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The three individual scientific papers are related in an exceedingly nat-

ural way, since they share a uniform phenomenological umbrella. This is

constituted by the question of the inter–generational formation and evolu-

tion of continuous cultural traits. These refer to those types of traits that

(a) are subject to formation in the socialization process, and (b) can reflect

different intensities, located in a convex subset of the real line.

In particular, the first scientific paper introduces a generalized represen-

tation of the formation of continuous cultural traits. Thereby, the intensity

of the continuous cultural trait that a child adopts is being formed as the

collective outcome of all role models for trait intensities that it socially learns

from. These role models are constituted by the observable socioeconomic

action patterns of adults. It is shown how the adopted trait intensities in-

duce preference relations over socioeconomic action patterns. Finally, this

cultural formation of preferences process is endogenized as resulting out of

optimal parental socialization decisions. Thus, an endogenous determina-

tion of the intergenerational evolution of trait intensities and the induced

preferences over socioeconomic action patterns is obtained.

Based on this framework, the second scientific paper analyzes the evo-

lution of trait intensities and behavior in a two cultural groups setting.

It is shown that the dynamic properties depend crucially on what parents

perceive as the optimal trait intensities for their children to adopt. Un-

der inter–temporarily fixed (and distinct) optimal trait intensities, the trait
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intensities of the cultural groups will always stay distinct. If the optimal

trait intensities coincide with those derived from the representative group

behavior, then a multitude of convergence path types can realize. These

contain an inter–generational assimilation process toward the same trait in-

tensity point; an initial but incomplete assimilation, with steady state trait

intensities that are less distinct than initially; as well as inter–generational

dissimilation with steady state trait intensities that are more distinct than

initially. Which of those patterns will realize depends (among others) on

the initial distance of the trait intensities. Notably, these theoretical in-

sights can add to the understanding of empirically observable processes of
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adopted intensity of the continuous trait as the ‘socialization target’, and

when they are free to choose their behavior subject to an inter–generationally

fixed social network. This model constitutes a significant generalization of

the DeGroot [18] model, first since it is subject to any arbitrary continuous

trait intensity type (including that of continuous opinions), and second in

terms of the induced evolution of the continuous trait intensities.A particular

condition on the social network structure is derived that ensures convergence

such that all adopted trait intensities of the dynasties of a connected subset

are identical (‘consensus’).

Scientific Work Share The first two scientific papers constitute my ex-

clusive own work. As has been mentioned above, the third scientific paper

is part of a larger scientific project with Berno Büchel and Tim Hellmann.

To be precise, it constitutes the first of two main parts of the larger research

project with equal overall contributions of all authors. However, for the first

main part, as manifested in this dissertation thesis, my scientific work share
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Part 1

The Economics of Cultural

Formation of Preferences



CHAPTER 1

Introduction

The concept of preferences is one of the most important cornerstones of

economic theory, since preferences provide economic agents with the nec-

essary means to choose between different possible socio–economic actions.

The question of how preferences are being formed is thus of central inter-

est to economic theory. The aim of the present paper is to contribute to

the resolution of this question in a two–step approach. In a first step, it

provides a general framework that represents the formation of continuous

cultural traits in the socialization period of individuals. In a second step, it

shows how these can be interpreted such as to induce preference relations

over the choice of socio–economic action patterns in the adult life period of

the indivuals.

With continuous cultural traits, we mean those types of traits that (a)

are subject to formation in the socialization process, and (b) can reflect

different intensities (or magnitudes, valuations, strengths, importances. . . ),

located in a convex subset of the real line. Notably, this characterization is

not particularly restrictive since most types of traits can be (re–)interpreted

in a continuous way (e.g. instead of asking whether a person has a ‘status

preference’, one can ask how important status is for the person). Specifi-

cally, it contains concepts that are in standard use in economic theory, like

the degree of altruism, the intensity of preferences for leisure or for social

status, the patience of a person, etc.; but notably, it also contains (sociologi-

cal) concepts like the values, attitudes, (strength of) norms and ‘continuous

opinions’ that a person adopts.

Contributions and Results A natural question that arises in the con-

text of this characterization of continuous cultural traits is then which of

the possible intensities a person adopts, and how a process that determines

this can be described in formal terms. Our approach will be to let the trait

intensities be formed in the socialization period of a person, out of social

2



1. INTRODUCTION 3

learning from role models for trait intensities.1 These role–models corre-

spond to the observable socio–economic action patterns of the adults of the

society.

Upon observation of the socio–economic action pattern of an adult, chil-

dren also receive a cognitive impulse. The latter can be understood as the

signal on the valuation (or importance, magnitude, etc.) of the continuous

cultural trait that is embodied in the choice of the particular socio–economic

action pattern over the other available choices. We even endow these sorts

of cognitive impulses with a cardinal meaning and call them displayed trait

intensities.

In the next step we then introduce the representation of the socializa-

tion process that leads to the children’s adoption of a specific trait intensity.

This is embedded in a framework of socialization inside the family and by

the general adult social environment, or ‘direct vertical and oblique social-

ization’.2 Specifically, we let the children’s adopted trait intensities result

as a weighted average between the displayed trait intensity that is chosen

by its family, and the representative displayed trait intensity that the child

observes in its general adult social environment.

Given the trait intensity that a person has adopted at the beginning

of its adult period, we show how this can be interpreted such as to induce

preference relations over the choices over the role models for trait intensities,

i.e. the socio–economic action patterns. The central importance of this

step is that it closes the circle between the socio–economic action patterns

taken by one adult generation and the preferences over these patterns by

the succeeding adult generation. We thus obtain a fully consistent and

closed representation of the evolution of the trait intensities and the induced

preferences of a sequence of generations.

It follows that any model framework that determines the adult choices

of socio–economic action patterns (i.e. also the choices of displayed trait

intensities), together with the families’ socialization weights, equally endo-

genizes the process of formation of trait intensities. In the present paper,

we will introduce one possible approach to achieve this, based on purposeful

socialization decisions of the family. Notably, we restrict the latter to consist

of a single parent only (through the assumption of asexual reproduction).

1Our viewpoint will be primarily that of an economist, with references to findings in
the socio–psychological literature on child socialization whenever needed. A thorough
placement of the present paper within this literature is though far beyond scope. See e.g.
Grusec and Hastings [31] and Grusec and Kuczynski [32] for related book long treatments.
2This terminology stems from Cavalli-Sforza and Feldman [16] and is distinguished from
‘horizontal socialization’, i.e. socialization by members of the same generation.
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That parents are willing to engage into costs associated with active so-

cialization stems from the fact that they obtain an inter–generational utility

component. Thereby, we let this utility be negatively related to the distance

between the adopted trait intensity of their adult children and a parentally

perceived optimal trait intensity.

The parental decision problem is it then to choose their weight in the

child’s socialization process and their displayed trait intensity. These choices

are subject to the perceived optimal trait intensity of the parents and the

representative displayed trait intensity of the general social environment.

Since the latter results from the individual parents’ choices, this introduces

strategic interaction.

The corresponding parental best reply choices have the following central

characteristics. First, consider the case where the representative displayed

trait intensity of the general social environment deviates from the parentally

perceived optimal trait intensity. Then, generically, parents countervail this

suboptimal socialization influence on their children by choosing strictly posi-

tive socialization instruments. This means on the one hand that they choose

a displayed trait intensity that deviates from their (utility maximal) adopted

trait intensity. Specifically, this deviation is into the opposite direction as

the deviation of the representative displayed trait intensity from the optimal

trait intensity. On the other hand, this behavioral countervailing is coupled

with a strictly positive choice of their socialization weight.

Furthermore, we could show that under certain conditions, parents use

their investments into their socialization instruments and the representa-

tive displayed trait intensity of the general social environment as cultural

substitutes. This means that if the representative displayed trait intensity

becomes more favorable (i.e. its distance to the optimal trait intensity be-

comes smaller), then parents would reduce investments into both socializa-

tion instruments.

In the final step of the model, we then show that a Nash equilibrium

(of the ‘socialization game’) in pure strategies exists under weak conditions.

These equilibrium choices govern the inter–generational evolution of the trait

intensities (and with it the preferences over socio–economic action patterns)

of the society. However, to derive substantial qualitative properties of these

dynamics, the model has to be specified.

We introduce one such specification, based on the assumptions that all

parents have ‘imperfect empathy’ (this concept is due to Bisin and Verdier

[7] and is shortly discussed in chapter 1). The central feature is that under

a certain condition, the trait intensities of the sequence of adult generations

converge to a homogeneous steady state (where the trait intensities of all



1. INTRODUCTION 5

adults are identical). This ‘melting pot’ property is global since it holds for

any initial distribution of the trait intensities.

Related Literature By basing the formation of trait intensities and pref-

erences process on the children’s social learning, the approach of the present

paper stands in a natural relation to the literature on the economics of

cultural transmission.3 This literature has been established by Bisin and

Verdier [7, 8, 9] and Bisin et al. [6], and is based on the work of Cavalli-

Sforza and Feldman [15, 16] and Boyd and Richerson [12] in evolutionary

anthropology. It studies the population dynamics of the distribution of a

discrete set of cultural traits under an endogenous intergenerational cultural

transmission mechanism.

The endogeneity stems from the purposeful parental choice of socializa-

tion intensity, which effectively determines the probability that the child

will directly adopt the trait(s) of the parents. Parents engage into the cost

of purposeful socialization in order to avoid (decrease the probability) that

their child will not adopt their trait(s) — in which case parents encounter

subjective utility losses.

The properties of the model framework have been applied in several dif-

ferent contexts, such as e.g. preferences for social status (Bisin and Verdier

[7]), voting and political ideology (Bisin and Verdier [8]), corruption (Hauk

and Sáez-Mart́ı [34]), hold up problems (Olcina and Penarrubia [45]), gender

discrimination (Escriche et al. [21]), etc. For an exhaustive overview of the

literature on cultural transmission see Bisin and Verdier [10].

Related to this strand of literature are the contributions of Cox and

Stark [17] and Stark [60]. They argue that parents might choose altruistic

behavior in front of their children even though they are themselves not

altruistic. This comes in an attempt to instrument the ‘demonstration (or

preference shaping) effect’, which means an increase of the probability that

the child becomes altruistic. In this case, the parents benefit from their

child’s future care taking.

3As Bisin and Verdier [7, p. 299] point out, this approach is thus distinct from those
based on evolutionary selection mechanisms (where preferences/traits are either geneti-
cally inherited or imitated, with the reproductive/‘imitative’ success being increasing in
the material payoff of the different preferences/traits), like in Rogers [54], Bester and
Güth [4], Fershtman and Weiss [22], Kockesen et al. [37], [27], and from those based on
the agents’ introspective self selection of preferences, as in e.g. Becker [2] and Becker and
Mulligan [3].
Alternative approaches that deal with preference endogeneity in ‘non–purposeful–
socialization’ frameworks are based on e.g. ‘bandwagon’ or ‘snob’ effects (Leibenstein
[39]), ‘keeping up with the Joneses’ (Duesenberry [20]), ‘emulation effects’ (Veblen [61])
or ‘interdependent preferences’ (Pollak [51]).
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However, the theories mentioned consider the probabilistic transmission

of traits and do not approach the issue of formation of the latter. This

restricts their applicability mainly to discrete (sets of) cultural traits. So far,

little has been contributed to resolve the question of the cultural formation

of continuous cultural traits. Important early treatments of the topic are

Cavalli-Sforza and Feldman [16] in a theoretical, and Otto et al. [46] in an

empirical context.

More recently Bisin and Topa [5] proposed a representation of the forma-

tion of the intensities of continuous cultural traits, while Panebianco [47] did

so for the case of inter–ethnic attitudes. In the terminology of the present

paper, both represented the adopted intensity of the cultural trait (attitude)

as a weighted average between the displayed trait intensity of the family and

the (weighted) average of the intensities of the cultural traits (attitudes) that

the society has adopted.

In this respect, the major limitation of both contributions is, however,

that they do consider only a degenerate behavioral choice. In particular,

Bisin and Topa [5] assume that parents always choose socio–economic ac-

tion patterns the displayed trait intensity of which exactly accords with their

‘target intensity’ (i.e. the optimal trait intensity in the terminology of the

present paper); and Panebianco [47] assumes that the parents set a displayed

trait intensity that exactly accords with their inter–ethnic attitudes. Given

this degenerate view on the family’s behavioral choices, its socialization de-

cision is then restricted to choosing its weight in the formation of the trait

intensity of their child.

Outline The further outline of this paper is as follows. Chapter 2 in-

troduces the general representation of the cultural formation of preferences

process, while as chapter 3 delivers a framework for its endogeneization. The

proofs of the propositions in the latter chapter can be found in Appendix

A 1. Chapter 4 discusses additional aspects that show routes how to apply

the model, and chapter 5 concludes.



CHAPTER 2

Cultural Formation of Preferences

. . . or: We are all the sum total of our experiences.

In this chapter, we will show how children adopt intensities of any type of

continuous cultural trait through social learning from role models for trait

intensities, and how the adopted trait intensities induce preference relations

over choices of the role models in the adult life period. This kind of closed

circle is the motivation to label the representation of the socialization process

that this paper proposes as cultural formation of preferences.

Consider an overlapping generations society populated by a continuum

of adults,1 a ∈ A = [0, 1] endowed with Lebesgue measure λ, and their

children. For simplicity, we will assume that reproduction is asexual and

every adult has one offspring, so that we can denote with ã ∈ Ã the children

of the parents a ∈ A.

Let us assume that all adults have available the same non–empty set of

socio–economic action patterns, X. This set is endowed with a complete and

transitive binary relation T . Thereby, for all x, x′ ∈ X, xT x′ means that

the socio–economic action pattern x is (weakly) ‘more characteristic’ for the

continuous trait type under scrutiny than socio–economic action pattern x′.2

This general formulation is owed to the fact that we consider any type of

continuous cultural trait. Which socio–economic action patterns would be

considered as ‘more/less characteristic’ in a particular case depends on the

(formulation of) the continuous cultural trait under scrutiny.3 In case of

e.g. ‘importance of religion’, ‘more or less characteristic’ would correspond

to more or less religious behavior patterns (since they reflect a higher or

lower importance of religion). Given transitivity and completeness, we can

1The logic of the cultural formation of preferences process that is presented in the present
paper would be preserved in the case where the set of adults is finite.
2Given the abstract set of socio–economic action patterns X, we could equally endow it
with a full set Ti, i = 1, . . . , n of binary relations, each of which would correspond to one
of n different continuous cultural traits. The rest of the exposition in this paper would
then generalize analogously.
3Considering ‘classes’ of continuous cultural traits, in case of attitudes or opinions, ‘more
characteristic’ would sensibly be replaced by ‘more positive’; in case of values, ‘more
characteristic’ would sensibly be replaced by ‘higher’; etc.

7



2. CULTURAL FORMATION OF PREFERENCES 8

represent the ordinal relation T by a cardinal function

φd : X 7→ R .4

Thus, to any socio–economic action pattern x ∈ X, φd assigns a number

with cardinal meaning, φd(x). We will call this the displayed trait intensity

(DTI) embodied in the choice of socio–economic action pattern x.5 Thus,

φd(X) is the set of possible DTIs.

Now, the role models of the children’s social learning of trait intensities

are the observable socio–economic action patterns x ∈ X taken by the adults

a ∈ A; and we assume that the cognitive impulse that any of the children

obtains through such an observation is the corresponding DTI, φd(x). The

exposition so far makes clear that in the present work we treat the func-

tion φd as an ‘objective entity’ in the sense that the cognitive processing of

observed socio–economic action patterns of all children is in terms of this

function (and also all adults assign to any socio–economic action pattern

the same DTI).6

To simplify the subsequent exposition, we will denote the DTI of the

socio–economic action pattern of adult a ∈ A, xa ∈ X, as φd
a := φd(xa).

Example 1.1 (Patience). For illustration, let us consider the formation

of ‘patience’ in a very stylized way. Assume that the socio–economic action

pattern for the social learning of patience is the share of adult period income

that is saved for pension period consumption. Denoting as ya ∈ R++ the

adult period income, and as sa ∈ [0, ya] the savings of adult a ∈ A (there is

no lending), we thus have that xa :≡ sa
ya

∈ [0, 1] ≡: X. Naturally, we want

φd to be strictly increasing in the present case, so that we can simply choose

φd(x) = x and then φd(X) = [0, 1].

We will now introduce the representation of the socialization process

that this paper proposes. This will be established on grounds of the tabula

rasa assumption, which means in the present context that children are born

with unformed trait intensity (TI), and equally, with unformed preferences

(a corresponding assumption is also taken in the literature on the economics

of cultural transmission, see e.g. Bisin and Verdier [9]). This assumption

4Thus, the relation T and φd ∼ b+ dφd together define an equivalence class with respect
to ∼ on the set of real valued (cardinal) functions.
5This can be understood in the way that any adult who observes another adult a ∈ A
taking socio–economic action pattern x ∈ X could reflect upon this observation by the
statement that ‘adult a behaves as if she would have a trait intensity of φd(x)’.
6Indeed, there is room here for a generalization. In particular, the way how the children’s
cognitive processing of observed socio–economic patterns takes place could also be treated
as being subject to an individual social learning process (thus, children would adopt
individual functions φd

ã, which they would eventually internalize and keep in their adult
life–period).
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implies that we restrict the analysis of the determination, respectively for-

mation, of traits to cultural factors (‘nurture’), while as the issue of the

contribution of genetic inheritance (‘nature’) is left aside.7

On this basis, we then let the formation of the TI that a child adopts re-

sult out of social learning from the socio–economic action patterns of adults

(only) that it is confronted with. Specifically, this is being embedded in a

framework of socialization inside the family and by the general adult social

environment, or ‘direct vertical and oblique socialization’. In this context,

we will let the TI that a child ã ∈ Ã adopts be formed according to a weighted

average between the representative DTIs of both socialization sources (i.e.

as a weighted average of all cognitive impulses obtained in the socialization

process). In the case of the child’s family, this coincides with the DTI of

its single parent a ∈ A, φd
a ∈ φd(X). The representative DTI of the child’s

general social environment, Aa := A\{a}, will be denoted φd
Aa

. These result

out of the children’s social learning from the observed DTIs of (eventually)

different subsets of adults that they are confronted with.

More precisely, we assume that there is a measurable partition of the

adult set, {AJ}
K
J=1,

8 and that the children obtain as cognitive impulses the

average DTIs of these subsets, φd
AJ

:= 1
λ(AJ )

∫

AJ
φd
a′ dλ (a′) ∈ con φd(X),

∀J = 1, . . . ,K.9 Specifically, for every child ã ∈ Ã there are oblique social-

ization weights, σãJ , J = 1, . . . ,K, that represent the relative cognitive im-

pacts of the child’s social learning from the various subsets of adults. These

weights satisfy σãJ ∈ [0, 1] and
∑K

J=1 σãJ = 1, ∀ã ∈ Ã, ∀J = 1, . . . ,K. They

can, among others, result from the population shares of the subsets, or else

from a local structure that determines the social(ization) interaction times

with the members of the subsets, or from differing pre–dispositions for social

learning from different groups (the members of which e.g. share the same

7An introduction to the cross–disciplinary ‘nature–nurture’ debate can be found in Rogers
[54]; Sacerdote [55, 56, 57] provides for empirical investigations of the relative importances
of both influences.
8In this paper, this partition is assumed to be exogenously given. It can, however, be moti-
vated to result from a local structure (i.e. where the adults reside), or from a classification
of the adults in different social and economic categories.
9We refrain here from a further generalization through distinguishing the children’s social
learning from all individual adults a′ ∈ Aa. In this case, the Nash equilibrium existence
result in Proposition 1.3 could not be maintained.
To see that the average choice of a continuum of players endowed with Lebesgue measure
and with identical choice set (a subset of Rn) is indeed located in the convex hull of the
choice set, confer e.g. Rath [53, p. 430].
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social and economic characteristics).10 We obtain, ∀ã ∈ Ã,

φd
Aa

:=

K
∑

J=1

σãJφ
d
AJ

∈ con φd(X).

The weight that the DTI of the parent of a child ã ∈ Ã has in the

socialization process of the child will be called the parental socialization

success share, σ̂a ∈ [0, 1]. This corresponds to the cognitive impact of the

parental DTI relative to the cognitive impact of the representative DTI of

the child’s general social environment. Factors that would determine this

relative cognitive impact would include the social(ization) interaction time

of the parent with its child, as well as the effort and devotion that the parent

spends to socialize its child to the chosen DTI.11 We thus assume that the

parental socialization success share can be chosen by the parents (and in

chapter 3, we will endogenize this choice).12

We now obtain the formation of the TI that a child ã ∈ Ã adopts through

the ‘direct vertical and oblique socialization’ process, φã, as

φã = σ̂aφ
d
a + (1− σ̂a)φ

d
Aa

. (1.1)

We will call this the parental socialization technique. It is a generalization of

the representation of the formation of continuous cultural traits, respectively

inter–ethnic attitudes, in Bisin and Topa [5] and Panebianco [47]. Equation

(1.1) embodies the view that the parents set a TI benchmark, φd
a ∈ φd(X),

and can invest into their parental socialization success share, σ̂a ∈ [0, 1],

to countervail the socialization influence that the child is exposed to in its

general social environment, φd
Aa

.13 Thus, for any φd
Aa

∈ con φd(X), the

parents could fully determine the adopted TIs of their children (whether

or not they also have an incentive to do so will concern us in chapter 3).

Hence the set of possible TIs that a child can adopt always coincides with

the convex hull of the set of possible DTIs, con φd(X) ⊆ R (a convex subset

of the real line).

Example 1.2 (Discrete Choice Sets). To illustrate the last point consider

any discrete choice set of socio–economic action patterns, and let us take

the simplest (non–degenerate) example where X = {0, 1}, e.g. not buying or

10In this respect, Panebianco [47] considers the effect that different schemes of oblique
socialization weights have on the formation of inter–ethnic attitudes.
11See e.g. Grusec [30] for an introductory overview of theories on determinants of parental
socialization success.
12That parents can choose their socialization success shares within the whole unit inter-
val is a non–trivial assumption (which is though also taken in Bisin and Topa [5] and
Panebianco [47]).
13This context can be interpreted as the generalized and continuous equivalent to the
‘preference shaping demonstration effect’ of Cox and Stark [17] and Stark [60].
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buying a status good. Let again φd(x) = x, so that φd(X) = {0, 1}. However,

under the formation of TIs (1.1), we have that the set of possible TIs is

con φd(X) = [0, 1]. Thus, although adults can only display through their

socio–economic action patterns that they either disfavor/not have (x = 0)

or favor/have (x = 1) a certain trait (e.g. ‘status’), the children can adopt

also any intermediate TI through the socialization process.

We will assume that the TI that a child adopts through the socialization

process is being internalized and kept in its adult life–period. Notably, the

concept of an adopted TI of an adult corresponds to a cognitive element in

the cognitive dissonance theory of Festinger [23] — and so does the con-

cept of a DTI. According to the cognitive dissonance theory, people dislike

dissonance between cognitive elements, the strength of which depends on

the degree of the dissonance. In the present context, it is immediate that

this degree of dissonance could be described by the (Euclidean) distance

between a DTI and the adopted TI. Thus, adults can compare and rank

different DTIs based on their distance to the adopted TI. Obviously then,

since socio–economic action patterns are pre–images of DTIs, the adopted

TI of an adult does also constitute a ‘filter’ under which adults can evaluate

different choices of socio–economic action patterns.

Assumption 1.1 (Preferences). ∀a ∈ A,

(a) the adopted TI, φa ∈ con φd(X), induces a complete and transitive pref-

erence relation ≻φa over DTIs φd
a ∈ con φd(X),14 and

(b) the preferences ≻φa are single–peaked with peak φa. This means that

∀φd
a, φ

′d
a ∈ con φd(X), φd

a ≻φa φ′d
a ⇐ φ′d

a <> φd
a ≤≥ φa.

Given their basic properties, we will represent the preferences ≻φa by single–

peaked utility functions with peak φa

u (· |φa ) : con φd(X) 7→ R

which are strictly increasing/decreasing at all φd
a ∈ con φd(X) such that

φd
a < / > φa.

15

Example 1.3 (‘Displayed Patience’ Utility). Continuing the first exam-

ple, assume that adults earn interest on their savings and, thus, their pension

period consumption is (1+ r)sa, r ∈ R+ (prices are constant and there is no

other pension period income and also no bequests).

14Equally, thus, φa ∈ con φd(X), induces a complete and transitive preference relation
≻φa over socio–economic action patterns xa ∈ X, where ∀xa, x

′
a ∈ X, xa ≻φa x′

a ⇔
φd (xa) ≻

φa φd (x′
a).

15In an extension of the previous footnote, the induced preferencs over socio–economic
action patterns ≻φa can be represented by a utility function w (· |φa ) : X 7→ R, where
∀xa, x

′
a ∈ X w (xa |φa ) > w (x′

a |φa ) ⇔ u
(

φd(xa) |φa

)

> u
(

φd (x′
a) |φa

)

.
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Assuming Cobb–Douglas utility, the life–time utility out of the adult sav-

ings decision can be represented as u (sa |φa ) = (ya − sa)
1−φa ((1 + r)sa)

φa ,

i.e. consumptions in the first and second life period are weighted according

to the ‘impatience’ and ‘patience’ (intensities). Dividing and multiplying the

right hand side of the latter by ya, we obtain u
(

φd
a |φa

)

=
(

1− φd
a

)1−φa
(

φd
a

)φa ·
(

ya(1 + r)φa
)

. Thus, we have transformed utility out of a socio–economic

choice into utility out of the choice of ‘displayed patience (intensity)’, φd
a.

It is immediate that
∂ u(φd

a|φa )
∂ φd

a
>=< 0 ∀φd

a ∈ [0, 1] such that φd
a <=> φa so

that the single peak property is satisfied naturally (furthermore, u (· |φa ) is

strictly concave).



CHAPTER 3

Endogenous Cultural Formation of Preferences

. . . or: How far does the apple fall from the tree?

In the previous chapter, we have introduced a representation of the inter–

generational formation of continuous cultural traits. One major innovation

that this approach embodies is that it interconnects the choices of socio–

economic action patterns (respectively of displayed trait intensities) of the

adult generation with the preferences over the available choices that the next

generation adults adopt. Thus, any model framework that determines the

adult choices of socio–economic action patterns, together with the parental

socialization success shares, equally endogenizes the cultural formation of

preferences process (see chapter 4 for a more detailed discussion).

In the present chapter, we will lay down one specific way of achieving

this endogeneization based on purposeful socialization decisions of parents.

Thereby, we notably restrict the latter to consist of their choice of a displayed

trait intensity (as determined through the choice of the underlying socio–

economic action patterns) and of their parental socialization success share.

This means that we leave the oblique socialization weights (that determine

the children’s relative social learning from the different adult subsets) ex-

ogenously fixed.

1. Motivation for Purposeful Socialization

In a first step, we have to clarify what motivation parents have to actively

engage in their children’s socialization process, i.e. what induces them to

purposefully employ their socialization technique (the functioning of which

we assume them to be fully aware of). Basically, we let this motivation stem

from the fact that parents also obtain an inter–generational utility compo-

nent. Thereby, this is either related to the adopted TI of their adult children

and/or to the DTI (respectively the underlying socio–economic action pat-

terns) that they expect their adult children to take.

As far as the latter expectations are concerned, we make here an as-

sumption on a specific form of parental myopia: Although parents obtain

an inter–generational utility component, which eventually induces them to

choose a DTI that does not coincide with their adopted TI (see below), we

13
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assume that they do not realize that this form of behavior changing im-

pact will also be present in their adult children’s decision problems. Thus,

any parent a ∈ A expects its adult child to choose a DTI that is in the

set of maximizers of its ‘own’ utility function, argmaxφd
ã∈φ

d(X) u
(

φd
ã |φã

)

.

Under the following assumption, φd(X) is convex (and compact, which

will be needed in the propositions below), and thus φd(X) = con φd(X).

This then guarantees by the single–peakedness of the utility functions that

argmaxφd
ã∈φ

d(X) u
(

φd
ã |φã

)

= φã, ∀a ∈ A. Hence, the parental expectations

of their adult children’s DTIs are uniquely determined.1

Assumption 1.2 (Convexity and Compactness). X is a convex and com-

pact subset of a finite dimensional Euclidean space, and φd is continuous.

It follows that φd(X) is non–empty, convex and compact.

Given the parents’ myopic expectations, it is independent of whether the

inter–generational utility component of a parent is related to the adopted TI

or expected DTI of its adult child, since they coincide. Under this property,

we will now assume that any parent perceives an optimal trait intensity that

it wants its child to adopt (i.e. if the child would adopt this optimal TI,

then this would be strictly preferred by a parent over all other possible TIs

that the child could adopt). These parent–specific optimal TIs are subject

to what we call perception rules.

Thereby, the perception rule of the optimal TI of any parent is deter-

mined by two ‘ingredients’. The first one specifies a (set of) subset(s) of

adults, which can be understood as reference group(s). The second ingredi-

ent then specifies the construction of the optimal TI that a parent perceives

out of characteristics of the adults in these reference group(s) that are either

observable (notably the DTIs of adults) or known to an individual parent.

To formally introduce the concept of perception rules, it will be conve-

nient to define A as a σ–algebra generated by the finite partition {AJ}
K
J=1.

Definition 1.1 (Perception Rule). For every parent a ∈ A, the percep-

tion rule for the optimal trait intensity is a pair
(

Ra, φ̂ã

)

, where ∅ 6= Ra ∈

{a} ∪ A and where φ̂ã : {a} ∪ A 7→ con φd(X), φ̂ã (Ra) ∈ con φd(X).

To ease the interpretation of this conceptualization, we will briefly in-

troduce three sensible types of perception rules for optimal TIs. Note that

this list is not meant to be exhaustive (one could e.g. consider combinations

of the three types mentioned).

1That parents are not aware of the inter–generational utility of their children does also
have the simplifying consequence that they do not care about their whole dynasty (this
point has already been made by Bisin and Verdier [9, p. 305] in the context of cultural
transmission of preferences).
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PR 1 The optimal TI of a parent a ∈ A is identical to its adopted TI,

Ra = {a} and φ̂ã ({a}) = φa ∈ con φd(X).

One justification to consider this perception rule is based on a

special form of parental altruism called ‘imperfect empathy’. This

concept has been introduced into the economics literature by Bisin and

Verdier [7]. Parents are altruistic and fully internalize the utility of

their adult child’s socio–economic action pattern (respectively DTI).

Nevertheless, parents can not perfectly empathize with their child and

can only evaluate their adult child’s utility under their own (not the

child’s) utility function — which attains its maximum at the adopted

TI of the parent.

PR 2 The optimal TI of a parent a ∈ A is identical to a parent–specific

(model–exogenous) TI, Ra = {a} and φ̂ã ({a}) = ea ∈ con φd(X).

One motivation for this perception rule could be that the trait

under scrutiny is a ‘good preference’ where parents thus want to max-

imize the TI of their adult children. This would e.g. concern certain

characteristics (traits) that are favorable on the labor market. Hence,

higher intensities of such traits increase the future expected income of

the adult child, which the parents would aim to maximize if they are

altruistic (and if their own utility function is increasing in monetary

payoff).

PR 3 The optimal TI of a parent a ∈ A is identical to the average DTI of

a subset (with strictly positive measure) of the adults, Ra ⊆ A, and

φ̂ã (Ra) =
1

λ(Ra)

∫

Ra
φd
a′ dλ (a

′) ∈ con φd(X).

One potential justification for this perception rule is the case of

‘endogenous behavioral norms’ that equate to the average DTI of the

respective subset of the adults. Norms are typically maintained by

members of a group (a subset of the adults) through a system of social

rewards and punishments (see e.g. Arnett [1]). In the present context,

these could be related to the parents’ success or failure to guarantee

that the child will behave according to the behavioral norm.

Given the perception rules and the resulting optimal TIs, we assume

further that parents perceive utility losses for deviations of the adopted TI

of their children from these optimal TIs (note the structural analogy to the

before introduced preferences and utility that are induced by adopted TIs).

Specifically, for any parent a ∈ A, we introduce the parameter ia ∈ R+ that

shall capture the strength of the perceived inter–generational utility losses.

We will call this the parent’s inter–generational trait intensity.

Notably, this latter type of TI could also be interpreted as being subject

to a cultural formation of preferences process. Nevertheless, we choose here
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for simplicity a degenerate representation of this process and assume that

the inter–generational TIs are invariably passed over from an adult to its

child, iã = ia, ∀a ∈ A.

Assumption 1.3 (Inter–generational Utility). ∀a ∈ A,

(a) the perception rule and inter–generational trait intensity induce an inter–

generational utility function v
(

·
∣

∣

∣
φ̂ã (Ra) , ia

)

: con φd(X) 7→ R,

v
(

φã

∣

∣

∣
φ̂ã (Ra) , ia

)

∈ R, where

(b) ∀ia ∈ R++, v
(

·
∣

∣

∣
φ̂ã (Ra) , ia

)

is single–peaked with peak φ̂ã (Ra), thus

strictly increasing/decreasing at all φã ∈ con φd(X) such that φã < / >

φ̂ã.

2. Best Reply Problems

In the last step toward the construction of the parental best reply prob-

lems, let us finally discuss the cost associated with investments into con-

trolling the parental socialization success share. These would concern e.g.

the opportunity cost of the time parents spend for the active socialization

of a child, as well as the (psychological) cost of the effort and devotion in-

vested. We will represent these costs by an indirect cost function of choices

of socialization success shares, c : [0, 1] 7→ R+, c (σ̂a) ∈ R+.

The parental (optimization) problem is it then to choose a DTI and its

socialization success share in a best reply to the child–specific representative

DTI of the general social environment such as to maximize utility net of the

cost of achieving the chosen socialization success share. We obtain, ∀a ∈ A,

max
(φd

a,σ̂a)∈φd(X)×[0,1]
u
(

φd
a |φa

)

+ v
(

φã

∣

∣

∣
φ̂ã (Ra) , ia

)

− c (σ̂a) (1.2)

s.t. φã = σ̂aφ
d
a + (1− σ̂a)φ

d
Aa

.

The best reply problems of the parents hence basically consist of trading off

the cost and benefits of their socialization choices. The cost (and disutilities)

are constituted by ‘own’ utility losses that parents experience when choosing

a DTI that deviates from their adopted TI, together with the cost of a choice

of their socialization success share. The benefits accrue in form of resulting

inter–generational utility gains through reductions in the distance between

the child’s adopted TI and the optimal TI.

As mentioned above, the parents choose best reply pairs of a DTI and

a socialization success share against the representative DTI. But notably,

this choice is subject to the optimal TI, the adopted TI and the inter–

generational TI. Therefore, for any a ∈ A, we will denote any pair of best

reply choices as
(

φd
a

(

φd
Aa

, φ̂ã (Ra) , φa, ia

)

, σ̂a

(

φd
Aa

, φ̂ã (Ra) , φa, ia

))

, which
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we will abbreviate subsequently as
(

φd
a (·) , σ̂a (·)

)

. Furthermore, together

with the representative DTI of the general social environment, any of the

parental best replies also determines a best reply location of the adult child’s

adopted TI (through the formation of TIs (1.1)), φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

.

The following assumption specifies additional properties of the (inter–

generational) utility and cost functions. These will allow for a significant

characterization of the pairs of parental best reply choices, as well as of the

resulting best reply locations of the adopted TIs of the adult children.

Assumption 1.4 (Slope).

(a) u (· |e) and v (· |f, g ) are continuous, and differentiable at their peaks,

(b) c is continuous, and differentiable with respect to the first argument at

the origin, with zero slope, strictly increasing in the first argument on

(0, 1], and decreasing in the second argument.

Since both the utility and inter–generational utility function are single

peaked, it follows by Assumption 1.4 (a) that both functions have zero

slopes at their peaks. Thus, parents perceive zero (inter–generational) utility

losses for marginal deviations of their chosen DTI from their adopted TI,

respectively of their adult child’s adopted TI from the optimal TI.

For the following two propositions, we will assume that the perception

rules for the optimal TIs of all parents are as such that the individual parents’

decisions have (at most) a negligible impact on the location of their own

optimal TI.

Proposition 1.1 (Characterization of Best Replies). Let Assumptions

1.1–1.4 hold. Then, if

(a) φd
Aa

6= φ̂ã (Ra), generically
2 sign

(

φd
a (·)− φa

)

= − sign
(

φd
Aa

− φ̂ã (Ra)
)

and σ̂a (·) > 0, while always sign
(

φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

=

sign
(

φd
Aa

− φ̂ã (Ra)
)

.

(b) φd
Aa

= φ̂ã (Ra), it holds that φd
a (·) − φa = 0 and σ̂a (·) = 0, hence

φã

(

φa, 0, φ̂ã (Ra)
)

− φ̂ã (Ra) = 0.

Proof. In Appendix A 1.1.

2There are two kinds of exceptions to the generic characterization. The first is that
if the deviation of the best reply DTI from the adopted TI into the characterized di-
rection is not possible, i.e. if the adopted TI of a parent coincides with (the relevant)
one of the boundaries of φd(X), then the best reply DTI will coincide with that bound-

ary (while still σ̂a (·) > 0). The second is that in the cases where φ̂ã (Ra) > φa and

φd
Aa

∈
(

φa, φ̂ã (Ra)
)

, respectively where φ̂ã (Ra) < φa and φd
Aa

∈
(

φ̂ã (Ra) , φa

)

, it can

also hold that sign
(

φd
a (·)− φa

)

= 0 and σ̂a (·) = 0, hence φã

(

φa, 0, φ
d
Aa

)

= φd
Aa

.
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The (generic) results of this proposition are illustrated in Figure 1.1. The

left pair of graphs stylizes case (a) of Proposition 1.1, and the right pair the

case (b). In both pairs of graphs, in the left interval (all intervals correspond

to the set of possible DTIs) the context of the adult’s decision problem is de-

picted. In the right interval a corresponding best reply choice is stylized. As

can be seen both from Proposition 1.1 directly, as well as from the graphical

illustration, the results feature two dominant characteristics.

φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

φd
Aa

φd
a(·)

φã

(

φa, 0, φ̂ã (Ra)
)

φa φd
a(·)

φ̂ã (Ra)

•

•

•

φd
Aa

= φ̂ã (Ra)

•

•

•

•

φa

σ̂a(·) > 0

•

•

•

•

•

Figure 1.1. Characterization of Best Replies

The first concerns the generic location of the best reply choices. If the

representative DTI does not coincide with the optimal TI, then parents

countervail the respective socialization influence on their children by choos-

ing strictly positive socialization instruments. This means first that they

choose a DTI that deviates from their adopted TI. Notably, this deviation is

always into the opposite direction as the deviation of the representative DTI

from the optimal TI (if such a choice is available). Second, this behavioral

countervailing is coupled with a strictly positive choice of their parental so-

cialization success share (since otherwise, their chosen DTI would be fully

ineffective in the child’s socialization process).

This generic result means that parents choose strictly positive socializa-

tion instruments even for very small deviations of the representative DTI

from the optimal TI. That this holds is due to the fact that marginal in-

vestments into the socialization instruments are (utility) costless (while as

the resulting strictly positive decrease in the distance of the adult child’s

adopted TI from the optimal TI yields a strictly positive inter–generational

utility gain). Obviously, if the representative DTI exactly coincides with

the optimal TI, then parents have no incentives to actively employ their

socialization technique.
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The second dominant characteristic concerns the location of the adult

children’s adopted TIs that would result out of the parental best reply

choices. Despite the parental countervailing in the case of suboptimal so-

cialization influences of the general social environment, the investments into

their socialization instruments would never be intense enough such as to

guarantee that their adult children’s adopted TIs would exactly coincide

with the optimal TIs. Hence, there is always a strictly positive deviation of

the adopted TI of an adult child from the optimal TI. Thereby, the direc-

tion of this deviation always accords with the direction of deviation of the

representative DTI from the optimal DTI.

Again, this result holds for even very small deviations of the represen-

tative DTI from the optimal DTI. Analogously to before, this stems from

the fact that parents do not perceive inter–generational utility losses for an

only marginal deviation of the adult child’s adopted TI from the optimal

TI (while at any strictly positive choice of the socialization instruments,

the marginal cost of additional investments to further reduce the distance

between the adult child’s adopted TI and the optimal TI would be strictly

positive). Again obviously, in the case of an optimal representative DTI, the

adopted TI of an adult child will also coincide with the optimal TI.

The following list of assumptions will be prerequisite for a further charac-

terization of the parental best reply choices in terms of comparative statics.

Assumption 1.5 (Curvature). ∀a ∈ A,

(a) u(· |e) and v (· |f, g ) are C2 and strictly concave, c is C2 and convex, and

(b) sign (f − f ′) ∂2 v(f ′|f,g )
∂ f ′ ∂ g

> 0, ∀ (f ′, g) ∈ conφd(X)× R++.

Assumption 1.5 (b) means that the marginal cost of a deviation of the

adopted TI of the adult child from the optimal TI is strictly increasing

in the inter–generational TI. Notably, this is only necessary for the results

related to the second column of the comparative statics matrix below to

hold.

Proposition 1.2 (Comparative Statics of Best Replies). Let Assump-

tions 1.1–1.5 be satisfied. Then, if φd
Aa

6= φ̂ã (Ra) and the optimization

problem of parent a ∈ A is strictly concave at its best reply choice, and if

the two socialization instruments
∣

∣φd
a (·)− φa

∣

∣ and σ̂a (·) are ‘not too strong
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substitutes’, then3







∂|φd
a(φd

Aa
,φ̂ã(Ra),φa,ia)−φa|

∂|φd
Aa

−φ̂ã(Ra)|
∂|φd

a(φd
Aa

,φ̂ã(Ra),φa,ia)−φa|
∂ ia

∂ σ̂a(φd
Aa

,φ̂ã(Ra),φa,ia)
∂|φd

Aa
−φ̂ã(Ra)|

∂ σ̂a(φd
Aa

,φ̂ã(Ra),φa,ia)
∂ ia






≫ 0.

Proof. In Appendix A 1.2.

The first column of the comparative statics matrix shows that (under

the relevant conditions), parents use their investments into their socialization

instruments and the representative DTI of the general social environment

as cultural substitutes. This means that if the representative DTI becomes

more favorable (i.e. its distance to the optimal TI becomes smaller), then

parents would reduce investments into both socialization instruments.

The second column sheds light on the role that the inter–generational TI

plays in determining the parental socialization decisions. Under the condi-

tions of Proposition 1.2, parents with a higher inter–generational TI would

choose more intense investments into their socialization instruments for any

given strictly positive distance between the representative DTI and the op-

timal TI. This follows since the socialization TI basically determines the

weight that parents put on their inter–generational utility. Thus, given a

higher inter–generational TI, parents are willing to engage more ‘own’ utility

losses and socialization success share cost such as to reduce their compara-

tively larger inter–generational utility losses.

3. Nash Equilibrium

In the previous section, we have characterized the individual best reply

choices of a displayed trait intensity and a parental socialization success

share. The next step is to discuss the existence of a (pure strategy) Nash

equilibrium of the game that is induced by the strategic interdependence of

the individual parental choices. To do this, it will be important to clarify

the nature of the possible forms of the strategic interdependences.

First of all, as has already been discussed, the net life–time utility of an

individual parent, i.e. the object of its optimization problem (1.2), depends

on the location of the representative DTI of the general social environment.

This is constructed out of the oblique socialization weights and the average

DTIs of the adult subsets. Second, the decisions of the other adults could

3A technical version of the latter condition can be found in the proof of this proposition.
Note that these comparative statics are subject to a fixed location of the parental TI.
Furthermore, we assume here that none of the constraints of the decision variables is
binding at the best reply choices. This assumption rules out both kinds of ‘non–generic’
cases in Proposition 1.1 (in case of the second kind, the lower bound for the parental
socialization success shares would be binding).
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influence the net life–time utility of an individual parent via the perception

rule for its optimal TI (as e.g. in the third type of perception rule introduced

in chapter 1). In this respect, for the Nash equilibrium existence result

below to hold, we will require the following additional normalization: If the

perception rule of a parent is based on the DTIs and/or socialization success

shares of other adults, then this may only be in terms of the average DTIs

or socialization success shares of the adult subsets {AJ}
K
J=1.

Let us now introduce a general representation that accounts for all of

these possible forms of strategic interdependences. This is based on rep-

resenting the payoff, i.e. the net expected life–time utility (this context

is explicitly addressed below), of all individual parents as being depen-

dent on the tuple of pairs of representative DTIs and average parental so-

cialization success shares,
{

φd
AJ

, σ̂AJ

}K

J=1
, where ∀J = 1, . . . ,K, σ̂AJ

:=

1
λ(AJ )

∫

AJ
σ̂a′ dλ (a

′).

More precisely, the payoff that any parent gains out of its own decision

pair and any given profile of pairs of average decisions of the subsets of

adults is determined by the parent’s adopted TI and inter–generational TI,

the perception rule for its optimal TI, as well as the child–specific oblique

socialization weights, {σãJ}
K
J=1 =: σã. We will call these quadruples parent–

child profiles, Pa :=
(

φa, ia,
(

Ra, φ̂ã

)

, σã

)

, ∀a ∈ A. Given these, we will

denote the payoff function of an individual adult a ∈ A as P (·, · |Pa ) :
(

φd(X)× [0, 1]
)K+1

7→ R, where

P

(

(

φd
a, σ̂a

)

,
{

φd
AJ

, σ̂AJ

}K

J=1
|Pa

)

≡ u
(

φd
a |φa

)

+v
(

φã

∣

∣

∣
φ̂ã (Ra) , ia

)

−c (σ̂a)

and where φã = σ̂aφ
d
a + (1− σ̂a)φ

d
Aa

and φd
Aa

:=
∑K

J=1 σãJφ
d
AJ

.

We hence obtain a family of games, parametrized by the tuple of parent–

child profiles,

(ΓPa)a∈A =

(

A,
(

φd(X)× [0, 1]
)A

, {P (·, · |Pa )}a∈A

)

.4

The definition below follows Schmeidler [59] and Rath [53].

Definition 1.2 (Nash Equilibrium). Call a tuple
{

φd∗

a , σ̂∗
a

}

a∈A
a Nash

equilibrium of (ΓPa)a∈A, if for almost all a ∈ A, for all
(

φd
a, σ̂a

)

∈ φd(X)×

[0, 1], P

(

(

φd∗

a , σ̂∗
a

)

,
{

φd∗

AJ
, σ̂∗

AJ

}K

J=1
|Pa

)

≥ P

(

(

φd
a, σ̂a

)

,
{

φd∗

AJ
, σ̂∗

AJ

}K

J=1
|Pa

)

.

4Note here for clarification that the individual strategy sets could equally be defined as
X× [0, 1] since φd

a := φd(xa), xa ∈ X. But since the parental payoffs, i.e. utilities, depend
only on the own and observed (average) DTIs, we directly consider here the strategy sets
φd(X)× [0, 1].
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Proposition 1.3 (Nash Equilibrium Existence). If Assumptions 1.1—

1.3 hold and if the functions φ̂ã are continuous for all a ∈ A, then a Nash

equilibrium exists for any parametrized game.

Proof. In Appendix A 1.3.

The existence result above means that in any given period, we can use

the Nash equilibrium choices for substitution in the formation of TIs equa-

tion (1.1). By doing so, we obtain an endogenous representation of the

inter–generational formation of TIs, i.e. we have endogenized the cultural

formation of preferences process.5

4. Evolution and Imperfect Empathy

In a dynamic context, the model framework of the present chapter de-

termines the evolution of all endogenous quantities. These contain the dis-

played trait intensities, respectively the underlying socio–economic choices,

the parental socialization success shares, as well as the the trait intensities

and the induced preferences of the society.

Notably, these dynamics will be subject to a specification of the (initial)

tuple of adult–child profiles. This means to specify (a) the initial tuple of

TIs, which are the state variables of the model, (b) the fixed tuple of inter–

generational TIs, (c) the tuple of perception rules for optimal TIs, and (d)

the exogenously fixed tuple of child–specific oblique socialization weights.

Lacking a theory of the formation of the perception rules, it is sensi-

ble to assume for simplicity that they are (like the inter–generational TIs)

invariantly passed over from a parent to its child, hence inter–temporarily

fixed. Furthermore, to impose a minimum level of structure on the analysis,

it would in any case be sensible to consider only assignments of equal types

of perception rules to all parents (e.g. one of the three types of perception

rules introduced in chapter 1).

A similar reasoning applies for the case of the child–specific oblique so-

cialization weights. Unless the model is extended such as to allow for their

endogenous determination, it is a sensible simplification to fix them inter–

temporarily. One approach could be to consider unbiased oblique social-

ization where the socialization weights coincide with the population shares

5It shall be noted that the generality of the model allows not only for the existence of
multiple Nash Equilibria in any given period, but also for the existence of Nash Equilibria
with qualitatively different properties. In deriving qualitative (static or dynamic) prop-
erties of (a specification of) the model, it will thus be of central importance to point out
whether these properties hold for all elements in the set of Nash Equilibria of a period,
or eventually only for a sensibly defined subset. The section below shows a global conver-
gence result which is indeed subject to all elements in the (evenutally non–singleton) sets
of Nash Equilibria. To the contrary, the second part of this thesis contains an example
where we considered only Nash Equilibria with particular properties.
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(which are inter–temporarily fixed in the present model) of the subsets.6

This approach would also have the consequence, that all children of the so-

ciety are confronted with the same representative DTI of the general social

environment. This then even coincides with the average DTI of the adults.

Notably, among the four types of (initial) adult–child profile tuples, it is

the specification of the tuple of perception rules and the oblique socializa-

tion weights that can be supposed to most centrally govern the qualitative

properties of the dynamics of any specified model.

Roughly spoken, the reasoning for this is as follows. The optimal TIs

determine the direction of the purposeful socialization efforts of the parents;

and the oblique socialization weights determine the intensities of ‘socializa-

tion exchange’ between the subsets of adults. Thus, the latter also determine

how much the directional socialization efforts of the members of the different

subsets impact the socialization decisions of the other parents. As a conse-

quence, these two types of ‘socialization effects’ also govern the directions

of the evolutions of the ‘contextual (‘own’ utility) effects’ that are induced

by the adopted TIs of the parents. Finally, in any given period, the fixed

inter–generational TIs determine the relative strength of the two types of

‘socialization effects’ versus the ‘contextual effects’.

Let us illustrate this ‘power’ of the tuple of perception rules and oblique

socialization weights by means of an example. We will show below the qual-

itative properties of the evolution of the TIs for the case where all parents

have ‘imperfect empathy’ (respectively the first type of perception rule in

chapter 1). This is coupled with the assumption that all oblique socialization

weights are identical for all children, which holds e.g. in the case of unbi-

ased oblique socialization. This example might be of special interest, since

it accords with standard assumptions in the literature on the economics of

cultural transmission of preferences.

Before showing the dynamic properties of this specification, let us first

introduce a collection of useful definitions.

Definition 1.3 (TI Assimilation, Symmetric TI Point, Steady State).

(a) Consider any two succeeding periods and let φm := maxa∈A φa, φm :=

mina∈A φa, and φ̃m := maxã∈Ã φã, φ̃m := minã∈Ã φã. Then, we speak of

(weak) TI assimilation if φm ≤ φ̃m < φ̃m < φm (or) and φm < φ̃m <

φ̃m ≤ φm.

(b) Call a tuple {φa}a∈A a symmetric TI point if for almost all a, a′ ∈ A

φa = φa′ .

(c) Call a tuple {φa, φã}a∈A a steady state if for almost all a ∈ A φã = φa.

6In the cultural transmission of preferences framework, Sáez-Mart́ı and Sjögren [58] con-
sider different forms of biases in the determination of oblique socialization weights.
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Finally, let
{

φ0
a

}

a∈A
denote the tuple of initial TIs of the adults.

Proposition 1.4 (Evolution under Imperfect Empathy). Let Assump-

tions 1.1—1.4 hold and let Ra = {a} and φ̂ã ({a}) = φa hold in any period,

for every a ∈ A. Consider any
{

φ0
a, ia

}

a∈A
∈
(

con φd(X)× R+

)A
.

(a) Then, if in any period {σãJ}
K
J=1 is identical for all ã ∈ Ã, it holds that

1. for every two succeeding periods, the TIs weakly assimilate almost

surely, thus 2. the TIs converge to a symmetric TI point, and 3. any

symmetric TI point is a steady state.

(b) If additionally, σãJ > 0, ∀J = 1, . . . ,K in any given period, then it even

holds that for every two succeeding periods, the TIs assimilate almost

surely (with the rest of the results unchanged).

Proof. In Appendix A 1.4.

There are two driving forces for the global ‘melting pot’ property of

Proposition 1.4 (the result is global also in the sense that it holds for any el-

ement in the possibly non–singleton set of Nash Equilibria of a period). The

first is that in the case where all children have identical oblique socialization

weights, they also face the same representative DTI of the general social

environment. This, by itself, induces a tendency toward inter–generational

TI homogenization. Even more, since all parents have imperfect empa-

thy, the Nash equilibrium representative DTI can not lie above/below the

boundaries that are constituted by the maximum/minimum TI of a given

adult generation. This follows since otherwise, by Proposition 1.1 (a), the

DTI best replies of all parents would be lower/larger than their adopted

TI. This would contradict the representative DTI being supported by Nash

equilibrium choices. This property strengthens the tendency toward inter–

generational TI homogenization such that even the TIs (weakly) assimilate

over generations (by Proposition 1.1 (a)).

Of course, even in the imperfect empathy case, there would be specifica-

tions of the tuple of oblique socialization weights where the global ‘melting

pot’ property would not hold generically. To see this easily, consider e.g.

the extreme case of two segregated subsets of adults and children (where

the ‘cross’ oblique socialization weights are zero). In this case, the tuple of

TIs of the two subsets would generically converge to different steady states.

Finally, it shall be noted that the dynamic properties of the model are

particularly easy to characterize under global imperfect empathy. This fol-

lows since in this case the adopted TI (‘contextual effect’) and optimal TI

(‘socialization effect’) coincide. This is not the case for all other possible

types of perception rules, which would make the task of characterizing the

dynamic properties more complex (in most of the cases).
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In any case, it shall have become clear from the above discussion that any

significant qualitative characterization of dynamic properties of the model

will have to be based on a sensible specification of the tuple of (initial)

adult–child profiles.



CHAPTER 4

Applications

In the preceding two sections, we have laid down a general framework

to determine the inter–generational formation of continuous cultural traits.

Given its generality, this framework can be specified for applications in a

large variety of different settings and socio–economic questions. In what fol-

lows, we will briefly outline four different dimensions along the lines of which

any application, respectively specification, of the model could be oriented.

Level of the Analysis Any analysis of the properties of a specified model

can be pursued on two different levels. The first, ‘meta–level analysis’, takes

place at the level of the intensities of the trait under scrutiny, and concerns

the evolution of the TIs and DTIs, as discussed already above. Interesting

issues in this context would then typically be to characterize the dynamics

of the model under different specifications of the tuple of (initial) adult–

child profiles. Specifically, it would be of interest to identify specifications

of tuples of perception rules and oblique socialization weights under which

(stable) heterogeneous and/or homogeneous steady state distributions of

the TIs exist. One specification, based on ‘imperfect empathy’, for global

convergence to a homogeneous (symmetric) steady state distribution has

already been shown in section 4 of chapter 3 above.

The second, ‘empirical analysis’, would take place at the level of the

observable socio–economic choices of the adults. For this end, it would be

necessary to clarify (a) which socio–economic choices are supposed to serve

as the role models for the social learning of the intensities of the trait under

scrutiny, and (b) how the relationship between the socio–economic choices

and the DTIs can be represented in terms of the DTI function. Given this,

the ‘meta–level analysis’ would additionally answer the question of the evo-

lution of the underlying socio–economic choices.

Complexity of the Adult Problem The purposeful socialization frame-

work of chapter 3 embeds parents with inter–generational concern in a strate-

gic socialization interaction environment, in which they choose optimal DTIs

and socialization success shares. This structure entails a certain degree of

complexity. This could, however, be decreased by employing alternative (less

26
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‘rich’) designs of the parental optimization problems. These would either

feature a lower dimensionality and/or would eliminate the strategic social-

ization interaction. Notably, it depends on the specific application, which

of these alternatives (as introduced below) would eventually be suitable.

One alternative that reduces the dimensionality of the parental optimiza-

tion problem would be to assign (strictly positive) exogenous socialization

success shares, but to leave endogenous the choices of DTIs. Even, by set-

ting the socialization success shares equal to one so that the children are

exclusively socialized by their parents, one could additionally eliminate the

strategic socialization interaction in the choices of DTIs. Still, one could

then introduce other forms of strategic interaction into the model (as e.g.

being induced by endowing the parents also with a utility component derived

from inter–adult social interactions).

Another alternative would obviously be to exogenously fix the chosen

DTIs of the parents while as the decision of their socialization success shares

is left endogenous (as in Bisin and Topa [5] and Panebianco [47]). This

approach would also additionally eliminate the strategic socialization inter-

action.

The double effect of reducing the dimensionality of the parents’ deci-

sion problems as well as doing away with the strategic socialization inter-

action could furthermore be achieved by considering a naive socialization

framework. This means that the adults (parents) fully neglect the children’s

preference formation process or are not aware of it — while this process is

still taking place. In such a setting, one would again have to assign (ex-

ogenous) parental socialization success shares.1 Notably, in the competitive

socio–economy version of such a model, all adults would always choose to

behave exactly in accordance with their adopted TI. This follows since the

parents would lack the behavior shifting incentives that would be created

by the presence of a (non–constantly zero) inter–generational utility compo-

nent. Thus, one would typically aim at giving additional substance to such

a framework, e.g. by introducing alternative forms of strategic interaction,

or by considering a social planner problem (as discussed below).

Finally, one could eliminate the strategic interaction in the decision prob-

lems by basing these on the parents’ expectations of the representative DTI of

the general social environment. These expectations would sensibly be based

on the representative DTI that the adults have observed in their own child

period. The drawback of this approach would be that one could not allow

1In the simplest possible way, one could even assign to the parental socialization success
shares the value zero so that effectively, there is oblique socialization only.
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for the alteration of the parents’ decisions upon observations of representa-

tive DTIs that do deviate from the expectations. Thus, on the transitory

path, parents would generically not choose best reply choices against the

true realized representative DTI of the general social environment.

Social Planner Problem The cultural formation of preferences frame-

works opens routes toward new kinds of social planner problems. These

routes basically follow the closed circle between the adopted TIs of the

adults, their chosen DTIs (and underlying socio–economic action patterns)

and the induced adopted TIs and preferences of the next adult generation.

In a first step, let us clarify possible ways how a social planner could

intervene in the cultural formation of preferences process. The first way

would be targeted directly at the ‘meta–level’ of the TIs, and would pri-

marily concern the social planner serving for an additional source of child

socialization. This could e.g. be in the form of the influence that the designs

of the legal system and the institutions (including schools and media) of a

society have in the socialization process of a child; see Bowles [11] for an

overview of related issues. Within the terminology of the present paper, the

social planner could thus effectively set a DTI coupled with (investments

into) its socialization success relative to the socialization successes of the

family and the general social environment.

The second possible way of social planner intervention is only indirectly

targeted at the level of the TIs. This would concern ‘standard’ socio–

economic incentive shifting policies, like e.g. a consumption tax or pension

schemes in the context of the first and third example in chapter 2. Since

these measures are designed such to influence the adults’ socio–economic

decisions, the same is being achieved in terms of the corresponding adults’

choices of DTIs. This then in turn influences the formation of the TIs of the

children.

Let us now discuss the possible motivations of a social planner to actively

employ its ‘socialization technique’. The first motivation can result out of

a benevolent social planner’s aim of maximizing the weighted sum of the

life–time utilities of a sequence of generations. Notably, since the social

planner would be assumed to be aware of the inter–temporal externalities

that are inherent in the cultural formation of preferences process, she has,

via her two ways of intervention, access to a new level of efficiency: She can

inter–connect the question of the optimal inter–generational distribution of

utilities with the question of the optimal inter–generational distribution of

utility functions (since they are determined by the cultural formation of

preferences process).
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The second motivation can be in terms of the social planner perceiv-

ing, respectively having information about, a socially optimal (distribution

of) the TIs and/or DTIs within the society, which it aims at instilling in a

paternalistic way; see e.g. Qizilbash [52] for a discussion of related issues.

The typical question would then be whether the social planner can design

a transitory policy regime such as to achieve this form of social optimum in

the steady state.

Structure of the (initial) Adult–Child Profiles In chapter 4, we have

already shortly discussed basic issues concerning potential ways of specifying

the tuple of (initial) adult–child profiles. Additionally to what has already

been said there, it could be of interest to characterize the properties of a

specified model for different degrees of symmetry embodied in the distribu-

tion of these profiles on the adult set. Obviously, the maximum symmetry

would be achieved in the case of a representative agent model, while as the

minimum symmetry would correspond to assigning any arbitrary distribu-

tion.

As an intermediate step, one could partition the adult set into (possibly

a continuum of) subsets of adults that have identical (initial) adult–child

profiles. Thus, one would obtain a set of adult types, which could be in-

terpreted as cultural groups. Under suitable conditions that guarantee the

inter–temporal TI symmetry of the members of the groups, one could then

answer the question of behavioral (DTI) and cultural (TI) assimilation of

the groups. Within the present continuous cultural traits framework, if the

set of adult types is discrete, this would constitute the analogue to the anal-

ysis on the dynamics of the population distribution of discrete traits in the

economics of cultural transmission of preferences literature.



CHAPTER 5

Conclusions

This paper has introduced a general representation of the formation of

continuous cultural traits. We showed in the first main part of this paper

(chapter 2) how children adopt trait intensities through social learning from

observed socio–economic action patterns of the adults. Upon such an ob-

servation, children receive a cognitive impulse, which we called a displayed

trait intensity. The trait intensity that a child adopts in the socialization

process (and keeps in its adult period) is then represented as a weighted

average between all such cognitive impulses obtained. We then showed how

to interpret the trait intensities that adults have adopted such as to con-

struct and characterize preferences over displayed trait intensities, thus also

the underlying socio–economic action patterns. The representation of the

socialization process that this paper proposes thus constitutes a consistent

and closed circle between the socio–economic action patterns taken by one

adult generation and the preferences over these patterns by the succeeding

adult generation.

In the second main part of the paper (chapter 3), we proposed one pos-

sible way to endogenize the cultural formation of preference process as re-

sulting out of purposeful parental socialization decisions. These are twofold.

One is the choice of a displayed trait intensity. The second consists of invest-

ments into the weight that this role model has in the socialization process of

the child, relative to the weight that the observed representative displayed

trait intensity of the general social environment has. Thus, basically, the

parents decision problem is to choose best replies against this representative

role model of the general social environment. Notably, this is subject to the

location of the optimal trait intensity that they would like their children to

adopt. We showed conditions under which a pure strategy Nash equilibrium

of the induced ‘strategic socialization interaction game’ of the parents ex-

ists. These equilibrium choices govern the inter–generational evolution of

the trait intensities and the preferences of the society.

The strength of the framework presented in the present paper arguably

lies in its generality. This allows for a large number of possible forms of

adoptions and specifications such as to apply it to an accordingly large
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variety of different socio–economic questions. In chapter 4, we also outlined

lines along which any such application could be oriented.

Despite the generality of the model, there is however still considerable

room for further generalizations. Among other possible directions, this

would concern (a) considering an n–dimensional representation of the for-

mation of continuous cultural traits with an optional endogeneization of

the formation of the inter–generational trait intensities, (b) endogenously

determining the formation of the perception rules of parents, (c) endogeniz-

ing the determination of the oblique socialization weights (in the form of

parental decision problems), (d) consistently introducing ‘horizontal social-

ization’ and the socialization influence of institutions (like the legal system,

schools, media, etc.), (e) changing the population structure of the model

by dropping the assumption of asexual reproduction and potentially endo-

genizing the reproduction decision, and/or considering a finite population

setting, (f) allowing for a pro–active role of the children in the formation

process of their preferences, and (g) considering a representation of displayed

trait intensities subject to heterogeneous choice sets of socio–economic ac-

tion patterns.

Finally, remember that the subject of the present paper was the for-

mation of continuous cultural traits in the socialization period of a person.

However, socialization is without doubt a life–long process. It would there-

fore be of central interest to extend and suitably adopt the logic of the

processes described to the formation/adoption of continuous cultural traits

in the adult life period of individuals.1

1Existing related analyses contain, among others, Friedkin and Johnson [25], DeMarzo
et al. [19], Brueckner and Smirnov [13, 14] and Golub and Jackson [28, 29]. These contri-
butions are embedded in a social network structure.
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CHAPTER 1

Introduction

When different cultural groups live together, then there is always cultural

exchange through the social(ization) interactions between the members of

the groups. While this can well concern the mutual dissemination of the

customs of the groups, it notably consists to a large extent of a mutual

(inter–generational) influencing of the preferences, values, norms, attitudes

and beliefs of the groups’ members.

This context raises interest both on empirical and theoretical grounds.

In the empirical context, the question of assimilation and integration of

immigrants with different cultural backgrounds into hosting societies has

attained increasing attention in recent years, both in media and on the po-

litical agenda. This calls for a framework that allows for a theoretical rep-

resentation and analysis, optimally leading into a leveraged understanding

of the empirical processes at work.

The present paper presents such a theoretical framework, based on a re-

cent theory of Pichler [49] on the inter–generational formation of continuous

cultural traits.1 We will show a static and dynamic analysis of the evolu-

tion of behavior and the trait intensities in a two cultural groups setting,

subject to one type of continuous cultural traits. Thereby, one of the focus

points will be to derive conclusions about the underlying assimilation pro-

cess between the two cultural groups, both in terms of their adopted trait

intensities, as well as in terms of their behavioral decisions.

Contributions and Results The first part of this paper is devoted to a

recapitulation of the cultural formation of preferences framework of Pichler

[49]. In doing so, we will show in a first step how children come to adopt

intensities of any arbitrary continuous cultural trait type. We let this be

based on the children’s social learning from the observed socio–economic ac-

tion patterns of the adults. Upon observation of the socio–economic action

pattern of an adult, children also receive a cognitive impulse. The latter can

be understood as the signal on the valuation (or importance, magnitude,

1The latter are meant to contain all types of traits that (a) are subject to formation in the
socialization process, and (b) can reflect different intensities, located in a convex subset
of the real line.
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etc.) of the continuous cultural trait that is embodied in the choice of the

particular socio–economic action pattern over the other available choices.

We even endow these sorts of cognitive impulses with a cardinal meaning

and call them displayed trait intensities. The final adopted trait intensity

of a child then results as a weighted average between the displayed trait

intensity that is chosen by its family, and the representative displayed trait

intensity that the child observes in its general adult social environment.

In a second step, we introduce one possible way to endogenize the cul-

tural formation of trait intensities process as resulting out of purposeful

parental socialization decisions. These are twofold. The first is the choice

of a displayed trait intensity. The second consists of investments into the

weight that this displayed trait intensity has in the socialization process of

the child relative to the weight that the observed representative displayed

trait intensity of the general social environment has. We will call this weight

the parental socialization success share. Thus, basically, the parental deci-

sion problem is to choose best replies against the representative displayed

trait intensity of the general social environment. Notably, this is subject to

the perception that the parents have of the optimal trait intensity for their

children to adopt (and different perceptions can have a remarkable impact

on the qualitative static and dynamic properties, as will be discussed below).

In the second and main part of this paper, we then embed the endogenous

cultural formation of trait intensities process in a society that is populated

by two distinct cultural groups. With these, we basically refer to a collection

of families, for which it holds that the parental (adult) members have iden-

tical adopted trait intensities and form identical perceptions of the optimal

trait intensities for their children. We introduce conditions under which all

parents choose the same behavior and socialization success share in a Nash

Equilibrium. Under such group–symmetric choices, all children of the same

cultural group do adopt the same trait intensities.

The central task pursued in this paper is the analysis of the group–

symmetric Nash equilibrium choices and the resulting dynamic evolution of

the adopted trait intensities under two different benchmark perception rules

for the optimal trait intensities. In the main part of the paper, we consider

first exogenously fixed (and distinct) optimal trait intensities, and second

the case where the parents of a group perceive the average displayed trait

intensity of their own group members as the reference value (‘endogenous

norms’). Finally, in Appendix B 2, we also discuss the case where all parents

have ‘imperfect empathy’.2

2The concept of ‘imperfect empathy’ has been introduced in the economics literature by
Bisin and Verdier [7]. It basically means in the present context that parents perceive
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Under any possible perception rule for optimal trait intensities, the di-

rection of the socialization efforts of the parents of both groups is always

toward the perceived optimum. In the case of exogenously fixed optimal trait

intensities, this leads to an inter–generational coordination toward a situa-

tion where the positions of the adopted trait intensities can be considered

‘consistent’ with the relative location of the fixed optimal trait intensities (if

this situation has not been given initially). With this we mean that (a) the

group with the strictly larger fixed optimal trait intensity does also have a

strictly larger adopted trait intensity, and (b) the trait intensities of both

groups do lie strictly between the two optima.

Within this ‘generic state space’, the socialization efforts of the mem-

bers of the two cultural groups are in the opposite directions. This yields

the result that the parents of both cultural groups dis–integrate behav-

iorally (i.e. the parents with the strictly larger/lower adopted trait intensity

choose to display a strictly larger/lower than adopted trait intensity) and

choose strictly positive parental socialization success shares. This has the

consequence that the relative positions of the two cultural groups are inter–

generationally preserved and the ‘generic state space’ can not be left.

Since we were not able to obtain analytic results on the dynamic prop-

erties of this model specification, we resorted to numerical methods. The

central outcome was that for any considered pair of initial trait intensities

(in the generic state space) we obtained convergence of the trait intensity

paths, subject to any combination of the strenghts of the groups’ norms on

behavior that we considered. Furthermore, if the norms were high enough

for both groups, then we obtained a unique globally asymptotically stable

steady state. However, if the norms were comparatively weak, then this gave

rise to the existence of multiple steady states, which typically featured only

very low distances between the two steady state trait intensities.

The qualitative (numerical) results of the fixed optimal trait intensity

case do thus feature the opposite extreme to the ‘imperfect empathy’ case:

While as in the latter case, the preferences of the cultural groups do always

converge to the same point, this will never happen under fixed optimal trait

intensities.

Compared to these sorts of uniqueness of the qualitative asymptotic

properties, the case of endogenous norms features a larger variety of possi-

ble convergence path types. First of all, we could show that generically, any

sequence of adopted trait intensities of the two groups converges to a steady

their own adopted trait intensity as optimal for their children. As has already been shown
by Pichler [49], this case features a global ‘melting pot’ property, i.e. the adopted trait
intensities of (almost) all dynasties converge to the same point.
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state. Even, there is a basin in terms of a maximum distance of the adopted

trait intensities, such that all pairs of adopted trait intensities that enter (or

start in) this basin converge to a point where all adults have the same trait

intensities. However, for a large enough initial trait intensity distance, it is

possible that the cultural groups dissimilate on the transitory path and a

steady state with a larger than initial trait intensity distance is reached.

Related Literature The present analysis stands in a close relation to

few existing contributions on the question of the cultural formation of con-

tinuous cultural traits. Important early treatments of the topic are Cavalli-

Sforza and Feldman [16] in a theoretical, and Otto et al. [46] in an empirical

context. More recently Bisin and Topa [5] proposed a representation of the

formation of the intensities of continuous cultural traits. In the terminology

of the present paper, they represented the adopted intensity of the cultural

trait as a weighted average between the displayed trait intensity of the fam-

ily and the (weighted) average of the intensities of the cultural traits that

the society has adopted.

The major limitation of this contribution is, however, that it features a

degenerate representation of the parental choices of socio–economic action

patterns, and the associated displayed trait intensities. In this respect, Bisin

and Topa [5] assume that parents always choose a socio–economic action

pattern that displays their ‘target intensity’ (i.e. the optimal trait intensity

in the terminology of the present paper). Given this restricted view on the

family’s behavioral choices, its socialization decision is then reduced to the

choice of its weight in the formation of the trait intensity of their child.3

A second, and well established, related strand is the literature on the

economics of cultural transmission. It has been introduced by Bisin and

Verdier [7, 8, 9] and Bisin et al. [6], and is based on the work of Cavalli-

Sforza and Feldman [15, 16] and Boyd and Richerson [12] in evolutionary

anthropology. The focus is on the analysis of the population dynamics of

the distribution of a discrete set of cultural traits under an endogenous

intergenerational cultural transmission mechanism.

The endogeneity stems from the purposeful parental choice of socializa-

tion intensity, which effectively determines the probability that the child

will directly adopt the trait(s) of the parents. Parents engage into the cost

of purposeful socialization in order to avoid (decrease the probability) that

their child will not adopt their trait(s) — in which case parents encounter

subjective utility losses. For an exhaustive overview of foundations of and

3The same sort of critique applies to the approach of Panebianco [47], who considers the
formation of inter–ethnic attitudes.
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contributions to this literature, see Bisin and Verdier [10].4

Outline The further setup of this paper is as follows. The succeeding

chapter 2 recapitulates the general framework on the (endogenous) cultural

formation of continuous cultural traits of Pichler [49]. This is followed by

the analysis of static and dynamic properties of the model in a two cultural

groups setting in chapter 3. We consider both fixed optimal trait intensi-

ties in section 1, as well as endogenous norms in section 2. The proofs of

the propositions of the latter two subsections can be found in Appendix B

1. Finally, Appendix B 2 contains a short treatment of the case where all

parents have ‘imperfect empathy’, and chapter 4 concludes.

4Related to this strand of literature are the contributions of Cox and Stark [17] and Stark
[60] on the ‘demonstration (or preference shaping) effect’ of parental altruism choices in
front of their children.



CHAPTER 2

Cultural Formation of Preferences

This chapter discusses a general model of the formation of continuous

cultural traits through the socialization process (in section 1). In section

2, we will also show how this cultural formation of preferences process can

be derived out of optimal parental socialization decisions. Notably, the

framework developed here constitutes a shortened representation of the one

introduced in Pichler [49]. For the details, please confer the original source

directly. The reader who is familiar with the latter can read the present

chapter as a refresher, but can well directly proceed to chapter 3.

1. Cultural Formation of Preferences

Consider an overlapping generations society. In the present and next

section, we will restrict our glance on the cultural formation of preferences

process between two succeeding generations. This makes it possible to drop

all time indexes (for ease of exposition).

In any given period, let our society be populated by a continuum of

adults, a ∈ A = [0, 1] endowed with Lebesgue measure λ, and their children.

For simplicity, we will assume that reproduction is asexual and every adult

has one offspring, so that we can denote with ã ∈ Ã the children of the

parents a ∈ A (and the population size is constant).

Let us assume that all adults have available the same non–empty set of

socio–economic action patterns, X. This set is endowed with a complete

and transitive binary relation T . Thereby, for all x, x′ ∈ X, xT x′ means

that the socio–economic action pattern x is (weakly) ‘more characteristic’ for

the continuous trait type under scrutiny than socio–economic action pattern

x′. This general formulation is owed to the fact that we consider any type

of continuous cultural trait. Given transitivity and completeness, we can

represent the ordinal relation T by a cardinal function

φd : X 7→ R .

Thus, to any socio–economic action pattern x ∈ X, φd assigns a number

with cardinal meaning, φd(x). We will call this the displayed trait intensity

(DTI) embodied in the choice of socio–economic action pattern x. Thus,

φd(X) is the set of possible DTIs.

38
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Now, the role models of the children’s social learning of trait intensities

are the observable socio–economic action patterns x ∈ X taken by the adults

a ∈ A; and we assume that the cognitive impulse that any of the children

obtains through such an observation is the corresponding DTI, φd(x). To

simplify the subsequent exposition, we will denote the DTI of the socio–

economic action pattern of adult a ∈ A, xa ∈ X, as φd
a := φd(xa).

We will now introduce the representation of the socialization process

that this paper proposes. This will be established on grounds of the tabula

rasa assumption, which means in the present context that children are born

with unformed trait intensity (TI), and equally, with unformed preferences.

On this basis, we then let the formation of the TI that a child adopts result

out of social learning from the socio–economic action patterns of adults

(only) that it is confronted with. Specifically, this is being embedded in a

framework of socialization inside the family and by the general adult social

environment, or ‘direct vertical and oblique socialization’.

In this context, we will let the TI that a child ã ∈ Ã adopts be formed

according to a weighted average between the representative DTIs of both

socialization sources (i.e. as a weighted average of all cognitive impulses

obtained in the socialization process). In the case of the child’s family,

this coincides with the DTI of its single parent a ∈ A, φd
a ∈ φd(X). The

representative DTI of the child’s general social environment, Aa := A\{a},

will be denoted φd
Aa

. These result out of the children’s social learning from

the observed DTIs of (eventually) different subsets of adults that they are

confronted with.

More precisely, we assume that there is a measurable partition of the

adult set, {AJ}
K
J=1, and that the children obtain as cognitive impulses the

average DTIs of these subsets, φd
AJ

:= 1
λ(AJ )

∫

AJ
φd
a′ dλ (a′) ∈ con φd(X),

∀J = 1, . . . ,K. Specifically, for every child ã ∈ Ã there are oblique social-

ization weights, σãJ , J = 1, . . . ,K, that represent the relative cognitive im-

pacts of the child’s social learning from the various subsets of adults. These

weights satisfy σãJ ∈ [0, 1] and
∑K

J=1 σãJ = 1, ∀ã ∈ Ã, ∀J = 1, . . . ,K. We

obtain, ∀ã ∈ Ã,

φd
Aa

:=
K
∑

J=1

σãJφ
d
AJ

∈ con φd(X).

The weight that the DTI of the parent of a child ã ∈ Ã has in the

socialization process of the child will be called the parental socialization

success share, σ̂a ∈ [0, 1]. This corresponds to the cognitive impact of the

parental DTI relative to the cognitive impact of the representative DTI of

the child’s general social environment. Factors that would determine this

relative cognitive impact would include the social(ization) interaction time
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of the parent with its child, as well as the effort and devotion that the

parent spends to socialize its child to the chosen DTI. We thus assume that

the parental socialization success share can be chosen by the parents.

We now obtain the formation of the TI that a child ã ∈ Ã adopts through

the ‘direct vertical and oblique socialization’ process, φã, as

φã = σ̂aφ
d
a + (1− σ̂a)φ

d
Aa

. (2.1)

We will call this the parental socialization technique. It embodies the view

that the parents set a TI benchmark, φd
a ∈ φd(X), and can invest into their

parental socialization success share, σ̂a ∈ [0, 1], to countervail the socializa-

tion influence that the child is exposed to in its general social environment,

φd
Aa

. Thus, for any φd
Aa

∈ con φd(X), the parents could fully determine the

adopted TIs of their children. Hence the set of possible TIs that a child

can adopt always coincides with the convex hull of the set of possible DTIs,

con φd(X) ⊆ R.

We assume next that, in their adult life period, all individuals keep the

TI that they have adopted in their childhood in an unchanged way. These

adopted TIs of the adults can be interpreted to induce ‘filters’ under which

adults can compare and rank different choices of socio–economic action pat-

terns. This form of evaluation takes place in terms of comparing the DTIs

of the socio–economic action patterns to the own adopted TIs.1 Specifically,

we assume that the adopted TIs induce complete and transitive preference

relations over choices of DTIs (respectively the underlying socio–economic

action patterns).

Assumption 2.1 (‘Own’ Utility). For every a ∈ A,

(a) the adopted trait intensity induces an ‘own’ utility function u (· |φa ) :

con φd(X) 7→ R, u
(

φd
a |φa

)

∈ R, where

(b) u (· |φa ) is single–peaked with peak φa, thus strictly increasing/decreasing

at all φd
a ∈ con φd(X) such that φd

a < / > φa.

Intuitively, the single–peakedness property means that we assume adults

to prefer choosing behaviors (DTIs) that are as close as possible in line with

their adopted TIs.

2. Endogenous Cultural Formation of Preferences

In the present chapter, we will lay down one specific way of achieving an

endogeneization of the cultural formation of preferences process. This will be

based on purposeful socialization decisions of parents. Thereby, we notably

restrict the latter to consist of their choice of a displayed trait intensity

1This is in line with the cognitive dissonance theory of Festinger [23].
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(as determined through the choice of the underlying socio–economic action

patterns) and of their parental socialization success share. This means that

we leave the oblique socialization weights (that determine the children’s

relative social learning from the different adult subsets) exogenously fixed.

Motivation for Purposeful Socialization. In a first step, we have to clarify

what motivation parents have to actively engage in their children’s social-

ization process, i.e. what induces them to purposefully employ their so-

cialization technique (the functioning of which we assume them to be fully

aware of). Basically, we let this motivation stem from the fact that parents

also obtain an inter–generational utility component. Thereby, this is either

related to the adopted TI of their adult children and/or to the DTI (respec-

tively the underlying socio–economic action patterns) that they expect their

adult children to take.

As far as the latter expectations are concerned, we make here an as-

sumption on a specific form of parental myopia: Although parents obtain

an inter–generational utility component, which eventually induces them to

choose a DTI that does not coincide with their adopted TI (see below), we

assume that they do not realize that this form of behavior changing im-

pact will also be present in their adult children’s decision problems. Thus,

any parent a ∈ A expects its adult child to choose a DTI that is in the

set of maximizers of its ‘own’ utility function, argmaxφd
ã∈φ

d(X) u
(

φd
ã |φã

)

.

Under the following assumption, φd(X) is convex (and compact, which

will be needed in the propositions below), and thus φd(X) = con φd(X).

This then guarantees by the single–peakedness of the utility functions that

argmaxφd
ã∈φ

d(X) u
(

φd
ã |φã

)

= φã, ∀a ∈ A. Hence, the parental expectations

of their adult children’s DTIs are uniquely determined.

Assumption 2.2 (Convexity and Compactness). X is a convex and com-

pact subset of a finite dimensional Euclidean space, and φd is continuous.

It follows that φd(X) is non–empty, convex and compact.

Given the parents’ myopic expectations, it is independent of whether the

inter–generational utility component of a parent is related to the adopted TI

or expected DTI of its adult child, since they coincide. Under this property,

we will now assume that any parent perceives an optimal trait intensity that

it wants its child to adopt (i.e. if the child would adopt this optimal TI,

then this would be strictly preferred by a parent over all other possible TIs

that the child could adopt). These parent–specific optimal TIs are subject

to what we call perception rules.

Thereby, the perception rule of the optimal TI of any parent is deter-

mined by two ‘ingredients’. The first one specifies a (set of) subset(s) of
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adults, which can be understood as reference group(s). The second ingredi-

ent then specifies the construction of the optimal TI that a parent perceives

out of characteristics of the adults in these reference group(s) that are either

observable (notably the DTIs of adults) or known to an individual parent.

To formally introduce the concept of perception rules, it will be conve-

nient to define A as a σ–algebra generated by the finite partition {AJ}
K
J=1.

Definition 2.1 (Perception Rule). For every parent a ∈ A, the percep-

tion rule for the optimal trait intensity is a pair
(

Ra, φ̂ã

)

, where ∅ 6= Ra ∈

{a} ∪ A and where φ̂ã : {a} ∪ A 7→ con φd(X), φ̂ã (Ra) ∈ con φd(X).

To ease the interpretation of this conceptualization, we will list here

three sensible types of perception rules for optimal TIs. In chapter 3, we will,

in a two cultural groups setting, be concerned with analyzing evolutionary

processes subject to the second and third type of perception rules mentioned

here.2 Note also that the list below is not meant to be exhaustive (one could

e.g. consider combinations of the three types mentioned).

PR 1 The optimal TI of a parent a ∈ A is identical to its adopted TI,

Ra = {a} and φ̂ã ({a}) = φa ∈ con φd(X).

PR 2 The optimal TI of a parent a ∈ A is identical to a parent–specific

(model–exogenous) TI, Ra = {a} and φ̂ã ({a}) = ea ∈ con φd(X).

PR 3 The optimal TI of a parent a ∈ A is identical to the average DTI of

one of the adult subsets, Ra = AM , M ∈ {1, . . . ,K}, and φ̂ã (AM ) =

φd
AM

∈ con φd(X).

Given the perception rule rules and the resulting optimal TIs, we assume

further that parents perceive utility losses for deviations of the adopted TI

of their children from these optimal TIs. Specifically, for any parent a ∈ A,

we introduce the parameter ia ∈ R+ that shall capture the strength of the

perceived inter–generational utility losses. We will call this the parent’s

inter–generational trait intensity. For simplicity, we assume that these are

invariably passed over from an adult to its child, iã = ia, ∀a ∈ A.

Assumption 2.3 (Inter–generational Utility). ∀a ∈ A,

(a) the perception rule and inter–generational trait intensity induce an inter–

generational utility function v
(

·
∣

∣

∣φ̂ã (Ra) , ia

)

: con φd(X) 7→ R,

v
(

φã

∣

∣

∣
φ̂ã (Ra) , ia

)

∈ R, where

(b) ∀ia ∈ R++, v
(

·
∣

∣

∣φ̂ã (Ra) , ia

)

is single–peaked with peak φ̂ã (Ra), thus

strictly increasing/decreasing at all φã ∈ con φd(X) such that φã < / >

φ̂ã.

2The first, ‘imperfect empathy’, type has already been discussed in Pichler [49]. In Ap-
pendix B 2, the respective results for the two cultural groups setting are shortly discussed.
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Best Reply Problems. In the last step toward the construction of the

parental best reply problems, let us finally discuss the cost associated with

investments into controlling the parental socialization success share. These

would concern e.g. the opportunity cost of the time parents spend for the

active socialization of a child, as well as the (psychological) cost of the effort

and devotion invested. We will represent these cost by an indirect cost

function of choices of socialization success shares. This function is assumed

to be identical for all adults a ∈ A and will be denoted c : [0, 1] 7→ R+,

c (σ̂a) ∈ R+.

For every a ∈ A, the parental best reply problem (against the represen-

tative DTI, and subject to the adopted TI, the perceived optimal TI and

the inter–generational TI) of a choice of its DTI and its socialization success

share is then represented by

max
(φd

a,σ̂a)∈φd(X)×[0,1]
u
(

φd
a |φa

)

+ v
(

φã

∣

∣

∣φ̂ã (Ra) , ia

)

− c (σ̂a) (2.2)

s.t. φã = σ̂aφ
d
a + (1− σ̂a)φ

d
Aa

.

The best reply problems of the parents hence basically consist of trading off

the cost and benefits of their socialization choices. The cost (and disutilities)

are constituted by ‘own’ utility losses that parents experience when choosing

a DTI that deviates from their adopted TI, together with the cost of a choice

of their socialization success share. The benefits accrue in form of resulting

inter–generational utility gains through reductions in the distance between

the child’s adopted TI and the optimal TI. For a detailed discussion of the

properties of the best reply solutions, confer Pichler [49].
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Assimilation of Cultural Groups

In this chapter, we will embed the endogenous cultural formation of

preferences framework in an environment where the society is populated

by two distinct cultural groups. The focus of the subsequent subsections

will be on the analysis of the evolution of the adopted trait intensities and

induced preferences subject to the Nash equilibrium socialization decisions

of the parents of both cultural groups. This will be done by imposing two

distinct types of perception rules. In section 1 we will consider the second

type of perception rule discussed above, while as section 2 is based on the

third type. Finally, the results for the first, ‘imperfect empathy’, type of

perception rule in the present setting are shortly discussed in Appendix B

2.

Consider the case where the adult set is partitioned into two groups,

A = H∪L. Let us index the groups G ∈ {L,H}, and denote their population

shares qG := λ(G). In the present setting, it will be convenient to index

the members of the groups as g ∈ G, and to denote −G := A\{G}. We

will below introduce normalizations that will guarantee that the adult–child

profiles (i.e. all model–relevant variables and parameters) of all members of

a group are identical in any period. This will allow us to speak of {L,H}

as the cultural groups of the society.

First, we assume that in any period t ∈ N, all adult members of a group

have identical inter–generational TIs and identical perception rules for opti-

mal TIs. Assume that both are fixed inter–generationally and denote them

iG, respectively
(

RG, φ̂G

)

. Second, we assume unbiased oblique socializa-

tion (with the adult subsets from which the children socially learn from

coinciding with the cultural groups), so that ∀t ∈ N, ∀a ∈ A, φd
Aa

(t) =

φd
A(t) :=

∫

a′∈A φd
a′(t) dλ(a′) = φd

L(t)(1 − qH) + φd
H(t)qH (remember that

φd
G(t) :=

1
qG

∫

g∈G φd
g(t) dλ(g), G = L,H), i.e. the society’s average DTI. We

finally need to establish that also the adopted TIs of all members of a group

are identical in any period.

Assumption 2.4 (Compactness, Convexity, Concavity).

(a) X is compact and convex and φd is continuous. If n > 1 then φd is

additionally concave. Thus, φd(X) is compact and convex.

44
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(b) The target functions of the best reply problems (2.2) are continuous and

strictly concave.1

Subsequently, we will call a symmetric Nash equilibrium (SNE) a Nash

equilibrium where all parents of the same cultural group choose identical

strategies.

Proposition 2.1 (Symmetric Nash Equilibrium Path). Let Assumption

2.4 hold and let the adopted TIs be identical within groups in the initial

period. Then, a path of symmetric Nash equilibria exists.

Proof. In Appendix B 1.1.

The logic for the existence of a SNE path is straightforward. In the initial

period, since all parents of the same cultural group do have the same adopted

TI (and by the other symmetry assumptions), they do also have identical and

unique best reply pairs to a given average DTI. It is then straightforward to

see that the necessary conditions to apply Brouwer’s Fixed Point Theorem

hold, such that the existence of a SNE in the initial period is guaranteed.

Under SNE choices in the initial period, it further follows that all children

of the same cultural group adopt the same TI. Thus, in the second period,

all adults of the same cultural group have identical adopted TIs, and a SNE

must exist again, and so forth.

Within the set–up of the present chapter, the set of Symmetric Nash

Equilbiria of any period depends on the adopted and inter–generational

TIs, the perception rules, as well as on the population shares of the two

cultural groups, P (t) := {φL(t), φH(t), iL, iH ,
(

RL, φ̂L

)

,
(

RH , φ̂H

)

, qH} ∈

φd(X)2 ×R
2
+×

(

A× C0
)2

× [0, 1]. We will thus denote the set of SNEs of a

period E(P (t)) ⊆
(

φd(X)× [0, 1]
)2
, and their typical elements

{

φd∗

G (t), σ̂∗
G (t)

}

G=L,H
∈ E(P (t)).

Using any of these for substitution in the parental socialization tech-

niques (2.1),2 we obtain the rule for the inter–generational evolution of the

1The latter assumption is stronger than it might appear on first glance. To see this note
that concavity of the own and inter–generational utility functions together with convex-
ity of the cost function is not in general sufficient to guarantee concavity of the target
functions of the optimization problems. This follows since the Hessian matrices of the
parental socialization techniques with respect to the two decision variables are indefinite
(the determinants of these Hessian matrices are −1). Thus the inter–generational utility
functions are not in general concave with respect to the two decision variables. To cure
this, it is thus necessary that the own utility functions together with the cost functions are
jointly concave and convex enough compared to the concavity of the inter–generational
utility functions.
2In the subsequent analyses, we will always point out, whether the derived properties hold
indeed for all ellements in the SNE–sets of a given period, or whether these are subject
to a particular selection.
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adopted TIs of the cultural groups G = L,H under SNE choices as

φG(t+ 1) = φd∗

G (t)−
(

φd∗

G (t)− φd∗

−G(t)
)

(1− σ̂∗
G(t)) (1− qG), (2.3)

where φG(t) obviously denotes the identical adopted TI of the adults of the

cultural group G = L,H of period t.

Integration and Assimilation The analysis in the succeeding two sub-

sections will always be initiated by a discussion of the SNE choices of any

given period under the different types of perception rules. In this context,

we will speak of behavioral dis–integration of the adult members of a cultural

group G ∈ {L,H} in period t whenever it holds that
∣

∣φd∗

G (t)− φd∗

−G(t)
∣

∣ >
∣

∣φG(t)− φd∗

−G(t)
∣

∣. This means that these adults choose a more ‘radical’ DTI

relative to the DTI of the other group’s adults than the choice of their

adopted TI would mean.

In an inter–temporal context, it will be crucial to determine the en-

dogenous evolution of the SNE choices — and with it the endogenous evo-

lution of the adopted TIs. Specifically, we will also want to answer the

question of the inter–temporal assimilation (or dissimilation) process be-

tween the two cultural groups. In a slight variation of the terminology

introduced in Pichler [49], we will speak of (TI) assimilation whenever the

TI–distance ∆φ(t) := |φL(t)− φH(t)| strictly declines over generations, i.e.

∆φ(t+ 1) < ∆φ(t). From equation (2.3), we obtain the TI–distances under

SNE choices as

∆φ(t+ 1) =
∣

∣

∣

(

φd∗

L (t)− φd∗

H (t)
)∣

∣

∣
(σ̂∗

L(t)qH + σ̂∗
H(t)(1− qH)) . (2.4)

Furthermore, if the assimilation is such that the adopted TIs of the members

of the cultural group with the contemporaneously smaller TI strictly increase

over generations, while the opposite holds vice verso, we will speak of strict

assimilation.

Finally, with behavioral assimilation, we will call a situation where the

absolute distance between the SNE choices of DTIs of the two groups strictly

declines between two generations.

1. Fixed Optimal Preference Intensities

In the present section, we consider a situation where the parents of

both cultural groups perceive (exogenously given) inter–generationally fixed

optimal trait intensities. Thus, in any given period and for both G ∈ {L,H},

φ̂G (RG) = eG ∈ conφd(X). This structure corresponds to the second type

of perception rule. Without loss of generality, consider subsequently the

(non–degenerate) case where eH > eL.
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The following assumption will be prerequisite for a meaningful charac-

terization of the (set of) symmetric Nash equilibrium choices.

Assumption 2.5 (Slope).

(a) ub and vd (· |h) are differentiable at their peaks, and

(b) c is differentiable at the origin with slope zero, and strictly increasing in

the interval (0, 1].

Since both the utility and inter–generational utility function are single

peaked, it follows by Assumption 2.5 (a) that both functions have zero

slope at their peaks. Thus, parents perceive no (inter–generational) utility

losses for marginal deviations of their chosen DTI from their adopted TI,

respectively of their adult child’s adopted TI from the optimal TI.

In the rest of the analytical part of this section, we will be concerned

with characterizing the (set of) SNE choices of the parents as well as the

resulting evolutions of the TIs of the two cultural groups. To do this, we

will focus our attention on what we call the generic state space.

Proposition 2.2 (Generic State Space). Let Assumptions 2.1–2.5 hold.

Then, ∀P (0) ∈ φd(X)2 × R
2
++×

(

A× C0
)2

× (0, 1) such that φ̂H (RH) =

eH > eL = φ̂L (RL), ∃∞ > T (P (0)) ≥ 0 such that eH > φH(T (P (0))) >

φL(T (P (0))) > eL.

Proof. In Appendix B 1.2.

This latter proposition states the following. Independent of the initial

TIs of the two cultural groups (and subject to any of the elements in the sets

of SNEs of the periods), the TIs will enter a basin in the state space where

the positions of the two TIs can be considered ‘consistent’ with the relative

location of the fixed optimal TIs. With this we mean that (a) the group with

the strictly larger fixed optimal TI does also have a strictly larger adopted

TI, and (b) the TIs of both groups do lie in the interior of the ‘TI–space’

that is formed by the two fixed optimal TIs.

That any path that starts outside this generic state space must lead into

it is illustrated in the phase diagram 2.1. In any of the fields in this diagram,

the dotted lines indicate the boundaries of the range of the angles that the

phase vectors can take (notably, the boundaries themselves are not included

in this range) under any element in the set of SNEs of any period.3 Also, one

of these possible phase vectors is always depicted. Furthermore, the phase

vectors on the boundaries between the various fields share (the combination

of) the properties of those in their neighboring fields. This also implies that

all phase vectors on the boundary of the generic state space point into it.

3The phase vectors are (∆φL(t),∆φH(t)), where ∆φG(t) := φG(t+1)− φG(t), G = L,H.



1. FIXED OPTIMAL PREFERENCE INTENSITIES 48

φHt

φLt

eH

eL

eL

eH

Figure 2.1. Phase Diagram (Non–generic State Space)

Let us briefly discuss the basic intuition to understand this phase di-

agram. We start with the two (‘non–generic’) fields in the upper triangle

of the state space where the TI of group L is smaller than optimal. This

implies that the direction of the socialization efforts of the members of this

group is ‘upwards’ (i.e. they tend to choose a DTI that is larger than their

adopted TI, jointly with a strictly positive parental socialization success

share). Since also both the adopted TI and the optimal TI of group H are

strictly larger than the adopted TI of group L, their chosen DTI tends to

be strictly larger than the adopted TI of group L. This combination leads

to a strict inter–generational increase of the adopted TI of group L under

SNE choices. The analogous logic shows that, within the fields in the upper

triangle of the state space where the TI of group H is larger than optimal,

the adopted TI of group H must strictly decrease.

Consider now the lower left triangle in the state space. In this, the TI

of group H is smaller than that of group L, and both are smaller than the

optimal TI of group L. In this case, the directional socialization efforts of

both groups are (strictly) ‘upwards’. This implies that at least the adopted

TI of group H must strictly increase inter–generationally. Again, the anal-

ogous logic shows that in the upper right triangle, the adopted TI of group

L must strictly decrease.

Finally, consider the lower right field in the state space. In this, the TI

of the members of cultural group L is larger than both their optimal TI and

the adopted TI of cultural group H. Furthermore, the latter is smaller than
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optimal. This implies that the directional socialization effort of the members

of group L is ‘downwards’ while that of group H is ‘upwards’. This combi-

nation then yields the effect that under SNE choices, the inter–generational

increase in the adopted TI of group H must be strictly larger (respectively

strictly less negative) than that of group L.

We will now turn to the characterization of SNE choices within the generic

state space. Note that the results below do again hold for all elements in

the sets of SNE choices of any period.

Proposition 2.3 (SNE Characterization). Let Assumptions 2.1–2.5 hold

and let eH > φH(t) > φL(t) > eH . Then, ∀{iL, iH , qH} ∈ R
2
++×(0, 1),

∀E(P (t)) ∋
{

φd∗

G (t), σ̂∗
G (t)

}

G=L,H

(a) φd∗

H (t) > φH(t) > φL(t) > φd∗

L (t),

(b) σ̂∗
G(t) ∈ (0, 1], ∀G ∈ {L,H},

(c) eH > φH(t+ 1) > φL(t+ 1) > eL.

Proof. In Appendix B 1.3.

Within the generic state space, the socialization efforts of the members of

the two cultural groups are in the opposite directions. This yields the result

that in any SNE, the parents of both cultural groups dis–integrate behav-

iorally and choose strictly positive socialization success shares. Nevertheless,

their socialization investments would never be intense enough such that the

next generation’s adopted TIs would exactly coincide with the optimal one

(the logic of this sort of result is being discussed in Pichler [49]). This means

that once the TIs of the two groups have entered the generic state space,

they will never leave it again. Thus, in an extension of Proposition 2.2, it

follows that for every t′ ≥ T (P (0)), eH > φH(t′) > φL(t
′) > eL.

1.1. Numerical Dynamic Analysis. From the analysis above, it is

obvious that any steady state must be located within the generic state space.

However, we were neither able to analytically characterize the dynamic be-

havior of the model under fixed norms on behavior, nor the stability prop-

erties of the steady states. In short words, the central barriers for such an

analysis were (a) the high generality and nonlinearity of the model, and (b)

that no explicit solutions for the SNE choices can be obtained, so that all

convergence and stability criteria have to be calculated with results from the

Implicit Function Theorem (which necessites the inverse of the 4x4–matrix

of second partial derivatives of the parental best reply problems evaluated

at an ‘anonymous’ steady state). Thus, to illustrate the dynamic properties

of the model, we resorted to numerical simulation methods. Thereby, the
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following quadratic (dis–)utility and cost functions were used.

u (b |d) = −(b− d)2

v (e |f, h) = −h(e− f)2

c(j) = j2,

and we set (eL, eH) = (−1, 1), so that the generic state space corresponds

to the (interior of the) triangle (−1,−1)–(−1, 1)–(1, 1).4

In the numerical simulation, we then proceeded in the following way:

First, we fixed a value for qH . Second, we considered ten linearly spaced

values for iG, G = L,H, between 0.2 and 2.0 (thus, the resulting matrix of

combinations of iL and iH had 100 entries). Third, we considered 10 linearly

spaced points between −0.95 and 0.95 in both dimensions of the state space.

The combinations of these (that were contained in the generic state space)

yielded the initial TIs.5 For any of the combination of inter–generational

TIs, we then calculated the resulting path of TIs for any of the initial TIs.

The following summarizing statistics were collected (subject to a fixed qH):

(1) Did all paths of TIs converge?

(2) If yes, was there a unique steady state?

(3) Have all steady states attained been locally asymptotically stable?

These statistics were calculated for qH = 0.5, 0.7, 0.9 (there is no need for

considering more values of qH , since already enough asymmetries are em-

bodied in the variations of the inter–generational TIs). These summarizing

statistics are collected in Table B.1 at the end of Appendix B 1.

As can be seen from this table, the question of convergence could be

globally answered with ‘Yes’. It can therefore be claimed that the existence

of cycles or chaotic behavior in the model under fixed norms on behavior is

at best highly nongeneric.

As far as the other criteria are concerned, note as a basic illustrating

rule that the intensities of socialization investments (i.e. choice of behav-

ioral (DTI) deviation and parental socialization success share) of the parents

of both groups tend to be decreasing in the direction ‘north–west’ (move-

ments in the generic state space with decreasing distance to the ‘optimum

point’ (eL, eH)); and they tend to be increasing/decreasing for group L/H

in the direction ‘north–east’ (movements in the generic state space that

preserve the TI–distance but decrease the distance to the point (eH , eH)).

4Note that all that counts here is the distance between the two norms, not their exact
location. However, in the graphical analysis below, the particular choice will simplify the
interpretation.
5Knowing that the boundaries of the state space are rejecting, we could well disregard
them with respect to initial TIs.
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The question of (local) stability of a steady state is thus the question of

whether these rules do hold locally around a steady state, and whether the

associated ‘socialization forces’ are not too unbalanced in magnitude for the

parents of both groups; and obviously, the question of uniqueness of a steady

state is that of whether the socialization forces exactly even out at only one

point. Now, as can be seen from Table B.1, neither of these questions can

be globally answered with ‘Yes’. But there are clear cut regularities in the

dynamical patterns that we will discuss next.

Let us consider first the case qH = 0.5, so that we can single out the

regularities related to the combinations of iL and iH . First, we can see

that if the socialization incentives embodied in the inter–generational TIs

are not too unbalanced, then the steady states are all locally (or globally)

asymptotically stable, which corresponds to the statements in the previous

paragraph (and in case that the socialization incentives are too unbalanced,

the steady states are typically not stable).

Even, if both inter–generational TIs are high relative to the size of the

generic state space (determined by the difference eH−eL),
6 then the parents

of both groups would choose comparatively intensive socialization invest-

ments for already comparatively low deviations of their children’s TIs from

the fixed norm on behavior — thus in a large area of the generic state space.

Remembering the variations of the socialization investment intensities into

the directions ‘north–west’ and ‘north–east’, this prevents the existence of

multiple steady states. Even, any of the unique steady states appeared to

be globally asymptotically stable (since they are subject to more or less

balanced socialization incentives). One such case of (assumingly) global as-

ymptotic stability is illustrated in Figure 2.2 below, but notably for the case

of qH = 0.7.7

Now, in the opposite case where both inter–generational TIs are low

compared to the size of the generic state space, the parents of both groups

choose small investments in their socialization instruments in a large area

of the generic state space. This implies that the groups tend to assimilate

inter–generationally, and that the TI–paths move into the direction of the

6The size of the generic state space determines the maximum deviation of the children’s
adopted TIs from the optimum. Thus, we always have to consider the strength of the
inter–generational TIs relative to this size (since they then determine the maximum inter–
generational disutilities that parents can encounter). As it turned out (and is discussed
below), the choice of eH − eL = 2 featured all possible variations of dynamical behavior
that we can expect the model to yield. Thus, it was not necessary to consider higher
maximum values of inter–generational TIs than that of 2 (where the inter–generational
‘concerns’ are twice as important than own utility concerns).
7‘Zooming’ into this phase diagram and considering a small area around the steady state
(−0.3273, 0.3884), the phase vectors did still all point toward the steady state, confirming
the asymptotic stability.



1. FIXED OPTIMAL PREFERENCE INTENSITIES 52

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
φ H

φ
L

Figure 2.2. Phase Diagram for qH = 0.7, eL = 1.2, eH = 1.6

main diagonal (at least after some periods), where the TIs of both groups are

identical. Along a path of decreasing TI–distance, it furthermore holds that

the DTI–choices of the parents of both groups tend to be closer, implying

that the parents of both groups do have to invest less into countervailing

the socialization influences of the other group’s members. This furthers

the assimilative tendencies. The combined result is the existence of multiple

equilibria that typically feature a very small (in fact even marginal) deviation

of the TIs with accordingly low steady state socialization investments of the

parents of both groups. One such case is illustrated in Figure 2.3, here for

the case qH = 0.9 (compare also the left graph of Figure 2.5).8

Finally, there are also cases that feature a mixture between the two polar

cases discussed above. This concerns cases where there is one locally asymp-

totically stable steady state with a significant basin of attraction together

with finitely many (locally stable or unstable) steady states with marginal

8As can be seen in the third part of Table B.1, Figure 2.3 illustrates a case where all
steady states are locally asymptotically stable (all TI–paths associated to the different
initial TIs converged to different steady states, which were all located between (−0.7323−
ǫ,−0.7323 + ǫ) and (−0.0677 − ǫ,−0.0677 + ǫ)). This fact is hard to verify graphically
(even upon ‘zooming’ locally around a steady state), since the phase vectors on the main
diagonal feature de facto zero length.
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Figure 2.3. Phase Diagram for qH = 0.9, eL = 0.8, eH = 0.4

TI–deviation. This necessites inter–generational TIs that are strong enough

such as to induce comparatively high socialization investments in a large

area of the generic state space, but which are also weak enough such that

the groups assimilate if the (initial) TIs are close enough. This typically

corresponds to inter–generational TI–combinations that are neighboring the

‘upper right’ (unique and stable) areas in the three sub–tables of Table B.1.

One such case is illustrated in Figure 2.4 for the case qH = 0.7.9

In the next step, let us discuss the role that the population shares of

the groups play for the dynamical behavior. As can be seen from the com-

parison of the three individual tables in the global Table B.1, an increasing

share qH in a sense shifts the ‘mass’ of the three types of statistics–triples

(YYY, YNY, YNN) counterclockwise with an outwards rotation. This can

be explained as follows. First, associated to an increasing population share

are less incentives of the individual parents to engage in active socialization

(given any inter–generational TI). This holds since parents of a group with

9The TI–paths converged to three different steady states. The ‘central’ one,
(−0.2733, 0.398) which is locally asymptotically stable, and two close to the main di-
agonal, (−0.3517 − ǫ,−0.3517 + ǫ) and (−0.1738 − ǫ,−0.1738 + ǫ), both of which are
unstable.
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Figure 2.4. Phase Diagram for qH = 0.7, eL = 1.2, eH = 0.8

a larger population share face a more favorable composition of the general

society in the sense that more other parents orient their DTI–choice into

the same direction (and all DTI–choices are even identical in a SNE). Thus,

ceteris paribus, parents of a group with higher population share tend to

choose less behavioral deviation and a smaller socialization success share.

Now, to maintain uniqueness and asymptotic stability, to even out the

more unbalanced socialization incentives (compared to the case qH = 0.5),

a higher inter–generational TI of group H and/or a lower inter–generational

TI of group L are required. This explains the counterclockwise outward

rotation in the ‘upper right’ (unique and stable) areas of the tables. In the

‘lower left’ (multiple and stable) areas, the explanation needs to be more

careful. Remember that the multiple steady states in these areas are such

that the parents of both groups do hardly invest into active socialization

at all. This stems from the fact that the inter–generational disutilities are

very low even for comparatively high deviations of the children’s adopted

TIs from the norm. As a result, the individual substition effects between

own socialization investements and those that are exerted on the children

by the other adult members of the group have a significantly lower mag-

nitude compared to the previous (‘upper right’ area) cases. Thus, in the
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present cases, the (ceteris paribus) effect of an increasing population share

is to increase the aggregate (population–share–weighted) socialization in-

vestments of a group. To even out the resulting inbalances, larger/lower

inter–generational TIs of the group with the decreasing/increasing popula-

tion share are required. This explains the counterclockwise outward rotation

in the ‘lower left’ areas of the tables.

SNE– and TI–Path Illustration We will close this section with an

illustration of two particular paths of SNEs and TIs that evolve if the initial

TIs of both groups coincide with their fixed norms on behavior. Notably,

we used here the same explicit functions, but chose eH − eL = 4 (so that,

compared to above, e.g. lower inter–generational TIs are sufficient to obtain

global asymptotic stability of a steady state). The lengths of the time–axes

below corresponds to 100 periods.

In both cases of Figure 2.5, group L is always the minority with a popu-

lation share of ten per cent. Such a constellation can e.g. be interpreted as

having resulted from immigration (of group L), where initially the hosting

and immigrant group have had adopted exactly their optimally perceived

TI. The latter could e.g. be constantly indoctrinated by two distinct reli-

gious institutions which the two different cultural groups adhere to — and

which thus constitute the respective norms on behavior of the two groups.
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Figure 2.5. Evolution under Fixed Optimal TIs

In the upper graph of each case, the solid and dotted lines represent

the DTIs and TIs of the two groups (and the dash–dotted line locates the

population–share weighted convex combination of the initial TIs; this would

equate to the steady state if parents of both cultural groups would not invest

into their socialization instruments). The paths of the socialization success

shares of the parents of group L are represented by the dotted lines in the

lower graph of each case.
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The left case of the figure stylizes immigration of a cultural group with

a comparatively weak norm on behavior into a hosting society for which this

also holds. To the contrary, the right case of the figure stylizes immigration

of a cultural group with a strong norm on behavior into a hosting society

with a comparatively weak norm.

Let us first collect the evolutionary regularities that can be seen in both

cases. First, the members of both cultural groups dis–integrate behaviorally

in every period. Second, there is an assimilative tendency until the steady

state has been reached. Notably, this TI–assimilation of the groups is also

accompanied by a behavioral assimilation.

Furthermore, in both cases the minority cultural group invests consider-

ably more into both socialization instruments. As has been discussed shortly

above, this is (partially) due to the fact that the minority group faces a much

more unfavorable composition of the general social(ization) environment (in

terms of the resulting location of the average DTI compared to the fixed

optimal TI). The individual parents of that group thus aim to compensate

this by increased investments into their socialization instruments. In the

right case, the minority group does additionally have a much stronger norm

on behavior, i.e. the social punishments from behavioral deviations from the

norm are accordingly more intense. This additionally induces the parents of

this group to invest more into socialization.

This latter effect has a remarkable impact on the dynamical evolution of

the endogenous variables. In the left case, the norms of both cultural groups

are low enough such as to allow for a substantial assimilation process. Even,

the TIs of the two groups do nearly converge to a symmetric steady state

(but stay distinct).10 Compared to this case, the increased socialization

investments of the minority group in the right case do trigger an according

reaction of the majority group. Thus, both groups invest more into both

socialization instruments. As a consequence, the TIs of the two groups are

held back from assimilation already after very small deviations from the

fixed optimal TIs. The resulting steady state TI–distance is accordingly

larger.

2. Endogenous Norms on Behavior

The present section will be based on the third type of perception rule

discussed in chapter 2. The latter lets all parents form their perception of the

optimal trait intensity based on a the average DTI of a subset of the adults.

In the present context, it is one immediate option to let the respective subsets

10We call a symmetric steady state a steady state where almost all adults have the same
adopted TI.
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coincide with the adult members of the own cultural group of a parent. We

will do so and thus consider the case where φ̂G (G) = φd
G(t), ∀G = L,H,

∀t ∈ N (and all subsequent Propositions of the present section are subject

to this specification).

This structure opens routes to the existence of multiple, qualitatively

different, SNEs. However, we can show that in any given period, SNE

choices exist that preserve the relative positions of the adopted TIs of the

two groups. To require this property can be considered sensible, since it

assures a minimum sort of continuity of the inter–generational evolution of

the TIs.

Proposition 2.4 (Relative–Position–Preserving SNE). Let Assumption

2.1–2.5. Then ∀t ∈ N, ∀{iL, iH , qH} ∈ (R++ \{∞})2 × (0, 1), there exixsts a
{

φd∗

G (t), σ̂∗
G (t)

}

G=L,H
∈ E(P (t)) with the following characteristics.

(a) Case φH(t) >< φL(t)

(a) φd∗

H (t) >< φH(t) >< φL(t) >< φd∗

L (t),11

(b) σ̂∗
G(t) ∈ (0, 1), ∀G ∈ {L,H},

(c) φd∗

H (t) >< φH(t+ 1) >< φL(t+ 1) >< φd∗

L (t).

(b) Case φH(t) = φL(t)

(a) φd∗

G (t) = φG = φG(t+ 1), ∀G ∈ {L,H},

(b) σ̂∗
G(t) = 0, ∀G ∈ {L,H}.

Proof. In Appendix B 1.4.

The key to understanding these properties is the following. Consider

a situation where the DTIs are such that both groups dis–integrate be-

haviorally. Then, the best reply directions of socialization efforts would

coincide with this constellation, i.e. there would be best reply behavioral

dis–integration of both groups. This is the basis for the existence of a SNE

as characterized in the first part of Proposition 2.4.

Since both cultural groups dis–integrate behaviorally, together with a

strictly positive socialization success share, it also follows that the relative

TI positions of the two groups are preserved over generations. However, the

parents of both cultural groups would never choose to exclusively socialize

their children (choose a parental socialization success share of one). This

follows since in this case, their adult children’s adopted TI would coincide

with the chosen DTI of the parents, thus with the optimal TI. This can

though never be subject to best reply choices (as discussed in detail in

Pichler [49]).

11The outer inequalities turn into equalities if the adopted TI of a cultural groups equals
the relevant one of the boundaries of the set of possible DTIs.
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Finally, in the case where the adopted TIs of both cultural groups are

identical, the situation where the parents of both cultural groups do not

actively socialize their children is possible under SNE choices. This is im-

mediate since such a choice–constellation yields maximum possible utility

for all parties involved. Notably, since the adopted TIs of all adult children

then coincide with the adopted TIs of the contemporaneous adult genera-

tion, any such case constitutes a steady state (which is additionally relative

position preserving).

Under these relative position preserving properties, it furthermore fol-

lows that no TI–trajectory that has its origin in the upper/lower triangle of

the state space can enter the lower/upper triangle. We will next turn to a

discussion of qualitative properties of the corresponding TI–dynamics.

Assumption 2.6 (Strict Concavity and Convexity). The functions u and

v are C2 and strictly concave, and the function c is C2 and strictly convex.

Proposition 2.5 (Basin of Attraction). Let Assumptions 2.1–2.6 be

satisfied, and consider only relative–position–preserving SNEs. Then, for

every (iL, iH , qH) ∈ R
2
+×(0, 1), ∃∆(iL, iH , qH) ∈

(

0, | conφd(X)|
]

such that

∀0 < ∆φ(t) < ∆(iL, iH , qH), ∆φ(t+1) < ∆φ(t). This implies that ∀∆φ(0) <

∆(iL, iH , qH), limt→∞∆φ(t,∆φ(0), iL, iH , qH) = 0.

Proof. In Appendix B 1.5.

Indeed, there is a basin in terms of a maximum TI–distance such that for

any pair of TIs that features a lower distance, the cultural groups assimilate

inter–generationally. To show this property, we employed the Implicit Func-

tion Theorem, and the logic for the results is the following: From Proposition

2.4, we know that at any steady state (φ, φ) ∈ φd(X)
2
, the parents of both

groups do not actively socialize their children (i.e. they choose DTIs that ac-

cord with their TIs and zero parental socialization success shares), since their

adopted TI coincides with the optimal TI. Now, for marginal displacements

from such a steady state, the adopted TIs of the children of both groups will

also only marginally deviate from the optimal TI (given the local continuity

of the SNE choices which follows since we can apply the Implicit Function

Theorem). But such a deviation yields no inter–generational disutility, so

that the parents will again not engage in active socialization. Thus, all chil-

dren of the society adopt the society’s average DTI, i.e. a(nother) steady

state is immediately reached. This establishes the existence of a basin of

attraction for the symmetric steady states.

Nevertheless, this basin of attraction does not in general coincide with

the whole state space. We will next be concerned with establishing con-

ditions that guarantee convergence to a steady state for any initial pair of
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TIs. Notably, the latter property could not be attained in the discrete time

OLG framework that we employed so far. Thus, we consider below a contin-

uous time approximation of the model.12 Notably, the general convergence

result that we obtain for the continuous time approximation implies that,

under the same conditions, we can expect the same convergence property to

generically hold in the discrete time OLG model.

Additional to the continuous time approximation, we will require the

following.

Assumption 2.7 (Symmetric Utility Functions). ∀b, b′ ∈ conφd(X),

u (j|b) = u (j′|b′) if b − j = b′ − j′. Similarly, for every d, d′ ∈ conφd(X),

and h ∈ R+, v (k|d, h) = v (k′|d′, h) if d− k = d′ − k′.

This assumption states that all ‘own’ and inter–generational utility func-

tions yield identical felicity for identical ‘directional’ deviations from their

peaks. On the one hand, this assumption appears to be quite natural. On

the other hand, note that it implies that the dis–utilities that accrue due

to deviations from the utility peaks are independent of the positions of the

peaks relative to the boundaries of the set of possible DTIs (respectively

‘adoptable’ TIs).13

Proposition 2.6. Let Assumptions 2.1–2.5 and 2.7 be satisfied. Then

there is a SNE selection function such that ∀ (φL(0), φH(0)) ∈ conφd(X)2,

and ∀ (iL, iH , qH) ∈ R
2
+×(0, 1), the TIs converge to a steady state.

This proposition states that (under the conditions imposed) there exists

a SNE selection function such that even any initial pair of TIs that is lo-

cated outside the basin of attraction of the symmetric TI points converges.

Thereby, the relevant properties of the SNE selection function are achieved

throuh normalizations of the phase vectors to rule out the existence of circles

in the whole state space.

In very short words, these normalizations are such that the state space is

being composed of a continuum of connected line segments. These consist of

(a) a vertical line on which the lower/upper bound of the set of possible DTIs

is binding in the DTI choice of the parents of group L (in the upper/lower

12Like Bisin and Verdier [8, p. 303] we could derive the continuous time approximation
from an OLG society populated by “agents living ∆ units of time and have children 1−h
units of time after birth, by taking the limit for ∆, h → 0, with h

∆
= 0.”

13To see that accounting for these relative positions might be sensible, consider a pair of
unequal adopted TIs. Then, any identical DTI deviation from these utility peaks in the
same direction would imply that always one chosen DTI can be considered more ‘radical’
relative to the maximum or minimum possible DTI. Thus, if one would e.g. like to account
for the adults’ eventual ‘preferences’ for moderate behavior, Assumption 2.7 would not be
appropriate. A similar line of thought applies in case that parents would e.g. prefer their
adult children having moderate adopted TIs (respectively choosing more moderate DTIs).
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triangle of the state space), and on which the TI–change of group H is

constant; (b) a 45 ◦–line on which the TI–changes of both groups are constant

(notably, these lines can ‘melt down’ to single points); and (c) a horizontal

line on which the upper/lower bound of the set of possible DTIs is binding

in the DTI choice of the parents of group H (in the upper/lower triangle of

the state space), and on which the TI–change of group L is constant.

Since the state space is thus constructed as a continuum of (connected)

line segments on which the TI–change(s) of group L and/or group H are

constant (notably, on the 45 ◦–lines, the TI–changes of group L are identical

to that of the connected vertical lines; and the TI–changes of group H are

identical to that of the connected horizontal lines), it follows that no circles

can exist. Thus, any path of TIs must converge to a steady state.

φHt

φLt

Figure 2.6. Phase Diagram (Upper Triangle of the State Space)

The results of Proposition 2.6 are illustrated in Figure 2.6, which stylizes

possible qualitative properties of the phase vectors in the upper triangle of

the state space (the phase diagram in the lower triangle would correspond

to the mirror image). This upper triangle is partitioned into four distinct

fields, indicated by the dotted lines. These stylize the regions where either

the lower/upper bound of the set of possible DTIs is binding for group L/H

(the leftmost/upper–rightmost triangle), respectively where both boundaries

are binding (the rectangle), or where both boundaries are unbinding (the

main triangle).
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The central characteristic of this phase diagram is that with increasing

TI–distance, the TI–assimilation of the cultural groups declines in mag-

nitude. Specifically, in a neighborhood around the main diagonal (which

consists of a continuum of steady states) the cultural groups do first strictly

assimilate, followed by a neighborhood in which assimilation takes place.

Furthermore, there is a 45 ◦–line in the main triangle where the TI–distance

stays constant (but not the TIs themselves in this case).

For any point in the main triangle that features a larger TI–distance,

the cultural groups do even (strictly) dissimilate. In the present illustra-

tion, where the socialization efforts of the parents of group H are always

dominating (which can be due to e.g. a larger strength of the behavioral

norm), this has the following consequence: Any TI–trajectory that starts in

the according area of the state space must lead into a field where (at least)

the upper bound of the set of possible DTIs is binding for group H.

In this field, there is then a separating vertical line with the following

properties. If a trajectory enters (or starts in) the field ‘to the left’ (i.e. at a

point with a lower adopted TI of group L) of this vertical line, then the TIs

will converge to the asymptotically stable steady state in the rectangle. In

the opposite case, the TIs will be subject to an assimilation process toward

a symmetric steady state. Finally, if the trajectory should enter the field

exactly at the vertical line (or starts thereon), then the depicted unstable

steady steady state would be reached.

SNE– and TI–Path Illustration We again conclude this section with a

numerical illustration of the evolutionary dynamics14. In both cases of Fig-

ure 2.7, group L is a again the minority with a population share of twenty

per cent. Furthermore, it has a slightly lower intensity of the endogenous

norm on behavior.

The only distinction between both cases is that the right case features a

twice as high initial TI–distance as the left case. As can be seen, this has a

crucial consequence on the evolutionary dynamics. The constellation in the

left case is such that the initial TIs are located in the basin of attraction

of the symmetric steady states. Even, both cultural groups do assimilate

throughout the convergence path. This process is again accompanied by an

assimilation of the chosen DTIs.

These results do not hold in the right case. To the contrary, the initial TI

distance is large enough such as that even an inter–generational dissimilation

14Compared to the previous section, the total length of all time–axes is reduced to 30
units.
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Figure 2.7. Evolution under Endogenous Behavioral Norms

process is triggered — both with respect to the TIs as well as to the chosen

DTIs.



CHAPTER 4

Conclusions

This paper extended and specified a recent theory of Pichler [49] on the

inter–generational formation of continuous cultural traits. Followed by a

recapitulation of the latter theory, we analyzed the dynamic evolution of

both the behavior and the intensities of the continuous cultural traits in a

society populated by two distinct cultural groups.

We showed that the qualitative dynamic properties depend crucially on

how parents form their perception of the optimal trait intensity that their

children should adopt. As has already been shown in Pichler [49], if all

parents have ‘imperfect empathy’, then the trait intensities of (almost) all

dynasties converge to the same point. To the contrary, if all parents of a

cultural group adhere to the same exogenously given and fixed optimal trait

intensity, then this can never happen. Rather, the two cultural groups stay

distinct forever.

The largest variety of possible qualitative properties of the convergence

paths is being featured when the optimal trait intensities of all parents of

a cultural group coincide with that derived from the average behavior of

the group members. Given this, it is well possible that the trait intensities

of (almost) all parents converge to the same point. However, it can occur

that the cultural groups initially assimilate, but stay distinct in the long run.

Even, an inter–generational dissimilation process that leads to a steady state

with larger than initial trait intensity distance can realize.

This sort of analysis can also yield additional insights into empirically

observable patterns of assimilation and integration of cultural groups. How-

ever, the present one–dimensional framework can only be considered the

first step in a longer road toward a holistic representation of these pro-

cesses. The next steps on this road could concern a general, n–dimensional

analysis, both with respect to the number of continuous cultural trait types,

as well as to the number of cultural groups. Furthermore, we considered

here only benchmark cases of perception rules for optimal trait intensities.

A more general approach would be sensible.

Note also that we restricted the parental decision problems to the so-

cialization side only — and left other behavioral determinants (like general

social interactions) unconsidered. Accounting for a richer ‘adult world’ could
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yield qualitatively different results. Finally, the role of the children in their

socialization process is so far that of passive receivers. Allowing for a pro–

active role of children in the adoption process of trait intensities could also

constitute a fruitful extension of the present baseline model (and that of

Pichler [49]).



Part 3

The Evolution of Continuous

Cultural Traits in Social Networks



CHAPTER 1

Introduction

Recently, Pichler [49] introduced a framework that determines the inter–

generational formation and evolution of continuous cultural traits. These are

meant to contain all types of traits that (a) are subject to formation in the

socialization process, and (b) can reflect different intensities (or magnitudes,

valuations, strengths, importances. . . ), located in a convex subset of the

real line. Specifically, this class contains concepts that are in standard use

in economic theory, like the degree of altruism, the intensity of preferences

for leisure or for social status, the patience (intensity), etc. Moreover, it

also contains (sociological) concepts like the values, attitudes, (strength of)

norms and continuous opinions that a person adopts.

The formation of the trait intensities is based on the children’s social

learning from the observed behavior of the adults in their social environment.

In Pichler [49], this environment consists of a continuum of adults. To the

contrary, in the present paper we consider a finite population setting in

which the social learning of children takes place in a social network.

This change has remarkable consequences on the resulting evolution of

the continuous cultural traits/opinions. In particular, we obtain a behav-

iorally induced transformation, respectively generalization, of the dynamics

that would be obtained under the DeGroot model (see e.g. Jackson [36] for

an overview over the properties of this model).

Contributions and Results The first part of this paper is devoted to an

introduction of the cultural formation of continuous cultural traits frame-

work of Pichler [49], given our finite population setting. In doing so, we will

show in a first step how children come to adopt intensities of any arbitrary

continuous cultural trait type. We let this be based on the children’s social

learning from observed socio–economic action patterns of the adults in their

social environment. Upon observation of the socio–economic action pattern

of an adult, children also receive a cognitive impulse. The latter can be

understood as the signal on the valuation (or importance, magnitude, etc.)

of the continuous cultural trait that is embodied in the choice of the par-

ticular socio–economic action pattern over the other available choices. We
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even endow these sorts of cognitive impulses with a cardinal meaning and

call them displayed trait intensities.

The trait intensity that a child adopts then results as a convex combina-

tion of the displayed trait intensities of its (single) parent on one hand, and

the representative displayed trait intensity of the unrelated adults, on the

other hand.1 The latter is being determined by the relative social learning

weighted average of the displayed trait intensities of the unrelated adults.

The relative social learning weights can be interpreted as representing the

children’s social learning networks. Finally, the convex combination be-

tween both sources is then determined by the relative (overall) weight that

the parents have in the socialization process of their children.

We then show how to interpret the trait intensities that adults have

adopted such as to induce utility functions over the choice of displayed trait

intensities, respectively the underlying socio–economic action patterns. Be-

sides this utility component, parents do also obtain inter–generational util-

ity, which is related to the adopted trait intensities of their children. Specif-

ically, we assume that parents have a desire for their children to adopt the

same trait intensity as they (the parents) have.2 If the adopted trait inten-

sities of the children deviate from these socialization targets, then parents

perceive dis–utilities.

Given these two utility components, we then analyze static and dynamic

properties of the model when all parents optimally choose their behavior

(displayed trait intensities as determined by the socio–economic action pat-

terns) subject to fixed parental socialization weights and subject to a fixed

social learning network. The optimal choices of displayed trait intensities

thereby result as best replies to the representative displayed trait intensities

of the unrelated adults. These best replies are such that parents always coun-

tervail an eventually suboptimal representative displayed trait intensity of

the unrelated adults. This means that (whenever the parental socialization

weight is strictly positive and unequal one) parents do behaviorally deviate

from their adopted trait intensity into the opposite direction as the devi-

ation from the representative displayed trait intensity from their adopted

trait intensity — which equals their socialization target — is.

The main focus of our present work is then the analysis of the dynamic

evolution of the adopted trait intensities of the dynasties under Nash equi-

librium behavioral choices. We start this analysis with a classification of

possible steady states. These are such that in any steady state all adults

1We thus consider a framework of ‘vertical and oblique socialization’, the terminology of
which stems from Cavalli-Sforza and Feldman [16].
2A more general representation of this context is introduced in Pichler [49].
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behave as they are, i.e. they choose a displayed trait intensity that coincides

with their adopted trait intensity. Moreover, the adopted trait intensities

of all dynasties in certain parts3 of the society must be identical. The cen-

tral question is then under which conditions the sequence of adopted trait

intensities converges to any such steady state.

To answer this, we introduce in a first step a representation of the non–

linear discrete time dynamics of our model as the left product accumulation

of matrices. Thereby, the respective matrix of any given period arises as a

behaviorally induced transformation of the underlying (inter–generationally

fixed) total social learning matrix. The latter is constituted by the parental

socialization weights on the diagonal, and the normalized relative social

learning weights of the unrelated adults as the off–diagonals. Thus, the

social learning matrix is row–stochastic. However, this property is not in

general sustained under the transformation which is induced by the (even-

tual) behavioral deviation of the adults from their adopted trait intensity.

Notably, if this behaviorally induced transformation would not be present,

our model would coincide with the DeGroot model. We thus obtain a trans-

formation, respectively generalization, of the DeGroot model.

Given our behaviorally transformed (social learning) matrices, to answer

the question of convergence would then coincide with deriving sufficient

conditions for the convergence of the left product sequence of general —

i.e. not necessarily (positive) row–stochastic — matrices. However, little

results that were useful in our context were available on this issue. To

the contrary, considerably more has been provided on conditions for the

left product convergence of row–stochastic matrices, in particular by Lorenz

[40, 41]. To apply these results, we thus had to guarantee in a first step that

in any given period, our transformed matrices are positive, respectively row–

stochastic. Applying a number of linear algebra results, we could then show

that indeed if the social learning matrix is a so called symmetric ultrametric

matrix, then the behaviorally transformed matrices of any given period are

row–stochastic.

In our context, the major properties of symmetric ultrametric matrices

are that (a) the social learning structure is symmetric, (b) parents are the

‘primary socialization sources’ of their children, i.e. no other adult has a

larger relative socialization weight, as well as (c) a condition that basically

guarantees that the socialization influence that any dynasty has on the other

dynasties is too dominant. Even more, these properties do additionally

guarantee that the conditions for convergence derived by Lorenz [40, 41] are

satisfied. The most central step toward satisfying these is that we obtain (a

3We will formally introduce such ‘communication classes’ later.
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special sort of) ‘type symmetry’ between the original social learning matrix

and the transformed matrices.

Thus, endowing the social learning matrix with sufficient structure, we

obtain convergence to a steady state as classified above. However, the ne-

cessity to guarantee that the transformed matrices are positive, thus row–

stochastic, in any given period, significantly reduces the types of possible

(convergence) paths that we can address. Basically, we have to restrict our

glance to dynamics that are analogous to that obtained in the DeGroot–

model. However, the structure of our model, as induced by the behaviorally

transformed matrices, is inherently more general. At the present point, we

are though unfortunately limited in addressing the more general dynamic

structure by non–existing results on the convergence of left–products of gen-

eral (non–positive) matrices.

To underline, however, that more general convergence results could be

obtainable, we introduce a specification of our general model based on ex-

plicit utility functions and unrestricted optimization. Most centrally, this

yields the result that the transformed matrices are identical in any given

period, so that we can then apply results on the convergence of the powers

of matrices. In particular, we can then show that (a) if the social learning

matrix is symmetric positive definite, or if (b) the ‘strength’ of the inter–

generational utility is ‘not too large’ compared to that of the displayed trait

intensity utility, then (in the first case generically) the sequence of the trans-

formed matrices converges.

Related Literature Our present work stands in close relation to two

distinct strands of literature. The first is the small existing literature on the

question of the cultural formation of continuous cultural traits.4 Important

early treatments of the topic are Cavalli-Sforza and Feldman [16] in a theo-

retical, and Otto et al. [46] in an empirical context. More recently Bisin and

Topa [5] proposed a representation of the formation of the intensities of con-

tinuous cultural traits (or preferences). Their approach is though restricted

to the family’s choice of its weight in the child’s socialization process. The

issue of the behavioral choice is left unconsidered.5

As has been discussed above, Pichler [49] introduced a more general

approach to the cultural formation of continuous cultural traits. Applying

this model, Pichler [48] analyzes the evolution of continuous cultural traits

in a society which is populated by two distinct cultural groups. He shows

4Note that there exists a well established literature on the (probabilistic) transmission of
a discrete set of preferences. See Bisin and Verdier [10] for an exhaustive overview.
5The same is true for the approach of Panebianco [47], who considers the evolution of
inter–ethnic attitudes.
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that the qualitative dynamic properties depend crucially on which type of

socialization targets (called ‘perception rules’) the parents perceive. In par-

ticular, he contrasts the case of ‘imperfect empathy’ with the cases where

the parents perceive exogenously given norms on behavior, respectively en-

dogenously evolving norms on behavior.6

The second branch of literature related to our work is the literature on

the evolution of continuous opinions (in social networks) introduced by De-

Groot [18]. Here, the general assumption is that individuals do have an

opinion or belief (measured by a parameter in R) and update this opinion

by interaction with other individuals according to their trust to others and

self-trust. DeGroot [18] finds that if the interaction structure is strongly

connected and aperiodic then the whole society will end up having the same

opinion, i.e. the society reaches a consensus. A variation of this model is

introduced by DeMarzo et al. [19] where the individuals’ own beliefs can

vary over time. The convergence result is similar to that of DeGroot [18]

with additional assumptions on the self–trust weights. Moreover, DeMarzo

et al. [19] study the speed of convergence. In Lorenz [40] and Lorenz [41]

the whole interaction structure is allowed to change over time. Under some

conditions, i.e. type-symmetry (if i puts some weight on the opinion of j

the j also puts some weight on the opinion of i), positive self–belief, and

non-convergence to zero of the positive entries, convergence to a consensus

is obtained. Other studies on convergence of opinion dynamics include that

of Krause [38], Hegselmann and Krause [35], Weisbuch et al. [62], and Golub

and Jackson [29]. The additional objective of the latter paper is to show

conditions under which a noisy opinion profile can converge to its mean.

Outline The further setup of this paper is as follows. The succeeding

chapter 2 introduces the general framework on the cultural formation of

continuous cultural traits of Pichler [49] within our setting. This is followed

by the analysis of static and dynamic properties of the model when par-

ents choose their behavior in chapter 3. The proofs of the more extensive

propositions of the latter chapter can be found in the Appendix C. Finally,

chapter 4 concludes.

6This concept has been introduced into the economics literature by Bisin and Verdier
[7]. It basically implies that parents have a desire for the adopted trait intensity of their
children to be close to their own adopted trait intensities (as we assume in the present
paper).



CHAPTER 2

Cultural Formation of Preferences

Consider an overlapping generations society which is populated by the

adults of a finite set of dynasties, N = {1, . . . , n}. At the beginning of

any given period t ∈ N, adults reproduce asexually and have exactly one

offspring, thus the population size is constant.

We will now lay down the framework that determines the cultural for-

mation of one continuous trait type. Let us start with discussing how chil-

dren come to adopt a certain trait intensity (TI) of the continuous trait

type under scrutiny. To do so, let us assume that all adults have avail-

able the same non–empty set of socio–economic action patterns, X. This

set is endowed with a complete and transitive binary relation T . Thereby,

for all x, x′ ∈ X, xT x′ means that the socio–economic action pattern x is

(weakly) ‘more characteristic’ for the continuous trait type under scrutiny

than socio–economic action pattern x′. This general formulation is owed

to the fact that we consider any type of continuous cultural trait. Given

transitivity and completeness, we can represent the ordinal relation T by a

cardinal function

φd : X 7→ R .

Thus, to any socio–economic action pattern x ∈ X, φd assigns a number

with cardinal meaning, φd(x). We will call this the displayed trait intensity

(DTI) embodied in the choice of socio–economic action pattern x. Thus,

φd(X) is the set of possible DTIs.

Now, the role models of the children’s social learning of trait intensities

are the observable socio–economic action patterns x ∈ X taken by the adults

a ∈ A; and we assume that the cognitive impulse that any of the children

obtains through such an observation is the corresponding DTI, φd(x). To

simplify the subsequent exposition, we will denote the DTI of the socio–

economic actions of the t+ 1th generation adult member of dynasty i ∈ N ,

xi(t) ∈ X, as φd
i (t) := φd(xi(t)).

Example 3.1 (Articulated Opinions). Consider the formation of con-

tinuous opinions. In this case, the children’s social learning from role mod-

els can be interpreted as their listening to articulated opinions. The set

of socio–economic action patterns X would then directly correspond to the
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(one–dimensional) ‘set of possible articulable opinions’. Thus, in this set-

ting, it is sensible to specify φd as the identity map.

We will now introduce the representation of the socialization process

that this paper proposes. This will be established on grounds of the tabula

rasa assumption, which means in the present context that children are born

with unformed trait intensity (TI), and equally, with unformed preferences.

On this basis, we then let the formation of the TI that a child adopts result

out of social learning from the socio–economic action patterns of adults

(only) that it is confronted with. In this context, we will let the TI that

any child of i ∈ N adopts in any period t ∈ N be formed according to

a weighted average between the representative DTIs of both socialization

sources. In case of the child’s family, this coincides with the DTI of its

single parent, φd
i (t) ∈ φd(X). The representative DTI of the child’s general

social environment, Ni := N\{i}, will be denoted φd
Ni
(t). This results out

of the child’s social learning from the observed DTIs of the adults that it is

confronted with.

Specifically, in any given period t ∈ N and for every child of i ∈ N there

are oblique socialization weights, σij(t), j ∈ Ni, that represent the relative

cognitive impacts of the child’s social learning from the different unrelated

adults. For every i ∈ N , these weights satisfy σij(t) ∈ [0, 1], ∀j ∈ Ni, and
∑

j∈Ni
σij(t) = 1. In general, these weights can be interpreted as the social

(learning) networks that the children have with the unrelated adults. These

networks are determined by different social interaction times, as well as by

differing pre–dispositions of the children for the social learning from the

unrelated adults. We obtain, ∀i ∈ N ,

φd
Ni
(t) =

∑

j∈Ni

σij(t)φ
d
j (t) ∈ con φd(X).

The weight that the DTI of the parent of a child of i ∈ N has in the

socialization process of the child will be called the parental socialization

success share, σ̂i(t) ∈ [0, 1]. This corresponds to the cognitive impact of the

parental DTI relative to the cognitive impact of the representative DTI of

the child’s general social environment. Factors that determine this relative

cognitive impact could include the social(ization) interaction time of the

parent with its child, as well as the effort and devotion that the parent

spends to socialize its child to the chosen DTI.1

We assume that all individuals carry over the trait intensity that has

been formed in their child period into their adult period (and keep them in

1See e.g. Grusec [30] for an introductory overview of theories on determinants of parental
socialization success.
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an unchanged way). We hence obtain for every t ∈ N, for every i ∈ N

φi(t+ 1) = σ̂i(t)φ
d
i (t) + (1− σ̂i(t))φ

d
Ni
(t). (3.1)

Since the final adopted TI of an individual is by construction a convex com-

bination of all DTIs that it observes, the adoptef TIs of all individual adults

will be located in the convex hull of the set of possible DTIs, con φd(X) ⊆ R.

The adopted TIs of the adults can be interpreted to induce ‘filters’ un-

der which adults can compare and rank different choices of socio–economic

actions. This form of evaluation takes place in terms of comparing the DTIs

of the socio–economic actions to the adopted TIs.2 Specifically, we assume

that the adopted TIs induce complete and transitive preference relations

over choices of DTIs (respectively the underlying socio–economic actions).

Assumption 3.1 (DTI Utility). For every t ∈ N, for every i ∈ N ,

(a) the adopted trait intensities induce a DTI utility function u (· |φi(t)) :

con φd(X) 7→ R, u
(

φd
i (t) |φi(t)

)

,

(b) u (· |φi(t)) is single–peaked with peak φi(t), i.e. strictly increasing /

decreasing ∀φd
i (t) ∈ con φd(X) such that φd

i (t) < / > φi(t).

Intuitively, the single–peakedness property means that we assume adults

to prefer choosing behaviors (DTIs) that are as close as possible in line with

their adopted TIs.

Example 3.2 (Utility from Articulated Opinions). In a continuation

of the first example, consider the adults’ choices of articulated opinions. If

these do not coincide with the adults’ adopted opinions, then the adults are

lying. Lying can cause dis–utilities in terms of cognitive dissonance (see

Festinger [23]) or in terms of the fear of being revealed. Intuitively, these

dis–utilities are strictly increasing in the ‘degree of the lies’.

1. Intergenerational Utility

In the previous chapter, we showed how to interconnect the socio–

economic action patterns that adults take in any period with the prefer-

ences over the very same action–patterns that next period’s adults have.

This interconnection is based on the children’s social learning from the role

models that the socio–economic choices constitute. It follows that any model

framework that determines the adults’ choices of socio–economic action pat-

terns (respectively those of the corresponding displayed trait intensities), the

parental socialization success shares, as well as the social (learning) network

structure equally endogenizes the preference formation process.

2This is in line with the cognitive dissonance theory of Festinger [23].
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In this paper we introduce a framework that (partially) achieves this

endogeneization based on purposeful socialization decisions of the parents.

The basis for doing so is to clarify what motivation parents have to actively

engage in their children’s socialization process (the functioning of which we

assume them to be fully aware of), as represented by the trait intensity

formation rule (3.1). Basically, we let this motivation stem from the fact

that parents also obtain an inter–generational utility component. Thereby,

we let this be related to the adopted TI of their adult children.

Specifically, in the present paper, we assume that all parents perceive

their own adopted TI as the optimal trait intensity for their children to

adopt.3 Thus, the parents’ adopted TIs constitute their socialization tar-

gets. There are two basic motivations to consider this case. The first is that

parents simply have an intrinsic desire for their children to develop a per-

sonality (adopted TI) that is as similar as possible to their own personality.

The second motivation is based on a myopic form of parental altruism,

called imperfect empathy.4 Parents are altruistic and fully internalize the

utility resulting from their expectations of their adult child’s socio–economic

action patterns (respectively DTI). Nevertheless, parents can not perfectly

empathize with their child and can only evaluate their adult child’s util-

ity under their own (not the child’s) utility function — which attains its

maximum at the adopted TI of the parent.

As far as the expectations about their adult children’s DTIs are con-

cerned, parents are myopic: Although they obtain an inter–generational

utility component, which eventually induces them to choose a DTI that does

not coincide with their adopted TI (see below), we assume that they do not

realize that this form of behavior changing impact will also be present in their

adult children’s decision problems. Thus, in any given period t ∈ N, any par-

ent of i ∈ N expects its adult child to choose a DTI that is in the set of maxi-

mizers of its DTI utility function, argmaxφd
i (t+1)∈φd(X) u

(

φd
i (t+ 1) |φi(t+ 1)

)

.

Under Assumption 3.2 below, φd(X) is convex and thus φd(X) = con φd(X).

This then guarantees by the single–peakedness of the utility functions that

argmaxφd
i (t+1)∈φd(X) u

(

φd
i (t+ 1) |φi(t+ 1)

)

= φi(t + 1), ∀i ∈ N . Hence,

the parental expectations of their adult children’s DTIs coincide with their

adopted TIs.

Assumption 3.2 (Convexity). X is a convex and compact subset of a

finite dimensional Euclidean space, and φd is continuous. It follows that

φd(X) is non–empty, convex and compact.

3See Pichler [49, 48] for a more general representation of perceived optimal trait intensities.
4This concept has been introduced into the economics literature by Bisin and Verdier [7].



1. INTERGENERATIONAL UTILITY 75

Given the perception that the socialization targets of the parents coin-

cide with their adopted TIs, we assume further that parents perceive utility

losses for deviations of the adopted TIs of their children from the socializa-

tion targets. Specifically, as far as the strengths of these perceived utility

losses relative to the strength of the DTI utility losses are concerned, for

every i ∈ N , we introduce the parameter βi ∈ R+. Notably, we assume this

parameter to be invariantly passed over from one generation to the next,

thus we dropped the time indexes. We will call this parameter parent’s

inter–generational trait intensity. It will play a central role in the dynami-

cal analysis of chapter 2.

Assumption 3.3 (Inter–generational Utility Function). For every t ∈ N,

for every i ∈ N ,

(a) the inter–generational trait intensity and adopted trait intensity induce

an inter–generational utility function v (· |βi, φi(t)) : con φd(X) 7→ R,

v (φi(t+ 1) |βi, φi(t)), where

(b) ∀βi ∈ R++, v (· |βi, φi(t)) is single–peaked with peak φi(t), thus strictly

increasing / decreasing at all φi(t+1) ∈ con φd(X) such that φi(t+1) <

/ > φi(t).



CHAPTER 3

Choosing Behavior and the Evolution of Trait

Intensities

In the present chapter, we will show static and dynamic properties of the

model introduced above when parents can choose their behavior (displayed

trait intensity) in the context of a fixed social learning structure of their

children. This means that both the parental socialization success shares,

as well as the social learning networks of the children (with their unrelated

adults), are exogenously fixed in any given period. Such a setting can be

motivated with, e.g., a fixed local and social structure that determines the

adults’ and children’s social (learning) interactions.

1. Best Reply Problems and Nash Equilibrium

Given that we consider only the behavioral (DTI) choices of the parents,

in any period t ∈ N, the best reply problems of the parents i ∈ N are

max
φd
i (t)∈φ

d(X)
u
(

φd
i (t) |φi(t)

)

+ v (φi(t+ 1) |βi, φi(t)) (3.2)

s.t. φi(t+ 1) = σ̂i(t)φ
d
i (t) + (1− σ̂i(t))φ

d
Ni
(t).

The addition of the two types of utility functions embodies the trade off

between DTI utility losses (by choosing DTIs that deviate from the adopted

TIs) and eventual improvements in the location of the children’s adopted TI

relative to the optimal TI.

In choosing their best reply behavior, we assume that the parents do

not internalize (or are not aware of) the effect that this has on the behavior

decisions of the other parents. This bounded rationality assumption can be

justified since full rationality would mean that all parents are aware of the

best reply problems of all parents. This would imply that they know the

social learning structure of all children, as well as the set of adopted and

inter–generational TIs. This is without doubt more than we can expect from

agents in a general (large) society.

The best reply problems of the parents i ∈ N determine sets of best

reply DTIs against the representative DTIs (which are subject to the fixed

social learning structure of the children), subject to their fixed parental

socialization success share, as well as their adopted TIs (which are also

76
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their socialization targets), and their inter–generational trait intensities.

For every adult i ∈ N , we will thus denote any of the elements in its best

reply set as φd
i (t)

(

φd
Ni
(t), σ̂i(t), φi(t), βi

)

, which we will abbreviate subse-

quently as φd
i (t) (·). Furthermore, together with the representative DTI,

any such best reply DTI also determines a best reply location of the adult

children’s adopted TIs (through the TI formation rule, see (3.1)), φi(t +

1)
(

φd
i (t)(·), σ̂i(t), φ

d
Ni
(t)
)

.

The following assumption assures non-emptiness of the adults’ sets of

best reply DTIs. Furthermore, it will allow for a significant characteriza-

tion of these, as well as of the resulting best reply locations of the adults’

subsequent TIs.

Assumption 3.4 (Compactness, Continuity).

(a) X is compact. If m > 1, then φd is (additionally) concave.

(b) The functions u (· |a) and v (· |b, d) are continuous and differentiable at

their peaks.

Since both the utility and inter–generational utility function are single–

peaked, Assumption 3.4 (b) implies that both functions have zero slope at

their peaks. Thus, parents perceive no (inter–generational) utility losses for

marginal deviations of their chosen DTI from their adopted TI, respectively

of their adult child’s adopted TI from the optimal TI.

Proposition 3.1 (Characterization of Best Replies). Let Assumptions

3.1–3.4 hold. Then, ∀t ∈ N, ∀i ∈ N , the sets of best reply DTIs are non–

empty and satisfy the following characterization.

(a) If σ̂i(t) = 0, then φd
i (t)(·) = φi(t), thus φi(t + 1)

(

φi(t), 0, φ
d
Ni
(t)
)

=

φd
Ni
(t).

(b) If σ̂i(t) = 1, then φd
i (t)(·) = φi(t), thus φi(t+1)

(

φi(t), 1, φ
d
Ni
(t)
)

= φi(t).

(c) Let σ̂i(t) ∈ (0, 1). Then, it holds generically that sign
(

φd
i (t) (·)− φi(t)

)

=

− sign
(

φd
Ni
(t)− φi(t)

)

,1 while it always holds that

sign
(

φi(t+ 1)
(

φd
i (t)(·), σ̂i(t), φ

d
Ni
(t)
)

− φi(t)
)

= sign
(

φd
Ni
(t)− φi(t)

)

.

Proof. Non–emptiness as well as parts (a) and (b) are trivial. Part

(c) follows as a straightforward corollary from the proof of Proposition 1 in

Pichler [49]. �

The (generic) results of Proposition 3.1 (c) are illustrated in Figure 3.1

below. In the left interval (both intervals correspond to the set of possible

1The non–generic case holds if the deviation of the best reply DTI from the adopted TI
into the ‘desired’ direction is not possible, i.e. if the adopted TI of an adult coincides with
(the relevant) one of the boundaries of φd(X). Then, the best reply DTI will coincide
with the adopted TI (i.e. with the boundary).
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DTIs) the context of the adult’s decision problem is depicted. In the right

interval a corresponding best reply choice is stylized. As can be seen both

from Proposition 3.1 (c) directly, as well as from the graphical illustration,

the results feature two dominant characteristics.

φi(t+ 1)
(

φd
i (t)(·), σii, φ

d
Ni

(t)
)

φd
Ni

(t)

φd
i (t)(·)

φi(t) •

•

σii ∈ (0, 1)

•

•

•

•

Figure 3.1. Characterization of Best Replies

The first concerns the generic location of the best reply choices. If the

representative DTI does not coincide with the optimal TI, then parents

countervail the respective socialization influence on their children by choos-

ing DTI that deviates from their adopted TI.2 This deviation is always into

the opposite direction as the deviation of the representative DTI from the

optimal TI (if such a choice is available). That this holds for very small devi-

ations of the representative DTI from the optimal TI is due to the fact that

marginal investments into the socialization instruments are (utility) costless

(while as the resulting strictly positive decrease in the distance of the child’s

adopted TI from the optimal TI yields a strictly positive inter–generational

utility gain).

The second dominant characteristic concerns the location of the adult

children’s adopted TIs that would result out of the parental best reply

choices. Despite the parental countervailing in the case of suboptimal social-

ization influences of the general social environment, the behavioral deviation

from the utility peak would never be intense enough such as to guarantee

that their adult children’s adopted TIs would exactly coincide with the op-

timal TIs. Hence, there is always a strictly positive deviation of the adopted

2Obviously, if the representative DTI exactly coincides with the optimal TI, then parents
have no incentives to do so (since the adopted TI of an adult child will then anyhow
coincide with the optimal TI).
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TI of an adult child from the optimal TI. Thereby, the direction of this de-

viation always accords with the direction of deviation of the representative

DTI from the optimal DTI.

Again, this result holds for even very small deviations of the represen-

tative DTI from the socialization target. Analogously to before, this stems

from the fact that parents do not perceive inter–generational utility losses

for an only marginal deviation of the adult child’s adopted TI from the

socialization target (while at any strictly positive DTI–deviation from the

peak, the marginal cost of an increase in the deviation to further reduce the

distance between the adult child’s adopted TI and the socialization target

would be strictly positive).

Assumption 3.5 (Concavity). The functions u (· |a) and v (· |b, d) are

concave (in the second argument).3

Proposition 3.2 (Nash Equilibrium Existence). Let Assumptions 3.1—

3.5 hold. Then, for every t ∈ N, a Nash equilibrium in DTI choices exists.

Denote this Φd∗(t) :=
(

φd∗

1 (t), . . . , φd∗

n (t)
)′
.

Proof. In Appendix C 1.1.

2. Evolution of Preferences

Given the static characterization of the previous section, we will now be

concerned with a characterization of the long–run evolution of the adopted

trait intensities of the dynasties. In particular, we will now (explicitly) as-

sume that both the parental socialization success shares, as well as the rel-

ative socialization weights are inter–generationally fixed. We will thus drop

the respective time–indexes of the social learning matrices below. More-

over, for every i ∈ N and for every j ∈ Ni we will denote the aggregate

relative social learning weights of the unrelated adults σ̂ij := (1− σ̂i)σij ,

and consider the total social learning matrix Σ̂ = [σ̂ij ] (with diagonal el-

ements (σ̂1, . . . , σ̂n)). Note that Σ̂ ∈ S(n), i.e. the social learning matrix

belongs to the set of row stochastic square matrices of dimension n.

We will then be concerned with deriving conditions on Σ̂ ∈ S(n) and

the vector of inter–generational trait intensities β := (β1, . . . , βn)
′ ∈ R

n
+,

under which the tuple of adopted TIs converges to a steady state. To begin

the analysis, we first introduce a characterization of the steady states of our

model.

For this and for the analysis to follow, we introduce some additional use-

ful terminology and notation related to any interaction matrix A ∈ S(n). We

3Note that under Assumptions 3.1 (b) and 3.3 (b), both utility functions are already
strictly quasi–concave.
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say that there exists a connection from i to j in A, denoted by i → j, if there

exists a k ∈ {0, ..., n} such that Ak
ij > 0. Two dynasties communicate, de-

noted by i ∼ j, if i → j and j → i. A dynasty i is self-communcating if i → i.

Trivially, ∼ defines an equivalence relation on the set of self-communicating

dynasties and, hence, this set can be partitioned into equivalence classes,

called self-communicating classes. Denoting each non self-communicating

dynasty as a single class, ∼ partitions the dynasty set into communica-

tion classes P(A) = {N1, ..., Np} such that for all L ∈ P(A), L is either a

self-communicating class or a non self-communicating dynasty. A communi-

cation class L ∈ P(A) is called essential if for all i ∈ L there does not exist

a j /∈ L such that i → j. A communication class is called inessential if it is

not essential.

Proposition 3.3 (Steady States). Let Assumptions 3.1–3.5 hold. Then,

in any steady state

(a) all adults behave as they are,

(b) all TIs of the dynasties in an essential communication class are identical,

and

(c) the TIs of the dynasties in inessential communication classes I ∈ P(Σ̂)

are convex combinations of the TIs of the communication classes J ∈

P(Σ̂) such that I → J .

Proof. In Appendix C 1.2.

To see that part (a) must hold, note that per definition, in any steady

state, the children adopt the same TIs as their parents have. From Propo-

sition 3.1, we know that such a constellation can only be subject to (Nash

equilibrium) individual best replies if the representative DTIs of all children

coincide with the parents’ adopted TIs. In such a case, all parents behave as

they are. Parts (b) and (c) of the Proposition are then straightforward. If

the TIs would differ within an essential communication class, then at least

one of the parents with maximal (respectively minimal) TIs is facing a rep-

resentative DTI that is lower (resp. larger) than its TI, contradicting the

steady state. An analogous consideration holds if one of the parents in an

inessential communication class has a TI that lies outside the interval of

the TIs of the communication classes to which their communication class is

connected. Note that within an inessential communication class the TIs of

the adults may differ in a steady state.

Given this steady state classification it now remains to derive conditions

under which the sequence of TIs actually converges to any such rest point.

The following example shows that in case of two connected dynasties, such

a condition is easy to obtain.
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Example 3.3 (Two Dynasties). Consider the simplest case of a non–

degenerate essential communication class, i.e. that of two parent–child pairs

in any given period. Assume also that for all i = 1, 2, σ̂i ≥
1
2 — so that the

parents are the ‘primary socialization sources’ of their children.

Then, it must hold that the distance between the adopted TIs of the

adult members of both dynasties strictly declines over generations. Thus,

the adopted TIs converge to the same point.

To see that this is true, consider the possible Nash Equilibrium DTI

choices and the resulting locations of the children’s adopted TIs in any given

period. To do this, note first that under the primary parental socialization

assumption (σ̂i ≥ 1
2), the child of the parent who chooses the larger DTI

will also adopt the larger TI. Let us consider the case where the adopted

TIs of the adults are unequal, and assume (by way of contradiction) that

any child would be led to adopt a TI which is larger/lower than the max-

imum/minimum of the adopted TIs of the adults. Thus, this must (also)

hold for the child of the parent who chose the larger/lower DTI.

However, such a situation could never be subject to a best reply choice of

at least the adult with the strictly larger/lower adopted TI. This follows from

Proposition 3.1 since the DTI choice of this adult would have to be strictly

larger/lower than its adopted TI. Thus, an at least marginal relaxation of

its behavioral deviation would strictly increase its total utility.

Certainly, in the two dynasties case, the ‘primary parental socialization’

condition is stronger than necessary for obtaining convergence. However, if

the socialization success shares deviate too far from this condition, i.e. if

the unrelated adults have too large a socialization influence on the children,

then cycling behavior can well arise.

This holds since both parents do always countervail the socialization in-

fluence exerted by the other adult on the own child. This (typically) leads to a

situation where the adult with the lower/larger adopted TI chooses a strictly

lower/larger DTI (than the adopted TI) in the Nash equilibrium. With large

enough socialization success shares of the unrelated adults, it is possible that

one child adopts a TI that is strictly larger than the larger one of the cur-

rent adults’ adopted TIs, and vice versa. Even, the relative TI–positions

of the children would then be reversed compared to that of the parents. If

this constellation continues to realize in subsequent periods, then the evolu-

tion of the trait intensities will be characterized by a limit cycle, with the

relative positions of the adopted TIs changing between any two succeeding

generations.



2. EVOLUTION OF PREFERENCES 82

A sufficient and easy to derive condition for convergence in the two–

dynasties case is that the parents of both dynasties are the ‘primary social-

ization sources’ of their children. However, in general, i.e. for an arbitrary

number of connected dynasties, it was impossible for us to directly derive

(analogous) conditions that would ensure convergence. For being never-

theless able to obtain such conditions, we will below embed the non–linear

dynamical system into a tractable form.

Corollary 3.1 (Nash Equilibrium Map). Let Assumptions 3.1–3.5

hold. Then, there exists a Nash equilibrium map E : φd(X)
n
×S(n)×R

n
+ 7→

R
n
+, such that for every i ∈ N and for every t ∈ N, E

(

Φ(t), Σ̂, β
)

=

(e∗1(t), . . . , e
∗
n(t))

′ satisfies

φd∗

i (t)− φi(t) = e∗i (t) (φi(t)− φ∗
i (t+ 1))

where φ∗
i (t+ 1) :=

∑

j∈N σ̂ijφ
d∗

j .4 This map has the property that if for any

i ∈ N σ̂iβi = 0, then e∗i (t) = 0, ∀t ∈ N, as well as that if φ∗
i (t + 1) = φi(t)

then e∗i (t) = 0.

Proof. Follows immediately from the best reply characterization of

Proposition 3.1 and the Nash equilibrium existence of Proposition 3.2. �

The Nash equilibrium map simply represents the Nash equilibrium DTI

choices in terms of their deviations from the parent’s adopted TIs relative

to the deviation of the children’s adopted TIs from the socialization targets.

This representation can equivalently be written as φd∗

i (t) + e∗i (t)Σ̂iΦ
d∗(t) =

(1+ e∗i (t))φi(t), for every i ∈ N . Defining B(t) := diag (e∗1(t), . . . , e
∗
n(t)), we

thus obtain5
(

I +B(t)Σ̂
)

Φd∗(t) = (I +B(t))Φ∗(t)

so that

Φd∗(t) =
(

I +B(t)Σ̂
)−1

(I +B(t))Φ∗(t)

and hence

Φ∗(t+ 1) = Σ̂
(

I +B(t)Σ̂
)−1

(I +B(t))Φ∗(t).

For this representation to be well defined, it is e.g. sufficient that either Σ̂ is

diagonally dominant (since then I + B(t)Σ̂ is strictly diagonally dominant,

thus invertible) or symmetric positive semidefinite (below, we will restrict

our glance to a class of matrices that even features symmetric positive defi-

niteness of Σ̂).6

4Actually, for all i ∈ N , e∗i (t) = e∗i

(

Φ(t), Σ̂, β
)

. We chose the representation in the text

for brevity.
5diag(y) denotes a diagonal matrix with diagonal entries specified by y.
6To see the latter, note that under symmetry, we can rewrite I+B(t)Σ̂ = I+B(t)

1

2 Σ̂B(t)
1

2 .

Now since Σ̂ is positive semidefinite, it follows that x′Σ̂x ≥ 0, for all x ∈ R
n, thus also
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Finally, denoting M(t) := Σ̂
(

I +B(t)Σ̂
)−1

(I +B(t)), it follows that

Φ∗(t) = M(t− 1) . . .M(0)Φ(0) = M(t− 1, 0)Φ(0), t ∈ N\{0} (3.3)

whereM(t, 0) denotes the backward accumulation of the sequence {M(t′)}tt′=0.

The beauty of this representation is that we transformed the non–linear

Nash Equilibrium solutions of our general model into an essentially linear

form. This significantly increases the analytical tractability since it allows

us to resort to linear algebra results on the convergence of left products of

matrices. Specifically, Lorenz [40, 41] provided convergence results for left

products of row stochastic matrices — while as (for our specific context)

not sufficient results are available on the left product convergence of more

general matrices (that have row sum one, but with possibly negative entries).

However, to guarantee that the individual M(t) are row stochastic in every

period t ∈ N, we have to endow the social learning matrix Σ̂ with sufficient

structure (we will discuss this context in more detail below).

Definition 3.1 (Symmetric Ultrametric Matrix). Σ̂ ∈ S(n) is a sym-

metric ultrametric matrix if

(i) Σ̂ is symmetric,

(ii) σ̂i ≥ max {σ̂ij : j ∈ Ni}, ∀i ∈ N ,

(iii) σ̂ij ≥ min {σ̂ik; σ̂kj}, ∀i, j, k ∈ N .

To motivate the symmetry property in our context, remember the basic

determinants of the relative socialization successes that different unrelated

adults have with the children. These determinants consist of the relative so-

cial interaction time on the one hand, and potentially differing social learn-

ing pre–dispositions on the other hand. Thus, for any pair of children, the

required symmetry can be achieved by requiring the relative social interac-

tion time that any one of the two children has with the parent of the other

child to be identical, together with the assumption that all children have

identical social learning pre–dispositions. Property (ii) is the generalized

‘primary parental socialization’ condition. It simply means that among all

adults, the parents have the largest socialization influence on their children

(respectively, among all adults, they spend the largest time share with their

children). In general, the third property requires a sort of consistency of

the socialization patterns. It states that for any triple i, j, k ∈ N , if the

socialization influence of j on child i is strictly smaller than that of k on

child i, then it must not hold that k has a strictly larger socialization influ-

ence on child j than on child i (since σ̂kj = σ̂jk). This requirement can be

for x = B(t)
1

2 y, y ∈ R
n. It follows that I + B(t)Σ̂ is (symmetric) positive definite, thus

invertible.
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interpreted as ruling out the existence of dynasties that have a too dominant

social learning influence on other dynasties.

Recall from Proposition 3.3 that we can only show convergence of trait

intensities within communication classes. In the case of symmetric ultra-

metric social learning matrices Σ̂, any communication class L ∈ P(Σ) is

essential due to the symmetry of Σ̂ and for I, J ∈ P(Σ̂) such that I 6= J it

holds that i 6→ j for all i ∈ I, j ∈ J. For the following result, let PΣ̂(i) ⊆ N

be such that PΣ̂(i) ∈ P(Σ̂) and i ∈ PΣ̂(i) (the element of the partition

P
(

Σ̂
)

which i belongs to). For a matrix A ∈ S(n) and some J ⊆ N let

AJ denote the matrix A restricted to the set of dynasties J ⊆ N . Finally,

a consensus matrix is a row stochastic matrix where all rows are identical.

We now get the following convergence result.

Proposition 3.4 (Convergence I). Let Assumptions 3.1–3.5 hold, let the

map E be continuous and let Σ̂ be symmetric ultrametric. Then, ∀β ∈ R
n
+,

limt→∞M(t, 0) exists. Moreover, limt→∞M(t, 0)L = K(L) for all L ∈ P,

such that K(L) is a consensus matrix, and limt→∞M(t, 0)ij = 0 if and only

if j /∈ PΣ̂(i).

Proof. In Appendix C 1.3.

Endowing the the total social learning matrix with sufficient structure, we

thus arrive at a general result: In the long-run the communication classes

of a society (these are the components of the social network) will end up

with the same trait intensities. In the proof, we show first that each element

M(t) of the left product (3.3) is row stochastic. While it is straightforward

to show that the rows of each M(t) sum up to one (confer Lemma C.1),

we make use of a number of linear algebra results on inverses of symmet-

ric ultrametric matrices and inverse–positive matrices to show that M(t) is

positive.7 Second, we can show that the entries of M(t) corresponding to

strictly positive entries of Σ̂ can be bounded away from zero. This is due

to the linearity of the determinants of the minors of M(t) in all individ-

ual e∗i (t)s, and the continuity and boundedness of E. In the last step, we

construct a sequence of sub-accumulations of M(ts+1, ts)s∈N such that for

each element the minimal strictly positive entry can be uniformly bounded

away from zero, which also implies type-symmetry and a strictly positive di-

agonal. For the sequence of sub-accumulations M(ts+1, ts)s∈N we can then

apply the convergence result by Lorenz [40], which implies that the adopted

TIs of each connected subset converge to the same point, respectively the

dynasties reach a consensus.

7For literature on inverses of symmetric ultrametric matrices refer to Nabben and Varga
[43, 44], Martinez et al. [42], and for results on inverse–positive matrices see e.g. Fujimoto
and Ranade [26].
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Note finally that the necessity to guarantee that all M(t) are row sto-

chastic significantly reduces the convergence path types that we can analyt-

ically address. Basically, we have to restrict our glance to dynamics that

are analogous to that obtained in the DeGroot–model. This follows since

M(t) row stochastic implies that sequence of adopted TIs is such that all

next–period adopted TIs lie in the interval formed by the minimum and

maximum adopted TIs of the current period. However, the structure of our

model is inherently more general — and also more general than existing

models of opinion dynamics, which do not incorporate strategic interac-

tion. In fact, the DeGroot model is a special case of our model (i.e. when

B(t) = diag(0, . . . , 0), ∀t), as well as of the example that we discuss next.

The example serves to underline the claim that convergence can be obtained

under more general conditions.

Example 3.4 (Explicit Functions and Unrestricted Optimization). Con-

sider the case where u (a′ |a) = − (a′ − a)2 and v (d′ |b, d) = −b (d′ − d)2.

Assume further (with loss of generality) that all parents can unrestrictedly

choose their displayed trait intensities, or in other words that the set of pos-

sible DTIs would be unbounded. Then, in every period t ∈ N the parents

i ∈ N would face the unrestricted optimization problems

min
φd
i (t)

(

φd
i (t)− φi(t)

)2
+ βi (φi(t+ 1)− φi(t))

2. (3.4)

From the first order conditions, it immediately follows that in this case

E
(

·, Σ̂, β
)

= (β1σ̂1, . . . , βnσ̂n)
′. This has the consequence that ∀t ∈ N,

B(t) = B = diag (β1σ̂1, . . . , βnσ̂n), thus M(t) = M = Σ̂
(

I +BΣ̂
)−1

(I +

B), and finally

Φ∗(t) = M tΦ(0).

Compared to our general representation, this form has a significant advan-

tage: It transforms the problem of the convergence of the left–product of

highly path–dependent matrices into one of the convergence of the powers

of a time–invariant matrix.

Proposition 3.5 (a) and (b) give a (generically) sufficient and necessary

condition on Σ̂ to obtain convergence.

Proposition 3.5 (Convergence II). Let the parental optimization prob-

lems be as in (3.4). Then, the following results are satisfied.

(a) If Σ̂ is symmetric positive definite (henceforth: “PD”), then for every

β ∈ R
n
+ it holds that all eigenvalues of M are real and in the interval
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(0, 1] (with at least one eigenvalue equal to 1). Thus, generically the

sequence
{

Φ∗(t) = M tΦ(0)
}

t→∞
converges (for Φ(0) arbitrary).8

(b) Let Σ̂ have a strictly positive diagonal. If for some eigenvalue λ of Σ̂ we

have Re(λ) < |λ|2,9 then there is a β ∈ R
n
+ such that the spectral radius

of M is strictly larger than 1. Thus, the sequence
{

Φ∗(t) = M tΦ(0)
}

t→∞

does not converge (for Φ(0) arbitrary).

Proof. In Appendix C 1.4.

Proposition 3.5 (a) shows that PD is generically sufficient for conver-

gence. PD and row stochasticity of a matrix imply in particular that

Re(λ) ≥ |λ|2 for any eigenvalue λ of the matrix, i.e. the real part of each

eigenvalue is larger than the squared absolute value of this eigenvalue.10 Σ̂

having this property is shown to be necessary for convergence (subject to

any β) in part (b). In the proof of part (a) we show that if Σ̂ PD then the

eigenvalue property carries over to M . Even more, Σ̂ PD guarantees that

all eigenvalues of M are real and located in the interval (0, 1].

As has been mentioned above, the present special case of our general

model is basically a transformation of the DeGroot model. Given that con-

vergence is satisfied in the latter, it is intuitive that we also obtain con-

vergence if the transformation (as induced by the parental socialization in-

centives, which are embodied in β) is small enough. This is confirmed as

follows.

Proposition 3.6 (Convergence III). Let the parental optimization prob-

lems be as in (3.4). Then, for every irreducible Σ̂ ∈ S(n) with strictly posi-

tive diagonal, there exists a nonempty neighborhood N
(

0
∣

∣

∣Σ̂
)

⊂ R
n
+,

11 such

that ∀β ∈ N
(

0
∣

∣

∣
Σ̂
)

∪0, the sequence
{

Φ∗(t) = M tΦ(0)
}

t→∞
converges (for

Φ(0) arbitrary).

Proof. In Appendix C 1.5.

In the proof of this Proposition, we show first that if Σ̂ is has a strictly

positive diagonal, then it has a simple Perron–Frobenius eigenvalue of 1

where the absolute value of all other eigenvalues is located in the interval

(0, 1). Now, the eigenvalues are continuous in the underlying matrices. Thus,

it must be possible to at least slightly perturb Σ̂ such that the resulting

matrices M do also have a unique eigenvalue 1 with the absolute value of

8“Generically” applies to all cases where the geometric multiplicity of the 1–eigenvalue
equals its algebraic multiplicity; see also Lemma C.2.
9Re(λ) means the real part of eigenvalue λ.
10Indeed an eigenvalue λ of a symmetric positive definite matrice is real and positive such
that λ ∈ (0, 1] (because of row stochasticity), which implies that Re(λ) ≥ |λ|2.
11N

(

0

∣

∣

∣
Σ̂
)

means that the size of the neighborhood around β = 0 depends on Σ̂.



2. EVOLUTION OF PREFERENCES 87

all other eigenvalues in the interval (0, 1). Hence, M t converges. Notably,

this does hold even though M is not necessarily positive.

Analytically, we can not pin down the precise sizes of the neighbor-

hoods that guarantee convergence. However, note that for n = 3/10/50 and

60, 000/160, 000/2, 700, 000 random draws of uniformly distributed Σ̂ ∈ S(n)

and β, the eigenvalue conditions for convergence were satisfied whenever

β ≤ 6/16/270.12 Thus, the spread of socialization weights over a larger

number of adults favors convergence — since eventually ‘extreme’ behaviors

of individual adults tend to have a lower relative socialization weight, and

thus tend to be evened out. To further illustrate the analytical results of the

last Proposition 3.6, consider the following two examples of three dynasties.

The first example is

Σ̂ =







0.40 0.30 0.30

0.25 0.45 0.30

0.35 0.30 0.35






, β =







100

200

400







with corresponding

M =







+0.843 +0.041 +0.116

−0.017 +0.961 +0.056

+0.060 +0.015 +0.925






, Eig (M) =







1.00

0.93

0.80






,

where Eig(M) stands for the eigenvalues of matrix M . The matrix Σ̂ is

comparatively close to a symmetric ultrametric matrix. Given this structure,

although the β–vector is large and thus M is not positive (which would

have been required in our general representation), the power–sequence of

the resulting matrix M does converge (since the eigenvalue conditions are

satisfied). The corresponding convergence path is illustrated in the left graph

of Figure 3.2 below. In both graphs of the figure, the black/red/green paths

correspond to i = 1/2/3, and the initial TIs are Φ(0) = (0.0, 0.5, 1.0)′.

The second example is

Σ̂ =







0.10 0.00 0.90

0.90 0.10 0.00

0.00 0.90 0.10






, β =







0.8

0.9

1.0







with corresponding

M =







+0.114 −0.086 +0.972

+0.955 +0.114 −0.069

−0.077 +0.962 +0.115






, Eig (M) =







1.00

−0.33 + 0.90i

−0.33− 0.90i






.

12More precisely, we sequentially increased the upper bound for β by 1, starting with
upper bound 1, and did 10, 000 random draws per step. We stopped the iterations as soon
as the eigenvalue–conditions were not satisfied in a given step.
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As can be seen, even though the matrix Σ̂ is ‘very far’ from a symmetric

ultrametric matrix (and also from a symmetric positive definite matrix), the

power series of the matrix M converges, since the β–vector is ‘small enough’

(and even though M is not positive).13 The resulting convergence path is

illustrated in the right graph of Figure 3.2.
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Figure 3.2. Adopted Preference Intensities

Obviously, the results for the unrestricted optimization problem of the ex-

ample above can only be considered an approximation to the results that

would be obtained in the restricted case. But note the following. First,

subject to convergence in the sense of inter–generationally shrinking lengths

of the intervals formed by the minimum and maximum adopted TIs of any

generation, restricting the set of possible DTI–choices would basically be

a binding matter for initial periods only (since ‘closer’ adopted TIs induce

mutually ‘closer’ DTI Nash equilibrium choices). Second, the class of qua-

dratic dis–utility functions obviously features the general properties that we

require from our utility functions, namely single–peakedness, concavity and

zero slopes at the peaks. Thus, the results obtained in the example can not

be expected to be non–generic. It us though still an open issue to extend

these to our general representation.

13The convergence result would not be sustained if one e.g. replaces the β–vector
above with β = (8, 15, 18)′. The resulting eigenvalues would be Eig(M) = (1.00, 1.07 +
1.37i, 1.07− 1.37i)′.



CHAPTER 4

Conclusions

This paper has incorporated a finite population social network structure

into the cultural formation of continuous cultural traits framework of Pichler

[49]. After introduction of the latter, we showed the static and dynamic

properties of the model when parents perceive their adopted trait intensity

as the ‘socialization target’, and when they are free to choose their behavior

subject to an inter–generationally fixed social network.

Thereby, we obtained a behaviorally induced transformation, respec-

tively generalization, of the DeGroot model. This has substantial implica-

tions for the evolution of the underlying continuous trait intensities (and

opinions). Different to the DeGroot model, our framework does in general

allow for the next–period adopted trait intensities to leave the frame that is

constituted by the minimum and maximum of the adopted trait intensities

of the contemporaneous period. However, to obtain a convergence result,

we had to endow the social learning network with sufficient structure. This

structure implies dynamics analogous to that in the DeGroot model. For ad-

dressing the more general convergence types of our model, we are limited by

the insufficient availability of results on the convergence of the left–product

of matrices that are not (in general) row–stochastic — and hope for more

research on this issue in the future.

Despite this sort of analytical restriction, there is however substantial

room for extensions and generalizations of our model. The first is to allow

the parents to influence both their socialization weight, as well as the social

learning network of their children. This is ongoing work of the authors, and

will constitute the future second major part of the present paper. Second,

the dynamic analysis could be extended to different types of what Pichler

[48] called ‘perception rules’ (these determine the parental ‘socialization tar-

gets’). Besides many other open issues in relation to the cultural formation

of continuous traits framework (as discussed in Pichler [49, 48]), we empha-

size that its logic could be fruitfully and straightforwardly extended to the

formation/adoption of traits during the life period of an individual.
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APPENDIX A

1. Proofs

1.1. Proof of Proposition 1.1. First note that since by Assump-

tion 1.4, the target functions of the parental optimization problems (1.2)

are continuous and since the choice sets are compact (Assumption 1.2), a

non–empty set of maximizers, i.e. parental best reply choices, must exist.

Consider below any a ∈ A.

Case φd
Aa

6= φ̂ã (Ra): It will be sensible to start the proof of this case

by showing the second part first. Assume, by way of contradiction, that

sign
(

φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

= − sign
(

φd
Aa

− φ̂ã (Ra)
)

. For this

to hold, it would necessarily have to hold that sign
(

φd
a (·)− φ̂ã (Ra)

)

=

− sign
(

φd
Aa

− φ̂ã (Ra)
)

together with σ̂a (·) > 0. But this can never be sub-

ject to a best reply choice, since e.g. the choice of (the same) φd
a = φd

a (·) to-

gether with a σ̂a < σ̂a (·) such that sign
(

φã

(

φd
a (·) , σ̂a, φ

d
Aa

)

− φ̂ã (Ra)
)

= 0

would yield the same ‘own’ utility, but strictly larger inter–generational

utility as well as strictly lower socialization success share cost. Now assume

that sign
(

φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

= 0, for which to hold it would

be necessary that sign
(

φd
a (·)− φ̂ã (Ra)

)

∈
{

0,− sign
(

φd
Aa

− φ̂ã (Ra)
)}

to-

gether with σ̂a (·) > 0. In this case, the slope of the inter–generational

utility function is zero, while the slope of the socialization success share

cost function is strictly positive. From this, it follows that there is al-

ways an alternative choice pair where φd
a = φd

a (·) and σ̂a < σ̂a (·), thus

sign
(

φã

(

φd
a (·) , σ̂a, φ

d
Aa

)

− φ̂ã (Ra)
)

= sign
(

φd
Aa

− φ̂ã (Ra)
)

, but for which

it holds that the resulting reduction in the socialization success share cost

strictly dominates the inter–generational utility loss. It thus must hold that

sign
(

φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

= sign
(

φd
Aa

− φ̂ã (Ra)
)

.

We will now show the first part of the proof for the present case. Assume,

again by way of contradiction, that sign
(

φd
a (·)− φa

)

= sign
(

φd
Aa

− φ̂ã (Ra)
)

and σ̂a (·) ∈ [0, 1]. From above, we know that under the present assumption

sign
(

φd
a (·)− φa

)

= sign
(

φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

. It then follows

that there always exists an alternative choice pair where σ̂a = σ̂a (·), and

where sign
(

φd
a − φa

)

= sign
(

φd
a (·)− φa

)

but
∣

∣φd
a − φa

∣

∣ <
∣

∣φd
a (·)− φa

∣

∣, and

90



1. PROOFS 91

sign
(

φã

(

φd
a, σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

= sign
(

φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

but
∣

∣

∣φã

(

φd
a, σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
∣

∣

∣ ≤
∣

∣

∣φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
∣

∣

∣. Such

a choice yields (a) strictly larger ‘own’ utility, (b) larger inter–generational

utility and (c) less cost of achieving σ̂a (·) given (a). Thus, the best replies

must satisfy sign
(

φd
a (·)− φa

)

∈
{

0,− sign
(

φd
Aa

− φ̂ã (Ra)
)}

.

Assume next that sign
(

φd
a (·)− φa

)

= − sign
(

φd
Aa

− φ̂ã (Ra)
)

and σ̂a (·) =

0. But this can not be a best reply since the choice φd
a = φa and σ̂a =

σ̂a (·) = 0 would yield (a) strictly larger ‘own’ utility and (b) identical inter–

generational utility and identical socialization success share cost. Hence

sign
(

φd
a (·)− φa, σ̂a (·)

)

∈
{

(0, 0), (0,+1),
(

− sign
(

φd
Aa

− φ̂ã (Ra)
)

,+1
)}

.

Let us from now on consider the case where a choice pair that satis-

fies the third sign combination of above is available, i.e. the adopted TI

does not coincide with the relevant boundary of φd(X).1 We first rule out

that nevertheless sign
(

φd
a (·)− φa, σ̂a (·)

)

= (0,+1). To see that this can

never be a best reply note that at such a choice, the slope of the ‘own’

utility function is zero. It then follows that there always exists a choice

pair where σ̂a = σ̂a (·), and where sign
(

φd
a − φa

)

= − sign
(

φd
Aa

− φ̂ã (Ra)
)

,

sign
(

φã

(

φd
a, σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

= sign
(

φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

but
∣

∣

∣
φã

(

φd
a, σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
∣

∣

∣
<
∣

∣

∣
φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
∣

∣

∣
, such

that the resulting strictly positive gain in inter–generational utility strictly

dominates the combined loss in ‘own’ utility and the increase in the social-

ization success share cost.

Finally, consider the cases where φ̂ã (Ra) ≥ φa and φd
Aa

/∈
(

φa, φ̂ã (Ra)
)

,

or φ̂ã (Ra) ≤ φa and φd
Aa

/∈
(

φ̂ã (Ra) , φa

)

.2 It rests to show that in these

cases sign
(

σ̂a (·) , φ
d
a (·)− φa

)

= (0, 0) can not be subject to a best reply.3

To see this, note that at such a choice, both the slope of the socializa-

tion success share cost function and the slope of the ‘own’ utility func-

tion are zero. But this then again implies that there always exists an al-

ternative choice where sign
(

φd
a − φa, σ̂a

)

=
(

− sign
(

φd
Aa

− φ̂ã (Ra)
)

,+1
)

,

sign
(

φã

(

φd
a, σ̂a, φ

d
Aa

)

− φ̂ã (Ra)
)

= sign
(

φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
)

,

but
∣

∣

∣
φã

(

φd
a, σ̂a, φ

d
Aa

)

− φ̂ã (Ra)
∣

∣

∣
<
∣

∣

∣
φã

(

φd
a (·) , σ̂a (·) , φ

d
Aa

)

− φ̂ã (Ra)
∣

∣

∣
, and

1In the other case, then the best replies satisfy sign
(

φd
a (·)− φa, σ̂a (·)

)

∈ {(0, 0), (0,+1)}.

To see that if φ̂ã (Ra) ≥ φa and φd
Aa

/∈
(

φa, φ̂ã (Ra)
)

, or φ̂ã (Ra) ≤ φa and φd
Aa

/∈
(

φ̂ã (Ra) , φa

)

, then the best replies must satisfy the second sign combination follows

basically the same line of argumentation as in the rest of the proof below.
2In the other cases, no further restriction of the signs is possible, so that we have that

sign
(

φd
a (·)− φa, σ̂a (·)

)

∈
{(

− sign
(

φd
Aa

− φ̂ã (Ra)
)

,+1
)

, (0, 0)
}

.
3Except for the special case φd

Aa
= φ̂ã (Ra) = φa, see below.
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such that the resulting strictly positive gain in inter–generational utility

strictly dominates the combined loss in ‘own’ utility and the increase in the

socialization success share cost.

Case φd
Aa

= φ̂ã (Ra): These best reply choices yield the maximum pos-

sible net life–time utility.

1.2. Proof of Proposition 1.2. Denote the Lagrangean of the opti-

mization problem (1.2) of an adult a ∈ A as L
(

φd
a, σ̂a

∣

∣

∣
φd
Aa

, φ̂ã (Ra) , φa, ia

)

,

which we will abbreviate subsequently as L
(

φd
a, σ̂a |·

)

. Any pair of best

replies,
(

φd
a (·) , σ̂a (·)

)

must satisfy the first order conditions. Further, since

we assume that the optimization problem is strictly concave at this best re-

ply choice (so that the determinant of the Hessian matrix is strictly positive),

all conditions for the Implicit Function Theorem are satisfied.

We will now show that ∃ |ba| ∈ R++, such that if
∂2 L(φd

a(·),σ̂a(·)|·)
∂|φd

a−φa| ∂ σ̂a
> − |ba|

i.e. the two socialization instruments are ‘not too strong substitutes’ at the

parental best reply choice, then the desired signs of Proposition 1.2 hold.

To do this, we will transform the representation of the comparative stat-

ics matrix of Proposition 1.2 into a representation that involves only the sen-

sitivities of the best reply choices to the relevant parameters. For this, it will

be convenient to distinguish the cases where sign
(

φd
Aa

− φ̂ã (Ra)
)

= +1/−1,

so that by Proposition 1.1, it generically holds that sign
(

φd
a (·)− φa

)

=

−1/+1 (the other, ‘non–generic’, cases are disregarded in Proposition 1.2).

Thus, for the results in the first row of the matrix in Proposition 1.2 to hold,

we require that

sign





∂ φd
a (·)

∂
∣

∣

∣φd
Aa

− φ̂ã (Ra)
∣

∣

∣

∂ φd
a (·)

∂ ia



 = (−1/+ 1 − 1/+ 1) . (A.1)

Next, note that
∣

∣

∣φd
Aa

− φ̂ã (Ra)
∣

∣

∣ = sign
(

φd
Aa

− φ̂ã (Ra)
)(

φd
Aa

− φ̂ã (Ra)
)

,

so that the entries of the first column of the matrix of Proposition 1.2 could

be decomposed accordingly. It is straightforward to show (by the Implicit

Function Theorem) that

sign

(

∂ φd
a (·)

∂ φ̂ã (Ra)
,

∂ σ̂a (·)

∂ φ̂ã (Ra)

)′

= − sign

(

∂ φd
a (·)

∂ φd
Aa

,
∂ σ̂a (·)

∂ φd
Aa

)′

and, thus, as far as the signs of the comparative statics are concerned, it is

irrelevant, how a marginal change in the absolute distance between φd
Aa

and

φ̂ã (Ra) is ‘composed’, and we can restrict our attention to marginal changes

of φd
Aa

only. Thus, for (A.1) to hold, it is necessary that

sign





∂ φd

a
(·)

∂ φd

Aa

∂ φd

a
(·)

∂ ia

∂ σ̂a(·)

∂ φd

Aa

∂ σ̂a(·)
∂ ia



 =

(

−1/− 1 −1/+ 1

+1/− 1 +1/+ 1

)

. (A.2)
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We can now use the Implicit Function Theorem to derive a necessary condi-

tion for these signs to hold. First note that since the Lagrangean is strictly

concave at the best reply choice, the second partial derivatives with respect

to the two decision variables are strictly negative, while as the cross second

partial derivative

∂2 L
(

φd
a (·) , σ̂a(·) |·

)

∂ φd
a ∂ σ̂a

=
∂2 v

(

φã (·)
∣

∣

∣φ̂ã (Ra) , ia

)

∂ φ2
ã

σ̂a(·)
(

φd
a (·)− φd

Aa

)

+

+
∂ v
(

φã (·)
∣

∣

∣φ̂ã (Ra) , ia

)

∂ φã

−
∂ uφa

(

φd
a (·)

)

∂ φd
a

∂2 c
(

σ̂a(·), ∂ u
(

φd
a (·) |φa

))

∂ u (φd
a (·) |φa ) ∂ σ̂a

is ambiguous in sign. It is furthermore straightforward to show that

sign







∂2 L(φd

a
(·),σ̂a(·)|· )

∂ φd
a
∂ φd

Aa

∂2 L(φd

a
(·),σ̂a(·)|· )

∂ φd
a
∂ ia

∂2 L(φd

a
(·),σ̂a(·)|· )

∂ σ̂a ∂ φd

Aa

∂2 L(φd

a
(·),σ̂a(·)|· )

∂ σ̂a ∂ ia






=

(

−1/− 1 −1/+ 1

+1/− 1 +1/+ 1

)

.

Given these signs, it follows from the Implicit Function Theorem that (A.2)

is true if
∂2 L(φd

a(·),σ̂a(·)|·)
∂ φd

a ∂ σ̂a
< / > ba ∈ R++ /R−− where

ba = min /max




















∂2 L(φd
a(·),σ̂a(·)|·)
∂ σ̂2

a

∂2 L(φda(·),σ̂a(·)|·)
∂ φda ∂ φd

Aa

∂2 L(φda(·),σ̂a(·)|·)
∂ σ̂a ∂ φd

Aa

∂2 L(φd
a(·),σ̂a(·)|·)
∂ σ̂2

a

∂2 L(φda(·),σ̂a(·)|·)
∂ φda ∂ ia

∂2 L(φda(·),σ̂a(·)|·)
∂ σ̂a ∂ ia

∂2 L(φd
a(·),σ̂a(·)|·)
∂ φd

a
2

∂2 L(φda(·),σ̂a(·)|·)
∂ σ̂a ∂ φd

Aa

∂2 L(φda(·),σ̂a(·)|·)
∂ φda ∂ φd

Aa

∂2 L(φd
a(·),σ̂a(·)|·)
∂ φd

a
2

∂2 L(φda(·),σ̂a(·)|·)
∂ σ̂a ∂ ia

∂2 L(φda(·),σ̂a(·)|·)
∂ φda ∂ ia





















Remembering that sign
(

φd
a (·)− φa

)

= −1/+1, this condition is equivalent

to requiring that
∂2 L(φd

a(·),σ̂a(·)|·)
∂|φd

a−φa| ∂ σ̂a
> − |ba|. �

1.3. Proof of Proposition 1.3. We will show here that all conditions

to apply the Nash Equilibrium existence results of Rath [53] and Pichler [50]

are satisfied.

First, our player set A = [0, 1] is endowed with Lebesgue measure λ,

and {AJ}
K
J=1 is a measurable partition of A. Second, all players have an

identical compact (and convex) action space φd(X) × [0, 1] ⊂ R
2. Further,

∀a ∈ A, P (·, · |Pa ) is defined on
(

φd(X)× [0, 1]
)K+1

=: Z,4 continuous since

u (· |φa ), v
(

·
∣

∣

∣
φ̂ã(Ra), ia

)

, c and φ̂ã are continuous,5 and real valued. Since

they are also bounded (as the functions are continuous and defined on a

4This representation is in line with that of Rath [53] and Pichler [50] since they show that
the space where the average strategies of the player subsets can be located in coincides
with the convex hull of the individual action spaces.
5Remember that the latter might depend on the own strategies of the players or on the
average strategies of the player subsets.
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compact set), thus their sup norm is well defined, it follows that P (·, · |Pa ) ∈

UZ , where UZ denotes the set of all real valued continuous functions defined

on Z endowed with sup norm topology.

Now, note that

{Pa}a∈A : A 7→
(

conφd(X)× R+×
(

{a} ∪ A × C0
)

×∆K−1
)A

, 6 (A.3)

where ∆K−1 denotes the K − 1–dimensional unit simplex, and that

{P (·, · |Pa )}a∈A :
(

conφd(X)× R+×
(

{a} ∪ A × C0
)

×∆K−1
)A

7→ (UZ)
A .

It follows that we can (equivalently) represent the parametrized games

(ΓPa)a∈A =

(

A,
(

φd(X)× [0, 1]
)A

, {P (·, · |Pa )}a∈A

)

as they are denoted in the main text by a function g : A 7→ g(A) ⊂ (UZ)
A.

To see that g is measurable, consider the σ–algebra of Lebesgue measurable

sets of A, L(A), and the σ–algebra generated by g(A), σ (g(A)) (or any other

suitable σ–algebra over g(A)). Now since it must hold that ∀s ∈ σ (g(A))

g−1(s) ∈ L (A) it follows that the function g is Lebesgue–measurable. �

1.4. Proof of Proposition 1.4. First note that all conditions for

Proposition 1.3 to hold are satisfied. Second, let us denote the identical

representative DTI of the general social environment of all children as φd
A.

Consider now any period and any {φa, ia}a∈A ∈
(

con φd(X)× R+

)A
.

Let am := {a ∈ A |φa = φm } and am := {a ∈ A |φa = φm } (confer Definition

1.3 (a)). Assume that φm−φm > 0 and that λ (A\am) > 0 and λ (A\am) > 0

(otherwise, we have the case of a symmetric TI point).

(a) 1. First, we will show that in Nash equilibrium φd∗

A ∈ [φm, φm]. To

see this consider the parental best replies to φd
A > φm. From Proposition

1.1 (a), it follows that in this case ∀a ∈ A, φd
a(·) < φm. Since in any Nash

equilibrium, almost all adults choose best reply strategies (see Definition

1.2), it follows that φd∗

A ≤ φm must hold. Analogously, φd∗

A ≥ φm must hold.

For the next step, let us denote with AN the set of adults that choose best

reply strategies in the Nash equilibrium of a given period (where λ
(

AN
)

=

1). Assume that φd∗

A = φm. Again by Proposition 1.1 (a), it then fol-

lows that for every a ∈ am ∩ AN φã (φ
m, 0, φm) = φm, and for every

a′ ∈ AN\am φã

(

φd∗

a′ , σ̂
∗
a, φ

m
)

∈ (φa′ , φ
m). We can conclude that φm <

mina∈AN φã

(

φd∗

a , σ̂∗
a, φ

m
)

< maxa∈AN φã

(

φd∗

a , σ̂∗
a, φ

m
)

= φm. Analogously,

6Note that the notation in Rath [53] and Pichler [50] would here rather be {Pa}a∈A : A 7→

conφd(X)× R+ ×
(

{a} ∪ A × C0
)

×∆K−1. However, we will here and subsequently stick
to the notation analogous to the main text of the present paper.
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if φd∗

A = φm then φm = mina∈AN φã

(

φd∗

a , σ̂∗
a, φm

)

< maxa∈AN φã

(

φd∗

a , σ̂∗
a, φm

)

< φm.

Assume next that φd∗

A ∈ (φm, φm). In this case it follows by Propo-

sition 1.1 (a) that for every a ∈ AN such that φa ∈
(

φd∗

A , φm
]

it must

hold that φã

(

φd∗

a , σ̂∗
a, φ

d∗

A

)

∈
(

φd∗

A , φa

)

, and for every a ∈ AN such that

φa ∈
[

φm, φd∗

A

)

, we have φã

(

φd∗

a , σ̂∗
a, φ

d∗

A

)

∈
(

φa, φ
d∗

A

)

. It follows that φm <

mina∈AN φã

(

φd∗

a , σ̂∗
a, φ

d∗

A

)

< maxa∈AN φã

(

φd∗

a , σ̂∗
a, φ

d∗

A

)

< φm.

We can conclude that under the conditions of Proposition 1.4 (a), φm ≤

φ̃m < φ̃m < φm or φm < φ̃m < φ̃m ≤ φm almost surely.

(b) 1. If additionally the identical oblique socialization weights are

strictly positive for all subsets of adults, then it even holds that in Nash

equilibrium φd∗

A ∈ (φm, φm). To see this consider the parental best replies

to φd
A = φm. From Proposition 1.1 (a), it follows that in this case ∀a ∈ am,

φd
a(·) = φm and ∀a′ ∈ A\am, φd

a
′ (·) < φm. Since in any Nash equilibrium

almost all adults choose best reply strategies, and since λ (A\am) > 0, it

then follows that φd∗

A < φm must hold. By the same logic, φd∗

A > φm.

It follows (analogously to before) that φm < φ̃m < φ̃m < φm almost

surely.

(a+b) 2. Since for any two succeeding periods the TIs (weakly) assim-

ilate almost surely for any tuple of pairs of (first period) TIs and inter–

generational TIs, it follows that for any tuple of initial TIs coupled with any

tuple of inter–generational TIs, the TIs converge to a symmetric TI point.

(a+b) 3. We will finally show that indeed any symmetric TI point is a

steady state. Consider any symmetric TI point and denote the according TI

as φ ∈ con φd(X). Denote the set of adults that have this TI as As, where

λ (As) = 1. We will show first that φd∗

A = φ. To see this, simply note that

by Proposition 1.1 (a) the best replies to the cases where φd
A <> φ must

satisfy that ∀a ∈ As, φd
a(·) >< φa = φ. Thus, only the case φd

A = φ can be

supported by best replies of the adults of As ∩ AN , since λ
(

As ∩AN
)

= 1.

Given φd∗

A = φ it then follows from Proposition 1.1 (b) that ∀a ∈ As ∩ AN ,
(

φd∗

a , σ̂∗
a

)

= (φ, 0) and φã (φ, 0, φ) = φ. �



APPENDIX B

1. Proofs

Many parts of the proofs below follow straightforwardly from the gen-

eral characteristics of parental best reply choices shown in Proposition 1

in Pichler [49] (these characteristics must also hold for the individual best

reply choices in a SNE). For ease of reference, we replicate this proposi-

tion here, which requires the following additional notation. For any a ∈ A,

we will denote any pair of best reply choices (which are chosen against the

representative DTI and subject to the optimally perceived TI, adopted and

inter–generational TI) as
(

φd
a(t)

(

φd
Aa

(t), φ̂a (Ra) , φa(t), ia

)

, σ̂a(t)
(

φd
Aa

(t), φ̂a (Ra) , φa(t), ia

))

which we will abbreviate below as
(

φd
a(t) (·) , σ̂a(t) (·)

)

. Furthermore, the

resulting best reply location of the adult child’s adopted TI will be denoted

φa(t+ 1)
(

φd
a(t) (·) , σ̂a(t) (·) , φ

d
Aa

(t)
)

.

Proposition B.1 (Characterization of Best Replies). Let Assumptions

2.1–1.3 hold. Then, ∀t ∈ N, ∀a ∈ A, if

(a) φd
Aa

(t) 6= φ̂a (Ra), it holds generically that sign
(

φd
a(t) (·)− φa(t)

)

=

− sign
(

φd
Aa

(t)− φ̂a (Ra)
)

and σ̂a(t) (·) > 0, while it always holds that

sign
(

φa(t+ 1)
(

φd
a(t) (·) , σ̂a(t) (·) , φ

d
Aa

(t)
)

− φ̂a (Ra)
)

=

sign
(

φd
Aa

(t)− φ̂a (Ra)
)

.1

(b) φd
Aa

(t) = φ̂a (Ra), it holds that φ
d
a(t) (·)−φa(t) = 0 and σ̂a (·) = 0, hence

φa(t+ 1)
(

φa(t), 0, φ̂a (Ra)
)

− φ̂a (Ra) = 0.

Proof. Confer the proof of Proposition 1 in Pichler [49].

1.1. Proof of Proposition 2.1. First note that the sets of maxi-

mizers of the best reply problems (1.2) are nonempty and single–valued

by the Weierstrass Theorem (the choice sets are compact and the target

functions of the best reply problems are continuous) and strict concav-

ity. Denote φd
A(t) = φd

A(t)
(

φd
L(t), φ

d
H(t)

)

= (1 − qH)φd
L(t) + qHφd

H(t), and

σ̂G(t) := 1
qG

∫

g∈G σ̂g(t) dλ(g), G = L,H (the average socialization success

96
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shares of the groups). Let us now represent the parental best reply problems

as those of choosing best replies against the tuple
{

φd
G(t), σ̂G(t)

}

G=L,H
∈

(

φd(X)× [0, 1]
)2
.2 Then, if in the given period t ∈ N, the adopted TIs of

the adults of the same group are identical, then the (unique) best reply pairs

against such a tuple are identical for all adults of the same group. We will

denote these identical pairs of best replies as
{

φd
G(t)

(

{

φd
G′(t), σ̂G′(t)

}

G′=L,H

)

, σ̂G(t)

(

{

φd
G′(t), σ̂G′(t)

}

G′=L,H

)}

G=L,H

∈
(

φd(X)× [0, 1]
)2

.

We thus obtained a continuous function (upper hemicontinuity follows by

Berge’s Theorem of the Maximum, which implies continuity since the best

reply pairs are single valued) from a compact and convex set into itself,
(

φd(X)× [0, 1]
)2

7→
(

φd(X)× [0, 1]
)2
. Thus, by Brouwer’s Fixed Point The-

orem, a fixed point where for every G = L,H
(

φd
G(t)

(

{

φd
G′(t), σ̂G′(t)

}

G′=L,H

)

, σ̂G(t)

(

{

φd
G′(t), σ̂G′(t)

}

G′=L,H

))

=
(

φd
G(t), σ̂G(t)

)

exists. This constitutes a SNE.

Now, since in the initial period, the adopted TIs of the members of the

same cultural group are assumed to be identical, a SNE exists in the initial

period. If all parents choose the SNE strategies, it follows immediately that

all children of the same cultural group adopt the same TIs (using the SNE

strategies for substitution in the TI formation rule (1.1)), i.e. the adults of

the same cultural group have identical adopted TIs in the second period.

Applying this process iteratedly, it follows that a path of SNEs exists.

1.2. Proof of Proposition 2.2. That Proposition 2.2 holds follows

as an immediate consequence of the Lemma below. This shows the range

of the phase vectors, (∆φL(t),∆φH(t)), where ∆φG(t) := φG(t + 1) −

φG(t), G = L,H, depicted in Figure 2.1. Notably, these results hold

∀
{

φd∗

G (t), σ̂∗
G (t)

}

G=L,H
∈ E(P (t)).

Lemma B.1 (Phase Vectors).

(a) If φH(t) ≥ eH and φH(t) ≥ φL(t) then ∆φH(t) < 0; and if φL(t) ≤ eL

and φL(t) ≤ φH(t) then ∆φL(t) > 0.

(b) If φL(t) ≥ φH(t) ≥ eH then ∆φL(t) < 0; and if eL ≥ φL(t) ≥ φH(t)

then ∆φH(t) > 0.

2The parental best reply problems are actually independent of the average socialization
success shares (thus, effectively ‘constant’ with respect to these).
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(c) If φL(t) ≥ eL, φL(t) ≥ φH(t) and φH(t) ≤ eH then ∆φH(t) > ∆φL(t).

Proof. Before we start this proof, note that in the notation of the

SNE quantities below, their dependence on P (t) is not indicated for brevity.

Also, we will denote with φd
G(t)

(

φd∗

A (t)
)

the identical (and unique) best reply

choices to the location of the average (SNE–)DTI of any individual member

of the cultural groups G ∈ {L,H} (again, the dependence on other param-

eters is not indicated). Note also that the indication (PB.1) will indicate

that all claims that follow directly from Proposition B.1.

(a) Let φH(t) ≥ eH and φH(t) ≥ φL(t). Then φd∗

A (t) < φH(t), thus

∆φH(t) < 0 (PB.1). Suppose, by ways of contradiction, that φd∗

A (t) ≥ φH(t).

In this case, φd
H(t)

(

φd∗

A (t)
)

≤ φH(t) (PB.1). Furthermore, φd
L(t)

(

φd∗

A (t)
)

≤

φL(t) if φL(t) is larger than the lower bound of φd(X); and if φL(t) equals

that lower bound, then φH(t) > φd
L(t)

(

φd∗

A (t)
)

= φL(t) (PB.1). This con-

tradicts φd∗

A (t) ≥ φH(t) being supported by best reply choices.

The proof for the ‘opposite’ case of φL(t) ≤ eL and φL(t) ≤ φH(t) is

analogous.

(b) Let φL(t) ≥ φH(t) ≥ eH . Then φd∗

A (t) < φL(t), thus ∆φL(t) < 0

(PB.1). Suppose, again by ways of contradiction, that φd∗

A (t) ≥ φL(t). In

this case, φd
L(t)

(

φd∗

A (t)
)

< φL(t) and φd
H(t)

(

φd∗

A (t)
)

≤ φH(t) (PB.1). This

yields a contradiction again.

The proof for the ‘opposite’ case of eL ≥ φL(t) ≥ φH(t) is again analo-

gous.

(c) Let φL(t) ≥ eL, φL(t) ≥ φH(t) and φH(t) ≤ eH (note that at least

one inequality must be strict). Then, if φd∗

A (t) ∈ [φH(t), φL(t)] it follows

immediately that ∆φH(t) ≥ 0 ≥ ∆φL(t), with at least one inequality strict

(PB.1). The case φd∗

A (t) /∈ [φH(t), φL(t)] can only be supported by best re-

ply choices if φd∗

L (t) < φd∗

A (t) < φd∗

H (t). This must be true since by (PB.1)

if φd∗

A (t) < φH(t), then φd
H(t)

(

φd∗

A (t)
)

≥ φH(t); and if φd∗

A (t) > φL(t),

then φd
L(t)

(

φd∗

A (t)
)

≤ φL(t). Thus, φH(t + 1) > φL(t + 1) ⇒ ∆φH(t) >

∆φL(t). �

1.3. Proof of Proposition 2.3. First, we show that φd∗

A (t) ∈ (eL, eH).

Suppose, by ways of contradiction, that φd∗

A (t) ≥ eH . But then, φd
H(t)

(

φd∗

A (t)
)

≤

φH(t) while φd
L(t)

(

φd∗

A (t)
)

< φL(t). This contradicts φd∗

A (t) ≥ φH(t) being

supported by best reply choices. The analogous logic yields a contradiction

for the case of φd∗

A (t) ≤ φL(t). Thus, by Proposition B.1, φd
H(t)

(

φd∗

A (t)
)

≥

φH(t), and φd
L(t)

(

φd∗

A (t)
)

≤ φL(t). We show next that the inequalities
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must be strict. To see this, simply note that if φd∗

A (t) < φH(t), then

φd
H(t)

(

φd∗

A (t)
)

> φH(t), while if φd∗

A (t) ≥ φH(t), then this can only hold

if φd∗

H (t) > φH(t). The analogous logic yields the result that φd∗

L (t) <

φL(t). �

1.4. Proof of Proposition 2.4. Consider the case φH(t) > φL(t).

The first step of this proof is identical to the proof of Proposition 2 — only

that we replace the compact and convex set
(

φd(X)× [0, 1]
)2

by the set
{

φd
L(t) ∈ φd(X)

∣

∣

∣
φd
L(t) ≤ φL(t)

}

×
{

φd
H(t) ∈ φd(X)

∣

∣

∣
φd
H(t) ≥ φH(t)

}

×[0, 1]2,

i.e. we show that a SNE must exist in this set. To see that a mapping from

this set into itself can be constructed (with the same properties as in the

proof of Proposition 2), assume that φd
H(t) ≥ φH(t) > φL(t) ≥ φd

L(t), in

which case φd
A(t) ∈

(

φd
L(t), φ

d
H(t)

)

. From Proposition B.1 we know that the

best replies must then satisfy φd
H(t)

(

{

φd
G(t), σ̂G(t)

}

G=L,H

)

≥ φH(t) and

φd
L(t)

(

{

φd
G(t), σ̂G(t)

}

G=L,H

)

≤ φL(t) (given the present specification of the

perception rules).

From Proposition B.1, we know additionally that, under the conditions

above, whenever φH(t)/φL(t) is strictly smaller/larger than the upper/lower

bound of the set of possible DTIs, then the latter equalities must be strict (so

that these property must also hold in a SNE). That these SNE DTI choices

can only be coupled with σ̂∗
G(t) > 0 and σ̂∗

G(t) < 1 holds immediately by

Proposition B.1 (in the latter case since otherwise the adopted TIs of all

children would coincide with the parents’ optimal TIs). This finalizes the

proof of part (a) of Proposition 2.4, since the proof for the case φH(t) < φL(t)

is analogous.

To see part (b) simply note that if φH(t) = φL(t) = φ, then it must

hold that
(

φd
G(t)

(

{φ, σ̂G′(t)}G′=L,H

)

, σ̂G(t)
(

{φ, σ̂G′(t)}G′=L,H

))

= (φ, 0),

∀G = L,H. �

1.5. Proof of Proposition 2.5. Using the linearization of the phase

vectors at any steady state where (φL, φH) = (φ, φ), φ ∈ φd(X), subject

to any (iL, iH , qH) ∈ R
2
+×(0, 1) (we will drop these parameters below for

brevity), it follows that locally around such a steady state
(

∆φL (φL, φH)

∆φH (φL, φH)

)

=

(

∂∆φL(φ,φ)
∂ φL

∂∆φL(φ,φ)
∂ φH

∂∆φH(φ,φ)
∂ φL

∂∆φH(φ,φ)
∂ φH

)(

φL − φ

φH − φ

)

.

Remember that we consider only relative position preserving SNE choices,

which by Proposition 2.4 (b) implies that φd∗

L (φ, φ) = φd∗

H (φ, φ) = φ and

σ̂∗
G(φ, φ) = 0, G = L,H. From equation (2.3), it follows that we obtain for
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G = L,H

∂ φ̇G (φ, φ)

∂ φG

=
∂ φd∗

G (φ, φ)

∂ φG

−

(

∂ φd∗

G (φ, φ)

∂ φG

−
∂ φd∗

−G (φ, φ)

∂ φG

)

(1− qG)− 1

∂ φ̇G (φ, φ)

∂ φ−G

=
∂ φd∗

G (φ, φ)

∂ φ−G

−

(

∂ φd∗

G (φ, φ)

∂ φ−G

−
∂ φd∗

−G (φ, φ)

∂ φ−G

)

(1− qG).

To obtain the necessary partial derivatives above, we will use the Implicit

Function Theorem as follows. First, the sets of SNE are implicitly described

by a system of four equations obtained by setting
(

φd
g, σ̂g

)

=
(

φd
G, σ̂G

)

,

G = L,H, in any of the (identical) individual first order conditions of the

best reply problems (1.2) of the parents of both groups. To relate this system

of equations to the originating FOCs of the individual parents, we denote

it
(

L
φd
L

L (φL, φH) ,Lσ̂L

L (φL, φH) ,L
φd
H

H (φL, φH) ,Lσ̂H

H (φL, φH)
)′

= (0, 0, 0, 0)′

(i.e. the first equation results from the partial derivative of the Lagrangeans

of the parents of group L with respect to their DTI choice, etc.). Remem-

bering that both utility functions have zero slopes at their peaks (and at

any of the steady states we consider, the children’s adopted TIs do indeed

coincide with the optimal TIs), we obtain at any (φ, φ) ∈ φd(X)2























∂ L
φdL
L

(φ,φ)

∂ φd
L

∂ L
φdL
L

(φ,φ)
∂ σ̂L

∂ L
φdL
L

(φ,φ)

∂ φd
H

∂ L
φdL
L

(φ,φ)
∂ σ̂H

∂ L
σ̂L
L

(φ,φ)

∂ φd
L

∂ L
σ̂L
L

(φ,φ)
∂ σ̂L

∂ L
σ̂L
L

(φ,φ)

∂ φd
H

∂ L
σ̂L
L

(φ,φ)
∂ σ̂H

∂ L
φdL
H

(φ,φ)

∂ φd
L

∂ L
φdL
H

(φ,φ)
∂ σ̂L

∂ L
φdL
H

(φ,φ)

∂ φd
H

∂ L
φdL
H

(φ,φ)
∂ σ̂H

∂ L
σ̂H
H

(φ,φ)

∂ φd
L

∂ L
σ̂H
H

(φ,φ)
∂ σ̂L

∂ L
σ̂H
H

(φ,φ)

∂ φd
H

∂ L
σ̂H
H

(φ,φ)
∂ σ̂H























= diag

















∂2 u(φ|φ )

∂ φd
L

2

−∂2 c(0)
∂ σ̂2

L

∂2 u(φ|φ )

∂ φd
H

2

−∂2 c(0)
∂ σ̂2

H

















By the strict concavity of the own utility functions and the strict convexity

of the cost function, it follows that the determinant of the latter matrix is

strictly positive, and finally all conditions to apply the Implicit Function

Theorem are satisfied. To do so, we have to use


















∂ L
φdL
L

(φ,φ)
∂ φL

∂ L
φdL
L

(φ,φ)
∂ φH

∂ L
σ̂L
L

(φ,φ)
∂ φL

∂ L
σ̂L
L

(φ,φ)
∂ φH

∂ L
φdH
H

(φ,φ)
∂ φL

∂ L
φdH
H

(φ,φ)
∂ φH

∂ L
σ̂H
H

(φ,φ)
∂ φL

∂ L
σ̂H
H

(φ,φ)
∂ φH



















=















∂2 u(φ|φ )

∂ φd
L
∂ φL

0

0 0

0 ∂2 u(φ|φ )

∂ φd
H

∂ φH

0 0















Noting that for G = L,H, ∂2 u(φ|φ )

∂ φd
G
∂ φG

= −∂2 u(φ|φ )

∂ φd
G

2 , it follows from the Implicit

Function Theorem results that for G = L,H,
∂ φd∗

G (φ,φ)
∂ φG

= 1 and
∂ φd∗

G (φ,φ)
∂ φ−G

=



1. PROOFS 101

0, so that
(

∆φL (φL, φH)

∆φH (φL, φH)

)

=

(

−qH qH

1− qH qH − 1

)(

φL − φ

φH − φ

)

=

(

−qH

1− qH

)

(φL−φH).

Thus, locally around any point (φ, φ) ∈ φd(X)2, ∆φL (φL, φH)−∆φH (φL, φH) =

−(φL − φH), and there is an infinite speed of convergence to a(nother)

steady state (φ′, φ′) ∈ φd(X)2.3 In particular, this implies that for ev-

ery (iL, iH , qH) ∈ R
2
+×(0, 1) ∃∆(iL, iH , qH) ∈

(

0, | conφd(X)|
]

such that

∀0 < ∆φ(t) < ∆(iL, iH , qH), ∆φ(t+ 1) < ∆φ(t). �

1.6. Proof of Proposition 2.6. This proof will be based on the con-

struction of sufficient properties of a SNE selection function in order to

guarantee convergence. To discuss these properties, we will focus our atten-

tion to the upper triangle of the state space (i.e. where φH ≥ φL). Note also

that our dynamical system is time–autonomous, and we will drop the time–

indexes. Furthermore, we consider below any (iL, iH , qH) ∈ R
2
+×(0, 1), but

will also drop these parameters for brevity.

Consider a point where the adopted TI of the members of group L

coincides with the lower bound of φd(X) =
[

φ, φ
]

. Denote this
(

φ, φ1
H

)

, with

φ1
H > φ. We know that at any such point φd∗

L

(

φ, φ1
H

)

= φ, and the lower DTI

constraint is binding for the parents of group L. Then, there exists a SNE

selection function for which it holds that there is a non–empty and right–

open interval
[(

φ, φ1
H

)

,
(

φ1
L, φ

1
H

))

, where φ1
L > φ, such that (a) the lower

DTI constraint stays binding for L; as well as that (b) for all points
(

φL, φ
1
H

)

in this interval, φd∗

H

(

φL, φ
1
H

)

= φd∗

H

(

φ, φ1
H

)

and σ̂∗
H

(

φL, φ
1
H

)

= σ̂∗
H

(

φ, φ1
H

)

.

Extending this sort of normalization to any point where φL = φ (and

which is not located on the main diagonal of the state space where φL = φH),

we obtain a continuum of right–open intervals on any of which it holds that

φ̇H (φL, φH) is constant.

Analogously, consider a point where φH = φ, and denote this point
(

φ2
L, φ

)

, with φ2
L < φ. We know that at this point φd∗

H

(

φ2
L, φ

)

= φ, and the

upper DTI constraint is binding for the parents of group H. Then, there

exists a SNE selection function for which it holds that there is a non–empty

and left–open interval
((

φ2
L, φ

2
H

)

,
(

φ2
L, φ

)]

, where φ2
H < φ, such that (a) the

upper DTI constraint stays binding for H; as well as that (b) for all points
(

φ2
L, φH

)

in this interval, φd∗

L

(

φ2
L, φH

)

= φd∗

L

(

φ2
L, φ

)

and σ̂∗
L

(

φ2
L, φH

)

=

σ̂∗
L

(

φ2
L, φ

)

.

3This infinite speed of convergence is due to the fact that locally around any steady state
(φ, φ), the adopted TIs of the children of both groups will only marginally deviate from
the optimal TI. Since parents perceive zero disutility in such a case, they will not engage
in active socialization. Thus, all children of the society adopt the society’s average DTI,
φd
A (φL, φH) = φLqH + φH(1− qH).
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Extending this sort of normalization to any point where φH = φ (and

which is not located on the main diagonal), we obtain a continuum of left–

open intervals on any of which it holds that φ̇L (φL, φH) is constant.

Consider now any pair of points that consists of a right–boundary point

of the first type of intervals and a left–boundary point of the second type of

intervals, which satisfies the following conditions: (a) At the first of these

points, the upper DTI constraint is not binding for group H, and at the

second of these points, the lower DTI constraint is not binding for group

L (but the DTI–choices coincide with the upper bound, respectively lower

bound of φd(X)), and (b) these two points are connected through a 45 ◦–

line–segment (in state space).

We will now impose a normalization on the SNE selection on these sorts

of 45 ◦–line–segments. To introduce this, the following definition will be

useful.

Definition B.1 (State–corrected SNE Choices). ∀ (φL, φH) ∈ conφd(X)2,

denote the tuple
{

φd∗

G (φL, φH)− φG, σ̂
∗
G (φL, φH)

}

G∈{L,H}

as state–corrected SNE choices.

We will now indeed require the SNE selection function to select identical

state–corrected SNE choices for every point on any of the above constructed

45 ◦–line–segments. Thus for all points on such 45 ◦–line–segments, both

φ̇L (φL, φH) and φ̇H (φL, φH) are constant (i.e. the 45 ◦–line–segments are

isoclines).

We can now give the following summarizing characterization of the phase

vectors in the upper triangle of the state space. First, the main diagonal

consists of a continuum of steady states (Proposition 2.4 (b)). This is neigh-

bored by a continuum of line–segments consisting of a connection of (a) a

horizontal line in state space where φ̇H (φL, φH) is constant, with (b) a

45 ◦–isocline (which is eventually constituted by a single point), with (c) a

vertical line where φ̇L (φL, φH) is constant.4 Notably, by construction, on all

45 ◦–isoclines φ̇L (φL, φH) is identical to that of the connected vertical lines;

and φ̇H (φL, φH) is identical to that of the connected horizontal lines.

4Eventually, these line–segments ‘melt down’ in a point (φm, φm) where
(

φd∗

L (φm, φm) ,
(

φd∗

H (φm, φm)
))

=
(

φ, φ
)

, but where both DTI constraints are not

binding. Generically, the vertical and horizontal lines connected to this point would
constitute the borders of a rectangle in which it holds that the lower DTI constraint is
binding for group L and the upper DTI constraint is binding for group H. This rectangle
would thus be made of a continuum of horizontal lines with constant φ̇H (φL, φH) and a

continuum of vertical lines with constant φ̇L (φL, φH).
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We will show next that the connected line–segments can never be crossed

twice by a (TI–)trajectory. To do so, we will consider the case where a

trajectory crosses a connected line–segment from ‘above’ (respectively from

the ‘left’) — the case for a crossing from ‘below’ (respectively from the

‘right’) can be shown analogously. Obviously, no trajectory can cross any of

the three individual line–segments both from above and below.

Assume that a trajectory crosses a horizontal line–segment from above.

Now, any point on the (closure of) the horizontal line has strictly lower φL

and φH than any point on the connected (left–open) 45 ◦–isocline and the

connected vertical line. This implies that, for the trajectory to ‘reach’ these

segments, it must (‘initially’) cross from above (respectively from the left)

a continuum of connected line–segments on which φ̇L (φL, φH) ≥ 0 on the

45 ◦–isocline and the connected vertical line. Now, these would have to be

crossed again from below (respectively from the right) by the trajectory in

order to actually ‘return’ to the original connected line–segment. But this

is obviously impossible. By the analogous logic, a trajectory that crosses a

45 ◦–isocline or a vertical line segment from above (respectively from the left)

can not also cross the same connected line segment from below (respectively

from the right).

Under this property, no cycles can exist in the upper triangle of the state

space and any trajectory must end up in a steady state therein. Extending

these properties (respectively the normalizations on the SNE selection func-

tion) to the lower triangle of the state space in an analogous way, we obtain

the convergence property for the whole state space. �
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iH

iL 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

2.0 •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• ••• •••
1.8 •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• ••• •••
1.6 •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• ••• •••
1.4 •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• ••• •••
1.2 •◦◦ •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• •••
1.0 •◦◦ •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• •••
0.8 •◦◦ •◦• •◦• •◦• ••• ••• ••• ••• ••• •••
0.6 •◦• •◦• •◦• •◦• •◦◦ •◦◦ ••• ••• ••• •••
0.4 •◦• •◦• •◦• •◦• •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
0.2 •◦• •◦• •◦• •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦

iH

iL 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

2.0 •◦◦ ••• ••• ••• ••• ••• ••• ••• ••• •••
1.8 •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• ••• •••
1.6 •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• ••• •••
1.4 •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• ••• •••
1.2 •◦◦ •◦◦ •◦◦ ••• ••• ••• ••• ••• ••• •••
1.0 •◦◦ •◦◦ •◦◦ •◦◦ ••• ••• ••• ••• ••• •••
0.8 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ ••• ••• ••• •••
0.6 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
0.4 •◦• •◦• •◦• •◦• •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
0.2 •◦• •◦• •◦• •◦• •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦

iH

iL 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

2.0 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ ••• ••• ••• •••
1.8 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ ••• •••
1.6 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
1.4 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
1.2 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
1.0 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
0.8 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
0.6 •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
0.4 •◦• •◦• •◦• •◦• •◦• •◦◦ •◦◦ •◦◦ •◦◦ •◦◦
0.2 •◦• •◦• •◦• •◦• •◦• •◦• •◦◦ •◦◦ •◦◦ •◦◦

1st/2nd/3rd entry: Convergence/Uniqueness/Stability Yes/No: •/◦

Figure B.1. Dynamics Statistics for qH = (0.5, 0.7, 0.9)′
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2. Evolution under Imperfect Empathy

The central property of the evolution under global ‘imperfect empathy’

(respectively the first type of perception rule) is that if the oblique social-

ization is unbiased, then the TIs of (almost) all adults converge to the same

point (confer Proposition 4 in Pichler [49]). Since in the present paper, we

have assumed unbiased oblique socialization, this result must thus hold.

It rests to show the characterization of the SNE choices for the two

cultural groups case under global imperfect empathy.

Proposition B.2 (Characterization of SNE choices). Let Assumptions

2.1–1.4 hold. Then, the following properties are satisfied ∀{iL, iH , qH} ∈

(R++ \{∞})2 × (0, 1), and ∀
{

φd∗

G (t), σ̂∗
G (t)

}

G=L,H
∈ E(P (t)).

1. Case φH(t) <> φL(t)

(a) φd∗

H (t) <> φH(t) <> φH(t+ 1) <> φL(t+ 1) <> φL(t) <> φd∗

L (t)5,

and

(b) σ̂∗
G(t) ∈ (0, 1), ∀G ∈ {L,H}.

2. Case φH(t) = φL(t)

(a) φd∗

G (t) = φG(t) = φG(t+ 1), ∀G ∈ {L,H}, and

(b) σ̂∗
G(t) = 0, ∀G ∈ {L,H}.

Proof. Let φH(t) > φL(t). By Proposition B.1, it suffices to show that

φd∗

A (t) ∈ (φL(t), φH(t)) (for all elements in the set of SNEs). Assume, by

ways of contradiction, that φd∗

A (t) ≥ φH(t). In this case φH(t)
(

φd∗

A (t)
)

≤

φH(t) while even φL(t)
(

φd∗

A (t)
)

< φH(t). This yields a contradiction. Anal-

ogously, we obtain a contradiction for φd∗

A (t) ≤ φL(t). Also, the proof for

the case φH(t) > φL(t) is analogous.

Let φH(t) = φL(t), and assume that φd∗

A (t) <> φH(t) = φL(t). But then,

φG(t)
(

φd∗

A (t)
)

≥≤ φH(t) = φL(t), ∀G ∈ {L,H}, which yields a contradiction

again. �

By the results of Proposition B.2, the cultural groups strictly assimilate

inter–generationally and hence the TIs of the groups converge to the same

point (confirming the result of Pichler [49]). This result can be interpreted

to correspond to the ‘melting pot’ theory of assimilation of cultural groups

(see e.g. Han [33]).

5Again, the outer inequalities would be strict if the respective adopted TI would coincide
with the relevant boundary of conφd(X). But this can only be the case in the initial
period, given the results of the present Proposition.



APPENDIX C

1. Proofs

1.1. Proof of Proposition 3.2. From equation (3.1), it follows that

∀i ∈ N , φi(t+1) are concave in φd
i (t), thus also all v (φi(t+ 1) |βi, φi(t)) are

concave in φd
i (t) (by Assumption 3.5). This implies that the target functions

of the best reply problems of all parents are concave (and continuous). Since

also the DTI choice set is compact and convex, a non–empty, upper hemi-

continuous and convex set of DTI best replies exists for any parent (Berge’s

Theorem of the Maximum). Thus, a fixed point, i.e. a Nash equilibrium,

exists (Kakutani’s Fixed Point Theorem). �

1.2. Proof of Proposition 3.3. (a) That in any steady state, parents

choose their adopted TI as DTI is directly implied by Proposition 3.1 (c).

(b) Given (a), it follows that the set of steady states given Σ̂ coincides with

the set
{

Φ ∈ φd(X)n
∣

∣

∣
Σ̂Φ = Φ

}

. Hence, it is immediate that if the TIs of all

members of an essential communication class are identical, then Σ̂LΦL = ΦL,

where Σ̂L is the restriction of Σ̂ to some essential communication class L,

and ΦL is its vector of adopted TIs. We proceed by showing that steady

state TIs cannot differ within an essential communication class. To show a

contradiction, suppose that for an essential communication class L ∈ P(Σ̂),

|L| ≥ 2, there exists i, j ∈ L with φi 6= φj . Denote by φ̄L := max{φi|i ∈ L}

the maximal TI in communication class L. Since L is a communication class

it follows that there exists an i ∈ {l ∈ L : φl = φ̄L} and a j ∈ {l ∈ L|φl 6= φ̄L}

such that σ̂ij > 0. Moreover, due to maximality of φ̄L and the fact that L

is essential, σ̂ik = 0 for all k ∈ N with φk > φ̄L. Thus, Σ̂iΦL 6= φi implying

that this cannot be a steady state.

(c) This is also straightforward. Suppose that for some inessential communi-

cation class I ∈ P(Σ̂) with connections to other dynasties J := {j ∈ N |i →

j, i ∈ I} the set of TIs ΦI is not included in conv(φj |j ∈ J). W.l.o.g.

we have φ̄I := max{φi|i ∈ I} > max{φj |j ∈ J}. Since I is a communica-

tion class and is inessential, with all outside connections being to dynasties

with TIs strictly less than φ̄I , we get (similarly to (b)) for some dynasty

106
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k ∈ {i ∈ I|φi = φ̄I} that there exists j ∈ N and φj < φ̄I such that σ̂kj > 0.

Again, due to maximality of φ̄I and all other connections being to dynas-

ties with TIs strictly less than φ̄I , we get that Σ̂kΦI 6= φk, implying that

this cannot be a steady state. Hence, all TIs of the dynasties in inessential

communication classes I ∈ P(Σ̂) are convex combinations of the TIs of the

communication classes J ∈ P (Σ̂) such that I → J .

1.3. Proof of Proposition 3.4. This proof is organized in three essen-

tial steps. In the first step, we will show that if Σ̂ is symmetric ultrametric,

then M(t) is row stochastic for every t ∈ N. In the second step we will show

that subject to any β ∈ R
n
+ it holds that for every i, j ∈ N with σ̂ij > 0

there exists a δij > 0 such that for every t ∈ N, mij(t) ≥ δij . We use these

results to show in the third step that the backward accumulation matrices

are type symmetric and have a strictly positive diagonal. This allows us to

apply Theorem 2 of Lorenz [40] to conclude that the desired convergence

result holds. For the first step, we also need the following.

Lemma C.1 (Unit Eigenvectors). Let Σ̂ be positive definite. Then, ∀x ∈

R
n, ∀t ∈ N, M(t)x = x iff Σ̂x = x (i.e. x is a unit–eigenvector of M(t) if

and only if x is a unit–eigenvector of Σ̂).

Proof. Note that

M(t) = Σ̂
(

I +B(t)Σ̂
)−1

(I +B(t)) =
(

Σ̂−1 +B(t)
)−1

(I +B(t)).

That the latter representation is well defined if Σ̂ is positive definite follows

since Σ̂ is then invertible and also its inverse is positive definite. Thus, also

Σ̂−1 + B(t) is positive definite and invertible. Given this, both the ‘if’ and

the ‘only if’ direction of the proof can be directly seen from the following

sequence of transformations: Σ̂x = x ⇔ x = Σ̂−1x ⇔ (B(t) + I)x =

(B(t) + Σ̂−1)x ⇔ M(t)x = (B(t) + Σ̂−1)−1(B(t) + I)x = x. �

1. In the first step of the (main) proof, we show that if Σ̂ is symmetric

ultrametric, then M(t) is row stochastic for every t ∈ N. To do so, note

first that since Σ̂ is symmetric ultrametric, it is also positive definite (see

below). Hence, by Lemma C.1 (and setting x = (1, 1, ..., 1)′) the row entries

of M(t) = [mij(t)] sum up to one since the same holds for Σ̂. Thus, M(t)

is row stochastic if and only if M(t) is positive (that is M(t) ≥ 0). Now,

since I + B(t) is a diagonal matrix with strictly positive entries, M(t) =

Σ̂
(

I +B(t)Σ̂
)−1

(I +B(t)) is positive if and only if

Σ̂
(

I +B(t)Σ̂
)−1

=
(

Σ̂−1 +B(t)
)−1
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is positive (that this representation is well defined if Σ̂ is positive definite

has been discussed in the proof of Lemma C.1). In other words, we have to

check whether Σ̂−1 +B(t) is inverse–positive.

Now, since Σ̂ is symmetric ultrametric, it follows that its inverse is a

diagonally dominant Stieltjes matrix (see Nabben and Varga [43, 44], Mar-

tinez et al. [42]), i.e. a real symmetric positive definite matrix with positive

diagonal and negative off-diagonal entries. Thus, also Σ̂−1 +B(t) is a diag-

onally dominant Stieltjes matrix. In particular, it is an M–matrix, the class

of which is inverse–positive (on this issue, see e.g. Fujimoto and Ranade

[26]). Hence, M(t) is positive.

2. In the second step we show that subject to any β ∈ R
n
+ it holds that

for every i, j ∈ N with σ̂ij > 0 there exists a δij > 0 such that for ev-

ery t ∈ N, mij(t) ≥ δij . Again, since I + B(t) is a diagonal matrix

with strictly positive entries, we can restrict our attention to the matrix
(

Σ̂−1 +B(t)
)−1

=: B̄(t) =
[

b̄ij(t)
]

. Now, consider any i, j ∈ N such that

σ̂ij > 0. Since B̄(t) is positive, it follows that sign
(

b̄ij(t)
)

∈ {0, sign (σ̂ij)}.

Let us rule out the case sign
(

b̄ij(t)
)

= 0. To do so, let us compare

b̄ij(t) = (−1)i+j

∣

∣

∣
Σ̂−1 +B(t)

∣

∣

∣

ij
∣

∣

∣
Σ̂−1 +B(t)

∣

∣

∣

vs. (−1)i+j

∣

∣

∣
Σ̂−1

∣

∣

∣

ij
∣

∣

∣
Σ̂−1

∣

∣

∣

= σ̂ij

where |A|ij denotes the determinant of the ij adjoint matrix of a square

matrix A. Note next that since Σ̂ is symmetric positive definite, the same

holds for its inverse and Σ̂−1 +B(t). It follows that the determinants of the

matrices Σ̂−1 and Σ̂−1 + B(t) are strictly positive. Hence, it rests to show

that sign

(

∣

∣

∣Σ̂−1 +B(t)
∣

∣

∣

ij

)

= sign

(

∣

∣

∣Σ̂−1
∣

∣

∣

ij

)

6= 0.

To show this, note that for all i, j ∈ N ,
∣

∣

∣Σ̂−1 + diag (e∗1(t), . . . , e
∗
n(t))

∣

∣

∣

ij

is linear in every individual element of {e∗1(t), . . . , e
∗
n(t)} (to verify this most

easily, consider the Leibniz formula). In the following, let abs(·) denote the

absolute value of a real number. It is then immediate that for all k ∈ N

∂ abs

(

∣

∣

∣
Σ̂−1 +B(t)

∣

∣

∣

ij

)

∂ e∗k(t)
≥ 0

since in the other case, the sign of
∣

∣

∣Σ̂−1 +B(t)
∣

∣

∣

ij
would switch compared to

the sign of
∣

∣

∣Σ̂−1
∣

∣

∣

ij
for e∗k(t) large enough. But this is ruled out since Σ̂−1 +

diag (x1, . . . , xn) is an M-Matrix for arbitrary (x1, . . . , xn)
′ ∈ R

n
+ and hence

(

Σ̂−1 + diag (x1, . . . , xn)
)−1

is positive for arbitrary (x1, . . . , xn)
′ ∈ R

n
+.
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Hence, sign

(

∣

∣

∣
Σ̂−1 +B(t)

∣

∣

∣

ij

)

= sign

(

∣

∣

∣
Σ̂−1

∣

∣

∣

ij

)

, so that 0 6= sign
(

b̄ij(t)
)

=

sign (σ̂ij) = +1.

Note next that the image–space of E is bounded. This follows by con-

tinuity of E and the fact that if φ(t) − φ∗(t + 1) = 0 then e∗ = 0, see

Corollary 3.1. Moreover, E
(

Φd(X)n, Σ̂, β
)

is closed since E is continu-

ous in Φd and Φd(X)n is closed. Since (e∗1(t), . . . , e
∗
n(t))

′ is thus bounded

above and hence
∣

∣

∣
Σ̂−1 +B(t)

∣

∣

∣
is bounded above, it finally follows that

0 6= sign (mij(t)) = sign (σ̂ij) = +1. Next, interpret our matrices M(t)

as functions of the elements e ∈ E
(

Φd(X)n, Σ̂, β
)

, M(e) ∈ S(n), and note

that the set
{

M(e)
∣

∣

∣e ∈ E
(

Φd(X)n, Σ̂, β
)}

is compact. Thus, we can define

min
e∈E(Φd(X)n,Σ̂,β)mij(e) =: δij > 0, for every i, j ∈ N such that σ̂ij > 0.

It follows that for all i, j ∈ N such that σ̂ij > 0 and for all β ∈ R
n
+ there

exists a δ > 0 such that for all mij(t) ≥ δ, ∀t ∈ N.

3. In the last step, we show that given the above, the left product of the

matrices M(t)M(t− 1) . . .M(0) converges such that the adopted TIs of all

dynasties of a connected subset are identical (respectively, the communica-

tion classes in P(Σ̂) reach a consensus). Note that all communication classes

of Σ̂ are essential by symmetry of Σ̂. By the definition of P
(

Σ̂
)

we have

that for all L ∈ P
(

Σ̂
)

and for all i, j ∈ L there exists a k ∈ {0, ..., |L|} such

that Σ̂k
ij > 0. Note that P

(

Σ̂
)

= P(M(t)) for all t ∈ N since σ̂ij > 0 implies

mij(t) ≥ δ for all t ∈ N as shown above and, since every communication

class of Σ̂ is essential, mij(t) = 0 if j /∈ PΣ̂(i).
1 Hence, for all L ∈ P

(

Σ̂
)

and for all i, j ∈ L there exists a k ∈ {0, ..., |L|} such that M(t+ k, t)ij > 0

for all t ∈ N.2

Now, consider a sequence of time steps (ts)s∈N such that t0 = 0 and

ts+1 = ts + L̄, where L̄ := max{|L| : L ∈ P (M)}, and consider the sequence

of accumulations
(

M(ts+1, ts)
)

s∈N
. By the rules of matrix multiplication,

we get that for any two A,B ∈ S(n) with a positive diagonal, (AB)ij > 0

if and only if Aij > 0 or Bij > 0. Hence, for any L ∈ P
(

Σ̂
)

and for all

i, j ∈ L, M(t+ |L|, t)ij > 0 for all t ∈ N since M(t) is row stochastic with a

positive diagonal. Moreover, M(t+ |L|, t)ij = 0 if j /∈ PΣ̂(i) since P
(

Σ̂
)

=

P(M(t)) for all t ∈ N. Thus, for the accumulations M(ts+1, ts) it holds

1Recall, PΣ̂(i) ⊆ N is such that PΣ̂(i) ∈ P
(

Σ̂
)

and i ∈ PΣ̂(i) (the element of the partition

P
(

Σ̂
)

which i belongs to).
2Recall that M(t′, t) denotes the accumulation M(t′, t) = M(t′)M(t′ − 1) . . .M(t).
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that M(ts+1, ts)ij > 0 if and only if j ∈ PΣ̂(i). In particular, M(ts+1, ts) is

type-symmetric for all s ∈ N.

For a non-negative matrix A let min+(A) denote the lowest positive

entry of A. We have shown above that there exists a δ > 0 such that σ̂ij > 0

implies mij(t) ≥ δ for all t ∈ N. Note that for any i, j ∈ L ∈ P
(

Σ̂
)

there

exists a k ≤ |L| and a sequence of dynasties (il)0≤l≤k with i0 = i and ik = j

such that σ̂il,il+1
> 0, implyingM(t+k, t)ij ≥

∏k−1
l=0 mil,il+1

(t+l) ≥ δk. Thus,

for the accumulations M(ts+1, ts) it holds that M(ts+1, ts)ij ≥ δts+1−ts if j ∈

PΣ̂(i) and M(ts+1, ts)ij = 0 else. Hence, min+
(

M(ts+1, ts)
)

≥ δts+1−ts =

δ|L̄|.

In summary, we have shown that the backward accumulation matri-

ces
(

M(ts+1, ts)
)

s∈N
have a uniform lower bound of the positive entries

min+
(

M(ts+1, ts)
)

≥ δ|L̄|, are type symmetric and have a strictly posi-

tive diagonal. By Lorenz [40], Theorem 2, we get the desired result for the

sequence
(

M(ts+1, ts)
)

s∈N
. Since limk→∞

∏k
s=0M(ts+1, ts) = limt→∞M(t),

we also establish the statement of the Proposition. �

1.4. Proof of Proposition 3.5. For both parts of the proposition, we

will apply the following Lemma (see e.g. Friedberg and Insel [24]).

Lemma C.2 (Convergence). Let A be a square matrix with complex or

real entries. Then, the sequence
{

At
}

t→∞
converges if and only if the fol-

lowing two conditions are satisfied.

(i) If λ is an eigenvalue of A, then either λ = 1 or λ lies in the open unit

disc of the complex plane, i.e. |λ| ∈ (−1, 1).

(ii) If 1 is an eigenvalue of A, then its algebraic multiplicity equals its

geometric multiplicity.

Let us denote by Eig(A), the set of eigenvalues of a matrix A and let

eig(A) ∈ Eig(A). Moreover, if z is a complex number, then we denote by

Re(z) the real part and by Im(z) the imaginary part of z.

Proof of part (a). We will show that condition (i) of Lemma C.2 is sat-

isfied. To see this, note first that by definition M = Σ̂(I +BΣ̂)−1(I +B) =

(B + Σ̂−1)−1(I +B),3 which implies that M−1 = (I +B)−1(B + Σ̂−1). Let

B̃ := (I + B)−1, i.e. for every i ∈ N , B̃ii =
1

1+σ̂iβi
, hence B̃ is a diagonal

matrix with entries in (0, 1). Thus, B̃B = I− B̃, and M−1 = B̃(B+Σ̂−1) =

I − B̃ + B̃Σ̂−1 = I + B̃(Σ̂−1 − I).

Now let Σ̂ be symmetric positive definite (henceforth: “PD”). Then

Σ̂−1 is also PD and the eigenvalues of both matrices are real and positive.

3That this representation is well defined if Σ̂ is positive definite can be seen in the proof
of Lemma C.1.
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Since Σ̂ is row stochastic, we have |eig(Σ̂)| ≤ 1 (here and in the rest of the

present proof of part (a), the properties shown for one eig(A) do hold for

every eig(A) ∈ Eig(A)), which implies that eig(Σ̂−1) ≥ 1. Thus, eig(Σ̂−1 −

I) ≥ 0 (subtraction of I decreases all eigenvalues by 1). Note that both

Σ̂−1 − I and B̃ are symmetric matrices with real non–negative eigenvalues.

As a consequence, the product B̃(Σ̂−1 − I) has also only real non–negative

eigenvalues.4 Thus, we get eig(B̃(Σ̂−1 − I)) ≥ 0, which implies eig(I +

B̃(Σ̂−1 − I)) ≥ 1, i.e. eig(M−1) ≥ 1, and hence all eigenvalues of M are

real and located in the interval (0, 1]. Furthermore, since M has row sum

one (see Lemma C.1, using x = (1, 1, ..., 1)′), at least one eigenvalue must

be equal to 1.

Proof of Part (b). Let Σ̂ have a strictly positive diagonal and let there

be an eigenvalue λ that satisfies Re(λ) < |λ|2. The second condition is

equivalent to Re(λ−1) < 1.5 Note that λ−1 is an eigenvalue of Σ̂−1. Now

let for each i βi =
k
σ̂i
, k ∈ R, so that B = kI. We show that if k is large

enough, then M has an eigenvalue with absolute value larger than 1 and

hence condition (i) of Lemma C.2 is violated.

To do so, we will use M−1 = (I + B)−1(B + Σ̂−1) = (I + kI)−1(kI +

Σ̂−1) = ((1+k)I)−1(kI+Σ̂−1) = 1
1+k

(kI+Σ̂−1). Now, since we have that we

have Re(λ−1) = Re(eig(Σ̂−1)) < 1, this implies Re(eig(kI + Σ̂−1)) < 1 + k,

because eig(kI + Σ̂−1) = k + eig(Σ̂−1). For k large enough, we must have

|eig(kI+Σ̂−1)| < 1+k.6 To see that this must hold, assume to the contrary

|eig(kI + Σ̂−1)| ≥ 1 + k. Thus, we would get
√

Re2(eig(kI + Σ̂−1)) + Im2(eig(kI + Σ̂−1) ≥ 1 + k.

Denote ǫ := 1 − Re(λ−1) > 0. Re(λ−1) = 1 − ǫ implies that Re(eig(kI +

Σ̂−1)) = 1−ǫ+k. Since Re(eig(kI+Σ̂−1)) = k−ǫ+1 and Im(eig(kI+Σ̂−1) =

Im(λ−1), we have that
√

(1− ǫ+ k)2 + Im2(λ−1) ≥ 1+k, i.e. (1−ǫ+k)2+

Im2(λ−1) ≥ (1 + k)2. After simplifying, we have k ≤ Im2(λ−1)−2ǫ+ǫ2

2ǫ . For k

large enough, this is not true because the right hand side is independent of

k. A contradiction. Thus, we get

1

1 + k
|(eig(kI + Σ̂−1))| =

∣

∣

∣

∣

eig

(

1

1 + k
(kI + Σ̂−1)

)∣

∣

∣

∣

= |eig(M−1)| < 1

and hence |eig(M)| > 1 so that condition (i) of Lemma C.2 is violated. �

4To see that this is true define Σ−1 − I =: A and note first that since A is positive

semidefinite we have xTAx ≥ 0 for all vectors x. Next, let B̆ = B̃
1

2 , i.e. B̆ is the positive

semidefinite square root of B̃. Then xTAx ≥ 0 for all x implies that (yT B̆)A(B̆y) ≥ 0 for

any y. Thus eig(B̆AB̆) ≥ 0. Finally, by symmetry, note that B̆AB̆ = (B̆(B̆A))T = (B̃A)T

which has the same eigenvalues as B̃A.
5Simply because: λ−1 = Re(λ)

Re2(λ)+Im2(λ)
+ −Im(λ)

Re2(λ)+Im2(λ)
i and |λ|2 = Re2(λ) + Im2(λ).

6If λ−1 is a real number, then this holds trivially.
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1.5. Proof of Proposition 3.6. As by Lemma C.2 above, for the

convergence of the powers of a matrix A it is sufficient that 1 is exactly one

eigenvalue of A and all other eigenvalues are in the interval (−1, 1). To prove

the proposition, we will in a first step apply the Perron-Frobenius Theorem

(PFT) for a regular row–stochastic matrix A: (i) The spectral radius of A

is 1 (the largest eigenvalue in absolute value). (ii) For all other eigenvalues

λ it holds that |λ| < 1. (iii) The eigenvalue 1 is simple.

Consider any Σ̂ ∈ S(n) such that Σ̂ is irreducible with strictly positive

diagonal. This implies that Σ̂ is regular, so that by the PFT for regular row

stochastic matrices, Σ̂ has simple eigenvalue 1 and all other eigenvalues are

in (−1, 1).

Let us now consider the transformations M = Σ̂
(

I +BΣ̂
)−1

(I+B). In

a first step, we have to guarantee that I+BΣ̂ is invertible, so that M exists.

Note that strict diagonal dominance would be sufficient for non–singularity.

For strict diagonal dominance, we require that 1 + βi

(

σ̂i −
∑

j∈Ni
σ̂ij

)

> 0

holds for every i ∈ N . Since Σ̂ has a strictly positive diagonal, this is always

satisfied if e.g. β ≤ 1.

Given above, it follows again by the continuity of the eigenvalues that

there does exist a non–empty neighborhood N
(

0
∣

∣

∣
Σ̂
)

⊂ R
n
+ such that ∀β ∈

N
(

0
∣

∣

∣Σ̂
)

∪0 both I+BΣ̂ is strictly diagonally dominant and M has exactly

one eigenvalue equal 1 and n − 1 eigenvalues in the interval (−1, 1). Thus,

M t converges. �
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