a
subbasis of the topology O(I") is given by the sets of the form

{7 €Tl [l =n, von =0},

where A € B.(R%), n € Ny, and dA is the topological boundary of A. This
topology is separable and metrizable, see e.g. [63]. The convergence of
the sequence (7(™),cn to v in the topology O(T) can be described in the
following way: (7(™),en converges to v in O(T) iff Np(v™) — Na(y) for all
A S Bc(Rd) with NQA(’}/) =0.

The Borel o-algebra B(I") is equal to the smallest o-algebra for which all
the mappings Ny : I' = Ny, Na(7) := |y N A| are measurable, i.e.,

B(I') = o(Ny |A € B.(RY))
and filtration on I' given by

BA(F) = O'(NA/ = BC(Rd), N C A)

For every A € B.(R?) the configuration space I'y is defined as
Fy={yel'|yCA}L

It is equipped with the induced topology O(I'y) of the topology O(I"). The
Borel o-algebra generated by O(I'y) is denoted by B(I'y). Obviously, the
configuration space I'y can be represented as

Th= || % (2.2)

n€Ng

For every A € B.(R?) one can define a projection

pa: T =T pa(y) :i=m
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and w.r.t. this projections I' is the projective limit of the spaces {I'x } xep, r)-
The following classes of function are used in the following: L°(Ty) is the set
of all measurable functions on I'y, L?S(FO) is the set of functions which have
additionally a local support, i.e. G € LY (Ty) if there exists A € B.(R?) such
that G ro\r,= 0. Lpy(To) denotes the measurable functions with bounded
support, B(I'g) the set of bounded measurable functions. On I' we consider
the set of a cylinder functions FL°(T'), i.e. the set of all measurable function
G € L°(T') which are measurable w.r.t. B,(T') for some A € B.(R?). These
functions are characterized by the following relation: F(v) = F [r, (7a)-

Next we would like to describe some facts from Harmonic analysis on
configuration space based on [38, 39].

The following mapping between functions on 'y, e.g. L (), and func-
tions on T, e.g. FL°(T), plays a key role in our further considerations:

=) G(9), veT,

§€y

where G € L) (T), see e.g. [56, 57]. The summation in the latter expression
is extend over all finite subconfigurations of v, in symbols £ € ~. K is linear,
positivity preserving, and invertible, with

K F(n) =) (~1)"™¢IF(€), n €T, (2:3)

€Cn
Lemma 2.2.1 For all A € B.(RY), F € FLO(I', B,(T))

K~'F(n) = Ir,(nK'F(n), Vn€ Ty
Proof.

KLF(n) = Z( \n\&lp Z Z |’7\ glU&)'F(& U&) =

§Cn §1Cna 52C77]Rd\A

- Z (_1)\£2| Z (—1)"7\51|F(§1) — O\URd\A\K—lp(nA> _

€2 Crlpay 5 §1Cna

= lr,(n) K~'F(n). L
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One can introduce a convolution

x: L) x L°(Ty) — L°(Iy) (2.4)
(G1,G2) — (GixGa)(n)
= Z G1(& U &) Ga(& U Es),

(€1,62,63)€PE (1)

where Pj (1) denotes the set of all partitions (&1, &2, &3) of i in 3 parts, i.e., all
triples (&1,&2,&3) with §; Cn, &NE =01if i # 5, and §UE UE =n. Tt has
the property that for G1, Gy € LY (Ty) we have K (Gy x G) = KG; - KGs.
Due to this convolution we can interpret K transform as Fourier transform
in configuration space analysis, see also [12].

Let M} (') be the set of all probability measures p which have finite
local moments of all orders, i.e. [, |ya["u(dy) < 4oo for all A € B.(RY)
and n € Nyg. A measure p on Iy is called locally finite iff p(A) < oo for all
bounded sets A from B(Ty), the set of such measures is denoted by M¢(T'y).
One can define a transform K* : M} (T') — My (Ty), which is dual to the
K-transform, i.e., for every pp € M} ('), G € Bys(I'y) we have

/F KG(y)u(dy) = / G(n) (B 1) (d).

pu = K*p we call the correlation measure corresponding to f.
As shown in [38] for p € M} (') and any G € L*(Ty, p,) the series

KG(y) =Y G(n), (2.5)
nEy
is pi-a.s. absolutely convergent. Furthermore, KG € L*(T', ) and

/F G(n) puldn) = / (KG)(7) uldv). (2.6)

r

Fix a non-atomic and locally finite measure o on (R¢, B(R?)). For any
n € N the product measure o®" can be considered by restriction as a measure

on (R%)" and hence on Fé"). The measure on I'y"” we denote by o).
The Lebesgue-Poisson measure \,, on I'y is defined as

Ao 1= Z %0(”).
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Here z > 0 is the so called activity parameter. The restriction of A, to '
will be also denoted by A.,.

The Poisson measure m., on (I', B(I')) is given as the projective limit of
the family of measures {72, } \ep,(ra), Where 72, is the measure on I'y defined
by

mh =)

z0

A measure p € Mj (T) is called locally absolutely continuous w.r.t. ,,
iff p1p == pop,* is absolutely continuous with respect to 72 = 7., o py* for
all A € BA(R?). In this case p, = K*u is absolutely continuous w.r.t A.,.
We denote by

dp
ku(n) == . (n), n €.

d),
The functions
k(R — RY (2.7)
KO (1, ) = k,({x1,...,z.}), if (x4, e ,Ty) € (RI)m
. 0, otherwise

are well known correlation functions of statistical physics, see e.g [76], [75].

2.3 The space of multiple configurations

The space of multiple configurations is defined as

fZ{(%n),chd,n:VHN

Z n(z) < oo for all A € B.(R?) } ,

TEYA

where v =y N A, A e B.(RY).

Multiple configuration can be interpreted in the following way. The set ~
is a set of positions from R¢ where particles are located and for every x € 7
the number n(z) is the number of particles located at the position z. In the
sequel, notation v € I" will be understood as (7,n) € I'. Let A € B.(R%) and
v € I'. We use the following notations: 74 =N A and oy = (ya,74), where
ny = nl,,. For any A € B,(R?) and v € T" we denote by |ys| or |oa]| the
number of particles of the configuration (v, n) in A, i.e

oAl = byl ==Y nla).

TEYA
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We say that (y1,n1) € [ is included in (7v2,m2) if 71 C 72 and nq(z) < ny(x)
for x € v. If 91N~y = 0, then the union (1, n1)U (72, n2) is the configuration
(73, 13), where 73 = 71 U7, and for x € 73

f m(x), fremn
ng(l') o { TLQ(I), if z € Y2-

The empty configuration 6 is the configuration § = (0,0), i.e. v = () and
n = 0. We define (y1,11)N (72, n2) = (73, n3), where v3 = 1 N7y2 and n3(x) =
min {ny(x),n2(z)} for x € v3. If 71 Ny = 0 we write (71, n1) N (72, n2) = 0.
As in Section 2.2, one can identify any v € I" with the positive Radon measure

> n(z)e, € M(RY).

xrey

Therefore, the space of multiple configurations I' can be endowed with rela-
tive topology O(I") as a subset of the space M(R?%) with the vague topology.
This topology is separable and metrizable, see e.g. [63]. Moreover, since
for any A € B.(R?) and ¢ = (v,n), the sum »_ _ .\ n(x) is finite, a Borel

o-algebra B(I') on I is generated by
A e | =)

which are called cylindrical sets. For every A € B.(R?) the configuration
space I'y is defined as ) )

Fy={yel'|yCA}L
It is equipped with the induced topology O(T3) of the topology O(I). Ob-

viously, 'y C 'y for any A € B.(R?).
The space of m-point multiple configuration is

P(()Z;{)d = ]:‘(()m) = {(n,n) & F, n C Rd’ |0‘| = Zn(x) = m} , me€ NO-

Ten

Analogously, the space f‘((f}\) is defined for A € B.(R?), which we denote for

short by FEXm).
The space of finite multiple configurations
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Obviously, the space 'y can be represented as

fh= | ] 1Y (2.8)

The Lebesgue-Poisson measure A, for cylindrical sets is defined as

. z
A:(1o € ' [ ou| = m}) = A",

where z > 0 is the so-called activity parameter and the symbol |- | represents
Lebesgue measure. We are able to extend the measure A, to the whole o-
algebra B(I") using the equality

A AP N ATD) = A (AT (ALY, AN A, =0,

The measure \, restricted to f’A is also denoted by A,.



Chapter 3

Detailed structure and some
topological properties of the
configuration space I’

3.1 Metrical structures on configuration space

It is well known from [63] that the space of multiple configurations I is
a Polish space. Let p be a metric on I' such that (I', p) is separable and
complete.

Lemma 3.1.1 (c.f. [85]) The configuration space I' is a Gg-set in T
Proof. Let {K;};>1 be an increasing sequence of compact sets such that
K =R
i>1
Then I' can be represented as
r= [P\,
i>1

where )
I'NK;))={yeTl|Jdz e K; : n(z) > 2}.

The only thing to show now is that for any ¢ > 1 the set I'(K;) is vaguely
closed.

21
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Let ¢ € N be arbitrary and {7, },>1 be a sequence from I'(K;), such that
Yu — v, n — oo vaguely. Let f € Cy(R?) be arbitrary and fixed. Then, for
every n > 1 there exists z,, € K; such that the following holds

(fs ) > 2f(2n). (3.1)

Because K; is compact in R?, there exists a convergent subsequence {x,,, }m>1
of the sequence {z,},>1. Moreover, the correspondent limit x € K;. There-
fore, using continuity of the function f, inequality (3.1) yields

The function f was fixed to be arbitrary, hence, the latter inequality holds
for any f € Co(R?), which implies z € v. Taking the function f € Cy(R?)
such that f(z) # 0 and (f, v) = n(z)f(z) we will have n(z) > 2, which
means that I'(K;) is vaguely closed. [

Remark 3.1.1 [t is well known from [17] that any Gs-set of the Polish space
18 a Polish space. Therefore, I' is a Polish space.

Consider ¢ : R? — (0, 1], ¢ € L'(R?) N C(R?) and a continuous decreasing
a: Ry — Ry, such that

(In) ap :=limy_o4 a(t) = +oc;
(]Ia) L = lithJroo O{(t) Z 1,

The set of all pairs of functions («, 1) which satisfy the conditions above will
be denoted by F.

Let I = {I}},y be an arbitrary collection of functions from Cp(R?) such
that I, : R? — [0, 1], supply C Ay, k> 1, and for all x € Ay : [ 1(7) #
O, k > 1. We let wk = w[k

Define

v =Jqyel | Y d@allz—yhely) <oop, (a,¢)€F

{z,y}Cy

and

E*Y(y) = Y d@alle —yl)ly), y €T,

{:c,y}Cq/
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For any k& > 1 we define also

Ex¥(v) = Y tr@)a(lz —yl)uly), v €T.

{zy}Cy

Lemma 3.1.2 Let {y™},>1 be a sequence from T, such that

(n)

Y =y, n—o0

in the vague topology. Then
Vaéery El{x;k}kzl, 1 <i<n(x): x;k ey E>11<i< n(x)

and
r,, —x, k—o0, 1 <i<n(n)

Proof. Let x € v be arbitrary. There exists N € N such that
B%@ﬂvz& Vk > N,
where
B

@)= B0\ {a), By(o) = {y B

1
Ix—MS—}~
k

Let us consider the sequence of functions f; € Co(R?), k > N such that

=

1
k

+

For any k > N there exists N; = N;(k) € N such that for any n > Nj:

1
e lxﬂ—n()SUth>—<mv><§ (3.2)
k+1
and Ny = Ny(k) € N such that for any n > Ns:
(n) () 1
52 ol = (@) 2 i /) (fi ) > 3. (3.3)
k

Inequalities (3.29) and (3.3) give us

Vk>N+1 IN“(k) = max {Ny(k — 1), Na(k)} :
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V> N*(k) vy ) = n(@).

3
Set
My =N*(N+1), M=max{M; 1+ 1, N(N+1)},1>2.

Let

Obviously, for any 1 < i < n(x)
r,—z, 1 —oco. N

Lemma 3.1.3 For any (a, ¥) € F and k > 1 the function EXY(v) is
continuous on I

Proof. Let ¥™ — v € T, n — oo vaguely and let vy, = {z1,...,7,}. Set

= min |z; — x|
1<i<j<p

Suppose that yae # (), then we define

2r=inf |r—y|>0.
$€7Ai7y€/\k

Let € > 0 be an arbitrary and fixed. A straightforward arguments insures
that for any € > 0 function « is uniformly continuous on [, co). Because
function vy is continuous with compact support, there exists § > 0 such that
for all z, y € RY, ry, ro € [1/3, 00) :

|l —y| <9, |ri—re| <26

holds

[r(z) —du(y)] <e and |a(r) — alr)| <e. (3.4)
Denote §* = min {6, {/3, r}. Vague convergence of 7™ to ~, when n — oo
implies

VFECyRY INEN: ¥n>N ](f,y(")>—(f,fy>|<%. (3.5)

Define
Apsr = {2 € R | distpa(z, Ay) < r}.
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Applying (3.5) to the functions f; € Cp(R?), 1 <4 < p + 2 of the form

Ji < Upy(a), i €supp fi, 1 <i<p

and
]]-Ak S fp+1 S ]]~Ak+7«7 ]]‘Ak+r S fp+2 S ]]‘Ak+2r’

we have
IN*eN: V>N |, l=h | =p.

Moreover, for any 1 <i <p and any n > N*
2" € v such that |a7 — x| < 6. (3.6)
Therefore, for any 1 <i < j < pand any n > N*
(@) alle: — x) i () — iz )ollaf — 2F))n(zf)| < (3.7)

< a(D)|yk(w:) = Pr(@) [+ ) r(z;) = Pr(@))] +|alle; —25]) — allei = 27])].
Using (3.4), (3.6) and bound

|z — 2| > |vg — x5 — |y — 2| — |vy — 2| 21 -1/3-1/3=1/3, n>N"

we can estimate (3.7) by
e(2a(l) +1).

Finally, for any n > N*

o n o ep(p—1)2a(l) + 1
B ) - )| < 2= D20 LD
We omit the case ype = () because of its triviality. [ |

Consider a function p, 4 : I' x I' = Ry which is defined by

(3.8)

1 ERY (1) — EPY(v)
Payw(V1: 72) = (71, 2) + ) = a o :
;2k1+’Ek’w(71)_Ek7w(V2)|

Obviously, this function is a metric on configuration space I'.

Theorem 3.1.1 For any (o, ) € F metric space (I', pa.) is complete and
separable. Moreover topology on I' generated by metric p,, . is equivalent to
the vague topology on T'.
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Proof. Let (a, 1) € F be arbitrary and let v — v € I', n — oo vaguely.
Because vague topology and topology generated by metric p are equivalent,
we have

(n)

p(y",v) =0, n— .

Using Lemma 3.1.3, for any k£ € N we have
B (") = EPP(9)] = 0, n— o0

yielding
pa, (1™ 7) =0, n— 0. (3.9)

Hence, the collection of all closed sets in the topology generated by pq, , and
the vague topology is the same, which means that corresponding topologies
are equivalent.

It is well known from [63] that vague topology on T is separable. There-
fore, metric space (T, pa,y) is separable.

Let {7 },>1 be a Cauchy sequence in (I', pq,y). Then, {7}, is also
a Cauchy sequence in (T, p). The completeness of (I', p) implies existence
of v € ' such that p(v™, 7) — 0, n — oco. If v € T then as was shown
before we have (3.9). Suppose that there exists © € v such that n(z) > 1.
Let x € A;, for some k eN. Using Lemma 3.1.2 we obtain

{2l hsr, i =1,20 2l €4™ k>1,4i=1,2

Nk

and
z, —x, k—o00,1=1,2.
k

Therefore,
|z, — a2 | — 0, k— . (3.10)

Let us denote

Y* = inf ¢7 (2).

z€A

As for any » € Ay 1 ¢ ,(z) # 0, the number ¢)* > 0. The fact that
{7™},5; is a Cauchy sequence implies

AN EN: VE> N, m>N [EDN (™) = B2V (™) < ¢r. (3.11)

We fix m > N; and define a number

_ *\—1 o, (m)
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From the property (I,) and (3.10) we conclude

AN, eN: VE>No, aflz,, —a) |)>C+2,

Nk

which yields the following estimate

EZN (™) > 07 (C +2), k> N, (3.12)

Finally, with the help of (3.11), for any k& > max {N;, Ny} we obtain

o, (ng) * *
which contradicts to (3.12). Hence, for any = € v : n(x) = 1. This concludes
the proof. [ |
We consider a function p* : Ty x I'y — Ry, A € B.(R?) defined by

1 Iml (. ] : _
pA(nh 7]2) = { 2diam(A)|n1] N7 Zizl |xl yﬂ(1)|> if |771| = |772| (3'13)

1, otherwise.

In (3.13) minimum is taken over the set of all permutations 7 of the set
{1,...,|ml}, configuration n; = {@1,..., 24, } and n2 = {y1, ..., Yps}- As
shown in [67] for any A € B,(R?) the function p* is a metric on I'y and, hence,
on I'y. Moreover, for any compact set A € B,(R%) metric space (I'y, p*) is
complete and separable, although, metric space (I'y, p*) is not complete.

Let a: Ry — R, be an arbitrary continuous decreasing function, which
satisfies conditions I, and II,. One can introduce the Hamiltonian which
corresponds to potential a(]z|):

E*(n)= Y a(lz—yl), n€To, |n| >2.
{zy}cn

Consider a function d, : Ty x Ty — Ry, A € B.(RY) which is defined by

do(m, n2) = p™(m, m2) + | E*(m) — E“(m2)|,  m, m2 € Ta. (3.14)

Proposition 3.1.1 For any A € B.(R?) the function d, is a metric on T'y.
Moreover, if A is a closed set then the metric space (I'y, do) is complete and
separable.
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Proof. Symmetry and triangle inequality of d, follow straightforward. If
nm = 1y then dy(n1, m2) = 0 by the definition of d,. If d,(n1, 72) = 0 then
p*(n1, m2) = 0 and n; = n,. Therefore, (I'y, d,) is a metric space.

Let {n,}n>1 be arbitrary Cauchy sequence in the metric space (I'y, dg).
Then {7, }n>1 will be also a Cauchy sequence in (T'y, p*). As T'y C Iy for
any A € B.(R%) and (T'y, p") is a complete metric space, there exists o € T'y
such that

™ (M, 0) — 0, n — 0. (3.15)

Moreover, from the definition of p* follows
ANoeN Vn>Ny : || =lo|=:p.

Let n, = {27,..., 23}, n > Np. Then from (3.15) we have convergence of 7,
to ¢ in the following sense:

ry — T, n—oo, 1<k<p,

where z,, 1 < k < p are all positions of particles of the configuration o,
which may be repeated. We will show that o € I'y. Suppose that this is not
true, i.e.

J1<k<j<p: xp =2

This implies
|z, — 25| — 0, n — oo. (3.16)

The sequence {n,},>1 is a Cauchy sequence in (I'y, d,). Hence,

HNleN, leNo VTLZthZNl .

Yo oallef =)= Y a(la —ap))| < L.

1<i<r<p 1<i<r<p

Let us fix m > N; and define number

C = Z allz* —a|) < oo.

1<i<r<p
From the property a(0+) = +oo and (3.16) follows

IN, €N Vn >Ny @ alog —af]) > C+2. (3.17)
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Hence,

> alap —a))) > C+2. (3.18)

1<i<r<p

Denote N := max {N; No}. Then for any n > N

> alaf —ay) Yo allef —ai) = Y a(lel -]+

1<i<r<p 1<i<r<p 1<i<r<p

<

+ Z (|Je* —a|) <1+ C.

1<i<r<p

The latter inequality contradicts to (3.18). Hence, o € I'y. From the conti-
nuity of the function « follows

do (N, 0) — 00, N — 0.

We have proved that (s, d,) is a complete metric space.
Obviously, the set I'y,, with Ag := AN Q<, will be a countable dense
subset in I'y. Therefore, (I'y, d,) is also separable. [ |

3.2 Relatively compact sets and compact func-
tions on configuration space

The description of relatively compact subsets of the configuration space I'
in the vague topology was obtained in the work [35]. Below, we propose an
alternative proof of the corresponding criterion which is based on the metric
structures defined before.

Theorem 3.2.1 A set S C I is relatively compact in the vague topology, iff
for any compact set A € B.(R?) holds

sup |ya| < oo and inf min |z —y| > 0. (3.19)
~ES €S {z, y}Cya

Proof. Let S C T" be relatively compact in the vague topology. Then, it is
relatively compact in I" with respect to the metric p,, . From the Hausdorff
criterion it follows that for any € > 0 there exists a finite e-net for S in
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(T, pa,s). Hence, S is relatively compact in (I, p). It is well known from
[63], that in this case, the condition

sup |yl < oo
yES

is fulfilled. Assume that there exists a compact set A* € B.(R?) such that

inf min |z —y|=0. (3.20)

YES {z,y}Cryax

Let k* € N be such that A* C Ag«. The condition (3.20) implies

1
Iz €8 VhZ 1 Fan, g€ o -l <
Therefore,
o 1 *
EA;:;D_H(,Y(R)) > <E) w , (3.21)
where

Y* = inf Yp_(z) >0.

IEAk*

The right hand side of (3.21) tends to infinity, when k& — oco. But Lemma
3.1.3 implies EX;Z’H is continuous on I' and hence bounded on S. Therefore,
assumption (3.20) does not hold.

Vice versa, suppose that assumptions (3.19) are fulfilled. ;From the
general criterion of the relative compactness on the space of multiple con-
figurations T’ (see [63]) it follows that set S C T is relatively compact
in I'. Therefore, given an arbitrary {7™},>; C S, we may assume that
7 = 4 e, n— oo vaguely (otherwise we will consider the subsequence
of {7(™},>1 which converge to v due to the relative compactness of S in I').
What remains to be shown is that v € I". Suppose that there exists x €
such that n(z) > 1. Let © € Ay for some k* € N. Using Lemma 3.1.2 we
obtain

{2l s, i =1,21 2l €y™ k>1,4i=1,2

Nk

and
i _
T, —x, k—o0, 1 =12

Therefore,
z, —xp | — 0, k— oo (3.22)

Nk
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Moreover, ‘
JKeNVE>K: x, €Ay, i =1, 2.

Finally, for the compact set Ay in R? we have

inf  min |z—y|<inf |z, —a2 | =0.
YES{Z, Y}y ey k2K

This contradicts the second assumption in (3.19). Consequently, v € T,
which yields relative compactness of S in I'. B

Definition 3.2.1 The measurable function F : T' — Ry U {+o0} is called
compact if for any C' > 0 the set

{rel|F()<C}
15 relatively compact in T.
Proposition 3.2.1 For any (a, ¥) € F and an arbitrary D > 0 the set
{yeT|E~"(y) < D} (3.23)

is a relatively compact in (L', pa, ).

Proof. Let (a, ) € F be an arbitrary and fixed. From the definition of
function ¢ for any A € B.(R?) follows

JCy >0 : w(I)ZCA, Va € A.

Therefore, for any v € ' such that E*¥(y) < D we have
C Y allr—yl) < Y dl@)alle —y)v(y) < D,
{zyrcy {zyrcy

which give us the following bounds:

2v/D
Ca

e

and 5
Vi{z,y} Cy: |z —y|>a? (@)
A

Hence, the conditions of Theorem 3.2.1 for the set (3.23) are fulfilled. [ |
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Corollary 3.2.1 Let us extend function E*¥ () on the whole T' setting
E®?(7) = 400, v €T \T*",
Then, for any (a, V) € F the function E*Y(vy) is compact on T.

Remark 3.2.1 Let ¢y : R? — (0, 1], ¢y € LY(RY)NC(RY). It is not difficult
to show that for any («, 1) € F the function

V(y) = E*Y(y) 4+ (¢1,7), v€T

18 compact on T'.
In some dynamical models such functions are used as Lyapunov functions,

see [45].
Proposition 3.2.2 For any C > 0 and any closed A € B.(R?) the set
{nela|E*(n) <C}

15 a relatively compact in T'y.

Proof. Let C' > 0 be fixed. First let us notice that
Vne{nelx|E*(n) <C} : |n| < max{l, 2VC}. (3.24)

This follows from simple inequality for n € {n € 'y | E%(n) < C} : |n| > 2

2
77 ImQnl —1) n -1
{x y}Cn
Using the Hausdorff criterion, our aim will be to show that for

{nela|E%(n) <C}

there exists a finite e-net in I'y. Let ¢ > 0 be given. A straightforward

arguments insures that for any € > 0 function a uniformly continuous on
[€, 00). Therefore,

36 >0 Vo, y € [a1(C)/2, 00), |z —y| < :

jo(z) —aly)] < 55 (3.26)
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Because A is a compact, for any €* > 0 there exists a finite ¢*-net for A. In
particular, for ¢* = min {diam(A)e, a=*(C)/4, §/4} we have
3G, |G| < o0, YxeAN JyeqG :
|z — y| < min {diam(A)e, a1 (C)/4, 6/4}. (3.27)

Now we consider the set I'g. Clear, that this set will be finite. Moreover,
from (3.27) we have

Vo ={zy,...,my €{ne€la| (M) <C} F{yphi<ksp, C G

|z — yi| < min {diam(A)e, o *(C)/4, §/4}, 1 < k < p. (3.28)

We define n* := {y1,...,y,}. We will show that n* € I'¢. To do this we have
to show that

Vi,j:1<i<j<p vi#Y
Suppose that dm, n : 1 <m < n < p such that y,, = y,. Then

|Tm — Tn| < |Tm = Ym| + [Ym = Yn| + |Yn — 2| = |Tm = Y| + |y — 20| <

< 2min {diam(M\)e, a 1 (C)/4, §/4} < a~(C)/2. (3.29)
But
ollan—al) < Y alln-nl)<C (3:30)

and hence |z,,—x,| > a1 (C). We have contradiction with (3.29). Therefore,
n* € I'q. As the conclusion to (3.29) and (3.30) we have Vi,j : 1 <i<j<p

i — yil > |vi — 5] — |z — yil — |y; — 5] =

> a 1(C) — 2min {diam(A)e, a1 (C) /4, 6/4} > a~H(O)/2. (3.31)
Eventually, we have only to show that d(n,n*) < e.

Y lale =) — ally: — yjl)]‘ :

1<i<j<p

1 p
doa(M,0") = 57— i~ Yi
(17) = Saram ] ;Iw vil +
Using (3.28) we have

do(n,m*) < diam(A\)ep +

> ol — ) — a(ly —yj\)]| =

1<i<j<p

2diam(A)p
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4 Z la(z; — z;]) — a(lys — y;])]] -

1<i<j<p

Inequality (3.30), (3.31) and bound (3.28) give us

DN ™

Vij :1<i<ji<p: |yi—yl v — ;] € [a(C)/2, o). (3.32)
and
i — 5] = [y — gyl <M —wi) — (25 = wi)| < i — wal + |y — y5] <
< 2min {diam(M\)e, a~(C)/4, §/4} < 6.
Finally, with (3.24), (3.25) and (3.26) we have

o _E pp=1) e e ¢
do(n,m") < = — < - 4-=¢.
) <5+ =5 55<3t3=¢

Therefore, for any C' > 0 the set
{nela| E%(n) < C}
is relatively compact in I',. [ |
Corollary 3.2.2 For any closed A € B.(R?) function
ha(n) = 2% (3.33)

18 a compact function on IT'y.



Chapter 4

On relations between a priori
bounds for measures on
configuration spaces

4.1 A priori bounds

Let o be Lebesgue measure and ||z] = maxy |zx], # € R% For A € B.(R%),
let

In= sup [lz—y]
T, yeEA
and |A| denote the Lebesgue measure of A.
Let V : F(()z) — R be a pair potential.

Definition 4.1.1 A potential V is called stable (see [76]) iff there exists a
constant B > 0 such that for any A € B.(R?) and any configuration v € T'y
holds

Y Viz,y)>-Bhl (4.1)

{zy}Cy

In the following we assume that all potentials under consideration are stable.
Consider u € M} (T) locally absolutely continuous w.r.t. 7., and three
type of bounds on it.
We will say that a measure p satisfies the generalized Ruelle bound with
potential V' if the following holds:

35
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e (GRB)y: The correlation function k,(n) satisfies the inequality

ku(n) <CMexp |— Y V(x,y)|, neTy, (4.2)

{z,y}Cn
with some C > 0.

We will say that a measure u satisfies the Ruelle’s probability bound if
the following holds:

e (RPB): For any g > 0 there exist constants a > 0 and 6 € R (may be
g dependent) such that for any A € B.(RY), [y > g and N € Ny

w((7] sl = N) < exp {—a]lv—; s (m}. (43

We will say that a measure p satisfies the Dobrushin’s exponential bound
of type A > 0 and order p > 0 if the following holds:

o (DEB), p: For every A € B.(R?) there exists a constant Cy > 0 such
that

/FeAm'pu(d’y) < Cy. (4.4)

Remark 4.1.1 Obuviously, for any A € B.(R?) with Iy = 0 the bound (4.4)
holds automatically. Therefore, in the sequel we will consider (DEB)x, p)
only for A € B.(R?), I, > 0.

Definition 4.1.2 A potential V is called superstable in the sense of Ginibre
(see [31, 58]) iff for any g > O there exist A > 0 and B > 0 (may be
g dependent) such that for any A € B.(R?), Iy > g and any configuration
v € I'p holds

2
> Viww) 2 A0 By (45)
A

{zy}Cy

In the sequel, we will write sometimes oy, d,, A,, B, instead of a, §, A, B,
to emphasize that these constants depend on g.

Theorem 4.1.1
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1. For any A >0 and p € (0,1]
(GRB)V = (l)E’B)()\7 p)-
2. Let V' be superstable in the sense of Ginibre. Then
2.1. (GRB)y = (RPB),
2.2. forany A >0 and p € (1,2)
(GRB), = (DEB)q, ),
2.8. forany A\ >0 and A € B.(RY), 0 < 1§ < A 271
(GRB)V = (DE’B)()\7 2)-
3. For any A >0 and p € (0,2)
(RPB) = (DEB), .
4. For any A >0 (DEB), 2) with Cx < S A € BJ(RY), § > 0 implies
(RPB).

Proof.
1. Using (2.3), stability of V' and according to the bound on the correla-
tion functions we have

/ 1 ) = / A

X _n
Szn!/m Z e’ C" vic{e dry...dzx, <
n=0

Z(_l)ln\fleklilp

§Cn

Pu(dn) <

z el ~m Bn B [22C|Ale 2™
< g_o_n!//\n g eMsICMe da:l...dxn_g p =

EC{z1,zn} n=0
= exp {22C|A|e* P}
Because of Lemma 2.2.1 and (2.6) we conclude
/e’\hA'p,u(dy) = K [e’\‘mp] pu(dn) < exp {22C|A|ePY.
r T

2. Now suppose that V' is superstable in the sense of Ginibre.
2.1. Define Sy := {y € ['| |74l > N}, A € B.(R?). Let g > 0 be any and
given. Then, using (2.3) for any A € B.(RY), [, > g we have

: | K s, ()] | ppu(dn) =
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:/FA

According to the bound on the correlation functions and the superstability
for given g, the latter expression can be estimated by

> (=DM, (€)

&Cn

pu(d) = / s, S (—1)™ pdn).

£CnlEI>N

/]lsA(n)C"' Y e Zwmen VIV (dn) <
I

£ECnl¢I>N

_ N2
< /F ﬂsA(n)(20)Inle—AIn\21Ad+B\n|Aza(dn) < exp {_AE + QZCeBlff}.
A

In the last inequality we have used the fact that integration actually extends
only over all n € T'p : |n| > N.
Finally, Lemma 2.2.1 and (2.6) give us

N2
({7l al = N} = [ K [s, ()] pu(dn) < exp {_Az_d + 2206Bli}-
VN A

2.2. Let A € B.(R%), I, > 0 be arbitrary and fixed. Using (2.3) we have

K [ ]| o) = / D _(=D)INNAT g (dn) <
T'a Ia ecn
< / S exp {AlElP o ().

Agcn
The estimation for the correlation functions and the superstability of V' for
g = [, imply the following bound for the latter integral

/ Z 6)\‘§|piz{z,y}c’7 V(z,y)om\)\za(dn) S
N

Agcn

< Z M= AR P Bl cnl )\ (d) <

Taecn

< / (20) MBIl AP = AL R (g < 2CIAP4CE (4.6)
Ia
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where C'} > 0 is some constant s.t.

A .
AlnfP — l—dln\2 < Cj.
A

Such constant exists, because p € (1,2) and lim,, o (An? — ﬁnQ) = —00.
Therefore, using Lemma 2.2.1 and (2.6) we have
/ A p(dy) = | K [N pu(dn) < 2O,
r Ta

2.8. Doing the same as in 2.2 for any A € B.(RY), 0 < Iy < A, A7 we

obtain
/F A

> ch — —dp n
}

n=0 EC{z1,...,zn

K [N]] g () <

Because [} < A;, AL, (4.7) is bounded by

= (20)"
2_,2 n
g — /An E HMEF=T+ By gy, <

n=0 &c{zy...xn}

- (220|A|63>n 2zC\A\eBlA
S
n=0
The statement is now a direct consequence of Lemma 2.2.1 and (2.6).
3. To prove this part of the theorem we need the following lemma which

follows directly from the definition of distribution function for a random
variable.

Lemma 4.1.1 For any measurable & : I' — Ry and differentiable f : R, —
R, such that f(0) =0 we have

/F f o (y)uldy) = / T Py €T | () > 7).
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Proof. As

/F f o E(y)uldy) = / " F@)pe(da)

and

p{y €T [€() > o)) = pe((z, 00))
pu({y €T | &(y) € B}), B € B(R) we need only to show that

/f ) pe(dw) = /f x)pe((x, o0))de.

Using theorem Tonelli we have

| r@metan = [7 [ 7 waumetao) -
:/Ooo f'(y) /yooug(dx)dyz/ooo f'(y) (/yoo,ug(dx)> dy

— [ Fne, cc)dy.
0
Using Lemma 4.1.1 for any A € B,(

where p¢(B) =

R%), Iy > 0 we have

/eAWA”M(d»y) = / ,u({7 € F| el y})dy =
r 0

/Oou ({ Al > (lng{)E }) dy.
0 AP

Due to (RPB) for g = I, we bound (4.8) by

exp (2)\2/?l1‘\io¢_1)2;‘%1J () 1 2/p
[ | de/ 10" aglay
0 e

expq —a———— + 0l
Xp {(2/\2/”‘1 —I)QPP} { AQ/pl[Cxl A

(4.8)

2

2 4
o0 _a(ny)P
< exp 207107 + e‘”;{/

2/p;d
y \2/pid

dy <

P
exp [2A2/P{ga=1]2=Pp
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o)

exp [2A2/P1la=1]2-P

< exp [2)\2/1”[}3&71]2%’ +exp [lf — (2 )\2/pld Ik ”] <

< 2exp [018 + (2A¥P1a )25,

4. Let (DEB), 2) holds for some A > 0 with Cy < e‘”g, A € B.(RY),
0 > 0 and g > 0 be arbitrary and given.

For every A € B,(R%), Iy > g consider a function ga(z) = e®a"** 2 >0,
0 < o < Ag%. This function is increasing and [, ga(|7a|)p(dy) < Cy (it
follows from (DEB), 2) and inequality [y > g¢). Thus, the generalized

Chebyshev inequality
E
P¢>e") < f(§)

~flen)”
where f be increasing and positive function, €* > 0, shows that for any
A € B.(RY), Iy > g:

(4.9)

fpgA [val)p(dy)

) et < menitestt
NZI - -

p{y |l >N} <

4.2 Support properties
For each i € Z9, let
Qi={reRY iy —1/2<r, <iz+1/2k=1,...,d}.

Define |y;| = [yNQ;|. For k € N, let A be the hypercube of the sidelength
2k — 1 centered at the origin in R?. Actually, Ay is then a union of (2k — 1)4
unit cubes of the form @;. Note, that [Ay| = 1{ = (2k—1)% k € N. We will
also sometimes regard A, as a subset of Z¢ by letting A represent Aj N Z<.
For i € Z4 let In, ||i]| = max{1,1n ||i||}.

Following Ruelle [76] a measure p is called tempered if 4 is supported by

the set -
Roo == U RN7
N=1
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where Ry = {y € T'| Y.cp [%l? < N?[Ag|, ¥V k> 1}
Consider two subsets of the configuration space:

Py = U PN7
N=1
where Py ={v €T | |ya,| < NJ|Ag|, VE>1} and
Uso = UUna
n=1

where U, = {y € T | || < n(ng ||i|))2, Vi € Z4}.
Obviously, Ry, C Py and for any tempered measure p with (RPB), it is
also possible to show that u(Us) =1 (see [37, 54]).

Proposition 4.2.1 (RPB) implies u(Py) = 1.
Proof. Obviously,

(@

Po=J v eT | il < N|AJ}
k>1

2
I

1

and

M\Py = ﬂ U{W €T | |va,| > N[Ag[}

N>1k>1
Note that for any £ > 1

(7€ i > NI} S {7 €T [ | > (N + D)[Aul}, N > L.

Using o - semi-additivity and monotonicity of the measure  we have

u(T\P) = Jim (U{v ET | Il > N!Ak!}> <

k>1

< lm Sy €T | bl > NIA). (4.10)

k>1
Due to (RPB) one can show that the right-hand side of (4.10) can be esti-
mated by

—(aN?=8)(2k-1)* ~

. C(aN2— )
lim e~ (@N"=0)Akl — iy e
N—oo N—oo

E>1 E>1
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' e—(ozNz—(S)
S T e T

0. |

Remark 4.2.1 Proposition 4.2.1 holds, if (RPB) is replaced by the following
weaker probability bound:

there exist constants a > 0 and € R such that for any N > Ny, Ny € N
and k € N

pr el = N[} < exp{—(aN — §)[Ax[}. (4.11)
Proposition 4.2.2 (RPB) implies 1(Us) = 1.
Proof. Define Ui := {y €T | || < n(lny ||i]|)2}, i € Z. Then

Uoo == D ﬂ Urlw
n=1iczd
Mo = () UJ{r e | Il > niny [Jil])2}.

n>1qiezd
Note that
v el | vl >nng i)z} D{y el ||wul> @+ 1)ng i)z}, n>1.

Using o - semi-additivity and monotonicity of the measure p we have

u(M\Us) = lim p <U {veT | hl > n(in. ||z'||>%}> <

1€Z4

< lim > ({ve | bl > nln i)} (4.12)

n—oo
i€Z4

Due to (RPB) we estimate (4.12) by

i —(an®(Iny [lil})=0) _
Jm ) e

i€Z4

= lim <€—o¢n2+6 + Z[(QZ + 1)d o (2Z _ 1)d]6—(om2(1n+ i)—5)> <

n—o0 -
=1
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IN

2 o
< lim (Z 2d(2i + 1)d71€—(an275) + Z 2d(2i + 1)d71€7(an2 1nz5))
i=1

n—00 -
=3

0o 00
. — d—1 —an2lni . — cd—1 -—amn?
S lim 22d 1d€5 E 'Ld 16 an‘lni _ lim 22d 1d66 E Zd 12 an® -

n—00 - n—00 - o
1=3 1=3

270[712

e}
< lim 2*'de’ / iy = lim 2% 1de’ —— = 0. W
9 n—o0 an? —d

Remark 4.2.2 We will say that a measure p satisfy (RPB)?, p > 0 if the
following holds:

e (RPB)?: For any g > 0 there exist constants @ > 0 and § € R (may
be g dependent) such that for any A € B.(R?), Iy > g and N > N, for
some Ny € N

NP
W01l 2 ND Sesp{-ale voith. (13
A

Similar to the proof of Proposition 4.2.2 one can show that for any p > 0 the
fulfillment of (RPB)P on the sets Q;, i € Z¢ implies u(UP) = 1. Here

v =Jun
n=1
U? = {y €T | || < n(ny i]))7, Vi € Z%}.

4.3 Stronger consequences of generalized Ru-
elle bound

In this section we describe further conclusions which follow from (GRB)y. As
before one can consider the partition of R on cubes, but now with sidelength
equal to g > 0. Namely, for each i € Z¢ and any g > 0 let

QF = {r € RY glix — 1/2) < 1y < glix +1/2),k = 1,...,d}

and |y 4| = |y N Q7.
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By J,(R?) we denote all finite unions of cubes of the form QY (such
sets are used in the construction of the Jordan measure). Sometimes we will
regard A € J,(R?) as a subset of Z? by letting A represent {i € Z?|Q? C A}.

Let W : Ty — R be a measurable increasing function, i.e. for v, v € Iy
st.yCy  W(y) < W ().

We will say that a measure p satisfies the (RPB)} if the following holds:

e (RPB)Y : For any g > 0 there exist constants B > 0 and § € R (may
be g dependent) such that for any A € J,(R?), any configurationy € Ty

and L € R,
n({y [ W) = L}) < exp{—L+[A[}, (4.14)
and
> Vi,y) —W(y) = Bl (4.15)
{zyrcy

Proposition 4.3.1 Suppose that there exists a measurable increasing func-

tion W : Ty — R which satisfies (4.15). Then (GRB)y implies (RPB){Y .
Proof. Let g > 0 and A € J,(R?) be arbitrary. Define S := {y € T'| W(vs) >
L}. Then using (4.15) we have

]ls(n)e—Z{x,y}Cn View) < ﬂs(n)e—W(TzHBln\ < e BBl ey, (4.16)

Therefore, similarly to the proof of the Theorem 4.1.1(2.1) we obtain

({7 W) = L}) = / 1s(y)pu(dy) =

:/FZ

Agcny

(— 1)l (€)p(d) = / stn) 3 (=1)™p, (dn).

Ta ¢cn, €€S

According to the bound on the correlation function and (4.16) the latter
expression can be estimate by

/ ﬂS(n)Cw Z €*Z{z,y}cn V(x’y))\zcr<dn) S
Ta

§Cn, €€8

<ot [ (o) () = e LN,
Ta
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Remark 4.3.1 For any 0 < e < 1 inequality (4.14) implies
/ WO (dy) < Ch, A € B.(RY)
r

with some Cy > 0.

Indeed, let g > 0 be given. We increase any A € B.(R%) to a set
Az € J,(RY) which is a union of all cubes Q; 4, which have nonempty inter-
section with A. Then using Lemma 4.1.1 and the fact that the function W
18 increasing we have

/Fewm)l_gu(dv) < /OOo u({v
= /Ooou ({7‘ W(n,) > (ny)re }) dy.

Inequality (4.14) implies the following bound for the latter integral:

exp {2(1—5)571 0o P
/ Ldy + / e~y FolAT Iy = (4.17)
0 e

Xp [2(175)5*1]

AUCIVOL S y})dy —

— exp 20797 | . 0] / Y~ = gy <
exp [2(1—5)571]

o
S GXp |:2(1—€)€71:| + €6AJ|/ y—Qdy S
exp [2(175)5*1]

< exp [2(1_5)571] + exp [5|AJ| — (2(1_@&71)} <
<2exp[|As|+207977"]. m

In the literature different non-equivalent versions of the Ruelle’s probabil-
ity bound are known. The definition of (RPB) we used here can be found in
[37], [54]. Besides this bound, Ruelle in [76] used also another one. Namely,
we will say that a measure p satisfies the strong Ruelle’s probability bound
if the following holds:

e (SRPB): For any g > 0 there exist constants a > 0 and 6 € R (may be
g dependent) such that for any A € J,(R?) and N € N

({5

> gl = N?A] }) <exp{—(aN*—d)Al}. (418

1€EA
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As shown in [76] (SRPB) implies (RPB).

Definition 4.3.1 A potential V is called superstable in the sense of Ruelle
[76] if for any g > 0 there exist A > 0, B > 0 (may be g dependent) such
that for any A € J,(RY) and any v € Ty

> Vizy) = [ARigl* — Bligll

{zyrcy ieA
Lemma 4.3.1 Ruelle’s supestability implies Ginibre’s supestability.

Proof. Let g > 0 be given. We first increase, as before, any A € B,(R?), I, >
g to a set Ay € J,(R?) which is a union of all cubes @Q;,, which have
nonempty intersection with A. Then for any v € I'y C I'y,, Ruelle’s su-
pestability gives

2 gd")/‘z
> Vi) =D Ay’ —Bh| = A B
{zy}Cy iceAy 7

Because [y > g, one can show that for large x > 1 the following inequality
holds

Az| < KLY

and the assertion of the lemma is now obvious. [ |
Proposition 4.3.2 Let V' be superstable in the sense of Ruelle. Then
(GRB)y = (SRPB).

Proof. 1t follows immediately from Proposition 4.3.1 by choosing W (y) =
A iea Yigl?. W

Proposition 4.3.3 (SRPB) implies u(Rx) = 1.

Proof. Let, as above, A, denote the hypercube of sidelength 2k — 1 centered
at the origin in R¢. Obviously,

Rw:Dﬂ{fyeF

N=1k>1

Sl < N?!Akr}

1E€EAE
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and

F\Rw:ﬂU{veF

N>1k>1

>l > NQIAM} :

1€EAL

Note that for any £ > 1 and N € N

{7 er | Y |l > NQ\AM} > {7 er

1€EAE
Using o - semi-additivity and monotonicity of the measure u, we have

p(T\Re) = lim 4 (U {7 er | > P> N2|Ak|}> <

k>1 1EAL

ol > (V1 |Ak|} :

1E€EAE

< lim Zu ({7 el
N—oo i1

Due to (SRPB) for g =1 we bound (4.19) by

> il > N2]Ak1}> . (4.19)

1E€EA

lim ef(aNQ NAkl — 1im Ze (aN?—6)(2k—1)?
N—oo =1 N—oo
6—(aN2—6)
< lim 0. W

Remark 4.3.2 Proposition 4.53.3 holds if in (SRPB) we substitute (4.18)
by the following weaker probability bound:
for any N > Ny, Ny € N,

Corollary 4.3.1 Let V' be superstable in the sense of Ruelle. Then

> g’ = N?A }) < exp{—(aN —d)[A[}. (4.20)

(IS

(GRB)y = p(Ro) = 1(Poo) = p(Uso) = 1.
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4.4 Examples

In this section we consider some class of examples known from the statistical
physics to which the results of this article can be applied. One of them is
related to the so-called Gibbs states (see [27] for more details) and another
with states constructed by a given family of correlation functions (see [5]).
Example 1. (Gibbs states with pair potentials).
The Hamiltonian EY : 'y — R which corresponds to the potential V/
(even function on RY) is defined by

EV()= Y. V(z—y), neTo, [n| >2

{z,y}Cn

Having in mind applications in mathematical physics, we will always assume
positivity of V for small distances. More precisely, we suppose that there
exists g, 0 < g < 00, such that V(z) > 0 for |z| < g.

For fixed V we will write for short ' = EY and for A € B.(RY), n € T,
we will sometimes write F,(n) instead of E(n).

For a given 4 € I' define the interaction energy between n € I'y and
Are =N A, A¢ = RANA as

Wamly) = > Vie—uy) (4.21)

z€n, yeJNAc
Define
Ex(my) = Ex(n) + Wa(n]y).

Let A € B.(R?) and let ¥ € I'. The finite volume Gibbs state with
boundary configuration 4 for £ and z > 0 is

exp{—Er(n| 7)}
ZA(7)

pa(dn| 7) = Azo(dn),

where

Z0(3) = / exp {— B (1] 7)}o(dn).

This finite volume Gibbs state is well defined if for any A € B.(R%), n € T'
and 7 € I the interaction energy W (n|7) does not become —oo and partition
function Z, (%) is finite. The assumptions, under which these conditions hold
true will be introduced later.
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When 7 = 0, let ua(dn|0) = pa(dn).
Let {mx} denote the specification associated with z and the Hamiltonian
E (see [69]), which is defined on I' by

ma(A17) = [ il 7

where A’ ={nelr: nUAr. C A}, A€ B(I).
A probability measure p on I' is called a Gibbs state for F and z if

u(ma(Af 7)) = u(A)

for every A € B(I') and every A € B.(R?).

This relation is well known (DLR)-equation (Dobrushin-Lanford-Ruelle
equation), see [27] for more details. The class of all Gibbs states we denote
by G(V, z).

About the potential V' we will assume:

Assumption 4.4.1
1. Regularity:

/ 11— e V@|o(dr) < 0.
Rd

2. V' is superstable in the sense of Ruelle.

3.V is lower regular, e.q. there exists a positive function i on the
nonnegative integers such that ¥(m) < Km™ for m > 1, and for any A,
and Ay which are each finite unions of unit cubes of the form Q;, with v C Ay
and 5y C A,

W) ==Y > ol —ilDhlll

1€A1 jEA2

where K >0, X\ > d are fized.

Let

V)= inf V(Z), V() =min(0, inf V(2)),

T:0<|Z|<|x| T:|z—z|<3g

V(r) =max(0, sup V(2)),

Tilo—z|<3g
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where the symbol | - | represent Euclidean norm in R?, and let

1

Ci=y) [ Vr @I g el
0<|z|<g

Cy = —n”/Q/ V™ (z)dx,
R4
where vy is the volume of a d - dimensional sphere of radius 1.

Assumption 4.4.2 ([21])
1. The inequalities Cy < Cy, Cy < 00 hold.
2. For some D <oo: [ .., V(z)dz < oo.

It is well known from [76] that under Assumption 4.4.1 the set of tempered
Gibbs states is nonempty. Let us denote this set by Gi(V, 2).

Analogous existence result for Gibbs states under Assumption 4.4.2 can
be found in [21].

The following propositions collect some known results concerning Gibbs
measures.

Proposition 4.4.1 ([3]) Suppose that Assumption 4.4.1 is fulfilled. Then

for any p € Gi(V,z) the correlation functions kﬂn)(xl, ., Ty) Satisfy the
following inequality

k,g")(arl, cey Ty) < C™exp [— Z V(x; — x])] : (4.22)

i<j
with some C' > 0.

Proposition 4.4.2 ([37]) Suppose that Assumptions 4.4.1.2, 4-4-1.3 hold.

Let A be a finite union of unit cubes of the form Q;. Suppose A D A, A €
B.(RY). For any p € Gi(V,2) there exist constants o > 0 and &, depending

only on z (independent of A and A), such that for any N € Ny

ix({7 | 1l = NIATY) < exp {—(aN? = 8)[Al}. (4.23)

Proposition 4.4.3 ([21]) Suppose that Assumption 4.4.2 holds and let p(y),
0 <y < o0, be a positive monotonically increasing convex function is such

that for some h >0, L < oo

o(m) < Lexp {m*(H(m) — g~ %Cy —h)},m=0,1,...,
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where
1 _ _ _ —d—
Hm) = 3070 [ V@)L 4 g7 ol
z:g(md —1)"1<|z|<g

Then for any p € G(V, z) there exists a constant Cp(p) such that for any
A € B.(R?) the following inequality holds

/F~ (D uz(dy) < Ca(p), for all A C A, A € Bo(RY). (4.24)

A

The conditions on function ¢ are satisfied if
o(m) = exp{dm?}, 0<d< (C;—Cyg™?).
Corollary 4.4.1 Under Assumption 4.4.1 for any p € G(V, z) we have:
e (RPB) (Ruelle’s probability bound (4.23)).
e Dobrushin’s bound (4.24) for all bounded A C A such that Iy < gd~2,
e Dobrushin’s bound (4.24) for function p(x) = e X >0, p€ (0,2) .

Under Assumptions 4.4.1.2, 4.4.1.3 for any p € G(V,z) we have Do-
brushin’s bound for function o(z) = e, X >0, p € (0,2).
The conditions of Proposition 4.4.3 imply (RPB).

Proof. We will prove only that under Assumption 4.4.1 for any u €
Gi(V, z) we have Dobrushin’s bound for every bounded A C A such that
Iy < gd_% and that the conditions of Proposition 4.4.3 imply (RPB). The
proof of the remaining statements in this corollary is a direct consequence of
Theorem 4.1.1 for measure p = 3.

Using (2.3) and an estimate of the function ¢ we have

[ 1 et putan) < [ S e ) <

Agcny

<L / S exp {[EPHIE]) — gCo — h}pyy (dn). (4.25)

Agcn
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The estimate on the correlation functions implies the bound for (4.25)

Z / Y PHIE T Ve Oy L day. (4.26)

&‘C{l’l 7777 l’n}

We bound e~ 2i<i V(#=%) using the following result from [21]: there exists
mo > 2% s.t. for any A € B.(R9), [, < gd_% and n € Ty, |n| > mg holds

EY(n) > [n|*H(In]).

Therefore, we can estimate (4.26) by

LemOH(\mol)Z(230|A| + L Z 2ZC’|A| <Le2zC|A|+mgH(|mo\)'

n=0 n=mop+1

The equalities (2.2.1) and (2.6) give

/D @(|nal)pz (dn) :/r K Yo(Ina])]pa(dy) < Le2zCIaltmiH(mo).

A

To show that conditions of Proposition 4.4.3 imply (RPB) one should
take in the proof of Theorem 4.1.1(4) the constant A = C; — Cyg~¢ and use
the fact from [21] that Cy < e’ for some 6 > 0. W

Remark 4.4.1 Let us note that the Poisson measure ., satisfy (4.11). Re-
ally, we have

To ({7 Il = NIA[}) =

3 A i e 3o GIAD"_ (1.27)

| |’
n>N|A| ’ n=0 n. (n + no).

where ng is the smallest integer greater than or equal to N|A|. Using inequal-
ity
n!
T\ < _7 n > ]"
(n+ng)! = ne!” T

and Stirling formula we can bound (4.27) by

A Ly A (o)
— < < .
- efnonono - Nno

no

no!
Considering N > ez the latter expression can be estimated by e N,

Moreover, this implies 7.,(Ps) = T.o(UL) = 1. u
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Remark 4.4.2 The Poisson measure ., does not satisfy (RPB). Indeed,
suppose that (RPB) for w,, holds. Then from Theorem 4.1.1 we have that
T.o salisfy (DEB)q, o—s), where 0 < € < 1. But by the definition of the
Poisson measure

/6|7A2 d7 — e z\A\Z |A|
I

where the latter series obviously diverges.
So, our assumption that the Poisson measure satisfies (RPB) is false.l

Example 2. Let V : R? x R — RU{oo} be a nonnegative pair potential
and the function kY : Ty — R defined by

/fX(U) — gle—EY () _ a\U\G*Z{z,y}ch(ac,y)7 nely, |nl>2, (4.28)
ko (n) = a, n] =1,
kY (0) = 1.

with some constant o > 0.
Assume that ¢ := sup,ega [pa(1— eV ®¥))dy < co. As shown in [5] under
assumption ace < 1 there exists probability measure p on B(I') s.t.

dp

where o denotes the Lebesgue measure on R?. Moreover, the bound 0 <
ku(n) < al €Ty implies the uniqueness (c.f. [38]).

The measure p is not Gibbs state associated with a pair potential. More-
over, it is difficult to show that u corresponds to a potential in an explicit
form. Even if this is true, such a potential should include interactions of
all orders. In spite of this, we know that correlation functions of u satisfy
(GRB)y. Therefore, all results of this chapter connected with (GRB)y are
applicable to this measure. In particular, we have information about support
properties and probability bounds depending on the behavior of V' on the
diagonal.



Chapter 5

Existence problem for (Gibbs
measures on configuration
spaces

On R? one can consider the following norms

1
d b
e, = (Z \wk\p> , 1<p<oo
k=1

and
oo = s bl 65.1)
where = (21,...,14) € R%
In the whole Chapter 5 we will use only norm (5.1). Therefore, for brevity
we will use notation | - | instead of || - || -

For A € B.(R?), let

In = sup |z —yl|
T, yeEA

As in Section 4.3, for every i € Z? we define a cube

Qi:{TGRd} 9<ik—%) <rk§g(ik+%)7k:17~"7d}7 (5.2)

where g > 0 will be chosen later. As before, J,(R?) is denoted all finite
unions of cubes of the form ;. In the Chapter 5, sometimes we will regard

95
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A € B.(R%) as a subset of Z¢ by letting A represent {i € Z?|gi € A}. For a
nonnegative integer k, let Ay be the hypercube of length g(2k — 1) centered
at the origin in R?. Ay is then a union of (2k — 1)¢ unit cubes of the form
Q;. For x € R? let In, |z| = max{1,In|z|}.

5.1 Existence of Gibbs states for pair long-
range potentials

5.1.1 Potentials and Hamiltonians

A measurable function V : R? x RY — RU{oo} is called a pair potential. We
formulate the conditions on potential V' which will be used in the Section
5.1:

(V1) Symmetry: V(x, y) = V(y, z) for all (z, y) € R? x R<.
(V2) Translation invariance: for any (x, y) € R? x R? and any r € R?

Vie+r,y+r)=V(z,y).

We are able now introduce the function V(z), z € R% by the equality

Viz—y)=V(z,y).

(V3) There exist constants ¢ > 0 and L > 0 such that for any z € R%, 2 # 0

L

_‘x|d+5'

Vir) =

(V4) V e C(R?\ {0}).

The Hamiltonian H : Ty — R which corresponds to the potential V is
defined by

o) = Y wonve-n+vo (") 63

{z,y}Cn zen

where o = (n,n) € I'y.



5.1. PAIR LONG-RANGE POTENTIALS o7

If n(z) =1 for all z € n and |o| > 2 then

H(o)= Y V(z-uy).

{z,y}Cn

For the case V(0) = +o0 and n(z) > 1 at least for one = € 7 it is clear that
H(o) = +o00. For simplicity we will write

H(o)= 3 V(e —y)

x,yco

instead of (5.3). For A € B,(R?) and ¢ € T'y we will sometimes write Hy (o)
instead of H (o).

Having in mind applications in mathematical physics, we will always as-
sume superstability of V' (see [31, 58]). More precisely,

(V5) Superstability: for any g > 0 there exist A > 0 and B > 0 (may be g
dependent) such that for any A € B.(RY), Iy > g and any configuration

o € I'y holds
2
Y Vie-y) > A% — Blo|. (5.4)
T, y€o A

In the sequel, we will write sometimes A,, B, instead of A, B, to emphasize
that these constants depend on g.

Remark 5.1.1 Obviously, conditions (V3) and (V5) give us

M, = inf V(x)zmin{Zl—Ag—2Bg, —i}

0<|z|<2g g gite
Define |o;| = |o N Q.

Lemma 5.1.1 Let the conditions (V3), (V5) be fulfilled. Then, there ezists
a constant K > 0 such that for any i, j € Z% |i —j| > 1 and for any
K

Ve 2 e
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Proof. We set
K =2"¢L,
Let i, j € Z%, |i — j| > 1 be arbitrary and fixed. Then for any = € Q;, y €
Qj
0<g(li—jl=1) <l|z -yl <g(li—j[+1).
It gli —j| < [z —y| < g(li — j[ +1) then
L L
o) 2 oy = Tl e )
£ 0<g(li—jl=1) <[z -yl <gli—j| then
L L 24+e ],
Ve 2 T 2 T 2 e OO
In the last inequality we have used the fact that | — j| > 2. The claim of
the Lemma now follows from the representation of the constant K, bounds
(5.5) and (5.6). |
We introduce an additional assumption which will be necessary in the
following.

(g) There exists g > 0 such that
amax {2 L, —g**M,} < A, ¢,

1
a:= Z ’j‘d+5<oo

jez\{0}

where

In the sequel, in this section we will consider g which satisfies condition (g).

Remark 5.1.2 [t is well-known from Dobrushin-Fisher-Ruelle criterion (see
[76]) that V is superstable if V(x) ~ mg—i&l, x— 0 and |V(x)| ~ ‘mﬁ—z&?, x —
oo for some Cq, Cy, 61, 6o > 0. Moreover, by choosing the length of the sides
of the cubes Q;, i € Z¢ appropriately small, assumption (g) can be fulfilled
automatically.

Indeed, one can show that in this case constant A, = Ag~® with A > 0
independent of g and, hence, assumption (g) will have the form

amax {2972 [ — g2 < AghTn (5.7)

Without lose of generality, one can regard 6; > d5. Because —M, decrease
when g — 0, inequality (5.7) holds for small g > 0. |
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Consider a subset in the space of multiple configurations:
(e e}
- U It
n=1
where I = {0 el ‘ lo;] < n(lng |i|)z, Vie Zd}.

Definition 5.1.1 Configuration o € T is said to be tempered if o € T*.

For a given ¢ = (7,n) € I and A € B.(R%) define the interaction energy
between o = (n,n) € Iy and 65, = NA° = (N A%, n), A*=R?\ A as

Wilolo)= Y V(z—y),

z€o, yeanNAc
where the sum at the right-hand side is a simplified notation for

> n(@)ny)Vie —y).

T€7y, yeEFNAC

The interaction energy is said to be well-defined if for any A € B.(R%) and
& € I'* it does not become —co.
Define
Hy(o|g) = Hp(o) + Wy(olo)

and let
2y(0) = / exp {—BH, (0] ) }A.(do)

be the so-called partition function.

Lemma 5.1.2 Let conditions (V1)-(V5) be fulfilled. Then for any A €
B.(R%), 0 € Ty and 5 = (3,7) € T* the interaction energy Wa(o|5) is well
defined and partition function Zx(a) is finite.

Proof. Using representation I'y := L] NeNo f‘E\N) we have

Zx(5) = /F ) ~PHA( g / e PINE1)N (do).
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With (V5) it is not difficult to show that there exists B > 0 such that for
any A € B.(R?) and any o € I'y, 0 > 2 holds

Z V(zx —y) > —Bl|o]|.

xr,YyEo

In particular, potential V' is bounded from below by —2B.

Define A7 as a union of all cubes ); which have nonempty intersection
with A. Without lose of generality we will assume that for any i € A and
j € Z*\ Az holds |i — j| > 1. Otherwise we will add to A all cubes with
such a numbers j € Z?\ A;. Then, according to Lemma 5.1.1 the interaction
energy can be estimated by

[2lll]
Walolo) 2 =2Blo|aapal =KD, >, o i 2

i€A ]GZd\A

|5,

> —|o| | 2B|oa 4| + K max —_—
Al 2 G

JEZN\A 5

(5.8)

Let 49 maximize the sum in (5.8). Then

|0,

Wa(olo) = —|o 2B|UAJ\A|+K Z W

JEZNA 5
Since o € I't, the series
S = § : |5j|
|io — j|*te
JEZN\Ag

is finite.
Therefore, the interaction energy is well defined. Moreover, the partition
function can be estimated by

exp {Z\A|€B[1+2‘5AJ\A|]+KS} <oo. N

Definition 5.1.2 A potential V is called stable (see [76]) iff there exists a
constant B > 0 such that for any A € B.(R?) and any configuration o € I
it holds

> V(z,y) > —Blo| (5.9)

T, Yyeo
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Remark 5.1.3 Lemma 5.1.2 holds true if instead of the condition (V5) we
assume stability of the potential V.

In the following, we will consider only tempered configurations.

5.1.2 Specifications

Let A € B.(R%) and let & € T'*. The finite volume Gibbs state with boundary
configuration ¢ for H, # > 0 and z > 0 on I'y is defined by

_ exp{—BH,(0]| 7)}
Zn(o)

PA,&(dU) )\Z(da).

When ¢ = 0, let Py y(do) = Pr(do).
Let {mr} denote the specification associated with z, § and the Hamilto-
nian H (see [69]) defined on I" by

WA(A’ 5’) = //PAJ(dJ)

where A’ = {0 €'y : 0 Ude C A}, Ac B(I) and ¢ € I'.
A probability measure p on I' is called a Gibbs state for H, 3 and z if
pu(ma(A] 7)) = p(A)

for every A € B(I') and every A € B(R?).

This relation is well-known as (DL R)-equation (Dobrushin-Lanford-Ruelle
equation), see [27] for more details.

Let x > 0. The class of all Gibbs states p which satisfy

/e’d“u(da) < oo, A€ B.(RY
i

will be denoted by G, (V, z, 3).

5.1.3 Main result

Theorem 5.1.1 Let conditions (V1)-(V5) and (g) be satisfied. Then for
any x >0, 2>0and >0

G (V. z,8) # 0.
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The proof of this theorem is based on the general Dobrushin’s theorem
about the existence of Gibbs states for lattice models (see [22]). The for-
mulation of this theorem can be found also in [27], [67], [79]. For reader’s
convenience we quote the theorem from [22] in the next subsection.

5.1.4 Existence theorem on Z¢

Let X be a complete separable metric space. A configuration X on A C Z¢
is a map X : A — X. X’ denote the set of all configurations on A. Let
{P, %} be the family of probability measures on X (a specification) indexed
by parameters ¢ € Z4 and x € X%\,

A random field £(t), t € Z4, taking values in X corresponds to the speci-
fication {P; x} if for every t € Z? and every Borel set A C X

Pr{¢(t) € Al&(u) = x(u), u 7 t} = P x(A).
The compact function is a non-negative measurable function h : X — R
such that for any d € R, the set
{z|h(x) <d, x € X}

is relatively compact in X.

Theorem 5.1.2 For the existence of the field {£(t), t € Z2} with a prescribed
system of specification { P; x}, the fulfillment of the following two conditions
18 sufficient:

1. There exist a compact function h(x), x € X, and constants C, 0 <
C < oo, and ¢, > 0,t € Z%\ {0}, such that the conditional mathematical
expectation

/X B Pos(dn) <C+ S e h(x(1))

teZ\{to}

for all ty € Z% and all x € XZ\0} | gnd

Z Ct<1.

teZ\{0}

2. For any ty € 7%, there exist a sequence of finite sets Utl0 C Ufo e
whose union is 22\ {to}, constants d, t € Z%\ {0}, n € N, and constants

D,, such that
> dy <D,
teZa\{0}



5.1. PAIR LONG-RANGE POTENTIALS 63

where D,, tends to 0 as n — oco. Moreover, for any continuous function
o(x), v € X, with |p(z)| < 1 there exist functions fn(x(t), t € U}) which
are continuous on X%, n € N such that

S Dn + Z dzitoh(i(t))
teZa\{to}

/X (1) Pryx(dr) — fu(X(2), t € UD)

The field {&, t € Z*} with specification {P,x} can be constructed in such a
way that the mathematical expectations

sup Fh(&) < oo.

tezd

5.1.5 Lattice structure associated with continuous sys-
tem
In this subsection we introduce a lattice structure associated with our contin-

uous system, c.f. [67]. For any t € Z% let us denote by X, the configuration
space I'g, in the closure @); of the cube Q);. Let

X = XyegaXy

be the associated lattice configuration space and let B(X) be the correspon-
dent Borel o-algebra on it. ) )
As in Section 3.1 we consider function p : I'g, x I'g, — R,

1 : lovl .. _ , : _
p(o-l’ 0-2) — 2glo1| mifg; Zi:l ’xl yﬂ'(l)" lf ’0—1’ _ ‘0—2’ (510)
1, otherwise.

In (5.10) the minimum is taken over the set of all permutations 7 of the set
{1,...,lou|}, configuration o1 = {z1,...,20,} and o2 = {y1,. .., Yoy }-

As shown in [67], the function p is a metric on I'g,. Moreover, metric
space (f@t, p) is a Polish space.

Having a continuous configuration o = (v,n) € I, we construct the lattice
configuration £ = (£(t),ny)eze € X in the following way:

Et)y=0nQ, teZ’
and for x € &(¢)
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ny(z) = n(x).

Denote this correspondence by T': I' — X. For & = To: £(t) C Q; C Qy, t €
Z4. Therefore

T cx

and 7T is an injective map.
The inverse map T~ can be constructed as follows. If & = (£(t), n¢)ieza €

T(T') then T~'¢ := o = (v, n) is defined by

v = ew. (5.11)

Because & € T(I'), configurations £(t) and £(s) do not intersect for t # s.
Therefore, for any x € « there exists only one point t € Z% such that z € £(t)
and we are able to define

n(x) = ny(x).

The map T is a measurable embedding of I" into X. Hence, every measure
on I induces a measure on X. The inverse map 7! can be extended to the
whole X. If € = (£(t), ny) € X\T(I') then there exists t € Z with x € £(t)
on Q:\Q;. To define T~ for this case, we are able to use (5.11) for v and

n(zx) = Z ng(x).

t: xel(t)

Thus, the existence of the lattice model implies the existence of the contin-
uous one.

For any A C Z4, |A| < o0, € € T(Ty,_,q,) and € € T(I'*) the conditional
energy Hx(£1]€) is defined as

HA(& | g) = HUteAQt((T_lg)UteAQt | (T_lg)UtGACQt>’

where A® = ZA\A and (T71€)¢ is the restriction of the 77'¢ € I to the set
G C R%

Using Lemma 5.1.2 we can define finite volume Gibbs states for the lattice
counterpart of the continuous model. Namely, for any A C Z¢, |A| < oo the
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finite volume Gibbs state P ¢ under condition £ € T(I') is given on x;ep X,
by

Py e(dgy) = eXp{‘ZﬁA%(f L) . en) = eXp{_ﬁZif(?)Qt(“‘ W ir. (o),

where

Zp(€) = / e Muere @19\ (do) = Z0,,0.(9),
FUteAQt
(T71)0,enq, = 0 and T~ = 6.
The corresponding specifications are defined by

ma(d) €)= [ Paela)

where A" = {§ € Xea Xy € X fzd\A € A}, A€ B(X) and gzd\A is projection
Ofé € T(Ft) on XtEZd\AXt'
A probability measure p on X is called a Gibbs state for z and (3 if

w(ma(Al €)) = u(A)

for every A € B(X) and every A C Z% |A| < oo. For more details, see [6],
[67].

In the Section 5.1, we will need only single point Gibbs states, i.e. {P, gt €
72 ¢ € T(T*)}. Obviously, all spaces X, t € Z¢ are isomorphic to the space
Xy, which we will denote for brevity by X. We will consider for simplicity
{Pe|t € Z?, £ € T(I'")} on X. For more details about the associated lattice
structure, see [6], [67]

5.1.6 Proof

In this subsection we check Dobrushin’s conditions for the lattice model with
compact function (see [6], [67])

h(€) = exlélj x>0

on X under assumptions (V1)-(V5), (g).

Because all spaces X;, t € Z¢ are topologically identical to the space X,
which we have denoted by X, in proofs we drop index t, considering, instead
of X, and &, € X, t € Z¢ the space X and the configuration ¢ € X.
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Lemma 5.1.3 For any x > 0, t € Z¢ and £ € T(I") there exists C > 0 and
¢; >0, j€Z\ {0}, such that

Z Cj <1
jeZ\{0}

and

/Xexﬁlpm(dg) <C+ Z ¢j_eXEDI, (5.12)

JEZA{t}

Proof. For simplicity we will use the notation ; instead of £(3), j € Z4\ {0},
The spin space X can be represented as

X = [J X", XV ={¢eX||l =N}
N=0
Using this representation we have

/6X5|Pt£d§ Z/ Xl P, ¢(dg) + Z/ Xl P, g(dg).  (5.13)

N<N¢ N>Ng

N¢ € N will be chosen later. Let us estimate the second term in (5.13):

Z/ exl&lpt5 (d¢) < Z 6xN/ fﬁH(£I£))\ (d€).

N>Ng N>N¢

We have used fact that the partition function Z,(€) is greater than 1. We set

U e

i |t—i|=1

Then, using Lemma 5.1.1 and condition (V5), Iy, can be estimated by

&1

2N A _
(x+BB)N _ N — S b A S
> ¢ exp ¢ BN ng M|l + K > OIS

N>Ng = JEZI\Ot

Denote
max {K, —g%+<M,}

Age

D, =
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Suppose that £ € T(I'*) for some n € N. Then

G n(lng |j})
Dy D g S0 D i <o (5.14)
JELZN{t} JELAN\{t}
Choosing Ng as the largest integer less or equal than
gl
D Z ’ _ ]‘dJrs
JEZAN{t}

we have for all N > Ng

This implies that

N
z
INE < E ﬁebﬁ-ﬁB)N < exp {Z€x+ﬁB} —1.
N>N§-

To estimate the first term in (5.13) let us observe that

Ing = Z/ XIPg(de) = > NP (XN) < eXMe,

N<Ng N<Ng
Hence
Ine Sexp x| Dy Z 7\t—|£]:\‘d+5 . (5.15)
jezavy

By the convexity of the function e” we obtain
Iy, <expq aD E ng‘ < E _ caPgxl4;]
Ng‘— p g t_.d+5 >~ t_'dJrE .
e alt = e alt — g
JEZN{t} jezd\{t}

And again, because of the convexity of e” and property (g), we have

1 - I
IS D e TP <
. alt — j|
JEZN{t}
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6X|§J
< (1 —aDy) + D, Z [t — gare
JEZN{t}
Therefore B
JNE S C* + Z Ct,jex‘gﬂ,
jezN\{t}
where

. D,
C* = (1—aDy); G = [ ,j € Z7\ {0}

Finally, we have

/X€X|£Pf:,§(d§) <O+ Z Ct_jex\5j|7

JEZA{t}

where
C = C* +exp {zeX™F} — 1

From property (g) it follows that
Z ¢ < 1. |
JEZN{0}

Lemma 5.1.4 For any d € (0,1), there exist bounded A C Z% and constants
b;, j € Z4\ {0}, such that
D 00

j€Z\{0}

and for any € € T(I') and a measurable function p(£), € € X, |(&)] < 1,
the following inequality holds

[o©nda - [ poret|s ¥ e

JEZN{t}

where &y is the projection of € € T(I") on X;epXi.

Proof. The proof of this Lemma is completely analogous to the arguments
occurred in Lemma 4 of [21] for constants d; of the type

K
|t]d+e

dt:
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Remark 5.1.4 Lemmas 5.1.3 and 5.1.4 hold true if instead of the condition

(V5) we assume that there ezists a constant C' > 0 such that for any x, y €
Rd,0<|l‘—y|<g
V(z—y) > C.

The condition (g) is replaced by the requirement K < C/2a in this case.
Indeed, the claim follows straightforward from the arguments used in
Lemma 1 of [67]. |

Proof of Theorem 5.1.1. Because of continuity of functions

F(EA) = /X H(€)Prg, (de)

(see [21], [67]) and Lemmas 5.1.2, 5.1.3 and 5.1.4 (see [22] for details), there
exists at least one Gibbs measure on X and, hence, measure p on I'. More-
over, as shown in [22], for any A € B.(R?) there exists Cy < oo such that
the following holds

/ Xl (do) < Oy (5.16)

i
Therefore, for any x >0, 2z >0and 3 >0

G,(V,z,0)#0. A

Remark 5.1.5 Theorem 5.2.1 holds if instead of (V5) we assume that there
exists a constant C' > 0 such that for any x,y € R4, 0 < |z —y| < g

V(z—y)>C,

the potential V' is stable, and the condition (g) is replaced by K < C/2a.

5.2 A modified approach to the existence prob-
lem and detailed properties of (zibbs states

5.2.1 The model

In the Section 5.2 we use the following conditions on the pair potential V:

(V1) Symmetry: V(z, y) = V(y, z) for all (z, y) € R? x R4
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(V2) Translation invariance: for any (z, y) € R x R? and any z € R?
Viz+z,y+2)=V(z,y)
We are able now introduce the function V(z), z € R% by the equality
V(iz—y)=V(z,y)

(V3) Potential V' is of Dobrushin— Fisher — Ruelle (DF R) type, i.e., there
exist 0 < dy < dy < 00 s.t.

C

V(I) Z ‘x|d+617 |ZU‘ S d17
Cy

‘V(:U)’ S |x’d+527 ‘l" 2 d?

for some C, Cs, 01, 69 > 0.
(V4) V e C(R?\ {0}).

Let V satisfy (V3) with constants dy, da, 01, 09, C1, Co > 0. Without loss of
generality, we will regard d; < min{1, e C;} for some 0 < ¢ < 1 and d; > Js.
In the sequel, in this section we consider g < d;/2.

Lemma 5.2.1 Condition (V3) implies the following useful bounds.
1. There exist A > 0 (independent of g) and B > 0 (may be g dependent)
such that for any A € J,(R?) and any n € Ty, |n| > 2 holds

S Vg >4 gy
%A

2. There exists constant K > 0 (independent of g) such that for all
i,j €Z% i+#j and for any x € Q;, y € Q;

K

Viz—y) > _W.
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Proof. 1t is well-known from (DF R) criterion (see [76]) that condition (V3)
implies the second statement of Lemma 5.2.1 and superstability of V, i.e.,
there exist Ag > 0, By > 0 (may be g dependent) such that for any A €
J,(R?) and any n € T'y, |n| > 2 holds

Z Viz —y) > A Z |n:|* = Boln].

{z,y}Cn 1EA
Set
_ 1 1
a(|z]) = 501]1[o,d1}(|37|) |z |d+01 - diH&l : (5.17)
Obviously, the function @ is continuous decreasing and
Qo = tl%rio&(t) = +o0

We can represent potential V' as
Viz) = (V(z) — a(lz]) + a(|=]).
For any x : |z| < d;

(1 — 6)01 801 > (1 — 6)01

V(-T) - d(’x‘) > ’m‘dJrél dil+6l — ’m‘d+5l

and for any = : |z| > dy

Vi) = aedl = V)| < ok

Hence, potential V(z)—a(|x|) is of (DF R) type. Then from (DF R) criterion
follows that there exists B; > 0 such that for any A € J,(R?) and any
n € T'a, |n| > 2 holds

> (V(z—y) —allz—yl)) = —Bilnl. (5.18)
{zy}Cn

Because & > 0

Soalz—yh) =D D az—yl). (5.19)

{zy}Cn €A {z,y}Cn;
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Forany t: 0 <t <g <d;/2:

_ 1 1 1 eCy

601 1

The bound (5.20) implies

2A il (73] — 1
Z Z (|z —y)) >Z T il |77| ):

Denote

i€ {z,y}Cn; ZEA
d+51 Z ‘/’71‘2 d+51 ‘/’7’ (521)
LIS
Set
b= Bl + gd+61
Then, inequality (5.18), (5.19) and (5.21) give us
A
Y Vie-y) = preeT > nil* = Blnl. (5.22)
{zy}cn €A

Because of Cauchy inequality

2 g’ Inl?
Zm“ﬁxA(z'>‘\M

€A €A

the first statement of Lemma 5.2.1 is a direct consequence of (5.22). |
The Hamiltonian EY : Ty — R for A € B.(R?) which corresponds to

potential V' is defined by
Y V(z—y), nely, In|>2.

{zy}Cn

For fixed V' we will write for short Fy = EY.
Consider a subset of the configuration space I':

)

_ t

=Jr.
n=1

where Tt = {v € T | || < n(lny |i])z, Vi € Z%}.
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Definition 5.2.1 Configuration v € T' is said to be tempered if v € T,

For given ¥ € I'* define the interaction energy between n € I'y and
Are =N A, A¢ = RAA as

Watly)= Y Viz—y).

TEN, YEVAC

The interaction energy is said to be well defined if for any A € B.(R?), n € 'y
and 7 € I'* it is finite or +oo.
Define

Ex(nly) = Ea(n) + Wa(nl7)
and
Z(7) = / exp {—Ea (] 7)) (d)

the so-called partition function.

Lemma 5.2.2 Let conditions (V1)-(V4) be fulfilled. Then for any A €
B.(RY), n € Ty and 5 € T the interaction energy Wx(n|y) is well defined
and partition function Zx(%) is finite.

Proof. Using representation I'y := | |y, TE\N) we have

ZA(;Y) _ / e*EA(n‘V))\Z(dn) _ Z /(N) e*EA(n|;/))\Z<d77).
La N=0"T}x

With (V3) and Lemma 5.2.1, it is not difficult to show that there exists
B > 0 such that for any A € B.(R?) and any n € I'y, > 2 holds

> V(z—y) > -Bnl

{z,y}Cn

In particular, potential V' is bounded from below by —2B5.

Define A7 as a union of all cubes ); which have nonempty intersection
with A. Then, according to Lemma 5.2.1, the interaction energy can be
estimated by

_ _ 7] 7]
Wamly) = =2Bn| [ya\al — KZ Z W >
1EA jEZNA 7 g J
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191

T (5.23)

= —nl | 2BIas\al + K max >,

JEZNA 7

Let ip maximize the sum in (5.23). Then

1751

WA(n’:Y) > _‘77’ 2B‘;YAJ\A’ + K Z (g‘io _j‘)d+52

JEZNA 7
Since 7 € T, the series
1%l
S = I T

is finite.
Therefore, the interaction energy is well defined. Moreover, the partition
function can be estimated by

exp {z|A|eB[1+2WAJ\A‘]+KS} <oo. W

In the following we will consider only tempered configurations.
Let A € B.(R%) and let ¥ € T''. The finite volume Gibbs state on the
space I'y with boundary configuration % is defined by

Pty = S P02

Az(dn).

When 7 = 0, let Py ¢(dn) =: Px(dn).
Let {mx} denote the specification associated with z and the Hamiltonian
E (see [69]) which is defined by

maldl9) = [ Pus(an

where A’ ={neTh: nU (Fpc) € A}, A€ B(T') and 7 € T".
A probability measure p on I' is called a Gibbs state for £ and z if

u(ma(Al 7)) = u(A)

for every A € B(I') and every A € B.(R?).
This relation is well known (DLR)-equation (Dobrushin-Lanford-Ruelle
equation), see [27] for more details.
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Definition 5.2.2 A measure pn on I is called tempered if p is supported by
the set T*.

The class of all tempered Gibbs states we denote by Gy(V, z).

5.2.2 Main results

As in Section 3.1 we consider a function d, : 'y x 'y — R which is defined
by

do(m, n2) = p™(m, m2) + | E*(m) — E“(m2)|,  m, m2 € Ta. (5.24)

It is not difficult to show (see e.g. Chapter 3) that the function d,, is a metric
on I'y, and, if A is a closed set, then the metric space (I'y, d,) is a Polish
space. Moreover, for any C' > 0 and any closed set A € B.(R%) the set

{nela|E%(n) <C}

is a relatively compact in (I'y, d,). As a consequence, for any closed set
A € B.(R?) function
ha(n) = (5.25)

is a compact function on I'y, i.e., for any C' > 0

{nelalha(n) <C}

is compact in (I'y, d,).
We introduce an additional condition on the function «:

(V5) There exist A > 0 (independent of g) and B > 0 (may be g dependent)
such that for any A € J,(R?) and € Ty, |n| > 2,

Yo Vie—y) - > allz—y) = Ala,g,M)nf* - Blnl,

{z,y}Cn {z,y}Cn

1 oy

Remark 5.2.1 Condition (V5) holds, e.g., for

1 1 801
O‘(‘x’) = 501]1[07(11}(‘1”) (’m‘dﬂﬁ - d61l+51) dtlfl+51'

(5.26)



76 CHAPTER 5. EXISTENCE PROBLEM FOR GIBBS MEASURES

Indeed, function « is continuous decreasing and ayg = +00. Because d; < £ ()

601
T gd+s —
dy

o4

Set as in (5.17)

1 1
a(lz|) =eCi1 x - :
() = <Crt o) (o = )

As it was shown in Lemma 5.2.1, potential V(z) — a(|z|) is of (DFR)
type and hence there exist A > 0 (independent of g), and B > 0 such that
for any A € J,(R?) and any n € Ty, |n| > 2 holds

2
> - -ale-y) = Ao Bl (520
{z,y}Cn g
Because af|z]) = a(|z|) + a4, bound (5.27) implies (V5). |

In the sequel we will consider function a of the form (5.26) which is
constructed by the potential V.

We choose the size g of cubes Q;, i € Z¢ small enough, such that the
following properties hold

A a
d+62 %
K < %min {Ag5251, FOIAWQ’QM } } , (5.29)
a

where

1
a= ), e =%
JEZN\{0}

and A is the constant from (V5). This can be done, because §; > do and

d+s ses, gt
Ala,g)g™ = Ag™ ™ = —F— — o0, g = 0. (5.30)

The class of all measures u € G(V, z) which satisfy
[ ratindutdn) < o0, & € B (5.31)
r

we denote by G*(V, z).
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Theorem 5.2.1 Let conditions (V1)-(V4) be satisfied. Then for any z > 0
G (V,z) # 0.

The proof of this theorem is based on a general Dobrushin’s existence
criterion for lattice models (see [22]).

As in Section 5.1 we need to introduce a lattice structure associated with
our continuous system, c.f. [67]. The construction of such lattice structure
is very close to the construction occurred in the previous section. For the
readers convenience, we repeat it with a necessary modification in the case
of the space T'.

For any ¢t € Z? let us denote by X, the configuration space I'g, in the
closure @; of the cube @, see (5.2). The space I'g, is endowed with the
metric d, (see (5.24)). Set

X = XteZdXt

the corresponding lattice configuration space. Having a configuration v € I’
we construct a lattice configuration o = (0(t)),;cze € X in the following way.
Set

oty =vyNQ,, teZ

Denote this correspondence by 7': I' — &' For 0 = Ty we have o(t) C Q; C
Qq, t € Z% Therefore,
rrycx

and T is an injective map. The inverse map 7! can be constructed as
follows. If o € T(T') then T~'o := 7 is defined by

v=J o). (5.32)

tezZd

Because o € T(I'), configurations o(t) and o(s) do not intersect for ¢t # s.
The map T' is a measurable embedding I' into X and a bijection between I'
and T(I') = Xyezal'o,

Using constructed in such a way associated lattice structure and the anal-
ogous structure corresponding to the space I in the previous section, one can
maintain that every measure on I' induces a measure on X and vice versa,
every measure on T'(I") (correspondingly on X’) induces a measure on I" (cor-
respondingly on I').
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For any A C Z%, |A| < 00, £ € T(T'y,.,0,) and & € T(I') the conditional
energy E5(£]a) is defined as

En(€17) = EA(T 78 uene: | (T7'0)uiercq):

where A = Z%\ A and (T~ '0)¢ is the restriction of the T-'o € T to the set
G C R%

Using Lemma 5.2.2 one can define finite volume Gibbs states for the
lattice counterpart of the continuous model. Namely, for any A C Z%, |A| <
oo the finite volume Gibbs state Py ; under condition & € T'(I'") is given on
Xea Xy by

PAﬁ_(de) _ eXp{;AE{\&()é| 6)}d)\z(€/\) _ eXp{_EZU/ie(/(;Q)t(n‘ /7)}d)\z(77)7

where

Z30)= [ Pt () = Zu\0 )
FUteAQt
(T ') 0ere =nand T7'6 = 7.
The corresponding specifications are defined by

maldl o) = [ Pualde

where A" = {{ € xyeaXy 1 { X zap € A}, A € B(X) and G745 is projection
Of o€ T(Ft> on XtGZd\AXt'
A probability measure 1 on X is called a Gibbs state for F, z if

p(ma(Al 7)) = p(A)

for every A € B(X) and every A C Z4, |A] < .

This relation is well known Dobrushin — Lan ford — Ruelle (DLR) equa-
tion. For more details, see [6], [67]

As in previous section, in this section we will need only single point Gibbs
states, i.e. {Pis|t € Z% ¢ € T(I')}. Because, all spaces X;, t € Z¢ are
isomorphic to the space Xy, which we will denote for short by X we will
consider for simplicity {P,, |t € Z%, ¢ € T(I'")} on X.

Suppose that Dobrushin’s conditions for the lattice model with compact

function
ha() = €5
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on X are fulfilled. Then, there exists Gibbs measure on X’ (see [22], [79]) and,
hence, Gibbs measure x on I'. Using this measure later will be reconstructed
tempered Gibbs measure on I'". Thus, the existence of the Gibbs state for
the lattice model implies the existence of the Gibbs state on the configuration
space I, i.e., for the continuous one.

5.2.3 Proof

In this subsection we check Dobrushin’s conditions for the lattice model with

compact function
ha(n) = 2™

on X under assumptions (V1)-(V4).

Lemma 5.2.3 For any t € Z¢ and ¥ € T(I'?), there exist C > 0 (indepen-
dent of t) and c; > 0, j € Z4\ {0}, such that

Z Cj<1,

JEZN{0}

| haPistan <€+ Y ermihalii) (5.33)

JELN\{t}

Proof. Using representation (2.2) we have

/X B (1) Pry () = (5.34)

= /X _Da(n) Pes(dn) + > /X _ha(m)Pis(dn). (5.35)

N<N; N>N5

The number Ny will be chosen later. First let us estimate the second term
of (5.35)

Iv,= ), /XN ha(n)Prs(dn) < /XN ha(n)e” PN, (dn) =

N>N5 N>N5
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z Y
< Z ﬁeBNexp N | —-A(a,g)N + K Z il

— |)d+o
N>Ny = jeza\{t} (glt = gl

In the first inequality we have used fact that the partition function Z, 5 is
greater than 1 and in the last one property (V5) and the second statement
of Lemma 5.2.1.

Suppose that 7 € T(I'), for some n € N. Then using fact that A(a, g) >
0 (because of (5.28)) we have

K 3 : %1 < K 3 (771(1H+—U\)%<OQ (5.36)

— 4]\d+d2 — 4]\d+9d2
Along) o, (it = 1) Along) gz, (lt =)

Choosing N5 as the largest integer less or equal then

K N o1
A, g) 2 (g[t — j])4+°2 (5.37)

JEZA{t}

we have for all N > Nj

il
A N>K E —_
(O./,g) = A (g’t_j‘)dJraQ
JEZN{t}

This implies
N
z
Iy, < Z ﬁeBN < exp {zef) — 1.
N>N7Y

Doing the same as for I, we are able to estimate the first term of (5.35) in
the following way

Tz 3 | halmPs(an) <

N<Ny
< Z ieBNeXp N | -A(o,9)N + K Z S /| . (5.38)
- N! ’ ‘ (gt — j) o

N<N JELN{t}
Because A(a, g) > 0, the expression (5.38) can be estimated by

zeB |f?|
S R P D ey
JEZN{t}
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2

< e*¢” exp K > _ (5.39)
< R . .
Alasg) \ gy Wit =D
Denote (K )2
a
C(g) ==

g*@t%2) Ala, g)°
Then using Cauchy inequality we bound (5.39) by

C(g)

1%

zeB o
e’ expq — = E 7“ i -
JEZA{t}
_ o o C(g) 1% n 1%
= p § : — 1dtos Z — ildtos
a \ =l . o t=l
JEZA{t}:|7;|=1 JEZN{t}:]75]>2
1
zeB+C( ) - = 12
<e 9 exp > i _j|d+520(9)|%| :

JEZA\ (1)1 22
where 1
a= ) = < a < oo.
JEZAN{t}:|7;]>2

By the convexity of the function e” we obtain

1
e +0(g) S |
In, <e | Z i — g P {C@s}-
FEZN{t}:|7;1=>2
Let T" > 0 be arbitrary positive number. Using inequality
n 1 n
< = n 5.40
[[rn<i3w (5.40)
i=1 i=1
with n = 2 we obtain
T
zeB+C(g) 67 5.2 —
I, e | Z = jem Pl T} <
JELN{t}:|7;]>2

< L gemacigrear Z 1

2 G
JEZA{t}:17;]>2

DO | —
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1 Lomi oo 1 -
—1—5 e?e TO0)=2T Z At — e exp {20(9)|7%|*} =
JELN{t}:|7;1>2
1 zeP+C(g)+2T 1 zeB4+C(g)—2T 1 ¥,
— e 4 5@ Z W exp {2C(g) 751" }-

JEZA{t}:17;]>2

And again because of the convexity of the function e* and the fact that

8C(g)g™+*

<1
801

D(g) =
which follows from (5.29) finally we have

zeB+C(g)+2T + % 6zeB—&—C’(g)—QT

1 eChly;l°
D D e (R T Ry e

JELN{t}:17;1>2

JIn, < X

l\DI»—t

< eze? +C(9)+2T + % (1— D(g))ezeB+C(g)*2T+

l\DI»—

1 2 1 oy
_'_5 exp {Ze + C(g) — 2T} D(g) Z W e 49 2,

FELN{t}:7;1=22

Choosing T = (ze® + C(g))/2 we have

=117,
* * d+6
In, <C" + g Crje 2

JEZA{t}:17;|>2

where

D(g)

C* == (1470 — D(g)); ¢ = 2apj|are 7 € ZE {0}

1

2

Using the fact that §; > ds, for |7;| > 2 we have
eCi|y* _ eCilyl?

a(g) 1% 1(17;] —
4gd+o2 < AgT+or < 9 Z (lz = wl).
¥} e
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And now
[ hamPstdn < Y ashal).
X jezd\{t}
where o
R
From (5.29) follows that - ;o) ¢j < 1. [ |

The following two lemmas maintain the same results as lemma 5.1.3 and
5.1.4 but under conditions on potentials which are considered in the Section
5.2.

Lemma 5.2.4 For any x > 0, t € Z and ¥ € T(I"") there exist C > 0
(independent of g) and c; > 0, j € Z*\ {0}, such that

Z ¢ < 1
JEZN{0}:|7;]>2

and

/ X P, S (dn) < C + Z c;_peXil, (5.41)
b

FELZN{t}:17;1>2
Proof. Similar to the proof of the Lemma 5.2.3 one can show that

/e”'Pm(dn): Z/ X P, < (dn) + Z/ XM P, S(dn), (5.42)
X

N<N5 N>N5

and
Iy, == Z / X P, S (dn) < exp {zeXTP) —
XN

N>N5

where N5 is the largest integer less or equal then
K 3 171

_ g|d+o

Alg) | gy 1= 3l

with A(g) := Ag®~°1.
To estimate the first term in (5.42) let us observe that

Iy =Y /X i NP5 (dn) = ) NP5 (XN) < e,

N<N5 N<Ny



84 CHAPTER 5. EXISTENCE PROBLEM FOR GIBBS MEASURES

Hence
K 1751
Jn, <expq X Alg) Z =gl = (5.43)
9) & j
JEZN{t}
K 751 7,1
— SPY XUy > It — j|dre + D [t — j|tre
g ; d A= j - d = . .]
JEZN{t}:|7;]=1 JELN{t}:7;1>2
xa—-2— K ’:Y]‘
S e A exp XA(g) > [ j|dre

JEZA{t}:17;]>2

By the convexity of the function e” we obtain

xa—E~ XK(I "7]’
JNﬁ < X"AW exp _A(g) | Z, —&]t — j‘d+62
JEZI{t}:17;|>2

xKal7;|

K 1
< eXA(g) g ————¢ AW
. L, aft— gl
JEZN{t}:[7;|>2

Let T' > 0 be some positive number. Using inequality (5.40) with n = 2,
analogously to the proof of the Lemma 5.2.3 we obtain

1 K 1 ok _ 1 2xKalv,]|

Xa 52427 xa 2T X Yy

JN@ < — et A + —e* Al | E ) W exp {T}
JEZN{t}:[7;|>2

[\]
O

And again because of the convexity of e* and the fact that 3&5) < 1 which

follows from (5.29) we have

—_

K 1 K 1 _ 2aK 20K |~
JNf < _eXaA(g)+2T+_exaA(g) 2T E —6(1 A(g))O+A(g)XhJ‘ S

T2 =t — g|dtee
JELZN{t}:|7;|>2

[\

XAty +2T i 1 (1 _ QKCI) exa%g)—QTjL
A(g)

1
2
1 K 2aK ex7sl
+= exp {X@ —QT}— Z _
2 A A t — jld+os
(9) (9) ez iy, 22 OE 71
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Choosing T = (XGA( )/2 we obtain

JN;/ S C*+ Z Ct_jexﬁ/jl,

JELN{t}
where
Ka . —
or = Lomady (L 2Ka) [ g 122
2 2 A(g) ! 0, otherwise.
Finally,
/6x77|pm(d77) <C+ Z ct,jexm‘,
X JELA{t)
where C' = C* + exp {zeXTB} — 1.
The inequality (5.29) implies ZjeZd\{O} c; < 1. [ |

Lemma 5.2.5 For any 6, 0 < § < 1 there exist bounded A C Z% and con-
stants 6;, j € Z%\ {0}, such that

>, <8
j€ZN\{0}

and for any v € T(T*) and measurable function ¢(n), n € X, |¢(n)| < 1 the
following holds

/XSO(U)Ptm/M’?)_/XSO(U)HWA* dn‘ Y iihal

JEZN{t}

where A* = J,cp Q-

Proof. Due to the Lemma 5.2.4 the proof of this Lemma is completely anal-
ogous to arguments which was occurred in Lemma 4 of [21] for constants
X = é and

K

dy = |t|d+o

Proof of Theorem 5.2.1. Because of the continuity of functions

F(7,A7) = /X (1) Pyyon- (dn)
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(see [21], [67]), Lemmas 5.2.2, 5.2.3, 5.2.4 and 5.2.5 (see [22] for details),
there exists at least one Gibbs measure on X and hence measure p on I'.
Moreover, as shown in [22], for any A € J,(R?) there exists Cy < oo such

that the following holds

[ Halontao) < cx. (544

Therefore, the measure p is supported by
{o0 €T |ho(on,) < o0, k>1}. (5.45)

It is not difficult to see that the set (5.45) is a subset of I, see e.g. Chapter
3.
For any A € B.(R?) and v € T such that |y,| > 2 we have

a(zAi|yA| Soz(lA)lvA|2(WA|—1)S > allz—y))

{z,y}Cya

and, hence, (5.44) gives us immediately bound

a(ly)
4

/em‘\Pu(d’y) <Cy, 0<p< . A€ B.(R%), (5.46)
T

where
In = sup [z —yl|
z,yeN
Moreover, as shown in Chapter 4, in this case u satisfies Ruelle’s prob-
ability type bound, i.e., there exist constants o > 0 such that for any
A€ BC(Rd), [y > gand N € Ny

(7] sl = N 1) < Cpexp {—o/lv—} (5.47)

and, hence, supported by I'. |
The next theorem shows that the existence result can be extended on the
class of more general potentials.

Theorem 5.2.2 Let conditions (V1), (V2), (V4) be satisfied, and addi-
tionally the following conditions are fulfilled:
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1. There exist constant K > 0 (independent of g) and 6 > 0 such that
for any i, j € Z%, i # j and for any x € Q;, y € Q;

K
B ek

2. The function a satisfies:

o There exist Ay(or) >0 and B > 0 (may be g dependent) such that for
any A € J,(R?) andn € Ty, |n| > 2

Y. Ve—y) = > alle—y)=A) Y |nl* = Blnl. (5.48)

{z.y}Cn {z,y}Cn i€A
[ ]
lim a(9)g* I A, (a) = +oo. (5.49)
g*)

Then for any z > 0
G (V,z) # 0.

Proof. The proof is analogous to the proof of the Theorem 5.2.1 which is
based on Lemmas 5.2.2, 5.2.3 and 5.2.4. The fulfillment of the latter Lemmas
is ensured by the conditions (5.48) and (5.49). [

5.3 The case of multibody interaction

5.3.1 Interactions and Hamiltonians

We consider a general type of many-body interaction specified by a family
of k-body potentials V; : R%* — R, k > 2. About the potentials {V},}1>2 we
will assume:
A1l. Finite range. There exists a constant R > 0, such that for any
k>2
Vi(zq,...,x) =0, if diam{zy,...,zx} > R.

A2. Continuity.

Vi € C((RIF), k > 2.

A3. Symmetry. For any k > 2, any (71,...,2) € (RY)*, and any
permutation 7 of numbers {1,... k}

Vk(xl, teey Ik) == V}g(l}r(l), ceey Iw(k)).
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A4. Translation invariance. For any k > 2, any (z1,...,7;) € (R,
and any a € RY

Vk(xh 7xk) = W('rl +a,.., T+ a’)'

We are able now to introduce the Hamiltonian U : T'y — RU{oo}, which
corresponds to the family of potentials V' := {V} }x>2 and which is defined by

Uv(n) = Z Z W(‘rl’ "'7xk)7 n < FO? ’77| Z 2.

k>2  {x1,.2,}Cn

For the fixed family of potentials V' we will write for short U = UV and for
A € B.(RY), n € Ty we will sometimes write Uy (1) instead of U(n).
A5. Strong Superstability. For any k£ > 2 the potential V, can be
represented as
Vi = Vi + V8,

—~—

where V, is a nonnegative function such that for any (z1,...,xx) € (R)*\(R%)k
Vi (1, ..., xp) = 400,

and Vk(St) is stable, i.e. there exists a constant B > 0 such that for any
configuration n € I'y holds

v ) = =Bl
Let A € R, be arbitrary. For each r € Z¢ we define an elementary cube
Alr) ={z e R | \(r" —1/2) <2’ < A\(r" +1/2)}.

These cubes form a partition of R?, which we denote by Ay. We will some-
times write A instead of A(r), if a cube A is considered to be arbitrary
and there is no reason to emphasize that it is centered at the concrete point
r € Z4. As before, by J)(R?) we denote all finite unions of cubes of the form
A(r) (such sets are used in the construction of the Jordan measure).

Let N € Nand k > N + 1 be arbitrary. For any Xy = UYL, A; € 75 (R?)
we define

= sup Y sup VST (@l el e ), (5.50)
(2)}, CAs I<ISN
J
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where k> 1, k; >1,i=1,...,N such that ky +--- 4+ ky + k = k, and

o (A Ax) = inf V() 5.51
v s : in Ty, T ), .
A GO R LU (L 6 (5.51)
where k; € Ny, (2), = {zi,...,2},}, 1 <i < Nsuch that ky+---+ky = k.
V,fSt)’_ denotes the negative part of Vk(St), and the symbol " means that the
sum extends only over different cubes, i.e. A # Al i+ j, 1 <14, j <k
A6. Attraction-Repulsion relation. There exists A = Ay > 0, such

that for any N € N and any Xy = U | Aj € J3,(RY) (we omit dependence
on the cubes in the notations of (5.50) and (5.51)) the following holds

e for an arbitrary A € Ay, and any k > 2

Vk(xlw"axk)z()? {.’L’l,l'k}CA

e for an arbitrary £ > N + 1

ki,k =N ki,ok =N
v TN 2 4115;131 ..... ko UNGLD 2 4(IJ(V+)1 +B), (5.52)
and
(N k1, k]l (N 1,...,1]1
LY =t <o, TN =31y < 0o, (5.53)
>1 >1

ki+---+ky =k
In the sequel we write A instead of Ay,.

Remark 5.3.1 By the definition, V,:t’f describes attractive part of k-body

1111

of k-body interaction of fixed particles in cubes Aq, ..., Ay with ”dilute con-
figuration”, i.e. no more then one particle is located in any cube A from
X5 = R'\ Xy, Xy = UL A, Then, condition (5.53) means that the
energy of k-body interaction decreases sufficiently fast with k. From the as-
sumption A6 and the definition of f,gf\,?l ..... gy therein, it is clear that at least
one cube from Ay, ...,Anx contains more than one particle, and so v,]:l """ kv
should be greater than contributions of all k + [-body attractive energies of

interaction (I € N) for sufficiently small \.
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Lt AL Ay) S G A =0,

where Cy, = Cx(X\) > 0 are some constants. Moreover, if Vk(St)’_ is bounded

—_~—

from below on (RYF\ (R then Cy(\) has the following limit at X\ — 0:
Ck(o) = / _ ‘Vk(StLi(x%a SR 7$;ch73/17 B3 yl_c)’dyl s dyl_cv
(Re)F

where T, ... ,kaN some fized points in RY. For example, if we would have only
pair potential, to satisfy (5.52) the positive part of the potential V' (xy, 1)
should behave like |xy — 259|797, |21 — 29| — 0, for some & > 0.

In the case of all orders of interactions, the k-body potentials, for k > 3,
can be chosen in such a way that constants Cy, k > 3 have behavior like C* / k!,

behave like )\_dC’“+1eC)‘7d/k!. Therefore, to satisfy (5.52), the positive part
of the potentials V" (z1,...,xx) should behave like

Ck+1 —d—e
™ kl—eclx"’x” o wma =00 1<i <k

v — x;

for some € > 0.

For a given 4 € T' define the interaction energy between n € T'y, A €
B.(R%) and Hpe =N A°, A°=RI\ A as

WA(U‘:Y):Z Z Z Vi1, o Ty Y1y Y

k>2 m+n=k {zxq,..., xm}Cn
mnzl fy,.yn}Chac

Define
Un(n7) = Ua(n) + Wa(nly).
A7. The order of interaction. For any A € B.(R?),n €'y andy € [

the interaction energy Wy (n | %) does not become —oo and the partition
function

Z0(7) = / exp {—~Un(n] 7)}Ao(dn) < oo,
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Remark 5.3.3 Assumption AT is important only for the next section, where
the precise definition of the Gibbs state on the configuration space I' will be
given. In fact, for the results of the present chapter we do not need fulfillment
of AT for all v € T, but only for empty boundary configurations. In turn,
this fact is automatically ensured by assumption A5.

5.3.2 Gibbs specifications and correlation functions.

Let A € B.(R%) and let & € T'. The finite volume Gibbs state with boundary
configuration 74 for U, z > 0 and # > 0 is

e (=AUl )},
ZA(7)

pa(dn| 7) 2o (dn).

Under assumption A7, the finite volume Gibbs state is well defined. When
7 =0, let pa(dn|0) = pa(dn).

The corresponding finite-volume correlation functions for boundary con-
figuration 4 € I' have the following form

1 / -
A ) — —BUMUNIT) N\ (4 I 5.54
PNy = e say), mela. )
0= 75 ) () (5.54)

Let {ma} denote the specification associated with z, 5 and the Hamilto-
nian U (see [69]), which is defined on T" by

ma(dl ) = [ el 7).

where A’ ={nel'r: nU (Jac) € A}, A e B(I).
A probability measure p on I' is called a Gibbs state for U, § and z if

p(ma(Al 7)) = n(A)

for every A € B(I') and every A € B.(R%).

This relation is the well known (DLR)-equation (Dobrushin-Lanford-
Ruelle equation), see [27] for more details. The class of all Gibbs states
which correspond to the specifications {7 }rep,(rey We denote by G(V, z, 3).
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5.3.3 Main results.

Theorem 5.3.1 Suppose that the interaction family V' satisfies the assump-
tions A1-A6. Then, for any A € J),(R?) and any (3,2 > 0 there exists a
constant & = £(8, z) (independent of A) such that the finite volume correla-
tion function p™(n) = p*(n | 0) satisfies the following inequality

p() < EMemzVT ™ ey (5.55)

Remark 5.3.4 The estimate (5.55) without exponent factor at the right-
hand side is the well-known Ruelle bound [76]. We call (5.55) a generalized
Ruelle bound. For 2-body interaction it was obtained in [2], [75].

As a consequence of Theorem 5.3.1 the following theorem is fulfilled.

Theorem 5.3.2 Let the interaction family V' satisfy A1-A6. Then for any
z22>0and >0

G(V,z,0) #0.

Proof. Existence of the corresponding Gibbs state follows from the arguments
which are based on the results of the Chapter 3. Let v € L'(R?) N C(R?) be
any positive function such that ¢(z) < 1, x € R?, and let a(t), t € R, be
any continuous decreasing function with the following properties:

(1) ap:=limy_o4 at) = +oc;

(2) ay :=limy_ o alt) > 1;

As shown in Chapter 3, for any 0 < D < oo the set
{yeT||E*"(y)] <D}

is relatively compact in I', which is Polish space. Let us remind that

v =Jqyel | Y v@a(lz—yhw(y) < oo

{z,y}Cy

and

E*Y(y) = Y d@alle —y)ly), y €T,

{m,y}Cv
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In this section we consider « as any continuous decreasing function such that
a(|x — y|) S Q%V;(J;vy)‘

Obviously, chosen in such a way, this function satisfies the conditions above.
Using the properties of the so-called K-transform (see [38]) and the Theorem
5.3.1, for any A € Jy,(R?) we have

B (y)dpa (v v()allz -y )y ({x,y})dedy < C,
J = [ f o

where C' € R, is some constant.
Therefore, by Prokhorov theorem the family of measures

{na|A € jAo(Rd)}

is relatively compact, which implies the existence of at least one limit measure
puwhen A /' R? We will prove that corresponding limit measure is Gibbsian.
Let pp,, n > 1, where A, /" R% n — oo be the sequence which converges
(in the sense of the Prokhorov theorem) to the measure p, and let p, p
be the corresponding correlation functions. It is well-known (see [27]) that
probability measure p on I' is Gibbs, iff u fulfills the Georgii-Nguyen-Zessin
equation (GNZ), i.e. for all positive, B(R?) x B(I') measurable functions H
the following holds

/ZHm (d) = // H(z, 7 U {a})e ™ 0 (dn)u(dy).  (5.50)

ey

Moreover, using Mecke formula (see [27]), one can show that (5.56) holds for
any measure fy,, n > 1.

Let A € B.(R?). The o-algebra B(T') is generated by sets of the form
AN A with A € By(I), A € Bga\s(I') and every measure on I' is uniquely
determined by its values on these sets.

Let us prove (5.56) for the function H(x,v) = Lx(z)La(y)Lz(y). Let
n € N be arbitrary. Using the properties of the K-transform (see [38]) we
have

[ E @i @) < [ 3 i) -

An ey Pan zey
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:/ApA"(J;)U(dx) < 2|A]. (5.57)

The right hand side of (5.56) for the measure puy, is bounded by

[ ua) [ ey (o) =
R4 Ca,

= [ M@t ot < ¢l (5.58)

where we have used the definition of the correlation function and Fubini
theorem. Hence, there exists some subsequence {pu Ank}kzl which ensures the
fulfillment of (5.56) for the limit measure p. The proof for the general positive
function H follows from the fact that any positive measurable function can
be approximated by the simple functions.

5.3.4 The proof of Theorem 5.3.1

The proof is based on the expansion of the Lebesgue-Poisson integral for the
correlation functions (5.54) into the series over some kind of dense configu-
rations (see [73] and definition (3.4) therein).

5.3.5 Cluster expansion in densities of configurations.

The main idea of the construction consists in the use of the fact that if
two or more particles are in one elementary cube A € A then Gibbs factor
exp[—(Va(z;, x;)] ~ exp[—pFb], where

b= inf inf V.5 (1,2 5.59

A€A  wimaEA ( b 2) ( )
and b — oo, when A — 0. The configurations with this property will be called
dense configurations, as opposed to dilute configurations, in which no more
than one particle is situated in any cube. The main technical idea consists
in separation of the dilute parts of configurations from the dense parts. In

order to do this we define an indicator function for the configuration 7,,
A € Jy,(R?) in the cube A:

1, for =n,
Xa(1a) = X5 (7a) :{ al

0, otherwise.
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Then the indicator for dilute configurations is defined as

X2(1a) = xo (7a) + X7 ()
and for dense configurations as
= ZXS(VA)
n>2
To obtain decomposition we use the following partition of the unity:

L= 1] 20a) +x20a)] = > T X (a): (5.60)

ACA w ACA

where w is the map from AN A = {A G,A : A C A} into the set {+, —},
such that w(A) = + or — for any A € AN A. Inserting (5.60) into (5.54)
for ¥ = 0, we get

Z / TT X3 (a)e @0 (dy),  (5.61)

Ta Aca

where Zy = Z,(0). Now we define the set

x= U a

ACA:w(A)=+

Then the sum over w can be rewritten as the sum over all possible sets X in
A. Namely,

) = / 15 (1) UM (dy),
IN

(Z)CXCA

where

11 x20a)

ACX

For any X € Jy,(R?), X C A define graph Gr(X) with vertices in the
centers of all elementary cubes A C X and lines I[(A, A') iff dist(A, A") < R.
The number of lines depends on graph Gg(X).

Definition 5.3.1 The set X is called R-connected if the corresponding graph
GRr(X) is connected in ordinary way.
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R-connected set X is denoted by X®. Then, every set X can be represented
as some fixed partition

(X ={X{, . XF | dist(X[, X)) > R, for i# j},

and so the sum over all possible X in A can be rewritten as the sum over
all possible sets {X }? (for n = 0, X = ()). Furthermore, we replace the sum
over all such sets by the sum over X%, ..., X® independently, and remove
the conditions dist(X%, X JR) > R by introducing the hard-core potential

0, there exist XJ{, X i #j, dist(X[, XJ') <R,
1, otherwise.

0 = {

Then we get

Z Z Z Xcor n

n>0 XRCA XECA

x / T (7)e PN, (dy). (5.62)

In the sequel, having in mind only R-connected components of X, we drop in-
dex R in the notation XJ, and summation XA - 2ox, cA» for simplicity,
will be denoted by Z( x),- Now, the last step in arranging our decomposition
is as follows. Define the set

X, = U A.

ACA :dist(A,n)<R

This set is fixed for fixed variable of the correlation function p®(n). Now, for
every n > 0 we split the sum over (X),, into two sums. The first one is over
those X, which do not intersect the region X, and the second one over those
which intersect X,. To distinguish the sets X; which do not intersect and
do intersect Xy, the latter sets are denoted by Y;. There are n!/kl(n — k)!
possibilities when any k sets X, do not intersect X, and (n — k) sets Y
intersect Xy. So the final expansion is the following:

ZZkln_ |Z Z X" (X, (¥ )ni) %

A >0 k=0 (X)k (V)
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< [ Al TE IR (e, (5.63)
Ta
where
_ _ k n—k
X =X, UY, ;= [UX] UIUv
i=1 j=1

5.3.6 The main estimates.

As the first step, let us split the exponent in (5.63) into four parts: the part
which corresponds to the positive part of the energy of the configuration
1 , the interactions of the particles inside the region X, U }7”_;9, inside A\
(XoU ?n,k) and interactions between them. Note that interaction between
Xo U Y, and X is zero due to the finite range of potential. Therefore,
considering y € 'y : yNn =0 we get

e BUMUY) — e_ﬁU+(n)E1E2E0,

where
n—k
By (Xo U }N/n_k) — o BU () H eBW(n|Wl)—%ﬂUﬂW,)—ﬁU“(wl)7
=1
n—=k
EQ(X[) U ?nfk ’ (Xo U X)C) _ e*ﬁW(’i‘“/xo\?n_k) H e—ﬁ[%UﬂWYl)-i-W(VYZ |’YXC)]’
=1

and - U
Eo(Y,_y) = e PO,
Lemma 5.3.1
E, < eﬁBM H H BBlval— ﬁU+ WA) (564)
I=1 ACY;

Proof. Using A5 we have

n—k
U U, )= =B(Inl+ 3> )

=1 ACY;

and

WHm g, )20, Ut(wm) > > Ut(3a).
ACY;
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Lemma 5.3.2 For anyy €' and ¥ € T'xe, X € J),(RY), X C A

1 _

VT x) + Wx [9) 2 =T, (5.65)

where I = fz(l) (see (5.53)), and

]_:‘XC = {’}/ c FXC

lyN Al <1, for all A C X}

Proof. See Appendix. [ |

Let us define
on = U A.
A :nNAZD

Now using the property of infinite divisibility of measure A\, and estimate
(5.65) we can calculate the part of integral in (5.63)

e~ 3PUT () / gin*k (V) ErE2Aq (dy) <

Yn—k

< e—iﬂU+(n)+Blnll/ %i”*k(,y)e_ﬁw(n"Y(Xoman)\{/nfk)El>(
}N/n—k
n—k
% H e—ﬁ[%U+(7Y1)+W(’YYl ‘”YXC)]/\U(d’y). (5.66)
=1

Assumption A6, estimate (5.64) and trivial inequality

Ut > Y Ut ()

ACOn
gives us the bound for the integral (5.66)
~ ~ n—k
eBINI+B)+BY acan Inal H H Ix,
=1 ACY

where
]A:/ Xﬁ(’)/A)G_ﬁ%U+(’YA)+B(B+[)|’YA|)\U(d’}/). (5.67)
T'a
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Focusing only on the 2-body positive part of interaction and taking into
account the definition (5.59) we can estimate the last integral by
1

In<e = §z2)\gde’ﬁ(%b’2f’23) exp{z)\ge’ﬁ(%b’f’B)}, (5.68)

which is finite due to AG6. B
NOW taking the maximum of Ey in variable Y, (we denote this maximum
by Y,,_x) and using elementary estimate

XE (X)k, (V)n-k) < XE (X)k (5.69)

we can estimate the sum over (Y),,_x by the following lemma:

Lemma 5.3.3 (e.g. [62] )

> e e () 1o = ik (5.70

where ¢(d) is a constant which depends only on d and £ = 4c(d) (%)dgl.

For the proof in our case see [73].
The last step is as follows. The expansion like (5.62) can be constructed
for partition function Z,, with A; C A. Denote it by

e
Zn = Hzg}. (5.71)

k>0

Taking into account all previous estimates we get

1 !nIK
A +
) < Z—A 18U (na)+B(21+B)n| Z Z o A\Yn =

n>0 k=0
[ |an
_ = 2BUJr(nA)ﬁLﬁ(QIJrB 7] Z Z
A\Y
Z k>0 : >0 l
e~ 3BUT () +B(2I+B)|1| |77|K) ZA\Yl 5.72

The fact that Zy, < Zj, for A; C A gives the inequality
pA(n) < e 3BUT () l(BRI+B)+K)
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Appendix A

Proof of the lemma 5.3.2

Let X = U, A;. Consider the configuration v with |yx| = m,|ya,| =
mi, ..., |[yay| = my, m; > 1for j =1,...,N and my +--- +my = m. Let
in the k-body interaction be involved k > 1 particles from the dilute config-
uration Yy. € I'ye and, correspondingly, ¢; particles of vy from A;, which
are situated in the points avgl), ...,xqi € Ay, ..., qy particles ng), e ,xéjl\vf)
from Ay. It is clear that ¢; + -+ gv +k =k and 0 < ¢; < m;, k > 1.
Then the interaction energy between m particles of the configuration vy and
k particles of dilute configuration Jx. can be written in the following form:

Welyx [ Fxe) = > > > X

osasmikzl ol eg)Yeva, ol gy )era
G+ tqnth=k a1 1 1 aN N

1 N
X Z Vk(xg),...,xg),...,mg ),...,xég),yl,...,y,;).
{y1,- Yt EVxe

Then taking into account (5.50) we obtain

N —
~Wilix [x) < Y. [Iem i AL Ay), (AL

quigmi,lzzgl =1
qi++aqn+k=k

where C* = m!/k!(m — k)!. Let in the sequence ¢, ...,qy be nonzero cor-
respondingly ¢, = k;, particles from A;,, i = 1,..., M involved in k-body
interaction. Changing in (A.1) to the summation over k;,, ..., k;,,:

~Wi(vx | ¥xe) < (A.2)

101
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min{N, k—1} M B
S SEEED SR SR | (W (I,
M=1 1<hi<lo<--<lp <N 1gkli§mli,1}21 =1
ki ok =k
Let among the cubes Ay, ..., Ay be N; cubes with only one point of v inside.
Without loss of generality, we suppose that m; =1, j=N—-N; +1,...,N.
We suppose also that 1 < N7 < N. Split the summation over 1 < [} < [y <
<o < Iy < N into the summation over 1 <[y <ly < --- <lg < N — Nj over
cubes Ay, ..., Ay_p, and the summation over 1 <} <l <--- <ly <Ny
over cubes A',..., Al . It is clear that S+ S" = M and S can take integer
values from 0 to M. Therefore, we get additionally M +1 sums over S. Every
value of 1 < I} < --- < lly, < Nj corresponds to the dilute configuration.
Hence, using the definition (5.50) we can apply the following formula:

Ky, ,...,k,s,1,...,1|1}
E: I, (Apy, Apg, Ay Ay ) <

1<l <l <<l <N

kll 7"'7le ‘E+Sl

<I, (A, .. A,
yielding
—Wi(rx [ xe) <
min{N—Ny,k—1} min{ Ny, k—M—1} M
< ) > > > Iomix
M=1 1<h <lo<-<lpr<N—N; =0 1gkli§mli,fcz1 i=1

kuy otk Hht=k

i min{Ny, k—1}
ki yeeskry K+ 1lk—1
<L A N Y Ay,
=1
where N, = min{N, k — 1}. Collecting the terms with M =1, k;, = 1 in
the first sum and the last sum, and selecting also the terms with &k, = k;, =
-+ =ky,, = 1, summing up all inequalities in £ > 2 and taking into account
that N, <k —1, we get

—W(vx | Axe) < Ilyx| + Wi+ Wa,

where

N—-N;

M
W= ) > [1ch, S0 anr" A, Ay,

M=2 1<li<lo<--<lpy<N—N;j 1=1 k>M+1
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N—-N1

Wa= D, 2 > 2 HCm%X

M=1 1<li<lo<-<lpy<N—Nj k>M+1 1<kl <ml
kiy+- +klM k

kl17 7klju|l
X E lk-l—l Alla--~;AlM)~
>1

Using the same arguments, one can get almost the same inequality for the

positive part of energy:
U+(7X) Z U07

where

N—N;p

M
k.
Uo= 2. > > 2 JIGmix
M=1 1<hi<lo<-<lpy<N—Ni k>M+1 lgkligmli i=1
Ky etk =k

kg ek,
Xvk (All,...,AlM).

Now it is clear from the assumptions A6 that
1 1
ZUO > Wi, and ZUO > W,

which gives (5.65). It is not difficult to see (using direct computation) that
condition 1 < N; < N is not essential in the proof of Lemma 5.3.2. |
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