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Zusammenfassung 

Menschen sind in der Lage, mentale Modelle von Informationen, die sie aus der 

Umwelt aufnehmen, aufzubauen. Solche mentalen Modelle bilden die Grundlage für die 

Organisation und Strukturierung von sensorischer Information und Wissen und sind 

damit wesentlich, um Gedächtnisaufgaben ausführen zu können. Sie können in so 

genannten cell assemblies, also wechselseitig miteinander verschalteten Neuronen, 

realisiert werden. Für den Aufbau von mentalen Modellen muss das neuronale System 

adaptive Fähigkeiten besitzen, d.h. die Fähigkeit zu lernen. Eine wesentliche 

Voraussetzung für diese Lernfähigkeit ist die Anpassung der synaptische 

Übertragungsstärke in Abhängigkeit von der jeweiligen Situation.  

Die Informationen aus der Umwelt, mit denen der Mensch und damit sein neuronales 

System in einzelnen Situationen konfrontiert ist, können verschiedengestaltig sein: Es 

kann sich zum Beispiel um statische Muster handeln, wie z.B. einen Baum oder einen 

Stuhl, aber auch um dynamische Szenen wie etwa ein vorbeifahrendes Auto oder ein auf 

und ab hüpfender Ball. 

In dieser Arbeit werden zwei Ansätze vorgeschlagen, die eine Modellierung mentaler 

Modelle sowohl statischer als auch dynamischer Informationen mit Hilfe von 

rekurrenten neuronalen Netzen ermöglichen. Beiden Modellen ist gemein, dass die 

Lernprozesse selbstorganisiert und nur in Abhängigkeit von lokaler Information 

ablaufen. Da die Lerndynamik und die rekurrente Dynamik bei Online-Lernverfahren 

eng miteinander verwoben sind, ist der Erfolg des ersten Modells (Kapitel 2) stark 

abhängig von der Anpassung der Lernrate. Mit der Input Compensation (IC) Struktur 

wird in Kapitel 3 und 4 eine biologisch inspirierte Neuronenstruktur vorgeschlagen, die 

Lern- und rekurrente Dynamik voneinander entkoppelt und somit Online-Lernen in sehr 

effizienter Weise erlaubt. Rekurrente Netze, die mit solchen IC Neuronen ausgestattet 

sind, können erfolgreich trainiert werden, um sowohl statische als auch dynamische 

Situationen abzubilden. Somit bietet dieses Modell eine Grundlage für sehr vielfältige 

Gedächtnisleistungen. 
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1 Introduction 

 
Lucretius derives in De rerum natura a cosmology, which postulates that the invisible 

atoms fall like rain straight downwards but time and again deviate little from their path. 

Due to this clinamen, i.e. little and unpredictable swerve, random collisions between the 

atoms occur resulting in gradual formation of complex atomic clusters. Thus, yet around 

70 B.C. Lucretius describes a hypothesised constructive principle that provides a 

mechanism for an inevitable process in the complex world: for self-organisation. By the 

way, this unpredictable clinamen serves for him also as a physical foundation for human 

free will (Neubauer, 2003). 

 

1.1 Self-Organisation 
 
So already in this very early work as well as in its Greek predecessor Epicur the basic 

idea of self-organisation can be found: Order emerges spontaneously without any 

obviously apparent driving force. Fascinating examples of self-organisation can be 

found throughout various disciplines when looking at pattern formation processes: For 

example sand grains assembling into ripples or water molecules aggregating to form 

crystalline snowflakes, high in the clouds with temperatures far below freezing. But also 

biological systems provide a variety of phenomena which are explained by self-

organising processes: The creation of structures by social animals like termite mounds 

or flocking behaviour like flocks of birds or schools of fish; the stripes of a zebra or 

patterns on the wings of butterflies (Camazine et al., 2001; 2003); formation of lipid 

bilayer membranes; emergence of sustained delay activity in memory tasks  (Yakovlev 

et al., 1998; Del Giudice et al., 2003), synchronisation in neuronal firing (Singer, 1999) 

or homeostatic plasticity in neuronal firing (Turrigiano and Nelson, 2004). This 

undoubtedly incomplete list of self-organising systems can of course be expanded by 

many more examples – but although they originate from diverse fields they suffice to 

put forward the basic ideas of self-organisation: Nobody thinks of a snowflake-maker 

when seeing snowflakes or of someone painting black and white stripes on zebras. 

These higher-level properties emerge solely from the interplay of the lower-level 

components. 
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Scott Camanzine and colleagues have condensed this in their definition of self-

organisation (2001, S.8, my emphases): 

“Self-organization is a process in which pattern at the global level of a 

system emerges solely from numerous interactions among the lower-

level components of the system. Moreover, the rules specifying 

interactions among the system’s components are executed using only 

local information, without reference to the global pattern.” 

Thus, without any ordering influence imposed to the system a global pattern emerges, 

which the lower-level entities themselves do not display. “Pattern” means here an 

organised arrangement of entities in space or time. The above-mentioned examples 

show that the lower-level components the systems consist of can be by themselves on 

very different levels of complexity like for example animals, cells, neurons or 

molecules. 

This definition given by Camazine and colleagues can serve as a guideline throughout 

this work: The overall goal is to provide mechanisms by which “pattern at the global 

level of a system” (Chapter 1.2) can emerge; here the desired patterns are mental 

representations of situations as they are thought to be the basis of any cognitive and 

adaptive behaviour (for details see below). The biological substrate of these mental 

representations is the neural tissue, i.e. the brain. Of course, it is impossible to model a 

whole brain in detail. Therefore, artificial neural networks often serve as simplified 

models for brain functions. Here two different types of recurrent neural networks are 

used: MMC networks (Chapter 2; Kühn and Cruse, 2005) and IC networks (Chapter 3 

and 4). The former have been developed primarily to control motor tasks whereas the 

latter comprise a completely new type of networks. 

The lower-level components (Chapter 1.3) interacting to produce the patterns at higher 

levels are artificial neurons. The rules, by which the connections between these neurons 

are built up in a self-organised fashion use in both cases only local information 

(Chapter 1.4), thus are not obliged to an external teacher.   

1.1.1 History of self-organisation 

Even though focussing on self-organisation is a relatively new research area, the idea 

that material things and dynamics of systems tend to become by themselves in course of 

time what we observe at present has a long history. After the notion of the clinamen by 
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Lucretius and the Epicureans it was already Descartes who described it in the fifth part 

of his Discours de la Méthode (1637). The naturalists of the 18th century tried to explain 

the observed appearances of living organisms by understanding the universal laws of 

form, an idea which fell into disrepute because it was associated with Lamarckism. 

Only in the beginning of the 20th century was the idea revitalised by D’Arcy Wentworth 

Thompson in his book On Growth and Form (Thompson, 1917) who thought that the 

growth of form is a dynamic process driven by natural forces and not the endpoint of a 

teleological process. Since the midst of the 20th century a growing number of 

publications on self-organisation and emergent properties substantiated those ideas. The 

term “self-organisation” seems to have been coined first by the engineer and psychiatrist 

W. Ross Ashby (1947). 

From then on self-organisation was studied in the fields of physics, chemistry, 

biochemistry, developmental biology, systems theory and computer science. Within the 

latter the primary applications have been in the area of learning, especially unsupervised 

learning (e.g. Hinton and Sejnowski, 1999), memory (e.g. Kohonen, 1989) and 

adaptation. For a more detailed description see Shalizi (2001). 

 

1.2 Pattern at the global level: Mental representat ions and 
cognitive behaviour 

 
As described above the desired patterns at global level which should emerge resulting 

from the interaction of recurrently connected single neuronal units are mental 

representations of environmental situation. But what are mental representations and why 

should they be a matter of particular interest? 

Every living organism has to move around in order to find food to survive and mates to 

reproduce – thus it faces the problem of sensorimotor control. A solution for this 

problem requires a suitable control mechanism which helps to influence the behaviour 

“appropriately” with respect to the sensory situation. This problem can be tackled in at 

least three different ways:  

First, the organism can simply move around and when bumping into things modify its 

behaviour according to these collisions. This is, of course, the most basic way of 

behaving. An improvement on this solution is to use sensory information directly for the 
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control of behaviour. Examples are reactive systems like the so-called Braitenberg-

vehicles (Braitenberg, 1984): The problem here is that they can show appropriate 

behaviour only as long as the external stimulus is present. If it disappears, the behaviour 

disappears, too. Thus, instead of reacting directly to the input, a solution on a higher 

level is to use sensory information to construct mental representations of the 

environment as a basis for subsequent behaviour. 

Here, the term representation is used in the broad sense of Steels (1995) as being a 

physical structure (for example electro-chemical states) which has correlations with 

aspects of the environment. Thus, a representation is meant to be a formal structure 

relating the information an organism has to cope with. Since the information processing 

capacity of an organism is limited, it is unable to process all input signals in depth. 

Hence, it is indispensable for the organism to be equipped with the capability of 

situating each stimulus within a conceptual system, i.e. to build up concepts. The main 

advantage of such a capability is to be able to reduce the complexity provided by a 

variable environment. 

One should be aware of the fact that the term representation�is connoted differently with 

respect to the different disciplines making use of it, as for example philosophy, 

cognitive science or computer science. Philosophers, for example, tried to solve the 

problem how Mind and Matter might be able to interact. Concerning sensation and 

thinking René Descartes proposed that our mind does not directly know the objects but 

only mediated by ideas which represent them. While Descartes was convinced of those 

representative ideas to be innate empiricists like John Locke, Thomas Hobbes or George 

Berkeley proposed that the ideas emerge during development. 

Additionally, we often encounter the term representation in an ambiguous sense: On the 

one hand it is used in a formal sense where representation means to give some 

efficiently manipulable structure to an abstract concept like for example knowledge or a 

group, and on the other hand it is used in the concrete sense where representation means 

to construct some model or image of a concrete phenomenon like an external object or 

the movement of a falling body. In this work, the latter sense is accounted for. 

Internal mental representations may become apparent for example in the form of 

imagination, dreaming, internal language, and in a very impressive way if we observe 

what young children from the age of about two years on do: They are nearly obsessed 
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with representation making. This can be seen for example by looking at their drawings 

and the language games they play again and again. In the latter the children try to assign 

meanings to symbols. 

 

An advantage of such internal mental models besides the above mentioned reduction of 

complexity is that the behaviour can be uncoupled from direct environmental control. 

This enables the organism for example to respond to features of the world that are not 

directly present, to use past experiences to shape present behaviour, to plan ahead, to 

internally manipulate the content, etc. (Cruse, 2003b).  

The ability of using mental representations of their bodies independently of the actual 

sensory input is developed in children at the age of four to five while chimpanzees are 

not able to acquire this capability. This becomes apparent in an experiment performed 

by Povinelli et al. (1999). They filmed children of this age as well as chimpanzees and 

presented them the video tapes three minutes afterwards. After this delay the children 

are still able to recognize themselves while the animals don’t. These results suggest that 

the children from the age of about five years on can uncouple their mental 

representation from the sensory input in contrast to younger children and chimpanzees. 

Therefore, we can conclude that these mental representations form an essential 

prerequisite to explain how organisms can behave in a cognitive adaptive way – which 

is a conclusion contradicting Brooks’ (Brooks, 1991) idea of Intelligence without 

representation. Also in philosophical discourse the capacity of organisms to provide 

neural mechanisms to internally construct and process representations of their body and 

their environment in order to shape their behaviour is regarded to be a significant 

branch-point in evolutionary history (O'Brien and Opie, 2004). Thus, a causal role in 

controlling behaviour is attributed to those mental representations. 

What has been said so far should not imply the impression of a strict separation between 

perception and generation of behaviour in the sense of the ‘ information processing 

metaphor’ (Pfeifer and Scheier, 1994), a concept which is going back to the work of 

Marr (1982). Sensory perception and behaviour rather have to be regarded to be 

different sides of the same coin: They resemble different aspects of the same neuronal 

system. This idea is in the line of argument of many approaches like the ‘perception 

through anticipation’ approach (Möller, 1997), the ‘Gestaltkreis’ (von Weizsäcker, 
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1950), the ‘action-perception-cycle’ (Arbib, 1981), the ‘representation-execution 

continuum’ (Jeannerod, 1994; Jeannerod, 1997), or the proposal by Prinz (1997) to 

assume a ‘common coding of perception and action’. 

Many experimental results imply such a holistic view of a tight connection between 

internal representations of sensory information and the respective actions. Recent 

neurally based theories of action and action understanding suggest that (1) a mental 

simulation of the action to be performed is routinely generated along with the actual 

performance of the action (Wolpert et al., 1995; Jeannerod, 1999).  

(2) A mental simulation of the action is generated in an observer’s motor system when 

viewing someone else performing an action (or relevant parts of it): In 

electrophysiological recordings in monkeys so-called ‘mirror neurons’ were found 

which respond to both self-generated action as well as observed actions in others (Di 

Pellegrino et al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996; for a review see 

Rizzolatti and Craighero, 2004). This mirror system has also been shown to exist in 

humans. Neuroimaging studies reveal an activation of motor areas when imitating or 

observing actions (Hari et al., 1998; Cochin et al., 1999; Iacoboni et al., 1999; Buccino 

et al., 2001; Grezes et al., 2001). Moreover, mental simulations are even generated 

when subjects view manipulable tools (Grafton et al., 1997) and understand actions 

described in sentences (Rizzolatti and Arbib, 1998; Glenberg and Kaschak, 2002). 

Other examples of neurons that cannot be attributed to be either sensory or motor 

elements are the so-called ‘bimodal neurons’, which code body-centred extra-personal 

space, described by Iriki et al. (1996; see also Sakata et al., 1997) and the ‘decision 

neurons’ (Kast, 2001). 

(3) A mental simulation of the described action appears also to be generated when 

action sentences are understood. Thus, bodily activity has a significant impact on 

understanding of language comprehension (e.g. Glenberg and Robertson, 1999; for 

further literature see Glenberg and Kaschak, 2002). This is what Glenberg calls the 

embodiment of language comprehension: Language is understood when we are able to 

simulate sentences using the same neural systems as those used in perception, action, 

emotion and perhaps other bodily states. The symbols of language are grounded by 

relating them to bodily processes. This idea is based on Lakoffs concept of the 

embodied mind (Lakoff, 1987; Lakoff and Johnson, 1999). He is arguing that almost all 
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of human cognition can only be understood when taking the body into account. There 

are many well-known proponents of this view of the importance of such an embodiment 

as Rafael Núñez, Humberto Maturana, Francisco Varela, Vilayanur Ramachandran, 

Gerald Edelman, Antonio Damasio and others. The embodiment hypothesis is also very 

close to the phenomenology of mind and the concept of “In-der-Welt-Sein” of Martin 

Heidegger and other existentialists. 

 

Especially research on text comprehension and language understanding revealed this 

embodied nature of those internal representations. Mainly based on the work of 

Johnson-Laird (1983) and van Dijk and Kintsch (1983), linguists and psychologists 

found out that it is rather the situation described in a text than the text itself which is 

represented in the mind. This finding has implications on modelling such 

representations: To represent situations, it is necessary to be able to also simulate the 

dynamic aspects of the situations, a claim which is supported by studies unveiling these 

dynamic properties (Freyd, 1993; McIntyre et al., 2001; Glenberg and Kaschak, 2002; 

Zwaan et al., 2004).  

 

To summarise: internal mental representations are essential for cognitive behaviour and 

tightly connect sensory information and bodily activity. Based on these considerations 

we propose two recurrent neural network models here which are suitable to account for 

these requirements of mental representations. In the approach described in Chapter 2 

and Kühn and Cruse (2005) so-called MMC networks, which are primarily developed 

for generation of action like arm-movements or landmark navigation (e.g. Cruse, 2003a; 

Steinkühler and Cruse, 1998), are adapted to build up internal mental representations. 

Thus, the model complies with the findings of many studies revealing a tight connection 

between the perception and action system (Rizzolatti and Craighero, 2004) which seems 

to be an essential property for action understanding (Rizzolatti et al., 2001), controlling 

motor output (Jeannerod, 1999; Cruse, 2003a), but also for language production and 

understanding (Glenberg and Kaschak, 2002).  

Further, in Chapter 3 a completely new structure for artificial neurons (see below) is 

proposed by which models can be built up that are capable of generating internal 
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representations of static environmental scenes as well as of the dynamics that might be 

involved (Chapter 4) and that form the basis for understanding. 

 

1.3 Lower-level components: artificial neurons (MMC  and IC) 
 

Biological research has accumulated a vast amount of knowledge about structure and 

function of the brain and the lower-level components brain circuits consist of: The 

neurons, which are intricately interconnected (see e.g. Kandel et al., 2000).  

Theoretical models for the description of neurons exist varying in the levels of 

abstraction (for an overview see Wilson, 1999; Gerstner and Kistler, 2002). The most 

detailed level incorporates the diffusion of ionic potentials along the dentritic tree with 

its complex geometry (Rall, 1989; Segev et al., 1989). Spiking neuron models range 

from detailed biophysical ones, the so-called compartmental or conductance-based 

models, to integrate-and-fire models. The former try to describe the generation and 

shape of each individual action potential as a function of the opening and closing 

dynamics of the ion channels in dependence of voltage and messenger molecules as 

exactly as possible by sets of equations. These models originate in the four differential 

equations by which (Hodgkin and Huxley, 1952) summarised their studies on the giant 

axon of the squid. The integrate-and-fire models are on a higher level of abstraction. 

They consider the neuron as a homogeneous unit generating spikes if the total excitation 

is sufficiently large without concerning the spatial structure of a neuron. The best-

known formal spiking neuron model is probably the leaky integrate-and-fire model 

which has been studied intensively by Stein (1967a; 1967b). In this approach the neuron 

is modelled as a leaky integrator which is reset when firing occurs. 

In contrast to these spiking neuron models rate coding models neglect the pulse 

structure of the neuronal output – they code the mean firing rate of a neuron which 

varies between zero and some maximum value. Therefore, they are on the highest level 

of abstraction. The most abstract level, of course, is to characterise a neuron as a device 

that is either on or off (1 or 0), a description introduced by McCulloch and Pitts (1943). 

The pioneering work on the concept of mean firing rates has been performed by Adrian 

(1928) who defined rates in terms of spike counts, i.e. an average over time. But when 

comparing the experimental literature there are at least three different notions of rate 
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referring to different averaging procedures: averaging over time as proposed by Adrian 

(1928), or averaging over several repetitions of the experiment, or averaging over a 

population of neurons (see Gerstner and Kistler, 2002). 

Whether the information neurons process is rate coded or spike coded is a fundamental 

and still unsolved question in neuroscience whereas the dividing line is not always 

clearly drawn. 

The level of abstraction used in simulations has to be suitable for the respective 

purpose. Someone who is interested in the molecular mechanisms of individual neurons 

has to choose a more detailed level of description than somebody who wants to model 

aspects of for example motor control, categorisation or short-term memory. As the 

scope of the work presented here is to model internal mental representations of external 

situations, i.e. to model short-term memory abilities, rate coding neurons are applied in 

both approaches, in the MMC networks (Chapter 2) as well as in the IC networks 

(Chapter 3 and 4). The neurons code the mean firing rate in the classical sense described 

by Adrian (1928) as the activations of the single neurons are meant to be averaged over 

time. 

 

1.4 Rules using only local information: Training re current 
neural networks 

 
Like neurons in biological neural tissue the artificial neurons are interconnected via 

synapses or synaptic weights and build neural networks. The single units can be 

connected in a feedforward manner, i.e. the information flow is oriented in one direction 

only. But real neurons especially in the brain are thought to be organised in highly 

interconnected neural networks also comprising many recurrent connections. Therefore, 

to model a system which is biologically more realistic, a recurrent neural network 

architecture is chosen.  

The patterns, i.e. the representations, should emerge from interactions between the 

lower-level components in a self-organised process. Thus, learning is required as in the 

beginning the neurons of the network are connected by synaptic weights having random 

values or being zero. 
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In classical neural network theory three different types of learning algorithms are 

applied: supervised learning, reinforcement learning and unsupervised learning. For 

supervised learning a teacher is necessary that “tells” the system the desired state. In 

every time step the output of the network is compared with the desired output, as given 

by the teacher, and according to the error originating from this comparison the synaptic 

weights are changed. The problem with any teacher-forced learning procedure is that it 

is biologically highly implausible. Usually, nature does no provide any external 

information of how the correct output of a system or action of an agent should be.  

Reinforcement learning procedures provide a reward (which can be either positive or 

negative) according to the quality of the output; the goal here is to maximise the 

cumulative reward over the course of a task (Kaebling et al., 1996; Sutton and Barto, 

1998). Reinforcement learning can be related to supervised learning as far as external 

information, which goes beyond the simple input, is necessary; but it differs from 

supervised methods in that no correct input-output pairs are presented. For 

reinforcement learning biological mechanisms exist for example in children’s 

development; many abilities are acquired due to positive feedback or punishment, i.e. 

negative rewards.   

In unsupervised learning no global external knowledge, neither a teacher nor a 

rewarding system, exists. The weights are updated using local information only like 

input correlation as in Hebbian learning methods. Thus, it is assumed that biological 

systems make use of such learning methods as no global knowledge is necessary. 

Both mechanisms used here – the DD rule (Chapter 2; Kühn and Cruse, 2005) and the 

IC learning procedure (Chapter 3 and 4) – follow this principle of not being dependent 

on global information. To change the weights of a neuron in both cases only 

information is needed, which is directly available at each neuronal unit. 

When dealing with training of recurrent neural networks in particular another general 

problem arises: training should take place online, i.e. while the system is working or the 

agent is behaving. But in this situation, two dynamics are superimposed: the dynamics 

of the recurrent network as well as the dynamics of the effects of learning (Steil, 1999). 

To avoid this problem both dynamics are often uncoupled by introducing alternating 

epochs of phases during which the weights are changed and phases during which the 

recurrent dynamics are calculated (Baldi and Pineda, 1991; Jaeger and Haas, 2004). But, 



1 INTRODUCTION 
 

11 

of course, in any biological system it is not likely that learning only takes place in 

separated phases where no behaviour occurs. Thus, it is a big advantage of the two 

methods introduced here that they are applied online. 

 

To come full circle, the two models presented here – the MMC model and the IC model 

– account for the requirements of self-organisation as postulated in the definition by 

Scott Camazine and colleagues: patterns at the global level – internal representations – 

of a system – recurrent neural networks – emerge within from numerous interactions 

among the lower-level components of the system – the artificial neurons. Moreover, the 

rules – the learning rules – specifying interactions among the system’s components are 

executed using only local information, without reference to the global pattern.  

Thus, the models proposed can provide a basis for self-organisation which is an 

inevitable process in the complex world. This organisation process proceeds in a 

biologically very plausible way, as it really only relies on local information available at 

each single neuron and thus has a great advantage over other technical learning 

procedures. 
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2 Static mental representations in recurrent neural  
networks for the control of dynamic behavioural 
sequences 

 
What enables an organism to perform behaviour we would call cognitive and adaptive, 

like language? Here, it is argued that an essential prerequisite is the ability to build up 

mental representations of external situations to uncouple the behaviour from direct 

environmental control. Such representations can be realised by building up cell 

assemblies. The recurrent neural network presented to cope with this task has been used 

for generation of action but can also be utilised as a basis for mental representations due 

to its attractor characteristics. In this context, a new learning algorithm (Dynamic Delta 

Rule) is proposed, which leads to a self-organised weight distribution yielding stable 

states on the one hand and which, on the other hand, only activates subpopulations of 

larger networks that code for the respective situation. In a second step, ways are shown 

of how the static information of these internal models can be transformed into time-

dependent behavioural sequences. 

 

2.1 Introduction 
 
‘What remains if I subtract the fact my arm went up from the fact that I raised my arm?’ 

(Wittgenstein, 1958: section 621). This question posed by Wittgenstein half a century 

ago could imply the existence of “something” in the brain beyond the performed action. 

Recent research on action and action understanding has indeed shown that internal 

representations of the actions to be performed are built up while acting (e.g. Jeannerod, 

1999) – a concept that is also proposed by computer scientists (Wolpert et al., 1995). 

Additionally, many studies revealed a tight connection between perception of action of 

others and the motor system. In electrophysiological recordings in monkeys so-called 

‘mirror neurons’ were found that respond to both self-generated action as well as 

observed actions in others (Di Pellegrino et al., 1992; Gallese et al., 1996; Rizzolatti et 

al., 1996; for a review see Rizzolatti and Craighero, 2004). Neuroimaging studies in 

humans also show the activation of motor areas when imitating or observing actions 

(Iacoboni et al., 1999, Buccino et al., 2001; Grezes et al., 2001). Moreover, mental 
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simulations are even generated when subjects view manipulable tools (Grafton et al., 

1997) and understand actions described in sentences (Rizzolatti and Arbib, 1998; 

Glenberg and Kaschak, 2002). Some researchers even go a step further by arguing that 

motor-control is tightly connected with thinking in general: For example Calvin (1996) 

regards thoughts as movements that have not taken place yet and perhaps never will and 

Fuster (1995) states that thoughts are a kind of imagined movement. 

All these results on ‘shared representation’ as sometimes called (Jeannerod 1999, 

Decety and Sommerville, 2003) have focused the researchers’ view on the impact of 

bodily activity in understanding of language comprehension (e.g. Glenberg and 

Robertson, 1999; for further literature see Glenberg and Kaschak, 2002). 

Therefore, in our approach we propose to adapt a model primarily developed for 

generation of action to build up internal mental representations* of the direct 

environmental situation. This representation can then be used as a basis to produce 

sequences of behaviour as for example language. Thus, the problem the model has to 

tackle is a bipartite one: 

On the one hand it perceives different pieces of environmental information at the same 

time, for example different objects or persons, which have to be integrated or bound 

together into a coherent internal representation as a kind of working memory. Thus, a 

small number of neuronal components coding for these objects should be activated 

together for some limited time in order to represent the actual environmental situation – 

this problem, the so-called binding problem, is widely discussed in systems 

neurobiology (for a review see Roskies, 1999, and further the other articles published in 

the special issue Neuron 24).  

On the other hand these pieces of information then have to be used to construct 

appropriate sequences of behaviour like for example a sentence. When producing 

language which is linear by nature (de Saussure, 1967) the speaker has to decide what to 

say first, what to say second, and so on from a non-sequential presentation; this is called 

linearization problem (Levelt, 1989) which is the second problem the model has to deal 

with. 

Let us consider as an example the production of a language sequence of a two years old 

girl. At this age, language consists mainly of simple two- and three-word utterances 
                                                
* In this work the term representation is used in the broad sense of Steels (1995): as being ‘physical 
structures (for example electro-chemical states) which have correlations with aspects of the environment’. 



2 STATIC MENTAL REPRESENTATIONS IN RECURRENT NEURAL NETWORKS FOR THE CONTROL OF 

DYNAMIC BEHAVIOURAL SEQUENCES 

19 

(Mills, 1985). Assume that this girl is in her room, her mother is coming in and a book 

is lying on the floor. Now she may utter ‘Mommy book’ (Tomasello, 1992) to express 

that she wants her mother to read from the book. All the items that should occur in the 

sequence – the mother and the book – are present as sensory input simultaneously. 

Thus, the temporal behavioural chain, in this case the sentence, has to be produced 

while the order of the sequence is not explicitly determined by the information available 

from the environment – a task which differs from the tasks performed by models 

proposed by Jordan (1986) or Elman (1990) for example (see Chapter 2.5). 

The idea of the importance of mental representations for cognitive abilities – a widely-

used term in cognitive science (von Eckardt, 1993) – has a long tradition (e.g. in the so-

called 'picture theory' by Heinrich Hertz dating from 1884 (cited after Heidelberger, 

1998). Especially in research on text comprehension, the relevance of mental 

representations got more and more into the focus in recent years inspired by the theory 

of situation models (van Dijk and Kintsch, 1983; for a review on situation models see 

Zwaan et al., 1998) and mental models (Johnson-Laird, 1983). Also Levelt (1989) 

argues that the construction of mental models in the sense of Johnson-Laird is rather 

more the rule than the exception as a first step in language production. Thus, he 

describes forming a preverbal message as a kind of input representation as the first 

processing component in his blueprint for a speaker.  

What is the advantage of mental representations? By means of these representations the 

behaviour can be uncoupled from direct environmental control. This enables the 

organism for example to respond to features of the world that are not directly present, to 

use past experiences to shape present behaviour, to plan ahead, to internally manipulate 

the content etc. (Cruse, 2003b). All these instances characterise a special feature of 

language called ‘displacement’ (Hockett, 1960). Therefore, we conclude that these 

mental representations form an essential prerequisite to explain how organisms can 

behave in a cognitive way. 

Environmental stimuli can be represented by activation of so-called cell assemblies, a 

theory which goes back to the idea of Hebb (1949). Various models to realise such cell 

assemblies have been proposed like multi-layer perceptrons (MLPs), Hopfield networks 

(Hopfield, 1982), Kohonen-maps (Kohonen, 1982), Jordan and Elman networks 

(Jordan, 1986; Elman, 1990), recurrent networks and recurrent experts (Wolpert and 



2 STATIC MENTAL REPRESENTATIONS IN RECURRENT NEURAL NETWORKS FOR THE CONTROL OF 

DYNAMIC BEHAVIOURAL SEQUENCES 

20 

Kawato, 1998; Tani and Nolfi, 1999). Here, we want to refer to a special type of 

recurrent neural network: the MMC network. These networks can be used on the one 

hand for the generation of action and on the other hand for building up mental 

representations of the environment due to their attractor characteristics. 

 

2.2 MMC networks 
 
In a nutshell, we want to develop a model here with which mental representations of 

existing environmental situations can be built up that in a second step can be 

transformed into sequential behaviour like for example sentences. Thus, the task to be 

accomplished can be split into two parts:  

(1) Generating mental representations. For this task it should be possible to build 

up mental representations of more than one segmental situation consisting of 

some known objects simultaneously, i.e. several cell assemblies should be able 

to coexist. Take as an example an overall situation with a mother and a book 

building one segmental situation and additionally a boy and a chair building 

another segmental situation. The goal is to activate a “mother-book” assembly 

simultaneously with a “boy-chair” assembly within a neural network. To cope 

with this task we will describe the Dynamic Delta Rule, a new learning 

algorithm based on a combination of Hebb’s Rule and the common delta rule 

to train MMC network (Chapter 2.3). 

(2) Generating sequential behaviour. These mental representations of the 

environment which are static by nature and contain no sequential information 

should then be used in a second step to produce sequential behaviour as for 

example the utterance of the little girl ‘Mommy book’ (Chapter 2.4). This 

means that the only input the network receives is the activation caused by the 

objects present in the environment which does not contain sequential 

information. Why are MMC network suitable to cope with these tasks? 
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2.2.1 MMC networks for generation of action and as basis for mental 
representations 

MMC networks are fully connected recurrent neural networks. This means each unit (in 

the following ‘unit’ and ‘neuron’ are used synonymously when talking about neural 

networks) is connected with every other unit via a synaptic weight (open and filled 

circles and squares in Figure 2.1a). Primarily, this network was invented to solve 

geometrical tasks characterised by redundant degrees of freedom like the control of arm 

movements (Cruse et al., 1998; Steinkühler and Cruse, 1998; Steinkühler et al., 2000), 

six-legged walking (Kindermann and Cruse, 2002) and landmark navigation (Cruse, 

2003a). In all these tasks the networks cope with the problem of sensorimotor 

integration. 

 

 
 
Figure 2.1: (a) Schematic drawing of an MMC network for the control of a three-joint 
arm moving in a 2D plane. (b+c) Relaxation of the arm to meet a target point: (b) 
Movement of the arm from the starting configuration (---) towards the target point 
(cross). (c) Convergence of the three joints (shoulder, elbow and wrist) to stable states 
(modified after Cruse et al. 1998). 

 

 
Figure 2.1b shows an arm with three segments (and three joints) operating in a 2-D 

plane. If the network is provided with an endpoint to which the arm should point to – 

here depicted by a cross – it iterates and after some steps the arm points in the direction 

of the given point taking a geometrically possible configuration of the arm-segments. 

Thus the network is able to solve the classical problem of inverse kinematics even if the 
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problem is ill-posed (namely to find three joint angles such that the hand points to a 

given position in 2D space). 

In this form, the network exploits the redundancies within the system: a given value is 

determined simultaneously in several ways as often found in biological systems. By 

calculating the Mean value of these Multiple Computations (MMC) the final output is 

obtained. The main feature of this network is that it converges to stable states 

corresponding to a geometrically correct solution, even when the input does not fully 

constrain the solution (Cruse and Steinkühler 1993). This is shown in Figure2,1c. 

External information is stored within the network by activation of several units. The 

neurons activate each other via recurrent connections in such a way that the activation is 

maintained.  

These networks have two features making them suitable for our purpose. First, as has 

been mentioned above, there is evidence supporting a tight connection between 

perception and motor system. This connection is a characteristic of these “holistic” 

networks as we could not label the units to be either motor or sensory elements.  

Second, if we uncouple the motor output from the network, it can serve as an internal 

model for example to represent the position of the arm or to simulate the movement of 

the arm reaching to a target. Hence, this type of network can be taken as a neural basis 

for mental representations because it provides a possibility to perform mental activities 

(e.g. the movement of an arm), i.e. uncouple the behaviour from direct control of the 

sensory input.  

As will be shown below, the units cannot only be used to represent geometrical entities, 

but also abstract entities as for example objects occurring in the world (like a book or a 

chair). A tight connection between perception and motor system is also necessary for 

language production and has even been found to play an important role in language 

understanding (Glenberg and Kaschak, 2002). Thus, we put forward the hypothesis that 

neural networks like the MMC networks can not only be used for motor tasks but also 

for dealing with more abstract entities as is, for example, necessary for language. 

In all applications of the MMC networks mentioned so far the synaptic weights within 

the network are fixed according to the equations forming the basis of the network. This 

is no problem for a body model because this could be regarded to be “innate”. However, 

when an organism faces a new situation comprising different objects, the mental 
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representation must emerge starting with a “naïve” recurrent network with small 

random weights before the stimulus appears. Therefore, the main goal in the first step is 

to find a way to train the weights to stabilise the output of the network, i.e. to obtain 

stable states in the end which form the mental representations of the current 

environmental situation. 

2.2.2 The network 

Before explaining a learning algorithm that can be used to train MMC networks, we 

want to describe the principles of the network structure in more detail starting with a 

simple task: A mental representation of a situation should be built up that is 

characterised by two items x1 and x2, for example an environmental situation showing 

two objects (e.g. mommy and book). Here we use for a first approach localist-encoding 

linguistic units as they code for single linguistic entities, namely words (Cangelosi, 

2004). Thus, the corresponding neural system consists of two units each of which 

represents one object (Figure 2.2). The problem of levels of representation will be 

addressed later (Chapter 2.5). 

 

 
Figure 2.2: Architecture of a two-unit MMC network: xi(t)  are the inputs, xi(t+1) the 
outputs and wij  the weights. Neurons that calculate the weighted sum are depicted as 
shaded circles. The input neurons, which are suppression units marked by S, are 
shown as grey circles. The external inputs xi are suppressed by the recurrent 
connections symbolised by the open arrowheads. The difference δδδδi between the first 
inputs xi(1) and the output values xi(t+1) is taken as error signals for training the 
weights. 

 

The units form a recurrent neural network in which the input neurons (depicted as grey 

circles marked by an S in Figure 2.2) are suppression units: The external inputs xi are 
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suppressed by the recurrent connections symbolised by the open arrowheads, which 

means that these external inputs are only effective during the first time step. The output 

neurons (shaded grey circles) are linear summation neurons, i.e. they calculate the 

weighted sum of the incoming activity.  

The MMC network is a fully connected recurrent neural network which can be 

described by the following general equation for RNNs: 

( ) ( )tt xWx ⋅=+1          (1) 

Here, ( )tx  is the recurrent input vector for n neurons, ( )1+tx  is the output vector, and W 

a nn×  weight matrix. Thus, for a network with two units (Figure 2.2) the system of 

equations holds: 

( ) ( ) ( )
( ) ( ) ( )txwtxwtx

txwtxwtx

2221212

2121111

1

1

⋅+⋅=+
⋅+⋅=+        (2) 

The next step is to find a distribution of the weights wij that leads to a stable state 

( ) 011 ≠+tx  and ( ) 012 ≠+tx  after the network has been provided with an external input 

( ) 01 ≠tx  and ( ) 02 ≠tx . A stable solution is achieved if there is a fixed relation between 

the parameters x1 and x2: )( 12 xfx = . The simplest case is given by a linear equation: 

021 =⋅−⋅ xbxa          (3) 

This equation is taken as basic equation for the MMC network leading to the following 

equations: 

b

a
wxwx

a

b
wxwx

=⋅=

=⋅=

2122

1211

   with  ;

   with  ;
       (4) 

Thus, equations (4) fulfil the basic equation (3) if the weights are constrained according 

to: 

121 =⋅ ww          (5) 

Equations (4) can be transformed into equations (2) by introducing damping factors 

0≠id  by which the self-activating connections are weighted: 

( ) ( ) ( )( )

( ) ( ) ( )( )txdtxw
d

tx

txwtxd
d

tx

2212
2

2

2111
1

1

1

1
1

1

1
1

⋅+⋅⋅
+

=+

⋅+⋅⋅
+

=+
      (6) 
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By means of these equations, the four weights in Figure 2.2 and equations (2) can be 

specified in more detail: 

1

1
11 1 d

d
w

+
= , 

1

1
12 1 d

w
w

+
= , 

2

2
21 1 d

w
w

+
=  and 

2

2
22 1 d

d
w

+
= .  

The damping factors di change the dynamics of the network: The higher they are, the 

slower the network converges to a stable state. Thus, the system obtains low-pass filter 

properties (Cruse et al., 1998) and oscillations that might occur during the relaxation 

process can be avoided successfully. 

The principle characterising MMC networks, namely calculating one variable in many 

different ways, is reduced to a minimum in the case described here, as for each variable 

there exists only one equation which includes the contribution of the damping term.   

 

2.3 Training the weights 

2.3.1 MMC criterion 

As mentioned above, a mechanism for training the weights is necessary to build up a 

mental representation of a new situation – for example when two objects are presented 

to the network. To this end, the equations forming the MMC network should fulfil 

condition (5) 121 =⋅ ww , as the network is unstable in all other cases. Following 

condition (5) the MMC network is a neutrally stable system. 

To put it in mathematical terms: A matrix of weights is searched for that has one 

eigenvalue 11 =λ  and a second eigenvalue 12 <λ . The eigenvector v1 and all linearly 

dependent vectors v’1 of v1 with the eigenvalue 11 =λ  are stable solutions of the 

networks. The target distribution of the weights described by equation (5), i.e. with 

given damping factors di, is obtained by calculating the zeros of the characteristic 

polynom 

( )
01 

1   with  0det

21 =⋅−⇔
==−

ww
d λλIW

       (7) 

Here, Wd is the weight matrix for given damping factors and I  the identity matrix. If the 

damping factors di are not given in advance (equations (2)), we can also derive a 

condition for stability from the zeros of the characteristic polynom with 1=λ : 
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( )  0det =− IW λ      

0)1()1( 21122211 =⋅−−⋅−⇔ wwww       (8) 

In general, the zeros of the characteristic polynom with 1=λ  provide a condition, which 

yields stability of the network; therefore, it is termed MMC criterion in the following. 

Thus, to evaluate the state of the network during learning, we have to look whether this 

criterion is fulfilled. To measure how much the weights diverge from this criterion a 

Harmony function H is defined: 

( )( )2det1

1

IW λ−+
=H         (9) 

Harmony H approaches the value 1 the more the better the MMC criterion is fulfilled, 

i.e. the more the characteristic polynom approaches zero. 

2.3.2 Learning algorithm: Dynamic Delta Rule 

The task is – as described above (Chapter 2.2) – to generate mental representations of 

more than one segmental situation simultaneously within a network consisting of an 

arbitrary large number of units. Figure 2.3 shows a section of such a network for the 

task of building up two mental models each of which describes a segmental situation 

comprising two objects (e.g. mommy/book and boy/chair). It is the aim to activate only 

those four synaptic connections, which combine the features belonging to the respective 

situation (grey boxes in Figure 2.3). Therefore, only four units of the network are 

depicted in Figure 2.3. How could these connections be trained accordingly to solve this 

binding problem? 

If the first new segmental situation is presented, the two units coding for the objects of 

this situation (Figure 2.3: x1, x2) change their activity. This means, because of the 

recurrent architecture, that there is both a pre- and a post-synaptic change of activity at 

those four weights connecting the objects of this situation (Figure 2.3, grey box, upper 

left). This can be exploited by a learning algorithm to change these four weights (see 

below). Now assume that these weights have already been trained and the activation of 

the respective neurons has stabilised at a constant level different from zero. If later the 

network is provided with a second segmental situation (Figure 2.3: x3, x4), a learning 

algorithm, which is based on pre- and post-synaptic activity as usual hebbian 

mechanisms, would not only activate the four weights representing situation 2 (Figure 

2.3, grey box, lower right) but all 16 weights. Therefore, the question arises, how it 
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could be avoided to change those eight weights that connect features of different 

segmental situations and that would produce ‘crosstalk’ between both representations 

(e.g. the weight connecting x2 and x3 marked by an asterisk in Figure 2.3). For this 

purpose, the following observation can be exploited: At those weights connecting units 

of different situations there is only a pre-synaptic change of activity. The activity of the 

post-synaptic side does not change anymore, because the unit x2 has already stabilised 

after presentation of the first scene.  

 

 
 
Figure 2.3: Section of a network for a task where two segmental situations 1 and 2 are 
presented. Self-activating connections are defined by d. The two grey boxes mark the 
weights which should be activated when the two situations are presented to the 
network subsequently. The asterisk tags one of the weights that would produce 
‘crosstalk’ between both representations when being different from zero. 

 

Consequently, we can solve the problem if we find a learning algorithm that meets two 

requirements: First, only those weights should be activated at which we find both a pre- 

and a post-synaptic change of activity and second, the MMC criterion should be 

fulfilled in the end to obtain a stable solution. How is it possible to change the weights 

that both requirements are fulfilled? This can be achieved by applying a combination of 

a hebbian mechanism, that, however, uses the temporal change ∆x of the activity instead 

of the activity x itself, and the δ-error as it is used in the delta rule.  

We assume that, in the beginning, all the weights within the network have small values 

(e.g. zero, or small positive random values). Sensory input is presented to any of the 

input channels, for example to units x1 and x2. As a mental representation of a current 

external situation, which is represented by the external input vector, should be built up 
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this input vector can be used as trainer for the network. The difference δ between the 

external input vector x(1) and the output vector x(t+1) can then be taken as error signal 

for training the weights (see Figure 2.2 light grey lines). In doing so the loop through 

the environment can be closed. As representations are built up of actually present 

situations, these internal models are directly grounded in the external world (Cangelosi, 

2001). 

Therefore, we propose to change the weights by applying the following learning 

algorithm:  

ijiij xxw δη ⋅∆⋅∆⋅=∆   

with η  being the learning rate, ( ) ( )txtxx iii −+=∆ 1 , ( ) ( )txtxx jjj −+=∆ 1  and 

( ) ( )txx iii −= 1δ . 

This learning algorithm can be interpreted as a combination of Hebb’s rule, however 

applied to the temporal derivative of pre- and postsynaptic activity, and the delta rule. 

Therefore, this algorithm is termed Dynamic Delta Rule (DD Rule). The learning 

algorithm serves for two purposes: (i) it can select and activate specific weights to form 

a mental representation according to the actual environmental situation and (ii) it 

stabilises this neutrally stable system against incidental disturbances at those weight 

values. 

Note that it is not the aim here – as in usual applications of the common delta rule – to 

minimise the δ-error, but to minimise the value of the temporal changes ∆xi and ∆xj. So 

after learning is finished there could still be a δ-error which is, however, no problem for 

the concept presented here. Accordingly, the activations of the output units need not to 

equate the input activations after learning.  

2.3.3 Results 

To investigate the properties of this algorithm we first consider a network with only two 

units as shown in Figure 2.2. The system can be tested within two different conditions: 

One with fixed damping factors di (see equations (6)) and another with free damping 

factors (see equations (2)). In the former case only two weights have to be trained, 

whereas in the latter case all four weights are free to be changed.  
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Figure 2.4: Example of a network trained using the Dynamic Delta Rule with two 
different starting conditions; both simulations were run with the same input vector 

( )9 ,5=x . Upper plots (a): The damping factors di are fixed to 4=id  and the learning 

rate to 5.0=η . Lower plots (b): The damping factors di are free and thus four weights 
are variable. Here, a learning rate 002.0=η  is applied. In both cases the left plot 
shows the output activation of the network, the middle plot the changing of the weights 
and the right plot the value of the Harmony function. 

 

In each of the simulations the weights wij were initialised with random values 

02.00 << ijw . Input values are chosen in a range of 101 << ix  with �∈ix . These inputs 

resemble the activation of the respective units caused by the external environmental 

stimuli. Examples for both cases are given in Figure 2.4 (upper plots: fixed damping 

factors, lower plots: all four weights free). In both cases the output activation (first 

column) stabilises at values different from zero and the Harmony function approximates 

the value of one (last column) which indicates that the MMC criterion is fulfilled. Thus 

in the end, the external situation is represented within the connections of the network. 

The example of Figure 2.4 shows that we need very different learning rates to stabilise 

the system for the two versions of the task in spite of using the same input vector 

( )9 ,5=x . The simulation shown in Figure 2.4a (two free weights, upper plots) is run 

with a learning rate 5.0=η . For this input configuration the network stabilises when 

choosing η in a range of 7.05.0 ≤≤ η . The results for a situation with four free weights 

(Figure 2.4b, lower plots) are obtained by a learning rate of 002.0=η . 
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Here we touch a general problem of online-learning in recurrent neural networks: It 

couples two dynamics, the dynamics of the recurrent network as well as the dynamics of 

the effects of learning (Steil, 1999). A learning rate that is too large can easily cause the 

network to diverge. On the other hand, a learning rate that is too small results in output 

activities decreasing to zero. Therefore, the learning rate η is a critical parameter. 

A mathematical proof of convergence appears to be a difficult task due to the 

nonlinearity of the system. Even without applying an online-learning mechanism it is 

not easy to describe the dynamics of a recurrent neural network analytically even it 

consists of two units only (Haschke et al., 2001). Nevertheless, based on many 

numerical tests we can make some general, qualitative remarks on how to adapt the 

learning rate η. 

The value of an appropriate learning rate does not only depend on the number of free 

weights but also on the amplitude of the input signals. The larger the inputs x1 and x2 are 

the smaller the learning rate η has to be chosen to yield stability of the network. For the 

case with fixed damping factors di we found that the network stabilises for learning 

rates between about 0.3 and 1.5 depending on the input vector chosen if at least one 

input is larger than five. But if both inputs are smaller than five, much larger learning 

rates have to be applied – for example, for an input vector ( )4 ,3=x , stabilisation is 

achieved by using learning rates in a range of 6.52.3 ≤≤η .  

If the difference between both input values is too large, for example when choosing 

21 =x  and 82 =x , no stable solution can be found if both weights are trained with the 

same learning rate. But if the learning rate is adapted independently to the input size, 

stabilisation can be achieved. This is possible, if the learning rate of the weight, by 

which the larger input is multiplied, is chosen smaller than the learning rate of the 

weight, by which the smaller input is multiplied. This is due to the fact that the network 

dynamics depend on the strength of activation of the individual units and that, on the 

other hand, the training mechanism has to counteract the contribution of the units. In the 

case of an input vector ( )8 ,2=x , for example, a possible solution is to set 9.01 =η  to 

train w1 and 62 =η  to train w2. Qualitatively the product of input activation and learning 

rate appears to be the relevant factor. 
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In the situation with four free weights, learning rates leading to stable states have to be 

about two orders of magnitude smaller than in the case of only two free weights. 

Additionally, the ranges of appropriate learning rates become very narrow. In the case 

presented in Figure 2.4b, for example, only then does the network stabilise, if η is 

approximately in the range between 0.002 and 0.003. The task can, however, be 

simplified considerably, if the weights have upper and lower bounds, which is a 

physiologically plausible assumption. By applying bounds of 3001.0 ≤≤ ijw , the network 

is prevented from diverging. If the weights reach the bounds during training, 

oscillations occur, but – for a broad range of learning rates – the network stabilises after 

some time.  

If the dimension of the input vector is increased, it becomes more and more difficult to 

find appropriate learning rates that stabilise the output of the network due to the above-

mentioned high non-linearity of the system. In general, at least for low dimensional 

input vectors the DD Rule is able to stabilise the system at values different from zero 

even in spite of little noise in the range of [ ]0.01 ;01.0−  given to the input, if some 

constraints are fulfilled. But with respect to the task this low-dimensional case is 

sufficient: A mental model of an overall environmental situation consisting of 

segmental situations each of which comprises only a small number of objects can 

successfully be built up within the network even if the overall situation contains a large 

number of such segmental situations. 

 

2.4 Transformation of static into sequential inform ation  
 

To accomplish the second part of the goal as specified above, these static mental 

representations have to be utilised to generate sequences of behaviour, i.e. the 

linearization problem (Levelt, 1989) has to be solved. There are many different 

examples of behavioural chains varying in complexity like, of course, language. Think 

of our example of the girl uttering ‘Mommy book’ mentioned in the Introduction. But 

also sequences of movements like the grooming behaviour of rats and other rodents can 

have syntax-like properties (e.g. Berridge et al., 1987); thus they also face a kind of 

linearization problem as different behavioural subparts – in this case these are not 
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spoken words but movements of limbs – have to be ordered into a coherent sequence. 

Yet in 1951 Lashley widened this view in saying that in almost every cerebral activity 

the problem of temporal sequences, i.e. syntax, can be found. 

2.4.1 Accessibility 

The sequence might be either hardwired within the network as it may be the case in a 

quite stereotyped behaviour like grooming or, in more variable behavioural sequences, 

the decision on the temporal order of the items may not only depend on prescribed rules 

but also on the actual context. If an organism is, for example, faced with a food source 

and a mate it should decide on the context – its own state and the environmental 

situation – if it would be better to eat or to reproduce first. Here we want to focus on a 

more variable context-dependent behaviour, namely the production of language – like in 

the example of the young girl.  

In linguistic literature different factors are discussed which have an impact on word 

order. For example, animate entities tend to occur earlier in sentences than inanimate 

entities (e.g. Harris, 1978) and there seems to exist a bias towards the order direct object 

– indirect object (Bock and Brewer, 1974) that already appears in early language 

acquisition (Osgood and Zehler 1981). These assumptions can be summed up in a more 

general hypothesis, the focus-of-attention hypothesis (Johnson-Laird 1968a, b): The 

more an item is in the focus of attention, i.e. the more salient it is for a speaker, the 

earlier it is produced within the sentence. This idea appears to directly contradict the 

empirical evidence for a given – new ordering: A new piece of information generally is 

placed second in a sentence (e.g. Smith, 1971; Clark and Clark, 1977; concerning given 

– new ordering in spatial reasoning tasks see Hörnig et al., 2005). As new information is 

supposed to be more important, this seems to reverse the focus-of-attention hypothesis.  

Different attempts have been made to cope with this contradiction (for a review, see 

Bock, 1982). A simple way to overcome this difficulty is to regard the accessibility of 

the items to be a main factor which influences the word order in sentences. Accessibility 

is used here in the sense of cognitive psychology (Tulving and Pearlstone, 1966): It 

refers to the ease of recall by which information could be activated from memory. In 

this sense, highly accessible elements tend to come first (Levelt, 1999). If the recall of a 

certain element of memory is facilitated either by the focus of attention or by preceding 

activation due to the context of discourse, it can be processed earlier. If we assume the 
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influence of the activation of previous situations to be larger than the focus of attention, 

a given memory element can – whenever a corresponding context exists – be produced 

earlier while new and thus important information moves more to the back. But if there 

is no contextual influence, the focussed information can be the first in sentence 

production. Many different hints coming from psychological literature confirm the 

effect of accessibility on word ordering (Bock, 1982) as for example the advantage of 

the First Mention, i.e. the element mentioned first in a sentence is more accessible than 

the second one (Gernsbacher and Hargreaves, 1988; Gernsbacher, 1989). 

Thus, the principle of accessibility provides a very simple criterion for generating 

sequences. Needless to say, that this approach cannot explain the complete syntax of 

any human language. But this principle seems to be a reasonable first approximation to 

solve the problem as to how sequences could be produced from the items represented 

within a mental representation.  

2.4.2 Accessibility in MMC networks 

How can the information concerning the accessibility of certain items be coded within 

the network? The simplest way is to represent it in the form of the activation levels of 

the single units representing the items of the given situation: The higher the units coding 

for a special part of the behavioural chain is activated the earlier it will be produced. 

Bock (1982), for example, proposes in her model that information, which is more 

accessible and thus more activated, can be processed faster (see also Zwaan et al., 

2000). As explained above, the lexical entities vary with respect to the accessibility. 

Therefore, we assume a separate, internal system to exist which influences the 

accessibility of the lexical entities and thereby determines their activation. The 

information passes this system before it is processed within the MMC network. Some 

units can, for example, be pre-activated because of the given context and thus set to a 

higher level of activity by this accessibility system. Figure 2.5 shows how the MMC 

network building the mental representation can be expanded by such a system. 
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Figure 2.5: Architecture of a model serving for the task of transforming the static 
information of the mental representation into time-dependent sequences. The internal 
system, which determines the activation level of the units according to their 
accessibility, is symbolised by the shaded grey box on the left (“accessibility”). In the 
model shown in this figure, the activation of unit x1 is amplified (by the factor 1.1 in 
this example), when the MMC criterion is fulfilled, i.e. after the Harmony H exceeds a 
given threshold θθθθ1111. If the amplified activation of a unit exceeds a threshold θθθθ2222, the 
corresponding output neuron elicits an action. For further information see Figure 2.2. 

 

2.4.3 From static to sequential information 

One possibility of how the static information represented by the activation levels of the 

units could be converted into time-dependent sequences is to use a WTA (Winner-takes-

all) network, which is attached to the output of the MMC network and selects always 

the highest activated unit to trigger an action after the MMC criterion is fulfilled, i.e. 

after the Harmony function H has approximated the value one to a sufficient degree. 

Since, however, as for this solution a second network is needed, we propose a simpler 

solution that is depicted in Figure 2.5. After the MMC criterion has been accomplished 

(Figure 2.5 θ1), at least one unit is chosen randomly; in Figure 2.5 this is the unit x1. The 

activation of this unit is continuously increased by an arousal signal that is used to elicit 

the behaviour. Due to the recurrent connections of the network this influence increases 

the activation of all other units, too. Now we can define a threshold θ2 in the subsequent 

motor units. The unit with the strongest activation reaches this threshold θ2 first and 

therefore triggers the corresponding action first. Further application of the arousal signal 

then drives the unit with the second strongest activation above the threshold. After all 
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units having exceeded the threshold, the arousal signal can be stopped. Thus, the motor 

units can elicit actions sequentially. 

An example of a simulation showing such behaviour is given in Figure 2.6. Here, the 

first part of the figure up to the vertical dotted line (iteration step 250) shows the 

process of building up the internal representation (cf. Figure 2.4). The two units 

represent for example the words book (x1) and Mommy (x2). Due to the amplification the 

activation of unit x2 exceeds the threshold θ2 (horizontal dashed line) first and therefore 

the word Mommy can be produced first (left arrow). Some iterations later also the 

second unit (x1) exceeds the threshold θ2 and the word book is produced (right arrow). In 

this way it is possible to produce sequences like Mommy book. 

 

 
Figure 2.6: Example of a simulation using the model shown in Figure 2.5. The initial 
conditions are the same as in Figure 2.4(a). When the MMC criterion is fulfilled 
(indicated by the vertical dotted line, iteration step 250) the output of unit x1 (black 
line) is amplified by a factor of 1.1 each tenth iteration. If the activation of a unit 
exceeds the threshold θθθθ2222 (horizontal dashed line, in this example set to θθθθ2222 = 20), its 
corresponding output neuron elicits an action (arrow). In this way, unit x2 triggers an 
action at iteration step 354 and correspondingly unit x1 at iteration step 429. 

 

This solution has several advantages. First, no second network is needed as in the case 

when using the WTA network. Second, the motor output can be disconnected from the 

mental representation by simply inhibiting the arousal signal or by inhibiting the 

connections to the motor units. Such inhibitory influences during imagined or observed 

movements have been observed in some studies (Rizzolatti and Arbib, 1998; Jeannerod, 

1999). Thus, this model realises the capability of disconnecting the internal mental 

representation from the motor system, which is considered to be a precondition for the 

occurrence of cognitive abilities.  
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2.5 Conclusion and Discussion 
 

The main thrust of this chapter was to present a model which can serve as a basis for 

sequence production, especially for language production based on information received 

directly from the environment. As we have argued in the Introduction (Chapter 2.1), the 

first step to cope with this problem is to build up a mental representation as a kind of 

working memory of the objects present in the environment which in a second step can 

be used for producing sequential behaviour like, for example, spoken sentences.  

Many studies revealed a tight connection between the perception and action system 

(Rizzolatti and Craighero, 2004) which seems to be an essential property for action 

understanding (Rizzolatti et al., 2001), controlling motor output (Jeannerod, 1999; 

Cruse, 2003a), but also for language production and understanding (Glenberg and 

Kaschak, 2002). Therefore, to account for these findings and to fulfil the bipartite task 

described, we adapted a model, namely the MMC network, which was primarily 

invented for action tasks like arm-movements or landmark navigation and which is able 

to cope with the problem of sensorimotor integration. 

2.5.1 Mental representations and the linearization problem 

The main feature of these networks – converging to stable states – can be exploited to 

generate mental representations. These attractor characteristics of MMC networks are 

similar to the attractors of Hopfield type networks (Hopfield, 1982; 1984). But, in 

contrast to Hopfield networks which only have a limited number of discrete attractors, 

MMC networks show a smooth attractor space. Referring to the example of the arm 

movement, every geometrically possible solution can be adopted. Additionally, neither 

a symmetrical weight distribution nor a bounded activation function is needed.  

By means of the Dynamic Delta Rule the weights can be trained in a way that only sub-

populations of a larger network are activated according to the respective environmental 

situation in an online mode; here it is not necessary to disconnect the learning dynamics 

from the dynamics of the recurrent connections like in other approaches. Thus, 

application of this learning algorithm serves to cope with the task of generating a kind 

of preverbal message (Levelt, 1989), i.e. a mental representation in which the content of 

the following language production is bound together. This first step can also be 

compared with the first process of the so-called Indexical Hypothesis – a model for 
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sentence comprehension – proposed by Glenberg and Robertson (1999): during this 

indexing process the content of the language to be comprehended is verified to 

determine what or who is being talked about. Hence, the idea of first building up mental 

representations of the situation is well-established in both language comprehension as 

well as language production; our model can provide an explanation on neural level for 

this supposed first step. 

Starting from this mental representation the speaker has to solve the linearization 

problem (Levelt, 1989) as he/she has to decide about the order in which the single 

elements should be produced. Thus, according to Levelt we take here a totally different 

approach in generating sequences than others dealing with the processing of temporal 

sequences (e.g. Elman, 1990, see also Porr and Wörgötter, 2003). In these studies 

networks are trained with sequential input patterns, i.e. the sequence to be stored is 

given in advance (for a recent physiological study of sequence encoding see for 

example Jensen and Lisman, 2005). This however is not our goal. In our approach in 

contrast a behavioural sequence can be produced from a nonlinear internal 

representation without knowing the temporal order before starting the behaviour – 

which seems to be reasonable especially when dealing with language production. 

Training like in Elman networks could however be used in our model to learn 

grammatical information that may later on be applied by the accessibility system. 

2.5.2 Scaling the network 

As other researchers like Cangelosi and Parisi (1998: 84), who examined the 

‘evolutionary emergence of a very limited “language” made up of just two one-word 

utterances’, we started to learn and represent situations consisting of a small number of 

items within our framework and to transform them into sequential actions. Therefore, 

the system provides a basis for the control of simple chains of behaviour as can be 

observed for example in language production of young children at the age of about two 

years (see Chapter 2.1).  

If we try to enlarge the representation up to more than three or four different objects 

which means adding more units to the model, stability problems arise. Although this 

seems to be a disadvantage at first glance at least from a neurocomputational point of 

view, the model could provide an explanation for the limited capacity of working 

memory (Baddeley, 1986): various experiments show that only a relatively small 
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number of objects of around four can be held in working memory concurrently (Luck 

and Vogel, 1997; for a review see Cowan, 2000). 

Nevertheless it has to be possible to scale the system to problems that require a higher 

dimensionality as for example longer sentences. How could this be achieved? The 

studies cited above concerning the capacity of working memory point at a solution: 

Though the number of objects to be stored within one model is limited, the objects 

themselves can be integrated, i.e. consist of different features. A similar solution could 

arise when considering the construction of a somewhat more complex MMC network, 

which has been used to represent the kinematics of a six-legged insect body with a total 

of 18 degrees of freedom. The complete network would require a matrix with 276276×  

weights (Kindermann, 2003). However, the network could be simplified dramatically by 

dividing it into six different nested subnetworks (“chunks”). Each leg is represented 

within the body module simply by a leg-vector pointing from the body to the foot point. 

Such a vector could be called a “symbol” of a leg because it comprises the main 

information about each leg, namely the position of the foot point in relation to the body. 

The details concerning the leg joints are represented within the leg subnetworks. 

A similar approach seems to be reasonable when understanding or producing language: 

A possible solution to cope with more complex situations could be to subdivide larger 

structures into many small modules containing chunks or subparts of sentences as the 

segmental situations we described above. Taking a top-down view, such nested 

structures could be applied to represent lower level information down to morphemes 

and phonemes. In this way, the limitation arising from using localist-encoding linguistic 

units could be overcome. A similar approach has also been proposed by Haschke et al. 

(2001) to solve the problem of controlling the dynamics of large recurrent neural 

networks by breaking them down in small modules using a small number of (input) 

parameters.  

Taking a bottom-up view, nested structures could be used to address higher level 

symbols. Different approaches exist to analyse the structure of sentences. One of these 

approaches is the so-called Construction Grammar (Fillmore, 1988; Goldberg, 1995). 

Here, constructions are considered to be the basic units of language. No difference is 

made between lexicon and syntax, as lexical and syntactical constructions mainly vary 

with respect to their internal complexity while representing the same kind of declarative 
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data: Both combine form and meaning. Thus, strictly speaking lexical items are also 

constructions (Goldberg, 1995). As an example let’s take the use of the English made-

up verb to floos: In different expressions like ‘X floosed Y the Z’ or ‘X floosed Y’ most 

native speakers of English assign different meanings to these sentences. As the verb 

itself has no meaning, the construction seems to carry any meaning inherently. Kaschak 

and Glenberg (2000) provide a test to verify Goldbergs notion of construction; they 

have shown that not only children – as has been demonstrated in language acquisition 

studies (e.g. Pinker, 1989) – but also adults are sensitive to the meanings associated 

with particular constructions (see also Fisher, 1994; Naigles and Terrazas, 1998). This 

implies that the abstract structure becomes a kind of symbol that is at least in some way 

independent from the words the construction consists of (Tomasello, 1999). Tomasello 

(1999) gives a possible explanation, why construction could have become a special 

form of internally complex language symbols: They could be suitable to react to 

recurring communicational functions. 

Hence we can argue that – like the above-mentioned leg-vectors which could be 

interpreted as symbols for the legs – it is also reasonable to think of higher symbolic 

levels like constructions. All these considerations point into a direction how the problem 

of scaling could be solved: We have to subdivide more complex environmental 

situations into smaller modules containing subsets of information, as we have already 

done by activating small segmental situations, which then in turn have to be combined 

to larger structures. 

 

Two major problems have to be addressed in future work: First, reasonable ways have 

to be proposed of how many small network modules could be combined to cope with 

more complex behavioural tasks. The second issue concerns the kind of information that 

should be represented within neural models to “understand” the world outside. Up to 

now we only have treated situation models that are static by nature because they are 

simply built up from objects existing in the environment. Glenberg among others points 

out that with regard to real understanding it is important to be able to internally simulate 

not only the objects by themselves but also the affordances of objects, i.e. the actions 

that could be done with objects (Kaschak and Glenberg, 2000). According to Gibson 

(1966; 1979), who first coined the notion of affordances, for example a chair is a chair 
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because it affords sitting for adult humans. Therefore, it is necessary to find ways to 

combine the static representations of external situations with dynamic representations of 

actions or events. 

 

2.6 References 
 
Baddeley A (1986), Working memory (Oxford: Clarendon Press). 

Berridge KC, Fentress JC and Parr H (1987) Natural syntax rules control action 
sequence of rats, Behavioural Brain Research, 23: 59-68. 

Bock JK, (1982) Toward a Cognitive Psychology of Syntax: Information Processing 
Contributions to Sentence Formulation, Psychological Review, 89: 1-47. 

Bock JK, and Brewer WF (1974) econstructive recall in sentences with alternative 
surface structure, Journal of Experimental Psychology, 103: 837-843. 

Buccino B, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ,Zilles K, 
Rizzolatti G, and Freund H-J (2001) Action observation activates premotor and 
parietal areas in a somatotopic manner: an fMRI study, European Journal of 
Neuroscience, 13:. 400-404. 

Calvin WH (1996) How brains think, New York: Basic Books. 

Cangelosi A (2001) Evolution of communication and language using signals, symbols 
and words, IEEE Transactions in Evolution Computation, 5: 93-101. 

Cangelosi A (2004) The sensorimotor bases of linguistic structure: Experiments with 
grounded adaptive agents. In Proceedings of the eighth International Conference on 
Simulation of Adaptive Behavior (S. Schaal, A. Ijspeert, A. Billard, S. Vijayakumar, 
J. Hallam, J.-A. Meyer, eds) Cambridge, MA: MIT Press, pp. 487-496.  

Cangelosi A and Parisi D (1998) The emergence of a "language" in an evolving 
population of neural networks, Connection Science, 10: 83-97. 

Clark HH and Clark EV (1977) Psychology and Language, New York: Harcourt Brace 
Jovanovich. 

Cowan N (2000) The magical number 4 in short-term memory: A reconsideration of 
mental storage capacity, Behavioral and Brain Sciences, 2: 87-114.   

Cruse H (2003a) Landmark-based navigation, Biological Cybernetics, 88: 425-437. 

Cruse H (2003b) The evolution of cognition - a hypothesis, Cognitive Science, 27: 135-
155. 



2 STATIC MENTAL REPRESENTATIONS IN RECURRENT NEURAL NETWORKS FOR THE CONTROL OF 

DYNAMIC BEHAVIOURAL SEQUENCES 

41 

Cruse H and Steinkühler U (1993) Solution of the direct and inverse kinematic problem 
by a unique algorithm using the mean of multiple computation method, Biological 
Cybernetics, 69: 345-351. 

Cruse H, Steinkühler U and Burkamp C (1998) MMC - a recurrent neural network 
which can be used as manipulable body model. In Proceedings of the fifth 
International Conference on Simulation of Adaptive Behavior, Cambridge, MA: MIT 
Press, pp. 381-389. 

de Saussure F (1967), Grundfragen der allgemeinen Sprachwissenschaft, (C. Bally, 
ed.), Berlin: De Gruyter, 1967 (original work published 1916). 

Decety J, and Sommerville JA (2003) Shared representation between self and other: a 
social cognitive neuroscience view, Trends in Cognitive Sciences, 7: 527-533.   

Di Pellegrino G, Fadiga L, Fogassi L, Gallese V and Rizzolatti G (1992) Understanding 
motor events: a neurophysiological study, Experimental Brain Research , 91: 176-
180.  

Elman JL (1990) Finding Structure in Time, Cognitive Science, 14: 179-211. 

Fillmore C (1988) The mechanics of "Construction Grammar", Berkeley Linguistics 
Society, 14: 35-55. 

Fisher C (1994) Structure and meaning in the verb lexicon: Input from a syntax-aided 
verb learning procedure, Language and Cognitive Processes, 9: 473-518.  

Fuster JM (1995) Memory in the cerebral cortex, Cambridge, MA: MIT Press. 

Gallese V, Fadiga L, Fogassi L and Rizzolatti G (1996) Action recognition in premotor 
cortex, Brain, 119: 593-609.  

Gernsbacher MA (1989) Mechanisms that improve referential access”, Cognition, 32: 
99-156.  

Gernsbacher MA and Hargreaves DJ (1988) Accessing sentence participants: The 
advantage of the First Mention, Journal of Memory and Language, 27: 699-717. 

Gibson JJ (1966) The senses considered as perceptual systems, Boston: Houghton-
Mifflin. 

Gibson JJ (1979) The ecological approach to visual perception, Boston: Hougthon-
Mifflin. 

Glenberg AM and Kaschak MP (2002) Grounding language in action, Psychonomic 
Bulletin & Review, 9: 558-565. 

Glenberg AM and Robertson DA (1999) Indexical understanding of instructions”, 
Discourse Processes, 2: 1-26. 



2 STATIC MENTAL REPRESENTATIONS IN RECURRENT NEURAL NETWORKS FOR THE CONTROL OF 

DYNAMIC BEHAVIOURAL SEQUENCES 

42 

Goldberg AE (1995) A construction Grammar approach to argument structure, 
Chicago: The University of Chicago Press. 

Grafton ST, Fadiga L, Arbib MA and Rizzolatti G (1997) Premotor cortex activation 
during observation and naming familiar tools”, NeuroImage, 6: 231-236.  

Grezes J, Fonlupt P, Bertenthal B, Delon-Martin C, Segebarth C and Decety J (2001) 
Does perception of biological motion rely on specific brain regions?, NeuroImage, 
13: 775-785.  

Harris M (1978) Noun animacy and the passive voice: A developmental approach, 
Quarterly Journal of Experimental Psychology, 30: 495-501. 

Haschke R, Steil JJ and Ritter H (2001) Controlling oscillatory behaviour of a two 
neuron recurrent neural network using inputs. In Proceedings of the International 
Conference on Artificial Neural Networks (ICANN), Heidelberg: Springer, pp. 1109-
1114. 

Hebb DO (1949) The Organization of Behavior - A Neuropsychologial Theory, New 
York: John Wiley & Sons. 

Heidelberger M (1998) From Helmholtz's philosophy of science to Hertz's picture-
theory. In Heinrich Hertz: Classical physicist, modern philosopher (R.S. Cohen and 
M.W. Wartofsky, eds.), Dordrecht: Kluwer, pp. 9-25. 

Hockett C (1960) The origin of speech, Scientific American, 203: 88-96.  

Hopfield JJ (1982) Neural networks and physical systems with emergent collective 
computational abilities, Proceedings of National Academics Sciences USA, 79: 2554-
2558. 

Hopfield JJ (1984) Neurons with graded response have collective computational 
properties like those of two-state neurons, Proceedings of National Academics 
Sciences USA, 81: 3088-3092. 

Hörnig R, Oberbauer K and Weidenfeld A (2005) Two principles of premise integration 
in spatial reasoning”, Memory and Cognition, 33: 131-139. 

Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC and Rizzolatti G (1999) 
Cortical mechanisms of human imitation, Science, 286: 2526-2528. 

Jeannerod M (1999) To act or not to act: Perspectives on the representation of actions, 
Quarterly Journal of Experimental Psychology, 52A: 1-29. 

Jensen O and Lisman JE (2005) Hippocampal sequence-encoding driven by a cortical 
mulit-item working memory buffer, Trends in Neurosciences, 28: 67-72.  

Johnson-Laird PN (1968a) The choice of the passive voice in a communicative task, 
British Journal of Psychology, 59: 7-15. 



2 STATIC MENTAL REPRESENTATIONS IN RECURRENT NEURAL NETWORKS FOR THE CONTROL OF 

DYNAMIC BEHAVIOURAL SEQUENCES 

43 

Johnson-Laird PN (1968b) The interpretation of the passive voice, Quarterly Journal of 
Experimental Psychology, 20: 69-73. 

Johnson-Laird PN (1983) Mental models: towards a cognitive science of language, 
inference, and consciousness, Cambridge: Cambridge University Press. 

Jordan MI (1986) Attractor dynamics and parallelism in a connectionist sequential 
machine. In Proceedings of the eighth annual conference of the cognitive science 
society, Hillsdale: Earlbaum, pp. 531-546. 

Kaschak MP and Glenberg AM (2000) Constructing meaning: The role of affordances 
and grammatical constructions in sentence comprehension, Journal of Memory and 
Language, 43: 508-529. 

Kindermann T (2003) Positive Rückkopplung zur Kontrolle komplexer Kinematiken des 
hexapoden Laufens: Experimente und Simulation. PhD thesis, University of 
Bielefeld.  

Kindermann T and Cruse H (2002) MMC - a new numerical approach to the kinematics 
of complex manipulators” Mechanism and Machine Theory, 37: 375-394. 

Kohonen T (1982) Self-organized formation of topologically correct feature maps”, 
Biological Cybernetics, 43: 59-69. 

Lashley KS (1951) The problem of serial order in behaviour. In Cerebral mechanisms 
in behaviour (L.A. Jeffress, ed.), New York: Wiley, pp. 112-146. 

Levelt W (1989) Speaking - From Intention to Articulation, Cambridge, MA: MIT 
Press. 

Levelt W (1999) Producing spoken language: a blueprint of the speaker. In The 
Neurocognition of Language, (C.M. Brown and P. Hagoort, eds.), Oxford: University 
Press, pp. 83-122. 

Luck SJ and Vogel EK (1997) The capacity of visual memory for features and 
conjunctions, Nature, 390: 279-281. 

Mills, AE (1985) The acquisition of German. In The cross-linguistic study of language 
acquisition: The Data. Vol. 1, (D.I. Slobin, ed.), Hillsdale, N.J.: Erlbaum, pp. 141-
254. 

Naigles, LR and Terrazas P (1998) Motion verb generalization in English and Spanish: 
Influences in language and syntax, Psychological Science, 9: 363-369.  

Osgood C and Zehler A (1981) Acquisition of bi-transitive sentences: Prelinguistic 
determinants of language acquisition, Journal of Child Language, 8: 367-383. 

Pinker, S (1989) Learnability and cognition: The acquisition of argument structure, 
Cambridge, MA: MIT Press. 



2 STATIC MENTAL REPRESENTATIONS IN RECURRENT NEURAL NETWORKS FOR THE CONTROL OF 

DYNAMIC BEHAVIOURAL SEQUENCES 

44 

Porr B and Wörgötter F (2003) Isotropic sequence order learning in a closed-loop 
behavioural system, Philosophical Transactions: Mathematical, Physical and 
Engineering Sciences, 361: 2225-2244. 

Rizzolatti G and Arbib MA (1998) Language within our grasp, Trends in 
Neurosciences, 21: 188-194. 

Rizzolatti G and Craighero L (2004) The mirror-neuron system, Annual Review of 
Neuroscience, 27: 169-192.  

Rizzolatti, G, Fadiga L, Fogassi L and Gallese V (1996) Premotor cortex and the 
recognition of motor actions, Cognitive Brain Research, 3: 131-141. 

Rizzolatti G, Fogassi L and Gallese V (2001) Neurophysiological mechanisms 
underlying the understanding and imitation of action, Nature Reviews Neuroscience, 
2: 661-670. 

Roskies AL (1999) The Binding Problem, Neuron, 24: 7-9. 

Smith C (1971) Sentences in discourse, Journal of Linguistics, 7: 213-235. 

Steels L (1995) Intelligence - dynamics and representations. In The biology and 
technology of intelligent autonomous agents, (L. Steels, ed.), Berlin: Springer,  pp. 
72-89. 

Steil JJ (1999) Input-Output Stability of Recurrent Neural Networks, Göttingen: 
Cuvillier Verlag. 

Steinkühler U, Burkamp C and. Cruse H (2000) MMC - a holistic system for a 
nonsymbolic internal body representation. In Prerational Intelligence: Adaptive 
Behavior and Intelligent Systems Without Symbols and Logic (H. Ritter, H. Cruse 
and J. Dean, eds.), Dordrecht: Kluwer, pp. 121-140. 

Steinkühler U and Cruse H (1998) A holistic model for an internal representation to 
control movement of a manipulator with redundant degrees of freedom, Biological 
Cybernetics, 79: 457-466. 

Tani J and Nolfi S (1999) Learning to perceive the world articulated: an approach for 
hierarchical learning in sensory-motor systems, Neural Networks, 12: 1131-1141. 

Tomasello M (1992) First verbs - A case study of early grammatical development, 
Cambridge: University Press. 

Tomasello M (1999) The cultural origins of human cognition, Cambridge, MA: Harvard 
University Press. 

Tulving E and Pearlstone Z (1966) Availability versus accessibility of information in 
memory of words, Journal of Verbal Learning and Verbal Behavior, 5: 381-391. 



2 STATIC MENTAL REPRESENTATIONS IN RECURRENT NEURAL NETWORKS FOR THE CONTROL OF 

DYNAMIC BEHAVIOURAL SEQUENCES 

45 

van Dijk TA and. Kintsch W (1983) Strategies in text comprehension, New York: 
Academic Press. 

Von Eckard B (1983) What is cognitive science?, Cambridge, MA: MIT Press. 

Wittgenstein L (1958) Philosophical Investigations, G.E.M. Anscombe, Transl., New 
York, NY: MacMillan Publishing Co. 

Wolpert DM and Kawato M (1998) Multiple paired forward and inverse models for 
motor control, Neural Networks, 11: 1317-1329. 

Wolpert DM, Ghahramani Z and Jordan MI (1995) An internal model for sensorimotor 
integration, Science, 269: 1880-1882. 

Zwaan RA, Madden CL and Whitten SN (2000) The presence of an event in the 
narrated situation affects its availability to the comprehender, Memory & Cognition, 
28: 1022-1028. 

Zwaan RA and Radvansky GA (1998) Situation models in language comprehension and 
memory, Psychological Bulletin, 123: 162-185.



3 MODELLING MEMORY FUNCTIONS WITH RECURRENT NEURAL NETWORKS CONSISTING OF 

INPUT COMPENSATION UNITS: I. STATIC SITUATIONS 

46 

3 Modelling Memory Functions with Recurrent Neural 
Networks consisting of Input Compensation Units: 

I. Static Situations 
 

Humans are able to form internal representations of the information they process – a 

capability which enables them to perform many different memory tasks. Therefore, the 

neural system has to learn somehow to represent aspects of the environmental situation; 

this process is assumed to be based on synaptic changes. The situations to be 

represented are various as for example different types of static patterns but also dynamic 

scenes. How are neural networks consisting of mutually connected neurons capable of 

performing such tasks? 

Here we propose a new neuronal structure for artificial neurons. This structure allows to 

disentangle the dynamics of the recurrent connectivity from the dynamics induced by 

synaptic changes due to the learning processes. The error signal is computed locally 

within the individual neuron. Thus, online learning is possible without any additional 

structures. Recurrent neural networks equipped with these computational units are able 

to cope with different memory tasks. Examples illustrate how information is extracted 

from environmental situations comprising fixed patterns to produce sustained activity 

and to deal with simple algebraic relations. 

 

3.1 Introduction 
 
From early childhood on humans brains have a fundamental ability: they build up 

representations. Brains and their constituents, the neurons, are specialised to represent 

aspects of the environment which means that these neurons or groups of neurons “stand 

for” those aspects. This information coded within neural circuits can be multifaceted. 

Information of objects like a tree or a chair can as well be represented as rules, for 

example underlying grammar in language, or dynamic events like the movement of one 

person towards another. To start with we want to focus on the two first examples: We 

propose a new neuronal architecture that is able to deal with these problems. Its ability 

to represent dynamic situations is treated in Chapter 4. 
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A basic function of our brain is to provide some kind of working memory (Baddeley, 

1986, 1992). It allows us to hold representations of external information actively in 

memory, at least for a short time, to be able to act within and react to the world. In 

various experiments the properties of working memory have been investigated applying 

so-called delayed response tasks. The pioneer work has been done by Fuster and Niki 

(Fuster and Alexander, 1971; Fuster, 1973; Niki, 1974a, 1974b). In continuing this work 

many studies using electrophysiological recordings show a stimulus-specific, enhanced 

delay activity in several brain areas (for reviews see Fuster, 1995; Miyashita and 

Hayashi, 2000; Wang, 2001). This sustained internal activity in the absence of the 

external stimulus is argued to be the neural substrate of working memory. 

Another important capability human brains have is representing rules. This becomes 

apparent when regarding language learning. Marcus et al. (1999) have shown that 

statistical learning mechanism – which are, of course, not called into question to exist – 

do not exhaust the child’s repertoire of learning mechanisms. They performed 

experiments showing that already 7 month old babies are able to extract simple 

algebraic relations from acoustic input. The babies were able to distinguish between 

three word sentences consisting of made-up words and following either the condition 

“ABA” or “ABB”. As the test words were totally new and the sentences were of the 

same length the babies could not distinguish them based on transitional probabilities or 

statistical properties. 

Representing such algebraic relations means representing “open-ended abstract 

relationships for which we can substitute arbitrary items. For instance, we can substitute 

any value of x into the equation 2+= xy .” (Marcus et al., 1999; see also Chomsky, 

1980; Pinker and Prince, 1988; Pinker, 1991; Marcus et al., 1995; Marcus, 2001). The 

point made in the study is that it is not only the capability of generalising due to 

statistical learning mechanisms which enables us – just like the young babies – to build 

correct sentences as described but especially the capability of representing the 

underlying general rule: It is important to be able to represent such rules. 

For many of the different abilities of brains computational models have been proposed. 

The most promising among them are models with recurrently coupled neurons because 

they seem to resemble natural neuronal assemblies best. As the tasks mentioned require 

an internal representation of the current external situation, some form of learning is 
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necessary. To model example-based learning different forms of error backpropagation 

(Rumelhart et al., 1986; Hertz et al., 1991) are widely used training procedures for both 

feed-forward and recurrent neural networks (RNNs). But backpropagation is often 

considered to be biologically implausible because the error signal has to be provided 

externally and a specific additional network is required that is able to propagate these 

error signals. 

Additionally, most artificial recurrent networks exposed to learning situations suffer 

from two severe problems. On the one hand, training is particularly difficult in RNNs 

because two different dynamics are intertwined: There is the dynamics of the RNN 

itself, the properties of which depend on distribution and size of the weights. If, on the 

other hand, these weights are changed additionally due to the learning procedure, a 

second dynamic process is introduced that interacts with the first one. Therefore, neural 

and synaptic dynamics are coupled in a very intricate way (Del Giudice et al., 2003) 

making the control of the network a hard problem (Steil, 1999). This difficulty is often 

solved by application of off-line training procedures, that separate the dynamics of the 

network from the dynamics of the training procedure like in Contrastive Hebbian 

Learning (Movellan, 1990, Baldi and Pineda, 1991; Xie and Seung, 2003) or training 

echo state networks (Jaeger and Haas, 2004), or by hand-tuning the parameters (e.g. 

Seung et al., 2000). But neither a cut-off of the feedback loop nor hand-tuning seems to 

be biologically plausible. Online learning algorithms like real-time recurrent learning 

(e.g. Williams and Zipser, 1989b), in contrast, are often very slow and computationally 

very expensive concerning storage capacity and computation time (see (Williams and 

Zipser, 1989b; Schmidhuber, 1992; Doya, 1995). Furthermore, they are non-local and 

would require a large additional network structure when being applied to biological 

systems. 

 

In this chapter, we propose a new biologically inspired computational circuit of a 

neuronal unit called Input Compensation Unit (IC Unit) which disconnects the 

dynamics of the recurrent network from the dynamics due to the learning procedure and 

therefore allows for an easy training of RNNs in an online mode to model the two tasks 

mentioned above – i.e. holding an item in memory which means learning the 

representation of static patterns, and representing simple algebraic relations. 
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Additionally it is possible that a network equipped with those units is also able to learn 

dynamic situations. This is described in Chapter 4.  

The circuit acts within a neuronal unit and incorporates a learning rule that formally 

corresponds to the delta rule (Widrow and Hoff, 1960), but does not require a separate 

network for backpropagating the error. Each neuron only needs local information 

directly available via its synaptic connections. The error is determined within each 

neuron. Therefore, the training procedure is unsupervised as no global trainer is 

necessary and each neuron relies on local information only. Consequently, the 

computational costs are very low. Thus, our model overcomes the main objections 

against traditional approaches in training recurrent neural networks. A very similar rule 

has been proposed by (Kalveram, 2000) for training feedforward networks. The 

difference to our approach is discussed below (Chapter 3.5).  

The final goal behind this approach is to design a memory system that contains the 

representation of many different situations. Such situations may comprise static or 

moving objects or describe connections between a sensory input and a motor output, 

analogue to so-called motor primitives as proposed by Wolpert and Kawato (1998), for 

example. The view, that different situations are stored by specific networks, is 

supported by physiological findings (Fogassi et al., 2005). Studying mirror neurons, i.e. 

neurons which likewise represent sensory as well as motor aspects, Fogassi and 

colleagues (2005) have shown that different neurons are activated when movements are 

either observed or performed that are similar but of different meaning (e.g. eating or 

placing). In this chapter we do not deal with the question of how cooperation or 

selection of different situation models may be organised, but first concentrate on the 

basic structure of such situation models. 

 

In the following (Chapter 3.2) we want to specify the tasks in more detail the network 

should be able to deal with. The structure of the circuit proposed is described in Chapter 

3.3. After having presented the results (Chapter 3.4) the chapter concludes with a 

discussion of the networks’ properties including some biological interpretations 

(Chapter 5). 
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3.2 The tasks  

3.2.1 Learning a static pattern to produce sustaine d activity  

The first task the network should cope with is to represent a fixed static pattern 

consisting of analogue values that is given as input to produce sustained activity even if 

the input pattern disappears. Specifically, the task is as follows: The recurrent network 

consists of at least n units. As an example a network for 3=n  is depicted in Figure 

3.1a. Any n-dimensional input vector is provided to the network. The learning algorithm 

should change the weights in a way that all units of the network adopt activations that 

correspond to the input and maintain their activation even after the external input is 

switched off.  

Which values should the weights take if a fixed input vector is presented? Assume that 

we have a network with n units with output values x1, x2, … xn and the input vector 

consists of the components ( )T
21 ,..., naaa=a . The task is then to find a weight matrix W 

with aWa ⋅= . This means that the weights of the recurrent network should form a 

matrix that has the vector ( )T
21 ,..., naaa  as an eigenvector corresponding to the 

eigenvalue 1=λ , while all other eigenvalues satisfy 1<λ . As we have n2 weights 

there is a manifold of matrices that fulfil this condition. n equations determine n degrees 

of freedom. Therefore, ( )nn −2  of the n2 weights can be chosen arbitrarily. For 3=n  

one possible solution is given by matrix W1: 

 

( )
�
�
�

�

�

�
�
�

�

�

⋅++

333

222

111

3211

aaa

aaa

aaa

aaa  (W1) 

 

With ( )T1,1,1=1 , W1 can be rewritten as ( )( ) TT1 1aa1 ⋅⋅⋅ . W1 is a skew projector. It 

projects onto { }aspan  along the space that is orthogonal to 1. Such a network does not 

only stabilise an input situation given by vector ( )T
321 ,, aaa , but any multiple of this 

vector. If the initial activations of the units are set to values that deviate from this 

condition, the network relaxes to a vector that obeys this relation, i.e., to a multiple of 

( )T
321 ,, aaa . The network can therefore be described as forming an attractor consisting 



3 MODELLING MEMORY FUNCTIONS WITH RECURRENT NEURAL NETWORKS CONSISTING OF 

INPUT COMPENSATION UNITS: I. STATIC SITUATIONS 

51 

of a two-dimensional subspace that is described by the plane 0332211 =++ xaxaxa . This 

network is only neutrally stable. Neutral stability means that if any weight is changed 

arbitrarily, the activations of the units increase to infinity or may decrease to zero. 

Therefore, a learning mechanism is needed that automatically stabilises the weights 

against disturbances as for example disturbances due to synaptic noise. 

3.2.2 Representing simple algebraic relations  

As a further task, the network should be able to store simple algebraic relations. Here, 

we deal with two examples of such relations: First, the results obtained by Marcus et al. 

(1999) should be simulated with the network proposed here. Marcus and colleagues 

found, that the infants tested were able to extract abstract algebra-like rules that 

represent the relationship between variables such as “the first item X is the same as the 

third item Y”. Two experiments have to be performed: In the first one the network has 

to be trained with external input of structure “ABA” and in the second one with external 

input of structure “ABB”. The network can be tested afterwards (just like the babies) 

with consistent input, i.e. input resembling the structure of the training phase, or with 

inconsistent input. The test input has to consist of variables not yet presented during the 

training phase to prevent learning based on transitional probabilities. The babies in the 

experiments described above paid attention to the inconsistent sentences for a longer 

period of time (for details see Marcus et al., 1999). 

The second task to be learnt by the network is more general by nature: It should be able 

to represent simple linear equations. The network should be able to sum up two 

variables, i.e. to represent all possible configurations of x1 and x2 that result in a value 

213 xxx += . If we do not wish to apply a 3D look-up table for all possible cases, the 

mechanism, i.e. the underlying rule or equation, should be represented which can then 

be applied to any given values. For this specific example, an easy solution is to use two 

input units x1 and x2, the output of which is fed in as input to a third unit, with weights 

of unity. However, there are two tasks related tightly: The task 213 xxx +=  also implies 

that 231 xxx −=  and 132 xxx −= . Of course, two further independent networks could be 

constructed that can solve these additional tasks. This solution would require a kind of 

selector network that decides which of the three networks should be used depending on 

the task given.  
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A simpler solution is to form one “holistic” network that represents the complete 

situation and can solve all three tasks. This recurrent network is given by the equation 

( ) ( )tt xWx ⋅=+1  or, for 3=n , by: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )txwtxwtxwtx

txwtxwtxwtx

txwtxwtxwtx

3332321313

3232221212

3132121111

1

1

1

⋅+⋅+⋅=+
⋅+⋅+⋅=+

⋅+⋅+⋅=+
   

 

Here, ( )tx  is the vector describing the actual activation of the n units ( 3=n  in our case) 

and ( )1+tx  the vector describing the activation in the following time step. W describes 

the n2 weights wij ( ni   to1= , nj   to1= ). If the weights are chosen appropriately, this 

system has stable solutions that fulfil the equation 0321 =−+ xxx . An appropriate 

weight matrix is given by matrix W2: 

 

�
�
�

�

�

�
�
�

�

�

−
−

011

101

110

  (W2) 

 

The tasks regarded here can be understood as pattern completion tasks: Given any two 

values as input, after relaxation the network will provide all three values x1, x2, and x3 at 

the output, i.e., a correct solution in any case. Therefore, depending on the input 

variables chosen, any of the three subtasks can be solved by this network. A correct 

solution is even found if only one input value is defined. As this latter task is 

underconstrained, different solutions are possible. The solution actually chosen by the 

network depends on its earlier state.  

 

3.3 The model: A recurrent neural network with IC U nits 

3.3.1 Structure of IC Units 

In this section we explain the architecture of a network that can cope with both tasks 

specified above and can, as will be shown in Chapter 4, also treat dynamic situations. 

To explain the structure of the network and to explicate its individual units let us 
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consider a network that consists of n recurrently connected units. An example of a 

three-unit network is shown in Figure 3.1a.   

 

 
Figure 3.1: (a) Schematic drawing of a three-unit recurrent network; ai is the external 
input, xi the recurrent input and wij  are the weights. (b) Architecture of one linear IC 
Unit; si(t) is the weighted sum of the recurrent inputs and δδδδi(t) the difference between 
the external input ai(t) and si(t). (c) Architecture of one IC Unit with the nonlinear 
extension (see text for explanation). 
 

 

Each individual neuron xi ( ni   to1= ) is equipped with a special internal structure 

(Figure 3.1b) described in the following. The dendritic tree is partitioned into two 

regions: One region with fixed synapses, whose presynaptic neurons belong to sensory 

neurons transmitting the external input ai. To simplify matters each neuron can only be 

stimulated by one external stimulus. As the synaptic weight is fixed it is not specified in 

Figure 3.1b and 1c. The second dendritic region is characterised by active synapses wij, 

whose presynaptic neurons are components of the recurrent network (Figure 3.1a) and 
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are recurrently connected to neuron xi. Active synapses are synapses which can be either 

potentiated or depressed (Montgomery and Madison, 2004) and thus are exposed to 

learning. Therefore, the activation of a single neuron is determined by an external 

component ai and an internal component, the weighted sum of the internal recurrent 

inputs si. The weighted sum of the internal recurrent inputs of neuron xi is given by 

( ) ( ) ( )txtwts
n

j
jiji �

=

⋅=
1

 or, for the complete network, ( ) ( ) ( )ttt xWs ⋅= . 

Such a splitting in an external and a recurrent component can also be found in the model 

described by Del Giudice et al. (2003).  

3.3.2 Training the synaptic weights 

The overall goal in both tasks mentioned above is to represent the external situation a (a 

static pattern or several examples following an algebraic relation) perceived via the 

sense organs within the network. ‘Representing the external situation’ can be defined as 

follows: If the weighted sum of the internal recurrent inputs si of neuron xi equals the 

external input ai, this stimulus is represented within the network because then the 

external input is no longer needed to elicit the activation characterising the stimulus ai. 

In order to reach this goal the synaptic weights wij have to be adapted in a learning 

process. 

As has been mentioned above, a major problem with training RNNs is that the dynamics 

of the network are superimposed by the dynamics due to the learning procedure. Both 

dynamics could however be separated, if, during training, the overall output xi would 

always equal the external input (i.e. ii ax = ) independent of the actual learning state, 

i.e., independent of the actual values of the weights wij. This can be achieved if we 

determine the output xi by 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )ttststatstatx iiiiiii δ+=−+==+1    (1) 

 

with ( ) ( ) ( )tstat iii −=δ . The corresponding circuit is shown in Figure 3.1b (solid lines).  
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To attain the overall goal, the weights wij have to be changed such that ( )tstx ii =+ )1(  

or, in other terms, ( ) 0=tiδ . This can be obtained by application of the learning 

algorithm  

 

( ) ( ) ijijij wtwtw ∆+=+1  with ( ) ( )ttxw ijij δε ⋅⋅=∆    (2) 

 

with 0>ε  being the learning rate (for more detailed information about the choice of 

ε see Appendix in Chapter 3.6). This learning algorithm formally corresponds to the 

delta rule. However, in contrast to the traditional approach, the delta error is here 

assumed to be determined and propagated locally within each neuron (Figure 3.1b, 

dashed arrows) as has been proposed by Kalveram (2000) for feedforward networks or 

Jaeger and Haas (2004) for echo state networks. Application of the rule depicted in 

equation (2) leads to a weight change until ( ) 0=tiδ , i.e., until the sum si of the 

weighted recurrent inputs equals the external input ai. We call units with this internal 

structure Input Compensation Units (IC Units), because this circuit compensates the 

effect of the external input, independent of the actual state of the recurrent weights. 

To be able to address this memory content later, it is necessary to prevent the network to 

automatically adapt to each new input situation. Thus, once the synaptic connections 

have learnt the specific input situation, further learning is stopped. A simple solution is 

to finish learning after the error δi has fallen below a given threshold because then 

external situation is represented within the network. To simplify matters, in the 

simulations shown here further learning is stopped, if the summed squared error 

( ) ( )�
=

=
n

i
i ttE

1

2δ  of the entire network has fallen below a given threshold. 

3.3.3 Extension of the neuronal structure 

To account for working memory capabilities, it should also be possible to sustain the 

activation once induced by a stimulus. As explained above the overall output of an IC 

Unit as shown in Figure 3.1b will, however, decay to zero after the external stimulus 

vanishes. This is due to the property of the IC Units, that the output always equals the 

input. Thus, the network cannot remain active to act as working memory. 
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In order to be able to sustain the activation, the architecture requires an extension. If ai 

is smaller than si in a unit shown in Figure 3.1b the output activation xi decreases, 

because then negative δ-values (recall that ( ) ( ) ( )tstat iii −=δ ) are added to si. This 

effect can, however, be avoided if we rewrite equation (1) by using rectifiers, which 

means that only the positive part of the function is transmitted. The rectifier is marked 

by a + in the following equations.  

For an explanation, we will first consider only positive input values ( ( ) 0≥tai ). If the 

weights are small at the beginning of training, for example zero, which means that 

( ) 00 =tsi , we can assume that during training the condition ( ) ( )tats ii ≤≤0  is fulfilled 

which is biologically plausible. With this assumption, the condition ( ) 0≥tai  can be 

replaced by ( ) 0≥tsi  and equation (1) can be rewritten: 

 

( ) ( ) ( ) ( )[ ]+−+=+ tstatstx iiii 1 , for ( ) 0≥tsi    (3.1) 

 

Following (3.1), xi still corresponds to si, even if ( ) ( )tsta ii < . Therefore, using this 

rectifier, the external input can indeed be switched off after training is finished, i.e. 

( ) 0=tai , and no changes occur to the output (if training has not yet been finished 

completely, the activation of the units will slowly decrease to zero, see Discussion in 

Chapter 3.5). Note, that the rectifiers do not influence the δ-value used for learning. 

Furthermore, we can generalise this condition for negative input values (( ) 0≤tai ): If 

we again assume that the weights are small at the beginning of learning, for example 

zero, we can state ( ) ( )tats ii ≤≤0 , because during learning si will approach ai starting 

from zero also for negative input values ai. Correspondingly, we can now replace the 

condition ( ) 0≤tai  by ( ) 0≤tsi . This leads to the second equation 

 

( ) ( ) ( ) ( )[ ]++−−=+ tstatstx iiii 1 ,       for ( ) 0≤tsi    (3.2) 

 

Both equations (3.1) and (3.2) are depicted in the circuit diagram in Figure 3.1c. The 

condition ( ) 0≥tsi  and ( ) 0≤tsi  are represented by the clipping functions. The two 
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rectifiers used in equations (3.1) and (3.2) are depicted in the lower part of the circuit 

(Figure 3.1c). This circuit fulfils three requirements:  

(i) It allows to apply both positive and negative input values ai.  

(ii)  After training is finished, it maintains its activation after the external input 

has been switched off.  

(iii)  It shows the same training properties as the linear version (Figure 3.1b), if 

the condition ( ) ( )tats ii ≤≤0  is fulfilled. 

 

The results shown in the following were obtained by using this expanded network. Note 

that the nonlinear expansions applied are only necessary for being able to use the 

network after learning is finished, i.e. in the testing mode. The learning procedure as 

such can still be described by a linear approach. As before and during training the 

activations of the neurons are only determined by the external input values ai due to 

their input compensation property, the dynamics resulting from the weight changes do 

not affect the dynamics of the complete network and therefore do not cause stability 

problems. 

 

3.4 Results 

3.4.1 Learning a static pattern to produce sustaine d activity 

Training the network. Let us first consider the case of a network consisting of 

three units that receives an external, fixed input vector ( )T
321 ,, aaa . Numerical 

investigations reveal the following results which can also be proven to hold generally 

(see Appendix in Chapter 3.6). 

If all nine weights including the diagonal weights, by which each neuron influences 

itself directly, are allowed to be learnt and all weights are set to zero at the beginning, 

the IC learning procedure (Figure 3.1, Eq. (2)) provides the solution shown by matrix 

W3                                     

( ) ( )( ) TT

332313

322212

312111
2

3
2

2
2

1 11 aaaa ⋅=
�
�
�

�

�

�
�
�

�

�

⋅++
aaaaaa

aaaaaa

aaaaaa

aaa  (W3) 
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Matrix W3 is the orthogonal projector onto { }aspan . In geometrical terms, the 

behaviour of an individual unit k can be described as follows: Assume the network 

consists of n units and is trained with a vector a. The output of unit k is determined by  

( ) ( ) ( ) ( )txwtxwtxwtx nknkkk +++=+ ...1 2211 ,  

which describes a linear function in an ( )1+n -dimensional space. This function 

corresponds to an n-dimensional hyperplane that contains the origin and, after training, 

the ( )1+n -dimensional vector ( )T
21 ',,..., kn aaaa . a’k and x’k describe the additional 

dimension given by the output value ( )1+txk . This hyperplane also contains the ( )1−n -

dimensional subspace that is contained in the n-dimensional space (x1 to xn). This 

subspace is orthogonal to vector ( )T
21 ,..., naaa . In other words, this hyperplane could be 

constructed in the following way: The hyperplane defined by 0' =kx  is rotated around 

the vector orthogonal to ( )T
21 ,..., naaa  until it contains the vector ( )T

21 ',,..., kn aaaa . For 

2=n  and 2=k , this process is schematised in Figure 3.2. 

 

 
Figure 3.2: Geometrical illustration for the process of training a two-unit network. The 
axis around which the plane is rotated is denoted by the grey arrow.  
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The network adopts solution W4 (for a proof see Appendix in Chapter 3.6), if during 

training all diagonal weights are constantly set to zero: 

 

( ) ( )
( ) ( )
( ) ( ) ��

�
�

�

�

��
�
�

�

�

++
++
++

0

0

0

2
2

2
132

2
2

2
131

2
3

2
132

2
3

2
121

2
3

2
231

2
3

2
221

aaaaaaaa

aaaaaaaa

aaaaaaaa

 (W4) 

 

In general, matrix W4 is asymmetric. The n-dimensional hyperplane described by unit k 

contains the origin and the vector ( )T
21 ,,..., kn aaaa , but now contains the kth coordinate 

axis instead of the vector orthogonal to ( )T
21 ,..., naaa  as was the case for (W3). 

 

Solution (W4) is of practical interest, because starting from this solution, a manifold of 

solutions can be constructed by replacing the diagonal weights by arbitrary positive 

values di first and then normalising all weights of unit i by multiplication with ( )id+11 . 

Parameters di can be interpreted as damping factors: The larger di, the slower the 

network approaches to a stable solution. A special treatment of the diagonal weights is 

plausible in biological systems, because these weights correspond to the only synapses 

by which the neurons are connected to themselves. 

 

Addressing the memory content. After having trained the network with a certain 

input vector a this external input can be switched off without changing the output; thus, 

due to the internal connections built up during learning the network keeps the activity 

induced by the external stimuli even if the stimuli are no longer present. 

How does the network react to incorrect input? If for a limited period of time an input 

vector is provided to the network that does not correspond to its stored vector, the 

network relaxes to a stable state that corresponds to its stored vector or a multiple 

thereof, after having switched off the input. Therefore, the network has the ability of 

pattern completion. For a network characterised by matrix W3, the stable state is 

reached immediately. For matrix W4 the relaxation takes some time depending upon 

value di ( 0>id ). A given ε-neighbourhood of the stable state is reached the faster, the 

more similar input vector and stored vector (or its nearest multiple) are.  
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3.4.2 Representing simple algebraic relations  

Training the network. The second task addressed in the Introduction (Chapter 

3.1) and Chapter 3.2 was to learn algebraic rules, as given in the condition ABA or 

ABB on the one hand and equations like 213 xxx +=  on the other hand. Such tasks 

require that not only one vector is learnt, but a solution for all vectors is found that fulfil 

the respective condition. 

Providing a network consisting of IC Units with input vectors following the former 

condition ABA (e.g. ( )5,1,5 , ( )2,3,2 ) leads to weight matrix (W5): 

 

�
�
�

�

�

�
�
�

�

�

5.005.0

010

5.005.0

 (W5). 

 

Training the network with the second condition applied by (Marcus et al., 1999), 

namely ABB (e.g. ( )1,1,5 , ( )3,3,2 ) another weight matrix is obtained: 
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5.05.00

5.05.00

001

 (W6). 

 

The second task mentioned in Section 2.2 requires a solution for all vectors fulfilling the 

equation �
=

=
n

i
ii xc

1

0  for given ∈ic
�

, i.e. all vectors of an ( )1−n -dimensional 

hyperplane containing the origin. Geometrically, for 3=n , the solution is given by a 

plane in the 3D coordinate system that contains all points given by the coordinates that 

fulfil the equation 0332211 =++ xcxcxc . Therefore, the solution is completely defined if 

three points are given. As ( )0,0,0  is already a solution, only two further examples (not 

collinear with ( )0,0,0 ) are sufficient to specify the solution. Generally, the solution for 

any task described by �
=

=
n

i
ii xc

1

0  with fixed coefficients ∈ic
�

is uniquely defined if 
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1−n  examples are presented to the network that form an ( )1−n -dimensional subspace 

and do not contain the origin.  

Application of a network with IC Units actually leads to this solution. To illustrate this 

ability, we again use a three unit network. The task to be trained is 213 xxx += . Any 

two training examples fulfilling the equation could be used (e.g. ( )4,1,5 − , ( )3,4,1− ). 

The same solution (W7) is obtained whether the training examples are presented in 

periodic epochs or in random order: 

 

�
�
�

�

�

�
�
�

�

�

−
−

323131

313231

313132

  (W7) 

 

Here, all nine weights were allowed to learn. Matrix W7 can be interpreted to be a 

special case of matrix W2 that is expanded by application of a damping factor 2=id  as 

explained above. If, however, the diagonal weights are constrained and always set to 

zero, we obtain a solution that corresponds to matrix W2 (see Chapter 3.2). These 

results are based on numerical investigations; a general proof is still pending. 

 

Addressing the memory content. If a network trained on either of the two conditions 

ABA or ABB is provided with a consistent input (e.g. ( )7,1,7  for the first condition 

ABA), it immediately stabilises at this values even if the values have not been presented 

to the network before, i.e. are totally new. If, in turn, inconsistent input is presented to 

the network (e.g. ( )1,1,5  for the first condition ABA), the activation of the unit not 

matching the condition asymptotically approaches the correct value.  

To address the memory content after having trained all the weights according to the task 

of representing the summation (or, based on matrix W4, after the application of any 

positive damping factors), the network is provided with a vector a the first component 

a1 and the second component a2 of which are fixed to certain values while the third a3 is 

set to zero. In the end, the third component should be the sum of the other components. 

In each case, the network provides a solution that fulfils 213 xxx += . But it is not 

necessarily the case that 11 ax =  and 22 ax = . This condition is fulfilled in two cases:  
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(i) 11 ax =  and 22 ax = , if 21 aa >  and 
2
1

2

a
a ≥   

(ii ) 11 ax =  and 22 ax = , if 12 aa >  and 
2
2

1

a
a ≥ . 

If, however, 21 aa >  and 
2
1

2

a
a < , we obtain 11 ax =  and 

2
21

22

aa
ax

+−= ; and if 

12 aa >  and 
2
2

1

a
a ≥ , we obtain 

2
21

11

aa
ax

+−=  and 22 ax = . 

Therefore, if all )()( iiiai ∨∈  unit x3 approaches asymptotically the value 213 aax += . 

Nevertheless, in the other cases as mentioned the network still stabilises at a value x3 

following the summation task 213 xxx += . Thus, the trained network is able to cope 

also with this pattern completion task. Correspondingly, solving the equation for the 

other variables is possible, too.  

 

3.5 Discussion 
In this chapter we propose Input Compensation Units (IC Units) as a new internal 

structure for artificial neurons that can be used as a basic building block of recurrent 

neural networks and allows for an efficient training of the synaptic weights. RNNs 

consisting of these IC Units and being trained in the described way have two main 

advantages over traditional approaches in training recurrent neural networks making 

them biologically more realistic:  

First, the learning algorithm can be applied online, i.e. without cutting the recurrent 

connections, because the learning dynamics are disentangled from the dynamics of the 

recurrent network as such. This is possible due to the following properties: As the sum 

of the weighted internal inputs is subtracted from the external input, the output of the 

neuron always equals the size of the external input and is therefore independent of its 

learning state (Eq. 3.1 and 3.2). In other words, as the built-in compensation mechanism 

always replaces that part of the input signal that corresponds to the sum of the recurrent 

signals, the global dynamics of the network is protected from the learning dynamics. 

Therefore, no stability problems arise here due to weight changes. During the training 

procedure, the weights stabilise at values guaranteeing that in the end the summed 

recurrent input si equals the external input ai. After learning is completed, and the 
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summed internal input equals the external input, the latter can be switched off without 

changing the activation of the network.  

Second, the synaptic weights of each neuron are adapted using local information only. 

The single neuron does not rely on information about the activation of whole network 

but only to information directly available at its synaptic connections just like real 

neurons. Consequently, the computational costs are very low – in contrast to many other 

training procedures (e.g. Williams and Zipser, 1989a; Schmidhuber, 1992) as no 

specific network for determination of the error and for its backpropagation is needed. 

3.5.1 Biological plausibility 

To implement the mechanism described the neuron has to distinguish between external 

input and input supplied by the recurrent connections of the network. How is this 

possible in a biological network? It is known (e.g. Kandel et al., 2000) that different 

types of synapses exist; the strength of one type does not easily change whereas other 

synapses show variation depending on activity. Additionally, physiological findings 

show, that the dendritic tree of a neuron is subdivided into different computational 

subunits for chemical signals such as changes in concentration of ions or other second 

messengers; this compartmentalisation is considered to be the basis of local 

modifications of the dendritic properties to achieve, for example, input-specific changes 

of synaptic weights (Helmchen, 1999) and it is also important from a computational 

perspective (Mel, 1999). Therefore, a different treatment of sensory input to the neuron 

and the recurrent internal input might well be possible. 

Furthermore, some speculations concerning potential molecular mechanisms underlying 

the internal structure of the IC Units are possible; basic building blocks necessary to 

realise the algorithm proposed here can be found in real neurons (e.g. Kandel et al., 

2000): Several pathways are known that increase and others that decrease the 

concentration of substances that influence the insertion of AMPA receptors in the 

synaptic membrane, for example. It is widely assumed, that the kinetics and magnitude 

of NMDA receptor mediated Ca2+ signal determine the sign of synaptic modification 

(Kirkwood et al., 1993; Cummings et al., 1996). A large increase of Ca2+ favours the 

activation of kinases which results in a phosphorylation of AMPA receptors; a lower 

increase in contrast favours the activation of phosphatases which results in a 

dephosphorylation of AMPA receptors (e.g. Lisman, 1989; Cormier et al., 2001).  
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3.5.2 Capabilities of the network 

Representing static patterns.  Using these units it is possible to solve several memory 

tasks. First, static input patterns can be applied; due to the built-in learning mechanism 

the weights adapt in a way that the activations of the units remain fixed even after the 

external input signal has been switched off, thus producing sustained activity in the 

network.  

It has been suggested to use attractor dynamics of coupled neurons provided with strong 

feedback for modelling these states of enhanced activity (Wilson and Cowan, 1973; 

Amari, 1977; Hopfield, 1982; Zipser et al., 1993; Amit, 1995; see also Chapter 2; for 

reviews on neurocomputational models see Durstewitz et al., 2000; Del Giudice et al., 

2003). However, the performance of many of the proposed models is highly dependent 

on fine tuning the network parameters such as synaptic strength. If parameters only 

deviate slightly from the tuned values, the networks tend to diverge (Wang, 2001). In 

contrast, our model does not require fine-tuning of the weights as it automatically 

adapts to the current input situation. 

 

When providing the network with a vector different from the stored one, the stored 

vector or a multiple of it is reproduced. This property can be interpreted as an error 

correction mechanism (or the capability to generalise) as it has been described for 

Hopfield networks (Hopfield, 1984; for a more detailed comparison with other recurrent 

neural networks see below). 

Additionally, if a part of the vector is not specified by the input, i.e. a component of the 

input vector is set to zero, the network shows the ability of pattern completion: It finds 

an appropriate activation for the unspecified units. 

 

Representing algebraic relations. There has been a heated debate on the claim made 

by Marcus et al. (1999) that it is not possible to replicate their results with simple 

recurrent neural networks (see Seidenberg and Elman, 1999). The problem with 

connectionist-like models is that they are not able to generalise the abstract patterns to 

new words and are thus dependent on the input choice. They cannot abstract the 

underlying rule as it is necessary for the task described in the Introduction (Chapter 3.1) 

and in Chapter 3.2. The model presented here does not represent any word explicitly but 
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only the rule of an open-ended abstract relationship, in this case a simple algebraic 

relation. If the network is provided with consistent input it immediately stabilises on 

these activation values, whereas it needs some time to relax on the inconsistent 

condition. This matches with the results of the experiments performed by Marcus et al. 

(1999). The time the network needs to relax when provided with inconsistent input can 

be interpreted as to correspond to the longer time of attention the infants paid to 

sentences being inconsistent with the trained ones in the experiments carried out by 

Marcus et al. (1999). Therefore it is possible to simulate the experimental results 

obtained by Marcus et al. (1999) with networks consisting of IC Units. 

Similarly, such algebraic rules may also underlie other grammatical phenomena as for 

example building English sentences with plural agreement from an arbitrary set of noun 

and verb phrases. In this sense humans know for example that a correct English 

sentence can be formed by combining any plural noun phrase with any verb phrase with 

plural agreement: From the two phrases “Bart and Lisa”, which is a plural noun phrase, 

and “played in the garden”, which is a verb phrase with plural agreement, we can infer 

that “Bart and Lisa played in the garden” is a correct English sentence. Here as well, 

networks that rather represent the abstract relations between the items than the single 

words may underlie the ability to build correct sentences. 

 

The network can also be trained to represent any linear task �
=

=
n

i
ii xc

1

0  when only some 

(at least 1−n ) correct training examples are presented. The network forms a holistic 

representation of this algebraic relation implying the capability of pattern completion 

also in this task: If 1−n  variables are given, the remaining variable is determined by the 

network. If, during recall, fewer variables are given and the task is therefore 

underdetermined, the network still provides a correct solution. The task is not solved by 

using a look-up table, but by representing the underlying mechanism.  

The tasks described in Chapter 3.4.2 are characterised by homogeneous equations 

�
=

=
n

i
ii xc

1

0 . However, this network can also be applied to tasks that require non 

homogeneous equations �
=

=
n

i
iii hxc

1

 with constant values hi. This corresponds to the 
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introduction of a ‘bias unit’ often used in neural networks. The network can simply be 

extended by such a bias unit by adding a unit, which is assumed to have a constant 

activation of 1. The weight of this bias unit corresponds to the value hi and can be 

trained using the same algorithm explained above. 

 

Human’s internal representations are not necessarily static by nature. As already 

mentioned by Johnson-Laird (1983) internal representations could be dynamic, i.e. they 

show time-dependent behaviour. This claim is underpinned by recall experiments 

showing that memory can be influenced by the observed movement (e.g. direction and 

speed) of an object (Freyd and Finke, 1984). Such dynamical systems can also be 

modelled by a network consisting of Input Compensation Units as will be explained in 

Chapter 4. 

3.5.3 Comparison with other recurrent neural networ ks 

The underlying idea of the Input Compensation Units corresponds to the clamped phase 

in Contrastive Learning (CL) procedures (Movellan, 1990; Baldi and Pineda, 1991). 

The advantages of CL are the possibility to train networks with hidden units on the on 

hand and to use nonlinear activation functions on the other hand. Up to now it has not 

been tested how the IC approach could deal with nonlinearities and hidden units. These 

are certainly the next problems to be tackled. 

But there are three main differences between the two approaches: First, in all examples 

of the CL approach the weights of the feedback connections are assumed to be 

symmetric with the feedforward connections. In networks consisting of IC Units the 

weights are not constraint. 

Second, in contrast to CL only one phase is applied and no oscillations between a phase 

with a teacher signal and one without a teacher signal are necessary. 

Third, in CL the dynamics of the network are separated from the dynamics due to the 

learning procedure by definition as the dynamical equations are first run until 

convergence to a fixed point and then the weights are updated (Xie and Seung, 2003). In 

doing so, the problem of intertwining two interacting dynamics does not arise. But it is 

biologically not plausible that the synapses only then change, after the dynamics of the 

network has settled. For biological systems this “waxing and waning” of the synapses is 

assumed to not be explicitly uncoupled from the networks activity but on the contrary 



3 MODELLING MEMORY FUNCTIONS WITH RECURRENT NEURAL NETWORKS CONSISTING OF 

INPUT COMPENSATION UNITS: I. STATIC SITUATIONS 

67 

explicitly dependent on the networks activity. The latter is the case in the neuronal units 

presented here: the updating of the weights is performed online, i.e. in each single time 

step and there is no necessity to decouple it explicitly from the network. Therefore, the 

IC approach appears to be nearer to biological reality. 

The training procedure used here is based on the principle of teacher forcing (e.g. 

Williams and Zipser, 1989a; Doya, 1995; Jaeger and Haas, 2004): the actual output of a 

unit is replaced by the teacher signal in the subsequent computation. This principle 

permits online learning and has been applied by other approaches like real-time 

recurrent learning for RNNs (e.g. Williams and Zipser, 1989b). The problem with real-

time recurrent learning is that it is computationally very intensive concerning storage 

and time and – moreover – the algorithm is non-local because each weight needs the 

knowledge of the complete recurrent weight matrix and the error vector. RNNs 

consisting of IC Units are trained using local information only and therefore the 

computational costs are very low.  

To alleviate the problem of computational costs, a number of approaches have been put 

forward like, for example, the modification of the real-time recurrent learning algorithm 

by Schmidhuber (1992) which reduces at least the computational time but still needs 

quite large storage capacities.  

Kalveram (2000) also proposed a learning algorithm formally corresponding to the delta 

rule like the IC approach incorporated on the level of the individual neuron. This has 

been applied to feedforward networks. The weights of external inputs are trained by 

providing the unit with the desired output. This input corresponds to the fixed external 

input used here but has to be switched off after training. In contrast our networks 

comprise memory units that are activated via the external input (see also below). 

Other examples trying to reduce computational costs are the echo-state networks (Jaeger 

and Haas, 2004) and, quite similar besides using spiking neurons, the liquid-state 

machines (Maass et al., 2002). These types of networks need more units to equip the 

reservoir but are able to learn complex dynamic behaviour. Storing static patterns has 

not been addressed within these approaches. It will be shown in Chapter 4 that learning 

dynamic patterns is also possible with RNNs consisting of IC Units.  
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Similarities could be figured out, too, between the IC networks and Hopfield (Hopfield, 

1982; 1984) networks on the one hand and MSBE networks (Cruse, 2005) on the other 

hand. What is the difference between the weight matrices resulting from the training 

procedure presented here to that of those other types of recurrent neural networks? The 

former are defined by symmetric weights and bounded activation functions. The units 

used here do not have bounded activation functions. Symmetric weights could, but do 

not necessarily result from application of the IC algorithm. Symmetric weights arise in 

matrices W2, W5, W6 and W7, but not in W3 and W4. Therefore, application of IC 

Units does generally not lead to Hopfield type networks.  

MSBE networks are derived in the following way. If an equation with n variables 

0
1

=⋅�
=

n

i
ii xv  is solved for each variable xi, a set of equations is obtained. If each of 

theses n equations is considered to represent the computation performed by the 

corresponding neuron i, the network represents Multiple Solutions for the Basic 

Equation 0
1

=⋅�
=

n

i
ii xv  and is termed therefore MSBE network. For 3=n , for example, 

the basic equation 0332211 =++ xvxvxv  being resolved for x1, x2 and x3 leads to a 

weight matrix 

 

�
�
�

�

�

�
�
�

�

�

0

0

0

3231

2321

1312

vvvv

vvvv

vvvv

 (W8) 

 

MSBE networks, like Hopfield networks, can be considered as autoassociators that have 

the property of pattern completion. Unlike Hopfield networks, that show discrete 

attractors, the attractor points of MSBE networks form a smooth, bounded space. 

The weights follow the condition 1=⋅ jiij ww . So the MSBE network is symmetric only 

for 321 vvv == . As described above for (W4), the weight matrix W8 can be extended by 

the introduction of damping factors d1, d2, and d3. 

Inspection of the different weight matrices obtained by the learning procedure applied to 

the IC Units reveals that some, but not all matrices fulfil the condition jiij ww 1= . 
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Matrix W2 fulfils the condition, matrix W3 only when applying a damping factor 

12
3

2
2

2
1

2

−
++

=
aaa

a
d i

i  and W4 when applying 12
3

2
2

2
1

2

−
++

=
aaa

a
d i

i . This means that the 

IC algorithm can but does not necessarily produce weight distributions typical for 

MSBE networks. The latter is the case in particular, when in contrast to all examples 

used here, the weights are not all set to zero at the beginning of training.  

3.5.4 Working memory and long term memory functions   

In various experiments properties of the working memory have been investigated (Del 

Giudice et al., 2003). In electrophysical recordings stimulus-specific, enhanced activity 

can be observed which is assigned to be a feature of active working memory and 

enables animals to hold items in memory for some time. If no further attention is 

applied to the content of memory, it vanishes after a short time. 

This property can also be found in our model: After presenting a static stimulus the 

activation of the artificial neurons is enhanced. During learning the weights approach 

the final values characterising the neutrally stable state only asymptotically. Therefore, 

in more natural situations, training is finished with non-ideal weight values. Hence, after 

an input has been presented to the network and later switched off, the activation of the 

network does not remain constant, but decreases to zero with a velocity depending on 

how closely the ideal values have been approximated during training (note that the 

weights maintain their values). This property may be considered as corresponding to the 

function of working memory, the content of which disappears if no specific attention is 

applied to maintain this content for a longer time. The velocity of this decrease of 

activation depends on the quality of learning, i.e., on learning time. 

At the same time, the network can be considered to represent a passive memory (Fuster, 

1995). If, after an activated network has been returned to zero activation, the input a1, 

a2, a3 is presented again later, it would immediately activate the network. 

As described above the weight values are only changed by means of the learning 

algorithm (Eq. 2), i.e., only when an external input is given. However, weights may also 

decay spontaneously (as do synapses), but with a long time constant (e.g. hours or 

days). Under this condition, the IC Units alone were not sufficient to explain long term 

memory. The following additional mechanism could, however, be applied: If the 

excitation has been strong enough, or has been repeated sufficiently often, a special 
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mechanism may come into action that prohibits synaptic decay and weights may stay 

fixed. In other words, the network forms a long term memory only after this fixation 

process has been performed (for a review of observations concerning switches between 

discrete states of synapses see Montgomery and Madison, 2004). In contrast to the 

architecture explained above, this additional mechanism would imply that not every 

input is maintained in the long term memory. Rather the system would be able to select 

frequent or salient information, and only such information is stored permanently. 
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3.6 Appendix: Learning a static pattern to produce sustained 
activity 

3.6.1 Proof of convergence – training all the weigh ts 

During the training phase the nn×  weight matrix ( )tW  is updated according to (2) as 

follows 

(A1) ( ) ( ) ( ) ( ) ( )( ) TT1 aaWIWaWW ⋅⋅−⋅+=⋅⋅+=+ ttttt εδε  ,...2,1,0=t . 

We denote by T
Ta

1
aa

aa
P ⋅⋅

⋅
=  the orthogonal projector onto span{a}. 

 

Theorem 1 Under the assumption 

(A2) 
aa ⋅

<<
T

2
0 ε   

the iteration (A1) converges for any ( ) 00 WW =  to the weight matrix  

(A3) ( ) aa0 PPIWW +−⋅=∞ .  

In particular if ( ) 00 =W  we obtain aPW =∞  as in (W3). 

 

Proof : We use the following well-known result. 

 

Theorem 2 Let X be a finite dimensional linear space and let X be the direct sum of 

two of its subspaces X1 and X2, i.e. every XW ∈  can be written in a unique way as 

21 WWW +=  where 2211 , XWXW ∈∈ . 

Let XXL →:  be a linear map such that 

(i) WWL =⋅  for all 1XW ∈  

(ii) L maps X2 into itself and 1<λ  for all eigenvalues λ of L  that belong to 

eigenvectors in X2. 

 

Then the iteration 

(A4) ( ) ( ) 21 RWLW +⋅=+ tt , ( ) 00 WW =  

converges for any XW ∈0  and any 22 XR ∈  to  

( ) 210 WWW +=∞  
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where ( ) ( )20100 WWW +=  is the decomposition of W0 and 22 XW ∈  is the unique 

solution in X2 of the equation 

 

(A5) 222 RWLW +⋅= . 

 

We apply this Theorem 1 to (A1) with X the space of nn×  matrices and 

{ } nn −==⋅∈= 2
11 dim, 0: XaWXWX  

{ } nn =∈⋅= 2
T

2 dim , : XbabX � .  

 

The decomposition of XW ∈  is given by �

( ) 21aa WWPWPIWW +=⋅+−=  

since ( ) 0a =⋅− aPIW  and T
a abPW ⋅=⋅  with aW

aa
b ⋅⋅

⋅
=

T

1
. 

The iteration (A1) has the form (A4) if we define 

(A6) ( ) T
2

T , aaRaaIWWL ⋅⋅=⋅⋅−⋅=⋅ εε . 

Note that (i) follows from ( ) WaaIWWL =⋅⋅−⋅=⋅ Tε  for 1XW ∈ . 

If 2
T XabW ∈⋅=  then we have 

( ) ( )( ) ( ) TTTTTTT 1 abaaaaaabaaIabWL ⋅⋅⋅⋅−=⋅⋅⋅−⋅=⋅⋅−⋅⋅=⋅ εεε , 

therefore aa ⋅⋅−= T1 ελ  is an n-fold eigenvalue of L  and 1<λ  holds if and only if 

(A2) is satisfied. 

Then Theorem 1 is applicable and yields (A3) if we show that (A5) holds for a2 PW = . 

 In fact, 2a XP ∈  and  

( ) 2
TT

a
T

aaaa RaaaaPaaIPPPLP =⋅⋅=⋅⋅⋅=⋅⋅−−=⋅− εεε . 

�
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3.6.2  Proof of convergence – training with constraints 

Now we consider the learning rule (A1) where only certain entries of the weight matrix 

are updated. We write this as follows: 

 

(A7) ( ) ( ) ( )( ) T1 aaWIEWW ⋅⋅−⋅+=+ ttt �ε  

where E is an nn×  matrix with entries 0 or 1 and where we used the Hadamard product 

BE �  of nn× -matrices given by 

 

(A8) ( ) ijijij BEBE ⋅=� . 

The entries W ij with 1=ijE  are updated while those with 0=ijE  are kept constant. In 

particular, for the choice 

 

(A9) 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

011

1

01

110

�

���

��

�

E  

only the weights W ij with ji ≠  are updated. 

 

Theorem 3 Assume that the matrix E has no zero row and let 0>ε  satisfy for all 

ni ,...,1=  

(A10) 2<⋅ idε , where �
=

=
1

2

ijE
ji ad . 

Then the learning rule (A7) converges for any ( ) 00 WW =  to some limit matrix ∞W . In 

case 00 =W  the entries of ∞W  are given by 

(A11) ( )
i

ji
ij d

aa ⋅
=∞W   if 1=ijE  

and  ( ) 0=∞ ijW  otherwise. 

 

In particular, for the pattern matrix E from (A9) with 3=n  we obtain exactly the 

matrix (W4). In case 1=ijE  for all i,j we recover the results from Theorem 1. 
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Proof: We apply Theorem 1 again with the setting 

{ } { }0 if 0:: ===== ijij EWWWWEWX �  

and 

(A12) [ ] [ ]T
2

T , aaERaaWEWWL ⋅⋅=⋅⋅⋅−=⋅ �� εε . 

The spaces X1 and X2 are given by 

{ }0:1 =⋅∈= aWXWX  

( ){ }n�∈⋅== babEWX :T
2 � . 

First note that WWL =⋅  is obvious for 1XW ∈ . 

 

In X2 we choose basis vectors 

(A13) ( ) nii
i ,...,1  ,T =⋅= aeEV �  

where ( )0,...1,...,0=ie  is the i-th Cartesian basis vector. Note that  

( ) ( ) ( ) ( )k
i

ijk
i

jk
i

ijki d
ij

eaeaeEaV
E

=⋅=⋅⋅=⋅ ��
=1

22  

holds and therefore 

(A14) i
ii d eaV ⋅=⋅ .  

Since E has no zero row we have 0>id  for all i. Equation (A14) then implies that the 

vectors V i are linearly independent and moreover we find that the vectors V i are 

eigenvectors of L 
 

(A15) ( ) iiii
i

iii dd ⋅−=⋅=⋅⋅⋅−=⋅ ελλε 1  ,T VaeEVVL �  

Condition (A10) guarantees that 1<iλ  holds for all eigenvalues. 

The decomposition 21 WWW += , 2211 , XWXW ∈∈  is given by 

(A16) 
( )

21
1

2 :  ,  , WWW
aW

VW −=⋅=⋅=�
= i

i
i

n

i
ii d

bb . 

Note that XWWW ∈−= 21  satisfies by (A14) 

 ( )� �
= =

=⋅⋅−⋅=⋅⋅−⋅=⋅
n

i

n

i

i
iiib

1 1
1 0eaWaWaVaWaW . 

The decomposition is unique since 1XW ∈  and 2XVW ∈⋅=�
i

iib  implies 



3 MODELLING MEMORY FUNCTIONS WITH RECURRENT NEURAL NETWORKS CONSISTING OF 

INPUT COMPENSATION UNITS: I. STATIC SITUATIONS 

75 

 ��
==

=⋅=⋅⋅=⋅=
n

i

i
i

n

i
ii bb

11

0 beaVaW . 

We have now verified the assumptions of Theorem 1. 

In order to determine the limit matrix ∞W  we need to solve (A5) with R2 given in 

(A12). The solution is 

i

n

i i

i

d

a
VW ⋅=�

=1
2   

since by (A15) 

( ) ( ) 2
111

22 1 RVVVLVWLW =⋅⋅=⋅−⋅=⋅−⋅=⋅− ���
===

n

i
iiii

n

i i

i
ii

n

i i

i a
d

a

d

a ελ . 

 

Combining this with (A16) Theorem 1 leads to the limit matrix ∞W  given for 1=ijE  by 

(A17) ( ) ( ) ( )( ) jii
i

ijij aa
d

⋅⋅−⋅+=∞ aWWW 00

1
. 

 In the case 00 =W  this leads to formula (A11). 

�
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4 Modelling Memory Functions with Recurrent Neural 
Networks consisting of Input Compensation Units: 

II. Dynamic Situations 
 

Modelling cognitive abilities of humans or animals or building agents that are supposed 

to behave cognitively requires modelling a memory system that is able to store and 

retrieve various contents. The content to be stored is assumed to comprise information 

about more or less invariant environmental objects as well as information about 

movements. A combination of both information about objects and movements may be 

called situation model. 

Here, we focus on the one hand on models storing dynamic patterns. Particularly, two 

abilities of humans in representing dynamical systems have been concentrated on: the 

capability of representing acceleration of objects as can be found in the movement of a 

pendulum or freely falling objects and representing actions of transfer, i.e. motion from 

one point to another, has been modelled using recurrent networks consisting of IC 

Units.  

On the other hand, possibilities of combining static and dynamic properties within a 

single model have been studied. 

 

4.1  Introduction 
 
To account for various aspects of human and animal cognition cognitive scientists have 

put forward the theoretical notion of “mental representation“ (see von Eckardt, 1993). 

Especially in research on text comprehension much work has been done concerning the 

content of these representations. The traditional view changed with two books published 

independently in 1983 (Johnson-Laird, 1983; van Dijk and Kintsch, 1983): linguistic 

and psychological studies revealed that it is rather the situation described within a text 

which is represented than the text itself. These “mental representation of verbally 

described situations” (Zwaan et al., 1998) have become known as mental models 

(Johnson-Laird, 1983) or situation models (van Dijk and Kintsch, 1983). 
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What is the nature of such mental representations? In order to describe humans’ 

cognitive capacities von Eckardt (1999) lists a number of features mental 

representations must have, among which are that it must be possible to “represent 

specific objects; to represent many different kind of objects – concrete objects, sets, 

properties, events, and state of affairs in this world, in possible worlds, and in fictional 

worlds as well as abstract objects such as universals and numbers.” In Chapter 2 and 3 

we have already dealt with the representation of static objects. But the representations 

humans build up are not necessarily static by nature. They can also comprise “events” 

as von Eckard calls it or, in other words, be dynamic, i.e. show time-dependent 

behaviour. Already Johnson-Laird postulated that “many mental representations are 

kinematic or dynamic” (Johnson-Laird, 1983). Up to now much research has been 

performed showing that humans tend to realise things as dynamic structures and 

additionally anticipate suspected changes already in the mental representation. 

Continuous changes are likely to be represented dynamically, i.e. these changes are 

simulated mentally by a respective change within the representation (Freyd, 1993). 

Therefore, here the focus is on this special feature of mental representations. The term 

representation is used here like defined above (Chapter 2) in the broad sense of Steels 

(1995) as being “physical structures (for example electro-chemical states) which have 

correlations with aspects of the environment”.  

The dynamic nature of representations has already been considered in early studies 

dealing with the so-called representational momentum (e.g. Freyd and Finke, 1984, for 

further literature see Freyd, 1993). The term representational momentum describes the 

finding that memory can be influenced by the observed movement (e.g. direction and 

speed) of an object: Memory failures can fall along the direction of implied motion. In 

the classical experiment (Freyd and Finke, 1984) test persons were provided with a 

sequence of pictures showing a rectangle at different orientations along a possible path 

of rotation. The pictures were separated by an interstimulus interval of 250-500 ms. Test 

persons were instructed to remember the orientation of the last object. In this setup the 

subject’s memory tends to be displaced forward in the direction of the implied motion. 

This indicates that the test person’s internal mental representation of the external 

situation presented comprises dynamic properties as for example inertia like real 

physical objects. 



4 MODELLING MEMORY FUNCTIONS WITH RECURRENT NEURAL NETWORKS CONSISTING OF 

INPUT COMPENSATION UNITS: II.  DYNAMIC SITUATIONS 

81 

Research on language comprehension also provides evidence for the existence of such 

dynamic representations (e.g. Glenberg and Kaschak 2002; Zwaan et al., 2004). The 

hypothesis put forward by Zwaan et al. (2004) starts from the considerations on the 

representational momentum and the theories that language comprehension involves 

perceptual simulation (see above), but goes a step further: These authors assume that 

dynamic mental representations are “perceptual traces that are stored as temporal 

patterns of activation that unfold over time” corresponding to the respective perceptual 

experience. Along this line of argumentation they predict that the perception of a visual 

motion event is facilitated by preceding comprehension of a sentence describing this 

motion event. 

In their experiments test persons heard a sentence describing the motion of a ball 

towards or away from the observer. A short time after the sentence a picture of a ball is 

presented followed by a second picture of a ball. The ball in the second picture was 

slightly smaller or larger than in the first one, suggesting movements of the ball towards 

or away from the observer. Subjects should judge whether the two sequentially 

presented visual objects were the same. Zwaan et al. (2004) found that test persons 

responded faster when the implied movement of the ball matched the movement 

described in the sentence. Thus, their results support the view that during language 

comprehension dynamic perceptual simulations are involved. 

Also Glenberg and others (e.g. Glenberg and Kaschak, 2002) affirm the view that 

understanding a sentence describing for example actions of transfer seems to require the 

ability to internally simulate the motion of the object towards or away from the body 

even using the same neural system as in actually producing transfer. Thus the symbols 

of language are grounded by relating them to bodily processes (e.g. Lakoff, 1987; 

Glenberg and Robertson, 1999; Barsalou, 1999; Glenberg and Robertson, 2000; 

Fincher-Kiefer, 2001; for further literature see Glenberg & Kaschak 2002), because 

only then can real understanding be achieved. For example, we understand what a chair 

is, because we always derive the affordances from this object when seeing one. 

Affordances are potential interactions between bodies and objects (Glenberg and 

Kaschak, 2002); according to Gibson (1979), who coined the notion of affordances, a 

chair is a chair because it affords sitting for adult humans. So the idea is that language is 

made meaningful by cognitively simulating the actions implied by a sentence. 
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Glenberg and Kaschak (2002) were able to corroborate this hypothesis by experiments 

showing that actions in one direction (e.g. “close the drawer”) implied by a sentence 

interfere with really performed actions in the opposite direction (e.g. movement towards 

the body). If there is a mismatch between the action described in the sentence and the 

action, that should be performed, reaction time goes up. Thus, the study of Glenberg 

and Kaschak demonstrates humans’ ability to dynamically represent actions of transfer. 

Furthermore people are not only capable of representing such transfer actions but are 

also capable of predicting the motion of accelerating objects as for example a ball 

falling down or a swinging pendulum. How do we manage to perceive such motions 

given the fact that the visual system is only poorly sensitive to acceleration ( Todd, 19 

81; Lisberger and Movshon, 1999; Brouwer et al., 2002) as for example caused by 

gravity? When catching objects under normal gravity conditions, the movements are 

well synchronised with the arrival of the objects (McIntyre et al., 2001). In contrast, 

experiments with astronauts in a space-shuttle under reduced gravity revealed that the 

peak of anticipatory muscle activation as well as forearm movements occurred earlier 

relative to impact (McIntyre et al., 2001). Only after a few days the astronauts adapt to 

the new gravity conditions. These findings imply the existence of an internal model 

within the brain which calculates the effects of gravity usually experienced on earth to 

provide an estimate of the time-to-contact with accelerated objects. 

In a nutshell, theses studies (for further literature see Freyd and Finke, 1984) show that 

humans do build up dynamic representations as an essential basis for understanding 

environmental situations as for example actions of transfer and properties of 

accelerating objects. The latter is especially important for survival as it a prerequisite of 

estimating time of collision with objects. But to our knowledge, none (or only a few) 

attempts have been made so far to provide models that explain of how such 

representations could be realised and learnt in a biologically plausible way.  

Here, we demonstrate that a recurrent neural network consisting of IC Units, which has 

successfully be used to model sustained activity to represent static objects (Chapter 3) 

and which will be described briefly in Chapter 4.2, can also be utilised for online-

learning and for representing dynamic situations. Such a network can be trained to 

represent the dynamics of physical systems like a pendulum or free-fall as well as the 

dynamics of low- and high-pass filters (Chapter 4.3 and 4.4). The former provides a 
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neural realisation of the model of gravity humans seem to have as shown by Lacquaniti 

and colleagues (Indovina et al., 2005), while the dynamics of low-pass filters can 

resemble actions of transfer as found by Glenberg and coworkers. In a second step 

(Chapter 4.5) a way is shown, how it is possible to merge the results of former studies 

concerning the representation of static objects (Chapter 3) with these dynamic 

representations. Here, for a first approach we focus on combing the model of static 

objects with the dynamics of a low-pass filter to model the content of sentences 

describing actions of transfer like for example “Homer walks to Marge”. 

We will not deal with questions concerning ways how to arrange a number of different 

such models within a larger memory system (see also Chapter 2.5 for further 

discussion). 

 

4.2 The Model 
 
The recurrent neural network used here to model representations of dynamic situations 

consists of so-called Input Compensation Units (IC Units) (for a detailed description see 

Chapter 3). The essential property of these units is to disentangle the dynamics of the 

recurrent network from the dynamics due to the learning procedure. This would be 

possible, if the output of the network always equated the input regardless of the actual 

size of the weights. 

In order to achieve this, two input types are distinguished: One external input ai, the 

weight of which is fixed to 1, and n internal, i.e., recurrent input connections xj, the 

weights wij of which can be changed by learning. The overall output of one neuron is 

calculated in the following way: 
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The + means that only the positive part of the expression within the brackets is 

transmitted. The structure of an Input Compensation Unit is schematically shown in 

Figure 4.1.  

 

 
Figure 4.1: Schematic drawing of the internal structure of an IC Unit: ai is the external 
input, si(t) is the weighted sum of the recurrent inputs and δδδδi(t) the difference between 
the external input ai(t) and si(t) (for further explanation see text and Chapter 3. 

 

From equation (1) it is immediately clear that the output xj of the network always equals 

the external input independent of the actual weight size because the sum of the weighted 

internal inputs si is added and subtracted instantly again. Therefore, this built-in 

compensation mechanism protects the global dynamics of the network from the learning 

dynamics. This enables us to train a recurrent neural network consisting of IC Units 

online, i.e. without cutting the feedback connections during training which is a big 

advantage over traditional approaches in training recurrent neural networks (for 

discussion of related approaches see Chapter 3). 

The weights are changed according to the following algorithm: 

 

( ) ( ) ijijij wtwtw ∆+=+1  with ( ) ( )ttxw ijij δε ⋅⋅=∆     (2) 

with 0>ε  being the learning rate and ( ) ( ) ( )tstat iii −=δ  being the local error. By 

applying this learning rule the weights will change until ( ) 0=tiδ . This learning 

algorithm formally corresponds to the delta rule (Widrow and Hoff, 1960), but does not 
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require a separate network for calculating and backpropagating the error as it is 

computed locally within each single neuron. During the training procedure, the weights 

stabilise at values that in the end the summed recurrent input si equals the external input 

ai, i.e. ( ) 0=tiδ . After learning is completed, and the summed internal input equals the 

external input, the latter can be switched off without changing the activation of the 

network. In fact, learning has to be terminated to prevent the network from learning the 

zero input vector. 

 

4.3 Methods 
 
Before we explain how a dynamic situation as brought up in the Introduction (Chapter 

4.1) could be learnt by a neuronal system, we demonstrate the existence and possible 

form of a solution. The dynamical systems mentioned can be described by linear 

differential equations. In case of the harmonic oscillations of a pendulum and the 

dynamics of a freely falling object these are 2nd order differential equations. To 

construct a recurrent neural network, we have to rewrite these 2nd order differential 

equation as a system of two coupled 1st order differential equation by introducing the 

velocity x�  as auxiliary parameter. In general, any explicit linear differential equation 

can be represented within a recurrent neural network by transferring a given explicit 

differential equation of order n to n coupled differential equations of order 1 (Nauck et 

al., 2003). 

4.3.1 Pendulum 

The dynamics of a mass-spring pendulum, i.e., its position and its velocity changing 

over time, are given by the differential equation mDxrxx =⋅−⋅−= ωω  with ���  

representing the frequency (D is the spring constant and m the mass) and r being a 

measure of the friction (friction is zero for ω=r ). As explained, we substitute vx =�  

and obtain the two equations: 

vx =�  and vrxv ⋅−⋅−= ω�  

By looking at the discrete derivative the following difference quotient holds: 

tv
t

x =
∆
∆

 and tt vrx
t

v ⋅−⋅−=
∆
∆ ω . 
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For 1=∆t  we obtain: 

ttt vxx +=+1  and  

( ) ttt vrxv ⋅−+⋅−=+ 11 ω .  

 

These equations can be described by matrix W1: 

��
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�
��
�

�

−− r1

11

ω
  (W1) 

In the form 
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the values can be used as weights of a recurrent network (Figure 4.2, in this case 

02313 == ww ).  

4.3.2 Free-fall 

The same method can be applied to simulate the dynamics of a freely falling object. 

When considering the case without friction, i.e. in vacuum, the system is described by 

the differential equation mgxm ⋅−=⋅ ��  with m being the mass of the object and g the 

acceleration. The negative sign indicates that the objects fall downwards. Again we use 

the velocity vx =�  as auxiliary variable and obtain the following equations: 

vx =�  and gv −=�  

The difference quotients of the two equations with 1=∆t  again provide the basis for the 

weight matrix of the recurrent neural network: 

ttt vxx +=+1  and  

gvv tt −=+1  

The resulting matrix is given by W2: 

��
�

�
��
�

�

− g10

011
  (W2) 

This can be used as a weight matrix for the recurrent network in the form 
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�

�
��
�
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Thus, in contrast to the case of the oscillating system we here need a bias unit which has 

a constant activation of one (Figure 4.2). It has been shown (Chapter 3) that the weights 

of such a bias unit can also be trained using IC Units. The weight w23 in Figure 4.2 

describes the acceleration g.  

 

 

 

 

 

 

 

 

Figure 4.2: Schematic drawing of a two unit recurrent neural network with a bias unit. 
 

Under realistic physical conditions though, friction decelerates the fall of an object. As 

friction is proportional to the velocity, it can simply be introduced in the system by 

adding a friction term to the second order differential equation: xrgx ��� ⋅−−=  with 

m

k
r =  (k is constant and depends on the medium, m is the mass). The weight matrix W2 

now changes to: 

 

( ) ��
�

�
��
�

�

−− gr10

011
 (W3) 

 

4.3.3 Low-pass & high-pass filter 

It is also possible to build a recurrent neural network with low-pass filter properties 

defined by Ixx +−=⋅ �τ  with τ being the time constant and I the external input. This 

differential equation can be replaced by the two equations 

τttt vxx +=+1  and 

ttt Ixv +−=+1  

which leads to the weight matrix W4: 
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��
�

�
��
�

�

− 101

01 k
  (W4). 

 

Here k determines the time constant of the system: k1=τ . The output of the first unit 

shows the response of a low-pass filter and that of the second unit the response of a 

high-pass filter. This task requires a sensory input I.  

 

 

 

 

 

 

 

 

 
Figure 4.3: Schematic drawing of a two unit recurrent neural network with an 
additional sensory input unit I. 

 

This third unit could manually be added to the network. However, it is also possible to 

add a third recurrently connected IC Unit (Figure 4.3) to the network the weights of 

which are trained in the same way as the other weights. This leads to the following 

weight matrix: 

 

�
�
�

�

�

�
�
�

�

�

−
100

101

01 k

 (W4a) 

 

This matrix shows that the external input does not depend on the activation of the other 

units. 

 

Hence, in all of these cases a solution exists, but the question arises whether it is 

possible to automatically stabilise an appropriate weight matrix online. To achieve this 

goal, the network architecture described in Chapters 3 and 4.2 is used to cope with these 

tasks. In general, a network consisting of at least two IC Units is needed plus one bias 
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unit, but any network consisting of more units is also suitable for the tasks (see Chapter 

4.5.1). In the simulation, the training data are provided by separate trainer networks 

with fixed values for frequency, friction or the time constant as described above. These 

networks are used to represent the real world situation. The network to be trained 

receives as input only the activation of position x and of velocity v from the trainer 

network. To avoid artefacts due to time discretisation of a computer simulation, k 

should be chosen small enough (e.g. 3.0<k ). 

 

4.4 Results 
 
When training a network which should be able to internally simulate dynamical systems 

like a pendulum, free fall or low-pass filters, the results will be evaluated according to 

the quality of the internal simulation on the one hand and the overall weight error on the 

other hand. 

The quality of the internal simulation can be judged by calculating the accumulated 

local δ-error δacc of the position unit ( �
=

=
n

j
jacc

1

δδ  with n describing the number of 

iteration steps of a single learning epoch) during each learning epoch. The δ-error 

describes the difference between the external input and the sum of the weighted internal 

inputs (see Chapter 4.2). Thus, smaller δ-errors correspond to better internal 

simulations. To be able to compare the results of the different dynamic simulations the 

accumulated δ-error δacc is normalised to an epoch with a length of 100 iteration steps. 

Learning is switched off after this accumulated δ-error δacc has fallen below a given 

threshold: the internal simulation of the process now resembles the external dynamics 

and the quality of the internal simulation is said to be high. This threshold was fixed to 

0.01. 

Additionally, the weight matrix learnt during training can be compared with the matrix 

derived from the differential equations (Chapter 4.3). After some learning epochs (the 

number of which depends on the learning rate ε) a weight matrix is learnt that 

approximates the desired matrix respectively (W1 up to W4). This can be seen by 
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looking at the overall error E determined by ( )
2

1
�

=
−=

n

j
ijij vwE  for 1=i  to n. Here, wij  

are the weights of the IC network which are trained and vij are the weights of the trainer 

network which are fixed according to the respective desired matrix. The weights vij are, 

in this case, given a priori. They are, however, only used here for the calculation of the 

error value which is merely needed for descriptive purposes. The overall error signal E 

does not influence the learning process itself. Learning depends on the local error only 

(see Eq. 2). 

4.4.1 Pendulum 

To train the properties of dynamic systems, as a first example a spring-mass pendulum 

is considered. A network consisting of two IC Units is provided with a temporal 

sequence of position and velocity values several epochs each lasting 190 iterations 

(Figure 4.4a shows 4 epochs).  

Figure 4.4 shows an example of an IC network which was trained applying a learning 

rate of 8.0=ε  to internally simulate a system with a frequency 05.0=ω  and a friction 

06.0=r ; presentation of the external dynamic system for four learning epochs is 

necessary for the model to be able to internally simulate the dynamics with high quality. 

The arrow in Figure 4.4b marks the iteration step when the accumulated δ-error δacc has 

fallen below the threshold. 

 

 
Figure 4.4: An example of an IC network which was trained to simulate the dynamics 
of a pendulum. Frequency was chosen to be 05.0=ω  and friction 06.0=r ; a learning 
rate of 8.0=ε  was applied. (a) External training input. (b) Overall weight error E; the 
arrow indicates the time step when the accumulated δδδδ-error δδδδacc has fallen below the 
threshold defined. (c) Internal simulation of the dynamics of a pendulum. 
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After having stopped training the weights, the model is able to internally simulate the 

oscillations of the pendulum. Presentation of any position input to the network for one 

iteration step leads to damped oscillating behaviour similar to those of the training 

network (Figure 4.4c). Learning rates, which are larger than 7.1=ε , cause the network 

to diverge. 

4.4.2 Free-fall 

To learn the dynamics of freely falling objects, again two input values, one for position 

and one for velocity, have to be presented to the IC network. The training network is 

provided with a starting position value from which an object is supposed to fall down; 

in the example shown in Figure 4.5a (in a world without friction) and 5d (in a world 

with friction) the object is lifted up to the starting position of 1000m. Each time the 

object touches the ground a short interval of four iteration steps is inserted during which 

the neurons do not get excited. After this interval the object is lifted up again to its 

starting position.  

 

 
Figure 4.5: Example of an IC network trained to represent the dynamics of freely 
falling objects in a world without friction (a-c) and in a world exposed to friction of  

1.0=r  (b-f). In both cases learning rate was chosen to be 3.0=ε . (a) + (d) Position 
and velocity of the training input. (b) + (e) Overall weight error E; the arrow indicates 
the time step when the accumulated δδδδ-error δδδδacc has fallen below the threshold defined. 
(c) + (f) Position and velocity of the internal simulation of freely falling objects not 
exposed to friction (c) and exposed to friction (f). 
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Training a network to represent the dynamics of a freely falling object in a world 

without friction with an acceleration of 
2

81,9
s

m
g −=  (which corresponds to the 

acceleration due to gravity on earth’s surface) and a starting position value of 1000m 

requires about 10000 to 13000 learning steps depending on the learning rate (ε was 

chosen in the range of [ ]3.0 ,1.0 ). Learning rates larger than 0.3 lead to divergence of the 

network. Under these conditions the object touches the ground after 14.14 s. In the 

simulation the process requires 15 iteration steps. Therefore, one iteration step 

approximately corresponds to one second real time.  

When no friction is imposed, about 500 to 1200 examples of falling object are necessary 

for the model to be able to internally simulate the dynamics, i.e. the accumulated δ-error 

of the position unit has fallen below the threshold (arrow in Figure 4.5b). If the object is 

dropped from a higher position, which results in an elongation of the time until the 

object hits the ground, fewer examples are necessary to train the network.  

If, after having trained the weights, an arbitrary starting position is presented to the 

network (in the example shown in Figure 4.5c the height is set to 2000m), it is able to 

internally simulate the dynamics of free-fall because the resulting weight matrix almost 

equals matrix W2 ( %24.3 3−=E ). 

Similar results are obtained when the network is trained in a world that is additionally 

exposed to friction (Figure 4.5d-f). With a friction of 1.0=r  and an acceleration of 

2
81,9

s

m
g −= , learning rates of [ ]3.0 ,1.0=ε  lead within about 45000 to 80000 iteration 

steps to solutions which allow for internal simulations of the dynamics. Due to the 

friction one learning epoch here lasts 19 iteration steps, i.e. approximately 19 s. Figure 

4.5 d-f shows the results for training a system with a friction of 1.0=r  and a learning 

rate of 2.0=ε .  

If friction is decreased also learning time decreases as long as the learning rate is kept 

constant: for a system with a friction of 01.0=r  it takes about 13000 to 30000 iteration 

steps until the accumulated δ-error has fallen below the threshold when applying 

learning rates in the range of [ ]3.0 ,1.0 . Again, when using higher learning rates the 

network diverges. 
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4.4.3 Low-pass & high-pass filter 

It is also possible to represent the dynamics of a low-pass filter (Chapter 4.3.3). For this 

example step responses (position x and velocity x� ) of a low-pass filter as well as the 

input function are presented to an untrained network consisting of three IC Units or 

consisting of two IC Units plus an additional bias unit. The IC network is provided with 

the inputs in periodically alternating increasing and decreasing step functions each 

lasting for 30 iterations. After the accumulated δ-error of the position has fallen below 

0.01, the model is able to internally simulate the dynamics of a low-pass filter. For a 

system the time constant of which is determined by 03.0=k  and using a learning rate 

of 1.0=ε , for example, this δ-error has reached the threshold after about 41 learning 

epochs. Learning rates higher than 0.2 lead to instable results here. Corresponding 

results have been received when training a high-pass filter. 

 

In all these cases the weight matrices emerging resemble those given by the differential 

equations, i.e. W1 to W4. As was mentioned above, any linear differential equation can 

be transformed to a recurrent neural network. It has been shown earlier that, for the 

static case, any such matrix can be learnt when IC Units are used (Chapter 3). However, 

a general proof for dynamic situations is still pending; such a proof additionally may 

help to define the exact parameter boundaries. 

 

4.5 Combination of static and dynamic representatio n 
 
As pointed out in the Introduction (Chapter 4.1), to account for cognitive capabilities of 

humans or animals it is necessary to be able to build internal mental representations 

which either can be static or dynamic. As an example we will treat the situation, of 

perceiving a scene, which can be described by a sentence like “Homer walks to Marge” 

in human language. Following Glenberg and others (e.g. Glenberg and Kaschak, 2002) 

the ability to internally simulate the motion of the moving object – in this case the 

walking person – is mandatory to really understand such a situation. Thus, the task is to 

represent static objects that may also be able to show dynamic properties. 

In the above-mentioned examples of learning dynamic situations, we implicitly assumed 

the existence of some kind of “perception system”. This perception system contains 
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sensors and a network that is able to detect objects and properties of objects as for 

example their color, their position, or their velocity. We take this network for granted 

and do not deal with the question how it is constructed.  To simplify matters, we further 

assume that the objects and each of their properties, when occurring in the world, 

activate one unit of this perception network; thus, the units are localist-encoding units 

not only for linguistic entities as used in former models (Chapter 2; Cangelosi, 2004), 

but also for properties of the objects as their position and velocity, for example. Each of 

these perception units projects to an IC Unit. These connections are also considered to 

be given. The perception network will not be illustrated in the figures. 

Such a system is now confronted with an external situation as described in the sentence 

“Homer walks to Marge”. This scene can be subdivided into two tasks: In the beginning 

the two persons, Homer and Marge, stand apart at a certain distance. Thus, the starting 

situation is a static one. Then one person, say Homer, starts to move. Therefore, both 

static and dynamic representations have to be combined to cope with the task of 

representing the scene.  

 

In order to represent the static starting situation described in the sentence, i.e. Homer 

and Marge standing apart, three units are needed. The activation of neuron xi is assumed 

to represent the position of Homer, the activation of neuron xj Marge, and the activation 

of neuron xdist the distance between both. An IC network for this static situation can be 

described by the following equations: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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These equations are derived from the basic equation jdisti xxx =+  and the situation can 

be trained using IC Units as has been shown in Chapter 3. A possible solution is given 

by the matrix 
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 (W5). 

 



4 MODELLING MEMORY FUNCTIONS WITH RECURRENT NEURAL NETWORKS CONSISTING OF 

INPUT COMPENSATION UNITS: II.  DYNAMIC SITUATIONS 

95 

Matrix W6 shows another solution: 
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  (W6). 

 

These are solutions for the static starting situation. But how could we cope with the 

problem of representing the motion from one point to another? One simple possibility is 

to assume Homer moving with a constant velocity. This movement then could be 

described by a simple integrator. However, we will deal with a somewhat more complex 

task: The movement of Homer should stop when he meets Marge. This is done here by 

assuming that Homer’s movement corresponds to an exponential function as described 

by the step response of a low-pass filter (which might, for example, result from the 

movement being controlled by a negative feedback controller). 

 

At first sight, there are two possible ways to solve the problem of representing this 

situation:  

(i) Either there are two networks, one for the static situation and the other for 

the dynamic one, or  

(ii)  there is one unified network for representing both aspects. However, as will 

be explained in the following, the former could also be interpreted as 

representing one network. Therefore, only the latter will be considered in the 

simulation. 

 

Taking the first possibility of using two separate networks to simulate the situation, six 

units are required: three units for the network representing the static starting situation 

(e.g. matrix W5 or W6) and an additional three unit network for the low-pass filter as 

described above (Section 3.3, matrix W4). The position unit of the low-pass filter codes 

for the position of the moving person, the velocity unit for its velocity, and its input unit 

represents the goal, i.e. the position of the person who is being approached. In neural 

terms this move event (Steels, 2003) could be represented by the decrease of the 

activation of the position unit until it equals the activation of the input unit. To start the 
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simulation of the movement, the position unit of Marge xj has to be connected to the 

input unit of the low-pass network. Furthermore, the position unit of the low-pass 

network and unit xi, the position of Homer in the static network, describe the same value 

and therefore have to be connected, too. Therefore, the two connected networks could 

be regarded as one network. 

Consequently, units xi and xj occurring in both networks can be merged respectively. 

Therefore, only one additional unit is necessary: the velocity unit of the dynamic 

network. This unit is termed dynamic unit xdyn in the combined network. In this way we 

come up with a network consisting of four units for the task (Figure 4.6). 

 

 

 

 

 

 

 

 

 

Figure 4.6: A four unit recurrent neural network suitable for the task of concatenating 
a static and a dynamic situation to represent a move event. The units xi and xj represent 
the position of the respective person, xdist the distance between them and xdyn the 
velocity of the moving person. 

 

In the following it is described how this simpler version, a network consisting of four 

units, can be trained to represent both, the static and the dynamic part of a move event. 

Two different procedures to train this network are presented:  

(i) The network will be trained in two phases, i.e. in the first step only the static 

starting situation is presented (static phase) and in the second step only the 

dynamic situation is presented (dynamic phase) (Chapter 4.5.1) and  

(ii)  training will be performed in a single phase where only the dynamic input is 

presented to the four unit network (Chapter 4.5.2).  
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4.5.1 Training the network in two phases 

4.5.1.1 Static phase: Representing the static situation 

Training the network can proceed in two steps. In the first step the static starting 

situation jdisti aaa =+  is presented to the network depicted in Figure 4.6. Two possible 

solutions have been mentioned above (matrices W5 and W6). After this first training 

step the weight matrix of the network has the following structure (for details about 

learning simple algebraic relations see Chapter 3): 
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 (W7) 

 

The weights, which are non-zero, correspond to the solution W5.  

For this task, unit xdyn is not yet necessary. However, the example illustrates that any 

additional unit belonging to the network does not change its weights as long as the unit 

does not receive an input different from zero. 

4.5.1.2 Dynamic phase: Representing the dynamic situation 

After having trained the network with this static situation, the second training step 

comprises the presentation of the dynamics of a low-pass filter. Thus, training the 

weights in the second phase does not start with a completely naïve network with all the 

weights being zero but with matrix W7.  

How is the training performed? As in the earlier cases, in principle, the four unit 

network shown in Figure 4.7 receives its input via the perception network that, in turn, 

observes the outside world. The position xj of Marge is fixed to the value aj according to 

the actual training situation. Unit xdist is provided with the distance seen between Homer 

and Marge adist in each iteration. For the simulation of the movement, we use a low-pass 

filter as dynamic training network which is connected to the IC network as shown in 

Figure 4.7. The dashed lines represent the function of the perception network. To train 

the movement of Homer from his starting position to Marge, unit xi (position of Homer) 

receives the position input (x1 in Figure 4.7) of the low-pass filter network. The input 



4 MODELLING MEMORY FUNCTIONS WITH RECURRENT NEURAL NETWORKS CONSISTING OF 

INPUT COMPENSATION UNITS: II.  DYNAMIC SITUATIONS 

98 

 

value of this network represents the desired position of Homer which is the position of 

Marge. The additional dynamic unit xdyn is provided with the velocity-signal (x2 in 

Figure 4.7) of the dynamic training network. 

During this second training phase different positions of Marge are presented to the 

dynamic training network in periodical epochs each lasting for 30 iteration steps. As in 

the earlier examples, the output of the training network provides the input for the 

network to be trained (Figure 4.7). Recall that this training network is only necessary 

for simulating the outside world: In a real environment neurons of the perception 

network (see above) will get activated by the objects, their position, and their velocity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Schematic drawing of training a network to represent a move event. The 
movement in the external world is simulated by dynamic training network 
representing the dynamics of a low-pass filter (upper left). The dashed arrows 
symbolise the perception network. Unit ai receives as input the positional value x2 from 
the dynamic training network, unit adyn the velocity value x2. 

 

 

When a network that already represents the static situation is trained with the dynamic 

situation, the weights, which represent the starting situation, can either be locked so that 

no further changes are possible at these weights (see dynamic phase A) or they can be 

left plastic, i.e. they can further be changed in the second dynamic training phase (see 

dynamic phase B). As will be shown, both training procedures are successful but result 

in different weight matrices.  
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Dynamic phase A: static weights are locked 

If all the weights having been learnt with the static training protocol (resulting in matrix 

W7) are locked, i.e. kept constant throughout the dynamic training phase, the following 

weight matrix is approximated:  
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  (W8) 

 

with kwkw +⋅−= 1214 , 2224 wkw ⋅−=  and 3234 wkw ⋅−= ; as described above, k is a 

measure for the time constant of the low pass filter ( τ1=k ). The overall weight error E 

is calculated according to ( )
2

1
�

=
−=

n

j
ijij vwE  for 1=i  to n (see Chapter 4.4.1). Here wij  

are the weights of the IC network which are trained and vij are the weights of the final 

matrix W8.  

To judge whether or not the internal simulation of the network is good, again the 

accumulated δ-error �
=

=
n

j
jacc

1

δδ  is monitored. In this case, the accumulated δ-error of 

the additional dynamical unit xdyn is a good measure for the learning process as the 

weights of this unit are only started to be learnt within this dynamic phase. Therefore, 

after this value as fallen below the threshold of 0.01 learning is stopped (marked by an 

arrow in Figure 4.8a). 

In the example shown in Figure 4.8 the network was trained applying a learning rate of 

2.0=ε  and using a dynamic training network having a time constant determined by 

.1.0=k  With this parameter configuration it takes about 660 iteration steps, i.e. 22 

learning epochs, to train the network until the normalised accumulated δ-error has fallen 

below the threshold of 0.01 leading to an overall weight error of %42.2 3−=E . If the 

learning rate is larger than 0.3 the network diverges.  
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Figure 4.8: Example of the networks’ performance when locking the static weights. 
The time constant of the dynamic training network was determined by 1.0=k  and the 
learning rate set to 2.0=ε . (a) Overall weight error during training. (b) Internal  
simulation of the move event (for further explanation see text). 

 

The task for the network after training is to internally simulate the event “Homer walks 

to Marge”. To this end the network first is provided with an external input mirroring the 

situation of two persons standing apart, i.e. a vector the components of which follow the 

equation jdisti aaa =+ . After some time one person should start moving towards the 

other; hence, the activations of the units xi and xdist should change according to the 

situation to be mentally simulated while only the activation of unit xj has to stay at a 

constant level. Therefore, units xi and xdist do not receive an external input any longer 

and the activation of xj is kept constant. An example of such a dynamical process is 

illustrated in Figure 4.8b: The activation of unit xi decreases until it equals the activation 

of xj. 

Dynamic phase B: changing all the weights 

Instead of locking some of the weights during the second phase of the training 

procedure all the weights can be allowed to be changed in this second phase, i.e. also 

the weights of the static part learnt in the first phase. Applying this procedure the 

weights converge to a weight distribution shown in matrix W9: 
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  (W9) 

with ( ) 21212 statwkw +=  and ( ) 21214 statwkw −= ; w12stat is the value of the weight w12 

adopted in the static training phase which is 3112 −=statw . Thus, the weights w12 and 

w14 add up to the value of k, which determines the time constant of the respective 

dynamic training network. The time in which this solution is reached during the second 

training phase depends on the one hand, of course, on the learning rate ε, but also on the 

value of k. The higher k is chosen the faster matrix W9 is attained. 

Figure 4.9 shows an example of the behaviour of a network trained by using the same 

time constant ( 1.0=k ) and learning rate ( 2.0=ε ) as in the example of Figure 4.8. 

Here, also 22 learning epochs are necessary until training can be stopped. The overall 

weight error has decreased to %36.1 5−=E . 

 

 
Figure 4.9: Example of the networks’ performance when changing all the weights. The 
time constant of the dynamic training network was determined by 1.0=k and the 
learning rate set to 2.0=ε . (a) Overall weight error during training. (b) Internal  
simulation of the move event (for further explanation see text). 

 

After having trained the network it has the ability to internally simulate the situation of 

one person moving towards the other (Figure 4.9b). 

4.5.2 Training the network in one step 

In contrast to these types of training procedures separated into two steps, training in one 

step is also possible. In order to perform this, simply the first phase of learning to 
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represent the static input situation is skipped. The dynamic training of the second phase 

is executed in the same way as described above. Applying this shortened training 

method results in weight matrix W10: 
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 (W10) 

 

Like all other training procedures this method leads to a weight matrix only dependent 

on the time constant of the dynamic training network. Numerical results show that the 

smaller k is, the longer the network has to be trained in order to be able to internally 

simulate the situation. 

 

Thus, different possibilities exists how the content of a sentence like “Homer walks to 

Marge” can be represented. Both the information about the objects as well as the 

information about the motion can be merged within a single representation. 

 

4.6 Discussion 
 
Internal mental representations are an important prerequisite for cognitive behaviour. 

Therefore, when trying to model cognitive abilities of humans or animals or when 

building agents that are supposed to behave cognitively, the goal is to model a general 

memory system that is able to store and retrieve various contents. This information is 

assumed to be stored in the form of situation models which in general connect 

perception to action. Studies of mirror neurons indicate that situation models consist of 

separate neural assemblies (e.g. Fogassi et al., 2005) supporting earlier assumptions 

(Wolpert and Kawato, 1998). 

Addressing this goal raises several questions: how are such situation models learnt? Are 

these models ordered in a parallel or some hierarchical structure? How is it possible to 

serially connect different models to produce sequential behaviour? And, of course, how 

are these models selected and activated? Here, we concentrate on the question how such 
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situation models could be realised in a biologically plausible neuronal structure and how 

individual models could be learnt. Storing static patterns has been addressed in Chapter 

3. Here, we concentrate on models storing dynamic patterns, and as a first step, try to 

combine static and dynamic properties within one model. 

Two abilities of humans in representing dynamical systems have been focussed within 

this chapter: the capability of representing acceleration of objects as can be found in the 

movement of a pendulum or freely falling objects and representing actions of transfer, 

i.e. motion from one point to another. The recurrent networks consisting of IC Units 

used here are well suited to simulate those various aspects of dynamic internal 

representations. When provided with the respective dynamical input they adapt to 

represent the situation existing in the outside world. 

Studying the combination of static and dynamic models has shown that storing dynamic 

properties together with the static information appears to be more parsimonious than 

application of a separate, multipurpose dynamic model that is activated together with a 

static model on request. Learning is possible in a sequential order, first the static 

information and later the dynamic part. However, it is also easily possible and faster to 

learn both aspects at the same time. Furthermore, this procedure has led, at least in our 

examples, to simpler weight matrices.  

The results presented are particularly interesting because the IC Units used here apply a 

simple, biologically plausible and local learning algorithm. The individual units in this 

recurrent network are not specified as to be of entirely sensory or motor type. Such a 

separation is generally not possible in this ‘holistic’ network. Rather, the situation 

model may be used for perception as well as for control of action (Cruse, 2003). 

4.6.1 Combination of static and dynamic representat ions 

The model we proposed here is able to simulate diverse aspects of dynamic internal 

representations and has already been shown to perform well when representing static 

situations (Chapter 3). Here, we were also able to show that both the static and the 

dynamic representations can be merged within one unified network. 

The different training procedures lead to different weight matrices. This is, as discussed 

in Chapter 3, due to the fact that the task is underdetermined. The results depend on the 

values of the weights at the beginning of training (to simplify matters, in all experiments 

the values of all weights are set to zero at the beginning) and on side conditions, as for 
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example holding some of the weight at fixed values or using different training 

examples. Already for the static task two different solutions were presented, one with 

diagonal weights (responsible for the self-excitation of the unit) being zero (W6), the 

other with positive values for the diagonal weights (W5). The latter produces a network 

having some kind of inertia (for details see Chapter 3). The identity matrix with all 

weights being zero except for the diagonal weights is, of course, also a solution, even 

though a trivial one. 

As for the matrices found in the dynamic training phases no mathematical proof is 

available yet, we will give a phenomenological description of the results. Interestingly, 

the weights of unit xdyn are the same in all cases investigated and correspond to the 

weights occurring in the lower line of matrix W4 determining the velocity unit of the 

low-pass filter. Therefore, these weights appear to represent the only solution possible.  

What about the weights of the other units of the matrices? The most perspicuous 

solution is adopted in matrix W10. The weights of unit xi can be interpreted as follows: 

111 =w  provides the actual position of the moving person corresponding to the upper 

line of matrix W4. In contrast to matrix W4 the positional change is distributed over 

212 kw =  and 214 kw = , namely the contribution of xdist and xdyn. As both units provide 

the same information, the effect of the positional change is equally distributed to both 

weights. The weights of unit xdist (second line) approach the solution of matrix W6 with 

the diagonal weight 022 =w . The weights of unit xj (third line) stabilise on the trivial 

solution with only the self-exciting weight w33 being one and all other weights being 

zero. Apparently this simple solution is found when the value is always constant within 

a training epoch and not dependent on the other units. 

Matrix W9 results from a similar training situation like W10 as all weights are free to 

change. The difference, however, is that training of the dynamic situation in case of W9 

starts with weight values different from zero. Correspondingly, the results are similar 

but not identical. The weights w12 and w14 of unit xi add up to the value of k in both 

cases, W9 and W10. In the case of W10 both weights contribute in exactly the same 

ratio, i.e. 21412 kww == , whereas the distribution in the case of matrix W9 also 

depends on the weight values wijstat adopted in the static training phase. In this case the 

weights are 22 1212 statwkw +=  and 22 1214 statwkw −= . The second terms depending 
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on w12stat respectively balance each other. In the second line of matrix W9, weights w21 

and w23 correspond to that of the static solution in W5. However weight w22 is not zero 

in W9, but attains the value 22222 statww =  which is the mean value between w22stat and 

zero. The contribution of this weight has therefore be counteracted by weight 

2224 ww −= . In the third line weights 031 =w  and 133 =w  selected the trivial solution 

(see W10). For weights w32 and w34 the explanation corresponds to that given above for 

w22 and w24: 3234 ww −=  balances the influence of 23232 statww = . 

 

Matrix W8 was obtained when the static weights were kept constant while learning the 

dynamic situation. As units xdist and xdyn provide the same information, the second and 

the fourth column of matrix W8 can be rewritten for explanation purposes: 
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This illustrates that the positional change of the moving person xi is mediated mainly by 

the weight w14 and depends on the time constant of the low-pass filter (k). Matrix W8a 

shows, that the influence of the dynamical units xdist and xdyn is not compensated totally 

as in the results discussed above (W9 and W10); therefore, the actual value of the 

velocity (here given by xdist and xdyn) has to be taken into account: this is the value from 

the previous iteration step which decreases according to the factor k−1  when the low-

pass filter increases. 

 

Thus, different possibilities exists how the content of a sentence like “Homer walks to 

Marge” can be represented. The individual results can be explained, but a general proof 

does not exist up to now and it is not clear why the different solutions are found in the 

cases considered. Nevertheless, with the model presented here the dynamics of 

situations can internally be represented. Therefore, they provide a possible neural basis 

for mental simulations of such situations. They also can serve for recognition purposes; 

if a model of a special dynamical situation has been learnt it will get highly activated 
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when the situation occurs in the outside world again. This activation can be interpreted 

as recognition of the situation learnt before. Furthermore, the networks could be used to 

control motor output in order to produce movements according to the dynamics of the 

respective representation. This means that the same type of networks can be used for 

imagination, perception and the control of action (Cruse, 2003). Accordingly, these 

networks might form a basis to explain findings from psychological studies as 

mentioned above as well as neurophysiological results concerning the so-call mirror 

neurons (for a review see Rizzolatti and Craighero, 2004). 

 

The results show how both the information concerning static objects and the 

information concerning motion can be merged within a single representation. An 

alternative and at first sight more parsimonious solution could be that within the brain 

the dynamical properties, for example low-pass filter properties, are stored in a specific, 

separate network and not in combination with the respective situation. This separate 

network might then be connected to any actual static situation if necessary. As, 

however, our results have shown that only one additional unit is sufficient to cope with 

this combined task, the latter solution might finally be the simpler one, in particular 

when the problem of establishing the connections between the static network and the 

respective dynamic one is taken into account. 

Our examples for dynamic properties are based on differential equations of first or 

second order. Movements of constant speed can be simulated simply by using an 

integrator (e.g. first line in matrix W1). Actually, we investigate nonlinear versions of 

IC Units which might allow for modelling more complex dynamic properties. 

4.6.2 Representation of dynamical systems 

Perception and representation of motion is a fundamental property of the neural system. 

It is crucial for survival for example to estimate the time of contact with accelerated 

objects to react properly. The simulations of two accelerated objects, a pendulum and 

freely falling objects, show that the IC model is able to calculate the effects of external 

forces as for example gravity. Thus, our model provides a neural solution for the finding 

that humans seem to have such an internal model of acceleration which has been 

postulated to exist by Indovina et al. (2005) based on their experiments performed in a 

spacelab (McIntyre et al., 2001). In general, we assume that any dynamical system 
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which can be represented by a linear differential equation of order n can be learnt by a 

recurrent neural network of the type used here. 

Additionally, experiments have revealed that understanding of situations is aided by 

internally simulating the dynamical aspects of perceived situations by grounding them 

in bodily activity (Glenberg and Kaschak, 2002), a fact which has often been ignored up 

to now. The ability of representing object motion by means of the dynamics of a low-

pass filter can conceptually be applied to concrete actions. Thus, sentences describing 

physical motions as “Homer walks to Marge” can be represented by the described 

network (Chapter 4.5). But following Glenberg and Kaschak (2002) this idea can also 

be generalised to abstract situations when taking into account the considerations of 

Construction Grammar (Goldberg, 1995; Fillmore, 1988). The construction 

grammarians argue that also constructions themselves carry a general meaning 

independent of the single lexical items the sentences consist of. Kaschak and Glenberg 

(2000) provide a test to verify Goldbergs notion of construction by using made-up 

denomial verbs, i.e. invented verbs generated from nouns like “to crutch”. They have 

shown that not only children – as has been demonstrated in language acquisition studies 

(e.g. Pinker, 1989) – but also adults are sensitive to the meanings associated with 

particular constructions (see also Naigles and Terrazas, 1998; Fisher, 1994). 

Glenberg and Kaschak (2002) focus in their paper on double-object constructions. 

These constructions consist of “subject – verb – object1 – object2” and carry the 

meaning that the subject transfers object2 to object1 as “You give Liz the toy”. This can 

also be applied to the double-object constructions when not a physical object but a piece 

of information is transferred, as in “You told Liz the story.” Glenberg and Kaschak state 

(2002: 563):  

 

“That is, we come to understand the sentence as a physical movement from “you” to “Liz.” 

To say it differently, over the course of learning the English double-object construction, we 

learn to treat the construction as an instruction to simulate a literal transfer of an object 

from one entity to another even when the object being transferred is not a physical object. 

This simulation is consistent with the claim that people understand communication as a 

type of transfer in which words act as containers of information (Lakoff, 1987).”  

 

They argue that almost all language expressions, even abstract ones like the notion of 

cause, can be explained by their embodied analysis the core of which is that humans 
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tend to conceptualise most expressions by means of action involving bodies. (An 

extreme example of explicit bodily identification is reported by Ochs et al. (1996): They 

observed physicists while discussing new hypotheses: “When I come down I’m in the 

domain state.” With “I” temperature is meant here. Ochs et al. noted that explicit 

identification with the body like this was often used when difficult hypotheses had to be 

understood.) Thus, the considerations made regarding actions of transfer can be 

generalised– at least to some extent – and are also applicable to more abstract actions 

where no real physical objects are involved.  

 

The idea that internal representations comprise also the dynamical aspects of situations 

has already been put forward within the so-called scanpath-theory by Noton and Stark 

(1971). They found that each object is memorised and stored in memory as an 

alternating sequence of object features and eye movements required in reaching the next 

feature of the object. This dynamical aspect is supported by the results of brain imaging 

studies, too. A recent fMRI study located the internal model of gravity humans are 

supposed to have in the vestibular cortex as these networks are selectively engaged 

when acceleration is consistent with natural gravity (Indovina et al., 2005). Another 

study using event-related fMRI in humans has shown that reading action verbs activates 

classical language area, i.e. left inferior frontal and superior temporal cortex (Broca’s 

and Wernicke’s areas) as well as frontocerebral motor regions, including motor and 

premotor cortex (Hauk et al., 2004). Even static objects conveying motion activate brain 

regions engaged in the perceptual analysis of visual motion (Kourtzi and Kanwisher, 

2000). Hence, these data support the idea resulting from the linguistic and psychological 

experiments explained above that processing word meanings involves dynamic 

representations. 

4.6.3 Recombination of mental elements – Future wor k 

The model introduced allows us up to now to model internal representations of static 

situations (Chapter 3) and, as shown here, dynamic situations as well as combinations of 

both. The next step is to ask how it might be possible to integrate a number of 

individual representations – static or dynamic ones – within larger frameworks. One 

question is whether activation of different situation models should strictly exclude each 

other or if parallel activation, i.e. blending of models, is sensible (Wolpert et al., 2003). 
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More fundamental problems encountered here are how the complete system decides 

where in the brain the information concerning the actual situation has to be stored, and, 

if it has already been stored earlier, to recognise this situation as a known one.  

These problems include the question whether and how information is organised in any 

kind of hierarchical structure as it appears to be the case and as it is generally assumed. 

However, different types of connections may exist. A magpie, a sparrow, and a robin for 

example belong to the category “birds”, a connection, which is described by an is-a 

relation according to the theory of semantic networks (Sowa, 1991). Each of these 

examples has, for instance, wings and feathers, a connection described by a has-a 

relation. However, such simple tree-like hierarchies are not sufficient. The actually used 

hierarchy may depend on the context. A bat may be considered to belong to the category 

of flying animals, together with (many, but not all) birds, or it could be regarded as a 

mammal and birds do not belong to this category. So, it must be possible to adapt the 

hierarchy in a dynamical fashion to the actual context. The ability to change the 

hierarchical order is a prerequisite for the ability to adopt the viewpoint of another 

person, which, according to Tomasello (2000) develops in human infants at an early 

age.  

 

Another very important and related aspect is whether and how the integral system is 

equipped with the capability to find new categories, i.e. to combine stored models to 

form groups of related items, or chunks. These new self-invented models can be 

regarded as representing symbols (Steels, 1999) and as such be combined to other 

categories. This capability would also account for the power of recursion, i.e. the faculty 

of embedding different items into each other.  

This faculty provides humans with a high degree of flexibility which is thought to be a 

decisive feature of human intelligence (Premack, 2004): both should enable the 

organism to combine mental elements – motor primitives or more abstract 

representations – to generate a more or less unlimited repertoire of behaviour in order to 

be as flexible as possible. 

Specifically, human’s recursive grammar allows for embedding one instance of an item 

in another instance of the same item. Owing to recursion humans are able to widely 

separate words in a sentence which yet depend on one another (Premack, 2004). This is 
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a key feature of human language in contrast to other animal communication systems 

which enables humans to create an open-ended and limitless system of communication 

(Chomsky, 1957; Chomsky, 1959; ;Chomsky, 1965; Hauser et al., 2002).  

 

The third, also tightly related question concerns serial connection of such models. As 

discussed by Wolpert et al. (2003) this might be possible by using the output of one 

model as describing a new situation to which other models might react. This would 

require an internal feedback connection that connects the output of the integrated system 

to its input. This feedback connection then so to speak replaces the external input. Such 

an internal loop might allow the production and imagination of longer behavioural 

chains. 

 

Finally, we want to address briefly a problem only rarely considered in the context of 

modelling mental representations. Any neural network model proposed comprises a 

mathematical or physical model describing the hypothetical mechanism. A person 

performing a mental simulation, however, experiences a phenomenal aspect, a 

subjective experience, which is a domain of course, not tackled when considering such 

physical models. It is an open question whether a biological neuronal network after 

being activated to form a situation model at the same time is sufficient to elicit 

phenomenal aspects (Cruse, 2003). Here, we do not want to further this philosophical 

discussion (Cruse, 1999) but, at least point to the fact that when dealing with modelling 

internal simulations in artificial systems, we tightly approach such philosophical 

aspects. 
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5 Discussion 

5.1 Use of models in sciences 
 
Understanding the brain and the various functions it fulfils is an intriguing task. Due to 

its complexity it is not only intriguing but also very difficult to disclose the brains 

mysteries. There are different approaches possible to gain insights. Neuroscientists are 

able to explain the structure of the brain on cellular and molecular level in more and 

more detail and electrophysiological recordings as well as brain imaging techniques 

help to elucidate brain functions. But explaining higher cognitive functions is fairly 

difficult, because the nervous system is structured in many different levels ranging from 

the molecular level to the systems level each of which has its own important aspects. 

Some properties might not be found when looking at lower level components but 

emerge from the interaction between these components on higher levels (Sejnowski et 

al., 1988). Such emergent properties may possibly only be understood by application of 

models. 

A vast amount of literature originating from quite different fields like philosophy, 

cybernetics and cognitive sciences, to name only some, exists on the relevance and 

meaning of models (for a deep discussion on modelling see Webb, 2001) which also 

mirrors the confusion about what exactly is meant by the term model in relation to 

science (Leatherdale, 1974). Wartofsky (1979) has called this lack of agreement “model 

muddle”. But there seems to be a general agreement that models are representations of 

entities of the real world (Webb, 2001).  

Of course, the benefit of using models is discussed controversially. Some researchers 

argue that “developing formalised models for phenomena which are not even 

understood on an elementary level is a risky venture: what can be gained by casting 

some quite gratuitous assumptions about particular phenomena in mathematical form?” 

(Croon and van de Vijver, 1994:4-5). Others in contrast put forward the demand of 

theoretical frameworks because of the complexity of animal behaviour (Barto, 1991). 

As, for example, the nervous system is far to complex to be understood experimentally, 

quantitative approaches provided by modelling are supposed to be necessary (Bower, 

1992). In this sense, modelling could help to unveil what the relevant structures or 

essential features a system is composed of are. Thus, models offer a possibility of better 
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understanding and probing experimentally obtained results. Obviously, models will not 

solve the problems by themselves and do not replace experiments but they could 

amplify one’s intuition and could probably reveal new phenomena and thus provide a 

basis for deeper insights in the working brain. 

 

5.2 Models as part of the process of explanation 
 
To explain the use of models Webb (2001) proposed a framework for the role of 

modelling as part of the process of explanation and prediction of certain target 

behaviours. A modified version of this framework is shown in Figure 5.1. This 

framework may be helpful to verify on the one hand the benefits the models presented 

here actually have and on the other hand to define which directions future work based 

on these models has to head for. 

 

 
Figure 5.1: Models as part of the process of explanation (adapted from Webb, 2001). 
Shaded grey parts are tackled within this work. Parts shaded in lighter grey allow for 
further research. 

 

Webb (2001) points out that the term model can be applied to different parts of the 

diagram depending on the viewpoint. Some consider the target system itself to be a 

model because selecting a system from the world already involves abstraction or 

simplification (Cartwright 1983). Other approaches like the “semantic” approach to 

scientific explanation (Giere 1997) regard the hypothesis to be a model because it 

specifies a hypothetical mechanism or system the target belongs to. The latter use of the 
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term model is quite common in contrast to the former which is only rarely found (for a 

detailed explanation see Webb, 2001). 

In the work presented here the term model is taken to correspond to the box labelled 

Simulation just as Webb herself uses the term. In this sense, models are added to the 

cycle between hypothesis, prediction and observed behaviour. Thus, modelling is 

understood to support producing predictions from the hypothesis. Here, we do not claim 

to build a realistic model in the sense of Churchland and Sejnowski (1988: 744),  which 

are “genuinely and strongly predictive of some aspects of nervous systems dynamics or 

anatomy” ,but so-called simplifying models: These models are models, “which though 

not so predictive, demonstrate that the nervous system could be governed by specific 

principles”. These specific principles are the learning dynamics and in the case of the IC 

models the neuronal structure. Nevertheless the models can be explained within the 

framework proposed by Webb (2001) and shown in Figure 5.1. The parts embraced 

within this work are marked by shaded grey boxes. 

As the goal was to simulate internal models which represent external situations, i.e. 

situation models, in fact we use the word model on two levels: on the one hand model is 

used in terms of simulation, on the other hand the overall target system itself is a model, 

namely the internal model consisting of many combined neurons; that means we are 

modelling models.  

5.2.1 The target system: The neuron 

The target system to be modelled here are neurons connected to build networks, which 

are thought to be the basic units enabling the brain to fulfil any function, in this case 

especially building up internal representations. Such internal representations can be 

multifaceted (Chapter 3 and 4; see also Kühn and Cruse, 2005): they could resemble 

static scenes and situations characterised by any kind of dynamics like acceleration or 

movements from one point to another as well as more or less abstract rules. As pointed 

out in the Introduction (Chapter 1) this is an important capability in order to behave 

cognitively and adaptively because internal representations allow the organism to 

predict the distinct consequences in the external world of distinct behavioural options. 
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5.2.2 Hypothetical mechanism: Self-Organisation  

Just as snowflakes come into existence without a snowflake-maker, internal 

representations of the external world emerge from the interactions between the low-

level components, the neurons, only without any supervising force, i.e. in a process of 

self-organisation. The hypothetical mechanisms in both models proposed comprise a 

local rule instantiated on the level of a single neuron. Therefore, no ordering influence 

besides the information from the external world is necessary to enable the organism to 

internally represent the external information. 

When implementing the learning mechanism it is important to be cautious not to use the 

wrong internal activation values for training the weights. It is necessary to use the 

values of the same and not the subsequent iteration step. 

5.2.3 Simulation: Entire recurrent neural network 

If many neurons equipped with the hypothetical mechanism cooperate due to their 

synaptic connections the target behaviour should emerge in a self-organised manner. 

This allows us to compare the behaviour the neural network model produces with the 

behaviour observed in experiments. 

As the training procedure proposed for IC units is more promising we concentrate on 

applications of networks consisting of IC units for the moment (Chapter 3 and 4). 

Different possibilities of application are possible. Within this work, the focus was on 

storing patterns having been known in advance. But it is also possible to use this type of 

networks for prediction purposes.  The ability to predict the output of the next time step 

is touched when learning the temporal course of dynamical systems (Chapter 4). To 

reproduce the dynamics of, for example, a pendulum, the network has to be able to 

predict the respectively next position and velocity value. 

These IC networks can also be applied in another context of prediction, namely to learn 

classical conditioning tasks (Wittmann, 2005). During training the network is presented 

with an incomplete input vector only. After training the network is able to predict the 

respective response to a certain stimulus situation. In contrast to the approach described 

in this work for learning classical conditioning tasks the δ-error is rectified before using 

it for training the weights. Consequently, on the one hand no negative weights occur 

during training and on the other hand weight values cannot decrease again. Therefore, 

Wittmann proposed to normalise the weights in way that the sum of all weights does not 
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exceed the value of one. Using this normalisation the weights remain flexible even if the 

situation changes.  

The neurons and neural networks used here can be regarded to be a model of the so-

called mirror-neurons (for a review see Rizzolatti and Craighero, 2004). These neurons 

can neither be attributed to represent only sensory aspects nor to represent only motor 

aspects. Various studies have shown that they are active during both perception and 

action. The models presented here are also suitable for both and a separation between 

sensory and motor units in these ‘holistic’ networks is hardly possible (see also Chapter 

4). Therefore, the same type of networks and the same neurons can be used for 

perception and the control of action (Cruse, 2003).  

 

5.3 Future work 
 
Figure 5.1 allows clarifying what still has to be done in future work to broaden the 

capabilities of the models presented here. Up to now we have focussed on modelling 

internal representations as target behaviour. Of course, brains have far more capabilities 

originating from the interplay of their building blocks – the neurons. To illustrate that 

here still some work has to be done, the part Target Behaviour in Figure 5.1 is marked 

by a box shaded in lighter grey. Thus, other applications can be thought of which in turn 

has implications on the model itself. Consequently, the parts Simulation and Simulated 

Behaviour in Figure 5.1 are also depicted by a box shaded in lighter grey. 

5.3.1 Other applications 

The IC model as proposed in Chapter 3 can account for findings according to the 

expression of immediate early genes (IEGs) (Huchzermeyer et al., 2005). In the absence 

of sensory stimuli only a small amount IEGs is expressed within the brain. If neurons 

are activated, also expression of IEGs increases (Sheng and Greenberg, 1990). These 

early genes and their proteins like ZENK are thought to play a role in fast learning 

processes; they are supposed to mediate between synaptic activation and the activation 

of late response genes. Huchzermeyer and colleagues (2005) have come up with an 

astonishing result when studying sexual imprinting in young zebra finches: They found 

a negative correlation between the preference score and the IEG activation; the bigger 
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the difference between the stored representation of the sexual partner and the female 

presented in the experiment was the stronger was the ZENK signal. This finding was a 

bit counterintuitive because previously the idea was prevalent that a brain area coding a 

stimulus learnt before should be the more activated the better the actual stimulus 

matches the template. This idea was derived from hierarchical models of stimulus 

processing as they have been proposed for the visual cortex, for example, by Hubel and 

Wiesel (1962).  

But the dynamics of the ZENK signal are analogue to the δ-error in the model presented 

in  Chapter 3. The more the external input deviates from the current output of a neuron 

the bigger the δ-error. Up to now, learning is stopped in the model more or less 

arbitrarily after the overall error has fallen below a given threshold. By doing so, further 

plasticity is not allowed. But one could also think of a mechanism which decreases the 

learning rate over the course of time. If the learning rate is very small or zero the 

weights do not change any longer. This process of decreasing the learning rate can 

resemble the decrease of synaptic plasticity over time found in experiments (Gan et al., 

2003). 

If now a new stimulus is presented to the model, which was not learnt before, the δ-

error will be large, but would not have any effect on the weights. Therefore, the δ-error 

could resemble the activity of the ZENK signal. This activity could express the fact that 

brains principally always have the disposition to learn but that, due to the decrease of 

plasticity in the course of time, learning does not take place with the same amount than 

earlier in development.  

The next step to be done here is to compare the real data found in the experiments with 

the simulated results. Could it be possible to adapt the model in a way that the real data 

could be predicted? 

 

When trying to model and understand more complex behaviour like processing nested 

sentences or controlling six-legged walking in uneven terrain certainly changes in the 

simulation, i.e. in the model are necessary. Here, four main considerations are focused 

on: the capability of dealing with nonlinearities, training classical MMC networks, 

scaling the network’s size, and ordering and connecting individual internal models. 
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5.3.2 Nonlinearities  

The problems tackled so far are linear or only mildly nonlinear due to the rectifiers used 

in the IC units. Especially in the case of the seemingly more powerful IC models it is an 

outstanding question if it is possible to introduce nonlinearities as for example nonlinear 

activation functions of the single neurons and still be able to train the networks. Three 

different possibilities of activation functions are expedient here: the neurons can be 

equipped with rectifiers, functions without saturation like the square root function or 

functions with saturation like squashing functions. 

5.3.3 Scaling the networks 

Being able to scale the properties of a network with its size is crucially important for a 

model in order to serve as a biologically plausible brain model. The architecture of 

many models has to be additionally constrained to scale it by, for example, restricting 

the connectivity to local neighbourhoods only (Sejnowski et al., 1988).  

The model described in Chapter 2 consists of MSBE networks because it provides 

Multiple Solutions for the Basic Equation 0
1

=⋅�
=

n

i
ii xv . In former publications this has 

been called MMC network (Kühn and Cruse, 2005; 2005a but is now distinguished 

from what has been called MMC network in earlier papers (Steinkühler and Cruse, 

1998; Cruse, Steinkühler, et al.; 1998). The learning rule described in Chapter 2 suffers 

from the problem of scaling. If representations should be build up consisting of more 

items, the model’s capabilities as such are soon at their limits. But this restriction of 

only being able to process a limited number of items could also be found in real brains 

too: Humans working memory has only a limited capacity (Baddeley, 1986). A solution 

to cope with this scaling problem is proposed below (Chapter 5.3.5) by combining more 

small subnetworks each of which contains a limited amount of information. 

The second model type we used, the building blocks of which are IC Units (Chapter 3 

and 4), does not suffer from scaling problems as long as the learning rate ε is chosen 

small enough according to 
aa ⋅

<<
T

2
0 ε  (see Appendix in Chapter 3.6). Thus, the more 

units the network has, the smaller the learning rate has to be in order to obtain stable 

solutions. Therefore, this IC model seems to be more promising for further applications 
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than the model described in Chapter 2 and it principally should be possible to train more 

realistic networks consisting of a large number of neurons. 

5.3.4 Training classical MMC networks 

Additionally, this could provide a solution for the still unsolved problem of training 

classical MMC networks as used for control of, for example, arm movements 

(Steinkühler and Cruse, 1998; Cruse, Steinkühler, et al.; 1998). The position of each 

vector necessary for calculating the endpoint of the hand symbolised by R is calculated 

from four Basic Equations, respectively. This is shown in Figure 5.2: Each vector is 

obtained by calculating the mean x  of the four composing equations. That means each 

of these subsystems is an MSBE network. If a way was found to train these 

subnetworks effectively, for example by combining the ideas of training IC networks 

with these MSBE networks, it perhaps would be possible to merge the results to obtain 

a solution for the entire MMC network. Finding ways to train these MMC networks 

would dramatically improve their adaptability. 

 

 
Figure 5.2: MMC network for a three-joint planar arm. (a) Schematic drawing of a 
three-segmented arm. (b) MMC network: Each vector is obtained from calculating the 
mean x  from four basic equations. The weights are symbolised by closed circles (1) 
and open circles (-1) (adapted from Cruse et al., 1998). 
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In this context another problem is touched: the problem of how to deal with hidden units 

and how to train networks that are equipped with hidden layers. In the classical MMC 

networks the units representing the diagonal vectors D1 and D2 (see Figure 5.2) are 

such hidden units because they do not receive direct external input but only the 

recurrent input from the other units within the network. If we equipped the single units 

within the MMC networks with the IC structure for providing better training 

possibilities for the single elements of the entire network and if we were able to 

combine them in the end, we probably could kill two birds with one stone: training 

classical MMC networks as well as training networks with hidden units. 

5.3.5 Connecting individual internal models 

The brain is, of course, able to process and cope with a larger amount of information at 

the same time; thus, many internal models of external situations coexist. Storing many 

different individual models raises the question of how these distinct models may be 

learnt, stored, and retrieved. To solve these problems hints from evolutionary biology 

might help. Individual models could be equipped with a kind of fitness value as 

proposed by Steels (1999). This fitness value may depend on spontaneous changes and 

on successful application in the world. Based on this fitness value different internal 

models could compete via winner takes all connections. 

As a next step, it is indispensable to think of possibilities of how models containing 

limited information can be combined to build larger frameworks. It is, for example, no 

problem for us to follow and understand sentences which are long and complicated 

because of many embedded subordinate clauses.  This capability is called recursion and 

is assumed to be a decisive feature of human intelligence (Hauser et al., 2002; Premack, 

2004).  

On the one hand, experiments indicate that there appears to be some kind of hierarchical 

structure: bottom-up attentional mechanisms are much faster than top-down 

mechanisms implementing our long-term cognitive strategies (Connor et al., 2004). On 

the other hand, the structure seems to be variable and depends on the context in a 

dynamical way. Thus, to account for cognitive abilities as, for example, the power of 

recursion we have to find a way of how combining many small models into hierarchical 

structures the hierarchy of which depends on the actual context (Chapter 4). This claim 

is necessary because simple tree-like hierarchies are often not sufficient. For example, a 
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bat may be considered to belong to the category of flying animals, together with (many, 

but not all) birds, or it could be regarded as a mammal; but birds do not belong to this 

category. Thus, it must be possible to adapt the hierarchy dynamically to the actual 

context. Furthermore, the ability to change the hierarchical order is a prerequisite for the 

ability to adopt the viewpoint of another person, which, according to Tomasello (2000) 

develops in human infants at an early age. 

Thus, the work presented here provides many interesting opportunities to be 

investigated in subsequent studies.  
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