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Zusammenfassung

Menschen sind in der Lage, mentale Modelle von Informetip die sie aus der
Umwelt aufnehmen, aufzubauen. Solche mentalen Modédlerbdie Grundlage fiur die
Organisation und Strukturierung von sensorischer Informatiod Wissen und sind
damit wesentlich, um Ged&achtnisaufgaben ausfihren zu ko@ienkdnnen in so
genanntencell assembliesalso wechselseitig miteinander verschalteten Neuronen
realisiert werden. Fur den Aufbau von mentalen Modellessndas neuronale System
adaptive Fahigkeiten besitzen, d.h. die Fahigkeit zu lerigne wesentliche
Voraussetzung fur diese Lernfahigkeit ist die Anpassung dgnapsische
Ubertragungsstarke in Abhangigkeit von der jeweiligen Sitoatio

Die Informationen aus der Umwelt, mit denen der Mensuh damit sein neuronales
System in einzelnen Situationen konfrontiert ist, konnerschiedengestaltig sein: Es
kann sich zum Beispiel um statische Muster handele,28. einen Baum oder einen
Stuhl, aber auch um dynamische Szenen wie etwa eieifaintendes Auto oder ein auf
und ab hipfender Ball.

In dieser Arbeit werden zwei Ansatze vorgeschlagengethe Modellierung mentaler
Modelle sowohl statischer als auch dynamischer Infoomati mit Hilfe von
rekurrenten neuronalen Netzen ermdglichen. Beiden Maudadle gemein, dass die
Lernprozesse selbstorganisiert und nur in Abhangigkeit vonlelokimformation
ablaufen. Da die Lerndynamik und die rekurrente DynamikQodine-Lernverfahren
eng miteinander verwoben sind, ist der Erfolg des erstedeNs (Kapitel 2) stark
abhangig von der Anpassung der Lernrate. Mitldput CompensatioifiC) Struktur
wird in Kapitel 3 und 4 eine biologisch inspirierte Newnstruktur vorgeschlagen, die
Lern- und rekurrente Dynamik voneinander entkoppelt und f0nlihe-Lernen in sehr
effizienter Weise erlaubt. Rekurrente Netze, die witlen IC Neuronen ausgestattet
sind, kdonnen erfolgreich trainiert werden, um sowohl sth& als auch dynamische
Situationen abzubilden. Somit bietet dieses Modell einen@age fur sehr vielfaltige

Gedachtnisleistungen.
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1 INTRODUCTION

1 Introduction

Lucretius derives iDe rerum naturaa cosmology, which postulates that the invisible
atoms fall like rain straight downwards but time and adgawiate little from their path.
Due to thisclinamen i.e. little and unpredictable swerve, random collisibetween the
atoms occur resulting in gradual formation of complexrat clusters. Thus, yet around
70 B.C. Lucretius describes a hypothesised constructive plienthat provides a
mechanism for an inevitable process in the complex wimidself-organisation By the
way, this unpredictablelinamenserves for him also as a physical foundation for human
free will (Neubauer, 2003).

1.1 Self-Organisation

So already in this very early work as well as in ite€kr predecessor Epicur the basic
idea of self-organisation can be found: Order emergestapeously without any
obviously apparent driving force. Fascinating examples fosganisation can be
found throughout various disciplines when looking at pattermation processes: For
example sand grains assembling into ripples or watercolele aggregating to form
crystalline snowflakes, high in the clouds with tempeexd far below freezing. But also
biological systems provide a variety of phenomena wlach explained by self-
organising processes: The creation of structures by sadiaals like termite mounds
or flocking behaviour like flocks of birds or schools of fishe stripes of a zebra or
patterns on the wings of butterflies (Camazine et al., 280Q3); formation of lipid
bilayer membranes; emergence of sustained delay activinemory tasks (Yakovlev
et al., 1998; Del Giudice et al., 2003), synchronisation uroral firing (Singer, 1999)
or homeostatic plasticity in neuronal firing (Turrigiaramd Nelson, 2004). This
undoubtedly incomplete list of self-organising systems datoarse be expanded by
many more examples — but although they originate frorarsié/fields they suffice to
put forward the basic ideas of self-organisation: Nohibityks of a snowflake-maker
when seeing snowflakes or of someone painting black ante vghipes on zebras.
These higher-level properties emerge solely from therplay of the lower-level

components.
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Scott Camanzine and colleagues have condensed this in thmiitiate of self-
organisation (2001, S.8, my emphases):

“Self-organization is a process in whiphttern at the global level of a

systememerges solely from numerounderactions among the lower-

level components of the system. Moreover, theiles specifying

interactions among the system’s components are exeasted only

local information, without reference to the global pattern.”
Thus, without any ordering influence imposed to the systegtobal pattern emerges,
which the lower-level entities themselves do not displ®attern” means here an
organised arrangement of entities in space or time. alitwve-mentioned examples
show that the lower-level components the systemsistooscan be by themselves on
very different levels of complexity like for examplenimals, cells, neurons or
molecules.
This definition given by Camazine and colleagues can sengeguideline throughout
this work: The overall goal is to provide mechanisms by Wwhpattern at the global
level of a system”(Chapter 1.2) can emerge; here the desired patterns antalme
representations of situations as they are thought tihédasis of any cognitive and
adaptive behaviour (for details see below). The biologstdistrate of these mental
representations is the neural tissue, i.e. the brdiso@se, it is impossible to model a
whole brain in detail. Therefore, artificial neural wetks often serve as simplified
models for brain functions. Here two different typesr@durrent neural networks are
used: MMC networks (Chapter 2; Kithn and Cruse, 2005) and IC retWGhapter 3
and 4). The former have been developed primarily to cbomtodor tasks whereas the
latter comprise a completely new type of networks.
The lower-level componentfChapter 1.3) interacting to produce the patterns at highe
levels are artificial neurons. Theles, by which the connections between these neurons
are built up in a self-organised fashioise in both casesnly local information
(Chapter 1.4)thus are not obliged to an external teacher.

1.1.1 History of self-organisation

Even though focussing on self-organisation is a relatively research area, the idea
that material things and dynamics of systems tend tonety themselves in course of
time what we observe at present has a long historgr tie notion of thelinamenby
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Lucretius and the Epicureans it was already Descaftesdescribed it in the fifth part
of hisDiscours de la Méthodg637). The naturalists of the"18entury tried to explain
the observed appearances of living organisms by understatigingniversal laws of
form, an idea which fell into disrepute because it wamaated with Lamarckism.
Only in the beginning of the #entury was the idea revitalised by D’Arcy Wentworth
Thompson in his boolbn Growth and Forn{Thompson, 1917) who thought that the
growth of form is a dynamic process driven by naturatderand not the endpoint of a
teleological process. Since the midst of thé" afentury a growing number of
publications on self-organisation and emergent propertiestantiated those ideas. The
term “self-organisation” seems to have been coinetldirshe engineer and psychiatrist
W. Ross Ashby (1947).

From then on self-organisation was studied in the dietd physics, chemistry,
biochemistry, developmental biology, systems theorycamputer science. Within the
latter the primary applications have been in the afd@arning, especially unsupervised
learning (e.g. Hinton and Sejnowski, 1999), memory (e.g. Kehpo 1989) and

adaptation. For a more detailed description see Sha0@il().

1.2 Pattern at the global level: Mental representat  ions and
cognitive behaviour

As described above the desired patterns at global Yewvieh should emerge resulting
from the interaction of recurrently connected singleuronal units are mental
representations of environmental situation. But what amtahrepresentations and why
should they be a matter of particular interest?

Every living organism has to move around in order to firmtfto survive and mates to
reproduce — thus it faces the problem of sensorimotorralomk solution for this
problem requires a suitable control mechanism which helpsfluence the behaviour
“appropriately” with respect to the sensory situation. fn@blem can be tackled in at
least three different ways:

First, the organism can simply move around and when Imgmpto things modify its
behaviour according to these collisions. This is, of egutke most basic way of
behaving. An improvement on this solution is to use sgria@ormation directly for the
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control of behaviour. Examples are reactive systdakes the so-called Braitenberg-
vehicles (Braitenberg, 1984): The problem here is that tlaey show appropriate
behaviour only as long as the external stimulus is pteeindisappears, the behaviour
disappears, too. Thus, instead of reacting directly taneat, a solution on a higher
level is to use sensory information to construct memegresentations of the
environment as a basis for subsequent behaviour.

Here, the term representation is used in the broad s#nSeeels (1995) as being a
physical structure (for example electro-chemical statgsrh has correlations with
aspects of the environment. Thus, a representation istrm@ae a formal structure
relating the information an organism has to cope wittceSthe information processing
capacity of an organism is limited, it is unable to pssceall input signals in depth.
Hence, it is indispensable for the organism to be equippéd tive capability of
situating each stimulus within a conceptual systemia.®uild up concepts. The main
advantage of such a capability is to be able to reducedhmplexity provided by a
variable environment.

One should be aware of the fact that the term reptaenis connoted differently with
respect to the different disciplines making use ofag, for example philosophy,
cognitive science or computer science. PhilosopherseXample, tried to solve the
problem how Mind and Matter might be able to inter&ncerning sensation and
thinking René Descartes proposed that our mind does notlgik@ow the objects but
only mediated by ideas which represent them. While Descaras convinced of those
representative ideas to be innate empiricists like Joltkd, Thomas Hobbes or George
Berkeley proposed that the ideas emerge during development.

Additionally, we often encounter the term represeatain an ambiguous sense: On the
one hand it is used in a formal sense where representatgans to give some
efficiently manipulable structure to an abstract concéptfbr exampleknowledgeor a
group, and on the other hand it is used in the concretesghere representation means
to construct some model or image of a concrete phemomigke an external object or
the movement of a falling body. In this work, the laiense is accounted for.

Internal mental representations may become appacenexXample in the form of
imagination, dreaming, internal language, and in a very isspre way if we observe

what young children from the age of about two years onTtley are nearly obsessed
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with representation making. This can be seen for examypllooking at their drawings
and the language games they play again and again. lattivethe children try to assign

meanings to symbols.

An advantage of such internal mental models besideahitree mentioned reduction of
complexity is that the behaviour can be uncoupled fraectenvironmental control.
This enables the organism for example to respond to feapdirdne world that are not
directly present, to use past experiences to shape pissesviour, to plan ahead, to
internally manipulate the content, etc. (Cruse, 2003b).

The ability of using mental representations of theiiés independently of the actual
sensory input is developed in children at the age of fmd@ivé while chimpanzees are
not able to acquire this capability. This becomes apparest Experiment performed
by Povinelli et al. (1999). They filmed children of this ageweell as chimpanzees and
presented them the video tapes three minutes afterwards.tAis delay the children
are still able to recognize themselves while the animald.dbhese results suggest that
the children from the age of about five years on canouwple their mental
representation from the sensory input in contrasotmger children and chimpanzees.
Therefore, we can conclude that these mental repedger® form an essential
prerequisite to explain how organisms can behave in a cagaiiaptive way — which
is a conclusion contradicting Brooks’ (Brooks, 1991) idealrtélligence without
representation Also in philosophical discourse the capacity of orgasism provide
neural mechanisms to internally construct and processsespegions of their body and
their environment in order to shape their behaviour is deghato be a significant
branch-point in evolutionary history (O'Brien and O€04). Thus, a causal role in
controlling behaviour is attributed to those mental repregions.

What has been said so far should not imply the impressia strict separation between
perception and generation of behaviour in the sense ofinf@mation processing
metaphor (Pfeifer and Scheier, 1994), a concept which is going badke work of
Marr (1982). Sensory perception and behaviour rather haveetoegarded to be
different sides of the same coin: They resembleehfit aspects of the same neuronal
system. This idea is in the line of argument of many ajexa like the perception
through anticipatioh approach (Moéller, 1997), theGestaltkreis (von Weizsacker,
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1950), the &action-perception-cycle (Arbib, 1981), the representation-execution
continuum (Jeannerod, 1994; Jeannerod, 1997), or the proposal by Prinz (tt997)
assume acommon coding of perception and action

Many experimental results imply such a holistic viefvaotight connection between
internal representations of sensory information and rdspective actions. Recent
neurally based theories of action and action undefstgrsuggest that (1) a mental
simulation of the action to be performed is routinelyegated along with the actual
performance of the action (Wolpert et al., 1995; JeanndQ4D).

(2) A mental simulation of the action is generated irobBserver’'s motor system when
viewing someone else performing an action (or relevanttspaf it): In
electrophysiological recordings in monkeys so-calledrror neuron$ were found
which respond to both self-generated action as well as\@usactions in others (Di
Pellegrino et al.,, 1992; Gallese et al., 1996; Rizzolatalet1996; for a review see
Rizzolatti and Craighero, 2004). This mirror system Hae aeen shown to exist in
humans. Neuroimaging studies reveal an activation obmeteas when imitating or
observing actions (Hari et al., 1998; Cochin et al., 1999; lagadcal., 1999; Buccino
et al., 2001; Grezes et al.,, 2001). Moreover, mental stiootaare even generated
when subjects view manipulable tools (Grafton et al., 199d) inderstand actions
described in sentences (Rizzolatti and Arbib, 1998; GlenbedgKaschak, 2002).
Other examples of neurons that cannot be attributedeteither sensory or motor
elements are the so-calldoirhodal neuron's which code body-centred extra-personal
space, described by Iriki et al. (1996; see also Sakata, €it98l7) and thedecision
neurons (Kast, 2001).

(3) A mental simulation of the described action appedse to be generated when
action sentences are understood. Thus, bodily acthaty a significant impact on
understanding of language comprehension (e.g. Glenberg andtsobel999; for
further literature see Glenberg and Kaschak, 2002). Thisha& Wlenberg calls the
embodiment of language comprehension: Language is understeodwe are able to
simulate sentences using the same neural systems asud®xs in perception, action,
emotion and perhaps other bodily states. The symbolanguage are grounded by
relating them to bodily processes. This idea is based akofts concept of the
embodied mind (Lakoff, 1987; Lakoff and Johnson, 1999). He israyghat almost all
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of human cognition can only be understood when taking tdg o account. There
are many well-known proponents of this view of the impioce of such an embodiment
as Rafael Nufiez, Humberto Maturana, Francisco Vakélayanur Ramachandran,
Gerald Edelman, Antonio Damasio and others. The emlsdihypothesis is also very
close to the phenomenology of mind and the conceptreflér-Welt-Sein” of Martin

Heidegger and other existentialists.

Especially research on text comprehension and languaderstanding revealed this
embodied nature of those internal representations. IiMdiased on the work of
Johnson-Laird (1983) and van Dijk and Kintsch (1983), linguists @sychologists
found out that it is rather the situation described texa than the text itself which is
represented in the mind. This finding has implications ondeting such
representations: To represent situations, it is negessdre able to also simulate the
dynamic aspects of the situations, a claim which is stipg@day studies unveiling these
dynamic properties (Freyd, 1993; Mclintyre et al., 2001; Glenbed Kaschak, 2002;
Zwaan et al., 2004).

To summarise: internal mental representations aengakfor cognitive behaviour and
tightly connect sensory information and bodily activiBased on these considerations
we propose two recurrent neural network models here whichbuatable to account for
these requirements of mental representations. lrappeoach described in Chapter 2
and Kuhn and Cruse (2005) so-called MMC networks, which areaphndeveloped
for generation of action like arm-movements or landnmavigation (e.g. Cruse, 2003a;
Steinkihler and Cruse, 1998), are adapted to build up interna&lnmepresentations.
Thus, the model complies with the findings of many studieealing a tight connection
between the perception and action system (RizzoladtiGraighero, 2004) which seems
to be an essential property for action understandimgz@ftti et al., 2001), controlling
motor output (Jeannerod, 1999; Cruse, 2003a), but also for languagection and
understanding (Glenberg and Kaschak, 2002).

Further, in Chapter 3 a completely new structure fafi@al neurons (see below) is

proposed by which models can be built up that are capablemdrating internal
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representations of static environmental scenes as svell the dynamics that might be

involved (Chapter 4) and that form the basis for understgndin

1.3 Lower-level components: artificial neurons (MMC and IC)

Biological research has accumulated a vast amoukh@#/ledge about structure and
function of the brain and the lower-level componéntsin circuits consist of: The
neurons, which are intricately interconnected (seekagdel et al., 2000).

Theoretical models for the description of neurons exatyimg in the levels of
abstraction (for an overview see Wilson, 1999; Gerstndrkastler, 2002). The most
detailed level incorporates the diffusion of ionic potestabng the dentritic tree with
its complex geometry (Rall, 1989; Segev et al., 1989). Spikewgon models range
from detailed biophysical ones, the so-called compart@hesr conductance-based
models, to integrate-and-fire models. The former try tecdee the generation and
shape of each individual action potential as a functionhefdpening and closing
dynamics of the ion channels in dependence of voltagemsssenger molecules as
exactly as possible by sets of equations. These modgisabe in the four differential
equations by which (Hodgkin and Huxley, 1952) summarised their stadi¢he giant
axon of the squid. The integrate-and-fire models are biglaer level of abstraction.
They consider the neuron as a homogeneous unit genespilkas if the total excitation
Is sufficiently large without concerning the spatialusture of a neuron. The best-
known formal spiking neuron model is probably the leakggrdte-and-fire model
which has been studied intensively by Stein (1967a; 1967H)islapproach the neuron
is modelled as a leaky integrator which is reset whargfoccurs.

In contrast to these spiking neuron models rate codingelsoneglect the pulse
structure of the neuronal output — they code the meary fiate of a neuron which
varies between zero and some maximum value. Therefay are on the highest level
of abstraction. The most abstract level, of coussty characterise a neuron as a device
that is either on or off (1 or 0), a description introdlbg McCulloch and Pitts (1943).
The pioneering work on the concept of mean firing rassskeen performed by Adrian
(1928) who defined rates in terms of spike counts, i.evarage over time. But when

comparing the experimental literature there are at kwse different notions of rate
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referring to different averaging procedures: averagiregy time as proposed by Adrian
(1928), or averaging over several repetitions of the exjeet, or averaging over a
population of neurons (see Gerstner and Kistler, 2002).

Whether the information neurons process is rate codsgike coded is a fundamental
and still unsolved question in neuroscience whereas ithéing) line is not always
clearly drawn.

The level of abstraction used in simulations has to belde for the respective
purpose. Someone who is interested in the molecularanachs of individual neurons
has to choose a more detailed level of description thamrelsody who wants to model
aspects of for example motor control, categorisatorshort-term memory. As the
scope of the work presented here is to model internalahespresentations of external
situations, i.e. to model short-term memory abilitrase coding neurons are applied in
both approaches, in the MMC networks (Chapter 2) as aglin the IC networks
(Chapter 3 and 4). The neurons code the mean firingrrabe iclassical sense described
by Adrian (1928) as the activations of the single neuronsast to be averaged over

time.

1.4 Rules using only local information: Training re current
neural networks

Like neurons in biological neural tissue the artifiaigurons are interconnected via
synapses or synaptic weights and build neural networks. siigle units can be

connected in a feedforward manner, i.e. the informdtow is oriented in one direction

only. But real neurons especially in the brain are thbaglbe organised in highly

interconnected neural networks also comprising many red¢uwogmections. Therefore,

to model a system which is biologically more realjsacrecurrent neural network
architecture is chosen.

The patterns, i.e. the representations, should emeoge ihteractions between the
lower-level components in a self-organised process. Téa)ing is required as in the
beginning the neurons of the network are connected by sywegights having random

values or being zero.
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In classical neural network theory three different symd learning algorithms are
applied: supervised learning, reinforcement learning and unsugerigarning. For
supervised learning a teacher is necessary that “telis’sybtem the desired state. In
every time step the output of the network is comparéd thie desired output, as given
by the teacher, and according to the error originatiog fthis comparison the synaptic
weights are changed. The problem with any teacher-foeadihg procedure is that it
is biologically highly implausible. Usually, nature does provide any external
information of how the correct output of a systenaction of an agent should be.
Reinforcement learning procedures provide a reward (which eagitler positive or
negative) according to the quality of the output; the duak is to maximise the
cumulative reward over the course of a task (Kaeblingl.etL996; Sutton and Barto,
1998). Reinforcement learning can be related to supervisednigaasifar as external
information, which goes beyond the simple input, isessary; but it differs from
supervised methods in that no correct input-output pairs @esented. For
reinforcement learning biological mechanisms exist for mgta in children’s
development; many abilities are acquired due to positiedbi@ck or punishment, i.e.
negative rewards.

In unsupervised learning no global external knowledge, erwith teacher nor a
rewarding system, exists. The weights are updated using ildoamation only like
input correlation as in Hebbian learning methods. Thus, assimed that biological
systems make use of such learning methods as no glahalddge is necessary.

Both mechanisms used here — the DD rule (Chapter 2; Kih€ars#, 2005) and the
IC learning procedure (Chapter 3 and 4) — follow this priecgdlnot being dependent
on global information. To change the weights of a aeum both cases only
information is needed, which is directly available atheaeuronal unit.

When dealing with training of recurrent neural networks ini@aler another general
problem arises: training should take place online, i.e.evthi¢ system is working or the
agent is behaving. But in this situation, two dynamicssaperimposed: the dynamics
of the recurrent network as well as the dynamics oéffexts of learning (Steil, 1999).
To avoid this problem both dynamics are often uncoupledchtrgducing alternating
epochs of phases during which the weights are changedhasgégduring which the
recurrent dynamics are calculated (Baldi and Pineda, 188g@ed and Haas, 2004). But,

10
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of course, in any biological system it is not likehat learning only takes place in
separated phases where no behaviour occurs. Thus, it ¢s adantage of the two
methods introduced here that they are applied online.

To come full circle, the two models presented here MK model and the 1C model
— account for the requirements of self-organisation asufded in the definition by
Scott Camazine and colleaguestterns at the global level internal representations —
of a system— recurrent neural networksemerge within from numerousteractions
among the lower-levetomponentsof the systerm the artificial neuronsMoreover, the
rules — the learning rules specifying interactions among the system’s components are
executedusing only local information without reference to the global pattern

Thus, the models proposed can provide a basis for self-organisahich is an
inevitable process in the complex world. This organisatioocgss proceeds in a
biologically very plausible way, as it really onlyies on local information available at
each single neuron and thus has a great advantage overtetheical learning
procedures.

1.5 References

Adrian ED (1928)r'he basis of sensatioNew York: W. W. Norton.

Arbib MA (1981) Perceptual structures and distributed motoraebmin: Handbook of
physiology: Nervous system - Volum@/2B. Brooks, ed), Bethesda, MD: American
Physiology Society, pp 1448-1480.

Ashby WR (1947) Principles of self-organizing dynamic systdmstnal of General
Psychology37: 125-128.

Baldi P, Pineda F (1991) Contrastive learning and neurdladsc. Neural
Computation3: 526-545.

Brooks R (1991) Intelligence without reas®noceedings of the International Joint
Conference on Atrtificial Intelligenc®69-595.

Buccino B, Binkofski F, Fink GR, Fadiga L, Fogassi L JI&se V, Seitz RJ, Zilles K,
Rizzolatti G, Freund H-J (2001) Action observation at&sgpremotor and parietal
areas in a somatotopic manner: an fMRI stitiyopean Journal of Neuroscience
13: 400-404.

11



1 INTRODUCTION

Camazine S (2003) Patterns in natiNatural History6: 34-41.

Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Thei@uBanabeau E (2001)
Self-Organization in Biological Systentincton University Press.

Cochin S, Barthelmy C, Roux S, Martineau J (1999) Observand execution of
movement: similarities demonstrated by quantified elecitephalography.
European Journal of Neuroscienté: 1839-1842.

Cruse H (2003a) Landmark-based navigati®inlogical Cybernetic88: 425-437.

Cruse H (2003b) The evolution of cognition - a hypothé&xignitive Scienc27: 135-
155.

Del Giudice P, Fusi S, Mattia M (2003) Modelling the fornimatof working memory
with networks of integrate-and-fire neurons connected Istiplaynapseslournal
of Physiology97: 659-681.

Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, amt&atti G (1992) Understanding
motor events: a neurophysiological stuByperimental Brain Resear@i: 176-180.

Freyd JJ (1993) Five hunches about perceptual processes amlicyepresentations.
In: Attention and performance XIV: Synergies in experimental psycholodigiakti
intelligence, and cognitive neuroscien@ Meyer, S. Kornblum, eds), Cambridge,
MA: MIT Press, pp 99-119.

Gallese V, Fadiga L, Fogassi L, and Rizzolatti G (1996&joh recognition in premotor
cortex.Brain 119: 593-609.

Gerstner W, Kistler WM (20023piking neuron models. Single neurons, populations,
plasticity. Cambridge: University Press.

Glenberg AM, Kaschak MP (2002) Grounding language in addsychonomic
Bulletin & Reviewd: 558-565.

Glenberg AM, Robertson DA (1999) Indexical understanding @funsons.Discourse
Processe28: 1-26.

Grafton ST, Fadiga L, Arbib MA, and Rizzolatti G (1997)io¢or cortex activation
during observation and naming familiar todleurolmages: 231-236.

Grezes J, Fonlupt P, Bertenthal B, Delon-Martin C, Baghk C, and Decety J (2001)
Does perception of biological motion rely on spedifiain regionsNeurolmagel 3:
775-785.

Hari R, Forss N, Avikainen S, Kirveskari E, SaleniuRkRBzolatti G (1998) Activation
of human primary motor cortex during action observat@oneuroimaging study.
Proc Natl Acad Sci USB85: 15061-15065.

12



1 INTRODUCTION

Hinton GE, Sejnowski TJ (1999)nsupervised Learning: Foundations of Neural
Computation Cambridge, MA: MIT Press.

Hodgkin AL, Huxley AF (1952) A quantitative describtion of iamr@nts and its
applications to conduction and excitation in nerve mengs.dournal of Physiology
(London)117: 500-544.

lacoboni M, Woods RP, Brass M, Bekkering H, Mazziottaal@l Rizzolatti G (1999)
Cortical mechanisms of human imitatid@@tience?86: 2526-2528.

Iriki M, Tanaka Y, Iwamura Y (1996) Coding of modified basishema during tool use
by macaque postcentral neuroNguroreport7: 2325-2330.

Jaeger H, Haas H (2004) Harnessing Nonlinearity: Predictiagt@€hSystems and
Saving Energy in Wireless Communicati@tience304: 78-80.

Jeannerod M (1994) The representing brain: Neural corsatdt@otor intention and
imagery.Behavioral and Brain Sciencdg: 187-245.

Jeannerod M (1997he cognitive neuroscience of acti@xford: Blackwell.

Jeannerod M (1999) To act or not to act: Perspectivesearefinesentation of actions.
Quarterly Journal of Experimental Psycholo§®A: 1-29.

Johnson-Laird PN (1983)lental models: towards a cognitive science of language,
inference, and consciousne€ambridge: Cambridge University Press.

Kaebling L, Littmann ML, Moore AW (1996) Reinforcement learnidigurnal of
Artificial Intelligence Research: 237-285.

Kandel ER, Schwartz JH, Jessell TM (2000nciples of neural sciencélew York:
McGraw-Hill.

Kast B (2001) Decisions, decisiondNature411: 126-128.
Kohonen T (1989%elf-organization and associative memadygw York: Springer.

Kihn S, Cruse H (2005) Mental representation and cogniéliaviour — a recurrent
neural network approach. INodeling Language, Cognition and Action:
Proceedings of the 9th Neural Computation and Psychology WorkSlaogelosi A,
Bugmann G, Borisyuk R, eds), Singapore: World Scientificl§§-192.

Lakoff G (1987)Women, fire, and dangerous things: What categories reveal about the
mind Chicago: University of Chicago Press.

Lakoff G, Johnson M (199%hilosophy in the flesh: The embodied mind and its
challenge to western thouglNew York: Basic Books.

Marr D (1982)Vision.San Francisco: Freeman.

13



1 INTRODUCTION

McCulloch WS, Pitts W (1943) A logical calculus of ide@snanent in nervous
activity. Bulletin of Mathematical Biophysi& 115-133.

Mclintyre J, Zago M, Berthoz A, Lacquaniti F (2001) Doeslifaen model Newton's
laws?Nature Neurosciencé: 693-694.

Moller R (1997) Perception through anticipation - An apphaacbehaviour-based
perception. IrProc. New Trends in Cognitive Sciendgenna, ASoCs Technical
Report 97-0, pp 184-190.

Neubauer J (2003) Reflections on the "convergence" betiteeature and science.
Modern Language Notekl8: 740-754.

O'Brien G, Opie J (2004) Notes towards a structuraligirthef mental representation.
In: Representation in mind: New approaches to mental representatiddlapin, P.
Staines, P. Slezak, eds), Greenwood Publishers.

Pfeifer R and Scheier Chr (1994) From perception to acfibe:right direction? In
Proceedings of PerAc 940s Alamitos: IEEE Computer Society Press. pp 1-11.

Povinelli DJ, Landry AM, Theall LA, Clark BR, CastilléM (1999) Development of
young children's understanding that the recent past is tabeahd to the present.
Developmental Psycholo@p: 1426-1439.

Prinz W (1997) Why Donders has led us astray. Theoret&atssin stimulus-response
compatibility. Advances in Psychologyl8: 247-267.

Rall W (1989) Cable theory for dendritic neurons.Ntethods in neural modelling:
from synapses to networkS. Koch, I. Segev, eds), Cambridge, MA.: MIT Press. pp
9-62.

Rizzolatti G, Arbib MA (1998) Language within our gra3pends in Neuroscienceéq.:
188-194.

Rizzolatti G, Craighero L (2004) The mirror-neuron systdnmual Review of
Neuroscienc@7: 169-192.

Rizzolatti G, Fadiga L, Fogassi L, and Gallese V (1996jritor cortex and the
recognition of motor action€ognitive Brain ResearcB: 131-141.

Rizzolatti G, Fogassi L, and Gallese V (2001) Neurophysicddgnechanisms
underlying the understanding and imitation of actiature Reviews Neuroscience
2, 661-670.

Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1991¢ Parietal association

cortex in depth perception and visual control of hand aclicends in Neurosciences
20: 350-357.

14



1 INTRODUCTION

Segev |, Fleshman JW, Burke RE (1989) Compartmental motietsnplex neurons.
In: Methods in neural modelling: from synapses to netw@ksoch, I. Segev, eds),
Cambridge, MA.: MIT Press, pp 63-93.

Shalizi CR (2001) Causal Architecture, Complexity and Sedfa@ization in Time
Series and Cellular Automata. 2001. Thesis: University/istonsin, Madison,
Physical Department.

Singer W (1999) Neuronal synchrony: A versatile code fod#fmition of relations?
Neuron24: 31-47.

Steels L (1995) Intelligence - Dynamics and RepresentatioriBhe Biology and
Technology of Intelligent Autonomous AgdhtsSteels, ed), Berlin: Springer, pp 72-
89.

Steil JJ (1999)nput-Output Stability of Recurrent Neural Networkttingen:
Cuvillier Verlag.

Stein RB (1967a) Some models of neuronal variabBtgphysical Journal’: 37-68.

Stein RB (1967b) The information capacity of nerve agdisg a frequency code.
Biophysical Journal’: 797-826.

Steinkhler U, Cruse H (1998) A holistic model for an inéérepresentation to control
movement of a manipulator with redundant degrees of fraeBmlogical
Cybernetics’9: 457-466.

Sutton RS, Barto AG (199&einforcement learning - An introductioGambridge,
MA: MIT Press.

Thompson DW (1917Pn Growth and FormCambridge: Cambridge University Press.

Turrigiano GG, Nelson SB (2004) Homeostatic plasticityhie developing nervous
systemNature Reviews Neurosciense97-107.

van Dijk TA, Kintsch W (1983%trategies in text comprehensidtew York: Academic
Press.

von Weizsacker V (195@estaltkreis Stuttgart: Thieme.
Wilson HR (1999)Spikes, decisions, and actio@xford: University Press.

Wolpert,DM, Ghahramani Z, and Jordan Ml (1995) An internadleh for sensorimotor
integration.Science269: 1880-1882.

Yakovlev V, Fusi S, Berman E, Zohary E (1998) Inter-mmalironal activity in inferior
temporal cortex: a putative vehicle to generate long-teésmal associationdNature
Neurosciencd.: 310-317.

15



1 INTRODUCTION

Zwaan RA, Madden CL, Yaxley RH, Aveyard ME (2004) Moving worigiamic
representations in language comprehensmgnitive Scienc28: 611-619.

16



2 STATIC MENTAL REPRESENTATIONS IN RECURRENT NEURAL NETWORK$H® CONTROL OF
DYNAMIC BEHAVIOURAL SEQUENCES

2 Static mental representations in recurrent neural
networks for the control of dynamic behavioural
sequences

What enables an organism to perform behaviour we wouldtoghitive and adaptive,
like language? Here, it is argued that an essential prisiteqis the ability to build up
mental representations of external situations to uneotipd behaviour from direct
environmental control. Such representations can beseealby building up cell
assemblies. The recurrent neural network presented towatpthis task has been used
for generation of action but can also be utilised lbasis for mental representations due
to its attractor characteristics. In this contexteav learning algorithmOynamic Delta
Rulg is proposed, which leads to a self-organised weightilmisivn yielding stable
states on the one hand and which, on the other handaotwates subpopulations of
larger networks that code for the respective situatioa. second step, ways are shown
of how the static information of these internal modsds be transformed into time-
dependent behavioural sequences.

2.1 Introduction

‘What remains if | subtract the fact my arm went wmirthe fact that | raised my arm?”’
(Wittgenstein, 1958: section 621). This question posed by Witkigansalf a century
ago could imply the existence of “something” in the mta@yond the performed action.
Recent research on action and action understanding hasdirsth®wn that internal
representations of the actions to be performed areuyithile acting (e.g. Jeannerod,
1999) — a concept that is also proposed by computer sce(\stipert et al., 1995).
Additionally, many studies revealed a tight connechetween perception of action of
others and the motor system. In electrophysiologicalrddags in monkeys so-called
‘mirror neurons’ were found that respond to both selfegated action as well as
observed actions in others (Di Pellegrino et al., 1@24lese et al., 1996; Rizzolatti et
al.,, 1996; for a review see Rizzolatti and Craighero, 2004)ird\l@aging studies in
humans also show the activation of motor areas whémting or observing actions
(lacoboni et al., 1999, Buccino et al.,, 2001; Grezes et2@0]1). Moreover, mental
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simulations are even generated when subjects view mahlpuools (Grafton et al.,
1997) and understand actions described in sentences (RizaoldttArbib, 1998;
Glenberg and Kaschak, 2002). Some researchers even go arttep by arguing that
motor-control is tightly connected with thinking in geslef~or example Calvin (1996)
regards thoughts as movements that have not takeny@taad perhaps never will and
Fuster (1995) states that thoughts are a kind of imaginedmeae

All these results on ‘shared representation’ as somst called (Jeannerod 1999,
Decety and Sommerville, 2003) have focused the researchevs’on the impact of
bodily activity in understanding of language comprehensiog. (&lenberg and
Robertson, 1999; for further literature see Glenberg asghék, 2002).

Therefore, in our approach we propose to adapt a model rgyinceveloped for
generation of action to build up internal mental repres®ns of the direct
environmental situation. This representation can then bd as a basis to produce
sequences of behaviour as for example language. Thus,ablemprthe model has to
tackle is a bipartite one:

On the one hand it perceives different pieces of envirotaheformation at the same
time, for example different objects or persons, whiakehto be integrated or bound
together into a coherent internal representation ldadaof working memory. Thus, a
small number of neuronal components coding for thesectsbghould be activated
together for some limited time in order to representttiaal environmental situation —
this problem, the so-called binding problem, is widely disetissn systems
neurobiology (for a review see Roskies, 1999, and furtieeother articles published in
the special issue Neuron 24).

On the other hand these pieces of information there ha be used to construct
appropriate sequences of behaviour like for example a sent&ihen producing
language which is linear by nature (de Saussure, 1967) the speakerdecide what to
say first, what to say second, and so on from a nquesgial presentation; this is called
linearization problen(Levelt, 1989) which is the second problem the model hds&b
with.

Let us consider as an example the production of a langeagence of a two years old

girl. At this age, language consists mainly of simpi®-tand three-word utterances

" In this work the term representation is used in the breasesof Steels (1995): as being ‘physical
structures (for example electro-chemical states) whéiale correlations with aspects of the environment’.
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(Mills, 1985). Assume that this girl is in her room, ineother is coming in and a book
is lying on the floor. Now she may uttdlommy book’(Tomasello, 1992) to express
that she wants her mother to read from the bookth&llitems that should occur in the
sequence — the mother and the book — are present as semnmdrgimultaneously.
Thus, the temporal behavioural chain, in this case thteersss has to be produced
while the order of the sequence is not explicitly deteeahiby the information available
from the environment — a task which differs from the tagkgformed by models
proposed by Jordan (1986) or Elman (1990) for example (see CRapiter

The idea of the importance of mental representationsdgnitive abilities — a widely-
used term in cognitive science (von Eckardt, 1993) — has araditjon (e.g. in the so-
called 'picture theory' by Heinrich Hertz dating from 188ie(t after Heidelberger,
1998). Especially in research on text comprehension, thevaree of mental
representations got more and more into the focus in rgeans inspired by the theory
of situation models (van Dijk and Kintsch, 1983; for a reven situation models see
Zwaan et al., 1998) and mental models (Johnson-Laird, 1983). lAdselt (1989)
argues that the construction of mental models in theesef Johnson-Laird is rather
more the rule than the exception as a first step mguage production. Thus, he
describes forming @reverbal messagas a kind of input representation as the first
processing component in Htueprint for a speaker

What is the advantage of mental representations? danaof these representations the
behaviour can be uncoupled from direct environmental confrbis enables the
organism for example to respond to features of the wbaldare not directly present, to
use past experiences to shape present behaviour, to plah whesernally manipulate
the content etc. (Cruse, 2003b). All these instances abaise a special feature of
language called ‘displacement’ (Hockett, 1960). Therefore, canclude that these
mental representations form an essential prerequisitexplain how organisms can
behave in a cognitive way.

Environmental stimuli can be represented by activatiosoetalled cell assemblies, a
theory which goes back to the idea of Hebb (1949). Various Iswtaleealise such cell
assemblies have been proposed like multi-layer perceptviri?s), Hopfield networks
(Hopfield, 1982), Kohonen-maps (Kohonen, 1982), Jordan and rElngworks
(Jordan, 1986; Elman, 1990), recurrent networks and recurresttexWolpert and
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Kawato, 1998; Tani and Nolfi, 1999). Here, we want to referatspecial type of
recurrent neural network: the MMC network. These netwogks e used on the one
hand for the generation of action and on the other handbdilding up mental

representations of the environment due to their attrabracteristics.

2.2 MMC networks

In a nutshell, we want to develop a model here with winiegmtal representations of
existing environmental situations can be built up that irseaond step can be
transformed into sequential behaviour like for exampleesees. Thus, the task to be
accomplished can be split into two parts:

(1) Generating mental representations. For this task ildHme possible to build
up mental representations of more than one segmetutadien consisting of
some known objects simultaneously, i.e. severalasskémblies should be able
to coexist. Take as an example an overall situatidh vimother and a book
building one segmental situation and additionally a bay a chair building
another segmental situation. The goal is to activdteadher-book” assembly
simultaneously with a “boy-chair” assembly within @ural network. To cope
with this task we will describe th®ynamic Delta Rulea new learning
algorithm based on a combination of Hebb’s Rule and thermomdelta rule
to train MMC network (Chapter 2.3).

(2) Generating sequential behaviour. These mental represastanf the
environment which are static by nature and contain no seégugriormation
should then be used in a second step to produce sequehbaiche as for
example the utterance of the little giMommy book’ (Chapter 2.4). This
means that the only input the network receives is theativcaused by the
objects present in the environment which does not contain ragjue
information. Why are MMC network suitable to cope viltbse tasks?
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2.2.1 MMC networks for generation of action and as  basis for mental
representations

MMC networks are fully connected recurrent neural nek&ofhis means each unit (in
the following ‘unit’ and ‘neuron’ are used synonymously whalking about neural
networks) is connected with every other unit via a synapéight (open and filled
circles and squares in Figure 2.1a). Primarily, this netwoak wvented to solve
geometrical tasks characterised by redundant degrees adrndéee the control of arm
movements (Cruse et al., 1998; Steinkuhler and Cruse, 1998kBtler et al., 2000),
six-legged walking (Kindermann and Cruse, 2088§ landmark navigation (Cruse,

2003a).In all these tasks the networks cope with the problemserfsorimotor

integration.
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Figure 2.1: (a) Schematic drawing of an MMC network for thecontrol of a three-joint

arm moving in a 2D plane. (b+c) Relaxation of the arm to net a target point: (b)

Movement of the arm from the starting configuration (--) towards the target point

(cross). (c) Convergence of the three joints (shouldeslbow and wrist) to stable states
(modified after Cruse et al. 1998).

Figure 2.1b shows an arm with three segments (and tbi@s)joperating in a 2-D

plane. If the network is provided with an endpoint to wtiled arm should point to —
here depicted by a cross — it iterates and after sa@pe #te arm points in the direction
of the given point taking a geometrically possible conagion of the arm-segments.
Thus the network is able to solve the classical proloiemverse kinematics even if the
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problem is ill-posed (namely to find three joint angdesh that the hand points to a
given position in 2D space).

In this form, the network exploits the redundancies with& system: a given value is
determined simultaneously in several ways as often fonroiological systems. By
calculating the Mean value of these Multiple ComputeiMMC) the final output is
obtained. The main feature of this network is that dnverges to stable states
corresponding to a geometrically correct solution, eveensthe input does not fully
constrain the solution (Cruse and Steinkihler 1993). Thish@avn in Figure2,1c.
External information is stored within the network byiaion of several units. The
neurons activate each other via recurrent connectiosigah a way that the activation is
maintained.

These networks have two features making them suitableulopurpose. First, as has
been mentioned above, there is evidence supporting & tignnection between
perception and motor system. This connection is a clearstat of these “holistic”
networks as we could not label the units to be eitl@onor sensory elements.
Second, if we uncouple the motor output from the netwibréan serve as an internal
model for example to represent the position of tim ar to simulate the movement of
the arm reaching to a target. Hence, this type of netwamkoe taken as a neural basis
for mental representations because it provides a patgsibilperform mental activities
(e.g. the movement of an arm), i.e. uncouple the beha¥iom direct control of the
sensory input.

As will be shown below, the units cannot only be usegpoesent geometrical entities,
but also abstract entities as for example objects dngun the world (like a book or a
chair). A tight connection between perception and mogstes is also necessary for
language production and has even been found to play an impoota in language
understanding (Glenberg and Kaschak, 2002). Thus, we put forwangigbéhesis that
neural networks like the MMC networks can not only beduse motor tasks but also
for dealing with more abstract entities as is, for gXammecessary for language.

In all applications of the MMC networks mentioned sotfe synaptic weights within
the network are fixed according to the equations formiegotisis of the network. This
is no problem for a body model because this coulcebarded to be “innate”. However,
when an organism faces a new situation comprising diffeobpgcts, the mental
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representation must emerge starting with a “naive” reatirnetwork with small

random weights before the stimulus appears. Therdfwganain goal in the first step is
to find a way to train the weights to stabilise theépait of the network, i.e. to obtain
stable states in the end which form the mental reptasems of the current

environmental situation.

2.2.2 The network

Before explaining a learning algorithm that can be usedain MMC networks, we
want to describe the principles of the network structarmore detail starting with a
simple task: A mental representation of a situatiooukh be built up that is
characterised by two itemg andx,, for example an environmental situation showing
two objects (e.gnmommyandbook). Here we use for a first approach localist-encoding
linguistic units as they code for single linguistic easti namely words (Cangelosi,
2004). Thus, the corresponding neural system consists mfutvts each of which
represents one object (Figure 2.2). The problem of levelemesentation will be
addressed later (Chapt2b).

x1(t)

O

x2(t)

o2

O Weight
@ Input neuron v
O Output neuron xi(t+1) x2(t+1)

Figure 2.2: Architecture of a two-unit MMC network: x;(t) are the inputs, xj(t+1) the

outputs and w; the weights. Neurons that calculate the weighted sum adepicted as
shaded circles. The input neurons, which are suppreiss units marked by S, are

shown as grey circles. The external inputs; are suppressed by the recurrent
connections symbolised by the open arrowheads. The fdifence ¢ between the first
inputs xj(1) and the output valuesx;(t+1) is taken as error signals for training the
weights.

The units form a recurrent neural network in which tiut neurons (depicted as grey
circles marked by an S in Figure 2.2) are suppression unieseXternal inputs; are
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suppressed by the recurrent connections symbolised by theaomsevheads, which
means that these external inputs are only effective durendjrst time step. The output
neurons (shaded grey circles) are linear summation reur@n they calculate the
weighted sum of the incoming activity.
The MMC network is a fully connected recurrent neuralwoekt which can be
described by the following general equation for RNNs:

x(t+1) =W x(t) (1)
Here, x(t) is the recurrent input vector fameurons,x(t +1) is the output vector, any
a nxn weight matrix. Thus, for a network with two units (Fig®t®) the system of

equations holds:

1) v () w15
1) =, 1) v ) @

The next step is to find a distribution of the weighisthat leads to a stable state

x(t+1)z0 and x,(t+1)#0 after the network has been provided with an external input
x ()20 and x,(t)z0. A stable solution is achieved if there is a fixed ietabetween

the parameters, andx;: x, = f(x). The simplest case is given by a linear equation:

alk —bx,=0 ()
This equation is taken as basic equation for the MMC nét¥eading to the following
equations:
: b
X =W [X,; with w, =—
2 (4)
a

X, =W, [X; with w2=B

Thus, equations (4) fulfil the basic equation 3he weights are constrained according
to:

w, v, =1 (5)
Equations (4) can be transformed into equationsb{2)ntroducing damping factors

d. #0 by which the self-activating connections are weagh

x(t+1)=1 Eﬂd 34(t) + w B ()

fw, 5 (t) + d, Dy t))

(6)

1) =
%(t+1) 1+d2
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By means of these equations, the four weights guréi 2.2 and equations (2) can be

specified in more detail:

d W, W, d
1+ld ’le:l+ld ’W21:1+ij andwzzzﬁ'
1 1 2 2

Wi,

The damping factord, change the dynamics of the network: The higher #rey the
slower the network converges to a stable states,Time system obtains low-pass filter
properties (Cruse et al.,, 1998) and oscillatiors thight occur during the relaxation
process can be avoided successfully.

The principle characterising MMC networks, namedycalating one variable in many
different ways, is reduced to a minimum in the cdescribed here, as for each variable

there exists only one equation which includes tharibution of the damping term.

2.3 Training the weights

2.3.1 MMC criterion

As mentioned above, a mechanism for training thghte is necessary to build up a
mental representation of a new situation — for gdanwhen two objects are presented
to the network. To this end, the equations formihg MMC network should fulfil
condition (5) w, v, =1, as the network is unstable in all other casedlowing
condition (5) the MMC network is a neutrally stabiestem.

To put it in mathematical terms: A matrix of weights searched for that has one

eigenvalue, =1 and a second eigenvalug <1. The eigenvectov; and all linearly
dependent vectors’; of v; with the eigenvaluel =1 are stable solutions of the

networks. The target distribution of the weightsaéed by equation (5), i.e. with
given damping factorsl, is obtained by calculating the zeros of the ottarastic

polynom
defw,-A1)=0 with A =1 -
=1-w [, =0

Here,Wy is the weight matrix for given damping factors arttle identity matrix. If the
damping factorsd; are not given in advance (equations (2)), we dao derive a

condition for stability from the zeros of the chatexistic polynom withi =1:
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defw -A1)=0
- (L-w,)[{@-w,,)-w, W, =0 (8)
In general, the zeros of the characteristic polyndgth A =1 provide a condition, which
yields stability of the network; therefore, it srtnedMMC criterion in the following.
Thus, to evaluate the state of the network durgring, we have to look whether this
criterion is fulfilled. To measure how much the glgs diverge from this criterion a
Harmony functiorH is defined:

_ 1
T (det{w — A1)y ©)

HarmonyH approaches the value 1 the more the better the MNeErion is fulfilled,

l.e. the more the characteristic polynom approazkes.

2.3.2 Learning algorithm: Dynamic Delta Rule

The task is — as described above (Chapi2y — to generate mental representations of
more than one segmental situation simultaneoustizinven network consisting of an
arbitrary large number of units. Figure 2.3 showseation of such a network for the
task of building up two mental models each of whitdscribes a segmental situation
comprising two objects (e.grommy/boolkandboy/chail). It is the aim to activate only
those four synaptic connections, which combinefélaéures belonging to the respective
situation (grey boxes in Figure 2.3). Thereforelydiour units of the network are
depicted in Figure 2.3. How could these connectimn$rained accordingly to solve this
binding problem?

If the first new segmental situation is presentkd,two units coding for the objects of
this situation (Figure 2.3x1, %) change their activity. This means, because of the
recurrent architecture, that there is boftre and apost-synaptic changef activity at
those four weights connecting the objects of titisaion (Figure 2.3, grey box, upper
left). This can be exploited by a learning algamtho change these four weights (see
below). Now assume that these weights have alrbadwy trained and the activation of
the respective neurons has stabilised at a consteitdifferent from zero. If later the
network is provided with a second segmental sibumafFigure 2.3xs, x1), a learning
algorithm, which is based on pre- and post-synapiitivity as usual hebbian
mechanisms, would not only activate the four wedgiapresenting situation 2 (Figure
2.3, grey box, lower right) but all 16 weights. Td#ere, the question arises, how it
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could be avoided to change those eight weights tbhanhect features of different
segmental situations and that would produce ‘catissbetween both representations
(e.g. the weight connecting and xs marked by an asterisk in Figure 2.3). For this
purpose, the following observation can be exploifgdthose weights connecting units
of different situations there is onlypae-synapticchangeof activity. The activity of the
post-synaptic side does not change anymore, bethesmitx, has already stabilised
after presentation of the first scene.

I I
= x(O)>——(S s : —_
2 A
E d
Z xa(t) P S o—— i —

A

d

~ x()>—» S * » =
£ A
E d

x4(t) > S |—> | l r

O Weight M P N M
( S} Input neuron v v v v
( Neuron xi(t+1) Xa(t+1) xs(t+1) x(t+1)

Figure 2.3: Section of a network for a task where two seggntal situations 1 and 2 are
presented. Self-activating connections are defined iy The two grey boxes mark the
weights which should be activated when the two situatis are presented to the
network subsequently. The asterisk tags one of the weigghthat would produce

‘crosstalk’ between both representations when beingifierent from zero.

Consequently, we can solve the problem if we findaaning algorithm that meets two
requirements: First, only those weights should di&vated at which we find both@e-
and apost-synaptic changef activity and second, the MMC criterion should be
fulfilled in the end to obtain a stable solutiorowd is it possible to change the weights
that both requirements are fulfilled? This can beieved by applying a combination of
a hebbian mechanism, that, however, uses the taingmnge\x of the activity instead
of the activityx itself, and theXerror as it is used in the delta rule.

We assume that, in the beginning, all the weightkimthe network have small values
(e.g. zero, or small positive random values). Senggut is presented to any of the
input channels, for example to unksandx,. As a mental representation of a current

external situation, which is represented by theml input vector, should be built up
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this input vector can be used as trainer for thevokk. The differenced between the
external input vectox(1) and the output vecta(t+1) can then be taken as error signal
for training the weights (see Figure 2.2 light gtenes). In doing so the loop through
the environment can be closed. As representatio@sbailt up of actually present
situations, these internal models are directly gdmdl in the external world (Cangelosi,
2001).
Therefore, we propose to change the weights byyamplthe following learning
algorithm:

Awy; =n[Ax [AX; (6,

with 177 being the learning rate, Ax =x(t+1)-x(t), Ax; =x(t+1)-x(t) and

0 =x(1)-x(t).

This learning algorithm can be interpreted as alipation of Hebb’s rule, however
applied to the temporal derivative of pre- and pgisaptic activity, and the delta rule.
Therefore, this algorithm is termedynamic Delta Ruleg(DD Rule). The learning
algorithm serves for two purposes: (i) it can setew activate specific weights to form
a mental representation according to the actualr@mwental situation and (ii) it
stabilises this neutrally stable system againsidértal disturbances at those weight
values.

Note that it is not the aim here — as in usualiappbns of the common delta rule — to
minimise thed-error, but to minimise the value of the tempotsioges\x; andAx;. So
after learning is finished there could still bé-arror which is, however, no problem for
the concept presented here. Accordingly, the aais of the output units need not to

equate the input activations after learning.

2.3.3 Results

To investigate the properties of this algorithmfwst consider a network with only two
units as shown in Figure 2.2. The system can liedesithin two different conditions:
One with fixed damping factord (see equations (6)) and another with free damping
factors (see equations (2)). In the former casg omb weights have to be trained,
whereas in the latter case all four weights are fioebe changed.
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Figure 2.4: Example of a network trained using theDynamic Delta Rulewith two
different starting conditions; both simulations were run with the same input vector

X = (5,9). Upper plots (a): The damping factorsd; are fixed to d; = 4 and the learning

rate to 7 = 05. Lower plots (b): The damping factorsd; are free and thus four weights
are variable. Here, a learning rate 7 = 0.002 is applied. In both cases the left plot

shows the output activation of the network, the middIiglot the changing of the weights
and the right plot the value of the Harmony function.

In each of the simulations the weightg were initialised with random values

0<w; < 002. Input values are chosen in a range ok <10 with x [IN. These inputs

resemble the activation of the respective unitsseduby the external environmental
stimuli. Examples for both cases are given in Fegrd (upper plots: fixed damping
factors, lower plots: all four weights free). Intbacases the output activation (first
column) stabilises at values different from zerd #re Harmony function approximates
the value of one (last column) which indicates thatMMC criterion is fulfilled. Thus
in the end, the external situation is representiisithe connections of the network.
The example of Figure 2.4 shows that we need viigrent learning rates to stabilise
the system for the two versions of the task inespit using the same input vector
x =(5,9). The simulation shown in Figure 2.4a (two free ghes, upper plots) is run
with a learning rate; = 05. For this input configuration the network stateiswhen

choosing/ in a range ofo5< < 0.7. The results for a situation with four free wegght

(Figure 2.4bJower plots) are obtained by a learning rateyef0.002.
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Here we touch a general problem of online-learnimgecurrent neural networks: It
couples two dynamics, the dynamics of the recumetwork as well as the dynamics of
the effects of learning (Steil, 1999 .learning rate that is too large can easily cabse
network to diverge. On the other hand, a learnatg that is too small results in output
activities decreasing to zero. Therefore, the learmates is a critical parameter.

A mathematical proof of convergence appears to bdiffecult task due to the
nonlinearity of the system. Even without applying @line-learning mechanism it is
not easy to describe the dynamics of a recurreatahaetwork analytically even it
consists of two units only (Haschke et al., 200devertheless, based on many
numerical tests we can make some general, queditaémarks on how to adapt the
learning rate.

The value of an appropriate learning rate doesonbt depend on the number of free
weights but also on the amplitude of the input aignThe larger the inpuis andx; are
the smaller the learning ratehas to be chosen to yield stability of the netwéidr the
case with fixed damping factos we found that the network stabilises for learning
rates between about 0.3 and 1.5 depending on the wector chosen if at least one
input is larger than five. But if both inputs amaaler than five, much larger learning
rates have to be applied — for example, for antimgator x :(3,4), stabilisation is
achieved by using learning rates in a range.»£ 7 < 56.

If the difference between both input values is ta@e, for example when choosing
x, =2 and x, =8, no stable solution can be found if both weights taained with the
same learning rate. But if the learning rate ispaeid independently to the input size,
stabilisation can be achieved. This is possiblehdf learning rate of the weight, by
which the larger input is multiplied, is chosen #erathan the learning rate of the
weight, by which the smaller input is multipliedhi$ is due to the fact that the network
dynamics depend on the strength of activation efitidividual units and that, on the
other hand, the training mechanism has to couritéracontribution of the units. In the
case of an input vectax =(2,8), for example, a possible solution is to get 09 to
trainw, and, =6 to trainw,. Qualitatively the product of input activation ale@rning

rate appears to be the relevant factor.
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In the situation with four free weights, learnirages leading to stable states have to be
about two orders of magnitude smaller than in thsecof only two free weights.
Additionally, the ranges of appropriate learningesabecome very narrow. In the case
presented in Figure 2.4b, for example, only theesdthe network stabilise, 1 is
approximately in the range between 0.002 and 0.J0#® task can, however, be
simplified considerably, if the weights have upmerd lower bounds, which is a

physiologically plausible assumption. By applyirgubds 0f0.001< w; <3, the network

is prevented from diverging. If the weights readie tbounds during training,
oscillations occur, but — for a broad range ofiéay rates — the network stabilises after
some time.

If the dimension of the input vector is increasédiecomes more and more difficult to
find appropriate learning rates that stabilisedbgut of the network due to the above-
mentioned high non-linearity of the system. In gaheat least for low dimensional
input vectors the DD Rule is able to stabilise slgestem at values different from zero

even in spite of little noise in the range [6f0.01,0.01] given to the input, if some

constraints are fulfilled. But with respect to ttesk this low-dimensional case is
sufficient: A mental model of an overall environrtednsituation consisting of
segmental situations each of which comprises ongmall number of objects can
successfully be built up within the network evethi# overall situation contains a large

number of such segmental situations.

2.4 Transformation of static into sequential inform ation

To accomplish the second part of the goal as dpdcebove, these static mental
representations have to be utilised to generateiesegs of behaviour, i.e. the
linearization problem(Levelt, 1989) has to be solved. There are mariferdnt
examples of behavioural chains varying in compiehie, of course, language. Think
of our example of the girl utteringlommy book’mentioned in the IntroductioBut
also sequences of movements like the grooming halvaef rats and other rodents can
have syntax-like properties (e.g. Berridge et H87); thus they also face a kind of
linearization problemas different behavioural subparts — in this cdsesd are not
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spoken words but movements of limbs — have to bered into a coherent sequence.
Yet in 1951 Lashlewidened this view in saying that in almost everyeteal activity
the problem of temporal sequences, i.e. syntaxpeaound.

2.4.1 Accessibility

The sequence might be either hardwired within thievark as it may be the case in a
quite stereotyped behaviour like grooming or, inreneariable behavioural sequences,
the decision on the temporal order of the items n@tyonly depend on prescribed rules
but also on the actual context. If an organisnfosgexample, faced with a food source
and a mate it should decide on the context — ite gtate and the environmental
situation — if it would be better to eat or to reguce first. Here we want to focus on a
more variable context-dependent behaviour, nanmelyptoduction of language — like in
the example of the young girl.

In linguistic literature different factors are dissed which have an impact on word
order. For example, animate entities tend to oeeaulier in sentences than inanimate
entities (e.g. Harris, 1978) and there seems t& expias towards the order direct object
— indirect object (Bock and Brewer, 1974) that adhe appears in early language
acquisition (Osgood and Zehler 1981). These assangptan be summed up in a more
general hypothesis, thi®cus-of-attention hypothesigohnson-Laird 1968a, b): The
more an item is in the focus of attention, i.e. there salient it is for a speaker, the
earlier it is produced within the sentence. Thisaichppears to directly contradict the
empirical evidence for given — newordering: A new piece of information generally is
placed second in a sentence (e.g. Smith, 1971k @tad Clark, 1977; concernirggven

— newordering in spatial reasoning tasks see Hornag.e2005). As new information is
supposed to be more important, this seems to meveesfocus-of-attention hypothesis.
Different attempts have been made to cope with ¢bigtradiction (for a review, see
Bock, 1982). A simple way to overcome this diffiguis to regard the accessibility of
the items to be a main factor which influenceswvioed order in sentence&ccessibility

is used here in the sense of cognitive psycholdgyving and Pearlstone, 1966): It
refers to the ease of recall by which informati@uld be activated from memory. In
this sense, highly accessible elements tend to ¢osh€lLevelt, 1999). If the recall of a
certain element of memory is facilitated eithertby focus of attention or by preceding
activation due to the context of discourse, it barprocessed earlier. If we assume the
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influence of the activation of previous situatidgase larger than the focus of attention,
a given memory element can — whenever a correspgraintext exists — be produced
earlier while new and thus important informationvae more to the back. But if there
IS no contextual influence, the focussed informatman be the first in sentence
production. Many different hints coming from psytdgical literature confirm the
effect of accessibility on word ordering (Bock, 29&s for example the advantage of
the First Mention, i.e. the element mentioned finsh sentence is more accessible than
the second one (Gernsbacher and Hargreaves, 1888slacher, 1989).

Thus, the principle of accessibility provides aweimple criterion for generating
sequences. Needless to say, that this approaclotcarplain the complete syntax of
any human language. But this principle seems ta Easonable first approximation to
solve the problem as to how sequences could beupeaddfrom the items represented

within a mental representation.

2.4.2 Accessibility in MMC networks

How can the information concerning the accessybdit certain items be coded within
the network? The simplest way is to represent thenform of the activation levels of
the single units representing the items of themgsiguation: The higher the units coding
for a special part of the behavioural chain is\vattd the earlier it will be produced.
Bock (1982), for example, proposes in her modet théormation, which is more
accessible and thus more activated, can be pracdaster (see also Zwaan et al.,
2000). As explained above, the lexical entitiesyvaith respect to the accessibility.
Therefore, we assume a separate, internal systeraxi®i which influences the
accessibility of the lexical entities and therebgtedmines their activation. The
information passes this system before it is pragesgithin the MMC network. Some
units can, for example, be pre-activated becaugbeofiven context and thus set to a
higher level of activity by this accessibility sgst. Figure 2.5 shows how the MMC

network building the mental representation canXpaeded by such a system.
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Figure 2.5: Architecture of a model serving for the task btransforming the static
information of the mental representation into time-degndent sequences. The internal
system, which determines the activation level of theunits according to their
accessibility, is symbolised by the shaded grey box on theft (“accessibility”). In the
model shown in this figure, the activation of unitx; is amplified (by the factor 1.1 in
this example), when the MMC criterion is fulfilled, i.e. after the Harmony H exceeds a
given threshold 8. If the amplified activation of a unit exceeds a thrdsold &, the
corresponding output neuron elicits an action. For futher information see Figure 2.2.

2.4.3 From static to sequential information

One possibility of how the static information repeated by the activation levels of the
units could be converted into time-dependent sexpsers to use a WTA (Winner-takes-
all) network, which is attached to the output c& MIMC network and selects always
the highest activated unit to trigger an actiorerathe MMC criterion is fulfilled, i.e.
after the Harmony functioH has approximated the value one to a sufficienteskeg
Since, however, as for this solution a second netwsoneeded, we propose a simpler
solution that is depicted in Figure 2.5. After i#C criterion has been accomplished
(Figure 2.58,), at least one unit is chosen randomly; in Figugethis is the unik;. The
activation of this unit is continuously increasgdam arousal signal that is used to elicit
the behaviour. Due to the recurrent connectionth@ietwork this influence increases
the activation of all other units, too. Now we chefine a threshold, in the subsequent
motor units. The unit with the strongest activati@aches this threshol first and
therefore triggers the corresponding action fifsiither application of the arousal signal
then drives the unit with the second strongestwaitin above the threshold. After all
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units having exceeded the threshold, the arougabkcan be stopped. Thus, the motor
units can elicit actions sequentially.

An example of a simulation showing such behavisugiven in Figure 2.6. Here, the
first part of the figure up to the vertical dottéde (iteration step 250) shows the
process of building up the internal representatjofa Figure 2.4). The two units
represent for example the wordgok (x;) andMommy(x,). Due to the amplification the
activation of unitx, exceeds the thresho#l (horizontal dashed line) first and therefore
the word Mommycan be produced first (left arrow). Some iteratidater also the
second unitX;) exceeds the threshofland the wordookis produced (right arrow). In

this way it is possible to produce sequencesMkenmy book
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Figure 2.6: Example of a simulation using the model showim Figure 2.5. The initial
conditions are the same as in Figure 2.4(a). When the MMECriterion is fulfilled

(indicated by the vertical dotted line, iteration step250) the output of unitx; (black
line) is amplified by a factor of 1.1 each tenth iteratin. If the activation of a unit
exceeds the thresholdd, (horizontal dashed line, in this example set t@& = 20), its
corresponding output neuron elicits an action (arrow). h this way, unit x, triggers an
action at iteration step 354 and correspondingly unik; at iteration step 429.

This solution has several advantages. First, nomnsenetwork is needed as in the case
when using the WTA network. Second, the motor ougam be disconnected from the
mental representation by simply inhibiting the aalusignal or by inhibiting the
connections to the motor units. Such inhibitoryuahces during imagined or observed
movements have been observed in some studies (&izzmd Arbib, 1998; Jeannerod,
1999). Thus, this model realises the capabilityd@siconnecting the internal mental
representation from the motor system, which is ciemed to be a precondition for the

occurrence of cognitive abilities.

35



2 STATIC MENTAL REPRESENTATIONS IN RECURRENT NEURAL NETWORK$HI CONTROL OF
DYNAMIC BEHAVIOURAL SEQUENCES

2.5 Conclusion and Discussion

The main thrust of this chapter was to present demnwhich can serve as a basis for
sequence production, especially for language ptamubased on information received
directly from the environment. As we have arguetha Introduction (Chapter 2.1), the
first step to cope with this problem is to build apmental representation as a kind of
working memory of the objects present in the emmnent which in a second step can
be used for producing sequential behaviour likegi@ample, spoken sentences.

Many studies revealed a tight connection betweenpdrception and action system
(Rizzolatti and Craighero, 2004) which seems toaheessential property for action
understanding (Rizzolatti et al., 2001), contrglimotor output (Jeannerod, 1999;
Cruse, 2003a), but also for language production anderstanding (Glenberg and
Kaschak, 2002). Therefore, to account for thesairfgs and to fulfil the bipartite task
described, we adapted a model, namely the MMC mé&wahich was primarily
invented for action tasks like arm-movements odiaark navigation and which is able
to cope with the problem of sensorimotor integratio

2.5.1 Mental representations and the linearization  problem

The main feature of these networks — convergingtable states — can be exploited to
generate mental representations. These attractwaaieristics of MMC networks are
similar to the attractors of Hopfield type networi¢dopfield, 1982; 1984). But, Iin
contrast to Hopfield networks which only have aiiéd number of discrete attractors,
MMC networks show a smooth attractor space. Raefgrto the example of the arm
movement, every geometrically possible solution baradopted. Additionally, neither
a symmetrical weight distribution nor a boundedvation function is needed.

By means of the Dynamic Delta Rule the weightslmatrained in a way that only sub-
populations of a larger network are activated atiogrto the respective environmental
situation in an online mode; here it is not necgssadisconnect the learning dynamics
from the dynamics of the recurrent connections likeother approaches. Thus,
application of this learning algorithm serves t@eavith the task of generating a kind
of preverbal messaggevelt, 1989), i.e. a mental representation inchlthe content of
the following language production is bound togethEhis first step can also be
compared with the first process of the so-calledexical Hypothesis- a model for
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sentence comprehension — proposed by Glenberg abdrflon (1999): during this
indexing process the content of the language to be compdelke is verified to
determine what or who is being talked about. Hettezjdea of first building up mental
representations of the situation is well-establisire both language comprehension as
well as language production; our model can proadesxplanation on neural level for
this supposed first step.

Starting from this mental representation the spedies to solve thdinearization
problem (Levelt, 1989) as he/she has to decide about tteran which the single
elements should be produced. Thus, according telt e take here a totally different
approach in generating sequences than others geaiih the processing of temporal
sequences (e.g. Elman, 1990, see also Porr and dti&ng2003). In these studies
networks are trained with sequential input patteres the sequence to be stored is
given in advance (for a recent physiological studysequence encoding see for
example Jensen and Lisman, 2005). This howeveoti®ur goal. In our approach in
contrast a behavioural sequence can be producech fao nonlinear internal
representation without knowing the temporal ordefoke starting the behaviour —
which seems to be reasonable especially when dealith language production.
Training like in Elman networks could however beedisin our model to learn

grammatical information that may later on be ampbg the accessibility system.

2.5.2 Scaling the network

As other researchers like Cangelosi and Parisi §1%¥4), who examined the
‘evolutionary emergence of a very limited “languageade up of just two one-word
utterances’, we started to learn and represerdt&ins consisting of a small number of
items within our framework and to transform thertoisequential actions. Therefore,
the system provides a basis for the control of Enghains of behaviour as can be
observed for example in language production of gocimldren at the age of about two
years (see Chaptérl).

If we try to enlarge the representation up to mituien three or four different objects
which means adding more units to the model, stglpiioblems arise. Although this
seems to be a disadvantage at first glance at fleasta neurocomputational point of
view, the model could provide an explanation foe timited capacity of working
memory (Baddeley, 1986): various experiments shbat pnly a relatively small
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number of objects of around four can be held inkimgy memory concurrently (Luck
and Vogel, 1997; for a review see Cowan, 2000).

Nevertheless it has to be possible to scale themsy® problems that require a higher
dimensionality as for example longer sentences. Howld this be achieved? The
studies cited above concerning the capacity of imgrkmemory point at a solution:
Though the number of objects to be stored withie amodel is limited, the objects
themselves can be integrated, i.e. consist ofréifiefeatures. A similar solution could
arise when considering the construction of a soragwiore complex MMC network,
which has been used to represent the kinematiassoflegged insect body with a total
of 18 degrees of freedom. The complete network evoedjuire a matrix witl276x 276
weights (Kindermann, 2003). However, the networdldde simplified dramatically by
dividing it into six different nested subnetworkehunks”). Each leg is represented
within the body module simply by a leg-vector poigtfrom the body to the foot point.
Such a vector could be called a “symbol” of a legrduse it comprises the main
information about each leg, namely the positiotheffoot point in relation to the body.
The details concerning the leg joints are represkwithin the leg subnetworks.

A similar approach seems to be reasonable whernrstatdeling or producing language:
A possible solution to cope with more complex ditwas could be to subdivide larger
structures into many small modules containing cBumk subparts of sentences as the
segmental situations we described above. Takingppadoéwn view, such nested
structures could be applied to represent lowerl lenfermation down to morphemes
and phonemes. In this way, the limitation arisiranf using localist-encoding linguistic
units could be overcome. A similar approach has béen proposed by Haschke et al.
(2001) to solve the problem abntrolling the dynamics of large recurrent neural
networks by breaking them down in small modules\gia small number of (input)
parameters.

Taking a bottom-up view, nested structures couldubed to address higher level
symbols. Different approaches exist to analysesthgcture of sentences. One of these
approaches is the so-callé@nstruction GrammacFillmore, 1988; Goldberg, 1995).
Here, constructions are considered to be the hasis of language. No difference is
made between lexicon and syntax, as lexical anthsgoal constructions mainly vary

with respect to their internal complexity while repenting the same kind of declarative
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data: Both combine form and meaning. Thus, strisggaking lexical items are also
constructions (Goldberd,995). As an example let’s take the use of the iEmghade-
up verbto floos In different expressions lik& floosed Y the Zobr ‘X floosed Y’most
native speakers of English assign different meantogthese sentences. As the verb
itself has no meaning, the construction seemsny emy meaning inherently. Kaschak
and Glenberg (2000) provide a test to verify Gotgbenotion of construction; they
have shown that not only children — as has beerodstrated in language acquisition
studies (e.g. Pinker, 1989) — but also adults eresisve to the meanings associated
with particular constructions (see also Fisher,419¢aigles and Terrazas, 1998). This
implies that the abstract structure becomes a &irgymbol that is at least in some way
independent from the words the construction comgis{Tomasello, 1999). Tomasello
(1999) gives a possible explanation, why constouctould have become a special
form of internally complex language symbols: Theyuld be suitable to react to
recurring communicational functions.

Hence we can argue that — like the above-mentidaegevectors which could be
interpreted as symbols for the legs — it is alsmso@able to think of higher symbolic
levels like constructions. All these consideratipogt into a direction how the problem
of scaling could be solved: We have to subdivideranoomplex environmental
situations into smaller modules containing subsétsformation, as we have already
done by activating small segmental situations, tvitieen in turn have to be combined

to larger structures.

Two major problems have to be addressed in futuekwFirst, reasonable ways have
to be proposed of how many small network modulagddcbe combined to cope with
more complex behavioural tasks. The second issneecos the kind of information that
should be represented within neural models to “cstdad” the world outside. Up to
now we only have treated situation models thatséaéic by nature because they are
simply built up from objects existing in the envirment. Glenberg among others points
out that with regard to real understanding it ipamant to be able to internally simulate
not only the objects by themselves but alsodtierdancesof objects, i.e. the actions
that could be done with objects (Kaschak and Glepki2000).According to Gibson
(1966; 1979), who first coined the notion of affandes, for example a chair is a chair
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because it affords sitting for adult humans. Trenesfit is necessary to find ways to
combine the static representations of externaasans with dynamic representations of

actions or events.
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3 Modelling Memory Functions with Recurrent Neural
Networks consisting of Input Compensation Units:
|. Static Situations

Humans are able to form internal representationth@finformation they process — a
capability which enables them to perform many défé memory tasks. Therefore, the
neural system has to learn somehow to represeettsspf the environmental situation;
this process is assumed to be based on synaptigeha The situations to be
represented are various as for example differgrasyf static patterns but also dynamic
scenes. How are neural networks consisting of nlytaannected neurons capable of

performing such tasks?

Here we propose a new neuronal structure for @eifneurons. This structure allows to
disentangle the dynamics of the recurrent conniggtikom the dynamics induced by

synaptic changes due to the learning processeseirbe signal is computed locally

within the individual neuron. Thus, online learnirggpossible without any additional

structures. Recurrent neural networks equipped thigse computational units are able
to cope with different memory tasks. Examples illate how information is extracted

from environmental situations comprising fixed pats to produce sustained activity
and to deal with simple algebraic relations.

3.1 Introduction

From early childhood on humans brains have a fumddah ability: they build up
representations. Brains and their constituentsheheons, are specialised to represent
aspects of the environment which means that thesens or groups of neurons “stand
for” those aspects. This information coded withgural circuits can be multifaceted.
Information of objects like a tree or a chair canveell be represented as rules, for
example underlying grammar in language, or dynaaents like the movement of one
person towards another. To start with we want tmg$oon the two first examples: We
propose a new neuronal architecture that is abteesd with these problems. Its ability
to represent dynamic situations is treated in Giragpt
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A basic function of our brain is to provide somadciof working memory (Baddeley,
1986, 1992). It allows us to hold representatioh®xternal information actively in
memory, at least for a short time, to be able tovathin and react to the world. In
various experiments the properties of working ment@ve been investigated applying
so-called delayed response tasks. The pioneer haslbeen done by Fuster and Niki
(Fuster and Alexander, 1971; Fuster, 1973; Nik¥4E9 1974b). In continuing this work
many studies using electrophysiological recordisigew a stimulus-specific, enhanced
delay activity in several brain areas (for reviesee Fuster, 1995; Miyashita and
Hayashi, 2000; Wang, 2001). This sustained inteativity in the absence of the
external stimulus is argued to be the neural satestrf working memory.

Another important capability human brains haveepresenting rules. This becomes
apparent when regarding language learning. Marc¢ual.(1999) have shown that
statistical learning mechanism — which are, of seunot called into question to exist —
do not exhaust the child’'s repertoire of learninggchmnisms. They performed
experiments showing that already 7 month old balaies able to extract simple
algebraic relations from acoustic input. The babiese able to distinguish between
three word sentences consisting of made-up wordsf@alwing either the condition
“ABA” or “ABB”. As the test words were totally newand the sentences were of the
same length the babies could not distinguish thasedb on transitional probabilities or
statistical properties.

Representing such algebraic relations means regmege “open-ended abstract
relationships for which we can substitute arbitriégyns. For instance, we can substitute
any value ofx into the equationy = x+2.” (Marcus et al., 1999; see also Chomsky,

1980; Pinker and Prince, 1988; Pinker, 1991; Masrdual., 1995; Marcus, 2001). The
point made in the study is that it is not only ttegpability of generalising due to
statistical learning mechanisms which enables ustlike the young babies — to build
correct sentences as described but especially #pabdity of representing the
underlying general rule: It is important to be afoleepresent such rules.

For many of the different abilities of brains cortggional models have been proposed.
The most promising among them are models with reatiy coupled neurons because
they seem to resemble natural neuronal assemlasts As the tasks mentioned require
an internal representation of the current extesitalation, some form of learning is
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necessary. To model example-based learning diffdoems of error backpropagation
(Rumelhart et al., 1986; Hertz et al., 1991) ardelyi used training procedures for both
feed-forward and recurrent neural networks (RNNBJt backpropagation is often
considered to be biologically implausible because érror signal has to be provided
externally and a specific additional network isuieed that is able to propagate these
error signals.

Additionally, most artificial recurrent networks mosed to learning situations suffer
from two severe problems. On the one hand, trairgngarticularly difficult in RNNs
because two different dynamics are intertwined:r&hs the dynamics of the RNN
itself, the properties of which depend on distritwitand size of the weights. If, on the
other hand, these weights are changed additiowiié/ to the learning procedure, a
second dynamic process is introduced that interithsthe first one. Therefore, neural
and synaptic dynamics are coupled in a very irtieicgay (Del Giudice et al., 2003)
making the control of the network a hard problere{S1999). This difficulty is often
solved by application of off-line training procedar that separate the dynamics of the
network from the dynamics of the training procedlike in Contrastive Hebbian
Learning (Movellan, 1990, Baldi and Pineda, 199i And Seung, 2003) or training
echo state networks (Jaeger and Haas, 2004), dlabg-tuning the parameters (e.g.
Seung et al., 2000). But neither a cut-off of thedback loop nor hand-tuning seems to
be biologically plausible. Online learning algonis like real-time recurrent learning
(e.g. Williams and Zipser, 1989b), in contrast, @iten very slow and computationally
very expensive concerning storage capacity and atatipn time (see (Williams and
Zipser, 1989b; Schmidhuber, 1992; Doya, 1995).Heurhore, they are non-local and
would require a large additional network structuwieen being applied to biological

systems.

In this chapter, we propose a new biologically irep computational circuit of a
neuronal unit calledinput Compensation Uni{IC Unit) which disconnects the
dynamics of the recurrent network from the dynandigs to the learning procedure and
therefore allows for an easy training of RNNs incauine mode to model the two tasks
mentioned above — i.e. holding an item in memoryictvhmeans learning the

representation of static patterns, and represensngple algebraic relations.
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Additionally it is possible that a network equippeidh those units is also able to learn
dynamic situations. This is described in Chapter 4.

The circuit acts within a neuronal unit and incagies a learning rule that formally
corresponds to the delta rule (Widrow and Hoff, 9®ut does not require a separate
network for backpropagating the error. Each neuooly needs local information
directly available via its synaptic connections.eTérror is determined within each
neuron. Therefore, the training procedure is unsuged as no global trainer is
necessary and each neuron relies on local infoomatnly. Consequently, the
computational costs are very low. Thus, our modedrcomes the main objections
against traditional approaches in training recurreural networks. A very similar rule
has been proposed by (Kalveram, 2000) for trainiegdforward networks. The
difference to our approach is discussed below (@&nad5).

The final goal behind this approach is to desigmemory system that contains the
representation of many different situations. Sutthaons may comprise static or
moving objects or describe connections betweennaosg input and a motor output,
analogue to so-called motor primitives as propdsetiVolpert and Kawato (1998), for
example. The view, that different situations arered by specific networks, is
supported by physiological findings (Fogassi et2005). Studying mirror neurons, i.e.
neurons which likewise represent sensory as wellmasor aspects, Fogassi and
colleagues (2005) have shown that different neuasesactivated when movements are
either observed or performed that are similar Hulliferent meaning (e.g. eating or
placing). In this chapter we do not deal with theesfion of how cooperation or
selection of different situation models may be arged, but first concentrate on the

basic structure of such situation models.

In the following (Chapter 3.2) we want to specifie ttasks in more detail the network
should be able to deal with. The structure of theud proposed is described in Chapter
3.3. After having presented the results (Chaptd) ghe chapter concludes with a
discussion of the networks’ properties includingmso biological interpretations
(Chapter 5).
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3.2 The tasks

3.2.1 Learning a static pattern to produce sustaine  d activity

The first task the network should cope with is &present a fixed static pattern
consisting of analogue values that is given astitpyproduce sustained activity even if
the input pattern disappears. Specifically, th& iasas follows: The recurrent network
consists of at least units. As an example a network far=3 is depicted in Figure
3.1a. Anyn-dimensional input vector is provided to the netikvdrhe learning algorithm
should change the weights in a way that all unfthhe network adopt activations that
correspond to the input and maintain their actorateven after the external input is
switched off.

Which values should the weights take if a fixeduinpector is presented? Assume that

we have a network with units with output valueg;, Xo, ... X, and the input vector
consists of the componenas= (a,,a,,..a,)". The task is then to find a weight maivik
with a=W [a. This means that the weights of the recurrent agkvshould form a

matrix that has the vectofa,a,..a,)’ as an eigenvector corresponding to the
eigenvalueA =1, while all other eigenvalues satispjr|<1. As we haven® weights

there is a manifold of matrices that fulfil thisnchtion. n equations determinedegrees
of freedom. Therefore(n2 —n) of then? weights can be chosen arbitrarily. Foe 3

one possible solution is given by matrix W1:

a a
Y(a +a,+a,)la, a, (W1)
a8 a

L Lo

with 1=(1,1,", W1 can be rewritten ai/(1" [@))m". W1 is a skew projector. It
projects ontospar{a} along the space that is orthogonallt&Such a network does not

only stabilise an input situation given by vec(e{,az,as)T, but any multiple of this

vector. If the initial activations of the units aset to values that deviate from this

condition, the network relaxes to a vector thatyshhis relation, i.e., to a multiple of

(a,a,,a,)". The network can therefore be described as formingttractor consisting
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of a two-dimensional subspace that is describethéylanea, x, +a,x, +a;x, = 0This

network is only neutrally stable. Neutral stabilineans that if any weight is changed
arbitrarily, the activations of the units increaseinfinity or may decrease to zero.
Therefore, a learning mechanism is needed thatnaiically stabilises the weights

against disturbances as for example disturbanaesodsynaptic noise.

3.2.2 Representing simple algebraic relations

As a further task, the network should be able éoessimple algebraic relations. Here,
we deal with two examples of such relations: Fitst, results obtained by Marcus et al.
(1999) should be simulated with the network progokere. Marcus and colleagues
found, that the infants tested were able to extadustract algebra-like rules that
represent the relationship between variables ssctha first item X is the same as the
third item Y”. Two experiments have to be performbidthe first one the network has
to be trained with external input of structure “AB&nd in the second one with external
input of structure “ABB”. The network can be testaiterwards (just like the babies)
with consistent input, i.e. input resembling theusture of the training phase, or with
inconsistent input. The test input has to condistaoables not yet presented during the
training phase to prevent learning based on tiansit probabilities. The babies in the
experiments described above paid attention to rthensistent sentences for a longer
period of time (for details see Marcus et al., 1999

The second task to be learnt by the network is rgereral by nature: It should be able
to represent simple linear equations. The netwdndulsl be able to sum up two
variables, i.e. to represent all possible configares ofx; andx, that result in a value
X; =X, + X,. If we do not wish to apply a 3D look-up table fdl possible cases, the
mechanism, i.e. the underlying rule or equatioouth be represented which can then

be applied to any given values. For this specianeple, an easy solution is to use two
input unitsx; andx,, the output of which is fed in as input to a thincit, with weights

of unity. However, there are two tasks relatedthgiThe taskx, = x, + x, also implies
that x, = x; — X, and x, = x, —x,. Of course, two further independent networks cded

constructed that can solve these additional tashkis. solution would require a kind of
selector network that decides which of the thraaoeks should be used depending on

the task given.
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A simpler solution is to form one *“holistic” networthat represents the complete
situation and can solve all three tasks. This recuiretwork is given by the equation
x(t +1)= W x(t) or, forn=3, by:

Xl(t +1) = W11[X1(t)+ Wi, Xz(t)+W13 [Xs(t)
X(t+1) = w215<1(t)+w22 Ds(t)+w23 (1)
Xt +1) = wa, 0 (t) + W, B, (t) + ey O t)

Here, x(t) is the vector describing the actual activatiomhefn units (n =3 in our case)
and x(t +1) the vector describing the activation in the foliogvtime stepW describes
the n? weightsw; (i =1ton, j =1ton). If the weights are chosen appropriately, this
system has stable solutions that fulfil the equmtig+x,—x, = 0. An appropriate

weight matrix is given by matrix W2:

0 -11
-1 0 1 (W2)
1 1 0

The tasks regarded here can be understood asnpettepletion tasks: Given any two
values as input, after relaxation the network pithvide all three values, x,, andxs at
the output, i.e., a correct solution in any casher&fore, depending on the input
variables chosen, any of the three subtasks casolbed by this network. A correct
solution is even found if only one input value isfided. As this latter task is
underconstrained, different solutions are possible solution actually chosen by the
network depends on its earlier state.

3.3 The model: A recurrent neural network with IC U nits

3.3.1 Structure of IC Units

In this section we explain the architecture of awoek that can cope with both tasks
specified above and can, as will be shown in Chiaptelso treat dynamic situations.
To explain the structure of the network and to egde its individual units let us
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consider a network that consists mfrecurrently connected units. An example of a

three-unit network is shown in Figure 3.1a.

a

External input
Wiq [Wip Wig

a,) ;(J\ Wai1 [Wop [Wos

[ Wiy | Wiz |Wig

X,(t) X,() X5(t)

Recurrent input

x(t+1)
Output

, ™
External input

a(t)>

|W11 |W12 |W13

X;(1) X,(t) X5(t)
Recurrent input

X (t+1)
Output

Figure 3.1: (a) Schematic drawing of a three-unit recurrennetwork; g is the external
input, x; the recurrent input and w; are the weights. (b) Architecture of one linear IC
Unit; s(t) is the weighted sum of the recurrent inputs andj(t) the difference between
the external input a(t) and s(t). (c) Architecture of one IC Unit with the nonlinear
extension (see text for explanation).

Each individual neurong (i =1ton) is equipped with a special internal structure
(Figure 3.1b) described in the following. The defncrtree is partitioned into two
regions: One region with fixed synapses, whoseypeaggic neurons belong to sensory
neurons transmitting the external in@utTo simplify matters each neuron can only be
stimulated by one external stimulus. As the syraptight is fixed it is not specified in
Figure 3.1b and 1c. The second dendritic regiash&acterised by active synapsgs

whose presynaptic neurons are components of therest network (Figure 3.1a) and
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are recurrently connected to neus@rActive synapseare synapses which can be either
potentiated or depressed (Montgomery and Madis684Rand thus are exposed to
learning. Therefore, the activation of a single meuis determined by an external
componenta; and an internal component, the weighted sum ofinttexnal recurrent
inputss. The weighted sum of the internal recurrent inmitseuronx; is given by

s(t)= iw,j (t) ; (t) or, for the complete network(t) = W (t)x(t).

Such a splitting in an external and a recurrentpmmment can also be found in the model
described by Del Giudice et al. (2003).

3.3.2 Training the synaptic weights

The overall goal in both tasks mentioned above i®present the external situatma
static pattern or several examples following arelgic relation) perceived via the
sense organs within the network. ‘Representingettternal situation’ can be defined as
follows: If the weighted sum of the internal re@nt inputss of neuronx; equals the
external inputa;, this stimulus is represented within the netwodcause then the
external input is no longer needed to elicit thevation characterising the stimulas

In order to reach this goal the synaptic weighifshave to be adapted in a learning
process.

As has been mentioned above, a major problem vathing RNNs is that the dynamics
of the network are superimposed by the dynamicstdiube learning procedure. Both
dynamics could however be separated, if, duringitrg, the overall outpux; would

always equal the external input (i.e.=a ) independent of the actual learning state,

l.e., independent of the actual values of the wseigk. This can be achieved if we

determine the output by
x(t+1)=a(t)=st)+alt)-st)=st)+at) (1)

with & (t)=a(t)-s(t). The corresponding circuit is shown in Figure 34ddid lines).
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To attain the overall goal, the weightg have to be changed such thaft +1) = s(t)
or, in other terms,di(t):o. This can be obtained by application of the leagni

algorithm
w; (t+1) = w; (t)+ 2wy with Aw; = £ (t) B (t) (2)

with £ >0 being the learning rate (for more detailed infotiova about the choice of
£see Appendix in Chapter 3.6). This learning algponitformally corresponds to the
delta rule. However, in contrast to the traditioaglproach, the delta error is here
assumed to be determined and propagated locallyinvgach neuron (Figure 3.1b,
dashed arrows) as has been proposed by Kalvergdd)(&dr feedforward networks or
Jaeger and Haas (2004) for echo state networkslicapgpn of the rule depicted in

equation (2) leads to a weight change umfift)=0, i.e., until the suns of the

weighted recurrent inputs equals the external irgpuiVe call units with this internal
structurelnput Compensation UnitC Units), because this circuit compensates the
effect of the external input, independent of thialcstate of the recurrent weights.

To be able to address this memory content latexr necessary to prevent the network to
automatically adapt to each new input situationusftonce the synaptic connections
have learnt the specific input situation, furthesirhing is stopped. A simple solution is
to finish learning after the errad has fallen below a given threshold because then
external situation is represented within the nekwofo simplify matters, in the

simulations shown here further learning is stoppédhe summed squared error

E(t)=>.3(t) of the entire network has fallen below a givereshold.
i=1

3.3.3 Extension of the neuronal structure

To account for working memory capabilities, it slibalso be possible to sustain the
activation once induced by a stimulus. As explaiabdve the overall output of an IC
Unit as shown in Figure 3.1b will, however, decayzero after the external stimulus
vanishes. This is due to the property of the ICt§Jrthat the output always equals the

input. Thus, the network cannot remain active toagonvorking memory.
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In order to be able to sustain the activation,afehitecture requires an extensiona;!f
iIs smaller thars in a unit shown in Figure 3.1b the output actvatk; decreases,

because then negativ@values (recall thatJ (t) =a (t)-s(t)) are added ta. This

effect can, however, be avoided if we rewrite egua{l) by using rectifiers, which
means that only the positive part of the functistransmitted. The rectifier is marked

by a+ in the following equations.

For an explanation, we will first consider only pive input values @(t)z 0). If the

weights are small at the beginning of training, éample zero, which means that

s(t,)=0, we can assume that during training the conditians (t)< a (t) is fulfilled
which is biologically plausible. With this assunuptj the conditiona (t)=0 can be

replaced bys (t)= 0 and equation (1) can be rewritten:

x(t+1)=s@)+[al)-st)]+  fors(t)=0 (3.1)

Following (3.1),% still corresponds ta, even if a(t)<s(t). Therefore, using this

rectifier, the external input can indeed be switclodf after training is finished, i.e.

a,.(t):O, and no changes occur to the output (if trainiag hot yet been finished

completely, the activation of the units will slowtiecrease to zero, see Discussion in
Chapter 3.5). Note, that the rectifiers do notuefice the)value used for learning.
Furthermore, we can generalise this condition fegative input valuesa((t)s 0): If

we again assume that the weights are small ate&behing of learning, for example
zero, we can state@<|s(t) <|a (t), because during learnirgwill approachs; starting

from zero also for negative input valuags Correspondingly, we can now replace the

conditiona (t) < 0 by 5(t)< 0. This leads to the second equation

x(t+1)=s(t)-[-al)+st]+. fors(t)<o (3.2)

Both equations (3.1) and (3.2) are depicted indiheuit diagram in Figure 3.1c. The
condition 5(t)=0 and s (t)<0 are represented by the clipping functions. The two
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rectifiers used in equations (3.1) and (3.2) angiated in the lower part of the circuit
(Figure 3.1c). This circuit fulfils three requirents:
(i) It allows to apply both positive and negative inpaluess;.
(i) After training is finished, it maintains its actii@n after the external input
has been switched off.

(i) It shows the same training properties as the liveasion (Figure 3.1b), if

the condition0< s (t) < [a (t) is fulfilled.

The results shown in the following were obtainedubing this expanded network. Note
that the nonlinear expansions applied are only s&ug for being able to use the
network after learning is finished, i.e. in theti®gg mode. The learning procedure as
such can still be described by a linear approach.béfore and during training the
activations of the neurons are only determinedHgy éxternal input values due to
their input compensatioproperty, the dynamics resulting from the weigharmges do
not affect the dynamics of the complete network Hmtefore do not cause stability
problems.

3.4 Results

3.4.1 Learning a static pattern to produce sustaine  d activity
Training the network. Let us first consider the case of a network coimgjsbf

three units that receives an external, fixed inpattor (a,a,a,)". Numerical

investigations reveal the following results whicdmalso be proven to hold generally
(see Appendix in Chapter 3.6).

If all nine weights including the diagonal weights; which each neuron influences

itself directly, are allowed to be learnt and a#lights are set to zero at the beginning,
the IC learning procedure (Figure 3.1, Eq. (2))vmtes the solution shown by matrix

W3

aa aa aa
Yo’ +a +a2)laa aa, aa|={/a)ra (W3
aa &g, aa
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Matrix W3 is the orthogonal projector ontepar{a}. In geometrical terms, the

behaviour of an individual unk can be described as follows: Assume the network
consists of units and is trained with a vectarThe output of unik is determined by

X (1) = Wik (£)+ Wi (t) + ..+ wix, (1),

which describes a linear function in am+1)-dimensional space. This function
corresponds to amdimensional hyperplane that contains the origid, after training,
the (n+1)-dimensional vector(a,,a,,..a ,a,)". a'x and x'x describe the additional
dimension given by the output value(t +1). This hyperplane also contains tfre-1)-
dimensional subspace that is contained in rikdimensional spacex{ to x,). This
subspace is orthogonal to vecfar,a,,..a,)" . In other words, this hyperplane could be

constructed in the following way: The hyperplandireg®l by X', = 0 is rotated around

the vector orthogonal t¢a,,a,,..a )" until it contains the vectofa,,a,,..a,,a' )" . For

n=2 andk =2, this process is schematised in Figure 3.2.

A
X

Figure 3.2: Geometrical illustration for the process otraining a two-unit network. The
axis around which the plane is rotated is denoted by thgrey arrow.
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The network adopts solution W4 (for a proof see émpx in Chapter 3.6), if during
training all diagonal weights are constantly setem:

0 aa,/(a} +a.) alas/%ai +a32g
a,/ Eaf +a323 0 a,8,/la’ +a,” (W4)
aa/la’+a?) aa,/(6+a,) 0

In general, matrix W4 is asymmetric. Tha&limensional hyperplane described by unit

contains the origin and the vect(, a,,..a ,a )", but now contains the" coordinate

axis instead of the vector orthogonal(tg, a,,..a )" as was the case for (W3).

Solution (W4) is of practical interest, becausetstg from this solution, a manifold of
solutions can be constructed by replacing the diagweights by arbitrary positive

valuesd first and then normalising all weights of unity multiplication with1/(1+d,).

Parametergd; can be interpreted as damping factors: The ladyethe slower the
network approaches to a stable solution. A spé@atment of the diagonal weights is
plausible in biological systems, because thesehm®igorrespond to the only synapses
by which the neurons are connected to themselves.

Addressing the memory content. After having trained the network with a certain
input vectora this external input can be switched off withouaehing the output; thus,

due to the internal connections built up duringnésay the network keeps the activity
induced by the external stimuli even if the stinark no longer present.

How does the network react to incorrect input?ifd limited period of time an input

vector is provided to the network that does notrespond to its stored vector, the
network relaxes to a stable state that correspoémdiss stored vector or a multiple

thereof, after having switched off the input. Thiere, the network has the ability of
pattern completion. For a network characterisedniatrix W3, the stable state is
reached immediately. For matrix W4 the relaxatiakes some time depending upon

valued; (d. >0). A givene-neighbourhood of the stable state is reachedaster, the

more similar input vector and stored vector (ongsrest multiple) are.
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3.4.2 Representing simple algebraic relations

Training the network. The second task addressed in the Introduction (@hap
3.1) and Chapter 3.2 was to learn algebraic ridesgiven in the condition ABA or
ABB on the one hand and equations like=x, + X, on the other hand. Such tasks
require that not only one vector is learnt, bublatson for all vectors is found that fulfil
the respective condition.

Providing a network consisting of IC Units with utpvectors following the former
condition ABA (e.g.(515) ,(232) ) leads to weight matrix (W5):

05 0 05
01 0 (W5).
05 0 05

Training the network with the second condition #@gplby (Marcus et al., 1999),
namely ABB (e.g.(511) ,(233) ) another weight matrix is obtained:

1 0 0
0 05 05 (W6).
0 05 05

The second task mentioned in Section 2.2 requissdugion for all vectors fulfilling the

equation Zc,xi =0 for given ¢ OR, ie. all vectors of an(n-1)-dimensional
i=1

hyperplane containing the origin. Geometrically; fo= 3, the solution is given by a

plane in the 3D coordinate system that containpdailits given by the coordinates that

fulfil the equationc x, +c,X, +c;X; = 0 Therefore, the solution is completely defined if

three points are given. A(S0,0,0) is already a solution, only two further exd&spnot

collinear with (0,0,0) ) are sufficient to specify the solution. Gailg, the solution for

any task described bEc,xi =0 with fixed coefficientsc IR is uniquely defined if
i=1
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n-1 examples are presented to the network that forr(nari)-dimensional subspace

and do not contain the origin.
Application of a network with IC Units actually s to this solution. To illustrate this

ability, we again use a three unit network. Thé tasbe trained isx, = x; + X,. Any
two training examples fulfiling the equation couié used (e.g(5-14), (- 143)).

The same solution (W7) is obtained whether thenitngi examples are presented in
periodic epochs or in random order:

2/3 -13 13
~13 2/3 13 (W7)
Y3 Y3 23

Here, all nine weights were allowed to learn. MaWW7 can be interpreted to be a
special case of matrix W2 that is expanded by egpdin of a damping factat = @s
explained above. If, however, the diagonal weigis constrained and always set to
zero, we obtain a solution that corresponds to imadAf2 (see Chapter 3.2). These
results are based on numerical investigationsnargé proof is still pending.

Addressing the memory content. If a network trained on either of the two condigon
ABA or ABB is provided with a consistent input (e.g717) for the first condition
ABA), it immediately stabilises at this values evkthe values have not been presented
to the network before, i.e. are totally new. Iftumn, inconsistent input is presented to
the network (e.g(511) for the first condition ABA), the activatiosf the unit not
matching the condition asymptotically approachesdbrrect value.

To address the memory content after having traatiithe weights according to the task
of representing the summation (or, based on m&udx after the application of any
positive damping factors), the network is provideith a vectora the first component
a; and the second componeatof which are fixed to certain values while thedtas is
set to zero. In the end, the third component shbelthe sum of the other components.

In each case, the network provides a solution finfits x, = x, +x,. But it is not

necessarily the case thgt=a, and x, = a,. This condition is fulfilled in two cases:
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(i) x, =a, andx, = a,, if |a1|>|a2| and|a2|2%
(i) x, =a, and x, = a,, if |a2|>|a1| and|a1|2|%_

If, however, |a,|>|a,| and |a2|<% we obtainx, =a, and x, :az—aﬁTaz; and if

2]

la,| >|a| anda > o we obtainx, = a, -

% andx, = a,.

Therefore, if alla [ (i) O(ii )unit x3 approaches asymptotically the value=a, +a, .
Nevertheless, in the other cases as mentioneddtweork still stabilises at a value

following the summation task, = x, + X,. Thus, the trained network is able to cope

also with this pattern completion task. Correspoglyi solving the equation for the
other variables is possible, too.

3.5 Discussion

In this chapter we propodaput Compensation UnitlC Units) as a new internal
structure for artificial neurons that can be usedaasic building block of recurrent
neural networks and allows for an efficient tragniof the synaptic weights. RNNs
consisting of these IC Units and being trained he tlescribed way have two main
advantages over traditional approaches in traimewyrrent neural networks making
them biologically more realistic:

First, the learning algorithm can be applied online. without cutting the recurrent
connections, because the learning dynamics aretdisgled from the dynamics of the
recurrent network as such. This is possible du#édollowing properties: As the sum
of the weighted internal inputs is subtracted frin@ external input, the output of the
neuron always equals the size of the external iapdtis therefore independent of its
learning state (Eqg. 3.1 and 3.2). In other wordgha built-in compensation mechanism
always replaces that part of the input signal desitesponds to the sum of the recurrent
signals, the global dynamics of the network is @cted from the learning dynamics.
Therefore, no stability problems arise here duaéght changes. During the training
procedure, the weights stabilise at values guaearmgethat in the end the summed
recurrent inputs equals the external inpwa. After learning is completed, and the
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summed internal input equals the external inpw,l#éiiter can be switched off without
changing the activation of the network.

Second, the synaptic weights of each neuron arptediaising local information only.
The single neuron does not rely on information althe activation of whole network
but only to information directly available at itynaptic connections just like real
neurons. Consequently, the computational costgeagelow — in contrast to many other
training procedures (e.g. Williams and Zipser, #8%chmidhuber, 1992) as no
specific network for determination of the error dodits backpropagation is needed.

3.5.1 Biological plausibility

To implement the mechanism described the neuroichdsstinguish between external
input and input supplied by the recurrent connestiof the network. How is this
possible in a biological network? It is known (ekandel et al., 2000) that different
types of synapses exist; the strength of one tyss dhot easily change whereas other
synapses show variation depending on activity. Aaially, physiological findings
show, that the dendritic tree of a neuron is subdiv into different computational
subunits for chemical signals such as changesnoestration of ions or other second
messengers; this compartmentalisation is considdéedbe the basis of local
modifications of the dendritic properties to acleigfor example, input-specific changes
of synaptic weights (Helmchen, 1999) and it is afsportant from a computational
perspective (Mel, 1999). Therefore, a differenatmeent of sensory input to the neuron
and the recurrent internal input might well be [illss

Furthermore, some speculations concerning potemudgcular mechanisms underlying
the internal structure of the IC Units are possilbi@sic building blocks necessary to
realise the algorithm proposed here can be founckah neurons (e.g. Kandel et al.,
2000): Several pathways are known that increase @hérs that decrease the
concentration of substances that influence thertioseof AMPA receptors in the
synaptic membrane, for example. It is widely assilinfeat the kinetics and magnitude
of NMDA receptor mediated Gasignal determine the sign of synaptic modification
(Kirkwood et al., 1993; Cummings et al., 1996). @gde increase of Eafavours the
activation of kinases which results in a phosplairgh of AMPA receptors; a lower
increase in contrast favours the activation of phatases which results in a
dephosphorylation of AMPA receptors (e.g. Lisma@84; Cormier et al., 2001).
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3.5.2 Capabilities of the network

Representing static patterntJsing these units it is possible to solve sevaramory
tasks. First, static input patterns can be apptiee; to the built-in learning mechanism
the weights adapt in a way that the activationghefunits remain fixed even after the
external input signal has been switched off, thuedpcing sustained activity in the
network.

It has been suggested to use attractor dynamicsupiied neurons provided with strong
feedback for modelling these states of enhanceitgc(Wilson and Cowan, 1973;
Amari, 1977; Hopfield, 1982; Zipser et al., 1993ni#y 1995; see also Chapter 2; for
reviews on neurocomputational models see Durstestit., 2000; Del Giudice et al.,
2003). However, the performance of many of the psed models is highly dependent
on fine tuning the network parameters such as synapength. If parameters only
deviate slightly from the tuned values, the networnd to diverge (Wang, 2001). In
contrast, our model does not require fine-tuningthe weights as it automatically
adapts to the current input situation.

When providing the network with a vector differdnbm the stored one, the stored
vector or a multiple of it is reproduced. This pedy can be interpreted as an error
correction mechanism (or the capability to gensedlias it has been described for
Hopfield networks (Hopfield, 1984; for a more degdicomparison with other recurrent
neural networks see below).

Additionally, if a part of the vector is not speed by the input, i.e. a component of the
input vector is set to zero, the network showsalbuiity of pattern completion: It finds
an appropriate activation for the unspecified units

Representing algebraic relations. There has been a heated debate on the claim made
by Marcus et al. (1999) that it is not possibleréplicate their results with simple
recurrent neural networks (see Seidenberg and EIm889). The problem with
connectionist-like models is that they are not dblgeneralise the abstract patterns to
new words and are thus dependent on the input ehdibey cannot abstract the
underlying rule as it is necessary for the taslkcdesd in the Introduction (Chapter 3.1)

and in Chapter 3.2. The model presented here duegpresent any word explicitly but
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only the rule of an open-ended abstract relatignsim this case a simple algebraic
relation. If the network is provided with considtemput it immediately stabilises on

these activation values, whereas it needs some taneslax on the inconsistent

condition. This matches with the results of theeskpents performed by Marcus et al.
(1999). The time the network needs to relax whevided with inconsistent input can

be interpreted as to correspond to the longer tirhattention the infants paid to

sentences being inconsistent with the trained ameke experiments carried out by
Marcus et al. (1999). Therefore it is possible tmusate the experimental results
obtained by Marcus et al. (1999) with networks &imgy of IC Units.

Similarly, such algebraic rules may also undertieeo grammatical phenomena as for
example building English sentences with plural egrent from an arbitrary set of noun
and verb phrases. In this sense humans know fomm@gathat a correct English

sentence can be formed by combining any plural pdwase with any verb phrase with
plural agreement: From the two phrases “Bart asd'l.iwhich is a plural noun phrase,
and “played in the garden”, which is a verb phragé plural agreement, we can infer

that “Bart and Lisa played in the garden” is a eotrEnglish sentence. Here as well,
networks that rather represent the abstract remtimetween the items than the single

words may underlie the ability to build correct tezices.

The network can also be trained to represent anergaulitasch,xi =0 when only some
i=1

(at leastn—1) correct training examples are presented. The or&tviorms a holistic
representation of this algebraic relation implyihg capability of pattern completion
also in this task: lih—1 variables are given, the remaining variable i€deined by the
network. If, during recall, fewer variables are v and the task is therefore
underdetermined, the network still provides a adrselution. The task is not solved by
using a look-up table, but by representing the tyithg mechanism.

The tasks described in Chapter 3.4.2 are charseteriby homogeneous equations

Zc,xi =0. However, this network can also be applied tkdathat require non
i=1

homogeneous equationgcpq =h with constant values;. This corresponds to the
i=1
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introduction of a ‘bias unit’ often used in neuratworks. The network can simply be
extended by such a bias unit by adding a unit, vidcassumed to have a constant
activation of 1. The weight of this bias unit capends to the valub and can be
trained using the same algorithm explained above.

Human’'s internal representations are not necegsatdtic by nature. As already
mentioned by Johnson-Laird (1983) internal repried@&ms could be dynamic, i.e. they
show time-dependent behaviour. This claim is undegd by recall experiments

showing that memory can be influenced by the oleseErnaovement (e.g. direction and
speed) of an object (Freyd and Finke, 1984). Sugtamhical systems can also be
modelled by a network consisting of Input Compeinsaunits as will be explained in

Chapter 4.

3.5.3 Comparison with other recurrent neural networ ks

The underlying idea of the Input Compensation Uoitgesponds to the clamped phase
in Contrastive Learning (CL) procedures (Movelld®890; Baldi and Pineda, 1991).
The advantages of CL are the possibility to tratworks with hidden units on the on
hand and to use nonlinear activation functionshendther hand. Up to now it has not
been tested how the IC approach could deal withimearities and hidden units. These
are certainly the next problems to be tackled.

But there are three main differences between tloeapproaches: First, in all examples
of the CL approach the weights of the feedback eotions are assumed to be
symmetric with the feedforward connections. In r@#s consisting of IC Units the
weights are not constraint.

Second, in contrast to CL only one phase is ap@lietino oscillations between a phase
with a teacher signal and one without a teacherasigre necessary.

Third, in CL the dynamics of the network are sefmtdrom the dynamics due to the
learning procedure by definition as the dynamicgluagions are first run until
convergence to a fixed point and then the weigtgsipdated (Xie and Seung, 2003). In
doing so, the problem of intertwining two interagtidynamics does not arise. But it is
biologically not plausible that the synapses ohigrt change, after the dynamics of the
network has settled. For biological systems thiaxiwg and waning” of the synapses is
assumed to not be explicitly uncoupled from thevoeks activity but on the contrary
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explicitly dependenbn the networks activity. The latter is the caséhe neuronal units
presented here: the updating of the weights isopmd online, i.e. in each single time
step and there is no necessity to decouple it @dglirom the network. Therefore, the
IC approach appears to be nearer to biologicatyeal

The training procedure used here is based on timeiple of teacher forcing (e.g.
Williams and Zipser, 1989a; Doya, 1995; Jaegerkaas, 2004): the actual output of a
unit is replaced by the teacher signal in the sgyiset computation. This principle
permits online learning and has been applied byrot@pproaches like real-time
recurrent learning for RNNs (e.g. Williams and £ps1989b). The problem with real-
time recurrent learning is that it is computatidyalery intensive concerning storage
and time and — moreover — the algorithm is nonllbezause each weight needs the
knowledge of the complete recurrent weight matrid ahe error vector. RNNs
consisting of IC Units are trained using local mfation only and therefore the
computational costs are very low.

To alleviate the problem of computational costsumber of approaches have been put
forward like, for example, the modification of thesal-time recurrent learning algorithm
by Schmidhuber (1992) which reduces at least thmepatational time but still needs
quite large storage capacities.

Kalveram (2000) also proposed a learning algorittbimally corresponding to the delta
rule like the IC approach incorporated on the leafethe individual neuron. This has
been applied to feedforward networks. The weiglitexternal inputs are trained by
providing the unit with the desired output. Thipuh corresponds to the fixed external
input used here but has to be switched off aftainitng. In contrast our networks
comprise memory units that are activated via tlieraal input (see also below).

Other examples trying to reduce computational castghe echo-state networks (Jaeger
and Haas, 2004) and, quite similar besides usinkingp neurons, the liquid-state
machines (Maass et al., 2002). These types of mkdameed more units to equip the
reservoir but are able to learn complex dynamicabihur. Storing static patterns has
not been addressed within these approaches. Ibav#hown in Chapter 4 that learning
dynamic patterns is also possible with RNNs comgjstf IC Units.
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Similarities could be figured out, too, between t@enetworks and Hopfield (Hopfield,
1982; 1984) networks on the one hand and MSBE né&sy&ruse, 2005) on the other
hand. What is the difference between the weightriosst resulting from the training
procedure presented here to that of those othestgprecurrent neural networks? The
former are defined by symmetric weights and bouraigdsation functions. The units
used here do not have bounded activation functi&gsimetric weights could, but do
not necessarily result from application of the IGoathm. Symmetric weights arise in
matrices W2, W5, W6 and W7, but not in W3 and WHerEfore, application of IC
Units does generally not lead to Hopfield type roris.

MSBE networks are derived in the following way. dh equation withn variables
Zn:vi [x =0 is solved for each variable, a set of equations is obtained. If each of
i=1

theses n equations is considered to represent dhgutation performed by the
corresponding neurom, the network representSiultiple Solutions for the Basic

Equation Zvi [x = Oand is termed therefore MSBE network. For 3, for example,
i=1

the basic equatiory,x, +v,X, +V;x; = ®eing resolved foxi, x, and xz leads to a

weight matrix

O V2 / Vl V3/ Vl
VifVe 0 VgV, (W8)
Vl/ V3 V2/ V3 O

MSBE networks, like Hopfield networks, can be cdesed as autoassociators that have
the property of pattern completion. Unlike Hopfiefeetworks, that show discrete
attractors, the attractor points of MSBE network®ifa smooth, bounded space.

The weights follow the conditiomy; (W; =1. So the MSBE network is symmetric only

for v, =v, =v,. As described above for (W4), the weight matrix ¥é® be extended by

the introduction of damping factods, d,, andds.
Inspection of the different weight matrices obtdig the learning procedure applied to

the IC Units reveals that some, but not all masriéefil the condition w; =1/w; .
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Matrix W2 fulfils the condition, matrix W3 only wimeapplying a damping factor

_ 8’ o a’ _
—m—l and W4 when applyingl. -m—l. This means that the

IC algorithm can but does not necessarily produegght distributions typical for

MSBE networks. The latter is the case in particuemnen in contrast to all examples
used here, the weights are not all set to zereedbéginning of training.

3.5.4 Working memory and long term memory functions

In various experiments properties of the workingmogy have been investigated (Del
Giudice et al., 2003). In electrophysical recorgdisgimulus-specific, enhanced activity
can be observed which is assigned to be a featuectve working memory and
enables animals to hold items in memory for someetilf no further attention is
applied to the content of memory, it vanishes atehort time.

This property can also be found in our model: Afeesenting a static stimulus the
activation of the artificial neurons is enhancediribg learning the weights approach
the final values characterising the neutrally stagibte only asymptotically. Therefore,
in more natural situations, training is finishedhwnon-ideal weight values. Hence, after
an input has been presented to the network anddattched off, the activation of the
network does not remain constant, but decreasesrtowith a velocity depending on
how closely the ideal values have been approximdigthg training (note that the
weights maintain their values). This property maycbnsidered as corresponding to the
function of working memory, the content of whiclsappears if no specific attention is
applied to maintain this content for a longer tinide velocity of this decrease of
activation depends on the quality of learning, p@.learning time.

At the same time, the network can be consideredgmesent a passive memory (Fuster,
1995). If, after an activated network has beenrneit to zero activation, the inpat,

a, az Is presented again later, it would immediatelyvaté the network.

As described above the weight values are only cthriyy means of the learning
algorithm (Eq. 2), i.e., only when an external injgugiven. However, weights may also
decay spontaneously (as do synapses), but witmga time constant (e.g. hours or
days). Under this condition, the IC Units alone eveot sufficient to explain long term
memory. The following additional mechanism couldwever, be applied: If the
excitation has been strong enough, or has beeratexpeufficiently often, a special
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mechanism may come into action that prohibits sijaagecay and weights may stay
fixed. In other words, the network forms a longmememory only after this fixation
process has been performed (for a review of obsengconcerning switches between
discrete states of synapses see Montgomery andsttgdR004). In contrast to the
architecture explained above, this additional maim would imply that not every
input is maintained in the long term memory. Rathersystem would be able to select
frequent or salient information, and only such infiation is stored permanently.

70



3 MODELLING MEMORYFUNCTIONS WITHRECURRENTNEURALNETWORKS CONSISTING OF
INPUT COMPENSATIONJNITS |. STATICSTUATIONS

3.6 Appendix: Learning a static pattern to produce sustained
activity

3.6.1 Proof of convergence — training all the weigh  ts

During the training phase thexn weight matrixW(t) is updated according to (2) as
follows

(A1) W(t+1)=W({t)+eBE)E" =wW(t)+edl —~-W(t)REA" t=012,...

We denote byP, = %@@T the orthogonal projector onto span{a}.
a

Theorem 1Under the assumption

(A2) O<e<

aT
the iteration (A1) converges for ay (0) = W, to the weight matrix
(A3) W, =W,{l -P,)+P,.

In particular if W(0)=0 we obtainW,, =P, as in(W3).
Proof : We use the following well-known result.

Theorem 2Let X be a finite dimensional linear space and ¥ebe the direct sum of
two of its subspacex; and X, i.e. everyW [0X can be written in a unique way as
W =W, +W, whereW, O0X,,W,0X,.

LetL :X - X be a linear map such that

(1) LIW =W forall WOX,

(i) L mapsX; into itself and|A|<1 for all eigenvaluesd of L that belong to

eigenvectors irX».

Then the iteration
(A4) W(t+1)=LW(t)+R,, W(0)=W,
converges for anyV, X and anyR, X, to

W, =(W, ), +W,

00
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where W, =(W,), +(W,), is the decomposition dN, and W, X, is the unique

1 2

solution inX; of the equation

(A5) W, =L[W,+R,.

We apply this Theorem 1 to (A1) with the space ohxn matrices and
X, ={WOX:Wm@a=¢,dmX,=n?>-n
X, ={b@" :bOR"},dimX, =n.

The decomposition oV (01X is given by
W=W(-P,)+WP, =W, +W,

(W [&.

sinceW(l -P,)[2=0 and W [P, =b[&" with b =

~
The iteration (A1) has the form (A4) if we define
(A6) LW =Wl -c@@A")R,=c@@A".
Note that (i) follows fromL (W =W Il - ¢[@m@")=W for WX, .
If W=Dbl@"0X, then we have

LW =b@ [l -e@@ )=bfa" -cfa’ @)@")=(1-c@" @)bE",
therefore A =1-£[@" (& is ann-fold eigenvalue of. and |A|<1 holds if and only if

(A2) is satisfied.
Then Theorem 1 is applicable and yields (A3) ifskew that (A5) holds fokV, =P, .

In fact, P, 0X, and

P-LP,=P,-P,(-cs@a@)=cP, AR =c@R" =R,.
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3.6.2 Proof of convergence — training with constraints
Now we consider the learning rule (A1) where ordytain entries of the weight matrix
are updated. We write this as follows:

(A7) W(t+1)=W(t)+eE-(I -W(t) @R
where E is amxn matrix with entries 0 or 1 and where we used thdatinard product

E-B of nxn-matrices given by

(A8) (EOB)ij =E; By
The entriesV;; with E; =1 are updated while those with; =0 are kept constant. In

particular, for the choice

A9) E= )
(A9) : o1
1 ... 1 0

only the weightdV; with i # | are updated.

Theorem 3 Assume that the matri has no zero row and let >0 satisfy for all
i=1...n
(A10) e[d, <2, whered, => a°.

E;=1
Then the learning rul¢A7) converges for an;W(O):WO to some limit matriX\w,_ . In

caseW, =0 the entries oW _ are given by

(A11) (W,), =

and (W,), =0 otherwise

In particular, for the pattern matrix E fronfA9) with n=3 we obtain exactly the

matrix (W4). In caseE; =1 for all i,j we recover the results from Theorem 1.
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Proof: We apply Theorem 1 again with the setting
X ={w:Eow =w}={w:w, =0if E, =0}
and
(Al2) LIW =W -£[Eo|WRRA|R, =£[Eo|a@|.
The spaceX; andX; are given by
X, ={wDOX:W@=0}
X, ={W =E-(b@"):bOR"}.
First note thal. [W =W is obvious forW O X, .

In X2 we choose basis vectors
(A13) V,=Eofe'@"),i=1...,n
whereée =(0,...1..0) is the i-thCartesian basis vector. Note that

(Vi Ei)k = ZEij [ﬁei )k @12 - (ei )k DEiZ::laI? =d (ei )k

holds and therefore
(Al4) V, [a=d @ .
SinceE has no zero row we hawé > fOr alli. Equation (A14) then implies that the

vectorsV; are linearly independent and moreover we find tihat vectorsV; are

eigenvectors off

(A15) LIV, =V, —¢M@ [Eo(€ @)= AV, A =1-£d,

Condition (A10) guarantees thg|<1 holds for all eigenvalues.

The decompositioW =W, +W,,, W, 0 X,,W, X, is given by

(W i)
d,

(A16) wzzzn:qwi,q= LW, =W =W,

Note thatW, =W -W, X satisfies by (A14)

wlmzwm—ib, v, @zwm—i(w @) & =0.
i=1 i=1

The decomposition is unique sinte 0X, andW = h [V, OX, implies
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o=wa=iqmm=iu@=u

We have now verified the assumptions of Theorem 1.
In order to determine the limit matri¥V, we need to solve (A5) witR, given in

(A12). The solution is

w;;%m

since by (A15)

W2_L|]N2:Z%[ﬂvi_l-wi): %[ﬁl—/‘i)wi:‘f@%wi:&-
iz O, = =)

Combining this with (A16) Theorem 1 leads to timeifimatrix W,, given forE; =1 by
1
(A17) (Woo)ij = (WO)ij +d_|:ﬁa1 _(Wo E‘)i)aj .

In the caseV, = Qhis leads to formula (A11).
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4 Modelling Memory Functions with Recurrent Neural
Networks consisting of Input Compensation Units:
[I. Dynamic Situations

Modelling cognitive abilities of humans or animalsbuilding agents that are supposed
to behave cognitively requires modelling a memaoystem that is able to store and
retrieve various contents. The content to be st@essumed to comprise information
about more or less invariant environmental objetswell as information about
movements. A combination of both information abobjects and movements may be
called situation model.

Here, we focus on the one hand on models storimgqmic patterns. Particularly, two
abilities of humans in representing dynamical systéave been concentrated on: the
capability of representing acceleration of objeagscan be found in the movement of a
pendulum or freely falling objects and representintjons of transfer, i.e. motion from
one point to another, has been modelled using meaunetworks consisting of IC
Units.

On the other hand, possibilities of combining stand dynamic properties within a
single model have been studied.

4.1 Introduction

To account for various aspects of human and arcogtition cognitive scientists have
put forward the theoretical notion of “mental reggetation” (see von Eckardt, 1993).
Especially in research on text comprehension muatk Wwas been done concerning the
content of these representations. The traditioreaV ehanged with two books published
independently in 1983 (Johnson-Laird, 1983; vark @ipd Kintsch, 1983): linguistic
and psychological studies revealed that it is rathe situation described within a text
which is represented than the text itself. Thesertal representation of verbally
described situations” (Zwaan et al., 1998) haveobex known as mental models
(Johnson-Laird, 1983) or situation models (van Rijid Kintsch, 1983).
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What is the nature of such mental representatidns@rder to describe humans’
cognitive capacities von Eckardt (1999) lists a ham of features mental
representations must have, among which are thatuit be possible to “represent
specific objects; to represent many different kafdobjects — concrete objects, sets,
properties, events, and state of affairs in thisldyan possible worlds, and in fictional
worlds as well as abstract objects such as unileeesal numbers.” In Chapter 2 and 3
we have already dealt with the representation aticsbbjects. But the representations
humans build up are not necessarily static by pafliney can also comprise “events”
as von Eckard calls it or, in other words, be dywwame. show time-dependent
behaviour. Already Johnson-Laird postulated thatrign mental representations are
kinematic or dynamic” (Johnson-Laird, 1983). Up riow much research has been
performed showing that humans tend to realise shiag dynamic structures and
additionally anticipate suspected changes alreadythe mental representation.
Continuous changes are likely to be representedrdigally, i.e. these changes are
simulated mentally by a respective change withia tbpresentation (Freyd, 1993).
Therefore, here the focus is on this special featdrmental representations. The term
representation is used here like defined abovetéh&) in the broad sense of Steels
(1995) as being “physical structures (for exampézteo-chemical states) which have
correlations with aspects of the environment”.

The dynamic nature of representations has alre@éy lconsidered in early studies
dealing with the so-calletepresentational momentu(e.g. Freyd and Finke, 1984, for
further literature see Freyd, 1993). The term regneational momentum describes the
finding that memory can be influenced by the obsérimovement (e.g. direction and
speed) of an object: Memory failures can fall alding direction of implied motion. In
the classical experiment (Freyd and Finke, 1984) persons were provided with a
sequence of pictures showing a rectangle at diffesgentations along a possible path
of rotation. The pictures were separated by amstiteulus interval of 250-50ts Test
persons were instructed to remember the orientatidhe last object. In this setup the
subject’s memory tends to be displaced forwarch@ndirection of the implied motion.
This indicates that the test person’s internal mlentpresentation of the external
situation presented comprises dynamic propertiefoasexample inertia like real
physical objects.
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Research on language comprehension also providésnee for the existence of such
dynamic representations (e.g. Glenberg and Kas2béR; Zwaan et al., 2004). The
hypothesis put forward by Zwaan et al. (2004) st&mdm the considerations on the
representational momentum and the theories thaulge comprehension involves
perceptual simulation (see above), but goes afst#iper: These authors assume that
dynamic mental representations are “perceptualesrabat are stored as temporal
patterns of activation that unfold over time” capending to the respective perceptual
experience. Along this line of argumentation thegdict that the perception of a visual
motion event is facilitated by preceding comprel@m®f a sentence describing this
motion event.

In their experiments test persons heard a sentdaseribing the motion of a ball
towards or away from the observer. A short timeratihe sentence a picture of a ball is
presented followed by a second picture of a bdile Dall in the second picture was
slightly smaller or larger than in the first onaggesting movements of the ball towards
or away from the observer. Subjects should judgetindr the two sequentially
presented visual objects were the same. Zwaan. ¢2@04) found that test persons
responded faster when the implied movement of thk fmatched the movement
described in the sentence. Thus, their results mstighe view that during language
comprehension dynamic perceptual simulations ar@ved.

Also Glenberg and others (e.g. Glenberg and Kasch@k?2) affirm the view that
understanding a sentence describing for exampiensodf transfer seems to require the
ability to internally simulate the motion of thejett towards or away from the body
even using the same neural system as in actuallyupmg transfer. Thus the symbols
of language are grounded by relating them to bogdilgcesses (e.g. Lakoff, 1987;
Glenberg and Robertson, 1999; Barsalou, 1999; @lgntand Robertson, 2000;
Fincher-Kiefer, 2001; for further literature seeefiberg & Kaschak 2002), because
only then can real understanding be achieved. fample, we understand what a chair
Is, because we always derive the affordances frbis1 dobject when seeing one.
Affordances are potential interactions between é®dand objects (Glenberg and
Kaschak, 2002); according to Gibson (1979), whamewithe notion of affordances, a
chair is a chair because it affords sitting forlalumans. So the idea is that language is
made meaningful by cognitively simulating the actiomplied by a sentence.
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Glenberg and Kaschak (2002) were able to corrobdias hypothesis by experiments
showing that actions in one direction (e.g. “clabe drawer”) implied by a sentence
interfere with really performed actions in the opp® direction (e.g. movement towards
the body). If there is a mismatch between the aatiescribed in the sentence and the
action, that should be performed, reaction timesgog Thus, the study of Glenberg
and Kaschak demonstrates humans’ ability to dynallgicepresent actions of transfer.
Furthermore people are not only capable of reptegeisuch transfer actions but are
also capable of predicting the motion of accelagatbbjects as for example a ball
falling down or a swinging pendulum. How do we n@@do perceive such motions
given the fact that the visual system is only ppsensitive to acceleration ( Todd, 19
81; Lisberger and Movshon, 1999; Brouwer et alQZ0as for example caused by
gravity? When catching objects under normal graeiyditions, the movements are
well synchronised with the arrival of the objeckdc(ntyre et al., 2001). In contrast,
experiments with astronauts in a space-shuttle ruretkiced gravity revealed that the
peak of anticipatory muscle activation as well asedrm movements occurred earlier
relative to impact (Mcintyre et al., 2001). Onlyeafa few days the astronauts adapt to
the new gravity conditions. These findings imple texistence of an internal model
within the brain which calculates the effects ad\gty usually experienced on earth to
provide an estimate of the time-to-contact withede@ted objects.

In a nutshell, theses studies (for further literatsee Freyd and Finke, 1984) show that
humans do build up dynamic representations as sengal basis for understanding
environmental situations as for example actions ti@insfer and properties of
accelerating objects. The latter is especially irtgoa for survival as it a prerequisite of
estimating time of collision with objects. But tairoknowledge, none (or only a few)
attempts have been made so far to provide models éRplain of how such
representations could be realised and learnt inladically plausible way.

Here, we demonstrate that a recurrent neural n&temmsisting of IC Units, which has
successfully be used to model sustained activityepyesent static objects (Chapter 3)
and which will be described briefly in Chapter 4can also be utilised for online-
learning and for representing dynamic situationschSa network can be trained to
represent the dynamics of physical systems likeraplum or free-fall as well as the
dynamics of low- and high-pass filters (Chapter @@l 4.4). The former provides a
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neural realisation of the model of gravity humaeers to have as shown by Lacquaniti
and colleagues (Indovina et al., 2005), while tlymasnics of low-pass filters can
resemble actions of transfer as found by Glenbed) @workers. In a second step
(Chapter 4.5) a way is shown, how it is possiblengrge the results of former studies
concerning the representation of static objectsapBdr 3) with these dynamic
representations. Here, for a first approach we doon combing the model of static
objects with the dynamics of a low-pass filter tmdal the content of sentences
describing actions of transfer like for example thler walks to Marge”.

We will not deal with questions concerning ways hovwarrange a number of different
such models within a larger memory system (see &bapter 2.5 for further

discussion).

4.2 The Model

The recurrent neural network used here to modeksegmtations of dynamic situations
consists of so-callebhput Compensation UnifdC Units) (for a detailed description see
Chapter 3). The essential property of these usit® idisentangle the dynamics of the
recurrent network from the dynamics due to theneg procedure. This would be
possible, if the output of the network always egdahe input regardless of the actual
size of the weights.

In order to achieve this, two input types are dgished: One external inpat, the
weight of which is fixed to 1, and internal, i.e., recurrent input connectiogsthe
weightsw; of which can be changed by learning. The overalpotuof one neuron is

calculated in the following way:

>0
s)-(a)+st)+. sk)<o (1)

with s(t):zn:w” x;(t), fori=1ton.
=1
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The + means that only the positive part of the expressiothin the brackets is

transmitted. The structure of an Input Compensatinit is schematically shown in

Figure 4.1.

External input

at)> |W11 |W12 |W13

X4(t) Xx(t) Xa(t)
Recurrent input

X (t+1)
Output

Figure 4.1: Schematic drawing of the internal structure ofan IC Unit: & is the external
input, s(t) is the weighted sum of the recurrent inputs andj(t) the difference between
the external input a(t) and s(t) (for further explanation see text and Chapter 3.

From equation (1) it is immediately clear that thetputx of the network always equals
the external input independent of the actual wesitd because the sum of the weighted
internal inputss is added and subtracted instantly again. Thereftns built-in
compensation mechanism protects the global dynamfiite network from the learning
dynamics. This enables us to train a recurrentalewtwork consisting of IC Units
online, i.e. without cutting the feedback conneatialuring training which is a big
advantage over traditional approaches in trainiegument neural networks (for
discussion of related approaches see Chapter 3).

The weights are changed according to the follovalygrithm:

w, (t+1) = w, (t)+Aw, with Aw, = X, (t) 8 (t) )

with £ >0 being the learning rate and(t)=a(t)-s(t) being the local error. By
applying this learning rule the weights will changetil Ji(t):o. This learning
algorithm formally corresponds to the delta ruleidw and Hoff, 1960), but does not
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require a separate network for calculating and jpagkagating the error as it is
computed locally within each single neuron. Durihg training procedure, the weights
stabilise at values that in the end the summedmecuinputs equals the external input

a, i.e. &(t)=0. After learning is completed, and the summed irkinput equals the

external input, the latter can be switched off with changing the activation of the
network. In fact, learning has to be terminategrevent the network from learning the

zero input vector.

4.3 Methods

Before we explain how a dynamic situation as browghin the Introduction (Chapter
4.1) could be learnt by a neuronal system, we deimate the existence and possible
form of a solution. The dynamical systems mentiowatt be described by linear
differential equations. In case of the harmonicillesons of a pendulum and the
dynamics of a freely falling object these ar® @rder differential equations. To
construct a recurrent neural network, we have terite these 2 order differential
equation as a system of two coupletatder differential equation by introducing the
velocity x as auxiliary parameter. In general, any expliciedr differential equation
can be represented within a recurrent neural nétwegrtransferring a given explicit
differential equation of order to n coupled differential equations of order 1 (Nautk e
al., 2003).

4.3.1 Pendulum
The dynamics of a mass-spring pendulum, i.e., asitppn and its velocity changing

over time, are given by the differential equatior= —wk—r X with w=,/D/m
representing the frequenci) (is the spring constant amd the mass) and being a
measure of the friction (friction is zero for=«). As explained, we substitute=v
and obtain the two equations:

x=v andv=-a&[x-rlv

By looking at the discrete derivative the followiddference quotient holds:

AX Av
—=v, and—=-wlX -r[y,.
At At o ‘
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For At =1 we obtain:
X1 =% *V, and

Vi =~ +(1—I’)El’t.

These equations can be described by matrix W1.:

1 1
[—a) 1- rj Wi

In the form

[Wll W12 j
W21 W22

the values can be used as weights of a recurramtorie (Figure 4.2, in this case

W13 :W23 :O)

4.3.2 Free-fall

The same method can be applied to simulate thentigsaof a freely falling object.
When considering the case without friction, i.evatuum, the system is described by
the differential equatiorm[X =—-g[m with m being the mass of the object agdhe
acceleration. The negative sign indicates thabtsjects fall downwards. Again we use
the velocity x =v as auxiliary variable and obtain the following atjons:

Xx=v andv=-g

The difference quotients of the two equations with=-1 again provide the basis for the

weight matrix of the recurrent neural network:

X1 =% *V, and
Vin =V 0
The resulting matrix is given by W2:
110
(W2)
01 -g

This can be used as a weight matrix for the reatmetwork in the form

[Wll W12 W13 j
W21 W22 W23
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Thus, in contrast to the case of the oscillatirgiesy we here need a bias unit which has
a constant activation of one (Figure 4.2). It hasrbshown (Chapter 3) that the weights
of such a bias unit can also be trained using 1@sUihe weightw.s in Figure 4.2

describes the acceleratign

Figure 4.2: Schematic drawing of a two unit recurrent netal network with a bias unit.

Under realistic physical conditions though, frictidecelerates the fall of an object. As
friction is proportional to the velocity, it canngply be introduced in the system by

adding a friction term to the second order difféi@nequation: X=-g-r[Xx with
r :% (k is constant and depends on the mediung the mass). The weight matrix W2

now changes to:

4.3.3 Low-pass & high-pass filter
It is also possible to build a recurrent neuralmek with low-pass filter properties

defined byrix=-x+1 with 7 being the time constant ahdhe external input. This
differential equation can be replaced by the twaa¢igns

X =X tV/T and

Vir = 7% * 1,

which leads to the weight matrix W4:
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L0 e

-1 01

Herek determines the time constant of the systema/k. The output of the first unit

shows the response of a low-pass filter and thah@fsecond unit the response of a
high-pass filter. This task requires a sensorytithpu

a >Q

a,) ;( > Wo1|Wao| Wos

I | W31|Wao| W3
—F— |

v v

Xy X4

Figure 4.3: Schematic drawing of a two unit recurrent neral network with an
additional sensory input unit I.

This third unit could manually be added to the rtwwHowever, it is also possible to
add a third recurrently connected IC Unit (Figur8)4o the network the weights of
which are trained in the same way as the other m=®igrhis leads to the following

weight matrix:

1 k O
-1 0 1| (W4a)
0 01

This matrix shows that the external input doesdegend on the activation of the other

units.

Hence, in all of these cases a solution exists, thatquestion arises whether it is
possible to automatically stabilise an appropnaégght matrix online. To achieve this

goal, the network architecture described in Chamesind 4.2 is used to cope with these
tasks. In general, a network consisting of at IeastIC Units is needed plus one bias
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unit, but any network consisting of more units Isasuitable for the tasks (see Chapter
4.5.1). In the simulation, the training data arevmed by separate trainer networks
with fixed values for frequency, friction or theng constant as described above. These
networks are used to represent the real world t&tniaThe network to be trained
receives as input only the activation of positioand of velocityv from the trainer
network. To avoid artefacts due to time discreimsaiof a computer simulatiork
should be chosen small enough (&g 0.3).

4.4 Results

When training a network which should be able terinally simulate dynamical systems
like a pendulum, free fall or low-pass filters, tresults will be evaluated according to
the quality of the internal simulation on the ot and the overall weight error on the
other hand.

The quality of the internal simulation can be judd®y calculating the accumulated

local o-error . of the position unit §,

acc

:2‘51‘ with n describing the number of
=1

iteration steps of a single learning epoch) dur@agh learning epoch. Théerror
describes the difference between the external iapdtthe sum of the weighted internal
inputs (see Chapter 4.2). Thus, smalléerrors correspond to better internal
simulations. To be able to compare the result$iefdifferent dynamic simulations the
accumulated -error d,ccis normalised to an epoch with a length of 100aiien steps.
Learning is switched off after this accumulat@error dc has fallen below a given
threshold: the internal simulation of the procesw mesembles the external dynamics
and the quality of the internal simulation is saadbe high. This threshold was fixed to
0.01.

Additionally, the weight matrix learnt during trag can be compared with the matrix
derived from the differential equations (Chapte3)4After some learning epochs (the
number of which depends on the learning rgtea weight matrix is learnt that

approximates the desired matrix respectively (W1ltap/N4). This can be seen by
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2

looking at the overall erroE determined byE :Z(Wu —vij) for i =1 to n. Here,w;
j=1

are the weights of the IC network which are traiaedv; are the weights of the trainer
network which are fixed according to the respectiesired matrix. The weightg are,

in this case, given a priori. They are, howevely aised here for the calculation of the
error value which is merely needed for descrippueposes. The overall error sigtal
does not influence the learning process itself.rhieg depends on the local error only
(see Eq. 2).

4.4.1 Pendulum

To train the properties of dynamic systems, assh éxample a spring-mass pendulum
iIs considered. A network consisting of two IC Uniss provided with a temporal
sequence of position and velocity values severaklep each lasting 190 iterations
(Figure 4.4a shows 4 epochs).

Figure 4.4 shows an example of an IC network whwels trained applying a learning
rate of £ = 0.8 to internally simulate a system with a frequency: 005 and a friction

r = 006; presentation of the external dynamic system fwur flearning epochs is
necessary for the model to be able to internattyutate the dynamics with high quality.
The arrow in Figure 4.4b marks the iteration stéemvthe accumulatedterror dicc has

fallen below the threshold.

a External Input b Overall weight error C  Internal simulation
- Training - - Training -

°

1.0

o
o

05

;‘% 00
quality high "

‘

S
o

position & velocity

°

-1.0

0 100 200 300 400 500 600 700 800 0 200 400 600 800 1000 0 100 200 300 400 500 600 700 800
iterations iterations iterations

Figure 4.4: An example of an IC network which was traind to simulate the dynamics
of a pendulum. Frequency was chosen to lse= 005 and friction r = 006; a learning
rate of £ = 0.8 was applied. (a) External training input. (b) Overall weght error E; the
arrow indicates the time step when the accumulated-error Jd.. has fallen below the
threshold defined. (c) Internal simulation of the dynanics of a pendulum.
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After having stopped training the weights, the masleble to internally simulate the
oscillations of the pendulum. Presentation of aogitpn input to the network for one
iteration step leads to damped oscillating behav&imilar to those of the training
network (Figure 4.4c). Learning rates, which argdathane = 1.7, cause the network

to diverge.

4.4.2 Free-fall

To learn the dynamics of freely falling objectsaagtwo input values, one for position
and one for velocity, have to be presented to @@dtwork. The training network is
provided with a starting position value from whigh object is supposed to fall down;
in the example shown in Figure 4.5a (in a worldhait friction) and 5d (in a world
with friction) the objectis lifted up to the starting position of 1080Each time the
object touches the ground a short interval of ftenation steps is inserted during which
the neurons do not get excited. After this inteve object is lifted up again to its
starting position.

a External Input b  Overall weight error c Internal simulation
- Training - - Training -
250 250
2000 —— position 100 2000 — position
-~ velocity 0 80 = = velocity 2007“
T 150 Q = T 1500
5 Cpoa i imE B T w &
S 1000 T RO IR R I 100‘3‘ S 1000 m%‘
g NN NN YN 8 “ quality high ~ §
soo] [\ AT A A0 8 2 0 o 2
AV AU AW AU CAW AT EAW A ¢
J 1 U
= 0 0 0
20 40 60 8 100 120 140 0 5000 10000 15000 20 40 60 8 100 120 140
iterations iterations iterations
d e f
250 250
2000 —— position 100 2000 — position
= = veloclty 200 - ~ = velocity 200
Ewo w¥ B, Ew -l
= Im =
%woo 100 ‘g g o Zg = 100 %‘
Y AN ! uality high kel
AN N 1 4
' 1
0= g i y 0 o T 0
20 40 6 8 100 120 140 0 10000 20000 30000 40000 50000 20 40 60 8 100 120 140
iterations iterations iterations

Figure 4.5: Example of an IC network trained to representthe dynamics of freely
falling objects in a world without friction (a-c) and in a world exposed to friction of
r = 01 (b-f). In both cases learning rate was chosen to be= 03. (a) + (d) Position
and velocity of the training input. (b) + (e) Overall weight error E; the arrow indicates
the time step when the accumulated-error d,. has fallen below the threshold defined.
(c) + (f) Position and velocity of the internal simuhtion of freely falling objects not
exposed to friction (c) and exposed to friction (f).
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Training a network to represent the dynamics ofegly falling object in a world
: e . . m .
without friction with an acceleration ofy=-981— (which corresponds to the
S

acceleration due to gravity on earth’s surface) arsfarting position value of 1080
requires about 10000 to 13000 learning steps depgrah the learning rates(was
chosen in the range {)0.10.3] ). Learning rates larger than 0.3 leadverdence of the
network. Under these conditions the object toudihesground after 14.14. In the
simulation the process requires 15 iteration stefiserefore, one iteration step
approximately corresponds to one second real time.

When no friction is imposed, about 500 to 1200 gXasof falling object are necessary
for the model to be able to internally simulate diyeamics, i.e. the accumulatéetrror

of the position unit has fallen below the thresh@dow in Figure 4.5b). If the object is
dropped from a higher position, which results inedmngation of the time until the
object hits the ground, fewer examples are necgs$sdrain the network.

If, after having trained the weights, an arbitratarting position is presented to the
network (in the example shown in Figure 4.5c thigltteis set to 2000), it is able to
internally simulate the dynamics of free-fall besaudhe resulting weight matrix almost
equals matrix W2 E = 3247 9%

Similar results are obtained when the networkasged in a world that is additionally
exposed to friction (Figure 4.5d-f). With a fricticof r = 0.1 and an acceleration of

g=-981"" learning rates of =[ 01,03 lead within about 45000 to 80000 iteration
<

steps to solutions which allow for internal simidas of the dynamics. Due to the
friction one learning epoch here lasts 19 iterasteps, i.e. approximately X Figure
4.5 d-f shows the results for training a systenhwitfriction ofr = 0.1 and a learning
rate of¢ = 0.2.

If friction is decreased also learning time decesass long as the learning rate is kept
constant: for a system with a friction of= 001 it takes about 13000 to 30000 iteration
steps until the accumulatederror has fallen below the threshold when applying

learning rates in the range {)D.LO.B] . Again, when using higher learning rates t

network diverges.
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4.4.3 Low-pass & high-pass filter

It is also possible to represent the dynamicslofiapass filter (Chapter 4.3.3). For this
example step responses (positioand velocity x) of a low-pass filter as well as the
input function are presented to an untrained nétwonsisting of three IC Units or
consisting of two IC Units plus an additional biast. The IC network is provided with
the inputs in periodically alternating increasingdadecreasing step functions each
lasting for 30 iterations. After the accumulai@drror of the position has fallen below
0.01, the model is able to internally simulate tlymamics of a low-pass filter. For a
system the time constant of which is determinedkby 003 and using a learning rate
of £ =0.1, for example, thig>error has reached the threshold after about 4hilen
epochs. Learning rates higher than 0.2 lead talfstresults here. Corresponding
results have been received when training a high-flber.

In all these cases the weight matrices emergirgmbie those given by the differential
equations, i.e. W1 to W4. As was mentioned abomrg liaear differential equation can
be transformed to a recurrent neural network. & baen shown earlier that, for the
static case, any such matrix can be learnt whedris are used (Chapter 3). However,
a general proof for dynamic situations is still @img; such a proof additionally may
help to define the exact parameter boundaries.

4.5 Combination of static and dynamic representatio n

As pointed out in the Introduction (Chapter 4.d)atcount for cognitive capabilities of
humans or animals it is necessary to be able thl lmtiernal mental representations
which either can be static or dynamic. As an examp¢ will treat the situation, of
perceiving a scene, which can be described by @sen like “Homer walks to Marge”
in human language. Following Glenberg and othexs @lenberg and Kaschak, 2002)
the ability to internally simulate the motion ofetimoving object — in this case the
walking person — is mandatory to really understsunch a situation. Thus, the task is to
represent static objects that may also be abledw slynamic properties.

In the above-mentioned examples of learning dynaituations, we implicitly assumed
the existence of some kind of “perception systefiiis perception system contains
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sensors and a network that is able to detect acbpotl properties of objects as for
example their color, their position, or their vatgc We take this network for granted
and do not deal with the question how it is cortderd. To simplify matters, we further
assume that the objects and each of their propenwden occurring in the world,
activate one unit of this perception network; thilig units are localist-encoding units
not only for linguistic entities as used in formmaodels (Chapter 2; Cangelosi, 2004),
but also for properties of the objects as theiitmysand velocity, for example. Each of
these perception units projects to an IC Unit. €hesnnections are also considered to
be given. The perception network will not be ilhased in the figures.

Such a system is now confronted with an extertabgon as described in the sentence
“Homer walks to Marge”. This scene can be subdiyioieo two tasks: In the beginning
the two persons, Homer and Marge, stand apartcattain distance. Thus, the starting
situation is a static one. Then one person, sayéfiostarts to move. Therefore, both
static and dynamic representations have to be cwdbto cope with the task of
representing the scene.

In order to represent the static starting situatiescribed in the sentence, i.e. Homer
and Marge standing apart, three units are needezladgtivation of neurox is assumed
to represent the position Bfomer, the activation of neuroxy Marge, and the activation
of neuronxgis: the distance between both. An IC network for ghéic situation can be
described by the following equations:

X (t+2) = wiy [ (£) + W, DX (t) + g [ (t)
X (t +2) = Wo, T (£) + Wi, Dy (t) + W ¢ (t)
X; (t +1) = W, [ (t)"' W, D(dist(t)+w33 [X; (t)

These equations are derived from the basic equatiemx;, = X; and the situation can

be trained using IC Units as has been shown in €h&p A possible solution is given
by the matrix

2/3 -13 13
~1Y3 2/3 13| (W5).
Y3 13 2/3
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Matrix W6 shows another solution:

0 -11
-1 0 1 (W6).
1 1 0

These are solutions for the static starting siwmatBut how could we cope with the
problem of representing the motion from one panamother? One simple possibility is
to assume Homer moving with a constant velocityis Tinovement then could be
described by a simple integrator. However, we aaihl with a somewhat more complex
task: The movement of Homer should stop when hegridarge. This is done here by
assuming that Homer’'s movement corresponds to panential function as described
by the step response of a low-pass filter (whiclkyhtifor example, result from the
movement being controlled by a negative feedbackrotber).

At first sight, there are two possible ways to sothe problem of representing this
situation:
(i) Either there are two networks, one for the statitaon and the other for
the dynamic one, or
(i) there is one unified network for representing badpects. However, as will
be explained in the following, the former could calbe interpreted as
representing one network. Therefore, only the lati# be considered in the

simulation.

Taking the first possibility of using two separaetworks to simulate the situation, six
units are required: three units for the networkreéspnting the static starting situation
(e.g. matrix W5 or W6) and an additional three ur@twork for the low-pass filter as
described above (Section 3.3, matrix W4). The mositinit of the low-pass filter codes
for the position of the moving person, the velocityt for its velocity, and its input unit
represents the goal, i.e. the position of the persho is being approached. In neural
terms thismove event(Steels, 2003) could be represented by the dexreéshe
activation of the position unit until it equals taetivation of the input unit. To start the
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simulation of the movement, the position unit ofriglax; has to be connected to the
input unit of the low-pass network. Furthermoree thosition unit of the low-pass
network and unik;, the position of Homer in the static network, déscthe same value
and therefore have to be connected, too. Therefbeetwo connected networks could
be regarded as one network.

Consequently, unitg andx; occurring in both networks can be merged respelgtiv
Therefore, only one additional unit is necessahg velocity unit of the dynamic
network. This unit is termedynamic unit X, in the combined network. In this way we

come up with a network consisting of four unitstioe task (Figure 4.6).

a 3 Y Wat [ Wap | Was |Wig
i 7 7
a. 3 () Wa1 [Wao | Was |Was
dist 7 7
a \|J | W31 [ Wa | Wag [Way
j )_>< )
a | | Wy | Wao | Was [Wag
dyn
=
1 1 1
vVVY
Xdyn Xj Xdist Xi

Figure 4.6: A four unit recurrent neural network suitable for the task of concatenating
a static and a dynamic situation to represent nove eventThe unitsx; and x; represent
the position of the respective personxgs the distance between them andg, the
velocity of the moving person.

In the following it is described how this simplegrsion, a network consisting of four
units, can be trained to represent both, the staiictthe dynamic part ofraove event
Two different procedures to train this network presented:

(i) The network will be trained in two phases, i.etha first step only the static
starting situation is presentestdtic phasgand in the second step only the
dynamic situation is presentedlyamic phage(Chapter 4.5.1) and

(i) training will be performed in a single phase whenty the dynamic input is
presented to the four unit network (Chapter 4.5.2).

96



4 MODELLING MEMORYFUNCTIONS WITHRECURRENTNEURALNETWORKS CONSISTING OF
INPUT COMPENSATIONJNITS |l. DYNAMICSTUATIONS

4.5.1 Training the network in two phases

4.5.1.1 Static phase: Representing the static situation
Training the network can proceed in two steps.He first step the static starting

situation a +ay, =@, is presented to the network depicted in Figure #véo possible

solutions have been mentioned above (matrices Vi5Ve®). After this first training
step the weight matrix of the network has the feiiy structure (for details about
learning simple algebraic relations see Chapter 3):

2/3 -13 13 0
~1/3 2/3 13 0 wn)
Y3 13 2/3 0
O 0 0 0

The weights, which are non-zero, correspond tstihation W5.
For this task, unikgyn iS not yet necessary. However, the example ikwss that any
additional unit belonging to the network does rnurge its weights as long as the unit

does not receive an input different from zero.

4.5.1.2 Dynamic phase: Representing the dynamic situation

After having trained the network with this statituation, the second training step
comprises the presentation of the dynamics of apa®s filter. Thus, training the
weights in the second phase does not start witnaletely naive network with all the
weights being zero but with matrix W7.

How is the training performed? As in the earlieses in principle, the four unit
network shown in Figure 4.7 receives its inputthia perception network that, in turn,
observes the outside world. The positipof Marge is fixed to the valug according to
the actual training situation. Ung;s; is provided with the distance seen between Homer
and Margeagis; in each iteration. For the simulation of the moeamwe use a low-pass
filter as dynamic training network which is conregttto the IC network as shown in
Figure 4.7. The dashed lines represent the functidhe perception network. To train
the movement of Homer from his starting positiotMarge, unitx (position of Homer)

receives the position inpuk;(in Figure 4.7) of the low-pass filter network. Timput
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value of this network represents the desired mosibf Homer which is the position of
Marge. The additional dynamic umiy, is provided with the velocity-signaky in
Figure 4.7) of the dynamic training network.

During this second training phase different posgimf Marge are presented to the
dynamic training network in periodical epochs etadting for 30 iteration steps. As in
the earlier examples, the output of the trainingwoek provides the input for the
network to be trained (Figure 4.7). Recall thas tinaining network is only necessary
for simulating the outside world: In a real envingent neurons of the perception

network (see above) will get activated by the otsjetheir position, and their velocity.

Dynamic training network

|nput)—07
a1)_>Q e
S 1 [0 |4
|_
v

Figure 4.7: Schematic drawing of training a network to reprsent a move event. The
movement in the external world is simulated by dynamic raining network
representing the dynamics of a low-pass filter (uppereft). The dashed arrows
symbolise the perception network. Unitg; receives as input the positional valug, from
the dynamic training network, unit agy, the velocity valuex..

When a network that already represents the stiitiat®n is trained with the dynamic
situation, the weights, which represent the stgrsituation, can either be locked so that
no further changes are possible at these weigbed{mamic phase )Aor they can be
left plastic, i.e. they can further be changedhie second dynamic training phase (see
dynamic phase B As will be shown, both training procedures arecessful but result

in different weight matrices.
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Dynamic phase A: static weights are locked

If all the weights having been learnt with the istétaining protocol (resulting in matrix
W?7) are locked, i.e. kept constant throughout tyadhic training phase, the following
weight matrix is approximated:

2/3 _1/3 1/3 W4

_1/3 2/3 1/3 Wasy
Y3 Y3 23 w,
-1 0 1 0

(W8)

with w,, = -k, +k, w,, =-k,, and w,, =-k[O,,; as described abové, is a

measure for the time constant of the low pasg fike=1/7). The overall weight errde
n 2
Is calculated according t& :Z(Wu —vij) for i =1 ton (see Chapter 4.4.1). Hevg
j=1
are the weights of the IC network which are traiaedv; are the weights of the final
matrix W8.

To judge whether or not the internal simulationtioé network is good, again the

n
accumulated>error 9, = 2‘51‘ iIs monitored. In this case, the accumuladegtror of
j=1

the additional dynamical unitayn iS @ good measure for the learning process as the
weights of this unit are only started to be leamthin this dynamic phase. Therefore,
after this value as fallen below the threshold ©®fl0earning is stopped (marked by an
arrow inFigure 4.8a).

In the example shown in Figure 4.8 the network wamed applying a learning rate of

£ =02 and using a dynamic training network having a tico@stant determined by

k = 0.1. With this parameter configuration it takes abo@0 6teration steps, i.e. 22

learning epochs, to train the network until thernalised accumulatederror has fallen

below the threshold of 0.01 leading to an overadight error of E = 242 % If the

learning rate is larger than 0.3 the network diesrg
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a Overall weight error b Internal simulation
- Training -
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Figure 4.8: Example of the networks’ performance when lking the static weights.
The time constant of the dynamic training network was deermined by k = 0.1 and the
learning rate set to £ = 02. (a) Overall weight error during training. (b) Internal
simulation of the move event (for further explanationsee text).

The task for the network after training is to imily simulate the event “Homer walks
to Marge”. To this end the network first is prowteith an external input mirroring the
situation of two persons standing apart, i.e. doreihe components of which follow the

equationa +ay, =a;. After some time one person should start movingatas the

other; hence, the activations of the unitsand xgis: should change according to the
situation to be mentally simulated while only thetiaation of unitx; has to stay at a
constant level. Therefore, unksandXxgist d0 not receive an external input any longer
and the activation o% is kept constant. An example of such a dynamicatgss is
illustrated in Figure 4.8b: The activation of uxidecreases until it equals the activation

of X;.

Dynamic phase B: changing all the weights

Instead of locking some of the weights during tleezosid phase of the training

procedure all the weights can be allowed to be gbdnn this second phase, i.e. also
the weights of the static part learnt in the fipftase. Applying this procedure the
weights converge to a weight distribution showmaitrix WO:
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1w, 0 w,
_1 1 —
ys 3 (W)
0 16 1 -16
-1 0 1 0

with Wi, = (k + WlZstat)/2 and W, = (k _W125tat)/2; Wizstat IS the value of the WeigM/lZ
adopted in the static training phase whichis,,, =—-1/3. Thus, the weightsv, and

wis add up to the value df which determines the time constant of the respect
dynamic training network. The time in which thidw@n is reached during the second
training phase depends on the one hand, of coomsthe learning rate but also on the
value ofk. The highek is chosen the faster matrix W9 is attained.

Figure 4.9 shows an example of the behaviour odtavark trained by using the same
time constant K= 0.1) and learning rateg= 0.2) as in the example of Figure 4.8.

Here, also 22 learning epochs are necessary uaiilirtg can be stopped. The overall

weight error has decreasedfo= 1.36° . %

a Overall weight error b Internal simulation
- Training -
100 5 —x
4 Xdisl
80+ 3 \ —x
ey = —x.
= kel o
w % § 2
£ om— 1
E “ oo B
20 quality high 0 —I
1
04 * 2
0 200 400 600 800 0 200 400 600 800
iterations iterations

Figure 4.9: Example of the networks’ performance when dinging all the weights. The
time constant of the dynamic training network was deterrimed by k = 0.1and the
learning rate set to £ = 02. (a) Overall weight error during training. (b) Internal
simulation of the move event (for further explanationsee text).

After having trained the network it has the abitityinternally simulate the situation of

one person moving towards the other (Figure 4.9D).

4.5.2 Training the network in one step
In contrast to these types of training procedueparated into two steps, training in one
step is also possible. In order to perform thispy the first phase of learning to
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represent the static input situation is skippec @jnamic training of the second phase
iIs executed in the same way as described abovelyiAgpthis shortened training

method results in weight matrix W10:

1 k/2 0 k/2
-1 0 1
(W10)
0o 0 1
-1 0 1 0

Like all other training procedures this method teéa a weight matrix only dependent
on the time constant of the dynamic training nekw®umerical results show that the
smallerk is, the longer the network has to be trained mheoto be able to internally

simulate the situation.

Thus, different possibilities exists how the comteha sentence like “Homer walks to
Marge” can be represented. Both the informationuttibe objects as well as the

information about the motion can be merged withgingle representation.

4.6 Discussion

Internal mental representations are an importagteguisite for cognitive behaviour.

Therefore, when trying to model cognitive abilitie§ humans or animals or when

building agents that are supposed to behave coglyitithe goal is to model a general
memory system that is able to store and retriev@ws contents. This information is

assumed to be stored in the form of situation ndehich in general connect

perception to action. Studies of mirror neuronscate that situation models consist of
separate neural assemblies (e.g. Fogassi et @5) Zupporting earlier assumptions
(Wolpert and Kawato, 1998).

Addressing this goal raises several questions: dr@such situation models learnt? Are
these models ordered in a parallel or some hieiaicktructure? How is it possible to

serially connect different models to produce setjaebehaviour? And, of course, how

are these models selected and activated? Herepmeewtrate on the question how such
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situation models could be realised in a biologicplausible neuronal structure and how
individual models could be learnt. Storing stat&ttprns has been addressed in Chapter
3. Here, we concentrate on models storing dynamiteps, and as a first step, try to
combine static and dynamic properties within oneeho

Two abilities of humans in representing dynamigatesms have been focussed within
this chapter: the capability of representing acgegien of objects as can be found in the
movement of a pendulum or freely falling objectsl aepresenting actions of transfer,
l.e. motion from one point to another. The recurmegtworks consisting of IC Units
used here are well suited to simulate those varasjgects of dynamic internal
representations. When provided with the respeatiyeamical input they adapt to
represent the situation existing in the outsideladvor

Studying the combination of static and dynamic nt®das shown that storing dynamic
properties together with the static information egms to be more parsimonious than
application of a separate, multipurpose dynamic ehtitht is activated together with a
static model on request. Learning is possible iseguential order, first the static
information and later the dynamic part. Howevers ialso easily possible and faster to
learn both aspects at the same time. Furthermioiseptocedure has led, at least in our
examples, to simpler weight matrices.

The results presented are particularly interedticause the IC Units used here apply a
simple, biologically plausible and local learningaithm. The individual units in this
recurrent network are not specified as to be ofegptsensory or motor type. Such a
separation is generally not possible in this ‘halisnetwork. Rather, the situation

model may be used for perception as well as fotrobaf action (Cruse, 2003).

4.6.1 Combination of static and dynamic representat  ions

The model we proposed here is able to simulatersBvaspects of dynamic internal
representations and has already been shown torpevi@ll when representing static
situations (Chapter 3). Here, we were also ablshimwv that both the static and the
dynamic representations can be merged within orfeedmetwork.

The different training procedures lead to differertight matrices. This is, as discussed
in Chapter 3, due to the fact that the task is toetermined. The results depend on the
values of the weights at the beginning of trainitegsimplify matters, in all experiments
the values of all weights are set to zero at tlggriéng) and on side conditions, as for
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example holding some of the weight at fixed valwesusing different training
examples. Already for the static task two differsaotutions were presented, one with
diagonal weights (responsible for the self-exaatof the unit) being zero (W6), the
other with positive values for the diagonal weigfwb). The latter produces a network
having some kind of inertia (for details see Cha@e The identity matrix with all
weights being zero except for the diagonal weight®f course, also a solution, even
though a trivial one.

As for the matrices found in the dynamic trainingapes no mathematical proof is
available yet, we will give a phenomenological dggmon of the results. Interestingly,
the weights of unitxsy, are the same in all cases investigated and camdsm the
weights occurring in the lower line of matrix W4teemining the velocity unit of the
low-pass filter. Therefore, these weights appeaepoesent the only solution possible.
What about the weights of the other units of therites? The most perspicuous
solution is adopted in matrix W10. The weights oit ; can be interpreted as follows:
w,, =1 provides the actual position of the moving persorresponding to the upper
line of matrix W4. In contrast to matrix W4 the pg@sal change is distributed over

w, =k/2 andw,, =k/2, namely the contribution ofiis: andxayn. As both units provide
the same information, the effect of the positiotlzinge is equally distributed to both
weights. The weights of unis; (second line) approach the solution of matrix Wighw
the diagonal weightv,, = 0The weights of unik; (third line) stabilise on the trivial

solution with only the self-exciting weightss being one and all other weights being
zero. Apparently this simple solution is found whbka value is always constant within
a training epoch and not dependent on the othés.uni

Matrix W9 results from a similar training situatidlke W10 as all weights are free to
change. The difference, however, is that trainihthe dynamic situation in case of W9
starts with weight values different from zero. @spondingly, the results are similar
but not identical. The weights;, andwi4 of unit x, add up to the value df in both
cases, W9 and W10. In the case of W10 both weightsribute in exactly the same
ratio, i.e. w, =w, =k/2, whereas the distribution in the case of matrix AlSo
depends on the weight valuess..: adopted in the static training phase. In this ¢hse

weights arew,, =k/2+w,,../2 and w, =k/2-w,,.,/2. The second terms depending

2stat
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0N Wi st respectively balance each otherthe second line of matrix W9, weights;
andw,s correspond to that of the static solution in Wowéver weightw,; is not zero

in W9, but attains the value,, = w,,../2 which is the mean value betweegps:: and

zero. The contribution of this weight has therefdse counteracted by weight

W,, = —W,,. In the third line weightsa,, = (Gand w,; = 1 selected the trivial solution

(see W10). For weightss, andws, the explanation corresponds to that given abowre fo

Wooandwos: Wy, = —W;,, balances the influence of, = w,,../2.

Matrix W8 was obtained when the static weights wespt constant while learning the
dynamic situation. As unit&ist andXqyn provide the same information, the second and
the fourth column of matrix W8 can be rewritten éxplanation purposes:

2/3 -1/3lfi-k) 13
-3 2/3fi-k) 13
13 13fi-k) 2/3
-1 0 1

(w8a)

O O O X

This illustrates that the positional change ofrti@ving persorx; is mediated mainly by
the weightw;, and depends on the time constant of the low-phss (k). Matrix W8a
shows, that the influence of the dynamical urits andxayn iS not compensated totally
as in the results discussed above (W9 and W10jefdre, the actual value of the
velocity (here given byuist andxayn) has to be taken into account: this is the valaenf
the previous iteration step which decreases aaugrdi the factodl—k when the low-

pass filter increases.

Thus, different possibilities exists how the comteha sentence like “Homer walks to

Marge” can be represented. The individual resudts lse explained, but a general proof
does not exist up to now and it is not clear wheg diifferent solutions are found in the

cases considered. Nevertheless, with the modelepies$ here the dynamics of

situations can internally be represented. Theretbwy provide a possible neural basis
for mental simulations of such situations. Theyalan serve for recognition purposes;
if a model of a special dynamical situation hasnblearnt it will get highly activated
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when the situation occurs in the outside world mg@his activation can be interpreted

as recognition of the situation learnt before. Rannore, the networks could be used to
control motor output in order to produce movemetsording to the dynamics of the

respective representation. This means that the $gmeeof networks can be used for
imagination, perception and the control of acti@ruse, 2003). Accordingly, these

networks might form a basis to explain findings nfropsychological studies as

mentioned above as well as neurophysiological tesidncerning the so-call mirror

neurons (for a review see Rizzolatti and Craigh2094).

The results show how both the information concernstatic objects and the

information concerning motion can be merged withinsingle representation. An

alternative and at first sight more parsimonioulsitémn could be that within the brain

the dynamical properties, for example low-passffifiroperties, are stored in a specific,
separate network and not in combination with thepeetive situation. This separate
network might then be connected to any actual cstaituation if necessary. As,

however, our results have shown that only one mohdit unit is sufficient to cope with

this combined task, the latter solution might fipdle the simpler one, in particular
when the problem of establishing the connectionsiéen the static network and the
respective dynamic one is taken into account.

Our examples for dynamic properties are based @arelntial equations of first or

second order. Movements of constant speed canrbelagsed simply by using an

integrator (e.g. first line in matrix W1). Actuallyve investigate nonlinear versions of

IC Units which might allow for modelling more conegldynamic properties.

4.6.2 Representation of dynamical systems

Perception and representation of motion is a fureddat property of the neural system.
It is crucial for survival for example to estimatee time of contact with accelerated
objects to react properly. The simulations of tveoederated objects, a pendulum and
freely falling objects, show that the IC model deato calculate the effects of external
forces as for example gravity. Thus, our model @es a neural solution for the finding

that humans seem to have such an internal modelcodleration which has been

postulated to exist by Indovina et al. (2005) basedheir experiments performed in a

spacelab (Mcintyre et al., 2001). In general, weuage that any dynamical system
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which can be represented by a linear differentiagion of orden can be learnt by a
recurrent neural network of the type used here.

Additionally, experiments have revealed that un@eding of situations is aided by
internally simulating the dynamical aspects of pared situations by grounding them
in bodily activity (Glenberg and Kaschak, 2002jaet which has often been ignored up
to now. The ability of representing object motionrbeans of the dynamics of a low-
pass filter can conceptually be applied to conceetons. Thus, sentences describing
physical motions as “Homer walks to Marge” can beresented by the described
network (Chapter 4.5). But following Glenberg andskhak (2002) this idea can also
be generalised to abstract situations when takmg account the considerations of
Construction Grammar (Goldberg, 1995; Fillmore, 1988). The construction
grammarians argue that also constructions thensebagry a general meaning
independent of the single lexical items the semgmonsist of. Kaschak and Glenberg
(2000) provide a test to verify Goldbergs notionooinstruction by using made-up
denomial verbs, i.e. invented verbs generated fnooms like “to crutch”. They have
shown that not only children — as has been demateskin language acquisition studies
(e.g. Pinker, 1989) — but also adults are sensiiivéhe meanings associated with
particular constructions (see also Naigles andakes, 1998; Fisher, 1994).

Glenberg and Kaschak (2002) focus in their paperdounble-object constructions.
These constructions consist of “subject — verb jeaip— object” and carry the
meaning that the subject transfers objéatobject as “You give Liz the toy”. This can
also be applied to the double-object constructiwhsen not a physical object but a piece
of information is transferred, as in “You told Lltize story.” Glenberg and Kaschak state
(2002: 563):

“That is, we come to understand the sentence as acphgsbvement from “you” to “Liz.”
To say it differently, over the course of learning the Egtlouble-object construction, we
learn to treat the construction as an instructiositaulate a literal transfer of an object
from one entity to another even when the objeatdpéiansferred is not a physical object.
This simulation is consistent with the claim that peophderstand communication as a
type of transfer in which words act as containersfofination (Lakoff, 1987).”

They argue that almost all language expressiorex; ebstract ones like the notion of
cause, can be explained by their embodied anatligsicore of which is that humans
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tend to conceptualise most expressions by meanactidn involving bodies. (An
extreme example of explicit bodily identificatiosmneported by Ochs et al. (1996): They
observed physicists while discussing new hypothé$#sen | come down I'm in the
domain state.” With “I” temperature is meant he@xhs et al. noted that explicit
identification with the body like this was oftenaaswhen difficult hypotheses had to be
understood.) Thus, the considerations made regardotions of transfer can be
generalised— at least to some extent — and areaglsiccable to more abstract actions
where no real physical objects are involved.

The idea that internal representations comprise this dynamical aspects of situations
has already been put forward within the so-calleghpath-theory by Noton and Stark
(1971). They found that each object is memorised atored in memory as an
alternating sequence of object features and eyeements required in reaching the next
feature of the object. This dynamical aspect igpsued by the results of brain imaging
studies, too. A recent fMRI study located the inédrmodel of gravity humans are
supposed to have in the vestibular cortex as theseorks are selectively engaged
when acceleration is consistent with natural gyagihdovina et al., 2005). Another
study using event-related fMRI in humans has shthahreading action verbs activates
classical language area, i.e. left inferior frorsatl superior temporal cortex (Broca’s
and Wernicke's areas) as well as frontocerebralomoggions, including motor and
premotor cortex (Hauk et al., 2004). Even statijects conveying motion activate brain
regions engaged in the perceptual analysis of Viswdion (Kourtzi and Kanwisher,
2000). Hence, these data support the idea resdtongthe linguistic and psychological
experiments explained above that processing wordnmgs involves dynamic

representations.

4.6.3 Recombination of mental elements — Future wor Kk

The model introduced allows us up to now to modedrnal representations of static
situations (Chapter 3) and, as shown here, dynaituiations as well as combinations of
both. The next step is to ask how it might be pmesto integrate a number of

individual representations — static or dynamic orewithin larger frameworks. One

guestion is whether activation of different sitoatimodels should strictly exclude each
other or if parallel activation, i.e. blending obdels, is sensible (Wolpert et al., 2003).

108



4 MODELLING MEMORYFUNCTIONS WITHRECURRENTNEURALNETWORKS CONSISTING OF
INPUT COMPENSATIONJNITS |l. DYNAMICSTUATIONS

More fundamental problems encountered here are thewcomplete system decides
where in the brain the information concerning theual situation has to be stored, and,
if it has already been stored earlier, to recogthigesituation as a known one.

These problems include the question whether and ihfosmation is organised in any
kind of hierarchical structure as it appears tdheecase and as it is generally assumed.
However, different types of connections may eXsimagpie, a sparrow, and a robin for
example belong to the category “birds”, a connegtiwhich is described by as-a
relation according to the theory of semantic nekso{Sowa, 1991). Each of these
examples has, for instance, wings and featherspnmection described by laas-a
relation. However, such simple tree-like hierarshaee not sufficient. The actually used
hierarchy may depend on the context. A bat mayoosidered to belong to the category
of flying animals, together with (many, but not) dlirds, or it could be regarded as a
mammal and birds do not belong to this category.itSmust be possible to adapt the
hierarchy in a dynamical fashion to the actual esnt The ability to change the
hierarchical order is a prerequisite for the apitib adopt the viewpoint of another
person, which, according to Tomasello (2000) dgxlm human infants at an early

age.

Another very important and related aspect is whesimel how the integral system is
equipped with the capability to find new categaqries. to combine stored models to
form groups of related items, or chunks. These mel-invented models can be
regarded as representing symbols (Steels, 1999)aanslich be combined to other
categories. This capability would also accountttier power of recursion, i.e. the faculty
of embedding different items into each other.

This faculty provides humans with a high degredeofibility which is thought to be a
decisive feature of human intelligence (Premack0420 both should enable the
organism to combine mental elements — motor predi or more abstract
representations — to generate a more or less uatimepertoire of behaviour in order to
be as flexible as possible.

Specifically, human’s recursive grammar allows éartbedding one instance of an item
in another instance of the same item. Owing to n@on humans are able to widely
separate words in a sentence which yet depend @amother (Premack, 2004). This is
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a key feature of human language in contrast toraghénal communication systems
which enables humans to create an open-ended mitktdis system of communication
(Chomsky, 1957; Chomsky, 1959; ;Chomsky, 1965; daasal., 2002).

The third, also tightly related question conceredas connection of such models. As
discussed by Wolpert et al. (2003) this might besdle by using the output of one
model as describing a new situation to which otmedels might react. This would
require an internal feedback connection that cotsnée output of the integrated system
to its input. This feedback connection then sopak replaces the external input. Such
an internal loop might allow the production and gimation of longer behavioural

chains.

Finally, we want to address briefly a problem ordyely considered in the context of
modelling mental representations. Any neural nekwmodel proposed comprises a
mathematical or physical model describing the higpbtal mechanism. A person
performing a mental simulation, however, experien@@ phenomenal aspect, a
subjective experience, which is a domain of counsé tackled when considering such
physical models. It is an open question whetheiododpcal neuronal network after

being activated to form a situation model at thenesaime is sufficient to elicit

phenomenal aspects (Cruse, 2003). Here, we do aot to further this philosophical

discussion (Cruse, 1999) but, at least point tofdbethat when dealing with modelling
internal simulations in artificial systems, we tilyhapproach such philosophical

aspects.
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5 Discussion

5.1 Use of models in sciences

Understanding the brain and the various functiomslfils is an intriguing task. Due to
its complexity it is not only intriguing but alscemy difficult to disclose the brains
mysteries. There are different approaches postbggin insights. Neuroscientists are
able to explain the structure of the brain on datland molecular level in more and
more detail and electrophysiological recordingswadl as brain imaging techniques
help to elucidate brain functions. But explaininigher cognitive functions is fairly
difficult, because the nervous system is structimedany different levels ranging from
the molecular level to the systems level each atlwlhas its own important aspects.
Some properties might not be found when lookingloater level components but
emerge from the interaction between these compsr@nthigher levels (Sejnowski et
al., 1988). Such emergent properties may possibly lse understood by application of
models.

A vast amount of literature originating from quitdfferent fields like philosophy,
cybernetics and cognitive sciences, to name onigesaexists on the relevance and
meaning of models (for a deep discussion on madebiee Webb, 2001) which also
mirrors the confusion about what exactly is meaytthee termmodelin relation to
science (Leatherdale, 1974). Wartofsky (1979) ladled this lack of agreement “model
muddle”. But there seems to be a general agreethantodels are representations of
entities of the real world (Webb, 2001).

Of course, the benefit of using models is discuss®droversially. Some researchers
argue that “developing formalised models for pheeoan which are not even
understood on an elementary level is a risky ventwhat can be gained by casting
some quite gratuitous assumptions about parti@ianomena in mathematical form?”
(Croon and van de Vijver, 1994:4-5). Others in casit put forward the demand of
theoretical frameworks because of the complexitymimal behaviour (Barto, 1991).
As, for example, the nervous system is far to cempd be understood experimentally,
guantitative approaches provided by modelling angpesed to be necessary (Bower,
1992). In this sense, modelling could help to uhwdat the relevant structures or

essential features a system is composed of ares, Timdels offer a possibility of better
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understanding and probing experimentally obtairesailts. Obviously, models will not
solve the problems by themselves and do not repdxperiments but they could
amplify one’s intuition and could probably revea&wn phenomena and thus provide a
basis for deeper insights in the working brain.

5.2 Models as part of the process of explanation

To explain the use of models Webb (2001) proposdtamework for the role of
modelling as part of the process of explanation anediction of certain target
behaviours. A modified version of this framework shown in Figure 5.1. This
framework may be helpful to verify on the one hainel benefits the models presented
here actually have and on the other hand to defimeh directions future work based
on these models has to head for.

demonstrating

Simulatfion ----------- »  Simulated Behaviour

| | inferpreting

Hypo’rheﬁcal M. Predicted Behaviour e
Mechanism

| ‘ comparing

farget - ___ebenng | 1orget Behaviour
System

Figure 5.1: Models as part of the process of explanatioradapted from Webb, 2001).
Shaded grey parts are tackled within this work. Parts lsaded in lighter grey allow for
further research.

Webb (2001) points out that the temodelcan be applied to different parts of the
diagram depending on the viewpoint. Some considertarget system itself to be a
model because selecting a system from the worldadyr involves abstraction or
simplification (Cartwright 1983). Other approaché® the “semantic” approach to
scientific explanation (Giere 1997) regard the hiapsis to be a model because it
specifies a hypothetical mechanism or system tigetdoelongs to. The latter use of the
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termmodelis quite common in contrast to the former whiclomy rarely found (for a
detailed explanation see Webb, 2001).

In the work presented here the temmodelis taken to correspond to the box labelled
Simulationjust as Webb herself uses the term. In this sensegls are added to the
cycle between hypothesis, prediction and observeldawiour. Thus, modelling is
understood to support producing predictions froentippothesis. Here, we do not claim
to build a realistic model in the sense of Chunstiland Sejnowski (1988: 744), which
are “genuinely and strongly predictive of some atpef nervous systems dynamics or
anatomy” ,but so-called simplifying models: Thesedels are models, “which though
not so predictive, demonstrate that the nervoutesygsould be governed by specific
principles”. These specific principles are the m#ag dynamics and in the case of the IC
models the neuronal structure. Nevertheless theelmathn be explained within the
framework proposed by Webb (2001) and shown in rféigul. The parts embraced
within this work are marked by shaded grey boxes.

As the goal was to simulate internal models whiepresent external situations, i.e.
situation models, in fact we use the wonddelon two levels: on the one hand model is
used in terms of simulation, on the other handoterall target system itself is a model,
namely the internal model consisting of many comfimeurons; that means we are

modelling models.

5.2.1 The target system: The neuron

The target system to be modelled here are neumsected to build networks, which
are thought to be the basic units enabling thenb@ifulfil any function, in this case
especially building up internal representationsctSinternal representations can be
multifaceted (Chapter 3 and 4; see also Kiuhn ang&;r2005): they could resemble
static scenes and situations characterised by saydé dynamics like acceleration or
movements from one point to another as well as motess abstract rules. As pointed
out in the Introduction (Chapter 1) this is an intpat capability in order to behave
cognitively and adaptively because internal repreg®ns allow the organism to
predict the distinct consequences in the exteroaldiof distinct behavioural options.
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5.2.2 Hypothetical mechanism: Self-Organisation

Just as snowflakes come into existence without awBake-maker, internal
representations of the external world emerge frbenihteractions between the low-
level components, the neurons, only without anyesuiping force, i.e. in a process of
self-organisation. The hypothetical mechanisms athlmodels proposed comprise a
local rule instantiated on the level of a singleno®. Therefore, no ordering influence
besides the information from the external worlshésessary to enable the organism to
internally represent the external information.

When implementing the learning mechanism it is irtgoat to be cautious not to use the
wrong internal activation values for training thesights. It is necessary to use the
values of the same and not the subsequent iterstigm

5.2.3 Simulation: Entire recurrent neural network

If many neurons equipped with the hypothetical naeedm cooperate due to their
synaptic connections the target behaviour shouldrgenin a self-organised manner.
This allows us to compare the behaviour the nemgtlork model produces with the
behaviour observed in experiments.

As the training procedure proposed for IC unitsn@re promising we concentrate on
applications of networks consisting of IC units fiee moment (Chapter 3 and 4).
Different possibilities of application are possibWithin this work, the focus was on
storing patterns having been known in advance.itBsialso possible to use this type of
networks for prediction purposes. The ability tedict the output of the next time step
Is touched when learning the temporal course ofadyoal systems (Chapter 4). To
reproduce the dynamics of, for example, a pendulina, network has to be able to
predict the respectively next position and velogijue.

These IC networks can also be applied in anothetego of prediction, namely to learn
classical conditioning tasks (Wittmann, 2005). Dgriraining the network is presented
with an incomplete input vector only. After traigithe network is able to predict the
respective response to a certain stimulus situaliooontrast to the approach described
in this work for learning classical conditioningska thed-error is rectified before using
it for training the weights. Consequently, on thee dhand no negative weights occur
during training and on the other hand weight valcasnot decrease again. Therefore,

Wittmann proposed to normalise the weights in wea the sum of all weights does not
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exceed the value of one. Using this normalisati@wteights remain flexible even if the
situation changes.

The neurons and neural networks used here cangbedesl to be a model of the so-
called mirror-neurons (for a review see Rizzolattd Craighero, 2004). These neurons
can neither be attributed to represent only senaepgcts nor to represent only motor
aspects. Various studies have shown that they @reeaduring both perception and
action. The models presented here are also suifableoth and a separation between
sensory and motor units in these ‘holistic’ netveoik hardly possible (see also Chapter
4). Therefore, the same type of networks and thmesaeurons can be used for

perception and the control of action (Cruse, 2003).

5.3 Future work

Figure 5.1 allows clarifying what still has to berg in future work to broaden the
capabilities of the models presented here. Up W we have focussed on modelling
internal representations as target behaviour. Ofsey brains have far more capabilities
originating from the interplay of their buildingdaks — the neurons. To illustrate that
here still some work has to be done, the parget Behaviouin Figure 5.1 is marked
by a box shaded in lighter grey. Thus, other apgibes can be thought of which in turn
has implications on the model itself. Consequenhyg, partsSimulationand Simulated
Behaviourin Figure 5.1 are also depicted by a box shaddéidhter grey.

5.3.1 Other applications

The IC model as proposed in Chapter 3 can accaunfiridings according to the
expression of immediate early genes (IEGs) (Hucheger et al., 2005). In the absence
of sensory stimuli only a small amount IEGs is egsed within the brain. If neurons
are activated, also expression of IEGs increasken@@and Greenberg, 1990). These
early genes and their proteins like ZENK are thdughplay a role in fast learning
processes; they are supposed to mediate betweaptgyactivation and the activation
of late response genes. Huchzermeyer and colleg@0€5) have come up with an
astonishing result when studying sexual imprinimgoung zebra finches: They found
a negative correlation between the preference smudethe IEG activation; the bigger
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the difference between the stored representatiatheosexual partner and the female
presented in the experiment was the stronger vaZENK signal. This finding was a
bit counterintuitive because previously the ide& weevalent that a brain area coding a
stimulus learnt before should be the more activatexl better the actual stimulus
matches the template. This idea was derived froemalghical models of stimulus
processing as they have been proposed for thel\astiax, for example, by Hubel and
Wiesel (1962).

But the dynamics of the ZENK signal are analogughéx-error in the model presented
in Chapter 3. The more the external input devi&t@® the current output of a neuron
the bigger thed-error. Up to now, learning is stopped in the modwlre or less
arbitrarily after the overall error has fallen b&la given threshold. By doing so, further
plasticity is not allowed. But one could also thimka mechanism which decreases the
learning rate over the course of time. If the lgagrrate is very small or zero the
weights do not change any longer. This processecfadsing the learning rate can
resemble the decrease of synaptic plasticity duss found in experiments (Gan et al.,
2003).

If now a new stimulus is presented to the modelictvivas not learnt before, the
error will be large, but would not have any effeatthe weights. Therefore, tldeerror
could resemble the activity of the ZENK signal. § hctivity could express the fact that
brains principally always have the disposition @éarh but that, due to the decrease of
plasticity in the course of time, learning does tade place with the same amount than
earlier in development.

The next step to be done here is to compare thelaga found in the experiments with
the simulated results. Could it be possible to at@model in a way that the real data
could be predicted?

When trying to model and understand more compléxabeur like processing nested
sentences or controlling six-legged walking in wreverrain certainly changes in the
simulation, i.e. in the model are necessary. Hieng, main considerations are focused
on: the capability of dealingvith nonlinearities, training classical MMC netwsrk
scaling the network’s size, and ordering and cotimgandividual internal models.
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5.3.2 Nonlinearities

The problems tackled so far are linear or only tyiltbnlinear due to the rectifiers used
in the IC units. Especially in the case of the segiy more powerful IC models it is an
outstanding question if it is possible to introduomlinearities as for example nonlinear
activation functions of the single neurons and bgl able to train the networks. Three
different possibilities of activation functions aexpedient here: the neurons can be
equipped with rectifiers, functions without satiwoatlike the square root function or

functions with saturation like squashing functions.

5.3.3 Scaling the networks
Being able to scale the properties of a network g size is crucially important for a
model in order to serve as a biologically plausibtain model. The architecture of
many models has to be additionally constrainedcedesit by, for example, restricting
the connectivity to local neighbourhoods only (8&jski et al., 1988).
The model described in Chapter 2 consists of MSBEvorks because it provides
Multiple Solutions for theBasic Equation Zn:vi [x = Q In former publications this has
i=1
been called MMC network (Kihn and Cruse, 2005; 2008t is now distinguished
from what has been called MMC network in earliepgra (Steinkthler and Cruse,
1998; Cruse, Steinkuhler, et al.; 1998). The lesymule described in Chapter 2 suffers
from the problem of scaling. If representationsudtidoe build up consisting of more
items, the model's capabilities as such are sodhet limits. But this restriction of
only being able to process a limited number of gerauld also be found in real brains
too: Humans working memory has only a limited céiyg@addeley, 1986). A solution
to cope with this scaling problem is proposed bel@wapter 5.3.5) by combining more
small subnetworks each of which contains a limaatunt of information.
The second model type we used, the building bla¢kshich are IC Units (Chapter 3

and 4), does not suffer from scaling problems ag las the learning rateis chosen

small enough according 1@< £ < (see Appendix in Chapter 3.6). Thus, the more

a' [@&
units the network has, the smaller the learning tets to be in order to obtain stable

solutions. Therefore, this IC model seems to beenppomising for further applications
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than the model described in Chapter 2 and it gradty should be possible to train more

realistic networks consisting of a large numbeneairons.

5.3.4 Training classical MMC networks

Additionally, this could provide a solution for trgill unsolved problem of training
classical MMC networks as used for control of, fexample, arm movements
(Steinkthler and Cruse, 1998; Cruse, Steinkihlegl.e 1998). The position of each
vector necessary for calculating the endpoint effthnd symbolised by R is calculated
from four Basic Equations, respectively. This i®wh in Figure 5.2: Each vector is
obtained by calculating the mean of the four composing equations. That means each
of these subsystems is an MSBE network. If a way vi@und to train these
subnetworks effectively, for example by combiniig tdeas of training IC networks
with these MSBE networks, it perhaps would be fsdb merge the results to obtain
a solution for the entire MMC network. Finding watgstrain these MMC networks

would dramatically improve their adaptability.
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Figure 5.2: MMC network for a three-joint planar arm. (a) Schematic drawing of a
three-segmented arm. (b) MMC network: Each vector i®btained from calculating the
mean X from four basic equations. The weights are symbolisedybclosed circles (1)

and open circles (-1) (adapted from Cruse et al., 1998).
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In this context another problem is touched: théjenm of how to deal with hidden units
and how to train networks that are equipped witddén layers. In the classical MMC
networks the units representing the diagonal vecidt and D2 (see Figure 5.2) are
such hidden units because they do not receive tdegternal input but only the
recurrent input from the other units within thewetk. If we equipped the single units
within the MMC networks with the IC structure forropiding better training
possibilities for the single elements of the entietwork and if we were able to
combine them in the end, we probably could Kill thieds with one stone: training
classical MMC networks as well as training netwonkth hidden units.

5.3.5 Connecting individual internal models

The brain is, of course, able to process and cdgfeanrarger amount of information at
the same time; thus, many internal models of ealesituations coexist. Storing many
different individual models raises the questionhoiv these distinct models may be
learnt, stored, and retrieved. To solve these problhints from evolutionary biology
might help. Individual models could be equippedhwa kind of fitness value as
proposed by Steels (1999). This fitness value nepedd on spontaneous changes and
on successful application in the world. Based as fiiness value different internal
models could compete via winner takes all connastio

As a next step, it is indispensable to think ofgilmisties of how models containing
limited information can be combined to build largermeworks. It is, for example, no
problem for us to follow and understand sentench&hvare long and complicated
because of many embedded subordinate clauses.capadility is called recursion and
is assumed to be a decisive feature of humanigeelte (Hauser et al., 2002; Premack,
2004).

On the one hand, experiments indicate that thepeap to be some kind of hierarchical
structure: bottom-up attentional mechanisms are hmdaster than top-down
mechanisms implementing our long-term cognitivatsigies (Connor et al., 2004). On
the other hand, the structure seems to be varmfiedepends on the context in a
dynamical way. Thus, to account for cognitive diei as, for example, the power of
recursion we have to find a way of how combininggnamall models into hierarchical
structures the hierarchy of which depends on theaacontext (Chapter 4). This claim
is necessary because simple tree-like hierarcingesften not sufficient. For example, a
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bat may be considered to belong to the categoflyiofy animals, together with (many,
but not all) birds, or it could be regarded as anmel; but birds do not belong to this
category. Thus, it must be possible to adapt teeahthy dynamically to the actual
context. Furthermore, the ability to change thedrghical order is a prerequisite for the
ability to adopt the viewpoint of another persomiah, according to Tomasello (2000)
develops in human infants at an early age.

Thus, the work presented here provides many iriagesopportunities to be
investigated in subsequent studies.
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