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1. Summary 
 
The postnatal development is probably the most important phase during the maturation 

process of a living creature. External circumstances and influences will stamp the initial 

wiring of the nervous system and therefore contribute to the establishment of  cognitive 

functions and behavioral repertoires. Disturbances during this crucial time can have 

deleterious effects on the whole system and can lead to alterations in the neural networks and 

even to the formation of neurological diseases.  

Our group has established an animal model of an early systemic challenge during 

development using a 2-step approach of impoverished rearing (IR) conditions and a 

pharmacological intoxication with methamphetamine (MA) on postnatal day (PD) 14.  

Previous work already revealed that this model induces severe and complex alterations in 

various transmitter systems and areas and even reflects some findings from schizophrenic 

patients.    

The current work was conducted to clarify some further points concerning this potential 

animal model of psychosis.  

● First, are these changes totally due to the immature networks during development or can an 

adult challenge with MA cause similar alterations, particularly in the dopaminergic system?  

● The second question concerns the variations between the areas after an early challenge and 

if their developmental patterns might play a role in mediating this effect.  

● Finally, I was interested in the contribution of the GABAergic system to the reactive or 

compensative mechanisms within the disturbed neural networks.  

To address these questions we applied a comparable dose of MA to adult gerbils as a start and 

investigated the long-term effects on the dopaminergic system, which appeared to be quite 
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different from the early challenge, with only a slight oversprouting of fibers in the nucleus 

accumbens shell (Brummelte et al., 2006a).  

Further, we investigated the postnatal development of dopaminergic and GABAergic fibers in 

a long-term study in the prefrontal cortex (PFC), amygdala and entorhinal cortex (EC) from 

PD 14 until high age (PD720) to account for potential varying maturation patterns or ageing-

sensibility of these areas or transmitter systems. We found that the different patterns might 

indeed contribute to the observed imbalance within the neural networks and that only the  

prefrontal dopaminergic fiber density is revealing ageing-related alterations (Brummelte and 

Teuchert-Noodt, 2006; Brummelte et al., accepted; Brummelte and Teuchert-Noodt, 

submitted). 

To eventually estimate the participation of the GABAergic system in the rearrangements after 

the early disturbances, we quantified GABAergic fibers as well as boutons around pyramidal 

somata in the PFC and revealed that GABA is apparently undergoing a shift from strong 

somatic inhibition to more moderate dendritic inhibition of pyramidal neurons and therewith 

derogating the synchronization of whole pyramidal populations (Brummelte et al., 2007). 

Thus, our results further strengthen our hypothesis that all transmitter systems show a high 

neuronal plasticity, partially even in adulthood and that our approach of an early systemic 

stress leads to several severe and complex alterations in the neuroanatomical networks, which 

underlines the high interdependency of the various transmitter systems and might resemble 

some of the changes and deficits seen in schizophrenic individuals.   

 
 

1.1 Zusammenfassung (deutsch) 
 
Die postnatale Entwicklung ist wahrscheinlich die wichtigste Phase während des 

Reifungsprozesses eines jeden Lebewesens. Äußere Verhältnisse und Einflüsse wirken auf die 

anfängliche Verschaltung des Nervensystems ein und tragen so zur Bildung von kognitiven 
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Fähigkeiten und Verhaltensweisen bei. Störungen während dieser entscheidenden Zeit können 

schädliche Effekte auf das ganze System haben, da sie zu Modifizierungen in den 

Nervennetzen oder sogar zur Bildung von neurologischen Krankheiten führen können. Unsere 

Arbeitsgruppe hat ein Tiermodell einer frühkindlichen Schädigung entwickelt, das aus einem 

2-Stufen Modell besteht mit reizarmen Aufzuchtsbedingungen einerseits und einer einzelnen 

frühen Methamphetamin-Intoxikation (MA) am postnatalen Tag (PD) 14 andererseits. 

Vorherige Arbeiten konnten bereits zeigen, dass dieses Modell schwerwiegende und 

komplizierte Veränderungen in verschiedenen Transmittersystemen und Gebieten verursacht 

und sogar einige Befunde von schizophrenen Patienten widerspiegelt. Die gegenwärtige 

Arbeit wurde durchgeführt, um weitere Aspekte bezüglich dieses potenziellen Tiermodells zur 

Psychose zu klären.  

● Erstens: Beruhen diese Veränderungen ausschließlich auf den unausgereiften Nervennetzen 

während der Entwicklung, oder kann eine MA-Intoxikation im Erwachsenenalter ähnliche 

Modifizierungen, besonders im dopaminergen System, verursachen?  

● Die zweite Frage betrifft die unterschiedliche Betroffenheit verschiedener limbischer 

Gebiete nach der frühen Störung, und ob die möglicherweise unterschiedlichen 

Entwicklungsmuster der Areale dabei eine Rolle spielen könnten. 

● Schließlich interessierte ich mich für den Beitrag des GABAergen Systems zu den reaktiven 

oder kompensatorischen Mechanismen innerhalb der gestörten Nervennetze.  

Um diese Fragen zu klären, haben wir zunächst eine vergleichbare Dosis von MA  

erwachsenen Rennmäusen verabreicht, um die langfristigen Effekte auf das dopaminerge 

System zu untersuchen. Im Gegensatz zu der frühen Intoxikation zeigte sich jedoch nur ein 

leichter Faserüberschuss im Nucleus accumbens shell (Brummelte et al., 2006a). 

Daraufhin untersuchten wir die postnatale Entwicklung von dopaminergen und GABAergen 

Fasern in einer Langzeitstudie im präfrontalen Kortex (PFC), in der Amygdala und im 

entorhinalen Kortex (EC) vom PD 14 bis zum hohen Alter (PD720), um potenziell 
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unterschiedliche Reifungsmuster oder alterungsbedingte Veränderungen der entsprechenden 

Gebiete und ihrer Transmittersysteme aufzuzeigen. Die Ergebnisse zeigen, dass diese 

verschiedenen Muster tatsächlich zur beobachteten Unausgewogenheit innerhalb der 

Nervennetze beitragen könnten, und dass nur die dopaminerge Faserdichte im PFC von 

Alterungsprozessen betroffen ist. (Brummelte and Teuchert-Noodt 2006; Brummelte et al. 

akzeptiert, Brummelte and Teuchert-Noodt, eingereicht).  

Um schließlich den Einfluss des GABAergen Systems bei den Umorganisationen nach den 

frühen Störungen zu beurteilen, untersuchten wir einerseits GABAerge Fasern und 

andererseits  GABAerge ‚Boutons’ an nicht angefärbten pyramidale Zellkörpern im PFC und 

konnten zeigen, dass die GABAerge Inhibition anscheinend eine Verschiebung von einer 

starken somatischen Hemmung zu einer eher mäßigen dendritischen Hemmung der 

pyramidalen Neuronen erlebt, wodurch die Synchronisation ganzer pyramidaler Populationen  

verringert sein könnte (Brummelte et al., 2007).  

Daher bestätigen diese neuen Ergebnisse weiter unsere Hypothese, dass viele 

Transmittersysteme eine hohe neuronale Plastizität aufweisen, und dies teilweise sogar im 

Erwachsenenalter. Weiterhin unterstreicht unser Ansatz einer frühkindlichen systemischen 

Störung die hohe Interdependenz der verschiedenen Transmittersysteme, da er zu vielen 

komplizierten Veränderungen in den neuroanatomischen Netzwerken führt, die wiederum 

zum Teil einigen beobachteten Veränderungen und Defiziten von schizophrenen Personen 

ähneln. 
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2. Introduction 
 
 

The mammalian brain is capable of tremendous accomplishments, which are in part due to the 

fact that the main structural and functional patterns mature postnatally. Right after birth, the 

nervous system is like a pool of infinite possibilities in form of an endless number of potential 

connections, which need to be directed to eventually form a well functioning system. The 

environment plays a fundamental role in the subsequent development of neuronal structures 

and functions. This so called experience-dependent plasticity was already shown in the 

striking experiments by Wiesel and Hubel in the 1960ies, when they revealed that the 

monocular deprivation of kittens during a critical phase of development leads to differences in 

the cortical wiring and subsequently to a functional loss of the deprived eye (Hubel and 

Wiesel, 1964; Wiesel and Hubel, 1965). The anatomical changes comprised of variances in 

the volume of the representing domains of the particular eye and the pattern of the ocular 

dominance columns (Hubel et al., 1977; Shatz and Stryker, 1978). This demonstrates the 

interconnectivity of structural arrangements and the corresponding functional or behavioral 

outcome. Thus, external influences are essential for a natural maturation of the cortical 

connectivity, including the connectivity of the various transmitter systems.  

Usually, a child learns quite unconsciously and mechanically how to use its motor and 

cognitive capacities as the proceeding maturation of the necessary neuronal networks is a 

genetically programmed process (Jacobson, 1991). The guidance of particular fibers and 

connections depends on morphogenetic factors and guidance cues, which lead the way to the 

target innervation side and thus determine the initial wiring of the nervous system (Sperry, 

1963). Thereby, the progression generally follows an inferior to superior and posterior to 

anterior pattern, with sensory motor structures maturing earlier than associative ones, so that 

the prefrontal cortices are the last regions to reach their adult appearance. Considering that the 

prefrontal areas are high associative centers, which are responsible for complex cognitive 

functions as decision making or the evaluation of new situations and circumstances, it appears 

quite reasonable that these structures gain their fine tuning only late in adolescence, 

especially, as these functions mainly depend on extrinsic influences. This crucial 

neuroplasticity assures a high amount of adaptation to the extrinsic environment, which might 

be the reason why the important part of the maturation takes place postnatally. However, one 

should keep in mind that some structures such as the dentate gyrus of the hippocampus or the 
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olfactory bulb continue to ‘mature’ throughout the whole life-span, due to the neurogenesis 

taking place in these areas, i.e. the ingrowth of new neurons into the existing cell assemblies.   

 

2.1   Neurotransmitter systems and plasticity 

 
The first neurotransmitter, acetylcholine, was already discovered in 1914 by Henry Hallett  

Dale and its function as a transmitter in the nervous system was proved by Otto Loewi in 

1921. However, it took another quarter of a century with passionate and controversial 

arguments until the existence of the chemical messengers was generally acknowledged (rev. 

in Valenstein, 2002). Today there is no doubt that acetylcholine, serotonin (5-HT), dopamine 

(DA), gamma-aminobutyric acid (GABA) and glutamate are some of the main 

neurotransmitters in the mammalian nervous system.  

Neurotransmitters are essential for the normal functioning of neural networks and their 

interdependency of excitatory and inhibitory influences on neuronal cells eventually 

determines our behavior (Birkmayer et al., 1989). The effectiveness of neurotransmitter action 

thereby depends on several factors. On the one hand there are the postsynaptic components as 

receptor types, densities or sensibilities or the responsiveness of the postsynaptic cell to the 

neurotransmitter message. On the other hand presynaptic factors also contribute significantly 

to the transmission process. For instance, the position of the synapse on the postsynaptic cell, 

e.g. on a dendrite or the soma, plays an important role for the magnitude of the ‘message’. 

Also the amount of transmitter released by a particular stimulation can be variable.   

Besides these direct factors, there are also several indirect measures to modulate the 

neurotransmitter function. Thus, the different neurotransmitter systems can influence each 

other e.g. by terminating on the other ones’ synapses or by competing for a particular 

innervation site. In summary, the interconnectivity of the different transmitter systems is 

highly complex and a disturbance within one neural system might therefore eventually affect 

the whole network.  

Recently it has been shown that neurotransmitters also exhibit morphogenetic properties and 

can therefore regulate the proliferation, growth, migration, differentiation and survival of 

neural precursor cells during development (for review see: Nguyen et al., 2001). However,  

transmitter systems are themselves affected by drastic changes during the maturation process. 

For instance, it has been assumed that GABA-A receptor ligands can induce imbalances in 

monoaminergic versus GABAergic transmission in the developing brain (Lauder et al., 1998).  
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So, when considering the maturation of fibers and connections of particular transmitter 

systems, one should keep in mind that their properties and functions might on the one hand be 

subject to change, too and on the other hand depend on the postsynaptic properties as e.g. 

receptor densities.  

In addition, external influences can have an important impact on the structural arrangement 

and the interconnectivity of neuronal structures and therefore also on the development and 

plasticity of neurotransmitter systems.   

 

2.2   The animal model and previous results 

 
Our laboratory has investigated the neuroanatomical distribution and reactive neuroplasticity 

of several transmitters using immunohistochemistry to stain cells, fibers or spines containing 

these chemical messengers. The animal of choice for these investigations was the Mongolian 

gerbil (Meriones unguiculatus), as the genetic variability of these animals is very small 

(Thiessen and Yahr, 1977). In addition, their behavioral repertoire and, thus, neuronal 

background is considered to resemble the wild form more than that of mice or rats, since they 

have not been so intensively domesticated (Rosenzweig and Bennett, 1969).  

Animals were either bred in standard makrolon cages (type IV) under impoverished rearing 

(IR) conditions  or in semi-naturally structured compounds (1m x 1m) containing branches 

and hiding opportunities (enriched rearing = ER) and kept in these conditions until weaning 

(postnatal day (PD) 30). Afterwards animals from IR conditions were transferred to makrolon 

(type III) cages, where they were kept individually until further usage, while animals from ER 

were transferred to another semi-natural compound and kept together with their siblings. All 

animals received food and water ad libitum and were kept on natural day/night cycles (Fig.1).  

Enriched environment has since long been known to cause morphological changes in the brain 

(Diamond et al., 1964; Diamond et al., 1976). In addition, animals from enriched environment 

reveal better learning and memory skills (Paylor et al., 1992; Nilsson et al., 1999). In contrast, 

animals from impoverished environments often reveal pathologic stereotypic behaviors and 

cognitive impairments and can be used as animal models for diverse neurological diseases 

(Winterfeld et al., 1998). 
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Fig. 1: Different rearing conditions. Left: Enriched environment: Animals live in huge semi-naturally 
structured compounds with opportunities to hide and play. Right: Impoverished environment: Animals are kept 
in standard makrolon cages with nothing but sawdust. 
 

However, it is important to distinguish between rearing and keeping conditions. The  

impoverished environment during development has a strong influence during the maturation 

of the brain, while its effect is less devastating after the main neuronal networks have been 

established. Thus, the restricted rearing conditions used by our laboratory are particularly 

essential to introduce disturbances during the establishments of important initial connections.  

The second part of our animal model consisted of an early methamphetamine (MA) 

intoxication on PD 14. Thus animals from IR or ER conditions either received an i.p. 

application of 50mg/kg MA or an application of saline. MA is a dopamine agonist which 

causes a massive release of DA into the synaptic cleft as well as a blockage of monoamine 

oxidase (Ricaurte et al., 1982), thus leading to the formation of neurotoxins as oxygen species 

and reactive nitrogen species (Itzhak et al., 1998; Cadet and Brannock, 1998; Lau et al., 2000; 

Gluck et al., 2001; Kita et al., 2003), which in turn cause the degeneration of synaptic 

terminals.  

This 2-step approach of an early challenge during development via IR and the MA 

intoxication leads to several alterations in various transmitter systems in particular areas. For 

instance, the 5-HT innervation is affected by IR in the central and basolateral amygdala and in 

parts of the hippocampus and the entorhinal cortex (EC), while frontal and prefrontal cortices 

show no significant alterations (Busche et al., 2002; Lehmann et al., 2003; Neddens et al., 

2003; Neddens et al., 2004). A  MA intoxication however, causes an increase of 5-HT fibers 

in the nucleus accumbens and the septal dentate gyrus in IR animals (Busche et al., 2002; 

Lehmann et al., 2003; Lesting et al., 2005a) and even more widely spread effects comparing 

ER MA to ER gerbils (Neddens et al., 2003; Neddens et al., 2004). 
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         Transmitter   

             

5-HT ACh Glu 

Area Sub-
region 

IR IR 

MA 

ER 

MA 

IR IR 

MA 

ER 

MA 

IR IR MA ER MA 

           
Medial n.s. n.s. + 49% n.s. n.s. n.s. - - - PFC 

Orbital n.s. n.s. + 23% n.s. n.s. n.s. - - - 

Frontal n.s. n.s. n.s. - - - I:   3: n.s. / 5:↓ 

V:  3: n.s. / 5:↓ 

VI: 3: ↓ / 5:n.s. 

I:  3:  n.s. / 5: n.s. 

V:  3: n.s. / 5: ↑ 

VI: 3: :n.s. / 5: ↑ 

I:   3: n.s. /  5: ↓ 

V:  3: n.s. / 5: ↓ 

VI: 3: n.s. / 5: ↓ 

Insular n.s. n.s. n.s. n.s. n.s. n.s. I:   3: ↓ / 5: n.s. 

V:  3: ↓ / 5: n.s. 

VI: 3: ↓ / 5: n.s. 

I:  3: n.s. / 5: n.s. 

V: 3: n.s. / 5: n.s. 

VI: 3: n.s. / 5: ↑ 

I:   3: ↓ / 5: n.s. 

V:  3: n.s. / 5:n.s. 

VI: 3: n.s. / 5:n.s. 

Cortex 

Parietal n.s. n.s. n.s. - - - I:   3: ↓ / 5: ↓ 

V:  3: ↓ / 5: ↓ 

VI: 3: n.s. / 5:↓ 

I:   3: n.s. / 5: ↑ 

V:  3: n.s. / 5: ↑ 

VI: 3: n.s. / 5: ↑ 

I:    3: ↓ / 5: ↓ 

V:  3: ↓ / 5: ↓ 

VI: 3: n.s. / 5: ↓ 

Core n.s. + 14% + 13% - - - - - - Ncl. 
Acc 

Shell n.s. + 23% + 23% - - - - - - 

BLA + 10% n.s. n.s. - - - - - - Amyg-
dala 

CE + 30% n.s. n.s. - - - - - - 

Ent. 
Cortex 

Ventral + 49% n.s. + 58% + 10% n.s. n.s. - - - 

Dent. 
Gyrus 

Temp. + 44% n.s. + 54% + 41% - 13% + 44% - - - 

Table 1: Summary of previous results for the serotonin (5-HT), acetylcholine (ACh) and glutamate (Glu) 
transmitter systems coming from our 2-step animal model. The percentage values or arrows indicate an 
increase (black) or decrease (red) in fiber densities of the according transmitter between the groups; animals 
from impoverished rearing with placebo injection (IR) or enriched rearing with methamphetamine challenge (ER 
MA) are compared to animals from enriched environment with saline treatment (ER = control), while animals 
from IR conditions with a MA challenge (IR MA) are compared to animals from IR condition without the 
intoxication (IR). Noteworthy, all treatments appear to have a rather increasing effect on the 5-HT and ACh fiber 
densities, while the 2-step approach draws a more complicated picture for the glutamatergic innervations. Here, 
an imbalance between projections from lamina III (3) and lamina V (5) pyramidal neurons to the different 
cortices is clearly visible in MA intoxicated IR animals (indicated by the numbers 3 and 5 in red color) 
throughout most of the investigated layers (I, V and VI are only representative examples). Presented values are 
based on results for the right hemispheres from the following studies: Busche et al., 2002; Neddens et al., 2003; 
Lehmann et al., 2004, Neddens et al., 2004; Lesting et al., 2005a;  Bagorda et al., 2006; Busche et al., 2006. 
PFC: prefrontal cortex; Ncl. Acc.: Nucleus accumbens; Ent. Cortex: Entorhinal cortex; Dent. Gyrus temp: 
temporal dentate gyrus; n.s.: not significant.   
 

 

Acetylcholine fibers exhibited an increase in prefrontal areas of the left hemisphere and the 

EC after IR (Lehmann et al., 2004), but showed no effect after MA treatment. A different 

picture was revealed for the temporal dentate gyrus, where the MA challenge led to a lower 

amount of fibers in IR animals but at the same time to a higher amount in animals from ER 

conditions (Busche et al., 2006). A similar reverse effect for MA considering IR and ER 

animals was also found for the glutamatergic projections from the PFC. Fibers from lamina V 

revealed a denser innervation in their projection fields in IR MA animals, while projection 

from lamina III and V revealed a lesser innervation in ER MA animals (Bagorda et al., 2006). 
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In summary, the reactive changes after an early pharmacological treatment are highly diverse 

and complex and also depend on the animals’ external environment, whereby IR animals 

generally showed stronger reactions than ER animals. Table 1 gives an overview over the 

most important findings from previous works concerning 5-HT, acetylcholine and glutamate. 

 

2.3   The dopaminergic and GABAergic transmitter systems 
 

The above mentioned variances in the effects of rearing conditions and especially MA 

treatment are in part due to the direct effect on the dopaminergic system, which shows severe 

alterations after both, IR and MA intoxication. As MA is a dopamine agonist it appears quite 

likely that the most deleterious effects are seen within the DA system, especially since DA is 

particularly vulnerable to oxidative stress and can even be a source of reactive oxygen species 

itself (Ueda et al., 2002; Cantuti-Castelvetri et al., 2003). However, after impoverished 

rearing similar effects can be observed, underlining the suggestion that the dopaminergic 

transmitter system is indeed exceptionally vulnerable to both, extrinsic and intrinsic 

challenges. In addition, it is frequently associated with ageing-related changes and 

neurodegenerative diseases such as Parkinson (Chinta and Andersen, 2005). Interestingly, 

caudal and rostral areas of the prefrontal-limbic system seem to be affected in opposite 

directions, with the amygdala or the EC showing an overshoot of dopaminergic fiber densities 

after the MA challenge or IR (Busche et al., 2004), while the densities are dramatically 

diminished in the PFC (Dawirs et al., 1994; Winterfeld et al., 1998; Neddens et al., 2001), 

which points to the complexity of the MA neurotoxicity. 

Therefore, the focus of this work will generally be on two neurotransmitter systems: on the 

one hand on the dopaminergic system, which is mainly directly affected in our animal model 

and is further believed to regulate multiple brain functions and to be involved in several 

developmental and neurodegenerative diseases (Nieoullon, 2002) and on the other hand on the 

GABAergic system, which provides the most important inhibitory control within the nervous 

system (Bowery and Smart, 2006) and is believed to be able to influence the development of 

monoaminergic structures (Lauder et al., 1998). In addition, GABA appears basically in local 

inhibitory interneurons throughout the brain and is therefore assumed to play an important 

role concerning compensatory or aggravating reactions after disturbances in the local 

networks (Teuchert-Noodt, 2000; Magnusson et al., 2002; Nishimura et al., 2005). Further, 

GABA is assumed to play a considerable role in the establishments and consolidation of 

neuronal networks, in particular as it is known to undergo a shift during development: it 
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exhibits depolarizing effects until early postnatal stages (Cherubini et al., 1991; Ganguly et 

al., 2001; Ben-Ari, 2002), while it then changes to an inhibitory transmitter due to the delayed 

expression of the chloride exporter and the according inverted electrochemical gradient for Cl- 

in neonatal neurons (Ben-Ari, 2002). Thus, DA and GABA are both essentially important for 

a normal maturation of neuroanatomical circuits and their following functional integration.  

DA is almost exclusively found in projection neurons, which are nearly all located in a few 

nuclei in the brain stem. From here, three major pathways of dopaminergic projections evolve 

which are associated with various functions of the brain. The mesocortical pathway connects 

the ventral tegmental area (VTA) with the frontal cortices and is therefore involved in 

cognitive functions as motivation, attention or memory processes. The mesolimbic pathway 

also originates in the VTA and leads to limbic structures in the midbrain, among others to the 

nucleus accumbens and amygdala and therefore this pathway is associated with the emotional 

and reward system of the brain (Fig. 2A). These two pathways are often named together as the 

mesocorticolimbic projection, as both ascend mainly from the VTA and innervate parts of the 

big limbic circuit (Fallon et al., 1978; Swanson, 1982; Björklund and Lindvall, 1984). The 

third major pathway from the brainstem nuclei is the nigrostriatal, which connects the 

substantia nigra with the basal ganglia loop, especially  with the striatum, and thus plays a 

role in motor function. Another dopaminergic pathway ascends from the arcuate nucleus of 

the mediobasal hypothalamus and projects to the median eminence, where it inhibits the 

secretion of prolactin from the adenohypophysis. Thus, DA even plays a role in hormone 

regulations, which underlines the wide variety of functions of this neurotransmitter in the 

brain.  

It has been shown before that the mesocortical DA pathway exhibits a prolonged maturation 

until  adulthood (Kalsbeek et al., 1988; Dawirs et al., 1993a), while more caudal positioned 

areas are assumed to reach their adult pattern earlier during development (Busche et al., 

2004). Therefore, it seems likely that the various pathways and the according areas may be 

affected differently, which in turn might explain the apparent imbalance in the dopaminergic 

system after the early pharmacological challenge.  

The GABAergic cell population consists of several subpopulations which can be 

distinguished on the basis of their cell properties, distribution, shape, synaptic contacts or the 

content of particular substances within the cell, as for instance calcium-binding proteins. 
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Fig. 2:  Dopaminergic pathways in the rodent (A) and the imbalance after an early MA challenge (B). 
PFC: prefrontal cortex; NAC: Nucleus accumbens; AMY: amygdala; HC: hippocampus; MEC: medial 
entorhinal cortex; LEC: lateral entorhinal cortex; SN: substantia nigra; VTA: ventral tegmental area 
(taken from Busche, 2004). 
 

Some of these cells have a rather strong influence on the postsynaptic cells due to their 

somatic contact while others are more likely to innervate the dendrites of other cells and thus 

have a more modulatory effect. Noteworthy, GABA is believed to provide the 

synchronization of whole pyramidal populations via the strong somatic input, which is in turn 

believed to be the basis for a normal functioning of the brain (Traub et al., 1996; Freund, 

2003), as it enables a target-orientated firing of the cortical output neurons. Interestingly, the 

fast-spiking subpopulation, which exhibits these contacts, shows a slower developmental 

pattern than the other GABAergic cells, as their establishment of axo-somatic synapses 

continues well into adolescence (Lewis et al., 2005). In contrast to DA, GABA acts always 

inhibitory once the chloride exporters have been expressed. Its appearance is almost limited to 

interneurons with only a few exemptions of GABAergic projection neurons as e.g. in the 

basal ganglia or in the cerebellum. Due to this local but overall occurrence of GABAergic 

cells their innervation fields usually only extend to the close proximity. Within the 

GABAergic population, several subpopulations can be distinguished with the aid of calcium-

binding protein markers such as calbindin (CB) or parvalbumin (PV). These proteins are only 

expressed in particular subgroups of cells and can therefore be used to further specify the 

potential effects on the GABAergic systems (Celio, 1990).  

DA and GABA have been shown to exert a high interaction and interdependency. GABAergic 

interneurons receive direct dopaminergic input (Goldman-Rakic et al., 1989; Verney et al., 

1990; Benes et al., 1993), whereas it can provide both, inhibitory (Retaux et al., 1991) and 

excitatory (Gorelova et al., 2002) effects and different innervation patterns and receptor 

distributions, respectively, concerning the various GABAergic subpopulations (Sesack et al., 

1995; Le Moine and Gaspar, 1998). In addition, DA terminals also directly innervate the 

pyramidal neurons (Jay et al., 1995; Davidoff and Benes, 1998) and can thus directly and 
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indirectly, via the GABAergic interneurons, modulate the firing pattern of the cortical output 

neurons.  

GABA in turn has an influence on the dopaminergic neurons in the brainstem via striatonigral 

neurons or local circuit neurons in the midbrain (Gale and Guidotti, 1976; Racagni et al., 

1977; Grace and Bunney, 1985) and maybe it can even modulate the dopaminergic impact on 

neuronal networks by innervating dopaminergic terminals. Thus, the interconnection of the 

GABAergic and dopaminergic system is highly complex and is still influenced by the 

contribution of the remaining transmitter systems, such as serotonin or acetylcholine. Figure 3 

shows the schematic connectivity of the GABAergic subpopulations with the dopaminergic 

projections and the pyramidal output neurons exemplarily in the prefrontal cortex.  
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Fig. 3: Schematic illustration of the potential interconnectivity of the different GABAergic subpopulations 
with dopaminergic projections and the pyramidal neurons. The GABAergic subpopulations can be classified 
with the aid of different calcium-binding proteins. Calbindin (CB) is found in double bouquet cells (DB), in 
Martinotti (M) and neuroglia (N) cells. Parvalbumin (PV) in basket (B) and chandelier neurons (CH) and 
calretinin (CR) can be found in Cajal-Retzius cells (CA) and double bouquet cells, although it is sometimes co-
expressed with one of the others. Dopamine (DA) innervates pyramidal cells (P) as well as different GABAergic 
cells such as basket cells or chandelier neurons and GABAergic cells in lamina II (G), while it can exert 
excitatory or inhibitory properties.  
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3. Long-term effects of a single (adult) methamphetamine 
challenge  

 
Considering the huge amount of data on alterations in the neurotransmitter networks after the 

early MA challenge, there were still a few questions which remained unanswered. First, are 

these changes totally due to the immature networks during development or can an adult 

challenge with MA cause similar alterations, particularly in the dopaminergic system? 

Second, why are different areas affected in opposite ways? Is there any relationship with their 

developmental pattern? And last but not least, how is the GABAergic system involved in  the 

reactive or compensative mechanisms within the disturbed neural networks?  

It has been shown before that a single adult MA challenge can induce reactive changes in the 

prefrontal cortex of gerbils like an increase of spine density on pyramidal neurons (Dawirs et 

al., 1991). However, this increase turned out to be only transient and there was actually a 

slight decrease in density compared to control levels 30 days after the application (Dawirs et 

al., 1993b). Further, the GABAergic innervation in the prefrontal cortex was elevated 30 days 

after an adult MA treatment (Dawirs et al., 1997), which points to the plastic capacity of the 

GABAergic neuron population. Thus, the MA induced degeneration of dopaminergic 

terminals also impairs other transmitter systems during adulthood. Although the deleterious 

effect of adult MA is believed to be at least in part reversible (Meredith et al., 2005), the 

dopaminergic fiber densities after an adult MA challenge have not been investigated in our 

animal model so far.  

Therefore, we wanted to know, if a challenge with MA during adulthood would have similar 

effects on the dopaminergic system as the early intoxication or if a mature system will be 

affected differently. Hence, we applied an adjusted dose of MA to adult gerbils (PD 180) and 

checked the long-term effects 180 days later (Brummelte et al., 2006a). The dose, which was 

chosen, was actually smaller than the one used for the juvenile animals, but as previous 

studies have shown that adults appear to be more sensible to MA than youngsters, these two 

different doses were more likely to reveal comparable mortality rates and similar 

concentrations in the brain than the same dose would have been (Teuchert-Noodt and Dawirs, 

1991; Kokoshka et al., 2000). This already underlines the hypothesis that the neurotoxicity of 

MA varies between young and adult rodents.  

The dopaminergic fiber densities were investigated in various brain areas. Most of them have 

previously revealed impacts after the early intoxication, namely the prefrontal cortex, the 

amygdala, the olfactory tubercle and the nucleus accumbens. Interestingly, despite a slight 
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increase in the shell region of the nucleus accumbens, no alterations could be detected. 

Table 2 gives an overview over the divergent effects on the dopaminergic system of early 

compared to adult intoxication. Interestingly, the drug challenge led to an increase in fiber 

density, not to a decrease, so that it is assumed that the degeneration after the pharmacological 

challenge was followed by a regeneration of fibers, which resulted in an oversprouting in the 

shell.  In fact, it has been shown before that the destruction of substantia nigra neurons can 

induce a sprouting of dopaminergic fibers in particular areas (Finkelstein et al., 2000), which 

proves that there is a high plasticity within the transmitter networks not only during 

development but also later in adulthood. 

To account for potential reactive or compensative effects of the local GABAergic system in 

the affected area, the cell densities of calbindin (CB) and parvalbumin (PV) neurons in the 

nucleus accumbens were additionally investigated, but revealed no differences. We used the 

markers for different subpopulations as in fact, the two subregions of the nucleus accumbens 

are characterized by different cell populations: CB neurons are mainly located in the core 

region, while PV neurons are predominantly found in the shell.  
 

  Adult (current study) 
MA 1x 25mg/kg i.p., PD180 

Juvenile  
MA 1x 50mg/kg i.p., PD14

Medial    ↔   n.s.     ↓   - 38%  **  Prefrontal cortex 
Orbital    ↔   n.s.     ↓   - 50%  **  
Core    ↔   n.s.     ↓   - 28%  *  Nucleus accumbens 
Shell     ↑   +11%  *    ↔     n.s. 
Basolateral    ↔   n.s.     ↑   +18%  ** Amygdala 
Central    ↔   n.s.     ↔     n.s.  

Olfactory tubercle    ↔   n.s          No data 
Table 2: Comparison of age-related long-term effects of a single methamphetamine intoxication (MA) on 
the dopamine innervation in limbic-cortical areas of the gerbil brain. Based on the studies: Dawirs et al., 
1994; Busche et al., 2004; Lesting et al., 2005a; Brummelte et al., 2006a. Significance values: * p<0.05, ** 
p<0.01. 

 

4. Postnatal development of dopaminergic and 
GABAergic structures in the limbic system 

 
Although the complex neurotoxicity of MA is still not completely clear, the present results 

strongly indicate that developmental alterations must play a role in mediating the effect of this 

pharmacological drug. Thus, it is suggested that the maturation patterns of the different areas 

and according developmental alterations contribute essentially to the varying impact. For 

instance, the two subregions of the nucleus accumbens, shell and core, exhibit a quite 

divergent development of their dopaminergic innervation, with the core showing a decrease in 
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fiber density between PD 14 and 30 and then a slow but steady increase until well into 

adulthood, while the shell region shows a very steep increase between PD 70-90 (Lesting et 

al., 2005b). It is conceivable that the significant regression of fibers in the core region is a 

vulnerable process, which takes place during a sensitive period, so that the MA treatment on 

PD 14 causes a reduction in adult DA innervation of approximately 20%, while the shell 

region appears to be spared from these deleterious effects.  

The question then arose, if the developmental patterns can also account for the imbalance 

observed within the dopaminergic system after the early pharmacologic challenge with an 

oversprouting of fibers in caudal limbic areas and an alleviation in fiber density in frontal 

areas (Fig. 2B). 

For the prefrontal region it had already been shown that it reveals a prolonged development 

concerning the dopaminergic fiber densities until adulthood, both, for rats (Kalsbeek et al., 

1988) and for gerbils (Dawirs et al., 1993a). However, for caudal limbic areas it has only been 

assumed that they mature relatively early (Busche et al., 2004), but the exact development of 

the DA innervation in the Mongolian gerbil has so far been neglected. Hence, we designed a 

long-term study in which we investigated dopaminergic and GABAergic structures in animals 

from different age stages starting on PD 14 until high age to account for potential alterations 

during development as well as during ageing (Brummelte and Teuchert-Noodt, 2006; 

Brummelte et al., accepted). We restricted the study to animals from impoverished rearing 

since these showed stronger effects after the pharmacological challenge and since the animal 

husbandry did not allow sufficient space to keep animals from enriched environment for up to 

two years.  

The results revealed that neither the dopaminergic nor the GABAergic fiber densities have 

reached their complete mature pattern on PD 14 in all the caudal limbic areas. However, there 

were remarkable differences between the areas. Thus, DA fibers in the EC showed no 

differences at all between PD 14 and 720, while fibers still increased after PD 14 in the 

amygdala and even revealed a tendency for an oversprouting during PD 20 (Fig. 4). GABA 

fiber densities were measured in the PFC and the Amygdala, while the EC was not really 

suitable for measuring fiber densities due to high background staining. In addition to the 

GABAergic fibers, CB fibers were also measured in these areas which generally showed a 

similar developmental course with only minor deviations. In the PFC, GABA and CB fibers 

increased until PD 30, afterwards the CB fiber density decreased again slightly, while GABA 

revealed a further increase between PD 70 and PD 540, indicating a potential enhancement of 

a different GABAergic subpopulation. In the amygdala GABA and CB fibers reached their 
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maximum already around PD 20, and GABA showed a later decrease between PD 70 and 

PD540 (Fig. 5 and 6). Taken together, the results underline the feature of the frontal areas to 

mature later than caudal limbic ones, with the GABAergic fibers reaching their adult pattern 

in the PFC before the dopaminergic fibers, while the development within the amygdala 

appears quite similar. 
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Fig. 4: Postnatal development of dopaminergic fiber densities in the amygdala and the entorhinal cortex. 
Only the lateral part of the central amygdala (CE lat) and the basolateral amygdala (BLA) show a significant 
increase between PD 14 and PD 20, and also a tendency for a subsequent decline until PD 30 (p<0.07). The 
medial part of the central amygdala (CE med) and the entorhinal cortex (EC) revealed no alterations. * p<0.05, 
** p<0.01, *** p<0.001. 
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Fig. 5: Postnatal development of GABAergic fiber densities in the prefrontal cortex (PFC) and the 
basolateral amygdala (BLA). Both areas reveal an early increase, while the fiber densities of the PFC diminish 
after postnatal day (PD) 70 in the PFC, but show a further augmentation in the BLA between PD70-PD 540.  
* p<0.05, ** p<0.01, *** p<0.001. 
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Fig. 6: Postnatal development of calbindin fiber densities in the prefrontal cortex (PFC) and the 
basolateral amygdala (BLA). CB fibers increase in the PFC until PD 20 and decrease slightly after PD 30, 
while there are no significant differences in the BLA.. * p<0.05, ** p<0.01, *** p<0.001. 
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Thus, one could imagine that during development the initial wiring of subcortical limbic areas 

takes place quite simultaneously concerning GABAergic and dopaminergic structures, while 

prefrontal areas experience a basic innervation, which is then continuously adapted to the 

ingrowth of dopaminergic and other fiber systems and to extrinsic influences. This would be 

in line with results showing that the glutamatergic projections from the medial PFC only 

reach their adult pattern late during adolescence, too (Witte, Brummelte and Teuchert-Noodt, 

submitted). In addition, these projections are assumed to provide a control over subcortical 

structures such as the amygdala. Therefore it seems likely that the generally high emotionality 

and impulsivity of juveniles is due to the early maturation of caudal limbic areas, which are 

then slowly put under the control of the prefrontal cortex, so that eventually cognitive and 

reasonable thoughts and behaviors gain the lead. 

During this crucial process when different instances within the brain are striving for power, 

both, on the microcircuit and on the macrocircuit level, every external disturbance can 

essentially influence their success in finding a functioning balance. Transmitter systems and 

especially the slowly maturing ones such as DA are again highly involved in this critical 

process due to their morphogenetic influence and because of their consistently increasing 

number of connections during this phase. In fact, it has been proposed that experience during 

a sensitive period modifies the architecture of a circuit in fundamental ways, causing certain 

patterns of connectivity to become highly stable and, therefore, energetically preferred 

(Knudsen, 2004). It is further assumed that after this sensitive period, plasticity can only alter 

the connectivity pattern within this initial architectural constraints (Knudsen, 2004. However, 

the concrete distribution pattern of synapses of the various transmitter systems is far from 

being a stable arrangement. Even in adulthood there is a continuing reorganization of 

connections, which is believed to play a fundamental role in adaptation processes to extrinsic 

influences and is also assumed to participate in learning and memory. During development 

however, the neuroplasticity is still higher and there is an unlimited multitude of external 

influences which contribute essentially to the shaping and arranging of neuronal networks. 

This is in concert with our observations and conclusions from the long-term study of an adult 

MA challenge, that the adult treatment is likely to cause a regeneration of fibers, while the 

early application probably causes a rearrangement of fibers (Brummelte et al., 2006a). 

Plasticity during development is therefore very essential to adapt to external circumstances 

but also bears the risk of irreversible mismatches.     

It has been assumed before that the two main dopaminergic limbic pathways, the meso-

cortical and the meso-limbic one can influence each other during development (Le Moal and 

 20



Simon, 1991). Thus, one could imagine that the overshoot of fibers in the amygdala and EC 

on the one hand and the decrease of fibers in the PFC on the other hand are coherent and 

depend on each other. It is conceivable that usually the increasing control from the PFC 

somehow regulates the innervation density of the caudal structures, but if this control is 

retarded, the amygdala or the EC might end up with higher innervation densities while less 

fibers remain to reach the PFC. In fact, it had already been suggested that a deficiency in 

mesocortical DA function might cause a disinhibition of mesolimbic DA activity 

(Weinberger, 1987). In summary, our results suggest that the different maturation patterns 

might indeed contribute to the observed imbalance within the neural networks and that the 

incision in the dopaminergic development on PD 14 might therefore even cause a vicious 

circle, which is also affecting the plastic potentials of the other transmitter systems.  

 

4.1 Ageing-related changes  
 
Interestingly, none of the investigated areas showed ageing-related changes in the 

dopaminergic, GABAergic or calbindin fiber density. This is in contrast to other studies, 

which found for instance a prominent reduction of calbindin cells in the basal forebrain 

(Geula et al., 2003; Wu et al., 2003) with ageing, but also metabolic alterations concerning 

GABA and also DA (Del Arco et al., 2001; Gluck et al., 2001; Vicente-Torres et al., 2001; 

Segovia et al., 2001). As the PFC is assumed to be particularly vulnerable to ageing effects, 

we additionally analyzed the prefrontal fiber density of DA in adult to old gerbils from 

PD 180 to 720, as this has not been investigated before. Here we found a significant decrease 

in fiber density after 12 months with a 26% decrease compared to 18 month or 24 month old 

animals (Fig.7; Brummelte and Teuchert-Noodt, submitted).  

The lack of age-related alterations in the remaining areas or transmitters might be due to the 

fact that 720 days is the average age of gerbils, while individuals might even get older (Troup 

et al., 1969). However, this fact underlines the vulnerability and sensibility of the 

dopaminergic system concerning neurodegenerative processes. DA has frequently been 

associated with age-related alterations, although the focus has been on striatal or brainstem 

regions (Roth and Joseph, 1994). More recently, the attention has shifted to other areas and it 

has been revealed that frontal cortices are also strongly affected concerning metabolic or 

morphological changes (Kaasinen et al., 2000; Inoue et al., 2001). In fact, it has been 

proposed that the mesolimbic pathways are more vulnerable to ageing than the nigrostriatal 

one (Cruz-Muros et al., 2006). It has also been assumed that the depletion of DA in the PFC 
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might contribute to age-related cognitive deficits (Arnsten et al., 1995). Our study provides 

additional data for neuroanatomical alterations within the prefrontal dopaminergic system 

with a quite early decline of fibers. Interestingly, the GABA fiber density shows a slight 

increase until PD 540 in the PFC, although the CB fiber density diminishes at the same time. 

So, despite a potential decrease of the calcium-binding protein in the fibers, which has been 

postulated as the probable reason for the observed age-related changes in CB structures 

(Kishimoto et al., 1998), one is tempted to hypothesize on a highly speculative level that 

GABAergic fibers might try to compensate the vanishing input from dopaminergic fibers.  
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Fig. 7: Ageing-related decrease in the dopaminergic fiber density in the prefrontal cortex.  
* p<0.05, ** p<0.01. 

 

5. Alterations in the GABAergic system 
 
To scrutinize this issue, we wanted to investigate the effect of the early disturbance of the 

dopaminergic system on GABAergic structures in the most sensitive PFC. As GABA is 

located mainly in interneurons in the PFC, we thought that these local cells might somehow 

react to the missing input from DA. As mentioned above, GABA appears in several 

subpopulations, which serve different functions within the local networks. The calcium-

binding protein CB, for instance, is found in neuroglia, Martinotti or double bouquet cells. All 

these cells mainly innervate distal dendrites of pyramidal cells and thus have a rather 

modulating influence on the pyramidal activity (Conde et al., 1994; Gabbott and Bacon, 

1996). Then again, there are cells which predominantly innervate the somata of pyramidal 

cells and even build their synapses so densely that they look like a basket around the 

pyramidal soma; this is the reason why they are named basket cells (DeFelipe and Fairen, 

 22



1982; Hendry et al., 1983). These axo-somatic connections have a particularly powerful 

influence on the firing activity of the pyramidal neurons. Basket cells are also classified as 

‘fast-spiking’ neurons and often contain the calcium-binding protein PV (Kawaguchi and 

Kubota, 1997). Considering that one basket cell can innervate about a thousand pyramidal 

cells, it becomes clear that these GABAergic neurons can regulate whole populations of cells. 

Together with the so-called chandelier neurons, which build axo-axonic contacts at the initial 

axon segments of the pyramidal neurons, they are further believed to provide the 

indispensable synchronization of the cortical output neurons (Somogyi et al., 1982; Tamas et 

al., 1997). This synchronization again, is believed to provide the essential frame for cognitive 

functions such as working memory and for target-orientated behaviors (Constantinidis et al., 

2002; Lewis et al., 2005). Thus, it becomes clear that these somatic contacts are essentially 

important for regulating the activity of local microcircuits and even macrocircuits and 

subsequently for assuring a normal working of functional networks.  

Therefore, we were particularly interested, if these structures might be influenced by the early 

MA challenge or the IR conditions, and hence measured on the one hand the overall 

GABAergic fiber densities in particular laminae (Fig. 8 B.1) and on the other hand the density 

of GABAergic boutons (Fig. 8 A.1) around unstained pyramidal neurons (Brummelte et al., 

2007). 

Results revealed that IR led to a 19% decrease of GABAergic boutons round lamina III 

pyramidal neurons, but only to a tendency for a decrease around lamina V neurons. A MA 

intoxication however, led to a further decrease in both laminae of more than 20% compared to 

IR animals, so that the bouton densities of IR MA animals reached only 62 and 67%, 

respectively, of the control (ER) values. Interestingly, the fiber densities exhibit an 

augmentation in laminae I/II and V only in IR MA animals, but not in any other group (cf. 

Fig. 8).  

These reactive changes in the GABAergic transmitter system are rather in contrast with our 

initial expectations, as they reveal alterations within the system which are not very likely to 

provide a compensating effect. Quite the contrary is the case, since a reduced bouton density 

can indicate a reduced somatic inhibition, which in turn might cause a loss in synchronization. 

This lessened synchronization again might explain the observed deficits in cognitive functions 

such as working memory seen in our animal model (Dawirs et al., 1996). In addition, the 

increase in fiber density can be a sign of an increase in dendritic expansion, or can be 

interpreted as an enlargement of axonal fibers, which then in turn would entail an increase in 

dendritic innervation of the distal parts of the pyramidal neurons. Considering previous results 
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from Nossoll and colleagues (1997) from our laboratory, who found an increase in non-

somatic GABAergic profiles in the PFC after a MA intoxication using electron microscopy 

and a study showing that pyramidal cells increase their dendritic range and spine density 

(Blaesing et al., 2001), we find it tempting to suggest that the observed increase in fiber 

density in the current study may indeed be a sign for a partially ascent of the dendritic 

innervation. Thus, our results point to a potential shift within the GABAergic inhibition 

pattern from a strong and powerful inhibition at the somatic site to a more moderate influence 

at the dendritic sites after the MA intoxication of animals reared under impoverished 

conditions.  
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Fig. 8: GABAergic bouton (A) and fiber densities (B) and representative photomicrographs (A.1, B.1)  in 
the analyzed layers of the PFC of gerbils from enriched (ER) and impoverished rearing (IR) conditions 
treated with either methamphetamine (MA) or saline given by means + standard error (S.E.M.).  Bouton 
density (arrows A.1) is significantly reduced by IR in lamina III and in both laminae after additional MA 
intoxication. Fiber densities show an augmentation in IR MA animals only. * p<0.05, ** p<0.01, *** p<0.001, 
scale bar: 20µm. 
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Taking into account that the maturation of GABAergic synapses in general proceeds until 

early adulthood (Huang et al., 1999; Chattopadhyaya et al., 2004) and that dopaminergic 

afferents especially continue to form synapses on prefrontal GABAergic interneurons during 

the prolonged maturation (Benes et al., 1996b), it is conceivable that the early systemic 

disturbance has a detrimental influence on the GABAergic system, too. The calcium-binding 

protein PV, which is used as a marker for fast-spiking neurons such as basket or chandelier 

cells, and which is believed to function as a buffer protein against high and toxic calcium 

concentrations within the cell, is not expressed in the gerbil PFC before PD 14 (unpublished 

data). Despite the fact that a lack of this protein might result in a higher vulnerability of these 

neurons against high excitation (Heizmann, 1992) it is also considered to be a marker for 

functional maturity of the cell (Seto-Ohshima et al., 1990; Solbach and Celio, 1991). Thus, 

the potentially immature fast-spiking GABAergic neurons might be negatively affected by the 

early impact on the dopaminergic system and thus contribute to the variances in the 

transmitter connectivity since especially fast-spiking neurons are believed to essentially 

contribute to the shaping of receptive and spatial memory fields (Jones, 1993; Rao et al., 

1999; 2000). In addition, the ability to synchronize pyramidal cell activity is assumed to be in 

substantial flux until adulthood (Lewis et al., 2005) and although the proliferation and 

formation of the typical somatic basket terminals seems to be a stereotyped process, it also 

depends on neuronal activity within cortical circuits (Marty et al., 2000; Chattopadhyaya et 

al., 2004). Thus, extrinsic and intrinsic influences during this critical period can have 

vehement consequences on the establishment of functional systems, including the ability of 

basket cells to properly synchronize pyramidal activity.  

Taken together, the early systemic impact causes also severe alterations within the 

GABAergic system, with a potential shift from somatic to dendritic inhibition, which might 

contribute to a functional miswirirng of neuronal networks, which in turn might account for 

the observed cognitive impairments. Figure 9 gives a schematic overview of altered 

morphologies and potential connections in the PFC of IR animals, which received additionally 

the MA intoxication.  

 

6. Consequences of early developmental disturbances 
(implications for schizophrenia) 

 

The remarkable revelation of these studies is that a single disturbance during development 

which actual primarily affects the dopaminergic system, can have such a wide-spread impact 
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on miscellaneous local and far-reaching networks. It is obvious that particular critical 

windows or periods exist during which external influences can be exceptionally formative. 

However, pups are usually believed to be relatively irresponsive to stressful events during the 

first few weeks of their life, in the so-called ‘stress hyporesponsive period’ (Sapolsky and 

Meaney, 1986), which underlines the potential complexity of  diverse extrinsic impacts. Thus, 

it has been shown that even the maternal care such as licking behavior can essentially 

contribute to the behavioral and emotional outcome and stress responsiveness of the offspring 

(Caldji et al., 1998; Francis et al., 1999; Meaney, 2001). 
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Fig. 9: Schematic illustration of the potential alterations within the prefrontal network after the IR MA 
challenge. After impoverished rearing (IR) combined with a methamphetamine (MA) intoxication, the 
dopaminergic fiber density (DA) is reduced (Dawirs et al., 1994), while the pyramidal cells expand their 
dendrites and spine densities (Blaesing et al., 2001). The current study revealed that the GABA fiber density is 
also increased, possibly due to an enlargement of dendrites and to a spreading of axonal fibers since a previous 
study has shown an increase in dendritic GABAergic profiles (Nossoll et al., 1997). At the same time, the bouton 
density around the pyramidal soma is decreased. Thus, there is an apparent shift in the GABAergic inhibition 
with diminished somatic inhibition and increased dendritic inhibition probably leading to a disturbed firing 
pattern of the pyramidal cells due to a lessened synchronization.  G: GABA interneuron, B: basket cell, P: 
pyramidal cell; I-VI: laminae 
 
 
High-licking or low-licking behavior of the dams can even alter neurogenesis in the 

hippocampus (Bredy et al., 2003). Therefore, it is no surprise that also the mood and the stress 

level of the mother, respectively, can have an influence on the progeny. For instance, high 
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levels of corticosterone, a stress hormone, during the lactation period can cause differences in 

hippocampal cell proliferation and can evoke signs of hyperactive behavior in the offspring 

(Brummelte et al., 2006b). However, it is clear that the type and degree of the external stress 

is important for determining the morphological, behavioral and cognitive consequences.   

Our 2-step animal model of using combined early MA intoxication as an acute stressor and IR 

as a chronic stress factor has so far revealed several morphological changes in 

neuroanatomical brain networks and some cognitive impairments, which resemble some of 

the changes and deficits seen in schizophrenic individuals. Thus, Akil and colleagues (1999) 

found a decrease in dopaminergic fibers in the prefrontal cortex of schizophrenic individuals, 

comparable with the reduction in our animal model (Dawirs et al., 1994). In addition, the 

imbalance of the DA system between cortical and subcortical areas, has not only been 

observed after our IR and MA challenge (Busche et al., 2004) but was reported for the 

schizophrenic human brain (Laruelle et al., 2003; Abi-Dargham, 2004). Besides, low 

prefrontal DA levels are associated with negative or cognitive symptoms of schizophrenia, 

while a hyperactivity of the mesolimbic pathway is assumed to be responsible for the positive 

symptoms (Crow, 1980; Davis et al., 1991). Furthermore, our animal model revealed a 

miswiring of prefrontal pyramidal projections (Bagorda et al., 2006), which corroborates the 

dysconnection hypothesis of schizophrenia from Weinberger and Lipska (1995). In addition, 

this miswiring, resulting from the different impact on lamina III compared to lamina V 

pyramidal neurons in IR MA animals might help to explain the discrepancy of human studies, 

paradoxically reporting either a hypofunction (Volz et al., 1999) or a hyperfunction (Manoach 

et al., 1999) of the glutamatergic system in schizophrenic patients.   

Intriguingly, the results of the current study reveal some resemblances with changes in 

schizophrenia, too. Thus, a reduction of pyramidal GABAergic synapses has also been 

observed in schizophrenic patients (Blum and Mann, 2002), with a reduction in PV-

immunoreactive structures being one of the most prevalent observations in post-mortem 

studies (Woo et al., 1998; Pierri et al., 1999; Lewis et al., 1999).  In addition, the GABAA 

receptor density was upregulated at the cell bodies of pyramidal neurons (Benes et al., 1996a), 

possibly compensating for a reduced number of inhibitory terminals (Lewis et al., 2005). 

These indices for a reduced GABAergic somatic inhibition are in line with recent 

neurophysiological studies, which revealed that some cognitive dysfunctions in schizophrenic 

patients, as e.g. working memory deficits are associated with an abnormal neural 

synchronization (Spencer et al., 2003; Lee et al., 2003; Spencer et al., 2004; Uhlhaas and 
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Singer, 2006). This again is in concert with the impairment of working memory in our animal 

model (Dawirs et al., 1996). 

In summary, our results indicate that a single early pharmacological stress is effectual to 

induce severe morphological changes in the neuronal networks of the whole limbic system of 

animals from IR conditions, which resemble at least some of the changes seen in 

schizophrenic individuals. Taking the observed cognitive impairments into account, one is 

tempted to suggest that our 2-step approach provides a useful animal model of psychoses and 

schizophrenia.  

Noteworthy, schizophrenia usually does not appear before early adulthood, even though it is 

assumed to have at least partially developmental etiologic reasons. Thus, one could speculate 

that the high plasticity during maturation of neuronal networks might somehow prevent the 

outbreak of the disease but with the omission of this high plastic capacities, the miswiring 

becomes more stable and starts to unfold its deleterious effects.  

Interestingly, a treatment with clinical doses of methylphenidate (e.g. Ritalin®) for 30 

consecutive days about two weeks after the noxious application of MA leads to a partially 

‘recovery’ of the diminished dopaminergic fiber densities in adulthood (Grund et al., 2006; 

Grund et al., revision submitted). Thus the deleterious impact of MA can be influenced by 

another pharmacological interference, but apparently not by enriched environment 

(Brummelte et al., in prep.).  Methylphenidate is a stimulant drug which selectively blocks the 

reuptake of DA and noradrenaline by binding to the according transporters (Gatley et al., 

1996) and is momentarily the drug of choice for the treatment of attention-

deficit/hyperactivity disorder (ADHD). The enhanced concentration of DA in the synaptic 

cleft must somehow trigger an elevated sprouting of dopaminergic fibers, however, this 

sprouting is only evident when the animals received the early MA challenge and not  when 

they received the control injection of saline. This is again a sign for the high plastic potentials 

of the neuronal networks during development.  

 

7. Conclusion and future perspectives  

 
Taken together, this work provides additional evidence for a high plasticity of GABAergic 

and dopaminergic structures during the maturation process, but in part also during adulthood 

and ageing. The different extrinsic and intrinsic influences during postnatal development and 

their interactions essentially contribute to the establishment of functional networks, whereby 
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the various transmitter systems play an indispensable role. Disturbances during critical 

periods in the development lead to neuroanatomical alterations of the local networks and thus 

also of the macrocircuits of the limbic system. The results from our 2-step animal model have 

shown that especially DA appears to be particularly vulnerable to interfering effects and can 

then subsequently affect all the connected other transmitter systems. The attempt of 

microcircuits to compensate the altered innervation patterns probably results in a compromise, 

which might provide an equilibrium of local connections, but which in turn might cause a 

decompensation and subsequent imbalance of greater circuits and networks. The tendency of 

every cell to counterbalance its excitability and its excitatory and inhibitory inputs, e.g. via 

regulating the feedback loops, might contribute to the alterations seen at the local level 

(Lehmann et al., 2005). However, the effect on the overall networks might be devastating. 

Thus, the reactive changes in the morphology cause a different pattern of connectivity and 

thus imply functional changes and differences in the behavioral and cognitive outcome. This 

again might help to better understand the complex and individually divergent symptomatic 

pathology of schizophrenia.    

Another important conclusion of these works is the fact that there is not only a high 

neuroplasticity of the various transmitter systems, and this during development as well as to a 

lesser extent during adulthood, but also a very high interconnectivity and interdependency of 

the transmitters. For instance, it has been revealed by others that 5-HT can directly regulate 

the cortical DA release, probably via the expression of 5-HT2A receptors at the presynaptical 

site (Miner et al., 2000; 2003; Alex and Pehek, 2006; Pehek et al., 2006). Similar intensive 

interactions can be assumed for the GABA-DA relationship considering the prominent 

alterations within the GABAergic system after the early challenge of the DA system 

(Brummelte et al., 2007). In fact, DA is not only innervating pyramidal and GABAergic cell 

bodies and dendrites (Sesack et al., 1995; Davidoff and Benes, 1998), but can also act 

inhibitory or excitatory at GABAergic axon terminals (Geldwert et al., 2006). Moreover, Liu 

and colleagues recently published their intriguing discovery of a direct protein-protein 

coupling of the functionally and structurally different GABAA and DA D5 receptors, which 

suggests a functional interaction of these two transmitter types (Liu et al., 2000).  Hence, one 

is tempted to suggest that the dopaminergic system as the main specific modulator and the 

GABAergic system as the main inhibitor and thus coordinator of neuronal network activities, 

are especially interwoven and interdependent. However, this relationship needs to be further 

investigated, since e.g. a direct innervation of GABAergic synapses on cortical dopaminergic 

nerve terminals has to our knowledge not been revealed to date. In addition, it would be 
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interesting to further examine the contribution and specific roles of the divergent GABAergic 

subpopulations in these networks.  

In summary, the interconnectivity of the various transmitter systems, in particular of DA and 

GABA, appears to be highly complex and might therefore trigger or contribute to the reactive 

processes after external or internal interferences. During development a disturbance of one 

neurotransmitter system might additionally cause an imbalance in the temporal coordination 

of the various connected maturation processes. Thus, one should keep in mind that 

pharmacologic interventions will never only affect one transmitter system, even though they 

are, e.g. selective 5-HT reuptake inhibitors (SSRIs) or only affecting the GABAA receptors 

(benzodiazepines). This high interdependency and plasticity even during adulthood might also 

help to explain, why the effect of neurological drugs is so unpredictable in the individual case. 

Therefore, our results lead to the assumption that treatment with pharmaceuticals, especially 

during the high phase of neuroplasticity during development, but also during the critical and 

vulnerable period of ageing, should always be considered with care, as despite the acute 

improvement, there might be hidden long-term side-effects, which might alter the neuronal 

networks in perpetuity.  
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Abstract
Background: The aim of the study was to test long-term effects of (+)-methamphetamine (MA)
on the dopamine (DA) innervation in limbo-cortical regions of adult gerbils, in order to understand
better the repair and neuroplasticity in disturbed limbic networks.

Methods: Male gerbils received a single high dose of either MA (25 mg/kg i.p.) or saline on
postnatal day 180. On postnatal day 340 the density of immunoreactive DA fibres and calbindin and
parvalbumin cells was quantified in the right hemisphere.

Results: No effects were found in the prefrontal cortex, olfactory tubercle and amygdala, whereas
the pharmacological impact induced a slight but significant DA hyperinnervation in the nucleus
accumbens. The cell densities of calbindin (CB) and parvalbumin (PV) positive neurons were
additionally tested in the nucleus accumbens, but no significant effects were found. The present
results contrast with the previously published long-term effects of early postnatal MA treatment
that lead to a restraint of the maturation of DA fibres in the nucleus accumbens and prefrontal
cortex and a concomitant overshoot innervation in the amygdala.

Conclusion: We conclude that the morphogenetic properties of MA change during maturation
and aging of gerbils, which may be due to physiological alterations of maturing vs. mature DA
neurons innervating subcortical and cortical limbic areas. Our findings, together with results from
other long-term studies, suggest that immature limbic structures are more vulnerable to persistent
effects of a single MA intoxication; this might be relevant for the assessment of drug experience in
adults vs. adolescents, and drug prevention programs.

Background
Methamphetamine (MA) is a common illicit drug, which
abuse is currently reaching epidemic proportions. Accord-

ing to the 2002 SAMHSA National Household Survey on
Drug Abuse, 12.4 million Americans age 12 and older had
tried methamphetamine at least once in their lifetimes
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(5.3 percent of the population). This increasing number is
especially alarming since it has been extensively shown
that MA exerts acute neurotoxic effects on the monoamin-
ergic transmitter systems, and thus leads to characteristic
cognitive impairments like deficits in memory and learn-
ing, psychomotor speed and information processing [1].
It is especially affecting the dopamine (DA) neurons, lead-
ing to dramatic loss of fibres and other DAergic structures
in certain brain areas within a few days [2,3], even after a
single exposure [4].

Some evidence exists that monoaminergic fibres are able
to recover to some extend from this damage during long
time course [5-9]. Moreover, even reactive overshoot was
found for serotonergic fibres in several limbic areas of the
brain, including left entorhinal cortex [10] and the septal
pole of the hippocampal dentate gyrus [11]. For DA fibres,
an early MA treatment produces hyperinnervation in amy-
gdaloid nuclei and ventral entorhinal cortex [12] and a
restraint of the maturation in prefrontal cortex [13,14].
This lab has further shown that the single early MA intox-
ication produces a loss of DA fibres and concomitant
hyperinnervation of serotonin fibres in the nucleus
accumbens (NAC) [15].

Taken together, our recent studies indicate severe changes
in the maturation of the limbo-cortical network following
an early single MA challenge. However, a primary study
has already shown that the neuroplasticity that follows
MA treatment might relate on the age of the animals [4].
Since the functional maturation and aging of the brain is
based on various structural and physiological changes, the
present study was carried out to question whether the
remodelling of neural networks that is induced by the
neurotoxic effects of MA may alter during the lifespan of
gerbils. For that purpose, 6 months old adult gerbils
received a single high dose of MA. At the age of 12 months
the DA innervation was examined in prefrontal cortex,
olfactory tubercle, NAC, and amygdala to check for long-
time effects on the fibre density.

Methods
All experimental procedures were approved by the appro-
priate committee for animal care in accordance with the
guidelines of the European Communities Council Direc-
tive. Breeding gerbils (Meriones unguiculatus) were
obtained from Harlan Winkelmann (Borchen, Germany).
From offspring, a total of 18 males (weight 66–91 g; age
331–348 days) were used in this study. Young animals
were weaned at postnatal day 30 and subsequently sepa-
rated in standard cages (Macrolon® type 4) without any
content except of sawdust. All animals had free access to
food and water and were kept on natural day/night cycles.
On postnatal day 180, a total of 9 gerbils received a single
systemic injection of (+)-methamphetamine hydrochlo-

ride (Sigma, M 8750; 25 mg/kg, i.p.). The other 9 animals
were sham-treated by an i.p. injection of saline. This dose
was chosen due to our former experiences, which have
shown that juvenile gerbils can tolerate higher doses (50
mg/kg) than older ones. Notably, the rate of mortality is
similar at both ages receiving the different doses (unpub-
lished data), indicating physiological changes during the
postnatal maturation of the brain.

The methods used for sectioning and DA immunohisto-
chemistry have been published recently [15]. For the
immunohistochemistry of calbindin and parvalbumin
cells, 50 µm thick vibratome sections were taken from the
same animals (perfused with 100 ml 0.1 M sodium
cacodylate pH 6.2, followed by 750 ml 5% glutaraldehyde
in 0.1 M sodium cacodylate pH 7.6) and treated as fol-
lows: Every third section was collected in 0.05 M Tris-HCL
buffered saline [TBS (pH 7.5)] at 4°C; rinsed 3 × 10 min
in TBS; incubated 10 min with 1% H2O2 in TBS; rinsed
again 3 × 10 min in TBS; blocked in 10% normal goat
serum and 0.4% Triton X-100 (Sigma) for 30 min; incu-
bated with the primary antibody (1:3,000 mouse anti-cal-
bindin, Sigma; 1:2,000 mouse anti-parvalbumin, Sigma)
in 1% normal goat serum and 0.4% Triton X-100 for 18 h;
rinsed 3 × 10 min in TBS; incubated for 30 min in bioti-
nylated goat-anti-mouse antibody (Sigma) diluted 1:20
with 1% normal goat serum; rinsed 3 × 10 min in TBS;
incubated with ExtraAvidin-Peroxidase (Sigma) diluted
1:20 for 30 min; rinsed 3 × 10 min in TBS; stained in
0.05% 3.3-diaminobenzidine (Sigma) with 0.01% H2O2
for 4 min. Finally, the sections were rinsed 5 × 10 min in
TBS, mounted on glass slides, dried overnight, dehydrated
with ethanol, cleared with xylene and cover slipped with
DePeX (Serva, Heidelberg, Germany). To avoid deviations
due to probably lateralised innervation densities of DA or
calcium-binding proteins only right hemispheres were
used for quantification.

For quantification of fibre and cell densities, brain sec-
tions were chosen in areas of interest by means of anatom-
ical characteristics according to brain atlases of the rat [16]
and the mouse [17]. The identification of the brain region
follows the nomenclature of the atlas of the rat. The aver-
age number of analysed sections was 18 per animal for
DA, with a range of 4 up to 6 sections in single regions. In
the defined region of each section (cf. Fig. 1) all detectable
fibre fragments and cells were visualised in standard test
fields (2,080 × 1,544 pixel; 0.22 mm2) using a bright field
microscope (BX61, Olympus, Hamburg, Germany) and a
digital camera for microscopy (ColorView II, SIS, Mün-
ster, Germany) at 200-fold magnification. Cells and fibres
were quantified by software for image analysis (KS300,
Jenoptik, Jena, Germany). Immunoreactive DA fibres of
different diameter were standardised to identical thick-
ness and visualised using a combination of Gauss filter
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Dopamine immunoreactive fibres in each of the quantified regionsFigure 1
Dopamine immunoreactive fibres in each of the quantified regions. Representative photomicrographs, taken from a 
saline control, of dopamine (DA) immunoreactive fibres of each of the quantified regions. A.1: Prefrontal cortex; A.2: Layer VI 
of the prelimbic area; A.3: Layer IV of the lateral orbital and agranular insular areas. B.1: Nucleus accumbens (NAC); B.2: 
Medial shell of NAC; B.3: Lateral core of NAC; B.4: Olfactory tubercle. C.1: Amygdala (AMY); C.2: Central nucleus of AMY; 
C.3: Basolateral nucleus of AMY. Note the differential innervation pattern and density of DA fibres in the respective regions. 
Scale bars: 1000 µm (A.1, B.1, C.1); 50 µm (A.2-3, B.2-4, C.2-3).
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Photomicrographs of Calbindin and Parvalbumin immunoreactive neurons in the nucleus accumbensFigure 2
Photomicrographs of Calbindin and Parvalbumin immunoreactive neurons in the nucleus accumbens. Overview 
(A) and higher magnifications (A1, A2) of the Calbindin innervation of the NAC. The majority of CB+ cells is located in the 
core, which border to the shell is detectable (black arrows). PV+ cells are almost exclusively located in the shell (B1, B2), how-
ever, the overall density is much lower compared to CB+ cells. Scale bars: 2000 µm (A, B); 200 µm (A1, B1); 100 µm (A2, B2).
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and Gerig operator that depicts differences of grey values
of adjacent pixels and transforms the result into binary
images. The DA fibre density was computed as a percent-
age of the evaluated test area. Calbindin and parvalbumin
positive cells were detected by use of a threshold to the
grey value, followed by automatic sorting of adequate
shape and minimal size (250 pixels) of the structures.
Remaining structures were classified as cells, the size of
the structures (cell area) being measured cumulatively

and the according cell density calculated by proportion of
cell number per test field area. Calbindin-positive cells are
located almost exclusively in the core region of the NAC
and were measured only in this part of the NAC, whereas
medium-sized PV-positive cells are specific to the shell
and were counted only in this area. All analyses were done
by a person blind to the pharmacological treatment of
individual animals.

Dopamine innervation density in four regions of the gerbil brainFigure 3
Dopamine innervation density in four regions of the gerbil brain. Dopamine (DA) innervation density ± S.E.M. is pre-
sented in four regions of the gerbil brain, namely agranular insular and lateral orbital as well as prelimbic areas of the prefrontal 
cortex, the olfactory tubercle, core and shell areas of the nucleus accumbens (NAC), and the central and basolateral nuclei of 
the amygdala complex. Methamphetamine treatment generally tends to increase the DA innervation. However, a significant 
region-specific change in response to a single adult methamphetamine treatment exclusively occurs in the shell of the NAC 
(+11%; p = 0.0332). The difference in the core appears somewhat more pronounced but is not significant due to higher vari-
ance (+21%; p = 0.1011). Student's t-Test, significance value: * p < 0.05. Following methamphetamine treatment, ANOVA 
detected a significant overall increase of DA innervation in core and shell of the NAC (F(1,16) = 4.7316; p = 0.0472).
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The measurements were computed as arithmetic means
by-case and by-group ± S.E.M. of the respective regions
(Fig. 3). Statistical analysis revealed regional effects of MA
treatment by the use of Student's t-test. General alterations
in the NAC were additionally investigated by use of 2-way
analysis of variance (ANOVA), which checked for area-
specific and group-specific effects [18]. Data analysis was
computed with Statistica 6 (StatSoft, Tulsa, USA). The lev-
els of significance were set at * p < 0.05, ** p < 0.01, and
*** p < 0.001.

Results
The innervation pattern of DA immunoreactive fibres in
gerbils is generally in line with the results of rats. The
innervation pattern and density of DA immunoreactive
fibres in the gerbil forebrain are region-specific (Figs. 1
and 3). Representative photographs of the differential DA
innervation densities and patterns of the four regions that
were subsequently studied in more detail are provided in
Fig. 1, taken from a male gerbil of the saline group.

Quantitative DA data were obtained from a total of 327
sections that derived from 18 gerbils of two experimental
groups (Saline n = 9, MA n = 9). The adult single systemic
MA challenge induces no general alteration of DA inner-

vation pattern in the investigated regions of the gerbil
brain (Fig. 3). The overall DA fibre density in the NAC is
selectively increased by MA [(ANOVA, F(1,16) = 4.7316,
p = 0.0472) please note that ANOVA included compari-
son of 8 vs. 8 animals only, because some NAC sections
were damaged in one animal of each experimental group].
However, the significant increase (+11%) is limited to the
shell (Student's t-test, p = 0.0332), whereas alteration in
the core misses statistical significance (Student's t-test, p =
0.1011). No change in DA fibre density was found in the
prefrontal cortex, olfactory tubercle and amygdala.

To determine other potential alterations within the NAC,
CB- and PV- positive structures were additionally investi-
gated in this area. The distribution of CB- and PV-positive
subpopulations in the gerbil generally resembles the dis-
tribution in the NAC of rats and primates (Fig. 2) [19-21].
A single adult MA intoxication caused no significant alter-
ation in the cell density of either CB- positive neurons or
PV-positive neurons in the NAC. Neither was there a dif-
ference in the cell areas (Fig. 4).

Discussion
According to our results, a single adult MA challenge
induces minor long-term changes of the DA innervation

Calbindin and parvalbumin cell densities and cell areas in the nucleus accumbensFigure 4
Calbindin and parvalbumin cell densities and cell areas in the nucleus accumbens. Calbindin (CB) and parvalbumin 
(PV) cell densities and cell areas ± S.E.M. are presented for the nucleus accumbens (NAC). PV-positive cells and CB-positive 
cells are predominantly located in the shell and in the core of the NAC, respectively, where they were quantified. No statisti-
cally significant effect of a single adult methamphetamine challenge could be detected for either number (cell density) or cumu-
lative size (cell area) of both PV and CB cells. Generally, the number of CB cells is considerably higher and their average size is 
doubled compared to PV cells.
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in the NAC, whereas other regions of the limbocortical cir-
cuitry are apparently unaffected. These results contrast
with previously published data on the long-term effects of
early postnatal MA treatment that demonstrated a
restraint maturation of DAergic fibres in the NAC and the
prefrontal cortex [14,22] and a concomitant overshoot
innervation in the amygdala [12]. Table 1 provides a com-
parison between MA effects on DA innervation in juvenile
and adult gerbils.

Postnatal development and vulnerability to 
methamphetamine
The age-related and region-specific alterations that are
triggered by a single MA-treatment of gerbils might reveal
the complexity of MA neurotoxicity. It has to be pointed
out that the different doses that were administered to
juvenile (50 mg/kg) [10-15,22] vs. adult (25 mg/kg, cur-
rent study) animals may be even more adequate for com-
paring age-related effects than using the same dose in both
ages, because a lethal dose of MA is approximately also
twice as high in juvenile gerbils compared to adults
(unpublished data), indicating physiological changes dur-
ing postnatal maturation of the brain. The reasons for the
age-dependent differences in vulnerability to MA in ger-
bils are currently not clear. However, it appears reasonable
to assume that this is related to physiological alterations
in maturing vs. mature monoaminergic neurons. Gener-
ally, the high amount of MA that is required to induce
such effects might be specific to gerbils, probably due to
species-specific metabolic enzymes.

Although the exact molecular mechanism of MA neuro-
toxicity is still not completely understood, it is clear that
developmental alteration must play an important role in
mediating the MA-induced effects [23]. This is demon-
strated by the finding that the application of MA results in
higher mortality and stronger reactions of adult gerbils
compared to juveniles or adolescents [4,24-29], which
may be understandable by reports that, in rats, higher MA
concentrations occur in the brains of 90 days old versus
40 days old animals after receiving the same dose [25,29].

However, Kokoshka and colleagues published some
intriguing results which on the one hand confirmed pre-
vious studies concerning the lack of medium-term (7
days) deficits in the DA systems after MA treatment in
adolescent rats, but on the other hand showed that there
were acute short-term (1 hour) consequences in adoles-
cent (40 days) and adult (90 days) rats [25]. Further, MA-
induced behavioural sensitization, which is a prominent
feature of MA administration [30,31], seems to be age-
dependent [32]. It does not occur within a crucial postna-
tal period, which in turn seems to correspond to the time
of presynaptic DA autoreceptor formation in the brain
[33].

Several parameters of the DA system underlie develop-
mental changes, e.g. DAT expression [34,35], expression
of DA receptors and DA concentration [36], and activity of
the vesicular monoamine transporter-2 (VMAT-2) [29].
The mechanism underlying the modifications seen in
adult animals after MA challenge is therefore thought to
vary from the one mediating the neurotoxic effect in juve-
nile animals. The ability of a single early MA challenge to
selectively induce a restraint of the maturation of DA
fibres in the prefrontal cortex and the NAC [14,22,37] as
well as a concomitant excessive maturation in several
amygdaloid nuclei and the entorhinal cortex [12] might
be due to a special vulnerability of immature fibre systems
[38]. As DA transmission in the NAC seems to play a crit-
ical role in an input selection mechanism that regulates
the influence of certain inputs over neural activity [39],
the reactive changes that occur within local circuits fol-
lowing the MA challenge might cause a new and different
innervation pattern of these fibres and thus a neuroana-
tomical restructuring [40,41]. The severe impairment of
the brain architecture induced by a single early MA treat-
ment clearly demonstrates that despite the apparent
higher resistance of younger animals, MA is indeed a
potent drug capable of inducing extensive structural alter-
ations in the juvenile brain that persist into adulthood.

Table 1: Comparison of age-related long-term effects of a single methamphetamine intoxication on the dopamine innervation in 
limbocortical areas of the gerbil brain.

Adult (current study) MA 1 × 25 
mg/kg i.p., p180

Juvenile [Reference] MA 1 × 50 
mg/kg i.p., p14

Prefrontal cortex Medial ↔ n.s. ↓ – 38% ** [14]
Orbital ↔ n.s. ↓ – 50% ** [14]

Nucleus accumbens Core ↔ n.s. ↓ – 28% * [15]
Shell ↑ +11% * ↔ n.s. [15]

Amygdala Basolateral ↔ n.s. ↑ +18% ** [12]
Central ↔ n.s. ↔ n.s. [12]

Olfactory Tubercle ↔ n.s No data

Significance values: * p < 0.05, ** p < 0.01.
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Effects of methamphetamine on different 
neurotransmitters and brain regions
It was reported that the mechanism of MA neurotoxicity
includes the formation of reactive oxygen [42-44] and
nitrogen [42,45,46] species, which damage monoaminer-
gic neurons. However, several other factors may also con-
tribute in mediating the neurotoxic effect of MA, leading
to region-specific and neuron-specific differences in vul-
nerability. Fumagalli and colleagues have shown that rats
lacking the dopamine transporter (DAT) are protected
against the MA-related neurotoxicity in the striatum [47].
Interestingly, impairment in the function of VMAT-2,
which accumulates cytoplasmic DA into synaptic vesicles
as seen in mice heterozygous for this transporter, increases
the MA neurotoxicity [48]. It has also been demonstrated
that the blockage of either DA D1 or D2 receptors prevents
the damage of repeated doses of MA to striate DA termi-
nals [49] and that there are regional differences in sensi-
tivity of these terminals to the MA [4,50]. It seems likely
that DAT and DA receptors may be factors limiting the
severity of neurotoxic effects of MA, presumably by influ-
encing the concentration and distribution of DA.

MA-induced alterations have also been found in other
neuronal elements like 5-HT fibres [10,15,51,52],
GABAergic neurons [53], and the morphology of cortical
pyramidal cells [54]. Our animal model has also revealed
that glutamatergic projection fibres from the mediodorsal
prefrontal cortex to several other cortical areas are signifi-
cantly reduced after an early single MA intoxication [55].
Interestingly, in the present study the shell of the NAC is
the only area that reacts to a single adult MA challenge,
and it is also almost the only area we have studied lacking
any effect of the DA fibre density in response to a single
postnatal drug treatment [12,14,15] (cf. Table 1). In con-
trast, the core region of the NAC exhibits a strong decline
in DA fibre density after an early single MA administration
[15]. This is in line with results from Broening and col-
leagues, who, after repeated MA treatment of rats, found
an almost completely loss of tyrosine hydroxylase immu-
noreactivity in the core while the shell was almost spared
[56]. In addition, most drugs increase extracellular DA lev-
els preferentially in the shell region of the NAC [57],
which coincides with differences in DA baseline levels
[57,58], and different time-course of the maturation of
the DA innervation in the core and shell areas [59]. We
may conclude that the DA fibre systems of the brain are far
from being homogeneous; thus, statements on the general
effects of MA intoxication on DA fibres are misleading.

Regeneration and reorganisation of neural networks: 
implications for psychiatric diseases
It has been shown before that DA fibres can be rebuilt
within 24 weeks after a lesion of the NAC with 6-OHDA
[60]. Furthermore, Finkelstein and colleagues could show

that a lesion to the substantia nigra causes sprouting of
DA fibres in the striatum of rats [61]. Thus, the increased
fibre density we have found in the NAC might probably
be caused by a specific regeneration rather than a reorgan-
isation of fibres.

Several studies in humans and rodents have shown that
the effects of MA are to a large extend reversible, although
this process might last many years and may strongly
depend on the severity and duration of the drug abuse [1].
We have shown that a single administration of MA on
postnatal day 90 leads to a transient increase of the den-
dritic spine density of prefrontal pyramidal neurons,
which regain an almost normal level within 30 days post-
treatment [62]. In the present study, we apparently pro-
vided sufficient time for the impaired system to recover
from MA intoxication and to eventually regain normal DA
fibre densities. Our model using only a single administra-
tion of MA may therefore be more useful to mimic the
effects on first time users rather than on chronically abus-
ers of the drug. In addition, it has been shown that inter-
mittent treatment with MA can lead to the development of
tolerance to its neurotoxic effects [63-65]. Thus the para-
digm of repeated administration of MA as used in the
majority of studies might either conceal or modify the del-
eterious effects of the psychostimulant. In fact, some stud-
ies have shown opposed or stronger effects of single versus
chronic administration of MA [66,67].

Chronic MA use is known to cause psychotic symptoms
that mimic that of schizophrenia [68-70]. Further, we
could recently show that an early single intoxication leads
to a 'dysconnection' of prefrontal efferents [55], thus pro-
viding an anatomical correlate of schizophrenia [71,72].
This is consistent with results from Chen and colleagues
who revealed an association between earlier and larger use
of MA with higher risk of psychosis in humans [68].

Conclusion
The results of this study show that even a single applica-
tion of MA to adult gerbils may induce long-term physical
alterations in limbic brain areas, although the effects are
not as severe as seen after an early drug challenge. The
increased DAergic fibre density in the NAC indicates reac-
tive over-sprouting, which possibly is a response to altered
network requirements after MA treatment. It remains to
be investigated whether other brain areas would reveal
short-term modifications, which might be concealed by
recovery in this approach. While it cannot be excluded
that the different effects in adult vs. juvenile gerbils are, at
least in part, due to the different doses of MA, several
other studies also indicate changes in MA effects that
depend on the age of rats and mice. We thus may con-
clude that, in rodents, MA not only acts age-dependent,
but also highly region-specific. We have sufficient evi-
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dence to suggest that early contact with this psychotropic
substance during childhood might increase the risk of per-
sistent severe structural changes of the brain architecture
and may result in long-term cognitive and psychiatric dis-
turbances.
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Dopamine (DA) projections from themesencephalonare believed to play a critical role during
development and are essential for cognitive and behavioral functions. Since the postnatal
maturation patterns of these projections differ substantially between various brain regions,
cortical, limbic or subcortical areas might exhibit varying vulnerabilities concerning
developmental disorders. The dopaminergic afferents of the rodent prefrontal cortex show
an extremely prolonged maturation which is very sensitive to epigenetic challenges.
However, less is known about the development of the DA innervation of caudal limbic areas.
Therefore, immunohistochemically stained DA fibers were quantitatively examined in the
basolateral (BLA) and central amygdaloid nucleus (CE) and the ventrolateral entorhinal
cortex (EC) of the Mongolian gerbil (Meriones unguiculatus). Animals of different ages, ranging
from juvenile [postnatal day (PD) 14, 20, 30)] to adolescent (PD70), adult (6, 18 months) and
aged (24 months), were analyzed. Results show a significant increase of fibers between PD14
and PD20 in the BLA and lateral part of the CE, with a trend for a subsequent decline in fiber
densities until PD30. The EC and medial part of the CE showed no developmental changes.
Interestingly, none of the investigated areas showed significant reductions of DA fibers
during aging.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The neurotransmitter dopamine (DA) is known to play a
fundamental role in regulating cortical activity during devel-
opment and in adulthood. The dopaminergic innervation of
distinct areas in the mammalian brain descends from
different pathways which have their origin in the mesence-
phalon of the brainstem. The mesostriatal projection has its
source mainly in the pars compacta of the substantia nigra
(SN; A9) and the nucleus retrorubralis (A8) and innervates the
dorsal striatum (caudate putamen) (Gerfen et al., 1987; Hu

et al., 2004). Thus, it plays a considerable role in the
maintenance of motoric functions. Dopaminergic fibers of
the mesolimbic and mesocortical projections, which are often
named together as the mesocorticolimbic projection, largely
originate from the ventral tegmental area (VTA; A10) (Fallon et
al., 1978; Swanson, 1982) and innervate several subregions of
the dispersedly organized corticolimbic circuitry, including
the amygdala and entorhinal cortex (Bjorklund and Lindvall,
1984; Descarries et al., 1987; Yoshida et al., 1988).

Remarkably, each DA projection field is characterized by its
own pattern of time sequence of development in postnatal
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life. Generally, caudal areas mature before rostral areas, and
thus the dopaminergic innervation follows the caudorostral
gradient, which also accounts for many other structures and
functions.

The amygdala is one of the main targets of the mesolimbic
DA pathway. It receives its input from the lateral VTA and
medial half of the SN (Fallon et al., 1978; Hasue and Shammah-
Lagnado, 2002). Within the amygdaloid complex, several
nuclei can be distinguished due to their different connectivity,
function and derivation. The central amygdaloid nucleus (CE)
and the basolateral amygdala (BLA) are both considered
output entities of the amygdaloid complex (Petrovich et al.,
1996; Petrovich and Swanson, 1997), with each being con-
nected to a unique set of brain areas (Pitkanen, 2000). Thus,
differential developmental patternsmay also affect or even be
affected by other cortical and subcortical regions. In fact, the
prefrontal cortex (PFC), which exhibits a prolongedmaturation
of its dopaminergic innervation (Kalsbeek et al., 1988; Dawirs
et al., 1993), has been assumed to stabilize DA subsystems
depending on its postnatal development (Busche et al., 2004;
Bennay et al., 2004).

It has been demonstrated that the DA fiber densities of
caudal limbic areas in the rodent brain reach their adult levels
relatively early (Verney et al., 1985; Erickson et al., 1998)
compared to prefrontal cortices (Kalsbeek et al., 1988; Dawirs
et al., 1993) or the nucleus accumbens (Lesting et al., 2005),
which continue to increase until adulthood. This prolonged
maturation of the rostral parts of the brain has been assumed
to play an essential role in the maintenance of neural
plasticity during development, but according to an animal
model of psychosis, it might also be involved in developmen-
tally induced diseases such as schizophrenia (Teuchert-
Noodt, 2000; Dawirs and Teuchert-Noodt, 2001).

However, less is known about the long-term postnatal
development and aging of the DA fiber densities in the caudal
limbic system. The divergent developmental patterns of
cortical and subcortical areas are of particular interest as
various neurodevelopmental and degenerative diseases such
as Parkinson's disease or schizophrenia are assumed to exhibit
imbalances on several levels concerning the monoaminergic
neurotransmitter systems between these areas (Laruelle et al.,
2003; Abi-Dargham, 2004). In fact, a recent study from our
laboratory, using an early postnatal traumatization by
methamphetamine as an animalmodel of psychoses, revealed
a disequilibrium in dopaminergic fiber densities between the
prefrontal cortex and caudal limbic areas (Busche et al., 2004).
Therefore, this studywas conducted to look closely at the long-
term maturation of DA fiber densities in different areas of the
limbic circuit, namely the central amygdala, the basolateral
amygdala and the ventrolateral entorhinal cortex (EC).

2. Results

The DA innervation pattern in gerbils' amygdala and entorh-
inal cortex resembles that described for the rat, which in turn
has been reported to be similar to that of monkeys (Sadikot
and Parent, 1990).

The lateral part of the CE receives the densest dopaminer-
gic innervation followed by its medial neighbor (Fig. 1C). The
basolateral amygdala shows only a light DA innervation
(Fig. 1C). DA fibers of the ventrolateral EC appear to be
arranged in clusters (Figs. 1D, G1–G4).

An analysis of variance (ANOVA) with age as the inde-
pendent variable and the DA fiber densities of the different
areas as dependent variables revealed a significant effect of
age (F(24,144)=2.34, p=0.0011). The following Fisher's LSD post
hoc test showed a highly significant increase between PD14
and PD20 in the lateral part of the CE (28%; p=0.0003) and a
tendency for a subsequent decrease between PD20 and PD30
(p=0.070). There was no such peak in the development of the
medial CE or EC (all p's>0.05), although there was a tendency
for an increase after PD14 in themedial part of theCE (p=0.079).
For the BLA, the post hoc test revealed a similar increase
between PD14 and PD20 (90%; p=0.009) and also a trend for a
subsequent decline in fiber density (p=0.059). During aging, no
statistically significant alterations were seen in any of the
investigated areas. However, the lateral part of the CE showed
a tendency (p=0.088) for a decline between PD540 and PD720.

3. Discussion

The present data reveal that the development of the dopami-
nergic innervation varies between different structures of the
caudal limbic system of the gerbil. Thus, the ventrolateral
entorhinal cortex (EC) and the medial part of the central
nucleus of the amygdala (CE) show no significant alterations
at all between PD14 and PD720, while there is an increase in
density between PD14 and PD20 and a subsequent trend for a
decrease until PD30 in the lateral part of the CE and the
basolateral nucleus of the amygdala (BLA). Interestingly, none
of the structures demonstrates any statistically significant
decline in DA fiber densities in high age (Fig. 2).

Beside the dopaminergic fiber densities, there are other
elements of the DA system that show differential developQ
mental patterns in different brain regions. Thus, Coulter et al.
(1996) demonstrated that the maturation of the dopamine
transporter (DAT) follows an anterior-to-posterior and lateral-
to-medial gradient, with the prefrontal cortex (PFC) and
nucleus accumbens being two of the last areas to reach adult

Fig. 1 – Representative photomicrographs of the dopaminergic innervation of the amygdala and entorhinal cortex at different
age stages. A, B: photomicrographs of representative coronal sections at the level of the amygdala and entorhinal cortex (EC),
respectively. Picture (B1) shows a Nissl staining of the ventrolateral EC. The areas of the rectangles are magnified in panels C
andD. The dotted line in panel Dmarks the approximate innervation field of the dopamine (DA) projection,which is arranged in
clusters (cf. G1–4). Within the amygdala, most fibers are found in the lateral part of the central amygdala (CEl), which is
surrounded by themoderate innervation of themedial part (CEm). The BLA shows the slightest innervation density of DA fibers
(cf. F1–4). Pictures (E1)–(G4) show examples of DA innervation at juvenile age stages (PD14–PD30) with a comparative section
from an adult animal (PD180). Scale bars: 500 μm (B1), 100 μm (E1–G4).
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levels. However, in the striatum, DAT density rather declines
after an early peak during development (Moll et al., 2000).
Similar reorganization processes have been observed for DA
varicosities, synapses and DA receptor types in the nucleus
accumbens and caudate putamen (Tarazi et al., 1998, 1999;
Antonopoulos et al., 2002), while there is no such peak and
subsequent elimination in receptor densities in the frontal
cortex or limbic areas (Tarazi and Baldessarini, 2000). Further-
more, DA axons appear to pass through a peak in density in
particular areas of the striatum (Hu et al., 2004; Lesting et al.,
2005) which has been assumed to be due to the reorganization
and elimination of non-specific targeting from the dopami-
nergic pathways (Hu et al., 2004). However, none of the
investigated caudal limbic areas from the current study reveals
this ‘pruning effect’, at least not at a statistically significant
level.

Remarkably, there was also no detectable alteration in DA
fiber densities in old animals compared to adolescent or adult
ones in the current study. This is in line with previous
observations in the nucleus accumbens shell and core in the
gerbil, which also showed no age-related changes in DA fiber
densities (Lesting et al., 2005). But it is in contrast with several
studies, which have reported about metabolic changes within
the monoaminergic system in older animals, as e.g. differ-
ences in the turnover rates, biosynthesis or concentration of
DA or its metabolites (Miguez et al., 1999; Miura et al., 2002).
However, none of these alterations suggests a correlated
change in fiber densities as a reduced DA concentration or
metabolism does not necessarily imply a reduced number or
density of axons in the particular area. It is rather likely that
these metabolic differences are mediated by an altered
receptor physiology or density (Cross et al., 1984, 1988; Sweet
et al., 2001), althoughwe have to admit that we cannot exclude
alterations in animals older than 24 months as this is only the
mean survival of the Mongolian gerbil, whereas individuals
might get older (Troup et al., 1969).

Due to the caudorostralmaturation gradient, it seems likely
that the entorhinal cortex and amygdala develop relatively
early during the postnatal period. Erickson and co-workers

(1998) have shown that the densities of DA axons increased
until 7 months of age in monkeys in layer III of the rostral
entorhinal cortex. However, we could not detect such an age-
dependent alteration in the dopaminergic fiber densities in the
gerbil EC after PD14. Thismight be due to the fact that there are
apparently some discrepancies concerning the exact classifi-
cation of the entorhinal area. A recent anatomical study
suggests that the amygdalopiriform transition area, which
was so far often considered part of the EC, should be viewed as
a separate anatomical entity (Santiago and Shammah-
Lagnado, 2005). In order to show the boundaries of the
investigated area in the current study, a picture of a Nissl
staining of the gerbil EC is provided, to be compared with the
dopaminergic innervation and measurement field (Fig. 1B1).

Dopaminergic fibers are arranged in clusters or “islands” in
the adult rodent EC (Fallon et al., 1978; Busche et al., 2004),
which can already be seen during early development
(cf. Figs. 1G1–G3). DA terminals directly innervate excitatory
and inhibitory entorhinal neurons, and thus the innervation
pattern resembles that of neocortical or amygdaloid projec-
tions (Asan, 1998; Erickson et al., 2000). Forming themain input
to the hippocampus and being intensively connected with the
BLAand theCE (McDonaldandMascagni, 1996; Pitkanen, 2000),
the EC is in close association to the limbic system and is even
considered a part of it by some authors (Amaral and Witter,
1995). Disturbances during the maturation process of the EC
might therefore havedevastating consequences for the orderly
information flow. In concert with this, neonatally induced
structural abnormalities in the entorhinal cortex have been
shown to affect DA transmission in the limbic regions at the
adolescent stage (Uehara et al., 2000). Furthermore, a reduced
density of tyrosine hydroxylase-immunoreactive axons has
been observed in the entorhinal cortex of schizophrenic
patients (Akil et al., 2000).

Compared to the ventrolateral EC, the amygdala seems to
lag behind in the maturation of the innervation density of DA.
The increase in the lateral part of the CE after PD14 might be
due to a sprouting of axon collaterals or further elaboration of
local arbors within the nucleus, which might also account for

Fig. 2 – Development of DA fiber densities in the amygdala and entorhinal cortex of the gerbil. Shown are the DA fiber
density means as percentage [%] of the reference area+SEM at postnatal day (PD) 14, 20, 30, 70, 180, 540 and 720. The lateral
part of the central amygdala (CE lat) and the basolateral amygdala (BLA) show significant increases between PD14 and PD20,
while the entorhinal cortex (EC) and medial part of the CE (CE med) display no alterations during maturation or aging. The
double bar in the middle marks a break in the scaling of the x-axis. **p<0.01, ***p<0.001.
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the non-significant rise in density in the medial part, just to a
lesser extent. The CE, with its several distinct subdivisions,
receives intensive input from cortical areas as well as from
limbic structures as the hippocampus or EC. Interestingly, the
CE has no reciprocal connections with the aforementioned
regions (Pitkanen, 2000) but sends a strong input to the
dopaminergic system in themesencephalon, thus influencing
the DA innervation of several other areas and modulating
behavioral responses (Fudge and Haber, 2000). It is further the
nucleus with the highest density of DA synapses and axons
with the lateral part being in turnmore dense than themedial
part (Asan, 1997, 1998). This strong interaction with the
dopaminergic cells in the mesencephalon might be a reason
why especially the lateral part seems to be relatively resistant
to early postnatal environmental and pharmacological chal-
lenges (Busche et al., 2004). In addition, the catecholaminergic
innervation of the medial part is assumed to serve more
modulatory functions due to the fact that it is directed
preferentially at peripheral neuronal structures (Asan, 1998).

The BLA is characterized by its strong reciprocal connection
with the prefrontal cortex (Pitkanen, 2000) and is thought to
mediate affective behavior via its DA innervation (Kroner et al.,
2005). As this connectivity with the PFC matures relatively late
and is considered to influence the development and integration
of normal or abnormal emotional behavior during adolescence
(Cunningham et al., 2002), it is not surprising that the BLA is
particularly sensitive to early environmental or pharmacologi-
cal challenges (Busche et al., 2004; Grund et al., 2006).

We have recently shown that an early single methamphe-
tamine (MA) intoxication on PD14 can cause a surplus of DA
fibers in the adult ventrolateral EC. An even stronger increase
was found in the BLA, but not in the lateral part of the CE and
only to a lesser extent in the left hemisphere of themedial part
of the CE (Busche et al., 2004). Considering the marked
decrease of dopaminergic fibers in rostral areas such as the
prefrontal cortex using the same pharmacological approach
(Dawirs et al., 1994), it seems likely that the different
dopaminergic pathways influence each other, thus causing
an imbalance between cortical and caudal limbic innervation
areas (Busche et al., 2004). Interestingly, such long-term
alterations in fiber densities are not seen in the PFC or
amygdala, when MA is applied at adult age, underlining the
sensitivity of these areas during development compared to
adulthood (Brummelte et al., 2006).

BLA and the lateral part of the CE are affected differently by
the MA challenge, although both structures show a further
increase in DA fibers after PD14. It is assumed that the PFC is
able to stabilize DA subsystems depending on its postnatal
development (Busche et al., 2004; Bennay et al., 2004).
However, the PFC is also supposed to be exceedingly damage-
able and accident-sensitive during development with the
period of this vulnerability lasting long until early adulthood
(for reviews see: Diamond, 1996; Lewis, 1997; Sullivan and
Brake, 2003; Adriani and Laviola, 2004). As the BLA exhibits
particularly strong reciprocal connections with the PFC, the
observed peak in fiber density during development may be
particularly vulnerable to changes resulting in dysfunctional
connections with the PFC. In fact, extracellular recording
studies have observed that a prestimulation of the medial PFC
reduces the responsiveness of CE neurons to inputs from the

BLA, thus contributing to the idea that the PFC even gates
transmission within the amygdala (Quirk et al., 2003). This
inhibitory control by the cortex, probably mediated via
GABAergic neurons, can be diminished by the release of DA
(Marowsky et al., 2005). Thus, the DA innervation of the
amygdala contributes essentially to a balanced output of this
structure and consequently regulates the modulation of
affective behavior (Asan, 1997; Marowsky et al., 2005; Kroner
et al., 2005).

Naturally, not only DA plays a significant role during its
own pathway and general development. Thus, the interaction
with other transmitter systems, e.g. serotonin or glutamate
and their receptors, might considerably contribute to the
divergent developmental patterns of cortical and subcortical
areas and the according differences in vulnerability during
maturation. In fact, it has often been assumed that the
putative DA imbalance in schizophrenia might be secondary
to alterations of other resources, as e.g. an NMDA hypofunc-
tion or alteration in the GABAergic or glutamate system
(Laruelle et al., 2003; Abi-Dargham, 2004). Consistent with this
hypothesis, we have recently demonstrated a dysconnection
within macrocircuits of the glutamatergic system (Bagorda
et al., 2006; Witte et al., 2006) and a shift within the prefrontal
GABAergic innervation pattern (unpublished data) in our
animal model of psychosis. Therefore, the authors are
tempted to suggest that the mutual impact and interdepen-
dency of the areas and their corresponding transmitter
systems during development all contribute essentially to a
normal and healthy maturation and that disturbances in one
of the integrated features might cause various adaptations
and alterations in several systems.

4. Experimental procedures

4.1. Animals

All experimental procedures were approved by the appro-
priate committee for animal care in accordance with the
European Communities Council Directive. Male Mongolian
gerbils (M. unguiculatus) were kept under natural day/night
cycles with food and water being provided ad libitum. Until
weaning (PD30), animals were kept in standard Macrolon®
cages (type 4). Afterwards, they were reared individually in
Macrolon® type 3 cages. A total of 51 male Mongolian gerbils
were used for this study. Seven experimental animal groups of
different ageswere investigated to cover convincing periods of
the life span of gerbils: PD14 (n=6), PD20 (n=6), PD30, (n=9),
PD70 (n=9), PD180 (n=6), PD540 (n=7) and PD720 (n=8). Gerbils
were chosen due to their wild-type like behavioral and
neuronal repertoire as they have not been so intensively
domesticated compared to rats or mice (Rosenzweig and
Bennett, 1969). In addition, the present data can be considered
against a huge amount of previously published data of the
gerbil brain from our laboratory.

4.2. Dopamine immunohistochemistry

Animals under deep chloralhydrate anesthesia (1.7 g/kg, i.p.)
were transcardially perfused with 0.1 M sodium cacodylate pH
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6.2 followed by 5% glutaraldehyde in 0.1 M sodium cacodylate
pH 7.5. Immediately after perfusion, the brains were dissected
and 50 μm thick frontal sections of the right hemisphere were
cut with a vibratome (Leica VT 1000S). For immunostaining,
the slices were rinsed in wash buffer followed by a pre-
incubation in 10% normal goat serum and 0.4% Triton X-100
(Sigma). Then the slices were incubated with the primary
antibody (rabbit anti-dopamine, DiaSorin, Stillwater, MN)
diluted 1:600 with 1% normal goat serum and 0.4% Triton X-
100 for 40 h. The following rinses were done with 0.05 M Tris–
HCl buffered saline (pH 7.5). The slices were rinsed and
incubated in the biotinylated goat–anti-rabbit antibody
(Sigma) diluted 1:20 with 1% normal goat serum, rinsed
again and incubated with ExtraAvidin–Peroxidase (Sigma)
diluted 1:20. After another rinse, the slices were stained in
0.05% 3.3-diaminobenzidine (DAB, Sigma) with 0.01% H2O2.
Then the slices were washed, mounted on glass slides, dried
overnight, dehydrated with ethanol, cleared with xylene and
coverslipped with DePeX (Serva, Heidelberg, Germany). For
more details on animal preparation and dopamine immuno-
histochemistry, see Lesting et al., 2005.

4.3. Quantification of DA innervation

DA fiber densities were measured in three to four consecutive
coronal slices of the corresponding brain sections, which were
assigned by means of anatomical characteristics according to
brain atlases of the rat (Paxinos and Watson, 1986) and the
mouse (Valverde, 1998). Fibers were visualized using a bright-
field microscope (BX61, Olympus, Hamburg, Germany) and
400-fold magnification and a digital camera for microscopy
(ColorView II, SIS, Münster, Germany). All pictures were
adjusted in contrast and brightness for better conspicuity of
DA fibers. The lateral and medial part of the CE, the BLA and
the entorhinal cortex were encircled by an experimenter blind
to the animals' age, and all detectable fragments were
quantified using software for image analysis (KS300, Jenoptik,
Jena, Germany; for details of the quantification process, see
Lesting et al., 2005). Fiber densities were calculated as a
percentage of the reference area. We abstained from addi-
tionally measuring the growth of the according areas in each
individual as the potential increase of the area during
development is already accounted for by this method.

4.4. Data analysis

Measurements were computed as arithmetic means by-case
and by-group±SEM. An analysis of variance (ANOVA) with age
(7 levels) as an independent variable and area (4 levels) as
dependent variable was used to check for statistical signifi-
cance between groups followed by LSD post hoc test for
multiple comparisons. Statistical analysis was computed with
Statistica 6 (StatSoft, Tulsa, USA). The levels of significance
were set at *p<0.05, **p<0.01 and ***p<0.001.
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Abstract  
 

The postnatal maturation of immunohistochemically stained gamma-amino-butyric acid 

(GABA) and calbindin (CB) cells and fibers were quantitatively examined in the prefrontal 

cortex (PFC) and the basolateral amygdala (BLA) of the Mongolian gerbil (Meriones 

unguiculatus). Animals of different ages, ranging from juvenile (postnatal day (PD)14, PD20, 

PD30), to adolescent (PD70), adult (PD180, PD540) and aged (PD720) were analyzed. 

Results reveal an increase in GABAergic fiber densities between PD14-20 in the PFC and the 

BLA with a concomitant decrease in cell density. After PD70 GABA fiber density slightly 

decreases again in the BLA, while there is a further slow but significant increase in the PFC 

between PD70-PD540. Fibers immunoreactive for the calcium binding-protein CB, which is 

predominantly localized in particular GABAergic subpopulations, also accumulate between 

PD14-PD20 in the PFC and BLA, while a concomitant decrease in cell density is only seen in 

the BLA. Both areas reveal a decrease of CB cells between PD30-PD70, which parallels with 

a decrease of CB fibers in the PFC. However, there is no particular ‘aging-effect’ in the fiber 

or cell densities of GABA or CB in any of the investigated areas in old animals.  

In conclusion, we here demonstrate long-term dynamics in cell and fiber densities of the 

GABAergic system until late in development which might correspond to the prolonged 

maturation of other neuroanatomical and functional systems.   
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1. Introductory statement 
 
 
Gamma-amino-butyric acid (GABA) is probably the most important inhibitory 

neurotransmitter in the mammalian nervous system. It is usually expressed in local 

interneurons, which can modulate and even control the neuronal activity of cortical and 

subcortical output neurons. Further, GABA has been shown to exert important morphogenetic 

influences during development (Chronwall and Wolff, 1980; Nguyen et al., 2001) and to play 

an essential role in reactive plasticity and reorganization processes during development and 

adulthood (Dawirs et al., 1997; Hensch, 2005; Merzenich et al., 1983; Zito and Svoboda, 

2002). Thus, GABA has a central part in shaping and maintaining of neuronal networks.  

Within the GABAergic population several classes of subpopulation can be distinguished 

according to their content of calcium-binding proteins (Baimbridge et al., 1992) and 

corresponding different maturation patterns. One of these proteins is calbindin (CB) which is 

e.g. found in Marinotti, Neuroglia and Double Bouquet cells within the cortex, i.e. in cells, 

that primarily innervate distal parts and spines of pyramidal dendrites (Conde et al., 1994; 

DeFelipe et al., 1989; Gabbott and Bacon, 1996; Lund and Lewis, 1993) and appear and 

mature relatively early (Alcantara et al., 1993). In the amygdala, CB cells are distributed 

differently in the various nuclei (Kemppainen and Pitkanen, 2000), but in contrast to the 

prefrontal cortex (PFC), CB varicosities are found in the basolateral amygdala (BLA) to form 

basket-like structures around unlabelled projection neuron somata (Berdel and Morys, 2000; 

Kemppainen and Pitkanen, 2000; Legaz et al., 2005; Muller et al., 2003). This points to the 

particularly interesting role of CB in this subcortical area, as it is widely known, that axo-

somatic synapses have an exceptionally powerful control over target neurons compared to 

distal dendritic or spine contacts. In the cortex, these baskets are usually built by GABAergic 

cells containing parvalbumin, another calcium-binding protein, or other substances such as 

cholecystokinin (Conde et al., 1994; Kawaguchi and Kubota, 1998). 
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Despite this difference, the GABAergic innervation patterns of the PFC and the BLA bear 

marked resemblances (Carlsen, 1988; Muller et al., 2006), although the origin and function of 

the PFC and the BLA are quite diverse, which is a reason for choosing these particular two 

structures for investigation in the current study. Further reasons are the high interconnection 

and thus potential interrelation of the PFC and BLA during development and their distant 

positions in the brain, which imply divergent developmental patterns. In addition, both areas 

belong to one main circuit, characterized by the mesolimbic prefrontal dopamine projections, 

which originate in the ventral tegmental area and the substantia nigra (Björklund and 

Lindvall, 1984; Fallon and Ciofi, 1992). This dopamine fiber innervation is of particular 

interest as it shows a prolonged maturation until adulthood in the rodent medial PFC (mPFC) 

(Dawirs et al., 1993; Kalsbeek et al., 1988), while it stays relatively stable after PD 20 in the 

gerbil amygdala or entorhinal cortex (Brummelte and Teuchert-Noodt, 2006). This is in line 

with the general developing pattern, with the PFC being one of the last areas to reach adult 

stages (Mrzljak et al., 1990; Van Eden et al., 1990), while the amygdala maturates relatively 

early after birth (Joseph, 1999; Morys et al., 1999).  

The prenatal and early postnatal maturation of the GABAergic population in the cortex, with 

particular emphasis on the visual cortex, has been intensively investigated in the last two 

decades (Chronwall and Wolff, 1981; Del Rio et al., 1992; Parnavelas, 1992; Van Eden et al., 

1989; Wolff et al., 1984). However, less research has been done concerning the late postnatal 

development and aging effects of GABAergic and CB fibers and concerning different cortical 

or subcortical areas. It is assumed that GABA exhibits a high synaptic plasticity and can help 

to reorganize, shape and modulate neuronal circuits not only during development (Chen et al., 

2002; Teuchert-Noodt, 2000). This compensatory effect in plastic processes might be 

reflected in changes of the GABAergic or CB fiber densities even during adulthood and 

aging. As it is further supposed, that the cortex might continuously adapt to new situations 

and experiences by (re)arranging neuronal networks (Bagorda et al., 2006; Holtmaat et al., 
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2006; Trachtenberg et al., 2002), the current study was conducted to examine the life long 

progression of GABAergic and CB structures in two areas of the mesolimbocortical circuit, 

the mPFC and BLA. 

 
 
 
2. Experimental procedures 
 

A total of 60 male Mongolian gerbils (Meriones unguiculatus) were used for this study. 

Breeding gerbils were obtained from Harlan Winkelmann (Borchen, Germany). The animals 

were bred in standard cages (Macrolon  type 4) and, after weaning on postnatal day (PD) 30, 

were reared individually in standard cages (Macrolon type 3). All gerbils were kept under 

natural day/night cycles with food and water being provided ad libitum. Seven experimental 

animal groups of different ages were investigated to cover convincing periods of the life span 

of gerbils: PD14 (n=11), PD 20 (n=6) (juvenile), PD30 (n=12) (weaning), PD70 (n=11) 

(young adult), PD180 (n=8), PD540 (n=8) (adult) and PD720 (n=4) (aging). Gerbils were 

chosen due to their very small genetic variability (Thiessen and Yahr, 1977), and their rich wild-

type like behavioral repertoire (Rosenzweig and Bennett, 1969). All experimental procedures 

were approved by the appropriate committee for animal care in accordance with the European 

Communities Council Directive. 

 

Immunohistochemistry 

Animals were transcardially perfused under deep chloralhydrate anesthesia (1.7g/kg, i.p.). The 

perfusion was performed with 200ml 0.05M phosphate buffer (pH 6.2), containing 1% sodium 

metabisulfite, followed by 750ml 5% glutaraldehyde with 1% sodium metabisulfite in 0.1M 

phosphate buffer (pH 7.5), with appropriate amounts of solutions for younger animals. 

Immediately after perfusion, the brains were removed and postfixed for 30 min. Coronar sections 

of 50µm were cut with a vibratome (Vibratome Series 1000, Technical Products International 
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Inc.) of which every 3rd was used for GABA and CB immunostaining, respectively. For GABA 

staining sections were collected in wash buffer at 4°C and rinsed 3x 10min followed by a 

preincubation in 10% normal goat serum and 0.4% Triton X-100 (Sigma) for 30min. 

Subsequently, the sections were incubated with rabbit anti-GABA (ImmunoStar, Hudson, WI), 

diluted 1: 5000 with 1% normal goat serum and 0.4% Triton X- 100 for 48h. Sections used for CB 

staining were treated in almost the same manner, but collected and rinsed in 0.05M tris- HCL 

buffered saline (pH 7.5, TBS), and were additionally incubated in 1% H2O2 for 10 min. The 

primary antibody was mouse anti-calbindin (Sigma, diluted 1:3000, for 18h). The following 

rinses, all three times for 10min, and dilutions were all done in TBS. The sections were rinsed and 

incubated for 30min in biotinylated goat anti-rabbit antibody (Sigma) for GABA and biotinylated 

goat-anti-mouse antibody (Sigma) for CB staining, respectively, diluted 1:20 with 1% normal 

goat serum, rinsed again and incubated with ExtraAvidin-Peroxidase (Sigma) diluted 1:20 for 

30min. After another rinse the sections were stained in 0.05% 3.3-diaminobenzidine (Sigma) with 

0.01% H2O2 for 4min. Then the sections were washed, mounted on glass slides, dried overnight, 

dehydrated with ethanol, cleared with xylene and cover slipped with DePeX (Serva, Heidelberg, 

Germany). To avoid deviations due to possibly lateralized innervation densities of GABA and CB 

only right hemispheres were used for analyses. 

For quantification of fiber densities, brain sections were chosen in areas of interest by means 

of anatomical characteristics according to brain atlases of the rat (Paxinos and Watson, 1986) 

and the mouse (Valverde, 1998). The BLA and mPFC subregions Cg1 and Cg3, with the 

latter being further divided into layer III and layer V, were chosen for investigation due to the 

clear presence of GABAergic and CB fibers and cells. The average number of analyzed 

sections was 5 per animal and region. In the defined region of each section all detectable fiber 

fragments were visualized in standard test fields using a bright field microscope (BX61, 

Olympus, Hamburg, Germany) and a digital camera for microscopy (ColorView II, SIS, 
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Münster, Germany). Calbindin sections were investigated using 200-fold magnification, 

GABA sections at 600-fold magnification.  

To account for a possible interaction of fiber density and cell density or size of the 

investigated area, these parameters were measured additionally for the PFC and BLA at 200-

fold and 20-fold magnification, respectively. Digital images were adjusted in contrast and 

intensity before fibers, cells or the size of the area were quantified by software for image 

analysis (KS300, Jenoptik, Jena, Germany). For further details of the quantification process 

see (Brummelte et al., 2006a; Brummelte and Teuchert-Noodt, 2006). The fiber density was 

calculated as a percentage of the evaluated test area, the cell density as number of cells per 

test area. Lightly stained cells (cf. qualitative results) were excluded in the counting by a 

minimum threshold of gray values for cell recognizing. All analyses were done by a person 

blind to the age of individual animals.  

 
 
Data analysis 

Measurements were computed as arithmetic means by-case and by-group ± S.E.M. The 

overall size of the particular area in which fiber densities were measured as well as the 

number of GABA or CB cells were integrated as covariates in the statistical analysis to 

account for a possible interaction of an augmentation of volume or cells and fiber sprouting. 

For the PFC, a two-way analysis of covariance (ANCOVA) with age (7 levels) and area (3 

levels) as independent variables, GABA or CB as dependent variable and area size and 

GABA or CB cell number as covariates were used to check for statistical significance 

between groups, followed by Fisher LSD post-hoc test for multiple comparisons if 

appropriate. For the BLA, the ANCOVA comprised only one area level. As the covariates 

revealed some significant effects on the fiber development, these parameters were also 

statistically analyzed using an ANCOVA (cell number, size as covariate) or ANOVA (size) 

and subsequent LSD post-hoc tests. Statistical analysis was computed with Statistica 6 
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(StatSoft, Tulsa, USA). The levels of significance were set at * p<0.05, ** p<0.01 and *** 

p<0.001. 

 
3. Results 
 

Qualitative observations 

The GABAergic fiber innervation is equally dense in all investigated areas, while the CB 

fibers are more present in the BLA compared to the mPFC. The overall distribution pattern of 

GABAergic and CB fibers, however, is similar in animals from all age stages (cf. Fig. 1). PFC 

and BLA contain a population of lightly stained CB pyramidal neurons, which has been 

previously observed in rats, too (Celio, 1990; Kemppainen and Pitkanen, 2000). In the PFC 

these cells are arranged in a bundle throughout lamina II (Fig.1 B.1). In concert with data 

from other species (Hof et al., 1999) hardly any CB or GABA cells were seen in lamina I. In 

the BLA, GABAergic and CB cells were distributed quite equally through the nucleus. We 

could not detect clear CB basket-like structures in the BLA at light microscope level, although 

these have been described for rats (Berdel and Morys, 2000).  
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Fig. 1: Representative photomicrographs of the GABAergic and Calbindin (CB) distribution of the 
medial prefrontal cortex (mPFC) and the basolateral amygdala (BLA) at different age stages.  
A.1 and A.2 are photomicrographs of representative coronal sections at the level of the PFC and 
amygdala, respectively. The areas of the rectangles are magnified in panels B.1 – C.2 for CB and 
GABA. Pictures (D1)–(G5) show examples of GABA and CB structures at juvenile age stages (PD14–
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PD30), adolescence (PD 70) and a comparative section from an adult animal (PD540) in lamina III 
and V of the Cg3 region and in the BLA.  Scale bars: 200 µm (B.1-C.2), 50 µm (D1–G5). 
 

Quantitative analysis 

PFC 

For the GABAergic fiber density in the PFC the two-way analysis for variance reveals a 

highly significant effect of age (F (6,147) = 16.67; p<.001), but not for area or interaction of 

age and area (F (12,147) =.168; p=.99). Both covariates show a significant effect on the fiber 

development (GABA cells: p=.007; size: p=.016). A subsequent Fisher LSD test exhibits a 

significant increase in fiber density between PD14-PD20 (+11%; p<.001) and between PD20-

PD30 (+5%; p=.037) and a further trend for an increase between PD70-PD180 (p=.078), 

which becomes significant compared to PD 540 (PD70-PD540: +7%; p<.001) (Fig. 2A).  

For the CB fibers in the PFC the ANCOVA reveals a significant effect of age (F (6,148) = 

23.94; p<.001) and area (F (2, 148) = 6.26; p=.002) but not for the interaction of age and area. 

Size as a covariate shows a significant effect (p=.005), while the CB cell number narrowly 

fails to reach a significant level (p=.054). The subsequent LSD test for the area effect reveals 

a significant difference in innervation density between the Cg1 area and Cg3 lamina III and 

between lamina III and lamina V within the Cg3 region (both p’s<.001). Further, a post-hoc 

test shows a highly significant increase of fibers between PD14-PD20 (+43%; p<.001), 

followed by slight decrease between PD30-PD70 (-8%; p=.017) and PD180-PD540 (-13%; 

p=.003) (Fig. 2B).  

Due to the significant effect of the covariates, the cell numbers were additionally analyzed 

and a two-way analysis of covariance reveals a significant effect of area (F (4, 294) = 85.38; 

p<.001), with all areas being significantly different from each other concerning GABA and 

CB cells (all p’s <.05). Age also shows a significant effect (F (12, 294) =17.0; p<.001) with 

GABA cells exhibiting a decrease between PD14-PD20 (-41%; p<.001), followed by an 
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increase between PD20-PD30 (+26%; p=.001) and another decrease after PD30 (-11%; 

p=.035). The last effect could also be seen in the CB cell density (-21%; p<.001) (Fig. 2).  
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Fig. 2: Postnatal development of GABA (A) and Calbindin (CB) (B) cells and fibers in the prefrontal 
cortex (PFC).  
Shown are the fibers density means as percentage [%] and the cell number means, respectively, of the 
reference area + S.E.M at postnatal day 14, 20, 30, 70, 180, 540 and 720. The double bar in the middle 
marks a break in the scaling of the x-axis. * < 0.05, **p <0.01, ***p <0.001. 
 
 
 
Size as a covariate has again a significant influence (p=.013) and when therefore analyzed 

separately it reveals a reverse peak with an increase between PD14-PD20 (+8%; p<.001) and 

a subsequent decline until PD30 (-7%; p=.003) (Table 1). As there was no interaction effect 

for age and area in any of the analyses, the line plots (Fig. 2 and 3) show the overall values for 
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the PFC. The separate data for the different investigated areas of the PFC are presented in 

table 2 and 3.   

 

BLA 

GABAergic fibers in the BLA show a significant effect of age (F (6, 49) = 8.84; p<.001) with 

none of the covariates showing a significant contribution. The LSD post-hoc test reveals a 

highly significant increase between PD14-PD20 (+15%; p<.001) and a tendency for a decline 

after PD70 (PD70-PD180: p=.073), showing a significance compared to PD540 (-7%; 

p=.012). CB fibers in the BLA reveal no significant age-effect (p=.21), however, the CB cell 

number as a covariate exhibits a significance (p=.031).  

An analysis of covariance of the cell numbers in the BLA shows a significant effect of age (F 

(12, 98) = 8.85; p<.001) with no effect of size. A following LSD test further reveals a 

decrease of GABAergic cells (-14%; p=.025) and CB cells (-18%; p=.001) between PD14-

PD20 with a further slow decrease until PD70 in the GABAergic population (PD20-PD70 -

21%; p=.007) and a more steep decline in the CB cell density (PD30-PD70: -23%; p<.001). In 

addition, the CB cell number decreased between PD180-PD540 (-14%; p=.036) (Fig. 3).  

 

 
Table 1: Circumferences of the two 
analyzed areas: the prefrontal cortex 
(PFC) and the basolateral amygdala 
(BLA) + S.E.M.  

AGE PFC BLA 
  14 [d] 8241.93 ± 349.47 µm 3949.28 ± 36.90 µm
  20 [d] 8367.58 ± 561.35 µm *** 4045.24 ± 98.24 µm
  30 [d] 8248.79 ± 365.93 µm ** 4019.70 ± 30.63 µm
  70 [d] 8226.65 ± 389.70 µm 4106.80 ± 78.18 µm
180 [d] 8307.00 ± 340.07 µm 4193.11 ± 112.2 µm
540 [d] 8262.83 ± 382.16 µm 4325.24 ± 60.86 µm
720 [d] 8225.94 ± 491.41 µm 4218.94 ± 85.76 µm

The PFC reveals a peak in volume 
on postnatal day 20, while there is 
no age-dependent effect in the BLA. 
Levels of significance, compared to 
the age stage before: **p <0.01, 
***p <0.001. 
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Fig. 3: Postnatal development of GABA (A) and Calbindin (CB) (B) cells and fibers in the 
basolateral amygdala (BLA).  
Shown are the fibers density means as percentage [%] and the cell number means, respectively, of the 
reference area + S.E.M at postnatal day 14, 20, 30, 70, 180, 540 and 720. The double bar in the middle 
marks a break in the scaling of the x-axis. * < 0.05, **p <0.01, ***p <0.001. 
 

AGE GABA CB 
 Cg1 Cg3 L III Cg3 L V Cg1 Cg3 L III Cg3 L V 

14 [d] 7.31 ± 0.19 7.04 ± 0.27 7.52 ± 0.21 2.76 ± 0.26 2.02 ± 0.16 3.07 ± 0.33
20 [d] 8.16 ± 0.25 7.84 ± 0.26 8.26 ± 0.14 3.75 ± 0.24 3.29 ± 0.21 4.22 ± 0.38
30 [d] 8.52 ± 0.25 8.35 ± 0.23 8.57 ± 0.17 3.95 ± 0.15 3.80 ± 0.10 4.29 ± 0.19
70 [d] 8.22 ± 0.24 8.15 ± 0.28 8.34 ± 0.19 3.84 ± 0.19 3.50 ± 0.16 3.76 ± 0.17

180 [d] 8.59 ± 0.15 8.29 ± 0.15 8.71 ± 0.11 3.62 ± 0.11 3.57 ± 0.13 3.30 ± 0.12
540 [d] 8.88 ± 0.16 8.75 ± 0.09 8.83 ± 0.19 3.35 ± 0.09 3.02 ± 0.09 2.79 ± 0.05
720 [d] 8.82 ± 0.07 8.58 ± 0.04 8.63 ± 0.12 3.59 ± 0.09 3.29 ± 0.11 3.34 ± 0.07
Mean 8.31 ± 0.11 8.09  ± 0.11 8.38  ± 0.09 3.55 ± 0.09 3.21 ± 0.10* 3.56 ± 0.11

Table 2: GABA and CB fiber densities in the various areas within the prefrontal cortex, namely the 
Cg1 region and lamina (L) III and V of the Cg3 region + S.E.M. 
There was a difference in the mean innervation density concerning the CB fibers in lamina III of the 
Cg3 region compared to the other two areas (* p < 0.001). 
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AGE GABA CB 

 Cg1 Cg3 L III Cg3 L V Cg1 Cg3 L III Cg3 L V 
14 [d] 26.42  ± 

6.97 
23.54  ± 

8.54 
47.03  ± 

10.2 
23.86  
±1.57 

22.14  ± 
1.12 

36.72  ± 
1.69 

20 [d] 15.90  ± 
2.65 

10.90  ± 
2.11 

29.65 ±  
5.99 

23.38  ± 
1.56 

21.18  ± 
2.11 

38.65  ± 
3.27 

30 [d] 18.99  ± 
3.69 

16.21  ± 
3.27 

36.23  ± 
5.97 

24.42  ± 
0.62 

22.86  ± 
1.09 

37.09  ± 
0.99 

70 [d] 16.21  ± 
4.05 

14.52  ± 
4.98 

32.86  ± 
5.02 

19.16  ± 
1.16 

18.11  ± 
1.37 

29.27  ± 
2.06 

180 [d] 16.26  ± 
1.50 

10.68  ± 
1.95 

29.21  ± 
3.23 

20.35  ± 
1.42 

18.35  ± 
1.76 

28.76  ± 
1.49 

540 [d] 16.66  ± 
1.83 

16.29  ± 
2.89 

29.91  ± 
3.14 

21.57  ± 
1.09 

16.42  ± 
0.76 

24.83  ± 
1.70 

720 [d] 14.78  ± 
1.85 

12.50  ± 
1.58 

26.81  ± 
6.04 

18.54  ± 
2.10 

16.60 ± 
2.24 

23.77  ± 
3.22 

Mean 18.53  ± 
5.43* 

15.70  ± 
6.17* 

34.42  ± 
8.80* 

21.93  ±  
0.54* 

19.78 ± 
0.60* 

31.96 ± 
0.97* 

 
Table 3: GABA and CB cell densities in the various areas within the prefrontal cortex. 
Lamina V of the Cg3 region revealed the highest cell density and lamina III the lowest. All 
areas were significantly different from each other (* p< 0.01).   
 
 
4. Discussion 
 
The current study provides first data for GABAergic and Calbindin (CB) cell and fiber 

densities in two prominent structures of the mesolimbocortical circuit from the juvenile period 

to aging in the Mongolian gerbil. The fluctuations in fiber densities might in part be due to 

variances in the cell numbers or expansions of the reference area as these parameters reveal 

significant contributions in the analyses of covariance. For instance, the PFC exhibits a peak 

in volume around PD20, which has been reported for rats before (Van Eden and Uylings, 

1985), and which is accompanied by a low level of GABAergic cells. Interestingly, fiber 

densities in general tend to increase, although the according cell densities decrease during 

development. We additionally report long-term dynamic variations of the GABAergic fiber 

system in the gerbil brain, which are probably independent of the early changes in cell 

number or volume. 
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Species- and area-specific maturation of GABAergic cell and fiber densities  

Previous prenatal, and early postnatal investigations have shown, that GABAergic cells 

appear in the rodent visual or somato-sensory cortex as early as embryonic day (ED) 14-16 

(Chronwall and Wolff, 1980; Del Rio et al., 1992)  and that there is no apparent change in cell 

density after the third postnatal week (Chronwall and Wolff, 1980). CB cells have also been 

observed to appear prenatally in the rat cortex and increase until PD 8-11, but their number 

seems to decrease notably between PD11-15 while reaching adult levels around the end of the 

third postnatal week (Alcantara et al., 1993). In the amygdala first CB cells appeared around 

ED13 in the mouse (Legaz et al., 2005), and were observed on ED 20 in the rat, where they 

reached adult levels around PD20 (Berdel and Morys, 2000).  

These previous observations are in part at variance with our present results from the 

Mongolian gerbil. One first explanation for this might be the different developmental pattern 

of gerbils compared to rats or mice. The gerbil is known to develop its auditory and visual 

capacity later than the rat (Seto-Ohshima et al., 1990) and to lag behind about 2 weeks in 

reaching its sexual maturity. In addition, the dopaminergic innervation of the mPFC shows a 

prolonged maturation until PD 60 in the rat (Kalsbeek et al., 1988), while dopaminergic 

afferents continue to grow until PD 90 in the gerbil (Dawirs et al., 1993). Thus, the partially 

highly significant increase in GABAergic and CB fiber densities until PD30 and the 

fluctuations in the cell densities we observed in the mPFC and the BLA in the present study 

might indicate the postponed maturation of the gerbil nervous system compared to other 

rodents and the later onset of functional systems. 

The apparent discrepancy of former and our present results might further be due to the 

developmental differences of particular areas. Thus, calcium-binding proteins occur several 

days later in the associative cortices compared  to the primary visual cortex (Alcantara et al., 

1993). In addition, Wolff and colleagues (1984) found no notable difference in GABA cell 

proportion after P3 in the layers II-VI in the visual cortex, while Vincent and colleagues 
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(1995) found a decrease of GABA cell density until PD 15 in the mPFC of rats. They further 

suggest that this decrease is associated with an expansion of the cortex. The severe decrease 

of GABA cells between PD14-PD20 in the gerbil might therefore be due to the peak in mPFC 

volume around PD20. Intriguingly, we did not observe such a decline in CB cell density 

during this particular time. This might depend on a variation of the amount of the protein 

within the cells, so that despite the decreasing number of GABAergic cells more of the 

remaining cells expressed enough CB to reach the minimum gray value for cell counting. The 

inverse effect might also account for the later decline in the CB number (PD30-PD70), which 

would be in line with the hypotheses that one population of CB cells only expresses the 

protein transitorily, while the other neurons are permanently immunoreactive for CB 

(Alcantara et al., 1993).  

The maturation of GABAergic fibers in the BLA seems to differ slightly from the cortex. One 

reason for this could be the different targets and functions of the subpopulations in the cortex 

and the amygdala, as for instance, CB cells have been shown to build basket like structures in 

the BLA (Berdel and Morys, 2000) but not in the cortex. Further, CB interneurons in the 

cortex rather present a minor subpopulation (Celio, 1990), while they constitute almost 60% 

of the GABA-containing population in the BLA (McDonald and Mascagni, 2001) which 

would be in line with our observation of a higher CB fiber density in the BLA compared to 

the cortex. In addition, another 60% of these CB neurons have been shown to also coexpress 

another calcium-binding protein, parvalbumin (PV), permanently (McDonald and Betette, 

2001), while such a coexpression is only transiently observed in the cortex (Alcantara et al., 

1996). This might explain the existence of CB baskets around unlabelled pyramidal neurons 

in the BLA and further hints to the particular role of the various calcium-binding proteins in 

different subpopulations of the brain.  
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GABA plasticity from adolescence to aging 

Regardless of fluctuations in cell densities, there are prolonged variations in fiber densities 

and thus in the inhibitory networks of the particular areas during adolescence and even 

adulthood. Generally it is thought that local circuit neuron connections mature relatively late 

compared to projections from efferent neurons (Miller, 1988). In addition, GABA appears to 

exert direct and indirect trophic action and thus initiate the establishment of synaptic contacts 

such as excitatory synapses, which usually appear 1-4 days after the GABA cells (Wolff et al., 

1978; 1993). The synaptogenesis of inhibitory GABAergic boutons seems to be even further 

delayed and continues well into adulthood (Bahr and Wolff, 1985; Lewis et al., 2005), which 

would be in line with a continuing augmentation of fibers. 

GABA is known to undergo a shift from an excitatory transmitter before birth into an 

inhibitory transmitter after birth (Ben-Ari, 2002; Cherubini et al., 1991; Ganguly et al., 2001). 

Further, there is a potential postnatal shift between the different GABAergic subpopulations 

with a decrease in CB immunoreactivity, which is usually accompanied by the appearance of 

PV-positive structures in various areas of the brain (Cruz et al., 2003; Davila et al., 2005; 

Erickson and Lewis, 2002; Legaz et al., 2005). PV cells mature considerably late during 

development (Alcantara et al., 1993), e.g. in the gerbil, first PV neurons appear around PD 14 

in the mPFC, though their number is very small (unpublished data), and are known to build 

axo-somatic contacts and basket like boutons around pyramidal somata, which likewise 

appear considerably late (Bahr and Wolff, 1985). These types of connections have a 

particularly powerful influence on the firing activity and synchronization of target neurons 

(Freund, 2003; Gibson et al., 1999; Klausberger et al., 2003; Miles et al., 1996; Tamas et al., 

1997; Tamas et al., 2000). Such oscillatory (rhythmic) synchronization is for instance 

generated by a BLA PV network during emotional arousal (Muller et al., 2005) and is further 

believed to create the necessary temporal and spatial frame for functions such as working 

memory in the PFC (Constantinidis et al., 2002; Lewis et al., 2005) or consolidation of 

 17



emotional memories in the amygdala (McDonald and Mascagni, 2004). In addition, it has 

been assumed that morphological changes in response to learning stimuli may include a shift 

of synapses nearer to neuronal somata (Murakami et al., 1988). Taken together, these 

evidences underline the importance of somatic and axonic inhibitory synapses, although the 

majority of GABAergic contacts terminate on dendrites or spines of the postsynaptic cells 

(Beaulieu et al., 1992; Beaulieu and Somogyi, 1990; Nitsch and Riesenberg, 1995), which in 

turn emphasizes the general importance of understanding the involvement of the GABAergic 

system and its different subpopulations in neuronal circuits and plasticity. 

Different transmitter systems have been shown to exhibit high plastic potentials during 

adolescence and adulthood and thus contribute to the shaping or remodeling of neuronal 

circuits. For instance, the dopaminergic innervation modulates neuronal out-put activity by 

directly terminating on glutamatergic projection neurons in the PFC and amygdala and 

indirectly via GABAergic interneurons (Asan, 1998; Brinley-Reed and McDonald, 1999; 

Sesack et al., 1995) and thus may have a particularly important part in shaping neuronal 

connectivity. A similar innervation pattern was revealed for the BLA input to the PFC, which 

connects to pyramidal spines as well as to GABAergic local circuit neurons (Bacon et al., 

1996; Gabbott et al., 2006) and thus may also be essential for the establishment of neuronal 

circuits. It becomes apparent that irrespective of the art of input, the GABAergic transmitter 

system seems to be generally perfectly positioned to mediate between the various incoming 

projections and the efferents. As the dopaminergic innervation continues to grow into the PFC 

during adolescence (Dawirs et al., 1993; Kalsbeek et al., 1988) and the connections from the 

BLA to the PFC also mature relatively late compared to other connections arising from the 

amygdala (Diergaarde et al., 2005), it seems likely that local interneurons might continue to 

adapt to the changing input by enlarging or rearranging their fiber densities. It has already 

been assumed, that the late development of the local circuit neurons and the subsequent 

remodeling of networks may provide a morphological basis for functional plasticity in mature 
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cortical neurons (Miller, 1988) and thus it might even contribute to complex processes as 

long-term learning and memory. 

As we could recently show in our laboratory using an animal model of early traumatized 

gerbils, epigenetic disturbances during development can cause a shift within the GABAergic 

system, with a loss of GABAergic boutons around pyramidal somata and an increase in 

lamina I/II GABAergic fibers in the mPFC of adult animals (Brummelte et al., 2006b). The 

lessening of somatic inhibition and the potential subsequent interference of the 

synchronization of whole pyramidal populations might contribute to the observed deficits in 

PFC-related behaviors and functions such as working memory after this early developmental 

disturbance (Dawirs et al., 1996). In addition, GABA has also been shown to exhibit a high 

plasticity when challenged in adult animals (Dawirs et al., 1997). Therefore the question 

arose, if GABA keeps its natural neuroplastic potential even up to adulthood, especially as it 

is believed that disturbances in the GABAergic inhibitory regulation of cortical networks 

contribute considerably to cognitive impairments as seen in schizophrenia (Benes and 

Berretta, 2001), which’s onset is usually in young adulthood. We here demonstrated that there 

are indeed long-term variations in the GABAergic system during adolescence.  

Intriguingly, there was no aging-related change in the fiber densities of GABA or CB in 

neither the PFC nor the BLA. Several studies have reported about an age-related decrease in 

CB immunoreactivity in basal forebrain cholinergic cells (Geula et al., 2003; Wu et al., 1997; 

2003) and also about age-related changes of CB structures in some cortical and subcortical 

areas (Bu et al., 2003; Hwang et al., 2002; Kishimoto et al., 1998). Further, several studies 

have shown alteration in the CB immunoreactivity in Alzheimer patients compared to controls 

(Ichimiya et al., 1988; Lally et al., 1997; McLachlan et al., 1987). However, further 

investigations suggest, that it might rather be a decrease in the expression of the protein than a 

decline of whole cells or branches (Kishimoto et al., 1998). Nevertheless, a decline in CB 

within the cell might cause a diminished capacity to buffer high levels of calcium, thus 
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leading to a higher vulnerability towards pathological processes that might cause the 

degeneration of the cell in the end (Bu et al., 2003). However, to our knowledge, there is no 

study revealing a significant age-related effect in CB immunoreactivity for the PFC or BLA. 

But there are other hints for alterations within the GABAergic system as e.g. differences in 

GABA activity in specific hypothalamic areas (Jarry et al., 1999) or age-related changes in 

GABA receptor compositions (Caspary et al., 1999). Such changes can not be excluded in the 

old gerbil referring to our data, but there is apparently no alteration in fiber densities. 

However, we have to admit, that 110 weeks is the mean survival of a male gerbil, meaning 

that in the individual case the maximum age lies higher (Troup et al., 1969), thus our results 

of stable GABAergic and CB fiber densities up to PD720 do not exclude variations in still 

older animals.  

Nevertheless, GABA seems to appear relatively consistent against the deleterious effects of 

age compared to other transmitters as e.g. dopamine, which is believed to play a role in 

various age-related diseases such as Alzheimer, Parkinson’s or Huntington disease (reviewed 

in: Backman and Farde, 2001; Morgan et al., 1987; Ossowska, 1993) and shows a decline of 

fibers in 720 days old gerbils in the PFC (unpublished data) but not in the amygdala 

(Brummelte and Teuchert-Noodt, 2006). On a highly speculative level it might be assumed 

that neurodegenerative diseases are likely to appear when the GABAergic plasticity finally 

vanishes during aging.  
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Abstract 
 
 
Mesencephalic dopamine (DA) projections are essential for cognitive and behavioral 

functions and believed to play a critical role during development and aging. The 

dopaminergic afferents of the rodent prefrontal cortex (PFC) show an extremely prolonged 

maturation which is very sensitive to epigenetic challenges. However, less is known about the 

long-term maturation and aging of these DA axons. Therefore, immunohistochemically 

stained DA fibres were quantitatively examined in the PFC of the Mongolian gerbil (Meriones 

unguiculatus) ranging from 6 to 24 months of age. Results show a decrease in DA fibre 

densities in the superficial layers of the PFC in 24 month old animals compared to 6 and 12 

months.  
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Findings 
 
Dopamine (DA) has frequently been associated with age-related changes and 

neurodegenerative diseases such as parkinson. In particular, striatal alterations have been in 

the focus of many investigations, as these are assumed to contribute to observed cognitive and 

motor dysfunction in elderly people or parkinson patients [1].  

However, recent studies also suggest age-related DA changes in extrastriatal brain regions. 

Mirura and colleagues [2] observed that the level and turnover of monoamines and their 

metabolites were reduced in several brain regions as e.g. the prefrontal cortex (PFC), the 

amygdala, nucleus accumbens and hippocampus of 18 months old rats compared to young 

animals. For humans, it has been shown that the DA synthesis is lower with age in several 

extrastriatal regions, including the dorsolateral prefrontal and anterior cingulate cortex [3]. In 

addition, an age-related decline in D2 receptors was also found in various extrastriatal areas of 

healthy volunteers suggesting an association with normal aging processes [4]. In fact, it 

appears that the declines in D1 and D2 receptor binding might even be faster or more 

pronounced in the frontal cortices compared to striatal or thalamic regions [4-6]. This is in 

line with other studies reporting a greater loss of DA from the PFC compared to motor areas 

in aged monkeys [7,8], which underlines the importance of dopaminergic function during 

aging in this area.  

So far, most studies have focused on the metabolic function of the dopaminergic system 

during aging, but less research has been done concerning neuroanatomical alterations. Our 

laboratory could recently show, that the dopaminergic fibre densities of the nucleus 

accumbens, the amygdala and the entorhinal cortex show no age-related changes in 24 month 

old gerbils (Meriones unguiculatus) compared to young animals [9,10].  However, as the PFC 

has been frequently associated with an age-related decline in cognitive function, this study 

was conducted to check for alterations in the dopaminergic fibre density in this particularly 

vulnerable area. 



All experimental procedures were approved by the appropriate committee for animal care in 

accordance with the European Communities Council Directive. Gerbils were chosen due to 

their wild-type like behavioural and neuronal repertoire, as they have not been so intensively 

domesticated compared to rats or mice [11]. A total of 33 male Mongolian gerbils were used 

in this study (6 Mon n=8; 12 Mon n=5; 18 Mon n=11; 24 Mon n=9). Animal rearing and 

keeping conditions as well as the DA staining procedure have been described elsewhere [9].  

Prefrontal DA fibre densities were measured in four consecutive coronal slices of the PFC. 

Fibre fragments in the upper layers were visualised in standard test fields in the prelimbic 

cortex (PrL) and in the infralimbic cortex (IL), using a bright-field microscope (BX61, 

Olympus, Hamburg, Germany) and a digital camera for microscopy (ColorView II, SIS, 

Münster, Germany) at 400-fold magnification. Fibres were quantified by software for image 

analysis (KS300, Jenoptik, Jena, Germany). For details of the quantification see [9]. The fibre 

area was calculated as a percentage of the reference area. All measurements were done by an 

experimenter blind to the coding of the samples.  

Measurements were computed as arithmetic means by-case and by-group ± S.E.M. and a two-

way analysis of variance (ANOVA) with age (4 levels) and area (2 levels) as independent 

variables and the dopaminergic fibre density as the dependent variable was used to check for 

statistical significance between groups followed by LSD post-hoc test for multiple 

comparisons. Statistical analysis was computed with Statistica 6 (StatSoft, Tulsa, USA). The 

levels of significance were set at * p<0.05, ** p<0.01 and *** p<0.001. 

Statistical analysis revealed a significant effect of age (F(3,56)=3.47; p=.022) and area 

(F(1,56)=5.53; p=.022), but no interaction effect (F(3,56)=.184; p=.907). The PrL cortex 

showed a dense innervation of DA fibres, which was according to a Fisher LSD post-hoc test 

significantly lower in the IL (p=.008). The post-hoc test further revealed a significant age-

related decrease in DA fibre density in the superficial layers of the PFC between 12 month 



and 24 month old animals (-26%; p=.025), with the significance being even more prominent 

compared to 6 month old gerbils (-26%; p=.0098) (Fig.1).  
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Fig.1: Development of dopaminergic fibre densities in the prefrontal cortex.  
          There is a significant decline in the density in 24 months old animals compared to 12  
          months and 6 months old gerbils.  
 

Thus, we here present evidence for age-related anatomical alterations in the dopaminergic 

innervation pattern of the gerbil PFC. The decrease in DA fibre densities we found in the 

superficial layers of the PFC is in line with other observations of age-related alterations in the 

dopaminergic system. For instance, it has been shown, that the stress-related increase of 

dopamine diminishes with age as well as the dopamine transporter densities [12,13]. Thus, it 

has been assumed that the dopamine depletion of the PFC might contribute essentially to age-

related cognitive declines [14].  

As the autoxidation of dopamine leads to the formation of free radicals, which are known to 

play a major role in neurodegenerative disease and normal aging processes, it seems likely 

that there might exist a strong relation between the dopaminergic system and 

neurodegeneration during aging and diseases [15,16]. Alterations within the dopaminergic 

system have also been frequently associated with the occurrence of lewy bodies in the brain 

[17,18] and have been observed in alzheimer patients [19].  



Remarkably, previous studies in the gerbil could not detect a decline in DA fibre densities in 

other brain areas than the PFC in old animals compared to adult ones [9,10]. The different 

vulnerability of DA fibres in distinct areas might be related to varying maturation patterns of 

the DA fibres. The dopaminergic fibre densities of the PFC reveal a prolonged maturation 

until early adulthood [20,21] while the innervation patterns of other areas mature relatively 

early. This ongoing increase in fibre density has been assumed to be associated with a 

continuing high plasticity within the PFC, but also with a high vulnerability concerning 

external influences [22]. The observed decline in DA fibres in the gerbil PFC of 24 month-old 

animals reflects an age-related disturbance in the DA system, which might also be related to 

the high plasticity in this area, thus possible only reflecting reactive or adaptive processes 

following other physiological changes. Interestingly, an adult pharmacological challenge only 

induced significant long-term effects of the dopaminergic fiber densities in the shell region of 

the Nucleus accumbens, but not in the PFC [23]. However, the present results are in line with 

observations from Ishida and co-workers [24] who found an early reduction of noradrenergic 

innervations in the frontal cortex of aging rats. In addition, it has been shown, that aging can 

change the interaction of different transmitters in the brain [25]. As the PFC is known to have 

several controlling connection over other brain systems and hence can essentially influence 

behavioral and cognitive functions, it seems likely that a disturbance within this superior 

cortex division might have extensive and far-reaching consequences for other areas and their 

function.  
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13 Summary The GABAergic input on cortical pyramidal cells has an impor-

14 tant influence on the firing activity of the cortex and thus in regulating the

15 behavioural outcome. The aim of the current study was to investigate the

16 long-term neuroplastic adaptation of the GABAergic innervation pattern after

17 an early severe systemic impact. Therefore 40 Mongolian gerbils (Meriones

18 unguiculatus) were either reared under impoverished (IR) or enriched rear-

19 ing conditions (ER) and received a single early (þ)-methamphetamine (MA)

20 challenge (50 mg=kg i.p.) or saline on postnatal day 14. The density of

21 perisomatic immunoreactive GABAergic terminals surrounding layers III

22 and V pyramidal neurons was quantified as well as the overall GABAergic

23 fibre density in layers I=II and V of the medial prefrontal cortex (mPFC) of

24 young adult animals (90 days). We found that IR in combination with an

25 early MA administration led to a significant decrease in GABAergic bouton

26 densities while the overall GABAergic fibre density increased in all inves-

27 tigated layers. The results indicate a shift in inhibition from somatic to

28 dendritic innervation of pyramidal neurons in this potential animal model

29 of psychosis. We conclude that IR combined with early MA trigger changes

30 in the postnatal maturation of the prefrontal cortical GABAergic innerva-

31 tion, which may interfere with proper signal processing within the prefrontal

32 neural network.

33 Keywords: GABA, &, &, &

34 Introduction

35 The interaction of the different transmitter systems plays a

36 decisive role for the functioning of neural circuits through-

37 out the brain. Several transmitters, such as gamma-amino-

38 butyric acid (GABA), serotonin, and dopamine, contribute

39 to the modulation of activity of the cortical pyramidal neu-

40 rons, and thus have an important influence on the beha-

41 vioural outcome. Every segment of the pyramidal neuron,

42from the initial axonal segment and the cell body up to

43dendritic spines, receives dense GABAergic innervation

44(Hendry et al., 1983; Houser et al., 1983; Beaulieu et al.,

451992). Intriguingly, each of these segments receives its in-

46nervation from a distinct subpopulation of GABAergic neu-

47rons (Kisvarday et al., 1990).

48Somatic GABAergic boutons are mainly build by the

49basket cell subpopulation, which owe their name to the bas-

50ket-like arrangement of synapses surrounding pyramidal

51cell bodies (DeFelipe and Fairen, 1982; Hendry et al.,

521983). The majority of cortical basket cells express the cal-

53cium-binding protein parvalbumin [PV (Hendry et al., 1989;

54Kawaguchi and Kubota, 1996)] and they mostly have a

55fast-spiking firing pattern (Kawaguchi and Kondo, 2002).

56A second type of cortical GABA cells, the chandelier neu-

57rons, are also associated with PV and are known to produce

58mainly axo-axonic contacts, which form axonal ‘cartridges’

59along the initial axonal segment of the pyramidal neurons

60(Somogyi et al., 1982; Conde et al., 1994; Gabbott and

61Bacon, 1996). Beside these two populations of powerful

62interneurons, there are additional groups of GABAergic

63cells, which usually contain the calcium-binding proteins

64Calbindin (CB) or Calretinin (CR) and which are known to

65innervate primarily the dendritic spines and shafts of the

66pyramidal neuron (Conde et al., 1994; Gabbott and Bacon,

671996; Radnikow et al., 2002) and are thus less powerful in

68regulating the firing pattern of pyramidal cells. In summary,

69the subpopulations of interneurons each participate differ-

70ently in establishing and maintaining the activity of cortical

71networks. Disturbances in this inhibitory regulation may

72result in extensive impairments in cognitive and behav-
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1 ioural function, like those seen in schizophrenia (Benes and

2 Berretta, 2001).

3 Our lab has developed a potential animal model of schizo-

4 phrenia using a combination of a single early metham-

5 phetamine (MA) intoxication on postnatal day 14, which

6 damages monoaminergic fibers (Ricaurte et al., 1980, 1982),

7 and chronically impoverished rearing conditions (IR) of ger-

8 bils. Among effects in several areas of the limbic-cortical

9 system, the model impairs the maturation of the prefrontal

10 cortex (PFC) by inducing diminished dopamine innerva-

11 tion (Dawirs et al., 1994; Neddens et al., 2001), increased

12 GABA innervation (Nossoll et al., 1997), altered shape of

13 pyramidal cells (Blaesing et al., 2001), and ‘miswiring’ of

14 prefrontal efferents (Witte et al., 2006; Bagorda et al.,

15 2006). In effect, the model successfully mimics several

16 characteristics of the schizophrenic human brain (Feinberg,

17 1982; Weinberger and Lipska, 1995; Akil et al., 1999).

18 Since numerous alterations concerning the prefrontal

19 GABAergic network have been reported for schizophrenia,

20 as e.g. a particular defect in the parvalbumin-class of in-

21 terneurons [reviewed in Blum and Mann (2002)], the cur-

22 rent study was designed to investigate whether or how the

23 GABAergic system may be affected in our animal model.

24 Therefore, we analyzed different GABAergic structures,

25 namely fibers and somatic terminals in the medial PFC of

26 the developmentally disturbed gerbils.

27 Material and methods

28 Animals and rearing conditions

29 All experimental procedures were approved by the appropriate committee

30 for animal care in accordance with the guidelines of the European Com-

31 munities Council Directive. Breeding gerbils (Meriones unguiculatus) were

32 obtained from Harlan Winkelmann (Borchen, Germany). Gerbils were cho-

33 sen due to their very small genetic variability (Thiessen and Yahr, 1977),

34 their rich wild-type like behavioural repertoire, and complex social interac-

35 tion (Rosenzweig and Bennett, 1969).

36 A total of 40 males (weight 66–90 g) were used in this study. Half of them

37 were bred in standard makrolon cages (type IV) whereas the other half were

38 bred in semi-naturally structured compounds containing branches and hiding

39 opportunities (1�1 m; enriched condition). At weaning (30 days), the gerbils

40 that were born in cages were assigned to impoverished conditions (IR, ani-

41 mals kept alone in standard makrolon cages type III without any content

42 except of sawdust), while the other group grew up as a group of siblings under

43 enriched rearing conditions (ER, kept in compounds similar to those they

44 were born in), both for further 60 days. On postnatal day 14 a total of

45 20 animals received a single injection of (þ)-methamphetamine hydrochlo-

46 ride [Sigma (50 mg=kg; i.p.)], whereas the remaining 20 gerbils were sham-

47 treated with saline, resulting in four experimental groups: ER-Sal, ER-MA,

48 IR-Sal, IR-MA; n¼ 10 for each group. All animals had free access to food and

49 water and were kept on natural day=night cycles during summer season.

50 Immunohistochemistry

51 On PD 90, animals were transcardically perfused under deep chloralhydrate

52 anesthesia (1.7 g=kg, i.p.). The perfusion was performed with 200 ml 0.05 M

53phosphate buffer (pH 6.2), containing 1% sodium metabisulfite, followed by

54750 ml 5% glutaraldehyde with 1% sodium metabisulfite in 0.1 M phosphate

55buffer (pH 7.5). Immediately after perfusion, the brains were removed and

56postfixed for 30 min. Coronar sections of 50mm were cut with a vibratome

57(Vibratome Series 1000, Technical Products International Inc.) of which

58every 3rd was collected in wash buffer at 4�C. For immunostaining the

59sections were rinsed 3�10 min in cold wash buffer, followed by a prein-

60cubation in 10% normal goat serum and 0.4% Triton X-100 (Sigma) for

6130 min. Subsequent the sections were incubated with rabbit anti-GABA

62(ImmunoStar, Hudson, WI), diluted 1:5000 with 1% normal goat serum

63and 0.4% Triton X-100 for 48 h.

64The following rinses, all three times for 10 min, and dilutions were done

65in 0.05 M tris–HCL buffered saline pH 7.5 (TBS). The sections were rinsed

66and incubated for 30 min in biotinylated goat anti-rabbit IgG (Sigma)

67diluted 1:20 with 1% normal goat serum, rinsed again and incubated with

68ExtraAvidin-Peroxidase (Sigma) diluted 1:20 for 30 min. After another rinse

69the sections were stained in 0.05% 3.3-diaminobenzidine (Sigma) with

700.01% H2O2 for 4 min. Then the sections were washed, mounted on glass

71slides, dried overnight, dehydrated with ethanol, cleared with xylene and

72cover slipped with DePeX (Serva, Heidelberg, Germany). To avoid devia-

73tions due to possibly lateralised innervation densities of GABA only right

74hemispheres were used for quantification.

75Quantification of GABAergic profiles

76For quantification of bouton and fibre densities, brain sections were chosen

77in areas of interest (Fig. 1A–E) by means of anatomical characteristics ac-

78cording to brain atlases of the rat (Paxinos and Watson, 1986) and the mouse

79(Valverde, 1998); identification of the brain regions follows the nomencla-

80ture of the atlas of the rat. For the quantification of GABAergic boutons a

81total number of 3200 cells was analysed, with an average number of 4

82analysed sections per animal and an average of 10 clearly identified pyr-

83amidal cell somata in standard test fields (0.22 mm2) per section and layer

84(layers III and V). A cell was chosen if the unstained soma was clearly lying

85within the range of layer III or V of the cingular cortex area 3 (Cg3) of the

86mPFC and had a round to slightly oval shape which was clearly surrounded

87by darkly stained GABAergic boutons (see Fig. 1G). An experimenter blind

88to the experimental conditions marked the pyramidal cell soma manually.

89All boutons in a range of 1.66mm from this soma were automatically as-

90signed and the density was computed as a percentage of the evaluated test

91area. The fibre densities were quantified in standard test fields (900mm2) in

92layers V and I=II with an average of 10 test fields per section and layer (see

93Fig. 1F and H). Layer I=II was chosen due to their high innervation with

94GABAergic fibres inhibiting distal apical dendrites of pyramidal neurons.

95All detectable GABAergic boutons and fibres were visualised using a

96bright field microscope (Olympus BX61, Hamburg, Germany) and a

97digital camera for microscopy (SIS ColorViewII, Münster, Germany)

98at 600-fold magnification. Boutons and fibres were quantified by software

99for image analysis (KS300, Jenoptik, Jena, Germany), which uses a combi-

100nation of Gauss filter and Gerig operator that depicts differences of grey

101values of adjacent pixels and transforms the result into binary images. In

102effect, fibres were depicted as lines of one pixel width, such that different

103diameters of fibres would not influence the measurement.

104Data analysis

105The data were computed as arithmetic means by-case and by-group� S.E.M.

106of the respective layers and were analysed for the effects of both rearing

107conditions and pharmacological treatment. To account for possible interac-

108tions between the somatic size of the investigated cells and the area being

109covered by perisomatic GABAergic boutons, the size of the pyramidal cell

110bodies was used as a covariate in a 2-way analysis of covariance (ANCOVA)

111of perisomatic terminals.
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1 Statistical analysis of the overall GABAergic fibre densities was done

2 using a factorial ANOVA. Due to technical problems, sections from

3 6 animals (two from each group except IR-MA) had to be excluded from

4the study. All statistical analysis was computed with Statistica 6 (StatSoft,

5Tulsa, USA). The levels of significance were set at �p<0.05, ��p<0.01,

6and ���p<0.001.

Fig. 1. Brightfield photomicrograph of a representative coronar section of the medial prefrontal cortex (A). The rectangle (B) shows the analysed section

of the Cg3 region with subsequent rectangles for the analysed layers, which are magnified in (C, D and E). The GABAergic fibre density is generally

similar in layers I=II and V (F and H). G shows GABAergic boutons (arrows) around an unstained pyramidal soma. Scale bars: 1 mm (A), 200mm (B),

50 mm (C–E) and 20 mm (G–H)
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1 Results

2 Qualitative results

3 The GABAergic innervation pattern is relatively homoge-

4 nous throughout the cortex of gerbils and is similar to rats

5 (Seto-Ohshima et al., 1990). It is characterised by a dense

6 fibre innervation in all cortical layers with the highest den-

7 sity in the molecular layer. We identified immunonegative

8 pyramidal neurons in layers III and V by their round or oval

9 shape, their size and orientation, and the presence of bas-

10 ket-like GABAergic innervation (Fig. 1G).

11 Quantitative results

12 GABAergic bouton densities

13 The 2-way ANCOVA revealed a highly significant effect of

14 rearing conditions on boutons in layer III [F(1,29)¼ 28.59,

15p<0.001] and layer V [F(1,29)¼ 25.58, p<0.001], and

16also a significant interaction between rearing and treat-

17ment in both layers [L III: F(1,29)¼ 6.35, p¼ 0.0175; L V:

18F(1,29)¼ 5.0806, p¼ 0.0319]. Post-hoc analysis with

19Newman-Keuls test showed the following results: Isolation

20rearing (IR) led to a significant decrease in GABAergic

21bouton density in layer III (�19%, p¼ 0.032), but not in

22layer V (p¼ 0.093). An early MA intoxication led to a

23further decrease in the bouton densities of both layers in

24IR-MA compared to IR-Sal animals (L III: �24%, p¼
250.031; L V: �22%, p¼ 0.032). However, such an effect

26was not seen in animals from enriched rearing conditions

27(ER-MA vs. ER-Sal). Thus, bouton densities were reduced

28in the IR-MA group (L III: �38%, p<0.001; L V: �33%,

29p¼ 0.001) compared to ER-Sal animals (cf. Fig. 2A).

30GABAergic fibre densities

31A factorial ANOVA identified a significant interaction of

32treatment and rearing conditions in both layer V [F(1,30)¼
3313.07, p¼ 0.001] and layers I=II [F(1,30)¼ 9.8844, p¼
340.004]. Post-hoc Newman-Keuls tests revealed a significant

35increase in layer I=II fibre density of IR-MA animals (þ15,

36þ16, þ18%; all p<0.001) compared to IR-Sal, ER-Sal,

37and ER-MA animals, respectively. A similar increase in

38GABAergic fibre density was found in layer V (þ17 to

39þ19%) of the IR-MA group, compared to IR-Sal, ER-

40Sal, and ER-MA animals [all p<0.001, except ER-Sal:

41p¼ 0.0012 (cf. Fig. 2B)].

42Discussion

43We have demonstrated that a single early MA intoxi-

44cation combined with impoverished rearing (IR) signifi-

45cantly reduces the densitiy of GABAergic boutons that

46surround layers III and V pyramidal neurons in the pre-

47frontal cortex of the Mongolian gerbil, whereas the overall

48GABAergic fibre density in layers I=II and V is increased

49compared to control animals.

50Early MA intoxication and impoverished rearing

51as a model for schizophrenia

52The single early high dose of MA on PD 14 in combination

53with IR used in the current study is effective to disturb

54normal postnatal development of the dopaminergic system,

55by triggering a restraint of the maturation of dopamine

56fibres in the prefrontal cortex and the nucleus accumbens

57(Dawirs et al., 1994; Neddens et al., 2001, 2002) as well as

58a concomitant excessive maturation in several amygdaloid

Fig. 2. GABAergic bouton (A) and fibre densities (B) in the analysed layers

of the PFC of gerbils from enriched (ER) and impoverished rearing (IR)

conditions treated with either methamphetamine (MA) or saline given by

meansþ standard error (S.E.M.). �p<0.05, ��p<0.01, ���p<0.001

4 S. Brummelte et al.



1 nuclei and the entorhinal cortex (Busche et al., 2004). A

2 similar pattern of cortical-subcortical dopaminergic im-

3 balance has also been observed in the schizophrenic brain

4 (Laruelle et al., 2003; Abi-Dargham, 2004). Early MA

5 treatment additionally impairs PFC-related abilities and

6 behaviours, such as working memory and spatial learning

7 (Dawirs et al., 1996; Williams et al., 2002). Again, defi-

8 cits in working memory are well known characteristics of

9 schizophrenic patients (Goldman-Rakic, 1995; Lewis and

10 Anderson, 1995). Furthermore, the early drug challenge in

11 combination with IR leads to a miswiring of prefrontal ef-

12 ferents (Bagorda et al., 2006), in accordance with the dys-

13 connection hypothesis of schizophrenia (Weinberger and

14 Lipska, 1995).

15 Taken together, our approach using combined early MA

16 intoxication and IR leads to several morphological changes

17 in neuroanatomical brain networks and impairs cognitive

18 functions, resembling some of the changes and deficits seen

19 in schizophrenic individuals, and thus provides a potential

20 animal model of the disease. The present study reveals that

21 an early MA intoxication additionally decreases GABAer-

22 gic boutons that surround pyramidal cell somata, indicating

23 a loss of somatic synapses (Karube et al., 2004) and a

24 concomitant increase in overall GABAergic fibre density

25 in the medial prefrontal cortex. These findings raise the

26 possibility that the local prefrontal cortical inhibitory net-

27 work may be functionally disorganised.

28 The role of somatic inhibition

29 The distinct classes of GABAergic synapses play differential

30 roles in regulating the activity of pyramidal neurons. The

31 majority of GABAergic synapses terminate on dendrites or

32 spines of the postsynaptic cells (Beaulieu and Somogyi,

33 1990; Beaulieu et al., 1992; Nitsch and Riesenberg, 1995),

34 thus they are likely to control the efficacy and plasticity of

35 excitatory inputs onto the postsynaptic target (Miles et al.,

36 1996; Tamas et al., 1997, 2003). However, somatic inhibi-

37 tion is thought to be particularly effective in controlling the

38 output of pyramidal neurons and, importantly, has been

39 implicated to synchronize activity patterns of whole pyra-

40 midal populations (Miles et al., 1996; Tamas et al., 1997,

41 2000; Gibson et al., 1999; Freund, 2003; Klausberger et al.,

42 2003). Such oscillatory synchronization is further believed

43 to create the necessary temporal and spatial frame for pre-

44 frontal functions such as working memory (Constantinidis

45 et al., 2002; Lewis et al., 2005). In addition, cortical inter-

46 neurons, in particular ‘fast-spiking’ neurons, have been

47 shown to play an important role in shaping receptive fields

48 as well as spatial memory fields (Jones, 1993; Rao et al.,

491999, 2000). GABAergic somatic inhibition is thus excep-

50tionally essential for the maintenance of cortical and cog-

51nitive functions and one is tempted to suggest that a

52decrease in this type of GABAergic inhibition and the

53potential subsequent deficit in synchronization might con-

54tribute to reported working memory dysfunction in schizo-

55phrenia (Lewis et al., 2005) and our animal model (Dawirs

56et al., 1996). In fact, post-mortem studies of schizophrenic

57patients reveal fewer GABAergic synapses on cortical pyr-

58amidal cells (Blum and Mann, 2002) and in addition, recent

59neurophysiological studies have shown, that some cogni-

60tive dysfunctions in schizophrenia are associated with an

61abnormal neural synchronization (Spencer et al., 2003,

622004; Lee et al., 2003; Uhlhaas et al., 2006).

63The maturation and shift of GABAergic inhibition

64It is well documented that GABA exhibits depolarizing

65effects at early postnatal stages (Cherubini et al., 1991;

66Ganguly et al., 2001; Ben-Ari, 2002), due to an inverted

67electrochemical gradient for Cl� in neonatal neurons

68(Ben-Ari, 2002). The shift from an excitatory to an inhibi-

69tory transmitter is assumed to coincide with the first expres-

70sion of PV in cortical interneurons (Berger et al., 1999) and

71the calcium-binding protein is therefore considered a mar-

72ker of functional maturity of the neuron (Seto-Ohshima

73et al., 1990; Solbach and Celio, 1991). In the gerbil mPFC,

74the first PV-immunoreactive cells appear around PD 14

75(unpublished data), that is, at the time of the MA challenge.

76Interestingly, the maturation of GABAergic synapses in

77general proceeds until early adulthood (Huang et al., 1999;

78Morales et al., 2002; Chattopadhyaya et al., 2004; Lewis

79et al., 2005), and in that, every subpopulation of presyn-

80aptic terminals exhibits a particular developmental pattern

81(Lewis et al., 2005). Therefore, the ability to synchronize

82pyramidal cell activity is assumed to be in substantial flux

83until adulthood (Lewis et al., 2005). Although the prolifera-

84tion and formation of the typical perisomatic basket terminal

85seems to be a largely stereotypical process, it is additionally

86also dependent on neuronal activity within cortical circuits

87(Marty et al., 2000; Chattopadhyaya et al., 2004).

88GABAergic interneurons receive direct dopaminergic

89input (Goldman-Rakic et al., 1989; Verney et al., 1990;

90Benes et al., 1993), with D1 and D2 receptor types being

91most abundantly expressed by PV-neurons (Le Moine and

92Gaspar, 1998). Dopamine modulates cortical GABA cells;

93both inhibitory (Retaux et al., 1991) and excitatory (Gorelova

94et al., 2002) effects on fast-spiking interneurons have been

95reported. The omission of prefrontal dopaminergic affer-

96ent fibres by an early MA challenge (Dawirs et al., 1994;
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1 Neddens et al., 2001) might therefore induce significant

2 alterations in the local GABAergic networks.

3 The dopaminergic afferents to the prefrontal cortex show

4 a prolonged maturation (Kalsbeek et al., 1988; Dawirs

5 et al., 1993; Rosenberg and Lewis, 1995) and continue to

6 form synapses on GABAergic interneurons until early adult-

7 hood (Benes et al., 1996b). Pyramidal neurons are also

8 directly innervated by dopaminergic terminals (Jay et al.,

9 1995; Davidoff and Benes, 1998) which demonstrates the

10 rather complex capacity of dopamine to directly and indi-

11 rectly regulate the firing pattern of pyramidal neurons. By

12 early MA intoxication we induce a restraint of the matura-

13 tion of prefrontal dopaminergic afferents, which triggers

14 reactive neuroplastic adaptation of the local network. Ana-

15 tomical data suggest that pyramidal cells may adapt by

16 increasing their dendritic range and their spine density

17 (Blaesing et al., 2001). Our current findings indicate an in-

18 crease of GABAergic fibre density, which is in line with

19 an earlier study using electron-microscopy that already

20 revealed an increase in non-somatic GABAergic terminals

21 (Nossoll et al., 1997). Therefore, we find it tempting to

22 suggest that an early MA challenge, by acutely reducing

23 the density of monoaminergic innervation of the PFC, might

24 trigger a reactive shift within the GABAergic networks

25 from somatic to dendritic pyramidal inhibition.

26 GABAergic dysfunction in schizophrenia

27 GABAergic dysfunction in schizophrenia has first been

28 proposed by Roberts (1972). Since then, several studies

29 have revealed disturbances of GABAergic networks in

30 schizophrenic patients (for review see Benes and Berretta,

31 2001) or in animal models of schizophrenia (Cochran et al.,

32 2002, 2003; Keilhoff et al., 2004; Reynolds et al., 2004;

33 Penschuck et al., 2006). A decline in PV-immunoreactive

34 structures, particularly in axon cartridges from chandelier

35 neurons, seems to be one of the most prevalent observa-

36 tions in post-mortem brains from schizophrenic individuals

37 (Woo et al., 1998; Pierri et al., 1999; Lewis et al., 1999).

38 Furthermore, the GABAA receptor density was found to be

39 upregulated at the axon initial segment (Volk et al., 2002)

40 as well as at the cell body of pyramidal neurons (Benes

41 et al., 1996a), possibly compensating for a reduction of in-

42 hibitory terminals from chandelier and basket cells (Lewis

43 et al., 2005). In contrast to the alterations in PV-containing

44 neurons, only few studies reported on changes in the sub-

45 population of CB- or CR-immunopositive cells. Iritani and

46 colleagues (1999) found a fibre disarray from CB-contain-

47 ing cells in the PFC, while Daviss and Lewis (1995) de-

48 scribed an increase in the density of CB cells but no change

49in the CR population in a post-mortem study on schizo-

50phrenic brains. This would also be in line with our findings,

51since an increased number of CB cells and an altered fibre

52pattern are likely to present an elevated GABAergic inhibi-

53tion of afferent pyramidal parts.

54Conclusion

55Here we present evidence for a probable dysfunctional

56reorganization of GABAergic networks in our potential

57animal model of schizophrenia. GABAergic interneurons

58critically contribute to the establishment of complex beha-

59viours by controlling and synchronizing the firing patterns

60of pyramidal neurons. A weakened or altered inhibition

61may give rise to a broad array of disturbances in cogni-

62tive function, like those seen in schizophrenia (Benes and

63Berretta, 2001). The current study indicates a potential shift

64from a strong and powerful somatic inhibition to dendritic

65inhibition, which might attenuate the GABAergic influence

66on pyramidal activity and thus lead to an uncontrolled

67firing or abnormal synchronization. Our data coincide with

68findings of a reduced GABAergic somatic innervation in

69individuals with schizophrenia. We suggest that, in our

70animal model, this change in the GABAergic network is

71secondary, being triggered by the primary impairment of

72monoaminergic and namely dopaminergic afferents. Further

73investigations of the separate subpopulations of GABAer-

74gic interneurons in the PFC of gerbils are in process to

75identify the responsible cell classes for the observed altera-

76tion in the GABAergic network.
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