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Introduction

The structural analysis of crystals by X-ray diffraction experiments has
a long history. As of today, it is broadly treated and theoretically well
understood, see e.g. [30, 48]. W. L. and W. H. Bragg were awarded the
Nobel price in physics in 1915 for their experiments and explanations in that
context. The so called Bragg peaks, i.e. sharp point-like components in the
diffraction image of a solid or other material, are a strong indicator for some
sort of long-range order of the structure of given material. Although the
term ‘long-range order’ has still no uniformly accepted sharp definition, the
appearance of Bragg peaks in the diffraction image of a structure or even a
diffraction image consisting only of Bragg peaks is a widely accepted hint at
long-range order in the structure for any such definition; compare the dis-
cussion in [95]. In this sense, long-range order is not restricted to periodic
structures, i.e. structures that have a translational symmetry of some sort,
like crystals. The discoveries of metallic alloys with Bragg peaks in their dif-
fraction images but without any translation symmetry [90], later subsumed
under the term quasicrystals, and similar theoretical objects, namely aperi-
odic tilings [79, 22, 61, 62], triggered the question of what kind of (matter)
distributions share those point-like parts in their diffraction spectra [26].
The question has been studied intensively since then, experimentally and
mathematically, and lead to mathematical answers such as those presented
in [41, 50].

Also the other parts of the diffraction image of aperiodic structures,
i.e. the absolutely continuous (e.g. [50, 51]) and singular continuous parts
(e.g. [45]), were investigated. In particular, random components in the
structures lead to absolutely continuous parts in diffraction, respectively to
diffuse scattering (for a broad picture of diffraction of random structures see
[6]). Contributions by Gouéré [46] led to new insight into diffraction in the
even more random situations of ergodic point processes.

The question whether one can (uniquely) determine the structure from
the diffraction image is a very natural one. This question is referred to as the
corresponding inverse problem. Unfortunately, the answer is not affirmative.
If the diffraction spectrum has continuous parts, the inverse problem gets
even more intricate. For instance, Hoffe and Baake [8] came up with an
example where some deterministic structure (the Rudin-Shapiro sequence)
has the same diffraction as one with maximal entropy (a Bernoulli chain).
It is therefore useful to enlarge the collection of worked out examples. This
thesis is a contribution to that, with particular focus on continuous spectral
components.

Mathematically, we follow Hof [50] in the modelling of kinematic diffrac-
tion. The diffraction of a given structure for us is the positive measure that
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2 INTRODUCTION

is the Fourier transform of the volume averaged autocorrelation measure.
A good introduction to why this is an adequate way to model the physical
experiments can for instance be found in [52, 54, 97].

The systems we consider have structural disorder that is described by
stochastic elements. The first kind of structure is given by randomly weigh-
ted aperiodic point sets (i.e. the underlying structure has long-range order)
and the disorder is introduced by a Gibbs measure that puts the random
weights to the points, similar to lattice gases. The second kind of structure
is strongly disordered by itself, being realisations of the Matérn hard-core
point process, a local thinning of a Poisson point process.

Structure of the thesis

The thesis is organised as follows.

In Chapter 1, we briefly introduce the notation and elementary methods
used in the later chapters. After the notation is fixed, the necessary objects
and results about Fourier transforms of Radon measures are introduced.
They are then put into context with mathematical diffraction theory as in-
troduced by Hof [49, 50, 51]. At the end of Chapter 1, a few definitions
concerning point processes are recalled.

In Chapter 2, we analyse diffraction properties of randomised sets of
finite local complexity (FLC sets). Therefore, in Section 2.1, FLC sets and
weighted FLC sets are introduced. Adapted topological spaces and dynam-
ical systems are presented and their properties are discussed in that section,
too. The next section is concerned with the involved random mechanism. A
class of appropriate Gibbs measures is presented, starting with a recapitula-
tion of general Gibbs measures, then going over to the construction of Gibbs
measures that attach weights from a compact weight set to single FLC sets,
where the weighting process is governed by a short-range pair interaction.
A high temperature regime ensures uniqueness with the help of Dobrushin’s
criterion and gives an estimate for the covariances of one-point functions.
The next step is to extend those Gibbs measures to dynamical systems of
FLC sets. As a first result, we give conditions for this kind of Gibbs measure
to be ergodic. With the ergodicity of this measure and the estimates of the
covariances, we can then analyse the diffraction of its realisations in the next
section by using theory on the spectrum of dynamical systems. We get the
main result for this chapter:

Result. If uniquely ergodic and pure point diffractive FLC sets are random-
ised by a short-ranged Gibbs measure at sufficiently high temperatures, no
singular continuous part is present in their diffraction measure.

Chapter 3 discusses the diffraction properties of the Matérn hard-core
point process. Starting from observations and claims given in [6] the chapter
provides a detailed treatment of the diffraction of this process.

The first section recapitulates the connection between second order prop-
erties of a stationary ergodic point process and the autocorrelation measure
of its realisations. A connection between the Bartlett spectrum and the
diffraction measure is also drawn.
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Section 3.2 introduces the Matérn hard-core point process and some of
its properties, its ergodicity in particular.

This ergodicity then allows us to use the connection between autocor-
relation and Palm measure observed by Gouéré [46] and the second or-
der product density of the Matérn hard-core point process as calculated by
Stoyan and Stoyan [94] to analyse the diffraction of the process in Section
3.3. In the one-dimensional case the diffraction can be computed analytic-
ally. The observations in this case can be extended to higher dimensions.
Although the explicit values of the absolutely continuous part of the dif-
fraction measure can only be computed numerically, we can still rigorously
describe the asymptotic behaviour of the density for large arguments.

Result. The diffraction of the Matérn hard-core point process in dimen-
ston d is that of a refined Poisson point process plus an additional radially
symmetric absolutely continuous part that is O(|y|~4+Y/2) as |y| — co.
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CHAPTER 1

Notation and preliminaries

1.1. Notation

Throughout this text, we try to use standard notation for the different
mathematical objects. Still, we give some basic information for reasons of
completeness.

1.1.1. Sets and numbers. The natural numbers {1,2,3,...} will be
denoted by N, N u {0} by Ny, the integers by Z, the reals by R and the
complex numbers by C. The positive reals are given by R* and the non-
negatives by Ra’ . The absolute values of real or complex numbers z are
written as |z|. The argument of a complex z as argz and the complex
conjugate as z, imaginary and real part of z will be denoted by Im (z)
and Re (z), respectively. The symbol oo shall be used for infinity on the
positive real line (or complex infinity), while —oo will be used for the negative
counterpart.

The standard d-dimensional Euclidean space will be denoted by R? and
the corresponding Euclidean norm of elements x by ||z||. By B,(z) we denote
the closed ball in R? of radius r around =, the open version by BC(x). By
B, we abbreviate B,.(0). We will write #A or #(A) for the cardinality of
an arbitrary set A, including infinite ones. If ) is any space and A < €) is
some subset then we denote its complement 2~ A by A". The characteristic
function of a set A is defined via

1A(OJ) =

1, ifweA,
0, otherwise.

For a set A € R?, ¢t € R? let
A+t:={z+t|ze A}

be the shifted set. For two subsets A, B of R% we denote their Minkowski
sum and difference by

A+B:={z+ty|lze A, ye B},

For a topological space X let further J#(X) denote the set of compact
subsets of X. The interior of a set A will be denoted by A°, its boundary
by 0A.

1.1.2. Functions. The Landau symbols O and o, as well as the symbol
~, to describe asymptotic behaviour of a real or complex valued function
are used as defined in [75]. By log we denote the natural logarithm with
base e. The restriction of a mapping f : X — Y to some X’ < X will be
denoted by f|x:.
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Some special functions will also appear in our calculations. Since some
have slightly different definitions in different books, we will give the ones we

are going to use:
?sint
f gy
o t

loe]
Ci(z) := —J %St dt

@p]
22
~~
N
=
Il

and

Ei(z) := — F expt(_t) dt

—z
namely the integral sine and cosine and the exponential integral. While
Si is an entire function, Ci and Ei have a branch cut discontinuity on the
negative real axis and Ei is to be understood as the Cauchy principal value
of the integral. For more details and properties see e.g. [1, 75]. 1Fy and
9Fy denote the respective (generalised) hypergeometric functions, compare
[70]. The Bessel functions of the first kind are denoted by J,(z), see [1] for
definitions and properties.

1.2. Radon measures, Fourier transforms and diffraction

Large parts of this thesis are concerned with measures and their Fourier
transforms, because diffraction is modelled as the Fourier transform of the
so-called autocorrelation measure, an object that can be deduced from the
structure under consideration.

In this section we will clarify our point of view and recapitulate im-
portant results (for our context), without going into details and just giving
references to the proofs.

1.2.1. Measures and spaces of measures. Our perspective on meas-
ures is the simultaneous view of measures as (complex) o-additive set func-
tions and as continuous linear functionals, which is justified by versions of
the Riesz-Markov theorems (compare e.g. [78]). For probability measures
and standard probability theory we would like to simply refer to standard
literature such as [20, 21, 25, 77].

We will focus on the set M(X) of complex (Radon) measures, i.e. duals
of elements in C.(X), the set of continuous complex valued functions with
compact support in X, where X is some locally compact metrizable space.
Thus measures are (complex) linear functionals p on C.(X) such that for
any compact K < X there exists some constant ax with

()] < ak|[fllo

for any f € C.(X) with support in K. Here | - | is the usual sup-norm.
The support supp o of a measure p is then defined as the smallest closed
set F' such that u(f) = 0 for all f € C.(X) with support outside of F. For
further details, we would like to refer to [10],[23],[2] and [35].

We are going to flip between several ways to denote the evaluation of a
function f by a measure u, just to stress certain properties or for ease of
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notation:
u(f) = L f(2) duz) = B (f).

where we use E,(f) only if p is a probability measure. Note that in the
interpretation of 1 as a set function on the corresponding Borel sets and
with the interpretation of u(f) as an integral, the function f only needs to
be integrable, not necessarily continuous, e.g. u(A) = p(la) for a Borel
set A. We equip M(X) with the vague topology, i.e. a sequence (i )nen In
M(X) converges if and only if (., (f))neny converges for every test-function
f € C.(X). The restriction of a measure p to some Borel set A is given
by the measure defined by pa(f) := u(laf). The complex conjugate of a

measure is given by f(f) := p(f) and also defines a measure.

Let us now turn to a special case, let X = R?. There are several sub-
spaces of M(RRY) of interest for our investigations. Let CX(R?) be the set of
real valued continuous functions on R% with compact support and CF(R%)
the functions f € C¥(R?) with f > 0. A measure u € M(RY) is called posit-
iwe if for all f € CF(R?) also u(f) = 0. The set of positive Radon measures
will be denoted by M*(R%). Each yu € M(R?) can be linked to a unique
positive measure |u|, called the total variation or absolute value of p and

defined as
lul(f) == sup{|u(g)|| g € CZRY), |g| < f},

where f € CH(RY). A measure in M(R?) is called bounded if |u|(RY) < oo,
and unbounded otherwise. We are going to extensively make use of the Dirac
measures d,, where 0,(f) := f(z), because sums of Dirac measures can be
identified with point sets in R

We are especially interested in the following subsets of the Radon meas-
ures, because they have very nice topological properties:

Definition 1.1. Let C' > 0 and also let V' be a relatively compact open
subset of RZ. A measure u € M(R?) is called (C,V)-translation bounded if
for any t € R? we have

lp|(V +t) <C.
We denote the set of (C,V)-translation bounded measures by Mc v (R?).

A measure p is called translation bounded, if any such C,V exist, which is
equivalent to sup;ega |p|(K + t) < oo for any compact K < R

The set Mc v (R?) is nice in the following sense:

Theorem 1.2. Let C,V be as above. Then Mc,y(R?), equipped with the
vague topology, is a compact metrizable Hausdorff space.

PROOF. A proof for arbitrary second countable locally compact Abelian
groups can be found in [10]. O

Probably the most important measure in M(R?) is the Lebesgue meas-
ure A\%. In Chapter 2, we also use vol(A) for A%(A) for Borel sets A, because
we do not want to confuse it with the Lebesgue measure A on the complex
weight set. Let Z1(R%) be the set of Lebesgue integrable functions on the
Euclidean space R
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As a consequence of the Lebesgue decomposition theorem (compare
[35]), each measure u € M(R?) can be uniquely decomposed with respect
to the Lebesgue measure,

= Hac + Upp T [sc s

where ji5c is absolutely continuous with respect to A%, Hpp iS a pure point
measure (concentrated on the countable set {x € R?|up,({z}) > 0}) and
lsc is singular continuous with respect to A%, i.e. g is a diffuse measure,
concentrated on a Lebesgue 0-set. Not necessarily every part is present
in such a decomposition. Indeed, one main goal of this thesis is to show
the absence of the singular continuous part in a certain class of diffraction
measures. If we use the terms absolutely /singular continuous without giving
a reference measure we always mean this to be \%.

1.2.2. Fourier transform, diffraction and autocorrelation of Ra-
don measures. A broad treatment of the Fourier transform on groups in
general can be found in [84]. Further details with relevance to our point of
view are given in [23] and in particular the Fourier transform of tempered
distributions is considered in [83].

For functions f € .Z1(R?), we define the Fourier transform F(f) = f as
the following uniformly continuous complex valued function (compare [20]):
for y € R? let

~

Fly):= | fla)e ™o axi(z),
Rd

where y - z is the standard scalar product in R%. The inverse Fourier trans-
form F~1(f) = f of an integrable function f is given by

fly) =] fl@)emvedri(z).
Rd

For bounded measures pu, the Fourier-Stieltjes transform [i is the ana-
logously defined complex valued function

Aly) = fRd e 2T ().

Let the inverse Fourier-Stieltjes transform of a measure be defined analog-
ously and be denoted by fi. The Fourier Stieltjes transform has the nice
property that it is a uniformly continuous bounded function (see [84]).

For our considerations, it is necessary to extend the above definitions to
certain unbounded measures and to interpret the Fourier transform of these
again as a measure. In order to achieve that, we use the theory of tempered
distributions. So let S(R?) be the set of rapidly decreasing or Schwartz-
functions in R? and S’(R?) be its dual, the set of tempered distributions
(see e.g. [83, 40]). Since S(RY) < .Z'(R?) and the Fourier transform of a
Schwartz-function is again in S(R%), the following definition for the Fourier
transform F(T) = T of tempered distributions 7" is valid and defines again
a distribution: for ¢ € S(R?) let

T(p):=T(p).
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The inverse Fourier transform F 1(T) = T of a tempered distribution T
again is defined and denoted similar to the .#'-case, i.e.

T(p):=T().
In case of function spaces where the Fourier transform defines a continuous
bijection, e.g. S(R?) or L2(R?), one has

f=Fr=1,
see e.g. [83]. We then obviously also have for tempered distributions T’
T=T=T.

Several unbounded measures in M(R?) also define tempered distribu-
tions and their Fourier transform is again a measure. We will call measures
which are also tempered distributions tempered measures. Every translation
bounded measure is tempered (see [50]). If the Fourier transform is again
a measure, we refer to them as Fourier transformable. Prominent examples
are given by the Lebesgue measure \¢, with d as the Fourier transform, and
8o with \? as its Fourier transform (in this interpretation), compare [85].

If one identifies f and /i as densities with respect to the Lebesgue meas-
ure, then the definitions coincide. In particular (by the obvious implication
of the Radon-Nikodym Theorem [21, Satz 17.10]), in this respect the Four-
ier transform of a bounded measure or an integrable function is absolutely
continuous with respect to the Lebesgue measure. We will later on need the
following simple consequence:

Proposition 1.3. Let A ¢ R? be countable, and let ji be the complex meas-
ure given by
= Z w(x) by,
zeA
where w(xz) € C and Y 5 |w(z)| < 0. Then the Fourier transform of p is
absolutely continuous with respect to \?.

ProoOF. The condition ), ., |w(z)| < oo directly implies that p is a
bounded measure, so its Fourier transform is absolutely continuous. (]

To model kinematic diffraction, we basically follow the mathematical
formulation of Hof [49, 50]|. The diffraction of a measure is thus given by
the Fourier transform of its autocorrelation measure. For the definition of
the latter we need some further well known concepts. If for two measures
w, v € M(R?) the object, given by

() = fRd ) dua) du(y).

where f € C.(RY), is well defined! and again a measure, then this measure
is called the convolution of u and v. This is for example the case if at
least one of the measures is finite and the other one is translation bounded,

~

compare [23, Prop. 1.13.]. Further, for f € C.(R%) let f(z) := f(—z) and for

1At least one of the integrals Spa f(z +y)du(z) or §o, f(z 4+ y)dv(y) needs to be
integrable for all y or x, respectively
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p € M(R?) let i be the measure defined by fi(f) := u(f) Let u € M(R%)
be an unbounded measure and ppr be the (finite) restriction of u to Bp.
Consider the following well defined ‘volume averages’:

IR * [IR

TR ol (Br)

Every vague accumulation point of the family of measures (vg)grer will be
called an autocorrelation measure of p. If there is only one accumulation
point, we will call this vague limit v := limp_, Yr the natural autocorrela-
tion of pu. Note that the definition is only interesting for unbounded meas-
ures, because for finite measures the limit will always be the 0-measure. In
the case of finite measures p, the convolution p * p plays the same role. It
is known as the Patterson function. Other increasing families of averaging
sets instead of centred balls may be chosen and are more appropriate for
other models, e.g. cubes, compare [50]. In general, the limits depend on the
form of those sets. For this reason other authors demand stronger forms of
convergence for a unique autocorrelation, in particular for every van Hove
sequence. In short, a van Hove sequence in R% is an increasing family of
relatively compact Borel sets in R which grows to R? and has somehow a
vanishing surface to volume ratio (for details see e.g. [88]). In Chapter 2,
Section 2.3 we will give a condition for the existence and formulae for the
calculation of the autocorrelation of certain weighted point sets.

Since, by construction (an easy application of the Bochner-Schwartz-
Theorem, see [40]), each g is a positive definite measure and the set of
positive definite measures is a vaguely closed set (see [23, p. 18]), every
possible natural autocorrelation «y is again positive definite. Thus it is Four-
ier transformable and its Fourier transform 7 is a positive measure. This
measure is called the diffraction (measure) of . For details on why this
measure is also physically a sensible description of diffraction experiments,
we would like to refer the reader to [49, 30] or other books on diffraction
physics. Constructs like the first Born approximation, far-field approxima-
tion of kinematic diffraction play important roles. Short and very readable
descriptions can also be found in [54, 97].

1.3. Some notes on point processes

Concepts, definitions and most part of the notation is based on [59],
so for further information and details we would like to refer the reader to
this book or to [31, 89]. We just introduce the most important definitions,
objects and results for point processes in R%.

Let E be a subset of RY and N(E) be the set of counting measures in
E i.e. measures that only take non-negative integer values for all relatively
compact sets. It is known that they have a representation

n= Z Nz Oz
TESUPD

where supp p is a locally finite set in E and n, = p({z}) € N for all z €
supp p. If in addition p({z}) = 1 for all x € supp u, the counting measures is
called simple. We will denote the set of simple counting measures by N (F).
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Let %y(F) be the set of relatively compact Borel sets in E. We define
Z(E) to be the o-algebra that is generated by the sets {u € N(E) | u(B) =
n}, for all B € By(E) and n € Ny, i.e. F(E) is the o-algebra generated by
the random variables (g(p) := pu(B). The set N'(E) may also be viewed as a
subset of the positive Radon measures M*(F) in E. The vague topology on
MT(E) restricted to N'(E) is known to also generate .# (E) as corresponding
Borel sets (see [76, 55]). Probability measures on (N (FE), #(E)) are called
point processes in F; in case they are concentrated on N (F) they are called
stmple.

In case P is a simple point process in £ = X x M, where X € R” and
M < R™, n+m = d, such that {x € X |Im € M : (x,m) € supp u} is locally
finite in X for P-almost all u, we speak of marked point processes. They can
be imagined as random point sets in X with marks in M, the realisations
may again be written as

n= Z 6(1‘,771) .

(z,m)esupp p
Because the support of p is locally finite, the points of the support are count-
able and may be expressed as a sequence of random pairs of locations and
marks ((z;(p), mi(,u)))ieN, where the counting is done in a unique measur-
able way. We say the marked point process has independent mark distribu-
tion, if the random elements m; are independent and identically distributed
and independent of the random elements z;. For details see [89].

A point process is said to have independent increments, if for disjoint
A1, Ay € By(E) the random variables (4, and (4, are independent. A
point process P is called stationary or translation invariant, if for any B €
PBo(F) and any t € E the random variables (g and (p,¢ have the same
distribution, i.e. if the image of P under the translation 7} is again P. The
most prominent and best understood simple point process is the stationary
Poisson point process P, in R? with intensity x > 0. It is characterised as
being the only stationary point process with independent increments such
that the random variables (g, B € %y(R?), are distributed as follows:

d n
Pultco = n) = PO e (i),
for n € Ny, compare [59]. Here we abbreviated {u € N (R?) |(p(1) = n} by
{¢p = n} and use {(p < n}, etc. similarly.
Consider the following subclass of .# (E):

J(E):={FeZ(E)|F+t=FVte £},

the set of translation invariant events, where F' + ¢ := {T}(u) | € F'}. The
set Z(E) is obviously again a o-algebra. If for a stationary point process
P either P(F) =0 or P(F) =1 for all F' € .#(F), it is called ergodic. The
Poisson point process is also an example for an ergodic point process [89].

Let us finally note that random measures in R? are defined similarly to
point processes. One has just to make one little modification: instead of the
space N (E) one takes the set of locally finite measures in R?. The mappings
(p can be extended naturally to this space.






CHAPTER 2

Gibbs measures on weighted FLC sets and the
absence of singular continuous diffraction

The diffraction properties of sets of finite local complexity (FLC sets),
especially of regular model sets, have been widely explored [12, 50, 69, 74,
87, 88, 93]|. There are also several results for randomly weighted lattices
[16, 17, 51] or situations where a Gibbs measure or simpler random mech-
anisms are responsible for random displacements of the points [11, 63, 64].
A large class of the models for diffraction of structures close to crystals
have an absolutely continuous part in the spectrum. This diffuse scatter-
ing is most of the time connected to random components. Those models
nevertheless do only occasionally lead to diffraction spectra with singular
continuous parts, which is also not too far from experimental experience in
crystallography [30, 48, 96].

Our model puts random weights to the sites of an FLC set, which might
be interpreted as different atoms/molecules, or as a variation of their effect-
ive scattering strength.

In case the weighting process is independently done, Baake and Zint
[17, 97] show that, at least for finite complex weight-sets, the absence of
the singular continuous part remains.

In case the weights are chosen dependently from a finite weight-set,
according to some Gibbs measure at high temperatures, joint work with
Zint shows that this property still holds.

The main goal of this chapter is to extend the result to a compact com-
plex weight-set. On the way, we will also need to define a suitable class
of Gibbs measures. The ergodicity of the latter, together with the known
diffraction properties of dynamical systems with pure point dynamical spec-
trum (compare e.g. [10, 11, 12, 69, 88]) allow us to achieve our aim.

Several elementary topological concepts are used, all of which might be
found in the standard literature, such as [82, 27, 28].

2.1. Weighted FLC sets and the corresponding dynamical system

In this section, we introduce the measurable spaces for the later theory.
As mentioned above, the objects of interest are given by certain sets with
attached complex weights out of a compact set.

Firstly, we need to clarify properties such as FLC and appropriate topo-
logical structures for point sets. For a more extensive and broader discussion
with complete proofs, we would like to refer the reader to the articles of So-
lomyak [93], Schlottmann [88], Baake and Lenz [10] and Lenz [69]. These
articles also introduce the necessary tools from the theory of dynamical sys-
tems, which we again only briefly introduce. Whereas the concepts remain

13



14 2. GIBBS MEASURES ON WEIGHTED FLC SETS

valid for much more general situations, we restrict ourselves to the case we
need, where the point sets lie in Euclidean space R9.
Then, we need to adapt the concepts and structures to weighted sets.

2.1.1. Some concepts for discrete point sets. For completeness,
we give short definitions of well-known concepts for point sets.

Definition 2.1. A subset D of R? is called
(i) locally finite, if every compact set intersects D only in a finite

subset,
(ii) discrete, if every point z from D has a neighbourhood U such that
UnD = {z},

(iii) wuniformly discrete, if there exists some r > 0, such that any open
ball of radius r contains at most one point from D,

(iv) relatively dense, if there exists some R > 0 such that every open
ball of radius R contains at least one point from D,

(v) a Delone set, if it is uniformly discrete and relatively dense.

We will denote the set of closed discrete subsets of R? by 2(R9).

There are several equivalent definitions for the notion of finite local com-
plexity, but the most intuitive one is given via patches. Let D € Z2(R?). A
patch P of size S > 0 around x € D is given by

P=(D—-x)n Bg.
Proposition 2.2. Let D be a Delone set. The following statements are
equivalent:
(i) For any S > 0 we have

#{(D—z)nBg|xze D} <,

i.e. there are only finitely many different patches of size S in D
(up to translation).

(ii) The set D — D is discrete and closed.

(iii) The set D — D is locally finite.

For a proof see [65]. O

If a Delone set has one of the above properties we will call it a set of
finite local complexity or an FLC set for short. FLC sets have one more im-
portant characterising property related to point dynamical systems. Before
we discuss it, let us take a brief look at our basic class of examples for FLC
sets, namely regular model sets:

Definition 2.3. Consider the following diagram of mappings:

Rd Pphys Rd % G Pint G
U U U
Pphys (L) ‘pphyS|L L pin 1 > Pint (L)

Here G is a locally compact Abelian group, pphys and pine are the canonical
projections from the embedding space R* x G to the physical space R?, re-
spectively to the internal space G. Also let L be a lattice in R¢ x G, i.e. a
discrete subgroup such that the quotient (R? x G)/L is compact. We assume
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that ppuys|r is injective and that piy(L) is dense in G. Such a diagram is
then called a cut and project scheme.
Now consider an arbitrary W < G and define

A(W) := {pphys(x) |z € L, pine(x) € W} < R?.
The set is called a model set if W is non-empty, compact and W = We. In

this context, W is called the window. A model set is called regular if oW
has Haar measure 0.

Model sets might be viewed as natural extensions of lattices. Indeed,
there are similarities when it comes to their diffractive nature, at least for
regular model sets.

Remark 2.4. Every regular model set is an FLC set [74].

For a broad treatment of model sets see [74]. There are some prominent
examples for regular model sets:

Example 2.5. (i) A 1-dimensional model set: The silver mean chain
(Figure 1 illustrates its construction) is a regular model set [7, 11].

v

FIGURE 1. The silver mean chain is a model set in R x R,

where L = {(u+v /2, u—v+/2) |u,v € Z} and W = [\7/—%, %]

(ii) A 2-dimensional model set: The vertex-set of the Penrose rhombus
tiling (Figure 2 and its diffraction in Figure 3) is known to be a
regular model set, see e.g. [33, 34, 9, 14]. Since it is built from
rotations and shifts from two different rhombuses, its Delone prop-
erty is obvious. That it is an FLC set follows from the observation
that there are only finitely many prototiles (up to translation)
and, for any given patch size, only finitely many ways to put the
rhombuses together.
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FIGURE 2. A regular model set: the vertex-set of the Penrose
rhombus tiling, a central patch. This figure is a modified
version of a picture in [4]

2.1.2. Two topologies on the closed discrete sets of R?. Both
the so-called local topology (LT) and the local rubber topology (LRT) are
topologies on the set 2(R?) of closed and discrete subsets of R, (They can
also be considered as topologies on the closed sets of R?, see [10].) We will
give bases of open neighbourhoods (derived from certain uniformities, for
details see [88] and [10]) to define them. So for a compact K < R?, an open
neighbourhood V of 0 € R% and a closed discrete set D let

Ukv(D):={D'e 2RY)|3teV:DnK = (D' +t)n K},
and
URy(D):={D'e 2RY|DnK <D +Vand D'nKcD+V}.

See [88] for a proof that those sets Uk (D) form a valid base of neighbour-
hoods for a topology on &, the local topology. The sets UI?V(D) form the
neighbourhood base for the local rubber topology, see [10]. Both topolo-
gies make a complete Hausdorff space out of 2 (see [10, 88]). Because the
corresponding uniformities have countable bases they are also metrizable
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(compare [88, 10]) by [57, Metrization Theorem, p. 186]. For Delone sets,
such a metric for the LT can be found e.g. in [93].

To make the two topologies transparent, one can picture two sets close
in the local topology if, after a small shift, they agree in a large ball. In
the local rubber topology they are close if, after a small shift, they almost
agree in a large ball. We need the the LRT to describe the topology on the
weighted point sets (viewed as subsets of R? x C), whereas we will use the
local topology for the underlying structure. One can easily see that the LRT
is coarser than the LT but there is an important connection that is given in
[10, Prop. 5]:

Proposition 2.6. Let Q be a subset of Z2(RY). If Q is compact in the LT
then it is compact in LRT and the topologies agree on §2. U

2.1.3. Dynamical systems of FLC sets. Consider the translation
Ty : D— D+t It is easy to check that T = (T}),egpe defines a continuous
action of R? on 2(R9) in both LT and LRT.

We can now state the above mentioned characterisation of the FLC sets:

Proposition 2.7. A setT' € 2(R%) is FLC, if and only if the orbit {T +t |t €
R9} is precompact in the local topology. See [88, Prop. 2.2] for a proof. O

Thus the set
—_— T
X:=XT):={T +t|teRd} |

the closure of the orbit of the FLC set I' in the LT, is a compact Hausdorff
space, and due to Prop. 2.6 the topology on X is the same as given by the
LRT. If # = (') is the o-algebra of the corresponding Borel sets, then
(X, %, T) is a topological dynamical system.

The sets in X may be interpreted as measures by the following map:

§: X — M(RY,

A —> 6y ::259&.
TEA

If we consider the topological dynamical system given by the set
X®:= {05 A eX},

equipped with the vague topology and the translation 7" on M(RY), then
the two dynamical systems (X, T) and (X°, T) are topological conjugates by
[10, Theorem 4]. Justified by this relation, we also interpret a probability
measure on X as a point process.

Obviously, a sequence (Ap,)qen in X converges to some A € X if and only
if there exist sequences (ry, )neny and (¢ )nen with 7, > 0, 7, — oo for n — ©
and t,, € RY, |[t,| — 0 for n — oo, such that A, —t, " B,, = A B, .

Remark 2.8. Because by the structure of the LT each element A in X(T")
is ‘built from patches of I, also the difference sets obey A — A < ' — T
Thus, also every element of X is again an FLC set.
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This kind of structure is of special interest to diffraction theory: if the
dynamical system (X(I'), Z(I'), T) of an FLC set I is uniquely ergodic!, the
autocorrelation of the system X(I') is known to exist [88].

2.1.4. Weighted FLC sets. The idea to the next construction is that
dynamical and diffractive properties of a system X(I') of FLC sets are ba-
sically preserved, or only slightly disturbed, if one (randomly) adds weights
from a compact complex set to the points under certain rules. To stick to
that idea, we start by attaching weights to the sets of X in a very natural
way: let W be a compact subset of C and put

Y := Y(T, W) U wh .
AeX(I)

Thus, elements of Y are of the form w = (w;)zep, where A € X and w, € W
for all x € A. If we identify C with R? and w € Y with {(z,w,) |z € A}
R? x C then we can interpret Y as a subspace of Z(R¢ x R?) and we can
apply the concept of the LRT to it, which makes it a metrizable space. For
convenience we will use the same notation for the neighbourhoods in the
subspace-topology.

Proposition 2.9. Let we Y. Then the sets
R
UKXW,VXV’ [w],

where K € # (R?), V< R? is an open neighbourhood of 0 € R, and V' an
open neighbourhood of 0 € R?, form a neighbourhood base for w.

PROOF. Since the sets U ;]; V[w] get smaller for growing K € ¢ (R? x R?)
and shrinking V cRY x R?, the proof is trivial. U
Consider the natural surjection

supp : Y

—
w = (wz)xeA —

S
I
=

We will call w the support of w.

Proposition 2.10. The mapping supp is a continuous surjection from the
set (Y, LRT) to the set (X, LT).

PROOF. Let (w")nen be a sequence in Y such that w” - we Y for n —
00. We have to show that for any neighbourhood Uk v [w] there exists N € N
such that for all n > N we have w” € Uk y|w]. Due to the convergence of
the w", we know that there exists N € N such that w" € U}?XW,VXV, [w] for

n > N and any open neighbourhood V' of 0 € R?. If w" € U}?XW,VXV, [w]
then also w” € Uk v |w]. O

1A dynamical system (2,27, T) is called uniquely ergodic, if there exists exactly one
invariant probability measure u on (£2,.2/) which is trivial on the T-invariant elements in

o
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This continuity property implies that, for a converging sequence in Y,
also the sequence of the corresponding supports converges in the LT. In
other words: if a sequence (w")pen in Y converges to some element w in
Y then after a small shift in X, the supports w™ agree in growing balls for
growing n.

Proposition 2.11. Y s compact in the LRT.

Proor. We show that any sequence in Y contains a converging sub-
sequence.

Let (w™)nen be such a sequence. Because X is compact, we know that
(w™)nen contains a convergent subsequence. So without loss of generality
let us assume that already w” — A € X for n —» . Of course every FLC
set is countable. So let A = {z1,x9,...} and (¢(n))nen, (r(n))pey some
sequences in R? and R* respectively such that |[t(n)| — 0, |r(n)| — oo and
(W" —t(n)) N Byny = A n Byg,y. Now let n € N be large enough, such that
71 € By, and for all larger indices. Thus also z1 +¢(n) € w". So we have a

sequence (wgl N t(n))n in the compact set W, which thus contains a converging

subsequence (w;lf Hm k)) i+ For z2 the same arguments can be applied to the

1k

sequence of the weights (wm rt(n )

)k to extract a converging subsequence

(ngft(ng,k))k‘ Inductively, we get converging sequences (ij’ft(nj’k))k. The
diagonal sequence (w”kk) ,, then obviously converges in the LRT. U

On Y we chose the R? action induced by the one on X: For t € R? let
T;(w) = w + t be the weighted set obtained by shifting the support and
keeping the weights, i.e. (w + t); := w,—¢. We will also denote this action
by T. This action again makes (Y, 7T') a topological dynamical system. The
next sections deal with the task of providing (Y,7") with an ergodic measure
that is adapted to some potential ruling the weights.

2.2. Construction of appropriate Gibbs measures

The concept to describe equilibrium states of interacting particles in
statistical mechanics by objects arising from conditional expectations was
introduced in the late 1960’s by Dobrushin, Lanford and Ruelle [36, 37, 38,
39, 67, 86]). Those objects are the so-called Gibbs measures.

Our point of view on Gibbs measures is mainly based on the books of
Preston [81] and Georgii [44]. While we use the tools provided in [44] to
examine the properties of the Gibbs measures on one FLC set, we need the
more abstract definitions and results given in [81] to extend the results to
the complete dynamical system generated by an FLC set.

2.2.1. Basic definitions. The definitions given here follow [81]. They
are very general and are not restricted to situations where the state space
is a lattice or countable. Let (£2,.%7) be a measurable space and Z({2) the
set of probability measures on (2,.«7). We further need a partially ordered
index set. Although the theory allows much more general partially ordered
sets, we directly choose this to be J#, the set of compact subsets of R?. The
index can than later be identified with information about a structure inside
or outside those sets.
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We further need a family of sub-o-algebras (%7 ) ke » such that ok, <
i, S o/, whenever K1 © Ks. They represent the events “happening
outside” of the compact sets.

The next objects give the probabilities of all events, constrained to have
a fixed configuration outside its index:

Definition 2.12. A family of mappings 7 = (7x ) ke s
Tk A xQ — RJ,
(Aw) — 7x(Alw),
is called a specification, if it has the following properties:

(S1) mr(-|w) e Z(N) for all w e Q;

(S2) mr(A|-) is @k measurable for all K € #', A€ of;

(S3) mx(A|-) =14(-) forall K e #, Ae o/ and

(Sy) if K9 € K then 7g, = mg, 0 7k,, where mg, o g, denotes the
composition of the two kernels 7, and 7mg,, defined as

Tay 5 Ty (A W) 1= fﬂ Taey (A]B) drre, (| 0)(@)

3

This property can be interpreted as a consistency check if the
kernels for larger indices extend the information given by kernels
for smaller indices in the right way.

In this sense the specification 7w specifies what a particle configuration
may look like inside of K, if the outside looks like w. This information might
be enough to describe the whole behaviour of the system, but in general it
is not. The concept is stated precisely by the following definition.

Definition 2.13. A Gibbs measure i is a measure that can locally be de-
scribed by the specifications, that is, given a set A from @7k, then one rep-
resentative of the conditional expectation of u of 14 given o7k is mx (-, A).
The set of Gibbs measures with respect to 7 is thus given by

9(r) i= {ne 2@ [Bu(lali) = mic(A]),
pu-almost surely for all A€ o and K € JZ }

The set ¢ (m) is a convex subset of Z()) and its extremal points are
referred to as pure phases. A well known example is the 2-dimensional Ising
model, a model where a nearest neighbourhood potential on Z? describes
the probabilities of having a negatively or positively charged particle at
the positions on the lattice. In case of low temperatures, the set of Gibbs
measures for this model is known to be spanned by 2 pure phases (compare
e.g. [44]).

A definition equivalent to Def. 2.13, which is more practical for our cal-
culations, is given by the so called DLR-equations (in honour of Dobrushin,
Lanford and Ruelle): A probability p on (€2, .27) is a Gibbs measure specified
by m, if and only if, for all A € & and K € ¢,

p(A) = [ mic(Alw) dute). (DLR)
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A proof for this equivalence can be found in [81]. The equation might
be interpreted as follows: The Gibbs measures are the only measures which
predict themselves even if only information outside a compact region is given.

In case a group of bijections is acting on €2, one can also be interested
in those Gibbs measures which are invariant under the group action. If the
group is fixed in this context, we simply denote the set of invariant Gibbs
measures by % ().

We will concentrate on situations where ¢ () or %(m) consists of only
one element, because then this one element has special properties. Let us

state the most important one for our later observations (see [81, Theorem
4.1]):

Theorem 2.14. Let G be a separable group that acts on Q via (Ta)aec- If
there exists a sequence (Fp)nen of sub-c-algebras of </ such that <7 is the
smallest o-algebra containing | ), e Fn, and such that for anyn e N, K € &
there exists some « € G such that To (%)) S . Then for p € G(n)

W is extremal <= is ergodic.

O

2.2.2. Gibbs measures on single FLC sets. A wide branch of stat-
istical mechanics deals with interacting particles on a lattice. Thus, some
of the first, maybe even the original ways to construct specifications are
adapted to this model. Georgii [44] extends this model from a lattice to
countable sets, such as one of our FLC sets.

In this section we will prepare a situation where the corresponding Gibbs
measure is unique. Thus we need to introduce some restrictions to the
potentials defining the interaction. On the one hand, the uniqueness ensures
that we may interpret the Gibbs measure as a thermodynamic limit of the
specifications with free boundary conditions. This will give the opportunity
to compute certain diffraction properties. On the other hand, the uniqueness
also prepares the ground to construct a unique translation invariant Gibbs
measure on the dynamical system Y in the next section.

We are going to stick to the ideas presented in [44] for definitions and
paths to uniqueness results.

Our longer term strategy is to construct unique measures on each of the
disjoint components of Y, namely WA, A € X. But for now let A be some
arbitrary FLC set in R%. We fix the state-space to be W*. For a proper
definition of a o-algebra on that space we start with one on W. Let us
equip W with the trace # of the standard Borel g-algebra in C. Any finite
dimensional product of W has the usual product o-algebra. Now we can use
the canonical projections pa~x : WA — WAMK to define all the o-algebras
needed.

Let .#(A) be the o-algebra that is generated by all the projections pxa,
K € . The projections also give a justification to the previously mentioned
perspective on the needed o-algebras as the events happening inside or out-
side a compact K: Let %k (A) be the o-algebra which is generated only
by the projections pp~g, where K’ < K. They present the events hap-
pening inside of K. The o-algebra for the events outside of K, 5 (A) is
thus given by the projections to compact sets that do not intersect with
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K, ie. Jg(A) = Fgc(A). The latter ones are the indexed family that we
need to construct the specifications. We will make use of the abbreviation
pAnk(w) =: wik (even if K is not compact). In that notation, we have
W{x} = Wg-

Let S(A) be the set of finite subsets of A, thus a subset of #". For us, a
potential on W2 is a family & = (®g) ses(a) of mappings from WA into R.
We interpret ®g(w) to be the interaction energy of the particles in S. Not
every such family of mappings leads to a specification. The next steps take
care to stay on the path given in [44].

We restrict ourselves to pair interactions of short range: let

(I)S(OJ) = {B¢(WI,Wy) J(l’—y% if § = {xvy};

0, otherwise ;

where 3 >0, ¢: W x W — R and J : R? - R are measurable mappings
and symmetric under the exchange of x and y, i.e. ¢(ci,c2) = @(c2,c1)
for all cj,co € W and J(z) = J(—2) for all z € R We also assume ¢
to be continuous, so that ¢(W x W) is bounded and |¢(ws,wy)| takes a
maximal value mgy in W x W. In this context, the parameter 3 is called
the inverse temperature. We will later on adjust the temperature to apply
a uniqueness theorem. With this definition, we chose to set qﬁ{m}(w) = 0, for
all z € A and w e W, because such a self-interaction can be interpreted as
an external potential, which we want to exclude. Therefore, we can assume
J(0) = 0. The notion ’short range’ comes in via the behaviour of J, which
decays quickly enough for large distances |z — y|, i.e. we assume J to
be either algebraically or exponentially decaying, that is, there exist some
positive constants p,t such that |J(z)| = O(|z| P) respectively |J(z)| =
O(exp(—t|z|)) for |z| — oo. The constants ¢ and p are called the order
of the respective decay. Exponential decay implies algebraic decay of any
order and we shall concentrate on the latter. We note that this definition of
the potential can and will be extended from w € W to w € Y and arbitrary
z,y € R if we set iy = 0 for {z,y} T w.

By means of the potential, we can now define the local energy of a
configuration w € WA in the compact set K < R%:

Hic(w) = > ) = D Bo(wewy) J(z—y).
{z,y}cA: {z,y}n K+ reANK, yeA
For the intended definition of the specifications, we need all local energies

to be finite. A first step in that direction is the following proposition.

Proposition 2.15. Let ' be an FLC set in R%. Suppose |J(2)| = O(]z||™P)
for |z|| = oo, where p > d+ 1. Then for 1 < p < p—d we have for allz € T

Dl —y? I —y)| <o
yeA

More specifically, there exists some cp > 0 such that for all A € X(I') and
zeA

Dz =ylP[J(@ =) <er. (2.1)
yeA
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PRrROOF. For this proof, we use the uniform discreteness of I' in conjunc-
tion with avoiding the divergence of the harmonic series. Let us spell out
the details.

By definition of the Landau symbol, there exist some ¢, R > 0 such that
|J(2)] < c-|z|| P for all z with ||z| > R. Without loss of generality we may
assume R > 1. Let A € X(I') and = € A. Consider

2l =yl 1 (@ =)l

yeA

= > le—ylPlu@—yl+ > le—ylPlJz-y)l.

r—y€eA yeA
lz—yl<R lz—yl>R

The first sum on the righthand side of this equation can be estimated as
follows:

Z |z = y|P |J(z — y)| < Z 127 1T (2)] < Z RP|J(2)| =: ¢f (R),
r—yeA A—A zel'—I"
lo—y|<R Tl<r S1<R

where cp (R) is finite because I' — I" is locally finite by the FLC property.
Since p — p < 1, we have

Y le=ylPli@—yl< ) Y lr—yl” @ —y)l

yeA k=|R] yeA
[z—y|>R k<|z—y|<k+1
<Y Y cle—yPr<e Y W
k=|R| yeA k=|R| yeA
k<|z—y|<k+1 k<|z—y|<k+1
=c Y #lyeAlk<|z—yl <k+1}EP.
k=>|R|

Here, |R| denotes the maximal integer lower or equal to R.
Every FLC set is by definition a Delone set and thus uniformly discrete.
Hence, there exists some pp such that

#lye Ak <|z—yl| <k+1}
< pa vol(Bys1(0) \ Bi(0)) = pa baa [(k +1)* — k7]
< pabay d(k+ 1)

where by 1 is the volume of the unit-ball in R?. Since we only regard sum-
mands where k£ > R > 1, we have

d—1
(k+1) 1 = <k + 1) g1 < 9d—1 d—1
k = ’

Because the density constant ps only depends on patches from I'; we might
also replace it by some pr that keeps the inequality above valid for all
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A e X(T'). Thus, we have

Y, lz—ylPlI@—y)l<e D) prbag d2 RTHEP
yeA k=|R)
lz—yl>R
= cprbgy d277! Z fp=(p=d)=1 _. i (R). (2.2)
k=|R|

Because the exponent p — (p — d) — 1 is smaller than —1 by assumption, the
series converges. Both constants ¢ (R) and ¢t (R) only depend on I' and J.
If we set cp := cp (R) + ¢ (R) Equation (2.1) is true. O

Let us note that we may interpret the left-hand as well as the right-hand
side of Inequality (2.2) as functions in R. The inequality in this interpret-
ation remains true for all ﬁ, where R > 1 and the estimate for J induced
by the Landau symbol holds for all arguments of absolute value > R. In
particular, cff (1:’,) vanishes for R — o0, because it is the tail of a converging
series. We will use this estimate later on. For later calculations, we can
extract the following conclusion from the proof of Prop. 2.15:

Corollary 2.16. Let J : R — R, as in the definition of the pair potential
and such that |J(z)| = O(|z|7P) for some p >d+ 1. Then for all A € X(I")
and all x € A

M@ —y)| <er, (2.3)
yeA

where cr is the same constant as in Prop. 2.15.

PrOOF. Let us define R,c > 0 as in the proof of Prop. 2.15. We may
safely assume that R > 1. Then

Dl@=yl= > a-pl+ 3 -yl

yeA yeA yeA
le—yl<R |lz—yl>R
Let 1 < p < p—d. Now certainly 1 < RP, and thus the first sum in the
above equation is smaller than ¢ (R). In addition, for ||z —y| > R we also
have 1 < |z — y|? which implies that the second sum is smaller than c;f (R).
Adding up these results we get the stated inequality. U

Remark 2.17. Easy calculations similar to those of Prop. 2.15 show that
one has a similar property for exponential decay: Let t > 0 and 0 < ¢ < ¢.
If |J(z)| = O(exp(—t|z|)) for ||z| — oo then there exists some ¢ > 0 such
that for all A € X(I') and = € A one has

DexpElz =y |z — )| <.
yeA

Corollary 2.16 has the desired consequences for the local energies:

Corollary 2.18. Let A be a FLC-set in RY. If(q)S)SeS(A) is a pair potential,
either exponentially or algebraically decaying of order p > d + 1, then it has
the property that all local energies are finite.
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PROOF. Because, as mentioned above, exponential decay is stronger
than algebraic decay of any order, we need only check the latter case.

Let as above my = |max.zw ¢(c,¢)|. Let w € WA and K € #. We
have

@l =| ¥ ¥ Bolanw) I =)
reANK yel
< Bmg 2 2J(x—y)‘<6m¢0p#(AmK)<oo,
zeAnK ' yeA
by Cor. 2.16. U

This corollary gives the first restriction for our construction:

Restriction 1. From now on, we assume the potential to be a pair inter-
action of short range, at least algebraically decaying of order p > d + 1.

For the next definition we need some notation. Let S, .52 be two disjoint
subsets of A. For 1 = (M1,2)zes, € WS and 1y = (M2,)zes, € W52 we
define the combined configuration 1y ® 72 := 1 = (N2)zes,05, € W1V52 by
Ne = Mg if x € S1 and 0, = 2, if x € So. Further let A be the common
Lebesgue measure on W as a subspace of C and for S € S(A) let A be the
standard finite-dimensional product measure on W?.

Now we can define proper specifications on (W*,.#(A)): For K € %
let

T FA)x WA — R,
(A’ w) — 7"-K(A | w) )

where

1
m(Al9) = s [ La@wg) exp (~Hin @ wke)) ()
ZK (CL)) WANK
and the normalisation constant Zx (w), called the partition function, is given
by

Ziw) = | e (SHiln @uge)) V().

In statistical physics and finite state spaces, the partition function is also
referred to as the partition sum. If the local energies are finite, it is easy
to check that this makes 7 := (7x ) ke a family of well-defined probability
kernels and also a specification (for details see [44]). Therefore, it makes
sense to examine the set of Gibbs measures ¥ (A, 7) on W specified by
7. We will use the same notation 7 for all specifications on (W*,.7(A)),
A € X(T'), since they can be distinguished by the argument w.

The next proposition is a consequence of the finite local energies and
will help us to make several estimates:

Proposition 2.19. Let K € # and € > 0. There exists some R =
R(K,e) > 0 such that for allweY

Y Bdwnw)I-y)|<e,  (24)

(EEQ(\K,yEg(\BRC

AH(K, R,w) =
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where Br = Bgr(0) is the closed ball of radius R around 0 € RY.

PROOF. Let m, again be the maximal absolute value of ¢ and s(K) =
maxpex #(A N K). Note that s(K) is finite because, up to translation, only
patches of I appear inside K and I' is an FLC set. We may assume that
R is large enough to ensure |z —y| > 1 for all z € K and y € Bg" as well
as that the estimate |J(z — y)| < ¢z — y[® holds. Let R be the minimal
distance between points in K and Bg". Then

S Soenw)I )

wegﬁK,yegmBRC

<Bmg Y, > |J(x—y)

zEwNK yegmBRc

<Bmg Y, Y, lr—ylP Iz —y)

r€wnK yewn Br"
< Bmg s(K) ¢f (R),

where we again chose 1 < p < p—d and used cf: (R) as in the proof of Prop.
2.15. As previously noted, cff (R) depends only on I" and J and vanishes for
growing R, thus also for growing R. U

In certain cases, short range potentials ensure existence and uniqueness
of a Gibbs measure. In this situation, we have more information about the
random variables called one-point functions, Hy : W — W, w > w,, where
x € A. Especially their covariances cov,, (Hz, H,) with respect to a Gibbs
measure pup can be controlled. This will be essential for the calculation
of diffraction properties later on. The basic ingredient for the uniqueness
results is Dobrushin’s uniqueness condition:

Definition 2.20. A quasilocal? specification 7 on W is said to satisfy
Dobrushin’s uniqueness condition if

(A, ) :=sup Z Coy(A,m) <1,
zeA yeA

where (Cpy(A, 7))z yen is the Dobrushin interdependence matriz, defined by
Cloy (A, ) = sup { max |,y ({H, € A}|w) = w1y ({H, € A} |)
w, B e W, wy gz = &A\{m}} :

We note that our specification 7 is quasilocal due to Prop. 2.15 and
[44, (2.12)]. The interdependence matrix is an indicator of how much the
one-point functions at specific points depend on the values of the boundary
condition at other points. If those dependencies are small (or even summable
as in the condition), the specification is closer to an independent specification

2A real valued function on W™ is called local if it is .Fx (A)-measurable for some
K e #. A limit (with respect to the sup-norm) of local functions is called quasilocal. A
specification m on W is called quasilocal if, for any bounded quasilocal function f and
any K € ', also mx (f|-) is a bounded and quasilocal function.



2.2. CONSTRUCTION OF APPROPRIATE GIBBS MEASURES 27

(no interaction between the sites) which is known to lead to a single Gibbs
measure.
Furthermore, the name of the uniqueness condition is well chosen:

Theorem 2.21. Suppose a specification m on W satisfies Dobrushin’s
uniqueness condition. Then #9 (A, 7) = 1.

PROOF. Because (W, #) is a standard Borel space, i.e. isomorphic to a
complete separable metric space, and thus also its countable products, we
may apply [44, Theorem (8.7)]. O

Proposition 2.22. If ® is an exponentially or algebraically (p > d +
1) decaying pair potential and at sufficiently high temperature (small 3),
there exists a uniquely determined Gibbs measure py on W specified by .
Moreover, there exists some constant ¢, > 0 such that for all A € X and

zeA
D covpy (He, Hy)| < . (2.5)
yeA

PrROOF. The proof is based on Dobrushin’s uniqueness condition, and
several other calculations in Chapter 8 of [44]. Firstly, let us note that

1 ~
c(A,m)<ssup Y (#S-1) sup [Bg(w) — Dg(@)]
€A S A:zeS w,GeWA
1
=3 SUPZ/8|J(x_y)| sup [p(wa, wy) — Plwe, wy)|,
TEA yeA w,oeWA

by [44, Prop. 8.8]. Now in terms of Cor. 2.16 we have

1
S sup > BlJ(x —y)| sup |¢(wa,wy) — Gwa, wy)| < Bmger.
2 zeA A w,BEWA

If we choose (8 such that g < m(jq we are within the regime of the Dobrushin
uniqueness condition. By Thm. 2.21 we then have #%(A,7) = 1. Let us
denote this unique Gibbs measure by pa.

For the examination of the covariances of the one-point functions, we
need another object, which is closely related to Dobrushin’s interdependence

matrix C' = C(A, 7):
D(A,7):= > C".

neN

According to [44, Prop. 8.34] in case Dobrushin’s uniqueness condition
holds, one has the following estimate for covariances involving D = D(A, 7):
let f, g be quasilocal functions on W4, then

[covin (£,9)] = I1a(F 9) — ma(Pua(o)| < ) Aa() Dy Agla), (26)
#,jeA

where for z € A and a quasilocal f

Ba(f) 1= sup {|F(@) = @), € W, wn oy = Brey } -
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It is easy to check that the one-point functions and their conjugates are

quasilocal®. If one sets

mw = sup |c1 — ¢
c1,c206eW

then for f = H, and g = H, Eq. (2.6) reduces to

| covy, (Hy, Hy)| < 1 Dy,
because
my, ifT=ux,
Az(H,) =
#(Hz) 0 otherwise
and
-5 mw, if g =Y,
Aﬂ(Hy) =

0 otherwise .
Thus we have for any x € A
Z |COVHA(H$7E)| < my? 2 Dgy .
yeEA yeA

Consider

2(02)xy = Z Z Cr2Cry = Z Crz Z Cyy < c(A,7r)2,

yel yeA zeA zeA yeA
by Dobrushin’s uniqueness condition. Inductively we get
DUCM)ay < (A, )",
yeN
for all n € N and all z € A. Thus

1

n — n 1
25 Doy = 25 25 (CMay = 3 2 (CMay < 1 —c(A,m) s 1—Bmger’

yeA yeA neN neN yeA

by an application of the geometric series. Finally, we get

2
N mw
D leovp, (Hy Hy)| <

JeA 4(1—,8771(1)01“).

This proposition gives the next restriction.

(2.7)

Restriction 2. From now on, we assume the temperature to be high enough

to ensure
1

f<——
Mg Cr Ca

for some cg > 1.

(2.8)

30ur previous definition for quasilocal functions is the one given by [44, Def. 2.20].
This definition only handles real valued functions, but the extension to complex valued
ones is trivial by separately treating real and imaginary parts. It does not interfere with

the proofs of the results we use.
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Here we added the constant cg to refine 8 even more than needed for
the proof of Prop. 2.22. Later on, this will become necessary.

In general, existence does not necessarily help to calculate things. Es-
pecially if the desired object is only given as a solution to some integral
equation. Uniqueness, on the other hand, results in the following theorem:

Theorem 2.23. Let jip be the unique Gibbs measure on W to the potential
®. Further, for m e N, let By, be the closed ball of radius m centred in the
origin. Then for all bounded measurable functions f

pa(f) = limoo 7, (f|w) for ua-almost all we W,

In our case we even have
m—o0

7B, ([ |w) =—" pua(f)

uniformly in w e WH.

PRrROOF. This is a direct consequence of Proposition (7.11) and Theorem
(7.12) in [44]. O

Another important note is the following: Because ® only measures
relative location of the interacting points, it is translation invariant, i.e.
Dgii(w+t) = Pg(w). This leads to x4 (A+t|w+t) = mx(A|w) and thus
to pa+e(A +t) = pa(A) which gives the basic idea for the construction of
the next paragraph.

2.2.3. Gibbs measures on the dynamical system Y. The topolo-
gies on X and Y define Borel sets & and %, respectively. For the existence
of the natural autocorrelation on both systems we will later on need to re-
strict ourselves to the case that (X, T') is uniquely ergodic. Let us denote the
corresponding ergodic probability measure by v. The goal of the next lines
is to construct a natural extension of v to Y that is compatible with a chosen
short range potential ®. The theory presented here will give an extremal
translation invariant Gibbs measure, which is known to be ergodic. That
allows us to make sensible statements about the diffraction of the randomly
generated weighted FLC sets in the next section.

Since we need the results from the previous sections, Restriction 1 and
2 still apply to ®.

First, we need to construct proper families of o-algebras and define valid
specifications. So for K € # let

T = { JAa ‘AA c ;%((A)} .
AeX

It is easy to check that these are o-algebras. Since those o-algebra need not

be contained in the Borel o-algebra .# on Y we need to reduce to the traces,

so let

TK = %{ N
As an intersection of o-algebras, they are again o-algebras. They are de-

creasing because the J5 (A) are decreasing. Let .#x be defined in the same
manner.
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The specification is defined as follows: For K € ¢ let

XK : FxY — Rar
(Aw) — xr(Alw):=1g(AnW*|w).
Before we can check the needed properties of a specification, we have to
verify that yx is well-defined. Because w € W% by definition, we only need
AW to be in Z(A) for every A € .#. So in analogy to the Jx let
F o= {UAEXAA ‘AA € ﬁ(A)}, which again is a o-algebra. It is easy to
show that .7 is contained in .%, because each UZ, /1, 1+[w] (in the sense

of Prop. 2.9) is contained in T (we may safely assume that V' is a ball
around the origin)

UI?xW,VxV'[W]
:{&eY|me><W§o~J+(VxV'),o?mech—i—(VXV’)}
—{BeViwnKxWea+(VxV)]

m{&eYW;meWEw—i—(VxV’)}

€% (A) as finite intersection of countable unions of measurable sets

= U rﬂ U {weWA\p{y}(w)ewﬁv’}

AeX rewnK  yeA
(wnK)s(A+V) (x—y)eV

A U N U @ py@ew+v}
AeX yeANK  TEW
(AnNK)S(w+V) (y—x)eV

J

~
€. (M) as finite intersection of countable unions of measurable sets

where pg,(w) = wy is the projection to the y-coordinate in the respective
WA, measurable by definition of .7 (A).

Therefore, every Borel set A € .# has a representation as U rexAa where
AnWA = Ay e Z(A).

Proposition 2.24. The family (xk)kex 1S a specification on Y.

PROOF. (S1): The mapping xx (- |w) is a probability measure on (Y, .%)
for all w e Y, because mx (- |w) is a probability measure on (W%, .7 (w)).

(S3): We directly use that 7 is a specification on each W”: Because of
the disjoint structure of Y we have for all A € % and w € Y that w € A if
and only if we An W« =: A,. Thus for Ae Ik, K € X,

€Tk (w)
w
XK(A|w) =g (AN W |w) = 1A£(w) =14(w).

(S4): Let K3, Ko € # such that Ko € K;. We have to check that the
composition of the kernels x g, and x g, behaves in the right way. Let A € #
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and w € Y. As before, let A, = A n W%, Then we have
(Xr, ® X )(A | w)
- | @D b 0@ = | mr(As18) dre (1) @)
= (Tr, Tk, ) (Aw |w) = Tk, (Aw [w) = XK, (A]w).

(S2): We need to show that xyx(A]|-) is T~ and F-measurable. The
first is again a direct consequence of 7 being a specification: Let I € R an
interval. Then

Xk (A])7H ) = {we Y |xk(A|w) € I}
= {weY|mx(Au|w)e I} = | ] {we W | mx(An|w) € T} € T

Aex e 7 (A)

To show that the specification is .%-measurable takes some more steps.
The first step is to look at what happens if we replace the indicator func-
tion 14, respectively 14, in the definition of 7 by an arbitrary continuous

function h: ¥ — Ra”: Let
xk (h|w) =7 (h|w)

= g | @) exp (A @) A ().
Zk (W) Jwenk
We will show that xx (h|w) is continuous in w and thus .#-measurable. Let
(w™)nen be a sequence in Y converging to w. Because of the convergence and
the translation invariance of the specifications, we may safely assume that
for large enough n the supports of w and w™ agree in K. Now since A=K
is a finite measure and h and exp are continuous, the question of continuity
of Xk (h|w) reduces to the question of continuity of Hx (n @ wie) in w.
Let € > 0 and let without loss of generality w and w™ agree in a ball By,
around the origin. In particular, let n®@w " K = n®w™ n K = S. Further
let R = R(K, §) be the radius defined in Prop. 2.19. We may assume that
Br € B),. Then

Hi(n@wge) — Hi(n @ wie)]

= Z B oz, wy) J(x —y) — Z 5¢(77an§) J(z —y)

T€ES, yew TES, yew™

2 6 (¢(nx7wy) - ¢(77967wg)) J(x - y)

z€S, yewnBr\.S

bOY Bt San - X Boe) =)

z€eS, yewnBR" z€S, yew™ N BR’

<

8 (602 0y) — D10 01)) I — y>\

€S, yewNBR~\.S

+AH(K7R777®WKC) + AH(K>R77’®W?{C) .
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From the FLC property we know that k = #{z e ' —=T'||z| < 2R} <
and also s(Bgr) = maxaex #(A N Br) < . Let also j(R) = max{|J(2)||z €
I' =T, |z] < 2R}. Since ¢ is assumed to be continuous, we can choose N
large enough so that, for all larger n, the weight differences in Br are small
enough to have |¢(1,, wy) — @z, wy)| < m. We then get

Hx(n@wie) — Hr(nQ@wike)|

=l Y Bl — ) T — )|+
z€S, yewnBRr\.S
€ 2e
<s(Br) Y, ﬂBBks(BR)j(R)U(Z)' +3 <e.

2eD-T, |z|<2R

Because we are in a metrizable space we know (see [24]) that every
indicator function of closed sets is a point-wise limit of continuous functions.
Thus for F' € Y closed and 1p(w) = limy, o hp(w) we have

Xk (F|w)
1
Zr(w
1

- i — wNK
 Zk(w) ngﬂllﬂ%hn(ﬁ@wm) exp (—Hx (n®wge)) A" (n)

| el @) exp (Sl @uge)) A ()

= lim xg (hy |w).

| e @) exp (i n @) A= ()
Wen

~—

[

i
0 Zre(w)

Hence xx(F'|-) is a limit of measurable (even continuous) functions and as
such again measurable (see e.g. [21]).

We will now apply a monotone class argument to show that this property
for closed sets extends to arbitrary measurable A € Y: The set of closed sets
of Y is a generator of the Eorel o-algebra, closed under finite intersections
and contained in the set .# := {A € . | xk(A|-) is .#-measurable}. Thus
we only have to show that Fisa Dynkin system, because then F = (see
[21]): Since Y is closed also Y € Z. Suppose A € 7 then

xi (A" <) =1—xx(Al")
is also measurable and thus A® € .Z. Now let (An)nen be a sequence of
pairwise disjoint sets in .%. Then
we (U Anl ) = 3 xu(Aal)
neN neN

and is thus also measurable, which completes our proof. U

For the next steps we need to introduce the following restriction. This
time we need to make more assumptions on the dynamical system X. Recall
that our goal is to have a ‘natural’ ergodic measure on Y, where the aim
is to obtain ergodicity by an extremal property of the Gibbs measure. We
will achieve that by demanding a similar property of the underlying non-
weighted structure:
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Restriction 3. From now on we will assume that the dynamical system
(X(T"), T) is uniquely ergodic.

Remark 2.25. Restriction 3 still allows a large class of examples. In partic-
ular, the corresponding dynamical system of a regular model set is uniquely
ergodic (see [88]).

We will denote the unique ergodic measure on (X(G), %) by v. In the
next lines we give a natural extension 9 of this measure to the system Y
induced by the pair potential ®.

So let v choose the support and then let the Gibbs measure on that
particular support choose the weights:

I(A) = JX JWA Ly (W) dpa (W) dv(A) = fx pa(A A WA du(A) .

We first have to check that it is well-defined, i.e. that for all A € .% the
map f: A pp(AnWA) is measurable: let g : X — Y be measurable, e.g.
let ce W and g(A) = (c)zen, further let f, : A xp, 0)(A]g(A)). Then f,
is measurable because X, (0)(A]-) is measurable (see proof of Prop. 2.24)
and we thus have a composition of measurable maps. On the other hand,
due to theorem 2.23, we know that f(A) = lim,_qs fr(A) which also makes
it measurable.

And indeed, ¢ is a Gibbs measure on Y specified by x:

Lemma 2.26. We have 9 € %(x).

Proor. We will first check the DLR equations and use the fact that all
ua are DLR states. Solet Ae.# and K € %"

[t ase = [ | eta]e) dusw) v
X JWA
—WwA
—
_ J f (A n T |w) djua (w) du(A)
X JwA
DLR J a(A A T du(A) = 9(A).
X
Now we have to verify the translation invariance of J:
IA+1) = J pa((A+ 1) A ) du(A)
X

v trargl. inv. J MA-‘rt((A + t) M WA+t) dl/(A)
X

= f pa+t ((An wh) + t)dv(A) = f pa(A A WY du(A) = 9(A).
X X
O

The next step is to show the uniqueness of ¥ as a translation invariant
Gibbs measure. The proof for this property of 9 is based on the uniqueness
of the Gibbs measures up and disintegration of measures which we will
introduce by the following proposition.
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Proposition 2.27. Let 0 be a translation invariant measure on (Y,.F).
Then it can be disintegrated with respect to v, i.e. there exists a measur-
able mapping X — M(Y), A — 6p such that for each positive measurable
function f we have

| s@ras) = [ [ @ aor@ana),
¢ X JY
where the measures 05 are concentrated on the fibres {we Y |w = A} = WA,

PROOF. We can apply Theorem 5.8 from [43], because the mapping
w +— w implies a homeomorphism (which also results in the concentration
on the fibres) and Y is a compact metrizable space. We only need to check
that for B € 2 we have V(B) := 0({w € Y|w € B}) = v(B). But that is
obvious because the map B +— U(B) defines a measure on (X, %), the image
of # under the measurable map w +— w, and it is translation invariant:

HB+t)=0({weY|we B +t})
—0({weY|we B} +1t) = 0({we Y|we B}) = ¥B)

But v is supposed to be the only translation invariant measure on (X, %),
so v =v. O

Now to our desired uniqueness:

Proposition 2.28. The only translation invariant Gibbs measure specified
by x is given by ¥, i.e. %(x) = {V}.

PROOF. Let B € A, and By := {w € Y|w € B}. Note that By is a
measurable set, because the mapping w — w is measurable. Let us note
that, for any 0 € %(x), we may use 2.27. Thus, for A € .#, we have

0(A N By) = Jx L LanBy (W) dOp (w) dv(A)

_ f f 14(w) 1, () A0 (w) dv(A)
X JY

:J J 1a(w) 1p(w)dOp(w) dv(A)
X JY

N conc._on wh Lg JY 1WA (w) 1A(w) 1B(£) d@A(w) dl/(A)
= J J Lg~wa(w) 15(A) dép(w) dv(A)
X JY

_ J 15(A) J 1ya (@) dOa (@) du(A) .
X wA
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On the other hand, because 0 is a Gibbs measure, we also have, for any
Kex,

0(AnBy) = L{ XK (AnBy |w) df(w) = JX JY X (AN By [w) by (w) dv(A)
N f f Ti(A O By 0 W¥[w) dos (@) dv(A)
XJY
— f T (A N By n W |w) dfa(w) dv(A)
X JY
= [ [ ey mieta n WA ) don ) an(a)
X JY
_ f J 15(A) Ti (A A W |w) dfa (w) di(A)
X JwA

:J 1B(A)J WK(AQWAW)dGA(W)dV(A)'
X wa

A standard argument from measure theory thus yields that rv-almost surely
we have

f (A A W W) dfa(w) = J Lyga () O (@) -
wA WA

Since any Aj € .Z(A) can be written in the form A n W* for some A € .7
we get that the restriction of 85 to WA solves the DLR equations for the
corresponding specification 7 for v-almost all A. Since we only have one
unique Gibbs measure for any W2, we know the restriction of 5 to W is
given by ua. Because this is true v-almost surely, one way to write §(A) is

o) = [ | Liewn(e) dua @) ava) = 0(4).

Now we are able to state the main result of this section:

Theorem 2.29. If Restrictions 1-3 hold then the measure ¥ is ergodic on
(Y, .Z) with respect to the R%-action T.

PrROOF. We want to apply Theorem 2.14, so we need to check that there
exists a sequence (%, )nen of sub-o-algebras of .% such that .# is the smallest
o-algebra containing | J,,cy -#n, and such that for any n € N, K € J there
exists some ¢t € R? such that .%,, + t € Jx. One can easily check that
the #p, comply with this requirement. Thus, the extremal points of the
convex set % () are ergodic. Since ¥ is the only translation invariant Gibbs
measure it is an extremal one and therefore ergodic. U

Let us also make some comment on the measure ¢ from the point of view
of point process theory: Consider the mapping 6™ : Y — M(R? x W),

where
5(M) (w) = Z 6(az,wz) >
TEW

then the image of ¥ under the (obviously measurable mapping) 6" is a
marked point process in R with marks in W.
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2.3. Diffraction properties

In this section, we show that almost surely with respect to ¥ we get no
singular continuous part in the diffraction of a random w € Y, as long as we
stick to the prerequisites from the previous sections and additionally assume
that the system (X, T) is pure point diffractive. To get sensible statements
we will embed the diffraction of the weighted FLC sets into the theory of
the diffraction of complex Radon measures.

We are interested in the diffraction of the following objects:

5(H) (w) = 2 Hx(w) 51’7
TEW
where w € Y and we extend the definition of the one-point functions to this
specific need, Hy(w) := 1,(x) - wy.

Remark 2.30. The mapping w — ) (w) is continuous from Y to M(R%).

PROOF. Let (w™)nen be a convergent sequence in Y with limit w and let
f be a continuous function with compact support X < R% Then because
of the convergence of the w™ for N large enough and any x € suppw n K°
there exists a sequence (z,),~n With z, € suppw™ n K° such that x,, — z
and w™ N K° consists only of the respective x,,’s. Note that because of the
assumed continuity of f we have f(x) = 0 for all z € K and thus

@) = D@D =| D (wef@) -l f)].
zesupp wn K°
Because f is assumed to be continuous and the weights w; necessarily also
converge to wy (due to the convergence of the wy,), a simple 2 e-argument
shows the continuity of 6. O

So let us use the theory provided in Chapter 1 together with the following
result given in [14]:

Theorem 2.31. Let A be an FLC set, and jp = Y, . w(x) 65, where w(zx) €
C and supgep |w(zx)| < oo. The existence of the natural autocorrelation v of
W 1s equivalent to the existence of the limits

1

n(z) = lim e eAZB w(z)w(z - z),
TEANNDR
x—z€EA

for all z€ A — A. The natural autocorrelation in this case is given by
v= Z 1(z)0 .
zeA—A
O

If it exists, the autocorrelation of 6(1)(w) is thus given by the measure
YW = Y n"(w,2) 6.,
2EW—w
where the autocorrelation coefficients are given by
: 1 —
nH(w, z) := lim ———— Z Hy(w)Hy »(w) .

R—o0 vol (BR) e B

T—2EW
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The next steps prove the existence of those coefficients, at least almost surely
with respect to ¢. The strategy will be to show that a yet to be defined
averaged version is pure point diffractive if I' is, while the objects above
differ from that average only mildly and thus lead only to an absolutely
continuous part of the diffraction.

The tools to derive the diffraction properties of our objects come from
the theory of dynamical systems. A natural factor map can be formulated.
To check the needed properties as a factor map it is essential to ensure
that the expectations of the one-point functions with respect to the Gibbs
measures pp depend continuously on the respective A. Several small steps
are necessary to get there.

At first we need to show that the specifications 7x vary not too strongly
for different A € X. One step in that direction is the following proposition
that states that we may estimate the specifications by ‘more local’ objects:

Proposition 2.32. Let ¢ > 0 and K € JZ. Then there exists some R > 0
such that for all Ae X, we WA and x € A

7w (Hy | @) = mr r(He [W)] <

where

Tr,R(Hy |w)
1

! f Ho(n @ wice) exp (—Hi p(n ® wice)) dNAE (),
ZK7R(w) WANK

Hier@) = Y Bolwawy) (@ —y)
reANK,
yeANBR

and

i plw) = f exp (— M () ®wics)) ANAK ()

WANK

PrOOF. Without loss of generality, assume x = 0 (otherwise consider
A —z, K —x). We have

‘WK(H;E |w) — WK,R(H:E |w)‘

I
1 —
) ‘ZK@) fww Ho(n ®wyee) exp (= Hic (@ wpee)) A (1)
_; — AnK
Zk r(w) JWAHK Ho(n®wge) exp (= M p(n @ wier)) dA @
In
I—1Ig

R

Zx (W) — Zk,r(w) ‘ _

< ‘ZK(W) Z(w) Zr,r(w)
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Now
|l — IR

f Hy(n ® we) (exp(—HK(U®wKC))
WAr'\K
—exp (— Hk,r(n ®wKE))> d)\AmK(U)‘
= U N Ho(n®@wge) exp ( — Hi (n @wge))
W nK
% (1= exp (Hie(n @ wiee) = Hicn(n @ wicr)) ) dAA“K(n)‘

Ho(n®@wge) exp (— Hix(n@wye))

<
fWAﬁK

X (1 — exp (HK(U@WKE) — ”HK,R(W@WKE))> ‘ d/\AmK(U)

<ol a1 exp (Harly ©ue) — Hicrln@ )| - 12|
We have

Hr(n ®@wge) — Hi,r(N @ wie)|

D Bo(nawy) J(x — y)‘ < Ay(K, R.n@uwke)
zeKnA,
yeEANBgr

Here Ay (K, R,n®wge) is used as in Prop. 2.19. As shown in this proposi-
tion, Ay (K, R,n®wgt) gets arbitrarily small for growing R, independently
of n and w.

For |z| < 1 we have |exp(z) — 1| < 2|z| (see [42, Theorem (Satz) 2,
p.71]). Thus, for R large enough, we have

‘ I—-1Ig
Zk (W)
Basically the same calculations lead to the estimate

Zk(w) —ZgrW)| _ €
‘IR Zx(w) Zr r(w) S 2

for some R. We then just take the larger one. U

<max|c| - 2Ax(K, R, Q@ wgt) <

ceW

| ™

This proposition states that we only need to know a sufficiently large but
finite sample of the boundary condition w to get estimates for the behaviour
of the one-point functions with respect to the specifications mx. We might
interpret this as close sets in X having close estimates for the specifications.

Theorem 2.23 states that in case of uniqueness of the ua, which we are in
by our restrictions, the specifications mx converge to the Gibbs measures px .
For the respective integrals of the one-point functions we need an estimate
of this convergence that does not depend on the specific A € X:
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Proposition 2.33. Let ¢ > 0. Then there exists K € J such that for all
AeX, we WA and zg € A we have

|mx (Ho |w — x0) — pa—a (Ho)| < €.

Proor. Let K e #, A € X. Again we may assume xg = (0. Because we
are in the Dobrushin uniqueness regime by Restriction 1, we can apply [44]
theorem (8.23)(ii) to obtain

sup [ric(A]w) —pa(A)] < Y Doy, (2.9)

weWwh yeANKEC
for all A € F(p(A), where again D = (Dyy)ryer = 2iooC" and C =
C(A,7) is the Dobrushin interdependence matrix. We already know that
the right-hand side of (2.9) is the tail of a converging series and consequently
vanishes for growing K. But we still need to show that K can be chosen
independent of the specific A. For this task, we need to apply Remark (8.26)
in [44]: Consider the following metric on R%:

s(z,y) :=t]z —y| A plog(l + [z —yl),
where a A b denotes the minimum of a,b € R and ¢, > 0 are the above
constructed constants. It is easy to check that s is indeed a metric?. If

cs(A, ) :=sup Z Cory(A, ) @) <1, (2.10)
xEAyEA
the following estimate holds:
2
Do y(A,m) < ——————exp( — min s(0,y)). 2.11
X DA € T (= min s0.9). (1)

Since Inequality (2.10) as well as ¢s(A, 7) still depend on A, we need to find
some ¢, such that cs(A,m) < ¢, < 1 for all A € X(T'), because then the
condition (2.10) still holds and we may replace cs(A, ) by ¢, in Inequality
(2.10). Fortunately, [44, Rem. (8.26)] also provides a way to obtain that c}:
One has

1

cs(A,my<ssup Y €@V sup |[Bg(w) — Bg(@)]
zeA JEANKE w,OeEWA
1
= 5 sup D@z —y)| sup [(we,wy) — pwa, wy)|
TEA yeA w,eWA
< Bmg sup Y @0 |1z — y)]
TEA yeA

Now

Y @ [ g@ =)l < Y1+ e =yl 1@ =),

yeEA yeEA
and it is easy to check that there exists some c; such that (14 2])? < ¢; | 2]
for all z € I' — I'. Thus, we have

cs(A,m) < Bmyg sup Z @Y | J(z —y)| < Bmgcier .
IEAyEA

4Note that we included the # |z — y| part only to show that this construction also
works for exponential decay.
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We have come to the point where the refinement constant cg (compare
Restriction 2) for the inverse temperature comes into play: If we set cg > ¢;
we get

cs(A,m) < Bmgeser =: ¢ < 1
and by that inequality together with Inequalities (2.9), (2.11) also

2
sup |mg(A|w) — A)| < ex (— min s(0, ) ,
wevg/\ ‘ w(Aw) = pal )‘ 1-¢, P yeANKE 0,)

(2.12)

for A € Fpy. Since s(0,y) grows at least logarithmically in [ly| a set K
can be chosen independent of the specific A to get this estimate arbitrarily
small.

We aim at an estimate for the difference of integrals of the one-point
function. For that, fix some w € W and consider that s(-) = mx (- |w) —
pa( ) defines a signed measure on (W4, F103(A)). Thus there exists a Hahn-
decomposition WA = A~ U A" into disjoint sets from F10y(A) such that x
is a positive finite measure on A™ N Fg1(A) as well as —x on A~ N F(A)
(see [21, Theorem (Satz) 18.1]). Hence we get

|7k (Ho | w) — pa(Ho)|

<| [ mowan) +| -

Holw) dn(s)

At A-

< max ] (|5(A")] + (A7)

Applying inequality (2.12) for A" and A~ and choosing K as in the consid-
erations above then gives the desired result. U

Restriction 2.1. From now on we assume the temperature to be high

enough to have
1

mecr ¢y
where c¢; is such that (1 + ||z[)P < ¢;|2|? for all ze T —T.

8 <

Combining the two propositions above, we get the desired continuity of
the expectations:

Proposition 2.34. Let (Ay)nen be a convergent sequence in X with limit A.
Let (t(n))nen be the corresponding sequence of vectors t(n) € RY such that A
and A, —t(n) agree in a large compact set K, < R%. Then for any x € A
we have pp, (Hy—y(n)) = pa(Hz) for n — oo.

PRrROOF. Again we may assume that x = 0 and due to the same trans-
lation-invariance argument that ¢(n) = 0 for all n € N. Now let ¢ > 0.
According to Prop. 2.33 we can choose K € J# such that for any w e WA

g
lua(Ho) — mr (Ho |w)| < 1

and for w" € Whn .
|1a, (Ho) = mre (Ho |w™)| < 7.

Prop. 2.32 implies that there exists some R € R™ such that also
€

Tk (Ho |w) — T, r(Ho |w)| < 1
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and

€

1

If we choose n large enough such that A and A,, agree on Bgr and also take
w%R = wpy, we have

|Tr (Ho |w") — mr r(Ho |w")| <

Tr.r(Ho |w) = 7 r(Ho |w"),

and the triangle inequality thus results in |ua (Ho) — pa,, (Ho)| < €. O

We can now define the averaged autocorrelations and analyse their dif-
fractive nature:

Let C := max.ew |c| and V < R? an open set, such that for all A € X we
have #(AnV) < 1. Such a V exists due to the FLC property of I'. Now let

X —  Mey(RY
A — 0N = Z E,,(Hyz) 6y .
TEA

Here we have changed the notation and have written E,, (H,) instead of
ua(Hy,) to stress that these values really are (complex) constants (with ab-
solute value smaller than C'), only depending on the specific A € X and
therefore obviously 5% is a translation bounded measure in MC,V(Rd).

Proposition 2.35. The map 6% is continuous and maps X onto the set

{0F + t|t € RY}, where the closure is taken with respect to the vague topology.

PROOF. Since X is first countable, it is sufficient for continuity to check
that for any converging sequence (Ay,)nen, lim, o0 Ay, = A and any continu-
ous function f with compact support also 5%( f) converges to 6x(f). Let F
be the support of f. Then A,, n F is finite for any n € N. We have

O, (f) = D) Buy, (Ho) 6:(£) = D, By, (Ho) fl2).
TEA, TEALNEF
By the continuity of f and Prop. 2.34, this finite sum converges in the right
manner.
Let t € R?. Obviously we have (5? = 5F+t, because the Gibbs measures
have this property. Thus 6%({T' +¢ |t € R%}) = {0F +t |t € R?}. Hence from
continuity of 0¥ we obtain

(X)) = 6"({T + t|t e Rd}) € {6F + |t e Rd}.

On the other hand, M¢,y (R?) is Hausdorff by [10, Theorem 2] and X com-
pact. Therefore the image of X under the continuous map 6% itself is com-
pact, thus closed. In addition, this image contains the orbit {6& +¢|t € R%}.

But {df 4+t |t € R} is the smallest of such sets, which implies

{0F +t|t e R} c 6%(X),
and that completes our proof. O

We now get:
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Lemma 2.36. If the dynamical system (X, T) is pure point diffractive, then
the same holds for every 5% In particular, the autocorrelation coefficients
exist and are given by

RE) = fim s 3 B () B ().

PrROOF. We know by Prop. 2.35 that {6% + ¢|¢ € R?} with translation
as action is a factor of the dynamical system (X,7T). Because we assume
X to be pure point diffractive, the elements of the factor {6% + ¢ |t € R4}
inherit the spectral structure of (X, T'), see [11, Thm. 4]. O

It is thus sensible to state the next restriction as follows:
Restriction 4. We assume the system X to be pure point diffractive.

Remark 2.37. Again, the class of regular model sets provides valid ex-
amples. Every regular model set and its complete dynamical system is pure
point diffractive, see [88]. (Figure 3 shows the diffraction image of the Pen-
rose vertex set as a well known example with pure point diffraction.)
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Fi1GURE 3. Central patch of the diffraction image of the Pen-
rose vertex set; the diameter of the points corresponds to
their intensity. This picture is taken from [91]

Now we can make use of the main result of the previous section, namely
the ergodicity of the measure 9 on Y, to calculate some diffraction properties
of a randomly weighted set.
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Lemma 2.38. The autocorrelation n") (w) exists almost surely with respect
to V.

PROOF. Let

(H) 1

n w,z) = E H,(w)H;_,(w).

R ( ) vol (BR) e ( ) ( )
T—2zEw

For fixed z, we might interpret nEQH) as

() _ & (Br)
Mg (@:2) = O (Br)’

where &, is the stationary random measure defined by

foi= ), Hy(w)Hy o(w) 0.

TEW
T—2EW

Measurability is checked analogously to Remark 2.30 and the translation
invariance is obvious. Then, due to the ergodic Theorem 12.2.IV. and pre-
ceding remarks in [32], by the ergodicity of ), we get ¥-almost surely

lim S (BR)
R—ow vol (BR)

1 ,
- Jygw«B) (W),

where B is a relatively compact Borel set in R? with non empty interior,
e.g. the unit cube or any ball of finite radius. Before we go on with the
proof, let us just make some remarks on the ergodic theorem above: Instead
of shifting the testing area B to get a ‘space average’ as an estimate for the
‘time average’, we let the ergodic measure ¥ shift the underlying structure.
At the end of this section we will make use of the free choice of B to obtain
easier formulas for the diffraction measure.

Recall the definition of the covariance:

COVipup (HmFy) = Euy (HI Fy) —Ey, (Hﬂf) By (Fy) :

Hence, we have
| &)
Y
_ L{ S Ho(w) Hy () dd(w) = JX xe%ﬂg E,, (H, H,_) dv(A)

reEWNB

T—2EW r—2€A
(D B (1) By () + cov, (o o) ) i)
"R

_ J N By (He) By (Ho—2) du(A)
X zeAnB

r—2€A

+f D covyy (Hy Ho—z) dv(A).
Faenp
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Applying the same ergodic theorem backwards we get

1 —
vol(B) JX xe;\B By (Hx) Eun (Hzfz) dv(A)
r—2z€A
I I
B }%220 vol (BR) xe/gBR E“A (Hx) EMA (Hz—z) = UA(Z)
r—z€eA

for v-almost all A € X. The measure ¥ o supp~! obviously is absolutely
continuous with respect to v (see the proof of Prop. 2.27) and we thus have,
for ¥-almost all w € Y,

1 S—
vol(B) JX Z B (HJJ) Epia (Ha:—z) dv(A) = UE(Z) i

reANB N
r—2€A

Therefore we get (again ¥-almost surely)

1

(H) — B

n w,z) =1n,(2) + J covy, (Hy, Hy ) dv(A).

@) =)+ gy f, X o ) du(A)
r—2€A

Since w € X, nj]{(z) exists for all A € X and the second part is an integral
of a finite sum of bounded functions, the autocorrelation coefficient exists
¥-almost surely. O

To exclude singular continuous diffraction we also need the next
Proposition 2.39. We have

Z Jx Z COVyup (Hx,m) du(A)‘ <.

zel'-T° rEANB
r—z€eA

Proor. Consider

2 fx D, covpy (He, Ho) dy(A)‘

zel'-TI" reANB
r—2z€A

<3| ¥
2e0—T YX zeAnB
r—z€eA

-y 3

zeA—A zeAnB

< ¥

TeANB yeA

COV (HI, Hm,z)

dv(A)

COV (Hx, Hx,z) dv(A)

(2.5)
dv(A) < ¢ -max|An B| <.
AeX

COVipup (Hﬂcv Fy)

O

Finally, we can state the main result of this chapter:

Theorem 2.40. Let I' be an FLC set such that the dynamical system
(X(F),T) is uniquely ergodic and its diffraction is pure point. Let ¥ be
the above constructed Gibbs measure on Y for an algebraically (p > d + 1)
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or exponentially decaying potential. Then, at high enough temperatures, -
almost surely no singular continuous part is present in the diffraction of the
randomly weighted FLC sets w € Y.

ProOF. The autocorrelation coefficients exist 1-almost surely. The dif-
ferences to the averagely weighted FLC sets are given by weighted Dirac
combs whose weights are given by a sequence of absolutely summable con-
stants (Prop. 2.39). They thus only lead to an absolutely continuous part
of the diffraction (Prop. 1.3), whereas, due to Lemma 2.36, the coefficients
of the averagely weighted sets lead to pure point diffraction:

pure point part
A

ZEW—w
w2
covy, (Hy, Hy—, dz/(A)) 5, 2.13
(VOI(B) ze;w ( X:LE;\B o ) ) 21
r—z€eA
ac.§art
U

Let us now simplify the formula for the absolutely continuous part of
the diffraction in Eq. (2.13) by using the freedom to choose the sample set
B. As a first step, let B = B. be the closed ball of radius € > 0 around
0 € R%. We may choose € small enough so that B, contains at most 1 point
of any A € X. Let

Xe = {AeX|#(An B:) > 1},

which is trivially measurable. For any A € X., there exists a uniquely
determined x.(A) € A n B.. Thus, we have

1 __
ol(B) JX xe;\B COVy, (Hx, Hx_z) dv(A)
r—2€A

1 —_—
~ vol(B:) LE 1a(we(8) = 2) covyy (Ha, ), Ho(n)—2) dv(A)

v(X.) -
- vol(Be) JX 1a (zE(A) - Z) COVyup (Hacg(/\)’ H:UE(A)_z) dve(A),

where v, is the conditional probability measure

v(- nX)

VE(')::V('|X€): IJ(XE)

To further simplify this formula, the idea is to look at a suitable limit of
this quantity as ¢ — 0. Again, we may interpret the measures v and v, as
stationary point processes. In this interpretation, for any sequence (&;,)nen,
such that &, — 0 for n — oo, the sequence (v, )nen is known to converge
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weakly® to the Palm measure vy, which is concentrated on the set
Xo:={AeX|0e A},

see [58]. For a definition of the Palm measure in the stationary case see
Chapter 3, for a definition in the general case see [58]. Now consider that,
for A € X, and B  R? small enough to contain at most one point from any
A € X, we have

h(A) = > covy, (He Ho—z)

reANB
r—z€A

= 1A(.’L‘E(A) - Z) COVyp (HIS(A)aer(A)fz) .
Since h is a bounded continuous function, we obtain

lim | A(A)de, (A)

n—aco X
= J h(A) dvp(A) = J 1a( = 2) covy, (Ho, H—.) drg(A).
X Xo

Note that we may replace —z by z in the above equation, because for A € X
and —z € A also A + z € Xy. Further, by the ergodicity of v and by the same
ergodic theorem as used above, we get for v-almost all A € X

#(A n By)

i = : s v =: dens
A T ol(By) . vol(B) Lg#(A B) dv(A) =: dens(T),

independent of the choice of the relatively compact B with non-empty in-
terior. For £ small enough, we have

Ix.(A) = #(A n Be)
and thus

v(Xe)
vol(B:)

1
= A~ Be)dv(A) = dens(T) .
D |, #O P B au(a) = dens(r)
Combining the above observations, we get the following corollary.

Corollary 2.41. Under the prerequisites of Theorem 2.40, the absolutely
continuous part of the diffraction for 9-almost all w € Y is given by

7 (w)

= dens(T") -f(zewzw (JX 14 (2) covy, (Ho, H) duo(A)) 5Z> :

where the absolute continuity again follows from the absolute summability of
the involved covariance functions. U

5A sequence (P,), of point processes in R? converges weakly to the point process P
if and only if, for all bounded continuous h : N(R%) — RZ, one has limp—o Py (h) = P,
see [24].
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2.4. Further thoughts

2.4.1. Conclusions. The constructed class of randomised FLC sets
can be interpreted as a model for quasicrystals with structural disorder in
equilibrium. It is assumed that the effective interaction is short-ranged.
The absence of a singular continuous part of the diffraction spectrum for
this class fits into the general picture that modelling physical structures
and their diffraction often need not include such a part. Other models
of structural disorder (e.g. models in [6, 16, 17]) also (mostly) lead to
a pure point part if the structure is close to a (quasi)crystalline one with
pure point diffraction, e.g. lattices or more generally regular model sets,
only adding an absolutely continuous part to the diffraction that results
from the covariances of the weights (for instance in [17]) or the distribution
of displacements (e.g. in [91, 51, 52]) of the atoms. In this sense the
results of Chapter 2 extend results of [16, 17, 97], where Gibbs measures
at high temperatures on lattices or with finite weight sets, respectively, are
considered.

2.4.2. Outlook. The topology on Y is a natural candidate for a topo-
logy on families of weighted FLC sets since it is essentially the LRT. One
could therefore ask if other measures on (Y,.#) share the diffraction res-
ults of the Gibbs measure ¥. Two major components are used to show the
absence of singular continuous diffraction in the given model: The first is
the ergodicity of 9, because the thermodynamic limits then lead to known
quantities. Other ergodic (Gibbs) measures, where the ergodicity does not
come from a high temperature regime are also possible. The second com-
ponent is given by the estimate of the covariances of the one-point functions.
In our case this estimate is strongly related to the short range potential. It
would be interesting to investigate if there are other ways to obtain simil-
arly strong knowledge about the covariances. A first attempt could be to
introduce some random displacements of the atoms in the randomly chosen
FLC set and still stick to a short range potential. Another extension would
be to look into non-compact weight sets, although this could lead to issues
of integrability in the context of the local energies.

For the theory of point processes, measures such as v and ¢, as given in
this chapter, also provide a way to construct stationary point processes that
are completely different from Poisson and related processes. In particular,
they are concentrated on (marked) Delone configurations, i.e. configurations
that obey a hard-core condition and have no big gaps, similar to the process
constructed by Kallenberg [56]. In addition, there are still hardly explored
variations of the well-known model sets, e.g. by changing the windows.






CHAPTER 3

Diffraction of the Matérn hard-core point process

The treatment of the diffraction of stationary, ergodic point processes
in R? in general has been simplified by Goueré [46] by identifying the in-
tensity of the so called Palm distribution with the autocorrelation of almost
all realisations. But the exact calculations remain difficult and can only
be achieved in certain situations. This is the case in the Matérn hard-core
process, thanks to calculations by Stoyan and Stoyan [94]. We give a de-
tailed treatment on this case building on observations and claims given in
[6]. Stochastic geometry knows a tool for the spectral analysis of point pro-
cesses that is very similar to the diffraction measure, namely the Bartlett
spectrum (for a definition see [18, 19, 31], for a hint at the connection
[6, 60]). We are not going to talk about the latter in detail but show how
to derive one object from the other in ergodic cases.

3.1. Moments of point processes and diffraction

The Palm distribution of a point process is a so-called second order prop-
erty of point processes, i.e. a property strongly related to second moments
of the process. To prepare and explain the calculations in later sections, we
need to introduce some objects. At the end of this section, we also give a
precise statement of the above mentioned result that relates these objects
to autocorrelation and diffraction, respectively.

In the following we only consider simple point processes in R?, although
the objects defined also make sense for general point processes and random
measures. For reasons of completeness we also give the definition of the
most important first order object, the intensity measure or first moment of
a point process. Let P be a point process in R%. Then the intensity measure

195;) =: ¥p is given by
W= [ | @@ ar.

for every measurable function f from R? to R{, where N' = N/(R?) denotes
the space of counting measures in R¢. This measure need not be o-finite.
In case it is, we will call P a first order or integrable point process.

In the case of a stationary process, the intensity measure is always a
multiple of the Lebesgue measure, i.e. 9p = x A%, where k € Rar. In this
case also « is called the intensity.

49
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The definition of the first moment measure extends naturally to the n-th
moment measure given by

9 (h) = JN JRd M JRd Wz, .. xn) dp (2, .. ., 20) AP(p)

:JN 2 h(l’l,---?xn)dp(ﬂ)’

T1,...,LnESUPD

n-times

where h : R? x x R? — R(J{ is assumed measurable. In particular,

I (By % +- x By) =Ep(Ca, - ... - (B,),
for By,...,B, € %y(R%), where (p again denotes the random variable

defined by (p(p) = w(B). If the measure is locally finite on (R%)", we
will call P an n-th order or n-times integrable point process.

A close relative of the n-th moment measure is the n-th factorial moment
measure given by

W= | T b dPG).
N 21,...,zn€sUpp pt
x;+x; for i+j
Thus the difference to the n-th moment is that the factorial moment only
counts the evaluation of h where the n-tuples (z1,...,x,) consist of distinct
points x;. Note that permutations are still counted. If By, ..., B, are pair-

wise disjoint Borel sets in R?, then ﬁg)(Bl X+ ++xBp) = ozgf)(Bl X+ X By).

From now on, we restrict ourselves to the case where n is at most two.

(2)

Suppose that o)’ is absolutely continuous with respect to the Lebesgue

(2)

measure, i.e. there exists pp’ : R? x R — RS such that

o) = [ ] b o) X)X,
Rd JRA

then pg) is called the second-order product density. In case of a translation
and rotation invariant process P, the density (if it exists) can always be
written in the form pg) (x,y) = pp(|lx — yl), see [59]. We will also call pp
the second-order product density.

We can now define the important Palm distribution or Palm measure.
Let P be a stationary point process in R? with finite intensity x. The Palm
measure Py of P can be defined in the following way: for F' € .7 (R?) let

PP = i | LD weeaare), G

where B is an arbitrary Borel set with non-empty volume. The definition
does not depend on the specific B and defines a probability on .% (R%),
concentrated on counting measures with an atom at 0. There is a direct
connection to the second order factorial measure: let Bj, Bo be Borel sets
in R? then

oAD(By x By) = K2 K(B2—a) dd(x) (3.15)
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where K is the second reduced moment measure, defined with the Palm
measure by

K(B) = - fNMB < {0}) dPo ().

The equation (3.15) then follows from the refined Campbell theorem (see
[59]). This also yields A\%-almost surely the equation

1
K(B) = 5 | 1o(a@) pral) dX'(@),
K Rd
if the density pp exists. But the above relation also gives us the possibility
to calculate the intensity of the Palm measure by means of the second order

product density: for a Borel set B < R? we get

0r,(B) = | u(B)dRu(w)

— [0~ ) AP + 16(0) | 1({0)) APy (1) = K(B) + 1(0)

- J 15(2) pp(le]) N4 (x) + 15(0),

and thus 1

Or, = pp(l - DA+ 5.
The connection of ¥p, and the autocorrelation of point sets realized by
certain point processes is given by the following theorem:

Theorem 3.1. Let P be a second order stationary ergodic point process in
R? with intensity k. Then for P-almost all € N'(RY) the natural autocor-
relation measures y(u) exist and are the same, given by

() =vp = KR .
PROOF. For a proof see [46] or, with more details, [6]. O

In terms of the second order product density this translates to the fol-
lowing;:

Corollary 3.2. Let P be a second order stationary ergodic point process
in RY with intensity k such that the second order product density pp exists.
Then P-almost surely the natural autocorrelation measure for a configuration
w exists and is given by

() = pp(|- 1) A + Ko
O

This also gives us an easy example, namely the natural autocorrelation
of the stationary Poisson point process:

Example 3.3. The Poisson Process P, is known to have the simple constant
second order product density pp,(r) = k2, compare e.g. [59]. This leads to
an almost sure autocorrelation of yp, = 2 A% + k &y and thus to diffraction
’7}3: = g2 o+ K 2.

The next example is an example about what can go wrong, if the point
process is not ergodic.
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Example 3.4. Let 0 <p <1 and let K1,k2 > 0 and P, = P, P» = Py, be
the corresponding stationary Poisson point processes. The mized Poisson
process given by P :=p P; + (1 — p) P, then is the easiest version of a Cox-
process, a process where the intensity is chosen at random, see for instance
[58]. It is not ergodic as a non trivial convex combination of two ergodic
processes (see [58, 6.2.6.]). The intensity of P is given by the same convex
combination of the two respective intensities. Analogously, its Palm measure
is a mixture of the Palm measures P o, P» o of the original Poisson processes

1
= E(p k1 Pro+ (1 —p) k2 Pag),

Py

by directly applying the definition of the Palm measure, (3.14). This ne-
cessarily leads to the same linear combination for the intensity of Fy. If
the construction would also work in this non ergodic case we would get the
autocorrelation to be almost surely
kUp, = pr1Up o + (1 —p) K2 Up,,
= pri (k1 A+ 80) + (1 — p) ko (ke A + &)
= (p k12 + (1 — p)/{22) A+ k6
and the diffraction
(pri® + (1 — p)ra?) 8o + kAT,

This cannot be the P-almost sure diffraction as, with probability p < 1, a
configuration is a Poisson realisation with intensity 1, and thus has diffrac-
tion k1280 + K1 A%

Before we turn to the examination of the Matérn hard-core point process,
let us give the connection between the diffraction measure and the before
mentioned Bartlett spectrum:

Proposition 3.5. Let P be a second order stationary point process in R?
with intensity x. Let further {p be the reduced covariance measure of P,
defined for Schwartz functions ¢ as

(o) = | | (n=a)(e) aut@)aP(n) - 2 X(e),

where U? is the unit cube in R® (which can again be replaced by any Borel set
of Lebesgue measure 1). Then there exists a symmetric, translation-bounded
measure fp € M(R?), such that for all ¢ € S(R?)

Ep(p) = Br(P) -

PROOF. See [31, Prop. 8.2.I]. Note that the inverse Fourier transform
of a Schwartz function ¢ in [31] is defined by

f e TV (x) dz
R4

and thus might lead to differences in the form of missing constant factors
1/(27)% in our calculations compared to the quoted sources. O

This proposition suggests the following definition:
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Definition 3.6. Let P be a second order stationary point process in R%. A
measure Sp that is associated to P in the sense of Prop. 3.5 is called the
Bartlett spectrum of P.

The Bartlett spectrum is unique, since the inverse Fourier transform of
a tempered distribution is unique (see [83]).

Example 3.7. The Bartlett spectrum of the stationary Poisson process
with intensity & is given by Bp. = kA%, see [31, Ex. 8.2(a)].

The example above gives some intuition for the following connection
between the Bartlett spectrum and diffraction measure:

Proposition 3.8. Let P be a stationary ergodic point process with intensity
k. Then we have

’7]\3 = ,BP + /€2 50 .
PROOF. Let ¢ be a Schwartz function and consider

—~

T5(B) = p(@) = 1p(p) = IR, (9)

(b — ) () dp(z) AP (p) = Ep() — K7 A ()

d

= ep(p) + K2 AUE) = Ep(9) + K2A(P) = Ep(p) + K2 50(P).-
J

S
)

Note that a connection between the Bartlett spectrum and diffraction is
also mentioned in [60] and used for structural analysis.

3.2. The Matérn hard-core point process

Theorem 3.1 will give us the opportunity to calculate the diffraction of
almost all the counting measures with respect to the point process that we
are going to introduce in the sequel. Of course all the prerequisites need
to be checked. The idea to the process we regard was first introduced by
Matérn in his PhD thesis in 1960 to model repulsive action between random
points, see [72].

Let P be the stationary, independently marked Poisson point process
in R? with marks in (0,1). That is, the marks are uniformly distributed
in I = (0,1), and the underlying point process is given by the Poisson
point process Py, k > 0. Let m be the projection from the marked point
configurations to the unmarked ones. The Matérn hard core point process
Pgr with hard-core radius R is given as the image of P under the mapping

or: NRIxI) — N(R?
2 = UR = 2 617

TESUPP UR

where for u = erSuppﬂ(u) O(z,ma)

Supp 4R
= {x € supp7(p) [ my < my, for all y € (suppm(p) N Br(z)) \ {z}}.
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So Pr := ¢gr(P) picks the points of a realization u that have the smallest
mark in a ball of radius R around them. The basic concepts of the process
are illustrated in the sequence of images of Figure 4.

Note that the thinning is simultaneous, so that even a thinned out point
might thin out another one. Thus, the interaction of one point in a configur-
ation is limited to the points within the distance R. This, together with the
stationarity of the Poisson process and the independent marking, directly
results in the stationarity of the Matérn process. It is also the key ingredient
for the proof of ergodicity of Pg:

Proposition 3.9. The process Pr is mizing, hence also ergodic.

PROOF. Every mixing process is ergodic (see e.g. [89, p. 194]) so we
can concentrate on that property. The strategy will be to use the mixing
property of the underlying Poisson point process. Since the hard-core con-
dition only acts locally, points far from each other do not interact due to
the simultaneous thinning. Thus the random variables (x, and (x, become
independent if the two sets K1, Ko are far away from each other.

According to [89, Theorem (Satz) 5.2.3], to check if Pgr is mixing is
equivalent to checking the following property: for all compact K1, Ko — R?

lim (1 — Pr({pe N®Y | u(K: v (K2 - 2) > 0}))

]| —o0
= (1 - PR({CKl > 0})) (1 - PR({CKQ > 0})>

or equivalently

s PR<{’“‘ e N®Y ‘“(Kl v (K — 1)) = 0})
= Pr({¢x, = 0}) - Pr({¢k, = 0}) .
(Recall ¢g(p) = u(B).) For K € #(RY) let K®) := K 4+ Bg(0). Then
by the definition of ¢r we get vr(V)(K) = pr(V|km ){K), because the

thinning is done simultaneously and only the marks of points at distance
at most R from K influence the thinning in K. (Here v|g &) denotes the

restriction of v to K().) Now let ||z be large enough such that KER) and
KéR) do not intersect. Then

PR({M e N(RY) ‘M(Kl U (Ky — 1)) = 0})
= Pa({p e N®Y | n(K) = 0, p(k> — ) = 0})
_ P({u e N(R? x T) ‘wR(V)(Kl) =0, pr(v)(Ks — ) = o})

= P({I/ e N(R? x I) ‘ QOR(V|K£R))(K1) =0, SOR(V|K§R)_$)(K2 —z) = 0})
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(a) First the Poisson process realises some (b) Now the marks are choosen independ-
ently for each point of the realisation, il-

lustrated by the radii of the grey disks

random point set in R?

(c) Within each hard-core radius, the (d) Only the points with the smallest
mark within each hard-core radius ‘sur-

vive’

W),
)
o |
O

(e) This image is meant to show why the (f) The last image illustrates the result-
process has ‘hard cores’ by drawing circles ing outcome of the Matérn process for the
of half the hard-core radius around the re- sample realisation

maining points

FIGURE 4. An illustration of the Matérn hard-core point process
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Because the restrictions of a Poisson process to disjoint sets are independent
we get

PR({M € N(RY) ‘u(fﬁ U (Ko — 1)) = 0})
- P({y e N(R? x I) ‘ Pr(V] ) (K1) = 0})
x P({u e N(R? x T ‘ (V] m_ ) (Ko — ) = o})
= Pr({pe N(RY) | u(E1) = 0}) - Pr({ne N(RY) | u(K2 — ) = 0})
= Pr({n e N [u(K1) = 0}) - Pr({n € N (R?) | u(F2) = 0}).

because Pp is stationary. (]

Thanks to the calculations in [94] and [59], we know that the intensity
of the process Pg is

1 —exp(—kbg)
KR =
br
and that the second order product density pgr := pp, is given by
0, ifr<R,

pr(r) =

5 GR(’I“)(l —exp(—k bR)) — bR(l —exp(—k GR(T‘)))

br Gr(r) (Gr(r) — bg) ’

where bg = bgr = %Rd is the volume of a d-dimensional ball with

radius R in R? and

ifr>R,

=:gr(r)
Gr(r) = M(Bgr(0) U Br(x,)) = 2br — AY(Bg(0) n Br(z,)),

where x, is an arbitrary vector of length r. Now obviously Gr(r) = 2bg
for r > 2 R and one thus has after an easy calculation that pg(r) = kg? in
that case. So, outside a ball of radius 2 R, the second order product density
looks exactly like the respective one of a Poisson process with intensity kg.
It is therefore reasonable to regard the second order density, and also the
autocorrelation of the process, as being the second order product density of
a slightly refined Poisson point process by writing

pr(r) = KRr* + Pr(r),
with
Pr(r) = —1i02r)(r) KR® + Lr2m) (r) pR(T)

Note that pr(]| - |) obviously has compact support Bar(0) and is bounded,
which allows us to calculate its Fourier transform. Since it is also obviously
a function in L'(R?), we also know that its transform vanishes at infinity
by the Riemann-Lebesgue Lemma (see e.g. [80, Thm. 2.2.4]). We will refer
to pr(|| - |) as the refined second order (product) density.

The intensity kg gives the average packing density of the process, i.e.
the average ratio of the space filled by non overlapping spheres (in our case,
they have a radius of R/2) around the points of the realisation an the ‘total
space’. Some easy calculations give a maximal packing density of (1/2)%,
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which is far of from a dense packing, compare e.g. [73]. In d = 3 in a
face-centred cubic lattice the spheres occupy W/\/E = 0.74... of the total
space, see [29].

Before we go deeper into the examination of the diffraction, let us con-
sider the point-wise limit of the densities for kK — 00: Obviously we have

lim xp = —
K—00 bR

and
: 2 %
S pR() = Lo () gy =2 PR()-

Analogously we define

PRO) = loam(r) 5 + Lran(7) P ().

These limits are reached exponentially fast and thus provide a good
estimate for the calculations of the diffraction for large x, as we will see in
various figures. It is not obvious that those point-wise limits belong to some
point process that is the limit of the corresponding Matérn point processes in
some sense. Nevertheless, for any sequence of Poisson intensities (k(™),,_ 0,
the sequence (Ppg ) of corresponding Matérn processes has the the property
that, for any bounded Borel set B < R,

lim limsup Pr((p >t) =0, (3.16)
=0 posoo
because Pg ,-almost surely, for all n, the counting function (g is obviously
bounded by A¥(Bg) times the maximal number of non-intersecting (R/2)-
balls in the set B + Brjy. Due to [55, Lemma 4.4], Equation 3.16 implies
that the sequence (Pgp)nen is relatively compact in the vague topology and
thus has at least one accumulation point.

The limit x — 0 leads to the process that almost surely realizes the
empty space. In this case, also kg = 0, and the product density is also
constantly 0.

Since one can always adjust the intensity « to get qualitatively the same
but scaled process for different R, we set R = 1 in the following figures
without loss of generality. (We will give an argument for that later on.)

3.3. Diffraction properties

Since we know the autocorrelation of a Poisson process and the Fourier
transform is linear, we can concentrate on the diffraction part coming from
pr: The autocorrelation of Pg is given by

vpr = pr(|- ) A + KR do
= kp* A+ kR 0o+ Pr(| - ) AT =7+ Pr( - ) A7,

where « is the autocorrelation of the Poisson process P, and thus the
diffraction is

Vr =4+ F(@Pr( - D) XY,
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where we used that by an application of the Fubini Theorem, for a test-
function ¢ € S(R?), we have

F@r(l - A7) ()

= (Pr(l - DA @) = de Pr(lyl) fRd p(a) e AX(2) dXY(y)

| o) | putlube 2= axitg) axtie) = (F(pull - 1) X))
R4 R4

So the main task is to compute, or at least analyse, the Fourier transform
of pa(] - I).

In dimension d = 1 the function gg(r) is simply given by gr(r) = 2R—r
and allows us to compute the diffraction of Pr explicitly. In higher dimen-
sions, we can give only formulas containing special integrals and discuss the
results by comparing different intensities x of the underlying Poisson process
and dimensions.

3.3.1. Diffraction in dimension d = 1. As mentioned above, we have
gr(r) =2R —r, bg = 2R and thus Gr(r) = 2R+ r for R < r < 2R. So the
product density for those radii is given by

5 (2R +1)(1 — exp(—k 2R)) — 2R(1 — exp(—£ (2R + 1)))

PR(r) = 2R (2R +7) (2R + 1 — 2R)
_ 2KR 2 2exp(—k (2R + 1))
r (2R+7r)r (2R +r)r

and the corresponding point-wise limit for k — o by

o 1
Pr(r) = m

Thus we have for R < r < 2R (see Figure 5)

N 2KkR 2 2exp(—k (2R + 1))
2R +1r)r 2R +1)r ’
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)
0.05]-
05 1o 15 20 '

~0.05/
—0.10k

[ — k=05
~0.15-

[ — k=1

L — k=2
~0.20

t — K> o0
~0.25

FIGURE 5. pr(r) ind =1 for R = 1 and different intensities
k including the limit Kk — oo

The Fourier transform of pr(| - |) can be computed explicitly (by ele-
mentary calculations) and is given by

Fret (y) := F (Pr(|2])) ()
— kg’ Sm(ffy) + 4 kg (Ci(47Ry) — Ci(27Ry))

. %(Ci(zmz%y) — Ci(27Ry) + cos(4Rmy)( Ci(6Rmy) — Ci(8Rmy))

+ sin(4Rwy) ( Si(6 Rwy) — Si(SRﬂy)))

+e><1-%—R2M>
+Ei(—2R(k —2miy)) —Ei( — R(k — 27riy))]

| Bi (= 2R(s + 27iy)) = Bi (- R(x + 2riy))

_ exp(4Rmiy)

R
_ exp(—4Rmiy)

R
and also the limit for kK — o

F(@% (=) ()

= _Sin(éﬁ?@/) + %(cos(4R7ry)(Ci(8R7Ty) — (Ci(6R7Ty))

[Ei (= 4R(x + 27iy)) — Ei (- 3R(x + 2ni y))]

[Ei (= 4R(x — 27iy)) — Ei (- 3R(k — 2ni y))] . (3.17)

+ sin(4Rmy) ( Si(8Rmy) — (Si(6R7ry))) ,

which are both plotted in Figure 6. Unfortunately, the author has not found
a way to express this result for 4.cr in a shorter formula. Note that one has



60 3. DIFFRACTION OF THE MATERN HARD-CORE POINT PROCESS

F@r( - D)) = F(Pr( - 1)) (|ly]), because the transformed function also
only depends on the absolute value of its argument. Since Ci(x) ~ sin(z)/z,
Si(x) ~ —cos(x)/x for real x — +oo, and Ei(z) ~ exp(—z)/z for complex
z — o, we get that at least |F(Pr(] - |))(y)| = O(1/|y|). But we will also
give some general argument to verify such a result for all dimensions. If we
add the refined intensity kg to F (pr(| - |)), we get the absolutely continuous
part of the diffraction of the 1-dimensional Matérn hard-core point process.
This density is illustrated in Figure 7.
Let us state the above results in summary:

Proposition 3.10. The diffraction of the Matérn hard core point process
in dimensiton d = 1 is almost surely given by

’?1\3 = K‘RQ do + (?ref + ’{R) Al )
where Ay 1s the density given in Eq. (3.17) with |[Fret(y)| = O(1/|y|) for
ly| = c0. O

0.2~

—o050

FIGURE 6. Part J.c¢ of the diffraction of the Matérn process
in d = 1, including the limit x — oo. The dotted curves are
given by +0.15y~! to illustrate the decay

3.3.2. Diffraction in dimension d > 1. The Fourier transform of a
function depending only on the norm of its argument can be expressed as a
one-dimensional Hankel transform, as

FU( - D)) = wﬁj | 02 1) Ty 2yl

see [68] for a simple proof in d = 2 and [92] for the general case. For a
definition of the Bessel functions see e.g. [1, Chap. 9].
The next step is to look at the functions Gr or gr, respectively. It is

easy to see that gr(r) is the volume of two spherical caps of height R — % of
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FIGURE 7. Absolutely continuous part of the diffraction of
the 1-dimensional Matérn hard-core point process including
the limit kK — o0, in other words: its Bartlett spectrum

spheres with radius R. This volume can be computed explicitly: Let sr(h)
be the volume of a d-dimensional spherical cap of height h < R; then by an
easy calculation one has

R—h R—h 2
1 R-h _[l1-d 1 3 [R—h\2
—63[2—@1 R 2F1( 2 ’5’5’( R ))]

r+ 1)

VAT(4)
dius r. The integral involved is evaluated using properties of hypergeometric
functions, given e.g. in [1]. Thus for R < r < 2R we get

R R
d—1 /r\2
sr(h) = f b(d—l),\/w dr = b-1),r J 1Fo(— ) (E> ) dr
h

where ¢4 = and by , is the volume of the d-dimensional ball of ra-

T
GR(T) = 2bR _gR(T) = 2bR — 25R(R— 5)

T 1-d 1 3 7 \2
_bR<1+cdR2F1( 2 272 (QR) ))

In odd dimensions, G g(r) reduces to polynomials in r, while in even dimen-
sions also arcsin and square root parts are present. Let us have a look at
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the resulting function Gg(r) in the lower dimensions for R < r < 2R:

bor+ Rra/1 — (ﬁz)2 + 2 R? arcsin (i), ford =2,
b37R+7TR2’I“—%T3, ford =3,
GRr(r) =<
M bt 32 B 1 )~ R ()
+7 R* arcsin (%%) , ford=4,
ng,,R—i—%QR‘lr—’f—;Rzr?’—i—%ﬁ, ford =15,

Let us now give the argument why it is essentially enough to restrict oneself
to the case R = 1, at least in pictures: First note, that G is of the form
Gr(r) = RY-G1(r/R). Also pr(r) = p(k, R, r). In this notation, we have
for R<r <2R

p(R*- K, 1, r/R)
R2d
5 G1(r/R)(1 — exp(—R® - kb1)) — b1 (1 — exp(—R? - k G1(r/R)))
R2dpy G1(r/R) (G1(r/R) — by)
Gr(r)(1 — exp(—kbr)) — br(1 — exp(—k GR(r)))

=2 b Grlr) (Glr) — ) =l ).

This ‘rescaling’ translates naturally to the diffraction by linearity and scaling
property of the Fourier transform.

Let us have a look at the part of the diffraction that can be analytically
computed, even in higher dimensions. The piecewise constant part of the
(refined) second order density has the following Fourier transform:

-7:(1[0,21%](“ : H))(?J)

2m 2R 2 R)4/2
= o J, 7 2ol dr = e e (R,

for the integration see [47]. For v fixed and |z| — o0, | arg z| < 7, one has

2
Ju(z) ~ \/;21/2 <cos (z — gy — %) + ltm(2)] O(|Z|1)) , (3.18)

see [1], thus we have

F(Lpo2m (1)) (w) = O(ly|~*D72)

for ||y — <o.

Since pr(r) is bounded and supported in [0,2R], the decay of the Four-
ier integral for large arguments can be estimated by the same asymptotic
behaviour of the Bessel function given in (3.18) that we used for the constant
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part of the density:
(PR - D) W)

o 2R s
- ‘Iylld/zljo PRI Jiayy—1 (2mr |y ) dr

2R d/2
< sup |pr(r)| (|y|zl/2J(d/2)(47TR|y|)‘-

re[0,2R]

Thus, also this part of the diffraction is O(|y|~(**1/2), which we already
saw for d = 1. Hence, we have proved the following result:

Theorem 3.11. The diffraction of the Matérn hard core point process is
almost surely given by

Y& = KR% 00 + (et + Kr) A,
where Yref is the Fourier transform of the refined second order product density
Pr(| - 11). Furthermore, we have |yt (y)| = O(HyH*(dH)/Q) for |y| = 0. O

Let us finally compare and analyse the functions involved for some di-
mensions. A plot for the refined second order product density in several
different dimensions is given in Figure 8. Quantitatively, some of the differ-
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FiGURE 8. Refined second order product density for intens-
ity k = 2 of the underlying Poisson process in several dimen-
sions.

ences for small arguments originate from the different volumes of the unit
balls.

It is easy to check and to understand that in any dimension, and for
any intensity of the underlying Poisson process, the intensity of the Matérn
process is lower than that of the corresponding Poisson process, because
almost surely the function pgr removes points from the realisations. This
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also results in a lower second order product density for all values. It is also
obvious that the higher the intensity , the greater the number of points that
have to be removed, and the greater the differences to the Poisson product
densities become, as is illustrated in Figure 9. In any dimension, and for any
intensity of the underlying Poisson process, one finds the refined second order
product density to be higher than 0 at the point of discontinuity. Since the
product density measures appearance of relative distances between points,
that might be interpreted as the Matérn process being closer to the original
Poisson process for relative distances close to the hard-core radius.

If we look at the diffraction properties in odd dimensions, at least the
Fourier transform of p% can be computed analytically, due to the polynomial
form of Gg(r) for d = 3 one explicitly gets

FERA - D) @)

cos(4rRy) — sin(4rRy) — QL
Y ™ R

9
Ry 7
—4sin(2rRy) + 4 Ci(67Ry) sin(4dnRy) — 4 Ci(87Ry) sin(4rRy)
+ 4 Ci(—67Ry) sin(87Ry) — 4 Ci(—47Ry) sin(87Ry)
+4cos(8nRy) Si(drRy) —4cos(4nRy) Si(6mRy) — 4 cos(8TRy) Si(6mRy)

+ 4 cos(4mRy) Si(87Ry) + 24w Ry(cos(4rRy) Ci(6TRy)
—cos(4mRy) Ci(87Ry) +sin(4nRy) Si(6rRy)—sin(4rRy) Si(87R y))) .

(3 sin(47Ry)

Plots, derived numerically, as to be expected, give pictures of the diffraction
densities that are very similar to the pictures in the one dimensional case.
The Fourier transform of the refined density in d = 3 is shown in Figure 10,
and the decay is hinted at within this image, too. Figure 11 gives a plot
of the absolutely continous part of the diffraction of the Matérn hard-core
process in that dimension. Note that this is also its Bartlett spectrum.

Qualitatively, there are no big differences except the speed of decay for
large arguments of the non-constant part of the diffraction as stated above,
namely the absolutely continuous part of the diffraction oscillates around
kgr? with decaying amplitudes. Figures 12 and 13 show plots of numerically
derived diffraction densities.

The observed oscillation is a result of the radial symmetric structure of
the process and governed by the respective Bessel function, the decay to
the squared refined intensity is analogous to the decay of the transformed
support function 1p,, (compare Figures 12 and 13).

We simulated a 2-dimensional Matérn process with hard-core radius 1 in
a disk of radius 800. The intensity of the underlying Poisson point process
was set to 2. The theoretical diffraction pattern can only be guessed from
the simulated diffraction with a lot of goodwill, because the sample is much
to small (about 170.000 points), see Figure 14. But a look at a radially
averaged version, where samples at 100 different angles were taken for the
average, shows stronger hints to the right shape of the diffraction pattern,
see Figure 15.
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FI1GURE 9. This picture shows the squared intensities of the
Matérn process in several dimensions compared to the second
order product density of the underlying Poisson process de-
pending on the intensity of the Poisson process. One can
observe the small differences for small intensities. The hard-
core radius is chosen to be 1
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F1GURE 11. Absolutely continuous part of the diffraction of
the Matérn process in dimension d = 3 for different intensities
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the Matérn hard-core point process with underlying Poisson
intensity k = 2 for several dimensions
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(b) Diffraction of a large sample of a simulation of the Matérn hard-core process with
underlying Poisson intensity, fitted to the theoretical counterpart

F1GURE 14. Comparison between theoretical and simulated
diffraction of the Matérn hard-core process. Not much of the
theoretical structure is visible in the simulation, since the
sample size is too small
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FiGURE 15. The gray curve is given by a radial average of
the simulated diffraction, avoiding the Bragg peak in 0. It
is fitted to the theoretical a.c. part of the diffraction of the
Matérn process, which is given by the black curve.



70 3. DIFFRACTION OF THE MATERN HARD-CORE POINT PROCESS

3.4. Concluding thoughts

3.4.1. Conclusions. This chapter shows one example where the me-
thod introduced by Goueré [46] helps to calculate the diffraction of almost
all realisations of a specific process, the Matern hard-core point process. Al-
though we could not compute the Fourier transforms of the involved func-
tions of the Matérn process in dimension d > 1 analytically, the structure
of the diffraction gets visible.

3.4.2. Outlook. In the paper of Stoyan and Stoyan [94], a second
model for a hard-core point process is given, where the hard-core radius is
randomly chosen. An integral formula for the resulting second order product
density is given within this paper, too. One could also analyse the diffrac-
tion structure of that model, although the necessary Fourier transforms get
even more difficult.

It would also be interesting to examine the vague accumulation points
of the family of Matérn processes for limits k — c0. These limit processes
might have the nice properties of keeping the hard cores while also reducing
the gaps between points. Some considerations in that direction regarding the
Matérn type III process have been made in [73]. The problem of convergence
may be related to limits of hard-core Gibbs point processes for increasing
activity-parameter. They have been studied in [71].

The method of the Palm measure to almost surely determine autocorrel-
ation and thus diffraction measures of a process is limited to ergodic point
processes and random measures. The calculation of the second order product
densities (or Palm intensities) stay difficult, even in that case. Nevertheless,
it would be nice to have more methods to obtain results on the diffraction
of more general (stationary) point processes and random measures. As no
almost sure statements are to be expected in that situation, probability
distributions for diffraction patterns would be the objects of interest.
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