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Introduction

Background

It is well-known that usable nuclear energy can be extracted from atomic
nuclei via two types of physical processes - nuclear fission (breeding) and
nuclear fusion (thermonuclear) reactions. However, from a variety of light
nuclei fusion reactions only fusion reactions of hydrogen isotopes are actu-
ally suitable for nuclear power engineering. This is conditioned by the fact
that Coulomb repulsion for nuclei with a big atomic number (charge) and
appropriate radiation loss make fusion reaction on heavy nuclei unfeasible.

Meanwhile, well-known reaction between the nuclei of the two heavy
forms (isotopes) of hydrogen - deuterium (D) and tritium (T) D+T → α+n,
characterized by He5 compound nucleus resonance in the nuclear projectile
energy range 100 KeV, has an approximately 100 times higher reaction rate
(after Maxwell averaging of hydrogen plasma in operating temperature range
5÷ 20KeV ) than seemingly similar D+D reaction. This advantage of DT-
reaction over other thermonuclear reactions is so definitive that with current
technology the DT-reaction is most readily feasible. But even for Deuterium-
Tritium fuel nowadays it remains unclear that an economically viable fusion
plant is possible at all. The technically full-featured and functional prototype
that considers the Lawson criterion does not exist as of yet. Several fusion
reactors have been built, but none have produced more thermal energy than
electrical energy consumed. Aforementioned concerns both Tokamak-type re-
actors, which confine a deuterium-tritium plasma magnetically, and impulse
reactors, which accumulate energy either from laser beams or from heavy-ion
accelerators.

Usual nuclear plants evolved for many decades with vigorous government
support of the most developed countries. The usual˝nuclear reactors deeply
influenced electrical power engineering and power industry, entered the ice-
breaker and submarine transportation systems, made their way into space
industry, not mentioning the military uses. With the course of time it be-
comes clear that traditional nuclear power engineering has a lot of stimuli

11



Introduction 12

and possibilities for future improvement. The implementation of fast neutron
reactors, or simply fast reactors, is of great importance because they offer the
prospect of vastly more efficient use of fuel. The hesitation to deploy these
reactors is caused by the fact that the most common coolant - water - has
to be replaced by liquid metal coolant (molten sodium, bismuth, or lead),
which leads to price increase. On the other hand, the fast neutron reactors
have a lot of advantages, including operational benefits (safety).

During last decades of reactor development, a lot of attention has been
paid to reactor safety enhancements. The term inherent safety˝or so-called
passive safety˝was invented. A reactor is called safe when under any circum-
stances, even uncontrolled and unpredicted, there is no radioactive pollution
created outside of the reactor hall. Reactor with inherent safety is such
a kind of safe reactor that prevents failure and appearance of reactivity-
initiated accidents not by operator intervention, but automatically, by virtue
of the physical principles that underlie its design [1]. In other words, the reac-
tors with inherent safety are, by exact expression of famous Russian nuclear
physicist L. Feoktistov, The nuclear plants, which never explode˝[2, 3].

It is appropriate to mention here his book A Weapon that Outlived
itself ˝, where he wrote: If the rods, as the result of act of terrorism or
any other accident, fly out of an active zone... in this case none of currently
existing protection systems can prevent a nuclear explosion. The pressure
inside the reactor is 150 atmospheres. The rods fly out with the velocity of
up to 200-300 meter per second. In the scale of those first microseconds and
milliseconds none of the currently existing mechanisms works, if the rods are
ejected with such a velocity˝[2].

Unfortunately this prediction almost came true. This hypothetical acci-
dent almost happened at Davis-Besse Nuclear Power Station located on the
southwest shore of Lake Erie near Oak Harbor, Ohio, USA. In February 2002,
the workers repairing a cracked control rod drive mechanism nozzle at the
Davis-Besse Nuclear Power Station discovered a football-sized cavity in the
reactor vessel head, the Unit 1 was immediately shutdown [4]. This cavity
was 12.7 cm long, 15.2 cm deep and 10.2 cm wide. As it was discovered later,
a small amount of boric acid leaking out of the emergency cooling system of
the active zone onto the reactor vessel head corrodes carbon steel at a high
rate.

The Nuclear Regulatory Commission noticed in the report of this event
that: a cavity had formed around that nozzle in the low-alloy steel portion
of the reactor pressure vessel head, leaving only the stainless steel-clad (9
mm thick) material as the reactor coolant pressure boundary over an area of
approximately 16.5 square-inches˝[4]. One can add that as the result of the
potential failure of high pressure injection pumps the water jet could spurt



Introduction 13

out with the pressure of 150 atmospheres. It is not out of place to mention
here that so-called E scheme; the 2000-tonne top of 4-th unit of Chernobyl
nuclear power plant, also known as cover Elena˝, was torn and thrown up
by the stream explosion of much lower pressure.

This real-life example illustrates the colossal importance of Feoktistov
concept, which is that the main constraint and perfect protection system
against the explosion in such type of nuclear constructions has to be a phys-
ical law, which means a Law of Nature, but can neither be an automatic
system, even the perfect one, nor the multistage safety barrier, nor the hu-
man being, which is the weakest and the most dangerous part of the nuclear
object control system.

On the other hand, it is obvious that just stating an idea is not enough.
It is necessary to find the new pragmatic ways of the realization of inherent
safety concept at the level of fundamental physical laws. The solutions of
this problem were proposed independently by russian physicist Lev Feoktis-
tov and american physicist Edward Teller. It’s only fair that the solutions
were first obtained by same scientists, who worked on the nuclear weapon
development and hydrogen bomb design.

Objectives of the research

The first objective of this research is to obtain a preliminary model of nuclear
fast reactor of Feoktistov type. The model in question should satisfy the
following requirements:

• Inherent safety. The model reactor should possess a property of inher-
ent safety. In other words, model of such a safe reactor that prevents
failure and appearance of reactivity-initiated accidents not by opera-
tor intervention, but automatically, by virtue of the physical principles
that underlie its design should be obtained.

• Self-regulation. The model reactor should be completely automatic,
with no powered mechanisms, no operator controls and no provision
for human access during their operational lifetime, in order to avoid
both error and misuse. This implies the soliton-like nuclear burning
wave as a working principle of the reactor model.

The second objective of these work is to obtain the physical conditions of
nuclear burning wave origin and propagation.

The third objective is to offer the mathematical solution for the provided
physical model of the reactor. In oder to verify theoretical model the com-
putational experiment has to be performed.
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The research project consist of three parts. The first part is concerned
with the concept of inherent safety deals with the soliton-like fast reactors.
This includes an overview of existing reactor models, w.r.t. property of in-
herent safety and the analysis of Feoktistov concept of the soliton-like propa-
gation of neutron-fission nuclear burning wave in the neutron multiplicating
media. The aim of this investigation is to satisfy the first objective.

The second part deals with physical condition of nuclear burning wave
origin and propagation. The aim of this part is to fulfill the second objective.

The third part of this project is related to the mathematical solution
for the suggested physical model. Numerical models of neutrons and nuclei
dynamics are developed. The aim of this part is to satisfy the third objective.

Outline of this thesis

In chapter 1 the concept of the inherent safety is considered. A concise
description of the related reactor types is presented along with the advan-
tages and the drawbacks. In the same chapter the kinetics of self-stabilising
fast uranium-plutonium reactor, which generates Feoktistov self-propagating
nuclear burning wave and satisfies all conditions of inherent safety is consid-
ering. Furthermore, an overview of the modern models of soliton-like fast
reactors available at the time of starting this PhD project is presented.

In chapter 2 some relevant for this thesis elements of fundamental anal-
ysis of self-stabilizing criticality burning waves in the neutron multiplicating
medium will be considered. In this chapter the existing fundamental models
and their analytical solutions are studied. Using the pattern of transition
from quantum mechanics framework to the classical mechanics the necessary
and sufficient conditions of nuclear burning wave origin and propagation in
the neutron multiplicating medium are obtained.

In chapter 3 the simplified one-dimentional model of plutonium accumu-
lation and uranium burnup kinetics is proposed. Taking into account delayed
neutrons three-dimentional model for one-group diffusion approximation is
offered. The numerical solution using the method of mesh points in the
implicit form is obtained. Finally, the simulation results and its verification
w.r.t. obtained in the chapter 2 necessary and suffycient conditions of nuclear
burning wave origin are given in this chapter.

Chapter 4 consists of an alternative view on the hypothesis of existence
of a natural nuclear reactor within the Earth’s core. Assuming the existence
of soliton-like reactor on the boundary of the solid and liquid phases of the
Earth’s core the 3He/4He distribution in the Earth’s interior is calculated.
An alternative description of the data produced in the KamLAND exper-
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iment is proposed. Finally, a tentative estimation of the geoantineutrino
intensity and spectrum on the Earths surface is given.

In chapter 5 the final conclusions are drawn.



Chapter 1

Feoktistov neutron-fission
burning wave.
Research problem statement.

In this chapter the concept of the inherently safe nuclear reactor is considered.
The description of related reactor types is presented in section 1.1. In the
section 1.2 the kinetics of self-stabilising fast uranium-plutonium reactor,
which generates Feoktistov self-propagating nuclear burning wave and satises
all conditions of inherent safety is considering. And finally, in section 1.3 the
overview of the modern models of soliton-like fast reactors available at the
time of starting this PhD project is presented.

1.1 Concept of reactor with inherent safety.

According to Feoktistov, the pragmatic development of new generation of
nuclear power plants can be illustrated with table 1.1 [1] The first row of this
table lists the types of nuclear fission reactors with inherent safety, the second
row contains the first generation of fusion reactors, the third row shows the
ultimate thermonuclear power systems. Although having the different level
of technical development, all of them are inherently safe.

The reactor types shown in table 1.1 should be considered as an example
of pragmatic way of thinking necessary for development of new generation
reactors. In his book From past to the future: from hopes about bomb
to safe reactor˝[3], Feoktistov described in detail the operating principles of
these reactors. The characteristic feature of all the reactors types is that each
of them uses some physical law, a constraint, which prevents an explosive
development of energy release. The table 1.2 shows a corresponding law for

16



CHAPTER 1. FEOKTISTOV NEUTRON-FISSION BURNING WAVE 17

Table 1.1: The reactors with inherent safety. Adapted from [9]

All these will never explode˝L.P. Feoktistov

Nuclear reactions

Neutron-fission wave
reactor (NFWR)

Boiling water reactor
(BWR)

Ideal reactor (IR)

fast neutron reactor
with substitution of

core and blanket

Thermonuclear reactions

Hybrid reactor (HR) Laser nuclear fusion -
Laser inertial devices

Thermo-nuclear space
engine (TNSE)

Fusion detonation

DT - cord DD - cord Aneutronic fusion
reactions

each reactor type.
For example, the boiling water thermal neutron reactor (BWR) is shown

in figure 1.1. The table 1.3 lists the bowling water type thermal neutron
reactor characteristics obtained in [1].

In this reactor natural unenriched uranium is used as a fuel and heavy
water as a neutron moderator. The figure 1.2 shows the dependence of neu-
tron multiplication factor K∞ in an infinite medium on uranium dilution
rate χ = ND2O\N238

U . As follows from the figure 1.2, for such a mixture of
D2O + U238 a multiplication factor is bigger than one K∞ > 1 at the region
where the stationary reactor can exist, i.e. at the region with the dilution
coefficient 10 < χ < 1000. The dip in the curve at the right-hand side of
the diagram is explained by a neutron absorption in heavy water. The dip
at the left-hand side is caused by neutron spectrum changes. The neutron
spectrum becomes harder and enters the resonance absorption region of U238.
It is precisely this left-hand side dip which is interesting for us because it il-
lustrates Feoktistov idea of reactor controlled by physical law [1, 3]. This is
a considerable difference of Feoktistov boiling water reactor in comparison
with usual BWR, such as CANDU reactor which uses natural unenriched
uranium as a fuel as well.

The physics of Feoktistov heavy water reactor is pretty simple. At the
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Table 1.2: The physical law - a constraint, which prevents an explosive de-
velopment of chain reaction. From [9]

1. The double β -decay with a longn life time

U238 + n→ U239 → Np239 → Pu239

NFWR, IR

2. The considerable change of moderator density in boiling
process (going away from the supercriticality)

BWR

3. The fissile material tends to an equilibrium isotopic com-
position

IR

4. The neutrons lack in blanket without thermonuclear
burst

HR TNSE

initial stage the concentration of active atoms increases, as a result of an ac-
tivity intensification and intensive water vaporization, this causes the change
of neutron energy spectrum. The concentration of natural uranium increases
and dilution rate χ = ND2O\N238

U decreases. This, and resonance inclusion
(neutrons absorption region of U238, causes the shift of plutonium equilib-
rium concentration to the left, see figure 1.2, and the process of plutonium
accumulation continues. After a while, only plutonium burns, and, as a re-
sult, the fuel burn-up strongly increases. The velocity of heat generation
reduces, as the core overheats, via reduction of moderator density. Therefore
in a case of emergency temperature increase the moderator evaporates inten-
sively and D2O steam flows from the core through the inverted valve. This
auto-regulating model of core operation is a good demonstration of a concept
of inherent safety based on a physical law. In other words, the emergency
increase of heat generation velocity causes an additional moderator evapora-
tion and immediate reaction shut-down, resulted from the neutron spectrum
hardening and the neutron leakage.

This concerns serious accidents, such as loss-of-coolant accidents or loss-
of-decay-heat-removal-function accidents, as well. To remove a generated
heat from reactor and convert it into useful electrical power, a coolant system
is used. If the coolant flow is reduced, or lost altogether, the heat can increase
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Figure 1.1: Boiling water type thermal neutron reactor. From [1].

Table 1.3: Boiling water type thermal neutron reactor. From [1].

The reactor power 30 MW

The core radius 3 m

The reactor fueling - the initial core load

Natural Uranium
20000kg

heavy water
50000 kg

The steam pressure in the chamber v100 atmosphere

Uranium burnup ≈ 2%
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Figure 1.2: The dependence of neutron multiplication factor on uranium
dilution rate.The point A is stable, in opposite to point B [1]: a small increase
of power (steam) moves the operating point to the left and makes the system
subcritical. The arrow shows the dilution rate variation during long burning
process (years). Adopted from [1].

the fuel temperature to the point of damaging the reactor. This type of
accident develops very slowly. Tens of minutes are required for the water in
reactor to boil away. In fact it takes even more time. The chain reaction stops
automatically because of increase of uranium concentration in heavy water,
i.e. because of sharp decrease of the dilution rate χ < 10 with corresponding
neutron multiplication factor smaller than one K∞ < 1, see figure 1.2. That
means complete shutdown of neutron multiplication chain reaction. Here it’s
important to note, that specific afterheat, which is proportional to reactor
specific power, decreases so strongly that fuel doesn’t melt even without
water.

As we can see, Feoktistov boiling water reactor (BWR) is designed in such
a way, that the physical principle that underlies its design prevents reactor’s
failure. This is a significant advantage of Feoktistov BWR in comparison
with usual BWR, such as CANDU reactor in which reactivity control were
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designed to be achieved by control rods.
According to the information from New Scientist magazine [12], the re-

actor, known as the Rapid-L, was conceived of as a power source for colonies
on the Moon. The new operator-free fast reactor is characterized by RAPID
(Refueling by All Pins Integrated Design) refueling concept, which enable
quick and simplified refueling 2 months after reactor shutdown [10, 11, 12].
The reactor called Rapid is designed for a terrestrial power system, which
enables quick and simplified refueling. The Rapid-L is designed for lunar
base power system. The conceptual design of RAPID consists of a 10MW
(thermal)-1MW (electric) U − Pu − Zr metal fueled, sodium cooled, fast
spectrum reactor with lithium (Li) inlet and outlet temperatures of 380℃,
and 530℃, respectively. This power level is sufficient for 500 private res-
idences. The reactor is basically a loop type configuration and a reactor
vessel of 3.0m in diameter and 6.8m depth.

Unlike traditional nuclear reactors the Rapid has no control rods to
initiate the reaction. The new revolutionary technology uses reservoirs of
liquid lithium-6, an isotope that is effective at absorbing neutrons 6Li. The
6Li reservoirs are connected to a vertical tube that fits into the reactor core.
During normal operation the tube contains an inert gas, see figure 1.3. But as
the temperature of the reactor rises, the liquid lithium expands, compressing
the inert gas and entering the core to absorb neutrons and slow down the
reaction. The lithium acts as a liquid control rod. And unlike solid control
rods, which have to be inserted mechanically, the liquid expands naturally
when the core gets warm.The Rapid uses the same principle to start up and
close down the reaction. The reactor would be cooled by molten sodium
and run at about 530℃. Kambe’s main concern now is to test the fail-safe
system’s long-term durability˝[12].

A significant advantage of Rapid-L and Rapid is the introduction of the
innovative reactivity control systems: Lithium Expansion Modules (LEM)
for inherent reactivity feedback, Lithium Injection Modules (LIM) for inher-
ent ultimate shutdown, and Lithium Release Modules (LRM) for automated
reactor startup. All these systems adopt 6Li as a liquid poison instead of
conventional B4C rods or Be reflectors. These systems are effective indepen-
dent of the magnitude and direction of the gravity force. This concept en-
ables operator-free reactor and excludes human error and terrorists’ interven-
tion˝, says Mitsuru Kambe, head of the research team at Japan’s Central Re-
search Institute of Electrical Power Industry (CRIEPI) in his article RAPID
Operator-Free Fast Reactor Concept without Any Control Rods˝[10]. Let us
concider this systems in more details.

The LEM is actuated by the volume expansion of 6Li itself, see figure
1.3. It is composed of an envelope of refractory metal in which liquid poison
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Figure 1.3: LEM concept. From [10].

of 95% enriched 6Li is enclosed. 6Li is suspended in the upper part of the
envelope by surface tension exerted on the gas-liquid interface. The gas-
liquid interface goes up and down in accordance with temperature. If the core
exit temperature increases, the gas-liquid interface goes down and negative
reactivity insertion can be achieved. In case the core outlet temperature
decreases, the gas-liquid interface goes up and no positive reactivity insertion
is expected.

LIM, figure 1.4 is also composed of an envelope in which 95% enriched
6Li is enclosed. In case that the core outlet temperature exceeds the melting
point of the freeze seal, 6Li is injected by a pneumatic mechanism from
upper to lower region to achieve negative reactivity insertion. In this way
the reactor is automatically brought into a permanently subcritical state and
temperatures are kept well below the boiling point of sodium (960℃).

LRM concept is shown in figure 1.5. An automated startup can be
achieved by gradually increasing the primary coolant temperature by the
primary pump circulation. The freeze seal of LRMs melts at the hot standby
temperature (380 ℃), and 6Li is released from lower level (active core level)
to upper level to achieve positive reactivity addition. An almost constant
reactivity insertion rate is ensured by the LRM because the liquid poison
flows through a very small orifice due to the gas pressure in the bottom
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Figure 1.4: LIM concept. From [10].

chamber. It would take almost 14 hour for the liquid poison to move into the
top chamber. Prior to refueling, the LRM bundle should be released in lower
part of the core so that liquid poison can be located in the active core region
again. In this case, the LRM bundle acts as a poison rod. Once released, it
is clumped at the bottom and is impossible to pull out again.

From the reactor design description it became clear that the lithium acts
as a liquid control rod. In the Rapid reactor the mechanical movement of
solid control rods replaced with the liquid expansion, which occurs, when the
core gets warm.

The reactor is controlled by LEM, LIM, and LRM instead of the con-
ventional control rods. The LEM is a thermometer-like device actuated by
the volume expansion of 6Li itself. This liquid control rod˝can keep the re-
actor power almost constant throughout the design life˝, is written in JAERI
Annual Research Report 2002 [49].

If the Rapid reactor has just liquid lithium control rods˝instead of solid
ones, that means that any mechanical damage or failure of an envelope with
enriched 6Li can cause an explosive development of energy release and re-
activity accident. So it’s early to say that Rapid reactor concept exclude
human error and terrorists’ intervention˝[10]. Thus we can conclude that
the Rapid reactor design doesn’t match the Feoktistov definition of inher-
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Figure 1.5: LRM concept. From [10].

ent safety, because its design is not based on any physical law, which would
prevent the accident.

Therefore it’s very important to consider here the concept of inherently
safe reactor concerning fast reactor, to show that not only thermal reactors,
but also fast neutron reactors could be safe by virtue of the physical principles
that underlie their design.

The modern fast reactor (FR) consists of two regions: core and blanket.
The energy releases in the core fuelled with plutonium-uranium mixture with
an enrichment of plutonium 75%U238 +25%Pu239. The core is surrounded by
a zone of fertile material constituting a blanket, where plutonium is accumu-
lated via absorption of neutrons emitted from core. This scheme is optimized
for cumulative breeding ratio (BR) but presupposes the permanent removal
of plutonium from blanket region, and the closed fuel cycle with reuse of self
produced plutonium. Besides a lot of chemical operations necessary for this
fuel cycle, it causes creation of big amount of pure plutonium, which does for
not only peaceful, but also military use. This fact forms a negative opinion
about fast reactors as means of nuclear weapon proliferation.

Feoktistov offers a possibility [1] to avoid the risk of nuclear weapon prolif-
eration by substitution of two regions of usual fast reactor (core and blanket)
by one region in which plutonium will both accumulate and burn. For this
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purpose these regions has to be combined in such a way, that it allows both
criticality and breeding.

It doesn’t take a lot of effort to prove this. It’s proven experimentally
that fast reactor can have BR > 1. Let us write BR in the following form:

BR =
ñPu
ncrit

U8 > 1 (1.1)

where U8 ≈ 1−ncrit is the concentration of U238 in a mixture with plutonium
critical concentration ncrit, ñPu is so-called plutonium equilibrium concentra-
tion, to which plutonium concentration tends during burning, regardless of
its initial value. If plutonium initial concentration is bigger than equilibrium
n0 > ñPu (fast reactor core) plutonium burns (tends to ñPu from above), and
if n0 < ñPu plutonium accumulates (tends to ñPu from below, like in blanket
region), see figure 1.6.

Now, what happens if we create one-region reactor with ncrit < ñPu
(BR > 1)? Feoktistov asserts that such system, left to its own devices
can not go supercritical (above its thermodynamic critical point), despite it
tends to plutonium equilibrium concentration ñPu > ncrit. How to explaine
this seemingly paradoxical situation?

Two time parameters are used for the description of nuclear chain reaction
and transmutation of chemical elements:

• The average time between the emission of neutrons and either their
absorption in the system or their escape from the system tneutron v
10−6 − 10−7 is called neutron lifetime.

• Instead of fissioned atom of plutonium the new atom of Pu239 is created
by neutron capture in U238 through two beta-decays with a half-life time
t1/2 = 2, 3days.

These two time parameters greatly differ in scale and course of further devel-
opment always defines by bigger time scale. If reactor works for years, then
a few days delay in plutonium production is irrelevant. That’s quite another
story if the system is brought to a supercriticality. Excess plutonium, which
causes supercriticality, capture neutrons and fission in a time tneutron, and
system is brought back to a subcritical state. Emitted neutrons cause pro-
duction of an additional plutonium in a time t1/2, what meant in two and
half days and drugged out in time.

The new time parameter, halflife t1/2 appeared in the system. Since
plutonium accumulates from below˝characteristic time necessary for power
increasing has an order of days that adds an important safety feature to the
system.
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Figure 1.6: Dependence of neutron concentration on time. The upper curve
shows plutonium burnup, the lower shows plutonium accumulation. Pluto-
nium equilibrium concentration for FR and BWR equals 10 and 0.25 respec-
tively. From [1].

The critical state of a system maintains automatically because n → ñPu
but can not become bigger than ncrit. In other words the control through con-
trol rods and operator manual intervention is not anymore necessary. If this
reactor is left to its own devices, at first its power (neutron flux) will increase,
and then, together with burnup of U238 power will decrease. One can say, that
in such self-contained˝reactor several days duration explosion˝develops
(for BR 1.5 burnup time is about 10 ∗ t1/2 = 1month). The reaction stops
because ñPu is proportional to U238 concentration and sooner or later BR
becomes smaller than 1 ncrit < ñPu. It happens if the fuel burnup is about
50%. High burnup is an additional advantage of this reactor [1]. Table 1.4
shows the parameters of such self-development system.
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Table 1.4: The burning of reactor left to its own devices.

Breeding ratio Burning time U238 burnup
(BR) (days) (%)

1 970 20
1.3 250 40
1.5 50 60
1.7 30 70
1.9 20 77

If neutron lifetime tn ≈ 10−6sek and β -decay half-life ñ1/2 ≈ 2.5 days

neutron+ 238
92 U(n, γ)→239

92 U
β−−→239

92 Np
β−−→239

92 Pu
burning time defines by bigger time scale

Thus, the main concept of inherently safe reactor is that the fuel com-
ponents have to be composed in such a way that characteristic time t1/2 is
considerably greater than one minute and its functioning includes elements
of self-regulation. As Feoktistov showed in [5, 6, 7, 8] this can be achieved if
among other reactions in the reactor core the following chain reaction occurs

238
92 U(n, γ)→239

92 U
β−−→239

93 Np
β−−→239

94 Pu(n, fission) (1.2)

where 238
92 U , 239

92 U , 239
93 Np, and 239

94 Pu are isotopes of uranium, neptunium,
and plutonium respectively, n is a neutron, β− denotes β-decay. In this
case appeared plutonium is used immediately like a fuel. Characteristic time
of such reaction is a time of two β-decays and is approximately equal τ =
2.3/ ln 2 = 3.3days, that is nearly four order more than for delayed neutron.

The self-regulation effect is caused by the fact that the increase of neu-
tron flux lead to faster burnup of plutonium, decrease the plutonium con-
centrations, and, consequently, the neutron flux (new nuclei of 239Pu will
be generated in about 3.3 days). If, however, the netron flux drop (due to,
for example, an external intervention), then the burnup slows down, and the
plutonium generation rate increases, which will then lead to the increase of
neutron generation after an approximately same time (several days). The
aforementioned transmutations take place also in traditional thermal reac-
tors, for example, [13] describes one-group approximation, and another two-
group approximation solution was achieved in [14], which in some cases could
be interpreted as a slow nuclear burning wave. However, in traditional re-
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actors they are considered secondary for an energy release, since they are
mostly used for plutonium generation purposes.

dNPu

dt
= υn

[
8σaN8 −

(
Puσa +Pu σf

)
NPu

]
(1.3)

Sufficiently complete mathematical model of a reactor core should include
models of non-stationary 3D processes of neutron transfer in heavily hetero-
geneous medium, models of fuel burn-up and reactor kinetics, and a model
of heat removal.

1.2 Self-stabilizing criticality burning waves

It is well-known, that in order to test the physical hypothesis it is sufficient
to use quite simple models. First simplification we can make is a separate
analysis of neutronic-nuclear processes and heat removal process (which is
justified for long regulation times). The neutronic processes themselves can
be studied in single-dimension geometry, considering also the diffusinal and
one-energy-group approximation. Latter means that the neutron spectral
charasteristics are averaged out on fixed neutron energy interval, and the
problem is solved using fixed neutron energy value.

Let us consider, according to [5], [8], kinetics of self-stabilising fast uranium-
plutonium reactor, which generates self-propagating neutron-fission nuclear
burning wave (Feoktistov wave), which satisfies all conditions of inherent
safety.

Main transmutations chain reflects the uranium-plutonium fuel cycle (1.2).
Let us consider a semi-space filled with U238, which is bombarded with neu-
trons from the external surface. Let us also assume for simplicity that the
neutron spectrum is the fission spectrum. The characteristic neutron energy
in the medium depends mostly on the moderating properties of the medium.
Following Feoktistov [8], let us consider a case with little or no moderator
and the neutron spectrum being the same as the initial neutron spectrum.

The main goal of this simplified model is to obtain the auto-wave solution
for the transmutation chain with necessary condition ncrit < ñPu.

Let us write the plutonium concentration balance equation

dn

dt
= nυN8

[
(ν − 1) PuσfnPu −

∑
i

iσani

]
(1.4)

where NPu is the 239Pu concentration, N8 is the concentration of 238U , n
is the concentration of neutrons, υ is the neutron velocity for one-group
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approximation, σa and σf are the absorption cross-section and fission cross-
section, respectively.

For this, let us define an equilibrium plutonium concentration, where the
derivative turns to zero

ñPu =
ÑPu

N8

=
8σa

Puσa +Pu σf
(1.5)

Here NPu|t=0 = 0 and current concentration NPu(t) cannot exceed ÑPu

(see figure 1.6). Let us remind that the value of constant ñPu varies greatly
depending on the neutron energy: for thermal reactor ñPu = 0.25%, for fast
reactor ñPu = 10%.

The other property of of the uranium-plutonium medium is a critical
plutonium concentration ncrit. When nPu > ncrit the system becomes super-
critical and capable of self-propagation, and, conversly, when nPu < ncrit the
system is subcritical and the neutron density decays with time.

The value ncrit is derived from the neutron balance equation

dn

dt
= nυN8

[
(ν − 1)Pu σfnPu −

∑
i

iσaNi

]
, (1.6)

where ni are the concentrations of the elements taking part in reaction, ν
is an average number of prompt neutrons per ssion for 239Pu, iσa is the
absorption micro cross-section of i-th element including u and Pu (neutron
leakage can be also included).

The value

nPu = nPucrit =

∑
i
iσani

(ν − 1)Pu σf
(1.7)

defines the plutonium concentration when the medium is critical (stationary).
Value ncrit is also a function of neutron energy. Since two dimensionless num-
bers ñPu and ncrit are derived from two different combination of constants,
all variants are posible: ñPu > ncrit, ñPu < ncrit ñPu = ncrit.

As it gets, for thermal neutrons nPu < ncrit for fast neutrons ñPu > ncrit
. In the first case the system is only viable if the neutron source is present.
If there is no external source, or if it is turned off, the reaction immediately
stops. In the other case, which is the one we will be considering from now
on, there exists one solution in the form of stationary running wave, and this
solution is asymptotical and does not depend on initial conditions. There is
nothing paradoxical about it if the aforementioned explanations of physical
meaning of expression (1.1) are considered.

Thus, it is getting clear that it is impossible to cross the criticality thresh-
old in the case of slow burning of 238U caused by fast neutrons. This leads
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to the possibility of neglecting the partial derivative in time in the neutron
transmission equation. This can be imagined as follows: neutrons emitted
from the neutron source are absorbed at the depth equal to the neutron free
path, and they turn uranium into plutonium. As the plutonium accumulates,
the fission process intensifies, and there are enough neutrons released in or-
der to process˝the next, more distant, area of the core. At last, the energy
release area shifts along the core axis away from the neutron sourse, whose
influence decreases, and the system enters the stationary running state. In
other words, all functions now depend on the argument z = x+ut, which is a
wave going from left to right with the velocity u, and its order is proportional
to u ∼ L/τ , where L = 5cm is a diffusional absorption length of a neutron,
and τ = 3.3 days is a time needed for transmutation of 238U into 239Pu.

Now, in order to obtain a system of kinetic equations for neutrons and
nuclei which take part in the transmutation chain (1.2) , let us rewrite this
systems using traditional˝Cartesian coordinates {x, t} as follows

dñ (x, t)

dt
= D∆ñ (x.t) + q (x, t) (1.8)

where ñ (x, t) is a neutron density, D = υ/3Σs is a neutron diffusion co-
efficient, υ is a neutron velocity in one-group approximation, Σs denotes a
macroscopic scattering cross-section, q is an intensity of a neutron flux com-
ing from external neutron source.

Obviously, the expression for density of neutron source can be written is
as follows

q (x, t) = ñ (x, t) υ

[
(ν − 1) PuσfNPu +

∑
i

iσaNi

]
(1.9)

where Ni is the concentration of i-th isotope in the chain (1.2), Puσf is
the 239

94 Pu microscopic fission cross-section, iσa is the microscopic absorption
cross-section of i-th isotope, and ν is an average number of prompt neutrons
per ssion for 239

94 Pu.
Further, using the expression (1.7) for relative critical concentration of

plutonium, and simultaneously introducing the normalization of neutrons
concentration and isotopes w.r.t. to 238U concentration, we obtain diffusion
equation (1.8) as follows

1

D

dn(x, t)

dt
= ∆n(x, t)− N8

D
υ
∑
i

iσani(x, t)

[
1− nPu(x, t)

nPuk (x, t)

]
n(x, t) (1.10)
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where

n(x, t) =
ñ(x, t)

N8(x, t)
, ni(x, t) =

Ni(x, t)

N8(x, t)
,

nPu(x, t) =
NPu(x, t)

N8(x, t)
, nPucrit(x, t) =

NPu
crit

N8(x, t)
(1.11)

or, in other words, n(x, t) and ni(x, t) are the relative concentration of neu-
trons and isotopes, respectively, nPu and nPucrit are the relative equilibrium
concentration and relative critical concentration of plutonium, respectively.

As it was noted earlier, the inequation ñPu > ncrit predetermines the
stationary form of the kinetic equation. Since it turns out in [7] that for
qualitative analysis of (1.8) it is sufficient to find an approximate solution
for the stationary equation for the region ahead of the wave front, i.e. in the
asymptotycal region x → −∞, then we can neglect the summands n9 and
nPu, which can be found together with n8

∼= 1. The latter means that the
stationary form of the kinetic equation (1.10) will have simplified form as
follows

d2n(x, t)

dx2
= C∞

[
1− nPu(x, t)

nPucrit(x, t)

]
n(x, t), (1.12)

where C∞ is equal

C∞ =
υ

D

(
8σa
)
N8(x, 0) =

1

Dτ
=

1

L2
, (1.13)

and concentration N8(x, t) is equal to the initial concentration N8(x, 0), since,
following [7], we shall from now on look for an approximate solution of the
stationary equation (1.12) in the region ahead of the wave front x→ −∞.

Now let us express the kinetic equations for each of the isotopes taking
part in chain reaction (1.2). First we write the equation for isotope 238

92 U as
follows

dn8(x, t)

dt
= −υn(x, t)N8(x, 0) (8σa +8 σf )N8(x, t)

+υn(x, t)N8(x, 0)
∑

9,Pu
iσani(x, t) (1.14)

The second summand in the right part of (1.14) is introduced in [7] ac-
cording to the assumptions that the absorption of neutron for nuclei 239

92 U
and 239

94 Pu leads to formation of 240
94 Pu, whose properties are assumed to be
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equivalent to those of the 239
92 U . Obviously, this is done in order to simplify

the problem or, in other words, for the satisfactory closure, without loss of
generality, of the kinetic equation system for neutrons and nuclei taking part
in the transmutation chain (1.2).

Assuming that 8σf �8 σa [7] the kinetic equations for 238
92 U takes the

following form

dn8(x, t)

dt
= − [c8n8(x, t)− c9n9(x, t)− cPunPu(x, t)]n(x, t) (1.15)

where

Ci = υN8(x, 0)iσa, i = 8, 9, Pu (1.16)

The kinetic equations for isotope 239
92 U takes the following form

dN9(x, t)

dt
= υn(x, t)N8(x, t)

− υn(x, t)N8(x, 0)
(
9σa +9 σf

)
N9(x, t)−

N9(x, t)

τβ
(1.17)

where τβ = τ 9
β + τNpβ is effective nucleus life-time for 239

92 U w.r.t. two β-decay
of 239

92 and 239
93 Np.

Taking into account that 9σf �9 σa and normalizing w.r.t. N8(x, 0) will
get (1.17) in the following form

dn9(x, t)

dt
= c9n(x, t)n8(x, t)− c9n(x, t)n9(x, t)−

n9(x, t)

τβ
(1.18)

And finally we will write the kinetic equation for 239
94 Pu as

dNPu(x, t)

dt
=
N9(x, t)

τβ
− υn(x, t)N8(x, 0)

(
Puσa +Pu σf

)
NPu(x, t). (1.19)

Taking into account the expression for the equilibrium plutonium concen-
tration (1.5) and normalizing w.r.t. initial 238U concentration N8(x, 0) will
get the expression (1.19) in the following form

dnPu(x, t)

dt
=
n9(x, t)

τβ
− c8n(x, t)

nPu(x, t)

ñPu
(1.20)
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Now we can rewrite the system of kinetic equations for the neutrons
and nuclei that take part in the transmutations chain (1.2) w.r.t. to the
dimensionless autowave variable z = ξ/L = (x+ ut)/L, where u is a velocity
of stationary wave going from left to right [7], and L is an average diffusional
neutron free path.

For this purpose from now on we shell use the following operators

∂

∂x
=

d

dξ
,
∂

∂t
= υ

d

dξ
. (1.21)

Following [7], let us assume, without loss of generality, that 8σa ∼=9 σa ∼=Pu

σa. From this it follows that c8 = c9 = cPu. Then, introducing the dimension-
less constant Λ = uτβ/L and a variable n∗(z) = c1τβn(z), and simultaneously
performing in equations (1.12), (1.15), (1.18) and (1.20) the following coor-
dinate transform

z =
ξ

L
=
x+ ut

L
(1.22)

we obtain the kinetic equations system relative to the dimensionless autowave
variable z in the following form

d2n∗
dz2

=

[
1− nPu

nPucrit

]
n∗, (1.23)

Λ
dn8

dt
= − [n8 − n9 − nPu]n∗, (1.24)

Λ
dn9

dz
= (n8 − n9)n∗ − n9, (1.25)

Λ
dnPu
dz

= n9 −
nPu
ñPu

n∗. (1.26)

The solution of the equations is based on the analogy1 of the diffusion
equation to the stationary Schrödinger equation in its quasiclassical approx-
imation. Naturally, in this case the stationarity condition is satifsied inte-
grally, because there are points where nPu > ncrit, and there are points where
nPu < ncrit . In this sense, the region with nPu > ncrit corresponds to the

1It is necessary to note that nowadays we may speak not about the analogy, but about
the direct link between some equation of Lagrange type (such as the diffusion equation),
and the Schrödinger equation. This conclusion lies in the base of Bohm quantum mechanics
[15], [16], augmented by Chetaev theorem [17], [18]. Moreover, this theorem was used in
order to prove that Bohm mechanics in essense does not have any hidden parameters [18].
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Figure 1.7: Dependence of neutron concentration on time. Propagating wave
(a) and locked˝wave (b): a segment of the curve of nPu(z) above the ncr line
is the reactor core active zone; the scales of ncr and nPu are given with a×10
magnification. From [19]

allowed region, while the regions with nPu < ncrit corresponds to the subbar-
rier region. In other words, the role of potential well is played by (inverted)
profile of the plutonium concentration in the 238U medium (see figure 1.7).

In the region ahead of the wave front z = −∞ the solution looks like
follows

n = C exp z, (1.27)

n8 = exp

(
−C

Λ
exp z

)
, (1.28)

n9 =
C

1 + Λ
exp z, (1.29)

nPu =
ñPu

1 + Λ

[
1− exp

(
− C

ΛñPu
exp z

)]
. (1.30)

Let us remind that obtaining this solution we have neglected the sum-
mands n9 and nPu which can be obtained w.r.t. boundary condition n8

∼= 1.
Now let us assume that subbarrier region ends at z = 0, which automatically
means nPu = ncrit at this point, which allows us to find the value of constant
C.

At the point z = a according to Bohr-Sommerfeld quantization condition
we obtain the following equation
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a∫
0

√
nPu
ncrit

− 1dz =
π

2
(1.31)

where the integral is taken over the supercritical region nPu > ncrit. While
condition (1.31) simultaneously plays the role of the condition for finding
of point a with nPu = ncrit, i.e. when the transition into subbarrier region
happens (see figure 1.7(a) and 1.8) due to burn-up.

Figure 1.8: The schematic view of allowed and subbarier (gray colored) re-
gions, corresponds the conditions nPu > ncrit and nPu < ncrit respectively.

Table 1.5: Feoktisov analytical estimations of parameter Λ(a).

η = ñPu=0.1
ncrit

1.55 1.67 1.75 2.0 2.38 2.50

Λ(a) 0 0.16 0.28 0.63 1.08 1.53

Here Feoktistov makes an important observation that the solution exists
not for all possible values of η (not for all possible values of ncrit). For
example, for nPu = 0.1 the propagation of the nuclear burning wave in the
neutron-multiplicating medium, such as 238U , takes place only when ncrit <
0.0064.

It is quite interesting in this regard to examine the physical processes
in situation where nPu > ncrit, but the nuclear burning wave, contrary to
our expectations, does not propagates. Following the numerical solutions of
Feoktistov problem (1.24)-(1.26) done in [19], let us consider this process in
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detail. Figure 1.7(a) shows the distribution of the main nuclei concentrations,
which are determined in (1.24)-(1.26) with ncrit = 0.05 at the moment t = 60
(dimension of τβ). Autowave coordinate is in dimension of L. Normalized
wave velocity u = 0.625. It is noted in [19] that in this mode about 70% of
238U is burned up.

Now let us consider a case when, for ncrit > 0.064 (ñPu = 0.1), the
plutonium concentration can exceed the critical one, but the stationary wave
does not develop. Figure 1.7(b) shows the calculation results for ncrit > 0.065
at the moments of time t = 23 and t = 200. Moreover, at t = 200 plutonium
concentration nPu is even bigger than in the previous case, but the diameter
of possible burning zone is small, since the front of the wave moved very
slowly. With time, the concentration of 239U n9 drops to levels unnoticeable
at this scale.

Qualitatively, stopping or lock-out of the wave could be explained as fol-
lows. The plutonium accumulation speed drops approaching the limit, which
is plutonium equilibrium concentration ñPu, therefore the concentration it-
selfs grows slowly. The Bohr-Sommerfeld quantization condition (1.31) at
small values of difference nPu − ncrit requires the expansion of supercritical
region (see (1.31)).

a v

√
ncrit

nPu − ncrit
(1.32)

In fact, however, the characteristical wave width, defined by diffusion
length L, does not increase with the increase of ncrit, but decreases instead.
The situation is aggravated by the fact that the plutonium equilibtium con-
centration drops as the 238U burns up, since ÑPu = ñPuN8 (see (1.5)).

The scales of figure 1.7 is such that for ñPu = 0.1 the equality ÑPu = nPu
can only be satisfied at the point where the curves n8 and nPu intersect. As
it’s seen from the figure 1.7(b), from this moment on the concentration nPu
starts to decrease (on the figure it does indeed drop even earlier due to not-
icable concentration of intermediate product n9), As a result, the criticality
conditions are not satisfied in this barely moving reactor, and the neutron
wave moves only because of the neutron flux from the external source on the
boundary. As the wave moves away from the external neutron source, it is
more and more difficult to propagate the wave, and distributions freezes˝.
Thus, when ncrit > 0.064 (ñPu = 0.1), it is impossible to form self-sustaining
critical region.

The described course of events can be compared with immovable˝traditional
reactor in working mode, when at the peripherial zone one control rod is in-
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serted while the other (burned up) rod is being removed from the central
region. The more rods one has, and the more movements they do while ap-
proaching the center, the more realistic this picture becomes. Ideally, each
rod should have the same lifetime˝. But since this is impossible to achieve in
reality, and because the replacement of rods is accompanied by disturbance
of the neutron field, the complex system of control rods have to be employed.
In the autowave mode this happens automatically.

The fact that the critical state is maintained automatically when ñPu >
ncrit, as follows from [7], can be used not only for the propagating wave
mode, but also in the stationary geometry of tradiotional reactor. In this
reactor, once brought to the critical state and being left to its own devices,
the reaction will develop automatically.

Thus Feoktistov was first to show [7] that the soliton-like prop-
agation of neutron-fission nuclear burning wave is possible in U238

medium, but only under the condition of a certain ratio between equilibrium
and critical plutonium concentration (ñPu > ncrit), which is characterized
by Bohr-Sommerfeld quantization condition. In other words, only in
this case the critical system state is maintained automaticaly without any
external intervention. Consequently, only in this case the critical state of the
system is fully characterized by inherent safety properties.

1.3 Modern innovation projects of soliton-like

fast reactors

In 1996 Edward Teller et al [21] offered a concept of slow nuclear burning
independently of Feoktistov. The burning wave propagates in thorium(Th)-
uranium(U) neutron multiplication medium, but not uranium-plutonium as
in Feoktistov model

232
x Th(n, γ)→ 233

x Pa
β−−→ 233

92 U(n, fission) (1.33)

Based on this Th-U cycle they developed an inherently safe automatic
reactor for long-term energy production (30 years) [21]. Bypassing the details
of description of slow burning propagation in thorium-uranium core of this
reactor (we shall discuss them later in 2), let us consider here some points of
fundamental analysis of self-stabilizing properties of nuclear burning waves
in neutron-multiplicating medium. Let us do it based on analysis of known
base models and their possible theoretical solutions, which in their turn can
be considered a test for corresponding computational experiments.
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First, let us consider mentioned above Teller model of completely auto-
mated nuclear reactor for long-term operation.

In 1995Teller at all. develop their first model of completely automated
nuclear reactor for long-term operation.

In this model a low-average-enrichment initial fuel loading which lasts
the entire 30-year, full-power design life of the power-plant, and which is
intended never to be removed from the reactor is featured [21].

The reactor core, comprised of a thorium cylindrical fuel stick with an
enriched ignitor section on its left end, surrounded by a graphite reflector.
The cylindrical core of the stick is hollowed out, with the radius of 10 cm, and
filled with low-density material, in order to enhance to an optimal extent the
near-axial transport of excess neutrons from the region of maximum neutron
production. The outer radius of the stick is 25 cm, and the outer radius of
the reflector is 40 cm, The axial length of the ignitor section is 0 cm, or one
fuel stick diameter. The compositions and densities of the reactor core com-
ponents are indicated in figure 1.9. A wave of nuclear breeding+deflagration
is launched by the ignitors toward the right of the stick. This wave then
propagates at a mean speed of ∼ 0.5 meter/year, releasing ∼ 1.5 GW of
steady-state thermal power as it advances.

Figure 1.9: A diametral plane section of the reactor core. Adopted from [21]

The modeling results indicate that it is feasible to propagate in steady-
state a nuclear burning wave down length of a stick of pure 232Th. apparently
for an essentially arbitrary distance, from a small ignitor region at the stick’s
end. The figure 1.10 shows the masses of each of the 20 zones (each 10 cm
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axial thickness) of the thorium-uranium section of the simulated reactor con-
figuration of figure 1.9, at 2.0 years of simulation time, plotted as function
of axial distance from the left side of the ignitor section. The ignitor section,
initially enriched to 10% 233U (i.e. zonal mass of 21.9 kg of 233U), extends
from 0 to 50 cm, as is indicated by the persistent discontinuity in the slope
of fission products vs. axial coordinate. The high burn-up of the thorium
fuel is particularly notable ∼ 60% in the ignitor section, but is also quite
high ≥ 50% in initially pure thorium which has passed through its epoch of
peak burning, e.g. between 50 and 90 cm. The leading-edge of the nuclear
[breeding+deflagration] front, defined as the location where the 233U concen-
tration has risen to the initial 233U concentration in the ignitor section, has
advanced to ∼ 155 cm, and the coordinate of the peak specific nuclear fission
point has advanced from 0 cm at time = 0 to ∼ 120 cm. The more than
three-fold variation in specific nuclear fission rate from z = 0 to z = 120 cm
(specific nuclear power is given in relative units) is in marked contrast to
the less that two difference in 233U concentration between these two points.
This is explained by the ∼ 5 times higher fission product concentration in
the ignitor section, which competes effectively with the 233U for neutrons at
the smaller z coordinates [21].

Figure 1.10: The modeling results. From [21]
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Thus, this models demonstrates that a graphite reflector-clad thorium-
cylinder of < 1 meter total diameter is seen to generate > 1 GW con-
tinuous power levels, at nuclear breeding/burn-front propagation speeds of
< 1meter year−1.

In 1996, the second model of reactor, the completely automated nuclear
reactor for long-term operation II were presented by Teller group [22].

In this model, a neutron source – only necessary at the start of the oper-
ation – is located at the center of the core, surrounded by thorium on both
sides. The thorium is thus converted into the fissile material 233U and the
burning region spontaneously moves from the center to both sides.

The reactor core is a right circular cylinder of approximately 3 meters
diameter and 10 meters length. This core basically consists of a small nu-
clear ignition region containing fuel enriched in 235U (albeit not to an extent
supportive of diversion to assembly of a nuclear weapon), embedded in a
much larger breeding+burning section containing 232Th. Core-averaged fis-
sile isotopic content is ∼ 1% by mass). This, together with the feasibility
of very high average fuel burn-up in the considered design (e.g., 50%), in-
dicates a total requirement for perhaps 100 tonnes (rather than 3000-4500
tonnes) of as-mined fuel for a 1 GWe reactor’s entire three-decade full-power
operational life.

Management of nuclear power production in the reactor’s core is fully au-
tomatic in all respects, over the entire three-decade interval between nuclear
ignition and final core shutdown at the power plant’s end-of-operational-life.
Participation of human operators is needed only at the commencement of
the core’s ignition and at the final, irreversible negation of its reactivity.

Fully automatic regulation of nuclear power production is performed by
uniformly distributed, functionally redundant thermostating modules. Each
of these acts to absorb strongly the local neutron flux when the local material
temperature exceeds the design-value, thereby quenching local nuclear power
production and assuring thermal homeostasis of every portion of the core,
over wide ranges of coolant flow and temperature, fuel composition, neutron
spectrum and neutron flux. Each thermostating module acts by reversibly
inserting neutron-avid liquid 6Li into a small (< 100 cm3) compartment
located in the coolant-flow from a source outside the neutron reflector, under
the drive action of a thermostating bulb filled with neutron-indifferent liquid
7Li which is emplaced in adjacent, substantially hotter nuclear fuel. A 3-D
lattice of such thermostating modules, each functionally-independent from all
of its fellows and emplaced during manufacture throughout the core, serves
to regulate the matter temperatures everywhere, at all times.

A surrounding neutron reflector and radiation shield, distributed means
for implementing a thermostating function on the reactivity and local power
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density.
A redundant pressurized-gas coolant transport system, and automatic-

and-redundant heat-dumping means to obviate concerns regarding all classes
of loss-of-coolant accidents during the plant’s operational and post-operational
life. As core coolant, is planed to employ pressurized helium, rather than wa-
ter. This permits the utilization of thermal energy at substantially higher
temperature, avoids all hazards arising from water reactions with high tem-
perature materials, and provides favorable independence of the core’s neu-
tronic reactivity on coolant-voiding. This reactor is proposed to be situated
in suitable environments at ∼ 100 meter depths underground.

At the commencement of the reactor’s operational life, the centrally-
positioned nuclear ignitor module is driven critical by one-time removal of
neutronic poison and, through concurrent nuclear fission and high-gain breed-
ing actions, commences to launch a nuclear deflagration wave into the ad-
jacent unenriched fuel. This wave first diverges radially from the centrally
positioned, on-axis nuclear ignitor until portions of it reach the outer edge
of the cylindrical fuel mass, where it is resolved into two oppositely-directed,
axially-propagating waves. One such wave moves toward each of the two
ends of the cylindrical core at a (exceedingly low peak) speed determined at
all times by the instantaneous thermal power demand on the reactor (and
upper-bounded by the leisurely β-decay of 233Pa, the rate-limiting step in
232Th-233U breeding). When only very low power is demanded, the neutronic
reactivity is driven to zero by action of the thermostatic controls, and the
deflagration-wave stalls; when heat is removed from the core at a greater
rate, the thermostating controls cool and thus raise the neutronic reactivity
to slightly positive levels, and the [burning+breeding] wave re-commences its
advance.

Fuel moderately enriched in fissile material is generated behind each of the
two wave-fronts. These two increasing masses of enriched fuel then continue
to burn, until fission product accumulation and fertile isotopic depletion (at a
50% core-averaged fuel burn-up) finally drives the core’s neutronic reactivity
negative. Figure 1.11 llustrates typical conditions ahead of, within, and
behind this pair of nuclear deflagration waves.

As we can see, in this case the two burn-fronts propagate toward the two
ends of the fuel-charge from a centrally-positioned nuclear ignitor.

Some of the salient features of the fuel-charge of the core of the refer-
ence reactor are depicted in figure 1.11, at four equi-spaced times during the
operational life of the reactor after nuclear ignition is commanded and in a
scenario in which the full ∼ 2GW of rated power is continuously demanded.
The corresponding positions of the leading edge of the nuclear deflagration
wave are indicated in the insert. Masses (in gm) of various isotopic compo-
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Figure 1.11: Salient features of nuclear deflagration wave propagation. From
[22]

nents in a set of representative near-axial zones and fuel specific power (in
W/kg) are the ordinate-values, while the axial position along the 10-meter-
length of the fuel-charge is the abscissal value.

Note that the neutron flux from the most intensely burning region behind
the wave-front necessarily breeds a fissile-rich region at the front’s leading-
edge, thereby serving to advance the wave. After the wave’s front has swept
over a given mass of fuel, the fissile atom concentration continues to rise for as
long as radiative capture of neutrons on available fertile nuclei is considerably
more likely than on fission product nuclei, while ongoing fission generates
an ever-greater mass of fission products. Nuclear power-production density
necessarily peaks in this region of the fuel-charge, at any given moment.

Finally, well behind the wave’s advancing front, the concentration ratio
of fission product nuclei (whose mass averages half that of a fissile nucleus)
to fissile ones climbs to a value comparable to the ratio of the fissile fission
to the fission product radiative capture cross-sections, the ”local neutronic
reactivity” goes negative, and both burning and breeding effectively cease -
as is clear from comparing the various snapshots with each other, far behind
the wave-front.

Thus, Teller group presented two models of soliton-like fast reactor. In
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the first model, one nuclear burning wave moves from the ignitor section on
the left end of the reactor core, to the right along the cylinder axis. In the
second model, two nuclear burning waves move towards the tho ends of the
cylinder from the centrally-positioned ignitor region.

The simulation results shows, that in both cases the nuclear burning
wave (or two waves in opposite directions) appears and propagates along the
reactor core.

In 2005 Hiroshi Sekimoto and Yutaka Udagava suggested a model of a
fast reactor with natural uranium as a fresh fuel, i.e. U −Pu fuel cycle (1.2)
[23].

CANDLE is a new burnup strategy for nuclear reactors. The acronym
stands for Constant Axial Shape of Neutron Flux, Nuclide Densities and
Power Shape During Life of Energy Production, but also represents the
candle-like burnup. As it shown in figure 1.12 this burn up strategy is
adopted, although the fuel is fixed in a reactor core, the burning region
moves, at a speed proportionate to the power output, along the direction of
the core axis without changing the spatial distribution of the number density
of the nuclides, neutron flux, and power density.

Figure 1.12: CANDLE burnup strategy. From [23]

The neutron transport equation is written as follows
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The nuclide transformation equation is expressed in the next equation
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A coordinate system that moves along with the burning region was con-

sidered. In this case, even as burnup progresses, the burning region does not
move. The transformation to this type of coordinate system is the Galilean
transformation. Under this transformation, the neutron diffusion equation
and nuclide transformation equation become as follows
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(1.37)
Here V stands for the moving speed of the burning region. V is de-

termined below. These equations are solved by iteration. Equation (1.36)
does not change under the Galilean transformation, and is the same as equa-
tion (1.34). The important fact is that the time variable has disappeared in
equations (1.36) and (1.37). The neutron transport equation corresponding
to equation (1.36) would also not change under the Galilean transformation
even if the strict transport equation was considered instead of the diffusion
equation. Several characteristics can be derived from the obtained equations
and here a few of the most important aspects are described. In equation
(1.37), there are two kinds of nuclear transformation, neutron induced re-
action and radioactive decay; however, radioactive decay can be generally
ignored. If Φg = φg/V is used instead of φg, V is removed from equations
(1.36) and (1.37)
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This indicates the following. If the neutron flux, namely the power, is
increased by a factor of m, the moving speed of the burning region also
increases by m. Even the absolute value of the power becomes m times
greater, though the relative shape does not change. That is, when the power
is changed, the moving speed of the burning region and the absolute value
of the power density change, however, the power density distribution does
not change. These results, however, do not hold when radioactive decay
cannot be ignored. In this case, a change in the neutron multiplication
factor poses a bigger problem than a change in the power distribution. The
relationship between the moving speed of the burning region, burnup of spent
fuel, and total power is expressed by the following equation, which has no
approximation

∞∫
−∞

∑
g′

∑
n

NnσF,n,g′φg′dz = V

∞∫
−∞

∑
g′

∑
n

NnσF,n,g′φg′dt (1.38)

Here the left side is the total number of nuclear fissions integrated along
the axis at a certain radial position. The integral on the right side is propor-
tional to the burnup of the spent fuel at the same radial position.

CANDLE burnup is possible in a core designed so that the infinite medium
neutron multiplication factor kinfty (the neutron multiplication factor con-
sidering the reactor to be of infinite size) of the fuel changes with burnup
specifically as shown in figure 1.13.

On the left is the fresh fuel side and on the right is the spent fuel side.
On the left side of the peak, kinfty increases with burnup, and on the right
side it decreases. Accordingly, the peak shifts to the left side, namely, to the
fresh fuel side.

Since a fast reactor has excellent neutron economy, CANDLE burnup
in this model was tried with natural uranium or depleted uranium used as
fresh fuel. The principle behind this is that the 238U in the fresh fuel region
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Figure 1.13: Principle of CANDLE Burnup. From [25]

absorbs neutrons leaking from the burning region and changes into 239Pu.
Burnup and fuel change in this reactor are shown in figure 1.14. In this
figure, changes in nuclide densities of important nuclides and neutron flux
(speed weighted average number density of neutrons) along the core axis are
shown.

Since natural uranium is highly sub-critical, many neutrons must be ab-
sorbed by 238U to bring the system to a critical state. Thus, it is important
to have a nuclear reactor with excellent neutron economy. For this purpose,
the neutron spectrum should be extremely hard (i.e., the effective neutron
energy should be extremely high.). The burnup of fuel is increased by sup-
plying many neutrons to the fresh fuel region. This also results in a reduction
in the moving speed of the burning region.

Natural uranium was used as fresh fuel for this investigation, however
the same design is possible for depleted uranium. To increase the neutron
economy with a hard neutron spectrum, the percentage of fuel volume was
set to 50%, which is larger than used in current reactors. In this case, the
cooling capability of the coolant decreases. In this design, the fuel has a
similar structure to the fuel block employed in the high-temperature gas-
cooled reactor and the coolant flows through holes in the block. In this way,
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Figure 1.14: CANDLE burnup in a fast reactor. From [25]

a high cooling capability can be obtained with a small amount of coolant.
This structure is also suitable for CANDLE burnup from a viewpoint of
refueling. For the calculation, 21-group diffusion equations were used. It
was confirmed that CANDLE burnup can be established for this design. The
results are shown in table 1.6.

Table 1.6: Calculation results for a fast reactor loaded with natural uranium.

fuel oxide nitride metal

effective neutron multiplication
factor

0.926 0.990 1.015

moving speed of burning region 4.7cm/year 3.5cm/year 3.8cm/year
average burnup of spent fuel 452GWd/t 445GWd/t 426GWd/t

As we can see now, both Teller and Sekimoto groups, made numerical ex-
periments of nuclear reactor with thorium-uranium and uranium-plutonium
fuel cycle, respectively, and obtained, under different initial and boundary
condition, the solution in the form of progressive burning wave.

The open question now is: what is the necessary and sufficient conditions
of nuclear burning wave origin and propagation in the neutron multiplicating
medium?˝In the chapter 2 we will look for answer to this question.



Chapter 2

Physical conditions of nuclear
burning (NB) wave origin

In this chapter some relevant for this thesis elements of fundamental analy-
sis of self-stabilizing criticality burning waves in the neutron multiplicating
medium will be considered. In this chapter we will first analyze the exist-
ing fundamental models and their analytical solutions, which can be used
for verification of computing experiments results. And then, in the section
2.2 and 2.3 using the pattern of transition from quantum mechanics frame-
work to the classical mechanics we will obtain the necessary and sufficient
conditions of nuclear burning wave origin and propagation in the neutron
multiplicating medium. This will be done here without going into details of
heuristic description of the slow burning process propagation in the reactor
core. The heuristic description will be given in chapter 3.

2.1 Negative feedback and Van Damm neu-

tronic model

Now, let us consider the physical reasons, which predetermine soliton-like
propagation of criticality wave in initially subcritical infinite-length medium
with multiplication rate k∞ < 1. It is obvious that subcritical region with
k∞ > 1 has to be created by some external neutron source, such as acceler-
ator or another sabcritical region. Generally speaking, subcritical region is
a product of either neutron multiplication effects in fast nuclear systems, or
burning of flammable absorber (a fuel component) in thermonuclear systems.
Due to gradual burn-up of neutron-multiplicating medium in the subcritical
region, the region itself stops being subcritical, as k∞ decreases below 1. In
the usual case the subcriticality wave would have stopped and extinguished,

48
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but since neutrons that were produced in this region during the multiplica-
tion stage have infected˝neighboring regions via diffusion mechanism, the
virgin˝region ahead of the wave front becomes subcritical, and the wave
propagates in this direction. It is obvious that for stable movement of this
soliton-like wave there has to exist some stabilizing mechanism, such as neg-
ative autocatalysis, or, speaking more broadly, any other negative feedback
mechanism. In traditional nuclear reactors it is called negative reactivity
feedback˝. Then, let us consider the following example.

Let us write non-stationary one-dimensional equation for a reactor in
one-group approximation and with negative reactivity feedback:

D
∂2φ

∂x2
+ (k∞ − 1 + γφ) Σaφ =

1

υ

∂φ

∂t
(2.1)

where φ is a neutron flux [cm· sec−1], D is a diffusion coefficient [cm],γφ is
a reactivity (dimensionless quantity), Σa is a macroscopic absorbtion cross-
section; υ is a neutron speed. In our case a negative feedback coefficient γ is
mostly defined by the fact that expression (2.1) uses neutron multiplication
rate in infinite medium, and therefore the flux density has to be corrected.

We will search for a solution in form of autowave

φ(x, t) = φ(x− ut) ≡ φ(ξ) (2.2)

where u is a phase velocity of the wave, ξ coordinate in the system of axes,
which moves with phase velocity u. Then

1

υ

∂φ

∂t
= −u

υ

∂φ

∂t
(2.3)

Since we know [42] that ratio u/υ in (2.2) is a number of order of mag-
nitude 10−13 for fast neutron systems and 10−11 for thermonuclear systems,
respectively, it is obvious that we can neglect the partial derivative in (2.1)
without loss of generality.

Taking into consideration (2.2), we rewrite (2.1) in the following way

L2∂
2φ

∂ξ2
+ [k∞(ψ)− 1 + γφ]φ = 0 (2.4)

where L = D/Σa is a 1/2 of neutron diffusion length and φ is co-called
neutron fluence function

ψ(x, t) =

t∫
0

φ(x, t′)dt′ (2.5)
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If we use an expansion of φ(ξ) in order to a small parameter ε = k∞−1 in
(2.4), then, taking into account | γφ |� O(1), we obtain a very well known
Korteweg-de Vries (KdV) equation

εL2φξξξ + εφξ + γφφξ = 0 (2.6)

which has a stable solution of soliton-type wave only when γ < 0.

φ = φm sech2 (αξ) = φm sech2 [α (x− ut)] (2.7)

where φm is a neutron flux amplitude, 1/α is a characteristic length, which
is proportional to the soliton wave breadth, which by definition is full with
at half maximum (FWHM) and equals

∆1/2 = FWHM = 2 ln
(

1 +
√

2
)
α−1, [cm] (2.8)

Obviously that through integration of equation (2.7) one can calculate
the soliton area

Sarea = 2φm/α (2.9)

We have to note here that even a superficial analysis allows us to make
one very important conclusion: stable soliton-like wave of nuclear burning
(subcritical wave) is only possible when there is a negative feedback, such as
a negative reactivity feedback.

In order to find physically meaningful analytical solution of (2.4) by ex-
panding it with (2.6), it is necessary to define function k∞(ψ), which is
called a burn-up function in literature, in a realistic way. Since we know that
burn-up function has a bell-shaped dependency on fluence normalized by its
maximum value ψmax (see figure 2.1), then, according to [42], we can without
a loss of generality define it as

k∞ = kmax + (k0 − kmax)
(

ψ

ψmax
− 1

)2

(2.10)

where k0 and k∞ are initial and maximal neutron multiplication factor, re-
spectively. Using (2.10) we can rewrite (2.4)

L2φξξ + ρmaxφ+ γφ2 − δ

[∫∞
ξ
φdξ

uψm
− 1

]2

φ = 0 (2.11)

where ρmax = kmax − 1, δ = kmax − k0.
Now it is not difficult to find the parameters of soliton-like solution by

direct substitution of (2.7) into equation (2.11). This procedure, which was
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Figure 2.1: Asymmetric burn-up function as characteristic for realistic burn-
up function.

first suggested and discussed in [42], lets us find values of the amplitude,
phase and phase velocity of soliton-like wave.

φm =
δ − 3ρmax

2γ
, α =

√
δ − ρmax

2L
, u =

1

α

φm
ψmax

(2.12)

But most important we can conclude from it (based on negativity of γ)
the existence (fire-up) requirement of autowave for one-dimensional (1D) case
[42]

ρmax − 2α2L2 − 2kmax + k0 − 3 > 0 (2.13)

Let us demonstrate it by emulating the disturbance of soliton solution in
the framework of 3D model of Van Dam reactor [44], and by analyzing of
this solution’s stability in case of expanded model (2.1). For simplicity let
us consider cylindrical reactor. In this case we can consider neutron leakage
by using so-called transverse geometric buckling [39, 40, 41], or, in other
words, transverse geometrical parameter of neutron-multiplicating medium,
which, as opposed to material buckling, characterizes exclusively the specifics
of reactor’s active zone geometry and the boundary conditions for neutron
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flux density (e.g., φ = 0 at the external extrapolated boundary of the reactor
core).

First and foremost, it is connected with the fact that in many neutronic
computational systems functions exist permitting the conversion of core mod-
els from 3D to 2D or 1D. Usually, as in collapsing the core model one or two
dimensions are lost, the equivalence process to pass from the 3D model to
the reduced one, evaluates a transverse buckling distribution that takes into
account for the neutron leakage in the lost direction. The most used method
to compute this distribution is based on the 3D leakage conservation 1.

This formulation is also stipulated by the fact that, according to lin-
ear diffusion theory for reactors with homogenous reactor core, transverse
geometrical buckling is much higher than longitudinal geometric buckling.
Therefore, following [44], we will take the value of transverse geometrical
buckling as a basis for perturbance of soliton solution for 3D reactor model
(2.1). Introducing the geometrical multiplier factor kB, we can rewrite (2.1)
as follows

L2(φxx + φyy) + (kB − 1)φ+ L2φzz + (k∞ − kB + γφ)φ = 0 (2.14)

For the perturbation formalism we assume further that k is quite close to
kB and γφ much smaller than unity. Thus, we have

φzz � φxx, φzz � φyy (2.15)

| k∞ − kB |�| kB − 1 |, | γφ |� O(1) (2.16)

According to a usual perturbation scheme, φ is expanded in the form

φ = φ0 + φ1 + . . . (2.17)

where φ0 is the leading-order solution and φ1 is the first higher-order one.
Substituting (2.17) into (2.14) and collecting equal order terms, we obtain

the leading order equation

L2

(
∂2φ0

∂x2
+
∂2φ0

∂y

)
+ (kB − 1)φ0 = 0 (2.18)

1In multigroup nucleonic models this method could give poor results in trying to match
2D models with a strongly non-uniform composition distribution. The method presented
in [45] permits the computation of a transverse buckling distribution that gives a good
equivalence in these difficult configurations. This method can be used to make an equiv-
alence between two 3D models. This capability is useful in resetting computer models on
measurements.
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and the first higher order equation

L2

(
∂2φ1

∂x2
+
∂2φ1

∂y

)
+ (kB − 1)φ1 = L2∂

2φ0

∂z2
− (k∞ − kB + γφ0)φ0 ≡ f(φ0)

(2.19)
From (2.18) and (2.19) we obtain respectively

∆2
xyφ0 = −kB − 1

L2
φ0 (2.20)

∆2
xyφ1 =

f(φ0)− (kB − 1)φ1

L2
(2.21)

Substituting (2.21) and (2.21) into second Green [32] formula we obtain,
we obtain the solvability condition for Van Dam equation∫

S

(
φ0∆

2
xyφ1 − φ1∆

2
xyφ0

)
dS =

1

L2

∫
S

φ0f(φ0)dS = 0 (2.22)

Thus, by using parabolic burn-up function for k∞ (2.10) and assuming
that

φ0 = Φ(ξ)φ0(r), ξ = z − ut, ψm(r) = Ψmψ0(r)

the right-hand side of (2.19) leads to

−f(φ0) = L2∂
2φ

∂z2
+ (kmax − kB)φ0

−(kmax − k0)

[∫∞
ξ
φ0dξ

uψm
− 1

]2

φ0 + γφ2
0 (2.23)

Furthermore, the integration of φ0f(φ0) in solvability condition (2.22)
gives

−
∫
S

φ0f(φ0)dS =
[
L2∆2

ξξΦ + (k∞ − kB)Φ
]
dS

−(k∞ − kB)Φ

[∫∞
ξ

Φdξ

uΨm

− 1

]2 ∫
φ2

0dS + γΦ2

∫
S

φ3
0dS (2.24)

The solvability condition (2.22) leads to an amplitude equation of Φ,
which has an identical form to the 1D model by Van Dam (2.11)
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L2∂
2Φ

∂ξ2
+(kmax−kB)Φ− (kmax−k0)

(∫∞
ξ

Φdξ

uΨm

− 1

)2

Φ+γ
I3
I2

Φ2 = 0 (2.25)

where

I2 =

∫
S

φ2
0dS, I3 =

∫
S

φ3
0dS

Identifying the above equation with (2.14) taking into account (2.10) and
setting

ρmax = kmax − kB, δ = kmax − k0, γ0 = γI3/I2, ψm = Ψm (2.26)

we obtain the solution as following

Φ = Φm sech2(αξ) (2.27)

where

φm =
δ − 3ρmax

γ0

, α =

√
δ − ρmax

2L
, u =

1

α

Φm

Ψmax

(2.28)

From (2.28) follows existence condition for autowave in 3D case

kmax − k0 >
3

2
(kB − k0) > 0 (2.29)

that for kB = 1 turns into analogous existence condition for 1D case (2.13).
Evidently, from the point of view of inherent safety according to Feok-

tistiv, this is a required, but not sufficient, since the feedback dynamics is
defined manually˝and not according to any physical law, which should nat-
urally prevent explosive development of chain reaction [1].

In order to estimate an influence of the found parameters on stability dy-
namics of the soliton-like nuclear burning wave, we shall use an informational-
probabilistic approach developed by Seifritz [43].

We can write an expression for mean entropy of the process in question

S = −kB
∫ ∞
−∞

p(x) ln p(x)dx (2.30)

where p(x) is probability density w.r.t. x, ln(1/p(x)) is a mean entropy, and
kB is Boltzmann constant.
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By direct substitution of soliton-like solution (2.7) into equation (2.30)
we obtain

S = −2kB

∞∫
0

sech2(αξ) ln
[
sech2(αξ)

]
d

(
1

| γ | φmL
x

)

= 4kB

∞∫
0

ln cosh(βy)

cosh2(βy)
dy (2.31)

The integration of (2.31) leads to to the following expression for the en-
tropy

S =
4(1− ln 2)

β
=

2(1− ln2)

3
α
(
| γ |

∑
aφm

)
kB

= kB
2(1− ln 2)

3

∑
a

L
(2kmax + k0 − 3)

√
1− k0 (2.32)

which in the case of isoentropic soliton transportation of soliton (2.2), i.e.

S v
Σa

L
(2kmax + k0 − 3)

√
1− k0 = const (2.33)

shows, that the ratio kmax/k0 w.r.t. condition k0 < 1, 2kmax +k0 > 3 kmax−
1 < ε has to have a constant mean 〈kmax/k0〉 = const.

It is worth to mention here that if width ∆1/2 → 0, then by isoentropy
(2.32) the shape of soliton becomes similar to so-called Dirac δ-function. If
we introduce two different sizes or scales of length l1 = γφmL and l2 = 1/α,
then we could see that the first one gets bigger when the other is small, and
vice versa. It happens because the area Sarea (2.9) under the soliton has
to remain constant, because Sarea∞l1l2. In this case the entropy of soliton
tends to zero, since the entropy is proportional to the ratio of these two
values Sarea∞l1/l2 → 0. These properties are an implication of the fact
that l1 is a soliton non-linearity characteristic, and l2 is a soliton dispersion
characteristic. If l1 � l2, then the process has weak dispersion, and with
l1 � l2 it has strong dispersion.

In the latter case the amplitude of soliton is big. And, finally, if l1 = l2,

then the soliton velocity is u∞(l21l
2
2)

1/2
, see equation (2.12) that is, it is

proportional to geometrical mean of dispersion and non-linearity parameter.
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2.2 Chaos and integrability in non-linear dy-

namic of the reactor core.

It is necessary to note here that due to the simplification of reactor equation
(2.1) the phase velocity of soliton-like nuclear burning wave is quite idealized,
and does not reflect some substantial physical processes that take place in
reality. For example, it does not consider the effective nucleus life-time τβ
for 239

92 U w.r.t. two β-decay of 239
92 and 239

93 Np, which is a delay of plutonium
nuclei generation in the chain (1.2).

In this regard one very important and fundamental results of Feoktistov,
table 1.2, has to be recalled

Λ(a) =
uτβ
L

(2.34)

where τβ is a delay, caused, for instance, by active (fissionable) isotope
birth, τβ is equal to cumulative β-decay period compound nuclei either in
Uranium − Putonium Feoktistov chain (1.2) or in Thorium − Uranium
Teller chain (1.33), a is a breadth of allowed region in the Bohr-Sommerfeld
quantization condition (1.31), and Λ(a) is a dimensionless coefficient, which
appears in the Feoktisov simplified reactor diffusion model (1.24)-(1.26).

Obviously, due to its physical meaning, the equation (2.34) is a key factor
which predetermines the value of phase velocity of the soliton-like burning
wave. Therefore, this equation exists regardless of abstraction degree and
approximation level of the model of reactor core, and should appear implicitly
or explicitly in any model whose system of kinetics equation for nuclei and
neutrons has a soliton-like solutions for neutrons. At the same moment, due
to the fact that soliton wave average breadth has an order of 2L (see (2.8)),
maximum values of dimensionless coeffitient Λ(a) and velocity u are define
be the following approximate equality

1

b
Λmax(a) =

umaxτβ
bL

= 1, (2.35)

where coefficient b ∼ 2.
From the analysis of (2.35) it follows that the velocity of stable propa-

gation of soliton-like wave is not necessarily equal to diffusion velocity, i.e.
to u = L/τ/beta, and can be considerably slower or faster, which is an im-
plication of a very strong domination of either non-linearity or dispersion
parameter, respectively. These parameters in their turn are induced by pe-
culiarities of nuclear transmutation members’ birth and death kinetics, for
example in chain (1.2) or (1.33). In practice they appear as higher or lower
fuel burn-up degree, respectively.
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In other words, when the wave velocity and, consequently, the fuel burn-
up rate are low, then the wave stops due to the following reasons. First,
neutrons from external source burn plutonium on the medium border, and
simultaneously transmute uranium into neptunium-239 (Ne239). Ne239 starts
to produce plutonium after a while, but could not create the required concen-
tration fast enough, while the production rate of Pu239 drops due to uranium
burnup. A new layer without both 238U and 239Pu grows thicker and thicker
at the medium border. Neutron diffusion through this layer does not suffice
to increase plutonium concentration in sequent layers, and the wave does not
appear even when nPu(x, 0) = ncrit.

Conversely, when the wave velocity and fuel burn-up rate are high, the
wave stops due to insufficient (or, to be more precise, too delayed) pluto-
nium production. This situation is similar to the fire in the woods under
strong wind, when only the tops of tree crowns burn. When the wind speed
increases, it could extinguish the fire altogether. In our case, there exists
a velocity, for which, in the early stage x = 0 the front of neutron soliton
wave leaves behind the front of plutonium production wave, and when the
lag exceeds the neutron diffusion length, the neutron wave stops. It is in-
teresting to note that this case is not studied in the literature (apart from
[47]), but it is possible to postulate that it corresponds to some hypothetical
situation where the nuclear burning wave appears under the conditions of
highly-enriched fuel, which can be characterized by ultra-low critical concen-
tration of the fuels active component.

Thus, lag (see figure 1.7(a)) or lead of neutron wave front relative to plu-
tonium wave front for a distance exceeding the neutron diffusion length will
leads to a full stop and degradation of wave. This means that the degra-
dation of wave with very low or very high initial phase velocity, i.e. with
very low or very high value of a, causes the expression (2.34) will tends to
zero. Therefore, considering (2.35), we can conclude that (2.34) is correct
for 0 ≤ (1/b)Λ(a) ≤ 1. Based on this generalization, we can make an impor-
tant assumption that the expression (1/b)Λ(a) means the probability density
distribution p(a) w.r.t. a

uτβ
bL

= p(a) (2.36)

Let us consider and justify the type and main properties of such a statis-
tics, and also show the results of its verification based on the known compu-
tational experiments in modelling a nuclear burning wave in U − Pu (1.2)
and Th− U (1.33) fuel cycles.

In order to solve the posed problem let us use a known analogy between
neutron diffusion equation and stationary Schrödinger equation in its qua-
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siclassical approximation. Let us recall that this analogy was used earlier
to solve the kinetics equation system for neutrons and nuclei (1.24)-(1.26)
taking part in transformations of U − Pu fuel cycle. Since equations system
for neutrons and nuclei for Th− U fuel cycle (1.33) is structurally identical
to equation system for U − Pu fuel cycle (1.2), then the quantum mechan-
ical˝solution will be common for both fuel cycles, except for a few details.

Now, let us recall that earlier, we have used the Bohr-Sommerfeld quan-
tisation condition, which in the case of one-dimensional systems explicitly
defines the energy eigenvalues En∮

p(x)dx =

∮ √
2m(En − V (x)dx = 2π~

(
n+

1

2

)
, n = 0, 1, 2, ... (2.37)

where m and p(x) are the mass and particle momentum for the particle in
the field of some smooth potential V (x), respectively.

For an almost integrable Feoktistov system of equations (1.24)-(1.26) or
anologous Teller system of equations, for which it is assumed that m = 1/2.
V (x) = 1, and n = 0 this condition is applied as follows

a∫
0

√
E0 − 1dx =

π

2
, E0 =

nfis

nfiscrit
(2.38)

where the index fis denotes the fissionable isotope, for example 239Pu in
Feoktistov U − Pu fuel cycle (1.2) and 233U in the Teller Th − U fuel cycle
(1.33).

In general case of description of fast reactor core evolution, however,
respective equation systems for neutrons and nuclei are almost without ex-
clusions nonintegrable. This, in turn, means that according to Kolmogorov-
Arnold-Moser theorem [28]-[30] it is impossible to use quasiclassical quan-
tization formulas in phase space2, where movement not limited by multidi-
mentional toruses. This is stidulated by the fact that in the case of non-
integrable hamiltonia systems a big amount of toruses collapse as the dis-
turbance (non-integrability) grows, which leads to majority of bound states
trajectories become entangled, the movement becomes mostly chaotic, and
bound states themselves, as well as their energies, could not be described
by the rules of quasiclassical quiantization, such as Einstein-Brillouin-Keller

2It is interesting to note that exactly due to this reason Einstein in his famous work [31]
denied the quasiclassical approach altogether. Only half a century later Gutzwiller [32]
could surmount the difficulties arising from the quantization of non-integrable systems,
and has obtained an expression which can be viewed as a generalized Wentzel-Kramers-
Brillouin (WKB) approximation.
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(EBK) quantization rule for multidimentional case [33], which generalizes the
Bohr-Sommerfeld quiantization rule.

The significance of these difficulties was first in full assessed by Persival
[34], who proposed to separate the energy spectrum of the bounded state at
the quasiclassical limit ~→ 0 into two parts:

• regular energy spectrum, which corresponds to the integrated move-
ment mode in which all states can be quantized according to EBK
quantization rules;

• irregular energy spectrum, which corresponds to mostly chaotic move-
ment mode, for which the EBK quantization rules cannot be applied.

The notion of irregular spectrum is of great interest, since in a certain
sense it implies that at the limit of ~ → 0 the underlying˝classical chaos
will manifest itself in quantum-mechanical properties of the system [33]. In
the future this possibility served as a basis for introduction of quantum
chaos˝notion, which, as Tabor precisely notes, does not always associate
with the limit ~ → 0. We shall also note that nowadays the quantum
chaos˝notion unite a number of problems connected with quantum-mechanical
description of systems that behave chaotically in classical terms [35].

Since we will use a random matrices theory results in the research of
chaotic properties of our statistics (2.36), let us first give an overview of the
main concepts of this theory.

First, following [35], let us cinsoder shortly a nature of so-called universal-
ity classes and Gauss ensemble types. As is known, Hamilton operator matrix
posessin any kind of symmetry can be reduced to block-diagonal form, where
the matrix elements in each block are defined by a specific set of quantum
numbers.

For the sake of simplicity we will assume that Schrödinger equation

i~
∂Ψ

∂t
= ĤΨ (2.39)

is expressed for the states belonging to one single block. Here, the operator
Ĥ matrix dimension is finite and is an integer number.

Let us consider now the role of the symmetry with respect to the sign
invertion – the time inversion. For this purpose let us introduce an operator
T which inverts the time sign

Tf(t) = f(−t) (2.40)

Obviously, the exchange of t for −t in the ∂/∂t differential operator which
is a part of non-stationary Schrödinger’s equation (2.39) can be compensated
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by exchanging i for −i. Mathematically this can be expressed by considering
the following commutative correlation[

CT, i~
∂

∂t

]
= 0, (2.41)

where C is a complex conjugation operator

CA = A∗ (2.42)

Now we have to find out if the Hamiltonian operator Ĥ commutates with
operator CT . It is easy to show that in the case of conservative systems
Ĥ commutates with T . So it will be enough then to establish how the C
operator affect the Hamiltonian operator Ĥ. Three different situations are
possible here, and each of them defines a class of universality.

As shown in [35], these universality classes separate physical systems
into groups according to their relation to orthogonal, unitary or simplectic
transformation, which leave the Ĥ matrix invariant. In other words, it is
postulated in [35] that:

• the Hamiltonian of spinless system symmetrical w.r.t. time inversion is
invariant w.r.t. orthogonal transformations and could be represented
by real matrix;

• the Hamiltonian, which is asymmetrical w.r.t. time inversion, is in-
variant w.r.t. unitary transformations and could be represented by
Hermitian matrix;

• the Hamiltonian of the system with spin 1/2 , symmetrical w.r.t. time
inversion, is invariant w.r.t. simplectic transformations and could be
represented by quaternion real matrix.

Now let us talk about Gaussian ensembles. If the matrix element distri-
bution function is invariant with respect to one of the mentioned transfor-
mations, this means that the sets of all matrices with elements described by
given distribution functions form, form a Gauss orthogonal ensemble (GOE),
Gauss unitary ensemble (GUE), and Gauss simplectic ensemle (GSE), respec-
tively.

We have to note at the same time one very substantial detail. The ma-
trix element distribution function of Gauss ensembles could not be measured
directly, since our experiment can only give us the information on the en-
ergy levels of the quantum-mechanical system in question. In other words,
the energy eigenvalues distribution function is the most interesting from the
practical point of view.
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The quation derivation process for the ensembles show above can be found
in [36]. Here, it appears that the energy eigenvalues correlated distribution
function for all ensemble types can be respresented in a unified form

P (E1, ...EN) ∼
∏
n>m

(En − Em)ν exp(−A
∑
n

E2
n), (2.43)

where ν is an universality index, equals to 1, 2 and 4 for GOE, GUE and
GSE statistics, respectively. In the case when ν = 0 the energy eigenval-
ues are not correlated, and the interlevel distance distribution function can
be described by Poisson statistics, and the matrix ensemble itself is called
Poisson ensemble.

Due to the fact that interlevel distance distribution function is a most
well-researched property of the chaotical systems, below, following [35], we
shall only show a calculation of relatively simple case of gaussian 2×2 matrix
ensemble. Let us calculate the interlevel distance distribution function p(s)
by substitution of function P (E1, E2) in expression (2.43)

p(s) =

∞∫
−∞

dE1

∞∫
−∞

dE2P (E1, E2)δ(s− |E1 − E2|) (2.44)

= C

∞∫
−∞

dE1

∞∫
−∞

dE2|E1 − E2|ν exp(−A
∑
n

E2
n)δ(s− |E1 − E2|).

Constants A and C are defined by two normalization conditions
∞∫

0

p(s)ds = 1, (2.45)

∞∫
0

sp(s)ds = 1. (2.46)

Here, the first condition is a normalization of total probability, and the
second is a unit-norm normalization of average interlevel distance. Inte-
gration of (2.44) gives us the folowing so-called Wigner interlevel distance
distribution function, which correspond to different gaussian ensembles

p(s) =



π
2
s exp(−π

4
s2), ν = 1(GOE),

32
π
s2 exp(−π

4
s2) ν = 2(GUE),(

8
3
√
π

)6

s4 exp(− 64
9π
s2) ν = 4(GSE)

(2.47)
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Despite the fact that these functions were obtained for gaussian 2×2 matrix
ensembles, they describe with sufficient precision the spectrums of arbitrary
size matrices [35].

It is worthy to note that even if the random matrix theory was concieved
in order to find regularities in heavy nuclei energy spectrums [36], the interest
towards it grew after Bohigas, Giannoni and Schmit concluded [38] that it
can be applied to ANY chaotic system.

Indeed, Wigner interlevel distance distributions (which mostly concerns
GOE) were found in numerous completely different physical systems – from
atomic nuclei to macroscopic billiards. Here, quite often it was impossible
to tell the difference between the statistics of atomic nuclei spectrum and
statistics of billiard spectrum. The same could be said about other spetrum
correlational properties, some of which were discussed above. This fact,
without any doubt, can be an indication that the nature of interactions
in a particular physical system does not play a definitive role as long as
the system behaves chaotically. On the other hard, however, exactly this
property gives us a chance to use the same mathematical apparatus for the
description of different chaotic systems, including nuclei, microwave billiardsa
and mesoscopic systems, such as quantum points and quantum wells.

Going back to our problem of determining the statistics type of p(a)
(2.36), let us try to use the discussed properties of gaussian ensembles.

2.3 Wigner distribution and conditions of nu-

clear burning wave origin in fast reactors

Now, in the framework of almost integrable system, to which the system
equation of Feoktistov U − Pu fuel cycle (1.2) or Taylor Th − U fuel cycle
(1.33) nucler burning kinetics belongs, let us formally introduce the station-
ary state energy eigenvalue as ñfis/n

fis
crit = E0, and quasistationary state

energy eigenvalue nsemifis /n
fis
crit = Esemi, where E0 > Esemi, and n is a current

equiliblium main isotope concentration, limited from above by the value of
initial equilibrium main isotope concentration. In general case, to describe
the wave nuclear burning mode, which is the mode the reactor is maintained
in to remain near-critical, we can assume Esemi → 1. Then, in the framework
of quiantum-mechanicall analogy, the latter means that the burn process en-
ergy spectrum evolution in the allowed region can be described by some
quasi-equvalent two-stage scheme, as show on figure 2.2.

Then, for almost-integrable system which describes the nuclei transmuta-
tuin kinetics for Feoktistov U −Pu fuel cycle (1.2) or for Taylor Th−U fuel
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Figure 2.2: The schematic view of allowed and subbarier region boundaries
in the Bohr-Sommerfeld quantization condition (a) and the corresponding
quasi-equvalent two-stage energy scheme (b).

cycle (1.33) in the general case we can use an approximate Bohr-Sommerfeld
condition as follows

a∫
0

√
nfis

nfiscrit − 1
dz ≈

a∫
0

√
E0 − Esemidz ≈ a

√
E0 − Esemi ∼

π

2
. (2.48)

From here we can postulate one obvious and important assertion: due to
Bohr-Sommerfled condition (2.48) the Wigner interlevel distance statistics
type unambiguously predefines an analogous statistics type of parameter a,
which characterizes the wave front width of the active (fissioning) material.

Here we have to note that before the experiment nothing is know about
the value of energy E0, but we can assume that Esemi = 1. If one adds that
in the stationary mode all kinetic parameters of the wave are predefined by
the values of initial equilibrium ñfis and critical nfiscrit concentration of active
(fissioning) isotope, then we notice the physical meaning and the necessity
of the following substitution

a
√
E0 − Esemi = a∗

√
ñfis

nfiscrit
− 1. (2.49)

Obviously, the conditions (2.48) and (2.49) let us obtain the expression
for the assessment of a value of parameter a∗
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a2
∗ ∼

π2

4

ncrit
ñPu − ncrit

. (2.50)

The next step for determining the p(a∗) statistics type (2.36) is predefined
by the necessity of verification of the suggested hypothesis using experimental
data. Therefore we have conducted the comparison of gaussian ensemble
statistics (2.47) with the results of calculation experiments [8], [19], [22]-
[27], and this comparison showed a good accordance of calculation data with
theoretical dependency, which is described by gaussian simplectic ensemble
(GSE) statistics. The comparison results are presented in the table 2.1 and
on figure 10, where we have also showed Feoktistivs analytical estimations
(see table 1.2) from [8].

Table 2.1: The parameters of nuclear burning wave.

Parameter
U-Pu cycle Th-U cycle

Rusov Sekimoto Fomin Fomin Fomin Ershov Teller Rusov
[69] [23] [26] [26] [26] [19] [21]

ñfis
equil

nfis
crit

0.100
0.056

2.585
1.750

0.145
0.080

0.024
0.015

0.240
0.105

0.10
0.05

0.071
0.032

0.070
0.035

a∗ 1.772 2.274 1.743 2.028 1.385 1.571 1.423 1.571

utheor

umod

105
106

2.9
3.1

125
130

21
22

622
620

293
331

46
∼ 50

25

Thus, we can conclude that the wave valocity values u (2.36) are defined
by the following approximate equality

uτbeta
2L

∼=
(

8

3
√
π

)
a4
∗ exp

(
− 64

9π
a2
∗

)
, a2
∗
∼=
π2

4
· nPucrit
ñPu − nPucrit

, (2.51)

where coefficient b = 2 (see 2.36), τβ is a delay, caused, for instance, by
active (fissionable) isotope birth, τβ is equal to cumulative β-decay period
compound nuclei either in uranium-plutonium Feoktistov chain (1.2) or in
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Figure 2.3: Theoretical (the black curve) and experimental (colored points)
dependencies of Λ(a∗) from the parameter a∗.

thorium-uranium Teller chain (1.33). L ∼ 5 cm τβ = 3.3 days for U − Pu
and τβ = 39.5 days for Th− U fuel cycle, respectively.

As computational experiments show (chapter 3), the wave lock-out con-
ditions that characterize the process of its degradation and stop are prede-
termined by the degree with which the neutrons from the external source (at
the initial stage of the process) burn up the main nonfissionable and active
(fissionable) components of the fuel ahead of the wave front. This process
is very important, since the high burn-up rate of the region ahead of the
wave will prevent the wave from crossing this region, just like the fire in the
steppe cannot cross the stripe of the plowed land. It is obvious that the fuel
burn-up rate in the initial stage in defined mostly by the energy spectrum
and intensivity of the external source neutrons, and by nuclear character-
istics of the fuel. The most important of these characteristics is the delay
time τβ, which equals to effective β-decay period of the intermediate nuclei
in U − Pu Feoktistov fuel cycle (1.2) or Th− U Taylor fuel cycle (1.33). As
a result, the higher these parameters are, the high is the probability of the
wave lock-out and eventual extinction. Moreover, the following peculiarity
can be observed during the formation of fast initial wave: in the case of tran-
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sition to stationary wave mode the velocity of the wave will sharply drop,
since the wave front of the neutron wave from the fast spectrum part will
lead the plutonium wave front, which eventually leads to the extinction and
full degradation of the fast component of the neutron wave.

In spite of the general understanding of physics of the nuclear burnung
wave lock-out process, it is obvious that the process description difficulties
outlined above only indicate that the problem we are trying to solve is far
from trivial. Unfortunately, the scope from the problem exceeds the scope
or this work, but it will be a subject of future research.

Despite the outlined difficulties it is show empirically (by computational
experiments) that the expression for certain range of values of a∗, which cor-
respond to existing concentration wave of nuclear fuel burning with nonzero
velocity will look like this

0.05 ≤ a∗ ≡
ξa
L
< 2.5 (2.52)

where ξa is an autovawe coordinate of a∗.
Thus, based on the verification of (2.51) we can make a conclusion that

generalizes the physical conditions of Feoktistov wave mode: the soliton-like
wave propagation velocity in the neutron-multiplicating medium is generally
defined by two conditions, one of them the necessary one is predetermined
by ratio of equilibrium plutonium concentration and critical plutonium con-
centration npu/ncrit > 1 see (1.1), or, to be more precise, Bohr-Sommerfeld
quantization condition see (1.31), and the other the sufficient one is deter-
mined by the gaussian simplectic ensemble (GSE) sattistics with respect to
parameter a, which characterizes the concentration wavefront width of the
active component of nuclear fuel.



Chapter 3

The Simulation of Soliton-Like
Criticality Wave

In this chapter in section 3.1 the simplified one-dimentional model of Pu ac-
cumulation and U burnup kinetics is proposed. In the section 3.2 taking into
account delayed neutrons three-dimentional model for one-group diffusion
approximation is offered. The numerical solution using the method of mesh
points in the implicit form is obtained. Finally, in section 3.3 the simulation
results and its verification w.r.t. obtained in the chapter 2 necessary and
suffycient conditions of nuclear burning wave origin are given.

3.1 One-dimentional model

Let us consider an ingot of uranium-238 (U238). In each cubic centimeter of
ingot there are 5 · 1022 atoms of U238. An external neutron source is located
left of an uranium-238 ingot and emits neutrons. In the suggested design
a nuclear burning wave is ignited and propagates slowly in axial direction.
Feoktistov uranium-plutonium fuel cycle (1.2) is used for soliton-like wave
simulation

238
92 U(n, γ)→239

92 U
β−−→239

92 Np
β−−→239

92 Pu(n, fission)

The reactor contains a cylindrical core comprised of a nuclear ignitor,
which is critical at the beginning, and a much longer nuclear burning wave-
propagating region, which is subcritical in the initial state. In the front
region Pu239 is built up, because U238 in the natural uranium is transformed
into Pu239 and local reactivity increases. Meanwhile in the tail region fission
products (FPs) accumulate and local reactivity decreases. Consequently, the
burning region drifts in axial direction.

67
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The simplified model of Pu accumulation and U burnup kinetics is pro-
posed as follows. A one-dimensional semi-infinite U −Pu medium irradiated
from the end of the cylinder by an external neutron source is considered in
the diffusion one-group approximation (neutrons energy is ∼ 1MeV ). Then,
taking into account delayed neutrons, the respective system of differential
equations, which describes the kinetics of Feoktistov uranium-plutonium fuel
cycle, i.e., the kinetics of initiation and propagation of neutron fission wave
n(x, t), is as follows

∂n(x, t)

∂t
= D∆n(x, t) + q(x, t) (3.1)

where

q(x, t) = [ν(1− p)− 1]n(x, t)υnσ
Pu
f NPu(x, t) +

6∑
i=1

Ñi ln 2

T i1/2
(3.2)

−n(x, t)υn

[ ∑
8,9,Pu

σiaNi(x, t) +
6∑
i=1

σiaÑi(x, t) +
∑

i=fragments

σiaN i(x, t)

]

∂N8(x, t)

∂t
= −υnn(x, t)σ8

aN8(x, t) (3.3)

∂N9(x, t)

∂t
= υnn(x, t)σ8

aN8(x, t)−
1

τβ
N9(x, t) (3.4)

∂NPu(x, t)

∂t
=

1

τβ
N9(x, t)− υnn(x, t)(σPua + σPuf )NPu(x, t) (3.5)

∂Ñi(x, t)

∂t
= piυnn(x, t)σPuf NPu(x, t)−

ln 2Ñi

T i1/2
(3.6)

To determine the last term on the right-hand side of q(x, t), the effective
additional neutron absorber approximation was used

n(x, t)υn
∑

i=fragments

σiaN i(x, t) = n(x, t)υnσ
eff
a N(x, t) (3.7)

Taking into account the fact that fission with two fragment formation is
most probable, the kinetic equation for N(x, t) becomes

∂N(x, t)

∂t
= 2

(
1−

6∑
i=1

pi

)
n(x, t)υnσ

Pu
f NPu(x, t) +

6∑
i=1

Ñi ln 2

T i1/2
(3.8)
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where n(x, t) is the neutron density, D is the diffusion constant of neutrons,
υn is the neutron velocity (En = 1MeV in one-group approximation), Ñi

are the concentrations of the neutron-rich fission fragments of 239Pu nuclei,
N8, N9, NPu are the 238U , 239U , 239Pu concentrations, respectively, N i are
the concentrations of the rest fission fragments of 239Pu nuclei, σa is the
neutron absorption micro cross-section, σf is the neutron fission micro cross-
section, τβ is the nucleus life time w.r.t β-decay, pi (p =

∑6
i=1 pi) are the

parameters characterizing the dekayed neutrons groups for the main fuel
fissionable nuclides.

The boundary conditions for the system of differential equations (3.1) -
(3.6) are

n(x, t)|z=0 = Φ0/υn, n(x, t)|z=l = 0 (3.9)

where Φ0 is the neutron density of the plane diffusion source of neutrons
which is located on the boundary z = 0; l is the uranium ingot length.

An estimation of the neutron flux density from the source on the boundary
Φ0 can be obtained from an estimation of the Pu critical concentration which
is of order of 10%

4τβΦ0σ
8
aN8(x, t)|t=0 = 0.1N8(x, t)|t=0

and therefore
Φ0 ≈ 0.1/4τβσ

8
a (3.10)

It’s important to note here that (3.10) is only an estimation of Φ0. The
results of the computational experiment show that it can be substantially
smaller in reality.

In general, different boundary conditions can be used, depending on the
physical conditions under which nuclear burning is initiated by the source
neutrons, for example, the Dirichlet condition of (3.9) type, a Neumann con-
dition or a so-called third-kind boundary condition, which summarizes first
two conditions. The use of the third-kind boundary condition is recom-
mended in neutron transport theory [50]. Here we use this condition in the
simple case which is known as Milnes problem, or more precisely, it is a lin-
ear combination of the neutron concentration n(x, t) and its spatial derivative
∂n/∂x(x, t) on the boundary

n(0, t)− 0.7104λn(1,0)(0, t) = 0, (3.11)

where λ is the range of neutrons and n(1,0)(0, t) ≡ ∂n/∂x(0, t).
Although the behavior of the neutron source - nuclear fuel˝system de-

pends on the boundary conditions near the boundary, computational exper-
iments show that in the active zone, i.e., far from the boundary, the system
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is asymptotically independent of the boundary conditions. This confirms
the independence of wave propagation in the reactor volume on the bound-
ary conditions and on the way in which the nuclear burning is initiated. In
this sense the problem of determining the optimum parameters of nuclear
fuel system is a nontrivial and extraordinarily vital issue, which requires a
separate examination.

The initial conditions for the system of differential equations (3.1) – (3.6)
are

n(x, t)|z=0,t=0 = Φ0/Vn, n(x, t)|z 6=0,t=0 = 0; (3.12)

N8(x, t)|t=0,z=0,l =
ρ8

µ8

≈ 19

238
NA, N8(x, t)|z 6=0,t=0 = 0; (3.13)

N9(x, t)|t=0 = 0, (3.14)

NPu(x, t)|t=0 = 0,

Ñi(x, t)|t=0 = 0,

N(x, t)|t=0 = 0.

where ρ is the density, which is expressed in the units of g cm−3, NA is the
Avogadro constant.

The simulation results for the one-dimensional model are presented in
figure 3.1.

More simulation results for one-dimentional and three-dimentional models
of Feoktistov safe reactor are presented in a section 3.3.

3.2 3-dimentional model

3.2.1 One-group diffusion approximation

Taking into account delayed neutrons, the respective system of differential
equations, which describes the kinetics of Feoktistovs U-Pu fuel cycle, can
be represented in the cylindrical coordinate system with a radial coordinate
r , vertical coordinate z and the symmetry about an azimuth ϕ as follows.

The neutrons balance equation is represented as∫
υ

∂n(r, z, t)

∂t
dυ = −

∮
υ

~jn(r, z, t)dS +

∫
υ

q(r, z, t)dυ, (3.15)

where q(r, z, t) is a bulk density of neutron source, ~jn(r, z, t) is a neutron flux
density.
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Figure 3.1: Concentration kinetics of (a) neutrons; (b) 238U ; (c) 239U ; (d)
239Pu in the active zone of one- dimensional georeactor. Here t is time axis,
step is ∆t = 0.01s; x is spatial coordinate axis, step is ∆x = 1cm; z is a
concentration axis, particles cm−3, Φ0 = 5× 1017cm−2s−1.

∫
υ

∂n(r, z, t)

∂t
dυ = −

∫
υ

div~jn(r, z, t)dυ +

∫
υ

q(r, z, t)dυ, (3.16)

∂n(r, z, t)

∂t
= −div~jn(r, z, t) + q(r, z, t). (3.17)

Let us consider the one-group approximation, with the given neutron
energy En ∼ 1MeV .

According to the Fick’s first law of diffusion the diffusive flux

~jn(r, z, t, En, T ) = −D(r, z, t, En, T )∇n(r, z, t, En, T )

where the neutrons diffusion coefficient is as follows
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D(r, z, t, En) =
υnλS(r, z, t, En, T )

3
=

υn
3
∑

S(r, z, t, En, T )

=
υ)n

3
∑

i=8,9,Pu,Np,FP

σiS(En, T )Ni(r, z, t, En, T )

(3.18)

where λS is the scattering mean free path of neutrons, σiS are the neutron
scattering micro cross-section, υn is the neutron velocity (for the one energy
group with the given energy En ∼ 1MeV ).

Then we can rewrite (3.15) as follows

∂n(r, z, t, En)

∂t
= D(r, z, t, En, T )∆n(r, z, t, En)

+∇D(r, z, t, En, T ) · ∇n(r, z, t, En) + qD(r, z, t, En, T )
(3.19)

In this work the heat transfer (second summand) is not taken into ac-
count, therefore for one-energy-group approximation the neutrons balance
equation (3.19) can be represented in the following way

∂n(r, z, t)

∂t
= D∆n(r, z, t) + q(r, z, t) (3.20)

where n(r, z, t) is the neutron density, D is the diffusion constant of neutrons,
and a density of neutron source q(r, z, t) is as follows

q(r, z, t) = [ν(1− p)− 1]n(r, z, t)υnσ
Pu
f NPu(r, z, t) +

6∑
i=1

Ñi ln 2

T i1/2

−n(r, z, t)υn

[ ∑
8,9,Pu

σiaNi(r, z, t) +
6∑
i=1

σiaÑi(r, z, t) +
∑

i=fragments

σiaN i(r, z, t)

]
(3.21)

where υn is the neutron velocity (En = 1MeV in one-group approximation);
ν is an average number of prompt neutrons per fission for 238U , 239U ,239Np,
239Pu; Ñi are the concentrations of the neutron-rich fission fragments of 239Pu
nuclei; N8, N9, NPu are the 238U , 239U , 239Pu concentrations, respectively;
N i are the concentrations of the rest fission fragments of 239Pu nuclei; σa is
the neutron absorption micro cross-section; σf is the neutron fission micro
cross-section; pi (p =

∑6
i=1 pi) and T i1/2 are the parameters characterizing

the delayed neutrons groups for the main fuel fissionable nuclides.
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To determine the last term on the right-hand side of q(r, z, t), the effective
additional neutron absorber approximation was used

n(r, z, t)υn
∑

i=fragments

σiaN i(r, z, t) = n(r, z, t)υnσ
eff
a N(r, z, t) (3.22)

The kinetic equations for 238U , 239U , 239Pu nuclei and the neutron-rich
fission fragments are as follows

∂N8(r, z, t)

∂t
= −υnn(r, z, t)σ8

aN8(r, z, t) (3.23)

∂N9(r, z, t)

∂t
= υnn(r, z, t)σ8

aN8(r, z, t)−
1

τβ
N9(r, z, t) (3.24)

∂NPu(r, z, t)

∂t
=

1

τβ
N9(r, z, t)− υnn(r, z, t)(σPua + σPuf )NPu(r, z, t) (3.25)

∂Ñi(r, z, t)

∂t
= piυnn(r, z, t)σPuf NPu(r, z, t)−

ln 2Ñi

T i1/2
(3.26)

where υn is the neutron velocity (En = 1MeV in one-group approximation),
Ñi are the concentrations of the neutron-rich fission fragments of 239Pu nuclei,
N8, N9, NPu are the 238U , 239U , 239Pu concentrations, respectively, N i are
the concentrations of the rest fission fragments of 239Pu nuclei, σa is the
neutron absorption micro cross-section, σf is the neutron fission micro cross-
section, τβ is the nucleus life time w.r.t β-decay, pi (p =

∑6
i=1 pi) and T i1/2

are the parameters characterizing the delayed neutrons groups for the main
fuel fissionable nuclides.

Taking into account the fact that fission with two fragment formation is
most probable, the kinetic equation for N(r, z, t) becomes

∂N(r, z, t)

∂t
= 2

(
1−

6∑
i=1

pi

)
n(r, z, t)υnσ

Pu
f NPu(r, z, t) +

6∑
i=1

Ñi ln 2

T i1/2
(3.27)

The boundary conditions for the system of differential equations (3.20)
(3.26) are

n(r, z, t)|z=0 = Φ0/υn, n(r, z, t)|z=l = 0 (3.28)

where Φ0 is the neutron density of the plane diffusion source of neutrons
which is located on the boundary z = 0; l is the uranium ingot length.

An estimation of the neutron flux density from the source on the boundary
Φ0 can be obtained from an estimation of the Pu critical concentration which
is of order of 10%
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4τβΦ0σ
8
aN8(r, z, t)|t=0 = 0.1N8(r, z, t)|t=0

and therefore
Φ0 ≈ 0.1/4τβσ

8
a (3.29)

It’s important to note here that (3.29) is only an estimation of Φ0. The
results of the computational experiment show that it can be substantially
smaller in reality.

The initial conditions for the system of differential equations (3.20) (3.26)
are

n(r, z, t)|z=0,t=0 = Φ0/Vn, n(r, z, t)|z 6=0,t=0 = 0, (3.30)

N8(r, z, t)|t=0,z=0,l =
ρ8

µ8

≈ 19

238
NA, N8(r, z, t)|z 6=0,t=0 = 0, (3.31)

N9(r, z, t)|t=0 = 0, NPu(r, z, t)|t=0 = 0,

Ñi(r, z, t)|t=0 = 0, N(r, z, t)|t=0 = 0.
(3.32)

where ρ is the density, which is expressed in the units of g cm−3, NA is the
Avogadro constant.

3.2.2 The numerical solution. The mesh points method.

The cylinder-symmetric one-group neutron diffusion and nuclide transfor-
mation equations are solved numerically. For the numerical solution of the
system of partial differential equations (3.20) – (3.26), which describe the
neutron diffusion and time evolution of the nuclear reaction products concen-
tration in cylindrical coordinates, the method of mesh points in the implicit
form was used.

The main advantage of this method is that it does not require additional
information about the type of the solution.

The differential equation, which describes the neutron diffusion with a
source in a cylindrical coordinate system w.r.t. symmetry about angular
coordinate, is as follows

∂n(r, z, t)

∂t
= D∆n(r, z, t) + q(r, z, t) (3.33)

where ∆n = ∂2n
∂r2

+ ∂2n
∂z2

+ 1
r
∂n
∂r

is the Laplace operator, n(r, z, t) is the neutrons
concentration, q(r, z, t) is the neutron source density, r, z are the spatial
coordinates, t denotes time, D is the diffusion coefficient (generally speaking
D is a function of the coordinates and time D = D(r, z, t)).
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Let us consider Nz is a number of steps over coordinate z, Nr is a number
of steps over coordinate r, Nt is a number of steps over time. Here we consider
the net function nki,j, which approximates the desired function n(r, z, t) in the

points r = ri = ihz, z = zj = jhr, t = tk = kht, where i = 0, Nz, j = 0, Nr,
k = 0, Nt.

The points of mesh with i = 0 correspond to the left boundary of the
cylinder, the points with i = Nz correspond the right boundary of cylinder,
j = 0 corresponds the cylinder axis, j = Nr corresponds the cylinder surface,
k = 0 corresponds the initial moment of time, k = Nt corresponds the final
moment of time, respectively.

The differential equation (3.33) for the points of admitted region for r, z,
t can be approximated by a difference quotient

nk+1
i,j − nki,j
ht

= σD

·

[
nk+1
i,j−1 − 2nk+1

i,j + nk+1
i,j+1

h2
r

+
1

jhr

nk+1
i,j+1 − nk+1

i,j−1

2hr
+
nk+1
i−1,j − 2nk+1

i,j + nk+1
i+1,j

2

]
+(1− σ)D

·

[
nki,j−1 − 2nki,j + nki,j+1

h2
r

+
1

jhr

nki,j+1 − nki,j−1

2hr
+
nki−1,j − 2nki,j + nki+1,j

h2
z

]
+qki,j

(3.34)

where i = 1, Nz − 1, j = 1, Nr − 1, k = 0, Nt − 1. For σ = 0 there is an
explicit scheme, for 0 < σ ≤ 1 there is an implicit scheme.

Taking into account symmetry about a cylinder axis (for r = 0) the
diffusion equation (for j = 0) can be approximated by a difference quotient

nk+1
i,j − nki,j
ht

= σD

[
2
nk+1
i,j − nk+1

i,0

hr2
+
nk+1
i−1,j − 2nk+1

i,j + nk+1
i+1,j

hz

]

+(1− σ)D

[
2
nki,j − nki,0

hr2
+
nki−1,j − 2nki,j + nki+1,j

h2
z

]
+ qki,j

(3.35)

where qki,j depends on fission products concentration Ni for which the ap-
proximation by a difference quotient is as follows

Nk+1
i,j −Nk

i,j

ht
= fN(Nk

i,j, n
k
i,j, ...) (3.36)



CHAPTER 3. THE SIMULATION OF CRITICALITY WAVE 76

The set of equations (3.34)-(3.36) is solved sequentially for each moment
of time k in the following way. From (3.36) we can write the fission products
concentrations in the next moment of time k + 1 for each k = 0, 1, ..., Nt − 1
as follows

Nk+1
i,j = htfN(Nk

i,j, n
k
i,j, ...) +−Nk

i,j (3.37)

Now we can solve the set of equations (3.34), (3.35) for the same moment
of time using the matrix sweep method.

Let us consider the vector function Y k
i =

 nki,0
...
nki,nr

 for each i = 0, Nz.

Now we can rewrite (3.34), (3.35) for functions Y k
i for each k = 1, Nt − 1 as

follows

C0y0 −B0y1 = F0,

−Aiyi−1 + Ciyi −Biyi+1 = Fi, i = 1, 2, ..., Nz − 1, (3.38)

−ANzyNz−1 + CNzyNz = FNz

Where vectors Y k
i are denoted by yi, for each i = 0, Ny.

To solve the system (3.39) matrix sweep method was used. This method
is well described in [47], [48], [49].

In compliance with the algorithm of matrix sweep method we are looking
for the solution of the system in the following form

yi = αi+1yi+1 + βi+1, i = 0, 1, ..., N − 1 (3.39)

where αi+1 are square matrixes of the same degree M as the matrixes Ai, Bi,
Ci, and βi+1 is a vector of lenth M .

Matrixes αi+1 and vectors βi+1 are determined as follows recurrence equa-
tions

αi+1 = (Ci − Aiαi)−1Bi,

βi+1 = (Ci − Aiαi)−1 (AiBi + Fi) (3.40)

where i = 1, 2, ..., N−. The initial values α1 and β1 are determined using
−C0y0 +B0y1 = −F0 as follows

α1 = C−1
0 B0, β1 = C−1

0 F0. (3.41)

When all the sweeping coefficient αi, βi are determined in the direct course
of sweep, we have to determine vectors yi, for i = N−1, N−2, ..., 1, 0. These
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vectors yi are determined from equation (3.39) in the reverse course of sweep
starting with yN−1. Here we need the vector yN , which is determined from

ANyN−1 − CNyN = −FN , yN−1 = αNyN + βN

From this we get

yN = (CN − ANαN)−1(ANβN + FN) (3.42)

Now, from (3.39)-(3.42) we get the following matrix sweep method algo-
rithm for (3.39)

αi+1 = (Ci − Aiαi)−1Bi, i = 1, 2, ..., N − 1, α1 = C−1
0 B0, (3.43)

βi+1 = (Ci − Aiαi)−1 (AiBi + Fi) , i = 1, 2, ..., N − 1 β1 = C−1
0 F0, (3.44)

yi = αi+1yi+1 + βi+1, i = N − 1, N − 2, ..., 1, 0, yN = βN+1 (3.45)

The matrixes Ci−Aiαi have to be invertible at the each step i = 1, 2, ..., N−
1 of recursion.

Let us apply this matrix sweep method to the neutron diffusion equation
(3.33)

∂n(r, z, t)

∂t
= D∆n(r, z, t) + q(r, z, t), (3.46)

∆n =
∂2n

∂r2
+
∂2n

∂z2
+

1

r

∂n

∂r
(3.47)

(3.48)

We can approximate (3.46) by a difference quotient as follows

nk+1
i,j − nki,j
ht

= D

[
nk+1
i,j−1 − 2nk+1

i,j + nk+1
i,j+1

h2
r

+
1

jhr

nk+1
i,j+1 − nk+1

i,j−1

2hr
+
nk+1
i−1,j − 2nk+1

i,j + nk+1
i+1,j

hz2

]
+qki,j,

i = 1, Nz − 1, j = 1, Nr − 1, k = 0, Nt − 1

where Nz is a number of steps over coordinate z, Nr is a number of steps
over coordinate r, Nt is a number of steps over time.
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Now, moving all the summands with k + 1 to the right-hand side, and
all the summands with k to the left-hand side we will get system (3.39) for
(3.46) in the form

−C0n0,j +B0n1,j = −F0,

Aini−1,j − Cini,j +Bini+1,j = −Fi, i = 1, 2, ..., Nz − 1, (3.49)

ANznNz−1,j − CNznNz ,j = −FN ,

where C0 = ENr−1, ENr−1 is an identity matrix of size Nr − 1, B0 = 0,
~F0 = ~0 is a boundary condition, ANz = 0, CNz = ENr−1, ~FNz = ~0 is a
boundary condition,

−Ai =
ht ·D
hz2

ENr−1, −Bi =
ht ·D
hz2

ENr−1,

Ci =


−
[
1 + 2Dht

(
2

hr2 + 1
hz2

)]
4Dht

hr2 0 0
Dht
hr2

[
1− 1

2j

]
−
[
1 + 2Dht

(
1

hr2 + 1
hz2

)]
Dht
hr2

[
1 + 1

2j

]
0

... ... ... ...

... ... ... ...




j = 1
j = 2

...
j = Nr − 1

(3.50)

Fi =

 −nki,0 + ht · qki,j
−nki,j · qki,j

−nki,j − nk+1
i,Nr

Dht
hr2

[
1 + 1

2j

]
· qki,j




j = 0
j = 1, Nr − 2
j = Nr − 1

3.3 The Simulation Parameters and Results

The system of equations (3.1) – (3.6) with boundary conditions (3.9), ini-
tial conditions (3.15) is solved numerically using the software package FOR-
TRAN Power Station 4.0. For distributed parallel computation the MAT-
LAB®7.4.0 was used. The source files and program listings can be found in
Appendix.

The computer modeling allows to easily control the following parameters
of reactor
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τn(x, t) =
ln(x, t)

υn
=

1

υn
∑

i=8,9,Np,Pu,fr

(σiS + σic + σif )Ni(x, t)
(3.51)

keff (x, t) =
n(x, t+ τn)

n(x, t)
(3.52)

ρ(x, t) =
keff (x, t)− 1

keff (x, t)
(3.53)

T =
τn(x, t)

ρ(x, t)
(3.54)

where τn(x, t) is the neutrons life time, keff is the effective neutron mul-
tiplication rate, ρ(x, t) is the reactivity, and T is the reactor period.

Figure 3.2: Concentration kinetics of neutrons, 238U , 239U , 239Pu in the active
zone of cylindrical reactor with radius of 125 cm and 1000 cm long at time
moment of 240 days. Here r is transverse spatial coordinate axis (cylinder
radius), z is longitudinal spatial coordinate axis (cylinder length).

The following values of constants were used for the simulation

σPuf = 2.0× 10−24cm2, σ8
f = 0.55× 10−24cm2, (3.55)
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σ8
a = σia = σfragmentsa = 5.38× 10−26cm2, (3.56)

σ9
a = σPua = 2.12× 10−26cm2,

ν = 2.9, τβ ∼ 3.3 days, υn ≈ 109cm s−1, (3.57)

D ≈ 2.8× 109cm2 s−1

The figure 3.2 shows the simulation data for the cylindrical reactor at the
fixed moment of time of 240 days. Obviously, the spatial-temporal picture of
the concentration distribution of neutrons and main nuclides in a radial half
plane of a cylindrical reactor confirms the stable occurrence of self-regulating
neutron fission wave.

Figure 3.3: Kinetics of concentration U238, U239, Pu239 and fission products
on axis of the cylinder, with the initial conditions: R = 125cm, Z = 1000m,
NPu
N8

= 1
99

at the moment of time t = 135 days
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Figure 3.4: Kinetics of concentration U238, U239, Pu−239 and fission products
in the cylinder, with the initial conditions: R = 100cm, Z = 800m, NPu

N8
= 2

98
,

t1 = 110 days and t2 = 210 days

Figure 3.5: Kinetics of concentration U238, U239, Pu−239 and fission products
in the cylinder, with the initial conditions: R = 100cm, Z = 800m, NPu

N8
= 2

98
,

t2 = 210 days
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As we can see at the figures 3.1, 3.2, 3.3, 3.4 and 3.5 the simulation shows
the appearance and propagating of the solitone-like nuclear burning wave in
our reactor model.

Here a reasonable question inevitably comes to mind: How did results
obtained in the chapter 2 correspond to the simulation output, and how to
apply in practice the conditions of nuclear burning wave origin obtained in
chapter 2?˝

The first of the conditions obtained in the chapter 2, the necessary one, is
predetermined by ratio of equilibrium plutonium concentration and critical
plutonium concentration npu/ncrit > 1 see (1.1), or, to be more precise, Bohr-
Sommerfeld quantization condition see (1.31).

Figure 3.6: The 239Pu concentration distribution at the cylinder axis for
npu = 0.1 nPucrit = 0.0167 see (1.11) at t = 217 days.

Indeed, our calculations showed that in the steady-state regime, condition
(1.31) is satised with accuracy up to several percent. There is no reason to
expect higher accuracy because the quantization condition for the lower level
is itself approximate. In figure 3.6 the plutonium concentration distribution,
and plutonium critical concentration is shown. npu = 0.1 nPucrit = 0.0167 are
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the relative equilibrium concentration and relative critical concentration of
plutonium, respectively, normalized w.r.t. 238U (see (1.11)).

Let us check the second condition, the sufficient one, which is determined
by the gaussian simplectic ensemble (GSE) statistics with respect to param-
eter a∗. For this purpose, let us analyze obtained simulation data.

Figure 3.7: The neutrons concentration distribution at the cylinder axis at
t = 217 days. The wave velocity is usimul ≈ 2.77.

Figure 3.7 shows the neutrons concentration distribution at the moment of
time t = 217days. (The plot for 217th day was taken to simplify calculations.
In this moment of time maximum concentration of neutrons – the wave crest
– is in the about 600 cm of cylinder length). Knowing that in 217 days the
wave crest is at 600 cm of cylinder length, we can easily calculate the wave
velocity

usimul = 600 cm/217 days ≈ 2.77 cm day−1.

Now, knowing the wave velocity and recalling an expression (2.34) we can
find the value of dimensionless constant Λ(a∗) for our wave. For U −Pu fuel
cycle diffusional absorption length of neutrons is L = 5cm, and τ = 3.3 days.
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Λ(a∗) =
usimulτβ

L
=

2.77 · 3.3
5

= 1.8282 (3.58)

Thus, the experimental value of parameter Λ(a∗) obtained as a result of
our computer simulation is 1.8282.

The other way to calculate the value of parameter Λ(a∗) using the ap-
proximate equality (2.51) obtained in chapter 2, for npu = 0.1 nPucrit = 0.0167
we will get

Λ(a) ∼ 1.8638,

what corresponds to the wave velocity utheor = 2.82 cm day−1.
The figure 3.8 shows theoretical (the black curve) and experimental (col-

ored points) dependencies of Λ(a∗) from the parameter (a∗) including the
result of our simulation.

Figure 3.8: Theoretical (the black curve) and experimental (colored points)
dependencies of Λ(a∗) from the parameter a∗.

Thus, to test the computational scheme, we calculated the wave formation
which corresponds to the formulation of Feoktistow [1] and satisfy with high
accuracy both, necessary and sufficient conditions obtained in chapter 2 of
this work. The simulation were done for the different initial and boundary
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condition, with and without initial fuel enrichment. Critical concentration
was varied. The calculated wave velocity was in good agreement with the
condition (2.51).



Chapter 4

Nuclear georeactor of
Feoktistov type

In this chapter an alternative description of the data produced in the Kam-
LAND experiment is given. Assuming the existence of a natural nuclear
reactor on the boundary of the liquid and solid phases of the Earth’s core, a
geoantineutrino spectrum is obtained. The assumed in chapter 3 model for
the accumulation and burn-up kinetics in Feoktistov U-Pu fuel cycle is used
for numerical simulations of neutron-fission wave in a two-phase UO2/Fe
medium on the surface of the Earth’s solid core. The 3He/4He distribution
in the Earth’s interior is calculated in section 4.2, which in turn can be used
as a natural quantitative criterion of the georeactor thermal power. Finally,
in the section 4.3 a tentative estimation of the geoantineutrino intensity and
spectrum on the Earth’s surface is given.

4.1 Hypothesis of existence of a natural nu-

clear reactor within the Earth’s core

The problem of describing the geoantineutrino spectrum and the reactor an-
tineutrino experimental spectrum in KamLAND [51] for antineutrino energy
in the range of ≈ 2.8MeV makes it possible to consider the possible exis-
tence of additional energy sources in the interior of the Earth [52] to recover
the geoantineutrino balance. Among such sources may be actinides, located
deeper than the core-mantle (Gutenberg) boundary. While actinide concen-
tration deep in the Earths interior during gravity differentiation has been
suggested by a number of workers [53], [54], [55], [56]. The experimental
results of Anisichkin et al. [57] seem the most developed in terms of provid-
ing a mechanism for formation of an actinide shell within the Earth’s core.

86
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According to these results, the chemically stable high-density actinide com-
pounds (particularly uranium carbides and uranium dioxides) lose most of
their lithophilic properties at high pressure, sink together with melted iron
and concentrate in the Earth’s core consequent to the initial gravitational
differentiation of the planet [58]. The concentration of actinides on the sur-
face of the Earths solidifying inner core could have taken place subsequently,
i.e., from 4 to 4.5× 109 years ago.

Self-propagating waves of nuclear burning in 238U and/or 232Th media
could be a natural physical result of the existence of such an actinide shell
in the Earths core.

Let us consider the nuclear-geophysical aspects of the initiation of the
progressing wave of nuclear burning in a real 238U -medium. The two-phase
UO2/Fe layer on the surface of the Earth’s solid core is a natural medium for
the neutron-fission wave development. Since in such a wave even depleted U
can react, let us estimate the real possibility of a wave process. The critical
concentration of the pure 239Pu in the infinite 238U medium which was cal-
culated using the octa-group constants is about 3.7% [55], [57]. Dilution by
oxygen leading to the formation of UO2/PuO2 increases the critical concen-
tration up to ncrit ∼ 6.4%. The presence of iron in nuclear fuel pores (with
typical poured concentration about 60%) will also increase the critical con-
centration of 239Pu up to ncrit ∼ 8.2% (ρ ∼ 19.5 g/cm3 for UO2/PuO2 and
ρ ∼ 12 g/cm3 for Fe were used for calculations) [19]. Non-trivial thermo-
dynamic conditions, i.e., high temperature and pressure, might increase the
critical concentration of Pu up to ncrit ∼ 10%. This means that the model
system of equations (3.20)-(3.26) described in Chapter 3 reflects well the main
properties of a real breeding medium. Indeed, the addition of oxygen and Fe
practically does not change the solutions because their neutron-absorption
cross-sections are at least an order of magnitude smaller than the actinides’
cross-sections.

Here a natural question arises: Why does gravitational instability not
lead to the sinking of a UO2/Fe actinide mat (ρ ∼ 15 g/cm3) located on the
boundary of the liquid and solid phases of the Earth’s core to the center of
the inner core (ρ = 12.76− 13.09 g/cm3 [60])?

This can be caused by following reasons:

1. Despite the fact that the Earth’s inner core was discovered 60 years
ago, some seismologists, analyzing waves penetrating the inner core,
are still not sure, whether it is solid or liquid, or whether it is a
matter with new properties˝which are needed for its description [62].
They are practically convinced that the inner core (also called G-core)
is solid; to prove this they register shear-waves (so called PKJKP-
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waves) which penetrate into the G-core. The only paper [63] on the
detection of these PKJKP-waves has not been widely acknowledged by
seismologists. Tromp [68] noted that PKJKP has become something
of a Holy Grail˝of the body-wave seismology community.

As long as PKJKP-wave existence, and consequently, the experimental
value of the inner core density do not have a convincing proof, it can be
assumed that the model values of the actinide medium (ρ ∼ 15 g/cm3)
and the inner core (12.76− 13.09 g/cm3 [61]) are equal within an error
of 20%.

2. Recently, a large number of seismic traces (310,000 [64]) passing through
the core have been analyzed and as a result new interesting properties
of the core have been found:

The first concerns the discovery of inner core anisotropy, or that the ve-
locity of PKiKP-waves crossing the core is somewhat higher along the
Earth’s rotation axis than in the equatorial plane. Most researchers
consider this anisotropy is due to a relatively thin layer near the in-
ner core boundary [62]. By using travel-time data of 313,422 traces of
PKiKP-waves (registered by 2335 seismic stations from 26377 earth-
quakes), Su and Dziewonski [64] obtained a three-dimensional image of
the region generating the inner core anisotropy. They found this region
constitutes only a few percent of the inner core volume, is concentrated
in a layer at the inner-outer core boundary, and is about 200-300 km
thick. Later Russian geophysicists [65], [66] found, based on the infor-
mation of the PKiKP-wave registration from the nuclear explosions at
small epicentral distances, that the actual layer thickness is much less
perhaps in the range 2-4 km. As they showed, other characteristics of
the inner core are also significant. For example, the seismic data are
best explained by a mosaic structure of the inner cores surface. Such
a mosaic can be composed of patches, in which the transition from the
solid inner to the liquid outer core includes a thin partially liquid layer
interspersed with patches containing a sharp transition. Moreover the
density of 2.2 km thick layer corresponds to the bottom of the outer
core (12.1663 g/cm3) and the top of the inner core (12.7636 g/cm3) for
liquid and solid layers respectively, while P-wave velocity is 12 km s−1.
See figure 4.1.

Such a layer of increased density, if its existence is confirmed, might
be considered as a platform for actinide concentration (in particular,
for carbides and dioxides of U and Th). In this case, the actinide
shell constituting a two-phase UO2/Fe layer on the surface of the solid
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(iron) core in which iron (ρ ∼ 12.0 g/cm3) is located in the pores of the
nuclear fuel (ρ ∼ 19.5 g/cm3) at poured˝concentration of about 90%,
does not sink to the center of the inner core (ρ = 12.76− 13.09 g/cm3

[60]), since it has a density ρ ∼ 12.75 g/cm3. This in turn leads
to an increase of the critical concentration up to ncrit ∼ 10 − 12%.
Obviously, such a modification of the two-phase layer density and of the
critical concentration does not change our previous simulation results
on Feoktistov’s neutron-fission wave.

Figure 4.1: Schematic representation of internal structure of the Earth as a
whole with the actinide shell on the boundary of the liquid and solid phases of
the Earths core, where a natural nuclear reactor of Feoktistov or/and Teller
type may exist.

A question of no lesser importance is the following: Where do the neutrons
for the initiation of the chain reaction come from?

In spite of active discussions of the possibility of chain nuclear reactions
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in the interior of the Earth and other planets in numerous papers (starting
with Kuroda [67] and including Driscoll [53], Herndon [54], and Anisichkin et
al. [55]), the question of natural external neutron sources which might locally
start the mechanism of nuclear burning remains open and requires serious
joint efforts of theorists. However, taking into account the difficulties con-
cerning the explanation of the mechanism of neutron-fission wave initiation,
it is possible to take an alternative route and to try to find geophysical events
in the thermal history of the Earth which directly or indirectly demonstrate
the existence of slow nuclear burning. Note that these events should be quite
recent so that at the present time they are characterized by a lowered, i.e.,
subcritical concentration of odd isotopes of U and Pu. Let us consider below
an example of such a geophysicochemical paleoevent.

Thus, in the thermal history of the Earth, some physicochemical sig-
nals should be detectable which would confirm the existence of spontaneous
reactor-like reactions of the Feoktistov uranium-plutonium fuel-cycle-type
and/or Teller thorium-uranium fuel-cycle-type on the boundary of liquid and
solid phases of the Earth’s core.

The anomalous 3He/4He ratio distributions in the Earth’s interior are
good candidates for such signals.

4.2 3He/4He distribution in the Earth’s inte-

rior as a quantitative criterion of geore-

actor thermal power.

Fundamental models of the origin of the anomalous 3He concentration and
3He/4He ratio distribution in the Earths interior have serious contradictions.
For example, D. L. Anderson et al. [60] has pointed out: The model whereby
high 3He/4He is attributed to a lower-mantle source, and is thus effectively
an indicator of plumes from the lower mantle, is becoming increasingly un-
tenable as evidence for a shallow origin for many high-3He/4He hotspots
accumulates. Shallow, low-4He models for high-3He/4He are logically rea-
sonable, cannot be ruled out, and need to be rigorously tested if we are to
understand the full implications of this important geochemical tracer˝.

Let us assume that 3He is produced by a natural reactor located on the
boundary of the liquid and solid phases of the Earths core. At the same
time, 4He is produced both by the georeactor and due to the decay of 238U
and 232Th in the crust, in the upper (depleted) and in the lower mantle of
the Earth.

To determine the 4He accumulation rate, the total and partial radiogenic
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heat production rates of uranium HU and thorium HTh in the crust, in the
upper (depleted) mantle and directly in the mantle is used. These rates have
been obtained in [69] in the framework of the O’Nions geochemical evolution
model [87].

It is obvious that the difference between the real heat (which is produced
now in the Earth) and the calculated radiogenic heat [70] is very significant
even with allowance for the high thermal inertia of the Earth τE ≈ 109years
[71]. D. L. Anderson refers to this difference as the missing heat source prob-
lem and summarizes the situation in the following words: Global heat flow
estimates range from 30 to 44TW . . . Estimates of the radiogenic contribu-
tion (from the decay of U , Th and K in the mantle), based on cosmochemical
considerations, vary from 19 to 31 TW. Thus there is either a good balance
between current input and output. . . or there is a serious missing heat
source problem, up to a deficit of 25 TW. . . [60]. In any case, the decisive
argument in favor of one or the other paradigm can be only experimental
(trivial as it may seem). Since the radiogenic component is essentially based
on cosmochemical considerations which, as it is well known, are quite uncer-
tain, only a direct determination such as the geoneutrino detection or the
indirect determination of 3He/4He ratio depth distribution are significant.
In other words, if the amount of radioactive elements can be determined by
means of geoneutrinos and/or the 3He/4He ratio, an important ingredient
of the Earths energetics will be established [72].

A source of additional thermal power (designated as Hf ) can be provided
by nuclear burning of an actinide shell which consists of chemically stable
and highdensity actinide compounds. Obviously, if the additional thermal
power Hf is generated only by the radiogenic heat Hα, there will be no
contribution of the actinide shell to the geoantineutrino integral intensity.
In order to obtain the actual contribution of the actinide shell we assume
that the energy release power Hf of the actinide shell (as a nuclear energy
source) is substantially higher than the partial power of the radiogenic heat
Hα, produced by 238U and 232Th radioactive chains, i.e., Hα � Hf .

For simplicity, let us consider the actinide shell as a UO2/Fe two-phase
layer on the surface of the solid (iron) core. Iron (ρ ≈ 12.0 g cm3 ) with
poured concentration of ∼ 90% is contained in the pores of the nuclear fuel
(ρ ≈ 19.5 g cm3) and decreases the density of the two-phase layer down to
ρ ≈ 12.75 g cm3. Let us assume that Hα ∼ 0.1 ÷ 0.5 TW . If the two-phase
actinide medium with the total mass of natural uranium

M(U) =
Hα

ε(U)
∼ 1015kg, (4.1)

where ε(U) ∼= 0.95 × 1015kg−1represents a continuous homogeneous shell
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on the surface of the Earth’s solid core, its thickness will be ∼ 1 − −5cm.
Apparently, it is more correct to picture such a two-phase actinide medium as
an inhomogeneous shell which represents a stochastic web of actinide rivers
and lakes located in the valleys of rough surface [60], [66] of the Earth’s solid
core.

Below we consider a georeactor model of the origin of 3He anomalous
concentrations and the 3He/4He ratio distribution in the Earth’s interior.
Pending an experimental confirmation of the existence of a georeactor, this
model naturally explains the so-called helium paradoxes [60].

Let us assume that the reactor power is P = 30 TW. Further calculations
in the framework of georeactor model will show that this value is the most
adequate estimation of the reactor power. In this case, the constancy of the
anomalous isotopic composition of the mantle He is explained by the prop-
erties of the fast (∼ 1MeV ) neutroninduced fission of 239Pu in the neutron
fission wavefront. The 3He production probability is mainly determined by
the probability of 3H production as a fission fragment of 239Pu triple fission.
This probability is about ∼ 1.6×10−4 [73]. Hence the total accumulation rate
of 3He produced due to tritium β-decay (T1/2 ∼ 12.3 years) is approximately

N30
fB(3He) ∼ 1.6× 10−4nf ≈ 1.6× 10−4 P

Ef
= 14.8× 1019s−1, (4.2)

where Ef = 210.3MeV is the average energy per 239Pu fission.
On the other hand, 4He accumulation rate due to the 238U radioactive

decay in the UO2/Fe actinide web (by hypothesis of HU
α ≈ 0.1/0.5TW ) has

the form

NfB(4He) ∼ 8
HU
α

QU
α

= 8
(0.1− 0.5)× 1015

51.7× 1.6× 10−13
≈ (9.7− 48.5)× 1022s−1. (4.3)

Therefore the helium ratio RfB in the UO2/Fe actinide web (located on
the boundary of solid and liquid phase of the Earths core) is

R30
fB =

N30
fB(3He)

NfB(4He)
≈ (0.3− 1.6)× 10−3 (4.4)

Here a number of physical assumptions which allow us (without loss of
generality) to get rough estimations of the helium ratio R for different geo-
spheres of the Earth are used. A simplified consideration of helium isotopes
transport is connected with the assumption of the radial drift dominating
over the diffusion; at the same time the average radial drift speeds of 3He
and 4He areapproximately equal in the gravity fields of different geospheres
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of the Earth. The average cross sections (or probabilities) for these isotopes
to be captured by different traps in the Earth are also approximately equal
but are so small that we can neglect the decrease of these isotopes’ flows in
the direction of radial drift.

Now we can estimate the ratio R in the mantle and in the crust. The
4He accumulation rate due to 238U and 232Th radioactive decay in the mantle
(minus the depleted upper mantle) [69] is approximately

NM−UM(4He) ∼ 8
HU

QU
α

+ 6
HTh

QTh
α

≈ 9.93× 1024s−1 (4.5)

where QU
α = 51.7 MeV and QTh

α = 42.8 MeV are the decay energies

238U → 206Pb+ 84He+ 6e+ 6ν̃ (4.6)
232Th → 208Pb+ 64He+ 4e+ 4ν̃ (4.7)

Thus, taking into account (4.2), (4.3), and (4.5), the 3He/4He in the
mantle (minus the depleted upper mantle) RM−DUM due to Feoktistov fuel-
cycle georeactor (P = 30TW ) is approximately

R30
M−DUM =

N30
fB(3He)

NM−DUM(4He) +NfB(4He)
∼=

N30
fB(3He)

NM−DUM(4He)
≈ 11.15Ra

(4.8)
where Ra = 1.38× 10−6 is the atmospheric 3He/4He ratio.

In a similar manner, the average values of 3He/4He for the upper (de-
pleted) mantle RDUM and for the crust Rcrust are respectively

R30
DUM =

N30
fB(3He)

NDUM(4He) +NM−DUM(4He) +NfB(4He)
≈ 9.05Ra, (4.9)

R30
crust =

N30
fB(3He)

Ncrust(4He) +NDUM(4He) +NM−DUM(4He) +NfB(4He)
(4.10)

At the same time the statistical analysis of the depth distribution of
helium isotopes made on t he basis of numerous experimental data has shown
that the average value of 3He/4He for the crust Rcrust and for the upper
mantleRDUM are equalRcrust = (7.47±1.95)Ra andRDUM = (9.14±3.59)Ra,
whereas values RM−UM = (11 − 15)Ra are commonly attributed to deep
mantle plumes and are indicative of lower mantle involvement˝[61]. It is
obvious, that theoretical estimates (26) (28) practically coincide with the
experimental data.
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Thus, if georeactor power is 30 TW , the average values of 3He/4He for
crust, the upper mantle, the mantle (minus the depleted upper mantle) and
the thin layer on the boundary of liquid and solid of the Earth’s core RfB

become

R30
crust ≈ 7.6Ra, R

30
DUM ≈ 9.1Ra, R

30
M−DUM ≈ 11.2Ra,

R30
fB ≈ (220− 1160)Ra

(4.11)

which are in close agreement with the corresponding average values of
the experimental helium ratios [61]. Finally, we consider some lower layers
of the undepleted mantle (M −DUM) which we call the lower mantle (LM)
and which are defined as its lower part with characteristic volume of

VLM ∼= (0.2− 0.3)VM−DUM .

Now it is possible to obtain the average value of 3He/4He RLM for the
lower mantle

R30
LM =

VM−DUM
VLM

R30
MDUM

= (30÷ 50)Ra, (4.12)

which agrees with the well known experimental data by [74] and [76].
Thus, if 3He indeed has a georeactor origin, the 3He/4He ratio distribution in
the Earth’s interior is a natural quantitative criterion of the georeactor ther-
mal power. Moreover, if the georeactor exists, the corresponding 3He/4He
ratio distribution is predetermined not only by the georeactor thermal power
but also by the corresponding distribution of 238U and 232Th in the crust and
in the mantle [69].

4.3 Contribution of georeactor antineutrinos

to the antineutrino spectrum of the Earth.

Comparison with KamLAND experimen-

tal data.

Obviously, the geoneutrino spectrum is an unambiguous test for the existence
of a georeactor in the Earth’s interior (especially at energies > 3.272 MeV ,
where only fission geoneutrinos are detected, i.e., geoneutrinos produced due
to the actinide fission). In this sense, the idea of a georeactor is fruitful
not only for the understanding of the physical essence of the so-called he-
lium paradoxes [60], but at the same time, it effectively solves the prob-
lem of describing the geoantineutrino spectrum and the reactor antineutrino
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experimental spectrum in KamLAND in the range of antineutrino energy
∼ 2.8 MeV .

The 239Pu fission rate in neutron-fission wave front is

ηf = P/Ef ≈ 8.9× 10−23 fission s−1 (4.13)

where Ef = 210.3 MeV is the average energy per 239Pu fission.
Hence, a crude estimation of the contributions to the total antineutrino

integral intensity on the Earths surface which from two diametrically opposite
points on the boundary of liquid and solid of the Earths core and which are
produced by the burning wave front in the UO2/Fe actinides web has the
form

Φν =
1

4π(R⊕ ± rN)2
ηfµν (4.14)

=

{
0.72× 106 cm−2s−1, if R⊕ + rN ,
1.56× 106 cm−2s−1, if R⊕ − rN

(4.15)

where µ ≈ 5.37 is the number of antineutrinos per 239Pu fission; R⊕ ≈
6400 km; rN 1200 km.

Using the method of calculation of partial and total β, ν̃ energy-spectra
of radioactive nuclides explained in detail in [69], the partial dΦν̃/dE(238U),
dΦν̃/dE(232Th), dΦν̃/dE(40K) (Figure 4.2) were constructed, dΦν̃/dE(239U)
(Figure 4.3) [75] and total antineutrino energy spectra (without oscillations)
of the Earth dΦν̃/dE(238U+232Th+40K+239Pu) [75] (Figure 4.4). The partial
contributions were previously normalized to the corresponding geoantineu-
trino integral intensity on the Earth’s surface [69], [75]

The theoretical form of measured total energy spectrum dnν̃/dE is

dnν̃
dE

= εNp

∑
i

pi(Eν̃ , L)
dλiν̃
dE

σνp(Eν̃)∆t, MeV −1, (4.16)

where the probability of neutrino oscillation can be written for two neutrino
flavours as follows

p(Eν̃ , L) ∼= 1− sin22θ12 sin2

(
1.27∆m2

12[eV
2]L[m]

Eν̃ [MeV

)
, (4.17)

where dλν̃/dE ≡ dΦν̃/dE at Eν̃ ≥ 1.804 MeV , σνp is the antineutrino-
proton interaction cross-section for the inverse β-decay reaction with the
corresponding radiation corrections; L is the distance between the source
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Figure 4.2: Expected 238U ,232Th, and 40K decay chain electron antineutrino
energy distributions. KamLAND detector can only detect electron antineu-
trinos to the right of the vertical dotted line.

and the detector; ∆m2
12 ≡ |m2

2 −m2
1| is the mass squared difference, θ is the

mixing angle.
It is clear that the standard calculations of the true antineutrino spec-

trum and of the oscillation parameters (∆m2
12, sin

2 2θ12) in the KamLAND-
experiment have to be recalibrated, since the reactor geoantineutrinos are
in the spectral region of prompt energy above 2.6 MeV . In other words,
the standard methods of obtaining consistent estimates (e.g., the maximum-
likelihood method) normally used for the determination of the oscillation
parameters (∆m2

12, sin
2 2θ12) must take into account one more reactor, or,

more specifically, account for the antineutrino spectrum of georeactor with
the power of 30 TW which is located at a depth of L ∼ 5.2 × 106 m. The
results presented below show that the hypothesis of the existence of a geore-
actor with the power of 30 TW on the boundary of liquid and solid phases
of the Earths core does not conflict with the experimental data.

Let us proceed as follows: If CPT invariance is assumed, the probabilities
of the νe → νe and ν̃e → ν̃e oscillations should be equal at the same values
L/Eν . At the average distance L ∼ 180 km of the Japan reactors from the
KamLAND detector and at the typical energies of a few MeV of the reactor
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Figure 4.3: (a) Calculated partial antineutrino spectra of 239Pu normalized
to nuclear decay and (b) its deviation from theoretical spectra obtained by
different authors in the energy range of 1.8− 10.0 MeV .

ν̃e, the experiment has near optimal sensitivity to the ∆m2 value of the large
mixing angle (LMA) solar solution [77]. Furthermore, it is known that the
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Figure 4.4: Calculated total geoantineutrino spectrum of the Earth (taking
into account the reactor power of 30 TW) in KamLAND detector. Solid line
is ideal spectrum, histogram is spectrum with the energy bin of (a) 0.425
MeV and (b) 0.17 MeV. Insert shows the same spectrum but for reactor
power of 2.5 TW.

mass squared difference indicated by the solar neutrino data is ∼ 6×10−5 eV 2

and the mixing is large but not maximal, tan2θ ∼ 0.4 [78].
Since the sensitivity in ∆m2 can be dominated by the spectral distortion

in the antineutrino spectrum, whereas the solar neutrino data provide the
best constraint on θ, within the framework of further analysis, we can assume
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(basing on CPT theorem) that the angle of mixing in KamLAND -experiment
is determined by the solar˝equality tan2θ12 = 0.4 or sin2 2θ12 = 0.83. There-
fore, to calculate the integral intensity of the reactor geoneutrinos, the fol-
lowing approximation for survival probability pi=Pu in (4.17) was also used

pi=Pu(Eν̃|, L) = 1− 0.5 sin2 2θ12
∼= 0.59, (4.18)

(4.19)

L� Losc[m] =
2.48Eν̃ [MeV ]

∆m2
12[eV

2]
, (4.20)

where Losc is the oscillation length, L ∼ 5.2 × 106 m is the distance apart
the boundary of liquid and solid phases of the Earths core and detector.

Then, using equation (4.16), it is possible to show that in the first Kam-
LAND [79] the integral intensity of the reactor geoantineutrinos Punν̃ on the
Earth’s surface, taking into account equation (4.20), is

Punν̃ = pi=PuεNp∆t

∞∫
E=1.804

dλν̃(Pu)

dE
σνpdE

= pi=Pu[12.72(Pu)|Eν≤3.272 + 30.24(Pu)|Eν>3.272]

= 7.50|Eν̃≤3.272 + 17.84|Eν̃>3.272, (4.21)

where ε ≈ 0.783 is the detection efficiency; NP = 3.46 × 1031 is the number
of protons in the detector sensitive volume; ∆t = 1.25× 107 is the exposure
time [79]; σνp is the antineutrino-proton interaction cross-section of inverse
the β-decay reaction with the corresponding radiation corrections [80].

In the domain of the prompt energies Eprompt > 2.6 MeV (see fig-
ure 4.5(a) the ratio of the true˝flux of the reactor antineutrinos Nobs is
determined, which is equal to the difference between the measured flux
Nfull and the background flux caused by the 13C(α, n)16O reaction [51], NC

and the reactor geoneutrinos Punν̃ to expected flux Nexpected in KamLAND-
experiment. Taking into account that in the first KamLAND-experiment
Nfull = 54, Nexpected = 86.8 ± 5.6 [79], NC

∼= 2 (see figure 4.5), Punν̃
(Eprompt > 2.6 MeV ) = 17.84 (see (4.21)), the ratio < is

< =
Nobs

Nexpected

=
Nfull −NC −Pu nν̃

Nexpected

|Eprompt>2.6

(4.22)
∼= 0.394± 0.096(stsat)± 0.042(syst).
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Figure 4.5: (a) Energy spectrum of the observed prompt events (solid black
circles with error bars) [79], along with the expected no oscillation spectrum
(histogram, with events from 13C(a, n)16O reactions and accidentals shown)
and calculated total geoantineutrino oscillation spectrum in KamLAND de-
tector (shaded histogram). (b) Energy spectrum of the observed prompt neu-
trinos (solid circles with error bars), which is equal to difference between the
energy spectrum of the observed prompt events (solid black circles with error
bars), background and total geoantineutrino (oscillation) spectrum (shaded
histogram). Fit oscillation (lower shaded histogram) describing the expected
oscillation spectrum from Japans reactor. Vertical dashed line corresponds
to the analysis threshold at 2.6 MeV.

The probability that the KamLAND result is consistent with the no dis-
appearance hypothesis is less than 0.05%. Figure 4.6 shows the ratio < for
KamLAND as well as for the previous reactor experiments as function of the
average distance from source. On the same figure the shaded region indicates
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Figure 4.6: Ratio < = Nobs/Nexpected of measured to expected flux from
reactor experiments [85]. The solid dot [79] and circle is the KamLAND
point plotted at a flux-weighted average distance (the dot size and circle size
is indicative of the spread in reactor distance). The shaded region indicates
the range of flux predictions corresponding to the 95% CL LMA region found
in a global analysis of a solar neutrino data [81]. The thick curve corresponds
to sin2 2θ12 = 0.83 and ∆m2

12 = 2.5× 105 eV 2. The dotted curve corresponds
to sin2 2θ12 = 0.833 and ∆m2

12 = 5.5 × 105 eV 2 [81] and is representative
of recent best-fit LMA predictions while the dashed curve shows the case of
small mixing angle (or no oscillation). Adapted from [79].

the range of flux predictions corresponding to the 95% confidence level(CL).
LMA region found in a global analysis of the solar neutrino data [81]. It turns
out that only those values which are in interval ∆m2

12 ≈ (2÷ 4)× 10−5 eV 2.
Figure 4.7 are permitted for the given value of < (4.23) and the fixed angle of
mixing (sin22θ12 = 0.83). For the following calculations we chose the value
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of ∆m2
12 = 2.5 × 105 eV 2. The shape of the antineutrino spectrum for <

given by (4.23) (see the insert in figure 4.7) calculated for first KamLAND-
experiment at the fixed angle of mixing and different ∆m2

12 from the interval
(2− 4)× 10−5 eV 2 has been used as a rule of selection for this value.

Figure 4.7: The ratio < = Nobs/Nexpected of measured to expected flux in
KamLAND-experiment at fixed angle of mixing sin2 2θ12 = 0.83 but at the
different mass squared differences. The insert: theoretical antineutrino spec-
trums in KamLAND experiment at at fixed angle of mixing sin2 2θ12 = 0.83
and the different mass squared difference ∆m2

12 ≈ (2÷4)×10−5eV 2. Vertical
line corresponds to the analysis threshold at 2.6 MeV. The green curve corre-
sponding to theoretical antineutrino spectrum in KamLAND experiment at
∆m2

12 = 2.5×10−5eV 2 is selected on two correlated signs (the spectrum shape
and value of < = 0.429 for the KamLAND experimental data description.

Calculations of theoretical antineutrino spectra for the given oscillation
parameters (see the insert in figure 4.7 and figure 4.5(b)) is made by using
equations (4.16)-(4.17). The necessary parameters characterizing the expo-
sure time, the detection geometry and the detector properties are taken from
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KamLAND-experiment data [79]. To determine the averaged fission number
of the four main nuclei (235U, 238U, 239Pu, 241Pu) which induce the antineu-
trino contributions from the fission products of each of the Japanese reac-
tors in the radius of 1000 km from detector we took the required parameters
from the KamLAND-Internet-site [82], for example, the relative fission yields
(235U : 238U : 239Pu : 241Pu) and the distances to KamLAND-detector
for each of the indicated groups of reactors.

Obviously, the approximate values of the oscillation parameters (sin22θ12 =
0.83, ∆m2

12 = 2.5× 105 eV 2) obtained in this way allow us, by a similar cal-
culation procedure, to determine the total geoneutrino spectrum (4.5) which
includes the events due to the α-decay of 238U and 232Th (with the estimated
radial profile of their distributions in the Earth’s interior [69]) and the 239Pu
fission in the georeactor core. We can also calculate the geoneutrino integral
intensity on the Earth’s surface

nν̃ = piεNp∆t

∞∫
E=1.804

dλν̃(U + Th+ Pu

dE
σεp(E)dE (4.23)

= pi [2.70(U) + 0.78(Th) + 12.72(Pu)|Eε≤3.272 + 30.24(Pu)|Eε>3.272]

= [2.10(U + Th) + 7.50(Pu)]E≤3.272 + 17.84|E>3.272

Now, the obtained total geoneutrino spectrum (figure 4.5(a), green shaded
region) makes it possible to determine the true˝antineutrino spectrum (fig-
ure 4.5(b), blue points with bars) detected from the Japanese reactors in
geometry of the first KamLAND -experiment [79]. In figure 4.5(b) we show
an approximate oscillation fit, i.e., the theoretical antineutrino KamLAND-
spectrum with approximate oscillation parameters sin22θ12 = 0.83 and ∆m2

12 =
2.5 × 105 eV 2. Here we note that the observed difference discrepancy be-
tween the expected no oscillation spectrum shown in figure 4.5 and a similar
KamLAND-spectrum [79] is probably explained by the non-identity of the
used databases and does not exceed 3% (see figure 4.3).

Finally, let us show the results of verification of the oscillation param-
eters in the framework of the test problem of comparing the theoretical
(which takes into account the georeactor operation) and the experimental
spectrum of the reactor antineutrino on the base of new data [51] which
have been obtained by the experimental investigation of the geologically pro-
duced antineutrinos with KamLAND. For example, the new KamLAND data
[51] in the energy range Eε = (1.7 − 3.4) MeV (with the exposure time
∆t = (749.1 ± 0.5) days, the detection efficiency ε ≈ 0.687 and the num-
ber of protons in detector sensitive volume NP = (3.46± 0.17)× 1031) show
that the antineutrino spectrum obtained by taking into account the georeac-
tor antineutrinos, and the predicted KamLAND-spectrum are similar (figure
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Figure 4.8: The ν̃e energy spectra in KamLAND. Main panel, experimental
points (solid black dots with error bars) together the total expectation ob-
tained in KamLAND experiment (dotted black line) [51] and results obtained
in this thesis (thick solid blue line). Also shown are expected neutrino spec-
trum (solid green line) from Japans reactor, the expected neutrino spectrum
from georeactor (red line), the expected signals from 238U (dashed red line)
and 232Th (dashed green line) geoneutrinos, 13C(α, n)16O reactions (dashed
blue line) and accidentals (dashed black line). Inset, expected spectra ob-
tained in KamLAND experiment (solid black line) [51] and results obtained
in this thesis (solid green line) extended to higher energy.

4.8). In figure 4.9 the theoretical (which takes into account the georeactor
operation) reactor antineutrino spectrum calculated on the basis of the new
data [51]for whole energy range of detectable events is presented.

In conclusion, we should note that although the nuclear georeactor hy-
pothesis which we used for the interpretation of KamLAND-experiment seems
to be very effective, it can be considered only as a possible alternative variant
for describing the KamLAND experimental data. Only direct measurements
of the geoantineutrino spectrum in the energy range > 3.4 MeV in the future
underground or submarine experiments will finally settle the problem of the
existence of a natural georeactor and will make it possible to determine the
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Figure 4.9: Theoretical (which takes into account the georeactor operation)
reactor antineutrino spectrum calculated on the base of new data [86] for all
energy range of event detection. Designations are like in figure 4.8. Vertical
line corresponds to the analysis threshold at 2.6 MeV.

true˝values of the reactor antineutrino oscillation parameters.
On the basis of the analysis of the temporal evolution of radiogenic heat

emission power of the Earth in the framework of the geochemical model of the
mantle differentiation and the Earth’s crust growth [75], [87] complemented
by a nuclear energy source on the boundary of the solid and liquid phases of
the Earth’s core, altentative estimation of the geoantineutrino intensity and
the geoantineutrino spectrum on the Earth surface from different radioactive
sources (238U , 232Th, 40K and 239Pu) is obtained.

It’s also shown that natural nuclear reactors may exist on the boundary
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of the solid and liquid phases of the Earth’s core as spontaneous reactor-
like processes based on Feoktistov U −Pu fuel cycle and/or Teller-Ishikawa-
Wood Th − U fuel cycle. Note that, as compared to 238U -medium, the
wave velocity in the 232Th-medium has the value of about L/τ ∼ 0.1 cm/day
(where L ∼ 5cm is the diffusion length of the neutron absorption in thorium,
τ = 39.5/ln257 days is the time of 233U generation due to the β-decay of
233Pa). It means that the speed of the neutron-fission wave propagation
in the 232Th-medium (Teller-Ishikawa-Wood fuel cycle) is by an order of
magnitude less than the similar speed of Feoktistov burning wave.

The solution of the main problem connected with the search of natural
neutron sources which locally start the nuclear burning, is unclear and re-
quires serious joint efforts of the theorists. However, concerning the 3He/4He
distribution in the Earths interior and the geoneutrino spectrum on of the
Earths surface (KamLAND-experiment), the presence of a georeactor (as nu-
clear burning progressing wave) makes it possible to obtain a model 3He/4He
distribution and a geoneutrino spectrum which are in good agreement with
the experimental data.

Finally, we note that Feoktistov burning wave provides an effective con-
vective mechanism for a sustained hydromagnetic dynamo operation in the
Earth’s outer core. In fact, it creates natural conditions for gravity convec-
tion in the liquid core produced by the effective floating-up of light fission
fragments behind the nuclear burning wave front. The condition of continu-
ally sustained weak (the temperature being close to adiabatic) convection in
the liquid core is the cause of, but also a condition for the differential rotation
of different layers in the core, and, consequently, the generating mechanism
of the geomagnetic field.

Thus, the hypothesis of slow nuclear burning on the boundary of the
liquid and solid phases of the Earth’s core is very effective for the expla-
nation of some features of geophysical events. However, strong evidences
can be obtained from the independent experiment on geoantineutrino energy
spectrum measurements using a multi-detector scheme of geoantineutrino
detection with a large base. Finally, solution of the direct and the inverse
problems of the remote neutrino-diagnostics for the intra-terrestrial processes
which is essential to obtain the pure geoantineutrino spectrum [75] and to
determine correctly the radial profile of the β-sources in the Earth’s interior
will help to settle the problem of the existence of a natural nuclear reactor
on the boundary of the liquid and solid phases of the Earth’s core.
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Conclusions

This research project has dealt with a conceptual design of a model of an
innovative inherently safe nuclear soliton-like fast reactor of Feoktistov type.
The main findings are summarized below.

The kinetics of self-stabilising fast uranium-plutonium reactor, which gen-
erates self-propagating neutron-fission nuclear burning wave, that satisfies
all conditions of inherent safety, was considered for the Feoktistov uranium-
plutonium fuel cycle. For simplicity the neutron spectrum was assumed the
same as the fission spectrum. A case with little or no moderator was consid-
ered – the neutron spectrum is the same as the initial neutron spectrum.

The auto-wave solution for the transmutation chain with necessary con-
dition ncrit < ñPu was obtained and analyzing this solution it was shown
that the soliton-like propagation of neutron-fission nuclear burning wave is
possible in U238 medium only under the condition of a certain ratio between
equilibrium and critical plutonium concentration (ñPu > ncrit), which is char-
acterized by Bohr-Sommerfeld quantization condition.

A preliminary model of nuclear fast reactor of Feoktistov type is pro-
posed. The obtained model satisfied the requirement of inherent safety. The
numerical experiments of nuclear reactor with uranium-plutonium fuel cycle
are made and the solution in the form of soliton-like progressive burning wave
is obtained.

The physical conditions of Feoktistov wave mode are generalized and the
necessary and sufficient condition of the soliton-like wave origin and propa-
gation are obtained.

The heuristic description of the slow burning process propagation in the
reactor core is given.

The simplified one-dimentional model of Pu accumulation and U bur-
nup kinetics was proposed. Taking into account delayed neutrons three-
dimentional model for one-group diffusion approximation is offered.
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The numerical solution for the obtained physical model of the reactor is
provided. In oder to verify theoretical model the computational experiment is
performed. The simulation were done for the different initial and boundary
condition, with and without initial fuel enrichment. The calculated wave
velocity was in good agreement with the necessary and sufficient conditions
obtained in chapter 2 of this thesis.

The numerical solution using the method of mesh points in the implicit
form is obtained and the simulation results and its verification w.r.t. obtained
in the chapter 2 necessary and suffycient conditions of nuclear burning wave
origin were given.

On the basis of proposed reactor model the hypothesis of slow nuclear
burning on the boundary of the liquid and solid phases of the Earth’s core
was offered.

On the basis of the analysis of the temporal evolution of radiogenic heat
emission power of the Earth in the framework of the geochemical model of the
mantle differentiation and the Earth’s crust growth [75], [87] complemented
by a nuclear energy source on the boundary of the solid and liquid phases of
the Earth’s core, altentative estimation of the geoantineutrino intensity and
the geoantineutrino spectrum on the Earth surface from different radioactive
sources (238U , 232Th, 40K and 239Pu) is obtained.

It’s also shown that natural nuclear reactors may exist on the boundary
of the solid and liquid phases of the Earth’s core as spontaneous reactor-
like processes based on Feoktistov U −Pu fuel cycle and/or Teller-Ishikawa-
Wood Th − U fuel cycle. Note that, as compared to 238U -medium, the
wave velocity in the 232Th-medium has the value of about L/τ ∼ 0.1 cm/day
(where L ∼ 5cm is the diffusion length of the neutron absorption in thorium,
τ = 39.5/ln257 days is the time of 233U generation due to the β-decay of
233Pa). It means that the speed of the neutron-fission wave propagation
in the 232Th-medium (Teller-Ishikawa-Wood fuel cycle) is by an order of
magnitude less than the similar speed of Feoktistov burning wave.

Finally, concerning the 3He/4He distribution in the Earths interior and
the geoneutrino spectrum on of the Earths surface (KamLAND-experiment)
the possibility of the existence of soliton-like nuclear reactor with U − Pu
or/and Th − U fuel cycle on the boundary of the liquid and solid phases of
the Earth’s core is shown.



Appendix A

Simulation. Program listing.

program NY11KT

USE Numerical_Libraries_e

USE lin_eig_self_int

USE rand_int

!*********** PARAMETERS ***********

! real parameters of lenght 8

! where hz - is an iteration on z (cilinder lenght) in sm

! hr - is a step on r (cilinder radius) in sm

! ht - is a step on time in sec

real(8),parameter::hz=1.0d0,ht=1.0d2,hr=1.0d0,Rbc=0.5

! integer parameters of lenght 4

! where Nz - is lenght (nuber of "steps") z (cilinder lenght)

! Nr - is a lenght (nuber of "steps") on r (cilinder radius)

! Nt - is a lenght (nuber of "steps") on t

integer(4),parameter::Nt=240000,Nr=125,Nz=1000

! real parameters of lenght 8

! where n0 - is an concentration of neutrons on the left bound

! N80 - is initial concentration of U-238, ro=16.7 - density

! of U-238 at 1500,
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! Nav - Avogadro constant Nav=6.0247d23

! Dn - diffusion constant of neutrons

real(8),parameter::n0=1.0d9,N80=(19.0*6.0247d23)/238.0,Dn=2.8d9

! integer parameters of lenght 4

! where npdes - number of equations

! uch1, uch2 - size of zones with different structure

! p - 0 or 1 - initial data reading from file 1,

! or calculating 0

integer(4),parameter::npdes=11,uch1=10,uch2=100,p=0

!*********** VARIABLES AND ARRAYS ***********

! integer variables of lenght 4

! where i - is an iteration on z

! j - is an iteration on r (cilinder radius) in sm

! t - is an iteration on t

integer(5):: k,l,i,j,t

!initial data array U(:,:,:)

!

real(8)::U(11,0:Nz,Nr)

! real variables of lenght 8

! where JF - is an initial condition of Bessel equation

! dTprij - variable for time

! tt -

real(8)::JF,dTpri,tt

! An(Nr-1,Nr-1)- array of coefficients in sweep method

real(8)::An(Nr-1,Nr-1) !

! CAa(Nz-1,Nr-1,Nr-1) - table of inverse matrixes used

! for calc. of matrix alpha and beta neutrons

! alfa(Nr-1,Nr-1),beta(Nz,Nr-1) - matrixes in the sweep
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! method equation

real(8)::alfa(Nr-1,Nr-1),beta(Nz,Nr-1),CAa(Nz-1,Nr-1,Nr-1)

real(8)::alfaU(Nr-1),AbF(Nr-1,Nr-1),Fn(0:Nz,Nr-1),fi(Nz,Nr)

open(3,file=’dan.dat’)

call allopen(npdes,Nz)

dTpri=ht;Tpr=ht

! INITIAL CONDITION

!*********************************************************************

t=0

if (p==0) then

U(:,:,:)=0.0 !All

U(5,:,:)=N80 !Fragments

U(2,uch1:uch2,1:Nr)=N80*0.99 !Uranium 238

U(4,uch1:uch2,1:Nr)=N80*0.01 !Plutonium

U(2,uch2:(uch2*2),1:Nr)=N80*0.99 !Uranium 238

U(4,uch2:(uch2*2),1:Nr)=N80*0.01 !Plutonium

U(2,(uch2*2):(uch2*3),1:Nr)=N80*0.99 !Uranium 238

U(4,(uch2*2):(uch2*3),1:Nr)=N80*0.01 !Plutonium

U(2,(uch2*3):Nz,1:Nr)=N80*0.99 !Uranium 238

U(4,(uch2*3):Nz,1:Nr)=N80*0.01 !Plutonium

U(5,uch1:Nz,1:Nr)=0.0 !(-uch1) !Fragments

do j=1,Nr !-1 !!!Boundary condition w.r.t R
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U(1,0,j)=n0 !0.0

enddo

else

call allopen(npdes,t)

do ur=1,npdes

l=1000*ur

do i=1,Nr

read(l,"(1201(1x,1Pd21.15))")(U(ur,j,i),j=0,Nz)

enddo

enddo

do ur=1,npdes

l=1000*ur

close(l)

enddo

endif

call prir(U,Nr,Nz,t*ht,npdes) !

!**************************************************************

An(1,1)=ht*Dn/(hz**2)

An(Nr-1,Nr-1)=An(1,1)

do k=2,Nr-2

An(k,k)=An(1,1)

enddo

tt=TIMEF()

call CAaK(hr,hz,ht,Nr,Nz,Dn,CAa)

write(*,*)’flag’

tt=TIMEF()

write(3,*)tt
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do t=1,Nt ! Steps on time

call resh(U,Nr,Nz,ht,npdes,fi) !!,qT) !!!!!Source

Fn(0,1:(Nr-1))=U(1,0,1:(Nr-1))

do i=1,Nz-1

Fn(i,1)=(U(1,i,1)+ht*fi(i,1))

do j=2,Nr-2

dFUr=(U(1,i,j+1)-U(1,i,j-1))/(2.0*j*(hr**2))

+(U(1,i,j-1)-2*U(1,i,j)+U(1,i,j+1))/(hr**2)

Fn(i,j)=(U(1,i,j)+ht*fi(i,j))

enddo

j=Nr-1

dFUr=(U(1,i,j+1)-U(1,i,j-1))/(2.0*j*(hr**2))

+(U(1,i,j-1)-2*U(1,i,j)+U(1,i,j+1))/(hr**2)

JF=Rbc*U(1,i,Nr-1)*ht*Dn*(1.0+1.0/(2.0*j))/(hr**2)

!!Boundary cond on R

Fn(i,j)=(U(1,i,j)+JF+ht*fi(i,j))

!!FT(i,j)=(U(6,i,j)+JFT+ht*qT(i,j))

enddo

Fn(Nz,1:(Nr-1))=U(1,Nz,1:(Nr-1))

U(1,:,Nr)=Rbc*U(1,:,Nr-1) !,1)

U(1,Nz,:)=Rbc*U(1,Nz-1,:)

!******************************************************************

!******************************************************************

! Sweep method

! neutrons

beta(:,:)=0.0



APPENDIX A. SIMULATION. PROGRAM LISTING. 114

beta(1,:)=Fn(0,:)

do i=1,Nz-1

alfaU(:)=beta(i,:)

alfaU(:)=An(1,1)*alfaU(:)

do k=1,Nr-1

alfaU(k)=alfaU(k)+Fn(i,k)

enddo

AbF(:,:)=CAa(i,:,:)

alfaU=MATMUL(AbF,alfaU)

beta(i+1,:)=alfaU(:)

enddo

!---------------------------------------------------------------

do i=Nz-1,1,-1

alfa(:,:)=CAa(i,:,:)

alfa(:,:)=An(1,1)*alfa(:,:) !!!!!!!!!!!!!!!

do j=1,Nr-1

alfaU(j)=U(1,i+1,j)

enddo

alfaU=MATMUL(alfa,alfaU)

do j=1,Nr-1

U(1,i,j)=alfaU(j)+beta(i+1,j)

enddo

do k=1,(Nr-1)

do j=1,(Nz-1)

if (U(1,j,k)<0.0) U(1,j,k)=0.0

enddo

enddo
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enddo

dTpri=dTpri+Tpr

endif

write(*,*)t*ht,’ c’,100*t/Nt,’%’

enddo

call prir(U,Nr,Nz,Nt*ht,npdes)

call allclose(npdes)

tt=TIMEF()

write(3,*)tt

close(3)

end program NY11KT

!**********************************************

!------------------------------------------------------

subroutine prir(U,Nr,Nz,t,npdes) ! !Data saving

integer(4):: i,j,Nr,Nz,ur,npdes,f !,ko,Nzf

real(8)::U(npdes,0:Nz,Nr),t !,Tprprir,dTpri,ht

do ur=1,npdes

f=1001*ur !+ko

write(f,"(1202(1x,1Pd8.2))")(U(ur,j,1),j=0,Nz)

enddo

do ur=1,npdes-5

f=10*ur !+ko

do i=1,Nr
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write(f,"(1202(1x,1Pd8.2))")(U(ur,j,i),j=0,Nz)

enddo

write(f,*)T !*

enddo

call allopen(npdes,f-f)

do ur=1,npdes

f=1000*ur

do i=1,Nr

write(f,"(1201(1x,1Pd21.15))")(U(ur,j,i),j=0,Nz)

enddo

enddo

do ur=1,npdes

f=1000*ur

close(f)

enddo

end subroutine prir

!---------------------------------------------------------

subroutine allopen(npdes,Nz)

integer(4)::ur,Nz,npdes,f !,ko,Nzf

character(len=4),parameter::obsh=’.dat’ !,o=’o’,z=’z’

character(len=8)::name,nach(11)=(/’n’,’U8’,’U9’,’Pu’,

’osk’,’os1’,’os2’,’os3’,’os4’,’os5’,’os6’/)

if (Nz.ne.0) then

do ur=1,npdes

name=trim(nach(ur))//obsh !//trim(kon)

f=1001*ur !+ko

open(f,file=name)

enddo

do ur=1,npdes

name=trim(nach(ur))//obsh !//trim(kon)
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name=trim(name)

f=10*ur !+ko

open(f,file=name)

enddo

else

do ur=1,npdes

name=trim(nach(ur))//’z’//obsh

name=trim(name)

f=1000*ur

open(f,file=name)

enddo

endif

end subroutine allopen

!---------------------------------------------------------

subroutine allclose(npdes) !,Nz

integer(4)::npdes,ur,f !,Nzf,Nz,ko

do ur=1,npdes

f=10*ur !+ko

close(f)

f=1001*ur !+ko

close(f)

enddo

end subroutine allclose

!---------------------------------------------------------

subroutine resh(U,Nr,Nz,ht,npdes,q)

integer(4):: i,j,Nr,Nz,ur,npdes

real(8):: U(npdes,0:Nz,Nr),q(Nz,Nr),ht

real(8)::Sum1

real(8),parameter::sifPU=2.0d-24,sia8=5.38d-26,

sia9=2.12d-26,siaPu=2.12d-26

real(8),parameter::To(6:11)

/55.0,22.0,5.5,2.1,0.55,0.22/
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real(8),parameter::Po(6:11)

/0.0002,0.0018,0.0013,

0.0020,0.0005,0.0003/,Sump=0.0061

real(8),parameter::taub=2.85d5,

Vn=1.0d9,nu=2.9,czap=1.0

q(:,:)=0.0

do i=1,(Nr-1)

do j=1,(Nz-1)

Sum1=0.0;Sumzap=0.0;Sum1o=0.0

do ur=6,11

Sumzap=Sumzap+U(ur,j,i)/To(ur)

Sum1o=Sum1o+U(ur,j,i)

enddo

Sum1=sia8*U(2,j,i)+sia9*U(3,j,i)+siaPu*U(4,j,i)

+sia8*(Sum1o+U(5,j,i))

q(j,i)=(nu*(1-Sump)-1)*U(1,j,i)*Vn*sifPu*U(4,j,i)

+czap*0.693*Sumzap-Vn*U(1,j,i)*Sum1

U(2,j,i)=-ht*Vn*U(1,j,i)*sia8*U(2,j,i)

+U(2,j,i) !+Vn*U(1,j,i)*siaPu*U(4,j,i)

U(3,j,i)=ht*Vn*U(1,j,i)*sia8*U(2,j,i)

-ht*U(3,j,i)/taub+U(3,j,i)

U(4,j,i)=ht*U(3,j,i)/taub-ht*Vn*U(1,j,i)

*(siaPu+sifPu)*U(4,j,i)+U(4,j,i)

! Fragments

do ur=6,11

Uk(ur,j,i)=ht*Po(ur)*Vn*sifPu*U(4,j,i)*U(1,j,i)

-ht*0.693*U(ur,j,i)/To(ur)+U(ur,j,i)

U(ur,j,i)=ht*Po(ur)*Vn*sifPu*U(4,j,i)*U(1,j,i)

-ht*0.693*U(ur,j,i)/To(ur)+U(ur,j,i)

enddo

U(5,j,i)=ht*(1-Sump)*Vn*U(1,j,i)*sifPu*U(4,j,i)

+ht*0.693*Sumzap+U(5,j,i)
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enddo

enddo

do ur=2,npdes

do i=1,(Nr-1)

do j=1,(Nz-1)

if (U(ur,j,i)<0.0) U(ur,j,i)=0.0

enddo

enddo

enddo

end subroutine resh

!-------------------------------------------------

subroutine CAaK(hr,hz,ht,Nr,Nz,Dn,CAa)

real(8)::hr,hz,ht

integer(4):: k,l,i !,j !,t !Nr,Nz,Nt,

integer(4)::Nr,Nz

real(8)::An(Nr-1,Nr-1),ZAPt(Nr-1,Nr-1),C(Nr-1,Nr-1)

real(8)::alfa(Nr-1,Nr-1),CAa(Nz-1,Nr-1,Nr-1)

real(8)::Dn

An(1,1)=ht*Dn/(hz**2)

C(1,1)=1.0+2.0*ht*Dn/(hz**2)+2.0*ht*Dn/(hr**2)

C(1,2)=-2.0*ht*Dn/(hr**2)

An(Nr-1,Nr-1)=An(1,1)

C(Nr-1,Nr-1)=1+2.0*ht*Dn/(hz**2)+2.0*ht*Dn/(hr**2)

C(Nr-1,Nr-2)=ht*Dn*(1.0/((Nr-1-1)*2.0)-1.0)/(hr**2)

do k=2,Nr-2

do l=k-1,k+1

if (l==k) then

An(k,l)=An(1,1)

C(k,l)=C(Nr-1,Nr-1)

else

C(k,l)=ht*Dn*((k-l)*(1.0/((k-1)*2.0))-1.0)/(hr**2)

endif

enddo

enddo
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!-------------------------------------------------------

alfa(:,:)=0.0

CAa(:,:,:)=0.0

do i=1,Nz-1ZAPt=MATMUL(An,alfa)

do k=1,Nr-1

do l=1,Nr-1

ZAPt(k,l)=C(k,l)-ZAPt(k,l)

enddo

enddo

call obr(ZAPt,Nr-1)

CAa(i,:,:)=ZAPt(:,:)

alfa=MATMUL(ZAPt,An)

write(*,*)i

enddo

end subroutine CAaK

!******************************************************

subroutine obr(a,n)

integer(4)::n

integer(4)::j,ipvt(n)

real(8)::a(n,n),fac(n,n),e(n),ainv(n,n)

call Lufac2(n,a,fac,ipvt)

do j=1,n

e=0.0; e(j)=1.0

call useLU2(n,fac,ipvt,e,ainv(1,j))

end do

a(:,:)=ainv(:,:)

end subroutine obr !
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subroutine Lufac2(n,a,fac,ipvt)

integer(4)::n,ipvt(n),i,j,k

real(8)::a(n,n),fac(n,n),p(n),hold

fac=a;ipvt=(/(i,i=1,n)/)

do k=1,n-1

ipvt(k:k)=k+maxloc(abs(fac(k:n,k)))-1

if(ipvt(k)/=k) then

p(k:n)=fac(k,k:n)

fac(k,k:n)=fac(ipvt(k),k:n);fac(ipvt(k),k:n)=p(k:n)

do j=1,k-1

hold=fac(ipvt(k),j);fac(ipvt(k),j)=fac(k,j);fac(k,j)=hold

end do

end if

p(k+1:n)=fac(k+1:n,k)/fac(k,k)

do i=k+1,n

fac(i,k+1:n)=fac(i,k+1:n)-fac(k,k+1:n)*p(i)

end do

fac(k+1:n,k)=-p(k+1:n)

end do

end subroutine Lufac2

subroutine useLU2(n,fac,ipvt,b,x)

integer(4)::n,ipvt(n),k

real(8)::fac(n,n),x(n),b(n),s,hold

do i=1,n

if(ipvt(i)/=i) then

hold=b(ipvt(i));b(ipvt(i))=b(i);b(i)=hold

end if

end do

do k=2,n !

b(k)=b(k)+dot_product(fac(k,1:k-1),b(1:k-1))

end do

x(n)=b(n)/fac(n,n)

do k=n-1,1,-1

s=sum(fac(k,k+1:n)*x(k+1:n))

x(k)=(b(k)-s)/fac(k,k)
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end do

end subroutine useLU2
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