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1 Introduction

The understanding of the behaviour and properties of strongly interacting matter is one
of the most challenging tasks of high energy physics. Due to the non-Abelian nature
of Quantum Chromo Dynamics (QCD) – the theory that describes strongly interact-
ing matter – an analytical or perturbative treatment of many physically interesting
situations is not possible. Therefore the interaction of experimental results, numerical
investigations and progress in analytical methods is a cornerstone of research devoted to
the understanding of strongly interacting matter.

In the vacuum and at low temperatures quarks and gluons are confined in hadronic
bound states. At higher temperatures of the order of 1012 K it is expected that hadronic
matter undergoes a transition to the Quark Gluon Plasma (QGP), in which quarks and
gluons can exist in other than colour-singlet states in the thermal medium. This new
form of matter is of special interest for the physics of the early universe and has been
investigated in several heavy ion collision experiments, in which it is expected, that a
thermally equilibrated QGP can form.

At the Relativistic Heavy Ion Collider (RHIC) at BNL collision experiments with
heavy nuclei are conducted, reaching CMS-energies of up to 200 AGeV. One of the most
important discoveries of this experiments was that the Quark Gluon Plasma is not a
weakly coupled plasma but rather a system that interacts strongly, the so called sQGP
[1]. Moreover, this sQGP was found to behave as a nearly perfect liquid at RHIC
energies with very small viscous corrections, as measurements of the elliptic flow reveal.
Future experiments at the Large Hadron Collider (LHC) at CERN and at FAIR at GSI
are expected to clarify the situation further. The physical mechanisms responsible for
the emergence of the sQGP are still under discussion. The survival of bound states
in the deconfined phase, including colour non-singlet states like diquarks, have been
proposed as a possible reason for the observed deviation from the weakly coupled gas
behaviour [2]. Lattice calculations of hadronic fluctuations suggest, however, that net
quark number and electric charge are predominantly carried by quasi-particles with the
quantum numbers of quarks [3]. In this work we try to elucidate the question of bound
states further by providing diquark and baryonic free energies of heavy quarks, which
can be used for the computation of bound state energies in the deconfined phase.

Moreover, we can add knowledge to the understanding of the shape of the flux tube
in the baryon at finite temperature and address whether genuine three-body forces exist
on the fundamental level between the three valence quarks of the baryon.

One of the most outstanding problems of QCD is the understanding of the confine-
ment mechanism. Unfortunately there exists no exact analytical formalism for this
non-perturbative phenomenon and one has to resort to the use of models for an analyt-
ical treatment, which are derived from the QCD Lagrangian with the help of additional
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1 Introduction

assumptions. Many models have been proposed in this way, which lead to a wealth of
different predictions.

Lattice calculations provide the supreme means for the theoretical investigation of the
QCD vacuum and the confinement/deconfinement transition from first principles, since
they are capable of exploring regions of the gauge coupling and the temperature where
analytical or perturbative methods fail. Potentials and free energies in higher irreducible
representations of SU(3) than the fundamental one are relatively easily accessed by lattice
calculations and can provide a test for confinement models and their predictions for QCD.
An especially important property is the realisation of Casimir scaling in the QQ̄-potential
with sources in higher representations in lattice calculations of the SU(3) pure gauge
vacuum [4] and in perturbative calculations up to two loop order [5]. In this work we
extend the investigation of the Polyakov loop and QQ̄-free energies at finite temperature
to higher representations and study their relation to the confinement/deconfinement
transition.

A more technical point to be addressed in this work is the renormalisation of the
Polyakov loop and some of its correlation functions in irreducible representations of the
SU(3) gauge group. In order to obtain physically meaningful information from lattice
calculations, non-perturbative renormalisation procedures have to be administered to
the bare values of lattice observables. These procedures are in general not unique, but
should, of course, in the end lead to the same physical results. A sound and well tested
renormalisation procedure for the Polyakov loop and its correlators is an indispensi-
ble prerequisite for the investigation of the QGP and the confinement/deconfinement
transition mentioned above.

This work is organised as follows. In chapter 2 we will introduce the Polyakov
loop and its relation to the center symmetry of SU(N) gauge theories and the con-
finement/deconfinement phase transition. Moreover we will introduce Polyakov loop
correlation functions and the corresponding free energies and some of their properties at
finite temperature. After that, we will discuss the lattice implementation of the Polyakov
loop and its correlators. We will then extend the framework to the case of higher irre-
ducible representations of SU(3) for the Polyakov loop and the free energies and discuss
the relevance of the Casimir scaling hypothesis.

In chapter 3 we will discuss the renormalisation procedure for the QQ̄-singlet free
energies with sources in the fundamental representation and extend it to the case of
adjoint sources and propose and test the Nτ -variation method as a new renormalisation
procedure suitable for the Polyakov loop in arbitrary irreducible representations. Finally
in this chapter, we will discuss a third renormalisation procedure starting from different
assumptions and compare the results from this method with those of our methods.

In chapter 4 we will address the question of Casimir scaling in QQ̄-singlet and -average
free energies with sources in different representations in SU(3) pure gauge theory. More-
over, we will investigate Casimir scaling for the Polyakov loop in different representations
for both SU(3) pure gauge and 2-flavour QCD. Then we will perform the thermodynamic
limit for Polyakov loops at strong coupling and below Tc in SU(3) pure gauge theory and
obtain the renormalised adjoint Polyakov loop in the thermodynamic limit. From this
observable we will estimate the binding energy of the gluelump at finite temperature
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and the string breaking distance for the QQ̄-free energy with adjoint sources.
Chapter 5 will show results from calculations of diquark free energies in SU(3) pure

gauge theory and 2-flavour QCD. We will investigate the thermodynamic limit of the
QQ-anti-triplet free energy below Tc and compare its properties to that of the QQ̄-singlet
free energy in the confined and the deconfined phase.

In chapter 6 we will examine results for the static baryonic free energies obtained
in both SU(3) pure gauge theory and 2-flavour QCD. We will discuss the relation of
QQQ-free energies to those of the QQ-system in the deconfined phase and discuss the
shape of the flux tube of the QQQ-singlet colour state in SU(3) pure gauge theory. In
2-flavour QCD we will investigate string breaking in the QQQ-system in the confined
phase. Moreover, we will discuss the ramifications of our findings concerning the diquark
and baryonic free energies for the screening mass and the question of bound states in
the vicinity of the phase transition in the Quark Gluon Plasma.

Finally, in chapter 7 we will conclude and give an outlook on future research.
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2 The Polyakov Loop and its Correlation
Functions

As we are interested in the lattice formulation of pure gauge theory and full QCD at finite
temperature in thermal equilibrium, we start directly with the path integral expression
of the partition function in Euclidean spacetime. For a system at temperature T and
volume V in the grand canonical ensemble with vanishing chemical potential we have
the partition function

Z(T, V ) =

∫

DA exp (−S[A]) , (2.1)

where

S[A] =
1

2

∫ 1/T

0
dx0

∫

V
d3x Tr Fµν(x)Fµν(x) (2.2)

is the Euclidean gauge action and

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] (2.3)

is the field strength tensor of the SU(N) gauge theory with the coupling constant g and
x = (x0,x). The non-Abelian vector potential is defined by

Aµ(x) = Aa
µ(x)ta, (2.4)

where the Aa
µ(x) are real valued functions and ta are the hermitian generators of the

SU(N) gauge group with a = 1, . . . , N 2 − 1. The theory defined through (2.2) includes
only gauge fields and neglects the dynamical quark sector and is hence called pure gauge
theory. The fields appearing in (2.1) are classical fields; the quantisation is achieved by
virtue of the partition function (2.1). All thermodynamic information on the system can
be deduced from Z(T, V ).

Expectation values of an operator Ô can be obtained by inserting its corresponding
classical expression O[A] in the path integral. More explicitly we have the expression

〈

Ô
〉

=
1

Z(T, V )

∫

DA O[A] exp (−S[A]) . (2.5)

The quantity
〈

Ô
〉

contains in general infinities, which have to be cured by a suitable

renormalisation procedure in order to obtain physically meaningful results.
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2 The Polyakov Loop and its Correlation Functions

If we also want to include dynamical quark fields Ψ and anti-quark fields Ψ̄ = Ψ†γ0,
we can do so by defining the action

SF [Ψ, Ψ̄, A] =

∫ 1/T

0
dx0

∫

V
d3x

∑

a,f

Ψ̄a
f (x0,x) (iγµDµ + mf )Ψa

f (x0,x), (2.6)

where a = 1, . . . , N , f = 1, . . . , Nf numbers the flavours, mf is the corresponding quark
mass and {γµ, γν} = 2δµν . The covariant derivative Dµ is defined by

Dµ = ∂µ + igAµ (2.7)

and includes interactions with the gluons by virtue of the second term. The partition
function now includes an integration over the Ψ and Ψ̄ fields and becomes

Z(T, V ) =

∫

DADΨDΨ̄ exp
(
−S[A] − SF [Ψ, Ψ̄, A]

)
. (2.8)

This is the partition function of full QCD. In nature, we have Nf = 6, but usually
we restrict ourselves to theories with Nf ≤ 3. This is a sound approximation for the
phenomena we wish to study, since the corresponding mf span a wide range of energies
(< 5MeV for the up quark to ∼ 174GeV for the top quark [6]) and effects due to the three
heaviest flavours are strongly suppressed around the deconfinement phase transition,
which takes place at energies O(102) MeV.

The better part of this work is concerned with the investigation of quantities in the
frame work of pure gauge theory defined by (2.1). Let us shortly discuss why study-
ing pure gauge theory is instructive despite its negligence of the dynamical quark sector.
Firstly, already pure gauge theory shows confinement, providing an opportunity to study
this phenomenon in a somewhat simplified environment. Much on the confinement mech-
anism and the transition to the deconfined phase can be learned by investigating higher
representations of the SU(3) gauge group in pure gauge theory, as we will show below.
Secondly, it has turned out, that calculations in pure gauge theories get at least the
order of magnitude of many interesting observables right, compared to calculations in
full QCD. And, last but not least, pure gauge theory is relatively easy to handle re-
garding numerical simulations in contrast to full QCD, where the inclusion of dynamical
quark fields causes a considerable additional numerical effort. Therefore the investiga-
tion of pure gauge theory is important and helps to obtain a deeper understanding of
the phenomena observed in full QCD.

For a review on the thermodynamics of QCD consult [7], introductions to finite tem-
perature field theory can be found in textbooks [8, 9].

2.1 The Center Symmetry and the Polyakov loop

We will now introduce the center symmetry as an important global symmetry of SU(N)
gauge theories, explain its relevance for the confinement mechanism and for the phase
transition to the deconfined phase and introduce the Polyakov loop as an order parameter
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2.1 The Center Symmetry and the Polyakov loop

for the confinement/deconfinement phase transition. We will mainly follow [10, 11] in
this part.

As the vector potential Aµ is a bosonic field, it obeys periodic boundary conditions

Aµ(x0 + β,x) = Aµ(x0,x) (2.9)

in the Euclidean time direction, where β = 1
T is the length of the Euclidean time direc-

tion. The gauge action (2.2) is invariant under local gauge transformations

gAµ = g (Aµ + ∂µ) g†, (2.10)

where g(x) ∈ SU(N). Obviously, any gauge transformation which is periodic in the
Euclidean time direction,

g(x0 + β,x) = g(x0,x) (2.11)

fulfils the requirement (2.9). It was noticed [12, 13], however, that there are also topolog-
ically non-trivial transformations which leave the gauge action (2.2) invariant but which
are periodic only up to a global twist matrix z ∈ SU(N),

g(x0 + β,x) = zg(x0,x). (2.12)

The strictly periodic gauge potential then transforms as

gAµ(x0 + β,x) = g(x0 + β,x) (Aµ(x0 + β,x) + ∂µ) g(x0 + β,x)†

= zg(x0,x) (Aµ(x0,x) + ∂µ) g(x0,x)†z†

= z gAµ(x0,x)z†. (2.13)

In order to maintain the boundary conditions (2.9) for the vector potential, we must
have

z gAµ(x0,x)z† = gAµ(x0,x), (2.14)

which is only possible if z commutes with gAµ. Thus, z must be an element of the center
�
(N) of the gauge group SU(N). The elements of the center commute with all group

elements and are proportional to the unit matrix,

z = eiφ � , φ =
2πn

N
, n = 0, . . . , N − 1. (2.15)

Although the action (2.2) is invariant under global
�
(N) transformations, not all physical

quantities must show this behaviour. As we will see below, the global
�
(N) symmetry

can break spontaneously, signalling a phase transition from the confined to the deconfined
phase. Moreover it is easy to see that the global

�
(N) symmetry is explicitly broken

by the introduction of dynamical quark fields Ψ. These transform under local gauge
transformations as

gΨ = gΨ, (2.16)
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2 The Polyakov Loop and its Correlation Functions

and, being fermions, satisfy anti-periodic boundary conditions in Euclidean time,

Ψ(x0 + β,x) = −Ψ(x0,x). (2.17)

Under global gauge transformations like (2.12) we obtain for Ψ,

gΨ(x0 + β,x) = g(x0 + β,x)Ψ(x0 + β,x)

= −zg(x0,x)Ψ(x0,x)

= −z gΨ(x0,x). (2.18)

Maintaining the boundary condition for the quark fields (2.17) now is only possible if
z = � , i. e. φ = 0, so that the center symmetry has vanished.

We proceed by studying pure gauge theory defined by the action (2.2), where dy-
namical quark fields are absent. Nevertheless it is possible to introduce static quark
fields, i. e. infinitely heavy quarks (mq → ∞), which serve as test charges that probe
the behaviour of the gauge field. We start by defining the thermal Wilson line in the
fundamental representation of SU(N)

P (x) = P exp

(

ig

∫ β

0
dx0 A0(x0,x)

)

, (2.19)

where P denotes path ordering. It winds once around the Euclidean time direction
and transforms like an adjoint field under SU(N) gauge transformations. The thermal
Wilson line is proportional to the propagator of a infinitely heavy test quark, which
does not move in space, but still interacts in colour space, thus acquiring a SU(N)-phase
through the Aharonov-Bohm effect [11]. A test anti-quark is a quark moving backwards
in Euclidean time, so we have to employ the conjugate thermal Wilson line P †(x) for it.

The Polyakov loop in the fundamental representation is the trace in colour space of
the thermal Wilson line in the fundamental representation [14, 15],

L(x) = Tr P (x), (2.20)

where Tr � = 1. Since the trace is cyclic, L(x) is a gauge invariant quantity. It is in
general a complex scalar field, though for N = 2 it assumes purely real values. Under
global

�
(N) transformations L(x) behaves non-trivially,

gL(x) = Tr gP (x)

= Tr
[

g(x0 + β,x)P (x)g(x0 ,x)†
]

= Tr
[

zg(x0,x)P (x)g(x0,x)†
]

= eiφL(x), (2.21)

acquiring a
�
(N)-phase φ.

The importance of the Polyakov loop now derives from the fact that its expectation
value, 〈L〉, can serve as an order parameter for the confinement-deconfinement phase
transition in pure gauge theory. Let us define the expectation value of L by

〈L〉 = lim
h→0

1

Z

∫

DA L(x) exp (−S[A] − Sh[A]) , (2.22)
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2.1 The Center Symmetry and the Polyakov loop

where we have included an additional term Sh[A] in the action, which breaks the cen-
ter symmetry explicitly by virtue of an external auxiliary field proportional to some
parameter h. This additional term is defined by

Sh[A] =
h

2T

∫

V
d3x

(

L(x) + L†(x)
)

. (2.23)

The integrand of (2.23) acts now as an effective potential for the expectation value of the
Polyakov loop. This has the effect, that the integral on the rhs of (2.22) is not continuous
at h = 0 in the deconfinement phase and therefore its limit h → 0 does not vanish for
T > Tc in the thermodynamic limit, although the external auxiliary field has vanished,
signalling a spontaneously broken symmetry [12]. This leaves the expectation value of
the Polyakov loop in the thermodynamic limit real and non-zero in the deconfinement
phase.

The expectation value of the Polyakov loop is connected to a free energy [16],

〈L〉 = exp

(

−F

T

)

, (2.24)

where T is the temperature and F is the difference in free energy due to the presence of
the infinitely heavy test quark in the gluonic heat bath. We note that (2.24) still needs
a proper renormalisation.

Since 〈L〉 > 0 in the thermodynamic limit in the deconfinement phase, the cost in
free energy for inserting a single quark into the heat bath according to (2.24) is finite,
signalling deconfinement. Below the critical temperature, the expectation value of the
Polyakov loop receives equal contributions from all

�
(N)-sectors, thus leading to 〈L〉 = 0

in the thermodynamic limit. According to (2.24) this means that the difference of free
energy due to the presence of a single test quark goes to infinity, F → ∞, resulting in
an infinite amount of (free) energy which is necessary to insert the quark into the heat
bath, thus signalling confinement.

In lattice calculations we are dealing with systems in a finite volume without the in-
clusion of the symmetry breaking term (2.23). In this situation we encounter L clustered
around N distinct vacua distinguishable by the N possible values of the

�
(N)-phase φ in

the deconfinement phase. Consequently, 〈L〉 = 0 in this situation above Tc. Moreover,
tunnelling between these vacua is possible but strongly suppressed with volume [17].
We will discuss in chapter 2.2.2 how 〈L〉 can be obtained without utilising an external
auxiliary field and in chapter 2.3 we give an estimator for 〈L〉 on finite volumes.

The nature of the confinement/deconfinement transition in SU(3) pure gauge theory
is that of a (weakly) first order phase transition at Tc = 270MeV, as lattice calculations
show [18]. In a first order phase transition, we observe the order parameter to jump from
zero in the disordered (confined) phase to a finite value in the ordered (deconfined) phase
at the critical temperature. The energy associated to this discontinuous change at Tc is
called latent heat. This is the amount of energy released due to the restructuring of the
gauge fields at the critical temperature when crossing Tc from below. The correlation
lengths of the system stay finite at the transition temperature, such that we observe
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2 The Polyakov Loop and its Correlation Functions

phase coexistence, i. e. ordered and disordered phase occur simultaneously at Tc. This is
not possible in a second order phase transition, where correlation lengths diverge at the
transition temperature and thus an universal behaviour of the bulk of the system emerges
which is independent of its microscopic details. At Tc the order parameter then changes
continuously, i. e. the latent heat has vanished. A crossover does not have a rigorous
critical temperature and is therefore not a genuine phase transition. The observables
employed as order parameters show a rapid but smooth change in what is then called
the transition region. Nevertheless we can give the temperature where the susceptibility
of the order parameter reaches its maximum as a typical temperature. QCD with 2 + 1
flavours shows a crossover behaviour at Tc ∼ 190MeV, as new calculations show [19].

2.2 Correlation functions of L and Free Energies

We are interested in a state of n quarks and n̄ anti-quarks at the spatial positions
x1, . . . ,xn and x̄1, . . . , x̄n̄. The correlator defined by

Cnn̄(x1, . . . ,xn, x̄1, . . . , x̄n̄, T, V ) =

〈
n∏

i=1

L(xi)

n̄∏

i=1

L(x̄i)
†

〉

(2.25)

is connected to the difference in the free energy due to the insertion of n quarks and n̄
anti-quarks into the gluonic medium by

Fnn̄(x1, . . . ,xn, x̄1, . . . , x̄n̄, T, V ) = −T ln (Cnn̄(x1, . . . ,xn, x̄1, . . . , x̄n̄, T, V )) . (2.26)

For the sake of brevity we will from now on only speak of a free energy when we have the
difference in free energy due to the presence of static quarks and anti-quarks in mind.
Furthermore, we will wrap up the position dependence of the correlators and the free
energies in the distance measure r with r = f(x1, . . . ,xn, x̄1, . . . , x̄n̄, T ), where f is a
relation depending on the spatial positions of the n quarks and n̄ anti-quarks and the
temperature. For the QQ̄-, QQ- and QQQ-systems, the distance measure will be given
explicitly below.

We note that in Fnn̄, because of the traces present in the Polyakov loops, colour inter-
actions of the quarks with an exchange of one gluon (OGE) are not included. Therefore
Fnn̄ is sometimes called the average free energy of the system. In order to study the free
energies of systems composed of quarks and anti-quarks that include OGE, we have to
consider quarks that are in a defined colour state.

2.2.1 Correlators for symmetry states in colour space

We will now give a general prescription how to obtain correlators for a system where the
static quarks and anti-quarks are in a definite colour state, which exhibit certain sym-
metry properties under the pairwise interchange of quarks and anti-quarks, respectively.
For a system composed of n quarks and n̄ anti-quarks we start by defining the correlator
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2.2 Correlation functions of L and Free Energies

of the corresponding thermal Wilson lines

CW
nn̄(r, T, V ) =

〈
n∏

i=1

P (xi)
n̄∏

i=1

P (x̄i)
†

〉

. (2.27)

The state of the system in colour space is now described by the direct product of n times
the fundamental representation times n̄ times the anti-fundamental representation,

n⊗

i=1

N ⊗
n̄⊗

i=1

N̄ = N ⊗ N ⊗ · · ·
︸ ︷︷ ︸

n times

⊗ N̄ ⊗ N̄ ⊗ · · ·
︸ ︷︷ ︸

n̄ times

=
⊕

i

si, (2.28)

which can be reduced out into a direct sum of irreducible representations si. In or-
der to find the correlator corresponding to each irreducible representation si, we define
projection operators P (si) which have the general form

P (si) = A1
i

n+n̄⊗

k=1

� ⊕ A2
i ta ⊗

n+n̄−1⊗

k=1

� ⊕ · · · ⊕ Am
i

n⊗

k=1

ta
n̄⊗

k=1

t̄a, (2.29)

where the Ak
i with k = 1, . . . ,m and m = nn̄ have to be determined such that P (si)

projects out the symmetry state associated with si. The P (si) satisfy the orthogonality
and completeness relations

P (si)P (sj) = δijP (si) and
∑

i

P (si) = � . (2.30)

The correlator for the colour symmetry state is now found by applying

Cs
nn̄ =

Tr
(
P (s)CW

nn̄

)

Tr P (s)
, (2.31)

where we have suppressed the dependence on temperature and the spatial positions of
the quarks on both sides. The free energy of the symmetry state s can now be calculated
from the correlator (2.31) through

F s
nn̄ = −T ln (Cs

nn̄) , (2.32)

where again the dependence on temperature and the spatial positions of the quarks on
both sides has been omitted.

We will now apply this procedure to the cases relevant for this work, which are the QQ̄-
, QQ- and the QQQ-system, where the correlators of the first two have been explicitly
calculated in [20, 21], those of the latter one in [22]. Moreover, we will restrict ourselves
to the SU(3) gauge group, since we are interested in QCD. Additionally, we drop the nn̄
subscript from now on and give only the system name, e. g. QQ̄, for convenience instead.

Let us start with the QQ̄-system. Reducing out the direct product into a direct sum
of irreducible representations according to (2.28) yields

3 ⊗ 3̄ = 1 ⊕ 8, (2.33)
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2 The Polyakov Loop and its Correlation Functions

where 3(3̄) is the (anti-)fundamental representation. Thus we obtain in the direct sum
a symmetric singlet and an anti-symmetric octet, which is at the same time the adjoint
representation. The corresponding projectors are then found to be

P1 =
1

9
� ⊗ � − 2

3
ta ⊗ t̄a (2.34)

P8 =
8

9
� ⊗ � +

2

3
ta ⊗ t̄a. (2.35)

Applying now (2.31) gives the correlators

C1
QQ̄(r, T ) =

〈

Tr
(

P (x1)P (x̄1)
†
)〉

(2.36)

C8
QQ̄(r, T ) =

9

8

〈

Tr P (x1)Tr P (x̄1)
†
〉

− 1

8

〈

Tr
(

P (x1)P (x̄1)
†
)〉

. (2.37)

We can now make use of the fact that these two point correlation functions are invariant
under translations and thus only depend on the separation of the quark anti-quark
pair. Therefore we obtain for the distance measure of the QQ̄ system r = |x1 − x̄1|.
Furthermore in (2.37) we have deliberately not inserted the expression for the Polyakov
loop L(x) = Tr P (x) where it would have been possible in order to make the structure of
the correlator manifest. Obviously we have for the average correlator of the QQ̄ system
the relation

CQQ̄(r, T ) =
∑

s

s

9
Cs

QQ̄(r, T ) (2.38)

=
1

9
C1

QQ̄(r, T ) +
8

9
C8

QQ̄(r, T ), (2.39)

which is a consequence of the completeness relation for the projectors (2.30). Inserting
the correlators (2.36) and (2.37) into (2.32) will now give the singlet and octet free
energies of the QQ̄-system.

Let us now turn to the diquark system. The colour symmetry states can be found to
give

3 ⊗ 3 = 6 ⊕ 3̄, (2.40)

that is a symmetric sextet state and an anti-symmetric state, which is – special to SU(3)
– at the same time the anti-fundamental representation. The corresponding projectors
are

P6 =
2

3
� ⊗ � + ta ⊗ ta (2.41)

P3̄ =
1

3
� ⊗ � − ta ⊗ ta. (2.42)
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2.2 Correlation functions of L and Free Energies

By applying (2.31) the correlators are then found to be

C6
QQ(r, T ) =

3

4
〈Tr P (x1)Tr P (x2)〉 +

1

4
〈Tr [P (x1)P (x2)]〉 (2.43)

C 3̄
QQ(r, T ) =

3

2
〈Tr P (x1)Tr P (x2)〉 −

1

2
〈Tr [P (x1)P (x2)]〉 , (2.44)

where the distance measure is again given by the separation of the quark pair r =
|x1 −x2|, due to translational invariance. We note here once more, that the average free
energy of the diquark system is given by

CQQ(r, T ) =
∑

s

s

9
Cs

QQ(r, T ) (2.45)

=
2

3
C6

QQ(r, T ) +
1

3
C 3̄

QQ(r, T ). (2.46)

Again, the corresponding free energies are obtained by using (2.32).

We now study the baryonic QQQ-system. Again, reducing out the direct product of
three fundamental representations leads to the colour symmetry states

3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8′ ⊕ 10, (2.47)

where 1 denotes the singlet, 8 the first octet, 8′ the second octet and 10 the decuplet
state. The singlet is totally anti-symmetric, the first octet anti-symmetric in the first
and second, the second octet in the second and third component and the decuplet is
totally symmetric. The corresponding projectors are

P1 =
1

6

∑

Perm(l,m,n)

εlmnδilδjmδkn

=
1

6

(
δilδjmδkn − δilδjnδkm − δinδjmδkl

−δimδjlδkn + δimδjnδkl + δinδjlδkm
)

(2.48)

P8 =
1

3

(

δkn
(
δilδjm − δimδjl

)
+ δkm

(
δilδjn − δinδjl

) )

(2.49)

P8′ =
1

3

(

δil
(
δknδjm − δkmδjn

)
+ δim

(
δknδjl − δklδjn

) )

(2.50)

P10 =
1

6

∑

Perm(l,m,n)

δilδjmδkn

=
1

6

(
δilδjmδkn + δilδjnδkm + δinδjmδkl

+δimδjlδkn + δimδjnδkl + δinδjlδkm
)
. (2.51)
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2 The Polyakov Loop and its Correlation Functions

Denoting the thermal Wilson line at xi by Pi for convenience, we find

C1
QQQ =

1

6

〈
27Tr P1Tr P2Tr P3 − 9Tr P1Tr (P2P3)

− 9Tr P2Tr (P1P3) − 9Tr P3Tr (P1P2)

+ 3Tr (P1P2P3) + 3Tr (P1P3P2)
〉

(2.52)

C8
QQQ =

1

24

〈
27Tr P1Tr P2Tr P3 + 9Tr P1Tr (P2P3)

− 9Tr P3Tr (P1P2) − 3Tr (P1P3P2)
〉

(2.53)

C8′

QQQ =
1

24

〈
27Tr P1Tr P2Tr P3 + 9Tr P3Tr (P1P2)

− 9Tr P1Tr (P2P3) − 3Tr (P1P2P3)
〉

(2.54)

C10
QQQ =

1

60

〈
27Tr P1Tr P2Tr P3 + 9Tr P1Tr (P2P3)

+9Tr P2Tr (P1P3) + 9Tr P3Tr (P1P2)

+ 3Tr (P1P2P3) + 3Tr (P1P3P2)
〉
. (2.55)

We have again as a consequence of the completeness relation (2.30)

CQQQ =
1

27
C1

QQQ +
8

27
C8

QQQ +
8

27
C8′

QQQ +
10

27
C10

QQQ. (2.56)

We have suppressed the dependence on the spatial positions of the static quarks in the
correlators here. In systems composed of two quarks or a quark anti-quark pair discussed
above, due to translational invariance, a simple distance measure can be given in terms
of the separation of the quark pair. For a three quark system, no such simple relation
holds. In chapter 6 we will discuss this topic and derive the correct distance measure
for the QQQ system.

The correlators obtained by (2.31) are, except the average ones, gauge dependent
quantities and thus a gauge fixing procedure has to be applied when they are calculated
on the lattice. For a description of the method used in this work, see appendix A.3.
Though gauge dependent, it can be shown [23], that a gauge independent definition of
the colour singlet and colour octet QQ̄ free energies is possible in terms of dressed ther-
mal Wilson lines L̃(x) = Ω†(x0,x)L(x)Ω(x0,x) with Ω(x0,x) ∈ SU(3). This definition
coincides with the correlators (2.36) and (2.37) for the QQ̄ system in Coulomb gauge.
The generalisation to other heavy quark systems is possible.

We note here again, that the colour symmetry state applies here to the state the static
quarks are in, which of course does not have to be a singlet state. The whole system,
i. e. the static quarks together with the surrounding gluonic medium, will arrange such
that it is in a colour singlet state.

Some further comment on the behaviour under global
�
(3) transformations is in order.

Together with (2.21), it is easy to see that the correlators of the QQ̄- and the QQQ-
system are invariant under these transformations in SU(3) pure gauge theory, but not
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2.2 Correlation functions of L and Free Energies

those of the QQ-system. Consequently, in the confinement phase, which is
�
(3) sym-

metric, all CQQ average to zero. We will show in detail in chapter 5, how this problem
can be dealt with. We just remark here, that we perform a global

�
(3) transformation

on each lattice configuration in pure gauge theory, such that the L, averaged over one
lattice configuration, lies in the real (φ = 0) sector. This leaves all CQQ finite. In the
deconfinement phase, where the center symmetry is spontaneously broken, also the CQQ

assume non-vanishing values, so that no need for such a procedure arises. In a theory
that includes dynamic quark fields, the center symmetry is explicitly broken and all
correlators mentioned here assume finite values.

2.2.2 Cluster property

Let us now turn to some properties of free energies at finite temperature. At large
distances, the disconnected part of the average correlation function dominates, which is
called the cluster value,

lim
r→∞

Cnn̄(r, T ) = lim
r→∞

〈
n∏

i=1

L(xi)

n̄∏

i=1

L(x̄i)
†

〉

=
〈

L
〉n 〈

L†
〉n̄

(2.57)

where a suitable distance measure r for the system has to be used. For two quark
systems n + n̄ = 2 this is simply the separation of the static quarks, for n = 3 it is
easy to show [22], that (2.57) is valid if all three mutual quark separations go to infinity.
The cluster value (2.57) is only different from zero in the thermodynamic limit when
confinement is absent. It is known from lattice calculations [24, 25], that also correlators
in specific colour symmetry states approach the same cluster value. This is physically
clear, since at large separations the quarks can not interact anymore by gluon exchange.
They are screened by the surrounding thermal medium, independent of their relative
colour orientation. This means, that the thermal Wilson line becomes diagonal in colour
space and we obtain

lim
r→∞

Tr CW
nn̄(r, T ) = lim

r→∞

〈

Tr

n∏

i=1

P (xi)

n̄∏

i=1

P (x̄i)
†

〉

=
〈

Tr P
〉n 〈

Tr P †
〉n̄

, (2.58)

which agrees with the result (2.57) for the average correlator. Together with the com-
pleteness relation for the projectors on the colour symmetry states (2.30) we find in the
thermodynamic limit when confinement is absent, the cluster property for large separa-
tions

lim
r→∞

Cs
nn̄(r, T ) = lim

r→∞
Cnn̄(r, T ) =

〈

L
〉n 〈

L†
〉n̄

. (2.59)

Since the average correlator is gauge independent, the cluster value is also gauge inde-
pendent.

By calculating the r → ∞ limit of a correlator, we can define the modulus of the
expectation value of the Polyakov loop in the infinite volume limit with the help of
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2 The Polyakov Loop and its Correlation Functions

(2.59). Usually, one uses the QQ̄ system, because its correlator is the easiest to obtain
from the lattice. We then define

〈L〉 = lim
r→∞

√

CQQ̄(r, T ). (2.60)

As we will see in chapter 3, the Polyakov loop can be renormalised in a multiplicative
way. This allows us to define normalised correlators

∆Cnn̄ =
Cnn̄

〈L〉n 〈L†〉n̄
, (2.61)

since the renormalisation constants of the Polyakov loops will drop out. Thus ∆Cnn̄ is
independent of the renormalisation procedure applied to the Polyakov loop and contri-
butions from the self-interaction of the Polyakov loop have been removed. While this
is possible in full QCD for all temperatures, for SU(N) this can only be done when
confinement is absent and hence the expectation value of the Polyakov loop is finite. In
view of (2.59), ∆Cnn̄ obviously has the property

lim
r→∞

∆Cnn̄(r, T ) = 1 (2.62)

again for a suitable distance measure r (see the remarks following (2.57)). We can again
define a corresponding free energy

∆Fnn̄ = −T ln (∆Cnn̄) (2.63)

and thus obtain

lim
r→∞

∆Fnn̄(r, T ) = 0. (2.64)

2.2.3 Internal Energy and Entropy

Free energies in a grand canonical potential, i. e. in a system at temperature T and
volume V with vanishing chemical potential, F (T, V ), receive contributions from the
internal energy U(T, V ) and from the entropy S(T, V ),

F (T, V ) = U(T, V ) − TS(T, V ). (2.65)

Since we can only extract the difference in free energy due to the insertion of static
quarks into the thermal medium, the same holds true for the internal energy and the
entropy, i. e. we can only obtain the difference in internal energy and the difference in
entropy due to the presence of the static quarks. The relation (2.65) holds for these
quantities as well. Given the free energy in a colour symmetry state s, we can compute
the corresponding internal energy and the entropy

U s
nn̄ = −T 2 ∂F s

nn̄/T

∂T
(2.66)

Ss
nn̄ = −∂F s

nn̄

∂T
, (2.67)

where in general both U s
nn̄ and Ss

nn̄ are dependent on the temperature and the distance
measure of the system.
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Figure 2.1: The thermal Wilson line on the lattice.

2.3 Lattice Implementation

We now turn to the lattice implementation of the Polyakov loop and the free energies.
We will use the same names for observables as in the continuum for their lattice analogues
where possible. For general conventions used in its implementation see appendix A.

Inspecting (2.19), the thermal Wilson line in the fundamental representation of SU(3)
can be defined as the product of gauge links forming a closed path in the Euclidean time
direction (see fig. 2.1). This gives

P (x) =

Nτ−1∏

x4=0

U4(x4,x). (2.68)

The Polyakov loop in the fundamental representation is then defined by

L(x) = Tr P (x), (2.69)

where Tr � = 1. The average on one configuration is now computed through

L = [L(x)] =
1

N3
σ

∑

x

L(x), (2.70)

where [·] denotes the average over the spatial lattice. We now can take the average of L
over all configurations now, which we denote by 〈L〉. For convenience we will also denote
the subsequent averages over the spatial lattice and the configurations of some lattice
quantity by 〈·〉, when the position dependence of the enclosed observable is explicitly
given, i. e. for the Polyakov loop we write 〈L(x)〉 instead of 〈[L(x)]〉.

We will find it sometimes useful to work with a Polyakov loop, where the trace of the
thermal Wilson line has not been normalised to unity,

l(x) = tr P (x), (2.71)

where tr � = 3. Its lattice and configuration averages can now be taken analogously to
those for L(x).
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2 The Polyakov Loop and its Correlation Functions

The correlators of the thermal Wilson line and the Polyakov loop and therefore the
free energies of the different colour symmetry states can now be computed on the lattice
in a straight forward way using the same relations as in the continuum and their averages
can be obtained in the same manner as for the Polyakov loop.

Since we are ultimately interested in the physics of the continuum and lattice simula-
tions are performed in finite volumes and with finite lattice spacings, we have to perform
an thermodynamic (V → ∞) and a continuum (a → 0) limit for all observables O we
are interested in, i. e.

Ocont(T ) = lim
a→0

lim
V →∞

Olat(a,Nσ , Nτ ). (2.72)

The order of the limits in (2.72) is important and can not be interchanged. For the
thermodynamic limit we will utilise lattices with different volumes V and then extrapo-
late to infinity. The continuum limit for the Polyakov loop and its correlation functions
requires an additional renormalisation procedure, which we will explain in chapter 3.

Simulations on a lattice with a finite lattice spacing and a finite volume bring along
lattice artifacts that might spoil a correct extrapolation to the continuum. One such
lattice artifact is the violation of rotational invariance due to the presence of a finite
lattice spacing. Though the tree level improved lattice gauge action employed in this
work eases this problem, deviations remain at small distances. In order to correct for
this, we employed improved distances for the distance measures of the correlators of the
Polyakov loop, that are defined by the aid of the lattice Coulomb potential following
[26].

As one generally does not introduce an explicit symmetry breaking term in the lattice
calculations that could prohibit tunnellings between different

�
(N) sectors in a finite

volume the Polyakov loop expectation value would vanish even in the deconfined phase
and therefore not assume its thermodynamic limit continuously. We therefore employ
〈|L|〉 at finite volume as an estimator for 〈L〉 at infinite volume, if the latter is different
form zero. The calculation of 〈L〉 in (2.60) from the cluster value of the QQ̄ correlator,
which is

�
(3) symmetric, does not suffer from this problem.

We show in fig. 2.2 some results for the QQ̄ singlet and octet free energies obtained
from calculation on a 323 × 4 lattice in pure gauge theory and from a 163 × 4 lattice in
2-flavour QCD below and above the phase transition.

Let us start with F 1
QQ̄

(r, T ) for temperatures below Tc which is shown in the upper
left corner of fig. 2.2. We see that the singlet free energies rise with growing distance,
thus showing confinement over the entire distance regime studied here. For larger tem-
peratures the steepness of the curves becomes smaller, signalling a decrease of the string
tension [27], eventually assuming constant values at the critical temperature, marking
the transition into the deconfined phase. In 2-flavour QCD (upper right corner) the
situation is different. Though at small separations F 1

QQ̄
(r, T ) rises more rapidly for

smaller temperatures, at intermediate distances rT ≈ 1 the curves become flat, assum-
ing their asymptotic value F∞/T , which decreases with increasing temperature. This
phenomenon is called string breaking. Unlike in pure gauge theory, where dynamical
quark fields are absent, in full QCD pair creation of a dynamical quark-anti-quark pair
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Figure 2.2: Left column: free energies from a 323 × 4 lattice in pure gauge theory. Right
column: the same from a 163 × 4 lattice in 2-flavour QCD. Upper half shows
F 1

QQ̄
(r, T ), lower half F 8

QQ̄
(r, T ) below and above Tc.
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2 The Polyakov Loop and its Correlation Functions

qq̄ is possible. If the energy stored in the string is as large as the energy gap between twice
the mass of the lowest heavy-light meson and the two single heavy quarks, i. e. F (r, T ) =
∆mQ,q = 2mQq̄ −2mQ, the two heavy quarks will form bound states with the dynamical
quarks and the string will break,

QQ̄ + ∆mQ,q −→ Qq̄ + Q̄q, (2.73)

where ∆mQ,q does not depend on mQ [28]. The distance, at which F∞ is assumed by
the T = 0 potential, V (rstring) = F∞, is called the string breaking distance rstring. We
note that nevertheless confinement is still realised, since all quarks in (2.73) are bound
into mesons. At small separations, F 1

QQ̄
(r, T ) for SU(3) as well as full QCD approach

their perturbative Coulomb behaviour, which is attractive.

We turn to the second row of plots in fig. 2.2, which shows the normalised sin-
glet free energies ∆F 1

QQ̄
(r, T )/T above Tc, that approach zero for large distances. For

SU(3) as well as full QCD, the plots qualitatively agree. At some fixed separation rT ,
∆F 1

QQ̄
(r, T )/T decreases with decreasing temperature. For the region rT � 1, the dom-

inant effect is screening, i. e. the gluons acquire an effective mass through interaction
with the medium, the Debye mass mD. The singlet free energy than behaves as

∆F 1
QQ̄(r, T ) = −

α1
QQ̄

(r, T )

r
e−mD(T ) r rT � 1, (2.74)

where α1
QQ̄

(r, T ) is an effective coupling constant for the QQ̄-singlet system. The finite

Debye mass mD defines a screening length rD ∼ m−1
D , beyond which the heavy quarks

effectively do not interact any more, i. e. they are screened and can move freely in the
medium. It is clear from this considerations, that the screening mass and length are
important properties of the thermal medium in the deconfined phase and much work
has been devoted to the extraction of mD from lattice data [27, 29, 30].

We now come to the discussion of the octet free energies in the lower half of fig. 2.2.
Below Tc we see that F 8

QQ̄
(r, T )/T in pure gauge theory is confining for distances rT >∼0.5

with falling steepness with growing temperature as the corresponding singlet is, but
with a much smaller slope. This is due to the different Coulombic part in the free
energy compared to the colour singlet case, the string tensions of both systems are the
same. For small separations rT <∼0.5 the curves bend over and eventually start to rise
for r → 0, thus approaching their perturbative Coulomb behaviour, that is repulsive.
The octet free energy below Tc in full QCD is similar to the singlet case, i. e. attractive
for small distances and showing string breaking, although the steepness of the curves for
small separations is much smaller than for the singlet free energy. Again, this is due to
the different Coulombic contributions compared to the colour singlet case. We expect
to see a repulsive behaviour at small distances here too, which has to set in obviously
at smaller distances calculated here.

Above Tc in pure gauge theory, ∆F 8
QQ̄

(r, T )/T approaches zero for large distances,

thus confirming the independence of the cluster property (2.59) from the colour symme-
try state. The octet free energy is repulsive over the entire distance interval calculated
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here for the highest two temperatures, whereas closer to Tc a minimum at rT ∼ (0.75−1)
develops, which becomes more pronounced closer to Tc. For even smaller distances, the
octet free energies become repulsive again also at this temperatures. ∆F 8

QQ̄
(r, T )/T be-

haves qualitatively similar in full QCD, approaching zero for large distances, repulsive
behaviour over the entire distance interval for the highest temperatures and the devel-
opment of a minimum at smaller distances. Again, we can not see the bending back to
a repulsive behaviour at even smaller separations for the distances calculated here.

2.4 Higher Representations of L

We now turn to the Polyakov loop in higher representations of the SU(3) gauge group.
We will follow the custom to call a representation by its dimension D, where no ambiguity
exists. In standard implementations of SU(3) pure gauge theory on the lattice, the
gauge links are of course in the fundamental representation of SU(3). Consequently, the
thermal Wilson line and the Polyakov loop are therefore calculated in the fundamental
representation as well. In order to obtain observables in higher representations, we have
to employ group theoretical relations, which allow to compute the desired observables
from standard lattice quantities in the fundamental representation.

In general, two routes can now be taken. The first one utilises a property of the direct
product of a group character and allows to obtain LD and their average correlators for
arbitrary irreducible representations D. Moreover, it is straight forward to implement
and numerically cheap. In the second method we compute the lattice gauge links in a
higher irreducible representation from their counterparts in the fundamental representa-
tion. From there, it is easy to obtain the thermal Wilson line and its correlators in the
usual way from the new gauge links. In particular, this method allows us to calculate
also singlet free energies in that higher representation. Unfortunately, these calculations
are numerically more demanding and additionally a gauge fixing is necessary for the
singlet free energies. We will now introduce both routes to higher representations of the
Polyakov loop and the thermal Wilson line respectively.

Introductions to group theory and Lie-groups can be found in [31, 32, 33], a summary
of facts concerning group theory and SU(3) in particular, which are relevant for this
work, is offered in appendix B. For reference we list in table 2.1 the lowest irreducible
representations of SU(3) up to D = 27 and some of their properties.

2.4.1 The Direct Product Route

This method allows to obtain the Polyakov loop in an arbitrary irreducible representation
lD from the Polyakov loop in the fundamental one, which we will call from now on l3.
We remind here, that

lD(x)

D
= LD(x), (2.75)

i. e. lD(x) is defined with the unnormalised trace. We now use the theorem that the
product of characters in the representations P and Q of a group element g is equal to
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D (p, q) t C(D) dD

3 (1, 0) 1 4/3 1 fundamental
3 (0, 1) 2 4/3 1
6 (2, 0) 2 10/3 5/2
8 (1, 1) 0 3 9/4 adjoint, real
10 (3, 0) 0 6 9/2
15 (2, 1) 1 16/3 4
15′ (4, 0) 1 28/3 7
24 (3, 1) 2 25/3 25/4
27 (2, 2) 0 8 6 real

Table 2.1: Casimir C(D) for the representation D of SU(3), t = p−q mod 3 is the triality,
dD is defined in (2.101). (p, q) is the canonical label of the representation with
dimension D.

the character of this group element in the direct product representation P × Q,

χP×Q(g) = χP (g)χQ(g). (2.76)

The Polyakov loop lD is the character of the corresponding thermal Wilson line, which is
of course an element of SU(3). The direct product can now be reduced into a direct sum
of irreducible representations using the Clebsh-Gordan series to give the Polyakov loop
in various representations. The identities used for this procedure are shown in appendix
B. We are now in position to calculate lD for D ≤ 27 from l3:

l3̄ = l∗3 (2.77)

l6 = l23 − l∗3 (2.78)

l8 = |l3|2 − 1 (2.79)

l10 = l3l6 − l8 (2.80)

l15 = l∗3l6 − l3 (2.81)

l15′ = l3l10 − l15 (2.82)

l24 = l∗3l10 − l6 (2.83)

l27 = |l6|2 − l8 − 1. (2.84)

The relations (2.77)-(2.84) can now be employed at every spatial position on the lattice
to give LD(x) = lD(x)/D, from which the lattice and configuration averages can be
calculated.

Having now Polyakov loops in different irreducible representations at our command,
we can easily calculate (n, n̄)-point correlators along the lines of (2.25) to obtain the
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2.4 Higher Representations of L

corresponding average free energies. To be definite, we define

Cnn̄,D(r, T ) =

〈
n∏

i=1

LD(xi)
n̄∏

i=1

L†
D(x̄i)

〉

, (2.85)

where the considerations concerning the distance measure r for the correlators built from
Polyakov loops in the fundamental representation are of course still valid. The average
free energy in representation D is then analogously to (2.26)

Fnn̄,D(r, T ) = −T ln (Cnn̄,D(r, T )) . (2.86)

In total, we can say that the direct product method is easy to implement on the
lattice and numerically relatively cheap. First results will be given in the next section
to provide a check on the employed methods and moreover from a small lattice for
illustrative purposes in chapter 2.4.3.

2.4.2 The Gauge Link Route

We will now introduce a second method, which is capable of computing the thermal
Wilson line and its correlators in arbitrary irreducible representations. Moreover, we
will compare the results of this method for the adjoint Polyakov loop with those of the
first method.

We can calculate the link variable in a higher representation U D from those in the
fundamental one U 3 for arbitrary irreducible representations. The connection to the
gauge links in the fundamental representations can be found by the aid of the generators
of the target representation D. This is most easily done for the adjoint representation
D = 8. The adjoint link variable U 8 can be computed from its counterpart in the
fundamental representation U 3 by using

U8
ij =

1

2
Tr
(

λiU
3λjU

3†
)

, i, j = 1, . . . , 8, (2.87)

where we have suppressed any dependence on position and direction in the link variables
and λi are the Gell-Mann matrices. The U 8

ij are real numbers, which follows from the
hermiticity of the λi and the cyclicity of the trace. The thermal Wilson line in the
adjoint representation P8 is now obtained analogously to its definition in the fundamental
representation (2.68),

P8(x) =
Nτ−1∏

x4=0

U8
4 (x4,x), (2.88)

and the Polyakov loop in the adjoint representation is then along the lines of (2.69)
defined by

L8(x) = Tr P8(x), (2.89)
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where Tr �
8×8 = 1. It is now straightforward to define arbitrary correlators of thermal

Wilson lines and Polyakov loops like we did in the fundamental representation. How-
ever, in general the symmetry states obtained from reducing out the direct product of
fundamental representations will not be the same. Nevertheless, it is easy to see, that
the QQ̄ system will always exhibit a singlet symmetry state,

D ⊗ D̄ = 1 ⊕ . . . , (2.90)

which can be obtained in the same way as in the fundamental representation. Therefore
we define here the adjoint singlet correlator C 1

QQ̄,8
to be

C1
QQ̄,8(r, T ) =

〈

Tr
(

P8(x1)P8(x̄1)
†
)〉

(2.91)

and the corresponding free energy

F 1
QQ̄,8(r, T ) = −T ln

(

C1
QQ̄,8(r, T )

)

. (2.92)

Again, C1
QQ̄,8

is manifestly gauge dependent and a gauge fixing is necessary. And again,
this gauge dependent correlator coincides with a gauge independent one in terms of
dressed (adjoint) thermal Wilson lines [23]. We will discuss the behaviour of F 1

QQ̄,8
(r, T )

in chapter 3 and use it for the renormalisation of the adjoint Polyakov loop.
Moreover, we have the cluster property for general representations D,

lim
r→∞

Cs
nn̄,D(r, T ) = lim

r→∞
Cnn̄,D(r, T ) =

〈

LD

〉n 〈

L†
D

〉n̄
, (2.93)

since the dominance of the disconnected part and the diagonal thermal Wilson lines does
not rely on the particular representation employed. The cluster value (2.93) is real for
vanishing triality, i. e. n − n̄ mod 3 = 0. This can now be used to extend the definition
of the normalised correlators (2.61) to some representation D,

∆Cnn̄,D =
Cnn̄,D

〈

LD

〉n 〈

L†
D

〉n̄ . (2.94)

An analogous definition holds for the singlet correlator. Again, this is in general only
possible in the deconfinement phase, where the expectation value of the Polyakov loop is
finite. We nevertheless note here, that string breaking for representations with vanishing
triality (t = 0) results in finite values for 〈LD〉 in the thermodynamic limit in pure gauge
theory also below Tc, as will be discussed in chapter 2.4.4. We can also again define a
corresponding free energy

∆Fnn̄,D = −T ln (∆Cnn̄,D) , (2.95)

where the singlet free energy is defined analogously.
For the sake of completeness we just briefly mention here, that it is of course possible

to calculate cross correlators, where the sources are in different representations

Cs
QQ̄,D,D′(r, T ) = A

〈

Tr
(

PD(x1)P
†
D′(x̄1)

)〉

+ B
〈

LD(x1)L
†
D′(x̄1)

〉

, (2.96)
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Figure 2.3: Comparison of 〈|L8|〉 calculated with the direct product method and 〈|Tr P8|〉
obtained from adjoint gauge links over T from a 323 × 4 lattice.

where s is the colour symmetry state with D 6= D ′ and some suitable A,B. The direct
product of this representations does not contain a singlet representation and therefore
we are dealing here with colourful objects, which have to be screened by the gluonic
medium and are not

�
(3)-symmetric. This results in zero expectation values in the

confined phase. In chapter 5 we will nevertheless calculate diquark correlators in SU(3)
pure gauge theory along the lines of (2.43) and (2.44) from sources in the fundamental
representation, where we utilise a global

�
(3)-transformation that leaves the Polyakov

loop in the real sector. Moreover, it is of course possible to compute baryonic or even
higher correlators from thermal Wilson lines in the adjoint or other representations [34],
which is, however, beyond the scope of this work.

Since we are able to calculate 〈|L8|〉 directly from the adjoint gauge links according
to (2.89) and from the reduction procedure (2.79), we can check whether both methods
agree. We have calculated the unrenormalised 〈|L8|〉 with both methods on a 323 ×
4 lattice for various temperatures. The result is shown in fig. 2.3. For all analysed
temperatures 0.907Tc to 14Tc we see no deviations, which is reassuring.

2.4.3 Center Symmetry revisited

Let us recall the behaviour of the Polyakov loop in the fundamental representation under
global

�
(N) transformations zg(x0,x) described in (2.21)

gL(x) = eiφL(x),

where

z = eiφ � , φ =
2πn

N
, n = 0, . . . , N − 1.

We are now interested in the behaviour under global
�
(3) transformations zg of the

Polyakov loop in an arbitrary representation D of SU(3). We find

gLD(x) = eitφLD(x), (2.97)
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where

z = eiφ �
D×D, φ =

2πn

3
, n = 0, 1, 2 (2.98)

and t = (p − q) mod 3 is the triality, where (p, q) is the canonical label of the represen-
tation. As (2.97) shows, the triality t acts as a

�
(3)-charge for LD. For representations

with vanishing triality, i. e. D = 8, 10, 27 in our work, the corresponding Polyakov loops
LD are invariant under global

�
(3) transformations and thus do not feel the breakdown

of the center symmetry.
In order to illustrate the effect of different trialities we have computed lD following

the direct product route discussed in 2.4.1 on a 83×4 lattice in pure gauge theory at one
temperature below and one above Tc. A histogram in the complex plane of lD calculated
on 105 different lattice configurations for D = 3, 6, 8, 10 is shown in fig. 2.4. These four
lowest irreducible representations cover all three possible values for the triality, where
for both D = 8 and D = 10 the triality vanishes and additionally L8 is purely real.
Let us briefly explain what we expect to see and why we expect to see it, before we
discuss the results of the calculations. We start with those representations which have
a non-vanishing triality. Below Tc we are in the confinement phase, where the center
symmetry is realised and consequently the expectation value of lD vanishes. Thus, far
away from the critical temperature, we expect to see the values cluster around the origin
of the complex plane in a spherical symmetric manner. As the system approaches Tc,
the values start to wander outwards along the lines of the three unit roots, since in a
finite volume a sharp transition at the critical temperature is not possible and thus a
gradual transition into the

�
(3)-broken phase has to take place. There, the Polyakov loop

acquires a non-vanishing expectation value in the thermodynamic limit, where its values
cluster around one of the

�
(3)-sectors. In a finite volume, however, tunnelling between

the three
�
(3)-vacua is possible, leading to a vanishing expectation value even above Tc.

Therefore, we expect to see values clustered around the three possible vacua, which have
wandered outwards and have lost their connection to the origin. These considerations
apply to both t = 1 and t = 2 representations. The only difference concerning the
behaviour of the t = 2 representations to the ones with t = 1 outlined above is, that
the Polyakov loops residing in one of the two

�
(3)-vacua with non-vanishing imaginary

part are interchanged. Representations with vanishing triality are blind to the center
symmetry and therefore cluster around their expectation value in a spherical symmetric
fashion in both phases. As will be shown further below, due to string breaking, the
expectation value of these representations is non-zero even below Tc. This property also
survives the thermodynamic limit. We finally remark, that 〈|lD|〉 becomes smaller with
larger D at the temperatures considered here.

Let us now turn to the concrete histograms in fig. 2.4. In the first line we show L3,
which has triality t = 1. Below Tc (left column) we see a pronounced star like shape
oriented along the axis of the three roots of unity, thus leading to a vanishing expectation
value 〈l3〉 = 0. In fact, as described above, the star like shape suggests that the system
is already close to the phase transition.
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Figure 2.4: Histogram of lD in the complex plane from a 83 × 4 lattice for T/Tc = 0.959
(left column) and T/Tc = 1.682 (right column) and for D = 3, 6, 8, 10 (from
top to bottom), which have the trialities t = 1, 2, 0, 0.
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Above Tc (right column), the system is in the
�
(3)-broken phase, and we see three

distinct clusters around the three
�
(3)-vacua, in accordance with the considerations

above. In the second line we show l6, which has triality t = 2, cluster around the origin
below Tc, thus showing

�
(3)-symmetry. In comparison to l3, the distribution is not

star shaped but spherical, which is explained by the fact that the absolute value of the
Polyakov loop 〈|lD|〉 becomes smaller in higher representations and thus the different

�
(3)-sectors have a larger overlap. Above Tc we observe basically the same as in the l3

case, but with the two
�
(3)-sectors with negative real part interchanged with respect to

those of l3. Moreover, 〈|l6|〉 is obviously smaller than in the fundamental representation,
as we already noticed below Tc. The third line shows l8, which has vanishing triality
t = 0 and is purely real, l8 ∈ �

. All values are distributed on the real axis with the
maximum in the positive part in both phases. While this is easy to see above the critical
temperature, it is harder to see for T < Tc, but will be shown to be correct in chapter
4 in more detail. These arguments also apply to l10 plotted in the last line, which has
vanishing triality as well but assumes in general complex values. We observe a spherical
symmetric distribution, which is below the critical temperature close to but not quite
zero and clearly real and positive above Tc.

2.4.4 String Breaking in Pure Gauge Theory

We will now discuss the phenomenon of string breaking in SU(3) pure gauge theory. In
the fundamental representation the QQ̄ free energies below the critical temperature rise
forever, thus confining the participating two heavy quarks into a meson. In some higher
representations, however, the heavy quarks can be screened by the surrounding gluonic
medium (or vacuum for T = 0) and form a singlet state. Then, similar to the string
breaking mechanism in full QCD (see sec. 2.3), the quark-anti-quark pair decays into
two disjoint gluonlumps. This has been observed for the adjoint potential at T = 0
[35, 36] and at finite temperature [37]. The observations can be made systematic with
the help of group theory [4]. Considering the direct product formed by a quark in some
representation D and the gluon field, which is in the adjoint representation 8, we can
reduce it out into the sum of irreducible representations. For instance, let the quark be
in the sextet representation D = 6. We then obtain

6 ⊗ 8 = 24 ⊕ 15 ⊕ 6 ⊕ 3̄, (2.99)

where all representations higher than the anti-fundamental one will at least be partially
screened by the gluons. Therefore, the remaining (anti-)fundamental component causes
the corresponding free energy to show confinement. Contrary to that, for D = 8, i. e. a
quark in the adjoint representation, we find

8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1. (2.100)

Now, we have obtained a singlet component, which leads to the observed string breaking
at large distances in SU(3) pure gauge theory below Tc. In general, all representations
with non-vanishing triality t 6= 0 will form a residual (anti-)fundamental component
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with the gluon field and thus the corresponding free energy will rise forever. The repre-
sentations with vanishing triality t = 0 can be screened completely by the surrounding
gluons and form a singlet component at large separations, which leads to the breaking of
the string. The distance, at which this takes place, is called the string breaking distance
rstring and its value in the vacuum is related to the mass of the “gluonlump” mglump,
when the Polyakov loop is in the adjoint representation. In this case, the heavy quark
in the adjoint representation may be thought of as being a static gluino G̃, which is the
fermionic superpartner of the gluon. Thus a gluelump in our approach is the bound state
G̃g of a heavy gluino G̃ and a dynamical gluon g [36]. At finite temperature the string
breaking distance observed in the adjoint singlet free energy is related to the binding
energy of the gluelump.

The findings above again highlighten the rôle of the center symmetry for confinement,
that can be explored by employing higher representations of the SU(3) gauge group. As
a consequence of string breaking and the cluster property of free energies, we expect
the Polyakov loop in a t = 0-representation to stay finite in the thermodynamic limit
also below Tc. We will proof this to be correct for the adjoint representation D = 8
and determine the string breaking distance and the binding energy of the gluelump in
chapter 4.

2.4.5 Casimir Scaling

The Casimir scaling hypothesis states, that potentials between sources in different repre-
sentations are proportional to each other with their ratios given by the respective ratios
of eigenvalues of the corresponding quadratic Casimir operators [4]. To be definite, let
VD(r) be the potential between charges in the irreducible representation D and C(D) is
the respective eigenvalue of the Casimir operator of that representation. Let us define
the ratio of the Casimirs for two arbitrary representations D1, D2 to be

d(D2, D1) =
C(D2)

C(D1)
and dD = d(D, 3). (2.101)

Then, Casimir scaling means that

VD2
(r) = d(D2, D1)VD1

(r) (2.102)

is fulfilled. In the lowest order of the perturbation series the Coulomb potential in SU(3)
pure gauge theory is given by

VD(r) = −C(D)
g2

4πr
, (2.103)

which fulfils (2.102) obviously. Moreover, Casimir scaling is realised in perturbation
theory in the vacuum for small distances, where one gluon exchange dominates, up to
two loop order and furthermore at high temperatures and large distances up to the same
order, since the contribution of non-planar loops vanishes to this order [5]. In lattice
perturbation theory of full QCD in the vacuum Casimir scaling holds up to O(g4) [38]. A
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lattice calculation at finite temperature employing an effective action for the Polyakov
loop in SU(3) has found that Casimir scaling is realised between Polyakov loops in
different representations as well [39]. Numerical calculations on the lattice at T = 0
in pure gauge theory show that (2.102) is realised also for distances smaller than the
string breaking distance to an accuracy of 5% [4]. This very good agreement of the
lattice data with the Casimir scaling hypothesis at non-perturbative distances in the
vacuum has considerable ramifications on models for non-perturbative QCD, especially
for the confinement mechanism [40]. This can be seen as follows. If (2.102) holds also
for distances where a flux tube is present, we obtain a rule for the string tension σD in
some representation D, which is

σD = dD σ3, (2.104)

where σ3 is the string tension in the fundamental representation. This would exclude
other possibilities like center vortex models [41], which state that the scaling is propor-
tional to the number of fundamental flux tubes embedded into the higher representation
vortex and predict for SU(3)

σD = (p + q)σ3, (2.105)

where (p, q) is the canonical label for a representation with dimension D. This prediction
coincides with Casimir scaling in the large N -limit [42, 43] and is supported by the
finding, that the vacuum seems to act as a type I superconductor [44, 45], i. e. flux tubes
repel each other. Another possibility is based on considerations in M-theory for SU(N)
theories [46, 47],

σD =
sin
(

tπ
N

)

sin
(

π
N

) σ3, (2.106)

where t is the triality and which is called Sine-law scaling. It coincides with Casimir
scaling in the large N -limit as well.

In order to study the properties of the confinement mechanism at finite T and their
behaviour at the phase transition into the deconfined phase and for the renormalisation
procedures presented in chapter 3, we wish to calculate free energies in higher repre-
sentations in the non-perturbative finite temperature region. Work that has been done
so far on the correlators of Polyakov loops in higher representations for SU(3) finite
temperature pure gauge theory can be found in [48, 49, 50].
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We will now introduce two different renormalisation methods for the Polyakov loop in
arbitrary representations of the SU(3) gauge group obtained from lattice calculations.
To this end, the first method using the short distance behaviour of the QQ̄ free energies
has to be extended from the fundamental to higher representations, while the second
method can be applied easily to any representation. We will then compare the results
of these two methods, thus allowing us to check their consistency. In the last part of
this chapter we will discuss a third renormalisation method which starts from different
assumptions.

3.1 General Remarks

Polyakov suggested a surprisingly simple separation of the divergence structure of 〈L3〉
[51]. According to this the linear divergent parts that appear in any order perturbation
theory can be combined giving an exponential factor, while the rest consists only of finite
contributions and logarithmic divergences summed up here in Gren, so that we obtain

〈L3〉 ∝ e−Kf(l/a) Gren, (3.1)

where K is a proportionality constant, f(l/a) is linear in its argument, l is the length
of the loop and a the lattice spacing. All logarithmic divergences can be removed order
by order in perturbation theory [52]. Although a composite operator, the Polyakov
loop does not mix with any other operator under renormalisation. Thus, the Polyakov
loop expectation value is a standard renormalisable object and physically meaningful.
We note, that we address in this work only Polyakov loops which have a differentiable
contour. For contours with cusps or intersecting contours new divergencies arise, which
have been dealt with in perturbative calculations [53].

Renormalising the Polyakov loop calculated on the lattice means now to eliminate the
linear divergence in (3.1). To this end we use a multiplicative renormalisation scheme
[51] for the thermal Wilson line

PR
3 (x) =

(
ZR

3 (g2)
)Nτ

P (x). (3.2)

where P R
3 is the renormalised thermal Wilson line and ZR

3 (g2) is an effective renor-
malisation constant depending only on the square of the bare gauge coupling g. The
renormalisation scheme for the Polyakov loop is now readily obtained to be

LR
3 (x) =

(
ZR

3 (g2)
)Nτ

L3(x). (3.3)
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The lattice and configuration averages can now readily be taken. We note here, that the
multiplication with ZR

3 respects the center symmetry and the projection operators (2.29)
do not act on it. Therefore also (n, n̄)-point correlation functions can be renormalised
by

Cs,R
nn̄,3 =

(
ZR

3 (g2)
)(n+n̄)Nτ

Cs
nn̄,3, (3.4)

where s stands for the symmetry state of the n quarks and n̄ anti-quarks including the
average correlator. We like to stress the point that the effective renormalisation constants
ZR

3 (g2) depend only on the bare gauge coupling and not on the temperature or the volume
[53] and the renormalised Polyakov loop expectation value on the temperature and not
on g or Nτ . We will discuss a different approach, where the renormalisation constants
are assumed to be explicitly T -dependent, in chapter 3.4.

We also adopt the multiplicative renormalisation scheme laid out in (3.2) and (3.3)
for thermal Wilson lines and Polyakov loops in higher representations of SU(3). This is
possible, since the arguments in [51] for the divergence structure of the Polyakov loop
(3.1) do not depend on the particular representation employed. We can now generalise
(3.2) and (3.3) to arbitrary representations D to obtain

PR
D (x) =

(
ZR

D(g2)
)dDNτ

PD(x) and LR
D(x) =

(
ZR

D(g2)
)dDNτ

LD(x). (3.5)

Though we have included dD in the exponent of the effective renormalisation constant,
this definition does not implicitly assume Casimir scaling to hold, since a priori the
ZR

D are not connected to the ZR
3 in some obvious way. If Casimir scaling is realised

for the bare Polyakov loop in some representation D at some temperature, by (3.5) we
also obtain Casimir scaling in the renormalised Polyakov loop together with the relation
ZR

D = ZR
3 for the effective renormalisation constants.

As we have seen in chapter 2.4.5, Casimir scaling is realised in high temperature
perturbation theory. We therefore expect for the T → ∞-limit of

〈
LR

D

〉

lim
T→∞

〈
LR

D

〉
= lim

T→∞

〈
LR

3

〉dD = 1, (3.6)

where
〈
LR

D

〉
approaches unity from above, because

〈
LR

3

〉
does [54].

The renormalisation scheme (3.5) can again immediately be applied to (n, n̄)-point
correlators, where the sources are in some representation D, with the same arguments
that lead to (3.4) to give

Cs,R
nn̄,D =

(
ZR

D(g2)
)dD(n+n̄)Nτ

Cs
nn̄,D (3.7)

for some colour symmetry state s.

3.2 Renormalising L through QQ̄ Free Energies

We will now give a description of the renormalisation procedure for the Polyakov loop in
the fundamental representation on the lattice that uses the QQ̄ free energies. Afterwards,
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3.2 Renormalising L through QQ̄ Free Energies

we will extend this scheme to the adjoint representation, in which we have calculated
the QQ̄-singlet free energies. For the sake of convenience we will suppress in this part
mentioning the fundamental representation in all quantities where no ambiguity exists.
The renormalisation procedure was first conjectured for SU(3) pure gauge theory [24]
and can easily be extended to arbitrary (n, n̄)-point correlation functions of the thermal
Wilson line and to the case of full QCD [29]. The basic idea is to renormalise the QQ̄
free energies calculated at small separations first. The renormalised Polyakov loop can
then be obtained through the cluster property of the free energies.

The renormalised finite temperature QQ̄-singlet free energy F 1,R
QQ̄

(r, T ) is given at short

distances by the zero temperature heavy quark potential V (r), because in this regime the
dominating scale is the distance and not the temperature and thus the surrounding ther-
mal medium does not change the properties of the QQ̄-system. Therefore the divergent
self-energy contribution in the bare finite temperature QQ̄ free energy can be removed
by matching it to the zero temperature heavy quark potential at small distances, which
is known from lattice studies [26] and from perturbation theory [55, 26]. Thus, at small
distances r � 1/T , we obtain the renormalisation group equation for the renormalised
QQ̄-singlet free energy

T
dF 1,R

QQ̄
(r, T )

dT
= 0. (3.8)

On the lattice we use the smallest distance attainable for the matching procedure, which
is given by rmin = (TNτ )

−1. Therefore we have the matching prescription for the singlet
free energy

F 1,match
QQ̄

(rmin, T )
∣
∣
∣
Nτ

= V (rmin), (3.9)

where the temperature T is held fixed. It can be shown [24], that for temperatures
T<∼20Tc the T -independence of the QQ̄-singlet free energies at small distances can be
observed on lattices with a temporal extent of Nτ = 4 and thus the matching prescription
can be successfully applied. Since the QQ̄-singlet free energies show T -independence
already at larger separations than the average or octet free energies, it is more convenient
to use F 1

QQ̄
to extract the effective renormalisation constant, because lattices with smaller

temporal extent can be employed, which limits the numerical effort. All QQ̄ free energies
are, due to their symmetry under global

�
(3) transformations, known to be independent

from the volume they are calculated on [24] and therefore the thermodynamic limit is
well behaved. This is crucial, since otherwise the effective renormalisation constants we
are going to extract would be volume dependent. At fixed temperature T the continuum
limit of the renormalised QQ̄-singlet free energy can now be obtained by

F 1,R
QQ̄

(r, T ) = lim
Nτ→∞

(

F 1,match
QQ̄

(r, T )
∣
∣
∣
Nτ

)

, (3.10)

which is equally well behaved. In fig. 3.1(left) we show the renormalised QQ̄-singlet
free energies together with the QQ̄ potential at zero temperature. We observe, that
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Figure 3.1: Left: F 1,R
QQ̄

(r, T ) and the QQ̄ potential V (r) at T = 0 (black line). Right: LR

obtained from lattices with different temporal extend Nτ = 4, 8.

for all temperatures the curves coincide with V (r) at the smallest distances and depart
smoothly with growing separations. Thus F 1,R

QQ̄
(r, T ) is indeed T -independent at small

r. For temperatures below Tc the singlet free energies overshoot the T = 0 potential
at intermediate distances, eventually becoming smaller than V (r) again. This shows
again the temperature dependence of the string tension for the confining singlet free
energies. Above Tc screening is present and the F 1,R

QQ̄
(r, T ) approach their asymptotic

values, which are now well defined in the continuum limit.
Once the QQ̄-singlet free energy has been successfully renormalised at small distances,

its large distance behaviour at finite temperature is fixed as well through the cluster
property (2.59). We can now define the modulus of the expectation value of the Polyakov
loop through

LR(T ) = lim
r→∞

exp



−
F 1,R

QQ̄
(r, T )

2T



 . (3.11)

In fig. 3.1(right) we show LR obtained from the matching procedure from lattices with
different temporal extent Nτ = 4, 8 over the temperature. As the figure clearly shows,
all systematic effects due to the presence of the lattice have been removed and LR is a
smooth function of T alone for temperatures T > Tc. Below Tc, LR must clearly vanish,
as the renormalised QQ̄ free energies rise forever. Therefore the renormalised expectation
value of the Polyakov loop through the suggested renormalisation prescription is well
behaved in the continuum limit. Furthermore, we see a finite jump in LR at Tc, which is
characteristic for a (weakly) first order phase transition. For higher temperatures T >∼3Tc

the renormalised Polyakov loop attains values larger than unity, where LR → 1 is its
asymptotic high temperature perturbative value. Therefore we expect LR to approach
unity from above, when going to higher temperatures, which is also predicted by high-T
perturbation theory [54].

We note here, that the renormalised free energies are, due to gauge freedom, only
defined up to an additive normalisation of the zero temperature potential V c(r) = V (r)+
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Figure 3.2: Effective renormalisation constant ZR
D over g2 from lattices with Nτ = 4

(open symbols) and Nτ = 8 (filled symbols) for D = 3 and Nτ = 4 for
D = 8. The solid black line is the result of the fit ansatz (3.14).

c. Consequently, LR is only fixed up to a multiplicative term e−c/2T , which nevertheless
approaches unity exponentially when going to high temperatures.

In order to determine ZR(g2) we could use the ratio
(
LR/ 〈|L|〉

)1/Nτ , which is, however,
only possible in the deconfined phase. It is more convenient to consider the shift in the
QQ̄-singlet free energies due to the matching prescription

δF 1
QQ̄(T ) = F 1,R

QQ̄
(r, T ) − F 1

QQ̄(r, T ), (3.12)

which is independent of r and can now be used to extract the effective renormalisation
constants also below Tc through applying

ZR(g2) = exp

(

−
δF 1

QQ̄
(T )

2TNτ

)

, (3.13)

which should not explicitly dependent on the temperature T , but only on the bare
gauge coupling g. In fig. 3.2 we show the effective renormalisation constant ZR from the
fundamental representation over the square of the gauge coupling g from lattices with
Nτ = 4, 8. We see, that they are independent of the temporal lattice extent and collapse
onto a common curve, indicating the dependence of ZR on g2 only. From the knowledge
of the divergency structure of the Polyakov loop we can give a fit ansatz

ZR(g2) = exp

(

g2 8

3
Q(2) + g4Q(4)

)

, (3.14)
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Figure 3.3: F 1,R
QQ̄,8

renormalised to V8(r) (black line) from a 323 × 4 lattice.

which results in Q(2) = 0.0576(25) and Q(4) = 0.0639(68) from a best fit analysis in the
range 0.9 − 1.33 for g2.

We are now in position to renormalise the adjoint singlet free energy F 1,R
QQ̄,8

with the

matching procedure outlined above. As the zero temperature potential to which the
adjoint singlet free energies is going to be matched we choose according to Casimir
scaling at zero temperature and small distances (2.102)

V8(r) = d8V3(r), (3.15)

where V3(r) is the T = 0 potential in the fundamental representation [26]. The renor-
malised F 1,R

QQ̄,8
are shown in fig. 3.3 together with V8(r). We observe F 1,R

QQ̄,8
to coincide for

small distances with V8, departing smoothly to smaller values for T > Tc and to higher
ones for T < Tc. Thus, it is clear from fig. 3.3, that also F 1,R

QQ̄,8
becomes temperature

independent at small distances and the matching procedure can be successfully applied.
We have determined the effective renormalisation constants ZR

8 (g2) using in analogy to
(3.13) the expression

ZR
8 (g2) = exp

(

−
δF 1

QQ̄,8
(T )

2Td8Nτ

)

(3.16)

for the adjoint singlet free energies. The results are shown in fig. 3.2. We observe Z R
3 and

ZR
8 to agree within errors, though except for the highest temperature of 3Tc calculated

(g2 = 1.25), the ZR
8 are bigger than the ZR

3 . This may be due to insufficient statistics or
may indicate a violation of the Casimir relation of the effective renormalisation constants
at large couplings.
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We conclude that the renormalisation of the adjoint QQ̄-singlet free energies through
the matching procedure to the corresponding T = 0 potential is possible and gives
reasonable results. We will discuss other properties of the adjoint singlet free energy like
string breaking and the value of the renormalised adjoint Polyakov loop in chapter 4.

3.3 Renormalising L through Nτ Variation

We now discuss a new way on how to determine the value of the renormalised Polyakov
loop in an arbitrary representation above Tc and the corresponding effective renormali-
sation constants ZR

D from lattices with different temporal extent Nτ . For representations
with vanishing triality, it can also be applied for temperatures below the critical temper-
ature. The algorithm of the scheme is laid out in the box on page 44, see also fig. 3.4.

We choose the value of the renormalised Polyakov loop in some representation D,
LR

D (Tstart), at Tstart, which serves as a seed value for the procedure and has to be bigger
than Tc for representations with non-vanishing triality. Computing the bare Polyakov
loop 〈|LD|〉 (g2, Nτ,1) in that representation on the lattice, where we have to choose the
gauge coupling g such, that a(g)Nτ,1 = T−1

start is fulfilled, we can extract the effective
renormalisation constant ZR(g2) by applying

ZR
D(g2) =

(
LR

D (Tstart)

〈|LD|〉 (g2, Nτ,1)

)1/dDNτ,1

. (3.17)

We now compute the bare Polyakov loop with the same gauge coupling g on a lattice
with different temporal extent Nτ,2 > Nτ,1, which is chosen such, that the corresponding

temperature T1 = Tstart
Nτ,1

Nτ,2
is still bigger than Tc for representations with non-vanishing

triality. Since the effective renormalisation constant extracted through (3.17) depends
only on g2, we can apply it to 〈|LD|〉 (g2, Nτ,2) and obtain the renormalised Polyakov loop
at T1, LR

D (T1). This procedure can be iterated with LR
D (T1) acting as the new seed value.

We thereby obtain a sequence of renormalised Polyakov loops in some representation D
for several temperatures and a sequence of effective renormalisation constants for that
representation for several gauge couplings g.

It is important to note at this point, that the 〈|LD|〉 (g2, Nτ,i) calculated on the lattices
have to be in the thermodynamic limit. Otherwise the effective renormalisation constants
would assume volume dependent values and consequently would be of no value at all.
Therefore the iteration has to terminate at Tc at the latest for representations that show
confinement below Tc, i. e. those with non-vanishing triality, because they vanish for
V → ∞ below Tc. For representations with t = 0, i. e. D = 8, 10, 27 as used in this work,
the Polyakov loop stays finite for V → ∞ also below Tc, as we have argued in 2.4.4, and
are thus not subject to this constraint. We will discuss the thermodynamic limit for the
Polyakov loop in the representations D = 8, 10, 27 at temperatures below Tc in chapter
4 and restrain our discussion here to the case T > Tc for all representations.
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PSfrag replacements

g fixed

Nτ,1

Nτ,2

TstartT1

LR
D (T )

〈|LD|〉(g2,Nτ )

Figure 3.4: Renormalisation scheme using Nτ variation, resulting in a shark fin shaped
saw tooth like path.

1. Choose some temperature Tstart, where Tstart > Tc for representations
with triality t 6= 0.

2. Choose LR
D (Tstart) as a seed value.

3. Choose a lattice with temporal extent Nτ,1.

4. Determine gauge coupling g such that Tstart = 1/(a(g)Nτ,1).

5. Compute 〈|LD|〉 (g2, Nτ,1) from the lattice.

6. Determine ZR
D(g2) by employing (3.17).

7. Choose a lattice with temporal extent Nτ,2, where Nτ,2 > Nτ,1, such that

T1 = Tstart
Nτ,1

Nτ,2
obeys T1 > Tc for representations with triality t 6= 0.

8. Compute 〈|LD|〉 (g2, Nτ,2) from the lattice.

9. Determine LR
D (T1) = ZR(g2)Nτ,2 〈|LD|〉 (g2, Nτ,2).

10. Jump to 3 with Tstart = T1 and LR
D (T1) as seed value.
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Figure 3.5: Bare Polyakov loops in the fundamental representation from lattices 323×Nτ

with Nτ = 4, 6, 8, their cubic spline interpolation and the resulting LR
3 from

the Nτ -variation method.

We now come to the application of this method to our data. We have calculated
the Polyakov loop for all irreducible representations D ≤ 27 on lattices 323 × Nτ with
Nτ = 4, 6, 8. The highest temperature at our disposal was Tstart = 12Tc. As we will
show in chapter 4.2, Casimir scaling is realised for the bare Polyakov loop 〈|LD|〉 for all
representations D ≤ 27 at this temperature. Therefore we set

LR
D(Tstart) =

(
LR

3 (Tstart)
)dD

. (3.18)

The renormalisation constants ZR
D are therefore obtained independently of ZR

3 .

As seed value for the renormalised Polyakov loop in the fundamental representation
we use LR

3 (Tstart) = 1.106(15), which has been obtained from the matching procedure of
the fundamental QQ̄-singlet free energy at Tstart. We will address the issue of different
seed values below. In order to avoid simulations with a large number of different gauge
couplings matching the constraints appearing through the choice of the Nτ,i, we have used
a cubic spline to interpolate between the data obtained from simulations roughly equally
distributed in T . The values of the cubic spline have then be employed to compute
〈|LD|〉 (g2, Nτ,i) for some g. The result of the interpolation is shown in fig. 3.5. For the
application of the renormalisation scheme to our data we have used the combinations
(4, 6) and (6, 8) as pairs of temporal extent (Nτ,1, Nτ,2). Thereby we obtain more values
for the renormalised Polyakov loop and the effective renormalisation constant in the
given temperature interval (Tc, 12Tc] than we would have with the combination (4, 8).

The results for ZR
D(g2) and the renormalised Polyakov loop LR

D for D = 3, 6, 8, 10, 15
obtained with this method are shown in fig. 3.6(top). The errors are obtained from
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3 Renormalisation of the Polyakov Loop

a jackknife analysis. In this plot we have also included the results from the matching
procedure of the fundamental and adjoint QQ̄-singlet free energy done in chapter 3.2.
The plot clearly shows that all ZR

D extracted by the Nτ -variation method collapse onto a
single curve, which follows the result of the fit ansatz (3.14) for gauge couplings g2<∼1.35
and then assumes a nearly constant value of ∼ 1.35−1.4. Moreover, we find a very good
agreement with the renormalisation constants obtained with the matching procedure of
the fundamental and adjoint QQ̄-singlet free energies for all gauge couplings g calculated
in this work.

For the representations D = 10, 15, we had to terminate the iteration process at 2Tc,
because below this temperature volume effects became visible in 〈|LD|〉. For higher
representations D = 15′, 24, 27 this was already the case at the highest temperature of
12Tc used here, and thus we refrain from discussing them. The volume dependence of
〈|LD|〉 will be investigated in detail in chapter 4 for the case T < Tc, but the findings are
also applicable above Tc. We just note here, that this V -dependence can be explained by
the fact that the distribution function of LD computed on different lattice configurations
stretches out into the negative part of the real axis, if its expectation value is small. This
leads to a deviation of 〈|LD|〉 to higher values, where the size of the deviation depends on
the lattice volume used. This problem can be overcome partly by using 〈LD〉 instead of
〈|LD|〉 in the renormalisation method. For large temperatures, both observables agree,
and for D = 3, 6, 8 we find agreement of 〈LD〉 and 〈|LD|〉 down to Tc on all volumes used
in this work. For D = 10, 15 the errors become too large for a meaningful application of
the Nτ -variation method at temperatures lower than 2Tc. For D = 15′, 24, 27 the values
for 〈LD〉 from the Nτ = 6, 8 lattices was too noisy for all T ≤ 12Tc. To sum up, we find
for D = 3, 6, 8, 10, 15 that the simple relation

ZR
D(g2) = ZR

3 (g2) (3.19)

holds for temperatures above Tc for D = 3, 6, 8 and for T > 2Tc for D = 10, 15. The
good agreement of the two renormalisation methods shows that the renormalisation
constants indeed only depend on the bare coupling and that both methods are equivalent.
Furthermore the renormalisation constants in different representations agree within the
present accuracy, indicating that the Casimir scaling relation (3.19) holds in the coupling
range analysed here.

In fig. 3.6(bottom) we show the renormalised Polyakov loops obtained from the Nτ -
variation method for D = 3, 6, 8, 10, 15 over the temperature. We have again included
the results from the matching procedure of the fundamental and adjoint QQ̄-singlet free
energy discussed in chapter 3.2 in the plot. For all D, LR

D shows qualitatively similar
behaviour, i. e. starting from small values just above Tc, where the value is smaller the
larger C(D), assuming LR

D = 1 at ∼ 2.5Tc and approaching a constant value, which is
larger the larger C(D). These facts already hint at a connection of LR

D to the Casimir.
We will discuss Casimir scaling for the Polyakov loop in chapter 4.2. Since Casimir
scaling is realised up to 2-loop order in high temperature perturbation theory [5], all LR

D

have to approach unity for T → ∞, because LR
3 does [54]. Fig. 3.6(bottom) makes clear,

that for all D this value is approached from above.
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Figure 3.6: Top: ZR
D for D = 3, 6, 8, 10, 15 obtained with the Nτ variation method and

from lattices 323×Nτ with Nτ = 4, 6, 8 and ZR
D from the matching procedure

of the fundamental and adjoint QQ̄-singlet free energy (Dsing). The black line
indicates the result of the fit ansatz (3.14). Bottom: resulting renormalised
Polyakov loop LR

D from both methods. The inset shows the region Tc − 3Tc.
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Figure 3.7: The same as fig. 3.6(top) for different seed values in the Nτ variation method
and T = 0 potential Vc(r) from the matching procedure of the fundamental
and adjoint QQ̄-singlet free energy (Dsing). The fit results of the ansatz
(3.14) have been changed accordingly. See text.

Any renormalisation procedure is only fixed up to a multiplicative constant, which
translates into a multiplicative constant for both ZR

D and LR
D and thus to a change of

the seed value in our method. In order to be consistent, we must still have, that

lim
g2→0

ZR(g2) = ZR
pert(g

2) (3.20)

is fulfilled if we change the seed value, where ZR
pert(g

2) is the perturbative renormalisation

constant at weak coupling, given by the expansion of (3.14) at small g2, i. e. ZR
pert(g

2) =

1+g2 8
3Q(2) + . . . . We therefore investigate now the use of different seed values LR

3 (Tstart)
for the Nτ -variation method, which is also connected to the high temperature limit of
the Polyakov loop. In fig. 3.7 we show the resulting effective renormalisation constants
for different seed values. This have been obtained by applying the matching procedure
to the fundamental QQ̄-singlet free energies to different T = 0 potentials

V c(r) = V (r) + c, c
√

σ =







−1 : upper branch
0 : middle branch

+1 : lower branch
, (3.21)

which is possible due to the gauge freedom of the potential. The renormalised Polyakov
loop we used as the seed value then changes according to

LR,c
3 = LR

3 e−
c

2T . (3.22)
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The corresponding effective renormalisation constants then become

ZR,c
3 = ZR

3 exp

(

−c a(g2)

2

)

, (3.23)

which leaves the perturbative limit g2 → 0 unchanged. Fig. 3.7 shows that the renor-
malisation constants indeed approach a common value for g2 for all three seed values
used. It is clear from (3.22), that the high temperature limit of the Polyakov loop in all
representation is not affected by the change of the seed value, as it should be.

3.4 Other Renormalisation Procedures for the Polyakov loop

We now want to discuss the renormalisation procedure for the Polyakov loop proposed
in [56], that assumes the effective renormalisation constant to dependent explicitly and
solely on the temperature, i. e. zR

D(T ), and therefore extracts them in a different way.
To be more precise, [56] proposes a multiplicative renormalisation scheme for the bare
Polyakov loop in an irreducible representation D,

LR
D(T ) =

1

zR
D(T )

〈|LD|〉 (T ). (3.24)

The renormalisation constant is defined by

zR
D(T ) = exp

(−mdiv
D

T

)

and mdiv
D =

fdiv
D

a
, (3.25)

where fdiv
D is some proportionality constant and a is the lattice spacing. In order to

extract zR
D(T ), it is assumed that the logarithm of the bare Polyakov loop can be written

as a power series in 1/Nτ ,

− ln(〈|LD|〉) = fdiv
D Nτ + f ren

D + f lat
D

1

Nτ
, (3.26)

where f lat
D is a finite lattice spacing correction and the renormalised Polyakov loop is

obtained by

LR
D = exp(−f ren

D ). (3.27)

The main point is, that the f i
D with i ∈ {div, ren, lat} are functions of the physical

temperature only. The f i
D are obtained by calculating bare Polyakov loops at fixed

temperature but varying temporal lattice extent Nτ . It was found in [56], that f lat
D ≈ 0,

such that a linear fit to − ln(〈LD〉) suffices to extract fdiv
D and f ren

D . This procedure
bears some resemblance to our Nτ variation method investigated in chapter 3.3, with
the important difference that our effective renormalisation constants do not depend on
the physical temperature but only on the bare gauge coupling g.
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Figure 3.8: Top: Renormalised Polyakov loops for D = 3, 6, 8, 10, 15 above Tc obtained
with the method proposed in [56] from our 323×Nτ lattices with Nτ = 4, 6, 8
pure gauge data. Bottom: Divergent mass mdiv

D extracted by a linear fit with
(3.26).
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Figure 3.9: Comparison with the results for the renormalised Polyakov loops obtained
with the Nτ -variation method in chapter 3.3.

We have performed the renormalisation procedure for the Polyakov loop in some irre-
ducible representation proposed in [56] with our pure gauge data obtained from 323×Nτ

lattices with Nτ = 4, 6, 8. We will show in chapter 4.3.2, that for small lattice volumes a
severe volume dependence persists for small values of 〈|LD|〉, which hampers the investi-
gation of this quantity in the deconfined phase near Tc. Therefore we used 〈LD〉 instead
of 〈|LD|〉 for the procedure. We have performed a best fit analysis to − ln (〈LD〉) with
(3.26) at fixed temperature, where we neglect the f lat

D term. The resulting renormalised
Polyakov loops LR

D can then be obtained by employing (3.27). In fig. 3.8(top) we show
the resulting renormalised Polyakov loops for representations D = 3, 6, 8, 10, 15 in the
temperature range Tc − 12Tc and the divergent mass amdiv

D in fig. 3.8(bottom). We
observe LR

D to rise strictly monotonic and staying smaller than unity for all T < 12Tc.
Casimir scaling in LR

D is preserved. High temperature perturbation theory requires
amdiv

D → 0 when T → ∞, which is also visible in fig. 3.8(bottom). The undulating
behaviour of LR

D and amdiv
D especially near Tc is most probably an artifact of the cubic

spline interpolation we applied to the bare Polyakov loops (see chapter 3.3).

In fig. 3.9 we compare the results for the renormalised Polyakov loops obtained with
the method of [56] and the Nτ -variation method of chapter 3.3. It is clear, that the
results from both methods are not connected by a multiplicative constant e−c/2T in the
spirit of (3.22), since the LR

D from the Nτ -variation become unity at T >∼2.8Tc, whereas
the LR

D from the method of [56] do not coincide at this temperature. A dependence
of c on the representation D is prevented by Casimir scaling. Therefore both methods
produce renormalised Polyakov loops that are not equivalent starting from the same bare
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3 Renormalisation of the Polyakov Loop

Polyakov loops. As was made clear in [53], the effective renormalisation constants for the
Polyakov loop should depend on the bare gauge coupling g only and not on the physical
temperature T .
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4 Results for higher Representations of the
Polyakov Loop

Having at hand a proper renormalisation procedures for Polyakov loops and the free
energy in all representations, we are now able to embark on the investigation of the
properties of the Polyakov loop and the free energy in higher representations in a phys-
ically meaningful way. Below the critical temperature we first have to study the ther-
modynamic limit of the Polyakov loops, before we can extract the binding energy of the
gluelump and the string breaking distance from LR

8 .

4.1 QQ̄ Free Energies

Parallel to (2.102) we want to check Casimir scaling for the QQ̄ free energies at finite
temperature,

F s,R
nn̄,D2

(r, T ) = d(D2, D1)F
s,R
nn̄,D1

(r, T ), (4.1)

where s is the colour symmetry state. We know already from lattice calculations at
T = 0 and from perturbative calculations in the vacuum and at high temperature, that
Casimir scaling is realised to a reasonable degree in these regimes [4, 5]. Therefore (4.1)
must be valid for rΛQCD � 1 and T � Tc. For intermediate distances and temperatures
not too far from the deconfinement phase transition, the situation is not clear.

Let us start with the case of the QQ̄-singlet free energy, which we have calculated
in the fundamental and the adjoint representation on gauge configurations fixed to
Coulomb gauge. The renormalisation for both of them was carried out in chapter 3.2. In
fig. 4.1(top) we compare F 1,R

QQ̄,8
with F 1,R

QQ̄,3
, where both free energies have been divided

by their Casimir. If the Casimir scaling hypothesis for the singlet free energies (4.1)
holds, both curves should coincide. We see that this is indeed the case for the high-
est two temperatures over the entire distance interval, whereas at lower temperatures
deviations of F 1,R

QQ̄,8
/C(8) to lower values become visible at large separations.

In order to get a more quantitative measure of how well Casimir scaling is realised,
we have calculated the ratio

R3,8(r, T ) = d8

F 1,R
QQ̄,3

F 1,R
QQ̄,8

, (4.2)

which should be unity, if (4.1) holds. The result is shown in fig. 4.1(bottom). We observe
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Figure 4.1: Top: F 1,R
QQ̄,3

and F 1,R
QQ̄,8

and V3(r) (black line) normalised by their Casimir

C(D) from a 323 × 4 lattice. Bottom: R3,8(r, T ) of this free energies. See
text.
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4.1 QQ̄ Free Energies

R3,8 to be one within errors for the highest two temperatures calculated. For T/Tc =
1.149 we see a deviation of 5% and for the even smaller temperatures a value of slightly
below 10 % is observed.

Thus we conclude that Casimir scaling is realised for F 1,R
QQ̄,D

with D = 3, 8 for all

separations r at temperatures T/Tc ≥ 1.682 within errors. For lower temperatures
above Tc and for all temperatures below Tc considered here, deviations occur already at
small distances at the level of 5-10 %.

We now turn to the colour averaged QQ̄-free energies. Since the corresponding correla-
tors can be obtained without a costly gauge fixing, we were able to calculate FQQ̄,D(r, T )
for representations D = 3, 6, 8 in the temperature range 0.9-3 Tc on 323 × 4 lattices. If
Casimir scaling (4.1) holds for the average free energies, the curves should coincide with
those of the fundamental representation.

Below Tc we show the renormalised average free energies for the three lowest temper-
atures divided by their Casimir in fig. 4.2. The renormalisation constants employed are
the (ZR

3 (g2))dDNτ , according to the renormalisation procedure described in chapter 3.2.
Thus for the smallest distances all curves coincide as a consequence of the renormali-
sation procedure. However, for all T < Tc and representations D = 6, 8 deviations to
smaller values start to show up quite early, i. e. for separations rT >∼0.8 for D = 6 and
rT>∼0.6 for D = 8, respectively. This effect is more pronounced for the adjoint average
free energy than for the sextet. The effect of string breaking sets in at larger distances
shown here and will be discussed in chapter 4.4.

Above Tc we show ∆FQQ̄,D divided by their Casimir for the same representations in
fig. 4.3. We observe screening to take place in both higher representations. The curves
for both D = 6 and D = 8 deviate to smaller values compared to the fundamental case.
We find that the ordering

∆FQQ̄,6(r, T )

C(6)
<

∆FQQ̄,8(r, T )

C(8)
<

∆FQQ̄,3(r, T )

C(3)
< 0, T > Tc (4.3)

holds throughout the entire distance interval.
Thus, we conclude, that Casimir scaling is clearly violated for the average QQ̄ free

energies in the temperature range 0.9 − 3Tc for the fundamental, sextet and adjoint
representations.
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Figure 4.2: Average free energies for D = 6 (top) and D = 8 (bottom) compared to the
fundamental free energy below Tc from a 323 × 4 lattice.
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Figure 4.3: Average free energies for D = 6 (top) and D = 8 (bottom) compared to the
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4.2 Casimir scaling for the Polyakov loop above Tc

Let us now discuss the question of Casimir scaling for the Polyakov loop above Tc. If
Casimir scaling holds, we have the relation for the renormalised Polyakov loop in different
representations D,

LR
D(T ) =

(
LR

3 (T )
)dD , (4.4)

for some temperature T > Tc. As we have already pointed out, this is true up to 2-
loop order in high-temperature perturbation theory [5]. The effective renormalisation
constants ZR

D agree with each other for D = 3, 6, 8, 10, 15 for temperatures down to close
to Tc, as we have shown in chapter 3.3. The missing ingredient for (4.4) to hold, is to
show that this relation is also valid for the bare Polyakov loops 〈|LD|〉. Therefore we

display 〈LD〉1/dD , which should be independent of D if Casimir scaling is realised, for
temperatures above Tc from a 323×4 lattice in fig. 4.4. To minimise finite volume effects
we follow the discussion given in chapter 3.3 and use 〈L〉 rather than 〈|L|〉. Furthermore
we will not use the data for temperatures smaller than 1.5Tc for the representation
D = 15′. We observed that all data collapse onto a common curve for all temperatures
considered here. Thus Casimir scaling is realised for the bare Polyakov loop above Tc

for representations D = 3, 6, 8, 10, 15, 24, 27 and above 1.5Tc also for D = 15′. Together
with the results for the effective renormalisation constants in 3.3, we conclude, that
Casimir scaling is realised for the renormalised Polyakov loop, (4.4), for temperatures
(Tc, 12Tc] for D = 3, 6, 8 and temperatures (2Tc, 12Tc] for D = 10, 15. We note, that
Casimir scaling for the renormalised Polyakov loop for D = 10, 15 could not be shown
because the results for the effective renormalisation constants for this values of D are
restricted to the temperature range T > 2Tc. Moreover, we were not able to obtain ZR

D

for D = 15′, 24, 27, so that we can not make a statement on whether Casimir scaling is
realised for the renormalised Polyakov loop in these representations.

4.3 Polyakov loops below Tc

We now investigate the behaviour of the Polyakov loop in different representations below
Tc. To this end, we first study LD at strong coupling (β = 0). Afterwards, we look at
the volume dependence of 〈LD〉 and 〈|LD|〉 below Tc and compute the infinite volume,
renormalised adjoint Polyakov loop for T < Tc. In connection with this, we can identify
the binding energy of the gluelump and determine the string breaking distance for the
adjoint QQ̄-singlet free energy.

4.3.1 Strong coupling

Random SU(3) gauge links U4 for computing LD at strong coupling (β = 0) can be
diagonalised to assume the form

U4 = diag
(

eiφ1 , eiφ2 , e−i(φ1+φ2)
)

, (4.5)
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Figure 4.4: Testing Casimir scaling for the bare Polyakov loop. 〈LD〉1/dD from a 323×4
lattice for all D. The inset shows the region Tc − 3Tc.

where

0 ≤ φ1, φ2, φ1 < φ2, φ2 < (−φ1 − φ2) mod 2π. (4.6)

A simpler numerical implementation can be achieved by drawing φ1, φ2 ∈ [0, 2π) uni-
formly, which introduces a six-fold overcounting of the fundamental domain (4.6). Nev-
ertheless, due to the gauge symmetry of the system, the expectation values of LD will be
unaffected by this [57]. For reasons that will become apparent in a moment, we discuss
the results of our lattice calculations in terms of the unnormalised Polyakov loop l. We
have calculated 〈|lD|〉 at β = 0 for volumes with spatial extent Nσ = 16, 24, 32, 48, 64, 96.
The results of the calculations are shown in fig. 4.5 and 4.6. While 〈|lD|〉 is finite on finite
volumes, it vanishes in the thermodynamic limit when the triality of the representation
D does not vanish, t 6= 0, i. e. for representations D = 3, 6, 15, 15′ , 24. The volume
dependence of 〈|lD|〉 for this representations can be understood in terms of a random
walk model [58], which predicts

〈|lD|〉 ∼ 1√
V

(4.7)

and is confirmed by the data displayed in fig. 4.5. The expectation value 〈lD〉 for the
representations with vanishing triality, i. e. D = 8, 10, 27 in this work, are constant with
respect to V and therefore obviously finite in the thermodynamic limit. They assume
the integer values (see fig. 4.6)

〈lD〉 =







2 : D = 8
1 : D = 10
3 : D = 27

, (4.8)
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Figure 4.5: Double log plot of 〈|lD|〉 over the volume V .

which would not have been so easily visible if we had used the normalisation version
of the Polyakov loop. We note, that even stronger than (4.8), the integer values are
assumed for the average over one configuration, [lD].

These findings can be understood as follows. The Polyakov loop in the fundamental
representation l3 is just the unnormalised trace of the random matrix (4.5). Therefore
we have

l3 = tr U = eiφ1 + eiφ2 + e−i(φ1+φ2), (4.9)

where φi ∈ [0, 2π) with i = 1, 2 uniformly distributed. We remind that tr �
D×D = D

has been used here. We now want to consider the expectation value of terms

[l3(x)rl3(x)s] (4.10)

where r, s ∈ � and [·] denotes the lattice average from one configuration. It is clear from
the remarks above, that the only combinations of r, s that survive the thermodynamic
limit are those where (r − s) mod 3 = 0, i. e. those with vanishing triality. Plugging
now (4.9) into (4.10) leads to sums of terms beiα, where α =

∑

i aiφi with ai, b ∈ �
and

the b are binominal coefficients. The α assumes in general non-uniform distributions in
[2π min(0, ai), 2π max(ai)). If ai = 0 for all i, then we readily obtain [eiα] = 1. Since
(4.9) is symmetric under the permutation of φi with i : (12), for any term [eiα] we also
obtain a term [e−iα] in the expansion of (4.10) into a sum, such that their combined
contribution to the average vanishes. Applying this recipe, we find for the combinations
relevant for this work

[l3(x)l3(x)] = 3,
[
l3(x)3

]
=
[
l3(x)3

]
= 6,

[
l3(x)2l3(x)2

]
= 15, (4.11)
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Figure 4.6: 〈lD〉 over the log of the volume V for D = 8, 10, 27.

where the numbers are sums of binominal coefficients of the non-vanishing contributions.
We can now derive the values of (4.8) by expressing lD in terms of l3 and l3 and apply the
results in (4.11). In view of (2.79),(2.80) and (2.84) we obtain (suppressing the position
dependence of the lD)

[l8] = [l3l3] − 1

= 3 − 1

= 2 (4.12)

[l10] = [l3l6] − [l8]

=
[
l33
]
− 2 [l3l3] + 1

= 6 − 2 · 3 + 1

= 1 (4.13)

[l27] =
[

|l6|2
]

− [l8] − 1

=
[
l23l

2
3

]
−
[
l33
]
−
[
l3
3

]

= 15 − 6 − 6

= 3, (4.14)

which reproduces (4.8) exactly.
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We note, that these results can also be obtained from group theory. In the path
integral representation of (4.10) at β = 0 the contribution of the action vanishes and we
obtain

[
lr3 ls

3

]
=

∫
DU lr3 ls

3∫
DU

. (4.15)

Employing group theoretical relations for the character l3, see e. g. [17], one arrives at
(4.8) as well.

4.3.2 Below Tc

We now turn to the Polyakov loop below Tc. As the considerations concerning string
breaking in pure gauge theory 2.4.4 made clear, we expect the Polyakov loop to vanish
in the thermodynamic limit below Tc for representations with non-vanishing triality.
Moreover, the same considerations lead us to the expectation, that Polyakov loops in
representations with vanishing triality do not vanish in the thermodynamic limit below
Tc. In fig. 4.7(top) we have calculated 〈|LD|〉 for all representations at T/Tc = 0.959
from lattices N 3

σ × 4 with Nσ = 16, 24, 32, 48. In fig. 4.7(top) the Polyakov loop of
all representations except the adjoint seem to vanish according to a power law, as was
proposed for β = 0 for the t 6= 0-representations. Only the adjoint Polyakov loop shows
a different behaviour, deviating from the 1/

√
V behaviour to larger values with growing

volume. We obtain similar plots for all other temperatures below Tc. This can be
understood as follows. Let us consider the Polyakov in some representation L = [L(x)],
where [·] denotes the average on one configuration. For D = 10, where the Polyakov
loop can assume complex values, we consider only the real part in the following, since
the expectation value of the imaginary part is zero. At strong coupling (β = 0), the
L(x) are uncorrelated random variables. Therefore L has a Gaussian distribution due
to the central limit theorem,

ρ(L) =
1√
2πσ

exp

(

−(L − L)2

2σ2

)

, (4.16)

where L is the expectation value of L and σ its variance, which is dependent on the
lattice volume

σ =
a√
V

, (4.17)

where a is a proportionality constant. We assume this behaviour to be valid also for
β > 0 as long as the correlation length of L(x) is small compared to the spatial extent
of the lattice.This assumption is fulfilled to a very good degree up to temperatures
close to Tc on the largest lattices we employ in this work. Thus we can extend the
findings at strong coupling concerning the thermodynamic limit of representations with
non-vanishing triality (4.3.1) into the domain below Tc. We are now interested in the
distribution function of |L|. It is given by

ρ̃ (|L|) = ρ(L) + ρ(−L). (4.18)
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Figure 4.7: Top: 〈|LD|〉 at T/Tc = 0.959 from lattices N 3
σ × 4 with Nσ = 16, 24, 32, 48.
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blown up by 103.
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Its mean |L| ≡ 〈|L|〉 can be computed to give

|L| =

∫ ∞

0
dx x ρ̃(x) (4.19)

=

√

2

π
σ exp

(

− L
2

2σ2

)

+ L erf

(
L√
2σ

)

, (4.20)

where erf (x) =
√

2
π

∫ x
0 e−t2 dt is the error function. We will later use |L| as a fit ansatz for

〈|L|〉. In fig. 4.8 we show the distribution functions. In the limit σ → 0 (V → ∞), we find
|L| → L. i. e. (4.20) is an unbiased estimator for the expectation value of the Polyakov
loop. We note, that the estimate of 〈L〉 and 〈|L|〉 obtained from the average of N
lattice configurations have, as usual when correlations are absent, an error proportional
to 1/

√
N . This does, however, not effect the considerations that lead to (4.20), since the

σ appearing in there is connected to the volume average on one configuration.
For the representation with non-vanishing triality, that have L = 0, the second term

in (4.20) vanishes and we readily obtain together with (4.17) the behaviour

|L|0 =

√

2

π
σ =

√

2

π

a√
V

. (4.21)

For representations with t = 0, the mean 〈L〉 does not vanish and the term containing
the error function in (4.20) will not disappear. We are faced with two different regimes
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4.3 Polyakov loops below Tc

of |L| now. For the regime σ � L, the second term in (4.20) becomes very small and
the exponential in the first term reduces to one, such that we recover (4.21) again. This
reflects the fact that when the variance of the distribution of L is large compared to
its expectation value, we are not able to resolve the finite expectation value of L. For
the regime σ � L, however, the second term dominates and |L| approaches L. We can
make this observation systematic by considering the relative deviation of |L| for a finite
L with respect to the case where L = 0 defined by

Ξ =
|L| − |L|0

|L|0
. (4.22)

We can trade σ and L in Ξ for the single variable γ = L
σ and obtain

Ξ(γ) = exp

(

−γ2

2

)

+

√
π

2
γ erf

(
γ√
2

)

− 1. (4.23)

In the inset of fig. 4.8 we show the behaviour of Ξ for some values of γ. We now have to
give a threshold value γth, above which we can distinguish L being different from zero.
We can say, that whenever γ > γth, i. e.

L > Lmin = γthσ, (4.24)

we are able to resolve the finite expectation value of L on the lattice with volume V .
The quantity Lmin thus denotes the smallest expectation value that can be found on a
lattice with volume V . We will give a reasonable value for γth below.

Let us now turn to the expectation value of the adjoint Polyakov loop below Tc. In
fig. 4.7(bottom) we show a plot of 〈L8〉 and 〈|L8|〉 over the volume for three temperatures
below Tc from lattices N 3

σ × 4 with Nσ = 16, 24, 32, 48. We see both quantities coincide
for all three temperatures at the largest volume (Nσ = 48) used in this work. For
the lowest temperature, 〈L8〉 is clearly constant for all volumes calculated, whereas for
the two higher temperatures deviations to higher values for the smallest volume with
Nσ = 16 become visible. This is probably due to finite correlation lengths on the small
lattice. We have performed a best fit analysis of the 〈|L8|〉 data with a fit ansatz (4.20)
and fit parameters L and a, where we have used the volume dependence (4.17) for σ.
Additionally, we have fitted a constant to 〈L8〉. Since the two higher temperatures
show deviations to higher values in 〈L8〉 for the smallest volume (Nσ = 16) due to finite
correlation lengths, we have left these data points out for both fits at these temperatures.
The results are listed in tab. 4.1. We observe, that the fit results for 〈L8〉 and L agree
very well within errors. This vindicates the ansatz (4.20) for the Polyakov loop with
D = 8. Moreover, we see, that the proportionality constant a changes only very little
with temperature, as we expect it to be far enough from the critical temperature.

An important observation we can make from fig. 4.7(bottom) is, that at all T < Tc

calculated here, we find that 〈L8〉 is almost volume independent already on lattices with
spatial extent Nσ = 32 (second point from the right). Therefore it is safe to consider
〈L8〉 from lattices 323×4 to be effectively in the thermodynamic limit. Together with the
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4 Results for higher Representations of the Polyakov Loop

T/Tc 〈L8〉 L8 a Lmin

0.907 4.962(41) × 10−4 4.91(10) × 10−4 0.01684(10) 1.74 × 10−4

0.959 8.040(62) × 10−4 8.07(11) × 10−4 0.01731(35) 1.79 × 10−4

0.977 9.644(92) × 10−4 9.63(17) × 10−4 0.01790(90) 1.85 × 10−4

Table 4.1: Results of a best fit analysis: constant fit to 〈L8〉, fits with the ansatz given
in (4.20) to 〈|L8|〉 with fit variables L8 and proportionality constant a from
(4.17). Lmin is the resulting resolution limit from (4.24).

observation, that deviations from the 1/
√

V behaviour in 〈|L8|〉 become already visible
at Nσ = 24, we find a reasonable value for γth to be

γth =
L8(0.907Tc)

σ
≈ 0.43, (4.25)

where we have used a = 0.01684. We then have Ξ(γth) = 0.091. We can now compute
Lmin for all three temperatures by employing (4.24), which results in the resolution limits
given in the last column of tab. 4.1 for the biggest volume (Nσ = 48) used in this work.

We are now in position to renormalise 〈L8〉 in the thermodynamic limit below Tc with
the renormalisation constant (ZR

8 (g2))Nτ . The ZR
8 (g2) have been obtained by from the

renormalisation of the QQ̄-singlet free energies in the adjoint representation (see chapter
3.2), which is applicable below Tc. We show LR

8 from the 323 × 4 lattice together with
other quantities discussed in the next section in tab. 4.3.

In view of fig. 4.7(top) we are still in the regime where γ < γth for the lattice volumes
employed in this work for the representations D = 10, 27 and thus a fit with (4.20)
is hopeless. A constant fit to 〈LD〉 for these representations shows, that the resulting
L are all compatible with zero and thus now definite answer to the value of 〈LD〉 can
be obtained from this approach either. We conclude, that the expectation values for
D = 10, 27 are smaller than the resolution limit and therefore bigger lattice volumes
must be employed than used in this work. We can nevertheless use the data for 〈|LD|〉
for D = 10, 27 to test the assumption of Casimir scaling for the t = 0 representations.
We set

LD = 〈L8〉d(D,8) (4.26)

for D = 10, 27 and use the ansatz for the volume scaling (4.20) to perform a best fit
analysis for the proportionality constant a appearing in (4.17) to the 〈|LD|〉 over the
volume. For D = 10, we have only used the real part of the Polyakov loop for reasons
discussed earlier. Table 4.2 shows the LD obtained, where 〈L8〉 is taken from the above
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Figure 4.9: The same as fig. 4.7(bottom) for D = 10, 27 obtained with the ansatz (4.26).
For D = 10, only the real part of L10 was used. The y-axises have been
blown up by 103 for D = 10 and by 104 for D = 27.
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4 Results for higher Representations of the Polyakov Loop

T/Tc 〈L8〉 L10 L27

0.907 4.962(41) × 10−4 2.462(41) × 10−7 1.543(34) × 10−9

0.959 8.040(62) × 10−4 6.46(10) × 10−7 5.59(12) × 10−9

0.977 9.644(92) × 10−4 9.30(18) × 10−7 9.08(23) × 10−9

Table 4.2: Results for LD according to the Casimir scaling ansatz (4.26) using 〈L8〉 from
table 4.1.

analysis of L8. We find, that the resulting fit value of a is very stable for both represen-
tations and almost independent of temperature, as we already observed for D = 8. We
obtain a = 0.0139(9) for D = 10 and a = 0.0046(2) for D = 27. The results are shown
in fig. 4.9, where we also plot LD from (4.26) in comparison to 〈LD〉 for D = 10, 27. We
see, that the Casimir scaling assumption (4.26) leads to fit functions that agree with the
data. We therefore conclude, that the Casimir scaling ansatz (4.26) is not contradicted
by our data obtained for D = 10, 27. We can give upper limits for the Polyakov loops
in the thermodynamic limit in representation D = 10, 27 with the help of the propor-
tionality constant a obtained above and (4.24). We find 〈Re L10〉 < 1.4 × 10−4 and
〈L27〉 < 4.75 × 10−5.

4.4 The adjoint Polyakov loop

We are now in position to discuss the renormalised adjoint Polyakov loop in the thermo-
dynamic limit below Tc. We have summarised the data to be discussed in this part in
tab. 4.3. See also tab. C.10 in appendix C.

Let us start with the expectation value of the adjoint Polyakov loop and its tem-
perature dependence. In fig. 4.10(top) we show LR

8 for temperatures close to Tc. For
reference, we have also plotted LR

3 , which is exactly zero below Tc. We observe that
LR

8 rises from 0.0087(16) at T/Tc = 0.907 to 0.0219(48) just below Tc at T/Tc = 0.995.
Crossing the critical temperature into the deconfined phase, LR

8 jumps almost an order
of magnitude to 0.154(37) at T/Tc = 1.005. This behaviour is clearly a remnant of the
weakly first order phase transition that takes place at Tc.

Knowing LR
8 , we can now address the issue of string breaking and in connection with

that, determine the binding energy of the gluelump. In fig. 4.10(bottom) we show the
situation at T/Tc = 0.959 as an example. As F 1,R

QQ̄,8
becomes too noisy at large distances,
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4 Results for higher Representations of the Polyakov Loop

T/Tc F∞ [GeV] rstring(V8) [fm] rstring(F8) [fm] LR
8

0.907 2.331(88) 1.180(61) 1.040(39) 0.0087(16)
0.924 2.310(84) 1.170(58) 1.01(10) 0.0099(17)
0.942 2.274(76) 1.153(53) 1.012(92) 0.0116(17)
0.959 2.204(70) 1.121(48) 0.984(26) 0.0143(19)
0.977 2.161(73) 1.101(50) 0.960(26) 0.0168(23)
0.986 2.09(14) 1.069(97) 0.93(12) 0.0198(53)
0.995 2.06(12) 1.053(81) 0.90(15) 0.0219(48)

T = 0 2.4 − 3.0 ∼ 1.2 –

Table 4.3: Temperature dependence of F∞, string breaking distance rstring for the adjoint
singlet free energy with respect to V8 and F8 (see text) and the renormalised
adjoint Polyakov loop LR

8 . The last line gives the values at T = 0 for twice
the mass of the gluelump [59] and for the string breaking distance [43].

we also show the colour average free energy F R
QQ̄,8

, which has the same cluster value.

We can easily calculate the free energy F∞ at which string breaking in the adjoint QQ̄
free energy occurs below Tc by employing

F∞ = −2T ln
(
LR

8

)
, (4.27)

which follows from the cluster property (2.93). This is the energy stored in the adjoint
string which suffices to create a gluon pair from the surrounding gluonic medium to form
two disjoint gluelumps. Gluelumps are bound states of an infinitely heavy test quark
in the adjoint representation, which serves here as an infinitely heavy test gluino G̃,
i. e. the fermionic superpartner of the gluon, and a dynamical gluon g. The mass of such
an G̃g-lump in the vacuum is connected to V8,∞, the value of the adjoint potential at
large separations, by

mglump =
V8,∞

2
, (4.28)

since two G̃g-lumps are created. At finite temperature we may identify the binding
energy of the gluelump from F∞, which we show in fig. 4.11(upper panel). We observe
F∞ to change only little with T , starting from 2.331(88) GeV at T/Tc = 0.907 and
subsequently falling to 2.06(12) GeV just below Tc. This corresponds to a variation
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Figure 4.11: Upper panel: F∞ over T/Tc. The black band indicates twice the mass of
the gluelump at T = 0, where for mgluelump 1.2 − 1.5GeV has been used
[59]. Lower panel: String breaking distance rstring over T/Tc for the adjoint
singlet free energy with respect to V8 and F8 (see text). The black line
stands for the T = 0 value of ∼ 1.2 fm [43].

smaller than 8% in the temperature range 0.9 − 1.0Tc. At the lowest temperatures
discussed here, F∞ indeed approaches the T = 0 value of V8,∞, 2.4 − 3.0GeV, which
is twice the mass of the gluelump [59]. This is reassuring and gives confidence in the
G̃g-approximation we consider here.

We finally determine the string breaking distance rstring of the adjoint QQ̄ free energy,
which can be done in two different ways. Firstly, we consider the string breaking distance
with respect to the adjoint potential V8 at T = 0, which is connected to the fundamental
potential by Casimir scaling and can be determined from the condition

V8(rstring(T )) = F∞(T ). (4.29)

The second possibility is to replace V8 in (4.29) by F8(r, T ) = d8F
1,R
3 (r, T ) and define

analogously

F8(rstring(T ), T ) = F∞(T ), (4.30)

which coincides with (4.29) at T = 0. However, due to the overshooting of F 1,R
3 (r, T )

with respect to the T = 0 potential at intermediate distances [24], we expect to find
systematically lower values for the string breaking distance implicitly defined through
F8 compared to those defined through V8. In fig. 4.11(lower panel) we show the resulting
rstring from the two definitions over the temperature. We first discuss the string breaking
distances obtained with respect to V8. In view of the findings for the binding energy
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4 Results for higher Representations of the Polyakov Loop

of the gluelump, it is not surprising that rstring changes only little with increasing T ,
starting from 1.180(61) fm at T/Tc = 0.907 and falling to 1.053(81) fm just below Tc.
At the smallest temperature rstring almost coincides with the T = 0 value of 1.2 fm [43],
which strongly suggests that temperature effects for the string breaking distance become
only mildly important close to Tc. The string breaking distance obtained with respect to
F8 shows similar behaviour to that obtained from V8, but has, as already noted above, a
value that is systematically smaller by about ∼ 0.15 fm, due to the overshooting of the
fundamental free energy.

4.5 The Polyakov loop in 2-flavour QCD

Let us now discuss the Polyakov loop in different representations in Nf = 2 QCD. We
have reexamined configurations generated with staggered quarks on a 163 × 4 lattice at
several temperatures above and below the transition temperature into the deconfined
phase with a quark mass of m/T = 0.4. For further details on the simulations and data
tables see appendices A.1, A.2 and C.

Since the presence of the dynamical quark field breaks the center symmetry explicitly,
as we have argued in chapter 2, the thermodynamic limit of the quantities studied here
is finite. Nevertheless a volume dependence on the lattice used here might persist.
Moreover, since Nf = 2 QCD shows a crossover behaviour [7], LR

3 changes rapidly but
smoothly in the transition region and, because of the explicitly broken center symmetry,
is non-zero for all temperatures. As a consequence, the discussion of 〈LD〉 is sufficient.

In fig. 4.12(top) we show 〈LD〉1/dD for D = 3, 6, 8, 10, 15 versus the temperature,
where we refrain from showing data below Tc for the representations D = 10, 15 due
to noise. The quantity 〈LD〉1/dD is independent of the representation D when Casimir
scaling is realised for the bare Polyakov loop. We observe this to be the case for the
highest temperatures calculated down to ∼ 1.5Tc for all D analysed here. Below this
temperature we observe deviations to smaller values for the fundamental representation,
whereas the values for higher D still coincide within errors. Therefore we see a violation
of Casimir scaling when entering the transition region which continues to the smallest
temperatures analysed. We note however, that these violations are relatively mild and
a difference between 〈LD〉1/dD for D = 6 and D = 8 can not be confirmed even at the
smallest temperatures, as the inset of fig. 4.12(top) shows.

Since only configurations for Nτ = 4 where available, we can not apply the Nτ variation
method in order to obtain the effective renormalisation constants ZR

D in Nf = 2 QCD.
Moreover, we did not compute the adjoint singlet free energies. Since Casimir scaling for
the bare Polyakov loop is realised for temperature T >∼1.5Tc, we assume Casimir scaling to
hold also for the effective renormalisation constants, i. e. ZR

D = ZR
3 , in this temperature

regime. The effective renormalisation constants for the fundamental representation Z R
3

using the QQ̄-singlet free energy for Nf = 2 QCD have been obtained in [29, 60]. The
resulting renormalised Polyakov loops are shown in fig. 4.12(bottom), where we display
the whole temperature range. For temperatures T > 1.5Tc the behaviour is qualitatively
similar to the pure gauge case displayed in fig. 3.6(bottom). We observe LR

D = 1 for all
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Figure 4.12: Top: testing Casimir scaling for the bare Polyakov loop in 2-flavour QCD.
〈LD〉1/dD from a 163 × 4 lattice for all D = 3, 6, 8, 10, 15. Bottom:
renormalised Polyakov loop LR

D in full QCD assuming Casimir scaling in
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D for representations D = 3, 6, 8, 10, 15. The insets show the regions
0.725Tc − 1.275Tc.
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4 Results for higher Representations of the Polyakov Loop

representations at T ≈ 3Tc and LR
D becomes larger than unity for even higher temper-

atures. Though our assumption of Casimir scaling in ZR
D in the transition region can

not be trusted in view of the findings for the bare Polyakov loop from fig. 4.12(top),
the violations found were not too big. We therefore expect to have caught at least the
qualitative behaviour of LR

D correctly in the transition region.
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5 Diquark Free Energy

We now turn to the discussion of the behaviour of heavy diquark systems at finite tem-
perature. We have calculated static diquark free energies from the correlation functions
of the anti-triplet and the sextet colour state shown in (2.43) and (2.44). The results are
compared to free energies of quark anti-quark systems. As an immediate application,
we discuss whether heavy quark bound states may be supported above Tc for the case
of coloured diquark systems. For previous discussions on static diquark free energies in
finite temperature lattice QCD see [61, 62].

5.1
�
(3) symmetry and thermodynamic limit

The QQ-correlation functions are not
�
(3) symmetric and therefore their expectation

values are exactly zero in pure gauge theory when averaging over all
�
(3) sectors. We

perform a global
�
(3) transformation on each configuration such that the Polyakov loop

in the fundamental representation L3 (averaged over one configuration) lies in the real
�
(3) sector. This represents the correct infinite quark mass limit mq → ∞ of full

QCD, where the center symmetry is explicitly broken and 〈L3〉 is real and positive.
In the infinite volume limit this procedure, as well as calculating 〈|L3|〉, is equivalent
to the introduction of an explicit symmetry breaking term in the action. While this
expectation value is finite on finite volumes (even in the confined phase), it vanishes in
the thermodynamic limit when the system shows confinement, as was made clear in the
preceding chapters. The volume dependence can be understood in terms of a random
walk model [58]. We expect this behaviour to be valid for the QQ-correlators below Tc

as well.
To check the validity of the finite volume scaling behaviour for the QQ correlation

functions we use calculations on lattices of size N 3
σ × 4 with various spatial extents

Nσ = 16, 24, 32 and 48. The results for C3
QQ(r, T ) at a temperature of T/Tc = 0.959

for some values of the quark separation r are shown in fig. 5.1. We also show 〈|L3|〉 for
reference. We observe that the expected scaling behaviour holds for all temperatures
below Tc for the correlation functions at all distances. Deviations from a linear behaviour
in fig. 5.1 are visible for large distances r on the smallest lattice (Nσ = 16) which may
show the influence of the periodic boundary conditions.

We have used the data for a fit of the scaling ansatz

C3
QQ(r, T ) ∝ N−3ν(r,T )

σ ∝ V −ν(r,T ). (5.1)

The results for the exponent ν at temperatures below Tc, shown in fig. 5.2, are within
errors in agreement with the expected value of 0.5 from the random walk model. The
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Figure 5.1: Scaling analysis of C3
QQ(r, T ) at T/Tc = 0.959 from lattices N 3
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5.2 General Properties of F 3
QQ and F 6
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Figure 5.3: F 3
QQ(r, T ) (black) and F 6

QQ(r, T ) (red) below Tc.

increase near Tc may be explained by an increase of the correlation length near the phase
transition and indicates that the lattice volumes used may be too small near the critical
temperature to obtain the correct scaling. This is also supported by the observation
that the increase of the slope is largest for large r and decreases towards 1/2 for smaller
separations.

We note here again that the vanishing of all non
�
(3) symmetric operators can only

be seen in the confined phase of quenched QCD while in the deconfined phase due to the
spontaneous breaking of the

�
(3) symmetry and in QCD with dynamical quarks, where

the center symmetry is explicitly broken, the expectation values of all Polyakov loops
and the QQ-correlation functions are finite in the infinite volume limit.

Despite the trivial thermodynamic limit in the confined phase, the r-dependence of
the diquark free energies might show a non-trivial behaviour and will be discussed in
the following.

5.2 General Properties of F 3
QQ and F 6

QQ

At zero temperature the short distance behaviour of the diquark potential is related to
the quark-antiquark potential by the ratio of the different Casimir operators, i.e.

VQQ(r) ' 1

2
VQQ̄(r), for rΛQCD � 1. (5.2)

As for the quark-antiquark free energies [24], we assume that the r-dependence of the
diquark free energies at short separations becomes independent of the temperature. We
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Figure 5.4: F 3
QQ(r, T ) (black) and F 6

QQ(r, T ) (red) above Tc.

only discuss the r-dependence of the diquark free energies without specifying any T or
V dependent terms.

Fig. 5.3 shows F 3
QQ(r, T ) and F 6

QQ(r, T ) for four different temperatures below Tc. We

observe clearly that F 3
QQ(r, T ) is attractive over the entire distance interval calculated

here, assuming an almost linear behaviour for large distances.

F 6
QQ(r, T ) is attractive for distances r

√
σ>∼1.0, at r

√
σ ≈ 1.0 it assumes a minimum

and becomes repulsive for even smaller distances, remaining T -dependent as well. This
qualitative behaviour is already known from QQ̄-octet free energies. For large distances
F 3

QQ(r, T ) and F 6
QQ(r, T ) coincide.

In contrast to the results below Tc, the static diquark free energies in the deconfined
phase are finite in the thermodynamic limit and, moreover, can be renormalized in the
same way as in the case of quark-antiquark free energies. In the following the static
diquark free energies obtained through (2.43) and (2.44) are renormalized using the
method described in chapter 3.2.

From now on we drop the superscript R for renormalized quantities, when we are
using the

√
σ scale. The effective renormalisation constants used are obtained from the

QQ̄-singlet free energies. In fig. 5.4 we show the anti-triplet, F 3
QQ(r, T ), and the sextet

free energies, F 6
QQ(r, T ), for five temperatures above Tc. While F 3

QQ(r, T ) is attractive
over the entire distance range, the QQ-sextet free energies are repulsive for all distances.
At large separations the free energies in both colour channels tend towards the same
asymptotic value. In this limit the colour sources get screened independently of their
colour orientation.
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5.3 Comparison between diquark and quark-anti-quark free energies

The diquark free energies show a temperature dependence over the entire distance
range analyzed in this work. In contrast to the QQ̄ free energies we observe a temper-
ature dependence of the diquark free energies even at the smallest distances accessible
here. This behaviour suggests that entropy contributions play an important role for the
diquark free energies even at very small separations. This may be explained by the fact
that the diquarks are not colour singlets and the surrounding gluon cloud has to arrange
the whole system to be in a colour singlet state. As we have mentioned in chapter 2.4.2,
this results in general in small values for cross correlators in the vacuum, since these
represent coloured states of heavy quarks. At finite temperature, however, the thermal
medium possesses additional screening power and therefore coloured states might persist
in the deconfined phase.

5.3 Comparison between diquark and quark-anti-quark free

energies

We will now compare the diquark free energies to the quark-antiquark free energies in
pure gauge theory. Using the perturbative short and large distance relation from one
gluon exchange [16, 20, 21] one can deduce the perturbative relation between F 3

QQ and

F 1
QQ̄

. In the limit rΛQCD � 1 zero temperature perturbation theory yields

F 3
QQ(r, T ) ∼ −2

3

α(r)

r
, (5.3)

while high temperature perturbation theory gives

F 3
QQ(r, T ) ∼ −2

3

α(T )

r
e−mDr. (5.4)

Therefore leading order perturbation theory suggests the connection between static di-
quark and quark-antiquark free energies to be given by

F 3
QQ(r, T ) ∼ 1

2
F 1

QQ̄(r, T ), (5.5)

i. e. the ratio of their Casimirs. Note that these relations can only be valid up to an
additive (in general temperature dependent) constant. In the following we will analyse
if this simple relation holds beyond the perturbative regime and where deviations from
(5.5) occur.

To remove any constant contributions with respect to the quark separation we will
compare the static diquark and quark-antiquark forces defined by

Ki(r, T ) = −dFi(r, T )

dr
(5.6)

for i = QQ and QQ̄. The results for 2K3
QQ compared to K1

QQ̄
for some temperatures

below and above Tc are shown in fig. 5.5. With the present data it is not possible
to perform a quantitative comparison below Tc. While the quark-antiquark force is
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Figure 5.5: Force K(r, T ) for the QQ-anti-triplet (red) and the QQ̄-singlet (blue).
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Figure 5.6: Effective running coupling α(r, T ) for the QQ-anti-triplet (red) and the QQ̄-
singlet (blue).
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Figure 5.7: QQ̄-singlet and twice the QQ-anti-triplet free energy renormalized by their
cluster value above Tc.

consistent with the zero temperature force up to r
√

σ ∼ 2.0, the diquark force gets
very noisy already at small distances. Above Tc both coincide remarkably well for all
analysed distances and all temperatures within errors. This indicates that the simple
relation (5.5) is a good approximation already just above Tc.

A closely related way to analyse the relation (5.5) is to calculate from the force the
effective running coupling

α3
QQ(r, T ) =

3

2
r2

dF 3
QQ(r, T )

dr
(5.7)

α1
QQ̄(r, T ) =

3

4
r2

dF 1
QQ̄

(r, T )

dr
, (5.8)

where again all constant contributions are removed and a direct comparison to α1
QQ̄

is possible. The results in fig. 5.6 show that the effective running coupling constants
for both systems agree within errors above the critical temperature, while below Tc the
diquark running coupling agrees with α1

QQ̄
within errors, but again the data is too noisy

to draw a definite conclusion.
In the deconfined phase we can compare the relation of the free energies for the diquark

pair and the quark-antiquark free energies more directly by using free energies normalised
by their cluster value ∆Fi(r, T ). The comparison in fig. 5.7 shows that (5.5) is a good
approximation for all temperatures and all distances in the deconfined phase.

The comparison of the forces and running coupling constants indicates that the results
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Figure 5.8: F 3
QQ(r, T ) and F 1

QQ̄
(r, T ) below Tc, renormalized to the VQQ̄(r)-potential

(solid black line).

on the running coupling and the screening properties obtained for the quark-antiquark
free energy [63] can in good approximation be transfered to the static diquark free
energies.

After this discussion of the r-dependence of the diquark free energies we now compare
the renormalized free energies of the diquark to the quark-anti-quark system. Below Tc

(fig. 5.8) we have to note that the diquark free energies diverge in the thermodynamic
limit and therefore a discussion of the temperature dependence is not possible. Note that
the comparison to the quark-antiquark free energies indicate that at first sight also at
large distances the relation (5.5) holds which would imply that the string tension of the
diquark system is half of the string tension of the quark-antiquark system. A detailed
analysis of the distance behaviour, i. e. different string fluctuation components or the
equivalence of the string tension of QQ- and QQ̄-systems as predicted by AdS/CFT [64]
is not possible with the present data and and should be analysed in future.

The results above Tc in fig. 5.9 show that in contrast to the quark-antiquark case,
we see a temperature dependence in the diquark free energies over the whole distance
regime. This indicates that entropy contributions play an important role even at small
distances. This may be explained by the fact that the diquark system is no colour singlet
and the surrounding gluon cloud has to arrange the whole system to be in a colour singlet
state in contrast to the case of a colour singlet quark-antiquark pair. This can in fact
be more explicit together with the observation that in the limit of large distances the
diquark free energies tend towards the same asymptotic value as the quark-antiquark
free energies. This indicates that the quarks in both systems are screened independently
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Figure 5.9: F 3
QQ(r, T ) (red) and F 1

QQ̄
(r, T ) (blue) above Tc from a 323 × 4 lattice, renor-

malized to the VQQ̄(r)-potential (solid black line).

by the gluonic medium. If we define the difference of the free energy of the system due
to the presence of a single test quark in the deconfined phase

FQ(T ) :=
1

2
lim

r→∞
F 1

QQ̄(r, T ), (5.9)

we obtain together with the findings from fig. 5.7 and fig. 5.9

∆F 1
QQ̄(r, T ) = 2∆F 3

QQ(r, T ) (5.10)

lim
r→∞

F 1
QQ̄(r, T ) = lim

r→∞
F 3

QQ(r, T ) = 2FQ(T ). (5.11)

Combining (5.10) and (5.11) yields

F 1
QQ̄(r, T ) = 2

(

F 3
QQ(r, T ) − FQ(T )

)

(5.12)

as a good description for the relation of the QQ̄-singlet and the diquark anti-triplet free
energy in the deconfined phase. As F 1

QQ̄
is known to become T -independent for small

distances, so must the rhs of (5.12), thereby identifying the T -dependent contribution

to F 3
QQ at small distances. This means, that besides the contribution of the Coulomb

interaction at small distances, we find that the free energy necessary to screen the QQ-
system in the colour anti-triplet state for r → 0 is that of a single heavy quark, in
agreement with elementary SU(3) relations [56].
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Figure 5.10: 2
[

F 3
QQ(r, T, V ) − FQ(T, V )

]

− F 1
QQ̄

(r, T ) below Tc from a 323 × 8 lattice.

Furthermore since the entropy contribution in the singlet free energy vanishes for small
distances [60], i. e. S1

QQ̄
(r → 0, T ) = 0, we must have for the entropy of QQ-antitriplet

at small distances S3
QQ(r → 0, T ) − SQ(T ) = 0 and hence

S3
QQ(r → 0, T ) = SQ(T ). (5.13)

This shows that the entropy contribution to the QQ-anti-triplet free energy at small
distances above Tc stems entirely from the single quark entropy defined by SQ = −∂FQ

∂T .
The relation (5.12) can also be used to identify the relation between the internal energies

of both colour channels, where the internal energy is defined by U = −T 2 ∂F/T
∂T . This

gives

U1
QQ̄(r, T ) = 2

(

U3
QQ(r, T ) − UQ(T )

)

, (5.14)

and since in the limit r → 0 the internal energy of the QQ̄ singlet system U 1
QQ̄

reduces

to the potential at T = 0 [24], we obtain

lim
r→0

VQQ̄(r) = 2
(

lim
r→0

U3
QQ(r, T ) − UQ(T )

)

. (5.15)

Since the lhs of (5.15) is T -independent, we find

∂U3
QQ(r → 0, T )

∂T
=

∂UQ(T )

∂T
= T

∂SQ(T )

∂T
, (5.16)
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where the last equality follows from standard thermodynamic relations.
We now want to test whether the relation (5.12) can be extended to the confined

phase. We show the difference

2
[

F 3
QQ(r, T, V ) − FQ(T, V )

]

− F 1
QQ̄(r, T ) (5.17)

in fig. 5.10, where FQ(T, V ) = − ln(〈|L3(T, V )|〉). We observe, that the curves approach
zero at large distances, but remaining different from zero at small distances. At interme-
diate separations, we see the difference (5.17) having a hump, which is more pronounced
for smaller temperatures. The interesting finding is that the difference (5.17) does not
go to zero for r → 0, but seems to approach a finite value.

5.4 Results in 2-flavour QCD

In QCD with dynamical quarks the
�
(3)-symmetry is explicitly broken by the finite

quark mass. The Polyakov loops are distributed only in the real sector. Therefore we
expect that the diquark free energies are finite in the thermodynamic limit and show
no volume dependence even at temperatures below the critical one. Here we will show
results obtained for 2-flavour QCD using p4-improved staggered fermions with a quark
mass of m/T = 0.4. For details on the simulation see [65, 66] and appendix A.1, A.2 and
A.3. We use only renormalised quantities in this section and suppress the superscript
R. The renormalisation procedure applied is that of chapter 3.2.

In fig. 5.11 the results for F 3
QQ(r, T ) are shown in comparison to the singlet QQ̄ free

energies below Tc. We observe a behaviour that is quite similar to the results obtained for
the diquark and quark-anti-quark free energies. String breaking is seen in both systems
and the free energies tend towards the same values at large separations.

The results above Tc in fig. 5.12 show a comparable behaviour to the results in the
quenched case. The screening properties of the diquark system are the same as for
the quark-antiquark system and in the limit of large distances both free energies tend
towards the same asymptotic value.

In the deconfined phase the relation between both free energies and the temperature
dependence of the diquark free energies can again be understood in terms of (5.12). This
is evident from fig. 5.13(bottom). Below Tc, where a finite FQ(T ) in the thermodynamic
limit exists in full QCD, we observe in fig. 5.13(top) both quantities coincide only for large
distances, whereas for smaller separations again a hump becomes visible. Fig. 5.14 shows
the difference (5.17), which is not V -dependent in full QCD. As in fig. 5.10 in pure gauge
theory, we observe that the difference stays finite at small separations. Calculations at
even smaller distances may elucidate the situation here further.
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Figure 5.11: F 3
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(r, T ) (blue) below Tc from a 163 × 4 lattice in full

QCD, renormalized to the VQQ̄(T = 0)-potential (solid black line).
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6 Baryonic Free Energy

The study of static three quark systems can shed light on the internal structure of the
baryon. Of particular interest is the question whether a genuine three body force exists
between the quarks below the critical temperature and how the system behaves at finite
temperature. At zero temperature the Y-string shape of a baryonic system is supported
by recent calculations in lattice QCD [67, 68]. At finite temperature work so far has
concentrated on simulations in the maximal Abelian gauge [68, 69], showing a Y-shaped
string as well. In this chapter, we address the question of the flux tube shape of the
QQQ-singlet colour state below the critical temperature in the quenched approximation
of QCD and discuss the appearance of string breaking in 2-flavour QCD. Moreover, we
find a simple relation for the free energies in the different colour channels of the baryonic
system and the free energies of the QQ-system above Tc.

6.1 Notation and Distance Measure

We first fix the notation for the geometries of the three quark system. In fig. 6.1 we
show three quarks Qi forming a triangle and their distances rij, where i, j = 1, 2, 3. The
perimeter of the triangle is then simply

P =
∑

i<j

rij . (6.1)

This is also the total length of a ∆-shaped string, i. e. a string connecting the three
quarks along the edges of the triangle. Another possible string shape is a Y-shaped
string, where the flux tube emanates from each of the three quarks and has a junction
at the Fermat point F of the triangle. The total length of such a Y-shaped string is

L =




1

2

∑

i<j

r2
ij + 2

√
3A∆





1

2

, (6.2)

where A∆ is the area of the triangle. The inner angles at the vertices of the triangle are
assumed to be smaller than 2π

3 , which is the case for all triangles considered in this work.
The angle between any two arms of the Y-shaped flux tube is always 2π

3 . For equilateral

triangles we have the simple relation P =
√

3L. In this work we examine only isosceles
triangles, where we set r12 = r13 = rs to be the equally long edges and r23 = rb to be
the length of the base edge. For equilateral triangles we use rij = r for all i, j = 1, 2, 3.

The three point correlation functions of the Polyakov loop are now obtained as follows
(see fig. 6.2). At the positions of the Qi, we calculate the correlation functions (2.52) -
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Figure 6.1: Inter quark distances. F is the Fermat point of the triangle. Taken from
[22].

(2.55) and compute the average for those Qi with the same {rij}. We obtain a new set
of {rij} by holding Q1 fixed, whereas the two other vertices of the triangle Q2 and Q3

are moved simultaneously one point of the lattice in one direction (here:to the left). The
base edge rb connecting this two points preserves thereby its length, which is rb = na

√
2,

where a denotes the lattice spacing and 1 ≤ n < Nσ

2 is an integer and describes the
number of elementary cells the procedure starts with. The two other edges have equal
lengths rs = a

√
m2 + n2, where m is another integer which runs between n ≤ m < Nσ

2
for every n by this procedure. Therefore for every n we obtain one equilateral (n = m)
and several isosceles (n < m < Nσ

2 ) triangles. We start with n = 1 and repeat the

procedure until n = Nσ

2 −1. We apply this method in both directions of all three spatial
dimensions before sweeping Q1 over the entire spatial lattice. As a consequence of this
averaging procedure, the correlators (2.53) and (2.54) for the two colour octet states of
the QQQ-system can not be calculated separately. Instead, we only extract the mean
of both, which we call C8

QQQ(r, T ) from now on. The colour average free energy of the
QQQ-system at finite temperature has also been studied in [22].

6.2 Fs
QQQ in Perturbation Theory

In the perturbation series of the free energy of the QQQ-system the contribution of the
three gluon vertex vanishes for symmetry reasons [70]. Therefore, neglecting self energy
contributions, to order in g4 the free energy F s

QQQ, where s is the colour symmetry state

of the QQQ-system, decomposes into the sum of diquark free energies F t
QQ, which can

be in an anti-symmetric anti-triplet (t = 3) or in a symmetric sextet (t = 6) state. In
order to obey the permutation relations found for the QQQ-system in (2.52) and (2.55)
we must then have

F 1
QQQ(r, T ) =

∑

i<j

F 3
QQ(rij , T ) + k1(T ) (6.3)

F 10
QQQ(r, T ) =

∑

i<j

F 6
QQ(rij , T ) + k10(T ), (6.4)

where rij denotes the distance between the ith and jth quark, r = (r12, r13, r23)
t and

kn(T ) with n = 1, 8, 10, accounts for the self energy contributions. As can be seen easily
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Figure 6.2: Calculation of the three point correlation function of the Polyakov loop.
Taken from [22].

from (6.3) and (6.4), the singlet state of the QQQ-system is attractive, because the QQ-
anti-triplet is, and the decuplet state repulsive, as the QQ-sextet is (see chapter 5). The
QQQ-system in the adjoint colour state is expected to be attractive as well, but weaker
than the singlet state [22]. We refrain from discussing the QQQ-octet colour channel
here in more detail, since due to the mixture of both octet free energies in our lattice
correlator C8

QQQ, we can only gain limited insight in the behaviour of this observable.
We note here, that the distance dependence of the free energies in (6.3) and (6.4) can
be expressed by the perimeter P =

∑

i<j rij of the triangle.

As for the QQ̄-singlet free energy [24], we expect the QQQ-singlet free energy to
become temperature independent at small distances. It was shown in chapter 5, that
the residual T -dependence of the QQ-anti-triplet free energy at small distances in the
deconfined phase can be removed by subtracting the free energy of a single heavy test
quark FQ(T ) := 1

2 limr→∞ F 1
QQ̄

(r, T ). Therefore we expect to find in the deconfined
phase at small distances the relations

F 1
QQQ(P, T ) =

∑

i<j

F 3
QQ(rij , T ) − 3FQ(T ) (6.5)

F 10
QQQ(P, T ) =

∑

i<j

F 6
QQ(rij , T ) − 3FQ(T ), (6.6)

where P is the perimeter of the triangle. We will test below, for which quark separations
and temperatures the relations (6.5) and (6.6) hold.

6.3 Results in Pure Gauge

We now discuss the results of our calculations in pure gauge theory from 323 × 4 and
323 × 8 lattices. We use the renormalisation procedure discussed in chapter 3.2 for the
QQ- and the QQQ-free energies. For more details on the simulation see appendices A.1 -
A.3 and C. We drop the superscript R for the renormalised quantities, which are plotted
using

√
σ to set the scale. The renormalisation procedure applied is that of chapter 3.2.
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Figure 6.3: Free energies of the colour channels from 323 × 8 lattice at T/Tc = 6. The
black line indicates VQQQ(r).

6.3.1 Colour Channels

In fig. 6.3 we show the free energies of the different colour channels and the average free
energy for the QQQ-system for equilateral triangles on a 323 × 8 lattice at T/Tc = 6.
One can see clearly, that the singlet is strongly, the octet weaker attractive and the
decuplet repulsive in agreement with the findings in section 6.2. For large r at a given
temperature, all colour channels become flat and approach a common value. The singlet
free energy becomes temperature independent at small distances and coincides with the
baryonic T = 0 potential, which is related to the quark-antiquark potential at vanishing
temperature by the ratio of the different Casimir operators, i. e. VQQQ(r) = 3

2VQQ̄(r) for
rΛQCD � 1. We obtain similar plots for all other temperatures above Tc.

6.3.2 Equilateral geometries above Tc

We now compare the free energies of the QQQ-system with the free energy of the QQ-
system above Tc. In fig. 6.4 we show F 1

QQQ(r, T ) and 3F 3̄
QQ(R, T )−3FQ(T ) over the edge

length r of the equilateral triangles and the QQ distance respectively. The second term
should be equal to the QQQ-singlet free energy if genuine three body forces are absent,
see (6.5). For every temperature we indeed observe F 1

QQQ(r, T ) and 3F 3̄
QQ(r, T )−3FQ(T )

coincide throughout the entire distance interval. We find also, that the same is true

for F 8
QQQ(r, T ) and 3

[
1
2F 3̄

QQ(r, T ) + 1
2F 6

QQ(r, T ) − FQ(T )
]

, as can be seen in fig. 6.5.

Close to Tc, however, F 8
QQQ is slightly larger for small separations. In fig. 6.6 we plot
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F 10
QQQ(r, T ) and 3F 6

QQ(r, T )− 3FQ(T ). Again we observe that both observables coincide
and therefore we find (6.6) to be valid above Tc for all separations considered here.

6.3.3 Isosceles geometries above Tc

In order to subject the data for all geometries and temperatures above Tc calculated
to this test, we plot ∆F (P, T ) = F 1

QQQ(P, T ) −∑i<j F 3̄
QQ(rij , T ) + 3FQ in fig. 6.7. If

the QQQ-singlet free energy can be expressed in terms of QQ-anti-triplet free energies
and FQ(T ) according to (6.5), ∆F (P, T ) should vanish. This is fulfilled to a very good
degree for all perimeters except the smallest ones close to the critical temperature, which
is probably due to the vicinity of the phase transition. Again, the same findings can be
drawn for the QQQ-decuplet free energy in fig. 6.8. We omit the investigation of the
non-equilateral baryonic octet free energies here, since their analysis is more complicated
due to the contribution of both anti-triplet and sextet QQ-free energies.

In total, we find F 1
QQQ and F 10

QQQ are related to the QQ-free energies according to
(6.5) and (6.6) for all separations and temperatures in the deconfined phase. For the
QQQ-octet free energy we have found the average of QQ-anti-triplet and -sextet free
energies to describe F 8

QQQ well for equilateral geometries except close to Tc at the smallest
separations.
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QQ(rij , T ) below Tc over the perimeter P
for all geometries calculated. ∆F (Pmin, T ) has been set to zero, where Pmin

is the smallest perimeter calculated.

Together with the findings for the entropy and internal energy of F 3
QQ in the deconfined

phase in chapter 5.3, we can follow from (6.5), that

U1
QQQ(P, T ) =

1

2

∑

i<j

U1
QQ̄(rij , T ) and S1

QQQ(P, T ) =
1

2

∑

i<j

S1
QQ̄(rij , T ) (6.7)

are valid for all isosceles geometries studied in this work above Tc in pure gauge theory.

6.3.4 Free energies below Tc

We now examine the QQQ-free energies below Tc. We start by looking at the relation of
the QQQ-singlet and the QQ-anti-triplet free energies. If F 1

QQQ(P, T ) can be expressed

in terms of the sum of F 3̄
QQ(rij , T ) also below Tc, i. e. a ∆-ansatz for the flux tube

shape together with the same string tension holds, then ∆F (P, T ) = F 1
QQQ(P, T ) −

∑

i<j F 3̄
QQ(rij , T ) should be equal to a T -dependent constant k(T ) for all P , in the spirit

of (6.3). In fig. 6.9 we show ∆F (P, T )/T for T < Tc over the perimeter of the geometries
P . Since below Tc no proper FQ(T ) can be defined, we have set ∆F (Pmin, T ) = 0, where
Pmin is the smallest perimeter calculated. Therefore k(T ) should vanish. We can see
clear deviations of ∆F (P, T ) to smaller values, most strongly for the lowest temperatures,
deviations from zero becoming smaller with growing temperature. For T/Tc = 0.986 we
have ∆F (P ) ≈ 0.
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Hence, F 1
QQQ(P, T ) can not be expressed in terms of the sum of F 3̄

QQ(rij , T ) except
close to the critical temperature. We are left with two possibilities now. First, we could
still have a ∆-shaped flux tube, but with a different string tension than that we observe
for the QQ-anti-triplet. Since we see ∆F (P, T ) < 0, we expect the string tension to
be smaller than in the QQ-anti-triplet. In this case the perimeter P would still be the
right distance measure for the QQQ-singlet free energy, i. e. F 1

QQQ should be a smooth
function of P for all geometries a flux tube can form. Or, secondly, the flux tube is
Y-shaped and L is the right distance measure. In this case, F 1

QQQ should be a smooth
function of L for all geometries a flux tube can form.

To elaborate more on the shape of the flux tube, we take a closer look at the QQQ-
singlet free energy at a particular temperature below Tc for different geometries as a
function of L and P . For equilateral triangles there exist a simple geometrical relation
between the length of a Y-shaped flux tube L and the length of a ∆-shaped flux tube
P , which is P =

√
3L. Hence for equilateral geometries the QQQ-singlet free energy is a

smooth function in both or none ansätze. For more general geometries like the isosceles
triangles we have considered here, no simple relation between L and P exists. This may
help to clarify the situation more directly. Therefore we plot the QQQ-singlet free energy
at T/Tc = 0.925 over the Y-string length L and the perimeter P in fig. 6.10 for equilateral
geometries and also isosceles geometries up to n = 5. We observe that the QQQ-singlet
free energy over L is a smooth function for all geometries calculated, whereas in the curve
over the perimeter P different branches become visible depending on the geometry, most
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Figure 6.11: Free energies of the colour channels over the Y-string length L at T/Tc =
0.925 for all geometries calculated.

prominently for the n = 1 triangles. For large L, we see also a branch departing from the
main curve for n = 1-geometries. This effect is, however, much weaker than for the P
case and can be explained by the fact that an oblong geometry reaches its large distance
value for comparatively smaller L than those geometries closer to the equilateral shape.
Therefore we conclude, that the shape of the flux tube in the QQQ-singlet system is
indeed that of the Y-ansatz at least at this temperature and its string length L is the
right distance measure for the system.

Having established that, we take a look at the other colour channels below Tc and
test whether they display a smooth behaviour as a function of L as well. In fig. 6.11
we show the different colour channels of the QQQ-free energy at T/Tc = 0.925 over the
Y-string length L. We see again that the singlet is the most attractive channel followed
by the average free energy, which is also a smooth function of L. The octet channel
is still attractive, but weaker than the average free energy. The decuplet free energy
is attractive for large L but becomes flat at smaller L, hinting at a turnover and at a
repulsive behaviour at even smaller L. Both the decuplet and the octet channel are not
smooth functions over either L and P , but become volatile for L

√
σ>∼2. This suggests

that no flux tube may form in these two channels, although the octet free energy shows
an attractive behaviour.

Finally, we examine the behaviour of F 1
QQQ and especially the string tension with

temperature. In fig. 6.12 we show the QQQ-singlet free energy over L for all tempera-
tures below Tc. We observe F 1

QQQ(L, T ) to nearly coincide at distances L
√

σ<∼4 for all
temperatures T/Tc ≤ 0.959. Therefore the Y-shape ansatz for the flux tube is viable
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Figure 6.12: F 1
QQQ(L, T ) below Tc over the Y-string length L for all geometries.

to this temperature as well. We note here, that even for the largest distances analysed
here (L

√
σ ≈ 4.5), we do not observe a significant change with temperature in σ(T ) for

T/Tc ≤ 0.959. In order to see a dependence of the string tension on temperature for
the QQQ-singlet, we will probably have to go to larger L. At T/Tc = 0.986 we see that
F 1

QQQ(L, T ) deviates to smaller values for L
√

σ>∼3. As was already seen in fig. 6.9, for
this temperature ∆FQQQ(P, T ) ≈ 0, i. e. a ∆-ansatz for the flux tube shape is possible
as well at T/Tc = 0.986. This may indicate that the broadening of the flux tube profile
with growing temperature has reached the point where the Y-shaped flux tube comprises
the entire inner area of the triangular geometry of the QQQ-system and thus becomes
indistinguishable from a ∆-shaped flux tube at T/Tc = 0.986.

6.4 Results in Full QCD

We now study the baryonic free energies in 2-flavour QCD from a 163 × 4 lattice using
staggered quarks with m/T = 0.4. For details see appendices A.1 - A.3 and C. We
discuss here our results for equilateral geometries. Since the spatial extension of the
lattice is small, we obtain only few data for non-equilateral geometries and hence we
do not analyse this data here in more detail. We used the renormalisation procedure
outlined in chapter 3.2 for the baryonic free energies.
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Figure 6.13: Free energies of the colour channels in 2-flavour QCD from a 163 × 4 lattice
at T/Tc = 1.98.

6.4.1 Colour Channels

In fig. 6.13 we show the free energies of equilateral geometries of the different colour
channels at T/Tc = 1.98. Like in the pure gauge case, we observe the singlet to be
strongly, the octet weaker attractive and the decuplet to be repulsive. For large distances
r the free energies of all colour channels become flat and approach a common value.
Again, we obtain similar plots for all T > Tc.

6.4.2 Singlet free energy and string breaking

We now compare the free energy of the QQQ-singlet with the free energy of the QQ-
anti-triplet for 2-flavour QCD. In fig. 6.14 we plot F 1

QQQ(r, T ) and 3F 3
QQ(r, T )− 3FQ(T )

over the edge length r of the equilateral triangles and QQ-distance respectively. As in
pure gauge theory, both curves coincide for all temperatures above Tc. Thus we find the
QQQ-singlet free energy of equilateral geometries to be describable as the sum of three
QQ-anti-triplet free energies and FQ(T ) as well in 2-flavour QCD above Tc. Moreover,
we find the relations of (6.7) to be valid for equilateral geometries in 2-flavour QCD.

Below Tc we expect to see string breaking also in the QQQ-singlet free energy, the
breaking mechanism being more involved than in the meson case [69]. Indeed, except
at T/Tc = 0.96, where both quantities agree, we see deviations for the QQQ-singlet. In
fig. 6.15 we compare F 1

QQQ(L, T ) in 2-flavour QCD (black) (T/Tc = 0.87, 0.90) and pure
gauge theory (red) (T/Tc = 0.874, 0.907) for all geometries calculated, where the pure
gauge data stems from the 323 × 4 lattice. We observe the Nf = 2 free energies to
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Figure 6.14: F 1
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QQQ(r, T ) and 3( 1
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deviate to smaller values and eventually become flat. Specifying a definite value for the
string breaking distance is quite difficult given the present data. Nevertheless we can
give a rough estimate for the distance at which the pure gauge free energies assumes the
asymptotic value of the 2-flavour free energies, which is L

√
σ ≈ 3. This value is larger

than those found for the QQ̄-system [29], in accordance with the findings in [69]. Since
observing a clear string behaviour is prevented by string breaking, we refrain from an
analysis of the flux tube shape below Tc in 2-flavour QCD.

6.4.3 Octet and decuplet free energies

Fig. 6.16 shows F 8
QQQ(r, T ) and 3( 1

2 (F 3̄
QQ+F 6

QQ)(r, T )−FQ(T )) for equilateral geometries
in 2-flavour QCD. We observe like in the pure gauge case coincidence of both curves for
all T > Tc and distances r except for the first data point of F 8

QQQ(r, T ) at temperatures
T/Tc = 1.002, 1.02, 1.07, which deviate to slightly larger values. This maybe due to
insufficient statistics close to Tc for the QQQ-octet free energy, which has the weakest
signal of all colour channels and is therefore prone to noise. Below Tc the two quantities
do not agree except for T/Tc = 0.96 at large r. Again, we find insufficient statistics to
be responsible, which is even more true for T < Tc.

For the QQQ-decuplet free energies we plot F 10
QQQ(r, T ) and 3(F 6

QQ(r, T )−FQ(T )) for
equilateral geometries in fig. 6.17. Like in pure gauge theory, we observe both curves
to coincide for all temperatures above Tc and distances r. The situation below Tc is
analogous to the singlet case. At the temperature closest to Tc both curves coincide for
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Figure 6.17: F 10
QQQ(r, T ) and 3(F 6

QQ(r, T ) − FQ(T )) over r, the edge length of the equi-
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all r, at smaller T we observe deviations to smaller values for F 10
QQQ(r, T ).

6.5 Screening mass and diquark and baryonic bound states

The comparison to the quark-anti-quark free energies in chapter 5.3 and 5.4 shows that
the diquark anti-triplet free energies are related to those of the QQ̄-singlet system by
the ratio of their Casimir factors, i.e. by a factor of two, in good approximation for all
temperatures in the deconfined phase at all distances. As (6.5) shows, the corresponding
statement is also true for the relation of the free energies of the QQQ-singlet and the
QQ-anti-triplet, i. e. a resulting ratio of 3. This applies to both pure gauge theory and
2-flavour QCD. As a consequence, the screening masses extracted from the large distance
behaviour of these free energies, employing the relation (2.74),

∆F s
nn̄(r, T ) = −αs

nn̄(r, T )

r
e−ms

nn̄D(T ) r rT � 1, (6.8)

are independent of the colour symmetry state s = 1, 3 as well as the static quark content
(n, n̄) = (1, 1); (2, 0); (0, 2); (3, 0); (0, 3) of the investigated systems. This makes clear,
that the screening mass mD reflects a property of the thermal medium, i. e. its influence
on the gluons that mediate the interaction between static quark sources, and not of the
particular heavy quark system immersed in it. In [30] the extraction of the screening
masses obtained from two and three quark systems is extended to the case of systems
at finite chemical potential.
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6 Baryonic Free Energy

The relation of the various heavy quark systems in terms of the ratios of the corre-
sponding Casimirs extends to the internal energies U s

nn̄ as well, as we have shown in
(5.14) and (6.7). This justifies the use of this relations in potential models, which utilise
inner energies or free energies to solve the Schrödinger equation for the system in ques-
tion [71]. The diquark is found to be only weakly bound in the deconfined phase and will
dissociate quickly. Therefore it is expected that QQ bound states do not play an impor-
tant rôle for the properties of the Quark Gluon Plasma near Tc, at least for zero baryon
densities. Baryonic bound states may be bound more strongly, where their binding en-
ergy is greater than the temperature at Tc and comparable up to 1.3Tc. We note, that
when the binding energy becomes of the order of the temperature, the bound state may
dissociate easily and therefore cease to contribute to the properties of the QGP. Thus
baryonic bound states can play some rôle for temperatures near above Tc according to
[71]. The findings for heavy mesons suggest that they are most strongly bound systems
considered here and dissociate at temperatures clearly larger than Tc. Therefore mesons
are expected to contribute significantly to the properties of the QGP not too far from
the phase transition temperature. Similar results have been found in other calculations
using various potentials to solve the Schrödinger equation [28, 72, 73] and the Maximum
Entropy Method (MEM) to extract mesonic spectral functions [74, 75, 76]. In order to
avoid the heavy quarks approximation for the diquark, one could apply MEM to finite
temperature diquark correlators in the future.
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7 Conclusion

We will now summarise our work and give an outlook on possible future directions of
research.

We have calculated the Polyakov loop in representations D = 3, 6, 8, 10, 15, 15 ′ , 24, 27
and diquark and baryonic Polyakov loop correlation functions with fundamental sources
in SU(3) pure gauge theory and 2-flavour QCD with staggered quarks and QQ̄-singlet
correlation functions with sources in the fundamental and adjoint representation in SU(3)
pure gauge theory. For the gauge dependent free energies we fixed to Coulomb gauge
employing an overrelaxation algorithm.

We extended the renormalisation procedure for the QQ̄-singlet free energy [24], where
the sources are in the fundamental representation, to the case of QQ̄-singlet free energies
with adjoint sources. We found it to be sound and could establish that the effective
renormalisation constants for both representations agree within errors. Furthermore, we
proposed and tested the Nτ -variation method as a new renormalisation procedure for the
Polyakov loop. The good agreement of the two renormalisation procedures indicates that
the renormalisation constants indeed depend only on the bare coupling rather than on
the temperature, i. e. renormalised coupling, as assumed in [56]. The new procedure was
applied to Polyakov loops for various representations in SU(3) pure gauge theory. The
bare Polyakov loops obey Casimir scaling to a good degree for temperatures down close
to Tc. Together with the good agreement with Casimir scaling for the renormalisation
constants this behaviour persists for the renormalised Polyakov loops as well for the
representations and temperatures analysed.

Below Tc we were able to extend the volume scaling of the random walk model [58]
to arbitrary representations and could show, that 〈|LD|〉 6= 0 for representations with
zero triality in the thermodynamic limit. We determined their actual value for D = 8 in
SU(3) pure gauge theory. For D = 10 and D = 27 we were not able to extract 〈LD〉 in the
thermodynamic limit, but we could derive upper limits, which are 〈Re L10〉 < 1.4×10−4

and 〈L27〉 < 4.75 × 10−5. After renormalisation, we discussed LR
8 in the vicinity of

the phase transition temperature and were able to determine asymptotic values of the
adjoint free energy F∞ and the values for the two alternative definitions for the string
breaking distance of the adjoint QQ̄-singlet free energy below Tc. We found F∞ and
rstring(V8) to decrease to around 80 % of their corresponding vacuum value close to Tc.
The string breaking distance rstring(F8) was found to have a systematically smaller value
than rstring(V8) by about 0.15 fm.

In 2-flavour QCD we have investigated 〈LD〉 and we observed Casimir scaling to be
realised in the bare Polyakov loop for various representations down close to Tc. Below
1.5Tc we saw a violation of Casimir scaling when entering the transition region which
continues to the smallest temperatures calculated. Another interesting and straight-
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7 Conclusion

forward application of the Nτ -variation method might be the renormalisation of the
plaquette.

For future investigations the determination of LR
10 and LR

27 below Tc might be desir-
able, though this will need spatial lattices sizes far bigger than those accessible today.
An extension of the analysis of these observables, i. e. the Polyakov loop in higher rep-
resentations above Tc and LR

8 below Tc, to non-zero values of the chemical potential
is possible. Moreover, the computation of the torelon, i. e. a closed Wilson line in a
spatial direction, and its QQ̄-like correlators could provide a new way of calculating the
temperature dependence of the spatial string tension.

For static quark-anti-quark free energies in higher representations we showed that
Casimir scaling in F 1

QQ̄,3
(r, T ) and F 1

QQ̄,8
(r, T ) is realised to a good degree for all sepa-

rations r and temperatures T/Tc ≥ 1.682. For lower temperatures above Tc and for all
temperatures below Tc considered here, deviations occur already at small distances at
the level of 5-10 %. Moreover, we have shown that Casimir scaling is violated for the
colour average QQ̄ free energies in the temperature range 0.9-3 Tc for the fundamental,
sextet and adjoint representations.

In SU(3) pure gauge theory we investigated the volume scaling of the anti-triplet
diquark free energy below and above Tc with sources in the fundamental representation.
Below Tc we found the anti-triplet correlator to vanish in the thermodynamic limit like
〈L3〉. Despite these divergencies the r-dependence of the diquark free energies shows

non-trivial behaviour. Above the critical temperature C 3
QQ was found to be constant

with V . For the renormalised QQ-free energies we observed screening in the anti-triplet
and anti-screening in the colour sextet channel. Both free energies approach a common
cluster value, which coincides with that of the QQ̄-system. We were able to show, that
in the deconfined phase F 3

QQ is related to F 1
QQ̄

by a factor of 2 for the r-dependence with
an additional contribution of the free energy of a single static quark. The same results
were found in 2-flavour QCD above Tc. Moreover, we observed in 2-flavour QCD string
breaking in F 3

QQ below Tc.

Finally, we investigated the free energy of the static baryonic system in its different
colour symmetry states. We found that the QQQ-singlet and the QQQ-decuplet free
energies can be described in terms of QQ-free energies plus a FQ(T ) contribution for
all isosceles geometries and for equilateral geometries for the QQQ-octet free energies
except close to Tc in the deconfined phase in SU(3) pure gauge theory. This statement
holds for equilateral geometries in the deconfined phase of 2-flavour QCD as well.

Below Tc we were able to show, that the QQQ-system in the colour singlet state has a
Y-shaped flux tube and that the string tension σ(T ) of the system shows no significant
dependence on T for T < 0.959Tc and the distances investigated in this work. Larger
separations would be needed to analyse the temperature dependence of the string tension.
Moreover, we demonstrated that most likely no flux tube forms in the QQQ-octet and
-decuplet free energies at the distances analysed here in the confined phase and that the
QQQ-free energy of the colour average channel has a Y-shaped flux tube as well. In
2-flavour QCD we found string breaking in F 1

QQQ below Tc and were able to give a rough
estimate for the string breaking distance, which is L

√
σ ≈ 3.
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As a consequence of the relation of the QQ- and QQQ-systems with the ratio of
the Casimirs to the QQ̄-system, we were able to make clear, that the screening mass
extracted from the large distance behaviour of the corresponding free energies is the same
in all three systems and therefore describes the screening properties of the medium. An
extension of diquark and baryonic free energies to finite chemical potentials has been
done in [30]. Moreover, the demonstration of the relation of the free energies of these
three systems by their Casimir ratios suggests that they can be used in potential models
for the extraction of bound states temperatures in the QGP [71]. A straightforward
application of the Casimir ratio rule found for the diquark and baryonic system in the
deconfined phase could be the prediction of tetra- and pentaquark free energies above
Tc, which have – to our knowledge – not been calculated at finite temperature and are
expected to be difficult to obtain due to weak signals.
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A QCD on the Lattice

A.1 Notation, Action, Scale

We regularise the path integral in (2.1) by introducing a spacetime lattice of size N 3
σ×Nτ

with lattice spacing a, where Nσ is the number of lattice sites in a spatial direction and
Nτ the number of points in the Euclidean time direction. The volume V of the system
and the temperature T are then obtained by

V = (aNσ)3 and T =
1

aNτ
. (A.1)

As gauge invariance is the central construction principle of quantum field theories and
therefore for QCD as well, we introduce link variables Uµ(x), which are the parallel
transporter from the lattice point x in direction µ = 1, . . . , 4 to the point x + µ̂a, where
µ̂ is the unit vector in direction µ and µ = 4 is the Euclidean time direction on the
lattice. They are defined by

Uµ(x) = P exp

(

ig

∫ x+µ̂a

x
dxµAµ(x)

)

, (A.2)

where P denotes path ordering and x = (x, x4). The link variables Uµ(x) are elements of
the gauge group SU(3). We will often refer to the lattice coupling β, which is connected
to the gauge coupling g in SU(3) by β = 6

g2 . Introductions to lattice gauge field theory

and QCD on the lattice can be found in [77, 17, 7].
For our simulations of pure gauge theory, which is in the continuum defined by (2.2),

we employed the tree level-Symanzik improved gauge action [78, 79, 80, 81] on the lattice,

S(2,1) = β
∑

n

∑

µ<ν

5

3

(

1 − 1

3
Re Tr

µν
(n)

)

−1

6








1 − 1

6
Re Tr






 µν

(n) +

µν

(n)















, (A.3)

which is O(a2) improved. Besides this improvement the action (A.3) shows an improved
rotational symmetry compared to the standard Wilson gauge action, which is an ad-
vantage for calculating the correlation functions used in this work. The simulations in
2-flavour QCD used staggered fermions with a quark mass of m

T = 0.4, where for the
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A QCD on the Lattice

fermions the p4-action [82, 65, 66] and for the gauge fields again the tree level-Symanzik
improved gauge action were employed. Detailed descriptions for the staggered formu-
lation of the fermionic part of the action can be found in [17, 77]. The scale was set
using the string tension following [83]. The critical lattice couplings in pure gauge theory
using (A.3) are then for Nτ = 4 obtained to be βc = 4.073.For 2-flavour QCD using the
p4-action for the fermions we have βc = 3.649. We use periodic boundary conditions
for the gluon field in all directions. For the dynamical quark fields we employ periodic
boundary conditions in the spatial directions and anti-periodic boundary conditions in
the Euclidean time direction.

A.2 Update and Error Analysis

In this work we employed a pseudo-heatbath algorithm for SU(3) pure gauge theory [84]
and an overrelaxation algorithm [85] to the gauge configurations. In order to thermalize
the gauge configurations, we applied 200 heat bath updates. After the gauge configura-
tions were thermalized, we used one heat bath update followed by four overrelaxation
updates to obtain a new gauge configuration. In order to generate a new configuration in
2-flavour QCD the R algorithm was used [86] – a Hamiltonian formulation in four spatial
dimensions, which was evaluated numerically by the aid of the leapfrog algorithm with
finite step size δτ . The resulting systematic error is the O(δτ 2). Additionally, a noisy
estimator was used for quantities involving the traces of the fermion determinant and
the inversion of the fermion matrix was done by using conjugate gradient algorithms.
Due to the introduction of a stochastic term in the equations of motions the R algorithm
is not time reversible and can not be made exact using a Metropolis step.

Since a new lattice configuration shows correlations to its parent which can not be
neglected, the näıve estimation of the mean and the error of some lattice quantity are
usually too small. The Jackknife-method eases this problem and gives more reliable
estimates. The data set to be analysed is divided into N blocks of equal length. From
this partition N different data sets are obtained by grouping N − 1 blocks together. Let
T be the mean of some observable O on the original data set and Ti the mean on the
ith new data set, where i = 1, . . . , N − 1. We then obtain an improved estimation for
the mean and the error of O by

Ō ≈ J̄ =
1

N

N∑

i=1

Ji (A.4)

∆O ≈
√
∑

i(Ji − J̄)2

N(N − 1)
, (A.5)

where

Ji = NT − (N − 1)Ti. (A.6)

We use this method for the free energies discussed in this work, where we found N = 10
to be a good choice for the correlations present.
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A.3 Gauge Fixing on the Lattice

A.3 Gauge Fixing on the Lattice

Some of the observables investigated in this work are gauge dependent quantities and
therefore a gauge fixing procedure has to be administered to the gauge configuration.
For the reasons addressed in chapter 2.2.1 and in [23], we choose to fix to Coulomb gauge,
which is defined by

∂iAi(x) = 0. (A.7)

The gauge field Aµ(x) on the lattice is obtained by

Aµ(x) =
1

2ig

(

Uµ(x) − U †
µ(x)

) ∣
∣
∣
traceless

. (A.8)

The derivative on the lattice is defined through

∂µAµ(x) = Aµ(x) − Aµ(x − µ̂), (A.9)

where no summation over µ is understood and µ̂ is the unit vector in direction µ.
Therefore the three divergence in (A.7) on the lattice becomes

∆(x) =
∑

i

Ai(x) − Ai(x − î). (A.10)

Fixing a gauge configuration to meet the condition (A.7) on the lattice is equivalent to
finding a gauge transformation g(x), such that the functional

ε(g) = −
∑

x

Tr

(
∑

i

g(x)Ui(x)g†(x + î)

)

(A.11)

becomes minimal. We use an overrelaxation algorithm [87] with τ = 1.4 for this task.
We monitor

θ =
1

3V
Tr

(
∑

x

∆(x)∆†(x)

)

, (A.12)

which decreases monotonically towards zero, the better the gauge condition (A.7) is met
by the gauge configuration. We stop the overrelaxation algorithm when θ < 10−7.

It is possible that the functional ε(g) has more then one minimum, such that the
gauge condition (A.7) does not specify the gauge completely. This minima correspond
to different Gribov copies [88]. We do not address this issue in greater detail in this
work.
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B SU(3)

Introductions to group theory offer [31, 32, 33], a compendium of useful relations can be
found in chapter 8 of [89]. We will give a short overview of the quantities used in this
work and some of their properties.

SU(3) is the group of N × N unitary matrices, UU † = U †U = 1, with detU = 1.
The generators ta with a = 1, . . . , 8 are hermitian, traceless matrices which satisfy the
commutation relations

[

ta, tb
]

= ifabctc, (B.1)

where the structure constants of SU(3) are real and totally anti-symmetric f bac = facb =
−fabc. Additionally we have the dabc, which are totally symmetric. The only non-zero
components (up to permutations) are

f123 = 1, f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
,

f458 = f678 =

√
3

2
,

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
,

d118 = d228 = d338 = −d888 =
1√
3
,

d448 = d558 = d668 = d778 = − 1

2
√

3
. (B.2)

Some useful properties are

fabef cde + facefdbe + fadef bce = 0
∑

b dabb = 0

fabedcde + faceddbe + fadedbce = 0 dabcdebc = 8
3δae

(B.3)

In table B.1 we give the irreducible representations of SU(3) and some of their properties
for p + q ≤ 4. We follow the custom to name the representation by their dimension D
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D (p, q) t C(D) dD

3 (1, 0) 1 4/3 1 fundamental
3 (0, 1) 2 4/3 1
6 (2, 0) 2 10/3 5/2
8 (1, 1) 0 3 9/4 adjoint, real
10 (3, 0) 0 6 9/2
15 (2, 1) 1 16/3 4
15′ (4, 0) 1 28/3 7
24 (3, 1) 2 25/3 25/4
27 (2, 2) 0 8 6 real

Table B.1: Triality t, Casimir C(D) and their ratios dD = C(D)/C(3) for irreducible
representations with dimension D for p + q ≤ 4 of SU(3).

where ambiguities can be ruled out. The dimension of a representation can be determined
from their canonical label (p, q) by

D =
(p + 1)(q + 1)(p + q + 2)

2
. (B.4)

Throughout this work, we call the eigenvalue C(D) of the quadratic Casimir operator
C2

D the Casimir operator or simply the Casimir, which is implicitly defined by

C2
D = tata = C(D) � , with a = 1, . . . , 8 (B.5)

where ta are the generators of the representation D of SU(3). For the fundamental repre-

sentation, we have in general for SU(N) C(F ) = N2−1
2N and for the adjoint representation

C(A) = N . We often use ratios of Casimirs of representations D1 and D2, which we
define by

d(D2, D1) =
C(D2)

C(D1)
and dD = d(D, 3). (B.6)

Another important quantity is the triality t of a representation

t = (p − q) mod 3. (B.7)

Representations with p = q are called real. In our work, this is the case for D = 8, 27.
The group

�
(3) is the center of SU(3). An element of the center z ∈ �

(3) commutes
with every element g of SU(3)

zg = gz ∀g ∈ SU(3). (B.8)
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B.1 Gell-Mann Matrices

B.1 Gell-Mann Matrices

A popular choice for the generators ta with a = 1, . . . , 8 of SU(3) is the one that uses
the Gell-Mann matrices λa, which are related to the generators by ta = λa/2. The
Gell-Mann matrices are

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0





λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0





λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 . (B.9)

For a, b, c = 1, . . . , 8 they have the following properties

λa = λa†, Tr λa = 0, Tr
(

λaλb
)

= 2δab,

Tr
(

λaλbλc
)

= 2(dabc + ifabc),

[

λa, λb
]

= 2ifabcλc,
{

λa, λb
}

=
4

3
δab � + 2dabcλc,

detλi = 0 for i = 1, . . . , 7 and det λ8 = − 2

3
√

3
. (B.10)

The Fierz-identity of SU(3) is

λa
ijλ

a
kl = 2δilδkj − 2

3
δijδkl, (B.11)

where a = 1, . . . , 8 and i, j, k, l = 1, 2, 3.
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B.2 Reduction of Direct Products

For the reduction of direct products we use the following identities, which can be obtained
for instance by the aid of young tableaux:

3 ⊗ 3 = 6 ⊕ 3 (1, 0) ⊗ (1, 0) = (2, 0) ⊕ (0, 1)

3 ⊗ 3 = 8 ⊕ 1 (1, 0) ⊗ (0, 1) = (1, 1) ⊕ (0, 0)

6 ⊗ 3 = 10 ⊕ 8 (2, 0) ⊗ (1, 0) = (3, 0) ⊕ (1, 1)

6 ⊗ 3 = 15 ⊕ 3 (2, 0) ⊗ (0, 1) = (2, 1) ⊕ (1, 0)

8 ⊗ 3 = 15 ⊕ 6 ⊕ 3 (1, 1) ⊗ (1, 0) = (2, 1) ⊕ (0, 2) ⊕ (1, 0)

10 ⊗ 3 = 15′ ⊕ 15 (3, 0) ⊗ (1, 0) = (4, 0) ⊕ (2, 1)

10 ⊗ 3 = 24 ⊕ 6 (3, 0) ⊗ (0, 1) = (3, 1) ⊕ (2, 0)

6 ⊗ 6 = 15′ ⊕ 15 ⊕ 6 (2, 0) ⊗ (2, 0) = (4, 0) ⊕ (2, 1) ⊕ (0, 2)

6 ⊗ 6 = 27 ⊕ 8 ⊕ 1 (2, 0) ⊗ (0, 2) = (2, 2) ⊕ (1, 1) ⊕ (0, 0).

(B.12)
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C Tables

We have combined the statistics of the simulations used in this work and the data of
the bare and renormalised Polyakov loops together with the effective renormalisation
constants obtained in pure gauge theory in this table work.

The number of configurations evaluated for the Polyakov loop in different represen-
tations and free energies in pure gauge theory and 2-flavour QCD is shown in C.1. For
the lattice couplings from the 323 × Nτ lattices in pure gauge theory not listed we used
1000 configurations for Nτ = 4, 2000 for β ≤ 4.700 and 1000 otherwise for Nτ = 6 and
3000 for β ≤ 4.8661 and 1000 otherwise for Nτ = 8. For the singlet free energies every
tenth configuration was gauge fixed in pure gauge theory, in 2-flavour QCD we applied
the gauge fixing procedure to every configuration.

In tab. C.2 - C.6 we show the value of the bare Polyakov loop in representations
D = 3, 6, 8, 10, 15 obtained from 323 × Nτ lattices with Nτ = 4, 6, 8 in pure gauge
theory. Tab. C.7 displays the values of the bare Polyakov loops for the representations
D = 15′, 24, 27 from the 323 × 4 lattice in pure gauge theory.

In tab. C.8 we show the effective renormalisation constants ZR
D(g2) obtained from the

renormalisation procedure employing the QQ̄-singlet free energies (see chapter 3.2) in
representations D = 3, 8 using a 323 × 4 lattice in pure gauge theory.

Tab. C.9 displays the effective renormalisation constants ZR
3 (g2) from the Nτ -variation

method described in chapter 3.3 in pure gauge theory. The values of ZR
D for higher

representations agree within errors.
In tab. C.10 we show the renormalised fundamental Polyakov loop near above Tc

and the renormalised adjoint Polyakov loop in the vicinity of Tc, where the effective
renormalisation constants in tab. C.8 have been used.

In tab. C.11 we list the renormalised Polyakov loops for the representations D =
3, 6, 8, 10, 15 obtained by the Nτ -variation method in pure gauge theory.

Tab. C.12 shows the bare Polyakov loops in representations D = 3, 6, 8, 10, 15 in 2-
flavour QCD from a 163 × 4 lattice. In tab. C.13 we display the renormalised Polyakov
loops, where the effective renormalisation constants ZR

3 have been determined in [29, 60].
For the higher representations we assume Casimir scaling ZR

D = ZR
3 . See chapter 4.5 for

details.
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Nτ = 4 pg Nτ = 8 pg Nτ = 4, Nf = 2

β # β # β #

4.020 9920 4.4472 9950 3.520 3000
4.030 10066 4.4862 10010 3.550 2243
4.040 10079 4.5000 9950 3.580 3500
4.050 9930 4.5951 10010 3.600 3800
4.060 9480 4.6291 10010 3.630 3000
4.065 10205 4.6619 9583 3.650 4000
4.070 10208 4.8393 9596 3.660 4000
4.080 9490 4.9275 10010 3.680 3600
4.090 9340 5.4261 10010 3.700 2000
4.150 9330 3.720 2000
4.400 9460 3.750 920
4.800 9470 3.800 1000

3.850 1000
3.900 1010
3.950 1001
4.000 1010
4.245 1000
4.430 1610

Table C.1: Number of configurations evaluated for the Polyakov loop in different rep-
resentations and free energies in pure gauge theory (pg) and 2-flavour QCD
(Nf = 2). For the lattice couplings not listed, see text.
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Nτ = 4 Nτ = 6 Nτ = 8

β T/Tc 〈|L3|〉 β T/Tc 〈|L3|〉 β T/Tc 〈|L3|〉

4.0760 1.005 0.1125(20) 4.3350 1.021 0.0677(11) 4.5300 1.009 0.0366(14)
4.0800 1.013 0.11690(61) 4.3500 1.044 0.07473(54) 4.5592 1.049 0.0426(12)
4.0900 1.031 0.13189(39) 4.3750 1.083 0.08187(67) 4.5600 1.050 0.04384(40)
4.1000 1.049 0.14289(74) 4.4000 1.123 0.08979(36) 4.5951 1.100 0.04952(28)
4.1270 1.099 0.16209(34) 4.4250 1.163 0.09456(34) 4.6000 1.107 0.04950(39)
4.1500 1.143 0.17350(12) 4.4500 1.205 0.10033(41) 4.6244 1.143 0.05373(33)
4.1540 1.151 0.17536(52) 4.4800 1.256 0.10600(35) 4.6291 1.150 0.05480(17)
4.1790 1.200 0.18525(38) 4.5500 1.382 0.11890(29) 4.6605 1.198 0.05859(35)
4.2000 1.242 0.19339(32) 4.6120 1.500 0.12955(24) 4.6619 1.200 0.05815(16)
4.2290 1.301 0.20244(26) 4.7000 1.680 0.14312(21) 4.6821 1.232 0.06117(33)
4.3210 1.500 0.22819(22) 4.8000 1.905 0.15787(29) 4.6874 1.240 0.06172(26)
4.3430 1.550 0.23323(22) 4.9000 2.154 0.17186(34) 4.7246 1.300 0.06579(26)
4.3650 1.601 0.23859(21) 5.0000 2.430 0.18440(30) 4.8393 1.500 0.07893(18)
4.4000 1.684 0.246301(71) 5.1800 3.007 0.20825(28) 4.8661 1.550 0.08194(21)
4.6000 2.215 0.28593(19) 5.4500 4.112 0.23906(34) 4.8921 1.600 0.08485(33)
4.8000 2.858 0.319424(63) 5.6250 5.024 0.25839(32) 4.9275 1.671 0.08819(13)
4.8390 2.999 0.32588(18) 5.7850 6.030 0.27443(30) 4.9340 1.684 0.08909(29)
5.0750 3.986 0.35925(18) 6.0350 8.010 0.29927(34) 5.0500 1.935 0.10068(42)
5.2683 5.000 0.38350(22) 6.2300 9.993 0.31725(34) 5.2500 2.447 0.12109(34)
5.4261 6.001 0.40180(19) 6.4050 12.186 0.33286(27) 5.4261 3.000 0.13764(14)
5.6773 8.000 0.42839(19) 6.5300 14.042 0.34313(33) 5.6000 3.662 0.15499(37)
5.8733 10.000 0.44838(18) 6.6480 16.054 0.35281(29) 5.8000 4.600 0.17198(38)
6.0434 12.130 0.46337(16) 6.7500 18.025 0.36043(34) 5.9930 5.728 0.18903(33)
6.1698 14.000 0.47410(18) 6.8400 19.965 0.36801(26) 6.0434 6.065 0.19323(39)
6.2876 16.001 0.48418(15) 6.9270 22.039 0.37397(34) 6.2000 7.244 0.20667(43)
6.3919 18.009 0.49235(16) 6.3910 8.996 0.22177(51)
6.4843 19.999 0.49968(17) 6.5937 11.321 0.23815(36)
6.5683 21.999 0.50607(14) 6.6450 12.000 0.24165(38)
6.6450 23.999 0.51160(16)

Table C.2: Bare Polyakov loop in the fundamental representation from 323 ×Nτ lattices
with Nτ = 4, 6, 8 in pure gauge theory.
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C Tables

Nτ = 4 Nτ = 6 Nτ = 8

β T/Tc 〈|L6|〉 β T/Tc 〈|L6|〉 β T/Tc 〈|L6|〉

4.0760 1.005 0.00555(18) 4.3350 1.021 0.001376(27) 4.5300 1.009 0.000324(18)
4.0800 1.013 0.005950(56) 4.3500 1.044 0.001718(29) 4.5592 1.049 0.000424(23)
4.0900 1.031 0.007501(44) 4.3750 1.083 0.002106(44) 4.5600 1.050 0.000466(17)
4.1000 1.049 0.008842(87) 4.4000 1.123 0.002578(28) 4.5951 1.100 0.000580(10)
4.1270 1.099 0.011518(58) 4.4250 1.163 0.002900(28) 4.6000 1.107 0.000595(18)
4.1500 1.143 0.013429(23) 4.4500 1.205 0.003328(34) 4.6244 1.143 0.000701(17)
4.1540 1.151 0.013761(72) 4.4800 1.256 0.003801(31) 4.6291 1.150 0.000740(10)
4.1790 1.200 0.015601(79) 4.5500 1.382 0.005027(39) 4.6605 1.198 0.000870(18)
4.2000 1.242 0.017250(69) 4.6120 1.500 0.006184(35) 4.6619 1.200 0.000851(10)
4.2290 1.301 0.019223(66) 4.7000 1.680 0.007892(35) 4.6874 1.240 0.001007(18)
4.3210 1.500 0.025518(69) 4.8000 1.905 0.010077(51) 4.7246 1.300 0.001176(18)
4.3430 1.550 0.026910(66) 4.9000 2.154 0.012378(71) 4.8393 1.500 0.001789(12)
4.3650 1.601 0.028416(67) 5.0000 2.430 0.014762(64) 4.8661 1.550 0.001961(18)
4.4000 1.684 0.030712(25) 5.1800 3.007 0.019890(72) 4.8921 1.600 0.002140(32)
4.6000 2.215 0.044226(74) 5.4500 4.112 0.028088(98) 4.9275 1.671 0.002358(13)
4.8000 2.858 0.058137(31) 5.6250 5.024 0.03407(11) 4.9340 1.684 0.002415(30)
4.8390 2.999 0.061095(88) 5.7850 6.030 0.03958(12) 5.0500 1.935 0.003268(49)
5.0750 3.986 0.077762(99) 6.0350 8.010 0.04908(14) 5.2500 2.447 0.005162(42)
5.2683 5.000 0.09142(13) 6.2300 9.993 0.05681(16) 5.4261 3.000 0.007084(21)
5.4261 6.001 0.10264(12) 6.4050 12.186 0.06403(14) 5.6000 3.662 0.009524(64)
5.6773 8.000 0.12038(14) 6.5300 14.042 0.06907(17) 5.8000 4.600 0.012310(66)
5.8733 10.000 0.13489(14) 6.6480 16.054 0.07404(16) 5.9930 5.728 0.015603(70)
6.0434 12.130 0.14641(13) 6.7500 18.025 0.07809(19) 6.0434 6.065 0.016461(93)
6.1698 14.000 0.15494(15) 6.8400 19.965 0.08222(15) 6.2000 7.244 0.01948(11)
6.2876 16.001 0.16333(13) 6.9270 22.039 0.08562(19) 6.3910 8.996 0.02320(13)
6.3919 18.009 0.17026(14) 6.5937 11.321 0.02775(10)
6.4843 19.999 0.17665(15) 6.6450 12.000 0.02875(13)
6.5683 21.999 0.18236(13)
6.6450 23.999 0.18738(15)

Table C.3: Bare Polyakov loop in the sextet representation from 323 × Nτ lattices with
Nτ = 4, 6, 8 in pure gauge theory.
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Nτ = 4 Nτ = 6 Nτ = 8

β T/Tc 〈L8〉 β T/Tc 〈L8〉 β T/Tc 〈L8〉

4.0760 1.005 0.00905(27) 4.3350 1.021 0.002658(65) 4.5300 1.009 0.000684(34)
4.0800 1.013 0.009647(82) 4.3500 1.044 0.003166(49) 4.5592 1.049 0.000924(30)
4.0900 1.031 0.011959(64) 4.3750 1.083 0.003830(70) 4.5600 1.050 0.000941(19)
4.1000 1.049 0.01389(13) 4.4000 1.123 0.004621(43) 4.5951 1.100 0.001221(13)
4.1270 1.099 0.017799(79) 4.4250 1.163 0.005167(44) 4.6000 1.107 0.001241(23)
4.1500 1.143 0.020474(31) 4.4500 1.205 0.005877(42) 4.6244 1.143 0.001446(26)
4.1540 1.151 0.020939(99) 4.4800 1.256 0.006614(49) 4.6291 1.150 0.001528(14)
4.1790 1.200 0.02346(11) 4.5500 1.382 0.008486(50) 4.6605 1.198 0.001755(24)
4.2000 1.242 0.025685(90) 4.6120 1.500 0.010259(46) 4.6619 1.200 0.001723(13)
4.2290 1.301 0.028325(84) 4.7000 1.680 0.012788(47) 4.6874 1.240 0.001963(25)
4.3210 1.500 0.036709(86) 4.8000 1.905 0.015894(72) 4.7246 1.300 0.002248(24)
4.3430 1.550 0.038497(85) 4.9000 2.154 0.019164(90) 4.8393 1.500 0.003370(18)
4.3650 1.601 0.040453(84) 5.0000 2.430 0.022480(83) 4.8661 1.550 0.003693(25)
4.4000 1.684 0.043385(32) 5.1800 3.007 0.029418(95) 4.8921 1.600 0.003969(48)
4.6000 2.215 0.060310(92) 5.4500 4.112 0.04011(13) 4.9275 1.671 0.004295(17)
4.8000 2.858 0.077168(36) 5.6250 5.024 0.04775(14) 4.9340 1.684 0.004433(42)
4.8390 2.999 0.08071(10) 5.7850 6.030 0.05464(14) 5.0500 1.935 0.005786(65)
5.0750 3.986 0.10030(12) 6.0350 8.010 0.06634(17) 5.2500 2.447 0.008723(65)
5.2683 5.000 0.11607(14) 6.2300 9.993 0.07567(19) 5.4261 3.000 0.011609(28)
5.4261 6.001 0.12882(14) 6.4050 12.186 0.08425(16) 5.6000 3.662 0.015129(90)
5.6773 8.000 0.14871(15) 6.5300 14.042 0.09020(19) 5.8000 4.600 0.019124(92)
5.8733 10.000 0.16476(15) 6.6480 16.054 0.096041(18) 5.9930 5.728 0.023634(99)
6.0434 12.130 0.17737(14) 6.7500 18.025 0.10076(22) 6.0434 6.065 0.02481(12)
6.1698 14.000 0.18667(16) 6.8400 19.965 0.10556(17) 6.2000 7.244 0.02886(14)
6.2876 16.001 0.19574(14) 6.9270 22.039 0.10944(22) 6.3910 8.996 0.03382(17)
6.3919 18.009 0.20321(15) 6.5937 11.321 0.03967(14)
6.4843 19.999 0.21006(16) 6.6450 12.000 0.04099(13)
6.5683 21.999 0.21616(14)
6.6450 23.999 0.22151(16)

Table C.4: Bare Polyakov loop in the adjoint representation from 323 ×Nτ lattices with
Nτ = 4, 6, 8 in pure gauge theory.
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C Tables

Nτ = 4 Nτ = 6 Nτ = 8

β T/Tc 〈L10〉 β T/Tc 〈L10〉 β T/Tc 〈L10〉

4.0760 1.005 0.000121(18)
4.0800 1.013 0.0001388(59)
4.0900 1.031 0.0001950(60)
4.1000 1.049 0.000257(18)
4.1270 1.099 0.000360(19)
4.1500 1.143 0.0004825(62)
4.1540 1.151 0.000508(19)
4.1790 1.200 0.000639(20)
4.2000 1.242 0.000736(19)
4.2290 1.301 0.000913(20)
4.3210 1.500 0.001433(21)
4.3430 1.550 0.001556(20)
4.3650 1.601 0.001716(22)
4.4000 1.684 0.0019763(74)
4.6000 2.215 0.003748(24) 4.8000 1.905 0.000271(19)
4.8000 2.858 0.0060871(88) 4.9000 2.154 0.000392(20)
4.8390 2.999 0.006641(30) 5.0000 2.430 0.000508(19)
5.0750 3.986 0.010214(33) 5.1800 3.007 0.000879(20)
5.2683 5.000 0.013600(43) 5.4500 4.112 0.001626(23) 5.0500 1.935 0.0000237(189)
5.4261 6.001 0.016716(42) 5.6250 5.024 0.002302(23) 5.2500 2.447 0.0000856(182)
5.6773 8.000 0.022246(52) 5.7850 6.030 0.003032(25) 5.4261 3.000 0.0001426(61)
5.8733 10.000 0.027284(53) 6.0350 8.010 0.004429(28) 5.6000 3.662 0.0002311(187)
6.0434 12.130 0.031616(55) 6.2300 9.993 0.005756(36) 5.8000 4.600 0.0003707(189)
6.1698 14.000 0.034938(65) 6.4050 12.186 0.007141(38) 5.9930 5.728 0.0005673(200)
6.2876 16.001 0.038446(64) 6.5300 14.042 0.008183(36) 6.0434 6.065 0.0006282(191)
6.3919 18.009 0.041404(69) 6.6480 16.054 0.009256(43) 6.2000 7.244 0.0008501(198)
6.4843 19.999 0.044236(68) 6.7500 18.025 0.010196(48) 6.3910 8.996 0.0011376(207)
6.5683 21.999 0.046846(61) 6.8400 19.965 0.011138(45) 6.5937 11.321 0.0016010(219)
6.6450 23.999 0.049194(75) 6.9270 22.039 0.012021(51) 6.6450 12.000 0.0016896(216)

Table C.5: Bare Polyakov loop in the D = 10 representation from 323 ×Nτ lattices with
Nτ = 4, 6, 8 in pure gauge theory.
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Nτ = 4 Nτ = 6 Nτ = 8

β T/Tc 〈L15〉 β T/Tc 〈L15〉 β T/Tc 〈L15〉

4.0760 1.005 0.000317(15)
4.0800 1.013 0.0003465(54)
4.0900 1.031 0.0004792(52)
4.1000 1.049 0.000593(17)
4.1270 1.099 0.000863(17)
4.1500 1.143 0.0011073(61)
4.1540 1.151 0.001148(17)
4.1790 1.200 0.001386(17)
4.2000 1.242 0.001604(19)
4.2290 1.301 0.001909(18)
4.3210 1.500 0.002938(22)
4.3430 1.550 0.003182(20)
4.3650 1.601 0.003457(23)
4.4000 1.684 0.0039105(80)
4.6000 2.215 0.006922(27) 4.8000 1.905 0.000643(17)
4.8000 2.858 0.010676(11) 4.9000 2.154 0.000901(16)
4.8390 2.999 0.011562(34) 5.0000 2.430 0.001203(17)
5.0750 3.986 0.016928(43) 5.1800 3.007 0.001902(19)
5.2683 5.000 0.021888(55) 5.4500 4.112 0.003311(25) 5.0500 1.935 0.0000936(144)
5.4261 6.001 0.026307(58) 5.6250 5.024 0.004514(31) 5.2500 2.447 0.0002220(145)
5.6773 8.000 0.033918(65) 5.7850 6.030 0.005739(34) 5.4261 3.000 0.0003652(49)
5.8733 10.000 0.040672(71) 6.0350 8.010 0.008074(44) 5.6000 3.662 0.0005860(166)
6.0434 12.130 0.046360(69) 6.2300 9.993 0.010207(50) 5.8000 4.600 0.0009092(178)
6.1698 14.000 0.050694(82) 6.4050 12.186 0.012330(50) 5.9930 5.728 0.0012804(183)
6.2876 16.001 0.055176(76) 6.5300 14.042 0.013931(52) 6.0434 6.065 0.0014135(213)
6.3919 18.009 0.058949(82) 6.6480 16.054 0.015557(55) 6.2000 7.244 0.0018581(223)
6.4843 19.999 0.062521(86) 6.7500 18.025 0.016947(74) 6.3910 8.996 0.0024362(211)
6.5683 21.999 0.065787(74) 6.8400 19.965 0.018388(59) 6.5937 11.321 0.0032386(251)
6.6450 23.999 0.068710(91) 6.9270 22.039 0.019610(74) 6.6450 12.000 0.0034142(267)

Table C.6: Bare Polyakov loop in the D = 15 representation from 323 ×Nτ lattices with
Nτ = 4, 6, 8 in pure gauge theory.
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C Tables

β T/Tc 〈L15′〉 〈L24〉 〈L27〉

4.1270 1.099 0.000017(13) 0.0000145(86) 0.000022(10)
4.1500 1.143 0.0000040(41) 0.0000266(29) 0.0000427(35)
4.1540 1.151 0.000013(13) 0.0000276(87) 0.000046(11)
4.1790 1.200 0.000015(13) 0.0000436(89) 0.000059(11)
4.2000 1.242 −0.000002(13) 0.0000494(86) 0.000068(10)
4.2290 1.301 0.000034(13) 0.0000678(90) 0.000086(11)
4.3210 1.500 0.000045(14) 0.000117(10) 0.000161(12)
4.3430 1.550 0.000039(13) 0.000131(10) 0.000197(12)
4.3650 1.601 0.000048(14) 0.000151(11) 0.000205(13)
4.4000 1.684 0.0000640(44) 0.0001811(33) 0.0002563(39)
4.6000 2.215 0.000193(15) 0.000438(12) 0.000590(14)
4.8000 2.858 0.0003788(49) 0.0008562(42) 0.0011284(48)
4.8390 2.999 0.000421(15) 0.000964(14) 0.001269(15)
5.0750 3.986 0.000834(17) 0.001744(15) 0.002235(18)
5.2683 5.000 0.001258(18) 0.002577(18) 0.003266(20)
5.4261 6.001 0.001739(18) 0.003431(17) 0.004302(23)
5.6773 8.000 0.002709(20) 0.005100(21) 0.006295(23)
5.8733 10.000 0.003719(20) 0.006760(24) 0.008250(27)
6.0434 12.130 0.004682(22) 0.008298(26) 0.010041(29)
6.1698 14.000 0.005435(22) 0.009503(27) 0.011448(31)
6.2876 16.001 0.006333(27) 0.010868(31) 0.013012(34)
6.3919 18.009 0.007092(27) 0.012035(33) 0.014356(36)
6.4843 19.999 0.007859(26) 0.013193(33) 0.015680(37)
6.5683 21.999 0.008591(25) 0.014285(30) 0.016924(33)
6.6450 23.999 0.009275(29) 0.015292(36) 0.018067(40)

Table C.7: Bare Polyakov loop in the D = 15′, 24, 27 representation from 323 × 4 lattice
in pure gauge theory.
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g2 ZR
3 (g2) g2 ZR

8 (g2)

1.47059 1.3677(50) 1.49254 1.393(25)
1.46699 1.3670(51) 1.48148 1.398(27)
1.46341 1.3675(55) 1.47783 1.399(22)
1.45384 1.3682(50) 1.47059 1.388(20)
1.44439 1.3676(48) 1.46699 1.388(19)
1.43575 1.3686(44) 1.44578 1.391(20)
1.42857 1.3686(41) 1.36364 1.387(19)
1.41878 1.3691(38) 1.25000 1.335(20)
1.38857 1.3674(28)
1.38153 1.3664(23)
1.37457 1.3660(22)
1.36364 1.3644(19)
1.30435 1.34929(68)
1.23993 1.32936(82)

Table C.8: Effective renormalisation constants ZR
3 (g2) from the fundamental singlet QQ̄-

free energy and ZR
8 (g2) from the adjoint singlet QQ̄-free energy. See chapter

3.2.
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C Tables

g2 ZR
3 (g2) g2 ZR

3 (g2)

0.903 1.20926(21) 1.216 1.3279(22)
0.939 1.22209(18) 1.226 1.3310(41)
0.954 1.22790(41) 1.229 1.3271(15)
0.978 1.23640(72) 1.240 1.3342(24)
1.012 1.24983(62) 1.251 1.3431(22)
1.020 1.25287(88) 1.265 1.3426(32)
1.038 1.26033(34) 1.276 1.3486(24)
1.057 1.26718(39) 1.287 1.3511(59)
1.065 1.2703(13) 1.290 1.3454(19)
1.076 1.27378(88) 1.301 1.3523(34)
1.085 1.27907(65) 1.312 1.3625(43)
1.106 1.28741(68) 1.315 1.3375(89)
1.115 1.2907(22) 1.326 1.3597(54)
1.127 1.29355(76) 1.338 1.3650(31)
1.137 1.2990(12) 1.349 1.3642(69)
1.149 1.30048(68) 1.352 1.3687(69)
1.159 1.3074(11) 1.363 1.3604(65)
1.169 1.3114(30) 1.377 1.3588(29)
1.182 1.3150(15) 1.463 1.3534(52)

Table C.9: Effective renormalisation constants ZR
3 (g2) from the Nτ -variation method in

chapter 3.3. The values for higher representations agree within errors.
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T/Tc LR
3 LR

8

0.907 0.0087(16)
0.924 0.0099(17)
0.942 0.0116(17)
0.959 0.0143(19)
0.977 0.0168(23)
0.986 0.0198(53)
0.995 0.0219(48)
1.005 0.396(21) 0.154(37)
1.013 0.4107(65) 0.163(11)
1.031 0.4621(42) 0.2008(86)
1.049 0.5126(79) 0.246(19)
1.144 0.6089(12) 0.3451(42)
1.242 0.6874(35) 0.446(13)

Table C.10: Renormalised Polyakov loop for D = 3, 8 in pure gauge theory obtained
with the ZR

D from the renormalisation procedure employing the QQ̄-singlet
free energy.
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C Tables

T/Tc LR
3 LR

6 LR
8 LR

10 LR
15

1.053 0.4888(64) 0.1791(57) 0.2090(58)
1.068 0.647(73) 0.371(83) 0.292(54)
1.125 0.577(16) 0.267(21) 0.298(18)
1.185 0.647(19) 0.344(27) 0.385(22)
1.201 0.649(22) 0.356(28) 0.388(30)
1.266 0.6976(78) 0.457(23) 0.476(18)
1.333 0.726(19) 0.438(20) 0.489(29)
1.424 0.792(15) 0.553(22) 0.590(29)
1.500 0.798(12) 0.571(23) 0.602(20)
1.580 0.8115(70) 0.591(12) 0.625(12)
1.602 0.842(22) 0.667(41) 0.685(41)
1.688 0.8695(96) 0.719(21) 0.737(18)
1.778 0.882(12) 0.725(22) 0.777(25)
1.898 0.9294(81) 0.839(25) 0.864(23)
2.000 0.9272(95) 0.829(24) 0.840(20)
2.136 0.955(18) 0.905(42) 0.901(38) 0.77(47) 0.94(18)
2.250 0.9722(91) 0.941(24) 0.935(20) 0.90(33) 0.969(85)
2.370 0.9713(53) 0.925(12) 0.933(11) 0.870(29) 0.877(21)
2.531 1.0098(73) 1.031(20) 1.029(19) 1.20(17) 1.095(80)
2.667 1.0100(62) 1.022(14) 1.025(14) 1.15(10) 1.023(49)
2.848 1.032(13) 1.085(40) 1.080(33) 1.22(17) 1.189(87)
3.000 1.0424(45) 1.108(12) 1.098(11) 1.241(79) 1.192(33)
3.375 1.0624(49) 1.163(13) 1.145(12) 1.334(90) 1.310(33)
3.556 1.0597(47) 1.150(12) 1.135(11) 1.294(19) 1.240(24)
3.797 1.0739(95) 1.197(29) 1.177(25) 1.37(12) 1.377(67)
4.000 1.0797(33) 1.2087(85) 1.1863(83) 1.396(43) 1.367(27)
4.500 1.0874(35) 1.231(10) 1.2074(90) 1.464(54) 1.431(24)
5.062 1.0909(65) 1.243(20) 1.219(17) 1.485(60) 1.453(55)
5.333 1.0946(24) 1.2516(68) 1.2246(60) 1.501(15) 1.432(13)
6.000 1.1002(18) 1.2691(58) 1.2391(50) 1.550(31) 1.465(17)
6.750 1.1012(47) 1.272(14) 1.243(12) 1.546(72) 1.492(41)
8.000 1.1060(15) 1.2855(44) 1.2539(38) 1.5704(96) 1.4935(80)
9.000 1.1049(30) 1.2823(90) 1.2521(77) 1.547(37) 1.492(22)

12.000 1.106∗ 1.286∗ 1.254∗ 1.574∗ 1.496∗

Table C.11: Renormalised Polyakov loop in the D = 3, 6, 8, 10, 15 in pure gauge theory
obtained with the Nτ -variation method (see chapter 3.3). ∗: seed value.
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β T/Tc 〈L3〉 〈L6〉 〈L8〉 〈L10〉 〈L15〉

3.520 0.76 0.03744(53) 0.01377(18) 0.01230(24)
3.550 0.81 0.04818(81) 0.01407(22) 0.01257(29)
3.580 0.87 0.06550(87) 0.01400(18) 0.01306(24)
3.600 0.90 0.0821(12) 0.01431(17) 0.01329(24)
3.630 0.96 0.1364(20) 0.01514(21) 0.01790(38)
3.650 1.002 0.2037(32) 0.01823(28) 0.02875(72)
3.660 1.02 0.2448(34) 0.02180(35) 0.0390(10)
3.680 1.07 0.3380(28) 0.03410(48) 0.0698(10)
3.700 1.11 0.3905(23) 0.04469(63) 0.0919(11)
3.720 1.16 0.4334(17) 0.05415(56) 0.1116(10)
3.750 1.23 0.4817(20) 0.06726(85) 0.1373(14) 0.01462(38)
3.800 1.36 0.5376(18) 0.08652(82) 0.1733(14) 0.01526(37) 0.02173(54)
3.850 1.50 0.5837(14) 0.10523(77) 0.2073(14) 0.01641(39) 0.02741(62)
3.900 1.65 0.6229(13) 0.12283(80) 0.2390(13) 0.01775(42) 0.03309(71)
3.950 1.81 0.6603(16) 0.14094(90) 0.2707(15) 0.01941(46) 0.04034(85)
4.000 1.98 0.6951(14) 0.15869(94) 0.3025(15) 0.02104(47) 0.04722(82)
4.245 3.00 0.8347(13) 0.2480(11) 0.4529(17) 0.03633(61) 0.09283(104)
4.430 4.01 0.9273(10) 0.32161(96) 0.5734(14) 0.05442(55) 0.14091(94)

Table C.12: Bare Polyakov loop in the D = 3, 6, 8, 10, 15 representation from 163 × 4
lattice in 2-flavour QCD.
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C Tables

T/Tc LR
3 LR

6 LR
8 LR

10 LR
15

0.76 0.03477(62) 0.00139(80) 0.00170(66)
0.81 0.04950(95) 0.0025(11) 0.00361(85)
0.87 0.0720(10) 0.00342(99) 0.00719(79)
0.90 0.0934(14) 0.00758(99) 0.01160(75)
0.96 0.1599(24) 0.0219(12) 0.0302(11)
1.002 0.2399(38) 0.0474(16) 0.0595(18) 0.0045(73) 0.0107(30)
1.02 0.2880(41) 0.0673(18) 0.0828(23) 0.0161(76) 0.0216(30)
1.07 0.3949(33) 0.1219(21) 0.1469(22) 0.0309(78) 0.0418(33)
1.11 0.4582(27) 0.1668(26) 0.1952(24) 0.056(10) 0.0728(46)
1.16 0.5118(20) 0.2082(23) 0.2405(21) 0.070(11) 0.0916(48)
1.23 0.5757(24) 0.2690(35) 0.3039(31) 0.102(17) 0.1240(79)
1.36 0.6565(22) 0.3667(36) 0.4024(33) 0.161(19) 0.2037(85)
1.50 0.7227(18) 0.4636(35) 0.4966(33) 0.277(20) 0.3115(92)
1.65 0.7795(16) 0.5564(37) 0.5862(32) 0.376(21) 0.407(11)
1.81 0.8305(21) 0.6471(43) 0.6717(38) 0.502(23) 0.525(12)
1.98 0.8759(18) 0.7327(45) 0.7538(38) 0.585(23) 0.625(12)
3.00 1.0290(19) 1.0861(52) 1.0739(45) 1.212(24) 1.152(14)
4.01 1.1074(13) 1.3013(44) 1.2658(37) 1.636(18) 1.544(11)

Table C.13: Renormalised Polyakov loop in the D = 3, 6, 8, 10, 15 representation from
163 × 4 lattice in 2-flavour QCD. Casimir scaling in ZR

D is assumed. See
chapter 4.5 for details.
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